切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11232阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 3m~U(yho  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! 0pCDE s  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 JHHb|  
    function z = zernfun(n,m,r,theta,nflag) n&3iz05}  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. aS2a_!f  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N rE9Ta8j6  
    %   and angular frequency M, evaluated at positions (R,THETA) on the uT#Acg  
    %   unit circle.  N is a vector of positive integers (including 0), and iz,]%<_PE  
    %   M is a vector with the same number of elements as N.  Each element 5^bh.uF  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 7O]J^H+7  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, Bi %Z2/  
    %   and THETA is a vector of angles.  R and THETA must have the same !>?4[|?n<  
    %   length.  The output Z is a matrix with one column for every (N,M) ccIDMJ=2  
    %   pair, and one row for every (R,THETA) pair. `4se7{'UK`  
    % eUi> Mp  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike NU BpIx&  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), z&\Il#'\m+  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral nYo&x'  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, hqdC9?\  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 721{Ga4~S  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 9<+;hH8J_r  
    % 7g {g}  
    %   The Zernike functions are an orthogonal basis on the unit circle. y^5T/M  
    %   They are used in disciplines such as astronomy, optics, and 8') .o hD  
    %   optometry to describe functions on a circular domain. U]+b` m  
    % `M towXj  
    %   The following table lists the first 15 Zernike functions. #i'C  
    % 7[(Lrx.pM  
    %       n    m    Zernike function           Normalization _Ac/ir[,:  
    %       -------------------------------------------------- 7*R{u*/e  
    %       0    0    1                                 1 !3O,DhH>MC  
    %       1    1    r * cos(theta)                    2 ){?mKB5  
    %       1   -1    r * sin(theta)                    2 m~A[V,os  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) Nv}U/$$S  
    %       2    0    (2*r^2 - 1)                    sqrt(3) V'Sd[*  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) TyxU6<>4J4  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) \ SoYx5lf  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) m70`{-O  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ^K1~eb*K  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) xkk@ {}J\  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) N>W;0u!  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) G_4K+ -K  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) [u!p-  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ]j%*"V  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) A52LH,  
    %       -------------------------------------------------- 2tg/S=t}  
    % E7d~#  
    %   Example 1: AQJ|^'%  
    % ^=4I|+P,6.  
    %       % Display the Zernike function Z(n=5,m=1) Huc3|~9  
    %       x = -1:0.01:1; u&?yPR  
    %       [X,Y] = meshgrid(x,x); !;xf>API  
    %       [theta,r] = cart2pol(X,Y); Zi2Eu4p l{  
    %       idx = r<=1; Mm:a+T  
    %       z = nan(size(X)); E-5ij,bHv3  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); Qd&d\w/  
    %       figure \UkNE5  
    %       pcolor(x,x,z), shading interp e{q p!N1!  
    %       axis square, colorbar Xy3g(x]  
    %       title('Zernike function Z_5^1(r,\theta)') qY*%p  
    % 46Y7HTwE  
    %   Example 2:  8o%<.]   
    % V{ a}#J  
    %       % Display the first 10 Zernike functions 2yi*eR  
    %       x = -1:0.01:1; ]*kP>  
    %       [X,Y] = meshgrid(x,x); mlsvP%[f.  
    %       [theta,r] = cart2pol(X,Y); #2ZrdD"5kQ  
    %       idx = r<=1; ~x +:44*  
    %       z = nan(size(X)); L:k@BCQM  
    %       n = [0  1  1  2  2  2  3  3  3  3];  HzgQI  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; rS,* s'G  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 4X(1   
    %       y = zernfun(n,m,r(idx),theta(idx)); j:de}!wc  
    %       figure('Units','normalized') ~8Dd<4?F]  
    %       for k = 1:10 z Et6  
    %           z(idx) = y(:,k); ~]6Oz;~<3  
    %           subplot(4,7,Nplot(k)) U:etcnb4w>  
    %           pcolor(x,x,z), shading interp ]`CKQ> o  
    %           set(gca,'XTick',[],'YTick',[]) 5sA>O2Rt>  
    %           axis square I49=ozPP  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) SoM ]2^  
    %       end y$r?t0  
    % btB(n<G2#  
    %   See also ZERNPOL, ZERNFUN2. n'x`oI)-  
    7DHT)9lD/  
    %   Paul Fricker 11/13/2006 zn?a|kt  
    {8>_,z^P)  
    JJbM)B@-  
    % Check and prepare the inputs: h!t2H6eyF  
    % ----------------------------- .eDxIWW+ft  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) /FNj|7s  
        error('zernfun:NMvectors','N and M must be vectors.') Tg{dIh.Q~O  
    end !,-qn)b  
    u6bB5(s`&  
    if length(n)~=length(m) o}AqNw60v  
        error('zernfun:NMlength','N and M must be the same length.') dTU.XgX)1^  
    end 4o)\DB?!  
    zM9).D H  
    n = n(:); I;|5C=!  
    m = m(:); Sj]T{3mi  
    if any(mod(n-m,2)) 40l#'< y;  
        error('zernfun:NMmultiplesof2', ... yrK--C8  
              'All N and M must differ by multiples of 2 (including 0).') Ik@Q@ T"  
    end "#eNFCo7k  
    Jj^<:t5{rN  
    if any(m>n) 5sV/N] !  
        error('zernfun:MlessthanN', ... Ph7(JV{  
              'Each M must be less than or equal to its corresponding N.') T$8$9D_u  
    end "`1of8$X7  
    e&a[k  
    if any( r>1 | r<0 ) [2H(yLwO  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') WHD/s  
    end [0,q7d?"  
    #*;fQ&p  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) )  "ppb%=  
        error('zernfun:RTHvector','R and THETA must be vectors.') c_8mQ  
    end $0`$)(Y  
    7yCx !P;  
    r = r(:); qwq+?fj={  
    theta = theta(:); JXR/K=<^  
    length_r = length(r); G~$M"@Q7N  
    if length_r~=length(theta) ]@<3 6ByM  
        error('zernfun:RTHlength', ... !A^w6Q;`V  
              'The number of R- and THETA-values must be equal.') ?PxYS%D_L  
    end %H 6ZfEO  
    IkXKt8`YVA  
    % Check normalization: .1?i'8TF  
    % -------------------- aBtfZDCfzp  
    if nargin==5 && ischar(nflag) /Geks/  
        isnorm = strcmpi(nflag,'norm'); TAXkfj  
        if ~isnorm ([XyW{=h!  
            error('zernfun:normalization','Unrecognized normalization flag.') z&yb_A:>  
        end p$!+2=)gY  
    else DSG +TA"  
        isnorm = false; fM[fS?W  
    end Qc =lf$  
    17[t_T&Ak9  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% &+r ;>  
    % Compute the Zernike Polynomials Px?At5  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% >zx50e)  
    [F-u'h< *l  
    % Determine the required powers of r: g}og@UY7#  
    % ----------------------------------- =`.5b:e  
    m_abs = abs(m); t:j07 ,1~  
    rpowers = []; ^)P5(fJ  
    for j = 1:length(n) 9qO:K79|  
        rpowers = [rpowers m_abs(j):2:n(j)]; K}*p(1$u  
    end 1X_!%Z  
    rpowers = unique(rpowers); U!UX"r  
    H=SMDj)s+  
    % Pre-compute the values of r raised to the required powers, VS@W.0/  
    % and compile them in a matrix: ZYt"=\_  
    % ----------------------------- d~bH!P  
    if rpowers(1)==0 ^A$XXH '  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); -clg 'Aa;.  
        rpowern = cat(2,rpowern{:}); G;#t6bk  
        rpowern = [ones(length_r,1) rpowern]; jE5 9h  
    else ~Wd8>a{w  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 5}^08Xl  
        rpowern = cat(2,rpowern{:}); !";$Zu  
    end 8\t7}8f  
    H.G^!0j;  
    % Compute the values of the polynomials: \c^jaK5  
    % -------------------------------------- $A0]v!P~i-  
    y = zeros(length_r,length(n)); |q b92|?  
    for j = 1:length(n) k)t8J\  
        s = 0:(n(j)-m_abs(j))/2; 7}7C0mV3  
        pows = n(j):-2:m_abs(j); -#z'A  
        for k = length(s):-1:1  G/;aZ  
            p = (1-2*mod(s(k),2))* ... 91Sb= 9  
                       prod(2:(n(j)-s(k)))/              ... 0_Z|y/I.  
                       prod(2:s(k))/                     ... <T~fh>a  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ZaV66Y>  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); ?U[nYp}"v  
            idx = (pows(k)==rpowers); ~=]@], {  
            y(:,j) = y(:,j) + p*rpowern(:,idx); Gkvd{G?F  
        end _[Wrd?Z  
         3T^dgWXEG  
        if isnorm >!.lr9(l  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); !x / Z"  
        end +GtGyp  
    end %SFR.U0}yK  
    % END: Compute the Zernike Polynomials -.3k vL  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% g 5N<B+?!i  
    Q"_T040B  
    % Compute the Zernike functions: Y-k~ 7{7  
    % ------------------------------ f;dU72]q+  
    idx_pos = m>0; gx R|S  
    idx_neg = m<0; d(tf: @  
    WC;a  
    z = y; ON! G{=7  
    if any(idx_pos) jJC( (1|  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); #mxfU>vQ:  
    end F09AX'nj  
    if any(idx_neg) Eu~wbU"%  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); q)y8Bv|  
    end P&,cCR>  
    |W];v@b\y  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) K0a 50@B]  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. <7) 6*u  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated K7Tell\`  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive e:occT  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, "b7C0NE  
    %   and THETA is a vector of angles.  R and THETA must have the same bUL9*{>G  
    %   length.  The output Z is a matrix with one column for every P-value, jo#F&  
    %   and one row for every (R,THETA) pair. 1OS3Gv8jc~  
    % <-aI%'?*  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike k]YGD  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) S3wH M  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) uS,$P34^oy  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 3f8Z ?[Bb@  
    %   for all p. ?!-im*~w  
    % -2d&Aq4m)  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 ``Rb-.Fq,  
    %   Zernike functions (order N<=7).  In some disciplines it is >Sah\u`  
    %   traditional to label the first 36 functions using a single mode !7?wd^C'f  
    %   number P instead of separate numbers for the order N and azimuthal N Q=YTRU  
    %   frequency M. G"w Q(6J@  
    % KHiJOeLc  
    %   Example: Lcm!e  
    % X|G+N(`|(  
    %       % Display the first 16 Zernike functions 5)6%D  
    %       x = -1:0.01:1; Z8UM0B=i  
    %       [X,Y] = meshgrid(x,x); *h9vMks o  
    %       [theta,r] = cart2pol(X,Y); A>yIH)b  
    %       idx = r<=1; D3ad2vH  
    %       p = 0:15; ^Yz05\  
    %       z = nan(size(X)); b*fflJ  
    %       y = zernfun2(p,r(idx),theta(idx)); LcF3P 4  
    %       figure('Units','normalized') OK(d&   
    %       for k = 1:length(p) ,iUx'U  
    %           z(idx) = y(:,k); U7?ez  
    %           subplot(4,4,k) ;_\P;s  
    %           pcolor(x,x,z), shading interp 3}Qh`+Yj]  
    %           set(gca,'XTick',[],'YTick',[]) # w6CL  
    %           axis square pT tX[CE  
    %           title(['Z_{' num2str(p(k)) '}']) 9f`Pi:*+/  
    %       end CXZeL 1+  
    % Jmx }r,j  
    %   See also ZERNPOL, ZERNFUN. W9"I++~f  
    ") D!OW]  
    %   Paul Fricker 11/13/2006 6Tnzg`0I  
    O6]~5&8U.  
    [DwB7l)O(  
    % Check and prepare the inputs:  sd%~pY}  
    % ----------------------------- H=C;g)R  
    if min(size(p))~=1 UepBXt3)  
        error('zernfun2:Pvector','Input P must be vector.') M='Kjc>e  
    end 'o L8Z  
    ^cm^JyS)  
    if any(p)>35 IIkJ"Qg.  
        error('zernfun2:P36', ... X Rn=;gK%J  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... 2Fi*)\{  
               '(P = 0 to 35).']) wn&2-m*a  
    end @@jdF-Utj;  
    605|*(  
    % Get the order and frequency corresonding to the function number: q0wVV  
    % ---------------------------------------------------------------- 2X_ef  
    p = p(:);  \Z':hw  
    n = ceil((-3+sqrt(9+8*p))/2); X[<9+Q-&  
    m = 2*p - n.*(n+2); x#D=?/~/Kv  
    5,C,q%2  
    % Pass the inputs to the function ZERNFUN: 7}k8-:a%  
    % ---------------------------------------- g:U ul4  
    switch nargin nKdLhCN'=  
        case 3 7_,gAE:kG  
            z = zernfun(n,m,r,theta); g%trGW3{-  
        case 4 j7&l&)5  
            z = zernfun(n,m,r,theta,nflag); Fm "$W^H  
        otherwise +Sfv.6~v  
            error('zernfun2:nargin','Incorrect number of inputs.') uc_ X;M;  
    end / <p HDY  
    LxT] -  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) `f'P  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. [C$ 0HW  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of Qxwe,:  
    %   order N and frequency M, evaluated at R.  N is a vector of H|Ems}b  
    %   positive integers (including 0), and M is a vector with the tz,FK;8  
    %   same number of elements as N.  Each element k of M must be a y_6HQ:  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) @UKd0kxPN{  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is 8/:\iPk0  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix fOVRtSls  
    %   with one column for every (N,M) pair, and one row for every utr_fFu  
    %   element in R. GOt@x9%  
    % uyj5}F+O  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- i+;E uHf  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is F<$&G'% H  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to V+^\SiM  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 $[Fk>d  
    %   for all [n,m]. '&9b*u";x(  
    % xInWcQ  
    %   The radial Zernike polynomials are the radial portion of the ^N]*Zf~N?  
    %   Zernike functions, which are an orthogonal basis on the unit %9j]N$.V  
    %   circle.  The series representation of the radial Zernike STI8[e7{  
    %   polynomials is }^H_|;e1p  
    % M-NR!?9  
    %          (n-m)/2 f =Nm2(e  
    %            __ 2,+H;Ypi!  
    %    m      \       s                                          n-2s (~jOtUyT  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r &\LbajP:+  
    %    n      s=0 d^7<l_u~ !  
    % N$ ?qAek  
    %   The following table shows the first 12 polynomials.  ZM"t.  
    % Vh&uSi1V  
    %       n    m    Zernike polynomial    Normalization %]-tA,u  
    %       --------------------------------------------- *d=pK*g  
    %       0    0    1                        sqrt(2) %vW@_A~  
    %       1    1    r                           2 ek9%Xk8  
    %       2    0    2*r^2 - 1                sqrt(6) ' {Q L`L  
    %       2    2    r^2                      sqrt(6) s SDBl~g  
    %       3    1    3*r^3 - 2*r              sqrt(8) W|:WAxJ*d  
    %       3    3    r^3                      sqrt(8) K&/W cuP &  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) Pu=YQ #F'  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) !>M: G:K  
    %       4    4    r^4                      sqrt(10) o\N),;LM  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) [Mx+t3M  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) 7*sB"_U2  
    %       5    5    r^5                      sqrt(12) ^Kn}{m/3Y  
    %       --------------------------------------------- o.,hCg)X  
    % JH 8^ZP:d'  
    %   Example: },l3N K  
    % BwR)--75  
    %       % Display three example Zernike radial polynomials oZQu&O'  
    %       r = 0:0.01:1; B9]KC i  
    %       n = [3 2 5]; Yv>% 5`  
    %       m = [1 2 1]; 1'ZBtX~A  
    %       z = zernpol(n,m,r); um/iK}O  
    %       figure zJPzI{-w|  
    %       plot(r,z) !^y'G0  
    %       grid on 4XRVluD%W.  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') z;T?2~g!  
    % L~\Ir  
    %   See also ZERNFUN, ZERNFUN2. ,+ WDa%R  
    4oJ0,u  
    % A note on the algorithm. &Mol8=V)  
    % ------------------------ _f/6bpv  
    % The radial Zernike polynomials are computed using the series JMXCyDy;  
    % representation shown in the Help section above. For many special 2TdcZ<k}J  
    % functions, direct evaluation using the series representation can .RdnJ&K*  
    % produce poor numerical results (floating point errors), because -Wf 2m6t  
    % the summation often involves computing small differences between ikUG`F%W  
    % large successive terms in the series. (In such cases, the functions {Wt=NI?Ow  
    % are often evaluated using alternative methods such as recurrence n;[d{bU  
    % relations: see the Legendre functions, for example). For the Zernike ^5OR%N)  
    % polynomials, however, this problem does not arise, because the 4h-tR  
    % polynomials are evaluated over the finite domain r = (0,1), and l2i[wc"9  
    % because the coefficients for a given polynomial are generally all W 5-=,t  
    % of similar magnitude. |Gz(q4  
    % "~XAD(T6  
    % ZERNPOL has been written using a vectorized implementation: multiple Vf0m7BJc3  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M]  eGjEO&$  
    % values can be passed as inputs) for a vector of points R.  To achieve 1jDN=hIl  
    % this vectorization most efficiently, the algorithm in ZERNPOL :U=*@p4?  
    % involves pre-determining all the powers p of R that are required to g/eE^o ~;  
    % compute the outputs, and then compiling the {R^p} into a single ^I7iEv  
    % matrix.  This avoids any redundant computation of the R^p, and `$05+UU  
    % minimizes the sizes of certain intermediate variables. RK< uAiU  
    % K1Mn_)%  
    %   Paul Fricker 11/13/2006 "d% o%  
    ?g}G#j  
    05Ak[OOU>  
    % Check and prepare the inputs: w=,bF$:fIW  
    % ----------------------------- voiWf?X  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) }Ge$?ZFH  
        error('zernpol:NMvectors','N and M must be vectors.')  (cx Q<5  
    end `f S$@{YI_  
    0 *2^joUv  
    if length(n)~=length(m) !Wgi[VB  
        error('zernpol:NMlength','N and M must be the same length.') 7*.nd  
    end ,?S1e#  
    3VaL%+T$,  
    n = n(:); z#m ~}  
    m = m(:); \I (g70  
    length_n = length(n);  Z/RSZ-  
    a[I :^S  
    if any(mod(n-m,2)) n&1q*  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') L xP%o  
    end -%,=%FBi~4  
    ]jjHIFX  
    if any(m<0) H}?"2jF  
        error('zernpol:Mpositive','All M must be positive.') .~u[rc|<  
    end DHQS7%)f`  
    F$M^}vsjGx  
    if any(m>n) FF#T"y0Y  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') 3$G &~A{  
    end H\RejGR  
    jl9hFubwW  
    if any( r>1 | r<0 ) 5If.[j{  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') ?.Q$@Ih0  
    end T5|e\<l  
    Y \Gx|  
    if ~any(size(r)==1) gWQ(B  
        error('zernpol:Rvector','R must be a vector.') tTOBKA89  
    end SP.k]@P  
    S#kYPe  
    r = r(:); [4w*<({*  
    length_r = length(r); ,R. rxoO  
    qF\w#nG  
    if nargin==4 qA0PGo  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); .J <t]  
        if ~isnorm rU+3~|m  
            error('zernpol:normalization','Unrecognized normalization flag.') `J] e.K  
        end \#4mPk_"  
    else ,BUrZA2\U$  
        isnorm = false; (\ge7sE-oo  
    end 1*" 7q9x  
    e>6|# d  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% E5!vw@,  
    % Compute the Zernike Polynomials /yHjd s  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% !0dQfj^_  
    }ZK%@b>  
    % Determine the required powers of r: Bv<aB(c  
    % ----------------------------------- q #mBNe62p  
    rpowers = [];  & .0A%  
    for j = 1:length(n) Z_[ P7P  
        rpowers = [rpowers m(j):2:n(j)]; T*:w1*:  
    end ?VlGTMaS+  
    rpowers = unique(rpowers); ? X6M8`  
    VCfHm"'E8  
    % Pre-compute the values of r raised to the required powers, yts@cd`$  
    % and compile them in a matrix: KLvAe>#,  
    % ----------------------------- A 0v=7 ]  
    if rpowers(1)==0 a*-9n-U@[k  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); .W^B(y(tA  
        rpowern = cat(2,rpowern{:}); {CV+1kz  
        rpowern = [ones(length_r,1) rpowern]; Q,:{(R  
    else ?z`={oN  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); q>Di|5<y  
        rpowern = cat(2,rpowern{:}); )X-'Q-  
    end ,A'| Z  
    WG A1XQ{  
    % Compute the values of the polynomials: rRg,{:;A  
    % -------------------------------------- %cLS*=MO  
    z = zeros(length_r,length_n); [0EWIdT*b  
    for j = 1:length_n ;89kL]  
        s = 0:(n(j)-m(j))/2; ~5'7u-;  
        pows = n(j):-2:m(j); m^!:n$  
        for k = length(s):-1:1 ULqI]k(  
            p = (1-2*mod(s(k),2))* ... :h5G|^  
                       prod(2:(n(j)-s(k)))/          ... N"}>);r  
                       prod(2:s(k))/                 ... T? Kh '  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... ?HJh;96B  
                       prod(2:((n(j)+m(j))/2-s(k))); gu3iaM$W  
            idx = (pows(k)==rpowers); hH 5}%/vF  
            z(:,j) = z(:,j) + p*rpowern(:,idx); K(i}?9WD  
        end uLafO=Q  
         )w0x{_  
        if isnorm "h#R>3I1)  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); j1KNgAo<4  
        end tBbOxMm0  
    end g]lEG>y1R  
    8'u9R~})   
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  Nx 42k|8  
    jZA1fV  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 Ui'v ' $  
    0Y8gUpe3P6  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)