切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11761阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 hzT{3YtY2  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! | ((1V^  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 n[!;yO  
    function z = zernfun(n,m,r,theta,nflag) 6cM<>&e  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. y|$R`P  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 0,HqE='w  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 7ftR 4  
    %   unit circle.  N is a vector of positive integers (including 0), and \gLxC  
    %   M is a vector with the same number of elements as N.  Each element qAoAUD m  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) i+g~ Uj}h  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, =I2@/,  
    %   and THETA is a vector of angles.  R and THETA must have the same #~L!pKM  
    %   length.  The output Z is a matrix with one column for every (N,M) R (G2qi  
    %   pair, and one row for every (R,THETA) pair. |,b2b2v ?  
    % z~,mRgc$B  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike $9 K(F~/  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), U4BqO :sd  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral Yu'a<5f  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 4'',6KJ@  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized e}c&LDgU  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. dL-i)F  
    % NUCiY\td  
    %   The Zernike functions are an orthogonal basis on the unit circle. ._?V%/  
    %   They are used in disciplines such as astronomy, optics, and zh\$t]d<I  
    %   optometry to describe functions on a circular domain. @5xu>gKn  
    % Z7fg 25  
    %   The following table lists the first 15 Zernike functions. sYJL-2JX  
    % .u l 53 m  
    %       n    m    Zernike function           Normalization yub{8f;v  
    %       -------------------------------------------------- mzWP8Hlw  
    %       0    0    1                                 1 }Dn^d}?s||  
    %       1    1    r * cos(theta)                    2 CK0l9#g  
    %       1   -1    r * sin(theta)                    2 Us,)]W.S  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) `\bT'~P  
    %       2    0    (2*r^2 - 1)                    sqrt(3) \q "N/$5{f  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) RT^v:paNT2  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) `5q ;ssu  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) {T=52h=e  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) OR:[J5M)  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) v?%LQKO  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 3GF2eS$$P  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) /`[!_4i  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) _%~$'Hy  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) D8%AV; -Y  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 03k?:D+5  
    %       -------------------------------------------------- "X04mQn15  
    % WNs}sNSf  
    %   Example 1: i^)WPP>4Aw  
    % KB!5u9  
    %       % Display the Zernike function Z(n=5,m=1) YuQ~AE'i  
    %       x = -1:0.01:1; 6.5wZN9<|  
    %       [X,Y] = meshgrid(x,x); +f>cxA  
    %       [theta,r] = cart2pol(X,Y); & ze>X  
    %       idx = r<=1; TW7:q83{l  
    %       z = nan(size(X)); d,0 }VaY=D  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); Zp&@h-%YoD  
    %       figure (gwj)?:  
    %       pcolor(x,x,z), shading interp s =Umj'1k  
    %       axis square, colorbar eS'yGY0b  
    %       title('Zernike function Z_5^1(r,\theta)') vi!YN|}\  
    % S{#cD1>.  
    %   Example 2: FY'ty@|_s  
    % u,1}h L  
    %       % Display the first 10 Zernike functions j}:~5|.  
    %       x = -1:0.01:1; x[Im%k  
    %       [X,Y] = meshgrid(x,x); k`\R+WK$  
    %       [theta,r] = cart2pol(X,Y); >\2:\wI  
    %       idx = r<=1; [8XLK4e  
    %       z = nan(size(X)); 8z2Rry w  
    %       n = [0  1  1  2  2  2  3  3  3  3]; ?+0GfIV  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; e5?PkFV^a1  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; n6MM5h/#r  
    %       y = zernfun(n,m,r(idx),theta(idx)); uuNR?1fS  
    %       figure('Units','normalized') WC,+Cn e  
    %       for k = 1:10 ?F7o!B  
    %           z(idx) = y(:,k); rJJ[X4$  
    %           subplot(4,7,Nplot(k)) MFt*&%,JX  
    %           pcolor(x,x,z), shading interp .]x2K-Sf  
    %           set(gca,'XTick',[],'YTick',[]) -|S]oJy  
    %           axis square LD>\#q8a*  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ;eL9{eF  
    %       end *\uM.m0$  
    % ememce,Np  
    %   See also ZERNPOL, ZERNFUN2. =1p8 i  
    8RW&r  
    %   Paul Fricker 11/13/2006 Q`%R[#  
    L<V3KS2y  
    1f'Hif*r_X  
    % Check and prepare the inputs: crcA\lJf  
    % ----------------------------- tV;`fV   
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 6w[}&pX"z  
        error('zernfun:NMvectors','N and M must be vectors.') q.#[TI ^  
    end S6d`ioi-  
    \x{;U#B[3>  
    if length(n)~=length(m) )B# ,  
        error('zernfun:NMlength','N and M must be the same length.') errH>D~  
    end Pmg)v!"  
    sP@X g;]  
    n = n(:); .|qK +Hnc  
    m = m(:); mmXm\]r>4  
    if any(mod(n-m,2)) v``-F(i$  
        error('zernfun:NMmultiplesof2', ... U69u'G:  
              'All N and M must differ by multiples of 2 (including 0).') ;Q;[*B=kE  
    end -]uUYe c  
    WLa!.v>  
    if any(m>n) +!IQj0&'Y3  
        error('zernfun:MlessthanN', ... ~[WF_NU1y  
              'Each M must be less than or equal to its corresponding N.') gi/@ j  
    end )d\ j I  
    "9EE1];NT  
    if any( r>1 | r<0 ) A>`945|  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') ?~"bR%  
    end g>rp@M  
    YTQt3=1ii  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) }9HmTr|  
        error('zernfun:RTHvector','R and THETA must be vectors.') kum#^^4G|  
    end 'ly?P8h  
    vbx6I>\Y  
    r = r(:); 7?8wyk|x  
    theta = theta(:); 9^"b*&>P  
    length_r = length(r); #`TgZKDg2  
    if length_r~=length(theta) =<r8fXWZ  
        error('zernfun:RTHlength', ... mR\`DltoV  
              'The number of R- and THETA-values must be equal.') {Gq*e/  
    end kE8>dmH23  
    s>k Uh  
    % Check normalization: &6 s) X  
    % -------------------- ml0.$z  
    if nargin==5 && ischar(nflag) QxuhGA  
        isnorm = strcmpi(nflag,'norm'); }8|[;Qa`y  
        if ~isnorm E!BPE>  
            error('zernfun:normalization','Unrecognized normalization flag.') ]M/9#mD9~  
        end pLa[}=  
    else Z=B_Ty  
        isnorm = false; E:zF/$tG  
    end %*aJLn+]_R  
    b*a2,MiM  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% S##1GOO  
    % Compute the Zernike Polynomials :@W.K5  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% *<N3_tx"  
    6qN~/TnHZ  
    % Determine the required powers of r: 6u`F d#  
    % ----------------------------------- 2%*MW"Q  
    m_abs = abs(m); )"zvwgaW  
    rpowers = []; <FMq>d$\  
    for j = 1:length(n) c_aZ{S  
        rpowers = [rpowers m_abs(j):2:n(j)]; iGB_{F~t4}  
    end Uv YF[@  
    rpowers = unique(rpowers); ~\x:<)  
    RLlU" sw+{  
    % Pre-compute the values of r raised to the required powers, O}9KJU  
    % and compile them in a matrix: (b?{xf'G  
    % ----------------------------- X[#zCM  
    if rpowers(1)==0 *  tCS  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 08X_}97#WF  
        rpowern = cat(2,rpowern{:}); Pe C7  
        rpowern = [ones(length_r,1) rpowern]; !O\;Nua  
    else [E#UGJ@  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); [."[pY  
        rpowern = cat(2,rpowern{:}); 8WE{5#oi  
    end %Qg+R26U  
    5es[Ph|K5  
    % Compute the values of the polynomials: J=.`wZQkS  
    % -------------------------------------- Rqwzh@}  
    y = zeros(length_r,length(n)); UAR5^  
    for j = 1:length(n) ^[%%r3"$C  
        s = 0:(n(j)-m_abs(j))/2; eC5$#,HiC  
        pows = n(j):-2:m_abs(j); 6wco&7   
        for k = length(s):-1:1 zF5uN:-s  
            p = (1-2*mod(s(k),2))* ... $/6;9d^  
                       prod(2:(n(j)-s(k)))/              ... QwhRNnE=  
                       prod(2:s(k))/                     ... l5l>d62  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... w9 w%&{j  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); e><5Pr)  
            idx = (pows(k)==rpowers); G=;k=oX(  
            y(:,j) = y(:,j) + p*rpowern(:,idx); >~`C-K#  
        end Kwc6mlw~M  
         s2j['g5  
        if isnorm .]aF 1}AI  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); x0 d~i!d  
        end Bgmn2-  
    end Ra*e5  
    % END: Compute the Zernike Polynomials }j,[ 1@S  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% JCAq8=zM  
    JG{j)O|L  
    % Compute the Zernike functions: L 8{\r$  
    % ------------------------------ eY{+~|KZ  
    idx_pos = m>0; 7JSNYTH  
    idx_neg = m<0; .9O$G2'oh  
    EUsI%p  
    z = y; D&HV6#  
    if any(idx_pos) (E]!Z vE  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ]Qm]I1P  
    end 0Z{j>=$  
    if any(idx_neg) czlFr|O;  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); eT2*W$  
    end s+:=I e  
    5>AX*]c  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) a~8[<Fomj  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. a1Qv@p^._b  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated 6"dD2WV/  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive .jMq  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, ~}Rj$%_  
    %   and THETA is a vector of angles.  R and THETA must have the same  <T[E=#  
    %   length.  The output Z is a matrix with one column for every P-value, .5  
    %   and one row for every (R,THETA) pair. s`>[F@N7.o  
    % Y2'cs~~$Ce  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike 0Ia($.1mY  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) -.{g}R%  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) ?k(\ApVHj  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 tDAhyy73  
    %   for all p. %c[V  
    % -(K9s!C!.  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 x`6<m!d`  
    %   Zernike functions (order N<=7).  In some disciplines it is | [ >UH  
    %   traditional to label the first 36 functions using a single mode {&Q9"C  
    %   number P instead of separate numbers for the order N and azimuthal F5o+kz$;  
    %   frequency M. " LJq%E  
    % ? R>h `  
    %   Example: &IlU|4`R%  
    % qTQBt}  
    %       % Display the first 16 Zernike functions *{+G=d  
    %       x = -1:0.01:1; 2h%z ("3/  
    %       [X,Y] = meshgrid(x,x); ~Ch+5A;  
    %       [theta,r] = cart2pol(X,Y); -kbg\,PW  
    %       idx = r<=1; r [ K5w  
    %       p = 0:15; `mN4_\]  
    %       z = nan(size(X)); S]E.KLR?[;  
    %       y = zernfun2(p,r(idx),theta(idx)); IT$25ZF  
    %       figure('Units','normalized') E\C9|1)  
    %       for k = 1:length(p) t'ZWc\  
    %           z(idx) = y(:,k); rSrIEP,c'  
    %           subplot(4,4,k) U#U]Pt  
    %           pcolor(x,x,z), shading interp MeUaTJFEB  
    %           set(gca,'XTick',[],'YTick',[]) _SA5e3#  
    %           axis square 0 Us5  
    %           title(['Z_{' num2str(p(k)) '}']) 0:b2(^]bg  
    %       end *&f$K1p  
    % ;D$)P7k6  
    %   See also ZERNPOL, ZERNFUN. zhf.NCSt(  
    <vwkjCA`  
    %   Paul Fricker 11/13/2006 1T[et-  
    QD%L0;j  
    `:axzCrCfR  
    % Check and prepare the inputs: Zv#Ll@v  
    % ----------------------------- q/n,,!  
    if min(size(p))~=1 \_B[{e7z  
        error('zernfun2:Pvector','Input P must be vector.') K#"O a h  
    end y{N-+10z  
    6&/T@LQYrh  
    if any(p)>35 4rrSb*  
        error('zernfun2:P36', ... D::rGB?.b  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... )wNP( @$L  
               '(P = 0 to 35).']) $LU"?aAW  
    end []D@Q+1  
    .?l\g-;=  
    % Get the order and frequency corresonding to the function number: <n#DT  
    % ---------------------------------------------------------------- \eFR(gO+  
    p = p(:); O?|gp<=d  
    n = ceil((-3+sqrt(9+8*p))/2); KGg3 !jY  
    m = 2*p - n.*(n+2); J_;o|gqX  
    Dtj&W<NXo  
    % Pass the inputs to the function ZERNFUN: !50[z:  
    % ---------------------------------------- LGtIm7  
    switch nargin h2D>;k  
        case 3 Ng_!zrx04  
            z = zernfun(n,m,r,theta); ye MB0Z*r  
        case 4 6H7],aMg$A  
            z = zernfun(n,m,r,theta,nflag); 5;HH4?]p  
        otherwise mWvl 38  
            error('zernfun2:nargin','Incorrect number of inputs.') ^f(@gS}?  
    end )-. _FOZ6  
    6AhM=C  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) &mx)~J^m  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. BT"XT5@  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of .yEBOMNZ  
    %   order N and frequency M, evaluated at R.  N is a vector of zld#qG6  
    %   positive integers (including 0), and M is a vector with the s ']Bx=  
    %   same number of elements as N.  Each element k of M must be a ~ (jKz}'~U  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) # }y2)g  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is uu>Pkfo  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix Kuu *&u  
    %   with one column for every (N,M) pair, and one row for every @nCd  
    %   element in R. v p/yG   
    % Ug<#en  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- ]'=)2 .}  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is L}pt)w*V1j  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to =UfsL%  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 Ob<{G"  
    %   for all [n,m]. XY3v_5~/1F  
    % #iHs* /85  
    %   The radial Zernike polynomials are the radial portion of the ~S,,w1`  
    %   Zernike functions, which are an orthogonal basis on the unit ,]d /Q<  
    %   circle.  The series representation of the radial Zernike 0a XPPnuX  
    %   polynomials is I<6P;  
    % "[ZB+-|[0  
    %          (n-m)/2 '?p<lu^^B  
    %            __ *(T:,PY  
    %    m      \       s                                          n-2s B e0ND2oo  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r YF>m$?;  
    %    n      s=0 2HsLc*9{4  
    % M# %a(Y3K)  
    %   The following table shows the first 12 polynomials. <"my^  
    % HK0! P*  
    %       n    m    Zernike polynomial    Normalization kZGRxp9  
    %       --------------------------------------------- 0i\M,TNf*  
    %       0    0    1                        sqrt(2) waj0"u^#  
    %       1    1    r                           2 fy@<&U5rg  
    %       2    0    2*r^2 - 1                sqrt(6) 3!|;iJRH  
    %       2    2    r^2                      sqrt(6) %_%Q 8,W  
    %       3    1    3*r^3 - 2*r              sqrt(8) %UERc{~o*,  
    %       3    3    r^3                      sqrt(8) F7EKoDt  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) Xx0hc 8qd  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) {ix?Brq/  
    %       4    4    r^4                      sqrt(10) kr9*,E9cv  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) ]\hSI){  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) ?FpWvyz|  
    %       5    5    r^5                      sqrt(12) Sp;G'*g  
    %       --------------------------------------------- r\-uJ~8N  
    % n%.7h3  
    %   Example: 9Hb6nm  
    % n%o5kVx0  
    %       % Display three example Zernike radial polynomials 8"8t-E#?  
    %       r = 0:0.01:1; #(N+(():  
    %       n = [3 2 5]; %,@e^3B  
    %       m = [1 2 1]; )I^7)x  
    %       z = zernpol(n,m,r); jN;@=COi  
    %       figure 'm FqE n  
    %       plot(r,z) gv- xm  
    %       grid on Rnr(g;2  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') 7'W%blg!V  
    % `tA" }1;ka  
    %   See also ZERNFUN, ZERNFUN2. 26I_YL,S  
    2db3I:;E  
    % A note on the algorithm. NflD/q/ L  
    % ------------------------ UU;(rS/  
    % The radial Zernike polynomials are computed using the series EIf5(/jo  
    % representation shown in the Help section above. For many special xSsa(b  
    % functions, direct evaluation using the series representation can %In A+5s`  
    % produce poor numerical results (floating point errors), because $0>60<J  
    % the summation often involves computing small differences between $j5K8Ad  
    % large successive terms in the series. (In such cases, the functions BW}U%B^.  
    % are often evaluated using alternative methods such as recurrence yW1)vD7  
    % relations: see the Legendre functions, for example). For the Zernike >>t@}F)  
    % polynomials, however, this problem does not arise, because the i1NY9br  
    % polynomials are evaluated over the finite domain r = (0,1), and z<U-#k7nz  
    % because the coefficients for a given polynomial are generally all 7vrl'^1  
    % of similar magnitude. w[zjerH3  
    % v1+3}5b'uF  
    % ZERNPOL has been written using a vectorized implementation: multiple IEsEdw]aZE  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] 59Xi3KY  
    % values can be passed as inputs) for a vector of points R.  To achieve :t8b39  
    % this vectorization most efficiently, the algorithm in ZERNPOL }@'$b<!B  
    % involves pre-determining all the powers p of R that are required to cdl&9-}  
    % compute the outputs, and then compiling the {R^p} into a single k;AD`7(=  
    % matrix.  This avoids any redundant computation of the R^p, and dJeNbVd  
    % minimizes the sizes of certain intermediate variables. Ln')QN  
    % v &Yi  
    %   Paul Fricker 11/13/2006 .w=/+TA  
    aQ?/%\>  
    hV8[@&Sx3  
    % Check and prepare the inputs: =.f-w0V  
    % ----------------------------- 5cL83FQh  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) |:q=T ~x  
        error('zernpol:NMvectors','N and M must be vectors.') e6R}0w~G  
    end (C-{B[Y  
    )t0$qd ]  
    if length(n)~=length(m) *4Thd:7 `  
        error('zernpol:NMlength','N and M must be the same length.') mZtCL  
    end z;{iM/Xe  
    ); !eow  
    n = n(:); s C%&cRQD  
    m = m(:); `w#Oih!6A|  
    length_n = length(n); d6} r#\  
    p Dx1z|@z  
    if any(mod(n-m,2)) fi-WZ  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') C%$edEi  
    end A!s`[2 Z  
    ]qethaNy  
    if any(m<0) |oH,   
        error('zernpol:Mpositive','All M must be positive.') bhTb[r  
    end T! Y@`Ox  
    dt \TQJc~  
    if any(m>n) y I HXg#  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') >Wm `v.-  
    end Xb:;</  
    m ,* QP*  
    if any( r>1 | r<0 ) Uol|9F  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') q@QksAq  
    end eJF5n#  
    3m]4=  
    if ~any(size(r)==1) q+H%)kF  
        error('zernpol:Rvector','R must be a vector.') ;(f) &Yom  
    end @TLS<~  
     8{wwd:6  
    r = r(:); C]O(T2l{l  
    length_r = length(r); q M fT>rH  
    )M,Of Xa  
    if nargin==4 Hu\B"fdS  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); m!|kW{B#A  
        if ~isnorm 9_q#W'/X  
            error('zernpol:normalization','Unrecognized normalization flag.') $? m9")  
        end -V-RP;">  
    else 0t^M3+nc  
        isnorm = false; NO7J!k?  
    end ]{)a,c NG  
    nF54tR[  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ,0~^>K  
    % Compute the Zernike Polynomials '-r).Xk  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ^nT/i .#_  
    !*s?B L  
    % Determine the required powers of r: ~ZmN44?R  
    % ----------------------------------- :8L8q<U  
    rpowers = []; }6p@lla,%]  
    for j = 1:length(n) F|d\k Q  
        rpowers = [rpowers m(j):2:n(j)]; i2@VB6]?  
    end #+:9T /*>0  
    rpowers = unique(rpowers); =}lh_  
    X\]L=>]C  
    % Pre-compute the values of r raised to the required powers, \kp8S'qVo  
    % and compile them in a matrix: j| v%)A  
    % ----------------------------- t9,\Hdo  
    if rpowers(1)==0 Ee)T1~;W  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); #^`4DhQ/ 1  
        rpowern = cat(2,rpowern{:}); o9|nJ;  
        rpowern = [ones(length_r,1) rpowern]; J ][T"K  
    else j|4<i9^}  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ?zeJ#i  
        rpowern = cat(2,rpowern{:}); %z /hf  
    end yWg@v +  
    $*SW8'],`  
    % Compute the values of the polynomials: [=E  
    % -------------------------------------- x*![fK  
    z = zeros(length_r,length_n); zO~8?jDN4|  
    for j = 1:length_n 8qY79)vD4E  
        s = 0:(n(j)-m(j))/2; DwaBdN[!7  
        pows = n(j):-2:m(j); r;B8i!gD  
        for k = length(s):-1:1 t|H^`Cv6  
            p = (1-2*mod(s(k),2))* ... Z8# (kmBdB  
                       prod(2:(n(j)-s(k)))/          ... 88VZR&v   
                       prod(2:s(k))/                 ... aUzBV\Yd}  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... 1 9&<|qTz  
                       prod(2:((n(j)+m(j))/2-s(k))); vX{J' H]u  
            idx = (pows(k)==rpowers); J,V9k[88  
            z(:,j) = z(:,j) + p*rpowern(:,idx); 7R`M,u~f2^  
        end I CZ4 A{I  
         '[U8}z3  
        if isnorm jK!Au  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); bHPYp5UwN  
        end = 6tHsN23  
    end kjW+QT?T&  
    r#+d&.|  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    857
    光币
    847
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  .7i` (F)  
    J\d3N7_d  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 M>&%(4K  
    3= xhoRX  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)