非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 R]RLy#j
function z = zernfun(n,m,r,theta,nflag) f#hmMa
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. SRU#Y8Xv|
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N wo$ F_!3u
% and angular frequency M, evaluated at positions (R,THETA) on the AgB$
w4
% unit circle. N is a vector of positive integers (including 0), and 1^[]#N-Bu
% M is a vector with the same number of elements as N. Each element ey\(*Tu9
% k of M must be a positive integer, with possible values M(k) = -N(k) QUF1_Sa
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, ''k}3o.K[
% and THETA is a vector of angles. R and THETA must have the same Uo[`AzD3
% length. The output Z is a matrix with one column for every (N,M) VTi;y{
% pair, and one row for every (R,THETA) pair. buWF6LFC
% ]eX(K5 A
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike PWfd<Yf!
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), <l>L8{-3
% with delta(m,0) the Kronecker delta, is chosen so that the integral L Z3=K`gj
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, pBn;:
% and theta=0 to theta=2*pi) is unity. For the non-normalized c:s[vghH^#
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. RLGIST`
% };*&;GFe
% The Zernike functions are an orthogonal basis on the unit circle. GkKoc v
% They are used in disciplines such as astronomy, optics, and QqcAmp
% optometry to describe functions on a circular domain. `qZ@eGZ
z
% 'lgS)m
% The following table lists the first 15 Zernike functions.
Bm a.Uln
% u
N_< G
% n m Zernike function Normalization 0 4oMgH>Vd
% -------------------------------------------------- $]?M[sL\N7
% 0 0 1 1 t 1G2A`
% 1 1 r * cos(theta) 2 "tj]mij2)G
% 1 -1 r * sin(theta) 2 fvG4K(
% 2 -2 r^2 * cos(2*theta) sqrt(6) 6']WOM#
% 2 0 (2*r^2 - 1) sqrt(3) h9~oS/%:
% 2 2 r^2 * sin(2*theta) sqrt(6) %*Yb
J_j7
% 3 -3 r^3 * cos(3*theta) sqrt(8) 0_t9;;y :
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 1W9uWkk_d
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) I#W J";kqB
% 3 3 r^3 * sin(3*theta) sqrt(8) P{,=a]x,mz
% 4 -4 r^4 * cos(4*theta) sqrt(10) ntZHO}'
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) gpCWXz')i
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) }q?q)cG
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 8{Vt8>4
% 4 4 r^4 * sin(4*theta) sqrt(10) t /lU*
% -------------------------------------------------- yW i?2
% AQc9@3T~Bi
% Example 1: jLEO-<)-)
% )=0@4
% % Display the Zernike function Z(n=5,m=1) qf%p#+:B3
% x = -1:0.01:1; 5L\Im^
% [X,Y] = meshgrid(x,x); i^rHZmT
% [theta,r] = cart2pol(X,Y); 1\5po^Oioy
% idx = r<=1; Nm3CeU
% z = nan(size(X)); w}x&wWM
% z(idx) = zernfun(5,1,r(idx),theta(idx)); "h&[6-0'
% figure ^YEMR C
% pcolor(x,x,z), shading interp qi8~bQ{rH
% axis square, colorbar jYW-}2L
% title('Zernike function Z_5^1(r,\theta)') Gk|T1%
% gyCXv0*z
% Example 2: |(9l_e|
% SqoO"(1x
% % Display the first 10 Zernike functions "}uV=y
% x = -1:0.01:1; ~e+pa|lO
% [X,Y] = meshgrid(x,x); w X.]O!^X~
% [theta,r] = cart2pol(X,Y); {%X[Snv
% idx = r<=1; u/5)Yx+5_
% z = nan(size(X)); :A,7D(H|
% n = [0 1 1 2 2 2 3 3 3 3]; XZ|\|(6Cc
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; H8!lSRq
% Nplot = [4 10 12 16 18 20 22 24 26 28]; PB@jh}
% y = zernfun(n,m,r(idx),theta(idx)); ;GZ'Rb
% figure('Units','normalized') z@xkE ,j>
% for k = 1:10 RP6hw|
% z(idx) = y(:,k); qnw8#!%I
% subplot(4,7,Nplot(k)) [Y6ZcO/-i
% pcolor(x,x,z), shading interp et`rPK~m
% set(gca,'XTick',[],'YTick',[]) vz)zl2F5sY
% axis square ~|`jIqU
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) uHyc7^X>
% end H(Ad"1~.#
% ymA8`k5>@
% See also ZERNPOL, ZERNFUN2. qkq^oHI
/qXP\ a
% Paul Fricker 11/13/2006 z-`4DlJUS
!Ee&e~"
0Y*Ag,S
% Check and prepare the inputs: Kuh)3/7
% ----------------------------- 05;J7T<
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) iD:TKB_r
error('zernfun:NMvectors','N and M must be vectors.') 8*(|uX
end F=$U.K~1?
Dfd%Z;Yu
if length(n)~=length(m) MNKY J
error('zernfun:NMlength','N and M must be the same length.') "%+9p6/
end vt}A6mF
Njs'v;-K
n = n(:); !GZ{UmwA
m = m(:); =M34
HPG
if any(mod(n-m,2)) D(M^%z2N
error('zernfun:NMmultiplesof2', ... R9%"Kxm
'All N and M must differ by multiples of 2 (including 0).') AXpyia7nU
end M}9PicI?7
c nV2}U/\
if any(m>n) dxF)) Z
error('zernfun:MlessthanN', ... 2;YL+v2
'Each M must be less than or equal to its corresponding N.') <7J\8JR&=
end / U"3LX
2sT\+C&H
if any( r>1 | r<0 ) BE," lX
error('zernfun:Rlessthan1','All R must be between 0 and 1.') ^1[u'DW4
end 4NmLbM&C8
c]/&xRd
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) UjS,<>fm
error('zernfun:RTHvector','R and THETA must be vectors.') 7 gT^ZL
end IL<@UWs6
6>/g`%`N
r = r(:); h, P#)^"
theta = theta(:); K=;oZYNd
length_r = length(r); x5W.
3*
if length_r~=length(theta) o$,e#q)8
error('zernfun:RTHlength', ... Uj>bWa`
'The number of R- and THETA-values must be equal.') IVSd,AR7yY
end [!b=A:@
{us"=JJVN
% Check normalization: R8fB
8 )
% -------------------- =BBDh`$R
if nargin==5 && ischar(nflag) |j7{zsH
isnorm = strcmpi(nflag,'norm'); |ea}+N
if ~isnorm k54Vh=p
error('zernfun:normalization','Unrecognized normalization flag.') 47
9yG/+\
end bJ9K!6s??`
else 2k"!o~s^
isnorm = false; (T2\
end ]jwF[D
PkxhR;4
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% "9yQDS:
% Compute the Zernike Polynomials f;%\4TH?
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ffS]%qa
BFMINq>
% Determine the required powers of r:
+`Ypc
% ----------------------------------- L:RMZp*bK
m_abs = abs(m); p*"H&xA@
rpowers = []; c~iAjq+c
for j = 1:length(n) nn6&`$(Q~
rpowers = [rpowers m_abs(j):2:n(j)]; 63y&M