切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11672阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 :(4q\~  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! _w2KUvG-8  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 R]RLy#j  
    function z = zernfun(n,m,r,theta,nflag) f# hmMa  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. SRU#Y8Xv|  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N wo$ F_!3u  
    %   and angular frequency M, evaluated at positions (R,THETA) on the AgB$ w4  
    %   unit circle.  N is a vector of positive integers (including 0), and 1^[]#N-Bu  
    %   M is a vector with the same number of elements as N.  Each element ey\(*Tu9  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) QUF1_Sa  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ''k}3o.K[  
    %   and THETA is a vector of angles.  R and THETA must have the same Uo[`AzD3  
    %   length.  The output Z is a matrix with one column for every (N,M) VTi; y{  
    %   pair, and one row for every (R,THETA) pair. buWF6LFC  
    % ]eX(K5 A  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike PWfd<Yf!  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), <l>L8{-3  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral L Z3=K`gj  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, pBn;:  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized c:s[vghH^#  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. RLGIST`  
    % };*&;GFe  
    %   The Zernike functions are an orthogonal basis on the unit circle. GkKoc v  
    %   They are used in disciplines such as astronomy, optics, and QqcAmp  
    %   optometry to describe functions on a circular domain. `qZ@eGZ z  
    % 'lgS) m  
    %   The following table lists the first 15 Zernike functions. Bma.Uln  
    % u N_<G  
    %       n    m    Zernike function           Normalization 0 4oMgH>Vd  
    %       -------------------------------------------------- $]?M[sL\N7  
    %       0    0    1                                 1 t1G2A`  
    %       1    1    r * cos(theta)                    2 "tj]mij2)G  
    %       1   -1    r * sin(theta)                    2 fvG4K(  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 6']WOM#  
    %       2    0    (2*r^2 - 1)                    sqrt(3) h9~oS/%:  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) %*Yb J_j7  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 0_t9;;y :  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 1W9uWkk_d  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) I#W J";kqB  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) P{,=a]x,mz  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) ntZHO}'  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) gpCWXz')i  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) }q?q)cG  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 8{Vt8>4  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) t /lU*  
    %       -------------------------------------------------- yWi?2   
    % AQc9@3T~Bi  
    %   Example 1: jLEO-<)-)  
    % )=0@4   
    %       % Display the Zernike function Z(n=5,m=1) qf%p#+:B3  
    %       x = -1:0.01:1; 5L\Im^  
    %       [X,Y] = meshgrid(x,x); i^rHZmT  
    %       [theta,r] = cart2pol(X,Y); 1\5po^Oioy  
    %       idx = r<=1; Nm3CeU  
    %       z = nan(size(X)); w}x&wWM  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); "h&[6-0'  
    %       figure ^YEMR C  
    %       pcolor(x,x,z), shading interp qi8~bQ{rH  
    %       axis square, colorbar jYW-}2L  
    %       title('Zernike function Z_5^1(r,\theta)') Gk|T1%  
    % gyC Xv0*z  
    %   Example 2: |(9l_e|  
    % SqoO"(1x  
    %       % Display the first 10 Zernike functions "}uV=y  
    %       x = -1:0.01:1; ~e+pa|lO  
    %       [X,Y] = meshgrid(x,x); w X.]O!^X~  
    %       [theta,r] = cart2pol(X,Y); {%X[Snv  
    %       idx = r<=1; u/5)Yx+5_  
    %       z = nan(size(X)); :A,7D(H|  
    %       n = [0  1  1  2  2  2  3  3  3  3]; XZ|\|(6Cc  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; H8!lSRq  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; PB@jh}  
    %       y = zernfun(n,m,r(idx),theta(idx)); ;GZ'Rb  
    %       figure('Units','normalized') z@xkE ,j>  
    %       for k = 1:10 RP 6hw|  
    %           z(idx) = y(:,k); qnw8#!%I  
    %           subplot(4,7,Nplot(k)) [Y6ZcO/-i  
    %           pcolor(x,x,z), shading interp et`rPK~m  
    %           set(gca,'XTick',[],'YTick',[]) vz)zl2F5sY  
    %           axis square ~|`jIqU  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) uHyc7^X>  
    %       end H(Ad"1~.#  
    % ymA8`k5>@  
    %   See also ZERNPOL, ZERNFUN2. qkq^oHI  
    /qXP\ a  
    %   Paul Fricker 11/13/2006 z-`4DlJUS  
    !Ee&e~"  
    0Y*Ag ,S  
    % Check and prepare the inputs:  Kuh)3/7  
    % ----------------------------- 05;J7T<  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) iD:T KB_r  
        error('zernfun:NMvectors','N and M must be vectors.') 8*(|uX  
    end F=$U.K~1?  
    Dfd%Z;Yu  
    if length(n)~=length(m) MNKY J  
        error('zernfun:NMlength','N and M must be the same length.') "%+9p6/  
    end v t}A6mF  
    Njs'v;-K  
    n = n(:); !GZ{UmwA  
    m = m(:); =M34 HPG  
    if any(mod(n-m,2)) D(M^%z2N  
        error('zernfun:NMmultiplesof2', ... R9%"Kxm  
              'All N and M must differ by multiples of 2 (including 0).') AXpyia7nU  
    end M}9PicI?7  
    c nV2}U/\  
    if any(m>n) dxF)) Z  
        error('zernfun:MlessthanN', ... 2;YL+v2  
              'Each M must be less than or equal to its corresponding N.') <7J\8JR&=  
    end /U"3LX  
    2sT\+C&H  
    if any( r>1 | r<0 ) BE," lX  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') ^1[u'DW4  
    end 4NmLbM&C8  
    c]/&xRd  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) UjS,<>fm  
        error('zernfun:RTHvector','R and THETA must be vectors.') 7gT^ZL  
    end IL<@UWs6  
    6>/g`%`N  
    r = r(:); h,P#)^"  
    theta = theta(:); K=;oZYNd  
    length_r = length(r);  x5W. 3*  
    if length_r~=length(theta) o$,e#q)8  
        error('zernfun:RTHlength', ... Uj> bWa`  
              'The number of R- and THETA-values must be equal.') IVSd,AR7yY  
    end [!b=A:@  
    {us"=JJVN  
    % Check normalization: R8fB 8 )  
    % -------------------- =BBDh`$R  
    if nargin==5 && ischar(nflag) |j7{zsH  
        isnorm = strcmpi(nflag,'norm'); |ea}+N  
        if ~isnorm k54Vh=p  
            error('zernfun:normalization','Unrecognized normalization flag.') 47 9yG/+\  
        end bJ9K!6s??`  
    else 2k"!o~s^  
        isnorm = false; ( T2 \   
    end ]jwF[D  
    PkxhR;4  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% "9yQDS:  
    % Compute the Zernike Polynomials f;%\4TH?  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ffS]%qa  
    BFMINq>  
    % Determine the required powers of r: +`Ypc  
    % ----------------------------------- L:RMZp*bK  
    m_abs = abs(m); p*" H&xA@  
    rpowers = []; c~iAjq+c  
    for j = 1:length(n) nn6&`$(Q~  
        rpowers = [rpowers m_abs(j):2:n(j)]; 63y&MaqSJ  
    end =9#cf-?  
    rpowers = unique(rpowers); =aE!y5  
    &\/p5RX  
    % Pre-compute the values of r raised to the required powers, \Dr?}D  
    % and compile them in a matrix: Kq2,J&Ca3  
    % ----------------------------- o<8=@ ^T  
    if rpowers(1)==0 @If ^5s;z  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); U<mFwJ C]  
        rpowern = cat(2,rpowern{:}); fs wQ*  
        rpowern = [ones(length_r,1) rpowern]; XKepk? E  
    else O #S27.  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); pcjb;&<  
        rpowern = cat(2,rpowern{:}); V.Ki$0>  
    end fI1,L"  
    \dw*yZ^  
    % Compute the values of the polynomials: )Y@mL/_  
    % -------------------------------------- %(y0,?*  
    y = zeros(length_r,length(n)); mu}T,+9\  
    for j = 1:length(n) ZF6?N?t}h8  
        s = 0:(n(j)-m_abs(j))/2; >@9>bI+Q  
        pows = n(j):-2:m_abs(j); WaYT7 :  
        for k = length(s):-1:1 Erd)P  
            p = (1-2*mod(s(k),2))* ... S,~DA3  
                       prod(2:(n(j)-s(k)))/              ... [<p7'n3x  
                       prod(2:s(k))/                     ... Pf?y!d K<  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... vTY+J$N__  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); sX$EdIq  
            idx = (pows(k)==rpowers); c>nXnN  
            y(:,j) = y(:,j) + p*rpowern(:,idx); W_ hckq.  
        end (R)(%I1Oz  
         U$5 lh  
        if isnorm `cBV+00YS  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); &?mJL0fy  
        end m}dO\;  
    end ;.4A,7w#  
    % END: Compute the Zernike Polynomials b 5X~^L  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% '8b/TL  
    pk0C x  
    % Compute the Zernike functions: 1hn4YcHb  
    % ------------------------------ /?wH1 ,  
    idx_pos = m>0; UBy< vwnU  
    idx_neg = m<0; WfDpeXdO  
    ZW0gd7Wh  
    z = y; * vMNv  
    if any(idx_pos) 3A(sT}  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 42wa9UL<Ka  
    end Y}pCBw  
    if any(idx_neg) vhQIkB8  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ^ A`@g4!  
    end 3j iSvrfI  
    F qW[L>M'  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) D/ SM/  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. y.l`NTT] <  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated (A\p5@ht  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive K2u$1OKv  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, ;QA`2$Ow  
    %   and THETA is a vector of angles.  R and THETA must have the same UE[5Bw?4X  
    %   length.  The output Z is a matrix with one column for every P-value, lo%:$2*'p  
    %   and one row for every (R,THETA) pair. lbCTc,xT  
    % ?x|8"*N  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike f;u<r?>Z  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) .1[[Y}  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) 8Q%rBl.  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 IU8/B+hM~  
    %   for all p. "AzA|zk')"  
    % oP$l(k  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 oTPPYi[r  
    %   Zernike functions (order N<=7).  In some disciplines it is 4nfpPN t  
    %   traditional to label the first 36 functions using a single mode #Tjv(O[&  
    %   number P instead of separate numbers for the order N and azimuthal py9HUyr5eZ  
    %   frequency M. ~ "^]\3#  
    % S-^RZ"  
    %   Example: >>ncq$  
    % = 2 3H/  
    %       % Display the first 16 Zernike functions *h`%u8/{  
    %       x = -1:0.01:1; Y 7a<3>  
    %       [X,Y] = meshgrid(x,x); |,&5.|E 7  
    %       [theta,r] = cart2pol(X,Y); $R'  
    %       idx = r<=1; F3aOKV^  
    %       p = 0:15; ZZ<uiN$  
    %       z = nan(size(X)); b#:Pl`n6u  
    %       y = zernfun2(p,r(idx),theta(idx)); rHir> p  
    %       figure('Units','normalized') 1@j0kTJ~m  
    %       for k = 1:length(p) $\0%"S  
    %           z(idx) = y(:,k); ^=H. .pr  
    %           subplot(4,4,k) &vf%E@<  
    %           pcolor(x,x,z), shading interp |6%B2I&c  
    %           set(gca,'XTick',[],'YTick',[]) B>hC8^.S|w  
    %           axis square )}-,4Iu%  
    %           title(['Z_{' num2str(p(k)) '}']) h@5mVTb}i  
    %       end = h _>OA  
    % *nv%~t   
    %   See also ZERNPOL, ZERNFUN. .#M'  
    MT8BP)C  
    %   Paul Fricker 11/13/2006 T+OQa+E@P  
    BM(8+Wj  
    ;^9Ao>(?y  
    % Check and prepare the inputs: lzQmD/i*  
    % ----------------------------- BI'}  
    if min(size(p))~=1 mG? g  
        error('zernfun2:Pvector','Input P must be vector.') 7r`A6 \ !  
    end U;Iqz1S  
    +bG^SH2ke  
    if any(p)>35 Q-3o k7  
        error('zernfun2:P36', ... g:l5,j.K  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... }=1#ANM1  
               '(P = 0 to 35).']) 2;Ij~~  
    end u~| D;e  
    ?R7>xrp5  
    % Get the order and frequency corresonding to the function number: mVg$z  
    % ---------------------------------------------------------------- N3D{t\hg  
    p = p(:); i?.7o*w8  
    n = ceil((-3+sqrt(9+8*p))/2); YEL, TU  
    m = 2*p - n.*(n+2); 5J d7<AO_  
    mgIB8D+6  
    % Pass the inputs to the function ZERNFUN: XYJ7k7zc+Y  
    % ---------------------------------------- xWwQm'I2}  
    switch nargin (]JZ1s|  
        case 3 Y#>'.$ (Az  
            z = zernfun(n,m,r,theta); .?L&k|wX-  
        case 4 Uxla,CCp-  
            z = zernfun(n,m,r,theta,nflag); cs]N%M^s  
        otherwise ~uF%*  
            error('zernfun2:nargin','Incorrect number of inputs.') y4%u< /  
    end 3{gD'y4j  
    q5jLK)  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) 8<,b5  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. 8db J'  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of X6+2~'*t  
    %   order N and frequency M, evaluated at R.  N is a vector of pF)}<<C  
    %   positive integers (including 0), and M is a vector with the jwm2ZJW  
    %   same number of elements as N.  Each element k of M must be a t7A '  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) _R&}CP  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is x$Gu)S  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix ]:lqbg[J  
    %   with one column for every (N,M) pair, and one row for every -&4W0JK9  
    %   element in R.  $D`~X`  
    % u"rK5'  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- c\X0*GX  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is m7zx,bz>  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to l[KFK%?  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 4>q^W$  
    %   for all [n,m]. L@ ,-V  
    % <SiD m-=E  
    %   The radial Zernike polynomials are the radial portion of the s[ {L.9Y  
    %   Zernike functions, which are an orthogonal basis on the unit DU_38tz  
    %   circle.  The series representation of the radial Zernike p&B c<+3e  
    %   polynomials is I\NiA>c  
    % RR2Q  
    %          (n-m)/2 2k\i/i/Y  
    %            __ pEUbP,3M:  
    %    m      \       s                                          n-2s d3A= (/>D  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r 'qGKS:8  
    %    n      s=0 [kdt]+'+  
    % /u9Md3q*'  
    %   The following table shows the first 12 polynomials. x/nlIoT  
    % NGl/F{<  
    %       n    m    Zernike polynomial    Normalization ]ne&`uO  
    %       --------------------------------------------- /:]`TlAb,  
    %       0    0    1                        sqrt(2) '4gi*8Y  
    %       1    1    r                           2 {@T8i ^EI  
    %       2    0    2*r^2 - 1                sqrt(6) RX-qL,dc  
    %       2    2    r^2                      sqrt(6) SU0K#:  
    %       3    1    3*r^3 - 2*r              sqrt(8) `;[ j`v8O  
    %       3    3    r^3                      sqrt(8) y`"~zq0D  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) !PN;XZ~{  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) !Vtt.j &4  
    %       4    4    r^4                      sqrt(10) owClnp9K  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) V=<OV]0  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) /*5t@_0fe  
    %       5    5    r^5                      sqrt(12) +r7uIwi$@  
    %       --------------------------------------------- +xqPyR  
    % f wN  
    %   Example: uzf@49m]m  
    % t`b>iX%(1t  
    %       % Display three example Zernike radial polynomials 7U#`^Q}  
    %       r = 0:0.01:1; = > .EDL.  
    %       n = [3 2 5]; Fs^d-I  
    %       m = [1 2 1]; 7%p[n;-o&  
    %       z = zernpol(n,m,r); w(w%~;\kLP  
    %       figure TH_Vw,)  
    %       plot(r,z) >QwZt  
    %       grid on kyQUaFG  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') <VP@#  
    % TGnyN'P|  
    %   See also ZERNFUN, ZERNFUN2. M8Y\1#~  
    P0m;AqS#R  
    % A note on the algorithm. +P C<#  
    % ------------------------ rbP" n)0=  
    % The radial Zernike polynomials are computed using the series #u8|cs!  
    % representation shown in the Help section above. For many special &1hJ?uM01  
    % functions, direct evaluation using the series representation can &5&C   
    % produce poor numerical results (floating point errors), because D#>+]}5@x  
    % the summation often involves computing small differences between RX",Zt$q  
    % large successive terms in the series. (In such cases, the functions ny:c&XS  
    % are often evaluated using alternative methods such as recurrence 3c5=>'^F  
    % relations: see the Legendre functions, for example). For the Zernike ]?P9M<0PM  
    % polynomials, however, this problem does not arise, because the 3zJbb3e  
    % polynomials are evaluated over the finite domain r = (0,1), and h:QKd!Gq  
    % because the coefficients for a given polynomial are generally all M[5zn  
    % of similar magnitude. vF, !8e'v  
    % OtuOT=%  
    % ZERNPOL has been written using a vectorized implementation: multiple o'.6gZ gk  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] |RqCw7  
    % values can be passed as inputs) for a vector of points R.  To achieve u@SE)qg  
    % this vectorization most efficiently, the algorithm in ZERNPOL $M\[^g(q  
    % involves pre-determining all the powers p of R that are required to 5TlPs_o  
    % compute the outputs, and then compiling the {R^p} into a single ZoJ:4uo N`  
    % matrix.  This avoids any redundant computation of the R^p, and F^ kH"u[  
    % minimizes the sizes of certain intermediate variables. E.v~<[g  
    % ^FSUK  
    %   Paul Fricker 11/13/2006 jKV,i?  
    ;^)(q<]  
    y6KI.LWR9  
    % Check and prepare the inputs: V}732?Jy  
    % ----------------------------- 1-@.[VI  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Va"_.8n|+  
        error('zernpol:NMvectors','N and M must be vectors.') ~ei\~;n\@  
    end }a@ZFk_>  
     /kGRN @  
    if length(n)~=length(m) t?^C9(;6  
        error('zernpol:NMlength','N and M must be the same length.') Ij>x3L\-  
    end VNx|nP&  
    }?B=R#5  
    n = n(:); >So)KB  
    m = m(:); ]saf<?fzr  
    length_n = length(n); (j-[m\wF  
    kvh}{@|-  
    if any(mod(n-m,2)) hx$-d}W{  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') )f4D2c&VE  
    end X#mm Z;P  
    }zVPdBRfm  
    if any(m<0) zECdj'/  
        error('zernpol:Mpositive','All M must be positive.') 8XwAKN:f  
    end }fw;{&s{z  
    nf!RB-orF  
    if any(m>n) <Gzy*1 Q&  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') qPdNI1 |  
    end (x9d7$2  
    &)L2a)  
    if any( r>1 | r<0 ) }~dXz?{p8  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') IWN:GFH(  
    end HBYqqEO  
    10 dVV[=  
    if ~any(size(r)==1) oo7&.HWf  
        error('zernpol:Rvector','R must be a vector.') *W q{ :k  
    end T{u!4Yu  
    '2=u<a B  
    r = r(:); 06 gE;iT  
    length_r = length(r); >jAr9Blz]  
    e!yUA!x`u  
    if nargin==4 N1WP  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); D1bS=> ;,"  
        if ~isnorm V%&t'H{  
            error('zernpol:normalization','Unrecognized normalization flag.') pRmnS;*z&  
        end :qy`!QPUm  
    else V#!ihL/>  
        isnorm = false; B+|E|8"  
    end RsU=fe,  
    `pY\Mmgv1  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% J=6 7As  
    % Compute the Zernike Polynomials /_E:sI9(  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% (A?{6  
    7\ d{F)7E  
    % Determine the required powers of r: >x)YdgJ*  
    % ----------------------------------- Q17"hO>kC  
    rpowers = []; >%+ "-bY  
    for j = 1:length(n) dz.]5R  
        rpowers = [rpowers m(j):2:n(j)]; ]@1YgV  
    end DR/qe0D  
    rpowers = unique(rpowers); ?_[xpK()  
    IjN3 jU  
    % Pre-compute the values of r raised to the required powers, YKLh$  
    % and compile them in a matrix: =nOV!!  
    % ----------------------------- HyXw^ +tsj  
    if rpowers(1)==0 EDvK9J  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Pgg6(O9}B^  
        rpowern = cat(2,rpowern{:}); PRl\W:_t  
        rpowern = [ones(length_r,1) rpowern]; Mw7!w-1+  
    else 0CI?[R\  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); )F&@ M;2p'  
        rpowern = cat(2,rpowern{:}); rq9{m(  
    end v vlfL*f  
    1Nw&Z0MI  
    % Compute the values of the polynomials: +V1EqC*  
    % -------------------------------------- H ~1laV  
    z = zeros(length_r,length_n); N+l~r]: &  
    for j = 1:length_n k(o[T),_%0  
        s = 0:(n(j)-m(j))/2; }uWJ  
        pows = n(j):-2:m(j); (w]w 2&Y D  
        for k = length(s):-1:1 %([$v6y  
            p = (1-2*mod(s(k),2))* ... ( gO?-0  
                       prod(2:(n(j)-s(k)))/          ... s W+YfJT  
                       prod(2:s(k))/                 ... cO<]%L0  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... 5/DTE:M<  
                       prod(2:((n(j)+m(j))/2-s(k))); :ORCsl6-  
            idx = (pows(k)==rpowers); ^G= wRtS  
            z(:,j) = z(:,j) + p*rpowern(:,idx); Ri4_zb  
        end Gk,{{:M:5  
         jpyV52  
        if isnorm WM: ~P$%cx  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); _`/0/69  
        end 9:A>a3KOH  
    end %cO;{og M  
    # j*$ `W;  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  %1=W#jz  
    _Jp_TvP>  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 &1Y+ q]  
    BKD Wd]KEf  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)