切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11097阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 ~(aq3ngo.  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! MFW?m,It)  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 =x7ODBYW^  
    function z = zernfun(n,m,r,theta,nflag) [w{ZP4d>  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. Y\op9 Fw  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N `Mjm/9+18  
    %   and angular frequency M, evaluated at positions (R,THETA) on the " Y%\qw/wq  
    %   unit circle.  N is a vector of positive integers (including 0), and l w%fY{  
    %   M is a vector with the same number of elements as N.  Each element  R(zsn;  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 2sU"p5 j  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, IcQ?^9%{  
    %   and THETA is a vector of angles.  R and THETA must have the same KDXo9FzF  
    %   length.  The output Z is a matrix with one column for every (N,M) {xH \!!"T  
    %   pair, and one row for every (R,THETA) pair. %kcg#p+tE  
    % {^\-%3$  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike bTiw?i+6Dv  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), B "qG-ci  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral {'b8;x8h  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, SHGO;  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized K[ \z'9Q  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. kqyMrZ#  
    % TgUQD(d^  
    %   The Zernike functions are an orthogonal basis on the unit circle. {[s<\<~B*  
    %   They are used in disciplines such as astronomy, optics, and ScTqnY$v  
    %   optometry to describe functions on a circular domain. 9 V"j=1B}  
    % {$EXI]f  
    %   The following table lists the first 15 Zernike functions. b~Ruhi[E  
    % 5sE^MS1  
    %       n    m    Zernike function           Normalization G{"1  I  
    %       -------------------------------------------------- y&CUT:M6  
    %       0    0    1                                 1 MO D4O4z&  
    %       1    1    r * cos(theta)                    2 I#Bz UF  
    %       1   -1    r * sin(theta)                    2 cr/|dc'  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) T+[e6/|  
    %       2    0    (2*r^2 - 1)                    sqrt(3) <N*>9S,}  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) >ciq4H43Q|  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) \ bhok   
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) c !;wp,c  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) m!2Dk#t  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) B.WJ6.DkS  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) {c1qC zM4  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) +/X'QB$R  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 5{5ABV  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Yn#8uaU  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) H|!s.  
    %       -------------------------------------------------- 6,7omYof  
    % 7*5ctc!dG  
    %   Example 1: Stc\P]%d  
    % 4tC_W!?$t  
    %       % Display the Zernike function Z(n=5,m=1) Qnw$=L:  
    %       x = -1:0.01:1; =I5XG"",  
    %       [X,Y] = meshgrid(x,x); esHiWHAC  
    %       [theta,r] = cart2pol(X,Y); _qg6( X  
    %       idx = r<=1; joA+  
    %       z = nan(size(X)); \1Bgs^  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 35>}$1?-6  
    %       figure 6a@~;!GlI  
    %       pcolor(x,x,z), shading interp gP<_DEd^`  
    %       axis square, colorbar s6D-?G*u%8  
    %       title('Zernike function Z_5^1(r,\theta)') wY95|QS  
    % S3_4i;K\  
    %   Example 2: l+6\U6_)B  
    % ]/bE${W*]  
    %       % Display the first 10 Zernike functions 'l:2R,cP  
    %       x = -1:0.01:1; y#0w\/<  
    %       [X,Y] = meshgrid(x,x); ]R@G5d  
    %       [theta,r] = cart2pol(X,Y); p4t)Z#0  
    %       idx = r<=1; 9PJDT]  
    %       z = nan(size(X)); </X"*G't  
    %       n = [0  1  1  2  2  2  3  3  3  3]; SSXS  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; @5wg'mM  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; r83~o/T@  
    %       y = zernfun(n,m,r(idx),theta(idx)); hkJZqUA  
    %       figure('Units','normalized') ) b10%n^  
    %       for k = 1:10 2X*<Fma3C  
    %           z(idx) = y(:,k); k)s 7Ev*  
    %           subplot(4,7,Nplot(k)) @"!SU' *  
    %           pcolor(x,x,z), shading interp p5l$On  
    %           set(gca,'XTick',[],'YTick',[]) gp)ds^  
    %           axis square @9h#o5y q  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) =M 5M;  
    %       end ='0!B]<G  
    % _);Kb/  
    %   See also ZERNPOL, ZERNFUN2. }/spo3,6  
    +][P*/Ek  
    %   Paul Fricker 11/13/2006 {9".o,  
    ra>`J_  
    ,7P^]V1  
    % Check and prepare the inputs: ~-`02  
    % ----------------------------- d*$<%J  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) %B*dj9n^q  
        error('zernfun:NMvectors','N and M must be vectors.') =LxmzQO#  
    end uw=Ube(  
    <gLtX[v!CL  
    if length(n)~=length(m) $0}bi:7  
        error('zernfun:NMlength','N and M must be the same length.') r6JkoP Mh  
    end ts<dUO  
    YSo7~^1W"  
    n = n(:); fZ}Y(TG/  
    m = m(:); 5V~p@vCx  
    if any(mod(n-m,2)) Zk UuniO  
        error('zernfun:NMmultiplesof2', ... ok[=1gA#h  
              'All N and M must differ by multiples of 2 (including 0).') 9M]"%E!s  
    end suFOc  
    n-3j$x1Ne  
    if any(m>n) ,,@`l\Pgd  
        error('zernfun:MlessthanN', ... `HG19_Z  
              'Each M must be less than or equal to its corresponding N.') =jc8=h[F<  
    end Lc<xgN+cJ  
    K9Xd? ]a  
    if any( r>1 | r<0 ) HFuaoS+b*  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') "GI&S%F  
    end WgJAr73 l  
    Us,[x Q  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) (V.,~t@  
        error('zernfun:RTHvector','R and THETA must be vectors.') 7/_ VE  
    end 5jV97x)BGx  
    >JPJ%~y  
    r = r(:); 5w)^~#  '  
    theta = theta(:); ~e77w\Q0  
    length_r = length(r); Sn2Ds)Pfx3  
    if length_r~=length(theta) *}ee"eHs  
        error('zernfun:RTHlength', ... "P5bYq%0v  
              'The number of R- and THETA-values must be equal.') A}bHfn|  
    end ^>8]3@ Nh  
    U?fN3  
    % Check normalization: F[D0x26 ^  
    % -------------------- QYfAf3te  
    if nargin==5 && ischar(nflag) nX\]i~  
        isnorm = strcmpi(nflag,'norm'); BrH;(*H)8  
        if ~isnorm CKt|c!3 7  
            error('zernfun:normalization','Unrecognized normalization flag.') ht3T{4qCS  
        end P!+nZXo  
    else !Vr45l  
        isnorm = false; )^f9[5ee  
    end 9LO.8Jy  
    %C`'>,t>  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% `3y!XET  
    % Compute the Zernike Polynomials cbCE $  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% M=[q+A  
    `x$}~rP&)!  
    % Determine the required powers of r: e*2&s5 #RT  
    % ----------------------------------- .\~P -{Hd  
    m_abs = abs(m); 8#]7`o  
    rpowers = []; NnLhJPh  
    for j = 1:length(n) )yNw2+ ~5  
        rpowers = [rpowers m_abs(j):2:n(j)]; T]#,R|)d  
    end FK@ f'  
    rpowers = unique(rpowers); R_>TEYZ  
    Q;XHHk  
    % Pre-compute the values of r raised to the required powers, nKjeH@&#  
    % and compile them in a matrix: 1%hM8:)i_  
    % ----------------------------- `@$"L/AJ  
    if rpowers(1)==0 85|95P.<  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); $}^\=p}X  
        rpowern = cat(2,rpowern{:}); MeI2i  
        rpowern = [ones(length_r,1) rpowern]; NB+$ym  
    else \'??  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 7"n1it[RJ8  
        rpowern = cat(2,rpowern{:}); c. TB8Ol  
    end !q-:rW? c  
    ? gA=39[j  
    % Compute the values of the polynomials: )-.Cne;n  
    % -------------------------------------- -.b Io  
    y = zeros(length_r,length(n)); ^\ vfos  
    for j = 1:length(n) 20/P M9  
        s = 0:(n(j)-m_abs(j))/2; =tS[&6/  
        pows = n(j):-2:m_abs(j); 9*=@/1  
        for k = length(s):-1:1 }+{*, z  
            p = (1-2*mod(s(k),2))* ... hINnb7 o  
                       prod(2:(n(j)-s(k)))/              ... Q"OV>klk  
                       prod(2:s(k))/                     ... q: Bt]2x  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... x0u?*5-t  
                       prod(2:((n(j)+m_abs(j))/2-s(k)));  Qh|-a@  
            idx = (pows(k)==rpowers); V#zhG AMy.  
            y(:,j) = y(:,j) + p*rpowern(:,idx); -B*<Q[_  
        end ''(fH$pY  
         vn0cKz@  
        if isnorm hi {2h04  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); vLnq%@x  
        end 6+Wr6'kuH  
    end mmrW`~-  
    % END: Compute the Zernike Polynomials ZVdsxo<  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ^_*jp[!`b$  
    x2j /8]'o  
    % Compute the Zernike functions: -7-Fd_F8  
    % ------------------------------ 5W[3_P+  
    idx_pos = m>0; j8[`~p b  
    idx_neg = m<0; ]cF1c90%  
    W(uP`M%][0  
    z = y; VY+(,\ )U  
    if any(idx_pos) x{NNx:T1  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ><;l:RGK|  
    end A*7Io4e!  
    if any(idx_neg) qJ{r!NJJ 8  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); f?=r3/AO  
    end Kk!6B  
    ="3a%\  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) 8A2if 9E3  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. `pP9z;/Xq  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated _MM   
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive 8ivRp<9  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, H|PrsGW  
    %   and THETA is a vector of angles.  R and THETA must have the same N4I^.k<-A  
    %   length.  The output Z is a matrix with one column for every P-value, P['X<Xt8  
    %   and one row for every (R,THETA) pair. lZ}izl  
    % =ud `6{R  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike jA4PDHf+  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) L7SEswMti  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) Dz[566UD  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 ' 2>l  
    %   for all p. -1Djo:y  
    % |'ZN!2u  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 >j&1?M2C  
    %   Zernike functions (order N<=7).  In some disciplines it is 'n~fR]h}  
    %   traditional to label the first 36 functions using a single mode |.1qy,|!X  
    %   number P instead of separate numbers for the order N and azimuthal E9^(0\Z I  
    %   frequency M. n`P`yb\f$  
    % uVN.=  
    %   Example: $ I#7dJ"*  
    % i4hJE  
    %       % Display the first 16 Zernike functions Q 2*/`L}m\  
    %       x = -1:0.01:1; @(Z( /P;:  
    %       [X,Y] = meshgrid(x,x); ?K0U3V$s  
    %       [theta,r] = cart2pol(X,Y); joe9.{  
    %       idx = r<=1; ows^W8-w  
    %       p = 0:15; $v FrUv  
    %       z = nan(size(X)); F vj{@B!  
    %       y = zernfun2(p,r(idx),theta(idx)); / >%L[RJ4  
    %       figure('Units','normalized') j2M4H@  
    %       for k = 1:length(p) K6E}";;  
    %           z(idx) = y(:,k); F#6cF=};@  
    %           subplot(4,4,k) uii7b 7[w  
    %           pcolor(x,x,z), shading interp =KV@&Y^x4  
    %           set(gca,'XTick',[],'YTick',[]) ; vMn/  
    %           axis square 8GY.){d!l  
    %           title(['Z_{' num2str(p(k)) '}']) Ru:n~77{  
    %       end qc3~cH.@  
    % |Z d]= tue  
    %   See also ZERNPOL, ZERNFUN. G OpjRA@  
    fVYiwE=F  
    %   Paul Fricker 11/13/2006 5)mVy?Z  
    9x(}F<L  
    kg:l:C)Tq  
    % Check and prepare the inputs: ai4PM b$p  
    % ----------------------------- [KMS<4t'  
    if min(size(p))~=1 9X3yp:>V  
        error('zernfun2:Pvector','Input P must be vector.') q'.;W@m  
    end N*f^Z#B]  
    TaOOq}8c#  
    if any(p)>35 WJAYM2 6\  
        error('zernfun2:P36', ... 3g;T?E  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... P 4QkY#v  
               '(P = 0 to 35).']) tR<L`?4  
    end L%f;J/  
    b7!UZu]IEv  
    % Get the order and frequency corresonding to the function number: pzg&/m&F`  
    % ---------------------------------------------------------------- HM):"  
    p = p(:); IQIbz{bMx  
    n = ceil((-3+sqrt(9+8*p))/2); _e*c  
    m = 2*p - n.*(n+2); *E}Oh  
    9Fk4|+OJ  
    % Pass the inputs to the function ZERNFUN: 8^y=H=  
    % ---------------------------------------- Ae6("Oid  
    switch nargin LP,9<&"<  
        case 3 Mm.Ql  
            z = zernfun(n,m,r,theta); W<Z$YWr  
        case 4 N#UXP5C(  
            z = zernfun(n,m,r,theta,nflag); rCE;'? Y  
        otherwise dnwdFsf  
            error('zernfun2:nargin','Incorrect number of inputs.') Y#`Lcg+r,  
    end }'TTtV:Q  
    ?gN9kd)  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) zP&q7 t;>  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. ;E#\   
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of Q&PB]D{  
    %   order N and frequency M, evaluated at R.  N is a vector of `L\)ahM  
    %   positive integers (including 0), and M is a vector with the f>z`i\1oO  
    %   same number of elements as N.  Each element k of M must be a b=1%pX_  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) !}5*?k g  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is xr.XU'  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix _f3 WRyN0  
    %   with one column for every (N,M) pair, and one row for every Qci$YTwl>  
    %   element in R. "yW&<7u1  
    % (a }J$:  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- m?;$;x~Dj  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is E/mw* c^  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to l E^*t`+  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 .*!#98pT  
    %   for all [n,m]. N _G4_12(  
    % $O9Xx  
    %   The radial Zernike polynomials are the radial portion of the  M6Pw /S!  
    %   Zernike functions, which are an orthogonal basis on the unit ,H39V+Y*  
    %   circle.  The series representation of the radial Zernike XsUUJuCG  
    %   polynomials is ],[)uTZc  
    % 9P.(^SD][z  
    %          (n-m)/2 J>%t<xYf4  
    %            __ LeHiT>aX!  
    %    m      \       s                                          n-2s FVgMmYU  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r V7C1FV2  
    %    n      s=0 rl?7W];  
    % @o#+5P  
    %   The following table shows the first 12 polynomials. Uo6(|mm  
    % w^{! U  
    %       n    m    Zernike polynomial    Normalization TJOvyz`t  
    %       --------------------------------------------- 3wC R|ab}  
    %       0    0    1                        sqrt(2) /\J|Uj  
    %       1    1    r                           2 <'&F;5F3V  
    %       2    0    2*r^2 - 1                sqrt(6) //.>>-~1m  
    %       2    2    r^2                      sqrt(6) :c7CiP  
    %       3    1    3*r^3 - 2*r              sqrt(8) ((|IS[  
    %       3    3    r^3                      sqrt(8) b/<mRQ{  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) P^[/Qi}j  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) .X `C^z]+  
    %       4    4    r^4                      sqrt(10) B1$ikY  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) >SDp uG&>  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) [U.v:tR   
    %       5    5    r^5                      sqrt(12) jPk c3dG +  
    %       --------------------------------------------- .Xd0 Q=1h  
    % mxJXL":|  
    %   Example: \.<KA  
    % N:x0w+Ca  
    %       % Display three example Zernike radial polynomials XmWlv{T+  
    %       r = 0:0.01:1; eko]H!Ov(  
    %       n = [3 2 5]; }U[-44r:  
    %       m = [1 2 1]; KDey(DN:  
    %       z = zernpol(n,m,r); Sj-[%D*  
    %       figure E>pVn2|  
    %       plot(r,z) V1utUGJV  
    %       grid on 64U6C*w+  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') y3IWfiz>/d  
    % B~TN/sd  
    %   See also ZERNFUN, ZERNFUN2. n &}s-`D  
    gyu6YD8L  
    % A note on the algorithm. H}nJbnU  
    % ------------------------ C1QV[bJK  
    % The radial Zernike polynomials are computed using the series Y~qb;N\  
    % representation shown in the Help section above. For many special FifbxL  
    % functions, direct evaluation using the series representation can k^An97J  
    % produce poor numerical results (floating point errors), because p=gX !4,9<  
    % the summation often involves computing small differences between T*CME]  
    % large successive terms in the series. (In such cases, the functions GGnp Pp  
    % are often evaluated using alternative methods such as recurrence `.^ |]|u  
    % relations: see the Legendre functions, for example). For the Zernike z%:&#1)  
    % polynomials, however, this problem does not arise, because the [uR/M  
    % polynomials are evaluated over the finite domain r = (0,1), and AK2WN#u@Z  
    % because the coefficients for a given polynomial are generally all #ia;- 3  
    % of similar magnitude. 1 Z[f {T)  
    % lTz6"/  
    % ZERNPOL has been written using a vectorized implementation: multiple S_Z`so}  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] <DZcra  
    % values can be passed as inputs) for a vector of points R.  To achieve  >eS$  
    % this vectorization most efficiently, the algorithm in ZERNPOL 9lspo~M  
    % involves pre-determining all the powers p of R that are required to ^M[P-#X_  
    % compute the outputs, and then compiling the {R^p} into a single YD&_^3-XM  
    % matrix.  This avoids any redundant computation of the R^p, and >n$ !<  
    % minimizes the sizes of certain intermediate variables. D7Zm2Kj  
    % ~V+l_ :  
    %   Paul Fricker 11/13/2006 {exrwnIZj  
    ai^|N.!  
    )^/0cQcJ  
    % Check and prepare the inputs: D:E9!l'  
    % ----------------------------- 9_huI'"p  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) cm@;*  
        error('zernpol:NMvectors','N and M must be vectors.') K2ewucn  
    end 1;wb(DN*c  
    !'W-6f  
    if length(n)~=length(m) 9UD @MA  
        error('zernpol:NMlength','N and M must be the same length.') +jV_Wz  
    end bd \=h1  
    lG"H4Aa>  
    n = n(:); LwdV3vb#  
    m = m(:); -cfx2;68  
    length_n = length(n); +nU.p/cK+\  
    ]P1YHw9  
    if any(mod(n-m,2)) ` }8&E(<  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') E%3TP_B3  
    end 3,6Ox45  
    8cdsToF(e.  
    if any(m<0) Ijedo/  
        error('zernpol:Mpositive','All M must be positive.') U[||~FW'  
    end `ROG~0lN(  
    5H !y46z  
    if any(m>n) G[z .&l  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') 3 ^}A %-bS  
    end l(:kfR~AC  
    J8Z0D:5  
    if any( r>1 | r<0 ) RKuqx:U  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') :zp`6l  
    end M_1;$fWq  
    e!X(yJI[O6  
    if ~any(size(r)==1) PT_KXk  
        error('zernpol:Rvector','R must be a vector.') KIus/S5 RC  
    end 5PiOH"!19  
    eegx'VSX4  
    r = r(:); Iti0qnBN5  
    length_r = length(r); oln<yyDs   
    ]U_ec*a  
    if nargin==4  y4jU{,  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); .C!vr@@]  
        if ~isnorm q7Es$zjX  
            error('zernpol:normalization','Unrecognized normalization flag.') xJhU<q~?  
        end 3W&S.$l  
    else =G${[V \  
        isnorm = false; hIU(P Dl4  
    end x;#zs64f  
    ~`cwG` 'N  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% .<&s%{EW  
    % Compute the Zernike Polynomials O)#U ^  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -5Utl os  
    0Y?H0  
    % Determine the required powers of r: QLo(i  
    % ----------------------------------- LU2waq}VA  
    rpowers = []; ;ojiJ ?jU  
    for j = 1:length(n) c:\shAM&  
        rpowers = [rpowers m(j):2:n(j)]; JUt7En;XE  
    end 0A[esWmP  
    rpowers = unique(rpowers); :tj-gDa\Y  
    SvuTc!$?  
    % Pre-compute the values of r raised to the required powers, ,sQ93(Vo  
    % and compile them in a matrix: T *>`,}J  
    % ----------------------------- ^[q /Mw  
    if rpowers(1)==0 b"CAKl  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); SF<Vds}A2  
        rpowern = cat(2,rpowern{:}); Xe1P- 6 0  
        rpowern = [ones(length_r,1) rpowern]; vq'k|_Qi=  
    else qx)?buAij  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Sc$UZ/qPT  
        rpowern = cat(2,rpowern{:}); SW 8x]B  
    end U ?b".hJ2  
    d7Ro}>lp  
    % Compute the values of the polynomials: jna;0)  
    % -------------------------------------- $yb@ Hhx>  
    z = zeros(length_r,length_n); MDO$m g  
    for j = 1:length_n E4oz|2!m  
        s = 0:(n(j)-m(j))/2; 4na8  
        pows = n(j):-2:m(j); WlVl[/qt  
        for k = length(s):-1:1 u$*>`Xe6  
            p = (1-2*mod(s(k),2))* ... #@f[bP}a  
                       prod(2:(n(j)-s(k)))/          ... v#oi0-9o[  
                       prod(2:s(k))/                 ... w# y2_  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... @wN G  
                       prod(2:((n(j)+m(j))/2-s(k))); z@U} ~TvP  
            idx = (pows(k)==rpowers); D$r Uid  
            z(:,j) = z(:,j) + p*rpowern(:,idx); 5<+K?uhm  
        end &t}?2>:  
         VLvS$0(}Z  
        if isnorm /yPXMJ6W~R  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); F4C!CUI  
        end :0~QRc-u  
    end m#5_%3T  
    3YL l;TP_  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  .3qu9eP   
    62'1X"  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 Cr ? 4Ngw  
    \6I +K"  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)