切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11724阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 s8}@=]aA  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! 9uGrk^<t  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 6b:tyQ  
    function z = zernfun(n,m,r,theta,nflag) v-PXZ'7~  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. R;j!}D!4  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N kOed ]>H  
    %   and angular frequency M, evaluated at positions (R,THETA) on the *FMMjz  
    %   unit circle.  N is a vector of positive integers (including 0), and }b-g*dn]5  
    %   M is a vector with the same number of elements as N.  Each element (_"*NY0  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) og kD^   
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, N|6M P e  
    %   and THETA is a vector of angles.  R and THETA must have the same >M`CVUf  
    %   length.  The output Z is a matrix with one column for every (N,M) *" {lMZ +  
    %   pair, and one row for every (R,THETA) pair. `I3r3WyA  
    % W' s  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike !Ze5)g%H  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), GgB,tam{p  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral HbxL:~:}J  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, hK_LEwd;  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized K|Di1)7=/  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. *#C+iAF|)'  
    % ~FN9 [aJF+  
    %   The Zernike functions are an orthogonal basis on the unit circle. {o>j6RS\  
    %   They are used in disciplines such as astronomy, optics, and yI"6Da6|y  
    %   optometry to describe functions on a circular domain. wf:OK[r9  
    % zlEX+=3  
    %   The following table lists the first 15 Zernike functions. 1 =M ?GDc  
    % SF>c\eTtx  
    %       n    m    Zernike function           Normalization pNKhc#-w  
    %       -------------------------------------------------- < Pky9o;  
    %       0    0    1                                 1 f>N!wgo[  
    %       1    1    r * cos(theta)                    2 3yB!M  
    %       1   -1    r * sin(theta)                    2 `nZ)>  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) d%o&+l#  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 5.MGaU^Z$  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) zc;|fHW~O  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) )s%[T-uKi  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) TL}++e 7+  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) iT%} $Lu~  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) p{j.KI s7  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) c1E'$- K@  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) :R~MO&  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) ~x ]jB  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) bp~g;h*E2  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 'LE =6{#  
    %       -------------------------------------------------- `pGa~!vl  
    % /N&CaH\;^$  
    %   Example 1: /\4'ddGU  
    % z}MP)|aH:  
    %       % Display the Zernike function Z(n=5,m=1) ;e1ku|>$  
    %       x = -1:0.01:1; $d_|NssvU  
    %       [X,Y] = meshgrid(x,x); 5) pj]S!]-  
    %       [theta,r] = cart2pol(X,Y);  O4og?h>  
    %       idx = r<=1; Vz=PiMO  
    %       z = nan(size(X)); !Rhl f.x  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); XBp?w  
    %       figure ]%IT|/;9Y  
    %       pcolor(x,x,z), shading interp +,#$:fs u  
    %       axis square, colorbar W7 #9jo  
    %       title('Zernike function Z_5^1(r,\theta)') '*"vkgN  
    % Ljp%CI[i  
    %   Example 2: V7Ek-2M  
    % USM4r!x  
    %       % Display the first 10 Zernike functions $w);5o  
    %       x = -1:0.01:1; cT!\{ ~  
    %       [X,Y] = meshgrid(x,x); F!]lU`z)=  
    %       [theta,r] = cart2pol(X,Y); Q+W1lv8R  
    %       idx = r<=1; q)^Jj ?W  
    %       z = nan(size(X)); PqiB\~o@Z  
    %       n = [0  1  1  2  2  2  3  3  3  3]; 9Ru8~R/\  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; mjKS{  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; r}mbXvn  
    %       y = zernfun(n,m,r(idx),theta(idx)); J /f  
    %       figure('Units','normalized') .ZJRO>S  
    %       for k = 1:10 }wHW7SJ  
    %           z(idx) = y(:,k); t3&LO~Ye  
    %           subplot(4,7,Nplot(k)) tX> G,hw  
    %           pcolor(x,x,z), shading interp IHcD*zQ  
    %           set(gca,'XTick',[],'YTick',[]) &3TEfvz  
    %           axis square hKT  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) !g(KK|`,m  
    %       end A*}.EClH  
    % l%1!a  
    %   See also ZERNPOL, ZERNFUN2. '8{N e!y  
    2 -C!jAfd  
    %   Paul Fricker 11/13/2006 BA%pY|"Q  
    (K)]qNH  
    (4dhuT  
    % Check and prepare the inputs: }Du}c3  
    % ----------------------------- >U]C/P[+  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) dAkgR~  
        error('zernfun:NMvectors','N and M must be vectors.') >76\nGO  
    end Q=/</|  
    zhpt%7So  
    if length(n)~=length(m) o!{w"K  
        error('zernfun:NMlength','N and M must be the same length.') #w\~&0  
    end ^7 &5 z&o  
    t ]_VG  
    n = n(:); 32/MkuY^u  
    m = m(:); 2E)wpgUc?e  
    if any(mod(n-m,2)) JAQb{KefdO  
        error('zernfun:NMmultiplesof2', ... S/ODq L|  
              'All N and M must differ by multiples of 2 (including 0).') %Ntcvp)  
    end O"c;|zCc>  
    5`gQ~   
    if any(m>n) .xH5fMj,"  
        error('zernfun:MlessthanN', ... /q5v"iX]T  
              'Each M must be less than or equal to its corresponding N.') RkBb$q9F]  
    end JQ6zVS2SSS  
    9&` 2V  
    if any( r>1 | r<0 ) O0pDd4)"  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') NR5oIKP?  
    end C86J IC"  
    i5K[>5  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) /eOzXCSws  
        error('zernfun:RTHvector','R and THETA must be vectors.') ]2\VweV  
    end ] 0B2# d  
    Ft;^g3N  
    r = r(:); w &(|e <  
    theta = theta(:); INi]R^-  
    length_r = length(r); t_qNq{  
    if length_r~=length(theta) 0^RXGN  
        error('zernfun:RTHlength', ... {O`w,dMOI  
              'The number of R- and THETA-values must be equal.') i*NH'o/  
    end HY%i`]4X  
    Y#lk6  
    % Check normalization: ZfgJ.<<  
    % -------------------- s#tZg  
    if nargin==5 && ischar(nflag) !=:$lzS^  
        isnorm = strcmpi(nflag,'norm'); TG+VEL |T  
        if ~isnorm k+8q{5>A<  
            error('zernfun:normalization','Unrecognized normalization flag.') yX0dbW~@y  
        end < VSA  
    else nEkR1^30  
        isnorm = false; zOa_X~!@  
    end :"I E  
    yRfSJbzaf\  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% *UmI]E{g3(  
    % Compute the Zernike Polynomials }t%!9hr5D  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% }XSfst5-H  
    kT!9`S\  
    % Determine the required powers of r: _oUHJ~&,  
    % ----------------------------------- I{*<4a7q  
    m_abs = abs(m); ZObhF#Y9  
    rpowers = []; nC}6B).el  
    for j = 1:length(n) Tny%7xSx1  
        rpowers = [rpowers m_abs(j):2:n(j)]; naw0$kXTA  
    end GrAujc5|  
    rpowers = unique(rpowers); frT]5?{  
    0#S W!b|%  
    % Pre-compute the values of r raised to the required powers, T<w5vqFDu  
    % and compile them in a matrix: y1bbILWej  
    % ----------------------------- ],J EBt  
    if rpowers(1)==0 |Clut~G  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); yA.4G_|I  
        rpowern = cat(2,rpowern{:}); 9=V:&.L  
        rpowern = [ones(length_r,1) rpowern]; D0#x Lh  
    else X~<("  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); /Ya_>+oo  
        rpowern = cat(2,rpowern{:}); [h34d5'w  
    end (Xq)py9  
    vL\&6n~M>  
    % Compute the values of the polynomials: Z<SLc,]^  
    % -------------------------------------- f/Hm{<BY  
    y = zeros(length_r,length(n)); sPMa]F(  
    for j = 1:length(n) ^*S)t. "  
        s = 0:(n(j)-m_abs(j))/2; /`6ZAo m9  
        pows = n(j):-2:m_abs(j); V %YiAr>  
        for k = length(s):-1:1 mqAWL:VvQ7  
            p = (1-2*mod(s(k),2))* ... `^FGwx@  
                       prod(2:(n(j)-s(k)))/              ... RQ'H$r.7g  
                       prod(2:s(k))/                     ... jlBanGs?  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... OVko+X`  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); Mc%Nf$XQ  
            idx = (pows(k)==rpowers); xg NJeQ  
            y(:,j) = y(:,j) + p*rpowern(:,idx); L?Qg#YSd ~  
        end ]) rrG/3  
         ;r>snJ=M  
        if isnorm 5KDGSo  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); HaYE9/xS  
        end "(3BvMA&!9  
    end I*IhwJFl/  
    % END: Compute the Zernike Polynomials 1}:bqI.<W  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ,Td!|~I|j6  
    G-He" 4& $  
    % Compute the Zernike functions: %T)oCjM[\  
    % ------------------------------ ?}RSwl  
    idx_pos = m>0; ,>:;#2+og  
    idx_neg = m<0; zSSB>D  
    I-WhH>9  
    z = y; jGEt+\"/QJ  
    if any(idx_pos) ^H2-RBE#  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); g|<]B$yN#  
    end )YX 'N<[  
    if any(idx_neg) ;3kj2}  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); /u0' 6V  
    end tvu!< dxZ  
    8}FzZ?DRy  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) <IC~ GqXv  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. _`I "0.B]  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated W ]Nv33i [  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive /,X[k !  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, E[*Fz1>  
    %   and THETA is a vector of angles.  R and THETA must have the same +Wx{:  
    %   length.  The output Z is a matrix with one column for every P-value, ^ mS o1?<  
    %   and one row for every (R,THETA) pair. KM !k$;my  
    % 2con[!U  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike d ,Y#H0`  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) o.'g]Q<}UB  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) GD:4"$)[o  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 kf;/c}}  
    %   for all p. sL@U  
    % h~(D@/tB  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 ?@6/E<-Z$  
    %   Zernike functions (order N<=7).  In some disciplines it is cP}KU5j  
    %   traditional to label the first 36 functions using a single mode vk?skN@  
    %   number P instead of separate numbers for the order N and azimuthal 4lM8\Lr  
    %   frequency M. j8n4fv-)f  
    % gCN$}  
    %   Example: Vm df8[5  
    % T<L^N+<,{N  
    %       % Display the first 16 Zernike functions ylB7*>[  
    %       x = -1:0.01:1; sk 2-5S  
    %       [X,Y] = meshgrid(x,x); %<\6TZr  
    %       [theta,r] = cart2pol(X,Y); c1_5, 1U'  
    %       idx = r<=1; ~O]]N;>72"  
    %       p = 0:15; 1 I*7SkgKv  
    %       z = nan(size(X)); ! /NG.Wf  
    %       y = zernfun2(p,r(idx),theta(idx)); Y)$ ;Ax-D  
    %       figure('Units','normalized') *$"gaXI  
    %       for k = 1:length(p) q-rB2  
    %           z(idx) = y(:,k);  :Mcu  
    %           subplot(4,4,k) A^RR@D  
    %           pcolor(x,x,z), shading interp \2(SB  
    %           set(gca,'XTick',[],'YTick',[]) t(+) #  
    %           axis square sj8~?O  
    %           title(['Z_{' num2str(p(k)) '}']) LS5vW|]w  
    %       end p?2Y }9  
    % ?0 m\(#  
    %   See also ZERNPOL, ZERNFUN. (^5 7UmFv]  
    fsEzpUY:{W  
    %   Paul Fricker 11/13/2006 `$~Rxz Z g  
    Kv rX{F=  
    3 AHY|  
    % Check and prepare the inputs: je6CDFqw  
    % ----------------------------- +MB!B9M@  
    if min(size(p))~=1 5|I[>Su  
        error('zernfun2:Pvector','Input P must be vector.') \(PohwWWo  
    end NziZTU}  
    LT~YFS  
    if any(p)>35 Qf| U0  
        error('zernfun2:P36', ... H%1$,]F  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... v$)q($}p  
               '(P = 0 to 35).']) 7nVRn9Hn  
    end O$g_@B0E1  
    sjM;s{gy  
    % Get the order and frequency corresonding to the function number: w]_zp?\^ }  
    % ---------------------------------------------------------------- -@F fU2  
    p = p(:); Y9=(zOqv  
    n = ceil((-3+sqrt(9+8*p))/2); Y];Ycj;  
    m = 2*p - n.*(n+2); HJC(\\~  
    \NG C$p n  
    % Pass the inputs to the function ZERNFUN: ph}j[Co  
    % ---------------------------------------- ;ml 3  
    switch nargin CAU0)=M  
        case 3 `' 153M]  
            z = zernfun(n,m,r,theta); {i*2R^5  
        case 4 Otz E:qe  
            z = zernfun(n,m,r,theta,nflag);  x-'~Bu  
        otherwise |T4kqW{  
            error('zernfun2:nargin','Incorrect number of inputs.') $LHa?3  
    end v`c$!L5  
    &(a(W22O  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) m7%C#+67  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. q+a.G2S  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of Vh<A2u3&  
    %   order N and frequency M, evaluated at R.  N is a vector of >~\w+^2f8  
    %   positive integers (including 0), and M is a vector with the *zWWmxcJa  
    %   same number of elements as N.  Each element k of M must be a S:8OQI  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) 6S.~s6o,  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is ~/IexQB&  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix Q0{z).&\(e  
    %   with one column for every (N,M) pair, and one row for every #)`A7 $/,  
    %   element in R. =/+#PVO  
    % >?YNW   
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- 3,);0@I  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is Ze!92g  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to BwJuYH7QJ$  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 y_}SK6{  
    %   for all [n,m]. M8@_Uj  
    % 'FzN[% K"  
    %   The radial Zernike polynomials are the radial portion of the R: aYL~  
    %   Zernike functions, which are an orthogonal basis on the unit #vf_D?^  
    %   circle.  The series representation of the radial Zernike i_F$&?)  
    %   polynomials is l9/:FiJ_  
    % 1Qh`6Ya f  
    %          (n-m)/2 K` nJVc  
    %            __ ~ E=\t9r  
    %    m      \       s                                          n-2s c[0oh.  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r ); 6,H.v  
    %    n      s=0 :+ ,st&(E  
    % '5};M)w  
    %   The following table shows the first 12 polynomials. >WM3|  
    % `ycU-m==  
    %       n    m    Zernike polynomial    Normalization (Q-I8Y8l8  
    %       --------------------------------------------- X^< >6|)  
    %       0    0    1                        sqrt(2) I}v]Zm9  
    %       1    1    r                           2 hteOh#0{   
    %       2    0    2*r^2 - 1                sqrt(6) LxT rG)4  
    %       2    2    r^2                      sqrt(6) (G4'(6  
    %       3    1    3*r^3 - 2*r              sqrt(8) ?An,-N-ezf  
    %       3    3    r^3                      sqrt(8) o&^NwgRCF  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) 7CrpUh  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) RI@*O6\/I  
    %       4    4    r^4                      sqrt(10) x.EgTvA&d  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) '1]7zWbW  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) 7nz!0I^   
    %       5    5    r^5                      sqrt(12) W3LP ~  
    %       --------------------------------------------- bZ# X 9fT  
    % >IR$e=5$  
    %   Example: B4O6> '  
    % Q @2(aR  
    %       % Display three example Zernike radial polynomials Y&,rTa  
    %       r = 0:0.01:1; 3#Y3Dz`  
    %       n = [3 2 5]; y3yvZD  
    %       m = [1 2 1]; lEfBe)7+  
    %       z = zernpol(n,m,r); (G8  
    %       figure +AK:(r  
    %       plot(r,z) :pd&dg!5  
    %       grid on 7C5pAb:  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') #'>?:k  
    % cw+g z!!  
    %   See also ZERNFUN, ZERNFUN2. a{_ KSg  
    e~Hr(O+;e6  
    % A note on the algorithm. G+yL;G/  
    % ------------------------ + v[O  
    % The radial Zernike polynomials are computed using the series )C}KR`"  
    % representation shown in the Help section above. For many special pGGV\zD^  
    % functions, direct evaluation using the series representation can Dq`~XS*  
    % produce poor numerical results (floating point errors), because j@ C0af  
    % the summation often involves computing small differences between u)7 ]1e{  
    % large successive terms in the series. (In such cases, the functions SOH%Q_  
    % are often evaluated using alternative methods such as recurrence l.7d$8'\  
    % relations: see the Legendre functions, for example). For the Zernike pb$fb  
    % polynomials, however, this problem does not arise, because the n{=7 yK  
    % polynomials are evaluated over the finite domain r = (0,1), and ih!~G5Xi9i  
    % because the coefficients for a given polynomial are generally all )nnCCR S6  
    % of similar magnitude. S'?fJ.  
    % C<t RU5|  
    % ZERNPOL has been written using a vectorized implementation: multiple +=, u jO:  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] jvO3_Zt9  
    % values can be passed as inputs) for a vector of points R.  To achieve cDO:'-  
    % this vectorization most efficiently, the algorithm in ZERNPOL ~@YQ,\Y  
    % involves pre-determining all the powers p of R that are required to @,YlmX}  
    % compute the outputs, and then compiling the {R^p} into a single JmjxGcG  
    % matrix.  This avoids any redundant computation of the R^p, and u0 BMyH  
    % minimizes the sizes of certain intermediate variables. .\)k+ R  
    % !2tw,QM  
    %   Paul Fricker 11/13/2006 3`rIV*&_{  
    Q)+Y}  
    _vIO !*h0  
    % Check and prepare the inputs: ;[cai MA-  
    % ----------------------------- jI Z+d;1  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) }Eb]9c\  
        error('zernpol:NMvectors','N and M must be vectors.') b=_{/F*b?  
    end :;_#5  
    'g]=.K+@}  
    if length(n)~=length(m) #Jv43L H  
        error('zernpol:NMlength','N and M must be the same length.') 'f6PjI  
    end I <xy?{s  
    _iq2([BpL  
    n = n(:); lJ'trYaq7  
    m = m(:); Ft$^x-d  
    length_n = length(n); x?rbgsB5&  
    &PSTwZd  
    if any(mod(n-m,2)) 1XGG.+D  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') Uf^RLdoDn  
    end Lxz  
    wH#-mu#Yl<  
    if any(m<0) " SLvUzO>q  
        error('zernpol:Mpositive','All M must be positive.') nIR*_<ow  
    end eB7>t@ED  
    k}-]W@UCa?  
    if any(m>n) UE{,.s  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') &!6DC5  
    end lc" qqt  
    ru DP529;  
    if any( r>1 | r<0 ) O!yakU+  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') y3IA '  
    end .P8-~?&M  
    =tNzGaWJ  
    if ~any(size(r)==1) joY1(Y  
        error('zernpol:Rvector','R must be a vector.') K Ka c6Zj  
    end E;xMPK$  
    n+X1AOE[L  
    r = r(:); R|$[U  
    length_r = length(r); [h^f%  
    zdqnL^wb  
    if nargin==4 ;C+cE#   
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); =p5?+3" @  
        if ~isnorm {vLTeIxf.G  
            error('zernpol:normalization','Unrecognized normalization flag.') 6TY){P w  
        end a6k(9ZF  
    else 6GY32\Ac  
        isnorm = false; )>?! xx_`  
    end Mq76]I%  
    @uoT{E[  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% aN:HG)$@  
    % Compute the Zernike Polynomials G&.d)NfE  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% R04.K !  
    'N*!>mZ<  
    % Determine the required powers of r: kpl~/i`4  
    % ----------------------------------- }Z"28?  
    rpowers = []; <Kh?Ad>N  
    for j = 1:length(n) 6aRGG+H  
        rpowers = [rpowers m(j):2:n(j)]; o*-h%Z.  
    end &|s+KP|d  
    rpowers = unique(rpowers); [ k!-;mi   
    dFx2>6AZt  
    % Pre-compute the values of r raised to the required powers, T=^jCH &  
    % and compile them in a matrix: L7s>su|c(  
    % ----------------------------- KlY,NSlQ  
    if rpowers(1)==0 2]2{&bu  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ^GE^Q\&D&  
        rpowern = cat(2,rpowern{:}); :jBZK=3F>  
        rpowern = [ones(length_r,1) rpowern]; ]bs+:  
    else } /[_  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); j.<:00<  
        rpowern = cat(2,rpowern{:}); +{5JDyh0  
    end '`9%'f)  
    1NuR/DO  
    % Compute the values of the polynomials: @bc[ eas  
    % -------------------------------------- Sjw2 j#Q  
    z = zeros(length_r,length_n); N[0 xqQ  
    for j = 1:length_n S&5Q~}{,  
        s = 0:(n(j)-m(j))/2;  AQB1gzE  
        pows = n(j):-2:m(j); _{lx*dq  
        for k = length(s):-1:1 Jq=00fcT+  
            p = (1-2*mod(s(k),2))* ... zv$Gma_  
                       prod(2:(n(j)-s(k)))/          ... gCg4;b6g  
                       prod(2:s(k))/                 ... ;RNM   
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... /_ $~rW  
                       prod(2:((n(j)+m(j))/2-s(k))); wy,Jw3  
            idx = (pows(k)==rpowers); f<g>dQlE  
            z(:,j) = z(:,j) + p*rpowern(:,idx); ?H y%ULk  
        end AF6d#Klog  
         a];BW)  
        if isnorm <P|`7wfxE  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); - P\S>G.  
        end [u/zrpTk  
    end 7k'=Fm6za  
    O3_D~O ."  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    857
    光币
    847
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  i">z8?qF  
    }l]3m=)  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 \4\\575zp'  
    RKo P6LGw  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)