非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 @gnLY
function z = zernfun(n,m,r,theta,nflag) O~#A )d6
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. W+I""I*mV
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N @+7CfvM
% and angular frequency M, evaluated at positions (R,THETA) on the e81+as
% unit circle. N is a vector of positive integers (including 0), and L _Xbca=
% M is a vector with the same number of elements as N. Each element v|R#[vtFd
% k of M must be a positive integer, with possible values M(k) = -N(k) :X}fXgeL
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, D!V~g72j
% and THETA is a vector of angles. R and THETA must have the same ^6QzaC3
% length. The output Z is a matrix with one column for every (N,M) `O]$FpO
% pair, and one row for every (R,THETA) pair. kD
me>E=
% yioX^`Fc(~
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 0[f[6mm%m
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), %uz6iQaq]X
% with delta(m,0) the Kronecker delta, is chosen so that the integral K]&i9`>N
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, $/crb8-C
% and theta=0 to theta=2*pi) is unity. For the non-normalized >zfFvx_q
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. W1JvLU5L*r
% ! n<SpW;
% The Zernike functions are an orthogonal basis on the unit circle. *RmD%[f
% They are used in disciplines such as astronomy, optics, and +45.fo
% optometry to describe functions on a circular domain. Py\/p Fvg
% ~(`&hYE
% The following table lists the first 15 Zernike functions. 0|6Y%a\U
% iXLH[uhO;
% n m Zernike function Normalization k'NP+N<M
% -------------------------------------------------- cs 58: G5
% 0 0 1 1 Pa'N)s<
% 1 1 r * cos(theta) 2 hd W7Qck "
% 1 -1 r * sin(theta) 2 ]sI\.a
% 2 -2 r^2 * cos(2*theta) sqrt(6) i_:#][nWX
% 2 0 (2*r^2 - 1) sqrt(3) 3X#Cep20a
% 2 2 r^2 * sin(2*theta) sqrt(6) E.,
% 3 -3 r^3 * cos(3*theta) sqrt(8) =@D H hg
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) #~4;yY\$I
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) ]:}7-;$V
% 3 3 r^3 * sin(3*theta) sqrt(8) sJMpF8
% 4 -4 r^4 * cos(4*theta) sqrt(10) IEe;ygL#
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 1'H!S%fS
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) uR.`8s|
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) y+
4#Iy
% 4 4 r^4 * sin(4*theta) sqrt(10) 81!gp7c
% -------------------------------------------------- Bkg./iP5x
% ]GDjR'[z
% Example 1: :1;"{=Yx}
% l{Et:W%|
% % Display the Zernike function Z(n=5,m=1) [Wxf,rW i
% x = -1:0.01:1; p^w_-(p
% [X,Y] = meshgrid(x,x); :`c@&WF8
% [theta,r] = cart2pol(X,Y); jW{bP_,"
% idx = r<=1; K1w:JA6(
% z = nan(size(X)); |d,bo/:
% z(idx) = zernfun(5,1,r(idx),theta(idx)); </b_Rar
% figure Rq`5ff3,
% pcolor(x,x,z), shading interp TAq[g|N-;
% axis square, colorbar NZ?dJ"eq7
% title('Zernike function Z_5^1(r,\theta)') 89{`GKWX
% $&Z<4:Flc
% Example 2: o wwWm1@
% @k\,XV`T~t
% % Display the first 10 Zernike functions gX|\O']6
% x = -1:0.01:1; .*Z#;3
% [X,Y] = meshgrid(x,x); c<sq0('`
% [theta,r] = cart2pol(X,Y); q{+}0!o
% idx = r<=1; >>cL"m
% z = nan(size(X));
e'p"gX
% n = [0 1 1 2 2 2 3 3 3 3]; 6n;? :./
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; ZiRCiQ/?
% Nplot = [4 10 12 16 18 20 22 24 26 28]; h+S]C#X,}
% y = zernfun(n,m,r(idx),theta(idx)); `XM0Mm%
% figure('Units','normalized') +|H,N7a<
% for k = 1:10 3S1{r
)[j
% z(idx) = y(:,k); ?X Rl\V
% subplot(4,7,Nplot(k)) J ~KygQ3%
% pcolor(x,x,z), shading interp pktnX-Slt
% set(gca,'XTick',[],'YTick',[]) ZZYtaVF:
% axis square (hh^?
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 7`e<H 8g
% end %/BBl$~ji
% g`~;"%u7cn
% See also ZERNPOL, ZERNFUN2. ["e;8H[K)%
<sX_hIA^Fx
% Paul Fricker 11/13/2006 1tTY)Evf
Asy2jw\V
q\<NW%KtX
% Check and prepare the inputs: A|GsbRuy
% ----------------------------- c:+UC
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) z2Z}mktP
error('zernfun:NMvectors','N and M must be vectors.') %cJdVDW`L
end ,1]VY/
)|#ExyRO
if length(n)~=length(m) O-box?
error('zernfun:NMlength','N and M must be the same length.') @jq H8
end MZqHL4<|
J%
ZM
V
n = n(:); >U?#'e{qW
m = m(:); +{}p(9w@
if any(mod(n-m,2)) )6eFYt%c
error('zernfun:NMmultiplesof2', ... R^]a<g,
'All N and M must differ by multiples of 2 (including 0).') eR/X9<
end >FJK$>[1:p
q^7=/d8
if any(m>n) y<#Hq1
error('zernfun:MlessthanN', ... Do5{t'm3
'Each M must be less than or equal to its corresponding N.') nFe
end ;iJ}[HUo
kBY#=e).
if any( r>1 | r<0 ) 3>=G-AH/$K
error('zernfun:Rlessthan1','All R must be between 0 and 1.') <p +7,aE_
end t{ `-G*^
b,'rz04^
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) um\A
error('zernfun:RTHvector','R and THETA must be vectors.') 6zi
Mf
end ABL5T-*]
9>ZX@1]m_
r = r(:); k^K%."INn
theta = theta(:); |!1iLWQ
length_r = length(r); FI)0.p
if length_r~=length(theta) '#~Sb8
error('zernfun:RTHlength', ... ,mK UCG
'The number of R- and THETA-values must be equal.') ~H"-km"@
end Q5IN1
^=HF
?%/*F<UVQ
% Check normalization: 75A60Uw
% -------------------- dEo r+5}
if nargin==5 && ischar(nflag) ZmI#-[/
isnorm = strcmpi(nflag,'norm'); ,4}s 1J#
if ~isnorm +eop4 |Z
error('zernfun:normalization','Unrecognized normalization flag.') IVeA[qA0
end |HPb$#i
else L Z3=K`gj
isnorm = false; pBn;:
end 'C;KNc
RLGIST`
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %WYveY
% Compute the Zernike Polynomials 6'e 'UD
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% B*^QTJ
v[a4d&P
% Determine the required powers of r: kq(]7jU$[
% ----------------------------------- dbF9%I@
m_abs = abs(m); h(^[WSa
rpowers = []; Lo"s12fr
for j = 1:length(n) U]ZI_[\'U
rpowers = [rpowers m_abs(j):2:n(j)]; W=2]!%3#
end #rp)Gc
rpowers = unique(rpowers); En0hjXa
u:,B&}j
% Pre-compute the values of r raised to the required powers, qVds
2
% and compile them in a matrix: _cJ\A0h^
% ----------------------------- t3!~=U
if rpowers(1)==0 ("=24R=a
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); _$oE'lat
rpowern = cat(2,rpowern{:}); lvUWs
rpowern = [ones(length_r,1) rpowern]; "<"s&ws;k
else 2 ,.8oa(
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); j"&Oa&SH
rpowern = cat(2,rpowern{:}); 7qdB
end Su'l &]
3p'(E\VJ
% Compute the values of the polynomials: B""=&(Yu
% -------------------------------------- W@~a#~1O
y = zeros(length_r,length(n)); V<d`.9*}
for j = 1:length(n) mH'om
SCz
s = 0:(n(j)-m_abs(j))/2; ,~NJ}4wP
pows = n(j):-2:m_abs(j); / 6DW+!
for k = length(s):-1:1 <_4'So>
p = (1-2*mod(s(k),2))* ... xB}B1H%
prod(2:(n(j)-s(k)))/ ... ~sCdvBA
prod(2:s(k))/ ... 6h\; U5
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ;]2d%Qt
prod(2:((n(j)+m_abs(j))/2-s(k))); ZrWA,~;
idx = (pows(k)==rpowers); MnptC 1N
y(:,j) = y(:,j) + p*rpowern(:,idx); dAjm4F-
end lK#uyag
}/7rA)_
if isnorm o7yvXrpG(U
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ; VQ:\fG
end ~vfPsaRh
end N$cAX^~
% END: Compute the Zernike Polynomials N2C f(
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ]yas]5H
I&5cUj{GX-
% Compute the Zernike functions: {.r9l
% ------------------------------ .L_ Hk
idx_pos = m>0; f5.Be%
idx_neg = m<0; /? Bu^KX
dewN\
z = y; 8ya|eJ]/L
if any(idx_pos) tj
tN<