非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有
3g#
function z = zernfun(n,m,r,theta,nflag) \QZ~w_
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. =MsQ=:ZV
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N XEB1%. p
% and angular frequency M, evaluated at positions (R,THETA) on the x9U(,x6r
% unit circle. N is a vector of positive integers (including 0), and Cd"cU~HAB
% M is a vector with the same number of elements as N. Each element &azy1.i~
% k of M must be a positive integer, with possible values M(k) = -N(k) lo!.%PP|
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, BSMM3jXb
% and THETA is a vector of angles. R and THETA must have the same 5g$]ou
% length. The output Z is a matrix with one column for every (N,M) _!} L\E~
% pair, and one row for every (R,THETA) pair. *?-,=%,z/
% 9S y |:J0
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike |@+/R .l
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 9c}mAg4
% with delta(m,0) the Kronecker delta, is chosen so that the integral 5N_w(B
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, z"vI-~,YU
% and theta=0 to theta=2*pi) is unity. For the non-normalized 65>1f
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 8vK$]e36
% $$tFP"pZ
% The Zernike functions are an orthogonal basis on the unit circle. X>$s>})Y
% They are used in disciplines such as astronomy, optics, and G%RL8HU
% optometry to describe functions on a circular domain. w`Ss MI
% zIeJ[J@
% The following table lists the first 15 Zernike functions. nc.(bb),
% q9^6A90
% n m Zernike function Normalization 3rUuRsXn
% -------------------------------------------------- .:nV^+)
% 0 0 1 1 \D<w:\P
% 1 1 r * cos(theta) 2 /ta5d;@
% 1 -1 r * sin(theta) 2 ,*r}23
% 2 -2 r^2 * cos(2*theta) sqrt(6) PE\.J U
% 2 0 (2*r^2 - 1) sqrt(3) uDWxIP,m
% 2 2 r^2 * sin(2*theta) sqrt(6) 3R=R k
% 3 -3 r^3 * cos(3*theta) sqrt(8) ?}tWI7KI
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) W|yFjE&dr
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) ALOS>Bi&
% 3 3 r^3 * sin(3*theta) sqrt(8) 'Wv`^{y <^
% 4 -4 r^4 * cos(4*theta) sqrt(10) dP7nR1GS
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) r) SG!;X
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) V(5=-8k
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) b;K];o-/f
% 4 4 r^4 * sin(4*theta) sqrt(10) dHUcu@,
% -------------------------------------------------- cj5;XK
% D J:N
% Example 1: %!vgAH4
% JR_s-&