切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10999阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 fs\l*nBig  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! OT+LQ TE  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 Cz` !j  
    function z = zernfun(n,m,r,theta,nflag) 2r4owB?  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. u_shC"X:  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N .5 Sw  
    %   and angular frequency M, evaluated at positions (R,THETA) on the R7pdwKD  
    %   unit circle.  N is a vector of positive integers (including 0), and MOi.bHCQJP  
    %   M is a vector with the same number of elements as N.  Each element xM"k qRZ  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) -^yb[b,  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, MEf`&<t  
    %   and THETA is a vector of angles.  R and THETA must have the same `f?v_Ui-$  
    %   length.  The output Z is a matrix with one column for every (N,M) ;/l$&:  
    %   pair, and one row for every (R,THETA) pair. [uqe|< :  
    % ]?tC+UKb  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike PT4Wox9U  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 2:3-mWE  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral %&w 8E[  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, LX;w~fRr.  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ]zK'aod  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 2O;Lw@W  
    % (xxNQ] l-(  
    %   The Zernike functions are an orthogonal basis on the unit circle. RvrZtg5  
    %   They are used in disciplines such as astronomy, optics, and O|wu;1pQ  
    %   optometry to describe functions on a circular domain. Ad$CHx-  
    % 0N9`WK  
    %   The following table lists the first 15 Zernike functions. P&I%!'<   
    % jd ]$U_U(  
    %       n    m    Zernike function           Normalization trlZ^K  
    %       -------------------------------------------------- %c:v70*h=  
    %       0    0    1                                 1 A8tzIh8  
    %       1    1    r * cos(theta)                    2 "pUqYMB2i  
    %       1   -1    r * sin(theta)                    2 f"i(+:la  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) \A "_|Yg  
    %       2    0    (2*r^2 - 1)                    sqrt(3) z 3((L  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) WRIOjQ:  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) P5;n(E(19  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) V}=%/OY?  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 2yB)2n#ut  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) !'m MGxkEb  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 9NzK1V0X  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) w(/#isC  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) "MS}@NLUW  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 5@c/,6l  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) }7Lo}}  
    %       -------------------------------------------------- 3X|7 R  
    % ct o+W}k  
    %   Example 1: kD"BsL*6!  
    % I'sq0^  
    %       % Display the Zernike function Z(n=5,m=1) '?$N.lj$d  
    %       x = -1:0.01:1; !W\Zq+^^J3  
    %       [X,Y] = meshgrid(x,x); lSW6\jX  
    %       [theta,r] = cart2pol(X,Y); R{6~7<m.  
    %       idx = r<=1; 7 k:w3M  
    %       z = nan(size(X)); R k'5L  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); "p Rr>Fa  
    %       figure "Sx}7?8AB  
    %       pcolor(x,x,z), shading interp (g(.gN]  
    %       axis square, colorbar EuH[G_5e0  
    %       title('Zernike function Z_5^1(r,\theta)') g<b(q|  
    % SK][UxoHm  
    %   Example 2: ko7*9`  
    % F R57F(31  
    %       % Display the first 10 Zernike functions mHj3ItXUu  
    %       x = -1:0.01:1; 0;J#".(KQ  
    %       [X,Y] = meshgrid(x,x); :6h$1 +6  
    %       [theta,r] = cart2pol(X,Y); (v/mKGyg  
    %       idx = r<=1; S2APqRg*  
    %       z = nan(size(X)); H]I^?+)9  
    %       n = [0  1  1  2  2  2  3  3  3  3]; O\~/J/u <  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; NI<;Lm  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; KCDbE6  
    %       y = zernfun(n,m,r(idx),theta(idx)); ng0tNifZ;  
    %       figure('Units','normalized') WSi`KNX  
    %       for k = 1:10 U-]Rm}X\M  
    %           z(idx) = y(:,k); (B/od#nU  
    %           subplot(4,7,Nplot(k)) YZ0y_it)  
    %           pcolor(x,x,z), shading interp DA9-F  
    %           set(gca,'XTick',[],'YTick',[]) T> < Vw  
    %           axis square \N|ma P  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) = n>aJ(=Pd  
    %       end BdMmeM2h  
    % 'gD,H X  
    %   See also ZERNPOL, ZERNFUN2. +KcD Y1[  
    31cC*  
    %   Paul Fricker 11/13/2006 %B#(d)T*-  
    b'5]o  
    isF jJPe  
    % Check and prepare the inputs: tJ qd  
    % ----------------------------- Uo<iZ3J  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) U@'F9UB`  
        error('zernfun:NMvectors','N and M must be vectors.') )NjxKSiU@  
    end Y-ZTv(<  
    +t8{aaV  
    if length(n)~=length(m) dv7IHUFf  
        error('zernfun:NMlength','N and M must be the same length.') QIb4ghm,  
    end .dE2,9{Z  
    L_~vPp  
    n = n(:); ^.Xom~  
    m = m(:); 9im<J'  
    if any(mod(n-m,2)) o6b\ w  
        error('zernfun:NMmultiplesof2', ... $D%[}[2  
              'All N and M must differ by multiples of 2 (including 0).') {y\5 9  
    end WVMkLMg8d  
    Nn:>c<[  
    if any(m>n) l2.L h<G  
        error('zernfun:MlessthanN', ... Shag4-*@hi  
              'Each M must be less than or equal to its corresponding N.') I_aS C4  
    end <\6<-x(H5  
    tqMOh R  
    if any( r>1 | r<0 ) "TQ3{=j{  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') _Pe,84Ro  
    end VNggDKS~K  
    QRw/d}8l  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) F Cp\w1+  
        error('zernfun:RTHvector','R and THETA must be vectors.') '*d);{D8  
    end ohW qp2~  
    $Y3mO ~  
    r = r(:); jn:9Cr,o;g  
    theta = theta(:); ;Q{~jT  
    length_r = length(r); F,)\\$=,  
    if length_r~=length(theta) oBpoZ @[Z  
        error('zernfun:RTHlength', ... `9>1 w d  
              'The number of R- and THETA-values must be equal.') \~4IOu  
    end Z{p)rscX  
    M#'j7EMu  
    % Check normalization: /l.ox.4z#  
    % -------------------- c&]nAn(  
    if nargin==5 && ischar(nflag) up^D9(y\  
        isnorm = strcmpi(nflag,'norm'); }iBFo\vU  
        if ~isnorm !J/fJW>m6  
            error('zernfun:normalization','Unrecognized normalization flag.') 3{/Y&/\"'^  
        end JsY|Fv  
    else ,JVWn>s  
        isnorm = false; s<hl>vY_'  
    end &?wNL@n  
    KhFw%Z0s<  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% wusj;v4C4M  
    % Compute the Zernike Polynomials KJQW))%e  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ji] H|  
    8 mFy9{M  
    % Determine the required powers of r: nS$_VJ]~  
    % ----------------------------------- l+!eC lM%  
    m_abs = abs(m); =TcT`](o  
    rpowers = []; p@Va`:RDW  
    for j = 1:length(n) N#!**Q 0  
        rpowers = [rpowers m_abs(j):2:n(j)]; lq[o2\  
    end Jp#Onl+d6  
    rpowers = unique(rpowers); 8gK  <xp  
    WA1h|:Z  
    % Pre-compute the values of r raised to the required powers, [.[|rnil  
    % and compile them in a matrix: w /l\p3n  
    % ----------------------------- O% }EpIP_  
    if rpowers(1)==0 U1,f$McZs  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); u.~`/O  
        rpowern = cat(2,rpowern{:}); ,fR/C  
        rpowern = [ones(length_r,1) rpowern]; UU;U,q  
    else t_\;G~O9-M  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 6&qT1nF1  
        rpowern = cat(2,rpowern{:}); <GRplkf`  
    end 5+yT{,(5  
    .`; bQh'!  
    % Compute the values of the polynomials: qbZY[Q+F  
    % -------------------------------------- Mb +  
    y = zeros(length_r,length(n)); E|`JmfLQu  
    for j = 1:length(n) T^F9A55y  
        s = 0:(n(j)-m_abs(j))/2; R'e>YDC  
        pows = n(j):-2:m_abs(j); G0^,@jF?b  
        for k = length(s):-1:1 wrJ:jTh  
            p = (1-2*mod(s(k),2))* ... 8RE"xJMff  
                       prod(2:(n(j)-s(k)))/              ... %'vLkjI.  
                       prod(2:s(k))/                     ... 2n3g!M6~  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... .CY;-  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 5<=ktA48[  
            idx = (pows(k)==rpowers); bayDdR4T  
            y(:,j) = y(:,j) + p*rpowern(:,idx); ?]In@h-  
        end 23_\UTM}1  
         fk!P#  
        if isnorm WPXLN'w+  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); *v6 j7<H  
        end *s[bq;$  
    end =T3O;i  
    % END: Compute the Zernike Polynomials ?x-:JME0  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% *$/!.e  
    n `Ry!  
    % Compute the Zernike functions: iLR^V!  
    % ------------------------------ (w/)u  
    idx_pos = m>0; ckCb)r_  
    idx_neg = m<0; S#g=;hD  
    UP?]5x>  
    z = y; XkE'k;AEx  
    if any(idx_pos) f;Uf=.#F  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); E6njm du  
    end ;c;5O@R}3  
    if any(idx_neg) =xX)2h  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); =(%+S<}  
    end }+3v5Nz;  
    s?-J`k~q  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) ,MRAEa2  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. -Uu65m~:{k  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated ,]* MI"  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive p#DJow  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, s+RSAyU  
    %   and THETA is a vector of angles.  R and THETA must have the same {T2=bK~  
    %   length.  The output Z is a matrix with one column for every P-value, Kp.d#W_TX  
    %   and one row for every (R,THETA) pair. J=@D]I*3  
    % kH9P(`;Vq  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike XzV:q!e-  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) fO'"UI  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) SuuLB6{u3  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 $V?h68[c  
    %   for all p. wr+r J  
    % L%sskV(  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 XI"8d.VR  
    %   Zernike functions (order N<=7).  In some disciplines it is IA&NMf;{  
    %   traditional to label the first 36 functions using a single mode +#Q\;; FNP  
    %   number P instead of separate numbers for the order N and azimuthal /6@iRswa  
    %   frequency M. 5:W 5@e{  
    % ugT;NB  
    %   Example: 8kA2.pIk  
    % {~u#.(  
    %       % Display the first 16 Zernike functions ytkV"^1^  
    %       x = -1:0.01:1; XNd%3rm,  
    %       [X,Y] = meshgrid(x,x); |MEu"pY)  
    %       [theta,r] = cart2pol(X,Y); I(2qXOG  
    %       idx = r<=1; $22_>OsA  
    %       p = 0:15; c@&-c[k^W  
    %       z = nan(size(X)); |:jka  
    %       y = zernfun2(p,r(idx),theta(idx)); XoZPz  
    %       figure('Units','normalized') k.MAX8  
    %       for k = 1:length(p) g4"0:^/  
    %           z(idx) = y(:,k); _/(7:  
    %           subplot(4,4,k) _${//`ia=  
    %           pcolor(x,x,z), shading interp |y T-N3H@  
    %           set(gca,'XTick',[],'YTick',[]) zVL"$ )  
    %           axis square ) }.<lSw  
    %           title(['Z_{' num2str(p(k)) '}']) H,I k&{@j  
    %       end g82_KUkB  
    % 1B#Z<p  
    %   See also ZERNPOL, ZERNFUN. }/cMG/%  
    W:z?w2{VI(  
    %   Paul Fricker 11/13/2006 NrTK+6 z  
    93+p~?  
    |1z?#@BH  
    % Check and prepare the inputs: WhU-^`[*  
    % ----------------------------- yv&VK ht  
    if min(size(p))~=1 >^\}"dEvr  
        error('zernfun2:Pvector','Input P must be vector.') ESQgN+llj  
    end 9 f+S-!  
    N=hhuKt]  
    if any(p)>35 {y0`p1  
        error('zernfun2:P36', ... Kq. MmR!gl  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... XX])B%*  
               '(P = 0 to 35).']) |}YeQl  
    end D6M ktE)'  
    D%k`udz<  
    % Get the order and frequency corresonding to the function number: E,fG<X{  
    % ---------------------------------------------------------------- $&>z`bAS>  
    p = p(:); kCoTz"Z-  
    n = ceil((-3+sqrt(9+8*p))/2); 2S`D7R#6s  
    m = 2*p - n.*(n+2); Ln2dD>{2  
    O F|3y~z  
    % Pass the inputs to the function ZERNFUN: bF#1'W&  
    % ---------------------------------------- dDeImSeV  
    switch nargin WOgPhJ  
        case 3 1`;,_>8  
            z = zernfun(n,m,r,theta); Ie14`'  
        case 4 fQ@k$W\  
            z = zernfun(n,m,r,theta,nflag); .JG>/+  
        otherwise  a1p}y2  
            error('zernfun2:nargin','Incorrect number of inputs.') &q?A)R  
    end F N)vFQ#J  
    <+%#xi/_  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) ;is*[r\|1  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. \vU1*:3  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of 6tKm'`^z4  
    %   order N and frequency M, evaluated at R.  N is a vector of x-Cy,d:YX  
    %   positive integers (including 0), and M is a vector with the /61P`1y(J  
    %   same number of elements as N.  Each element k of M must be a ~MOab e  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) &;D(VdSr9  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is J#pl7q)^w  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix 3O W) %  
    %   with one column for every (N,M) pair, and one row for every v@8 =u4  
    %   element in R. lQnl6j  
    % %S2^i3  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- `9+>2*k  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is *t,J4c  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to ?4]#gC ks  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 oZY2K3J)  
    %   for all [n,m]. R-8/BTls7  
    % :n4X>YL)  
    %   The radial Zernike polynomials are the radial portion of the :tv:46+s=  
    %   Zernike functions, which are an orthogonal basis on the unit \; b)qB  
    %   circle.  The series representation of the radial Zernike -]uN16\ F  
    %   polynomials is 2rr}5i)r|  
    % {u1Rc/Lw  
    %          (n-m)/2 $SP*hkU  
    %            __ %/86}DCfE?  
    %    m      \       s                                          n-2s N<xf=a+j  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r k]vrqjn Q  
    %    n      s=0 sw(dd01a 7  
    % LOD'iiH6  
    %   The following table shows the first 12 polynomials. x}w"2[fL  
    % D~;hIt*  
    %       n    m    Zernike polynomial    Normalization Pmj]"7Vd[  
    %       --------------------------------------------- tPT\uD#t  
    %       0    0    1                        sqrt(2) @Gs*y1  
    %       1    1    r                           2 X>n\@rTo  
    %       2    0    2*r^2 - 1                sqrt(6) =-ky%3:`@  
    %       2    2    r^2                      sqrt(6) T@n-^B!Xq  
    %       3    1    3*r^3 - 2*r              sqrt(8) &*I\~;1  
    %       3    3    r^3                      sqrt(8) F^ m`j6  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) 5 W<\J  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) Bh9O<|E  
    %       4    4    r^4                      sqrt(10) m"2KAq61  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) _d8k[HAJ|  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) \LFRu  
    %       5    5    r^5                      sqrt(12) {\OIowa  
    %       --------------------------------------------- q<YteuZJ,  
    % "%c\i-&t  
    %   Example: e7{n=M  
    % Cmq.V@  
    %       % Display three example Zernike radial polynomials H$^b.5K  
    %       r = 0:0.01:1; He)<S?X-6  
    %       n = [3 2 5]; ^lqcF.  
    %       m = [1 2 1]; ?UXKy  
    %       z = zernpol(n,m,r); z2m%L0  
    %       figure iY=M67V  
    %       plot(r,z) O1@-)<_71  
    %       grid on \haJe~  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') #?xhfSgr  
    % %$b)l? !  
    %   See also ZERNFUN, ZERNFUN2. U&fOsx?"  
    f6 zT  
    % A note on the algorithm. \#(cI  
    % ------------------------ C043h?x  
    % The radial Zernike polynomials are computed using the series z$3 3NM  
    % representation shown in the Help section above. For many special f\Bd lOJ>  
    % functions, direct evaluation using the series representation can 73$^y)AvY  
    % produce poor numerical results (floating point errors), because  w' E  
    % the summation often involves computing small differences between or_x0Q  
    % large successive terms in the series. (In such cases, the functions {Gnji] v  
    % are often evaluated using alternative methods such as recurrence |kvom 4T  
    % relations: see the Legendre functions, for example). For the Zernike EDR;" G(N  
    % polynomials, however, this problem does not arise, because the 7$(>Z^ Em  
    % polynomials are evaluated over the finite domain r = (0,1), and kL.JrbM"  
    % because the coefficients for a given polynomial are generally all SRl:+!@.  
    % of similar magnitude. p @@TOS  
    % Q 'R@'W9  
    % ZERNPOL has been written using a vectorized implementation: multiple s(Of EzsH=  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] #zC_;u$  
    % values can be passed as inputs) for a vector of points R.  To achieve ]8(_{@ /  
    % this vectorization most efficiently, the algorithm in ZERNPOL `A@{})+  
    % involves pre-determining all the powers p of R that are required to ] X,C9  
    % compute the outputs, and then compiling the {R^p} into a single 4@PH5z  
    % matrix.  This avoids any redundant computation of the R^p, and rn l~i  
    % minimizes the sizes of certain intermediate variables. >]q{vKCAP  
    % _B` '1tNx  
    %   Paul Fricker 11/13/2006 X>w(^L*>  
    a3i4eGT-  
    >Vr+\c  
    % Check and prepare the inputs: ]/!#:  
    % ----------------------------- ?5e:w?&g@  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) SxLu<  
        error('zernpol:NMvectors','N and M must be vectors.') +K4d(!Sb  
    end "d'D:>z]%  
    1 dT1DcZ  
    if length(n)~=length(m) !/G2vF"  
        error('zernpol:NMlength','N and M must be the same length.') dxkq*  
    end ANEW^\  
    A-\OB Nh  
    n = n(:); B&&:A4  
    m = m(:);  Hu|;cbK  
    length_n = length(n); DVxW2J  
    ^)Xl7d|m+  
    if any(mod(n-m,2)) 5v4 ,YHD  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') !(PAUW S@  
    end !|{T>yy  
    v*'dA^Q  
    if any(m<0) ^ZX71-  
        error('zernpol:Mpositive','All M must be positive.') 59:Xu%Hp  
    end )J 4XM(  
    <zE,T@c  
    if any(m>n) smQ<lwA  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') "ewSh<t  
    end b: UTq 7^  
    o 5dPE{f  
    if any( r>1 | r<0 ) O,"4HZG  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') nZe2bai  
    end E7-il;`cKn  
    >%k:+ +b{  
    if ~any(size(r)==1) BtS#I[-p_  
        error('zernpol:Rvector','R must be a vector.') '`Eb].s*  
    end !E<y:$eH:  
    4$ LVl  
    r = r(:); &U%AVD[  
    length_r = length(r);  L5/J  
    coq7La[  
    if nargin==4 F)'kN2  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); fB+4mEG@  
        if ~isnorm CAdqoCz|  
            error('zernpol:normalization','Unrecognized normalization flag.') Lu,72i0O ^  
        end };"-6e/9  
    else c8!q_H~  
        isnorm = false; zi l^^wT0J  
    end R{"Kh2q_  
    SoX\S|}%6[  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 'E FP/(2J  
    % Compute the Zernike Polynomials $'FPsoH  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% D+G?:m R  
    Z _W.iBF  
    % Determine the required powers of r: qScc~i Oq  
    % ----------------------------------- (D5 dN\  
    rpowers = []; X6I"&yct  
    for j = 1:length(n) CX/ _\0 G4  
        rpowers = [rpowers m(j):2:n(j)]; z\wY3pIr2  
    end 'jAX&7G`  
    rpowers = unique(rpowers); ]t$wK  
    ,.;q[s8  
    % Pre-compute the values of r raised to the required powers, G^E"#F  
    % and compile them in a matrix: hKo& ZWPq  
    % ----------------------------- ,MH/lQq%  
    if rpowers(1)==0 /U\k<\1~m  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); .|Unq`ll  
        rpowern = cat(2,rpowern{:}); Z4 y9d?g%b  
        rpowern = [ones(length_r,1) rpowern]; 2wR?ON=Q  
    else c'#w 8 V  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); %0 cFs'  
        rpowern = cat(2,rpowern{:}); yOHVL~F  
    end LbCcOkL/@@  
    WUnz  
    % Compute the values of the polynomials: >@?!-Fy5  
    % -------------------------------------- Fo\* Cr9D  
    z = zeros(length_r,length_n); VZhtx)  
    for j = 1:length_n wD+4#=/j  
        s = 0:(n(j)-m(j))/2; #Bu W  
        pows = n(j):-2:m(j); ;ED` 7  
        for k = length(s):-1:1 )LOV)z|}  
            p = (1-2*mod(s(k),2))* ... xZbiEDU  
                       prod(2:(n(j)-s(k)))/          ... ;1x(~pD*o  
                       prod(2:s(k))/                 ... eO7 )LM4  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... 7dxTyn=  
                       prod(2:((n(j)+m(j))/2-s(k))); 2z*EamF  
            idx = (pows(k)==rpowers); g"b{M  
            z(:,j) = z(:,j) + p*rpowern(:,idx); T$ w`=7  
        end {v3?.a$ u  
         #R^^XG`1  
        if isnorm E~]37!,\\9  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); K"fr4xHq  
        end )?d(7d-l  
    end rnNB!T   
    ,u.G6"<  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  ~vV+)KI  
    "VgPaz#  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 n_eN|m?@  
    ~ yu\vqN  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)