切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10448阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 LI[ w?6B  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! Gw6*0& 3')  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 }tT"vCu  
    function z = zernfun(n,m,r,theta,nflag) UUy|/z%  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. Q_'3}:4  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N b>AFhj:  
    %   and angular frequency M, evaluated at positions (R,THETA) on the w? A&XB+  
    %   unit circle.  N is a vector of positive integers (including 0), and 8moX"w\~_h  
    %   M is a vector with the same number of elements as N.  Each element +5Yc/Qp  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) .,[zI@9  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, $[iSZ;  
    %   and THETA is a vector of angles.  R and THETA must have the same 5_b`QO  
    %   length.  The output Z is a matrix with one column for every (N,M) }!b9L]  
    %   pair, and one row for every (R,THETA) pair. ;JMd(\+-  
    % A {lzQO  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Pp1HOJYJp0  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), QIVpO /@  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral ,x}p1EZ  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, L)JpMf0  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized TOV531   
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. k.>*!l0  
    % P]-d (N}/H  
    %   The Zernike functions are an orthogonal basis on the unit circle. 1 ry:Z2  
    %   They are used in disciplines such as astronomy, optics, and #Yi,EwD  
    %   optometry to describe functions on a circular domain. RG|]Kt8  
    % l2KR=& SX/  
    %   The following table lists the first 15 Zernike functions. ]Qe;+p9vU  
    % /|Za[  
    %       n    m    Zernike function           Normalization &*RJh'o|N(  
    %       -------------------------------------------------- ma>{((N  
    %       0    0    1                                 1  Ok[y3S  
    %       1    1    r * cos(theta)                    2 wy"^a45h  
    %       1   -1    r * sin(theta)                    2 x(h(a#,r  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) Se qnO.\  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 0\O*\w?  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) Oz!#);v  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) w}^z1n  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) a(s}Ec${Z  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) {`BC$V  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) qYc]Y9fi  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) !Gsr* F{.  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 3 <RkUmR  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 5F cKY_  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) #\*ODMk$4|  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) s2L|J[Y"s  
    %       -------------------------------------------------- iD#HB o  
    % gE]) z*tqX  
    %   Example 1: 7$'%*|C.  
    % IwhZzw w  
    %       % Display the Zernike function Z(n=5,m=1) n!~mdI&  
    %       x = -1:0.01:1; Q[`J=  
    %       [X,Y] = meshgrid(x,x); \^vf`-uG  
    %       [theta,r] = cart2pol(X,Y); _@jBz"aq\  
    %       idx = r<=1; y-O# +{7  
    %       z = nan(size(X)); *IUw$|Z6z)  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); Px5ArSS  
    %       figure +ia  F$  
    %       pcolor(x,x,z), shading interp ZvEcExA-  
    %       axis square, colorbar l j*ELy  
    %       title('Zernike function Z_5^1(r,\theta)') dHc38zp  
    % K-F@OSK'  
    %   Example 2: 9B")/Hz_  
    % >lQ&^9EI%  
    %       % Display the first 10 Zernike functions LivPk`[  
    %       x = -1:0.01:1; saQA:W;  
    %       [X,Y] = meshgrid(x,x); 8WK%g0gm  
    %       [theta,r] = cart2pol(X,Y); o-2FGM`*VB  
    %       idx = r<=1; gBz$RfyF  
    %       z = nan(size(X)); bs$x%CR  
    %       n = [0  1  1  2  2  2  3  3  3  3]; @@K@;Jox  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; _,(]T&j #2  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; ^l;nBD#nJ  
    %       y = zernfun(n,m,r(idx),theta(idx)); K[Bq,nPo  
    %       figure('Units','normalized') Yf >SV #  
    %       for k = 1:10 j|!.K|9B  
    %           z(idx) = y(:,k); 2GQ q(_  
    %           subplot(4,7,Nplot(k)) b;K>Q!(|  
    %           pcolor(x,x,z), shading interp j$<uE{c  
    %           set(gca,'XTick',[],'YTick',[]) 68?oV)fE  
    %           axis square PI~LbDE  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) :L<$O7  
    %       end sL|lfc'bB  
    % 2P`QS@v0a=  
    %   See also ZERNPOL, ZERNFUN2. dP[l$/  
    JViglO1\  
    %   Paul Fricker 11/13/2006 2)]C'  
    6r"uDV #0  
    c(Zar&z,E  
    % Check and prepare the inputs: !U.Xb6  
    % ----------------------------- fI(u-z~,  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) o.U$\9MNP  
        error('zernfun:NMvectors','N and M must be vectors.') `"QUA G  
    end R>H*MvN  
    &\8.y2=9p  
    if length(n)~=length(m) 9{@#tx  
        error('zernfun:NMlength','N and M must be the same length.') ""l_& 3oz  
    end bA\TuB  
    q#wg2  
    n = n(:); 9'F-D  
    m = m(:); S@]7   
    if any(mod(n-m,2)) -IhFPjQ  
        error('zernfun:NMmultiplesof2', ... .QOQqU*2I  
              'All N and M must differ by multiples of 2 (including 0).') d&'z0]mOe  
    end $,"{g<*k;  
    yo*c& >  
    if any(m>n) E< nXkqD  
        error('zernfun:MlessthanN', ... [C d"@!yA  
              'Each M must be less than or equal to its corresponding N.') oZ95)'L,  
    end |eL&hwqzG  
    K1#Y{k5D}  
    if any( r>1 | r<0 ) Ao)hb4ex  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') /=Bz[ O  
    end k^AI7H  
    S W(h%`U  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) (;YO]U4  
        error('zernfun:RTHvector','R and THETA must be vectors.') 8>a/x,  
    end fU^B 3S6X  
    ! {lcF%  
    r = r(:); 6ae  
    theta = theta(:); '8>h4s4  
    length_r = length(r); Ti`<,TA54  
    if length_r~=length(theta) F4X/ )$Dk  
        error('zernfun:RTHlength', ... ;:1d<Q|  
              'The number of R- and THETA-values must be equal.') |`T3H5X>  
    end wm0vqY+N$  
    "6rZn_H/|  
    % Check normalization: mLX1w)=r  
    % -------------------- pv039~Sud  
    if nargin==5 && ischar(nflag) _ b}\h,Ky  
        isnorm = strcmpi(nflag,'norm'); <b"ynoM.A  
        if ~isnorm ut%t`Y( ]  
            error('zernfun:normalization','Unrecognized normalization flag.') \W;~[-"#  
        end VaZ+TE  
    else nW+rJ  
        isnorm = false; LB%_FT5  
    end Rt~Aud[  
    a%f{mP$m  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% >R3~P~@30  
    % Compute the Zernike Polynomials Qfo'w%px  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% d_#\^!9  
    ERQ a,h/  
    % Determine the required powers of r: E } |g3  
    % ----------------------------------- >U~.I2sz  
    m_abs = abs(m); 6u/3"A]'  
    rpowers = []; nMc3.fM  
    for j = 1:length(n) {OP-9P=p  
        rpowers = [rpowers m_abs(j):2:n(j)]; <K:?<F  
    end 1Lwi?~!LI  
    rpowers = unique(rpowers); 0X+Jj/-ge  
    K1uN(T.Ju  
    % Pre-compute the values of r raised to the required powers, 5:9Ay ?  
    % and compile them in a matrix: ?@Z~i]gE[V  
    % ----------------------------- @va{&i`%A7  
    if rpowers(1)==0 gVCkj!{  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); _dppUUm  
        rpowern = cat(2,rpowern{:}); Pgf$GXE  
        rpowern = [ones(length_r,1) rpowern]; u,[Yaw"L  
    else M]!\X6<_  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false);  S]ZO*+  
        rpowern = cat(2,rpowern{:}); &Th/Qv}[  
    end Mo &Ia6^  
    ,HS\(Z  
    % Compute the values of the polynomials: (xK=/()}q  
    % -------------------------------------- 0*V RFd4  
    y = zeros(length_r,length(n)); Cca( oV  
    for j = 1:length(n) T :CsYj1  
        s = 0:(n(j)-m_abs(j))/2; +xRja(d6  
        pows = n(j):-2:m_abs(j); =Y|TShKk  
        for k = length(s):-1:1 jEklf0Z  
            p = (1-2*mod(s(k),2))* ... r S/Q  
                       prod(2:(n(j)-s(k)))/              ... e.G&hJ r  
                       prod(2:s(k))/                     ... ZA>hN3fE'  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... N-jFA8n  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); ! Qrlb>1z-  
            idx = (pows(k)==rpowers); )vO Zp&  
            y(:,j) = y(:,j) + p*rpowern(:,idx); \l_RyMi  
        end ih2H~c>O  
         U/,`xA;v>  
        if isnorm al=Dy60|z  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); k]Y+C@g  
        end JXBW0|8b  
    end /fA:Fnv  
    % END: Compute the Zernike Polynomials BMU~1[r  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% e`4OlM]  
    Lcplc"C  
    % Compute the Zernike functions: 4 *He<2g  
    % ------------------------------ bjPI:j*XU  
    idx_pos = m>0; 3s\2 9gq  
    idx_neg = m<0; 9g >]m 6  
    3nd02:GF  
    z = y; Um;ReJ8z  
    if any(idx_pos) r$;DA<<|<c  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 1mL--m'r  
    end Y[$[0  
    if any(idx_neg) )H S|pS:  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); p}uL%:Vr  
    end tb AN{pX  
    u%5B_<90V  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) 3RscuD&  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. /QHvwaW[  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated ^ft_1d[  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive ?OYu BZF  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, Niou=PI@  
    %   and THETA is a vector of angles.  R and THETA must have the same yXc/Nl%  
    %   length.  The output Z is a matrix with one column for every P-value, ],>Z' W  
    %   and one row for every (R,THETA) pair. eXnMS!g%Z  
    % @luv;X^%  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike p8[Z/]p  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) T*J]e|aF  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) tLS5yT/  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 t=iy40_T  
    %   for all p. SR%h=`t  
    % 5Tb93Q@c  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 `P)atQ  
    %   Zernike functions (order N<=7).  In some disciplines it is 8NPt[*  
    %   traditional to label the first 36 functions using a single mode #`); UAf  
    %   number P instead of separate numbers for the order N and azimuthal <bXfjj6YJ@  
    %   frequency M. B2 Tp;)  
    % \W( C=e  
    %   Example: 50l=B]M  
    % (O,|1  
    %       % Display the first 16 Zernike functions epW;]> l  
    %       x = -1:0.01:1; b0tr)>d  
    %       [X,Y] = meshgrid(x,x); 'RTz*CSZ  
    %       [theta,r] = cart2pol(X,Y); 6Ei>VcN4a  
    %       idx = r<=1; P`Anf_  
    %       p = 0:15; 8> T '  
    %       z = nan(size(X)); syv6" 2Z'B  
    %       y = zernfun2(p,r(idx),theta(idx)); @/`b:sv&*  
    %       figure('Units','normalized') kE UfQLbn  
    %       for k = 1:length(p) \.9-:\'(  
    %           z(idx) = y(:,k); QlSZr[^v  
    %           subplot(4,4,k)  PZf^r  
    %           pcolor(x,x,z), shading interp lk%rE  
    %           set(gca,'XTick',[],'YTick',[]) F,P,dc  
    %           axis square FoInJ(PDH  
    %           title(['Z_{' num2str(p(k)) '}']) n_v|fxF1  
    %       end ?%iAkV  
    % xdXt  
    %   See also ZERNPOL, ZERNFUN. f<!eJO:<'  
    EbY%:jR  
    %   Paul Fricker 11/13/2006 @PU%BKe  
    p(v+j_ak  
    i 0L)hkV  
    % Check and prepare the inputs: :p=IZY  
    % ----------------------------- i.)k V B  
    if min(size(p))~=1 g.s~Ph-G  
        error('zernfun2:Pvector','Input P must be vector.') `V$i*{c:#  
    end Zc{at}{  
    +K; X$kB  
    if any(p)>35 &f|LjpMCf  
        error('zernfun2:P36', ... L@ql)Lc);  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... JyjS#BWi  
               '(P = 0 to 35).']) R% l=NHB}  
    end I yL2{5  
    [L{q  
    % Get the order and frequency corresonding to the function number: UCa(3p^V_  
    % ---------------------------------------------------------------- k,0JW=Vh>|  
    p = p(:); hof:36 <  
    n = ceil((-3+sqrt(9+8*p))/2); R}#?A%,*  
    m = 2*p - n.*(n+2); `(q+@#)  
    vO&%sjvH  
    % Pass the inputs to the function ZERNFUN: K`M8[ %S  
    % ---------------------------------------- p4fU/  
    switch nargin ]pzf{8%  
        case 3 8)\ ?6C  
            z = zernfun(n,m,r,theta); /Pxt f~$  
        case 4 Pn[-{nz  
            z = zernfun(n,m,r,theta,nflag); h&{9 &D1t  
        otherwise N*f?A$u/I  
            error('zernfun2:nargin','Incorrect number of inputs.') q#xoM1  
    end ^I5k+cL  
    cE$<6&0  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) }u5/  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. ]]Sz|6P  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of }Y[xj{2$O  
    %   order N and frequency M, evaluated at R.  N is a vector of W;4rhZEgd  
    %   positive integers (including 0), and M is a vector with the ,6=j'j1#a  
    %   same number of elements as N.  Each element k of M must be a v,I4ozDx  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) Sb+^~M  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is J /mLmSx  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix *39Y1+=)$$  
    %   with one column for every (N,M) pair, and one row for every -|bnvPmE  
    %   element in R. [_Fj2nb*  
    % $Ypt /`  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly-  l+HmG< P  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is 7hQXGY,q  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to 2Nrb}LH  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 _ I"}3*  
    %   for all [n,m]. J&CA#Bg:w  
    % e{EKM4  
    %   The radial Zernike polynomials are the radial portion of the H*51GxK  
    %   Zernike functions, which are an orthogonal basis on the unit O`j1~o<{  
    %   circle.  The series representation of the radial Zernike `d2 r5*<  
    %   polynomials is w<#/ngI2  
    % & Xm !i(i  
    %          (n-m)/2 io%WV%1_  
    %            __ X [IVK~D}z  
    %    m      \       s                                          n-2s \f\ CK@  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r <|8N\FU{  
    %    n      s=0 Q =9Ce@[  
    % Tsg;i;  
    %   The following table shows the first 12 polynomials. c|m*< i  
    % h]T  
    %       n    m    Zernike polynomial    Normalization O$z XDxn  
    %       --------------------------------------------- )-VpDW!%_  
    %       0    0    1                        sqrt(2) %;/?DQU  
    %       1    1    r                           2 K G<. s<  
    %       2    0    2*r^2 - 1                sqrt(6) 0Lb:N]5m8  
    %       2    2    r^2                      sqrt(6) dD YD6  
    %       3    1    3*r^3 - 2*r              sqrt(8) ~+|Vzm|S}  
    %       3    3    r^3                      sqrt(8) 'tvX.aX2  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) 0"}qND  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) `& ufdn\j  
    %       4    4    r^4                      sqrt(10) Yw=7(}  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) m&vuBb3  
    %       5    3    5*r^5 - 4*r^3            sqrt(12)  B0 E`C  
    %       5    5    r^5                      sqrt(12) $-Iui0h  
    %       --------------------------------------------- xnP@ h  
    % j/ [V<  
    %   Example: 8k +^jj  
    % !aQb Kp  
    %       % Display three example Zernike radial polynomials Rax]svc  
    %       r = 0:0.01:1; >|zMN$:  
    %       n = [3 2 5]; (;VlK#rnC  
    %       m = [1 2 1]; sbv2*fno5  
    %       z = zernpol(n,m,r); | KtI:n4d  
    %       figure B']-4X{SGa  
    %       plot(r,z) EDAtC  
    %       grid on 56w uk [)  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') mHe[ NkY6  
    % :3b.`s(M  
    %   See also ZERNFUN, ZERNFUN2. bT>MZK8b  
    GHNw.<`l?  
    % A note on the algorithm. 2$r8^}Nj?  
    % ------------------------ ci 4K Nv;  
    % The radial Zernike polynomials are computed using the series QjOO^6Fh  
    % representation shown in the Help section above. For many special )DB\du   
    % functions, direct evaluation using the series representation can (^pIB~.z  
    % produce poor numerical results (floating point errors), because 7f] qCZ<0V  
    % the summation often involves computing small differences between OEw#;l4 C  
    % large successive terms in the series. (In such cases, the functions =j~BAS*"  
    % are often evaluated using alternative methods such as recurrence t =V| '  
    % relations: see the Legendre functions, for example). For the Zernike )E|{.K  
    % polynomials, however, this problem does not arise, because the 'VgEf:BS  
    % polynomials are evaluated over the finite domain r = (0,1), and _mWVZ1P  
    % because the coefficients for a given polynomial are generally all Ie4\d2tQ;  
    % of similar magnitude. S-'R84M,F  
    % w**~k]In  
    % ZERNPOL has been written using a vectorized implementation: multiple NC%96gfD  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] <@Z`<T6  
    % values can be passed as inputs) for a vector of points R.  To achieve GJ5R <f9I  
    % this vectorization most efficiently, the algorithm in ZERNPOL ZJe^MnE (G  
    % involves pre-determining all the powers p of R that are required to v]Fw~Y7l!  
    % compute the outputs, and then compiling the {R^p} into a single 'B:8tv  
    % matrix.  This avoids any redundant computation of the R^p, and 5G2G<[p5oQ  
    % minimizes the sizes of certain intermediate variables. Nj;5iy  
    % NX4G;+6  
    %   Paul Fricker 11/13/2006 n:|a;/{I]9  
    &V| kv"Wwj  
    b)eoFc)lc  
    % Check and prepare the inputs: jB<B_"  
    % ----------------------------- AL!ppi  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) [QFAkEJ--o  
        error('zernpol:NMvectors','N and M must be vectors.') !RP0W  
    end >?O?U=:<  
    G2<$to~{  
    if length(n)~=length(m) q68CU~i*  
        error('zernpol:NMlength','N and M must be the same length.') i#98KzE  
    end b(oe^jeGz  
    zLgc j(;  
    n = n(:); L;lu)|b"  
    m = m(:); X J`*dgJ  
    length_n = length(n); 5vFM0  
    IL go:xQ  
    if any(mod(n-m,2)) et2;{Tb,5  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') %~I&T". iC  
    end egK~w8`W%  
    3[j,d]\|  
    if any(m<0) ~!S/{Un   
        error('zernpol:Mpositive','All M must be positive.') IQ$!y,VJ  
    end uh2 F r  
    6cd!;Ca  
    if any(m>n) W[I$([  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') #|K{txC   
    end 0C;Js\>3]  
    ~/X8Hy!-  
    if any( r>1 | r<0 ) WMHYOJR  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') (/At+MF3E  
    end ^KdT,^6T  
    v4Wq0>o  
    if ~any(size(r)==1) #]dq^B~~  
        error('zernpol:Rvector','R must be a vector.') WH4rZ }Z`  
    end z . Z  
    +m]-)  
    r = r(:); S{?l/*Il*_  
    length_r = length(r); j85B{Mab&  
    /O<~n%< G  
    if nargin==4 ^^&H:q  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); Mk~U/oq  
        if ~isnorm "b402"&  
            error('zernpol:normalization','Unrecognized normalization flag.') `+T 2IPN  
        end GMg! 2CIU  
    else k,$/l1D  
        isnorm = false; hP8w3gl_  
    end !zt>& t  
    ;e*okYM  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% i9Beap/t$  
    % Compute the Zernike Polynomials e,{k!BXU#'  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Dt<MEpbur  
    '%4fQ%ID}  
    % Determine the required powers of r: VH4wsEH]  
    % ----------------------------------- ^mjU3q{;  
    rpowers = []; xe^M2$clb\  
    for j = 1:length(n) Lc?"4  
        rpowers = [rpowers m(j):2:n(j)]; GZWqP M4S\  
    end qtdkK LT  
    rpowers = unique(rpowers); U# [T!E  
    4lR+nmAZ  
    % Pre-compute the values of r raised to the required powers, ? A;RTM  
    % and compile them in a matrix: k-a1^K3  
    % ----------------------------- G62;p#  
    if rpowers(1)==0 rHjDf[5+  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Op8Gj  `  
        rpowern = cat(2,rpowern{:}); >]anTF`d  
        rpowern = [ones(length_r,1) rpowern]; V )Oot|  
    else NC!B-3?x  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); k~so+k&=b  
        rpowern = cat(2,rpowern{:}); EcX7wrl9x  
    end Go1xyd:k  
    5 =8v\q?)c  
    % Compute the values of the polynomials: nTc#I~\  
    % -------------------------------------- 9od c :  
    z = zeros(length_r,length_n); BriL ^]  
    for j = 1:length_n W!T[ ^+  
        s = 0:(n(j)-m(j))/2; )Nx*T9!Q  
        pows = n(j):-2:m(j); "!(@MfjT  
        for k = length(s):-1:1 ftcLP  
            p = (1-2*mod(s(k),2))* ... OM^`P  
                       prod(2:(n(j)-s(k)))/          ... p#Po?  
                       prod(2:s(k))/                 ... (^W :f{  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... A W6B[  
                       prod(2:((n(j)+m(j))/2-s(k))); -W.-m2:1  
            idx = (pows(k)==rpowers); I L7kpH+y  
            z(:,j) = z(:,j) + p*rpowern(:,idx); 4"Qb^y  
        end `jR8RDD  
         g]JRAM  
        if isnorm rXz q :  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); J zFR9DEt  
        end [qV/&t|O*h  
    end =SuJ*  
    )MSCyPp5  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    850
    光币
    833
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    8426
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  2 w! 0$  
    "H@I~X=  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 tu{paQ  
    }y J,&N'p  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)