切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11754阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 -TD6s:'  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! ]AHUo;(f%  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 m# SZI}  
    function z = zernfun(n,m,r,theta,nflag) my} P\r.  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. .9ROa#7U;n  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N MRC5c:(  
    %   and angular frequency M, evaluated at positions (R,THETA) on the CjST*(,b  
    %   unit circle.  N is a vector of positive integers (including 0), and bZlAK)  
    %   M is a vector with the same number of elements as N.  Each element @ =,J6  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) UG!&n@R  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, D=OU61AA  
    %   and THETA is a vector of angles.  R and THETA must have the same xp &I~YPH  
    %   length.  The output Z is a matrix with one column for every (N,M) xj~6,;83xR  
    %   pair, and one row for every (R,THETA) pair. {Ise (>V  
    % ^{Vm,nAQqs  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike r;'!qwr  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), es6e-y@e  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral rcbixOT  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, mb/3 #)  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized gTq-\k(  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 4Cfwz-Qo  
    % r'!l` gm,S  
    %   The Zernike functions are an orthogonal basis on the unit circle. #2MwmIeA  
    %   They are used in disciplines such as astronomy, optics, and dKMuo'H'%  
    %   optometry to describe functions on a circular domain. bHMlh^{`%  
    % 6%'{Cq1DE  
    %   The following table lists the first 15 Zernike functions. /# eBDo  
    % rvG qUmSUs  
    %       n    m    Zernike function           Normalization Xmnq ZWB  
    %       -------------------------------------------------- "s*{0'jo  
    %       0    0    1                                 1 q{@Wn]!k  
    %       1    1    r * cos(theta)                    2 '|cuVxcE55  
    %       1   -1    r * sin(theta)                    2 af_zZf!0  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) F+6ZD5/  
    %       2    0    (2*r^2 - 1)                    sqrt(3) E`s_Dr}K  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) 6RF01z|~_  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) PQ[TTLG\&  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) PY2`RZ/@  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) y#MLxm  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) z_H2 L"Z  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) Q,4F=b  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 4a 5n*6G!  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) Kzm_AHA)  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ;e{2?}#8&  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) h1Lp:@:|  
    %       -------------------------------------------------- %MIu;u FR  
    % ]@f6O *&=  
    %   Example 1: m<yA] ';s  
    % c`>\R<Z ]  
    %       % Display the Zernike function Z(n=5,m=1) w iq{ Jo#  
    %       x = -1:0.01:1; P]TT  
    %       [X,Y] = meshgrid(x,x); 0{ ,zE  
    %       [theta,r] = cart2pol(X,Y); GGBe/X  
    %       idx = r<=1; =UV?Pi*M>  
    %       z = nan(size(X)); ,'9tR&S$_  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); VgdkCdWRm_  
    %       figure .$yw;go3  
    %       pcolor(x,x,z), shading interp 06`__$@h  
    %       axis square, colorbar Z:*U/_G  
    %       title('Zernike function Z_5^1(r,\theta)') {)[i\=,`{  
    % -3V~YhG  
    %   Example 2: =.%ZF]Oe+#  
    % <r kW4  
    %       % Display the first 10 Zernike functions </%H'V@  
    %       x = -1:0.01:1; X+3)DE\2  
    %       [X,Y] = meshgrid(x,x); $i1A470C  
    %       [theta,r] = cart2pol(X,Y); lVFX@I=pI  
    %       idx = r<=1; y((_V%F}  
    %       z = nan(size(X)); AWi87q  
    %       n = [0  1  1  2  2  2  3  3  3  3]; MT5A%|He  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; gv,T<A?Z2  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; =6dKC_Q  
    %       y = zernfun(n,m,r(idx),theta(idx)); <Z;7=k  
    %       figure('Units','normalized') G225Nz;Y*  
    %       for k = 1:10 KH7]`CU  
    %           z(idx) = y(:,k); |:?.-tq  
    %           subplot(4,7,Nplot(k)) <7 rK  
    %           pcolor(x,x,z), shading interp JA}'d7yEa  
    %           set(gca,'XTick',[],'YTick',[]) =4 D_-Q  
    %           axis square +E:(-$"R  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Dmi;# WY  
    %       end %(Ys-GeGr  
    % F:g{rm[  
    %   See also ZERNPOL, ZERNFUN2. Z:hrrq9  
    c-T ^ aR  
    %   Paul Fricker 11/13/2006 a(~Yr A%~  
    J*Hn/m  
    V[M#qZS  
    % Check and prepare the inputs: L8zqLD i&  
    % -----------------------------  =s]{  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ]*@$%iCPE  
        error('zernfun:NMvectors','N and M must be vectors.') $.1'Ym  
    end Zz-;jkX)  
    c #!6  
    if length(n)~=length(m) Yel(}Ny  
        error('zernfun:NMlength','N and M must be the same length.') ?>8zU;Aj  
    end Bg h$P  
    iq:[+  
    n = n(:); EAB+kY  
    m = m(:); lnWi E}F  
    if any(mod(n-m,2)) F"H!CJJu&  
        error('zernfun:NMmultiplesof2', ... w2+]C&B*  
              'All N and M must differ by multiples of 2 (including 0).') aTm.10{^  
    end j*u9+.   
    W~F/ZrT3A  
    if any(m>n) \,!q[nC  
        error('zernfun:MlessthanN', ... SU'9+=_$  
              'Each M must be less than or equal to its corresponding N.') ;QQ7vo  
    end  ;"^9L  
    ,rI |+  
    if any( r>1 | r<0 ) $0SZlq>En  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') ~k0)+D}  
    end E@6r{uZ#  
    /&:9VMMj  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) PJ@,01  
        error('zernfun:RTHvector','R and THETA must be vectors.') $jm<' 4  
    end a.IF%hP0xo  
    AV4HX\`{P0  
    r = r(:); +fQL~ 0tA  
    theta = theta(:); ^(JHRH~=h  
    length_r = length(r); #ljg2:I+  
    if length_r~=length(theta) !s*''v*  
        error('zernfun:RTHlength', ... mMAr8~ A=  
              'The number of R- and THETA-values must be equal.') K=?F3tX^  
    end nj0AO0  
    }l?_Cfvu  
    % Check normalization: w00\1'-Kz  
    % -------------------- }!]x|zU.=  
    if nargin==5 && ischar(nflag) 25c!-.5D  
        isnorm = strcmpi(nflag,'norm'); o;>3z*9?3  
        if ~isnorm $A@3ogoS&  
            error('zernfun:normalization','Unrecognized normalization flag.') w LN2`ucC  
        end ,(27p6!  
    else :@`(}5F4  
        isnorm = false; >X,Ag  
    end KbdfSF$  
    nl9Cdi]o  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% eQVPxt2N  
    % Compute the Zernike Polynomials Rfc&OV  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% `6N-MsP  
    e_k _ ty`  
    % Determine the required powers of r: $:E}Nj]{&  
    % ----------------------------------- if[o?6U4t  
    m_abs = abs(m); d<Q+D1  
    rpowers = []; "]s|D@^4#b  
    for j = 1:length(n) RvSq KW8  
        rpowers = [rpowers m_abs(j):2:n(j)]; Y-3[KHD  
    end U?F^D4CV\  
    rpowers = unique(rpowers); \_Kt6=  
    BZ;}ROmqk  
    % Pre-compute the values of r raised to the required powers, EcU'*  
    % and compile them in a matrix: /1W7<']>xV  
    % ----------------------------- ,J (5@8(>a  
    if rpowers(1)==0 NVc! g  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 7vpN 6YP  
        rpowern = cat(2,rpowern{:}); u:uSsAn0$  
        rpowern = [ones(length_r,1) rpowern]; *Qg5Z   
    else y+";  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); i$JG^6,O  
        rpowern = cat(2,rpowern{:}); Q_kT}6#(J=  
    end Vo 6y8@\  
    -RH4y 2  
    % Compute the values of the polynomials: Cj !i)-  
    % -------------------------------------- =,d* {m~A  
    y = zeros(length_r,length(n)); h*#2bS~nl-  
    for j = 1:length(n) !0OD(XT  
        s = 0:(n(j)-m_abs(j))/2; 'lN*Ys iDi  
        pows = n(j):-2:m_abs(j); 1t[;`iZ  
        for k = length(s):-1:1 sUbz)BS#.  
            p = (1-2*mod(s(k),2))* ... C~KWH@  
                       prod(2:(n(j)-s(k)))/              ... 6A$_&?  
                       prod(2:s(k))/                     ... P~\a)Szy  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... V%BJNJ  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); Sj0 ucnuHi  
            idx = (pows(k)==rpowers); !2Xr~u7a  
            y(:,j) = y(:,j) + p*rpowern(:,idx); (~G5t(+  
        end 2E3?0DL",  
         [W9e>Nsp0  
        if isnorm K$<`4#i  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Ld\LKwo  
        end qIDWl{b<  
    end s!@=rq  
    % END: Compute the Zernike Polynomials 1 ;\]D9i  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% E/~"j  
    (:?5 i`  
    % Compute the Zernike functions: +~w?Xw,  
    % ------------------------------ ]_ejDN\>{V  
    idx_pos = m>0; #QTfT&m+G}  
    idx_neg = m<0; rL%]S&M9  
    FDF3zzP0  
    z = y; g[EM]q,  
    if any(idx_pos) FJa[ToZ4+  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); R=vbUA  
    end bkr~13S{+  
    if any(idx_neg) `Di ^6UK(  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); S,*{q(   
    end !2zo]v4?  
    H.YIv50E  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) (NH8AS<  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. ,|T*|2Gm  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated jo9J%vo  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive k{gl^  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, = n+q_.A  
    %   and THETA is a vector of angles.  R and THETA must have the same "gXxRHTX  
    %   length.  The output Z is a matrix with one column for every P-value, rNxrQ  
    %   and one row for every (R,THETA) pair. + ,@ FxZl  
    % &`9j)3^J.  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike t8+?U^j  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) Nk96"P$P  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) xS= _yO9-  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 O&`U5w  
    %   for all p. k2EHco0BG  
    % ,>D ja59  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 /xl4ohL$a  
    %   Zernike functions (order N<=7).  In some disciplines it is \hs/D+MCk  
    %   traditional to label the first 36 functions using a single mode 9@:BK;Fi  
    %   number P instead of separate numbers for the order N and azimuthal }1QI"M*  
    %   frequency M. z-n>9  
    % Z5((1J9  
    %   Example: Yo>`h2C4  
    % Ct4LkmD  
    %       % Display the first 16 Zernike functions Oo FgQEr@  
    %       x = -1:0.01:1; r?fH &u  
    %       [X,Y] = meshgrid(x,x); U(U@!G)  
    %       [theta,r] = cart2pol(X,Y); Z;ZuS[ZA  
    %       idx = r<=1; /_]ltXD  
    %       p = 0:15; IikG /8lP  
    %       z = nan(size(X)); L ;6b+I  
    %       y = zernfun2(p,r(idx),theta(idx)); ?q\FLb%"7  
    %       figure('Units','normalized') ~mtTsZc  
    %       for k = 1:length(p) EJ1Bq>u7  
    %           z(idx) = y(:,k); j]r XoV>  
    %           subplot(4,4,k) 2zz,(RA  
    %           pcolor(x,x,z), shading interp z8IPhE@  
    %           set(gca,'XTick',[],'YTick',[]) ZAMeqPt  
    %           axis square DhZ:#mM{  
    %           title(['Z_{' num2str(p(k)) '}']) n'T He|:I  
    %       end !_qskDc-  
    % m;dm|4L^  
    %   See also ZERNPOL, ZERNFUN. G3G/ xC"  
    b3}Q#Y\G  
    %   Paul Fricker 11/13/2006 v2d<o[[C  
    *P`v^&  
    vB^uxdt|m  
    % Check and prepare the inputs: _}D%iJg#  
    % ----------------------------- bG "H D?A_  
    if min(size(p))~=1 >QXzMN}o  
        error('zernfun2:Pvector','Input P must be vector.') l09Fn>wa  
    end )B6# A0  
    <0#^7Z  
    if any(p)>35 2gt+l?O<PS  
        error('zernfun2:P36', ... 7AFE-'S  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... 2Zy_5>~  
               '(P = 0 to 35).']) kB o;h.[l  
    end *.oKI@  
    q(78fZ *X  
    % Get the order and frequency corresonding to the function number: #<4--$Xo  
    % ---------------------------------------------------------------- </= CZy5w  
    p = p(:); v,{h:  
    n = ceil((-3+sqrt(9+8*p))/2); +]c/&Xo!  
    m = 2*p - n.*(n+2); Wbe0ZnM]  
    -IadHX}]t  
    % Pass the inputs to the function ZERNFUN: ?OE#q$g  
    % ---------------------------------------- qe?Qeh(!X  
    switch nargin /Y,r@D  
        case 3 Oa! m  
            z = zernfun(n,m,r,theta);  A^ViDP  
        case 4 1]T|6N?  
            z = zernfun(n,m,r,theta,nflag); OiF{3ae(  
        otherwise _-O cc=Z  
            error('zernfun2:nargin','Incorrect number of inputs.') gw^'{b  
    end 2:Q(Gl`<l  
    }k7_'p&yk  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) +6l]]*H  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. l1A5Y5x9=  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of zT[6eZ8m  
    %   order N and frequency M, evaluated at R.  N is a vector of >zs5s  
    %   positive integers (including 0), and M is a vector with the )6-9)pH@)  
    %   same number of elements as N.  Each element k of M must be a ^2S# Uk  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) KxIyc7.  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is AOb]qc  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix dz-y}J11  
    %   with one column for every (N,M) pair, and one row for every | kXm}K  
    %   element in R. )&,{?$.  
    % #H~_K}Ks  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- FJ54S  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is aC!EWgwW[  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to UV AJxqz%}  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 dU_;2#3m  
    %   for all [n,m]. |quij0_'e  
    % =rFN1M/n{E  
    %   The radial Zernike polynomials are the radial portion of the p=Y>i 'CG  
    %   Zernike functions, which are an orthogonal basis on the unit N|K4{Frm  
    %   circle.  The series representation of the radial Zernike vWjnI*6T#  
    %   polynomials is %w ) +V  
    % V5p0h~PK  
    %          (n-m)/2 |^a;77nE_^  
    %            __ ^U@~+dw  
    %    m      \       s                                          n-2s (=u'sn:s  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r }^%xvmQ\]  
    %    n      s=0 Z9K})47T  
    % ?X9U TOx  
    %   The following table shows the first 12 polynomials. :Ht; 0|[H  
    % H:QhrL+7_  
    %       n    m    Zernike polynomial    Normalization h4)Bs\==mT  
    %       --------------------------------------------- @S^ASDuQU7  
    %       0    0    1                        sqrt(2) nh.32q]  
    %       1    1    r                           2 &7>zURv  
    %       2    0    2*r^2 - 1                sqrt(6) 91Z'  
    %       2    2    r^2                      sqrt(6) [k<1`z3  
    %       3    1    3*r^3 - 2*r              sqrt(8) =&nW~<- v  
    %       3    3    r^3                      sqrt(8) -_N)E ))G  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) :"1|AJo)  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) ztll}  
    %       4    4    r^4                      sqrt(10) vB0RKk}d5  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) [?0d~Q(R#  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) WFTvOFj  
    %       5    5    r^5                      sqrt(12) 6%Mt  
    %       --------------------------------------------- r! %;R?c  
    % 8LzBh_J?  
    %   Example: ?-)I+EAnE  
    % U7h(`b  
    %       % Display three example Zernike radial polynomials neZ.`"LV  
    %       r = 0:0.01:1; i^msjA  
    %       n = [3 2 5]; YJeyIYCs<  
    %       m = [1 2 1]; d+eZub94U  
    %       z = zernpol(n,m,r); 6gL-OJNo  
    %       figure 4rg2y]  
    %       plot(r,z) hX:"QXx  
    %       grid on }<a^</s  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') tq1CwzRX  
    % ;&b.T}Nf06  
    %   See also ZERNFUN, ZERNFUN2. cVnJ^*Z  
    Z<?OwAWz  
    % A note on the algorithm. /YAJbr  
    % ------------------------ WJH\~<{mP  
    % The radial Zernike polynomials are computed using the series GL Mm(  
    % representation shown in the Help section above. For many special zi9[)YqxPH  
    % functions, direct evaluation using the series representation can &ANP`=  
    % produce poor numerical results (floating point errors), because , t5 '  
    % the summation often involves computing small differences between Yr.sm!xA  
    % large successive terms in the series. (In such cases, the functions Qn@Pd*DR  
    % are often evaluated using alternative methods such as recurrence MK #wut  
    % relations: see the Legendre functions, for example). For the Zernike 46@{5)Tq  
    % polynomials, however, this problem does not arise, because the Mj#-j/{x{5  
    % polynomials are evaluated over the finite domain r = (0,1), and n{*D_kM(H  
    % because the coefficients for a given polynomial are generally all l7H qo)  
    % of similar magnitude. @gC=$A#  
    % \JEXX4%  
    % ZERNPOL has been written using a vectorized implementation: multiple TfYVw~p_%  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] ^!<dgBNj  
    % values can be passed as inputs) for a vector of points R.  To achieve )SF}2?7e  
    % this vectorization most efficiently, the algorithm in ZERNPOL d\{>TdyF  
    % involves pre-determining all the powers p of R that are required to .IBp\7W!?E  
    % compute the outputs, and then compiling the {R^p} into a single Ysq'2  
    % matrix.  This avoids any redundant computation of the R^p, and `]Fx.)C#  
    % minimizes the sizes of certain intermediate variables. EP'h@zdz  
    % S{pXs&4O  
    %   Paul Fricker 11/13/2006 fWfk[(M'9  
    [qUN4x5b  
    klg25#t  
    % Check and prepare the inputs: 6tHO!`}1  
    % ----------------------------- fZ04!R  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) v\16RD  
        error('zernpol:NMvectors','N and M must be vectors.') 7w,FX.=;cv  
    end 3s\.cG?`r  
    9{k97D/  
    if length(n)~=length(m) ]^':Bmq  
        error('zernpol:NMlength','N and M must be the same length.') 3vhnwDcK  
    end C2LL|jp*  
    $vC1 K5sLk  
    n = n(:); wO ?+Nh  
    m = m(:); _v Sn`  
    length_n = length(n); k.("3R6v:  
    dm0QcW4  
    if any(mod(n-m,2)) j 8*ZF  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') -p3Re9  
    end _XJ2fA )  
    t!*+8Q !e  
    if any(m<0) qmO6,T-|  
        error('zernpol:Mpositive','All M must be positive.') '!l 1=cZD  
    end Ee4&g<X.  
    3_~cMlr3T.  
    if any(m>n) il|1a8M2~  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') rSXh;\MfB4  
    end -~?J+o+Pr"  
    IDnC<MO>  
    if any( r>1 | r<0 ) 6qcO?U  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') O3TQixE  
    end PH"n{lW.T  
    GKN%Tv:D_  
    if ~any(size(r)==1) !x!07`+^u  
        error('zernpol:Rvector','R must be a vector.') [2"<W! p  
    end o-}R?>  
    iw*Nq,(  
    r = r(:); UnI 48Y  
    length_r = length(r); nX$XL=6mJ&  
    ,9WBTH8  
    if nargin==4 !9Aaj<yxm  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); .e=C{  
        if ~isnorm O_Oj|'bBC  
            error('zernpol:normalization','Unrecognized normalization flag.') [9 Ss# ~  
        end &u#&@J  
    else B6wRg8  
        isnorm = false; w@N  
    end xg)v0y~  
    dtpoU&?6s  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 7o8{mp'_  
    % Compute the Zernike Polynomials ZDbc  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  -_`>j~  
    0GJn_@hr  
    % Determine the required powers of r: ]T%rjsN  
    % ----------------------------------- `uC@nJ  
    rpowers = []; ]('D^Ro  
    for j = 1:length(n) 6/rFHY2q  
        rpowers = [rpowers m(j):2:n(j)]; cJ54s}  
    end lP<:tR~K  
    rpowers = unique(rpowers); 6R=W}q4  
    mdRU^n  
    % Pre-compute the values of r raised to the required powers, liXdNk8  
    % and compile them in a matrix: >nzdnF_&zW  
    % ----------------------------- _q~=~nub  
    if rpowers(1)==0 {mAU3x  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ;3' .C~   
        rpowern = cat(2,rpowern{:}); V0)fZS@tf  
        rpowern = [ones(length_r,1) rpowern]; r/SG 4  
    else lV%N  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ,_Z+8  
        rpowern = cat(2,rpowern{:}); OoWyPdC+P  
    end iezO9`  
    [7[0^ad  
    % Compute the values of the polynomials: EVoE szR  
    % -------------------------------------- k1QpKn*  
    z = zeros(length_r,length_n); V O3x~E  
    for j = 1:length_n -;'1^  
        s = 0:(n(j)-m(j))/2; :s4p/*f  
        pows = n(j):-2:m(j); ^k]XEW{PG  
        for k = length(s):-1:1  ]C) 4  
            p = (1-2*mod(s(k),2))* ... {7)st W  
                       prod(2:(n(j)-s(k)))/          ... at)~]dG  
                       prod(2:s(k))/                 ... KQ~i<1&j  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... KN*  
                       prod(2:((n(j)+m(j))/2-s(k))); uvrB5=u  
            idx = (pows(k)==rpowers); 5O\*h;U 6  
            z(:,j) = z(:,j) + p*rpowern(:,idx); y~FV2$  
        end 78/Zk}I]  
         2sJ(awN>  
        if isnorm ;cQ6g` bM\  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); nJo`B4'U  
        end Z4lO?S5%J  
    end /Z$&pqs!  
    rnF/H=I/  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    857
    光币
    847
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  6er-{.L=  
    Jc|6&  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 U qFv}VsnF  
    H?)w!QX  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)