切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11457阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 p' ^}J$  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦!  !{V`N|0  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 ^{yb4yQ 0  
    function z = zernfun(n,m,r,theta,nflag) "e\73?P  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. wMF1HT<*  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Brg0:5H   
    %   and angular frequency M, evaluated at positions (R,THETA) on the < :eKXH2  
    %   unit circle.  N is a vector of positive integers (including 0), and aAoAjVNkK  
    %   M is a vector with the same number of elements as N.  Each element Gg6cjc=dC  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 2mj>,kS?c  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, gDfM}2]/  
    %   and THETA is a vector of angles.  R and THETA must have the same 6"?#s/fk  
    %   length.  The output Z is a matrix with one column for every (N,M) #9"lL1  
    %   pair, and one row for every (R,THETA) pair.  KYccjX  
    % @AG=Eq9<o  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike )tV]h#4  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), O{]}{Ss  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 0~<t :q!  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, (#je0ES  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 'uUa|J1mu  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ioTqT:.  
    % k3OnvnJb  
    %   The Zernike functions are an orthogonal basis on the unit circle. E.VEW;=  
    %   They are used in disciplines such as astronomy, optics, and &#q%#M:  
    %   optometry to describe functions on a circular domain. /$vX1T  
    % )Knsy  
    %   The following table lists the first 15 Zernike functions. g5Hsz,x  
    % OZ Obx  
    %       n    m    Zernike function           Normalization d9 8pv%  
    %       -------------------------------------------------- &:+_{nc,  
    %       0    0    1                                 1 T?__  
    %       1    1    r * cos(theta)                    2 =g@hh)3wP  
    %       1   -1    r * sin(theta)                    2 A]V<K[9:b  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) AQ.q?'vE)  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 4f0dc\$  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) f'Xz4;  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) DUm/0q&  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 1^;&?E  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) \v9<L'NP)  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) ~>$(5 s2  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) v#sx9$K T  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10)  93 `  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) ?~VevD  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) -H_7GVSnl  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) K&Q0]r?  
    %       -------------------------------------------------- R?%|RCht1  
    % D3 E!jQ1  
    %   Example 1: ,%m$_wA$  
    % tQ?}x#J  
    %       % Display the Zernike function Z(n=5,m=1) p/s5[>N  
    %       x = -1:0.01:1; }S&SL)  
    %       [X,Y] = meshgrid(x,x); M9S[{Jj*  
    %       [theta,r] = cart2pol(X,Y); WUi7~Ei}  
    %       idx = r<=1; ]gj@r[  
    %       z = nan(size(X)); r?2C%GI`  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 2I39fZa  
    %       figure 0P53dF  
    %       pcolor(x,x,z), shading interp qdu:kA:]  
    %       axis square, colorbar #$fFp  
    %       title('Zernike function Z_5^1(r,\theta)') 8i"{GGVC  
    % z#*GPA8Em:  
    %   Example 2: ae1fCw3k  
    % ~JT{!wcE}o  
    %       % Display the first 10 Zernike functions ~GY;{  
    %       x = -1:0.01:1; J5rR?[i{  
    %       [X,Y] = meshgrid(x,x); Kd,m;S\  
    %       [theta,r] = cart2pol(X,Y); bmddh2  
    %       idx = r<=1; QnOa?0HL/  
    %       z = nan(size(X)); h; unbz  
    %       n = [0  1  1  2  2  2  3  3  3  3]; Ox43(S0~  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; uTJ?@ ^nq  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; $S cjEG:6  
    %       y = zernfun(n,m,r(idx),theta(idx)); &k{@:z  
    %       figure('Units','normalized') KoXXNJax  
    %       for k = 1:10 XJ NKM~  
    %           z(idx) = y(:,k); hQ8{ A7  
    %           subplot(4,7,Nplot(k)) V[#lFl).  
    %           pcolor(x,x,z), shading interp ) DLK<10  
    %           set(gca,'XTick',[],'YTick',[]) da^9Fb  
    %           axis square `")  I[h  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) YvHn~gNPhs  
    %       end SO&;]YO  
    % WK^qYfq|  
    %   See also ZERNPOL, ZERNFUN2. IH0^*f  
    JT-Zo OZ  
    %   Paul Fricker 11/13/2006 6$5M^3$-  
    `4p9K  
    Zj<T#4?8  
    % Check and prepare the inputs: Gsh2  
    % ----------------------------- xO@OkCue  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) e)bqE^JP  
        error('zernfun:NMvectors','N and M must be vectors.') tE>:kx0*3  
    end 5astv:p,P  
    FxT [4  
    if length(n)~=length(m) =f p(hX"  
        error('zernfun:NMlength','N and M must be the same length.') y@z #Jw<  
    end DpR%s",Q  
    [(K^x?\Y0'  
    n = n(:); \ a<Ye T  
    m = m(:); LMDa68 s  
    if any(mod(n-m,2)) Q'Tn+}B&  
        error('zernfun:NMmultiplesof2', ... ZqGq%8\.s  
              'All N and M must differ by multiples of 2 (including 0).') G j:|  
    end vT~a}  
    A| +{x4s`  
    if any(m>n) 3WVHI$A9  
        error('zernfun:MlessthanN', ... vtT:c.~d  
              'Each M must be less than or equal to its corresponding N.') Dx%fW`  
    end w {q YP  
    ,5*4%*n\  
    if any( r>1 | r<0 ) _ 8>"&1n  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 1WKDG~  
    end *dl@)~i  
    RinRQd  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) mB~&nDU  
        error('zernfun:RTHvector','R and THETA must be vectors.') \3/9lE|gh  
    end _ Owz%  
    J5"*OH:f  
    r = r(:); StVv"YY  
    theta = theta(:); s5dh]vNN  
    length_r = length(r); '37b[~k4  
    if length_r~=length(theta) koU.`l.  
        error('zernfun:RTHlength', ... x@ O:  
              'The number of R- and THETA-values must be equal.') \NqC i'&  
    end Kna'5L5"  
    A.FI] K@  
    % Check normalization: +A3 H#'  
    % -------------------- VGq]id{*$  
    if nargin==5 && ischar(nflag) {mQJ6 G'ny  
        isnorm = strcmpi(nflag,'norm'); y()( 8L  
        if ~isnorm V_kE"W)  
            error('zernfun:normalization','Unrecognized normalization flag.') !ZZAI_N  
        end yiq#p "Hs  
    else .%A2  
        isnorm = false; @6SSk=9_S  
    end /~[R u  
    >R<fm  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% K&h6#[^\d  
    % Compute the Zernike Polynomials YovY0nO  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% K/-D 5U  
    s$_#T  
    % Determine the required powers of r: G;;~xfE'  
    % ----------------------------------- :6+~"7T  
    m_abs = abs(m); 5,Y2Lzr  
    rpowers = []; h(-&.Sm")H  
    for j = 1:length(n) ^d*>P|n*@e  
        rpowers = [rpowers m_abs(j):2:n(j)]; Dhoj|lc  
    end ap~Iz  
    rpowers = unique(rpowers); EiUV?Gvz  
    %-Z~f~<?  
    % Pre-compute the values of r raised to the required powers, \t@`]QzG:  
    % and compile them in a matrix: (% P=#vZ  
    % -----------------------------  |_ *$+  
    if rpowers(1)==0 4/?Zp4g  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); s|'L0` <B  
        rpowern = cat(2,rpowern{:}); s_LSs yqo  
        rpowern = [ones(length_r,1) rpowern]; 3XtGi<u  
    else val<N293L>  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ]r6bJ 2  
        rpowern = cat(2,rpowern{:}); { )qP34rM  
    end (&,R1dLo  
    `uHpj`EU  
    % Compute the values of the polynomials: 3)a29uc:U  
    % -------------------------------------- DG=Ap:sl*$  
    y = zeros(length_r,length(n)); xF;v 6d  
    for j = 1:length(n) N sL"p2w~  
        s = 0:(n(j)-m_abs(j))/2; ,m,vo_Ub  
        pows = n(j):-2:m_abs(j); :F=nb+HZ  
        for k = length(s):-1:1 ;G]'}$`/q  
            p = (1-2*mod(s(k),2))* ... ;g jp&g9Q  
                       prod(2:(n(j)-s(k)))/              ... ~*Qpv&y)  
                       prod(2:s(k))/                     ... $lA,{Q  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... I:<R@V<~#  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 9lCKz !E  
            idx = (pows(k)==rpowers); ,v_r$kh^  
            y(:,j) = y(:,j) + p*rpowern(:,idx); [Gy'0P(EQ  
        end zP}v2  
         N-E`go  
        if isnorm c&-$?f r  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); {W<-f?  
        end ]H~,K]@.  
    end D:tZiS=0  
    % END: Compute the Zernike Polynomials GTl(i*  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -<]_:Kf{;&  
    %)Dd{|c  
    % Compute the Zernike functions: d|RmU/)  
    % ------------------------------ ZS]f+}0/}  
    idx_pos = m>0; T l(uqY?9  
    idx_neg = m<0; v^fOT5\  
    L"%eQHEC&  
    z = y; m?$G(E5  
    if any(idx_pos) x)ZH;)  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Gw^=kzh  
    end Ilb |:x"L  
    if any(idx_neg) XF$]KA L0  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 3>)BI(Wl  
    end z|)1l`  
    {NgY8w QB  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) )wv[!cYyW  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. #'J7Wy  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated -G#@BtB2+  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive {<4?o? 1 g  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, l'". }6S  
    %   and THETA is a vector of angles.  R and THETA must have the same J*KBG2+13  
    %   length.  The output Z is a matrix with one column for every P-value, 4eL54).1O  
    %   and one row for every (R,THETA) pair. 8;f<qu|w  
    % IYg3ve`x  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike BBE1}V!u  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) RdvTtXg  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) ur,"K' w  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 <&EO=A  
    %   for all p. X8n/XG~_  
    % | 4oM+n;Y  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 ::Q);  
    %   Zernike functions (order N<=7).  In some disciplines it is ?WtG|w  
    %   traditional to label the first 36 functions using a single mode XAxI?y[c  
    %   number P instead of separate numbers for the order N and azimuthal pXj/6+^  
    %   frequency M. )LrCoI =|  
    % ) a\DS yr  
    %   Example: gXLZ)>+A+  
    % $F`<&o  
    %       % Display the first 16 Zernike functions ~EWfEHf*BJ  
    %       x = -1:0.01:1; <bXWkj  
    %       [X,Y] = meshgrid(x,x); qb&N S4#  
    %       [theta,r] = cart2pol(X,Y); 1o~U+s_r  
    %       idx = r<=1; YEPG[W<kg  
    %       p = 0:15; +IO1ipc4cE  
    %       z = nan(size(X)); 2T(,H.O  
    %       y = zernfun2(p,r(idx),theta(idx)); y_4krY|Zx  
    %       figure('Units','normalized') QD;f~fZ  
    %       for k = 1:length(p) 'Kzr-)JS  
    %           z(idx) = y(:,k); Q @OC=  
    %           subplot(4,4,k) $x_52 j\j  
    %           pcolor(x,x,z), shading interp K9O,7h:x  
    %           set(gca,'XTick',[],'YTick',[]) qwNKRqT  
    %           axis square s!;VUr\  
    %           title(['Z_{' num2str(p(k)) '}']) %v+fN?%x,d  
    %       end (06Vcqg  
    % eo*u(@  
    %   See also ZERNPOL, ZERNFUN. .m]=JC5'  
    ~UJu @M  
    %   Paul Fricker 11/13/2006  e(;`9T  
    :_QAjU  
    JGO$4DK-1  
    % Check and prepare the inputs: R4~zL!7;  
    % ----------------------------- !ga (L3vf  
    if min(size(p))~=1 ,[}yf#8@J  
        error('zernfun2:Pvector','Input P must be vector.') 4lh   
    end ic0v*Y$  
    |h=+&*(:  
    if any(p)>35 eFj6p<  
        error('zernfun2:P36', ... 01{r^ZT`RH  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... {Sr=SE  
               '(P = 0 to 35).']) _[{:!?-?  
    end `k}l$ih`X  
    S-LZ(o{ZL  
    % Get the order and frequency corresonding to the function number: gR-Qj  
    % ---------------------------------------------------------------- s{z~Axup-  
    p = p(:); w^due P7J  
    n = ceil((-3+sqrt(9+8*p))/2); _+Jf.n20  
    m = 2*p - n.*(n+2); .KU SNrs'  
    6mF{ImbRbS  
    % Pass the inputs to the function ZERNFUN: Id.Z[owC`Y  
    % ---------------------------------------- l@tyg7CwY  
    switch nargin e@,u`{C[  
        case 3 -wf RR>)d  
            z = zernfun(n,m,r,theta); g",wkO|  
        case 4 >NH4A_  
            z = zernfun(n,m,r,theta,nflag); jqX@&}3@  
        otherwise \Sw+]pr~  
            error('zernfun2:nargin','Incorrect number of inputs.') yA?ENAM  
    end o1#:j?sN  
    E&];>3C  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) YH'$_,8peM  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. ?y>Y$-v/C  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of dcl.wD0~V  
    %   order N and frequency M, evaluated at R.  N is a vector of 'n l RY5@2  
    %   positive integers (including 0), and M is a vector with the wUK7um  
    %   same number of elements as N.  Each element k of M must be a >k&8el6h  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) $>'")7z  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is lJ:M^.Em0  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix XdGpW  
    %   with one column for every (N,M) pair, and one row for every S(>@:`=  
    %   element in R. ]3O 4\o  
    % IP30y>\  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- 2ec$xms  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is E7X!cm/2<  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to Cdp]Nv6  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 @%EE0)IA  
    %   for all [n,m]. k'[ S@+5  
    % .1.J5>/n  
    %   The radial Zernike polynomials are the radial portion of the jFuC=6aF  
    %   Zernike functions, which are an orthogonal basis on the unit Pv/Pww \  
    %   circle.  The series representation of the radial Zernike \Y!T>nWn)I  
    %   polynomials is xH_A@hf;  
    % NI5]Nz<?  
    %          (n-m)/2 b&lN%+%}  
    %            __ F>~ xzc  
    %    m      \       s                                          n-2s *M> iZO*@  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r $ ^W-Wmsz  
    %    n      s=0 IPl@ DH  
    % y4xT:G/M  
    %   The following table shows the first 12 polynomials. gohAp  
    % May&@x/oMS  
    %       n    m    Zernike polynomial    Normalization \4h>2y  
    %       --------------------------------------------- 87QZun%  
    %       0    0    1                        sqrt(2) hD nM+4D  
    %       1    1    r                           2 \8;Qv  
    %       2    0    2*r^2 - 1                sqrt(6) CY*ngi&  
    %       2    2    r^2                      sqrt(6) U/T4i#  
    %       3    1    3*r^3 - 2*r              sqrt(8) N#(jK1` y  
    %       3    3    r^3                      sqrt(8) DE*MdfP0  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) ],;D2]<s  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) )\{'fF  
    %       4    4    r^4                      sqrt(10) gw_|C|!P  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) g3|BE2?  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) #*!+b  
    %       5    5    r^5                      sqrt(12) &EAk z  
    %       --------------------------------------------- v"z (JF  
    % _9D|u<D  
    %   Example: H4M{_2DO  
    % }qc#lz  
    %       % Display three example Zernike radial polynomials zuUT S[  
    %       r = 0:0.01:1; a @6^8B?w;  
    %       n = [3 2 5]; X'cf&>h  
    %       m = [1 2 1]; K!3{M!B   
    %       z = zernpol(n,m,r); QJx9I_  
    %       figure ?22d},.  
    %       plot(r,z) f?,-j>[.=f  
    %       grid on TE3*ktB{N  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') pG/ NuImA  
    % '@'B>7C#  
    %   See also ZERNFUN, ZERNFUN2. l iw,O 6  
    Vy]A,Rn7  
    % A note on the algorithm. ]#F q>E  
    % ------------------------ "Dyym<J  
    % The radial Zernike polynomials are computed using the series $bk>kbl P  
    % representation shown in the Help section above. For many special q1H=/[a  
    % functions, direct evaluation using the series representation can vFTXTbt'h  
    % produce poor numerical results (floating point errors), because iJ}2"i7M  
    % the summation often involves computing small differences between r)VLf#3B  
    % large successive terms in the series. (In such cases, the functions H{ZLk,  
    % are often evaluated using alternative methods such as recurrence #nKRTb+{  
    % relations: see the Legendre functions, for example). For the Zernike cL#-*_(  
    % polynomials, however, this problem does not arise, because the 3 h#s([uL  
    % polynomials are evaluated over the finite domain r = (0,1), and F&xv z2G  
    % because the coefficients for a given polynomial are generally all Hw Z^D= A  
    % of similar magnitude. sF y]+DB  
    % x8Q~VVZr  
    % ZERNPOL has been written using a vectorized implementation: multiple Zp`~}LV{  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] Zb]/nP1P  
    % values can be passed as inputs) for a vector of points R.  To achieve bZiyapM  
    % this vectorization most efficiently, the algorithm in ZERNPOL !~WZ_z  
    % involves pre-determining all the powers p of R that are required to ugno]5Ni  
    % compute the outputs, and then compiling the {R^p} into a single pjACFVMFX  
    % matrix.  This avoids any redundant computation of the R^p, and sH%&+4!3  
    % minimizes the sizes of certain intermediate variables. ] GNh)  
    % J==}QEhQ{  
    %   Paul Fricker 11/13/2006 ) ]73S@P(=  
     ozU2  
    T)8p:}P!  
    % Check and prepare the inputs: L/BHexOB  
    % ----------------------------- HL@TcfOe~  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) cv= \g Z  
        error('zernpol:NMvectors','N and M must be vectors.') |"Z-7@/k$i  
    end Mq@}snp"S  
    mmHJ h\2v  
    if length(n)~=length(m) gt/!~f0r  
        error('zernpol:NMlength','N and M must be the same length.') gV|Y54}T  
    end >5.zk1&H  
    M+0x;53nz  
    n = n(:); $.a|ae|K  
    m = m(:); >PIPp7C  
    length_n = length(n); Xtkw Z3  
    u#FXW_-TK  
    if any(mod(n-m,2)) &3I$8v|!?  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') /_q#a h  
    end ;u,rtEMy;  
    I0iY+@^5  
    if any(m<0) ,ijW(95{k  
        error('zernpol:Mpositive','All M must be positive.')  DwXU  
    end eES'}[W>  
    GMdI0jaG#  
    if any(m>n) RJx{eck%  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') G,]z (%  
    end Wab.|\c  
    + 8f>^*:u  
    if any( r>1 | r<0 ) d@ZoV  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') HyEa_9  
    end Ir27ZP  
    `E W!-v)  
    if ~any(size(r)==1) frc{>u~t  
        error('zernpol:Rvector','R must be a vector.') D"cKlp-I6|  
    end zw]3Vg{T  
    Y%g "Y  
    r = r(:); jn$j^ 51`C  
    length_r = length(r); &hI>L  
    >ZeEX, N  
    if nargin==4 B'p5M.6d#:  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); 9#Y2`p T  
        if ~isnorm b+Vi3V  
            error('zernpol:normalization','Unrecognized normalization flag.') 5mavcle{4r  
        end s`c?:  
    else x%6hM |U  
        isnorm = false; c4 5?St  
    end H* /&A9("  
    4gOgWBv  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% :G 5C ]'t  
    % Compute the Zernike Polynomials 1~@|e Wr|  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Szts<n5  
    %K zbO0  
    % Determine the required powers of r: ~C| ,b"  
    % ----------------------------------- s@~/x5jwCs  
    rpowers = []; /cfHYvnz  
    for j = 1:length(n) -NzTqLBn  
        rpowers = [rpowers m(j):2:n(j)]; y9!:^kDI  
    end f=m/ -mAA  
    rpowers = unique(rpowers); 6V2j*J  
    _2OuskL  
    % Pre-compute the values of r raised to the required powers, U:n*<l-k}  
    % and compile them in a matrix: h<Wg3o  
    % ----------------------------- v459},!P  
    if rpowers(1)==0 k 4B_W  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ~<,Sh~Ana.  
        rpowern = cat(2,rpowern{:}); U5<@<j(@  
        rpowern = [ones(length_r,1) rpowern]; W-XpJ\_  
    else P}@*Z>j:#  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); &@6 GI<  
        rpowern = cat(2,rpowern{:}); r6t&E%b  
    end ~ziexZ=N  
    e+@xs n3  
    % Compute the values of the polynomials: )6{P8k4Zr  
    % -------------------------------------- GV8)Kor%  
    z = zeros(length_r,length_n); J3=BE2L  
    for j = 1:length_n $<OhGk-  
        s = 0:(n(j)-m(j))/2; 5B*qbM  
        pows = n(j):-2:m(j); ,I`_F,  
        for k = length(s):-1:1 .zS D`v@[  
            p = (1-2*mod(s(k),2))* ... )gXTRkmw  
                       prod(2:(n(j)-s(k)))/          ... a$m_D!b~_  
                       prod(2:s(k))/                 ... _- %d9@x  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... _z8;lt   
                       prod(2:((n(j)+m(j))/2-s(k))); ~`R1sSr"  
            idx = (pows(k)==rpowers); ~@P)tl>  
            z(:,j) = z(:,j) + p*rpowern(:,idx); wmYvD<  
        end (Es{la G  
         Ttv'k*$cP  
        if isnorm WZ?!!   
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); *jF#^=  
        end +< KNY  
    end }V]eg,.BJ  
    R 1'`F{56  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  U e*$&VlT  
    K $-;;pUl  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 @"8R3BN  
    K{L.ZH>7  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)