非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 Q1u/QA:z7
function z = zernfun(n,m,r,theta,nflag) HpR(DG)
?
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. *ta?7uSiT
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 7\ kixfEg
% and angular frequency M, evaluated at positions (R,THETA) on the s92SN F}g
% unit circle. N is a vector of positive integers (including 0), and J4q_}^/2w
% M is a vector with the same number of elements as N. Each element O",*N
% k of M must be a positive integer, with possible values M(k) = -N(k) W3 2]#M=
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, Tj,1]_`=V$
% and THETA is a vector of angles. R and THETA must have the same T8-,t];i
% length. The output Z is a matrix with one column for every (N,M) I@o42% w2
% pair, and one row for every (R,THETA) pair. n_MY69W
% 6@geakq
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 0m&W: c
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), NT<vs"<B
% with delta(m,0) the Kronecker delta, is chosen so that the integral /nVGr]t_pj
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, b&E9xD/;r
% and theta=0 to theta=2*pi) is unity. For the non-normalized xPorlX)zW
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. MXGz_Db4'
% Kz2s{y~?
% The Zernike functions are an orthogonal basis on the unit circle. #Bi8>S
% They are used in disciplines such as astronomy, optics, and pn-`QB:{h
% optometry to describe functions on a circular domain. qfl #ki`,
% KBy*QA
% The following table lists the first 15 Zernike functions. /zZ";4
% y8CH=U[
% n m Zernike function Normalization "vN~7%
% -------------------------------------------------- pF}WMt
% 0 0 1 1 HMPb%'U~
% 1 1 r * cos(theta) 2 @w5x;uB|%G
% 1 -1 r * sin(theta) 2 VJ()sbl{k
% 2 -2 r^2 * cos(2*theta) sqrt(6) VVDd39q
% 2 0 (2*r^2 - 1) sqrt(3) )lDmYt7me
% 2 2 r^2 * sin(2*theta) sqrt(6) xJ|_R,>.H
% 3 -3 r^3 * cos(3*theta) sqrt(8) o-r00H|
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) qB8R4wCf
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) CH+mzy
% 3 3 r^3 * sin(3*theta) sqrt(8) ^% jk. *
% 4 -4 r^4 * cos(4*theta) sqrt(10) e|S_B*1*0
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) \9`76*X6
c
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) s2t9+ZA+s
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) +/4wioGm
% 4 4 r^4 * sin(4*theta) sqrt(10) R.$1aqA}
% -------------------------------------------------- uo[W|Q
% p^THoF'~T
% Example 1: r`5svY
% 5!*@gn
% % Display the Zernike function Z(n=5,m=1) :DoE_
% x = -1:0.01:1; y;xY74Nq
% [X,Y] = meshgrid(x,x); )H|cri~D
% [theta,r] = cart2pol(X,Y); II)
K0<
% idx = r<=1;
y)GH=@b
% z = nan(size(X)); l[u=_uaYl
% z(idx) = zernfun(5,1,r(idx),theta(idx)); F0]xc
% figure {?hpW+1,#
% pcolor(x,x,z), shading interp |cIv&\ x
% axis square, colorbar W 2T6JFv
% title('Zernike function Z_5^1(r,\theta)') ?3Y~q;I]O
% G7uYkJO
% Example 2: O"V;otlC
% o#9Q
% % Display the first 10 Zernike functions lNba[;_
% x = -1:0.01:1; jSd[
% [X,Y] = meshgrid(x,x); cbaa*qoU
% [theta,r] = cart2pol(X,Y); 35/K9l5
% idx = r<=1; jU0E=;1
% z = nan(size(X)); SBh"^q
% n = [0 1 1 2 2 2 3 3 3 3]; 28x:]5=jb
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; Z)'gj
% Nplot = [4 10 12 16 18 20 22 24 26 28]; P]%)c6Uh
% y = zernfun(n,m,r(idx),theta(idx)); y ]D[JX[
% figure('Units','normalized') Nn='9s9F?}
% for k = 1:10 Wf:LYL
% z(idx) = y(:,k); br%l>Y\"
% subplot(4,7,Nplot(k)) #$ooV1E
% pcolor(x,x,z), shading interp 5N(OW:M
% set(gca,'XTick',[],'YTick',[]) %_%BbQf
% axis square O
8XHaVLg3
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) iOJ5KXrAO
% end $(+#$F<eo+
% b!oj3|9
% See also ZERNPOL, ZERNFUN2. ?4cj"i
Yaj}_M-
% Paul Fricker 11/13/2006 }*?,&9/_)
E{BX $R_8
\[&&4CN{
% Check and prepare the inputs: s`gfz}/
% ----------------------------- 8F9x2CM-[C
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) qT~a`ou:
error('zernfun:NMvectors','N and M must be vectors.') 6_g:2=6S
end #7['M;_
MFQyB+Z
if length(n)~=length(m) b} FhC"'i
error('zernfun:NMlength','N and M must be the same length.') 2{<o1x,Ym
end (\UpJlW
-car>hQq
n = n(:); ?azcWf z0
m = m(:); qPBOt;N
if any(mod(n-m,2)) i2+_~$f
error('zernfun:NMmultiplesof2', ... <b:xyHS
'All N and M must differ by multiples of 2 (including 0).') 7~Z(dTdSG
end >R}G
;zT3Fv\
if any(m>n) A DVUx}
error('zernfun:MlessthanN', ... `j8pgnY>5~
'Each M must be less than or equal to its corresponding N.') Ey=ymf.}
end N}>[To3
Xo$SQ0K
if any( r>1 | r<0 ) +U)4V}S)
error('zernfun:Rlessthan1','All R must be between 0 and 1.') 0<93i
end {krBAz&
+o?;7
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) z(Z7[#.
error('zernfun:RTHvector','R and THETA must be vectors.') Zc'^iDAY
end /@B2-.w
Qk >9o
r = r(:); C8x9 Jrc
theta = theta(:); lffw
"
length_r = length(r); vi28u xc
if length_r~=length(theta) nyetK
error('zernfun:RTHlength', ... BA[ uO3\4
'The number of R- and THETA-values must be equal.') ,^RZ1tLz
end IhRdn1&
6-z(34&N
% Check normalization: g(9kc<`3'D
% -------------------- Gt)ij?~
if nargin==5 && ischar(nflag) /24}>oAH
isnorm = strcmpi(nflag,'norm'); hpgOsF9Lh
if ~isnorm yf7|/M
error('zernfun:normalization','Unrecognized normalization flag.') l(W?]{C[%
end C^;>HAK|F
else $01csj
isnorm = false; TF9A4
end W,"Re,`H
S+"Bq:u"
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% E]v?:!!ds
% Compute the Zernike Polynomials a?yU;IKJ
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% {Kf5a
m
TB-dV'w
% Determine the required powers of r: e{9~m
% ----------------------------------- /EG'I{oC
m_abs = abs(m); Y'5(exW
rpowers = []; cUr!U\X[
for j = 1:length(n) w51l;2$des
rpowers = [rpowers m_abs(j):2:n(j)]; N6v?Qzvi
end 7377g'jL
rpowers = unique(rpowers); ?J,,RK.
e"_kH_7sv
% Pre-compute the values of r raised to the required powers, *{P/3yH
% and compile them in a matrix: Oxa8u e?
% ----------------------------- &=MVX>[
if rpowers(1)==0 <nb%$2r1
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 8d2\H*a9~
rpowern = cat(2,rpowern{:}); H>W8F2VT
rpowern = [ones(length_r,1) rpowern]; C
fM[<w
else YYT#{>&
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ;b:'i&r
rpowern = cat(2,rpowern{:}); D6H?*4f]
end R7U%v"F>`
O@4 J=P=w
% Compute the values of the polynomials: gO)":!_n W
% -------------------------------------- e#,(a
y = zeros(length_r,length(n)); DIw_"$'At
for j = 1:length(n) lx=tOfj8
s = 0:(n(j)-m_abs(j))/2; g8l6bh$}
pows = n(j):-2:m_abs(j); P%H Dz
for k = length(s):-1:1 ~\8(+qIv%f
p = (1-2*mod(s(k),2))* ... kiyc ^s
prod(2:(n(j)-s(k)))/ ... -- FzRO{D
prod(2:s(k))/ ... gnjhy1o
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... s5rD+g]E`
prod(2:((n(j)+m_abs(j))/2-s(k))); wMj#.Jh
idx = (pows(k)==rpowers); o<%0|n_O&
y(:,j) = y(:,j) + p*rpowern(:,idx); /aMOZ=,q}
end ~!!\#IX
TYb$+uY
if isnorm B~7!v${
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 3F@P$4!#l
end o{! :N> (
end ]gg(Z!|iQ
% END: Compute the Zernike Polynomials vXRY/Zzj1
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% )Z:D}r8[
=u ?aP}zc
% Compute the Zernike functions: [!yA#{xl,
% ------------------------------ ~mARgv
idx_pos = m>0; B~N3k
idx_neg = m<0; \0d'y#Gp*
q:TNf\/o
z = y; e1LIk1`p
if any(idx_pos) |5tZ*$nGa
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); xE
w\'tH
end 4|E^
#C
if any(idx_neg) uBa<5YDF
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); R-j*fO}
end Jp_#pV*}:
uT4|43<
G
% EOF zernfun