切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11837阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦  D#il*  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! pb ~u E  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 { QHVo#  
    function z = zernfun(n,m,r,theta,nflag) qq) rd  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. +$C 4\$t  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 6x h:/j3  
    %   and angular frequency M, evaluated at positions (R,THETA) on the kbTm^y"  
    %   unit circle.  N is a vector of positive integers (including 0), and -fwoTGlX  
    %   M is a vector with the same number of elements as N.  Each element 96 q_ K84K  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) {1V($aBl  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, QMa;Gy  
    %   and THETA is a vector of angles.  R and THETA must have the same +Z7th7W/,  
    %   length.  The output Z is a matrix with one column for every (N,M) YQ+tDZY8`  
    %   pair, and one row for every (R,THETA) pair. k9:{9wW  
    % MBt9SXM  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike "U!AlZ`g  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), *5vV6][  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral [Sr,h0h6  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 0fb`08,^  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized & -{DfNKc  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. [5zx17'  
    % o.w\l\  
    %   The Zernike functions are an orthogonal basis on the unit circle. ^B(V4-|  
    %   They are used in disciplines such as astronomy, optics, and YP.5fq:  
    %   optometry to describe functions on a circular domain. [`{Z}q&  
    % wfU7G[  
    %   The following table lists the first 15 Zernike functions. TD'L'm|2  
    % T*#/^%HSG  
    %       n    m    Zernike function           Normalization Bg&i63XL$$  
    %       -------------------------------------------------- LQ(yScA@  
    %       0    0    1                                 1 WFO4gB*  
    %       1    1    r * cos(theta)                    2 @y='^DQ*  
    %       1   -1    r * sin(theta)                    2 ]w;rfn9D  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) +W:= e,=  
    %       2    0    (2*r^2 - 1)                    sqrt(3) Wc,~{  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) 4]h =yc R  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) _d"b;4l  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) M)eO6oX|  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) [q/Abz'i  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) ?&|5=>u2}$  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 19O,a#{KHf  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) gZLP\_CL  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) GB>QK  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) w8kOVN2b  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 4SlADvGl  
    %       -------------------------------------------------- rG4';V^q  
    % ~aMlr6;  
    %   Example 1: N['qgO/  
    % 85n1eE  
    %       % Display the Zernike function Z(n=5,m=1) 5jd,{<  
    %       x = -1:0.01:1; R_sr?V|"  
    %       [X,Y] = meshgrid(x,x); 62O.?Ij  
    %       [theta,r] = cart2pol(X,Y); Pa{%\dsv  
    %       idx = r<=1; LXbP 2  
    %       z = nan(size(X)); 3gv|9T  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); <\NY<QIwFw  
    %       figure ?Cl%{2omO  
    %       pcolor(x,x,z), shading interp &d"G/6  
    %       axis square, colorbar .q9 $\wM/  
    %       title('Zernike function Z_5^1(r,\theta)') ( M7pT  
    % -i)ZQCE  
    %   Example 2: D+>4AqG  
    % Tav*+  
    %       % Display the first 10 Zernike functions @&X|5p"[g  
    %       x = -1:0.01:1; &;+ -?k|  
    %       [X,Y] = meshgrid(x,x); BReJ!|{m}  
    %       [theta,r] = cart2pol(X,Y); kKAP"'v  
    %       idx = r<=1; (vb SM}P  
    %       z = nan(size(X)); ;?8_G%va  
    %       n = [0  1  1  2  2  2  3  3  3  3]; _(h&7P9  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; K{[%7AM  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; |QU <e  
    %       y = zernfun(n,m,r(idx),theta(idx)); c17_2 @N  
    %       figure('Units','normalized') ~NQ72wph{  
    %       for k = 1:10 NMa} <  
    %           z(idx) = y(:,k); TMig-y*[  
    %           subplot(4,7,Nplot(k)) 73xAG1D$r  
    %           pcolor(x,x,z), shading interp 0URji~?|x  
    %           set(gca,'XTick',[],'YTick',[]) |962G1.  
    %           axis square 5<UVD:~z  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) S4G^z}{_  
    %       end v#.r.{t  
    % j#+!\ft5  
    %   See also ZERNPOL, ZERNFUN2. ;j^H)."A\  
    t0IEaj75c  
    %   Paul Fricker 11/13/2006 qNYN-f~@,  
    1XD,uoxB  
    -F<Wd/Xse  
    % Check and prepare the inputs: 3wC' r  
    % ----------------------------- hRs&t,{&  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) kP-3"ACG  
        error('zernfun:NMvectors','N and M must be vectors.') 8=gjY\Dp  
    end K?BOvDW"`  
    h&--,A >  
    if length(n)~=length(m) K#pNe c  
        error('zernfun:NMlength','N and M must be the same length.') |NpP2|4h  
    end BDR.AZ  
    ie2WL\tR4  
    n = n(:); R'C2o]  
    m = m(:); paKSr|O  
    if any(mod(n-m,2)) P@9t;dZN  
        error('zernfun:NMmultiplesof2', ... X4 A<[&F/  
              'All N and M must differ by multiples of 2 (including 0).') ,M^P!  
    end X{\F;Cb*  
    iZM+JqfU|D  
    if any(m>n) v"#mzd.tW  
        error('zernfun:MlessthanN', ... fSs4ZXC  
              'Each M must be less than or equal to its corresponding N.') bT^I"  
    end 0cJWJOj&  
    H;YP8MoQ  
    if any( r>1 | r<0 ) @>W(1mRi  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') $shoasSuI  
    end 0V'nK V"|  
    PfC!lI BU  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) A29gz:F(  
        error('zernfun:RTHvector','R and THETA must be vectors.') !V i@1E  
    end IW@PF7  
    G>1eFBh }  
    r = r(:);  Kfh|  
    theta = theta(:); \}p6v}  
    length_r = length(r); *=+td)S/1  
    if length_r~=length(theta) >g+?Oebgw  
        error('zernfun:RTHlength', ... 9983aFam  
              'The number of R- and THETA-values must be equal.') QlO0qbG[y  
    end }j*KcB_  
    f] J M /  
    % Check normalization: %l,,_:7{  
    % -------------------- hvDNz"ec{  
    if nargin==5 && ischar(nflag) XT@-$%u  
        isnorm = strcmpi(nflag,'norm'); _Jme!Oaa  
        if ~isnorm v" OY 1<8  
            error('zernfun:normalization','Unrecognized normalization flag.') n&-qaoNl  
        end Q 4f/Z  
    else YN!>}  
        isnorm = false; -Xxqm%([71  
    end Axe8n1*y  
    \H=&`?  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% PzA|t;*  
    % Compute the Zernike Polynomials DjN|Wr)*  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% t4-pM1]1_  
    (&+kl q  
    % Determine the required powers of r: ?sMP~RHQ  
    % ----------------------------------- rz@=pR :  
    m_abs = abs(m); b+f'[;  
    rpowers = []; lJE93rXU  
    for j = 1:length(n) LAd\Tvms  
        rpowers = [rpowers m_abs(j):2:n(j)]; ZE2$I^DY-  
    end 20Z8HwQi  
    rpowers = unique(rpowers); a^=-Mp  
    AO=h 23ZI  
    % Pre-compute the values of r raised to the required powers, BI $   
    % and compile them in a matrix: $aN&nhoO<  
    % ----------------------------- \>7^f 3m  
    if rpowers(1)==0 WnGGo ' Z  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); +TQ47Z c  
        rpowern = cat(2,rpowern{:}); [L:o`j  
        rpowern = [ones(length_r,1) rpowern]; 49w=XJ  
    else xYhrO  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); V\^EfQ  
        rpowern = cat(2,rpowern{:}); @ ]/AjjLt  
    end n(L\||#+  
    /C4^<k\  
    % Compute the values of the polynomials: Vv8jEZ8  
    % -------------------------------------- unBy&?&p  
    y = zeros(length_r,length(n)); iv>SsW'p_  
    for j = 1:length(n) IaT$ 6\>  
        s = 0:(n(j)-m_abs(j))/2; 4Rvf  
        pows = n(j):-2:m_abs(j); C@bm  
        for k = length(s):-1:1 IiZ&Pr  
            p = (1-2*mod(s(k),2))* ... av$/Om :  
                       prod(2:(n(j)-s(k)))/              ... ?_Q/}@`  
                       prod(2:s(k))/                     ... ;uW}`Q<  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... S p^9& ^  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); t$A%*JBKm  
            idx = (pows(k)==rpowers); |jVM&R2s  
            y(:,j) = y(:,j) + p*rpowern(:,idx); }C#;fp"L  
        end @ )-$kk*  
         -tyK~aasQ  
        if isnorm r%.do;5  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); E5N{j4\F  
        end 7 <Q5;J&;  
    end ]@0NO;bK>F  
    % END: Compute the Zernike Polynomials a)#1{JaoY  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 6p?JAT5  
    a(v>Q*zNP  
    % Compute the Zernike functions: >B2q+tA  
    % ------------------------------ S}ECW,K  
    idx_pos = m>0; #*g5u{k'P  
    idx_neg = m<0; 5GPo*Qpl  
    Ko/ I#)  
    z = y; >+ 4huRb  
    if any(idx_pos) =@8H"&y`  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); [w&$|h:;  
    end IrWD%/$H  
    if any(idx_neg) r,Nq7Txn?  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); LbZ:&/t^y8  
    end SJ};TEA  
    mK [0L  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) a /:@"&Y  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. { vN}<f`  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated ^-a8V'  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive n9\]S7] 52  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, WzI8_uM  
    %   and THETA is a vector of angles.  R and THETA must have the same ocyb5j  
    %   length.  The output Z is a matrix with one column for every P-value, UEzb^(8>  
    %   and one row for every (R,THETA) pair. 1& '8Y  
    % b77>$[xB  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike u]ZqOJXxu  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2)  =Mb1o[  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) AT\qiznvP  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 fVM`-8ZTq  
    %   for all p. _%x4ty  
    % | /|  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 [F[K^xYTlg  
    %   Zernike functions (order N<=7).  In some disciplines it is *\o/q[  
    %   traditional to label the first 36 functions using a single mode J-<^P5  
    %   number P instead of separate numbers for the order N and azimuthal S#-tOj U*  
    %   frequency M. p*8-W(u)  
    % -dO'~all  
    %   Example: !!:LJ  
    % 2EK%N'H  
    %       % Display the first 16 Zernike functions /^ " 83?_  
    %       x = -1:0.01:1; ,= &B28Qe)  
    %       [X,Y] = meshgrid(x,x); q,3;m[cA  
    %       [theta,r] = cart2pol(X,Y); S i nl  
    %       idx = r<=1; F>X-w+b4r  
    %       p = 0:15;  N<L`c/  
    %       z = nan(size(X)); Jz!Z2c  
    %       y = zernfun2(p,r(idx),theta(idx)); cf7v[ZZ}  
    %       figure('Units','normalized') fof2 xcH!  
    %       for k = 1:length(p) \i[BP  
    %           z(idx) = y(:,k); c0Dmq)HK?  
    %           subplot(4,4,k) Dr9 ?2  
    %           pcolor(x,x,z), shading interp 1H,g=Y4f%  
    %           set(gca,'XTick',[],'YTick',[]) q,2]5 '  
    %           axis square oiH|uIsqR  
    %           title(['Z_{' num2str(p(k)) '}']) 8V-\e?&^  
    %       end 2nFy`|aA%  
    % f N "tA  
    %   See also ZERNPOL, ZERNFUN. cM_ Fp  
    oQ7]= |  
    %   Paul Fricker 11/13/2006 gLSA!#[ h  
    6st^4S5  
    L@^~N$G&u  
    % Check and prepare the inputs: e\b`n}nC  
    % ----------------------------- CVi`bO4\  
    if min(size(p))~=1 sgr=w+",Q  
        error('zernfun2:Pvector','Input P must be vector.') ?K@t0a   
    end oR*=|B  
    e2C<PGUUB  
    if any(p)>35 )=Q)BN[  
        error('zernfun2:P36', ... Q8MS,7y/  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... XTDE53Js&  
               '(P = 0 to 35).']) xc?}TPpt  
    end {FI\~ q  
    - ~4+w  
    % Get the order and frequency corresonding to the function number: w#^U45y1v  
    % ---------------------------------------------------------------- X[W]=yJJ  
    p = p(:); 7rHS^8'H&  
    n = ceil((-3+sqrt(9+8*p))/2); ?_`0G/xl  
    m = 2*p - n.*(n+2); &)pK%SAM  
    g8'DoHJ*  
    % Pass the inputs to the function ZERNFUN: jFerYv&K~  
    % ---------------------------------------- m/`IGT5J  
    switch nargin r Db>&s3  
        case 3 (H?ZSeWx  
            z = zernfun(n,m,r,theta); IB|]fzy  
        case 4 {?{U,&  
            z = zernfun(n,m,r,theta,nflag); PzY)"]g  
        otherwise oY`qInM_  
            error('zernfun2:nargin','Incorrect number of inputs.') -s$<Op{s  
    end j|e[s ? d  
    xiyxr R;  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) Qrz4}0  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. NE"jh_m-  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of 'Zk<l#"}  
    %   order N and frequency M, evaluated at R.  N is a vector of CsSp=(  
    %   positive integers (including 0), and M is a vector with the R#4 ^s  
    %   same number of elements as N.  Each element k of M must be a bO49GEUT _  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) {aN(d3c  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is 7SI)1_%G  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix a%hGZCI  
    %   with one column for every (N,M) pair, and one row for every 6kvV  
    %   element in R. EaS~`  
    % {@M14)-x>_  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- ~"ONAX  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is 4FA|[An  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to iUr xJh  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 Y~oT)wTU  
    %   for all [n,m]. lv:U%+A  
    % Nm8w/Q5D`  
    %   The radial Zernike polynomials are the radial portion of the NMjnL&P`  
    %   Zernike functions, which are an orthogonal basis on the unit N"DY?6  
    %   circle.  The series representation of the radial Zernike 'o\;x"YJ  
    %   polynomials is $<e +r$1  
    % {e]NU<G ,  
    %          (n-m)/2 j$eCe< .3  
    %            __ F(CRq`  
    %    m      \       s                                          n-2s GYgWf1$8_D  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r K="I<bK  
    %    n      s=0 wsg//Ec]  
    % /BzA(Ic/  
    %   The following table shows the first 12 polynomials. PO ko]@~!i  
    % U($^E}I2(  
    %       n    m    Zernike polynomial    Normalization E_[ONm=,  
    %       --------------------------------------------- r#xk`a  
    %       0    0    1                        sqrt(2) ]+IVSxa!u  
    %       1    1    r                           2 MM_py!=>7  
    %       2    0    2*r^2 - 1                sqrt(6) 'yNPhI  
    %       2    2    r^2                      sqrt(6) QAvWJydb  
    %       3    1    3*r^3 - 2*r              sqrt(8) /{N))  
    %       3    3    r^3                      sqrt(8) Ea`OT+#h(*  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) *5wv%-  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) [:i sZG*  
    %       4    4    r^4                      sqrt(10) ?@a$!_  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) i=Kvz4h  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) -Uf4v6A  
    %       5    5    r^5                      sqrt(12) g)M#{"H  
    %       --------------------------------------------- 9kd.j@C  
    % 1PU*:58[  
    %   Example: v:P!(`sF  
    % silp<13HN  
    %       % Display three example Zernike radial polynomials 7l}~4dm2J  
    %       r = 0:0.01:1; d]k='  
    %       n = [3 2 5]; I2*oTUSik  
    %       m = [1 2 1]; oWcACs3fB  
    %       z = zernpol(n,m,r); zjoo{IH}  
    %       figure L; C|ow^c  
    %       plot(r,z) OQ| ,-  
    %       grid on zMU68vwM  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') Ak|b0l>^  
    % ew"m!F#  
    %   See also ZERNFUN, ZERNFUN2. Wy)('EM  
    t/LgHb:)  
    % A note on the algorithm. pU[K%@sC  
    % ------------------------ #! @m y  
    % The radial Zernike polynomials are computed using the series N K"%DU<  
    % representation shown in the Help section above. For many special gCwt0)  
    % functions, direct evaluation using the series representation can rHo6iJj  
    % produce poor numerical results (floating point errors), because M;@Ex`+?i  
    % the summation often involves computing small differences between 2^bgC~2C1  
    % large successive terms in the series. (In such cases, the functions F=5kF/}x-z  
    % are often evaluated using alternative methods such as recurrence Z`"n:'&  
    % relations: see the Legendre functions, for example). For the Zernike 3dU#Ueu  
    % polynomials, however, this problem does not arise, because the MVuP |&:n  
    % polynomials are evaluated over the finite domain r = (0,1), and (6[Wr}SW5  
    % because the coefficients for a given polynomial are generally all (lWKy9eTy`  
    % of similar magnitude. QZYM9a>  
    % C!kbZTO[p"  
    % ZERNPOL has been written using a vectorized implementation: multiple iXnx1w   
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] }JJ::*W2n  
    % values can be passed as inputs) for a vector of points R.  To achieve Ds G !S*  
    % this vectorization most efficiently, the algorithm in ZERNPOL [R$liN99z;  
    % involves pre-determining all the powers p of R that are required to .)nCOwR6p  
    % compute the outputs, and then compiling the {R^p} into a single Wlxk  
    % matrix.  This avoids any redundant computation of the R^p, and Z[bv0Pr  
    % minimizes the sizes of certain intermediate variables. :9O|l)N)W=  
    % 6fQ*X~| p  
    %   Paul Fricker 11/13/2006 a~ F u  
    !z.^(Tj  
    v5gQ9  
    % Check and prepare the inputs: mlmnkgl ]  
    % ----------------------------- 2q$X>ImI$  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 6z`8cI+LRw  
        error('zernpol:NMvectors','N and M must be vectors.') x6~Fb~aP  
    end uyvskz\  
    3_@G{O)e  
    if length(n)~=length(m) td`wNy\  
        error('zernpol:NMlength','N and M must be the same length.') I@c0N*(  
    end 5\5~L  
    hAYQ6g$A  
    n = n(:); ~JT lPU'  
    m = m(:); V?o&])?[  
    length_n = length(n); $&NbLjeS  
    hXBqz9  
    if any(mod(n-m,2)) {bxhH)a'  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') 2@4MC`&  
    end ir"* iL=  
    Z^C!RSQ  
    if any(m<0) 2GUhV*TN  
        error('zernpol:Mpositive','All M must be positive.') MQhYJ01i  
    end d?E4[7<t$1  
    a#>t+.dd  
    if any(m>n) Psg +\14  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') Yr Preuh  
    end c '/2F0y  
    \y<+Fac1S  
    if any( r>1 | r<0 ) r]xdhR5  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') baA HP "  
    end "P9wT)J_  
    C}|O#"t^\  
    if ~any(size(r)==1) 5 ,g$|,Shv  
        error('zernpol:Rvector','R must be a vector.') 30e(4@!4vW  
    end >2*6qx>V  
    N7%=K9  
    r = r(:); A/ r;;S)%2  
    length_r = length(r); T9,lblU Q  
    ;o&_:]S  
    if nargin==4 P2s^=J0@  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); InTKdr^ P  
        if ~isnorm 7ZrJ#n8?ih  
            error('zernpol:normalization','Unrecognized normalization flag.') q|m#IVc  
        end =r=^bNO  
    else ,|=iv  
        isnorm = false; H 7 o$O  
    end !hpTyO+%  
    qM+!f2t  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 9p!dQx  
    % Compute the Zernike Polynomials *NKC \aV`0  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% a .B\=3xn  
    !: `Ra  
    % Determine the required powers of r: !!\4'Q[  
    % ----------------------------------- m|g$'vjk  
    rpowers = []; 1mkQ"E4  
    for j = 1:length(n) WcQZFtW  
        rpowers = [rpowers m(j):2:n(j)]; D<$j`r  
    end E9 :|8#b  
    rpowers = unique(rpowers); = D;UMSf  
    xNkwTDN5  
    % Pre-compute the values of r raised to the required powers, _~(M A-l  
    % and compile them in a matrix: *&~sr  
    % ----------------------------- D z]}@Z*jK  
    if rpowers(1)==0 $]`'Mi  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); |i jW_r  
        rpowern = cat(2,rpowern{:}); j8F~j?%!  
        rpowern = [ones(length_r,1) rpowern]; 4l#T_y  
    else 'ocwXyP,  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); F\YcSDM  
        rpowern = cat(2,rpowern{:}); M ?: f^  
    end "fX8xZdS  
    -+Awm{X_@  
    % Compute the values of the polynomials: 'bQ s_  
    % -------------------------------------- bE%mgaOh  
    z = zeros(length_r,length_n); ;Ln7_  
    for j = 1:length_n $rV:&A  
        s = 0:(n(j)-m(j))/2; J_)z:`[yE  
        pows = n(j):-2:m(j); 0*'`%W+5  
        for k = length(s):-1:1 p3'mJ3MA  
            p = (1-2*mod(s(k),2))* ... J,&`iL-  
                       prod(2:(n(j)-s(k)))/          ...  G$cq   
                       prod(2:s(k))/                 ... Bwi[qw  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... lFzQG:k@  
                       prod(2:((n(j)+m(j))/2-s(k))); A,A-5l<h]?  
            idx = (pows(k)==rpowers); t8wz'[z  
            z(:,j) = z(:,j) + p*rpowern(:,idx); vX!dMJa0  
        end S|Ij q3  
         %`<`z yf  
        if isnorm CgPZvB[  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); U3dR[*  
        end zMHf?HQ-Z  
    end <o"D/<XnB3  
    c Gaz$=/  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    857
    光币
    847
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)   o%4+I>  
    zO]dQ$r\Z  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 IHmNi>E&/  
    54j $A  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)