非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 p#
4@
function z = zernfun(n,m,r,theta,nflag) 9wB}EDZ
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. @}r2xY1
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N d${RZ}/
% and angular frequency M, evaluated at positions (R,THETA) on the D rMG{Yiu
% unit circle. N is a vector of positive integers (including 0), and e]qbh_A
% M is a vector with the same number of elements as N. Each element KBO{g:"
% k of M must be a positive integer, with possible values M(k) = -N(k) ]-D&/88``
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, O*:8gu'Y2
% and THETA is a vector of angles. R and THETA must have the same OfAh?^R
% length. The output Z is a matrix with one column for every (N,M) [Dv6z t>
% pair, and one row for every (R,THETA) pair. VY#:IE:T
% |rhCQ"H
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike $zR[2{bg
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), p ^(gXzW
% with delta(m,0) the Kronecker delta, is chosen so that the integral bTrQ(qp
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ,]\: ]Y&?
% and theta=0 to theta=2*pi) is unity. For the non-normalized '(4#He?Gd
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. M.loG4r!
% V.f'Cw
% The Zernike functions are an orthogonal basis on the unit circle. }p <p(
% They are used in disciplines such as astronomy, optics, and -eA3o2'
% optometry to describe functions on a circular domain. >.fN@8[
% ,O;+fhUJ(
% The following table lists the first 15 Zernike functions. mK);NvJ!
% HfN:oww
% n m Zernike function Normalization +1]xmnts
% -------------------------------------------------- 1,/L&_=_A
% 0 0 1 1 r8uc. z2%
% 1 1 r * cos(theta) 2 , id`=L=
% 1 -1 r * sin(theta) 2 bktw?{h
% 2 -2 r^2 * cos(2*theta) sqrt(6) }$zJdf,\
% 2 0 (2*r^2 - 1) sqrt(3) vA(')"DDT
% 2 2 r^2 * sin(2*theta) sqrt(6) SjZ?keKZ
% 3 -3 r^3 * cos(3*theta) sqrt(8) F9Bj$`#)
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) x9Qa.Jmj
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) GkutS.2G#
% 3 3 r^3 * sin(3*theta) sqrt(8)
+T R#
% 4 -4 r^4 * cos(4*theta) sqrt(10) R8uiLZd
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) u\]aUP
e
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) YnCWmlC
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) d:x=g i!
% 4 4 r^4 * sin(4*theta) sqrt(10) =h"*1`
% -------------------------------------------------- CLU[')H0
% ua'dm6",:
% Example 1: gkN|3^
% dF-d
% % Display the Zernike function Z(n=5,m=1) qZ:-- ,9+
% x = -1:0.01:1; :<`hsKy&
% [X,Y] = meshgrid(x,x); ke(LjRS
% [theta,r] = cart2pol(X,Y); SLiQHWw*J
% idx = r<=1; O0lQ1<=
% z = nan(size(X)); W9$mgs=S`E
% z(idx) = zernfun(5,1,r(idx),theta(idx)); |0wUOs*5
% figure >H,t^i}@
% pcolor(x,x,z), shading interp 'yWv @)
% axis square, colorbar bN#)F
% title('Zernike function Z_5^1(r,\theta)') <AzM~]"3
% $jDp ^ -
% Example 2: +bj[.
% 4I[g{S
nF
% % Display the first 10 Zernike functions !u}} V
% x = -1:0.01:1; ^H,o I*
% [X,Y] = meshgrid(x,x); `GG PkTN
% [theta,r] = cart2pol(X,Y); U73{Uv
% idx = r<=1; #hBDOXHPf
% z = nan(size(X)); ={a8=E!;
% n = [0 1 1 2 2 2 3 3 3 3]; \\qw"w9
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; y3
{om^ f
% Nplot = [4 10 12 16 18 20 22 24 26 28]; hE-u9i
% y = zernfun(n,m,r(idx),theta(idx)); }tIIA"dZ
% figure('Units','normalized') d45JT?qg&
% for k = 1:10 <3!jra,h
% z(idx) = y(:,k); ^[d|^fRH Q
% subplot(4,7,Nplot(k)) C?FUc cI
% pcolor(x,x,z), shading interp Ef;OrE""
% set(gca,'XTick',[],'YTick',[]) |7jUf$Q\p
% axis square !2('Cq_^
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) +^c;4-X
0
% end YdgaZJs
% t._W643~
% See also ZERNPOL, ZERNFUN2. mn=G6h
T}W
/CtR|~w L
% Paul Fricker 11/13/2006 ACg5"
r+BPz%wM=O
OG_2k3v
% Check and prepare the inputs: @x>J-Owd]J
% ----------------------------- 'w+T vOB
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Q<y&*o3YF|
error('zernfun:NMvectors','N and M must be vectors.') =$B:i>z<
end %2<G3]6^U
+3
2"vq)_
if length(n)~=length(m) su}>
>07
error('zernfun:NMlength','N and M must be the same length.') tZtyx;EP
end Z[baQO
+_8*;k@F'
n = n(:); 4Lx#5}P
m = m(:); *8zn\No<,
if any(mod(n-m,2)) VP$ `.y
error('zernfun:NMmultiplesof2', ... f$x\~y<[
'All N and M must differ by multiples of 2 (including 0).') 1{oq8LB
end Y5~_y?BX
i#t)tM"
if any(m>n) Qa nE]
error('zernfun:MlessthanN', ... @<ba+z>"~4
'Each M must be less than or equal to its corresponding N.') ZGHkW9b&
end 2$^n@<uZ@
A0SEzX({[
if any( r>1 | r<0 ) M@rknq@
error('zernfun:Rlessthan1','All R must be between 0 and 1.') \N\Jny
end nf5Ld"|%9
n>tYeN)F<
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) :7t~p&J
error('zernfun:RTHvector','R and THETA must be vectors.') R 2uo ZA,
end 'aQ"&GX@
Si#b"ls'
r = r(:); 1&~u:RUXe
theta = theta(:); :,$:@
length_r = length(r); 9-Bp =M
if length_r~=length(theta) i0ax`37
error('zernfun:RTHlength', ... @,D 3$P8}
'The number of R- and THETA-values must be equal.') 33lD`4i+
end >A#wvQl7
9 veq
% Check normalization: gaaW:* *y
% -------------------- Kc+;"4/#q
if nargin==5 && ischar(nflag) <@9p|[!
isnorm = strcmpi(nflag,'norm'); 'dYjbQ}~;
if ~isnorm s+>VqyHgf
error('zernfun:normalization','Unrecognized normalization flag.') iN0gvjZ
end q;a`*gX^
else j?ihUNY!+
isnorm = false; C2;qSKG3{m
end "q(#,,_
JPQ[JD^]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% <o^_il$W
% Compute the Zernike Polynomials 7a Fvj
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 6D,xs}j1
$\l7aA5~
% Determine the required powers of r: =e/{fUg8f
% ----------------------------------- nS0K&MH6B
m_abs = abs(m); a;J{'PHu
rpowers = []; i$HaE)qZ
for j = 1:length(n) je1f\N45
rpowers = [rpowers m_abs(j):2:n(j)]; wkK61ah6
end [H5TtsQ[
rpowers = unique(rpowers); sw{,l"]<
PDaHY
% Pre-compute the values of r raised to the required powers, f?T6Ne'
% and compile them in a matrix: LC/9)Sh_n
% ----------------------------- N!>Gg|@~
if rpowers(1)==0 |e@9YDZ
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); pqO}=*v@
rpowern = cat(2,rpowern{:}); !uLW-[F,
rpowern = [ones(length_r,1) rpowern]; 8Czy<}S<G
else A-e#&pJ
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ru,]!YPJE2
rpowern = cat(2,rpowern{:}); "h'0&ZP~_
end Hzs]\%"
O;c;>x_dA
% Compute the values of the polynomials: 0UeDM*
% -------------------------------------- @EH:4~
y = zeros(length_r,length(n)); n<6p 0w
for j = 1:length(n) s0"S;{_#
s = 0:(n(j)-m_abs(j))/2; u1a5Vtel
pows = n(j):-2:m_abs(j); m`!C|?hu
for k = length(s):-1:1 }R:e[lKj
p = (1-2*mod(s(k),2))* ... 5 7e'a&}e
prod(2:(n(j)-s(k)))/ ... =s`\W7/;{-
prod(2:s(k))/ ... } 5i0R
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... .a\b_[+W
prod(2:((n(j)+m_abs(j))/2-s(k))); w(pLU$6X
idx = (pows(k)==rpowers); $lmbeW[0
y(:,j) = y(:,j) + p*rpowern(:,idx); S0nBX"$u
end [8AGW7_
>=-w2&
if isnorm MVU5+wX
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); [=079UN-X
end l-4T Tg
end I`kaAOe
% END: Compute the Zernike Polynomials I=X-e#HM?
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /gh=+;{
Qi`Lj5;\F
% Compute the Zernike functions: yS0YWqv]6@
% ------------------------------ (yWU9q)5
idx_pos = m>0; w!o[pvyR$
idx_neg = m<0; {LfVV5?
)O~LXK=b
z = y; (y%}].[bB
if any(idx_pos) <wUDcF
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); b=v
end z/u;afB9q
if any(idx_neg) cmF&1o3_
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); $A\fm`
end 1P(rgn:8e
;Ut0tm
% EOF zernfun