切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11757阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 $99n&t$Y  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! R%WCH?B<}  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 J?1 uKR  
    function z = zernfun(n,m,r,theta,nflag) Y_IF;V\  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 1CD+B=pQG  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N LgU_LcoM*  
    %   and angular frequency M, evaluated at positions (R,THETA) on the rQs)O<jl  
    %   unit circle.  N is a vector of positive integers (including 0), and dr}`H,X"3  
    %   M is a vector with the same number of elements as N.  Each element mHTXni<!  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) ZohCP  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, TDKki(o=~  
    %   and THETA is a vector of angles.  R and THETA must have the same l`{\"#4  
    %   length.  The output Z is a matrix with one column for every (N,M) }5[qo`M  
    %   pair, and one row for every (R,THETA) pair. BwGfTua  
    % qvsd5PeCO  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike sN*N&XG  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), X1|njJGO1  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral qp }Cqi  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, %QGC8Tz  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ,j{,h_Op  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. hGe/ ;@%  
    % J.b9F:&}  
    %   The Zernike functions are an orthogonal basis on the unit circle. AaOu L,l  
    %   They are used in disciplines such as astronomy, optics, and *uf'zQ<9  
    %   optometry to describe functions on a circular domain. 0B/,/KX  
    % wLH>:yKUU  
    %   The following table lists the first 15 Zernike functions. m|n%$$S&  
    % L|:`^M+^w  
    %       n    m    Zernike function           Normalization nI-w}NQ  
    %       -------------------------------------------------- Nq[uoaT  
    %       0    0    1                                 1 <tNBxa$gS  
    %       1    1    r * cos(theta)                    2 KIf dafRL  
    %       1   -1    r * sin(theta)                    2 w^|*m/h|@u  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ?k&Vy  
    %       2    0    (2*r^2 - 1)                    sqrt(3) vn!3l1\+J  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) k8[n+^  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) R6.hA_ih  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) '&tG?gb&  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) +H-6eP  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 6+|do+0Icg  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) @[<><uTH  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) :Zbg9`d*  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) ,{u yG:  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Oi'5ytsES  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) y<|7z99L  
    %       -------------------------------------------------- ]d0BN`*U.  
    % /<=u\e'rE  
    %   Example 1: >V?eog%~  
    % Ys!82M$g  
    %       % Display the Zernike function Z(n=5,m=1) Eqd<MY7  
    %       x = -1:0.01:1; feDlH[$  
    %       [X,Y] = meshgrid(x,x); (AaoCa[  
    %       [theta,r] = cart2pol(X,Y); FEz-+X<q2  
    %       idx = r<=1; N=5a54!/  
    %       z = nan(size(X)); ]?kZni8j_  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); JV^=v@Z3  
    %       figure qFCOUl  
    %       pcolor(x,x,z), shading interp N1}sHyVq7  
    %       axis square, colorbar KE5kOU;  
    %       title('Zernike function Z_5^1(r,\theta)') *=/ { HvJ  
    %  F2LLN  
    %   Example 2: !Y0Vid  
    % (l~AV9!m:  
    %       % Display the first 10 Zernike functions !*d I|k  
    %       x = -1:0.01:1; TOB-aAO  
    %       [X,Y] = meshgrid(x,x); mI-]/:  
    %       [theta,r] = cart2pol(X,Y); S]e|"n~@  
    %       idx = r<=1; )Xz,j9GzJS  
    %       z = nan(size(X)); s 8jV(P(O  
    %       n = [0  1  1  2  2  2  3  3  3  3]; .Ni\\  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; TCwFPlF|  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; X; \+<LE  
    %       y = zernfun(n,m,r(idx),theta(idx)); y1eW pPJa  
    %       figure('Units','normalized') 6 6EV$*dRL  
    %       for k = 1:10 SuJ aL-;  
    %           z(idx) = y(:,k); ar!R|zmf  
    %           subplot(4,7,Nplot(k)) D09Sg%w  
    %           pcolor(x,x,z), shading interp ~?Qe?hB  
    %           set(gca,'XTick',[],'YTick',[]) jjB~G^n  
    %           axis square ["k,QX  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) n`?aC|P2s  
    %       end / |;RV"  
    % mW(W\'~_~  
    %   See also ZERNPOL, ZERNFUN2. |PCm01NU!  
    p?%y82E  
    %   Paul Fricker 11/13/2006 Olt?~}  
    mA}TJz  
    ?4#Li~q  
    % Check and prepare the inputs: B:yGS*.tu  
    % ----------------------------- hB]Np1('  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) .GP T!lDc  
        error('zernfun:NMvectors','N and M must be vectors.') O'p9u@kc  
    end ky,(xT4  
    X Swl Tg  
    if length(n)~=length(m) T9E+\D  
        error('zernfun:NMlength','N and M must be the same length.') z [}v{  
    end x/I%2F  
    ~OYiq}g  
    n = n(:); m/@wh a  
    m = m(:); #>("CAB02T  
    if any(mod(n-m,2)) b;B%q$sntC  
        error('zernfun:NMmultiplesof2', ... iJI }TVep#  
              'All N and M must differ by multiples of 2 (including 0).') lV3x*4O=  
    end \g&,@'uh  
    !OhC/f(GBZ  
    if any(m>n) d=$Mim  
        error('zernfun:MlessthanN', ... }^ ~F|  
              'Each M must be less than or equal to its corresponding N.') p}z<Fdu 0  
    end #'nr Er <  
    DZ 3wCLQtK  
    if any( r>1 | r<0 ) 13$%,q)  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') I;,77PxD  
    end [: n'k  
    t9GR69v:?  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) xA2YG|RU=b  
        error('zernfun:RTHvector','R and THETA must be vectors.') kr^P6}'  
    end B-Ll{k^  
    .O5Z8 p  
    r = r(:); *2>&"B09`  
    theta = theta(:); 7J D' )  
    length_r = length(r); WH#1 zv  
    if length_r~=length(theta) 8?B!2  
        error('zernfun:RTHlength', ... dK$XNi13.5  
              'The number of R- and THETA-values must be equal.') Hp|kQJ[LE  
    end g>E LGG |Q  
    ^  glri$m  
    % Check normalization: IEL%!RFG  
    % -------------------- ^lnK$i  
    if nargin==5 && ischar(nflag) 58}U^IW  
        isnorm = strcmpi(nflag,'norm'); XFVE>/H  
        if ~isnorm f <Zxz9  
            error('zernfun:normalization','Unrecognized normalization flag.') /wGM#sFH  
        end nK1Slg#U  
    else ANAVn@ [  
        isnorm = false; XAD- 'i  
    end V@.Ior}w  
    *?@?f&E/  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% NR$3%0 nC6  
    % Compute the Zernike Polynomials <`8n^m*  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% p%up)]?0  
    OR P\b  
    % Determine the required powers of r: nmee 'oEw  
    % ----------------------------------- x /(^7#u,  
    m_abs = abs(m); Y,qI@n<  
    rpowers = []; np|Sy;:  
    for j = 1:length(n) ]? c B:}  
        rpowers = [rpowers m_abs(j):2:n(j)]; ; }I:\P  
    end '&P%C" 5  
    rpowers = unique(rpowers); ?> 9/#Nv  
    + )AG*  
    % Pre-compute the values of r raised to the required powers, d(ZO6Nr Q  
    % and compile them in a matrix: 7(1|xYCx$  
    % ----------------------------- LRxZcxmy  
    if rpowers(1)==0 udK%>  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); !NK1MU?T)  
        rpowern = cat(2,rpowern{:}); : g7@PJND  
        rpowern = [ones(length_r,1) rpowern]; (' (K9@}  
    else *xAqnk   
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); d"1]4.c  
        rpowern = cat(2,rpowern{:}); "m):Y;9iQ?  
    end 4!{KWL`A  
    -u+vJ6EY  
    % Compute the values of the polynomials: djl*H  
    % -------------------------------------- ^ 'MT0j  
    y = zeros(length_r,length(n)); @(w@e\Bq  
    for j = 1:length(n) +%z> H"J.  
        s = 0:(n(j)-m_abs(j))/2; U7,e/?a  
        pows = n(j):-2:m_abs(j); Df-DRi  
        for k = length(s):-1:1 b}$+H/V  
            p = (1-2*mod(s(k),2))* ... f3l&3hC  
                       prod(2:(n(j)-s(k)))/              ... @Rze| T.  
                       prod(2:s(k))/                     ... d UE,U=  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... [C 7^r3w  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 94`7a<&ZNL  
            idx = (pows(k)==rpowers); )b L'[h  
            y(:,j) = y(:,j) + p*rpowern(:,idx); @}u*|P*  
        end tPWLg),  
         FW;?s+Uyx  
        if isnorm #b}Z`u?@  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); VOsR An/N  
        end Wx%H%FeK  
    end ;3coP{  
    % END: Compute the Zernike Polynomials ah$b [\#C  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% .&iawz  
    \##zR_%  
    % Compute the Zernike functions: IZ-1c1   
    % ------------------------------ BQHVQs   
    idx_pos = m>0;  M mj;-u  
    idx_neg = m<0; \[i1JG  
    =+-UJo5  
    z = y; F@jZ ho  
    if any(idx_pos) PcMD])Z{G  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); r| wS<cA2  
    end ;6 D@A  
    if any(idx_neg) :as$4|  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); w$iX.2|9%u  
    end =!A_^;NQf  
     :A_@,Q  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) ifQ*,+@fxR  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. ;(Or`u]Dr  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated s WvBv  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive '3fu  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, qS$Ox?Bw#u  
    %   and THETA is a vector of angles.  R and THETA must have the same )F>#*P  
    %   length.  The output Z is a matrix with one column for every P-value, L|7R9+ZG  
    %   and one row for every (R,THETA) pair. Qx#"q'2  
    % &i6mW8l  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike #&aqKV Y  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) &)ChQZA  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) ~rKrpb]ow  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 hd<c&7|G'  
    %   for all p. - %h.t+=U  
    % lT?v^\(H  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 $k%2J9O  
    %   Zernike functions (order N<=7).  In some disciplines it is .@U@xRu7|  
    %   traditional to label the first 36 functions using a single mode _7 L-<  
    %   number P instead of separate numbers for the order N and azimuthal 9~XA q^e  
    %   frequency M. }2.`N%[  
    % osAd1<EIC  
    %   Example: G4X|Bka  
    % nRS}}6Q  
    %       % Display the first 16 Zernike functions Jhhb7uU+  
    %       x = -1:0.01:1; 3yF,ak {Sl  
    %       [X,Y] = meshgrid(x,x); 0R'?~`aTt  
    %       [theta,r] = cart2pol(X,Y); <0&*9ZeD  
    %       idx = r<=1; O KR "4n:  
    %       p = 0:15; $ @`V  
    %       z = nan(size(X)); IueFx u  
    %       y = zernfun2(p,r(idx),theta(idx)); J @1!Oq>  
    %       figure('Units','normalized') b9HtR-iR;  
    %       for k = 1:length(p) ]MitOkX  
    %           z(idx) = y(:,k); [!#L6&:a8  
    %           subplot(4,4,k) 6iE<T&$3P  
    %           pcolor(x,x,z), shading interp |N7M^  
    %           set(gca,'XTick',[],'YTick',[]) /]Md~=yNp  
    %           axis square &.Qrs :U  
    %           title(['Z_{' num2str(p(k)) '}']) Yu^4VXp~M%  
    %       end MaQqs=  
    % P* BmHz4KL  
    %   See also ZERNPOL, ZERNFUN. giw &&l=_  
    37.S\ gO]  
    %   Paul Fricker 11/13/2006 9 -a0:bP  
    oQVgyj.  
    WO>nIo5Y  
    % Check and prepare the inputs: s)D;a-F  
    % ----------------------------- $ >eCqC3  
    if min(size(p))~=1 c]o'xd,T8\  
        error('zernfun2:Pvector','Input P must be vector.') <^jQo<kU  
    end /{n-Y/j p  
    vw/J8'  
    if any(p)>35 )' cMYC  
        error('zernfun2:P36', ... {ROVvs`  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... }V`"s^  
               '(P = 0 to 35).']) ]Q3ADh  
    end p%=u#QNi  
    :J&oX <nF^  
    % Get the order and frequency corresonding to the function number: 'S&zCTX7j  
    % ---------------------------------------------------------------- A]oV"`f  
    p = p(:); >@_^fw)  
    n = ceil((-3+sqrt(9+8*p))/2); XK@E;Rv  
    m = 2*p - n.*(n+2); V&2l5v  
    SZ'R59Ee<  
    % Pass the inputs to the function ZERNFUN: ;'@9[N9  
    % ---------------------------------------- 8wFJ4v3  
    switch nargin 2uW; xfeY  
        case 3 #h ]g?*}OJ  
            z = zernfun(n,m,r,theta); SO'vp z{  
        case 4 O m2d .7S  
            z = zernfun(n,m,r,theta,nflag); /7F:T[  
        otherwise d/kv|$XW  
            error('zernfun2:nargin','Incorrect number of inputs.') ;dgp+  
    end z46~@y%k  
    Aw.qK9I  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) "J_9WUN  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. 1\2no{Vh  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of h J)h\  
    %   order N and frequency M, evaluated at R.  N is a vector of JU&c.p /  
    %   positive integers (including 0), and M is a vector with the HY:o+ciH'  
    %   same number of elements as N.  Each element k of M must be a g (CI;f}y  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) ; )@~  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is M!D3}JRm  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix [/41% B2  
    %   with one column for every (N,M) pair, and one row for every 56kI 5:  
    %   element in R. ;"-&1qHN  
    % 4O!ikmY:t  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- ;+ hH  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is e8?jmN`2  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to H8}oIA"b  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 )=_,O=z$K  
    %   for all [n,m]. tW}'g:s  
    % mGg+.PFsM  
    %   The radial Zernike polynomials are the radial portion of the F0Yd@Lk$_  
    %   Zernike functions, which are an orthogonal basis on the unit 5D//*}b,  
    %   circle.  The series representation of the radial Zernike p}U ~+:v  
    %   polynomials is {8bSB.?R  
    % [2 M'PT3  
    %          (n-m)/2 :nOFR$ W  
    %            __ }y gD3:vN7  
    %    m      \       s                                          n-2s DT&@^$?  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r LsU9 .  
    %    n      s=0 5vnrA'BhBU  
    % 0*{%=M  
    %   The following table shows the first 12 polynomials. e^1Twz3z  
    % &`2)V;t  
    %       n    m    Zernike polynomial    Normalization m#\ dSl}  
    %       --------------------------------------------- Wt~BU.  
    %       0    0    1                        sqrt(2) f x+/C8GK  
    %       1    1    r                           2 A_q3KB!$=+  
    %       2    0    2*r^2 - 1                sqrt(6) L`TRJ.GaJ  
    %       2    2    r^2                      sqrt(6) q9s=~d7  
    %       3    1    3*r^3 - 2*r              sqrt(8) d<P\&!R(  
    %       3    3    r^3                      sqrt(8) ' %o#q6O  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) >(t6.=  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) %| Lfuz*  
    %       4    4    r^4                      sqrt(10) sdw(R#GE  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) j*r{2f4Rt  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) IF:;`r@%  
    %       5    5    r^5                      sqrt(12) %6f*{G w  
    %       --------------------------------------------- T{[=oH+  
    % n,WqyNt*  
    %   Example: B \2 SH%\  
    % ; kI134i=  
    %       % Display three example Zernike radial polynomials >}6%#CAf  
    %       r = 0:0.01:1; Qh\60f>0  
    %       n = [3 2 5]; f9{Rb/l!BQ  
    %       m = [1 2 1]; u.xnOcOH!  
    %       z = zernpol(n,m,r); 'm kLCS  
    %       figure 2`=7_v  
    %       plot(r,z) YS"=yye 3e  
    %       grid on 9CD_ os\h  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') I51@QJX  
    % z!9-:  
    %   See also ZERNFUN, ZERNFUN2. 1/J=uH  
    ak!G8'w  
    % A note on the algorithm. 7WZ+T"O{I  
    % ------------------------ &0JI!bR(  
    % The radial Zernike polynomials are computed using the series f(MO_Sj]  
    % representation shown in the Help section above. For many special k~w*W X'  
    % functions, direct evaluation using the series representation can 61'XgkacDS  
    % produce poor numerical results (floating point errors), because +@wD qc  
    % the summation often involves computing small differences between H"WprHe  
    % large successive terms in the series. (In such cases, the functions P\k# >}}  
    % are often evaluated using alternative methods such as recurrence zIAD9mQex  
    % relations: see the Legendre functions, for example). For the Zernike E hMNap}5"  
    % polynomials, however, this problem does not arise, because the $*fMR,~t&  
    % polynomials are evaluated over the finite domain r = (0,1), and \ }G> 8^  
    % because the coefficients for a given polynomial are generally all wz%Nb Ly-  
    % of similar magnitude. sd|).;s}  
    % wI/iuc  
    % ZERNPOL has been written using a vectorized implementation: multiple ?gGHj-HYJ  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] 5$C-9  
    % values can be passed as inputs) for a vector of points R.  To achieve 1 ]b.fD  
    % this vectorization most efficiently, the algorithm in ZERNPOL -nV9:opD  
    % involves pre-determining all the powers p of R that are required to h~zT ydnH  
    % compute the outputs, and then compiling the {R^p} into a single YUk\Q%  
    % matrix.  This avoids any redundant computation of the R^p, and ZPYS$Ydy  
    % minimizes the sizes of certain intermediate variables. vx5Zl&6r  
    % [d ]9Oa4  
    %   Paul Fricker 11/13/2006 /mzlH  
    Z4ImV~m  
    {I't]Qj_e  
    % Check and prepare the inputs: e$rZ5X  
    % ----------------------------- Mb*?5R6;  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 'TB2:W3  
        error('zernpol:NMvectors','N and M must be vectors.') }@d@3  
    end M9%$lCl   
    `VguQl_,gA  
    if length(n)~=length(m) *\F~[  
        error('zernpol:NMlength','N and M must be the same length.') IW] rb/H  
    end CRy|kkT  
    R0*|Lo$6  
    n = n(:); 6.yu-xm  
    m = m(:); ;9QEK]@  
    length_n = length(n); }Jj}%XxKs  
    @f3E`8  
    if any(mod(n-m,2)) ; BHtCuY  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') KoT%Mfu  
    end  rjnrju+  
    wN~_v-~*Q  
    if any(m<0) :gFx{*xN/9  
        error('zernpol:Mpositive','All M must be positive.') U|R_OLWAg  
    end a0H+.W+]  
    \:LW(&[!  
    if any(m>n) BnF^u5kv%  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') & wDs6xq  
    end X%x*f3[  
    g *+>H1}  
    if any( r>1 | r<0 ) sc#qwQ#  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') 5*u+q2\F  
    end @-`*m+$U6  
    'PW5ux@`<  
    if ~any(size(r)==1) `C'H.g\>2Q  
        error('zernpol:Rvector','R must be a vector.') U- k`s[dv  
    end +X 88;-  
    &s>Jb?_5Mx  
    r = r(:); nKj7.,>;:<  
    length_r = length(r); 2&J)dtqz  
    YKK*ER0  
    if nargin==4 -X6PRE5a2  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); ]JQULE)  
        if ~isnorm /&J T~M  
            error('zernpol:normalization','Unrecognized normalization flag.') )J(6xy  
        end 4 s9LB  
    else &m;*<}X  
        isnorm = false; :e+jU5;]3  
    end ]7c=PC  
    SOaoo^,O  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% t4-[Z$ n5  
    % Compute the Zernike Polynomials J C}D` h  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 1s;S aq+  
    _Y m2/3!  
    % Determine the required powers of r: {Qj~M<@3  
    % ----------------------------------- 7tCw*t$  
    rpowers = []; Bk{]g=DO  
    for j = 1:length(n) as =fCuJ  
        rpowers = [rpowers m(j):2:n(j)]; P16~Qj  
    end SSzIih@u  
    rpowers = unique(rpowers); b*lkBqs$  
    yEy6]f+>+  
    % Pre-compute the values of r raised to the required powers, vW@=<aS Z  
    % and compile them in a matrix: ?:9"X$XR  
    % ----------------------------- V>3X\)qu  
    if rpowers(1)==0 NvX[zqNP_R  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); lH~[f  
        rpowern = cat(2,rpowern{:}); G=bCNn<  
        rpowern = [ones(length_r,1) rpowern]; ~pky@O#b  
    else <(!:$  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ql~J8G9  
        rpowern = cat(2,rpowern{:}); +1!ia]  
    end cso8xq|b7  
    3o/[t  
    % Compute the values of the polynomials: +LJ73 !  
    % -------------------------------------- @>7%qS  
    z = zeros(length_r,length_n); xN'I/@ kb  
    for j = 1:length_n MiX43Pk]  
        s = 0:(n(j)-m(j))/2; iH'p>s5L  
        pows = n(j):-2:m(j); G^@5H/)  
        for k = length(s):-1:1 9: lFo=  
            p = (1-2*mod(s(k),2))* ... +aAc9'k   
                       prod(2:(n(j)-s(k)))/          ... + >!;i6|  
                       prod(2:s(k))/                 ... Vi|#@tC'  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... U #0Cx-E  
                       prod(2:((n(j)+m(j))/2-s(k))); qmP].sA  
            idx = (pows(k)==rpowers); b7ZSPXV  
            z(:,j) = z(:,j) + p*rpowern(:,idx); ?gXp*>Kg[  
        end g 0E'g  
         gnHbb-<i,  
        if isnorm #lO Mm9  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); iN.n8MN=I  
        end \ B%+fw  
    end "9807OME  
    Pc]HP  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    857
    光币
    847
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  SasJic2M  
    Xla~Yg  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 *c+ (-  
    5/Uy{Xt  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)