非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 d?_LNSDo
function z = zernfun(n,m,r,theta,nflag) LwL\CE_6+
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. ~PAbtY9}U
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N {po f=G
% and angular frequency M, evaluated at positions (R,THETA) on the 6ISDY>p
% unit circle. N is a vector of positive integers (including 0), and b/dyH
% M is a vector with the same number of elements as N. Each element ^vH3 -A;*
% k of M must be a positive integer, with possible values M(k) = -N(k) ,H+LE$=
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, (!9ybH;T
% and THETA is a vector of angles. R and THETA must have the same OlI {VszR
% length. The output Z is a matrix with one column for every (N,M) %B{NH~
% pair, and one row for every (R,THETA) pair. |L"!^Y#=D
% h]z>H~.<*
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike J)xc mK
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), gQ=g,X4
% with delta(m,0) the Kronecker delta, is chosen so that the integral '5n67Hl 1
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 6}EC)j;Fw
% and theta=0 to theta=2*pi) is unity. For the non-normalized 9BM 8
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. `!$I6KxT
% %:
.{?FB_
% The Zernike functions are an orthogonal basis on the unit circle. s*0PJ\E2
% They are used in disciplines such as astronomy, optics, and Cw_XLMY%V1
% optometry to describe functions on a circular domain. CN"hx-f
% z
nc'
% The following table lists the first 15 Zernike functions. w
9mi2=
% -n `igC
% n m Zernike function Normalization 1TvR-.e
% -------------------------------------------------- SdTJ?P+m
% 0 0 1 1 /\_wDi+#
% 1 1 r * cos(theta) 2 Cp@'
k;(
% 1 -1 r * sin(theta) 2 'l}T_7g
% 2 -2 r^2 * cos(2*theta) sqrt(6) xXktMlI
% 2 0 (2*r^2 - 1) sqrt(3) bqt*d)$
% 2 2 r^2 * sin(2*theta) sqrt(6) $"/xi `
% 3 -3 r^3 * cos(3*theta) sqrt(8) "7k
82dw
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 4,|A\dXE
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) r6Hdp
% 3 3 r^3 * sin(3*theta) sqrt(8) Pkbx/\
% 4 -4 r^4 * cos(4*theta) sqrt(10) 8,,$C7"EP
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 8C{mV^cn~
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) De(\<H#
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) z$>_c"D
% 4 4 r^4 * sin(4*theta) sqrt(10) x{X(Y]*1S
% -------------------------------------------------- <6s?M1J
% a3<.F&c+c
% Example 1: 9p#Laei].
% wf<=rW'
% % Display the Zernike function Z(n=5,m=1) AIvIQ$6}
% x = -1:0.01:1; K;u<-?En
% [X,Y] = meshgrid(x,x); {5=Iu\e
% [theta,r] = cart2pol(X,Y); bJo)rM:m
% idx = r<=1; \V#2K><
% z = nan(size(X)); Qw{LD+r(
% z(idx) = zernfun(5,1,r(idx),theta(idx)); .#,!&Lt
% figure |-HV@c]
% pcolor(x,x,z), shading interp oT4A|M
% axis square, colorbar [`~E)B1Y
% title('Zernike function Z_5^1(r,\theta)') !c+Nf2I7S
% p. eq
N
% Example 2: H?~|Uj 6
% v:Av2y
% % Display the first 10 Zernike functions #-_';Er\
% x = -1:0.01:1; )5}=^aqd
% [X,Y] = meshgrid(x,x); Gyak?.@R
% [theta,r] = cart2pol(X,Y); cu4&*{
% idx = r<=1; ]{r*Z6bs
% z = nan(size(X)); }hralef #N
% n = [0 1 1 2 2 2 3 3 3 3]; *Op;].>E
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; iINd*eXb^
% Nplot = [4 10 12 16 18 20 22 24 26 28]; (6R^/*-o
% y = zernfun(n,m,r(idx),theta(idx)); RnN]m!"5
% figure('Units','normalized') 3iHUG^sLW
% for k = 1:10 y\DR,$Py
% z(idx) = y(:,k); +0016UgS#
% subplot(4,7,Nplot(k)) bqHR~4 #IR
% pcolor(x,x,z), shading interp BULf@8~(
% set(gca,'XTick',[],'YTick',[]) (5s$vcK
% axis square 0^41dfdE
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) +rw?k/
% end qn VxP&
% %T hY6y(
% See also ZERNPOL, ZERNFUN2. >~-8RM
*{qW7x.6h
% Paul Fricker 11/13/2006 o5 UM)g
hjVct
r
jP?YV
% Check and prepare the inputs: Wj"\nT4
% ----------------------------- ^t&S?_DSZ
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) CbmT aEaP
error('zernfun:NMvectors','N and M must be vectors.') ~C1lbn b
end *C81DQ
Y40`~
if length(n)~=length(m) =.=4P~T&
error('zernfun:NMlength','N and M must be the same length.') "@1e0`n
Q
end 39p&M"Yo
#-xsAKi
n = n(:); DQ'=$z
m = m(:); t$NK{Mw5_
if any(mod(n-m,2)) &b[.bf
error('zernfun:NMmultiplesof2', ... &vf9Gp+MK
'All N and M must differ by multiples of 2 (including 0).') DJxe3<
end g.wp
}fz
Y}<w)b1e|
if any(m>n) `nAR/Ye
error('zernfun:MlessthanN', ... .+|HJ(
'Each M must be less than or equal to its corresponding N.') _l`d+
\#
end >K
}j}M%
^I =W<
if any( r>1 | r<0 ) D=hy[sDBw
error('zernfun:Rlessthan1','All R must be between 0 and 1.') d5zv8?|X+
end G:$Ta6=
Tm!pAD
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Sz_bjh yT}
error('zernfun:RTHvector','R and THETA must be vectors.') ({XB,Rm
end [D!-~]5
[$PW {d8|
r = r(:); ~#z8Q{!O
theta = theta(:); 7jss3^.wA
length_r = length(r); en6Kdqe
if length_r~=length(theta) eI?|Ps{S
error('zernfun:RTHlength', ... {+`'ZU6C
'The number of R- and THETA-values must be equal.') ;DQ{6(
end #&fi[|%X$
-~ w5yd
% Check normalization: eIZ7uSl
% -------------------- cK()_RB#
if nargin==5 && ischar(nflag) |;~kHc$W
isnorm = strcmpi(nflag,'norm'); v5 |XyN"
if ~isnorm tM&O<6Y
error('zernfun:normalization','Unrecognized normalization flag.') /W vF}y
end 'o D31\@I
else K90wX1&
isnorm = false; L="ipM:Z
end 0:NCIsIm<
:Ma=P\J
W
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% vpt*?eR
% Compute the Zernike Polynomials OvL@@SX |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% $KSdNFtM)A
R,+Pcn$ws
% Determine the required powers of r: uu5AW=j
% ----------------------------------- 5Q)hl.<{o7
m_abs = abs(m); (R'GrN>
rpowers = []; 1 u[a713O
for j = 1:length(n) JQi+y;
rpowers = [rpowers m_abs(j):2:n(j)]; ??\1eo2gB
end ;Jh=7wx
rpowers = unique(rpowers); *$%ch=
xIOYwVC
% Pre-compute the values of r raised to the required powers, `S`,H
% and compile them in a matrix: Ijg//=
% ----------------------------- , %8keGhl
if rpowers(1)==0 E#?Bn5-uBs
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); =1k E2u
rpowern = cat(2,rpowern{:}); N>zpxU {
rpowern = [ones(length_r,1) rpowern]; 2p^Jqp`$
else @2yoy&IO
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); )JNUfauyT
rpowern = cat(2,rpowern{:}); H0!LiazA>
end ":qhO0
xE$>;30b_
% Compute the values of the polynomials: DGc5Lol~
% -------------------------------------- MNuBZnO
y = zeros(length_r,length(n)); V(lxkEu/Fj
for j = 1:length(n) 0mt lM(
s = 0:(n(j)-m_abs(j))/2; n]%T>\gw
pows = n(j):-2:m_abs(j); x=S8UKUx
for k = length(s):-1:1 +'-i (]@!'
p = (1-2*mod(s(k),2))* ... TnuaP'xZ
prod(2:(n(j)-s(k)))/ ... 1{fu
prod(2:s(k))/ ... g-C)y
06
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Oax6_kmOj
prod(2:((n(j)+m_abs(j))/2-s(k))); QIK;kjr*A3
idx = (pows(k)==rpowers); #F|q->2`o
y(:,j) = y(:,j) + p*rpowern(:,idx); iBqxz:PHN(
end bjL8Wpk
eNHSfq
if isnorm &c AFKYt
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); bZ5cKQ\6
end T{CCZ"Fv
end KUV(vAY,
% END: Compute the Zernike Polynomials M~?2g.o'D
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% b41f7t=
)yl;i
% Compute the Zernike functions: =q\Ghqj1
% ------------------------------ 9} *Pb6
idx_pos = m>0; \kR:GZ`{UV
idx_neg = m<0; >s%&t[r6
L*(!P4S%}
z = y; za,JCI
if any(idx_pos) I)(@'^)
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); JK%UaEut=
end *3!#W|#=]N
if any(idx_neg) }J ^+66{
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); -f-@[; D
end 6)]zt
O0Pb"ou_h.
% EOF zernfun