切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10919阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 j~eYq  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! \lnpsf  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 {%$eq{~m  
    function z = zernfun(n,m,r,theta,nflag) FqOV/B /z2  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. ]VifDFL}  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N N@$g"w  
    %   and angular frequency M, evaluated at positions (R,THETA) on the [-X=lJ:+h  
    %   unit circle.  N is a vector of positive integers (including 0), and M^\#(0^2@  
    %   M is a vector with the same number of elements as N.  Each element `p@YV(  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) fKzOt<wm  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, }Z MbTsm  
    %   and THETA is a vector of angles.  R and THETA must have the same 3%?01$k  
    %   length.  The output Z is a matrix with one column for every (N,M) Y%v?ROql  
    %   pair, and one row for every (R,THETA) pair.  )_P|_(  
    % NPws^  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike MS,J+'2  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ^uzJu(  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral (|_1ku3!  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, `+[e]dH  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized PN ,pEk|  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. sW[8f Z71  
    % c <8s \2  
    %   The Zernike functions are an orthogonal basis on the unit circle. S}Wj+H;  
    %   They are used in disciplines such as astronomy, optics, and &n>\ +Q   
    %   optometry to describe functions on a circular domain. UD|Qa  
    % 0FrmZ$  
    %   The following table lists the first 15 Zernike functions. _&TA|Da  
    % o}&TFhT  
    %       n    m    Zernike function           Normalization NIcPjo  
    %       -------------------------------------------------- {_0m0 8  
    %       0    0    1                                 1 ^nu~q+:+#  
    %       1    1    r * cos(theta)                    2 i1]*5;q  
    %       1   -1    r * sin(theta)                    2 eMk?#&a)  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 0xbx2jlkY  
    %       2    0    (2*r^2 - 1)                    sqrt(3) Fp>iwdjFg  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) `mTpL^f  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) VG*Tdaua~  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) Tbl~6P  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) vT)(#0>z  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 1!,xB]v1Ri  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) t]|WRQvy8  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) !|hxr#q=4  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5)  LAG*H  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) o2e aSG  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 6 /^$SWd2  
    %       -------------------------------------------------- zr~hGhfq  
    % %~`8F\Hiu  
    %   Example 1: Mg? ^5`*  
    % \M~M  
    %       % Display the Zernike function Z(n=5,m=1) H!Gsu$C  
    %       x = -1:0.01:1; 4.|-?qG  
    %       [X,Y] = meshgrid(x,x); 4 G`7]<  
    %       [theta,r] = cart2pol(X,Y); ]-d:wEj  
    %       idx = r<=1; CL{R.OA  
    %       z = nan(size(X)); 4fPbwiK j  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); +yX\!H"  
    %       figure XQAdb"`  
    %       pcolor(x,x,z), shading interp s@^ (1g[w`  
    %       axis square, colorbar '@)47]~  
    %       title('Zernike function Z_5^1(r,\theta)') 40}qf}8n t  
    % !=j\pu} Z  
    %   Example 2: InDISl]  
    % O,(p><k$/  
    %       % Display the first 10 Zernike functions Rg3 Lo ?  
    %       x = -1:0.01:1; |=H*" (  
    %       [X,Y] = meshgrid(x,x); asT:/z0  
    %       [theta,r] = cart2pol(X,Y); P6,~0v(S  
    %       idx = r<=1; / /63?s+  
    %       z = nan(size(X)); x&qC~F*QR%  
    %       n = [0  1  1  2  2  2  3  3  3  3]; Fy!u xT-\  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; Mf)0Y~_:R#  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; U$o\?4  
    %       y = zernfun(n,m,r(idx),theta(idx)); t]?u<KD<  
    %       figure('Units','normalized') 16"eyt>  
    %       for k = 1:10 / sI0{  
    %           z(idx) = y(:,k); >vE1,JD)w  
    %           subplot(4,7,Nplot(k)) bl. y4  
    %           pcolor(x,x,z), shading interp 8&FnXhZg4  
    %           set(gca,'XTick',[],'YTick',[]) rW$ )f  
    %           axis square )SG+9!AbMZ  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 'V";"Ei  
    %       end #~J)?JL  
    % @i`*i@g  
    %   See also ZERNPOL, ZERNFUN2. B WdR~|2  
    pE{ZWW[@+  
    %   Paul Fricker 11/13/2006 ^c?2n  
    `Oz c L  
    q]F2bo  
    % Check and prepare the inputs: Kn~f$1  
    % ----------------------------- &|('z\k  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ~_C[~-  
        error('zernfun:NMvectors','N and M must be vectors.') )-$Od2u2c  
    end \tf \fa  
     # Vz9j  
    if length(n)~=length(m) ,4$ZB(\  
        error('zernfun:NMlength','N and M must be the same length.') 4$Oakl*l  
    end 69{^Vfd;Y  
    vt0XCUnK  
    n = n(:); ;ru=z@  
    m = m(:); llVm[7  
    if any(mod(n-m,2)) *,g|I8?%VD  
        error('zernfun:NMmultiplesof2', ... NoS|lT  
              'All N and M must differ by multiples of 2 (including 0).') "N'tmzifh  
    end g:0-` ,[  
    + v.I|c  
    if any(m>n) 7PG&G5  
        error('zernfun:MlessthanN', ... l}-JtZ?[?  
              'Each M must be less than or equal to its corresponding N.') Vae}:8'}  
    end l);M(<  
    *FoH '\=  
    if any( r>1 | r<0 ) ta`}}I  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') tr8a_CV  
    end A:$Qt%c  
    .&O}/B  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) cVjs-Xf7D%  
        error('zernfun:RTHvector','R and THETA must be vectors.') 7J@iJW],,  
    end >`Xikn(  
    k<p$BZ  
    r = r(:); <SeK3@Gi  
    theta = theta(:); L{H` t{ A  
    length_r = length(r); HGqT"N Jr  
    if length_r~=length(theta) 1} 1.5[4d  
        error('zernfun:RTHlength', ... ?@"F\Bv<h  
              'The number of R- and THETA-values must be equal.') P]]re,&R  
    end !d Ns3d  
    E.V#Bk=  
    % Check normalization: 'p3JYRT$  
    % -------------------- 9 cU]@j}2  
    if nargin==5 && ischar(nflag) vmW > $P  
        isnorm = strcmpi(nflag,'norm'); o^P/ -&T  
        if ~isnorm l{tpFu9v  
            error('zernfun:normalization','Unrecognized normalization flag.') 1<y(8C6  
        end z~b5K\/1B  
    else &''lOS|  
        isnorm = false; v x qsK  
    end ph*?y  
    w|$i<OIi)  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ) #G5XS+)  
    % Compute the Zernike Polynomials '1'#,u!  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% *?sdWRbu}l  
    MrXmX[1-  
    % Determine the required powers of r: ;vM&se63  
    % ----------------------------------- lu~<pfg  
    m_abs = abs(m); 5>z`==N)  
    rpowers = []; xUT]6T0dB  
    for j = 1:length(n) b CWSh~  
        rpowers = [rpowers m_abs(j):2:n(j)]; -/ 5" Py  
    end `[) awP  
    rpowers = unique(rpowers); fuRCM^U(  
    z%ZAN-  
    % Pre-compute the values of r raised to the required powers, NP }b   
    % and compile them in a matrix: Zy !^HS$  
    % ----------------------------- sfb)iH|sW  
    if rpowers(1)==0 Zb> UY8  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); A HnXN%m  
        rpowern = cat(2,rpowern{:}); )1#J4  
        rpowern = [ones(length_r,1) rpowern]; tf1iRXf8  
    else a=m4)tjk  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 44e:K5;]7  
        rpowern = cat(2,rpowern{:}); hnOo T? V  
    end ~kHWh8\b:  
    D(bQFRBY6"  
    % Compute the values of the polynomials: Ife/:v  
    % -------------------------------------- {'O,G$Ldkr  
    y = zeros(length_r,length(n)); Y.>F fL  
    for j = 1:length(n) Sfl. &A(  
        s = 0:(n(j)-m_abs(j))/2; Cp!bsasj  
        pows = n(j):-2:m_abs(j); ,3+#?H  
        for k = length(s):-1:1 ),DLrGOl  
            p = (1-2*mod(s(k),2))* ... )DR/Xu;b  
                       prod(2:(n(j)-s(k)))/              ... o03Y w)*  
                       prod(2:s(k))/                     ... /6Bm <k%  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 42E%&DF  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); CEQs}bz  
            idx = (pows(k)==rpowers); b!lS=zIN  
            y(:,j) = y(:,j) + p*rpowern(:,idx); '!\t!@I$  
        end 5~,usA*  
         &YiUhK  
        if isnorm tfz"9PV80  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ,,}& Q%5  
        end E@.daUoB  
    end Y6+/_$N4|  
    % END: Compute the Zernike Polynomials :'6vIPN5  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% N [qNSo|  
    fYxdG|>{u  
    % Compute the Zernike functions: >`E (K X  
    % ------------------------------ A,PF#G(  
    idx_pos = m>0; HpCTQ\H  
    idx_neg = m<0; Z'!Ii+'6  
    $?Dcp^  
    z = y; L!| `IK  
    if any(idx_pos) obzdH:S  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); f;{K+\T  
    end ) dB?Ep|  
    if any(idx_neg) 5MX7V4ist  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ro}WBv  
    end DH9p1)L'  
    c^F@9{I  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) 16-1&WuY@  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. q.:j yj6  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated Nu,t,&B   
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive x'iBEm  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, M+l~^E0Wj  
    %   and THETA is a vector of angles.  R and THETA must have the same n!?^:5=s  
    %   length.  The output Z is a matrix with one column for every P-value, D b&= N  
    %   and one row for every (R,THETA) pair. E0t%]?1  
    % `p#u9M>  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike Yc`PK =!l  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) oAt{ #v  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) v"x'rx#  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 2=RQ,@s  
    %   for all p. *r/o \pyH  
    % Ha/Gn !l  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 #,S0uA  
    %   Zernike functions (order N<=7).  In some disciplines it is "ivSpec.V  
    %   traditional to label the first 36 functions using a single mode X,`^z,M%I  
    %   number P instead of separate numbers for the order N and azimuthal yD yMI  
    %   frequency M. tSX,*cz  
    % R+<M"LriR&  
    %   Example: ~Q2,~9Dkc  
    % wDt9Lf O  
    %       % Display the first 16 Zernike functions ?WBA:?=$58  
    %       x = -1:0.01:1; }JM02R~I  
    %       [X,Y] = meshgrid(x,x); ,e@707d`\  
    %       [theta,r] = cart2pol(X,Y); Q`HG_n@?  
    %       idx = r<=1; zwgO|Qg;  
    %       p = 0:15; [pzo[0G 'v  
    %       z = nan(size(X)); czcsXBl[  
    %       y = zernfun2(p,r(idx),theta(idx)); ./_4D}  
    %       figure('Units','normalized') 5e >qBw8t  
    %       for k = 1:length(p) = KJ_LE~)  
    %           z(idx) = y(:,k); a=r^?q'/  
    %           subplot(4,4,k) |>dqZ_)v  
    %           pcolor(x,x,z), shading interp xlm:erP  
    %           set(gca,'XTick',[],'YTick',[]) AcIw; c:  
    %           axis square P"s7}cl  
    %           title(['Z_{' num2str(p(k)) '}']) 28,g'k!  
    %       end ."h>I @MH  
    % EMw biGV  
    %   See also ZERNPOL, ZERNFUN. i{MzQE+_^  
    D8=a+!l-  
    %   Paul Fricker 11/13/2006 dk.VH!uVb  
    K {__rO  
    UEH+E&BCC  
    % Check and prepare the inputs: ~PA6e+gmL  
    % ----------------------------- :rnj>U6<>  
    if min(size(p))~=1 WV,j <x9w  
        error('zernfun2:Pvector','Input P must be vector.') ,K8(D<{  
    end nA.~}  
    ^2eH0O!  
    if any(p)>35 WoD Qg64  
        error('zernfun2:P36', ... _<7e5VR  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... HyJ&;4rf  
               '(P = 0 to 35).']) Y/`*t(/5  
    end R zn%!d^$>  
    8+8P{_  
    % Get the order and frequency corresonding to the function number: ;oJCV"y6$  
    % ---------------------------------------------------------------- u= ydX  
    p = p(:); f1RX`rXf  
    n = ceil((-3+sqrt(9+8*p))/2); 9RnXp&w  
    m = 2*p - n.*(n+2); +*Pj,+;W  
    \Z/# s;c,4  
    % Pass the inputs to the function ZERNFUN: T]y^PT<8?  
    % ---------------------------------------- l>?k>NEpP  
    switch nargin g6(u6%MD  
        case 3 tRmH6  
            z = zernfun(n,m,r,theta); $|H7fn(r  
        case 4 l3;MjNB^V  
            z = zernfun(n,m,r,theta,nflag); }NF7"tOL  
        otherwise ]V.0%Ccw;.  
            error('zernfun2:nargin','Incorrect number of inputs.') >@i {8AD  
    end &/{x7;e  
    hgI;^ia  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) h;`]rK;g  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. &~a/Upz0]_  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of Hsi<!g.  
    %   order N and frequency M, evaluated at R.  N is a vector of # vBS7ba  
    %   positive integers (including 0), and M is a vector with the m9m]q&hx  
    %   same number of elements as N.  Each element k of M must be a E1V;eoK.D  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) Q2HULz{  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is +Rb0:r>kU  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix Tv`-h  
    %   with one column for every (N,M) pair, and one row for every i0e aBG]I  
    %   element in R. fY{&W@#g  
    % ?~s23%E  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- 0Rze9od]$  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is - |j4u#z  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to 2[Q/|D}}|  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 GPVqt"TY  
    %   for all [n,m]. okv`v ({  
    % 2*9rhOK*  
    %   The radial Zernike polynomials are the radial portion of the SwVdo|%.?  
    %   Zernike functions, which are an orthogonal basis on the unit 990sE t?  
    %   circle.  The series representation of the radial Zernike s u)AIvF{  
    %   polynomials is +7|Qd}\X  
    % DV">9{"5']  
    %          (n-m)/2  LAfv1  
    %            __ Nw=mSW^E  
    %    m      \       s                                          n-2s cp\A xWtUZ  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r c<n <!!vi  
    %    n      s=0 AB1,G|L  
    % Z2wgfP`  
    %   The following table shows the first 12 polynomials. =zXii{t  
    % yk7l{F  
    %       n    m    Zernike polynomial    Normalization 8!q$8]M  
    %       --------------------------------------------- soi.`xE  
    %       0    0    1                        sqrt(2) {^qp~0  
    %       1    1    r                           2 N&'05uWY}  
    %       2    0    2*r^2 - 1                sqrt(6) :w5p#+/,P  
    %       2    2    r^2                      sqrt(6) I:9jn"  
    %       3    1    3*r^3 - 2*r              sqrt(8) `OWw<6`k  
    %       3    3    r^3                      sqrt(8) @5y ~A}Vd  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) G,6Zy-Y9  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) J SOgq/\  
    %       4    4    r^4                      sqrt(10) ;zc,vs  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) dDoKmuY>5  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) Hjtn*^fo^  
    %       5    5    r^5                      sqrt(12) ( @y te  
    %       --------------------------------------------- 5v@-.p  
    % |rg4 j  
    %   Example: y8QJ=v* B  
    % $pO gFA1'  
    %       % Display three example Zernike radial polynomials y@?t[A#v  
    %       r = 0:0.01:1; )^'g2gVK+p  
    %       n = [3 2 5]; rS3* k3  
    %       m = [1 2 1]; /5Zt4&r  
    %       z = zernpol(n,m,r); /K2=GLl;  
    %       figure b\^q9fy  
    %       plot(r,z) bn8`$FA^  
    %       grid on ejuw+@ _  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') fqcFfz6?x  
    % w2/3\3p  
    %   See also ZERNFUN, ZERNFUN2. <.lT.>'?  
    erC)2{m  
    % A note on the algorithm. ILQB%0!  
    % ------------------------ |{G GATni  
    % The radial Zernike polynomials are computed using the series D ^~G(m;-  
    % representation shown in the Help section above. For many special 861!p%y5  
    % functions, direct evaluation using the series representation can `43X? yQ  
    % produce poor numerical results (floating point errors), because klKd !  
    % the summation often involves computing small differences between ?U PZ49y  
    % large successive terms in the series. (In such cases, the functions !u;r<:g!  
    % are often evaluated using alternative methods such as recurrence NLLLt  
    % relations: see the Legendre functions, for example). For the Zernike E 3a^)S{  
    % polynomials, however, this problem does not arise, because the P b(XR+  
    % polynomials are evaluated over the finite domain r = (0,1), and #~Z55 D_  
    % because the coefficients for a given polynomial are generally all Pfv| K;3i  
    % of similar magnitude. XW*,Lo5>H\  
    % :~1sF_  
    % ZERNPOL has been written using a vectorized implementation: multiple =]auP{AlE  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] =/b WS,=  
    % values can be passed as inputs) for a vector of points R.  To achieve iO,_0Y4  
    % this vectorization most efficiently, the algorithm in ZERNPOL 3Wl,T5}{  
    % involves pre-determining all the powers p of R that are required to I|#1u7X%]  
    % compute the outputs, and then compiling the {R^p} into a single 1sT%g}w@|  
    % matrix.  This avoids any redundant computation of the R^p, and a9=pZ1QAG  
    % minimizes the sizes of certain intermediate variables. V#Px  
    % v_$'!i$  
    %   Paul Fricker 11/13/2006 =(^-s Jk  
    WE hDep:  
    8a;I,DK=j  
    % Check and prepare the inputs: #`>46T  
    % ----------------------------- ^^-uq)A  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) W=9Zl(2C  
        error('zernpol:NMvectors','N and M must be vectors.') 4R~f   
    end %bp8VR sY  
    M,ObzgW  
    if length(n)~=length(m) wLDWD,"K  
        error('zernpol:NMlength','N and M must be the same length.') d? Old  
    end DD4fV`:kG  
    Y8Bc &q}  
    n = n(:); JF vVRGWB  
    m = m(:); TC=djC4$/  
    length_n = length(n); NPL(5@  
    2'38(wXn#  
    if any(mod(n-m,2)) &s|a\!>l  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') k[6xuyY]  
    end 6^oQ8unmS  
    g@<E0 q&`$  
    if any(m<0) .5;Xd?  
        error('zernpol:Mpositive','All M must be positive.') eoC@b/F4  
    end 7HpfHqJ7  
    Y~</vz+H  
    if any(m>n) kbxy^4"X  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') A@W/  
    end *7ggw[~  
    Gg\805L@  
    if any( r>1 | r<0 ) g@va@*|~d  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') x1$:u6YD22  
    end \1AtB c&  
    D?v)Xqw=  
    if ~any(size(r)==1) %4%$NdU"  
        error('zernpol:Rvector','R must be a vector.') WCg*TL}  
    end PMdvBOtS`  
    m5G9 B-\?  
    r = r(:); nY#V~^|  
    length_r = length(r); q]-CTx$  
    X/ \5j   
    if nargin==4 rl\$a2_+  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); 4@qKML  
        if ~isnorm AF=9KWqf  
            error('zernpol:normalization','Unrecognized normalization flag.') LxM.z1  
        end \uumNpB*n  
    else )]=1W  
        isnorm = false; uA} w?;  
    end V>{G$(v$  
    tj:Q]]\M  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% &?],uHB?d  
    % Compute the Zernike Polynomials w/L^w50pt  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Xm|Uz`A;  
    nTJ-1A7EP  
    % Determine the required powers of r: n9;z=   
    % ----------------------------------- >d`XR"_e  
    rpowers = []; acSm+t  
    for j = 1:length(n) {M7`z,,[  
        rpowers = [rpowers m(j):2:n(j)]; 'E4`qq  
    end d,Fj|}S  
    rpowers = unique(rpowers); 'THcO*<  
    ,_JhvPWR,)  
    % Pre-compute the values of r raised to the required powers, P <$)v5f  
    % and compile them in a matrix: e b])=  
    % ----------------------------- SNV[KdvP*  
    if rpowers(1)==0 aKLA_-E  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); G2bZl% ,D  
        rpowern = cat(2,rpowern{:}); !J5k?J&{=  
        rpowern = [ones(length_r,1) rpowern]; _^)Wrf+  
    else o]&w"3vOP0  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); F/"Q0%(m  
        rpowern = cat(2,rpowern{:}); 0Cox+QJt  
    end AhZ`hj   
    ^J?ExMu  
    % Compute the values of the polynomials: 7j>NUx=j3  
    % -------------------------------------- yqy5i{Y  
    z = zeros(length_r,length_n); KuU]enC3  
    for j = 1:length_n 5wy1%/;  
        s = 0:(n(j)-m(j))/2; 3'd(=hJ45$  
        pows = n(j):-2:m(j); u,zA^%   
        for k = length(s):-1:1 wD|3Czc  
            p = (1-2*mod(s(k),2))* ... 0 !D,74r  
                       prod(2:(n(j)-s(k)))/          ... x[mxp/ /P  
                       prod(2:s(k))/                 ... F{:ZHCm  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... *wgHa6?+7  
                       prod(2:((n(j)+m(j))/2-s(k))); 02Ftn&bi  
            idx = (pows(k)==rpowers); ^w0V{qF{  
            z(:,j) = z(:,j) + p*rpowern(:,idx); vy ME  
        end @}#"o  
         Wc}opp  
        if isnorm ,0'Yj?U>  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); 4"OUmh9LHB  
        end >&@hm4  
    end +GgJFBl  
    )'<B\P/  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  . xT8@]  
    !1f8~"Z  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 Wjt1NfS&  
    LOyL:~$  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)