非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 Wi
Mi0?$.
function z = zernfun(n,m,r,theta,nflag) ?[}r& f
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. i[_WO2
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 1>1&NQ#}
% and angular frequency M, evaluated at positions (R,THETA) on the 25RFi24>D
% unit circle. N is a vector of positive integers (including 0), and B`xrdtW
% M is a vector with the same number of elements as N. Each element ^-9g_5
% k of M must be a positive integer, with possible values M(k) = -N(k) ruG5~dm>
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, tk@
T-;
% and THETA is a vector of angles. R and THETA must have the same _h2axXFhT
% length. The output Z is a matrix with one column for every (N,M) P\B ]><!ep
% pair, and one row for every (R,THETA) pair. h|tdK;)
% zU;%s<(p
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 'a`cK;X9F
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), $
\j/s:Y
% with delta(m,0) the Kronecker delta, is chosen so that the integral `<1o}r 7i
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, "#d>3M_
% and theta=0 to theta=2*pi) is unity. For the non-normalized K]{Y >w
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. J|-X?V;ZW
% *"\QR>n
% The Zernike functions are an orthogonal basis on the unit circle. (,wIbwa
% They are used in disciplines such as astronomy, optics, and 5G"DgG*<
% optometry to describe functions on a circular domain. $^F
L*w
% bhqBFiuhH
% The following table lists the first 15 Zernike functions. 88]V6Rm9[*
% AM4lAq_
% n m Zernike function Normalization \a+.~_iL|
% -------------------------------------------------- SW!lSIk
% 0 0 1 1 4NaL#3
% 1 1 r * cos(theta) 2 #1-,s.)
% 1 -1 r * sin(theta) 2 9?5'>WO
% 2 -2 r^2 * cos(2*theta) sqrt(6) fk5xIW
% 2 0 (2*r^2 - 1) sqrt(3) OT[&a6