切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11841阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 s C%&cRQD  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! d6} r#\  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 nF54tR[  
    function z = zernfun(n,m,r,theta,nflag) 1Ce@*XBU  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. s`M9    
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N N|8P)  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 9A/\h3HrJ  
    %   unit circle.  N is a vector of positive integers (including 0), and ;X8yFq  
    %   M is a vector with the same number of elements as N.  Each element #o=y?(  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) !^^?dRd*v  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, dT`D:)*:  
    %   and THETA is a vector of angles.  R and THETA must have the same }\z.)B4,  
    %   length.  The output Z is a matrix with one column for every (N,M) 8;d:-Cp  
    %   pair, and one row for every (R,THETA) pair. 8ZM?)# `@{  
    % `n#H5Oyn  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ;\a YlV-  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 5QW=&zI`=  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral mPOGidxix  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ]9YJ,d@J  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized )_+rU|We  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. @G BxL*e  
    % 3VsW@SG7N  
    %   The Zernike functions are an orthogonal basis on the unit circle. M`. tf_x  
    %   They are used in disciplines such as astronomy, optics, and O}+.U<V  
    %   optometry to describe functions on a circular domain. 9i'jj N  
    % v/Py"hQ  
    %   The following table lists the first 15 Zernike functions. VvvRRP^q  
    % *i\Qo  
    %       n    m    Zernike function           Normalization ?+_Gs;DGVE  
    %       -------------------------------------------------- zO~8?jDN4|  
    %       0    0    1                                 1 gD,1 06%  
    %       1    1    r * cos(theta)                    2 2"0es40;0  
    %       1   -1    r * sin(theta)                    2 OglEt["  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) I(]}XZq  
    %       2    0    (2*r^2 - 1)                    sqrt(3) DNOueU  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) kY&k-K\  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) $}<PL}+  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) :V1W/c  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) {%<OD8>p  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) _a5d?Q9Z  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) k&&2Tq  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) s:OFVlC%\  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) VYu~26Zr  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) =q>'19^Jx  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) '= _/1F*q  
    %       -------------------------------------------------- y-T| #  
    % %dRo^E1p  
    %   Example 1: DQNnNsP:M-  
    % W 0(_ ~  
    %       % Display the Zernike function Z(n=5,m=1) fdxLAC  
    %       x = -1:0.01:1; &)8:h+&Z  
    %       [X,Y] = meshgrid(x,x); "JVkVp[5D+  
    %       [theta,r] = cart2pol(X,Y); vGc,vjC3x  
    %       idx = r<=1; g$7{-OpB  
    %       z = nan(size(X)); 0)%YNaskj  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); k'gh  
    %       figure , `wXg  
    %       pcolor(x,x,z), shading interp ~Fe${2   
    %       axis square, colorbar m#8m] Y  
    %       title('Zernike function Z_5^1(r,\theta)') :}yi -/_8!  
    % *meZ8DV2DH  
    %   Example 2: `k=bL"T>\  
    % K\>tA)IPSV  
    %       % Display the first 10 Zernike functions <:(6EKJAq}  
    %       x = -1:0.01:1; Vx(B{5>Vu  
    %       [X,Y] = meshgrid(x,x); G %N $C  
    %       [theta,r] = cart2pol(X,Y); X'wE7=29M  
    %       idx = r<=1; )!Jc3%(B  
    %       z = nan(size(X)); P::TO-C  
    %       n = [0  1  1  2  2  2  3  3  3  3]; Mx6@$tQ%  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; - |kA)M[  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; mYxuA0/k  
    %       y = zernfun(n,m,r(idx),theta(idx)); 5j:0Yt  
    %       figure('Units','normalized') 4FEk5D  
    %       for k = 1:10 IN4=YrM^  
    %           z(idx) = y(:,k); 9!f/aI  
    %           subplot(4,7,Nplot(k)) AcS|c:3MUy  
    %           pcolor(x,x,z), shading interp ie;]/v a  
    %           set(gca,'XTick',[],'YTick',[]) 9)0D~oUi  
    %           axis square x N=i]~  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Dakoqke  
    %       end -d8TD*^  
    % {SwQ[$k=_  
    %   See also ZERNPOL, ZERNFUN2. %dJX-sm@  
    6^%UU o%  
    %   Paul Fricker 11/13/2006 ,RE\$~`w  
    d1T,eJ}  
    /4tj3B,  
    % Check and prepare the inputs: y@ ML/9X8q  
    % ----------------------------- jH19k}D  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) |w_7_J2  
        error('zernfun:NMvectors','N and M must be vectors.') =2[7 E  
    end C2@,BCR  
    e@c0WlWa  
    if length(n)~=length(m) (]b!{kS  
        error('zernfun:NMlength','N and M must be the same length.') "nZ*{uv  
    end -%2[2p  
    "Weg7mc#  
    n = n(:); qi;f^9M%  
    m = m(:); z)'Mk[  
    if any(mod(n-m,2)) aT_&x@x  
        error('zernfun:NMmultiplesof2', ... 9!T[Z/}T  
              'All N and M must differ by multiples of 2 (including 0).') NXwz$}}Pp  
    end 6^uq?  
    .zS?9MP  
    if any(m>n) k9)jjR*XxG  
        error('zernfun:MlessthanN', ... fYp'&Btb]x  
              'Each M must be less than or equal to its corresponding N.') GMMp|WV|  
    end thV>j9'  
    wm]^3q I2  
    if any( r>1 | r<0 ) _8"O$w  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') O_$m!5ug  
    end y|CP;:f;  
    f-}[_Y%;  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) )A!>=2M `  
        error('zernfun:RTHvector','R and THETA must be vectors.') sW)Zi  
    end a-l; vDs  
    +SsK21f"r  
    r = r(:); O?U'!o=  
    theta = theta(:); bSsh^Z  
    length_r = length(r); j*F`"df  
    if length_r~=length(theta) XD|E=s  
        error('zernfun:RTHlength', ... XS`M-{f`  
              'The number of R- and THETA-values must be equal.') #Xhdn\7  
    end rrQQZ5fhb  
    kjEEuEv  
    % Check normalization: ]d,S749(s  
    % -------------------- (:._"jp]  
    if nargin==5 && ischar(nflag) io,M{Ib  
        isnorm = strcmpi(nflag,'norm'); T6H}/#*tK  
        if ~isnorm U"q/rcA  
            error('zernfun:normalization','Unrecognized normalization flag.') A:aE|v/T&  
        end S>.SSXlM  
    else V2$h8\a  
        isnorm = false; s4 6}s{6   
    end hQ]H /+\  
    M%1}/!J3  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% QA2borfy  
    % Compute the Zernike Polynomials ]?3un!o3o  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +|bmT  
    .uyGYj-C  
    % Determine the required powers of r: ?"zY" *>4  
    % ----------------------------------- t<~$  
    m_abs = abs(m); 6fd+Q  /  
    rpowers = []; |AcRIq  
    for j = 1:length(n) NG  
        rpowers = [rpowers m_abs(j):2:n(j)]; hGd<<\  
    end 70f Klp  
    rpowers = unique(rpowers); r) $+   
    2kdC]|H2?  
    % Pre-compute the values of r raised to the required powers, 5m?8yT}  
    % and compile them in a matrix: A;/-u<f  
    % ----------------------------- <Ard 7UT  
    if rpowers(1)==0 v z^<YZMu  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); vFE;D@bz:  
        rpowern = cat(2,rpowern{:}); 1QmH{jM  
        rpowern = [ones(length_r,1) rpowern]; Y2d;E.DH8  
    else p3]_}Y D[#  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); >Y_*%QGH_  
        rpowern = cat(2,rpowern{:}); MS0Fl|YA  
    end 0KMctPT]p  
     `)GrwfC  
    % Compute the values of the polynomials:  PZ{Dv'C  
    % -------------------------------------- OH5>vV 'i  
    y = zeros(length_r,length(n)); h3*Zfl<]  
    for j = 1:length(n) w=^`w:5X  
        s = 0:(n(j)-m_abs(j))/2; 3 dht!7/  
        pows = n(j):-2:m_abs(j); @;<ht c  
        for k = length(s):-1:1 ms!ref4`+  
            p = (1-2*mod(s(k),2))* ... d+X}cq=  
                       prod(2:(n(j)-s(k)))/              ... z;A>9vQ_J  
                       prod(2:s(k))/                     ... \e!vj.PU  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... z"+Mrew  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); L]d-hs  
            idx = (pows(k)==rpowers); 0PU8 #2pR  
            y(:,j) = y(:,j) + p*rpowern(:,idx); AtF3%Z v2  
        end ,z;ky5Ct  
         uL3Eq>~x  
        if isnorm ;]gP@h/  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ~4s'0 w^  
        end OCZ[D{i9@  
    end $/=nU*pd  
    % END: Compute the Zernike Polynomials iCW*]U  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %^1cyk  
    O!Oumw,$  
    % Compute the Zernike functions: wk6NG/<  
    % ------------------------------ E<C&Cjz:H  
    idx_pos = m>0; E2cB U{x  
    idx_neg = m<0; U$ F{nZ1  
    z I+\Oll#Q  
    z = y; Qu} W/j|3  
    if any(idx_pos) abJ" [  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 2gzou|Y  
    end O~59FuL  
    if any(idx_neg) ]d a^xWK  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); }~"hC3w  
    end {dL?rQ>5L  
    )(tM/r4`c&  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) 2*N_5&9mE  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. om |"S  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated TYlbU<  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive "Ae@lINn[y  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, $uap8nN  
    %   and THETA is a vector of angles.  R and THETA must have the same ^':!1  
    %   length.  The output Z is a matrix with one column for every P-value, N.4q.  
    %   and one row for every (R,THETA) pair. .[Ap=UYI>  
    % V^hE}`>z&  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike +<}0|Xl&  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) 9elga"4:'  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) p|Q*5TO  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 fm(e3]  
    %   for all p. vk>b#%1{  
    % fx@j?*Qb  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 zO V=9"~{  
    %   Zernike functions (order N<=7).  In some disciplines it is 2MATpV#BT  
    %   traditional to label the first 36 functions using a single mode ?x+Z)`w_  
    %   number P instead of separate numbers for the order N and azimuthal 6<N5_1  
    %   frequency M. w,O,W[C  
    % u5~Ns&o&N  
    %   Example: "*;;H^d  
    % N<Q jdD&  
    %       % Display the first 16 Zernike functions H*bs31i{  
    %       x = -1:0.01:1; ?%VI{[y#>  
    %       [X,Y] = meshgrid(x,x); M;0]u.D*=  
    %       [theta,r] = cart2pol(X,Y); @x eAc0.^  
    %       idx = r<=1;  Y!WG)u5  
    %       p = 0:15; Fbu5PWhlc  
    %       z = nan(size(X)); PG8^.)]M  
    %       y = zernfun2(p,r(idx),theta(idx)); ?-tVSRKQ  
    %       figure('Units','normalized') MwfOy@|N  
    %       for k = 1:length(p) >7roe []-|  
    %           z(idx) = y(:,k); Ja SI^go  
    %           subplot(4,4,k) .<z!3O&L  
    %           pcolor(x,x,z), shading interp =l.+,|ZH!  
    %           set(gca,'XTick',[],'YTick',[]) ->h6j  
    %           axis square ~GuMlV8  
    %           title(['Z_{' num2str(p(k)) '}']) "+zCS|   
    %       end A>[|g`;t  
    % 3:{yJdpg  
    %   See also ZERNPOL, ZERNFUN. R/^u/~<  
    pGSai &  
    %   Paul Fricker 11/13/2006  49d@!  
    it> r+%  
    A<\JQ  
    % Check and prepare the inputs: Hg9CZM ko  
    % ----------------------------- JT9N!CGZ  
    if min(size(p))~=1 ?=VOD#)  
        error('zernfun2:Pvector','Input P must be vector.') pA;-v MpMj  
    end v4RlLg dS%  
    @:tj<\G]  
    if any(p)>35 4CQ"8k(S"  
        error('zernfun2:P36', ... T~fmk f$  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... [xh*"wT#g  
               '(P = 0 to 35).']) 4lqH8l.  
    end a=XW[TY1  
    }|B=h  
    % Get the order and frequency corresonding to the function number: Cda!Mk:  
    % ---------------------------------------------------------------- SlSM+F  
    p = p(:); Mc-)OtmG[  
    n = ceil((-3+sqrt(9+8*p))/2); BYY RoE[P  
    m = 2*p - n.*(n+2); ? <Y+peu  
    ~Ph\Sbp  
    % Pass the inputs to the function ZERNFUN: c}[+h5  
    % ---------------------------------------- ;Nr]X  
    switch nargin J(#mtj>v_  
        case 3 V:/7f*n7  
            z = zernfun(n,m,r,theta); JlKM+UE :  
        case 4 kAM1TWbaVQ  
            z = zernfun(n,m,r,theta,nflag); DMF -Y-h  
        otherwise 9s}Kl($  
            error('zernfun2:nargin','Incorrect number of inputs.') - }!H3]tr  
    end {k5X*W  
    XhdSFxW}  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) (#q<\`  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. }<MR`h1  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of Q36)7=at  
    %   order N and frequency M, evaluated at R.  N is a vector of +*&cz  
    %   positive integers (including 0), and M is a vector with the i.iio-  
    %   same number of elements as N.  Each element k of M must be a %lr|xX  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) L;W.pe0  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is kqvow3u  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix @\(vX]  
    %   with one column for every (N,M) pair, and one row for every gLL-VvJ[  
    %   element in R. W v!<bT8r  
    % j1Yq5`ia  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- ,]Zp+>{  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is #>@z 2K7  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to C9Bh@v%90^  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 ,/&Zw01dGN  
    %   for all [n,m]. A1cb"N^  
    % ly4Qg\l  
    %   The radial Zernike polynomials are the radial portion of the V'Qn sI  
    %   Zernike functions, which are an orthogonal basis on the unit o%M<-l"!/  
    %   circle.  The series representation of the radial Zernike ID};<[  
    %   polynomials is <XQ.A3SG!  
    % < /p 8r  
    %          (n-m)/2 i}TwOy<4s  
    %            __ vxN0,l  
    %    m      \       s                                          n-2s j<tq1?? [b  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r t~K%.|'0  
    %    n      s=0 K.>wQA&  
    % ;n#%G^!H  
    %   The following table shows the first 12 polynomials. a0Oe:]mo\  
    % E@QA".  
    %       n    m    Zernike polynomial    Normalization [JTto!Ih$  
    %       --------------------------------------------- Zu<]bv  
    %       0    0    1                        sqrt(2) w,.qCpT$_  
    %       1    1    r                           2 }dSFAKI2dM  
    %       2    0    2*r^2 - 1                sqrt(6) i4Z4xTn  
    %       2    2    r^2                      sqrt(6) wpPn}[a  
    %       3    1    3*r^3 - 2*r              sqrt(8) ;~zNqdlH  
    %       3    3    r^3                      sqrt(8) qFR dg V>8  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) ?~ULIO'  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) X=p"5hhfn  
    %       4    4    r^4                      sqrt(10) &hZwZgV +3  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) )JgC$ <  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) ]j.k?P$U}  
    %       5    5    r^5                      sqrt(12) &m{'nRU}c  
    %       --------------------------------------------- z YDK $  
    % rjojG59U>  
    %   Example: V+B71\x<  
    % b^V'BC3  
    %       % Display three example Zernike radial polynomials  #ch  
    %       r = 0:0.01:1; Wr|G:(kw\!  
    %       n = [3 2 5]; J?712=9  
    %       m = [1 2 1]; wODvc9p}]  
    %       z = zernpol(n,m,r); 2z2`  
    %       figure E[Bo4?s&^  
    %       plot(r,z) -$4kBYC l+  
    %       grid on 4L:>4X[T  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') IS_Su;w>4  
    % ^7XAw: ?  
    %   See also ZERNFUN, ZERNFUN2. "G?9b  
    RR25Q. c  
    % A note on the algorithm. z-u?s`k**  
    % ------------------------ \aSz2lxEHn  
    % The radial Zernike polynomials are computed using the series 9R]](g#  
    % representation shown in the Help section above. For many special sB7" 0M  
    % functions, direct evaluation using the series representation can {7#03k  
    % produce poor numerical results (floating point errors), because 3o8\/-*<  
    % the summation often involves computing small differences between !L\'Mk/=A  
    % large successive terms in the series. (In such cases, the functions $-G`&oT  
    % are often evaluated using alternative methods such as recurrence -z C]^Ho@  
    % relations: see the Legendre functions, for example). For the Zernike 6$ e]i|e  
    % polynomials, however, this problem does not arise, because the fD6GQ*  
    % polynomials are evaluated over the finite domain r = (0,1), and >A jCl  
    % because the coefficients for a given polynomial are generally all :1<~}*B@{  
    % of similar magnitude. c4]u&tvjJ  
    % 9Q[>.):  
    % ZERNPOL has been written using a vectorized implementation: multiple ?JqjYI{$  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] Ph)| j&]  
    % values can be passed as inputs) for a vector of points R.  To achieve O~'FR[J  
    % this vectorization most efficiently, the algorithm in ZERNPOL %Y',|+Arx  
    % involves pre-determining all the powers p of R that are required to z\Ui8jo:;  
    % compute the outputs, and then compiling the {R^p} into a single cf*zejbw  
    % matrix.  This avoids any redundant computation of the R^p, and mTjm92  
    % minimizes the sizes of certain intermediate variables. sc xLB;  
    % ^5)_wUf  
    %   Paul Fricker 11/13/2006 x;U|3{I o  
    jH0Bo;  
    yh!B!v'  
    % Check and prepare the inputs: &va*IR  
    % ----------------------------- ~I$}#  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) `p|[rS>  
        error('zernpol:NMvectors','N and M must be vectors.') #]zhZW4  
    end +qE']yzm!  
    &z ksRX  
    if length(n)~=length(m) W78o*z[O  
        error('zernpol:NMlength','N and M must be the same length.') AN10U;p/O  
    end #: hVF/  
    Tk+DPp^  
    n = n(:); 3]S`|#J  
    m = m(:); 3H'*?|Y(#  
    length_n = length(n); x7gjG"V  
    "^"'uO$  
    if any(mod(n-m,2)) ADBpX>  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') k/^g*  
    end >Z"9rF2SW  
    9HKf^+';n  
    if any(m<0) hho%~^bn(  
        error('zernpol:Mpositive','All M must be positive.') %BICt @E  
    end H5p5S\g-)  
    Oxj(g;}  
    if any(m>n) wT% "5:  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') R-C5*$  
    end bX&e_Pd  
    uN(b.5y  
    if any( r>1 | r<0 ) EE9vk*[@C  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') 9fCO7AE0#  
    end d5' )6  
    ?%;B`2 nDR  
    if ~any(size(r)==1) #^; s<YZ`  
        error('zernpol:Rvector','R must be a vector.') 6`W|V+6|7  
    end /&QQ p3  
    j`Nh7+qs  
    r = r(:); vnVZJ}]w\  
    length_r = length(r); EqQ3=XMUL@  
    V^vLN[8_\  
    if nargin==4 /.)2d8,  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); U%,;N\:_  
        if ~isnorm _Z.;u0Zp8  
            error('zernpol:normalization','Unrecognized normalization flag.') ;"SZ}  
        end z.j4tc9F/5  
    else p_gA/. v=  
        isnorm = false; ~zj"OG"zOw  
    end a+'}XEhSC:  
    F7V6-V{_  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% w Oj88J)  
    % Compute the Zernike Polynomials ;YM]K R;  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ? KF=W  
    %A=|'6)k2  
    % Determine the required powers of r: H.9yT\f.  
    % ----------------------------------- G V=OKf#  
    rpowers = []; b_ZNI0Hp@  
    for j = 1:length(n) XK3!V|y`  
        rpowers = [rpowers m(j):2:n(j)]; ?4MSgu  
    end )5'rw<:="  
    rpowers = unique(rpowers); A{M+vsL  
    gu!](yEgl  
    % Pre-compute the values of r raised to the required powers, XUf7yD  
    % and compile them in a matrix: *F|i&2  
    % ----------------------------- !6{J q]  
    if rpowers(1)==0 u(8~4P0w  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); v10mDr  
        rpowern = cat(2,rpowern{:}); C~{xL>I  
        rpowern = [ones(length_r,1) rpowern]; 3]!h{_:u  
    else ` %l&zwj>  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ),M U+*`  
        rpowern = cat(2,rpowern{:}); {dZ!I  
    end \+G.]|"Y  
    2c"/QT  
    % Compute the values of the polynomials: gu^_iU  
    % -------------------------------------- ,RR;VKj  
    z = zeros(length_r,length_n); 3FGbQ_  
    for j = 1:length_n ON:LPf>"-  
        s = 0:(n(j)-m(j))/2; tpN]evp|  
        pows = n(j):-2:m(j); =4YbVA+(  
        for k = length(s):-1:1 +J\L4ri k  
            p = (1-2*mod(s(k),2))* ... j4.Qvj >:4  
                       prod(2:(n(j)-s(k)))/          ... *=($r%)  
                       prod(2:s(k))/                 ... 113Z@F  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... (2\li{$e  
                       prod(2:((n(j)+m(j))/2-s(k))); *O2^{ C  
            idx = (pows(k)==rpowers); trID#DT~  
            z(:,j) = z(:,j) + p*rpowern(:,idx); P58\+9d_  
        end 9nP*N`  
         c@0l-R{q  
        if isnorm #R~">g:w  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); [V!^\g\6  
        end $#6 Fnhh}  
    end e_fg s>o`(  
    'DaNR`9  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    857
    光币
    847
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  A UO0  
    Y{\2wU!Isn  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 =?QQb>  
    dIe 6:s  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)