非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 <4N E)!#
function z = zernfun(n,m,r,theta,nflag) v1 f^gde
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. (i-L:
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N bUc++M
% and angular frequency M, evaluated at positions (R,THETA) on the ;.7]zn.X]2
% unit circle. N is a vector of positive integers (including 0), and 1czU$!MV
% M is a vector with the same number of elements as N. Each element ucUuhS5
% k of M must be a positive integer, with possible values M(k) = -N(k) q0@b d2}
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, F /"lJ/I
% and THETA is a vector of angles. R and THETA must have the same G_xql_QR
% length. The output Z is a matrix with one column for every (N,M) Rd|^C$6
% pair, and one row for every (R,THETA) pair. bs)Ro/7}
% Kp6%=JjO
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike %/R[cj8
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), l;h5Y<A%?
% with delta(m,0) the Kronecker delta, is chosen so that the integral Cm-dos
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, +d3h @gp
% and theta=0 to theta=2*pi) is unity. For the non-normalized #2%8@?_-M
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. KD'}9{F,
% 3H%bbFy
% The Zernike functions are an orthogonal basis on the unit circle. TtgsM}Fm
% They are used in disciplines such as astronomy, optics, and ;s5JYR
% optometry to describe functions on a circular domain. 2 y&k
% h-\+# .YP
% The following table lists the first 15 Zernike functions. D+7[2$:z
% hjp,v)#
% n m Zernike function Normalization wLo<gA6;
% -------------------------------------------------- +
,rl\|J%
% 0 0 1 1 +SkfT4*U
% 1 1 r * cos(theta) 2 _"82W^W i
% 1 -1 r * sin(theta) 2 jr^btVOI#\
% 2 -2 r^2 * cos(2*theta) sqrt(6) !)FKF7'
% 2 0 (2*r^2 - 1) sqrt(3) [\=1|t5n~
% 2 2 r^2 * sin(2*theta) sqrt(6) !ZayN
% 3 -3 r^3 * cos(3*theta) sqrt(8)
mEbj
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) GsIqUM#R
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) O*c<m,
% 3 3 r^3 * sin(3*theta) sqrt(8) KqXPxp^_Al
% 4 -4 r^4 * cos(4*theta) sqrt(10) Oo9'
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) n^/)T3mz{
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) RF'&.RtVa
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Pe`jNiI
% 4 4 r^4 * sin(4*theta) sqrt(10) ^-(DokdBn
% -------------------------------------------------- u3IhB8'
% {%6g6?=j
% Example 1: G1wJ]ar
% ^[b DE0
% % Display the Zernike function Z(n=5,m=1) &cy<"y
% x = -1:0.01:1; VhU,("&pm
% [X,Y] = meshgrid(x,x); _BG7JvI
% [theta,r] = cart2pol(X,Y); seZb;0
% idx = r<=1; ^(7Qz&q
% z = nan(size(X)); Zl?9ibm;@
% z(idx) = zernfun(5,1,r(idx),theta(idx)); !'a
<Dw5
% figure ym2"D?P
(
% pcolor(x,x,z), shading interp 0Q[;{}W}
% axis square, colorbar ]qiX"<s>~C
% title('Zernike function Z_5^1(r,\theta)') i ~rb-~o
% p+${_w>pl{
% Example 2: gN[^ ,u
% >*$Xbj*
% % Display the first 10 Zernike functions XjTu`?Na;
% x = -1:0.01:1; V2$M`|E
% [X,Y] = meshgrid(x,x); (SByN7[gb
% [theta,r] = cart2pol(X,Y); iK8jX?
% idx = r<=1; 4TSkm`iR
% z = nan(size(X)); 1+qP7 3a^
% n = [0 1 1 2 2 2 3 3 3 3]; /?*ut&hwv
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; kT:?1 w'
% Nplot = [4 10 12 16 18 20 22 24 26 28]; dyB@qh~H
% y = zernfun(n,m,r(idx),theta(idx)); LXf|n
% figure('Units','normalized') j)#GoU=w
% for k = 1:10 i_av_I-
% z(idx) = y(:,k); }l_8~/9
% subplot(4,7,Nplot(k)) f0*_& rP
% pcolor(x,x,z), shading interp Qki?
>j"
% set(gca,'XTick',[],'YTick',[]) 593!;2/@
% axis square 0+AMN-
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) *TPWLR ^
% end D0h6j0r5
% 8[:G/8VI
% See also ZERNPOL, ZERNFUN2. ~iq=J5IN#
\!IEZ
% Paul Fricker 11/13/2006 o 80x@ &A:
-0<ZN(?|
l/A!ofc#)
% Check and prepare the inputs: 3!i{4/
% ----------------------------- <|hrmwk|
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) n/YnISt
error('zernfun:NMvectors','N and M must be vectors.') `)Y 5L}c=
end DH:9iX '
gwFW+*h
if length(n)~=length(m) ."`||@|
error('zernfun:NMlength','N and M must be the same length.') gZ=$bR
end nI8zT0o
3A\Z]L
n = n(:); @@=,bO
m = m(:); (
geV(zT
if any(mod(n-m,2)) 1G'pT$5&
error('zernfun:NMmultiplesof2', ... ,Qj\_vr@
'All N and M must differ by multiples of 2 (including 0).') iDYm4sY
end 9fsc>9
upFe{M@
if any(m>n) \!*F:v0g^
error('zernfun:MlessthanN', ... ,_K:DSiB
'Each M must be less than or equal to its corresponding N.') zbfe=J4c
end \\35}
9
/bmkt@$-0
if any( r>1 | r<0 ) }d@;]cps
error('zernfun:Rlessthan1','All R must be between 0 and 1.') n;y[%H!g
end SKGnx
kH=qJ3Z
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ](`:<>c
error('zernfun:RTHvector','R and THETA must be vectors.') bG+Gg*0p
end {ea*dX872:
&iT^IkA{
r = r(:); KVoM\ttP
theta = theta(:); U\>k>|Jr{
length_r = length(r); 2FGCf} ,
if length_r~=length(theta) u(JuU/U
error('zernfun:RTHlength', ... |C>\ku*
'The number of R- and THETA-values must be equal.') 2hTsjJ!'
end wd1>L) T
5'_:>0}
% Check normalization: m~F ~9&
% -------------------- \!k\%j9
if nargin==5 && ischar(nflag) #q8/=,3EG
isnorm = strcmpi(nflag,'norm'); lE3&8~2
if ~isnorm 4}]In/yA
error('zernfun:normalization','Unrecognized normalization flag.') ^$<:~qq!
end <f0yh"?6VH
else X"%eRW&qu/
isnorm = false; Y>K8^GS
end ?XVox*6K&
UN:cRH{?*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% z'0
=3
% Compute the Zernike Polynomials 2t7=GA+j
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% f?"909&
Htep3Ol3
% Determine the required powers of r: _HkQv6fXpE
% ----------------------------------- NSQ)lSW,;
m_abs = abs(m); s+v$sF
rpowers = []; =-G4BQ
for j = 1:length(n) ~-~iCIaTb
rpowers = [rpowers m_abs(j):2:n(j)]; D?"Q)kVuD
end w# ;t$qz}
rpowers = unique(rpowers); #vTF:r
o^u}(wZ{
% Pre-compute the values of r raised to the required powers, :BblH0'
% and compile them in a matrix: (R!.=95@
% ----------------------------- _;-b ZH
if rpowers(1)==0 VGOdJ|2]Wr
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); axv-UdE;
rpowern = cat(2,rpowern{:}); 'JAe=K
H
rpowern = [ones(length_r,1) rpowern]; j)}TZx4~
else Y }8HJTMB
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); :oJ!9\5
rpowern = cat(2,rpowern{:}); bWzUWLa
end `[tYe <
[LS s|f
% Compute the values of the polynomials: ^!SwY_>
% -------------------------------------- Qe=eer~jI
y = zeros(length_r,length(n)); UDb
for j = 1:length(n) Ev&aD
s = 0:(n(j)-m_abs(j))/2; qwo{34
pows = n(j):-2:m_abs(j); 'he&h4fm
for k = length(s):-1:1 83Fmu/(
p = (1-2*mod(s(k),2))* ... P2 +^7x?
prod(2:(n(j)-s(k)))/ ... /-g%IeF
prod(2:s(k))/ ... "=0JYh)%_
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... gn[h:+H&
prod(2:((n(j)+m_abs(j))/2-s(k))); wA6<BujD
idx = (pows(k)==rpowers); jDW$}^
6
y(:,j) = y(:,j) + p*rpowern(:,idx); b>|d Q
end _Tf0L<A'R
|l,0bkY@&
if isnorm F/D/1w^ iR
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); iRL|u~bj
end r
D|Bj(X8
end \ X;)Kt"
% END: Compute the Zernike Polynomials CePI{`&,
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% d C6t+
M532>+A]Za
% Compute the Zernike functions: <2PO3w?Z
% ------------------------------ Yk5Cyq
idx_pos = m>0; T2k# "zD
idx_neg = m<0; 6CzN[R}
QkY;O<Y_
z = y; wdEQB-dA
if any(idx_pos) xx,|n
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 1$uO%
end 7XiR)jYo*
if any(idx_neg) wU5= '
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); u]t#Vf-$u
end YGkk"gFIA
,in"8aT}~
% EOF zernfun