非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 9X9zIh]JV
function z = zernfun(n,m,r,theta,nflag) jSp&mD*xv
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. U^BXCu1km
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N :b*`hWnQ
% and angular frequency M, evaluated at positions (R,THETA) on the Cf[F`pFM
% unit circle. N is a vector of positive integers (including 0), and ;<@6f @
% M is a vector with the same number of elements as N. Each element O'|P|
% k of M must be a positive integer, with possible values M(k) = -N(k) `sy &dyM
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, OG7v'vmY
% and THETA is a vector of angles. R and THETA must have the same 5'Jh2r
% length. The output Z is a matrix with one column for every (N,M) O) %kl
% pair, and one row for every (R,THETA) pair. ~PW}sN6ppG
% 7u5\#|yL
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike KGmc*Jwy
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 5|G3t`$pa
% with delta(m,0) the Kronecker delta, is chosen so that the integral nvo1+W(%
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, #r)1<}_e#
% and theta=0 to theta=2*pi) is unity. For the non-normalized gzCMJ<3!D
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. "4uUI_E9F;
% MI'l4<>u
% The Zernike functions are an orthogonal basis on the unit circle. p6Dv;@)Yn
% They are used in disciplines such as astronomy, optics, and qbq<O %g=
% optometry to describe functions on a circular domain. uf'P9MA}>
% [j]J_S9jJ
% The following table lists the first 15 Zernike functions. i z>y u[|
% y{Y+2}Dv/
% n m Zernike function Normalization J:Y|O-S!
% -------------------------------------------------- .4re0:V
% 0 0 1 1 |\n)<r_
% 1 1 r * cos(theta) 2 s8Ry}{
% 1 -1 r * sin(theta) 2 W$Q)aA7
% 2 -2 r^2 * cos(2*theta) sqrt(6) ^Xy$is3
% 2 0 (2*r^2 - 1) sqrt(3) qvU$9cTY
% 2 2 r^2 * sin(2*theta) sqrt(6) j /dE6d
% 3 -3 r^3 * cos(3*theta) sqrt(8) dF11Rj,~ 8
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) +<WRB\W
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) ]n]uN~)9
% 3 3 r^3 * sin(3*theta) sqrt(8) &Dg)"Xji
% 4 -4 r^4 * cos(4*theta) sqrt(10) Y:!/4GF
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) wQ=yY$VP
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) 1;:t~Y
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) T19rbL_
% 4 4 r^4 * sin(4*theta) sqrt(10) M|5]#2J_2
% -------------------------------------------------- ?I2k6%a
% t#pqXY/;D
% Example 1: -8Jl4F ,
% Z:lB:U'o
% % Display the Zernike function Z(n=5,m=1) ]AZ\5C-J
% x = -1:0.01:1; JdUz!=I
% [X,Y] = meshgrid(x,x); {I9N6BQ&
% [theta,r] = cart2pol(X,Y); N~S[xS?
% idx = r<=1; Uq]EJu
% z = nan(size(X)); g t^]32$
% z(idx) = zernfun(5,1,r(idx),theta(idx)); MpIw^a3(r
% figure mj~N]cxB
% pcolor(x,x,z), shading interp Y =g>r]2
% axis square, colorbar |IX` (
% title('Zernike function Z_5^1(r,\theta)') |
2.e0Z]k
% /pIb@:Y1?
% Example 2: ICl_ eb
% NM1cyZ
% % Display the first 10 Zernike functions > 0Twr
% x = -1:0.01:1; ua$k^m7m5
% [X,Y] = meshgrid(x,x); p17|ld`
% [theta,r] = cart2pol(X,Y); {GQ
Aa
% idx = r<=1; ~ACP%QM=
% z = nan(size(X)); tFvgvx\:
% n = [0 1 1 2 2 2 3 3 3 3]; KI Plb3oh
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; :,%J6Zh?
% Nplot = [4 10 12 16 18 20 22 24 26 28]; 3Zaq#uA
% y = zernfun(n,m,r(idx),theta(idx)); .YjrV+om1
% figure('Units','normalized') WpJD=C%
% for k = 1:10 RQo$iISwy
% z(idx) = y(:,k); YV1a3
% subplot(4,7,Nplot(k)) iz9\D*or
% pcolor(x,x,z), shading interp OC?Zw@
% set(gca,'XTick',[],'YTick',[]) Sqdc1zC
% axis square VA=#0w
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) +U+aWk
% end LZUA+ x(
% q?;*g@t
% See also ZERNPOL, ZERNFUN2. Y/^[qD
i?a,^UM5n[
% Paul Fricker 11/13/2006 sP6 ):h
%$ir a\
sM
@zr8%8n
% Check and prepare the inputs: '0CXHjZN
% ----------------------------- ^sT+5M^
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) !@^y)v
error('zernfun:NMvectors','N and M must be vectors.') %\X P:
end y$j1?7
5:*5j@/S
if length(n)~=length(m) `z3|M#r\;
error('zernfun:NMlength','N and M must be the same length.') f[JI/H>
end MfXt+c`r
tp1KP/2w[
n = n(:); Kf05<J!
m = m(:); ?JXBWB4
if any(mod(n-m,2)) C3
gZ6m
error('zernfun:NMmultiplesof2', ... #$rf-E5g-K
'All N and M must differ by multiples of 2 (including 0).') &\[Qm{lN
end 6P%<[Z
lFiq<3Nk
if any(m>n) ;f".'9 l^
error('zernfun:MlessthanN', ... < 72s7*Rv
'Each M must be less than or equal to its corresponding N.') F* 3G_V
end '^Pq(b~
wUru1_zjO
if any( r>1 | r<0 )
&7L~PZ
error('zernfun:Rlessthan1','All R must be between 0 and 1.') $:f.Krj
end ov\Ct%]
jo,6Aog|u
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 9nng}em>.
error('zernfun:RTHvector','R and THETA must be vectors.') z3^RUoGU
end WdTbt
$"Y3mD}?L
r = r(:); V.K70)]
theta = theta(:); l9_m>X~
length_r = length(r); W$z#ssr
if length_r~=length(theta) -!XrwQyk
error('zernfun:RTHlength', ... /J1S@-
'The number of R- and THETA-values must be equal.') H{j~ihq7
end ?JuX~{{.L
%$/=4f.j
% Check normalization: 6PiEa(
% -------------------- =:4'
if nargin==5 && ischar(nflag) dzgs%qtK
isnorm = strcmpi(nflag,'norm'); zo_k\K`{@
if ~isnorm k k
8R
error('zernfun:normalization','Unrecognized normalization flag.') 2yl6~(JC+
end m5e\rMN~>\
else Z -pyFK\
isnorm = false; +DicP"~*
end rU;
g0'4e
d>^~9X
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% AU0$A403
% Compute the Zernike Polynomials S#P+B*v
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% utq.r_
(YAI,Xnw
% Determine the required powers of r: +7Sf8tg\
% ----------------------------------- M{*kB2jr
m_abs = abs(m); lN);~|IOv7
rpowers = []; U^B"|lc:[
for j = 1:length(n) '/Cg*o/
rpowers = [rpowers m_abs(j):2:n(j)];
s0gJ f[
end w|&,I4["
rpowers = unique(rpowers); B`LD7]ew
vz6SCGg,
% Pre-compute the values of r raised to the required powers, HvAE,0N
% and compile them in a matrix: kVWGDI$~
% ----------------------------- t G]N*%@
if rpowers(1)==0 P\.WXe#j
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); O-i4_YdVt
rpowern = cat(2,rpowern{:}); <"N:rn{Qq
rpowern = [ones(length_r,1) rpowern]; U%Dit
else $RpFxi
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); DD2adu^
rpowern = cat(2,rpowern{:}); /^d. &@*
end \.5F](:
:}^Rs9 '
% Compute the values of the polynomials: b([:,T7
% -------------------------------------- T0g0jr{
y = zeros(length_r,length(n)); ot^q}fRX
for j = 1:length(n) R_maNfS]Z
s = 0:(n(j)-m_abs(j))/2; |Es0[cU
pows = n(j):-2:m_abs(j); z|uOJ0uK
for k = length(s):-1:1 5xhM0(
p = (1-2*mod(s(k),2))* ... j(&GVy^;?
prod(2:(n(j)-s(k)))/ ... P2O\!'aEh
prod(2:s(k))/ ... O97VdNT8
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... `a-Bji?
prod(2:((n(j)+m_abs(j))/2-s(k))); wc"9A~
idx = (pows(k)==rpowers); j]AekI4I
y(:,j) = y(:,j) + p*rpowern(:,idx); 64SW
end ^#2xQ5h
'[%jjUU
if isnorm |0lLl^zp
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); nQ|GqU\oA
end wXz\NGW
end |ribWCv0
% END: Compute the Zernike Polynomials 5Wo5n7o
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ;;M"hI3@
\Ps5H5Qk;
% Compute the Zernike functions: tbg*_ZQO u
% ------------------------------ ^s=*J=k
idx_pos = m>0; 2_wvC
idx_neg = m<0; w:v=se"U
ka/nQ~_#<
z = y; { E^U6@
if any(idx_pos) Vu=] O/ =P
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); _FT6]I0
end h
5Hr[E1
if any(idx_neg) 7"#f!.E
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); a%v>eXc
end D '<$ g
"3wv:BL
% EOF zernfun