切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11677阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 X}g!Lp  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! \e( h6,@  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 h7kGs^pP  
    function z = zernfun(n,m,r,theta,nflag) V5%B ,.d:  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. /dh w~|  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N l`fjz-eE  
    %   and angular frequency M, evaluated at positions (R,THETA) on the Y }Rx`%X  
    %   unit circle.  N is a vector of positive integers (including 0), and fMI4'.Od  
    %   M is a vector with the same number of elements as N.  Each element } 3 RqaIY}  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 4LJUO5(y@  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, q-X)tH_+w@  
    %   and THETA is a vector of angles.  R and THETA must have the same lLyMm8E%pZ  
    %   length.  The output Z is a matrix with one column for every (N,M) jQC6N#L  
    %   pair, and one row for every (R,THETA) pair. ]X;Ty\UD&  
    % @T>)fKCg  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike [:TOU^  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), $kvF]|<bu  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral *5.s@L( VU  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, M($dh9A_  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ,8cw jS2E  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 2*F["E  
    % <eI7xifD  
    %   The Zernike functions are an orthogonal basis on the unit circle. Tg)Fr)  
    %   They are used in disciplines such as astronomy, optics, and )9{?C4NQ  
    %   optometry to describe functions on a circular domain. <Y9((QSM4  
    % f[!N]*  
    %   The following table lists the first 15 Zernike functions. %}x/ fq  
    % wQlK[F]!>  
    %       n    m    Zernike function           Normalization j'#W)dp(  
    %       -------------------------------------------------- ]?/[& PP,  
    %       0    0    1                                 1 #ZeZs31  
    %       1    1    r * cos(theta)                    2 rwv_ RN  
    %       1   -1    r * sin(theta)                    2 &5)Kg%r  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) |wQ|h$|  
    %       2    0    (2*r^2 - 1)                    sqrt(3) !2>gC"$nv  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) u&m B;:&  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 218ZUg -a  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) AhiZ0W"  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) <RKh%4#~  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) HhH[pE  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) l;b5v]~  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) LoPWho[8  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) ''s]6Jjw  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) GG/~)^VMe  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) A d=NJhzl  
    %       -------------------------------------------------- 4?jXbC k~x  
    % (|Y[5O)  
    %   Example 1: JGHQ_AI  
    % m%X~EwFc.  
    %       % Display the Zernike function Z(n=5,m=1) Xv|~1v%s7  
    %       x = -1:0.01:1; JLp.bxx  
    %       [X,Y] = meshgrid(x,x); ]<WKi=  
    %       [theta,r] = cart2pol(X,Y); "|gNNmr  
    %       idx = r<=1; .zAB)rNc |  
    %       z = nan(size(X)); .fk!~8b[Q+  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 3&/5!zOg)  
    %       figure <2HI. @^  
    %       pcolor(x,x,z), shading interp 9mIq9rQ|*  
    %       axis square, colorbar W1w)SS  
    %       title('Zernike function Z_5^1(r,\theta)') Q>cLGdzO  
    % sV@kQ:  
    %   Example 2: -e3m!h  
    % o6P)IZ1  
    %       % Display the first 10 Zernike functions d/k&f5  
    %       x = -1:0.01:1; Ie`kzssM  
    %       [X,Y] = meshgrid(x,x); J0~Ha u  
    %       [theta,r] = cart2pol(X,Y); '3 xvQFg  
    %       idx = r<=1; "i<i.6|  
    %       z = nan(size(X)); O{y2tz3  
    %       n = [0  1  1  2  2  2  3  3  3  3]; -4m UGh1dy  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; U{"&Jj  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; \(R(S!xr_  
    %       y = zernfun(n,m,r(idx),theta(idx)); Z,.*!S=?h  
    %       figure('Units','normalized') 3l0x~  
    %       for k = 1:10 8sOM%y9M  
    %           z(idx) = y(:,k); ]d&6 ?7 !>  
    %           subplot(4,7,Nplot(k)) cxFfAk\,en  
    %           pcolor(x,x,z), shading interp />S=Y"a/7  
    %           set(gca,'XTick',[],'YTick',[]) ~Y<x-)R  
    %           axis square Q+*o-  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 9He>F7J:p'  
    %       end a.L ?J  
    % hs}nI/#  
    %   See also ZERNPOL, ZERNFUN2. Ev|2bk \  
    1tHTjEG4^3  
    %   Paul Fricker 11/13/2006 }rz}>((ZHF  
    r in#lu& N  
    ,YX[6eZr  
    % Check and prepare the inputs: I9h?Z&n5  
    % ----------------------------- {<5rbsqk  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Z#IRNFj  
        error('zernfun:NMvectors','N and M must be vectors.') 2u4aCfIx  
    end /v 7U~i5  
    O:"gJ4D  
    if length(n)~=length(m) eVL'Ao&Ho  
        error('zernfun:NMlength','N and M must be the same length.') GxL5yeN@(  
    end :PuJF`k  
    _V^^%$  
    n = n(:); ^CX=<  
    m = m(:); nyD(G=Q5  
    if any(mod(n-m,2)) #8z2>&:|  
        error('zernfun:NMmultiplesof2', ... a938l^@;s8  
              'All N and M must differ by multiples of 2 (including 0).') $rD&rsx6  
    end YQxVeS(  
    i{?uIb B  
    if any(m>n) pPem;i^~  
        error('zernfun:MlessthanN', ... (?Fz{  
              'Each M must be less than or equal to its corresponding N.') YIGQDj@  
    end S-Mn  
    n,SDJsS^  
    if any( r>1 | r<0 ) *[t@j*al  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') Jf{6'Ub  
    end _ #288`bU  
    \^or l9  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Rm`_0}5  
        error('zernfun:RTHvector','R and THETA must be vectors.') WDNuR #J?  
    end 5rK7nLb  
    ZgVYC4=Q-\  
    r = r(:); NitWIj[U;  
    theta = theta(:); Ll\y2oJ  
    length_r = length(r); G]X72R?g  
    if length_r~=length(theta) fT9$0:eO  
        error('zernfun:RTHlength', ... vzA)pB~;  
              'The number of R- and THETA-values must be equal.') A q;]al  
    end gF,9Kv~  
    #9uNJla  
    % Check normalization: BR*,E~%  
    % -------------------- . S4Xw2MS  
    if nargin==5 && ischar(nflag) m?VA 1  
        isnorm = strcmpi(nflag,'norm'); &[ejxK"  
        if ~isnorm NPF"_[RoeV  
            error('zernfun:normalization','Unrecognized normalization flag.') $x#0m  
        end o5)lTVQ~~  
    else 8`l bKV  
        isnorm = false; `3m7b!0k  
    end E Mq P  
    E9JxntX  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% *f{\ze@5=  
    % Compute the Zernike Polynomials bim}{wMb  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% O N..B} J  
    VgLrufJ  
    % Determine the required powers of r: KvW {M  
    % ----------------------------------- 'r3yFoP}  
    m_abs = abs(m); xwoK#eC~ F  
    rpowers = []; 3.>M=K~09  
    for j = 1:length(n) 1\K%^<QY  
        rpowers = [rpowers m_abs(j):2:n(j)]; =0!PnBGYn  
    end |#G.2hMFr  
    rpowers = unique(rpowers); <=2\xJfxB  
    U7i WYdt$  
    % Pre-compute the values of r raised to the required powers, YQGVQ[P  
    % and compile them in a matrix: 1 ~ fD:  
    % ----------------------------- =E?kxf[X  
    if rpowers(1)==0 FJxg9!%d  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); foO /Yc  
        rpowern = cat(2,rpowern{:}); oZm)@Vv;  
        rpowern = [ones(length_r,1) rpowern]; u*LMpTnn  
    else H8@1Kt  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); x UM,"+h  
        rpowern = cat(2,rpowern{:}); cCOw7<  
    end 5Us$.p  
    &5k$ v^W5  
    % Compute the values of the polynomials: SStaS<q '  
    % -------------------------------------- !7)` g i  
    y = zeros(length_r,length(n)); ;nS.t_UW.  
    for j = 1:length(n) 3Wv -olv  
        s = 0:(n(j)-m_abs(j))/2; = cQK^$6(  
        pows = n(j):-2:m_abs(j); K[{hh;7  
        for k = length(s):-1:1 %%d3M->C}  
            p = (1-2*mod(s(k),2))* ... "QCtF55X&  
                       prod(2:(n(j)-s(k)))/              ... lRb|GS.h/  
                       prod(2:s(k))/                     ... :De@_m  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ob=](  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); J)7m::%I  
            idx = (pows(k)==rpowers); ]k0Pe;<  
            y(:,j) = y(:,j) + p*rpowern(:,idx); I'W`XN  
        end -lICoRO#  
         V\Q=EsHj   
        if isnorm (.r9bl  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Y 1v9sMN,  
        end `X;'*E]e  
    end #GoZH?MAF  
    % END: Compute the Zernike Polynomials yE+Wb[H[  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 5pC+*n.  
    @-B)a Z  
    % Compute the Zernike functions: o;w 5;TkY  
    % ------------------------------ U1oZ\Mh  
    idx_pos = m>0; M{(g"ha  
    idx_neg = m<0; 'c]Fhe fb  
    [2~^~K  
    z = y; Ui:WbH<b{  
    if any(idx_pos) VPC7Dh%.  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); :`jB1rI  
    end )-jA4!&  
    if any(idx_neg) _mBFmXHHS$  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 19#s:nt9  
    end '.{tE*  
    w; rQ\gj  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) (=\))t8J  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. fo$s9g^<  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated - f&m4J} E  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive +hZ{/  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, d~QZc R  
    %   and THETA is a vector of angles.  R and THETA must have the same UM(`Oh8  
    %   length.  The output Z is a matrix with one column for every P-value, H6.  
    %   and one row for every (R,THETA) pair. c*!xdK  
    % E[=# Rw!*  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike $wm.,Vb  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) >LAhc7I  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) C CDO8  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 0F5QAR O  
    %   for all p. SuJa?VU1w  
    % y 1I(^<qO=  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 lj US-6  
    %   Zernike functions (order N<=7).  In some disciplines it is yDORL| E'  
    %   traditional to label the first 36 functions using a single mode hY(q@_s  
    %   number P instead of separate numbers for the order N and azimuthal SHA6;y+U/~  
    %   frequency M. 'Szk!,_  
    % ZUd*[\F~!  
    %   Example: IW>\\&pJ  
    % uS|f|)U&  
    %       % Display the first 16 Zernike functions =XhxD<kI  
    %       x = -1:0.01:1; D:56>%y@  
    %       [X,Y] = meshgrid(x,x); ETQL,t9m  
    %       [theta,r] = cart2pol(X,Y); .L=C7w1  
    %       idx = r<=1; {P7 I<^,  
    %       p = 0:15; @xkI?vK6  
    %       z = nan(size(X)); CBu$8]9=  
    %       y = zernfun2(p,r(idx),theta(idx)); CubBD+h l*  
    %       figure('Units','normalized') .a_xQ]eQ  
    %       for k = 1:length(p) p5V.O20  
    %           z(idx) = y(:,k); ] <y3;T\~  
    %           subplot(4,4,k) I AFj_VWC0  
    %           pcolor(x,x,z), shading interp +01bjM6F_1  
    %           set(gca,'XTick',[],'YTick',[]) 5uAUi=XA>S  
    %           axis square jQ X9KwSP  
    %           title(['Z_{' num2str(p(k)) '}']) )J(@e4;Rv  
    %       end #W2#'J:l  
    % E/Adi^  
    %   See also ZERNPOL, ZERNFUN. a IgV"3  
    ,9"A"p*R  
    %   Paul Fricker 11/13/2006 jlM %Y ZC  
    _OY<Hb3%M  
    cS;O]>/5  
    % Check and prepare the inputs: Dy|DQ>?}  
    % ----------------------------- Rap =&  
    if min(size(p))~=1 <=gf|(  
        error('zernfun2:Pvector','Input P must be vector.') <;q)V%IUz  
    end g7`uWAxZa  
    [W--%=Ou  
    if any(p)>35 hB1Gtc4n  
        error('zernfun2:P36', ... Vd+5an?  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... 'U{6LSaCb  
               '(P = 0 to 35).']) x67,3CLy?  
    end IEQ6J}L  
    *OR(8;  
    % Get the order and frequency corresonding to the function number: oh%/\Xu  
    % ---------------------------------------------------------------- mF@D O$  
    p = p(:); W}.p,d  
    n = ceil((-3+sqrt(9+8*p))/2); BDc "0XH  
    m = 2*p - n.*(n+2); 1IeB_t  
    i= s>a;*#  
    % Pass the inputs to the function ZERNFUN: <^YZ#3~1T  
    % ---------------------------------------- >YP]IQ  
    switch nargin $-R9J6NN  
        case 3 E?^A+)<"  
            z = zernfun(n,m,r,theta); P#x]3j]  
        case 4 I.L8A|nZ  
            z = zernfun(n,m,r,theta,nflag); Z<~^(W7h  
        otherwise :taRCh5  
            error('zernfun2:nargin','Incorrect number of inputs.') t.]c44RY  
    end 90]{4]y;  
    !|;w(/  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) ) bPF@'rF2  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. ne\N1`AU  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of ?FRQ!R  
    %   order N and frequency M, evaluated at R.  N is a vector of kzcD}?mSS  
    %   positive integers (including 0), and M is a vector with the j])nkm7_  
    %   same number of elements as N.  Each element k of M must be a !WReThq  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) Ch9A6?=Hj8  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is qnZ`]?  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix bU i@4S  
    %   with one column for every (N,M) pair, and one row for every ds9`AiCW>  
    %   element in R. : j m|)  
    % kg_f;uk+  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- `[J(a u$z  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is 3tTz$$-#  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to ,Uv8[ci%9  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 y Yvv;E  
    %   for all [n,m]. ~IE5j,SC  
    % 1yIo 'i1  
    %   The radial Zernike polynomials are the radial portion of the "UY.; P  
    %   Zernike functions, which are an orthogonal basis on the unit 7F{=bL  
    %   circle.  The series representation of the radial Zernike TAt9+\'  
    %   polynomials is ,-XJ@@2gM  
    % +/Lf4??JV  
    %          (n-m)/2 .W+ F<]r  
    %            __ 6c>tA2G|8  
    %    m      \       s                                          n-2s 'k9hzk(*  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r r,4V SyZF\  
    %    n      s=0 ?JD\pYg[/  
    % ;,h*s, i  
    %   The following table shows the first 12 polynomials. (u >:G6K  
    % 6)eU &5z1?  
    %       n    m    Zernike polynomial    Normalization IK6XJsz$J  
    %       --------------------------------------------- C9}2F{8  
    %       0    0    1                        sqrt(2) r4xq%hy  
    %       1    1    r                           2 s `r  tr  
    %       2    0    2*r^2 - 1                sqrt(6) nA]dQ+5sT  
    %       2    2    r^2                      sqrt(6) Y e}y_W  
    %       3    1    3*r^3 - 2*r              sqrt(8) =;3|?J0=  
    %       3    3    r^3                      sqrt(8) []Z| *+=Q  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) [vaG{4m  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) *X;g Y  
    %       4    4    r^4                      sqrt(10) >P=xzg79  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) t747SZWgB  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) 4[!&L:tR  
    %       5    5    r^5                      sqrt(12) /j' We-C  
    %       --------------------------------------------- 8[FC  
    % MQ>vHapr  
    %   Example: % KY&E>^  
    % 9& W\BQ  
    %       % Display three example Zernike radial polynomials NG_O I*|~  
    %       r = 0:0.01:1; ANCgch\  
    %       n = [3 2 5]; ' U)~|(\i  
    %       m = [1 2 1]; 8}Y( @ %4  
    %       z = zernpol(n,m,r); _pNUI {De  
    %       figure T[XI  
    %       plot(r,z) y( MF_'l  
    %       grid on ^D B0C  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') i*Y/q-N|  
    % PSHs<Z47  
    %   See also ZERNFUN, ZERNFUN2. F,O+axO ja  
    yHt63z8'  
    % A note on the algorithm. ,h]N*Z-I"  
    % ------------------------ RkLH}`#  
    % The radial Zernike polynomials are computed using the series fINM$ 6  
    % representation shown in the Help section above. For many special oUw-l_M]  
    % functions, direct evaluation using the series representation can %1HW ) 7  
    % produce poor numerical results (floating point errors), because ^B& Z  
    % the summation often involves computing small differences between r+0)l:{.  
    % large successive terms in the series. (In such cases, the functions YQN=.Wtc  
    % are often evaluated using alternative methods such as recurrence z<<` 1wqg  
    % relations: see the Legendre functions, for example). For the Zernike @;<w"j`r  
    % polynomials, however, this problem does not arise, because the &r<<4J(t  
    % polynomials are evaluated over the finite domain r = (0,1), and h)wR[N]n  
    % because the coefficients for a given polynomial are generally all NE9e br K  
    % of similar magnitude. v& XG4 &  
    % !gf&l ^)  
    % ZERNPOL has been written using a vectorized implementation: multiple l.BSZhO$  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] &9s6p6 eb  
    % values can be passed as inputs) for a vector of points R.  To achieve hkU# lt  
    % this vectorization most efficiently, the algorithm in ZERNPOL il-&d]AP  
    % involves pre-determining all the powers p of R that are required to $LRFG(  
    % compute the outputs, and then compiling the {R^p} into a single ?o.G@-  
    % matrix.  This avoids any redundant computation of the R^p, and }UGPEf\  
    % minimizes the sizes of certain intermediate variables. i]$d3J3  
    % jSYj+k  
    %   Paul Fricker 11/13/2006 o3WkbMJWM  
    ;v0sM*x%V  
    9D#PO">|  
    % Check and prepare the inputs: N%B#f\N  
    % ----------------------------- c>UITM=!I  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) W&!Yprr  
        error('zernpol:NMvectors','N and M must be vectors.') Pm?6]] 7  
    end ,Fr{i1Ky  
    QHs]~Ja  
    if length(n)~=length(m) pb{P[-f  
        error('zernpol:NMlength','N and M must be the same length.') XbH X,W$h  
    end E?XA/z !  
    _ _)Z Q  
    n = n(:); ,OasT!Sr  
    m = m(:); Oy|9po  
    length_n = length(n); tcX7Ua(I`  
    If&p$pAH?  
    if any(mod(n-m,2)) &erNVD5o  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') nlmkkTHF8  
    end MW$9,[  
    d;;=s=j  
    if any(m<0) k Dv)g  
        error('zernpol:Mpositive','All M must be positive.') J5o"JRJ"  
    end 2hp x%H  
    &1[5b8H;+  
    if any(m>n) 7CIje=u.q  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') U50X`J  
    end rzTyHK[  
    }%1E9u  
    if any( r>1 | r<0 ) 1_p'0lFe  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') +.R-a+y3  
    end A!f0AEA,  
    Rxli;blzi  
    if ~any(size(r)==1) b]Y,& 8}[+  
        error('zernpol:Rvector','R must be a vector.') pj )I4C)  
    end u3ZG;ykM  
    ;% !?dH6  
    r = r(:); =_1" d$S&  
    length_r = length(r); ~xJD3Qf  
    ;I7Z*'5!  
    if nargin==4 AHA*yC  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); 8r|LFuI  
        if ~isnorm 9qW,I|G  
            error('zernpol:normalization','Unrecognized normalization flag.') o+t?OG/0  
        end 9e=*jRs]l^  
    else =['ijD4TW  
        isnorm = false; UB1/FM4~  
    end MJC Yi<D  
    CeJ|z {F\  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% TB[vpTC9)  
    % Compute the Zernike Polynomials 5cADC`q  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% c1 <g!Q&E  
    [Vf|4xcD  
    % Determine the required powers of r: .Sn1YAhE  
    % ----------------------------------- fr?eOigbl  
    rpowers = []; Qh[t##I/  
    for j = 1:length(n) < 9MnQ*@  
        rpowers = [rpowers m(j):2:n(j)]; }Q=Zqlvz  
    end QXz!1o+"  
    rpowers = unique(rpowers); f/B--jq  
    qa~[fORO[  
    % Pre-compute the values of r raised to the required powers, ?gtkf[0B|  
    % and compile them in a matrix: b?$09,{0  
    % ----------------------------- xpxm9ySwu  
    if rpowers(1)==0 <D^x6{}  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); NLpD,q{  
        rpowern = cat(2,rpowern{:}); _"bx#B*  
        rpowern = [ones(length_r,1) rpowern]; s7e'9Bx  
    else } :mI6zsNj  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 7S`H?},sR  
        rpowern = cat(2,rpowern{:}); `R> O5Rv  
    end T82_`u  
    (+_J0i t  
    % Compute the values of the polynomials: RFC;1+Jn  
    % -------------------------------------- n`,Q:  
    z = zeros(length_r,length_n); uS'ji k}  
    for j = 1:length_n NIfc/%  
        s = 0:(n(j)-m(j))/2; #r:`bQ0;  
        pows = n(j):-2:m(j); .+|DN"PgJ  
        for k = length(s):-1:1 W24bO|>D  
            p = (1-2*mod(s(k),2))* ... rYJ ))@  
                       prod(2:(n(j)-s(k)))/          ... K9q~Vf  
                       prod(2:s(k))/                 ... q T].,?  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... D'h2 DP!  
                       prod(2:((n(j)+m(j))/2-s(k))); b{rmxtx  
            idx = (pows(k)==rpowers); taQ[>x7b  
            z(:,j) = z(:,j) + p*rpowern(:,idx); 3(:mRb}  
        end o^?{j*)g  
         YiTp-@$}  
        if isnorm h 3&:"*A2  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); n@Ag`}  
        end z aF0nov  
    end mSfhl(<L  
    q UnFEg  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  @%G'U&R{  
    SJ@8[n.x  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 n$hqNsM  
    D)*_{   
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)