切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10934阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 Or:a\qQ1  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! q'9}Hz  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 XI/LVP,.  
    function z = zernfun(n,m,r,theta,nflag) c8<qn+=%?  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. xa&5o`>1G  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N knb 9s`wR  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 1RM@~I$0  
    %   unit circle.  N is a vector of positive integers (including 0), and M[1!#Q><!  
    %   M is a vector with the same number of elements as N.  Each element 9o<5Z=  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) \#%1t  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, O*dtVX  
    %   and THETA is a vector of angles.  R and THETA must have the same kWW$*d$  
    %   length.  The output Z is a matrix with one column for every (N,M) KP*cb6vA  
    %   pair, and one row for every (R,THETA) pair. 41oXOB  
    % ;GF+0~5>  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike F15Yn  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), zxhE9 [`*e  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral gAxf5 A_x)  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 8Ts_;uId  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized s-lNpOi  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. *^=zQ~  
    % Z6\H4,k&  
    %   The Zernike functions are an orthogonal basis on the unit circle. q1_iV.G<  
    %   They are used in disciplines such as astronomy, optics, and appWq}db  
    %   optometry to describe functions on a circular domain. VlbS\Y.  
    % d(!g9H  
    %   The following table lists the first 15 Zernike functions. JK=0juv<E  
    % fnZ?YzLI  
    %       n    m    Zernike function           Normalization n=1_-)  
    %       -------------------------------------------------- 5N /NUs   
    %       0    0    1                                 1 #[B]\HO  
    %       1    1    r * cos(theta)                    2 sO$X5S C9  
    %       1   -1    r * sin(theta)                    2 j.O+e|kxU  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 7^<{aE:  
    %       2    0    (2*r^2 - 1)                    sqrt(3) mR3-+dB/  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) =+ vl+h  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 40$- ]i  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) ^X\SwgD2w  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) Q xm:5P  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) (Ee5Af,4  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 7%)KB4(\_  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) =6H  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) AdGDs+at,  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) l)K8.(2  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) Z#znA4;)  
    %       -------------------------------------------------- |SSe n#PYp  
    % /O {iL:`  
    %   Example 1: 2Sb68hJIE  
    % /kH 7I  
    %       % Display the Zernike function Z(n=5,m=1) 1ww#]p`1  
    %       x = -1:0.01:1; J2avt  
    %       [X,Y] = meshgrid(x,x); 5!jU i9  
    %       [theta,r] = cart2pol(X,Y); ?Jy /]j5fI  
    %       idx = r<=1; ,We'A R3X  
    %       z = nan(size(X)); @ CNe)&U  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 1a@b-V2 d&  
    %       figure oUNuM%g9Dy  
    %       pcolor(x,x,z), shading interp <; P40jDL  
    %       axis square, colorbar Q4e+vBECkq  
    %       title('Zernike function Z_5^1(r,\theta)') HF;$Wf+=J  
    % q<Z`<e  
    %   Example 2: }BN!Xa  
    % {({Rb$  
    %       % Display the first 10 Zernike functions o8c5~fG1  
    %       x = -1:0.01:1; -J]j=  
    %       [X,Y] = meshgrid(x,x); 7N4)T'B  
    %       [theta,r] = cart2pol(X,Y); Z3qr2/  
    %       idx = r<=1; H63?Erh>a  
    %       z = nan(size(X)); -I'Jm=q3]  
    %       n = [0  1  1  2  2  2  3  3  3  3]; <s wfYT!N  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; h\lyt(.s  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; . /@C  
    %       y = zernfun(n,m,r(idx),theta(idx)); ,*m{Q  
    %       figure('Units','normalized') mV++7DY  
    %       for k = 1:10 PFI^+';  
    %           z(idx) = y(:,k); H84Zg/ ^  
    %           subplot(4,7,Nplot(k)) b-?d(-  
    %           pcolor(x,x,z), shading interp }F4%5go  
    %           set(gca,'XTick',[],'YTick',[]) K)N'~jCG  
    %           axis square *6/OLAkyF  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) c@|f'V4  
    %       end BK)3b6L=%  
    % 7!PU}[:  
    %   See also ZERNPOL, ZERNFUN2. 3 4:Y_*  
    ZO8r8 [  
    %   Paul Fricker 11/13/2006 ap wA  
    1TlMB  
    RXw }Tb/D8  
    % Check and prepare the inputs: #&,~5  
    % ----------------------------- .kc{)d*0K  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Oh; V%G  
        error('zernfun:NMvectors','N and M must be vectors.') IylfMwLC  
    end OfPv'rW{x  
    yF@72tK  
    if length(n)~=length(m) @B9O*x+n:  
        error('zernfun:NMlength','N and M must be the same length.') b NR@d'U  
    end G]RFGwGt  
    d$B+xW  
    n = n(:); ~u-_DOA  
    m = m(:); lXip%6c7  
    if any(mod(n-m,2)) -'rb+<v  
        error('zernfun:NMmultiplesof2', ... [13NhF3.P  
              'All N and M must differ by multiples of 2 (including 0).') x \b+B  
    end "Tnmn@  
    Vo(>K34  
    if any(m>n) vl>_;} W7  
        error('zernfun:MlessthanN', ... Fd/Ra]@\Y  
              'Each M must be less than or equal to its corresponding N.') b&P2VqYgl  
    end C:ntr=3J  
    ]zh6[0V7V  
    if any( r>1 | r<0 ) }WnoI2  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') g`I$U%a_2  
    end KvmXRf*z  
    %`0*KMO3  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) gr\vC  
        error('zernfun:RTHvector','R and THETA must be vectors.') PMZ*ECIJU  
    end :wz]d ~)  
    8V@\$4@b!#  
    r = r(:); suE#'0K  
    theta = theta(:); * TByAa{  
    length_r = length(r); ?P"j5  
    if length_r~=length(theta) 1O+$"5H  
        error('zernfun:RTHlength', ... j$Vtd &  
              'The number of R- and THETA-values must be equal.') ^w*&7.Z  
    end N4w&g-  
    b5?k)s2  
    % Check normalization: N{?Qkkgx  
    % -------------------- #C+7~ns'  
    if nargin==5 && ischar(nflag) bYwe/sR  
        isnorm = strcmpi(nflag,'norm'); ,B$e'KQ  
        if ~isnorm fKNDl\SD  
            error('zernfun:normalization','Unrecognized normalization flag.') qb KcI+)47  
        end &Vbcwv@  
    else -)[~%n#X+t  
        isnorm = false; K-n]m#U4o  
    end i+~H~k}"X  
    dF'oZQz  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ^3ysY24Q  
    % Compute the Zernike Polynomials `! _mIh}  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% A?H.EZ  
    ni-4 ~k  
    % Determine the required powers of r: [cT7Iqip  
    % ----------------------------------- $o^N_`l  
    m_abs = abs(m); uZ+vYF^  
    rpowers = []; )w0K2&)A  
    for j = 1:length(n) N[wyi&m4  
        rpowers = [rpowers m_abs(j):2:n(j)]; Atod&qH  
    end -9yWf8;  
    rpowers = unique(rpowers); 9` G}GU]@}  
    ,S-zY\XB  
    % Pre-compute the values of r raised to the required powers, Vm%0436wOY  
    % and compile them in a matrix: crU]P $a  
    % ----------------------------- DHh30b$c  
    if rpowers(1)==0 X-_0wR  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); X_#,5t=7  
        rpowern = cat(2,rpowern{:}); )P9&I.a8  
        rpowern = [ones(length_r,1) rpowern]; J>^KQ  
    else ^i6`w_/  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 7F8>w 7Y]  
        rpowern = cat(2,rpowern{:}); ,e+S7 YX  
    end Z'_EX7r  
    V#\iO  
    % Compute the values of the polynomials: xcC^9BAj  
    % -------------------------------------- 6Lz:J:Q)  
    y = zeros(length_r,length(n)); gkld}t*U  
    for j = 1:length(n) U_Am Riy  
        s = 0:(n(j)-m_abs(j))/2; #RP7?yGM,  
        pows = n(j):-2:m_abs(j); !\|L(Paf  
        for k = length(s):-1:1 kXW$[R  
            p = (1-2*mod(s(k),2))* ... 9`5qVM1O{  
                       prod(2:(n(j)-s(k)))/              ... <26Jif:  
                       prod(2:s(k))/                     ... ]`\~(*;[W9  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... #& &  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); d5 U+]g  
            idx = (pows(k)==rpowers); F/U38[  
            y(:,j) = y(:,j) + p*rpowern(:,idx); eG%Q 3h  
        end ;(;{~1~  
         "U iv[8B  
        if isnorm Awlw6?   
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ' O d_:]  
        end AHdh]pfH  
    end nHIW_+<Mf  
    % END: Compute the Zernike Polynomials  ui1h M  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% pR7D3Q:^7  
    {WN??eys,  
    % Compute the Zernike functions: |v= */e  
    % ------------------------------ q|kkdK|N/Y  
    idx_pos = m>0;  bj U]]  
    idx_neg = m<0; P: )YKro]  
    %<;PEQQ|C  
    z = y; @ \JoICz  
    if any(idx_pos) Nx<%'-9)|  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ZR@PqS+O/  
    end Dt]*M_  
    if any(idx_neg) U-lN-/=l6  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); "[wP1n!G  
    end ]B9Ut&mF;  
    V.~C.x  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) `T~~yM)q  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. ("ulL5  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated 2j*o[kAE  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive 9e'9$-z  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, 8@d,TjJDo  
    %   and THETA is a vector of angles.  R and THETA must have the same ew\ZFqA;  
    %   length.  The output Z is a matrix with one column for every P-value, ~6O<5@k  
    %   and one row for every (R,THETA) pair. D?}K|z LQ  
    % wEMg~Hh  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike %TA@-tK=  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) i9quP"<9  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) A"R5Fd%6pc  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 o%$'-N  
    %   for all p. rT{+ h}vO  
    % Tq`rc"&7u  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 */E5<DO  
    %   Zernike functions (order N<=7).  In some disciplines it is 2N[S*#~*e  
    %   traditional to label the first 36 functions using a single mode Fun+L@:;  
    %   number P instead of separate numbers for the order N and azimuthal >Mc,c(CvU  
    %   frequency M. l[Rl:k!  
    % V j"B/@  
    %   Example: ,pMH`  
    % CiTjRJ-ZW)  
    %       % Display the first 16 Zernike functions o@blvW<v7  
    %       x = -1:0.01:1; Q R<q[@)F  
    %       [X,Y] = meshgrid(x,x); 3F|#nq  
    %       [theta,r] = cart2pol(X,Y); x,>r}I>^Q  
    %       idx = r<=1; Y> f 6  
    %       p = 0:15; c&n.JV   
    %       z = nan(size(X)); 6;vfl*  
    %       y = zernfun2(p,r(idx),theta(idx)); |*-&x:p7O  
    %       figure('Units','normalized') lgaE2`0 [3  
    %       for k = 1:length(p) jj8h>"d  
    %           z(idx) = y(:,k); E4dN,^_ F!  
    %           subplot(4,4,k) 0N(o)WRv  
    %           pcolor(x,x,z), shading interp 95^A !  
    %           set(gca,'XTick',[],'YTick',[]) N)N\iad^  
    %           axis square KG8Km  
    %           title(['Z_{' num2str(p(k)) '}']) `UDB9Ca  
    %       end |ZuS"'3_w  
    % d1=fA%pJ  
    %   See also ZERNPOL, ZERNFUN. 1T@#gE["Ic  
    TSHQ>kP  
    %   Paul Fricker 11/13/2006 ^P !} "  
    N#"(  
    =w <;tb  
    % Check and prepare the inputs: 3T7,Y(<V  
    % ----------------------------- x=~$ik++  
    if min(size(p))~=1 lay)I11- >  
        error('zernfun2:Pvector','Input P must be vector.') y o |"-  
    end N% W298  
    zxffjz,Fe:  
    if any(p)>35 k1)=xv#S  
        error('zernfun2:P36', ... x\MzMQ#Bf  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... }:2GD0Ru  
               '(P = 0 to 35).']) J5 2- qR/  
    end vRn"0Mzl8  
    U#=5HzE  
    % Get the order and frequency corresonding to the function number: c^s%t:)K  
    % ---------------------------------------------------------------- dZ"w2ho  
    p = p(:); TaI72"8  
    n = ceil((-3+sqrt(9+8*p))/2); xvx+a0 A  
    m = 2*p - n.*(n+2); (^4V]N&  
    D?:AHj%gW  
    % Pass the inputs to the function ZERNFUN: ql_GN[c/  
    % ---------------------------------------- 9pJk.Np0   
    switch nargin *8?0vkZZ2  
        case 3 m^M sp:T,  
            z = zernfun(n,m,r,theta); /$NZj" #  
        case 4 ]= nM|e  
            z = zernfun(n,m,r,theta,nflag); u|}p3-z|Y  
        otherwise ./# F,^F2  
            error('zernfun2:nargin','Incorrect number of inputs.') ]> dCt<  
    end EiP#xjn?c  
    ) ir*\<6Y=  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) S7Tc9"oqV  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. D`e6#1DbJ  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of 0 P]+/  
    %   order N and frequency M, evaluated at R.  N is a vector of PZjK6]N\  
    %   positive integers (including 0), and M is a vector with the j{?ogFfi  
    %   same number of elements as N.  Each element k of M must be a xh) h#p.  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) g&<3Kl  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is z:7 i@m  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix UcI;(Va  
    %   with one column for every (N,M) pair, and one row for every (0W)Jd[  
    %   element in R. gXP)YN  
    % (SnrY O`#  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- lc qpwSk  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is 9ER!K  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to _ a`J>~$  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 jM%8h$&E  
    %   for all [n,m]. CqkY_z  
    % AwQ7Oz|(  
    %   The radial Zernike polynomials are the radial portion of the yy(.|  
    %   Zernike functions, which are an orthogonal basis on the unit ^0fe:ac;  
    %   circle.  The series representation of the radial Zernike (- QvlpZ  
    %   polynomials is &4R -5i2a  
    % ]?3-;D.eG  
    %          (n-m)/2 LeT OVgjA|  
    %            __ @?!&M c2  
    %    m      \       s                                          n-2s WPpS?  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r OoqA`%  
    %    n      s=0 r;C BA'Z  
    % dum(T  
    %   The following table shows the first 12 polynomials. j : $Ruy  
    % Ak'=/`+p  
    %       n    m    Zernike polynomial    Normalization |iLf;8_:  
    %       --------------------------------------------- aSVR +of  
    %       0    0    1                        sqrt(2) Mr6q7  
    %       1    1    r                           2 %~$coZY^  
    %       2    0    2*r^2 - 1                sqrt(6) &RL j^A!  
    %       2    2    r^2                      sqrt(6) "eb+O  
    %       3    1    3*r^3 - 2*r              sqrt(8) 'i5,2vT0  
    %       3    3    r^3                      sqrt(8) | ycN)zuE  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) Hph$Z 1{  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) =`W#R  
    %       4    4    r^4                      sqrt(10) XRx^4]c  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) IQNvhl.{  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) ,GTIpPj  
    %       5    5    r^5                      sqrt(12) L2}p<?f  
    %       --------------------------------------------- dZIruZ)x  
    % l/6$BP U`  
    %   Example: 4ynGXJmMlR  
    % (\o &Gl  
    %       % Display three example Zernike radial polynomials |Zm'!-_  
    %       r = 0:0.01:1; ]~d!<x#+  
    %       n = [3 2 5]; RJa1p YK  
    %       m = [1 2 1]; >Nr~7s  
    %       z = zernpol(n,m,r); mVVL[z2+  
    %       figure \F5d p  
    %       plot(r,z) K^f&+`v6_  
    %       grid on FL?Ndy"I  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') 'eDV-cB  
    %  \s^4f#  
    %   See also ZERNFUN, ZERNFUN2. <S@XK%  
    @ ?CEi#-  
    % A note on the algorithm. 5ji#rIAhxh  
    % ------------------------ {O"N2W  
    % The radial Zernike polynomials are computed using the series MNWuw;:v  
    % representation shown in the Help section above. For many special <4,LTB]9-  
    % functions, direct evaluation using the series representation can PGNH<E)  
    % produce poor numerical results (floating point errors), because < s1  
    % the summation often involves computing small differences between f*E#E=j  
    % large successive terms in the series. (In such cases, the functions 8;GuJP\  
    % are often evaluated using alternative methods such as recurrence d6vls7J/4  
    % relations: see the Legendre functions, for example). For the Zernike ?f&O4H  
    % polynomials, however, this problem does not arise, because the 8h'*[-]70u  
    % polynomials are evaluated over the finite domain r = (0,1), and .z}*!   
    % because the coefficients for a given polynomial are generally all SsfHp  
    % of similar magnitude. )7;E,m<:tO  
    % r$<4_*  
    % ZERNPOL has been written using a vectorized implementation: multiple P`TJqJiY~  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] F$nc9x[S  
    % values can be passed as inputs) for a vector of points R.  To achieve 2Mw^EjR  
    % this vectorization most efficiently, the algorithm in ZERNPOL s^zX9IVnp  
    % involves pre-determining all the powers p of R that are required to i=AQ1X\s  
    % compute the outputs, and then compiling the {R^p} into a single uB>OS 1=  
    % matrix.  This avoids any redundant computation of the R^p, and 7L !$hk  
    % minimizes the sizes of certain intermediate variables. >))K%\p   
    % JSu+/rI1  
    %   Paul Fricker 11/13/2006 l0nm>ps'D  
    rJw Ws  
    bW?cb5C  
    % Check and prepare the inputs: PCs`aVZ  
    % ----------------------------- ;q&2$Mb  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) %Gc)$z/Wd  
        error('zernpol:NMvectors','N and M must be vectors.') :@]%n~x  
    end i&Xjbcbp  
    5Zy%Nam'gN  
    if length(n)~=length(m) ~tB#Q6`nB  
        error('zernpol:NMlength','N and M must be the same length.') hzV= 7  
    end qi=v}bp&  
    o3,}X@p  
    n = n(:); =)IV^6~b  
    m = m(:); H-/w8_} KG  
    length_n = length(n); MNu\=p\Eq  
    nk.j7tu  
    if any(mod(n-m,2))  @s7wKk  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') i>{.Y};  
    end d$#DXLA\P  
    <Oihwr@5<  
    if any(m<0) A?4s+A@Eg  
        error('zernpol:Mpositive','All M must be positive.') Ee097A?1vj  
    end cg).b?g  
    aU?HIIA  
    if any(m>n) cllnYvr3  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') Y0xn}:%K  
    end 0}qnq"  
    u`Abko<D  
    if any( r>1 | r<0 ) N-YCOSUu  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') -W.bOr  
    end h)pYV>!d  
    >bbvQb +j  
    if ~any(size(r)==1) @ @"abhT  
        error('zernpol:Rvector','R must be a vector.') ,lb >  
    end PsO>&Te2  
    cxpG6c  
    r = r(:); 6~tj"34_  
    length_r = length(r); Zr|z!S?aSC  
    l9vJ]   
    if nargin==4 h%8C_m A  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); $VnPs!a  
        if ~isnorm s}g3*_"  
            error('zernpol:normalization','Unrecognized normalization flag.')  4 `]  
        end O~4Q:#^c  
    else :b"&Rc&s.  
        isnorm = false; ES ?6  
    end `9mc+  
    7_CX6:  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% DyM<aT  
    % Compute the Zernike Polynomials 0s .X  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +O!4~k^  
    Rv Uw,=  
    % Determine the required powers of r: =i:,")W7=  
    % ----------------------------------- 35n'sVn  
    rpowers = []; 8c5=Px2\  
    for j = 1:length(n) Uc( z|  
        rpowers = [rpowers m(j):2:n(j)]; ()(^B}VK  
    end v(~EO(n.  
    rpowers = unique(rpowers); sfzDE&>'  
    ",P?jgs^g5  
    % Pre-compute the values of r raised to the required powers, &x)nK  
    % and compile them in a matrix: jQ3&4>gj  
    % ----------------------------- EpB3s{B"  
    if rpowers(1)==0 g>;"Fymc'  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ~ugH2jiB  
        rpowern = cat(2,rpowern{:}); 6[\1Nzy>  
        rpowern = [ones(length_r,1) rpowern]; hUe\sv!x?  
    else {Lugdf'  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); >/G[Oo  
        rpowern = cat(2,rpowern{:}); ih(Al<IS  
    end cQrXrij;!  
    tu6<>  
    % Compute the values of the polynomials: Yd]  
    % -------------------------------------- m*vz   
    z = zeros(length_r,length_n); R#4f_9e<Z  
    for j = 1:length_n 0.0r?T  
        s = 0:(n(j)-m(j))/2; FXh*!%"*  
        pows = n(j):-2:m(j); TFDzTD  
        for k = length(s):-1:1 DqA$%b yyE  
            p = (1-2*mod(s(k),2))* ... ?D['>Rzu  
                       prod(2:(n(j)-s(k)))/          ... hq?F8 1  
                       prod(2:s(k))/                 ... hCob^o  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... FZtT2Z4&i  
                       prod(2:((n(j)+m(j))/2-s(k))); D*t[5,~j  
            idx = (pows(k)==rpowers); iHeu<3O  
            z(:,j) = z(:,j) + p*rpowern(:,idx); )WsR 8tk  
        end =55V<VI  
         @T] G5|\ok  
        if isnorm Oar%LSkPRz  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); V)]lca  
        end A9y@v{txN  
    end 8\rAx P}=  
    j+[oZfH  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  ? \NT'CG  
    j{P3o<l&`  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 T7Yg^ -"  
    l%7^'nDn  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)