切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10987阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 7`s* {  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! ]iU8n (5f  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 ]Sey|/@D  
    function z = zernfun(n,m,r,theta,nflag) {'-^CoR  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. Gw$Y`]ipy  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N #ZC9=  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 2@6Qifxd@  
    %   unit circle.  N is a vector of positive integers (including 0), and aBd>.]l?  
    %   M is a vector with the same number of elements as N.  Each element ` t>A~.f  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) h+c9FN  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, z j F'CY  
    %   and THETA is a vector of angles.  R and THETA must have the same )Z*nm<=  
    %   length.  The output Z is a matrix with one column for every (N,M) M?d(-en  
    %   pair, and one row for every (R,THETA) pair. dw-o71(1d  
    % X:/7#fcG8  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike o?g9Grk  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), fB)S:f|  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral KY%LqcC  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 2M>`W5  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized P8X59^cJ  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. @iU(4eX  
    % C"0vMUZ  
    %   The Zernike functions are an orthogonal basis on the unit circle. RhWW61!"  
    %   They are used in disciplines such as astronomy, optics, and arc{:u.K  
    %   optometry to describe functions on a circular domain. m@y<wk(  
    % Lng@'Yr  
    %   The following table lists the first 15 Zernike functions. a0jzt!ci  
    % sd _DG8V  
    %       n    m    Zernike function           Normalization  \62!{  
    %       -------------------------------------------------- $!vK#8-&{  
    %       0    0    1                                 1 1d!TU=*  
    %       1    1    r * cos(theta)                    2 J)EL<K$Z[  
    %       1   -1    r * sin(theta)                    2 7lx]`u>  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) '-BD.^!!  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 3>6rO4,  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) G-TD9OgZ  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 3ESrd"W=  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) b(Yxsy{U  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) gh-i| i,  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) xnDst9%  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) Ae;mU[MK/  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) )SHB1U25{  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) cR=o!2O  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) C{>dE:*K^  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) G+t=+T2m  
    %       -------------------------------------------------- + } y"S-  
    % IQWoK"B  
    %   Example 1: 3*E] :l_  
    % 3$9V4v@2  
    %       % Display the Zernike function Z(n=5,m=1) KJv[z   
    %       x = -1:0.01:1; txiX1o!/L  
    %       [X,Y] = meshgrid(x,x); #fDM{f0]R  
    %       [theta,r] = cart2pol(X,Y); \ cdns;  
    %       idx = r<=1; RgVnx]IF  
    %       z = nan(size(X)); !tSh9L;<O  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); )XDbg>  
    %       figure 92ngSaNC  
    %       pcolor(x,x,z), shading interp 4N5\sdi  
    %       axis square, colorbar j XYr&F  
    %       title('Zernike function Z_5^1(r,\theta)') /z )Nz2W  
    % p~v0pi  
    %   Example 2: lMgPwvs'  
    % (3Z;c_N  
    %       % Display the first 10 Zernike functions m:c0S8#:  
    %       x = -1:0.01:1; VHG}'r9KC%  
    %       [X,Y] = meshgrid(x,x); 7u:QT2=&  
    %       [theta,r] = cart2pol(X,Y); =&)R2pLs*  
    %       idx = r<=1; yG^pND>_df  
    %       z = nan(size(X)); Hb[P|pPT  
    %       n = [0  1  1  2  2  2  3  3  3  3]; X6j:TF  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; QabLMq@n`  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; aK8s0G!z?5  
    %       y = zernfun(n,m,r(idx),theta(idx)); }lP`3e  
    %       figure('Units','normalized') $WO{!R  
    %       for k = 1:10 @SI,V8i  
    %           z(idx) = y(:,k); 6(>,qt,9S  
    %           subplot(4,7,Nplot(k)) =y=MljEX  
    %           pcolor(x,x,z), shading interp (|pM^+  
    %           set(gca,'XTick',[],'YTick',[]) R7A:K]iJ5  
    %           axis square qC B{dp/  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) QQt4pDir>  
    %       end g""Ep  
    % iz0:  
    %   See also ZERNPOL, ZERNFUN2. 03.\!rZZ  
    i7e_~K  
    %   Paul Fricker 11/13/2006 wG73GD38  
    HM#|&_gV  
    B=%x#em  
    % Check and prepare the inputs: ^b4i9n,t1  
    % ----------------------------- ?g:sAR'  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) )  `fE'$2  
        error('zernfun:NMvectors','N and M must be vectors.') {q^UWv?1  
    end PsZ>L  
    av_ +M;G  
    if length(n)~=length(m) MY^o0N  
        error('zernfun:NMlength','N and M must be the same length.') [ P,gEYk  
    end VB`% u=  
    SXC 7LJm<g  
    n = n(:); /&9R*xNST#  
    m = m(:); 3"sXN)j  
    if any(mod(n-m,2)) |7Qe{  
        error('zernfun:NMmultiplesof2', ... 6  $`l  
              'All N and M must differ by multiples of 2 (including 0).') UY .-Qt  
    end hZw8*H^tP  
    (/E@.z[1  
    if any(m>n) RRQIlI<  
        error('zernfun:MlessthanN', ... 3#Iq5vT  
              'Each M must be less than or equal to its corresponding N.') uL ~wMX  
    end IyM:9=}5  
    S~R[*Gk_uT  
    if any( r>1 | r<0 ) 5#y_EpL"  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') =\mJ5v"hA  
    end $R+rB;=a!  
    ?6HnN0A)  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Dy:r)\KX  
        error('zernfun:RTHvector','R and THETA must be vectors.') qlnA7cK!  
    end $/$Hi U`.  
    T^{=cx9x9  
    r = r(:); d\zUtcJwC  
    theta = theta(:); ZUvc|5]  
    length_r = length(r); /x4L,UJ= P  
    if length_r~=length(theta) .gM6m8l9wp  
        error('zernfun:RTHlength', ... R&$fWV;'  
              'The number of R- and THETA-values must be equal.') y.s\MWvv>u  
    end 3E0C$v KM  
    uKj(=Rqq  
    % Check normalization: Yh Ow0 x  
    % -------------------- }0f~hL24  
    if nargin==5 && ischar(nflag) jfVw{\l  
        isnorm = strcmpi(nflag,'norm'); RS#C4NG  
        if ~isnorm *_P'>V#p  
            error('zernfun:normalization','Unrecognized normalization flag.') ^ 8YBW<9  
        end jp1e3 Cg  
    else *Vg)E*s  
        isnorm = false; sXNb  
    end LDYa{w-t  
    s%8,'3&  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% A-J#$B  
    % Compute the Zernike Polynomials i29a1nD4Hm  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  ;]bW  
    4Xww(5?3  
    % Determine the required powers of r: TQPrOs?  
    % ----------------------------------- o,S(;6pDJ  
    m_abs = abs(m); M?o_J4  
    rpowers = []; n&DBMU  
    for j = 1:length(n) z`NJelcuz\  
        rpowers = [rpowers m_abs(j):2:n(j)]; H/.UDz  
    end 6urU[t1  
    rpowers = unique(rpowers); w9mAeGyE  
    AX Q.E$1g  
    % Pre-compute the values of r raised to the required powers, `U|zNizO  
    % and compile them in a matrix: EEo I|  
    % ----------------------------- Se37-  
    if rpowers(1)==0  A; *<  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 3(nnN[?N,5  
        rpowern = cat(2,rpowern{:}); TA qX f_  
        rpowern = [ones(length_r,1) rpowern]; mx}4iO:Xp  
    else L"NfOST3'R  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); l;&kX6 w  
        rpowern = cat(2,rpowern{:}); I?Z"YR+MQ  
    end u} +?'B)  
    IGi9YpI&K  
    % Compute the values of the polynomials: )]4=anJu@|  
    % -------------------------------------- /{[p?7x>  
    y = zeros(length_r,length(n)); T LF'7ufq  
    for j = 1:length(n) Koj9]2<0  
        s = 0:(n(j)-m_abs(j))/2; ^SW9J^9  
        pows = n(j):-2:m_abs(j); g/\cN(X  
        for k = length(s):-1:1 $DtUTh3)  
            p = (1-2*mod(s(k),2))* ... I6gduvkXi4  
                       prod(2:(n(j)-s(k)))/              ... k@h0 }%  
                       prod(2:s(k))/                     ... 4i5b.b U$  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... HgBu:x?&  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); O{Mn\M6  
            idx = (pows(k)==rpowers); da_0{;wR  
            y(:,j) = y(:,j) + p*rpowern(:,idx); CS5[E-%}T=  
        end OVc)PMp  
         JfK4|{@  
        if isnorm ]ms+ Va_/  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); SJlE!MK  
        end n3qRt  
    end *"4l}&  
    % END: Compute the Zernike Polynomials ~jmI`X/  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% {E7STLQ_%  
    F%af05L[  
    % Compute the Zernike functions: x8~*+ j  
    % ------------------------------ q_mxZM ->  
    idx_pos = m>0; {,Rlq  
    idx_neg = m<0; Cud!JpL  
    TIR Is1  
    z = y; 45$aq~%as  
    if any(idx_pos) 7s!rer>  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ' I!/I  
    end eT]*c?"  
    if any(idx_neg) 412E7   
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); zMBGpqdP  
    end z|Yt|W  
    ; sqxFF@  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) 0>]&9'cn  
    %ZERNFUN2 Single-index Zernike functions on the unit circle.  6pfkv2.}  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated 4FZ/~Y1}  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive yLK %lP  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, YnW9uy5  
    %   and THETA is a vector of angles.  R and THETA must have the same 3Co1bY:  
    %   length.  The output Z is a matrix with one column for every P-value, qPWf=s7!  
    %   and one row for every (R,THETA) pair. [p}~M-$V8Y  
    % Aayd3Ph0%  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike G"kX#k0S  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) [z+YX s!N  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) `P-d. M6Oa  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 8bO+[" c  
    %   for all p. bn5O2  
    % pSIXv%1J  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 Y9vVi]4  
    %   Zernike functions (order N<=7).  In some disciplines it is 'zT7$ .L  
    %   traditional to label the first 36 functions using a single mode N'$P( bx  
    %   number P instead of separate numbers for the order N and azimuthal ^Jdg%U?  
    %   frequency M. NWQ7%~#k*  
    % 4^4T#f2=e  
    %   Example:  cz>)6#&O  
    % ko'V8r `V  
    %       % Display the first 16 Zernike functions _bg Zl  
    %       x = -1:0.01:1; ! r/~D |  
    %       [X,Y] = meshgrid(x,x); !dcvG9JZ  
    %       [theta,r] = cart2pol(X,Y); GK6CnSV8d  
    %       idx = r<=1; zb02\xvf  
    %       p = 0:15; ;X0uA?  
    %       z = nan(size(X)); 0Q8iX)  
    %       y = zernfun2(p,r(idx),theta(idx)); z7)$m0',?  
    %       figure('Units','normalized') % W|Sl  
    %       for k = 1:length(p) !W0JT#0  
    %           z(idx) = y(:,k); ~i'!;'-_}  
    %           subplot(4,4,k) SkVah:cF-  
    %           pcolor(x,x,z), shading interp Z?3B1o9  
    %           set(gca,'XTick',[],'YTick',[]) \yxGE+~P  
    %           axis square 4e; le&  
    %           title(['Z_{' num2str(p(k)) '}']) Zy:q)'D=  
    %       end nGc'xQy0  
    % ^T1caVb|>  
    %   See also ZERNPOL, ZERNFUN. zcH"Kh&  
    kApDD[ N  
    %   Paul Fricker 11/13/2006 TlX:05/V8  
    '"rm66  
    9Av{>W?  
    % Check and prepare the inputs: p|a`Q5z!  
    % ----------------------------- M 0RA&  
    if min(size(p))~=1 xS+xUi  
        error('zernfun2:Pvector','Input P must be vector.') I69Z'}+qz  
    end MTgf.  
    ZC<EPUV(  
    if any(p)>35 f4NN?"W)  
        error('zernfun2:P36', ... D;+Y0B  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... ncOl}\Q9  
               '(P = 0 to 35).']) yT7{,Z7t  
    end \ :q@I]2  
    t U~q4$qqE  
    % Get the order and frequency corresonding to the function number: &G\C[L  
    % ---------------------------------------------------------------- -HuIz6  
    p = p(:); T-kHk(  
    n = ceil((-3+sqrt(9+8*p))/2); %]tW2s"  
    m = 2*p - n.*(n+2); p<l+js(5|  
    d.B<1"MQ  
    % Pass the inputs to the function ZERNFUN: V2@( BliP  
    % ---------------------------------------- !O'p{dj][  
    switch nargin ';D>Z ?l  
        case 3 K]7[|qf&   
            z = zernfun(n,m,r,theta); EqIs&){  
        case 4 EUH9R8)  
            z = zernfun(n,m,r,theta,nflag); ^( 7l!  
        otherwise HTMo.hr  
            error('zernfun2:nargin','Incorrect number of inputs.') c*" P+  
    end ,lFzL3'_0x  
    @$$ J}~{  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) 7suT26C  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. B/3xV:Gy  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of Cgf4E{\U!  
    %   order N and frequency M, evaluated at R.  N is a vector of I\j-  
    %   positive integers (including 0), and M is a vector with the 6ZjY-)h  
    %   same number of elements as N.  Each element k of M must be a A4;~+L:M  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) #Wb4*  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is 5,|{|/  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix ozHL'H  
    %   with one column for every (N,M) pair, and one row for every %6M%PR~u  
    %   element in R. c@4$)68  
    % ^hT2 ed +  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- [+}0K{(O=  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is UKB/>:R  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to G1ruF8  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 vJx( lU`Y  
    %   for all [n,m]. uo|:n"v  
    % j*1MnP3/8Y  
    %   The radial Zernike polynomials are the radial portion of the mU||(;I  
    %   Zernike functions, which are an orthogonal basis on the unit  Sb)}  
    %   circle.  The series representation of the radial Zernike ^EmePkPI  
    %   polynomials is 65RD68a  
    % $V/Ke  
    %          (n-m)/2 lC d\nE8G  
    %            __ ,&Zk63V  
    %    m      \       s                                          n-2s n1'i!NWt  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r #}tdA( -  
    %    n      s=0 {5+69&:G.  
    % ;~`/rh V\  
    %   The following table shows the first 12 polynomials. Wm)Id_  
    % OsYZ a`$,  
    %       n    m    Zernike polynomial    Normalization 2IkyC`  
    %       --------------------------------------------- Q(BZg{  
    %       0    0    1                        sqrt(2) r.=.,R  
    %       1    1    r                           2 -|=)  
    %       2    0    2*r^2 - 1                sqrt(6) ##1/{9ywy  
    %       2    2    r^2                      sqrt(6) n+vv %  
    %       3    1    3*r^3 - 2*r              sqrt(8) `P*wZKlW  
    %       3    3    r^3                      sqrt(8) ~1S,[5u|s  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) "`a,/h'  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) RYl\Q,#  
    %       4    4    r^4                      sqrt(10) jz\>VYi(7  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) f&$$*a  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) k6\&[BQs  
    %       5    5    r^5                      sqrt(12) {?3i^Q=V  
    %       --------------------------------------------- 6&2{V? W3  
    % bp}]'NA  
    %   Example: <0jM07\<  
    % OO,%zwgt  
    %       % Display three example Zernike radial polynomials rK'O 85)eU  
    %       r = 0:0.01:1; Yb:F,d-Ya  
    %       n = [3 2 5]; cBCC/n  
    %       m = [1 2 1]; iqsR]mab  
    %       z = zernpol(n,m,r); m/,8\+  
    %       figure _u~`RlA  
    %       plot(r,z) C]na4yE 8  
    %       grid on wDBU+Z  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') {L M Q  
    %  (8 /&  
    %   See also ZERNFUN, ZERNFUN2. -KqMSf&9  
    FIQHs"#T  
    % A note on the algorithm. V[7D4r.j  
    % ------------------------ 0]GenT"   
    % The radial Zernike polynomials are computed using the series gN<J0c)  
    % representation shown in the Help section above. For many special ]XYD2fR2qA  
    % functions, direct evaluation using the series representation can i&)OJy  
    % produce poor numerical results (floating point errors), because ^Q!A4 qOQ  
    % the summation often involves computing small differences between aHNn!9#1  
    % large successive terms in the series. (In such cases, the functions 4'N 4,3d$  
    % are often evaluated using alternative methods such as recurrence ydE}.0zN  
    % relations: see the Legendre functions, for example). For the Zernike A "'h0D  
    % polynomials, however, this problem does not arise, because the /d$kz&aIV  
    % polynomials are evaluated over the finite domain r = (0,1), and $bZ5@)E  
    % because the coefficients for a given polynomial are generally all Ve40H6 Ox  
    % of similar magnitude. w3ZO CWJS  
    % e&Z ?I2J  
    % ZERNPOL has been written using a vectorized implementation: multiple OgCNq W d-  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] X%`:waR  
    % values can be passed as inputs) for a vector of points R.  To achieve QS-X_  
    % this vectorization most efficiently, the algorithm in ZERNPOL @U =~ c9  
    % involves pre-determining all the powers p of R that are required to $vn x)#r3  
    % compute the outputs, and then compiling the {R^p} into a single Z)}2bJwA  
    % matrix.  This avoids any redundant computation of the R^p, and %+C6#cj  
    % minimizes the sizes of certain intermediate variables. ^<j =.E  
    % U.N& ~S  
    %   Paul Fricker 11/13/2006 zN\C  
    :y_] JL;w  
    !0v3Lu ~j  
    % Check and prepare the inputs: 6O*lZNN  
    % ----------------------------- NK%Ok  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ]qEg5:yY  
        error('zernpol:NMvectors','N and M must be vectors.') Q>L.  
    end bj?=\u  
    r( zn1;zl  
    if length(n)~=length(m) Rq|]KAN  
        error('zernpol:NMlength','N and M must be the same length.') m RC   
    end s/P+?8'9  
    &=wvlI52`  
    n = n(:); SPtx_+ Q)S  
    m = m(:); I(Vg  
    length_n = length(n); pLMaXX~4_  
    zbvV:9N  
    if any(mod(n-m,2)) d$n<^ ~Z  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') -<(RYMk*)  
    end !y$+RA7\  
    n ON]YDg  
    if any(m<0) 0*AXd=)"*  
        error('zernpol:Mpositive','All M must be positive.') .(yJ+NU  
    end akWOE}5#  
    NT9|``^Z  
    if any(m>n) VWqZ`X  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') ?0lz!Nq'S  
    end | S'mF6Y  
    1*trtb4F  
    if any( r>1 | r<0 ) w`gT]Rn  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') Bz>5OuOVS\  
    end dKa2_|k'  
    8wn{W_5a  
    if ~any(size(r)==1) ff00s+  
        error('zernpol:Rvector','R must be a vector.') #IU^(W  
    end 4AKPS&k;  
    v <OZ # L$  
    r = r(:); Xc L%0%`  
    length_r = length(r); + 7wMM#z  
    d *#.(C9^  
    if nargin==4 "ZFH_5<  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); =uR3|U(.|u  
        if ~isnorm Mu6DT p~k  
            error('zernpol:normalization','Unrecognized normalization flag.') 4I*'(6 ,!  
        end e -b>   
    else >qd=lm <,  
        isnorm = false; "w__AYHV  
    end {P )O#  
    R'fEw3^  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% kr-5O0tmf  
    % Compute the Zernike Polynomials  , YlS  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ,,lR\!>8  
    Z EvK  
    % Determine the required powers of r: )RQQhB  
    % ----------------------------------- z|\n^ZK=  
    rpowers = []; 0;hn;(V]"  
    for j = 1:length(n) FOjX,@x&  
        rpowers = [rpowers m(j):2:n(j)]; nwIj?(8x  
    end mmy/YP)  
    rpowers = unique(rpowers); p 8Z;QH*  
    ]ZNFrpq  
    % Pre-compute the values of r raised to the required powers, zMd><UQP{  
    % and compile them in a matrix: =y`-:j\  
    % ----------------------------- E0+~c1P-  
    if rpowers(1)==0 0?O_]SD  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); MZ~N}y  
        rpowern = cat(2,rpowern{:}); m7i(0jd +  
        rpowern = [ones(length_r,1) rpowern]; : t /0  
    else D]N)  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ab]Q1kD  
        rpowern = cat(2,rpowern{:}); oA@c.%&  
    end '%o^#gJp  
    ln8es{q  
    % Compute the values of the polynomials: A;o({9VH`Z  
    % -------------------------------------- "<^n@=g'q  
    z = zeros(length_r,length_n); W>: MK-_ J  
    for j = 1:length_n (!YJ:,!so  
        s = 0:(n(j)-m(j))/2; =&(e*u_  
        pows = n(j):-2:m(j); 1/K1e$r  
        for k = length(s):-1:1 ($W%&(:/  
            p = (1-2*mod(s(k),2))* ... [jrfh>v  
                       prod(2:(n(j)-s(k)))/          ... MH0wpHz  
                       prod(2:s(k))/                 ... v5U'ky :  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... {dn:1IcN  
                       prod(2:((n(j)+m(j))/2-s(k))); s)KlKh  
            idx = (pows(k)==rpowers); 4;eD}g  
            z(:,j) = z(:,j) + p*rpowern(:,idx); 5fYWuc9}z  
        end q- 0q:  
         ~$hR:I1  
        if isnorm q03+FLEfC  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); q?@*  
        end >y(loMl  
    end tmoaa!yRnT  
    M9m~ck  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  t8h*SHD9  
    B@i%B+qCLv  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 l 'wu-  
    |3!)  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)