非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 ?#Y:2LqP C
function z = zernfun(n,m,r,theta,nflag) Uf
MQ?(,
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. )5n:UD{f[#
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N (UCCEQq5
% and angular frequency M, evaluated at positions (R,THETA) on the jFip-=T{4
% unit circle. N is a vector of positive integers (including 0), and /nv+*+Q?d
% M is a vector with the same number of elements as N. Each element eiXl"R^
% k of M must be a positive integer, with possible values M(k) = -N(k) c,O;B_}M]
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, b I`JG:^b
% and THETA is a vector of angles. R and THETA must have the same \&~YFj B
% length. The output Z is a matrix with one column for every (N,M) *Mb'y d/|
% pair, and one row for every (R,THETA) pair. #eX<=H]
% R.DUfU"gp
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 6nREuT'k
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), A3*(c3
% with delta(m,0) the Kronecker delta, is chosen so that the integral X8ZO
} X
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 3rd8mh&l
% and theta=0 to theta=2*pi) is unity. For the non-normalized M2c7|
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. &=kb>*
% \
\Tz'>[\
% The Zernike functions are an orthogonal basis on the unit circle. <EcxNj1
% They are used in disciplines such as astronomy, optics, and e ;^}@X
% optometry to describe functions on a circular domain. ,7k-LAA
% z"mpwmv5
% The following table lists the first 15 Zernike functions. KV8<'g +2?
% \WbQS#Z9
% n m Zernike function Normalization s~bi#U;dF
% -------------------------------------------------- 8Lgm50bs
% 0 0 1 1 w^("Pg`
% 1 1 r * cos(theta) 2 0igB pHS
% 1 -1 r * sin(theta) 2 ly35n`
% 2 -2 r^2 * cos(2*theta) sqrt(6) r;MFVj{
% 2 0 (2*r^2 - 1) sqrt(3) t72rCq QC
% 2 2 r^2 * sin(2*theta) sqrt(6) [~X&J#
% 3 -3 r^3 * cos(3*theta) sqrt(8) $4~Z]-38#A
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) ^\kH^
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) $d!Vx m
% 3 3 r^3 * sin(3*theta) sqrt(8) >\3\&[#"
% 4 -4 r^4 * cos(4*theta) sqrt(10) as('ZD.9
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) uubIL+
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) 8ZqLGa]
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) t1"#L_<e
% 4 4 r^4 * sin(4*theta) sqrt(10) Zd%wX<hU"
% -------------------------------------------------- biBMd(6
% &:IcwD&
% Example 1: gujP{Z
% .Gvk5Wn
% % Display the Zernike function Z(n=5,m=1) hqlQ-aytS
% x = -1:0.01:1; i;s;:{cn
% [X,Y] = meshgrid(x,x); Xx%<rsA>F
% [theta,r] = cart2pol(X,Y); Jj\lF*B
% idx = r<=1; &6
<a<S
% z = nan(size(X)); [p~,;%
% z(idx) = zernfun(5,1,r(idx),theta(idx)); H0sTL#/L \
% figure QxGcRlpLK
% pcolor(x,x,z), shading interp NdSuOkwwt
% axis square, colorbar PgGUs4[
% title('Zernike function Z_5^1(r,\theta)') a@<-L
% ;gSRpTS:
% Example 2: >C!^%e;m
% Hk@Gkx_
% % Display the first 10 Zernike functions {V[}#Mf
% x = -1:0.01:1; tq3Rc}
% [X,Y] = meshgrid(x,x); *8m['$oyV
% [theta,r] = cart2pol(X,Y); 'P" i9j
% idx = r<=1; o kA<
% z = nan(size(X)); l"1D'Hk
% n = [0 1 1 2 2 2 3 3 3 3]; CswKT9
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; a!-J=\>9
% Nplot = [4 10 12 16 18 20 22 24 26 28]; 1^E5VG1[
% y = zernfun(n,m,r(idx),theta(idx)); Mqvo
j7
% figure('Units','normalized') X(X[v]
% for k = 1:10 6}e*!,2Xj
% z(idx) = y(:,k); 8.8t$
% subplot(4,7,Nplot(k)) *o4a<.hd2
% pcolor(x,x,z), shading interp FVBAB>
% set(gca,'XTick',[],'YTick',[]) x.wDA3ys
% axis square Up'#OkTx
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) k4dC
% end S\<i`q
% dt,Z^z+"E
% See also ZERNPOL, ZERNFUN2. ^]D1':
|\?u-O3
% Paul Fricker 11/13/2006 $--+M
D29Q
w4Df?)Z
?6&8-zt1?
% Check and prepare the inputs: F;8Q`$n
% ----------------------------- -~lq <M
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) A)>#n)
error('zernfun:NMvectors','N and M must be vectors.') Es)|#0m\x@
end 1^X)vck
zU+q03l8Ur
if length(n)~=length(m) :op_J!;
error('zernfun:NMlength','N and M must be the same length.') 9jqsEd-SW
end /\h*v!:
Zx_^P:rL
n = n(:); 7[1|(6$
m = m(:); Ec3tfcNhR
if any(mod(n-m,2)) 9 %4:eTcp
error('zernfun:NMmultiplesof2', ... z|D*ymz*EY
'All N and M must differ by multiples of 2 (including 0).') =urGs`\
end wN4#j}C
X_hDU~5{wC
if any(m>n) (BeJ,K7
error('zernfun:MlessthanN', ... -|KZOea
'Each M must be less than or equal to its corresponding N.') ,r;xH}tbi
end 'u;O2$
&k%>u[Bo
if any( r>1 | r<0 ) YnU)f@b#
error('zernfun:Rlessthan1','All R must be between 0 and 1.') ,:A;4
end |oXd4
][v]Nk
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) y"q>}5
error('zernfun:RTHvector','R and THETA must be vectors.') vBl:&99[/
end 60u_,@rV
a~$Y;C_#<
r = r(:); Lm2)3;ei
theta = theta(:); 5HV+7zU5
length_r = length(r); ~<n.5q%Z
if length_r~=length(theta) 3}8o 9
error('zernfun:RTHlength', ... DI{*E
'The number of R- and THETA-values must be equal.') mA+:)?e5~
end ud$-A
3>@VPMi
% Check normalization: ^.!jD+=I
% -------------------- 71{jedT
if nargin==5 && ischar(nflag) |50sGJE(
isnorm = strcmpi(nflag,'norm'); !EhKg)y=
if ~isnorm c Pf_B=
error('zernfun:normalization','Unrecognized normalization flag.') 4v hz`1
end Pa{
else src+z#
isnorm = false; Fds
11
/c7
end R/ZScOW[
%ERcFI]G
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +wmG5!%$|
% Compute the Zernike Polynomials ~E7IU<B
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% XH$r(@Z\7
$3g{9)}
% Determine the required powers of r: lFyDH{!
% ----------------------------------- S*V}1</L
m_abs = abs(m); |2u=3#Jp
rpowers = []; j,+]tHC-
for j = 1:length(n) tO3R&"{
rpowers = [rpowers m_abs(j):2:n(j)]; F`QViZ'n>#
end
K%? g6j
rpowers = unique(rpowers); x1.S+:
p/HDG
^T:u
% Pre-compute the values of r raised to the required powers, !ka* rd
% and compile them in a matrix: rQVX^
% ----------------------------- 73D<wMgZF
if rpowers(1)==0 Lz'VQO1U=
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); '|zrzU=
rpowern = cat(2,rpowern{:}); 0<-E)\:[g
rpowern = [ones(length_r,1) rpowern]; bItcF$#!!!
else zl|z4j'Irc
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); GT&}Burl/n
rpowern = cat(2,rpowern{:}); c0gVW~I1
end #4msBax4
U\Wo&giP[
% Compute the values of the polynomials: #_wq#rF
% -------------------------------------- :eVZ5?F
y = zeros(length_r,length(n)); ){5Nod{}a
for j = 1:length(n) }oRBQP^&K
s = 0:(n(j)-m_abs(j))/2; ZNX38<3h
pows = n(j):-2:m_abs(j); h^yqrDyJ
for k = length(s):-1:1 pa[/6(
p = (1-2*mod(s(k),2))* ... qUkMNo3
prod(2:(n(j)-s(k)))/ ... N7+L@CC6T
prod(2:s(k))/ ... _5jT}I<k
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... _F;v3|`D@<
prod(2:((n(j)+m_abs(j))/2-s(k))); Q!e560@
idx = (pows(k)==rpowers); ?BnU0R_r]
y(:,j) = y(:,j) + p*rpowern(:,idx); @Nek;xJ
end KhHFJo[8sf
"La;$7ds
if isnorm "]+g5G
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Xo34~V@(
end T }}2J/sj
end qz-QVY,
% END: Compute the Zernike Polynomials N T`S)P*?
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ~|V^IJZ22
j~Aq-8R=
% Compute the Zernike functions: h+FM?ct6}
% ------------------------------ f2i:I1 p("
idx_pos = m>0; sS>b}u+v#!
idx_neg = m<0; A9$x8x*Lt
tJ\
$%
z = y; /,Xl8<~#
if any(idx_pos) &]nx^C8V;
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); iVXt@[
end HC%Hbc~S_Q
if any(idx_neg) 7zb^Z]
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); xh;V4zK@`
end FZr/trP~
k6(7G@@}
% EOF zernfun