非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 /s-A?lw^2
function z = zernfun(n,m,r,theta,nflag) #U*_1P0h
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. PG8^.)]M
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N =1P6Vk
% and angular frequency M, evaluated at positions (R,THETA) on the 6Z`R#d #I
% unit circle. N is a vector of positive integers (including 0), and y$3;$ R^
% M is a vector with the same number of elements as N. Each element .`7cBsXH
% k of M must be a positive integer, with possible values M(k) = -N(k) ,ZQZ}`x(
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, 0QvT
% and THETA is a vector of angles. R and THETA must have the same 0W3i()
% length. The output Z is a matrix with one column for every (N,M) i 9g>9
% pair, and one row for every (R,THETA) pair. 4QIE8f
Y
% >Bs#Xb_B]
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike R/^u/~<
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), pGSai&
% with delta(m,0) the Kronecker delta, is chosen so that the integral 49d@!
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, |A%<Z(
% and theta=0 to theta=2*pi) is unity. For the non-normalized }gkM^*$:%
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. \`, [)`
% vsL[*OeI
% The Zernike functions are an orthogonal basis on the unit circle. wBQF~WY
% They are used in disciplines such as astronomy, optics, and &QG6!`fK}3
% optometry to describe functions on a circular domain. q %0Cg=
% G60R9y47c
% The following table lists the first 15 Zernike functions. Iyd?|f"
% '+
xu#R
% n m Zernike function Normalization
t8+_/BXv
% -------------------------------------------------- ,-+"^>
% 0 0 1 1 OEPa|rb
% 1 1 r * cos(theta) 2 `xiCm':
% 1 -1 r * sin(theta) 2 GabYfUkO
% 2 -2 r^2 * cos(2*theta) sqrt(6) PyA&ZkX>
% 2 0 (2*r^2 - 1) sqrt(3) (~$/$%b
% 2 2 r^2 * sin(2*theta) sqrt(6) q~L^au8
% 3 -3 r^3 * cos(3*theta) sqrt(8) aF|d^
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) <xJ/y|{
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) v+e|o:o#
% 3 3 r^3 * sin(3*theta) sqrt(8) dq IlD!
% 4 -4 r^4 * cos(4*theta) sqrt(10) eUl/o1~mXa
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) n6(i`{i
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) x f4{r+
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) kAM1TWbaVQ
% 4 4 r^4 * sin(4*theta) sqrt(10) DMF
-Y-h
% -------------------------------------------------- 9s}Kl($
% |0{u->+ )
% Example 1: {k5X*W
% XhdSFxW}
% % Display the Zernike function Z(n=5,m=1) :K?0e`
% x = -1:0.01:1; +,50qN:%[
% [X,Y] = meshgrid(x,x); `.#@@5e
% [theta,r] = cart2pol(X,Y); ds[QwcV9-
% idx = r<=1; .Hc(y7HV
% z = nan(size(X)); hh~n#7w~IR
% z(idx) = zernfun(5,1,r(idx),theta(idx)); O+=vEp(
% figure H0a/(4/xg
% pcolor(x,x,z), shading interp i)Lp7m z
% axis square, colorbar O[9-:,B{w
% title('Zernike function Z_5^1(r,\theta)') :Vg}V"QR
% x90jw$\%7
% Example 2: uhV0J97
% )'Wb&A'
% % Display the first 10 Zernike functions ==/n(LBD
% x = -1:0.01:1; <Fs-3(V+\
% [X,Y] = meshgrid(x,x); 9kKnAf4Z
% [theta,r] = cart2pol(X,Y); ni
% idx = r<=1; IMQ]1uq0$
% z = nan(size(X)); [oc~iDx%W
% n = [0 1 1 2 2 2 3 3 3 3]; `\<37E\N}
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; Je4Z(kj 0
% Nplot = [4 10 12 16 18 20 22 24 26 28]; gM>=%/.
% y = zernfun(n,m,r(idx),theta(idx)); v&g0ta@
% figure('Units','normalized') 'mdM q=VI
% for k = 1:10 'f/Lv@]a
% z(idx) = y(:,k); ql5x2n
% subplot(4,7,Nplot(k)) W[NEe,.>
% pcolor(x,x,z), shading interp ?IX!+>.H
% set(gca,'XTick',[],'YTick',[]) ZX
b}91rzt
% axis square R*1kR|*_)
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) j1Yq5`ia
% end ,]Zp+>{
% Aox3s?
% See also ZERNPOL, ZERNFUN2. y?30_#[dN
,/&Zw01dGN
% Paul Fricker 11/13/2006 :^C'<SY2Gs
,6<"
h5|.Et
% Check and prepare the inputs: -%IcYzyA
% ----------------------------- kvsA]tK.
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) FM^9}*
error('zernfun:NMvectors','N and M must be vectors.') Gie@JX
end Y9 r3XhVI
$2z
_{@Z
if length(n)~=length(m) ~3WL)%
error('zernfun:NMlength','N and M must be the same length.') ED![^=
end NWmtwS+@
*QE<zt
n = n(:); yno(' 1B@
m = m(:); <o:@dS
if any(mod(n-m,2)) 9w;?-
error('zernfun:NMmultiplesof2', ... TbE:||r?^
'All N and M must differ by multiples of 2 (including 0).') dc 0@Y
end H!IDV}dn
d<o.o?Vc
if any(m>n) f1{z~i9@$
error('zernfun:MlessthanN', ... nl/UdgI
'Each M must be less than or equal to its corresponding N.') Yq'4e[i
end s<T?pH
h.tY 'F
if any( r>1 | r<0 ) 5K56!*Y
error('zernfun:Rlessthan1','All R must be between 0 and 1.') #]KgUc5B
end p5]_}I`+2
eE:&qy^
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) e (\I_
error('zernfun:RTHvector','R and THETA must be vectors.') ;q#]-^
end V+B71\x<
b^V'BC3
r = r(:); "-i#BjZl/
theta = theta(:); %l9$a`&
length_r = length(r); A[/I#Im7
if length_r~=length(theta) p6 xPheD
error('zernfun:RTHlength', ... EZr6oO@Nc
'The number of R- and THETA-values must be equal.') Z>A{i?#m
end 2:v <qX
|KG&HNfP-
% Check normalization: y8s=\`~PR
% -------------------- LPE)
if nargin==5 && ischar(nflag) iQ`]ms+
isnorm = strcmpi(nflag,'norm'); k
'zat3#f
if ~isnorm a5wDm
error('zernfun:normalization','Unrecognized normalization flag.') !sIwFv)
end ;El <%{(
else +g\;bLT
isnorm = false; OeTu?d&N
end h
W.2p+
Gbb\h
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% VWvoQf^+
% Compute the Zernike Polynomials LdWc
X`K
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% F1u)i
5:gj&jt;)7
% Determine the required powers of r: P W[6/7
% ----------------------------------- YF[$Q=7.
m_abs = abs(m); !$kR ;Q"/
rpowers = []; R^{xwI
for j = 1:length(n) dtW0\^ .L
rpowers = [rpowers m_abs(j):2:n(j)]; ToU.mM?f^
end ~iTxv_\=6u
rpowers = unique(rpowers); F'BdQk3o
:EB,{|m
% Pre-compute the values of r raised to the required powers, )/%S=c
% and compile them in a matrix: ~mA7pOHj
% ----------------------------- do'ORcZ
if rpowers(1)==0 s-6:N9-
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); k^*$^;z
rpowern = cat(2,rpowern{:}); YBylyVZ
rpowern = [ones(length_r,1) rpowern]; {%7<"
else _t.FL@3e
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); A'g,:8Ou
rpowern = cat(2,rpowern{:}); SfDQ;1?
end OOLe[P3J3
5bfb!7-[i
% Compute the values of the polynomials: nEVbfNo0
% -------------------------------------- 84Zgo=P}
y = zeros(length_r,length(n)); uC[d% v`
for j = 1:length(n) /co%:}ln
s = 0:(n(j)-m_abs(j))/2; )>$^wT
pows = n(j):-2:m_abs(j); d pn3 (
for k = length(s):-1:1 `vEqj v
p = (1-2*mod(s(k),2))* ... H ja^edLj
prod(2:(n(j)-s(k)))/ ... !aeNq82
prod(2:s(k))/ ... j |td,82.
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... B/_6Ieb+
prod(2:((n(j)+m_abs(j))/2-s(k))); C1ZyB"{
idx = (pows(k)==rpowers); b7v dk
y(:,j) = y(:,j) + p*rpowern(:,idx); %BICt @E
end H5p5S\g-)
DPeVKyjU
if isnorm '>]&r