切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11543阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 }uZtAH|  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! MxXf.iX&  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 $.5f-vQp  
    function z = zernfun(n,m,r,theta,nflag) nO\c4#ce  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. Y^Y1re+}  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N }EMds3<  
    %   and angular frequency M, evaluated at positions (R,THETA) on the `GpOS_;  
    %   unit circle.  N is a vector of positive integers (including 0), and RV=Z$  
    %   M is a vector with the same number of elements as N.  Each element _o+z#Fnz  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) qN=l$_UD  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, w;OvZo|  
    %   and THETA is a vector of angles.  R and THETA must have the same t@#l0lu$  
    %   length.  The output Z is a matrix with one column for every (N,M) 78MQoG<  
    %   pair, and one row for every (R,THETA) pair. j@o \d%.'!  
    % :>q*#vlb  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 8mc0(Z@  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), W"meH~[Cp  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 5R%4fzr&g  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, + g*s%^(E  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 2=%R>&]*  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. AY(z9 &;6  
    % $sxm MP  
    %   The Zernike functions are an orthogonal basis on the unit circle. 2?}5U)Hg  
    %   They are used in disciplines such as astronomy, optics, and o0)k5P~<~  
    %   optometry to describe functions on a circular domain. v<AFcY   
    % h>:eu#  
    %   The following table lists the first 15 Zernike functions. k|r|*|8  
    % \UEO$~Km  
    %       n    m    Zernike function           Normalization 2R`dyg  
    %       -------------------------------------------------- a W9_[#z5  
    %       0    0    1                                 1 JVe!(L4H  
    %       1    1    r * cos(theta)                    2 + FG Xx  
    %       1   -1    r * sin(theta)                    2  %>z)Q  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ,7/F?!G!J  
    %       2    0    (2*r^2 - 1)                    sqrt(3) #*tWhXU  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) i.5?b/l0  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) S)\Yc=~h  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) +?%L X4Y  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) DQ`\HY  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) xsERnF>`  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 6V&HlJH  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) w7e+~8|  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) INF}~DN]  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) zf.&E3Sn  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) "V3f"J?  
    %       -------------------------------------------------- d8Sr,t+  
    % n:P++^ j  
    %   Example 1: =}1m.  
    % %4I13|<A`  
    %       % Display the Zernike function Z(n=5,m=1) !g2 ~|G  
    %       x = -1:0.01:1; P/Zp3O H  
    %       [X,Y] = meshgrid(x,x); D=_FrEM_IA  
    %       [theta,r] = cart2pol(X,Y); *V[6ta'  
    %       idx = r<=1; di|5|bn7  
    %       z = nan(size(X)); O!ngQrI  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); ;0JK>c ]#  
    %       figure (!:+q$#BK  
    %       pcolor(x,x,z), shading interp ^b&U0k$R  
    %       axis square, colorbar }pOJM &I  
    %       title('Zernike function Z_5^1(r,\theta)') LQDU8[-  
    % bo_Tp~ j  
    %   Example 2: lr~c w#h*  
    % vcz?;lg  
    %       % Display the first 10 Zernike functions %(d0`9  
    %       x = -1:0.01:1; 8I)}c1j`v  
    %       [X,Y] = meshgrid(x,x); `CqF&b  
    %       [theta,r] = cart2pol(X,Y); MzpDvnI9  
    %       idx = r<=1; oeF0t'%  
    %       z = nan(size(X)); 9`|~- b  
    %       n = [0  1  1  2  2  2  3  3  3  3]; MgrJ ;?L  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; )^[PW&=W|x  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; ,4Qct=%L_  
    %       y = zernfun(n,m,r(idx),theta(idx)); ?D9>N'yH8  
    %       figure('Units','normalized') ^/:G`'  
    %       for k = 1:10 OqlP_^Zz7p  
    %           z(idx) = y(:,k); V}po  
    %           subplot(4,7,Nplot(k)) ;Vlt4,s)  
    %           pcolor(x,x,z), shading interp y#?AW`|  
    %           set(gca,'XTick',[],'YTick',[]) _eg&j  
    %           axis square dW} m44X  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Ns5'K^  
    %       end bTJ l  
    % AB[#  
    %   See also ZERNPOL, ZERNFUN2. vi~NfD@s  
    "S^ ""5  
    %   Paul Fricker 11/13/2006 C~q&  
    gkMyo`  
    `71(wf1q[f  
    % Check and prepare the inputs: |>!tqgq  
    % -----------------------------  mm9xO%  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) @78%6KZ`i  
        error('zernfun:NMvectors','N and M must be vectors.') 0.!!rq,  
    end qJ%AbdOI8  
    h-6zQs   
    if length(n)~=length(m) /6Olq6V  
        error('zernfun:NMlength','N and M must be the same length.') Msl8o c  
    end +A%"_7L}  
    M#o'hc  
    n = n(:); 7J[s5'~|  
    m = m(:); q&d5V~q  
    if any(mod(n-m,2)) j@C*kj;-  
        error('zernfun:NMmultiplesof2', ... &8M^E/#.^;  
              'All N and M must differ by multiples of 2 (including 0).') U_61y;Q"  
    end xG~7kj3  
    wgFAPZr  
    if any(m>n) #-9@*FFL,  
        error('zernfun:MlessthanN', ... 0.lOSAq  
              'Each M must be less than or equal to its corresponding N.') U?&&yynK  
    end .V.ga2+  
    *e%(J$t  
    if any( r>1 | r<0 ) /& wA$h  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') *G(ZRj@ 33  
    end 1/<Z6 ?U  
    s8|F e_  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) CA5q(ID_  
        error('zernfun:RTHvector','R and THETA must be vectors.') ix!4s613w  
    end f0]`TjY  
    .XPPd?R  
    r = r(:); 3w$Ib}7   
    theta = theta(:); tr-muhuK  
    length_r = length(r); Xot2L{EIUE  
    if length_r~=length(theta) =5u;\b>*  
        error('zernfun:RTHlength', ... /6yH ,{(a  
              'The number of R- and THETA-values must be equal.') >@uFye$  
    end = @n`5g  
    FC }r~syqA  
    % Check normalization: kJK:1;CM?.  
    % -------------------- _ Y8j l,J  
    if nargin==5 && ischar(nflag) d6+{^v$#  
        isnorm = strcmpi(nflag,'norm'); ]5sU =\  
        if ~isnorm y7/=-~   
            error('zernfun:normalization','Unrecognized normalization flag.') #5=!ew  
        end LypBS]r u  
    else BX-fV|  
        isnorm = false; 'q, L*  
    end /`VrV{\/!  
    c'&\[b(m  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% H-5h-p k  
    % Compute the Zernike Polynomials {<L|Z=&k`  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Hwiftx  
    h7cE"m  
    % Determine the required powers of r: -cL wjI  
    % ----------------------------------- Zil<*(kv{  
    m_abs = abs(m); 8Q\ T,C  
    rpowers = []; vCsJnKqK  
    for j = 1:length(n) }-2U,Xg[  
        rpowers = [rpowers m_abs(j):2:n(j)]; pu,|_N[xq8  
    end bm#/ KT_8  
    rpowers = unique(rpowers); t)^18 z  
    =v49[i  
    % Pre-compute the values of r raised to the required powers, akV-|v_  
    % and compile them in a matrix: ;$/]6@bqB  
    % ----------------------------- 6<{XwmM  
    if rpowers(1)==0 WI\jm&H r  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); TpAso[r  
        rpowern = cat(2,rpowern{:}); 9Je+|+s]  
        rpowern = [ones(length_r,1) rpowern]; ">x"BP  
    else H rI(uZ]  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); @nxpcHj  
        rpowern = cat(2,rpowern{:}); `!lQd}W  
    end &"mWi-Mpl  
    w'zSV1  
    % Compute the values of the polynomials: rYPj3!#  
    % -------------------------------------- xY<*:&  
    y = zeros(length_r,length(n)); 0q_?<v_ 1  
    for j = 1:length(n) {I]>!V0j!  
        s = 0:(n(j)-m_abs(j))/2; 0^mCj<g  
        pows = n(j):-2:m_abs(j); C1po]Ott*  
        for k = length(s):-1:1 E<r<ObeRv`  
            p = (1-2*mod(s(k),2))* ... E5 uk<e_  
                       prod(2:(n(j)-s(k)))/              ... z\c$$+t  
                       prod(2:s(k))/                     ... JlhI3`X;/  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... uQO\vRh0  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); CC|=$(PgT  
            idx = (pows(k)==rpowers); 8&c:73=?X  
            y(:,j) = y(:,j) + p*rpowern(:,idx); $n_ax\15  
        end Uj twOv|pF  
         ]oizBa@?G  
        if isnorm ]!v\whZ>  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); dlCmSCp%  
        end 7[It  
    end -$ha@ bCWO  
    % END: Compute the Zernike Polynomials DQ hstXX  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% X{tfF!+iy  
    cg_j.=M-  
    % Compute the Zernike functions: $<F9;Z  
    % ------------------------------ wH]Y1 m  
    idx_pos = m>0; lc\%7-%:5  
    idx_neg = m<0; KhZ\q|5  
    r;SOAucX  
    z = y; '.IR|~Y  
    if any(idx_pos) FC#t}4as  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Q&8epO|J  
    end }E#1Z\)  
    if any(idx_neg) $\q}A:  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); |C}=  1  
    end _l=X?/  
    F~wqt7*  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) %,f(jQfg_  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. Ypwn@?xeP  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated ?b xa k  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive M"5S  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, `ZGKM>q`  
    %   and THETA is a vector of angles.  R and THETA must have the same nHl{'|~  
    %   length.  The output Z is a matrix with one column for every P-value, zszx~LSvIT  
    %   and one row for every (R,THETA) pair. mOntc6&]  
    % !'*1;OQ  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike pZ5eGA=  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) U(5Yg  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) FQM9>l@6)>  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 Uf#9y182*c  
    %   for all p.  >f*Zf(F  
    % t)hi j&wzu  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 !#dp [,nk  
    %   Zernike functions (order N<=7).  In some disciplines it is 2<tU  
    %   traditional to label the first 36 functions using a single mode + I4s0  
    %   number P instead of separate numbers for the order N and azimuthal TV~S#yg+H  
    %   frequency M. l09DH+  
    % W~Q;R:y  
    %   Example: S@cKo&^  
    % g[(Eh?]Sc  
    %       % Display the first 16 Zernike functions A$-\Er+f  
    %       x = -1:0.01:1; -;iCe7|Twf  
    %       [X,Y] = meshgrid(x,x); Y7<(_p7  
    %       [theta,r] = cart2pol(X,Y); $lb$<  
    %       idx = r<=1; xM**n3SZ`  
    %       p = 0:15; y\ax?(z  
    %       z = nan(size(X)); C=`MzZbJ  
    %       y = zernfun2(p,r(idx),theta(idx)); JzmX~|=Xi  
    %       figure('Units','normalized') oW3|b2D  
    %       for k = 1:length(p) Dr5AJ`y9A  
    %           z(idx) = y(:,k); > *soc!#Y  
    %           subplot(4,4,k) zo:NE0 0  
    %           pcolor(x,x,z), shading interp 3u[5T|D'  
    %           set(gca,'XTick',[],'YTick',[]) |f2 bb  
    %           axis square S#nW )=   
    %           title(['Z_{' num2str(p(k)) '}']) FTWjIa/[  
    %       end Ch73=V  
    %  }A&I@2d  
    %   See also ZERNPOL, ZERNFUN. G$VE o8Blb  
    q``:[Sz  
    %   Paul Fricker 11/13/2006 _&aPF/  
     NR98]X  
    L u1pxL  
    % Check and prepare the inputs: WkDXWv\{,{  
    % ----------------------------- dz1kQzOU*  
    if min(size(p))~=1 Wv]ODEd  
        error('zernfun2:Pvector','Input P must be vector.') fPq)Lx1'  
    end f7:}t+d  
    ##nC@h@  
    if any(p)>35 RKy!=#;17  
        error('zernfun2:P36', ... qm< mw"]  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... CTJwZY7  
               '(P = 0 to 35).']) Xo3@-D_c!c  
    end rDv`E^\  
    >DR$}{IV  
    % Get the order and frequency corresonding to the function number: aUq 2$lw1  
    % ---------------------------------------------------------------- H7}f[4S%  
    p = p(:); vQy+^deW  
    n = ceil((-3+sqrt(9+8*p))/2); e?+&2zMq  
    m = 2*p - n.*(n+2); 009Q#[A  
    C4)m4r%  
    % Pass the inputs to the function ZERNFUN: +h8`8k'}-2  
    % ---------------------------------------- mI5!rrRD|  
    switch nargin p\DSFB  
        case 3 Hz j%G>  
            z = zernfun(n,m,r,theta); Q096M 0m  
        case 4 r9n:[A&HE  
            z = zernfun(n,m,r,theta,nflag); WWT1_&0  
        otherwise TT={>R[B  
            error('zernfun2:nargin','Incorrect number of inputs.') gv,1 CK  
    end sQn@:Gk  
    pO)5NbU  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) xqfIm%9i}  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. #I\" 'n5M  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of -_= m j  
    %   order N and frequency M, evaluated at R.  N is a vector of Q 3/J @MC  
    %   positive integers (including 0), and M is a vector with the nH B  
    %   same number of elements as N.  Each element k of M must be a w-3Lw<  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) k; >Vh'=X  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is h4Xz"i{z  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix 1u"#rC>7.4  
    %   with one column for every (N,M) pair, and one row for every $g),|[ x+(  
    %   element in R. [_: GQ  
    % Nh\o39=  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- L_o/fTz4  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is ""*g\  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to 3i~X`@$k>  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 V>D}z8w7  
    %   for all [n,m]. ]n3!%0]\  
    % NryOdt tI  
    %   The radial Zernike polynomials are the radial portion of the %M:$ML6b<  
    %   Zernike functions, which are an orthogonal basis on the unit wF3 MzN=%  
    %   circle.  The series representation of the radial Zernike Hp@Q  
    %   polynomials is x"r,l/gzy  
    % 1iqgVby  
    %          (n-m)/2 6"; ITU^v  
    %            __ M3r;Pdj2r  
    %    m      \       s                                          n-2s f Xh{ _>  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r + )[@  
    %    n      s=0 hVAatn[  
    % hzT)5'_  
    %   The following table shows the first 12 polynomials. %m+7$iD  
    % P#D|CP/Cu  
    %       n    m    Zernike polynomial    Normalization Q>71uM%e`  
    %       --------------------------------------------- #\_ 8y`{x  
    %       0    0    1                        sqrt(2) P](8Qrl  
    %       1    1    r                           2 >GLoeCRNu  
    %       2    0    2*r^2 - 1                sqrt(6) sPXjU5uq#  
    %       2    2    r^2                      sqrt(6) R:j mn  
    %       3    1    3*r^3 - 2*r              sqrt(8) zQ#* O'-n  
    %       3    3    r^3                      sqrt(8) %NM={X|'  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) *f_A :`:  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) D c;k)z=  
    %       4    4    r^4                      sqrt(10) T#wG]DH;  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) mxpj<^n}  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) XMdCQ=  
    %       5    5    r^5                      sqrt(12) Cy *.pzCi  
    %       --------------------------------------------- g>k?03;  
    % @BG].UJo  
    %   Example: i,S1|R  
    % ~Z!YB,)bp  
    %       % Display three example Zernike radial polynomials klH?!r&  
    %       r = 0:0.01:1; @b,6W wc  
    %       n = [3 2 5]; [YZgQ  
    %       m = [1 2 1]; +k~0&lZi  
    %       z = zernpol(n,m,r); w`=O '0d  
    %       figure )(_NFpM  
    %       plot(r,z) paLPC&G  
    %       grid on 2dcvB]T!  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') 2pU'&8  
    % p|8ZHR+  
    %   See also ZERNFUN, ZERNFUN2. Cs y,3XG  
    r/HTkXs I  
    % A note on the algorithm. kD?@nx>  
    % ------------------------ *8po0s  
    % The radial Zernike polynomials are computed using the series 0{ ~2mggh  
    % representation shown in the Help section above. For many special L AH">E  
    % functions, direct evaluation using the series representation can CWocb=E  
    % produce poor numerical results (floating point errors), because ZO/u3&gU  
    % the summation often involves computing small differences between L#uU. U=  
    % large successive terms in the series. (In such cases, the functions =5Nh}o(l?  
    % are often evaluated using alternative methods such as recurrence }WaZ+Mdg\  
    % relations: see the Legendre functions, for example). For the Zernike ar6+n^pi0]  
    % polynomials, however, this problem does not arise, because the RRV%g!  
    % polynomials are evaluated over the finite domain r = (0,1), and jT}={[9b  
    % because the coefficients for a given polynomial are generally all $;'M8L  
    % of similar magnitude. .a7RGT3]m  
    % miu?X!  
    % ZERNPOL has been written using a vectorized implementation: multiple =QGmJ3  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] U$~6V%e  
    % values can be passed as inputs) for a vector of points R.  To achieve E}v8Q~A(  
    % this vectorization most efficiently, the algorithm in ZERNPOL ; +(VO  
    % involves pre-determining all the powers p of R that are required to FO%pdLs,  
    % compute the outputs, and then compiling the {R^p} into a single 'Grii,  
    % matrix.  This avoids any redundant computation of the R^p, and |R _rfJh  
    % minimizes the sizes of certain intermediate variables. K@{0]6  
    % *OznZIn  
    %   Paul Fricker 11/13/2006 T!ZjgCY}  
    8'jt59/f  
    ) $b F*  
    % Check and prepare the inputs: u!5q)>Wt(  
    % ----------------------------- MP)Prl>  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) x,.=VB  
        error('zernpol:NMvectors','N and M must be vectors.') #v<`|_  
    end Yj/ o17  
    yF? O+9R A  
    if length(n)~=length(m) PfRA\  
        error('zernpol:NMlength','N and M must be the same length.') @uCi0Pt  
    end 1n[)({OQ  
    mL2J  
    n = n(:); rDhQ3iCqo  
    m = m(:); HbI{Xf[6LP  
    length_n = length(n); HI 1T  
    _,)_(R ,h  
    if any(mod(n-m,2)) d"06 gp  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') iD G&Muc  
    end H-+U^@w  
    'z AvQm  
    if any(m<0) #UoFU{6tM  
        error('zernpol:Mpositive','All M must be positive.') ye9GBAj /  
    end j?m(l,YD|*  
    WoN},oT[i  
    if any(m>n) uX3yq<lK"  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') {VW\EOPV~  
    end D]fuX|f~ul  
    W&)f#/M8  
    if any( r>1 | r<0 ) ][jwy-Uy;  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') T` h%=u|D  
    end z+7V}aPM  
    5z,q~CU  
    if ~any(size(r)==1) Ig}hap]G  
        error('zernpol:Rvector','R must be a vector.') AXHY$f|  
    end tjwf;g}$  
    # o/;du  
    r = r(:); RU7+$Z0K  
    length_r = length(r); gfj_]  
    *6` ^8Y\  
    if nargin==4 %xCL&}bY  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); JCn HEH  
        if ~isnorm <q!HY~"V  
            error('zernpol:normalization','Unrecognized normalization flag.') P|@[D=y  
        end @I?,!3`jS  
    else 7>y]uT@ar  
        isnorm = false; s_/@`kd{  
    end =o~+R\1ux+  
    iv_3R}IbX  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% `WOoC   
    % Compute the Zernike Polynomials X-(( [A  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% s(3u\#P  
    :JG5)H}j+  
    % Determine the required powers of r: \O"H#gt  
    % ----------------------------------- n'^`;-  
    rpowers = []; Z,2?TT|p  
    for j = 1:length(n) pLCj"D).M  
        rpowers = [rpowers m(j):2:n(j)]; Y GOkqI  
    end xaVX@ 3r.3  
    rpowers = unique(rpowers); g $Y]{VM.J  
    !7I07~&1  
    % Pre-compute the values of r raised to the required powers, "zJxWXI  
    % and compile them in a matrix: 8%m\J:e R  
    % ----------------------------- aUZ?Ue9l>2  
    if rpowers(1)==0 ,+`r2}N \/  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); xIm2t~io  
        rpowern = cat(2,rpowern{:}); Db|JR  
        rpowern = [ones(length_r,1) rpowern]; eUQmW^  
    else 8A&N+sT  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); X5/j8=G H`  
        rpowern = cat(2,rpowern{:}); V[kJ;YLPN  
    end - @>]iBl  
    ;%2+Tc-7I  
    % Compute the values of the polynomials: k{;?>=FH!  
    % -------------------------------------- S;#:~?dU  
    z = zeros(length_r,length_n); I2CI9,0  
    for j = 1:length_n Y QC.jnb2  
        s = 0:(n(j)-m(j))/2; )yb~ kbe  
        pows = n(j):-2:m(j); _0rt.NRD  
        for k = length(s):-1:1 ,jC~U s<  
            p = (1-2*mod(s(k),2))* ... J&~I4ko]  
                       prod(2:(n(j)-s(k)))/          ... ASoBa&vX  
                       prod(2:s(k))/                 ... rhPv{6Z|7  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... 98R/ ^\  
                       prod(2:((n(j)+m(j))/2-s(k))); 02;'"EmP$  
            idx = (pows(k)==rpowers); /r'Fq =z  
            z(:,j) = z(:,j) + p*rpowern(:,idx); jRC{8^98  
        end jm<^WQ%Cc  
         liPrxuP`  
        if isnorm n^;-&  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); }rmr0Bh  
        end A2\hmp@A@7  
    end Xk%eU>d  
    K\Q4u4DjbJ  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  _ q>|pt.W  
    ]70ZerQ~L  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 9R-2\D]  
    g{>0Pa 1?C  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)