切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11682阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 U07n7`2w  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! *pv hkJ g(  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 OjeM#s#N!  
    function z = zernfun(n,m,r,theta,nflag) [>?B`1;@  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. ^O[q C X  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N wTIOCj  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ;Cyt2]F  
    %   unit circle.  N is a vector of positive integers (including 0), and S]{K^Q),  
    %   M is a vector with the same number of elements as N.  Each element eVbHPu4  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) :fpYraBM  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, AytHnp\H  
    %   and THETA is a vector of angles.  R and THETA must have the same I#S6k%-'  
    %   length.  The output Z is a matrix with one column for every (N,M) g4j?E{M?  
    %   pair, and one row for every (R,THETA) pair. U4zyhj  
    % aCFO ]  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike iu&'v  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 't^OIil  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral P7"g/j""  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, > -Jd@7-  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ; >.>vLF  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 7PP76$  
    % 01#a  
    %   The Zernike functions are an orthogonal basis on the unit circle. ep,kImT  
    %   They are used in disciplines such as astronomy, optics, and jcOxtDTSW  
    %   optometry to describe functions on a circular domain. LYavth`@h  
    % (? YTQ8QR  
    %   The following table lists the first 15 Zernike functions. sRb)*p'  
    % 0P\)L`cG  
    %       n    m    Zernike function           Normalization )MW.Y  
    %       -------------------------------------------------- :)?w 2'O  
    %       0    0    1                                 1 E@P8-x'i  
    %       1    1    r * cos(theta)                    2 hq$:62NYg  
    %       1   -1    r * sin(theta)                    2 [ZOo%"M_Y  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) Ry[VEn>C1  
    %       2    0    (2*r^2 - 1)                    sqrt(3) JyYg)f  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) RP z0WP  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) srJ,Jr(  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) *V3}L Z  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) +!dIEt).U  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) mTYEK4}  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) "F}a nPY  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 0b~5i-zM/  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 6 }qNH29  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ?fc({zb  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) L5of(gQ5]  
    %       -------------------------------------------------- ft4J.oT  
    % B.;/N220P  
    %   Example 1: D*DCMMp=0  
    % XNf%vC>  
    %       % Display the Zernike function Z(n=5,m=1) :_i1)4[!  
    %       x = -1:0.01:1; %{5mkO&,2  
    %       [X,Y] = meshgrid(x,x); @q],pD  
    %       [theta,r] = cart2pol(X,Y); S;a{wYF6v  
    %       idx = r<=1; 9eH(FB  
    %       z = nan(size(X)); $^y6>@~  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); e ,k,L  
    %       figure ,57g_z]V  
    %       pcolor(x,x,z), shading interp IdUMoLL?  
    %       axis square, colorbar y 7|x<Z  
    %       title('Zernike function Z_5^1(r,\theta)') DL_2%&k/  
    % |u<qbl  
    %   Example 2: j$n[; \]n  
    % FG38)/  
    %       % Display the first 10 Zernike functions TfDx> F$  
    %       x = -1:0.01:1; pZuYmMP  
    %       [X,Y] = meshgrid(x,x); a RC >pK.  
    %       [theta,r] = cart2pol(X,Y); oXK`=.\  
    %       idx = r<=1; Se%FqI  
    %       z = nan(size(X)); Gyk>5Q}}  
    %       n = [0  1  1  2  2  2  3  3  3  3]; n Uz 2~z  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; ;mu9;ixZ  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; *Ny^XQ_X  
    %       y = zernfun(n,m,r(idx),theta(idx)); Ef;_im  
    %       figure('Units','normalized') #| `W ]  
    %       for k = 1:10 3YR6@*!f/  
    %           z(idx) = y(:,k); =oV8 !d%]  
    %           subplot(4,7,Nplot(k)) c1'OIK C  
    %           pcolor(x,x,z), shading interp sF C&DTb?  
    %           set(gca,'XTick',[],'YTick',[]) iKu[j)F  
    %           axis square 7,d^?.~S  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) KCGs*kp>  
    %       end sf2_x>U1  
    % zT6ng#  
    %   See also ZERNPOL, ZERNFUN2. BBm.;=8@ ^  
    -P]J:7*0?\  
    %   Paul Fricker 11/13/2006 $M@SZknm  
    {l-,Jbfi`  
    - (VV  
    % Check and prepare the inputs: muwXzN(KX  
    % ----------------------------- 1c(1YGuH  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 4r\Sbh  
        error('zernfun:NMvectors','N and M must be vectors.') Pwt4e-  
    end f9cS^v_:  
    >r2m1}6g"  
    if length(n)~=length(m) '""qMRCm  
        error('zernfun:NMlength','N and M must be the same length.') kZs  
    end &n|#jo(gS  
    ..X efNbl  
    n = n(:); %qcBM~efT  
    m = m(:); =#[_8)q  
    if any(mod(n-m,2)) GrGgR7eC#P  
        error('zernfun:NMmultiplesof2', ... +[V[{n  
              'All N and M must differ by multiples of 2 (including 0).') ^)m]j`}IGb  
    end i DO`N!  
    2T<QG>;)j  
    if any(m>n) Ash"D~  
        error('zernfun:MlessthanN', ... 8)&H=#E  
              'Each M must be less than or equal to its corresponding N.') Z~F% K~(  
    end S U~vS   
    %f\ M61Z  
    if any( r>1 | r<0 ) .^N+'g  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') s[)2z3  
    end =i~/.Nu&  
    W@GcE;#-  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) v)N8vFdd  
        error('zernfun:RTHvector','R and THETA must be vectors.') [ -bL>8  
    end 6*Qn9Q%p-  
    X&0m$x  
    r = r(:); 6cp x1y]~6  
    theta = theta(:); `9B xDp]I  
    length_r = length(r); _tS<\zy@y  
    if length_r~=length(theta) eC%.xu^  
        error('zernfun:RTHlength', ... $74ZC M  
              'The number of R- and THETA-values must be equal.') @Ytsb!!  
    end j 9XY%4.  
    g-U'{I5F  
    % Check normalization: Pk T&zSQA  
    % -------------------- L;I .6<K.  
    if nargin==5 && ischar(nflag) )p4o4 aM  
        isnorm = strcmpi(nflag,'norm'); Hq8<g$  
        if ~isnorm R!lNm,i  
            error('zernfun:normalization','Unrecognized normalization flag.') &_HSrU  
        end =\e}fyuK  
    else Y=sRVypJ  
        isnorm = false;  HUr;ysw  
    end b[$%Wg  
    Vj_(55WQ  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 8s-RNA>7^  
    % Compute the Zernike Polynomials k$y(H;XA  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Wznz  
    x~!B.4gT2  
    % Determine the required powers of r: S&}7jRH1  
    % ----------------------------------- cveTrY}g  
    m_abs = abs(m); [Tby+pC  
    rpowers = []; m>k j@^SQ  
    for j = 1:length(n) {J%Na&D  
        rpowers = [rpowers m_abs(j):2:n(j)]; E `Ualai  
    end I7r{&X) D  
    rpowers = unique(rpowers); "B*a| 'n!  
    n9]^v-]K  
    % Pre-compute the values of r raised to the required powers, B]ul~FX  
    % and compile them in a matrix: 7f8%WD)  
    % ----------------------------- [@U8&W  
    if rpowers(1)==0 f)H6 n l7r  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ~0w7E0DE[  
        rpowern = cat(2,rpowern{:}); *#;8mM  
        rpowern = [ones(length_r,1) rpowern]; N(vzxx^  
    else C6,GgDH`  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 'C+z  
        rpowern = cat(2,rpowern{:}); #HWz.Wb  
    end W:O<9ZbQ_  
    QG?7L_I  
    % Compute the values of the polynomials: DalQ.   
    % -------------------------------------- t1b$,jHmKl  
    y = zeros(length_r,length(n)); *_`T*$  
    for j = 1:length(n) `J[(Dx'y=t  
        s = 0:(n(j)-m_abs(j))/2; jWLZ!a3+  
        pows = n(j):-2:m_abs(j); @^a6^*X>  
        for k = length(s):-1:1 (9*s:)zD-  
            p = (1-2*mod(s(k),2))* ... 0&=2+=[c  
                       prod(2:(n(j)-s(k)))/              ... z{pNQ[t1Z  
                       prod(2:s(k))/                     ... ^c83_93)R  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... sSd  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); +P/"bwv0  
            idx = (pows(k)==rpowers); ;38W41d{  
            y(:,j) = y(:,j) + p*rpowern(:,idx); %1gJOV  
        end a3?Dtoy'  
         Q-F'-@`(C  
        if isnorm 9Re605x Q6  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); kQC>8"  
        end fU@}]&  
    end RKdf1C  
    % END: Compute the Zernike Polynomials 7loCb4Hv  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Ky|Hi3?  
    GC66n1- X  
    % Compute the Zernike functions: }r]WB)_w  
    % ------------------------------ %\_I% yF  
    idx_pos = m>0; Z{+h~?63  
    idx_neg = m<0; t!c8 c^HR  
    JmrQDO_(  
    z = y; 8xj4N%PA  
    if any(idx_pos) }U7>_b2  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); B h@R9O<  
    end Ox?LVRvxI  
    if any(idx_neg) #j d?ocoY  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); YH)U nql  
    end j8zh^q  
    vF;6Y(h>  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) zF;}b3oIo  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. $LAaG65V  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated Mki(,Y|1~  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive vMzR3@4e  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, fB1JU1  
    %   and THETA is a vector of angles.  R and THETA must have the same 1(w0* `  
    %   length.  The output Z is a matrix with one column for every P-value, ;s"m* 4N  
    %   and one row for every (R,THETA) pair. [H0jDbN  
    % g0rdF  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike NxNR;wz>l  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) Lr)h>j6\  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) `C=!8q  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 ;Bc f~[ErM  
    %   for all p. 1:My8  
    % s?~Abj_  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 !aa^kcEjnL  
    %   Zernike functions (order N<=7).  In some disciplines it is RduA0@g0  
    %   traditional to label the first 36 functions using a single mode (oq(-Wv  
    %   number P instead of separate numbers for the order N and azimuthal > m}.}g8  
    %   frequency M. 8f,jC+(  
    % QlJCdCSy  
    %   Example: dAEz hR[=  
    % 1uB}Oe 2~  
    %       % Display the first 16 Zernike functions Cd7 j G  
    %       x = -1:0.01:1; KPW: r#d  
    %       [X,Y] = meshgrid(x,x); yu#Jw  
    %       [theta,r] = cart2pol(X,Y); *Ei~2O}  
    %       idx = r<=1; PwF}yx kI  
    %       p = 0:15; TQ=\l*R(A  
    %       z = nan(size(X)); l:+tl/  
    %       y = zernfun2(p,r(idx),theta(idx)); kG?tgO?*  
    %       figure('Units','normalized') |+!Jr_ By  
    %       for k = 1:length(p) 8C,?Ai<ro  
    %           z(idx) = y(:,k); <6dD{{J]>p  
    %           subplot(4,4,k) t~5>PS  
    %           pcolor(x,x,z), shading interp (4M#(I~cE  
    %           set(gca,'XTick',[],'YTick',[]) eqeVz`  
    %           axis square EoQ.d|:g  
    %           title(['Z_{' num2str(p(k)) '}']) J'@ I!Jc  
    %       end >GT0 x  
    % &\0LR?Nh  
    %   See also ZERNPOL, ZERNFUN. y::KjB 0  
    5uDQ*nJ|  
    %   Paul Fricker 11/13/2006 ]lz,?izMR  
    He#+zE ;  
    zXcSE"   
    % Check and prepare the inputs: ((.PPOdJV  
    % ----------------------------- LYWQqxB  
    if min(size(p))~=1 s4~c>voQB  
        error('zernfun2:Pvector','Input P must be vector.') gP/]05$e  
    end (5km]`7z  
    {y<_S]0  
    if any(p)>35 Yo7ctwzdH;  
        error('zernfun2:P36', ... f$2lq4P{  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... mXhr: e  
               '(P = 0 to 35).']) t$\]6RU  
    end ]~ec] Y  
    Dm 'Q&  
    % Get the order and frequency corresonding to the function number: z w5EaY  
    % ---------------------------------------------------------------- 2jx""{  
    p = p(:); q".l:T%|C}  
    n = ceil((-3+sqrt(9+8*p))/2); mT!~;] RrF  
    m = 2*p - n.*(n+2); `awk@  
    _9L2JN$R6  
    % Pass the inputs to the function ZERNFUN: vja^ O  
    % ---------------------------------------- b?w4Nx#  
    switch nargin : FxZdE  
        case 3 B"+Ygvxb  
            z = zernfun(n,m,r,theta); l l&iMj]  
        case 4 u;=("S{"0  
            z = zernfun(n,m,r,theta,nflag); 7RdL/21K  
        otherwise bE0S) b)  
            error('zernfun2:nargin','Incorrect number of inputs.') "}PmAr e  
    end X^aujK^@  
    c!kbHZ<Z  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) c&'T By  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. J+z0,N[  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of *d,SI[c%e  
    %   order N and frequency M, evaluated at R.  N is a vector of rRsLl/d  
    %   positive integers (including 0), and M is a vector with the 2OK%eVba  
    %   same number of elements as N.  Each element k of M must be a A>d*<#x  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) /D~z}\k  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is %PkJ7-/b|^  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix a<vCAFQ  
    %   with one column for every (N,M) pair, and one row for every 3!*J;Y  
    %   element in R. rJ<v1Yb  
    % L#NPt4Sz+  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- uV%7|/fD  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is e%UFY-2  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to {},G xrQm  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 !JrVh$K  
    %   for all [n,m]. 2abWIw4  
    % pLk?<y  
    %   The radial Zernike polynomials are the radial portion of the q$H'u[KQ06  
    %   Zernike functions, which are an orthogonal basis on the unit le8n!Dk(  
    %   circle.  The series representation of the radial Zernike eb+[=nmP  
    %   polynomials is *4r;H2%c  
    % eqjl$QWPJS  
    %          (n-m)/2 &4B N9`|:  
    %            __ ~BZA_w"`1  
    %    m      \       s                                          n-2s ux-Fvwoh  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r [qid4S~r,&  
    %    n      s=0 $Cf_RFH0  
    % ^iTjr$hQ;  
    %   The following table shows the first 12 polynomials. O{%y `|m  
    % 4}?Yp e-  
    %       n    m    Zernike polynomial    Normalization )8e_<^M  
    %       --------------------------------------------- ,gRsbC  
    %       0    0    1                        sqrt(2) +gT?{;3[i  
    %       1    1    r                           2 9Y-s],2V  
    %       2    0    2*r^2 - 1                sqrt(6) \Dr@n^hk@[  
    %       2    2    r^2                      sqrt(6) Q*U$i#,  
    %       3    1    3*r^3 - 2*r              sqrt(8) FtY*I&  
    %       3    3    r^3                      sqrt(8) c: #1Aym  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) BU])@~$  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) (obeEH5J  
    %       4    4    r^4                      sqrt(10) +KD~/}C%-  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) )e{~x u  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) +]*?J1 Y8Z  
    %       5    5    r^5                      sqrt(12) 7G2TTa  
    %       --------------------------------------------- Ym0Xl(Se  
    % 2:2rwH }e  
    %   Example: PVV\@  
    % c< \:lhl  
    %       % Display three example Zernike radial polynomials ~fQ#-ekzqk  
    %       r = 0:0.01:1; #nn2odR  
    %       n = [3 2 5]; OGh b Ha  
    %       m = [1 2 1]; S{J$[!F  
    %       z = zernpol(n,m,r); ]36R_Dp  
    %       figure %.[GR  
    %       plot(r,z) !XgkK k  
    %       grid on I_Oa<J\+  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') knF *~O :y  
    % 9<-AukK m  
    %   See also ZERNFUN, ZERNFUN2. ,R*ru*  
     ZY keW  
    % A note on the algorithm. 30[?XVI&  
    % ------------------------ >*Y~I0>  
    % The radial Zernike polynomials are computed using the series D<Ads  
    % representation shown in the Help section above. For many special RI cA)I.  
    % functions, direct evaluation using the series representation can  ae#7*B  
    % produce poor numerical results (floating point errors), because `@=}5 9+|  
    % the summation often involves computing small differences between `<+D<x)(3  
    % large successive terms in the series. (In such cases, the functions _.wLQL~y  
    % are often evaluated using alternative methods such as recurrence O/l|\n  
    % relations: see the Legendre functions, for example). For the Zernike js7J#b7  
    % polynomials, however, this problem does not arise, because the 9k2HP]8=[{  
    % polynomials are evaluated over the finite domain r = (0,1), and mVU(u_lh  
    % because the coefficients for a given polynomial are generally all mKWA-h+f  
    % of similar magnitude. qFf'RgUtP  
    % USe"1(|E  
    % ZERNPOL has been written using a vectorized implementation: multiple sDWX} NV  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] D='/-3f!F]  
    % values can be passed as inputs) for a vector of points R.  To achieve B 2&fvv?  
    % this vectorization most efficiently, the algorithm in ZERNPOL jw#'f%*  
    % involves pre-determining all the powers p of R that are required to r~TiJ?8I  
    % compute the outputs, and then compiling the {R^p} into a single U*v//@WbH  
    % matrix.  This avoids any redundant computation of the R^p, and nM)]  
    % minimizes the sizes of certain intermediate variables. $ShL^g@  
    % Qn<J@%  
    %   Paul Fricker 11/13/2006  {EZ ;  
    t'0r4&\  
    )#i]exZ  
    % Check and prepare the inputs: Cl4y9|  
    % ----------------------------- QTK \"  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ;STO!^9~  
        error('zernpol:NMvectors','N and M must be vectors.') N;RZIg(x  
    end t`H^! b  
    4$d|}ajH  
    if length(n)~=length(m) &RpQ2*4n  
        error('zernpol:NMlength','N and M must be the same length.') g8!!:fdu  
    end Og"50-  
    ~SP.&>Q>  
    n = n(:); >x&$lT{OY  
    m = m(:); NzNAhlXj3  
    length_n = length(n); 0>VgO{X  
    Ri aO`|1  
    if any(mod(n-m,2)) a5z.c_7r  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') 9?bfZF4A=  
    end #qm<4]9 1  
    u\&oiwSIP  
    if any(m<0) m'oVqA&  
        error('zernpol:Mpositive','All M must be positive.') lb`P9mbr+  
    end sVaWg?=qs'  
    JB''Ujyi  
    if any(m>n)  CG$S?  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') v?n`kw  
    end _(J- MCY\  
    Y5cUOfYT  
    if any( r>1 | r<0 ) Nki18ud#  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') noh3mi  
    end pRUN [[L  
    {eqUEdC  
    if ~any(size(r)==1) 8Tv;,a  
        error('zernpol:Rvector','R must be a vector.') 9"_qa q  
    end DU]MMR  
    $vlgiJ&f  
    r = r(:); d q"b_pr;  
    length_r = length(r); Q gDjc '  
    f(?>z!n0  
    if nargin==4 dSk\J[D  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); .'5yFBS  
        if ~isnorm \TC&/'7}  
            error('zernpol:normalization','Unrecognized normalization flag.') qJ#?=ITE  
        end Q3wD6!'&m  
    else #e+%;5\  
        isnorm = false; ~=Er= 0  
    end u)R>ozER  
    @\u)k  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% `H+ 7Hj  
    % Compute the Zernike Polynomials RyIr_:&-~  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% roj/GZAy"  
    ^X[Kr=:Jp  
    % Determine the required powers of r: b (;"p-^  
    % ----------------------------------- ;7tOFsV  
    rpowers = []; #}:VZ2Z  
    for j = 1:length(n) .y+>-[j?B  
        rpowers = [rpowers m(j):2:n(j)]; m\"M`o B  
    end NTs< ;ED  
    rpowers = unique(rpowers); n_.2B$JD  
    p^5B_r:  
    % Pre-compute the values of r raised to the required powers, 7{8!IcR #  
    % and compile them in a matrix: @<W"$_ r-  
    % ----------------------------- 6"-LGK:  
    if rpowers(1)==0 x #BUIi  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); K)l{3\9l|  
        rpowern = cat(2,rpowern{:}); hY-;Wfg  
        rpowern = [ones(length_r,1) rpowern]; QRgWzaI  
    else IOvYvFUUJ  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); *G'zES0x  
        rpowern = cat(2,rpowern{:}); (gl CTF9v  
    end o@EV>4e y  
    _Dwn@{[(8  
    % Compute the values of the polynomials: ]$y"|xqR  
    % -------------------------------------- (<itE3P  
    z = zeros(length_r,length_n); /uW6P3M  
    for j = 1:length_n q,QMvUK:  
        s = 0:(n(j)-m(j))/2; :==kC672  
        pows = n(j):-2:m(j); B/i,QBPF]  
        for k = length(s):-1:1 JEU?@J71O  
            p = (1-2*mod(s(k),2))* ... X~]eQaJ  
                       prod(2:(n(j)-s(k)))/          ... @l$cZi e  
                       prod(2:s(k))/                 ... }I; =IYrN  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... K&D -1u  
                       prod(2:((n(j)+m(j))/2-s(k))); !COaPrg  
            idx = (pows(k)==rpowers); \>23_d0  
            z(:,j) = z(:,j) + p*rpowern(:,idx); _GI [SzD  
        end `@")R-  
         1p+2*c  
        if isnorm Fm*n>^P@Y  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); l OI(+74  
        end xfos>|0N  
    end O0WzDD  
    67/hhO  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  H9x xId?3u  
    '<^%> R2  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 1Ty{k^%  
    >C*q  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)