非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 3 i>NKS
function z = zernfun(n,m,r,theta,nflag) +'93%/:
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. cc`u{F9
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Wvu1?
% and angular frequency M, evaluated at positions (R,THETA) on the @f|~$$k=
% unit circle. N is a vector of positive integers (including 0), and (
[a$Z2m
% M is a vector with the same number of elements as N. Each element 8|\ -(:v
% k of M must be a positive integer, with possible values M(k) = -N(k) G;wh).jG5
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, G~u$BV'
% and THETA is a vector of angles. R and THETA must have the same [hot,\+f
% length. The output Z is a matrix with one column for every (N,M) "'Gq4<&y
% pair, and one row for every (R,THETA) pair. VE*`Ji
% `#!>}/m
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 1~E4]Ef:W
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), kxyOe[7 S
% with delta(m,0) the Kronecker delta, is chosen so that the integral ,+h<qBsV@
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, CXz9bhn<4
% and theta=0 to theta=2*pi) is unity. For the non-normalized Z<AZO ^
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. %q;y74
% <liprUFsn
% The Zernike functions are an orthogonal basis on the unit circle. d^tY?*n
% They are used in disciplines such as astronomy, optics, and W]bytsl
% optometry to describe functions on a circular domain. 7 u Q +]d
% jg%mWiKwK7
% The following table lists the first 15 Zernike functions. ABp8PD
% ^e_uprZWm
% n m Zernike function Normalization :iE`=( o
% -------------------------------------------------- 1lA? 5:
% 0 0 1 1 L_:~{jV
% 1 1 r * cos(theta) 2 T:K}mLSg
% 1 -1 r * sin(theta) 2 uhaHY`w
% 2 -2 r^2 * cos(2*theta) sqrt(6) `<T4En
% 2 0 (2*r^2 - 1) sqrt(3) ~^'t70 :D
% 2 2 r^2 * sin(2*theta) sqrt(6) ? ][/hL@[
% 3 -3 r^3 * cos(3*theta) sqrt(8) ^jpQfD e6
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) J%q)6&
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) Mkt_pr
% 3 3 r^3 * sin(3*theta) sqrt(8) NaQ~iY?
% 4 -4 r^4 * cos(4*theta) sqrt(10) Wq 1OYZ,
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) V^n=@CZT9C
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) +5R8mbD!
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) vF@|cTRR)
% 4 4 r^4 * sin(4*theta) sqrt(10) -cn`D2RP
% -------------------------------------------------- 5__B
M5|
% 7rGp^
% Example 1: b rDyjh
% vGJw/ij'X
% % Display the Zernike function Z(n=5,m=1) XS&;8 PO
% x = -1:0.01:1; ,|zwY~lt5
% [X,Y] = meshgrid(x,x); /9D
mK%d
% [theta,r] = cart2pol(X,Y);
}LEasj
% idx = r<=1; d:]ZFk_*
% z = nan(size(X)); rt)[}+ox
% z(idx) = zernfun(5,1,r(idx),theta(idx)); ?wIEXKI
% figure &i`(y>\
% pcolor(x,x,z), shading interp #!yX2lR
% axis square, colorbar n1R{[\ >1
% title('Zernike function Z_5^1(r,\theta)') :y{@=E=XSC
% 0R]'HA>
% Example 2: y6G6wk;
% c5KciTD^
% % Display the first 10 Zernike functions ,]9p&xu
% x = -1:0.01:1; 23bTCp.d
% [X,Y] = meshgrid(x,x); fv*
$=m
% [theta,r] = cart2pol(X,Y); rT4q x2 u
% idx = r<=1; pf yJL?_%
% z = nan(size(X)); w; f LnEz_
% n = [0 1 1 2 2 2 3 3 3 3]; 28}L.>5k
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; aqi]5,
% Nplot = [4 10 12 16 18 20 22 24 26 28]; :8+x&zn
% y = zernfun(n,m,r(idx),theta(idx)); 7}&vEc@w&
% figure('Units','normalized') wIF'|"
% for k = 1:10 }^n"t>Z8
% z(idx) = y(:,k); brqmi<*9"[
% subplot(4,7,Nplot(k)) =6fJUy^M\
% pcolor(x,x,z), shading interp *J4\KU
% set(gca,'XTick',[],'YTick',[]) =|^R<#%/
% axis square ?c fFJl
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 0NvicZ7VR
% end @lh]?|*[
% bQ0+Y?,+/
% See also ZERNPOL, ZERNFUN2. ^Vc(oa&;
a?W<<9]
% Paul Fricker 11/13/2006 +J42pSxzoo
JRtDjZ4>
"%rU1/@#
% Check and prepare the inputs: 1u }2}c|
% ----------------------------- }tH_YF}u
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 7<?Aou
error('zernfun:NMvectors','N and M must be vectors.') Te^_gdf
end >ca`0gu
[cfXcl
if length(n)~=length(m) =%[vHQ\%
error('zernfun:NMlength','N and M must be the same length.') $JK,9G[Vu
end P}!pmg6V
bl|)/)6o
n = n(:); TD!c+${w
m = m(:); 7Mh!@Rd_V
if any(mod(n-m,2)) JY D\VaW
error('zernfun:NMmultiplesof2', ... Orlf5{P
'All N and M must differ by multiples of 2 (including 0).') m='_O+ $
end ,LU|WXRB
a3 t||@v!
if any(m>n) 2>^jMln
error('zernfun:MlessthanN', ... h{ EnS5~
'Each M must be less than or equal to its corresponding N.') 3X`N~_+
end +\cG{n*
' |yBz1uL
if any( r>1 | r<0 ) P@Pe5H"o
error('zernfun:Rlessthan1','All R must be between 0 and 1.') 4%SA%]a L1
end Z =*h9,MY
`TDS4Y
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) "haJwV6-
error('zernfun:RTHvector','R and THETA must be vectors.') u6*0%
Km
end LdX'V]ITh
=MmAnjo
r = r(:); 0 \o5+
theta = theta(:); 92/_!P>
length_r = length(r); FeZGPxc~
if length_r~=length(theta) W)odaab7
error('zernfun:RTHlength', ... >H]|R }h
'The number of R- and THETA-values must be equal.') 1#vi]CX
end v
5&8C
<;!#+|L/
% Check normalization: _xo;[rEw8
% -------------------- ?r.U5}PBI
if nargin==5 && ischar(nflag) ]_! .xx>
isnorm = strcmpi(nflag,'norm'); ev5m(wR
if ~isnorm RJD(c#r$
error('zernfun:normalization','Unrecognized normalization flag.') ,Q+.kAh !G
end }};AV)}J
else }FkF1?C
isnorm = false; *UdP1?Y
end !z+'mF?V+X
mqQC`Aqx:
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Ot~buf'|
% Compute the Zernike Polynomials 6{[ uCxxl
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ~HUO$*U4<
zi+NQOhR
% Determine the required powers of r: G,@Jo[e
% ----------------------------------- xGw|@d
m_abs = abs(m); SJ&+"S&
rpowers = []; AaDMX,
for j = 1:length(n) (U|WP%IM'
rpowers = [rpowers m_abs(j):2:n(j)]; AZbFj-^4
end G;^,T/q47
rpowers = unique(rpowers); xL!@$;J
@F!oRm5
% Pre-compute the values of r raised to the required powers, *#o2b-[V
% and compile them in a matrix: >q1rdq
% ----------------------------- Ez Xi*/
if rpowers(1)==0 yOm#c>X
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); N/8B@}@n
rpowern = cat(2,rpowern{:}); h"ATRr^
rpowern = [ones(length_r,1) rpowern]; "0?"
E\
else T$o;PJc
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); n,b6|Y0
rpowern = cat(2,rpowern{:});
75T+6u
end f/^T:F6
i [2bz+Z?
% Compute the values of the polynomials: P,K^oz}
% -------------------------------------- $gaGaB
y = zeros(length_r,length(n)); 6'1Lu1w
for j = 1:length(n) xHuw ?4
s = 0:(n(j)-m_abs(j))/2; nMH:7[x3
pows = n(j):-2:m_abs(j); q.d
qr<
for k = length(s):-1:1 cwI3ANV
p = (1-2*mod(s(k),2))* ... Lz`_&&6
prod(2:(n(j)-s(k)))/ ... 1<pb=H
prod(2:s(k))/ ...
y7.oy"
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... dwUs[v
prod(2:((n(j)+m_abs(j))/2-s(k))); Y]+KsiOL
idx = (pows(k)==rpowers); gq&jNj7V
y(:,j) = y(:,j) + p*rpowern(:,idx); K5(:0Q.5y
end Qa,$_,E
p 8lm1;
if isnorm y:R+; 91
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); (Cbm*VL
end mC!^`y)
end v=?/c-J*
% END: Compute the Zernike Polynomials (6X{ &
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 23P7%\
uB+:sX-L
% Compute the Zernike functions: LTnbBh*mc
% ------------------------------ )W!\D/C+
idx_pos = m>0; @6{F4
idx_neg = m<0; hU5_ dV
[yDOvQ[
z = y; 88A,ll%
if any(idx_pos) nF=[m; ~
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); E#c9n%E\sz
end #++D|oE
if any(idx_neg) kQO5sX$;
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 6MelN^\[7
end B8?j"AF
.}iRe}=
% EOF zernfun