切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10895阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 #EG$HX]  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! ! mb<z^>5  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 E}lNb  
    function z = zernfun(n,m,r,theta,nflag) v|IG G'r  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. / NB;eV?  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N K<E|29t^k  
    %   and angular frequency M, evaluated at positions (R,THETA) on the AGMrBd|J{  
    %   unit circle.  N is a vector of positive integers (including 0), and mO^ )k  
    %   M is a vector with the same number of elements as N.  Each element  j|owU  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) _FxQl ]@  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, (5h+b_eB  
    %   and THETA is a vector of angles.  R and THETA must have the same C ^ 1;r9  
    %   length.  The output Z is a matrix with one column for every (N,M) v=J[p;H^H  
    %   pair, and one row for every (R,THETA) pair. ov|/=bzro  
    % x.%x|6G*  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike krecUpo  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), oGKk2oP  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral mvXIh";  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 94'0X  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized _ lE d8Cb  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. i1 ^#TC$x  
    % _ipY;  
    %   The Zernike functions are an orthogonal basis on the unit circle. R4 AKp1Y  
    %   They are used in disciplines such as astronomy, optics, and X;QhK] Z  
    %   optometry to describe functions on a circular domain. #xNXCBl]O  
    % \(;X3h  
    %   The following table lists the first 15 Zernike functions. IRK(y*6  
    % &XZS}n  
    %       n    m    Zernike function           Normalization j-(k`w\  
    %       -------------------------------------------------- )uazB!X  
    %       0    0    1                                 1 LWIPq"  
    %       1    1    r * cos(theta)                    2 0u=FlQ }h  
    %       1   -1    r * sin(theta)                    2 cIOM}/gqv  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) HOb0\X  
    %       2    0    (2*r^2 - 1)                    sqrt(3) dW9Ci"~v  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) dS)c~:&+  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 'eg;)e:`b+  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) dFzlcKFFD  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 't#E-+o  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) tWa_-Un3  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) V)3S.*]  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) -iySU 6  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) ?X~U[dV?  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) vI0::ah/  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) lQl  
    %       -------------------------------------------------- Wer.VL  
    % "2>_eZ#b  
    %   Example 1: W8Aii'Q8C/  
    % {N`<TH PP  
    %       % Display the Zernike function Z(n=5,m=1) ,_!MI+o0  
    %       x = -1:0.01:1; <}t<A  
    %       [X,Y] = meshgrid(x,x); /5r!Fhx  
    %       [theta,r] = cart2pol(X,Y); HK4 *+  
    %       idx = r<=1; ]`u_d}`  
    %       z = nan(size(X)); U`)o$4Bq  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); ? yek\X  
    %       figure  HV\l86}  
    %       pcolor(x,x,z), shading interp b&xlT+GN  
    %       axis square, colorbar &'A8R;b}-?  
    %       title('Zernike function Z_5^1(r,\theta)') N3?@CM^hHw  
    % +5oK91o[y  
    %   Example 2: oa:30@HSb  
    % Qv/Kbw N{  
    %       % Display the first 10 Zernike functions \zv?r :1t  
    %       x = -1:0.01:1; @ !m+s~~]h  
    %       [X,Y] = meshgrid(x,x); p}9bZKyf  
    %       [theta,r] = cart2pol(X,Y); \%$z!]S>  
    %       idx = r<=1; HRF;qR9v  
    %       z = nan(size(X)); /d-d8n  
    %       n = [0  1  1  2  2  2  3  3  3  3]; > ?<C+ZHh  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; vY'E+M"+@  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; pqnZ:'V  
    %       y = zernfun(n,m,r(idx),theta(idx)); CI~ll=9`  
    %       figure('Units','normalized') ]}HuK#  
    %       for k = 1:10 =x^b  
    %           z(idx) = y(:,k); 4.qW ~ W{  
    %           subplot(4,7,Nplot(k)) 5,u'p8}.  
    %           pcolor(x,x,z), shading interp >uVr;,=y  
    %           set(gca,'XTick',[],'YTick',[]) _NkbB"+L  
    %           axis square QX >Pni  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) \&. ]!!Q  
    %       end $G .ws  
    % 7<7 /NZ<I  
    %   See also ZERNPOL, ZERNFUN2. a[A9(Ftn  
    PA<<{\dp  
    %   Paul Fricker 11/13/2006 59Lmv &s  
    Y!nxHRE  
    (OT&:WwW  
    % Check and prepare the inputs: -3T~+  
    % -----------------------------  k.("<)  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) C,#FH}  
        error('zernfun:NMvectors','N and M must be vectors.') ^L +@oS  
    end kCVA~ %d7  
    g}Esj"7  
    if length(n)~=length(m) d/!R;,^  
        error('zernfun:NMlength','N and M must be the same length.') ncCgc5uP  
    end / +9o?Kxya  
    1@vlbgLr@  
    n = n(:); c037#&Q%#  
    m = m(:); 3r]N\c  
    if any(mod(n-m,2)) wR*>9LjeG  
        error('zernfun:NMmultiplesof2', ... f_qW+fN::s  
              'All N and M must differ by multiples of 2 (including 0).') +=&A1{kR3  
    end o:8*WCiqrN  
    M^3pJ=;5  
    if any(m>n) U f <hzP  
        error('zernfun:MlessthanN', ...  mZ^ev;  
              'Each M must be less than or equal to its corresponding N.') fBRU4q=^T  
    end S=.7$PY  
    Uth H  
    if any( r>1 | r<0 ) bUBQ  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') I|oS`iLl$  
    end ^;=L|{Xl  
    NsY D~n  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) /Xo8 kC  
        error('zernfun:RTHvector','R and THETA must be vectors.') ">D7wX,.>  
    end %}0B7_6B+@  
    \C eP.,<  
    r = r(:); 1w/Ur'8we  
    theta = theta(:); Z<^TO1xs9B  
    length_r = length(r); ]| PDsb"e  
    if length_r~=length(theta) AQ` `Dp  
        error('zernfun:RTHlength', ...  ]H_|E  
              'The number of R- and THETA-values must be equal.') k;W`6:Kjp  
    end kvo V?<!  
    V.U9Q{y"  
    % Check normalization: L/sMAB  
    % -------------------- 1QPS=;|)  
    if nargin==5 && ischar(nflag) P/hV{@x  
        isnorm = strcmpi(nflag,'norm'); d?Y|w3lB  
        if ~isnorm SV}C]<  
            error('zernfun:normalization','Unrecognized normalization flag.') U81--'@y  
        end DtrR< &m  
    else zIE{U  
        isnorm = false; J jp)%c#_  
    end WXzSf.8p|  
    W-UMX',0zS  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% i`hr'}x  
    % Compute the Zernike Polynomials ZgD%*bH*B  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 6-oy%OnN  
     o<Z  
    % Determine the required powers of r: G &LOjd 2  
    % ----------------------------------- ~  WO  
    m_abs = abs(m); AZgeu$:7p<  
    rpowers = []; ]dj W^C]94  
    for j = 1:length(n) ?0%3~E`l:  
        rpowers = [rpowers m_abs(j):2:n(j)]; ! O~:  
    end Z|k>)pv@  
    rpowers = unique(rpowers); uz%<K(:Ov  
    ?n0Z4 8%  
    % Pre-compute the values of r raised to the required powers, C ks;f6G  
    % and compile them in a matrix: =]swhF+l-  
    % ----------------------------- Uzzt+Iwm  
    if rpowers(1)==0 2b i:Q9  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); d)yu`U  
        rpowern = cat(2,rpowern{:}); :fx^{N!T  
        rpowern = [ones(length_r,1) rpowern]; tzn+ M0'  
    else iS]4F_|vd  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ah9P C7[  
        rpowern = cat(2,rpowern{:}); *?v_AZ  
    end b:6NVHb%  
    DY(pU/q  
    % Compute the values of the polynomials: ??u*qO:p  
    % -------------------------------------- d(X/N2~g  
    y = zeros(length_r,length(n)); Wq}Y|0c  
    for j = 1:length(n) j'QPJ(`~1l  
        s = 0:(n(j)-m_abs(j))/2; ;if PqL kO  
        pows = n(j):-2:m_abs(j); 5z~O3QX  
        for k = length(s):-1:1 B}U:c]  
            p = (1-2*mod(s(k),2))* ... }gR!]Cs)^  
                       prod(2:(n(j)-s(k)))/              ... *&nIxb60b{  
                       prod(2:s(k))/                     ... Z&![W@m@0N  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... =lOdg3#\a  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 3Ud{W$Ym  
            idx = (pows(k)==rpowers); oH ] _2[ !  
            y(:,j) = y(:,j) + p*rpowern(:,idx); mNk@WY_F  
        end <<M1:1  
         $c0<I59&|  
        if isnorm Qt+i0xd  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); x=VLTH/oo  
        end =73aME}  
    end WM8])}<L  
    % END: Compute the Zernike Polynomials ][TA7pDPV  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% q*'-G]tH=  
    RE%25t|  
    % Compute the Zernike functions: uy'qIq  
    % ------------------------------ vi; yT.  
    idx_pos = m>0; -%)S~ R  
    idx_neg = m<0; zc.r&(d  
    lK%)a +2  
    z = y; R}E$SmFg  
    if any(idx_pos) _fM=J+  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); e,D RQ2AU  
    end s/\<;g:u^  
    if any(idx_neg) Memb`3  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); m8,jVR  
    end "%rzL.</  
    V M{Sng  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) DCSmEy`.  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. J 7HOSFwXn  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated 4Dw| I${O  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive ^5q}M'  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, 5;CqGzgoP  
    %   and THETA is a vector of angles.  R and THETA must have the same ZfU &X{  
    %   length.  The output Z is a matrix with one column for every P-value, ?.g="{5X  
    %   and one row for every (R,THETA) pair. jP31K{G?  
    % T?KM}<$(O  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike %4x,^ K]  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) 7? ]wAH89  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) 4bq+(CI6  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 xA>3]<O  
    %   for all p. {`+:!X   
    % q22@ZRw  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 1Gw_S?$7  
    %   Zernike functions (order N<=7).  In some disciplines it is IXU~& 5&J  
    %   traditional to label the first 36 functions using a single mode gJg%3K~,  
    %   number P instead of separate numbers for the order N and azimuthal c|F26$rv  
    %   frequency M. |]'gd)%S\  
    % 3^`.bm4 ^  
    %   Example: e/Y& d9` I  
    % F>U*Wy  
    %       % Display the first 16 Zernike functions @N6KZn |R  
    %       x = -1:0.01:1; :MILOwF  
    %       [X,Y] = meshgrid(x,x); K_}81|=  
    %       [theta,r] = cart2pol(X,Y); iUk#0 I  
    %       idx = r<=1; :auq#$B  
    %       p = 0:15; Q5c13g2(c  
    %       z = nan(size(X)); ?MD\\gN  
    %       y = zernfun2(p,r(idx),theta(idx)); h{CMPJjD  
    %       figure('Units','normalized') vFK!LeF%  
    %       for k = 1:length(p) _/5xtupxE  
    %           z(idx) = y(:,k); Qy\K oo  
    %           subplot(4,4,k) Wl{wY,u  
    %           pcolor(x,x,z), shading interp N#8$pE  
    %           set(gca,'XTick',[],'YTick',[]) l-q.VY2  
    %           axis square kYu"`_n}  
    %           title(['Z_{' num2str(p(k)) '}']) *]e 9/f  
    %       end vqRW^>~-B  
    % Mo&Po9  
    %   See also ZERNPOL, ZERNFUN. $Hal]  
    f/pr  
    %   Paul Fricker 11/13/2006 fYzZW  
    #4{9l SbU  
    =%0r_#F%=  
    % Check and prepare the inputs: Ombvp;  
    % ----------------------------- p2j=73$  
    if min(size(p))~=1 TN.&FDqC9  
        error('zernfun2:Pvector','Input P must be vector.') ^w~Utx4  
    end qdwjg8fo4Z  
    $jN,] N~  
    if any(p)>35 5uD'Kd$H  
        error('zernfun2:P36', ... \q:PU6q  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... xmwH~UWp  
               '(P = 0 to 35).']) K Z Q `  
    end ek]CTUl*  
    > 72qi*0  
    % Get the order and frequency corresonding to the function number: 0 hS(9y40  
    % ----------------------------------------------------------------  `AxhA.&V  
    p = p(:); &+7G|4!y  
    n = ceil((-3+sqrt(9+8*p))/2); y0cB@pWp  
    m = 2*p - n.*(n+2); ^?gs<-)B  
    n##d!d|g  
    % Pass the inputs to the function ZERNFUN: Oxr?y8C~  
    % ---------------------------------------- I~NQt^sg  
    switch nargin `"<tk1Kq"  
        case 3 M\jTeB"Z  
            z = zernfun(n,m,r,theta); 5Y(f7,JX  
        case 4 N TL`9b  
            z = zernfun(n,m,r,theta,nflag); c!=^C/5Ee  
        otherwise IQQWp@w#8  
            error('zernfun2:nargin','Incorrect number of inputs.') [9xUMX^}  
    end Wf:I 0  
    J(%kcueb  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) J\x.:=V  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. 1VC:o]$  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of L/n?1'he  
    %   order N and frequency M, evaluated at R.  N is a vector of x"QZ}28(t  
    %   positive integers (including 0), and M is a vector with the &ZUV=q%g9n  
    %   same number of elements as N.  Each element k of M must be a %#,EqN  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) a'2^kds  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is sZ9VXnz24  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix QL_9a,R'r  
    %   with one column for every (N,M) pair, and one row for every cN\Fgbt  
    %   element in R. x)Ls(Xh+g  
    % #DFfySH)A  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- +>wBGVvS  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is (5(TbyWwD  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to dCkk5&2n  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 KWH l+p L  
    %   for all [n,m]. xf]_@T;  
    % _M;M-hk/  
    %   The radial Zernike polynomials are the radial portion of the YB1uudW9  
    %   Zernike functions, which are an orthogonal basis on the unit \tx4bV#  
    %   circle.  The series representation of the radial Zernike kKP<K+hH  
    %   polynomials is b qNM  
    % >=Pn\" j  
    %          (n-m)/2 ]1(G:h\  
    %            __ nVt,= ?_ U  
    %    m      \       s                                          n-2s ^yo~C3 r~  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r 5p7?e3  
    %    n      s=0 1$#{om9  
    % 96FS-`  
    %   The following table shows the first 12 polynomials. W dNOE;R  
    % at-+%e  
    %       n    m    Zernike polynomial    Normalization C>:'@o Z  
    %       --------------------------------------------- 7A mnxFC  
    %       0    0    1                        sqrt(2) #7}1W[y9}l  
    %       1    1    r                           2 Ghb Jty`  
    %       2    0    2*r^2 - 1                sqrt(6) <)dHe:  
    %       2    2    r^2                      sqrt(6) %2jRJ  
    %       3    1    3*r^3 - 2*r              sqrt(8) /$ :w8  
    %       3    3    r^3                      sqrt(8) X5gI'u  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) :_f5(N*{5o  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) 2aR<xcSg  
    %       4    4    r^4                      sqrt(10) 0;V "64U  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) 2`;&Uwt  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) f6r~Ycf,f  
    %       5    5    r^5                      sqrt(12) ;"K;D@xzh]  
    %       --------------------------------------------- 74p=uQ  
    % 4fyds< f  
    %   Example: ym =7EY?o  
    % {%b*4x0?  
    %       % Display three example Zernike radial polynomials tvlrUp  
    %       r = 0:0.01:1; QU;bDNq,c  
    %       n = [3 2 5]; NlG~{rfI  
    %       m = [1 2 1]; s9)U",  
    %       z = zernpol(n,m,r); 4Nun-(q  
    %       figure 0Kytg\p}  
    %       plot(r,z) 7H l>UX,|  
    %       grid on j*' +f~ A  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') ~Bi>T15e  
    % \QvoL  
    %   See also ZERNFUN, ZERNFUN2. lPaTkZw  
    kR,ry:J-  
    % A note on the algorithm. ^tTASK  
    % ------------------------ w$##GM=Tq  
    % The radial Zernike polynomials are computed using the series ^P}jn`4  
    % representation shown in the Help section above. For many special !K[UJQ s\  
    % functions, direct evaluation using the series representation can ("r\3Mvs  
    % produce poor numerical results (floating point errors), because  J^V}%N".  
    % the summation often involves computing small differences between {TL.2  
    % large successive terms in the series. (In such cases, the functions o^ zrF  
    % are often evaluated using alternative methods such as recurrence 31^Jg  
    % relations: see the Legendre functions, for example). For the Zernike Ht9QINo  
    % polynomials, however, this problem does not arise, because the je`Ysben  
    % polynomials are evaluated over the finite domain r = (0,1), and YstR T1  
    % because the coefficients for a given polynomial are generally all yCvP-?2  
    % of similar magnitude. }B e;YIhG  
    % .US=fWyrb  
    % ZERNPOL has been written using a vectorized implementation: multiple yt@7l]I  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] 8 v}B-cS  
    % values can be passed as inputs) for a vector of points R.  To achieve -Lhq.Q*a  
    % this vectorization most efficiently, the algorithm in ZERNPOL mfqnRPZ  
    % involves pre-determining all the powers p of R that are required to }] p9  
    % compute the outputs, and then compiling the {R^p} into a single 9,wD  
    % matrix.  This avoids any redundant computation of the R^p, and hl]q6ZK!6  
    % minimizes the sizes of certain intermediate variables. 0H/)wy2ym  
    % *671MJ 9  
    %   Paul Fricker 11/13/2006 9?XQB%44  
    SNJSRqWL/  
    &.l^>#  
    % Check and prepare the inputs: ?:42jp3  
    % ----------------------------- 7,lnfCm H  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 8g0VTY4$jP  
        error('zernpol:NMvectors','N and M must be vectors.') 4`GOBX1b.y  
    end 7 'q *(v  
    @9tzk [  
    if length(n)~=length(m) D"V(A\sZ  
        error('zernpol:NMlength','N and M must be the same length.') y1)ZO_'  
    end yT~rql  
    >t_h/:JZ)  
    n = n(:); SF=TG84<  
    m = m(:); RY .@_{  
    length_n = length(n); k-Yli21-/|  
    bFIM07  
    if any(mod(n-m,2)) O joa3  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') Obf RwZh?q  
    end rJ)j./c  
    F[v:&fle  
    if any(m<0) d9&   
        error('zernpol:Mpositive','All M must be positive.') u4h0s1iI  
    end #CV]S4/^  
    Vw|P;LLl`  
    if any(m>n) rQxiG[0  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') h UC157  
    end /%mT2  
    -VeC X]  
    if any( r>1 | r<0 ) .VCF[AleS  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') B[k=6EU8k  
    end 4*ZY#7h  
    Sv_Nb>  
    if ~any(size(r)==1) 9=mc3m:Tb(  
        error('zernpol:Rvector','R must be a vector.') N;`/>R4|I  
    end vc :%  
    YF)]B|I  
    r = r(:); _i_P@I<M|~  
    length_r = length(r); pM^ZC  
    \h"U+Bv7  
    if nargin==4 Ptc+ypTu  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); Gl@{y (  
        if ~isnorm W=#AfPi$&  
            error('zernpol:normalization','Unrecognized normalization flag.') GsmXcBzDw2  
        end ZfH +Iqd  
    else AhD C5ue=  
        isnorm = false; F"bz<{  
    end o] Xt2E  
    0k#7LubWZl  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +fvD1xHI  
    % Compute the Zernike Polynomials ae2Q^yLA  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% $~S~pvT  
    Q~tXT_  
    % Determine the required powers of r: *s,[Uy![  
    % ----------------------------------- 8qqN0"{,  
    rpowers = []; f1]zsn:  
    for j = 1:length(n) f~F{@),acZ  
        rpowers = [rpowers m(j):2:n(j)]; P}]o$nWT  
    end AN:yL a!  
    rpowers = unique(rpowers); @ 5^nrB  
    !b"?l"C+u  
    % Pre-compute the values of r raised to the required powers, pB4Uc<e  
    % and compile them in a matrix: qm3H/cC9+  
    % ----------------------------- >MGWN  
    if rpowers(1)==0 zs~Tu  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); #1/~eIEY  
        rpowern = cat(2,rpowern{:}); {"+M%%`*#  
        rpowern = [ones(length_r,1) rpowern]; (-g*U#   
    else Z6rhInIY  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); j)2I+[aoB  
        rpowern = cat(2,rpowern{:}); f4fBUZ^ A  
    end Lo~ ;pvv  
    fz\Q>u'T  
    % Compute the values of the polynomials: 'S1u@p,q  
    % -------------------------------------- :{2~s  
    z = zeros(length_r,length_n); o]~\u{o#.  
    for j = 1:length_n  kDE-GX"Y  
        s = 0:(n(j)-m(j))/2; i1|>JM[V  
        pows = n(j):-2:m(j); :{#O   
        for k = length(s):-1:1 #n'.a1R  
            p = (1-2*mod(s(k),2))* ... ov,|`FdU^T  
                       prod(2:(n(j)-s(k)))/          ... 4SZ,X^]I>  
                       prod(2:s(k))/                 ... Bl*}*SPU  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... $8)XN-%(  
                       prod(2:((n(j)+m(j))/2-s(k))); X3\PVsH$K  
            idx = (pows(k)==rpowers); "~5cz0 H3v  
            z(:,j) = z(:,j) + p*rpowern(:,idx); F)(^c  
        end X>Vc4n<}  
         R7/S SuG6\  
        if isnorm vY-CXWC7  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); `^Vd*  
        end n&njSj/  
    end )Cl>%9  
    ;NR|Hi]  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  )j8'6tk)Z  
    Zna6-0o  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 #X)DFAtb  
    | d*<4-:  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)