切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11697阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 V.Ki$0>  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! @XFy^?  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 1IRlFC  
    function z = zernfun(n,m,r,theta,nflag) #A '|O\RGP  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. bijE]:<AE7  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N !$i*u-%4  
    %   and angular frequency M, evaluated at positions (R,THETA) on the |nFg"W  
    %   unit circle.  N is a vector of positive integers (including 0), and P:gN"f6  
    %   M is a vector with the same number of elements as N.  Each element R|Lr@k{6+r  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) D L0i  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, M{ mdh\  
    %   and THETA is a vector of angles.  R and THETA must have the same =6sL}$  
    %   length.  The output Z is a matrix with one column for every (N,M) ,>rr|O  
    %   pair, and one row for every (R,THETA) pair. c{dge/2yb  
    % MWxv\o   
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike "=S< xT+  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), X<<hb  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral l" #}g%E  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, :7w^2/ZGo  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized }Ra'`;D$  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. &(] @L\A  
    % dMnJ)R  
    %   The Zernike functions are an orthogonal basis on the unit circle. CAhkv0?8  
    %   They are used in disciplines such as astronomy, optics, and cJnAwIs_e`  
    %   optometry to describe functions on a circular domain. K2u$1OKv  
    % .%pbKi `  
    %   The following table lists the first 15 Zernike functions. 1UHStR  
    % Vg0$5@  
    %       n    m    Zernike function           Normalization EN =oA P  
    %       -------------------------------------------------- El}."}l&  
    %       0    0    1                                 1 IU8/B+hM~  
    %       1    1    r * cos(theta)                    2 Ie[8Iot?bn  
    %       1   -1    r * sin(theta)                    2 4\.1phe$a  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) d&dp#)._8  
    %       2    0    (2*r^2 - 1)                    sqrt(3) B|~tW21  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) /=5YHq>  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) lAxbF  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) )Bl0 W  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) UKBVCAK  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) L@"1d.k_  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) +$hqwNh@Z@  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) :jol Nl|a  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) c Bl F  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) '8Q:}{  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) |6%B2I&c  
    %       -------------------------------------------------- FY^[?lj  
    % (QPfrR=J4  
    %   Example 1: Ye'=F  
    % TV~ <1vj  
    %       % Display the Zernike function Z(n=5,m=1) (8(7:aE $  
    %       x = -1:0.01:1; 'w?*4H  
    %       [X,Y] = meshgrid(x,x); lzQmD/i*  
    %       [theta,r] = cart2pol(X,Y); TTS.wBpR,  
    %       idx = r<=1; Mpfdl65  
    %       z = nan(size(X)); |mSFa8G@  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); tSr.0'CE  
    %       figure nN=o/zd  
    %       pcolor(x,x,z), shading interp Ue>;h9^  
    %       axis square, colorbar R6^U9 fDG  
    %       title('Zernike function Z_5^1(r,\theta)') ionFPc].  
    % tgy= .o]  
    %   Example 2: GOT@  
    %  p)5j~Nl  
    %       % Display the first 10 Zernike functions "f/Su(6{0  
    %       x = -1:0.01:1; VJK?"mX  
    %       [X,Y] = meshgrid(x,x); #J 1vN]g  
    %       [theta,r] = cart2pol(X,Y); N$8do?  
    %       idx = r<=1; HLL[r0P`F  
    %       z = nan(size(X)); ea"!:cL(g  
    %       n = [0  1  1  2  2  2  3  3  3  3]; njbEw4nX  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; G~SgI>Q  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; %\5 wHT+)  
    %       y = zernfun(n,m,r(idx),theta(idx)); \7W4)>At-  
    %       figure('Units','normalized') Mw=sW5Z  
    %       for k = 1:10 "|{3V:e>a  
    %           z(idx) = y(:,k); f}jo18z%  
    %           subplot(4,7,Nplot(k)) |'w_5?|4  
    %           pcolor(x,x,z), shading interp LaI(  
    %           set(gca,'XTick',[],'YTick',[])  b)7uz>I  
    %           axis square WD wW`  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) h/I'9&J>*  
    %       end .~ )[>  
    % 9.<dS  
    %   See also ZERNPOL, ZERNFUN2. t`PA85.|d  
    W<J".2D  
    %   Paul Fricker 11/13/2006 ?\_N*NEtK  
    BUH~aV  
    ?y.q<F)  
    % Check and prepare the inputs: 2h<{~;  
    % ----------------------------- ',?9\xEB  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) a&>Tk%  
        error('zernfun:NMvectors','N and M must be vectors.') ^P5+ _P  
    end ]<9=%m  
    5k0r{^#M  
    if length(n)~=length(m) Au+SCj  
        error('zernfun:NMlength','N and M must be the same length.') R5`"~qP-  
    end fz%I'+!  
    OBGA~E;%  
    n = n(:); =@#[@Ia  
    m = m(:); @"M%ZnFu  
    if any(mod(n-m,2)) ldjypEa}  
        error('zernfun:NMmultiplesof2', ... Qr`WPTQr"  
              'All N and M must differ by multiples of 2 (including 0).') Z]$RO  
    end # 2As-9  
    .#"O VI]#  
    if any(m>n) =bJj;bc'5  
        error('zernfun:MlessthanN', ... yNY *Fl!  
              'Each M must be less than or equal to its corresponding N.') 3"2 8=)o  
    end +\SNaq~&  
    x+j5vzhG)  
    if any( r>1 | r<0 ) xkv2#"*v  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') W~15[r0  
    end :e-&,K  
    DKV^c'  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) SvUC8y  
        error('zernfun:RTHvector','R and THETA must be vectors.') 3 y!yz3E  
    end zz ^2/l  
    B_FfXFQm<  
    r = r(:); 5#~ARk*?a  
    theta = theta(:); 3L24|-GxH  
    length_r = length(r); 0sjw`<ic  
    if length_r~=length(theta) ?!H <V@a  
        error('zernfun:RTHlength', ... i2or/(u`  
              'The number of R- and THETA-values must be equal.') x)6yWr[ri%  
    end r>+Hwj0>  
    F(E3U'G  
    % Check normalization: H-%)r&"vn  
    % -------------------- iE}jilU  
    if nargin==5 && ischar(nflag) vt`hY4  
        isnorm = strcmpi(nflag,'norm'); (>m3WI$d  
        if ~isnorm E.v~<[g  
            error('zernfun:normalization','Unrecognized normalization flag.') O@U[S.IK  
        end J~z;sTR  
    else tN|sHgs  
        isnorm = false; Gy36{*  
    end % R~9qO  
    ZOl =zn  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 6T 2jVNg  
    % Compute the Zernike Polynomials +O23@G?x  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% fRo_rj _  
    )L#C1DP#  
    % Determine the required powers of r: {t: ZMUV  
    % ----------------------------------- w5"C<5^  
    m_abs = abs(m); 2Mx9Kd'a r  
    rpowers = []; W(9fCDO;  
    for j = 1:length(n) a pqzf  
        rpowers = [rpowers m_abs(j):2:n(j)]; {H eIY2  
    end Y >-|`2Z  
    rpowers = unique(rpowers); 4%O*2JAw  
    jh.W$.Oq  
    % Pre-compute the values of r raised to the required powers, tx;DMxN!W  
    % and compile them in a matrix: h d1H  
    % ----------------------------- l)E \mo 8  
    if rpowers(1)==0 T{u!4Yu  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); sqHv rI  
        rpowern = cat(2,rpowern{:}); ~*D)L'`2M  
        rpowern = [ones(length_r,1) rpowern]; v=?U{{xQ  
    else +]Of f^s  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); pRmnS;*z&  
        rpowern = cat(2,rpowern{:}); pmXx2T#=  
    end UwY<3ul  
    ws5x53K  
    % Compute the values of the polynomials: E!'H,#"P  
    % -------------------------------------- cH6ie?KvAo  
    y = zeros(length_r,length(n)); >x)YdgJ*  
    for j = 1:length(n) \/4ipU.  
        s = 0:(n(j)-m_abs(j))/2; i](,s.  
        pows = n(j):-2:m_abs(j); 9"2.2li5$  
        for k = length(s):-1:1 8Q^yh6z  
            p = (1-2*mod(s(k),2))* ... e;pVoRI  
                       prod(2:(n(j)-s(k)))/              ... EDvK9J  
                       prod(2:s(k))/                     ... i ^sK+v  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... =25q Y"Mf  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); VE^NSk Oa&  
            idx = (pows(k)==rpowers); C1P{4 U  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 'P}"ZHW  
        end ,5'LbO-  
         dN;kYWRK  
        if isnorm c&)H   
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); :w(J=0Lt  
        end JU:!lyd  
    end 8-cG[/|0  
    % END: Compute the Zernike Polynomials k);z}`7  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% i9k7rEW^  
     O/gok+K  
    % Compute the Zernike functions: &d`Umm]  
    % ------------------------------ rui}a=rs  
    idx_pos = m>0; |K'{R'A  
    idx_neg = m<0; # j*$ `W;  
    x +|Fw d  
    z = y; xC`Hm?kM  
    if any(idx_pos) YS?P A#  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); {b^naE  
    end K%qunjv  
    if any(idx_neg) lZ0+:DaP2  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); yt>Pf <AI  
    end ,.]e~O4R  
    Jl Q%+$  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) P(X#w  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. +D?d)lK  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated kjNA~{  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive F1M@$S ,  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, ~pzaX8!  
    %   and THETA is a vector of angles.  R and THETA must have the same MF 5w.@62X  
    %   length.  The output Z is a matrix with one column for every P-value, ~lDLdUs  
    %   and one row for every (R,THETA) pair. C| Mh<,~ E  
    % NnHwk)'  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike =v:_N.Fh-c  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) /4_}wi\  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) LWVO%@)w  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 bx6@FKns}  
    %   for all p. X[@>1tl  
    % K"}Dbr  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 ~%<PEl|  
    %   Zernike functions (order N<=7).  In some disciplines it is >E]*5jqU  
    %   traditional to label the first 36 functions using a single mode ="A[*:h C"  
    %   number P instead of separate numbers for the order N and azimuthal ` 4k;`a  
    %   frequency M. #m$H'O[WG\  
    % ]ei] ) JI  
    %   Example: +vU.#C_2  
    % PA,j;{,(b  
    %       % Display the first 16 Zernike functions iGhapD  
    %       x = -1:0.01:1; e<p$Op  
    %       [X,Y] = meshgrid(x,x);  R(zsn;  
    %       [theta,r] = cart2pol(X,Y); BKD Wd]KEf  
    %       idx = r<=1; VqbiZOZ@  
    %       p = 0:15; '@fk(~|  
    %       z = nan(size(X)); mdZELRu  
    %       y = zernfun2(p,r(idx),theta(idx)); B "qG-ci  
    %       figure('Units','normalized') O Z#?  
    %       for k = 1:length(p) :EO}uP2  
    %           z(idx) = y(:,k); ,h>w%  
    %           subplot(4,4,k) ScTqnY$v  
    %           pcolor(x,x,z), shading interp w+MdQ@'5  
    %           set(gca,'XTick',[],'YTick',[]) <]9MgfAe  
    %           axis square R80R{Ze  
    %           title(['Z_{' num2str(p(k)) '}']) xv*mK1e  
    %       end Ym6ec|9;  
    % r zvX~B6  
    %   See also ZERNPOL, ZERNFUN. s{IoL_PJP  
    bo*q{@Ue  
    %   Paul Fricker 11/13/2006 7&QVw(:)M  
    n (|>7  
    Yn#8uaU  
    % Check and prepare the inputs: v]J# SlF  
    % ----------------------------- roA1= G\Q  
    if min(size(p))~=1 KF'M4P  
        error('zernfun2:Pvector','Input P must be vector.') 9=o b:  
    end *Q>:|F[vM  
    N:<O  
    if any(p)>35 em]K7B=  
        error('zernfun2:P36', ... S?{5DxilO  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... %C)JmaQ{9  
               '(P = 0 to 35).']) "tR.'F[n4P  
    end br;G5^j3?  
    zfZDtKq  
    % Get the order and frequency corresonding to the function number: yRYWx` G  
    % ---------------------------------------------------------------- ]R@G5d  
    p = p(:); ]Rye AJ3  
    n = ceil((-3+sqrt(9+8*p))/2); |FFC8R%@]u  
    m = 2*p - n.*(n+2); _E;Y ~I,i  
    X W)A~wPBs  
    % Pass the inputs to the function ZERNFUN: q(7D8xG;F  
    % ---------------------------------------- 4I*Mc%dD  
    switch nargin l:eNu}{&  
        case 3 }#8uXA  
            z = zernfun(n,m,r,theta); Elp!,(+&6  
        case 4 6\;1<Sw*  
            z = zernfun(n,m,r,theta,nflag); %?hLo8  
        otherwise ]e.+u  
            error('zernfun2:nargin','Incorrect number of inputs.') [QbXj0en$  
    end a1SOC=.M;  
    f'OvG@  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) yM:~{;HLF  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. d[e:}1  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of xeM':hD.o  
    %   order N and frequency M, evaluated at R.  N is a vector of s9kLB.  
    %   positive integers (including 0), and M is a vector with the F[D0x26 ^  
    %   same number of elements as N.  Each element k of M must be a ~}-p5q2  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) KHecc/,,S  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is >xV<nLf/  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix !Vr45l  
    %   with one column for every (N,M) pair, and one row for every  zc/%1  
    %   element in R. j%Z{.>mJ  
    % ?ey&Un"  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- @=NVOJy}c  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is .\~P -{Hd  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to U++~3e@l  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 zz 'dg-F  
    %   for all [n,m].  pO/SV6N  
    % / }XsuH  
    %   The radial Zernike polynomials are the radial portion of the #i+P(xV  
    %   Zernike functions, which are an orthogonal basis on the unit sO6gIPU^  
    %   circle.  The series representation of the radial Zernike L_U3*#Zdz7  
    %   polynomials is \'??  
    % g/ l0}%  
    %          (n-m)/2 #'4<> G]  
    %            __ uZ/7t(fy  
    %    m      \       s                                          n-2s _)#=>$k\  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r v$)@AE  
    %    n      s=0 r,3Ww2X-  
    % iM/*&O}  
    %   The following table shows the first 12 polynomials. //X e*0  
    % ^p"4)6p-W  
    %       n    m    Zernike polynomial    Normalization 6VH90KAT  
    %       --------------------------------------------- }RA3$%3  
    %       0    0    1                        sqrt(2) hy$MV3LP  
    %       1    1    r                           2 lPRdwg-  
    %       2    0    2*r^2 - 1                sqrt(6) t,=@hs hN  
    %       2    2    r^2                      sqrt(6) vh|Tb5W<  
    %       3    1    3*r^3 - 2*r              sqrt(8) mJ8{lXq3!  
    %       3    3    r^3                      sqrt(8) W(uP`M%][0  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) \3H<z@;  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) >/TB_ykb  
    %       4    4    r^4                      sqrt(10) W{fULl  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) $6:XsrV\a  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) ,+ns {ppn  
    %       5    5    r^5                      sqrt(12) '2|1%NSW9  
    %       --------------------------------------------- F5N>Uqr*oN  
    % hmK8j l<6  
    %   Example: a. h?4+^bN  
    % awj+#^  
    %       % Display three example Zernike radial polynomials ps"/}u l  
    %       r = 0:0.01:1; tWpl`HH  
    %       n = [3 2 5]; u^`eKak"l  
    %       m = [1 2 1]; K#GXpj  
    %       z = zernpol(n,m,r); uk`T+@K  
    %       figure uz*d^gr}  
    %       plot(r,z) w) =eMdj\o  
    %       grid on Q,zC_  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') HzP.aw4  
    % s{yJ:WncI  
    %   See also ZERNFUN, ZERNFUN2. !+m@AQ:,  
    F|ETug n  
    % A note on the algorithm. uVN.=  
    % ------------------------ HDyQzCG,  
    % The radial Zernike polynomials are computed using the series 66oK3%[  
    % representation shown in the Help section above. For many special m])Lw@#9W  
    % functions, direct evaluation using the series representation can FI\IY R  
    % produce poor numerical results (floating point errors), because GA.BI"l  
    % the summation often involves computing small differences between P?uf?{  
    % large successive terms in the series. (In such cases, the functions hQJo ~'W=  
    % are often evaluated using alternative methods such as recurrence rxQ<4  
    % relations: see the Legendre functions, for example). For the Zernike ]x2Jpk99a  
    % polynomials, however, this problem does not arise, because the mn. `qfMh  
    % polynomials are evaluated over the finite domain r = (0,1), and >b'w'"  
    % because the coefficients for a given polynomial are generally all Z+0?yQ=%  
    % of similar magnitude. k,T_e6(  
    % ai4PM b$p  
    % ZERNPOL has been written using a vectorized implementation: multiple C(s\LI!r  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] N?$7 Z v[G  
    % values can be passed as inputs) for a vector of points R.  To achieve  *. 8JP  
    % this vectorization most efficiently, the algorithm in ZERNPOL w$b~x4y%  
    % involves pre-determining all the powers p of R that are required to +I&J7ICV0  
    % compute the outputs, and then compiling the {R^p} into a single H"O$&  
    % matrix.  This avoids any redundant computation of the R^p, and Z9xR  
    % minimizes the sizes of certain intermediate variables. va^0JfQ  
    % lcCJ?!lsSW  
    %   Paul Fricker 11/13/2006 lj*8mS/;h  
    }C_|gd  
    iOll WkF  
    % Check and prepare the inputs: Q&gPa]z]}  
    % ----------------------------- 9 Va40X1  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) *="m3:c'J  
        error('zernpol:NMvectors','N and M must be vectors.') ) \ 4 |  
    end kxh 5}eB  
    a1|c2kT  
    if length(n)~=length(m) #X5hS w;  
        error('zernpol:NMlength','N and M must be the same length.') =53b Lzr  
    end ~0ooRUWU7  
    xg} ug[  
    n = n(:); wyzOcx>M  
    m = m(:); # kEOKmO  
    length_n = length(n); ;E#\   
    b_=8!Q.:  
    if any(mod(n-m,2)) ~.6|dw\p!  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') f;wc{qy  
    end AW/wI6[T  
    jTfi@5aPY  
    if any(m<0) %$TEDr!  
        error('zernpol:Mpositive','All M must be positive.') DbtF~`3, .  
    end 9afh[3qm  
    q}wj}t#  
    if any(m>n) 7~b!4x|Z  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') X>t3|h  
    end <uD qYT$6  
    HH8;J66I&  
    if any( r>1 | r<0 ) >zmzK{A=  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') ~;unpym'  
    end {155b0  
    q8sb n  
    if ~any(size(r)==1) :#$F)]y'\  
        error('zernpol:Rvector','R must be a vector.') }1U*A#aN7K  
    end ArzDI{1  
    I4D<WoU;dJ  
    r = r(:); iF9_b  
    length_r = length(r); 73 V"s  
    RUGv8"j  
    if nargin==4 _]|Qec)  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); yC !/PQ"  
        if ~isnorm 4o5i ."l  
            error('zernpol:normalization','Unrecognized normalization flag.') maC>LBa2/  
        end 6E|S  
    else M35Ax],:^  
        isnorm = false; 4D"4zp7  
    end /P+q}L %  
    ^o d<JD4  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% nl n OwyMJ  
    % Compute the Zernike Polynomials )q3"t2-  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ue0s&WF|  
    <1@ (ioPH  
    % Determine the required powers of r: ]ii+S"U3  
    % ----------------------------------- m 22wF>9  
    rpowers = []; 4tJa-7  
    for j = 1:length(n) q;A;H)?g  
        rpowers = [rpowers m(j):2:n(j)]; -Mf Q&U   
    end w>979g  
    rpowers = unique(rpowers); (-"`,8K 2}  
    MYdx .NZT  
    % Pre-compute the values of r raised to the required powers, :"'nK6>  
    % and compile them in a matrix: 5DFZ^~  
    % ----------------------------- ]vo_gKZ  
    if rpowers(1)==0 {THqz$KN  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); g7V_ [R(6  
        rpowern = cat(2,rpowern{:}); !'W-6f  
        rpowern = [ones(length_r,1) rpowern]; &]iKr iG  
    else MR;X&Up6!  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 'Q|c@t  
        rpowern = cat(2,rpowern{:}); JwP:2-o  
    end LP<<'(l`  
    8MF2K6  
    % Compute the values of the polynomials: Yc#IFmC}  
    % -------------------------------------- `ROG~0lN(  
    z = zeros(length_r,length_n); _gV8aH ZyM  
    for j = 1:length_n 3 ^}A %-bS  
        s = 0:(n(j)-m(j))/2; )=_ycf^MC  
        pows = n(j):-2:m(j); (tCib 4  
        for k = length(s):-1:1 m*n5zi|O  
            p = (1-2*mod(s(k),2))* ... 3S"] u}  
                       prod(2:(n(j)-s(k)))/          ... 5PiOH"!19  
                       prod(2:s(k))/                 ... EHI'xt  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... GyC)EFd  
                       prod(2:((n(j)+m(j))/2-s(k))); 92[a; a  
            idx = (pows(k)==rpowers); Oh; Jw  
            z(:,j) = z(:,j) + p*rpowern(:,idx); FFcB54ALTf  
        end I1=(. *B}  
         G0d&@okbFC  
        if isnorm YpmYxd^  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); j1U 5~%^  
        end J;QUPpH Z  
    end jRj=Awy  
    iHBB,x  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  ,zTb<g  
    c:!zO\P#  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 @Yw,nQE)b  
    7Cqcb>\X  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)