切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10857阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 * YhX6J1  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! HxgH*IMs  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 4YVxRZ1[3  
    function z = zernfun(n,m,r,theta,nflag) XZaei\rUn)  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. JvHGu&Nr!  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 4Qr16,Us  
    %   and angular frequency M, evaluated at positions (R,THETA) on the J% B(4`  
    %   unit circle.  N is a vector of positive integers (including 0), and $=j}JX}z  
    %   M is a vector with the same number of elements as N.  Each element 4g.y$  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) T/V 5pYl  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, "[.adiw  
    %   and THETA is a vector of angles.  R and THETA must have the same V9 pKb X  
    %   length.  The output Z is a matrix with one column for every (N,M) && }'  
    %   pair, and one row for every (R,THETA) pair. &}1PH% 6  
    % #du!tx ( _  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 6 ]@H.8+  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Ny;(1N|&3  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral c%uX+\-$  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, N'fE^jqU  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized H\f.a R=  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ]F@XGJN  
    % Og`6>?>97  
    %   The Zernike functions are an orthogonal basis on the unit circle. #^- U|~,  
    %   They are used in disciplines such as astronomy, optics, and io]e]m%  
    %   optometry to describe functions on a circular domain. /x6,"M[97  
    % 9: bC{n  
    %   The following table lists the first 15 Zernike functions. zY<=r.m4  
    % Ojx1IL  
    %       n    m    Zernike function           Normalization 'm@0[i  
    %       -------------------------------------------------- :N~1fvx  
    %       0    0    1                                 1 p;dH[NW  
    %       1    1    r * cos(theta)                    2 n lsQf3  
    %       1   -1    r * sin(theta)                    2 Ly?gpOqu5  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ,%+i}H,3  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 9=D\xBd|w  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) @)>9l&  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) HR55|`]  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) b!Q|0X.?  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) D>u1ngu  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) y>vr Uxgo  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) ic:_v?k  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 5FJ<y"<6  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) !"2nL%PW~  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) x4cP%{n  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) }fW@8ji\  
    %       -------------------------------------------------- V:rq}F}  
    % yz}Agc4.I  
    %   Example 1: zg!;g`Z@S  
    % 6,sZo!G  
    %       % Display the Zernike function Z(n=5,m=1) W'2|hP  
    %       x = -1:0.01:1; (^'TT>2B  
    %       [X,Y] = meshgrid(x,x); +B$ o8V  
    %       [theta,r] = cart2pol(X,Y); 9 ve q  
    %       idx = r<=1; gG0P &9xz  
    %       z = nan(size(X)); q/Dc*Qn m  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); }qlU  
    %       figure LlP_`fA  
    %       pcolor(x,x,z), shading interp cB U,!  
    %       axis square, colorbar d]0.6T1[K  
    %       title('Zernike function Z_5^1(r,\theta)') (MiEXU~v  
    % #EiOC.A=  
    %   Example 2: <N11$t&_  
    % 8B C F.y  
    %       % Display the first 10 Zernike functions Yxye?R-:  
    %       x = -1:0.01:1; u+eA>{  
    %       [X,Y] = meshgrid(x,x); ~9JU_R^%m  
    %       [theta,r] = cart2pol(X,Y); GwHMXtj4  
    %       idx = r<=1; woJO0hHR  
    %       z = nan(size(X)); s5T$>+ a  
    %       n = [0  1  1  2  2  2  3  3  3  3]; >s}b q#x  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; V3fd]rIP  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; !8^:19+  
    %       y = zernfun(n,m,r(idx),theta(idx)); N.OC _H&  
    %       figure('Units','normalized') 1>OfJc(K  
    %       for k = 1:10 m5lMh14E  
    %           z(idx) = y(:,k); rK W<kQT  
    %           subplot(4,7,Nplot(k)) c Q~}qE>I  
    %           pcolor(x,x,z), shading interp +!IIt {u  
    %           set(gca,'XTick',[],'YTick',[]) %"~\Pu*>  
    %           axis square U7d%*g  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) <>`+" O}  
    %       end 4:-h\%  
    % &K5wCNX1  
    %   See also ZERNPOL, ZERNFUN2. jy`jxOoG~Z  
    TSXa#SKp  
    %   Paul Fricker 11/13/2006 e0%?;w-TL  
    vh3Xd\N  
    keNPlK%>  
    % Check and prepare the inputs: = R|?LOEK+  
    % ----------------------------- nYG$V)iCb  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ,Ju f  
        error('zernfun:NMvectors','N and M must be vectors.') _ETG.SYq  
    end A6Ttx{]  
    =D.M}x qo  
    if length(n)~=length(m) ,@ A1eX}  
        error('zernfun:NMlength','N and M must be the same length.') _y&m4Vuu  
    end ab8uY.j  
    !={Z]J  
    n = n(:); 59gt#1k  
    m = m(:); 6>ZUx}vYj  
    if any(mod(n-m,2)) Ql sMMIax  
        error('zernfun:NMmultiplesof2', ... $lmbeW[0  
              'All N and M must differ by multiples of 2 (including 0).') 6r/NdI  
    end pOQ'k>!  
    GGk.-Ew@  
    if any(m>n) E+Z//)1Z  
        error('zernfun:MlessthanN', ... Yz;Hu$/  
              'Each M must be less than or equal to its corresponding N.') WUx}+3eWv  
    end _?&$@c  
    '"LrGvkZ  
    if any( r>1 | r<0 ) Xk%92Pto  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') n5 dFp%k  
    end "M5P-l$p}  
    N*w/\|  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) b[,J-/;JNL  
        error('zernfun:RTHvector','R and THETA must be vectors.') :RR<-N5+  
    end mw)KyU#l,:  
    [<P(S~J  
    r = r(:); S'qEBz  
    theta = theta(:); T{v(B["!$  
    length_r = length(r); MjCD;I:C.  
    if length_r~=length(theta) uTGd{w@]0|  
        error('zernfun:RTHlength', ... }yZ9pTB.?E  
              'The number of R- and THETA-values must be equal.') %[0V>  
    end @ qWgokf  
    FI++A`  
    % Check normalization: K5gh7  
    % -------------------- @ SaU2  
    if nargin==5 && ischar(nflag) ]2\|<.  
        isnorm = strcmpi(nflag,'norm'); 3/V&PDC*'  
        if ~isnorm O\;Z4qn2=  
            error('zernfun:normalization','Unrecognized normalization flag.') U8L%=/N>B  
        end hI*gw3V  
    else braHWC'VYg  
        isnorm = false; HbQ `b  
    end VqqI%[!Aw  
    i-[ic!RnKj  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% s>(OK.o  
    % Compute the Zernike Polynomials s^+h>  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% c jfYE]  
    |?{3&'`J8w  
    % Determine the required powers of r: Q!8AFLff4  
    % ----------------------------------- o-\ K]  
    m_abs = abs(m); .&dW?HS  
    rpowers = []; k4jZu?\C]  
    for j = 1:length(n) '<_nL8A^  
        rpowers = [rpowers m_abs(j):2:n(j)]; S~L$sqt  
    end -(9>{!",J  
    rpowers = unique(rpowers); - &u]B$  
    mne4uW  
    % Pre-compute the values of r raised to the required powers, +-YMW;5  
    % and compile them in a matrix: :U_k*9z}=  
    % ----------------------------- N9hs<b+N_  
    if rpowers(1)==0 !gA<9h  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); :N$^x /{  
        rpowern = cat(2,rpowern{:}); y}5V3)P  
        rpowern = [ones(length_r,1) rpowern]; 9/3gF)I}  
    else Vm}OrFA  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); \'Oi0qo>  
        rpowern = cat(2,rpowern{:}); pEgQ) 9\  
    end 21'I-j  
    L+,p#w  
    % Compute the values of the polynomials: [4 L[.N@  
    % -------------------------------------- _/Ky;p.  
    y = zeros(length_r,length(n)); `|?K4<5|  
    for j = 1:length(n) ax$ashFO/!  
        s = 0:(n(j)-m_abs(j))/2; 4FURm@C6  
        pows = n(j):-2:m_abs(j); ("07t/||  
        for k = length(s):-1:1 o1C1F}gxU  
            p = (1-2*mod(s(k),2))* ... ZXV_Dc   
                       prod(2:(n(j)-s(k)))/              ... "SC}C  
                       prod(2:s(k))/                     ... {3n|=  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... &#!5I;3EN  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 91%QO?hz  
            idx = (pows(k)==rpowers); ,aOi:aaZRT  
            y(:,j) = y(:,j) + p*rpowern(:,idx); "ee:Z_Sz  
        end zOJ4I^^  
         dsck:e5agZ  
        if isnorm s2=rj?g&(X  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); buV {O[  
        end u#(VR]u\7  
    end 'J\nvNm  
    % END: Compute the Zernike Polynomials  `{w.OK  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 2;h4$^`dt  
    q?} /q  
    % Compute the Zernike functions: |R$V[  
    % ------------------------------ v2=Iqo  
    idx_pos = m>0; LsaE-l  
    idx_neg = m<0; }-YM>q  
     I/YBL  
    z = y; OpFe=1Q  
    if any(idx_pos) [7x,&  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Y%<y`]I  
    end )F _vWbg  
    if any(idx_neg) We%HdTKT  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); .\Gl)W  
    end Ws;S=|9,7~  
    JX4uH>6  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) scr`] tD  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. $D;/b+a  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated Iv,Ub_Ll9  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive R=Qa54  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, $z1W0  
    %   and THETA is a vector of angles.  R and THETA must have the same O*qSc^9q  
    %   length.  The output Z is a matrix with one column for every P-value, ng,64(wOY  
    %   and one row for every (R,THETA) pair. *[XVkt`H  
    % ? 2#tIND  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike dU4  h  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) _6U=7<f  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) :Q\Es:y  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 m .:2G  
    %   for all p. |76G#K~<X  
    % op!ft/Yyb  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 F7o#KN*.]  
    %   Zernike functions (order N<=7).  In some disciplines it is (i3V  
    %   traditional to label the first 36 functions using a single mode %IAZU c  
    %   number P instead of separate numbers for the order N and azimuthal [K5#4k  
    %   frequency M. <V`1?9c7D1  
    % 7E0L-E=.  
    %   Example: n,,hE_  
    % ;i;2cq  
    %       % Display the first 16 Zernike functions ?WVp,vP  
    %       x = -1:0.01:1; wl^7.IR  
    %       [X,Y] = meshgrid(x,x); (w1M\yodV  
    %       [theta,r] = cart2pol(X,Y); fRcs@yZnS  
    %       idx = r<=1; $*k(h|XfwW  
    %       p = 0:15; %R|_o<(#MJ  
    %       z = nan(size(X)); v@xbur\L  
    %       y = zernfun2(p,r(idx),theta(idx)); _1>Xk_  
    %       figure('Units','normalized') +, IMN)?;z  
    %       for k = 1:length(p) Wi;wu*  
    %           z(idx) = y(:,k); Fa"/p_1  
    %           subplot(4,4,k) N*^iOm]Y  
    %           pcolor(x,x,z), shading interp [quT&E  
    %           set(gca,'XTick',[],'YTick',[]) !sTOo  
    %           axis square vk:k~   
    %           title(['Z_{' num2str(p(k)) '}']) OV~]-5gau  
    %       end Y5dt/8Jo  
    % $Gy&  
    %   See also ZERNPOL, ZERNFUN. {zck Y  
    OuZPgN  
    %   Paul Fricker 11/13/2006 e7O9q8b  
    wI0NotC  
    pq T+lai)#  
    % Check and prepare the inputs: yG v7^d  
    % ----------------------------- fen~k#|l  
    if min(size(p))~=1 5%6{ ePh{  
        error('zernfun2:Pvector','Input P must be vector.') sxK|0i}6  
    end og?>Q i Tr  
    *ku}.n  
    if any(p)>35 eb ` !  
        error('zernfun2:P36', ... 4uX|2nJ2!;  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... B2kKEMdGg  
               '(P = 0 to 35).']) w'r?)WW$  
    end R(^2+mV?  
    HL`=zB%  
    % Get the order and frequency corresonding to the function number: H{d;, KfX  
    % ---------------------------------------------------------------- Hxr)`i46  
    p = p(:); )%zOq:{\5  
    n = ceil((-3+sqrt(9+8*p))/2); 7u=R5  
    m = 2*p - n.*(n+2); |T; ]%<O3E  
    15l{gbCW  
    % Pass the inputs to the function ZERNFUN: mVs<XnA47  
    % ---------------------------------------- ,N1I\f  
    switch nargin ! ^ DQX=1  
        case 3 xHpB/P~  
            z = zernfun(n,m,r,theta); ahUc ;S:v#  
        case 4 <i$ud&D  
            z = zernfun(n,m,r,theta,nflag); qlU"v)Mx  
        otherwise {CaTu5\  
            error('zernfun2:nargin','Incorrect number of inputs.') L ,/(^0;  
    end [Yyb)Qf  
    \RF{ITV$kD  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) isR)^fI|  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. 5<77o|  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of .Gcs/PN   
    %   order N and frequency M, evaluated at R.  N is a vector of ',l}$]y5  
    %   positive integers (including 0), and M is a vector with the &57s//PrX  
    %   same number of elements as N.  Each element k of M must be a k.6gX<T  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) \1f&D!F]b  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is %SC%#_7  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix -oMp@2\e  
    %   with one column for every (N,M) pair, and one row for every EHlkt,h*  
    %   element in R. N#&/d nV  
    % [eLU}4v{  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- (&@,ZI;  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is @3Nvf}He  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to ~\o hH  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 5-B %08T  
    %   for all [n,m]. 7blo<|9  
    % iji2gWV}h  
    %   The radial Zernike polynomials are the radial portion of the | HfN<4NL  
    %   Zernike functions, which are an orthogonal basis on the unit aQ#6PO7.Z  
    %   circle.  The series representation of the radial Zernike h 7  c  
    %   polynomials is Jf3xK"in  
    % ;vp[J&=  
    %          (n-m)/2 Xo/0lT  
    %            __ H+?@LPV*N  
    %    m      \       s                                          n-2s  ?@iGECll  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r lEr_4!h$rZ  
    %    n      s=0 cqZuG}VR  
    % 0UN65JBuD  
    %   The following table shows the first 12 polynomials. Br}0dha3E  
    % 17) `CM$<[  
    %       n    m    Zernike polynomial    Normalization a[hQ<@1O  
    %       --------------------------------------------- *$*V#,V-  
    %       0    0    1                        sqrt(2) /=+Bc=<lZ  
    %       1    1    r                           2 CZ|h` ";P2  
    %       2    0    2*r^2 - 1                sqrt(6) *<#$B}!{  
    %       2    2    r^2                      sqrt(6) +WfO2V.  
    %       3    1    3*r^3 - 2*r              sqrt(8) 4H@K?b`  
    %       3    3    r^3                      sqrt(8) P+(q38f[  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) <:!;79T\  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) h$_5)d~  
    %       4    4    r^4                      sqrt(10) pUm|e5  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) _d*QA{  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) CMviR<.  
    %       5    5    r^5                      sqrt(12) hw)#TEt   
    %       --------------------------------------------- vI5'npM  
    % x!;;;iS  
    %   Example: vf/|b6'y  
    % =BVBCh  
    %       % Display three example Zernike radial polynomials [`_-;/Gx2  
    %       r = 0:0.01:1; 6[S-%|f  
    %       n = [3 2 5]; Og/@w&  
    %       m = [1 2 1]; y8/+kn +  
    %       z = zernpol(n,m,r); Q/y"W,H#  
    %       figure V4tObZP3Ff  
    %       plot(r,z) h$2lO^  
    %       grid on 7CV}QV}G  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') QvvH/u  
    % BaXf=RsZ  
    %   See also ZERNFUN, ZERNFUN2. g$9EI\a  
    c]>LL(R-7)  
    % A note on the algorithm. I*OJPFZ^4  
    % ------------------------ < NlL,  
    % The radial Zernike polynomials are computed using the series bd[%=5  
    % representation shown in the Help section above. For many special iVAAGZ>am  
    % functions, direct evaluation using the series representation can 344E4F"ph  
    % produce poor numerical results (floating point errors), because fiZq C?(  
    % the summation often involves computing small differences between 'l&bg8K9  
    % large successive terms in the series. (In such cases, the functions #J|DW C!#d  
    % are often evaluated using alternative methods such as recurrence [z> Ya-uz7  
    % relations: see the Legendre functions, for example). For the Zernike q-R'5p\C?|  
    % polynomials, however, this problem does not arise, because the "fZWAGDBO\  
    % polynomials are evaluated over the finite domain r = (0,1), and ~%Xs"R1c ,  
    % because the coefficients for a given polynomial are generally all ,); -v4$  
    % of similar magnitude. ^rssZQKY[  
    % dH_g:ocA  
    % ZERNPOL has been written using a vectorized implementation: multiple l#^weXSlk  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] ^J?y mo$>0  
    % values can be passed as inputs) for a vector of points R.  To achieve *Fu;sR2y%:  
    % this vectorization most efficiently, the algorithm in ZERNPOL Kp?j\67S  
    % involves pre-determining all the powers p of R that are required to ![3l K  
    % compute the outputs, and then compiling the {R^p} into a single TM<;Nj[*n  
    % matrix.  This avoids any redundant computation of the R^p, and iZn<j'u  
    % minimizes the sizes of certain intermediate variables. Q@5v> `  
    % ZxU3)`O  
    %   Paul Fricker 11/13/2006 6 TSC7jO  
    5rlZ'>I.  
    b|E1>TkY  
    % Check and prepare the inputs: 1 ILA Utf)  
    % ----------------------------- O#3PUuE%d  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) o*Kl`3=]  
        error('zernpol:NMvectors','N and M must be vectors.') XO,gEn&6V  
    end }Sv\$h  
    E-"b":@:  
    if length(n)~=length(m) B~7]x;8h  
        error('zernpol:NMlength','N and M must be the same length.') U8GvUysB!  
    end  LAO2Py#  
    Q5>]f/LD  
    n = n(:); %IH ra6  
    m = m(:); m(p0)X),_i  
    length_n = length(n); /\ u1q<  
    ^;mnP=`l[  
    if any(mod(n-m,2)) *7G5\[gI$  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') 8c5%~}kG  
    end %W,V~kb  
    W $EAo+V  
    if any(m<0) UMj8<Lq)j  
        error('zernpol:Mpositive','All M must be positive.') DxJY{e9  
    end #1<Jwt+  
    NK$BF(HBi  
    if any(m>n) SeIL   
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') A_}6J,*u  
    end t>%+[7?6  
    qJYEsI2M  
    if any( r>1 | r<0 ) 5%;=(Oig  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') |7@@~|A  
    end ;noZmPa  
    KxUO=v<u  
    if ~any(size(r)==1) x{I, gu|+  
        error('zernpol:Rvector','R must be a vector.') $.T\dm-  
    end se`^g ,]P  
    j V~+=(w)  
    r = r(:); 1y7FvD~v  
    length_r = length(r); C[Nh>V7=  
    Fd1jElt  
    if nargin==4  MKZq*  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); :BpXi|n;  
        if ~isnorm 4StoEgFS  
            error('zernpol:normalization','Unrecognized normalization flag.') (Qj;B)  
        end }^]TUe@a  
    else WI\jm&H r  
        isnorm = false; NZ:KJ8ea"  
    end bguTWI8bk  
    W'L  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -Gd@baV  
    % Compute the Zernike Polynomials rhj_cw  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% f2G 3cg~H  
    yLEA bd%+  
    % Determine the required powers of r: !]2`dp\!  
    % ----------------------------------- R-OQ(]<*  
    rpowers = []; ;kR+jC(  
    for j = 1:length(n) cs7K^D;.V  
        rpowers = [rpowers m(j):2:n(j)]; 4v;KtD;M  
    end T/iZ"\(~w  
    rpowers = unique(rpowers); N.dcQQ_iS  
    (=t41-l  
    % Pre-compute the values of r raised to the required powers, p}(pIoyUF  
    % and compile them in a matrix: fO,m_ OR:)  
    % ----------------------------- uQO\vRh0  
    if rpowers(1)==0 OSIf>1  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Ob@HzXH  
        rpowern = cat(2,rpowern{:}); -v{LT=,O  
        rpowern = [ones(length_r,1) rpowern]; ~w"e 2a  
    else wrAcVR  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); RKD$'UWX  
        rpowern = cat(2,rpowern{:}); e1Bqd+  
    end JGQ)/(  
    -$ha@ bCWO  
    % Compute the values of the polynomials: 2|$G<f  
    % -------------------------------------- ewVks>lbz  
    z = zeros(length_r,length_n); "P8( R  
    for j = 1:length_n y_{fc$_&  
        s = 0:(n(j)-m(j))/2; &Rt^G  
        pows = n(j):-2:m(j); (gjCm0#_%  
        for k = length(s):-1:1 LjPpnjU  
            p = (1-2*mod(s(k),2))* ... r;SOAucX  
                       prod(2:(n(j)-s(k)))/          ... '.IR|~Y  
                       prod(2:s(k))/                 ... FC#t}4as  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... Oz-@e%8L  
                       prod(2:((n(j)+m(j))/2-s(k))); As>P(  
            idx = (pows(k)==rpowers); yt#~n _  
            z(:,j) = z(:,j) + p*rpowern(:,idx); /PZxF  
        end To =JE}jzo  
         (\H^ KEy  
        if isnorm M+-1/vR *@  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); $ Qcr8~+a  
        end DvY)n<U1qA  
    end )uC5  
    yQE9S+%M  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    854
    光币
    834
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  z k/`Uz  
    't&1y6Uu  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 n]`]gLF\i  
    #UoFU{6tM  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)