切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11734阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 WZQ EBXs  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! !x$6wzKa  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 @gnLY  
    function z = zernfun(n,m,r,theta,nflag) O~#A )d6  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. W+I""I*mV  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N @+7CfvM  
    %   and angular frequency M, evaluated at positions (R,THETA) on the e8 1+as  
    %   unit circle.  N is a vector of positive integers (including 0), and L_Xbca=  
    %   M is a vector with the same number of elements as N.  Each element v|R#[vtFd  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) :X}fXgeL  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, D!V~g72j  
    %   and THETA is a vector of angles.  R and THETA must have the same ^6QzaC3  
    %   length.  The output Z is a matrix with one column for every (N,M) `O]$FpO  
    %   pair, and one row for every (R,THETA) pair. kD me>E=  
    % yioX^`Fc(~  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 0[f[6mm%m  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), %uz6iQaq]X  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral K]&i9`>N   
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, $/crb8-C  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized > zfFvx_q  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. W1JvLU5L*r  
    % !n<SpW;  
    %   The Zernike functions are an orthogonal basis on the unit circle. *RmD%[f  
    %   They are used in disciplines such as astronomy, optics, and +45.fo  
    %   optometry to describe functions on a circular domain. Py\/p Fvg  
    % ~(`&hYE  
    %   The following table lists the first 15 Zernike functions. 0|6Y% a\U  
    % iXLH[uhO;  
    %       n    m    Zernike function           Normalization k'NP+N<M  
    %       -------------------------------------------------- cs 58: G5  
    %       0    0    1                                 1 Pa'N)s<  
    %       1    1    r * cos(theta)                    2 hd W7Qck"  
    %       1   -1    r * sin(theta)                    2 ]sI\.a  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) i_:#][nWX  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 3X#Cep20a  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) E.,  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) =@D H hg  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) #~4;yY\$I  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ]:}7-;$V  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) sJMpF8   
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) IEe;ygL#  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 1'H!S%fS  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) uR.`8s|  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) y+ 4#Iy  
    %       4    4    r^4 * sin(4*theta)             sqrt(10)  81!gp7c  
    %       -------------------------------------------------- Bkg./iP5x  
    % ]GDjR'[z  
    %   Example 1: :1;"{=Yx}  
    % l{Et:W%|  
    %       % Display the Zernike function Z(n=5,m=1) [Wxf,rW i  
    %       x = -1:0.01:1; p^w_-( p  
    %       [X,Y] = meshgrid(x,x); :`c@&WF8  
    %       [theta,r] = cart2pol(X,Y); jW{bP_,"  
    %       idx = r<=1; K1w:JA6(  
    %       z = nan(size(X)); |d,bo/:  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); </b_Rar  
    %       figure Rq`5ff3,  
    %       pcolor(x,x,z), shading interp TAq[g|N-;  
    %       axis square, colorbar NZ?dJ"eq7  
    %       title('Zernike function Z_5^1(r,\theta)') 89{`GKWX  
    % $&Z<4:Flc  
    %   Example 2: owwWm1@  
    % @k\,XV`T~t  
    %       % Display the first 10 Zernike functions gX| \O']6  
    %       x = -1:0.01:1; .*Z#;3  
    %       [X,Y] = meshgrid(x,x); c< sq0('`  
    %       [theta,r] = cart2pol(X,Y); q{+}0!o  
    %       idx = r<=1; >>cL"m  
    %       z = nan(size(X)); e'p"gX  
    %       n = [0  1  1  2  2  2  3  3  3  3]; 6n;? :./  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; ZiRCiQ/?  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; h+S]C#X,}  
    %       y = zernfun(n,m,r(idx),theta(idx)); `XM0Mm%  
    %       figure('Units','normalized') +|H,N7a<  
    %       for k = 1:10 3S1{r )[j  
    %           z(idx) = y(:,k); ?X Rl\V  
    %           subplot(4,7,Nplot(k)) J ~KygQ3%  
    %           pcolor(x,x,z), shading interp pktnX-Slt  
    %           set(gca,'XTick',[],'YTick',[]) ZZYtaVF:  
    %           axis square (hh^?  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 7`e<H8g  
    %       end %/BBl$~ji  
    % g`~;"%u7cn  
    %   See also ZERNPOL, ZERNFUN2. ["e;8H[K)%  
    <sX_hIA^Fx  
    %   Paul Fricker 11/13/2006 1tTY )Evf  
    Asy2jw\V  
    q\<NW%KtX  
    % Check and prepare the inputs: A|GsbRuy  
    % ----------------------------- c:+UC  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) z2Z}mktP  
        error('zernfun:NMvectors','N and M must be vectors.') %cJdVDW`L  
    end ,1]VY/  
    )|#ExyRO  
    if length(n)~=length(m) O-box?  
        error('zernfun:NMlength','N and M must be the same length.') @jq H8  
    end MZqHL4<|  
    J% ZM V  
    n = n(:); >U?#'e{qW  
    m = m(:); +{}p(9w@  
    if any(mod(n-m,2)) )6eFYt%c  
        error('zernfun:NMmultiplesof2', ... R^]a<g,  
              'All N and M must differ by multiples of 2 (including 0).') eR/X9<  
    end >FJK$>[1:p  
    q^7=/d8  
    if any(m>n) y<#Hq1  
        error('zernfun:MlessthanN', ... Do5{t'm3  
              'Each M must be less than or equal to its corresponding N.') nFe  
    end ;iJ}[HUo  
    kBY#= e).  
    if any( r>1 | r<0 ) 3>=G-AH/$K  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') <p+7,aE_  
    end t{`-G*^  
    b,'rz04^  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) um\A  
        error('zernfun:RTHvector','R and THETA must be vectors.') 6zi Mf  
    end ABL5T-*]  
    9>ZX@1]m_  
    r = r(:); k^K%."INn  
    theta = theta(:); |!1iLWQ  
    length_r = length(r); FI)0.p  
    if length_r~=length(theta) '#~Sb8   
        error('zernfun:RTHlength', ... ,mKUCG  
              'The number of R- and THETA-values must be equal.') ~ H"-km"@  
    end Q5IN1 ^=HF  
    ?%/*F<UVQ  
    % Check normalization: 75A60Uw  
    % -------------------- dEor+5}  
    if nargin==5 && ischar(nflag) ZmI#-[/  
        isnorm = strcmpi(nflag,'norm'); ,4}s 1J#  
        if ~isnorm +eop4 |Z  
            error('zernfun:normalization','Unrecognized normalization flag.') IVeA[qA0  
        end |HPb$#i  
    else L Z3=K`gj  
        isnorm = false; pBn;:  
    end 'C;KNc  
    RLGIST`  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %WYveY  
    % Compute the Zernike Polynomials 6'e 'UD  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% B*^QTJ  
    v[a4d&P  
    % Determine the required powers of r: kq(]7jU$[  
    % ----------------------------------- dbF9%I@  
    m_abs = abs(m); h(^[WSa  
    rpowers = []; Lo" s12fr  
    for j = 1:length(n) U]ZI_[\'U  
        rpowers = [rpowers m_abs(j):2:n(j)]; W=2]!%3#  
    end #rp)Gc  
    rpowers = unique(rpowers); En0hjXa  
    u:,B&}j  
    % Pre-compute the values of r raised to the required powers, qVd s 2  
    % and compile them in a matrix: _cJ\A0h^  
    % ----------------------------- t3!~=U  
    if rpowers(1)==0 ("=24R=a  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); _$oE'lat  
        rpowern = cat(2,rpowern{:}); lvUWs  
        rpowern = [ones(length_r,1) rpowern]; "<"s&ws;k  
    else 2,.8 oa(  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); j"&Oa&SH  
        rpowern = cat(2,rpowern{:}); 7qdB   
    end Su'l &]  
    3p'(E\VJ  
    % Compute the values of the polynomials: B""=&(Yu  
    % -------------------------------------- W@~a#~1O  
    y = zeros(length_r,length(n)); V<d`.9*}  
    for j = 1:length(n) mH'om SCz  
        s = 0:(n(j)-m_abs(j))/2; ,~NJ}4wP  
        pows = n(j):-2:m_abs(j); / 6DW+!  
        for k = length(s):-1:1 <_4'So>  
            p = (1-2*mod(s(k),2))* ... xB}B1H%  
                       prod(2:(n(j)-s(k)))/              ... ~sCdvBA  
                       prod(2:s(k))/                     ... 6h\; U5  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ;]2d%Qt  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); ZrWA,~;  
            idx = (pows(k)==rpowers); MnptC 1N  
            y(:,j) = y(:,j) + p*rpowern(:,idx); dAjm4F -  
        end lK#uya g  
         }/7rA)_  
        if isnorm o7yvXrpG(U  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ; VQ:\f G  
        end ~vfPsaRh  
    end N$cAX^~  
    % END: Compute the Zernike Polynomials N2Cf(  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ]yas]5H   
    I&5cUj{GX-  
    % Compute the Zernike functions: {.r9l  
    % ------------------------------ .L_ Hk  
    idx_pos = m>0; f5.Be%  
    idx_neg = m<0; /? Bu^KX  
    d ewN\  
    z = y; 8ya|eJ]/L  
    if any(idx_pos) tj tN<y  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); :) T#.(mR  
    end EL9JM}%0v  
    if any(idx_neg) "T6s;'k  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ~&+8m=   
    end uHyc7^X>  
    P)UpUMt;k  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) _;G|3>5u  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. g|)yM^Vqr6  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated R%;dt<Dh  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive M V~3~h8  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, n*N`].r#{=  
    %   and THETA is a vector of angles.  R and THETA must have the same rF . Oo0  
    %   length.  The output Z is a matrix with one column for every P-value, ^+9i~PjL  
    %   and one row for every (R,THETA) pair. ]U5/!e  
    % $eh>.c'&]  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike g<MCvC@  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) 4-q8:5  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) < #7j~<  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 i7xBi:Si  
    %   for all p. N`5 mPE  
    % A,%NdM;t=5  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 DbK-3F_  
    %   Zernike functions (order N<=7).  In some disciplines it is 2Xp?O+b#"O  
    %   traditional to label the first 36 functions using a single mode CNyV6jb  
    %   number P instead of separate numbers for the order N and azimuthal s!/Q>A  
    %   frequency M. (e[8`C  
    % ,a} vx"~  
    %   Example: o,=dm@j  
    % Tw9?U,]  
    %       % Display the first 16 Zernike functions mbO.Kyfen  
    %       x = -1:0.01:1; MrpT5|t  
    %       [X,Y] = meshgrid(x,x); Z~ DR,:  
    %       [theta,r] = cart2pol(X,Y); Uj> bWa`  
    %       idx = r<=1; YRJw,xl  
    %       p = 0:15; wRj&k(?*  
    %       z = nan(size(X)); lNqF@eCT9  
    %       y = zernfun2(p,r(idx),theta(idx)); LT) G"U~  
    %       figure('Units','normalized')  8=j_~&*  
    %       for k = 1:length(p) 0uf)6(f  
    %           z(idx) = y(:,k); Cb;49;q  
    %           subplot(4,4,k) 1WLaJ%Fv  
    %           pcolor(x,x,z), shading interp g2GHsVS  
    %           set(gca,'XTick',[],'YTick',[]) 33b 3v\N  
    %           axis square VAZ6;3@cd  
    %           title(['Z_{' num2str(p(k)) '}']) ( T2 \   
    %       end ]jwF[D  
    % PkxhR;4  
    %   See also ZERNPOL, ZERNFUN. "9yQDS:  
    _0qp!-l}  
    %   Paul Fricker 11/13/2006 i@STo7=  
    l*<RKY8  
    Fs;_z9ej-u  
    % Check and prepare the inputs: :/FT>UCL  
    % ----------------------------- ;Fm7!@u^0  
    if min(size(p))~=1 e'1}5Ky  
        error('zernfun2:Pvector','Input P must be vector.') %P-z3 0FHp  
    end by0M(h  
    0?8{q{ o+  
    if any(p)>35 eh} {\P  
        error('zernfun2:P36', ... t5jZ8&M5]  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... ekhx?rz  
               '(P = 0 to 35).']) 0|@* `-:VO  
    end YCEdt>5PA  
    <46fk*  
    % Get the order and frequency corresonding to the function number: x9VR>ux&  
    % ---------------------------------------------------------------- SFx|9$hXm  
    p = p(:); h[I~D`q)v  
    n = ceil((-3+sqrt(9+8*p))/2); ;]xJC j  
    m = 2*p - n.*(n+2); khtYn.eaL  
    ([L5i&DT  
    % Pass the inputs to the function ZERNFUN: \-~TW4dYe  
    % ---------------------------------------- H8'_.2vwX  
    switch nargin ]-G10p}Ph-  
        case 3 =dT sGNz  
            z = zernfun(n,m,r,theta); l|p \8=  
        case 4 _qQB.Dzo:  
            z = zernfun(n,m,r,theta,nflag); JVeb$_0k  
        otherwise 0x]W W|se*  
            error('zernfun2:nargin','Incorrect number of inputs.') x7 l3&;yDv  
    end 1Ydym2  
    Y1Qg|U o  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) ">^O{X\  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. NWq>Z!x`  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of 7$&3(#!N  
    %   order N and frequency M, evaluated at R.  N is a vector of O>j_xW]V  
    %   positive integers (including 0), and M is a vector with the "]M]pR/j  
    %   same number of elements as N.  Each element k of M must be a * vMNv  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) D-<9kBZs  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is &hb:~>  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix ZfYva(zP{Q  
    %   with one column for every (N,M) pair, and one row for every <p74U( V  
    %   element in R. E1uyMh-dy  
    % z rg#BXj7  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- `Z:5E  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is k[p7)ec  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to E8=8OX/{Y  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 #gL$~.1  
    %   for all [n,m]. &>m# "A\^  
    % |*+f N8  
    %   The radial Zernike polynomials are the radial portion of the N5%zbfKM  
    %   Zernike functions, which are an orthogonal basis on the unit RN3-:Zd_X  
    %   circle.  The series representation of the radial Zernike D< h+r?  
    %   polynomials is (!@ Q\P  
    % }(/")i4h  
    %          (n-m)/2 }yfSF|\  
    %            __ 1dy>a=W  
    %    m      \       s                                          n-2s ?Q ]{P]  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r Gw5j6  
    %    n      s=0 9svnB@  
    % H8g1SMT  
    %   The following table shows the first 12 polynomials. 5g{F-  
    % R\B-cU[,  
    %       n    m    Zernike polynomial    Normalization IP 9{vk  
    %       --------------------------------------------- dDAI fe2y  
    %       0    0    1                        sqrt(2) :q xd])-  
    %       1    1    r                           2 61W ms@D%  
    %       2    0    2*r^2 - 1                sqrt(6) X(Wd  
    %       2    2    r^2                      sqrt(6) >+ZG {'!j  
    %       3    1    3*r^3 - 2*r              sqrt(8) mrzrQ@sN  
    %       3    3    r^3                      sqrt(8) I-QaR  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10)  .UUY9@  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) o6PDCaT7  
    %       4    4    r^4                      sqrt(10) wm$1LZ8o-`  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) H|1owmbD  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) fgmIx  
    %       5    5    r^5                      sqrt(12) pt rQ~m-  
    %       --------------------------------------------- 19u'{/Y"  
    % rl0sN5n  
    %   Example: <9]9;   
    % e*7nq ~ B5  
    %       % Display three example Zernike radial polynomials &3SQVOW ~T  
    %       r = 0:0.01:1; u7oHqo`  
    %       n = [3 2 5]; gRk%ObJGqm  
    %       m = [1 2 1]; l 4zl|6%  
    %       z = zernpol(n,m,r); 1q])"l"<  
    %       figure \Qh{uk[  
    %       plot(r,z) +$hqwNh@Z@  
    %       grid on dQ5_=( 9  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') 39|4)1e  
    % meHnT9a^  
    %   See also ZERNFUN, ZERNFUN2. !f\q0Gnl  
    U9d0nj9 j  
    % A note on the algorithm. &vf%E@<  
    % ------------------------ |6%B2I&c  
    % The radial Zernike polynomials are computed using the series B>hC8^.S|w  
    % representation shown in the Help section above. For many special )}-,4Iu%  
    % functions, direct evaluation using the series representation can h@5mVTb}i  
    % produce poor numerical results (floating point errors), because = h _>OA  
    % the summation often involves computing small differences between *nv%~t   
    % large successive terms in the series. (In such cases, the functions .#M'  
    % are often evaluated using alternative methods such as recurrence s)=fs#%  
    % relations: see the Legendre functions, for example). For the Zernike Vt {uG  
    % polynomials, however, this problem does not arise, because the yEnurq%J  
    % polynomials are evaluated over the finite domain r = (0,1), and @A_bZQ@  
    % because the coefficients for a given polynomial are generally all _&Hq`KJm  
    % of similar magnitude. w"Q6'/P  
    % &i&k 4  
    % ZERNPOL has been written using a vectorized implementation: multiple QBg~b{h  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] /kl41gx  
    % values can be passed as inputs) for a vector of points R.  To achieve tSr.0'CE  
    % this vectorization most efficiently, the algorithm in ZERNPOL 6;02_C]\o  
    % involves pre-determining all the powers p of R that are required to l (EDe  
    % compute the outputs, and then compiling the {R^p} into a single Svs!C+:le  
    % matrix.  This avoids any redundant computation of the R^p, and @WV}VKm  
    % minimizes the sizes of certain intermediate variables. mVg$z  
    % N3D{t\hg  
    %   Paul Fricker 11/13/2006 Sn I-dXNF  
    }9&Z#1/  
    tevB2'3^  
    % Check and prepare the inputs: xz-z" 8d  
    % ----------------------------- #1INOR9  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Ow0-}Im~  
        error('zernpol:NMvectors','N and M must be vectors.') "f/Su(6{0  
    end O "jX|5  
    Z /#&c  
    if length(n)~=length(m) Vv"JN?dHi  
        error('zernpol:NMlength','N and M must be the same length.') |i)7j G<  
    end C #A sA  
    82S?@%}#J  
    n = n(:); [Yo3=(7J  
    m = m(:); O]"3o,/]G  
    length_n = length(n); &n_aMZ;  
    ?-40bb  
    if any(mod(n-m,2)) Pc+8CuN?  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') |v,5s=} 7  
    end %^e~;i=2  
    %\5 wHT+)  
    if any(m<0) ra="4T$va  
        error('zernpol:Mpositive','All M must be positive.') y\=(;]S'  
    end c-|~ABtEpX  
    Fap@cW3?8  
    if any(m>n) "|{3V:e>a  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') So&an !  
    end YL(7l|^!  
    2E V M*^A  
    if any( r>1 | r<0 ) S,9}p 1  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') LaI(  
    end dQ&S&SW  
    c4]/{!4 Q  
    if ~any(size(r)==1) O}4(v#  
        error('zernpol:Rvector','R must be a vector.') <78]OZ] Z  
    end 28 h3Ayw4  
    KC+C?]~M  
    r = r(:); /i$-ws-  
    length_r = length(r); K+3dwQo  
    @x9DV{j)V  
    if nargin==4 N|Cx";,|FZ  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); K k 5 vC{  
        if ~isnorm Y,-?oBY  
            error('zernpol:normalization','Unrecognized normalization flag.') -P|EV|8=  
        end Oeua<,]Z~  
    else r?{$k3Vl  
        isnorm = false; "`b"PQ<x  
    end q1:Y]Rbe  
    Dj=OUo[[d  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% bjgf8427I  
    % Compute the Zernike Polynomials ?{bF3Mz=  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% kbqG)  
    RR2Q  
    % Determine the required powers of r: nZ;h&N -_-  
    % ----------------------------------- )XB31^  
    rpowers = []; ' 0iXx   
    for j = 1:length(n) K<@gU\-!  
        rpowers = [rpowers m(j):2:n(j)]; y[U/5! `zV  
    end X!+#1NPM  
    rpowers = unique(rpowers); 5O.dRp7d J  
    Ql1HaC/5)-  
    % Pre-compute the values of r raised to the required powers, E)eRi"a46  
    % and compile them in a matrix: %GRD3S  
    % ----------------------------- wzX 1!?  
    if rpowers(1)==0 "=cWcztiP  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); txF)R[dZK  
        rpowern = cat(2,rpowern{:}); UjmBLXz@T  
        rpowern = [ones(length_r,1) rpowern]; kF:4 [d  
    else EN lqoj1  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); nC^|83  
        rpowern = cat(2,rpowern{:}); C4Pi6.wf  
    end f/spJ<B).4  
    n@pm5f  
    % Compute the values of the polynomials: HGuY-f  
    % -------------------------------------- +r7uIwi$@  
    z = zeros(length_r,length_n); +xqPyR  
    for j = 1:length_n f wN  
        s = 0:(n(j)-m(j))/2; uzf@49m]m  
        pows = n(j):-2:m(j); t`b>iX%(1t  
        for k = length(s):-1:1 7U#`^Q}  
            p = (1-2*mod(s(k),2))* ... k+xj 2)d7  
                       prod(2:(n(j)-s(k)))/          ... 1}#(4tw)  
                       prod(2:s(k))/                 ... VGbuEC[Y  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... Lod$&k@@  
                       prod(2:((n(j)+m(j))/2-s(k))); tw. 2h'D  
            idx = (pows(k)==rpowers); GarPnb  
            z(:,j) = z(:,j) + p*rpowern(:,idx); R|PFGhi6"A  
        end yZf+*j/a7  
         3 y!yz3E  
        if isnorm [@Hv,  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); /0(2PVf y  
        end ]h0Fv-[A  
    end >n,RBl  
    pWo`iM& F  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    857
    光币
    847
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  IXt2R~b  
    ~u1ox_v`%(  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 o#E 3{zM  
    _lb ^  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)