切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11799阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 [N Afy~X*  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! Wy}^5]R0E  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 S'8+jY  
    function z = zernfun(n,m,r,theta,nflag) 9Y'pT.Gy b  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. Fz';H  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 3a.!9R>  
    %   and angular frequency M, evaluated at positions (R,THETA) on the  ?bVIH?  
    %   unit circle.  N is a vector of positive integers (including 0), and o+&Om~W  
    %   M is a vector with the same number of elements as N.  Each element Gmi? xGn  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) Y&j`HO8f  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, <O 0Q]`i  
    %   and THETA is a vector of angles.  R and THETA must have the same $QwpoVp`~  
    %   length.  The output Z is a matrix with one column for every (N,M) Mq)]2>"v  
    %   pair, and one row for every (R,THETA) pair. +1YEOOfVY  
    % OQ hQ!6  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike <+g77NL  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 05R"/r*  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral k:Y\i]#yP  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, =~hb&  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 38p"lT  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Hz GwO^tbK  
    % =Q40]>bpx  
    %   The Zernike functions are an orthogonal basis on the unit circle. &{.IUg  
    %   They are used in disciplines such as astronomy, optics, and BP@tI|  
    %   optometry to describe functions on a circular domain. e' o2PW  
    % 9>w~B|/  
    %   The following table lists the first 15 Zernike functions. RB+Jp  
    % Au'y(KB  
    %       n    m    Zernike function           Normalization o& FOp'  
    %       -------------------------------------------------- "H[K3  
    %       0    0    1                                 1 yiQ?p:DM  
    %       1    1    r * cos(theta)                    2 wpM2{NTP  
    %       1   -1    r * sin(theta)                    2 zp;!HP;/=  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) UgGa]b[9A  
    %       2    0    (2*r^2 - 1)                    sqrt(3) xj;:B( i  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) O*l,&5  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) IU"  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) "ktuq\a@  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) XQ}J4J~Vm  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) bh1$ A  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) z1Bi#/i  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) AE}cHBwZE  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) ]6^<VC`5D  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ?I6rW JcQ6  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) BA: x*(%~  
    %       -------------------------------------------------- 1;$XX#7o  
    % s6 g"uF>k  
    %   Example 1: }8x+F2i  
    % sh_;98^  
    %       % Display the Zernike function Z(n=5,m=1) ]##aAh-P4&  
    %       x = -1:0.01:1; F)hj\aHm k  
    %       [X,Y] = meshgrid(x,x); q k^FyZ<  
    %       [theta,r] = cart2pol(X,Y); ]qT&6:;-]  
    %       idx = r<=1; "iK= 8  
    %       z = nan(size(X)); HXa[0VOx  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); ]@Zv94Z(  
    %       figure E)$>t}$  
    %       pcolor(x,x,z), shading interp gUru=p  
    %       axis square, colorbar D8wf`RUt  
    %       title('Zernike function Z_5^1(r,\theta)') -j3Lgm  
    % 6/8K2_UeoW  
    %   Example 2: G^ W0!u,@  
    % '%rT]u3U  
    %       % Display the first 10 Zernike functions =Nt HV4=b  
    %       x = -1:0.01:1; gPKf8{#%e  
    %       [X,Y] = meshgrid(x,x); 8<C*D".T$  
    %       [theta,r] = cart2pol(X,Y); |&=-Nm  
    %       idx = r<=1; [j0[c9.p [  
    %       z = nan(size(X)); [Jt}^  
    %       n = [0  1  1  2  2  2  3  3  3  3]; T%eBgseS  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 8D )nM|  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; *,$5EN  
    %       y = zernfun(n,m,r(idx),theta(idx)); zkRAul32|  
    %       figure('Units','normalized') GM%OO)dO}  
    %       for k = 1:10 WY!\^| ,  
    %           z(idx) = y(:,k); ~9+01UU^  
    %           subplot(4,7,Nplot(k)) $K^l=X  
    %           pcolor(x,x,z), shading interp }pMVl  
    %           set(gca,'XTick',[],'YTick',[]) Dds-;9  
    %           axis square wN!\$i@E:  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) V6][*.i!9  
    %       end [LnPV2@e  
    % src9EeiV  
    %   See also ZERNPOL, ZERNFUN2. !l $d^y345  
    :'DyZy2Fd  
    %   Paul Fricker 11/13/2006 U.<j2K um  
    s=n4'`y1  
    lr>NG,N  
    % Check and prepare the inputs: ] ]U)wg  
    % ----------------------------- C(XV YND3  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Q ]CMm2L^f  
        error('zernfun:NMvectors','N and M must be vectors.') !XtG6ON=  
    end S $p>sItO  
    #BLHHK/[  
    if length(n)~=length(m) ;_bRq:!j;  
        error('zernfun:NMlength','N and M must be the same length.') 0~ho/_  
    end J 4gtm"2)  
    > ubq{'  
    n = n(:); l}uZxKuYx  
    m = m(:); S&!(h {O  
    if any(mod(n-m,2)) i&:SWH=  
        error('zernfun:NMmultiplesof2', ... NuQ!huh  
              'All N and M must differ by multiples of 2 (including 0).') 7 XxZF43  
    end k77IXT_7u  
    U*C^g}iA  
    if any(m>n) MR1I"gqE}I  
        error('zernfun:MlessthanN', ... sG u.G  
              'Each M must be less than or equal to its corresponding N.') %P0  
    end 0 %~~IT}U  
    K ";Et  
    if any( r>1 | r<0 ) *K|~]r(F?  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 3*h"B$g!  
    end s:tX3X  
    X9Ch(nWX  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ,->K)Rs;  
        error('zernfun:RTHvector','R and THETA must be vectors.') R 0RxcB tG  
    end 7%  D4  
    ^`kwSC  
    r = r(:); QR&e~rks  
    theta = theta(:); "UTW(~D'  
    length_r = length(r); V5K/)\#  
    if length_r~=length(theta) 'SFAJ  
        error('zernfun:RTHlength', ... -hXKCb4YU  
              'The number of R- and THETA-values must be equal.') H'k}/<%Q  
    end T<B}Z11R  
    C<D$Y,[w  
    % Check normalization: $+Ze"E  
    % -------------------- =%m{|HQ`  
    if nargin==5 && ischar(nflag) 2f[;U"  
        isnorm = strcmpi(nflag,'norm'); I}_}VSG(  
        if ~isnorm A08kwYxiW  
            error('zernfun:normalization','Unrecognized normalization flag.') wtYgHC}X  
        end 2=_$&oT**  
    else $P{`-Y }a  
        isnorm = false; lI?P_2AaS  
    end $2a"Ec!7  
    v'i'I/  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% F^.A~{&L  
    % Compute the Zernike Polynomials i#la'ICwJ  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% {U;yW)  
    t5+p]7  
    % Determine the required powers of r: CGi;M=xr  
    % ----------------------------------- !i"zM}  
    m_abs = abs(m); M.Yp'Av  
    rpowers = []; P P J^;s  
    for j = 1:length(n) OyO]; Yk  
        rpowers = [rpowers m_abs(j):2:n(j)]; i47LX;}  
    end <MbhBIejr  
    rpowers = unique(rpowers); "Wj{+ |f  
    E]' f&0s  
    % Pre-compute the values of r raised to the required powers, _f^6F<!  
    % and compile them in a matrix: % 6 *c40  
    % ----------------------------- UH MJ(.Wa-  
    if rpowers(1)==0 ?0; 2ct  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); v.|#^A?Qx  
        rpowern = cat(2,rpowern{:});  )kWxp  
        rpowern = [ones(length_r,1) rpowern]; w1tM !4r  
    else /wLBmh1"  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 7W)W9=&BT  
        rpowern = cat(2,rpowern{:}); ;].X;Ky <  
    end blQ&QQL  
    G=zNZ  
    % Compute the values of the polynomials: Eiu/p&ct  
    % -------------------------------------- tu}!:5xi  
    y = zeros(length_r,length(n)); bny5e:= d  
    for j = 1:length(n) _Q1p_sdg  
        s = 0:(n(j)-m_abs(j))/2; k ;^$Pd?t  
        pows = n(j):-2:m_abs(j); f]r*;YEc4  
        for k = length(s):-1:1 GNJ /|9  
            p = (1-2*mod(s(k),2))* ... Q$U5[ TZm  
                       prod(2:(n(j)-s(k)))/              ... !Vyf2xS"  
                       prod(2:s(k))/                     ... iE''>Z  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 9qftMDLZJ\  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); M=raKb?F  
            idx = (pows(k)==rpowers); -zFJ)!/?  
            y(:,j) = y(:,j) + p*rpowern(:,idx); tpGT~Y(  
        end 2p&$bf t  
         v^JzbO~|gj  
        if isnorm BzfR8mD  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); fn,n'E]  
        end :GIBB=D9  
    end _z#" BN  
    % END: Compute the Zernike Polynomials A;L ]=J  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% A&M_ J  
     2 q4p-  
    % Compute the Zernike functions: t)&U'^  
    % ------------------------------ a>OYJe  
    idx_pos = m>0; Br!;Ac&N  
    idx_neg = m<0; <mFDC?j  
    YD[HBF)~j  
    z = y; +E</A:|}S  
    if any(idx_pos) ;}SGJ7  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); v/ N[)<  
    end &#e;`(*  
    if any(idx_neg) PRU&y/zZmG  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); !CU-5bpu  
    end yn\c;Z  
    &?R/6"J  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) d` ttWWPw  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. #//xOL3J  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated HDV-qYD|O~  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive nms[No?  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, Hl}lxK,]  
    %   and THETA is a vector of angles.  R and THETA must have the same 2 H%lN`  
    %   length.  The output Z is a matrix with one column for every P-value, av!;k2"  
    %   and one row for every (R,THETA) pair. 71@ eJQ  
    % ![%wM Pp  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike B2kZ_4rB  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) ~ L4NK#  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) O8 .iP+  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 <XLaJ;j  
    %   for all p. lNxP  
    % f!kZyD7  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 ^0v3NG6  
    %   Zernike functions (order N<=7).  In some disciplines it is l+6c|([  
    %   traditional to label the first 36 functions using a single mode =x -7 Wy  
    %   number P instead of separate numbers for the order N and azimuthal _G'ki.[S7  
    %   frequency M. %"v:x?d$$o  
    % LY0f`RX*&  
    %   Example: *1EmK.-'u  
    % 8vuTF*{yZ  
    %       % Display the first 16 Zernike functions N~flao^  
    %       x = -1:0.01:1; ?7NSp2aq2A  
    %       [X,Y] = meshgrid(x,x); u~OlJ1V  
    %       [theta,r] = cart2pol(X,Y); t[TM\j0jW  
    %       idx = r<=1; 9;LjM ~Ct  
    %       p = 0:15; j;.P  
    %       z = nan(size(X)); ]6M<c[H>  
    %       y = zernfun2(p,r(idx),theta(idx)); OpaRQ=  
    %       figure('Units','normalized') a"-uJn  
    %       for k = 1:length(p) 3*I\#Z4p1  
    %           z(idx) = y(:,k); #; !@Pf  
    %           subplot(4,4,k) w=XIpWl  
    %           pcolor(x,x,z), shading interp %JBLp xnq  
    %           set(gca,'XTick',[],'YTick',[]) '/<\X{l8  
    %           axis square {Lal5E4-  
    %           title(['Z_{' num2str(p(k)) '}']) Q`*U U82!  
    %       end PR"x&JG@  
    % sAc1t`  
    %   See also ZERNPOL, ZERNFUN. RVA ku  
    kKlNhP(  
    %   Paul Fricker 11/13/2006 Rf0so   
    +A8q.-N G  
    AM=,:k$  
    % Check and prepare the inputs: P-B5-Nz  
    % ----------------------------- L'Cd` .yVO  
    if min(size(p))~=1 )yyH_Ax2  
        error('zernfun2:Pvector','Input P must be vector.') G4c@v1#%.  
    end #qVTB@d  
    ?Ojv<L-f.:  
    if any(p)>35 iN8[^,2H|  
        error('zernfun2:P36', ... i&H^xgm  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... }6^5mhsL  
               '(P = 0 to 35).']) Evj%$7H1L1  
    end >rlUV"8jY;  
    |?J57(  
    % Get the order and frequency corresonding to the function number: 60|PVsmDm  
    % ---------------------------------------------------------------- 1Z ~C3)T=  
    p = p(:); ez32k[eV!  
    n = ceil((-3+sqrt(9+8*p))/2); Q>4NUq  
    m = 2*p - n.*(n+2); HXT"&c|  
    oF$#7#0`;8  
    % Pass the inputs to the function ZERNFUN: p^ (Z  
    % ---------------------------------------- o*A, 6y  
    switch nargin :=*G7ZyW$  
        case 3 .+S%hT,v6i  
            z = zernfun(n,m,r,theta); /TsXm-g#  
        case 4  lha;|  
            z = zernfun(n,m,r,theta,nflag); 4v>SXch  
        otherwise MH)V=xU|)  
            error('zernfun2:nargin','Incorrect number of inputs.') />E ILPPb  
    end Y `8)`  
    tW~kn9glZ  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) 7WH'GoBh  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. ]v}W9{sY  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of r'nPP6`  
    %   order N and frequency M, evaluated at R.  N is a vector of 7:F0?l*  
    %   positive integers (including 0), and M is a vector with the ?@PSD\  
    %   same number of elements as N.  Each element k of M must be a cvy 5|;-u  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) Y[)mHs2  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is rAtCG1Vr  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix UH0l8ixc  
    %   with one column for every (N,M) pair, and one row for every kwaZn~  
    %   element in R. tvf.K+  
    % F|6"-*[RS  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- I}u\ov_Su  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is >"1EN5W  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to l8(9?!C  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 (KN",u6F  
    %   for all [n,m]. XM5)|D  
    % @ NDcO,]  
    %   The radial Zernike polynomials are the radial portion of the 4Ia'Yr  
    %   Zernike functions, which are an orthogonal basis on the unit C3^3<  
    %   circle.  The series representation of the radial Zernike 6X9$T11Vc  
    %   polynomials is Z1 )1s  
    % ]r!|@AWrQ\  
    %          (n-m)/2 JE{ cZ<NNH  
    %            __ b=BNbmX  
    %    m      \       s                                          n-2s 7;@YR  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r NG3:=  
    %    n      s=0 p q?# X0  
    % yj'lHC  
    %   The following table shows the first 12 polynomials. jtfC3E,U  
    % c{to9Lk.#  
    %       n    m    Zernike polynomial    Normalization mpD.x5jm<  
    %       --------------------------------------------- FTEC=j$ln  
    %       0    0    1                        sqrt(2)  * ;Q#UH  
    %       1    1    r                           2 D@ sMCR  
    %       2    0    2*r^2 - 1                sqrt(6) ?>ZrdfTwz,  
    %       2    2    r^2                      sqrt(6) Fv,c8f  
    %       3    1    3*r^3 - 2*r              sqrt(8) ik?IC$*n3i  
    %       3    3    r^3                      sqrt(8) Na]Z%#~  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) 4MDVR/Z7  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) K)l*$h&-  
    %       4    4    r^4                      sqrt(10) R~A))4<%%  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) 'bZw-t!M@  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) LjGLi>kI~  
    %       5    5    r^5                      sqrt(12) ZTqt4H  
    %       --------------------------------------------- H/[(T%]o  
    % Ie Chz d  
    %   Example: NE`;=26c  
    % G,Yctv  
    %       % Display three example Zernike radial polynomials M7Z&t'=  
    %       r = 0:0.01:1; 0Z((cI\J  
    %       n = [3 2 5]; Qu<HeSA_  
    %       m = [1 2 1]; cuG;1,?b  
    %       z = zernpol(n,m,r); sX>|Y3S\U  
    %       figure 8Dxg6>  
    %       plot(r,z) <MO40MP  
    %       grid on OmK0-fa/  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') b; ;y|H  
    % N0D5N(kH%  
    %   See also ZERNFUN, ZERNFUN2. Z$Ps_Ik  
    ;CL^2{  
    % A note on the algorithm. uVZm9Sp  
    % ------------------------ <.lN'i;(  
    % The radial Zernike polynomials are computed using the series @:'E9J06  
    % representation shown in the Help section above. For many special /YwwG;1  
    % functions, direct evaluation using the series representation can "lA$;\&  
    % produce poor numerical results (floating point errors), because +&X>ul  
    % the summation often involves computing small differences between NJ}x qg  
    % large successive terms in the series. (In such cases, the functions T3)m{gv0`  
    % are often evaluated using alternative methods such as recurrence \sVzBHy d  
    % relations: see the Legendre functions, for example). For the Zernike ou|3%&*"  
    % polynomials, however, this problem does not arise, because the ?~}8^~3  
    % polynomials are evaluated over the finite domain r = (0,1), and W^:g_  
    % because the coefficients for a given polynomial are generally all A}pe>ja   
    % of similar magnitude. w+%p4VkA<r  
    % aeLIs SEx  
    % ZERNPOL has been written using a vectorized implementation: multiple R*dXbI&,e  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] z;YX 2G/{  
    % values can be passed as inputs) for a vector of points R.  To achieve 9% P$e=Ui#  
    % this vectorization most efficiently, the algorithm in ZERNPOL hoPh#? G  
    % involves pre-determining all the powers p of R that are required to kmfz.:j{  
    % compute the outputs, and then compiling the {R^p} into a single L<<v   
    % matrix.  This avoids any redundant computation of the R^p, and W89J]#v)k  
    % minimizes the sizes of certain intermediate variables. b;mpZ|T.  
    % NlG!_D"(y  
    %   Paul Fricker 11/13/2006 \gZjq]3  
    5= MM^$QG  
    2)^T[zHe  
    % Check and prepare the inputs: aJNsJIY+  
    % ----------------------------- uTrGb:^  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Zr\G=0`  
        error('zernpol:NMvectors','N and M must be vectors.') c$hoqi |tD  
    end t&bE/i_T  
    'aZAWY d  
    if length(n)~=length(m) Ce3  
        error('zernpol:NMlength','N and M must be the same length.') W9SEYkg  
    end ybm&g( -\  
    w$I$xup  
    n = n(:); !%C&hH\  
    m = m(:); }W]k1Bsx  
    length_n = length(n); D>q?My  
    N aiZU  
    if any(mod(n-m,2)) E"H> [E  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') 9c@\-Z'  
    end /0F <GBQ"v  
    5th\_n}N2/  
    if any(m<0) oxqD/fY  
        error('zernpol:Mpositive','All M must be positive.') j\@|oW0  
    end b9Ix*!Y  
    n)teX.ck)  
    if any(m>n) \?.M1a[  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') O~g0R6M6e  
    end Op<|Oz$Q|l  
    6sRKbp|r7  
    if any( r>1 | r<0 ) ! XNTk]!  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') B7qiCX}pD  
    end #T)gKp  
    G9\@&=  
    if ~any(size(r)==1) X=OJgyO/  
        error('zernpol:Rvector','R must be a vector.') }NJ? .Y  
    end j]_"MMwk$<  
    _9zydtw  
    r = r(:); (hX}O>  
    length_r = length(r); thSo,uGlW  
    Mio~CJ"?  
    if nargin==4 S)\%.~ n  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); $lrq*Nf9c  
        if ~isnorm 7_#i,|]58  
            error('zernpol:normalization','Unrecognized normalization flag.') ]hkway  
        end *[_>d.i  
    else eqE%ofW  
        isnorm = false; 5zBsulRt  
    end rRZ ,X%  
    6|:]2S  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  %sLij*  
    % Compute the Zernike Polynomials "&/&v  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% nMHs5'_y  
    d6k`=Hlg  
    % Determine the required powers of r: Ea*Jl<  
    % ----------------------------------- 6,|)%~VUm  
    rpowers = []; :3Z"Qk$uR  
    for j = 1:length(n) SW%d'1ya  
        rpowers = [rpowers m(j):2:n(j)]; bP 2IX  
    end f&ym'S  
    rpowers = unique(rpowers); VFMg$qv|_  
    COK7 i^  
    % Pre-compute the values of r raised to the required powers, UujFZg[-P9  
    % and compile them in a matrix: Qy@r&  
    % ----------------------------- <4Jo1  
    if rpowers(1)==0 }A"%YDrNbG  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); B6b {hsO  
        rpowern = cat(2,rpowern{:}); daZY;_{"o  
        rpowern = [ones(length_r,1) rpowern]; `jb?6;15  
    else |3MqAvPJ  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); K G~fDb  
        rpowern = cat(2,rpowern{:});  :RW0<  
    end \TrhJ  
    z<jWy$Ta;  
    % Compute the values of the polynomials: i-E~ZfJ  
    % -------------------------------------- 'I_\ELb_  
    z = zeros(length_r,length_n); Z\y@rp\l  
    for j = 1:length_n |!)3[<.  
        s = 0:(n(j)-m(j))/2; `1KZ14K  
        pows = n(j):-2:m(j); ,g$N  
        for k = length(s):-1:1 U:E:"  
            p = (1-2*mod(s(k),2))* ... :R<n{%~  
                       prod(2:(n(j)-s(k)))/          ... +S:(cz80V  
                       prod(2:s(k))/                 ... ;%#@vXH[Oo  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... j%KLp4J/e  
                       prod(2:((n(j)+m(j))/2-s(k))); '+ |{4-V  
            idx = (pows(k)==rpowers); KwRO?G9&  
            z(:,j) = z(:,j) + p*rpowern(:,idx); A|Yq Bl  
        end g!O(@Sqp1  
         ,bCPO` 45  
        if isnorm M>~jLu0@  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); (+9_nAgZ,  
        end Tc`LY/%Od  
    end oM$EQd`7  
    |YQ:4'^"  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    857
    光币
    847
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  ub+>i  
    SG8|xoL  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 +X cB5S>  
    UG&/0{j5XV  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)