非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 ODK$G
[-
function z = zernfun(n,m,r,theta,nflag) OKfJ
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. (#* 7LdZ
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N kVs'>H@FY
% and angular frequency M, evaluated at positions (R,THETA) on the >{i/LC^S
% unit circle. N is a vector of positive integers (including 0), and b:.aZ7+4
% M is a vector with the same number of elements as N. Each element A87JPX#R?
% k of M must be a positive integer, with possible values M(k) = -N(k) n(.y_NEgV!
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, I0 a,mO;m
% and THETA is a vector of angles. R and THETA must have the same bs!N~,6h
% length. The output Z is a matrix with one column for every (N,M) 0es[!
% pair, and one row for every (R,THETA) pair. u2
a
U0k:
% *6~ODiB
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike FjIS:9^)t5
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Uw^`_\si
% with delta(m,0) the Kronecker delta, is chosen so that the integral c6sGjZdR
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1,
#|fa/kb~
% and theta=0 to theta=2*pi) is unity. For the non-normalized |R:gu\gG
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 0!F"s>(H
% |ofegO}W7
% The Zernike functions are an orthogonal basis on the unit circle. v4!zB9d
% They are used in disciplines such as astronomy, optics, and Ed9ynJ~)X
% optometry to describe functions on a circular domain. b:/ ;
% 0Vv6B2<
% The following table lists the first 15 Zernike functions. J&}/Xw)
% kH1hsDe|&y
% n m Zernike function Normalization mD-qJ6AM
% -------------------------------------------------- 6V\YYrUz
% 0 0 1 1 R0y={\*B5k
% 1 1 r * cos(theta) 2 `m?%{ \
% 1 -1 r * sin(theta) 2 IbC(/i#%`
% 2 -2 r^2 * cos(2*theta) sqrt(6) Ed ,`1+
% 2 0 (2*r^2 - 1) sqrt(3) :G9+-z{Y&
% 2 2 r^2 * sin(2*theta) sqrt(6) SCE5|3j
% 3 -3 r^3 * cos(3*theta) sqrt(8) L+Yn}"gIs
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) !s#25}9zX5
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) tWQ_.,ld
% 3 3 r^3 * sin(3*theta) sqrt(8) 8R Wfv}:X
% 4 -4 r^4 * cos(4*theta) sqrt(10) WS8m^~S@\
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) VO3&