非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 T_)g/,5>
function z = zernfun(n,m,r,theta,nflag) M(^_/1Z
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. p4F%FS:`
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N z''ejq
% and angular frequency M, evaluated at positions (R,THETA) on the $7QGi|W*k
% unit circle. N is a vector of positive integers (including 0), and oE.Ckz~*d
% M is a vector with the same number of elements as N. Each element ;J@U){R
% k of M must be a positive integer, with possible values M(k) = -N(k) A"B#t"
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, xfF;u9$;
% and THETA is a vector of angles. R and THETA must have the same GE8.{P
% length. The output Z is a matrix with one column for every (N,M) s=e`}4
% pair, and one row for every (R,THETA) pair. m#$$xG
% 9u6VN]divB
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 0 <E2^
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Z2U6<4?1%
% with delta(m,0) the Kronecker delta, is chosen so that the integral n^q%_60H
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, \0W0 o5c$
% and theta=0 to theta=2*pi) is unity. For the non-normalized 1{ H=The
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. \.aKxj5
% {?;qy\m]o
% The Zernike functions are an orthogonal basis on the unit circle. P BVF'~f@j
% They are used in disciplines such as astronomy, optics, and <NEz{ 1Z
% optometry to describe functions on a circular domain. d,b]#fj
% yq?\.~ax
% The following table lists the first 15 Zernike functions. '3w%K+eJY
% <vE|QxpR
% n m Zernike function Normalization 4(91T
% -------------------------------------------------- ~,_@|,)
% 0 0 1 1 xHCdtloi?I
% 1 1 r * cos(theta) 2 e^<'H
% 1 -1 r * sin(theta) 2 'yosDT2{#
% 2 -2 r^2 * cos(2*theta) sqrt(6) <PFF\NE9
% 2 0 (2*r^2 - 1) sqrt(3) ~ulcLvm:i
% 2 2 r^2 * sin(2*theta) sqrt(6) TI}a$I*
% 3 -3 r^3 * cos(3*theta) sqrt(8) xk
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) Gshy$'_e
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) Bq;GO
% 3 3 r^3 * sin(3*theta) sqrt(8) +1a3^A\
% 4 -4 r^4 * cos(4*theta) sqrt(10) cij8'("+!
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) PqIskv+
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5)
&1f3e
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ?@z/#3b
% 4 4 r^4 * sin(4*theta) sqrt(10) !PA ><F
% -------------------------------------------------- !>"fDz<w`
% k*u6'IKi.4
% Example 1: _s+G02/q1
% diNAT`|?#
% % Display the Zernike function Z(n=5,m=1) b9ud8wLE[
% x = -1:0.01:1; (&1.!R[X
% [X,Y] = meshgrid(x,x); @tJ4^<`P{
% [theta,r] = cart2pol(X,Y); r7sA;Y\
% idx = r<=1; 2">de/jS
% z = nan(size(X)); j7^A%9
% z(idx) = zernfun(5,1,r(idx),theta(idx)); k+%&dEE|vH
% figure S[gACEZ =
% pcolor(x,x,z), shading interp W':b6}?
% axis square, colorbar qDTdYf
% title('Zernike function Z_5^1(r,\theta)') oB%_yy+
% u(fZ^
% Example 2: @( \R@`#
% c:52pYf+
% % Display the first 10 Zernike functions qcouZO
% x = -1:0.01:1; 8{]nS8i
% [X,Y] = meshgrid(x,x); o<J6KTLv
% [theta,r] = cart2pol(X,Y); 6O/c%1VHA3
% idx = r<=1; >gs_Bzy]
% z = nan(size(X)); b\KbF/T
% n = [0 1 1 2 2 2 3 3 3 3]; mo3A *|U
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; |d z2Drc
% Nplot = [4 10 12 16 18 20 22 24 26 28]; BG8/
% y = zernfun(n,m,r(idx),theta(idx)); 1hlU
6=Y
% figure('Units','normalized') k$ T
% for k = 1:10 _Rb2jq(&0
% z(idx) = y(:,k); ij|>hQC5i
% subplot(4,7,Nplot(k)) {NQCe0S+p
% pcolor(x,x,z), shading interp `|Hk+V
% set(gca,'XTick',[],'YTick',[]) wx[m-\
% axis square qp)Wt6 k?
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) o$Ylqb#
% end o<iU;15
% !yVY[
% See also ZERNPOL, ZERNFUN2. :8j7}'
L&y"oAp<
% Paul Fricker 11/13/2006 ?G,gPb
\EU^`o+
x@QNMK.7
% Check and prepare the inputs: FF#+d~$z
% ----------------------------- w3"L5;oH
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) (X
Oz0.W
error('zernfun:NMvectors','N and M must be vectors.') S 6_:\Q
end _~MX~M3MB
|`Noj+T47I
if length(n)~=length(m) "/RMIS
K[;
error('zernfun:NMlength','N and M must be the same length.') AD^I1]2f
end 'e' p`*
GB^ `A
n = n(:); P$0c{B4I
m = m(:); ;x2o|#`b
if any(mod(n-m,2)) lZ7
$DGe
error('zernfun:NMmultiplesof2', ... <G|i5/|7
'All N and M must differ by multiples of 2 (including 0).') r#2Fk&Z9
end JB].ht
z6l'v~\
if any(m>n) czU"
error('zernfun:MlessthanN', ... ;1PJS_@rX
'Each M must be less than or equal to its corresponding N.') 5-$D<}Z
end ;3wO1'=
enZZ+|h
if any( r>1 | r<0 ) p/RT*?<
error('zernfun:Rlessthan1','All R must be between 0 and 1.') ZZZ9C#hK^9
end wBwTJCX
*Cf!p\7!
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) V" 8 G-dK
error('zernfun:RTHvector','R and THETA must be vectors.') ZAU#^bEQB
end KK3iui
"f_qG2A{
r = r(:); );VuZsmi
theta = theta(:); s[y.gR.(
length_r = length(r); D>7J[ Yxg-
if length_r~=length(theta) c`p'5qz
error('zernfun:RTHlength', ... t"YsIOT:O"
'The number of R- and THETA-values must be equal.') k_,&
Q?GtU
end (DY[OIHI
^i Jyo&I
% Check normalization: *9$SFe|&n:
% -------------------- bKGX>
%-
if nargin==5 && ischar(nflag) Y8]@y0(
isnorm = strcmpi(nflag,'norm'); ~ gff{Nzk
if ~isnorm @`C'tfG/4
error('zernfun:normalization','Unrecognized normalization flag.') % g
end bTrusSAl
else z8awND
isnorm = false; j|wN7@Zc
end $.,B2} '
1n!:L!,`
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% '!`\!=j-`
% Compute the Zernike Polynomials [bP^RY:
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% V0_tk"
@WS77d~S
% Determine the required powers of r: 6Q [
% ----------------------------------- ]q{_i
m_abs = abs(m); 1J/'R37lP
rpowers = []; th[v"qD9G
for j = 1:length(n) Vi-Ph;6[
rpowers = [rpowers m_abs(j):2:n(j)]; UAhWJ$(C
end 6{]F#ig=
rpowers = unique(rpowers); @}g3\xLiK
fxPg"R!1i
% Pre-compute the values of r raised to the required powers, 3MNM<Ih
% and compile them in a matrix: 4xmJQ>/
% ----------------------------- 8I/3T
if rpowers(1)==0 ,P`NtTN-
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 5X)M)"rq;V
rpowern = cat(2,rpowern{:}); Dk^AnMx%_
rpowern = [ones(length_r,1) rpowern]; 5kTs7zJ^
else G/Sp/I<d
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); M=uT8JB
rpowern = cat(2,rpowern{:}); eN,9N]K
end }8Y! -qX
,GYQ,9:
% Compute the values of the polynomials: . waw=C
% -------------------------------------- s __xBY
y = zeros(length_r,length(n)); \Dq'~
d
for j = 1:length(n) S
\]O8#OX
s = 0:(n(j)-m_abs(j))/2; "4\
pows = n(j):-2:m_abs(j); EwN{| 34C
for k = length(s):-1:1 h>\C2Q
p = (1-2*mod(s(k),2))* ... s<F*kLib
prod(2:(n(j)-s(k)))/ ... d'ZNp2L
prod(2:s(k))/ ... j@z IJ
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Mww ^
prod(2:((n(j)+m_abs(j))/2-s(k))); /Rq\Mgb
idx = (pows(k)==rpowers); >pfeP"[(3
y(:,j) = y(:,j) + p*rpowern(:,idx); K9k!P8Rd
end ~ h3G}EH
{V
QGfN
if isnorm ]A=\P,D
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); OA3J(4!"W
end mEd2f^R
end 'l.tV7
% END: Compute the Zernike Polynomials W34xrm
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% H
u;"TG
T(*,nJi~9
% Compute the Zernike functions: -/JEKwc
% ------------------------------ -| m3=#
idx_pos = m>0; +112{v=!i
idx_neg = m<0; '37
{$VHw
Mc@9ivwL#
z = y; ZDFq=)0C
if any(idx_pos) |?^<=%
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); JKM(fX+
end ?`U_|Yo
if any(idx_neg) 5 qfvHQ ~M
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ~o^| >]
end fAULuF
hI86WP9*
% EOF zernfun