切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11385阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 >P"/ nS"nn  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! }e =GvWGa  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 ,?~,"IQyi[  
    function z = zernfun(n,m,r,theta,nflag) irj}:f;!eF  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. :S6 <v0`Z  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ys6"Q[B  
    %   and angular frequency M, evaluated at positions (R,THETA) on the G)|HFcE  
    %   unit circle.  N is a vector of positive integers (including 0), and 8^i,M^f^{  
    %   M is a vector with the same number of elements as N.  Each element oioN0EuDk  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) _tJURk%  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, oYx f((x  
    %   and THETA is a vector of angles.  R and THETA must have the same y N%Pe:R  
    %   length.  The output Z is a matrix with one column for every (N,M) A~SSu.L@  
    %   pair, and one row for every (R,THETA) pair. W\Y 4%y}  
    % >&Lu0oHH  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike IQY#EyTb  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), !`E2O*g  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral A1T;9`E  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, vG:,oB}  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized u)>*U'bM  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ?IO/zkeXg  
    % (:]iHg3  
    %   The Zernike functions are an orthogonal basis on the unit circle. 824%]i3  
    %   They are used in disciplines such as astronomy, optics, and vtjG&0GSK  
    %   optometry to describe functions on a circular domain. cu|q &  
    % e$I:[>  
    %   The following table lists the first 15 Zernike functions. P ^+>QJ1  
    % * OFT)S  
    %       n    m    Zernike function           Normalization Py<vN!  
    %       -------------------------------------------------- e{S`iO  
    %       0    0    1                                 1 "+Rm4_  
    %       1    1    r * cos(theta)                    2 xF0*q  
    %       1   -1    r * sin(theta)                    2 PmTd+Gj$  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) $"1&!  
    %       2    0    (2*r^2 - 1)                    sqrt(3) mz '8  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) 5OE?;PJ(  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 6Z:|"AwC2  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) .1M>KRSr,  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) wt,N<L  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) i/B"d,=<  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 4}j}8y2)H  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) .<hv &t  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) :g_ +{4  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) W0hLh<Go  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) a)b@en;v  
    %       -------------------------------------------------- |V]E8Qt  
    % 2V 'Tt3  
    %   Example 1: |3@]5f&  
    % "5bk82."  
    %       % Display the Zernike function Z(n=5,m=1) (>23[;.0  
    %       x = -1:0.01:1; ktb. fhO  
    %       [X,Y] = meshgrid(x,x); '(*D3ysU  
    %       [theta,r] = cart2pol(X,Y); 6, ~aV  
    %       idx = r<=1; cMAfW3j: ;  
    %       z = nan(size(X)); K*[wr@)u  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); oQO3:2a  
    %       figure Atw^C+"vW&  
    %       pcolor(x,x,z), shading interp c:5BQr '  
    %       axis square, colorbar QB>e(j%  
    %       title('Zernike function Z_5^1(r,\theta)') S/aPYrk>6  
    % 9X~^w_cdk  
    %   Example 2: cj)~7 WF  
    % T@.CwV  
    %       % Display the first 10 Zernike functions wAYc)u#  
    %       x = -1:0.01:1; >LSA?dy!?  
    %       [X,Y] = meshgrid(x,x); -TWo-iu^  
    %       [theta,r] = cart2pol(X,Y); 5`Z#m:+u  
    %       idx = r<=1; ;MD{p1w  
    %       z = nan(size(X)); #.RI9B  
    %       n = [0  1  1  2  2  2  3  3  3  3]; *lSIT]1  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 8wd2\J,]  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; s+11) ~  
    %       y = zernfun(n,m,r(idx),theta(idx)); U_?RN)>j  
    %       figure('Units','normalized') \I=:,cz*,  
    %       for k = 1:10 &0`L;1R  
    %           z(idx) = y(:,k); `,O^=HBM  
    %           subplot(4,7,Nplot(k)) M 5h U.3.L  
    %           pcolor(x,x,z), shading interp ORTM [cL  
    %           set(gca,'XTick',[],'YTick',[]) OZ&aTm :  
    %           axis square ADDpm-]  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) :H{8j}"  
    %       end E {MSi"  
    % <LE>WfmC  
    %   See also ZERNPOL, ZERNFUN2. bH&H\ Mx_k  
    \l~h#1|%;s  
    %   Paul Fricker 11/13/2006 &nYmVwi?"Q  
    &wfM:a/c  
    STMcMm3  
    % Check and prepare the inputs: {+MMqJCa  
    % ----------------------------- :?TV6M  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ~zx-'sc?  
        error('zernfun:NMvectors','N and M must be vectors.') C-7.Sa  
    end 2iu;7/  
    -?[:Zn~$a  
    if length(n)~=length(m) a Sj$62G"  
        error('zernfun:NMlength','N and M must be the same length.') S@_GjCpn  
    end mP-+];gg  
    = ~yh[@R)  
    n = n(:); s`{O-  
    m = m(:); LQe<mZ<  
    if any(mod(n-m,2)) Y9u2:y!LdL  
        error('zernfun:NMmultiplesof2', ... J_,y?}.e3  
              'All N and M must differ by multiples of 2 (including 0).') 4%p vw;r  
    end cg4,PI% hz  
    8PQ& 7o  
    if any(m>n) laAG%lq/'  
        error('zernfun:MlessthanN', ... YG%Zw  
              'Each M must be less than or equal to its corresponding N.') C5m*pGImG  
    end g7F>o76M  
    QwiC2}/  
    if any( r>1 | r<0 ) Uhf -}Jdw  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 3,GSBiK3}  
    end k~H-:@  
    6 ^p 6v   
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) QeK~A@|F&  
        error('zernfun:RTHvector','R and THETA must be vectors.') JS4pJe\q  
    end yF*JzE 7,  
    l4; LV7Ji  
    r = r(:); jE{z4en  
    theta = theta(:); A;kB"Tx  
    length_r = length(r); kAqk~.  
    if length_r~=length(theta) 5<u+2x8|  
        error('zernfun:RTHlength', ... PW}Yts7p  
              'The number of R- and THETA-values must be equal.') L%"&_v#a^  
    end `VHm,g2  
    ' =oV  
    % Check normalization: Ws=J)2q  
    % -------------------- h"[ ][  
    if nargin==5 && ischar(nflag) 4m~\S)ad  
        isnorm = strcmpi(nflag,'norm'); "k+QDQ3=  
        if ~isnorm JO _a+Yl  
            error('zernfun:normalization','Unrecognized normalization flag.') E*kS{2NAq  
        end 1vobfZ-w9  
    else X/@Gx 4  
        isnorm = false; hM;EUWv  
    end wc;5tb#  
    <4Ak$ E %"  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% XVY^m}pMe  
    % Compute the Zernike Polynomials A/'G.H  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -wY6da*.W  
    '0[l'Dt'  
    % Determine the required powers of r: 4kx#=MLt  
    % ----------------------------------- R^D~ic N  
    m_abs = abs(m); k(s3~S2h  
    rpowers = [];  p.zU9rID  
    for j = 1:length(n) [}FP_Su$6  
        rpowers = [rpowers m_abs(j):2:n(j)]; 7m1*Q@D  
    end r8@:Ko= a  
    rpowers = unique(rpowers); }=wSfr9g  
    Nz2}Ma 2  
    % Pre-compute the values of r raised to the required powers, 0^hz1\g  
    % and compile them in a matrix: 8R)*8bb  
    % ----------------------------- }UX>O  
    if rpowers(1)==0 2f4*r^  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 'I;pS)sb  
        rpowern = cat(2,rpowern{:}); b+hZ<U/  
        rpowern = [ones(length_r,1) rpowern]; ~fr1O`8  
    else bvAO(`  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); .sCo,  
        rpowern = cat(2,rpowern{:}); 64[j:t=N  
    end WWD\EDnS  
    iHTxD1 D+H  
    % Compute the values of the polynomials: <>p\9rVp*^  
    % -------------------------------------- Q5baY\"9^  
    y = zeros(length_r,length(n)); No j6Ina  
    for j = 1:length(n) 8^+Q n/b_%  
        s = 0:(n(j)-m_abs(j))/2; 7kleBDDT  
        pows = n(j):-2:m_abs(j); .0Cpqn,[  
        for k = length(s):-1:1 ; 5oY)1  
            p = (1-2*mod(s(k),2))* ... 89~)nV)  
                       prod(2:(n(j)-s(k)))/              ... cJL>,Z<|%  
                       prod(2:s(k))/                     ... b>G!K)MS3  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... AM\`v'I*6  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); [S'ngQ"f`  
            idx = (pows(k)==rpowers); }(ot IqE  
            y(:,j) = y(:,j) + p*rpowern(:,idx); d[jxU/.p;  
        end C#;}U51:t  
         GN(PH/fO9  
        if isnorm z;1yZ4[G  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); I8e{%PK  
        end z9E*Mh(NE  
    end ZCV&v47\p_  
    % END: Compute the Zernike Polynomials mR?OSeeB  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ."cC^og  
    km.xy_v  
    % Compute the Zernike functions: _epi[zf@  
    % ------------------------------ =f?|f  
    idx_pos = m>0; *S`& X Pj  
    idx_neg = m<0; >|mmJ4T  
    J$@3,=L6V  
    z = y; fk;39$[  
    if any(idx_pos) BPtU]Bv-  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); vxY7/_]  
    end HSq&'V  
    if any(idx_neg) L~CwL  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); rC$ckug  
    end B!yAam#^  
    >4b-NS/}0  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) pk:YjJs  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. d*4fl.  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated 9YwK1[G6/  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive Yx>=(B  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, zkA"2dh  
    %   and THETA is a vector of angles.  R and THETA must have the same 3 T+#d-\  
    %   length.  The output Z is a matrix with one column for every P-value, 9Qst5n\Z  
    %   and one row for every (R,THETA) pair. gk1I1)p  
    % oEGe y8?  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike 2aNCcZw0  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) .q"`)PT  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) dX^OV$  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 =TE6R 0b  
    %   for all p. A|Up >`QH  
    % _ )b:F=4j  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 k}(C.`.  
    %   Zernike functions (order N<=7).  In some disciplines it is Hw-,sze j"  
    %   traditional to label the first 36 functions using a single mode rd vq(\A  
    %   number P instead of separate numbers for the order N and azimuthal ou0(C `  
    %   frequency M. F]:@?}8R  
    % {R5Q{]dK3  
    %   Example: mQ*:?\@  
    % ]k-<[Z;I,  
    %       % Display the first 16 Zernike functions z^;*&J   
    %       x = -1:0.01:1; UC"<5z lcu  
    %       [X,Y] = meshgrid(x,x); ZaIlo5  
    %       [theta,r] = cart2pol(X,Y); c!{v/zOz  
    %       idx = r<=1; NifzZEX  
    %       p = 0:15; HN9!~G  
    %       z = nan(size(X)); FJ#:RC  
    %       y = zernfun2(p,r(idx),theta(idx)); Lnc _)RF  
    %       figure('Units','normalized') eo.y,Uh  
    %       for k = 1:length(p) 7A@]t_83Y  
    %           z(idx) = y(:,k); j-e/nZR@  
    %           subplot(4,4,k) Z/n\Ak sE  
    %           pcolor(x,x,z), shading interp r+r-[z D(  
    %           set(gca,'XTick',[],'YTick',[]) sN]O]qYXJ  
    %           axis square J5b>mTvb  
    %           title(['Z_{' num2str(p(k)) '}']) -!zyit5B  
    %       end  } Wx#"6  
    % + KGZk?%  
    %   See also ZERNPOL, ZERNFUN. T1sb6CT  
    3\j{*f$J  
    %   Paul Fricker 11/13/2006 ^vw? 4O  
    +n_`*@SE  
    KjFNb;mM  
    % Check and prepare the inputs: aZ"9)RJe  
    % ----------------------------- )L fXb9}  
    if min(size(p))~=1 f_y+B]?'M  
        error('zernfun2:Pvector','Input P must be vector.') sq1Z;l31"  
    end _?$P?  
    1n|)05p  
    if any(p)>35 [ }-CXB  
        error('zernfun2:P36', ... P4@<`Eb  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... &.~Xl:lq  
               '(P = 0 to 35).']) O%?noW  
    end 5:ca6 H  
    jLRUWg  
    % Get the order and frequency corresonding to the function number: rWzw7T~  
    % ---------------------------------------------------------------- ozv:$>v@"  
    p = p(:); f7NK0kuA  
    n = ceil((-3+sqrt(9+8*p))/2); OT/*|Pn9  
    m = 2*p - n.*(n+2); #Q320}]{  
    S^ ij%  
    % Pass the inputs to the function ZERNFUN: TNs ;#Q  
    % ---------------------------------------- ^wDZg`  
    switch nargin k=L(C^VP  
        case 3 )Nv$ SH  
            z = zernfun(n,m,r,theta); G4DuqN~2m  
        case 4 ^,F8 ha  
            z = zernfun(n,m,r,theta,nflag); T <J%|d .'  
        otherwise Byq4PX%B  
            error('zernfun2:nargin','Incorrect number of inputs.') $7 1(g$6#  
    end Q(Uj5aX  
    e}e|??'(\  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) f{_K%0*  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. (W.euQy  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of F^Q[P4>m\  
    %   order N and frequency M, evaluated at R.  N is a vector of tTa" JXG  
    %   positive integers (including 0), and M is a vector with the /y2upu*!  
    %   same number of elements as N.  Each element k of M must be a '&~A  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) doJ\7c5uU  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is K.CwtUt`54  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix TM_ MJp  
    %   with one column for every (N,M) pair, and one row for every SVvR]T&_  
    %   element in R. zD8q(]: A  
    % I^'U_"vB  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly-  ^"Y5V5  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is -t28"jyj  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to =l&A9 >\  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 5tyr$P! N  
    %   for all [n,m]. K]q9wR'q  
    % S(;3gQ77  
    %   The radial Zernike polynomials are the radial portion of the 5~WMb6/  
    %   Zernike functions, which are an orthogonal basis on the unit ,XmTKO c  
    %   circle.  The series representation of the radial Zernike K%TlBK V  
    %   polynomials is 0Me *X  
    % n~/#~VTVe  
    %          (n-m)/2 K<`"Sr  
    %            __ Oh9jr"Gm=  
    %    m      \       s                                          n-2s n ETm"  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r YE#OAfj~  
    %    n      s=0 -QaS/WO_  
    % 2+G_Y>  
    %   The following table shows the first 12 polynomials. @=jcdn!\M  
    % #^IEQZgH  
    %       n    m    Zernike polynomial    Normalization /?b<}am  
    %       --------------------------------------------- ^:0NKq\  
    %       0    0    1                        sqrt(2) 7 R1;'/;  
    %       1    1    r                           2 , O=@I  
    %       2    0    2*r^2 - 1                sqrt(6) |qra.\  
    %       2    2    r^2                      sqrt(6) M5OH-'  
    %       3    1    3*r^3 - 2*r              sqrt(8) m .2)P~a  
    %       3    3    r^3                      sqrt(8) *GsrG*OM*D  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) n*\AB=|X  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) yQQ[_1$pq  
    %       4    4    r^4                      sqrt(10) |q$br-0+  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) /wIev1Z!Y  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) % ~%>3  
    %       5    5    r^5                      sqrt(12) B8'(3&)My  
    %       --------------------------------------------- 64s9Dy@%F  
    % )F;[  
    %   Example: fT.5@RR7^  
    % B^(0>Da\  
    %       % Display three example Zernike radial polynomials r\+AeCyb"p  
    %       r = 0:0.01:1; $jb3#Rj4  
    %       n = [3 2 5]; wL 5p0Xl  
    %       m = [1 2 1]; IXp P.d  
    %       z = zernpol(n,m,r); k|l"Rh<\~  
    %       figure &o/&T{t}  
    %       plot(r,z) 1{+Ni{  
    %       grid on >gDsjHQ6;  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') DvnK_Q!  
    % ]3#_BL)M8p  
    %   See also ZERNFUN, ZERNFUN2. ~..h=  
    F0Xv84:O  
    % A note on the algorithm. st36xS  
    % ------------------------ x U1dy*-  
    % The radial Zernike polynomials are computed using the series  6<A\U/  
    % representation shown in the Help section above. For many special w&;\}IS  
    % functions, direct evaluation using the series representation can ,<zZKR_  
    % produce poor numerical results (floating point errors), because f9u["e  
    % the summation often involves computing small differences between >fo &H_a  
    % large successive terms in the series. (In such cases, the functions ^sH1YE}0  
    % are often evaluated using alternative methods such as recurrence {Z;W|w1t  
    % relations: see the Legendre functions, for example). For the Zernike _p{ag 1gP  
    % polynomials, however, this problem does not arise, because the hmkcW r`  
    % polynomials are evaluated over the finite domain r = (0,1), and #UU}lG  
    % because the coefficients for a given polynomial are generally all HkxFDU-K  
    % of similar magnitude. yB}y'5  
    % M:?eK [h  
    % ZERNPOL has been written using a vectorized implementation: multiple -tx)7KV-  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] 7w )#[^  
    % values can be passed as inputs) for a vector of points R.  To achieve zE.4e&m%Z?  
    % this vectorization most efficiently, the algorithm in ZERNPOL %{/0K<M  
    % involves pre-determining all the powers p of R that are required to =]7|*-  
    % compute the outputs, and then compiling the {R^p} into a single }W<]fK  
    % matrix.  This avoids any redundant computation of the R^p, and 4E3HYZ  
    % minimizes the sizes of certain intermediate variables. pM[UC{  
    % 4$.UVW\  
    %   Paul Fricker 11/13/2006 )." zBc#  
    ..;LU:F  
    $if(`8  
    % Check and prepare the inputs: /]]\jj#^  
    % ----------------------------- Q8Usyc'3  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 21 cB_"  
        error('zernpol:NMvectors','N and M must be vectors.') Jb$PlOQ  
    end @c$mc  
    zGZe|-  
    if length(n)~=length(m) 1aYO:ZPy  
        error('zernpol:NMlength','N and M must be the same length.') ;?inf`t  
    end 1Sz5&jz  
    !9iVe7V  
    n = n(:); u[2R>=  
    m = m(:); 7F?^gMi  
    length_n = length(n); RWA|%/L  
    X+ iA"B  
    if any(mod(n-m,2)) #D//oL"u]  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') s'\"%~nF<  
    end )Y?H f2']  
    f<|8NQ2y.  
    if any(m<0) O";r\Z  
        error('zernpol:Mpositive','All M must be positive.') =NJb9S&8A  
    end $ Qg81mu  
    C<w9f  
    if any(m>n) 7SAu">lIl  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') #3u8BLy$Q  
    end 'zT/ x`V  
    m U7Ad"  
    if any( r>1 | r<0 ) T_AZCl4d  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') JpS:}yyJ>N  
    end gWgK  
    <;9 vwSH>  
    if ~any(size(r)==1) _rjCwo\  
        error('zernpol:Rvector','R must be a vector.') wK#UFOp  
    end MiOSSl};  
    :sT<<LtI-  
    r = r(:); ={maCYlE.  
    length_r = length(r); W97Ka}Y  
    103^\Av8  
    if nargin==4 sFS_CyN!7  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); YVW!u6W'[6  
        if ~isnorm NJl|/(]v  
            error('zernpol:normalization','Unrecognized normalization flag.') f"Iv  
        end XTW/3pB  
    else 2?-}(F;Z  
        isnorm = false; a.8nWs^  
    end ;oR-\;]/.  
    PrN?;Z.  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% }P}l4k1W  
    % Compute the Zernike Polynomials X#eVw|  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |Q:`:ODy`5  
    1YnDho;~  
    % Determine the required powers of r: 7CG_UB  
    % ----------------------------------- OZt'ovY  
    rpowers = []; 3U:0,-j"  
    for j = 1:length(n) R!$j_H  
        rpowers = [rpowers m(j):2:n(j)]; N pRC3^  
    end o_G.J4 V  
    rpowers = unique(rpowers); 0W=IuPDU  
    i, RK0q?>  
    % Pre-compute the values of r raised to the required powers, ,hOJe=u46  
    % and compile them in a matrix: F1Z20)8K  
    % ----------------------------- @ $(4;ar  
    if rpowers(1)==0 XTeU 2I  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); +U6! bu>C  
        rpowern = cat(2,rpowern{:}); ]i$CE|~  
        rpowern = [ones(length_r,1) rpowern]; !4z"a@$  
    else vkR"A\:  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); @69q// #B  
        rpowern = cat(2,rpowern{:}); iSFgFJG^  
    end <,cDEN7  
    Bq@G@Qi  
    % Compute the values of the polynomials: Q6vkqu5!=  
    % -------------------------------------- rqa;MPl  
    z = zeros(length_r,length_n); }l[t0C t  
    for j = 1:length_n a<\m` Es=  
        s = 0:(n(j)-m(j))/2; @8_K^3-~e  
        pows = n(j):-2:m(j); zSq+#O1#  
        for k = length(s):-1:1 #4" \\  
            p = (1-2*mod(s(k),2))* ... ]q?<fEG2<  
                       prod(2:(n(j)-s(k)))/          ... &2) mpY8xQ  
                       prod(2:s(k))/                 ... v.Q)Obyn  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... E26ZVFg  
                       prod(2:((n(j)+m(j))/2-s(k))); =n#xnZ3  
            idx = (pows(k)==rpowers); 8Ipyr%l  
            z(:,j) = z(:,j) + p*rpowern(:,idx); s'K0C8'U  
        end ;#j/F]xG  
         ("9)=x*5  
        if isnorm S:R%%cy  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); (oTx*GP>Y  
        end E&"bgwav{(  
    end i@g6%V=  
    Kk/qd)nk  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  dhv?36uE  
    x{4{.s%+:  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 4Oo{\&(  
    0$ JH5RC  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)