切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11832阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 < |]i  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! g(z#h$@S  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 tr67ofld|  
    function z = zernfun(n,m,r,theta,nflag) MlcoOi!  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. {KQ-Ce-6  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N &&QDEDszp  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 7=M'n;!Mh  
    %   unit circle.  N is a vector of positive integers (including 0), and RE*S7[ge  
    %   M is a vector with the same number of elements as N.  Each element _`Yvfz3  
    %   k of M must be a positive integer, with possible values M(k) = -N(k)   _c7  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, H&>>]DD  
    %   and THETA is a vector of angles.  R and THETA must have the same 3 v,ae7$U&  
    %   length.  The output Z is a matrix with one column for every (N,M) *7D$;?"  
    %   pair, and one row for every (R,THETA) pair. nH3b<k;S  
    % YQ[&h  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike bU g2Bm!y  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), :N'[d e  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 6[Pr<4J  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Sr#fyr  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ` a<|CcUGU  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. MdTd$ 4J3  
    % }?ac<> u&  
    %   The Zernike functions are an orthogonal basis on the unit circle. hcqmjqJ  
    %   They are used in disciplines such as astronomy, optics, and `a1R "A  
    %   optometry to describe functions on a circular domain. Dm`U|<o  
    % _$jJpy  
    %   The following table lists the first 15 Zernike functions. 3E2.v5*  
    % NB6h/0*v  
    %       n    m    Zernike function           Normalization tZ{q\+h  
    %       -------------------------------------------------- PFn[[~5V  
    %       0    0    1                                 1 }Us$y0W\  
    %       1    1    r * cos(theta)                    2 5t1DB'K9$_  
    %       1   -1    r * sin(theta)                    2 fm2Mi~}0  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) uC8T!z  
    %       2    0    (2*r^2 - 1)                    sqrt(3) _/w-gL{  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) x jUH<LFxy  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) o4 OEA)k)=  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) LyPBFo[?  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) #di_V"  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) ~X(xa  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) a0W\?  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ke6cZV5w  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) l$~bkVNL  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Q1&dB{L  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) YGO7lar  
    %       -------------------------------------------------- 5$G??="K  
    % T|iF/p]F  
    %   Example 1: JGNxJ S<]  
    % tS\NO@E_Jh  
    %       % Display the Zernike function Z(n=5,m=1) umn~hb5O  
    %       x = -1:0.01:1; qO3BQ]UF  
    %       [X,Y] = meshgrid(x,x); 1kw4'#J8  
    %       [theta,r] = cart2pol(X,Y); U$JIF/MO_  
    %       idx = r<=1; ^{+:w:g  
    %       z = nan(size(X)); >u#VHaB  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); Y/I6.K3  
    %       figure DWxh{h">  
    %       pcolor(x,x,z), shading interp |Ie`L("  
    %       axis square, colorbar m-FDCiN>  
    %       title('Zernike function Z_5^1(r,\theta)') 2}C>{*}yQ  
    % ->9xw  
    %   Example 2: 1Moh`  
    % *xVAm7_v  
    %       % Display the first 10 Zernike functions x{o5Ha{  
    %       x = -1:0.01:1; SpiC0  
    %       [X,Y] = meshgrid(x,x); cZT.vA#  
    %       [theta,r] = cart2pol(X,Y); M@@O50~  
    %       idx = r<=1; 1e| M6*  
    %       z = nan(size(X)); 3NZFW{u  
    %       n = [0  1  1  2  2  2  3  3  3  3]; xVX||rrh  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; Yf`.Cq_:  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; Afl'-  
    %       y = zernfun(n,m,r(idx),theta(idx)); 9+Hb`  
    %       figure('Units','normalized') _%%"Y}  
    %       for k = 1:10 Z_WTMs:x!  
    %           z(idx) = y(:,k); zW`koRH@  
    %           subplot(4,7,Nplot(k)) X[Gk!d r#  
    %           pcolor(x,x,z), shading interp (uc)^lfX  
    %           set(gca,'XTick',[],'YTick',[]) p+D 6Z'B  
    %           axis square /\I%)B47^9  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) BtApl)q#  
    %       end Z*3}L  
    % ?^ 5*[H  
    %   See also ZERNPOL, ZERNFUN2. ?Gw89r  
    XB 7^Ka  
    %   Paul Fricker 11/13/2006 y.<Y]m  
    F;@&uXYgc  
    yyDBW`V((  
    % Check and prepare the inputs: Q8:ocEhR  
    % ----------------------------- ]arskmB]  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ,X6j$YLWp  
        error('zernfun:NMvectors','N and M must be vectors.') dph6aN(49  
    end _\;# a  
    SnU{ZGR>sP  
    if length(n)~=length(m) DQnWLC"u  
        error('zernfun:NMlength','N and M must be the same length.') ;>Qd )'  
    end UH|.@7w  
    (.+n1)L?  
    n = n(:); E1g$WhXIS  
    m = m(:); Y\\nJuJo  
    if any(mod(n-m,2)) | :[vpJFK  
        error('zernfun:NMmultiplesof2', ... uelTsn  
              'All N and M must differ by multiples of 2 (including 0).') Ih"Ol(W  
    end [ Ulo; #P  
    kn|l3+  
    if any(m>n) dig76D_[e  
        error('zernfun:MlessthanN', ... 6LQO>k  
              'Each M must be less than or equal to its corresponding N.') ?\r3 _  
    end r!iuwE@  
    /=}vP ey  
    if any( r>1 | r<0 ) }dl(9H=4  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') X  jN.X  
    end zSCPp6  
    OG`O i^2  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Jl ?Q}SB  
        error('zernfun:RTHvector','R and THETA must be vectors.') "ukbqdKD  
    end fTgN2U  
    Ts6X:D4,  
    r = r(:); )>p6h]]a  
    theta = theta(:); (B#|3o  
    length_r = length(r); T,>e\  
    if length_r~=length(theta) sAlgp2-  
        error('zernfun:RTHlength', ... RoRVu,1  
              'The number of R- and THETA-values must be equal.') TD7ONa-,  
    end &r%3)Z8Et  
    DBDfB b  
    % Check normalization: T7'$A!c  
    % -------------------- ic#drpl,  
    if nargin==5 && ischar(nflag) q(W@=-uDK  
        isnorm = strcmpi(nflag,'norm'); -Ma"V  
        if ~isnorm N\$wpDI~  
            error('zernfun:normalization','Unrecognized normalization flag.') q4= RE  
        end p6)UR~9Rs  
    else {%Sw w:  
        isnorm = false; $n"Llw&)  
    end Efl+`6`J  
    }JsdgO&z  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Y~xZ{am  
    % Compute the Zernike Polynomials (C%'I  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% swrd  
    r~! lD9R~  
    % Determine the required powers of r: Ex3woT-  
    % ----------------------------------- OLwxGRYX  
    m_abs = abs(m); ewg WzB9c  
    rpowers = []; GZo4uwG@a  
    for j = 1:length(n) %*nZ,r  
        rpowers = [rpowers m_abs(j):2:n(j)]; .bGeZwvf:G  
    end !:5n  
    rpowers = unique(rpowers); 4KnDXQ%  
    E.9F~&DPJ<  
    % Pre-compute the values of r raised to the required powers, rGWTpN  
    % and compile them in a matrix: /slML~$t<  
    % ----------------------------- 4Q5v8k=  
    if rpowers(1)==0 -,&Xp>u\  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 1F|+4  
        rpowern = cat(2,rpowern{:}); 3[rB:cE/  
        rpowern = [ones(length_r,1) rpowern]; wah`  
    else Qp ,l>k  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); j^.P=;  
        rpowern = cat(2,rpowern{:}); O}Jb,?p  
    end C0RwW??t  
    o[ 6hUX0tN  
    % Compute the values of the polynomials: *)<tyIHd  
    % -------------------------------------- /L.a:Er$  
    y = zeros(length_r,length(n)); X#yl8k_  
    for j = 1:length(n) U VT8TN-T  
        s = 0:(n(j)-m_abs(j))/2; & \m\QI  
        pows = n(j):-2:m_abs(j); 0CROq}  
        for k = length(s):-1:1 u#\3T>o%@  
            p = (1-2*mod(s(k),2))* ... $gNCS:VG*  
                       prod(2:(n(j)-s(k)))/              ... MYDSkW  
                       prod(2:s(k))/                     ... Tx5L   
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... VA0TY/{ ]  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); DKZ69^  
            idx = (pows(k)==rpowers); ;Yj}9[p;T  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 7@FB^[H:y  
        end IjNm/${$  
         AZa3!e/1  
        if isnorm C N"c  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); >BX_Bou  
        end m"*:XfOL  
    end Ij+zR>P8=\  
    % END: Compute the Zernike Polynomials pqe**`z@y  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% pGIeW}2'9  
    ,>$#e1!J  
    % Compute the Zernike functions: Hpt)(Nz:  
    % ------------------------------ !4E:IM63  
    idx_pos = m>0; NQAnvX;  
    idx_neg = m<0; $spf=t"nh  
    Cv|:.y  
    z = y; (; "ICk&  
    if any(idx_pos) K  +~  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); %_ ~[+ ~#  
    end >HFJm&lQ  
    if any(idx_neg) Q%7EC>V  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); TDoYp  
    end R/#*~tPi8  
    (\}IOCNS  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) ?d %_o@  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. BjH(E'K[b  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated G2Apm`/ y  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive qSQjAo4t@  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, {b?)|@)is  
    %   and THETA is a vector of angles.  R and THETA must have the same uk1IT4+  
    %   length.  The output Z is a matrix with one column for every P-value, K)qmJ-Gub  
    %   and one row for every (R,THETA) pair. 0h7\zoZ5  
    % ={fi&j  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike OD i)#  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) y?rsfIth`  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) &(0iSS  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 TC2aD&cw{  
    %   for all p. ecHy. 7H  
    % .Ybm27Dk  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 ZGf=/Ra a  
    %   Zernike functions (order N<=7).  In some disciplines it is &EQov9P7  
    %   traditional to label the first 36 functions using a single mode {[$p}#7Y  
    %   number P instead of separate numbers for the order N and azimuthal +b{\v1b  
    %   frequency M. "-hgeQX  
    % }$7Hf+G  
    %   Example: }LM_VZj  
    % &L/ C:<.  
    %       % Display the first 16 Zernike functions j#*K[  
    %       x = -1:0.01:1; 6wF ?FtT  
    %       [X,Y] = meshgrid(x,x); ?XHJCp;f  
    %       [theta,r] = cart2pol(X,Y); u%|VmM>  
    %       idx = r<=1;  oCduY2  
    %       p = 0:15; 9Dpmp|  
    %       z = nan(size(X)); MVdE7P  
    %       y = zernfun2(p,r(idx),theta(idx)); o6qQ zk  
    %       figure('Units','normalized') v7ae^iU  
    %       for k = 1:length(p) _ pJU~8  
    %           z(idx) = y(:,k); 83 S],L  
    %           subplot(4,4,k) |6&"r&  
    %           pcolor(x,x,z), shading interp ^|8cS0dK]Q  
    %           set(gca,'XTick',[],'YTick',[]) {ng  
    %           axis square Y`M.hYBXk  
    %           title(['Z_{' num2str(p(k)) '}']) #>233<  
    %       end l/TH"z(  
    % S`J_}>  
    %   See also ZERNPOL, ZERNFUN. cJqPcCq(wn  
    bDr'W   
    %   Paul Fricker 11/13/2006 MM97$  
    jReI+ pS  
    p0@iGyd  
    % Check and prepare the inputs: %TLAn[LW(  
    % ----------------------------- i}q6^;uTF  
    if min(size(p))~=1 @50Js3R1q  
        error('zernfun2:Pvector','Input P must be vector.') >6aCBS?2  
    end F~{ 4)`  
    KR{kn[2|Q  
    if any(p)>35 0^.q5#A2  
        error('zernfun2:P36', ... *fjarZu  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... bT8BJY%+  
               '(P = 0 to 35).']) &Zf@vD  
    end AD8~  
    +oyc9PoXF  
    % Get the order and frequency corresonding to the function number: k_!z=6?[:  
    % ---------------------------------------------------------------- YKk%lZ.8  
    p = p(:); Jb0]!*tV  
    n = ceil((-3+sqrt(9+8*p))/2); [%b<%m}L-  
    m = 2*p - n.*(n+2); 9 /9,[A  
    V,>#!zUv  
    % Pass the inputs to the function ZERNFUN: !x,3k\M  
    % ---------------------------------------- z\;kjI  
    switch nargin )Dv"seH.  
        case 3 `E}2|9  
            z = zernfun(n,m,r,theta); Sm-nb*ZyC  
        case 4 |o+vpy  
            z = zernfun(n,m,r,theta,nflag); A?_2@6Y^  
        otherwise /A_ IS`  
            error('zernfun2:nargin','Incorrect number of inputs.') GM@TWwG-B  
    end 7C&`i}/t  
    b?r0n]  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) Cu!4ha.e`  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M.  u0i @.  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of :pNZQX  
    %   order N and frequency M, evaluated at R.  N is a vector of d *H-l3N  
    %   positive integers (including 0), and M is a vector with the qT}&XK`Q^  
    %   same number of elements as N.  Each element k of M must be a 8_KXli}7=  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) b#$:XS  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is .&* Tj}p  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix 2y,~i;;_  
    %   with one column for every (N,M) pair, and one row for every  gs9f2t  
    %   element in R. J :,  
    % m V^dIm  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- 6.ap^9AD  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is uZ OUp8QQ  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to ]ImS@!Ajjx  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 5ptbz<Xv  
    %   for all [n,m]. uV;Z  
    % !rrjA$P<v  
    %   The radial Zernike polynomials are the radial portion of the |QHWX^pO  
    %   Zernike functions, which are an orthogonal basis on the unit +LrW#K;  
    %   circle.  The series representation of the radial Zernike R4{}ZT  
    %   polynomials is sz}Nal$AC  
    % p-ry{"XA  
    %          (n-m)/2 &9^c-;Vs  
    %            __ D:){T>  
    %    m      \       s                                          n-2s slw^BK3t  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r L@v0C)  
    %    n      s=0 ,(lD5iN  
    % rNI3_|a  
    %   The following table shows the first 12 polynomials. 4CNK ]2  
    % /x`H6'3?  
    %       n    m    Zernike polynomial    Normalization \*_qP*vq@  
    %       ---------------------------------------------  {!x-kF_  
    %       0    0    1                        sqrt(2) ))eR  
    %       1    1    r                           2 LZ^sc  
    %       2    0    2*r^2 - 1                sqrt(6) bv|v9_i  
    %       2    2    r^2                      sqrt(6) LV9\  
    %       3    1    3*r^3 - 2*r              sqrt(8) 783a Z8  
    %       3    3    r^3                      sqrt(8) ~PS%^zxyn  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) KxiZx I  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) F[ 9IHT6{  
    %       4    4    r^4                      sqrt(10) {'{ssCL  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) >R.~'A/$F  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) d{DlW |_  
    %       5    5    r^5                      sqrt(12) ~lQ]PKJ"  
    %       --------------------------------------------- \7W {/v4^  
    % ]%NCKOM  
    %   Example: n) `4*d$`  
    % @ /c{gD  
    %       % Display three example Zernike radial polynomials AvH/Q_-b  
    %       r = 0:0.01:1; [?;oiEe.|  
    %       n = [3 2 5]; I /RvU,  
    %       m = [1 2 1]; |[xi"E\  
    %       z = zernpol(n,m,r); W>s<&Vb  
    %       figure 4?8GK  
    %       plot(r,z) 1=#`&f5f&  
    %       grid on !74*APPHR  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') ~*G I<n  
    % V GM/ed5-  
    %   See also ZERNFUN, ZERNFUN2. #Etz}:%W  
    a'Aru^el  
    % A note on the algorithm. 6eQrupa  
    % ------------------------ QULrE+@  
    % The radial Zernike polynomials are computed using the series /&vUi7'  
    % representation shown in the Help section above. For many special d6~wJMFl  
    % functions, direct evaluation using the series representation can >YPfk=0f0  
    % produce poor numerical results (floating point errors), because n j1 cqh  
    % the summation often involves computing small differences between .\< \J|3  
    % large successive terms in the series. (In such cases, the functions >iaZGXje  
    % are often evaluated using alternative methods such as recurrence &XN*T.Y`  
    % relations: see the Legendre functions, for example). For the Zernike  #]n[  
    % polynomials, however, this problem does not arise, because the m|e!1_ :H  
    % polynomials are evaluated over the finite domain r = (0,1), and [gD02a: u  
    % because the coefficients for a given polynomial are generally all 0(0Ep(Vj  
    % of similar magnitude. =]"[?a >  
    % 5>$*#0%"}  
    % ZERNPOL has been written using a vectorized implementation: multiple DlTV1X-^1  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] `s@1'IG;R_  
    % values can be passed as inputs) for a vector of points R.  To achieve EYMwg_  
    % this vectorization most efficiently, the algorithm in ZERNPOL )WuuU [(  
    % involves pre-determining all the powers p of R that are required to YW>|gE  
    % compute the outputs, and then compiling the {R^p} into a single vFy /  
    % matrix.  This avoids any redundant computation of the R^p, and |0mh*+i  
    % minimizes the sizes of certain intermediate variables. iZ)7%R?5  
    % H| IsjCc  
    %   Paul Fricker 11/13/2006 m_U__CZ}Tt  
    >>K) 4HYID  
    <@e6zQG  
    % Check and prepare the inputs: t+p-,ey^@  
    % ----------------------------- | u36-  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) IRXpk 6|  
        error('zernpol:NMvectors','N and M must be vectors.') &V iIxJZ1$  
    end ; N!K/[p=  
    NIQa{R/H  
    if length(n)~=length(m) >P+V!-%#  
        error('zernpol:NMlength','N and M must be the same length.') #P18vK5  
    end #S_LKc  
    ;I]TM#qGF  
    n = n(:); }?8KFe7U  
    m = m(:); V?5QpBK I  
    length_n = length(n); &<k )W  
    5+giT5K*h  
    if any(mod(n-m,2)) vg *+>lbA  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') 9JP{F  
    end !=I:Uc-Y  
    SO8Ej)m  
    if any(m<0) Zo'lvOpyZ  
        error('zernpol:Mpositive','All M must be positive.') Eq'YtqU  
    end Nf1) 5  
    K\=bpc"Fy  
    if any(m>n) Ab8~'<F$B  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') F1gDeLmJ  
    end {ZN{$Ad3/  
    6R dfF$f  
    if any( r>1 | r<0 ) ukvz#hdE  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') \ >1M?  
    end R0-ARq#0<  
    i1C]bUXA  
    if ~any(size(r)==1) ]!0 BMZmf  
        error('zernpol:Rvector','R must be a vector.') c$@,*c 0n  
    end z[] AH#h  
    <N+l"Re#]  
    r = r(:); I\`:(V  
    length_r = length(r); 29x "E$e  
    v>7tJ[s  
    if nargin==4 ?jz{fU  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); ?AYI   
        if ~isnorm /8J2,8vZ  
            error('zernpol:normalization','Unrecognized normalization flag.') Z37Z  
        end bbA+ZLZJn  
    else z}OY'}sk8  
        isnorm = false; Ba!`x<wa  
    end 8t0i j  
    JnV$)EYi  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% m S!/>.1[  
    % Compute the Zernike Polynomials ely&'y!  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% w[:5uo(  
    ,&z_ 2m  
    % Determine the required powers of r: si%f.A#  
    % ----------------------------------- vTU"c>]  
    rpowers = []; -V_e=Y<J/  
    for j = 1:length(n) r(%#@?&  
        rpowers = [rpowers m(j):2:n(j)]; e>sr)M  
    end  2Np9*[C  
    rpowers = unique(rpowers); LPewoAXO  
    V +*Vi^  
    % Pre-compute the values of r raised to the required powers, ww+XE2,  
    % and compile them in a matrix: ax'Dp{Q  
    % ----------------------------- aH,0+|  
    if rpowers(1)==0 };29'_.."x  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); tul5:}x3  
        rpowern = cat(2,rpowern{:}); \muyL?  
        rpowern = [ones(length_r,1) rpowern]; 9FH=Jp  
    else G4=%<+  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); N[dhNK"  
        rpowern = cat(2,rpowern{:}); ?HZ+fS ,-  
    end $?wX*  
    :m@(S6T m  
    % Compute the values of the polynomials: 4'G<qJoc  
    % -------------------------------------- WoesE:NiR  
    z = zeros(length_r,length_n); v\$XhOK  
    for j = 1:length_n oA_AnD?G+  
        s = 0:(n(j)-m(j))/2; * RN*Bh|$  
        pows = n(j):-2:m(j); XW5r@:e  
        for k = length(s):-1:1 l&;#`\s!V  
            p = (1-2*mod(s(k),2))* ... T~`m'4"+c  
                       prod(2:(n(j)-s(k)))/          ... AP/tBC eM  
                       prod(2:s(k))/                 ... %w' @:~0  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... aMh2[I  
                       prod(2:((n(j)+m(j))/2-s(k))); k NK)mE  
            idx = (pows(k)==rpowers); kw}J~f2  
            z(:,j) = z(:,j) + p*rpowern(:,idx); YNk?1#k?i  
        end 6i{W=$ RQ  
         yBs  
        if isnorm ^J@Y?CQl\  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); E83{4A4  
        end \>:(++g  
    end xxiEL2"`>  
    F-UY~i8  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    857
    光币
    847
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  |!aMj8i2  
    7=aF-;X3jj  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 {^1D|y  
    G= !Gy.  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)