非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 ^?{&v19m
function z = zernfun(n,m,r,theta,nflag) ObM/~{rKx
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. J4eU6W+ {
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 0d2RB^"i
% and angular frequency M, evaluated at positions (R,THETA) on the OcUj_Zd
% unit circle. N is a vector of positive integers (including 0), and E^J &?-
% M is a vector with the same number of elements as N. Each element -aBhN~
% k of M must be a positive integer, with possible values M(k) = -N(k) z#G\D5yX[*
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, xD*Zcw(vj~
% and THETA is a vector of angles. R and THETA must have the same @(L}:]{@
% length. The output Z is a matrix with one column for every (N,M) i\lvxbp
% pair, and one row for every (R,THETA) pair. c)
Eu(j\#
%
!RJ@;S
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Ch{6=k bK
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 0Y!"3bw|
% with delta(m,0) the Kronecker delta, is chosen so that the integral !84Lvg0&
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ,R=!ts[qi
% and theta=0 to theta=2*pi) is unity. For the non-normalized z:S:[X0
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. iZk4KX
% > 3&
% The Zernike functions are an orthogonal basis on the unit circle. R@grY:h
% They are used in disciplines such as astronomy, optics, and DI)"FOM6
% optometry to describe functions on a circular domain. [;hkT
% Z42q}Fhm*R
% The following table lists the first 15 Zernike functions. Pg.JI:>2Ku
% Q.9,W=<6
% n m Zernike function Normalization K'2N:.D:
% -------------------------------------------------- ^jL44?W}l
% 0 0 1 1 T$mT;k
% 1 1 r * cos(theta) 2 \4qF3#
% 1 -1 r * sin(theta) 2 o#"yFP1
% 2 -2 r^2 * cos(2*theta) sqrt(6) >/Z*\6|Zx#
% 2 0 (2*r^2 - 1) sqrt(3) +|;Ri68
% 2 2 r^2 * sin(2*theta) sqrt(6) ?#c "wA&
% 3 -3 r^3 * cos(3*theta) sqrt(8) 8oUR/___
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) u gRyUny
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) B (eXWWT_
% 3 3 r^3 * sin(3*theta) sqrt(8) :*g$@T
% 4 -4 r^4 * cos(4*theta) sqrt(10) $'}| /D
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) c\[&IlM
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) 7V^j9TC
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) O<wH+k[
% 4 4 r^4 * sin(4*theta) sqrt(10) !!A(A^s
% -------------------------------------------------- 6Jy%4]wK
% ;~
Xjk
% Example 1: ?lqqu#;8
% O:+y/c
% % Display the Zernike function Z(n=5,m=1) "r;cH5 3
% x = -1:0.01:1; %;]/Z%!
% [X,Y] = meshgrid(x,x); ^x*J4jl
% [theta,r] = cart2pol(X,Y); .z$UNB(!M
% idx = r<=1; i:N-Q)<Q*)
% z = nan(size(X)); Z
OAg7
% z(idx) = zernfun(5,1,r(idx),theta(idx)); !1S!)#
% figure %iPIgma
% pcolor(x,x,z), shading interp ~eTp( XG
% axis square, colorbar aiX4;'$x!
% title('Zernike function Z_5^1(r,\theta)') ~Gc@#Msj
% T+0z.E!~I
% Example 2: O>f*D+A-
% AvIheR
% % Display the first 10 Zernike functions P5dD&
% x = -1:0.01:1; ku57<kb
% [X,Y] = meshgrid(x,x); =|O]X|y-lZ
% [theta,r] = cart2pol(X,Y); ~K)FuL[*
% idx = r<=1; 6_8y Q
% z = nan(size(X)); wBI:}N@.
% n = [0 1 1 2 2 2 3 3 3 3]; IY~I=}
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; MC-Z6l2
% Nplot = [4 10 12 16 18 20 22 24 26 28]; Ac*)z#H
% y = zernfun(n,m,r(idx),theta(idx)); q 7W7sw
% figure('Units','normalized') \p\p~FVS
% for k = 1:10 @w%kOX
% z(idx) = y(:,k); C<QpUJ`k
% subplot(4,7,Nplot(k)) +yr~UP_
}
% pcolor(x,x,z), shading interp ?TDmW8G}J
% set(gca,'XTick',[],'YTick',[]) Ozulp(8*
% axis square Ir` l*:j$
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) OvC@E]/+
% end 4y.'O
% a~VW?wq
% See also ZERNPOL, ZERNFUN2. &f A1kG%
[$>@f{:
% Paul Fricker 11/13/2006 Pr1OQbg]8
s)'+,lKw
:hB6-CZkqN
% Check and prepare the inputs: 1_xkGc-z<
% ----------------------------- 7k#>$sY+
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) :1UOT'_
error('zernfun:NMvectors','N and M must be vectors.') >_\]c-~<
end F_}y[Yn^
_+~jZ]o
N
if length(n)~=length(m) J1r\Cp+h0
error('zernfun:NMlength','N and M must be the same length.') <g&GIFE,
end KI\
9)
'L1yFv
n = n(:); 't\sXN+1
m = m(:); 0|\JbM
if any(mod(n-m,2)) sBxCi~
error('zernfun:NMmultiplesof2', ... L]X Lv9J0
'All N and M must differ by multiples of 2 (including 0).') s}^W2
end W"~"R
z`J-J*R>d
if any(m>n) tnXW7ej ^
error('zernfun:MlessthanN', ... hR>`I0|p&
'Each M must be less than or equal to its corresponding N.') aO:A pOAO
end tQMz1$
*MWI`=c
if any( r>1 | r<0 ) #Guwbg
error('zernfun:Rlessthan1','All R must be between 0 and 1.') p8CaD4bE
end >^f]Lgp
#b&=CsW`
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ~ayU\4B
error('zernfun:RTHvector','R and THETA must be vectors.') {!4ZRNy(k
end naY#`xig
X-"0Zc
r = r(:); :'!_PN
theta = theta(:); LKud'
length_r = length(r); "+&@iL
if length_r~=length(theta) p:!FB8
error('zernfun:RTHlength', ... 4
$)}d
'The number of R- and THETA-values must be equal.') %CrpUx
end &9n=!S'Md
n>lQ:l~
% Check normalization: h5; +5B}D
% -------------------- /5XdZu6k`h
if nargin==5 && ischar(nflag) XOZ@ek)LY
isnorm = strcmpi(nflag,'norm'); 8L))@SA+uJ
if ~isnorm ',Oc+jLR
error('zernfun:normalization','Unrecognized normalization flag.') 4Gh%PUV#
end )B^T7{
else y= 1(o3(
isnorm = false; BQ~\ p\
end Nu; 9
cn
;2&
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \FIOFbwe
% Compute the Zernike Polynomials I]~UOl
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% P9# }aw+
nlx~yUXL4
% Determine the required powers of r: U&gl$/4U@
% ----------------------------------- 0mT.J~}1v
m_abs = abs(m); *_uGzGB&G
rpowers = []; $I3}%'`+
for j = 1:length(n) {<Vw55)#0Q
rpowers = [rpowers m_abs(j):2:n(j)]; 6)3pnhG9
end qEPC]es|T
rpowers = unique(rpowers); `9VRT`e
SM`n:{N(
% Pre-compute the values of r raised to the required powers, #|} EPD9$
% and compile them in a matrix:
["Jt2
% ----------------------------- 5lm>~J!/^
if rpowers(1)==0 0~nub
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); UZW)%
rpowern = cat(2,rpowern{:}); X
gA(
D
rpowern = [ones(length_r,1) rpowern]; S?(/~Vb%
else H[iR8<rhQ
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); )!D,;,aQ
rpowern = cat(2,rpowern{:}); k`,>52
end ?7aeY5p
;U<rFs40
% Compute the values of the polynomials: &;%LTF@I,
% -------------------------------------- )>^!X$`3
y = zeros(length_r,length(n)); D +9l$**a
for j = 1:length(n) 3gba~}c)
s = 0:(n(j)-m_abs(j))/2; i}LVBx"K(
pows = n(j):-2:m_abs(j); ~0gHh
for k = length(s):-1:1 RZ:=';
p = (1-2*mod(s(k),2))* ... >o!~T}J7
prod(2:(n(j)-s(k)))/ ... vF$sVu|B
prod(2:s(k))/ ... ywbdV-t/
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 2xpI|+a%
prod(2:((n(j)+m_abs(j))/2-s(k))); H_ 7E K
idx = (pows(k)==rpowers); Wc{/K6]f
y(:,j) = y(:,j) + p*rpowern(:,idx); ;[[oZ
end m2PI^?|e
N/N~>7f
if isnorm 4#wZ#}
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi);
i(n BXV{
end @7,k0H9Moa
end _B^Q;54c
% END: Compute the Zernike Polynomials .OSFLY#[?
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Z {*<Gx
r/mKuGa]
% Compute the Zernike functions: |]x>|Z?/u
% ------------------------------ xU;;@9X
idx_pos = m>0; IkJ-*vI6
idx_neg = m<0; {3*Zx"e![
D1f}g
z = y; a}/ A]mu
if any(idx_pos) Xg1QF^
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 5X,|Pn
end rl](0"Y0
t
if any(idx_neg) p`06%"#
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Bh<6J&<n
end NuC+iC$_/
C7T}:V](q
% EOF zernfun