非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 l?HC-_Pbh
function z = zernfun(n,m,r,theta,nflag) c2PBYFCyC
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. G(1_P1
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N u\f QaQV
% and angular frequency M, evaluated at positions (R,THETA) on the $7p0<<Nck
% unit circle. N is a vector of positive integers (including 0), and 6s$h _$[X
% M is a vector with the same number of elements as N. Each element `a@YbuLd
% k of M must be a positive integer, with possible values M(k) = -N(k) ^>z+e"PQA
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, 1W7ClT_cQ
% and THETA is a vector of angles. R and THETA must have the same $$'[%
% length. The output Z is a matrix with one column for every (N,M)
$;)A:*e
% pair, and one row for every (R,THETA) pair. Zy>y7O(,
% o3le[6C/8=
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 880T'5}S
:
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), %KR2Vlh0
% with delta(m,0) the Kronecker delta, is chosen so that the integral Bey9P)_Of
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, [MeFj!(
% and theta=0 to theta=2*pi) is unity. For the non-normalized ~Vc`AcWP
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 0 R>!jw
% ~;oaW<"
% The Zernike functions are an orthogonal basis on the unit circle. mC'<Ov<eJ
% They are used in disciplines such as astronomy, optics, and O/oLQoH
% optometry to describe functions on a circular domain. r$,Xv+}
% Pe@*')o*
% The following table lists the first 15 Zernike functions. ^,Ft7 JAn
% 9]|C$;kw@
% n m Zernike function Normalization Qgq VbJP"
% -------------------------------------------------- D#d/?\2
% 0 0 1 1 E/ ^N
% 1 1 r * cos(theta) 2 ,oJ$m$(Lj
% 1 -1 r * sin(theta) 2 !"
@<!
% 2 -2 r^2 * cos(2*theta) sqrt(6) *tl; 0<n
% 2 0 (2*r^2 - 1) sqrt(3) t1!>EI`
% 2 2 r^2 * sin(2*theta) sqrt(6) -e_pw,5c '
% 3 -3 r^3 * cos(3*theta) sqrt(8) 1CS\1[E
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) $WsyAUl
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 4@Bl 1b[<
% 3 3 r^3 * sin(3*theta) sqrt(8) w`F'loUEt
% 4 -4 r^4 * cos(4*theta) sqrt(10) 'lOpoWDL
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) OS=~<ba
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) 43!E> mq
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ye4GHAm,p
% 4 4 r^4 * sin(4*theta) sqrt(10) _DYe<f.
% -------------------------------------------------- nlc$"(eA[H
% e8k|%m<Sp
% Example 1: xr31<4B
% ~8)l/I=`);
% % Display the Zernike function Z(n=5,m=1) bMqFrG
% x = -1:0.01:1; aoGns46Y
% [X,Y] = meshgrid(x,x); m=60a@o]
% [theta,r] = cart2pol(X,Y); HHT8_c'CC#
% idx = r<=1; HgTBON(
% z = nan(size(X)); N^'(`"J s
% z(idx) = zernfun(5,1,r(idx),theta(idx)); .cr<.Ov
% figure GGsAisF"N
% pcolor(x,x,z), shading interp =TA8]7S~U
% axis square, colorbar 6U1_Wk?
% title('Zernike function Z_5^1(r,\theta)') ~pwk[Q!
% )eH?3""
% Example 2: {v2[x W
% sl)]yCD|5
% % Display the first 10 Zernike functions /lc4oXG8
% x = -1:0.01:1; X#ud_+6x
% [X,Y] = meshgrid(x,x); Xc<Hm
% [theta,r] = cart2pol(X,Y); RAA,%rRhu(
% idx = r<=1; r<