非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 V3N0Og3
function z = zernfun(n,m,r,theta,nflag) 4'pS*v
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. W`rNBfG>
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N yq[Cq=rBk
% and angular frequency M, evaluated at positions (R,THETA) on the 0'Z\O
% unit circle. N is a vector of positive integers (including 0), and H[Q_hY[>V
% M is a vector with the same number of elements as N. Each element EOKzzX7 S
% k of M must be a positive integer, with possible values M(k) = -N(k) 5`[n8mU
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, 5~
' Ie<Y_
% and THETA is a vector of angles. R and THETA must have the same U]~^Z R
% length. The output Z is a matrix with one column for every (N,M) i8X`HbmN
% pair, and one row for every (R,THETA) pair. ~ A Qp|
% &NZfJs
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ;$j7H&UNQj
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), B6P|Z%E;D6
% with delta(m,0) the Kronecker delta, is chosen so that the integral hqSJ(gs{
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, |aToUi.Q%
% and theta=0 to theta=2*pi) is unity. For the non-normalized Y$8JM
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. uYG^Pc^v
% f7de'^t9
% The Zernike functions are an orthogonal basis on the unit circle. j5$BK[p.
% They are used in disciplines such as astronomy, optics, and +V862R4,o
% optometry to describe functions on a circular domain. ?dZt[vAMn
% T5Eseesp
% The following table lists the first 15 Zernike functions. &:B<Q$g#
% 1n*W2:,z
% n m Zernike function Normalization pY8q=Kl
% -------------------------------------------------- 6&U+6gb
% 0 0 1 1 Mn: /1eY
% 1 1 r * cos(theta) 2 -C7]qbT
}
% 1 -1 r * sin(theta) 2 "O>n@Q|
% 2 -2 r^2 * cos(2*theta) sqrt(6) H&}ipaDO
% 2 0 (2*r^2 - 1) sqrt(3) p4u5mM
% 2 2 r^2 * sin(2*theta) sqrt(6) C_:k8?
% 3 -3 r^3 * cos(3*theta) sqrt(8) $3+PbYY
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 7B9 `<{!h
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 4b]a&_-}
% 3 3 r^3 * sin(3*theta) sqrt(8) { >{B`e`$
% 4 -4 r^4 * cos(4*theta) sqrt(10) "$HbK
@]!h
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) BZK`O/
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) Q-TV*FD.
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) h( QYxI,|
% 4 4 r^4 * sin(4*theta) sqrt(10) }1 vT)
% -------------------------------------------------- ewsKH\#
% nx":"LFI
% Example 1: vm23U^VJ
% -]G(ms;}/Y
% % Display the Zernike function Z(n=5,m=1) Z^KA
% x = -1:0.01:1; a)-FGP^
% [X,Y] = meshgrid(x,x); -5G)?J/*
% [theta,r] = cart2pol(X,Y); w]j+9-._
% idx = r<=1; ?`?T7w|3
y
% z = nan(size(X)); {y
kYW%3s
% z(idx) = zernfun(5,1,r(idx),theta(idx)); s0UFym8
% figure eKZ%2|+j!7
% pcolor(x,x,z), shading interp .]4W!])9
% axis square, colorbar jZfx Jm
% title('Zernike function Z_5^1(r,\theta)') iGXI6`F"
% m@Ev~~;
% Example 2: 7J$b$P0}
% Y o0FUj
% % Display the first 10 Zernike functions jLg@FDb~
% x = -1:0.01:1; "7%:sty
% [X,Y] = meshgrid(x,x); -PB[-CX
% [theta,r] = cart2pol(X,Y); w&&2H8
% idx = r<=1; 8Q`WB0E<|
% z = nan(size(X)); sE(HZR1
% n = [0 1 1 2 2 2 3 3 3 3]; %6j)=IOts
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; JEn3`B!*
% Nplot = [4 10 12 16 18 20 22 24 26 28]; 6Q|k7*,B
% y = zernfun(n,m,r(idx),theta(idx)); 3ucP(Ex@tg
% figure('Units','normalized') #PLEPB
% for k = 1:10 H!e 3~+)
% z(idx) = y(:,k); R_P}~l
% subplot(4,7,Nplot(k)) Tz&Y]#h_
% pcolor(x,x,z), shading interp ^o?S M^
% set(gca,'XTick',[],'YTick',[]) H( -Y
% axis square <M?:
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) +WJ(QZEhD
% end AS!6XT
% k4J8O3E
% See also ZERNPOL, ZERNFUN2. USJ-e
pfuW
% Paul Fricker 11/13/2006 gv15t'y9
-php6$|
84zTCX
% Check and prepare the inputs: td2/9|Q
% ----------------------------- <c[U#KrvJ
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ~0"p*?^
error('zernfun:NMvectors','N and M must be vectors.')
8Chj
w wB
end >>d m}X
#PvB/3
if length(n)~=length(m) Huw\&E
error('zernfun:NMlength','N and M must be the same length.') $V>98M>j
end 59uwB('|lH
[a[/_Sf{
n = n(:); ge3sU5iZ
m = m(:); .@ C{3$,VG
if any(mod(n-m,2)) Fh7'[>onw
error('zernfun:NMmultiplesof2', ... }0hL~i
'All N and M must differ by multiples of 2 (including 0).') I&9S;I$
end Wx'Kp+9'
@*N)i?>
if any(m>n) @\_x'!R
error('zernfun:MlessthanN', ... _:n b&B
'Each M must be less than or equal to its corresponding N.') 1iT\df
end !33#. @[
hlZ@Dq%f
if any( r>1 | r<0 ) {Ee>n^1
error('zernfun:Rlessthan1','All R must be between 0 and 1.') {@}?k s5
end T Zir>5
$5`!Z%>/
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) V+-$jOh
error('zernfun:RTHvector','R and THETA must be vectors.') j Ib
end ~\nBjM2
v}G]X Z8
r = r(:); u.pxz8
theta = theta(:); 8 S`9dSc
length_r = length(r); 9ILIEm:
if length_r~=length(theta) 5pNY)>]t=
error('zernfun:RTHlength', ... @(``:)Z<b
'The number of R- and THETA-values must be equal.') ~H)4)r^
end M_0zC1
'J*<iA*W
% Check normalization: SQsSa1
% -------------------- WzW-pV]
if nargin==5 && ischar(nflag) O/%< }3Sq
isnorm = strcmpi(nflag,'norm'); ~cAZB9Fa
if ~isnorm !2CL1j0(
error('zernfun:normalization','Unrecognized normalization flag.') "o!{51!'
end :Br5a34q
else gsar[gZ
isnorm = false; %ugHhS!
end 5 v^yQ<70
7x]4`#u
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ?71+f{s
% Compute the Zernike Polynomials &WXY 'A=
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% mAgF73,3
O40+M)e]
% Determine the required powers of r: wmNHT _
% ----------------------------------- 4Ph0:^i_
m_abs = abs(m); c;f!!3&
rpowers = []; pi( -A
for j = 1:length(n) 87!C@XlK_
rpowers = [rpowers m_abs(j):2:n(j)]; js^ ,(CS
end A% Q!^d
rpowers = unique(rpowers); 9DQ)cy
-!RtH |P
% Pre-compute the values of r raised to the required powers, J;t 7&Zpe
% and compile them in a matrix: ivO/;)=t
% ----------------------------- djQv[Vc{
if rpowers(1)==0 =*BIB5
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); pnyWcrBf
rpowern = cat(2,rpowern{:}); dBsX*}C
rpowern = [ones(length_r,1) rpowern]; JG`Q;K
else lA!"z~03*
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); RT/o$$
rpowern = cat(2,rpowern{:}); f8 /'%$N
end I7+9~5p
snM Z0W
% Compute the values of the polynomials: )O+}T5c=
% -------------------------------------- t9gfU5?
y = zeros(length_r,length(n)); qIUfPA=/_
for j = 1:length(n) Z#d&|5Xj
s = 0:(n(j)-m_abs(j))/2; x} /,yaWZ
pows = n(j):-2:m_abs(j); tbo>%kn
for k = length(s):-1:1 \ b
V6@#,
p = (1-2*mod(s(k),2))* ... Bm$"WbOq*R
prod(2:(n(j)-s(k)))/ ... KAA-G2%M
prod(2:s(k))/ ... 8VG!TpX/B
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... @tohNO>
prod(2:((n(j)+m_abs(j))/2-s(k))); <`X"}I3ba
idx = (pows(k)==rpowers);
B3m_D"?
y(:,j) = y(:,j) + p*rpowern(:,idx); Kemw^48ts
end W+wA_s2&D
',3HlOJ:
if isnorm B0$:b!
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); l5%G'1w#,j
end VLsxdwHgb
end K`&oC8p
% END: Compute the Zernike Polynomials [u@Jc,
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% G2 ]H6G$M
A61^[Y,dX_
% Compute the Zernike functions: UsGa
% ------------------------------ @}_WE,r
idx_pos = m>0; T#%/s?_>.
idx_neg = m<0; mOpTzg@
7qO a
;^T
z = y; rt3qdk5U
if any(idx_pos) .LVQx
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 3P~o"a>
end o56`
if any(idx_neg) n8=5-7UT
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); TlAR.cV
end Xdi:1wW@p
0`.^MC?
% EOF zernfun