非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 y?cN
function z = zernfun(n,m,r,theta,nflag) G9&2s%lu.e
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. XX-(>B0L
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N `JV(ae0
% and angular frequency M, evaluated at positions (R,THETA) on the |t"CH'KJZ
% unit circle. N is a vector of positive integers (including 0), and w\[l4|g`
% M is a vector with the same number of elements as N. Each element Sg%s\p]N_#
% k of M must be a positive integer, with possible values M(k) = -N(k) '<,Dz=
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, :}36;n<['
% and THETA is a vector of angles. R and THETA must have the same ;Ows8
% length. The output Z is a matrix with one column for every (N,M) {oOUIP
% pair, and one row for every (R,THETA) pair. 1tO96t^d%
% 0NSw^dO\
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike nGX3_-U4
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ;k0Jl0[}
% with delta(m,0) the Kronecker delta, is chosen so that the integral m*1
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, *]/iL#
% and theta=0 to theta=2*pi) is unity. For the non-normalized l(x0d
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. }>y!I5O
% >aVtYp B
% The Zernike functions are an orthogonal basis on the unit circle. ";Cf@}i>
% They are used in disciplines such as astronomy, optics, and qh W]Wd"g
% optometry to describe functions on a circular domain. ?=)lbSu
K
% dHAT($QG
% The following table lists the first 15 Zernike functions. H9'psv
% Kt qOA[6
% n m Zernike function Normalization zrSYLG
% -------------------------------------------------- 3O4,LXdA
% 0 0 1 1 f.j<VKF}
% 1 1 r * cos(theta) 2 yX*$PNL5w
% 1 -1 r * sin(theta) 2 3st?6?7|
% 2 -2 r^2 * cos(2*theta) sqrt(6) GwXhn2
% 2 0 (2*r^2 - 1) sqrt(3) jLn#%Ia}
% 2 2 r^2 * sin(2*theta) sqrt(6) 2 Y9u9;ah
% 3 -3 r^3 * cos(3*theta) sqrt(8)
{d#sZT
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) #:[F=2@,A
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 7MZH'nO
% 3 3 r^3 * sin(3*theta) sqrt(8) 96;5
% 4 -4 r^4 * cos(4*theta) sqrt(10) %hmRh~/&
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ]5@n`;.
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) $;(@0UDE
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) hMz)l\0
% 4 4 r^4 * sin(4*theta) sqrt(10) QoUdTIIL
% -------------------------------------------------- e*`ht+
%
PPy~dp
% Example 1: SHSfe{n
% *@^@7`W
% % Display the Zernike function Z(n=5,m=1) K 0o F=|
% x = -1:0.01:1; 9%SC#V'
% [X,Y] = meshgrid(x,x); 78*8-
% [theta,r] = cart2pol(X,Y); 9D`K#3}
% idx = r<=1; PP\ bDEPy
% z = nan(size(X)); a6xo U;T
% z(idx) = zernfun(5,1,r(idx),theta(idx)); Yh^8
!
% figure /~".GZ&29
% pcolor(x,x,z), shading interp :81d~f7
% axis square, colorbar $8(QBZq
% title('Zernike function Z_5^1(r,\theta)') Tc"J(GWG
%
SmDNN^GR
% Example 2: :_xfi9L~W0
% x%k@&d;z
% % Display the first 10 Zernike functions NNr6~m)3v
% x = -1:0.01:1; +w.$"dF!
% [X,Y] = meshgrid(x,x); n8)&1
q?V
% [theta,r] = cart2pol(X,Y); CV=qcD
% idx = r<=1; [aA@V0l
% z = nan(size(X)); F_-xp1|
% n = [0 1 1 2 2 2 3 3 3 3]; m3o -p
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; oR~d<^z(
% Nplot = [4 10 12 16 18 20 22 24 26 28]; 7BINqVS&
% y = zernfun(n,m,r(idx),theta(idx)); co\Il]`R/
% figure('Units','normalized') N.q*jY=X|
% for k = 1:10 smQl^
6a
% z(idx) = y(:,k); .vy@uT,
% subplot(4,7,Nplot(k)) `9^+KK "
% pcolor(x,x,z), shading interp \1<|X].jNY
% set(gca,'XTick',[],'YTick',[]) WvArppANo
% axis square #Ff8_xhP 2
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ?Be}{Qqlg
% end opm_|0
% &b^~0Z
% See also ZERNPOL, ZERNFUN2. (K8Ob3zN_
)=iv3nF?6N
% Paul Fricker 11/13/2006 ?ZGsh7<k
{PxFG<^U
k]$oir
% Check and prepare the inputs: [[^95:
% ----------------------------- ;/Z-|+!IJt
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) FP=27=
error('zernfun:NMvectors','N and M must be vectors.') q1eMK'1
end eCsk\f`
6@8t>"}
if length(n)~=length(m) Nb9GrYIS
error('zernfun:NMlength','N and M must be the same length.') 1,)
yEeHjU
end JttDRNZAU
Q 318a0
n = n(:); V7nOT*N:Q
m = m(:); GrJLQO0$N
if any(mod(n-m,2)) [|c%<|d2
error('zernfun:NMmultiplesof2', ... _iq62[i3^
'All N and M must differ by multiples of 2 (including 0).') IaSpF<&Y;
end ,>b>I#{
ti%RE:*
if any(m>n) ihwJBN>(
error('zernfun:MlessthanN', ... `?N0?;
'Each M must be less than or equal to its corresponding N.') dTK0lgkUE
end &*7KQd
z#o''
if any( r>1 | r<0 ) M$Z2"F;
error('zernfun:Rlessthan1','All R must be between 0 and 1.') @j}%{Km]Y
end X|Y(* $?D7
^5Lk}<utw
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) hPNMp@Nm6
error('zernfun:RTHvector','R and THETA must be vectors.') I-r+1gty
end ~I+MuI[
[H<TcT8
r = r(:); rqmb<#
Z
theta = theta(:); r)}U
'iv*%
length_r = length(r); 4%ooJi|)
if length_r~=length(theta) D%yY&q;
error('zernfun:RTHlength', ... u)<s*jk
'The number of R- and THETA-values must be equal.') jci,]*X4
end 9>9EZ?4m
`wt so
% Check normalization: 1]~w?)..'
% -------------------- 3rKJ<(-2/
if nargin==5 && ischar(nflag) J,CwC)
isnorm = strcmpi(nflag,'norm'); q{Z#}|km#
if ~isnorm &LAXNk2
error('zernfun:normalization','Unrecognized normalization flag.') / 'qoKof
end -%yrs6
else -g2l-N{&
isnorm = false; Is7BJf
end I6f/+;E
.nrllVG%`
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0(eaVi-%D
% Compute the Zernike Polynomials esnq/
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% PZusYeV8b
[TFJb+N&
% Determine the required powers of r: (n*:LS=0
% ----------------------------------- s||" } l
m_abs = abs(m); .M^[/!
rpowers = []; s4"OsgP+
for j = 1:length(n) PT6]qS'1
rpowers = [rpowers m_abs(j):2:n(j)]; <R /\nY Xz
end kUgfFa#_
rpowers = unique(rpowers); Y!CUUWM
m<-ShRr*b
% Pre-compute the values of r raised to the required powers, =,(TP
% and compile them in a matrix: ~x9]?T
% ----------------------------- }<0N)dpT
if rpowers(1)==0 )e,O+w"
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ]h,rgO;
rpowern = cat(2,rpowern{:}); D:_W;b)
rpowern = [ones(length_r,1) rpowern]; w]0@V}}u$o
else V9<`?[Usv
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 3O/#^~\'hW
rpowern = cat(2,rpowern{:}); 'f-r 6'_ZX
end Fye>H6MU
_VKI@
% Compute the values of the polynomials: xmvE*q"9]
% -------------------------------------- <:}nd:l1
y = zeros(length_r,length(n)); IFp%Ta
for j = 1:length(n) X@\W*
nq
s = 0:(n(j)-m_abs(j))/2;
-BSdrP|
pows = n(j):-2:m_abs(j); Cf2WBX$
for k = length(s):-1:1 4KM-$h,4O
p = (1-2*mod(s(k),2))* ... (aa2uctTn
prod(2:(n(j)-s(k)))/ ... L"m^LyU
prod(2:s(k))/ ... AI.(}W4]
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... "=djo+y
prod(2:((n(j)+m_abs(j))/2-s(k))); sE pI)9
idx = (pows(k)==rpowers); }4A] x`3
y(:,j) = y(:,j) + p*rpowern(:,idx); RRIh;HhX
end 7 $e 6H|j@
$eYL|?P50h
if isnorm Qq<@;4
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Q\N*)&Sd<M
end ITn%
end UZyg_G6
% END: Compute the Zernike Polynomials 6c-/D.M
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 4E39]vb
`x[Is$
% Compute the Zernike functions: &
o5x
% ------------------------------ ;Bs~E
idx_pos = m>0; >rCD5#DG
idx_neg = m<0; _=GjJ~2n
1!<t8,W4
z = y; r/j:A#6M]o
if any(idx_pos) =yf)Z^
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); dHc\M|HCC
end v'W{+>.
if any(idx_neg) C^J<qq&
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Jka>Er
end heVkCM :
y{%0[x*N<m
% EOF zernfun