切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11808阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 b4Z`y8=  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! sI&i{D  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 xfjd5J7'  
    function z = zernfun(n,m,r,theta,nflag) ^+ZgWS^%  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. |% z ^N*  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N !p9)CjQ"  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ! Tx&vtq  
    %   unit circle.  N is a vector of positive integers (including 0), and 96d~~2p  
    %   M is a vector with the same number of elements as N.  Each element HcRa`Sfc]/  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) JVtQ ,oZ  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, *5_V*v6  
    %   and THETA is a vector of angles.  R and THETA must have the same QK)){ cK  
    %   length.  The output Z is a matrix with one column for every (N,M) pkJ/oT  
    %   pair, and one row for every (R,THETA) pair. R}8XRe  
    % v??TJ^1  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike u*3NS$vH  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 0RUi\X4HI  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral ~#R9i^Y  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, x2co>.i  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized WJ |:kuF  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. rcV-_+KE(B  
    % ^$v3eKA  
    %   The Zernike functions are an orthogonal basis on the unit circle. n]Zk;%yL  
    %   They are used in disciplines such as astronomy, optics, and e,>%Z@92(  
    %   optometry to describe functions on a circular domain. NYwR2oX  
    % ~@T<gA9V  
    %   The following table lists the first 15 Zernike functions. >nzu],U  
    % M|q~6oM  
    %       n    m    Zernike function           Normalization *O,H5lwU  
    %       -------------------------------------------------- 41G5!=i  
    %       0    0    1                                 1 O. ,3|  
    %       1    1    r * cos(theta)                    2 7FLXx?nLY  
    %       1   -1    r * sin(theta)                    2 rq sdE  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) "g>.{E5  
    %       2    0    (2*r^2 - 1)                    sqrt(3) G?AG:%H%  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) fmfTSN(Q~`  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) {ox2Tg?  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) K{@3\5<  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) .Da'pOe  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) :w`3cw Q  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) (-0ePSOG  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ?-MP_9!JK  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 20b<68h$:  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) &gtG~mp<L  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) BecP T  
    %       -------------------------------------------------- LJFG0 W  
    % n(1')?"mA  
    %   Example 1: (@r `$5D.b  
    % #*9-d/K  
    %       % Display the Zernike function Z(n=5,m=1) .B72C[' c  
    %       x = -1:0.01:1; `Out(Hn  
    %       [X,Y] = meshgrid(x,x); 3*ixlO:qGk  
    %       [theta,r] = cart2pol(X,Y); POAw M  
    %       idx = r<=1; U!(@q!>G  
    %       z = nan(size(X)); vAb^]d   
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); SJ?6{2^  
    %       figure 7%MbhlN.  
    %       pcolor(x,x,z), shading interp X(A.X:"  
    %       axis square, colorbar (xl\J/  
    %       title('Zernike function Z_5^1(r,\theta)') #m<tJnEO  
    % GsQ*4=C  
    %   Example 2: KS}hU~  
    % 31WC=ur5  
    %       % Display the first 10 Zernike functions @{hd{>K*  
    %       x = -1:0.01:1; q%(EYM5Y  
    %       [X,Y] = meshgrid(x,x); C NsNZJ  
    %       [theta,r] = cart2pol(X,Y); @I`C#~  
    %       idx = r<=1; urBc=3Rz  
    %       z = nan(size(X)); vb Y3;+M>  
    %       n = [0  1  1  2  2  2  3  3  3  3]; 0'5/K ,  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; ;G |i^  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; ;5_{MCPM  
    %       y = zernfun(n,m,r(idx),theta(idx)); t5B7I59  
    %       figure('Units','normalized') <TGn=>u  
    %       for k = 1:10 hR#-u1C  
    %           z(idx) = y(:,k); e~l#4{w  
    %           subplot(4,7,Nplot(k)) h `}}  
    %           pcolor(x,x,z), shading interp VU`OO$,W  
    %           set(gca,'XTick',[],'YTick',[]) oA] KE"T  
    %           axis square sRSz}]  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 7hP<f}xL  
    %       end k%s_0 @  
    % =m89z}Ot  
    %   See also ZERNPOL, ZERNFUN2. #Z+i~t{e(  
    r;BT,jiX  
    %   Paul Fricker 11/13/2006 ~{hxR)x9  
    az0<5 Bq)  
    Fm\"{)V:b  
    % Check and prepare the inputs: +4;uF]T  
    % ----------------------------- ;Uc0o!1  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) v ^[39*8  
        error('zernfun:NMvectors','N and M must be vectors.') YHNR 3  
    end 2H71~~ c  
    !oPq?lW9  
    if length(n)~=length(m) Hnknly  
        error('zernfun:NMlength','N and M must be the same length.') q<y#pL=k"*  
    end SIO&rrT.  
    o#) {1<0vg  
    n = n(:); 'c2W}$q  
    m = m(:); **9x?s  
    if any(mod(n-m,2)) :NJ_n6E  
        error('zernfun:NMmultiplesof2', ... ]]7 mlQ  
              'All N and M must differ by multiples of 2 (including 0).') j',W 64  
    end vgY3L  
    W} WI; cI  
    if any(m>n) {3;AwhN0H  
        error('zernfun:MlessthanN', ... `&\Q +W  
              'Each M must be less than or equal to its corresponding N.') T134ZXqqz  
    end 8fA_p}wp  
    Vk< LJ S  
    if any( r>1 | r<0 ) KT]Pw\y5  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') D\IjyZ-O  
    end Uc/+gz Z;  
    4tL<q_  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) )  _zlqtO  
        error('zernfun:RTHvector','R and THETA must be vectors.') J+rCxn?;g  
    end F, U*yj  
    l/;X?g5+  
    r = r(:); %ZHP2j %~  
    theta = theta(:); UOQEk22  
    length_r = length(r); ;iDPn2?6?x  
    if length_r~=length(theta) zJe#m|Z  
        error('zernfun:RTHlength', ... r0p w_j  
              'The number of R- and THETA-values must be equal.') d%l{V6  
    end %%(R@kh9  
    wFG3KzEq ~  
    % Check normalization: {U&.D [{&  
    % -------------------- rG,5[/l  
    if nargin==5 && ischar(nflag) V_plq6z  
        isnorm = strcmpi(nflag,'norm'); IV\J3N^  
        if ~isnorm ]Q[p@gLd  
            error('zernfun:normalization','Unrecognized normalization flag.') U,nEbKJgk  
        end GfM;saTz{  
    else 'SQG>F Uy  
        isnorm = false; h iNEJ_f  
    end l5L.5 $N  
    !i=nSqW  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% VfT*7_  
    % Compute the Zernike Polynomials xf|mlHS+  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% [+qCs7'  
    bn |zl!Pq  
    % Determine the required powers of r: Da"j E  
    % -----------------------------------  }fp-5  
    m_abs = abs(m); ,3nN[)dk  
    rpowers = []; 2<M= L1\  
    for j = 1:length(n) 9"g6C<  
        rpowers = [rpowers m_abs(j):2:n(j)]; ?%H):r  
    end iNMx"F0r  
    rpowers = unique(rpowers); Tw +  
    Nk {XdrY  
    % Pre-compute the values of r raised to the required powers, {BKl`1z  
    % and compile them in a matrix: odIZo|dv  
    % ----------------------------- GR\5WypoJ  
    if rpowers(1)==0 S_~z-`;h!  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); LM2TZ   
        rpowern = cat(2,rpowern{:}); @LJpdvb  
        rpowern = [ones(length_r,1) rpowern]; 610D% F  
    else MDF%\Sx  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); bXS:x  
        rpowern = cat(2,rpowern{:}); !UFfsNiXZ  
    end z0/} !  
    9cJH"  
    % Compute the values of the polynomials: 5xii(\lC  
    % -------------------------------------- u,3#M ~  
    y = zeros(length_r,length(n)); .!JVr"8  
    for j = 1:length(n) PfkrOsV/m  
        s = 0:(n(j)-m_abs(j))/2; Y#g4$"G9  
        pows = n(j):-2:m_abs(j); 7'OtruJ   
        for k = length(s):-1:1 !0N7^Z"gtz  
            p = (1-2*mod(s(k),2))* ... < })'Y~i  
                       prod(2:(n(j)-s(k)))/              ...  6m6zA/  
                       prod(2:s(k))/                     ... qc-mGmomL  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... IgC}&  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); ^B+!N;  
            idx = (pows(k)==rpowers); -,["c9'3  
            y(:,j) = y(:,j) + p*rpowern(:,idx); j;+?HbL  
        end SXt{k<|  
         Z{H5oUk  
        if isnorm A'nq}t 3  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); v!%5&: c3  
        end 8XsguC  
    end ^Idle*+  
    % END: Compute the Zernike Polynomials Vx @|O%  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% $y b4xU  
    g (#f:"  
    % Compute the Zernike functions: [V}S <Xp  
    % ------------------------------ . BiCBp<  
    idx_pos = m>0; uPniLx\t:  
    idx_neg = m<0; &7_Qd4=08w  
    T 6~_Q}6  
    z = y; UQ4% Xp  
    if any(idx_pos) Pzb|t+"$  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Rar"B*b;$  
    end +kFxi2L6  
    if any(idx_neg) ,~?YBLw@c  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); .$#rV?7  
    end Dr6A ,3B  
    8| $3OVS  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) )*:`':_a  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. [{X^c.8G)  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated ;.bm6(;  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive ,()0' h}n  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, _.-;5M-  
    %   and THETA is a vector of angles.  R and THETA must have the same 7-BvFEM;  
    %   length.  The output Z is a matrix with one column for every P-value, j;Z?WXWD h  
    %   and one row for every (R,THETA) pair. :g.46dp4  
    % b pv= %  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike x\Y $+A,P  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) Dnc<sd;  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) _$>pw<  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 kEd@oC  
    %   for all p. \Y}3cE  
    % _wdG|{px  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 l|hUw  
    %   Zernike functions (order N<=7).  In some disciplines it is ti &J  
    %   traditional to label the first 36 functions using a single mode J6jwBo2m  
    %   number P instead of separate numbers for the order N and azimuthal pc?>cs8  
    %   frequency M. <?D\+khlq  
    % [ib P%xb  
    %   Example: %4W$Lq}  
    % CwX Z  
    %       % Display the first 16 Zernike functions zuJtpMn  
    %       x = -1:0.01:1; !*`-iQo&  
    %       [X,Y] = meshgrid(x,x); b<]n%Q'n  
    %       [theta,r] = cart2pol(X,Y); 8KH\`5<  
    %       idx = r<=1; 7w1wr)qSB  
    %       p = 0:15; `~X!Ll  
    %       z = nan(size(X)); ZR\VCVH\^  
    %       y = zernfun2(p,r(idx),theta(idx)); L_w+y  
    %       figure('Units','normalized') `|Or{ih  
    %       for k = 1:length(p) vp(;W,ba:|  
    %           z(idx) = y(:,k); al 20V  
    %           subplot(4,4,k) _uJ"m8Tl  
    %           pcolor(x,x,z), shading interp V _c @b%  
    %           set(gca,'XTick',[],'YTick',[]) |T{C,"9y  
    %           axis square @X3{x\i'I  
    %           title(['Z_{' num2str(p(k)) '}']) )yo a  
    %       end SIKOFs  
    % .] `f,^v<c  
    %   See also ZERNPOL, ZERNFUN. rS1fK1dy s  
    *:O.97q@h  
    %   Paul Fricker 11/13/2006 J6<rX[ yZe  
    Z;h<6[(  
    s{w[b\rA  
    % Check and prepare the inputs: +t2SzQ j>  
    % ----------------------------- &[&r2 >a  
    if min(size(p))~=1 0cT*z(  
        error('zernfun2:Pvector','Input P must be vector.') B(F,h+ajy  
    end HV/cc"  
    !pJeA)W;  
    if any(p)>35 +D1d=4  
        error('zernfun2:P36', ... TT9z_Q5~  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... nhN);R~o"1  
               '(P = 0 to 35).']) -rKO )}  
    end )z8!f}:De=  
    "k Te2iS  
    % Get the order and frequency corresonding to the function number: FW"^99mrnb  
    % ---------------------------------------------------------------- \u&_sBLKV  
    p = p(:); ~y$ !48o  
    n = ceil((-3+sqrt(9+8*p))/2); F,5r9^,_  
    m = 2*p - n.*(n+2); Ys!>+nL|  
    %AN/>\#p  
    % Pass the inputs to the function ZERNFUN: u`(- -  
    % ---------------------------------------- L}m8AAkP[  
    switch nargin `HuCT6O  
        case 3 {Q<$Uo6V  
            z = zernfun(n,m,r,theta); Zatf9yGD  
        case 4 8t=(,^c  
            z = zernfun(n,m,r,theta,nflag); P00f 6  
        otherwise 6:% L![FX  
            error('zernfun2:nargin','Incorrect number of inputs.') {s3z"OV  
    end i55x`>]&sb  
    v=95_l  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) _73h<|0  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. >5G>D~b  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of aiCn"j  
    %   order N and frequency M, evaluated at R.  N is a vector of saD-D2oj  
    %   positive integers (including 0), and M is a vector with the Ol$WpM  
    %   same number of elements as N.  Each element k of M must be a tvd0R$5}  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) -A-tuyIsh"  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is E0oU$IB  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix ~L7:2weV[  
    %   with one column for every (N,M) pair, and one row for every +%\oO/4Fs  
    %   element in R. $mGvJ*9  
    % #%@MGrsK  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- AnZclqtb  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is AOrHU M[I  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to 1nPZ<^A&@  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 [@fz1{*  
    %   for all [n,m]. _7a'r</@  
    % n-QJ;37\  
    %   The radial Zernike polynomials are the radial portion of the 8[ry |J  
    %   Zernike functions, which are an orthogonal basis on the unit D@X+{  
    %   circle.  The series representation of the radial Zernike -RJE6~>'\  
    %   polynomials is m=qOg>k  
    % KjB/.4lLq  
    %          (n-m)/2 4e9q`~ sO  
    %            __ %]p6Kn/>  
    %    m      \       s                                          n-2s G%u9+XV1#  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r c-j_INGm  
    %    n      s=0  8RwX=  
    % +CM7C%U   
    %   The following table shows the first 12 polynomials. PNSMcakD  
    % >6Lm9&}  
    %       n    m    Zernike polynomial    Normalization # fhEc;t  
    %       --------------------------------------------- f c6g  
    %       0    0    1                        sqrt(2) (bn Zy0  
    %       1    1    r                           2 H;WY!X$x  
    %       2    0    2*r^2 - 1                sqrt(6) 8O1K[sEjui  
    %       2    2    r^2                      sqrt(6) 6ri\>QrF  
    %       3    1    3*r^3 - 2*r              sqrt(8) 7.bN99{xPM  
    %       3    3    r^3                      sqrt(8) *@ED}Mj+  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) U\+&cob.  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) (sw-~U%  
    %       4    4    r^4                      sqrt(10) ;LJ3c7$@lf  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) Y|0ow_oH  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) *Zd84wRSj  
    %       5    5    r^5                      sqrt(12) LZ*R[  
    %       --------------------------------------------- |Y_ -  
    % e,A)U5X  
    %   Example: 0'$p$K  
    % kpob b  
    %       % Display three example Zernike radial polynomials @kD8^,(oH  
    %       r = 0:0.01:1; 9>,Qgp,w  
    %       n = [3 2 5]; '~-IV0v9  
    %       m = [1 2 1]; %c^ m\ E  
    %       z = zernpol(n,m,r); xk~Nmb}  
    %       figure rVA L|0;3  
    %       plot(r,z) qX>Q+_^  
    %       grid on L&Qi@D0P  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') 8 |h9sn;P  
    % `{FwTZ=6{  
    %   See also ZERNFUN, ZERNFUN2. KO]N%]:&~  
    ecH/Wz1  
    % A note on the algorithm. A~-#@Z  
    % ------------------------ "EftN5?/  
    % The radial Zernike polynomials are computed using the series f1+qXMs  
    % representation shown in the Help section above. For many special 7el<5chZ  
    % functions, direct evaluation using the series representation can rPq<Xb\  
    % produce poor numerical results (floating point errors), because DpL8'Dib  
    % the summation often involves computing small differences between lUh*?l  
    % large successive terms in the series. (In such cases, the functions 6 o[/F3`  
    % are often evaluated using alternative methods such as recurrence <6N_at3  
    % relations: see the Legendre functions, for example). For the Zernike |#5 e|z5(  
    % polynomials, however, this problem does not arise, because the {`.O|_b  
    % polynomials are evaluated over the finite domain r = (0,1), and E*v]:kok  
    % because the coefficients for a given polynomial are generally all WBppKj_M  
    % of similar magnitude. H)JS0 G0  
    % fU*C/ d3  
    % ZERNPOL has been written using a vectorized implementation: multiple M$CVQ>op:  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] `n-vjjG%#  
    % values can be passed as inputs) for a vector of points R.  To achieve +?N}Y{Y&  
    % this vectorization most efficiently, the algorithm in ZERNPOL ged,>  
    % involves pre-determining all the powers p of R that are required to 'm1.X-$V  
    % compute the outputs, and then compiling the {R^p} into a single |PM m?2^R  
    % matrix.  This avoids any redundant computation of the R^p, and rH}fLu8,;Q  
    % minimizes the sizes of certain intermediate variables. MguL$W&l  
    % {tzxA_  
    %   Paul Fricker 11/13/2006 Mz|L-62  
    <]#o*_aFP  
    x% XT2+  
    % Check and prepare the inputs: 3;BvnD7  
    % ----------------------------- ?ei%RWo  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) P79R~m`  
        error('zernpol:NMvectors','N and M must be vectors.') ]O@"\_}  
    end _p4}<pG  
    zv%J=N$G  
    if length(n)~=length(m) {fG|_+tl3o  
        error('zernpol:NMlength','N and M must be the same length.') lIDl1Z@Z  
    end 6/y* 2z;  
    44C+h    
    n = n(:); +Hyk'=.W  
    m = m(:); FP;": iRL  
    length_n = length(n); .98.G4J>  
    Lpm?# g uR  
    if any(mod(n-m,2))  1KJZWZy  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') dF2@q@\.+  
    end Y. TYc;  
    G)+Ff5e0L[  
    if any(m<0) utd:&q|}  
        error('zernpol:Mpositive','All M must be positive.') L[]^{ O   
    end 91;HiILgT  
    :J%'=_I&H  
    if any(m>n) LkaG[^tfN  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') ^uBwj }6  
    end .;%q/hP  
    8?Wgawx  
    if any( r>1 | r<0 ) IgA.%}II}  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') {W'8T}q  
    end |LFUzq>j  
     oWrE2U;  
    if ~any(size(r)==1) +wts 7,3  
        error('zernpol:Rvector','R must be a vector.') e-!?[Ujv*%  
    end <[8@5?&&  
    pDhY%w#  
    r = r(:); xK!DtRzsA  
    length_r = length(r); _> Ln@  
    8|vld3;  
    if nargin==4 !c_u-&b)  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); y1Z1=U*!  
        if ~isnorm V#H8d_V  
            error('zernpol:normalization','Unrecognized normalization flag.') #[,= 1Od(q  
        end :tlE`BIp  
    else gD5P!}s[u0  
        isnorm = false; a],h<wGEx  
    end . z].:$J&  
    X4 Y  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% cI3KB-lM#  
    % Compute the Zernike Polynomials M4H"].Zm  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% eRVY.E<  
    #ZF>WoC@e?  
    % Determine the required powers of r: 8qmknJC  
    % ----------------------------------- rV U:VL`2  
    rpowers = []; )DRkS,I  
    for j = 1:length(n) Z{#"-UG  
        rpowers = [rpowers m(j):2:n(j)]; 6ZTaQPtm  
    end QD}1?)}  
    rpowers = unique(rpowers); pzAoq)gg:  
    edTMl;4  
    % Pre-compute the values of r raised to the required powers, l-MxLcz  
    % and compile them in a matrix: Wv NI=>  
    % ----------------------------- O*ImLR)i+s  
    if rpowers(1)==0 Y@ObwKcG  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); m6eFXP1U  
        rpowern = cat(2,rpowern{:});  /+N|X  
        rpowern = [ones(length_r,1) rpowern]; fIH#  
    else uX98iJ  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); V 1*Ad  
        rpowern = cat(2,rpowern{:}); >kZ6f4  
    end  ?;+^  
    H)`@2~Y  
    % Compute the values of the polynomials: [Ek42%  
    % -------------------------------------- hRRkFz/0&  
    z = zeros(length_r,length_n); _2#zeT5  
    for j = 1:length_n OZa88&  
        s = 0:(n(j)-m(j))/2; PE|PwqX  
        pows = n(j):-2:m(j); %`eJ66T  
        for k = length(s):-1:1 qj`,qm P  
            p = (1-2*mod(s(k),2))* ... KS?mw`Nr  
                       prod(2:(n(j)-s(k)))/          ... % mJ~F*Dy  
                       prod(2:s(k))/                 ... uFC?_q?4\  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... CJv> /#$/F  
                       prod(2:((n(j)+m(j))/2-s(k))); k)|'JDm  
            idx = (pows(k)==rpowers); HLM;EZ  
            z(:,j) = z(:,j) + p*rpowern(:,idx); B(8mH  
        end { v,{x1  
         ' *}^@[&  
        if isnorm 2+,5p  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); W  _J&M4  
        end C`3V=BB  
    end |>Z&S=\I)  
    wKGo gf[(%  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    857
    光币
    847
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  b|X>3(  
    X;K8,A7`  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 I T*fjUY&  
    7VEt4  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)