切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11509阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 BVKr 2v  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! ];-DqK'  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 HF9\SVR B  
    function z = zernfun(n,m,r,theta,nflag) y Iab3/#`  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. &1O!guq%  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N RL|13CG OP  
    %   and angular frequency M, evaluated at positions (R,THETA) on the [DW}z  
    %   unit circle.  N is a vector of positive integers (including 0), and /`M> 3q[  
    %   M is a vector with the same number of elements as N.  Each element T;cyU9  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) \hjGw,d  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, .Z,3:3,]  
    %   and THETA is a vector of angles.  R and THETA must have the same 'bH',X8gF  
    %   length.  The output Z is a matrix with one column for every (N,M) |G2hm8 Y  
    %   pair, and one row for every (R,THETA) pair. \5+?wpH  
    % _xg4;W6M=  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike i\P?Y(-{  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Fq{Z-yVp  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral [x {S ,?6  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, e ~X<+3<  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized '%W'HqVcG1  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. qz|`\^  
    % Wvhg:vup  
    %   The Zernike functions are an orthogonal basis on the unit circle. u9WQ0.  
    %   They are used in disciplines such as astronomy, optics, and Qg)=4(<Hr  
    %   optometry to describe functions on a circular domain. Mo+ mO&B  
    % KY)r kfo B  
    %   The following table lists the first 15 Zernike functions. +]n.uA-`[a  
    % z3l= aAw8  
    %       n    m    Zernike function           Normalization $rB20!  
    %       -------------------------------------------------- o8!gV/oy  
    %       0    0    1                                 1 aR }|^ex  
    %       1    1    r * cos(theta)                    2 cJEO wAN  
    %       1   -1    r * sin(theta)                    2 _n.2'  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) traJub  
    %       2    0    (2*r^2 - 1)                    sqrt(3) P);: t~  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) =F!DwaZ  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) GP"(+5  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) us&!%`  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 8\Y/?$on  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) aBPaC=g{HO  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 'xNPy =#  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ^wL n  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) SZOcFmC?  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) V\ ud4  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) @PXb^x#k  
    %       -------------------------------------------------- KRS_6G],{  
    % >U~B"'!xV  
    %   Example 1: 5XO eYO{  
    % FHNK%Ko  
    %       % Display the Zernike function Z(n=5,m=1) :Zy7h7P,lT  
    %       x = -1:0.01:1; `aFy2x`3  
    %       [X,Y] = meshgrid(x,x); Da)rzr|}>3  
    %       [theta,r] = cart2pol(X,Y); b P>!&s_  
    %       idx = r<=1; ;T0Y= yC  
    %       z = nan(size(X)); lYlU8l5>  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); !P7##ho0  
    %       figure 39;Z+s";  
    %       pcolor(x,x,z), shading interp qyP|`Pm4  
    %       axis square, colorbar gf!hO$sQ3  
    %       title('Zernike function Z_5^1(r,\theta)') ICNS+KsI  
    % |Rr^K5hmD  
    %   Example 2: zcrLd={  
    % !B==cNq  
    %       % Display the first 10 Zernike functions Ep% 5wR  
    %       x = -1:0.01:1; gf]biE"k  
    %       [X,Y] = meshgrid(x,x); (>qX>  
    %       [theta,r] = cart2pol(X,Y); Wt +, 6Cq  
    %       idx = r<=1; )!1; =   
    %       z = nan(size(X)); iSTr;>A  
    %       n = [0  1  1  2  2  2  3  3  3  3]; I)~&6@J n  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; Jtj_R l !  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; }i1p &EN^  
    %       y = zernfun(n,m,r(idx),theta(idx)); %K^l]tWa@  
    %       figure('Units','normalized') gY AXUM,  
    %       for k = 1:10 g-=)RIwm  
    %           z(idx) = y(:,k); ^'S0A=1  
    %           subplot(4,7,Nplot(k)) ,s'78Dc$  
    %           pcolor(x,x,z), shading interp @Taj++ua  
    %           set(gca,'XTick',[],'YTick',[]) /#Y)nyE  
    %           axis square (~/VP3.S  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) !FweXFl  
    %       end e";r_J3w  
    % $'3`$   
    %   See also ZERNPOL, ZERNFUN2. W G2 E3y  
    a^qLyF& F  
    %   Paul Fricker 11/13/2006 zdCeOZ 6  
    \F%5TRoC  
    <{7CS=)  
    % Check and prepare the inputs: ZF :e6em  
    % ----------------------------- 8tWOVLquJ  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) @R= gJ:&a  
        error('zernfun:NMvectors','N and M must be vectors.') mrDIt4$D  
    end .gNWDk0$Y  
    %iWup:  
    if length(n)~=length(m) aH)$#6${Ap  
        error('zernfun:NMlength','N and M must be the same length.') -f0Nb+AR  
    end ~LPxVYhK  
    16MRLDhnD  
    n = n(:); NLFSw  
    m = m(:); 6#XB'PR2p  
    if any(mod(n-m,2)) `r+"2.z*  
        error('zernfun:NMmultiplesof2', ... ^4^1)' %  
              'All N and M must differ by multiples of 2 (including 0).') uhL+bj+W  
    end yc5C`r+6  
    W=M`Bkw{  
    if any(m>n) O"4Q=~Y  
        error('zernfun:MlessthanN', ... ;crQ7}k  
              'Each M must be less than or equal to its corresponding N.') BP2-LG&\  
    end IM&2SSmYNH  
    E"5 z T1d  
    if any( r>1 | r<0 ) U@+ @Mc  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') &^e%gU8!\  
    end ~lMw*Qw^  
    5T;M,w6DV  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) TEl :;4  
        error('zernfun:RTHvector','R and THETA must be vectors.') &P&LjHFK  
    end 7QP%Pny%  
    {hB7F"S  
    r = r(:); &~U!X~PpB  
    theta = theta(:); ~vnG^y>%  
    length_r = length(r); +MPM^m  
    if length_r~=length(theta) Q[^IX  
        error('zernfun:RTHlength', ... FX7=81**4  
              'The number of R- and THETA-values must be equal.') }fnp}L  
    end J& }/Xw)  
    \o9-[V#Gm  
    % Check normalization: ]Mi ~vG q  
    % -------------------- oK&LYlU  
    if nargin==5 && ischar(nflag) 98h,VuKVaB  
        isnorm = strcmpi(nflag,'norm'); obRR))  
        if ~isnorm IbC(/i#%`  
            error('zernfun:normalization','Unrecognized normalization flag.') Ed,`1+  
        end :G9+-z{Y&  
    else SCE5|3j  
        isnorm = false; L+Yn}"gIs  
    end !s#25}9zX5  
    tWQ_.,ld  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 8RWfv}:X  
    % Compute the Zernike Polynomials WS8m^~S@\  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% LY2oBX@fC  
    %o9@[o .]  
    % Determine the required powers of r: j?%^N\9  
    % ----------------------------------- 0ZPwEP  
    m_abs = abs(m); C J S  
    rpowers = []; C{!L +]/  
    for j = 1:length(n) $j:$ `  
        rpowers = [rpowers m_abs(j):2:n(j)]; SV16]Vc  
    end 3}=r.\]U  
    rpowers = unique(rpowers); ,<F=\G_f  
    G$pTTT6#  
    % Pre-compute the values of r raised to the required powers, S!<YVQq  
    % and compile them in a matrix: #pP4\n-~hU  
    % ----------------------------- jW*|Mu>2  
    if rpowers(1)==0 ?|'+5$  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); :@)UI,  
        rpowern = cat(2,rpowern{:}); 3^ ~M7=k  
        rpowern = [ones(length_r,1) rpowern]; km2('t7?  
    else D].!u{##  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); v.:aICB5  
        rpowern = cat(2,rpowern{:}); ia 1Sf3  
    end e*p7(b-  
    \$Y Kw0K  
    % Compute the values of the polynomials: ;EbGW&T  
    % -------------------------------------- |m7U^  
    y = zeros(length_r,length(n)); ~K}iVX  
    for j = 1:length(n) M*FUtu  
        s = 0:(n(j)-m_abs(j))/2; P'f =r%  
        pows = n(j):-2:m_abs(j); }S51yDVG_  
        for k = length(s):-1:1 W[BZ/   
            p = (1-2*mod(s(k),2))* ... JP`$A  
                       prod(2:(n(j)-s(k)))/              ... rF:C({y  
                       prod(2:s(k))/                     ... ;q]Jm  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... [ qt hn[3  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); RY'f%c  
            idx = (pows(k)==rpowers); >(mp$#+w  
            y(:,j) = y(:,j) + p*rpowern(:,idx); ~$n4Yuu2[  
        end E^w2IIw  
         Q\Dx/?g!vx  
        if isnorm .?R~!K{`  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); r_nB-\  
        end l+!!S"=8)~  
    end .zQ:u{FT  
    % END: Compute the Zernike Polynomials IvGQ7 VLr  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% wBZ=IMDu\  
    |N_tVE  
    % Compute the Zernike functions: 2g5i3C.q$  
    % ------------------------------ MyB&mC7Es  
    idx_pos = m>0; jGpSECs  
    idx_neg = m<0; c} )U:?6  
    hw! l{yv  
    z = y; -F=?M+9[  
    if any(idx_pos) 2 Ya)I k{  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); NRu _6~^^  
    end }5c%v1  
    if any(idx_neg) gU\pP,a  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Ie{98  
    end I?` }h}7.  
    $/;D8P5/&=  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) ^X-3YhJ4U  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. ldp x,  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated S(NH# ^  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive +8qtFog$\g  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, ^b|Z<oF  
    %   and THETA is a vector of angles.  R and THETA must have the same 58xaVOhb  
    %   length.  The output Z is a matrix with one column for every P-value, ;fomc<  
    %   and one row for every (R,THETA) pair. j"(o>b v7  
    % wM.z/r\p  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike ]xGo[:k|E  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) /`(Kbwh   
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) .OhpItn  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 >,c$e' h  
    %   for all p. dRw O t  
    % ZEY="pf  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 -& Qm"-?:  
    %   Zernike functions (order N<=7).  In some disciplines it is 7$3R}=Z`\q  
    %   traditional to label the first 36 functions using a single mode i%BrnjX  
    %   number P instead of separate numbers for the order N and azimuthal ,TeJx+z^  
    %   frequency M. $t*>A+J  
    % 6,C2PR_+  
    %   Example: <Jt H/oN  
    % ,RmXZnWY  
    %       % Display the first 16 Zernike functions y?=W  
    %       x = -1:0.01:1; <Q57}[$*)  
    %       [X,Y] = meshgrid(x,x);  )ph**g  
    %       [theta,r] = cart2pol(X,Y); K:!){a[  
    %       idx = r<=1; ]U[y3  
    %       p = 0:15; W,sU5sjA  
    %       z = nan(size(X)); s|er+-'  
    %       y = zernfun2(p,r(idx),theta(idx)); Y~I$goT  
    %       figure('Units','normalized') D#%aow'(7  
    %       for k = 1:length(p) !`kX</ha.  
    %           z(idx) = y(:,k); RF3?q6j ,  
    %           subplot(4,4,k) Mc8|4/<Z  
    %           pcolor(x,x,z), shading interp 2_S%vA<L  
    %           set(gca,'XTick',[],'YTick',[]) HCBZ*Z-  
    %           axis square jA'qXc+\  
    %           title(['Z_{' num2str(p(k)) '}']) &d,chb (  
    %       end {u!Q=D$3  
    % vjo@aY.x  
    %   See also ZERNPOL, ZERNFUN. 3[q&%Z.  
    F; upb5  
    %   Paul Fricker 11/13/2006 nsT]Yxo%M  
    a[e&O&Z  
    $}&r.=J".  
    % Check and prepare the inputs: 7RXTQ9BS  
    % ----------------------------- g)Ep'd-w"  
    if min(size(p))~=1 -dRnozs6W  
        error('zernfun2:Pvector','Input P must be vector.') !-G'8a|7  
    end ZtzSG@f  
    48}L!m @  
    if any(p)>35 'K|Jg.2  
        error('zernfun2:P36', ... +SM&_b  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... Z|78>0SAt  
               '(P = 0 to 35).']) 8]SJ=c"}Xf  
    end [cJQ"G '  
    Mn)>G36(  
    % Get the order and frequency corresonding to the function number: ,/m@<NyK  
    % ---------------------------------------------------------------- !WTZ =|  
    p = p(:); .`I;qF  
    n = ceil((-3+sqrt(9+8*p))/2); =J@M, mbHg  
    m = 2*p - n.*(n+2); j@w+>h  
    =1!,A  
    % Pass the inputs to the function ZERNFUN: Vgh;w-a  
    % ---------------------------------------- OO7sj@  
    switch nargin 8 `\^wG$W  
        case 3 25bbuhss  
            z = zernfun(n,m,r,theta); "o| f  
        case 4 "hE/f~\  
            z = zernfun(n,m,r,theta,nflag); @k< e]@r  
        otherwise 4blw9x N  
            error('zernfun2:nargin','Incorrect number of inputs.') JpI(Vcd  
    end 33R1<dRk  
    1\'?.  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) I "8:IF  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. bCV3h3<  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of  <>|&%gmz  
    %   order N and frequency M, evaluated at R.  N is a vector of {2A| F{7>  
    %   positive integers (including 0), and M is a vector with the 'ycr/E&m{  
    %   same number of elements as N.  Each element k of M must be a ">8]Oi;g  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) 2 }9of[  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is kiah,7V/  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix 3 s@6pI  
    %   with one column for every (N,M) pair, and one row for every *Ce8( "v,  
    %   element in R. xJ-(]cO'  
    % sIVVF#0}]  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- cWNZ +Q8Y  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is r8R]0\  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to >A]U.C  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 bF85T(G  
    %   for all [n,m]. qdM=}lbc  
    % .5S< G)Ja  
    %   The radial Zernike polynomials are the radial portion of the *btLd7c%  
    %   Zernike functions, which are an orthogonal basis on the unit "8.to=Lx  
    %   circle.  The series representation of the radial Zernike !Q/%N#  
    %   polynomials is ;s^br17z~  
    % 4R c_C0O  
    %          (n-m)/2 Czl4^STiC  
    %            __ WxLmzSz{xD  
    %    m      \       s                                          n-2s FnZMW, P  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r fZq_]1(/uP  
    %    n      s=0 N7wKaezE  
    % eX{:&Do  
    %   The following table shows the first 12 polynomials. Bq l 5=p  
    % zL^`r)H  
    %       n    m    Zernike polynomial    Normalization rXIFCt8J  
    %       --------------------------------------------- {?!0<0  
    %       0    0    1                        sqrt(2) W[$GB_A)  
    %       1    1    r                           2 3d1$w  
    %       2    0    2*r^2 - 1                sqrt(6) Q5ZZ4`K!  
    %       2    2    r^2                      sqrt(6) 4!q4WQ ;  
    %       3    1    3*r^3 - 2*r              sqrt(8) ~x(1g;!^  
    %       3    3    r^3                      sqrt(8) Y%OJ3B(n|  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) !,SGKLs.m  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) #`g..3ey  
    %       4    4    r^4                      sqrt(10) 6'F4p1VG*I  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) Y:x,pPyl  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) LH:M`\(DL1  
    %       5    5    r^5                      sqrt(12) Iu)76Y@=5=  
    %       --------------------------------------------- 5PcN$r"P  
    % <n+]\a97*  
    %   Example: ]* #k|>Fl  
    % S-5|t]LV  
    %       % Display three example Zernike radial polynomials 9s.x%m,  
    %       r = 0:0.01:1; Pse1NMK9 [  
    %       n = [3 2 5]; ?<*mIf:?  
    %       m = [1 2 1]; L[j73z'  
    %       z = zernpol(n,m,r); pv}k=wqJ1  
    %       figure 1xBg^  
    %       plot(r,z) ~xp(k  
    %       grid on $-=QTX  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') AZHZUd4  
    % .5tE, (<?  
    %   See also ZERNFUN, ZERNFUN2. Bd8{25{c  
    #GlQwk3  
    % A note on the algorithm. aFbIJm=!  
    % ------------------------ Li?_P5+a  
    % The radial Zernike polynomials are computed using the series .{=|N8*py8  
    % representation shown in the Help section above. For many special CyWMr/'  
    % functions, direct evaluation using the series representation can |_} LMkU)  
    % produce poor numerical results (floating point errors), because l>kREfHq!{  
    % the summation often involves computing small differences between 6m\MYay  
    % large successive terms in the series. (In such cases, the functions 6-+q3#e  
    % are often evaluated using alternative methods such as recurrence <mk'n6B  
    % relations: see the Legendre functions, for example). For the Zernike AB:JXMyK  
    % polynomials, however, this problem does not arise, because the O^2@9 w  
    % polynomials are evaluated over the finite domain r = (0,1), and 3j h: K   
    % because the coefficients for a given polynomial are generally all @[=K`n:n_  
    % of similar magnitude. Eq\PSa=gz  
    % D,c53B6M  
    % ZERNPOL has been written using a vectorized implementation: multiple `w;8xD(  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] v90)G8|q  
    % values can be passed as inputs) for a vector of points R.  To achieve K:cZ q3F  
    % this vectorization most efficiently, the algorithm in ZERNPOL y$Y*%D^w  
    % involves pre-determining all the powers p of R that are required to Twi7g3}/jB  
    % compute the outputs, and then compiling the {R^p} into a single qs|{  
    % matrix.  This avoids any redundant computation of the R^p, and !EuqJjh  
    % minimizes the sizes of certain intermediate variables. %77X/%.Y  
    % ?R MOy$L  
    %   Paul Fricker 11/13/2006 '=V!Y$tn  
    :g+5cs  
    c9 7?+Y^  
    % Check and prepare the inputs: CD"D^\z  
    % ----------------------------- w y\0o  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) er%D`VHe  
        error('zernpol:NMvectors','N and M must be vectors.') - Mubq  
    end 3+uCTn0%  
    6!;eJYj,  
    if length(n)~=length(m) ~x #RIt  
        error('zernpol:NMlength','N and M must be the same length.') d$?sS9"8(  
    end &| guPZ  
    Z+%w|Sx  
    n = n(:); Pc:5*H  
    m = m(:); ;dR4a@  
    length_n = length(n); "gQ-{ W  
    -"9&YkN  
    if any(mod(n-m,2)) T!F0_<  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') ';>A=m9(4%  
    end %RS~>pK1  
    2|re4  
    if any(m<0) V:Lq>rs#  
        error('zernpol:Mpositive','All M must be positive.') ~rl,Hr3Z o  
    end -V_iv/fmM  
    |ler\"Eu  
    if any(m>n) )/vse5EG+  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') xk/osbKn  
    end Fs}vI~}  
    !VoAN5#;  
    if any( r>1 | r<0 ) Pf/_lBtL  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') U%?  
    end )/{zTg8$?/  
    Ks>l=5~v|  
    if ~any(size(r)==1) .G~Y`0  
        error('zernpol:Rvector','R must be a vector.') }QzF.![~z  
    end +;|" #  
    k7cM.<s!  
    r = r(:); i .GJO +K  
    length_r = length(r); Hdxon@,+cd  
    <{Pr(U*7}  
    if nargin==4 cmu|d  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); 1<(('H  
        if ~isnorm # ^q87y  
            error('zernpol:normalization','Unrecognized normalization flag.') y~Ts9AE  
        end B_3:.1>"BM  
    else '&+5L.  
        isnorm = false; 'lIj89h<E  
    end H~ `JAplr  
    f[s|<U^  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% H(rK39Q  
    % Compute the Zernike Polynomials g[%^OT#  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @GyxOc@6  
    V\6V&_  
    % Determine the required powers of r: >&Ios<67g  
    % ----------------------------------- gZW(z  
    rpowers = []; =g3o@WD/G  
    for j = 1:length(n) pj9*$.{  
        rpowers = [rpowers m(j):2:n(j)];  {Yc#XP  
    end |J^}BXW'^)  
    rpowers = unique(rpowers); D~T;z pS  
    :oeDksld  
    % Pre-compute the values of r raised to the required powers, /y-eVu6  
    % and compile them in a matrix: hVe39BBtO  
    % ----------------------------- ;_dOYG1  
    if rpowers(1)==0 RqU^Q*/sF  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); bZ-_Q  
        rpowern = cat(2,rpowern{:}); 8ZN"-]*  
        rpowern = [ones(length_r,1) rpowern]; g)`;m%DG6  
    else 5==hyIy  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 9h/JW_  
        rpowern = cat(2,rpowern{:}); /73ANQ"  
    end (O-.^VV  
    R|g50Q  
    % Compute the values of the polynomials: m3']/}xHO  
    % -------------------------------------- my+2@ln  
    z = zeros(length_r,length_n); m#Dae\w&  
    for j = 1:length_n rUxjm\  
        s = 0:(n(j)-m(j))/2; GC3WB4iY@U  
        pows = n(j):-2:m(j); &$NYZ3?9  
        for k = length(s):-1:1 |)[I$]L  
            p = (1-2*mod(s(k),2))* ... #]5A|-O^  
                       prod(2:(n(j)-s(k)))/          ... $_Kcm"oj  
                       prod(2:s(k))/                 ... x"83[0ib  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... )[np{eF.k  
                       prod(2:((n(j)+m(j))/2-s(k))); EN-;@P9;C  
            idx = (pows(k)==rpowers); B }t529Z  
            z(:,j) = z(:,j) + p*rpowern(:,idx); 5i1E 5@~  
        end Q^} Ib[  
         AO~f=GW  
        if isnorm k esuM3  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); ,ui=Wi1  
        end MG-#p8  
    end !L3\B_#  
    r>_40+|&  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  xdh%mG:?  
    i,wZNX  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 Z1_F)5pn  
    W;?e@}  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)