切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11561阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 -OYDe@Wb]  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! pfd#N[c  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有  l>v{  
    function z = zernfun(n,m,r,theta,nflag) 3hq1yyec  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. Gowp <9 F  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 8G ]w,eF  
    %   and angular frequency M, evaluated at positions (R,THETA) on the nE y]`  
    %   unit circle.  N is a vector of positive integers (including 0), and 4%*hGh=  
    %   M is a vector with the same number of elements as N.  Each element FyG6 !t%  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) !ax;5@J  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, v&3O&y/1v  
    %   and THETA is a vector of angles.  R and THETA must have the same &C-;Sa4  
    %   length.  The output Z is a matrix with one column for every (N,M) z#<P} }  
    %   pair, and one row for every (R,THETA) pair. %d: A`7x  
    % xfSG~csoz  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike HBLWOQab  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ?kt=z4h9(  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral he )ulB  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, S*%iiD)  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized PdY>#Cyh  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. {4ptu~8  
    % ykq'g|  
    %   The Zernike functions are an orthogonal basis on the unit circle.  r@T| e  
    %   They are used in disciplines such as astronomy, optics, and YDiN^q7  
    %   optometry to describe functions on a circular domain. \Kd7dK9&]  
    % /hdf{4  
    %   The following table lists the first 15 Zernike functions. !v !N>f4S$  
    % N_C_O$j  
    %       n    m    Zernike function           Normalization >uHS[ _`nM  
    %       -------------------------------------------------- { U <tc4^  
    %       0    0    1                                 1 6CNS%\A  
    %       1    1    r * cos(theta)                    2 NcL =z o<  
    %       1   -1    r * sin(theta)                    2 8.I9}_  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 'o\;x"YJ  
    %       2    0    (2*r^2 - 1)                    sqrt(3) $<e +r$1  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) {e]NU<G ,  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) j$eCe< .3  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) +Z? [M1g  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 9y"TDo  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) Ku3!*n_\  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) ;.Zh,cU  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) jXEGSn  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) =aow d4 t  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ) Ypz!  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) J0Four#MD  
    %       -------------------------------------------------- \; bW h  
    % B- Y+F  
    %   Example 1: 0~xaUM`  
    % J>v$2?w`w  
    %       % Display the Zernike function Z(n=5,m=1) ;]h.m)~|  
    %       x = -1:0.01:1; #J+\DhDEPO  
    %       [X,Y] = meshgrid(x,x); J1-):3A  
    %       [theta,r] = cart2pol(X,Y); X^in};&d  
    %       idx = r<=1; U5 rxt^  
    %       z = nan(size(X)); k.Zll,s  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); $T*KaX\{B  
    %       figure P`sN&Y~m  
    %       pcolor(x,x,z), shading interp g)M#{"H  
    %       axis square, colorbar ~yN(-I1P  
    %       title('Zernike function Z_5^1(r,\theta)') * NMQ  
    % Am7| /  
    %   Example 2: fH!=Zb_{8  
    % Kcn\g.  
    %       % Display the first 10 Zernike functions fjkT5LNx k  
    %       x = -1:0.01:1; zXgkcq)  
    %       [X,Y] = meshgrid(x,x); Xr2J:1pgg  
    %       [theta,r] = cart2pol(X,Y); `9EVB;  
    %       idx = r<=1; P`!Ak@N  
    %       z = nan(size(X)); a97Csxf;7  
    %       n = [0  1  1  2  2  2  3  3  3  3]; gY\mXM*^  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; &V;x 4  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; A}eOR=E  
    %       y = zernfun(n,m,r(idx),theta(idx)); >PH< N  
    %       figure('Units','normalized') nE<J`Wo$f  
    %       for k = 1:10 Y?.gfEXSQo  
    %           z(idx) = y(:,k); 1OPfRDn.bk  
    %           subplot(4,7,Nplot(k)) 4H7Oh*P\j  
    %           pcolor(x,x,z), shading interp LO>8 j:  
    %           set(gca,'XTick',[],'YTick',[]) )GCLK<,swu  
    %           axis square | W?[,|e  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ./!KE"!  
    %       end Ko-QR(  
    % Rc%PZ}es  
    %   See also ZERNPOL, ZERNFUN2. 5|m9:Hv[#  
    "sIN86pCs  
    %   Paul Fricker 11/13/2006 Eb7}$Ji\  
    Jh(mbD  
    -~0'a  
    % Check and prepare the inputs: C!kbZTO[p"  
    % ----------------------------- (o{)>D  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) z{V8@q/  
        error('zernfun:NMvectors','N and M must be vectors.') ,|QU] E @  
    end @_uFX!;  
    c8tP+O9  
    if length(n)~=length(m) T@>6 3  
        error('zernfun:NMlength','N and M must be the same length.') kpY%&  
    end ,m"l\jP  
    o7QK8#  
    n = n(:); PJ6$);9}6  
    m = m(:); R''Sfz>8  
    if any(mod(n-m,2)) TQ2i{e  
        error('zernfun:NMmultiplesof2', ... %SFw~%@3&~  
              'All N and M must differ by multiples of 2 (including 0).') 6<Be#Y]b  
    end ?bCTLt7k  
    iQ0&W0D]  
    if any(m>n) 7Fc |  
        error('zernfun:MlessthanN', ... `;T? 9n  
              'Each M must be less than or equal to its corresponding N.') cG5$lB  
    end R =QM;  
    3 dY6;/s  
    if any( r>1 | r<0 ) @nW'(x(  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') }cyq'm i  
    end ?~]>H A:  
    g<;Nio  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) G+;g:_E=  
        error('zernfun:RTHvector','R and THETA must be vectors.') 1gL8$.B?  
    end ~'|&{-<  
    Vc{/o=1u  
    r = r(:); mrX}\p   
    theta = theta(:); I  *1#  
    length_r = length(r); N/`g?B[  
    if length_r~=length(theta) PwRNBb}6  
        error('zernfun:RTHlength', ... 78\\8*  
              'The number of R- and THETA-values must be equal.') wP+'04H0  
    end Lp~c  
    ]IL3$eR  
    % Check normalization: Ab/v_ mA;  
    % -------------------- v UJ sFR  
    if nargin==5 && ischar(nflag) )vxVg*.Ee  
        isnorm = strcmpi(nflag,'norm'); T`j  
        if ~isnorm H74NU_   
            error('zernfun:normalization','Unrecognized normalization flag.') ye9QTK6$,  
        end VK"[=l  
    else 06Sqn3MB  
        isnorm = false; >f3k3XWRT  
    end `7+tPbjs  
    6S` ,j  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% g=)U_DPRi  
    % Compute the Zernike Polynomials )GQ D*b  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% e=|F(iW  
    )yfOrsM  
    % Determine the required powers of r: {5?!`<fF  
    % ----------------------------------- *T1L )Cp  
    m_abs = abs(m); bi,rMgW  
    rpowers = []; $H %+k?  
    for j = 1:length(n) =rE `ib  
        rpowers = [rpowers m_abs(j):2:n(j)]; m^(E:6T  
    end KX&Od@cQ$  
    rpowers = unique(rpowers); \["1N-q b  
    B]CS2LEqh  
    % Pre-compute the values of r raised to the required powers, % DHP  
    % and compile them in a matrix: hwG||;&/H  
    % ----------------------------- #<^/yoH7C6  
    if rpowers(1)==0 J:k@U42  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); xQcMQ{&;  
        rpowern = cat(2,rpowern{:}); = D;UMSf  
        rpowern = [ones(length_r,1) rpowern]; xNkwTDN5  
    else _~(M A-l  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); *&~sr  
        rpowern = cat(2,rpowern{:}); s7X~OF(#  
    end CgaB)`.  
    H znI R  
    % Compute the values of the polynomials: _r^G%Mvy|  
    % -------------------------------------- u/K)y:ZZ  
    y = zeros(length_r,length(n)); Sv CK;$:  
    for j = 1:length(n) c9/ 'i  
        s = 0:(n(j)-m_abs(j))/2; A@lhm`Aa  
        pows = n(j):-2:m_abs(j); ?Ix'2v  
        for k = length(s):-1:1 jtlDSf#  
            p = (1-2*mod(s(k),2))* ... mw%[qeL V  
                       prod(2:(n(j)-s(k)))/              ... `"1{Sx.  
                       prod(2:s(k))/                     ... P,+ 0   
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... V9);kD  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); P+D|_3j  
            idx = (pows(k)==rpowers); \5v=pDd4g  
            y(:,j) = y(:,j) + p*rpowern(:,idx); ^y;OHo  
        end )PanJHtU  
         5Rt0h$_J  
        if isnorm Uzm[e%/`  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); E2ayK> ,  
        end tS*^}e*  
    end UC<[z#]\;  
    % END: Compute the Zernike Polynomials g~WNL^GGS  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% }rb ]d'|  
    %`<`z yf  
    % Compute the Zernike functions: GurE7J^=  
    % ------------------------------ U3dR[*  
    idx_pos = m>0; zMHf?HQ-Z  
    idx_neg = m<0; <o"D/<XnB3  
    c Gaz$=/  
    z = y; PK|`}z9  
    if any(idx_pos) PxCl]~v  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 3:CQMZ|;@  
    end {/[?YTDU  
    if any(idx_neg) #uDBF  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); _<' kzOj  
    end , T%pGku  
    yz&q2  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) *#{.\R-D  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. O|g!Y(  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated 2|_Jup  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive RAkFgC~  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, do?n /<@o  
    %   and THETA is a vector of angles.  R and THETA must have the same <raqp Oo&  
    %   length.  The output Z is a matrix with one column for every P-value, t>=y7n&q  
    %   and one row for every (R,THETA) pair. HjY-b*B  
    % :+V1682u  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike g>oYEFFJ  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) 5Vm}<8{  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) +cOI`4`$  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 TH}ycue  
    %   for all p. JSZ j0_ B  
    % 01d26`G$i~  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 rp[oH=&  
    %   Zernike functions (order N<=7).  In some disciplines it is ;[\2/$-  
    %   traditional to label the first 36 functions using a single mode .j4ziRa-  
    %   number P instead of separate numbers for the order N and azimuthal _"t.1+-K  
    %   frequency M. BU?MRcHC  
    % %a6]gsiv2<  
    %   Example: hFPRC0ftE  
    %  $.]t1e7s  
    %       % Display the first 16 Zernike functions  WD do{  
    %       x = -1:0.01:1; /gy:#-2Gy  
    %       [X,Y] = meshgrid(x,x); vi.AzO  
    %       [theta,r] = cart2pol(X,Y); pvdZ>D-IU  
    %       idx = r<=1; 4uVmhjT:X  
    %       p = 0:15; <!nWiwv  
    %       z = nan(size(X));  !'t2  
    %       y = zernfun2(p,r(idx),theta(idx)); |+=:x]#vV  
    %       figure('Units','normalized') e/#&5ISk  
    %       for k = 1:length(p) .A[.?7g  
    %           z(idx) = y(:,k); K#+]  
    %           subplot(4,4,k) cj_?*  
    %           pcolor(x,x,z), shading interp '\mZ7.Jj  
    %           set(gca,'XTick',[],'YTick',[]) 7T;RXrT  
    %           axis square \gQ+@O&+  
    %           title(['Z_{' num2str(p(k)) '}']) iOXP\:mPo  
    %       end Zdg{{|mm  
    % HNyDWD)_  
    %   See also ZERNPOL, ZERNFUN. A,[m=9V  
    R;,HtN  
    %   Paul Fricker 11/13/2006 l6U'  
    `.-k%2?/  
    |]3);^0  
    % Check and prepare the inputs: 4< >:]  
    % ----------------------------- K}(n;6\  
    if min(size(p))~=1 } $c($  
        error('zernfun2:Pvector','Input P must be vector.') e Em0c]]9  
    end %}5"5\Zz  
    _~q^YZ  
    if any(p)>35 )Nd:PnA  
        error('zernfun2:P36', ... EUS]Se2  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... :DpK{$eCb  
               '(P = 0 to 35).']) 0J-ux"kfI  
    end X}FF4jE]D(  
    * rANf&y  
    % Get the order and frequency corresonding to the function number: kx(:Z8DX  
    % ---------------------------------------------------------------- &WU*cfJn)A  
    p = p(:); O5*uL{pvT{  
    n = ceil((-3+sqrt(9+8*p))/2); Q&a<9e&  
    m = 2*p - n.*(n+2); SLB iQd.  
    Vta;ibdeqW  
    % Pass the inputs to the function ZERNFUN: o=2`N2AL  
    % ---------------------------------------- kYa' ] m  
    switch nargin Q>*K/%KD  
        case 3 ,$[lOFs  
            z = zernfun(n,m,r,theta); 7+-}8&s yu  
        case 4 ebVfny$D  
            z = zernfun(n,m,r,theta,nflag); _)" 5 gv  
        otherwise iW$i%`>  
            error('zernfun2:nargin','Incorrect number of inputs.') ^Wz{su2  
    end ZSb+92g{L$  
    41D[[Gh  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) w$HC!  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. T^>cT"ux_  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of >s~`K^zS  
    %   order N and frequency M, evaluated at R.  N is a vector of gE(03SX  
    %   positive integers (including 0), and M is a vector with the A 76yz`D  
    %   same number of elements as N.  Each element k of M must be a 2 ARh-zLb  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) 5?"ZM'4  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is z05pVe/5  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix q[g^[~WM#  
    %   with one column for every (N,M) pair, and one row for every YJ`>&AJ  
    %   element in R. qQryv_QP  
    % AU2Nmf?]%  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- k0|InP7  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is <C(2(3  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to r]{:{Z  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 ;pq4El_  
    %   for all [n,m]. o*VQH`G*|g  
    % ]F! ,Jx  
    %   The radial Zernike polynomials are the radial portion of the g5`YUr+3?h  
    %   Zernike functions, which are an orthogonal basis on the unit =*N(8j>y  
    %   circle.  The series representation of the radial Zernike iLei-\w6y  
    %   polynomials is LdV_7)  
    % @wz7jzMi  
    %          (n-m)/2 u/WkqJvw#  
    %            __ YTsn;3d]}  
    %    m      \       s                                          n-2s &[xJfL  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r \WEC1+@  
    %    n      s=0 NKN!X/P  
    % 14O/R3+  
    %   The following table shows the first 12 polynomials. :a2?K5  
    % ,0O!w>u_]J  
    %       n    m    Zernike polynomial    Normalization 6iOAYA=  
    %       --------------------------------------------- C_o.d~xm  
    %       0    0    1                        sqrt(2) 4}`MV.  
    %       1    1    r                           2 ) Lv{  
    %       2    0    2*r^2 - 1                sqrt(6) UlR7_   
    %       2    2    r^2                      sqrt(6) (;0]V+-  
    %       3    1    3*r^3 - 2*r              sqrt(8) 8cl!8gfv  
    %       3    3    r^3                      sqrt(8) pw .(6"  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) ;+\;^nS3d  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) 2*N# %ZUX  
    %       4    4    r^4                      sqrt(10) TDFv\y}yc  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) _GS2&|7`  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) =W?c1EPLCx  
    %       5    5    r^5                      sqrt(12) a?dM8zAnc  
    %       --------------------------------------------- mj pH)6aD0  
    % O`4X[r1LD  
    %   Example: qW9|&GuZ$  
    % 2 q>4nN  
    %       % Display three example Zernike radial polynomials 7e4\BzCC  
    %       r = 0:0.01:1; l"64w>,  
    %       n = [3 2 5]; 2]l*{l^ Bl  
    %       m = [1 2 1]; @%K 8 oYK  
    %       z = zernpol(n,m,r); 49yN|h;c!  
    %       figure >ObpOFb%  
    %       plot(r,z) 7u;B[qH  
    %       grid on =KMck=#B  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') 7G(X:!   
    % i*3_ivc)  
    %   See also ZERNFUN, ZERNFUN2. G{<wXxq%  
    ^gy(~u  
    % A note on the algorithm. q\\J9`Q$J  
    % ------------------------ 94+#6jd e  
    % The radial Zernike polynomials are computed using the series 5|Uub ,  
    % representation shown in the Help section above. For many special W cnYD)  
    % functions, direct evaluation using the series representation can QJ QQ-  
    % produce poor numerical results (floating point errors), because iV%% VR8b  
    % the summation often involves computing small differences between iJcl0)|  
    % large successive terms in the series. (In such cases, the functions Q{RHW@_/  
    % are often evaluated using alternative methods such as recurrence m@~HHwj  
    % relations: see the Legendre functions, for example). For the Zernike }-!$KR]:s  
    % polynomials, however, this problem does not arise, because the a&&EjI  
    % polynomials are evaluated over the finite domain r = (0,1), and d7 @ N~<n  
    % because the coefficients for a given polynomial are generally all $O[ut.   
    % of similar magnitude. `7NgQ*g.d/  
    % HHdc[pJ0D  
    % ZERNPOL has been written using a vectorized implementation: multiple 3Xy>kG}  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] db`<E <  
    % values can be passed as inputs) for a vector of points R.  To achieve UV=TU=A\o  
    % this vectorization most efficiently, the algorithm in ZERNPOL p47~vgJN  
    % involves pre-determining all the powers p of R that are required to XHW{EVcF  
    % compute the outputs, and then compiling the {R^p} into a single HwOw.K<  
    % matrix.  This avoids any redundant computation of the R^p, and `g#\ Ws  
    % minimizes the sizes of certain intermediate variables. N24+P5  
    % i''dY!2  
    %   Paul Fricker 11/13/2006 4h|D[Cb]  
    hPl;2r  
    bF3j*bpO"  
    % Check and prepare the inputs: tW(E\#!|p<  
    % ----------------------------- i"r=b%;;  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) KxvT}"k  
        error('zernpol:NMvectors','N and M must be vectors.') >k:)'*  
    end q,2 @X~T  
    Cnc77EUD  
    if length(n)~=length(m) sQR;!-j  
        error('zernpol:NMlength','N and M must be the same length.') *H;&hq  
    end 8s|r'  
    B]jh$@  
    n = n(:); ;$nK ^  
    m = m(:); P0W%30Dh  
    length_n = length(n); 9"/{gf3D  
    j,Mp["X&  
    if any(mod(n-m,2)) JjM^\LwKkL  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') vWow^g  
    end @NO&3m]  
    H~ (I  
    if any(m<0) 7FWf,IjcGY  
        error('zernpol:Mpositive','All M must be positive.') BWd?a6nU}  
    end I@.qon2V  
    CnAhEf)b  
    if any(m>n) rq$%  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') u{J:wb  
    end ]t<%v_K  
    cZ5[A  T  
    if any( r>1 | r<0 ) |GIT{_JE  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') h$lY,7  
    end g-6!+>w*>e  
    7/Ew(X8Fs  
    if ~any(size(r)==1) wd u>3Ch"y  
        error('zernpol:Rvector','R must be a vector.') dNIY `u  
    end kD2MqR>  
    4iDo.1B"  
    r = r(:); enZW2o97c  
    length_r = length(r); <&:3|2p  
    (RGl, x:  
    if nargin==4 >GqIpfn  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); d ;ry!X  
        if ~isnorm s*rtm  
            error('zernpol:normalization','Unrecognized normalization flag.') i^j{l_-JE  
        end / Z \zB  
    else nQ8EV>j2  
        isnorm = false; 0\u_ \%[  
    end iPxSVH[  
    ARslw*SJ  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 6? 2/b`k  
    % Compute the Zernike Polynomials 2f F)I&  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% `lr\V;o!  
    !! #\P7P  
    % Determine the required powers of r: aRfkJPPa[  
    % ----------------------------------- T- JJc#  
    rpowers = []; l~!#<=.  
    for j = 1:length(n) {?,:M  
        rpowers = [rpowers m(j):2:n(j)]; ~d28"p.7  
    end V5R``T p  
    rpowers = unique(rpowers); D,]m7 yFT  
    'M YqCfIK  
    % Pre-compute the values of r raised to the required powers, ?zxKk(J  
    % and compile them in a matrix: Ii SO {  
    % ----------------------------- g`\Vy4w  
    if rpowers(1)==0  RtK/bUa  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ZO:{9vt=/  
        rpowern = cat(2,rpowern{:}); T7&itgEYG/  
        rpowern = [ones(length_r,1) rpowern]; U.d*E/OR5  
    else R0{+Xd  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Xig%Q~oMp  
        rpowern = cat(2,rpowern{:}); DtyT8kr  
    end Xo }w$q5  
    CEt_wKz f  
    % Compute the values of the polynomials: HH8a"Hq)  
    % -------------------------------------- ePB=aCZ  
    z = zeros(length_r,length_n); e(j"u;=  
    for j = 1:length_n f H}`  
        s = 0:(n(j)-m(j))/2; to+jQ9q8  
        pows = n(j):-2:m(j); Oxy. V+R  
        for k = length(s):-1:1 ^PO0(rh  
            p = (1-2*mod(s(k),2))* ... ;<MHDm D  
                       prod(2:(n(j)-s(k)))/          ... lLo FM  
                       prod(2:s(k))/                 ...  XW`&1qx  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... [G4#DP\t>p  
                       prod(2:((n(j)+m(j))/2-s(k))); qDOx5.d  
            idx = (pows(k)==rpowers); v:<u0B-)$  
            z(:,j) = z(:,j) + p*rpowern(:,idx); O3B\K <l  
        end Va?wG3w  
         8V.x%T  
        if isnorm G,$RsP  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); B3e{'14  
        end r!#NFek}  
    end bQEQHqY5  
    7_n@iUG2n  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  ++W_4 B!  
    t|jX%s=  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 ,[7 1,zs  
    AkrUb$ }  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)