非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 }T*xT>p^3
function z = zernfun(n,m,r,theta,nflag) R8W44I*R:
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. LkbvA
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N RlPByG5K
% and angular frequency M, evaluated at positions (R,THETA) on the g1!L.
On
% unit circle. N is a vector of positive integers (including 0), and CzsY=DBH=
% M is a vector with the same number of elements as N. Each element oP`M\KXau
% k of M must be a positive integer, with possible values M(k) = -N(k) N %/DN
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, _w,0wn9N$
% and THETA is a vector of angles. R and THETA must have the same \rnG 1o
% length. The output Z is a matrix with one column for every (N,M) 50hh0!1
% pair, and one row for every (R,THETA) pair. />I8nS}T
% 5 9J$SE
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 5nIlG
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 9PfU'm|h
% with delta(m,0) the Kronecker delta, is chosen so that the integral o 0
#]EMr
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, .t%Vx
% and theta=0 to theta=2*pi) is unity. For the non-normalized Oqe.t;E 0}
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. T-8nUo}i
% E&tmWOMj>
% The Zernike functions are an orthogonal basis on the unit circle. "}aM*(l+\
% They are used in disciplines such as astronomy, optics, and B]}V$*$\?
% optometry to describe functions on a circular domain. imq(3?
% Q>c6ouuJ
% The following table lists the first 15 Zernike functions. !l~aRj-WZ
% 7?WBzo!!L
% n m Zernike function Normalization kxf=%<l
% -------------------------------------------------- T FA
% 0 0 1 1 g-gBg\y{v
% 1 1 r * cos(theta) 2 %~(i[Ur;
% 1 -1 r * sin(theta) 2 {hP&P
% 2 -2 r^2 * cos(2*theta) sqrt(6) =v=!x
% 2 0 (2*r^2 - 1) sqrt(3) *pUV-^uo
% 2 2 r^2 * sin(2*theta) sqrt(6) +((31l
% 3 -3 r^3 * cos(3*theta) sqrt(8) =9@yJ9c-
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) "fJ|DE&@<i
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) AFUl
% 3 3 r^3 * sin(3*theta) sqrt(8) 5VoiDM=\c
% 4 -4 r^4 * cos(4*theta) sqrt(10) A+E@OO w*~
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) {YTF]J$
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) nv
Gd:]Z
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 0\^2HjsJ
% 4 4 r^4 * sin(4*theta) sqrt(10) fzG1<Gem
% -------------------------------------------------- fR;_6?p*B
% YEoT_>A$dB
% Example 1: ;!sGfrs0$
% ~,-O
% % Display the Zernike function Z(n=5,m=1)
C2i..iD
% x = -1:0.01:1; {S(T1ua
% [X,Y] = meshgrid(x,x); <s3(
% [theta,r] = cart2pol(X,Y); DA@hf
% idx = r<=1; jn Y3G
% z = nan(size(X)); ^{bEq\5&
% z(idx) = zernfun(5,1,r(idx),theta(idx)); ^}\R]})w"
% figure K8c#/o
% pcolor(x,x,z), shading interp ^i1:PlW]
% axis square, colorbar bj{f[nZ d
% title('Zernike function Z_5^1(r,\theta)') IomJo
% A6.'1OD
% Example 2: 6^u(PzlA|~
% T^G<)IX`c
% % Display the first 10 Zernike functions HNT8~s.2
% x = -1:0.01:1; N)Kr4GC
% [X,Y] = meshgrid(x,x); aC 0Jfo
% [theta,r] = cart2pol(X,Y); 2MeavTr
% idx = r<=1; U#
B
% z = nan(size(X)); VbR.tz
% n = [0 1 1 2 2 2 3 3 3 3]; Z`t?kXDNoI
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; W RaO.3Q@.
% Nplot = [4 10 12 16 18 20 22 24 26 28]; Jz'+@q6h
% y = zernfun(n,m,r(idx),theta(idx)); Mp=+*I[
% figure('Units','normalized') ~-i?=
% for k = 1:10 XePBA
J
% z(idx) = y(:,k); qNL~m'
% subplot(4,7,Nplot(k)) !,"G/}'^;
% pcolor(x,x,z), shading interp 5Vqvb|
% set(gca,'XTick',[],'YTick',[]) s$6#3%h
% axis square _,~zy9{,
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) bf(&N-"A
% end e[!>ezaIY
% MEUqQ4/Gl
% See also ZERNPOL, ZERNFUN2. :nEV/"#F
Gzt5efygKt
% Paul Fricker 11/13/2006 L9)&9
/f
|;yb *
l si8?91
% Check and prepare the inputs: .#|pje^
% ----------------------------- :[3\jLrc
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) P s;:g0
error('zernfun:NMvectors','N and M must be vectors.') v%[mt`I
end t57b)5{FM
VRt*!v<")
if length(n)~=length(m) )`-]nMc
error('zernfun:NMlength','N and M must be the same length.') 4[q *7m
end =T]OYk
<
.!3yy
n = n(:); 0f1#TgX
m = m(:); A?zW!'
if any(mod(n-m,2)) }Jfo(j
error('zernfun:NMmultiplesof2', ... )`^:G3w
'All N and M must differ by multiples of 2 (including 0).') kpu^:N&
end jFfki.H
|?kH]Trr
if any(m>n) uX[
"w|
error('zernfun:MlessthanN', ... d]]qy
'Each M must be less than or equal to its corresponding N.') 'CX
KphlWs
end JhcS
rge/jE,^~Z
if any( r>1 | r<0 ) ,}0pK\Y>$
error('zernfun:Rlessthan1','All R must be between 0 and 1.') M<Mr (z
end +|;IIwo
b&1@rE-
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Zpmy)W]1
error('zernfun:RTHvector','R and THETA must be vectors.') #UQ[8e
end Xc^~|%+
k|5nu-B0v
r = r(:); 7Go!W(8
theta = theta(:); icmDPq
length_r = length(r); 0"N %Vm
if length_r~=length(theta)
/rW{rf^
error('zernfun:RTHlength', ... NL 37Y{b
'The number of R- and THETA-values must be equal.') 4SYN$?.Mp
end MR}\fw$(.
RAC-;~$WB
% Check normalization: KJiwM(o
% -------------------- V|)>
if nargin==5 && ischar(nflag) /L.a:Er$
isnorm = strcmpi(nflag,'norm'); X#y l8k_
if ~isnorm '<Gqu_-
error('zernfun:normalization','Unrecognized normalization flag.') Ar==@777j
end BlUY9`VWh@
else fVM%.`
isnorm = false; &ly[mBP~
end 8~i@7~
J
1;W>ceN"
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% uOQ5.S+
% Compute the Zernike Polynomials 5
Jhl4p}w
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |1D`v9
Ogb_WO;)
% Determine the required powers of r: [H6>] &
% ----------------------------------- <Yc:,CU
m_abs = abs(m); ~&x%;cnv_
rpowers = []; 5+UiAc$
for j = 1:length(n) u2t<auE9^
rpowers = [rpowers m_abs(j):2:n(j)]; 2Y+*vN s3
end i]nE86.;
rpowers = unique(rpowers); \&H%k
CbZ1<r" /
% Pre-compute the values of r raised to the required powers, fp7Qb $-A
% and compile them in a matrix: r!#3>F;B
% ----------------------------- .\VjS^o&Z&
if rpowers(1)==0 1}6pq2
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ew(6;}+^/
rpowern = cat(2,rpowern{:}); &eg,*K} '
rpowern = [ones(length_r,1) rpowern]; S;])Nt'X'
else 6]Jv3Re'(I
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ^6*? a9jO>
rpowern = cat(2,rpowern{:}); o$-Phl
end $3L7R
&l Q j?]
% Compute the values of the polynomials: tT 7$2 9
% -------------------------------------- 4Qdg t*
y = zeros(length_r,length(n)); &[YG\8sxWa
for j = 1:length(n) 7v-C-u[E`
s = 0:(n(j)-m_abs(j))/2; 6-3l6q
pows = n(j):-2:m_abs(j); "rXGXQu
for k = length(s):-1:1 Cn,jLy
p = (1-2*mod(s(k),2))* ... ctZW7
prod(2:(n(j)-s(k)))/ ... 9K49<u0O
prod(2:s(k))/ ... $H#&.IjY
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... vl#/8]0!
prod(2:((n(j)+m_abs(j))/2-s(k))); ;[xDc>&("Q
idx = (pows(k)==rpowers); P
,i)A
y(:,j) = y(:,j) + p*rpowern(:,idx); U0rz 4fxc
end pQp}HD!-
J.-#:OZ
if isnorm 3!,%;Vz=
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ZD,l2DQ?
end "%Jx,L\f{
end t~AesHZpk
% END: Compute the Zernike Polynomials 1)r1/0
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% IOA{lN6
OD i)#
% Compute the Zernike functions: HV sIbQS
% ------------------------------ h*d,AJz &.
idx_pos = m>0; Xm*Dh#H
idx_neg = m<0; WV8<gx`Q
9J?j2!D
z = y; #zXDh3%]a
if any(idx_pos) \z_@.Jw{
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ;7hf'k
end +z4NxR
if any(idx_neg) {5to;\.
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); tly:$;K
end $exu}%
hE=cgO`QU
% EOF zernfun