切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10976阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 V:#rY5X  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! DXG`%<ZMn  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 ]]_5_)"4  
    function z = zernfun(n,m,r,theta,nflag) 1) K<x  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. %E/#h8oN{  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N &OZx!G^Z  
    %   and angular frequency M, evaluated at positions (R,THETA) on the \pkK >R  
    %   unit circle.  N is a vector of positive integers (including 0), and R<_VWPlj  
    %   M is a vector with the same number of elements as N.  Each element M"W#_wY;  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) [L7s(Zs>  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, QVRQUd  
    %   and THETA is a vector of angles.  R and THETA must have the same Xp| 4WM  
    %   length.  The output Z is a matrix with one column for every (N,M) P=1K u|k  
    %   pair, and one row for every (R,THETA) pair. kP}l"CN4  
    % lAA&#-#YG  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike *J]p/<> {  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), IJKdVb~   
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral n:B){'S  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, )X," NJG  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ygV_"=+|N  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. WV'u}-v^  
    % jl}!UG  
    %   The Zernike functions are an orthogonal basis on the unit circle. U\, N  
    %   They are used in disciplines such as astronomy, optics, and ^V1\boo=  
    %   optometry to describe functions on a circular domain. Dq%} ({+  
    % rXz q :  
    %   The following table lists the first 15 Zernike functions. J zFR9DEt  
    % x^c,cV+*  
    %       n    m    Zernike function           Normalization #tpz74O  
    %       -------------------------------------------------- yPT o,,ca=  
    %       0    0    1                                 1 @aN~97 H\  
    %       1    1    r * cos(theta)                    2 ^`M%g2x  
    %       1   -1    r * sin(theta)                    2 l" ~ CAw;  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) j@#RfVx  
    %       2    0    (2*r^2 - 1)                    sqrt(3) fQ"Vx!  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) 901 5PEO  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) R\X;`ptT  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) : O@(Sv  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 8+7*> FD)1  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) p<h(  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 7)1%Z{Dy  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) g18zo~LZ  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) x5xMr.vm  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) rNicg]:\x  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) Z_dL@\#|  
    %       -------------------------------------------------- %-$ :/ N  
    % ^8bc<c:P  
    %   Example 1: ]8OmYU%6V  
    % As5l36  
    %       % Display the Zernike function Z(n=5,m=1) jTNt!2 :B  
    %       x = -1:0.01:1; hP{+`\&<f  
    %       [X,Y] = meshgrid(x,x); 6C"zBJcGc  
    %       [theta,r] = cart2pol(X,Y); ,Xn %0]  
    %       idx = r<=1; XYD-5pG  
    %       z = nan(size(X)); Z8/.I  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); R>~I8k9mM  
    %       figure v5e*R8/  
    %       pcolor(x,x,z), shading interp -R1;(n)  
    %       axis square, colorbar vg3iT }  
    %       title('Zernike function Z_5^1(r,\theta)') ? p[Rv  
    % pRxVsOb  
    %   Example 2: DzA'MX  
    % 8 l= EL7  
    %       % Display the first 10 Zernike functions T*Ge67  
    %       x = -1:0.01:1; A.7lo  
    %       [X,Y] = meshgrid(x,x); })kx#_o]'d  
    %       [theta,r] = cart2pol(X,Y); 7BqP3T=&_  
    %       idx = r<=1; ?G7*^y&Q  
    %       z = nan(size(X)); uTz>I'f  
    %       n = [0  1  1  2  2  2  3  3  3  3]; C|g1:#0  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; vA Z kT"  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 0*kS\R=P  
    %       y = zernfun(n,m,r(idx),theta(idx));  !a\HdQ  
    %       figure('Units','normalized') }X=c|]6i^  
    %       for k = 1:10 Voq/0,d  
    %           z(idx) = y(:,k); ZQir?1=  
    %           subplot(4,7,Nplot(k)) 'r_Fi5[q  
    %           pcolor(x,x,z), shading interp _ MB/p  
    %           set(gca,'XTick',[],'YTick',[]) y4 ]5z/  
    %           axis square 7I]?:%8 h  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) t5i58@{~  
    %       end %qE"A6j  
    % W?!rqo2SP  
    %   See also ZERNPOL, ZERNFUN2. 9C Ki$L  
    wL]#]DiE  
    %   Paul Fricker 11/13/2006 ~ Al3Dv9x  
    5A 5t  
    MT)q?NcG  
    % Check and prepare the inputs: lfd-!(tXD  
    % ----------------------------- c05-1  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) i| ,}y`C#  
        error('zernfun:NMvectors','N and M must be vectors.') U7g,@/Qx  
    end P|lDW|}D@  
    N7}3?wS  
    if length(n)~=length(m) ieWXr4@:  
        error('zernfun:NMlength','N and M must be the same length.') V!yBH<X  
    end U1fqs{>  
    qe e_wx  
    n = n(:); Y[>h |@  
    m = m(:); #)48dW!n  
    if any(mod(n-m,2)) O}2/w2n  
        error('zernfun:NMmultiplesof2', ... +R;LHRS%  
              'All N and M must differ by multiples of 2 (including 0).') $T66%wX  
    end gcO$T`  
    Slv:CM M  
    if any(m>n) -k2|`t _  
        error('zernfun:MlessthanN', ... m#O; 1/P  
              'Each M must be less than or equal to its corresponding N.') (n2_HePE  
    end %BMlc m7Ec  
    ]BRwJ2< x  
    if any( r>1 | r<0 ) luac  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 7Lj:m.0O^  
    end p0l.f`B  
    >\J<`  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ![vy{U.:`  
        error('zernfun:RTHvector','R and THETA must be vectors.') $nIE;idk  
    end &m9= q|;m  
    \h0+` ;Q  
    r = r(:); q@VIFmqY!  
    theta = theta(:); hPGDN\#LD  
    length_r = length(r); %gSmOW2.c^  
    if length_r~=length(theta) Vj8-[ww!  
        error('zernfun:RTHlength', ... =;) =,+V~q  
              'The number of R- and THETA-values must be equal.') *u,xBC2C  
    end :=!6w  
    >XRf= :3  
    % Check normalization: ~q/~ u  
    % -------------------- Nr)DU.f  
    if nargin==5 && ischar(nflag) +u5xK  
        isnorm = strcmpi(nflag,'norm'); 0Ny +NE:6M  
        if ~isnorm {,T=Siy  
            error('zernfun:normalization','Unrecognized normalization flag.') 2\|sXC  
        end d$E>bo-\   
    else T?jN/}qg  
        isnorm = false; /M3;~sx  
    end -!M>;M@  
    r9b(d]  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 9U3}_  
    % Compute the Zernike Polynomials Uqj$itqUQ  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% K*1]P ar;  
    87)/dHc  
    % Determine the required powers of r: | "M1+(k7  
    % ----------------------------------- 9oP  
    m_abs = abs(m); };Df ><  
    rpowers = []; jJ2{g> P0P  
    for j = 1:length(n) ,qV7$u  
        rpowers = [rpowers m_abs(j):2:n(j)]; 8 K)GH:a  
    end 0A8G8^T  
    rpowers = unique(rpowers); IC$"\7 @  
    m@L>6;*  
    % Pre-compute the values of r raised to the required powers, *g:Dg I 2  
    % and compile them in a matrix: ~% `hh9]  
    % ----------------------------- .>_%12>  
    if rpowers(1)==0 >>y\idg&:  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ]ERAt^$0  
        rpowern = cat(2,rpowern{:}); W4(  
        rpowern = [ones(length_r,1) rpowern]; R@>^t4#_Q0  
    else gd7! +6  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Dd, &a  
        rpowern = cat(2,rpowern{:}); NQiu>Sg  
    end N693eN!  
    P~x4h{~Gd  
    % Compute the values of the polynomials: x1Gc|K/-  
    % -------------------------------------- @q@I(%_`  
    y = zeros(length_r,length(n)); g@?R"  
    for j = 1:length(n) :zO;E+s  
        s = 0:(n(j)-m_abs(j))/2; \]S)PDqR  
        pows = n(j):-2:m_abs(j); }~0}B[Rf  
        for k = length(s):-1:1 o{hZjn-  
            p = (1-2*mod(s(k),2))* ... vYo~36  
                       prod(2:(n(j)-s(k)))/              ... c0X1})q$  
                       prod(2:s(k))/                     ... Zba<|C  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... *lheF>^  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); L$,Kdpj  
            idx = (pows(k)==rpowers); 889^P`Q5  
            y(:,j) = y(:,j) + p*rpowern(:,idx); x%W~@_  
        end m>!o Yy_  
         GFnwj<V+{  
        if isnorm 5~#oQ&  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); tm_\(  
        end *rV{(%\m  
    end D&],.N  
    % END: Compute the Zernike Polynomials QMDkkNK  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 8`I,KkWg   
    3YUF\L]yyw  
    % Compute the Zernike functions: FysIN~  
    % ------------------------------ 7MKZ*f@x;  
    idx_pos = m>0; 6]HMhv  
    idx_neg = m<0; -&%! 4(Je  
    ]4lC/ &nm  
    z = y; K&-u W_0  
    if any(idx_pos) O[|X=ZwR:l  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Udjn.D  
    end &=In  
    if any(idx_neg) AJ#YjkO>]  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); i0?/\@gd  
    end D7jbo[GgS  
    eG.s|0`  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) .[?2_e#9%  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. vnlHUQLO  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated %."w]fy>P  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive ^=gN >xP  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, b<E78B+Aax  
    %   and THETA is a vector of angles.  R and THETA must have the same &IG*;$c!  
    %   length.  The output Z is a matrix with one column for every P-value, dTwYDV}:  
    %   and one row for every (R,THETA) pair. 4 *. O%  
    % ]KUeSg|  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike Zb<D%9  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) d^5x@E_Td  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) Y44[2 :m  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 <Iil*\SC  
    %   for all p. yy`XtJBWWs  
    % m`tX&K#-  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 {]4Zpev  
    %   Zernike functions (order N<=7).  In some disciplines it is y7Hoy.(  
    %   traditional to label the first 36 functions using a single mode `"#hhKG  
    %   number P instead of separate numbers for the order N and azimuthal ~L_1&q^4!i  
    %   frequency M. !&{"tL@.  
    % '*G8;91u  
    %   Example: #w!ewCvt  
    % AO(z l*4  
    %       % Display the first 16 Zernike functions b4(,ls  
    %       x = -1:0.01:1; }E&:  
    %       [X,Y] = meshgrid(x,x); NBw{  
    %       [theta,r] = cart2pol(X,Y); gzDfx&.0  
    %       idx = r<=1; j=u) z7J  
    %       p = 0:15; xg'xuz$U  
    %       z = nan(size(X)); IJ7wUZp"  
    %       y = zernfun2(p,r(idx),theta(idx)); Y3H5}4QD  
    %       figure('Units','normalized') R I:kp.V  
    %       for k = 1:length(p) Q$Sp'  
    %           z(idx) = y(:,k); CSBDSz  
    %           subplot(4,4,k) 8\+DSA  
    %           pcolor(x,x,z), shading interp u Vo"_c w  
    %           set(gca,'XTick',[],'YTick',[]) ,@zw  
    %           axis square D8WKy  
    %           title(['Z_{' num2str(p(k)) '}']) 3sl6$NKo  
    %       end A~< cp)E  
    % x+[ATZ([  
    %   See also ZERNPOL, ZERNFUN. mp*?GeV?M  
    FyNm1QNy^  
    %   Paul Fricker 11/13/2006 ?gMq:[X N  
    G(bl)p^  
    nx%eq ,Pq  
    % Check and prepare the inputs: TQQh:y  
    % ----------------------------- Fx:4d$>;  
    if min(size(p))~=1 I [n|#N  
        error('zernfun2:Pvector','Input P must be vector.') ^AoX|R[1%  
    end mRxeob  
    v]T?xo~@'  
    if any(p)>35 G[{Av5g mx  
        error('zernfun2:P36', ... CQ7NQ^3k  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... eWr6@  
               '(P = 0 to 35).']) 6d3YLb4M$i  
    end J.]`l\  
    b)r;a5"<5  
    % Get the order and frequency corresonding to the function number: n"@){:{4?  
    % ---------------------------------------------------------------- U6YHq2<  
    p = p(:); uI I! ?   
    n = ceil((-3+sqrt(9+8*p))/2); *] !r T&E  
    m = 2*p - n.*(n+2); \~  l"  
    j' b0sve|?  
    % Pass the inputs to the function ZERNFUN: R^"mGe\LL  
    % ---------------------------------------- d?V/V'T[  
    switch nargin Y&bO[(>1  
        case 3 8fK/0u^`d  
            z = zernfun(n,m,r,theta); 9~y:K$NO  
        case 4 $lA dh  
            z = zernfun(n,m,r,theta,nflag); 3#eAXIW[  
        otherwise v@{VQVx  
            error('zernfun2:nargin','Incorrect number of inputs.') ScmwHid:\  
    end n$E$@  
    KDj/S-S  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) ,$RXN8x1  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. MPF({Pnx7  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of +fq\K]  
    %   order N and frequency M, evaluated at R.  N is a vector of PfGiJ]:V-u  
    %   positive integers (including 0), and M is a vector with the XXeDOrb  
    %   same number of elements as N.  Each element k of M must be a A$L:,b(  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) Nnoj6+b  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is ] v:"    
    %   a vector of numbers between 0 and 1.  The output Z is a matrix _Ih"*~ r/&  
    %   with one column for every (N,M) pair, and one row for every fB'Jo<C  
    %   element in R. 15%6;K?b  
    % ]cMZ7V^  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- LLoV]~dvUu  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is Cu<' b'%;  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to U!YoZ?  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 !)05,6WQ  
    %   for all [n,m]. ,wy;7T>ODd  
    % `, 4YPjk^  
    %   The radial Zernike polynomials are the radial portion of the 7Q,<h8N\5  
    %   Zernike functions, which are an orthogonal basis on the unit @moaa}1  
    %   circle.  The series representation of the radial Zernike a.ijc>K  
    %   polynomials is G;U SVF-'K  
    % dP#7ev]'  
    %          (n-m)/2 ZT`" {#L  
    %            __ p0}Yo8?OW  
    %    m      \       s                                          n-2s ,'sDauFn  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r MYR\W*B'b  
    %    n      s=0 Kek %io  
    % jR*iA3LDo  
    %   The following table shows the first 12 polynomials. #jO2Zu2`}  
    % -O?A"  
    %       n    m    Zernike polynomial    Normalization aJc>"#+ o  
    %       --------------------------------------------- 7nM<P4\  
    %       0    0    1                        sqrt(2)  Bgai|l  
    %       1    1    r                           2 6F%6]n  
    %       2    0    2*r^2 - 1                sqrt(6) 4#I=n~8a  
    %       2    2    r^2                      sqrt(6) c;=St1eoz  
    %       3    1    3*r^3 - 2*r              sqrt(8) =PnNett}a  
    %       3    3    r^3                      sqrt(8) !#E-p?O.  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) >4HB~9dKU  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) Urksj:N  
    %       4    4    r^4                      sqrt(10) /gn\7&=P  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) -x?|[ +%  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) tA9Ew{3s  
    %       5    5    r^5                      sqrt(12) RusiCo!r  
    %       --------------------------------------------- vY[ u;VU  
    % qR , 5  
    %   Example: ^{NN-  
    % ?Qts2kae#  
    %       % Display three example Zernike radial polynomials =w:H9uj6F  
    %       r = 0:0.01:1; R/6 v#9m7  
    %       n = [3 2 5]; d[E= HN  
    %       m = [1 2 1]; ,V&E"D{u  
    %       z = zernpol(n,m,r); y;O 6q206  
    %       figure b0tbS[j  
    %       plot(r,z) 715J1~aRNr  
    %       grid on $-E<{   
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') ' |M} 3sL  
    % DYe w6B-  
    %   See also ZERNFUN, ZERNFUN2. ,3)JZM  
    ]HRHF'4  
    % A note on the algorithm. g26 l:1P  
    % ------------------------ AAF;M}le,  
    % The radial Zernike polynomials are computed using the series z,VXH ?.Zo  
    % representation shown in the Help section above. For many special YG>Eop  
    % functions, direct evaluation using the series representation can IEfm>N-]  
    % produce poor numerical results (floating point errors), because Ysi@wK-LnF  
    % the summation often involves computing small differences between dO-Zj#%7z8  
    % large successive terms in the series. (In such cases, the functions c3\p@}  
    % are often evaluated using alternative methods such as recurrence 6O@Lx ]t  
    % relations: see the Legendre functions, for example). For the Zernike 9AD0|,g  
    % polynomials, however, this problem does not arise, because the 4dh> B>Q  
    % polynomials are evaluated over the finite domain r = (0,1), and {4%ddJn[.)  
    % because the coefficients for a given polynomial are generally all "{jVsih0  
    % of similar magnitude. Af^9WJ  
    % D9n+eZ  
    % ZERNPOL has been written using a vectorized implementation: multiple B\`${O(  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] u R!'v  
    % values can be passed as inputs) for a vector of points R.  To achieve ZV07;`I  
    % this vectorization most efficiently, the algorithm in ZERNPOL Zh?n;n}  
    % involves pre-determining all the powers p of R that are required to YT@H^=  
    % compute the outputs, and then compiling the {R^p} into a single C{6m?6  
    % matrix.  This avoids any redundant computation of the R^p, and t V7{j'If  
    % minimizes the sizes of certain intermediate variables. Pfm B{  
    % \ow(4O#  
    %   Paul Fricker 11/13/2006 4XeO^#  
    E/E|*6R  
    Wx8;+!2Q/  
    % Check and prepare the inputs: Z,F1n/7  
    % ----------------------------- ldG$hk'  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 8#Y_]Z?)  
        error('zernpol:NMvectors','N and M must be vectors.') pFwe&_u]  
    end ;uuBX0B  
    gER(&L4[  
    if length(n)~=length(m) 1DF8-|+  
        error('zernpol:NMlength','N and M must be the same length.') 9|9/8a6A  
    end F<,"{L  
    &7c#i  
    n = n(:); F+V[`w*k  
    m = m(:); Xd&oERJj  
    length_n = length(n); >lugHF$G  
    Fk?KR  
    if any(mod(n-m,2)) D6EqJ,~  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') JJP!9<  
    end NV`7VYU  
    57$/Dn  
    if any(m<0) /(i~Hpp  
        error('zernpol:Mpositive','All M must be positive.') iyMoLZ5  
    end -"xC\R  
    I>>X-}  
    if any(m>n) az Oib=3fz  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') ^ =H 10A  
    end SN#N$] y5s  
    0#F<JsO|u  
    if any( r>1 | r<0 ) yGb^kR}d  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') SLud}|f;o  
    end lq27^K  
    @Lm(bW  
    if ~any(size(r)==1) ?/KkN3Y_j[  
        error('zernpol:Rvector','R must be a vector.') JZD&u6tB   
    end .r-kH&)"GU  
    a+n?y)u  
    r = r(:); By0Zz  
    length_r = length(r); E^m2:J]G  
    cLMFC1=b  
    if nargin==4 ;B"S*wYMN  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); N3Z6o.k  
        if ~isnorm 8;Df/ %  
            error('zernpol:normalization','Unrecognized normalization flag.') iP?=5j=4  
        end E~,Wpl}  
    else x4@IK|CE  
        isnorm = false; 0"`|f0}c  
    end `I5So-^&z  
    *&W1|Qkg_  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% NW?h~2  
    % Compute the Zernike Polynomials p,#**g:  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 5U(ry6fI=  
    T- lHlm  
    % Determine the required powers of r: [2zS@p  
    % ----------------------------------- Eb\SK"8  
    rpowers = []; /I q6'oo  
    for j = 1:length(n) X(K5>L>  
        rpowers = [rpowers m(j):2:n(j)]; 0 oHnam  
    end Y; q['h  
    rpowers = unique(rpowers); qg8T}y>  
    X!0m,  
    % Pre-compute the values of r raised to the required powers, EA!I& mBq  
    % and compile them in a matrix: }Ym~[S*x  
    % ----------------------------- 4m/L5W:K  
    if rpowers(1)==0 <(2,@_~@r  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 4>(OM|X=9  
        rpowern = cat(2,rpowern{:}); B_|jDH#RyJ  
        rpowern = [ones(length_r,1) rpowern]; WR4\dsgCU  
    else Dad*6;+N  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); b/'RJQSAc  
        rpowern = cat(2,rpowern{:}); BO-=X 78f@  
    end mybjcsV4  
    OW8"7*irT  
    % Compute the values of the polynomials: [+4--#&{  
    % -------------------------------------- =h}IyY@o  
    z = zeros(length_r,length_n); Twr<MXa  
    for j = 1:length_n HVcd< :g0  
        s = 0:(n(j)-m(j))/2; z T#j.v  
        pows = n(j):-2:m(j); LXcH<)  
        for k = length(s):-1:1 Fu#mMn0c  
            p = (1-2*mod(s(k),2))* ... nHmi%R7k  
                       prod(2:(n(j)-s(k)))/          ... ZG)%vB2c  
                       prod(2:s(k))/                 ... x-ShY&k  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... AP_2.V=Sn  
                       prod(2:((n(j)+m(j))/2-s(k))); F /% 5 r{  
            idx = (pows(k)==rpowers); ` Ui|T  
            z(:,j) = z(:,j) + p*rpowern(:,idx); @K.[;-;g  
        end iMr/i?`i  
         bZ*J]1y(.  
        if isnorm A{b?ZT~2]  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); 3 ~^}R  
        end X'h J&-[P  
    end I^fKZ^]8P  
    ^ G(GjW8  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  yp=(wcJ  
    }4PIpDL  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 1>$ fLbmkI  
    ^[{\ZX  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)