切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11482阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 UpD4'!<buV  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! tBJ4lb  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 g"|>^90  
    function z = zernfun(n,m,r,theta,nflag) L~;(M6Jp  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 8kdJtEW3  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N U+>M@!=  
    %   and angular frequency M, evaluated at positions (R,THETA) on the O<V 4j,  
    %   unit circle.  N is a vector of positive integers (including 0), and #| ,cy,v4  
    %   M is a vector with the same number of elements as N.  Each element ^<-r57pz  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) lqMr@ :t  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, E X'PRNB,  
    %   and THETA is a vector of angles.  R and THETA must have the same NZ i3U  
    %   length.  The output Z is a matrix with one column for every (N,M) $Z;/Sh  
    %   pair, and one row for every (R,THETA) pair. 2IM 31 .  
    % :8oJG8WH  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 1d FuoX  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), _ h#I}uJ~  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral of_y<dd[G  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, I-g/ )2  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 0mUVa=)D  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. =c*l!."0  
    % /u.ZvY3,  
    %   The Zernike functions are an orthogonal basis on the unit circle. EZ|v,1`e  
    %   They are used in disciplines such as astronomy, optics, and MomHSvQ\  
    %   optometry to describe functions on a circular domain. LOi}\O8  
    % .S-)  
    %   The following table lists the first 15 Zernike functions. Kd^.>T-  
    % |]@Pq[Hn|  
    %       n    m    Zernike function           Normalization YcDKRyrt  
    %       -------------------------------------------------- G'G8`1Nj  
    %       0    0    1                                 1 U7 D!w$4  
    %       1    1    r * cos(theta)                    2 /A-WI x  
    %       1   -1    r * sin(theta)                    2 P][jB  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) r <5}& B`  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 7>j~;p{  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) YVDFcN9v  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ]"{8"+x  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) :[_ms d  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ; iia?f1  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) KB](W  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) Qw'905;(  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 1F`jptVQ\G  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) If,p!L  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 9|}Pf_5]%[  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) )'U0n`=  
    %       -------------------------------------------------- R'tKJ_VI  
    % m]AT-]*f  
    %   Example 1: ]$lt  
    % vsj4? 0=  
    %       % Display the Zernike function Z(n=5,m=1) 6ABK)m-y  
    %       x = -1:0.01:1; *l+Dbm,u  
    %       [X,Y] = meshgrid(x,x); h.PBe  
    %       [theta,r] = cart2pol(X,Y); LQ# E+id&  
    %       idx = r<=1; ,u2Qkw  
    %       z = nan(size(X)); 8\lh'8  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); gk%@& TB/  
    %       figure {k) gDJU  
    %       pcolor(x,x,z), shading interp GcdJf/k  
    %       axis square, colorbar DaQl ip  
    %       title('Zernike function Z_5^1(r,\theta)') z2uL[deN'"  
    % I} jgz  
    %   Example 2: MY@&^71i4  
    % zd=O;T;.  
    %       % Display the first 10 Zernike functions _rwJ: r  
    %       x = -1:0.01:1; RTm/-6[N  
    %       [X,Y] = meshgrid(x,x); |R0f--;  
    %       [theta,r] = cart2pol(X,Y); Q# B0JT1  
    %       idx = r<=1; [Vo5$w  
    %       z = nan(size(X)); f 5v&4  
    %       n = [0  1  1  2  2  2  3  3  3  3]; 9aJIq{`E  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 7pyzPc#_  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 3OZPy|".ax  
    %       y = zernfun(n,m,r(idx),theta(idx)); pZ.b X  
    %       figure('Units','normalized') uX6yhaOp|  
    %       for k = 1:10 {?H5Pw>{%h  
    %           z(idx) = y(:,k); hL&$` Q  
    %           subplot(4,7,Nplot(k)) 9RJF  
    %           pcolor(x,x,z), shading interp g |>LT_  
    %           set(gca,'XTick',[],'YTick',[]) CBEf;I g  
    %           axis square XVN`J]XHk  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) !5o j~H  
    %       end @x}"aJgl  
    %  }~/b%^  
    %   See also ZERNPOL, ZERNFUN2. 9D3{[  
    T+<.KvO-  
    %   Paul Fricker 11/13/2006 "B_3<RSL  
    V95o(c.p  
    eThaH0  
    % Check and prepare the inputs: %y6(+I #P  
    % ----------------------------- ;miif  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) )  K& #il  
        error('zernfun:NMvectors','N and M must be vectors.') <&3P\aM>  
    end {]T?)!V m  
    6Wu*zY_+  
    if length(n)~=length(m) JLoF!MK}  
        error('zernfun:NMlength','N and M must be the same length.') <q'l7 S  
    end zt(lV  
    SiLW[JXd  
    n = n(:); ,CfslhO{j  
    m = m(:); k QuEG5n.-  
    if any(mod(n-m,2)) =nhY;pY3u  
        error('zernfun:NMmultiplesof2', ... <\^0!v  
              'All N and M must differ by multiples of 2 (including 0).') K~TwyB-h  
    end !D#"+&&G8  
    yQK{ +w  
    if any(m>n) X-c|jn7  
        error('zernfun:MlessthanN', ... Ie.*x'b?y  
              'Each M must be less than or equal to its corresponding N.') y[8;mCh  
    end wFJf"@/vJ  
    ]`/>hH>+~9  
    if any( r>1 | r<0 ) !T{+s T  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 6 c_#"4  
    end qjB:6Jq4q  
    q+?<cjVg  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ytZo0pad  
        error('zernfun:RTHvector','R and THETA must be vectors.') ^_WR) F'K  
    end 4q}+8F`0F  
    Jo5Bmh0  
    r = r(:); !5`MiH  
    theta = theta(:); h  d3  
    length_r = length(r); v(1 [n]y  
    if length_r~=length(theta) K*/oWYM]  
        error('zernfun:RTHlength', ... FK _ ZE>  
              'The number of R- and THETA-values must be equal.') x4MmBVqp  
    end }[AaI #  
    XF!L.'zH  
    % Check normalization: |oY{TQ<<d  
    % -------------------- ,md_eGF  
    if nargin==5 && ischar(nflag) g#5R|| r  
        isnorm = strcmpi(nflag,'norm'); 4p:d#,?r  
        if ~isnorm PkvW6,lS  
            error('zernfun:normalization','Unrecognized normalization flag.') 7v5]% %E/  
        end my (@~'  
    else K10G+'H^  
        isnorm = false; 7Ak<e tHD  
    end Ykxk`SJ  
    6'^_*n  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 1m*)MZ)  
    % Compute the Zernike Polynomials cOVj @z  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 1}(22Q;  
    mY"7/dw<v  
    % Determine the required powers of r: EXDDUqZ5\  
    % ----------------------------------- ;wn9 21r  
    m_abs = abs(m); 4ud(5m;Rle  
    rpowers = []; zI`I Q  
    for j = 1:length(n) J"`VA_[  
        rpowers = [rpowers m_abs(j):2:n(j)];  Rb6BY-/J  
    end l6  G6H$  
    rpowers = unique(rpowers); @{Rb]d?&F?  
    @8L5 UT  
    % Pre-compute the values of r raised to the required powers, O_FB^BB  
    % and compile them in a matrix: CMj =4e  
    % ----------------------------- ;UQGi}?CD  
    if rpowers(1)==0 ? i{?Q,  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); W A/dt2D|  
        rpowern = cat(2,rpowern{:}); )/raTD  
        rpowern = [ones(length_r,1) rpowern]; AdDX_\V,*  
    else \+ se%O  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); sxNf"C=-.  
        rpowern = cat(2,rpowern{:}); r2-iISxg+  
    end KF%BX ~80C  
    jPWONz(#  
    % Compute the values of the polynomials: %3z[;&*3O  
    % -------------------------------------- DbMVbgz<e  
    y = zeros(length_r,length(n)); z?byNd8  
    for j = 1:length(n) JRl=j2z  
        s = 0:(n(j)-m_abs(j))/2; ]s\r3I]  
        pows = n(j):-2:m_abs(j); $$9H1)Ny  
        for k = length(s):-1:1 iLy^U*yK  
            p = (1-2*mod(s(k),2))* ... 20c5U%  
                       prod(2:(n(j)-s(k)))/              ... "qmSwdM  
                       prod(2:s(k))/                     ... ;K<VT\  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... <.h7xZ  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); #C9f?fnM  
            idx = (pows(k)==rpowers); >Pw5! i\  
            y(:,j) = y(:,j) + p*rpowern(:,idx); .p[uIRd`  
        end &g :(I  
         8zK#./0\  
        if isnorm &~:EmLgv  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); X=QX9Ux?^  
        end `OW'AS |  
    end Y@FYo>0O  
    % END: Compute the Zernike Polynomials '2lV(>"  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% *zdD4 I=  
    OyO<A3  
    % Compute the Zernike functions: X!KX4H  
    % ------------------------------ i}m'#b  
    idx_pos = m>0; .j4y0dh33  
    idx_neg = m<0; @)pC3Vi^  
    +hRy{Ps/  
    z = y; |8 ` }8vo)  
    if any(idx_pos) M5I`i{Gw  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); F_@B ` ,  
    end `l|Oj$  
    if any(idx_neg) )1At/mr  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); FGVw=G{r  
    end $}/tlA&e  
    c.>f,vtcn  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) `l45T~`]$  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. Bz'.7" ":0  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated )>~ jjR  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive a;[\nCK  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, EV6R[2kl  
    %   and THETA is a vector of angles.  R and THETA must have the same 3eY>LWx  
    %   length.  The output Z is a matrix with one column for every P-value, -;cF)C--12  
    %   and one row for every (R,THETA) pair. 2/3yW.C  
    % zY/Oh9`=v  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike #M!u';bZ  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) cW^LmA  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) d>[i*u,]/  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 3P!OP{`  
    %   for all p. db 99S   
    % `R0~mx&6G  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 0er| QC  
    %   Zernike functions (order N<=7).  In some disciplines it is j&Hui>~  
    %   traditional to label the first 36 functions using a single mode &0kr[Ik.  
    %   number P instead of separate numbers for the order N and azimuthal k (AE%eA  
    %   frequency M. faOiNR7;h  
    % GP+=b:C{E  
    %   Example: KTYjC\\G  
    % $7YZ;=~B  
    %       % Display the first 16 Zernike functions @PM<pEve  
    %       x = -1:0.01:1; q:kGJ xfaW  
    %       [X,Y] = meshgrid(x,x); k2Cq9kQq  
    %       [theta,r] = cart2pol(X,Y); A\?t^T  
    %       idx = r<=1; ?Tc|3U  
    %       p = 0:15; ObM/~{rKx  
    %       z = nan(size(X)); 'A|c\sy  
    %       y = zernfun2(p,r(idx),theta(idx)); igL5nE=n  
    %       figure('Units','normalized') _1)n_P4  
    %       for k = 1:length(p) "]jN'N(.  
    %           z(idx) = y(:,k); 7=G6ao7  
    %           subplot(4,4,k) a=$ZM4Bn  
    %           pcolor(x,x,z), shading interp XHv m{z=  
    %           set(gca,'XTick',[],'YTick',[]) {ccc[G?>.Q  
    %           axis square 8b0j rt  
    %           title(['Z_{' num2str(p(k)) '}']) 2<*"@Vj  
    %       end TeuZVy8a  
    % t,LK92?  
    %   See also ZERNPOL, ZERNFUN. qJF'KHyU{l  
    R:n|1]*f3X  
    %   Paul Fricker 11/13/2006 yW?-Z[  
    ^0"^  
    2MB>NM<xO  
    % Check and prepare the inputs: d7BpmM  
    % ----------------------------- R@grY:h  
    if min(size(p))~=1 p p0356  
        error('zernfun2:Pvector','Input P must be vector.') Lea4-Gc  
    end @5&57R3>  
    kKRu]0J~[  
    if any(p)>35 '{0O!y[H6  
        error('zernfun2:P36', ... i-w<5pGnf  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... ]2L11" erP  
               '(P = 0 to 35).']) 0Gj/yra9MO  
    end Z:^<NdKe  
    T$mT;k  
    % Get the order and frequency corresonding to the function number: \4qF3#  
    % ---------------------------------------------------------------- o#"yFP1  
    p = p(:); >/Z*\6|Zx#  
    n = ceil((-3+sqrt(9+8*p))/2); +|;Ri68  
    m = 2*p - n.*(n+2); ?#c "wA&  
    POm;lM$  
    % Pass the inputs to the function ZERNFUN: xuHP4$<h3  
    % ---------------------------------------- Qxy ~ %;X  
    switch nargin EO(l?Fgw]$  
        case 3 }+lK'6  
            z = zernfun(n,m,r,theta); /T qbl^[  
        case 4 %{'[S0@Z  
            z = zernfun(n,m,r,theta,nflag); k6DJ(.n'%a  
        otherwise _!|$i  
            error('zernfun2:nargin','Incorrect number of inputs.') {R(/Usg!=  
    end "1""1";  
    }JOz,SQHP  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) RKMF?:  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. 0n X5Vo  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of EQ"_kJ>81Y  
    %   order N and frequency M, evaluated at R.  N is a vector of b* n#XTV  
    %   positive integers (including 0), and M is a vector with the X,M!Tp  
    %   same number of elements as N.  Each element k of M must be a MP@}G$O  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) >f9Q&c$R  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is B~Z61   
    %   a vector of numbers between 0 and 1.  The output Z is a matrix 5y='1s[%  
    %   with one column for every (N,M) pair, and one row for every 2fayQY xD  
    %   element in R. 1mh7fZgn  
    % \4G9 fR4  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- aFnyhu&W'  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is ho#<?rh_  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to bA6^R If?  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 taVK&ohWx  
    %   for all [n,m]. |J-tU)|1vl  
    % Ss{5'SF)$c  
    %   The radial Zernike polynomials are the radial portion of the &H,UWtU+  
    %   Zernike functions, which are an orthogonal basis on the unit @d5t%V\  
    %   circle.  The series representation of the radial Zernike w4^ $@GtN  
    %   polynomials is yWN'va1+$  
    % Rc@lGq9  
    %          (n-m)/2 L`:V]p  
    %            __ /a$Zzs&xs  
    %    m      \       s                                          n-2s .ezko\nU  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r u3 +]3!BQ  
    %    n      s=0 KB\ri&bF  
    % fP;I{AiN~  
    %   The following table shows the first 12 polynomials. lS2 `#l>  
    % Efd@\m:~>  
    %       n    m    Zernike polynomial    Normalization FAGi`X<L  
    %       --------------------------------------------- 8;UkZN"hy5  
    %       0    0    1                        sqrt(2) Jn&u u  
    %       1    1    r                           2 5M>SrZH  
    %       2    0    2*r^2 - 1                sqrt(6) 2*-qEUl1  
    %       2    2    r^2                      sqrt(6) D+BflI~9mP  
    %       3    1    3*r^3 - 2*r              sqrt(8) ]]u_Mdk  
    %       3    3    r^3                      sqrt(8) ,F'y:px  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) *xeJ4h  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) 6!U~dt#a  
    %       4    4    r^4                      sqrt(10) bL:+(/:  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) g]b%<DJ  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) |<8g 2A{X  
    %       5    5    r^5                      sqrt(12) m KKa0"  
    %       --------------------------------------------- ye {y[$#3  
    % Qc 1mR\.5  
    %   Example: -S@ ys  
    % ZE/Aj/7Qy  
    %       % Display three example Zernike radial polynomials ?a?] LIE8  
    %       r = 0:0.01:1; s BuXw a  
    %       n = [3 2 5]; fhHTp_u)2  
    %       m = [1 2 1]; @a]`C $ 6  
    %       z = zernpol(n,m,r); M7gqoJM'Q  
    %       figure CS xB)-  
    %       plot(r,z) b Sg]FBaW  
    %       grid on YL4yT`*  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') Y=UN`vRR  
    % eYg0 NEq{  
    %   See also ZERNFUN, ZERNFUN2. gi/W3q3c6  
    0NSCeq%;6q  
    % A note on the algorithm. \7(OFT\u:  
    % ------------------------ 4Gh%PUV#  
    % The radial Zernike polynomials are computed using the series p!(]`N   
    % representation shown in the Help section above. For many special mndNkK5o  
    % functions, direct evaluation using the series representation can (>om.FM  
    % produce poor numerical results (floating point errors), because f./j%R@  
    % the summation often involves computing small differences between BLo=@C%w5  
    % large successive terms in the series. (In such cases, the functions yA<\?Ps  
    % are often evaluated using alternative methods such as recurrence T,4REbm^  
    % relations: see the Legendre functions, for example). For the Zernike rIj B{X{Z  
    % polynomials, however, this problem does not arise, because the J s,.$t  
    % polynomials are evaluated over the finite domain r = (0,1), and ][T>052v  
    % because the coefficients for a given polynomial are generally all ; JHf0  
    % of similar magnitude. pmDFmES  
    % 04E#d.o '  
    % ZERNPOL has been written using a vectorized implementation: multiple ,5|@vW2@u  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] E-#}.}i5  
    % values can be passed as inputs) for a vector of points R.  To achieve ,xC@@>f  
    % this vectorization most efficiently, the algorithm in ZERNPOL o l+*Oe  
    % involves pre-determining all the powers p of R that are required to i~*#z&4A+  
    % compute the outputs, and then compiling the {R^p} into a single DM !B@  
    % matrix.  This avoids any redundant computation of the R^p, and Nu%MXu+  
    % minimizes the sizes of certain intermediate variables. ,NU`aG-  
    % VSm{]Z!x  
    %   Paul Fricker 11/13/2006 (Mt-2+"+  
    /3 ;t &]  
    xNxSgvco ,  
    % Check and prepare the inputs: oSs~*mf  
    % ----------------------------- cfW;gFf  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) vj<JjGP  
        error('zernpol:NMvectors','N and M must be vectors.') meyO=>  
    end Mg {=(No  
    <3b Ft[  
    if length(n)~=length(m) zAd%dbU|  
        error('zernpol:NMlength','N and M must be the same length.') 0qo :M3  
    end p w`YMk  
    h!]=)7x;  
    n = n(:); 1:q5h*  
    m = m(:); 7brC@+ZD  
    length_n = length(n); ,S=ur%  
    J?bx<$C@  
    if any(mod(n-m,2)) <8 25?W|  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') )ocr.wU@  
    end Eg#WR&Uq"  
    Fpy-? U  
    if any(m<0) ;[[oZ  
        error('zernpol:Mpositive','All M must be positive.') agPTY{;  
    end 4Y}{?]>pu  
    5*Y(%I<  
    if any(m>n) |Skhx9};  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') @7,k0H9Moa  
    end MJI`1*(  
    .OSFLY#[?  
    if any( r>1 | r<0 ) Z {*<G x  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') 7F wo t&  
    end 6^"Spf]  
    xIa8Ac  
    if ~any(size(r)==1) ]*vv=@"`e  
        error('zernpol:Rvector','R must be a vector.') >du|DZq  
    end w|8T6W|w  
    8{4jlL;"`?  
    r = r(:); aO$I|!tl  
    length_r = length(r); ps3jw*QZ{5  
    PFPZ]XI%F  
    if nargin==4 h_K!ch }  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); z[0B"f  
        if ~isnorm YS+|n%?  
            error('zernpol:normalization','Unrecognized normalization flag.') Fhk`qh'i  
        end ~-o[v-\  
    else =^`?O* /;  
        isnorm = false; 4b :q84  
    end 3/ 0E9'  
    bGe@yXId5  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% xv>]e <":  
    % Compute the Zernike Polynomials N)^` 15w  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 'yR)z\)  
    j )b[7%  
    % Determine the required powers of r: @pO2A6 Ks  
    % ----------------------------------- 7Nt6}${=z  
    rpowers = []; LF\HmKM,  
    for j = 1:length(n) 6$A>%Jtwe  
        rpowers = [rpowers m(j):2:n(j)]; x /E<@?*:  
    end .*Ylj2nM  
    rpowers = unique(rpowers); 8zzY;3^h;  
    {>n\B~*,"C  
    % Pre-compute the values of r raised to the required powers, IcP\#zhEv  
    % and compile them in a matrix: aV`_@F-8  
    % ----------------------------- bn6WvC 3?  
    if rpowers(1)==0 o3=pxU*  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Eohv P[i  
        rpowern = cat(2,rpowern{:}); Dg o -Os@  
        rpowern = [ones(length_r,1) rpowern]; {Etvu  
    else $u P'>  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); .6[7D  
        rpowern = cat(2,rpowern{:}); )uu1AbT +e  
    end :.aMhyh#*  
    LeaJ).Maw  
    % Compute the values of the polynomials: YML]pNB  
    % -------------------------------------- JK'FJ}Z4  
    z = zeros(length_r,length_n); _UGR+0'Q\  
    for j = 1:length_n iqr/MB,W  
        s = 0:(n(j)-m(j))/2; u.dYDi  
        pows = n(j):-2:m(j); pq$-s7#  
        for k = length(s):-1:1 }ej>uZVe<  
            p = (1-2*mod(s(k),2))* ... t4v@d  
                       prod(2:(n(j)-s(k)))/          ... }WDzzjDR+  
                       prod(2:s(k))/                 ... ! 8*l U2  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... _=-B%m  
                       prod(2:((n(j)+m(j))/2-s(k))); #Ic)]0L  
            idx = (pows(k)==rpowers); VDTt}J8  
            z(:,j) = z(:,j) + p*rpowern(:,idx); (5a:O (\r  
        end Lv UQ&NmY  
         ,=V9 ?  
        if isnorm W.CbNou  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); a&RH_LjM  
        end D$Eq~VQ  
    end Fj4>)!^kM  
    ohna1a^  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  EgU#r@7I  
    C!*.jvhT  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 4G?^#+|^  
    6:O<k2=2  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)