非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 /ommM
function z = zernfun(n,m,r,theta,nflag) uA~?z:~=
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. @.} @K
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 3ICM H
% and angular frequency M, evaluated at positions (R,THETA) on the ^CW{`eBwk
% unit circle. N is a vector of positive integers (including 0), and 23/;W|
% M is a vector with the same number of elements as N. Each element M=Y['wx
% k of M must be a positive integer, with possible values M(k) = -N(k) 6rMNp"!
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, c+501's
% and THETA is a vector of angles. R and THETA must have the same G$VE
o8Blb
% length. The output Z is a matrix with one column for every (N,M) *+_+ZDU
% pair, and one row for every (R,THETA) pair. ]|_+lik#
% +!$]a^3l
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 5=/j
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), <aQ5chf7
% with delta(m,0) the Kronecker delta, is chosen so that the integral 1t}
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, *vOk21z77d
% and theta=0 to theta=2*pi) is unity. For the non-normalized f7:}t+d
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ##nC@h@
% RKy!=#;17
% The Zernike functions are an orthogonal basis on the unit circle. qm< mw"]
% They are used in disciplines such as astronomy, optics, and CTJwZY7
% optometry to describe functions on a circular domain. W~/{ct$Y
% ;e$YM;;d
% The following table lists the first 15 Zernike functions. 5A+r^xN
% r0q?e`nsA
% n m Zernike function Normalization s&1}^'|
% -------------------------------------------------- fT{%zJU
% 0 0 1 1 ~L:H]_8F l
% 1 1 r * cos(theta) 2 vsJM[$RF
% 1 -1 r * sin(theta) 2 :D~J(Y2
% 2 -2 r^2 * cos(2*theta) sqrt(6) <YvW /x
% 2 0 (2*r^2 - 1) sqrt(3) lr ]C'dD
% 2 2 r^2 * sin(2*theta) sqrt(6) %H4>k#b@$
% 3 -3 r^3 * cos(3*theta) sqrt(8) ^w_\D?
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) Rd[^)q4d$w
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) GOD{?#c$
% 3 3 r^3 * sin(3*theta) sqrt(8) y7x*:xR[
% 4 -4 r^4 * cos(4*theta) sqrt(10) fWyXy%Qq
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) NRazI_Z
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) K9ek
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) hG>kx8h
% 4 4 r^4 * sin(4*theta) sqrt(10) u>/Jb+
% -------------------------------------------------- =3dd1n;8>
% kAq#cLprG
% Example 1: -PTfsQk
% OO\$'%
y`
% % Display the Zernike function Z(n=5,m=1) N v6=[_D
% x = -1:0.01:1; Z29aRi
% [X,Y] = meshgrid(x,x); b8!
% [theta,r] = cart2pol(X,Y); Nka 3H7`
% idx = r<=1; Uh+6fE]p
% z = nan(size(X)); \-8aTF
% z(idx) = zernfun(5,1,r(idx),theta(idx)); WZ=$c]gG
% figure D9!$H!T _
% pcolor(x,x,z), shading interp c$x>6&&L
% axis square, colorbar 'xGTaKlm,
% title('Zernike function Z_5^1(r,\theta)') )FN$Jlo
% $e:bDZ(hjj
% Example 2: <==6fc>s
% xNjWo*y v
% % Display the first 10 Zernike functions Re*_Dt=r
% x = -1:0.01:1; 'V\V=yc1
% [X,Y] = meshgrid(x,x); &0]5zQ
% [theta,r] = cart2pol(X,Y); 6FY.kN\
% idx = r<=1; bnJ4Edy
% z = nan(size(X)); tVh"C%Vkr
% n = [0 1 1 2 2 2 3 3 3 3]; &Bqu2^^
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; ;9LOeH?
% Nplot = [4 10 12 16 18 20 22 24 26 28]; M 0$E_*
% y = zernfun(n,m,r(idx),theta(idx)); ^bq,+1;@Q
% figure('Units','normalized') tG~[E,/`
% for k = 1:10 D@kf^1G
% z(idx) = y(:,k); MaPI<kYQv
% subplot(4,7,Nplot(k)) k n/xt
% pcolor(x,x,z), shading interp !t}yoN
n|
% set(gca,'XTick',[],'YTick',[]) ]CPF7Hf
% axis square J|vg<[
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) VOIni<9y
% end s6'=4gM
% #q W#>0U
% See also ZERNPOL, ZERNFUN2. |a%Wd
[LO=k|&R
% Paul Fricker 11/13/2006 g>l+oH[Tv|
wB&5q!{!
_!_1=|[
% Check and prepare the inputs: `3`.usw
% ----------------------------- t7Mq>rFB
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) nLx|$=W
error('zernfun:NMvectors','N and M must be vectors.') 6b9J3~d\E
end zQ#*O'-n
%NM={X|'
if length(n)~=length(m) |(AFU3~
error('zernfun:NMlength','N and M must be the same length.') (][-()YV
end .(3ec/i4CF
X?XB!D7[
n = n(:); v\_\bT1
m = m(:); IUNr<w<
if any(mod(n-m,2)) q^?a|l
error('zernfun:NMmultiplesof2', ... #sxv?r
'All N and M must differ by multiples of 2 (including 0).') [P6m8%Y|s
end ]"~
x
w)B?j
if any(m>n) zWH)\>X59
error('zernfun:MlessthanN', ... -m@PqJF^
'Each M must be less than or equal to its corresponding N.') WIuYSt)h
end r-yUWIr
S
TiF+rA{t
if any( r>1 | r<0 ) Ln t 1
error('zernfun:Rlessthan1','All R must be between 0 and 1.') -e_op'`
end .FC+
3zu6#3^
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ,aa
4Kh
error('zernfun:RTHvector','R and THETA must be vectors.') 1z-A3a/-
end >^GV
#z
0{ ~2mgg h
r = r(:); SOn)'!g
theta = theta(:); 1U/RMN3`
length_r = length(r); 9 M%Gnz
if length_r~=length(theta) a2tEp+7?
error('zernfun:RTHlength', ... ^i_+ugJX
'The number of R- and THETA-values must be equal.') H7z)OaM
end 0zkMRBe
^+v1[U@
% Check normalization: Z) 2d4:uv
% -------------------- C=]<R<Xy
if nargin==5 && ischar(nflag) 6>oc,=MV/
isnorm = strcmpi(nflag,'norm'); vSC1n8 /
if ~isnorm p)ig~kk`
error('zernfun:normalization','Unrecognized normalization flag.') sZT~5c8
end @c'iT20
else #QIY+muN
isnorm = false; C\~}ySQc.e
end 6h2keyod
J?yasjjgP
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
{it}\[3
% Compute the Zernike Polynomials rq4g~e!S
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% AvB=/p@]
jC4>%!{m
% Determine the required powers of r: Nw$OJ9$L>
% ----------------------------------- ..X _nF
m_abs = abs(m); 7 QNx*8 p
rpowers = []; =CJ`0yDQ>
for j = 1:length(n) CuvY^["
rpowers = [rpowers m_abs(j):2:n(j)]; ZTV)D
end |Z{#DOT
rpowers = unique(rpowers); HY
FMf3
yn_f%^!G
% Pre-compute the values of r raised to the required powers, #qYgQ<TM!
% and compile them in a matrix: vI0,6fOd6
% ----------------------------- &1yJrj9y
if rpowers(1)==0 wjwCs`
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); D
5n\h5
rpowern = cat(2,rpowern{:}); 1W{ oj
rpowern = [ones(length_r,1) rpowern]; &K[sb%
else TB* t^E
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); G)%V 3h
rpowern = cat(2,rpowern{:}); Zk((VZ(y
end }P0bNY5?%
Z@Zg3AVU
% Compute the values of the polynomials: [`b,SX
x
% -------------------------------------- <)wLxWalF
y = zeros(length_r,length(n)); ~`FRU/@r
for j = 1:length(n) @Kz,TP!%A
s = 0:(n(j)-m_abs(j))/2; @n?"*B
pows = n(j):-2:m_abs(j); KR?aL:RYb
for k = length(s):-1:1 ''@Tke3IG6
p = (1-2*mod(s(k),2))* ... Rw{'
O]Q*
prod(2:(n(j)-s(k)))/ ... [0y,K{8t
prod(2:s(k))/ ... Zf3(!
a[
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... *3`R W<Z
prod(2:((n(j)+m_abs(j))/2-s(k))); L%/>Le}VX
idx = (pows(k)==rpowers); Os'E7;:1h
y(:,j) = y(:,j) + p*rpowern(:,idx); iYgVSVNg
end cM'MgX9
hdx_Tduue
if isnorm t3Gy *B
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); hS8M|_
end &uRT/+18W3
end _>\33V-?b
% END: Compute the Zernike Polynomials 5?SE?VC=t
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% pI-Qq%Nwt
-Yse^(^"s
% Compute the Zernike functions: XjN=UhC
% ------------------------------ ocWl]h].
idx_pos = m>0; (0q`eO2
idx_neg = m<0; k-
9i
IC'+{3.m8
z = y; 3WF]%P%
if any(idx_pos) 4;J.$
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); #~nXAs]Q
end Ve%ua]qA
if any(idx_neg) ~Ze!F"
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); yZ,pH1
end S8dfe~ |7:
.8^mA1fmX
% EOF zernfun