切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11420阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 #yZZ$XOk  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! $M\|zUQu.  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 4s/4z@3a  
    function z = zernfun(n,m,r,theta,nflag) u`Djle  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. ) Ph.  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N TF 6_4t6  
    %   and angular frequency M, evaluated at positions (R,THETA) on the x8%Q TTY  
    %   unit circle.  N is a vector of positive integers (including 0), and _F xq  
    %   M is a vector with the same number of elements as N.  Each element "m +Eu|{  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) yA*~O$~Y  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, P ETrMu<  
    %   and THETA is a vector of angles.  R and THETA must have the same E :*!an  
    %   length.  The output Z is a matrix with one column for every (N,M) 1\q(xka{  
    %   pair, and one row for every (R,THETA) pair. XOzPi*V**  
    % 5sC{5LJzC  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike x!bFbi#!"  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 9)l-5o: D  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral E^L  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, [P)'LY6F  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized y %Get  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. .$)'7  
    % {'Nvs_{6  
    %   The Zernike functions are an orthogonal basis on the unit circle. # 'G/&&<  
    %   They are used in disciplines such as astronomy, optics, and 6gwjrGje\  
    %   optometry to describe functions on a circular domain. BZEY^G  
    % Woa5Ov!n0  
    %   The following table lists the first 15 Zernike functions. {U(-cdU{e`  
    % _Hi;Y  
    %       n    m    Zernike function           Normalization ]]@jvU_?kS  
    %       -------------------------------------------------- a*hOT_;#  
    %       0    0    1                                 1 i`7{q~d=  
    %       1    1    r * cos(theta)                    2 6FG h=~{3,  
    %       1   -1    r * sin(theta)                    2 )hK5_]"lmj  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) A/RHb^N  
    %       2    0    (2*r^2 - 1)                    sqrt(3) kCxmC<34  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) L q8}z-?  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 4q[C' J  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) (: 2:_FL  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 8lI#D)}  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) H,txbJ  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) {YWj`K  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ,WA7Kp9  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) t5N@ z  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) !y$H r[v  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 0F=UZf&  
    %       -------------------------------------------------- CeS8I-,  
    % q7mqzMDk  
    %   Example 1: #)q}Jw4]j  
    % 1;3oGuHj8  
    %       % Display the Zernike function Z(n=5,m=1) f!ehq\K1k  
    %       x = -1:0.01:1; 2G:)27Q-  
    %       [X,Y] = meshgrid(x,x); wx -NUTRim  
    %       [theta,r] = cart2pol(X,Y); )5gcLD/zI  
    %       idx = r<=1; lxj_ (Uo  
    %       z = nan(size(X)); =$Sf]L  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); Gnp,~F"  
    %       figure i;lzFu )G  
    %       pcolor(x,x,z), shading interp rmpJG |(  
    %       axis square, colorbar ?l`DkUo*j  
    %       title('Zernike function Z_5^1(r,\theta)') 5^cPG" 4@  
    % mfFC@~|g  
    %   Example 2: 'VFxg,  
    % 5p"n g8nR  
    %       % Display the first 10 Zernike functions QR2J;Oj_  
    %       x = -1:0.01:1; [' R2$z  
    %       [X,Y] = meshgrid(x,x); |;'V":yDs  
    %       [theta,r] = cart2pol(X,Y); c.6u)"@$  
    %       idx = r<=1; h'^7xDw  
    %       z = nan(size(X)); pA3j@w  
    %       n = [0  1  1  2  2  2  3  3  3  3]; Ttn=VX{ \  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; *ntq;]  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 1c~c_Cc4  
    %       y = zernfun(n,m,r(idx),theta(idx)); /@R|*7K;9  
    %       figure('Units','normalized') -en:81a#  
    %       for k = 1:10 b')CGqbbmT  
    %           z(idx) = y(:,k); ySP1WK  
    %           subplot(4,7,Nplot(k)) ,& =(DJ  
    %           pcolor(x,x,z), shading interp 5fv eQI~!  
    %           set(gca,'XTick',[],'YTick',[]) l -_voOP  
    %           axis square VF!?B>  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) \hQ[5>  
    %       end E}c(4RY  
    % <i^Bq=E<rJ  
    %   See also ZERNPOL, ZERNFUN2. 6g8{;6x  
    zCL/^^#  
    %   Paul Fricker 11/13/2006 ()JM161  
    C>$5<bx  
    Et(Q$/W  
    % Check and prepare the inputs: [0yKd?e  
    % ----------------------------- sI/Hcm  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 7A8jnq7m/  
        error('zernfun:NMvectors','N and M must be vectors.') =#^%; 66z  
    end t9&)9,my  
    !EF~I8d\]  
    if length(n)~=length(m) + htTrHjt  
        error('zernfun:NMlength','N and M must be the same length.') *6e`km  
    end oaHg6PT!  
    jU)r~QhN  
    n = n(:); TU$/3fp*  
    m = m(:); *rSMD_>  
    if any(mod(n-m,2)) d,iW#,  
        error('zernfun:NMmultiplesof2', ... ;TF(opW:  
              'All N and M must differ by multiples of 2 (including 0).') 24Z7;'  
    end ylLQKdcL  
    9bl&\Ykt.  
    if any(m>n) '{\VO U  
        error('zernfun:MlessthanN', ... #R"9(Q&  
              'Each M must be less than or equal to its corresponding N.') %CfJ.;BDNE  
    end C16MzrB}(N  
    Tc,Bv7:  
    if any( r>1 | r<0 ) cE/7B'cR  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') UAnq|NJO  
    end Zn1+} Z@I  
    l] WV gu  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) <_uLf9j a  
        error('zernfun:RTHvector','R and THETA must be vectors.') ED"@!M`1  
    end mG7Wu{~=U  
    xYc)iH6&  
    r = r(:); w}G2m)(  
    theta = theta(:); Z{EHV7  
    length_r = length(r); -. L)-%wIV  
    if length_r~=length(theta) |]RV[S3v  
        error('zernfun:RTHlength', ... `i8osX[&p  
              'The number of R- and THETA-values must be equal.') =2s 5>Oz+  
    end 1B+MCt4  
    vpFN{UfD  
    % Check normalization: $/}*HWVZ  
    % -------------------- VE& ?Zd~  
    if nargin==5 && ischar(nflag) 'v* =}k  
        isnorm = strcmpi(nflag,'norm'); 'BpK(PlUh  
        if ~isnorm k[6@\D-  
            error('zernfun:normalization','Unrecognized normalization flag.') AT<gV/1l  
        end A5!j rSyv  
    else oylY1~~}0K  
        isnorm = false; +&jWM-T"-  
    end _K )B  
    <P3r+ 1|R  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% <t,uj.9_  
    % Compute the Zernike Polynomials k sJz44  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% XrYMv WT  
    Nb>|9nu O  
    % Determine the required powers of r: R@5jEf  
    % ----------------------------------- L5(rP\B  
    m_abs = abs(m); 8Z4d<DIJ  
    rpowers = []; S5@/;T  
    for j = 1:length(n) HelC_%#^  
        rpowers = [rpowers m_abs(j):2:n(j)]; Mlb=,l  
    end F:%= u =  
    rpowers = unique(rpowers); <GF)5QB  
    _b<Fz`V  
    % Pre-compute the values of r raised to the required powers, "FT5]h  
    % and compile them in a matrix: (sW:^0p  
    % ----------------------------- 4;M  
    if rpowers(1)==0 mn{8"@Z  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); D%LqLLD  
        rpowern = cat(2,rpowern{:}); fGcAkEstT!  
        rpowern = [ones(length_r,1) rpowern]; (zWzF_v  
    else q]0a8[]3  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); x +! <_p  
        rpowern = cat(2,rpowern{:}); brb8C%j}9  
    end QUaz;kNC7  
    qBpv[m  
    % Compute the values of the polynomials: c,Zs. kC  
    % -------------------------------------- vz) A~"E  
    y = zeros(length_r,length(n)); u'd+:uH  
    for j = 1:length(n) RsIEY5Q  
        s = 0:(n(j)-m_abs(j))/2; Tg&{ P{$  
        pows = n(j):-2:m_abs(j); Y:^~KS=Uz  
        for k = length(s):-1:1 ;wbQTp2  
            p = (1-2*mod(s(k),2))* ... ~=Z&l  
                       prod(2:(n(j)-s(k)))/              ... 0Tp?ED_  
                       prod(2:s(k))/                     ... O4@Ki4f3A%  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... G-G!c2o  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); gT<E4$I69  
            idx = (pows(k)==rpowers); zG[fPD  
            y(:,j) = y(:,j) + p*rpowern(:,idx); Y)N(uv6  
        end ;8 JJ#ED  
         r[eZV"  
        if isnorm [@";\C_I  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); RI:x`do  
        end <.HHV91  
    end yH|ucN~k5S  
    % END: Compute the Zernike Polynomials WnLgpt2G  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% =3{h9  
    z<+".sD'  
    % Compute the Zernike functions: K-)*S\<}  
    % ------------------------------ YUF!Y9!  
    idx_pos = m>0; 4adCMfP7.  
    idx_neg = m<0; m1gJ"k6 `j  
    ;QR|v  
    z = y; -vGyEd7  
    if any(idx_pos) _R1UEE3M  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); N(dn"`8  
    end C N"V w  
    if any(idx_neg) Fw+JhI VP  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); n #p6i  
    end [{Fr{La`D'  
    (iP,F]  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) j~\\,fl=  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. v%/8pmZw;  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated kmy?`P10(z  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive m,K\e  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, lDe9EJR  
    %   and THETA is a vector of angles.  R and THETA must have the same g"2@E  
    %   length.  The output Z is a matrix with one column for every P-value, @IB8(TZ5I  
    %   and one row for every (R,THETA) pair. '$ s:cS`=  
    % KAgiY4  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike |QAmN> 7U  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) z:+Xs!S  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) b[uTt'p}  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 ZA2y  
    %   for all p. 3dcZ1Yrn  
    % n >xhT r<  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 Wxjk}&+pVa  
    %   Zernike functions (order N<=7).  In some disciplines it is e:AB!k^xp$  
    %   traditional to label the first 36 functions using a single mode *W(b=u  
    %   number P instead of separate numbers for the order N and azimuthal bLCrh(<  
    %   frequency M. ,PJl32  
    % O_-.@uo./(  
    %   Example: QDBptI:  
    % 5iG|C ~  
    %       % Display the first 16 Zernike functions T>g1! -^  
    %       x = -1:0.01:1; CS50wY  
    %       [X,Y] = meshgrid(x,x); ^[&*B#(  
    %       [theta,r] = cart2pol(X,Y); R j(="+SPj  
    %       idx = r<=1; `gfK#0x#  
    %       p = 0:15; 4yQ4lU,r  
    %       z = nan(size(X)); j[iJo 5  
    %       y = zernfun2(p,r(idx),theta(idx)); 7; T S  
    %       figure('Units','normalized') ,{J2i#g<  
    %       for k = 1:length(p) ;f?OT7>kN  
    %           z(idx) = y(:,k); O5_E"um  
    %           subplot(4,4,k) )lB-D;3[_  
    %           pcolor(x,x,z), shading interp ,m3AVHa*G  
    %           set(gca,'XTick',[],'YTick',[]) zFP}=K:o)  
    %           axis square 8uyVx9C0  
    %           title(['Z_{' num2str(p(k)) '}']) F:hJ^:BP  
    %       end ?B@hCd)  
    % J#Bz )WmR  
    %   See also ZERNPOL, ZERNFUN. BAX])~_  
    8'^eH1d'  
    %   Paul Fricker 11/13/2006 (C6Y*Zm\  
    u>k;P UH4  
    \Q^\z   
    % Check and prepare the inputs: 5Tn4iyg;B  
    % ----------------------------- 5:ir il  
    if min(size(p))~=1 eC[g"Ef  
        error('zernfun2:Pvector','Input P must be vector.') uKpl+>  
    end kZUuRB~om  
    G?3S_3J2  
    if any(p)>35 G|3OB:  
        error('zernfun2:P36', ... %6Hn1'7+v  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... ~{2@-qcm  
               '(P = 0 to 35).']) [USXNe/  
    end r)+dK }xl  
    V X211U.Q  
    % Get the order and frequency corresonding to the function number: Kz$Ijj  
    % ---------------------------------------------------------------- [jAhw>  
    p = p(:); Q=uwmg86  
    n = ceil((-3+sqrt(9+8*p))/2); F4bF&% R  
    m = 2*p - n.*(n+2); v^,A~oe`t  
    hH@018+  
    % Pass the inputs to the function ZERNFUN: ~Ja>x`5  
    % ---------------------------------------- y)s/\l&  
    switch nargin jLb3{}0  
        case 3 yMo@ka=v  
            z = zernfun(n,m,r,theta); fF-V=Zf5  
        case 4 T0tG1/O\  
            z = zernfun(n,m,r,theta,nflag); Z>CFH9  
        otherwise I,  
            error('zernfun2:nargin','Incorrect number of inputs.') egr@:5QwZ{  
    end Ir0er~f+z  
    _`D760q}  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) 9oGsrC lH  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. 8Oc*<^{#  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of vW]BOzK  
    %   order N and frequency M, evaluated at R.  N is a vector of F6q}(+9i  
    %   positive integers (including 0), and M is a vector with the %mI`mpf  
    %   same number of elements as N.  Each element k of M must be a q=[0`--cd  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) $1?YVA7  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is E )Hp.  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix kkd<CEz2IM  
    %   with one column for every (N,M) pair, and one row for every j?.VJ^Ff/u  
    %   element in R. y<;#*wB  
    % lJU[9)Q_  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- !PQ@"L)p  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is ?np` RA  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to PDGh\Y[AK,  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 'etCIl3  
    %   for all [n,m]. ;)cl Cm46  
    % ?!A{n3\<  
    %   The radial Zernike polynomials are the radial portion of the vWj|[| <rX  
    %   Zernike functions, which are an orthogonal basis on the unit &}P62&  
    %   circle.  The series representation of the radial Zernike uvm=i .  
    %   polynomials is hVR=g!e#X  
    % xQ$*K]VP  
    %          (n-m)/2 wk-ziw  
    %            __ 8E$KR:/:4  
    %    m      \       s                                          n-2s T> 1E  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r 7H./o Vl  
    %    n      s=0 z{tyB  
    % $/pd[H[{  
    %   The following table shows the first 12 polynomials. zIm$S/Qe*  
    % 8{h:z 9]J  
    %       n    m    Zernike polynomial    Normalization 2I#fwsb  
    %       --------------------------------------------- A\ LTAp(I  
    %       0    0    1                        sqrt(2) /Wzic+v<>  
    %       1    1    r                           2 8-+IcyUza  
    %       2    0    2*r^2 - 1                sqrt(6) vU~#6sl  
    %       2    2    r^2                      sqrt(6) .}z&$:U9[  
    %       3    1    3*r^3 - 2*r              sqrt(8) ZA:YoiaC#  
    %       3    3    r^3                      sqrt(8) b$M? _<G  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) N4$0ptz#}G  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) ?BLd~L+  
    %       4    4    r^4                      sqrt(10) [81k4kU  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) 1Z*-@%RX  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) > Y[{m $-  
    %       5    5    r^5                      sqrt(12) ZpWG  
    %       --------------------------------------------- {)-%u8J\`N  
    % ! .!qJ%  
    %   Example: o/9 V1"  
    % +F`! Jt  
    %       % Display three example Zernike radial polynomials *^QfTKN   
    %       r = 0:0.01:1; YK_a37E{F  
    %       n = [3 2 5]; \|wV Ii  
    %       m = [1 2 1]; ?hmj0i;XC  
    %       z = zernpol(n,m,r); Ag}>gbz~G  
    %       figure Hk.+1^?%  
    %       plot(r,z) +[D=2&tmk  
    %       grid on BQ".$(c q  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') \O\onvEa  
    % dD!} P$  
    %   See also ZERNFUN, ZERNFUN2. ("IRv>} 0  
    L5PN]<~T  
    % A note on the algorithm. DJ=miJI'  
    % ------------------------ pn'*w 1i  
    % The radial Zernike polynomials are computed using the series y 37n~~%  
    % representation shown in the Help section above. For many special nCYicB  
    % functions, direct evaluation using the series representation can %tmK6cY4Y  
    % produce poor numerical results (floating point errors), because PcJ,Y\"[  
    % the summation often involves computing small differences between C8aYg  
    % large successive terms in the series. (In such cases, the functions 8m-ryr)  
    % are often evaluated using alternative methods such as recurrence m"jqHGFV  
    % relations: see the Legendre functions, for example). For the Zernike E Sb  
    % polynomials, however, this problem does not arise, because the '{Iv?gh"  
    % polynomials are evaluated over the finite domain r = (0,1), and 1p`XK";g  
    % because the coefficients for a given polynomial are generally all +D$\^ <#  
    % of similar magnitude. {TlS)i`  
    % $yhQ)@#1  
    % ZERNPOL has been written using a vectorized implementation: multiple a i}8+L8-  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] }vp\lK P  
    % values can be passed as inputs) for a vector of points R.  To achieve OTalR;:]r  
    % this vectorization most efficiently, the algorithm in ZERNPOL iB[%5i-  
    % involves pre-determining all the powers p of R that are required to 2NI3 &;{4  
    % compute the outputs, and then compiling the {R^p} into a single `O0v2?/f0  
    % matrix.  This avoids any redundant computation of the R^p, and =yvyd0|35  
    % minimizes the sizes of certain intermediate variables. u[ "Pg  
    % zFwp$K>{QY  
    %   Paul Fricker 11/13/2006 ;^t<LhN:  
    a?&oOQd-iP  
    K)F;^)KDHf  
    % Check and prepare the inputs: 4l>/6LNMF  
    % ----------------------------- mu|#(u  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) (<2PhJ|  
        error('zernpol:NMvectors','N and M must be vectors.') wnha c}  
    end h6la+l?x  
     t\u0\l>  
    if length(n)~=length(m) ADlPdkmym  
        error('zernpol:NMlength','N and M must be the same length.') v8_HaA$5Y  
    end UiF?Nx~  
     +'Tr>2V  
    n = n(:); |.)dOk,o  
    m = m(:); T%?<3 /Ev!  
    length_n = length(n); c,4UnEoCR  
     |Pwb7:a3  
    if any(mod(n-m,2)) o= N=W  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') qdNYY&6>?u  
    end 5\RKT)%X  
    FZb\VUmnV  
    if any(m<0) WE68a!6  
        error('zernpol:Mpositive','All M must be positive.') Rr(,i%fu  
    end zeNvg/LI^  
    *W%HTt"N  
    if any(m>n) i wQ'=M  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') U!^\DocAY  
    end  2o?!m2W  
    ,W7\AY07]  
    if any( r>1 | r<0 ) l 0jjLqm:  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') DRj\i6-v  
    end )z$VQ=]"  
    Gb~*[  
    if ~any(size(r)==1) ?VO*s-G:J  
        error('zernpol:Rvector','R must be a vector.') b78'yM&  
    end tDF6%RG  
    ~'=s?\I  
    r = r(:); q2Ax-#  
    length_r = length(r); c_ vj't  
    91}QuYv/_  
    if nargin==4  lrU}_`  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); srO {Ci0  
        if ~isnorm Z?O aY4  
            error('zernpol:normalization','Unrecognized normalization flag.') c7L#f=Ot?  
        end O jr{z  
    else 2?nK71c"  
        isnorm = false; TOeJnk  
    end JrQ*.lJj  
    3[pA:Z+xx  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% G6]M~:<i  
    % Compute the Zernike Polynomials -=s7Q{O8Z  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% w<.{(1:v  
    Ng0V&oDI  
    % Determine the required powers of r: w}K<,5I>  
    % ----------------------------------- [XhuJdr"u  
    rpowers = []; 6 80i?=z  
    for j = 1:length(n) n,bZj<3t  
        rpowers = [rpowers m(j):2:n(j)]; !!%vs 6  
    end \[% [`m  
    rpowers = unique(rpowers); 6Z\[{S];  
    ;.'2ZNt2  
    % Pre-compute the values of r raised to the required powers, VSc;}LH  
    % and compile them in a matrix: 0<Vw0%!  
    % ----------------------------- My&h{Qk  
    if rpowers(1)==0 r8pTtf#Q  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); *ukE"Aj  
        rpowern = cat(2,rpowern{:});  M#IGq  
        rpowern = [ones(length_r,1) rpowern]; /<\>j+SC  
    else 3^xTZ*G  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); GX4# IRq  
        rpowern = cat(2,rpowern{:}); TWK(vEDM  
    end 8Tyf#`'I  
    @=E@ *@g  
    % Compute the values of the polynomials: s,\!@[N  
    % -------------------------------------- dUk^DI,:l  
    z = zeros(length_r,length_n); aqK<}jy  
    for j = 1:length_n l[fU0;A  
        s = 0:(n(j)-m(j))/2; lGwX.cA!'  
        pows = n(j):-2:m(j); jt@k< #h~  
        for k = length(s):-1:1 J'sVT{@GS  
            p = (1-2*mod(s(k),2))* ... .\7R/cP}{A  
                       prod(2:(n(j)-s(k)))/          ... _1VtVfiZ{  
                       prod(2:s(k))/                 ... D[x0sly  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... JVD#wwic  
                       prod(2:((n(j)+m(j))/2-s(k))); X8~ cWW  
            idx = (pows(k)==rpowers);  I@08F  
            z(:,j) = z(:,j) + p*rpowern(:,idx); _S7GkpoK  
        end .ZJt  
         ~3dBt@%0  
        if isnorm ff**)Xdh  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); Wo<zvut8  
        end ^sY ]N77  
    end \SkCsE#H  
    3b (I~  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  "X<vgM^:  
    4+Aht]$hC  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 \>,[5|GU  
    03Czx`  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)