非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 rVLA"x 9u
function z = zernfun(n,m,r,theta,nflag)
m{~r6@
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. QeGU]WU{
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N '?\Hm'8
% and angular frequency M, evaluated at positions (R,THETA) on the b+kb7
% unit circle. N is a vector of positive integers (including 0), and Y #\e~>K
% M is a vector with the same number of elements as N. Each element @uc%]V<:k
% k of M must be a positive integer, with possible values M(k) = -N(k) ^VA)vLj@
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, 5QlJX
% and THETA is a vector of angles. R and THETA must have the same "YivjHa7H
% length. The output Z is a matrix with one column for every (N,M) }G]]0Oi2
% pair, and one row for every (R,THETA) pair. Mf?4 `LM
% Ou/{PK}
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike bcQ$S;U)
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), BJqM=<nQ
% with delta(m,0) the Kronecker delta, is chosen so that the integral [.2>=3T
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, !$j'F? 2>
% and theta=0 to theta=2*pi) is unity. For the non-normalized xMe[/7)4
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. B|!Re4`0
% Xs4`bbap
% The Zernike functions are an orthogonal basis on the unit circle. Ox58L>:0m
% They are used in disciplines such as astronomy, optics, and c Mq|`CM
% optometry to describe functions on a circular domain.
*h`zV<j
% W)KV"A3C
% The following table lists the first 15 Zernike functions. \hg12],#:@
% ur;8uv2o
% n m Zernike function Normalization STO6cNi
% -------------------------------------------------- ~#wq sm
% 0 0 1 1 IyMKV$"
% 1 1 r * cos(theta) 2 8kk$:8
% 1 -1 r * sin(theta) 2 K1Uur>Pk%
% 2 -2 r^2 * cos(2*theta) sqrt(6) d35 ,[
% 2 0 (2*r^2 - 1) sqrt(3) S^ 3I" B
% 2 2 r^2 * sin(2*theta) sqrt(6) }nkX-PG9
% 3 -3 r^3 * cos(3*theta) sqrt(8) "/K44(^
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) ondF
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) RK|C* TCnl
% 3 3 r^3 * sin(3*theta) sqrt(8) [-Dx)N
% 4 -4 r^4 * cos(4*theta) sqrt(10) ]2?t$"G8
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) hS<+=3
<M
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) B&cC;Hw
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) lV3\5AEW
% 4 4 r^4 * sin(4*theta) sqrt(10) 0C7x1:
% -------------------------------------------------- fxjs"rD5
% [8<)^k
% Example 1: #5F\zeo@F?
% XSXS;Fh)
% % Display the Zernike function Z(n=5,m=1) DvU(rr\p
% x = -1:0.01:1; d&F8nBIM5
% [X,Y] = meshgrid(x,x); c'[l%4U8[
% [theta,r] = cart2pol(X,Y); >-f`mT
% idx = r<=1; Y7= *-
% z = nan(size(X)); 3#W>
% z(idx) = zernfun(5,1,r(idx),theta(idx)); |*Hw6m
% figure fVw+8 [d0
% pcolor(x,x,z), shading interp K^EW*6vB8O
% axis square, colorbar P/4]x@{ih
% title('Zernike function Z_5^1(r,\theta)') 5Osx__6 $t
% =j6f/8
% Example 2: !M6*A1g5
% tAefBFu
% % Display the first 10 Zernike functions I6~.sTl
% x = -1:0.01:1; }5\F <b^@Y
% [X,Y] = meshgrid(x,x); 3V2"1Ic
% [theta,r] = cart2pol(X,Y); USv: +
.
% idx = r<=1; kU0e;r1 N
% z = nan(size(X)); I!~5.
% n = [0 1 1 2 2 2 3 3 3 3]; Ab/gY$l
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; |X0h-kX4
% Nplot = [4 10 12 16 18 20 22 24 26 28]; >2TDYB|;
% y = zernfun(n,m,r(idx),theta(idx)); 2/3,%5j_
% figure('Units','normalized') ng"R[/)In
% for k = 1:10 >T=($:n
% z(idx) = y(:,k); CtfI&rb[
% subplot(4,7,Nplot(k)) %N04k8z
% pcolor(x,x,z), shading interp WL:CBE#
% set(gca,'XTick',[],'YTick',[]) > X<pzD3u
% axis square E)7vuWOO
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) u,I_p[`E
% end B|zJrz0q3
% )%I2#Q"Nt-
% See also ZERNPOL, ZERNFUN2. -W<x|ph
U
q,(U 8
% Paul Fricker 11/13/2006 ,3 =|a|p
%We~k'2f
cxn3e,d`
% Check and prepare the inputs: D6fry\
% ----------------------------- &'Pwz
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) *]:gEO
error('zernfun:NMvectors','N and M must be vectors.') 9!&fak_
end ux:czZqy
wylbs@
if length(n)~=length(m) kZ~ 0fw-
error('zernfun:NMlength','N and M must be the same length.') xM"k qRZ
end -^yb[b,
MEf`&<t
n = n(:); )RG@D\t ,
m = m(:); lV<2+Is
if any(mod(n-m,2))
[uqe|< :
error('zernfun:NMmultiplesof2', ... Sc#B-4m
'All N and M must differ by multiples of 2 (including 0).') }86&?
0j.
end l+`f\ },
o."k7fLB
if any(m>n) 1j"_@?H[
error('zernfun:MlessthanN', ... 7L)edR[
'Each M must be less than or equal to its corresponding N.') ;;;aM:6\
end [;~:',vHQf
FOz~iS\
if any( r>1 | r<0 ) HGM ?
?=
error('zernfun:Rlessthan1','All R must be between 0 and 1.') iYJ: P
end S5'ZKk
nE;^xMOK!
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) A@M%}h
error('zernfun:RTHvector','R and THETA must be vectors.') J'{69<`Dl
end :4Jq T|nS
[&y