非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 E<tR8='F
function z = zernfun(n,m,r,theta,nflag) "(W;rl
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. w^zqYGxG)
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Vb#a ,t
% and angular frequency M, evaluated at positions (R,THETA) on the Kyk{:UnI
% unit circle. N is a vector of positive integers (including 0), and 6^J[SQ6P
% M is a vector with the same number of elements as N. Each element ,J+L_S+B~
% k of M must be a positive integer, with possible values M(k) = -N(k) 4Zu1G#(zP
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, d])ctxB
% and THETA is a vector of angles. R and THETA must have the same P-[})Z=
% length. The output Z is a matrix with one column for every (N,M) 8<0P Ssx
% pair, and one row for every (R,THETA) pair. g i/k#3_m
% lr;ubBbT
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike *^g]QQ
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), .]KC*2
% with delta(m,0) the Kronecker delta, is chosen so that the integral Q1|6;4L
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, &R.5t/x_
% and theta=0 to theta=2*pi) is unity. For the non-normalized toDi70o
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. gfN=0Xj4
% WvF{`N
% The Zernike functions are an orthogonal basis on the unit circle. aB (pdW4
% They are used in disciplines such as astronomy, optics, and SXl~lYUL
% optometry to describe functions on a circular domain. Q3=5q w^
% QPLWRZu@
% The following table lists the first 15 Zernike functions. <X{w^
cT_Q
% E=,b;S-
% n m Zernike function Normalization Hicd
-'
% -------------------------------------------------- @+zWLq!1pB
% 0 0 1 1 3'6 UvAXFH
% 1 1 r * cos(theta) 2 Go:(R {P
% 1 -1 r * sin(theta) 2 j3%Wrt
% 2 -2 r^2 * cos(2*theta) sqrt(6) t {1 [Ip
% 2 0 (2*r^2 - 1) sqrt(3) 2/t; }pw8
% 2 2 r^2 * sin(2*theta) sqrt(6) 4?@#w>(
% 3 -3 r^3 * cos(3*theta) sqrt(8) [~|k;\2 +
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 6J JA"] `
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) uUHWTyoO
% 3 3 r^3 * sin(3*theta) sqrt(8) s}Go")p<:
% 4 -4 r^4 * cos(4*theta) sqrt(10) ]smu~t0\
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 5CcX'*P
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) w0nbL^f
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) .eVX/6,
% 4 4 r^4 * sin(4*theta) sqrt(10) eJ<P
% -------------------------------------------------- iJ*Wsp
% 3k>#z%//
% Example 1: :epB:r
% e~)4v
% % Display the Zernike function Z(n=5,m=1) 5QXU"kWH
% x = -1:0.01:1; QaEiP n~
% [X,Y] = meshgrid(x,x); jCtk3No
% [theta,r] = cart2pol(X,Y); Bx}"X?%S
% idx = r<=1; +?3RC$jyw
% z = nan(size(X)); `%#_y67v
% z(idx) = zernfun(5,1,r(idx),theta(idx)); OOIp)=4
% figure A_ &IK;-go
% pcolor(x,x,z), shading interp Uv.Xw} q
% axis square, colorbar &-^*D%9
% title('Zernike function Z_5^1(r,\theta)') WhH60/`
% x4g6Qze
% Example 2: @V^.eVM\R
% O"TVxP:
% % Display the first 10 Zernike functions .Xf_U.h$*@
% x = -1:0.01:1; a9^})By&
% [X,Y] = meshgrid(x,x); Brs}
% [theta,r] = cart2pol(X,Y); $,r%@'= &
% idx = r<=1; S{2;PaK
% z = nan(size(X)); +ru `Zw5,
% n = [0 1 1 2 2 2 3 3 3 3]; 5 z3WRg
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; KgD$P(J:[
% Nplot = [4 10 12 16 18 20 22 24 26 28]; x~Z7p)D_<
% y = zernfun(n,m,r(idx),theta(idx)); 6?US<<MQ
% figure('Units','normalized') -b+)Dp~$p
% for k = 1:10 1#"wfiW
% z(idx) = y(:,k); )q4nyT>M
% subplot(4,7,Nplot(k)) AriV4 +
% pcolor(x,x,z), shading interp GFbn>dY
% set(gca,'XTick',[],'YTick',[]) I;_T_m4.q
% axis square rs>,p)
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) #<&@-D8
% end OraT$lV)_
% |mWSS'7fI
% See also ZERNPOL, ZERNFUN2. >zJk G9a
=M@)qy
% Paul Fricker 11/13/2006 <)O#Y76s
XZ$g~r
q2*)e/}H
% Check and prepare the inputs: SV ~QH&0'
% ----------------------------- }mZCQJ#`
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) .uX(-8n ~
error('zernfun:NMvectors','N and M must be vectors.') Z(4/;v <CT
end ';v2ld 9
GpXf).a@
if length(n)~=length(m) a>8]+@
error('zernfun:NMlength','N and M must be the same length.') k8}'@w
end JDnWBE V
p.4Sgeh#
n = n(:); ~KGE(o4p
m = m(:); u|ihUE!h
if any(mod(n-m,2)) *) \y52z
error('zernfun:NMmultiplesof2', ... y}U'8*,
'All N and M must differ by multiples of 2 (including 0).') (1er?4
end Eqny'44
&2@Rc?!6_P
if any(m>n) l&] %APL
error('zernfun:MlessthanN', ... SU7,uxF
'Each M must be less than or equal to its corresponding N.') HH(2
end zKYN5|17
,T 3M
if any( r>1 | r<0 ) d*([!!i
error('zernfun:Rlessthan1','All R must be between 0 and 1.') X&49C:jN
end xQ?$H?5B<
k-s|gC4
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) oM#+Z
qP
error('zernfun:RTHvector','R and THETA must be vectors.') \:n<&<aVSr
end *$('ous8
|z}VP-L
r = r(:); 5|bfrc
theta = theta(:); B=_5gZ4Y
length_r = length(r); vPy."/[u
if length_r~=length(theta) O py{i#>
error('zernfun:RTHlength', ... ;uZq_^?:9&
'The number of R- and THETA-values must be equal.') 6_9@s*=d>
end 2ss*&BR.
gK *=T
% Check normalization: T`I4_x
% -------------------- r:U<cLT[9
if nargin==5 && ischar(nflag) pF~aR]Q
isnorm = strcmpi(nflag,'norm'); b|k(:b-G&.
if ~isnorm pwVGe|h%,
error('zernfun:normalization','Unrecognized normalization flag.') XK0lv8(
end /b4>0DXT5
else dt<P6pK-
isnorm = false; K7q R
end JkLpoe81
j{ri]?p
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% URr{J}5
% Compute the Zernike Polynomials O6q5qA
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% _t X1z^
mI^S% HT
% Determine the required powers of r: { ux'9SA
% ----------------------------------- vhU
$GG8
m_abs = abs(m); -7I%^u
rpowers = []; %wJ>V-\e
for j = 1:length(n) \:Hh'-77q
rpowers = [rpowers m_abs(j):2:n(j)]; j3
@Q
end `Z2-<:]6&a
rpowers = unique(rpowers); e&<=+\ul
2rf#Bq?7
% Pre-compute the values of r raised to the required powers, 8*]dAft
% and compile them in a matrix: ~>%% kQt
% ----------------------------- xCu\ jc)2
if rpowers(1)==0 Fcn@j#[J
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); B|AIl+y
rpowern = cat(2,rpowern{:}); 7u%OYt
D E
rpowern = [ones(length_r,1) rpowern]; OR10IS
else ?Bd6<F-G
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); urD{'FQf
rpowern = cat(2,rpowern{:}); +5Y;JL<%/
end a7z%)i;Z
]6WP;.[
% Compute the values of the polynomials: 2d OUY
$4
% -------------------------------------- ~.S/<:`U
y = zeros(length_r,length(n)); -}>H3hr
for j = 1:length(n) Ht~YSQ~:y
s = 0:(n(j)-m_abs(j))/2; EuD$^#
pows = n(j):-2:m_abs(j); Ige*tOv2
for k = length(s):-1:1 Oh7wyQiV
p = (1-2*mod(s(k),2))* ... J>0RN/38o
prod(2:(n(j)-s(k)))/ ... T'14OU2N{Y
prod(2:s(k))/ ... 6s:
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... '"V]>)
prod(2:((n(j)+m_abs(j))/2-s(k))); 7C@m(oK
idx = (pows(k)==rpowers); xI5zP?
_v
y(:,j) = y(:,j) + p*rpowern(:,idx); ^%33&<mB}
end 2
3A)^j
2cv=7!K4Uv
if isnorm R+=Xr<`%U|
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); `S]DHxS
end /8>we`4
end TzV~I\a|
% END: Compute the Zernike Polynomials 4+N9Ylh
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% MBFn s/
[g lhru=+
% Compute the Zernike functions: |OBZSk1jp
% ------------------------------ KC-@2,c9V
idx_pos = m>0; ru*}lDJ
idx_neg = m<0; %wmbFj}
)KN]"<jB
z = y; ].x`Fq3
if any(idx_pos) l`E KL2n
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); kNUNh[
end TmgSV#G
if any(idx_neg) 212
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); $&0\BvS
end .!g
$"{I|UFC
% EOF zernfun