非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 {%$eq{~m
function z = zernfun(n,m,r,theta,nflag) FqOV/B
/z2
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. ]VifDFL}
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N N@$g"w
% and angular frequency M, evaluated at positions (R,THETA) on the [-X=lJ:+h
% unit circle. N is a vector of positive integers (including 0), and M^\#(0^2@
% M is a vector with the same number of elements as N. Each element `p@YV(
% k of M must be a positive integer, with possible values M(k) = -N(k) fKzOt<wm
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, }ZMbTsm
% and THETA is a vector of angles. R and THETA must have the same 3%?01$k
% length. The output Z is a matrix with one column for every (N,M) Y%v?ROql
% pair, and one row for every (R,THETA) pair. )_P|_(
% NPws^
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike MS,J+'2
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ^u zJu(
% with delta(m,0) the Kronecker delta, is chosen so that the integral (|_1ku3!
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, `+[e]dH
% and theta=0 to theta=2*pi) is unity. For the non-normalized PN ,pEk|
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. sW[8f
Z71
% c <8s\2
% The Zernike functions are an orthogonal basis on the unit circle. S}Wj+H;
% They are used in disciplines such as astronomy, optics, and &n>\ +Q
% optometry to describe functions on a circular domain. UD|Qa
% 0FrmZ$
% The following table lists the first 15 Zernike functions. _&TA|Da
% o}&TFhT
% n m Zernike function Normalization
NIcPjo
% -------------------------------------------------- {_0m0
8
% 0 0 1 1 ^nu~q+:+#
% 1 1 r * cos(theta) 2 i1]*5;q
% 1 -1 r * sin(theta) 2 eMk?#&a)
% 2 -2 r^2 * cos(2*theta) sqrt(6) 0xbx2jlkY
% 2 0 (2*r^2 - 1) sqrt(3) Fp>iwdjFg
% 2 2 r^2 * sin(2*theta) sqrt(6) `mTpL^f
% 3 -3 r^3 * cos(3*theta) sqrt(8) VG*Tdaua~
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) Tbl~6P
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) vT)(#0>z
% 3 3 r^3 * sin(3*theta) sqrt(8) 1!,xB]v1Ri
% 4 -4 r^4 * cos(4*theta) sqrt(10) t]|WRQvy8
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) !|hxr#q=4
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) LAG*H
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) o2e aSG
% 4 4 r^4 * sin(4*theta) sqrt(10) 6/^$SWd2
% -------------------------------------------------- zr~hGhfq
% %~`8F\Hiu
% Example 1: Mg?^ 5`*
% \M~M
% % Display the Zernike function Z(n=5,m=1) H!Gsu$C
% x = -1:0.01:1; 4.|-?qG
% [X,Y] = meshgrid(x,x); 4G`7]<
% [theta,r] = cart2pol(X,Y); ]-d:wEj
% idx = r<=1; CL{R.OA
% z = nan(size(X)); 4fPbwiKj
% z(idx) = zernfun(5,1,r(idx),theta(idx)); + yX\!H"
% figure XQAdb"`
% pcolor(x,x,z), shading interp s@^(1g[w`
% axis square, colorbar '@)47]~
% title('Zernike function Z_5^1(r,\theta)') 40}qf}8n t
% !=j\pu}
Z
% Example 2: InDISl]
% O,(p><k$/
% % Display the first 10 Zernike functions Rg3 Lo ?
% x = -1:0.01:1; |=H*" (
% [X,Y] = meshgrid(x,x); asT:/z0
% [theta,r] = cart2pol(X,Y); P6,~0v(S
% idx = r<=1; //63?s+
% z = nan(size(X)); x&qC~F*QR%
% n = [0 1 1 2 2 2 3 3 3 3]; Fy!uxT-\
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; Mf)0Y~_:R#
% Nplot = [4 10 12 16 18 20 22 24 26 28]; U$o\?4
% y = zernfun(n,m,r(idx),theta(idx)); t]?u<KD<
% figure('Units','normalized') 16"eyt>
% for k = 1:10 / sI0{
% z(idx) = y(:,k); >vE1,JD)w
% subplot(4,7,Nplot(k)) bl. y4
% pcolor(x,x,z), shading interp 8&FnXhZg4
% set(gca,'XTick',[],'YTick',[]) rW$ )f
% axis square )SG+9!AbMZ
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 'V";"Ei
% end #~J)?JL
% @i`*i@g
% See also ZERNPOL, ZERNFUN2. B WdR~|2
pE{ZWW[@+
% Paul Fricker 11/13/2006 ^c?2n
`OzcL
q]F2bo
% Check and prepare the inputs: Kn~f$1
% ----------------------------- &|( 'z\k
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ~ _C[~-
error('zernfun:NMvectors','N and M must be vectors.') )-$Od2u2c
end \tf \fa
# Vz9j
if length(n)~=length(m) ,4$ZB(\
error('zernfun:NMlength','N and M must be the same length.') 4$Oakl*l
end 69{^Vfd;Y
vt0XCUnK
n = n(:); ;ru=z@
m = m(:); llVm[7
if any(mod(n-m,2)) *,g|I8?%VD
error('zernfun:NMmultiplesof2', ... NoS|lT
'All N and M must differ by multiples of 2 (including 0).') "N'tmzifh
end g:0-`,[
+ v. I|c
if any(m>n) 7PG&G5
error('zernfun:MlessthanN', ... l}-JtZ?[?
'Each M must be less than or equal to its corresponding N.') Vae}:8'}
end
l);M(<
*FoH'\=
if any( r>1 | r<0 ) ta`}}I
error('zernfun:Rlessthan1','All R must be between 0 and 1.') tr 8a_CV
end A:$Qt%c
.&O}/B
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) cVjs-Xf7D%
error('zernfun:RTHvector','R and THETA must be vectors.') 7J@iJW],,
end >`Xikn(
k<p$BZ
r = r(:); <SeK3@Gi
theta = theta(:); L{H`
t{A
length_r = length(r); HGqT"NJr
if length_r~=length(theta) 1}1.5[4d
error('zernfun:RTHlength', ... ?@"F\Bv<h
'The number of R- and THETA-values must be equal.') P]]re,&R
end ! d Ns3d
E.V#Bk=
% Check normalization: 'p3JYRT$
% -------------------- 9
cU]@j}2
if nargin==5 && ischar(nflag) vmW >$P
isnorm = strcmpi(nflag,'norm'); o^P/ -&T
if ~isnorm l{tpFu9v
error('zernfun:normalization','Unrecognized normalization flag.') 1<y(8C6
end z~b5K\/1B
else &''lOS|
isnorm = false; v x qsK
end ph*?y
w|$i<OIi)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ) #G5XS+)
% Compute the Zernike Polynomials '1'#,u!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% *?sdWRbu}l
MrXmX[1-
% Determine the required powers of r: ;vM&se63
% ----------------------------------- lu~<pfg
m_abs = abs(m); 5>z`==N)
rpowers = []; xUT]6T0dB
for j = 1:length(n) bCWSh~
rpowers = [rpowers m_abs(j):2:n(j)]; -/ 5" Py
end `[)
awP
rpowers = unique(rpowers); fuRCM^U(
z%ZAN-
% Pre-compute the values of r raised to the required powers, NP
}b
% and compile them in a matrix: Zy!^HS$
% ----------------------------- sfb)iH|sW
if rpowers(1)==0 Zb> UY8
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); A HnXN%m
rpowern = cat(2,rpowern{:}); )1#J4
rpowern = [ones(length_r,1) rpowern]; tf1iRXf8
else a=m4)tjk
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 44e:K5;]7
rpowern = cat(2,rpowern{:}); hnOo T? V
end ~kHWh8\b:
D(bQFRBY6"
% Compute the values of the polynomials: Ife/:v
% -------------------------------------- {'O,G$Ldkr
y = zeros(length_r,length(n)); Y.>F fL
for j = 1:length(n) Sfl. &A(
s = 0:(n(j)-m_abs(j))/2; Cp!bsasj
pows = n(j):-2:m_abs(j); ,3+ #?H
for k = length(s):-1:1 ),DLrGOl
p = (1-2*mod(s(k),2))* ... )DR/Xu;b
prod(2:(n(j)-s(k)))/ ... o03Y w)*
prod(2:s(k))/ ... /6Bm
<k%
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 42E%&DF
prod(2:((n(j)+m_abs(j))/2-s(k))); CEQs}bz
idx = (pows(k)==rpowers); b!lS=zIN
y(:,j) = y(:,j) + p*rpowern(:,idx); '! \t!@I$
end 5~,usA*
&YiUhK
if isnorm tfz"9PV80
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ,,}&
Q%5
end E@.daUoB
end Y6+/_$N4|
% END: Compute the Zernike Polynomials :'6vIPN5
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% N [qNSo|
fYxdG|>{u
% Compute the Zernike functions: >`E
(K X
% ------------------------------ A,PF#G(
idx_pos = m>0; HpCTQ\H
idx_neg = m<0; Z'!Ii+'6
$?Dcp^
z = y; L!| `IK
if any(idx_pos) obzdH:S
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); f;{K+\T
end )
dB?Ep|
if any(idx_neg) 5MX7V4ist
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ro}WBv
end DH9p1)L'
c^F@9{I
% EOF zernfun