非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 5vqh09-FB
function z = zernfun(n,m,r,theta,nflag) ">"B
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. !6DH6<HC
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N b0lZb'
% and angular frequency M, evaluated at positions (R,THETA) on the jij-pDQnv
% unit circle. N is a vector of positive integers (including 0), and Vh5Z'4N
% M is a vector with the same number of elements as N. Each element 2sNV09id
% k of M must be a positive integer, with possible values M(k) = -N(k) "*0h=x$
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, uUI@!)@2
% and THETA is a vector of angles. R and THETA must have the same x"n)y1y
% length. The output Z is a matrix with one column for every (N,M) /&g~*AL
% pair, and one row for every (R,THETA) pair. 0N4+6k|
% @}iY(-V
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike jp P'{mc
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), b;Uqyc
% with delta(m,0) the Kronecker delta, is chosen so that the integral qr_:zXsob_
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, EiWsVic[
% and theta=0 to theta=2*pi) is unity. For the non-normalized ''~#tK
f
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ca!DZ%y
%
n>:|K0u"
% The Zernike functions are an orthogonal basis on the unit circle. a) 5;Od
% They are used in disciplines such as astronomy, optics, and QPT%CW61M
% optometry to describe functions on a circular domain. 8:)itYE
% 0X[uXf
% The following table lists the first 15 Zernike functions. xO2CgqEb
% x^P ~+(g
% n m Zernike function Normalization <c$K3
% -------------------------------------------------- \?rBtD(
% 0 0 1 1 ^Y-
S"Ks
% 1 1 r * cos(theta) 2 ?PST.+l
% 1 -1 r * sin(theta) 2 l!YjDm{E
% 2 -2 r^2 * cos(2*theta) sqrt(6) S67>yqha
% 2 0 (2*r^2 - 1) sqrt(3) v'H\KR-;
% 2 2 r^2 * sin(2*theta) sqrt(6) ^=V b'g3P~
% 3 -3 r^3 * cos(3*theta) sqrt(8) $ @Fvl-lK
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) z]O,Vqpl?
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) NoG`J$D
% 3 3 r^3 * sin(3*theta) sqrt(8) |>L|7>J{<d
% 4 -4 r^4 * cos(4*theta) sqrt(10) GtSvb6UNn
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) hj|P*yKV
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) Ec;{N
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) +1Ua`3dWN_
% 4 4 r^4 * sin(4*theta) sqrt(10) -cW'g
% -------------------------------------------------- Vv3{jn6%
% XDcA&cM}p
% Example 1:
( :ObxJ*
% ?ta(`+"
% % Display the Zernike function Z(n=5,m=1) wEJ) h1=)^
% x = -1:0.01:1; BmGY#D,
% [X,Y] = meshgrid(x,x); 8O0E;6b
% [theta,r] = cart2pol(X,Y); .S=^)
% idx = r<=1; #Kd^t=k
% z = nan(size(X)); ^jxV
% z(idx) = zernfun(5,1,r(idx),theta(idx)); Zr
U9oy&!C
% figure p{BBqKv
% pcolor(x,x,z), shading interp %qj8*1
% axis square, colorbar g8^YDrH
% title('Zernike function Z_5^1(r,\theta)') ^~Dmb2h
% }HC6m{vH(
% Example 2: Gcz@z1a=n
% }E%#g#
% % Display the first 10 Zernike functions bQFMg41*w7
% x = -1:0.01:1; 3Sb'){.MT+
% [X,Y] = meshgrid(x,x); FJl_2
% [theta,r] = cart2pol(X,Y); }g\1JSJ%H
% idx = r<=1; X[{tD#
% z = nan(size(X)); /:],bNb
% n = [0 1 1 2 2 2 3 3 3 3]; G^Q8B^Lg
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; X|iWnz+^
% Nplot = [4 10 12 16 18 20 22 24 26 28]; ~p0M|
% y = zernfun(n,m,r(idx),theta(idx)); !uwZ%Uxz
% figure('Units','normalized') ;5(ptXX1W
% for k = 1:10 '**dD2
n
% z(idx) = y(:,k); >|S&@<
% subplot(4,7,Nplot(k)) cB ,l=/?
% pcolor(x,x,z), shading interp [)E.T,fjMQ
% set(gca,'XTick',[],'YTick',[]) 9< $n'g
% axis square B<p -.tv
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 1ae,s{|
% end y$7vJl.uS/
% 5!pof\/a
% See also ZERNPOL, ZERNFUN2. <*4BT}r,^2
;I^+u0ga
% Paul Fricker 11/13/2006 5RysN=czA
dvl'Sq<
9h$08l
% Check and prepare the inputs: yK3b^
% ----------------------------- /P>t3E2c
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) " A}S92
error('zernfun:NMvectors','N and M must be vectors.') 'q_^28rK
end qij<XNZU"&
th?w&;L
if length(n)~=length(m) 5UgxuuP4
error('zernfun:NMlength','N and M must be the same length.') ev}ugRxt|k
end xR`W9Z5
bkvm-$/
n = n(:); +"i|)yUYy}
m = m(:); N#Y|MfLc
if any(mod(n-m,2)) WX9ABh& 5
error('zernfun:NMmultiplesof2', ... sBLf(Q,
'All N and M must differ by multiples of 2 (including 0).') >Yf)]e-
end Z@G[\"
d}Y\;'2,
if any(m>n) _,?<r&>v6
error('zernfun:MlessthanN', ... Q2L>P<87T
'Each M must be less than or equal to its corresponding N.') H`:2J8
end ,@#))2<RK
Duu)8ru
if any( r>1 | r<0 ) Q^H8gsv
error('zernfun:Rlessthan1','All R must be between 0 and 1.') ~g|Z6-?4Jj
end 5S
EyAhB
pmIOV~K
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) R|&Rq(ow"
error('zernfun:RTHvector','R and THETA must be vectors.') rEF0A&5
end fy6<KEea
@|jLw($Ly
r = r(:); .EF(<JC?
theta = theta(:); =G9 9U/
length_r = length(r); T.}wcQf&*
if length_r~=length(theta) /qd5{%:
error('zernfun:RTHlength', ... bl8EzO
'The number of R- and THETA-values must be equal.') !*tV[0i2
end ,DZoE~
8nj^x?bn
% Check normalization: U $2"ZyFii
% -------------------- s.#%hPX{
if nargin==5 && ischar(nflag) XB.xIApmy
isnorm = strcmpi(nflag,'norm'); 1LK`
if ~isnorm 0'3f^Ajf
error('zernfun:normalization','Unrecognized normalization flag.') Ki,SFww8r
end cR*5iqA
else vR)f'+_Nz
isnorm = false; 3bd(.he2u
end RnaxRnXVR
F+m%PVW:
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% j TyR+#Wn
% Compute the Zernike Polynomials ev'` K=n8
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /TndB7l"3
]VkM)< +
% Determine the required powers of r: 6${=N}3Kw
% ----------------------------------- 'e(]woe
m_abs = abs(m); X"k:+
rpowers = []; Sf>#Zqj/
for j = 1:length(n) cs]h+yE
rpowers = [rpowers m_abs(j):2:n(j)]; hb. ^&
end #B!HPlrv
rpowers = unique(rpowers); (2J\o
=.48^$LWx
% Pre-compute the values of r raised to the required powers, x_+-TC4IXn
% and compile them in a matrix: vH?rln
% ----------------------------- $SOFq+-T
if rpowers(1)==0 F<+!28&h
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ]J(BaX4
rpowern = cat(2,rpowern{:}); E^`-:L(_
rpowern = [ones(length_r,1) rpowern]; 4F`&W*x
else $A;%p6PO)
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); */6lyODf
rpowern = cat(2,rpowern{:}); CK"OHjR
end gJZH??b
dHsI<