切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11010阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 e#)NYcr6  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! D4\[D8pD  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 tRpY+s~Fq  
    function z = zernfun(n,m,r,theta,nflag) 7f}uRXBV$A  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. YrJUs]A  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N l=b!O  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 0ki- /{;  
    %   unit circle.  N is a vector of positive integers (including 0), and "p*'HQ  
    %   M is a vector with the same number of elements as N.  Each element p_g`f9q6D  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) BvsSrse  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 1*yxSU@uY  
    %   and THETA is a vector of angles.  R and THETA must have the same ccrWk*tr  
    %   length.  The output Z is a matrix with one column for every (N,M) DnFzCJ  
    %   pair, and one row for every (R,THETA) pair. tj'~RQvO  
    % ,f2oO?L}  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Q"ZpT  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 4~&3.1  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral a_V\[V{R=  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 0cE9O9kE  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized rHTZM,zM=H  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 6e rYjq  
    % cZQ8[I  
    %   The Zernike functions are an orthogonal basis on the unit circle. 9xO@_pkX  
    %   They are used in disciplines such as astronomy, optics, and X!qK[b@Z  
    %   optometry to describe functions on a circular domain. Sz@z 0'  
    % HWsV_VAw}  
    %   The following table lists the first 15 Zernike functions. Xg96I: r'p  
    % 4hy -M>!D|  
    %       n    m    Zernike function           Normalization 5, ,~k=  
    %       -------------------------------------------------- S )rr  
    %       0    0    1                                 1 CYLab5A  
    %       1    1    r * cos(theta)                    2 [9${4=Kq  
    %       1   -1    r * sin(theta)                    2 b9RHsr]V  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) vI I{i  
    %       2    0    (2*r^2 - 1)                    sqrt(3) &F uPd}F  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) aL4^ po  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) D9[19,2r`  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) >jsY'Bm  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) {#qUZ z-  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) V!+iq*Z|=  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) wKLYyetM!  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) j*<J&/luYZ  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) D[/fs`XES  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) /iFn =pk1?  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) \ saV8U7B  
    %       -------------------------------------------------- Vo@7G@7K(  
    % LDc EjFK(  
    %   Example 1: K2zln_W  
    % } +}nrJv  
    %       % Display the Zernike function Z(n=5,m=1) % -!%n= P  
    %       x = -1:0.01:1; ~ tA ^K  
    %       [X,Y] = meshgrid(x,x); 1~c\J0h)d  
    %       [theta,r] = cart2pol(X,Y); ng3ZK  
    %       idx = r<=1; "00j]e.  
    %       z = nan(size(X)); <#h,_WP*  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); SYY x>1;8`  
    %       figure Y7.+ Ma#|  
    %       pcolor(x,x,z), shading interp e'.BTt58Y  
    %       axis square, colorbar 94+^K=lAX  
    %       title('Zernike function Z_5^1(r,\theta)') ;[}OZt  
    % &T,|?0>~=J  
    %   Example 2: 4{YA['  
    % \R<MQ# x  
    %       % Display the first 10 Zernike functions g:M;S"U3*Y  
    %       x = -1:0.01:1; C8|V?bL  
    %       [X,Y] = meshgrid(x,x); -U/)y:k!%  
    %       [theta,r] = cart2pol(X,Y); KMj\A d  
    %       idx = r<=1; t2o{=!$WH  
    %       z = nan(size(X)); CW+kKN  
    %       n = [0  1  1  2  2  2  3  3  3  3]; 9 8|sWI3 B  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; X[o+Y@bc  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; <R]m(  
    %       y = zernfun(n,m,r(idx),theta(idx)); w 0_P9g:  
    %       figure('Units','normalized') [7I bT:ph  
    %       for k = 1:10 >J7slDRo  
    %           z(idx) = y(:,k); }ssV"5M  
    %           subplot(4,7,Nplot(k)) m[}k]PB>  
    %           pcolor(x,x,z), shading interp -i`jS_-Cv-  
    %           set(gca,'XTick',[],'YTick',[]) _ p\L,No  
    %           axis square ]eKuR"ob0  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 7#R)+  
    %       end ']1n?K=A  
    % r%.k,FzGZY  
    %   See also ZERNPOL, ZERNFUN2. }=/zG!+  
    W#F9Qw  
    %   Paul Fricker 11/13/2006 ?XHQdN3e  
    [<#j K}g  
    lnyb4d/  
    % Check and prepare the inputs: 9>~pA]j%  
    % ----------------------------- \_`qon$9  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 61S;M8tNv  
        error('zernfun:NMvectors','N and M must be vectors.') e'K~WNT  
    end 5skN'*oG  
    Me .I>7c  
    if length(n)~=length(m) duG3-E  
        error('zernfun:NMlength','N and M must be the same length.') pN[WYM?[  
    end ^X96yj'?  
    lp *GJP]T  
    n = n(:); qdix@ @  
    m = m(:); mXRkR.zu+  
    if any(mod(n-m,2)) |UB$^)Twb  
        error('zernfun:NMmultiplesof2', ... +K1M&(  
              'All N and M must differ by multiples of 2 (including 0).') ZM.'W}J{ *  
    end = -2~>B  
    OIP]9lM$nC  
    if any(m>n) Y :!L  
        error('zernfun:MlessthanN', ... XQy`5iv  
              'Each M must be less than or equal to its corresponding N.') 1p}Wj*mc  
    end  gHe:o`  
    t1?aw<  
    if any( r>1 | r<0 ) 'zI(OnIS  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') l8oaDL\f  
    end u_k[< &$  
    z5jw\jBD  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) OS z71;j  
        error('zernfun:RTHvector','R and THETA must be vectors.') KnG7w^  
    end no*)M7  
    iww/s  
    r = r(:); ' h7Faj  
    theta = theta(:); RrMEDMhk6  
    length_r = length(r); >jI.$%L$  
    if length_r~=length(theta) |[.-pA^  
        error('zernfun:RTHlength', ... TDH^x1P  
              'The number of R- and THETA-values must be equal.') |oPRP1F-;e  
    end '`2KLO>!  
    E#J})cPzw  
    % Check normalization:  pQiC#4b  
    % -------------------- ok\-IU?  
    if nargin==5 && ischar(nflag) X!]v4ma`  
        isnorm = strcmpi(nflag,'norm'); u}5CzV`  
        if ~isnorm KqFI2@v   
            error('zernfun:normalization','Unrecognized normalization flag.') &D<R;>iI  
        end v #+ECx  
    else gQeQy  
        isnorm = false; E.K^v/dNdq  
    end EOB8|:*  
    zy,SL |6:  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% a}UmD HS-  
    % Compute the Zernike Polynomials \|,| )  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ;C@mT;hR  
    1=)M15  
    % Determine the required powers of r: /*#o1W?wQZ  
    % ----------------------------------- +M-tYE 5n  
    m_abs = abs(m); D4L&6[W  
    rpowers = []; es)^^kGj6f  
    for j = 1:length(n) Pe _O(  
        rpowers = [rpowers m_abs(j):2:n(j)]; ,:t,$A  
    end ^ptybVo  
    rpowers = unique(rpowers); ~Gfytn9x.;  
    1B;2 ~2X  
    % Pre-compute the values of r raised to the required powers, eh9 ?GUr5  
    % and compile them in a matrix: ^\}qq>_  
    % ----------------------------- *`H*@2  
    if rpowers(1)==0 ^-"Iw y  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); z.8/[)  
        rpowern = cat(2,rpowern{:}); X)3(.L  
        rpowern = [ones(length_r,1) rpowern]; @62,.\F  
    else &ksuk9M  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); >PA*L(Dh%  
        rpowern = cat(2,rpowern{:}); ,U\ s89  
    end zH]oAu=H  
    Tx.N#,T|  
    % Compute the values of the polynomials: &>\;4E.O5  
    % -------------------------------------- So 1TH%  
    y = zeros(length_r,length(n)); Q a (Sb  
    for j = 1:length(n) roQI;gq^  
        s = 0:(n(j)-m_abs(j))/2; (h0@;@@7hW  
        pows = n(j):-2:m_abs(j); R/~!km  
        for k = length(s):-1:1 ^2k jO/  
            p = (1-2*mod(s(k),2))* ... gy.UTAs N  
                       prod(2:(n(j)-s(k)))/              ... GB$`b'x@S  
                       prod(2:s(k))/                     ... [D~]  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... <wS J K  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 7p1Y g  
            idx = (pows(k)==rpowers); <e UsMo<  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 5&n:i,  
        end t(3f} ?  
         /WnCAdDgZ  
        if isnorm (l99a&] t  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); B/ 4M;G~  
        end YZf{."Opj[  
    end ,iyy2  
    % END: Compute the Zernike Polynomials j=O+U _w  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% uY5|Nmiu  
    bN_e~z  
    % Compute the Zernike functions: #Pg#\v|7#>  
    % ------------------------------ % G= cKM  
    idx_pos = m>0; 6\7c:  
    idx_neg = m<0; FsED9+/m  
    PLz{EQ[cV  
    z = y; hQ|mow@Zmz  
    if any(idx_pos) }+!"mJx@  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); %tVU Rj  
    end Cu+p!hV  
    if any(idx_neg) @6 "MhF  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); tNY;wl:wp  
    end d~<$J9%  
    '/I`dj  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) N*A*\B%{x'  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. A$wC !P|;  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated AW r2Bv  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive #2^0z`-\_z  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, \ aJ>?   
    %   and THETA is a vector of angles.  R and THETA must have the same .!4'Y}  
    %   length.  The output Z is a matrix with one column for every P-value, )x!q;^Js9A  
    %   and one row for every (R,THETA) pair. 5~h )pt47  
    % v\w*VCjoV  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike 11l=zv  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) }uDpf0;^  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) iFUiw&  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 j& 7>ph  
    %   for all p. ~3s ?.[}d  
    % __}SHU0R  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 9Z -2MF  
    %   Zernike functions (order N<=7).  In some disciplines it is 0o8`Y  
    %   traditional to label the first 36 functions using a single mode CG%bZco((  
    %   number P instead of separate numbers for the order N and azimuthal "w"a0nv  
    %   frequency M. Q b^{`  
    % Sd6O?&(  
    %   Example: 0gqV>:  
    % 807+|Ol[  
    %       % Display the first 16 Zernike functions bg|$1ue  
    %       x = -1:0.01:1; +^9^)Ur|  
    %       [X,Y] = meshgrid(x,x); @|(cr: (=H  
    %       [theta,r] = cart2pol(X,Y); qq!ZYWy2  
    %       idx = r<=1; _EMX x4J  
    %       p = 0:15; R_j.k3r4d  
    %       z = nan(size(X)); ZW?h\0Hh  
    %       y = zernfun2(p,r(idx),theta(idx)); )y] Dmm  
    %       figure('Units','normalized') "vk]y  
    %       for k = 1:length(p) _7N?R0j^9N  
    %           z(idx) = y(:,k); ]n4PM=hz  
    %           subplot(4,4,k) #_ulmB;  
    %           pcolor(x,x,z), shading interp T4W20dxL7  
    %           set(gca,'XTick',[],'YTick',[]) S<(i/5Z+  
    %           axis square ddL3wQ  
    %           title(['Z_{' num2str(p(k)) '}']) % (h6m${j  
    %       end { 5r]G  
    % =RUy4+0>F  
    %   See also ZERNPOL, ZERNFUN. ^X_ ;ZLg.  
    V(cU/Aia^  
    %   Paul Fricker 11/13/2006 uyEk1)HC  
    Q7u|^Gu,5  
    nO yG7:  
    % Check and prepare the inputs: @~gPZm  
    % ----------------------------- ,%Z&*/*Oh  
    if min(size(p))~=1 X(Af`KOg[  
        error('zernfun2:Pvector','Input P must be vector.') 1o5kP,)  
    end O=}w1]  
    C+\z$/q  
    if any(p)>35 D*@'%<?  
        error('zernfun2:P36', ... A23K!a2u&  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... Hva!6vwO%O  
               '(P = 0 to 35).']) =9,mt K~  
    end Q:) 4  
    ExS&fUn `C  
    % Get the order and frequency corresonding to the function number: 9V)cf  
    % ---------------------------------------------------------------- _9D]1f=&  
    p = p(:); Hd4 ~v0eS  
    n = ceil((-3+sqrt(9+8*p))/2); ~7aD#`amU  
    m = 2*p - n.*(n+2); "u^2!d  
    ZWGelZP~  
    % Pass the inputs to the function ZERNFUN: +;!^aNJ,  
    % ---------------------------------------- ~~Cd9Hzi  
    switch nargin lLVD`)  
        case 3 oG22;  
            z = zernfun(n,m,r,theta); C=;}7g  
        case 4 %^W(sB$b  
            z = zernfun(n,m,r,theta,nflag); <.g)?nj1  
        otherwise \Uh/(q7  
            error('zernfun2:nargin','Incorrect number of inputs.') s j-oaWt  
    end 8Ud.t =2  
    ,h5 FX^  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) S]E|a@kD3  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. ,X| >d  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of vzAY+EEx  
    %   order N and frequency M, evaluated at R.  N is a vector of %N\45nYU:  
    %   positive integers (including 0), and M is a vector with the 4EeVO5  
    %   same number of elements as N.  Each element k of M must be a <F}j;mX  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) "kt7m  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is fZs}u<3Q)  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix NxH%%>o>  
    %   with one column for every (N,M) pair, and one row for every 0<-A2O),  
    %   element in R. >]Mhkf/=)  
    % |I]G=.*E  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- {o'(_.{  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is JWM4S4yZHR  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to (<`> B  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 UM1h[#?&V)  
    %   for all [n,m]. , Sf:R4=  
    % J{;\TNkJ  
    %   The radial Zernike polynomials are the radial portion of the Ng&K5Z/  
    %   Zernike functions, which are an orthogonal basis on the unit f#38QP-T  
    %   circle.  The series representation of the radial Zernike {Y+e|B0  
    %   polynomials is z/o&r`no  
    % Y qKQm+G  
    %          (n-m)/2 $*fEgU% c  
    %            __ x 'i~o'  
    %    m      \       s                                          n-2s J"eE9FLM  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r UZJs!#P  
    %    n      s=0 mg3YKHNG  
    % @ uL4'@Ej  
    %   The following table shows the first 12 polynomials. 0 4ceDe  
    % ],<pZ1V;  
    %       n    m    Zernike polynomial    Normalization )\e0L/K@  
    %       --------------------------------------------- F{&0(6^p!  
    %       0    0    1                        sqrt(2) ~!fOl)F  
    %       1    1    r                           2 c~Y  g(  
    %       2    0    2*r^2 - 1                sqrt(6) #%CB`l  
    %       2    2    r^2                      sqrt(6) qpB8ujj<V  
    %       3    1    3*r^3 - 2*r              sqrt(8) ZB$,\|^6  
    %       3    3    r^3                      sqrt(8) \ 0F ey9c  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) 2ak*aI  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) p?s[I)e  
    %       4    4    r^4                      sqrt(10) %Bnn\{Az  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) w`Cs,  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) UnTvot6~  
    %       5    5    r^5                      sqrt(12) )"bP]t^_  
    %       --------------------------------------------- +o 6"Z)  
    % f2P2wt.$  
    %   Example: AbMf8$$3SH  
    % ti ic>j\D  
    %       % Display three example Zernike radial polynomials G{'`L)~3N  
    %       r = 0:0.01:1; v00w GOpW  
    %       n = [3 2 5]; x]"N:t  
    %       m = [1 2 1]; $.Qq:(O:6  
    %       z = zernpol(n,m,r); 3jM+j_n R  
    %       figure h],l`lT1\  
    %       plot(r,z) 2,6|l.WFpE  
    %       grid on DvBRK}'  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') vcp[$-$QGJ  
    % IDt7KJ@hc  
    %   See also ZERNFUN, ZERNFUN2. /kFw(l_.  
    {@67'jL  
    % A note on the algorithm. DUs0L\  
    % ------------------------ ESY\!X:|  
    % The radial Zernike polynomials are computed using the series 3AC/;WB9  
    % representation shown in the Help section above. For many special 2$> <rB  
    % functions, direct evaluation using the series representation can u85Uy yN  
    % produce poor numerical results (floating point errors), because ^' b[#DG>F  
    % the summation often involves computing small differences between !X{>?.@~  
    % large successive terms in the series. (In such cases, the functions )WF*fcx{  
    % are often evaluated using alternative methods such as recurrence V53iWWaFe  
    % relations: see the Legendre functions, for example). For the Zernike U=KFbL1Q  
    % polynomials, however, this problem does not arise, because the L%[b6<  
    % polynomials are evaluated over the finite domain r = (0,1), and RATW[(ZA  
    % because the coefficients for a given polynomial are generally all AI*1kxR  
    % of similar magnitude. m^YYdyn]M  
    % 5l /EZ\q  
    % ZERNPOL has been written using a vectorized implementation: multiple oAq<ag\qV  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] iJEKLv  
    % values can be passed as inputs) for a vector of points R.  To achieve kKNrCv@64d  
    % this vectorization most efficiently, the algorithm in ZERNPOL uU`Mq8) R  
    % involves pre-determining all the powers p of R that are required to qa)Qf,`  
    % compute the outputs, and then compiling the {R^p} into a single @]:GTrs  
    % matrix.  This avoids any redundant computation of the R^p, and aL0,=g%  
    % minimizes the sizes of certain intermediate variables. Ub*O*nre  
    % W"H*Ad(V  
    %   Paul Fricker 11/13/2006 $r/tVu2!W  
    {wVJv1*l  
    :"~n` Q2[  
    % Check and prepare the inputs: wD`jks  
    % ----------------------------- |7E1yu  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 4X:S#z  
        error('zernpol:NMvectors','N and M must be vectors.') L 3^+`e  
    end @xPWR=Lb  
    HF]|>1WV[  
    if length(n)~=length(m) /UPe@  
        error('zernpol:NMlength','N and M must be the same length.') ^q)s  
    end V.kRV{43  
    LHgEb9\Q  
    n = n(:); ~"#[<d  
    m = m(:); }E](NvCq  
    length_n = length(n); Kv>P+I'|r  
    e"ur+7  
    if any(mod(n-m,2)) )_Wo6l)i  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).')  `\#J&N  
    end _';oT*#  
    Tn 3<cO7v  
    if any(m<0) u8i!Fxu  
        error('zernpol:Mpositive','All M must be positive.') $"6O92G(hJ  
    end 9w( Wtw'  
    6]5e(J{Fz  
    if any(m>n) 7!%xJ!  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') 5Uha,Q9SA  
    end };s8xGW:k3  
    DE_ <LN  
    if any( r>1 | r<0 ) _h8|shyP  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') 0}iND$6@a  
    end x72T5.  
    "kg;fF|  
    if ~any(size(r)==1)  hNF.  
        error('zernpol:Rvector','R must be a vector.') wDz}32wB  
    end %Y*]eLT>  
    rq_0"A  
    r = r(:); 0L|D1_k[  
    length_r = length(r); N@r`+(_t  
    aX{i   
    if nargin==4 s\A4y "  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); Y5?OJO{h"  
        if ~isnorm ;<)<4N"  
            error('zernpol:normalization','Unrecognized normalization flag.') EHqcQx`K_  
        end s2ixiv=  
    else Cqc5jx0)  
        isnorm = false; '\I!RAZ  
    end k@/s-^ry3  
    R8![ $mkU  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% j$jgEtPK9=  
    % Compute the Zernike Polynomials vv5 uU8  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% )=@ SA`J  
    3}9c0%}F  
    % Determine the required powers of r: @Rp#*{  
    % ----------------------------------- /7[X_)OG  
    rpowers = []; 5T- N\)@  
    for j = 1:length(n) h k.Zn.6A'  
        rpowers = [rpowers m(j):2:n(j)]; \:@yfI@  
    end -N~eb^3[c  
    rpowers = unique(rpowers); 95%QF;h  
    Vp j[)W%L  
    % Pre-compute the values of r raised to the required powers, 8ZPjzN>c6  
    % and compile them in a matrix: 0\2#(^  
    % ----------------------------- -K*&I!  
    if rpowers(1)==0 O[O[E}8#  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); bL9vjD'}  
        rpowern = cat(2,rpowern{:}); |VxO ,[~  
        rpowern = [ones(length_r,1) rpowern]; 9qXKHro  
    else LOf)D7T  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); (D1$&  
        rpowern = cat(2,rpowern{:}); $++SF)G1]_  
    end NT&sk rzW  
    %e|.a)78  
    % Compute the values of the polynomials: >hsvRX\_ `  
    % -------------------------------------- Gbrc!3K2  
    z = zeros(length_r,length_n); . \:{6_  
    for j = 1:length_n u#r[JF9LP  
        s = 0:(n(j)-m(j))/2; UK!PMkX  
        pows = n(j):-2:m(j); cH>3|B*y  
        for k = length(s):-1:1 N~t4qlC/  
            p = (1-2*mod(s(k),2))* ... H". [&VP5Z  
                       prod(2:(n(j)-s(k)))/          ... B9i< ="=p  
                       prod(2:s(k))/                 ... $zv&MD!&h  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... E/IoYuB  
                       prod(2:((n(j)+m(j))/2-s(k))); X8Y)5,`s  
            idx = (pows(k)==rpowers); *j"u~ N F  
            z(:,j) = z(:,j) + p*rpowern(:,idx); |];f?1  
        end iz @LS  
         $G}!eV 6  
        if isnorm qnCJrY6]  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); u/>+cT6}  
        end VS ?npH  
    end  L$Yg*]\  
    <yxy ;o  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  :"'*1S*  
    !>\g[C  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 I{i6e'.jP  
    nQ@<[KNd  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)