切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11793阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 4:$>,D\  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! fXe-U='  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 S?\hbM]V-o  
    function z = zernfun(n,m,r,theta,nflag) nDB 2>J  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. kN |5 J  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N dyiEK)$h  
    %   and angular frequency M, evaluated at positions (R,THETA) on the X2dc\v.x  
    %   unit circle.  N is a vector of positive integers (including 0), and r>~d[,^$m4  
    %   M is a vector with the same number of elements as N.  Each element 4:&qT Y)H  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) RB7AI !'a?  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, )|y2Q  
    %   and THETA is a vector of angles.  R and THETA must have the same C]yQ "b  
    %   length.  The output Z is a matrix with one column for every (N,M) 7k=F6k0)  
    %   pair, and one row for every (R,THETA) pair. MiH}VfI  
    % 7X{bB  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Fiu!!M6  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), TT2cOw  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral \!JS7!+  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, KU|BT .o8  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized g(1B W#$  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. MATgJ`lsy  
    % PB(  
    %   The Zernike functions are an orthogonal basis on the unit circle. ]TBtLU3  
    %   They are used in disciplines such as astronomy, optics, and R'I_xjC  
    %   optometry to describe functions on a circular domain. jc&/}o$K  
    % 7AO3-; l]  
    %   The following table lists the first 15 Zernike functions. J, 0pe\5  
    % !/6\m!e|1R  
    %       n    m    Zernike function           Normalization ;EJPrDHTk  
    %       -------------------------------------------------- 8pk#sJ51  
    %       0    0    1                                 1 P}hY {y'  
    %       1    1    r * cos(theta)                    2 Ni!;-,H+E  
    %       1   -1    r * sin(theta)                    2 _}zo /kDA  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) n</k/Mk}  
    %       2    0    (2*r^2 - 1)                    sqrt(3) c.(Ud`jc  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) J3~hzgY  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 0L:V#y-*  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 4`8IFK  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) \5Vp6^  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) >+:r '  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) `10X5V@hP  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) qRPc %"  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) j|[(*i%7|  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) tw'hh@7-Y  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) ,u}<Ws8N  
    %       -------------------------------------------------- e&$p-0DmT|  
    % z;dcAdz9  
    %   Example 1: gX@nPZjg  
    % cBifZv*l  
    %       % Display the Zernike function Z(n=5,m=1) L$1K7<i.  
    %       x = -1:0.01:1; m ~u|VgD  
    %       [X,Y] = meshgrid(x,x); {*QvC g?  
    %       [theta,r] = cart2pol(X,Y); $%g\YdC  
    %       idx = r<=1; ytjK++(T5  
    %       z = nan(size(X)); rI0)F  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); >ik1]!j]Lv  
    %       figure J3;Tm~KJ_  
    %       pcolor(x,x,z), shading interp I*D<J$ 9N  
    %       axis square, colorbar f}[H `OF  
    %       title('Zernike function Z_5^1(r,\theta)') ?}vzLgp  
    % w`L~#yu  
    %   Example 2: %p0b{P j_p  
    % Bk@)b`WR  
    %       % Display the first 10 Zernike functions 1"}B]5!  
    %       x = -1:0.01:1; p?Ed- S  
    %       [X,Y] = meshgrid(x,x); Hqvc7-c6  
    %       [theta,r] = cart2pol(X,Y); pT4qPta,2  
    %       idx = r<=1; [%)@|^hw91  
    %       z = nan(size(X)); !w q4EV  
    %       n = [0  1  1  2  2  2  3  3  3  3]; Q[M (Wqg  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; '!!e+\h#  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28];  bRNK.[|  
    %       y = zernfun(n,m,r(idx),theta(idx)); ~<n(y-P^  
    %       figure('Units','normalized') h$70H^r  
    %       for k = 1:10 <B!'3C(P  
    %           z(idx) = y(:,k); Y}ng_c  
    %           subplot(4,7,Nplot(k)) - yoAxPDW  
    %           pcolor(x,x,z), shading interp AHwG<k  
    %           set(gca,'XTick',[],'YTick',[]) 0<g<GQ(E  
    %           axis square U^[<  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Va7c#P?  
    %       end czI{qi5N  
    % n@ 4@,  
    %   See also ZERNPOL, ZERNFUN2. tQrS3Hz'nA  
    / |GT\X4o  
    %   Paul Fricker 11/13/2006 &y7 0  
    8h|M!/&2  
    2{-!E ^g  
    % Check and prepare the inputs: Edw2W8  
    % ----------------------------- i'HPRY  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) F.<L> G7{1  
        error('zernfun:NMvectors','N and M must be vectors.') zOB !(R  
    end IU|kNBo  
    r| f-_D  
    if length(n)~=length(m)  `?|Rc  
        error('zernfun:NMlength','N and M must be the same length.') xYI;V7  
    end 6\4Z\82  
    RNTa XR+Zn  
    n = n(:); GRT] aw  
    m = m(:); 8Atq,GcG  
    if any(mod(n-m,2)) WuM C^  
        error('zernfun:NMmultiplesof2', ... i@5 )` <?  
              'All N and M must differ by multiples of 2 (including 0).') r<c #nD~K  
    end t<638`{kk  
    nIn2 *r  
    if any(m>n) @vRwzc\   
        error('zernfun:MlessthanN', ... pYo=oI  
              'Each M must be less than or equal to its corresponding N.') zrRFn `B  
    end NvJV</l6 A  
    A1),el-^5  
    if any( r>1 | r<0 ) FI"HJwAs  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') =gjDCx$|  
    end sI,W%I':d  
    ,%[4j9#!_  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) m\ S\3n  
        error('zernfun:RTHvector','R and THETA must be vectors.') *fnvZw?  
    end Bz /@c)  
    j6S"UwJjp  
    r = r(:); n2f6 p<8A  
    theta = theta(:); /_t|Dry015  
    length_r = length(r); pKT2^Q}-h  
    if length_r~=length(theta) RWKH%C[Yd  
        error('zernfun:RTHlength', ... +G*JrwJ&=  
              'The number of R- and THETA-values must be equal.') ""% A'TZ  
    end ^/@jwZ  
    g/~XCC^F?  
    % Check normalization: 5~H#(d<oZ  
    % -------------------- S6xgiem  
    if nargin==5 && ischar(nflag) KxzYfH  
        isnorm = strcmpi(nflag,'norm'); =*Z5!W'd  
        if ~isnorm H8{ol6wc)6  
            error('zernfun:normalization','Unrecognized normalization flag.') ["3\eFg  
        end IiJZ5'{  
    else y<:<$22O  
        isnorm = false; P7.'kX9  
    end 9'[ N1Un.=  
    \%0n}.A  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% j%IF2p2  
    % Compute the Zernike Polynomials !RW `3  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% fCWGAO2  
    V  ~@^`Gd  
    % Determine the required powers of r: z (?=Iv3  
    % ----------------------------------- YW/QC'_iC  
    m_abs = abs(m); `=lc<T^  
    rpowers = []; $za8"T*I  
    for j = 1:length(n) m908jI_So  
        rpowers = [rpowers m_abs(j):2:n(j)]; N$>^g"6 o  
    end S! v(+|  
    rpowers = unique(rpowers); #S]ER907  
    q 11IkDa  
    % Pre-compute the values of r raised to the required powers, %D g0fL  
    % and compile them in a matrix: EJ@p-}I!  
    % ----------------------------- kE9esC 3  
    if rpowers(1)==0 xG&)1sT#-\  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); .Z:zZ_Ev  
        rpowern = cat(2,rpowern{:}); o%9*B%HO/  
        rpowern = [ones(length_r,1) rpowern]; /1mW|O>0  
    else mpPdG  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); C CBfKp  
        rpowern = cat(2,rpowern{:}); /DQaGq/Ld  
    end CHrFM@CM  
    p$Ox'A4  
    % Compute the values of the polynomials: ojyIQk+  
    % -------------------------------------- .A sv%p[W  
    y = zeros(length_r,length(n)); [W %$qZlP  
    for j = 1:length(n) 8V^oP] Y  
        s = 0:(n(j)-m_abs(j))/2; -gSUjP  
        pows = n(j):-2:m_abs(j); h$4Hw+Yxs]  
        for k = length(s):-1:1 qlL`jWJ  
            p = (1-2*mod(s(k),2))* ... 3s/H2f z  
                       prod(2:(n(j)-s(k)))/              ... T!Hb{Cg*  
                       prod(2:s(k))/                     ... Llr>9(|  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Ty vtmx M  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); o.0ci+z@  
            idx = (pows(k)==rpowers); ]]Cb$$Td  
            y(:,j) = y(:,j) + p*rpowern(:,idx); GGnpjwXeH  
        end tjupJ*Rt  
         J ]nohICe  
        if isnorm su*'d:L  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); I 'V4D[H5  
        end gb H<]?  
    end -$\+' \  
    % END: Compute the Zernike Polynomials {q"OM*L(  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% W[Ls|<Q  
    q WQ/ 'M  
    % Compute the Zernike functions: j'A_'g'^  
    % ------------------------------ 7=;R& mqC  
    idx_pos = m>0; ILGMMA_2  
    idx_neg = m<0; _d5QbTe  
    9I}-[|`u  
    z = y; etTn_v  
    if any(idx_pos) D)L+7N0D~  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); \WxukYH  
    end o,_? ^'@  
    if any(idx_neg) LDPUD'  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Lm%:K]X  
    end G3Z)Z) N  
    3kybLOG  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) R!}H;[c  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. y [}.yyye  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated F3On?x)  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive k\5c|Wq|g  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, Hj^1or3R]  
    %   and THETA is a vector of angles.  R and THETA must have the same -t!~%_WCv  
    %   length.  The output Z is a matrix with one column for every P-value, rNXQf'*I  
    %   and one row for every (R,THETA) pair. ~vm%6CABM  
    % akp-zn&je  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike :CG`t?N9M  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) hOjk3 k  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) $V -~Bu-  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 M?1Y,5  
    %   for all p. 6]K_m(F  
    % Ag-(5:  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 XO.jl"xu  
    %   Zernike functions (order N<=7).  In some disciplines it is *#,7d"6W5  
    %   traditional to label the first 36 functions using a single mode J!dm-L  
    %   number P instead of separate numbers for the order N and azimuthal 3c-GY:VkLM  
    %   frequency M. ZgTW.<.%2  
    % Acez'@z  
    %   Example: G/)O@Ugp  
    % o_izl \  
    %       % Display the first 16 Zernike functions 9}rS(/@ }  
    %       x = -1:0.01:1; &GpRI(OB/+  
    %       [X,Y] = meshgrid(x,x); g];!&R-  
    %       [theta,r] = cart2pol(X,Y); >^u2cAi3[  
    %       idx = r<=1; ~[t[y~Hup  
    %       p = 0:15; g|o,uD  
    %       z = nan(size(X)); Q *D;U[  
    %       y = zernfun2(p,r(idx),theta(idx)); `+]Qz =}  
    %       figure('Units','normalized') 4>wP7`/+y  
    %       for k = 1:length(p) Ogqj?]2QC  
    %           z(idx) = y(:,k); 8SMxw~9$  
    %           subplot(4,4,k) owVX*&b{  
    %           pcolor(x,x,z), shading interp /:cd\A}  
    %           set(gca,'XTick',[],'YTick',[]) ]%;:7?5l  
    %           axis square )HEa<P^kJl  
    %           title(['Z_{' num2str(p(k)) '}']) #]\Uk,mhZB  
    %       end ) ;EBz  
    %  on4HKeO  
    %   See also ZERNPOL, ZERNFUN. _P!m%34|  
    xVw9v6@`h  
    %   Paul Fricker 11/13/2006 aS>u,=C  
    &sl0W-;0  
    >R'F,  
    % Check and prepare the inputs: lt/1f{v[:  
    % ----------------------------- W8G,=d}6  
    if min(size(p))~=1 V.U| #n5  
        error('zernfun2:Pvector','Input P must be vector.') atj(eg  
    end 4VHn  \  
    AzPu)  
    if any(p)>35 rjK%t|aV^  
        error('zernfun2:P36', ... irZ])a  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... Q 3 ea{!r  
               '(P = 0 to 35).']) {4l8}w  
    end [|v][Hwv  
    ."g`3tVK  
    % Get the order and frequency corresonding to the function number: [:dY0r+  
    % ---------------------------------------------------------------- G0Iw-vf  
    p = p(:); &s(^@OayE  
    n = ceil((-3+sqrt(9+8*p))/2); BT !^~S%w  
    m = 2*p - n.*(n+2); YqscZ(L:y  
    ?4YGT  
    % Pass the inputs to the function ZERNFUN: H8=N@l  
    % ---------------------------------------- "MeVE#O  
    switch nargin x[p|G5  
        case 3 9+|$$)  
            z = zernfun(n,m,r,theta); Cp\6W[2+B  
        case 4 hW<%R]^|  
            z = zernfun(n,m,r,theta,nflag); !aUs>1i  
        otherwise @F AA2 d  
            error('zernfun2:nargin','Incorrect number of inputs.') -OV&Md:~  
    end ijv(9mR  
    2DA]i5  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) /xBb[44z8  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. d0!5j  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of 8Al{+gx@?  
    %   order N and frequency M, evaluated at R.  N is a vector of 8 /]S^'>  
    %   positive integers (including 0), and M is a vector with the g/d<Zfq<{  
    %   same number of elements as N.  Each element k of M must be a gx/,)> E.  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) 2QcOR4_V  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is bSlF=jT[S  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix 1s&zMWC  
    %   with one column for every (N,M) pair, and one row for every HVCe;eI  
    %   element in R. tKuwpT1Qc  
    % X,% 0/6*]  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- Dj?> <@  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is $99n&t$Y  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to D/gw .XYL  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 5 V~oIL  
    %   for all [n,m]. Qy<P463A(l  
    % P`+{@@  
    %   The radial Zernike polynomials are the radial portion of the Pj^{|U21  
    %   Zernike functions, which are an orthogonal basis on the unit PdFKs+Z`  
    %   circle.  The series representation of the radial Zernike  qA7>vi%  
    %   polynomials is K7B/s9/xs  
    % ,-LwtePJ0  
    %          (n-m)/2 Rok7n1gW  
    %            __ Xl{P8L  
    %    m      \       s                                          n-2s | j`@eF/"  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r ~W'{p  
    %    n      s=0 8 >EWKI9  
    % =o(5_S.u;  
    %   The following table shows the first 12 polynomials. 8 ^2oWC#U(  
    % I*{ nP)^9  
    %       n    m    Zernike polynomial    Normalization 4[r0G+  
    %       --------------------------------------------- ~H_/zK6e  
    %       0    0    1                        sqrt(2) =:Fc;n>c<K  
    %       1    1    r                           2 }eU*( }<^  
    %       2    0    2*r^2 - 1                sqrt(6) xh,qNnGGi  
    %       2    2    r^2                      sqrt(6) <c-=3}=U\  
    %       3    1    3*r^3 - 2*r              sqrt(8) "Yv_B3p   
    %       3    3    r^3                      sqrt(8) .GXBc  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) Gr'  CtO  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) h8S.x)  
    %       4    4    r^4                      sqrt(10) hbDXo:  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) bdrg(d6  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) .t-4o<7 3  
    %       5    5    r^5                      sqrt(12) G@\1E+Ip  
    %       --------------------------------------------- ".V$~n(  
    % K`WywH3-  
    %   Example: . B9iLI  
    % Ecefi pG  
    %       % Display three example Zernike radial polynomials m+R[#GE8#  
    %       r = 0:0.01:1; B$ PP&/  
    %       n = [3 2 5]; &MQmu,4  
    %       m = [1 2 1]; )gIKH{JYL  
    %       z = zernpol(n,m,r); Xm}/0g&7  
    %       figure S>6 ~lb8G  
    %       plot(r,z) nZyX|SPk  
    %       grid on Y@vTaE^w3  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') W=><)miQ@  
    % oy=js -  
    %   See also ZERNFUN, ZERNFUN2. kk@fL  
    vn!3l1\+J  
    % A note on the algorithm. Tod&&T'UW  
    % ------------------------ '&tG?gb&  
    % The radial Zernike polynomials are computed using the series 85:=4N%  
    % representation shown in the Help section above. For many special @[<><uTH  
    % functions, direct evaluation using the series representation can b9J_1Gl]  
    % produce poor numerical results (floating point errors), because OJuG~euy  
    % the summation often involves computing small differences between V)HG(k  
    % large successive terms in the series. (In such cases, the functions O7m(o:t x3  
    % are often evaluated using alternative methods such as recurrence #ym'AN  
    % relations: see the Legendre functions, for example). For the Zernike -`kW&I0  
    % polynomials, however, this problem does not arise, because the vXf!G`D  
    % polynomials are evaluated over the finite domain r = (0,1), and dO<ERY  
    % because the coefficients for a given polynomial are generally all EzM ?Nft  
    % of similar magnitude. QvlObEhcS  
    % l'-Bu(  
    % ZERNPOL has been written using a vectorized implementation: multiple zm5]J  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] DFB@O|JL  
    % values can be passed as inputs) for a vector of points R.  To achieve kW Ml  
    % this vectorization most efficiently, the algorithm in ZERNPOL 3tIVXtUCUk  
    % involves pre-determining all the powers p of R that are required to _LEK%  
    % compute the outputs, and then compiling the {R^p} into a single TOB-aAO  
    % matrix.  This avoids any redundant computation of the R^p, and J s@hLP `  
    % minimizes the sizes of certain intermediate variables. )Xz,j9GzJS  
    % eCU:Q  
    %   Paul Fricker 11/13/2006 .PIL +x*]N  
    X8a/ `Y,  
    A@!qv#'  
    % Check and prepare the inputs: NqazpB*  
    % ----------------------------- #Yj1w  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Ha0M)0Anv  
        error('zernpol:NMvectors','N and M must be vectors.') 8yR.uMI$/  
    end Db}j?ik/  
    Fx_z6a  
    if length(n)~=length(m) ]3],r?-tJ  
        error('zernpol:NMlength','N and M must be the same length.') VX0 %a@ur  
    end `_Zg3_K.dS  
    M>xK+q?O  
    n = n(:); ;s= l52  
    m = m(:); i4Q@K,$  
    length_n = length(n); I#Y22&G1  
    KI iO  
    if any(mod(n-m,2)) O-0x8O^B  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') f M :]&  
    end B?gOHG*vd>  
    6RU~"C  
    if any(m<0)  twHVv  
        error('zernpol:Mpositive','All M must be positive.') YlJ@XpKM  
    end <y('hI'  
    2G & a{  
    if any(m>n) \_VA 50  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') Fbr;{T .  
    end ~f&E7su-6+  
     L^/5ux  
    if any( r>1 | r<0 ) I;,77PxD  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') 3)t.p>VgO  
    end v|_K/|  
    c)6m$5]  
    if ~any(size(r)==1) .ljnDL/  
        error('zernpol:Rvector','R must be a vector.') RtkEGxw*^  
    end WH#1 zv  
    rQ{7j!Im  
    r = r(:); &)# ihK_  
    length_r = length(r); /e5O"@  
    IEL%!RFG  
    if nargin==4 j1Y~_  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); R"/GQ`^AqA  
        if ~isnorm y1jCg%'H  
            error('zernpol:normalization','Unrecognized normalization flag.') 5zK4Fraf  
        end 1SQ3-WU s  
    else wyH[x!QX  
        isnorm = false; H `XUJh  
    end NR$3%0 nC6  
    ^2:p|:Bz!l  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% OR P\b  
    % Compute the Zernike Polynomials 6%\J"AgXO  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 2lZ Q)   
    `z}?"BW|  
    % Determine the required powers of r: ydEoC$?0  
    % ----------------------------------- ?> 9/#Nv  
    rpowers = []; x;O[c3I  
    for j = 1:length(n) ^`i#$  
        rpowers = [rpowers m(j):2:n(j)]; :I]Mps<  
    end X;+sUj8  
    rpowers = unique(rpowers); >%_\;svZG  
    B B{$&Oh  
    % Pre-compute the values of r raised to the required powers, B&M%I:i  
    % and compile them in a matrix: $j%'{)gK  
    % ----------------------------- ,C\i^>=  
    if rpowers(1)==0 DaQ?\uq  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); c1(RuP:S  
        rpowern = cat(2,rpowern{:}); +%z> H"J.  
        rpowern = [ones(length_r,1) rpowern]; @,j*wnR  
    else b}$+H/V  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); }^WdJd]P  
        rpowern = cat(2,rpowern{:}); *}qWj_RT  
    end 3Y4?CM&0v  
    LtF,kAIt7v  
    % Compute the values of the polynomials: 6?gW-1mY  
    % -------------------------------------- x3=A:}t8  
    z = zeros(length_r,length_n); 'T;P;:!\  
    for j = 1:length_n H\"sgoJ  
        s = 0:(n(j)-m(j))/2; kOrZv,qFG[  
        pows = n(j):-2:m(j); Ux!p8  
        for k = length(s):-1:1 IVnHf_PzF  
            p = (1-2*mod(s(k),2))* ... m#Jmdb_  
                       prod(2:(n(j)-s(k)))/          ... HXC ;Np  
                       prod(2:s(k))/                 ... fSj5ZsO  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... F@jZ ho  
                       prod(2:((n(j)+m(j))/2-s(k))); J$DE"| -  
            idx = (pows(k)==rpowers); ij`w} V  
            z(:,j) = z(:,j) + p*rpowern(:,idx); z]y.W`i   
        end ;\dBfP  
         +4~_Ei[i  
        if isnorm Lnl(2xD  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); @l5"nBs<_:  
        end k/_ 59@)  
    end epe)a  
    |kg7LP3(8,  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    857
    光币
    847
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  .4!=p*Y  
    6mxfLlZ  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 _F|Ek;y%  
    T}v4*O.,  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)