切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11302阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 HjL+Wg  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! k`xPf\^tf  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 ,K 8R%B  
    function z = zernfun(n,m,r,theta,nflag) "m4. _4U  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. TkBHlTa"=  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Py y!B  
    %   and angular frequency M, evaluated at positions (R,THETA) on the nm Y_)s  
    %   unit circle.  N is a vector of positive integers (including 0), and C3)*Mn3%P  
    %   M is a vector with the same number of elements as N.  Each element .o8Sy2PaV  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) JuQwZ]3ed  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ]l>LU2 sx  
    %   and THETA is a vector of angles.  R and THETA must have the same WPI<SsLd  
    %   length.  The output Z is a matrix with one column for every (N,M) /W9(}Id6  
    %   pair, and one row for every (R,THETA) pair. {7'Wi$^F  
    % ;x%"o[[>  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike /#jH #f[  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 0$ JH5RC  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral `,QcOkvbC  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, KW-GVe%8f  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized  |W_;L6)  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 2,aH1Xbex  
    % o=J-Ju  
    %   The Zernike functions are an orthogonal basis on the unit circle. ~I6N6T Z  
    %   They are used in disciplines such as astronomy, optics, and lg"aB  
    %   optometry to describe functions on a circular domain. _NefzZWUJ  
    % !6!Gx:  
    %   The following table lists the first 15 Zernike functions. )G#mC0?PV  
    % =' uePM")  
    %       n    m    Zernike function           Normalization *:bexDH  
    %       -------------------------------------------------- bd]9 kRq1K  
    %       0    0    1                                 1 0vX4v)-^u  
    %       1    1    r * cos(theta)                    2 >3ax `8  
    %       1   -1    r * sin(theta)                    2 Xii>?sA5Z"  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) "i#aII+T  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 0civXZgj  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) \?SvO  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) <qg4Rz\c]  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) ijsoY\V50  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) $Nd,6w*`  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) (\0 <|pW  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) rk6K0TQ8  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) I4W@t4bZ  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 8~tX>q<@q  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 2n)?)w]!M  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) KL3Z(  
    %       -------------------------------------------------- h PL]B_<  
    % C];P yQS  
    %   Example 1: v3#,Z!  
    % oNZ_7tU  
    %       % Display the Zernike function Z(n=5,m=1)  0:f]&Ng  
    %       x = -1:0.01:1; \ ?pyax8  
    %       [X,Y] = meshgrid(x,x); Y{D%v  
    %       [theta,r] = cart2pol(X,Y); 8[;vC$  
    %       idx = r<=1; _0(%^5Y  
    %       z = nan(size(X)); S=(<m%f  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); k,[*h-{8  
    %       figure jUEgu  
    %       pcolor(x,x,z), shading interp s3HVX'   
    %       axis square, colorbar Jy5sZ }t[  
    %       title('Zernike function Z_5^1(r,\theta)') baBBn %_V  
    % B*N1)J\5  
    %   Example 2: jMgXIK\  
    % Hs*["zFc  
    %       % Display the first 10 Zernike functions ,Cb3R|L8  
    %       x = -1:0.01:1; #8|LPfA  
    %       [X,Y] = meshgrid(x,x); ?u|@,tQ[  
    %       [theta,r] = cart2pol(X,Y); ]I[~0PCSX  
    %       idx = r<=1; z%OKv[/N  
    %       z = nan(size(X)); )rq |t9kix  
    %       n = [0  1  1  2  2  2  3  3  3  3]; - 8p!,+Dk  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; PD)"od  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 7~SwNt,  
    %       y = zernfun(n,m,r(idx),theta(idx)); x2rAB5r6  
    %       figure('Units','normalized') l-Z( ]  
    %       for k = 1:10 I|U'@E  
    %           z(idx) = y(:,k); p&h?p\IF  
    %           subplot(4,7,Nplot(k)) {uj_4Ft  
    %           pcolor(x,x,z), shading interp lj (y  
    %           set(gca,'XTick',[],'YTick',[])  .qgUD  
    %           axis square X_]rtG  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) LWyr  
    %       end N% 4"9K  
    % 'v"=   
    %   See also ZERNPOL, ZERNFUN2. X` zWw_i  
    <7M-?g:vj  
    %   Paul Fricker 11/13/2006 8NWo)y49H  
    r-<O'^C  
    G3~`]qf  
    % Check and prepare the inputs: TaN{xpo  
    % ----------------------------- gcU*rml  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ;f[lq^eV  
        error('zernfun:NMvectors','N and M must be vectors.') :OG I|[  
    end c-sjYJXKM*  
    U[@y 8yN6M  
    if length(n)~=length(m) 5o#JHD  
        error('zernfun:NMlength','N and M must be the same length.') >2'"}np*  
    end zaqX};b  
    Cf 2@x  
    n = n(:); cJ;Nh>ey  
    m = m(:); wI$ a1H  
    if any(mod(n-m,2)) wDJ`#"5p{  
        error('zernfun:NMmultiplesof2', ... n t}7|h|  
              'All N and M must differ by multiples of 2 (including 0).') =]Vz= <  
    end Xw-[Sf]p  
    Ao\xse{E  
    if any(m>n) c.ow4~>  
        error('zernfun:MlessthanN', ... Yc:%2KZ"  
              'Each M must be less than or equal to its corresponding N.') |eqBCZn  
    end |' Fe?~P`  
    V' Gal`  
    if any( r>1 | r<0 ) R4m {D  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 0!T`.UMI  
    end @^P^- B  
    OT9]{|7  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) $ik*!om5  
        error('zernfun:RTHvector','R and THETA must be vectors.') 7>FXsUt_  
    end p+VU:%.t  
    9iA rBL"  
    r = r(:); :D D<0  
    theta = theta(:); )cqD">vs  
    length_r = length(r); l8\UO<^fY  
    if length_r~=length(theta) Ri.tA  
        error('zernfun:RTHlength', ... Zh"m;l/]  
              'The number of R- and THETA-values must be equal.') >f(?Mxh2  
    end "Ms;sdjg}&  
    ?=VvFfv%  
    % Check normalization: T5S4,.o9W  
    % -------------------- >STtX6h  
    if nargin==5 && ischar(nflag) J|`0GDSn  
        isnorm = strcmpi(nflag,'norm'); +y GQt3U  
        if ~isnorm rE3dHJN;  
            error('zernfun:normalization','Unrecognized normalization flag.') *g/klK  
        end XLN bV?  
    else ag-A}k>v  
        isnorm = false; =>jp\A  
    end ekM? ' 9ez  
    Cp8=8N(Xb  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% [q <'ty  
    % Compute the Zernike Polynomials E+f)Zg :  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% XYEwn_Y  
    ^L[:DB{Z  
    % Determine the required powers of r: U!wi;W2  
    % ----------------------------------- dbI>\khI  
    m_abs = abs(m); OQVrg2A%(  
    rpowers = []; bsIG1&n'T  
    for j = 1:length(n) zWHq4@K  
        rpowers = [rpowers m_abs(j):2:n(j)]; R>< g\{G]  
    end wQ}r/2n|^  
    rpowers = unique(rpowers); Z_d"<k}I  
    h9vcN#22D  
    % Pre-compute the values of r raised to the required powers, i5,iJe0cA  
    % and compile them in a matrix: NGx3f3 9  
    % ----------------------------- %opBJ   
    if rpowers(1)==0 }3pM,.  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Q;M\fBQO}&  
        rpowern = cat(2,rpowern{:}); i "8mrWb  
        rpowern = [ones(length_r,1) rpowern];  T]#V  
    else :^;c(>u{  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); }z3j7I  
        rpowern = cat(2,rpowern{:}); =2Y;)wrF  
    end jr6_|(0 i6  
    K1& QAXyP  
    % Compute the values of the polynomials: 'h>uR|  
    % -------------------------------------- x 7j#@C  
    y = zeros(length_r,length(n)); _( W@FS  
    for j = 1:length(n) &#r+a'  
        s = 0:(n(j)-m_abs(j))/2; 8{ zX=  
        pows = n(j):-2:m_abs(j); 6{Wo5O{!\  
        for k = length(s):-1:1 -YRIe<}E -  
            p = (1-2*mod(s(k),2))* ... I>c,Bo7  
                       prod(2:(n(j)-s(k)))/              ... u-_r2U  
                       prod(2:s(k))/                     ... s#2t\}/  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... fgLjF,Y  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); dzVi ~wt_&  
            idx = (pows(k)==rpowers); g=*jKSZ  
            y(:,j) = y(:,j) + p*rpowern(:,idx); Zk3Pv0c  
        end m[hL GD'Fi  
         IqOg{#sm  
        if isnorm 2 $>DX\h  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 12$0-@U  
        end 8@3K, [Mo  
    end QY\k3hiqn  
    % END: Compute the Zernike Polynomials JA^o/%a^  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% rK3kg2H  
    PEMkx"h +  
    % Compute the Zernike functions: r pNb.  
    % ------------------------------ 6j#JhcS+  
    idx_pos = m>0; ,75)  
    idx_neg = m<0; KA3U W  
    \pmS*Dt  
    z = y; qi-XNB`b  
    if any(idx_pos) m[DQ;`Y  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); _Q V=3UWP  
    end +WX/4_STV  
    if any(idx_neg) `lf_wB+I  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); kA :Y^2X'  
    end SzULy >e  
    AGBV7Kk  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) QM$UxWo-  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. $8EEtr,!  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated 3m1g"  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive 0G%9 @^B  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, C@M-_Ud>Q  
    %   and THETA is a vector of angles.  R and THETA must have the same V&Y`?Edc  
    %   length.  The output Z is a matrix with one column for every P-value, n@p]v*  
    %   and one row for every (R,THETA) pair. ('J/Ww<  
    % R2bqhSlF  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike fN vQ.;  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) awLvLkQb{  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) WtSs:D  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 U,GSWMI/K  
    %   for all p. u@a){ A(P  
    % Dy08.Sss  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 Vaxg   
    %   Zernike functions (order N<=7).  In some disciplines it is ]m1fo'  
    %   traditional to label the first 36 functions using a single mode n ]%2Kx  
    %   number P instead of separate numbers for the order N and azimuthal 7>hcvML  
    %   frequency M. /2^L;#  
    % %VHy?!/  
    %   Example: 4&)sROjV=  
    % '|yxB')  
    %       % Display the first 16 Zernike functions Bfb~<rs[  
    %       x = -1:0.01:1; }D1x%L  
    %       [X,Y] = meshgrid(x,x); 6)[moR{N1  
    %       [theta,r] = cart2pol(X,Y); %G?@Hye3  
    %       idx = r<=1; j?T'N:Qd  
    %       p = 0:15; PgtLyzc  
    %       z = nan(size(X)); c~|(j \FI  
    %       y = zernfun2(p,r(idx),theta(idx)); )k<cd.MX  
    %       figure('Units','normalized') Z[O hZ 9  
    %       for k = 1:length(p) Sv=YI  
    %           z(idx) = y(:,k); m\teE]8x  
    %           subplot(4,4,k) 44CZl{pt  
    %           pcolor(x,x,z), shading interp ?<Qbp;WBo  
    %           set(gca,'XTick',[],'YTick',[]) _{|a<Keq|  
    %           axis square ~M~DH-aX  
    %           title(['Z_{' num2str(p(k)) '}']) @ f[-  
    %       end aZZ0eH  
    % 1 UQ,V`y  
    %   See also ZERNPOL, ZERNFUN. /*C!]Z>.  
    hB [bth  
    %   Paul Fricker 11/13/2006 ]w*"KG!(  
    xd?=#d  
    !Uiq3s`1T  
    % Check and prepare the inputs: Va!G4_OT  
    % ----------------------------- n%Oi~7>  
    if min(size(p))~=1 5Fydh0.  
        error('zernfun2:Pvector','Input P must be vector.') FDo PW~+[  
    end #p+iwW-  
    N^ +q^iW  
    if any(p)>35 a\sK{`|X*  
        error('zernfun2:P36', ... PRfq_:xy  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... !ooi.Oz*Tu  
               '(P = 0 to 35).']) 5(~Lr3v0  
    end XtCIUC{r,  
    (bm^R-SbB  
    % Get the order and frequency corresonding to the function number: @$slGY  
    % ---------------------------------------------------------------- $S>'0mL  
    p = p(:); 9J:|"@)N  
    n = ceil((-3+sqrt(9+8*p))/2); dv+Gv7&2/  
    m = 2*p - n.*(n+2); D:`Q\za  
    <B@NSj  
    % Pass the inputs to the function ZERNFUN: sY<UJlDKT  
    % ---------------------------------------- &C'^YF_^0  
    switch nargin 1dvP2E  
        case 3 MlTC?Rp#  
            z = zernfun(n,m,r,theta); qV=:2m10x  
        case 4 f@}> :x  
            z = zernfun(n,m,r,theta,nflag); 81nD:]7  
        otherwise Q{~g<G  
            error('zernfun2:nargin','Incorrect number of inputs.') <NZPLo F  
    end j$ T12  
    fz=8"cDR  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) )>2L(~W  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. H+*3e&  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of ZH~bY2^;  
    %   order N and frequency M, evaluated at R.  N is a vector of +cfcr*  
    %   positive integers (including 0), and M is a vector with the "{8j!+]4i  
    %   same number of elements as N.  Each element k of M must be a {.Qv1oOa  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) D%+yp  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is !aSj1 2J  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix 0n:cmML )D  
    %   with one column for every (N,M) pair, and one row for every g$]WKy(D  
    %   element in R. gaN/ kp  
    % '( I0VJJ   
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- mr7Oi `dE  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is ![Qi+xyc  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to Z*M{  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 W=HvMD  
    %   for all [n,m]. \k5"&]I3  
    % +a39 !j 1_  
    %   The radial Zernike polynomials are the radial portion of the R'sNMWM  
    %   Zernike functions, which are an orthogonal basis on the unit 2|x !~e.  
    %   circle.  The series representation of the radial Zernike ^g4Gw6q 6  
    %   polynomials is (Y'cxwj%  
    % z&QfZs  
    %          (n-m)/2 HW]?%9a  
    %            __ Yuw:W:wY  
    %    m      \       s                                          n-2s ]AQ}_dRi=  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r id" `o  
    %    n      s=0 ~~Bks{"BS  
    % N!c FUZ5]  
    %   The following table shows the first 12 polynomials. R*vQvO%)h  
    % @%fTdneH  
    %       n    m    Zernike polynomial    Normalization j4,y+ 9U  
    %       --------------------------------------------- 0g30nr)  
    %       0    0    1                        sqrt(2) : %& E58  
    %       1    1    r                           2 46]BRL2 G  
    %       2    0    2*r^2 - 1                sqrt(6) ]y.V#,6e  
    %       2    2    r^2                      sqrt(6)  g*a+$'  
    %       3    1    3*r^3 - 2*r              sqrt(8) -$"$r ~ad  
    %       3    3    r^3                      sqrt(8) z'l HL  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) Lfn$Q3}O`$  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) c#TY3Z|  
    %       4    4    r^4                      sqrt(10) uGz)Vz&3  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) )Zr\W3yWX  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) I#xdksY  
    %       5    5    r^5                      sqrt(12) !`%j#bv  
    %       --------------------------------------------- Y_Fn)(  
    % $ (;:4  
    %   Example: }$z(?b  
    % =s!0EwDH3  
    %       % Display three example Zernike radial polynomials ~bkO8tn  
    %       r = 0:0.01:1; 2b7-=/[6  
    %       n = [3 2 5]; ~qQZhu"  
    %       m = [1 2 1]; zHA::6OgPN  
    %       z = zernpol(n,m,r); #&T O(bk  
    %       figure C W#:'  
    %       plot(r,z) @]q^O MLY  
    %       grid on W+ ;=8S  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') 3" m]A/6C}  
    % -XXsob}/8  
    %   See also ZERNFUN, ZERNFUN2. i=\)[;U  
    C]2-V1,ZX  
    % A note on the algorithm. RAl/p9\A+  
    % ------------------------ #WZat ?-N  
    % The radial Zernike polynomials are computed using the series FWJ**J  
    % representation shown in the Help section above. For many special !.,J;Qt  
    % functions, direct evaluation using the series representation can Ik^^8@z  
    % produce poor numerical results (floating point errors), because .Pj<Pe  
    % the summation often involves computing small differences between [hSJ)IZh  
    % large successive terms in the series. (In such cases, the functions h#Z[ "BG  
    % are often evaluated using alternative methods such as recurrence aC`>~uX##V  
    % relations: see the Legendre functions, for example). For the Zernike VIdKe&,  
    % polynomials, however, this problem does not arise, because the i[9yu-  
    % polynomials are evaluated over the finite domain r = (0,1), and jUM'f24  
    % because the coefficients for a given polynomial are generally all ;>mM9^Jaf  
    % of similar magnitude. <c[\\ :Hh*  
    % 1s(T#jh  
    % ZERNPOL has been written using a vectorized implementation: multiple ^P@:CBO  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] T`wDdqWbEG  
    % values can be passed as inputs) for a vector of points R.  To achieve jbipNgxkr  
    % this vectorization most efficiently, the algorithm in ZERNPOL :=y5713  
    % involves pre-determining all the powers p of R that are required to 'y; Kj  
    % compute the outputs, and then compiling the {R^p} into a single N<i5X.X  
    % matrix.  This avoids any redundant computation of the R^p, and d^A]]Xg  
    % minimizes the sizes of certain intermediate variables. b]b>i]n  
    % mq[=,,#  
    %   Paul Fricker 11/13/2006 W9]z]6  
    iV/I909*''  
    60^j<O  
    % Check and prepare the inputs: DAb/B  
    % ----------------------------- z.8nYL5^}  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) WF`%7A39Af  
        error('zernpol:NMvectors','N and M must be vectors.') GqxnB k1  
    end Qpv#&nfUi6  
    enJ; #aA  
    if length(n)~=length(m) 5h/,*p6Nje  
        error('zernpol:NMlength','N and M must be the same length.') 7ivo Q  
    end :W,S  
    6}-No  
    n = n(:); =xm7i#1  
    m = m(:); ~g/"p`2-N  
    length_n = length(n); QO}~"lMj  
    ldUZ\z(*  
    if any(mod(n-m,2)) 4+q,[m-$(  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') A .&c>{B7  
    end kyAN O  
    jzV"(p!  
    if any(m<0) j%s,%#al  
        error('zernpol:Mpositive','All M must be positive.') xg/(  
    end - $<oY88  
    ?Vd~  
    if any(m>n) %3qjgyLZ|  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') c`;oV-f  
    end c ^ds|7i]a  
    ^g*Sy, A  
    if any( r>1 | r<0 ) < 8' b  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') kMCP .D45;  
    end Zb=NcEPGy  
    B za<.E=  
    if ~any(size(r)==1) 5kw  K%  
        error('zernpol:Rvector','R must be a vector.') d[9{&YnH !  
    end &Tt7VYJfIV  
    YCiG~y/~  
    r = r(:); cEu_p2(7!B  
    length_r = length(r); pYQSn.`V~  
    [<@T%yq  
    if nargin==4 'Hx#DhiFz  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); >`UqS`YQK  
        if ~isnorm 6 8,j~e3-i  
            error('zernpol:normalization','Unrecognized normalization flag.') :4V5p =v-  
        end QD,m`7(  
    else 6ioj!w<N  
        isnorm = false; ^slIR!L  
    end "<0!S~]  
    bs|gQZG  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ?I^$35  
    % Compute the Zernike Polynomials > Hv9Xz  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% gGvL6Fu  
    M,JwoKyg  
    % Determine the required powers of r: zNX=V!$  
    % ----------------------------------- -lJ|x>PG'  
    rpowers = []; c;]\$#2  
    for j = 1:length(n) |iUF3s|?  
        rpowers = [rpowers m(j):2:n(j)]; r5s{t4 ;Ch  
    end lVT*Ev{&.  
    rpowers = unique(rpowers); _m?i$5  
    d~QKZ&jf  
    % Pre-compute the values of r raised to the required powers, 0J'^<G TL  
    % and compile them in a matrix: \m|5Aqs  
    % ----------------------------- pP.`+vPi  
    if rpowers(1)==0 ]~]TZb  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); F'[Y.tA ,#  
        rpowern = cat(2,rpowern{:}); #9TL5-1y  
        rpowern = [ones(length_r,1) rpowern]; (nLzWvN  
    else Fxa{ 9'99  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); D,.`mX  
        rpowern = cat(2,rpowern{:}); }Y7P2W+4?  
    end E'{:HX  
    {D8opepO)  
    % Compute the values of the polynomials: t8RtJ2;  
    % -------------------------------------- <7`k[~)VB  
    z = zeros(length_r,length_n); %R4 \[e  
    for j = 1:length_n !QVhP+l'H  
        s = 0:(n(j)-m(j))/2; EgG3XhfS  
        pows = n(j):-2:m(j); $MDmY4\  
        for k = length(s):-1:1 }5PC53q  
            p = (1-2*mod(s(k),2))* ... }OIe!  
                       prod(2:(n(j)-s(k)))/          ... -sv%A7i  
                       prod(2:s(k))/                 ... ,$t1LV;o=  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... 3L==p`   
                       prod(2:((n(j)+m(j))/2-s(k))); k 76<CX  
            idx = (pows(k)==rpowers); SN"Y@y)=  
            z(:,j) = z(:,j) + p*rpowern(:,idx); W>!:K^8]  
        end !)oQ9,N  
         rEp\ld  
        if isnorm VOj7Tz9UD  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); Yz2N(g[  
        end a:*N0  
    end wq.'8Y~BE  
    ^(  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  ZOJ7 ^g  
    cKwmtmwB  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 M}" KAa  
    Q^lgtb  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)