切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11298阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 PaB!,<A  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! mABe'"8  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 h( QYxI,|  
    function z = zernfun(n,m,r,theta,nflag) =dP{Gh  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. @MR?6n*k  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 6qvp*35Cx  
    %   and angular frequency M, evaluated at positions (R,THETA) on the O!1TthI  
    %   unit circle.  N is a vector of positive integers (including 0), and (LAXM x  
    %   M is a vector with the same number of elements as N.  Each element RH;:9_*F  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 0pe3L   
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 0Sl]!PZR1  
    %   and THETA is a vector of angles.  R and THETA must have the same 1[nG}  
    %   length.  The output Z is a matrix with one column for every (N,M) }}{!u0N},V  
    %   pair, and one row for every (R,THETA) pair. M<?Q4a'Q  
    % ;+"f  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike woH)0v  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 5wtTP ;P  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral Q'B6^%:<~  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, qd@&59zSh  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized sPAg)6&M  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 5__+_hO ;3  
    % em@EDMvI  
    %   The Zernike functions are an orthogonal basis on the unit circle. [Bb utGvj  
    %   They are used in disciplines such as astronomy, optics, and c2SC|s]  
    %   optometry to describe functions on a circular domain. U4?(A@z9^  
    % Doze8pn  
    %   The following table lists the first 15 Zernike functions. (AY9oei>  
    % fg%&N2/(.B  
    %       n    m    Zernike function           Normalization p 5u_1U0  
    %       -------------------------------------------------- (3vHY`9  
    %       0    0    1                                 1 )YW<" $s  
    %       1    1    r * cos(theta)                    2 6&v? )o  
    %       1   -1    r * sin(theta)                    2 )(Iy<Y?#  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) tYW>t9  
    %       2    0    (2*r^2 - 1)                    sqrt(3) o(A|)c4k  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) .?C%1a&_l  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) G*[P <<je_  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) }b3/b  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) lw%?z/HDf  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) e>'H IO  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) >gtQw!  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) {kI#A?M  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) #PLEPB  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) H!e 3~+)  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) R_P}~l  
    %       -------------------------------------------------- Tz&Y]#h_  
    % &6 -k#r  
    %   Example 1: GDaN  
    % yWPIIWHx!  
    %       % Display the Zernike function Z(n=5,m=1) k ^'f[|}  
    %       x = -1:0.01:1; lB8il2&  
    %       [X,Y] = meshgrid(x,x); UsVMoX^  
    %       [theta,r] = cart2pol(X,Y); e`tLR- &  
    %       idx = r<=1; !%mAh81{&/  
    %       z = nan(size(X)); y2HxP_s?P?  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); |8_JY2 R  
    %       figure jP vDFT^d/  
    %       pcolor(x,x,z), shading interp $L4/I!Yf  
    %       axis square, colorbar 6+rlXmd  
    %       title('Zernike function Z_5^1(r,\theta)') u?ek|%Ok  
    % vZ7gS  
    %   Example 2: ~Z/ ^c,[:  
    % ".*x!l0y7  
    %       % Display the first 10 Zernike functions V5}nOGV9  
    %       x = -1:0.01:1; 7"X>?@  
    %       [X,Y] = meshgrid(x,x); :S@1  
    %       [theta,r] = cart2pol(X,Y); t5k!W7C  
    %       idx = r<=1; 5`/@N{e  
    %       z = nan(size(X)); <hnCUg1  
    %       n = [0  1  1  2  2  2  3  3  3  3]; ]36sZ *  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; cNpe_LvW  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; oj,lz?  
    %       y = zernfun(n,m,r(idx),theta(idx)); <<A`aU^fX  
    %       figure('Units','normalized') ^(}585b  
    %       for k = 1:10 `L;eba  
    %           z(idx) = y(:,k); O^>jdl!TZ  
    %           subplot(4,7,Nplot(k)) %b.UPS@I  
    %           pcolor(x,x,z), shading interp Gnm4gF!BI  
    %           set(gca,'XTick',[],'YTick',[]) WnFG{S{s  
    %           axis square $S*4r&8ZD  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) iJFs0?*  
    %       end 07T70[G  
    % _;A $C(  
    %   See also ZERNPOL, ZERNFUN2. 57{oh")  
    Dz=k7zRg"  
    %   Paul Fricker 11/13/2006 a\uie$"cr]  
    hw_JDv+  
    r9 y.i(j  
    % Check and prepare the inputs: ;32#t[i b  
    % ----------------------------- u.pxz8  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 8 S`9dSc  
        error('zernfun:NMvectors','N and M must be vectors.') 9ILIEm:  
    end :^ i9]  
    O[17";P  
    if length(n)~=length(m) YO{GU7  
        error('zernfun:NMlength','N and M must be the same length.') ~wnOV#v  
    end I:(m aMc  
    $DFv30 f  
    n = n(:); bok.j  
    m = m(:); `D( xv  
    if any(mod(n-m,2)) 7z6 b@$,  
        error('zernfun:NMmultiplesof2', ... &MR/6"/s  
              'All N and M must differ by multiples of 2 (including 0).') G |*(8r()  
    end vqslirC  
    %HQ.|  
    if any(m>n) $ZPX]2D4B#  
        error('zernfun:MlessthanN', ... _fFU#k:MU  
              'Each M must be less than or equal to its corresponding N.') gV1[3dW  
    end {eJt,[Y *  
    wyx(FinIH  
    if any( r>1 | r<0 ) L(;WxHL  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 1:C:?ZC#c  
    end _s,ao '/  
    %sh>;^58P  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Z!d7&T}  
        error('zernfun:RTHvector','R and THETA must be vectors.') ?B@;QjhjiJ  
    end q:>^ "P{  
    5/",<1  
    r = r(:); e[u?_h  
    theta = theta(:); -!RtH |P  
    length_r = length(r); J;t 7&Zpe  
    if length_r~=length(theta) ivO/;)=t  
        error('zernfun:RTHlength', ... djQv[Vc {  
              'The number of R- and THETA-values must be equal.') =*BIB5  
    end JE 5  
    $lIWd  
    % Check normalization: H?1xjY9sl  
    % --------------------  v7  
    if nargin==5 && ischar(nflag) pD"vRbYF  
        isnorm = strcmpi(nflag,'norm'); i>L+gLW  
        if ~isnorm `Ycf]2.,$  
            error('zernfun:normalization','Unrecognized normalization flag.') h<<>3A  
        end t9gfU5?  
    else qIUfPA=/_  
        isnorm = false; dhg~$CVO  
    end ?rVy2!  
    x}/,yaWZ  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |!|^ v  
    % Compute the Zernike Polynomials <^.=>Q0 S\  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Eh</? Qv\  
    2A`A\19t  
    % Determine the required powers of r: [sV"ws  
    % ----------------------------------- -W{DxN1  
    m_abs = abs(m); "|Fy+'5}  
    rpowers = []; v!3A9!.  
    for j = 1:length(n) 5[l8y ,  
        rpowers = [rpowers m_abs(j):2:n(j)]; xp'_%n~K@  
    end oeSN9O  
    rpowers = unique(rpowers); ;DA8B'^>  
     ~fl@ 2  
    % Pre-compute the values of r raised to the required powers, ^VW PdH/Fe  
    % and compile them in a matrix: rVvR!"//yH  
    % ----------------------------- hDP/JN8y  
    if rpowers(1)==0 bUV >^d  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); U/ V  
        rpowern = cat(2,rpowern{:}); gXT9 r' k  
        rpowern = [ones(length_r,1) rpowern]; +:=(#Y  
    else m`#Od^vk  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); |@?%Ct  
        rpowern = cat(2,rpowern{:}); ( m\$hX  
    end _iKq~\v2  
    6%`&+Lq  
    % Compute the values of the polynomials: # ?1Sm/5k`  
    % -------------------------------------- Ng><n}  
    y = zeros(length_r,length(n)); @Q&3L~K"  
    for j = 1:length(n) =@Dwlze  
        s = 0:(n(j)-m_abs(j))/2; \}6;Kf}\  
        pows = n(j):-2:m_abs(j); Dih6mTP{  
        for k = length(s):-1:1 %+ 7p lM  
            p = (1-2*mod(s(k),2))* ... -m'j]1  
                       prod(2:(n(j)-s(k)))/              ... G CRz<)1  
                       prod(2:s(k))/                     ... Vt^3iX{!  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Sw^X2$h  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); ~AY N  
            idx = (pows(k)==rpowers); a8u 9aEB  
            y(:,j) = y(:,j) + p*rpowern(:,idx); :.(;<b<\  
        end ?1L.:CS  
         eD$M<Eu  
        if isnorm )m6M9eC  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); QY/hI `  
        end tMj;s^P1  
    end i| \6JpNA:  
    % END: Compute the Zernike Polynomials kP#e((f,  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% kdz=ltw  
    ]&Z))H  
    % Compute the Zernike functions: f~E*Zz`;  
    % ------------------------------ R [H+qr  
    idx_pos = m>0; %6 Q4yk  
    idx_neg = m<0; >56>*BHD  
    pZ`|iLNl-  
    z = y; bNT9 H`P  
    if any(idx_pos) ob+euCuJ  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); xw{-9k-~  
    end #T`t79*N  
    if any(idx_neg) 0CSv10Tg  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); y"]n:M:(  
    end Ehz o05/!  
    ntNI]~z&  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) -}K<ni6  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. :Hxv6  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated rD>*j~_+P  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive @FdSFQ/9  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, c1X1+b,  
    %   and THETA is a vector of angles.  R and THETA must have the same fs/*V~@  
    %   length.  The output Z is a matrix with one column for every P-value, Q)"A-"y  
    %   and one row for every (R,THETA) pair. XMG]Wf^%\<  
    % 3D?s L!W  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike UH7jP#W%=  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) R_=6GZH$G  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) 2Sm }On  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 (8_\^jJ  
    %   for all p. " R xP^l  
    % vn/.}GkpU  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 ">?vir^  
    %   Zernike functions (order N<=7).  In some disciplines it is <nEi<iAY>U  
    %   traditional to label the first 36 functions using a single mode [w ;kkMJAy  
    %   number P instead of separate numbers for the order N and azimuthal G[jW<'f  
    %   frequency M. zbJT&@z  
    % YBh'EL}P  
    %   Example: V|\7')Qq  
    % O|_h_I-2  
    %       % Display the first 16 Zernike functions g+X}c/" .  
    %       x = -1:0.01:1; U`hY{E;  
    %       [X,Y] = meshgrid(x,x); N&@}/wzZ  
    %       [theta,r] = cart2pol(X,Y); vv26I  
    %       idx = r<=1; iiK]l   
    %       p = 0:15; s&'QN=A  
    %       z = nan(size(X)); jt+iv*2N>  
    %       y = zernfun2(p,r(idx),theta(idx)); hB{jUP) ";  
    %       figure('Units','normalized') :6$>_m=i  
    %       for k = 1:length(p) 1?Z4 K /  
    %           z(idx) = y(:,k); #m={yck *  
    %           subplot(4,4,k) ,@5I:X!rR  
    %           pcolor(x,x,z), shading interp S6fbf>[  
    %           set(gca,'XTick',[],'YTick',[]) g}]t[}s1]  
    %           axis square ?6'rBH/w  
    %           title(['Z_{' num2str(p(k)) '}']) ?7{H|sI  
    %       end $ImrOf^qt  
    % qe5feky  
    %   See also ZERNPOL, ZERNFUN. V^;jJ']  
    :6%Z]tt  
    %   Paul Fricker 11/13/2006 6-O_\Cq8  
    Dd` Mv$*d8  
    ~Jf{4*>y  
    % Check and prepare the inputs: sJNFFOz  
    % ----------------------------- o=`C<}  
    if min(size(p))~=1 + nF'a(  
        error('zernfun2:Pvector','Input P must be vector.') ;| 1$Q!4  
    end NVRLrJWpp  
    "Wx]RN:  
    if any(p)>35 3do)Vg4  
        error('zernfun2:P36', ... Ha)ANAD  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... Jec'`,Y  
               '(P = 0 to 35).']) "yW:\   
    end 4bgqg0z>  
    QE7V. >J_p  
    % Get the order and frequency corresonding to the function number: 0V?F'<qy  
    % ---------------------------------------------------------------- V*~Zs'L'E  
    p = p(:); }u1O#L}F5  
    n = ceil((-3+sqrt(9+8*p))/2); )vxUT{;sH  
    m = 2*p - n.*(n+2); 3 h<,  
    0bo/XUpi  
    % Pass the inputs to the function ZERNFUN: dUsx vho  
    % ---------------------------------------- l} qE 46EL  
    switch nargin %;D.vKoh  
        case 3 `jOX6_z?I  
            z = zernfun(n,m,r,theta); <m'ow  
        case 4 !kC* g  
            z = zernfun(n,m,r,theta,nflag); )5 R=Z<  
        otherwise IH"6? 9nd  
            error('zernfun2:nargin','Incorrect number of inputs.') nl9P, d  
    end H$6`{lx,  
    V(E/'DR  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) [ I/<_AT#  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. xL" |)A =  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of =yy5D$\  
    %   order N and frequency M, evaluated at R.  N is a vector of *Aa?yg:=  
    %   positive integers (including 0), and M is a vector with the b3VS\[p  
    %   same number of elements as N.  Each element k of M must be a C/-63O_  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) \!ej<T+JR>  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is hh[jN 7K  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix Kde9 $  
    %   with one column for every (N,M) pair, and one row for every ~#/hzS  
    %   element in R. ,tg0L$qC  
    % 3Gip<\$v  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- b?'yAXk  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is +U3m#Y)k  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to NG6& :4!  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 Q6r7.pk"SU  
    %   for all [n,m]. )sT> i  
    % L~KM=[cn  
    %   The radial Zernike polynomials are the radial portion of the ;"m ,:5%  
    %   Zernike functions, which are an orthogonal basis on the unit to$h2#i_  
    %   circle.  The series representation of the radial Zernike @i*|s~15  
    %   polynomials is Y(d$  
    % pt}X>ph{  
    %          (n-m)/2 f1(+ bE%  
    %            __ J:\|Nc?  
    %    m      \       s                                          n-2s +) m_o"hl  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r 3F<VH  
    %    n      s=0 jXMyPNTK  
    % BGu?<bET  
    %   The following table shows the first 12 polynomials. icgSe:Ci  
    % XSZ k%_  
    %       n    m    Zernike polynomial    Normalization bv*,#Qm  
    %       --------------------------------------------- yiA<,!;4P  
    %       0    0    1                        sqrt(2) @Rw!'T  
    %       1    1    r                           2 ,YMp<C  
    %       2    0    2*r^2 - 1                sqrt(6) `9b7>Nn<  
    %       2    2    r^2                      sqrt(6) P->y_4O  
    %       3    1    3*r^3 - 2*r              sqrt(8) MHC^8VL  
    %       3    3    r^3                      sqrt(8) uF3qD|I\  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) 2]ape !(  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) yT,.z 0  
    %       4    4    r^4                      sqrt(10) u5%7}<nNi  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) PxS8 n?y  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) ;y2/-tL?  
    %       5    5    r^5                      sqrt(12) v*[.a#1^  
    %       --------------------------------------------- JC3m.)/  
    % =Yt R`  
    %   Example: ;{%\9nS  
    % [n$BRk|  
    %       % Display three example Zernike radial polynomials heK7pH7;d  
    %       r = 0:0.01:1; )6J9J+%bi  
    %       n = [3 2 5]; iS<I0\D  
    %       m = [1 2 1]; %&Q$dzgb_  
    %       z = zernpol(n,m,r); 81i655!Z  
    %       figure \9g+^vQg  
    %       plot(r,z) HZf/CE9T  
    %       grid on CtSl  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') wD]/{ jw  
    % "UJ S5[7$  
    %   See also ZERNFUN, ZERNFUN2. KSN Pkd6  
    ~'CE[G5  
    % A note on the algorithm. /Dj=iBO  
    % ------------------------ Q{lpKe0  
    % The radial Zernike polynomials are computed using the series a,WICv0E  
    % representation shown in the Help section above. For many special | ]X  
    % functions, direct evaluation using the series representation can >b{q.  
    % produce poor numerical results (floating point errors), because 9AJ7h9L  
    % the summation often involves computing small differences between q*7VqB  
    % large successive terms in the series. (In such cases, the functions -#HA"7XOE  
    % are often evaluated using alternative methods such as recurrence d>t<_}  
    % relations: see the Legendre functions, for example). For the Zernike X'qU*Eo  
    % polynomials, however, this problem does not arise, because the E`uY1B[c  
    % polynomials are evaluated over the finite domain r = (0,1), and hK,Sf ;5V  
    % because the coefficients for a given polynomial are generally all _c_[ C*T]  
    % of similar magnitude. pxh"B\"4*  
    % Ls] g  
    % ZERNPOL has been written using a vectorized implementation: multiple o_^?n[4  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] K%RxwM  
    % values can be passed as inputs) for a vector of points R.  To achieve n$ou- Q  
    % this vectorization most efficiently, the algorithm in ZERNPOL De(Hw& IV  
    % involves pre-determining all the powers p of R that are required to suzZdkMA  
    % compute the outputs, and then compiling the {R^p} into a single N<-gI9_  
    % matrix.  This avoids any redundant computation of the R^p, and  q;][5  
    % minimizes the sizes of certain intermediate variables. Us0EG\Y  
    % j?x>_#tIY  
    %   Paul Fricker 11/13/2006 @dPTk"P  
    $NZ-{dY{  
    -RvQB  
    % Check and prepare the inputs: >^*+iEe  
    % ----------------------------- |~vI3]}fx  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 1R1 z  
        error('zernpol:NMvectors','N and M must be vectors.') 2-Ej4I~  
    end k@3Q|na  
    .G#8a1#  
    if length(n)~=length(m) < F.hZGss7  
        error('zernpol:NMlength','N and M must be the same length.') }%_ b$  
    end ~3WF,mW  
    f m)pulz  
    n = n(:); O#S;q5L@  
    m = m(:); /! "|_W|n  
    length_n = length(n); qfMo7e@6*  
    B=^)Ub5'  
    if any(mod(n-m,2)) +>{Y.`a;Jo  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') h1B16)  
    end <?riU\-]y  
    }n3/vlW9  
    if any(m<0) ~^r29'3  
        error('zernpol:Mpositive','All M must be positive.') BlA_.]Sg$  
    end ZOeQ+j)|I  
    J:V6  
    if any(m>n) :?g:~+hfO  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') \1fN0e  
    end iiS-9>]/  
    &)AVzN+*h  
    if any( r>1 | r<0 ) rLI8pA|.  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') +~mA}psr  
    end DkvF5c&  
    <~n"m  
    if ~any(size(r)==1) jw^<IMAG\8  
        error('zernpol:Rvector','R must be a vector.') }}\vV}s  
    end XH}\15X  
    0"\H^  
    r = r(:); iV*q2<>  
    length_r = length(r); Af'" 6BS  
    1+jAz`nA:T  
    if nargin==4 Of[XKFn_  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); 3c]b)n~Y  
        if ~isnorm d(:8M  
            error('zernpol:normalization','Unrecognized normalization flag.') JNt^ (z  
        end 7 /VK##z  
    else ->y J5smtY  
        isnorm = false; ,D]QxbwZ  
    end ~M7y*'oY  
    XBb~\p3y  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Py@wJEo  
    % Compute the Zernike Polynomials 7BK0}sxO  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ->g*</  
    X\@C.H2ttY  
    % Determine the required powers of r: R3;Tk^5A  
    % ----------------------------------- V-Sd[  
    rpowers = []; xp }hev^@$  
    for j = 1:length(n) _m gHJ0v'  
        rpowers = [rpowers m(j):2:n(j)]; ?fUlgQ }N  
    end <UV1!2nv*  
    rpowers = unique(rpowers); *E/`KUG]  
    G MX?  
    % Pre-compute the values of r raised to the required powers, S+atn]eU@  
    % and compile them in a matrix: :U3kW8;UMP  
    % ----------------------------- vd 0ljA  
    if rpowers(1)==0 >0p h9$  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false);  D#il*  
        rpowern = cat(2,rpowern{:}); \{Z; :,S  
        rpowern = [ones(length_r,1) rpowern]; LcSX *MC  
    else zQ@I}K t  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); aI6$?wus  
        rpowern = cat(2,rpowern{:}); T>x&T9  
    end aJ-K?xQ  
    v/68*,z[  
    % Compute the values of the polynomials: (e!0]Io@  
    % -------------------------------------- 4cabP}gBk  
    z = zeros(length_r,length_n); 5_I->-<  
    for j = 1:length_n ;t<QTGJ  
        s = 0:(n(j)-m(j))/2; kI 4MiK  
        pows = n(j):-2:m(j); U(Nu%  
        for k = length(s):-1:1 G-xDN59K  
            p = (1-2*mod(s(k),2))* ... dZ  rAn  
                       prod(2:(n(j)-s(k)))/          ... 9`I _Et  
                       prod(2:s(k))/                 ... zR1^I~ %  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... wKZ$iGMbz  
                       prod(2:((n(j)+m(j))/2-s(k))); @SJL\{_  
            idx = (pows(k)==rpowers); XC0bI,Fu,  
            z(:,j) = z(:,j) + p*rpowern(:,idx); -:2$ %  
        end rz wF~-m +  
          FT#8L  
        if isnorm n>+mL"hs  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); Xjo5v*Pu  
        end 8/i!' 0r\  
    end b J=Jg~&  
    bJRN;g  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  vH#huZA?7  
    q OSM}ei>s  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 fjU8gV  
    B?4boF?~  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)