非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 of
GoaH*h
function z = zernfun(n,m,r,theta,nflag) J qmL|S)
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. ;JMmr-@
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 2Q7X"ek~[
% and angular frequency M, evaluated at positions (R,THETA) on the 8F'm#0
% unit circle. N is a vector of positive integers (including 0), and yY*(!^S
% M is a vector with the same number of elements as N. Each element ?G<?:/CU
% k of M must be a positive integer, with possible values M(k) = -N(k) m.\JO
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, FUZuS!sJ
% and THETA is a vector of angles. R and THETA must have the same u#`51Hr$
% length. The output Z is a matrix with one column for every (N,M) ~3&hvm[IQ
% pair, and one row for every (R,THETA) pair. 6'x3g2C/
% ^N7 C/" p
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike CJDNS21m
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ; xQhq*
% with delta(m,0) the Kronecker delta, is chosen so that the integral yhI;FNSf
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, :6u.\u
% and theta=0 to theta=2*pi) is unity. For the non-normalized :t;i2Ck
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. /{/mwS"W
% @,}tY ?>a
% The Zernike functions are an orthogonal basis on the unit circle. +JM@ kdE5b
% They are used in disciplines such as astronomy, optics, and Rlm28
% optometry to describe functions on a circular domain. U_.}V
% ^QG<_Dm]
% The following table lists the first 15 Zernike functions. .JJ50p
% [0]J
2
% n m Zernike function Normalization Vg :''!4t2
% -------------------------------------------------- kY6_n4
% 0 0 1 1 Eau
V
% 1 1 r * cos(theta) 2 'H4?V
% 1 -1 r * sin(theta) 2 M;NIcM
% 2 -2 r^2 * cos(2*theta) sqrt(6) yq<W+b/
% 2 0 (2*r^2 - 1) sqrt(3) "q!*RO'a
% 2 2 r^2 * sin(2*theta) sqrt(6) ZR"qrCSw`
% 3 -3 r^3 * cos(3*theta) sqrt(8) e\f\CMb
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) vA[7i*D{w
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) !,rF(pz
% 3 3 r^3 * sin(3*theta) sqrt(8) !4<A|$mQ
% 4 -4 r^4 * cos(4*theta) sqrt(10) cM4{ e^
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) E1`_[=8a9
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) 2$VSH&
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) e**'[3Y
% 4 4 r^4 * sin(4*theta) sqrt(10) #?eMEws
% -------------------------------------------------- >6@,L+-6r
% `2^(Ss#)
% Example 1: Kb-m
% _34%St!lg
% % Display the Zernike function Z(n=5,m=1) GU 9p'E
% x = -1:0.01:1; Pj_DI)^
% [X,Y] = meshgrid(x,x); oIMS >&
% [theta,r] = cart2pol(X,Y); -w8?Ur1x:
% idx = r<=1; tA'5ufj*:
% z = nan(size(X)); -^;,m=4{3
% z(idx) = zernfun(5,1,r(idx),theta(idx)); ]scr@e
% figure a<>cbP
% pcolor(x,x,z), shading interp wlslG^^(!
% axis square, colorbar I3i zLi
% title('Zernike function Z_5^1(r,\theta)') %K7;ePu
% aGws?<1$
% Example 2: ='C;^
Bk
% D0MW~Y6{
% % Display the first 10 Zernike functions =<zlg~i
% x = -1:0.01:1; %da-/[
% [X,Y] = meshgrid(x,x); Y?zo")
% [theta,r] = cart2pol(X,Y); yS[HYq
% idx = r<=1; qSD3]Dv"
% z = nan(size(X)); Ir*{IVvej
% n = [0 1 1 2 2 2 3 3 3 3]; gw%L M7yQR
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; a1[J>
% Nplot = [4 10 12 16 18 20 22 24 26 28]; yJlRW!@&:
% y = zernfun(n,m,r(idx),theta(idx)); )KkV<