切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11739阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 L[?nST18%  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! )Hbb&F  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 rH&G<o&,  
    function z = zernfun(n,m,r,theta,nflag) 79ckLd9  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. e,HMwD  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 7^$)VBQ/  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ?i~g,P]NK  
    %   unit circle.  N is a vector of positive integers (including 0), and 5IW8=$k~.)  
    %   M is a vector with the same number of elements as N.  Each element 0DNU,u  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) f~ =r*&U  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, <l$P&jSF3  
    %   and THETA is a vector of angles.  R and THETA must have the same yGTziv!  
    %   length.  The output Z is a matrix with one column for every (N,M) GWsd| kxU  
    %   pair, and one row for every (R,THETA) pair. rK1-Mu  
    % u$%A#L[  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike fc@'9- pt  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), a2`%gh W3  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral B8T\s)fxnX  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, XphE loL  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized /.R<,/gj  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. %r%So_^  
    % n9%]-s\Hn  
    %   The Zernike functions are an orthogonal basis on the unit circle. u-JpI-8h  
    %   They are used in disciplines such as astronomy, optics, and 3JO]f5  
    %   optometry to describe functions on a circular domain. 2*[QZ9U[@  
    % 2Il8f  
    %   The following table lists the first 15 Zernike functions. 03=5Nof1  
    % TVaA>]Fv  
    %       n    m    Zernike function           Normalization ?cKZ_c  
    %       -------------------------------------------------- 9sSN<7  
    %       0    0    1                                 1 +r]zs^'  
    %       1    1    r * cos(theta)                    2 .2W"w)$nuq  
    %       1   -1    r * sin(theta)                    2 wpXgPVZT  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6)  fRB5U'  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 4zjs!AK%  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) p[9s<lEh  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) dRW$T5dac  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) Z^yNLF*&V  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) {u"8[@@./  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) UMU2^$\iS  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) X|}2_B  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) N\NyXh$  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) _c`K+o"3  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) }rq9I"/L  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) :z&7W<  
    %       -------------------------------------------------- ;f1qLI  
    % zF`3 gl.  
    %   Example 1: r^0F"9eOL  
    % Ag9?C*  
    %       % Display the Zernike function Z(n=5,m=1) > Lft9e   
    %       x = -1:0.01:1; s?2$ue&-f  
    %       [X,Y] = meshgrid(x,x); V`kMCE;?l  
    %       [theta,r] = cart2pol(X,Y); (W[V? !1  
    %       idx = r<=1; `JB?c  
    %       z = nan(size(X)); Z hd#:d  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); NX[4PKJ0C  
    %       figure B07v^!Z>  
    %       pcolor(x,x,z), shading interp cl@g  
    %       axis square, colorbar @WMA}\Cc  
    %       title('Zernike function Z_5^1(r,\theta)') s58 C2  
    % t `kui.  
    %   Example 2: Qm4o7x{q  
    % */^QH@P  
    %       % Display the first 10 Zernike functions OsqN B'X  
    %       x = -1:0.01:1; 0[Ht_qxb  
    %       [X,Y] = meshgrid(x,x); ^uBxgWIC  
    %       [theta,r] = cart2pol(X,Y); iK5_u2]Q  
    %       idx = r<=1; x/!5K|c  
    %       z = nan(size(X)); - e"jw#B  
    %       n = [0  1  1  2  2  2  3  3  3  3]; nKoiG*PI  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; Hc^W%t~  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; *`_{  
    %       y = zernfun(n,m,r(idx),theta(idx)); Hnk:K9u.B:  
    %       figure('Units','normalized') X5LBEOG  
    %       for k = 1:10 lf(`SYQnOY  
    %           z(idx) = y(:,k); 6eFp8bANN#  
    %           subplot(4,7,Nplot(k)) (o5j'2:.  
    %           pcolor(x,x,z), shading interp qpIC{'A.  
    %           set(gca,'XTick',[],'YTick',[]) }e2VY  
    %           axis square Ep9W-n?}  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) zcrY>t#l  
    %       end ":a\z(*t  
    % 3cdTed-MIh  
    %   See also ZERNPOL, ZERNFUN2. LbEM^ D  
    bKg8rK u  
    %   Paul Fricker 11/13/2006 5"XC$?I<}  
    &i+Ce  
    B"yFS7Rrj  
    % Check and prepare the inputs: =X\^J  
    % ----------------------------- ,R%q}IH#  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) I/Jb!R ~  
        error('zernfun:NMvectors','N and M must be vectors.') Ar*^ ;/  
    end Od f[*  
    xvl3vAN9  
    if length(n)~=length(m) MZ+^-@X  
        error('zernfun:NMlength','N and M must be the same length.') Xtt ? ]  
    end Bn@(zHG+5&  
    #(An6itl  
    n = n(:); svxw^ 0~a  
    m = m(:); YIw1  
    if any(mod(n-m,2)) x }Ad_#q  
        error('zernfun:NMmultiplesof2', ... PB;eHy  
              'All N and M must differ by multiples of 2 (including 0).') 1-lu\"H`  
    end  (x/k.&  
    VD_$$Gn*q  
    if any(m>n) 2hzsKkrA {  
        error('zernfun:MlessthanN', ... _ODbY;M  
              'Each M must be less than or equal to its corresponding N.') _S>JKz  
    end QQWadVQo  
    }zhGS!fO  
    if any( r>1 | r<0 ) 'Ut7{rZ5  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 0lhVqy}:}o  
    end !1e6Ss  
    ^#-nE7  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) <HbcNE~  
        error('zernfun:RTHvector','R and THETA must be vectors.') |*}4 m'c  
    end bv&;R  
    'Lu__NfN  
    r = r(:); tH-C8Qxy  
    theta = theta(:); X5 j1`t,  
    length_r = length(r); yUpgoX(6  
    if length_r~=length(theta) "'D=,*  
        error('zernfun:RTHlength', ... +E{|63~q  
              'The number of R- and THETA-values must be equal.') I:mr}mv=i  
    end Hy^N!rBxfO  
    17`1SGZ  
    % Check normalization: 9I4K}R  
    % -------------------- ]*AR,0N&  
    if nargin==5 && ischar(nflag) V#iPj'*   
        isnorm = strcmpi(nflag,'norm'); J:Qa5MTWp  
        if ~isnorm K*~0"F>"0  
            error('zernfun:normalization','Unrecognized normalization flag.') r,h%[JKM  
        end /Njd[= B  
    else [PDNwh0g5  
        isnorm = false; )c)vTZy  
    end 9b9$GyI  
    XCBL}pNkR  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% "g1)f"pL  
    % Compute the Zernike Polynomials O6LS(5j2  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 7eAX*Kgt<_  
    Fvbh\m ~  
    % Determine the required powers of r: @0/+_2MH-  
    % ----------------------------------- )r jiY%F$  
    m_abs = abs(m); _no*k?o *  
    rpowers = []; ^zQ/mo,Z  
    for j = 1:length(n) oC0qG[yp9S  
        rpowers = [rpowers m_abs(j):2:n(j)]; V6@o]*  
    end fTK3,s1=  
    rpowers = unique(rpowers); UWd=!h^dt  
    uC(V  
    % Pre-compute the values of r raised to the required powers, =`H@%  
    % and compile them in a matrix: 7t0e r'VC  
    % ----------------------------- oU.R2\Q  
    if rpowers(1)==0 toBHkiuD  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); E? ; 0)'h  
        rpowern = cat(2,rpowern{:}); 2QyV%wz  
        rpowern = [ones(length_r,1) rpowern]; %`1q-,>v  
    else #Up86(Z  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); V<T9&8l+:  
        rpowern = cat(2,rpowern{:}); hYG6 pTCb  
    end `T5W}p[6  
    RwpdRBb  
    % Compute the values of the polynomials: <^5Z:n!q  
    % -------------------------------------- lww!-(<ww  
    y = zeros(length_r,length(n)); CDK 5  
    for j = 1:length(n) l*d(;AR  
        s = 0:(n(j)-m_abs(j))/2; ~d|A!S`  
        pows = n(j):-2:m_abs(j); Nh_Mz;ITuu  
        for k = length(s):-1:1 1SCR.@ k<  
            p = (1-2*mod(s(k),2))* ... EVsC >rz  
                       prod(2:(n(j)-s(k)))/              ... vunHNHltW0  
                       prod(2:s(k))/                     ... of%Ktm5Qi  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... CVL3VT1j0  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); #W4dkCd(pF  
            idx = (pows(k)==rpowers); \o*5  
            y(:,j) = y(:,j) + p*rpowern(:,idx); BBwy,\o#  
        end U`,6 * MS  
         K8GP@yD]M  
        if isnorm +M\`#i\g>  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); eg;~zv  
        end \/zq7j  
    end su{poQ}K  
    % END: Compute the Zernike Polynomials aBNc(?ri  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @tNzQ8  
    "n(hfz0y%  
    % Compute the Zernike functions: S2sQOM@  
    % ------------------------------ hKL4cpK4  
    idx_pos = m>0; Jh,]r?Bd  
    idx_neg = m<0; 96( v  
    .WA-&b_  
    z = y; K*K,}W&}  
    if any(idx_pos) G\2 CR*  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); m Bu  
    end SJb&m-  
    if any(idx_neg) fI?>+I5  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); H<i]V9r  
    end n8~N$tDU  
    riY~%9iV'  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) +\d56j+D  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. AifWf2$S  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated CGW.I$u  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive Kr gFKRgGj  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, 6iVxc|Ia  
    %   and THETA is a vector of angles.  R and THETA must have the same T0wW<_jh  
    %   length.  The output Z is a matrix with one column for every P-value, {f/~1G[M  
    %   and one row for every (R,THETA) pair. I667Gz$j5  
    % > kG GR  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike F~R;n_IJ  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) u%&`}g  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) Vz~{UHH6  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 b[r8 e  
    %   for all p. + nrbShV  
    % %a>&5V  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 u@W|gLT1  
    %   Zernike functions (order N<=7).  In some disciplines it is d[@X%  
    %   traditional to label the first 36 functions using a single mode q<xCb%#Jl  
    %   number P instead of separate numbers for the order N and azimuthal cM(:xv  
    %   frequency M. *v;2PP[^  
    % 'nzg6^I7g  
    %   Example: h]IxXP?h[  
    % zqimR#u  
    %       % Display the first 16 Zernike functions k3lS8d7  
    %       x = -1:0.01:1; LM:vsG  
    %       [X,Y] = meshgrid(x,x); K[I=6  
    %       [theta,r] = cart2pol(X,Y); 27eooY1  
    %       idx = r<=1; /hr7NT{e%v  
    %       p = 0:15; f',Op1o  
    %       z = nan(size(X)); =_.l8IYX$%  
    %       y = zernfun2(p,r(idx),theta(idx)); <T` 7%$/E  
    %       figure('Units','normalized') ne>pOK<vZ  
    %       for k = 1:length(p) 0.`/X66;V  
    %           z(idx) = y(:,k); TH%Qhv\]  
    %           subplot(4,4,k) $SlIr<'*"  
    %           pcolor(x,x,z), shading interp wL+s8#{  
    %           set(gca,'XTick',[],'YTick',[]) Q:2>}QgX}  
    %           axis square D$w6V  
    %           title(['Z_{' num2str(p(k)) '}']) nHM~  
    %       end zU5v /'h>d  
    % 29;?I3< *  
    %   See also ZERNPOL, ZERNFUN. 2,DXc30I  
    .p<:II:6  
    %   Paul Fricker 11/13/2006 Vh'P&W?[  
    |B?cVc0  
    +%+tr*04O  
    % Check and prepare the inputs: iw3FA4{(  
    % ----------------------------- &p'Y^zL-  
    if min(size(p))~=1 AHD=<7Rs  
        error('zernfun2:Pvector','Input P must be vector.') , Rk9N  
    end \o z#l'z  
    Y>dF5&(kb  
    if any(p)>35 LK{*sHi$  
        error('zernfun2:P36', ... AFq~QXmr)  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... Kr?TxhUHd  
               '(P = 0 to 35).']) "IZa!eUW  
    end p2hB8zL  
    vk}n,ecl  
    % Get the order and frequency corresonding to the function number: DBo%fYst  
    % ---------------------------------------------------------------- \Z?9{J  
    p = p(:); K?6jXJseb  
    n = ceil((-3+sqrt(9+8*p))/2); 6|gCuT4  
    m = 2*p - n.*(n+2); )MtF23k)g  
    8EZ$g<}  
    % Pass the inputs to the function ZERNFUN: S 8kCp;  
    % ---------------------------------------- p\Q5,eg  
    switch nargin G~F b  
        case 3 Q7HRzA^-  
            z = zernfun(n,m,r,theta); ` )/vq-9  
        case 4 ~k"=4j9  
            z = zernfun(n,m,r,theta,nflag); B al`y  
        otherwise F8nYV  
            error('zernfun2:nargin','Incorrect number of inputs.') @D]5civm_  
    end >Rl"  
    us1Hu)  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) R8Wr^s>'  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. !eGC6o}f  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of s,"]aew  
    %   order N and frequency M, evaluated at R.  N is a vector of B |5]Jm]  
    %   positive integers (including 0), and M is a vector with the IDad9 Bx  
    %   same number of elements as N.  Each element k of M must be a o$wEEz*4  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) ^+*N%yr  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is $| zX|  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix jrCfWa}z  
    %   with one column for every (N,M) pair, and one row for every eln)BW#  
    %   element in R. w_aknt T  
    % _jvxc'6  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- /{EP*,/*  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is o5u3Fjz3  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to >Ifr [  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 df*#!D7oz  
    %   for all [n,m]. GiJ *Wp  
    % ^gN6/>]qrY  
    %   The radial Zernike polynomials are the radial portion of the 1ufp qqk  
    %   Zernike functions, which are an orthogonal basis on the unit ?3/qz(bM  
    %   circle.  The series representation of the radial Zernike V"[g.%%Y  
    %   polynomials is  Z< 1  
    % PoHg,n]  
    %          (n-m)/2 2pZXZ  
    %            __ cA&9e<  
    %    m      \       s                                          n-2s gK+ 4C  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r d}OTO10  
    %    n      s=0 Lt2u,9  
    % d|jNf</`  
    %   The following table shows the first 12 polynomials. ;RH;OE,A  
    % m1j*mtu  
    %       n    m    Zernike polynomial    Normalization C/_ZUF(V  
    %       --------------------------------------------- W1WYej"  
    %       0    0    1                        sqrt(2) H(H<z,$}T  
    %       1    1    r                           2 _;W.q7 b]  
    %       2    0    2*r^2 - 1                sqrt(6) c\/=iVw,  
    %       2    2    r^2                      sqrt(6) ^Xz@`_I  
    %       3    1    3*r^3 - 2*r              sqrt(8) Z/G ev"p  
    %       3    3    r^3                      sqrt(8) ?)/#+[xa  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) B=U 3  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) BfXgh'Z~  
    %       4    4    r^4                      sqrt(10) l(yZO$  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) J.3u^~zy  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) ke!?BZx  
    %       5    5    r^5                      sqrt(12) BIH-"vTy  
    %       --------------------------------------------- )i6mzzj5  
    % ]yV!  
    %   Example: e*sfPHt  
    % f<GhkDPm>?  
    %       % Display three example Zernike radial polynomials <g-9T-Ky  
    %       r = 0:0.01:1; C:GK,?!Jn'  
    %       n = [3 2 5]; V[mT<Lc  
    %       m = [1 2 1]; %J#YM'g  
    %       z = zernpol(n,m,r); bjyZk_\  
    %       figure .28<tEf  
    %       plot(r,z) p$O.> [  
    %       grid on |Yx~;q:  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') QemyCCP+  
    % <<UB ^v m  
    %   See also ZERNFUN, ZERNFUN2. SQ@y;|(  
    Cwr~HY  
    % A note on the algorithm. 4"GR] X  
    % ------------------------ ag;Q F  
    % The radial Zernike polynomials are computed using the series !H#bJTXB  
    % representation shown in the Help section above. For many special yZAS#ko}}  
    % functions, direct evaluation using the series representation can hC:n5]K  
    % produce poor numerical results (floating point errors), because r+'qd)  
    % the summation often involves computing small differences between XFg 9P}"  
    % large successive terms in the series. (In such cases, the functions 8."]//V  
    % are often evaluated using alternative methods such as recurrence Y=%tn8<  
    % relations: see the Legendre functions, for example). For the Zernike ih)zG  
    % polynomials, however, this problem does not arise, because the [<7@{;r  
    % polynomials are evaluated over the finite domain r = (0,1), and z__EYh  
    % because the coefficients for a given polynomial are generally all j 7fL7:,T  
    % of similar magnitude. ; a/X<  
    % w2Us!<x  
    % ZERNPOL has been written using a vectorized implementation: multiple :1^LsLr5  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] 5]~'_V  
    % values can be passed as inputs) for a vector of points R.  To achieve f0A{W/0n  
    % this vectorization most efficiently, the algorithm in ZERNPOL !]42^?GH  
    % involves pre-determining all the powers p of R that are required to PvzcEV  
    % compute the outputs, and then compiling the {R^p} into a single P|^f0Rw3.  
    % matrix.  This avoids any redundant computation of the R^p, and fJ5iS  
    % minimizes the sizes of certain intermediate variables. vN Vox0V  
    % B#exHf8  
    %   Paul Fricker 11/13/2006 7jxslI&F  
    $:BKzHmg  
    x`U^OLV  
    % Check and prepare the inputs: 2SD`OABf#  
    % ----------------------------- bNm#tmSt  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) .rO]M:UY  
        error('zernpol:NMvectors','N and M must be vectors.') QaS1Dh  
    end 2^Eg9y'  
    #[,IsEpDO1  
    if length(n)~=length(m) rTM}})81  
        error('zernpol:NMlength','N and M must be the same length.') cIUHa  
    end 5rwu!Y;7*  
    +"x,x  
    n = n(:); G"klu  
    m = m(:); t=rEt>n~L  
    length_n = length(n); yu;+o3WlK  
    kv]~'Srk  
    if any(mod(n-m,2)) {^ qcx8  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') +:8fC$vVfC  
    end |pm7_[  
    gGvz(R: y  
    if any(m<0) SlgN&{ Bk  
        error('zernpol:Mpositive','All M must be positive.') DD7h^-x  
    end T,7Y7c/3V  
    1uG"f<TsR  
    if any(m>n) 7zA'ri3w  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') 83E7k]7]  
    end ht7l- AK  
    "/)#O~  
    if any( r>1 | r<0 ) uYn_? G  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') V\t.3vT  
    end M:XSQ["6>V  
    wE[]6\_x1  
    if ~any(size(r)==1) u_hD}V^x4  
        error('zernpol:Rvector','R must be a vector.') 1cxrH+N  
    end wL;l Q&  
    ! _f9NK  
    r = r(:); p%#<D9S  
    length_r = length(r); +lm{Olm'^  
    0x'#_G65y  
    if nargin==4 7/!8e.M\  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); OJ,`  
        if ~isnorm zer%W%  
            error('zernpol:normalization','Unrecognized normalization flag.') %kv0We fs  
        end XnDUa3  
    else |h-QP#]/  
        isnorm = false; 3cFf#a#  
    end 'U1R\86M  
    R(('/JC  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Uhe=h&e2k@  
    % Compute the Zernike Polynomials N8k00*p65  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% `rgn<I"  
    |s'Po^Sy  
    % Determine the required powers of r: t=|evOz]  
    % ----------------------------------- H!?c\7adX  
    rpowers = []; cFaaLUZk  
    for j = 1:length(n) T29Dt  
        rpowers = [rpowers m(j):2:n(j)]; q'|rgT  
    end Yb +yw_5  
    rpowers = unique(rpowers); sA/pVU  
    , 0imiv  
    % Pre-compute the values of r raised to the required powers, =5Q]m6-SgV  
    % and compile them in a matrix: <PapskO>  
    % ----------------------------- *194{ ep  
    if rpowers(1)==0 cU;iUf  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ~$ng^D  
        rpowern = cat(2,rpowern{:}); _I:~@  
        rpowern = [ones(length_r,1) rpowern]; Inn@2$m~  
    else X<i^qoV  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); J!0DR4=Xi  
        rpowern = cat(2,rpowern{:}); 9bP^`\K[N  
    end  9XP o3;  
    xGu r  
    % Compute the values of the polynomials: 0TCBQ~"  
    % -------------------------------------- F5?m6`g?  
    z = zeros(length_r,length_n); }'""(,2  
    for j = 1:length_n b6}H$Sx~  
        s = 0:(n(j)-m(j))/2; qC}-_u7s  
        pows = n(j):-2:m(j); t0o`-d(  
        for k = length(s):-1:1 a d.3A{  
            p = (1-2*mod(s(k),2))* ... K&nE_.kbl  
                       prod(2:(n(j)-s(k)))/          ... H18Tn!RDS  
                       prod(2:s(k))/                 ... ZYI{i?Te#  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... >xF/Pl  
                       prod(2:((n(j)+m(j))/2-s(k))); [pl'|B  
            idx = (pows(k)==rpowers); PUF/#ck  
            z(:,j) = z(:,j) + p*rpowern(:,idx); (&}i`}v_  
        end <0H"|:W>I]  
         AmaT0tzJC  
        if isnorm 8)O[Aq::  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); xgpi-l  
        end vI2^tX 9  
    end (^@ra$.  
    3{""58  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    857
    光币
    847
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  f|R"u W +  
    ]R=,5kK3  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 D<Z p!J1o  
    RLSc+kDH_  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)