非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 ]]_5_)"4
function z = zernfun(n,m,r,theta,nflag) 1) K<x
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. %E/#h8oN{
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N &OZx!G^Z
% and angular frequency M, evaluated at positions (R,THETA) on the \pkK
>R
% unit circle. N is a vector of positive integers (including 0), and R<_VWPlj
% M is a vector with the same number of elements as N. Each element M"W#_wY;
% k of M must be a positive integer, with possible values M(k) = -N(k) [L7s(Zs>
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, QVRQUd
% and THETA is a vector of angles. R and THETA must have the same Xp|4 WM
% length. The output Z is a matrix with one column for every (N,M) P=1Ku|k
% pair, and one row for every (R,THETA) pair. kP}l"CN4
% lAA-#YG
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike *J]p/<> {
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), IJKdVb~
% with delta(m,0) the Kronecker delta, is chosen so that the integral n:B){'S
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, )X," NJG
% and theta=0 to theta=2*pi) is unity. For the non-normalized ygV_"=+|N
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. WV'u}-v^
% jl}!UG
% The Zernike functions are an orthogonal basis on the unit circle. U\ ,N
% They are used in disciplines such as astronomy, optics, and ^V1\boo=
% optometry to describe functions on a circular domain. Dq%}({+
% rXzq:
% The following table lists the first 15 Zernike functions. J zFR9DEt
% x^c,cV+*
% n m Zernike function Normalization
#tpz74O
% -------------------------------------------------- yPT o,,ca=
% 0 0 1 1 @aN~97
H\
% 1 1 r * cos(theta) 2 ^`M%g2x
% 1 -1 r * sin(theta) 2 l"
~
CAw;
% 2 -2 r^2 * cos(2*theta) sqrt(6) j@#RfVx
% 2 0 (2*r^2 - 1) sqrt(3) fQ"Vx!
% 2 2 r^2 * sin(2*theta) sqrt(6) 9015PEO
% 3 -3 r^3 * cos(3*theta) sqrt(8) R\X;`ptT
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) : O@(Sv
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 8+7*> FD)1
% 3 3 r^3 * sin(3*theta) sqrt(8) p<h(
% 4 -4 r^4 * cos(4*theta) sqrt(10) 7)1%Z{Dy
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) g18zo~LZ
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) x5xMr.vm
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) rNicg]:\x
% 4 4 r^4 * sin(4*theta) sqrt(10) Z_dL@\#|
% -------------------------------------------------- %-$
:/N
% ^8bc<c:P
% Example 1: ]8OmYU%6V
% As5l36
% % Display the Zernike function Z(n=5,m=1) jTNt!2 :B
% x = -1:0.01:1; hP{+`\&<f
% [X,Y] = meshgrid(x,x); 6C"zBJcGc
% [theta,r] = cart2pol(X,Y); ,Xn%0]
% idx = r<=1; XYD-5pG
% z = nan(size(X)); Z8/.I
% z(idx) = zernfun(5,1,r(idx),theta(idx)); R>~I8k9mM
% figure v5e*R8/
% pcolor(x,x,z), shading interp -R1;(n)
% axis square, colorbar vg3iT}
% title('Zernike function Z_5^1(r,\theta)') ? p[Rv
% pRxVsOb
% Example 2: DzA'MX
% 8 l= EL7
% % Display the first 10 Zernike functions T*Ge67
% x = -1:0.01:1; A.7lo
% [X,Y] = meshgrid(x,x); })kx#_o]'d
% [theta,r] = cart2pol(X,Y); 7BqP3T=&_
% idx = r<=1; ?G7*^y&Q
% z = nan(size(X)); uTz>I'f
% n = [0 1 1 2 2 2 3 3 3 3]; C|g1:#0
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; vA ZkT"
% Nplot = [4 10 12 16 18 20 22 24 26 28]; 0*kS\R=P
% y = zernfun(n,m,r(idx),theta(idx)); !a\HdQ
% figure('Units','normalized') }X=c|]6i^
% for k = 1:10 Voq/0,d
% z(idx) = y(:,k); ZQir?1=
% subplot(4,7,Nplot(k)) 'r_Fi5[q
% pcolor(x,x,z), shading interp _
M B/p
% set(gca,'XTick',[],'YTick',[]) y4 ]5z/
% axis square 7I]?:%8h
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) t5i58@{~
% end %qE"A6j
% W?!rqo2SP
% See also ZERNPOL, ZERNFUN2. 9C Ki$L
wL]#]DiE
% Paul Fricker 11/13/2006 ~Al3Dv9x
5 A5t
MT)q?NcG
% Check and prepare the inputs: lfd-!(tXD
% ----------------------------- c05-1
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) i|,}y`C#
error('zernfun:NMvectors','N and M must be vectors.') U7g,@/Qx
end P|lDW|}D@
N7}3?wS
if length(n)~=length(m) i eWXr4@:
error('zernfun:NMlength','N and M must be the same length.') V!yBH<X
end U1fqs{>
qe
e_wx
n = n(:); Y[>h |@
m = m(:); #)48dW!n
if any(mod(n-m,2)) O}2/w2n
error('zernfun:NMmultiplesof2', ... +R;LHRS%
'All N and M must differ by multiples of 2 (including 0).') $T66%wX
end gcO$ T`
Slv:CM
M
if any(m>n) -k2|`t _
error('zernfun:MlessthanN', ... m#O; 1/P
'Each M must be less than or equal to its corresponding N.') (n2_HePE
end %BMlcm7Ec
]BRwJ2< x
if any( r>1 | r<0 ) luac
error('zernfun:Rlessthan1','All R must be between 0 and 1.') 7Lj:m.0O^
end p0l.f`B
>\J<`
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ![vy{U.:`
error('zernfun:RTHvector','R and THETA must be vectors.') $nIE;idk
end &m9= q|;m
\h0+`
;Q
r = r(:); q@VIFmqY!
theta = theta(:); hPGDN\#LD
length_r = length(r); %gSmOW2.c^
if length_r~=length(theta) Vj8-[ww!
error('zernfun:RTHlength', ... =;)=,+V~q
'The number of R- and THETA-values must be equal.') *u,xBC2C
end :=!6w
>XRf=
:3
% Check normalization: ~q/~ u
% -------------------- Nr)DU.f
if nargin==5 && ischar(nflag) +u5xK
isnorm = strcmpi(nflag,'norm'); 0Ny +NE:6M
if ~isnorm {,T=Siy
error('zernfun:normalization','Unrecognized normalization flag.') 2\|sXC
end d$E>bo-\
else T?jN/}qg
isnorm = false; /M3;~sx
end -!M>;M@
r9b(d]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 9U3 }_
% Compute the Zernike Polynomials Uqj$itqUQ
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% K *1]P ar;
87)/dHc
% Determine the required powers of r: | "M1+(k7
% ----------------------------------- 9o P
m_abs = abs(m); };Df ><
rpowers = []; jJ2{g> P0P
for j = 1:length(n) ,qV 7$u
rpowers = [rpowers m_abs(j):2:n(j)]; 8 K)GH:a
end 0 A8G8^T
rpowers = unique(rpowers); IC$"\7
@
m@L>6;*
% Pre-compute the values of r raised to the required powers, *g:Dg I 2
% and compile them in a matrix: ~%
`hh9]
% ----------------------------- .>_%12>
if rpowers(1)==0 >>y\idg&:
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ]ERAt^$0
rpowern = cat(2,rpowern{:}); W4(
rpowern = [ones(length_r,1) rpowern]; R@>^t4#_Q0
else gd7!+6
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Dd,
&a
rpowern = cat(2,rpowern{:}); NQiu>Sg
end N693eN!
P~x4h{~Gd
% Compute the values of the polynomials: x1Gc|K/-
% -------------------------------------- @q@I(%_`
y = zeros(length_r,length(n)); g@?R"
for j = 1:length(n) :zO;E+s
s = 0:(n(j)-m_abs(j))/2; \]S)PDqR
pows = n(j):-2:m_abs(j); }~0}B[Rf
for k = length(s):-1:1 o{hZjn-
p = (1-2*mod(s(k),2))* ... vYo~36
prod(2:(n(j)-s(k)))/ ... c0X1})q$
prod(2:s(k))/ ... Zba<|C
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... *lheF>^
prod(2:((n(j)+m_abs(j))/2-s(k))); L$, Kdpj
idx = (pows(k)==rpowers); 889^P`Q5
y(:,j) = y(:,j) + p*rpowern(:,idx); x%W~@_
end m>!o
Yy_
GFnwj<V+{
if isnorm 5~#oQ&
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); tm_\(
end *rV{(%\m
end D&],.N
% END: Compute the Zernike Polynomials QMDkkNK
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 8`I,KkWg
3YUF\L]yyw
% Compute the Zernike functions: FysIN~
% ------------------------------ 7MKZ*f@x;
idx_pos = m>0; 6]HMhv
idx_neg = m<0; -&%!
4(Je
]4lC/&nm
z = y; K&-uW _0
if any(idx_pos) O[|X=ZwR:l
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Udjn.D
end &=In
if any(idx_neg) AJ#YjkO>]
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); i0?/\@gd
end D7jbo[GgS
eG.s|0`
% EOF zernfun