切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11778阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 (wJtEoB9^  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! ~ "l a2  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 /3%]Ggwe  
    function z = zernfun(n,m,r,theta,nflag) v\Y;)/!  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. !W:QLOe6F  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N y_"GMw  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 6,G^iv6H  
    %   unit circle.  N is a vector of positive integers (including 0), and 7>{edNy!,  
    %   M is a vector with the same number of elements as N.  Each element OxF\Hm)(  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) )ymF: ]QC  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, eEsEW<su  
    %   and THETA is a vector of angles.  R and THETA must have the same HkvCQH  
    %   length.  The output Z is a matrix with one column for every (N,M) 0jv9N6IM  
    %   pair, and one row for every (R,THETA) pair. >1ZMQgCG  
    % jTw s0=F*  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 6@2p@eYo  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), VhSKtD1  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral va8:QHdU  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, gb(\c:yg1R  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized mC~W/KReA  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. F__>`Do l  
    % qe(X5 ?#;  
    %   The Zernike functions are an orthogonal basis on the unit circle. P[P!WLr""  
    %   They are used in disciplines such as astronomy, optics, and q\#3G  
    %   optometry to describe functions on a circular domain. q){]fp.,@  
    % !^axO  
    %   The following table lists the first 15 Zernike functions. B_5q}Bp<  
    % y8+?:=N.  
    %       n    m    Zernike function           Normalization ZJ=C[s!wu  
    %       -------------------------------------------------- |[34<tIN  
    %       0    0    1                                 1 6}NvVolr  
    %       1    1    r * cos(theta)                    2 d c&Qi_W  
    %       1   -1    r * sin(theta)                    2 SO p%{b  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) {OAy@6 +  
    %       2    0    (2*r^2 - 1)                    sqrt(3) Tjs-+$P+  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) ip5s'S~  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 4kXx(FE  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) *C\4%l   
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) [RpFC4W  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) U}A+jJ  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) cjN4U [  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) N[pk@M\vX  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) OD1ns  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 6l_8Q w*5I  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) R&xD|w8UjM  
    %       -------------------------------------------------- hChM hc  
    % L0&!Qct  
    %   Example 1: !Rb7q{@>  
    % Kv#daAU  
    %       % Display the Zernike function Z(n=5,m=1) j|aT`UH03  
    %       x = -1:0.01:1;  Mx r#  
    %       [X,Y] = meshgrid(x,x); jilO%  "  
    %       [theta,r] = cart2pol(X,Y); rkD4}jV  
    %       idx = r<=1; t*}<v@,  
    %       z = nan(size(X)); [2\`Wh:%P  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); T@Q<oNU  
    %       figure G,"$Erx  
    %       pcolor(x,x,z), shading interp A`N;vq,  
    %       axis square, colorbar ]`4 QJ ;#  
    %       title('Zernike function Z_5^1(r,\theta)') gdG: &{|x  
    % r*p%e\ 3  
    %   Example 2: 3:;%@4f  
    % gSe{ S  
    %       % Display the first 10 Zernike functions l%w7N9  
    %       x = -1:0.01:1; F 1zc4l6  
    %       [X,Y] = meshgrid(x,x); c//W#V2Q  
    %       [theta,r] = cart2pol(X,Y); 8c/Ii"1  
    %       idx = r<=1; 8v6rS-iHP  
    %       z = nan(size(X)); 57MoO  
    %       n = [0  1  1  2  2  2  3  3  3  3]; !<X_XA  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; |y=gp  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; G/ ^|oJ/G  
    %       y = zernfun(n,m,r(idx),theta(idx)); x4( fW\  
    %       figure('Units','normalized') h`GV[Oo:  
    %       for k = 1:10 aEM#V  
    %           z(idx) = y(:,k); g1{wxBFE  
    %           subplot(4,7,Nplot(k)) Bpp9I;)c  
    %           pcolor(x,x,z), shading interp L"-&B$B:  
    %           set(gca,'XTick',[],'YTick',[]) ut,"[+ J  
    %           axis square U92hv~\  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 6?iP z?5  
    %       end .z4FuG,R  
    % *oWzH_  
    %   See also ZERNPOL, ZERNFUN2. ixH7oWH#  
    nagto^5X  
    %   Paul Fricker 11/13/2006 ,Z^GN%Q7a  
    f 0#V^[%Q  
    Z"^@B2v  
    % Check and prepare the inputs: ky%%H;  
    % ----------------------------- e/3hb)#;  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) hWu)0t  
        error('zernfun:NMvectors','N and M must be vectors.') lKwcT!Q4  
    end N}h%8\  
    ;lEiOF+d  
    if length(n)~=length(m) 18HHEW{  
        error('zernfun:NMlength','N and M must be the same length.') SYwNx">Bq  
    end $3Ia+O   
    w#$k$T)  
    n = n(:); M*H G4(n0  
    m = m(:); 4%7*tVG  
    if any(mod(n-m,2)) y$"L`*W  
        error('zernfun:NMmultiplesof2', ... Ol@ZH_  
              'All N and M must differ by multiples of 2 (including 0).') ?!66yn  
    end {ULnQ 6@  
    <am7t[G."  
    if any(m>n) qTGy\i  
        error('zernfun:MlessthanN', ... X[ (J!"+  
              'Each M must be less than or equal to its corresponding N.') [)u(\nfGX  
    end 0A9cu,ZdUR  
    NeEV !V8  
    if any( r>1 | r<0 ) Ye6O!,R  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') "F}Ip&]hAG  
    end FHC7\#p/9Z  
    qQ'@yTVN  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) <i6MbCB  
        error('zernfun:RTHvector','R and THETA must be vectors.') eH8.O  
    end k}.nH"AQ  
    u\wd<<I']  
    r = r(:); OXB-.<  
    theta = theta(:); A&'%ou  
    length_r = length(r); dp70sA!JF  
    if length_r~=length(theta) g1|c?#fwo  
        error('zernfun:RTHlength', ... {;/o4[jlg  
              'The number of R- and THETA-values must be equal.') *ZGN!0/  
    end hzb|:  
    $C/Gn~k 5  
    % Check normalization: S@)bl  
    % -------------------- }"Cn kg  
    if nargin==5 && ischar(nflag) DeSTo9A}!  
        isnorm = strcmpi(nflag,'norm'); nE;gM1I  
        if ~isnorm F! e`i-xt  
            error('zernfun:normalization','Unrecognized normalization flag.') '7R'fhiO/3  
        end kDh(~nfj  
    else h)vTu%J:  
        isnorm = false; ~B@o?8D]  
    end :bDA<B6bb  
    j[cjQ]>~'  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% m5X=P5U  
    % Compute the Zernike Polynomials 9iCud6H,h  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% EYG E#C; d  
    X%CPz.G  
    % Determine the required powers of r: 2A|6o*s"  
    % ----------------------------------- v!xrUyN~m  
    m_abs = abs(m); w#,v n8  
    rpowers = []; !?/bK[ P,  
    for j = 1:length(n) *Rh .s!@4  
        rpowers = [rpowers m_abs(j):2:n(j)]; G |^X:+  
    end I "2FTGA  
    rpowers = unique(rpowers); O$/ swwB!  
    f:5/y^M&  
    % Pre-compute the values of r raised to the required powers, CF"3<*%x  
    % and compile them in a matrix: "n, ZP@M;  
    % ----------------------------- @\8gzvkt  
    if rpowers(1)==0 8-ssiiJ}gh  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); jt--w"|-r  
        rpowern = cat(2,rpowern{:}); o7XRa]O  
        rpowern = [ones(length_r,1) rpowern]; yZ$;O0f&&  
    else j//wh1  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); #.YcIR)  
        rpowern = cat(2,rpowern{:}); qL.Y_,[[  
    end ^)l@7XxD  
    T+h{Aeg  
    % Compute the values of the polynomials: _|:bac8pL  
    % -------------------------------------- {{%8|+B  
    y = zeros(length_r,length(n)); =Gz>ZWF  
    for j = 1:length(n) ss8v4@C  
        s = 0:(n(j)-m_abs(j))/2; i6 ?JX@I  
        pows = n(j):-2:m_abs(j); <h51KPo^P  
        for k = length(s):-1:1 M&c1iK\E8  
            p = (1-2*mod(s(k),2))* ... Aq'E:/  
                       prod(2:(n(j)-s(k)))/              ... l:yAgm`  
                       prod(2:s(k))/                     ... ^3o8F  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... m (:qZW  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); k.[) R@0%  
            idx = (pows(k)==rpowers); <9tG_  
            y(:,j) = y(:,j) + p*rpowern(:,idx); \<x_96jt!\  
        end xH#a|iT?(  
         @zF:{=+]+  
        if isnorm RmV/wY  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); d|+jCTKS  
        end 4 S9, tc&  
    end TbAdTmW  
    % END: Compute the Zernike Polynomials A!Ct,%   
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% U2lC !j%K  
    V9+"CB^  
    % Compute the Zernike functions: bk9~63tN+>  
    % ------------------------------ -f|^}j?  
    idx_pos = m>0; S{7ik,Gdg  
    idx_neg = m<0; Nw& }qSN  
    FXEfD"  
    z = y; DB'KIw  
    if any(idx_pos) @/NZ>.  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); [mzF)/[_2  
    end LEnP"o9ZW  
    if any(idx_neg) 4qXRDsbCf  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); V^/^OR4k  
    end )TG0m= *  
    7"NJraQ6  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) [67E5rk-  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. -hFyqIJW  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated bKJ7vXC05  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive .C;_4jE  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, Sc$8tLDLj  
    %   and THETA is a vector of angles.  R and THETA must have the same o"}&qA;  
    %   length.  The output Z is a matrix with one column for every P-value, B"Kce"!  
    %   and one row for every (R,THETA) pair. agU!D[M_G  
    % u#@{%kPW  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike S{(p<%)[  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) <CKmMZ{  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) X8SRQO^  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 g_U~.?Db7  
    %   for all p. ~& WN)r'4y  
    % n$|c{2]=  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 ]v\egfW,W  
    %   Zernike functions (order N<=7).  In some disciplines it is 46P6Bwobh  
    %   traditional to label the first 36 functions using a single mode SM#S/|.]  
    %   number P instead of separate numbers for the order N and azimuthal ^0tf1pV2  
    %   frequency M. K _+;"G  
    % i$^B-  
    %   Example: C| L^Ds0  
    % $n#Bi.A j  
    %       % Display the first 16 Zernike functions $FusDdCv3  
    %       x = -1:0.01:1; YyJ{  
    %       [X,Y] = meshgrid(x,x); MjXE|3&  
    %       [theta,r] = cart2pol(X,Y); jy(+ 0F  
    %       idx = r<=1; *zVLy^L_8  
    %       p = 0:15; vuo'"^ =p0  
    %       z = nan(size(X)); M|({ 4C  
    %       y = zernfun2(p,r(idx),theta(idx)); <k\H`P  
    %       figure('Units','normalized') uJam $V  
    %       for k = 1:length(p) G>w?9:V}  
    %           z(idx) = y(:,k); bA<AG*  
    %           subplot(4,4,k) o%WjJ~!zL  
    %           pcolor(x,x,z), shading interp 4o4 =  
    %           set(gca,'XTick',[],'YTick',[]) W\qLZuQ  
    %           axis square ?cs]#6^  
    %           title(['Z_{' num2str(p(k)) '}']) {`H<=h__  
    %       end 9sU+IT K4  
    % BF@5&>E  
    %   See also ZERNPOL, ZERNFUN. VwOG?5W/  
    bH\C5zt6(  
    %   Paul Fricker 11/13/2006 E<<p_hX8R  
    WfDX"rA  
    (\T0n[  
    % Check and prepare the inputs: FJf~vAQ  
    % ----------------------------- "<w2v'6S  
    if min(size(p))~=1 QOV}5 0  
        error('zernfun2:Pvector','Input P must be vector.') N=T.l*8  
    end 2\nN4WL 5.  
    Rj} o4s2x  
    if any(p)>35 @ 2!C^}d3F  
        error('zernfun2:P36', ... %/y`<lJz(  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... -!|WZ   
               '(P = 0 to 35).']) q1f=&kGX~  
    end n|x$vgb  
    bbNU\r5%  
    % Get the order and frequency corresonding to the function number: HUJ|-)"dw  
    % ---------------------------------------------------------------- e`Co,>W/  
    p = p(:); iIsEQh  
    n = ceil((-3+sqrt(9+8*p))/2); \6lh `U  
    m = 2*p - n.*(n+2); kYxl1n v  
    #`La|a.-  
    % Pass the inputs to the function ZERNFUN: ?L@@;tt  
    % ---------------------------------------- ;NH~9# t:  
    switch nargin h@~:(:zU$  
        case 3 \9]I#Ih}M  
            z = zernfun(n,m,r,theta); Z6Nj<2u2  
        case 4 iUIy,Y  
            z = zernfun(n,m,r,theta,nflag); hhpv\1h#  
        otherwise I(]BMMj  
            error('zernfun2:nargin','Incorrect number of inputs.') -=$% {  
    end 20UqJM8 Ot  
    #M5_em4kN  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) r^$\t0h(U8  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. CQdBf3q  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of 5x8'K7/4.  
    %   order N and frequency M, evaluated at R.  N is a vector of |9>*$Fe"  
    %   positive integers (including 0), and M is a vector with the \\ jIl3Z  
    %   same number of elements as N.  Each element k of M must be a [@m[V1D  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) Fr-[UZ~V  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is U~aWG\h#X  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix [tUv*jw%  
    %   with one column for every (N,M) pair, and one row for every Dp*:Q){>E  
    %   element in R. )ll?-FZ   
    % wms1IV%;  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- Ko#4z%Yq  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is JE0?@PI$  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to I-xwJi9?,  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 cDCJ]iDs  
    %   for all [n,m]. ;}LJh8_  
    % P7z:3o.  
    %   The radial Zernike polynomials are the radial portion of the VS?dvZ1cC  
    %   Zernike functions, which are an orthogonal basis on the unit jm[}M  
    %   circle.  The series representation of the radial Zernike ?>sQF4 V"  
    %   polynomials is Aj,]n>{  
    % eY T8$  
    %          (n-m)/2 mA& =q_gS  
    %            __ +%P t_  
    %    m      \       s                                          n-2s j"5Pe  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r 2s 7mI'  
    %    n      s=0 EYG"49 c  
    % 2G?$X?  
    %   The following table shows the first 12 polynomials. b\?3--q  
    % T?>E{1pS  
    %       n    m    Zernike polynomial    Normalization [4p=X=B  
    %       --------------------------------------------- L?!$EPr  
    %       0    0    1                        sqrt(2) Y;} 2'"  
    %       1    1    r                           2 h1# S+k  
    %       2    0    2*r^2 - 1                sqrt(6) Gz ?2b#7v  
    %       2    2    r^2                      sqrt(6) MU|{g 5/ )  
    %       3    1    3*r^3 - 2*r              sqrt(8) E#8_hT]5  
    %       3    3    r^3                      sqrt(8) [OzzL\)3l  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) lzEb5mg  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) [[w2p  
    %       4    4    r^4                      sqrt(10) |H 8^  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) q/$ GE,"  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) & 1[y"S  
    %       5    5    r^5                      sqrt(12) IV0[!D  
    %       --------------------------------------------- X(]Zr  
    % (#$$nQj  
    %   Example: Ox^:)ii  
    % SET-8f  
    %       % Display three example Zernike radial polynomials BEWro|]cM  
    %       r = 0:0.01:1; j&WL*XP&5  
    %       n = [3 2 5]; [EgW/\35  
    %       m = [1 2 1]; vf<UBa;Xm  
    %       z = zernpol(n,m,r); fD{II+T  
    %       figure >B_n/v3P(M  
    %       plot(r,z) ^_68]l=  
    %       grid on n+HsQ]z.  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') aVwH  
    % zie=2  
    %   See also ZERNFUN, ZERNFUN2. jq(qo4~;  
    DR@1z9 a  
    % A note on the algorithm. ^;r+W -MQ  
    % ------------------------ W5.Va.  
    % The radial Zernike polynomials are computed using the series dv , C6t2  
    % representation shown in the Help section above. For many special \, 8p1$G  
    % functions, direct evaluation using the series representation can b#/i.!:a  
    % produce poor numerical results (floating point errors), because ^O)ve^P  
    % the summation often involves computing small differences between %&+TbDE+T  
    % large successive terms in the series. (In such cases, the functions 0I 5&a  
    % are often evaluated using alternative methods such as recurrence -f?Ah  
    % relations: see the Legendre functions, for example). For the Zernike VYaSB?`/  
    % polynomials, however, this problem does not arise, because the b}@(m$W  
    % polynomials are evaluated over the finite domain r = (0,1), and +{$QAjW(/  
    % because the coefficients for a given polynomial are generally all 44HiTWQS?l  
    % of similar magnitude. ]CX[7Q+'  
    % PK 4`5uT  
    % ZERNPOL has been written using a vectorized implementation: multiple a }'->H  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] #r<?v  
    % values can be passed as inputs) for a vector of points R.  To achieve &Jy)U  
    % this vectorization most efficiently, the algorithm in ZERNPOL .et ^4V3  
    % involves pre-determining all the powers p of R that are required to `ZMK9f:  
    % compute the outputs, and then compiling the {R^p} into a single lZW K2  
    % matrix.  This avoids any redundant computation of the R^p, and LnFWA0y  
    % minimizes the sizes of certain intermediate variables. gcf6\f}\<  
    % &:3Z.G  
    %   Paul Fricker 11/13/2006 0y~<%`~  
    zN{JJ3-  
    /YH`4e5g  
    % Check and prepare the inputs: >o~Z>lr  
    % ----------------------------- eEl.. y  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) PB9/m-\H  
        error('zernpol:NMvectors','N and M must be vectors.') c0ez/q1S  
    end MT6/2d  
    X}cZxlqc  
    if length(n)~=length(m) 0 [8=c&F  
        error('zernpol:NMlength','N and M must be the same length.') :!Ig- +W  
    end ;AIc?Cg  
    C4\,z\Q  
    n = n(:); bk<FL6z z  
    m = m(:); BFVAw  
    length_n = length(n); 347eis'  
    LA%bq_> f  
    if any(mod(n-m,2)) iiG f'@/  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') ,=BLnsg  
    end bMKL1+y(  
    ! bU\zH  
    if any(m<0) W^\d^)  
        error('zernpol:Mpositive','All M must be positive.') nfdq y)  
    end Ai"-w"  
    Jblj^n?Bm  
    if any(m>n) kKiA  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') u~1o(Zn =  
    end 7&B$HZ  
    z@Hp,|Vy[  
    if any( r>1 | r<0 ) |Au]1}  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') E9}{1A  
    end z[EFQ^*>  
    {9LWUCpsf  
    if ~any(size(r)==1) jS<_ )  
        error('zernpol:Rvector','R must be a vector.') P"_$uO(5x  
    end ;V5yXNQ   
    v [njdP  
    r = r(:); r0]4=6U  
    length_r = length(r); |=dC )Azs  
    -JT/ 9IQ  
    if nargin==4 nFRsc'VT  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); o0It82?RN  
        if ~isnorm mQ~:Y  
            error('zernpol:normalization','Unrecognized normalization flag.') NbRn*nb/T  
        end nBItO~l  
    else $s5a G)?7  
        isnorm = false; i38[hQR9a  
    end Q.U$nph\%d  
    >~nF=   
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #Q"O4 b:8  
    % Compute the Zernike Polynomials ciQZHH2  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Dw<k3zaW  
    fbvbz3N  
    % Determine the required powers of r: 2aN<w'pA  
    % ----------------------------------- *QGm/ /b  
    rpowers = []; ,u9M<B<F  
    for j = 1:length(n) @A<PkpNL  
        rpowers = [rpowers m(j):2:n(j)]; %?Y[Bk3p  
    end Zw1U@5}A  
    rpowers = unique(rpowers); %@"!8Y(j  
    O1&b]C#  
    % Pre-compute the values of r raised to the required powers, XFVV},V  
    % and compile them in a matrix: LE6.nmvS  
    % ----------------------------- KhbYr$  
    if rpowers(1)==0 ]b/S6oc6  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); J%lgR  
        rpowern = cat(2,rpowern{:}); [U, ?R  
        rpowern = [ones(length_r,1) rpowern]; _ *f  
    else ?:{sH#ua  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ^5GW$  
        rpowern = cat(2,rpowern{:}); +HT1ct+dI  
    end \daZ k /@  
    An*~-u9m  
    % Compute the values of the polynomials: yifY%!@Xu  
    % -------------------------------------- }Z-Z|G)#  
    z = zeros(length_r,length_n); F[ ajOb8  
    for j = 1:length_n yS(}:'`r  
        s = 0:(n(j)-m(j))/2; #>=j79~  
        pows = n(j):-2:m(j); \%Ves@hG>  
        for k = length(s):-1:1 39wa|:I  
            p = (1-2*mod(s(k),2))* ... wr(*?p]R  
                       prod(2:(n(j)-s(k)))/          ... %WTEv?I{Ga  
                       prod(2:s(k))/                 ... 5irwz4.4  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... fA/m1bYxg  
                       prod(2:((n(j)+m(j))/2-s(k))); 1923N]b  
            idx = (pows(k)==rpowers); \s"U{N-  
            z(:,j) = z(:,j) + p*rpowern(:,idx); 'H5M|c$s  
        end ]?O2:X  
         2d%}- nw  
        if isnorm X$%4$  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); 9,j-V p!G  
        end <JMcIV837  
    end Wq*b~Lw  
    $$b 9&mTl#  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    857
    光币
    847
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  nlc "c5;jh  
    $&n=$C&x  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 I`!<9OTBj  
    aht[4(XH5  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)