非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 #a1zk\R3
function z = zernfun(n,m,r,theta,nflag) V~#e%&73FH
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. =$ bJ`GpJ
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N (al.7VA;9
% and angular frequency M, evaluated at positions (R,THETA) on the Vb{5 -v
;a
% unit circle. N is a vector of positive integers (including 0), and $cl[Qcw
% M is a vector with the same number of elements as N. Each element 6P,vGmR
% k of M must be a positive integer, with possible values M(k) = -N(k) j,<3[
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, .CJQ]ECl7p
% and THETA is a vector of angles. R and THETA must have the same }f
rij1/G
% length. The output Z is a matrix with one column for every (N,M) 5L ]TV\\
% pair, and one row for every (R,THETA) pair. DI9hy/T(
% b1+6I_u.
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike t<~WDI|AN
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), EY~b,MIL4
% with delta(m,0) the Kronecker delta, is chosen so that the integral DlC\sm
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, D$X9xtT
% and theta=0 to theta=2*pi) is unity. For the non-normalized E}Ir<\
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. RYhaQ&1i
% ~kDR9s7
% The Zernike functions are an orthogonal basis on the unit circle. :TU|;(p
% They are used in disciplines such as astronomy, optics, and JA]TO(x
% optometry to describe functions on a circular domain. Q1ox<-
% oZM6%-@qi
% The following table lists the first 15 Zernike functions. $qz(9M(m#
% yH`4sd
% n m Zernike function Normalization /"~ D(bw0=
% -------------------------------------------------- {;:QY1QT
% 0 0 1 1 C%c}lv8;^
% 1 1 r * cos(theta) 2 4)]w"z0Pc
% 1 -1 r * sin(theta) 2 l'yX_`*Iq
% 2 -2 r^2 * cos(2*theta) sqrt(6) cL+--$L
% 2 0 (2*r^2 - 1) sqrt(3) *[
' n8Z
% 2 2 r^2 * sin(2*theta) sqrt(6) !WT Z=|
% 3 -3 r^3 * cos(3*theta) sqrt(8) g>k"R4
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) :ik$@5wp
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) gK&MdF*
% 3 3 r^3 * sin(3*theta) sqrt(8) [G.4S5FX.]
% 4 -4 r^4 * cos(4*theta) sqrt(10) xXa* d
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) |AosZeO_
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) Z`_`^ \"
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) m7~<z>5$
% 4 4 r^4 * sin(4*theta) sqrt(10) ]YQ!i@Y
% -------------------------------------------------- #9R[%R7Nz
% 4[\$3t.L
% Example 1: 5,Q3#f~!
% 7z.(pg=
% % Display the Zernike function Z(n=5,m=1) cImOZx
% x = -1:0.01:1; B/:+(|
% [X,Y] = meshgrid(x,x);
;f]p`!]
3
% [theta,r] = cart2pol(X,Y); FWi c/7
% idx = r<=1; W^o*^v
% z = nan(size(X)); 4jWzYuI&J
% z(idx) = zernfun(5,1,r(idx),theta(idx)); \IL;}D{
% figure 6[b?ckvi
% pcolor(x,x,z), shading interp t^8ii
% axis square, colorbar Mz?xvP?z
% title('Zernike function Z_5^1(r,\theta)') jb~W(8cj
% O
}ES/<an
% Example 2: Ou26QoT9XI
% 0r4,27w
% % Display the first 10 Zernike functions P M
x`PB
% x = -1:0.01:1; )+Nm@+B
% [X,Y] = meshgrid(x,x); Z$UPLg3=;_
% [theta,r] = cart2pol(X,Y); -d j9(~?^
% idx = r<=1; v?BVUH>#9
% z = nan(size(X)); Fi7G S;
% n = [0 1 1 2 2 2 3 3 3 3]; `.MY"g9
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; \2UtT@3|C
% Nplot = [4 10 12 16 18 20 22 24 26 28]; a&sVcsX
% y = zernfun(n,m,r(idx),theta(idx)); #!A'6SgbkM
% figure('Units','normalized') f *Xum[
% for k = 1:10 @yGK$<R
% z(idx) = y(:,k); fbl8:c)I
% subplot(4,7,Nplot(k)) Sckt gp8
% pcolor(x,x,z), shading interp ;)6LX-
% set(gca,'XTick',[],'YTick',[]) #NoY}*
% axis square 3SI~?&HU!/
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) "mbjS(-eg
% end 5l(8{,NDt
% )2nx5"
% See also ZERNPOL, ZERNFUN2. $uPM.mPFE
P#8+GN+bF
% Paul Fricker 11/13/2006 2qA"emUM
?{)s dJe
;^[VqFpeS
% Check and prepare the inputs: #5Q?Q~E@
% ----------------------------- jfLkp>2E'
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) +qWrm|O]
error('zernfun:NMvectors','N and M must be vectors.') g9T9TQ-O
end -a[[1
`Kt]i5[ "
if length(n)~=length(m) slQxz;t
error('zernfun:NMlength','N and M must be the same length.') rXIFCt8J
end /k$H"'`j4
bu2@~
n = n(:); :jKiHeBQu?
m = m(:); b0PQ;?R#V
if any(mod(n-m,2)) b}f#[* Z
error('zernfun:NMmultiplesof2', ... `rwzCwA1
'All N and M must differ by multiples of 2 (including 0).') p{V_}:|=Q
end ?k 4|;DD
@nh*H{
if any(m>n) x;F^7c1
error('zernfun:MlessthanN', ... j;BMuLTm1
'Each M must be less than or equal to its corresponding N.') q2$-U&
end V[Z^Z
Tc3~~ X
if any( r>1 | r<0 ) 96VJE,^h
error('zernfun:Rlessthan1','All R must be between 0 and 1.') D*nNu]|j
end Au=9<WB%H
kPuI'EPK
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 5z T~/6-(
error('zernfun:RTHvector','R and THETA must be vectors.') vMlT
end G*`H2-,
TJ5g?#Wul
r = r(:); ^xNs^wC.
theta = theta(:); San=E@3}v!
length_r = length(r); Uo~-^w}
if length_r~=length(theta) dF`\ewRFn
error('zernfun:RTHlength', ... e@`"V,i
'The number of R- and THETA-values must be equal.') US.7:S-r"
end xn&$qLB
en5sqKqh+
% Check normalization: ='\Di '*
% -------------------- 2w7PwNb*32
if nargin==5 && ischar(nflag) `Z'h[-2`
isnorm = strcmpi(nflag,'norm'); b3vPGR
if ~isnorm 2_i9
q>I
error('zernfun:normalization','Unrecognized normalization flag.') 6Hh\ys
end 9>OPaLn
else O'WBO"
isnorm = false; T,
z80m}
end $;V?xZm[
c1wP/?|.>
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 1Z$` }a
% Compute the Zernike Polynomials \y^Ho1Fj
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% [bK5q;#U4
-".q=$f
% Determine the required powers of r: MT3TWWtZ:
% ----------------------------------- ^'Z?BK
m_abs = abs(m); $oo`]R_
rpowers = []; Hf#VW^
for j = 1:length(n) J}{a&3@Hm
rpowers = [rpowers m_abs(j):2:n(j)]; 2C&G'@>
end Nr(t5TP^
rpowers = unique(rpowers); h,palP6^
jMAZ4M
% Pre-compute the values of r raised to the required powers, X9S`#N
% and compile them in a matrix: ~CRd0T[^
% ----------------------------- *Bm7>g6
if rpowers(1)==0 \I[f@D-J
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); *URBx"5XZ
rpowern = cat(2,rpowern{:}); #J):N
rpowern = [ones(length_r,1) rpowern]; gR]NH
else JHvawFBN<u
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); dsiQ~ [
rpowern = cat(2,rpowern{:}); uexm|5|
end
A|90Ps
}iE!(
l
% Compute the values of the polynomials: vTk\6o q
% -------------------------------------- %RS~>pK1
y = zeros(length_r,length(n)); >Hd0l L
for j = 1:length(n) H[M(t^GM
s = 0:(n(j)-m_abs(j))/2; qrw"z
iW
pows = n(j):-2:m_abs(j); Z6S?xfhr'{
for k = length(s):-1:1 f7y3BWOi]
p = (1-2*mod(s(k),2))* ... MJ..' $>TC
prod(2:(n(j)-s(k)))/ ... |}07tUq
prod(2:s(k))/ ... ~ 7^#.
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... g)M"Cx.
prod(2:((n(j)+m_abs(j))/2-s(k))); u &qFE=5:
idx = (pows(k)==rpowers); dW4FMm>|
y(:,j) = y(:,j) + p*rpowern(:,idx); /9 ^F_2'_
end %vZTD+i
Jjr&+Q^3Tu
if isnorm (=eJceE!
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 1I#]OY#>
end 8rEUZk
end -L6YLe%w
% END: Compute the Zernike Polynomials cmu| d
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ,jc')#]9B
U{[ g"_+~
% Compute the Zernike functions: qPvWb1H:
% ------------------------------ Ix59(g
idx_pos = m>0; l =X6m(
idx_neg = m<0; 4F=cER6l
.VG5 / 6zp
z = y; IJQ"
*;
if any(idx_pos) 7+2DsZ^6MW
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ^lP;JT?
end gbvMS*KQz
if any(idx_neg) ENhKuX
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); u$%;03hJ
end ]K!NLvz
; VH:dg
% EOF zernfun