非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 (T$cw(!
function z = zernfun(n,m,r,theta,nflag) 5'+g[eNyBV
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. r7>FH!=:
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N |bSAn*6b
% and angular frequency M, evaluated at positions (R,THETA) on the .a :7|L#a
% unit circle. N is a vector of positive integers (including 0), and rqiH!R
% M is a vector with the same number of elements as N. Each element tmoCy0qWz
% k of M must be a positive integer, with possible values M(k) = -N(k) SmD#hE[
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, TTl9xs,nO
% and THETA is a vector of angles. R and THETA must have the same `7y3C\zyQ
% length. The output Z is a matrix with one column for every (N,M) @%2crJnkS
% pair, and one row for every (R,THETA) pair. Sz<:WY/(x
% %'h:G
Bkd
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike W( sit;O
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ,r~^<m
% with delta(m,0) the Kronecker delta, is chosen so that the integral F.x7/;
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ;<[!;8
% and theta=0 to theta=2*pi) is unity. For the non-normalized XUh&an$
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. H7P}=YW".
% "PElQBLP:
% The Zernike functions are an orthogonal basis on the unit circle. 'YGP42#
% They are used in disciplines such as astronomy, optics, and U&:-Vf~&
% optometry to describe functions on a circular domain. COm^ti-p
% ^Ss<<
% The following table lists the first 15 Zernike functions. j DEym&-
% RA!m,"RM
% n m Zernike function Normalization bv(+$YR
% -------------------------------------------------- "N_@q2zF
% 0 0 1 1 a6ryyt 5
% 1 1 r * cos(theta) 2 2-qWR<E
% 1 -1 r * sin(theta) 2 m(:R (K(je
% 2 -2 r^2 * cos(2*theta) sqrt(6) eYoc(bG(+
% 2 0 (2*r^2 - 1) sqrt(3) ZVJ6 {DS/
% 2 2 r^2 * sin(2*theta) sqrt(6) CdCY#$Z
% 3 -3 r^3 * cos(3*theta) sqrt(8) Gs|a$^V|o
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) Gw-{`<CxE
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 5xnEkg4q4
% 3 3 r^3 * sin(3*theta) sqrt(8) kSol%C
% 4 -4 r^4 * cos(4*theta) sqrt(10) ? eI)m
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) u81F^72U
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) y]obO|AH
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) (QqeMG,Y
% 4 4 r^4 * sin(4*theta) sqrt(10) ]
s 2ec
% -------------------------------------------------- []N&,2O
% @>~S$nw/
% Example 1: WuF\{bUh
% g(s}R ?
% % Display the Zernike function Z(n=5,m=1) zK1\InP
% x = -1:0.01:1; oa7 N6
% [X,Y] = meshgrid(x,x); Wt!;Y,1s
% [theta,r] = cart2pol(X,Y); A>F&b1
% idx = r<=1; yGWl8\,j0
% z = nan(size(X)); ^iWGGnGS
% z(idx) = zernfun(5,1,r(idx),theta(idx)); veh=^K%G |
% figure hHcevSr
% pcolor(x,x,z), shading interp ^tm2Duv
% axis square, colorbar d/*EuJYin<
% title('Zernike function Z_5^1(r,\theta)') HlkjyD8
% %Gu=Dkz
% Example 2: c<cYX;O
% Yu&\a?]\2
% % Display the first 10 Zernike functions P&5vVA6K7
% x = -1:0.01:1; 5HL>2
e[
% [X,Y] = meshgrid(x,x); iK'A m.o+
% [theta,r] = cart2pol(X,Y); i
^N}avO
% idx = r<=1; u|EJ)dT?
% z = nan(size(X)); 6OPNP0@r
% n = [0 1 1 2 2 2 3 3 3 3]; !{uV-c-5,
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; Y%]g,mG
% Nplot = [4 10 12 16 18 20 22 24 26 28]; S*3$1BTl
% y = zernfun(n,m,r(idx),theta(idx)); l<sWM$ez
% figure('Units','normalized') l{ fL~O
% for k = 1:10 ko!aX;K
% z(idx) = y(:,k); {"|GV~
% subplot(4,7,Nplot(k)) /n,a0U/
% pcolor(x,x,z), shading interp )F'hn+(B|G
% set(gca,'XTick',[],'YTick',[]) P:XX8
% axis square r[j@@[)"
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) T%}x%9VO7
% end ,<OS:]
% GWj !n
% See also ZERNPOL, ZERNFUN2. ^MT20pL
.:;q8FL/
% Paul Fricker 11/13/2006 &\/}.rF
hE2{m{^A
K~5(j{Kb8
% Check and prepare the inputs: MI8c>5?
% ----------------------------- i~HS"n
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) o+<hI
error('zernfun:NMvectors','N and M must be vectors.') ROfke.N\'
end 2PSv3?".
/h&>tYVio
if length(n)~=length(m) yAel4b/}
error('zernfun:NMlength','N and M must be the same length.') EJaO"9
(
end &hhxp1B
9B3}LVg\
n = n(:); c/3]M>+M
m = m(:); 1b!5h
if any(mod(n-m,2)) (%M:=zm
error('zernfun:NMmultiplesof2', ... gp{P _
'All N and M must differ by multiples of 2 (including 0).') \WVY@eB
end n^epC>a" b
N9f;X{
if any(m>n) n6IN I~,
error('zernfun:MlessthanN', ... :Sk<0VVd7
'Each M must be less than or equal to its corresponding N.') .7#04_aP
end B"RZpx
cC,gd\}M
if any( r>1 | r<0 ) jRjQDK_"ka
error('zernfun:Rlessthan1','All R must be between 0 and 1.') dFpP_U
end {y:+rh&
(]<G)+*
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ?[O Sy.6
error('zernfun:RTHvector','R and THETA must be vectors.') kca Y
end pQ+4++7ID
YwB\kN
r = r(:); 2 BwpxV8
theta = theta(:); @L^30>?l
length_r = length(r); Zxv{qbF
if length_r~=length(theta) /lvH p
error('zernfun:RTHlength', ... ;\+A6(GX{
'The number of R- and THETA-values must be equal.') Bk1gE((
end C?b_E
Tq >?.bq9
% Check normalization: K:sC6|wG
% -------------------- N
&vQis
if nargin==5 && ischar(nflag) ~48mCD
isnorm = strcmpi(nflag,'norm');
qZP>h4
if ~isnorm <H!;/p/S
error('zernfun:normalization','Unrecognized normalization flag.') )'?@raB!
end rw dj
else hLLg
isnorm = false; YPav5<{a
end Ucok&)7-
)8Sm}aC
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% j6)@kW9x
% Compute the Zernike Polynomials ?x
&"EhA>
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% FY]z*=
9Fxz9_ i
% Determine the required powers of r: ;;- I<TL
% ----------------------------------- L~(`zO3f
m_abs = abs(m); .:s**UiDR
rpowers = []; re}P
for j = 1:length(n) *gzX=*;x+?
rpowers = [rpowers m_abs(j):2:n(j)]; %S4pkFR
end %7rWebd-
rpowers = unique(rpowers); b$ )XS
^?tF'l`
% Pre-compute the values of r raised to the required powers, +hS}msu'
% and compile them in a matrix: E>?T<!r~j
% ----------------------------- xpVYNS{c+|
if rpowers(1)==0 enT.9|vm/
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); tpi63<N
rpowern = cat(2,rpowern{:}); O ijG@bI8
rpowern = [ones(length_r,1) rpowern]; bKH8/*Yk
else _nj?au(@`Y
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); C"ZCX6p+$
rpowern = cat(2,rpowern{:}); 7nHlDPps)
end SNd]c
E8Wgm
8
% Compute the values of the polynomials: s&$Zgf6Z
% -------------------------------------- Mzx y'UV
y = zeros(length_r,length(n)); 5fBW#6N/
for j = 1:length(n) -pR1xsG
s = 0:(n(j)-m_abs(j))/2; x3my8'h@
pows = n(j):-2:m_abs(j); +x0-hRD
for k = length(s):-1:1 UvOB`Vj
p = (1-2*mod(s(k),2))* ... BY$%gIB6>
prod(2:(n(j)-s(k)))/ ... CxtH?9# |
prod(2:s(k))/ ...
B9^@]
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... NLC}XL
prod(2:((n(j)+m_abs(j))/2-s(k))); d+fig{<b
idx = (pows(k)==rpowers); %zB
`Sd<
y(:,j) = y(:,j) + p*rpowern(:,idx); .yF7{/
end t
<#Yr%a
NPEs0|
if isnorm 7Q.?]k&
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); mOyBSOad4
end p9 |r y+t
end Ydu=Jg5u7
% END: Compute the Zernike Polynomials ` oYrW0Vm
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% W 6~B~L
@&d/}Mx"t
% Compute the Zernike functions: :nw4K(:f
% ------------------------------ ?!-2G
idx_pos = m>0; y4Plm.
idx_neg = m<0; 810u+%fu
VHB5
z = y; /W/ =OPe
if any(idx_pos) Wel-a<
e
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ,y?0Iwf
end .t0Q>:}&b
if any(idx_neg) #f~#38_
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); '8wA+N6Zr7
end nYMdYt04sl
fXBA
P10#
% EOF zernfun