非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 'S*k_vuN
function z = zernfun(n,m,r,theta,nflag) cMaOM}mS
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. <YH=3[
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N KFU%DU G
% and angular frequency M, evaluated at positions (R,THETA) on the ^ *0'\/N&
% unit circle. N is a vector of positive integers (including 0), and yrnv!moc%t
% M is a vector with the same number of elements as N. Each element \9`#]#1bx5
% k of M must be a positive integer, with possible values M(k) = -N(k) c+g@Z"es
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, 7b, (\Fm
% and THETA is a vector of angles. R and THETA must have the same 1yMr~Fo
% length. The output Z is a matrix with one column for every (N,M) !J3UqS
% pair, and one row for every (R,THETA) pair. L0L2Ns
% ;'0=T0\
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike .1#kDM
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ]n;1x1'
% with delta(m,0) the Kronecker delta, is chosen so that the integral H>XFz(LWh
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Qs%B'9")
% and theta=0 to theta=2*pi) is unity. For the non-normalized 2z\e\I
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. BEUK}T K4
% H; Ku
w
% The Zernike functions are an orthogonal basis on the unit circle. 0J9D"3T)
% They are used in disciplines such as astronomy, optics, and T7[NcZ:I
% optometry to describe functions on a circular domain. bWmw3w
% ^nNitF
% The following table lists the first 15 Zernike functions. 6@V~0DG
% =^tA_AxVw
% n m Zernike function Normalization V
kjuyK
% -------------------------------------------------- P6\6?am
% 0 0 1 1 Hr^3`@}#1
% 1 1 r * cos(theta) 2 36vgX=}
% 1 -1 r * sin(theta) 2 pr&=n;_ n
% 2 -2 r^2 * cos(2*theta) sqrt(6) |gx~gG<
% 2 0 (2*r^2 - 1) sqrt(3) ]{GDS! )
% 2 2 r^2 * sin(2*theta) sqrt(6) 69OF_/23
% 3 -3 r^3 * cos(3*theta) sqrt(8) x#*QfE/E(@
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) !q'
4D!I
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) S\=1_LDx"
% 3 3 r^3 * sin(3*theta) sqrt(8) AXPMnbUS
% 4 -4 r^4 * cos(4*theta) sqrt(10) h&;t.Gdf
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Gh\q^?}
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) =5x&8i
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) b~w=v_[(I
% 4 4 r^4 * sin(4*theta) sqrt(10) WQ6"0*er
% -------------------------------------------------- !h`kX[:
% _zMgoc7
% Example 1: aG%,cQ 1
% -LW[7s$
% % Display the Zernike function Z(n=5,m=1) _S`o1^Ad
% x = -1:0.01:1; -7{$Vj
% [X,Y] = meshgrid(x,x); yZkyC'/
% [theta,r] = cart2pol(X,Y); MTOy8 Im
% idx = r<=1; eOI (6U!
% z = nan(size(X)); i'#Gy,R
% z(idx) = zernfun(5,1,r(idx),theta(idx)); T~4N+fK
% figure 5d\q-d
% pcolor(x,x,z), shading interp ~Z'w)!h
% axis square, colorbar t2BL(yB
% title('Zernike function Z_5^1(r,\theta)') nNt1C
% 4\M.6])_
% Example 2: `bjizS'^
% 04U")-\O
% % Display the first 10 Zernike functions }"^'%C8EX
% x = -1:0.01:1; >>{FzR
% [X,Y] = meshgrid(x,x); cV{o?3<:B
% [theta,r] = cart2pol(X,Y); ACq7dLys,B
% idx = r<=1; @]aOyb@
% z = nan(size(X)); 2L?!tBw?1
% n = [0 1 1 2 2 2 3 3 3 3]; {0"YOS`3AX
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; E&$yuW^z
% Nplot = [4 10 12 16 18 20 22 24 26 28]; umi5Wb<
% y = zernfun(n,m,r(idx),theta(idx)); y|wlq3o
% figure('Units','normalized') }g7]?Ee
% for k = 1:10 ',^+bgs5
% z(idx) = y(:,k); Y!J>U
% subplot(4,7,Nplot(k)) ~{,X3-S_H
% pcolor(x,x,z), shading interp L|@y&di
% set(gca,'XTick',[],'YTick',[]) *3/T;x.
% axis square e[_m<e
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) MY#
% end $-}e; V Zb
% c(;a=n(E#
% See also ZERNPOL, ZERNFUN2. *jIqAhs0{
v[e:qi&fG
% Paul Fricker 11/13/2006 Z_1U9+,
/zDi9W*~1
y\dEk:\)
% Check and prepare the inputs: L@`ouQ"sa
% ----------------------------- Bw%Qbs0Q
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) k@ZLg9
error('zernfun:NMvectors','N and M must be vectors.') Suk
end yeDsJ/L
,to+oSZE
if length(n)~=length(m) D(-yjY8aG
error('zernfun:NMlength','N and M must be the same length.') ]0hrRA`
end g<{xC_J
Wjhvxk
n = n(:); ./Q,
m = m(:); PxH72hBS
if any(mod(n-m,2)) 2MZCw^s>
error('zernfun:NMmultiplesof2', ... l2N]a9bq@
'All N and M must differ by multiples of 2 (including 0).') $/!{OU.t`
end >h0-;
`W/sP\3
if any(m>n) "BX!
error('zernfun:MlessthanN', ... /|6;Z}2
'Each M must be less than or equal to its corresponding N.') 3gd&i
end J{^RkGF
"HE^v_p
if any( r>1 | r<0 ) jck}" N
error('zernfun:Rlessthan1','All R must be between 0 and 1.') Y"A/^]
end .{y
uo{u
pPd#N'\*
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 5j~$Mj`
error('zernfun:RTHvector','R and THETA must be vectors.') _6ay-u
end a!O0,y
@E:,lA
r = r(:); V5*OA??k<
theta = theta(:); Kq i4hK
length_r = length(r); kbM3
if length_r~=length(theta) HRB<Y
mP@
error('zernfun:RTHlength', ... L:@7tc.
'The number of R- and THETA-values must be equal.') ,}K<*t[I
end /7gOSwY
M)SEn/T-
% Check normalization: OpHsob~
% -------------------- %2v4<icvq
if nargin==5 && ischar(nflag) LD!Q8"
isnorm = strcmpi(nflag,'norm'); D9M:^
if ~isnorm =UV`.d2[
error('zernfun:normalization','Unrecognized normalization flag.') `r?7oxN
end 8<Hf"M
else cTG|fdgMW
isnorm = false; o}ZdTf=
end 1dK*y'rx
>y,-v:Vy
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% eH{[C*
% Compute the Zernike Polynomials 7Hs%Cc"
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% S\;V4@<Kn
%$b:X5$Z
% Determine the required powers of r: t<#h$}=:Vt
% ----------------------------------- SJHr_bawd
m_abs = abs(m); R
rda# h^
rpowers = []; <)3u6Vky9
for j = 1:length(n) o_~eg8
rpowers = [rpowers m_abs(j):2:n(j)]; |j7,Mu+
end 13>0OKg`#
rpowers = unique(rpowers); 5k.oW=
jbAx;Xt'=M
% Pre-compute the values of r raised to the required powers, .X;3,D[w
% and compile them in a matrix: 4T ~}
% ----------------------------- 4M2j!Sw
if rpowers(1)==0 -PfX0y9n
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); a24"yT
rpowern = cat(2,rpowern{:}); .4E&/w+
rpowern = [ones(length_r,1) rpowern]; t;}:waZD
else }|pwz
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); cH&J{WeZa
rpowern = cat(2,rpowern{:}); U[ 0=L`0e
end z*!%g[3I
"/wyZ
% Compute the values of the polynomials: bJX)$G
% -------------------------------------- Ys\Wj%6A
y = zeros(length_r,length(n)); qHrc9fB
for j = 1:length(n) tIuCct-
s = 0:(n(j)-m_abs(j))/2; ):[7E(F=
pows = n(j):-2:m_abs(j); 32`{7a3!=
for k = length(s):-1:1 ]jo1{IcI
p = (1-2*mod(s(k),2))* ... IhVO@KJI
prod(2:(n(j)-s(k)))/ ... N u<_}
prod(2:s(k))/ ... I+tb[*X+
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... )% ~OH
prod(2:((n(j)+m_abs(j))/2-s(k))); :qd`zG3
idx = (pows(k)==rpowers); bAx-"Lu
y(:,j) = y(:,j) + p*rpowern(:,idx); oY933i@l)P
end _I:/ZF5
zN^n]N_?
if isnorm d^{RQ
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ]7Tkkw$
end ~Vr.J}]J
end sTn<#l6
% END: Compute the Zernike Polynomials xHD=\,{ig
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% )-a'{W/t
o!kbK#k
% Compute the Zernike functions: m}7iTDJR9
% ------------------------------ *%%g{
3$
idx_pos = m>0; ^\4h<M
idx_neg = m<0; Z{]0jhUyNh
3h$6t7=C
z = y; .y!<t}
if any(idx_pos) RO 4Z?tz
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ^")Q YE
end l1BtI_7p
if any(idx_neg) [XEkz#{
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ~?d Nd
end ,(EO'T[
n*[XR`r}
% EOF zernfun