切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11816阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 YlbX_h2S"  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! CE96e y  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 &}e>JgBe0  
    function z = zernfun(n,m,r,theta,nflag) ANBuX6q  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. &nr{-][  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N TxF^zx\  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ynM~&]fk#k  
    %   unit circle.  N is a vector of positive integers (including 0), and jXf@JxQ  
    %   M is a vector with the same number of elements as N.  Each element B2]52Fg-"  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 8,IF%Z+LI  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, +`Q]p" G  
    %   and THETA is a vector of angles.  R and THETA must have the same _h ^.`Tz,  
    %   length.  The output Z is a matrix with one column for every (N,M) -~8PI2  
    %   pair, and one row for every (R,THETA) pair. eEVB   
    % jnOnV1I"  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike =Mwuhk|*  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), %8u9:Cl):  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral Nkj$6(N=zJ  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, KO8{eT9d  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized MF'Z?M  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ?sdSi--  
    % lq_UCCnv5  
    %   The Zernike functions are an orthogonal basis on the unit circle. Mo N/?VA  
    %   They are used in disciplines such as astronomy, optics, and :tO4LEb  
    %   optometry to describe functions on a circular domain. )-[$m%  
    % .qohHJ&  
    %   The following table lists the first 15 Zernike functions. QObVJg,GD  
    % c]x-mj =  
    %       n    m    Zernike function           Normalization Z ;rM@x  
    %       -------------------------------------------------- {0F/6GwUC  
    %       0    0    1                                 1 :n13v @q  
    %       1    1    r * cos(theta)                    2 kZ@UQ{>`  
    %       1   -1    r * sin(theta)                    2 D6@ c|O{Q  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) Ey: ?!  
    %       2    0    (2*r^2 - 1)                    sqrt(3) `=hCS0F  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) iYT?6Y|+  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) i@rUZYF  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) rucw{) _  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ',`Qx{tQ)  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) J#Y0R"fo  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) # A4WFZ  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) f9#srIx+  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) L3oL>r'|  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Ewkx4,`Ff  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) {,Vvm*L/  
    %       -------------------------------------------------- "ADI .  
    % ~{{S<S v  
    %   Example 1: u `xQC /  
    % 6c^?DLy9B  
    %       % Display the Zernike function Z(n=5,m=1)  o%j?}J7y  
    %       x = -1:0.01:1; 7WSP0Xyz  
    %       [X,Y] = meshgrid(x,x); p+?`ru  
    %       [theta,r] = cart2pol(X,Y); x[TLlV:{  
    %       idx = r<=1; 3s%DF,  
    %       z = nan(size(X)); I$sXbM;z=  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); | X1axRO  
    %       figure >%`SXB& 9  
    %       pcolor(x,x,z), shading interp RYvdfj.ij  
    %       axis square, colorbar .zdaY, U  
    %       title('Zernike function Z_5^1(r,\theta)') ~ :{mKc  
    % O, eoO,gB  
    %   Example 2: L;*7p9  
    % w+ ')wyB  
    %       % Display the first 10 Zernike functions Z>g&%3j  
    %       x = -1:0.01:1; .9ZK@xM&?  
    %       [X,Y] = meshgrid(x,x);  ]XlBV-@b  
    %       [theta,r] = cart2pol(X,Y); {9|*au(K  
    %       idx = r<=1;  d<xi/  
    %       z = nan(size(X)); H~JgZ pw  
    %       n = [0  1  1  2  2  2  3  3  3  3]; e}{#VB<  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; o<lmU8xB=  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; :+\sKEzL  
    %       y = zernfun(n,m,r(idx),theta(idx)); Q hRz57'  
    %       figure('Units','normalized') {ly<%Q7j  
    %       for k = 1:10 M __S)  
    %           z(idx) = y(:,k); <L8FI78[*  
    %           subplot(4,7,Nplot(k)) `"ks0@^U  
    %           pcolor(x,x,z), shading interp ;lE=7[UJ3X  
    %           set(gca,'XTick',[],'YTick',[]) b/oNQQM#Dk  
    %           axis square NL|c5y<r  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Pw]+6  
    %       end -J 6`  
    % a3MI+  
    %   See also ZERNPOL, ZERNFUN2. .?APDr"QQH  
    (p#c p  
    %   Paul Fricker 11/13/2006 0@{bpc rc  
    _\IA[-C+O  
    !jB}}&Ii  
    % Check and prepare the inputs: aUa+]H[  
    % ----------------------------- JT<JS6vw#  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 8*?H~q~  
        error('zernfun:NMvectors','N and M must be vectors.') U:7w8$_  
    end UzSDXhzObf  
    b-VQn5W  
    if length(n)~=length(m) X)j%v\#`U  
        error('zernfun:NMlength','N and M must be the same length.') on8$Kc  
    end )Z4iM;4]  
    h5l_/v d  
    n = n(:); $tW E9_  
    m = m(:); 5G'2 Wby'#  
    if any(mod(n-m,2)) G2n. NW#d4  
        error('zernfun:NMmultiplesof2', ... '6\w4J(  
              'All N and M must differ by multiples of 2 (including 0).') 46 0/eW\  
    end +|GHbwvp  
    v h)CB8  
    if any(m>n) R86i2',  
        error('zernfun:MlessthanN', ... QYDI-<.(  
              'Each M must be less than or equal to its corresponding N.') #%$@[4 "V  
    end qh}+b^Wi  
    .i )K#82  
    if any( r>1 | r<0 ) KMfIp:~  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') @Jd eOL;  
    end l_04b];  
    ,'Y KL",  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 2\64~a^  
        error('zernfun:RTHvector','R and THETA must be vectors.') %sZ3Gpi  
    end elKp?YN  
    d7g$9&/q  
    r = r(:); +DefV,Ny  
    theta = theta(:); PQF 40g1}  
    length_r = length(r); ".AW   
    if length_r~=length(theta) rKOa9M  
        error('zernfun:RTHlength', ... JB5%\   
              'The number of R- and THETA-values must be equal.') )2d1@]6#  
    end )9/iH(  
    753gcY#i  
    % Check normalization: lxD~l#)^ln  
    % -------------------- M`=\ijUwN  
    if nargin==5 && ischar(nflag) $b^niL  
        isnorm = strcmpi(nflag,'norm'); YGyw^$.w  
        if ~isnorm GM^H )8U  
            error('zernfun:normalization','Unrecognized normalization flag.') tycVcr \(  
        end 6 AY~>p  
    else pXQ$n:e  
        isnorm = false; d{WOO)j  
    end Y nTx)uW  
    -c0*  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% *fyaAv  
    % Compute the Zernike Polynomials 6PWw^Cd  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% .hf%L1N%F  
    "f3mi[  
    % Determine the required powers of r: / a}N6KUi  
    % ----------------------------------- D&N3LH  
    m_abs = abs(m); D 7thLqA  
    rpowers = []; z+0#H39&  
    for j = 1:length(n) & R<K>i  
        rpowers = [rpowers m_abs(j):2:n(j)]; "K|':3n|  
    end HmsXV_B8[Y  
    rpowers = unique(rpowers); N/2WUp  
    .[:WMCc\  
    % Pre-compute the values of r raised to the required powers, Qe9}%k6@E  
    % and compile them in a matrix: %6V=G5+W  
    % ----------------------------- a9 S&n5  
    if rpowers(1)==0 KeyHxU=?  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); U+ D#  
        rpowern = cat(2,rpowern{:}); CRzLyiRvU&  
        rpowern = [ones(length_r,1) rpowern]; Ms%C:KG  
    else }Vm'0  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); :de4Fje/4y  
        rpowern = cat(2,rpowern{:}); }U%E-:  
    end =(,kjw88w  
    mxc^IRj  
    % Compute the values of the polynomials: JV2[jo}0 N  
    % -------------------------------------- F Zt;D  
    y = zeros(length_r,length(n)); @'J~(#}  
    for j = 1:length(n) & )-fC  
        s = 0:(n(j)-m_abs(j))/2; !;k ^  
        pows = n(j):-2:m_abs(j); 1iM(13jW  
        for k = length(s):-1:1 -)ri,v{:c  
            p = (1-2*mod(s(k),2))* ... 8l?@ o  
                       prod(2:(n(j)-s(k)))/              ... >;xkiO>Y  
                       prod(2:s(k))/                     ... \w$e|[~  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 0V2~  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 85FzIX-F%  
            idx = (pows(k)==rpowers); ej(w{vl  
            y(:,j) = y(:,j) + p*rpowern(:,idx); W3MH8z   
        end pqbKPpG  
         ufA0H J)Yg  
        if isnorm gi? wf  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); .+ic6  
        end THwq~c'  
    end ZmaW]3$  
    % END: Compute the Zernike Polynomials &b19s=Z,  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% BJZGQrsz  
    w-wJhc|  
    % Compute the Zernike functions: @]],H0  
    % ------------------------------ 0}Q d  
    idx_pos = m>0; U}-hV@y  
    idx_neg = m<0; ef:Zi_o   
    HhTD/   
    z = y; Y$ ZDJNz  
    if any(idx_pos) o-AAx#@  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 'sjks sy.3  
    end D rouEm  
    if any(idx_neg) 4Rl~7|  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 4?x$O{D5?{  
    end **n109R  
    [lj^lN8  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) EMS$?"K  
    %ZERNFUN2 Single-index Zernike functions on the unit circle.  ] 2lh J  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated -$j|&l  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive G^w:c]  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, F:2V;  
    %   and THETA is a vector of angles.  R and THETA must have the same gG46hO-M%x  
    %   length.  The output Z is a matrix with one column for every P-value, R<8!lQ4s  
    %   and one row for every (R,THETA) pair. -<n]Sv;V  
    % qH*Fv:qnM  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike iD!]I$  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) ljO t~@Ea  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) C5'#0}6i  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 \&X*-T[]j  
    %   for all p. iED gcg7  
    % 6y)NH 8l7  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 oOy_2fwZPp  
    %   Zernike functions (order N<=7).  In some disciplines it is @EB2I+[  
    %   traditional to label the first 36 functions using a single mode 8|\?imOp\[  
    %   number P instead of separate numbers for the order N and azimuthal 25jgM!QBXF  
    %   frequency M. Ceak8#|4  
    % LD)P. f  
    %   Example: x-=qlg&EI  
    % Ba]^0Y u  
    %       % Display the first 16 Zernike functions EEO)b_(  
    %       x = -1:0.01:1; /%T d(  
    %       [X,Y] = meshgrid(x,x); %$SO9PY  
    %       [theta,r] = cart2pol(X,Y); $ #F7C[2N  
    %       idx = r<=1; ,hXhcfFl  
    %       p = 0:15; l)( 3]  
    %       z = nan(size(X)); 5Qgh\4  
    %       y = zernfun2(p,r(idx),theta(idx)); W%^;:YQ9i  
    %       figure('Units','normalized') kG$U  
    %       for k = 1:length(p) R8<P}mv  
    %           z(idx) = y(:,k); InR/g@n+D1  
    %           subplot(4,4,k) Mi&jl_&  
    %           pcolor(x,x,z), shading interp f 8836<c  
    %           set(gca,'XTick',[],'YTick',[]) +OC~y:  
    %           axis square ]B r 6!U4~  
    %           title(['Z_{' num2str(p(k)) '}']) `%S#XJU  
    %       end =-|,v*  
    % Vi_6O;  
    %   See also ZERNPOL, ZERNFUN. .=<<b|  
    'Q F@@48  
    %   Paul Fricker 11/13/2006 H^C$2f  
    ORP-@-dap  
    L4-v'Z;  
    % Check and prepare the inputs: o+^5W  
    % ----------------------------- |(\T;~7'  
    if min(size(p))~=1 ae|j#!~oi  
        error('zernfun2:Pvector','Input P must be vector.') ._IBO;*@  
    end f jm(C#^-  
    2VyJ  
    if any(p)>35 E+e:UBeUV  
        error('zernfun2:P36', ... YPNG9^Y  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... =S:Snk%  
               '(P = 0 to 35).']) ~V6wcXd  
    end U[t/40W}P  
    p? L*vcU  
    % Get the order and frequency corresonding to the function number: FA3YiX(-e  
    % ---------------------------------------------------------------- E|v9khN(].  
    p = p(:); {<1 ]cP  
    n = ceil((-3+sqrt(9+8*p))/2); "8sB,$  
    m = 2*p - n.*(n+2); DZE@C^ 0%  
    -oR P ZtW  
    % Pass the inputs to the function ZERNFUN: 5isqBu  
    % ---------------------------------------- =/SBZLR(9  
    switch nargin 5VR=D\j  
        case 3 @UCr`>  
            z = zernfun(n,m,r,theta); kx31g,cf]w  
        case 4 /Mmts=^Ja  
            z = zernfun(n,m,r,theta,nflag); WYXh1_nyk  
        otherwise oK#UEn  
            error('zernfun2:nargin','Incorrect number of inputs.') hX9vtV5L  
    end nBJ'ak   
    @\s*f7  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) PB(I3R9  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. My<.^~  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of 13K|=6si  
    %   order N and frequency M, evaluated at R.  N is a vector of 3}kG ]#  
    %   positive integers (including 0), and M is a vector with the 6%L#FSI  
    %   same number of elements as N.  Each element k of M must be a [D_s`'tg  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) DrA\-G_7  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is BHNEP |=  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix @|'$k{i  
    %   with one column for every (N,M) pair, and one row for every hAU@}"=G  
    %   element in R. 45A|KaVpg  
    % ^ DCBL&I  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- [PX%p ;"D  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is ~1:_w ni  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to %fMFcL#h  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 ]e6$ ={  
    %   for all [n,m]. !q!5D`  
    % i+ICgMcd  
    %   The radial Zernike polynomials are the radial portion of the GUn$IPOM  
    %   Zernike functions, which are an orthogonal basis on the unit <%?!3 n*  
    %   circle.  The series representation of the radial Zernike +; / s0  
    %   polynomials is sWv!ig_  
    % Z;~7L*|  
    %          (n-m)/2 !xvAy3  
    %            __ ~yiw{:\  
    %    m      \       s                                          n-2s O;+ sAt  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r {4eI} p<  
    %    n      s=0 D6,Ol4d  
    % ^C'{# p"  
    %   The following table shows the first 12 polynomials. )~-r&Q5d  
    % 8_/,`}9   
    %       n    m    Zernike polynomial    Normalization .<4U2h  
    %       --------------------------------------------- xSrjN  
    %       0    0    1                        sqrt(2) RA1K$D ?A  
    %       1    1    r                           2 @%BsQm  
    %       2    0    2*r^2 - 1                sqrt(6) sA2esA@C<o  
    %       2    2    r^2                      sqrt(6) ~s*kuj'%+  
    %       3    1    3*r^3 - 2*r              sqrt(8) ZRj/lQ2D  
    %       3    3    r^3                      sqrt(8) 0K4A0s_R`  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) w@WPp0mny  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) X`28?  
    %       4    4    r^4                      sqrt(10) mO2u9?N  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) <w3_EO  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) M>d^.n  
    %       5    5    r^5                      sqrt(12) y({lE3P  
    %       ---------------------------------------------  kMZo7 y  
    % 5,J.$Sax  
    %   Example: uCoy~kt292  
    % YI>9C 76L  
    %       % Display three example Zernike radial polynomials \aN7[>R.Q  
    %       r = 0:0.01:1; Je4hQJ<h  
    %       n = [3 2 5]; 35J VF*z  
    %       m = [1 2 1]; dU-nE5  
    %       z = zernpol(n,m,r); RFPcH8-u7  
    %       figure n0Qp:_2z  
    %       plot(r,z) DE+k'8\T  
    %       grid on OwPXQ 3S  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') Nq1YFI>W  
    % 5mX^{V&^  
    %   See also ZERNFUN, ZERNFUN2. 3_8W5J3I  
    ,Xxp]*K2  
    % A note on the algorithm. a4n5i.;  
    % ------------------------ 8jY<S+[o  
    % The radial Zernike polynomials are computed using the series 4~1lP&  
    % representation shown in the Help section above. For many special aNBwb9X  
    % functions, direct evaluation using the series representation can tz5\O}  
    % produce poor numerical results (floating point errors), because (8~D ^N6Z  
    % the summation often involves computing small differences between zkquXzlgB  
    % large successive terms in the series. (In such cases, the functions 3$S~!fh  
    % are often evaluated using alternative methods such as recurrence 7AlL,&+  
    % relations: see the Legendre functions, for example). For the Zernike Hb/8X !=  
    % polynomials, however, this problem does not arise, because the 5O;D\M{>  
    % polynomials are evaluated over the finite domain r = (0,1), and my0iE:  
    % because the coefficients for a given polynomial are generally all Xzl$Qc  
    % of similar magnitude. @}2EEo#  
    % >pp#>{}  
    % ZERNPOL has been written using a vectorized implementation: multiple -@ra~li,yQ  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] r'4Dj&9Ac  
    % values can be passed as inputs) for a vector of points R.  To achieve XRHngW_A  
    % this vectorization most efficiently, the algorithm in ZERNPOL "L!U7|9J  
    % involves pre-determining all the powers p of R that are required to xIwILY|W=  
    % compute the outputs, and then compiling the {R^p} into a single ~~=]_lwyK%  
    % matrix.  This avoids any redundant computation of the R^p, and 3 . K #,  
    % minimizes the sizes of certain intermediate variables. [N#4H3GM8  
    % ;2$0j1>  
    %   Paul Fricker 11/13/2006 ra2{8 x  
    IJVzF1vC  
    B*t1Y<>x  
    % Check and prepare the inputs: P&Uj?et"  
    % ----------------------------- m>RtKCtP  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) w ^?#xU1.i  
        error('zernpol:NMvectors','N and M must be vectors.') FmFjRYA W  
    end Z;,G:@,  
    0wCQPvO  
    if length(n)~=length(m) [jksOC)@4  
        error('zernpol:NMlength','N and M must be the same length.') tfD7!N{  
    end zXU g(xu  
    $N Mu  
    n = n(:); F`GXho[  
    m = m(:); )%PMDG|  
    length_n = length(n); ANgt\8  
    PT }J.Dwx  
    if any(mod(n-m,2)) W 1u!&:O  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') hC9EL= A  
    end CO9PQ`9+  
    R1/c@HQw?  
    if any(m<0) 5E*Qqe  
        error('zernpol:Mpositive','All M must be positive.') L|L|liWd  
    end !zvOCAb,  
    )0DgFA6k_  
    if any(m>n) SUv'cld  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') I9Uj3cL\  
    end ;mRZ_^V;  
    kDXQpe  
    if any( r>1 | r<0 ) (> _Lb  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') #oR`_Dm)P  
    end \<\H1;=.@'  
    H^54o$5  
    if ~any(size(r)==1) ca3SE^  
        error('zernpol:Rvector','R must be a vector.') 8};kNW^2m  
    end =<7z :]  
    \yZVn6GVr  
    r = r(:); seRf q&  
    length_r = length(r); cy)-Rfg  
    z&B9Yu4M7  
    if nargin==4 {M7`"+~w  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); QqRF?%7q"q  
        if ~isnorm : p)R,('g  
            error('zernpol:normalization','Unrecognized normalization flag.') }+bo?~2E&  
        end ;obOr~Jx'5  
    else }2;iIw`  
        isnorm = false; RwYFBc  
    end $(+xhn(O  
    v+[S${  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% g4W/T  
    % Compute the Zernike Polynomials 9#m3<oSJ  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 8|<</v8i  
    .@%L8_sMR  
    % Determine the required powers of r: Kh[l};/F  
    % ----------------------------------- =.&8ghJ*M  
    rpowers = []; ?QzL#iO }h  
    for j = 1:length(n) :CK`v6 Qs  
        rpowers = [rpowers m(j):2:n(j)]; Dr(2@ 0P  
    end &M@c50&%  
    rpowers = unique(rpowers); WJu(,zM?G  
    ;6D3>Lm  
    % Pre-compute the values of r raised to the required powers, 9<&M~(dwT4  
    % and compile them in a matrix: 9(O eH7  
    % ----------------------------- 'S9o!hb'@  
    if rpowers(1)==0 X7AxI\h  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); bmK  
        rpowern = cat(2,rpowern{:}); `/`iLso& -  
        rpowern = [ones(length_r,1) rpowern]; P+ CdqOL  
    else |JF,n~n  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); IW&*3I<K  
        rpowern = cat(2,rpowern{:}); `e~i<Pi  
    end J(@" 7RX  
    24k]X`/n  
    % Compute the values of the polynomials: A%?c1`ZxF  
    % -------------------------------------- r5ldK?=k+*  
    z = zeros(length_r,length_n); %8|lAMTY7/  
    for j = 1:length_n }$ySZa9  
        s = 0:(n(j)-m(j))/2; +])<}S!M  
        pows = n(j):-2:m(j); CHZ/@gc  
        for k = length(s):-1:1 ~tyqvHC  
            p = (1-2*mod(s(k),2))* ... wpt$bqs|1  
                       prod(2:(n(j)-s(k)))/          ... :9ia|lN  
                       prod(2:s(k))/                 ... R9 Ab.t  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... D_0sXIbg  
                       prod(2:((n(j)+m(j))/2-s(k))); yo->mD  
            idx = (pows(k)==rpowers); Sn4xv2/  
            z(:,j) = z(:,j) + p*rpowern(:,idx); y6tqemz  
        end i!*<LIq  
         y0(.6HI  
        if isnorm Dy,MQIM|!  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); /<n7 iIK)  
        end ;tVd+[8  
    end [j5+PV  
    }4!}vkVx  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    857
    光币
    847
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  HxW/t7Z(  
    Nb3O> &J  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 HU/4K7e`  
    v)O].Hd  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)