非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 /3%]Ggwe
function z = zernfun(n,m,r,theta,nflag) v\Y;)/!
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. !W:QLOe6F
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N y_"GMw
% and angular frequency M, evaluated at positions (R,THETA) on the 6,G^iv6H
% unit circle. N is a vector of positive integers (including 0), and 7>{edNy!,
% M is a vector with the same number of elements as N. Each element OxF\Hm)(
% k of M must be a positive integer, with possible values M(k) = -N(k) )ymF:]QC
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, eEsEW<su
% and THETA is a vector of angles. R and THETA must have the same HkvCQ H
% length. The output Z is a matrix with one column for every (N,M) 0jv9N6IM
% pair, and one row for every (R,THETA) pair. >1ZMQgCG
% jTws0=F*
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 6@2p@eYo
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), VhSKtD1
% with delta(m,0) the Kronecker delta, is chosen so that the integral va8:QHdU
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, gb(\c:yg1R
% and theta=0 to theta=2*pi) is unity. For the non-normalized mC~W/KReA
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. F__>`Dol
% qe(X5?#;
% The Zernike functions are an orthogonal basis on the unit circle. P[P!WLr""
% They are used in disciplines such as astronomy, optics, and q\#3G
% optometry to describe functions on a circular domain. q){]fp.,@
% !^axO
% The following table lists the first 15 Zernike functions. B_5q}Bp<
% y8+?:=N.
% n m Zernike function Normalization ZJ=C[s!wu
% -------------------------------------------------- |[34<tIN
% 0 0 1 1 6}NvVolr
% 1 1 r * cos(theta) 2 dc&Qi_W
% 1 -1 r * sin(theta) 2 SO p%{b
% 2 -2 r^2 * cos(2*theta) sqrt(6) {OAy@6
+
% 2 0 (2*r^2 - 1) sqrt(3) Tjs-+$P+
% 2 2 r^2 * sin(2*theta) sqrt(6) ip5s'S~
% 3 -3 r^3 * cos(3*theta) sqrt(8) 4kXx(FE
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) *C\4%l
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) [RpFC4W
% 3 3 r^3 * sin(3*theta) sqrt(8) U}A+jJ
% 4 -4 r^4 * cos(4*theta) sqrt(10) cjN4U [
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) N[pk@M\vX
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) OD1ns
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 6l_8Q w*5I
% 4 4 r^4 * sin(4*theta) sqrt(10) R&xD|w8UjM
% -------------------------------------------------- hChM hc
% L0&!Qct
% Example 1: !Rb7q{@>
% Kv#daAU
% % Display the Zernike function Z(n=5,m=1) j|aT`UH03
% x = -1:0.01:1; Mx r#
% [X,Y] = meshgrid(x,x); jilO% "
% [theta,r] = cart2pol(X,Y); r kD4}jV
% idx = r<=1; t*}<v@,
% z = nan(size(X)); [2\`Wh:%P
% z(idx) = zernfun(5,1,r(idx),theta(idx)); T@Q<oNU
% figure G,"$Erx
% pcolor(x,x,z), shading interp A`N;vq,
% axis square, colorbar ]`4QJ;#
% title('Zernike function Z_5^1(r,\theta)') gdG:
&{|x
% r*p%e\ 3
% Example 2: 3:;%@4f
% gSe{S
% % Display the first 10 Zernike functions l%w7N9
% x = -1:0.01:1; F 1zc4l6
% [X,Y] = meshgrid(x,x); c//W#V2Q
% [theta,r] = cart2pol(X,Y); 8c/Ii"1
% idx = r<=1; 8v6rS-iHP
% z = nan(size(X)); 57MoO
% n = [0 1 1 2 2 2 3 3 3 3]; !< X_XA
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; |y=gp
% Nplot = [4 10 12 16 18 20 22 24 26 28]; G/ ^|oJ/G
% y = zernfun(n,m,r(idx),theta(idx)); x4( fW\
% figure('Units','normalized') h`GV[Oo :
% for k = 1:10 aEM#V
% z(idx) = y(:,k); g1{wxBFE
% subplot(4,7,Nplot(k)) Bpp9I;)c
% pcolor(x,x,z), shading interp L"-&B$B:
% set(gca,'XTick',[],'YTick',[]) ut,"[+J
% axis square U92hv~\
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 6?iP z?5
% end .z4FuG,R
% *oWzH_
% See also ZERNPOL, ZERNFUN2. ixH7oWH#
nagto^5X
% Paul Fricker 11/13/2006 ,Z^GN%Q7a
f
0#V^[%Q
Z"^@B2v
% Check and prepare the inputs: ky%%H;
% ----------------------------- e/3hb)#;
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) hWu)0t
error('zernfun:NMvectors','N and M must be vectors.') lKwcT!Q4
end N} h%8\
;lEiOF+d
if length(n)~=length(m) 18HHEW{
error('zernfun:NMlength','N and M must be the same length.') SYwNx">Bq
end $3Ia+O
w#$k$T)
n = n(:); M*HG4(n0
m = m(:); 4%7*tVG
if any(mod(n-m,2)) y$"L`*W
error('zernfun:NMmultiplesof2', ... Ol@ZH_
'All N and M must differ by multiples of 2 (including 0).') ?!66yn
end {ULnQ6@
<am7t[G."
if any(m>n) qTGy\i
error('zernfun:MlessthanN', ... X[ (J!"+
'Each M must be less than or equal to its corresponding N.') [)u(\nfGX
end 0A9cu,ZdUR
Ne EV!V8
if any( r>1 | r<0 ) Ye6O!,R
error('zernfun:Rlessthan1','All R must be between 0 and 1.') "F}Ip&]hAG
end FHC7\#p/9Z
q Q'@yTVN
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) <i6M bCB
error('zernfun:RTHvector','R and THETA must be vectors.') eH8.O
end k}.nH"AQ
u\wd<<I']
r = r(:); OXB-.<
theta = theta(:); A&'%ou
length_r = length(r); dp70sA!JF
if length_r~=length(theta) g1|c?#fwo
error('zernfun:RTHlength', ... {;/o4[jlg
'The number of R- and THETA-values must be equal.') *ZGN!0/
end hzb|:
$C/Gn~k 5
% Check normalization: S@)bl
% -------------------- }"Cn kg
if nargin==5 && ischar(nflag) DeSTo9A}!
isnorm = strcmpi(nflag,'norm'); nE;gM1I
if ~isnorm F! e`i-xt
error('zernfun:normalization','Unrecognized normalization flag.') '7R'fhiO/3
end kDh(~nfj
else h)vTu%J:
isnorm = false; ~B@o?8D]
end :bDA<B6bb
j[cjQ]>~'
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% m5X=P5U
% Compute the Zernike Polynomials 9iCud6H,h
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% EYG E#C;
d
X%CPz.G
% Determine the required powers of r: 2A|6o*s"
% ----------------------------------- v!xrUyN~m
m_abs = abs(m); w#,v n8
rpowers = []; !?/bK[
P,
for j = 1:length(n) *Rh .s!@4
rpowers = [rpowers m_abs(j):2:n(j)]; G |^X:+
end I "2FTGA
rpowers = unique(rpowers); O$/swwB!
f :5/y^M&
% Pre-compute the values of r raised to the required powers, CF"3<*%x
% and compile them in a matrix: "n,ZP@M;
% ----------------------------- @\8gzvkt
if rpowers(1)==0 8-ssiiJ}gh
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); jt--w"|-r
rpowern = cat(2,rpowern{:}); o7XRa]O
rpowern = [ones(length_r,1) rpowern]; yZ$;O0f&&
else j//wh1
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); #.YcIR)
rpowern = cat(2,rpowern{:}); qL.Y_,[[
end ^)l@7XxD
T+h{Aeg
% Compute the values of the polynomials: _|:bac8pL
% -------------------------------------- {{%8|+B
y = zeros(length_r,length(n)); =Gz>ZWF
for j = 1:length(n) ss8v4@C
s = 0:(n(j)-m_abs(j))/2; i6 ?JX@I
pows = n(j):-2:m_abs(j); <h51KPo^P
for k = length(s):-1:1 M&c1iK\E8
p = (1-2*mod(s(k),2))* ... Aq'E:/
prod(2:(n(j)-s(k)))/ ... l:yAgm`
prod(2:s(k))/ ... ^3o8F
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... m(:qZW
prod(2:((n(j)+m_abs(j))/2-s(k))); k.[) R@0%
idx = (pows(k)==rpowers); <9tG_
y(:,j) = y(:,j) + p*rpowern(:,idx); \<x_96jt!\
end xH#a|iT?(
@zF:{=+]+
if isnorm RmV/wY
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); d|+jCTKS
end 4S9,
tc&
end TbAdTmW
% END: Compute the Zernike Polynomials A!Ct,%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% U2lC !j%K
V9+"CB^
% Compute the Zernike functions: bk9~63tN+>
% ------------------------------ -f|^}j?
idx_pos = m>0; S{7ik,Gdg
idx_neg = m<0; Nw&}qSN
FXEfD"
z = y; DB'KIw
if any(idx_pos) @/NZ>.
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); [mzF)/[_2
end LEnP"o9ZW
if any(idx_neg) 4qXRDsbCf
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); V^/^OR4k
end )TG0m= *
7"NJraQ6
% EOF zernfun