非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 DD$Pr&~=
function z = zernfun(n,m,r,theta,nflag) )zt4'b\)v
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. S=amj cC
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N u&_U
CJCf
% and angular frequency M, evaluated at positions (R,THETA) on the [gdPHXs
% unit circle. N is a vector of positive integers (including 0), and })SdaZ
% M is a vector with the same number of elements as N. Each element L.:QI<n
% k of M must be a positive integer, with possible values M(k) = -N(k) 5_C#_=E
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, sfPN\^k2
% and THETA is a vector of angles. R and THETA must have the same / lM~K:
% length. The output Z is a matrix with one column for every (N,M) Ib8{+j
% pair, and one row for every (R,THETA) pair. 'I>#0VRr
% 4bzn^
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike OwIy(ukTI
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Jo$Dxa
z
% with delta(m,0) the Kronecker delta, is chosen so that the integral []3}(8yxGb
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, rPpAg
% and theta=0 to theta=2*pi) is unity. For the non-normalized +mOtYfW
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. O:p649A
% bCe-0!Q
% The Zernike functions are an orthogonal basis on the unit circle. V@'S#K#
% They are used in disciplines such as astronomy, optics, and }Y ];ccT
% optometry to describe functions on a circular domain. -86:PL(I"
% k[) @I;m
% The following table lists the first 15 Zernike functions. R./ 6Q1
% h:sG23@=
% n m Zernike function Normalization `80Hxp@
% -------------------------------------------------- y]4`d
% 0 0 1 1 "$pgmf2
% 1 1 r * cos(theta) 2 Ht^2)~e~:
% 1 -1 r * sin(theta) 2 5w{pX1z1
% 2 -2 r^2 * cos(2*theta) sqrt(6) *Y0,d`
% 2 0 (2*r^2 - 1) sqrt(3) <1.mm_pw
% 2 2 r^2 * sin(2*theta) sqrt(6) ucP MT0k
% 3 -3 r^3 * cos(3*theta) sqrt(8) $QBUnLOek&
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) `2+e\%f/0
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) g9Gy3zk=
% 3 3 r^3 * sin(3*theta) sqrt(8) '\\Cpc_g
% 4 -4 r^4 * cos(4*theta) sqrt(10) BQ0\+
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Ka\b_P&
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) xG/qDc
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) AK?j1Pk
% 4 4 r^4 * sin(4*theta) sqrt(10) }3y\cv0ct
% -------------------------------------------------- :]QxT8B
% NWK_(=n
% Example 1: :?k=Yr
% Q 9<_:3
% % Display the Zernike function Z(n=5,m=1) 3F!+c 8e
% x = -1:0.01:1; iRHQRdij
% [X,Y] = meshgrid(x,x); +aqo8'a
% [theta,r] = cart2pol(X,Y); T["(YFCByg
% idx = r<=1; !r0P\
% z = nan(size(X)); 695ppiKU
% z(idx) = zernfun(5,1,r(idx),theta(idx)); ++"PPbOe&D
% figure ?}
tQaj
% pcolor(x,x,z), shading interp p;=(-4\V}
% axis square, colorbar 9'h^59
% title('Zernike function Z_5^1(r,\theta)') Asu"#sd
% hAyPaS #
% Example 2: <t37DnCgI
% V/}8+Xq
% % Display the first 10 Zernike functions AI; =k
% x = -1:0.01:1; TJ:Lz]l >
% [X,Y] = meshgrid(x,x); !I_4GE,
% [theta,r] = cart2pol(X,Y); f"^tOgGH
% idx = r<=1; $7d"9s\$"
% z = nan(size(X)); <5~>.DuE
% n = [0 1 1 2 2 2 3 3 3 3]; @ R Bw T
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; X-FHJ4
% Nplot = [4 10 12 16 18 20 22 24 26 28]; nB0ol-<
% y = zernfun(n,m,r(idx),theta(idx)); 0+pJv0u
% figure('Units','normalized') jMbK7
1K%
% for k = 1:10 V1A3l{>L
% z(idx) = y(:,k); .y+U7"?s*
% subplot(4,7,Nplot(k)) a"aV&t
% pcolor(x,x,z), shading interp w,9F riW
% set(gca,'XTick',[],'YTick',[]) c
@fc7
% axis square Q2?qvNZ
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 3/FB>w gt
% end ;D:T
^4
% o7zfD94I
% See also ZERNPOL, ZERNFUN2. p]4
sN
GK&Dd"v
% Paul Fricker 11/13/2006 n\Ixv
HXI}f\6x
m@~x*+Iz
% Check and prepare the inputs: )zo ;r!eP
% ----------------------------- !d(V7`8
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) `f]O
error('zernfun:NMvectors','N and M must be vectors.') ]EQ/*ct
end T1=M6iJ
q3`t0eLZ
if length(n)~=length(m) >k|[U[@
error('zernfun:NMlength','N and M must be the same length.') e.V){}{V
end {AUEVt
H
#_Z6J
n = n(:); (xL=X%6a
m = m(:); |=s3a5sl
if any(mod(n-m,2)) :f;|^(]"
error('zernfun:NMmultiplesof2', ... aDuanGC/V
'All N and M must differ by multiples of 2 (including 0).') gzF&7trN
end za7wNe(s
{wI0 =U
if any(m>n) n}{cs
error('zernfun:MlessthanN', ... l1WVt}
'Each M must be less than or equal to its corresponding N.') {'!~j!1'j
end 3yN1cd"#?
.U_=LV]C
if any( r>1 | r<0 ) 9 lv2
error('zernfun:Rlessthan1','All R must be between 0 and 1.') if>] )g2lr
end &bQ^J%\
BxF
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) \`C3;}o:"P
error('zernfun:RTHvector','R and THETA must be vectors.') v(`$%V.
end ,dBI=D'
uk,f}Xc
r = r(:); M_K&x-H0
theta = theta(:); 2lRZ/xaF%P
length_r = length(r); 7f>n`nq?
if length_r~=length(theta) >pKI'
error('zernfun:RTHlength', ... D$HxPfDZ
'The number of R- and THETA-values must be equal.') J++D\x#@
end A7H=#L+C
AI2CfH#:C
% Check normalization: 71_N9ub@z
% -------------------- 0W> ",2|z
if nargin==5 && ischar(nflag) A\`Uu&
isnorm = strcmpi(nflag,'norm'); )1/O_N6C
if ~isnorm Lst5
error('zernfun:normalization','Unrecognized normalization flag.') _wBPn6gg`
end ^d,d<Uc
else J3=jC5=J4
isnorm = false; w]_a0{Uh
end ?=/l@ d
',f[y:v;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% lgl/|
^ Uw
% Compute the Zernike Polynomials eo!z>9#.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% eC?N>wHH
n" sGI
% Determine the required powers of r: bTj,5,8i
% ----------------------------------- "T PMSx&Ei
m_abs = abs(m); Mtu8zm
rpowers = []; H,'c&
for j = 1:length(n) lI9 3{!+>
rpowers = [rpowers m_abs(j):2:n(j)]; c!zu0\[Id
end WVZ\4y
rpowers = unique(rpowers); E%TvGe;#
i>;G4
% Pre-compute the values of r raised to the required powers, sMZ \6
% and compile them in a matrix: [eImP
V]
% ----------------------------- zC7;Zj*k
if rpowers(1)==0 ^#+9v
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 3iB8QO;pp
rpowern = cat(2,rpowern{:}); nP.d5%E
rpowern = [ones(length_r,1) rpowern]; 79\
=)m}$Q
else d<]/,BY'
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ]Sh&8 #
rpowern = cat(2,rpowern{:}); AK[c!mzx
end ;k>{I8L~
E)Dik`Ccl
% Compute the values of the polynomials: ~34$D],D
% -------------------------------------- T"O!
y = zeros(length_r,length(n)); @I%m}>4Jm
for j = 1:length(n) \>+gZc]an
s = 0:(n(j)-m_abs(j))/2; =3FXU{"Qi4
pows = n(j):-2:m_abs(j); PqfH}d0l
for k = length(s):-1:1 Epx.0TA= t
p = (1-2*mod(s(k),2))* ... d97wiE/i<
prod(2:(n(j)-s(k)))/ ... il:""x7^y
prod(2:s(k))/ ... 4WLB,<b}
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... =uHTpHR
prod(2:((n(j)+m_abs(j))/2-s(k))); h<?Vzl
idx = (pows(k)==rpowers); ak%8|'}
y(:,j) = y(:,j) + p*rpowern(:,idx); Gb"PMai
end PWTAy\
#VLTx!5o
if isnorm T+I|2HYqOj
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Ba"Z^(:
end B|!Re4`0
end Xs4`bbap
% END: Compute the Zernike Polynomials Ox58L>:0m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% uJi|@{V
b( wiJ&t
% Compute the Zernike functions: W)KV"A3C
% ------------------------------ \hg12],#:@
idx_pos = m>0; ur;8uv2o
idx_neg = m<0; STO6cNi
~#wq sm
z = y; /MA4Er r
if any(idx_pos) nfc&.(6x<
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Rt+s\MC^r
end -q[?,h
if any(idx_neg) %N 2=: ;f
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ZZ.GpB.
end 0 j6/H?OT
l/Sb JrM*
% EOF zernfun