切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11715阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 K:c5Yq^  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! `XB(d@%  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 ^DS9D:oE  
    function z = zernfun(n,m,r,theta,nflag) 6k%N\!_TUW  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. ;El"dqH   
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N #[ vmS  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 4xk'R[v  
    %   unit circle.  N is a vector of positive integers (including 0), and 36,qh.LKn  
    %   M is a vector with the same number of elements as N.  Each element Qf6]qJa|  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) INby0S  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, CN#`m]l.  
    %   and THETA is a vector of angles.  R and THETA must have the same K 4j'e6  
    %   length.  The output Z is a matrix with one column for every (N,M) :O-Y67>&  
    %   pair, and one row for every (R,THETA) pair. 3v :PBmE  
    % HDvj{  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike SouPk/-B80  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), )}\jbh>RH  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral G#ZU^%$M,  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 3+u11'0=t  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized - U!:.  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ajq[ID  
    % cF_ Y}C  
    %   The Zernike functions are an orthogonal basis on the unit circle. rBye%rQRq  
    %   They are used in disciplines such as astronomy, optics, and (/14)"Sk  
    %   optometry to describe functions on a circular domain. |lm   
    % P#\L6EO.  
    %   The following table lists the first 15 Zernike functions. |Kky+*  
    % +v2Fr}  
    %       n    m    Zernike function           Normalization +e);lS"+/  
    %       -------------------------------------------------- Q@6OIE  
    %       0    0    1                                 1 v T2YX5k&,  
    %       1    1    r * cos(theta)                    2 !e*Q2H+  
    %       1   -1    r * sin(theta)                    2 B f~  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) `YVdIDl]  
    %       2    0    (2*r^2 - 1)                    sqrt(3) ;Xk-hhR  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) L (XGD  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 0(VAmb%{  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) hn{]Q@(I  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) xbnx*4o0  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) ~ J^Gzl  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 1q0DOf]!T  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) A6v02WG_1T  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) }]$%aMxy T  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) -"YQo  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) `of 5h* k  
    %       -------------------------------------------------- \`}Rdr!p%  
    % W(Z_ac^e[  
    %   Example 1: 7dyGC:YuTL  
    % i 2hP4<;h  
    %       % Display the Zernike function Z(n=5,m=1) mRZC98$ @r  
    %       x = -1:0.01:1; X|^E+ `M4  
    %       [X,Y] = meshgrid(x,x); 7(rNJPrU~=  
    %       [theta,r] = cart2pol(X,Y); tsVQXvo  
    %       idx = r<=1; _) k=F=  
    %       z = nan(size(X)); 0ubT/  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); mnZ/rb  
    %       figure td%]l1  
    %       pcolor(x,x,z), shading interp ()e.J  
    %       axis square, colorbar O]>9\!0{  
    %       title('Zernike function Z_5^1(r,\theta)') :0|]cHm  
    % Tqz{{]%j~$  
    %   Example 2: S 1sNVW  
    % 3}e-qFlV8,  
    %       % Display the first 10 Zernike functions #_0OYL`(mE  
    %       x = -1:0.01:1; nd*9vxM  
    %       [X,Y] = meshgrid(x,x); {G&*\5W  
    %       [theta,r] = cart2pol(X,Y); `WQz_}TqB  
    %       idx = r<=1; {XH!`\  
    %       z = nan(size(X)); 1wP#?p)c  
    %       n = [0  1  1  2  2  2  3  3  3  3]; =cI -<0QSn  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; ,r~pf (nz  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; GjN/8>/  
    %       y = zernfun(n,m,r(idx),theta(idx)); *yKw@@d+p  
    %       figure('Units','normalized') & 9}L +/,  
    %       for k = 1:10 4scY 8(1  
    %           z(idx) = y(:,k); G8dC5+h  
    %           subplot(4,7,Nplot(k)) Sm(X/P=z  
    %           pcolor(x,x,z), shading interp EvSo|}JA[  
    %           set(gca,'XTick',[],'YTick',[]) c]LE9<G  
    %           axis square R#gt~]x6k  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) RnC96"";R.  
    %       end cK4Q! l6O  
    % 0NrUB  
    %   See also ZERNPOL, ZERNFUN2. 'X_8j` ]#  
    is}6cR  
    %   Paul Fricker 11/13/2006 `>KB8SY:qK  
    PDQC^2Z  
    3Kuu9< 0  
    % Check and prepare the inputs: CeQL8yJ;  
    % ----------------------------- Ks'msSMC  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) GcN[bH(@  
        error('zernfun:NMvectors','N and M must be vectors.') J&Ig%&/  
    end 0?OTa<c  
    )7!q>^S{ B  
    if length(n)~=length(m) lZ]x #v  
        error('zernfun:NMlength','N and M must be the same length.') NwPGH= V  
    end 5-'jYp/  
    :U;n?Zu S  
    n = n(:); `/?XvF\  
    m = m(:); _`3'D`s  
    if any(mod(n-m,2)) s jl(  
        error('zernfun:NMmultiplesof2', ... mU0j K@^&M  
              'All N and M must differ by multiples of 2 (including 0).') &/QdG= r+  
    end XgRrJ.  
    tgmG#b*  
    if any(m>n) \yt-_W=[  
        error('zernfun:MlessthanN', ... L3}n(K AJj  
              'Each M must be less than or equal to its corresponding N.') /g$cQ=c  
    end 3h t>eaHi  
    qJV2x.!  
    if any( r>1 | r<0 ) yKupPp);  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') ,@I_b  
    end {l/j?1Dxq  
    -M=#U\D  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) C>l{_J)n  
        error('zernfun:RTHvector','R and THETA must be vectors.') |,!]]YO.V  
    end R>Q&Ax  
    | e{F;8  
    r = r(:); {2jetX`@h  
    theta = theta(:); !J#oN+AR  
    length_r = length(r); 9vIqGz-o  
    if length_r~=length(theta) } U <T>0  
        error('zernfun:RTHlength', ... #?=?<"*j  
              'The number of R- and THETA-values must be equal.') ((KNOa5  
    end Y2lBQp8'|  
    2cv!85  
    % Check normalization: X}"Ic@8  
    % -------------------- aC$-riP,?'  
    if nargin==5 && ischar(nflag) Tfasry9'8  
        isnorm = strcmpi(nflag,'norm'); %LI[+#QE  
        if ~isnorm 2AYV9egZ  
            error('zernfun:normalization','Unrecognized normalization flag.') 9Q\CJ9  
        end 3PRg/vD3  
    else o8<0#W@S  
        isnorm = false; q{4W@Um-  
    end t<8vgdD  
    RWyDX_z#<  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ZiR },F/  
    % Compute the Zernike Polynomials RP!!6A6:  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 4Js2/s  
    8&[Lr o9  
    % Determine the required powers of r: dyH<D5  
    % ----------------------------------- 9, A(|g  
    m_abs = abs(m); 7Iz%Jty  
    rpowers = []; ;4(ULJ*  
    for j = 1:length(n) Kjw==5)}  
        rpowers = [rpowers m_abs(j):2:n(j)]; n8h1S lK08  
    end +#* F"k(  
    rpowers = unique(rpowers); r'|Vz*/h  
    kmNa),`{s  
    % Pre-compute the values of r raised to the required powers, [p&n]T  
    % and compile them in a matrix: s R~D3-  
    % ----------------------------- ] o!r K<  
    if rpowers(1)==0 :?uUh  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); s&Bk@a8  
        rpowern = cat(2,rpowern{:}); , )&ansN  
        rpowern = [ones(length_r,1) rpowern]; ShP&ss  
    else IKz3IR eu  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); )Cas0~RM  
        rpowern = cat(2,rpowern{:});  f$7Xh~  
    end ""~b1kEt  
    2OA0rH"v  
    % Compute the values of the polynomials: z (1zth  
    % -------------------------------------- qG lbO  
    y = zeros(length_r,length(n)); Fx@ovI- 5  
    for j = 1:length(n) !xE /  
        s = 0:(n(j)-m_abs(j))/2; ]n\Qa   
        pows = n(j):-2:m_abs(j); Xu.Wdl/{Ra  
        for k = length(s):-1:1 LqYP0%7  
            p = (1-2*mod(s(k),2))* ... c[IT?6J4  
                       prod(2:(n(j)-s(k)))/              ... dnwTD\),  
                       prod(2:s(k))/                     ... Ym% $!#  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 96(3ilAt  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); pA%}CmrMq  
            idx = (pows(k)==rpowers); TTDcVG_}  
            y(:,j) = y(:,j) + p*rpowern(:,idx); Pv#Oea?  
        end l1M %   
         I ~U1vtgp  
        if isnorm R^p'gQc$   
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); k^H&IS!  
        end B|f =hlY  
    end 3-=f@uH!  
    % END: Compute the Zernike Polynomials c 5%uiv]  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% (yJY/|  
    N1',`L5  
    % Compute the Zernike functions:  =8o$  
    % ------------------------------ ^@V; `jsll  
    idx_pos = m>0; "^froQ{"T  
    idx_neg = m<0; \4`:~c  
    )X2 /_3  
    z = y; =K \xE"  
    if any(idx_pos) DXa!"ZU  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); k#g` n3L  
    end {py"Ob_  
    if any(idx_neg) g7UZtpLTm  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); &E?TR A# E  
    end &FpoMW  
    >iV2>o_  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) FX  %(<M  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. W%wc@.P  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated 9 _b_O T  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive W; zzc1v  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, QPyHos `  
    %   and THETA is a vector of angles.  R and THETA must have the same %HD0N&  
    %   length.  The output Z is a matrix with one column for every P-value, Y-s6Z \  
    %   and one row for every (R,THETA) pair. 'Ul^V  
    % @$|8zPs  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike so>jz@!EE  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) xFzaVjjP  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) m ##_U9O  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 Gspb\HJ^  
    %   for all p.  X@Bg_9\i  
    % C klIrD{  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 =.]{OT  
    %   Zernike functions (order N<=7).  In some disciplines it is IcA]B?+  
    %   traditional to label the first 36 functions using a single mode 3De(:c)@  
    %   number P instead of separate numbers for the order N and azimuthal '!"rE1e  
    %   frequency M. %D49A-R  
    % M#.dF{ %%  
    %   Example: [85b+SKW  
    % }a"koL  
    %       % Display the first 16 Zernike functions _)Ad%LPsd7  
    %       x = -1:0.01:1; r`Bm" xI  
    %       [X,Y] = meshgrid(x,x); Kw =RqF  
    %       [theta,r] = cart2pol(X,Y); jfU$qo!gi  
    %       idx = r<=1; 7P:/ (P  
    %       p = 0:15; 8xt8kf*k  
    %       z = nan(size(X)); GQ0(lS  
    %       y = zernfun2(p,r(idx),theta(idx)); ^8=e8O  
    %       figure('Units','normalized') 9hei8L:  
    %       for k = 1:length(p) Ww0dU_  
    %           z(idx) = y(:,k); C'6c,  
    %           subplot(4,4,k) :0kKw=p1R  
    %           pcolor(x,x,z), shading interp %RIlu[J  
    %           set(gca,'XTick',[],'YTick',[]) w$0*5n>)  
    %           axis square (7C$'T-ZK  
    %           title(['Z_{' num2str(p(k)) '}']) |)OC1=As  
    %       end zgl$ n  
    % f{-,"6Y1  
    %   See also ZERNPOL, ZERNFUN. )Vo%}g?6!  
    p{x6BVw?>  
    %   Paul Fricker 11/13/2006 (\%J0kR3[  
    D^S"6v" z  
    0E7h+]bh|  
    % Check and prepare the inputs: eB9F35[  
    % ----------------------------- XPLm`Q|1#t  
    if min(size(p))~=1 "8 ?6;!,  
        error('zernfun2:Pvector','Input P must be vector.') E%?> %h  
    end BKK@_B"  
    m A('MS2  
    if any(p)>35 &MBm1T|Y  
        error('zernfun2:P36', ... NNBT.k3)  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... ddY-F }z~  
               '(P = 0 to 35).']) g,B@*2Uj  
    end *G[` T%g  
    xLP8*lvy  
    % Get the order and frequency corresonding to the function number:  USJ4Z  
    % ---------------------------------------------------------------- X([@}ren  
    p = p(:); b?/Su<q  
    n = ceil((-3+sqrt(9+8*p))/2); v}=pxWhm  
    m = 2*p - n.*(n+2); Ym#io]  
    ~FVbL-2  
    % Pass the inputs to the function ZERNFUN: P]7s1kgaS  
    % ---------------------------------------- m4^VlE,`Dh  
    switch nargin CoV @{Pi  
        case 3 s>=$E~qq  
            z = zernfun(n,m,r,theta); Pk5 %lu  
        case 4 rS0#]Gg  
            z = zernfun(n,m,r,theta,nflag); ?4t~z 1.f  
        otherwise GL^ j |1  
            error('zernfun2:nargin','Incorrect number of inputs.') @ev^e !B  
    end }OSfC~5P  
    yMOYTN@]  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) oTA'=<W?D  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. {XW>3 "  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of 0.#% KfQ  
    %   order N and frequency M, evaluated at R.  N is a vector of tfv@ )9  
    %   positive integers (including 0), and M is a vector with the (JiEV3GH  
    %   same number of elements as N.  Each element k of M must be a >P6U0  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) SNV;s,  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is >Lz2zlZI  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix :0Fwaw9PH"  
    %   with one column for every (N,M) pair, and one row for every aX~' gq>  
    %   element in R. TSsx^h8/  
    % 5 d|+c<  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- 5hB2:$C  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is #|lVQ@=  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to }Ub "Vb  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 ^Cg@'R9  
    %   for all [n,m]. & aF'IJC  
    % XB%`5wwd  
    %   The radial Zernike polynomials are the radial portion of the JM*rPzp  
    %   Zernike functions, which are an orthogonal basis on the unit 'eoI~*}3WQ  
    %   circle.  The series representation of the radial Zernike h#8 {fr)6  
    %   polynomials is tI2p-d9B  
    % @T-}\AU  
    %          (n-m)/2 VE/~tT;  
    %            __ Bc#6mO-  
    %    m      \       s                                          n-2s ;"%luQA<w  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r C%'eF`  
    %    n      s=0 BimM)4g  
    % r3.v^  
    %   The following table shows the first 12 polynomials. q{.~=~  
    % tQ4{:WPG  
    %       n    m    Zernike polynomial    Normalization 3lNw*M|")  
    %       --------------------------------------------- P q( )2B  
    %       0    0    1                        sqrt(2) !i6 aA1'  
    %       1    1    r                           2 zdDJcdbGd1  
    %       2    0    2*r^2 - 1                sqrt(6) Q1'D*F4  
    %       2    2    r^2                      sqrt(6) ..^,*  
    %       3    1    3*r^3 - 2*r              sqrt(8) .]Z,O>N  
    %       3    3    r^3                      sqrt(8) ~#[ ZuMO?  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) v aaZ  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) [g*]u3s  
    %       4    4    r^4                      sqrt(10) @aGS~^U h  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) 4U:+iumy2  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) !!t@ H\  
    %       5    5    r^5                      sqrt(12) )^'wcBod,  
    %       --------------------------------------------- >JhIRf  
    % Z8Clm:S  
    %   Example: YJwz*@l  
    % 6UJBE<ntj  
    %       % Display three example Zernike radial polynomials e3>k"  
    %       r = 0:0.01:1; +<I1@C  
    %       n = [3 2 5]; Py,@or7n  
    %       m = [1 2 1]; ]0:R^dHE  
    %       z = zernpol(n,m,r); @)8C  
    %       figure wwmODw<tT  
    %       plot(r,z) FJ&zU<E  
    %       grid on 1')/BM2  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') XC{(O:EG  
    % H\!u5o&}`  
    %   See also ZERNFUN, ZERNFUN2. 7f td2lv  
    VbX$i!>8  
    % A note on the algorithm. f:g<Bz=u)*  
    % ------------------------ >heih%Ar0J  
    % The radial Zernike polynomials are computed using the series Onoi6^G  
    % representation shown in the Help section above. For many special zR3Z(^]v  
    % functions, direct evaluation using the series representation can O"9f^y*  
    % produce poor numerical results (floating point errors), because ,K6]Q|U@r  
    % the summation often involves computing small differences between L=}UApK  
    % large successive terms in the series. (In such cases, the functions L7%'Y}1e.  
    % are often evaluated using alternative methods such as recurrence ;h3*MR  
    % relations: see the Legendre functions, for example). For the Zernike 4/ U]7Y  
    % polynomials, however, this problem does not arise, because the n*6',BY  
    % polynomials are evaluated over the finite domain r = (0,1), and |,&!Q$<un  
    % because the coefficients for a given polynomial are generally all 7"JU)@ U]  
    % of similar magnitude. Fk(0q/b  
    % [%nG_np  
    % ZERNPOL has been written using a vectorized implementation: multiple = -pss 47  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] qkUr5^1  
    % values can be passed as inputs) for a vector of points R.  To achieve aLXA9?  
    % this vectorization most efficiently, the algorithm in ZERNPOL cuk2\> Xl  
    % involves pre-determining all the powers p of R that are required to j)IK  
    % compute the outputs, and then compiling the {R^p} into a single 7RD` *s  
    % matrix.  This avoids any redundant computation of the R^p, and Q84KU8?d  
    % minimizes the sizes of certain intermediate variables. A1ebXXD )  
    % $'FPst8Q<  
    %   Paul Fricker 11/13/2006 ,n!xzoX_  
    Yhw* `"X  
    c[y=K)<Z  
    % Check and prepare the inputs: |PJW2PN  
    % ----------------------------- )Y&De)=  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) sqZHk+<%  
        error('zernpol:NMvectors','N and M must be vectors.') $=m17GD  
    end JN KZ'9  
    kyo ,yD  
    if length(n)~=length(m) Z%OSW  
        error('zernpol:NMlength','N and M must be the same length.') C aJD*  
    end 2aje$w-  
    usTCn3u  
    n = n(:); 8rpN2M 3h  
    m = m(:); n ~3c<{coZ  
    length_n = length(n);  B-gr2-  
    S~Hj. d4/  
    if any(mod(n-m,2)) "\=_- `  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') eXaDx%mM  
    end .CpF0  
    +%Gm2e;_u  
    if any(m<0) \%Smp2K  
        error('zernpol:Mpositive','All M must be positive.') 5~"=Fm<uD  
    end 6kuSkd$.  
    er#=xqUY  
    if any(m>n) J;kbY9e  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') zn~m;0Xi  
    end L wu;y@[  
    ,`7GI*Vq  
    if any( r>1 | r<0 ) /&dt!.WY^  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') si;]C~X*  
    end 68!fcK  
    tj&A@\/  
    if ~any(size(r)==1) 5nn*)vK {  
        error('zernpol:Rvector','R must be a vector.') o_N02l4J)  
    end -/qrEKQ0U?  
    ;i#gk%- 2  
    r = r(:); `3:%F>  
    length_r = length(r); %% >?<4t  
    F3'X  
    if nargin==4  ~EM];i  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); -ur]k]R  
        if ~isnorm ~<U3KB  
            error('zernpol:normalization','Unrecognized normalization flag.') +J4t0x  
        end j&pgq2Kl  
    else mN*P 2 *  
        isnorm = false; y b G)=0  
    end 'x0t, ;g  
    :jX~]1hpmA  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% =KZ4:d5  
    % Compute the Zernike Polynomials hF1/=;>  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ES2qX]I  
    D.6dPzu`  
    % Determine the required powers of r: Uk2q,2  
    % ----------------------------------- zef,*dQY   
    rpowers = []; .'1j5Y-l`N  
    for j = 1:length(n) f.$o|R=v  
        rpowers = [rpowers m(j):2:n(j)]; ~-GDheA  
    end l}2WW1b(  
    rpowers = unique(rpowers); f)x}_dw%  
    9-^p23.@[j  
    % Pre-compute the values of r raised to the required powers, @7=D]yu  
    % and compile them in a matrix: M::iU_  
    % ----------------------------- 1#<E]<='t  
    if rpowers(1)==0 h;KK6*Z*$E  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); pQY>  
        rpowern = cat(2,rpowern{:}); 0mh8.  
        rpowern = [ones(length_r,1) rpowern]; 0d ->$gb  
    else %}!}2s.A  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 5uer [1A  
        rpowern = cat(2,rpowern{:}); 72zuI4&  
    end h12wk2@P/]  
    [BBKj)IK  
    % Compute the values of the polynomials: C#&6p0U  
    % -------------------------------------- RKkI/Z0  
    z = zeros(length_r,length_n); b2e  a0  
    for j = 1:length_n syf"{bBe  
        s = 0:(n(j)-m(j))/2; Z5L1^  
        pows = n(j):-2:m(j); lKUm_; m  
        for k = length(s):-1:1 Ekme62Q>u  
            p = (1-2*mod(s(k),2))* ... )<F\IM  
                       prod(2:(n(j)-s(k)))/          ... i_Z5SMZ  
                       prod(2:s(k))/                 ... O97bgj]  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... 5ba[6\Af  
                       prod(2:((n(j)+m(j))/2-s(k))); <WJ0St  
            idx = (pows(k)==rpowers); rcmAVl:$>  
            z(:,j) = z(:,j) + p*rpowern(:,idx); &R*5;/ !  
        end t1{}-JlA  
         d %W}w.  
        if isnorm [B3aRi0AQ  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); b6vYM_ Q  
        end ~vV )|  
    end JvL'gJ$70  
    \_AEuz3 F  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  +R "AA_A?  
    YKP=0 j3,  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 /&D'V_Q`*  
    0NQ7#A  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)