切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11758阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 bHr2LhQCN  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! jDp]}d|f)  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 iQczvn)"m  
    function z = zernfun(n,m,r,theta,nflag) qy`95^  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. ExDH@Lb  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N }b+tD3+  
    %   and angular frequency M, evaluated at positions (R,THETA) on the rO% |PRP  
    %   unit circle.  N is a vector of positive integers (including 0), and //G5lW/*  
    %   M is a vector with the same number of elements as N.  Each element +igFIoHTM  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) xo0",i f8  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, MOJ-q3H^W  
    %   and THETA is a vector of angles.  R and THETA must have the same L&qzX)  
    %   length.  The output Z is a matrix with one column for every (N,M) kb?QQ\e  
    %   pair, and one row for every (R,THETA) pair. VT1W#@`e-  
    % )-824?Nl:  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 30Nya$$A=  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 5=g{%X  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 4 uv'l3  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, (=${@=!z  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized im^G{3z  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. tr2@{xb  
    % #F5O>9hA  
    %   The Zernike functions are an orthogonal basis on the unit circle. ,cs`6Bd4  
    %   They are used in disciplines such as astronomy, optics, and CTt3W>'=+  
    %   optometry to describe functions on a circular domain. " *xQN "F  
    % xW{_c[oA  
    %   The following table lists the first 15 Zernike functions. v709#/ cR  
    % >R/^|hnJ  
    %       n    m    Zernike function           Normalization 5AR\'||u  
    %       -------------------------------------------------- ?Zu=UVb  
    %       0    0    1                                 1 oUEpzv,J  
    %       1    1    r * cos(theta)                    2 "])X0z yM  
    %       1   -1    r * sin(theta)                    2 Z>Nr"7k  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 4E:HO\  
    %       2    0    (2*r^2 - 1)                    sqrt(3) h2+vl@X  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) 8^;[c  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) %FGPsHH  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) :{C#<g`  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ):eX*  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) &|xN=U/  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) eKpH|S!x U  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) eJ>(SkR:[  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) ,U2 /J  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) o"t+G/M  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) vk+TWf  
    %       -------------------------------------------------- GiB3.%R`  
    % N(Us9  
    %   Example 1: Y_S^B)y  
    %  N\DEY]  
    %       % Display the Zernike function Z(n=5,m=1) UaCEh?D+Y  
    %       x = -1:0.01:1; 'OSZ'F3PV  
    %       [X,Y] = meshgrid(x,x); $k*E^~qT  
    %       [theta,r] = cart2pol(X,Y); L #p-AK  
    %       idx = r<=1; nCEt*~t9VE  
    %       z = nan(size(X)); :{%6< j  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); ofl3G {u  
    %       figure ]7v-qd  
    %       pcolor(x,x,z), shading interp `N}<lg(0#  
    %       axis square, colorbar .Xh^L  
    %       title('Zernike function Z_5^1(r,\theta)') eh nN  
    % ~m y\{q  
    %   Example 2: ROr$ Sz  
    % gA~BhDS  
    %       % Display the first 10 Zernike functions sN 1x|pkN  
    %       x = -1:0.01:1; BqK|4-Pf  
    %       [X,Y] = meshgrid(x,x); 'Wl) )lB  
    %       [theta,r] = cart2pol(X,Y); Lp20{R  
    %       idx = r<=1; Ua\g*Cxh  
    %       z = nan(size(X)); / O6n[qj|  
    %       n = [0  1  1  2  2  2  3  3  3  3]; 25*/]i u  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 3zY"9KUN  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; MOP %vS   
    %       y = zernfun(n,m,r(idx),theta(idx)); -MJ6~4k2  
    %       figure('Units','normalized') ,\4@Ao  
    %       for k = 1:10 ItHKpTe r  
    %           z(idx) = y(:,k); V:)k@W?P  
    %           subplot(4,7,Nplot(k)) w<&Nn`V  
    %           pcolor(x,x,z), shading interp ;2kiEATQ 1  
    %           set(gca,'XTick',[],'YTick',[]) fXvJ3w(  
    %           axis square [oKc<o7)~"  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) jwyJ=W-  
    %       end R*/%+  
    % {%^q8l4j  
    %   See also ZERNPOL, ZERNFUN2. y _>HQs,:  
    SoS[yr  
    %   Paul Fricker 11/13/2006 S%-L!V ,  
    (A\qZtnyl  
    qbu Lcy3  
    % Check and prepare the inputs: ["Ep.7=SU  
    % ----------------------------- !0 `44Gbq  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 5W>i'6*  
        error('zernfun:NMvectors','N and M must be vectors.')  nsij;C  
    end ;$&&tEh)  
    NtkEb :  
    if length(n)~=length(m) 6gY5v @!w  
        error('zernfun:NMlength','N and M must be the same length.') ;" '` P[  
    end 9yajtR  
    thOQcOf0$  
    n = n(:); N-]h+Cnyu  
    m = m(:); pY!@w0.  
    if any(mod(n-m,2)) P )_g t  
        error('zernfun:NMmultiplesof2', ... zGj0'!!-  
              'All N and M must differ by multiples of 2 (including 0).') ae{% * \J  
    end YMj z , N  
    [IF3 ,C  
    if any(m>n) fxXZ^#2wX  
        error('zernfun:MlessthanN', ... }N:0%Gk[;  
              'Each M must be less than or equal to its corresponding N.') [ahD%UxO5  
    end L,p5:EW8.  
    TjncW/\Z  
    if any( r>1 | r<0 ) jl{>>TW{x  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') Ra&HzK?  
    end `]_#_  
    tmDI2Z%7  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 29z+<?K{  
        error('zernfun:RTHvector','R and THETA must be vectors.') =S4_^UY;  
    end _S{HVc  
    {kD|8["Ie'  
    r = r(:); ;3h[=hyS  
    theta = theta(:); I?lQN$A.E  
    length_r = length(r); BR8z%R  
    if length_r~=length(theta) =7e~L 3 K  
        error('zernfun:RTHlength', ... j0>S)Q  
              'The number of R- and THETA-values must be equal.') %g^dB M#  
    end |t1D8){!  
    J )oa:Q  
    % Check normalization: V?kJYf(<  
    % -------------------- 5O#CdN-S  
    if nargin==5 && ischar(nflag) xqmP/1=NO  
        isnorm = strcmpi(nflag,'norm'); XG@_Lcv*  
        if ~isnorm }at8b ^  
            error('zernfun:normalization','Unrecognized normalization flag.') )Uw QsP  
        end .!\y<9  
    else Q[;!z1ur  
        isnorm = false; o )GNV  
    end oil s;*q  
    X<Rh-1$8F  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ELk$ lm&@  
    % Compute the Zernike Polynomials X4!` V?  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |fYNkD 8z1  
    57Y(_h:  
    % Determine the required powers of r: Se9I1~mX  
    % ----------------------------------- y-cRqIM  
    m_abs = abs(m); /i"vEI  
    rpowers = []; KXL]Qw FN  
    for j = 1:length(n) sOa`Tk  
        rpowers = [rpowers m_abs(j):2:n(j)]; p ~J`}>yo  
    end Sir7TQ4B  
    rpowers = unique(rpowers); @ eqVu g  
    l]%_D*<Y  
    % Pre-compute the values of r raised to the required powers,  Xt(w+  
    % and compile them in a matrix: /(8Usu?g.  
    % ----------------------------- '!]ry<  
    if rpowers(1)==0 Vl5}m  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ;Z-xum{  
        rpowern = cat(2,rpowern{:}); U;Se'*5xv  
        rpowern = [ones(length_r,1) rpowern]; %a<N[H3NV@  
    else )}\jbh>RH  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); (NyS2 `  
        rpowern = cat(2,rpowern{:}); 3o9`Ko0  
    end - U!:.  
    ajq[ID  
    % Compute the values of the polynomials: cF_ Y}C  
    % -------------------------------------- X@:pys 8@  
    y = zeros(length_r,length(n)); |y)Rlb# d  
    for j = 1:length(n) |lm   
        s = 0:(n(j)-m_abs(j))/2; P#\L6EO.  
        pows = n(j):-2:m_abs(j); @\e2Q& O  
        for k = length(s):-1:1 |!euty ::  
            p = (1-2*mod(s(k),2))* ... i64a]=  
                       prod(2:(n(j)-s(k)))/              ... kIWQ _2  
                       prod(2:s(k))/                     ... AYeA)jk  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... a)^f`s^aa  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); KFCrJ )  
            idx = (pows(k)==rpowers); dX-{75o5P  
            y(:,j) = y(:,j) + p*rpowern(:,idx); wqx@/--E(  
        end 6]^ShOX_Z  
         cW4:eh  
        if isnorm S75wtz)e  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); fWhwI+  
        end xgn@1.}G  
    end \< <u  
    % END: Compute the Zernike Polynomials I7ZY9W(S  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 5, R\tJCK  
    \-a^8{.^E  
    % Compute the Zernike functions: vz #VW  
    % ------------------------------ }26?bd@e`  
    idx_pos = m>0; !(~eeE}|lM  
    idx_neg = m<0; ~McmlJzJG  
    RMUR@o5N  
    z = y; #56}RV1  
    if any(idx_pos) PVH^yWi n  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 5+].$  
    end ``kiAKMy  
    if any(idx_neg) ~UA-GWb  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); srXGe`VL  
    end ZgQ4~s  
    [g`9C!P-G  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) l5_RG,O0A  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. 3>Y G  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated O32p8AxEz  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive }tA77Cm)45  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, 8dgI&t  
    %   and THETA is a vector of angles.  R and THETA must have the same f1w&D ]|S+  
    %   length.  The output Z is a matrix with one column for every P-value, Zz}Wg@&  
    %   and one row for every (R,THETA) pair. Bd jo3eX  
    % ;#$ 67G$  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike nJ'FH['  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) L;N)l2m.\  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) 6$$4!R-  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 0t[|3A~Q  
    %   for all p. {U@&hE -  
    % r LQBaT7t#  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 "[M,PI!B  
    %   Zernike functions (order N<=7).  In some disciplines it is ,l/~epx4v)  
    %   traditional to label the first 36 functions using a single mode #^%HJp^  
    %   number P instead of separate numbers for the order N and azimuthal "P.H  
    %   frequency M. lZ]x #v  
    % "2} {lu  
    %   Example: Lt`d {s  
    % KG9h rT  
    %       % Display the first 16 Zernike functions DP{kin"4I  
    %       x = -1:0.01:1; %+Hhe]J ld  
    %       [X,Y] = meshgrid(x,x); s jl(  
    %       [theta,r] = cart2pol(X,Y); mU0j K@^&M  
    %       idx = r<=1; &/QdG= r+  
    %       p = 0:15; XgRrJ.  
    %       z = nan(size(X)); tgmG#b*  
    %       y = zernfun2(p,r(idx),theta(idx)); GF 4k  
    %       figure('Units','normalized') E57:ap)/  
    %       for k = 1:length(p) 8T"C]  
    %           z(idx) = y(:,k); 3h t>eaHi  
    %           subplot(4,4,k) qJV2x.!  
    %           pcolor(x,x,z), shading interp t8SvU  
    %           set(gca,'XTick',[],'YTick',[]) LpRl!\FY$  
    %           axis square 3sr> ?/>:  
    %           title(['Z_{' num2str(p(k)) '}']) UQ]WBS\  
    %       end $Ro]]NUz|  
    % MI8f(ZJK5  
    %   See also ZERNPOL, ZERNFUN. +9mE1$C  
    =AEl:SY+  
    %   Paul Fricker 11/13/2006 >f)/z$ qn  
    {Yq"%n'0  
    Cka&b  
    % Check and prepare the inputs: MR4e.+#E  
    % ----------------------------- 2XoFmV),F  
    if min(size(p))~=1 +c4-7/kE  
        error('zernfun2:Pvector','Input P must be vector.') bm/pLC6%.  
    end > mI1wV[  
    %C8p!)Hu  
    if any(p)>35 *B<Ig^c  
        error('zernfun2:P36', ... J-iFA KN  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... )v\zaz  
               '(P = 0 to 35).']) &n6'r^[D  
    end Ek'~i  
    4wLN#dpeEy  
    % Get the order and frequency corresonding to the function number: A'A5.\UN  
    % ---------------------------------------------------------------- b!(ew`Y;  
    p = p(:); BY*{j&^  
    n = ceil((-3+sqrt(9+8*p))/2); Oz8"s4Y7  
    m = 2*p - n.*(n+2); z"7I5N  
    }~B@Z\`O  
    % Pass the inputs to the function ZERNFUN: jhRg47A  
    % ---------------------------------------- M1nH!A~o  
    switch nargin #>O!N  
        case 3 qW~Z#Si  
            z = zernfun(n,m,r,theta); WY>r9+A?W  
        case 4 #eRrVjbo  
            z = zernfun(n,m,r,theta,nflag); eXs^YPi  
        otherwise VkFvV><"  
            error('zernfun2:nargin','Incorrect number of inputs.') P:lmQHls+  
    end L@mNfLK  
    oe (})M  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) 7LFJi@*8  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. a*hWODYn  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of %yyvB5Y^  
    %   order N and frequency M, evaluated at R.  N is a vector of f6of8BOg  
    %   positive integers (including 0), and M is a vector with the @PQ% xcOC7  
    %   same number of elements as N.  Each element k of M must be a [TW?sW^0  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) y 4 wV]1  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is c*m7'\  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix "_f~8f`y  
    %   with one column for every (N,M) pair, and one row for every v3*y43  
    %   element in R. #oYPe:8|m  
    % 'VMov  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- KD<smwXjG  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is (yJY/|  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to $q$G  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1  =8o$  
    %   for all [n,m]. '9ki~jtf=  
    % i?3~Gog  
    %   The radial Zernike polynomials are the radial portion of the aAbK{=/y_!  
    %   Zernike functions, which are an orthogonal basis on the unit K]{x0A  
    %   circle.  The series representation of the radial Zernike +GYO<N7  
    %   polynomials is IgmCZ?l&0  
    % iJ&jg`"=F  
    %          (n-m)/2 B,5kG{2!  
    %            __ sBq-"YcjR  
    %    m      \       s                                          n-2s 4\_~B{kzZ  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r {}n]\zO %  
    %    n      s=0 /Kd9UQU  
    % +QW| 8b  
    %   The following table shows the first 12 polynomials. R/WbcQ)  
    % ke)}JU^"  
    %       n    m    Zernike polynomial    Normalization m ?e::W  
    %       --------------------------------------------- : MEB] }  
    %       0    0    1                        sqrt(2) 7W MF8(j5  
    %       1    1    r                           2 Pf:;iXH?  
    %       2    0    2*r^2 - 1                sqrt(6) E]P7u"1  
    %       2    2    r^2                      sqrt(6) Ql1J?9W  
    %       3    1    3*r^3 - 2*r              sqrt(8) ufi:aE=}  
    %       3    3    r^3                      sqrt(8) gTQc=,3l3  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) zl3GWj|?\7  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) $~,J8?)(z  
    %       4    4    r^4                      sqrt(10)  ?8/T#ox  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) "?M)2,:A  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) Y6E0-bL@Fe  
    %       5    5    r^5                      sqrt(12) V<i_YLYmJe  
    %       --------------------------------------------- ]:r(U5 #  
    % 'Ul^V  
    %   Example: @$|8zPs  
    % UrmnHc>}c  
    %       % Display three example Zernike radial polynomials Djr/!j  
    %       r = 0:0.01:1; $vLGX>H  
    %       n = [3 2 5]; q&kG>  
    %       m = [1 2 1]; d6XdN  
    %       z = zernpol(n,m,r); m7|S'{+!  
    %       figure d6f T  
    %       plot(r,z) |Kq<}R  
    %       grid on ]Om;bmwt  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') LL_@nvu}M  
    % { V$}qa{P  
    %   See also ZERNFUN, ZERNFUN2. A D%9;KQ8  
    Y M,UM>  
    % A note on the algorithm. GD1L6kVd1  
    % ------------------------ r`Bm" xI  
    % The radial Zernike polynomials are computed using the series Kw =RqF  
    % representation shown in the Help section above. For many special jfU$qo!gi  
    % functions, direct evaluation using the series representation can 7P:/ (P  
    % produce poor numerical results (floating point errors), because 8xt8kf*k  
    % the summation often involves computing small differences between JYR^k=  
    % large successive terms in the series. (In such cases, the functions ;--p/h*.  
    % are often evaluated using alternative methods such as recurrence 9hei8L:  
    % relations: see the Legendre functions, for example). For the Zernike P#9Pq,I  
    % polynomials, however, this problem does not arise, because the tI<6TE'!p#  
    % polynomials are evaluated over the finite domain r = (0,1), and 4*9BAv  
    % because the coefficients for a given polynomial are generally all wWVB'MRXB,  
    % of similar magnitude. xQ! Va  
    % |,T"_R_K  
    % ZERNPOL has been written using a vectorized implementation: multiple `4,]Mr1b  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] 6~O;t'd  
    % values can be passed as inputs) for a vector of points R.  To achieve ]zz%gZz  
    % this vectorization most efficiently, the algorithm in ZERNPOL .\+c{  
    % involves pre-determining all the powers p of R that are required to -U{!'e8YiN  
    % compute the outputs, and then compiling the {R^p} into a single TMD*-wYr  
    % matrix.  This avoids any redundant computation of the R^p, and iSNbbu#  
    % minimizes the sizes of certain intermediate variables. r-_-/O"l  
    % @o6!  
    %   Paul Fricker 11/13/2006 Flaqgi/j  
    qu0 q LM  
    fS3%  
    % Check and prepare the inputs: QN;GMX5&  
    % ----------------------------- mGo NT  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) blUS6"kV}  
        error('zernpol:NMvectors','N and M must be vectors.') F$S/zh$)0  
    end nK`H;k  
    $S^rKp#  
    if length(n)~=length(m) } x Kv N  
        error('zernpol:NMlength','N and M must be the same length.') Mehp]5*  
    end 24*3m&fA*K  
    8l<~zIoO  
    n = n(:); 75iudki  
    m = m(:); \[ W`hhJ  
    length_n = length(n); k>=wwPy  
    TA+#{q+a  
    if any(mod(n-m,2)) L+G i  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') ZU`HaL$  
    end 4{h^O@*g  
    cqp^**s  
    if any(m<0) f[q_eY  
        error('zernpol:Mpositive','All M must be positive.') 4'.] -u  
    end ~ujg250.L  
    <bJ~Ol  
    if any(m>n) }Qh%Z)  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') a YY1*^  
    end /U>8vV+C  
    UMH~Q`"  
    if any( r>1 | r<0 ) eGUe#(I /  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') \}Kad\)  
    end m|[cEZxHB  
    r#d]"3tH  
    if ~any(size(r)==1) <)+;Bg  
        error('zernpol:Rvector','R must be a vector.') ;1k_J~Qei  
    end ~]BR(n  
    KF7d`bRe  
    r = r(:); Cyud)BZvm  
    length_r = length(r); xzRC %  
    V3_qqz}`r  
    if nargin==4 =|d5V%mK  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); ?h8/\~Dw  
        if ~isnorm `Mo%)I<`=  
            error('zernpol:normalization','Unrecognized normalization flag.') ,88%eX|  
        end 7>gW2 m  
    else II.Wa&w}  
        isnorm = false; k,y#|bf,Y  
    end .>'J ^^  
    hG3RZN#ejq  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% R~bLEo  
    % Compute the Zernike Polynomials (; Zl  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 2Mu(GUe;  
    U27ja|W^  
    % Determine the required powers of r: _K~?{".  
    % ----------------------------------- 'YEiT#+/  
    rpowers = []; UL" <V  
    for j = 1:length(n) [ HjGdC  
        rpowers = [rpowers m(j):2:n(j)]; *oIKddZh  
    end  uMBb=   
    rpowers = unique(rpowers); Q1 vse  
     ^9kdd[  
    % Pre-compute the values of r raised to the required powers, UKSI"/8I  
    % and compile them in a matrix: F,XJGD*  
    % ----------------------------- g: "Hg-s  
    if rpowers(1)==0 ? oGmGKq  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); %$!EjyH9  
        rpowern = cat(2,rpowern{:}); c{f1_qXN  
        rpowern = [ones(length_r,1) rpowern]; (yz8}L3  
    else `RE1q)o}8M  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); &S# bLE  
        rpowern = cat(2,rpowern{:}); \y/+H  
    end t{/ EN)J  
    .]Z,O>N  
    % Compute the values of the polynomials: fGLOXbsA  
    % -------------------------------------- m<22E0=g  
    z = zeros(length_r,length_n); /XW,H0pR  
    for j = 1:length_n Q_a%$a.rV  
        s = 0:(n(j)-m(j))/2; *-9b!>5eD  
        pows = n(j):-2:m(j); :Ee5:S   
        for k = length(s):-1:1 [ \Aor[(  
            p = (1-2*mod(s(k),2))* ... gClDVO  
                       prod(2:(n(j)-s(k)))/          ... __||cQ  
                       prod(2:s(k))/                 ... jfrUOl'l  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... 5(OF~mX#  
                       prod(2:((n(j)+m(j))/2-s(k))); /h%MWCZWm^  
            idx = (pows(k)==rpowers); cl-i6[F  
            z(:,j) = z(:,j) + p*rpowern(:,idx); S[M\com'  
        end ihhnB  
         :ui1]its4  
        if isnorm `24:Eg6r  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); #$%gs]  
        end +NEP*mk  
    end 7f td2lv  
    VbX$i!>8  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    857
    光币
    847
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  ftPw6  
    ,f+5x]F?m  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 jQ)>XOok  
    hI8C XG  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)