切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11823阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 psUE!~9,  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! "%@v++4y  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 J ^ G  
    function z = zernfun(n,m,r,theta,nflag) ;Gd~YGW^#  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. RUo9eQIPD  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N h-QLV[^  
    %   and angular frequency M, evaluated at positions (R,THETA) on the OZ(dpV9.S  
    %   unit circle.  N is a vector of positive integers (including 0), and %!|O.xxRR  
    %   M is a vector with the same number of elements as N.  Each element +ts0^;QO2{  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) |.U)ll(c  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, s\3q!A?S3  
    %   and THETA is a vector of angles.  R and THETA must have the same w/m:{cHk  
    %   length.  The output Z is a matrix with one column for every (N,M) (.23rVvnT@  
    %   pair, and one row for every (R,THETA) pair. =.Tv)/ea  
    % n7! H:{L  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike XKU=oI0\j  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Nneo{j  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral A)NkT`<)  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, {C3Y7<  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized T@ YGB]*Y  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. C+N k"l9  
    % m_7 nz!h  
    %   The Zernike functions are an orthogonal basis on the unit circle. +%0z`E\?M#  
    %   They are used in disciplines such as astronomy, optics, and ]?LB?:6  
    %   optometry to describe functions on a circular domain. r'4:)~]s  
    % 8e2?tmWM  
    %   The following table lists the first 15 Zernike functions. A :e;k{J  
    % j*R,m1e8  
    %       n    m    Zernike function           Normalization A9:NKY{z  
    %       -------------------------------------------------- D E/:['  
    %       0    0    1                                 1 CIC[1,  
    %       1    1    r * cos(theta)                    2 .~D>5 JnEk  
    %       1   -1    r * sin(theta)                    2 s0"e'  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) )"<8K}%!  
    %       2    0    (2*r^2 - 1)                    sqrt(3) B80aw>M  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) >U!*y4  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) cP>o+-)  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) md Gwh7/3  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) &^.57]  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) nk=$B (h  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) N{Qxq>6 G  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) U5r}6D!)  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) K_&MoyJJ9f  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 9Kv|>#zff  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) <V&5P3)d9  
    %       -------------------------------------------------- p( LZ)7/  
    % iCQ>@P]nE  
    %   Example 1: L ^`}J7r  
    % ,xi({{L*  
    %       % Display the Zernike function Z(n=5,m=1)  kLP0{A  
    %       x = -1:0.01:1; b/("Y.r=  
    %       [X,Y] = meshgrid(x,x); dJk9@u  
    %       [theta,r] = cart2pol(X,Y); 6 ,b"  
    %       idx = r<=1; dA~ 3>f*b_  
    %       z = nan(size(X)); 2I'~2o  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); YwDt.6(+,  
    %       figure MgMD\  
    %       pcolor(x,x,z), shading interp !36]ud&  
    %       axis square, colorbar `ldz`yu6++  
    %       title('Zernike function Z_5^1(r,\theta)') V"KS[>>f  
    % 8Cx^0  
    %   Example 2: /n,a?Ft^N)  
    % j;~%lg=)  
    %       % Display the first 10 Zernike functions b1?xeG#  
    %       x = -1:0.01:1; ?&+9WJ<M  
    %       [X,Y] = meshgrid(x,x); A;X=bj _&a  
    %       [theta,r] = cart2pol(X,Y); ['qnn|  
    %       idx = r<=1; :l u5Uu~  
    %       z = nan(size(X)); TLa]O1=Bf.  
    %       n = [0  1  1  2  2  2  3  3  3  3]; 0Q9T3X  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; -G|a*^  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; _GYMPq\%L#  
    %       y = zernfun(n,m,r(idx),theta(idx)); _=XX~^I,  
    %       figure('Units','normalized') QO;4}rq  
    %       for k = 1:10 `)$_YZq|SR  
    %           z(idx) = y(:,k); b7:0#l$  
    %           subplot(4,7,Nplot(k)) N:5[,O<m_  
    %           pcolor(x,x,z), shading interp 6sfwlT  
    %           set(gca,'XTick',[],'YTick',[]) }Fb!?['G5  
    %           axis square dl]#  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) n~IVNB*  
    %       end ed!>)Cb  
    % [\z/Lbn ,.  
    %   See also ZERNPOL, ZERNFUN2. e /K#>,  
    6QQfQ,  
    %   Paul Fricker 11/13/2006 2'0K WYM  
    J>vMo@  
    *?p|F&J  
    % Check and prepare the inputs: 4Ft1@  
    % ----------------------------- bCv{1]RC2  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ?)4?V\$  
        error('zernfun:NMvectors','N and M must be vectors.') oA-:zz> wL  
    end !0VfbY9C  
    ]2SI!Ai7  
    if length(n)~=length(m) S::=85[>z  
        error('zernfun:NMlength','N and M must be the same length.') KFRw67^  
    end g=@_Z"  
    ^rNUAj9Z  
    n = n(:); %|W.^q  
    m = m(:); a6xj\w  
    if any(mod(n-m,2)) uq3{h B#  
        error('zernfun:NMmultiplesof2', ... 7*o*6,/  
              'All N and M must differ by multiples of 2 (including 0).') &]6) LFm  
    end {}~:&.D  
    $^/0<i$   
    if any(m>n) 6aft$A}XnD  
        error('zernfun:MlessthanN', ... m!n/U-^  
              'Each M must be less than or equal to its corresponding N.') JAc_kl{4O  
    end El_Qk[X|A  
    c7uG9  
    if any( r>1 | r<0 ) QbFHfA2Ij  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') IIFMYl gF  
    end j V3)2C}  
    -Yi,_#3{  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) }=](p-]5  
        error('zernfun:RTHvector','R and THETA must be vectors.') g\fhp{gWB  
    end J97R0  
    Yf_6PGNzX  
    r = r(:); ,U,By~s  
    theta = theta(:); :fcM:w&  
    length_r = length(r); b,H[I!. %  
    if length_r~=length(theta) %V!iQzL1  
        error('zernfun:RTHlength', ... x+5k <Xi}  
              'The number of R- and THETA-values must be equal.') gO?44^hMe  
    end {Bvj"mL]j  
    }Rvm &?~O  
    % Check normalization: H;ZHqcUX  
    % -------------------- W[bmzvJ_X  
    if nargin==5 && ischar(nflag) +>^7vq-\'  
        isnorm = strcmpi(nflag,'norm'); |iYg >  
        if ~isnorm % ~ ]xuP[  
            error('zernfun:normalization','Unrecognized normalization flag.') BcWcdr+}9  
        end F'P Qqb{  
    else jjs&`Fy,  
        isnorm = false; ?WI3/>:<  
    end ;#+0L$<t  
    <~emx'F|  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ZM#=`k9  
    % Compute the Zernike Polynomials FwAKP>6*  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \kIMDg3}  
    t !`Jse>  
    % Determine the required powers of r: CBT>"sYE1  
    % ----------------------------------- ^ZeJ[t&!#  
    m_abs = abs(m); km5~Gc}  
    rpowers = []; I+ l%Sn#\  
    for j = 1:length(n) =s97Z-  
        rpowers = [rpowers m_abs(j):2:n(j)]; 7Ey#u4Q  
    end t G.(flW,  
    rpowers = unique(rpowers); ,<,:8B  
    V3N0Og3  
    % Pre-compute the values of r raised to the required powers, `iKj  
    % and compile them in a matrix: ?9MVM~$  
    % ----------------------------- .lG5=Th!  
    if rpowers(1)==0 OKOu`Hz@  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); yqOuX>m1c  
        rpowern = cat(2,rpowern{:}); j=+"Qz/hr_  
        rpowern = [ones(length_r,1) rpowern]; \u OdALZ  
    else Tpp&  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); `b5 @}',  
        rpowern = cat(2,rpowern{:}); A1Y7;-D  
    end CG]Sj*SA~  
    {i~8 :  
    % Compute the values of the polynomials: hjx)D  
    % -------------------------------------- #C*8X+._y  
    y = zeros(length_r,length(n)); / jTT5  
    for j = 1:length(n) 4 {GU6v)f  
        s = 0:(n(j)-m_abs(j))/2; ygZ  #y L  
        pows = n(j):-2:m_abs(j); O;Y:uHf  
        for k = length(s):-1:1 KLQTKMNv  
            p = (1-2*mod(s(k),2))* ... bF}V4"d,B3  
                       prod(2:(n(j)-s(k)))/              ... q~K(]Ya/  
                       prod(2:s(k))/                     ... 9 t n!t  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... i7[uLdQ  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); ]<uQ.~  
            idx = (pows(k)==rpowers); '(&%O8Yi  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 2 +5e0/_V  
        end [&S}dQ"  
         U!w1AY|  
        if isnorm C.  MoKa3  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ^}yg%+  
        end Ei>m0 ~<\  
    end H( ^bC5'  
    % END: Compute the Zernike Polynomials \[2lvft!  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% wmr-}Y!9u%  
    'Yy&G\S  
    % Compute the Zernike functions: @+,pN6}g  
    % ------------------------------ SU_SU".  
    idx_pos = m>0; w2(guL($  
    idx_neg = m<0; ^,Ydr~|T  
    s Wjy6;  
    z = y; cF T 9Lnz  
    if any(idx_pos) $WQq? 1.9  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); !hxIlVd{  
    end %!Q`e79g8  
    if any(idx_neg) <msxHw  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); XkKC!  
    end g\oSG)  
    +0z 7KO%^^  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) f6<g3Q7Mu  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. 4_M>OD/"  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated /Wk9-uH  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive "L"150Ih  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, Y o0FUj  
    %   and THETA is a vector of angles.  R and THETA must have the same <S"~vKD'  
    %   length.  The output Z is a matrix with one column for every P-value, mo]KCi  
    %   and one row for every (R,THETA) pair. ;a"q'5+Ne  
    % Tn-C>=tR~%  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike Tm]nEl)_  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) ] 7;f?+  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) UnWW/]E  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 nCg66-3A  
    %   for all p. }7<5hn E  
    % 8Ad606  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 3Q}$fQ&S  
    %   Zernike functions (order N<=7).  In some disciplines it is 9W*+SlH@ !  
    %   traditional to label the first 36 functions using a single mode zQy"m-Q  
    %   number P instead of separate numbers for the order N and azimuthal beY=g7|  
    %   frequency M. \@a$'   
    % nHFrG =o,  
    %   Example: {xcZ*m!B  
    % VUU]Pu &  
    %       % Display the first 16 Zernike functions pI`?(5iK6|  
    %       x = -1:0.01:1; fCAiLkT,C[  
    %       [X,Y] = meshgrid(x,x); C@y8.#l  
    %       [theta,r] = cart2pol(X,Y); 1a0kfM$  
    %       idx = r<=1; AtS;IRN@  
    %       p = 0:15; igf )Hb;5  
    %       z = nan(size(X)); Kz8:UG(  
    %       y = zernfun2(p,r(idx),theta(idx)); s,VXc/  
    %       figure('Units','normalized') qKS;x@  
    %       for k = 1:length(p) D,l,`jv*  
    %           z(idx) = y(:,k); ]6Ug>>x5  
    %           subplot(4,4,k) pI+!92Z  
    %           pcolor(x,x,z), shading interp v'2[[u{7*  
    %           set(gca,'XTick',[],'YTick',[]) |C \}P  
    %           axis square a[bBT@f  
    %           title(['Z_{' num2str(p(k)) '}']) ! {,F~i9  
    %       end }'"Gr%jf(  
    % ,"-Rf<q/  
    %   See also ZERNPOL, ZERNFUN. gB,G.QM*6  
    Z]w# vLR  
    %   Paul Fricker 11/13/2006 pV p:@0h  
    T<yP* b2E  
    z"4]5&3A  
    % Check and prepare the inputs: Cm$1$?J  
    % ----------------------------- f},oj4P\  
    if min(size(p))~=1 0X2@CPIFf  
        error('zernfun2:Pvector','Input P must be vector.') Q~D`cc|]  
    end dGfVZDsr]  
    tL SN`6[:  
    if any(p)>35 l*b)st_p%  
        error('zernfun2:P36', ... 3CjL\pIC  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... 8{U-m0v  
               '(P = 0 to 35).']) B DY}*cX  
    end gCd`pi 8  
    UAF<m1  
    % Get the order and frequency corresonding to the function number: yj6@7@l>A  
    % ---------------------------------------------------------------- u]^N&2UW  
    p = p(:); $5`!Z%>/  
    n = ceil((-3+sqrt(9+8*p))/2); fJ*:{48  
    m = 2*p - n.*(n+2); aFiCZHohw  
    ek aFN\  
    % Pass the inputs to the function ZERNFUN: NBh%:tu7M  
    % ---------------------------------------- TfxwVPX  
    switch nargin !;@_VWR  
        case 3 h<l1]h+x  
            z = zernfun(n,m,r,theta); ER2GjZa\z  
        case 4 3LR p2(A  
            z = zernfun(n,m,r,theta,nflag); d<w~jP\  
        otherwise nm$Dd~mxW1  
            error('zernfun2:nargin','Incorrect number of inputs.') 7fp(R&)1  
    end h.rD}N\L  
    R`Aj|C z  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) eC DIwB28  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. %sh>;^58P  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of ymY1o$qWB}  
    %   order N and frequency M, evaluated at R.  N is a vector of v4Zb? Yb  
    %   positive integers (including 0), and M is a vector with the js^ ,(CS  
    %   same number of elements as N.  Each element k of M must be a e[u?_h  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) Op.8a`XLt&  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is w"m+~).U  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix ?)Nj c&G  
    %   with one column for every (N,M) pair, and one row for every r r`;W}3  
    %   element in R. QZAB=rR  
    % %Kh4m7  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- qM4c]YIaSl  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is 7T``-:`[  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to _3iHkQr  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 ubsSa}$q  
    %   for all [n,m]. i>L+gLW  
    % ~8 H_u  
    %   The radial Zernike polynomials are the radial portion of the 3FSqd<t;D  
    %   Zernike functions, which are an orthogonal basis on the unit U=Y)V%  
    %   circle.  The series representation of the radial Zernike qIUfPA=/_  
    %   polynomials is dhg~$CVO  
    % ?rVy2!  
    %          (n-m)/2 Z0!5d<  
    %            __ 2'jOP" G  
    %    m      \       s                                          n-2s /gcEw!JS  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r <>xJn{f0c  
    %    n      s=0 j*@l"V>~  
    % /StTb,  
    %   The following table shows the first 12 polynomials. @tohNO>  
    % F+ <Z<q  
    %       n    m    Zernike polynomial    Normalization $yDWu"R8  
    %       --------------------------------------------- iF5'ygR-Z  
    %       0    0    1                        sqrt(2) wZT%Ee\D%  
    %       1    1    r                           2 l:;PXy6)  
    %       2    0    2*r^2 - 1                sqrt(6) 'mCe=Y  
    %       2    2    r^2                      sqrt(6) YG:3Fhx0~  
    %       3    1    3*r^3 - 2*r              sqrt(8) >% p{38  
    %       3    3    r^3                      sqrt(8) ?PA$Ur21lw  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) N/YWby=H  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) z't? ?6  
    %       4    4    r^4                      sqrt(10) )C(>H93  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12)  UsGa  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) DBLk!~IF  
    %       5    5    r^5                      sqrt(12) #?MY&hdU9  
    %       --------------------------------------------- >F jR9B  
    % w&$d* E  
    %   Example: c$ S{^IQ  
    % #1c]PX  
    %       % Display three example Zernike radial polynomials }<@j'Ok}.  
    %       r = 0:0.01:1; <H3ezv1M  
    %       n = [3 2 5]; dF0,Y?  
    %       m = [1 2 1]; m p<1yY]  
    %       z = zernpol(n,m,r); &*G<a3 Q  
    %       figure @J{m@ji{  
    %       plot(r,z) i"zuil  
    %       grid on \y6OUM2y  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') eAUcv`[#p  
    % ^ &E}r{?  
    %   See also ZERNFUN, ZERNFUN2. gK#mPcn^  
    h1 WT  
    % A note on the algorithm. ERwHLA  
    % ------------------------ E r/bO  
    % The radial Zernike polynomials are computed using the series 5tJ,7Y'  
    % representation shown in the Help section above. For many special hPq%L c  
    % functions, direct evaluation using the series representation can pY4}>ju(g  
    % produce poor numerical results (floating point errors), because ,h|qi[7  
    % the summation often involves computing small differences between &1%q"\VI  
    % large successive terms in the series. (In such cases, the functions %6 Q4yk  
    % are often evaluated using alternative methods such as recurrence j Ja$a [  
    % relations: see the Legendre functions, for example). For the Zernike XxHx:mi  
    % polynomials, however, this problem does not arise, because the ly% F."v  
    % polynomials are evaluated over the finite domain r = (0,1), and umz;F  
    % because the coefficients for a given polynomial are generally all Q 4CjA3  
    % of similar magnitude. +% /s*EC'w  
    % js1!9%BV  
    % ZERNPOL has been written using a vectorized implementation: multiple (mxT2"fC  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] I%|>2}-_U  
    % values can be passed as inputs) for a vector of points R.  To achieve 2|\A7.  
    % this vectorization most efficiently, the algorithm in ZERNPOL (R`B'OtGg  
    % involves pre-determining all the powers p of R that are required to (SSRY9  
    % compute the outputs, and then compiling the {R^p} into a single 5J8r8` t  
    % matrix.  This avoids any redundant computation of the R^p, and Bq/:Nd[y  
    % minimizes the sizes of certain intermediate variables. yA{W  
    % y@CHR  
    %   Paul Fricker 11/13/2006 hF2IW{=!  
    w\) |  
    A+@&"  
    % Check and prepare the inputs: s  {^yj  
    % ----------------------------- nRd)++  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) jYNrD"n  
        error('zernpol:NMvectors','N and M must be vectors.') l & Dxg  
    end B^).BQ  
    rD>*j~_+P  
    if length(n)~=length(m) @FdSFQ/9  
        error('zernpol:NMlength','N and M must be the same length.') c1X1+b,  
    end fs/*V~@  
    Q)"A-"y  
    n = n(:); XMG]Wf^%\<  
    m = m(:); 3D?s L!W  
    length_n = length(n); UH7jP#W%=  
    R_=6GZH$G  
    if any(mod(n-m,2)) 2Sm }On  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') .`?@%{  
    end Y^<bl2"y8  
    !3T&4t  
    if any(m<0) mN8pg4  
        error('zernpol:Mpositive','All M must be positive.') 26CS6(sn  
    end fNGZo  
    `y+tf?QN  
    if any(m>n) Ov<NsNX]  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') 9@+5LZR  
    end Z|}G6]h  
    `~eUee3b.~  
    if any( r>1 | r<0 ) |7x\m t  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') F5S@I;   
    end gv5*!eI  
    ^n0]dizB  
    if ~any(size(r)==1) Sna4wkbS  
        error('zernpol:Rvector','R must be a vector.') \W1/p`  
    end uslQ*7S[^  
    K\|FQ^#UYm  
    r = r(:); 6;b~Ht  
    length_r = length(r); ;;&}5jcV  
    sVex (X  
    if nargin==4 v+9 9 -.  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); y(K" -?  
        if ~isnorm (h:Rh  
            error('zernpol:normalization','Unrecognized normalization flag.') Jaz?Ys|S  
        end Y3Q9=u*5  
    else ut r:J  
        isnorm = false; =*Bl|;>6  
    end \6\<~UX^  
    X.:]=,aGW  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% bJs9X/E  
    % Compute the Zernike Polynomials (W}bG>!#Q8  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /hO1QT}xd  
    5atYOep  
    % Determine the required powers of r: 2#k5+?-c61  
    % ----------------------------------- oY, %Iq  
    rpowers = [];  O#I1V K  
    for j = 1:length(n) kZ"BBJ6w  
        rpowers = [rpowers m(j):2:n(j)]; d^`?ed\1  
    end !W?gR.0$=  
    rpowers = unique(rpowers); D_Bb?o5  
    5 (A5Y-B  
    % Pre-compute the values of r raised to the required powers, JfPD}w  
    % and compile them in a matrix: 0]4(:(B  
    % ----------------------------- zl`h~}I  
    if rpowers(1)==0 vx4+QQY P  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); }u1O#L}F5  
        rpowern = cat(2,rpowern{:}); )vxUT{;sH  
        rpowern = [ones(length_r,1) rpowern]; 3 h<,  
    else {AQ=<RDRF  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); dUsx vho  
        rpowern = cat(2,rpowern{:}); Rn@# d}  
    end "^Ybs'-  
    A@Dw<.&_I  
    % Compute the values of the polynomials: 4"Hye&O  
    % -------------------------------------- `/_G$_  
    z = zeros(length_r,length_n); Od|$Y+@6  
    for j = 1:length_n TjG4`:*y#m  
        s = 0:(n(j)-m(j))/2; Fgh]KQ/5  
        pows = n(j):-2:m(j); 5scEc,JCi  
        for k = length(s):-1:1 N;[>,0&z  
            p = (1-2*mod(s(k),2))* ... 0#MqD[U(  
                       prod(2:(n(j)-s(k)))/          ... &y#r;L<9  
                       prod(2:s(k))/                 ... [ Fz`D/  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... F;>!&[h}G  
                       prod(2:((n(j)+m(j))/2-s(k))); 7hcNf,  
            idx = (pows(k)==rpowers);  E6WA}_  
            z(:,j) = z(:,j) + p*rpowern(:,idx); iJ~Vl"|m  
        end Nr=d<Us9f  
         ^I+)o1%F  
        if isnorm 12+>5BA  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); [n/hkXa$\  
        end znHnVYll(  
    end `[n(" 7,  
    d \35a4l  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    857
    光币
    847
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  n4#;k=mA  
    4s*ZS}] o  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 aN8|J?JH  
    N<-gI9_  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)