非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 {Ejv8UdA9
function z = zernfun(n,m,r,theta,nflag) Cc1sZWvz
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. jcYI"f"~
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N {o*z iZh
% and angular frequency M, evaluated at positions (R,THETA) on the L>).o%(R
% unit circle. N is a vector of positive integers (including 0), and tv,^ Q}
% M is a vector with the same number of elements as N. Each element ?MPM@9
% k of M must be a positive integer, with possible values M(k) = -N(k) n,9 *!1y
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, VjMd&>G
% and THETA is a vector of angles. R and THETA must have the same q(\$-Dk.Vv
% length. The output Z is a matrix with one column for every (N,M) pW:U|m1dS
% pair, and one row for every (R,THETA) pair. uY5f mM9
% VVYQIR]!yk
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike SrN0f0
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 13}=;4O
% with delta(m,0) the Kronecker delta, is chosen so that the integral SdYES5aES
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, S2*-UluG
% and theta=0 to theta=2*pi) is unity. For the non-normalized OE}L})"
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. #D
.H2'_}
% VCX})sp
% The Zernike functions are an orthogonal basis on the unit circle. UY+~,a
% They are used in disciplines such as astronomy, optics, and R0gjx"U
% optometry to describe functions on a circular domain. aCM F[
3j
% $*MjNj2
% The following table lists the first 15 Zernike functions. mucY+k1>g
% )
ok_"wB
% n m Zernike function Normalization &pZ]F=.r+
% -------------------------------------------------- `Rm2G
% 0 0 1 1 ~5:]Oux
% 1 1 r * cos(theta) 2 '355Pce/
% 1 -1 r * sin(theta) 2 l9qq;hhGP,
% 2 -2 r^2 * cos(2*theta) sqrt(6) )m\%L`+
% 2 0 (2*r^2 - 1) sqrt(3) $_S^Aw?
% 2 2 r^2 * sin(2*theta) sqrt(6) TAi
|]U!
% 3 -3 r^3 * cos(3*theta) sqrt(8) -+'{C=
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) f]J?-ks
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) UDt.w82
% 3 3 r^3 * sin(3*theta) sqrt(8) xPq3Sfg`A
% 4 -4 r^4 * cos(4*theta) sqrt(10) Nr|.]=K)5n
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) shYcfLJ
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) ?N,a {#w
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) &.K8cphj
% 4 4 r^4 * sin(4*theta) sqrt(10) {SqY77
% -------------------------------------------------- Lyt6DvAp"
% ,HUs MCXQ
% Example 1: S]K^wj[
% n`vqCO7@'
% % Display the Zernike function Z(n=5,m=1) O>n L;I
% x = -1:0.01:1; ]^8:"Ky'
% [X,Y] = meshgrid(x,x); 4w*F!E2H\}
% [theta,r] = cart2pol(X,Y); E{wVf_K
% idx = r<=1; pZlBpGQf
% z = nan(size(X)); f$*M;|c1c/
% z(idx) = zernfun(5,1,r(idx),theta(idx)); f*NtnD=rJ
% figure _&19OD%
% pcolor(x,x,z), shading interp TN7kt]a2
% axis square, colorbar ~Xh(JK]
% title('Zernike function Z_5^1(r,\theta)') "h2;65@
% zp% MK+x
% Example 2: 4{}u PbS
% >| .jG_s
% % Display the first 10 Zernike functions C/<fR:`c
% x = -1:0.01:1; qAivsYN*
% [X,Y] = meshgrid(x,x); o!sxfJKl
% [theta,r] = cart2pol(X,Y); #y-OkGS
^
% idx = r<=1; tE(x8>5A:
% z = nan(size(X)); Q\m"n^XN
% n = [0 1 1 2 2 2 3 3 3 3]; O JvEq@
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; yc_(L-'n
% Nplot = [4 10 12 16 18 20 22 24 26 28]; vkc(-n
% y = zernfun(n,m,r(idx),theta(idx)); l"CHI*
% figure('Units','normalized') 0}Kl47}aD
% for k = 1:10 MCz+l0
% z(idx) = y(:,k); va~:oA
% subplot(4,7,Nplot(k)) \@MGOaR]
% pcolor(x,x,z), shading interp 5c'rnMW4+p
% set(gca,'XTick',[],'YTick',[]) Wj8\~B=('
% axis square Y49kq}
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ""d3ownKhw
% end XL EA|#
%
[GU!],Y
% See also ZERNPOL, ZERNFUN2. \n`UkxZn+
~
Z%>N
% Paul Fricker 11/13/2006 #)my)}o\p
YjvqU /[3
|+suGqo
% Check and prepare the inputs: Da?0B9'
% ----------------------------- |PI.xl:ch
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) @<>](4D
error('zernfun:NMvectors','N and M must be vectors.') Qy0bp;V/
end G1$DVGo
fCx~K' UWn
if length(n)~=length(m) IL YS:c58=
error('zernfun:NMlength','N and M must be the same length.') 6CY_8/:zL
end ^R>&^"oI
dH#o11[
n = n(:); _ F@>?\B
m = m(:); i]8zZRe
if any(mod(n-m,2)) 3zs~Y3M?i
error('zernfun:NMmultiplesof2', ...
mEyZ<U9
'All N and M must differ by multiples of 2 (including 0).') |\~cjPX(
end KXicy_@DC`
Tg{d#U_qB
if any(m>n) *!C^L"i
error('zernfun:MlessthanN', ... @HIC i]
'Each M must be less than or equal to its corresponding N.') R0oP##]
end N{|N_}X`Y
M={k4r_t
if any( r>1 | r<0 ) ]7h&ZF
error('zernfun:Rlessthan1','All R must be between 0 and 1.') j%[|XfM
end `A&64D
~|l>bf
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Q?W]g%:)
error('zernfun:RTHvector','R and THETA must be vectors.') %8S!l;\H5
end ]%>;R^HY
R%7k<1d'`
r = r(:); uh:
theta = theta(:); R^%7|
length_r = length(r); Bk?M F6
if length_r~=length(theta) OM}:1He
error('zernfun:RTHlength', ... {{@3r5KGl
'The number of R- and THETA-values must be equal.') D?X97jNm
end 5:^dyF&sm{
O2 3f\pm&
% Check normalization: A3Ltk 2<
% -------------------- ?w3f;v
if nargin==5 && ischar(nflag) ~q-|cl<
isnorm = strcmpi(nflag,'norm'); m(*CuM[E
if ~isnorm .hETqE` E
error('zernfun:normalization','Unrecognized normalization flag.') cJi5\<b
end 6`X#<#_&
else |_!xA/_U'T
isnorm = false; /+02BP
end
k"GW3E;
XXxX;xz$
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% "xnek8F
% Compute the Zernike Polynomials urXM}^
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% W!GgtQw{F
E$smr\
% Determine the required powers of r: }tc,3>/
% ----------------------------------- o*5|W9
m_abs = abs(m); Fv#ToT:QXe
rpowers = []; )0qXZgs
for j = 1:length(n) QFDjsd4
rpowers = [rpowers m_abs(j):2:n(j)]; $n(@hT>?
end G}}oeS
rpowers = unique(rpowers); 7<-D_$SrU
u )
fbR
% Pre-compute the values of r raised to the required powers, HYW+,ts'
% and compile them in a matrix: 64b9.5Bn
% ----------------------------- .\*\bvyCw
if rpowers(1)==0 9Tjvc! 4_b
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); r&Za*TD^
rpowern = cat(2,rpowern{:}); pS0-<-\R
rpowern = [ones(length_r,1) rpowern]; U:YT>U1Z
else ke)3*.Y%C
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); eT:%i"C
rpowern = cat(2,rpowern{:}); (w"zI!
end D@O'8
~mmI]
pC
% Compute the values of the polynomials: Z-]d_Y~m4
% -------------------------------------- gt{ei)2b
y = zeros(length_r,length(n)); hMi!H.EX.
for j = 1:length(n) ZNG.W0{p
s = 0:(n(j)-m_abs(j))/2; pEhWgCL
pows = n(j):-2:m_abs(j); t2tH%%Rs
for k = length(s):-1:1 &$vDC M4
p = (1-2*mod(s(k),2))* ... ?G.9D`95
prod(2:(n(j)-s(k)))/ ... >.J68x
prod(2:s(k))/ ... /M B0%6m
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Y:*mAv;&
prod(2:((n(j)+m_abs(j))/2-s(k))); H-7*)D
idx = (pows(k)==rpowers); 6Y\9h)1Jo
y(:,j) = y(:,j) + p*rpowern(:,idx); 1cOp"!
end &e3z)h
'<6Gz7O
if isnorm LFV;Y.-(h
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); G0y%_"[
end j!m~ :D
end 8m-jU
5u
% END: Compute the Zernike Polynomials ^x:4%%Q]l
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% P,D >gxl
6t/})Xv
% Compute the Zernike functions: |WubIj*\{
% ------------------------------ |w /txn8G|
idx_pos = m>0; l<z[)fE{uS
idx_neg = m<0; p*NC nD*
?aO%\<b
z = y; zXUE<\
if any(idx_pos) *% uv7G@%N
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 4ol=YGCI_
end >G/>:wwSP.
if any(idx_neg) McH*J j
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ukq9Cjs
end A 7DdU NR
;#fB=[vl";
% EOF zernfun