切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11064阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 l$1?@l$j  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! 9<0yz?b':  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 niCK(&z  
    function z = zernfun(n,m,r,theta,nflag) 'u x!:b"  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. O'IU1sU  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N mST8+R@S  
    %   and angular frequency M, evaluated at positions (R,THETA) on the  s&pnB  
    %   unit circle.  N is a vector of positive integers (including 0), and }\S'oC\[  
    %   M is a vector with the same number of elements as N.  Each element Cp/f18zO  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) Uc:NW   
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ~IW{^u  
    %   and THETA is a vector of angles.  R and THETA must have the same O<Q8%Az  
    %   length.  The output Z is a matrix with one column for every (N,M) b4dviYI  
    %   pair, and one row for every (R,THETA) pair. 8Yk*$RR9  
    % .B<Bqr@?8  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Dq~;h \='  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), pD({"A.x9z  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral X-nC2[tu'W  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, W;=Ae~  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized l+ >eb  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. XfE9QA[  
    % 1D#-,#?  
    %   The Zernike functions are an orthogonal basis on the unit circle. JqMF9|{H  
    %   They are used in disciplines such as astronomy, optics, and .e0)@}Jv8>  
    %   optometry to describe functions on a circular domain. TMMJ5\t2  
    % |?VJf3 A  
    %   The following table lists the first 15 Zernike functions. p&RC#wYu  
    % B%uY/Mwz$  
    %       n    m    Zernike function           Normalization -O\i^?lD;  
    %       -------------------------------------------------- HdxP:s.T  
    %       0    0    1                                 1 'o}[9ZBjn  
    %       1    1    r * cos(theta)                    2 MAkr9AKb,  
    %       1   -1    r * sin(theta)                    2 ;DK%!."%  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) K [DpH&  
    %       2    0    (2*r^2 - 1)                    sqrt(3) }r@dZ Bp:  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) & V>rq'~;  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) y& yf&p  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) V($V8P/  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) Godrz*"  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) #PD6LO  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) gm)Uyr$  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) LE<J<~2Z  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) M]r?m@)  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ;_"|#  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) ,9bnR;f\  
    %       -------------------------------------------------- FiiDmhu  
    % o:Kw<z,$H  
    %   Example 1: U&WEe`XM  
    % Kb(11$U  
    %       % Display the Zernike function Z(n=5,m=1) b*?u+tWP_  
    %       x = -1:0.01:1; =D$ED^W  
    %       [X,Y] = meshgrid(x,x); t([}a ~1}  
    %       [theta,r] = cart2pol(X,Y); !-7n69:G  
    %       idx = r<=1; @p*)^D6E\  
    %       z = nan(size(X)); Zw9;g+9  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); * $f`ouJl  
    %       figure lcZ.}   
    %       pcolor(x,x,z), shading interp I2*rtVAP'j  
    %       axis square, colorbar &t9 V  
    %       title('Zernike function Z_5^1(r,\theta)') yV8J-YdsG  
    % RN(I}]]a  
    %   Example 2: _aPAn|.  
    % ;`#R9\C=h  
    %       % Display the first 10 Zernike functions A! bG2{r  
    %       x = -1:0.01:1; /dYv@OU?  
    %       [X,Y] = meshgrid(x,x); VdK%m`;2  
    %       [theta,r] = cart2pol(X,Y); 3>1^$0iq  
    %       idx = r<=1; W\kli';jyC  
    %       z = nan(size(X)); kh0cJE\_^  
    %       n = [0  1  1  2  2  2  3  3  3  3]; EB*sd S  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; f zo'9  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; Os"('@jd>  
    %       y = zernfun(n,m,r(idx),theta(idx)); ^-Od*DTL  
    %       figure('Units','normalized') r+FEgSDa]  
    %       for k = 1:10 [HQ)4xG  
    %           z(idx) = y(:,k); 3{3@>8{w  
    %           subplot(4,7,Nplot(k)) w95M B*N  
    %           pcolor(x,x,z), shading interp }'x;J   
    %           set(gca,'XTick',[],'YTick',[]) \2s`mCY  
    %           axis square _Ub `\ytx  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) hN'])[+V  
    %       end pIlEoG=[_  
    % (P)G|2=  
    %   See also ZERNPOL, ZERNFUN2. .ImaM  
    5X!-Hj  
    %   Paul Fricker 11/13/2006 _!',%  +  
    -)}s{[]d6m  
    nzflUR{`-  
    % Check and prepare the inputs: )Zr9 `3[  
    % ----------------------------- '}_r/l]K  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) -x//@8"   
        error('zernfun:NMvectors','N and M must be vectors.') }sXTZX  
    end 1]7gYNzV"  
    _B^zm-}8|B  
    if length(n)~=length(m) n"EKVw7Y  
        error('zernfun:NMlength','N and M must be the same length.') $6"(t=%{  
    end F^O83[S  
    ~gfR1SE  
    n = n(:); qE~_}4\Z9  
    m = m(:); hN-@_XSw<I  
    if any(mod(n-m,2)) hk~/W}sI  
        error('zernfun:NMmultiplesof2', ... )Z/"P\qo  
              'All N and M must differ by multiples of 2 (including 0).') "bo0O7InOV  
    end P"w\hF  
    Rg?6eN  
    if any(m>n) Z4] n<~o  
        error('zernfun:MlessthanN', ... P3_.U8g$r  
              'Each M must be less than or equal to its corresponding N.') <sH}X$/  
    end \Rny*px  
    L80(9Y^xn  
    if any( r>1 | r<0 ) ?"d$SK"6Z  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') fW-C`x  
    end t7+A !7b{  
    q\Y4vWg  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) z]G|)16  
        error('zernfun:RTHvector','R and THETA must be vectors.') kU<t~+  
    end iEvQ4S6tD  
    tq3_az ~1  
    r = r(:); V_+&Y$msi~  
    theta = theta(:); ^dQ{vL@9b9  
    length_r = length(r); 4V,.Oi  
    if length_r~=length(theta) .Nn11F< d  
        error('zernfun:RTHlength', ... 4yl{:!la  
              'The number of R- and THETA-values must be equal.') ffrIi',@  
    end _[2@2q0  
    ":Wq<Z'  
    % Check normalization: bNea5u##  
    % -------------------- Y?0/f[Ax,y  
    if nargin==5 && ischar(nflag) JVE\{ e)  
        isnorm = strcmpi(nflag,'norm'); GShxPH{_j  
        if ~isnorm j_Szw w-  
            error('zernfun:normalization','Unrecognized normalization flag.') %**f`L%jN  
        end P-@MLIC{  
    else [^5\Ww  
        isnorm = false; = S&`~+  
    end j6rNt|  
    6}4})B2  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% QU).q65p  
    % Compute the Zernike Polynomials 4qQ,1&!]S  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% P49\A^5S!  
    3A7774n=P  
    % Determine the required powers of r: :L[>!~YG_n  
    % ----------------------------------- D|;O9iks#  
    m_abs = abs(m); r"7n2   
    rpowers = []; #.Rn6|V/4  
    for j = 1:length(n) sXIYl% d  
        rpowers = [rpowers m_abs(j):2:n(j)]; </h^%mnd  
    end V>{< pS  
    rpowers = unique(rpowers); h@:K=gg K  
    8H!QekQZ]\  
    % Pre-compute the values of r raised to the required powers, 9j,g&G.K  
    % and compile them in a matrix: z|l*5@p  
    % ----------------------------- Ni,nQ;9  
    if rpowers(1)==0 c`a(  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); R@vcS=m7  
        rpowern = cat(2,rpowern{:}); %Sr+D{B  
        rpowern = [ones(length_r,1) rpowern]; V`V\/s gj  
    else Z~5) )5Ye;  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); tdy2ZPVtTV  
        rpowern = cat(2,rpowern{:}); *IG$"nu  
    end ?e7]U*jEU  
    ^t;z;.g  
    % Compute the values of the polynomials: r~4uIUE{  
    % -------------------------------------- J$dwy$n  
    y = zeros(length_r,length(n)); IrLGAQ0  
    for j = 1:length(n) rwm^{Qa  
        s = 0:(n(j)-m_abs(j))/2; C-'hXh;hQ  
        pows = n(j):-2:m_abs(j); }lJ;|kx$  
        for k = length(s):-1:1 }cKB)N BJb  
            p = (1-2*mod(s(k),2))* ... ?^}30V:E  
                       prod(2:(n(j)-s(k)))/              ... U.%Kt,qB  
                       prod(2:s(k))/                     ... {z#2gc'Q  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... rqdwQ  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); o2 14V\  
            idx = (pows(k)==rpowers); |c_qq Bd  
            y(:,j) = y(:,j) + p*rpowern(:,idx); V~J5x >O  
        end K =g</@L6R  
         ()3\(d5e  
        if isnorm x%{]'z  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); (\V i _  
        end bOS)vt*V  
    end c0!.ei  
    % END: Compute the Zernike Polynomials op,L3:R\Z  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% M>8J_{r^  
    M6Fo.eeK3  
    % Compute the Zernike functions: em$pU*`P  
    % ------------------------------ 7R+(3NU1A  
    idx_pos = m>0; -%K!Ra\W  
    idx_neg = m<0; g?C;b>4  
    AOf4y&B>q  
    z = y; VFHd2Ea(  
    if any(idx_pos) 39pG-otJ  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); *{o7G  a  
    end SC{m@  
    if any(idx_neg) hlTbCl  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 6_LeP9s )  
    end e|~MJu+1  
    +n3I\7G>  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) }\pI`;*O|  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. ON?Y Df  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated 4#U}bN  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive a"8[,A3  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, >.h:Y5  
    %   and THETA is a vector of angles.  R and THETA must have the same S{Y zHK  
    %   length.  The output Z is a matrix with one column for every P-value, )Q)qz$h@  
    %   and one row for every (R,THETA) pair. ~j0rORy]  
    % v gN!9  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike DE?v'7cmA  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) So:X!ljN(e  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) bOY;IB _  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 ^;C&  
    %   for all p. Jh[0xb  
    % lame/B&nc  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 U"oNJ8&%|  
    %   Zernike functions (order N<=7).  In some disciplines it is @hLkU4S  
    %   traditional to label the first 36 functions using a single mode YJi%vQ*]  
    %   number P instead of separate numbers for the order N and azimuthal ]rcF/uQJ<n  
    %   frequency M. qnm_#!&uHT  
    % JAbUK[:K  
    %   Example: ,d G.67  
    % 1MelHW  
    %       % Display the first 16 Zernike functions UHBXq;?&q  
    %       x = -1:0.01:1; pO]gf$  
    %       [X,Y] = meshgrid(x,x); ^aFm6HS1  
    %       [theta,r] = cart2pol(X,Y); {.Tx70kn  
    %       idx = r<=1; :yay:3qv  
    %       p = 0:15; Sb.8d]DW  
    %       z = nan(size(X)); .UyE|t4  
    %       y = zernfun2(p,r(idx),theta(idx)); V0ze7tSG[f  
    %       figure('Units','normalized') oy+|:[v:Fk  
    %       for k = 1:length(p) I[z:;4W}L^  
    %           z(idx) = y(:,k); !iXRt")  
    %           subplot(4,4,k) 3f;=#|l  
    %           pcolor(x,x,z), shading interp 3;nOm =I  
    %           set(gca,'XTick',[],'YTick',[]) -@TY8#O#-  
    %           axis square jW/WG tz  
    %           title(['Z_{' num2str(p(k)) '}']) UK`A:N2[  
    %       end +`y(S}Z  
    % 1/_g36\l$  
    %   See also ZERNPOL, ZERNFUN. H DVimoOq  
    8tvmqe_G  
    %   Paul Fricker 11/13/2006 QV4|f[Ki%  
    ?vXgHDs^T  
    _0/unJl`  
    % Check and prepare the inputs: PK*Wu<<  
    % ----------------------------- q*!R4yE;C  
    if min(size(p))~=1 6Z\aJ  
        error('zernfun2:Pvector','Input P must be vector.') ,5DJ54B!  
    end 4WT[(  
    uo F.f$%"  
    if any(p)>35 pP<8zTLn  
        error('zernfun2:P36', ... %L|fTndKH  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... T^bA O-d#  
               '(P = 0 to 35).']) =bKDD <(  
    end 'K[ml ?_  
    n. %QWhUB  
    % Get the order and frequency corresonding to the function number: 7*:zN  
    % ---------------------------------------------------------------- AGhenDN V  
    p = p(:); 7vRtTP  
    n = ceil((-3+sqrt(9+8*p))/2); ]>3Y~KH(  
    m = 2*p - n.*(n+2); kUT2/3Vi  
    blc?[ [,!  
    % Pass the inputs to the function ZERNFUN: Xr*I`BJ  
    % ---------------------------------------- MBLZ:A| C  
    switch nargin W"{Ggk `  
        case 3 Pk?$\  
            z = zernfun(n,m,r,theta); 9#8vPjXW}.  
        case 4 S zo'[/ [R  
            z = zernfun(n,m,r,theta,nflag); m$0W^u  
        otherwise a`O'ZY  
            error('zernfun2:nargin','Incorrect number of inputs.') U)}]Z@I-  
    end GT{4L]C  
    wO??"${OH  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) $]7f1U_e  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. Tigw+2  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of tE*BZXBlm  
    %   order N and frequency M, evaluated at R.  N is a vector of ax@H^Gj@2  
    %   positive integers (including 0), and M is a vector with the X[Y0r  
    %   same number of elements as N.  Each element k of M must be a ]n^iG7aB?  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) 5F kdGF  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is `46~j  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix BabaKSm}LP  
    %   with one column for every (N,M) pair, and one row for every KEAXDF&#  
    %   element in R. $8^Hk xy  
    % {}$9 70y  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- `_/bg(E  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is :s aP :&  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to *'@O o  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 fA=Z):w  
    %   for all [n,m]. <Iw{fj|  
    % (/y8KG 3  
    %   The radial Zernike polynomials are the radial portion of the x $uhkP  
    %   Zernike functions, which are an orthogonal basis on the unit HxI6_>n^I  
    %   circle.  The series representation of the radial Zernike _i_='dsyW/  
    %   polynomials is Ft5A(P >  
    % @SX%q&-  
    %          (n-m)/2 ki1(b]rf  
    %            __ \`Hp/D1  
    %    m      \       s                                          n-2s c^}G=Z1@  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r \Vc[/Qp7Bb  
    %    n      s=0 c5]Xqq,  
    % ?Y"%BS+pt  
    %   The following table shows the first 12 polynomials. 0C4eer+D  
    % uq5?t  
    %       n    m    Zernike polynomial    Normalization $;v! ,>  
    %       --------------------------------------------- n%E,[JT  
    %       0    0    1                        sqrt(2) (MGg r  
    %       1    1    r                           2 <G pji5f2  
    %       2    0    2*r^2 - 1                sqrt(6) ~ l}f@@u  
    %       2    2    r^2                      sqrt(6) ? AfThJc  
    %       3    1    3*r^3 - 2*r              sqrt(8) s8-RXEPb  
    %       3    3    r^3                      sqrt(8) o3 0C\  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) Q68~D.V%r  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) M9)4ihK  
    %       4    4    r^4                      sqrt(10) i{$-[*WHiV  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) V?XQjH1X  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) cSL6V2F  
    %       5    5    r^5                      sqrt(12) S:1[CNL;  
    %       --------------------------------------------- sx?IIFF  
    % 0zW*JJxV  
    %   Example: [,;Y5#Y[5  
    % !MoAga_ j  
    %       % Display three example Zernike radial polynomials k>&cHCS`*  
    %       r = 0:0.01:1; _E '?U  
    %       n = [3 2 5]; ns~]a:1yh  
    %       m = [1 2 1]; t/ \S9  
    %       z = zernpol(n,m,r); z;JV3) E  
    %       figure $J1`.Q>)4  
    %       plot(r,z) ~ z^?+MgZ2  
    %       grid on )kep:-wm  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') j]Gn\QF  
    % b<FE   
    %   See also ZERNFUN, ZERNFUN2. O Z ./suR)  
     Bx45yaT  
    % A note on the algorithm. !Yof%%m$;  
    % ------------------------ nDn J}`k  
    % The radial Zernike polynomials are computed using the series kk fWiPO^  
    % representation shown in the Help section above. For many special ;nSF\X(;{  
    % functions, direct evaluation using the series representation can XFWpHe_ L  
    % produce poor numerical results (floating point errors), because T0 K!Msz  
    % the summation often involves computing small differences between E2DfG^sGV  
    % large successive terms in the series. (In such cases, the functions !!\}-r^y%  
    % are often evaluated using alternative methods such as recurrence ]i {yJ)i  
    % relations: see the Legendre functions, for example). For the Zernike sVx}(J  
    % polynomials, however, this problem does not arise, because the =p+n(C/  
    % polynomials are evaluated over the finite domain r = (0,1), and AM+5_'S,  
    % because the coefficients for a given polynomial are generally all dWz?`B{'  
    % of similar magnitude. O9daeIF0#  
    % 3ijPm<wn  
    % ZERNPOL has been written using a vectorized implementation: multiple Vh~hfj"  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] R-%6v2;ry  
    % values can be passed as inputs) for a vector of points R.  To achieve :#:|:q.]  
    % this vectorization most efficiently, the algorithm in ZERNPOL 0?54 8yH  
    % involves pre-determining all the powers p of R that are required to (MLcA\LJ  
    % compute the outputs, and then compiling the {R^p} into a single }y6)d.  
    % matrix.  This avoids any redundant computation of the R^p, and z~Q=OPCnY  
    % minimizes the sizes of certain intermediate variables. oU|G74e6  
    % W>#yXg9  
    %   Paul Fricker 11/13/2006 0+SDFh  
    \3hA_{ w  
    Qvp"gut)%X  
    % Check and prepare the inputs: Q:b0M11QR  
    % ----------------------------- ??F* Z" x  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) :)1"yo\  
        error('zernpol:NMvectors','N and M must be vectors.') &nIu^,.  
    end vRe{B7}p;  
    o 2 ng  
    if length(n)~=length(m) ZWkRoJXNi  
        error('zernpol:NMlength','N and M must be the same length.') k6CXuU  
    end k[@P526  
    1<ag=D`F_"  
    n = n(:); JP8}+  
    m = m(:); >!Yuef <P  
    length_n = length(n); ET.jjV  
    t@!n?j I  
    if any(mod(n-m,2)) JmCMFq B9  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') {R_>KE1  
    end m(8Tup|  
    1Ms]\<^j  
    if any(m<0) J+/}m}bx  
        error('zernpol:Mpositive','All M must be positive.') G(t:s5:  
    end f\_RW;y|m  
    .D W>c}1  
    if any(m>n) LO=U?`)q  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') FMdu30JV  
    end ? Ek)" l  
    6U{A6hH]  
    if any( r>1 | r<0 ) `#$}P;W  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') dk&e EDvfd  
    end k|-\[Yl.  
    #Ha:O,|  
    if ~any(size(r)==1) 7I;kh`H$(f  
        error('zernpol:Rvector','R must be a vector.') 8n3]AOc'~-  
    end NifQsy)*%  
    [[|#}D:L  
    r = r(:); I/7!5Z*  
    length_r = length(r); G[KjK$.Ts?  
    2u$-(JfoS  
    if nargin==4 rxyv+@~Nc  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); |<Ls;:5.  
        if ~isnorm zA5nr`  
            error('zernpol:normalization','Unrecognized normalization flag.') a/ A c^!(  
        end |O(>{GH  
    else :{a< ~n`  
        isnorm = false; pX%:XpC!h  
    end gBqDx|G  
    uZ?P{E,K  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ZN8j})lE  
    % Compute the Zernike Polynomials jZ.yt+9  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% dgP e H8_  
    AQZ<,TE0,  
    % Determine the required powers of r: vgeqH[:  
    % ----------------------------------- 5t:Zp\$+`  
    rpowers = []; 7.29'  
    for j = 1:length(n) jC&fnt,O  
        rpowers = [rpowers m(j):2:n(j)]; dWn6-es  
    end yv-R<c!'  
    rpowers = unique(rpowers); uq3pk3 )W9  
    k>ErD v8  
    % Pre-compute the values of r raised to the required powers, O1v)*&NAI  
    % and compile them in a matrix: .,u>WIUxj  
    % ----------------------------- [~N;d9H+*1  
    if rpowers(1)==0 htB7 j(  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); )|*Qs${tF  
        rpowern = cat(2,rpowern{:}); VgbNZ{qk@  
        rpowern = [ones(length_r,1) rpowern]; Pk;w.)kT  
    else x;[ .ZzQ  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ZuGSRGX'  
        rpowern = cat(2,rpowern{:}); cH&)Iz`f  
    end CmB_g?K  
    Q# hRnM  
    % Compute the values of the polynomials: _&l8^MD  
    % -------------------------------------- 0~U0s3  
    z = zeros(length_r,length_n); Z 7@'I0;A  
    for j = 1:length_n xVPSL#>  
        s = 0:(n(j)-m(j))/2; xCZ_x$bk  
        pows = n(j):-2:m(j); 44e]sT.B  
        for k = length(s):-1:1 2E40&  
            p = (1-2*mod(s(k),2))* ... W5u5!L/  
                       prod(2:(n(j)-s(k)))/          ... 'bx}[  
                       prod(2:s(k))/                 ... e]1=&:eX#d  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... ]\yB,  
                       prod(2:((n(j)+m(j))/2-s(k))); HwFg;r  
            idx = (pows(k)==rpowers); PzPNvV/o  
            z(:,j) = z(:,j) + p*rpowern(:,idx); br=e+]C Y)  
        end i6paNHi*  
         ]-t )wGr  
        if isnorm uUfw"*D  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); <~m qb=qA$  
        end %R$)bGT  
    end l-w4E"n3  
    E6GubU  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  b!37:V\#}  
    q33!X!br  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 ;rta#pRn  
    \;tKss!|  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)