切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11327阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 :Y>] 6  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! jyhzLu  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 C'/M/|=Q#  
    function z = zernfun(n,m,r,theta,nflag) $H-D9+8 7  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. |4. o$*0Y  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N q'F_ j"  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ynZ[c8.  
    %   unit circle.  N is a vector of positive integers (including 0), and 3 9{"T0  
    %   M is a vector with the same number of elements as N.  Each element $;uWj|  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) }<ONxg6Kb  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, S"TMsi  
    %   and THETA is a vector of angles.  R and THETA must have the same yF5  
    %   length.  The output Z is a matrix with one column for every (N,M) *C@[5#CA2z  
    %   pair, and one row for every (R,THETA) pair. DJYXC,r  
    % N~; khS]  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike &U$8zn~[k  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 9id~NNr7  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral cbCE $  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, MAe<.DHY  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized @=NVOJy}c  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 5m.KtnT)  
    % G:c8`*5Q  
    %   The Zernike functions are an orthogonal basis on the unit circle. \W`}L  
    %   They are used in disciplines such as astronomy, optics, and .aismc`=  
    %   optometry to describe functions on a circular domain. >}DjHLTW\  
    % zz 'dg-F  
    %   The following table lists the first 15 Zernike functions. AIl$qPKj&  
    % hG~]~ )  
    %       n    m    Zernike function           Normalization O<dZA=Oez  
    %       -------------------------------------------------- \gp,Txueb  
    %       0    0    1                                 1 VUy)4*  
    %       1    1    r * cos(theta)                    2 w <#*O:  
    %       1   -1    r * sin(theta)                    2 $]%<r?MUb-  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) n `m_S  
    %       2    0    (2*r^2 - 1)                    sqrt(3) O:,2OMB}B`  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) a(ux?V)E.  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) !/4 V^H  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) YR|(;B  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) u1;e*ty  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) o7Cnyy#:  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) iVKbGgA  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) n4vXm  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) N{^>MRK=5  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ,"N3k(g  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) ^3WIl ]  
    %       -------------------------------------------------- sm2p$3v  
    % UN*dU  
    %   Example 1: lbKv  
    % 6)#- 5m  
    %       % Display the Zernike function Z(n=5,m=1) g<2lPH  
    %       x = -1:0.01:1; S< EB&P  
    %       [X,Y] = meshgrid(x,x); fXu~69_  
    %       [theta,r] = cart2pol(X,Y); 9B+ zJ Vte  
    %       idx = r<=1; 7O8V1Tt  
    %       z = nan(size(X)); 1o|0x\q  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); JA?,0S  
    %       figure y\)G7 (  
    %       pcolor(x,x,z), shading interp |D;"D  
    %       axis square, colorbar S2'`|uI  
    %       title('Zernike function Z_5^1(r,\theta)') +EST58  
    % ' 1P=^  
    %   Example 2: ,5eH2W  
    % nE]~E xr  
    %       % Display the first 10 Zernike functions `z-H]fU  
    %       x = -1:0.01:1; vh|Tb5W<  
    %       [X,Y] = meshgrid(x,x); u=@h`5-fp  
    %       [theta,r] = cart2pol(X,Y); [GR]!\!%~  
    %       idx = r<=1; jh 7p62R  
    %       z = nan(size(X)); {?EEIfg  
    %       n = [0  1  1  2  2  2  3  3  3  3]; y:g7'+c  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; ]RH=s7L  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 8 zQ_xE  
    %       y = zernfun(n,m,r(idx),theta(idx)); i{ t TUA  
    %       figure('Units','normalized') gx!*O<|e4  
    %       for k = 1:10 1u"R=D9p,=  
    %           z(idx) = y(:,k); ^8?j~&u$F  
    %           subplot(4,7,Nplot(k)) wJ80};!  
    %           pcolor(x,x,z), shading interp 1<LC8?wt  
    %           set(gca,'XTick',[],'YTick',[]) \LO_Nu9  
    %           axis square r{K\(UT]!  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) s{(ehP.Dd  
    %       end H$~M`Y9I~  
    % WF ?/GN  
    %   See also ZERNPOL, ZERNFUN2. Lnh':7FQJx  
    2 ) TG  
    %   Paul Fricker 11/13/2006 CrnB{Z4L  
    *.kj]BoO  
    P$p@5hl  
    % Check and prepare the inputs: sg3h i"Im  
    % ----------------------------- KI E k/]<H  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) o"'iX UJ  
        error('zernfun:NMvectors','N and M must be vectors.') PHQ{-b?4t  
    end R&6n?g6@/V  
    Ms.PO{wb  
    if length(n)~=length(m) wrH7 pd  
        error('zernfun:NMlength','N and M must be the same length.') vP3K7En  
    end =E;=+eqt  
    a`7%A H)  
    n = n(:); #V<`U:.  
    m = m(:); /a@ kS  
    if any(mod(n-m,2)) CnabD{uTf  
        error('zernfun:NMmultiplesof2', ... y._'K+nl  
              'All N and M must differ by multiples of 2 (including 0).') Z:I*y7V-  
    end %z(9lAe  
    Px'R`1^  
    if any(m>n) $Llta,ULE  
        error('zernfun:MlessthanN', ... OI~}e,[2z  
              'Each M must be less than or equal to its corresponding N.') V3## B}2[Y  
    end J1.qhy>  
    W;^N8ap%  
    if any( r>1 | r<0 ) 4Z*|Dsw  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') %/P=m-K  
    end O[; +i  
    y&7YJx  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Oc7 >S.1  
        error('zernfun:RTHvector','R and THETA must be vectors.') Af`z/:0<  
    end ;xL67e%?  
    Uf# PoQ!y  
    r = r(:); >OT \~C  
    theta = theta(:); V?=TVI*k  
    length_r = length(r); ^rL ,&rk  
    if length_r~=length(theta) Was'A+GZ  
        error('zernfun:RTHlength', ... zCBplb  
              'The number of R- and THETA-values must be equal.') f:xUPH?+  
    end Z,3 CC \  
    f7Yz>To  
    % Check normalization: -<6v:Z  
    % -------------------- d;{y`4p)s  
    if nargin==5 && ischar(nflag) EY]a6@;  
        isnorm = strcmpi(nflag,'norm'); p:B ]Ft  
        if ~isnorm qB+n6y%  
            error('zernfun:normalization','Unrecognized normalization flag.') pqJ)G;%9  
        end Z #EvRC  
    else P2On k l  
        isnorm = false; CQ<8P86gt  
    end VO9XkA7  
    8zAg;b [  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% JfkTw~'R  
    % Compute the Zernike Polynomials =:4?>2)  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% r]9e^  
    3)y{n%3L  
    % Determine the required powers of r: _D-5}a"  
    % ----------------------------------- D%A@lMru  
    m_abs = abs(m); d4J<,  
    rpowers = []; zHV|-R  
    for j = 1:length(n) >=Jsv  
        rpowers = [rpowers m_abs(j):2:n(j)]; P&mtA2  
    end sW?B7o?  
    rpowers = unique(rpowers); [g+y_@9s  
    ~ Yl<S(/4  
    % Pre-compute the values of r raised to the required powers, z`OkHX*+2|  
    % and compile them in a matrix: QTYYghz  
    % ----------------------------- 9Fk4|+OJ  
    if rpowers(1)==0 Yc d3QRB  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false);  qtzFg#  
        rpowern = cat(2,rpowern{:}); v{.\iIg N  
        rpowern = [ones(length_r,1) rpowern]; o_O+u%y  
    else ) o xIzF  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); E3f9<hm   
        rpowern = cat(2,rpowern{:}); z>|)ieL  
    end -?5$ PH  
    *2=W5LaK.  
    % Compute the values of the polynomials: {S *!B  
    % -------------------------------------- Mb/L~gd"  
    y = zeros(length_r,length(n)); gH'_ymT= 3  
    for j = 1:length(n) /1[gn8V691  
        s = 0:(n(j)-m_abs(j))/2; UQ~4c,  
        pows = n(j):-2:m_abs(j); /$Z m~Mp  
        for k = length(s):-1:1 k-Fdj5/  
            p = (1-2*mod(s(k),2))* ... <raG07{!*  
                       prod(2:(n(j)-s(k)))/              ... "XhOsMJ  
                       prod(2:s(k))/                     ... k}zd' /b  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... xg} ug[  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 5>P7]?U.]  
            idx = (pows(k)==rpowers); @zrNN>  
            y(:,j) = y(:,j) + p*rpowern(:,idx); waCboK'  
        end d&u 7]<yDA  
         (zC   
        if isnorm }/p/pVz  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); .H2qs{N!  
        end $/paEn"  
    end } L <,eV  
    % END: Compute the Zernike Polynomials .LObOR 5J7  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +]c}rWm  
    5B{k\H;  
    % Compute the Zernike functions: qm'b'!gq~  
    % ------------------------------ .T$D^?G!D  
    idx_pos = m>0; g4wZvra6%)  
    idx_neg = m<0; {a@>6)  
    0[)VO[  
    z = y; |l7%l&!  
    if any(idx_pos) 2tf6GX:  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); KDD@%E  
    end Sl>>SP  
    if any(idx_neg) jV^C19  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Hbk&6kS  
    end ?'sXgo.}  
    !5UfWk\G  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) n3ZAF'  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. hS:jBp,  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated U -EhPAB@  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive ia4k:\  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, #s2B%X  
    %   and THETA is a vector of angles.  R and THETA must have the same [AR>?6G-  
    %   length.  The output Z is a matrix with one column for every P-value, \84v-VK  
    %   and one row for every (R,THETA) pair. |s=`w8p  
    % vv.PF~:  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike f^9&WT  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) kH?#B%N5  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) vZkXt!%)  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 8!zb F<W9  
    %   for all p. G{b:i8}l  
    % XmWlv{T+  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 eko]H!Ov(  
    %   Zernike functions (order N<=7).  In some disciplines it is }U[-44r:  
    %   traditional to label the first 36 functions using a single mode S LGW:  
    %   number P instead of separate numbers for the order N and azimuthal f=`33m5  
    %   frequency M. Mw^ *yW  
    % <>=mCZ2  
    %   Example: rLF*DB3l  
    % ssl&5AS  
    %       % Display the first 16 Zernike functions #3MKH8k&~  
    %       x = -1:0.01:1; qn"K9k  
    %       [X,Y] = meshgrid(x,x); }c|UX ZW  
    %       [theta,r] = cart2pol(X,Y); AhxGj+  
    %       idx = r<=1; 3nFt1E   
    %       p = 0:15; n?E}b$6  
    %       z = nan(size(X)); f z}?*vPW  
    %       y = zernfun2(p,r(idx),theta(idx)); u7=T(4a  
    %       figure('Units','normalized') &5Y_>{,  
    %       for k = 1:length(p) - k`.j  
    %           z(idx) = y(:,k); it1/3y =]  
    %           subplot(4,4,k) `.^ |]|u  
    %           pcolor(x,x,z), shading interp z%:&#1)  
    %           set(gca,'XTick',[],'YTick',[]) &[j]Bp?  
    %           axis square ?CY1]d  
    %           title(['Z_{' num2str(p(k)) '}']) 'fY9a(Xt.  
    %       end 8&E}n(XE  
    % CMl~=[foW  
    %   See also ZERNPOL, ZERNFUN. -Mf Q&U   
    *Km7U-BG  
    %   Paul Fricker 11/13/2006 &erm`Ho  
    2]ti!<  
    6E^~n  
    % Check and prepare the inputs: YD&_^3-XM  
    % ----------------------------- '*!L!VJ  
    if min(size(p))~=1 D7Zm2Kj  
        error('zernfun2:Pvector','Input P must be vector.') ~V+l_ :  
    end .zC*Z&e,.[  
    O4Dr ]Xc]  
    if any(p)>35 213\ehhG<  
        error('zernfun2:P36', ... ]J@/p:S>  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... ycX{NDGs  
               '(P = 0 to 35).']) J(iV0LAZb  
    end k4y}&?$B  
    `|Fp^gM  
    % Get the order and frequency corresonding to the function number: '6S%9ahE  
    % ---------------------------------------------------------------- {-WTV"L5*2  
    p = p(:); L`3n2DEBf  
    n = ceil((-3+sqrt(9+8*p))/2); q#[`KOPV  
    m = 2*p - n.*(n+2); TlRk*/PlJ  
    VKrShI  
    % Pass the inputs to the function ZERNFUN: '3;v] L?G  
    % ---------------------------------------- s<7XxQ  
    switch nargin FpVV4D  
        case 3 oNYZIk:  
            z = zernfun(n,m,r,theta); h?j_Ry  
        case 4 y0IK,W'&?  
            z = zernfun(n,m,r,theta,nflag); fN[8N$1-  
        otherwise !7 _\P7M  
            error('zernfun2:nargin','Incorrect number of inputs.')  MCnN^  
    end OhwF )p=  
    U^_D|$6  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) =m tY  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. + ^ yq;z  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of k<Sl1v K  
    %   order N and frequency M, evaluated at R.  N is a vector of oF|N O^H  
    %   positive integers (including 0), and M is a vector with the X0uJNHO  
    %   same number of elements as N.  Each element k of M must be a {j SmoA  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) b?VV'{4  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is  .i/m  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix S# we3  
    %   with one column for every (N,M) pair, and one row for every %SA!p;  
    %   element in R. wAF,H8 -DK  
    % |jG~,{  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- K* vU5S  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is 1>pe&n/  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to f )NHM'  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 P:{<*`q  
    %   for all [n,m]. c:\shAM&  
    % JUt7En;XE  
    %   The radial Zernike polynomials are the radial portion of the 0A[esWmP  
    %   Zernike functions, which are an orthogonal basis on the unit :tj-gDa\Y  
    %   circle.  The series representation of the radial Zernike SvuTc!$?  
    %   polynomials is ,sQ93(Vo  
    % <$i4?)f(  
    %          (n-m)/2 ^[q /Mw  
    %            __ b"CAKl  
    %    m      \       s                                          n-2s w{,4rk;Hr  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r 8]"(!i_;)  
    %    n      s=0 )K]pnH|  
    % Q*ju sm  
    %   The following table shows the first 12 polynomials. :td ~g;w  
    % SW 8x]B  
    %       n    m    Zernike polynomial    Normalization U ?b".hJ2  
    %       --------------------------------------------- WeJ@x L  
    %       0    0    1                        sqrt(2) ^k/i-%k0  
    %       1    1    r                           2 {aOkV::  
    %       2    0    2*r^2 - 1                sqrt(6) d8x%SQ!V  
    %       2    2    r^2                      sqrt(6) |m* .LTO  
    %       3    1    3*r^3 - 2*r              sqrt(8) bbN%$/d  
    %       3    3    r^3                      sqrt(8) eN>0wd5{L  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) >fs2kha  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) e XV@.  
    %       4    4    r^4                      sqrt(10) gS9>N/b|  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) Z~u9VYi!  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) EbK0j?  
    %       5    5    r^5                      sqrt(12) P,z:Z| }8  
    %       --------------------------------------------- 9;=dxWf   
    % :E_a 0!'  
    %   Example: veh 5 }2  
    % ZFn(x*L  
    %       % Display three example Zernike radial polynomials = !2NU  
    %       r = 0:0.01:1; [M+tB"_  
    %       n = [3 2 5]; AHbZQulC  
    %       m = [1 2 1]; %w}gzxN^  
    %       z = zernpol(n,m,r); S\ ,mR4:  
    %       figure ~^US/"  
    %       plot(r,z) MQTdk*L_]  
    %       grid on ?vtX"Fdz  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') NC"yDWnO'  
    % [0@`wZ  
    %   See also ZERNFUN, ZERNFUN2. \=e8%.#@J  
    .zj0Jy8N  
    % A note on the algorithm. WNX5iwm  
    % ------------------------ /@oLe[Mz$  
    % The radial Zernike polynomials are computed using the series 4Y ROB912  
    % representation shown in the Help section above. For many special h0|}TV^UJ  
    % functions, direct evaluation using the series representation can 3=.Y,ENM;  
    % produce poor numerical results (floating point errors), because $95~5]-nh  
    % the summation often involves computing small differences between bud&R4+  
    % large successive terms in the series. (In such cases, the functions 't (O$  
    % are often evaluated using alternative methods such as recurrence O1y|v[-BW  
    % relations: see the Legendre functions, for example). For the Zernike v zo4g,Bj  
    % polynomials, however, this problem does not arise, because the _t>"5s&i  
    % polynomials are evaluated over the finite domain r = (0,1), and <=um1P3X  
    % because the coefficients for a given polynomial are generally all V%ii3  
    % of similar magnitude. v ! hY  
    % l?qqqB  
    % ZERNPOL has been written using a vectorized implementation: multiple |zsbW9 W*m  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] LF<wt2?*  
    % values can be passed as inputs) for a vector of points R.  To achieve #2p#VQh  
    % this vectorization most efficiently, the algorithm in ZERNPOL [0;buVU.  
    % involves pre-determining all the powers p of R that are required to ]`o!1(GA  
    % compute the outputs, and then compiling the {R^p} into a single Z*! O:/B  
    % matrix.  This avoids any redundant computation of the R^p, and m@G i6   
    % minimizes the sizes of certain intermediate variables. RrV>r<Z"Q  
    % q0xjA  
    %   Paul Fricker 11/13/2006 J5p8nmb  
    Wr~yK? : ]  
    + %*&.@z_  
    % Check and prepare the inputs: D56<fg$  
    % ----------------------------- YV'pVO'_+  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) x hs#u  
        error('zernpol:NMvectors','N and M must be vectors.') ~W#sTrK  
    end .K8w8X/3  
    S/A1RUt  
    if length(n)~=length(m) n{5NNV6  
        error('zernpol:NMlength','N and M must be the same length.') W[''Cc.  
    end @r7:NU}  
    :3ZYJW1  
    n = n(:); #=c`of6  
    m = m(:); m\u26`M  
    length_n = length(n); 'xK.U I  
    T2'RATfG  
    if any(mod(n-m,2)) db72W x0>  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') 5p"BD'^:  
    end uXZg1 F)  
    X"asfA[6K  
    if any(m<0) KM,|} .@:  
        error('zernpol:Mpositive','All M must be positive.') QrYa%D+  
    end ,ZE?{G{tuj  
    Jl<ns,Zg  
    if any(m>n) "9y( }  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') C}}/)BYi  
    end VDF)zA1V  
    ,I.WX,OR  
    if any( r>1 | r<0 ) GC@+V|u  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') s<QkDERMX  
    end Vzlh+R>c  
    0S/' 94%w  
    if ~any(size(r)==1) L1m{]>{-  
        error('zernpol:Rvector','R must be a vector.') w!^~<{ Kz  
    end nA7M8HB  
    f{#j6wZM  
    r = r(:); `8_z!)  
    length_r = length(r); E)N<lh  
    ;\;M =&{}  
    if nargin==4 g(x9S'H3l  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); n| !@1sd  
        if ~isnorm /*)Tl   
            error('zernpol:normalization','Unrecognized normalization flag.') G5.nPsuM   
        end .Nm su+s  
    else =<z.mzqu5  
        isnorm = false; TX8<J>x  
    end %b2oiKSBx?  
    px''.8   
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% wNJzwC&iQ  
    % Compute the Zernike Polynomials s,]%dG!  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% x*XH]&V  
    ,zTb<g  
    % Determine the required powers of r: Zi\['2CG  
    % ----------------------------------- Q4*-wF-P  
    rpowers = []; L5YnG_M&  
    for j = 1:length(n) )~)*=u/  
        rpowers = [rpowers m(j):2:n(j)];  Y k7-`  
    end Y4.Eq+$gh  
    rpowers = unique(rpowers); bru/AZ#de  
    arK_oh0B  
    % Pre-compute the values of r raised to the required powers, $(pF;_W  
    % and compile them in a matrix: * *H&+T/B  
    % ----------------------------- qO1tj'U<  
    if rpowers(1)==0 :aLT0q!K  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ^L4Qbc(vJ  
        rpowern = cat(2,rpowern{:}); >x1p%^cA;=  
        rpowern = [ones(length_r,1) rpowern]; g| <wyt[  
    else siDh="{s  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); /$N~O1"0)  
        rpowern = cat(2,rpowern{:});  u6u=2  
    end _jU5O;  
    QnouBrhO  
    % Compute the values of the polynomials: !5@_j,lW(  
    % -------------------------------------- `Mj}md;O"  
    z = zeros(length_r,length_n); '\#EIG  
    for j = 1:length_n m#/_x  
        s = 0:(n(j)-m(j))/2; 1nknSw#  
        pows = n(j):-2:m(j);  $!@\  
        for k = length(s):-1:1 >ydRSr^  
            p = (1-2*mod(s(k),2))* ... #EGA#SKoq  
                       prod(2:(n(j)-s(k)))/          ... T\s)le  
                       prod(2:s(k))/                 ... RC#C\S6  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... :wqC8&V  
                       prod(2:((n(j)+m(j))/2-s(k))); 6M.;@t,Y  
            idx = (pows(k)==rpowers); I&|f'pn^<  
            z(:,j) = z(:,j) + p*rpowern(:,idx); Q?t^@  
        end 3oZ=k]\  
         qZEoiNH(Tj  
        if isnorm DaHZ{T8>d  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); C#;jYBtT7?  
        end 8e~|.wOL  
    end 4M&`$Wim  
    S/ywA9~3Q  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  zPEg  
    !$A37j6  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 p <eC<dtu  
    xRu Fuf8  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)