非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 $.5f-vQp
function z = zernfun(n,m,r,theta,nflag) nO\c4#ce
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. Y^Y1re+}
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N }EMds3<
% and angular frequency M, evaluated at positions (R,THETA) on the `GpOS_;
% unit circle. N is a vector of positive integers (including 0), and RV=Z$
% M is a vector with the same number of elements as N. Each element _o+z#Fn z
% k of M must be a positive integer, with possible values M(k) = -N(k) qN=l$_UD
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, w;OvZo|
% and THETA is a vector of angles. R and THETA must have the same
t@#l0lu$
% length. The output Z is a matrix with one column for every (N,M) 78MQoG<
% pair, and one row for every (R,THETA) pair. j@o
\d%.'!
% :>q*#vlb
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 8mc0(Z@
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), W"meH~[Cp
% with delta(m,0) the Kronecker delta, is chosen so that the integral 5R%4fzr&g
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, + g*s%^(E
% and theta=0 to theta=2*pi) is unity. For the non-normalized 2=%R>&]*
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. AY(z9&;6
% $sxm MP
% The Zernike functions are an orthogonal basis on the unit circle. 2?}5U)Hg
% They are used in disciplines such as astronomy, optics, and o0)k5P~<~
% optometry to describe functions on a circular domain. v<AFcY
% h>:eu#
% The following table lists the first 15 Zernike functions. k|r|*|8
% \UEO$~Km
% n m Zernike function Normalization 2R`dyg
% -------------------------------------------------- a W9_[#z5
% 0 0 1 1 JVe!(L4H
% 1 1 r * cos(theta) 2 +
FG Xx
% 1 -1 r * sin(theta) 2 %>z)Q
% 2 -2 r^2 * cos(2*theta) sqrt(6) ,7/F?!G!J
% 2 0 (2*r^2 - 1) sqrt(3) #*tWhXU
% 2 2 r^2 * sin(2*theta) sqrt(6) i.5?b/l0
% 3 -3 r^3 * cos(3*theta) sqrt(8) S)\Yc=~h
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) +?%LX4Y
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) DQ`\HY
% 3 3 r^3 * sin(3*theta) sqrt(8) xsERn F>`
% 4 -4 r^4 * cos(4*theta) sqrt(10) 6V&HlJH
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) w7e+~8|
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) INF}~DN]
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) zf.&E3Sn
% 4 4 r^4 * sin(4*theta) sqrt(10) "V3f"J?
% -------------------------------------------------- d8Sr,t+
% n:P++^ j
% Example 1: =}1m.
% %4I13|<A`
% % Display the Zernike function Z(n=5,m=1) !g2~|G
% x = -1:0.01:1; P/Zp3O H
% [X,Y] = meshgrid(x,x); D=_FrEM_IA
% [theta,r] = cart2pol(X,Y); *V[6ta'
% idx = r<=1; di|5|bn7
% z = nan(size(X)); O!ngQrI
% z(idx) = zernfun(5,1,r(idx),theta(idx)); ;0JK>c
]#
% figure (!:+q$#BK
% pcolor(x,x,z), shading interp ^b&U0k$R
% axis square, colorbar }pOJ M&I
% title('Zernike function Z_5^1(r,\theta)') LQDU8[-
% bo_Tp~j
% Example 2: lr~c w#h*
% vcz?;lg
% % Display the first 10 Zernike functions %(d0`9
% x = -1:0.01:1; 8I)}c1j`v
% [X,Y] = meshgrid(x,x); `CqF&b
% [theta,r] = cart2pol(X,Y); MzpDvnI9
% idx = r<=1; oeF0t'%
% z = nan(size(X)); 9`|~-b
% n = [0 1 1 2 2 2 3 3 3 3]; MgrJ ;?L
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; )^[PW&=W|x
% Nplot = [4 10 12 16 18 20 22 24 26 28]; ,4Qct=%L_
% y = zernfun(n,m,r(idx),theta(idx)); ?D9>N'yH8
% figure('Units','normalized') ^/:G`'
% for k = 1:10 OqlP_^Zz7p
% z(idx) = y(:,k); V}po
% subplot(4,7,Nplot(k)) ;Vlt4,s)
% pcolor(x,x,z), shading interp y#?AW`|
% set(gca,'XTick',[],'YTick',[]) _eg&