非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 @mJN
function z = zernfun(n,m,r,theta,nflag) kFM'?L&
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. cT0utR&
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N g@Ni!U"_c
% and angular frequency M, evaluated at positions (R,THETA) on the ;$&-c/]F#
% unit circle. N is a vector of positive integers (including 0), and &OhKx
% M is a vector with the same number of elements as N. Each element .4!N#'
% k of M must be a positive integer, with possible values M(k) = -N(k) fe37T@
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, {C]M]b*F6(
% and THETA is a vector of angles. R and THETA must have the same ;wQWt_OtuJ
% length. The output Z is a matrix with one column for every (N,M) EJWMr`zdn
% pair, and one row for every (R,THETA) pair. 6eDIS|/
% 29sgi"
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike z}bnw2d]
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), FOk @W&
% with delta(m,0) the Kronecker delta, is chosen so that the integral uaPBM<
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, )i_FU~ LRq
% and theta=0 to theta=2*pi) is unity. For the non-normalized NNl/'ge<\
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. zK-hNDFL{
% Etu>z+P!
% The Zernike functions are an orthogonal basis on the unit circle. ^Nsl5
% They are used in disciplines such as astronomy, optics, and CY>NU
% optometry to describe functions on a circular domain. mLkZ4OZ
% 4G>|It
% The following table lists the first 15 Zernike functions. P/I{q s
% %o"Rcw|
% n m Zernike function Normalization 7t04!dD}
% -------------------------------------------------- 6ZG)`u".("
% 0 0 1 1 #dpt=
% 1 1 r * cos(theta) 2 |~HlNUPR
% 1 -1 r * sin(theta) 2 2 !;4mij,
% 2 -2 r^2 * cos(2*theta) sqrt(6) ;n;^f&;sJ
% 2 0 (2*r^2 - 1) sqrt(3) 68HX,t
% 2 2 r^2 * sin(2*theta) sqrt(6) \PLV]%3,
% 3 -3 r^3 * cos(3*theta) sqrt(8) 9>i6oF]Oq
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) $k`8Zx w
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 7
YK+TGmU^
% 3 3 r^3 * sin(3*theta) sqrt(8) \4j+pU
% 4 -4 r^4 * cos(4*theta) sqrt(10) j&Hn`G
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) *c AoE l
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) (j~V
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) YjX=@
% 4 4 r^4 * sin(4*theta) sqrt(10) sN
C?o[9l!
% -------------------------------------------------- &1h3o^K
% "qj[[LQ
% Example 1: `U g.c
% kH&ZPAI
% % Display the Zernike function Z(n=5,m=1) %UQ{'JW?K
% x = -1:0.01:1; "T&uS1+=c
% [X,Y] = meshgrid(x,x); @qC:% |>
% [theta,r] = cart2pol(X,Y); 0wkLM-lN
% idx = r<=1; N/%#GfXx
% z = nan(size(X)); z;/'OJ[.
% z(idx) = zernfun(5,1,r(idx),theta(idx)); .u*].As=
% figure zl:D|h77
% pcolor(x,x,z), shading interp $1?X%8V
% axis square, colorbar <=inogf
% title('Zernike function Z_5^1(r,\theta)') o(``7A@7a
% g\-3c=X
% Example 2: p&4n3%(R@
% Nb#7&_f=
% % Display the first 10 Zernike functions V1:3
% x = -1:0.01:1; P\s+2/
% [X,Y] = meshgrid(x,x); Eo Urc9G2
% [theta,r] = cart2pol(X,Y); :7ngVc
% idx = r<=1; 1ZL_;k
% z = nan(size(X)); cLU*Tx\
% n = [0 1 1 2 2 2 3 3 3 3]; -$)Et |
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; if}]8
% Nplot = [4 10 12 16 18 20 22 24 26 28]; *i{.@RX?
% y = zernfun(n,m,r(idx),theta(idx)); zrew:5*uZ
% figure('Units','normalized') U959=e
% for k = 1:10 cA%U
% z(idx) = y(:,k); VjqdKQeVq
% subplot(4,7,Nplot(k)) BLH=:zb5
% pcolor(x,x,z), shading interp U(N$6{i_
% set(gca,'XTick',[],'YTick',[]) 8e@JvAaa$
% axis square Qyjuzfmz
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 5lxq-E3
% end Z]S0AB.Z@
% _cw^5
% See also ZERNPOL, ZERNFUN2. "J5Pwvs-
nTU~M~gky
% Paul Fricker 11/13/2006 y|Y3,s
WHZng QmY
B%@!\D#
% Check and prepare the inputs: -HsBV>C
% ----------------------------- y:OywIi(
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Hm*vKFhz
error('zernfun:NMvectors','N and M must be vectors.') 6h_ k`z
end ++!E9GU{
%gMpV
if length(n)~=length(m) R{o*O_qX
error('zernfun:NMlength','N and M must be the same length.') #=H}6!18
end )Zf}V0!?+
B^(rUR
n = n(:); Kg`x9._2
m = m(:); IVzA>Vd
if any(mod(n-m,2)) jN}7BbX
error('zernfun:NMmultiplesof2', ... 87(^P3;@
'All N and M must differ by multiples of 2 (including 0).') un^IQMIh
end -fx88
]XGn2U\
if any(m>n) 4D8y b|o
error('zernfun:MlessthanN', ... DsW`V~T
'Each M must be less than or equal to its corresponding N.') PBs<8xBx^
end c;rp@_ULG?
0bxvM
if any( r>1 | r<0 ) A4Q)YY9~
error('zernfun:Rlessthan1','All R must be between 0 and 1.') .(1j!B4^
end !en F8a
+R#`j r"
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) pu$XUt
error('zernfun:RTHvector','R and THETA must be vectors.') ?SO F
n
end 6>BDA?
@*"<U]
r = r(:); X_({};mz
theta = theta(:); T :S{3
length_r = length(r); _Q}RElA
if length_r~=length(theta) `;qv}
error('zernfun:RTHlength', ... ms\/=96F
'The number of R- and THETA-values must be equal.') Bb[0\Hs7
end #Wm@&|U
i)= 89?8
% Check normalization: khN:+V|
% -------------------- ]6%%X+$7
if nargin==5 && ischar(nflag) `{|}LFS>
isnorm = strcmpi(nflag,'norm'); @oqi@&L'C
if ~isnorm h NOYFH
error('zernfun:normalization','Unrecognized normalization flag.') x\bR j>%(
end F}B/-".^
else S[hJ{0V
isnorm = false; D@(M+u9/%
end T3t~=b>&L
LB*#
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /yw\(|T
% Compute the Zernike Polynomials t6%xit+
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% aBVEk2 p
C|d!'"p
% Determine the required powers of r: tD~PvUJ
% ----------------------------------- svq9@!go
m_abs = abs(m); K]pKe"M
rpowers = []; $|cp;~ 1
for j = 1:length(n) R3{*v =ov
rpowers = [rpowers m_abs(j):2:n(j)]; 9{UP)17
end -90ZI1O`
rpowers = unique(rpowers); k|$"TFXx;
8/>wgY
% Pre-compute the values of r raised to the required powers, 2.Eu+*UC
% and compile them in a matrix: itC *Z6^
% ----------------------------- b ?2X>QJ
if rpowers(1)==0 lGnql 1(
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Q 9gFTLQ
rpowern = cat(2,rpowern{:}); yrE,,N%I
rpowern = [ones(length_r,1) rpowern]; Dmm r]~
else @1/}-.(n
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); L=$?q/=-
rpowern = cat(2,rpowern{:}); y800(z
end .i3lG(
YG
H81.p
% Compute the values of the polynomials: C DnR
% -------------------------------------- pRiH,:\
y = zeros(length_r,length(n)); {glqWFT
for j = 1:length(n) "doU.U&u
s = 0:(n(j)-m_abs(j))/2; Pi"~/MGP$
pows = n(j):-2:m_abs(j); u_p7Mcb
for k = length(s):-1:1 #GY&$8.u*
p = (1-2*mod(s(k),2))* ... |>IUtUg\
prod(2:(n(j)-s(k)))/ ... rAlh&
?X
prod(2:s(k))/ ... FD
XWFJ
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... /H%<oAjp6
prod(2:((n(j)+m_abs(j))/2-s(k))); e\^g|60f_
idx = (pows(k)==rpowers); aJy>
y(:,j) = y(:,j) + p*rpowern(:,idx); z)ft3(!
end da9*9yN
}DDVGs[
if isnorm +3/k/W
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); [V> :`?
end daA47`+d
end "RV`L[(P*k
% END: Compute the Zernike Polynomials *l> [`U+
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% L@1,7@
O?nPxa<
% Compute the Zernike functions: j.=UI-&m
% ------------------------------ D0Vyh"ua
idx_pos = m>0; i14[3bPLk!
idx_neg = m<0; 9S:{
C@TN5?Z
z = y; ,YP1$gj
if any(idx_pos) ba(arGZ+{
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); .%x"t>]
end Sc;iAi
(
if any(idx_neg) )(:+q(m
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); *Fa)\.XX
end `G=ztL!gq
{h/OnBwG
% EOF zernfun