切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11112阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 n K+lE0  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! &EAk z  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 aC`Li^  
    function z = zernfun(n,m,r,theta,nflag) Bb~5& @M|N  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. :3v9h^|+  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 8=:A/47=J  
    %   and angular frequency M, evaluated at positions (R,THETA) on the wTT RoeJ}  
    %   unit circle.  N is a vector of positive integers (including 0), and L^lS^P  
    %   M is a vector with the same number of elements as N.  Each element &`\ep9  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) [q'eEN G  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, @8|Gh]\P  
    %   and THETA is a vector of angles.  R and THETA must have the same _ j~4+H  
    %   length.  The output Z is a matrix with one column for every (N,M) $57\u/(  
    %   pair, and one row for every (R,THETA) pair. 3c b[RQf  
    % B22b&0  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike m$?.Yig?  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), H"_v+N5=  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral ;d4 y{  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, d<#p %$A4  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized D3y>iQd   
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. TFO74^  
    % 3Y`>6A=  
    %   The Zernike functions are an orthogonal basis on the unit circle. ZW>o5x__b  
    %   They are used in disciplines such as astronomy, optics, and |) O):  
    %   optometry to describe functions on a circular domain. H<,bq*@  
    % #pX8{Tf[  
    %   The following table lists the first 15 Zernike functions. $.a|ae|K  
    % >PIPp7C  
    %       n    m    Zernike function           Normalization Xtkw Z3  
    %       -------------------------------------------------- u#FXW_-TK  
    %       0    0    1                                 1 &3I$8v|!?  
    %       1    1    r * cos(theta)                    2 /_q#a h  
    %       1   -1    r * sin(theta)                    2 BhLZ7*  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) gGI8t@t:  
    %       2    0    (2*r^2 - 1)                    sqrt(3) (etUEb^}T  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) `y2ljIWJ  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) eES'}[W>  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) wlrIgn%  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) *Rq`*D>:U}  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) ^7Lk-a7gp  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) #&V5H{  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Y''6NGf  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 2 5Q+1  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) /ERNS/w  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) "R23Pi  
    %       -------------------------------------------------- @0|nq9l1  
    % ")ED)&e  
    %   Example 1: uf]Y^,2  
    % Rboof`pVt  
    %       % Display the Zernike function Z(n=5,m=1) @^!\d#/M  
    %       x = -1:0.01:1; Ukc'?p,*  
    %       [X,Y] = meshgrid(x,x); f*<ps o  
    %       [theta,r] = cart2pol(X,Y); =&2$/YX0D  
    %       idx = r<=1; -2 x E#r  
    %       z = nan(size(X)); y\#o2PVmY  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); s`c?:  
    %       figure x%6hM |U  
    %       pcolor(x,x,z), shading interp c4 5?St  
    %       axis square, colorbar H* /&A9("  
    %       title('Zernike function Z_5^1(r,\theta)') 4gOgWBv  
    % :G 5C ]'t  
    %   Example 2: 1~@|e Wr|  
    % Szts<n5  
    %       % Display the first 10 Zernike functions %K zbO0  
    %       x = -1:0.01:1; _R74/|  
    %       [X,Y] = meshgrid(x,x); vLDi ;  
    %       [theta,r] = cart2pol(X,Y); !BUi)mo  
    %       idx = r<=1; t8vc@of$c,  
    %       z = nan(size(X)); TEWAZVE*  
    %       n = [0  1  1  2  2  2  3  3  3  3]; m gVML&^  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; bMmra.x4L  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; uN bIX:L,  
    %       y = zernfun(n,m,r(idx),theta(idx)); &SmXI5>Bo0  
    %       figure('Units','normalized') EwQae(PpA  
    %       for k = 1:10 .&iN(Bd  
    %           z(idx) = y(:,k); ltSh'w0  
    %           subplot(4,7,Nplot(k)) y]'CXCml)  
    %           pcolor(x,x,z), shading interp p=B?/Sqa  
    %           set(gca,'XTick',[],'YTick',[]) -k{ Jp/-D  
    %           axis square @9vvR7{P  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) oLS7`+b$  
    %       end !M(:U,?B  
    % r6t&E%b  
    %   See also ZERNPOL, ZERNFUN2. ~ziexZ=N  
    e+@xs n3  
    %   Paul Fricker 11/13/2006 )6{P8k4Zr  
    GV8)Kor%  
    %[ Zz0|A  
    % Check and prepare the inputs: S}cF0B1E*  
    % ----------------------------- s.:r;%a  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) s;1e0n  
        error('zernfun:NMvectors','N and M must be vectors.') cPuHLwwYf  
    end _{Y$o'*#I  
    _~A~+S}  
    if length(n)~=length(m) 9m8ee&,  
        error('zernfun:NMlength','N and M must be the same length.') ? )_7U  
    end 0 d4cE10  
    G{o+R]Us  
    n = n(:); I4il R$jg  
    m = m(:); h8 =h >W-  
    if any(mod(n-m,2)) D|Si)_ Iz  
        error('zernfun:NMmultiplesof2', ... zfjw;sUX  
              'All N and M must differ by multiples of 2 (including 0).') Rp/-Pv   
    end T~J? AKx  
    C[YnrI!  
    if any(m>n) &fSTR-8ev#  
        error('zernfun:MlessthanN', ... J+Bdz6lt  
              'Each M must be less than or equal to its corresponding N.') e{C6by"j{S  
    end "'A"U  
    _tj&Psp  
    if any( r>1 | r<0 ) r )b<{u=]  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') !8$RBD %  
    end qks|d_   
    O >FO>  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) yd>}wHt  
        error('zernfun:RTHvector','R and THETA must be vectors.') Of`c`-<j  
    end kon=il<@  
    'ere!:GJD  
    r = r(:); 1TRN~#ix  
    theta = theta(:); lLCdmxbT  
    length_r = length(r); / Z!i;@Wf  
    if length_r~=length(theta) \ e,?rH  
        error('zernfun:RTHlength', ... g$3> ~D  
              'The number of R- and THETA-values must be equal.') @ Nb%L&=P8  
    end I KcKRw/O$  
    a+?~;.i~  
    % Check normalization: %MJ;Q?KB  
    % -------------------- HarFE4V  
    if nargin==5 && ischar(nflag) 1q]c7"  
        isnorm = strcmpi(nflag,'norm'); !Iq{ 5:  
        if ~isnorm \L[i9m|e  
            error('zernfun:normalization','Unrecognized normalization flag.') H06Bj(Y!  
        end CLN+I'uX0  
    else Nn#u%xvJt  
        isnorm = false; 6vp0*ww  
    end NHiq^ojk  
    =Od>;|]m  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Dg2uE8k  
    % Compute the Zernike Polynomials FC}oL"kk  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% n}J^6:1  
    s#^pC*,'  
    % Determine the required powers of r: 1r 571B*O  
    % ----------------------------------- +v15[^F  
    m_abs = abs(m); >V!LitdJ  
    rpowers = []; j>'B [  
    for j = 1:length(n) _N'75  
        rpowers = [rpowers m_abs(j):2:n(j)]; arh@`'Q  
    end qY# d+F,t  
    rpowers = unique(rpowers); jJ++h1 K  
    `="v>qN2\  
    % Pre-compute the values of r raised to the required powers, aqr!oxn?t  
    % and compile them in a matrix: ;V.vfar  
    % ----------------------------- J_xG}d  
    if rpowers(1)==0 -7`-wu  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 7X'y>\^w^>  
        rpowern = cat(2,rpowern{:}); _Bk U+=|J  
        rpowern = [ones(length_r,1) rpowern]; b3U6;]|x  
    else *gu8-7'  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 'IQsve7cI  
        rpowern = cat(2,rpowern{:}); HDS"F.l5  
    end SRz&Nb  
    R^P_{_I*"  
    % Compute the values of the polynomials: ?~F. /  
    % -------------------------------------- /EFq#+6  
    y = zeros(length_r,length(n)); :oa9#c`L  
    for j = 1:length(n) $TG?4  
        s = 0:(n(j)-m_abs(j))/2; $a.u05  
        pows = n(j):-2:m_abs(j); /f3m)pT  
        for k = length(s):-1:1 G) 7)]yBL  
            p = (1-2*mod(s(k),2))* ... =!<G!^  
                       prod(2:(n(j)-s(k)))/              ... >oqZ !V5[  
                       prod(2:s(k))/                     ... OE"<!oIs  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... E $6ejGw-  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); DQgH_!  
            idx = (pows(k)==rpowers); ybvI?#  
            y(:,j) = y(:,j) + p*rpowern(:,idx); I@./${o  
        end Y60"M4j  
         +1@AGJU3  
        if isnorm Q 4K +*Fi}  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); |:2c$zq  
        end C\Ayv)S #2  
    end Hj~O49%j&  
    % END: Compute the Zernike Polynomials Lq0 4T0  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Q}P-$X+/ n  
    E`AYee%l  
    % Compute the Zernike functions: g6euXI  
    % ------------------------------ $D_HZ"ytu  
    idx_pos = m>0; }lfn0 %(@  
    idx_neg = m<0; 0I zZKRw  
    :p-Y7CSSu  
    z = y; xo~g78jm7,  
    if any(idx_pos) u!1/B4!'O  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); T[2}p=<%  
    end 4/MNqit+  
    if any(idx_neg) #s+Q{2s  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); tWk{1IL  
    end ! F7:i  
    `K?1L{p'4  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) O5-;I,)H  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. \_ -DyD#3  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated 2Xgx*'t\  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive mo9$NGM&}  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, ;$;rD0i|  
    %   and THETA is a vector of angles.  R and THETA must have the same |s|/]aD}o  
    %   length.  The output Z is a matrix with one column for every P-value, K-4tdC3  
    %   and one row for every (R,THETA) pair. v@_in(dk  
    % Mi74Xl i  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike ,qy&|4Jz  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) uaxB -PZ  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) hW%p#g;  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 CG9ba |  
    %   for all p. J@` 8(\(  
    % ^<;w+%[MT  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 BXA]9eK  
    %   Zernike functions (order N<=7).  In some disciplines it is JZ K7uB,X  
    %   traditional to label the first 36 functions using a single mode d_T<5Hin  
    %   number P instead of separate numbers for the order N and azimuthal mP!N<K  
    %   frequency M. 1Z:R,\+L  
    % m!Af LSlwm  
    %   Example: T.@sq  
    % /f&By p  
    %       % Display the first 16 Zernike functions *<k&#D"m  
    %       x = -1:0.01:1; o+^Eu}[.  
    %       [X,Y] = meshgrid(x,x); /"MJkM.~E  
    %       [theta,r] = cart2pol(X,Y); PYieD}'  
    %       idx = r<=1; if@,vc  
    %       p = 0:15; 4Hd Si  
    %       z = nan(size(X)); q^6N+^}QN  
    %       y = zernfun2(p,r(idx),theta(idx));  _8S4Q!  
    %       figure('Units','normalized') o2}N=|&  
    %       for k = 1:length(p) wlVvxX3%  
    %           z(idx) = y(:,k); XnA6/^  
    %           subplot(4,4,k) `,Zb2"  
    %           pcolor(x,x,z), shading interp (nz}J)T&  
    %           set(gca,'XTick',[],'YTick',[]) CJA+v-  
    %           axis square (UcFNeo  
    %           title(['Z_{' num2str(p(k)) '}']) V{$Sfmey  
    %       end YFqZe6g0$  
    % 2 `&<bt[g  
    %   See also ZERNPOL, ZERNFUN. kW(Kh0x  
    {]["6V6W  
    %   Paul Fricker 11/13/2006 u _X} -U  
    M5u_2;3  
    ^4UcTjh  
    % Check and prepare the inputs: {Zwf..,  
    % ----------------------------- Bb_Q_<DTs  
    if min(size(p))~=1 m&cvU>lC  
        error('zernfun2:Pvector','Input P must be vector.') h--45`cE  
    end Y?t2,cm   
    4cB&Hk  
    if any(p)>35 +"Ub/[J{G1  
        error('zernfun2:P36', ... ~#t*pOC5BR  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... 1M/$< kQ-N  
               '(P = 0 to 35).']) k}<<bm*f  
    end ,-:a?#f>  
    to51hjV  
    % Get the order and frequency corresonding to the function number: ?\M)WDO  
    % ---------------------------------------------------------------- ?OO%5PSen  
    p = p(:); B~rU1Y)  
    n = ceil((-3+sqrt(9+8*p))/2); K=o:V&  
    m = 2*p - n.*(n+2); TZBVU&,{Z  
    +9_,w bF  
    % Pass the inputs to the function ZERNFUN: Dt|fDw$]D  
    % ---------------------------------------- -xTKdm D  
    switch nargin WP!il(Gr  
        case 3 ki4Xp'IK  
            z = zernfun(n,m,r,theta); dFMAh&:>  
        case 4 ^Rk^XQCh  
            z = zernfun(n,m,r,theta,nflag); yF;?Hg  
        otherwise _eh3qs:  
            error('zernfun2:nargin','Incorrect number of inputs.') _j>L4bT  
    end g41<8^(  
    }{t3SGsJ  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) c~37 +^B:  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. eN4t1 $  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of [lZ=s[n.  
    %   order N and frequency M, evaluated at R.  N is a vector of CMFC"eS e  
    %   positive integers (including 0), and M is a vector with the S NN#$8\  
    %   same number of elements as N.  Each element k of M must be a _C5nApb  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) E;$$+rA  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is _V&x`ks  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix r\B"?oqC  
    %   with one column for every (N,M) pair, and one row for every /0-\ek ye  
    %   element in R. yE<,Z%J[n  
    % 0yKh p: ^  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- xmOM<0T  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is m $)YYpX  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to l*qk1H"g  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 3+j^E6@  
    %   for all [n,m]. PH[4y:^DN  
    % z41D^}b  
    %   The radial Zernike polynomials are the radial portion of the 4':MI|/my_  
    %   Zernike functions, which are an orthogonal basis on the unit 9V.+U7\w  
    %   circle.  The series representation of the radial Zernike ZDfS0]0F  
    %   polynomials is K` 2i  
    % aI 7Xq3  
    %          (n-m)/2 URk$}_39  
    %            __ VYHOk3  
    %    m      \       s                                          n-2s ~PCTLP~zI  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r =m7CJc  
    %    n      s=0 G$|G w  
    % 0:jsV|5B8  
    %   The following table shows the first 12 polynomials. 50COL66:7  
    % y _6r/z^  
    %       n    m    Zernike polynomial    Normalization Kjv2J;Xuh  
    %       --------------------------------------------- aE}=^%D  
    %       0    0    1                        sqrt(2) uht(3  
    %       1    1    r                           2 DhHtz.6  
    %       2    0    2*r^2 - 1                sqrt(6) 2UQN*_  
    %       2    2    r^2                      sqrt(6) `..EQ BM  
    %       3    1    3*r^3 - 2*r              sqrt(8) . c#90RP  
    %       3    3    r^3                      sqrt(8) d4Ixuux<3  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) ]Kof sU_{  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) A(PE  
    %       4    4    r^4                      sqrt(10) ~ 0av3G  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) wE)] ah:  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) Rz)v-Yu  
    %       5    5    r^5                      sqrt(12) r}Ltv?4  
    %       --------------------------------------------- =P 1RdyP  
    %  B$@1QG  
    %   Example: \MF3CK@/  
    % !'+\]eA  
    %       % Display three example Zernike radial polynomials D\@e{.$MZ|  
    %       r = 0:0.01:1; w 7Cne%J8  
    %       n = [3 2 5]; dvC0 <*V  
    %       m = [1 2 1];  |h  
    %       z = zernpol(n,m,r); |C^ c0  
    %       figure er#8D6*  
    %       plot(r,z) KsZ@kTs  
    %       grid on 7sCR!0  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') &~z+R="=  
    % 8.:B=A  
    %   See also ZERNFUN, ZERNFUN2. +Kxe ymwr2  
    Z3OZPxm  
    % A note on the algorithm. y?[5jL|Ue  
    % ------------------------ ?f(pQy@V  
    % The radial Zernike polynomials are computed using the series IvY,9D  
    % representation shown in the Help section above. For many special -7&^jP\,  
    % functions, direct evaluation using the series representation can U f=vs(  
    % produce poor numerical results (floating point errors), because ~JAH-R  
    % the summation often involves computing small differences between Q@PJ)fwN  
    % large successive terms in the series. (In such cases, the functions y>DfM5>  
    % are often evaluated using alternative methods such as recurrence [lmHXf@1C  
    % relations: see the Legendre functions, for example). For the Zernike (xI)"{   
    % polynomials, however, this problem does not arise, because the H(  
    % polynomials are evaluated over the finite domain r = (0,1), and 8XLxT(YFIs  
    % because the coefficients for a given polynomial are generally all Xw&QrTDS`  
    % of similar magnitude. SD)5?{6<  
    % F<6KaZ|  
    % ZERNPOL has been written using a vectorized implementation: multiple ;D%$Eh&oma  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] rhlW  
    % values can be passed as inputs) for a vector of points R.  To achieve }|w=7^1z  
    % this vectorization most efficiently, the algorithm in ZERNPOL nF|#@O`1  
    % involves pre-determining all the powers p of R that are required to sURUQ  H  
    % compute the outputs, and then compiling the {R^p} into a single QCZ,K" y  
    % matrix.  This avoids any redundant computation of the R^p, and E geG,/-`  
    % minimizes the sizes of certain intermediate variables. UchALR^5  
    % ]#vvlM>/  
    %   Paul Fricker 11/13/2006 w`H.ey  
    o[5=S,'  
    {hkM*:U  
    % Check and prepare the inputs: u5  [1Z|O  
    % ----------------------------- S3%.-)ib  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) pko!{,c  
        error('zernpol:NMvectors','N and M must be vectors.') X ,V= od>  
    end {hW +^  
    xi Ov$.@q  
    if length(n)~=length(m) .0 R/'!e  
        error('zernpol:NMlength','N and M must be the same length.') f;@ b a[  
    end 'sT}DX(7M  
    w 7=D6`  
    n = n(:); ~frPV8^DP  
    m = m(:); 6xDl=*&%  
    length_n = length(n); $sd3h\P&R  
    ,d9%Ce.$2  
    if any(mod(n-m,2)) =]5DYRhX]  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') SK2J`*  
    end ~pX(w!^  
    }J'5EAp  
    if any(m<0) 1j${,>4tQ  
        error('zernpol:Mpositive','All M must be positive.') u8{@PlS  
    end Mip m&5R  
    tk3<sr"IQ  
    if any(m>n) "NX m\`8  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') S<2CG)K[  
    end _{2Fx[m%  
    MA/"UV&M(  
    if any( r>1 | r<0 ) IGF37';;  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') NIWI6qCw  
    end e"v[)b++Y  
    LX(iuf+l  
    if ~any(size(r)==1) ~vjr;a(B  
        error('zernpol:Rvector','R must be a vector.') clR?< LO  
    end k#IS ,NKE  
    M<M# < kD  
    r = r(:); HwV gT"  
    length_r = length(r); :?&WKW  
    7(+OsE  
    if nargin==4 a@S4IoBg%  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); $Z(g=nS>  
        if ~isnorm &bS"N)je  
            error('zernpol:normalization','Unrecognized normalization flag.') BRSgB-Rr7  
        end xsY>{/C  
    else 2RSHB o  
        isnorm = false; u75)>^:I   
    end N,sqrk]  
    &"r==A?  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \^;|S  
    % Compute the Zernike Polynomials 1K*f4BnDr~  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0Z1H6qn  
    q. ,p6D  
    % Determine the required powers of r: r:8]\RU  
    % ----------------------------------- 6b+ Wl Ib  
    rpowers = []; 0]2B-o"kI  
    for j = 1:length(n) ==e#CSJq  
        rpowers = [rpowers m(j):2:n(j)]; upEPv .h  
    end D"( 3VIglq  
    rpowers = unique(rpowers); K#6`LL m  
    die2<'\4%  
    % Pre-compute the values of r raised to the required powers, 1 ">d|oC  
    % and compile them in a matrix: esC\R4he  
    % ----------------------------- 2XecP'+m  
    if rpowers(1)==0 _1>(GK5[  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); D?*sdm9r`  
        rpowern = cat(2,rpowern{:}); [WO%rO^p  
        rpowern = [ones(length_r,1) rpowern];  8H%I|fm  
    else u{{xnyl?  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); N`|Ab(.  
        rpowern = cat(2,rpowern{:}); @L>NN>?SGQ  
    end }JpslY*aS  
    (fk, 80  
    % Compute the values of the polynomials: yZ(Nv $[5  
    % -------------------------------------- 9^ *ZH1  
    z = zeros(length_r,length_n); !EmR(x  
    for j = 1:length_n +{Vwz  
        s = 0:(n(j)-m(j))/2; ixJ20A7  
        pows = n(j):-2:m(j); }r<@o3t  
        for k = length(s):-1:1 s>M~g,xTU  
            p = (1-2*mod(s(k),2))* ... c[d'1=Qiy  
                       prod(2:(n(j)-s(k)))/          ... sKG~<8M}  
                       prod(2:s(k))/                 ... +O!M>  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... A*26'  
                       prod(2:((n(j)+m(j))/2-s(k))); X5oW[  
            idx = (pows(k)==rpowers); l]kl V+9t  
            z(:,j) = z(:,j) + p*rpowern(:,idx); 4k&O-70y4^  
        end d`],l\o C  
         ^* /v,+01f  
        if isnorm B 1ZHV^  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); 8yo6v3JqC  
        end f{ 4G  
    end PHiX:0zT  
    <}Wy;!L  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  ZjW| qb  
    s^R2jueR  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 7:q-NzE\6  
    R{A/ +7!  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)