切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11670阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 s )7sgP  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! Rj])c^ZA'*  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 ! ^TCe8  
    function z = zernfun(n,m,r,theta,nflag) {# Vp`ji  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. m"RSDM!  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 9]PMti  
    %   and angular frequency M, evaluated at positions (R,THETA) on the Z:Y_{YAD  
    %   unit circle.  N is a vector of positive integers (including 0), and ]r(s02  
    %   M is a vector with the same number of elements as N.  Each element &W$s-qf".  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) .[C@p`DZ  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, y5`$Aa4~  
    %   and THETA is a vector of angles.  R and THETA must have the same lka Wwjv_D  
    %   length.  The output Z is a matrix with one column for every (N,M) ,HtX D~N  
    %   pair, and one row for every (R,THETA) pair. xpB* > zb  
    % 4s7&*dJ  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 7~m[:Eg6[s  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), tu5T^"B qO  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral {P!1VYs5  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, I7Xm~w!{qk  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized S$ Z?T  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ] Wx?k7T  
    % \,-e>  
    %   The Zernike functions are an orthogonal basis on the unit circle. l3HfaCP6:  
    %   They are used in disciplines such as astronomy, optics, and  } @4by<  
    %   optometry to describe functions on a circular domain. \<W/Z.}/  
    % U~q2j#pJ  
    %   The following table lists the first 15 Zernike functions. /SD(g@G,  
    % -DL"Yw}  
    %       n    m    Zernike function           Normalization nr- 32u  
    %       -------------------------------------------------- Fb\ E39  
    %       0    0    1                                 1 4{CeV7  
    %       1    1    r * cos(theta)                    2 ';KWHk8C  
    %       1   -1    r * sin(theta)                    2 8\Kpc;zb  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) BKk+<#Ti  
    %       2    0    (2*r^2 - 1)                    sqrt(3) xt1Ug~5  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) LW!>_~g-  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) a9g~(#?a  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) (DY&{vudF  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) T$*#q('1"}  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) @!p0<&R@x  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) L*(`c cU  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) g<g$c<sm  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) ) m(!lDz3  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) UOn:@Qn  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) aI_[h v  
    %       -------------------------------------------------- m"GgaH3,  
    % r2T$ ;m.  
    %   Example 1: n.OsmCRN;  
    % L'u*WHj|v  
    %       % Display the Zernike function Z(n=5,m=1) k c /"  
    %       x = -1:0.01:1; N^f_hL|:9  
    %       [X,Y] = meshgrid(x,x); S9%ZeM +  
    %       [theta,r] = cart2pol(X,Y); P71] Z  
    %       idx = r<=1; {h0T_8L/  
    %       z = nan(size(X)); ToM1#]4  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); z>z9xG'  
    %       figure c'SjH".[  
    %       pcolor(x,x,z), shading interp ;e0-FF+  
    %       axis square, colorbar d'@i8N["{  
    %       title('Zernike function Z_5^1(r,\theta)') eL88lV]I  
    % uSUog+i  
    %   Example 2: (/KeGgkhv  
    % ~Z' /b|x<3  
    %       % Display the first 10 Zernike functions %>Mcme>(W  
    %       x = -1:0.01:1; oaG;i51!  
    %       [X,Y] = meshgrid(x,x); 3L:SJskYR  
    %       [theta,r] = cart2pol(X,Y); `Gh J)WA<  
    %       idx = r<=1; [xo-ZDIoG  
    %       z = nan(size(X)); WOi+y   
    %       n = [0  1  1  2  2  2  3  3  3  3]; 3v ~[kVhoG  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 17#t7Yk  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; zE+^WeH|  
    %       y = zernfun(n,m,r(idx),theta(idx)); M}]4tAyT  
    %       figure('Units','normalized') c!N#nt_<  
    %       for k = 1:10 l'7' G$v  
    %           z(idx) = y(:,k); eI98J"h%?  
    %           subplot(4,7,Nplot(k)) z&yVU<;  
    %           pcolor(x,x,z), shading interp iX-.mq$  
    %           set(gca,'XTick',[],'YTick',[]) F0tcVdv  
    %           axis square M)3'\x :  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 9XmbHS[0V  
    %       end U#:N/ts*(  
    % Yf_/c*t\5  
    %   See also ZERNPOL, ZERNFUN2. ,*8)aZ1 k  
    ndu$N$7+  
    %   Paul Fricker 11/13/2006 eW;c 3<  
    $}B&u)  
    <[vsGUbc  
    % Check and prepare the inputs: AnoA5H  
    % ----------------------------- $B`ETI9g-N  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) +2>, -V  
        error('zernfun:NMvectors','N and M must be vectors.') a fLE9  
    end L@.Trso  
    baGV]=j  
    if length(n)~=length(m) a]!u go}  
        error('zernfun:NMlength','N and M must be the same length.') iUq_vQ@} }  
    end <Ok7 -:OxA  
    Q5]rc`} 5  
    n = n(:); U/ax`_  
    m = m(:); mbHMy[R  
    if any(mod(n-m,2)) F`>qg2wO  
        error('zernfun:NMmultiplesof2', ... ~( :$c3\  
              'All N and M must differ by multiples of 2 (including 0).') hqa6aYY x  
    end Q)\[wYMt  
    5b->pc  
    if any(m>n) 9Y?``QBN  
        error('zernfun:MlessthanN', ... 6=96^o*  
              'Each M must be less than or equal to its corresponding N.') pm2]  
    end F^&@[k7WW  
    >7z(?nQYT^  
    if any( r>1 | r<0 ) 3;88a!AA!  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') c3WF!~1r  
    end ,YRBYK:  
    h+}{FB 29  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) #<G:&  
        error('zernfun:RTHvector','R and THETA must be vectors.') 5=  V29  
    end W6):IW(E  
    89t"2|9 u  
    r = r(:); &~'i,v|E  
    theta = theta(:); b>]UNf"-  
    length_r = length(r); u Yc}eMb  
    if length_r~=length(theta) ZCA= n  
        error('zernfun:RTHlength', ... }{mS"  
              'The number of R- and THETA-values must be equal.') EyHL&  
    end *+(eH#_2/  
    qDgy7kkQ  
    % Check normalization: qcge#S>  
    % -------------------- [E/. r{S  
    if nargin==5 && ischar(nflag) Kd\d>&b  
        isnorm = strcmpi(nflag,'norm'); PP]7_h^ 2  
        if ~isnorm ]Bs{9=2  
            error('zernfun:normalization','Unrecognized normalization flag.') ` l %,4qR  
        end ru|*xNXKgC  
    else VxE;tJ>1  
        isnorm = false; GC_c.|'6[  
    end Pa"Kk9!o36  
    CZ>Ujw=&k  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ]W5p\(1g  
    % Compute the Zernike Polynomials c4zGQoeH:  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% uX%$3k  
    I9x kqj  
    % Determine the required powers of r: L uW""P/  
    % ----------------------------------- _C19eW'  
    m_abs = abs(m); !pHI`FeAV  
    rpowers = []; ,W;|K 5  
    for j = 1:length(n) Fl*<N  
        rpowers = [rpowers m_abs(j):2:n(j)]; OLV3.~T  
    end K[x=knFO  
    rpowers = unique(rpowers); (iIzoEpb8W  
    h 92KU  
    % Pre-compute the values of r raised to the required powers, CWJN{  
    % and compile them in a matrix: #o,FVYYj  
    % ----------------------------- Ul3xeu  
    if rpowers(1)==0 /lhk} y^  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); f8G<5_!K_  
        rpowern = cat(2,rpowern{:}); 7r2p+LP[  
        rpowern = [ones(length_r,1) rpowern]; r]]:/pw?t  
    else HVzkS|^F  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); K /%5\h  
        rpowern = cat(2,rpowern{:}); (*,R21<%  
    end F!w|5,)  
    ^/#8 "  
    % Compute the values of the polynomials: 9<kMxtk$  
    % -------------------------------------- |?hsMN  
    y = zeros(length_r,length(n)); 4n1 g@A=y  
    for j = 1:length(n) : %uaaFl  
        s = 0:(n(j)-m_abs(j))/2; %a:T9v  
        pows = n(j):-2:m_abs(j); /c6]DQ<?  
        for k = length(s):-1:1 `wr*@/P  
            p = (1-2*mod(s(k),2))* ... F? ps? e  
                       prod(2:(n(j)-s(k)))/              ... cl |}0Q5  
                       prod(2:s(k))/                     ... S~&9DQNj  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... [;o>q;75Jz  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); F&B E+b/#  
            idx = (pows(k)==rpowers); CrG!8}  
            y(:,j) = y(:,j) + p*rpowern(:,idx); t:xTmK&vt  
        end O^ 5C  
         ZI8@ 6L\  
        if isnorm (+<66 T O  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); U??OiKVZ+  
        end px(~ZZB"  
    end #r1y|)m`  
    % END: Compute the Zernike Polynomials 7!)VO D8Z  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% (ak&>pk;  
    y,@yaM}-/K  
    % Compute the Zernike functions: 9[lk=1.qN  
    % ------------------------------ DF'~ #G8  
    idx_pos = m>0; 9e}%2,  
    idx_neg = m<0; 3(gOF&Uf9  
    9l:[jsk<d  
    z = y; x<@i3Y{[  
    if any(idx_pos) 52^,qP'6  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 8i<]$  
    end "L8Hgwg  
    if any(idx_neg) gvL*]U7  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); G>jC+0nkry  
    end .q!i +0  
    1/6}E]-F  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) =}Q|#C  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. _'^_9u G  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated C)UU/4a;  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive -.L )\  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, <AP.m4N) _  
    %   and THETA is a vector of angles.  R and THETA must have the same A"R(?rQi=  
    %   length.  The output Z is a matrix with one column for every P-value, KuL+~  
    %   and one row for every (R,THETA) pair. L>0Pur)[  
    % XN{zl*`  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike zZey  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) W1ndb:  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) @RL'pKab9  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 oiD{Z  
    %   for all p. 'MNCJ;A@V  
    % AsvH@\\  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 6z:/ma^  
    %   Zernike functions (order N<=7).  In some disciplines it is #.C2_MN>  
    %   traditional to label the first 36 functions using a single mode WMWUP ZsGS  
    %   number P instead of separate numbers for the order N and azimuthal `tXd?E/e  
    %   frequency M. V ZtFgN$J  
    % Y^;izM}  
    %   Example: ,}9 tJY@ E  
    % @gM}&G08  
    %       % Display the first 16 Zernike functions q|r*4={^!*  
    %       x = -1:0.01:1; {kb7u5-  
    %       [X,Y] = meshgrid(x,x); 9E0x\%2K  
    %       [theta,r] = cart2pol(X,Y); iOL/u)   
    %       idx = r<=1; '/AX 'U8Y  
    %       p = 0:15; ~k}O"{ y  
    %       z = nan(size(X)); <Of-,PcCV  
    %       y = zernfun2(p,r(idx),theta(idx)); '$J M2 u  
    %       figure('Units','normalized') FJxb!- 0&  
    %       for k = 1:length(p) H$pgzNL  
    %           z(idx) = y(:,k); L]&y[/\E1  
    %           subplot(4,4,k) ?{5}3a bB`  
    %           pcolor(x,x,z), shading interp lvNi/jk  
    %           set(gca,'XTick',[],'YTick',[]) kg,\l9AM  
    %           axis square c%(Nd i  
    %           title(['Z_{' num2str(p(k)) '}']) c++q5bg@)  
    %       end Gvvw:]WgF  
    % =^_a2_BBl  
    %   See also ZERNPOL, ZERNFUN. #hMkajG  
    Wt=@6w&  
    %   Paul Fricker 11/13/2006 d\tY-X3  
    ZPz=\^  
    >ffC?5+  
    % Check and prepare the inputs: SZ7; } r8  
    % ----------------------------- _>?.MUPB  
    if min(size(p))~=1 ]^i^L  
        error('zernfun2:Pvector','Input P must be vector.') >.G#\w  
    end 4Tx.|   
    'fk6]&-I  
    if any(p)>35 $j v"$0Fc  
        error('zernfun2:P36', ... NA`8 ^PZ  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... W/CZ/Mc  
               '(P = 0 to 35).']) #JXXq%4 @  
    end %T\ 2.vl  
    #v9+9X`1L  
    % Get the order and frequency corresonding to the function number: >m{>0k(^`  
    % ---------------------------------------------------------------- 8F's9c,  
    p = p(:); A4b+:MQ*OX  
    n = ceil((-3+sqrt(9+8*p))/2); z^WY5~?  
    m = 2*p - n.*(n+2); Kxz|0l  
    ;cp||uO  
    % Pass the inputs to the function ZERNFUN: x~{W(;`!  
    % ---------------------------------------- .3cD.']%  
    switch nargin AR&l9R[{N  
        case 3 bk a%W@Y%  
            z = zernfun(n,m,r,theta); OK47Q{.gh  
        case 4 =A$d)&  
            z = zernfun(n,m,r,theta,nflag); gkKNOus  
        otherwise aVr=7PeF  
            error('zernfun2:nargin','Incorrect number of inputs.') +ef>ek  
    end +Z"[2Dm  
    4MtRI  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) \$F#bIjC  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. r)Ml-r =  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of Pj{I} 4P`  
    %   order N and frequency M, evaluated at R.  N is a vector of UQ@szE  
    %   positive integers (including 0), and M is a vector with the hb)C"q=  
    %   same number of elements as N.  Each element k of M must be a W{j(=<|<  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) KDA2 H>  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is Hc8!cATQk  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix D*sL&Rt][Y  
    %   with one column for every (N,M) pair, and one row for every }LLQ +  
    %   element in R. Re'3bs:+  
    % S1C#5=  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- t"e%'dFv  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is PpF`0w=1%l  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to ZW@cw}  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 6Lg#co}9  
    %   for all [n,m]. <i`s)L  
    % <54KWC86)J  
    %   The radial Zernike polynomials are the radial portion of the x;LO{S4Z  
    %   Zernike functions, which are an orthogonal basis on the unit G{Uqp'=G  
    %   circle.  The series representation of the radial Zernike Vh]=sd<F  
    %   polynomials is <yvo<R^30  
    % &!HG.7AY  
    %          (n-m)/2 + [$Td%6  
    %            __ /ZH*t\  
    %    m      \       s                                          n-2s j_0l'Saj  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r %*IH~/Ld;]  
    %    n      s=0 &SPr#OkW  
    % 1Oak8 \G  
    %   The following table shows the first 12 polynomials. w]V684[>  
    % dP]Z:  
    %       n    m    Zernike polynomial    Normalization zN-Y=-c  
    %       --------------------------------------------- ?`6Mfpvj96  
    %       0    0    1                        sqrt(2) -_]Ceq/  
    %       1    1    r                           2 7_lgo6  
    %       2    0    2*r^2 - 1                sqrt(6) |t;Ktl  
    %       2    2    r^2                      sqrt(6) T]b&[?p|a[  
    %       3    1    3*r^3 - 2*r              sqrt(8) z=8l@&hYLq  
    %       3    3    r^3                      sqrt(8) q~*|Wd'&  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) Uv=)y^H~*A  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) ![MtJo5  
    %       4    4    r^4                      sqrt(10) (Fq]y5  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) `R lWhdE  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) w7vQ6jkH  
    %       5    5    r^5                      sqrt(12) .f!:@fX>=  
    %       --------------------------------------------- ]@ Vp:RGMr  
    % &?}h)U#:  
    %   Example: ]5MT-qU  
    % + EKp*Vje  
    %       % Display three example Zernike radial polynomials vVsaGW   
    %       r = 0:0.01:1; Lw?>1rTT/  
    %       n = [3 2 5]; 0G+ qF96  
    %       m = [1 2 1]; sAZL,w  
    %       z = zernpol(n,m,r); <xH! Yskc  
    %       figure vB5mOXGNq  
    %       plot(r,z) rm|,+ {  
    %       grid on AU9:Gu@M/  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') Z 8GIZ  
    % $:onKxVM  
    %   See also ZERNFUN, ZERNFUN2. *)HVK&'  
    ma"M?aM  
    % A note on the algorithm. FR]uCH  
    % ------------------------ v^[!NygShs  
    % The radial Zernike polynomials are computed using the series &[yYgfsp  
    % representation shown in the Help section above. For many special <\d2)Iv  
    % functions, direct evaluation using the series representation can >km$zfM2-  
    % produce poor numerical results (floating point errors), because F>%,}Y~B:  
    % the summation often involves computing small differences between (+BrC`  
    % large successive terms in the series. (In such cases, the functions G,(Xz"`,  
    % are often evaluated using alternative methods such as recurrence <N=ow"rD  
    % relations: see the Legendre functions, for example). For the Zernike 87KSV"IU8  
    % polynomials, however, this problem does not arise, because the _LWMz=U=J/  
    % polynomials are evaluated over the finite domain r = (0,1), and '}F9f?  
    % because the coefficients for a given polynomial are generally all M[_Ptqjb  
    % of similar magnitude. xq%BR[1  
    % p-7?S^!l  
    % ZERNPOL has been written using a vectorized implementation: multiple LVL#qNIu  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] ICTjUQP  
    % values can be passed as inputs) for a vector of points R.  To achieve H3Zt 3l1u+  
    % this vectorization most efficiently, the algorithm in ZERNPOL Oj2=&uz  
    % involves pre-determining all the powers p of R that are required to ?~]mOv>  
    % compute the outputs, and then compiling the {R^p} into a single 5\ }QOL  
    % matrix.  This avoids any redundant computation of the R^p, and s;tI?kR>%  
    % minimizes the sizes of certain intermediate variables. |UcF%VNnz1  
    % x"Ij+~i{l  
    %   Paul Fricker 11/13/2006 u}?{1B!  
    90H/Txq  
    E <r;J  
    % Check and prepare the inputs: 5xH*&GpL7  
    % ----------------------------- GB6(WAmr  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) |Y2n6gkH[  
        error('zernpol:NMvectors','N and M must be vectors.') Y`xAJ#= ,i  
    end li} >xDSQ4  
    V:AA{<  
    if length(n)~=length(m) /[q_f  
        error('zernpol:NMlength','N and M must be the same length.') +bWo{   
    end 1O90 ]c0  
    H;FzWcm  
    n = n(:); `_J>R  
    m = m(:); t Q>/1  
    length_n = length(n); KXu1%`x=%Z  
    #vPk XcP  
    if any(mod(n-m,2)) v6T<K)S  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') !~-@sq  
    end m x2Ov u  
    `0R>r7f)H  
    if any(m<0) ,JJ1sf2A  
        error('zernpol:Mpositive','All M must be positive.') AJP-7PPD  
    end of`WP  
    ,awkL :  
    if any(m>n) u$^r(.EV  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') g{m~TVm'  
    end m`@~ZIa?>B  
    C{V,=Fo^  
    if any( r>1 | r<0 ) A5G@u}YS5  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') #}UI  
    end xp"F)6  
    }9+Vf'u|l  
    if ~any(size(r)==1) ZP.~Y;Ch;-  
        error('zernpol:Rvector','R must be a vector.') *uF Iw}C/  
    end c{i\F D  
    9}d^ll&  
    r = r(:); qp/nWGj  
    length_r = length(r); 36 ]?4, .  
    1Msc:7:L  
    if nargin==4 >5Sm.7}R  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); \Oe8h#%  
        if ~isnorm d ?,wEfwp  
            error('zernpol:normalization','Unrecognized normalization flag.') 1(Lq9hs`  
        end Oc / i'  
    else Acb %)Y  
        isnorm = false; @8SA^u0  
    end 08nA}+k  
    Dh9C9<Ta:  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% :Z3]Dk;y  
    % Compute the Zernike Polynomials G-DOI  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% W!a'KI'  
    iUf?MDE  
    % Determine the required powers of r: #| m*k  
    % ----------------------------------- ^O3p:X4u  
    rpowers = []; Qmj%otSg  
    for j = 1:length(n) 3u= >Y^wu  
        rpowers = [rpowers m(j):2:n(j)]; +3-f$/po  
    end ~fz9PoC  
    rpowers = unique(rpowers); <T$rvS  
    ->@iw!5xu  
    % Pre-compute the values of r raised to the required powers, %){)/~e&  
    % and compile them in a matrix: rmhL|! Y  
    % ----------------------------- va;fT+k=  
    if rpowers(1)==0 s&6/fa  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); L^jhr>-";  
        rpowern = cat(2,rpowern{:}); Odbm"Y  
        rpowern = [ones(length_r,1) rpowern]; 2 57q%"  
    else RG`eNRTQ%  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ^:o^g'Yab  
        rpowern = cat(2,rpowern{:}); PE2O$:b\  
    end ?L>}( {9  
    h x hl  
    % Compute the values of the polynomials: h.aXW]]}(P  
    % -------------------------------------- cb_nlG!  
    z = zeros(length_r,length_n); uBo~PiJ2"  
    for j = 1:length_n oMF[<Xf  
        s = 0:(n(j)-m(j))/2; j$khGR!  
        pows = n(j):-2:m(j); m2to94yh  
        for k = length(s):-1:1 UphZRgT!N  
            p = (1-2*mod(s(k),2))* ... [vcSt5R=  
                       prod(2:(n(j)-s(k)))/          ... iiV'-!3w  
                       prod(2:s(k))/                 ... bU_P@GKB  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... *En4~;l  
                       prod(2:((n(j)+m(j))/2-s(k))); X%Ta?(9|.^  
            idx = (pows(k)==rpowers); %Yny/O\e%  
            z(:,j) = z(:,j) + p*rpowern(:,idx); 7^Y`'~Y^  
        end c4FU@^Vv  
         r%` |kN  
        if isnorm 8|IlJiJ~v  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); O3(H_(P  
        end +(##B pC  
    end {tF)%>\#  
    ZgL]ex  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  fD ?w!7f-1  
    hxx`f-#=  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 zvHeoM ,  
    z2cd1HxN  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)