非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 RL/7>YQ
function z = zernfun(n,m,r,theta,nflag) FeQo,a
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. jsr)
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N mqUDve(
% and angular frequency M, evaluated at positions (R,THETA) on the Fm6]mz%~u#
% unit circle. N is a vector of positive integers (including 0), and 0Js5 '
9}H
% M is a vector with the same number of elements as N. Each element gTB|IcOs
% k of M must be a positive integer, with possible values M(k) = -N(k) Tyb'p9
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, QtWe,+WWV
% and THETA is a vector of angles. R and THETA must have the same 99,=dzm
% length. The output Z is a matrix with one column for every (N,M) '&K' 0qG
% pair, and one row for every (R,THETA) pair. ,!g/1m
% 9f5~hBlo
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike .*>C[^
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), u|u)8;'9(
% with delta(m,0) the Kronecker delta, is chosen so that the integral ~|ZAS]
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, H1KXAy`&
% and theta=0 to theta=2*pi) is unity. For the non-normalized Gv
}
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. :eB+t`M
% O&~
@ior
% The Zernike functions are an orthogonal basis on the unit circle. nU\.`.39
+
% They are used in disciplines such as astronomy, optics, and B9cWxe4R#
% optometry to describe functions on a circular domain. *ezft&{)`
% T?=]&9Y'
% The following table lists the first 15 Zernike functions. <mTo54g
% >c5
% n m Zernike function Normalization b].U/=Hs
% -------------------------------------------------- [eTEK W]
% 0 0 1 1 xy$aFPH!-
% 1 1 r * cos(theta) 2 e7&RZ+s#wZ
% 1 -1 r * sin(theta) 2 +>[zn
% 2 -2 r^2 * cos(2*theta) sqrt(6) *`/4KMrq
% 2 0 (2*r^2 - 1) sqrt(3) -ik((qx_
% 2 2 r^2 * sin(2*theta) sqrt(6) NE)w$>0M
% 3 -3 r^3 * cos(3*theta) sqrt(8) h<PS<
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) Nt?=0X|M
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) :6EX-Xyj
% 3 3 r^3 * sin(3*theta) sqrt(8) ]6|?H6'/`v
% 4 -4 r^4 * cos(4*theta) sqrt(10) (dO0`wfM
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) REi"Aj=
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) YZnFU( j
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) f.oY:3h:
% 4 4 r^4 * sin(4*theta) sqrt(10) 2_?VR~mA#
% -------------------------------------------------- hjk]?MC
% e},:QL0X
% Example 1: mc@Z+t'
% Y( EF )::
% % Display the Zernike function Z(n=5,m=1) =T?Xph{
% x = -1:0.01:1; 5bI4'
;
% [X,Y] = meshgrid(x,x); EBQ_c@
% [theta,r] = cart2pol(X,Y); !/|B4Yv
% idx = r<=1; v{*2F
% z = nan(size(X)); }v_|N"@
% z(idx) = zernfun(5,1,r(idx),theta(idx)); dpt P(H
% figure r(wtuD23q
% pcolor(x,x,z), shading interp n%~r^C_
% axis square, colorbar )fS6H<*
% title('Zernike function Z_5^1(r,\theta)') P# 8lO%;
% Y( K`3?A
% Example 2: Py+ B 2G|
% WUQa2$.
% % Display the first 10 Zernike functions <&)zT#"
% x = -1:0.01:1; @j%@Z
% [X,Y] = meshgrid(x,x); f6Y-ss;'
% [theta,r] = cart2pol(X,Y); dI=&gz
% idx = r<=1; j-FMWEp
% z = nan(size(X)); ~HtD]|7
% n = [0 1 1 2 2 2 3 3 3 3]; o4z|XhLr
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 1UB.2}/:
% Nplot = [4 10 12 16 18 20 22 24 26 28]; Zx6h%l,%
% y = zernfun(n,m,r(idx),theta(idx)); "EWq{l_I5$
% figure('Units','normalized') 9j5Z!Vsy
% for k = 1:10 jC?l :m?
% z(idx) = y(:,k); BuC\Bd^0
% subplot(4,7,Nplot(k)) N"~P$B1X
% pcolor(x,x,z), shading interp ^d(gC%+!u
% set(gca,'XTick',[],'YTick',[]) Bw[IW[(~!
% axis square XZ8]se"C
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) I_`NjJ;61
% end jgkY^l
% X"HVK+
% See also ZERNPOL, ZERNFUN2. { W5
_KX
|&bucG=
% Paul Fricker 11/13/2006 4)L};B=
;vpq0t`
"uyr@u0b
% Check and prepare the inputs: V;~\+@
% ----------------------------- I;, n|o
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ;MlPP)*k
error('zernfun:NMvectors','N and M must be vectors.') G2|G}#E
end #D>:'ezm
p2+K-/}ApP
if length(n)~=length(m) Ggv*EsN/cC
error('zernfun:NMlength','N and M must be the same length.') #AO}JP
end $"0`2C
wg:\$_Og
n = n(:); uOd1:\%*
m = m(:); Zl]@;*u
if any(mod(n-m,2)) F2)KAIl
error('zernfun:NMmultiplesof2', ... eOZ~p
'All N and M must differ by multiples of 2 (including 0).') tWTC'Gx-J
end jOK!k
;2sP3!*
if any(m>n) tejpY
error('zernfun:MlessthanN', ... t[G7&ovj
'Each M must be less than or equal to its corresponding N.') RYl\Q,#
end jz\>VYi(7
f&$$*a
if any( r>1 | r<0 ) k6\&[BQs
error('zernfun:Rlessthan1','All R must be between 0 and 1.') 7|!Zx-}
end w2r*$Q
3rLc\rK
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) h 3 J&
error('zernfun:RTHvector','R and THETA must be vectors.') ]2[\E~^KU
end XuU>.T$] c
Z 2$S'}F
r = r(:); IiX2O(*ZE
theta = theta(:); ~BnmAv$m[
length_r = length(r); h]VC<BD6S
if length_r~=length(theta) IZd~Am3f
error('zernfun:RTHlength', ... %UV"@I+
'The number of R- and THETA-values must be equal.') r -uu`=,
end VArMFP)cz
=65XT^
% Check normalization: 7Q&S [])
% -------------------- #!r>3W&
if nargin==5 && ischar(nflag) VZ9`Kbu
isnorm = strcmpi(nflag,'norm'); =~21.p
if ~isnorm X7MA>j3m
error('zernfun:normalization','Unrecognized normalization flag.') x
Y}.mP
end Ffd;aZ4n
else FJW,G20L
isnorm = false; )E6E}
end KHeeB `V>J
1ZvXRJ)%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% B?
XK;*])
% Compute the Zernike Polynomials tC7 4=
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% zIU6bMMT3u
Go[anf
% Determine the required powers of r: I.%EYAai
% ----------------------------------- m\|EM'@k
m_abs = abs(m); ~cfvL*~5
rpowers = []; xi)M8\K
for j = 1:length(n) 5mm&l+N)
rpowers = [rpowers m_abs(j):2:n(j)]; }0OQm?xh
end X%`:waR
rpowers = unique(rpowers); QS-X_
@U =~c9
% Pre-compute the values of r raised to the required powers, $vnx)#r3
% and compile them in a matrix: Z)}2bJwA
% ----------------------------- G
P '-
if rpowers(1)==0 D\DwBZ>
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); |HwEwL+
rpowern = cat(2,rpowern{:}); V7
hO}
rpowern = [ones(length_r,1) rpowern]; veS)
j?4
else !0v3Lu~j
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 6O*lZNN
rpowern = cat(2,rpowern{:}); NK%Ok
end C!Fi &~
>U]KPL[%
% Compute the values of the polynomials: ^ Qxv5HS2
% -------------------------------------- r(zn1;zl
y = zeros(length_r,length(n)); Y&$puiH-j
for j = 1:length(n) /9?yw!
s = 0:(n(j)-m_abs(j))/2; (!9+QXb'
pows = n(j):-2:m_abs(j); _k(&<1i
for k = length(s):-1:1 SPtx_+ Q)S
p = (1-2*mod(s(k),2))* ... I(Vg
prod(2:(n(j)-s(k)))/ ... pLMaXX~4_
prod(2:s(k))/ ... zbvV:9N
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... d$n<^~Z
prod(2:((n(j)+m_abs(j))/2-s(k))); -<(RYMk*)
idx = (pows(k)==rpowers); !y$+RA7\
y(:,j) = y(:,j) + p*rpowern(:,idx); hsYv=Tw3C
end U/h@Q\~U
Z,8t!Y
if isnorm #jPn7
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); BUyKiMW 49
end J.c
yb
end +HG*T[%/
% END: Compute the Zernike Polynomials }|Bs|$q
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% F|8;Sw b5
n`T4P$pt
% Compute the Zernike functions: ? ^`fPH=
% ------------------------------ -_Kw3x
idx_pos = m>0; S[N9/2
idx_neg = m<0; BW"24JhF"
(?"z!dg c
z = y; y43ha
if any(idx_pos) J_9[xmM
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); vD(:?M
end 8U!$()^?
if any(idx_neg) Ms-)S7tMz
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); \[ 4y
end |n~,{=
6r`Xi&
% EOF zernfun