切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11830阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 @62QDlt;  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! 1n|)05p  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 "7Qc:<ww  
    function z = zernfun(n,m,r,theta,nflag) ^ ]Mlkd:  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. %*d(1?\o  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N >(>Fx\z}  
    %   and angular frequency M, evaluated at positions (R,THETA) on the gHCk;dmq81  
    %   unit circle.  N is a vector of positive integers (including 0), and J*@(rb#G  
    %   M is a vector with the same number of elements as N.  Each element .CXe*Vbd  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) @mM])V  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, GMLDmTV  
    %   and THETA is a vector of angles.  R and THETA must have the same %*4Gx +b  
    %   length.  The output Z is a matrix with one column for every (N,M) 7|=*z  
    %   pair, and one row for every (R,THETA) pair. L_$M9G|5n  
    % _ElA\L4g%  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Ya$JX(aUe  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 9D 2B8t"a  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral b.Wf*I?  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, LeY!A#j  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 4.@gV/U(|  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. P=ARttT`(  
    % t%jB[w&,os  
    %   The Zernike functions are an orthogonal basis on the unit circle. 8!e1T,:b  
    %   They are used in disciplines such as astronomy, optics, and q r12"H  
    %   optometry to describe functions on a circular domain. ?R2`RvQ  
    % 0:<dj:%M  
    %   The following table lists the first 15 Zernike functions. G4Y]fzC  
    % P<@Yux#  
    %       n    m    Zernike function           Normalization \W73W_P&g  
    %       -------------------------------------------------- pfCNFF*"  
    %       0    0    1                                 1 i,G )kt'H  
    %       1    1    r * cos(theta)                    2 ;1`NsYI2  
    %       1   -1    r * sin(theta)                    2  gB\ a  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) F[ca4_lK  
    %       2    0    (2*r^2 - 1)                    sqrt(3) m*VM1kV  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) Oh9jr"Gm=  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) e<|'   
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) v6{qKpU#  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) YE#OAfj~  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) }^J&D=J5V  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) B@w Q [  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) XWo=?(iA  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) eit>4xMu  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) R!7emc0T  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) a8fLj  
    %       -------------------------------------------------- .F=15A  
    % hM*T{|y  
    %   Example 1: #N-NI+qX  
    % .MO"8}]8Z  
    %       % Display the Zernike function Z(n=5,m=1) oh{!u!L`]  
    %       x = -1:0.01:1; V%~u8b  
    %       [X,Y] = meshgrid(x,x); -B\`O*Q  
    %       [theta,r] = cart2pol(X,Y); m9^ ? p  
    %       idx = r<=1; Zxw>|eKI>D  
    %       z = nan(size(X)); h#bpog  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); % ~%>3  
    %       figure B8'(3&)My  
    %       pcolor(x,x,z), shading interp 64s9Dy@%F  
    %       axis square, colorbar )F;[  
    %       title('Zernike function Z_5^1(r,\theta)') fT.5@RR7^  
    % GXaCH))TO  
    %   Example 2: 6ju+#]T  
    % i>bFQ1Rdx  
    %       % Display the first 10 Zernike functions UQz8":#V  
    %       x = -1:0.01:1; ["N>Po  
    %       [X,Y] = meshgrid(x,x); gM|X":j  
    %       [theta,r] = cart2pol(X,Y); ,cm;A'4]  
    %       idx = r<=1; [!>2[bbl  
    %       z = nan(size(X)); (bo{vX  
    %       n = [0  1  1  2  2  2  3  3  3  3]; h+$1+Es  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; tq9t(0EL  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; zk]6|i$!I  
    %       y = zernfun(n,m,r(idx),theta(idx)); ZMJ\C|S:  
    %       figure('Units','normalized') vO" $Xw  
    %       for k = 1:10 F0Xv84:O  
    %           z(idx) = y(:,k); d87pQ3e:&  
    %           subplot(4,7,Nplot(k)) hIa@JEIt  
    %           pcolor(x,x,z), shading interp 9;;1 "^4/  
    %           set(gca,'XTick',[],'YTick',[]) FK!9to>  
    %           axis square 0-Xpq,0  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) avls[Bq  
    %       end <R~(6krJwZ  
    % 6X5m1+ Oi^  
    %   See also ZERNPOL, ZERNFUN2. nZQZ!Vfj  
    D00rO4~6D%  
    %   Paul Fricker 11/13/2006 o <LA2 q`T  
    yo V"?W>!  
    cd}TDd(H%  
    % Check and prepare the inputs: J8a4.prqI  
    % ----------------------------- 0t 7yK  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ;BoeE3* 6  
        error('zernfun:NMvectors','N and M must be vectors.') y)U8\  
    end R4}G@&Q  
    ?MeP<5\A  
    if length(n)~=length(m) @6.1EK0  
        error('zernfun:NMlength','N and M must be the same length.') c[ff|-<g  
    end UeE& 8{=d  
    I}Q3B3Byg  
    n = n(:); }W<]fK  
    m = m(:); 4E3HYZ  
    if any(mod(n-m,2)) F5L/7j<}  
        error('zernfun:NMmultiplesof2', ... D'O[0?N"g  
              'All N and M must differ by multiples of 2 (including 0).') C bG"8F|4  
    end Iu0K#.s_  
    zy@ #R;  
    if any(m>n) x#dJH9NR[  
        error('zernfun:MlessthanN', ... hU G Iy(  
              'Each M must be less than or equal to its corresponding N.') ?vf{v  
    end r~nrP=-%  
    iCk34C7  
    if any( r>1 | r<0 ) _* 4 <  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') ;?inf`t  
    end 1Sz5&jz  
    !9iVe7V  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) u[2R>=  
        error('zernfun:RTHvector','R and THETA must be vectors.') 7F?^gMi  
    end +}4vdi"  
    jy@}$g{  
    r = r(:); 7-e)V{A`w  
    theta = theta(:); 6mdJ =b#  
    length_r = length(r); 94nvh:n  
    if length_r~=length(theta) cx_"{`+e  
        error('zernfun:RTHlength', ... *N'B(j/  
              'The number of R- and THETA-values must be equal.') IRo[|&c  
    end pJ_Z[}d)c  
    L/nz95  
    % Check normalization: lt0(Kf g  
    % -------------------- :Fj4YP"  
    if nargin==5 && ischar(nflag) 8Yq6I>@!  
        isnorm = strcmpi(nflag,'norm'); &B3\;|\  
        if ~isnorm Y!&dj95y  
            error('zernfun:normalization','Unrecognized normalization flag.') AW> P\>{RE  
        end |BYD]vK  
    else %q>gwq A  
        isnorm = false; Iob o5B  
    end `q_7rrkO  
    ~sSB.g  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% jIdhmd* $z  
    % Compute the Zernike Polynomials B0Z*YsbXL  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +oQ@E<)H  
    >!WJ{M0  
    % Determine the required powers of r: pm)A*][s  
    % ----------------------------------- kFk+TXLDIt  
    m_abs = abs(m); 4dfe5\  
    rpowers = []; iv;;GW{2  
    for j = 1:length(n)  pd X9G  
        rpowers = [rpowers m_abs(j):2:n(j)]; 2! wz#EC  
    end Zqam Iq  
    rpowers = unique(rpowers); $h_@`j  
    g>f(5  
    % Pre-compute the values of r raised to the required powers, VCc4nn#  
    % and compile them in a matrix: Mu:*(P/  
    % ----------------------------- G0*$&G0nb  
    if rpowers(1)==0 4a)qn?<z  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); qVM]$V#e  
        rpowern = cat(2,rpowern{:}); yobi$mnsy!  
        rpowern = [ones(length_r,1) rpowern]; XTeU 2I  
    else =ARI*  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); >J8?n,*  
        rpowern = cat(2,rpowern{:}); NWNgh/9?  
    end s` S<BX7  
    iSFgFJG^  
    % Compute the values of the polynomials: <,cDEN7  
    % -------------------------------------- Bq@G@Qi  
    y = zeros(length_r,length(n)); )(!vd!p5  
    for j = 1:length(n) jJ?3z ,h  
        s = 0:(n(j)-m_abs(j))/2; VNytK_F0P  
        pows = n(j):-2:m_abs(j); sHEISNj/^  
        for k = length(s):-1:1 c8}1-MKs_R  
            p = (1-2*mod(s(k),2))* ...  d;CD~s  
                       prod(2:(n(j)-s(k)))/              ... #vS>^OyP  
                       prod(2:s(k))/                     ... fwl RwH(  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... zSq+#O1#  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); %|,j'V$  
            idx = (pows(k)==rpowers); \< z{ @  
            y(:,j) = y(:,j) + p*rpowern(:,idx); `,7BU??+u  
        end C(gH}N4  
         J\ 3~  
        if isnorm .+M4P i  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); j4NS5  
        end &_-~kU1K^  
    end v=X\@27= ?  
    % END: Compute the Zernike Polynomials %l5J  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 52%.^/  
    "kN5AeRg  
    % Compute the Zernike functions: 8}S|iM  
    % ------------------------------ 4z$ eT  
    idx_pos = m>0; khEHMvVH  
    idx_neg = m<0; a{)"KAP  
    ~i(*.Z) \  
    z = y; _|s{G  
    if any(idx_pos) 3[Z?`X  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); I=lA7}  
    end ;>Kxl}+R  
    if any(idx_neg) f:BW{Cij;y  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)');  lual'~  
    end Zo&U3b{Dy  
    CP={|]>+S  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) 1o.]"~0:  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. O*c +TiTb  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated 1 "4AS_Q  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive ^IC|3sr   
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, /oh[ Nu1D  
    %   and THETA is a vector of angles.  R and THETA must have the same %)]{*#N4  
    %   length.  The output Z is a matrix with one column for every P-value, @mw1(J  
    %   and one row for every (R,THETA) pair. g.z/%Lp K  
    % AC 3 ;i  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike m:K/ )v*  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) h( Iti&  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) MF>?! !  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 ;[%AeN5W  
    %   for all p. T} U`?s`)  
    % 539[,jH  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 HbV[L)zYG  
    %   Zernike functions (order N<=7).  In some disciplines it is W${0#qq  
    %   traditional to label the first 36 functions using a single mode _jP]ifu`  
    %   number P instead of separate numbers for the order N and azimuthal esFBWJ  
    %   frequency M. ]BX|G`CCc  
    % ^Z;5e@S  
    %   Example: 2}hEBw68  
    % f`vB$r>  
    %       % Display the first 16 Zernike functions , @(lYeD"  
    %       x = -1:0.01:1; -R| v&h%T  
    %       [X,Y] = meshgrid(x,x); *\-6p0~A  
    %       [theta,r] = cart2pol(X,Y); @#;~_?$?C  
    %       idx = r<=1; {QJJw}!#  
    %       p = 0:15; 1[mX_ }K  
    %       z = nan(size(X)); ~ M@8O  
    %       y = zernfun2(p,r(idx),theta(idx)); Z+FJ cvYx  
    %       figure('Units','normalized') yA =#Ji  
    %       for k = 1:length(p) F d *p3a  
    %           z(idx) = y(:,k); /_>S0  
    %           subplot(4,4,k) }zj_Pp  
    %           pcolor(x,x,z), shading interp Un@dWf6'  
    %           set(gca,'XTick',[],'YTick',[]) 5_0Eh!sx  
    %           axis square Np+<)q2  
    %           title(['Z_{' num2str(p(k)) '}']) E%2]c?N5  
    %       end qy/xJ>:  
    % kp LDK81I  
    %   See also ZERNPOL, ZERNFUN. +<&_1% 5+  
    XeJn,=  
    %   Paul Fricker 11/13/2006 3Vs8"BFjz  
    h 5<46!P  
    bRfac/:}  
    % Check and prepare the inputs: UM3}7|  
    % ----------------------------- 'H zF/RKh  
    if min(size(p))~=1 Wv8?G~>  
        error('zernfun2:Pvector','Input P must be vector.') _?CyKk\I  
    end :)p\a1I[*  
    Z<@0~t_:?p  
    if any(p)>35 2.qEy6  
        error('zernfun2:P36', ... *3d+ !#;rG  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... O,x[6P54P  
               '(P = 0 to 35).']) ?^n),mR  
    end Vo"Wr>F  
    kZ>_m &g  
    % Get the order and frequency corresonding to the function number: #~BsI/m  
    % ---------------------------------------------------------------- 9$$dSN\&  
    p = p(:); h'jc4mu0  
    n = ceil((-3+sqrt(9+8*p))/2); n 9PYZxy  
    m = 2*p - n.*(n+2); Q V)>+6\  
    _Dr9 w&;<  
    % Pass the inputs to the function ZERNFUN: ?(0=+o(`  
    % ---------------------------------------- :m]H?vq] \  
    switch nargin aS=-9P;v  
        case 3 [MhKR }a  
            z = zernfun(n,m,r,theta); 9sG]Q[:.]  
        case 4 VkdGGY  
            z = zernfun(n,m,r,theta,nflag); "ngULpb{R  
        otherwise f$ 9O0,}%O  
            error('zernfun2:nargin','Incorrect number of inputs.') >mJH@,F:  
    end WX6}@mS.  
    G!dx)v  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) .DNPL5[v  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. v%:VV*MxF  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of A:y HClmn  
    %   order N and frequency M, evaluated at R.  N is a vector of &hEn3u  
    %   positive integers (including 0), and M is a vector with the -M/j&<;LW  
    %   same number of elements as N.  Each element k of M must be a wU6sU]P  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) Z _Wzm!:  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is *5IB@^<  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix IjGPiC  
    %   with one column for every (N,M) pair, and one row for every @}=(4%  
    %   element in R. G %'xEr0n  
    % cbN;Kv?ak}  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- nr2 Q[9~  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is CP~mKmMV  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to 4-~Z{#-  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 U% q-#^A  
    %   for all [n,m]. _ f'v>"K  
    % ? D _kQl  
    %   The radial Zernike polynomials are the radial portion of the }R`Rqg-W  
    %   Zernike functions, which are an orthogonal basis on the unit wBcoh~ (y  
    %   circle.  The series representation of the radial Zernike 8Qo'[+4;  
    %   polynomials is d]poUN~x  
    % h2 KI  
    %          (n-m)/2 nl qn:[BU  
    %            __ NMe{1RM  
    %    m      \       s                                          n-2s _0(%^5Y  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r S=(<m%f  
    %    n      s=0 k,[*h-{8  
    % DY -5(6X  
    %   The following table shows the first 12 polynomials. H1 I^Vij  
    % h%:rJ_#Zl  
    %       n    m    Zernike polynomial    Normalization t%;w<1E  
    %       --------------------------------------------- +x(#e'6p  
    %       0    0    1                        sqrt(2) U@M3.[jw  
    %       1    1    r                           2 J91[w?,  
    %       2    0    2*r^2 - 1                sqrt(6) SRwD`FF  
    %       2    2    r^2                      sqrt(6) I]^>>>p$  
    %       3    1    3*r^3 - 2*r              sqrt(8) gs5(~YiT6  
    %       3    3    r^3                      sqrt(8) =A.$~9P  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) 8LbwEKl  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) ;eN ^'/4A  
    %       4    4    r^4                      sqrt(10) %8,$ILN  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) Xx"<^FS[zC  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) ;%9]G|*{  
    %       5    5    r^5                      sqrt(12) F}5d>nw  
    %       --------------------------------------------- V&w2pp0  
    % e"ehH#i  
    %   Example: Gq^vto  
    % 27EK +$  
    %       % Display three example Zernike radial polynomials X*QS/\  
    %       r = 0:0.01:1; -}#HaL#'K  
    %       n = [3 2 5]; G18w3BFx  
    %       m = [1 2 1]; & 3BoK/y3  
    %       z = zernpol(n,m,r); .!x&d4;,q  
    %       figure 83n%pS4x  
    %       plot(r,z) $@D a|d4  
    %       grid on unLhI0XW  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') Ix5&B6L8  
    % X H-_tvB  
    %   See also ZERNFUN, ZERNFUN2. @60D@Y  
    G t w>R  
    % A note on the algorithm. {/'T:n#  
    % ------------------------ YR%iZ"`*+O  
    % The radial Zernike polynomials are computed using the series fz&B$1;8  
    % representation shown in the Help section above. For many special }>A q<1%  
    % functions, direct evaluation using the series representation can w5@ 5"M  
    % produce poor numerical results (floating point errors), because p_FM 2K7!  
    % the summation often involves computing small differences between JJ?{V:  
    % large successive terms in the series. (In such cases, the functions uqMw-f/  
    % are often evaluated using alternative methods such as recurrence .E4* >@M5  
    % relations: see the Legendre functions, for example). For the Zernike hXW` n*Zw  
    % polynomials, however, this problem does not arise, because the /:{%X(8  
    % polynomials are evaluated over the finite domain r = (0,1), and swKkY`g  
    % because the coefficients for a given polynomial are generally all *rxr:y#Ve  
    % of similar magnitude. dmFn0J-\  
    % \Wbmmd}8  
    % ZERNPOL has been written using a vectorized implementation: multiple [>=!$>>;8  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] <`H0i*|Ued  
    % values can be passed as inputs) for a vector of points R.  To achieve oMh$:jR$  
    % this vectorization most efficiently, the algorithm in ZERNPOL ~+q1g[6  
    % involves pre-determining all the powers p of R that are required to YOCEEh?  
    % compute the outputs, and then compiling the {R^p} into a single K1& QAXyP  
    % matrix.  This avoids any redundant computation of the R^p, and 'h>uR|  
    % minimizes the sizes of certain intermediate variables. c}(WniR-"  
    % ^ Ltho`  
    %   Paul Fricker 11/13/2006 8{ zX=  
    y<)TYr  
    T1LYJ]5  
    % Check and prepare the inputs: +mQ5\14#  
    % ----------------------------- |P|B"I<?  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ^^y eC|~N:  
        error('zernpol:NMvectors','N and M must be vectors.') c_lHj#A(l  
    end v^|U?  
    *Gsj pNr-  
    if length(n)~=length(m) 5]xuU.w'  
        error('zernpol:NMlength','N and M must be the same length.') 7|rH9Bc{U  
    end BZR{}Aj4pa  
    .~z'm$s1o  
    n = n(:); E$8JrL  
    m = m(:); l_B735  
    length_n = length(n); la!]Y-s)'4  
    6Q.S  
    if any(mod(n-m,2)) 1{}p_"s>  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') Jt~Ivn,  
    end ZsmOn#`=^}  
    +v~x gUs  
    if any(m<0) -m@o\9Ic  
        error('zernpol:Mpositive','All M must be positive.') sNf& "C!;  
    end m]p{]6h  
    .RD<]BxJ  
    if any(m>n) 4l D$'`  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') b#j:)PA0C  
    end _O9V"DM  
    3Ax'v|&Hg  
    if any( r>1 | r<0 ) U82a]i0  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') B(Sy.n  
    end Fs+ tcr/\[  
    QX,$JM3  
    if ~any(size(r)==1) exRw, Nk4  
        error('zernpol:Rvector','R must be a vector.') % rBz A<  
    end %sa?/pjK  
    #]#9Xq  
    r = r(:); BN/ 4O?jD9  
    length_r = length(r); 6FS%9.Ws  
    !MbzFs~  
    if nargin==4 qxL\G &~  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); sdp&D@  
        if ~isnorm ,Oo`*'a[o7  
            error('zernpol:normalization','Unrecognized normalization flag.') I-#H+\S  
        end ts]e M1;  
    else lExQp2E  
        isnorm = false; $l.*;h*  
    end PyeNu3Il4  
    dFg>uo  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% JK,MK|  
    % Compute the Zernike Polynomials n#_B4UqW%  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% hp dI5  
    8|&,JdT  
    % Determine the required powers of r: 7h' C"rH  
    % ----------------------------------- ''17(%  
    rpowers = []; }F08o,`?  
    for j = 1:length(n) pEyZH!W  
        rpowers = [rpowers m(j):2:n(j)]; z]7 WC  
    end zzmC[,u}  
    rpowers = unique(rpowers); y\Wn:RR1[  
    b,!C8rJ  
    % Pre-compute the values of r raised to the required powers, !-I,Dh-A  
    % and compile them in a matrix: UpoSC  
    % ----------------------------- ?Y=aO(}=h  
    if rpowers(1)==0 ns[/M~_r  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ! j~wAdHk  
        rpowern = cat(2,rpowern{:}); n Ja!&G&  
        rpowern = [ones(length_r,1) rpowern]; _[:6.oNjIe  
    else u=`H n-(  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); zLJ>)v$81  
        rpowern = cat(2,rpowern{:}); bpu`'Vx  
    end *)^6'4=  
    7UTfafOGX  
    % Compute the values of the polynomials: Ku5||u.F4*  
    % -------------------------------------- A|biOz  
    z = zeros(length_r,length_n); f\&X$g  
    for j = 1:length_n v>X!/if<y  
        s = 0:(n(j)-m(j))/2; 2m Y!gVi  
        pows = n(j):-2:m(j); |3$E w.  
        for k = length(s):-1:1 6@]o,O  
            p = (1-2*mod(s(k),2))* ... 4[ uqsJB  
                       prod(2:(n(j)-s(k)))/          ... [8ZDMe  
                       prod(2:s(k))/                 ... q` S ~w  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... $v>q'8d  
                       prod(2:((n(j)+m(j))/2-s(k))); 5SFr E`  
            idx = (pows(k)==rpowers); rzY)vC+ZT  
            z(:,j) = z(:,j) + p*rpowern(:,idx); 'h$:~C  
        end ?;~!C2Zs  
         &YFe"C  
        if isnorm S2X@t>u-  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); "LlpZtw  
        end fECV\Z  
    end Qt u;_  
    g{&5a(W&`  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    857
    光币
    847
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  (o*YGYC  
    d4ecF%R  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 keC'/\e  
    |K_%]1*riC  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)