切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11779阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 6];3h>c]N  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! _3@5@1[s  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有  rvd $4l^  
    function z = zernfun(n,m,r,theta,nflag) %|(c?`2|  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. ~SQ xFAto  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N F,p0OL.  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 6I@j$edZ  
    %   unit circle.  N is a vector of positive integers (including 0), and P{n#^4  
    %   M is a vector with the same number of elements as N.  Each element ? x #K:a?  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) dz9U.:C  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, }<A.zwB<i  
    %   and THETA is a vector of angles.  R and THETA must have the same Re8x!e'>  
    %   length.  The output Z is a matrix with one column for every (N,M) c("|xe  
    %   pair, and one row for every (R,THETA) pair. El<*)  
    % *tF~CG$r  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike b/z-W`gw  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), `sCaGCp  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 4Lt9Dx1  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, N2}SR|.  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized S"Cz. bv  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. QE(.w dHP  
    % :'Qiwf&  
    %   The Zernike functions are an orthogonal basis on the unit circle. _ Ncbo#G  
    %   They are used in disciplines such as astronomy, optics, and [v"Z2F<.=  
    %   optometry to describe functions on a circular domain. j1K3|E  
    % {'O><4  
    %   The following table lists the first 15 Zernike functions. }UW7py!TN  
    % %vJHr!x  
    %       n    m    Zernike function           Normalization }%jF!d  
    %       -------------------------------------------------- :jl*Y-mM  
    %       0    0    1                                 1 +{I_%SsG  
    %       1    1    r * cos(theta)                    2 .Ix3wR9  
    %       1   -1    r * sin(theta)                    2 'V:Q :  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) V^2_]VFj  
    %       2    0    (2*r^2 - 1)                    sqrt(3) n(F!t,S1i  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) FbE/x$;~O  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) m;OvOc,  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) d+JK")$9C  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 2!/Kt O)i^  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) N6y9'LGG`  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) F<* /J]  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) !,Uo{@E)Y  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 7=6:ZSI  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ff#7}9_mh  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) ]<f)Rf">:`  
    %       -------------------------------------------------- ANhtz1Fl  
    % .{1$;K @  
    %   Example 1: ]ZY2\'  
    % 2zBk#c+  
    %       % Display the Zernike function Z(n=5,m=1) Js,!G  
    %       x = -1:0.01:1; NfgXOLthM  
    %       [X,Y] = meshgrid(x,x); r6m^~Wq!}  
    %       [theta,r] = cart2pol(X,Y); F(G..XJQ  
    %       idx = r<=1; Bs~~C8+  
    %       z = nan(size(X)); OsgPNy0  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); ?*fa5=ql  
    %       figure <&5z0rDKWw  
    %       pcolor(x,x,z), shading interp }T?X6LA$I8  
    %       axis square, colorbar G$<(>"Yr~$  
    %       title('Zernike function Z_5^1(r,\theta)') >f]/VaMH{  
    % AjVC{\Ik  
    %   Example 2: CY1WT  
    % E=sh^Q(A  
    %       % Display the first 10 Zernike functions %6m/ve  
    %       x = -1:0.01:1; Mg2+H+C~:  
    %       [X,Y] = meshgrid(x,x); |p|Zv H  
    %       [theta,r] = cart2pol(X,Y); 8 1,N92T5  
    %       idx = r<=1; G]K1X"W?  
    %       z = nan(size(X)); iiPVqU%  
    %       n = [0  1  1  2  2  2  3  3  3  3]; ;s B=f  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; l;; 2\mL?  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; E'AR.!  
    %       y = zernfun(n,m,r(idx),theta(idx)); *QC6zJ  
    %       figure('Units','normalized') my 'nDi  
    %       for k = 1:10 -c`xeuzK'  
    %           z(idx) = y(:,k); %F*9D3^h  
    %           subplot(4,7,Nplot(k)) mxv ?PP  
    %           pcolor(x,x,z), shading interp (Z),gxt  
    %           set(gca,'XTick',[],'YTick',[]) BhJ>G%  
    %           axis square E)v~kC}7.  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) voa)V 1A/]  
    %       end  0,Ds1y^  
    % -^@FZ R^Y  
    %   See also ZERNPOL, ZERNFUN2. x5lVb$!G  
    r&u1-%%9[  
    %   Paul Fricker 11/13/2006 |Xso}Y{  
    m eF7[>!U  
    C;BO6$*_e  
    % Check and prepare the inputs: 5aQ)qUgAW  
    % ----------------------------- $S6(V}yh  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) LRJX>+@  
        error('zernfun:NMvectors','N and M must be vectors.') `Skvqo(5:  
    end QQJGqM3a2  
    AiqKf=  
    if length(n)~=length(m)  ?8>a;0  
        error('zernfun:NMlength','N and M must be the same length.') PR{ubM n  
    end #7uH>\r  
    7e<=(\(yl  
    n = n(:);  ti5fsc  
    m = m(:); BtJkvg(2]  
    if any(mod(n-m,2)) /J`}o}  
        error('zernfun:NMmultiplesof2', ... lu#a.41  
              'All N and M must differ by multiples of 2 (including 0).') CsR[@&n'  
    end )vtbA=RH?  
    -laH^<jm5  
    if any(m>n) HSruue8  
        error('zernfun:MlessthanN', ... {cdICWy(F3  
              'Each M must be less than or equal to its corresponding N.') uLdHE5vr  
    end (hc!!:N~q  
    >tg)F|@  
    if any( r>1 | r<0 ) }8O9WS  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') NEBhVh  
    end 6i/unwe!`)  
    H1N@E}>|  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) e~vO   
        error('zernfun:RTHvector','R and THETA must be vectors.') g@H<Q('fJ  
    end vn.5X   
    R @\fqNq  
    r = r(:); 1hbQ30  
    theta = theta(:); 0:{W t  
    length_r = length(r); 6~dAK3v5  
    if length_r~=length(theta) rJ /HIda  
        error('zernfun:RTHlength', ... 0akJv^^D  
              'The number of R- and THETA-values must be equal.') _`2%)#^ o  
    end [if(B\&  
    V9[_aP;  
    % Check normalization: 1d<?K7%^  
    % -------------------- tB;PGk_6  
    if nargin==5 && ischar(nflag) h7]+#U]mi  
        isnorm = strcmpi(nflag,'norm'); 4" ?`p;{Z  
        if ~isnorm _a&gbSQv  
            error('zernfun:normalization','Unrecognized normalization flag.') |gkNhxzB  
        end +*.*bo  
    else g$Tsht(rHD  
        isnorm = false; ,ei9 ?9J1  
    end ~&:-c v  
    fw%p_Cm  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Q<>u) %92@  
    % Compute the Zernike Polynomials 7(/yyZQnZ  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% nOC\ =<Nsg  
    L|[i<s;  
    % Determine the required powers of r: 3Ei^WDJ  
    % ----------------------------------- 9fp"r,aHN&  
    m_abs = abs(m); -zECxHj x  
    rpowers = []; &>-'|(m+2  
    for j = 1:length(n) 1c,#`\Iikd  
        rpowers = [rpowers m_abs(j):2:n(j)]; /l `zZ>  
    end mxqZj8VuH  
    rpowers = unique(rpowers); V@0T&#  
    t__f=QB/  
    % Pre-compute the values of r raised to the required powers, kQI'kL8>  
    % and compile them in a matrix: $mxG-'x%K  
    % ----------------------------- WvU[9ME^)  
    if rpowers(1)==0 b GSj?t9/  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); aPJTH0u  
        rpowern = cat(2,rpowern{:}); X au %v5r  
        rpowern = [ones(length_r,1) rpowern]; YusmMsN?  
    else |X{j^JP 5  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); U*nB= =  
        rpowern = cat(2,rpowern{:}); )d[n-Si  
    end Jk{SlH3'  
    )pI( <  
    % Compute the values of the polynomials: 3MX#}_7A  
    % -------------------------------------- @zGF9O<3,@  
    y = zeros(length_r,length(n)); 5 CnNp?.t^  
    for j = 1:length(n) S^R dj ]  
        s = 0:(n(j)-m_abs(j))/2; T6y~iNd<  
        pows = n(j):-2:m_abs(j); R1JD{  
        for k = length(s):-1:1 \= ({T_j4  
            p = (1-2*mod(s(k),2))* ... t<Sa ;[+  
                       prod(2:(n(j)-s(k)))/              ... o4: e1  
                       prod(2:s(k))/                     ... _"*vj-{-y  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... &SIf|IX.  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 0%xb):Ctw  
            idx = (pows(k)==rpowers); / 8O=3  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 8XVRRk  
        end NvzPZ9=@-  
         5XT^K)'  
        if isnorm 7j|CWurvq  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); h_-4Q"fb(  
        end )fo0YpE^|  
    end h5P ]`r  
    % END: Compute the Zernike Polynomials .3) 27Cjw  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% idHI)6!  
    nK< v  
    % Compute the Zernike functions: ]@y%j'e  
    % ------------------------------ 0fj C>AS  
    idx_pos = m>0; C}9GrIi  
    idx_neg = m<0; !Th5x2  
    zWPX  
    z = y; ,g'>Ib%  
    if any(idx_pos) Ay Uw  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); :~vg'v~C  
    end }72\Aw5  
    if any(idx_neg) P,zQl;  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); /0>'ZzjV,  
    end XD8Cf!  
    ?(zCv9Pg  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) ?=)lbSu K  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. P )oNNY6}  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated ic}TiTK  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive &tbAXU5$  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, "N'W~XPG  
    %   and THETA is a vector of angles.  R and THETA must have the same 22ySMtxn  
    %   length.  The output Z is a matrix with one column for every P-value, ho6hjhS|u  
    %   and one row for every (R,THETA) pair. A|K=>7n]U  
    % )^P54_2  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike gT=pO`a  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) 2Y9u9;ah  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) C(h<s e?  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 C}uzzG6s  
    %   for all p. y(iq  
    % ,j{tGj_  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 :!cK?H$+  
    %   Zernike functions (order N<=7).  In some disciplines it is A#K<5%U{Mv  
    %   traditional to label the first 36 functions using a single mode 5|jY  
    %   number P instead of separate numbers for the order N and azimuthal ab9ecZ  
    %   frequency M. `z q+Xl  
    % ^B%ki  
    %   Example: gREk,4DAv  
    %  %nUN  
    %       % Display the first 16 Zernike functions bxwwYSS  
    %       x = -1:0.01:1; E_'H=QN c  
    %       [X,Y] = meshgrid(x,x); /Q)I5sL@E  
    %       [theta,r] = cart2pol(X,Y); sMVk]Mb  
    %       idx = r<=1; x'?p?u~[  
    %       p = 0:15; B R  
    %       z = nan(size(X)); UpD4'!<buV  
    %       y = zernfun2(p,r(idx),theta(idx)); Ri AMW|M"C  
    %       figure('Units','normalized') <-' !I&  
    %       for k = 1:length(p) {A< 961  
    %           z(idx) = y(:,k); a_0I)' ?  
    %           subplot(4,4,k) { 7DXSe4  
    %           pcolor(x,x,z), shading interp G 0Z5h  
    %           set(gca,'XTick',[],'YTick',[]) dg~lz80  
    %           axis square RhB)AUAj  
    %           title(['Z_{' num2str(p(k)) '}']) !U}2YM J  
    %       end F =*4] O  
    % KX;JX*)J  
    %   See also ZERNPOL, ZERNFUN. 2[(~_VJ  
    >r\GB#\5  
    %   Paul Fricker 11/13/2006 1MO-60  
    j `!Ge  
    ){)-}M  
    % Check and prepare the inputs: L#'XN H"  
    % ----------------------------- a}FY^4hl+  
    if min(size(p))~=1 Id`V`|q  
        error('zernfun2:Pvector','Input P must be vector.') 5_](N$$  
    end Iw.!*0$  
    hi$AZ+  
    if any(p)>35 N2HD=[*cr  
        error('zernfun2:P36', ... iFI+W<QR  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... _x""-X~OL  
               '(P = 0 to 35).']) l(87s^_  
    end XC;Icr)  
    }.'rhR+  
    % Get the order and frequency corresonding to the function number: (y6}xOa(  
    % ---------------------------------------------------------------- `C|];mf(#  
    p = p(:); /W*Z.  
    n = ceil((-3+sqrt(9+8*p))/2); k]$oir  
    m = 2*p - n.*(n+2); z7sDaZL?_  
    VJTO:}Q  
    % Pass the inputs to the function ZERNFUN: 7$g$p&,VX  
    % ----------------------------------------  yZ[g2*1L  
    switch nargin ^dk$6%0  
        case 3 J]Z~.f="  
            z = zernfun(n,m,r,theta); "9c=kqkX  
        case 4 573,b7Yf  
            z = zernfun(n,m,r,theta,nflag); #| ,cy,v4  
        otherwise flC%<V%'-  
            error('zernfun2:nargin','Incorrect number of inputs.') R)*DkL!  
    end N8Zz6{rp  
    GrJLQO0$N  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) J+E,UiZU  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. &R@([=1  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of Mhti  
    %   order N and frequency M, evaluated at R.  N is a vector of 54z.@BJhE  
    %   positive integers (including 0), and M is a vector with the U7 D!w$4  
    %   same number of elements as N.  Each element k of M must be a qT(6TP  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) bz#]>RD  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is -c0ypz  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix 7g"u)L&32  
    %   with one column for every (N,M) pair, and one row for every KsOWTq"uj  
    %   element in R. y-bUVw!Y  
    % 3rKJ<(-2/  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- L0!CHP/nRS  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is ;H~<.QW  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to 7LVG0A2>7  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 BXYH&2]Q  
    %   for all [n,m]. 6^'BTd  
    % I@9'd$YY  
    %   The radial Zernike polynomials are the radial portion of the 6u+aP  
    %   Zernike functions, which are an orthogonal basis on the unit ]1<GZ`  
    %   circle.  The series representation of the radial Zernike [DM0'4  
    %   polynomials is aU_Hl+;  
    % u7[}pf$}  
    %          (n-m)/2 mvZ#FF1,J  
    %            __ q iOJ:'@  
    %    m      \       s                                          n-2s Q&I`uS=F  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r C{zp8 A(Dh  
    %    n      s=0 P Y^#hC5:  
    % yzhNl' Rz  
    %   The following table shows the first 12 polynomials. v wEbGx  
    % \\FT.e6  
    %       n    m    Zernike polynomial    Normalization G7nhUg  
    %       --------------------------------------------- z2uL[deN'"  
    %       0    0    1                        sqrt(2) I} jgz  
    %       1    1    r                           2 \]u;NbC]  
    %       2    0    2*r^2 - 1                sqrt(6) @9B*V~ <  
    %       2    2    r^2                      sqrt(6) ^E.L8  
    %       3    1    3*r^3 - 2*r              sqrt(8) er UYR"  
    %       3    3    r^3                      sqrt(8) \uJRjw+  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) w]0@V}}u$o  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) VX$WL"A  
    %       4    4    r^4                      sqrt(10) Zj_2>A  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) h <LFTYE@  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) + t5SrO!`  
    %       5    5    r^5                      sqrt(12) $0 olqt:  
    %       --------------------------------------------- K"0IWA  
    % (jc& Fk  
    %   Example: fgdR:@]-  
    % hWT jN  
    %       % Display three example Zernike radial polynomials ;XurH%Mg  
    %       r = 0:0.01:1; -[=eVS.2%  
    %       n = [3 2 5]; nMyl( kF[  
    %       m = [1 2 1]; Mqr_w!8d  
    %       z = zernpol(n,m,r); gYB!KM *v  
    %       figure "0An'7'm  
    %       plot(r,z) Wb-C0^dTn  
    %       grid on p%3z*2,(  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') !@=S,Vc.  
    % V95o(c.p  
    %   See also ZERNFUN, ZERNFUN2. nF,F#V8l  
    Tnp P'  
    % A note on the algorithm. Y_JQPup  
    % ------------------------ e7RgA1  
    % The radial Zernike polynomials are computed using the series c1yRy|  
    % representation shown in the Help section above. For many special <&3P\aM>  
    % functions, direct evaluation using the series representation can {]T?)!V m  
    % produce poor numerical results (floating point errors), because 6Wu*zY_+  
    % the summation often involves computing small differences between 7FG;fJ;&NZ  
    % large successive terms in the series. (In such cases, the functions hIJtu;}zU  
    % are often evaluated using alternative methods such as recurrence m2j&0z  
    % relations: see the Legendre functions, for example). For the Zernike l6/VJ~(}'  
    % polynomials, however, this problem does not arise, because the V*giF`gq  
    % polynomials are evaluated over the finite domain r = (0,1), and KewW8H~tb  
    % because the coefficients for a given polynomial are generally all 1xB}Ed*k  
    % of similar magnitude. ]M7FIDg  
    % !D#"+&&G8  
    % ZERNPOL has been written using a vectorized implementation: multiple i2,4:M)CV  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] cS;3,#$  
    % values can be passed as inputs) for a vector of points R.  To achieve vd%g'fTy9  
    % this vectorization most efficiently, the algorithm in ZERNPOL v>8C}d^  
    % involves pre-determining all the powers p of R that are required to SMEl'y  
    % compute the outputs, and then compiling the {R^p} into a single wjA wJOw|  
    % matrix.  This avoids any redundant computation of the R^p, and g#J` 7n  
    % minimizes the sizes of certain intermediate variables. )+G"57p  
    % xZ'fer`&  
    %   Paul Fricker 11/13/2006 TN(Vzs%  
    iW5cEI%tb  
    $w0TEO!  
    % Check and prepare the inputs: EeW ,-I  
    % ----------------------------- X1Yw=t~a  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) @/ z\p7e  
        error('zernpol:NMvectors','N and M must be vectors.') xXe3E&  
    end +Nt4R:N  
    5Gz!Bf@!!  
    if length(n)~=length(m) M/N8bIC! Q  
        error('zernpol:NMlength','N and M must be the same length.') v:t;Uk^Y  
    end Vrt$/ d  
    e"E8BU  
    n = n(:); )?F&`+  
    m = m(:); fiGTI}=P  
    length_n = length(n); +fP.Ewi  
    ;TAj;Tf]H  
    if any(mod(n-m,2)) ;4nY{)bD  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') 3l{V:x!9@  
    end QAs)zl0  
    {VcRur}&Y8  
    if any(m<0) [o)K1>>7  
        error('zernpol:Mpositive','All M must be positive.') |[SHpcq>  
    end 1m*)MZ)  
    3\7MeG`tl  
    if any(m>n) 1}(22Q;  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') 0<,{poMM  
    end w*F[[*j@.  
    L;Ff(0x|  
    if any( r>1 | r<0 ) 6{h\CU}"  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') & l>nzJ5?  
    end 4V@%Y,:ee  
    d_9 C m@  
    if ~any(size(r)==1) gv*b`cl  
        error('zernpol:Rvector','R must be a vector.') )w7vE\n3  
    end q$:1Xkl  
    TM)INo^  
    r = r(:); AO-5>r  
    length_r = length(r); ;UQGi}?CD  
    ? i{?Q,  
    if nargin==4 'S`l[L:.8  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); ;uBGB h<  
        if ~isnorm (i~UH04r>s  
            error('zernpol:normalization','Unrecognized normalization flag.') Z)@vJZ*7(  
        end  6}"%>9  
    else I dK*IA4  
        isnorm = false; 'OY4Q 'Z  
    end y;b#qUd5a  
    hb`9Vn\-E  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% j~q 7v `":  
    % Compute the Zernike Polynomials %2QGbnt_*  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% m Q2i$ 0u  
    (xfc_h*xA  
    % Determine the required powers of r: ]LvP)0=  
    % ----------------------------------- p6DI7<C<H  
    rpowers = []; \s=r[0tj!  
    for j = 1:length(n) *C_A(n5"V  
        rpowers = [rpowers m(j):2:n(j)]; wm5&5F4:  
    end WVP?Ie8  
    rpowers = unique(rpowers); G5}_NS/  
    TU|#Pz7n-Z  
    % Pre-compute the values of r raised to the required powers, &g :(I  
    % and compile them in a matrix: vk7IqlEQ  
    % ----------------------------- T?8BAxC?K  
    if rpowers(1)==0 %' DO FiU  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ,=)DykP  
        rpowern = cat(2,rpowern{:}); ?8~l+m6s$  
        rpowern = [ones(length_r,1) rpowern]; kV'zA F v  
    else [ V.67_~  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); !>48`o ^  
        rpowern = cat(2,rpowern{:}); <cTX;&0=  
    end $kUB%\`  
    Vn#}f=u\  
    % Compute the values of the polynomials: %]P{)*y-?  
    % -------------------------------------- >|3Y+X  
    z = zeros(length_r,length_n); tA(oD4H9  
    for j = 1:length_n 9\8ektq}Z  
        s = 0:(n(j)-m(j))/2; e{x>u(  
        pows = n(j):-2:m(j); oCT,v0+4O  
        for k = length(s):-1:1 -d ,D!  
            p = (1-2*mod(s(k),2))* ... bxE~tsM"@Y  
                       prod(2:(n(j)-s(k)))/          ... c.>f,vtcn  
                       prod(2:s(k))/                 ... o/-RGLzAo  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... #9GfMxH  
                       prod(2:((n(j)+m(j))/2-s(k))); 8a6.77c  
            idx = (pows(k)==rpowers); =%U &$d|@G  
            z(:,j) = z(:,j) + p*rpowern(:,idx); utck{]P  
        end }3lG'Y#Kpy  
         ag'hHFV  
        if isnorm u!X~!h-6~  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); Kbu>U{'  
        end kFjv'[Y1N  
    end CR [>5/:M  
    .@{v{  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    857
    光币
    847
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  ?0u"No52m  
    Z}zka<y6K6  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 pqvl,G5  
    pHk$_t  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)