切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11807阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 f]Rh<N$  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! ArT@BqWd  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 :8A@4vMS)?  
    function z = zernfun(n,m,r,theta,nflag) ?*~sx=mC  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. ]L k- -\  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Y3H5}4QD  
    %   and angular frequency M, evaluated at positions (R,THETA) on the R I:kp.V  
    %   unit circle.  N is a vector of positive integers (including 0), and Q$Sp'  
    %   M is a vector with the same number of elements as N.  Each element CSBDSz  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 8\+DSA  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, u Vo"_c w  
    %   and THETA is a vector of angles.  R and THETA must have the same ,@zw  
    %   length.  The output Z is a matrix with one column for every (N,M) nPjK=o`KR  
    %   pair, and one row for every (R,THETA) pair. 3sl6$NKo  
    % A~< cp)E  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 1So`]N4  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), mp*?GeV?M  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral m;ju@5X  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, -U|Z9sia  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 5+q dn|9%T  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 'oUTY *  
    % #6C<P!]V  
    %   The Zernike functions are an orthogonal basis on the unit circle. !Yz CK*av1  
    %   They are used in disciplines such as astronomy, optics, and ONF x -U]  
    %   optometry to describe functions on a circular domain. [i_evsUj?  
    % 6!([Hu#= *  
    %   The following table lists the first 15 Zernike functions. XI,=W  
    % lWUQkS  
    %       n    m    Zernike function           Normalization .dwbJT  
    %       -------------------------------------------------- #JN4K>_4  
    %       0    0    1                                 1 (#]9{ C;  
    %       1    1    r * cos(theta)                    2 *aGJ$ P0  
    %       1   -1    r * sin(theta)                    2 ZWKvz3Wt  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) U6YHq2<  
    %       2    0    (2*r^2 - 1)                    sqrt(3) uI I! ?   
    %       2    2    r^2 * sin(2*theta)             sqrt(6) *] !r T&E  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) \~  l"  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) j' b0sve|?  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) R^"mGe\LL  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) d?V/V'T[  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) Y&bO[(>1  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) v4Kf{9q#  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) Oc5f8uv  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) $"MGu^0;1  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) >4os%T  
    %       --------------------------------------------------  pQ7<\8s*  
    % SH O&:2  
    %   Example 1: **.23<n^W  
    % 3Zwhv+CP[  
    %       % Display the Zernike function Z(n=5,m=1) D$E#:[  
    %       x = -1:0.01:1; Zqb*-1Qw"*  
    %       [X,Y] = meshgrid(x,x); MeAY\V%G=o  
    %       [theta,r] = cart2pol(X,Y); cg9*+]rc  
    %       idx = r<=1; *w}r:04F  
    %       z = nan(size(X)); }ktK*4<k  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); KEf1GU6s  
    %       figure NLUiNfCR  
    %       pcolor(x,x,z), shading interp q_[`PYT  
    %       axis square, colorbar [Mj5o<k;I  
    %       title('Zernike function Z_5^1(r,\theta)') p(9[*0.};  
    % a %?v/Ku  
    %   Example 2: 6P)DM  
    % *^CN2tm  
    %       % Display the first 10 Zernike functions ~yA^6[a=  
    %       x = -1:0.01:1; Bj\Us$cZ  
    %       [X,Y] = meshgrid(x,x); "~Zdv}^xS  
    %       [theta,r] = cart2pol(X,Y); AoK;6je`K^  
    %       idx = r<=1; ]Rxrt~ ZB  
    %       z = nan(size(X)); ?[%.4i;-h  
    %       n = [0  1  1  2  2  2  3  3  3  3]; r> .l^U9hJ  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; G&4D0f  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; K??jV&Xor  
    %       y = zernfun(n,m,r(idx),theta(idx)); _Ih"*~ r/&  
    %       figure('Units','normalized') fB'Jo<C  
    %       for k = 1:10 15%6;K?b  
    %           z(idx) = y(:,k); ]cMZ7V^  
    %           subplot(4,7,Nplot(k)) LLoV]~dvUu  
    %           pcolor(x,x,z), shading interp Cu<' b'%;  
    %           set(gca,'XTick',[],'YTick',[]) U!YoZ?  
    %           axis square !)05,6WQ  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ,wy;7T>ODd  
    %       end `, 4YPjk^  
    % 7Q,<h8N\5  
    %   See also ZERNPOL, ZERNFUN2. @moaa}1  
    a.ijc>K  
    %   Paul Fricker 11/13/2006 G;U SVF-'K  
    4w]<1V  
    ad=7FhnIa3  
    % Check and prepare the inputs: "#iO{uMWb  
    % ----------------------------- ZVit] 3hd  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) /nEK|.j  
        error('zernfun:NMvectors','N and M must be vectors.') 8cRc5X  
    end ?9?o8!  
    Ok}e|b[D  
    if length(n)~=length(m) n7zM;@{7  
        error('zernfun:NMlength','N and M must be the same length.') "chf \ -!$  
    end K9 K.mGYc  
    i.7$~}  
    n = n(:); L:Faq1MG  
    m = m(:); +aqQa~}r  
    if any(mod(n-m,2)) S(rnVsW%Ki  
        error('zernfun:NMmultiplesof2', ... ~4c,'k@  
              'All N and M must differ by multiples of 2 (including 0).') 0BAZWm  
    end [FBc&HN  
    y{XNB}E  
    if any(m>n) /gn\7&=P  
        error('zernfun:MlessthanN', ... -x?|[ +%  
              'Each M must be less than or equal to its corresponding N.') tA9Ew{3s  
    end i?)bF!J  
    u{dkUG1ia  
    if any( r>1 | r<0 ) 6vzvH  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') - 8jlh  
    end {3!A \OR  
    YeB C6`7y  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ]eTp?q%0  
        error('zernfun:RTHvector','R and THETA must be vectors.') er>{#8 P  
    end }R:oWR  
    x/0x&la  
    r = r(:); 49Y:}<Yd   
    theta = theta(:); YYvX@f  
    length_r = length(r); |@?='E?h  
    if length_r~=length(theta) "'>fTk_  
        error('zernfun:RTHlength', ... :73T9/  
              'The number of R- and THETA-values must be equal.') dLf ;g}W  
    end r 2{7h>  
    NVDIuh  
    % Check normalization: "#{b)!EH  
    % -------------------- ;zWiPnX}  
    if nargin==5 && ischar(nflag) g7eI;Tpv  
        isnorm = strcmpi(nflag,'norm'); 472'P  
        if ~isnorm P)ne^_   
            error('zernfun:normalization','Unrecognized normalization flag.') C3 m_sv#e  
        end JBISA _Y  
    else 9(bbV5}  
        isnorm = false; G)""^YB-  
    end 9AD0|,g  
    4dh> B>Q  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% {4%ddJn[.)  
    % Compute the Zernike Polynomials "{jVsih0  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Af^9WJ  
    D9n+eZ  
    % Determine the required powers of r: B\`${O(  
    % ----------------------------------- u R!'v  
    m_abs = abs(m); ZV07;`I  
    rpowers = []; \;"S>dg  
    for j = 1:length(n) T$V8 n_;  
        rpowers = [rpowers m_abs(j):2:n(j)]; ![Vrbe P  
    end 6-nf+!#G  
    rpowers = unique(rpowers); 4@-Wp]  
    (c[DQSj  
    % Pre-compute the values of r raised to the required powers, kioIyV\=  
    % and compile them in a matrix: @*$"6!3s5  
    % ----------------------------- &(20*Vn,O  
    if rpowers(1)==0 BJsN~` =r  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); r&XxF >  
        rpowern = cat(2,rpowern{:}); >Q)S-4iR  
        rpowern = [ones(length_r,1) rpowern]; ;!m_RQPFF  
    else TQ5kT?/{  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); c>C!vAg  
        rpowern = cat(2,rpowern{:}); \/r]Ra  
    end @_h=,g #@  
    4_4|2L3  
    % Compute the values of the polynomials: >SD?MW 1E  
    % -------------------------------------- EhN@;D+  
    y = zeros(length_r,length(n)); ?Y9VviC  
    for j = 1:length(n) R7x*/?  
        s = 0:(n(j)-m_abs(j))/2; 'qidorT>N  
        pows = n(j):-2:m_abs(j); {_4zm&  
        for k = length(s):-1:1 y!\q ', F  
            p = (1-2*mod(s(k),2))* ... o* QZf *M  
                       prod(2:(n(j)-s(k)))/              ... j9= )^?  
                       prod(2:s(k))/                     ... M!\6Fl{ b  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... JOki4N  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); QmsS,Zljo  
            idx = (pows(k)==rpowers); _%aT3C}k  
            y(:,j) = y(:,j) + p*rpowern(:,idx); {|Fn<&G  
        end ^ =H 10A  
         SN#N$] y5s  
        if isnorm PC)V".W 1  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 3d_g@x#9  
        end ab<7jfFIa  
    end [wUJ ~~2#  
    % END: Compute the Zernike Polynomials eZ(o_  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% m=]}Tn  
    @OC*:?!4  
    % Compute the Zernike functions: QFEc?sEe  
    % ------------------------------ a+n?y)u  
    idx_pos = m>0; By0Zz  
    idx_neg = m<0; E^m2:J]G  
    cLMFC1=b  
    z = y; ;B"S*wYMN  
    if any(idx_pos) N3Z6o.k  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 8;Df/ %  
    end e\]CZ5hs3  
    if any(idx_neg) "3NE%1T  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); mmEe@-lE  
    end bw[K^/  
    diF2:80o  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) z)p p{  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. |_wbxdq  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated AW`+lE'?  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive x% Eu.jj  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, eX{Tyd{  
    %   and THETA is a vector of angles.  R and THETA must have the same ZN(@M@}  
    %   length.  The output Z is a matrix with one column for every P-value, -r6LndQs  
    %   and one row for every (R,THETA) pair. ]WC@*3'kye  
    % _l](dqyuN(  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike d##'0yg   
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) }9(:W</}  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) LgoUD*MbQ  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 l":Z. J  
    %   for all p. {@<EVw  
    % e/V8lo  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 -8,lXrH  
    %   Zernike functions (order N<=7).  In some disciplines it is k&\ 6SK/  
    %   traditional to label the first 36 functions using a single mode #5W-*?H  
    %   number P instead of separate numbers for the order N and azimuthal ] _P!+5]<  
    %   frequency M. 4krK CD>|G  
    % R9V v*F]m@  
    %   Example: VtC1TZ3-7  
    % h8tKYm  
    %       % Display the first 16 Zernike functions ]abox%U=%  
    %       x = -1:0.01:1; a$'= a09  
    %       [X,Y] = meshgrid(x,x); !3#*hL1fy  
    %       [theta,r] = cart2pol(X,Y); Qxh 1I?h  
    %       idx = r<=1; c{s%kVOzg  
    %       p = 0:15; MzO4Yv"A  
    %       z = nan(size(X)); Fm{`?!  
    %       y = zernfun2(p,r(idx),theta(idx)); 66l$}+|Zzc  
    %       figure('Units','normalized') 2x&mJ}o#k  
    %       for k = 1:length(p) uWKc .  
    %           z(idx) = y(:,k); O&u[^s/^  
    %           subplot(4,4,k) Z'L}x6  
    %           pcolor(x,x,z), shading interp Jri"Toz0  
    %           set(gca,'XTick',[],'YTick',[]) hM @F|t3  
    %           axis square 4zM$I  
    %           title(['Z_{' num2str(p(k)) '}']) .ahYj n  
    %       end 1]vrpJw  
    % }J&[Uc  
    %   See also ZERNPOL, ZERNFUN. %rZJ#p[e)=  
    6?v)Hb}J%d  
    %   Paul Fricker 11/13/2006 i@}/KT  
    L z'05j3!  
    -Am ~CM  
    % Check and prepare the inputs: I`e |[k2  
    % ----------------------------- Dk XB  
    if min(size(p))~=1 ngoAFb  
        error('zernfun2:Pvector','Input P must be vector.') O7z -4r  
    end F7zBm53  
    71ctjU`U2  
    if any(p)>35 K)C9)J<  
        error('zernfun2:P36', ... Rv T>{G~  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... 8}kY^"*&X  
               '(P = 0 to 35).']) lC ^NhQi  
    end ,#P eK(  
    8s_'tw/{  
    % Get the order and frequency corresonding to the function number: J `8bh~7  
    % ---------------------------------------------------------------- W\?_o@d  
    p = p(:); hw [G  
    n = ceil((-3+sqrt(9+8*p))/2); x !o>zT\  
    m = 2*p - n.*(n+2); Gmi$Nl!~  
    E|jbbCZy2  
    % Pass the inputs to the function ZERNFUN: ;nbUbRb  
    % ---------------------------------------- 7VdG6`TDR  
    switch nargin ,nELWzz%{  
        case 3 MR@*09zP(?  
            z = zernfun(n,m,r,theta); )J"Lne*"  
        case 4 'bpx  
            z = zernfun(n,m,r,theta,nflag); pZ,P_?  
        otherwise Nn],sEs  
            error('zernfun2:nargin','Incorrect number of inputs.') "&ElKy 7j  
    end jz_\B(m9%  
    9 L{JU  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) '1[}PmhD  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. $~<);dYu0  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of BK>uJv-qU  
    %   order N and frequency M, evaluated at R.  N is a vector of z (,%<oX  
    %   positive integers (including 0), and M is a vector with the rkdwGqG  
    %   same number of elements as N.  Each element k of M must be a piE9qXn  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) tc%?{W\  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is h[SuuW  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix |RBgJkS;8  
    %   with one column for every (N,M) pair, and one row for every :_%  
    %   element in R. ]e?cKC\"e  
    % 821@qr|`e  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- jjgjeY  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is -,t2D/xK  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to T.vkGB=QZ%  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 t'bzhPQO)f  
    %   for all [n,m]. F^Yt\V~T  
    % ewYZ} "o  
    %   The radial Zernike polynomials are the radial portion of the SbmakNWJ}  
    %   Zernike functions, which are an orthogonal basis on the unit 51Yq>'8  
    %   circle.  The series representation of the radial Zernike }5Yd:%u5  
    %   polynomials is Nb2]}; O  
    % }| BnG"8  
    %          (n-m)/2 beyC't  
    %            __ !xm87I  
    %    m      \       s                                          n-2s 5Uc!;Gd?b  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r 2YD;Gb[8  
    %    n      s=0 2 w2JFdm  
    % Yl[GO}M  
    %   The following table shows the first 12 polynomials. 20G..>zW  
    % gw0b>E8gZ&  
    %       n    m    Zernike polynomial    Normalization D}1Z TX_  
    %       --------------------------------------------- 4@D 8{?$~Q  
    %       0    0    1                        sqrt(2) Suixk'-  
    %       1    1    r                           2 >}` q4U6$  
    %       2    0    2*r^2 - 1                sqrt(6) v:c_q]z#B  
    %       2    2    r^2                      sqrt(6) H@$\SUc{  
    %       3    1    3*r^3 - 2*r              sqrt(8) DGMvYNKTj  
    %       3    3    r^3                      sqrt(8) $~xY6"_}!!  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) 85U')LY  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) ^lCys  
    %       4    4    r^4                      sqrt(10) x4jn45]x@  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) "wi=aV9j  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) Jrp{e("9  
    %       5    5    r^5                      sqrt(12) T!.6@g`x>  
    %       --------------------------------------------- hX\z93an  
    % sM)n-Yy#9  
    %   Example: #<20vdc  
    % \hpD  
    %       % Display three example Zernike radial polynomials nmlQ-V-  
    %       r = 0:0.01:1; \'I->O]  
    %       n = [3 2 5]; lg_X|yhL  
    %       m = [1 2 1]; tSK{Abw1B  
    %       z = zernpol(n,m,r); =vx iqRm  
    %       figure IP'gN-#i  
    %       plot(r,z) ", b}-B  
    %       grid on qF m=(J%  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') &DC o;Ij;  
    % LJK<Xen  
    %   See also ZERNFUN, ZERNFUN2. KlbL<9P >  
    nd(O;XBI  
    % A note on the algorithm. Sr1xG%;|/  
    % ------------------------ V:*QK,  
    % The radial Zernike polynomials are computed using the series gz6BfHQG  
    % representation shown in the Help section above. For many special *i#m5f}  
    % functions, direct evaluation using the series representation can Ky33h 0TX  
    % produce poor numerical results (floating point errors), because wehZ7eqm  
    % the summation often involves computing small differences between ^v. ~FFK  
    % large successive terms in the series. (In such cases, the functions #gbJ$1s  
    % are often evaluated using alternative methods such as recurrence f6x}M9xS%  
    % relations: see the Legendre functions, for example). For the Zernike (Hqy^EOZ  
    % polynomials, however, this problem does not arise, because the @RW=(&<1  
    % polynomials are evaluated over the finite domain r = (0,1), and Gj]*_"T  
    % because the coefficients for a given polynomial are generally all FBpf_=(_1  
    % of similar magnitude. `N%q^f~  
    % $qk2!  
    % ZERNPOL has been written using a vectorized implementation: multiple PzThVeJ+  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] n gA&PU  
    % values can be passed as inputs) for a vector of points R.  To achieve ml$"C  
    % this vectorization most efficiently, the algorithm in ZERNPOL )8Defuxk  
    % involves pre-determining all the powers p of R that are required to MY1 1 5%  
    % compute the outputs, and then compiling the {R^p} into a single '&{`^l/ MH  
    % matrix.  This avoids any redundant computation of the R^p, and D~W1["[  
    % minimizes the sizes of certain intermediate variables. >gqM|-uY  
    % CO!K[ q#  
    %   Paul Fricker 11/13/2006 )0Av:eF-+  
    ,B ]kX/W  
    Z6%Hhk[  
    % Check and prepare the inputs: [ UN`~  
    % ----------------------------- _MfXN$I?}  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) SS;[{u!  
        error('zernpol:NMvectors','N and M must be vectors.') Jsf -t  
    end Ar4@7  
    9$F '*{8  
    if length(n)~=length(m) Qzbelt@Wx  
        error('zernpol:NMlength','N and M must be the same length.') KTX;x2r  
    end ]i\C4*  
    >q0c!,Ay  
    n = n(:); 6|*em4  
    m = m(:); ^i}*$ZC72  
    length_n = length(n); |7XV! D!\g  
    >, 22@4  
    if any(mod(n-m,2)) umV5Y`  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') cl s-x@ Kd  
    end o<T_Pjp  
    ?0HPd5=<v  
    if any(m<0) v^_OX $=,  
        error('zernpol:Mpositive','All M must be positive.') /I@nPH<y  
    end wmu#@Hf/[h  
    Wt2+D{@8  
    if any(m>n) p-QD(+@M  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') Dg]( ?^  
    end nJH+P!AC  
    [hU5ooB  
    if any( r>1 | r<0 ) ki`7S  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') <{U "0jY!9  
    end %G!BbXlz  
    ,#Y>nP0  
    if ~any(size(r)==1) Wx&gI4~  
        error('zernpol:Rvector','R must be a vector.') gKK*` L~  
    end NIn#  
    gGl}~  
    r = r(:); F.:B_t  
    length_r = length(r); ;  ntq%  
    X.V6v4  
    if nargin==4 Aa^%_5  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); @ %LrpD  
        if ~isnorm u Ey>7I  
            error('zernpol:normalization','Unrecognized normalization flag.') z& !n'N<C  
        end Ar@" K!TS  
    else fg1_D  
        isnorm = false; *,Bo $:(n  
    end jcNY W_G  
     'Q\I@s }  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% rOC2 S(m  
    % Compute the Zernike Polynomials 9\F:<Bf$#  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Qp9)Rc5  
    EN^C'n  
    % Determine the required powers of r: l_ /q/8-l  
    % ----------------------------------- MpZ #  
    rpowers = []; l*;Isz:  
    for j = 1:length(n) + D ,Nd=/  
        rpowers = [rpowers m(j):2:n(j)]; 9z)p*+r UK  
    end A1`y_ Aj  
    rpowers = unique(rpowers); "/v{B?~%!  
    |FK ##8  
    % Pre-compute the values of r raised to the required powers, |> mx*G  
    % and compile them in a matrix: Jr/|nhGl5  
    % ----------------------------- </,RS5ukn  
    if rpowers(1)==0 cfn\De%.  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 4,D$% .  
        rpowern = cat(2,rpowern{:}); o5(`7XV6D  
        rpowern = [ones(length_r,1) rpowern]; v[efM8  
    else 1an?/j,  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); saMv.;s 1^  
        rpowern = cat(2,rpowern{:}); 9|19ia@[\  
    end @I{v  
    i|zs Li/  
    % Compute the values of the polynomials: # fvt:iE  
    % -------------------------------------- *` }Rt  
    z = zeros(length_r,length_n); .<Y7,9;YEF  
    for j = 1:length_n {Vy2uow0  
        s = 0:(n(j)-m(j))/2; p BU,"Yy&  
        pows = n(j):-2:m(j); [v7)xV@c  
        for k = length(s):-1:1 [~cb&6|M  
            p = (1-2*mod(s(k),2))* ... 6$#p}nE  
                       prod(2:(n(j)-s(k)))/          ... :Osw4u]JXd  
                       prod(2:s(k))/                 ... j. 1@{H  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... bB01aiUw@l  
                       prod(2:((n(j)+m(j))/2-s(k))); <=fYz^|XT  
            idx = (pows(k)==rpowers); DIx!Sw7EC  
            z(:,j) = z(:,j) + p*rpowern(:,idx); l ;TWs_N  
        end <pAN{:  
         q/I':a[1  
        if isnorm =7&2-'(@  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); 1=fP68n  
        end n)]]g3y2  
    end !L..I2'  
    +6cOL48"  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    857
    光币
    847
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  xK8n~.T('  
    U}6F B =  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 *@EItj`  
    ? iX1;c9  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)