非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 _6Sp QW
function z = zernfun(n,m,r,theta,nflag) /uflpV|
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. q9"96({\@
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Wr
4,YQM
% and angular frequency M, evaluated at positions (R,THETA) on the l?e.9o2-
% unit circle. N is a vector of positive integers (including 0), and E GU2fA7x
% M is a vector with the same number of elements as N. Each element 7Q 3 k7
% k of M must be a positive integer, with possible values M(k) = -N(k) ?,z}%p
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, cuX)8+
% and THETA is a vector of angles. R and THETA must have the same Nn6%9PX_)
% length. The output Z is a matrix with one column for every (N,M) M`_0C38
% pair, and one row for every (R,THETA) pair. O-wzz
% *dQSw)R
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike rI\FI0zIp_
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ,tFg4k[
% with delta(m,0) the Kronecker delta, is chosen so that the integral &C}*w2]0S
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, dysS9a,
% and theta=0 to theta=2*pi) is unity. For the non-normalized /ZX}Nc g
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. =X}J6|>X
% vM={V$D&
% The Zernike functions are an orthogonal basis on the unit circle. UQsN'r\tS
% They are used in disciplines such as astronomy, optics, and hrk r'3lv
% optometry to describe functions on a circular domain. E.h*g8bXe
% }f ?y*
H
% The following table lists the first 15 Zernike functions. F59 TZI
% KNl$3nX
% n m Zernike function Normalization _`X:jj>
% -------------------------------------------------- + {]j]OP
% 0 0 1 1 ^iA9%zp
% 1 1 r * cos(theta) 2 }>\C{ClI
% 1 -1 r * sin(theta) 2 [),ige
% 2 -2 r^2 * cos(2*theta) sqrt(6) h[ ZN+M
% 2 0 (2*r^2 - 1) sqrt(3) &{:-]g\
% 2 2 r^2 * sin(2*theta) sqrt(6) +`4A$#$+y
% 3 -3 r^3 * cos(3*theta) sqrt(8) sOY:e/_F
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) Iu{V,U
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 9r9NxKuAO
% 3 3 r^3 * sin(3*theta) sqrt(8) (7Qo
% 4 -4 r^4 * cos(4*theta) sqrt(10) DU^loB+
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ceA9){
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) SbZ6t$"
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) u*R_\*j@
% 4 4 r^4 * sin(4*theta) sqrt(10) MV"=19]
% -------------------------------------------------- +ZYn? #IQ
% ]e3Ax(i)
% Example 1: "@kaHIf[
% {
w_e9W bi
% % Display the Zernike function Z(n=5,m=1) 4i bc
% x = -1:0.01:1; K3C <{#r
% [X,Y] = meshgrid(x,x); Cx"sw
}
% [theta,r] = cart2pol(X,Y); !>tL6+yj
% idx = r<=1; ICCc./l|
% z = nan(size(X)); }Jw,>}
% z(idx) = zernfun(5,1,r(idx),theta(idx)); =N@t'fOr
% figure ~[: 2I
% pcolor(x,x,z), shading interp yZ:qU({KhD
% axis square, colorbar =Qq+4F)MD
% title('Zernike function Z_5^1(r,\theta)') rQX zR
% U*:!W=XN
% Example 2: :&Nbw
% 8L XHk l
% % Display the first 10 Zernike functions <3iMRe
% x = -1:0.01:1; E^PB)D(.
% [X,Y] = meshgrid(x,x); ?%86/N>
% [theta,r] = cart2pol(X,Y); ^.tg 7%dJ
% idx = r<=1; mOSv9w#,
% z = nan(size(X)); 8MBAtVmy
% n = [0 1 1 2 2 2 3 3 3 3]; ^8tEach
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; R]dg_Da
% Nplot = [4 10 12 16 18 20 22 24 26 28]; ^aQ"E9
% y = zernfun(n,m,r(idx),theta(idx)); K,]=6Rj
% figure('Units','normalized') n%-0V>
% for k = 1:10 =;k|*Ny
% z(idx) = y(:,k); .hiSw
% subplot(4,7,Nplot(k)) J1kM\8%b\
% pcolor(x,x,z), shading interp !wNO8;(
% set(gca,'XTick',[],'YTick',[]) e)ZUO_Q$
% axis square fVwUe _Y
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) iE{&*.q_}>
% end 2:R+tn(F
% .pq%?&
% See also ZERNPOL, ZERNFUN2. 598i^z{~0%
f?b"i A(6
% Paul Fricker 11/13/2006 'S~5"6r
\9d$@V
/ xQPTT
% Check and prepare the inputs: JRFtsio*
% ----------------------------- g>sSS8RO
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) zQA`/&=Y
error('zernfun:NMvectors','N and M must be vectors.') Je@v8{][|
end P4?glh q#
}Lv;!
if length(n)~=length(m) 23?rEhKe
error('zernfun:NMlength','N and M must be the same length.') &~!Wym
end OZT.=^:A
{!`4iiF
n = n(:); "j-CZ\]U|
m = m(:);
i!cCMh8
if any(mod(n-m,2)) 9kojLqCT
error('zernfun:NMmultiplesof2', ... nm+s{
'All N and M must differ by multiples of 2 (including 0).') m,S{p<-h
end G
j1_!.T
z=FZiH
if any(m>n) \1`O_DF~o
error('zernfun:MlessthanN', ... ,47qw0=C
'Each M must be less than or equal to its corresponding N.') @KA4N`
end IAEAhqp
w*!aZ,P
if any( r>1 | r<0 ) ]d`VT)~vje
error('zernfun:Rlessthan1','All R must be between 0 and 1.') jIF
|P-
end DN/YHSYK
uocGbi:V';
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) H1T.(M/"
error('zernfun:RTHvector','R and THETA must be vectors.') nd(S3rct&
end 6,uX,X5
qVPeB,kIz
r = r(:); {|\.i
theta = theta(:); 4~=l}H>&
length_r = length(r); ~v83pu1!2s
if length_r~=length(theta) B;WCTMy}
error('zernfun:RTHlength', ... 7Qsgys#/=
'The number of R- and THETA-values must be equal.') 5coZ|O&f8
end 0g\(+Qg^
v}(WaO#S
% Check normalization: Hefg[$m
% -------------------- [:V$y1
if nargin==5 && ischar(nflag) Ve=b16H
isnorm = strcmpi(nflag,'norm'); 1U\z5$V
if ~isnorm 2-b6gc7
error('zernfun:normalization','Unrecognized normalization flag.') v
LZoa-w:
end Vg23!E
else ??T#QQ
isnorm = false; d %#b:(,
end `lPfb[b
$SE^S
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% X jX2]
% Compute the Zernike Polynomials L-\GHu~)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% D-4f.Tq4#
O~QB!<Q+
% Determine the required powers of r: = f i$}>\
% ----------------------------------- qw8Rlws%
m_abs = abs(m); g ci
rpowers = []; frQ{iUx
for j = 1:length(n) ]~nKK@Rw
rpowers = [rpowers m_abs(j):2:n(j)]; Rh |nP&6
end V>
bCKtf&
rpowers = unique(rpowers); eY\yE"3
p$>l7?h
% Pre-compute the values of r raised to the required powers, [9 RR8
% and compile them in a matrix: =ruao'A
% ----------------------------- *:NQ&y*uj
if rpowers(1)==0 f
{"?%Ku#
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ~nPtlrQa#*
rpowern = cat(2,rpowern{:}); Z<4AL\l 98
rpowern = [ones(length_r,1) rpowern]; 9mFE?J
else PuO&wI]:
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); j)GtEP<n#
rpowern = cat(2,rpowern{:}); Yuc> fFA
end (~en (
TU7'J
% Compute the values of the polynomials: ""D 4s
% -------------------------------------- <o= 8FO
y = zeros(length_r,length(n)); H4JTGt1"
for j = 1:length(n) 4{l,
s = 0:(n(j)-m_abs(j))/2; (khL-F
pows = n(j):-2:m_abs(j); -tNUMi'
for k = length(s):-1:1 w-{c.x
p = (1-2*mod(s(k),2))* ... Ki~1qu:
prod(2:(n(j)-s(k)))/ ... VQ{fne<
prod(2:s(k))/ ... ,{q;;b9
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 9k~8
prod(2:((n(j)+m_abs(j))/2-s(k))); FEVlZ<PW3I
idx = (pows(k)==rpowers); _7)n(1h[3b
y(:,j) = y(:,j) + p*rpowern(:,idx); +H2-ZXr
end Jq^T1_iqn
-)/$M(Pu"
if isnorm Y5d \d\e/
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Ib0ZjX6
end ilva,WFa^
end `V3Fx{
% END: Compute the Zernike Polynomials +t:0SRSt
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 5P$4 =z91
pXK^Y'2C!
% Compute the Zernike functions: {
buy"X4
% ------------------------------ r(2uu
idx_pos = m>0; 4 N7^?
idx_neg = m<0; c{LO6dNg\z
s|B3~Q]
z = y; )tnh4WMh}
if any(idx_pos) ;]jNk'oa
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); lUiL\~Gq
end L z1ME(
if any(idx_neg)
EUgs6[w 4
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)');
6B
?twh)
end 3 SGDy]
13=.H5
% EOF zernfun