非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 4YVxRZ1[3
function z = zernfun(n,m,r,theta,nflag) XZaei\rUn)
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. JvHGu&Nr!
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 4Qr16,Us
% and angular frequency M, evaluated at positions (R,THETA) on the J%
B(4`
% unit circle. N is a vector of positive integers (including 0), and $=j}JX}z
% M is a vector with the same number of elements as N. Each element 4g.y$
% k of M must be a positive integer, with possible values M(k) = -N(k) T/V 5pYl
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, "[.adiw
% and THETA is a vector of angles. R and THETA must have the same V9 pKbX
% length. The output Z is a matrix with one column for every (N,M) &&}'
% pair, and one row for every (R,THETA) pair. &}1PH%6
% #du!tx ( _
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 6 ]@H .8+
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Ny;(1N|&3
% with delta(m,0) the Kronecker delta, is chosen so that the integral c%uX+\-$
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, N'fE^jqU
% and theta=0 to theta=2*pi) is unity. For the non-normalized H\f.a R=
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ]F@XGJN
% Og`6>?>97
% The Zernike functions are an orthogonal basis on the unit circle. #^- U|~,
% They are used in disciplines such as astronomy, optics, and io]e]m%
% optometry to describe functions on a circular domain. /x6,"M[97
% 9:bC{n
% The following table lists the first 15 Zernike functions. zY<=r.m4
% Ojx1IL
% n m Zernike function Normalization 'm@0[i
% -------------------------------------------------- :N~1fvx
% 0 0 1 1 p;dH[NW
% 1 1 r * cos(theta) 2 nlsQf3
% 1 -1 r * sin(theta) 2 Ly?gpOqu5
% 2 -2 r^2 * cos(2*theta) sqrt(6) ,%+i}H,3
% 2 0 (2*r^2 - 1) sqrt(3) 9=D\xBd|w
% 2 2 r^2 * sin(2*theta) sqrt(6) @)>9l&
% 3 -3 r^3 * cos(3*theta) sqrt(8) HR55|`]
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) b!Q|0X.?
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) D>u1ngu
% 3 3 r^3 * sin(3*theta) sqrt(8) y>vr Uxgo
% 4 -4 r^4 * cos(4*theta) sqrt(10) ic:_v?k
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 5FJ<y"<6
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) !"2nL%PW~
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) x4cP%{n
% 4 4 r^4 * sin(4*theta) sqrt(10) }fW@8ji\
% -------------------------------------------------- V:rq}F}
% yz}Agc4.I
% Example 1: zg!;g`Z@S
% 6,sZo!G
% % Display the Zernike function Z(n=5,m=1) W'2|hP
% x = -1:0.01:1; (^'TT>2B
% [X,Y] = meshgrid(x,x); +B$o8V
% [theta,r] = cart2pol(X,Y); 9 veq
% idx = r<=1; gG0P &9xz
% z = nan(size(X)); q/Dc*Qn
m
% z(idx) = zernfun(5,1,r(idx),theta(idx)); }qlU
% figure LlP_`fA
% pcolor(x,x,z), shading interp cB
U,!
% axis square, colorbar d]0.6T1[K
% title('Zernike function Z_5^1(r,\theta)') (MiEXU~v
% #EiOC.A=
% Example 2: <N11$t&_
% 8BC F.y
% % Display the first 10 Zernike functions Yxye?R-:
% x = -1:0.01:1; u+eA>{
% [X,Y] = meshgrid(x,x); ~9JU_R^%m
% [theta,r] = cart2pol(X,Y); GwHMXtj4
% idx = r<=1; woJO0hHR
% z = nan(size(X)); s5T$>+
a
% n = [0 1 1 2 2 2 3 3 3 3]; >s}bq#x
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; V3fd]rIP
% Nplot = [4 10 12 16 18 20 22 24 26 28]; !8^:19+
% y = zernfun(n,m,r(idx),theta(idx)); N.OC _H&
% figure('Units','normalized') 1>OfJc(K
% for k = 1:10 m5lMh14E
% z(idx) = y(:,k); rK W<kQT
% subplot(4,7,Nplot(k)) cQ~}qE>I
% pcolor(x,x,z), shading interp +!IIt {u
% set(gca,'XTick',[],'YTick',[]) %"~\Pu*>
% axis square U7d%*g
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) <>`+"O}
% end 4:-h\%
% &K5wCNX1
% See also ZERNPOL, ZERNFUN2. jy`jxOoG~Z
TSXa#SKp
% Paul Fricker 11/13/2006 e0%?;w-TL
vh3Xd\N
keNPlK%>
% Check and prepare the inputs: = R|?LOEK+
% ----------------------------- nYG$V)iCb
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ,Ju f
error('zernfun:NMvectors','N and M must be vectors.') _ETG.SYq
end A6Ttx{]
=D.M}xqo
if length(n)~=length(m) ,@ A1eX}
error('zernfun:NMlength','N and M must be the same length.') _y&m4V