切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11800阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 L3W ^ip4  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! V]<dh|x  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 qS7*.E~j|]  
    function z = zernfun(n,m,r,theta,nflag) #{]=>n)j  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. .f6_[cS;g  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N @!F9}n AP  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 6qw_|A&g  
    %   unit circle.  N is a vector of positive integers (including 0), and Gis'IX(  
    %   M is a vector with the same number of elements as N.  Each element @Xh 4ZMyEx  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 5}By2Tx  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ).&$pXj  
    %   and THETA is a vector of angles.  R and THETA must have the same YV2^eGr.  
    %   length.  The output Z is a matrix with one column for every (N,M) %+'&$  
    %   pair, and one row for every (R,THETA) pair. CsE|pXVG  
    % J=Jw"? f  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike F:H76O`8  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), |Rl|Th  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 7'<4'BGzl]  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, (* 2"dd  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized q2SkkY$_]y  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 5 Fd]3  
    % lF#Kg !-l  
    %   The Zernike functions are an orthogonal basis on the unit circle. ^yb_aCw  
    %   They are used in disciplines such as astronomy, optics, and T^Z#x-Q  
    %   optometry to describe functions on a circular domain. '}}DPoV  
    % &"CS1P|  
    %   The following table lists the first 15 Zernike functions. 2R_k$kHl  
    % gVuN a)  
    %       n    m    Zernike function           Normalization a`{'u)@  
    %       -------------------------------------------------- z,NHH):~  
    %       0    0    1                                 1 H;Bj\-Pa  
    %       1    1    r * cos(theta)                    2 $iB(N ZV  
    %       1   -1    r * sin(theta)                    2 BpK P]V  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) Q/+a{m0 f  
    %       2    0    (2*r^2 - 1)                    sqrt(3) !YoKKG~_0  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) |UBJu `%  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8)  d,H%  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) jrW7AT)\  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) %?cPqRHJ ~  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) bb<Vh2b>R  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) F )tNA?p)  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Psv-y  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) (z.Vwl5  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) :@p`E}1r{  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) a:8@:d1T K  
    %       -------------------------------------------------- (g;Ff`P Pc  
    % "y`?KY$[N  
    %   Example 1: <6`,)(dj  
    % QO%LSRw  
    %       % Display the Zernike function Z(n=5,m=1) fHgfI@{=j  
    %       x = -1:0.01:1; d#W[<,  
    %       [X,Y] = meshgrid(x,x); %?g]{  
    %       [theta,r] = cart2pol(X,Y); K}zw%!ex  
    %       idx = r<=1; `ybZE+S.  
    %       z = nan(size(X)); 68d@By  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); O-|3k$'\z  
    %       figure E>[~"~x"pV  
    %       pcolor(x,x,z), shading interp oNdO@i%.q4  
    %       axis square, colorbar ' ZB%McS  
    %       title('Zernike function Z_5^1(r,\theta)') nQgn^z#  
    % 1|%$ie  
    %   Example 2: ^.4<#Qs  
    % <&NR3^Eq  
    %       % Display the first 10 Zernike functions [IYs4Y5  
    %       x = -1:0.01:1; Xu T|vh  
    %       [X,Y] = meshgrid(x,x); E^qKkl  
    %       [theta,r] = cart2pol(X,Y); +I')>6  
    %       idx = r<=1; C/cyqxVl}  
    %       z = nan(size(X)); O=mJ8W@  
    %       n = [0  1  1  2  2  2  3  3  3  3]; 7j]@3D9[:p  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; :4A^~+J  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; X ak~He  
    %       y = zernfun(n,m,r(idx),theta(idx)); oDRNM^gz  
    %       figure('Units','normalized') `j2z=5  
    %       for k = 1:10 N$3F4b%+  
    %           z(idx) = y(:,k); X$xqu\t7  
    %           subplot(4,7,Nplot(k)) \gzNMI*  
    %           pcolor(x,x,z), shading interp leiza?[  
    %           set(gca,'XTick',[],'YTick',[]) Y8N&[L[z&  
    %           axis square &oR&NKk  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) =]"PSY7p  
    %       end fL@[B{XMM  
    % lyT~>.?{  
    %   See also ZERNPOL, ZERNFUN2. 8Ej2JMc  
    -V+fQGZe  
    %   Paul Fricker 11/13/2006 vbWX`skU  
    >sP;B5S  
    f{vnZ|WD  
    % Check and prepare the inputs: d2(n3Xf  
    % ----------------------------- 4v{gc/g  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 'E@D  
        error('zernfun:NMvectors','N and M must be vectors.') yK{~  
    end N@) D,~  
    1\3n   
    if length(n)~=length(m) cBAA32wf  
        error('zernfun:NMlength','N and M must be the same length.') 4iw+3 Q|  
    end ?iq:Gf  
    5zU D W?  
    n = n(:); SAqX[c  
    m = m(:); N_T;&wibO  
    if any(mod(n-m,2)) mjw:Z,  
        error('zernfun:NMmultiplesof2', ... )D@ NX/}  
              'All N and M must differ by multiples of 2 (including 0).') +XQS -=  
    end zi5;>Iv0}  
    .IgCC_C9  
    if any(m>n) m!PN1$9V  
        error('zernfun:MlessthanN', ... {:? -)Xq  
              'Each M must be less than or equal to its corresponding N.') S4\T (  
    end [3\}Ca1  
    d6Z;\f7[  
    if any( r>1 | r<0 ) '91Ak,cWB  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') ]v+\v re  
    end -dza_{&+iZ  
    %II |;<  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) &< ~`?-c  
        error('zernfun:RTHvector','R and THETA must be vectors.') _|#)tWy}  
    end 8J>s|MZ  
    0R; ;ou  
    r = r(:); e}Db-7B_~  
    theta = theta(:); f-3lJ?6  
    length_r = length(r);  ]@<O!fS  
    if length_r~=length(theta) No h*1u*  
        error('zernfun:RTHlength', ... :lcoSJ  
              'The number of R- and THETA-values must be equal.') BK-{z).)  
    end JWEqy+,Fjw  
    /Jo*O=Lpo  
    % Check normalization: d#A.A<p*  
    % -------------------- Q.!D2RZc  
    if nargin==5 && ischar(nflag) AJj6@hi2P  
        isnorm = strcmpi(nflag,'norm'); j]jwQRe  
        if ~isnorm i5rAb<q`  
            error('zernfun:normalization','Unrecognized normalization flag.') V a<L[8  
        end k/*r2 C  
    else o8Tt|Lxb$8  
        isnorm = false; RU@`+6 j+  
    end -[G+*3Y{7  
    /9i2@#J}W1  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 2r\ f!m'  
    % Compute the Zernike Polynomials 4D0"Y #&G  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% !x&/M*nBE  
     8*lVO2  
    % Determine the required powers of r: {Z$Aw4a"d  
    % ----------------------------------- }]/"auk  
    m_abs = abs(m); hX<0{pXM4  
    rpowers = []; {&m^*YN/  
    for j = 1:length(n) 0>>tdd7  
        rpowers = [rpowers m_abs(j):2:n(j)]; Z?dz@d%C  
    end JH5ckgdZ  
    rpowers = unique(rpowers); EQMn'>  
    )88z=5.  
    % Pre-compute the values of r raised to the required powers, Ij4oH  
    % and compile them in a matrix: iz& )FuOr  
    % ----------------------------- Fq9AO~z  
    if rpowers(1)==0 YGNO]Q~A  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); |&3[YZY  
        rpowern = cat(2,rpowern{:}); 6> X7JMRY  
        rpowern = [ones(length_r,1) rpowern]; bF<FX_}!s!  
    else RYy_Ppn96f  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); #T&''a  
        rpowern = cat(2,rpowern{:}); ' FF@I^O  
    end 3N[t2Y1r  
    $O?&!8);,  
    % Compute the values of the polynomials: iJT_*,P^  
    % -------------------------------------- ]haZT\  
    y = zeros(length_r,length(n)); 4uwI=UUB  
    for j = 1:length(n) Jzo|$W  
        s = 0:(n(j)-m_abs(j))/2;  lEh;MJ  
        pows = n(j):-2:m_abs(j); $@s&qi_&R  
        for k = length(s):-1:1 ;3'ta!.c  
            p = (1-2*mod(s(k),2))* ... !Qy%sY  
                       prod(2:(n(j)-s(k)))/              ... wL\OAM6R  
                       prod(2:s(k))/                     ... -X3yCK?re  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... krFuEaO  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); M2l0x @|  
            idx = (pows(k)==rpowers); jZx.MBVy]  
            y(:,j) = y(:,j) + p*rpowern(:,idx); XShi[7  
        end ~+ Mp+gE  
         'pa[z5{k+  
        if isnorm J>y}kzCz  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 49W@?: b  
        end u $O` \=  
    end V:s$V.{!  
    % END: Compute the Zernike Polynomials aJdd2,e  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% m&a.i B  
    9J+ p.N  
    % Compute the Zernike functions: zk#"n&u0  
    % ------------------------------ 98'/yZ  
    idx_pos = m>0; \,&,Q  
    idx_neg = m<0; <Nwqt[.  
    n@[_lNa4GD  
    z = y; >pdWR1ox  
    if any(idx_pos) ]{ ^'{z$i  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ?71?Vd  
    end MVP|l_2!  
    if any(idx_neg) G9v'a&  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 3dheT}XV?p  
    end X$BN &DD  
    <hkSbJF  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) (w[#h9j  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. /|s~X@%K  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated w}|XSJ!  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive -d>2&)5  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, vbBNXy/  
    %   and THETA is a vector of angles.  R and THETA must have the same X<8?>#  
    %   length.  The output Z is a matrix with one column for every P-value, WoV"&9y  
    %   and one row for every (R,THETA) pair. r+:]lO  
    % "%peYNZ&%  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike 5}C.^J`  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) c!0u,6  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) z][hlDv\j  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 u}r>?/V!  
    %   for all p. b!p]\B!  
    % {{6D4M|s  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 \<ko)I#%  
    %   Zernike functions (order N<=7).  In some disciplines it is %cO^:  
    %   traditional to label the first 36 functions using a single mode ES}V\k*}  
    %   number P instead of separate numbers for the order N and azimuthal =e)t,YVm  
    %   frequency M. ,Iv eKk5W  
    % ZWmS6?L.  
    %   Example: o%yfR.M6$  
    % dvAG}<  
    %       % Display the first 16 Zernike functions ]J1oY]2~  
    %       x = -1:0.01:1; =cR"_Z[8X  
    %       [X,Y] = meshgrid(x,x); /9pN.E  
    %       [theta,r] = cart2pol(X,Y); %?`O .W  
    %       idx = r<=1; CP'b,}Dd?I  
    %       p = 0:15; 8KyRD1 (-R  
    %       z = nan(size(X));  \OJam<hZ  
    %       y = zernfun2(p,r(idx),theta(idx)); y'5`Uo?\",  
    %       figure('Units','normalized') n nOgmI7  
    %       for k = 1:length(p) w!dgIS$  
    %           z(idx) = y(:,k); S;0z%$y  
    %           subplot(4,4,k) /S{U|GBB%r  
    %           pcolor(x,x,z), shading interp v!`:{)2C  
    %           set(gca,'XTick',[],'YTick',[]) J Bgq2  
    %           axis square T095]*Hm  
    %           title(['Z_{' num2str(p(k)) '}']) %lk^(@+ T  
    %       end ,<=gPs;x  
    % Z=9<esx  
    %   See also ZERNPOL, ZERNFUN. 25PZ&^G 8%  
    .C\2f+(U  
    %   Paul Fricker 11/13/2006 J@o_-\@  
    `# U<'$  
    b>-h4{B[  
    % Check and prepare the inputs: (#?O3z1@"  
    % ----------------------------- gvFJ~lL  
    if min(size(p))~=1 BOOb{kcg  
        error('zernfun2:Pvector','Input P must be vector.') }a !ny  
    end %4wEAi$I  
    0q28Ulv9  
    if any(p)>35 SBy{sbx4&F  
        error('zernfun2:P36', ... gR+P !Eow  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... Y\Z6u)  
               '(P = 0 to 35).']) uO>x"D5tZ:  
    end {,!!jeOO  
    0&u=(;Dr\  
    % Get the order and frequency corresonding to the function number: H_ a##z  
    % ---------------------------------------------------------------- 6FYL},.R  
    p = p(:); ?W_8 X2(`  
    n = ceil((-3+sqrt(9+8*p))/2); >V?W_oM)  
    m = 2*p - n.*(n+2); O{7rIy  
    <5E)6c_W)  
    % Pass the inputs to the function ZERNFUN: &pf"35ll  
    % ---------------------------------------- GEv x<:  
    switch nargin .]H/u "d  
        case 3 <BIQc,)2}  
            z = zernfun(n,m,r,theta); kbL7Xjk  
        case 4 b<!' WpY-  
            z = zernfun(n,m,r,theta,nflag); \2!.  
        otherwise <FX ]n<  
            error('zernfun2:nargin','Incorrect number of inputs.') sSf;j,7V  
    end b*W,8HF4,  
    [,MaAB  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) H "Io!{aKU  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. kOdA8X RY  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of (f^/KB=  
    %   order N and frequency M, evaluated at R.  N is a vector of }z#M!~  
    %   positive integers (including 0), and M is a vector with the b)x0;8<  
    %   same number of elements as N.  Each element k of M must be a } xA@3RT  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) H5#]MOAP  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is tK@7t0  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix R>Dr1fc}  
    %   with one column for every (N,M) pair, and one row for every (&87 zk  
    %   element in R. |Xm$O1Wa  
    % ;&gk)w6*  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- dl3;A_ 2  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is -T;^T1  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to #>HY+ ;  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 j^;P=L0=  
    %   for all [n,m]. @U3z@v]s(h  
    % kN3 <l7  
    %   The radial Zernike polynomials are the radial portion of the /}2Y-GOU  
    %   Zernike functions, which are an orthogonal basis on the unit T`pDjT  
    %   circle.  The series representation of the radial Zernike }Xk_ xQVt{  
    %   polynomials is T{^P  
    % "wcw`TsK  
    %          (n-m)/2 ',!jYh}Uxk  
    %            __ gvc/Z <Y  
    %    m      \       s                                          n-2s 9BpxbU+L;  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r tl{{Vc[  
    %    n      s=0 '^C *%"I]  
    % <wb6)U.  
    %   The following table shows the first 12 polynomials. 7.Z-  
    % %WKBd \O  
    %       n    m    Zernike polynomial    Normalization &;pM<h  
    %       --------------------------------------------- q9p31b3  
    %       0    0    1                        sqrt(2) {tl{ j1d |  
    %       1    1    r                           2 ,?Ie!r$6  
    %       2    0    2*r^2 - 1                sqrt(6) }apno|W&  
    %       2    2    r^2                      sqrt(6) Q\}-MiI/  
    %       3    1    3*r^3 - 2*r              sqrt(8) [&4+ <Nl'  
    %       3    3    r^3                      sqrt(8) < qab\M0W  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) i].E1},%  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) N$ #~&  
    %       4    4    r^4                      sqrt(10) AX%}ip[PC  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) rNJU & .]  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) j1qU 4#Y  
    %       5    5    r^5                      sqrt(12) tFc<f7k  
    %       --------------------------------------------- #"~\/sb   
    % U?Dr0wD;[  
    %   Example: +6l#hO7h  
    % 6M`gy|"(~  
    %       % Display three example Zernike radial polynomials 7P(jMalq  
    %       r = 0:0.01:1; j0X^,ot@m  
    %       n = [3 2 5]; 1$.svR  
    %       m = [1 2 1]; n*ShYsc  
    %       z = zernpol(n,m,r); uF|_6~g  
    %       figure V s xI  
    %       plot(r,z) 5,oLl {S'  
    %       grid on _ q1\8y  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') G1w$lc  
    % XEbVsw  
    %   See also ZERNFUN, ZERNFUN2. QEbf]U=  
    7S 8X)  
    % A note on the algorithm. TfkGkVR  
    % ------------------------ vV$t`PEY  
    % The radial Zernike polynomials are computed using the series (yi zM  
    % representation shown in the Help section above. For many special b/qK/O8J  
    % functions, direct evaluation using the series representation can ?D2a"a$^  
    % produce poor numerical results (floating point errors), because ,j`48S@  
    % the summation often involves computing small differences between eGg6wd  
    % large successive terms in the series. (In such cases, the functions j;E$7QH[  
    % are often evaluated using alternative methods such as recurrence T%& vq6  
    % relations: see the Legendre functions, for example). For the Zernike Yb`b /BMR  
    % polynomials, however, this problem does not arise, because the z9OpMA  
    % polynomials are evaluated over the finite domain r = (0,1), and F(."nUrf  
    % because the coefficients for a given polynomial are generally all z8'zH>  
    % of similar magnitude. m:`M&Xs&  
    % jUNt4  
    % ZERNPOL has been written using a vectorized implementation: multiple "OYD9Q''  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] Hcg7u7M{  
    % values can be passed as inputs) for a vector of points R.  To achieve "0Z /|&  
    % this vectorization most efficiently, the algorithm in ZERNPOL 2[3t7C  
    % involves pre-determining all the powers p of R that are required to 'dh{q`#0  
    % compute the outputs, and then compiling the {R^p} into a single Rvu5#_P  
    % matrix.  This avoids any redundant computation of the R^p, and HyWR&0J  
    % minimizes the sizes of certain intermediate variables. onRTX|#  
    % 1Dc6v57  
    %   Paul Fricker 11/13/2006 -Z:x!M[Xr  
    l4+ `x[^  
    CUG"2K9  
    % Check and prepare the inputs: !*~QB4\2b  
    % ----------------------------- ^78N25RU(  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) M_UmnqN1C  
        error('zernpol:NMvectors','N and M must be vectors.') 4 FZR }e\  
    end J;>~PXB  
    9M7P|Q  
    if length(n)~=length(m) PDw+Q  
        error('zernpol:NMlength','N and M must be the same length.') C{^I}p  
    end CP; <B1  
    ~' 955fK>  
    n = n(:); QgYt(/S  
    m = m(:); 0{ B<A^Bf  
    length_n = length(n); X)iI]   
    |O>e=HC#q8  
    if any(mod(n-m,2)) k*6"!J%A  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') y7!&  
    end cMT:Ij];  
    }PBL  
    if any(m<0) 'Z.C&6_  
        error('zernpol:Mpositive','All M must be positive.') 8]vut{  
    end RV{%@1Pu  
    FGP^rTP)e  
    if any(m>n) tw<Oy^ i  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') r^msJ|k8[  
    end BH~zeJ*Pr  
    6S n&; ap  
    if any( r>1 | r<0 ) Ag+B*   
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') CYE[$*g6y  
    end <+q`Dk  
    .),9q z`  
    if ~any(size(r)==1) \ILNx^$EL  
        error('zernpol:Rvector','R must be a vector.') '&,p>aM  
    end Da8gOZ  
    .xT{Rz  
    r = r(:); B/@LE{qUn  
    length_r = length(r); yFmy  
    J %A=  
    if nargin==4 )7+z/y+[n  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); eXnSH$uI  
        if ~isnorm wN%lc3[/z2  
            error('zernpol:normalization','Unrecognized normalization flag.') -R]~kGa6m<  
        end H? z~V-8  
    else FCwE/ 2,  
        isnorm = false; k= 9+"4:  
    end L;M@]  
    hG#2}K_  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% cU ?F D  
    % Compute the Zernike Polynomials .s4v*bng  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% V0 Z8VqV  
    T!9AEG  
    % Determine the required powers of r: l/nBin&YGv  
    % ----------------------------------- P* &0HbJ  
    rpowers = []; l"`VvW[  
    for j = 1:length(n) 73'AQ")UJ  
        rpowers = [rpowers m(j):2:n(j)]; #7'k'(  
    end 8pr toCB  
    rpowers = unique(rpowers); I2RXw  
    2-Q5l*  
    % Pre-compute the values of r raised to the required powers, W(Sni[c{  
    % and compile them in a matrix: xgkCN$zQ`  
    % ----------------------------- i g7|kl  
    if rpowers(1)==0 VR1]CN"G  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); oO3 ^9?Z  
        rpowern = cat(2,rpowern{:}); ,aS+RJNM  
        rpowern = [ones(length_r,1) rpowern]; SKNHLE}  
    else /\mYXi \  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 8O{V#aop  
        rpowern = cat(2,rpowern{:}); ~Yl.(R  
    end *}#HBZe(9  
    $?z} yx$  
    % Compute the values of the polynomials: 3!sZA?q  
    % -------------------------------------- *$R9'Yo}F  
    z = zeros(length_r,length_n); hPG@iX|V  
    for j = 1:length_n 4B[pQlg  
        s = 0:(n(j)-m(j))/2; 9-_Lc<  
        pows = n(j):-2:m(j); gq*W 0S  
        for k = length(s):-1:1 V6c8o2G;+  
            p = (1-2*mod(s(k),2))* ... :a2[d1  
                       prod(2:(n(j)-s(k)))/          ... w;Fy/XQ  
                       prod(2:s(k))/                 ... toD!RE  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... [Rq|;p  
                       prod(2:((n(j)+m(j))/2-s(k))); ONpvx5'#  
            idx = (pows(k)==rpowers); @Z#h?:  
            z(:,j) = z(:,j) + p*rpowern(:,idx); ~rjK*_3/  
        end zx:;0Z:S6>  
         .9z}S=ZK  
        if isnorm [hH>BEtm  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); BT0;I  
        end V,c^Vq y  
    end ^jS1g*nrN  
    >jTiYJI_M  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    857
    光币
    847
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  .NF3dC\  
    1u }2}c|  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 f/,8sGkX;  
    y;.5AvfD  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)