切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11789阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 `^?}s-H+  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! -/@|2!d  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 9}K(Q=  
    function z = zernfun(n,m,r,theta,nflag) |G`4"``]k  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. YyQf  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 7I2a*4}  
    %   and angular frequency M, evaluated at positions (R,THETA) on the MEdIw#P.}{  
    %   unit circle.  N is a vector of positive integers (including 0), and M"$jpBN*  
    %   M is a vector with the same number of elements as N.  Each element 7Va#{Y;Zy  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) N"q+UCRC  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, J4Q)`Y\~  
    %   and THETA is a vector of angles.  R and THETA must have the same ~:P8g<w  
    %   length.  The output Z is a matrix with one column for every (N,M) 2n-Tpay0  
    %   pair, and one row for every (R,THETA) pair. :IP;Frc MP  
    % !`O_VV`/@  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Nqo#sBS  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), *@$($<pY&  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral |k['wqn"  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, } kh/mq  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized }iiG$?|.  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. h%C Eb<  
    % 9H !B)  
    %   The Zernike functions are an orthogonal basis on the unit circle. _{2Fx[m%  
    %   They are used in disciplines such as astronomy, optics, and ,q'gG`M N  
    %   optometry to describe functions on a circular domain. IGF37';;  
    % NIWI6qCw  
    %   The following table lists the first 15 Zernike functions. e"v[)b++Y  
    % LX(iuf+l  
    %       n    m    Zernike function           Normalization ~vjr;a(B  
    %       -------------------------------------------------- clR?< LO  
    %       0    0    1                                 1 k#IS ,NKE  
    %       1    1    r * cos(theta)                    2 M<M# < kD  
    %       1   -1    r * sin(theta)                    2 HwV gT"  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) :?&WKW  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 7(+OsE  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) a@S4IoBg%  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) $Z(g=nS>  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) &bS"N)je  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) BRSgB-Rr7  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) b. %B;qB  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) vP87{J*DE1  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) mvL0F%\.\  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) P"~qio-  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) U4^p({\|-  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 8 /RfNGY  
    %       -------------------------------------------------- -!bLMLIg  
    % c9ov;Bw6S  
    %   Example 1: 5u u2 _B_L  
    % yG4LQE  
    %       % Display the Zernike function Z(n=5,m=1) !e#I4,fn  
    %       x = -1:0.01:1; YjIED,eRv  
    %       [X,Y] = meshgrid(x,x); &)"7am(S`  
    %       [theta,r] = cart2pol(X,Y); _]?Dt%MkD  
    %       idx = r<=1; p.TiTFu/  
    %       z = nan(size(X)); "[".3V  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); Fy(nu-W  
    %       figure [-:<z?(n4  
    %       pcolor(x,x,z), shading interp ^*?B)D=,  
    %       axis square, colorbar .olP m3MC  
    %       title('Zernike function Z_5^1(r,\theta)') }Nd`;d  
    % 0imqj7L  
    %   Example 2: ~d#;r5>  
    %  8H%I|fm  
    %       % Display the first 10 Zernike functions u{{xnyl?  
    %       x = -1:0.01:1; N`|Ab(.  
    %       [X,Y] = meshgrid(x,x); @L>NN>?SGQ  
    %       [theta,r] = cart2pol(X,Y); }JpslY*aS  
    %       idx = r<=1; (fk, 80  
    %       z = nan(size(X)); yZ(Nv $[5  
    %       n = [0  1  1  2  2  2  3  3  3  3]; 9^ *ZH1  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; eM1;Nl  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; ncw?;  
    %       y = zernfun(n,m,r(idx),theta(idx)); meM.?kk(  
    %       figure('Units','normalized') \Zz= 4 j  
    %       for k = 1:10 2cX"#."5p  
    %           z(idx) = y(:,k); M:1F@\<  
    %           subplot(4,7,Nplot(k)) Zh~Lm  
    %           pcolor(x,x,z), shading interp <*(UvOQuX  
    %           set(gca,'XTick',[],'YTick',[]) /YugQ.>| l  
    %           axis square G}?P r4Gj  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) GZhfA ;O,  
    %       end W1vAK  
    % Bg+]_:<U  
    %   See also ZERNPOL, ZERNFUN2. !Bd* L~D  
    {+UNjKQC  
    %   Paul Fricker 11/13/2006 ZNH*[[Pf  
    5dNf$a0E  
    |>o0d~s  
    % Check and prepare the inputs: s*~jvL  
    % ----------------------------- <}Wy;!L  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 'B<qG<>  
        error('zernfun:NMvectors','N and M must be vectors.') + x ;ML  
    end g7}z &S ;_  
    6q uWO2x  
    if length(n)~=length(m) a_iQlsU  
        error('zernfun:NMlength','N and M must be the same length.') Qpv}N*v^  
    end s3E~X  
    ^B6i6]Pd=9  
    n = n(:); /HJ(Wt q  
    m = m(:); =*>4Gh i  
    if any(mod(n-m,2)) 7%"\DLA  
        error('zernfun:NMmultiplesof2', ... :_YG/0%I  
              'All N and M must differ by multiples of 2 (including 0).') gc8PA_bFz  
    end Y/ac}q  
    g /@yK  
    if any(m>n) qL;T&h  
        error('zernfun:MlessthanN', ... G$kwc F'C  
              'Each M must be less than or equal to its corresponding N.') $I6eHjYT  
    end 46?F+,Rzl  
    {7~ $$AR(  
    if any( r>1 | r<0 ) Jx ;"a\KD  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') Md?bAMnG+}  
    end 'St= izhd  
    ,vdP #:  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 3w:Z4]J  
        error('zernfun:RTHvector','R and THETA must be vectors.') tDLk ZCP  
    end @G$<6CG\  
    0S5C7df  
    r = r(:); ut5!2t$c  
    theta = theta(:); W*DIW;8p  
    length_r = length(r); tD0>(41K  
    if length_r~=length(theta) oY6|h3T=Q$  
        error('zernfun:RTHlength', ... }:D~yEP  
              'The number of R- and THETA-values must be equal.') |%cO"d^ri  
    end MbFe1U]B  
    <C96]}/ ?  
    % Check normalization: ]XafFr6pe  
    % -------------------- WKJL< D ]:  
    if nargin==5 && ischar(nflag) |{LaZXU&  
        isnorm = strcmpi(nflag,'norm'); L(n~@ gq  
        if ~isnorm R6$F<;nw  
            error('zernfun:normalization','Unrecognized normalization flag.') E!~2\qKT  
        end <W%Z_d&Xv  
    else CU`Oc>;*T  
        isnorm = false; GGL4<P7  
    end t7+Ic  
    l}-`E@w  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ~)8i5p;P/k  
    % Compute the Zernike Polynomials jv=f@:[`I  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% IS4K$Ac.  
    v4##(~Tu  
    % Determine the required powers of r: wJR i;fvi  
    % ----------------------------------- N3c)ce7[  
    m_abs = abs(m); s]8J+8 <uO  
    rpowers = []; rJQ|Oi&1i  
    for j = 1:length(n) mS&\m#s<  
        rpowers = [rpowers m_abs(j):2:n(j)]; 2xdJ(\JWM  
    end Wk6&TrWlY  
    rpowers = unique(rpowers); x&/Syb  
    +Y]*>afG  
    % Pre-compute the values of r raised to the required powers, |{IU<o x  
    % and compile them in a matrix: .-~% w  
    % ----------------------------- Z*aU2Kr`;  
    if rpowers(1)==0 BOQV X&g%  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); d?y\~<  
        rpowern = cat(2,rpowern{:}); =LY^3TlDj  
        rpowern = [ones(length_r,1) rpowern]; AbI*/ |sY  
    else m1o65FsY08  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); `/ReJj&~  
        rpowern = cat(2,rpowern{:}); x  Bw.M{  
    end &`Z)5Ww  
    &Wz:-G7<n  
    % Compute the values of the polynomials: $<% nt  
    % -------------------------------------- (C|V-}/*m  
    y = zeros(length_r,length(n)); 7^ {hn_%;  
    for j = 1:length(n) 35kbE'  
        s = 0:(n(j)-m_abs(j))/2; s^R2jueR  
        pows = n(j):-2:m_abs(j); 5f@YrTO[@  
        for k = length(s):-1:1 4m!3P"$  
            p = (1-2*mod(s(k),2))* ... H08YM P>dc  
                       prod(2:(n(j)-s(k)))/              ... PxD}j 2Kd  
                       prod(2:s(k))/                     ... 1gej$G@  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... >t2)Z|1  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); N_[ Q.HD"  
            idx = (pows(k)==rpowers); 7{F9b0zwk  
            y(:,j) = y(:,j) + p*rpowern(:,idx); c O>:n  
        end Sz@?%PnU|  
         kR?n%`&k  
        if isnorm a(T4WDl^  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Y8'_5?+ 0  
        end 3^yWpSC  
    end 6Q.whV%y  
    % END: Compute the Zernike Polynomials ?o5#Ve$-X  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% O|zmDp8a+  
    ^l9 *h  
    % Compute the Zernike functions: TFNU+  
    % ------------------------------ > 0)`uJ  
    idx_pos = m>0; zGz'2, o3  
    idx_neg = m<0; ;OqLNfU3y  
    @7 HBXP  
    z = y; 8&hn$~ate  
    if any(idx_pos) Cy'W!qH  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); @$} \S  
    end MtTHKp   
    if any(idx_neg) [z@RgDX v  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); VZ@@j[F(  
    end %-po6Vf  
    } U1shG[  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) "z4E|s  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. |]b/5s;>  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated io_64K+K  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive < _uv!N  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, {z ~ '  
    %   and THETA is a vector of angles.  R and THETA must have the same SYLkC [0 k  
    %   length.  The output Z is a matrix with one column for every P-value, -ouL4  
    %   and one row for every (R,THETA) pair. Y %8QFM  
    % Kx!|4ya,  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike ~h|L;E"  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) g&5VorGx  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) <WkLwP3^  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 %'5wwl  
    %   for all p. WLFzLW=PD  
    % rVmO/Y#Hx$  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 (I g *iJ%2  
    %   Zernike functions (order N<=7).  In some disciplines it is CMUphS-KE  
    %   traditional to label the first 36 functions using a single mode Gl1$W=pR:  
    %   number P instead of separate numbers for the order N and azimuthal e{S`iO  
    %   frequency M. "+Rm4_  
    % b~echOj  
    %   Example: 24l9/v'  
    % 2b1:Tt9  
    %       % Display the first 16 Zernike functions ^>uGbhBp  
    %       x = -1:0.01:1; mt7:`-  
    %       [X,Y] = meshgrid(x,x); \LXNdE2B  
    %       [theta,r] = cart2pol(X,Y); +O6@)?pI  
    %       idx = r<=1; {'C74s  
    %       p = 0:15; ga%77t|jm3  
    %       z = nan(size(X)); l).Ijl}AH;  
    %       y = zernfun2(p,r(idx),theta(idx)); %&GQ]pmcY  
    %       figure('Units','normalized') ZH :X 4!  
    %       for k = 1:length(p) t F( mD=[  
    %           z(idx) = y(:,k); W0hLh<Go  
    %           subplot(4,4,k) -2 ?fg   
    %           pcolor(x,x,z), shading interp ypVr"fWB  
    %           set(gca,'XTick',[],'YTick',[]) 2V 'Tt3  
    %           axis square |3@]5f&  
    %           title(['Z_{' num2str(p(k)) '}']) "5bk82."  
    %       end (>23[;.0  
    % ktb. fhO  
    %   See also ZERNPOL, ZERNFUN. '(*D3ysU  
    6, ~aV  
    %   Paul Fricker 11/13/2006 9!h+LGs(,  
    @^@-A\7[KO  
    E ..[F<5  
    % Check and prepare the inputs: c8MNo'h  
    % ----------------------------- \GP c_m:qL  
    if min(size(p))~=1 Atw^C+"vW&  
        error('zernfun2:Pvector','Input P must be vector.') =r8(9:F!  
    end 54&2SU$kx  
    Joj8'  
    if any(p)>35 /8R1$7  
        error('zernfun2:P36', ... :=@[FXD4  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... l.! ~t1i  
               '(P = 0 to 35).']) 38^_(N  
    end 5E8P bV-l  
    eS|p3jk;  
    % Get the order and frequency corresonding to the function number: u@Lu.t!],  
    % ---------------------------------------------------------------- 3ji#"cX  
    p = p(:); 7 5u*ZMK  
    n = ceil((-3+sqrt(9+8*p))/2); @P>@;S  
    m = 2*p - n.*(n+2); IA'AA|v  
    `)fGw7J {  
    % Pass the inputs to the function ZERNFUN: 8*ysuL#  
    % ---------------------------------------- e2Dj%=`EU  
    switch nargin dewu@  
        case 3 ]]4E)j8  
            z = zernfun(n,m,r,theta); B~IOM  
        case 4 fA^O  
            z = zernfun(n,m,r,theta,nflag); R<)uvW_@  
        otherwise `JCC-\9T_  
            error('zernfun2:nargin','Incorrect number of inputs.') }PJ:9<G y  
    end I/l]Yv!  
    tKs0]8tc  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) M;OYh  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. &uM?DQ`o8  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of S@_GjCpn  
    %   order N and frequency M, evaluated at R.  N is a vector of mP-+];gg  
    %   positive integers (including 0), and M is a vector with the J=sQ].EK  
    %   same number of elements as N.  Each element k of M must be a x;I*Ho  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) UkUdpZ.[il  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is k"6^gup(U  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix 7@`(DU`z  
    %   with one column for every (N,M) pair, and one row for every .d2s4q\  
    %   element in R. g8C+j6uR0  
    % 2yNlQP8%  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- lL?;?V~  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is t|/ /oEY  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to &lD4-_2J  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 O/-xkzR*  
    %   for all [n,m]. n\QG-?%Pi  
    % C$_H)I  
    %   The radial Zernike polynomials are the radial portion of the .R1)i-^  
    %   Zernike functions, which are an orthogonal basis on the unit zr,jaR;  
    %   circle.  The series representation of the radial Zernike /{lls2ycW%  
    %   polynomials is +um; eL7  
    % jooh`| `P  
    %          (n-m)/2 |Q{l ]D  
    %            __ 0-@waK  
    %    m      \       s                                          n-2s #M:W?&.  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r =(o$1v/k  
    %    n      s=0 kys?%Y1  
    % kn! J`"b  
    %   The following table shows the first 12 polynomials. 9QpKB c  
    % 4CDmq[AVS[  
    %       n    m    Zernike polynomial    Normalization 7 >.^GD  
    %       --------------------------------------------- q+N}AKawB  
    %       0    0    1                        sqrt(2) DQ,QyV  
    %       1    1    r                           2 #xO`k1W.  
    %       2    0    2*r^2 - 1                sqrt(6) (T@ov~ @  
    %       2    2    r^2                      sqrt(6) D%Wr/6X  
    %       3    1    3*r^3 - 2*r              sqrt(8) I(2ID +  
    %       3    3    r^3                      sqrt(8) _PuMZjGL  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) Si;e_a  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) 9J<KR #M  
    %       4    4    r^4                      sqrt(10) sg3%n0Ms.W  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) RvVnVcn^#  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) ?)9 6YX'  
    %       5    5    r^5                      sqrt(12) 8gZ5D  
    %       --------------------------------------------- Q (`IiV   
    % ;$86.2S>B  
    %   Example: y&iLhd!p  
    % )sW1a  
    %       % Display three example Zernike radial polynomials /GEqU^ B  
    %       r = 0:0.01:1; I qma vnM#  
    %       n = [3 2 5]; iJ~p X\FKO  
    %       m = [1 2 1]; &fW;;>  
    %       z = zernpol(n,m,r); [}FP_Su$6  
    %       figure Jg7IGU(dct  
    %       plot(r,z)  ?9AByg  
    %       grid on .[~E}O  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') nuvz!<5\{  
    % 4p F%G  
    %   See also ZERNFUN, ZERNFUN2. /H\ZCIu/7  
    A M# '(k(  
    % A note on the algorithm. F7mzBrz  
    % ------------------------ ?Hq`*I?b9  
    % The radial Zernike polynomials are computed using the series KBXdr52"  
    % representation shown in the Help section above. For many special p_[k^@ $  
    % functions, direct evaluation using the series representation can iE$0-Qe[3  
    % produce poor numerical results (floating point errors), because B [03,zVf  
    % the summation often involves computing small differences between ?vvjwys@  
    % large successive terms in the series. (In such cases, the functions <;= X7l+  
    % are often evaluated using alternative methods such as recurrence T1D7H~ \lG  
    % relations: see the Legendre functions, for example). For the Zernike zVp|%&  
    % polynomials, however, this problem does not arise, because the n`CmbM@@  
    % polynomials are evaluated over the finite domain r = (0,1), and BHa!jw_~o  
    % because the coefficients for a given polynomial are generally all y9:|}Vh  
    % of similar magnitude. ^5xY&1j  
    % a}MOhM6T  
    % ZERNPOL has been written using a vectorized implementation: multiple {<&x9<f9  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] 1&wLNZXH  
    % values can be passed as inputs) for a vector of points R.  To achieve <TDgv%eg0  
    % this vectorization most efficiently, the algorithm in ZERNPOL >:8GU f*  
    % involves pre-determining all the powers p of R that are required to :  wb\N'b  
    % compute the outputs, and then compiling the {R^p} into a single az7L0pp  
    % matrix.  This avoids any redundant computation of the R^p, and ,OG sx  
    % minimizes the sizes of certain intermediate variables. *S*;rLH9c  
    % {n{ j*+  
    %   Paul Fricker 11/13/2006 xqLLoSte  
    )0!hw|0|  
    }KJ/WyYW  
    % Check and prepare the inputs: c}$?k@=  
    % ----------------------------- ?f:FmgQk  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) )J5(M`  
        error('zernpol:NMvectors','N and M must be vectors.') $7,n8ddRy  
    end |7%M:7 Q  
    i x,5-j  
    if length(n)~=length(m) 9CW .xX8  
        error('zernpol:NMlength','N and M must be the same length.') t hTY('m  
    end e>X&[\T  
    J/WPffqD  
    n = n(:); qJUu9[3'm  
    m = m(:); ,253'53W)  
    length_n = length(n); `nn;E% n  
    !y `wAm>n  
    if any(mod(n-m,2)) BPtU]Bv-  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') vxY7/_]  
    end HSq&'V  
    L~CwL  
    if any(m<0) rC$ckug  
        error('zernpol:Mpositive','All M must be positive.') B!yAam#^  
    end ,,lrF.  
    V]<J^m8  
    if any(m>n) LeXu Td  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') g/J ^ YT!  
    end ?HAWw'QW  
    szGp<xv_p  
    if any( r>1 | r<0 ) FNtcI7  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') H~Hh $-z  
    end 8?J\  
    e%u1O -*  
    if ~any(size(r)==1) \k;*Ej~.  
        error('zernpol:Rvector','R must be a vector.') `gSqwN<x%  
    end -}4<P}.5T  
    VYMs`d[  
    r = r(:); 4F^(3RKZ|  
    length_r = length(r); rK9X68)  
    ,FlF.pt  
    if nargin==4 1-Sc@WXd  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); *&^`Uk,[  
        if ~isnorm 2a 3i]e5Kt  
            error('zernpol:normalization','Unrecognized normalization flag.') %\Z{~(&-v  
        end mtOCk 5E  
    else uwU;glT  
        isnorm = false; "at*G>+  
    end gk1I1)p  
    oEGe y8?  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 2aNCcZw0  
    % Compute the Zernike Polynomials .q"`)PT  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% t n>$5}^;  
    0V }knR.l  
    % Determine the required powers of r: ^0Cr-  
    % ----------------------------------- 2zZ" }Zr#  
    rpowers = []; ]hJ#%1  
    for j = 1:length(n) :} i #ODJ  
        rpowers = [rpowers m(j):2:n(j)]; f,wB.MN  
    end j|N;&s`  
    rpowers = unique(rpowers); *VmJydd  
    0B7cpw>_J  
    % Pre-compute the values of r raised to the required powers, /r^J8B*  
    % and compile them in a matrix: 1\X1G>60m  
    % ----------------------------- z^;*&J   
    if rpowers(1)==0 :<=A1>&8  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); N<}{oIsZ+  
        rpowern = cat(2,rpowern{:}); IV]s!  
        rpowern = [ones(length_r,1) rpowern]; NifzZEX  
    else &-mPj82R  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 60ccQ7=  
        rpowern = cat(2,rpowern{:}); 5ztHar~f  
    end n}Pz:  
    R2|v[nh  
    % Compute the values of the polynomials: Ztu _UlGC  
    % -------------------------------------- kC"lO'  
    z = zeros(length_r,length_n); t2Q40' `  
    for j = 1:length_n  ky0Fm W  
        s = 0:(n(j)-m(j))/2; G}<%%U D  
        pows = n(j):-2:m(j); bKRz=$P?  
        for k = length(s):-1:1 //9Ro"  
            p = (1-2*mod(s(k),2))* ... !Bcd\]q  
                       prod(2:(n(j)-s(k)))/          ... }D02*s  
                       prod(2:s(k))/                 ... 3\j{*f$J  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... ,1J+3ugp&  
                       prod(2:((n(j)+m(j))/2-s(k))); ;<i`6e  
            idx = (pows(k)==rpowers); 0n` 1GU)W  
            z(:,j) = z(:,j) + p*rpowern(:,idx); Y??8P  
        end nK=-SQ  
         _1 TSt%L  
        if isnorm $Hh3*reSg-  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); MY1s  
        end c 4xh  
    end qw={gZ  
    9)N/J\b  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    857
    光币
    847
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  sePOW#|  
    5p&&EA/  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 AuZ?~I1  
    ,nO:Pxn|  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)