切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10329阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 .lcI"%>  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! P S$6`6G  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 E|Q|Nx!6[  
    function z = zernfun(n,m,r,theta,nflag) zx(=ArCRr  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. '5*8'.4Sy  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N sXpA^pT"T  
    %   and angular frequency M, evaluated at positions (R,THETA) on the <z=d5g{n  
    %   unit circle.  N is a vector of positive integers (including 0), and ]<zjD%Ez  
    %   M is a vector with the same number of elements as N.  Each element U)3*7D  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) d=6FL" .o  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, .5'_5>tkv  
    %   and THETA is a vector of angles.  R and THETA must have the same =:5o"g  
    %   length.  The output Z is a matrix with one column for every (N,M) (;Ad:!9{  
    %   pair, and one row for every (R,THETA) pair. Lwzk<+>w^  
    % -q8R'?z[  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike JF+E.-fy$  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), gXQ s)Eyv  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral tr<iFT}C  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, :B(vk3;U!  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ISbhC!59  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 15 /lX  
    % c^?+"7oO0  
    %   The Zernike functions are an orthogonal basis on the unit circle. A:?|\r  
    %   They are used in disciplines such as astronomy, optics, and Q.$|TbVfds  
    %   optometry to describe functions on a circular domain. nKO4o8js{{  
    % -D4"uoN.  
    %   The following table lists the first 15 Zernike functions. :d!qZFln  
    % soTmKqj E  
    %       n    m    Zernike function           Normalization lo!.%PP|  
    %       -------------------------------------------------- RAh4#8]  
    %       0    0    1                                 1 N1vPY]8  
    %       1    1    r * cos(theta)                    2 T08SGB]  
    %       1   -1    r * sin(theta)                    2 v{T%`WuPRf  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) FthrI  
    %       2    0    (2*r^2 - 1)                    sqrt(3) ZliJc7lss  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) 5N_w(B  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) z"vI-~,YU  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 65>1f  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 8vK$]e36  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) UrP jZ:K'  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) T"tR*2HwSd  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) >p[skN   
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) }+F&=-P)  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) b":3J)Y6.  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) +IM: jrT(  
    %       -------------------------------------------------- YIc|0[ ]*|  
    % ]8c%)%Vi  
    %   Example 1: I_k!'zR[N  
    % Vp.&X 8  
    %       % Display the Zernike function Z(n=5,m=1) y-/,,,r  
    %       x = -1:0.01:1; 0<n*8t?A-  
    %       [X,Y] = meshgrid(x,x); PE\.JU  
    %       [theta,r] = cart2pol(X,Y); gI /#7Cr  
    %       idx = r<=1; /M3UK  
    %       z = nan(size(X)); U =G}@Y  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); n$03##pf  
    %       figure +pefk+  
    %       pcolor(x,x,z), shading interp T0Kjnzs  
    %       axis square, colorbar *2(W`m  
    %       title('Zernike function Z_5^1(r,\theta)') Pcs62aE  
    % &l0-0 T>  
    %   Example 2: Q~y) V  
    % l[P VWM  
    %       % Display the first 10 Zernike functions B'kV.3t  
    %       x = -1:0.01:1; A@o:mZ+XN(  
    %       [X,Y] = meshgrid(x,x); c2,;t)%@E  
    %       [theta,r] = cart2pol(X,Y); K*]^0  
    %       idx = r<=1; \H -,^[G3  
    %       z = nan(size(X)); 8do7`mN  
    %       n = [0  1  1  2  2  2  3  3  3  3]; RaBq@r*(  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; MB:VACCr  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; VOY#Y*)g  
    %       y = zernfun(n,m,r(idx),theta(idx)); `-J$7)d@  
    %       figure('Units','normalized') ^G*zFqa+`  
    %       for k = 1:10 v1m'p:7uGB  
    %           z(idx) = y(:,k); itpljh  
    %           subplot(4,7,Nplot(k)) G8Qo]E9-/  
    %           pcolor(x,x,z), shading interp @8;0p  
    %           set(gca,'XTick',[],'YTick',[]) "+@>!U  
    %           axis square 8e:\T.)M  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) uh8+Y%V p  
    %       end .R<Ke\y/  
    % (0c L! N;;  
    %   See also ZERNPOL, ZERNFUN2. /ad]pdF  
    1;Q>B>6  
    %   Paul Fricker 11/13/2006 4P(ysTuM  
    ?;c&5'7ct  
    (X(296<;  
    % Check and prepare the inputs: L( B(x>w  
    % ----------------------------- iax6o+OG|  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) YM(` E9{h  
        error('zernfun:NMvectors','N and M must be vectors.') ,];4+&|8kW  
    end 3SU:Xd(\o  
    `Qg#`  
    if length(n)~=length(m) &M5_G$5n  
        error('zernfun:NMlength','N and M must be the same length.') VZRM=;V  
    end \`MX\OR  
    =D"H0w <zw  
    n = n(:); 4NN81~v 4  
    m = m(:); 2^TJ_xG~  
    if any(mod(n-m,2)) uQYBq)p|  
        error('zernfun:NMmultiplesof2', ... .0eHP  
              'All N and M must differ by multiples of 2 (including 0).') {;kH&Pp  
    end F:P&hK  
    I {o\d'/  
    if any(m>n) 4wa8Vw`  
        error('zernfun:MlessthanN', ... F[65)"^  
              'Each M must be less than or equal to its corresponding N.') Q~L"Mr8>V  
    end 51Nh"JTy  
    j+E[ [  
    if any( r>1 | r<0 ) !:7aXT*D$  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') J6s55 v  
    end -H;%1y$A-  
    _ 1? PN8  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) x,3oa_'E  
        error('zernfun:RTHvector','R and THETA must be vectors.') S[_Hc$7U  
    end JuD$CHg;#  
    ^&|$&7  
    r = r(:); R8ui LZd  
    theta = theta(:); u\]aUP e  
    length_r = length(r); KioD/  
    if length_r~=length(theta) 5X'com?T  
        error('zernfun:RTHlength', ... 7T)J{:+0!|  
              'The number of R- and THETA-values must be equal.') G#~6a%VW  
    end NUclF|G  
    !{L6 4qI  
    % Check normalization: lYz$~/sd  
    % -------------------- NyJ=^=F#  
    if nargin==5 && ischar(nflag) >;ucwLi  
        isnorm = strcmpi(nflag,'norm'); ?D^l&`S  
        if ~isnorm g@ ZZcBx  
            error('zernfun:normalization','Unrecognized normalization flag.') E7*z.3  
        end B_B~Y8=3`  
    else _*.Wo"[%[X  
        isnorm = false; zg3q\ ~  
    end tVf1]3(_>  
    >#MGGCGL  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Ef}rMkv  
    % Compute the Zernike Polynomials -ty_<m]  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |c]Y1WwDx  
    t-vH\m  
    % Determine the required powers of r: &f\ng{  
    % ----------------------------------- Xu1tN9:oE  
    m_abs = abs(m); f y|Ae  
    rpowers = []; 05<MsxB"w  
    for j = 1:length(n) qX(sx2TK  
        rpowers = [rpowers m_abs(j):2:n(j)]; bB^SD] }C  
    end ^c9~~m16+  
    rpowers = unique(rpowers); \\qw"w9  
    y3 {om^ f  
    % Pre-compute the values of r raised to the required powers, hE-u9i  
    % and compile them in a matrix: }tIIA"dZ  
    % ----------------------------- d45JT?qg&  
    if rpowers(1)==0 qYMTud[Vf  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ^[d|^fRH Q  
        rpowern = cat(2,rpowern{:}); C?FUc cI  
        rpowern = [ones(length_r,1) rpowern]; Ef;OrE""  
    else |7jUf$Q\p  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); !2('Cq_^  
        rpowern = cat(2,rpowern{:}); +^c;4-X 0  
    end Y dgaZJs  
    !V =s^8nj  
    % Compute the values of the polynomials: az(u=}  
    % -------------------------------------- ak?XE4-N  
    y = zeros(length_r,length(n)); pvJsSX  
    for j = 1:length(n) /&>6#3df-  
        s = 0:(n(j)-m_abs(j))/2; \pzqUTk  
        pows = n(j):-2:m_abs(j); @x>J-Owd]J  
        for k = length(s):-1:1 'w+T vOB  
            p = (1-2*mod(s(k),2))* ... ,R j{^-k  
                       prod(2:(n(j)-s(k)))/              ... =$B:i>z<  
                       prod(2:s(k))/                     ... -Kj^ l3w  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... dpO ZqhRs.  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); S-"&#OfWg<  
            idx = (pows(k)==rpowers); pI>i1f=W  
            y(:,j) = y(:,j) + p*rpowern(:,idx); #:v e3gWl  
        end 0R,?$qM\  
         k,xY\r$  
        if isnorm ^/wvHu[#  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); b7It8  
        end  R1YRqk  
    end Q'] _3  
    % END: Compute the Zernike Polynomials ?~e 8:/@  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% hsVf/%  
    ;}b.gpG  
    % Compute the Zernike functions: 9PA\Eo|Yb  
    % ------------------------------ /q4<ZS#  
    idx_pos = m>0; v1yNVs \}  
    idx_neg = m<0; Z-RgN  
    slV+2b  
    z = y; 'AX/?Srd  
    if any(idx_pos) V `V Z[  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); sXm/+I^  
    end ?|8H|LBIr  
    if any(idx_neg) }fW@8ji\  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); V:rq}F}  
    end yz}Agc4.I  
    zg!;g`Z@S  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) `s (A&=g\  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. |:SBkM,  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated JPQ[JD^]  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive <o^_il$W  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, xmxfXW  
    %   and THETA is a vector of angles.  R and THETA must have the same D.H$4[u;j  
    %   length.  The output Z is a matrix with one column for every P-value, Y,OSQBgk  
    %   and one row for every (R,THETA) pair. `y; s1nL  
    % `#&pB0.y  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike  E%\jR  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) i $H aE)qZ  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) L-\-wXg%  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 JnCp'`  
    %   for all p. $ Scb8<  
    % "$KU +?  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 \TS t  
    %   Zernike functions (order N<=7).  In some disciplines it is +2!J3{[J  
    %   traditional to label the first 36 functions using a single mode w?6"`Mo  
    %   number P instead of separate numbers for the order N and azimuthal ,.tv#j|A  
    %   frequency M. z5PFppSQ  
    % n*G[ZW*Uc  
    %   Example: [H-,zY  
    % h% BA,C  
    %       % Display the first 16 Zernike functions @e#eAJhU  
    %       x = -1:0.01:1; W8j)2nKD  
    %       [X,Y] = meshgrid(x,x); DQM\Y{y|3  
    %       [theta,r] = cart2pol(X,Y); jZu">Eh,  
    %       idx = r<=1; 5inmFT?9Z  
    %       p = 0:15; 0UeDM*  
    %       z = nan(size(X)); @EH:4~  
    %       y = zernfun2(p,r(idx),theta(idx)); s0"S;{_#  
    %       figure('Units','normalized') deSrs:.  
    %       for k = 1:length(p) 3+_? /}<  
    %           z(idx) = y(:,k); 6Clxe Lk  
    %           subplot(4,4,k) Mi&,64<  
    %           pcolor(x,x,z), shading interp %m]9";   
    %           set(gca,'XTick',[],'YTick',[]) K 0RY2Hiw  
    %           axis square Cdl#LVqs  
    %           title(['Z_{' num2str(p(k)) '}']) 9\RSJGx6  
    %       end kD:O$8[J8  
    % pOQ'k>!  
    %   See also ZERNPOL, ZERNFUN. U.<';fKnT  
    Yz;Hu$/  
    %   Paul Fricker 11/13/2006 l-4T Tg  
    '"LrGvkZ  
    j(mbUB*  
    % Check and prepare the inputs: @ROMHMd}  
    % ----------------------------- 1lZl10M:f  
    if min(size(p))~=1 mh;<lW\K/Z  
        error('zernfun2:Pvector','Input P must be vector.') ;rWgt!l  
    end 4VINu9\V  
    Iih~W&  
    if any(p)>35 @'`!2[2'?  
        error('zernfun2:P36', ... }N^.4HOS8  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... mY?^]3-_  
               '(P = 0 to 35).']) =zBcfFii`w  
    end 8<ZxE(v  
    An cmSi  
    % Get the order and frequency corresonding to the function number: rLO1Sv  
    % ---------------------------------------------------------------- 3 RG*:9  
    p = p(:); VE5w!of  
    n = ceil((-3+sqrt(9+8*p))/2); tr0P ;}=  
    m = 2*p - n.*(n+2); ?_q e 2R.  
    X[b=25Ct  
    % Pass the inputs to the function ZERNFUN: E>f+E8?  
    % ---------------------------------------- ;n_|t/=  
    switch nargin 9 lE[oAC  
        case 3 =?>f[J5  
            z = zernfun(n,m,r,theta); x>vC;E${"  
        case 4 9,\b$?9  
            z = zernfun(n,m,r,theta,nflag); f<WP< !N%  
        otherwise R=P=?U.  
            error('zernfun2:nargin','Incorrect number of inputs.') tcyami6D4  
    end 5Z/xY &  
    7K3S\oPej  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) !gA<9h  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. 0o~? ]C  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of Z18T<e  
    %   order N and frequency M, evaluated at R.  N is a vector of 0nUcUdIf+  
    %   positive integers (including 0), and M is a vector with the l&l&e OE  
    %   same number of elements as N.  Each element k of M must be a rOd<nP^`\  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) ?145^ w  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is 94 58.!3  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix Bfe#,  
    %   with one column for every (N,M) pair, and one row for every ~t7?5b?*\  
    %   element in R. Zp@j*P  
    % vYQ0e:P  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- Qgx9JJ>  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is .vsrZ_y?  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to =K'X:UM  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 ZDEz&{3U;  
    %   for all [n,m]. jMv qKJ(<  
    % " &2Kvsz  
    %   The radial Zernike polynomials are the radial portion of the y%%D="  
    %   Zernike functions, which are an orthogonal basis on the unit <QbD ;(%  
    %   circle.  The series representation of the radial Zernike 2noKy}q  
    %   polynomials is A|>~/OW=@  
    % hG~4i:p <  
    %          (n-m)/2 \]RPxM:_>  
    %            __ | a001_Wv  
    %    m      \       s                                          n-2s YaiogA  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r ]DVZeI03@  
    %    n      s=0 'J\nvNm  
    % |a9d]^  
    %   The following table shows the first 12 polynomials. fA"N5qQI(  
    % $yxwB/O(  
    %       n    m    Zernike polynomial    Normalization }e$^v*16  
    %       --------------------------------------------- FW* k O  
    %       0    0    1                        sqrt(2) /}+VH_N1  
    %       1    1    r                           2 nE.w  
    %       2    0    2*r^2 - 1                sqrt(6) UrtA]pc3L  
    %       2    2    r^2                      sqrt(6) zq]I"0Bi.  
    %       3    1    3*r^3 - 2*r              sqrt(8) [7x,&  
    %       3    3    r^3                      sqrt(8) Y%<y`]I  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) )F _vWbg  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) y!_*CYZ~m  
    %       4    4    r^4                      sqrt(10) zT$-%  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) 8<V6W F`e  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) 38ac~1HjE  
    %       5    5    r^5                      sqrt(12) {A!1s;  
    %       --------------------------------------------- |2RoDW  
    % - Q3jK)1  
    %   Example: Y9V%eFY5E  
    % B=dF\.&Z  
    %       % Display three example Zernike radial polynomials  TA;r  
    %       r = 0:0.01:1; ',Y`XP"Q  
    %       n = [3 2 5]; O3ij/8f  
    %       m = [1 2 1]; _:dt8+T#  
    %       z = zernpol(n,m,r); RRSkXDU}  
    %       figure X}jWNN  
    %       plot(r,z) HC1jN8WDY  
    %       grid on \ a}6NIo  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') LPuc&8lGWf  
    % w3,DsEXu  
    %   See also ZERNFUN, ZERNFUN2. '7BJ.  
    7 2Zp%a=  
    % A note on the algorithm. 'v|R' wi\  
    % ------------------------ j&6O 1  
    % The radial Zernike polynomials are computed using the series Y dgDMd-1  
    % representation shown in the Help section above. For many special p7SX,kpt>  
    % functions, direct evaluation using the series representation can ^7b[s pqE  
    % produce poor numerical results (floating point errors), because 5&Y%N(  
    % the summation often involves computing small differences between h>0R!Rl8  
    % large successive terms in the series. (In such cases, the functions Y9}5&#  
    % are often evaluated using alternative methods such as recurrence Evjvaa^  
    % relations: see the Legendre functions, for example). For the Zernike 1#nR$  
    % polynomials, however, this problem does not arise, because the IZ9L ;"}  
    % polynomials are evaluated over the finite domain r = (0,1), and `vbd7i  
    % because the coefficients for a given polynomial are generally all sY|by\-c  
    % of similar magnitude. 8]G  
    % yT3q~#:  
    % ZERNPOL has been written using a vectorized implementation: multiple *yx5G-#?  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] JXT%@w>I  
    % values can be passed as inputs) for a vector of points R.  To achieve RC[mpR ;2  
    % this vectorization most efficiently, the algorithm in ZERNPOL :A,g:B  
    % involves pre-determining all the powers p of R that are required to yM_ta '^$  
    % compute the outputs, and then compiling the {R^p} into a single %R|_o<(#MJ  
    % matrix.  This avoids any redundant computation of the R^p, and v@xbur\L  
    % minimizes the sizes of certain intermediate variables. _1>Xk_  
    % +, IMN)?;z  
    %   Paul Fricker 11/13/2006 3bWYRW  
    -'!K("  
    3y# U|&]{  
    % Check and prepare the inputs: yW =I*f  
    % ----------------------------- !sTOo  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) vk:k~   
        error('zernpol:NMvectors','N and M must be vectors.') CIt%7 \c  
    end ?cyBF*o  
    \OzPDN  
    if length(n)~=length(m) s%cfJe_k  
        error('zernpol:NMlength','N and M must be the same length.') 4J~ZZ  
    end \]:}lVtxS  
    e7O9q8b  
    n = n(:); J2_~iC&;s  
    m = m(:); rd )_*{  
    length_n = length(n); d O})#50f  
    5YV3pFz$)  
    if any(mod(n-m,2)) Bd++G'FZ  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') "e-RV  
    end `d,v  
    $ [t7&e  
    if any(m<0) Wx8oTN  
        error('zernpol:Mpositive','All M must be positive.') q HU}EEv  
    end Y^Y1re+}  
    }EMds3<  
    if any(m>n) `GpOS_;  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') 23(j<  
    end ;h"St0   
    qH=<8Iu  
    if any( r>1 | r<0 ) &s{" Vc9]  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.')  /N8>>g  
    end ~K 2.T7=  
    :lfUVa{HN  
    if ~any(size(r)==1) RE<s$B$[  
        error('zernpol:Rvector','R must be a vector.') kq4ii`zi8  
    end u3k{s  
    f, iHM  
    r = r(:); W'xJh0o  
    length_r = length(r); `w(~[`F t  
    wCitQ0?  
    if nargin==4 .7K<9K+P  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); 6OPYq*|  
        if ~isnorm VpO+52&  
            error('zernpol:normalization','Unrecognized normalization flag.') 2uEvu  
        end 0XzrzT"&  
    else h>:eu#  
        isnorm = false; k|r|*|8  
    end \UEO$~Km  
    2R`dyg  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% a W9_[#z5  
    % Compute the Zernike Polynomials AzZb0wW6p  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 3 q^^Os  
    n85d g  
    % Determine the required powers of r: x-@}x@n&[  
    % ----------------------------------- v;ZIqn"  
    rpowers = []; 8WP|cF]  
    for j = 1:length(n) "q]r{0  
        rpowers = [rpowers m(j):2:n(j)]; =U`9_]~1c@  
    end &_o.:SL|  
    rpowers = unique(rpowers); ;!9-I%e  
    z#u<]] 5  
    % Pre-compute the values of r raised to the required powers, 9`FPV`/  
    % and compile them in a matrix: j&|>Aa${  
    % ----------------------------- xV\mS+#  
    if rpowers(1)==0 r^ Mu`*x*  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); JW2~ G!@  
        rpowern = cat(2,rpowern{:}); mM;5UPbZ  
        rpowern = [ones(length_r,1) rpowern]; T\OpPSYbl  
    else + d289"  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); }{SpV  
        rpowern = cat(2,rpowern{:}); nsjrzO79L8  
    end Y7GHIzX  
    n1Fp$9%  
    % Compute the values of the polynomials: v2KK%Qy  
    % -------------------------------------- ZD#{h J-  
    z = zeros(length_r,length_n); I=c}6  
    for j = 1:length_n RA3!k&8?#  
        s = 0:(n(j)-m(j))/2; wqE+hKs,  
        pows = n(j):-2:m(j); ;hZ^zL  
        for k = length(s):-1:1 N6<G`k,  
            p = (1-2*mod(s(k),2))* ... *V[6ta'  
                       prod(2:(n(j)-s(k)))/          ... caD|*.b  
                       prod(2:s(k))/                 ... i7jI(VvB^  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... O!ngQrI  
                       prod(2:((n(j)+m(j))/2-s(k))); @w @SOzS)  
            idx = (pows(k)==rpowers); f2,\B6+  
            z(:,j) = z(:,j) + p*rpowern(:,idx); (!:+q$#BK  
        end I%'6IpR"d  
         h 7  c  
        if isnorm Jf3xK"in  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); ;vp[J&=  
        end Xo/0lT  
    end H+?@LPV*N  
     ?@iGECll  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    850
    光币
    833
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    8425
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  2'5u}G9  
    uG{/yJeU  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 _ a -At  
    ,@r 0-gL  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)