非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 #"PI%&
function z = zernfun(n,m,r,theta,nflag) z +NxO!y
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. {|cuu"j26
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ^uZ!e+
% and angular frequency M, evaluated at positions (R,THETA) on the Y ;qA@|
% unit circle. N is a vector of positive integers (including 0), and ?[Gj?D.Wc
% M is a vector with the same number of elements as N. Each element 8Ter]0M&
% k of M must be a positive integer, with possible values M(k) = -N(k) B^8]quOH
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, Y<1]{4Wt
% and THETA is a vector of angles. R and THETA must have the same c:;m BS>~
% length. The output Z is a matrix with one column for every (N,M) c{7<z9U
% pair, and one row for every (R,THETA) pair. <\0+*`">g
% 24)Sf
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike OXT'$]p.*
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), m5Q?g8
% with delta(m,0) the Kronecker delta, is chosen so that the integral _4!SO5T
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, -v]vm3Na
% and theta=0 to theta=2*pi) is unity. For the non-normalized AfQ?jKk&{'
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. $inpiO|s
% >LqW;/&S<
% The Zernike functions are an orthogonal basis on the unit circle. ">$.>sn{
% They are used in disciplines such as astronomy, optics, and c{X>i>l>
% optometry to describe functions on a circular domain. L
p(6K
% (<.uvq61
% The following table lists the first 15 Zernike functions. s>d /9 b
% iEe<+Eyns
% n m Zernike function Normalization |ji={
% -------------------------------------------------- s#f6qj
% 0 0 1 1 xRTr<j0s
% 1 1 r * cos(theta) 2 SLCV|@G
% 1 -1 r * sin(theta) 2 o>3g<-ul
% 2 -2 r^2 * cos(2*theta) sqrt(6) +A3Q$1F
% 2 0 (2*r^2 - 1) sqrt(3) A'jw;{8NpF
% 2 2 r^2 * sin(2*theta) sqrt(6) WziX1%0$n
% 3 -3 r^3 * cos(3*theta) sqrt(8) hU3z4|~+
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) A4kYEA
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) jGp|:!'w
% 3 3 r^3 * sin(3*theta) sqrt(8) zYL</!6a[
% 4 -4 r^4 * cos(4*theta) sqrt(10) RA5*QW
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) I $5*Puy#
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) ?/EyfTex
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 6Vq]AQx
% 4 4 r^4 * sin(4*theta) sqrt(10) $ U~3$*R
% -------------------------------------------------- O(P
,!
% ^N{Lau
% Example 1: gWqO5C~h
% x+mfQcSD&
% % Display the Zernike function Z(n=5,m=1) R78=im7
% x = -1:0.01:1; x{Gdr51%
% [X,Y] = meshgrid(x,x); T3-8AUCK8?
% [theta,r] = cart2pol(X,Y); 4^? J BpBZ
% idx = r<=1; C^dnkuA
% z = nan(size(X)); HOEjLwH
% z(idx) = zernfun(5,1,r(idx),theta(idx)); ch^tq",1>
% figure xr }jw
% pcolor(x,x,z), shading interp vZ<@m2
% axis square, colorbar U}r^M(
s!
% title('Zernike function Z_5^1(r,\theta)') 8Gw0;Uu8D
% O@n1E'S/
% Example 2: y)5U*\b
% @A-*XJNS":
% % Display the first 10 Zernike functions d;Uzl1;
% x = -1:0.01:1; =Wb!j18]
% [X,Y] = meshgrid(x,x); !W^b:qjJ
% [theta,r] = cart2pol(X,Y); 5>o<!0g
% idx = r<=1; !3E
%u$-}
% z = nan(size(X)); y093-
% n = [0 1 1 2 2 2 3 3 3 3]; EPY64{
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 8SG*7[T7
% Nplot = [4 10 12 16 18 20 22 24 26 28]; K
>-)O=$s
% y = zernfun(n,m,r(idx),theta(idx)); 3I rmDT
% figure('Units','normalized') zsQhydTR
% for k = 1:10 _~^JRC[q
% z(idx) = y(:,k); ka3(sctZ5
% subplot(4,7,Nplot(k)) W~TT`%[
% pcolor(x,x,z), shading interp 6NvdFss'A{
% set(gca,'XTick',[],'YTick',[]) pi'w40!:
% axis square FIB 9W@oao
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) uk8vecj
% end ZTq"SQ>ym
% GMY"*J<E
% See also ZERNPOL, ZERNFUN2. 8T}Ycm5}
L_3undy,
% Paul Fricker 11/13/2006 {5ujKQOcR
r306`)kX
DOr()X
% Check and prepare the inputs: G=[=[o\
% ----------------------------- "R"7'sJMI
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) q#8$@*I
error('zernfun:NMvectors','N and M must be vectors.') !,f#oCL
end ?q&*|-%)_d
!9$xfg}
if length(n)~=length(m) $LS$:%i4
error('zernfun:NMlength','N and M must be the same length.') r%*UU4xvB
end AWp{n
GzJ("RE0)v
n = n(:); Bf&,ACOf
m = m(:); }d,iA FG
if any(mod(n-m,2)) 2{<5?Op
error('zernfun:NMmultiplesof2', ... Cst:5m0!
'All N and M must differ by multiples of 2 (including 0).') Af zE0mBW
end 2>E.Q@c
:r<uH6x|
if any(m>n) [OH9/"
error('zernfun:MlessthanN', ... '>GZB
'Each M must be less than or equal to its corresponding N.') qRD]Q
end 1gq(s2izy
'?q \mi
if any( r>1 | r<0 ) {=(GY@yU/
error('zernfun:Rlessthan1','All R must be between 0 and 1.') C?UV3
end mN_KAln
[V\0P,l
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) l8"
error('zernfun:RTHvector','R and THETA must be vectors.') <f
l-P
end |.A#wjF9
@KM !g,f
r = r(:); Us4ijR d
theta = theta(:); 2#sJ`pdQ
length_r = length(r); <X7x
if length_r~=length(theta) &^R0kCF`
error('zernfun:RTHlength', ... ryd*Ha">I
'The number of R- and THETA-values must be equal.') =Q % F~
end ;C1]gJZ,
Et\z^y
% Check normalization: TFX*kk&R
% -------------------- ])dq4\Bw
if nargin==5 && ischar(nflag) J|DID+M
isnorm = strcmpi(nflag,'norm'); JEF2fro:Z
if ~isnorm
5jj<sj!S
error('zernfun:normalization','Unrecognized normalization flag.') 80X #V
end !n<vN@V*3d
else 8pc=Oor2Tv
isnorm = false; /cPezX
end "Qf X&'09
;\N{z6
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \tLfB[S.5
% Compute the Zernike Polynomials YT)jBS~&
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 5*.JXxE;U
DKd:tL24&
% Determine the required powers of r: (Rqn)<<2
% ----------------------------------- 3"ALohlL
m_abs = abs(m); Ae&470
rpowers = []; S4/CL4=
for j = 1:length(n) qpo3b7(N
rpowers = [rpowers m_abs(j):2:n(j)]; b?6-lYE>L
end I]HrtI
rpowers = unique(rpowers); t'msgC6=>u
OH2Xxr[bQ
% Pre-compute the values of r raised to the required powers, N5>ioJj
% and compile them in a matrix: D0 'L
% ----------------------------- 0n5{Wr$
if rpowers(1)==0 :'*;>P
.(
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); f(Vr &X
rpowern = cat(2,rpowern{:}); /%E X4
W
rpowern = [ones(length_r,1) rpowern]; |9YY8oT.
else -YF]k}|
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ~x:\xQti
rpowern = cat(2,rpowern{:}); 0 K
T.@P
end Z=VAjJ;i[
*v+xKy#M
% Compute the values of the polynomials: AE1EZ#
% -------------------------------------- RR,gC"cTi
y = zeros(length_r,length(n)); #r\,oXTm
for j = 1:length(n) Ns ?8N":
s = 0:(n(j)-m_abs(j))/2; ^Ht!~So
pows = n(j):-2:m_abs(j); Gqe?CM
for k = length(s):-1:1 c{YBCWA
p = (1-2*mod(s(k),2))* ... OEz'&))J
prod(2:(n(j)-s(k)))/ ... gi26Dtk(h
prod(2:s(k))/ ... 8y9oj9
;E]
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ...
T06BrX
prod(2:((n(j)+m_abs(j))/2-s(k))); >HvgU_
idx = (pows(k)==rpowers); <m;idfn
y(:,j) = y(:,j) + p*rpowern(:,idx); y|sU-O2}Dl
end gIGyY7{(s8
nE$8-*BZ_
if isnorm WCK;r{p%I
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); W{pyU\
end -4
~(*
end >=G-^z:
% END: Compute the Zernike Polynomials
V1[Cc?o
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% x+? P/Ckg
8ZmU(m
% Compute the Zernike functions: VB*`"4e@b<
% ------------------------------ dMo456L
idx_pos = m>0; 3em&7QM
idx_neg = m<0; }/dGC;p"
"eqN d"~
z = y; "pQFIV,
if any(idx_pos) ^T(v4'7
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); xqP DL9\
end O+8]y4%5
if any(idx_neg) \6]Uj+
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); o75Hit
end ]+C;C
qfRsp
rRI"
% EOF zernfun