切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11770阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 {Hktu|  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦!  9'L1KQ  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 {kY`X[fvZ  
    function z = zernfun(n,m,r,theta,nflag) 1*eWvYo1  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. s525`Q;  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N //4p1^%  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 0X}w[^f  
    %   unit circle.  N is a vector of positive integers (including 0), and l ")o!N?  
    %   M is a vector with the same number of elements as N.  Each element Bt`r6v;\  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) ;r2b@x:<_  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, s]V{}bY`  
    %   and THETA is a vector of angles.  R and THETA must have the same l#J>It\  
    %   length.  The output Z is a matrix with one column for every (N,M) OM.(g%2  
    %   pair, and one row for every (R,THETA) pair. p lz=G}Y  
    % QKL]O*  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike pqNoL* H  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ua.6?W)  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral .,iw2:  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, #!F8n`C-  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized [))2u:tbS\  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. *< SU_dAh  
    % )9;kzp/  
    %   The Zernike functions are an orthogonal basis on the unit circle. im^I9G  
    %   They are used in disciplines such as astronomy, optics, and `b,g2XA  
    %   optometry to describe functions on a circular domain. 07HX5 Hd  
    % ]T28q/B;k  
    %   The following table lists the first 15 Zernike functions. 6b1 Uj<  
    % Q=9VuTE  
    %       n    m    Zernike function           Normalization cR@}   
    %       -------------------------------------------------- KcMzZ!d7m  
    %       0    0    1                                 1 ;tIIEc  
    %       1    1    r * cos(theta)                    2 `:^)"#z)  
    %       1   -1    r * sin(theta)                    2 _|2";.1E  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) XQ?)  
    %       2    0    (2*r^2 - 1)                    sqrt(3) H6+st`{  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) %%-Tjw o  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) Bg 8t'dw?K  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) i~M.F=I5  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) wE=8jl*  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) ~m"M#1,ln3  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) ZB h@%A  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) +\]S<T*;  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) QH56tQq  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) }Q,C;!'"  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) ?2 O-EiWjZ  
    %       -------------------------------------------------- v+, w{~7RH  
    % bgx5{!A  
    %   Example 1: Y{\2wU!Isn  
    % -ZMl[;OM  
    %       % Display the Zernike function Z(n=5,m=1) )Z`viT  
    %       x = -1:0.01:1; Z_TbM^N  
    %       [X,Y] = meshgrid(x,x); [+5SEr}  
    %       [theta,r] = cart2pol(X,Y);  6-E4)0\  
    %       idx = r<=1; 8CHf.SXh  
    %       z = nan(size(X)); eXtF[0f  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); )I1V 2k$n  
    %       figure :Y&W)V-  
    %       pcolor(x,x,z), shading interp Zi'8~iEH  
    %       axis square, colorbar 7 5cr!+  
    %       title('Zernike function Z_5^1(r,\theta)') enO=-#  
    % 7B>cmi  
    %   Example 2: jZgnt{  
    % r_2VExk  
    %       % Display the first 10 Zernike functions 7.=s1~p  
    %       x = -1:0.01:1; 0DjBqh$  
    %       [X,Y] = meshgrid(x,x); (%^TTe  
    %       [theta,r] = cart2pol(X,Y); K LM^O$=  
    %       idx = r<=1; 4rCqN.J  
    %       z = nan(size(X)); X\:(8C;+  
    %       n = [0  1  1  2  2  2  3  3  3  3]; A-NC,3  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; Kh_>Vm/  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; ?@7|Q/  
    %       y = zernfun(n,m,r(idx),theta(idx)); qQ\hUii  
    %       figure('Units','normalized') ZtZV:re=  
    %       for k = 1:10 >WG91b<Xq  
    %           z(idx) = y(:,k); VHkrPJ[  
    %           subplot(4,7,Nplot(k)) i_9/!D  
    %           pcolor(x,x,z), shading interp F;l<>|vG  
    %           set(gca,'XTick',[],'YTick',[]) UEb'E;  
    %           axis square eh# (}v  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) q+=@kXs>+  
    %       end I.0Usa"z  
    % w\[*_wQp  
    %   See also ZERNPOL, ZERNFUN2. ^ C#bW <T  
    Bc` A]U  
    %   Paul Fricker 11/13/2006 g{.@|;d <p  
    nWg)zj:  
    {ca^yHgGy  
    % Check and prepare the inputs: ~ .=HN}E  
    % ----------------------------- IOsDVIXL\  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) g0 U\AN  
        error('zernfun:NMvectors','N and M must be vectors.') G\+MT(&5  
    end <cd%n-  
    Cl){sP=8W  
    if length(n)~=length(m) &^<T/PiR  
        error('zernfun:NMlength','N and M must be the same length.') @g` ,'r  
    end 00 ,j neF  
    @Pg@ltUd  
    n = n(:); JHOBg{Wg  
    m = m(:); Nv#, s_hG  
    if any(mod(n-m,2)) {dH<Un(4Z  
        error('zernfun:NMmultiplesof2', ... ]qT r4`.  
              'All N and M must differ by multiples of 2 (including 0).') L{ ^@O0S  
    end YZ+g<HXB  
    sX?7`n1U  
    if any(m>n) Rs`Y'_B  
        error('zernfun:MlessthanN', ... g#&##f  
              'Each M must be less than or equal to its corresponding N.') nf^k3QS\  
    end ooxzM `  
    QxL FN(d  
    if any( r>1 | r<0 ) pNsLoNZ3w  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.')  K8we*  
    end tOVm~C,R  
    =1?yS3  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) xJ.!Q)[  
        error('zernfun:RTHvector','R and THETA must be vectors.') [l{eJ /W  
    end b,sc  
    T`G"2|ISS  
    r = r(:); SuuS!U+i>  
    theta = theta(:); hS/'b$#  
    length_r = length(r); 73<yrBxp  
    if length_r~=length(theta) ~n\ea:.  
        error('zernfun:RTHlength', ... n#,l&Bx  
              'The number of R- and THETA-values must be equal.') |a\TUzq  
    end H2KY$;X [  
    pZn%g]nRD  
    % Check normalization: HK.J/Zr  
    % -------------------- w#b2iE+Bw  
    if nargin==5 && ischar(nflag) \mG M#E  
        isnorm = strcmpi(nflag,'norm'); {bEEQCweNJ  
        if ~isnorm ApBThW *E  
            error('zernfun:normalization','Unrecognized normalization flag.') J8'zvH&I  
        end +.uk#K0o  
    else k"c_x*f  
        isnorm = false; e8v=n@0  
    end s]>%_(5  
    v Rs5-T  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% hglt D8,  
    % Compute the Zernike Polynomials U0T N8O}Z  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% }aIf IJ  
    'kK%sE   
    % Determine the required powers of r: z5/O8}Gz@  
    % ----------------------------------- >c eU!=>  
    m_abs = abs(m); gV;GC{pY  
    rpowers = []; &o.SmkJI  
    for j = 1:length(n) 'h=2_%l@Y  
        rpowers = [rpowers m_abs(j):2:n(j)]; 8m0sEV>  
    end !}7m^  
    rpowers = unique(rpowers); s9>!^MzBK  
    VV0$L=mo  
    % Pre-compute the values of r raised to the required powers, :Yqa[._AF  
    % and compile them in a matrix: U @|_5[nl  
    % ----------------------------- eW%jDsC  
    if rpowers(1)==0 vS#]RW&j  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 5K<C  
        rpowern = cat(2,rpowern{:}); 7m:,-xp  
        rpowern = [ones(length_r,1) rpowern]; GAKJc\o  
    else i2E7$[  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); -%|I  
        rpowern = cat(2,rpowern{:}); \9^@,kfP  
    end b.&YUg[#  
    <Z;BB)I&C`  
    % Compute the values of the polynomials: jEIL(0_H  
    % -------------------------------------- .VT,,0  
    y = zeros(length_r,length(n)); `314.a6S  
    for j = 1:length(n) Y`uCDfcQ  
        s = 0:(n(j)-m_abs(j))/2; {{\HU0g>&  
        pows = n(j):-2:m_abs(j); aT#|mk=\  
        for k = length(s):-1:1 iqeGy&F-  
            p = (1-2*mod(s(k),2))* ... W!*vO>^1W  
                       prod(2:(n(j)-s(k)))/              ... %+~0+ev7r  
                       prod(2:s(k))/                     ... ^da-R;o]  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... v]~[~\|a  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); ix;8S=eP~{  
            idx = (pows(k)==rpowers); ?%(*bRV -  
            y(:,j) = y(:,j) + p*rpowern(:,idx); /_\4( vvf  
        end g:yK/1@Hk}  
         z?xd\x  
        if isnorm Z/x~:u_  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 0'uj*Y{L  
        end FceT'  
    end &0ra a  
    % END: Compute the Zernike Polynomials q`hg@uwA{`  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ]Ea-?IhD  
    $ }53f'QjW  
    % Compute the Zernike functions: yyc&'J  
    % ------------------------------ U' Cp3>  
    idx_pos = m>0; 2ip~qZNw><  
    idx_neg = m<0; r+Y1m\  
    v]v f(]""  
    z = y; "'Ik{wGc  
    if any(idx_pos) xlAaIo)T  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); {8Ll\j@ "  
    end /_P`xm+=AC  
    if any(idx_neg) W2RS G~|  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); P1<;:!8'  
    end sp%7iNs  
    <Vim\  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) GCrN:+E0FJ  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. 7 ?Fl [FW$  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated \ys3&<;b  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive m5S/T\,X  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, 2}NfR8 N  
    %   and THETA is a vector of angles.  R and THETA must have the same O1 z>A  
    %   length.  The output Z is a matrix with one column for every P-value, Xe5J  
    %   and one row for every (R,THETA) pair. *)`:Nm~y  
    % ]n{2cPx5d  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike 8]O|$8'"  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) z# y<QH  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) YXvKDw'95  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 KksbhN{AB  
    %   for all p. \sk,3b-&'  
    % ;j$84o{  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 f:TW<  
    %   Zernike functions (order N<=7).  In some disciplines it is eu# ||  
    %   traditional to label the first 36 functions using a single mode og>f1NwS[  
    %   number P instead of separate numbers for the order N and azimuthal VAq:q8(K  
    %   frequency M. dgO2fI  
    % nP}/#Wy  
    %   Example: !54%}x)3  
    % sIy  LW  
    %       % Display the first 16 Zernike functions O @w=  
    %       x = -1:0.01:1; uuq?0t2Z  
    %       [X,Y] = meshgrid(x,x); @-hy:th#  
    %       [theta,r] = cart2pol(X,Y); WYq, i}S  
    %       idx = r<=1;  (vY10W{  
    %       p = 0:15; 69_c,(M0  
    %       z = nan(size(X)); 3LEN~ N}  
    %       y = zernfun2(p,r(idx),theta(idx)); CSs3l  
    %       figure('Units','normalized') %hXa5}JL  
    %       for k = 1:length(p) e@6}?q;  
    %           z(idx) = y(:,k); IRpCbTIXK  
    %           subplot(4,4,k) }\1V;T  
    %           pcolor(x,x,z), shading interp U8moVj8w1  
    %           set(gca,'XTick',[],'YTick',[]) R8ZW1  
    %           axis square 5~\W!|j/  
    %           title(['Z_{' num2str(p(k)) '}']) =~R 0U  
    %       end blLX ncyD  
    % W7.]V)$wM  
    %   See also ZERNPOL, ZERNFUN. $Q?UyEi  
    (j2]:B Vu  
    %   Paul Fricker 11/13/2006 @.%ll n  
    poM VB{U  
    M,l Ib9  
    % Check and prepare the inputs: -`rz[";n  
    % ----------------------------- \;Ii(3+v;  
    if min(size(p))~=1 GLEGyT?~  
        error('zernfun2:Pvector','Input P must be vector.') grv 3aa@  
    end ZVI.s U  
    {Bu^%JEn  
    if any(p)>35 .rwZ`MP  
        error('zernfun2:P36', ... T,k`WR  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... ).k=[@@V  
               '(P = 0 to 35).']) ETYw  
    end H=B8'N  
    [^aow-4z  
    % Get the order and frequency corresonding to the function number: 1 ,Y-_e)  
    % ---------------------------------------------------------------- {"O'kx  
    p = p(:); ' R{ [Y)  
    n = ceil((-3+sqrt(9+8*p))/2); `2 {x 8A  
    m = 2*p - n.*(n+2); PE3l2kr  
    >i=mw5`D]  
    % Pass the inputs to the function ZERNFUN: D(yRI  
    % ---------------------------------------- f\1)BZ'I  
    switch nargin xqIt?v2c  
        case 3 {D$#m  
            z = zernfun(n,m,r,theta); ]Rz]"JZ\S  
        case 4 $n!saPpxS  
            z = zernfun(n,m,r,theta,nflag); _8kZ>w(L  
        otherwise GBN^ *I  
            error('zernfun2:nargin','Incorrect number of inputs.') U^[<G6<9]  
    end 9FK%"s`  
    5_{C \S`T  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) le`fRq8f&  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. Bk*AO?3p  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of p8frSrcU  
    %   order N and frequency M, evaluated at R.  N is a vector of DhYQ>Gv8U  
    %   positive integers (including 0), and M is a vector with the V!(Ty%7  
    %   same number of elements as N.  Each element k of M must be a *CMe:a  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) GeD^-.^  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is 8:TN,p  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix ^,qi` Tk  
    %   with one column for every (N,M) pair, and one row for every N\BB8<F  
    %   element in R. cE$7CSR  
    % UW_fn  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- Hcq?7_)  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is 3[amCKel  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to |1uyJ?%B  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 2c LIz@  
    %   for all [n,m]. ^giseWR(  
    % ?I6!m~  
    %   The radial Zernike polynomials are the radial portion of the V'K1kYb  
    %   Zernike functions, which are an orthogonal basis on the unit by (xv0v;  
    %   circle.  The series representation of the radial Zernike  v=R=K  
    %   polynomials is pa*bqPi  
    % Ko|nF-r_  
    %          (n-m)/2 h(l4\)  
    %            __ 2x<,R/}  
    %    m      \       s                                          n-2s 7VduewKX8  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r #?DwOUw  
    %    n      s=0 XvETys@d  
    % ' @i0~  
    %   The following table shows the first 12 polynomials. B+:/!_  
    % FL*qV"r^n  
    %       n    m    Zernike polynomial    Normalization 4i|yEf  
    %       --------------------------------------------- ?S9? ?y/  
    %       0    0    1                        sqrt(2) :[YHJaK  
    %       1    1    r                           2 )7jjfD\  
    %       2    0    2*r^2 - 1                sqrt(6) 589hfET  
    %       2    2    r^2                      sqrt(6) ia6%>^  
    %       3    1    3*r^3 - 2*r              sqrt(8) p8,Rr{  
    %       3    3    r^3                      sqrt(8) GCm(3%{V%(  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) f9ux+XQk9  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) iq*]CF  
    %       4    4    r^4                      sqrt(10) |mvY=t %  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) v"ZNS  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) (d mLEt  
    %       5    5    r^5                      sqrt(12) &y_Ya%Z3*e  
    %       --------------------------------------------- "sh*,K5x|  
    % `Y]t*` e|  
    %   Example: AQ+MjS,  
    % AUjZYp  
    %       % Display three example Zernike radial polynomials ;+C2P@M  
    %       r = 0:0.01:1; $r+ _Y/  
    %       n = [3 2 5]; W cOyOv  
    %       m = [1 2 1]; 2[} O:  
    %       z = zernpol(n,m,r); I8};t b#  
    %       figure rZ`+g7&^Fh  
    %       plot(r,z) ETZE.a  
    %       grid on )<YfLDgTs  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') eLFxGZZ  
    % ,6VY S\a3  
    %   See also ZERNFUN, ZERNFUN2. Pa)'xfQ$Y6  
    # `L?24%  
    % A note on the algorithm. t^Z-0jH  
    % ------------------------ gi {rqM  
    % The radial Zernike polynomials are computed using the series u-</G-y  
    % representation shown in the Help section above. For many special vo (riHH  
    % functions, direct evaluation using the series representation can =)b!M^=X-a  
    % produce poor numerical results (floating point errors), because !U::kr=t  
    % the summation often involves computing small differences between ' _ZiZ4O  
    % large successive terms in the series. (In such cases, the functions R ?62g H  
    % are often evaluated using alternative methods such as recurrence !#&`1cYX  
    % relations: see the Legendre functions, for example). For the Zernike hufpky[&8  
    % polynomials, however, this problem does not arise, because the l(A)Gd5>  
    % polynomials are evaluated over the finite domain r = (0,1), and A4{14Y;?  
    % because the coefficients for a given polynomial are generally all pYN.tD FO  
    % of similar magnitude. fM/~k>wl  
    % Q Uy7Q$W  
    % ZERNPOL has been written using a vectorized implementation: multiple +-X 6 8`  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] R<djW5()f  
    % values can be passed as inputs) for a vector of points R.  To achieve !(gMr1}w  
    % this vectorization most efficiently, the algorithm in ZERNPOL '8w}m8{y  
    % involves pre-determining all the powers p of R that are required to Uv)B  
    % compute the outputs, and then compiling the {R^p} into a single v_|k:l  
    % matrix.  This avoids any redundant computation of the R^p, and DbWaF5\yD  
    % minimizes the sizes of certain intermediate variables. (zr2b  
    % 5 6JxHQu  
    %   Paul Fricker 11/13/2006 3QI.|;X  
    ;{lb_du2:  
    k'8tqIUN]  
    % Check and prepare the inputs: *Z8qd{.$q  
    % ----------------------------- $sxRRe m{?  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) y g:&cIr,  
        error('zernpol:NMvectors','N and M must be vectors.') 8AVtUU  
    end 3d`u!i?/  
    u']}Z% A9`  
    if length(n)~=length(m) $;pHv<  
        error('zernpol:NMlength','N and M must be the same length.') Np"~1z.(b  
    end )TfX}  
    *qZBq&7tb  
    n = n(:); "l 8YD&q  
    m = m(:); "T@9#7Obu  
    length_n = length(n); QQ,V35Vp[  
    Hk f<.U  
    if any(mod(n-m,2)) eC3 ~|G_O  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') &#zx/$  
    end @+{F\SD\  
    !$NQF/Ol  
    if any(m<0) ;w7s>(ITZ  
        error('zernpol:Mpositive','All M must be positive.') &g"`J`  
    end hnimd~E52k  
    (u4'*[o\t  
    if any(m>n) W m&*  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') z3c7  
    end R=2"5Hy=  
    <v6W l\  
    if any( r>1 | r<0 ) ~8&P*oFC  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') JU#m?4g  
    end _lDNYpv  
    K&VMhMVb  
    if ~any(size(r)==1) =w!2R QB  
        error('zernpol:Rvector','R must be a vector.') !k Heslvi  
    end :K~sazs7J  
    sd9b9?qiu  
    r = r(:); _+j#.o>  
    length_r = length(r);  p9 G{Q  
    Jot7 L%,TB  
    if nargin==4 =9h!K:,k  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); ?AO22N|j  
        if ~isnorm nAC>']K4$  
            error('zernpol:normalization','Unrecognized normalization flag.') U.WXh(`%  
        end aoQ$"PF9  
    else ;t M  
        isnorm = false; 9k~%HN-[  
    end JEs@ky?{z  
    ^(s(4|  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% } eF r,bJ  
    % Compute the Zernike Polynomials LzxO=+=9!q  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ~Ajst!Y7=  
    Zoy)2E{  
    % Determine the required powers of r: +z[+kir  
    % ----------------------------------- j#U,zsv:  
    rpowers = []; p~NHf\  
    for j = 1:length(n) b0/YX@  
        rpowers = [rpowers m(j):2:n(j)]; LJ6l3)tpD  
    end { 1_ <\ ~J  
    rpowers = unique(rpowers); xYZ,.  
    s(?%A  
    % Pre-compute the values of r raised to the required powers, (xE |T f  
    % and compile them in a matrix: .Cf!5[0E  
    % ----------------------------- ]9PG"<^k  
    if rpowers(1)==0 5KfrkZ  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); FUf.3@}  
        rpowern = cat(2,rpowern{:}); O c.fvP^ZD  
        rpowern = [ones(length_r,1) rpowern]; =~"X/ >'  
    else F2\&rC4v  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); :T|9;2  
        rpowern = cat(2,rpowern{:}); @lq)L  
    end Ex Q\qp3  
    CiGXyhh  
    % Compute the values of the polynomials: C_'EO<w$  
    % -------------------------------------- XUKlgl!+.  
    z = zeros(length_r,length_n); AusjN-IL  
    for j = 1:length_n *o38f>aJl  
        s = 0:(n(j)-m(j))/2; [?hvx}  
        pows = n(j):-2:m(j); xjSzQ| k-  
        for k = length(s):-1:1 ~ g-(  
            p = (1-2*mod(s(k),2))* ... 0b/@QgJ  
                       prod(2:(n(j)-s(k)))/          ... & Zn`2%  
                       prod(2:s(k))/                 ... Alo L+eN@  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... g ?xD*3 <  
                       prod(2:((n(j)+m(j))/2-s(k))); e(N},s:_  
            idx = (pows(k)==rpowers); s7HKgj  
            z(:,j) = z(:,j) + p*rpowern(:,idx); /G|v.#2/g  
        end "*t0 t  
         W9pY=9]p+  
        if isnorm mj&OZ+  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); KK5;6b  
        end 6VC|] |*  
    end E#_2t)20  
    3 tCTPZy  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    857
    光币
    847
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  N)E'k%?,  
    g~K-'Nw  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 4IfkYM  
    gM1:*YK  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)