切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11405阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦  >(ip-R  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! wiZ  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 }rfikm  
    function z = zernfun(n,m,r,theta,nflag) Ge-Bk)6  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. px K&aY8  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N sV a0eGc  
    %   and angular frequency M, evaluated at positions (R,THETA) on the X'PZCg W  
    %   unit circle.  N is a vector of positive integers (including 0), and zvdut ,6<  
    %   M is a vector with the same number of elements as N.  Each element =b:XL#VA  
    %   k of M must be a positive integer, with possible values M(k) = -N(k)  'Y)aGH(  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, mW%8`$rVEO  
    %   and THETA is a vector of angles.  R and THETA must have the same GT<oYrjU  
    %   length.  The output Z is a matrix with one column for every (N,M) pvyEs|f=%  
    %   pair, and one row for every (R,THETA) pair. s%K(hk  
    % D/."0 #q  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike j9[I6ko5'  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), A|r3c?q  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral w/nohZF6H  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, N,Ma\D+^t  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 37zB X~  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Z5 IWoY  
    % r9_ ON|  
    %   The Zernike functions are an orthogonal basis on the unit circle. ]E<Z5G1HD  
    %   They are used in disciplines such as astronomy, optics, and YJ6~P   
    %   optometry to describe functions on a circular domain. W"vLCHTh  
    % Ldz]FB|  
    %   The following table lists the first 15 Zernike functions. 5U47 5&  
    % ~k?rP}>0  
    %       n    m    Zernike function           Normalization <C'_:&M  
    %       -------------------------------------------------- .u7} p#  
    %       0    0    1                                 1 bLai@mL&a  
    %       1    1    r * cos(theta)                    2 ?/3wO/7[  
    %       1   -1    r * sin(theta)                    2 V )<>W_g  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ,]2?S5R  
    %       2    0    (2*r^2 - 1)                    sqrt(3) c{/R?<  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) n]IF`kYQV  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) dRJ ](Gw  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) XMI*obS'z  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) /@ @F nQ++  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) n;Oe-+oSC  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10)  lrv-[}}  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) s0?'mC+p  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) rS BI'op  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) r V%6 8x9  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) C{J5:ak  
    %       -------------------------------------------------- hUlRtt  
    % AfTm#-R  
    %   Example 1: et 1HbX  
    % o7!A(Eu  
    %       % Display the Zernike function Z(n=5,m=1) IEy$2f>Ns  
    %       x = -1:0.01:1; / (BS<A  
    %       [X,Y] = meshgrid(x,x); |:R\j0t  
    %       [theta,r] = cart2pol(X,Y); :.+w'SEn4M  
    %       idx = r<=1; TRi#  
    %       z = nan(size(X)); L[2qCxB'^  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); a20w.6F  
    %       figure .Od:#(aq  
    %       pcolor(x,x,z), shading interp PuP"( M  
    %       axis square, colorbar 71nZi`AR  
    %       title('Zernike function Z_5^1(r,\theta)') utZI'5i  
    % caQ1SV^{9  
    %   Example 2: plWNuEW  
    % ,/+Mp  
    %       % Display the first 10 Zernike functions 7#E/Q~]'6  
    %       x = -1:0.01:1; 4@0aN6Os  
    %       [X,Y] = meshgrid(x,x); |D)CAQn,  
    %       [theta,r] = cart2pol(X,Y); 2.Vrh@FNRo  
    %       idx = r<=1; =T[P  
    %       z = nan(size(X)); 7T)y"PZ  
    %       n = [0  1  1  2  2  2  3  3  3  3]; -NwG' U~  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; (10t,n$  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; ,'(|,f42  
    %       y = zernfun(n,m,r(idx),theta(idx)); R@3HlGuRKw  
    %       figure('Units','normalized') W8g13oAu"  
    %       for k = 1:10 5_!L"sJ  
    %           z(idx) = y(:,k); eQ[akVMk  
    %           subplot(4,7,Nplot(k)) Eg`~mE+a  
    %           pcolor(x,x,z), shading interp V4R s  
    %           set(gca,'XTick',[],'YTick',[]) Sn-#Y(>]o0  
    %           axis square "QOQ  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) vX }iA|`#  
    %       end pqO3(2F9  
    % 5>9Q<*   
    %   See also ZERNPOL, ZERNFUN2. }SSg>.48w  
    i 7]o[  
    %   Paul Fricker 11/13/2006 nr]=O`Mvh  
    Ms6 ;iW9  
    %h ;oi/pe  
    % Check and prepare the inputs: uN<=v&]q  
    % ----------------------------- c/K#W$ l  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) fh =R  
        error('zernfun:NMvectors','N and M must be vectors.') {Ycgq%1>]  
    end |2^m CL.r  
    = cxO@Fu  
    if length(n)~=length(m) ti+e U$  
        error('zernfun:NMlength','N and M must be the same length.') ?/&X _O  
    end Nt8"6k_  
    *I?-A(e  
    n = n(:); N#M>2b<A/T  
    m = m(:); : _Y^o  
    if any(mod(n-m,2)) \/1~5mQ+  
        error('zernfun:NMmultiplesof2', ... oX)a6FXK>  
              'All N and M must differ by multiples of 2 (including 0).') .'M.yE~5J  
    end 2Di~}*9&  
    AIOGa<^  
    if any(m>n) |iJz[%  
        error('zernfun:MlessthanN', ... RgoF4g+@  
              'Each M must be less than or equal to its corresponding N.') i}LQ}35@  
    end <T7@,_T  
    h:Gs9]Lvtv  
    if any( r>1 | r<0 ) ',hoe  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') -!+i ^r  
    end \Nik`v*Pd  
    LeN }Q  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 8i "CU:(  
        error('zernfun:RTHvector','R and THETA must be vectors.') X#axCDM-  
    end ,'c%S|]U7  
    Z%o.kd"  
    r = r(:); ypM,i  
    theta = theta(:); E*)A!2rlK  
    length_r = length(r); iOa<=  
    if length_r~=length(theta) }%w;@[@L  
        error('zernfun:RTHlength', ... \KJTR0EB:>  
              'The number of R- and THETA-values must be equal.') !m\By%(  
    end *><j(uz!  
    |8}y?kAC  
    % Check normalization: [ x>Pf1  
    % -------------------- TCzz]?G]la  
    if nargin==5 && ischar(nflag) rMG[,:V  
        isnorm = strcmpi(nflag,'norm'); WuVsW3@  
        if ~isnorm C|H`.|Q  
            error('zernfun:normalization','Unrecognized normalization flag.') mu0L_u(P  
        end >7a ENKOg:  
    else <EyJ $$  
        isnorm = false; ShRMzU  
    end XKp(31])  
    @I Y<i5(  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 9J%O$sF  
    % Compute the Zernike Polynomials UV%o&tv|<  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% zk70D_}L  
    xz@*V>QT  
    % Determine the required powers of r: q@1A2L\Om  
    % ----------------------------------- e{2Za   
    m_abs = abs(m); m?Jnb\0  
    rpowers = []; sfG9R"  
    for j = 1:length(n) 2:.$:wS  
        rpowers = [rpowers m_abs(j):2:n(j)]; ~mH'8K|l  
    end 56."&0  
    rpowers = unique(rpowers); 5Mxl({oI]  
    RU.j[8N$  
    % Pre-compute the values of r raised to the required powers, BB,-HhYT0  
    % and compile them in a matrix: 78T;b7!-C  
    % ----------------------------- aG"  
    if rpowers(1)==0 MAqETjB  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); p^{yA"MQ  
        rpowern = cat(2,rpowern{:}); N<(rP1)`v  
        rpowern = [ones(length_r,1) rpowern]; %xx;C{g;a  
    else oM n'{+(w  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); '#K~hep  
        rpowern = cat(2,rpowern{:}); ^l(,'>Cn  
    end L(y~ ,Kc  
    K:4 G(?w  
    % Compute the values of the polynomials: ,iiI5FR  
    % -------------------------------------- ?fU{?nI}>p  
    y = zeros(length_r,length(n)); ieEt C,U  
    for j = 1:length(n) M(^IRI-  
        s = 0:(n(j)-m_abs(j))/2; qyE*?73W  
        pows = n(j):-2:m_abs(j); 5U_ar   
        for k = length(s):-1:1 _n*gj-  
            p = (1-2*mod(s(k),2))* ... ('_S1?y  
                       prod(2:(n(j)-s(k)))/              ... _ Axw$oYS  
                       prod(2:s(k))/                     ... VF-[O  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... UA0R)BH'  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); bnp:J|(ld  
            idx = (pows(k)==rpowers); z1e+Ob&  
            y(:,j) = y(:,j) + p*rpowern(:,idx); IOrYm  
        end {yBd{x<>/  
         } F*=+n  
        if isnorm usugjx^p  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); "g!/^A!!  
        end \<=.J`o{  
    end 78mJ3/?rC  
    % END: Compute the Zernike Polynomials ^3&-!<*  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Df $Yn  
    dI,H:g  
    % Compute the Zernike functions: G)5Uiu:^X  
    % ------------------------------ 4=ha$3h$  
    idx_pos = m>0; d/?0xLW  
    idx_neg = m<0; j1@PfKh  
    j;rxr1+w  
    z = y; ~bjT,i  
    if any(idx_pos) v@!r$jZ  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 3A b_Z  
    end SkXx: @  
    if any(idx_neg) #4sSt-s&  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); >F!X'#Iv  
    end y*sqnzgF  
    'Ya-;5Y]  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) 1b"3]?  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. BG@[m  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated MW.,}f  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive [%7oq;^J  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, .`N&,&H  
    %   and THETA is a vector of angles.  R and THETA must have the same oth=#hfU^  
    %   length.  The output Z is a matrix with one column for every P-value, Ru`7Xd.  
    %   and one row for every (R,THETA) pair. ez*O'U  
    % kv3V|  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike ~D Ta% J  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) =^3B&qQNq  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) "C%* 'k  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 LfS]m>>e  
    %   for all p. :j!N7c{  
    % A v%'#1w<"  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 Q\v^3u2;m`  
    %   Zernike functions (order N<=7).  In some disciplines it is GI*2*m!u  
    %   traditional to label the first 36 functions using a single mode c:G0=5  
    %   number P instead of separate numbers for the order N and azimuthal 8U&93$  
    %   frequency M. |/p2DU2  
    % _S#3!Wx  
    %   Example: V\><6v  
    % ~bk+JK- >  
    %       % Display the first 16 Zernike functions s av  
    %       x = -1:0.01:1; 8:(e~? f6  
    %       [X,Y] = meshgrid(x,x); <DM:YWNa  
    %       [theta,r] = cart2pol(X,Y); !_UBw7Zm  
    %       idx = r<=1; %Nm69j-5%  
    %       p = 0:15; ~ f>km|Q{u  
    %       z = nan(size(X)); H;eOrX {GT  
    %       y = zernfun2(p,r(idx),theta(idx)); 9 l9|w4YJs  
    %       figure('Units','normalized') MDKiwT@#  
    %       for k = 1:length(p) k7Z1Y!n7  
    %           z(idx) = y(:,k); oT27BK26?h  
    %           subplot(4,4,k) d#G H4+C  
    %           pcolor(x,x,z), shading interp *l4`2eqZ  
    %           set(gca,'XTick',[],'YTick',[]) s;-%Dfn  
    %           axis square |#!P!p}  
    %           title(['Z_{' num2str(p(k)) '}']) eMC0 )B  
    %       end #>\+6W17U  
    % 0?nm`9v6  
    %   See also ZERNPOL, ZERNFUN. -( ,iwF b  
    ]):kMRv  
    %   Paul Fricker 11/13/2006 G_a//[p  
    {]\!vG6  
    ^iq$zHbc0u  
    % Check and prepare the inputs: WH^r M`9  
    % ----------------------------- j8Csnm0  
    if min(size(p))~=1 wsNM'~(  
        error('zernfun2:Pvector','Input P must be vector.') 7 V+rQ  
    end }PDNW  
    5 5T c  
    if any(p)>35 p94 w0_m@|  
        error('zernfun2:P36', ... p#95Q  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... "ewB4F[  
               '(P = 0 to 35).']) ^g56:j~?  
    end ;ywQk| r  
    PjkJsH  
    % Get the order and frequency corresonding to the function number: FWbA+{8  
    % ---------------------------------------------------------------- \;G97o  
    p = p(:); 7Q9zEd" d  
    n = ceil((-3+sqrt(9+8*p))/2); b 64~Y|8  
    m = 2*p - n.*(n+2); 2x7%6'  
    ` cgS yRD]  
    % Pass the inputs to the function ZERNFUN: h[O!kwE  
    % ---------------------------------------- SrVJ Q~ :>  
    switch nargin _ %HyXd  
        case 3 CL$mK5u  
            z = zernfun(n,m,r,theta); `)W}4itm  
        case 4 Dab1^H!KT  
            z = zernfun(n,m,r,theta,nflag); JUlV$b.)J  
        otherwise .Lk2S "+  
            error('zernfun2:nargin','Incorrect number of inputs.') `_;VD?")*l  
    end @:s|X  
    _YH)E^If  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) =B(zW .Gf  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. l\yFx  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of #isBE}sT{  
    %   order N and frequency M, evaluated at R.  N is a vector of j!;?=s  
    %   positive integers (including 0), and M is a vector with the .s_wP  
    %   same number of elements as N.  Each element k of M must be a H! ZPP8]j>  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) L`ZH.fN  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is 3H%oTgWk  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix g|PVOY+|^  
    %   with one column for every (N,M) pair, and one row for every 7K`A2  
    %   element in R. 3`&2 -  
    % 7 3k3(rZ  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- _AQ :<0/#  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is h!f7/) |[o  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to :_tsS)Q2m  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 5vL]Y)l  
    %   for all [n,m]. {O6f1LuH  
    % :Q\b$=,:  
    %   The radial Zernike polynomials are the radial portion of the w$7*za2  
    %   Zernike functions, which are an orthogonal basis on the unit 4b8!LzKS  
    %   circle.  The series representation of the radial Zernike n2R{$^JxO  
    %   polynomials is 6P' m0  
    % m?_S&/+*  
    %          (n-m)/2 Gt[!q\^?  
    %            __ f4zd(J  
    %    m      \       s                                          n-2s & h9ji[  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r X+{4,?04+  
    %    n      s=0 GP uAIoBo  
    % ;""V s6  
    %   The following table shows the first 12 polynomials. 5isejR{r  
    % ,|b<as@X  
    %       n    m    Zernike polynomial    Normalization "qb3\0O  
    %       --------------------------------------------- ,k/*f+t  
    %       0    0    1                        sqrt(2) a Kb2:1EQ  
    %       1    1    r                           2 @R?S-*o  
    %       2    0    2*r^2 - 1                sqrt(6) S"w$#"EJA  
    %       2    2    r^2                      sqrt(6) :?{ **&=  
    %       3    1    3*r^3 - 2*r              sqrt(8) gQ*0Mk  
    %       3    3    r^3                      sqrt(8) pHY~_^B4&  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) O'" &9  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) 'u$$scGt  
    %       4    4    r^4                      sqrt(10) JPgV7+{b[  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) {3C~cK{  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) g^1M]1.f  
    %       5    5    r^5                      sqrt(12)  x9 <cT'  
    %       --------------------------------------------- )k3zOKZ;  
    % u9e A"\s  
    %   Example: ?T70C9  
    % K%>uSS?  
    %       % Display three example Zernike radial polynomials lx~!FLn  
    %       r = 0:0.01:1; V$-IRdb  
    %       n = [3 2 5]; &`<j!xlG  
    %       m = [1 2 1]; .8l\;/o|  
    %       z = zernpol(n,m,r); D2~e@J(K  
    %       figure kVQKP  U  
    %       plot(r,z) ;]MHU/  
    %       grid on w:& m_z#M  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') [z`U 9J  
    % U=p,drF,A  
    %   See also ZERNFUN, ZERNFUN2. ./)A6O*#  
    ]~)FMWQz-  
    % A note on the algorithm. zO2Z\E'% .  
    % ------------------------ r<Ll>R  
    % The radial Zernike polynomials are computed using the series zMKW@  
    % representation shown in the Help section above. For many special Tul_/`An  
    % functions, direct evaluation using the series representation can J(h=@cw  
    % produce poor numerical results (floating point errors), because :sFP{rFx~  
    % the summation often involves computing small differences between O(h4;'/E  
    % large successive terms in the series. (In such cases, the functions ;p/RS#  
    % are often evaluated using alternative methods such as recurrence #~q{6()e:  
    % relations: see the Legendre functions, for example). For the Zernike uE-~7Q(@  
    % polynomials, however, this problem does not arise, because the Z= dEk`  
    % polynomials are evaluated over the finite domain r = (0,1), and 1/3Go97/qV  
    % because the coefficients for a given polynomial are generally all _UYt  
    % of similar magnitude. FlRbGg^  
    % \Zqgr/.w/  
    % ZERNPOL has been written using a vectorized implementation: multiple a84^"GH7  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] uOEy}&fH  
    % values can be passed as inputs) for a vector of points R.  To achieve f$NudG!S  
    % this vectorization most efficiently, the algorithm in ZERNPOL sE-E\+  
    % involves pre-determining all the powers p of R that are required to \q(RqD  
    % compute the outputs, and then compiling the {R^p} into a single WL7R.!P  
    % matrix.  This avoids any redundant computation of the R^p, and D&/(Avx.  
    % minimizes the sizes of certain intermediate variables. d /jO~+jP  
    % q*\ #H C  
    %   Paul Fricker 11/13/2006 1[a;2x A~  
    <jQ?l% \  
    j{IAZs#@>  
    % Check and prepare the inputs: hJ>{`Tw  
    % ----------------------------- R>To L  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) T#Qn\ 8  
        error('zernpol:NMvectors','N and M must be vectors.') eR D?O  
    end vL`wn=  
    A}FEM[2  
    if length(n)~=length(m) OnC|9  
        error('zernpol:NMlength','N and M must be the same length.') f:GZb?Wyd  
    end B8'" ^a^&-  
    :z56!qU  
    n = n(:); KO<Yc`Fs  
    m = m(:); ddmTMfH  
    length_n = length(n); 5v=%pQbY  
    v-3In\T=^  
    if any(mod(n-m,2)) Z TWbe  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') n@mWB UM  
    end ^TJn&k  
    #qGfo)  
    if any(m<0) Bl2y~fCA  
        error('zernpol:Mpositive','All M must be positive.') [bIdhG  
    end #{1w#Iz;  
    VJS|H!CH  
    if any(m>n) j#"?Oe{_1  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') t;T MD\BU  
    end &7!&]kA+  
    p)N=  
    if any( r>1 | r<0 ) q%w\UAqA  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') $U<so{xn%  
    end lplEQ]J|  
    !krbGpTVH  
    if ~any(size(r)==1) `=RJ8u  
        error('zernpol:Rvector','R must be a vector.') 7JD jJQy  
    end ~EG`[cv  
    I#zrz3WU  
    r = r(:); fD  
    length_r = length(r); y~w2^VN=  
    +u#;k!B/>  
    if nargin==4 mVg-z~44T  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); X#j-Ld{j  
        if ~isnorm rP>iPDf  
            error('zernpol:normalization','Unrecognized normalization flag.') 4P( Y34j  
        end w?d~c*4+  
    else A,{X<mLFb  
        isnorm = false; _(&^M[O  
    end .i>; ?(GH  
    1@6dHFA`o  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% NDEltG(  
    % Compute the Zernike Polynomials 3,+)3,N  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% qvy~b  
    !Low%rP  
    % Determine the required powers of r: cJd~UQ<k  
    % ----------------------------------- 1-r# v  
    rpowers = []; iY1%"x  
    for j = 1:length(n) 9}Ud'#E  
        rpowers = [rpowers m(j):2:n(j)]; $73 7oV<  
    end vyP3]+n  
    rpowers = unique(rpowers); y8'WR-;  
    >KmOTM< {  
    % Pre-compute the values of r raised to the required powers, obKWnet  
    % and compile them in a matrix: ?F1NZA[%t  
    % ----------------------------- ?2zVWZ  
    if rpowers(1)==0 x*Y&s<  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 4n @}X-)  
        rpowern = cat(2,rpowern{:}); 3JVENn9  
        rpowern = [ones(length_r,1) rpowern]; ~CgKU8  
    else !qsk;Vk7Z  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); D0 Yl?LU3  
        rpowern = cat(2,rpowern{:}); Gx ci  
    end \Y&*sfQ  
    w?)v#]<-  
    % Compute the values of the polynomials: o^hI\9  
    % -------------------------------------- ^m.QW*  
    z = zeros(length_r,length_n); $_CE!_G&)  
    for j = 1:length_n dqMt6b\}  
        s = 0:(n(j)-m(j))/2; D 's'LspQ  
        pows = n(j):-2:m(j); 3e4; '5q;  
        for k = length(s):-1:1 R("g ]  
            p = (1-2*mod(s(k),2))* ... PXqLK3AE  
                       prod(2:(n(j)-s(k)))/          ... jX}}^XwX  
                       prod(2:s(k))/                 ... .}n,  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... xdb9oH  
                       prod(2:((n(j)+m(j))/2-s(k))); 2\h}6DGx2  
            idx = (pows(k)==rpowers); mX3~rK>@~  
            z(:,j) = z(:,j) + p*rpowern(:,idx); M3c!SXx\  
        end F(c~D0  
         V9[-# Ti  
        if isnorm <3C~<  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); fmyyQ|]O"  
        end NSH20$A<  
    end gDE',)3Q,  
    Rp$t;=SMD  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  =\s(v-8  
    rg U$&O  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 yC. ve;lG  
    @W3fKF9*R  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)