非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 E|Q|Nx!6[
function z = zernfun(n,m,r,theta,nflag) zx(=ArCRr
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. '5*8'.4Sy
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N sXpA^pT"T
% and angular frequency M, evaluated at positions (R,THETA) on the <z=d5g{n
% unit circle. N is a vector of positive integers (including 0), and ]<zjD%Ez
% M is a vector with the same number of elements as N. Each element U)3*7D
% k of M must be a positive integer, with possible values M(k) = -N(k) d=6FL" .o
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, .5'_5>tkv
% and THETA is a vector of angles. R and THETA must have the same =:5o"g
% length. The output Z is a matrix with one column for every (N,M) (;Ad:!9{
% pair, and one row for every (R,THETA) pair. Lwzk<+>w^
% -q8R'?z[
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike JF+E.-fy$
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), gXQ
s)Eyv
% with delta(m,0) the Kronecker delta, is chosen so that the integral tr<iFT}C
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, :B(vk3;U!
% and theta=0 to theta=2*pi) is unity. For the non-normalized ISbhC!59
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 15 /lX
% c^?+"7oO0
% The Zernike functions are an orthogonal basis on the unit circle. A:?|\r
% They are used in disciplines such as astronomy, optics, and Q.$|TbVfds
% optometry to describe functions on a circular domain. nKO4o8js{{
% -D4"uoN.
% The following table lists the first 15 Zernike functions. :d!qZFln
% soTmKqj E
% n m Zernike function Normalization lo!.%PP|
% --------------------------------------------------
RAh4#8]
% 0 0 1 1 N1vPY]8
% 1 1 r * cos(theta) 2 T08SGB]
% 1 -1 r * sin(theta) 2 v{T%`WuPRf
% 2 -2 r^2 * cos(2*theta) sqrt(6) FthrI
% 2 0 (2*r^2 - 1) sqrt(3) ZliJc7lss
% 2 2 r^2 * sin(2*theta) sqrt(6) 5N_w(B
% 3 -3 r^3 * cos(3*theta) sqrt(8) z"vI-~,YU
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 65>1f
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 8vK$]e36
% 3 3 r^3 * sin(3*theta) sqrt(8) UrP jZ:K'
% 4 -4 r^4 * cos(4*theta) sqrt(10) T"tR*2HwSd
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) >p[skN
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) }+F&=-P)
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) b":3J)Y6.
% 4 4 r^4 * sin(4*theta) sqrt(10) +IM:jrT(
% -------------------------------------------------- YIc|0[ ]*|
% ]8c%)%Vi
% Example 1: I_k!'zR[N
% Vp.&X 8
% % Display the Zernike function Z(n=5,m=1) y-/,,,r
% x = -1:0.01:1; 0<n*8t?A-
% [X,Y] = meshgrid(x,x); PE\.J U
% [theta,r] = cart2pol(X,Y); gI/#7Cr
% idx = r<=1; /M3UK
% z = nan(size(X)); U=G}@Y
% z(idx) = zernfun(5,1,r(idx),theta(idx)); n$03##pf
% figure +pefk+
% pcolor(x,x,z), shading interp T0Kjnzs
% axis square, colorbar *2(W`m
% title('Zernike function Z_5^1(r,\theta)') Pcs62aE
% &l0-0T>
% Example 2: Q~y) V
% l[P VWM
% % Display the first 10 Zernike functions B'kV.3t
% x = -1:0.01:1; A@o:mZ+XN(
% [X,Y] = meshgrid(x,x); c2,;t)%@E
% [theta,r] = cart2pol(X,Y); K*]^0
% idx = r<=1; \H-,^[G3
% z = nan(size(X)); 8do7`mN
% n = [0 1 1 2 2 2 3 3 3 3]; RaBq@r*(
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; MB:VACCr
% Nplot = [4 10 12 16 18 20 22 24 26 28]; VOY#Y*)g
% y = zernfun(n,m,r(idx),theta(idx)); `-J$7)d@
% figure('Units','normalized') ^G*zFqa+`
% for k = 1:10 v1m'p:7uGB
% z(idx) = y(:,k); itpljh
% subplot(4,7,Nplot(k)) G8Qo]E9-/
% pcolor(x,x,z), shading interp @8;0p
% set(gca,'XTick',[],'YTick',[]) "+@>!U
% axis square 8e:\T.)M
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) uh8+Y%V
p
% end .R<Ke\y/
% (0cL!
N;;
% See also ZERNPOL, ZERNFUN2. /ad]pdF
1;Q>B>6
% Paul Fricker 11/13/2006 4P(ysTuM
?;c&5'7ct
(X(296<;
% Check and prepare the inputs: L(
B(x>w
% ----------------------------- iax6o+OG|
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) YM(`E9{h
error('zernfun:NMvectors','N and M must be vectors.') ,];4+&|8kW
end 3SU:Xd(\o
`Qg#`
if length(n)~=length(m) &M5_G$5n
error('zernfun:NMlength','N and M must be the same length.') VZRM=;V
end \`MX\OR
=D"H0w <zw
n = n(:); 4NN81~v 4
m = m(:); 2^TJ_xG~
if any(mod(n-m,2)) uQYBq)p|
error('zernfun:NMmultiplesof2', ... .0eHP
'All N and M must differ by multiples of 2 (including 0).') {;kH&Pp
end F:P&hK
I {o\d'/
if any(m>n) 4wa8Vw`
error('zernfun:MlessthanN', ...
F[65)"^
'Each M must be less than or equal to its corresponding N.') Q~L"Mr8>V
end 51Nh"JTy
j+E[[
if any( r>1 | r<0 ) !:7aXT*D$
error('zernfun:Rlessthan1','All R must be between 0 and 1.') J6s55
v
end -H;%1y$A-
_1?
PN8
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) x,3oa_'E
error('zernfun:RTHvector','R and THETA must be vectors.') S[_Hc$7U
end JuD$CHg;#
^&|$&7
r = r(:); R8uiLZd
theta = theta(:); u\]aUP
e
length_r = length(r); KioD/
if length_r~=length(theta) 5X'com?T
error('zernfun:RTHlength', ... 7T)J{:+0!|
'The number of R- and THETA-values must be equal.') G#~6a%VW
end NUclF|G
!{L6
4qI
% Check normalization: lYz$~/sd
% -------------------- NyJ=^=F#
if nargin==5 && ischar(nflag) >;ucwLi
isnorm = strcmpi(nflag,'norm'); ?D^l&`S
if ~isnorm g@ ZZcBx
error('zernfun:normalization','Unrecognized normalization flag.') E7*z.3
end B_B~Y8=3`
else _*.Wo"[%[X
isnorm = false; zg3q\~
end tVf 1]3(_>
>#MGGCGL
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Ef}rMkv
% Compute the Zernike Polynomials -ty_<m]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |c]Y1WwDx
t-vH \m
% Determine the required powers of r: &f\ng{
% ----------------------------------- Xu1tN9:oE
m_abs = abs(m); fy|Ae
rpowers = []; 05<MsxB"w
for j = 1:length(n) qX(sx2TK
rpowers = [rpowers m_abs(j):2:n(j)]; bB^SD] }C
end ^c9~~m16+
rpowers = unique(rpowers); \\qw"w9
y3
{om^ f
% Pre-compute the values of r raised to the required powers, hE-u9i
% and compile them in a matrix: }tIIA"dZ
% ----------------------------- d45JT?qg&
if rpowers(1)==0 qYMTud[Vf
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ^[d|^fRH Q
rpowern = cat(2,rpowern{:}); C?FUc cI
rpowern = [ones(length_r,1) rpowern]; Ef;OrE""
else |7jUf$Q\p
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); !2('Cq_^
rpowern = cat(2,rpowern{:}); +^c;4-X
0
end YdgaZJs
!V=s^8nj
% Compute the values of the polynomials: az (u=}
% -------------------------------------- ak?XE4-N
y = zeros(length_r,length(n)); pvJsSX
for j = 1:length(n) /&>6#3df-
s = 0:(n(j)-m_abs(j))/2; \pzqUTk
pows = n(j):-2:m_abs(j); @x>J-Owd]J
for k = length(s):-1:1 'w+T vOB
p = (1-2*mod(s(k),2))* ... ,R
j{^-k
prod(2:(n(j)-s(k)))/ ... =$B:i>z<
prod(2:s(k))/ ... -Kj^ l3w
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... dpO ZqhRs.
prod(2:((n(j)+m_abs(j))/2-s(k))); S-"OfWg<
idx = (pows(k)==rpowers); pI>i1f=W
y(:,j) = y(:,j) + p*rpowern(:,idx); #:v e3gWl
end 0R,?$qM\
k,xY\r$
if isnorm ^/wvHu[#
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); b7It8
end
R1YRqk
end Q']
_3
% END: Compute the Zernike Polynomials ?~e 8:/@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% h sVf/%
;}b.gpG
% Compute the Zernike functions: 9PA\Eo|Yb
% ------------------------------ /q4<ZS#
idx_pos = m>0; v1yNVs\}
idx_neg = m<0; Z-RgN
slV+2b
z = y; 'AX/?Srd
if any(idx_pos) V`V
Z[
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); sXm/+I^
end ?|8H|LBIr
if any(idx_neg) }fW@8ji\
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); V:rq}F}
end yz}Agc4.I
zg!;g`Z@S
% EOF zernfun