切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11729阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 h3@mN\=h'  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! d UjdQ  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 N{Is2Ia  
    function z = zernfun(n,m,r,theta,nflag) 7sLs+ |<"  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle.  d(v )SS  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N [IV8  
    %   and angular frequency M, evaluated at positions (R,THETA) on the )}u.b-Nt.  
    %   unit circle.  N is a vector of positive integers (including 0), and vNJ!i\bX  
    %   M is a vector with the same number of elements as N.  Each element `86 9XE  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) kTC6fNj[  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, GhpH7% s  
    %   and THETA is a vector of angles.  R and THETA must have the same ]MB ^0:F-  
    %   length.  The output Z is a matrix with one column for every (N,M) :Z=A,G  
    %   pair, and one row for every (R,THETA) pair. VnIJ$5Y  
    % t5eux&C  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ~@sx}u  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), `7N[rs9|S  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 8Cm^#S,+  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, VK ?,8Y  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized })"9TfC  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. RqcX_x(p  
    % @p `#y  
    %   The Zernike functions are an orthogonal basis on the unit circle. fMLm_5(H  
    %   They are used in disciplines such as astronomy, optics, and :&TOQ<vM  
    %   optometry to describe functions on a circular domain. ]@WJ&e/'@  
    % 6Ajiz_~U  
    %   The following table lists the first 15 Zernike functions. -?e~S\JH  
    % ^PWZ1.T  
    %       n    m    Zernike function           Normalization o'D6lkf0  
    %       -------------------------------------------------- Wigm`A=,r  
    %       0    0    1                                 1 /{qr~7k,oQ  
    %       1    1    r * cos(theta)                    2 NrL%]dl3/  
    %       1   -1    r * sin(theta)                    2 fNB*o={r|  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) '-ACNgNn  
    %       2    0    (2*r^2 - 1)                    sqrt(3) j4brDlo?@  
    %       2    2    r^2 * sin(2*theta)             sqrt(6)  -JUv'fk  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) dmE-W S  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) WJJ!No P  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) $9ON 3>  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) n|^-qy'w  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) .GS|H d  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) T8qG9)~3  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) *(r85lEou)  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) M)3h 4yQ  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) TWxMexiW  
    %       -------------------------------------------------- 9`c :sop  
    % v3@)q0@  
    %   Example 1: }b,a*4pN  
    % l}<s~ip  
    %       % Display the Zernike function Z(n=5,m=1) 9 -TFyZYU  
    %       x = -1:0.01:1; &|9?B!,`  
    %       [X,Y] = meshgrid(x,x); {OQ sGyR?  
    %       [theta,r] = cart2pol(X,Y); ];Z_S`JR  
    %       idx = r<=1; R\X=Vg  
    %       z = nan(size(X)); , :kCt=4%  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); c?z% z&  
    %       figure GU"MuW`u2  
    %       pcolor(x,x,z), shading interp v8w N2[fC  
    %       axis square, colorbar %*r P d>*  
    %       title('Zernike function Z_5^1(r,\theta)') @];Xbbw+c  
    % orL7y&w(v:  
    %   Example 2: iOD9lR`s  
    % R?]>8o,  
    %       % Display the first 10 Zernike functions LFh(. }  
    %       x = -1:0.01:1; iAXx`>}m  
    %       [X,Y] = meshgrid(x,x); Dcp,9"yt%  
    %       [theta,r] = cart2pol(X,Y); RNIfw1R  
    %       idx = r<=1; ;N4mR6  
    %       z = nan(size(X)); SZyPl9.b  
    %       n = [0  1  1  2  2  2  3  3  3  3]; Ie+z"&0  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; /=-E`%R}!  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; I:Z38xz-[  
    %       y = zernfun(n,m,r(idx),theta(idx)); 4V[+6EV  
    %       figure('Units','normalized') 1zl@$ Nt  
    %       for k = 1:10 @o>2:D1G  
    %           z(idx) = y(:,k); tM !1oWH  
    %           subplot(4,7,Nplot(k)) G%4vZPA  
    %           pcolor(x,x,z), shading interp @Yt[%tOF+  
    %           set(gca,'XTick',[],'YTick',[]) G.(9I~!  
    %           axis square {qh`8  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) LWIU7dw  
    %       end EcP"GO5  
    % tb_}w@:kU  
    %   See also ZERNPOL, ZERNFUN2. 0ED(e1K#B  
    c.d*DM}W  
    %   Paul Fricker 11/13/2006 mWka!lT  
    b},OCVT?  
    f)gA.Rz  
    % Check and prepare the inputs: qKWkgackP  
    % ----------------------------- 7] ~'8  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 2M|jWy_  
        error('zernfun:NMvectors','N and M must be vectors.') #>!!#e!*  
    end I-+D+DhRx  
    qt3 \*U7x  
    if length(n)~=length(m) Bv/v4(G5g  
        error('zernfun:NMlength','N and M must be the same length.') #<l ;YT8  
    end dyu~T{  
    z+wBZn{0I  
    n = n(:); 33 N5>}  
    m = m(:); 3pl.<;9r  
    if any(mod(n-m,2)) -<CBxyZa&  
        error('zernfun:NMmultiplesof2', ... !f"@pR6  
              'All N and M must differ by multiples of 2 (including 0).') t1Cyyb  
    end -vhgBru  
    V_Y SYG9f  
    if any(m>n) =FdS'<GM  
        error('zernfun:MlessthanN', ... `bivAL  
              'Each M must be less than or equal to its corresponding N.') 03{e[#6   
    end !o> /gI`  
    tohYwXN  
    if any( r>1 | r<0 ) KS%xo6k.  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 5w{_WR6,  
    end o2Z# 5-  
    g3"`b)M  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) _L&C4 <e'  
        error('zernfun:RTHvector','R and THETA must be vectors.') !9V_U  
    end x+^iEj`gk  
    @'~v~3 $S  
    r = r(:); V =1Y&y  
    theta = theta(:); O(wt[AEA  
    length_r = length(r); +vZ-o{}.jO  
    if length_r~=length(theta) e'g-mRh  
        error('zernfun:RTHlength', ... v')T^b F@  
              'The number of R- and THETA-values must be equal.') wYNh0QlBH  
    end W!+5}\?  
    }0qgvw  
    % Check normalization: MheP@ [w|@  
    % -------------------- [ tm J6^s  
    if nargin==5 && ischar(nflag) "TG}aS  
        isnorm = strcmpi(nflag,'norm'); "EHwv2Hm>  
        if ~isnorm Z\`uI+`  
            error('zernfun:normalization','Unrecognized normalization flag.') 7pr@aA"vgj  
        end =j }]-!  
    else dt ;R  
        isnorm = false; hb[K.`g  
    end Z>M0[DJ_  
    @K2q*d  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% FRX'"gIR0  
    % Compute the Zernike Polynomials M0n@?S  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% vvdC.4O  
    :Q!U;33aG  
    % Determine the required powers of r: \%rX~UhZ=  
    % ----------------------------------- D0tI  
    m_abs = abs(m); =][[TH  
    rpowers = []; +>37 'PD  
    for j = 1:length(n) &5c)qap;n  
        rpowers = [rpowers m_abs(j):2:n(j)]; XeJx/'9o{  
    end 6YYZ S2  
    rpowers = unique(rpowers); g$ 9Yfu  
    @ L?7` VoE  
    % Pre-compute the values of r raised to the required powers, |a/"7B|?\  
    % and compile them in a matrix: m[(2  
    % ----------------------------- I`zn#U'  
    if rpowers(1)==0 !V#(g./W  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); c?j/ H$  
        rpowern = cat(2,rpowern{:}); +-K-CXt  
        rpowern = [ones(length_r,1) rpowern]; lc#su$xR>  
    else M)( 5S1ndq  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); x4R[Q&:M  
        rpowern = cat(2,rpowern{:}); ^Jsx^?  
    end 3Sf <oYF  
    Z[Uz~W6M]  
    % Compute the values of the polynomials: R\ <HR9r  
    % -------------------------------------- mGwB bY+5n  
    y = zeros(length_r,length(n)); 3|l+&LF!IC  
    for j = 1:length(n) 45q-x_  
        s = 0:(n(j)-m_abs(j))/2; @aWvN;v  
        pows = n(j):-2:m_abs(j); Ryr2  
        for k = length(s):-1:1 VuPa '2  
            p = (1-2*mod(s(k),2))* ... YN.rj-;^+  
                       prod(2:(n(j)-s(k)))/              ... [f&ja[m q  
                       prod(2:s(k))/                     ... 0,E*9y}  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 349W0>eOT  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); pa4zSl  
            idx = (pows(k)==rpowers); Ae;> @k/|=  
            y(:,j) = y(:,j) + p*rpowern(:,idx); /87?U; |V  
        end %N=-i]+Id  
         yiWBIJ2Wu9  
        if isnorm <TC\Nb$~  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); OpW4@le_r  
        end G;>b}\Ng  
    end Myg &H(~  
    % END: Compute the Zernike Polynomials [ ;  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% q`{crY30  
    ,n-M!y  
    % Compute the Zernike functions: -1DQO|q#  
    % ------------------------------ 'n6D3Vse  
    idx_pos = m>0; -}AAA*P  
    idx_neg = m<0; dpxP  
    \U\ W Q  
    z = y; ~C\R!DN,  
    if any(idx_pos) Q~MV0<{  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ZQlja  
    end jhr: QS/9  
    if any(idx_neg) WA \ P`'lg  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); jO&sS?  
    end DZ<q)EpC  
    &"p7X>bd  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) qRlS^=#  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. h mC. 5mY  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated OuWG.Za  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive ixm-wZI  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, ;~CAHn|Fe  
    %   and THETA is a vector of angles.  R and THETA must have the same :08b&myx  
    %   length.  The output Z is a matrix with one column for every P-value, U$-Gc[=|  
    %   and one row for every (R,THETA) pair. j?<>y/IR  
    % l.[S.@\=.  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike I.As{0cc  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) }#]2u| G  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) E}LYO:  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 9ozN$:  
    %   for all p. E]Dcb*t  
    % eb&#sZ  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 _ `5?/\7  
    %   Zernike functions (order N<=7).  In some disciplines it is v/gxQy+l  
    %   traditional to label the first 36 functions using a single mode ^Y[.-MJt+  
    %   number P instead of separate numbers for the order N and azimuthal oM ey^]!  
    %   frequency M. 2%o@?Rp  
    % ;7=pNK  
    %   Example: c~ x  
    % mu`:@7+Yp  
    %       % Display the first 16 Zernike functions  }^3CG9%  
    %       x = -1:0.01:1; Y=0D[o8  
    %       [X,Y] = meshgrid(x,x); [[ {L#  
    %       [theta,r] = cart2pol(X,Y); OynQlQD/Eu  
    %       idx = r<=1; ul@G{N{L   
    %       p = 0:15; mcO/V-\5'  
    %       z = nan(size(X)); dA4DW  
    %       y = zernfun2(p,r(idx),theta(idx)); R2K{vs  
    %       figure('Units','normalized') QAN :  
    %       for k = 1:length(p) +h*-9  
    %           z(idx) = y(:,k); F%|F-6  
    %           subplot(4,4,k) AIN Fv;  
    %           pcolor(x,x,z), shading interp vNo(`~]c  
    %           set(gca,'XTick',[],'YTick',[]) GS_+KR\  
    %           axis square [ {@0/5i  
    %           title(['Z_{' num2str(p(k)) '}']) jgpSFb<9F  
    %       end "wqN,}bj\  
    % ^/c v8M=  
    %   See also ZERNPOL, ZERNFUN. <yNu/B.M  
    *n]f)Jc  
    %   Paul Fricker 11/13/2006 y@GqAN'DK[  
    Vd%%lv{v  
    7# !RX3  
    % Check and prepare the inputs: 9$<1<  
    % ----------------------------- 4zo^ b0v  
    if min(size(p))~=1 IZ2(F,{o  
        error('zernfun2:Pvector','Input P must be vector.') kz30! L  
    end ^\"@r%|  
    41^=z[k  
    if any(p)>35 z:gp\  
        error('zernfun2:P36', ... HgY [Q}7s  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... VA D9mS^~  
               '(P = 0 to 35).']) yq7gBkS  
    end LZR x>q^  
    esh7*,7-z*  
    % Get the order and frequency corresonding to the function number: =5l20 Um  
    % ---------------------------------------------------------------- Q vc$D{z  
    p = p(:); 'GyO  
    n = ceil((-3+sqrt(9+8*p))/2); cVb&Jzd  
    m = 2*p - n.*(n+2); >v?&&FhHK<  
    v~.nP} E^  
    % Pass the inputs to the function ZERNFUN: uE'O}Y95  
    % ---------------------------------------- Nv[MU@Tv  
    switch nargin sV']p#HK0  
        case 3 GBg~NkC7.  
            z = zernfun(n,m,r,theta); Vf*Z}'  
        case 4 F9}jiCom  
            z = zernfun(n,m,r,theta,nflag); `AcUxnO  
        otherwise WgTD O3  
            error('zernfun2:nargin','Incorrect number of inputs.') MJ?fMR@  
    end VY1&YR}Y  
    on^m2pQ *p  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) VzTHW5B  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. uB@~xQ_V  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of \#(tI3  
    %   order N and frequency M, evaluated at R.  N is a vector of eJ ;a}{ 4%  
    %   positive integers (including 0), and M is a vector with the })F.Tjf*  
    %   same number of elements as N.  Each element k of M must be a ? h |&kRq  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) ud grZ/w]  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is a\l?7Jr  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix Q94Lq~?YF  
    %   with one column for every (N,M) pair, and one row for every cF V[k'F  
    %   element in R. [C^&iLX/F*  
    % ks|c'XQb  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- Da3Z>/S  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is 'c/S$_r  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to ^&Vj m  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 EA``G8Vn>  
    %   for all [n,m]. <zWMTVaC  
    % 2L(\-]%f  
    %   The radial Zernike polynomials are the radial portion of the t9eEcq Mg  
    %   Zernike functions, which are an orthogonal basis on the unit sS{!z@\Lf  
    %   circle.  The series representation of the radial Zernike SNOML7pd  
    %   polynomials is }.k*4Vw#Wt  
    % =n ff;Xu  
    %          (n-m)/2 MHqk-4Mz  
    %            __ \=&F\EV  
    %    m      \       s                                          n-2s )&{<gyS1  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r 80GBkFjV  
    %    n      s=0 vq` M]1]FO  
    % +R2+?v6  
    %   The following table shows the first 12 polynomials. 3j7Na#<tL3  
    % <8iu:nR  
    %       n    m    Zernike polynomial    Normalization b!4Z~d0=  
    %       --------------------------------------------- PJF1+I.%c#  
    %       0    0    1                        sqrt(2)  /~1Ew  
    %       1    1    r                           2 @L,4JPk  
    %       2    0    2*r^2 - 1                sqrt(6) Q+7+||RW  
    %       2    2    r^2                      sqrt(6) oJ.5! Kg  
    %       3    1    3*r^3 - 2*r              sqrt(8) [/Sk+ID  
    %       3    3    r^3                      sqrt(8) -{z<+(K!$  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) G0Y]-*1  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) ,<s/K  
    %       4    4    r^4                      sqrt(10) 6o)RsxN eu  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) 7h#*dj ef  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) k?;@5r)y-  
    %       5    5    r^5                      sqrt(12) @%"r69\  
    %       --------------------------------------------- lj /IN[U/  
    % +5x{|!Pn  
    %   Example: (91 YHhk{  
    % 0dW*].Gi:  
    %       % Display three example Zernike radial polynomials 8J)Kn4jq  
    %       r = 0:0.01:1; b6NGhkr'\  
    %       n = [3 2 5]; +z|@K=d#|  
    %       m = [1 2 1]; L\zyBfK}  
    %       z = zernpol(n,m,r); 1|dXbyUd  
    %       figure M2Jb<y]  
    %       plot(r,z) :MihVLF  
    %       grid on RxE.t[  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') ?*^HZ~O1  
    % t{-*@8Ke  
    %   See also ZERNFUN, ZERNFUN2. |OiM(E(  
    x~QZVL=:  
    % A note on the algorithm. 1hY%Zsj C  
    % ------------------------ 8?N![D\@  
    % The radial Zernike polynomials are computed using the series \Mzr[dI  
    % representation shown in the Help section above. For many special ~e _  
    % functions, direct evaluation using the series representation can \0n<6^y  
    % produce poor numerical results (floating point errors), because oU|_(p"e|  
    % the summation often involves computing small differences between ~"VM_Lz]5  
    % large successive terms in the series. (In such cases, the functions = N^Ec[u(l  
    % are often evaluated using alternative methods such as recurrence l5nm.i<M  
    % relations: see the Legendre functions, for example). For the Zernike JAX`iQd  
    % polynomials, however, this problem does not arise, because the Dkg^B@5Xr  
    % polynomials are evaluated over the finite domain r = (0,1), and lhX4 MB"  
    % because the coefficients for a given polynomial are generally all E[Q2ZqhgbP  
    % of similar magnitude. NG8 F'=<  
    % RiZ)#0  
    % ZERNPOL has been written using a vectorized implementation: multiple z.Vf,<H  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] MZ?+I~@  
    % values can be passed as inputs) for a vector of points R.  To achieve 2f6BZ8H+Z  
    % this vectorization most efficiently, the algorithm in ZERNPOL !l5@L\   
    % involves pre-determining all the powers p of R that are required to }wZsM[NDB  
    % compute the outputs, and then compiling the {R^p} into a single AC*SmQ\>!  
    % matrix.  This avoids any redundant computation of the R^p, and y@(EGfI  
    % minimizes the sizes of certain intermediate variables. \M;cF "e-S  
    % >Cam6LJ  
    %   Paul Fricker 11/13/2006 8g {;o 7  
    67Ev$a_d"  
    %\L{Ud%7  
    % Check and prepare the inputs: 3^iVDbAW{  
    % ----------------------------- CfT(a!;Eox  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) [A'e7Do%'  
        error('zernpol:NMvectors','N and M must be vectors.') WRrg5&._q  
    end Lvrflx*Q  
    hka%!W5  
    if length(n)~=length(m) vVZ+u4y  
        error('zernpol:NMlength','N and M must be the same length.') 5me#/NqLHY  
    end }`aT=_B  
    r4ljA@L  
    n = n(:); Jn%Etz-  
    m = m(:); y@SI)&D  
    length_n = length(n); D`fIw` _  
    XQ2 YUe]DJ  
    if any(mod(n-m,2)) X]D:vuB  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') BMtk/r/  
    end 2UIZ<#|D>s  
    =y>CO:^G%  
    if any(m<0) 6n|][! f  
        error('zernpol:Mpositive','All M must be positive.') }~p%e2<  
    end T*g}^TEh  
    ;oO_5[,M  
    if any(m>n) Jl1\*1"  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') yMD3h$w3a  
    end ??P %.  
    c D .;  
    if any( r>1 | r<0 ) wD /jN:  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') '#>Fe`[  
    end Yr\quinLL  
    d)0|Q  
    if ~any(size(r)==1) I%b5a`7  
        error('zernpol:Rvector','R must be a vector.') q VavP6I  
    end D< kf/hj  
    MEM(uBYKOb  
    r = r(:); #xfav19{.  
    length_r = length(r); m.<or?l'y>  
    :9e4(7~ona  
    if nargin==4 l](!2a=[  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); Uw| -d[!  
        if ~isnorm #M<YNuE#"  
            error('zernpol:normalization','Unrecognized normalization flag.') $inKI  
        end KE~.f(  
    else ~'|^|*}~Dj  
        isnorm = false;  vY"I  
    end VrWQ]L  
    `l6OQdB3W  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% EPA 2_  
    % Compute the Zernike Polynomials I_e7rE0 `  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% HXX9D&c4R  
    &M tF  
    % Determine the required powers of r: @ 'c(q=K;  
    % ----------------------------------- C+>mehDC_G  
    rpowers = []; Z78i7k}  
    for j = 1:length(n) CpK:u! Dn  
        rpowers = [rpowers m(j):2:n(j)]; fqBz"l>5A  
    end s>1\bio*I  
    rpowers = unique(rpowers); eA{A3.f"Hz  
    RCi8{~rIvS  
    % Pre-compute the values of r raised to the required powers, ).0p\.W~  
    % and compile them in a matrix: |onLJY7)  
    % ----------------------------- {:=W) 37U  
    if rpowers(1)==0 Efoy]6P\  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); <WnIJum  
        rpowern = cat(2,rpowern{:}); kd_! S[  
        rpowern = [ones(length_r,1) rpowern]; Hzc}NyJ  
    else 66sgs16k  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ! &cfX/y8  
        rpowern = cat(2,rpowern{:}); Y+kuj],h  
    end gI9nxy  
    ;JgSA&'e  
    % Compute the values of the polynomials: SL`; `//  
    % --------------------------------------  deq5u>  
    z = zeros(length_r,length_n); a8v\H8@X  
    for j = 1:length_n X-Ev>3H  
        s = 0:(n(j)-m(j))/2; +t&+f7  
        pows = n(j):-2:m(j); :'xZF2  
        for k = length(s):-1:1 Ui-Y `  
            p = (1-2*mod(s(k),2))* ... 9Y2.ob!$}  
                       prod(2:(n(j)-s(k)))/          ... xwW(WHdC]  
                       prod(2:s(k))/                 ... \){_\{&  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... S4c-i2Rq  
                       prod(2:((n(j)+m(j))/2-s(k))); 2}bXX'Y  
            idx = (pows(k)==rpowers); hN*v|LFf1  
            z(:,j) = z(:,j) + p*rpowern(:,idx); PW iuM=E  
        end w~+\Mfz  
         IwS<p -  
        if isnorm }eI9me@Aa  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1));  j=G  
        end f3^qO9R  
    end `sy_'`i>X  
    iQ1[60?)T  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    857
    光币
    847
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  + eZn  
    $UdFm8&  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 PA,\o8]x  
    6HpiG`  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)