切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11273阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 )Y](Mj!D  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! F*Y]^9]  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 Q- }cB  
    function z = zernfun(n,m,r,theta,nflag) J] )gXVRM  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. ;8Ts  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N iTVepYv4m  
    %   and angular frequency M, evaluated at positions (R,THETA) on the y(yBRR  
    %   unit circle.  N is a vector of positive integers (including 0), and Vif)e4{Pn  
    %   M is a vector with the same number of elements as N.  Each element U1=]iG<%  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) C,) e7  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 303x|y  
    %   and THETA is a vector of angles.  R and THETA must have the same P0l.sVqL  
    %   length.  The output Z is a matrix with one column for every (N,M) h%ba!  
    %   pair, and one row for every (R,THETA) pair. #^9a[ZLj0  
    % D"<>! ]@(a  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike mc|8t0+1`  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), om1D}irKT  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral ~kOXMLRg  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, t&MLgu  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized F @uOXNz)  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. .GiQC {@9w  
    % p&lT! 5P!A  
    %   The Zernike functions are an orthogonal basis on the unit circle. `C)|}qcC  
    %   They are used in disciplines such as astronomy, optics, and feT.d +Fd  
    %   optometry to describe functions on a circular domain. E.4 X,  
    % P] Xl  
    %   The following table lists the first 15 Zernike functions. '=(@3ggA:  
    % G8@LH   
    %       n    m    Zernike function           Normalization 0F%V+Y\R  
    %       -------------------------------------------------- yC9~X='D  
    %       0    0    1                                 1 v4W<_ 7L_  
    %       1    1    r * cos(theta)                    2 .tzQ hd>  
    %       1   -1    r * sin(theta)                    2 ;*>':-4  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) l*|m(7s  
    %       2    0    (2*r^2 - 1)                    sqrt(3) "[2D&\$  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) xX\A& 9m  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) hEfFMi=a`  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) DC,]FmWs!+  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) GQ1m h*4$  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) ?#J;\^  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) o(Q='kK  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) AxiCpAS;J  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) DX<xkS[P  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) S !R:a>\  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) Rqun}v}  
    %       -------------------------------------------------- B0ZLGB  
    % C''[[sw'K  
    %   Example 1: &h?8yV4B  
    % ($s%B  
    %       % Display the Zernike function Z(n=5,m=1) ! 345  
    %       x = -1:0.01:1; K~jN"ev  
    %       [X,Y] = meshgrid(x,x); rB-}<22.  
    %       [theta,r] = cart2pol(X,Y); "kg?Or.  
    %       idx = r<=1; b-)3MR:4  
    %       z = nan(size(X)); +KHk`2{y~  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); !kWx'tJ$  
    %       figure oU)HxV  
    %       pcolor(x,x,z), shading interp .ot[_*A.FD  
    %       axis square, colorbar 6a*OQ{8  
    %       title('Zernike function Z_5^1(r,\theta)') Kz9h{ Tu4  
    % h2mU  
    %   Example 2: r]O8|#P,Z$  
    % J7$JW3O  
    %       % Display the first 10 Zernike functions XV0t 8#T2  
    %       x = -1:0.01:1; 'sN (=CQ  
    %       [X,Y] = meshgrid(x,x); zK ir  
    %       [theta,r] = cart2pol(X,Y); @+^5ze\  
    %       idx = r<=1; U66zm9 3&  
    %       z = nan(size(X)); :t6.J  
    %       n = [0  1  1  2  2  2  3  3  3  3]; ARa9Ia{@  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 5JA5:4aev  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; g TqtTd~L  
    %       y = zernfun(n,m,r(idx),theta(idx)); 5wGc"JHm  
    %       figure('Units','normalized') tC'@yX  
    %       for k = 1:10 ^]1M8R,  
    %           z(idx) = y(:,k); =U<6TP]{  
    %           subplot(4,7,Nplot(k)) x\!Uk!fM  
    %           pcolor(x,x,z), shading interp gj<Y+Dv>  
    %           set(gca,'XTick',[],'YTick',[]) 7Jvb6V<R  
    %           axis square G ~|Z (}H  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) #e(P~'A0  
    %       end zFGZ;?i  
    % I\oI"\}U  
    %   See also ZERNPOL, ZERNFUN2. pxO ?:B  
    :Y>M/ /0  
    %   Paul Fricker 11/13/2006 f/K:~#k  
    z\Y-8a.]  
    SPU_@ Pk  
    % Check and prepare the inputs: O)WduhlGQ  
    % ----------------------------- >XiTl;UU  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) x1nqhSaD  
        error('zernfun:NMvectors','N and M must be vectors.') C`>|D [  
    end /?Fa<{  
    {Tym#  
    if length(n)~=length(m) ZsikI@?  
        error('zernfun:NMlength','N and M must be the same length.') +x"cWOg  
    end Lv`NS+fX  
    f;PvXq<7"  
    n = n(:); 6K zdWT  
    m = m(:); f MDM\&f  
    if any(mod(n-m,2)) |XdkJv]  
        error('zernfun:NMmultiplesof2', ... #{u>  
              'All N and M must differ by multiples of 2 (including 0).') _& qM^  
    end <xWBS/K  
    m?=9j~F *  
    if any(m>n) -H;p +XAY  
        error('zernfun:MlessthanN', ... $VLCD  
              'Each M must be less than or equal to its corresponding N.') r]+N(&q  
    end 1Ev#[FOc  
    drZ1D s  
    if any( r>1 | r<0 ) ".R5K ?  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') d 9n{jv|  
    end EO[UezuU  
    p|b&hgA  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) MVpk/S%W  
        error('zernfun:RTHvector','R and THETA must be vectors.') $5;RQNhXh  
    end 8=h$6=1S  
    7f9i5E1  
    r = r(:); "L p"o  
    theta = theta(:); G~\ SI.  
    length_r = length(r); )FfJ%oT}  
    if length_r~=length(theta) ? m$7)@p  
        error('zernfun:RTHlength', ... Ltt+BUJc  
              'The number of R- and THETA-values must be equal.') /6%<97/d  
    end :U7m@3czU  
    d\{#*{_A  
    % Check normalization: -}O>m}l  
    % -------------------- wEImpsC`  
    if nargin==5 && ischar(nflag) _+\hDV>v  
        isnorm = strcmpi(nflag,'norm'); -UM5&R+o  
        if ~isnorm ages-Z_X  
            error('zernfun:normalization','Unrecognized normalization flag.') &E>zvRBQ  
        end xgeKz^,  
    else mfNYN4Um6  
        isnorm = false; (y xrK  
    end EFg s}BV_9  
    6jIW)C  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Ih!D6  
    % Compute the Zernike Polynomials - :0{  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% '5mzlR  
    u$ZahN!  
    % Determine the required powers of r: :  Jh  
    % ----------------------------------- vh~:{akR  
    m_abs = abs(m); XVfp* `  
    rpowers = []; I oz rZ  
    for j = 1:length(n) kOfu7Zj  
        rpowers = [rpowers m_abs(j):2:n(j)]; hkO)q|1  
    end U-$ B"w&  
    rpowers = unique(rpowers); % DQ.f*%  
    GMZj@q  
    % Pre-compute the values of r raised to the required powers, Qhd~4  
    % and compile them in a matrix: Z81{v<c;  
    % ----------------------------- EuAJ.n  
    if rpowers(1)==0 H:ar&o#(  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); .kT5 4U;{  
        rpowern = cat(2,rpowern{:}); 3f{%IU(z  
        rpowern = [ones(length_r,1) rpowern];  4^L+LY  
    else \@kY2,I V  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); su`] l"[,]  
        rpowern = cat(2,rpowern{:}); I499 Rrw#E  
    end 1f 0"z1   
    VxOrrs7Z  
    % Compute the values of the polynomials: T~k5` ~\(  
    % -------------------------------------- 7^bO`  
    y = zeros(length_r,length(n)); 9oteQN{9  
    for j = 1:length(n) RN?z)9!  
        s = 0:(n(j)-m_abs(j))/2; W`C&$v#  
        pows = n(j):-2:m_abs(j); &8Cuu$T9)  
        for k = length(s):-1:1 7CGKm8T  
            p = (1-2*mod(s(k),2))* ... K/ q:aMq  
                       prod(2:(n(j)-s(k)))/              ... x@I@7Pvo3  
                       prod(2:s(k))/                     ... fN8|4  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... K%<Z"2!+  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); "R$ee^  
            idx = (pows(k)==rpowers); /tno`su;  
            y(:,j) = y(:,j) + p*rpowern(:,idx); n_@YKz;8  
        end uBk$zs  
         Dg_/Iu>OAE  
        if isnorm A"V3g`dP  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); DVYY1!j<  
        end n>X  
    end vm+EzmO,!  
    % END: Compute the Zernike Polynomials Aa&3x~3+  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% G}<q  
    %D z|p]49!  
    % Compute the Zernike functions: L4aT=of-  
    % ------------------------------ nMc d(&`N  
    idx_pos = m>0; AA}M"8~2  
    idx_neg = m<0; 1$fA9u$  
    :yvUHx  
    z = y; 5|:=#Ql*  
    if any(idx_pos) $Q|66/S^  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); -aGv#!aIl  
    end MB\vgKY  
    if any(idx_neg) -5A@FGh  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ^HKxaW9W  
    end L iJ;A*  
    ~ K^Z4  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) <s-_ieW'  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. av wU)6L  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated ~v9\4O  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive <H)h+?&~d  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, fCZbIt)Eh  
    %   and THETA is a vector of angles.  R and THETA must have the same &#g;=jZ  
    %   length.  The output Z is a matrix with one column for every P-value, Z/hSH 0(~  
    %   and one row for every (R,THETA) pair. =g/K>B  
    % !e.@Xk.P6  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike W3 2mAz;  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) ^`=Z=C$fj  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) o?^j1\^  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 )y.J2_lI8  
    %   for all p. rtf>\j+  
    % i/oaKpPN  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 ngEjbCV+  
    %   Zernike functions (order N<=7).  In some disciplines it is 0?SdAF[:z  
    %   traditional to label the first 36 functions using a single mode !=cW+=1  
    %   number P instead of separate numbers for the order N and azimuthal {:od=\*R  
    %   frequency M. 9+=U&*  
    % ~b8U#'KD  
    %   Example: 2#6yO`?uo  
    %  ;{BELv-4  
    %       % Display the first 16 Zernike functions 4<Bj;1*4  
    %       x = -1:0.01:1; QS_" fsyN:  
    %       [X,Y] = meshgrid(x,x); ^N`ar9Db  
    %       [theta,r] = cart2pol(X,Y); ZxbWgM5rm  
    %       idx = r<=1; h{J2CWJ  
    %       p = 0:15; wC<!,tB(8  
    %       z = nan(size(X)); ;2)@NH  
    %       y = zernfun2(p,r(idx),theta(idx)); 3boINmX  
    %       figure('Units','normalized') OyZgg(iN  
    %       for k = 1:length(p) \|DcWH1  
    %           z(idx) = y(:,k); gjL>FOe8u  
    %           subplot(4,4,k) N$>g)Ml?  
    %           pcolor(x,x,z), shading interp FB6`2E%o  
    %           set(gca,'XTick',[],'YTick',[]) ./[%%"  
    %           axis square #<4h Y7/  
    %           title(['Z_{' num2str(p(k)) '}']) h3>/..l  
    %       end l5D8DvJCj  
    % OPBnU@=R  
    %   See also ZERNPOL, ZERNFUN.  U`IDZ{g  
    *8,]fBUq  
    %   Paul Fricker 11/13/2006 8WZM}3x$f{  
    ,V.X-`Y  
    !4]w b!F  
    % Check and prepare the inputs: /V2 ^/`&;a  
    % ----------------------------- *hAq]VC})  
    if min(size(p))~=1 #r#UO  
        error('zernfun2:Pvector','Input P must be vector.') a0CmCv2#  
    end 5Ee%!Pk  
    e6QUe.S  
    if any(p)>35 t_x \&+W  
        error('zernfun2:P36', ... ,>`wz^z  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... g"hm"m}i  
               '(P = 0 to 35).']) _CciU.1k&,  
    end u z4P  
    ,g 6w2y7 ]  
    % Get the order and frequency corresonding to the function number: ~*- eL.  
    % ---------------------------------------------------------------- LylB3BM  
    p = p(:); k)1K6ug  
    n = ceil((-3+sqrt(9+8*p))/2); F%+/j5~^  
    m = 2*p - n.*(n+2); $cSrT)u :  
    %'%ej^s-R  
    % Pass the inputs to the function ZERNFUN: go@UE2qw  
    % ---------------------------------------- SLD%8:Zn  
    switch nargin jL6u#0  
        case 3 SQ1.jcWW[  
            z = zernfun(n,m,r,theta); tl (2=\  
        case 4 SZzS$6 t  
            z = zernfun(n,m,r,theta,nflag); a:XVu0`(  
        otherwise  .]k+hc`  
            error('zernfun2:nargin','Incorrect number of inputs.') B ;9^  
    end '0p 5|[ZD  
    YRfs8I^rg  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) j#f+0  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. 'nz;|6uC  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of 0~iC#lHO  
    %   order N and frequency M, evaluated at R.  N is a vector of (CJiCtAsl`  
    %   positive integers (including 0), and M is a vector with the X*KQWs.  
    %   same number of elements as N.  Each element k of M must be a %g5TU 6WP  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) -icOg6%  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is .{1G"(z  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix !hrXud=#"  
    %   with one column for every (N,M) pair, and one row for every &=Gz[1 L  
    %   element in R. #v0"hFOH,  
    % 5x(`z   
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- o]t6u .L  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is Kfa7}f_  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to g{.>nE^Sc5  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 ! @{rk p  
    %   for all [n,m]. lM86 *g 'l  
    % [^EU'lewnW  
    %   The radial Zernike polynomials are the radial portion of the )@09Y_9r  
    %   Zernike functions, which are an orthogonal basis on the unit -wH#B<'  
    %   circle.  The series representation of the radial Zernike L(\sO=t  
    %   polynomials is an_qE}P  
    % CoDu|M%  
    %          (n-m)/2 )G\23P  
    %            __ [R+zzl&Zw  
    %    m      \       s                                          n-2s }S<2({GI  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r L>5VnzSI  
    %    n      s=0 +0rMv  
    % guz{DBlK  
    %   The following table shows the first 12 polynomials. u/Fa+S  
    % ~=h]r/b< U  
    %       n    m    Zernike polynomial    Normalization >ygyPl ;1s  
    %       --------------------------------------------- \{AxDk{z#  
    %       0    0    1                        sqrt(2) IT! a)d  
    %       1    1    r                           2 $e& ( ncM  
    %       2    0    2*r^2 - 1                sqrt(6) :@jhe8'w  
    %       2    2    r^2                      sqrt(6) .=~beTS'Vo  
    %       3    1    3*r^3 - 2*r              sqrt(8) a\S"d  
    %       3    3    r^3                      sqrt(8) nF~</>  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) gP"p7\ (  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) jCDZ$W89  
    %       4    4    r^4                      sqrt(10) )^7Y^u e  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) @[u!  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) GenkYtS  
    %       5    5    r^5                      sqrt(12) , mEFp_a+  
    %       --------------------------------------------- +(0Fab8g  
    % ]as_7  
    %   Example: !4GG q  
    % Ja>UcE29  
    %       % Display three example Zernike radial polynomials T=35?   
    %       r = 0:0.01:1; ["- pylhK  
    %       n = [3 2 5]; j!q5Bc?  
    %       m = [1 2 1]; #qXE[%  
    %       z = zernpol(n,m,r); Xt~`EN  
    %       figure zvf:*Na")  
    %       plot(r,z) 3t22KY[`  
    %       grid on ^29w @*  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') eZWN9#p2  
    % V#.;OtF]  
    %   See also ZERNFUN, ZERNFUN2. }^Be^a<ub  
    Z)EmX=  
    % A note on the algorithm. bq[j4xH0X  
    % ------------------------ ;<`F[V Zau  
    % The radial Zernike polynomials are computed using the series pW7vY)hj  
    % representation shown in the Help section above. For many special 0JQy-hpF  
    % functions, direct evaluation using the series representation can pA%XqG*=Y  
    % produce poor numerical results (floating point errors), because jLX{$,  
    % the summation often involves computing small differences between @GqPU,RO  
    % large successive terms in the series. (In such cases, the functions ?#!Hm`\.  
    % are often evaluated using alternative methods such as recurrence CZRrb84  
    % relations: see the Legendre functions, for example). For the Zernike 0h-holUf}~  
    % polynomials, however, this problem does not arise, because the C=(-oI n  
    % polynomials are evaluated over the finite domain r = (0,1), and S>O fUrt  
    % because the coefficients for a given polynomial are generally all K]' 84!l  
    % of similar magnitude. h^^zR)EVb  
    % v39`ct=e  
    % ZERNPOL has been written using a vectorized implementation: multiple jIJVl \i]  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] r7Bv?M^!  
    % values can be passed as inputs) for a vector of points R.  To achieve 9;2PoW8  
    % this vectorization most efficiently, the algorithm in ZERNPOL V2sWcV?  
    % involves pre-determining all the powers p of R that are required to ' Bb]< L`  
    % compute the outputs, and then compiling the {R^p} into a single `}.K@17  
    % matrix.  This avoids any redundant computation of the R^p, and (oX|lPD<b  
    % minimizes the sizes of certain intermediate variables. J~KWn.  
    % @*q WV*$h  
    %   Paul Fricker 11/13/2006 4*MjDb  
    (RG\U[  
    r \H+=2E'  
    % Check and prepare the inputs: #q`[(`Bx  
    % ----------------------------- E*ybf'  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) *k==2figz  
        error('zernpol:NMvectors','N and M must be vectors.') jcHs!   
    end v1<gNb)`  
     \o !  
    if length(n)~=length(m) <GPL8D  
        error('zernpol:NMlength','N and M must be the same length.') r) Ts(#Z  
    end r9z_8#cR  
    H .)}|  
    n = n(:); HmKvu"3  
    m = m(:); v{`Z  
    length_n = length(n); j*f%<`2`j  
    d=V4,:=S  
    if any(mod(n-m,2)) DfwxPt#  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') ;~T)pG8IS  
    end _'<V<OjVM!  
    KK4>8zGR  
    if any(m<0) #Z<pks2 y  
        error('zernpol:Mpositive','All M must be positive.') \DBoe :0~  
    end ,6Sa  
    B%gk[!d}8  
    if any(m>n) KJWYG^zI  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') 7 vUfA"  
    end +#8?y 5~q  
    i@e.Uzn  
    if any( r>1 | r<0 ) Oh6_Bci  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') !iUdej^tx  
    end 7iu?Q  
    zrk/}b0j  
    if ~any(size(r)==1) qd{o64;|  
        error('zernpol:Rvector','R must be a vector.') @+~=h{jv<  
    end GlP [:  
    3U<\y6/  
    r = r(:); q88p~Ccoa  
    length_r = length(r); oc' #sE  
    `%;n HQ"  
    if nargin==4 F7a &-  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); W=M&U  
        if ~isnorm qY\zZ  
            error('zernpol:normalization','Unrecognized normalization flag.') jENarB^As  
        end w8:F^{  
    else Hb 'fEo r  
        isnorm = false; o_/C9[:  
    end Y<TlvB)w  
    heoOOP(#  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 3~6F`G  
    % Compute the Zernike Polynomials ^k&zX!W  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% s([9 /ED  
    ^|xj.  
    % Determine the required powers of r: Y<3s_  
    % ----------------------------------- +JZ<9,4  
    rpowers = []; ju0]~,  
    for j = 1:length(n) 6;Cr92  
        rpowers = [rpowers m(j):2:n(j)]; L`FsK64@  
    end Hf+A52lrf  
    rpowers = unique(rpowers); ehCc N4V(  
    gXI_S9 z  
    % Pre-compute the values of r raised to the required powers, ;hF>iw  
    % and compile them in a matrix:  s=#IoNh  
    % ----------------------------- @dX0gHU[c  
    if rpowers(1)==0 asP>(Li  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); a8M.EFa:  
        rpowern = cat(2,rpowern{:}); mkYM/*qyM&  
        rpowern = [ones(length_r,1) rpowern];  ;Fcdjy  
    else 9 pE)S^P  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ?# >|P-4  
        rpowern = cat(2,rpowern{:}); ~] Mq'  
    end JiZ9ly( G  
    !Y=s_)X  
    % Compute the values of the polynomials: q9pBS1Ej  
    % -------------------------------------- lnbw-IE!  
    z = zeros(length_r,length_n); Fdd$Bl.&XS  
    for j = 1:length_n c}Jy'F7&f  
        s = 0:(n(j)-m(j))/2; 7qon:]b4  
        pows = n(j):-2:m(j); y[q W>  
        for k = length(s):-1:1 H;*:XLPF  
            p = (1-2*mod(s(k),2))* ... l,h#RTfry  
                       prod(2:(n(j)-s(k)))/          ... n$y1kD  
                       prod(2:s(k))/                 ... `@ qSDW!b  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... 5<IUTso5h  
                       prod(2:((n(j)+m(j))/2-s(k))); `h$6MFC/g  
            idx = (pows(k)==rpowers); \yb^%$hZ0  
            z(:,j) = z(:,j) + p*rpowern(:,idx); ]gTa TY  
        end @U;-5KYYi  
          _+|*  
        if isnorm {0QD-b o  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); qTqvEa^X`  
        end mwbkXy;8  
    end 0J$wX yh  
    BxZ}YS:  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  NrU -%!Aw  
    g9 yCd(2<5  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 wM yPR_  
    EjF}yuq[  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)