非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 +Y}V3(w9X
function z = zernfun(n,m,r,theta,nflag) <Mx0\b!
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. s,6`RI%
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N !*aPEf270
% and angular frequency M, evaluated at positions (R,THETA) on the {%C*{,#+8q
% unit circle. N is a vector of positive integers (including 0), and j%L&jH6@
% M is a vector with the same number of elements as N. Each element ]PWDE"
% k of M must be a positive integer, with possible values M(k) = -N(k) 9T7e\<8"vC
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, N|mJg[j@7
% and THETA is a vector of angles. R and THETA must have the same W3r?7!~
% length. The output Z is a matrix with one column for every (N,M) OtJ\T/q,
% pair, and one row for every (R,THETA) pair. nOb?-rR
% 0fm*`4Q
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike UH?
p]4Nz
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), eujK4s
% with delta(m,0) the Kronecker delta, is chosen so that the integral lhH`dG D
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ST5V!jz
% and theta=0 to theta=2*pi) is unity. For the non-normalized iYJZvN
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. eg/<[ A:
% 6KHN&P
% The Zernike functions are an orthogonal basis on the unit circle. IvHh4DU3Z
% They are used in disciplines such as astronomy, optics, and [kV;[c}
% optometry to describe functions on a circular domain. H#i{?RM@l
% \3Pv# )
% The following table lists the first 15 Zernike functions. FOwnxYGVf
% ~YP Jez
% n m Zernike function Normalization <IJu7t>
% -------------------------------------------------- uR;gVO+QC
% 0 0 1 1 M;w?[yEZ
% 1 1 r * cos(theta) 2 HOoPrB m
% 1 -1 r * sin(theta) 2 ^/U27B
% 2 -2 r^2 * cos(2*theta) sqrt(6) Vw tZLP36
% 2 0 (2*r^2 - 1) sqrt(3) Bc7V)YK
% 2 2 r^2 * sin(2*theta) sqrt(6) omSM:f_~
% 3 -3 r^3 * cos(3*theta) sqrt(8) s 5WqR8
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) R=Zn -q
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) rH8@69,B
% 3 3 r^3 * sin(3*theta) sqrt(8) 6e,xDr
% 4 -4 r^4 * cos(4*theta) sqrt(10) 0 (U#)
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ^n1%OzGK#
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) m)v''`9LU
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 1'.7_EQ4T
% 4 4 r^4 * sin(4*theta) sqrt(10) {@W93=Vq8
% -------------------------------------------------- p;T{i._iL
% = ?D(g
% Example 1: B* kcNlW
% VhL{'w7f
% % Display the Zernike function Z(n=5,m=1) NLS"eDm
% x = -1:0.01:1; : _e#
% [X,Y] = meshgrid(x,x); %`MQmXgM
% [theta,r] = cart2pol(X,Y); &;yH@@Z
% idx = r<=1; 1CU>L[W)
% z = nan(size(X)); {n#k,b&9B
% z(idx) = zernfun(5,1,r(idx),theta(idx)); o+w;PP)+=
% figure N`@NiJ(O;
% pcolor(x,x,z), shading interp o?L'Pg
% axis square, colorbar N|N3x7=gs
% title('Zernike function Z_5^1(r,\theta)') {7u[1[L1
% S$)*&46g
% Example 2: Hy.AyU|L
% d)f@ 5/<
% % Display the first 10 Zernike functions GSclK|#tE
% x = -1:0.01:1; 5=Xy,hmnC
% [X,Y] = meshgrid(x,x); 7SD Fz}
% [theta,r] = cart2pol(X,Y); :y*NM,s
% idx = r<=1; 6E(Qx~iL
% z = nan(size(X)); > fnh+M
% n = [0 1 1 2 2 2 3 3 3 3]; CTX9zrY*T
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 6+r$t#
% Nplot = [4 10 12 16 18 20 22 24 26 28]; L86n}+
P\
% y = zernfun(n,m,r(idx),theta(idx)); gE#>RM5D
% figure('Units','normalized') ,.eWQK~
% for k = 1:10 <,o>Wx*1C
% z(idx) = y(:,k); 7C#`6:tI
% subplot(4,7,Nplot(k)) ]Chj T}
% pcolor(x,x,z), shading interp C~fjWz' V
% set(gca,'XTick',[],'YTick',[]) r/pH_@
% axis square XL#[%X9
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Vk<
LJ
S
% end KT]Pw\y5
% D\IjyZ-O
% See also ZERNPOL, ZERNFUN2. 7Q\|=$2
db'/`JeK
b
% Paul Fricker 11/13/2006 f#+el
y
EY*(Bw
V5+SWXZ
% Check and prepare the inputs: SGb;!T*
% ----------------------------- B8E'ddUw
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) n>@oBG)!
error('zernfun:NMvectors','N and M must be vectors.') h(WrL
end 2,ECYie^
@`\VBW
if length(n)~=length(m) *JggU
error('zernfun:NMlength','N and M must be the same length.') wFG3KzEq ~
end {U&.D
[{&
rG,5[/l
n = n(:); V_plq6z
m = m(:); IV\J3N^
if any(mod(n-m,2)) >S$Z
error('zernfun:NMmultiplesof2', ... gV&z2S~"
'All N and M must differ by multiples of 2 (including 0).') .<kqJ|SVi
end 'SQG>F Uy
hiNEJ_f
if any(m>n) l5L.5$N
error('zernfun:MlessthanN', ... !i=nSqW
'Each M must be less than or equal to its corresponding N.') 9 \^|6k,
end ~]ZpA-*@Ut
wAnb
Di{W
if any( r>1 | r<0 ) =8U&[F
error('zernfun:Rlessthan1','All R must be between 0 and 1.') Da"j E
end cwGbSW$t
'X shmZ0&
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) N},n `Yl.
error('zernfun:RTHvector','R and THETA must be vectors.') Jx'i2&hGN
end 1S@vGq}
{Zp\^/
r = r(:); )BRKZQN
theta = theta(:); ve&zcSeb
length_r = length(r); GF3/ RT9
if length_r~=length(theta) ~'R(2[L!;
error('zernfun:RTHlength', ... &=4(l|wcg
'The number of R- and THETA-values must be equal.') ~|<m,)!
end Bn>8&w/P
&+G"k~%
% Check normalization: #s!'+|2n
% -------------------- aL\nT XakX
if nargin==5 && ischar(nflag) 0OGCilOb*
isnorm = strcmpi(nflag,'norm'); HF3f)}l$
if ~isnorm :O5og[;b
error('zernfun:normalization','Unrecognized normalization flag.') {d?$m*YR3`
end Qt|c1@J
else A&>.74}p
isnorm = false; ^iQn'++Q
end [Y`,qB<B
xLx]_R()
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% j(~ *'&|(
% Compute the Zernike Polynomials 4b:s<$TZ
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% NH3cq
7
[g/TB
% Determine the required powers of r: <8,cuX\
% ----------------------------------- OQ9x*TmK
m_abs = abs(m); ^{8Gt@
rpowers = []; Z}-Vf$O~
for j = 1:length(n) iDf,e Kk$'
rpowers = [rpowers m_abs(j):2:n(j)]; wY"Q o7
end umdG(osR
rpowers = unique(rpowers); >2By
+/!X
t='# |');
% Pre-compute the values of r raised to the required powers, cW+t#>'r
% and compile them in a matrix: [CAR[
g&
% ----------------------------- *3D%<kVl
if rpowers(1)==0 , lJv
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); YBnA+l*
rpowern = cat(2,rpowern{:}); `%j~|i)4
rpowern = [ones(length_r,1) rpowern]; `)QCn<
else frBX{L
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); }W
^: cp
rpowern = cat(2,rpowern{:}); Wq^qpN)5Y
end yS=oUE$
S/ibb&
% Compute the values of the polynomials: 9aJ%`i
% -------------------------------------- sdS^e`S
y = zeros(length_r,length(n)); pAk/Qxl3eo
for j = 1:length(n) \cCV6A[
s = 0:(n(j)-m_abs(j))/2; mg,j:,
pows = n(j):-2:m_abs(j); D$JHs4
for k = length(s):-1:1 ZNx$r]4nF
p = (1-2*mod(s(k),2))* ... ]~\sA
prod(2:(n(j)-s(k)))/ ... 57 #6yXQ
prod(2:s(k))/ ... F-*2LMe
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... WQHd[2Z#e
prod(2:((n(j)+m_abs(j))/2-s(k))); Vrvic4
idx = (pows(k)==rpowers); vp.ZK[/`
y(:,j) = y(:,j) + p*rpowern(:,idx); wM|"I^[
end /6_|]ijc
2W$cFC
if isnorm HEGKX]
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); )Jv[xY~
end f0T,ul,
end K).n.:vYZ
% END: Compute the Zernike Polynomials (x q%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% r0m*5rd1
z'`y,8Y 1l
% Compute the Zernike functions: 4WB-Ec
% ------------------------------ TB;o~>9U
idx_pos = m>0; ^OErq&`u
idx_neg = m<0; w/L `
5#QXR+
T
z = y; FW.$5*f='
if any(idx_pos) `N5|Ho*C
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); BAO| )~1Pd
end c_"
~n|
if any(idx_neg) P<K){V
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ti &J
end CX m+)a-L
CpQN,-4
% EOF zernfun