切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11719阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 jJ a V  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! 8/3u/  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 Dl%?OG<  
    function z = zernfun(n,m,r,theta,nflag) %[w Tz$S"  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. Xo Y7/&&  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N R<_?W#$j  
    %   and angular frequency M, evaluated at positions (R,THETA) on the XaW4C-D&  
    %   unit circle.  N is a vector of positive integers (including 0), and .Gh%p`<  
    %   M is a vector with the same number of elements as N.  Each element &5u BNpH  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) dK.R[ aQ  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, !.EcP=S  
    %   and THETA is a vector of angles.  R and THETA must have the same {I{3(M#"  
    %   length.  The output Z is a matrix with one column for every (N,M) '[nmFCG%m*  
    %   pair, and one row for every (R,THETA) pair. XLm@etf  
    % J A`H@qE  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike >AG^fUArH  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), (/K5!qh  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral @EHIp{0.  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, , /&Z3e  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ?; [ T  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ]>D)#  
    % vZ@g@zB4o0  
    %   The Zernike functions are an orthogonal basis on the unit circle. *69c-` o  
    %   They are used in disciplines such as astronomy, optics, and uEx9-,!  
    %   optometry to describe functions on a circular domain. xc;DdK=1X  
    % zDDK  
    %   The following table lists the first 15 Zernike functions. G2]^F Y  
    % sqpGrW.  
    %       n    m    Zernike function           Normalization V^n0GJNo  
    %       --------------------------------------------------  (#o t^  
    %       0    0    1                                 1 0|XKd24BN  
    %       1    1    r * cos(theta)                    2 LkBZlh_  
    %       1   -1    r * sin(theta)                    2 tPU-1by$  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ^s{hs(8%R  
    %       2    0    (2*r^2 - 1)                    sqrt(3) Ox qguT,  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) vXdZmYrC  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) S`iR9{+&  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) ES}. xZ#~  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) A W HU'  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) )KY:m |Z  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) -$JO8'TP  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ,Ff n)+  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) sDC*J \X  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) VFj(M j`}G  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) !][F  
    %       -------------------------------------------------- {)@D`{$  
    % gnLn7?  
    %   Example 1: Jdj?I'XtY  
    % dz%EM8  
    %       % Display the Zernike function Z(n=5,m=1) 8IGt4UF&?  
    %       x = -1:0.01:1; XErUS80  
    %       [X,Y] = meshgrid(x,x); ;YyXT"6/p  
    %       [theta,r] = cart2pol(X,Y); -M4p\6)Ge  
    %       idx = r<=1; + E5=$`  
    %       z = nan(size(X)); =X1?_~}  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); xA h xD|4_  
    %       figure +e P.s_t  
    %       pcolor(x,x,z), shading interp G[Tl%w  
    %       axis square, colorbar Qi9-z'  
    %       title('Zernike function Z_5^1(r,\theta)') DlTR|(AL  
    % rzeLx Wt  
    %   Example 2: A\$ >>Z  
    % 4(cJ^]wb^  
    %       % Display the first 10 Zernike functions S8vV!xO  
    %       x = -1:0.01:1; Vz%OV}\  
    %       [X,Y] = meshgrid(x,x); >t  <pFh  
    %       [theta,r] = cart2pol(X,Y); ~/-eyxLTm  
    %       idx = r<=1; {0v*xL_O^  
    %       z = nan(size(X)); 9V 0}d2d  
    %       n = [0  1  1  2  2  2  3  3  3  3]; U BZ9A  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3];  L}%dCe  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; M\D]ml~  
    %       y = zernfun(n,m,r(idx),theta(idx)); |< qs  
    %       figure('Units','normalized')  jz'<  
    %       for k = 1:10 u\1>gDI)|  
    %           z(idx) = y(:,k); 60}! LmL  
    %           subplot(4,7,Nplot(k)) Y`GOER  
    %           pcolor(x,x,z), shading interp ^,8R,S\} $  
    %           set(gca,'XTick',[],'YTick',[]) ,EpH4*e  
    %           axis square @;Opx."  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Y[ zZw~yx  
    %       end {i [y9  
    % \7v)iG|#G&  
    %   See also ZERNPOL, ZERNFUN2. q]% T:A=  
    #8h ;Bj  
    %   Paul Fricker 11/13/2006 S* R,FKg  
    NHQF^2\\  
    Di5(9]o2  
    % Check and prepare the inputs: OJO!FH)  
    % ----------------------------- HU;#XU1  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) !>$4]FkV  
        error('zernfun:NMvectors','N and M must be vectors.') 5|8^9Oe5  
    end ,h]o>  
    1Sz A3c  
    if length(n)~=length(m) 0CExY9@Wq  
        error('zernfun:NMlength','N and M must be the same length.') Shr,#wwM`B  
    end zaimGMJ ,  
    8wZf ]_  
    n = n(:); NjuiD].  
    m = m(:); YT#3n  
    if any(mod(n-m,2)) 3gZ8.8q3  
        error('zernfun:NMmultiplesof2', ... M8&}j  
              'All N and M must differ by multiples of 2 (including 0).') ,e722wz  
    end IE2"rQT  
    DKL@wr}8  
    if any(m>n) YB(Gk;]  
        error('zernfun:MlessthanN', ... J^#:qk  
              'Each M must be less than or equal to its corresponding N.') t= #&fSR  
    end Z.PBu|Kx  
    K2)!h.W  
    if any( r>1 | r<0 ) hqvE!Of  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') cre;P5^E  
    end d3Mva,bw<  
    W_|0y4QOo  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 4u;9J*r4  
        error('zernfun:RTHvector','R and THETA must be vectors.') J:*-gwv9*m  
    end `fNpY#QsN  
    13k !'P  
    r = r(:); g|X;ahTT  
    theta = theta(:); 1{x.xi"A/  
    length_r = length(r); Sl2iz?   
    if length_r~=length(theta) dUrElXbXd  
        error('zernfun:RTHlength', ... uN*KHE+h  
              'The number of R- and THETA-values must be equal.') LpbsYl  
    end df}r% i  
    _ gj&$zP  
    % Check normalization: G3P &{.v  
    % -------------------- *|.0Myjo  
    if nargin==5 && ischar(nflag) >SF Uy\3  
        isnorm = strcmpi(nflag,'norm'); I=)hWC/  
        if ~isnorm (IqZ@->nw  
            error('zernfun:normalization','Unrecognized normalization flag.') B(g_Gm<  
        end u7%D6W~m0  
    else |077Sf|  
        isnorm = false; 4S"\~><  
    end CvSIV7zYo  
    E51dV:l  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% .T<= z  
    % Compute the Zernike Polynomials "Mw[P [w*  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% BF*kb2"GZ6  
    8H,4kY?Z  
    % Determine the required powers of r: ?lGG|9J\  
    % ----------------------------------- 1J=.N|(@Q  
    m_abs = abs(m); aimarU  
    rpowers = []; LsEXM-  
    for j = 1:length(n) }0#U;_;D  
        rpowers = [rpowers m_abs(j):2:n(j)]; bK"SKV  
    end :o-,SrORM  
    rpowers = unique(rpowers); v,-{Z1N%m  
    EC2+`HJ"  
    % Pre-compute the values of r raised to the required powers, n9w9JXp;!  
    % and compile them in a matrix: G@FI0\t  
    % ----------------------------- 6oaazB^L  
    if rpowers(1)==0 omO S=d!o  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ZRxZume<f  
        rpowern = cat(2,rpowern{:}); ptatzp]c#  
        rpowern = [ones(length_r,1) rpowern]; b5$Jf jI  
    else T{wpJ"F5<]  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); j Uv!9Y}F  
        rpowern = cat(2,rpowern{:}); >^q7c8]~g  
    end f0<hE2  
    )[H{yQ  
    % Compute the values of the polynomials: MObt,[^W  
    % -------------------------------------- rk+#GO{  
    y = zeros(length_r,length(n)); WV3|?,y]qm  
    for j = 1:length(n) \P} p5k[  
        s = 0:(n(j)-m_abs(j))/2; /kL $4CA  
        pows = n(j):-2:m_abs(j); qPB8O1fyU  
        for k = length(s):-1:1 E J$36  
            p = (1-2*mod(s(k),2))* ... q{s(.Uq$&  
                       prod(2:(n(j)-s(k)))/              ... C{sLz9  
                       prod(2:s(k))/                     ... )vmA^nU>  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... j?y LDLj  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); ~!s-o|N_\  
            idx = (pows(k)==rpowers); ur :i)~wXn  
            y(:,j) = y(:,j) + p*rpowern(:,idx); t*@2OW`!  
        end ~$' \L  
         tQZs.1=z  
        if isnorm rG#Z=*b%  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); D3|oOOoG  
        end A(?\>X 9g  
    end JdIlWJY  
    % END: Compute the Zernike Polynomials 4h@Z/G!T3  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% .s#;s'>g  
    jV.g}F+1m  
    % Compute the Zernike functions: k(zsm"<q  
    % ------------------------------ `D9]*c !mO  
    idx_pos = m>0; `cPywn@uGZ  
    idx_neg = m<0; S3L~~X/=  
    [: xiZ  
    z = y; 5H=ko8fZ=  
    if any(idx_pos) KD/V aN  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ??n*2s@t  
    end DI!V^M[~u  
    if any(idx_neg) e[sK@jX6  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); N`)$[&NG]  
    end y5Tlpi`g  
    +?p.?I  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) k}KC/d9.z  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. qlA7tU2p&  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated 0afei4i~N  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive  ]xguBh]  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, rP!#RzL  
    %   and THETA is a vector of angles.  R and THETA must have the same s7oT G!  
    %   length.  The output Z is a matrix with one column for every P-value, b T 2a40ul  
    %   and one row for every (R,THETA) pair. upeU52@\  
    % 6U^\{<h_c  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike k</%YKk  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) !QDQ_  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) Y?ez9o:/#  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 |+`c3*PV  
    %   for all p. 4%1D}9hO6  
    % 6sa"O89   
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 N)&4Hy  
    %   Zernike functions (order N<=7).  In some disciplines it is 0\2\*I}?  
    %   traditional to label the first 36 functions using a single mode : Sq?a0!S  
    %   number P instead of separate numbers for the order N and azimuthal gKOOHUCb  
    %   frequency M. U%h);!<  
    % ?|:BuHkT  
    %   Example: lo'W1p  
    % ' oF xR003  
    %       % Display the first 16 Zernike functions  BUwONF  
    %       x = -1:0.01:1;  iD= p\  
    %       [X,Y] = meshgrid(x,x); QXF aAb=(7  
    %       [theta,r] = cart2pol(X,Y); v\`9;QV5  
    %       idx = r<=1; ;Jd3u -  
    %       p = 0:15; )P7)0c  
    %       z = nan(size(X)); erVO|<%=R  
    %       y = zernfun2(p,r(idx),theta(idx)); 9<K j6t_  
    %       figure('Units','normalized') N?X^O#[  
    %       for k = 1:length(p) 5MzFUv0)  
    %           z(idx) = y(:,k); w&xDOyW]  
    %           subplot(4,4,k) jYiv'6z  
    %           pcolor(x,x,z), shading interp IF]lHB  
    %           set(gca,'XTick',[],'YTick',[]) yjJ5P`j]  
    %           axis square g#]wLm#  
    %           title(['Z_{' num2str(p(k)) '}']) rpw.]vnn  
    %       end @-OnHE  
    % QMEcQV>  
    %   See also ZERNPOL, ZERNFUN. +nQw?'9Z  
    BcD&sQ2F  
    %   Paul Fricker 11/13/2006 ~Y.tz`2D  
     r[?1  
    b=3H  
    % Check and prepare the inputs: C{2xHd/*  
    % ----------------------------- M4xi1M#%  
    if min(size(p))~=1 97)/"i e  
        error('zernfun2:Pvector','Input P must be vector.') Zs<KZGn-B  
    end Py{ <bd  
    *6(kbes  
    if any(p)>35 <9> vO,n  
        error('zernfun2:P36', ... V] Et wA  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... gl).cIpw  
               '(P = 0 to 35).']) T)\"Xj  
    end $`Ix:gi  
    HK+/:'P u  
    % Get the order and frequency corresonding to the function number: +{]xtQB=,{  
    % ---------------------------------------------------------------- xAggn  
    p = p(:); 7)%+=@  
    n = ceil((-3+sqrt(9+8*p))/2); ^*\XgX  
    m = 2*p - n.*(n+2); -|rLs$V1r  
    j1 =`|  
    % Pass the inputs to the function ZERNFUN: ITy/eZ"&:  
    % ---------------------------------------- <_(/X,kBK  
    switch nargin r < cVp^  
        case 3 tTU=+*Io  
            z = zernfun(n,m,r,theta); DS|KkTy3  
        case 4 aTBR|U S  
            z = zernfun(n,m,r,theta,nflag); V(Yxh+KU  
        otherwise ^}f -!nf[  
            error('zernfun2:nargin','Incorrect number of inputs.') 9_sA&2P{uV  
    end >&!RWH9*q  
    #Km:}=  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) PQ|69*2G  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. )etmE  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of 5sPywk{  
    %   order N and frequency M, evaluated at R.  N is a vector of &uUo3qXQ5l  
    %   positive integers (including 0), and M is a vector with the 8P: Rg%0)  
    %   same number of elements as N.  Each element k of M must be a =uDgzdDyE  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k)  fI\9\x  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is RllY-JBO  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix U}SXJH&&E  
    %   with one column for every (N,M) pair, and one row for every ;6 +}z~  
    %   element in R. 5X.e*;  
    % ob_I]~^I?|  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- ceGa([#!\_  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is d*pF>j  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to fFjH "2WD  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 d3^OEwe  
    %   for all [n,m]. ;@h0qRXW:h  
    % -G,^1AL>  
    %   The radial Zernike polynomials are the radial portion of the aQ j*KMc  
    %   Zernike functions, which are an orthogonal basis on the unit V 0nn4dVO  
    %   circle.  The series representation of the radial Zernike 7kKy\W  
    %   polynomials is mW%?>Z1=>d  
    %  htY=w}>  
    %          (n-m)/2 G#Ou[*O'  
    %            __ ":3 VJ(eY  
    %    m      \       s                                          n-2s e4OeoQ@ >  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r qW 1V85FG  
    %    n      s=0 W(fr<<hL  
    % J/);"bg_O  
    %   The following table shows the first 12 polynomials. bN^O }[  
    % EliTFxp  
    %       n    m    Zernike polynomial    Normalization x( mE<UQN  
    %       --------------------------------------------- M\b")Tu{0  
    %       0    0    1                        sqrt(2) Ch )dLPz@  
    %       1    1    r                           2 &4dz}zz90  
    %       2    0    2*r^2 - 1                sqrt(6) e$c?}3E!z  
    %       2    2    r^2                      sqrt(6) TST4Vy3  
    %       3    1    3*r^3 - 2*r              sqrt(8) ~8`:7m?  
    %       3    3    r^3                      sqrt(8) 9]$8MY   
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) -VDo[Zy  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) JFL>nH0mk.  
    %       4    4    r^4                      sqrt(10) }G$]LWgQx  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) :"0J=>PH:  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) ^5=UK7e5KY  
    %       5    5    r^5                      sqrt(12) B@Nt`ky0*  
    %       --------------------------------------------- zT~B 6  
    % o  A* G  
    %   Example: Wi n8LOC  
    % CGw--`#\  
    %       % Display three example Zernike radial polynomials 7:=5"ScV  
    %       r = 0:0.01:1; URcR  
    %       n = [3 2 5]; }2)DPP:ic  
    %       m = [1 2 1]; !~<siy  
    %       z = zernpol(n,m,r); a=GM[{og  
    %       figure ,G^[o,hS  
    %       plot(r,z) xa( m5P  
    %       grid on 64Gi8|P  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') V's:>;  
    % yj@tV2  
    %   See also ZERNFUN, ZERNFUN2. T)7TyE|"2g  
    #iSFf  
    % A note on the algorithm. jn9 ShF  
    % ------------------------ A CNfS9M_w  
    % The radial Zernike polynomials are computed using the series z/&;{J  
    % representation shown in the Help section above. For many special DJh&#b  
    % functions, direct evaluation using the series representation can FqA3  {  
    % produce poor numerical results (floating point errors), because [_y@M ]  
    % the summation often involves computing small differences between 5CJZw3q  
    % large successive terms in the series. (In such cases, the functions E(<LvMiCa  
    % are often evaluated using alternative methods such as recurrence c(- Mc6  
    % relations: see the Legendre functions, for example). For the Zernike MWuXI1  
    % polynomials, however, this problem does not arise, because the _8K%`6!"Z  
    % polynomials are evaluated over the finite domain r = (0,1), and bm&87  
    % because the coefficients for a given polynomial are generally all cTZ)"^z!  
    % of similar magnitude. PX".Km p.  
    % z)F#u:t  
    % ZERNPOL has been written using a vectorized implementation: multiple KGZ?b2N?Va  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] d&:H&o)T!  
    % values can be passed as inputs) for a vector of points R.  To achieve FYPz 4K  
    % this vectorization most efficiently, the algorithm in ZERNPOL 5IMSNGS  
    % involves pre-determining all the powers p of R that are required to aj|5 #  
    % compute the outputs, and then compiling the {R^p} into a single U2*6}c<  
    % matrix.  This avoids any redundant computation of the R^p, and +I|8Q|^SD  
    % minimizes the sizes of certain intermediate variables. Ri:p8  
    % PB~_I=  
    %   Paul Fricker 11/13/2006 TW`mxj_J2  
    j.-VJo)   
    6X+}>qy  
    % Check and prepare the inputs: L9IGK<  
    % ----------------------------- 1q~LA[6  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 1JTbCS  
        error('zernpol:NMvectors','N and M must be vectors.') 4 9w=kzo  
    end {ctwo X[;  
    ?)A2Kw>2  
    if length(n)~=length(m) Pw}_[[>$  
        error('zernpol:NMlength','N and M must be the same length.') #!!AbuhzK{  
    end ui.'^F<  
    5S/>l_od$2  
    n = n(:); i|2$8G3  
    m = m(:); FuP}Kec  
    length_n = length(n); y~#\#w {  
    |paP<$  
    if any(mod(n-m,2)) xcSR{IZ  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') <GWR7rUH  
    end J6|JWp  
    I{n;4?  
    if any(m<0) cIw eBDl  
        error('zernpol:Mpositive','All M must be positive.') #MTj)P,  
    end o<4D=.g7D  
    \ZnN D1A  
    if any(m>n) G j6. Iv  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') dXP6"V@iI  
    end <Ry $7t,  
    n85r^W  
    if any( r>1 | r<0 ) g5R,% 6  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') z}5<$K_U  
    end yKDZ+3xK]  
    \y*j4 0  
    if ~any(size(r)==1) ;/Q6 i  
        error('zernpol:Rvector','R must be a vector.') M'u=H  
    end _@prmSc  
    _om[VKJd  
    r = r(:); qyv"Wb6+  
    length_r = length(r); u(9X  
    oeN zHp_  
    if nargin==4 XV2=8#R  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); EhXiv#CZ  
        if ~isnorm "|4jP za  
            error('zernpol:normalization','Unrecognized normalization flag.') {,f[r*{Y  
        end rbh[j@s@  
    else : ej_D}  
        isnorm = false; t-lv|%+8  
    end b?k4InXh  
    S8*>kM'  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% jaqV[*440U  
    % Compute the Zernike Polynomials v |ifI  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% =jUnM> 23  
    n#>5?W  
    % Determine the required powers of r: G7Ny"{Z  
    % ----------------------------------- K`gc 4:A  
    rpowers = []; p"KV*D9b  
    for j = 1:length(n) 8*)4"rS  
        rpowers = [rpowers m(j):2:n(j)]; !w=,p.?V=  
    end ]^ !}*  
    rpowers = unique(rpowers); i puo}  
    k#jm7 +  
    % Pre-compute the values of r raised to the required powers, ?360SQ<  
    % and compile them in a matrix: JX&~y.F  
    % ----------------------------- ~>w:;M=sV8  
    if rpowers(1)==0 ++k J\N{  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); =AzOnXW:S  
        rpowern = cat(2,rpowern{:}); ~y@& }  
        rpowern = [ones(length_r,1) rpowern]; !OQuEJR  
    else iPkT*Cl8  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ~ a >S#S  
        rpowern = cat(2,rpowern{:}); \d5}5J]a&n  
    end 5*XH6g F  
    }#|2z}!  
    % Compute the values of the polynomials: h/9Sg*k  
    % -------------------------------------- AgCs;k&IG  
    z = zeros(length_r,length_n); e#m1X6$.e  
    for j = 1:length_n VwC4QK,d;  
        s = 0:(n(j)-m(j))/2;  0/*X=5  
        pows = n(j):-2:m(j); 85 Dm8~  
        for k = length(s):-1:1 qu!<lW~c  
            p = (1-2*mod(s(k),2))* ... :P"9;$FY  
                       prod(2:(n(j)-s(k)))/          ... 6,zDBax  
                       prod(2:s(k))/                 ... X_!$Pk7ma  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... Hq-v@@0 *  
                       prod(2:((n(j)+m(j))/2-s(k))); }M="oN~w  
            idx = (pows(k)==rpowers); _[0I^o  
            z(:,j) = z(:,j) + p*rpowern(:,idx); CL )%p"[x  
        end Ss+F9J  
         4NI ' (#l  
        if isnorm tB !|p6  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); 0pCDE s  
        end Ul9b.`6  
    end s1v{~xP  
    }R\B.2#M_@  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    857
    光币
    847
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  %OezaNOtm  
    y\r^\ S9%  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 #U\&i`  
    `2 %eDFZ  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)