非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 )-9G*3
function z = zernfun(n,m,r,theta,nflag) VX<ZB +R
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. "9-duDg
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N +OF(CcA^
% and angular frequency M, evaluated at positions (R,THETA) on the Es kh=xA {
% unit circle. N is a vector of positive integers (including 0), and %T UljX K}
% M is a vector with the same number of elements as N. Each element FG~p_[K
% k of M must be a positive integer, with possible values M(k) = -N(k) m%$z&<!
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, ;C%D+"l1g
% and THETA is a vector of angles. R and THETA must have the same R.R(|!w>
% length. The output Z is a matrix with one column for every (N,M) $.}fL;BzVz
% pair, and one row for every (R,THETA) pair. <v"C`cga
% ~u&3Ki*x
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike w.cQ|_
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 'f<0&Ci8
% with delta(m,0) the Kronecker delta, is chosen so that the integral W Io^=?%
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, L;xc,"\3
% and theta=0 to theta=2*pi) is unity. For the non-normalized QJo)
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. &G@*/2A
% ^6 +P&MxM
% The Zernike functions are an orthogonal basis on the unit circle. jz|zq\Eek
% They are used in disciplines such as astronomy, optics, and 9o P8| <+
% optometry to describe functions on a circular domain. vZC2F
% A==P?,RG
% The following table lists the first 15 Zernike functions. +V&b<y;?>
% v'.?:S&m
% n m Zernike function Normalization GD|uU
% -------------------------------------------------- A0M)*9 f
% 0 0 1 1 3skq%;%Wsk
% 1 1 r * cos(theta) 2 (^eSm]<
% 1 -1 r * sin(theta) 2 {t[j>_MYw
% 2 -2 r^2 * cos(2*theta) sqrt(6) O!sZMGF$p
% 2 0 (2*r^2 - 1) sqrt(3) Rcf_31 L
% 2 2 r^2 * sin(2*theta) sqrt(6) fk P@e3
% 3 -3 r^3 * cos(3*theta) sqrt(8) :9c
QK]O6
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) ' R~x.NM
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) >E?626*
% 3 3 r^3 * sin(3*theta) sqrt(8) C$)#s{*
% 4 -4 r^4 * cos(4*theta) sqrt(10) qSMSTmnQ
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) $dci?7q
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) IQdiVj
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) L1.<LB^4'
% 4 4 r^4 * sin(4*theta) sqrt(10) ;,Sl+)@h
% -------------------------------------------------- v%V$@MF
% g`gH]W
FcG
% Example 1: 8:-[wl/@
% Yv9(8
% % Display the Zernike function Z(n=5,m=1) bR49(K$~
% x = -1:0.01:1; %|o4 U0c
% [X,Y] = meshgrid(x,x); 6ndt1W
z
% [theta,r] = cart2pol(X,Y); eUVE8pZl
% idx = r<=1; +|Xx=1_?BK
% z = nan(size(X)); V?HC\F-
% z(idx) = zernfun(5,1,r(idx),theta(idx)); _i:yI-jA
% figure 3Zdkf]Gh
% pcolor(x,x,z), shading interp j*g5f
% axis square, colorbar SwG:?T!"}
% title('Zernike function Z_5^1(r,\theta)') HlPf
% s{KwO+ UW
% Example 2: v%=G~kF}[
% 0NZg[ >H
% % Display the first 10 Zernike functions \Q?r+VZ
% x = -1:0.01:1; ?^2(|t9KU
% [X,Y] = meshgrid(x,x); +l2{EiQw
% [theta,r] = cart2pol(X,Y); (m=-oQ&Ro
% idx = r<=1; Gu|}ax"
% z = nan(size(X)); yu<sd}@
% n = [0 1 1 2 2 2 3 3 3 3]; ,K6s'3O(LW
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; _*9eAeJ
% Nplot = [4 10 12 16 18 20 22 24 26 28]; A/W0O;*q
% y = zernfun(n,m,r(idx),theta(idx)); mE%H5&VSI
% figure('Units','normalized') {*`qL0u]^
% for k = 1:10 %gJf&A
% z(idx) = y(:,k); zy8W8h(?
% subplot(4,7,Nplot(k)) ^4O1:_|G
% pcolor(x,x,z), shading interp L/"XIMI*Xg
% set(gca,'XTick',[],'YTick',[]) y0M^oLx
% axis square d5\w'@Di
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) K]oFV
% end @.a[2,o_
% O]~ cv^
% See also ZERNPOL, ZERNFUN2. w=s:eM@
{XC# -3O
% Paul Fricker 11/13/2006 60*2k
n87B[R
Nqk*3Q"f
% Check and prepare the inputs: cc*A/lD
% ----------------------------- 4H]Go~<
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) VjBV2 x
error('zernfun:NMvectors','N and M must be vectors.') >jME
== U0
end OSK3X Qc
s|dcO
if length(n)~=length(m) >> Z.]
error('zernfun:NMlength','N and M must be the same length.') LS+ _y<v=
end F>%~<or
.v9 #|d d+
n = n(:); G}&B{Ir
m = m(:); 4)!aYvaER
if any(mod(n-m,2)) 0g,;Yzm
error('zernfun:NMmultiplesof2', ... [DC8X P5<
'All N and M must differ by multiples of 2 (including 0).') HbX>::J8
end yJ c#y
t Q385en
if any(m>n) 1\=)b< y
error('zernfun:MlessthanN', ... <[@AMd S
'Each M must be less than or equal to its corresponding N.') 3J32W@}.K
end IKMkpX!]
7](,/MeGG
if any( r>1 | r<0 ) 7;jwKA;k
error('zernfun:Rlessthan1','All R must be between 0 and 1.') *8M0h9S$
end `|Pfa
T
]hVO'z
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) g'ha7~w(p
error('zernfun:RTHvector','R and THETA must be vectors.') T@GT=1E)
end c3W9"
[fiB!G]?
r = r(:);
V##=-KZ
theta = theta(:); pwtB{6)VH{
length_r = length(r); Aw~
=U!
if length_r~=length(theta) o|YY,G=C
error('zernfun:RTHlength', ... ig5
d-A
'The number of R- and THETA-values must be equal.') c>#T\AEkF
end ?`bi8 Ck
~[l6;bn
% Check normalization: zePVB-@u
% -------------------- HT0VdvLw
if nargin==5 && ischar(nflag) 4$#nciAe
isnorm = strcmpi(nflag,'norm'); S.pL^Ru
if ~isnorm +!h~T5Ck
error('zernfun:normalization','Unrecognized normalization flag.') S
{oW
end XP'<\
else r"sK@
isnorm = false; ?f f !(U
end NF8'O
M3P\1
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% r6S-G{o
% Compute the Zernike Polynomials }K':tX?
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ]CHO5'%,$
ySAkj-< /P
% Determine the required powers of r: (k/[/`3ST
% ----------------------------------- N3O3V5':!
m_abs = abs(m); UKX9C"-5v
rpowers = []; d5Hp&tm
for j = 1:length(n) sA$x2[*O
rpowers = [rpowers m_abs(j):2:n(j)]; TgMa!Vz
end HHVCw7r0
rpowers = unique(rpowers); :0@R(ct;>
ko<u0SjF)u
% Pre-compute the values of r raised to the required powers, KmS$CFsGL
% and compile them in a matrix: ^/@Z4(E
% ----------------------------- j3>0oe!
if rpowers(1)==0 .TZ0FxW
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); &O8vI,M
rpowern = cat(2,rpowern{:}); )aSj!X'`;
rpowern = [ones(length_r,1) rpowern]; >f+qImH
else dpG l
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); &!i'Q;q
rpowern = cat(2,rpowern{:}); 1g_p`(
end (5CdA1|
:&Sv jJR
% Compute the values of the polynomials: h0**[LDH
% -------------------------------------- Ao?y2 [sE
y = zeros(length_r,length(n)); QAGR\~
for j = 1:length(n) /B"FGa04p(
s = 0:(n(j)-m_abs(j))/2; @}9*rWJIE
pows = n(j):-2:m_abs(j); c{.y9P6
for k = length(s):-1:1 cft/;Au{
p = (1-2*mod(s(k),2))* ... D+4oV6}~
prod(2:(n(j)-s(k)))/ ... P+ejyl,
prod(2:s(k))/ ... .-ihxEbzr
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... M2Q*#U>6r
prod(2:((n(j)+m_abs(j))/2-s(k))); CE,0@%6F*
idx = (pows(k)==rpowers); CgT5sk}
y(:,j) = y(:,j) + p*rpowern(:,idx); LV}Z[\?
end i ZU1w7Z
%u=b_4K"j
if isnorm T-MC|>pv
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); aI. 5w9
end zX]4DLl,
end gvzBV
+3'
% END: Compute the Zernike Polynomials oS>VN<
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ~ eNKu
d.e_\]o<@
% Compute the Zernike functions: y26?>.!
% ------------------------------ ~K$dQb])
idx_pos = m>0; ]g] ]\hS
idx_neg = m<0; \9t/*%:
k'6x_
G
z = y; hqDnmzG
if any(idx_pos) {!0f.nv
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); i<\WRzVT
end $I0&I[_LzK
if any(idx_neg) :,Zs{\oI3
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); z:1"d
R
end (e"\%p`
)L+>^cJI<
% EOF zernfun