切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11790阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 s0*@zn>h  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! aKC,{}f$m  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 Fs&r ^ [/b  
    function z = zernfun(n,m,r,theta,nflag) FaQc@4%o  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. @7K(_Wd  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ' r/xBj[Z  
    %   and angular frequency M, evaluated at positions (R,THETA) on the n50W HlMtt  
    %   unit circle.  N is a vector of positive integers (including 0), and N5.B"l  
    %   M is a vector with the same number of elements as N.  Each element uR6 `@F  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) ~3Y4_b5E  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, {A'_5 X9  
    %   and THETA is a vector of angles.  R and THETA must have the same ?z&5g-/b  
    %   length.  The output Z is a matrix with one column for every (N,M) w|c200Is}e  
    %   pair, and one row for every (R,THETA) pair. S?#6{rx  
    % qKTzigjj  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 8kT`5`}lB  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), b_^y Ke^W  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral UCJx{7  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, oI-,6G}  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 33g$mUB  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. &O#,"u/q`  
    % 9e Fj+  
    %   The Zernike functions are an orthogonal basis on the unit circle. ~z)JO'Z$  
    %   They are used in disciplines such as astronomy, optics, and yxAy1P;dX  
    %   optometry to describe functions on a circular domain. nF$HWp&gt  
    % 0+e  
    %   The following table lists the first 15 Zernike functions. sE&1ZJ]7  
    % H$.K   
    %       n    m    Zernike function           Normalization e~7FK_y#0  
    %       -------------------------------------------------- et?FX K"y  
    %       0    0    1                                 1 3S" /l  
    %       1    1    r * cos(theta)                    2 (e Ssx/  
    %       1   -1    r * sin(theta)                    2 8N \<o7t%  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ,Oe:SZJ>  
    %       2    0    (2*r^2 - 1)                    sqrt(3) inh J|pe"  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) +lxjuEiae  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) tAsap}(  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) Jj?HOtaM  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) AEkjyh\  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) "6 ~5RCZ  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) W4UK?#S+  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 'q?Y5@s  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) S=\cF,Zs  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) <cU%yA710  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) zwz_K!229  
    %       -------------------------------------------------- w!'y,yb%  
    % QiK-|hFj  
    %   Example 1: -E~r?\;X  
    % tQas_K5  
    %       % Display the Zernike function Z(n=5,m=1) @JGFG+J}  
    %       x = -1:0.01:1; 5RAhm0Op~.  
    %       [X,Y] = meshgrid(x,x); -K3d u&j  
    %       [theta,r] = cart2pol(X,Y); YmOj.Q&  
    %       idx = r<=1; fvk(eWB  
    %       z = nan(size(X)); k||dX(gl  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); S`$%C=a.  
    %       figure `mA;1S  
    %       pcolor(x,x,z), shading interp i&?\Pp;5-j  
    %       axis square, colorbar t<ZBp0  
    %       title('Zernike function Z_5^1(r,\theta)') Lq;T\m_de  
    % fp*6Dv_  
    %   Example 2: NGJst_  
    % b3FKDm[  
    %       % Display the first 10 Zernike functions >]8(3&zd  
    %       x = -1:0.01:1; +3J<vM}dy  
    %       [X,Y] = meshgrid(x,x); tDRo)z  
    %       [theta,r] = cart2pol(X,Y); 9!FU,4 X  
    %       idx = r<=1; <bb!BS&w  
    %       z = nan(size(X)); c@Br_ -  
    %       n = [0  1  1  2  2  2  3  3  3  3]; (~o"*1fk>  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; /QWXEL/M=  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; _VVq&t}  
    %       y = zernfun(n,m,r(idx),theta(idx)); qS9<_if2  
    %       figure('Units','normalized') `hdff0  
    %       for k = 1:10 ;S \s&.u  
    %           z(idx) = y(:,k); :P/VBXh  
    %           subplot(4,7,Nplot(k)) v? OUd^  
    %           pcolor(x,x,z), shading interp /Ry% K4$  
    %           set(gca,'XTick',[],'YTick',[]) (qvH=VTwP  
    %           axis square L9N }lH  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) i1XRB C9  
    %       end tH4 q*\U  
    % w^Yo)"6  
    %   See also ZERNPOL, ZERNFUN2. 1ANFhl(l  
    URs]S~tk  
    %   Paul Fricker 11/13/2006 }I-nT!D'y  
    &a=78Z  
    8lzoiA_9  
    % Check and prepare the inputs: 9TQVgkW  
    % ----------------------------- #-@Uq6Y  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) '(rD8 pc  
        error('zernfun:NMvectors','N and M must be vectors.') 1Acs0` 3  
    end rhcax%Cd  
    VnVBA-#r|  
    if length(n)~=length(m) ]XbMqHGS  
        error('zernfun:NMlength','N and M must be the same length.') 3qn_9f]  
    end l)*(UZ"  
    %~x?C4L8  
    n = n(:); }6!/Nb  
    m = m(:); >mX6;6FF  
    if any(mod(n-m,2)) icIn>i<m  
        error('zernfun:NMmultiplesof2', ... ,}&TZkN{-  
              'All N and M must differ by multiples of 2 (including 0).') ?tL'  X  
    end !u@P\8M}  
    pB\:.?.pd  
    if any(m>n) '/NpmNY:L  
        error('zernfun:MlessthanN', ... bj}Lxc],  
              'Each M must be less than or equal to its corresponding N.') X!K>.r_Dg  
    end ""jW'%wR  
    Qv5 fK  
    if any( r>1 | r<0 ) N|$9v{ j_  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') ]t~.?)Ad+2  
    end S'8+jY  
    cI'n[G  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) \Q(a`6U  
        error('zernfun:RTHvector','R and THETA must be vectors.') P O 5Wi  
    end vReX7  
    !5(DU~S*@S  
    r = r(:); hdCd:6   
    theta = theta(:); ]sqLGmUL  
    length_r = length(r); p|.5;)%|  
    if length_r~=length(theta) 4qp|g'uXT  
        error('zernfun:RTHlength', ... /uX*FZ  
              'The number of R- and THETA-values must be equal.') Y4 HN1  
    end j!>P7 8  
    E&zf<Y  
    % Check normalization: CTW\Dt5  
    % -------------------- Qgj# k  
    if nargin==5 && ischar(nflag) Ajm!;LA[jO  
        isnorm = strcmpi(nflag,'norm'); O&BvWik  
        if ~isnorm '0+~]4&}q  
            error('zernfun:normalization','Unrecognized normalization flag.') +4_,, I  
        end m..ajYSQ  
    else sdZ$3oE.  
        isnorm = false; K~vJ/9"|R  
    end DOJydYds  
    zplv.cf#q  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 88v8lt;R  
    % Compute the Zernike Polynomials 9GH5  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% s{Qae=$Q  
    [oV M9 Q  
    % Determine the required powers of r: H5x7)1Ir|  
    % ----------------------------------- __'4Qt   
    m_abs = abs(m); ]"Uzn  
    rpowers = []; qIQ=OY=6  
    for j = 1:length(n) ih".y3  
        rpowers = [rpowers m_abs(j):2:n(j)]; xyL)'C  
    end B4RrUA32  
    rpowers = unique(rpowers); ]}! @'+=  
    G-T^1?  
    % Pre-compute the values of r raised to the required powers, ;7z6B|8  
    % and compile them in a matrix: ]nUrE6  
    % -----------------------------  C7ivA h  
    if rpowers(1)==0 {IJ;)<>&VE  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); %US&`BT!  
        rpowern = cat(2,rpowern{:}); ESRj<p%W  
        rpowern = [ones(length_r,1) rpowern]; aYaEy(m  
    else 9)1Ye  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); NS z }  
        rpowern = cat(2,rpowern{:}); VQHB}Y@^  
    end C*b[J  
    9Vm1q!lE  
    % Compute the values of the polynomials: sWo`dZ\6WB  
    % -------------------------------------- 5q0L<GOrj  
    y = zeros(length_r,length(n)); +_7a/3kh  
    for j = 1:length(n) _J!^iJ  
        s = 0:(n(j)-m_abs(j))/2; <3{MS],<<  
        pows = n(j):-2:m_abs(j); ~gd#cL%  
        for k = length(s):-1:1 Lmte ~oBi  
            p = (1-2*mod(s(k),2))* ... losqc *|  
                       prod(2:(n(j)-s(k)))/              ... I@KM2 KMN  
                       prod(2:s(k))/                     ... _eiqs  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 2/*u$~  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); wli cuY?  
            idx = (pows(k)==rpowers); 6h>#;M  
            y(:,j) = y(:,j) + p*rpowern(:,idx); B[@q.n  
        end SUUNC06V  
         +-@n}xb@  
        if isnorm RhE~Rwbx  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); |X8?B =  
        end 6]?%1HSi  
    end 1 jidBzu<  
    % END: Compute the Zernike Polynomials "sN%S's  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% G{} 2"/   
    jjV'`Vy)  
    % Compute the Zernike functions: 754MQK|g  
    % ------------------------------ D!o[Sm}JO[  
    idx_pos = m>0; \ZLi Y  
    idx_neg = m<0; U*r54AyP  
    " !EnQB=  
    z = y; w[-)c6JyE  
    if any(idx_pos) <t"T'\3  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); LIcc0w3  
    end 5I2,za&e  
    if any(idx_neg) Gw<D'b)!  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); <==uK>pET  
    end TWpw/osW  
    n?@zp<  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) "b hK %N;  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. RTc@`m3 M  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated <_xG)vwh.  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive b e8T<F  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, U*C^g}iA  
    %   and THETA is a vector of angles.  R and THETA must have the same MR1I"gqE}I  
    %   length.  The output Z is a matrix with one column for every P-value, sG u.G  
    %   and one row for every (R,THETA) pair. %P0  
    % 0 %~~IT}U  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike K ";Et  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) *K|~]r(F?  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) 3*h"B$g!  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 <,)R`90_X6  
    %   for all p. n*7^lAa2  
    % /2Wg=&H  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 =>;&M)+q  
    %   Zernike functions (order N<=7).  In some disciplines it is /"Vd( K2Z  
    %   traditional to label the first 36 functions using a single mode <r#FI8P;X  
    %   number P instead of separate numbers for the order N and azimuthal oy8jc];SO  
    %   frequency M. v?VDASR2`  
    % ^K<3_D>1>  
    %   Example: \|0z:R;X  
    % kGV:=h  
    %       % Display the first 16 Zernike functions ?62Im^1/  
    %       x = -1:0.01:1; !.6n=r8 d  
    %       [X,Y] = meshgrid(x,x); QJ XP -  
    %       [theta,r] = cart2pol(X,Y); j,j|'7J%  
    %       idx = r<=1; a.V5fl0?I@  
    %       p = 0:15; l5T[6C  
    %       z = nan(size(X)); -V}oFxk]q  
    %       y = zernfun2(p,r(idx),theta(idx)); ^bv^&V&IB  
    %       figure('Units','normalized') M@xU59$@  
    %       for k = 1:length(p) vIRT$W' O}  
    %           z(idx) = y(:,k); =cEsv&i  
    %           subplot(4,4,k) Fx:38Ae  
    %           pcolor(x,x,z), shading interp ~X3g_<b_8  
    %           set(gca,'XTick',[],'YTick',[]) =Dq&lm,n  
    %           axis square x4* bhiu  
    %           title(['Z_{' num2str(p(k)) '}']) 2Xe1qzvo  
    %       end |]9@JdmV  
    % hW#^H5?  
    %   See also ZERNPOL, ZERNFUN. I0+6p8,  
    to?!qxn  
    %   Paul Fricker 11/13/2006 ^VXhv9\>B  
    @-sWXz*W  
    c& ;@i$X(  
    % Check and prepare the inputs: zr|DC] 3  
    % ----------------------------- Xfk DMh  
    if min(size(p))~=1 ;eYG\uKC{  
        error('zernfun2:Pvector','Input P must be vector.') 4k225~GQ:C  
    end ^sf,mM~D  
    u+j\PWOtm  
    if any(p)>35 Rge>20uTl$  
        error('zernfun2:P36', ... iAz0 A  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... ["D!IqI :  
               '(P = 0 to 35).']) N6._J b  
    end Z[nHo'  
    n[Q(q[ULV  
    % Get the order and frequency corresonding to the function number: q\@Zf}  
    % ---------------------------------------------------------------- G%I .u  
    p = p(:); ;].X;Ky <  
    n = ceil((-3+sqrt(9+8*p))/2); ;z4J)qw  
    m = 2*p - n.*(n+2); 3Q$ 4`p;  
    1D 'r;`z  
    % Pass the inputs to the function ZERNFUN: KA?}o^-F  
    % ---------------------------------------- gML8lu0)  
    switch nargin %>&ex0j]  
        case 3 -FJ3;fP&  
            z = zernfun(n,m,r,theta); 94w)Yln  
        case 4 ^.6yzlY  
            z = zernfun(n,m,r,theta,nflag); ~LS</_N  
        otherwise 'V?FeWp  
            error('zernfun2:nargin','Incorrect number of inputs.') j,.M!q]  
    end +;~N; BT  
    6bPxEILm  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) RxqNgun@  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. m+!.H\  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of 5[4wN( )  
    %   order N and frequency M, evaluated at R.  N is a vector of x[58C+  
    %   positive integers (including 0), and M is a vector with the Ye3o}G9z  
    %   same number of elements as N.  Each element k of M must be a v/ N[)<  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) v^ ^Ibv  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is Es+I]o0K  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix !CU-5bpu  
    %   with one column for every (N,M) pair, and one row for every yn\c;Z  
    %   element in R. &?R/6"J  
    % Q/SO%E`E  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- >+J}mo=*  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is *F1TZ_GS  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to e8<}{N0,n  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 }!_z\'u  
    %   for all [n,m]. _]zX W  
    % @4y?XL(n  
    %   The radial Zernike polynomials are the radial portion of the F- -g?Q^  
    %   Zernike functions, which are an orthogonal basis on the unit v ;\cM/&5  
    %   circle.  The series representation of the radial Zernike "<=4]Z  
    %   polynomials is Ef`'r))  
    % W^8  
    %          (n-m)/2 Da 7(jA+  
    %            __ TnN yth wZ  
    %    m      \       s                                          n-2s KdkL_GSLT  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r w(V%EEk  
    %    n      s=0 4*}&nmW  
    % S'!&,Dxq^  
    %   The following table shows the first 12 polynomials. oT\K P  
    % /O:4u_  
    %       n    m    Zernike polynomial    Normalization { YQS fk  
    %       --------------------------------------------- , @jtD*c)  
    %       0    0    1                        sqrt(2) NWn*_@7;  
    %       1    1    r                           2 :2KHiT5  
    %       2    0    2*r^2 - 1                sqrt(6) `/[5/%  
    %       2    2    r^2                      sqrt(6) dE"_gwtX  
    %       3    1    3*r^3 - 2*r              sqrt(8) !Wr<T!T  
    %       3    3    r^3                      sqrt(8) ]_(hUj._  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) Md~SzrU  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) LVg#E*J  
    %       4    4    r^4                      sqrt(10) _G'ki.[S7  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) QwX81*nx  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) Ypzmc$Xfu  
    %       5    5    r^5                      sqrt(12) oH w!~ c7  
    %       --------------------------------------------- >h8m)Q  
    % hM]Z T5;<  
    %   Example: &j:e<{@  
    % -u@ ^P7  
    %       % Display three example Zernike radial polynomials <\epj=OclV  
    %       r = 0:0.01:1; F2 B(PGa7  
    %       n = [3 2 5]; |aLK_]!  
    %       m = [1 2 1]; ei4LE XQ16  
    %       z = zernpol(n,m,r); [@9S-$Xa  
    %       figure `:=1*7)?  
    %       plot(r,z) 5)< Y3nU~  
    %       grid on FXo.f<U  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') 4tm%F\Izy  
    % T^;b98*  
    %   See also ZERNFUN, ZERNFUN2. ^5s7mls  
    !U% |pa  
    % A note on the algorithm. B(M-;F  
    % ------------------------ b|-)p+ba  
    % The radial Zernike polynomials are computed using the series `T*Y1@FV  
    % representation shown in the Help section above. For many special ?'~u)O(n  
    % functions, direct evaluation using the series representation can @ovaOX  
    % produce poor numerical results (floating point errors), because 0s-K oz  
    % the summation often involves computing small differences between t|'%0 W  
    % large successive terms in the series. (In such cases, the functions >0@w"aKn  
    % are often evaluated using alternative methods such as recurrence FQ 0&{ulb  
    % relations: see the Legendre functions, for example). For the Zernike F?'  
    % polynomials, however, this problem does not arise, because the {xg=Ym)  
    % polynomials are evaluated over the finite domain r = (0,1), and X`_tm3HC  
    % because the coefficients for a given polynomial are generally all /4(HVua  
    % of similar magnitude. .I~:j`K6  
    % ynw(wSH=  
    % ZERNPOL has been written using a vectorized implementation: multiple <B>qE a_I  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] ?u#s?$Y?  
    % values can be passed as inputs) for a vector of points R.  To achieve YT?Lt!cl=  
    % this vectorization most efficiently, the algorithm in ZERNPOL Jd/d\P  
    % involves pre-determining all the powers p of R that are required to e'uC:O.u  
    % compute the outputs, and then compiling the {R^p} into a single Ml c_w19C9  
    % matrix.  This avoids any redundant computation of the R^p, and Ze>R@rK  
    % minimizes the sizes of certain intermediate variables. LT$t%V0?.e  
    % gd * b0(  
    %   Paul Fricker 11/13/2006 &S xF"pYV  
    "y~*1kBu  
    k~AtnI  
    % Check and prepare the inputs: v76P?[  
    % ----------------------------- cEa8l~GC<  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) />E ILPPb  
        error('zernpol:NMvectors','N and M must be vectors.') Y `8)`  
    end tW~kn9glZ  
    M-].l3  
    if length(n)~=length(m) oH17!$Fly  
        error('zernpol:NMlength','N and M must be the same length.') "0%K3d+  
    end 1\,k^Je7  
    6IRRRtO(  
    n = n(:); 9nVb$pfe#  
    m = m(:); f|(9+~K/7&  
    length_n = length(n); -3yK>\y=|  
    y@v)kN)Y9\  
    if any(mod(n-m,2)) @8{8|P  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') >{ {ds--  
    end fsPsP`|  
    m7NWgXJ  
    if any(m<0) `W}pA mhj  
        error('zernpol:Mpositive','All M must be positive.')  Ps.xY;Y  
    end hN K wQ  
    F&uiI;+zJ  
    if any(m>n) { Zv%DV4_$  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') D(Rr<-(  
    end " 4#&tNQ  
    9h+Hd&=  
    if any( r>1 | r<0 ) f_PH?  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') ::{\O\w  
    end ' *XIp:  
    OcMB)1uh\  
    if ~any(size(r)==1) | eCVq(R  
        error('zernpol:Rvector','R must be a vector.') i 1w ]j  
    end zd2_k 9  
    qJs_ahy(  
    r = r(:); Hd;NvNS  
    length_r = length(r); 8F<|.V;  
    C3^3<  
    if nargin==4 m4h)Wq  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); %S"z9@  
        if ~isnorm e;~(7/1  
            error('zernpol:normalization','Unrecognized normalization flag.') &a'mG=(K_c  
        end CvRCcSJM\2  
    else l'[;q '  
        isnorm = false; k@%5P-e}  
    end p @q20>^u  
    \i[N ";K  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% (rJ-S"^u  
    % Compute the Zernike Polynomials ^L.I9a#]  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ^W=hs9a+F  
    N/WtQSl  
    % Determine the required powers of r: sF)$<[w  
    % ----------------------------------- e8):'Cb   
    rpowers = []; Ff>X='{  
    for j = 1:length(n) ORKJy )*"  
        rpowers = [rpowers m(j):2:n(j)]; p q?# X0  
    end ?r(vXq\  
    rpowers = unique(rpowers); SJ22  
    ~t2" L|i  
    % Pre-compute the values of r raised to the required powers, b(mZ/2,B  
    % and compile them in a matrix: x])j]k  
    % ----------------------------- /g*_dH)=  
    if rpowers(1)==0 }8l+Jd3"  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 2\.23  
        rpowern = cat(2,rpowern{:}); %.Btf3y~  
        rpowern = [ones(length_r,1) rpowern]; c99|+i50  
    else +W1l9n*  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ubZuvWZ  
        rpowern = cat(2,rpowern{:}); =>>Dnp  
    end r9(c<E?,h  
    cahlYv'  
    % Compute the values of the polynomials: J R~s`>2  
    % -------------------------------------- HQ=pf >  
    z = zeros(length_r,length_n); `_/1zL[  
    for j = 1:length_n w=-{njMz6&  
        s = 0:(n(j)-m(j))/2; :#sBNy  
        pows = n(j):-2:m(j); NE`;=26c  
        for k = length(s):-1:1 Vm@VhCsp  
            p = (1-2*mod(s(k),2))* ... 3Jd a:  
                       prod(2:(n(j)-s(k)))/          ... ZR3sz/ulLd  
                       prod(2:s(k))/                 ... Qu<HeSA_  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... cuG;1,?b  
                       prod(2:((n(j)+m(j))/2-s(k))); sX>|Y3S\U  
            idx = (pows(k)==rpowers); ~ cu+QR)  
            z(:,j) = z(:,j) + p*rpowern(:,idx); p}GTOJT}  
        end OmK0-fa/  
         *a_QuEw _k  
        if isnorm { ~{D(k  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); 3- d"-'k  
        end cbou1Ei   
    end @DM NL sQ  
    h\)ual_r[j  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    857
    光币
    847
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  K:eP Il{JE  
    6,|)%~VUm  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 #zcnc$x\  
    q y8=4~40  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)