非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 qyGVyi3
function z = zernfun(n,m,r,theta,nflag) dQ@e+u5
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. >/nS<y>
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N QgO@oV* S
% and angular frequency M, evaluated at positions (R,THETA) on the YOwo\'|=
% unit circle. N is a vector of positive integers (including 0), and "12.Bi.O"[
% M is a vector with the same number of elements as N. Each element S*Un$ngAh
% k of M must be a positive integer, with possible values M(k) = -N(k) q PuxYU
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, ,,S5 8\x
% and THETA is a vector of angles. R and THETA must have the same K2>(C$Z
% length. The output Z is a matrix with one column for every (N,M) B5*{85p(u
% pair, and one row for every (R,THETA) pair. `YAqR?Xj_<
% 2-j+-B|i
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike J!O5`k*.C
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), HiCNs;t
% with delta(m,0) the Kronecker delta, is chosen so that the integral GiJ|5"
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Xg?hh 0s
% and theta=0 to theta=2*pi) is unity. For the non-normalized Y*;Z(W.V#
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. BRYhL|d~.
% u*Z>&]W_
% The Zernike functions are an orthogonal basis on the unit circle. j0^~="p%C
% They are used in disciplines such as astronomy, optics, and } *|_P
% optometry to describe functions on a circular domain. 'A
.c*<_
% %s P C3L
% The following table lists the first 15 Zernike functions. s t P~/}
% ]WR+>)ERb
% n m Zernike function Normalization b>=MG8
% -------------------------------------------------- p#hs8xz
% 0 0 1 1 8<t6_* f
% 1 1 r * cos(theta) 2 gN1b?_g
% 1 -1 r * sin(theta) 2 L0ig%
% 2 -2 r^2 * cos(2*theta) sqrt(6) DvHcT]l>5
% 2 0 (2*r^2 - 1) sqrt(3) F7gipCc1We
% 2 2 r^2 * sin(2*theta) sqrt(6) 7SLJLn3d
% 3 -3 r^3 * cos(3*theta) sqrt(8) K,bv\j;f
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) Re-~C[zwT
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) *Uie{^p?
% 3 3 r^3 * sin(3*theta) sqrt(8) I!&|L0Qq
% 4 -4 r^4 * cos(4*theta) sqrt(10) /R^Moj<
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ;E>5<[aa
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) 8o#*0d|
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) sufidi
% 4 4 r^4 * sin(4*theta) sqrt(10) e p~3e5
% -------------------------------------------------- -v.\CtpHv
% w'z?1M(*
% Example 1: $'*@g1vY
% Gf\Dc
% % Display the Zernike function Z(n=5,m=1) cP%mkh_ri
% x = -1:0.01:1; A9\m.3jo
% [X,Y] = meshgrid(x,x); vJVL%,7
% [theta,r] = cart2pol(X,Y); BM!\U 6
% idx = r<=1; zOD5a=[1
% z = nan(size(X)); A|1
TE$
% z(idx) = zernfun(5,1,r(idx),theta(idx)); S%<RV6{aiM
% figure CwZ+Pn0
% pcolor(x,x,z), shading interp /KjRB_5~q}
% axis square, colorbar U1bhd}MoR
% title('Zernike function Z_5^1(r,\theta)') azR<Y_tw
% P1)f-:;
% Example 2: [~9rp]<
% {i y[8eLg
% % Display the first 10 Zernike functions pV{MW#e
% x = -1:0.01:1; ,0%P3
% [X,Y] = meshgrid(x,x); l?v`kAMR
% [theta,r] = cart2pol(X,Y); :L#t?~
% idx = r<=1; (G $nN*rlu
% z = nan(size(X)); {Ak{
ct\t
% n = [0 1 1 2 2 2 3 3 3 3]; {I+
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; l{F^"_U
% Nplot = [4 10 12 16 18 20 22 24 26 28]; rq?:I:0
% y = zernfun(n,m,r(idx),theta(idx)); }VxbO8\b(
% figure('Units','normalized') J/S 47J~
% for k = 1:10 xO)vn\uJ
% z(idx) = y(:,k); jjbBv~vs
% subplot(4,7,Nplot(k)) /Y@^B,6\
% pcolor(x,x,z), shading interp u}Vc2a,WV
% set(gca,'XTick',[],'YTick',[]) UOHU1.3$T
% axis square +6t<FH
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) _yY(&(]#
% end D,%R[F?5O
% "@U9'rKx
% See also ZERNPOL, ZERNFUN2. =KqcWN3k
x'kwk
% Paul Fricker 11/13/2006 @r4ZN6Wn
7sKN`
Kk+IUs
% Check and prepare the inputs: Sp$~)f'
% ----------------------------- Z*S
9pkWcF
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) | n5F_RL
error('zernfun:NMvectors','N and M must be vectors.') m<)0XE6w
end l<5O\?Vo]
N|hNh$J[
if length(n)~=length(m) v(D{_
error('zernfun:NMlength','N and M must be the same length.') Qb}7lm{r
end OrP-+eg
n^P=a'+
n = n(:); BE. v+'c"
m = m(:); )R$+dPu>
if any(mod(n-m,2)) 9z7^0Ruw
error('zernfun:NMmultiplesof2', ... C{>@b:]p
'All N and M must differ by multiples of 2 (including 0).') ModwJ
w
end <![tn#_
YVt#( jl
if any(m>n) 6*,'A|t?y
error('zernfun:MlessthanN', ... -5,QrMM<
'Each M must be less than or equal to its corresponding N.') 9n{tbabJ
end 02E-|p;
jv7-i'I@
if any( r>1 | r<0 ) ^|y6oj
error('zernfun:Rlessthan1','All R must be between 0 and 1.') 2?YN8
n9n
end 3qOq:ZkQ
(pM5B8U
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) N%N%
error('zernfun:RTHvector','R and THETA must be vectors.') UwOZBF<
end ?8[,0l:|
DpjiE/*
r = r(:); jn vJ`7zFP
theta = theta(:); v#*9rNEj0
length_r = length(r); NIufL
}6\
if length_r~=length(theta) &ywAzGV{s
error('zernfun:RTHlength', ... P5s'cPX
'The number of R- and THETA-values must be equal.') z=1 J{]
end %T@ 3-V_
hJY= )
% Check normalization: -1).'aJ^
% -------------------- y<mmv~=
if nargin==5 && ischar(nflag) }~pT
saw
isnorm = strcmpi(nflag,'norm'); q<(yNqMKP
if ~isnorm `tA~"J$32l
error('zernfun:normalization','Unrecognized normalization flag.') OAPR wOQ^=
end :0G "EM4
else %!%G\nv
isnorm = false; HqNM3 1)
end >qh8em
SA_5..
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -w
nlJi1f
% Compute the Zernike Polynomials S^nshQI
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% A41*4!L=
OZ 4uk.)
% Determine the required powers of r: ?U'c;*O-
% ----------------------------------- l/9V59Fv9
m_abs = abs(m); 2)}ic2]pn
rpowers = []; iu!j#VO
for j = 1:length(n) !f5I.r~
rpowers = [rpowers m_abs(j):2:n(j)]; !K a!f1
end #\9sCnb
rpowers = unique(rpowers); ,b;eU[!]
w@&g9e6E
% Pre-compute the values of r raised to the required powers, 5dc24GB>_
% and compile them in a matrix: :m*r(i3
% ----------------------------- USF&; M3
if rpowers(1)==0 J6pQ){;6
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); [ ySO
rpowern = cat(2,rpowern{:}); 1_JtD|Jy
rpowern = [ones(length_r,1) rpowern]; Pd-0u>k
else EfA*w/y
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); m(Ghe2T:
rpowern = cat(2,rpowern{:}); dIk/vg
end <aps)vF
L3[r7 b
% Compute the values of the polynomials: Q/[|/uNw?
% -------------------------------------- HPl'u'.Hg
y = zeros(length_r,length(n)); E__^>=
for j = 1:length(n) On%21L;JG
s = 0:(n(j)-m_abs(j))/2; Fw,'a
pows = n(j):-2:m_abs(j); c(Liwuj
for k = length(s):-1:1 y9W6e"
p = (1-2*mod(s(k),2))* ... b0W~*s [4
prod(2:(n(j)-s(k)))/ ... +$Q.N{LV
prod(2:s(k))/ ... xXG-yh
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... S!!i
prod(2:((n(j)+m_abs(j))/2-s(k))); ap|7./yg
idx = (pows(k)==rpowers); Y r3h=XY
y(:,j) = y(:,j) + p*rpowern(:,idx); W
vh3Y,|3
end Gvg)@VNr
,\*PpcU
if isnorm 3I0=^>A
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); AgKG>%0
end nNuv 0
end b[+G+V
% END: Compute the Zernike Polynomials e}|UVoeH
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% {#>>dILPr
@C[]o.r
% Compute the Zernike functions: Y:|_M3&'o
% ------------------------------ sg@)IEg</v
idx_pos = m>0; aLr\Uq,83
idx_neg = m<0; jP*5(*[&y
5Fh?YS =
z = y; 5I #L|+
if any(idx_pos) RmXC
^VQ
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Y{c_5YYf
end Z}#,E;
if any(idx_neg) J:s^F
n
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 0*?/s\>PS;
end n_G< /8
&?~OV:r9
% EOF zernfun