非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 Q-} cB
function z = zernfun(n,m,r,theta,nflag) J] )gXVRM
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. ;8Ts
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N iTVepYv4m
% and angular frequency M, evaluated at positions (R,THETA) on the y(yBRR
% unit circle. N is a vector of positive integers (including 0), and Vif)e4{Pn
% M is a vector with the same number of elements as N. Each element U1=]iG<%
% k of M must be a positive integer, with possible values M(k) = -N(k) C,) e7
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, 303x|y
% and THETA is a vector of angles. R and THETA must have the same P0l.sVqL
% length. The output Z is a matrix with one column for every (N,M) h%ba!
% pair, and one row for every (R,THETA) pair. #^9a[ZLj0
% D"<>!]@(a
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike mc|8t0+1`
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), om1D} irKT
% with delta(m,0) the Kronecker delta, is chosen so that the integral ~kOXMLRg
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, t&MLgu
% and theta=0 to theta=2*pi) is unity. For the non-normalized F
@uOXNz)
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. .GiQC{@9w
% p&lT! 5P!A
% The Zernike functions are an orthogonal basis on the unit circle. `C)|}qcC
% They are used in disciplines such as astronomy, optics, and feT.d +Fd
% optometry to describe functions on a circular domain. E.4 X,
% P] Xl
% The following table lists the first 15 Zernike functions. '=(@3ggA:
% G8@LH
% n m Zernike function Normalization 0F%V+Y\R
% -------------------------------------------------- yC9~X='D
% 0 0 1 1 v4W<_
7L_
% 1 1 r * cos(theta) 2 .tzQ
hd>
% 1 -1 r * sin(theta) 2 ;*>':-4
% 2 -2 r^2 * cos(2*theta) sqrt(6) l*|m(7s
% 2 0 (2*r^2 - 1) sqrt(3) "[2D&\$
% 2 2 r^2 * sin(2*theta) sqrt(6) xX\A&9m
% 3 -3 r^3 * cos(3*theta) sqrt(8) hEfFMi=a`
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) DC,]FmWs!+
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) GQ1m
h*4$
% 3 3 r^3 * sin(3*theta) sqrt(8) ?#J;[y\^
% 4 -4 r^4 * cos(4*theta) sqrt(10) o(Q='kK
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) AxiCpAS;J
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) DX<xkS[P
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) S!R:a>\
% 4 4 r^4 * sin(4*theta) sqrt(10) Rqun}v}
% -------------------------------------------------- B0ZLGB
% C''[[sw'K
% Example 1: &h?8yV4B
% ($s%B
% % Display the Zernike function Z(n=5,m=1) !345
% x = -1:0.01:1; K~jN"ev
% [X,Y] = meshgrid(x,x); rB-}<22.
% [theta,r] = cart2pol(X,Y); "kg?Or.
% idx = r<=1; b-)3MR:4
% z = nan(size(X)); +KHk`2{y~
% z(idx) = zernfun(5,1,r(idx),theta(idx)); !kWx'tJ$
% figure oU)HxV
% pcolor(x,x,z), shading interp .ot[_*A.FD
% axis square, colorbar 6a*OQ{8
% title('Zernike function Z_5^1(r,\theta)') Kz9h{Tu4
% h2mU
% Example 2: r]O8|#P,Z$
% J7$JW3O
% % Display the first 10 Zernike functions XV0t
8#T2
% x = -1:0.01:1; 'sN
(=CQ
% [X,Y] = meshgrid(x,x); zK ir
% [theta,r] = cart2pol(X,Y); @+^5ze\
% idx = r<=1; U66 zm9
3&
% z = nan(size(X)); : t6.J
% n = [0 1 1 2 2 2 3 3 3 3]; ARa9Ia{@
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 5JA5:4aev
% Nplot = [4 10 12 16 18 20 22 24 26 28]; gTqtTd~L
% y = zernfun(n,m,r(idx),theta(idx)); 5wGc"JHm
% figure('Units','normalized') tC'@yX
% for k = 1:10 ^]1M8R,
% z(idx) = y(:,k); =U<6TP]{
% subplot(4,7,Nplot(k)) x\!Uk!fM
% pcolor(x,x,z), shading interp gj<Y+Dv>
% set(gca,'XTick',[],'YTick',[]) 7Jvb6V<R
% axis square G~|Z(}H
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) #e(P~'A0
% end zFGZ;?i
% I\oI"\}U
% See also ZERNPOL, ZERNFUN2. pxO?:B
:Y>M//0
% Paul Fricker 11/13/2006 f/K:~#k
z\Y-8a.]
SPU_@ Pk
% Check and prepare the inputs: O)WduhlGQ
% ----------------------------- >XiTl;UU
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) x1nqhSaD
error('zernfun:NMvectors','N and M must be vectors.') C`>|D [
end /?Fa<{
{Tym#
if length(n)~=length(m) ZsikI@?
error('zernfun:NMlength','N and M must be the same length.') +x"cWOg
end Lv`NS+fX
f;PvXq<7"
n = n(:); 6KzdWT
m = m(:); f MDM\&f
if any(mod(n-m,2)) |XdkJv]
error('zernfun:NMmultiplesof2', ... #{u>
'All N and M must differ by multiples of 2 (including 0).') _&
qM^
end <xWBS/K
m?=9j~F*
if any(m>n) -H;p +XAY
error('zernfun:MlessthanN', ... $VLCD
'Each M must be less than or equal to its corresponding N.') r]+N(&q
end 1Ev#[FOc
drZ1D s
if any( r>1 | r<0 ) ".R5K ?
error('zernfun:Rlessthan1','All R must be between 0 and 1.') d9n{jv|
end EO[UezuU
p|b&hgA
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) MVpk/S%W
error('zernfun:RTHvector','R and THETA must be vectors.') $5;RQNhXh
end 8=h$6=1S
7f9i5E1
r = r(:); "Lp"o
theta = theta(:); G~\ SI.
length_r = length(r); )FfJ%oT}
if length_r~=length(theta) ?m$7)@p
error('zernfun:RTHlength', ... Ltt+BUJc
'The number of R- and THETA-values must be equal.') /6%<