切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10743阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 @%Y$@Qb{  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! _Bh-*e2k  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 #"PI%&  
    function z = zernfun(n,m,r,theta,nflag) z +NxO !y  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. {|cuu"j26  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ^uZ!e+   
    %   and angular frequency M, evaluated at positions (R,THETA) on the Y;qA@|  
    %   unit circle.  N is a vector of positive integers (including 0), and ?[Gj?D.Wc  
    %   M is a vector with the same number of elements as N.  Each element 8Ter]0M&  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) B^8]quOH  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, Y<1]{4Wt  
    %   and THETA is a vector of angles.  R and THETA must have the same c:;m BS>~  
    %   length.  The output Z is a matrix with one column for every (N,M) c{7<z9U  
    %   pair, and one row for every (R,THETA) pair. <\0+*`">g  
    % 24 )Sf  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike OXT'$]p.*  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), m5Q?g8  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral _4!SO5T  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, -v]v m3Na  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized AfQ?jKk&{'  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. $inpiO|s  
    % >LqW;/&S<  
    %   The Zernike functions are an orthogonal basis on the unit circle. ">$.>sn{  
    %   They are used in disciplines such as astronomy, optics, and c{X>i>l>  
    %   optometry to describe functions on a circular domain. L p(6K  
    % (<.uvq61  
    %   The following table lists the first 15 Zernike functions. s> d /9 b  
    % iEe<+Eyns  
    %       n    m    Zernike function           Normalization |ji={  
    %       -------------------------------------------------- s#f6qj  
    %       0    0    1                                 1 xRTr<j0s  
    %       1    1    r * cos(theta)                    2 SLCV|@G  
    %       1   -1    r * sin(theta)                    2 o>3g<- ul  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) +A 3Q$1F  
    %       2    0    (2*r^2 - 1)                    sqrt(3) A'jw;{8NpF  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) WziX1%0$n  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) hU 3z4|~+  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) A4kYE A  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) jGp|:!'w  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) zYL</!6a[  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) RA5*QW  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) I $5*Puy#  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) ?/EyfTex  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 6Vq]AQx  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) $ U~3$*R  
    %       -------------------------------------------------- O(P ,!  
    % ^N{Lau  
    %   Example 1: gWqO5C~h  
    % x+mf QcSD&  
    %       % Display the Zernike function Z(n=5,m=1) R78=im7  
    %       x = -1:0.01:1; x{Gdr51%  
    %       [X,Y] = meshgrid(x,x); T3-8AUCK8?  
    %       [theta,r] = cart2pol(X,Y); 4^? J BpBZ  
    %       idx = r<=1; C^dnkuA  
    %       z = nan(size(X)); HOEjLwH  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); ch^tq",1>  
    %       figure  xr }jw  
    %       pcolor(x,x,z), shading interp vZ<@m2  
    %       axis square, colorbar U}r^M( s!  
    %       title('Zernike function Z_5^1(r,\theta)') 8Gw0;Uu8D  
    % O@n1E'S/  
    %   Example 2: y)5U*\b  
    % @A-*XJNS":  
    %       % Display the first 10 Zernike functions d;Uzl 1;  
    %       x = -1:0.01:1; =Wb!j18]  
    %       [X,Y] = meshgrid(x,x); !W^b:qjJ  
    %       [theta,r] = cart2pol(X,Y); 5>o<! 0g  
    %       idx = r<=1; !3E %u$-}  
    %       z = nan(size(X)); y 093-  
    %       n = [0  1  1  2  2  2  3  3  3  3]; EPY64 {  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 8SG*7[T7  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; K >-)O=$s  
    %       y = zernfun(n,m,r(idx),theta(idx)); 3IrmDT  
    %       figure('Units','normalized') zsQhydTR  
    %       for k = 1:10 _~^JRC[q  
    %           z(idx) = y(:,k); ka3(sctZ5  
    %           subplot(4,7,Nplot(k)) W~TT`%[  
    %           pcolor(x,x,z), shading interp 6NvdFss'A{  
    %           set(gca,'XTick',[],'YTick',[]) pi'w40!:  
    %           axis square FIB 9W@oao  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) uk8vecj  
    %       end ZTq"SQ>ym  
    % GMY"*J<E  
    %   See also ZERNPOL, ZERNFUN2. 8T}Ycm5}  
    L_3undy,  
    %   Paul Fricker 11/13/2006 {5ujKQOcR  
    r306`)kX  
    DOr()X  
    % Check and prepare the inputs: G=[ =[o\  
    % ----------------------------- "R"7'sJMI  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) q#8$@*I  
        error('zernfun:NMvectors','N and M must be vectors.') !,f#oCL  
    end ?q&*|-%)_d  
    !9$xfg }  
    if length(n)~=length(m) $LS$:%i4  
        error('zernfun:NMlength','N and M must be the same length.') r%*UU4xvB  
    end AWp{n  
    GzJ("RE0)v  
    n = n(:); Bf&,ACOf  
    m = m(:); }d,iA FG  
    if any(mod(n-m,2)) 2{<5?Op  
        error('zernfun:NMmultiplesof2', ... Cst:5m0!  
              'All N and M must differ by multiples of 2 (including 0).') AfzE0mBW  
    end 2>E.Q@c  
    :r<uH6x|  
    if any(m>n) [OH9/ "  
        error('zernfun:MlessthanN', ... '>GZB  
              'Each M must be less than or equal to its corresponding N.') qRD]Q  
    end 1gq(s2izy  
    '?q \mi  
    if any( r>1 | r<0 ) {=(GY@yU/  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') C?UV3  
    end mN_KAln  
    [V\0P,l  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) l8"  
        error('zernfun:RTHvector','R and THETA must be vectors.') <f l-P  
    end |.A#wjF9  
    @KM !g,f  
    r = r(:); Us4ijR d  
    theta = theta(:); 2#sJ`pdQ  
    length_r = length(r); <X7x  
    if length_r~=length(theta) &^R0kCF`  
        error('zernfun:RTHlength', ... ryd*Ha">I  
              'The number of R- and THETA-values must be equal.') =Q % F~  
    end ;C1]gJZ,  
    Et\z^y  
    % Check normalization: TFX*kk &R  
    % -------------------- ])dq4\Bw  
    if nargin==5 && ischar(nflag) J|DID+M  
        isnorm = strcmpi(nflag,'norm'); JEF2fro:Z  
        if ~isnorm 5jj<sj!S  
            error('zernfun:normalization','Unrecognized normalization flag.') 80X #V  
        end !n<vN@V*3d  
    else 8pc=Oor2Tv  
        isnorm = false; /cPe zX  
    end "Qf X&'09  
    ;\N{z6  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \t LfB[S.5  
    % Compute the Zernike Polynomials YT)jBS~&  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 5*.JXx E;U  
    DKd:tL24&  
    % Determine the required powers of r: (Rqn)<<2  
    % ----------------------------------- 3"ALohlL  
    m_abs = abs(m); Ae&470  
    rpowers = []; S4/CL4=  
    for j = 1:length(n) qpo3b7(N  
        rpowers = [rpowers m_abs(j):2:n(j)]; b?6-lYE>L  
    end I]HrtI  
    rpowers = unique(rpowers); t'msgC6=>u  
    OH2Xxr[bQ  
    % Pre-compute the values of r raised to the required powers, N5>ioJj  
    % and compile them in a matrix: D0'L  
    % ----------------------------- 0n5{Wr$  
    if rpowers(1)==0 :'*;>P .(  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); f(Vr&X  
        rpowern = cat(2,rpowern{:}); /%E X4 W  
        rpowern = [ones(length_r,1) rpowern]; |9YY8oT.  
    else -YF]k}|  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ~x:\xQti  
        rpowern = cat(2,rpowern{:}); 0 K T.@P  
    end Z=VAjJ;i[  
    *v+xKy#M  
    % Compute the values of the polynomials: AE1EZ#  
    % -------------------------------------- RR,gC"cTi  
    y = zeros(length_r,length(n)); #r\,oXTm  
    for j = 1:length(n) Ns?8N":  
        s = 0:(n(j)-m_abs(j))/2; ^Ht!~So  
        pows = n(j):-2:m_abs(j); Gqe?CM  
        for k = length(s):-1:1 c{YBCWA  
            p = (1-2*mod(s(k),2))* ... OEz'&))J  
                       prod(2:(n(j)-s(k)))/              ... gi26Dtk(h  
                       prod(2:s(k))/                     ... 8y9oj9 ;E]  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ...  T06BrX  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); >HvgU_  
            idx = (pows(k)==rpowers); <m;idfn  
            y(:,j) = y(:,j) + p*rpowern(:,idx); y|sU-O2}Dl  
        end gIGyY7{(s8  
         nE$8-*BZ_  
        if isnorm WCK;r{p%I  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); W{pyU \  
        end -4  ~(*  
    end >=G-^z:  
    % END: Compute the Zernike Polynomials V1[Cc?o  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% x+?P/Ckg  
    8ZmU(m  
    % Compute the Zernike functions: VB*`"4e@b<  
    % ------------------------------ dMo456L  
    idx_pos = m>0; 3em&7QM  
    idx_neg = m<0; }/dGC;p"  
    "eqNd"~  
    z = y; "pQFIV,  
    if any(idx_pos) ^T(v4'7  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); xqP DL9\  
    end O+8]y4%5  
    if any(idx_neg) \6]Uj+  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); o75Hit  
    end ]+C;C  
    qfRsp rRI"  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) R 4= ~  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. EbG`q!C  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated [I XX#^F  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive etcpto=Mo  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, $w:7$:k  
    %   and THETA is a vector of angles.  R and THETA must have the same !(%^Tg=  
    %   length.  The output Z is a matrix with one column for every P-value, p\>im+0oh  
    %   and one row for every (R,THETA) pair. \{g;|Z 1  
    % !YM;5vte+  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike dfU z{  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) qD#E, "%  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) kNqIPvuMr  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 ,PmQ}1kGW  
    %   for all p. MQ~OG9.  
    % HB/q v IzB  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 Qp]-:b  
    %   Zernike functions (order N<=7).  In some disciplines it is t<UtSkE1  
    %   traditional to label the first 36 functions using a single mode Ym]Dlz,o  
    %   number P instead of separate numbers for the order N and azimuthal y2_^lW%  
    %   frequency M. S2^Ckg  
    % cH== OM7&-  
    %   Example: f@G3,u!]i  
    % 7W7!X\0Y  
    %       % Display the first 16 Zernike functions Y6&B%t<bo  
    %       x = -1:0.01:1; e9F\U   
    %       [X,Y] = meshgrid(x,x); >Rnj6A|Q  
    %       [theta,r] = cart2pol(X,Y); D'nO  
    %       idx = r<=1; U]8 @  
    %       p = 0:15; Xa=M{x  
    %       z = nan(size(X)); r.JY88"  
    %       y = zernfun2(p,r(idx),theta(idx)); r[u@ [  
    %       figure('Units','normalized') JGLjx"Y  
    %       for k = 1:length(p) ~F{u4p7{N  
    %           z(idx) = y(:,k); KS9 e V  
    %           subplot(4,4,k) #3+-vyZm  
    %           pcolor(x,x,z), shading interp K6 {0`'x  
    %           set(gca,'XTick',[],'YTick',[]) Boi?Bt  
    %           axis square |aaoi4OJ  
    %           title(['Z_{' num2str(p(k)) '}']) 31FQ=(K  
    %       end Pc{0Js5VzE  
    % A_:YpQ07@  
    %   See also ZERNPOL, ZERNFUN. C>A*L4c]F  
    mbZS J  
    %   Paul Fricker 11/13/2006 XBTtfl &  
    =m+'orJ1  
    Os9;;^k  
    % Check and prepare the inputs: >3{l"SPU  
    % ----------------------------- v?9  
    if min(size(p))~=1 _&]B  
        error('zernfun2:Pvector','Input P must be vector.') ME9jN{ le  
    end n)~9  
    x|TLMu=3=  
    if any(p)>35 xn=/SIS  
        error('zernfun2:P36', ... Wej'AR\NX  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... Em(&cra  
               '(P = 0 to 35).']) xM#+jI  
    end ya*KA.EGg  
    "b#L8kN  
    % Get the order and frequency corresonding to the function number: #RyX}t X,  
    % ---------------------------------------------------------------- jTDaW8@L  
    p = p(:); _xHEA2e!  
    n = ceil((-3+sqrt(9+8*p))/2); nw)yK%`;M  
    m = 2*p - n.*(n+2); ['G@`e*\  
    ~boTh  
    % Pass the inputs to the function ZERNFUN: &4m\``//9  
    % ---------------------------------------- QoU0>p+ 2  
    switch nargin &:}{?vU  
        case 3 S<-e/`p=H  
            z = zernfun(n,m,r,theta); gbl`_t/  
        case 4 sfN6ro  
            z = zernfun(n,m,r,theta,nflag); Z0(}doh  
        otherwise (B0tgg^jj,  
            error('zernfun2:nargin','Incorrect number of inputs.') jMH=lQ+8  
    end k9'`<82Y  
    NJe^5>4`  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) HZ+l){u  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. uxKj7!(#  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of SGp}(j>  
    %   order N and frequency M, evaluated at R.  N is a vector of ;:%*h2  
    %   positive integers (including 0), and M is a vector with the "s6\l~+9l  
    %   same number of elements as N.  Each element k of M must be a qrK\f  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) q0>@!1Wb  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is }3Mnq?.-  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix VY@6!9G  
    %   with one column for every (N,M) pair, and one row for every cGE,3dsF[  
    %   element in R. {Y(#<UDM  
    % {tN?)~ZQ  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- )Gu:eYp+`  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is E;m-^dxc  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to mHYR?  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 RTJ\|#w  
    %   for all [n,m]. TrEo5H;  
    % i.(kX`~J1  
    %   The radial Zernike polynomials are the radial portion of the vpoYb  
    %   Zernike functions, which are an orthogonal basis on the unit $BPTk0Y  
    %   circle.  The series representation of the radial Zernike CBVL/pxy  
    %   polynomials is ZSUbPz  
    % EV$$wrohQ`  
    %          (n-m)/2 (:spA5  
    %            __ T|L_ +(M{  
    %    m      \       s                                          n-2s GgNqci,  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r ]'[(MH"  
    %    n      s=0 CHojF+e  
    % `> :^c  
    %   The following table shows the first 12 polynomials. sb3k? q  
    % ,?k~>,{3  
    %       n    m    Zernike polynomial    Normalization T[<deQ  
    %       --------------------------------------------- a#k=! W  
    %       0    0    1                        sqrt(2) qTA,rr#p0  
    %       1    1    r                           2 \a}_=O  
    %       2    0    2*r^2 - 1                sqrt(6) 3`mM0,fY  
    %       2    2    r^2                      sqrt(6) z^etH/]Sy  
    %       3    1    3*r^3 - 2*r              sqrt(8) Z.iQm{bI  
    %       3    3    r^3                      sqrt(8) ?e. Ge0&  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) TB@0j ;g  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) B9[eLh!  
    %       4    4    r^4                      sqrt(10) B'kV.3t  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) A@o:mZ+XN(  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) %!vgAH4  
    %       5    5    r^5                      sqrt(12) 0?0$6F  
    %       --------------------------------------------- N"M?kk,  
    % P> wDr`*  
    %   Example: 9!kH:Az[p  
    % 2l YA% n  
    %       % Display three example Zernike radial polynomials t'.oty=  
    %       r = 0:0.01:1; ET1>&l:.  
    %       n = [3 2 5]; 97]$*&fH  
    %       m = [1 2 1]; ~dm/U7B:  
    %       z = zernpol(n,m,r); S Y7'S#  
    %       figure  uK_R#^  
    %       plot(r,z) iL](w3EM  
    %       grid on $X;wj5oj  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') 9cO m$  
    % *}n)KK7aT  
    %   See also ZERNFUN, ZERNFUN2. AvxP0@.`  
    RhPEda2  
    % A note on the algorithm. s.8]qQRr  
    % ------------------------ .bT+#x  
    % The radial Zernike polynomials are computed using the series KXS{@/"-B  
    % representation shown in the Help section above. For many special [&B}{6wry  
    % functions, direct evaluation using the series representation can &M5_G$5n  
    % produce poor numerical results (floating point errors), because O6Gg?j  
    % the summation often involves computing small differences between G9_M~N%a  
    % large successive terms in the series. (In such cases, the functions >.fN@8[  
    % are often evaluated using alternative methods such as recurrence M10u?  
    % relations: see the Legendre functions, for example). For the Zernike [|NgrU_.  
    % polynomials, however, this problem does not arise, because the zq?Iwyo  
    % polynomials are evaluated over the finite domain r = (0,1), and )RFE< Qcj  
    % because the coefficients for a given polynomial are generally all j. m(Z}  
    % of similar magnitude. Y >N`(  
    % R[/]iK+!&  
    % ZERNPOL has been written using a vectorized implementation: multiple Z\)emps  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] )iiwxpdw  
    % values can be passed as inputs) for a vector of points R.  To achieve POouO/r$  
    % this vectorization most efficiently, the algorithm in ZERNPOL @NY$.K#]  
    % involves pre-determining all the powers p of R that are required to +"!=E erKi  
    % compute the outputs, and then compiling the {R^p} into a single l Zq`,E_L  
    % matrix.  This avoids any redundant computation of the R^p, and N)0I+>, ^  
    % minimizes the sizes of certain intermediate variables. bN',-[E  
    % qZ8 V/  
    %   Paul Fricker 11/13/2006 =u+.o<   
    QvF UFawN  
    fV` R7m.  
    % Check and prepare the inputs: k/|j e~$  
    % ----------------------------- Ju~8C\Dd  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) jgb>:]:  
        error('zernpol:NMvectors','N and M must be vectors.') ?_NhR   
    end GsG9;6c+u  
    z+J4XpX0,  
    if length(n)~=length(m) z [qO5z~I  
        error('zernpol:NMlength','N and M must be the same length.') OSvv\3=  
    end 05+uBwH  
    xzGs%01]  
    n = n(:); n<x NE %  
    m = m(:); ;zbF~5e  
    length_n = length(n); =}12S:Qhj  
    tvC7LLNP<  
    if any(mod(n-m,2)) <AzM~]"3  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') |c]Y1WwDx  
    end t-vH\m  
    &f\ng{  
    if any(m<0) Xu1tN9:oE  
        error('zernpol:Mpositive','All M must be positive.') f y|Ae  
    end 05<MsxB"w  
    qX(sx2TK  
    if any(m>n) bB^SD] }C  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') ^c9~~m16+  
    end \\qw"w9  
    y3 {om^ f  
    if any( r>1 | r<0 ) hE-u9i  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') }tIIA"dZ  
    end d45JT?qg&  
    <3!jra,h  
    if ~any(size(r)==1) ^[d|^fRH Q  
        error('zernpol:Rvector','R must be a vector.') C?FUc cI  
    end Ef;OrE""  
    |7jUf$Q\p  
    r = r(:); !2('Cq_^  
    length_r = length(r); +^c;4-X 0  
    Y dgaZJs  
    if nargin==4 t._W643~  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); [hf#$Dl |  
        if ~isnorm 2<aBUGA  
            error('zernpol:normalization','Unrecognized normalization flag.') +yq Z\$ii  
        end crJyk#_  
    else cD6$C31Y]  
        isnorm = false; Ny;(1N|&3  
    end c%uX+\-$  
    y@|gG&f T  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% .1yp}&e#  
    % Compute the Zernike Polynomials /=x) 9J  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% * Yr)>;^  
    RNyw`>  
    % Determine the required powers of r: G<C[A  
    % ----------------------------------- CL*i,9:NR  
    rpowers = []; yIwAJl7Xf  
    for j = 1:length(n) _u^ S[  
        rpowers = [rpowers m(j):2:n(j)]; 1{oq8LB  
    end Y5~_y?BX  
    rpowers = unique(rpowers); \e5bxc  
    ta*B#2D>  
    % Pre-compute the values of r raised to the required powers, _|x b)_  
    % and compile them in a matrix: /++CwRz@Gm  
    % ----------------------------- ?hh 4M  
    if rpowers(1)==0 t)n!];  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ]7C=.'Y  
        rpowern = cat(2,rpowern{:}); -.|V S|y  
        rpowern = [ones(length_r,1) rpowern]; ZJ9J*5!C  
    else ]q0mo1-EZ!  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); r00 fvZyK  
        rpowern = cat(2,rpowern{:}); ) 5r*2I  
    end x4cP%{n  
    0xVue[ep  
    % Compute the values of the polynomials: Z8P{Cr~U9  
    % -------------------------------------- vdloh ,  
    z = zeros(length_r,length_n); x8Rmap@L.  
    for j = 1:length_n I| qoHN,g  
        s = 0:(n(j)-m(j))/2; c|[:vin  
        pows = n(j):-2:m(j); @Y'BqDFlZ  
        for k = length(s):-1:1 )8ejT6r  
            p = (1-2*mod(s(k),2))* ... u@\]r 1  
                       prod(2:(n(j)-s(k)))/          ... nz:I\yA  
                       prod(2:s(k))/                 ... ;E /:_DWPD  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... < @9p|[!  
                       prod(2:((n(j)+m(j))/2-s(k))); 3jIi$X06  
            idx = (pows(k)==rpowers); "VxZnT  
            z(:,j) = z(:,j) + p*rpowern(:,idx); g&y'#,'Q~,  
        end \}Jy=[  
         kAbRXID  
        if isnorm " d3pkY  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); 8B C F.y  
        end Yxye?R-:  
    end u+eA>{  
    )A9K9pZj  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    851
    光币
    831
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  9 I>qD  
    | Qo`K%8  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 0o~? ]C  
    9x@( K|  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)