非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 o2(*5*b!@e
function z = zernfun(n,m,r,theta,nflag) rUF= uO(
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. PsMCs|*
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 'v3>"b
% and angular frequency M, evaluated at positions (R,THETA) on the Oz,/y3_
% unit circle. N is a vector of positive integers (including 0), and
F_%&,"$
% M is a vector with the same number of elements as N. Each element U@?Roenn
% k of M must be a positive integer, with possible values M(k) = -N(k) *$7c||J7
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, mm<rdo(`
% and THETA is a vector of angles. R and THETA must have the same ~4tu*\P
% length. The output Z is a matrix with one column for every (N,M) RIl+QA
% pair, and one row for every (R,THETA) pair. :-.bXOB(
% xBcE>^{1.
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike *XlnEHv
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), wg,w;Gle
% with delta(m,0) the Kronecker delta, is chosen so that the integral tm}0kWx
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 3+jqf@ fO
% and theta=0 to theta=2*pi) is unity. For the non-normalized :u53zX[v
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ) crhF9 !4
% MY}B)`yx=
% The Zernike functions are an orthogonal basis on the unit circle. o;@T6-VH
% They are used in disciplines such as astronomy, optics, and @(A[H^E
% optometry to describe functions on a circular domain. `=3:*.T*
% m;nT ?kv
% The following table lists the first 15 Zernike functions. A|d(5{:N
% ON=6w_
% n m Zernike function Normalization VS \~t
% -------------------------------------------------- !N1DJd
% 0 0 1 1 7].FdjT.
% 1 1 r * cos(theta) 2 uD''0G\
% 1 -1 r * sin(theta) 2 3 tp'}v
% 2 -2 r^2 * cos(2*theta) sqrt(6) 3Ga!)
% 2 0 (2*r^2 - 1) sqrt(3) H?>R#Ds-
% 2 2 r^2 * sin(2*theta) sqrt(6) q G%'Lt
% 3 -3 r^3 * cos(3*theta) sqrt(8) F|XRh 6j
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) J_A5,K*r|
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 0Y9\,y_
% 3 3 r^3 * sin(3*theta) sqrt(8) FHS6Mk26
% 4 -4 r^4 * cos(4*theta) sqrt(10) 0)'^vJe
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) /r Hd9^Y
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) Xo>P?^c4?
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Vn6 g(:\w
% 4 4 r^4 * sin(4*theta) sqrt(10) *s9
+
% -------------------------------------------------- >I3#ALF
% ayJKt03\O\
% Example 1: $!x8XpR8s
% L= fz:H
% % Display the Zernike function Z(n=5,m=1) :YU_ \EV
% x = -1:0.01:1; COa"zg
% [X,Y] = meshgrid(x,x); #xS8
% [theta,r] = cart2pol(X,Y); /bj
D*rj
% idx = r<=1; hp]T ^
% z = nan(size(X)); g,!6,v@
% z(idx) = zernfun(5,1,r(idx),theta(idx)); ?j{LE-(
% figure dhW)<
% pcolor(x,x,z), shading interp eFUJASc
% axis square, colorbar <$LVAy"RD
% title('Zernike function Z_5^1(r,\theta)') @O/-~,E68
% ! 3O#'CV
% Example 2: R;gN^Yjk:
% l Ud/^u`
% % Display the first 10 Zernike functions 3PLv;@!#j}
% x = -1:0.01:1; QcGyuS.B
% [X,Y] = meshgrid(x,x); MS-}IHO
% [theta,r] = cart2pol(X,Y); vcnUb$%
% idx = r<=1; w^?uBeqR
% z = nan(size(X)); R g7 O
% n = [0 1 1 2 2 2 3 3 3 3]; W~J@v@..4
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; v_PhJKE
% Nplot = [4 10 12 16 18 20 22 24 26 28]; {1.t ZCMT
% y = zernfun(n,m,r(idx),theta(idx)); `w1|(Sk$h
% figure('Units','normalized') cTpAU9|(
% for k = 1:10 "MD
% z(idx) = y(:,k); %Uj7g>
% subplot(4,7,Nplot(k)) ][1*.7-
% pcolor(x,x,z), shading interp Bkvh]k;F8
% set(gca,'XTick',[],'YTick',[]) Np=IZnpt
% axis square V8w!yc
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) |-l)$i@
% end !fXw X3B
% ?r"'JO.w
% See also ZERNPOL, ZERNFUN2. ^fT|Wm<
o;+$AU1f
% Paul Fricker 11/13/2006 \*Roa&<!
a%a_sR\)
=Jd('r
% Check and prepare the inputs: C=&7V
% ----------------------------- bLyU;
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ]5X=u(}
error('zernfun:NMvectors','N and M must be vectors.') 1@*qz\ YY
end O`_!G`E
<<}t&qE%2%
if length(n)~=length(m) :feU
error('zernfun:NMlength','N and M must be the same length.') #?/&H;n_8S
end SXfuPM
V3j1M?>
n = n(:); 42X N*br
m = m(:); / 4P+
if any(mod(n-m,2)) LWQ.!;HY p
error('zernfun:NMmultiplesof2', ... o";5@NH
'All N and M must differ by multiples of 2 (including 0).') 'r;C(Gh6
end #w\Bc\
!;'#fxW[
if any(m>n) 7?Vo([8
error('zernfun:MlessthanN', ... 4 [2^#t[
'Each M must be less than or equal to its corresponding N.') TX7B (JZD
end `NIc*B4q.
o4I&?d7;"
if any( r>1 | r<0 ) >_3+s~
error('zernfun:Rlessthan1','All R must be between 0 and 1.') (#6E{@eq
end g wM~W
2n}nRv/'
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) }1<_
error('zernfun:RTHvector','R and THETA must be vectors.') TG ,T>'
end E[N5vG<
8SmtEV[b3
r = r(:); hZ_0lX}
theta = theta(:); moO=TGG;F
length_r = length(r); +[l52p@a
if length_r~=length(theta) <