非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 `jD8(}_
function z = zernfun(n,m,r,theta,nflag) OqfhCNAY
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 4kW30Ma
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N N0y;PVAGu
% and angular frequency M, evaluated at positions (R,THETA) on the -XS+Uv
% unit circle. N is a vector of positive integers (including 0), and nUI63?
% M is a vector with the same number of elements as N. Each element Uv
@!i0W
% k of M must be a positive integer, with possible values M(k) = -N(k) e.)yV'%L
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, J8sJ~FnUj
% and THETA is a vector of angles. R and THETA must have the same d1srV`
% length. The output Z is a matrix with one column for every (N,M) i Q]T+}nn_
% pair, and one row for every (R,THETA) pair. 9TYw@o5V
% IqvqvHxLX
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike C ?GvTc
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), B)j`}7O06
% with delta(m,0) the Kronecker delta, is chosen so that the integral [?|l X$<
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, tJ?qcT?
% and theta=0 to theta=2*pi) is unity. For the non-normalized 2 pM
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ?V&Ld$db
% A&NC0K}G!
% The Zernike functions are an orthogonal basis on the unit circle. R`Ys;g/!
% They are used in disciplines such as astronomy, optics, and >cwJl@wx-
% optometry to describe functions on a circular domain. ue6/EN;}
%
rE1np^z7
% The following table lists the first 15 Zernike functions. !uj!
% W,9k0t
% n m Zernike function Normalization X7XCZSh#A
% -------------------------------------------------- [M7iJcwt
% 0 0 1 1 pz*/4
% 1 1 r * cos(theta) 2 N3XVT{yo
% 1 -1 r * sin(theta) 2 c t2_N
% 2 -2 r^2 * cos(2*theta) sqrt(6) mr{k>Un\
% 2 0 (2*r^2 - 1) sqrt(3) ++J Bbuzj!
% 2 2 r^2 * sin(2*theta) sqrt(6) XhlI|h-j
% 3 -3 r^3 * cos(3*theta) sqrt(8) ZXssvjWQV}
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 7':5
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) *@bg/S
K%
% 3 3 r^3 * sin(3*theta) sqrt(8) "xvV'&lQ
% 4 -4 r^4 * cos(4*theta) sqrt(10) CI~hmL0
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) bGMeBj"R
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) C,OB3y
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) A:8FJ 3'
% 4 4 r^4 * sin(4*theta) sqrt(10) SHXa{-
% -------------------------------------------------- 7(A
G]
% =FtM;(\
% Example 1: ;3.T* ?|o
% V',m $
% % Display the Zernike function Z(n=5,m=1) 4 BE:&A
% x = -1:0.01:1; {Gk}3u/
% [X,Y] = meshgrid(x,x); 8^P2GG'+-
% [theta,r] = cart2pol(X,Y); ;*>QG6Fh
% idx = r<=1; _-|yCo
% z = nan(size(X)); xVHQ[I%
% z(idx) = zernfun(5,1,r(idx),theta(idx)); ?vht~5'
% figure +h gaBJy
% pcolor(x,x,z), shading interp Pq{YZMr
% axis square, colorbar 9AVK_
% title('Zernike function Z_5^1(r,\theta)') DiGUxnP
% m&3HFf
% Example 2: Sq?6R}q%
% 6?<`wGs(
% % Display the first 10 Zernike functions }OX>(
% x = -1:0.01:1; $X.'W\o|
% [X,Y] = meshgrid(x,x); .=b
+O~
% [theta,r] = cart2pol(X,Y); XqE55Jclp
% idx = r<=1; QRg"/62WCD
% z = nan(size(X)); Y>dg10=
% n = [0 1 1 2 2 2 3 3 3 3]; %CsTB0Y7n,
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; N)
V7yo?
% Nplot = [4 10 12 16 18 20 22 24 26 28]; 2t]! {L
% y = zernfun(n,m,r(idx),theta(idx)); 9|G=KN)P:
% figure('Units','normalized') 8,H#t@+MT
% for k = 1:10 RBv=
% z(idx) = y(:,k); 9sO{1rF
% subplot(4,7,Nplot(k)) 0-t4+T
% pcolor(x,x,z), shading interp R+ #.bQg
% set(gca,'XTick',[],'YTick',[]) )K\k6HC.
% axis square QX.F1T2e?
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Be14$7r
% end x%:>Ol
% HhQPgjZ/
% See also ZERNPOL, ZERNFUN2. A\PV@w%Ai
vU\w3
% Paul Fricker 11/13/2006 !Lg}q!*%>V
g*w-"%"O
]Gd]KP@S
% Check and prepare the inputs: V)?x*R*T)
% ----------------------------- 9TXm Z
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) d'g{K]=tF
error('zernfun:NMvectors','N and M must be vectors.') @=<TA0;LL
end $CQwBsYb=
`X.=uG+m
if length(n)~=length(m) d=+Lv<
error('zernfun:NMlength','N and M must be the same length.') rY_C3;B
end rfZj8R&
S}xDB
n = n(:); )Ido|!]0d
m = m(:); 1o6J9kCq^3
if any(mod(n-m,2)) 5f`XFe$8
error('zernfun:NMmultiplesof2', ... lA^Kh
'All N and M must differ by multiples of 2 (including 0).') HU'`kimWb
end 1Sc~Vb|>
]BS{,sI
if any(m>n) {</$ObK
error('zernfun:MlessthanN', ... $RFu
m'`5
'Each M must be less than or equal to its corresponding N.') dXK~
Z:
end PEQvEruZ}
nO.+&kA
if any( r>1 | r<0 ) Ci#5@Q9#w
error('zernfun:Rlessthan1','All R must be between 0 and 1.') \%4+mgiD
end C;:1CK
~3-YxCn%
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) H R!>g
error('zernfun:RTHvector','R and THETA must be vectors.') 9:Z~}yX
end kV(DnZ#jq
sp|y/r#
r = r(:); ks`
theta = theta(:); r0$9c
length_r = length(r); @okm@6J*X
if length_r~=length(theta) g7Q*KA+
error('zernfun:RTHlength', ... "y
,(9_#
'The number of R- and THETA-values must be equal.') :;#}9g9
end hr}R,BR|
1oW]O@R
% Check normalization: kA:;c}p
% -------------------- zl8\jP
if nargin==5 && ischar(nflag) Y X{
isnorm = strcmpi(nflag,'norm'); .L TFa.jxA
if ~isnorm KZ
>"L
error('zernfun:normalization','Unrecognized normalization flag.') 0@/E%T1c"
end H2_>Av{m
else )I
UWM
isnorm = false; au}0PnA;
end Hr,lA(
E#V-F-@2
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ^l2d?v8
% Compute the Zernike Polynomials Qs[EA_
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% N{ z(|2{A#
FEi,^V
% Determine the required powers of r: Y&Vbf>Hi+
% ----------------------------------- 7Hlh
(k
m_abs = abs(m); K[;,/:Y
rpowers = []; VKfHN_m*
for j = 1:length(n) 3LnyQ
rpowers = [rpowers m_abs(j):2:n(j)]; Mw7UU1 ei
end j<-o{6r
rpowers = unique(rpowers); Jz8#88cY
ZC-evy
% Pre-compute the values of r raised to the required powers, o>rlrqr?_
% and compile them in a matrix: 8uD%]k=#!
% ----------------------------- oW1olmpp=
if rpowers(1)==0 eS%6hUb
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); (>lqp%G~
rpowern = cat(2,rpowern{:}); CpdY)SMSL
rpowern = [ones(length_r,1) rpowern]; *8eh%3_$h
else v&,VC~RN-J
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); mb6?$1j
rpowern = cat(2,rpowern{:}); K>JU/(
end ,ui'^8{gK
?-v?SN#
% Compute the values of the polynomials: ?B:wV?-`
% -------------------------------------- krY.Cc]
y = zeros(length_r,length(n)); =` >Nfa+,
for j = 1:length(n) bD[W~ku
s = 0:(n(j)-m_abs(j))/2; (=B7_jrl
pows = n(j):-2:m_abs(j); ?Lb7~XKt\
for k = length(s):-1:1 c@{^3V##T
p = (1-2*mod(s(k),2))* ... KFG^vmrn
prod(2:(n(j)-s(k)))/ ... Vx8.FNJh
prod(2:s(k))/ ... TK?N^ly
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... `X03Q[:q"[
prod(2:((n(j)+m_abs(j))/2-s(k))); *jSc&{s~
idx = (pows(k)==rpowers); S5vMP
N
y(:,j) = y(:,j) + p*rpowern(:,idx); I{UB!0H
end I,Y^_(JW
QN5N hs
if isnorm RwHXn]1
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); g[)hm`{?
end u<r('IW0
end XE%6c3s
% END: Compute the Zernike Polynomials Z+Zh;Ms
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% rxA)&