非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 0=![fjm
function z = zernfun(n,m,r,theta,nflag) (lWq[0^N
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. A3+6#?:;
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N x-_vl
9P)
% and angular frequency M, evaluated at positions (R,THETA) on the *%A}x
% unit circle. N is a vector of positive integers (including 0), and 91d },Mq:
% M is a vector with the same number of elements as N. Each element BSzkW}3q9
% k of M must be a positive integer, with possible values M(k) = -N(k) =2 jhII
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, vVVPw?Ww-
% and THETA is a vector of angles. R and THETA must have the same $f-hUOuyo
% length. The output Z is a matrix with one column for every (N,M) MR;X&Up6!
% pair, and one row for every (R,THETA) pair. NQLiWz-q
% P))^vUt~
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike +nU.p/cK+\
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), FpVV4D
% with delta(m,0) the Kronecker delta, is chosen so that the integral !B^K[2`)N
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, |t6~%6^8
% and theta=0 to theta=2*pi) is unity. For the non-normalized 8MF2K6
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ?<~WO?
% m#H_*L0
% The Zernike functions are an orthogonal basis on the unit circle. x$B&L`QV
% They are used in disciplines such as astronomy, optics, and 2`Gv5}LfyR
% optometry to describe functions on a circular domain. NFyMY#\]
% ! OE*z $\
% The following table lists the first 15 Zernike functions. V4K'R2t
% $>w/Cy
% n m Zernike function Normalization Y&f\VNlT
% -------------------------------------------------- HL 8eD^
% 0 0 1 1 >. DC!QV
% 1 1 r * cos(theta) 2 .v])S}K
% 1 -1 r * sin(theta) 2 4hAJ!7[A.
% 2 -2 r^2 * cos(2*theta) sqrt(6) S; /. %
% 2 0 (2*r^2 - 1) sqrt(3) oXgdLtsu
% 2 2 r^2 * sin(2*theta) sqrt(6) OJ3UE(,I=
% 3 -3 r^3 * cos(3*theta) sqrt(8) Ly #_?\bn
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) yrr)
y
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) g22gIj]
% 3 3 r^3 * sin(3*theta) sqrt(8) 9&
% 4 -4 r^4 * cos(4*theta) sqrt(10) I%;Jpe
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ZYMw}]#((E
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) qL
5>o>J
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) bToq$%sCg
% 4 4 r^4 * sin(4*theta) sqrt(10) X0uJNHO
% -------------------------------------------------- {j
SmoA
% b?VV'{4
% Example 1: .i/m
% npH?4S-8G
% % Display the Zernike function Z(n=5,m=1) 2<r\/-#pU
% x = -1:0.01:1; f8n
V=AQ
% [X,Y] = meshgrid(x,x); k`VM2+9h'^
% [theta,r] = cart2pol(X,Y); 9M-K]0S(
% idx = r<=1; *e{PxaF!C
% z = nan(size(X)); (! KG)!
% z(idx) = zernfun(5,1,r(idx),theta(idx)); q``wt
% figure X6@w krf-
% pcolor(x,x,z), shading interp s&tE_
% axis square, colorbar ?<%=:
Yh
% title('Zernike function Z_5^1(r,\theta)') K-Mc6
% ;O=h$8]
% Example 2: 7P**:b
% !:0v{ZQ
% % Display the first 10 Zernike functions !1Y&Y@ze
% x = -1:0.01:1; g>j| ]6
% [X,Y] = meshgrid(x,x); ;L"!I3dM)
% [theta,r] = cart2pol(X,Y); cxP&^,~
% idx = r<=1; #&Is GyU
% z = nan(size(X)); UY>v"M
% n = [0 1 1 2 2 2 3 3 3 3]; s"~5']8
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; LN^f1/b*
% Nplot = [4 10 12 16 18 20 22 24 26 28]; 0b-?q&*_
% y = zernfun(n,m,r(idx),theta(idx)); Pqp *
% figure('Units','normalized') 1mgLX_U9
% for k = 1:10 {aOkV::
% z(idx) = y(:,k); MDO$m g
% subplot(4,7,Nplot(k)) E4oz|2!m
% pcolor(x,x,z), shading interp
4na8
% set(gca,'XTick',[],'YTick',[]) L^0v\
% axis square p{tK_ZBy]c
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) B$a-og(
% end v#oi0-9o[
% #1/}3+=5B
% See also ZERNPOL, ZERNFUN2. SoQR#(73HK
i*[n{=*l@
% Paul Fricker 11/13/2006 WZewPn>#q
uO(w1Q"^
dl|gG9u4Q
% Check and prepare the inputs: W`)<vGn=Y
% ----------------------------- Le#spvV3J|
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) vF={9G
error('zernfun:NMvectors','N and M must be vectors.') 93Yn`Av;
end 1=)r@X/6d
/b[2lTC-e
if length(n)~=length(m) + ,4"
u
error('zernfun:NMlength','N and M must be the same length.') ~(X(&
end mOBACTY^
TkRP3_b
n = n(:); 5J.0&Dda
m = m(:); F jrINxL7^
if any(mod(n-m,2)) N|Cs=-+
error('zernfun:NMmultiplesof2', ... W<,F28jI3v
'All N and M must differ by multiples of 2 (including 0).') f@ `*>"
end CboLH0Fa
?u$u?j|N
if any(m>n) ! fl4"
error('zernfun:MlessthanN', ... p9[6^rjx8
'Each M must be less than or equal to its corresponding N.') YZwaD b
end X(AN)&L[
;`j/D@H
if any( r>1 | r<0 ) #bnb': f
error('zernfun:Rlessthan1','All R must be between 0 and 1.') +s[\g>i
end @4GA^h
ZCui Fm
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) &X>7n~@0
error('zernfun:RTHvector','R and THETA must be vectors.') (/{aJV
end Lc2QXeo8
1Y/$,Oa5
r = r(:); p.K*UP
theta = theta(:); nvq3*
length_r = length(r); 4B[D/kIg
if length_r~=length(theta) eEw.'B
error('zernfun:RTHlength', ... |(R5e
'The number of R- and THETA-values must be equal.') '-PC7"o
end 7=}F{U
-_A$DM!^=w
% Check normalization: }F=^O[
% -------------------- 6z,Dyy]tl
if nargin==5 && ischar(nflag) y-aRXF=W
isnorm = strcmpi(nflag,'norm'); ?A*Kg;IU
if ~isnorm oOU1{[
error('zernfun:normalization','Unrecognized normalization flag.') D{7w!z
end '0aG
N<c
else 7'p8a<x
isnorm = false; .T B"eUy
end @R6 ttx
<,@%*G1-
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% z%d#@w0X1
% Compute the Zernike Polynomials p3951-D
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% vDj;>VE2b
^_5|BT@
% Determine the required powers of r: J>0b1
% ----------------------------------- 9.OA, 6
m_abs = abs(m); HTjkR*E
rpowers = []; ?8V
UOx
for j = 1:length(n) z}4L=KR\v
rpowers = [rpowers m_abs(j):2:n(j)]; 8;gXg
end +b$S~0n
rpowers = unique(rpowers); D)b}f`
R[[ ,q:4
% Pre-compute the values of r raised to the required powers, n%%7KTqu
% and compile them in a matrix: ht97s
% ----------------------------- \.{AAj^qD
if rpowers(1)==0 &m^@9E)S/
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); /8yn vhF#
rpowern = cat(2,rpowern{:}); @'FE2^~Jj
rpowern = [ones(length_r,1) rpowern];
^z;JVrW
else "E*e2W
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ~W0(1#
i
rpowern = cat(2,rpowern{:}); aEVsU|
end ,T{<vRj7_
%CnxjtTo
% Compute the values of the polynomials: i?@M
% -------------------------------------- >7Jr^o#|_x
y = zeros(length_r,length(n)); q?j|K|%
for j = 1:length(n) "?}uQ5f
s = 0:(n(j)-m_abs(j))/2; .)XP\m\
pows = n(j):-2:m_abs(j); #E7AmmqD%
for k = length(s):-1:1 G 7LIdn=
p = (1-2*mod(s(k),2))* ... C|-pD
prod(2:(n(j)-s(k)))/ ... Gctsp2ndW
prod(2:s(k))/ ... TYns~X_PR
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 8AFczeg[[
prod(2:((n(j)+m_abs(j))/2-s(k))); -1|iz2^N
idx = (pows(k)==rpowers); +JyUe
y(:,j) = y(:,j) + p*rpowern(:,idx); n| !@1sd
end /1w2ehE<
QfjN"25_
if isnorm N!&:rK
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ,Ds.x@p
end "UVFU-Z
end m6mwyom.
% END: Compute the Zernike Polynomials yzsab ^]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% e(
X|3h|
X"MU3]
% Compute the Zernike functions: Vy<HA*
% ------------------------------ V7Yaks
idx_pos = m>0; &}6KPA;
idx_neg = m<0; R,2P3lv1v@
*>8ce-PV
z = y; U977#MXf
if any(idx_pos) LtgXShp_!
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 2;3f=$3
end o(kM9G|
if any(idx_neg) *LC+ PZV@
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); sJx+8
-
end m}
?rJ
o|pT;1a"
% EOF zernfun