切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11764阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 $U~]=.n  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! usF.bkTp  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 pQB."[n  
    function z = zernfun(n,m,r,theta,nflag) V0mn4sfs  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. JxU5 fe  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N VIf.q)_k  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ?S=mybp  
    %   unit circle.  N is a vector of positive integers (including 0), and X:{!n({r=  
    %   M is a vector with the same number of elements as N.  Each element %?/X=}sE  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) @=u3ZVD  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, \  Cj7k^  
    %   and THETA is a vector of angles.  R and THETA must have the same Ow,b^|  
    %   length.  The output Z is a matrix with one column for every (N,M) FS1z`wYP  
    %   pair, and one row for every (R,THETA) pair. )4;`^]F  
    % 8u]2xB=K  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike YS_; OFsd  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), e*1_8I#2  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral  Vxt+]5X  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Z;"vW!%d  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized .=; ;  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. \~wMfP8  
    % @C aG9]  
    %   The Zernike functions are an orthogonal basis on the unit circle. #g!.T g'  
    %   They are used in disciplines such as astronomy, optics, and F:DrX_O%  
    %   optometry to describe functions on a circular domain. |y!A&d=xYn  
    % <~=Vg  
    %   The following table lists the first 15 Zernike functions. q@2siI~W  
    % Znv,9-  
    %       n    m    Zernike function           Normalization -UT}/:a  
    %       -------------------------------------------------- d/ @,@8:  
    %       0    0    1                                 1 BJ(M2|VH  
    %       1    1    r * cos(theta)                    2 `M6)f?|$.  
    %       1   -1    r * sin(theta)                    2 /qw.p#  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) #`s"WnP9'!  
    %       2    0    (2*r^2 - 1)                    sqrt(3) \73ch  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) }(u ol  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) > Nr#O  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) )!T/3|C  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) x,Vr=FB  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) [Vt\$  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) +ck}l2&#  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) *8XEYZa  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) |Q>IrT  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) /a o5FL  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) :BT q!>s  
    %       -------------------------------------------------- e>7i_4(C  
    % Z/J y'$x  
    %   Example 1: &+R?_Ooibk  
    % rrv%~giU  
    %       % Display the Zernike function Z(n=5,m=1) <9 ;!3xG  
    %       x = -1:0.01:1; HpnWo DM  
    %       [X,Y] = meshgrid(x,x); KK &?gTa  
    %       [theta,r] = cart2pol(X,Y); qIqM{#' ^  
    %       idx = r<=1; 8\gjST*  
    %       z = nan(size(X)); cN9t{.m  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); %~S&AE-  
    %       figure ReeH@.74  
    %       pcolor(x,x,z), shading interp ~PNub E  
    %       axis square, colorbar ;A!BVq  
    %       title('Zernike function Z_5^1(r,\theta)') @s^-.z  
    % |zE'd!7E  
    %   Example 2: >&k-'`Nw  
    % pD]OT-8  
    %       % Display the first 10 Zernike functions -Y;3I00(  
    %       x = -1:0.01:1; L j$;:/G  
    %       [X,Y] = meshgrid(x,x); `y* }lg T  
    %       [theta,r] = cart2pol(X,Y); _wL BA^d^  
    %       idx = r<=1; &jr3B;g!C  
    %       z = nan(size(X)); Z EO WO  
    %       n = [0  1  1  2  2  2  3  3  3  3]; dC4'{ n|7  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; Ecx<OTo  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; >-{Hyx  
    %       y = zernfun(n,m,r(idx),theta(idx)); >@AB<$ A  
    %       figure('Units','normalized') B?o7e<l[  
    %       for k = 1:10 SK.: Q5:  
    %           z(idx) = y(:,k); \5cpFj5%  
    %           subplot(4,7,Nplot(k)) OK g qT!  
    %           pcolor(x,x,z), shading interp jlg(drTo  
    %           set(gca,'XTick',[],'YTick',[]) (_{y B[z>`  
    %           axis square 4nz35BLr  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) @ur+;IK$  
    %       end 6\S~P/PkE  
    % &YeA:i?  
    %   See also ZERNPOL, ZERNFUN2. W+1^4::+  
    *4_Bd=5(U  
    %   Paul Fricker 11/13/2006 /|#fejPh  
    f:P}*^ Gw  
    8e"gW >f  
    % Check and prepare the inputs: 0Fr?^3h  
    % ----------------------------- IdxzE_@  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) BDZ?Ez \Sg  
        error('zernfun:NMvectors','N and M must be vectors.') 9 JK Ew  
    end ymcLFRu,  
    EDs\,f}  
    if length(n)~=length(m) :T(|&F[(  
        error('zernfun:NMlength','N and M must be the same length.') 5QO9Q]I#_\  
    end b\+`e b8_  
    ##4HYQ%E  
    n = n(:); ROZF)|l  
    m = m(:); w"&n?L  
    if any(mod(n-m,2)) fa2kG&, _  
        error('zernfun:NMmultiplesof2', ... 9k[9P;"F:  
              'All N and M must differ by multiples of 2 (including 0).') !_Z&a  
    end 5.J.RE"M  
    vEz"xz1j!]  
    if any(m>n) 2T[9f;jM'  
        error('zernfun:MlessthanN', ... R,=fv   
              'Each M must be less than or equal to its corresponding N.') yJe>JK~)  
    end 26x[X.C:  
    QnX(V[  
    if any( r>1 | r<0 ) T37XBg H  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') YkQd  
    end wJY'  
    j^2j& Ta  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) z,%$+)K  
        error('zernfun:RTHvector','R and THETA must be vectors.') IRqy%@)  
    end PRE|+=w$  
    &~U ]~;@  
    r = r(:); G'aDb/  
    theta = theta(:); 1D!<'`)AY  
    length_r = length(r); ^\,E&=/}M  
    if length_r~=length(theta) 2Q:+_v  
        error('zernfun:RTHlength', ... -!]ZMi9  
              'The number of R- and THETA-values must be equal.') l0i^uMS  
    end @>H75  
    F`]2O:[  
    % Check normalization: `&6dnSC},P  
    % -------------------- .y:U&Rw4  
    if nargin==5 && ischar(nflag) jdJ>9O0A,  
        isnorm = strcmpi(nflag,'norm'); OprkR  
        if ~isnorm G[q$QB+  
            error('zernfun:normalization','Unrecognized normalization flag.') 5bpEYW+  
        end BsYa3d=}  
    else ls)%c  
        isnorm = false; c6]D-YNF G  
    end 2*#|Nj=^  
    UU0,!?o4  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% "AGLVp.zT  
    % Compute the Zernike Polynomials ] {HI?V  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Y,zxbXZv'5  
    cDH^\-z  
    % Determine the required powers of r: s.NGA.]$  
    % ----------------------------------- QGmn#]w\\  
    m_abs = abs(m); n^6j9 FQ7  
    rpowers = []; 'Ne@e)s9  
    for j = 1:length(n) N_[*H  
        rpowers = [rpowers m_abs(j):2:n(j)]; !f&g-V  
    end ^eYVWQ'  
    rpowers = unique(rpowers); k7A-J\  
    P3 ^Y"Pv?  
    % Pre-compute the values of r raised to the required powers, !ff&W1@  
    % and compile them in a matrix: Czu\RXJR  
    % ----------------------------- "o}+Ciul  
    if rpowers(1)==0 N7R!C)!IL  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); {fn!'  
        rpowern = cat(2,rpowern{:}); M?uC%x+S$_  
        rpowern = [ones(length_r,1) rpowern]; "vE4E|  
    else ]yPqLJ  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); H\tUpan6fy  
        rpowern = cat(2,rpowern{:}); (n9g kO&8"  
    end r#] WI|  
    63,H{  
    % Compute the values of the polynomials: !^Y(^RS@  
    % -------------------------------------- =h73s0 ]  
    y = zeros(length_r,length(n)); tS8u  
    for j = 1:length(n) B%+T2=&$7  
        s = 0:(n(j)-m_abs(j))/2; ax5<#3__  
        pows = n(j):-2:m_abs(j); ?R.j^ S^  
        for k = length(s):-1:1 E#t>Qn  
            p = (1-2*mod(s(k),2))* ... v^iL5y!  
                       prod(2:(n(j)-s(k)))/              ... A#'8X w|  
                       prod(2:s(k))/                     ... ,>+p-M8ZL  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ':m,)G5&  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); *w0%d1  
            idx = (pows(k)==rpowers); PQ$%H>{  
            y(:,j) = y(:,j) + p*rpowern(:,idx); *CTlOy  
        end a8Nh=^Py  
         EV@X*| w  
        if isnorm N `F~n%N  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); |02gupqqi  
        end GKc`xIQ  
    end dP]\Jo=Yh  
    % END: Compute the Zernike Polynomials =CVBBuVy  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \%N!5>cZ{  
    g:Xhw$x9  
    % Compute the Zernike functions: t$#jL5  
    % ------------------------------ R)ITy!z  
    idx_pos = m>0;   =`s!;  
    idx_neg = m<0; 74k dsgQf  
    VYImI>.t{  
    z = y; 6 EC*   
    if any(idx_pos) JKmIvZ)8  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); G`BU=Fi  
    end lHe{\N[C  
    if any(idx_neg) ly_HWuFJ3  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); HqD^B[ jS  
    end ZO$m["|  
    @x'"~"%7b  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) \VyZ  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. Ne{?:h.!  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated OJ5#4qJ[  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive $jI3VB  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, F{~{Lthc  
    %   and THETA is a vector of angles.  R and THETA must have the same *<jAiB ,O*  
    %   length.  The output Z is a matrix with one column for every P-value, ^c4@(]v'G  
    %   and one row for every (R,THETA) pair. J1sv[$9  
    % "wn zo,  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike VZymM<O  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) wFsyD3  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) LzXmb 7A  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 Cdu4U}^H  
    %   for all p. c[4i9I3v  
    % ?Unb? {,&2  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 'o+L41  
    %   Zernike functions (order N<=7).  In some disciplines it is '~[d=fwH  
    %   traditional to label the first 36 functions using a single mode $oU*9}}Rn  
    %   number P instead of separate numbers for the order N and azimuthal W~~7 C,!  
    %   frequency M. -Rd/G x  
    %  6S*e xw  
    %   Example: 'H&2HXw&2  
    % F{Jw ^\  
    %       % Display the first 16 Zernike functions +)<wDDC_  
    %       x = -1:0.01:1; &cHV7  
    %       [X,Y] = meshgrid(x,x); JedmaY06=  
    %       [theta,r] = cart2pol(X,Y); NS%xTLow-  
    %       idx = r<=1; iAa.}CI,zB  
    %       p = 0:15; 0y;*Cfi9  
    %       z = nan(size(X)); )d1_Wm#B  
    %       y = zernfun2(p,r(idx),theta(idx)); Q<'nE  
    %       figure('Units','normalized') qx8fRIK%  
    %       for k = 1:length(p) kabnVVn~  
    %           z(idx) = y(:,k); !GLz)#SBl  
    %           subplot(4,4,k) S=<}:#;u0  
    %           pcolor(x,x,z), shading interp BJB^m|b)  
    %           set(gca,'XTick',[],'YTick',[]) Gh}LlX!w  
    %           axis square o( RG-$  
    %           title(['Z_{' num2str(p(k)) '}']) K/b_22]CC  
    %       end 5eoska#y   
    % Z&4&-RCi  
    %   See also ZERNPOL, ZERNFUN. q<[_T  
    %?uc><&?e  
    %   Paul Fricker 11/13/2006 36%nB*  
    KJ=6n%6  
    X;B\Kj`n  
    % Check and prepare the inputs: sCis4gX.]  
    % ----------------------------- %Bn?n{ /  
    if min(size(p))~=1 V_RTI.3p  
        error('zernfun2:Pvector','Input P must be vector.') #Jn_c0  
    end *-q"3 D`  
    i;jw\ed  
    if any(p)>35 N#7QzB9]  
        error('zernfun2:P36', ... v:o({Y 1Aq  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... ,TPISs  
               '(P = 0 to 35).']) W?aI|U1  
    end pUq1|)g  
    ,M6 Sy]Aj  
    % Get the order and frequency corresonding to the function number: ( Qcp{q  
    % ---------------------------------------------------------------- ll6wpV0m  
    p = p(:); wsN?[=l{s  
    n = ceil((-3+sqrt(9+8*p))/2); Bck7\  
    m = 2*p - n.*(n+2); #u"k~La  
    6morum  
    % Pass the inputs to the function ZERNFUN: _$f9]bab  
    % ---------------------------------------- MHai%E  
    switch nargin [}8|R0KF  
        case 3 YZ7|K<   
            z = zernfun(n,m,r,theta); VUYmz)m5  
        case 4 7J|VD#DE$Y  
            z = zernfun(n,m,r,theta,nflag); J6%AH?Mt  
        otherwise Zh*u(rO  
            error('zernfun2:nargin','Incorrect number of inputs.') pN9A{v(  
    end s#DaKPC  
    9h%?QC  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) {g~bQ2wDC  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. \, &co  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of Ns0cgCrhX  
    %   order N and frequency M, evaluated at R.  N is a vector of FwY&/\J7V  
    %   positive integers (including 0), and M is a vector with the QgD g}\P  
    %   same number of elements as N.  Each element k of M must be a iNWo"=J  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) 0zCw>wBPW  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is ?wF'<kEH  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix T<@cd|`  
    %   with one column for every (N,M) pair, and one row for every kbfC|5S  
    %   element in R. x^y"<  
    % f{i8w!O"~  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- ;w-qHha  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is U_$qi  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to G4;3cT3'  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 jhX[fT1m  
    %   for all [n,m]. sf|ke9-3  
    % )r z+'|,  
    %   The radial Zernike polynomials are the radial portion of the @]c(V%x   
    %   Zernike functions, which are an orthogonal basis on the unit {}m PEd b  
    %   circle.  The series representation of the radial Zernike k({\/t3i  
    %   polynomials is E)-r+ <l  
    % #E+gXan  
    %          (n-m)/2 %#Z/2<_  
    %            __ z rv#Xa!O\  
    %    m      \       s                                          n-2s ww{_c]My  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r l?DJJ|>O  
    %    n      s=0 7Irau_  
    % k@D0 {z  
    %   The following table shows the first 12 polynomials. ^(f4*m6`  
    % JwRF(1_sM  
    %       n    m    Zernike polynomial    Normalization ?D)<,  
    %       --------------------------------------------- ]cC[-F[  
    %       0    0    1                        sqrt(2) Z,;cCxE  
    %       1    1    r                           2 pdb1GDl0q  
    %       2    0    2*r^2 - 1                sqrt(6) -l-E_6|/W  
    %       2    2    r^2                      sqrt(6) T<joR R  
    %       3    1    3*r^3 - 2*r              sqrt(8) (j"(  
    %       3    3    r^3                      sqrt(8) (ihP `k-.  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) nL}5cPI  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) FvuGup`w  
    %       4    4    r^4                      sqrt(10) w[-Fm+A>  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) I.@hW>k  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) mNAY%Wn6k  
    %       5    5    r^5                      sqrt(12) 1?Aga,~k:a  
    %       --------------------------------------------- u@P[Vb   
    % [;oCYb$9  
    %   Example: W Qzj[  
    % qxMnp}O  
    %       % Display three example Zernike radial polynomials c<BO gNr  
    %       r = 0:0.01:1; LsGiu9~S  
    %       n = [3 2 5]; FNQX7O52  
    %       m = [1 2 1]; desThnT w  
    %       z = zernpol(n,m,r); -g/hAxb5  
    %       figure cj|*_}  
    %       plot(r,z) T\# *S0^  
    %       grid on ` C+HE$B  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') R,!Q Zxmg  
    % o:dR5v  
    %   See also ZERNFUN, ZERNFUN2. l0Ti Z  
    x2#qg>`l  
    % A note on the algorithm. l  n }}5Q  
    % ------------------------ _0 snAt^iC  
    % The radial Zernike polynomials are computed using the series B)h>8 {  
    % representation shown in the Help section above. For many special 0ZPV' `KGp  
    % functions, direct evaluation using the series representation can |"$uRV=qm  
    % produce poor numerical results (floating point errors), because SnTDLa  
    % the summation often involves computing small differences between TE-;X,gDV_  
    % large successive terms in the series. (In such cases, the functions 8Chu"PM%-J  
    % are often evaluated using alternative methods such as recurrence V5GkP1L  
    % relations: see the Legendre functions, for example). For the Zernike MY nH2w]  
    % polynomials, however, this problem does not arise, because the 6vf\R*D|A  
    % polynomials are evaluated over the finite domain r = (0,1), and \H5Jk$*  
    % because the coefficients for a given polynomial are generally all 1(GHCxA8G  
    % of similar magnitude. }GnwY97  
    % q cA`)j  
    % ZERNPOL has been written using a vectorized implementation: multiple d2ENm%q*PX  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] }yEoEI`  
    % values can be passed as inputs) for a vector of points R.  To achieve M_D6i%b^  
    % this vectorization most efficiently, the algorithm in ZERNPOL 8C.!V =@\  
    % involves pre-determining all the powers p of R that are required to SHqyvF  
    % compute the outputs, and then compiling the {R^p} into a single +MO E  
    % matrix.  This avoids any redundant computation of the R^p, and TQ1WVq }*  
    % minimizes the sizes of certain intermediate variables. nyT[^n  
    % xQlT%X;'  
    %   Paul Fricker 11/13/2006 |AH@ EI>  
    SLk2X;c]o  
    _NdLcpBT?  
    % Check and prepare the inputs: JK~ m(oQ  
    % ----------------------------- ~j @UlP  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) bn 4 &O  
        error('zernpol:NMvectors','N and M must be vectors.') HrqF![_  
    end 8h?X!2Nq  
    #DP7SO  
    if length(n)~=length(m) /k7wwZiY@  
        error('zernpol:NMlength','N and M must be the same length.') WY)^1Gb$ux  
    end N^elVu4 K  
    ~j,TVY  
    n = n(:); G\Q9IcJ0dY  
    m = m(:); K:qOoY  
    length_n = length(n); n*qN 29sx  
    mR":z|6  
    if any(mod(n-m,2)) de-0?6  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') 3BMS_,P  
    end DB&SOe  
    ,bSVVT-b  
    if any(m<0) BxX$5u  
        error('zernpol:Mpositive','All M must be positive.') gf$HuCh|  
    end u5gZxO1J5  
    !J.rM5K  
    if any(m>n) ,p,Du F  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') coB6 rW  
    end r2G*!qK*1  
    Xn7 [n  
    if any( r>1 | r<0 ) .9\Cy4_qSd  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') 4IGxI7~27#  
    end ehc<|O9tY  
    &9ki O  
    if ~any(size(r)==1) ye r> x  
        error('zernpol:Rvector','R must be a vector.') NFoZ4R1gy  
    end 5|WOBOh>`&  
    j3 P RAe  
    r = r(:); !5;t#4=  
    length_r = length(r); tvWH04T  
    \FI^ Vk  
    if nargin==4 O~Uw&Bq  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); 6bL"LM`s  
        if ~isnorm urxqek  
            error('zernpol:normalization','Unrecognized normalization flag.') 9c5!\m1  
        end (/q}mB  
    else ;2W2MZ!TF  
        isnorm = false; Rk[8Bd?  
    end iy 3DX|]  
    A[Cg/ +Z  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Pt3[|4L  
    % Compute the Zernike Polynomials M]s[ "0O  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ag/u8  
    chwh0J;  
    % Determine the required powers of r: 'o8\`\'H!  
    % ----------------------------------- )K.R\]XR  
    rpowers = []; er\:U0fr#@  
    for j = 1:length(n) `]yKM0 Z  
        rpowers = [rpowers m(j):2:n(j)]; 2 TCRS#z  
    end xucIjPi]  
    rpowers = unique(rpowers); H5^Y->  
    v=bv@c  
    % Pre-compute the values of r raised to the required powers, uk{J@&F  
    % and compile them in a matrix: 6(5c7R#  
    % ----------------------------- hd=j56P5P  
    if rpowers(1)==0 }moz9a  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); W,'3D~g8  
        rpowern = cat(2,rpowern{:}); /kb$p8!C".  
        rpowern = [ones(length_r,1) rpowern]; ~g96o81V  
    else +wjlAqMQ  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); `QAh5r"  
        rpowern = cat(2,rpowern{:}); Pb=rFas*C  
    end wO\!xW:  
    r?XDvU  
    % Compute the values of the polynomials: RQJ9MG w  
    % -------------------------------------- ?ZM^%]/+  
    z = zeros(length_r,length_n); K \m4*dOv  
    for j = 1:length_n ].c@Gm_(  
        s = 0:(n(j)-m(j))/2; ^"/Dih\_  
        pows = n(j):-2:m(j); g BH?l/  
        for k = length(s):-1:1 mc56L[  
            p = (1-2*mod(s(k),2))* ... n%8#?GC`  
                       prod(2:(n(j)-s(k)))/          ... X!?wL 0n  
                       prod(2:s(k))/                 ... IM|Se4;x  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... ;C6O3@Q  
                       prod(2:((n(j)+m(j))/2-s(k))); +"G(  
            idx = (pows(k)==rpowers); BfEx'C  
            z(:,j) = z(:,j) + p*rpowern(:,idx); i&B?4J)  
        end pJ$(ozV  
         iPJ9Gh7  
        if isnorm @Yb Z 8Uc  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); !}C4{Bgt*  
        end %!W 6<ioW  
    end 5D >BV *"  
    %G^(T%q| m  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    857
    光币
    847
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  56j/w[&8  
    L`VQ{|&3V  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 )Zu Q;p  
    cr=FMfhB  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)