非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 .Ca"$2
function z = zernfun(n,m,r,theta,nflag) :Wyn+
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. gqP-E
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N H9Y2n 0
% and angular frequency M, evaluated at positions (R,THETA) on the VjA wn}eO
% unit circle. N is a vector of positive integers (including 0), and {[M0y*^64$
% M is a vector with the same number of elements as N. Each element .6O52E
% k of M must be a positive integer, with possible values M(k) = -N(k) KMxNH,5
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, `2B*CMW{
% and THETA is a vector of angles. R and THETA must have the same 9*}iBs
% length. The output Z is a matrix with one column for every (N,M) ^eTDD
% pair, and one row for every (R,THETA) pair. wMH[QYb<*
% P3>..fhoW
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike [K/O5_
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), tr6jh=
% with delta(m,0) the Kronecker delta, is chosen so that the integral N_u&3CG
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, QHHW(InG<
% and theta=0 to theta=2*pi) is unity. For the non-normalized ZQ,fm`y\
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. e-[>( n/[
% LJRg>8
% The Zernike functions are an orthogonal basis on the unit circle. YMc8Q\*B
% They are used in disciplines such as astronomy, optics, and ]&Y#)ebs
% optometry to describe functions on a circular domain. D~G5]M,}$
% Xt</ -`
% The following table lists the first 15 Zernike functions. $$haVY&
% u-AWJc+F .
% n m Zernike function Normalization G0_&gx`
% -------------------------------------------------- {l&Ltruhz
% 0 0 1 1 d&}pgb-Md
% 1 1 r * cos(theta) 2 , vY)n6
% 1 -1 r * sin(theta) 2 !GlnQ`T
% 2 -2 r^2 * cos(2*theta) sqrt(6) OOEV-=
% 2 0 (2*r^2 - 1) sqrt(3) 2Pbe~[
% 2 2 r^2 * sin(2*theta) sqrt(6) E:u ReT
% 3 -3 r^3 * cos(3*theta) sqrt(8) dO>k5!ge|:
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) G{@C"H[$<
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) qSFc=Wwc
% 3 3 r^3 * sin(3*theta) sqrt(8) 1vB-M6(
% 4 -4 r^4 * cos(4*theta) sqrt(10) ayV6m
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) jP1$qhp
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) Sg-g^dIN1
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) |ZS 57c:
% 4 4 r^4 * sin(4*theta) sqrt(10) NJn&>/vM
% -------------------------------------------------- 6BDt.bG
% u~" siH
% Example 1: k4S} #!
% p]wP36<S!
% % Display the Zernike function Z(n=5,m=1) k/df(cs
% x = -1:0.01:1; 4rI:1yGt@
% [X,Y] = meshgrid(x,x); ?k
[%\jq{a
% [theta,r] = cart2pol(X,Y); (7IqY1W
% idx = r<=1; C@*%AY
% z = nan(size(X));
*f79=x
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 'I&|1I^
% figure _Ny8j~
% pcolor(x,x,z), shading interp ;(K
% axis square, colorbar 1s Br.+p
% title('Zernike function Z_5^1(r,\theta)') Hl4\M]]/&
% 7N>oY$&)
% Example 2: 3>i>@n_
% u FMIY(vB
% % Display the first 10 Zernike functions *Wzwbwg
% x = -1:0.01:1; JxjP@nr
% [X,Y] = meshgrid(x,x); Iph3%RaE
% [theta,r] = cart2pol(X,Y); :bwM]k*$
% idx = r<=1; 1<`9HCm
% z = nan(size(X)); 6^Ph '
% n = [0 1 1 2 2 2 3 3 3 3]; VJ3hC[
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; WElrk:b
% Nplot = [4 10 12 16 18 20 22 24 26 28]; mKV'jm0
% y = zernfun(n,m,r(idx),theta(idx)); XdcG0D^
% figure('Units','normalized') K>kLUcC7Z
% for k = 1:10 \ZS\i4
% z(idx) = y(:,k); JL.5QzA
% subplot(4,7,Nplot(k)) Yrpxy.1=F5
% pcolor(x,x,z), shading interp 7U,k 2LS
% set(gca,'XTick',[],'YTick',[]) u,fA!
% axis square 3@G;'|z
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) &} ,*\Oj
% end 5^>n5u/
% 9SY(EL
% See also ZERNPOL, ZERNFUN2. :y\09)CJK
Gfv(w=rr?
% Paul Fricker 11/13/2006 X:_<Y_JT
N=#4L$@-
7$
d}!S
% Check and prepare the inputs: Q!K`e )R
% ----------------------------- M`~!u/D7
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) $_)=8"Sn
error('zernfun:NMvectors','N and M must be vectors.') +jtA&1cf
end Ivsb<qzG
"IG+V:{ou
if length(n)~=length(m) nX._EC
error('zernfun:NMlength','N and M must be the same length.') W}h|K:-S
end _S"f_W
R uLvG+
n = n(:); |q_
!.
a
m = m(:); {]^2R>0Q
if any(mod(n-m,2)) S8%n .<OB
error('zernfun:NMmultiplesof2', ... -l
"U"U"F
'All N and M must differ by multiples of 2 (including 0).') t^.'>RwW|
end |z~LzSJv
< A?<N?%o
if any(m>n) t}Ss=0dJO
error('zernfun:MlessthanN', ... Zm(dY*z5:J
'Each M must be less than or equal to its corresponding N.') 7 jjU
end 6Nt$ZYS
Wr>(#*r7q
if any( r>1 | r<0 ) =Y9\DeIZ
error('zernfun:Rlessthan1','All R must be between 0 and 1.') YUscz!rM
end H] k'?;
[T`}yb@
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) S5_t1wqBJ
error('zernfun:RTHvector','R and THETA must be vectors.') u g\w\b
end 5lTD]d
#dc1pfL!y{
r = r(:); ;LRW
8Wd
theta = theta(:); m_*R.a
length_r = length(r); ioV_oR9I
if length_r~=length(theta) dn,g Z"<
error('zernfun:RTHlength', ... /APcL5:=
'The number of R- and THETA-values must be equal.') `tE^jqrke5
end O"*`'D|hK
Q>8pP \ho
% Check normalization: aqMc6N`z
% -------------------- $
[7 Vgs
if nargin==5 && ischar(nflag) R#(G%66
isnorm = strcmpi(nflag,'norm'); @T&t.|`
if ~isnorm \ZD[!w7
error('zernfun:normalization','Unrecognized normalization flag.') ^7aN2o3{
end by86zX
else ?t rV72D
isnorm = false; uLN[*D
end hVP
IHQt
\t3qS
eWc/
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% J!h^egP
% Compute the Zernike Polynomials KrKu7]If6#
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% }B q^3?,#{
f vLC_'M
% Determine the required powers of r: B9X8
% ----------------------------------- e*]r
m_abs = abs(m); 9<s4yZF@x
rpowers = []; ~p*1:ij
for j = 1:length(n) ;=jr0\| e
rpowers = [rpowers m_abs(j):2:n(j)]; N[Sb#w`[/
end LdTdQ,s<
rpowers = unique(rpowers); C+%K6/J(
[s`
G^
% Pre-compute the values of r raised to the required powers, 0{) $SY
% and compile them in a matrix: v-`h>J!Nx
% ----------------------------- 7@~tVxB;
if rpowers(1)==0 7Kf}O6nE
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); cDV^8 R
rpowern = cat(2,rpowern{:}); ]Kdet"+
rpowern = [ones(length_r,1) rpowern]; Vq ^]s$'
else :reTJQwr
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); vR>o}%`
rpowern = cat(2,rpowern{:}); v6uxxsI>Hm
end )1F<6R
h`5)2n+ P
% Compute the values of the polynomials: I*\^,ow
% -------------------------------------- Bct"X#W|&
y = zeros(length_r,length(n)); uQeu4$k!
for j = 1:length(n) QH@>icAb
s = 0:(n(j)-m_abs(j))/2; eThy+
pows = n(j):-2:m_abs(j); Yrn"saVc,
for k = length(s):-1:1 F}X0',
p = (1-2*mod(s(k),2))* ... mBk5+KyT
prod(2:(n(j)-s(k)))/ ... !/I0i8T
prod(2:s(k))/ ... 4TRG.$2[
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... qpqokK
prod(2:((n(j)+m_abs(j))/2-s(k))); {CUk1+
idx = (pows(k)==rpowers); 2t1I3yA'{z
y(:,j) = y(:,j) + p*rpowern(:,idx); {G*QY%j^
end H:S,\D?%2x
ZR3nK0
if isnorm MZv\ C
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); S~F`
end p!W[X%`)
end y,m2(V
% END: Compute the Zernike Polynomials }zMf7<C
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% {'bip`U.
>HTbegi
% Compute the Zernike functions: ?IYY'fS"
% ------------------------------ B0)]s<<
idx_pos = m>0; p25Fn`}H
idx_neg = m<0; TbhH&kG)1
t})$lM
z = y; 30F!kP*E
if any(idx_pos) \7Cg,Xn
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); O`W%Tr
end 'ks{D(`
if any(idx_neg) s&
yk
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); /"#4T^7&
end `
2%6V)s
$3P`DJo
% EOF zernfun