切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11257阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 "71Y{WQ   
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! )g ?'Nz  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 <4N E)!#  
    function z = zernfun(n,m,r,theta,nflag) v 1 f^gde  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. (i-L:  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N bUc ++M  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ;.7]zn.X]2  
    %   unit circle.  N is a vector of positive integers (including 0), and 1czU$!MV  
    %   M is a vector with the same number of elements as N.  Each element ucUu hS5  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) q0@b d2}  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, F/"lJ/I  
    %   and THETA is a vector of angles.  R and THETA must have the same G_xql_QR  
    %   length.  The output Z is a matrix with one column for every (N,M) Rd|^C$6  
    %   pair, and one row for every (R,THETA) pair. bs)Ro/7}  
    % Kp6%=JjO  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike %/R[cj 8  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), l;h5Y<A%?  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral Cm-dos  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, +d3h @gp  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized #2%8@?_-M  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. KD'}9{F,  
    % 3H%bbFy  
    %   The Zernike functions are an orthogonal basis on the unit circle. TtgsM}Fm  
    %   They are used in disciplines such as astronomy, optics, and ;s5JYR  
    %   optometry to describe functions on a circular domain. 2 y& k  
    % h-\+# .YP  
    %   The following table lists the first 15 Zernike functions. D+7[2$:z  
    % hjp,v)#  
    %       n    m    Zernike function           Normalization wLo<gA6;  
    %       -------------------------------------------------- + ,rl\|J%  
    %       0    0    1                                 1 +SkfT4*U  
    %       1    1    r * cos(theta)                    2 _"82W^Wi  
    %       1   -1    r * sin(theta)                    2 jr^btVOI#\  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) !)FKF7'  
    %       2    0    (2*r^2 - 1)                    sqrt(3) [\=1|t5n~  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) !Za yN  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) mEbj  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) GsIqUM#R  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) O*c<m,  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) KqXPxp^_Al  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) Oo9'  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) n^/)T3mz{  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) RF'&.RtVa  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Pe` jNiI  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) ^-(DokdBn  
    %       -------------------------------------------------- u3IhB8'  
    % {%6g6?=j  
    %   Example 1: G1wJ]ar  
    % ^[b DE0  
    %       % Display the Zernike function Z(n=5,m=1) &cy<"y  
    %       x = -1:0.01:1; VhU,("&pm  
    %       [X,Y] = meshgrid(x,x); _BG7 JvI  
    %       [theta,r] = cart2pol(X,Y); seZb;0  
    %       idx = r<=1; ^(7Qz&q  
    %       z = nan(size(X)); Zl?9ibm;@  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); !'a <Dw5  
    %       figure ym2"D?P (  
    %       pcolor(x,x,z), shading interp 0Q[;{}W}  
    %       axis square, colorbar ]qiX"<s>~C  
    %       title('Zernike function Z_5^1(r,\theta)') i~rb-~o  
    % p+${_w>pl{  
    %   Example 2: gN[^ ,u  
    % >*$Xbj*  
    %       % Display the first 10 Zernike functions XjTu`?Na;  
    %       x = -1:0.01:1; V2$M`|E  
    %       [X,Y] = meshgrid(x,x); (SByN7[g b  
    %       [theta,r] = cart2pol(X,Y); iK8jX?  
    %       idx = r<=1; 4TSkm`iR  
    %       z = nan(size(X)); 1+qP7 3a^  
    %       n = [0  1  1  2  2  2  3  3  3  3]; /?*ut&hwv  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; kT:?1w'  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; dyB@qh~H  
    %       y = zernfun(n,m,r(idx),theta(idx)); LXf|n  
    %       figure('Units','normalized') j)#GoU=w  
    %       for k = 1:10 i_av_I-  
    %           z(idx) = y(:,k); }l_8~/9  
    %           subplot(4,7,Nplot(k)) f0*_& rP  
    %           pcolor(x,x,z), shading interp Qki? >j"  
    %           set(gca,'XTick',[],'YTick',[]) 593!;2/@  
    %           axis square 0+AMN-  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) *TPWLR ^  
    %       end D0h6j0r 5  
    % 8[:G/8VI  
    %   See also ZERNPOL, ZERNFUN2. ~iq=J5IN#  
    \ !IEZ  
    %   Paul Fricker 11/13/2006 o 80x@ &A:  
    -0<ZN(?|  
    l/A!ofc#)  
    % Check and prepare the inputs: 3!i{4/  
    % ----------------------------- <|hrmwk|  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) n/YnISt  
        error('zernfun:NMvectors','N and M must be vectors.') `)Y 5L}c=  
    end D H:9iX'  
    gwFW+*h  
    if length(n)~=length(m) ."`||@|  
        error('zernfun:NMlength','N and M must be the same length.') gZ=$bR  
    end nI8zT0o  
    3A\Z ]L  
    n = n(:); @@=,bO  
    m = m(:); ( geV(zT  
    if any(mod(n-m,2)) 1G'pT$5&  
        error('zernfun:NMmultiplesof2', ... ,Qj\_vr@  
              'All N and M must differ by multiples of 2 (including 0).') iDYm4sY  
    end 9fsc>9  
    upFe{M@  
    if any(m>n) \!*F:v0g^  
        error('zernfun:MlessthanN', ... ,_K:DSiB  
              'Each M must be less than or equal to its corresponding N.') zbfe=J4c  
    end \\35} 9  
    /bmkt@$-0  
    if any( r>1 | r<0 ) }d@;]cps  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') n;y[%H!g  
    end S KGnx  
    kH=qJ3Z  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ](`:<>c  
        error('zernfun:RTHvector','R and THETA must be vectors.') bG+Gg*0p  
    end {ea*dX872:  
    &iT^IkA{  
    r = r(:); KVoM\ttP  
    theta = theta(:); U\>k>|Jr{  
    length_r = length(r); 2FGCf} ,  
    if length_r~=length(theta) u(JuU/U  
        error('zernfun:RTHlength', ... |C>\k u*  
              'The number of R- and THETA-values must be equal.') 2hTsjJ!'  
    end wd1>L) T  
    5'_:>0}  
    % Check normalization: m~F ~9&  
    % -------------------- \!k\%j 9  
    if nargin==5 && ischar(nflag) #q8/=,3EG  
        isnorm = strcmpi(nflag,'norm'); lE3&8~2   
        if ~isnorm 4}] In/yA  
            error('zernfun:normalization','Unrecognized normalization flag.') ^$<:~qq !  
        end <f0yh"?6VH  
    else X"%eRW&qu/  
        isnorm = false; Y>K8^GS  
    end ?XVox*6K&  
    UN:cRH{?*  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% z'0 =3  
    % Compute the Zernike Polynomials 2t7=GA+j  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% f?"909&  
    Htep3Ol3  
    % Determine the required powers of r: _HkQv6fXpE  
    % ----------------------------------- NSQ)lSW,;  
    m_abs = abs(m); s+v$sF  
    rpowers = []; =-G4 BQ  
    for j = 1:length(n) ~-~iCIaTb  
        rpowers = [rpowers m_abs(j):2:n(j)]; D?"Q)kVuD  
    end w# ;t$qz}  
    rpowers = unique(rpowers); #vTF:r  
    o^u}(wZ{  
    % Pre-compute the values of r raised to the required powers, :BblH0'  
    % and compile them in a matrix: (R!.=95@  
    % ----------------------------- _;-b ZH  
    if rpowers(1)==0 VGOdJ|2]Wr  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); axv-U dE;  
        rpowern = cat(2,rpowern{:}); 'JAe =K H  
        rpowern = [ones(length_r,1) rpowern]; j)}TZx4~  
    else Y }8HJTMB  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); :oJ!9\5  
        rpowern = cat(2,rpowern{:}); bW zUWLa  
    end `[tYe<  
    [LSs|f  
    % Compute the values of the polynomials: ^!SwY_>  
    % -------------------------------------- Qe=eer~jI  
    y = zeros(length_r,length(n)); UDb  
    for j = 1:length(n) Ev&aD  
        s = 0:(n(j)-m_abs(j))/2; qwo{34  
        pows = n(j):-2:m_abs(j); 'he&h4fm  
        for k = length(s):-1:1 83Fmu/(  
            p = (1-2*mod(s(k),2))* ... P2 +^7x?  
                       prod(2:(n(j)-s(k)))/              ... /-g%IeF  
                       prod(2:s(k))/                     ... "=0JYh)%_  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... gn[h:+H&  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); wA6<Buj D  
            idx = (pows(k)==rpowers); jDW$}^ 6  
            y(:,j) = y(:,j) + p*rpowern(:,idx); b>| d Q  
        end _Tf0L<A'R  
         |l,0bkY@&  
        if isnorm F/D/1w^ iR  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); iRL|u~bj  
        end r D|Bj(X8  
    end \X;)Kt"  
    % END: Compute the Zernike Polynomials Ce PI{`&,  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% d C6t+  
    M532>+A]Za  
    % Compute the Zernike functions: <2PO3w?Z  
    % ------------------------------ Yk5Cyq  
    idx_pos = m>0; T2k# "zD  
    idx_neg = m<0; 6CzN[R}  
    QkY;O<Y_  
    z = y; wdEQB-dA  
    if any(idx_pos) xx,|n  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 1$uO%  
    end 7XiR)jYo*  
    if any(idx_neg) wU5= '  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); u]t#Vf-$u  
    end YGkk"gFIA  
    ,in"8aT}~  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) M\bea  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. =/qj vY  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated N`!=z++G  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive X:gE mcXc  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, qeoj  
    %   and THETA is a vector of angles.  R and THETA must have the same Z$ Mc{  
    %   length.  The output Z is a matrix with one column for every P-value, $4]"g}_  
    %   and one row for every (R,THETA) pair. m*H6\on:  
    % ;NrU|g/ksX  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike n ,CMGe^:  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) y ;T=u(}  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) k[;(@e@c  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 jxA*Gg3cT5  
    %   for all p. gX *i"Y#  
    % >tVD[wVF0  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 N+0`Jm  
    %   Zernike functions (order N<=7).  In some disciplines it is [}=/?(5  
    %   traditional to label the first 36 functions using a single mode ;PG,0R`Z;  
    %   number P instead of separate numbers for the order N and azimuthal Km,:7#aV  
    %   frequency M. /km'#f)/  
    % ] iVoF N}^  
    %   Example: @P}!mdH1  
    % 8i?h{G IMV  
    %       % Display the first 16 Zernike functions FVS@z5A8<=  
    %       x = -1:0.01:1; "r.eN_d  
    %       [X,Y] = meshgrid(x,x); =[V  
    %       [theta,r] = cart2pol(X,Y); 9mfP9  
    %       idx = r<=1; <bxp/#6D  
    %       p = 0:15; 334tg'2]  
    %       z = nan(size(X)); 9x9~u8j  
    %       y = zernfun2(p,r(idx),theta(idx)); !Typ_Cs  
    %       figure('Units','normalized') ?*)wQZt;  
    %       for k = 1:length(p) i2+vUl|;Z  
    %           z(idx) = y(:,k); 4+_r0  
    %           subplot(4,4,k) Zp*0%x!e  
    %           pcolor(x,x,z), shading interp [}!obbM  
    %           set(gca,'XTick',[],'YTick',[]) Sej\Gt  
    %           axis square )nJh) {4\  
    %           title(['Z_{' num2str(p(k)) '}']) .f]2%utHB  
    %       end ?.b.mkJ  
    % Af_yb`W?  
    %   See also ZERNPOL, ZERNFUN. p(]o#$ 6[  
    ;NeN2|I]  
    %   Paul Fricker 11/13/2006 X7gtR|[  
    gw);b)&mx  
    b(.,Ex]  
    % Check and prepare the inputs: ~g[<A?0=y  
    % ----------------------------- b".e6zev  
    if min(size(p))~=1 X[ up$<  
        error('zernfun2:Pvector','Input P must be vector.') `jyBF  
    end rq>Om MQ67  
    *ioVLt,:R  
    if any(p)>35 -v7O*xm"  
        error('zernfun2:P36', ... }c~o3t(7`b  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... v&i,}p^M5  
               '(P = 0 to 35).']) -YHyJs-bU  
    end 5Myp#!|x:  
    51lN,VVD  
    % Get the order and frequency corresonding to the function number: )w3HC($g  
    % ---------------------------------------------------------------- %;{R o)03  
    p = p(:); 5U+a{oA  
    n = ceil((-3+sqrt(9+8*p))/2); t&99ZdE  
    m = 2*p - n.*(n+2); !Cv:,q  
    96$qH{]Ap  
    % Pass the inputs to the function ZERNFUN: p&~= rp`E  
    % ---------------------------------------- YKT=0   
    switch nargin @on\@~Ug  
        case 3 Ei[>%Ah  
            z = zernfun(n,m,r,theta); f~NGIlgR  
        case 4 nm597WeZp  
            z = zernfun(n,m,r,theta,nflag); pl.K*9+  
        otherwise wkwsBi  
            error('zernfun2:nargin','Incorrect number of inputs.') j[Xc i<m  
    end =(Ll}V,  
    Hkck=@>8H*  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) 6 -\ghPo  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. }L1 -2  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of  #nS  
    %   order N and frequency M, evaluated at R.  N is a vector of "}jY;d#n  
    %   positive integers (including 0), and M is a vector with the hD5G\TR.  
    %   same number of elements as N.  Each element k of M must be a i!jR>+  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) Bco_\cpt]z  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is ED+tVXyw  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix 2 Xt$KF,?  
    %   with one column for every (N,M) pair, and one row for every '[nH] N  
    %   element in R. JWuF ?<+k  
    % UmRI! WQl  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- )j[rm   
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is V!Q1o!J  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to rfdT0xfcU  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 </OZ,3J=  
    %   for all [n,m]. C/w!Y)nB=  
    % [aK7v{Wu  
    %   The radial Zernike polynomials are the radial portion of the 8 )w75+&  
    %   Zernike functions, which are an orthogonal basis on the unit 7Q(5Nlfcz  
    %   circle.  The series representation of the radial Zernike (KF=v31_m  
    %   polynomials is oq<n5  
    % 2sOV3~bB  
    %          (n-m)/2 :i4>&4j  
    %            __ HJn  
    %    m      \       s                                          n-2s 3 oG5E"G  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r O#e'.n!rI  
    %    n      s=0 <opBOZ d  
    % g`}+K U  
    %   The following table shows the first 12 polynomials. 5+gSpg]i  
    % JY|f zL  
    %       n    m    Zernike polynomial    Normalization _Co*"hl>2  
    %       --------------------------------------------- V*m@Rs!)2  
    %       0    0    1                        sqrt(2) nzdJ*C  
    %       1    1    r                           2 ?y\gjC6CNG  
    %       2    0    2*r^2 - 1                sqrt(6) nbpGxUF`]  
    %       2    2    r^2                      sqrt(6) k8}*b&+{vz  
    %       3    1    3*r^3 - 2*r              sqrt(8) xt%-<%s%f  
    %       3    3    r^3                      sqrt(8) Kug_0+gI  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) "Yo.]P U  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) f ,?P1D\  
    %       4    4    r^4                      sqrt(10) u49v,,WGw  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) /idQfff  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) [_&\wHX  
    %       5    5    r^5                      sqrt(12) Q)7iu  
    %       --------------------------------------------- b-1cA1#_cP  
    % d{UyiZm\  
    %   Example: `@acQs;0  
    % F0O/SI(cA  
    %       % Display three example Zernike radial polynomials @c<*l+Qc  
    %       r = 0:0.01:1; ?3Ytn+Py  
    %       n = [3 2 5]; ZE())W"  
    %       m = [1 2 1]; OIuEC7XM^C  
    %       z = zernpol(n,m,r); p/4\O  
    %       figure Sc!{ o!9\  
    %       plot(r,z) A{5^A)$  
    %       grid on z(AhO  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') j0p'_|)(  
    % Q)\~=/L b  
    %   See also ZERNFUN, ZERNFUN2. XNwZSW  
    gg>O:np8  
    % A note on the algorithm. >i>%@  
    % ------------------------ f_*Bd.@  
    % The radial Zernike polynomials are computed using the series `wJR^O!e  
    % representation shown in the Help section above. For many special p nS{W \Q  
    % functions, direct evaluation using the series representation can K[%)_KW  
    % produce poor numerical results (floating point errors), because TNA?fm  
    % the summation often involves computing small differences between &*wN@e(c  
    % large successive terms in the series. (In such cases, the functions v'"0Ya  
    % are often evaluated using alternative methods such as recurrence %<|w:z$vp  
    % relations: see the Legendre functions, for example). For the Zernike wt;7+  
    % polynomials, however, this problem does not arise, because the 'n7 )()"2  
    % polynomials are evaluated over the finite domain r = (0,1), and l .8@F  
    % because the coefficients for a given polynomial are generally all 3x=f}SO&  
    % of similar magnitude. KaJCfu yp  
    % JmJ8s hq  
    % ZERNPOL has been written using a vectorized implementation: multiple Oy :;v7  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] k^ CFu  
    % values can be passed as inputs) for a vector of points R.  To achieve 6!|-,t><  
    % this vectorization most efficiently, the algorithm in ZERNPOL b<|l* \  
    % involves pre-determining all the powers p of R that are required to SjT8 eH #  
    % compute the outputs, and then compiling the {R^p} into a single jl;%?bx  
    % matrix.  This avoids any redundant computation of the R^p, and Sga/i?!  
    % minimizes the sizes of certain intermediate variables. tpJe1J<  
    % !TJCQ[Aa }  
    %   Paul Fricker 11/13/2006 > .L\>  
    PVGvjc  
    sx;7  
    % Check and prepare the inputs: UN7>c0B  
    % ----------------------------- vJ__jO"Sq  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) R<}n?f\#JZ  
        error('zernpol:NMvectors','N and M must be vectors.') ;(cq aB  
    end $ e<&7  
    (Kl96G<Wej  
    if length(n)~=length(m) |K(j}^1k  
        error('zernpol:NMlength','N and M must be the same length.') LTGKs^i4  
    end 'lPt.*Y<u  
    86c@Kk7z  
    n = n(:); ,qF;#nB-  
    m = m(:); s2-`}LL  
    length_n = length(n); xEt".K  
    `uz15])1<  
    if any(mod(n-m,2)) 3g!tk9InG  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') 39jnoT  
    end "*E#4e[  
    Y`5(F>/RQG  
    if any(m<0) x>5"7MR`  
        error('zernpol:Mpositive','All M must be positive.')  jpc bW  
    end w)A@  
    C?v_ig  
    if any(m>n) 7B@[`>5?%L  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') v7?sXW  
    end ZJCD)?]=3  
    p<5ED\;N;  
    if any( r>1 | r<0 ) M=Y}w?  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') 0^l|W|.Z  
    end fA HK<G4  
    A=LyN$ %  
    if ~any(size(r)==1) F!FXZht$P  
        error('zernpol:Rvector','R must be a vector.') Z x9oj  
    end AS;EO[Vn  
    DA)mkp  
    r = r(:); #/u%sX`#y  
    length_r = length(r); N*~G ]  
    Z^AOV:|m  
    if nargin==4 ZeVb< g  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); MdzG2uZT  
        if ~isnorm A#:5b5R  
            error('zernpol:normalization','Unrecognized normalization flag.') .G"UM>.}d  
        end 4CR.=  
    else ]JQ';%dne  
        isnorm = false; m_{?py@tZ  
    end Qqt<  
    iOCx7j{BS  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 'Xl[ y  
    % Compute the Zernike Polynomials FBn`sS8hH  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  nwH'E  
    k)VoDxMKK  
    % Determine the required powers of r: e0i&?m  
    % ----------------------------------- 4a'GWzUtS  
    rpowers = []; ^a=,,6T  
    for j = 1:length(n) +9S_H(  
        rpowers = [rpowers m(j):2:n(j)]; O gQE1{C  
    end bERYC|  
    rpowers = unique(rpowers); ?k$3( -  
    GEr]zMYG[A  
    % Pre-compute the values of r raised to the required powers, Jvysvi{8  
    % and compile them in a matrix: %_*q'6K  
    % ----------------------------- m"MTw@}SJ;  
    if rpowers(1)==0 Im9^mVe  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); _1D'9!+   
        rpowern = cat(2,rpowern{:}); ;Drt4fOxX  
        rpowern = [ones(length_r,1) rpowern]; _x<CTFTL  
    else nl9G1Sm(E  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); (A.%q1h  
        rpowern = cat(2,rpowern{:}); }@-4*5P3  
    end q$[x*!~  
    fD8A+aA  
    % Compute the values of the polynomials: FKU$HQw*  
    % -------------------------------------- 0QE2e'}}-  
    z = zeros(length_r,length_n); s`2Hf&%aZJ  
    for j = 1:length_n S|U/m m  
        s = 0:(n(j)-m(j))/2; ;x.xj/7  
        pows = n(j):-2:m(j); HtWuZq; w  
        for k = length(s):-1:1 (h NSzG\  
            p = (1-2*mod(s(k),2))* ... <a@'Pcsk  
                       prod(2:(n(j)-s(k)))/          ... vM5u]u!  
                       prod(2:s(k))/                 ... V,=V   
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... AplXl=  
                       prod(2:((n(j)+m(j))/2-s(k))); T\g%.  
            idx = (pows(k)==rpowers); 6PETIs  
            z(:,j) = z(:,j) + p*rpowern(:,idx); _KSYt32N  
        end S<Zb>9pl  
         jPG&Ypm1   
        if isnorm fL[(;KcAa  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); vas   
        end 4%#C _pE9  
    end b<UZD yN~  
    PxENLQ3a=  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  NQzpgf|h  
    %KL"f  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 WoGK05w  
    6@kKr  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)