非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 6\dX
function z = zernfun(n,m,r,theta,nflag) T9y;OG
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. m)?5}ZwAH
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ://U^sFL
% and angular frequency M, evaluated at positions (R,THETA) on the iy5R5L2
% unit circle. N is a vector of positive integers (including 0), and QBE@(2G}C
% M is a vector with the same number of elements as N. Each element Xwu.AVsr
% k of M must be a positive integer, with possible values M(k) = -N(k) :_dICxaLZT
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, >N`6;gn*l
% and THETA is a vector of angles. R and THETA must have the same \94j rr
% length. The output Z is a matrix with one column for every (N,M) MXAEX2xmme
% pair, and one row for every (R,THETA) pair. Il~01|3+m
% X.|Ygx
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike EH9Hpo
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), )xl6,bq3
% with delta(m,0) the Kronecker delta, is chosen so that the integral nZvU'k:
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 1-;?0en&0
% and theta=0 to theta=2*pi) is unity. For the non-normalized zDBD .5R;
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ]= x
1`j
% *crw^e
% The Zernike functions are an orthogonal basis on the unit circle. $G?(OWI}l`
% They are used in disciplines such as astronomy, optics, and z)L}ECZh9
% optometry to describe functions on a circular domain. r)l`
% '
lo.h""
% The following table lists the first 15 Zernike functions. <4?*$
% r:l96^xs
% n m Zernike function Normalization pz}mF D&[
% -------------------------------------------------- w{7ji}
% 0 0 1 1 JAb$M{t
% 1 1 r * cos(theta) 2 {K.rl%_|N
% 1 -1 r * sin(theta) 2 u35q,u=I
% 2 -2 r^2 * cos(2*theta) sqrt(6) *=nO
% 2 0 (2*r^2 - 1) sqrt(3) NtZ6$o<Y
% 2 2 r^2 * sin(2*theta) sqrt(6) t3F?>G#y
% 3 -3 r^3 * cos(3*theta) sqrt(8) fNhT;Bux
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) *%- ?54B
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) @!H
'+c
% 3 3 r^3 * sin(3*theta) sqrt(8) Sb<\-O14"
% 4 -4 r^4 * cos(4*theta) sqrt(10) 7!d$M{0"
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ~Yl$I,
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) E[S' :Q
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) }$)&{d G
% 4 4 r^4 * sin(4*theta) sqrt(10) ,Aa|Bd]b
% -------------------------------------------------- _nX%#/{
% h(:<(o@<
% Example 1: P>htQ
% i,OKfXp
% % Display the Zernike function Z(n=5,m=1) !k h{9I>M
% x = -1:0.01:1; 1i,4".h?M
% [X,Y] = meshgrid(x,x); 3q~Fl=|.o
% [theta,r] = cart2pol(X,Y); jU$Y>S>l
% idx = r<=1; k:0P+d
% z = nan(size(X)); O)5#Fcp(
% z(idx) = zernfun(5,1,r(idx),theta(idx)); [
-12]3
% figure xii$e
% pcolor(x,x,z), shading interp i[=C_+2
% axis square, colorbar <d!6[,W;
% title('Zernike function Z_5^1(r,\theta)') hAa[[%wPhU
% 4I ,o&TK
% Example 2: (t74a E pi
% uX0
Bp8P
% % Display the first 10 Zernike functions [:pl-_.C
% x = -1:0.01:1; ,kE=TR.|
% [X,Y] = meshgrid(x,x); AF[>fMI
% [theta,r] = cart2pol(X,Y); h]}`@M"
% idx = r<=1; q!2<=:f
% z = nan(size(X)); YX `%A6
% n = [0 1 1 2 2 2 3 3 3 3]; C9Wojo.
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; .;Z.F7{q
% Nplot = [4 10 12 16 18 20 22 24 26 28]; $[QcEk
% y = zernfun(n,m,r(idx),theta(idx)); 2fBYT4*P;
% figure('Units','normalized') Ut;'Gk
% for k = 1:10 w{P6i<J
% z(idx) = y(:,k); Y UZKle
% subplot(4,7,Nplot(k)) \*9Ua/H
% pcolor(x,x,z), shading interp 4
m$sJ
% set(gca,'XTick',[],'YTick',[]) "i''Ui\H
% axis square XW:%vJu^`
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) -7L
% end '_E c_F
% 0%;MVMH
% See also ZERNPOL, ZERNFUN2. C,='3^Nc
f-]><z
% Paul Fricker 11/13/2006 a(!3Afi
LH.%\TMN$
\!7*(&yly
% Check and prepare the inputs:
r4S=I
% ----------------------------- N4+g("
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) NCxn^$/+>9
error('zernfun:NMvectors','N and M must be vectors.') w%I8CU_}.
end %OFj
$$~a=q,P[
if length(n)~=length(m) .hgH9$\
error('zernfun:NMlength','N and M must be the same length.') jRwa0Px(
end mQnL<0_<f
W%H]Uyt
n = n(:); 1::LN(`<
m = m(:); VB's
if any(mod(n-m,2)) i)8g CDc
error('zernfun:NMmultiplesof2', ... GM77Z.Y
'All N and M must differ by multiples of 2 (including 0).') .CvFE~
end +qZc}
7rJF
PgTDjEo
if any(m>n) n8Q*
_?Z/
error('zernfun:MlessthanN', ... m/KjJ"s,
'Each M must be less than or equal to its corresponding N.') :Ip~)n9t
end T&!ZD2I
0hb/`[Q
if any( r>1 | r<0 ) *H?t;,\
error('zernfun:Rlessthan1','All R must be between 0 and 1.') ]p}#NPe5
end b<8q 92F
0+p
5/5
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) M!-q}5' ;
error('zernfun:RTHvector','R and THETA must be vectors.') }oV3EIH
end !2wETs?
)L|C'dJ<k`
r = r(:); h9U+%=^O
theta = theta(:); ,Z?m`cx
length_r = length(r); 9Dy)nm^
if length_r~=length(theta) >Rr!rtc'x
error('zernfun:RTHlength', ... l-Fmn/V
'The number of R- and THETA-values must be equal.') cJ2y)`
end y3Y2QC(
# UjEY9"M
% Check normalization: \y@ eBW
% -------------------- {GAsFnZk
if nargin==5 && ischar(nflag) ?${V{=)*X'
isnorm = strcmpi(nflag,'norm'); 4YBf ~Pp
if ~isnorm iq,ah"L
error('zernfun:normalization','Unrecognized normalization flag.') aQxe)
end <Ak:8&$O
else &bn*p.=G
isnorm = false; zv`zsqDJ
end FzA{UO
V;P1nL4L
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% W3"vTZJF
% Compute the Zernike Polynomials PVZEB
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% >J9IRAm}sc
j`{fB}
% Determine the required powers of r: Ia=&.,xub
% ----------------------------------- i_|h{JK)
m_abs = abs(m); Io2,% !D
rpowers = []; 5s#R`o%Z
for j = 1:length(n) CgN]dx*`
rpowers = [rpowers m_abs(j):2:n(j)]; PnI)n=(\
end pb~Ps#"Zg
rpowers = unique(rpowers); z9I1RXV
PQ6T|>
% Pre-compute the values of r raised to the required powers, )iT.A
% and compile them in a matrix:
8u4gx<;O
% ----------------------------- vM5k4%D
if rpowers(1)==0 [kVpzpGr
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); zUe#Wp[
rpowern = cat(2,rpowern{:}); aeLBaS
rpowern = [ones(length_r,1) rpowern]; 5T7_[{
else |:~("rA+v
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); b (g_.1[
rpowern = cat(2,rpowern{:}); hgF21Oj9
end U&w