切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11034阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 =F-^RnO%\  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! cMk%]qfVo8  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 x;aZ&  
    function z = zernfun(n,m,r,theta,nflag) e]fC!>w(\  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. Q :|E  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N |(g2fByDf  
    %   and angular frequency M, evaluated at positions (R,THETA) on the zwHsdB=v  
    %   unit circle.  N is a vector of positive integers (including 0), and y +vcBuX  
    %   M is a vector with the same number of elements as N.  Each element UG$i5PV%i  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) ]F#kM211  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, T^>cT"ux_  
    %   and THETA is a vector of angles.  R and THETA must have the same >s~`K^zS  
    %   length.  The output Z is a matrix with one column for every (N,M) gE(03SX  
    %   pair, and one row for every (R,THETA) pair. A 76yz`D  
    % 2 ARh-zLb  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 5?"ZM'4  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), z05pVe/5  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral i:To8kdO  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, M-t9zT  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized  Jt][b  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 7.-|3Wcg  
    % 7T78S&g  
    %   The Zernike functions are an orthogonal basis on the unit circle. JH9CN  
    %   They are used in disciplines such as astronomy, optics, and tO$M[P=b  
    %   optometry to describe functions on a circular domain. !;oBvE7Kh  
    % 2x CGr>X  
    %   The following table lists the first 15 Zernike functions. 1's^W  
    % Ado>)c"*y1  
    %       n    m    Zernike function           Normalization 5#tvc4+)  
    %       -------------------------------------------------- xRmB?kM3]5  
    %       0    0    1                                 1 )VrHP9fu  
    %       1    1    r * cos(theta)                    2 u]-$]zIH  
    %       1   -1    r * sin(theta)                    2 :PJjy6,1  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) )JON&~C  
    %       2    0    (2*r^2 - 1)                    sqrt(3) nMqU6X>P!  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) 'UCL?$  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) >~k Y{_  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 0jMrL\>C  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) b9Nw98`  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) c$TBHK;c  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) -#h \8Xl  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) kS>j!U(%d  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) A,@"(3  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) &3M He$  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) j\<S6%p#R  
    %       -------------------------------------------------- 54-x 14")  
    % I;LqyzM  
    %   Example 1: na>B{6  
    % 7UfyOOFa  
    %       % Display the Zernike function Z(n=5,m=1) &0myA_So  
    %       x = -1:0.01:1; 5NK:94&JE  
    %       [X,Y] = meshgrid(x,x); =Vfj#WL  
    %       [theta,r] = cart2pol(X,Y); J2-xnUa]7  
    %       idx = r<=1; F);C?SW"  
    %       z = nan(size(X)); ^;e`ZtcI  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); mj pH)6aD0  
    %       figure Vj1AW<  
    %       pcolor(x,x,z), shading interp Z2r\aZ-d`  
    %       axis square, colorbar .x&>H  
    %       title('Zernike function Z_5^1(r,\theta)') gKnAw+u\  
    % Iq9+  
    %   Example 2: v%r!}s  
    % m`|+_{4[n  
    %       % Display the first 10 Zernike functions /TdTo@  
    %       x = -1:0.01:1; WO^h\#^n  
    %       [X,Y] = meshgrid(x,x); 6+>rf{5P7  
    %       [theta,r] = cart2pol(X,Y); f>o@Y]/l  
    %       idx = r<=1; FM5$83Q  
    %       z = nan(size(X)); Sq,x@  
    %       n = [0  1  1  2  2  2  3  3  3  3]; $%<gp@Gz  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; M&L"yQA  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; B dSTB"  
    %       y = zernfun(n,m,r(idx),theta(idx)); 4)?c[aC4P  
    %       figure('Units','normalized') X~0P+E#  
    %       for k = 1:10 Wr;)3K  
    %           z(idx) = y(:,k); yq2Bz7P  
    %           subplot(4,7,Nplot(k)) B}p/ ,4x6  
    %           pcolor(x,x,z), shading interp wI:oe`?H  
    %           set(gca,'XTick',[],'YTick',[]) ie)Qsw@  
    %           axis square H 74hv`G9  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) MFVFr "  
    %       end {.ph)8  
    % /dO&r'!:  
    %   See also ZERNPOL, ZERNFUN2. ~0`Pe{^*  
    WH!<Z=#c}  
    %   Paul Fricker 11/13/2006 @Q'5/q+  
    3|C"F-'<  
    IQ\`n|  
    % Check and prepare the inputs: >DDQ7 l  
    % ----------------------------- j \SDw  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) yy9Bd>  
        error('zernfun:NMvectors','N and M must be vectors.') u%2u%-w  
    end v / a/  
    ]uP {Sj  
    if length(n)~=length(m) McfSB(59  
        error('zernfun:NMlength','N and M must be the same length.') U+W8)7bc  
    end #ws6z`mt  
    .UJk0%1  
    n = n(:); r J&1[=s  
    m = m(:); Wd[XQZ<  
    if any(mod(n-m,2)) >k:)'*  
        error('zernfun:NMmultiplesof2', ... q,2 @X~T  
              'All N and M must differ by multiples of 2 (including 0).') Cnc77EUD  
    end z*FlZLHY  
    bw@tA7Y  
    if any(m>n) ?p`}6s Q}  
        error('zernfun:MlessthanN', ... ?Hy++  
              'Each M must be less than or equal to its corresponding N.')  d(k`Yk8  
    end yfV{2[8ux  
    3p7*UVR"  
    if any( r>1 | r<0 ) 3#dUQ1qo6  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') :yv!  x  
    end \4V'NTjB  
    9t=erhUr  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) J9 /w_,,R$  
        error('zernfun:RTHvector','R and THETA must be vectors.') NvYgRf}uh  
    end }D0j%~&"e  
    %e _WO,R  
    r = r(:); !\p-|51  
    theta = theta(:); 8z@A/$T  
    length_r = length(r); e{"d6pF=  
    if length_r~=length(theta) 6~^+</?  
        error('zernfun:RTHlength', ... Yd]f}5F  
              'The number of R- and THETA-values must be equal.') L&l> ?"_  
    end lVMAab  
    B^eea[  
    % Check normalization: Q&wBX%@^L  
    % -------------------- JG4Tb{F=  
    if nargin==5 && ischar(nflag) |s|RJA1  
        isnorm = strcmpi(nflag,'norm'); j+s8V-7(  
        if ~isnorm K":- zS  
            error('zernfun:normalization','Unrecognized normalization flag.') 2 !{P<   
        end zm"&8/l  
    else N#|c2n+  
        isnorm = false; IN_GL18^MV  
    end 1`b?nX  
    wp$SO^?-  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% u K 8 r  
    % Compute the Zernike Polynomials ^ 3Vjmv  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% NmK%k jCx  
    N$pO] p  
    % Determine the required powers of r: 6Bs_" P[  
    % ----------------------------------- WpRi+NC}ln  
    m_abs = abs(m); KPKby?qQ^  
    rpowers = []; !iITX,'8  
    for j = 1:length(n) UGl}=hwKkG  
        rpowers = [rpowers m_abs(j):2:n(j)]; )-[X^l j  
    end Jg^tr>I~  
    rpowers = unique(rpowers); 8iq~ha$]|  
    S&@~F|  
    % Pre-compute the values of r raised to the required powers, OG0ro(|dI  
    % and compile them in a matrix: ^fH]Rlx  
    % ----------------------------- (gz|6N  
    if rpowers(1)==0 * _U z**M  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); _M{m6k(h  
        rpowern = cat(2,rpowern{:}); a ipvG  
        rpowern = [ones(length_r,1) rpowern]; 2Ask]  
    else k5W5 9tz  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); eD G=-a4  
        rpowern = cat(2,rpowern{:}); tWD*uA b  
    end yv,90+k  
    ))u$j4 V  
    % Compute the values of the polynomials: }i?P( Au  
    % -------------------------------------- 2uV=kqnO  
    y = zeros(length_r,length(n)); cND2(< jx:  
    for j = 1:length(n) HnZr RHT 0  
        s = 0:(n(j)-m_abs(j))/2; nbhx2@Teqe  
        pows = n(j):-2:m_abs(j); Dr<%Lr  
        for k = length(s):-1:1 ;p1%KmK3  
            p = (1-2*mod(s(k),2))* ... Nqz-Mr`  
                       prod(2:(n(j)-s(k)))/              ... !dGy"-i$h  
                       prod(2:s(k))/                     ... ">NBPanJ  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... H`m| R  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); .b5B7 x}  
            idx = (pows(k)==rpowers); 8ec~"vGLz~  
            y(:,j) = y(:,j) + p*rpowern(:,idx); L<J%IlcfO  
        end t:$p8qR  
         v='7.A  
        if isnorm @^/JNtbH!  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); yP~D."  
        end dEns|r  
    end <"aPoGda  
    % END: Compute the Zernike Polynomials sg{>-KHM  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Fpl<2eBg4  
    SbrBlP: G  
    % Compute the Zernike functions: j =[Td   
    % ------------------------------ 4LKOBiEM  
    idx_pos = m>0; RVX-3FvP  
    idx_neg = m<0; dAohj QH:  
    N!^U{;X7/  
    z = y; .#EmE'IP*  
    if any(idx_pos) ln#Lx&r;|  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); !)KX?i[Q  
    end ?zKDPBj  
    if any(idx_neg) ^BSMlKyB  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); L@9"6&  
    end Mt<TEr}7Z=  
    B4_0+K H  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) [gQ*y~N  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. @tRq(*(/:  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated r68'DJ&m3  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive UACWs3`s+  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, ,z<\Z!+=  
    %   and THETA is a vector of angles.  R and THETA must have the same Azq,N@HO  
    %   length.  The output Z is a matrix with one column for every P-value, E;9SsA  
    %   and one row for every (R,THETA) pair. SPn0D9 b]  
    % 6*{N{]`WZ)  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike rW&8#&  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) bxK1v7  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) +^{yJp.H#  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 n\ZDI+X  
    %   for all p. /@Y/(+DE  
    % ] +LleS5  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 &iId<.SiJ  
    %   Zernike functions (order N<=7).  In some disciplines it is (KK9/k  
    %   traditional to label the first 36 functions using a single mode %7z  
    %   number P instead of separate numbers for the order N and azimuthal "#qyX[\  
    %   frequency M. Tr-gdX ;  
    % nkSYW]aQ1g  
    %   Example: khyn4   
    % F]0O4p~fl  
    %       % Display the first 16 Zernike functions =VH, i/@  
    %       x = -1:0.01:1; hF.9\X]  
    %       [X,Y] = meshgrid(x,x); Ti=~ycwi  
    %       [theta,r] = cart2pol(X,Y); CT6a  
    %       idx = r<=1; Lg sQz(-  
    %       p = 0:15; Wu,'S;>C  
    %       z = nan(size(X)); ZS4lb=)G  
    %       y = zernfun2(p,r(idx),theta(idx)); .3t[M0sd  
    %       figure('Units','normalized') BOoLs(p  
    %       for k = 1:length(p) 6&`.C/"2  
    %           z(idx) = y(:,k); ~ubGx  
    %           subplot(4,4,k) )?:V5UO\  
    %           pcolor(x,x,z), shading interp XA-DJ  
    %           set(gca,'XTick',[],'YTick',[]) "'~'xaU!=a  
    %           axis square W52AX.Nm  
    %           title(['Z_{' num2str(p(k)) '}']) % tN{  
    %       end k"LbB#Q  
    % S=n,unn#t  
    %   See also ZERNPOL, ZERNFUN. Y\Odj~Mj  
    YJ'h=!p}G  
    %   Paul Fricker 11/13/2006 hp@g iu7  
    9P#E^;L  
    W8'cAY  
    % Check and prepare the inputs: weEmUw Z  
    % ----------------------------- O\,n;oj  
    if min(size(p))~=1 _O Tqm5_  
        error('zernfun2:Pvector','Input P must be vector.') 5P ,{h  
    end BHy#g>KUF  
    XnHcU=~q  
    if any(p)>35 c6:"5};_  
        error('zernfun2:P36', ... IX7<  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... 4/e-E^  
               '(P = 0 to 35).']) OQ;DqV  
    end \H!E CTI  
    KDhr.P.~  
    % Get the order and frequency corresonding to the function number: F0t!k>  
    % ---------------------------------------------------------------- H-K,Q%;C@  
    p = p(:); 559znM=  
    n = ceil((-3+sqrt(9+8*p))/2); Yc/Nz(m  
    m = 2*p - n.*(n+2); }xJ9EE*G/  
    GU8b_~Gk?  
    % Pass the inputs to the function ZERNFUN: ,a9<\bd)  
    % ---------------------------------------- o$FqMRep  
    switch nargin K, ae-#wgb  
        case 3 oe}nrkmb  
            z = zernfun(n,m,r,theta); 4&~ft  
        case 4 7hqa|  
            z = zernfun(n,m,r,theta,nflag); rhO ]4A  
        otherwise .Wv2aJq  
            error('zernfun2:nargin','Incorrect number of inputs.') w4H3($ K  
    end ~@S5*(&8  
    f^@`[MJj1C  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) -g(&5._,ZW  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. $m]~d6  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of <"Z]S^>$  
    %   order N and frequency M, evaluated at R.  N is a vector of [8l;X:  
    %   positive integers (including 0), and M is a vector with the +/y 3]}  
    %   same number of elements as N.  Each element k of M must be a (" <3w2Vlh  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) /.l8Jb4  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is xWWfts1t  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix O?/\hZ"&c  
    %   with one column for every (N,M) pair, and one row for every c+c3C8s*8  
    %   element in R. -(V]knIF  
    % Me;@/;c(   
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- :uy8$g*;TE  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is rs2G{a  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to Nlemb:'eP3  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 %B5.zs]Of  
    %   for all [n,m]. i,=greA]"  
    % 4 :RL[;  
    %   The radial Zernike polynomials are the radial portion of the S'#KPzy.  
    %   Zernike functions, which are an orthogonal basis on the unit i$gm/ZO  
    %   circle.  The series representation of the radial Zernike &;S.1tg  
    %   polynomials is xZZW*d_b  
    % 9kss) xy  
    %          (n-m)/2 pMnkh}Q#  
    %            __ GzxtC  &  
    %    m      \       s                                          n-2s _\waA^ F  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r 9AK<<Mge.  
    %    n      s=0 b3N>RPsHS  
    % ig:,:KN  
    %   The following table shows the first 12 polynomials. NPc]/n?vDj  
    % Jy?s'tc  
    %       n    m    Zernike polynomial    Normalization ikf!7-,  
    %       --------------------------------------------- fx(^}e  
    %       0    0    1                        sqrt(2) $o"S zy  
    %       1    1    r                           2 ,Q!sns[T  
    %       2    0    2*r^2 - 1                sqrt(6) RO?5WJpPj  
    %       2    2    r^2                      sqrt(6) :c3}J<Z  
    %       3    1    3*r^3 - 2*r              sqrt(8) NKf][!bi  
    %       3    3    r^3                      sqrt(8) H~UxVQLPp  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) j H#Tt;  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) [u\E*8  
    %       4    4    r^4                      sqrt(10) :%cL(',Q  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) d~@&*1}  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) +X6x CE  
    %       5    5    r^5                      sqrt(12) M7!>-P  
    %       --------------------------------------------- pi7Fd\A  
    % >ly`1t1  
    %   Example: T^.;yU_B?  
    % ]Tk3@jw+b  
    %       % Display three example Zernike radial polynomials ka? |_(  
    %       r = 0:0.01:1; # 12  
    %       n = [3 2 5]; Z ? `  
    %       m = [1 2 1]; dYV'<  
    %       z = zernpol(n,m,r); S\=j; Uem  
    %       figure b@j**O>[q)  
    %       plot(r,z) O* `v1>  
    %       grid on 9[K".VeT]  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') S^0Po%d  
    % by; %k/  
    %   See also ZERNFUN, ZERNFUN2. O|j(CaF  
    ))f%3_H  
    % A note on the algorithm. d#E]>:w9  
    % ------------------------ {`5Sh1b  
    % The radial Zernike polynomials are computed using the series 8JxJ>I-9p  
    % representation shown in the Help section above. For many special 1sp>UBG  
    % functions, direct evaluation using the series representation can e aLSq  
    % produce poor numerical results (floating point errors), because K s 8  
    % the summation often involves computing small differences between 6)63Yp(  
    % large successive terms in the series. (In such cases, the functions >PdYQDyVS  
    % are often evaluated using alternative methods such as recurrence z%-Yz- G9  
    % relations: see the Legendre functions, for example). For the Zernike P__JN\{9  
    % polynomials, however, this problem does not arise, because the QCB2&lN\&L  
    % polynomials are evaluated over the finite domain r = (0,1), and L1=+x^WQ  
    % because the coefficients for a given polynomial are generally all xL8r'gV@  
    % of similar magnitude. 2z9\p%MX  
    % |hBX"  
    % ZERNPOL has been written using a vectorized implementation: multiple h8@8Q w  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] I^erMQn[ z  
    % values can be passed as inputs) for a vector of points R.  To achieve q SR\=:$  
    % this vectorization most efficiently, the algorithm in ZERNPOL C "XvspJ  
    % involves pre-determining all the powers p of R that are required to F:nhSd  
    % compute the outputs, and then compiling the {R^p} into a single H]&a}WQ_  
    % matrix.  This avoids any redundant computation of the R^p, and G"w ?{W @  
    % minimizes the sizes of certain intermediate variables. +oa\'.~?  
    %  1@Abs  
    %   Paul Fricker 11/13/2006 gz fs9e  
    xCU^4DO3p  
    ZC}'! $r7  
    % Check and prepare the inputs: (iub\`  
    % ----------------------------- '&/ 35d9|*  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) A9Cq(L_H  
        error('zernpol:NMvectors','N and M must be vectors.') y+b4s Ff  
    end NA%M)u{|  
    xs+pCK|  
    if length(n)~=length(m) .B 2?%2S  
        error('zernpol:NMlength','N and M must be the same length.') *J^l r"%c  
    end Gx Z'"x  
    ' >a(|  
    n = n(:); o!:V=F  
    m = m(:); X(s HFVU+  
    length_n = length(n); wdS4iQD  
    /5cFa  
    if any(mod(n-m,2)) _,*ld#'s  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') vv='.R, D  
    end VB 53n'  
    nx{_^sK  
    if any(m<0) j{k]8sI,H]  
        error('zernpol:Mpositive','All M must be positive.') wz1fx>Q  
    end  mZGAl1`8  
    U caLi&  
    if any(m>n) Gk~QgD/Pix  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') q\+khy,k  
    end Wp2b*B=-  
    6z;C~_BV  
    if any( r>1 | r<0 ) W(jXOgs+_  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') ,/{(8hn  
    end mqw5\7s?  
    \:>GF-Z(  
    if ~any(size(r)==1) +um Ua  
        error('zernpol:Rvector','R must be a vector.') E=N44[`.G  
    end [C1 .*Q+l  
    :r5DR`Rfm  
    r = r(:); TNwBnMe  
    length_r = length(r); M0Eq 7:Ba  
    ey'x3s_  
    if nargin==4 o1jDQ+  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); Fh2$,$ 2  
        if ~isnorm k^A17Nf`2  
            error('zernpol:normalization','Unrecognized normalization flag.') zj~(CNE  
        end #<_gY  
    else o }EipTL  
        isnorm = false; SePPI.n  
    end j?!BHNs  
    8sMDe'  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% _<;;CI3w  
    % Compute the Zernike Polynomials -TIrbYS`  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% :exgdm;N  
    ;ZnSWIF2  
    % Determine the required powers of r: %V40I{1  
    % ----------------------------------- l,z# : k  
    rpowers = []; )- 2sk@y  
    for j = 1:length(n) -)cau-(X  
        rpowers = [rpowers m(j):2:n(j)]; FE}!I  
    end K7G|cZ/^  
    rpowers = unique(rpowers); K})=&<M0  
    N0Y$QWr_$  
    % Pre-compute the values of r raised to the required powers, px|y_.DB2x  
    % and compile them in a matrix: q> ;u'3}  
    % ----------------------------- n-HQk7=mQ  
    if rpowers(1)==0 E cS+/  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); /g|H?F0  
        rpowern = cat(2,rpowern{:}); #Az#dt]H  
        rpowern = [ones(length_r,1) rpowern]; BQX6Q<  
    else Yd} Jz  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); u\L=nCtLby  
        rpowern = cat(2,rpowern{:}); <Mdyz!  
    end KyQO>g{R  
    .9":Ljs(L  
    % Compute the values of the polynomials: 87QK&S\  
    % --------------------------------------  z]/;?  
    z = zeros(length_r,length_n); zWN/>~}U \  
    for j = 1:length_n x2q6y  
        s = 0:(n(j)-m(j))/2; ;m/h?Y~  
        pows = n(j):-2:m(j); wjJM\BKr`  
        for k = length(s):-1:1 7(ni_|$|  
            p = (1-2*mod(s(k),2))* ... E5^P*6c(  
                       prod(2:(n(j)-s(k)))/          ... R`IFKmA EJ  
                       prod(2:s(k))/                 ... hW^*b:v{  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... |@84l  
                       prod(2:((n(j)+m(j))/2-s(k))); R?%J   
            idx = (pows(k)==rpowers); *=sMJY9#jE  
            z(:,j) = z(:,j) + p*rpowern(:,idx); *w H.]$  
        end (d> M/x?W  
         6Kl%|VrJs  
        if isnorm 'H19@b5rx  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); kIC $ai6.  
        end 7P+qPcRaP  
    end RA%=_wPD +  
    (-<s[VnXP  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  +A-z>T(  
    -R-yr.$j*  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 ]S 3l' "  
    =$-+~  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)