非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 !2|Lb'O
function z = zernfun(n,m,r,theta,nflag) hObL=^F
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. KOy{?
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N i|^Q{3?o#
% and angular frequency M, evaluated at positions (R,THETA) on the /L^g. ~
% unit circle. N is a vector of positive integers (including 0), and FHOw ]"#
% M is a vector with the same number of elements as N. Each element t$!zgUJ
% k of M must be a positive integer, with possible values M(k) = -N(k) ]pR?/3
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, ,{0Y:/T'
% and THETA is a vector of angles. R and THETA must have the same Z Ts*Y,
% length. The output Z is a matrix with one column for every (N,M) R0-0
% pair, and one row for every (R,THETA) pair. DhM=q
% 40kAGs>_
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike z0 9Gp}^;
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), v+nXKNL
% with delta(m,0) the Kronecker delta, is chosen so that the integral k+h}HCzE
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, :'p)xw4K|
% and theta=0 to theta=2*pi) is unity. For the non-normalized M/<ypJ
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 3:WqUb\QK
% 8oX1 F(R
% The Zernike functions are an orthogonal basis on the unit circle. _EMI%P&s
% They are used in disciplines such as astronomy, optics, and layxtECP(
% optometry to describe functions on a circular domain. ?Q]&;5o
% mo| D
% The following table lists the first 15 Zernike functions. e gq,)6>
% 6F(z6_<
% n m Zernike function Normalization &nmBsl3Q.
% -------------------------------------------------- Xw4Eti._D
% 0 0 1 1 D:@W*,
% 1 1 r * cos(theta) 2 agUdI_'~@9
% 1 -1 r * sin(theta) 2 [\ao#f0WR
% 2 -2 r^2 * cos(2*theta) sqrt(6) {"wF;*U.V
% 2 0 (2*r^2 - 1) sqrt(3) 5eTA]
% 2 2 r^2 * sin(2*theta) sqrt(6) tyR?A>F4
% 3 -3 r^3 * cos(3*theta) sqrt(8) AIHH@z
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) -N' (2'
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) KTm^}')C8
% 3 3 r^3 * sin(3*theta) sqrt(8) M}|(:o3Yo
% 4 -4 r^4 * cos(4*theta) sqrt(10) #z(:n5$F
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 1TZ[i
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) m^ xTV-#l@
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) gNZwD6GMe?
% 4 4 r^4 * sin(4*theta) sqrt(10) nd'D0<%
% -------------------------------------------------- M1Q&)am
% ]ae(t`\l^
% Example 1: 1`8s
"T
% d4b!
r
% % Display the Zernike function Z(n=5,m=1) Km5_P##
% x = -1:0.01:1; [(n5-#1S
% [X,Y] = meshgrid(x,x); 1clzDwW
% [theta,r] = cart2pol(X,Y); (>}1t!1
% idx = r<=1; `:C1Wo^<
% z = nan(size(X)); j3sz"(
% z(idx) = zernfun(5,1,r(idx),theta(idx)); \m7\}Nbz0/
% figure H1-DK+Q:
% pcolor(x,x,z), shading interp #*A&jo'E
% axis square, colorbar WM+8<|)n
% title('Zernike function Z_5^1(r,\theta)') ,l&?%H9q
% 1|sem(t
% Example 2: )?72 +X
% ci;2XLAM
% % Display the first 10 Zernike functions NO*,}aeG
% x = -1:0.01:1; qJ;~ANwt
% [X,Y] = meshgrid(x,x); J`5VE$2M
% [theta,r] = cart2pol(X,Y); *8)?ZZMM
% idx = r<=1; ?i<l7
% z = nan(size(X)); oRbWqN`F.
% n = [0 1 1 2 2 2 3 3 3 3]; nFni1cCD
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; hrniZ^
% Nplot = [4 10 12 16 18 20 22 24 26 28]; Be{@ L
% y = zernfun(n,m,r(idx),theta(idx)); ?^|[Yzk
% figure('Units','normalized') hE:~~ox
% for k = 1:10 M{L<aYe
% z(idx) = y(:,k); [],[LkS
% subplot(4,7,Nplot(k)) 0Jv6?7]LKa
% pcolor(x,x,z), shading interp dg|+?M^9`
% set(gca,'XTick',[],'YTick',[]) 5j`sJvq
% axis square F>.y>h
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ?h `,@~6u
% end 'wPX.h?
% s$(%]~P
% See also ZERNPOL, ZERNFUN2. F.TIdkvp
3Y P! B=
% Paul Fricker 11/13/2006 91z=ou
,.Ofv):=
xiW}P% bf
% Check and prepare the inputs: z"6o|]9I
% ----------------------------- lZwjrU| _
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Hl$qmq
error('zernfun:NMvectors','N and M must be vectors.') 54z`KX
73
end S[y'{;
Dml?.-Uv<
if length(n)~=length(m) ^fKKsfIf
error('zernfun:NMlength','N and M must be the same length.') Ie!KIU
end moM'RO,M
+Vg(2Xt
n = n(:); 7NEOaX(J9
m = m(:); yMW3mx301j
if any(mod(n-m,2)) A#$l;M.3R
error('zernfun:NMmultiplesof2', ... QY+{ OCB
'All N and M must differ by multiples of 2 (including 0).')
h6~xz0,u
end oxFd@WV5
jYU0zGpj
if any(m>n) eZ)
|m
error('zernfun:MlessthanN', ... LEKE+775
'Each M must be less than or equal to its corresponding N.') wPghgjF{
end em'3 8L|(
Gad&3M0r
if any( r>1 | r<0 ) W[QgddR
error('zernfun:Rlessthan1','All R must be between 0 and 1.') R?:K\
end :V8oWMY
}!g$k
$y
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) LZ#A`&qUd
error('zernfun:RTHvector','R and THETA must be vectors.') 2s2KI=6
end r(]Gd`]
;Qd'G7+
r = r(:); }0R"ZPU1Rw
theta = theta(:); ,9|7{j|u
length_r = length(r); j; /@A
lZl
if length_r~=length(theta) QdZHIgh`i
error('zernfun:RTHlength', ... 2aivc,m{r
'The number of R- and THETA-values must be equal.') [9EL[}
end 7OZ0;fK
7T X$
% Check normalization: #\~m}O,
% -------------------- ;|rFP
if nargin==5 && ischar(nflag) Uwiy@T Z
isnorm = strcmpi(nflag,'norm'); %Y`)ZKh
if ~isnorm ,vi6<C\
error('zernfun:normalization','Unrecognized normalization flag.') ;rJ#>7K
end Pw|/PfG
else '&/Y}]
isnorm = false; =w7k@[Bq
end {KqW<X6Hp
5k_%%><: q
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #I yM`YB0
% Compute the Zernike Polynomials 1g!%ej
jd
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% F8m@mh*8>
c1%ki%J#
% Determine the required powers of r: "(F:'J} X
% ----------------------------------- USf;}F:-C
m_abs = abs(m); 7Il
/+l(
rpowers = []; (>D{"}
for j = 1:length(n) aj+I+r"~
rpowers = [rpowers m_abs(j):2:n(j)]; My9fbT
end ;hDIoSz
rpowers = unique(rpowers); D>#Jh>4
b#e|#!Je
% Pre-compute the values of r raised to the required powers, Y%rC\Ij/i
% and compile them in a matrix: ]=^NTm,
% ----------------------------- )N
^g0L
if rpowers(1)==0 AQBr{^inH|
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); p t{/|P
rpowern = cat(2,rpowern{:}); ``?Z97rH
rpowern = [ones(length_r,1) rpowern]; d~d~Cd` V
else @n=FSn6c
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); VN4H+9E
rpowern = cat(2,rpowern{:}); ( (mNB]sy
end YKj PE
oX]c$<w5
% Compute the values of the polynomials: [k
+fkr]
% -------------------------------------- n;dp%SD
y = zeros(length_r,length(n)); BI)$aR
for j = 1:length(n) gJn_8\,C>Q
s = 0:(n(j)-m_abs(j))/2; i*vf(0G
pows = n(j):-2:m_abs(j); v/Ei0}e6~
for k = length(s):-1:1 tdRnRoB
p = (1-2*mod(s(k),2))* ... nIP*yb}5
prod(2:(n(j)-s(k)))/ ... _EZrZB
prod(2:s(k))/ ... eYjr/`>O
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... _q\w9gN
prod(2:((n(j)+m_abs(j))/2-s(k))); {wfe!f
idx = (pows(k)==rpowers); r`'n3#O*
y(:,j) = y(:,j) + p*rpowern(:,idx); i%_nH"h
end 4THGHS^
mm<rdo(`
if isnorm ;,]Wtmu)7
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); PT`gAUCw
end RIl+QA
end hI1}^;
% END: Compute the Zernike Polynomials of:xj$dQ_
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% {#1}YGpiVM
j1,ir
% Compute the Zernike functions: <yrl_vl{
% ------------------------------ PM%Gsy]q
idx_pos = m>0; >'lte&
idx_neg = m<0; !n/"39KT
X}3o
z = y; DbkKmv&
if any(idx_pos) -d
6B;I<'
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); +lqX;*a=N
end _gF )aE
if any(idx_neg) 13P8Zmco
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); F\;G'dm
end 7fJWb)z!k
toCT5E_0=
% EOF zernfun