切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11701阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 :oY u+ cQ  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! ,3 &XV%1  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 Syv[ [Ek  
    function z = zernfun(n,m,r,theta,nflag) QP/%+[E.  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. };;\&#  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Bu|U z0Y  
    %   and angular frequency M, evaluated at positions (R,THETA) on the C_xO k'091  
    %   unit circle.  N is a vector of positive integers (including 0), and !lQGoXQ'4  
    %   M is a vector with the same number of elements as N.  Each element W[Kv Qt3%  
    %   k of M must be a positive integer, with possible values M(k) = -N(k)  mG4$  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 7{F(NJUO1  
    %   and THETA is a vector of angles.  R and THETA must have the same b-4g HW  
    %   length.  The output Z is a matrix with one column for every (N,M) 0kC}qru'  
    %   pair, and one row for every (R,THETA) pair. >Y,3EI\  
    % .x\fPjB   
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike '](4g/%  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), !R p  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral N6K%Wkz  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, YDh6XD<Z  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized /I Ql  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 8/q6vk><  
    % oVi_X98R  
    %   The Zernike functions are an orthogonal basis on the unit circle. OS|uZ<"Rq3  
    %   They are used in disciplines such as astronomy, optics, and j{}-zQ]n  
    %   optometry to describe functions on a circular domain. x~1.;dBF  
    % *;^!FBT  
    %   The following table lists the first 15 Zernike functions. fDe4 [QQ8  
    % 5W hR |  
    %       n    m    Zernike function           Normalization Ce&nMgd~  
    %       -------------------------------------------------- 5gP<+S#>T  
    %       0    0    1                                 1 @L?X}'0xI4  
    %       1    1    r * cos(theta)                    2 (EZ34,k'S  
    %       1   -1    r * sin(theta)                    2 W5'07N^  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) O5}/OH|j  
    %       2    0    (2*r^2 - 1)                    sqrt(3) Q I!c=:u  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) -^A=U7  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) <(|No3jx  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) e| AA7  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) >R|*FYam  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) aJh=4j~.  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) *Nfn6lVB  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) _PTo !aJL  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) [h"#Gwb=;  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) TTNgnP  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) -Vj'QqZ  
    %       -------------------------------------------------- lo}[o0X  
    % !: e0cV  
    %   Example 1: *7 L*:g  
    % 44s K2  
    %       % Display the Zernike function Z(n=5,m=1) ,p(4OZz5,  
    %       x = -1:0.01:1; w8~J5XS  
    %       [X,Y] = meshgrid(x,x); $`nKq4Y   
    %       [theta,r] = cart2pol(X,Y); y&y(<  
    %       idx = r<=1; sy^k:y?  
    %       z = nan(size(X)); XTIRY4{ d  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); W@S'mxk#*  
    %       figure  84PD`A  
    %       pcolor(x,x,z), shading interp 7Pt*V@DHS  
    %       axis square, colorbar |=OO$z;q|  
    %       title('Zernike function Z_5^1(r,\theta)') hl4@Y#n  
    % , N :'Z  
    %   Example 2: ]mU,y$IQ  
    % DNgQ.lV  
    %       % Display the first 10 Zernike functions A<6V$e$:2  
    %       x = -1:0.01:1; )p.+39]{2  
    %       [X,Y] = meshgrid(x,x); 2>{_O?UN  
    %       [theta,r] = cart2pol(X,Y); ~;ink   
    %       idx = r<=1; j/zD`yd j  
    %       z = nan(size(X)); Kuh! b`9  
    %       n = [0  1  1  2  2  2  3  3  3  3]; 47Y| 1  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; Z&mV1dxR  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; Pn{yk`6E  
    %       y = zernfun(n,m,r(idx),theta(idx)); lYd#pNN  
    %       figure('Units','normalized') #unE>#DW  
    %       for k = 1:10 b0a'Y"oef4  
    %           z(idx) = y(:,k); Z$R2Z$f  
    %           subplot(4,7,Nplot(k)) k&nhF9Y4  
    %           pcolor(x,x,z), shading interp B3I\=  
    %           set(gca,'XTick',[],'YTick',[]) vcB +h;x  
    %           axis square =N,KVMxw  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 0/.#V*KM  
    %       end >Kl78w:  
    % UQ|zSalv,  
    %   See also ZERNPOL, ZERNFUN2. ;WIL?[;w  
    ~qNpPIrGr  
    %   Paul Fricker 11/13/2006 -X@;"0v  
    QN(f8t(  
    Q, E!Ew3  
    % Check and prepare the inputs: X.0/F6U  
    % ----------------------------- 1{ #Xa=  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) VmQ7M4j*  
        error('zernfun:NMvectors','N and M must be vectors.') - Pz )O@ ;  
    end AK<ZP?0  
    ~H0~5v F  
    if length(n)~=length(m) +DKrX  
        error('zernfun:NMlength','N and M must be the same length.') 'Rfvr7G/?  
    end <.3@-z>w2,  
    hoC}@8_  
    n = n(:); 1at$_\{.(  
    m = m(:); [Hdk=p  
    if any(mod(n-m,2)) xsRMF&8L  
        error('zernfun:NMmultiplesof2', ... o,) p*glO  
              'All N and M must differ by multiples of 2 (including 0).') -b@E@uAX /  
    end :Puv8[1i  
    hBsjO3n  
    if any(m>n) 2h&pm   
        error('zernfun:MlessthanN', ... 9\)NFZ3Mz  
              'Each M must be less than or equal to its corresponding N.') {s8''+Q#(-  
    end qn@Qd9Sf  
    +2oZB]GPL  
    if any( r>1 | r<0 ) F dv&kK!  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') ~E^EF{h   
    end NQfIY`lt'  
    HXU"]s2Z  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Ao96[2U6  
        error('zernfun:RTHvector','R and THETA must be vectors.') wri[#D {  
    end af{;4Cr  
    xSb/9 8;  
    r = r(:); uMsKF%m  
    theta = theta(:); v03~=(  
    length_r = length(r); B4R,[WE"  
    if length_r~=length(theta) },a|WL3^  
        error('zernfun:RTHlength', ... D.Cm&  
              'The number of R- and THETA-values must be equal.') !xo@i XL  
    end U7crbj;c)d  
    %o4d4 3uZ  
    % Check normalization: N 5/TV%u  
    % -------------------- \g4\a?i  
    if nargin==5 && ischar(nflag) Q,\lS  
        isnorm = strcmpi(nflag,'norm'); -I=}SZ  
        if ~isnorm `?JrC3  
            error('zernfun:normalization','Unrecognized normalization flag.') ZuS+p0H"  
        end %n}.E30 4  
    else +G/~v`Bv  
        isnorm = false; {OAy@6 +  
    end Tjs-+$P+  
    ip5s'S~  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 4kXx(FE  
    % Compute the Zernike Polynomials *C\4%l   
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% [RpFC4W  
    U}A+jJ  
    % Determine the required powers of r: cjN4U [  
    % ----------------------------------- 3C,e>zE}  
    m_abs = abs(m); N_0&3PUSM  
    rpowers = []; #gN{8Yk>  
    for j = 1:length(n) XVv7W5/q]  
        rpowers = [rpowers m_abs(j):2:n(j)]; VDnAQ[T@d  
    end KktTR`W  
    rpowers = unique(rpowers); #-lk=>  
    wFqz.HoB  
    % Pre-compute the values of r raised to the required powers, *fd` .}  
    % and compile them in a matrix: M.OWw#?p:_  
    % ----------------------------- D 0n2r  
    if rpowers(1)==0 _)Qt,$  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 0_]aF8j  
        rpowern = cat(2,rpowern{:}); #kb(2Td  
        rpowern = [ones(length_r,1) rpowern]; Ne9 .wd  
    else p>}N9v;Bo  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); {Zseu$c  
        rpowern = cat(2,rpowern{:}); kT$4X0}  
    end =kc{Q@Dk  
    8dZH&G@;  
    % Compute the values of the polynomials: 9hguC yr@h  
    % -------------------------------------- VR:b1XWX  
    y = zeros(length_r,length(n)); 1$Hf`h2  
    for j = 1:length(n) pP/o2  
        s = 0:(n(j)-m_abs(j))/2; 3p4bOT5  
        pows = n(j):-2:m_abs(j); j_H T  
        for k = length(s):-1:1 }E1Eq  
            p = (1-2*mod(s(k),2))* ... v'@LuF'e8  
                       prod(2:(n(j)-s(k)))/              ... 7I44BC*R~  
                       prod(2:s(k))/                     ... ah<f&2f  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... [cW  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); ^X;>?_Bk  
            idx = (pows(k)==rpowers); h=U 4  
            y(:,j) = y(:,j) + p*rpowern(:,idx); *xjIl<`pK  
        end JWdG?[$  
         5g5pzww  
        if isnorm AN1bfF:C  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); h n ]6he  
        end U&/S  
    end O71rLk;  
    % END: Compute the Zernike Polynomials *oWzH_  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Ce)Wvuh  
    v}mmY>M%  
    % Compute the Zernike functions: 'Hia6 <m3  
    % ------------------------------ vSL{WT]m  
    idx_pos = m>0; a|53E<5X  
    idx_neg = m<0; VsMNi#?  
    ZT8j9zs  
    z = y; A3$b_i@P  
    if any(idx_pos) 1e+?O7/  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); lKwcT!Q4  
    end j w462h  
    if any(idx_neg) Y'~&%|9+T  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ;$/G T  
    end Smu x&e  
    !Yf0y;e|:  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) %G&v@R  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. m>!#}EJ|  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated w6Q]?p+  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive a+i+#*8wm  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, 7EXmmB~>,  
    %   and THETA is a vector of angles.  R and THETA must have the same ]*h}sn=  
    %   length.  The output Z is a matrix with one column for every P-value, bW|y -GM  
    %   and one row for every (R,THETA) pair. c%!wKoD  
    % iT"Itz-^#  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike u\wd<<I']  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) 3"n8B6  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) jg8P4s  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 &O,$l3 P  
    %   for all p. }+J@;:  
    % C=cTj7Ub  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 )]R?v,9*D  
    %   Zernike functions (order N<=7).  In some disciplines it is 0}V'\=F454  
    %   traditional to label the first 36 functions using a single mode -*2X YTe  
    %   number P instead of separate numbers for the order N and azimuthal Hdx|k=-Q^  
    %   frequency M. A{%;Hd`0/  
    % 6zWvd  
    %   Example: A'8K^,<  
    % (c2\:hvy  
    %       % Display the first 16 Zernike functions L />GYx  
    %       x = -1:0.01:1; #VE$C3<  
    %       [X,Y] = meshgrid(x,x); W|e>  
    %       [theta,r] = cart2pol(X,Y); . 6dT5x8u  
    %       idx = r<=1; -c@ 5qe>  
    %       p = 0:15; Qg!*=<b  
    %       z = nan(size(X)); aO%FQ)BT  
    %       y = zernfun2(p,r(idx),theta(idx)); }C1wfZ~F~  
    %       figure('Units','normalized') O;BPd:<  
    %       for k = 1:length(p) Zto E= 7K  
    %           z(idx) = y(:,k); Z(M)2  
    %           subplot(4,4,k) eHe /w9`$R  
    %           pcolor(x,x,z), shading interp dDbC0} x/  
    %           set(gca,'XTick',[],'YTick',[]) Uzn|)OfWP  
    %           axis square !.$P`wKr  
    %           title(['Z_{' num2str(p(k)) '}']) +GU16+w~E  
    %       end |plo65  
    % I+t38 un%  
    %   See also ZERNPOL, ZERNFUN. X~3P?O]kFv  
    NG UGN~p  
    %   Paul Fricker 11/13/2006 55b |zf  
    pe})A  
    V2%wb\_z  
    % Check and prepare the inputs: o7XRa]O  
    % ----------------------------- EIQy?ig86  
    if min(size(p))~=1 sLp LY1X  
        error('zernfun2:Pvector','Input P must be vector.') YO0x68  
    end |l(lrJ{  
    h_yR$H&tX  
    if any(p)>35 {fv8S;|u  
        error('zernfun2:P36', ... reJ?38(  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... H> iZVE  
               '(P = 0 to 35).']) D  .R  
    end |qDfFGYf  
    SVh4)}.x  
    % Get the order and frequency corresonding to the function number: RgA4@J#  
    % ---------------------------------------------------------------- R7c)C8/~  
    p = p(:); $yFuaqG`Wo  
    n = ceil((-3+sqrt(9+8*p))/2); 5yi q#  
    m = 2*p - n.*(n+2); z.HNb$;  
    i bs "Iv34  
    % Pass the inputs to the function ZERNFUN: >C&<dO#i  
    % ---------------------------------------- G3^]Wwu  
    switch nargin mm<iT59  
        case 3 u>6/_^iq  
            z = zernfun(n,m,r,theta); 1>x@1Mo+K  
        case 4 -xIhN?r)  
            z = zernfun(n,m,r,theta,nflag); D@W3;T^  
        otherwise !BuJC$  
            error('zernfun2:nargin','Incorrect number of inputs.') fZ:rz;tM  
    end 8z8SwWS?  
    = S8>  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) FK >8kC  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. (DP9& b  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of )r,R!8  
    %   order N and frequency M, evaluated at R.  N is a vector of rIfGmh%H  
    %   positive integers (including 0), and M is a vector with the aC Lg~g4  
    %   same number of elements as N.  Each element k of M must be a jTUf4&b-  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) "M0l;  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is $SGA60q  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix (Cd{#j<  
    %   with one column for every (N,M) pair, and one row for every lF"(|n"R  
    %   element in R. }cK~=@7tK  
    % p't:bR  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- q;0&idYC  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is :`^3MMLO  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to ^pV>b(?qw  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 RHl=$Hm.%  
    %   for all [n,m]. zpr@!76  
    % jo3}]KC !  
    %   The radial Zernike polynomials are the radial portion of the H?(SSL  
    %   Zernike functions, which are an orthogonal basis on the unit dtnet_j  
    %   circle.  The series representation of the radial Zernike /j69NEl  
    %   polynomials is ZMMo6;  
    % bb/?02*)H  
    %          (n-m)/2 \pD=Lv9  
    %            __ J1Ki2I=  
    %    m      \       s                                          n-2s ~& WN)r'4y  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r n$|c{2]=  
    %    n      s=0 dGD^op,6g  
    % jM1%6  
    %   The following table shows the first 12 polynomials. i|]Va44  
    % ~z _](HKoS  
    %       n    m    Zernike polynomial    Normalization oYh<k  
    %       --------------------------------------------- Li-(p"  
    %       0    0    1                        sqrt(2) oTD-+MZn  
    %       1    1    r                           2 2 ssj(Qo  
    %       2    0    2*r^2 - 1                sqrt(6) 5+/b$mHZX  
    %       2    2    r^2                      sqrt(6) d O46~  
    %       3    1    3*r^3 - 2*r              sqrt(8) Z'*Z@u3  
    %       3    3    r^3                      sqrt(8) hN_f h J  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) mh#FY Sp  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) L}jF#*Q%  
    %       4    4    r^4                      sqrt(10) +5t bK  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) )dIfr  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) |!?WQ[  
    %       5    5    r^5                      sqrt(12) >g>`!Sf  
    %       --------------------------------------------- lHKf#|  
    % :IR9=nhS]  
    %   Example: 6%\Q*r*N  
    % 4]aiT8))  
    %       % Display three example Zernike radial polynomials ?cs]#6^  
    %       r = 0:0.01:1; ,c%K)KuPK.  
    %       n = [3 2 5]; 8hKP  
    %       m = [1 2 1]; BF@5&>E  
    %       z = zernpol(n,m,r); VwOG?5W/  
    %       figure bH\C5zt6(  
    %       plot(r,z) t.E4Tqzc>  
    %       grid on B?#kW!wj  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') mo;)0Vq2l  
    % v"~Do+*+  
    %   See also ZERNFUN, ZERNFUN2. t `Y!"l  
    N=T.l*8  
    % A note on the algorithm. \/*Nf?;  
    % ------------------------ Ob8B  
    % The radial Zernike polynomials are computed using the series rXY;m-  
    % representation shown in the Help section above. For many special a4T~\\,dZ>  
    % functions, direct evaluation using the series representation can jWXR__>.  
    % produce poor numerical results (floating point errors), because iIsEQh  
    % the summation often involves computing small differences between 3T|Y}  
    % large successive terms in the series. (In such cases, the functions j1puB  
    % are often evaluated using alternative methods such as recurrence WDE e$k4.  
    % relations: see the Legendre functions, for example). For the Zernike % Cu.u)/+  
    % polynomials, however, this problem does not arise, because the Z6Nj<2u2  
    % polynomials are evaluated over the finite domain r = (0,1), and U!c]_q  
    % because the coefficients for a given polynomial are generally all ,M) k7t:  
    % of similar magnitude. 6x_ T@  
    % d /B'[Ur  
    % ZERNPOL has been written using a vectorized implementation: multiple ?C &x/2lt  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] 3ar=1_Ar  
    % values can be passed as inputs) for a vector of points R.  To achieve S~0JoCeo  
    % this vectorization most efficiently, the algorithm in ZERNPOL s) Cpi  
    % involves pre-determining all the powers p of R that are required to kDzj%sm!  
    % compute the outputs, and then compiling the {R^p} into a single =2 &hQd   
    % matrix.  This avoids any redundant computation of the R^p, and z wL3,!t  
    % minimizes the sizes of certain intermediate variables. ,AH0*L  
    % a`H\-G  
    %   Paul Fricker 11/13/2006 .3VK;au\\  
    60GFVF]'2  
    _i3i HR?  
    % Check and prepare the inputs: t`"^7YFS>  
    % ----------------------------- A7k'K4  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) lDW!Fg  
        error('zernpol:NMvectors','N and M must be vectors.') 3{<R5wUo"  
    end oi2J :Y4  
    Yd' H+r5b  
    if length(n)~=length(m) dG&2,n'f  
        error('zernpol:NMlength','N and M must be the same length.') 5kcJ  
    end ]7a;jNQu  
    9~@<-6jE3b  
    n = n(:); ,e9CJ~a  
    m = m(:); ?75\>NiR  
    length_n = length(n); (/"thv5vT{  
    g b -Bxf  
    if any(mod(n-m,2)) W*k`  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') &Hv;<  
    end ZjqA30!  
    c~P)4(udT  
    if any(m<0) Hu[]h]  
        error('zernpol:Mpositive','All M must be positive.') *^'wFbaBO  
    end $#5klA  
    %drJ p6n%  
    if any(m>n) FbveI4  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') B4Q79gEh=  
    end bA9CO\Pp`  
    tG/a H%4S  
    if any( r>1 | r<0 ) U\Ct/U&A?  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') Dy su{rL  
    end TfJL+a0  
    (@ "=F6P  
    if ~any(size(r)==1) l '/N3&5  
        error('zernpol:Rvector','R must be a vector.') tWm>j  
    end tJ"az=?  
    `h?LVD'l  
    r = r(:); UxyY<H~Wx  
    length_r = length(r); C` pp  
    "Nbos.a]5  
    if nargin==4 'Q5&5UrBr  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); ,'~ #Ch  
        if ~isnorm i^WIr h3a  
            error('zernpol:normalization','Unrecognized normalization flag.') "%VbI P  
        end O}QFq14<+  
    else +@0TMK,P  
        isnorm = false; _?.\Xc  
    end D}w<84qX  
    rj3YTu`  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /}=a{J  
    % Compute the Zernike Polynomials >V(zJ  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% "A;s56}'&  
    .)7:=  
    % Determine the required powers of r: ,;%yf?  
    % ----------------------------------- atyu/+U'}  
    rpowers = []; &UL_bG }  
    for j = 1:length(n) UFe(4]^  
        rpowers = [rpowers m(j):2:n(j)]; 34ha26\np  
    end ~Q?!W0ZBE  
    rpowers = unique(rpowers); A[`G^ $  
    Vv8_\^g]  
    % Pre-compute the values of r raised to the required powers, X8b|]Nr  
    % and compile them in a matrix: ~].ggcl`w  
    % ----------------------------- g`[`P@  
    if rpowers(1)==0 >Q=Ukn;k  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); W5.Va.  
        rpowern = cat(2,rpowern{:}); `B:"6nW6  
        rpowern = [ones(length_r,1) rpowern]; rgqQxe=  
    else \3aTaT?..  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); @DuK#W"E u  
        rpowern = cat(2,rpowern{:}); D L{R|3{N  
    end \tx%WC  
    vZu~LW@1  
    % Compute the values of the polynomials: mibpG9+d  
    % -------------------------------------- DK6? E\<  
    z = zeros(length_r,length_n); =1Z;Ma<;  
    for j = 1:length_n ` H XEZ|  
        s = 0:(n(j)-m(j))/2; Ly7!R$X  
        pows = n(j):-2:m(j); ]CX[7Q+'  
        for k = length(s):-1:1 3?.1n Gu  
            p = (1-2*mod(s(k),2))* ... oq$w4D0Z  
                       prod(2:(n(j)-s(k)))/          ... #r<?v  
                       prod(2:s(k))/                 ... &Jy)U  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... B[F-gq-  
                       prod(2:((n(j)+m(j))/2-s(k))); )DT|(^  
            idx = (pows(k)==rpowers); 5wT>N46UX  
            z(:,j) = z(:,j) + p*rpowern(:,idx); Yp1bH+/u  
        end MR$>!Nlp  
         cSK&[>i)4  
        if isnorm 5f^>b\8+ |  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); j1q[c,  
        end XV>&F{  
    end P=`1rjPE  
    O'$K],=BS  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  ~Nf})U  
    j]|U  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 [u}(57DS  
    m %;D  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)