切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11838阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 (/Hq8o-Fw  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! >dn[oS,  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 {Ejv8UdA9  
    function z = zernfun(n,m,r,theta,nflag) Cc1sZWvz  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. jcYI"f"~  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N {o*ziZh  
    %   and angular frequency M, evaluated at positions (R,THETA) on the L>).o%(R  
    %   unit circle.  N is a vector of positive integers (including 0), and tv,^ Q}  
    %   M is a vector with the same number of elements as N.  Each element  ?MPM@9  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) n,9 *!1y  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, VjMd&>G  
    %   and THETA is a vector of angles.  R and THETA must have the same q(\$-Dk.Vv  
    %   length.  The output Z is a matrix with one column for every (N,M) pW:U|m1dS  
    %   pair, and one row for every (R,THETA) pair. uY5f mM9  
    % VVYQIR]!yk  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike SrN0f0  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 13}=;4O  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral SdYES5aES  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, S2*-UluG  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized OE}L})"  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. #D .H2'_}  
    % VCX})sp  
    %   The Zernike functions are an orthogonal basis on the unit circle.  UY+~,a  
    %   They are used in disciplines such as astronomy, optics, and R0gjx"U  
    %   optometry to describe functions on a circular domain. aCMF[ 3j  
    % $ *MjNj2  
    %   The following table lists the first 15 Zernike functions. mucY+k1>g  
    % ) ok_"wB  
    %       n    m    Zernike function           Normalization &pZ]F=.r+  
    %       -------------------------------------------------- `Rm2G  
    %       0    0    1                                 1 ~5:]Oux  
    %       1    1    r * cos(theta)                    2 '355Pce/  
    %       1   -1    r * sin(theta)                    2 l9qq;hhGP,  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) )m\%L`+  
    %       2    0    (2*r^2 - 1)                    sqrt(3) $_S^Aw?  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) TAi |]U!  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) -+'{C =  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) f]J?-ks  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) UDt.w82  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) xPq3Sfg`A  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) Nr|.]=K)5n  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) shYcfLJ  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) ?N,a {#w  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) &.K8c phj  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) {SqY77  
    %       -------------------------------------------------- Lyt6DvAp"  
    % ,HUs MCXQ  
    %   Example 1: S]K^wj[  
    % n`vqCO7@'  
    %       % Display the Zernike function Z(n=5,m=1) O >n L;I  
    %       x = -1:0.01:1; ]^8:"Ky'  
    %       [X,Y] = meshgrid(x,x); 4w*F!E2H\}  
    %       [theta,r] = cart2pol(X,Y); E{wVf_K  
    %       idx = r<=1; pZlBpGQf  
    %       z = nan(size(X)); f$*M;|c1c/  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); f*NtnD=rJ  
    %       figure _&19OD%  
    %       pcolor(x,x,z), shading interp TN7kt]a2  
    %       axis square, colorbar ~Xh(JK]  
    %       title('Zernike function Z_5^1(r,\theta)') "h2;65@  
    % zp% MK+x  
    %   Example 2: 4{}u PbS  
    % >|.jG_s  
    %       % Display the first 10 Zernike functions C/<fR:`c  
    %       x = -1:0.01:1; qAivsYN*  
    %       [X,Y] = meshgrid(x,x); o! sxfJKl  
    %       [theta,r] = cart2pol(X,Y); #y-OkGS ^  
    %       idx = r<=1; tE(x8>5A:  
    %       z = nan(size(X)); Q\m"n^XN  
    %       n = [0  1  1  2  2  2  3  3  3  3]; O JvEq@  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; yc_(L-'n  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; vkc(-n  
    %       y = zernfun(n,m,r(idx),theta(idx)); l"CHI*  
    %       figure('Units','normalized') 0}Kl47}aD  
    %       for k = 1:10 MCz +l0  
    %           z(idx) = y(:,k); va~:oA  
    %           subplot(4,7,Nplot(k)) \@MGO aR]  
    %           pcolor(x,x,z), shading interp 5c'rnMW4+p  
    %           set(gca,'XTick',[],'YTick',[]) Wj8\~B=('  
    %           axis square Y49kq}  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ""d3ownKhw  
    %       end XLEA|#  
    % [GU!],Y  
    %   See also ZERNPOL, ZERNFUN2. \n`UkxZn+  
    ~ Z%>N  
    %   Paul Fricker 11/13/2006 #)my)}o\p  
    YjvqU /[3  
    |+suGqo  
    % Check and prepare the inputs: Da?0B9'  
    % ----------------------------- |PI.xl:ch  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) @<>](4D  
        error('zernfun:NMvectors','N and M must be vectors.') Qy0bp;V/  
    end G1$DV Go  
    fCx~K'UWn  
    if length(n)~=length(m) IL YS:c58=  
        error('zernfun:NMlength','N and M must be the same length.') 6CY_8/:zL  
    end ^R>&^"oI  
    dH#o11[  
    n = n(:); _ F@>?\B  
    m = m(:); i]8zZRe  
    if any(mod(n-m,2)) 3zs~ Y3M?i  
        error('zernfun:NMmultiplesof2', ... mEyZ<U9  
              'All N and M must differ by multiples of 2 (including 0).') |\~cjPX(  
    end KXicy_@DC`  
    Tg{d#U_qB  
    if any(m>n) *!C^L"i  
        error('zernfun:MlessthanN', ... @HIC i]  
              'Each M must be less than or equal to its corresponding N.') R0oP##]  
    end N{|N_}X`Y  
    M={k4r_t  
    if any( r>1 | r<0 ) ]7h&ZF  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') j%[|XfM  
    end `A&64D  
    ~|l>bf  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Q? W]g%:)  
        error('zernfun:RTHvector','R and THETA must be vectors.') %8S!l;\H5  
    end ]%>;R^HY  
    R%7k<1d'`  
    r = r(:); uh:  
    theta = theta(:); R^%7|  
    length_r = length(r); Bk?MF6  
    if length_r~=length(theta) OM}:1He  
        error('zernfun:RTHlength', ... {{@3r5K Gl  
              'The number of R- and THETA-values must be equal.') D?X97jNm  
    end 5:^dyF&sm{  
    O23f\pm&  
    % Check normalization: A3Ltk 2<  
    % -------------------- ?w3f;v  
    if nargin==5 && ischar(nflag) ~q-|cl<  
        isnorm = strcmpi(nflag,'norm'); m(*CuM[E  
        if ~isnorm .hETqE`E  
            error('zernfun:normalization','Unrecognized normalization flag.') cJi5\<b  
        end 6 `X#<#_&  
    else |_!xA/_U'T  
        isnorm = false; /+02 BP  
    end k"GW3E;  
    XXxX;xz$  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% "xnek8F  
    % Compute the Zernike Polynomials urXM}^  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% W!GgtQw{F  
    E$smr\  
    % Determine the required powers of r: }tc,3> /  
    % ----------------------------------- o*5|W9  
    m_abs = abs(m); Fv#ToT:QXe  
    rpowers = []; )0qXZ gs  
    for j = 1:length(n) QFDjsd4  
        rpowers = [rpowers m_abs(j):2:n(j)]; $n(@hT>?  
    end G} }oeS  
    rpowers = unique(rpowers); 7<-D_$SrU  
    u) fbR  
    % Pre-compute the values of r raised to the required powers, HYW+,ts'  
    % and compile them in a matrix: 64b9.5Bn  
    % ----------------------------- .\*\bvyCw  
    if rpowers(1)==0 9Tjvc!4_b  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); r&Za*TD^  
        rpowern = cat(2,rpowern{:}); pS0-<-\R  
        rpowern = [ones(length_r,1) rpowern]; U:YT>U1Z  
    else ke)3*.Y%C  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); eT:%i"C  
        rpowern = cat(2,rpowern{:}); (w"zI!  
    end D@O '8  
    ~mmI] pC  
    % Compute the values of the polynomials: Z-]d_Y~m4  
    % -------------------------------------- gt{ei)2b  
    y = zeros(length_r,length(n)); hMi!H.EX.  
    for j = 1:length(n) ZN G.W0{p  
        s = 0:(n(j)-m_abs(j))/2; pEhWgCL  
        pows = n(j):-2:m_abs(j); t2tH%%Rs  
        for k = length(s):-1:1 &$vDC M4  
            p = (1-2*mod(s(k),2))* ... ?G.9D`95  
                       prod(2:(n(j)-s(k)))/              ... >.J68 x  
                       prod(2:s(k))/                     ... /M B0%6m  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Y:*mAv;&  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); H-7*)D  
            idx = (pows(k)==rpowers); 6Y\9h)1Jo  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 1cOp"!  
        end &e3z)h  
         '<6Gz7O  
        if isnorm LFV;Y.-(h  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); G0y%_"[  
        end j!m~ :D  
    end 8m-jU 5u  
    % END: Compute the Zernike Polynomials ^x:4%%Q]l  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% P,D >gxl  
    6t/})Xv  
    % Compute the Zernike functions: |WubIj*\{  
    % ------------------------------ |w /txn8G|  
    idx_pos = m>0; l<z[)fE{uS  
    idx_neg = m<0; p*NC nD*  
    ?aO%\<b  
    z = y; zXUE<\  
    if any(idx_pos) *%uv7G@%N  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 4ol=YGCI_  
    end >G/>:wwSP.  
    if any(idx_neg) McH*J j  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ukq9Cjs  
    end A 7DdUNR  
    ;#fB=[vl";  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) ?_n.B=H`8  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. jnH44  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated % ,~; w0  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive !dVcnK1  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, HzH_5kVW  
    %   and THETA is a vector of angles.  R and THETA must have the same  LFGu|](  
    %   length.  The output Z is a matrix with one column for every P-value, !v`q%JW(  
    %   and one row for every (R,THETA) pair. 0Xk;X1Xl  
    % 2Ni{wg"  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike 0SvPyf%AC  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) |nU:  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) _eO+O=j_x  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 G/<{:R"  
    %   for all p. L[TL~@T   
    % \Xxx5:qM  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 UPN2p&gM  
    %   Zernike functions (order N<=7).  In some disciplines it is dVe3h.,[v  
    %   traditional to label the first 36 functions using a single mode yFJ(b%7  
    %   number P instead of separate numbers for the order N and azimuthal s8eiq`6\H}  
    %   frequency M. u!L8Sv  
    % 9R.tkc|K  
    %   Example: UxzwgVT  
    % <JZ=K5  
    %       % Display the first 16 Zernike functions qc*+;Wi+5  
    %       x = -1:0.01:1; IwWo-WN7.  
    %       [X,Y] = meshgrid(x,x); Q&M(wnl5  
    %       [theta,r] = cart2pol(X,Y); +H ="5uO<  
    %       idx = r<=1; ?]h+En5z8  
    %       p = 0:15; &Lq @af#  
    %       z = nan(size(X)); }zLe;1Tx  
    %       y = zernfun2(p,r(idx),theta(idx)); jN5Sc0|b  
    %       figure('Units','normalized') wJ IJPYTK  
    %       for k = 1:length(p) P?]q*KViM  
    %           z(idx) = y(:,k); Hyee#fB  
    %           subplot(4,4,k) ?{{E/J:%  
    %           pcolor(x,x,z), shading interp [d dEt  
    %           set(gca,'XTick',[],'YTick',[]) \dufKeiS&a  
    %           axis square %@pTEhpF  
    %           title(['Z_{' num2str(p(k)) '}']) hb? |fi  
    %       end ;?n*w+6<  
    % Y71b Lg  
    %   See also ZERNPOL, ZERNFUN. *q8W;Wa L  
    WWE?U-o  
    %   Paul Fricker 11/13/2006 YrZAy5\  
    06Uxd\E~  
    vv%Di.V  
    % Check and prepare the inputs: @ju-cv+  
    % ----------------------------- o_\b{<^I  
    if min(size(p))~=1 )(DV~1r=  
        error('zernfun2:Pvector','Input P must be vector.') Th,2gX9  
    end @ZX{q~g!  
    GSpS8wWD }  
    if any(p)>35 ?hDEFW9&^x  
        error('zernfun2:P36', ... sV[|op  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... 'u696ED4  
               '(P = 0 to 35).']) !uHI5k,f  
    end q{ctHsQ(9  
    \nxt\KD  
    % Get the order and frequency corresonding to the function number: lbv, jS  
    % ---------------------------------------------------------------- EQ=Enw1[  
    p = p(:); ^OA}#k NTW  
    n = ceil((-3+sqrt(9+8*p))/2); MX9 q )(:  
    m = 2*p - n.*(n+2); J`"1DlH  
    @)}Vk  
    % Pass the inputs to the function ZERNFUN: rx^pGVyg  
    % ---------------------------------------- u)Y#&qA  
    switch nargin 8E0Rg/DnT  
        case 3 W/?D}#e<4  
            z = zernfun(n,m,r,theta); *]Vx=7 D  
        case 4 _0vXujz  
            z = zernfun(n,m,r,theta,nflag); E176O[(V=  
        otherwise Wm3H6o*  
            error('zernfun2:nargin','Incorrect number of inputs.') Rbr vY  
    end }#yRa Ip  
    SULWPH5Pr  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) ( bBetX  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. %@BQv 4oJ  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of }xdI{E1 q)  
    %   order N and frequency M, evaluated at R.  N is a vector of h_A}i2/{  
    %   positive integers (including 0), and M is a vector with the }]n&"=Zk-  
    %   same number of elements as N.  Each element k of M must be a C ]r$   
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) Cch1"j<k$  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is z5{I3 Y!1  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix *#2`b%qh\M  
    %   with one column for every (N,M) pair, and one row for every qc`_&!*D  
    %   element in R. r!x^P=f,MJ  
    % D#k>.)g  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- U9N}6a=  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is 'Y&yt"cs  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to _;@kS<\N  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 x]{h$yI  
    %   for all [n,m]. PGw"\-F  
    % 0{B5C[PTG  
    %   The radial Zernike polynomials are the radial portion of the i_=P!%,  
    %   Zernike functions, which are an orthogonal basis on the unit s]2k@3|e  
    %   circle.  The series representation of the radial Zernike GN~:rdd  
    %   polynomials is S$$:G$j  
    % U2Ur N?T  
    %          (n-m)/2 , g6.d#c  
    %            __ 1DLQ Zq  
    %    m      \       s                                          n-2s zJx<]=]  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r Xbu >8d?n  
    %    n      s=0 }& 1_gn15  
    % cAiIbh>c  
    %   The following table shows the first 12 polynomials. 'Lm.`U  
    % 4XKg3l1  
    %       n    m    Zernike polynomial    Normalization MK"Yt<e(o  
    %       --------------------------------------------- p@Qzg /X  
    %       0    0    1                        sqrt(2) Gu%`__   
    %       1    1    r                           2 +HfjnEbtBs  
    %       2    0    2*r^2 - 1                sqrt(6) \Xkx`C  
    %       2    2    r^2                      sqrt(6) I|`K;a  
    %       3    1    3*r^3 - 2*r              sqrt(8) 6dinC <[}  
    %       3    3    r^3                      sqrt(8) =a {Z7W  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) wLgRI$ _Dm  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) ^iI^)  
    %       4    4    r^4                      sqrt(10) OOv"h\,  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) {`3;Pd`  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) T}\U:@b  
    %       5    5    r^5                      sqrt(12) G;^iwxzhO  
    %       --------------------------------------------- r^ "mPgY  
    % WUHx0I  
    %   Example: .KB*u*h  
    % @E==~ b  
    %       % Display three example Zernike radial polynomials I5bi^!i  
    %       r = 0:0.01:1; fO:*85 %}7  
    %       n = [3 2 5]; _QErQ^`  
    %       m = [1 2 1]; <&x_e-;b'  
    %       z = zernpol(n,m,r); F.\]Hqq  
    %       figure nTHP~]  
    %       plot(r,z) qGh rJ6R!  
    %       grid on ;=n7 Z  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') 3'']q3H  
    % ,O-lDzcw  
    %   See also ZERNFUN, ZERNFUN2. ,:v}gS?Uq  
    ~ h:^Q  
    % A note on the algorithm. |C(72t?K  
    % ------------------------ _WSJg1  
    % The radial Zernike polynomials are computed using the series t /47lYN)  
    % representation shown in the Help section above. For many special 9YvMJ  
    % functions, direct evaluation using the series representation can ec3('}X  
    % produce poor numerical results (floating point errors), because v\HGL56T  
    % the summation often involves computing small differences between Y]n^(V  
    % large successive terms in the series. (In such cases, the functions i/$lO de  
    % are often evaluated using alternative methods such as recurrence PuOo^pFhH  
    % relations: see the Legendre functions, for example). For the Zernike G!Uq#l>  
    % polynomials, however, this problem does not arise, because the ~M\s!!t3  
    % polynomials are evaluated over the finite domain r = (0,1), and T&S< 0  
    % because the coefficients for a given polynomial are generally all R4v=i)A~Z  
    % of similar magnitude. *%fOE;-?  
    % 2HTZ, W  
    % ZERNPOL has been written using a vectorized implementation: multiple -,i1T(p1  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] Y0b.utR&  
    % values can be passed as inputs) for a vector of points R.  To achieve ]c5Shj5|p  
    % this vectorization most efficiently, the algorithm in ZERNPOL d3![b1  
    % involves pre-determining all the powers p of R that are required to |_ @iaLE  
    % compute the outputs, and then compiling the {R^p} into a single u_[Zu8  
    % matrix.  This avoids any redundant computation of the R^p, and f{)*"  
    % minimizes the sizes of certain intermediate variables. bk7miRIB  
    % J[B8sa  
    %   Paul Fricker 11/13/2006 2 Sr'B;`p  
    \fKv+  
    % ,X(GwX  
    % Check and prepare the inputs: N2~z&y8.  
    % ----------------------------- c^=:]^  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) dB/Ep c&   
        error('zernpol:NMvectors','N and M must be vectors.') ~bwFQYY=  
    end e)iVX<qb  
    >a0;|;hp  
    if length(n)~=length(m) Cr[#D$::`  
        error('zernpol:NMlength','N and M must be the same length.') K E^_09  
    end *;}!WDr  
    /!E /9[V  
    n = n(:); xL!05du  
    m = m(:); <W5F~K ;41  
    length_n = length(n); -kJF@w6u  
    SZ0Zi\W  
    if any(mod(n-m,2)) `"bm Hs7  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') bcZHFX  
    end \ 0CGS  
    J:Qp(s-N^:  
    if any(m<0) :wF(([&4p!  
        error('zernpol:Mpositive','All M must be positive.') '1mygplW  
    end N@)g3mX>  
    T JVNR_x  
    if any(m>n) eHjR/MMr_  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') %TR->F  
    end i&l$G55F  
    d82IEhZ#  
    if any( r>1 | r<0 ) g3 qtWS  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') c"QI`;D_c  
    end v` B_xEl  
    2AlLcfAW  
    if ~any(size(r)==1) xqG` _S l  
        error('zernpol:Rvector','R must be a vector.') k!%HcU%J  
    end N-NwGD{  
    qD9B[s8  
    r = r(:); B8P%4@T  
    length_r = length(r); zL_X?UmV  
    wF&\@H  
    if nargin==4 aN7u j  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); In 1.R$O  
        if ~isnorm $4L=Dg  
            error('zernpol:normalization','Unrecognized normalization flag.') -OziUM1qs  
        end iCc \p2p  
    else fG.w;Aemv5  
        isnorm = false; ilNm\fQ.  
    end kQ:2@SOm  
    !<~Ig/  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% R `'@$"  
    % Compute the Zernike Polynomials jLEU V  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% R8?A%yxf  
    QzS{2Y[OQ  
    % Determine the required powers of r: ;Lu}>.t  
    % ----------------------------------- ;J`X0Vl$  
    rpowers = []; ?r@ZTuq#  
    for j = 1:length(n) f.u{;W  
        rpowers = [rpowers m(j):2:n(j)]; ,CvU#ab8$  
    end - Zw"o>  
    rpowers = unique(rpowers); q6,xsO,+  
    6Z'zB&hM}  
    % Pre-compute the values of r raised to the required powers, @hv9 =v+  
    % and compile them in a matrix: %ZxKN;  
    % ----------------------------- w68qyG|wM  
    if rpowers(1)==0 ?Jma^ S  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); +6>Pp[%  
        rpowern = cat(2,rpowern{:}); )45,~+XX  
        rpowern = [ones(length_r,1) rpowern]; w"Z >F]YZ  
    else . XY'l  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); zb3ir|  
        rpowern = cat(2,rpowern{:}); kz??""G7/  
    end im?nR+t+X  
    )-sEm`(`I9  
    % Compute the values of the polynomials: .K0BK)axO  
    % -------------------------------------- M,[ClQ 9  
    z = zeros(length_r,length_n); R52!pB0[  
    for j = 1:length_n Kzmgy14o  
        s = 0:(n(j)-m(j))/2; ]~oM'?&!  
        pows = n(j):-2:m(j); SHaZ-d  
        for k = length(s):-1:1 tF'67,~W  
            p = (1-2*mod(s(k),2))* ... !]`]67lC  
                       prod(2:(n(j)-s(k)))/          ... ]A\n>Z!;  
                       prod(2:s(k))/                 ... ?^7~|?v  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... QoW3*1o  
                       prod(2:((n(j)+m(j))/2-s(k))); Oe=,-\&_  
            idx = (pows(k)==rpowers); 0r@rXwz  
            z(:,j) = z(:,j) + p*rpowern(:,idx); zZy>XHR H  
        end FX'W%_f,  
         Ky=&C8b<  
        if isnorm $X{& KLM[  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); ;J _d%  
        end 1H ZexV  
    end Z86[sQBg  
    RXP"v-  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    857
    光币
    847
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  pvcD 61,  
    >8QLo8)3C  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 teET nz_L  
    Es)Kw3^a  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)