非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 ]Sey|/@D
function z = zernfun(n,m,r,theta,nflag) {'-^CoR
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. Gw$Y`]ipy
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N #ZC9=
% and angular frequency M, evaluated at positions (R,THETA) on the 2@6Qifxd@
% unit circle. N is a vector of positive integers (including 0), and aBd>.]l?
% M is a vector with the same number of elements as N. Each element `t>A~.f
% k of M must be a positive integer, with possible values M(k) = -N(k) h+c9FN
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, z j F'CY
% and THETA is a vector of angles. R and THETA must have the same )Z*nm<=
% length. The output Z is a matrix with one column for every (N,M) M?d (-en
% pair, and one row for every (R,THETA) pair. dw-o71(1d
% X:/7#fcG8
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike o?g9Grk
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), fB)S: f|
% with delta(m,0) the Kronecker delta, is chosen so that the integral KY%LqcC
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 2M>`W5
% and theta=0 to theta=2*pi) is unity. For the non-normalized P8X59^cJ
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. @iU(4eX
% C"0vMUZ
% The Zernike functions are an orthogonal basis on the unit circle. RhWW61!"
% They are used in disciplines such as astronomy, optics, and arc{:u.K
% optometry to describe functions on a circular domain. m@y<wk(
% Lng@'Yr
% The following table lists the first 15 Zernike functions. a0jzt!ci
% sd _DG8V
% n m Zernike function Normalization \ 62!{
% -------------------------------------------------- $!vK#8-&{
% 0 0 1 1 1d!TU=*
% 1 1 r * cos(theta) 2 J)EL<K$Z[
% 1 -1 r * sin(theta) 2 7lx]`u>
% 2 -2 r^2 * cos(2*theta) sqrt(6) '-BD.^!!
% 2 0 (2*r^2 - 1) sqrt(3) 3>6rO4,
% 2 2 r^2 * sin(2*theta) sqrt(6) G-TD9OgZ
% 3 -3 r^3 * cos(3*theta) sqrt(8) 3ESrd"W=
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) b(Yxsy{U
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) gh-i|i,
% 3 3 r^3 * sin(3*theta) sqrt(8) xnDst9%
% 4 -4 r^4 * cos(4*theta) sqrt(10) Ae;mU[MK/
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) )SHB1U25{
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) cR=o!2O
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) C{>dE:*K^
% 4 4 r^4 * sin(4*theta) sqrt(10) G+t=+T2m
% -------------------------------------------------- +}
y"S -
% IQWoK"B
% Example 1: 3*E]
:l_
% 3$9V4v@2
% % Display the Zernike function Z(n=5,m=1) KJv[z
% x = -1:0.01:1; txiX1o!/L
% [X,Y] = meshgrid(x,x); #fDM{f0]R
% [theta,r] = cart2pol(X,Y); \cdns;
% idx = r<=1; RgVnx] IF
% z = nan(size(X)); !tSh9L;<O
% z(idx) = zernfun(5,1,r(idx),theta(idx)); )XDbg>
% figure 92ngSaNC
% pcolor(x,x,z), shading interp 4N5\sdi
% axis square, colorbar j XYr&F
% title('Zernike function Z_5^1(r,\theta)') /z)Nz2W
% p~v0pi
% Example 2: lMgPwvs'
% (3 Z;c_N
% % Display the first 10 Zernike functions m:c0S8#:
% x = -1:0.01:1; VHG}'r9KC%
% [X,Y] = meshgrid(x,x); 7u:QT2=&
% [theta,r] = cart2pol(X,Y); =&)R2pLs*
% idx = r<=1; yG^pND>_df
% z = nan(size(X)); Hb[P|pPT
% n = [0 1 1 2 2 2 3 3 3 3]; X6j:TF
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; QabLMq@n`
% Nplot = [4 10 12 16 18 20 22 24 26 28]; aK8s0G!z?5
% y = zernfun(n,m,r(idx),theta(idx)); }lP`3e
% figure('Units','normalized') $WO{!R
% for k = 1:10 @SI,V8i
% z(idx) = y(:,k); 6(>,qt,9S
% subplot(4,7,Nplot(k)) =y=MljEX
% pcolor(x,x,z), shading interp (|pM^+
% set(gca,'XTick',[],'YTick',[]) R7A:K]iJ5
% axis square qCB{dp/
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}'])
QQt4pDir>
% end g""Ep
% iz 0:
% See also ZERNPOL, ZERNFUN2. 03.\!rZZ
i7e_~K
% Paul Fricker 11/13/2006 wG73GD38
HM#|&_gV
B=%x#em
% Check and prepare the inputs: ^b4i9n,t1
% ----------------------------- ?g:sAR'
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) `fE'$2
error('zernfun:NMvectors','N and M must be vectors.') {q^UWv?1
end PsZ>L
av_ +M;G
if length(n)~=length(m) MY^o0N
error('zernfun:NMlength','N and M must be the same length.') [
P,gEYk
end VB`% u=
SXC
7LJm<g
n = n(:); /&9R*xNST#
m = m(:); 3"sXN)j
if any(mod(n-m,2)) |7Qe{
error('zernfun:NMmultiplesof2', ... 6
$`l
'All N and M must differ by multiples of 2 (including 0).') UY .-Qt
end hZw8*H^tP
(/E@.z[1
if any(m>n) RRQIlI<
error('zernfun:MlessthanN', ... 3#Iq5vT
'Each M must be less than or equal to its corresponding N.') uL~wMX
end IyM:9=}5
S~R[*Gk_uT
if any( r>1 | r<0 ) 5#y_EpL"
error('zernfun:Rlessthan1','All R must be between 0 and 1.') =\mJ5v"hA
end $R+rB;=a!
?6HnN0A)
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Dy:r)\KX
error('zernfun:RTHvector','R and THETA must be vectors.') qlnA7cK!
end $/ $Hi U`.
T^{=cx9x9
r = r(:); d\zUtcJwC
theta = theta(:); ZUvc|5]
length_r = length(r); /x4L,UJ= P
if length_r~=length(theta) .gM6m8l9wp
error('zernfun:RTHlength', ... R&$fWV;'
'The number of R- and THETA-values must be equal.') y.s\MWvv>u
end 3E0C$vKM
uKj(=Rqq
% Check normalization: Yh Ow0 x
% -------------------- }0f~hL24
if nargin==5 && ischar(nflag) jfVw{\l
isnorm = strcmpi(nflag,'norm'); RS#C4NG
if ~isnorm *_P'> V#p
error('zernfun:normalization','Unrecognized normalization flag.') ^8YBW<9
end jp1e3 Cg
else *Vg) E*s
isnorm = false; sXNb
end LDYa{w-t
s%8,'3&
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% A-J#$B
% Compute the Zernike Polynomials i29a1nD4Hm
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ;]bW
4Xww(5?3
% Determine the required powers of r: TQPrOs?
% ----------------------------------- o,S(;6pDJ
m_abs = abs(m); M?o_J4
rpowers = []; n&DBMU
for j = 1:length(n) z`NJelcuz\
rpowers = [rpowers m_abs(j):2:n(j)]; H/.UDz
end 6urU[t1
rpowers = unique(rpowers); w9mAeGyE
AX
Q.E$1g
% Pre-compute the values of r raised to the required powers, `U|zNizO
% and compile them in a matrix: EEo I|
% ----------------------------- Se37-
if rpowers(1)==0
A;*<
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 3(nnN[?N,5
rpowern = cat(2,rpowern{:}); TAqX
f_
rpowern = [ones(length_r,1) rpowern]; mx}4iO:Xp
else L"NfOST3'R
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); l;&kX6 w
rpowern = cat(2,rpowern{:}); I?Z"YR+MQ
end u } +?'B)
I Gi9YpI&K
% Compute the values of the polynomials: )]4=anJu@|
% -------------------------------------- / {[p?7x>
y = zeros(length_r,length(n)); T LF'7ufq
for j = 1:length(n) Koj9]2<0
s = 0:(n(j)-m_abs(j))/2; ^SW9J^9
pows = n(j):-2:m_abs(j); g/\cN(X
for k = length(s):-1:1 $DtUTh3)
p = (1-2*mod(s(k),2))* ... I6gduvkXi4
prod(2:(n(j)-s(k)))/ ... k@h0 }%
prod(2:s(k))/ ... 4i5b.bU$
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... HgBu:x?&
prod(2:((n(j)+m_abs(j))/2-s(k))); O{Mn\M6
idx = (pows(k)==rpowers); da_0{;wR
y(:,j) = y(:,j) + p*rpowern(:,idx); CS5[E-%}T=
end OVc)PMp
JfK4|{@
if isnorm ]ms+Va_/
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); SJlE!MK
end n3qRt
end *"4l}&
% END: Compute the Zernike Polynomials ~jmI`X/
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% {E7STLQ_%
F%af05L[
% Compute the Zernike functions: x8~*+ j
% ------------------------------ q_mxZM
->
idx_pos = m>0; {,Rlq
idx_neg = m<0; Cud!JpL
TIR Is1
z = y; 45$aq~%as
if any(idx_pos) 7s!rer>
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); '
I!/I
end eT ]*c?"
if any(idx_neg) 412E7
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); zMBGpqdP
end z|Yt|W
;sq xFF@
% EOF zernfun