切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11585阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 #>yOp *  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! x|Uwk=;X|s  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 y?cN  
    function z = zernfun(n,m,r,theta,nflag) G9&2s%lu.e  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. XX-(>B0L  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N `JV(ae0  
    %   and angular frequency M, evaluated at positions (R,THETA) on the |t"CH'KJZ  
    %   unit circle.  N is a vector of positive integers (including 0), and w\[l4|g `  
    %   M is a vector with the same number of elements as N.  Each element Sg%s\p]N_#  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) '<,Dz=  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, :}36;n<['  
    %   and THETA is a vector of angles.  R and THETA must have the same ; Ows8  
    %   length.  The output Z is a matrix with one column for every (N,M) {oOUIP  
    %   pair, and one row for every (R,THETA) pair. 1tO96t^d%  
    % 0 NSw^dO\  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike nGX3_-U4  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ;k0Jl0[}  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral m*1  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, *]/iL#  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized l(x0d  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. }>y !I5O  
    % >aVtYp B  
    %   The Zernike functions are an orthogonal basis on the unit circle. " ;Cf@}i>  
    %   They are used in disciplines such as astronomy, optics, and qh W]Wd" g  
    %   optometry to describe functions on a circular domain. ?=)lbSu K  
    % dHAT($QG  
    %   The following table lists the first 15 Zernike functions. H9'psv  
    % Kt qOA[6  
    %       n    m    Zernike function           Normalization zrSYLG  
    %       -------------------------------------------------- 3O 4,LXdA  
    %       0    0    1                                 1 f.j<VKF}  
    %       1    1    r * cos(theta)                    2 yX*$PNL5w  
    %       1   -1    r * sin(theta)                    2 3st?6?7|  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) GwXhn2  
    %       2    0    (2*r^2 - 1)                    sqrt(3) jLn#%Ia}  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) 2Y9u9;ah  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) {d#sZT  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) #: [F=2@,A  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 7MZH'nO  
    %       3    3    r^3 * sin(3*theta)             sqrt(8)  96;5  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) %hmRh~/&  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ]5@n`;&#.  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) $;(@0UDE  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) hMz)l\0  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) QoUdTIIL  
    %       -------------------------------------------------- e*`ht+  
    % PPy~dp  
    %   Example 1: SHSfe{n  
    % *@^@7`W  
    %       % Display the Zernike function Z(n=5,m=1) K0oF=|  
    %       x = -1:0.01:1; 9%SC#V'  
    %       [X,Y] = meshgrid(x,x); 78*8-  
    %       [theta,r] = cart2pol(X,Y); 9D`K#3}  
    %       idx = r<=1; PP\ bDEPy  
    %       z = nan(size(X)); a6xo U;T  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); Yh^8 !  
    %       figure / ~".GZ&29  
    %       pcolor(x,x,z), shading interp :81d~f7  
    %       axis square, colorbar $8(QBZq  
    %       title('Zernike function Z_5^1(r,\theta)') Tc"J(GWG  
    % SmDNN^GR  
    %   Example 2: :_xfi9L~W0  
    % x%k@&d;z  
    %       % Display the first 10 Zernike functions NNr6~m)3v  
    %       x = -1:0.01:1; +w.$"dF!  
    %       [X,Y] = meshgrid(x,x); n8)&1 q?V  
    %       [theta,r] = cart2pol(X,Y); CV=qcD  
    %       idx = r<=1; [aA@V0l  
    %       z = nan(size(X)); F_-xp1|  
    %       n = [0  1  1  2  2  2  3  3  3  3]; m3o -p   
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; oR~d<^z(  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 7BINqVS&  
    %       y = zernfun(n,m,r(idx),theta(idx)); co\Il]`R/  
    %       figure('Units','normalized') N.q*jY= X|  
    %       for k = 1:10 sm Ql^ 6a  
    %           z(idx) = y(:,k); .vy@uT,  
    %           subplot(4,7,Nplot(k)) `9^+KK"  
    %           pcolor(x,x,z), shading interp \1<|X].jNY  
    %           set(gca,'XTick',[],'YTick',[]) WvArppANo  
    %           axis square #Ff8_xhP2  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ?B e}{Qqlg  
    %       end opm_|0  
    % &b^~0Z  
    %   See also ZERNPOL, ZERNFUN2. (K8Ob3zN_  
    )=iv3nF?6N  
    %   Paul Fricker 11/13/2006 ?ZGsh7<k  
    {PxFG<^U  
    k]$oir  
    % Check and prepare the inputs: [[^95:  
    % ----------------------------- ;/Z-|+!IJt  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) FP=27=  
        error('zernfun:NMvectors','N and M must be vectors.') q1eMK'1  
    end e Csk\f`  
    6@8t>"}  
    if length(n)~=length(m) Nb9GrYIS  
        error('zernfun:NMlength','N and M must be the same length.') 1,) yEeHjU  
    end JttDRNZAU  
    Q 318a0  
    n = n(:); V7nOT*N:Q  
    m = m(:); GrJLQO0$N  
    if any(mod(n-m,2)) [|c%<|d2  
        error('zernfun:NMmultiplesof2', ... _iq62[i3^  
              'All N and M must differ by multiples of 2 (including 0).') IaSpF<&Y;  
    end ,>b>I#{  
    ti%RE:*  
    if any(m>n) ihwJBN>(  
        error('zernfun:MlessthanN', ... `?N0?;  
              'Each M must be less than or equal to its corresponding N.') dTK0lgkUE  
    end &*7KQd  
    z#o''  
    if any( r>1 | r<0 ) M$Z2"F;  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') @j}%{Km]Y  
    end X|Y(*$?D7  
    ^5Lk}<utw  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) hPNMp@Nm6  
        error('zernfun:RTHvector','R and THETA must be vectors.') I-r+1gty  
    end ~I+MuI[  
    [H <TcT8  
    r = r(:); rqmb<# Z  
    theta = theta(:); r)}U 'iv*%  
    length_r = length(r); 4%ooJi|)  
    if length_r~=length(theta) D%yY&q;  
        error('zernfun:RTHlength', ... u)<s*jk  
              'The number of R- and THETA-values must be equal.') jci,]*X4  
    end 9>9EZ?4m  
    `wtso  
    % Check normalization: 1] ~w?)..'  
    % -------------------- 3rKJ<(-2/  
    if nargin==5 && ischar(nflag) J,CwC)  
        isnorm = strcmpi(nflag,'norm'); q {Z#}|km#  
        if ~isnorm &LAXNk2  
            error('zernfun:normalization','Unrecognized normalization flag.') / 'qoKof  
        end -%yrs6  
    else -g2l-N{&  
        isnorm = false; Is7BJ f  
    end I6f/+;E  
    .nrllVG%`  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0(eaVi-%D  
    % Compute the Zernike Polynomials esnq/  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% PZusYeV8b  
    [TFJb+N&  
    % Determine the required powers of r: (n*:LS=0  
    % ----------------------------------- s||" } l  
    m_abs = abs(m); .M^[/!  
    rpowers = []; s4"Os gP+  
    for j = 1:length(n) PT6]qS'1  
        rpowers = [rpowers m_abs(j):2:n(j)]; <R /\nYXz  
    end kUgfFa#_  
    rpowers = unique(rpowers); Y!CUUWM  
    m<-ShRr*b  
    % Pre-compute the values of r raised to the required powers, =,(TP  
    % and compile them in a matrix: ~x9 ]?T  
    % ----------------------------- }<0N)dpT  
    if rpowers(1)==0 )e,O+w"  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ]h,rgO ;  
        rpowern = cat(2,rpowern{:}); D:_W;b)  
        rpowern = [ones(length_r,1) rpowern]; w]0@V}}u$o  
    else V9<`?[Usv  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 3O/#^~\'hW  
        rpowern = cat(2,rpowern{:}); 'f-r 6'_ZX  
    end Fye>H6MU  
    _VK I@   
    % Compute the values of the polynomials: xmvE*q"9]  
    % -------------------------------------- <:}nd:l1  
    y = zeros(length_r,length(n)); IFp%T a  
    for j = 1:length(n) X@\W* nq  
        s = 0:(n(j)-m_abs(j))/2;  -BSdrP|  
        pows = n(j):-2:m_abs(j); Cf2WBX$  
        for k = length(s):-1:1 4KM-$h,4O  
            p = (1-2*mod(s(k),2))* ... (aa2uctTn  
                       prod(2:(n(j)-s(k)))/              ... L"m^LyU  
                       prod(2:s(k))/                     ... A I.(}W4]  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... "=djo+y  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); sE pI)9  
            idx = (pows(k)==rpowers); }4A] x`3  
            y(:,j) = y(:,j) + p*rpowern(:,idx); RRIh;HhX  
        end 7 $e6H|j@  
         $eYL|?P50h  
        if isnorm Qq<@;4  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Q\N*)&Sd<M  
        end ITn%  
    end UZyg_G6  
    % END: Compute the Zernike Polynomials 6c-/D.M  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 4E39]vb  
    `x[Is$  
    % Compute the Zernike functions: & o5x  
    % ------------------------------ ;Bs~E  
    idx_pos = m>0; >rCD5#DG  
    idx_neg = m<0; _=Gj J~2n  
    1!<t8,W4  
    z = y; r/j:A#6M]o  
    if any(idx_pos) =yf) Z^  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); dHc\M|HCC  
    end v'W{+>.  
    if any(idx_neg) C^J<qq &  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Jka>Er  
    end heVk CM :  
    y{%0[x*N<m  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) 3UZd_?JI[^  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. K*/oWYM]  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated FK _ ZE>  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive x4MmBVqp  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, 4t, 2H"M  
    %   and THETA is a vector of angles.  R and THETA must have the same *uc/| c  
    %   length.  The output Z is a matrix with one column for every P-value,  /8x';hQ  
    %   and one row for every (R,THETA) pair. 2 XP }:e  
    % g#5R|| r  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike 4p:d#,?r  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) PkvW6,lS  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) 7v5]% %E/  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 my (@~'  
    %   for all p. K10G+'H^  
    % 7Ak<e tHD  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 (RddR{mX  
    %   Zernike functions (order N<=7).  In some disciplines it is cQ8[XNa  
    %   traditional to label the first 36 functions using a single mode # T=iS(i  
    %   number P instead of separate numbers for the order N and azimuthal )~ ( *q  
    %   frequency M. /ZvP.VW&  
    % 586P~C[ic  
    %   Example: Qg4D*r\|@  
    % W/Dd7 G#IC  
    %       % Display the first 16 Zernike functions GG%b"d-  
    %       x = -1:0.01:1; J"`VA_[  
    %       [X,Y] = meshgrid(x,x);  Rb6BY-/J  
    %       [theta,r] = cart2pol(X,Y); ={g)[:(C.  
    %       idx = r<=1; >mb}~wx`  
    %       p = 0:15; UB$}`39@  
    %       z = nan(size(X)); @j!,8JQEd  
    %       y = zernfun2(p,r(idx),theta(idx)); Y%KowgP\  
    %       figure('Units','normalized') `Fd \dn  
    %       for k = 1:length(p) 8 v/H;65  
    %           z(idx) = y(:,k); B)0/kY7c  
    %           subplot(4,4,k) 'S`l[L:.8  
    %           pcolor(x,x,z), shading interp ^ZwZze:2  
    %           set(gca,'XTick',[],'YTick',[]) 5YY5t^T  
    %           axis square sxNf"C=-.  
    %           title(['Z_{' num2str(p(k)) '}']) Y2`sL,'h  
    %       end _.5{vGyxr  
    % KF%BX ~80C  
    %   See also ZERNPOL, ZERNFUN. jPWONz(#  
    %3z[;&*3O  
    %   Paul Fricker 11/13/2006 DbMVbgz<e  
    [\8rh^LFi  
    dbf<k%i6  
    % Check and prepare the inputs: (xfc_h*xA  
    % ----------------------------- ]LvP)0=  
    if min(size(p))~=1 6.@.k  
        error('zernfun2:Pvector','Input P must be vector.') =o#Z?Bn5  
    end E7X6RB b  
    cYSn   
    if any(p)>35 F2N"aQ&  
        error('zernfun2:P36', ... 'O<b'}-A  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... MBWoPK  
               '(P = 0 to 35).']) TU|#Pz7n-Z  
    end S?688  
    8eXe b|?J  
    % Get the order and frequency corresonding to the function number: lC5zqyG  
    % ---------------------------------------------------------------- Z(MZbzY7Hq  
    p = p(:); R"cQyG4  
    n = ceil((-3+sqrt(9+8*p))/2); ufXWK3~\  
    m = 2*p - n.*(n+2); 6#z8 %k aX  
    yYz{*hq  
    % Pass the inputs to the function ZERNFUN: g[} L ?  
    % ---------------------------------------- GfONm6A  
    switch nargin a 0SZw  
        case 3 wd`p>  
            z = zernfun(n,m,r,theta); EQyX!  
        case 4 oCT,v0+4O  
            z = zernfun(n,m,r,theta,nflag); a6 Vfd&  
        otherwise |4+'YgO  
            error('zernfun2:nargin','Incorrect number of inputs.') 7Z>vQf B  
    end >Na.C(DZ  
    7$*E0  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) c/$].VG0  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. kqB# 9  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of ?NA $<0  
    %   order N and frequency M, evaluated at R.  N is a vector of ULK] ' Rn  
    %   positive integers (including 0), and M is a vector with the > TYDkEs0  
    %   same number of elements as N.  Each element k of M must be a (BY 0b%^  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) GvtK=A$b  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is ;!f='QuA  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix 4q .;\n  
    %   with one column for every (N,M) pair, and one row for every JV_`E_!  
    %   element in R. HS |Gz3~  
    % #?)6^uTW  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- G@P;#l`(D  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is y A5h^I  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to & %/p; ::A  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 n[>hJ6  
    %   for all [n,m]. QPm[4Fd{G  
    % I'xc$f_+  
    %   The radial Zernike polynomials are the radial portion of the [pU(z'caS  
    %   Zernike functions, which are an orthogonal basis on the unit 4D&L]eJ  
    %   circle.  The series representation of the radial Zernike ;?u cC@  
    %   polynomials is y],op G6  
    % 6wpW!SWD  
    %          (n-m)/2 )q{qWobS0  
    %            __ 8(`e\)%l0  
    %    m      \       s                                          n-2s >r`O@`^U  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r ]#NfH-T  
    %    n      s=0 UXji$|ET6  
    % 6"iNh)  
    %   The following table shows the first 12 polynomials. C9+rrc@4  
    % z uNm !$  
    %       n    m    Zernike polynomial    Normalization ~Bl,_?CBr  
    %       --------------------------------------------- cq>J]35  
    %       0    0    1                        sqrt(2) wfO -bzdw  
    %       1    1    r                           2 OGcdv{ ,P  
    %       2    0    2*r^2 - 1                sqrt(6) -`8@  
    %       2    2    r^2                      sqrt(6) z wUC L  
    %       3    1    3*r^3 - 2*r              sqrt(8) g5U,   
    %       3    3    r^3                      sqrt(8) Q>Ct]JW&  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) dWzf C@]  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) XR",.3LD  
    %       4    4    r^4                      sqrt(10) X.{xH D&_  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) OybmyGHY  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) B^9C}QB  
    %       5    5    r^5                      sqrt(12) +76'(@(1Y  
    %       --------------------------------------------- 'T^MaLK  
    % F3V:B.C  
    %   Example: xJw" 8V<  
    % a;dWM(;Kw  
    %       % Display three example Zernike radial polynomials .WSn Y71  
    %       r = 0:0.01:1; W/A@qo"  
    %       n = [3 2 5]; < e3] pM  
    %       m = [1 2 1]; g@x72$j  
    %       z = zernpol(n,m,r); n7i~^nf>  
    %       figure q5Zu'-Cx@  
    %       plot(r,z) ()j)}F#Z`  
    %       grid on ts&\JbL  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') &LI q?  
    % 47Vt8oyh%  
    %   See also ZERNFUN, ZERNFUN2. Ng<ic  
    8\E=p+C  
    % A note on the algorithm. !^Ay !  
    % ------------------------ `hY%HzV=  
    % The radial Zernike polynomials are computed using the series D(Z#um8n  
    % representation shown in the Help section above. For many special DNj<:Pdd)  
    % functions, direct evaluation using the series representation can CD`6R.  
    % produce poor numerical results (floating point errors), because g_ep 5#\D  
    % the summation often involves computing small differences between N6kMl  
    % large successive terms in the series. (In such cases, the functions d$ o m\@  
    % are often evaluated using alternative methods such as recurrence 3<.DiY  
    % relations: see the Legendre functions, for example). For the Zernike o1 27? ^  
    % polynomials, however, this problem does not arise, because the RF8, qz  
    % polynomials are evaluated over the finite domain r = (0,1), and }JOz,SQHP  
    % because the coefficients for a given polynomial are generally all L$a{%]I  
    % of similar magnitude. ~YNzSkz  
    % Z}zka<y6K6  
    % ZERNPOL has been written using a vectorized implementation: multiple j/O9LygB  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] (=rDt93J  
    % values can be passed as inputs) for a vector of points R.  To achieve )( YJ6l  
    % this vectorization most efficiently, the algorithm in ZERNPOL ph)=:*A6&  
    % involves pre-determining all the powers p of R that are required to kL s{B  
    % compute the outputs, and then compiling the {R^p} into a single x$Wtkb0<  
    % matrix.  This avoids any redundant computation of the R^p, and x!85P\sm  
    % minimizes the sizes of certain intermediate variables. f dJg7r*  
    % Y: C qQ  
    %   Paul Fricker 11/13/2006 (j:[<U  
    4]zn,g?&  
    B4*,]lS?  
    % Check and prepare the inputs: 41B.ZE+*qd  
    % ----------------------------- W|;`R{<I%  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) s(5(zcBK  
        error('zernpol:NMvectors','N and M must be vectors.') f7 ew<c\  
    end 8>|4iT  
    Eb5>c/(  
    if length(n)~=length(m) $h8?7:z;um  
        error('zernpol:NMlength','N and M must be the same length.') ZQR)k:k7  
    end VAheus  
    WSF$xC /~  
    n = n(:); 1 h162  
    m = m(:); \Rt>U|%  
    length_n = length(n); # mM9^LJ   
    %;_EWs/z8  
    if any(mod(n-m,2)) @G=:@;  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') B\|^$z2  
    end CyVi{"aF3  
    @VND}{j  
    if any(m<0) MjBI1|*  
        error('zernpol:Mpositive','All M must be positive.') $Y$s*h_-/<  
    end u,@ac[!vP  
    ),o=~,v:  
    if any(m>n) {R7RBX  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') B'B0e`  
    end o{2B^@+Vb  
    :[PA.Upi  
    if any( r>1 | r<0 ) N1>M<N03  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') HA$7Q~{N-t  
    end otdv;xI9  
    lS2 `#l>  
    if ~any(size(r)==1) Efd@\m:~>  
        error('zernpol:Rvector','R must be a vector.') t=fAG,k5  
    end d n%'bt  
    h^."wv  
    r = r(:); RY,L'Gt O  
    length_r = length(r); ;8]Hw a1!  
    5P('SFq'=  
    if nargin==4 *= %`f=  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); C-Y7n5  
        if ~isnorm d.>O`.Mu)}  
            error('zernpol:normalization','Unrecognized normalization flag.') 21?>rezJ  
        end \u/=?b  
    else +miL naO~L  
        isnorm = false; dDYor-g>  
    end Tz(Dhb,  
    ZE/Aj/7Qy  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% xnZ  
    % Compute the Zernike Polynomials 85H*Xm?d#  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% s BuXw a  
    hz2f7g  
    % Determine the required powers of r: v`jFWq8I,  
    % ----------------------------------- A~a7/N6s;  
    rpowers = []; p|r>tBv?x  
    for j = 1:length(n) JS >"j d#  
        rpowers = [rpowers m(j):2:n(j)]; _=qk.|p/  
    end (/P-9<"U  
    rpowers = unique(rpowers); 1 x0)mt3  
    61b<6 r0o  
    % Pre-compute the values of r raised to the required powers, ;[,#VtD  
    % and compile them in a matrix: kgX"I ?>d  
    % ----------------------------- B an" H~  
    if rpowers(1)==0 8?o{{ay  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); lb)i0`AN+  
        rpowern = cat(2,rpowern{:}); !6+V  
        rpowern = [ones(length_r,1) rpowern]; UXS+GAWU  
    else ]`@< I'?,X  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 2$ \#BG  
        rpowern = cat(2,rpowern{:}); _ =(v? 2:?  
    end ;p( Doy)i  
    i+Xb3+R  
    % Compute the values of the polynomials: aXD|XE%  
    % -------------------------------------- {f>e~o  
    z = zeros(length_r,length_n); VB+y9$Y'  
    for j = 1:length_n WODgG@w  
        s = 0:(n(j)-m(j))/2; Dd,]Y}P  
        pows = n(j):-2:m(j); B{Lzgw u;  
        for k = length(s):-1:1 4=;`\-7!  
            p = (1-2*mod(s(k),2))* ... Or()AzwE@  
                       prod(2:(n(j)-s(k)))/          ... IkLcL8P^  
                       prod(2:s(k))/                 ... @%As>X<3t  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... Xu[A,6  
                       prod(2:((n(j)+m(j))/2-s(k))); )}\J    
            idx = (pows(k)==rpowers); M0MvOO*ad  
            z(:,j) = z(:,j) + p*rpowern(:,idx); W%}zwQ  
        end Kx,<-]4  
         ^<e(3S:  
        if isnorm L8KMMYh[  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); R?kyJ4S  
        end ]*AQT7PH  
    end v}"DW?  
    iC<qWq|S_m  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)   x>$e*  
    Wmc@: (n  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 F(KsB5OY?  
    o&ETs)n|  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)