非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 Kr;7~`$[
function z = zernfun(n,m,r,theta,nflag) G{4~{{tI
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. S`N_},
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N RU r0K#]
% and angular frequency M, evaluated at positions (R,THETA) on the f76bEe/B9
% unit circle. N is a vector of positive integers (including 0), and Ds}ctL{6"
% M is a vector with the same number of elements as N. Each element KN41kkN
% k of M must be a positive integer, with possible values M(k) = -N(k) f;Cu@z{b
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, 47(/K2
% and THETA is a vector of angles. R and THETA must have the same +x?_\?&Ks
% length. The output Z is a matrix with one column for every (N,M) fF~3"!1#\I
% pair, and one row for every (R,THETA) pair. wF@mHv
% \&|zD"*
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike xKol
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ?AL;m.X-@
% with delta(m,0) the Kronecker delta, is chosen so that the integral fJjtrvNy)
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, /.?m9O^
F
% and theta=0 to theta=2*pi) is unity. For the non-normalized >
`uk2QdC
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. {e>E4(
% #5Zf6w
% The Zernike functions are an orthogonal basis on the unit circle. ]GSs{'UhB
% They are used in disciplines such as astronomy, optics, and s:4<wmu4=
% optometry to describe functions on a circular domain. `63?FzTy
% X?RnP3t~
% The following table lists the first 15 Zernike functions. &n|S:"B
% 4sj:%%UE
% n m Zernike function Normalization Wa/&H$d\u@
% -------------------------------------------------- "q-,140_
% 0 0 1 1 %Pz'D6
/
% 1 1 r * cos(theta) 2 aP%&-W$D|
% 1 -1 r * sin(theta) 2 N[(ovr
% 2 -2 r^2 * cos(2*theta) sqrt(6) 3]*_*<D
% 2 0 (2*r^2 - 1) sqrt(3) "cK@Yo
% 2 2 r^2 * sin(2*theta) sqrt(6) 4V$DV!dPQ}
% 3 -3 r^3 * cos(3*theta) sqrt(8) EPY64{
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 8SG*7[T7
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) K
>-)O=$s
% 3 3 r^3 * sin(3*theta) sqrt(8) 3I rmDT
% 4 -4 r^4 * cos(4*theta) sqrt(10) zsQhydTR
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) _~^JRC[q
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) ka3(sctZ5
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) %J_`-\)"{~
% 4 4 r^4 * sin(4*theta) sqrt(10) 2 g)W-M
% -------------------------------------------------- %B;e7
UJ
% sz5&P )X
% Example 1: ~ jR:oN
% OZHQnvZ
% % Display the Zernike function Z(n=5,m=1) jz\LI
% x = -1:0.01:1; E"E Bj7<s
% [X,Y] = meshgrid(x,x); 0K0[mC}ZwM
% [theta,r] = cart2pol(X,Y); [sM~B
% idx = r<=1; ~@3X&E0S
% z = nan(size(X)); QasUgZ
% z(idx) = zernfun(5,1,r(idx),theta(idx)); d[b(+sHp a
% figure 0st)/\
% pcolor(x,x,z), shading interp [&Kn&bdKW
% axis square, colorbar ?5%0zMC
% title('Zernike function Z_5^1(r,\theta)') OOa}+^-j
% 4 Ar\`{c>
% Example 2: B/*`u
% :HDl-8]Lw
% % Display the first 10 Zernike functions dkz79G}e
% x = -1:0.01:1; LI>tN R~
% [X,Y] = meshgrid(x,x); Dm,*G`Js
% [theta,r] = cart2pol(X,Y); kfod[*3
% idx = r<=1; mOLP77(o
% z = nan(size(X)); H;QE',a9+i
% n = [0 1 1 2 2 2 3 3 3 3]; &&N]u e@>
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; R'#[}s
% Nplot = [4 10 12 16 18 20 22 24 26 28]; _x.!,
g{
% y = zernfun(n,m,r(idx),theta(idx)); ur'a{BI2R
% figure('Units','normalized') L_>j
SP
% for k = 1:10 ^Fy{Q*p`(
% z(idx) = y(:,k); kc0YWW Q-:
% subplot(4,7,Nplot(k)) ;P` z
?>J:
% pcolor(x,x,z), shading interp $)L=MEdx
% set(gca,'XTick',[],'YTick',[]) ZfzUvN&!
% axis square e}Y|'bG
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ?m)3n0Uh
% end <f
l-P
% |.A#wjF9
% See also ZERNPOL, ZERNFUN2. @KM !g,f
G0Q8"]
% Paul Fricker 11/13/2006 2#sJ`pdQ
<X7x
&^R0kCF`
% Check and prepare the inputs: ryd*Ha">I
% ----------------------------- {8NnRnzU
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) )G7")I J/X
error('zernfun:NMvectors','N and M must be vectors.') D ^ mfWJS
end <2cl1Fb
r!qr'Ht<
if length(n)~=length(m) mL!)(Bb
error('zernfun:NMlength','N and M must be the same length.') 'USol<
end 3SRz14/W_R
29]T:I1d[
n = n(:); oW:p6d
m = m(:); u$7od$&S
if any(mod(n-m,2)) k79"xyXX
error('zernfun:NMmultiplesof2', ... %R%e0|a
'All N and M must differ by multiples of 2 (including 0).') p'lL2n$E
end 1^G*)Qn5Df
.xRJ )9q
if any(m>n) K{]!hm,[3
error('zernfun:MlessthanN', ... Y lI/~J
'Each M must be less than or equal to its corresponding N.') W'Wr8~{h
end LwpO_/qV
g]^@bxdg
if any( r>1 | r<0 ) Z.a`S~U
error('zernfun:Rlessthan1','All R must be between 0 and 1.') kaSy 9Y{
end S#IlWU
b'
1%g}
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) [.M<h^xrB
error('zernfun:RTHvector','R and THETA must be vectors.') >t-9yO1XQq
end VdrqbZ
d!+8
r = r(:); [:cy.K!Uo%
theta = theta(:); h J*2q"
length_r = length(r); dLV>FpA\
if length_r~=length(theta) 9oOr-9t3
error('zernfun:RTHlength', ... #0K122oY
'The number of R- and THETA-values must be equal.') !Cq2<[K#
end [TUy><Z
dQD YN_
% Check normalization: u:~2:3B
% -------------------- [LDV*79Z
if nargin==5 && ischar(nflag) 0 K
T.@P
isnorm = strcmpi(nflag,'norm'); Z=VAjJ;i[
if ~isnorm ZPrL)']
error('zernfun:normalization','Unrecognized normalization flag.') ~j%g?;#*
end 8lG@8tbW^
else E$B7E@(U
isnorm = false; EbEQ@6t
end rkdf htpI
ElJM.
a
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% MeD}S@H
% Compute the Zernike Polynomials ^gP pmb<x
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Y?cdm}:Ou
8y9oj9
;E]
% Determine the required powers of r:
T06BrX
% ----------------------------------- >HvgU_
m_abs = abs(m); q)Qd+:a7{
rpowers = []; V`F]L^m=L
for j = 1:length(n) PL;PId<9w
rpowers = [rpowers m_abs(j):2:n(j)]; wR)U&da`@
end 6Fp}U
rpowers = unique(rpowers); QWqEe|}6
i98>=y~
% Pre-compute the values of r raised to the required powers, B=E<</i
% and compile them in a matrix: O=2"t%Gc
% ----------------------------- 6Vr:?TI7
if rpowers(1)==0 8SV.giG;
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); uB;\nj5'D
rpowern = cat(2,rpowern{:}); ^[]q/v'3m!
rpowern = [ones(length_r,1) rpowern]; ;+d2qbGd
else "
3ryp
A
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); sL;
rpowern = cat(2,rpowern{:}); ]r]= Q"/5
end ~
ZkSYW<
\Y37wy4
% Compute the values of the polynomials: F+%6?2J
% -------------------------------------- HF(pC7/a:
y = zeros(length_r,length(n)); bFV+|0
for j = 1:length(n) 6V[ce4a%
s = 0:(n(j)-m_abs(j))/2; wH?r522`c
pows = n(j):-2:m_abs(j); }6U`/"RfcO
for k = length(s):-1:1 pDw^~5P
p = (1-2*mod(s(k),2))* ... c34s(>AC
prod(2:(n(j)-s(k)))/ ... WA~PE` U
prod(2:s(k))/ ... {jnfe}]
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Me*woCos'
prod(2:((n(j)+m_abs(j))/2-s(k))); eSAB :L,K
idx = (pows(k)==rpowers); /UwB6s(
y(:,j) = y(:,j) + p*rpowern(:,idx); l1<]pdLTR
end \FE
#Uc0W
if isnorm #3fS_;G
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); w6b\l1Z
end #*J+4aw3
end `5J`<BPs
% END: Compute the Zernike Polynomials u 2)#Ml
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% OI@;ffHSW
G@Jl4iHug"
% Compute the Zernike functions: @;^7kt
% ------------------------------ C r A7lu'
idx_pos = m>0; u~JCMM$
idx_neg = m<0; !(%^Tg=
p\>im+0oh
z = y; z8MKGM
if any(idx_pos) bcVzl]9
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ZvQ~K(3
end khXp}p!Zm
if any(idx_neg) f( %r)%
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 7v{X?86&
end `W&:*
} `X.^}oe
% EOF zernfun