非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 g"|>^90
function z = zernfun(n,m,r,theta,nflag) L~;(M6Jp
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 8kdJtEW3
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N U+>M@!=
% and angular frequency M, evaluated at positions (R,THETA) on the O<V 4j,
% unit circle. N is a vector of positive integers (including 0), and #|,cy,v4
% M is a vector with the same number of elements as N. Each element ^<-r57pz
% k of M must be a positive integer, with possible values M(k) = -N(k) lqMr@
:t
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, E X'PRNB,
% and THETA is a vector of angles. R and THETA must have the same NZ i3U
% length. The output Z is a matrix with one column for every (N,M) $Z;/Sh
% pair, and one row for every (R,THETA) pair. 2IM31 .
% :8oJG8WH
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 1d FuoX
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), _h#I}uJ~
% with delta(m,0) the Kronecker delta, is chosen so that the integral of_y<dd[G
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, I-g/)2
% and theta=0 to theta=2*pi) is unity. For the non-normalized 0mUVa=)D
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. =c*l!."0
% /u.ZvY3,
% The Zernike functions are an orthogonal basis on the unit circle. EZ|v,1`e
% They are used in disciplines such as astronomy, optics, and MomHSv Q\
% optometry to describe functions on a circular domain. LOi}\O8
% .S-)
% The following table lists the first 15 Zernike functions. Kd^.>T-
% |]@Pq[Hn|
% n m Zernike function Normalization YcDKRyrt
% -------------------------------------------------- G'G8`1Nj
% 0 0 1 1 U7D!w$4
% 1 1 r * cos(theta) 2 /A-WI x
% 1 -1 r * sin(theta) 2 P][jB
% 2 -2 r^2 * cos(2*theta) sqrt(6) r
<5}& B`
% 2 0 (2*r^2 - 1) sqrt(3) 7>j~;p{
% 2 2 r^2 * sin(2*theta) sqrt(6) YVDFcN9v
% 3 -3 r^3 * cos(3*theta) sqrt(8) ]"{8"+x
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) :[_msd
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) ; iia?f1
% 3 3 r^3 * sin(3*theta) sqrt(8) KB](W
% 4 -4 r^4 * cos(4*theta) sqrt(10) Qw'905;(
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 1F`jptVQ\G
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) If,p!L
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 9|}Pf_5]%[
% 4 4 r^4 * sin(4*theta) sqrt(10) )'U0n`=
% -------------------------------------------------- R'tKJ_VI
% m]AT-]*f
% Example 1: ]$lt
% vsj4?0=
% % Display the Zernike function Z(n=5,m=1) 6ABK)m-y
% x = -1:0.01:1; *l+Dbm,u
% [X,Y] = meshgrid(x,x); h.PBe
% [theta,r] = cart2pol(X,Y); LQ# E+id&
% idx = r<=1; ,u2Qkw
% z = nan(size(X)); 8\lh'8
% z(idx) = zernfun(5,1,r(idx),theta(idx)); gk%@& TB/
% figure {k)gDJU
% pcolor(x,x,z), shading interp GcdJf/k
% axis square, colorbar DaQl ip
% title('Zernike function Z_5^1(r,\theta)') z2uL[deN'"
% I}
jgz
% Example 2: MY@&^71i4
%
zd=O;T;.
% % Display the first 10 Zernike functions _rwJ:r
% x = -1:0.01:1; RTm/-6[N
% [X,Y] = meshgrid(x,x); |R0f--;
% [theta,r] = cart2pol(X,Y); Q# B0JT1
% idx = r<=1; [Vo5$w
% z = nan(size(X)); f
5v&4
% n = [0 1 1 2 2 2 3 3 3 3]; 9aJIq{ `E
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 7pyzPc#_
% Nplot = [4 10 12 16 18 20 22 24 26 28]; 3OZPy|".ax
% y = zernfun(n,m,r(idx),theta(idx)); pZ.b
X
% figure('Units','normalized') uX6yhaOp|
% for k = 1:10 {?H5Pw>{%h
% z(idx) = y(:,k); hL&$` Q
% subplot(4,7,Nplot(k)) 9RJF
% pcolor(x,x,z), shading interp g|>LT_
% set(gca,'XTick',[],'YTick',[]) CBEf;Ig
% axis square XVN`J]XHk
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) !5o j~H
% end @x}"aJgl
%
}~/b%^
% See also ZERNPOL, ZERNFUN2. 9D3{[
T+<.KvO-
% Paul Fricker 11/13/2006 "B_3<RSL
V 95o(c.p
eThaH0
% Check and prepare the inputs: %y6(+I#P
% ----------------------------- ;miif
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) K& #il
error('zernfun:NMvectors','N and M must be vectors.') <&3P\aM>
end {]T?) !Vm
6Wu*zY_+
if length(n)~=length(m) JLoF!MK}
error('zernfun:NMlength','N and M must be the same length.') <q'l7S
end zt(lV
SiLW[JXd
n = n(:); ,CfslhO{j
m = m(:); k
QuEG5n.-
if any(mod(n-m,2)) =nhY;pY3u
error('zernfun:NMmultiplesof2', ...
<\^0!v
'All N and M must differ by multiples of 2 (including 0).') K~TwyB-h
end !D#"+&&G8
yQK{ +w
if any(m>n) X-c|jn7
error('zernfun:MlessthanN', ... Ie.*x'b?y
'Each M must be less than or equal to its corresponding N.') y [8;mCh
end wFJf"@/vJ
]`/>hH>+~9
if any( r>1 | r<0 ) !T{+s
T
error('zernfun:Rlessthan1','All R must be between 0 and 1.') 6 c_#"4
end qjB:6Jq4q
q+?<cjVg
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ytZ o0pad
error('zernfun:RTHvector','R and THETA must be vectors.') ^_WR) F'K
end 4q}+8F`0F
Jo5B mh0
r = r(:); !5`MiH
theta = theta(:); hd3
length_r = length(r); v(1 [n]y
if length_r~=length(theta) K*/oWYM]
error('zernfun:RTHlength', ... FK _ ZE>
'The number of R- and THETA-values must be equal.') x4MmBVqp
end }[AaI #
XF!L.' zH
% Check normalization: |oY{TQ<<d
% -------------------- ,md_eGF
if nargin==5 && ischar(nflag) g#5R||r
isnorm = strcmpi(nflag,'norm'); 4p:d#,?r
if ~isnorm PkvW6,lS
error('zernfun:normalization','Unrecognized normalization flag.') 7v5]%%E/
end my (@~'
else K10G+'H^
isnorm = false; 7Ak<e tHD
end Ykxk`SJ
6'^_*n
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 1m*)MZ)
% Compute the Zernike Polynomials cOV j @z
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 1}(22Q;
mY"7/dw<v
% Determine the required powers of r: EXDDUqZ5\
% ----------------------------------- ;wn9
21r
m_abs = abs(m); 4ud(5m;Rle
rpowers = []; zI`I
Q
for j = 1:length(n) J"`VA_[
rpowers = [rpowers m_abs(j):2:n(j)]; Rb6BY-/J
end l6 G6H$
rpowers = unique(rpowers); @{Rb]d?&F?
@8L5UT
% Pre-compute the values of r raised to the required powers, O_FB^BB
% and compile them in a matrix: CMj =4e
% ----------------------------- ;UQGi}?CD
if rpowers(1)==0 ? i{?Q,
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); W A/dt2D|
rpowern = cat(2,rpowern{:}); ) /raTD
rpowern = [ones(length_r,1) rpowern]; AdDX_\V,*
else \+
se%O
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); sxNf"C=-.
rpowern = cat(2,rpowern{:}); r2-iISxg+
end KF%BX~80C
jPWONz(#
% Compute the values of the polynomials: %3z[;&*3O
% -------------------------------------- DbMVbgz<e
y = zeros(length_r,length(n)); z?byNd8
for j = 1:length(n) JRl=j2z
s = 0:(n(j)-m_abs(j))/2; ]s\r3I]
pows = n(j):-2:m_abs(j); $$9H1)Ny
for k = length(s):-1:1 iLy^U*yK
p = (1-2*mod(s(k),2))* ... 20c5U%
prod(2:(n(j)-s(k)))/ ... "qmSwdM
prod(2:s(k))/ ... ;K<VT\
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... <.h7xZ
prod(2:((n(j)+m_abs(j))/2-s(k))); #C9f?fnM
idx = (pows(k)==rpowers); > Pw5!i\
y(:,j) = y(:,j) + p*rpowern(:,idx); .p[uIRd`
end &g:( I
8zK#./0\
if isnorm &~:EmLgv
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); X=QX9Ux?^
end `OW'AS |
end Y@FYo>0O
% END: Compute the Zernike Polynomials '2lV(>"
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% *zdD4I=
OyO<A3
% Compute the Zernike functions: X!KX4H
% ------------------------------ i}m'#b
idx_pos = m>0; .j4y0dh33
idx_neg = m<0; @)pC3Vi^
+hRy{Ps/
z = y; |8` }8vo)
if any(idx_pos) M5I`i{Gw
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); F_@B ` ,
end `l|Oj$
if any(idx_neg) )1At/ mr
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); FGVw=G{r
end $ }/tlA&e
c.>f,vtcn
% EOF zernfun