切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11797阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 zU gE~  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! U<_3^  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 YkniiB[/  
    function z = zernfun(n,m,r,theta,nflag) ]+XYEv  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. clL2k8VS  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N g!?:Ye`5  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 1m:XR0P  
    %   unit circle.  N is a vector of positive integers (including 0), and d%RC  
    %   M is a vector with the same number of elements as N.  Each element G MX?  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) S+atn]eU@  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, BGD8w2  
    %   and THETA is a vector of angles.  R and THETA must have the same $Q96,rb}k;  
    %   length.  The output Z is a matrix with one column for every (N,M) [z`31F  
    %   pair, and one row for every (R,THETA) pair. ||hb~%JK6  
    % El[)?+;D  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike G~2jUyv  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ES.fOdx  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral  -QM: q  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, K;>9ZZtl  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized EN;}$jZ>47  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. j53*E )d  
    % J'SZ  
    %   The Zernike functions are an orthogonal basis on the unit circle. Gb#Cm]  
    %   They are used in disciplines such as astronomy, optics, and b&~4t/Vq  
    %   optometry to describe functions on a circular domain. `\gnl'  
    % l_P-j 96WD  
    %   The following table lists the first 15 Zernike functions. #fM#p+v  
    % \?0&0;5  
    %       n    m    Zernike function           Normalization / ';0H_  
    %       -------------------------------------------------- ypKUkH/  
    %       0    0    1                                 1 w+#C-&z  
    %       1    1    r * cos(theta)                    2 ;V*R*R  
    %       1   -1    r * sin(theta)                    2 j9?}j #@  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ]iN'x?Fo  
    %       2    0    (2*r^2 - 1)                    sqrt(3) )Dw,q~xgg0  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) .aAL]-Rj  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) uxtWybv  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) tyXuG<  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) )uj Ex7&c  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) Rz bj  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) kP#B5K_U|  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) &x[E;P*Fg  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) DnCP aM4%  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) *1p|5!4c  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) KIui(n#/  
    %       -------------------------------------------------- Co (.:z~  
    % /y _O 4  
    %   Example 1: F(k.,0Nc  
    % U3T#6Rptl  
    %       % Display the Zernike function Z(n=5,m=1) z=rT%lz6  
    %       x = -1:0.01:1; Ir`eL  
    %       [X,Y] = meshgrid(x,x); kbTm^y"  
    %       [theta,r] = cart2pol(X,Y); -fwoTGlX  
    %       idx = r<=1; 96 q_ K84K  
    %       z = nan(size(X)); {1V($aBl  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); QMa;Gy  
    %       figure +Z7th7W/,  
    %       pcolor(x,x,z), shading interp YQ+tDZY8`  
    %       axis square, colorbar k9:{9wW  
    %       title('Zernike function Z_5^1(r,\theta)') MBt9SXM  
    % (i34sqV$m  
    %   Example 2: A+::O@_s  
    % u [m  
    %       % Display the first 10 Zernike functions y4*U6+#.  
    %       x = -1:0.01:1; N^HUijw<  
    %       [X,Y] = meshgrid(x,x); GN ]cDik  
    %       [theta,r] = cart2pol(X,Y); co~Pyj  
    %       idx = r<=1; ?no fUD.  
    %       z = nan(size(X)); #33fGmd[  
    %       n = [0  1  1  2  2  2  3  3  3  3]; P_?gq>E8  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; |uqf:V`z:  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; TD'L'm|2  
    %       y = zernfun(n,m,r(idx),theta(idx)); T*#/^%HSG  
    %       figure('Units','normalized') Bg&i63XL$$  
    %       for k = 1:10 LQ(yScA@  
    %           z(idx) = y(:,k); WFO4gB*  
    %           subplot(4,7,Nplot(k)) O4r0R1VQM  
    %           pcolor(x,x,z), shading interp {;N,t]>8M  
    %           set(gca,'XTick',[],'YTick',[]) 9:ze{ c $  
    %           axis square  :rHJ4Tl  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) UUzYbuS>&l  
    %       end g .onTFwN  
    % mz @T  
    %   See also ZERNPOL, ZERNFUN2. J)`-+}7$v  
    73V|6tmgY  
    %   Paul Fricker 11/13/2006 qQA}Z*( m  
    x^kp^ /f  
    ]bj&bk#  
    % Check and prepare the inputs: B8B; y^b>i  
    % ----------------------------- ZAv,*5&<  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) u=/{cOJI6  
        error('zernfun:NMvectors','N and M must be vectors.') (yF:6$:#  
    end *pAV2V(!23  
    v%"|WV[N  
    if length(n)~=length(m) \ ^ZlG.  
        error('zernfun:NMlength','N and M must be the same length.') aa>xIW,u  
    end |?qquD 4=  
    V,q](bg  
    n = n(:); Svondc 4  
    m = m(:); 7NDr1Z#B6V  
    if any(mod(n-m,2)) r30 <(nF  
        error('zernfun:NMmultiplesof2', ... 0Uo\wyd  
              'All N and M must differ by multiples of 2 (including 0).') SS$[VV  
    end RoU55mL  
    A%`[mc]4#  
    if any(m>n) (iL|Sq&}b  
        error('zernfun:MlessthanN', ... {$R' WXVs  
              'Each M must be less than or equal to its corresponding N.') ptDY3n~'  
    end ]}U*_rM:  
    /9HVY %n  
    if any( r>1 | r<0 ) :?/cPg'D  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') JBJhG<J  
    end U<CTubF  
    a"FCZ.O1  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) lrv3fPIW  
        error('zernfun:RTHvector','R and THETA must be vectors.') U@-^C"R  
    end GM3f- \/  
    f>W -  
    r = r(:); _(h&7P9  
    theta = theta(:); K{[%7AM  
    length_r = length(r); |QU <e  
    if length_r~=length(theta) <)u`~$n2  
        error('zernfun:RTHlength', ... yp$_/p O=2  
              'The number of R- and THETA-values must be equal.') {5F-5YL+>  
    end oJ4 AIQjB  
    poToeagZ~Q  
    % Check normalization: G*-b}f  
    % -------------------- c&AygqN  
    if nargin==5 && ischar(nflag) ]`kmjn  
        isnorm = strcmpi(nflag,'norm'); s (zL   
        if ~isnorm *QLI3B9V  
            error('zernfun:normalization','Unrecognized normalization flag.') 7 T1=q{#M  
        end S,Xnzrz  
    else cUvz2TK  
        isnorm = false; <-[wd.M_  
    end 4"(<X  
    @>p<3_Y1  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ](&{:>RNJ  
    % Compute the Zernike Polynomials @}@Z8$G^  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% !4^C #{$  
    <Dwar>}  
    % Determine the required powers of r: B oC5E#;G  
    % ----------------------------------- @ Wd9I;hWv  
    m_abs = abs(m); !t gi  
    rpowers = []; UazP6^{L  
    for j = 1:length(n) . koYHq  
        rpowers = [rpowers m_abs(j):2:n(j)]; MBqt&_?K  
    end C!fMW+C@  
    rpowers = unique(rpowers); *XT/KxLa7  
    R'C2o]  
    % Pre-compute the values of r raised to the required powers, paKSr|O  
    % and compile them in a matrix: P@9t;dZN  
    % ----------------------------- dvt9u9Vg=  
    if rpowers(1)==0 [uI|DUlI6o  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Mz~M3$$9n  
        rpowern = cat(2,rpowern{:}); zmSUw}-4 N  
        rpowern = [ones(length_r,1) rpowern]; cVv;Jn  
    else bT^I"  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); B2C$N0R#  
        rpowern = cat(2,rpowern{:}); px}|Mu7z~  
    end r\/9X}y4z  
    `/EGyN6X  
    % Compute the values of the polynomials: +f@U6Vv  
    % -------------------------------------- ,u`B<heoLU  
    y = zeros(length_r,length(n)); z@B=:tf  
    for j = 1:length(n) I?ae\X@M  
        s = 0:(n(j)-m_abs(j))/2; |j#C|V%kV  
        pows = n(j):-2:m_abs(j); f!!V${)X  
        for k = length(s):-1:1 2vAQ  
            p = (1-2*mod(s(k),2))* ... F W/W%^  
                       prod(2:(n(j)-s(k)))/              ... :'~ Y  
                       prod(2:s(k))/                     ... ( 5tvfz%  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... *#tJM.Z  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); Y#u}tE d  
            idx = (pows(k)==rpowers); ?e,pN,4  
            y(:,j) = y(:,j) + p*rpowern(:,idx); RPE5K:P  
        end N6 (  
         K }Vv4x1U  
        if isnorm  B[Zjfc  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); `kZ@Zmj#  
        end Gu2P\I2zx  
    end }Rz3<eON  
    % END: Compute the Zernike Polynomials u%$Zqee  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ?34 e-  
    H\qC["  
    % Compute the Zernike functions: V>A .iim  
    % ------------------------------ Qzlo'e1  
    idx_pos = m>0; ,'p2v)p^4  
    idx_neg = m<0; <xgTS[k  
    G-?d3 n  
    z = y; A7%:05  
    if any(idx_pos) `<\1[HJ\  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); +(C6#R<LI  
    end G|( ]bvJ?  
    if any(idx_neg) Bh=u|8yxc  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); fp[|M  
    end , ]+z)   
    Y0_),OaY  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) > 3&: 5  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. Kwg4sr5"D  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated s;64N'HH  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive Z| V`B `  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, QoG cWJ  
    %   and THETA is a vector of angles.  R and THETA must have the same `kU/NKq  
    %   length.  The output Z is a matrix with one column for every P-value, D?0zhU  
    %   and one row for every (R,THETA) pair. []A%<EI7  
    % hNd}Y'%V  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike #3_*]8K.R  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) AKRTBjG"  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) |Tm!VFd  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 ,;(PwJe  
    %   for all p. _ h": >  
    % }b0; 0j  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 \l.-eu'O  
    %   Zernike functions (order N<=7).  In some disciplines it is -$WYj "  
    %   traditional to label the first 36 functions using a single mode e}.^Tiwd]  
    %   number P instead of separate numbers for the order N and azimuthal JM\m)RH0  
    %   frequency M. GF5^\Rf  
    % aMvI?y {  
    %   Example: E[bd@[N 8  
    % ;Hj~n+  
    %       % Display the first 16 Zernike functions ODC8D>ZYl  
    %       x = -1:0.01:1; tc!wLnhG  
    %       [X,Y] = meshgrid(x,x); Ldl 5zc  
    %       [theta,r] = cart2pol(X,Y); Ns[ym>x#2  
    %       idx = r<=1; [fKUyIY_  
    %       p = 0:15; +{L<? "  
    %       z = nan(size(X)); 'I /aboDB  
    %       y = zernfun2(p,r(idx),theta(idx)); a'jR#MQl?  
    %       figure('Units','normalized') N~NQ6:R[  
    %       for k = 1:length(p) ,$ ^C4I  
    %           z(idx) = y(:,k); |)K]U  
    %           subplot(4,4,k) (>I`{9x>6  
    %           pcolor(x,x,z), shading interp d R]Q$CJ  
    %           set(gca,'XTick',[],'YTick',[]) mBG=jI "xh  
    %           axis square 3neIR@W  
    %           title(['Z_{' num2str(p(k)) '}']) qg}O/K  
    %       end #~.w&~ :  
    % t6A:Z mG_  
    %   See also ZERNPOL, ZERNFUN. u*#ZXW  
    " $ew~;z  
    %   Paul Fricker 11/13/2006 f}@jFhr'<  
    P b]3&!a  
    \0H's{uek  
    % Check and prepare the inputs: 9gEssTkts  
    % ----------------------------- -~QHqU.  
    if min(size(p))~=1 MiRdX#+Y  
        error('zernfun2:Pvector','Input P must be vector.') =l0Jb#d  
    end NSFs\a@1  
    nYt/U\n!  
    if any(p)>35 QEu=-7@>  
        error('zernfun2:P36', ... h'$ 9C  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... YNBHBK4;  
               '(P = 0 to 35).']) d'|, [p  
    end ]wWPXx[>/  
    )5.C]4jol  
    % Get the order and frequency corresonding to the function number: LT,?$I  
    % ---------------------------------------------------------------- A,) VM9M_l  
    p = p(:); T1r3=Y4  
    n = ceil((-3+sqrt(9+8*p))/2); A?oXqb  
    m = 2*p - n.*(n+2); u]ZqOJXxu  
     =Mb1o[  
    % Pass the inputs to the function ZERNFUN: f*24)Wn<  
    % ---------------------------------------- fVM`-8ZTq  
    switch nargin ~(@ E`s&{  
        case 3 &V<W>Y>|l*  
            z = zernfun(n,m,r,theta); 6Kj'Zy VL  
        case 4 Cua%1]"4w  
            z = zernfun(n,m,r,theta,nflag); U7DCx=B  
        otherwise ;_(PVo  
            error('zernfun2:nargin','Incorrect number of inputs.') ad_`x  
    end s-7RW  
    u^j {U}  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) ^o !O)D-q  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. K A276#  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of ,JEbd1Uf  
    %   order N and frequency M, evaluated at R.  N is a vector of jkF8\dR  
    %   positive integers (including 0), and M is a vector with the AC.A'|"]i  
    %   same number of elements as N.  Each element k of M must be a tyDY'W\]  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) iHp\o=#  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is =5s F"L;b  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix pfd#N[c  
    %   with one column for every (N,M) pair, and one row for every A`u$A9[  
    %   element in R. T`9-VX;`  
    % (.Lrmf@hI7  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- =q"eU=9  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is 3},Zlu  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to 3[XQR8o  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 poJg"R4  
    %   for all [n,m]. vLO&Lpv  
    % !%Y~~'5 h  
    %   The radial Zernike polynomials are the radial portion of the C`'W#xnp1  
    %   Zernike functions, which are an orthogonal basis on the unit i%#$*  
    %   circle.  The series representation of the radial Zernike {NCF6M k  
    %   polynomials is w18RA#Zo/  
    % b59{)u4F  
    %          (n-m)/2 6TH!vuQ1(  
    %            __ ba@=^Fa;  
    %    m      \       s                                          n-2s k?VQi5M  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r p[2GkP  
    %    n      s=0 ~B$b)`*  
    % AA:no=  
    %   The following table shows the first 12 polynomials. ,5|d3dJS  
    % gq5qRi`q  
    %       n    m    Zernike polynomial    Normalization @+_&Y]  
    %       --------------------------------------------- somfv$'B  
    %       0    0    1                        sqrt(2) F pt-V  
    %       1    1    r                           2 A{<xc[w;p  
    %       2    0    2*r^2 - 1                sqrt(6) /dDzZ%/@  
    %       2    2    r^2                      sqrt(6) 'xFYUU]#T^  
    %       3    1    3*r^3 - 2*r              sqrt(8) Bfd-:`Jk  
    %       3    3    r^3                      sqrt(8) Qeb}!k2A  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) @rb l^  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) H0*5_OJ!i  
    %       4    4    r^4                      sqrt(10) 89cVJ4]g~!  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) a)2yE,":  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) +dkS/b  
    %       5    5    r^5                      sqrt(12) yZJ*dadAr  
    %       --------------------------------------------- ~k'V*ERNSj  
    % PG,U6c #  
    %   Example: {Ts:ZI+ 8d  
    % ODf4+& u  
    %       % Display three example Zernike radial polynomials W>spz~w%j  
    %       r = 0:0.01:1; `dJDucD  
    %       n = [3 2 5]; gUB{Bh($Y  
    %       m = [1 2 1]; 8 3.E0@$  
    %       z = zernpol(n,m,r); P ,K\  
    %       figure ~DLIzg7p!  
    %       plot(r,z) ' eO/PnYW  
    %       grid on /'y5SlE[J  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') F?Or;p5`Y  
    % | W#~F&{]  
    %   See also ZERNFUN, ZERNFUN2. j.3o W  
    &WZP2Q|  
    % A note on the algorithm. }gsO&g"8  
    % ------------------------ W'_/6_c$!  
    % The radial Zernike polynomials are computed using the series G+)?^QTn  
    % representation shown in the Help section above. For many special dyQh:u -  
    % functions, direct evaluation using the series representation can C]`eH *z~8  
    % produce poor numerical results (floating point errors), because ,m07p~,V  
    % the summation often involves computing small differences between N_C_O$j  
    % large successive terms in the series. (In such cases, the functions |0{ i9 .=  
    % are often evaluated using alternative methods such as recurrence Fc0jQ@4=  
    % relations: see the Legendre functions, for example). For the Zernike !Y;<:zx5  
    % polynomials, however, this problem does not arise, because the ~4 FDKU C  
    % polynomials are evaluated over the finite domain r = (0,1), and ?gV'(3 !  
    % because the coefficients for a given polynomial are generally all b?kPN:U#N/  
    % of similar magnitude. ~Sy-ga J  
    % %OI4a5V*l  
    % ZERNPOL has been written using a vectorized implementation: multiple |*Ot/TvG  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] 6b:DJ  
    % values can be passed as inputs) for a vector of points R.  To achieve MWq$AK]  
    % this vectorization most efficiently, the algorithm in ZERNPOL ]Sta]}VQ  
    % involves pre-determining all the powers p of R that are required to $(>f8)Uku(  
    % compute the outputs, and then compiling the {R^p} into a single PI7IBI  
    % matrix.  This avoids any redundant computation of the R^p, and oA3d^%(c  
    % minimizes the sizes of certain intermediate variables. X9'xn 0n;  
    % j%M @#  
    %   Paul Fricker 11/13/2006 dE>v\0 3!8  
    Mn"/#tXL-  
    NyJnOw(  
    % Check and prepare the inputs: GqjO>v fy  
    % ----------------------------- Tkrx7C s(  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) !cCg/  
        error('zernpol:NMvectors','N and M must be vectors.') ez0\bym  
    end ",Wf uz  
     b~!om  
    if length(n)~=length(m)  ,o&<WMD  
        error('zernpol:NMlength','N and M must be the same length.') $T*KaX\{B  
    end P`sN&Y~m  
    g)M#{"H  
    n = n(:); 9kd.j@C  
    m = m(:); 1PU*:58[  
    length_n = length(n); v:P!(`sF  
    silp<13HN  
    if any(mod(n-m,2)) 7l}~4dm2J  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') d]k='  
    end I2*oTUSik  
    oWcACs3fB  
    if any(m<0) zjoo{IH}  
        error('zernpol:Mpositive','All M must be positive.') L; C|ow^c  
    end OQ| ,-  
    zMU68vwM  
    if any(m>n) Ak|b0l>^  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') ew"m!F#  
    end Wy)('EM  
    t/LgHb:)  
    if any( r>1 | r<0 ) pU[K%@sC  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') #! @m y  
    end 8g5.7{ky  
    gCwt0)  
    if ~any(size(r)==1) rHo6iJj  
        error('zernpol:Rvector','R must be a vector.') M;@Ex`+?i  
    end 2^bgC~2C1  
    tnRJ#[Io  
    r = r(:); aZ/yCS7  
    length_r = length(r); 3dU#Ueu  
    MVuP |&:n  
    if nargin==4 (6[Wr}SW5  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); S W-0h4  
        if ~isnorm d:3= 1x  
            error('zernpol:normalization','Unrecognized normalization flag.') {9:hg9;E*  
        end A xR\ ned  
    else P59uALi  
        isnorm = false; M[vCpa  
    end 573~-Jvx  
    8"pA9Mr  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ]Qy,#p'~&H  
    % Compute the Zernike Polynomials (T2<!&0 @  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 7\ZL  
    tpz=} q  
    % Determine the required powers of r: fcn_<Yh0W  
    % ----------------------------------- v5gQ9  
    rpowers = []; 'iDu0LX  
    for j = 1:length(n) j~Ff/ O  
        rpowers = [rpowers m(j):2:n(j)]; zlN+edgY#,  
    end zPA>af~Ej  
    rpowers = unique(rpowers); X &09  
    ;q^,[(8  
    % Pre-compute the values of r raised to the required powers, b__n~\q_  
    % and compile them in a matrix: t>-XT|lV  
    % ----------------------------- 0Mq6yu^  
    if rpowers(1)==0 "vvFq ,c  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); tl2Lq0  
        rpowern = cat(2,rpowern{:}); I BF.&[[S  
        rpowern = [ones(length_r,1) rpowern]; ~v,!n/('  
    else 7~ILRj5Nq  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); VN!^m]0  
        rpowern = cat(2,rpowern{:}); dfXV1B5  
    end ],!p p3U  
    w`"W3(  
    % Compute the values of the polynomials: Dj/Q1KY$m  
    % -------------------------------------- )/i4YLO  
    z = zeros(length_r,length_n); d!FONi  
    for j = 1:length_n MEDskvBG  
        s = 0:(n(j)-m(j))/2; CcbWW4 )  
        pows = n(j):-2:m(j); Yr Preuh  
        for k = length(s):-1:1 p$&_fzb  
            p = (1-2*mod(s(k),2))* ... x%ZiE5#  
                       prod(2:(n(j)-s(k)))/          ... yFa&GxSq  
                       prod(2:s(k))/                 ... HL|0d }  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... 7=AO^:=bx  
                       prod(2:((n(j)+m(j))/2-s(k))); RN sJ!or  
            idx = (pows(k)==rpowers); sCuQBZ h  
            z(:,j) = z(:,j) + p*rpowern(:,idx); X6n|Xq3k  
        end $K;_Wf  
         if\k[O 1T6  
        if isnorm A/ r;;S)%2  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); T9,lblU Q  
        end Di]Iy  
    end ZD iW72&Q  
    !<JG&9ODP  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    857
    光币
    847
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  F|ML$  
    do?n /<@o  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 '[ddE!ta  
    Exo`Z`m`U  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)