切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11214阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 oTb4T=  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! \~#$o34V  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 "dFuQB  
    function z = zernfun(n,m,r,theta,nflag) a{! 8T  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. O;SD90  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N PJ'.s  
    %   and angular frequency M, evaluated at positions (R,THETA) on the UO8./%'  
    %   unit circle.  N is a vector of positive integers (including 0), and $#HUxwx4  
    %   M is a vector with the same number of elements as N.  Each element  rhO 8v  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) rRd8W}B  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 0|OmQ\SQ  
    %   and THETA is a vector of angles.  R and THETA must have the same '/ GZ,~q  
    %   length.  The output Z is a matrix with one column for every (N,M) ~/1eF7  
    %   pair, and one row for every (R,THETA) pair. BV512+M  
    % 5 $:  q  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike z]0UW\S/  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), A"no!AN  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral [LrA_N  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, &46 Ro|XE`  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 3`> nQ4zC  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. WG(%Pkowv  
    % @ Yzc?+x  
    %   The Zernike functions are an orthogonal basis on the unit circle. "&N1$$  
    %   They are used in disciplines such as astronomy, optics, and QP1 bm]QYA  
    %   optometry to describe functions on a circular domain. V8IEfU  
    % NiO|Aki{  
    %   The following table lists the first 15 Zernike functions. Bw8&Amxx:  
    % Ilv _.  
    %       n    m    Zernike function           Normalization G8Sx;Xi  
    %       -------------------------------------------------- D$/*Z5Z)]  
    %       0    0    1                                 1 e= w.7DSE  
    %       1    1    r * cos(theta)                    2 Yn1CU  
    %       1   -1    r * sin(theta)                    2 K!onV3mR  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) r-IG.ym3  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 4&/m>%r  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) &s<'fSI  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) HT6+OK(~dJ  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) fk  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) m9m]q&hx  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) ^. ; x  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) Q2HULz{  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) r4(Cb_  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) Sn ~|<Vf  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) #+ 6t|  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 4KCJ(<p|  
    %       -------------------------------------------------- a~"<lzu|$  
    % (v$$`zh  
    %   Example 1: M}*#{UV2  
    % Ri&?uCCM  
    %       % Display the Zernike function Z(n=5,m=1) /ng +IC3  
    %       x = -1:0.01:1; -|&5aH]  
    %       [X,Y] = meshgrid(x,x); %9P)Okq  
    %       [theta,r] = cart2pol(X,Y);  cnwpd%]o  
    %       idx = r<=1; ~Y /55uC  
    %       z = nan(size(X)); E#A}J:  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); ^lCQHz  
    %       figure %?~`'vYoi  
    %       pcolor(x,x,z), shading interp r%^J3  
    %       axis square, colorbar 6m!%X GZ T  
    %       title('Zernike function Z_5^1(r,\theta)') (XJ0?;js=  
    % *cnxp-)ub  
    %   Example 2: <4QOjW  
    % .P>-Fh,_p  
    %       % Display the first 10 Zernike functions f0,,<ib.w  
    %       x = -1:0.01:1; >7^i>si  
    %       [X,Y] = meshgrid(x,x); q*B(ZG  
    %       [theta,r] = cart2pol(X,Y); |.c|\e z/  
    %       idx = r<=1; Lavm  
    %       z = nan(size(X)); Z_Z; g]|!  
    %       n = [0  1  1  2  2  2  3  3  3  3]; M4m90C;dq  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; }9,^=g-  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; MEZc/Ru-[  
    %       y = zernfun(n,m,r(idx),theta(idx)); &@anv.D  
    %       figure('Units','normalized') c _faW  
    %       for k = 1:10 g<"k\qs7  
    %           z(idx) = y(:,k); Jf|6 FQo&  
    %           subplot(4,7,Nplot(k)) E8Q Y6gKF  
    %           pcolor(x,x,z), shading interp :4, OA  
    %           set(gca,'XTick',[],'YTick',[]) /"*eMe!=  
    %           axis square [J71aH  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) @p}"B9h*^  
    %       end bPHqZ*f  
    % wqyrs|P  
    %   See also ZERNPOL, ZERNFUN2. uh_ 2yw_  
    2UGnRZ8:1Y  
    %   Paul Fricker 11/13/2006 lImg+r T{  
    1 6N+  
    zjVQ\L  
    % Check and prepare the inputs: <h7FS90S  
    % ----------------------------- !^EdB}@yS  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) %Z#s9QC  
        error('zernfun:NMvectors','N and M must be vectors.') Im*~6[  
    end "o ^cv  
    +~~&FO2  
    if length(n)~=length(m) hn@T ]k  
        error('zernfun:NMlength','N and M must be the same length.') 6YCFSvA#/  
    end &bO5+[  
    ~&?{hd.  
    n = n(:); Xob,jo}a  
    m = m(:); Z1t?+v+Ro*  
    if any(mod(n-m,2)) e<;^P(g`E  
        error('zernfun:NMmultiplesof2', ... SpB\kC"K  
              'All N and M must differ by multiples of 2 (including 0).') KS6H`Mm}/  
    end fEB>3hI  
    ">pt, QV  
    if any(m>n) _ Db05:r@  
        error('zernfun:MlessthanN', ... =oPc\VYW  
              'Each M must be less than or equal to its corresponding N.') aN/0'V|&ym  
    end ^*fZ  
    1 ynjDin<  
    if any( r>1 | r<0 ) zAxscD f'  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') GvCB3z  
    end ]U8VU  
    M#PutrH  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) -!kfwJg8N(  
        error('zernfun:RTHvector','R and THETA must be vectors.') .<Lbv5m  
    end v,] &[`  
    .%'$3=/oe  
    r = r(:); B?G!~lQ)o  
    theta = theta(:); !7KSNwGu  
    length_r = length(r); m<DiYxK  
    if length_r~=length(theta) L`M.Htm8  
        error('zernfun:RTHlength', ... *yx&4)Or  
              'The number of R- and THETA-values must be equal.') PU6Sa-fQ2,  
    end L:(>ON  
    7 q%|-`#  
    % Check normalization: *61+Fzr  
    % -------------------- d\R]>  
    if nargin==5 && ischar(nflag) r[TTG0|  
        isnorm = strcmpi(nflag,'norm'); \VTNXEw*G  
        if ~isnorm G q" [5r"  
            error('zernfun:normalization','Unrecognized normalization flag.') .=nx5y z  
        end SREe, e\  
    else &s|a\!>l  
        isnorm = false; k[6xuyY]  
    end dHtbl\6  
    .)zX<~,  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% c~1X/,biA  
    % Compute the Zernike Polynomials @"\j]ZEnY  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 7HpfHqJ7  
    Y~</vz+H  
    % Determine the required powers of r: kbxy^4"X  
    % ----------------------------------- A@W/  
    m_abs = abs(m); *7ggw[~  
    rpowers = []; Gg\805L@  
    for j = 1:length(n) .!kO2/:6  
        rpowers = [rpowers m_abs(j):2:n(j)]; Jf/X3\0N7  
    end ~is$Onf99#  
    rpowers = unique(rpowers); h|MTE~   
    %4%$NdU"  
    % Pre-compute the values of r raised to the required powers, }[[  
    % and compile them in a matrix: eu]t.Co[X  
    % ----------------------------- ^+ hJ& 9W  
    if rpowers(1)==0 Ls<.&3X2  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ZwV`} 2{  
        rpowern = cat(2,rpowern{:}); T\G2B*fGd  
        rpowern = [ones(length_r,1) rpowern]; d"1DE  
    else Nvlfi8.  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); wz,T7L  
        rpowern = cat(2,rpowern{:}); GAZw4 dz  
    end Q}a,+*N.  
    <*g!R!  
    % Compute the values of the polynomials: ^k'?e"[gTs  
    % -------------------------------------- _:: q S!  
    y = zeros(length_r,length(n)); Y=%SK8]Q;  
    for j = 1:length(n) D*>EWlZ   
        s = 0:(n(j)-m_abs(j))/2; aX oD{zA  
        pows = n(j):-2:m_abs(j); uG|d7LS,%  
        for k = length(s):-1:1 \WDL?(G<  
            p = (1-2*mod(s(k),2))* ... yU-^w^4  
                       prod(2:(n(j)-s(k)))/              ... )wmG&"qsP  
                       prod(2:s(k))/                     ... [|=#~(yYQ  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Qg7rkRia  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); /D]V3|@E  
            idx = (pows(k)==rpowers); ,~R`@5+  
            y(:,j) = y(:,j) + p*rpowern(:,idx); P <$)v5f  
        end e b])=  
         SNV[KdvP*  
        if isnorm ,ZpcvK/S  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 4k HFfc  
        end 8sDbvVh1F  
    end cB;:}Q08#  
    % END: Compute the Zernike Polynomials <K~> :4c  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +0w~Skd,  
    !besMZ  
    % Compute the Zernike functions: I^M %+\  
    % ------------------------------ U{IY F{;@  
    idx_pos = m>0; fZ9EE3  
    idx_neg = m<0; p19[qy~.  
    d},IQ,Az:Z  
    z = y; Vvth,  
    if any(idx_pos) h\oAW?^  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 0{ZYYB&"~J  
    end A9*( O)  
    if any(idx_neg) FS3MR9  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); A`=;yD  
    end 7,i}M  
    o -< 5<  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) AN!MFsk  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. xvZNshkpAX  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated "(@W^qF}d  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive h'i8o>7  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, \hjGw,d  
    %   and THETA is a vector of angles.  R and THETA must have the same .Z,3:3,]  
    %   length.  The output Z is a matrix with one column for every P-value, 'bH',X8gF  
    %   and one row for every (R,THETA) pair. |G2hm8 Y  
    % \5+?wpH  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike A)5-w`1  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) q|E0Y   
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) sU {'  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 UbBo#(TZ)  
    %   for all p. Hpo/CY/  
    % ]dXHjOpA  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 omxBd#;F$  
    %   Zernike functions (order N<=7).  In some disciplines it is A),nkw0X  
    %   traditional to label the first 36 functions using a single mode -{Lc?=  
    %   number P instead of separate numbers for the order N and azimuthal sUaUZO2V  
    %   frequency M. ?e? mg  
    % < q6z$c)K  
    %   Example: <Tq&Va_w  
    % }3tbqFiH  
    %       % Display the first 16 Zernike functions ?/mkFDN  
    %       x = -1:0.01:1; ryz [A:^G  
    %       [X,Y] = meshgrid(x,x); O"otzla  
    %       [theta,r] = cart2pol(X,Y); DVu_KT[Hd  
    %       idx = r<=1; \z}/=Qgc  
    %       p = 0:15; m oQ><>/  
    %       z = nan(size(X)); ^y.e Fz  
    %       y = zernfun2(p,r(idx),theta(idx)); btq`[gAF\  
    %       figure('Units','normalized') wi#]*\N\9  
    %       for k = 1:length(p) S ("Zzq`  
    %           z(idx) = y(:,k); l2DhFt$!=  
    %           subplot(4,4,k) U] 2fV|Hn  
    %           pcolor(x,x,z), shading interp DRldRm/  
    %           set(gca,'XTick',[],'YTick',[]) RB5fn+FiZ  
    %           axis square Evz;eobW/  
    %           title(['Z_{' num2str(p(k)) '}']) 4<S*gu*W  
    %       end "K EB0U  
    % }*!7 Vrep  
    %   See also ZERNPOL, ZERNFUN. u-W6 hZ$  
    >Z#=<  
    %   Paul Fricker 11/13/2006 UcCkn7}  
    S~"1q 0  
    7m;2M]BRi  
    % Check and prepare the inputs: xl%!7?G|$>  
    % ----------------------------- #;bpxz1lR9  
    if min(size(p))~=1 %IS'R`;3  
        error('zernfun2:Pvector','Input P must be vector.') By=/DVm)=  
    end 20hF2V  
    4\HB rd#P  
    if any(p)>35 P)fv:a  
        error('zernfun2:P36', ... )oOcV%  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... Z+!3m.q  
               '(P = 0 to 35).']) CIt>D'/YT  
    end LGN,8v<W(  
    mU1lEx$  
    % Get the order and frequency corresonding to the function number: kl.)A-6V  
    % ---------------------------------------------------------------- "7R"(.~>  
    p = p(:); <!.'"*2  
    n = ceil((-3+sqrt(9+8*p))/2); m178S3  
    m = 2*p - n.*(n+2); _C9*M6IU  
    cH>rS\|Y  
    % Pass the inputs to the function ZERNFUN: X!5  
    % ---------------------------------------- )hH9VGZq(  
    switch nargin |irqv< r  
        case 3 8?S32Gdu  
            z = zernfun(n,m,r,theta); :$&%Pxm  
        case 4 ~Mv@Bl  
            z = zernfun(n,m,r,theta,nflag); 'hl>pso.  
        otherwise t&UPU&tY  
            error('zernfun2:nargin','Incorrect number of inputs.') L&1VPli  
    end QDlEby m  
    E3gR%t  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) P  F!S  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. hkw;W[ZWa  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of `r+"2.z*  
    %   order N and frequency M, evaluated at R.  N is a vector of ^4^1)' %  
    %   positive integers (including 0), and M is a vector with the uhL+bj+W  
    %   same number of elements as N.  Each element k of M must be a ._m+@Uy]H}  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) '1A S66k  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is &LE,.Q34  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix )/H=m7}1h  
    %   with one column for every (N,M) pair, and one row for every W)jO 4,eO  
    %   element in R. c0]^V>}cl  
    % 2Yt#%bj7^  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- \P]w^  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is v_f8zk  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to FL!W oTB  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 X l#P@60  
    %   for all [n,m]. JqTkNKi/s  
    % D<$~bUkxR  
    %   The radial Zernike polynomials are the radial portion of the t>|Y-i3cb  
    %   Zernike functions, which are an orthogonal basis on the unit h+Km|  
    %   circle.  The series representation of the radial Zernike ?Y2ZqI  
    %   polynomials is ^"\ jIP  
    % UKp- *YukT  
    %          (n-m)/2 eRQ}`DjTk  
    %            __ > 4ex:Z  
    %    m      \       s                                          n-2s T;jp2 #  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r x\r7q  
    %    n      s=0 Ddde, WJA  
    % 1g6AzUXg  
    %   The following table shows the first 12 polynomials. _f$8{&`k  
    % $5y%\A  
    %       n    m    Zernike polynomial    Normalization T1hr5V<U  
    %       --------------------------------------------- tVd\r"0k  
    %       0    0    1                        sqrt(2) !7!xJ&/V  
    %       1    1    r                           2 k|Vq-w  
    %       2    0    2*r^2 - 1                sqrt(6) -}0S%|#m  
    %       2    2    r^2                      sqrt(6) R*IO%9O  
    %       3    1    3*r^3 - 2*r              sqrt(8) 'M185wDdAl  
    %       3    3    r^3                      sqrt(8) MB :knj  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) Gwxx W   
    %       4    2    4*r^4 - 3*r^2            sqrt(10) )%x oN<  
    %       4    4    r^4                      sqrt(10) +9G GC  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) #k8bZ?*:  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) YLVV9(  
    %       5    5    r^5                      sqrt(12) OiNzN.}d  
    %       --------------------------------------------- Xu`c_  
    % Zpg/T K  
    %   Example: SV16]Vc  
    % 'Ca6cm3Tg  
    %       % Display three example Zernike radial polynomials ,ii*[{X?  
    %       r = 0:0.01:1; &Yi)|TU3'R  
    %       n = [3 2 5]; OiX:h#  
    %       m = [1 2 1]; BJ!b LQ  
    %       z = zernpol(n,m,r); IY6DZP  
    %       figure c^vP d]Ed  
    %       plot(r,z) By{zX,6'  
    %       grid on "OF4#a17  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') XL@i/5C[  
    % M*FUtu  
    %   See also ZERNFUN, ZERNFUN2. P'f =r%  
    ,#[0As29u  
    % A note on the algorithm. ~>&7~N8  
    % ------------------------ O6Bs!0,  
    % The radial Zernike polynomials are computed using the series ~Q"3#4l  
    % representation shown in the Help section above. For many special E8gXa-hv  
    % functions, direct evaluation using the series representation can nmZz`P9g  
    % produce poor numerical results (floating point errors), because yQE|FbiA  
    % the summation often involves computing small differences between j78WPG  
    % large successive terms in the series. (In such cases, the functions 8uq^Q4SU  
    % are often evaluated using alternative methods such as recurrence AE`X4q  
    % relations: see the Legendre functions, for example). For the Zernike `s5<PCq  
    % polynomials, however, this problem does not arise, because the CsHHJgx  
    % polynomials are evaluated over the finite domain r = (0,1), and tJ[yx_mf  
    % because the coefficients for a given polynomial are generally all e5G)83[=  
    % of similar magnitude. i^Vb42%y  
    % [P.M>"c\  
    % ZERNPOL has been written using a vectorized implementation: multiple 0fwmQ'lW(  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] 1=(jpy  
    % values can be passed as inputs) for a vector of points R.  To achieve n&ZA rJ  
    % this vectorization most efficiently, the algorithm in ZERNPOL g^|}e?  
    % involves pre-determining all the powers p of R that are required to H'k$<S  
    % compute the outputs, and then compiling the {R^p} into a single I^"ou M9}Q  
    % matrix.  This avoids any redundant computation of the R^p, and ir/m. ~?  
    % minimizes the sizes of certain intermediate variables. K ;\~otR^  
    % yO*~)ALb+  
    %   Paul Fricker 11/13/2006 it]im  
    FJ0Ity4u6  
    ~!UC:&UKo  
    % Check and prepare the inputs: `G*7y7  
    % ----------------------------- (5- w>(  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ]&6# {I-  
        error('zernpol:NMvectors','N and M must be vectors.') _5TSI'@.4  
    end ,Y *unk<S  
    FjRt'  
    if length(n)~=length(m) <=.0 P/N  
        error('zernpol:NMlength','N and M must be the same length.') Aq' yr,  
    end ^mxOQc !  
    Zjqa n  
    n = n(:); x` T  
    m = m(:); xCN6?  
    length_n = length(n); '%Og9Bgd+  
    e R Y2.!  
    if any(mod(n-m,2)) _8t5rF  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') 9U[Gh97Sf  
    end rR`'l=,t  
    *D`]7I~}  
    if any(m<0) a&:1W83  
        error('zernpol:Mpositive','All M must be positive.') Gk_%WY*  
    end &"H xAK)f  
    p3tu_If  
    if any(m>n) +&hhj~I.  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') ?LJ$:u  
    end PPoQNW  
    >,c$e' h  
    if any( r>1 | r<0 ) S&/</%  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') +m?;,JGt  
    end =&+]>g{T  
    o95)-Wb  
    if ~any(size(r)==1) HIiMq'H^  
        error('zernpol:Rvector','R must be a vector.') B ~u9"SR.  
    end x_za R}WI  
    3On IAk3  
    r = r(:); G!]%xFwYa  
    length_r = length(r); -s~6FrKy  
    bVfFhfh*  
    if nargin==4  )ph**g  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); vW6 a=j8  
        if ~isnorm ]U[y3  
            error('zernpol:normalization','Unrecognized normalization flag.') W,sU5sjA  
        end #'`!*VI  
    else R7)\w P*l5  
        isnorm = false; _#[~?g`  
    end 5\\#kjjx  
    %v}SJEXF p  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 5>9KW7^L  
    % Compute the Zernike Polynomials 5ggmS<=  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Q` ?+w+y7  
    $db]b  
    % Determine the required powers of r: j /d? c5  
    % ----------------------------------- .<xzf4C  
    rpowers = []; eAqSY s!1  
    for j = 1:length(n) zk6al$3R  
        rpowers = [rpowers m(j):2:n(j)]; s*'L^>iZ  
    end JFOto,6L:  
    rpowers = unique(rpowers); ,m4M39MWJ  
    MmIVTf4  
    % Pre-compute the values of r raised to the required powers, 7RXTQ9BS  
    % and compile them in a matrix: g)Ep'd-w"  
    % ----------------------------- m(2(Caz{  
    if rpowers(1)==0 NO$n-<ag  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); GCrIa Z  
        rpowern = cat(2,rpowern{:}); 2bJqZ,@  
        rpowern = [ones(length_r,1) rpowern]; K)-Gv|*t  
    else N=2BrKb)o  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ! z!lQ~  
        rpowern = cat(2,rpowern{:}); 01N]|F:  
    end GUX! kj  
    ]V*ku%L0  
    % Compute the values of the polynomials: i 4sd29v  
    % -------------------------------------- |\HYq`!g%7  
    z = zeros(length_r,length_n); 0P MF)';R  
    for j = 1:length_n fj 14'T  
        s = 0:(n(j)-m(j))/2; A/bxxB7w  
        pows = n(j):-2:m(j); P<. TiF?@  
        for k = length(s):-1:1 l ~bjNhk  
            p = (1-2*mod(s(k),2))* ... Drn{ucIs  
                       prod(2:(n(j)-s(k)))/          ... J A=9EnTU  
                       prod(2:s(k))/                 ... 72i ]`   
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... Cx N]fo  
                       prod(2:((n(j)+m(j))/2-s(k))); Sn o7Ru2  
            idx = (pows(k)==rpowers); ;HKb  
            z(:,j) = z(:,j) + p*rpowern(:,idx); XsH(8-n0  
        end JPo.&5k  
         rwZI;t$hf  
        if isnorm jCJbmEfo9@  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); WA'&0i4  
        end ">{Ruv}$  
    end \IL;}D{  
    \BRx dK'  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  v90)G8|q  
    }JWLm.e  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 ov9+6'zya  
    h,!#YG@>  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)