切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11819阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 Y`~B> J  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦!  l"ms:v  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 6x^$W ]R  
    function z = zernfun(n,m,r,theta,nflag) s|p I`  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. b`X''6  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N oPi>]#X  
    %   and angular frequency M, evaluated at positions (R,THETA) on the BwT[SI<Sg  
    %   unit circle.  N is a vector of positive integers (including 0), and >._d2.Q'  
    %   M is a vector with the same number of elements as N.  Each element n^nE&'[?0g  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) l@);U%\pS  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, oz&`3`  
    %   and THETA is a vector of angles.  R and THETA must have the same 9JFN8Gf*)  
    %   length.  The output Z is a matrix with one column for every (N,M) BpIyw  
    %   pair, and one row for every (R,THETA) pair. 'dwW~4|B  
    % ~ *&\5rPb  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike `n$Ak5f  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), }xsO^K  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral {<yapBMw  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, CY o m  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized HAn{^8"@  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Vg'R=+Wb  
    % LwB1~fF  
    %   The Zernike functions are an orthogonal basis on the unit circle. iTHwH{!  
    %   They are used in disciplines such as astronomy, optics, and ~A>fB2.pM  
    %   optometry to describe functions on a circular domain. necY/&Ld-  
    % `/sNX<mp  
    %   The following table lists the first 15 Zernike functions. HJ&P[zV^  
    % i >3`V6  
    %       n    m    Zernike function           Normalization -m@c{&r  
    %       -------------------------------------------------- c~hH 7/v  
    %       0    0    1                                 1 FW-I|kK.  
    %       1    1    r * cos(theta)                    2 `N\ ^JAGW  
    %       1   -1    r * sin(theta)                    2 P}4&J ^  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ^xHKoOTj[  
    %       2    0    (2*r^2 - 1)                    sqrt(3) ZxvH1qx8  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) l\Ozy  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ( eKgc  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) JX0M3|I=  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) :UdW4N-  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) W'4/cO  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) [-\Y?3  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 4o#]hB';ni  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) k3bQ32()  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) WX4sTxJK  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) k'iiRRM  
    %       -------------------------------------------------- _UVpQ5pN  
    % _9>,9aL  
    %   Example 1: jq H)o2"/  
    % _%Z.Re  
    %       % Display the Zernike function Z(n=5,m=1) <);q,|eh2  
    %       x = -1:0.01:1; CtY-Gs  
    %       [X,Y] = meshgrid(x,x); o^epXIrIPi  
    %       [theta,r] = cart2pol(X,Y); g}%ODa !H  
    %       idx = r<=1; QYbB\Y  
    %       z = nan(size(X)); (m3hD)!+y  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); F?6kkLS/  
    %       figure {\5(aQ)Vi5  
    %       pcolor(x,x,z), shading interp e_b,{l#  
    %       axis square, colorbar 9p8ajlYg,  
    %       title('Zernike function Z_5^1(r,\theta)') N|i>|2EB  
    % y11^q*}  
    %   Example 2: UIEvwQ  
    % 7RT{RE  
    %       % Display the first 10 Zernike functions O::FB.k  
    %       x = -1:0.01:1; !l*A3qA  
    %       [X,Y] = meshgrid(x,x); 3uYLA4[-B  
    %       [theta,r] = cart2pol(X,Y); 2BC!,e$Z  
    %       idx = r<=1; Ubu&$4a  
    %       z = nan(size(X)); [R4# bl  
    %       n = [0  1  1  2  2  2  3  3  3  3]; x/<ow4C  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; VV Q~;{L  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; Fbo"Csn_  
    %       y = zernfun(n,m,r(idx),theta(idx)); i$y=tJehi  
    %       figure('Units','normalized') {jD?obs  
    %       for k = 1:10 |V5BL<4  
    %           z(idx) = y(:,k); _YX% M|#  
    %           subplot(4,7,Nplot(k)) (GRW(Zd4  
    %           pcolor(x,x,z), shading interp 2xN7lfu1RB  
    %           set(gca,'XTick',[],'YTick',[]) Vs 5 &X+k  
    %           axis square h.tj8O1  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) %uo8z~+  
    %       end a>GA=r  
    % nC3+Zka  
    %   See also ZERNPOL, ZERNFUN2. L9/'zhiZBx  
    ZJ{DW4#t  
    %   Paul Fricker 11/13/2006 O ?T~>|  
    }!^h2)'7  
    b_Y+XXb<  
    % Check and prepare the inputs: a >fA-@  
    % ----------------------------- KJFQ)#SW!  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) !po,Z&  
        error('zernfun:NMvectors','N and M must be vectors.') S+06pj4Ie  
    end wA{) 9.  
    I0Do%  
    if length(n)~=length(m) L~ax`i1:"  
        error('zernfun:NMlength','N and M must be the same length.') k Fl* Im  
    end HVvm3qu4  
    q5g_5^csM{  
    n = n(:); O5du3[2x7a  
    m = m(:); #xmiUN,|  
    if any(mod(n-m,2)) q2 7Ac; y  
        error('zernfun:NMmultiplesof2', ... ANPG3^w  
              'All N and M must differ by multiples of 2 (including 0).') ]/ !*^;cY(  
    end GYw/KT~$  
    KeyKLkg>  
    if any(m>n) .:H'9QJg  
        error('zernfun:MlessthanN', ... O#igH  
              'Each M must be less than or equal to its corresponding N.') }|h-=T '  
    end {Q/@Y.~<  
    9>+>s ?IgK  
    if any( r>1 | r<0 ) =x w:@(]{  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') g{DOQA  
    end NH/jkt&F[  
    leHKBu'd  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) h`fZ 8|yw  
        error('zernfun:RTHvector','R and THETA must be vectors.') 5%S5*c6BD  
    end b5g^{bzwu  
    ip'v<%,Q3"  
    r = r(:); _`Kh8G {e  
    theta = theta(:); R&s/s`pLW  
    length_r = length(r); yYOV:3!"  
    if length_r~=length(theta) h1>.w pr  
        error('zernfun:RTHlength', ... Uj 3{c  
              'The number of R- and THETA-values must be equal.') WL% T nux  
    end _BG `!3U+  
    _6FDuCVD-  
    % Check normalization: e7G>'K  
    % -------------------- y3*IF2G  
    if nargin==5 && ischar(nflag) pnz@;+f  
        isnorm = strcmpi(nflag,'norm'); Ct /6<  
        if ~isnorm @W+8z#xr'  
            error('zernfun:normalization','Unrecognized normalization flag.') ^?%ThPo_  
        end JK md'ZGw  
    else "~C \Z} ;  
        isnorm = false; BvlY\^  
    end ,_,7c or  
    Z[+Qf3j}o6  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% L%9yFg%u  
    % Compute the Zernike Polynomials #oGvxc7  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% P)TeF1~T  
    5}N O~Xd<  
    % Determine the required powers of r: \l6mX In=>  
    % ----------------------------------- @Ng q+uXm  
    m_abs = abs(m); ku^2K   
    rpowers = []; hy"p8j7_  
    for j = 1:length(n) GmGq69]J*  
        rpowers = [rpowers m_abs(j):2:n(j)]; <.7W:s,f=  
    end a(o[ bH.|;  
    rpowers = unique(rpowers); /7*qa G  
    lSId<v?C>  
    % Pre-compute the values of r raised to the required powers, AM gvk`<f  
    % and compile them in a matrix: nDC5/xB  
    % ----------------------------- BcGQpv&x  
    if rpowers(1)==0 ]*S_fme  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ,@gDY9Q3r/  
        rpowern = cat(2,rpowern{:}); /=OSGIJzm  
        rpowern = [ones(length_r,1) rpowern]; of<>M4/g4y  
    else Pb D|7IM  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); \v_t: "  
        rpowern = cat(2,rpowern{:}); ~?A,GalS  
    end = &aD!nTx  
    Y@%6*uTLa  
    % Compute the values of the polynomials: xcIZ'V  
    % -------------------------------------- :kI x?cc  
    y = zeros(length_r,length(n)); UE\@7  
    for j = 1:length(n) &4MVk3SLx#  
        s = 0:(n(j)-m_abs(j))/2; 48%a${Nvvj  
        pows = n(j):-2:m_abs(j); Ll&5#q  
        for k = length(s):-1:1 -p !KsU  
            p = (1-2*mod(s(k),2))* ... p|%Y\!  
                       prod(2:(n(j)-s(k)))/              ... >Q\H1|?  
                       prod(2:s(k))/                     ... ?t.?f`(|  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... cfe[6N  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); FkE CY  
            idx = (pows(k)==rpowers); f<'&_*7,|t  
            y(:,j) = y(:,j) + p*rpowern(:,idx); Zk;;~ESOU  
        end uJp}9B60_  
         /0YNB)  
        if isnorm k0D&F;a%  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); kAk,:a;P  
        end s9:2aLZ {  
    end Z*e7W O.  
    % END: Compute the Zernike Polynomials "AVj]jR  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 1aMBCh<}JN  
    U ._1'pW  
    % Compute the Zernike functions: 0_y%Qj^e  
    % ------------------------------ w)8@Tu:Q  
    idx_pos = m>0; LP)mp cQ  
    idx_neg = m<0; N$,)vb<  
    @x J^JcE  
    z = y; x}>tX  
    if any(idx_pos) n _ez6{  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ujWHO$uz!  
    end /7"1\s0U  
    if any(idx_neg) tw3d>H`  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); z=Vvb  
    end =L wX+c  
    >`\*{]  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) +e:ZN tr9  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. 8W[]#~77b  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated PC_4#6^5  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive {G0)mp,  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, _Lb& 2 PAG  
    %   and THETA is a vector of angles.  R and THETA must have the same .nH /=  
    %   length.  The output Z is a matrix with one column for every P-value, FVmg&[ .  
    %   and one row for every (R,THETA) pair. `k| nf9_  
    % 9|WWA%p  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike S+y2eP G  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) ,;-*q}U  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) U[D<%7f  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 YcV~S#b  
    %   for all p. LI<5;oE;  
    % .am*d|&+G  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 fx-*')  
    %   Zernike functions (order N<=7).  In some disciplines it is 5l}h8So4  
    %   traditional to label the first 36 functions using a single mode bN&da [K  
    %   number P instead of separate numbers for the order N and azimuthal K)@}Ok"#\4  
    %   frequency M. iP%=Wo.  
    % rw2|1_AF  
    %   Example: S%fBt?-Cm  
    % y#DQOY+@^#  
    %       % Display the first 16 Zernike functions Xt84Evo  
    %       x = -1:0.01:1; {@$3bQ  
    %       [X,Y] = meshgrid(x,x); yMkd|1  
    %       [theta,r] = cart2pol(X,Y); UG_0Y8$  
    %       idx = r<=1; [AzN&yACE  
    %       p = 0:15; \(FDR  
    %       z = nan(size(X)); K-u/q6ufK  
    %       y = zernfun2(p,r(idx),theta(idx)); 3T/j5m}+!  
    %       figure('Units','normalized') 2AW{qwk7  
    %       for k = 1:length(p) vNSf:5H$  
    %           z(idx) = y(:,k); 3p W MS&  
    %           subplot(4,4,k) b]#d04]  
    %           pcolor(x,x,z), shading interp 8Q -F  
    %           set(gca,'XTick',[],'YTick',[]) AyO|9!F@A  
    %           axis square 6{X>9hD  
    %           title(['Z_{' num2str(p(k)) '}']) hob$eWgr  
    %       end q)b?X ^  
    % CM1a<bV<  
    %   See also ZERNPOL, ZERNFUN. J"%}t\Q  
    +:%FJCOT  
    %   Paul Fricker 11/13/2006 r&sOM_BUF  
    :Qo  
    Y`?X Fy:  
    % Check and prepare the inputs: u(Sz$eV  
    % ----------------------------- ~{G: ,|`  
    if min(size(p))~=1 F:S>\wG,  
        error('zernfun2:Pvector','Input P must be vector.') -$t,}3  
    end wP0+Xv,  
    jsd]7C  
    if any(p)>35 (x0*(*A}  
        error('zernfun2:P36', ... `j}d=zZ  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... oK:P@V6!  
               '(P = 0 to 35).']) yGG B  
    end lY*]&8/=  
    ]\,uF8gg)  
    % Get the order and frequency corresonding to the function number: T}Vpy`  
    % ---------------------------------------------------------------- ZCFf@2&z8  
    p = p(:); =e8L7_;  
    n = ceil((-3+sqrt(9+8*p))/2); |;m`874  
    m = 2*p - n.*(n+2); dHF$T33It  
    R 0HVLQI  
    % Pass the inputs to the function ZERNFUN: Wd56B+  
    % ---------------------------------------- >-5Gt  
    switch nargin )NmlV99q  
        case 3 etMh=/NFV  
            z = zernfun(n,m,r,theta); g^$11  
        case 4 ,]_(-tyN|  
            z = zernfun(n,m,r,theta,nflag); 6*aa[,>  
        otherwise g)?g7{&?>?  
            error('zernfun2:nargin','Incorrect number of inputs.') aC~n:0 v  
    end k+#l;<\2  
    EvqAi/(g  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) 3 E!<p  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. }pE~85h4M  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of =PFR{=F  
    %   order N and frequency M, evaluated at R.  N is a vector of C nSX  
    %   positive integers (including 0), and M is a vector with the (21 W6  
    %   same number of elements as N.  Each element k of M must be a '*N9"C  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) EhIV(q9x  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is mk%"G=w  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix ke9QT#~p!-  
    %   with one column for every (N,M) pair, and one row for every ,d>X/kd|o  
    %   element in R. Vv yrty  
    % V(2j*2R!  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- -e{)v'C)  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is S}w.#tyEn  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to ..]*Ao2  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 ? %+VG  
    %   for all [n,m]. rI<nUy P?  
    % /}nrF4S  
    %   The radial Zernike polynomials are the radial portion of the =l8!VJa  
    %   Zernike functions, which are an orthogonal basis on the unit 9jMC |oE  
    %   circle.  The series representation of the radial Zernike G=C5T(  
    %   polynomials is RF4$  
    % k~1j/VHv  
    %          (n-m)/2 X$-b oe?  
    %            __ I>H;o{X#  
    %    m      \       s                                          n-2s b@wBR9s  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r ," C[Qg(  
    %    n      s=0 7bonOt Y  
    % ^$=tcoQG  
    %   The following table shows the first 12 polynomials. # 5y9L  
    % 3"'# |6O9  
    %       n    m    Zernike polynomial    Normalization 1c)\  
    %       --------------------------------------------- !_U37Uj<m  
    %       0    0    1                        sqrt(2) :T7?  
    %       1    1    r                           2 -v;n"Zy1  
    %       2    0    2*r^2 - 1                sqrt(6) a1g6}ym\  
    %       2    2    r^2                      sqrt(6) y8w0eq94  
    %       3    1    3*r^3 - 2*r              sqrt(8) ha|@ X p  
    %       3    3    r^3                      sqrt(8) \-Iny=$  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) 6wb^*dD92  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) Mhe |eD#)  
    %       4    4    r^4                      sqrt(10) |oe!P}u  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) %XJQ0CE<(  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) |jahpji6  
    %       5    5    r^5                      sqrt(12) 7_Ba3+9jpa  
    %       --------------------------------------------- 6_R\l@a  
    % `E} p77  
    %   Example: (px*R~}  
    % X~v4"|a  
    %       % Display three example Zernike radial polynomials ,4H;P/xsb  
    %       r = 0:0.01:1; =5y`(0 I`U  
    %       n = [3 2 5]; _m9~*  
    %       m = [1 2 1]; 0).fBBNG  
    %       z = zernpol(n,m,r); y$IaXr5L  
    %       figure m<FF$pTT  
    %       plot(r,z) E tJ~dL)  
    %       grid on @72x`&|I?u  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') SkiJ pMN  
    % klgv{_b  
    %   See also ZERNFUN, ZERNFUN2. ;W7hc!  
    &sm @  
    % A note on the algorithm. Mn]}s:v  
    % ------------------------ ?. zu2  
    % The radial Zernike polynomials are computed using the series XVQL.A7  
    % representation shown in the Help section above. For many special m_Mwg  
    % functions, direct evaluation using the series representation can {UB%(E[Mr  
    % produce poor numerical results (floating point errors), because a(8>n Z,V  
    % the summation often involves computing small differences between C _8j:Z&  
    % large successive terms in the series. (In such cases, the functions EfKM*;A  
    % are often evaluated using alternative methods such as recurrence IWAj Mwo  
    % relations: see the Legendre functions, for example). For the Zernike 89zuL18V  
    % polynomials, however, this problem does not arise, because the ^DBD63 N"  
    % polynomials are evaluated over the finite domain r = (0,1), and q}>M& *  
    % because the coefficients for a given polynomial are generally all |/@0~O(6  
    % of similar magnitude. sf Dg/ a  
    % C@%iQ]=  
    % ZERNPOL has been written using a vectorized implementation: multiple B-!guf rnY  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] y0,Ft/D  
    % values can be passed as inputs) for a vector of points R.  To achieve +x(YG(5\w  
    % this vectorization most efficiently, the algorithm in ZERNPOL u\`/Nhn  
    % involves pre-determining all the powers p of R that are required to 5B%w]n  
    % compute the outputs, and then compiling the {R^p} into a single xb%/sz(4  
    % matrix.  This avoids any redundant computation of the R^p, and ~\2;i]|  
    % minimizes the sizes of certain intermediate variables. 1|W2s\  
    % vx'l> @]k  
    %   Paul Fricker 11/13/2006 XmP;L(wa   
    dIma{uv  
    s~L`53A  
    % Check and prepare the inputs: ZQ|5W6c  
    % ----------------------------- a;%I\w;2  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ;:P7}v fz!  
        error('zernpol:NMvectors','N and M must be vectors.') C?,*U  
    end cI5N"U@yN  
    ^D>fis  
    if length(n)~=length(m) d$}&nV/A)  
        error('zernpol:NMlength','N and M must be the same length.') UanEzx%  
    end 2zhn`m  
    (}G!np  
    n = n(:); hje! w`  
    m = m(:); i&JpM] N  
    length_n = length(n); |7y6 pz  
    L ${m/@9  
    if any(mod(n-m,2)) G%;kGi`m  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') C#0brCQq3  
    end MZ WmlJ   
    }"hW b(  
    if any(m<0) &I%IaNco  
        error('zernpol:Mpositive','All M must be positive.') ?H`j>]%&  
    end {#N%Bq}  
    n,CD  
    if any(m>n) +s ULo  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') "v5ElYG  
    end rkq#7  
    tj[c#@[B  
    if any( r>1 | r<0 ) i0\)%H:z  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') iA9 E^  
    end E4=qh1d  
    ;= a_B1"9u  
    if ~any(size(r)==1) uxb:^d?D!  
        error('zernpol:Rvector','R must be a vector.') _B3zRO  
    end b:1 L@8s;  
    }-74 f  
    r = r(:); X &D{5~qC  
    length_r = length(r); ~q 7;8<U  
    Ps3~{zH`  
    if nargin==4 +p z}4M`  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); ~ ltg  
        if ~isnorm uaaf9SL?  
            error('zernpol:normalization','Unrecognized normalization flag.') P3!Atnv2  
        end =G4u#t)  
    else 9Sz7\W0  
        isnorm = false; Vc _:*  
    end A @2Bs 5F  
    f0DK>L  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% &qKig kLd  
    % Compute the Zernike Polynomials E=]]b;u-n  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 6WeM rWx  
    {jW%P="z$"  
    % Determine the required powers of r: b# u8\H  
    % ----------------------------------- dw9T f^V  
    rpowers = []; <bP#H  
    for j = 1:length(n) :b@igZ<  
        rpowers = [rpowers m(j):2:n(j)]; CW p#^1F  
    end /P:EWUf'  
    rpowers = unique(rpowers); :RiF3h(  
    F?BS717qS%  
    % Pre-compute the values of r raised to the required powers, wt?o 7R2  
    % and compile them in a matrix: [EOVw%R  
    % ----------------------------- yQ%"U^.m  
    if rpowers(1)==0 #K4*6LI  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ugLlI2 nJ  
        rpowern = cat(2,rpowern{:}); _{)9b24(  
        rpowern = [ones(length_r,1) rpowern]; {[W(a<%bXm  
    else 9->q|E4  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); /8c&Axuv  
        rpowern = cat(2,rpowern{:}); X{\jK]O  
    end QIK 9  
    G\kpUdj}  
    % Compute the values of the polynomials: `*_CElpP"  
    % -------------------------------------- <#*.}w~  
    z = zeros(length_r,length_n); .Y\EE;8%  
    for j = 1:length_n Ryv_1gR!  
        s = 0:(n(j)-m(j))/2; `5l01nOxJ  
        pows = n(j):-2:m(j); p!DP`Ouc3\  
        for k = length(s):-1:1 j_GBH8 `  
            p = (1-2*mod(s(k),2))* ... >{nH v)  
                       prod(2:(n(j)-s(k)))/          ... cbYK5fj"T  
                       prod(2:s(k))/                 ... 5JSrrpGr  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... nB] Ia?  
                       prod(2:((n(j)+m(j))/2-s(k))); g) 1X&>  
            idx = (pows(k)==rpowers); B(,:haAr  
            z(:,j) = z(:,j) + p*rpowern(:,idx); Bm/YgQi  
        end ].mqxf  
         N'?u1P4G  
        if isnorm  uMd. j$$  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); zk}{ dG^M:  
        end kO_5|6  
    end ?fK1  
    =w%Oa<  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    857
    光币
    847
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  6dqsFns}e  
    1R%1h9I4'  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 e]8,:Gd(  
    [U{UW4  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)