切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11762阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 >#;;g2UV  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! 0n`Temb/  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 6}c!>n['  
    function z = zernfun(n,m,r,theta,nflag) rOEBL|P0  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. fQ!W)>mi  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N u R5h0Fi  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ,f,+)C$  
    %   unit circle.  N is a vector of positive integers (including 0), and bVN?7D(  
    %   M is a vector with the same number of elements as N.  Each element w;AbJCv2  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) f]?&R c2C  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, D5bi)@G7z  
    %   and THETA is a vector of angles.  R and THETA must have the same 55<!H-zt  
    %   length.  The output Z is a matrix with one column for every (N,M) z%+rI  
    %   pair, and one row for every (R,THETA) pair. 4%_c9nat  
    % $kmY[FWu?  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike `uusUw-Gf  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 5-({z%:P  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral hDUU_.q)D  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, eA?|X|  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized p}gA8 o  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. y<R5}F  
    % Gkfzb>_V]  
    %   The Zernike functions are an orthogonal basis on the unit circle. L5KcI  
    %   They are used in disciplines such as astronomy, optics, and 0Db=/sJ>  
    %   optometry to describe functions on a circular domain. x 00'wY|  
    % if\`M'3Xx  
    %   The following table lists the first 15 Zernike functions. Em{;l:;(W  
    % x.|sCqx  
    %       n    m    Zernike function           Normalization Rx&.,gzj[  
    %       -------------------------------------------------- N;!!*3a9=  
    %       0    0    1                                 1 j8^ #698X  
    %       1    1    r * cos(theta)                    2 u:W/6QS  
    %       1   -1    r * sin(theta)                    2 "66#F  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) a7u*d`3X=  
    %       2    0    (2*r^2 - 1)                    sqrt(3) ;tA$ x!5]  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) +N2ILE8[<  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) {dE(.Z?]!#  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) DOkuT/+  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) wzoT!-_X  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) :h3U^  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) !>Q\Y`a,*  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ^4\0, >  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) oGg<s3;UND  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) MMD=4;X  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) [Ran/D\.  
    %       -------------------------------------------------- Tl]yl$  
    % P;'ZdZ(SLu  
    %   Example 1: RwrRN+&s\  
    % uocFOlU0n  
    %       % Display the Zernike function Z(n=5,m=1) KV6D0~  
    %       x = -1:0.01:1; #(+V&< K  
    %       [X,Y] = meshgrid(x,x); V;J3lV<  
    %       [theta,r] = cart2pol(X,Y); W.D>$R2  
    %       idx = r<=1; WI&}94w  
    %       z = nan(size(X));  OmfHr lA  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); m,]9\0GUd  
    %       figure zq?xY`E  
    %       pcolor(x,x,z), shading interp a gL@A  
    %       axis square, colorbar mC(YO y  
    %       title('Zernike function Z_5^1(r,\theta)') EaL>~: j  
    % {/aHZ<I&^h  
    %   Example 2: Y!Io @{f  
    % "}-S%v`)z  
    %       % Display the first 10 Zernike functions QJjk#*?,|  
    %       x = -1:0.01:1; , \RR@~u'  
    %       [X,Y] = meshgrid(x,x); 4HGS  
    %       [theta,r] = cart2pol(X,Y); QX=x^(M$m  
    %       idx = r<=1; -m ;n}ECg  
    %       z = nan(size(X)); # M!1W5#  
    %       n = [0  1  1  2  2  2  3  3  3  3]; ,]n~j-X  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; pNmWBp|ER  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; M&Ln'BC  
    %       y = zernfun(n,m,r(idx),theta(idx)); > XM]UdP  
    %       figure('Units','normalized') *_}0vd  
    %       for k = 1:10 #<u;.'R  
    %           z(idx) = y(:,k); C 'Y2kb  
    %           subplot(4,7,Nplot(k)) !<~cjgdx  
    %           pcolor(x,x,z), shading interp /J&DYxl":  
    %           set(gca,'XTick',[],'YTick',[]) b8vZ^8tBV  
    %           axis square i*!2n1c[  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) |pq9i)e&  
    %       end WA:r4V  
    % n:k4t  
    %   See also ZERNPOL, ZERNFUN2. SQx&4R.  
    n;>=QG -v  
    %   Paul Fricker 11/13/2006 .`v%9-5v  
    =]"I0G-s!  
    m_`%#$s}  
    % Check and prepare the inputs: b&LAk-}[  
    % ----------------------------- ?0+g.,9  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) E7aG&K  
        error('zernfun:NMvectors','N and M must be vectors.') =1,1}OucP  
    end Sw5-^2x0'  
    ?k;htJcGv  
    if length(n)~=length(m) (vchZn#  
        error('zernfun:NMlength','N and M must be the same length.') hv\Dz*XTs0  
    end x.] tGS  
    *-Vr=e<8   
    n = n(:); GCfVH?Vx  
    m = m(:); /m 7~-~$V  
    if any(mod(n-m,2)) be5N{lPT@;  
        error('zernfun:NMmultiplesof2', ... . sFN[>)  
              'All N and M must differ by multiples of 2 (including 0).') &Vgpv#&Cfx  
    end WBm)Q#1:  
    *vvm8ik  
    if any(m>n) }@tgc?C D  
        error('zernfun:MlessthanN', ... 1)z Xv  
              'Each M must be less than or equal to its corresponding N.') ~{vB2  
    end J1~E*t^  
    .V3e>8gw3  
    if any( r>1 | r<0 ) wEJzLFCn  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') BNI)y@E^X  
    end jiLJiYMg  
    Zzz94`  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Z,Us<du  
        error('zernfun:RTHvector','R and THETA must be vectors.') (+/d*4  
    end ecQ,DOX|b  
    xk7Dx}  
    r = r(:); _:p-\Oo.  
    theta = theta(:); i*@PywT"i3  
    length_r = length(r); L/] (pXEp  
    if length_r~=length(theta) 9|v%bO  
        error('zernfun:RTHlength', ... uN>5Eh&=Pf  
              'The number of R- and THETA-values must be equal.') aW{5m@p{"  
    end ACZK]~Y'N*  
    >!a- "  
    % Check normalization: a'dlA da  
    % -------------------- C"_ Roir?  
    if nargin==5 && ischar(nflag) ;B[(~LCyT  
        isnorm = strcmpi(nflag,'norm'); .Y^cs+-o  
        if ~isnorm Z*UVbyC  
            error('zernfun:normalization','Unrecognized normalization flag.') <'SS IMr  
        end *h3iAcM8  
    else 7C,giCYU  
        isnorm = false; }*xjO/Ey  
    end $uyx  
    hwJ>IQ1  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Gsb^gd  
    % Compute the Zernike Polynomials 9:-7.^`P  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @|Yn~PwKs  
    vlE]RB  
    % Determine the required powers of r: 2{vAs  
    % ----------------------------------- [wnp]'+!  
    m_abs = abs(m); >$E;."a  
    rpowers = []; [w|Klq5  
    for j = 1:length(n) _ezRE"F5  
        rpowers = [rpowers m_abs(j):2:n(j)]; $/;K<*O$  
    end '@ Rk#=85Z  
    rpowers = unique(rpowers); BI%XF 9{  
    vB{i w}Hi!  
    % Pre-compute the values of r raised to the required powers, ~?HK,`0h>  
    % and compile them in a matrix: {B4qeG5  
    % ----------------------------- "`4ky ]  
    if rpowers(1)==0 (tg9"C  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Dd pcov  
        rpowern = cat(2,rpowern{:}); 2b^Fz0 w4  
        rpowern = [ones(length_r,1) rpowern]; \U>&W  
    else 2Ki_d  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); S)j( %g  
        rpowern = cat(2,rpowern{:}); 09jE7g @X}  
    end Y<irNp9   
    ~~-VScG&  
    % Compute the values of the polynomials: #fns3=/ H  
    % -------------------------------------- [X!w@d= i  
    y = zeros(length_r,length(n)); gK({InOP  
    for j = 1:length(n) w]{c*4o  
        s = 0:(n(j)-m_abs(j))/2; PgT8 1u  
        pows = n(j):-2:m_abs(j); 111A e *U  
        for k = length(s):-1:1 H)7v$A,5%  
            p = (1-2*mod(s(k),2))* ... /]!2 k9u\  
                       prod(2:(n(j)-s(k)))/              ... igk<]AwxS  
                       prod(2:s(k))/                     ... P@vUQ  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... BO G.[?yx  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); $Vq5U9-  
            idx = (pows(k)==rpowers); WK(X/!1/k  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 8{2  
        end &s vg<UZ  
         DR}I+<*%aD  
        if isnorm b&&l   
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); B#jnM~fJz  
        end uMZ~[S z  
    end n>j2$m1[  
    % END: Compute the Zernike Polynomials DlE,aYB  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% I@/ G#3Zr  
    pQ:^ ziwa3  
    % Compute the Zernike functions: .G!xcQ`?  
    % ------------------------------ S, AxrQc  
    idx_pos = m>0; "}*D,[C5e  
    idx_neg = m<0; b2UDPW  
    In96H`  
    z = y; \\KjiT'  
    if any(idx_pos) NOXP}M  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); DMG~56cTO,  
    end '!7>*<  
    if any(idx_neg) Nyy&'\`!  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); _Ik?WA_;  
    end W?.469yy  
    &3Zb?  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) Ul_Zn  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. )4=86>XJT  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated d/Q#Z  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive CsA(oX  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, )tI^2p{  
    %   and THETA is a vector of angles.  R and THETA must have the same vYm:V:7Y2  
    %   length.  The output Z is a matrix with one column for every P-value, IRm}?hHf  
    %   and one row for every (R,THETA) pair. xX%ppD7  
    % t[`LG)  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike ?pW1}: z  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) 7s?#y=M  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) < bC'.m  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 F(ydqgH~a  
    %   for all p. wBXa;.  
    % A4,{ep'Z!  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 ;^xM" {G8  
    %   Zernike functions (order N<=7).  In some disciplines it is zK5&,/  
    %   traditional to label the first 36 functions using a single mode ? ;CIS$$r  
    %   number P instead of separate numbers for the order N and azimuthal V ,p~,rC  
    %   frequency M. zX_F+"]THt  
    % I2$DlEke  
    %   Example: '/u|32  
    % +fXwbZ?p  
    %       % Display the first 16 Zernike functions ~-A"j\gi"  
    %       x = -1:0.01:1; 6v3l^~kc'  
    %       [X,Y] = meshgrid(x,x); D;0>-  
    %       [theta,r] = cart2pol(X,Y); RBrb7D{  
    %       idx = r<=1; /&Oo)OB;  
    %       p = 0:15; O] PM L`  
    %       z = nan(size(X)); R BHDfm'~7  
    %       y = zernfun2(p,r(idx),theta(idx)); @FN|=?8%  
    %       figure('Units','normalized') n>,:*5"G  
    %       for k = 1:length(p) k5Cy/gR  
    %           z(idx) = y(:,k); (&SU)Uvu  
    %           subplot(4,4,k) $^iio@SW{  
    %           pcolor(x,x,z), shading interp a -Pz<*  
    %           set(gca,'XTick',[],'YTick',[]) -orRmn6}  
    %           axis square fY&TI}Y  
    %           title(['Z_{' num2str(p(k)) '}']) n\((#<&  
    %       end Sxq@W8W  
    %  bHG<B  
    %   See also ZERNPOL, ZERNFUN. 2/ 4zg  
    .b]s Q'  
    %   Paul Fricker 11/13/2006 i`gM> q&  
    6NX#=A  
    (BLxK)0<"  
    % Check and prepare the inputs: / rc[HbNg.  
    % ----------------------------- %cSx`^`6j  
    if min(size(p))~=1 y{@\8B]  
        error('zernfun2:Pvector','Input P must be vector.') ?0t^7HMP  
    end c},pu[nL  
    (Y)2[j  
    if any(p)>35 Q)0KYKD+@  
        error('zernfun2:P36', ... Wz' !stcp  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... {jO+N+Ez9  
               '(P = 0 to 35).']) `Qo37B2  
    end Jo\MDyb]  
    [o<hQ`&  
    % Get the order and frequency corresonding to the function number: qqw P4ceG  
    % ---------------------------------------------------------------- ?) y}HF  
    p = p(:); R#hy2kA  
    n = ceil((-3+sqrt(9+8*p))/2); /3aW 0/^o  
    m = 2*p - n.*(n+2); x\G%  
    N~=I))i  
    % Pass the inputs to the function ZERNFUN: Hnt*,C.0  
    % ---------------------------------------- $b|LZE\bU.  
    switch nargin 6HK1?  
        case 3 J1}\H$*X  
            z = zernfun(n,m,r,theta);  c`xNTr01  
        case 4 F~6]II  
            z = zernfun(n,m,r,theta,nflag); 7_2D4CI  
        otherwise $"vz>SuB  
            error('zernfun2:nargin','Incorrect number of inputs.') 3l<qcKKc  
    end 3FR(gr$X  
    62HA[cr&)  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) <5E'`T  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. u"qu!EY2  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of i6V$mhL  
    %   order N and frequency M, evaluated at R.  N is a vector of DYf2V6'  
    %   positive integers (including 0), and M is a vector with the 3`reXms*{  
    %   same number of elements as N.  Each element k of M must be a &b#d4p6&l  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) } 9\_s*  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is W$`v^1M2o  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix /=;,lC  
    %   with one column for every (N,M) pair, and one row for every $^fF}y6N  
    %   element in R. s-rc0:I  
    % &5-1Cd E  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- 73X*|g  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is n0l|7:Mk  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to vE )N6Ss  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 xK6`|/e  
    %   for all [n,m]. + -Rf@  
    % P{)D_Bi  
    %   The radial Zernike polynomials are the radial portion of the )(G<(eiD  
    %   Zernike functions, which are an orthogonal basis on the unit @]n8*n  
    %   circle.  The series representation of the radial Zernike m[=SCH-;  
    %   polynomials is iO*5ClB  
    % :'bZ:J>f  
    %          (n-m)/2 zY\u" '4  
    %            __ :Ob4WU  
    %    m      \       s                                          n-2s 6ZI Pe~`  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r :(XyiF<Ud  
    %    n      s=0 q+9^rQ  
    % 68?&`/t  
    %   The following table shows the first 12 polynomials. [l^XqD D4  
    % ~:JAWs$\V  
    %       n    m    Zernike polynomial    Normalization !LH;K  
    %       --------------------------------------------- <2]h$53y!  
    %       0    0    1                        sqrt(2) 4C?{p%3c  
    %       1    1    r                           2 R8[VD iM6E  
    %       2    0    2*r^2 - 1                sqrt(6) nX:E(9q7c  
    %       2    2    r^2                      sqrt(6) $Zyuhji^  
    %       3    1    3*r^3 - 2*r              sqrt(8) N>3{!K>/Y:  
    %       3    3    r^3                      sqrt(8) (DvPdOT+3  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) vx?KenO}  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) PFpFqJ)Cs"  
    %       4    4    r^4                      sqrt(10) !X7z y9  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) Kv* 1=HES  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) wm#(\dj  
    %       5    5    r^5                      sqrt(12) #"6l+}  
    %       --------------------------------------------- )*}\fmOv{  
    % EC$F|T0f  
    %   Example: &]a(5  
    % (QIU3EN  
    %       % Display three example Zernike radial polynomials b&!}SZ  
    %       r = 0:0.01:1; W2XWb<QSEV  
    %       n = [3 2 5]; UZt3Ua&J  
    %       m = [1 2 1]; VJ-t #q"  
    %       z = zernpol(n,m,r); fASklcQ  
    %       figure b(N+_= n  
    %       plot(r,z) agfDx ^,  
    %       grid on 1^o})9  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') aW:*!d#  
    % b [HnhAI  
    %   See also ZERNFUN, ZERNFUN2. vULDKJNHX  
    l1zPL3"u_^  
    % A note on the algorithm. / P@P1l|I  
    % ------------------------ <P1nfH  
    % The radial Zernike polynomials are computed using the series vrmMEWPV  
    % representation shown in the Help section above. For many special DOtz  
    % functions, direct evaluation using the series representation can ;PMPXN'z6  
    % produce poor numerical results (floating point errors), because 8ZV!ld  
    % the summation often involves computing small differences between G?F!Z"S  
    % large successive terms in the series. (In such cases, the functions #vK99 S2  
    % are often evaluated using alternative methods such as recurrence R{brf6,  
    % relations: see the Legendre functions, for example). For the Zernike &O+S [~  
    % polynomials, however, this problem does not arise, because the t@lTA>;U@  
    % polynomials are evaluated over the finite domain r = (0,1), and t_I-6`8o]  
    % because the coefficients for a given polynomial are generally all dj084q7  
    % of similar magnitude. sifjmNP  
    % dW/(#KP/+  
    % ZERNPOL has been written using a vectorized implementation: multiple *RJD^hu  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] vB7]L9=@"  
    % values can be passed as inputs) for a vector of points R.  To achieve S9:ij1  
    % this vectorization most efficiently, the algorithm in ZERNPOL L7 FFa:#  
    % involves pre-determining all the powers p of R that are required to n=rmf*,?  
    % compute the outputs, and then compiling the {R^p} into a single .vmCKZ  
    % matrix.  This avoids any redundant computation of the R^p, and Ld:-S,2  
    % minimizes the sizes of certain intermediate variables. 'O~_g5kC  
    % `Q+O#l?  
    %   Paul Fricker 11/13/2006 3J4OkwqD  
     1^hG}#6_  
    O:V.;q2]U  
    % Check and prepare the inputs: qu1! KS  
    % ----------------------------- -{L 7%j|R  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) @pvQci  
        error('zernpol:NMvectors','N and M must be vectors.') Kk.\P|k2  
    end ]\ZJaU80I~  
    MYJDfI  
    if length(n)~=length(m) qzY:>>d'  
        error('zernpol:NMlength','N and M must be the same length.') IwXQbJ3v_  
    end  CU\r I  
    {IB4%,qT  
    n = n(:); 1iqgTi>  
    m = m(:); ~E DO< O>3  
    length_n = length(n); wMm+E "}W  
    F+zHgE  
    if any(mod(n-m,2)) :q1j?0 {2N  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') G^P9_Sw]d3  
    end Ki :98a$  
    ( F R  
    if any(m<0) g$=']A?W_  
        error('zernpol:Mpositive','All M must be positive.') H-& ktQWK3  
    end jRk1Iu|7  
    IQ#Kod;)  
    if any(m>n) }i;!p Ue$  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') {R~L7uR @O  
    end U z)G Y  
    0*OK]`9  
    if any( r>1 | r<0 ) X=Y>9  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') `+(JwQC4  
    end '}Jq(ah(  
    0Z AtBq.s  
    if ~any(size(r)==1) W}^>lM\8  
        error('zernpol:Rvector','R must be a vector.') Em<J{`k6  
    end pR:cnkVF  
    Qmv8T ^+  
    r = r(:); 7bW ''J*6  
    length_r = length(r); 65c#he[_Y  
    2c9]Ja3:6  
    if nargin==4 Ag]Hk %  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); (aq^\#9btO  
        if ~isnorm <ot%>\C  
            error('zernpol:normalization','Unrecognized normalization flag.') h_t<Jl  
        end 6~Zq  
    else s\ ]Rgi>w  
        isnorm = false; 9jUm0B{?  
    end {M0pq3SL*t  
    wGpw+O  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% H?pWyc<,  
    % Compute the Zernike Polynomials J {#C<C  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ;cZ]^kof  
    -QydUr/(o  
    % Determine the required powers of r: >\ym{@+*  
    % ----------------------------------- rI1;>/Ir  
    rpowers = []; <Y#EiC.  
    for j = 1:length(n)  7w|4BRL  
        rpowers = [rpowers m(j):2:n(j)]; 1'J|yq  
    end [~rBnzb  
    rpowers = unique(rpowers); L5>.ku=T  
    X?]1/6rV  
    % Pre-compute the values of r raised to the required powers, P-lE,X   
    % and compile them in a matrix: z9*7fT  
    % ----------------------------- "(y|iS$^T  
    if rpowers(1)==0 D)LqkfJ}z^  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); y$pT5X G  
        rpowern = cat(2,rpowern{:}); )x&}{k6 %  
        rpowern = [ones(length_r,1) rpowern]; kF *^" Cn  
    else !bD`2m[Q  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); RiAY>:  
        rpowern = cat(2,rpowern{:}); iu.+bX|b  
    end XS"lR |  
    !~aDmY 2  
    % Compute the values of the polynomials: k*xgF[T 8  
    % -------------------------------------- d\aU rsPn  
    z = zeros(length_r,length_n); uYwJ[1 C  
    for j = 1:length_n t[cZ|+^]  
        s = 0:(n(j)-m(j))/2; fNaS?tV)  
        pows = n(j):-2:m(j); W 7Y5~%@  
        for k = length(s):-1:1 ;GxKPy  
            p = (1-2*mod(s(k),2))* ... I_@XHhyVZ  
                       prod(2:(n(j)-s(k)))/          ... [L@ vC>G  
                       prod(2:s(k))/                 ... ~I)\d/7o  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... $nbZ+~49  
                       prod(2:((n(j)+m(j))/2-s(k))); }<kpvd+ps=  
            idx = (pows(k)==rpowers); 0 /JusQ  
            z(:,j) = z(:,j) + p*rpowern(:,idx); +3n07d  
        end B?J #NFUb  
         0dgp<  
        if isnorm A#j'JA>_  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); QR($KW(  
        end ]\<^rEU  
    end miZ&9m  
    J@c)SK%2h  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    857
    光币
    847
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  c`S`.WID  
    lZ5LHUzP  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 j<"@ Y7  
    9:DT+^BB  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)