非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 B$7m@|p!
function z = zernfun(n,m,r,theta,nflag) c< gM
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. ua:.97~Ym
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N #;juZ*I
% and angular frequency M, evaluated at positions (R,THETA) on the e#k9}n^+
% unit circle. N is a vector of positive integers (including 0), and %dZD;Vhg
% M is a vector with the same number of elements as N. Each element w;Qo9=-
% k of M must be a positive integer, with possible values M(k) = -N(k) /#$bb4
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, CTtF=\
% and THETA is a vector of angles. R and THETA must have the same h`%K\C
% length. The output Z is a matrix with one column for every (N,M) L&ws[8-
% pair, and one row for every (R,THETA) pair. HH6b{f@^
% mU_?}}aK,
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike h_ ]3L/
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 'xb|5_D
% with delta(m,0) the Kronecker delta, is chosen so that the integral &+`l
$h
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, FStE/2?
% and theta=0 to theta=2*pi) is unity. For the non-normalized XrC{{K
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. oKt<s+r
% #`a-b<uz
% The Zernike functions are an orthogonal basis on the unit circle. Hi|2z5=V
% They are used in disciplines such as astronomy, optics, and u7j-uVG
% optometry to describe functions on a circular domain. z$G?J+?J
% 5HG 7M&_
% The following table lists the first 15 Zernike functions. qx{.`AaZW
% T-&CAD3 ,O
% n m Zernike function Normalization 0P/A
% -------------------------------------------------- B\|>i~u(
% 0 0 1 1 joDfvY*[
% 1 1 r * cos(theta) 2 `P/* x[?
% 1 -1 r * sin(theta) 2 j`BFk>
% 2 -2 r^2 * cos(2*theta) sqrt(6) kRiWNEw
% 2 0 (2*r^2 - 1) sqrt(3) V@>?lv(\
% 2 2 r^2 * sin(2*theta) sqrt(6) `1EBnL_1
% 3 -3 r^3 * cos(3*theta) sqrt(8) w^|,[G^}H
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) /N%f78
Z
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 3N+P~v)T'
% 3 3 r^3 * sin(3*theta) sqrt(8) EFql
g9bK
% 4 -4 r^4 * cos(4*theta) sqrt(10) RU"w|Qu>pM
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) *BXtE8
BU
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) &;)~bS(
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) H.idL6*G
% 4 4 r^4 * sin(4*theta) sqrt(10) 9,`mH0jP
% -------------------------------------------------- ?RpT_u
% {]<D"x;
% Example 1: qoZ* sV
% iZMsN*9[
% % Display the Zernike function Z(n=5,m=1) 2Fx<QRz
% x = -1:0.01:1; sxThz7#i)
% [X,Y] = meshgrid(x,x); .yTk/x?
% [theta,r] = cart2pol(X,Y); Od&M^;BQ
% idx = r<=1; mApn(&
% z = nan(size(X)); 2zFdKs,
% z(idx) = zernfun(5,1,r(idx),theta(idx)); ]nX.zE|F
% figure R8'yQ#FVy
% pcolor(x,x,z), shading interp k 5 "3*
% axis square, colorbar v9inBBC q
% title('Zernike function Z_5^1(r,\theta)') <;=Y4$y[
% VdeK~#k
% Example 2: OM4s.BLY
% {6%uNT>|
% % Display the first 10 Zernike functions e<9nt [
% x = -1:0.01:1; m/eGnv;!
% [X,Y] = meshgrid(x,x); #eUfwd6.Y
% [theta,r] = cart2pol(X,Y); |Y'$+[TE
% idx = r<=1; ?>%u[g
% z = nan(size(X)); 22BJOh
% n = [0 1 1 2 2 2 3 3 3 3]; }2NH>qvY
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; U~H'c
p
% Nplot = [4 10 12 16 18 20 22 24 26 28]; 21o_9=[^
% y = zernfun(n,m,r(idx),theta(idx)); G0Wd"AV+
% figure('Units','normalized') )D[ypuM&
% for k = 1:10 V)@MM2,
% z(idx) = y(:,k); (VO Ka
% subplot(4,7,Nplot(k)) mSj[t
% pcolor(x,x,z), shading interp ]UgAz
% set(gca,'XTick',[],'YTick',[]) `|/|ej]$P
% axis square 6\TstY3
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) [CUJ A
% end .oK7E(Q J
% u^]yz&9V
% See also ZERNPOL, ZERNFUN2. gr fF\_[:
]~K&mNo
% Paul Fricker 11/13/2006 rmabm\QY
i;xg[e8.
JxLH]1b
% Check and prepare the inputs: 3?O|X+$p
% ----------------------------- <oXsn.'\
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) J,D{dYLDD
error('zernfun:NMvectors','N and M must be vectors.') T^nX+;:|
end H]-W$V
0l:5hD,)F
if length(n)~=length(m) 1|nB\xgu
error('zernfun:NMlength','N and M must be the same length.') \
yOZ&qU
end 4z*_,@OA
X*JD
n = n(:); {``}TsN
m = m(:); Rke:*(p*n;
if any(mod(n-m,2)) h7y*2:l6
error('zernfun:NMmultiplesof2', ... _bd#C
'All N and M must differ by multiples of 2 (including 0).') Z|/):nVP7
end ZGbZu
ib&qH_r/
if any(m>n) vJCL
m/}*
error('zernfun:MlessthanN', ... uLCU3nI
'Each M must be less than or equal to its corresponding N.') IRU2/Y cg
end m[bu(q z
@\h(s#sn
if any( r>1 | r<0 ) %nC Uct@c
error('zernfun:Rlessthan1','All R must be between 0 and 1.') 3>(`Y
end ,9pi9\S
'" tieew
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) :RQ[(zD]
error('zernfun:RTHvector','R and THETA must be vectors.') #NE^f2
end sy`s$Ed!
BdKtpje
r = r(:); u#,]>;
theta = theta(:); :$tW9*\KY
length_r = length(r); *]eZ Y
if length_r~=length(theta) 1CM1u+<iZ
error('zernfun:RTHlength', ... sWC"^ S o
'The number of R- and THETA-values must be equal.') ?qbp
end CIDL{i8
KCT8Q!\
% Check normalization: bGJUu#
% -------------------- m#ie{u^
if nargin==5 && ischar(nflag) KwHOV$lD;
isnorm = strcmpi(nflag,'norm'); nGbrWu]w
if ~isnorm Vj]kJ,j\y
error('zernfun:normalization','Unrecognized normalization flag.') GVM#Xl}w9
end VM,ZEt3Vy
else GWVdNYpmr
isnorm = false; gQEV;hCO
end C|I
1 m
N 93E;B
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Pc7:hu
% Compute the Zernike Polynomials XZInu5(
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% PsgzDhRv
oW[,EW+u
% Determine the required powers of r: `Z/ IW
% ----------------------------------- 5a
~tp'
m_abs = abs(m); l(5-Cr
rpowers = []; W.|6$hRl)
for j = 1:length(n) J qUVGEg
rpowers = [rpowers m_abs(j):2:n(j)]; c6HU'%v
end ' XF`&3i
rpowers = unique(rpowers); 4BT`|(7
vdm?d/0(^
% Pre-compute the values of r raised to the required powers, sb
@hGS
% and compile them in a matrix: \uk #pL
% ----------------------------- {K:Utdu($q
if rpowers(1)==0 !Ia"pNDf
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); pPZ/ O6
rpowern = cat(2,rpowern{:}); j''Iai_
rpowern = [ones(length_r,1) rpowern]; i .N1Cvp&
else 'y?|shV{]
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); gDub+^ye>/
rpowern = cat(2,rpowern{:}); >, E$bm2
end swlWe}1
&-fx=gq=
% Compute the values of the polynomials: @?m8/t9.
% -------------------------------------- N%f!B"NQ
y = zeros(length_r,length(n)); sAoM=n}!
for j = 1:length(n) f~FehN7
s = 0:(n(j)-m_abs(j))/2; =%\6}xPEl<
pows = n(j):-2:m_abs(j); y!gM)9vq
for k = length(s):-1:1 @q/1m~t
p = (1-2*mod(s(k),2))* ... fmJW d|
prod(2:(n(j)-s(k)))/ ... X~he36-+<
prod(2:s(k))/ ... :BX{*P
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... -o_TC
prod(2:((n(j)+m_abs(j))/2-s(k))); ,)$KS*f"*z
idx = (pows(k)==rpowers); ;a&:r7]=
y(:,j) = y(:,j) + p*rpowern(:,idx); "Y]ZPFh#.
end #(
sNk,^Ax
DME?kh>7
if isnorm {z /^X<T
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi);
f_!`~`04
end ;p
5v3<PC
end 66<\i ltUQ
% END: Compute the Zernike Polynomials Mlw9#H6
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% aT!9W'uY
ox_h9=$-
% Compute the Zernike functions: NNwd;AC
% ------------------------------ 6b70w @P!
idx_pos = m>0; Ue#yDTjc
idx_neg = m<0; q#*6 )B
uq4sbkP
z = y; 4E-A@FR
if any(idx_pos) &}0wzcMg
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 0@K:Tq-mF
end A dEbyL
if any(idx_neg) RzRvu]]8
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); )H9*NB8%
end iM|"H..
U|7Qw|I7
% EOF zernfun