切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11692阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 #|sE]\bsH  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! hQ|mow@Zmz  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 "_UnN}Uk  
    function z = zernfun(n,m,r,theta,nflag) iM8Cw/DS  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. {qw'gJmX  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N G `|7NL   
    %   and angular frequency M, evaluated at positions (R,THETA) on the --]blP7  
    %   unit circle.  N is a vector of positive integers (including 0), and gxO~44"  
    %   M is a vector with the same number of elements as N.  Each element {gzQ/|}#z-  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) XuP%/\  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, %i\rw*f  
    %   and THETA is a vector of angles.  R and THETA must have the same M %,\2!$  
    %   length.  The output Z is a matrix with one column for every (N,M) jsAx;Z:QT  
    %   pair, and one row for every (R,THETA) pair. e;vI XJE  
    % uYebRCdR  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike "7sv@I_j  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), @|(cr: (=H  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral qq!ZYWy2  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, c%5P|R~g]p  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized R_j.k3r4d  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 7NJl+*u  
    % J;>;K6pW  
    %   The Zernike functions are an orthogonal basis on the unit circle. rTR$\ [C  
    %   They are used in disciplines such as astronomy, optics, and  !y@\w  
    %   optometry to describe functions on a circular domain. ;\th.!'rn  
    % 2}<tzDI'  
    %   The following table lists the first 15 Zernike functions. F(1E@xs  
    % p@78Xmu?q  
    %       n    m    Zernike function           Normalization (g;O,`|c,  
    %       -------------------------------------------------- $x }R2  
    %       0    0    1                                 1 3sV$#l P  
    %       1    1    r * cos(theta)                    2 ox SSEs  
    %       1   -1    r * sin(theta)                    2 iJOoO"Ai  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ;8#6da,  
    %       2    0    (2*r^2 - 1)                    sqrt(3) N]yT/8  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) Ju>QQOxi|  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 9(fh+  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) OR&pGoW  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 8@vq.z}  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) (w-"1(  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) kt Z~r. +  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) to13&#o  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) !43nL[]  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ->qRGUW  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) SkV pZh  
    %       -------------------------------------------------- ~V(>L=\V;  
    % hg12NzbK  
    %   Example 1: Jb{g{a/  
    % VP< zOk7  
    %       % Display the Zernike function Z(n=5,m=1) t[k ['<G  
    %       x = -1:0.01:1; Sy?^+JdM/  
    %       [X,Y] = meshgrid(x,x); pKXSJ"Xo  
    %       [theta,r] = cart2pol(X,Y); 3T(ft^~  
    %       idx = r<=1; >? o5AdZ  
    %       z = nan(size(X)); X,@nD@  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); At>e4t2@  
    %       figure &5jc &CS  
    %       pcolor(x,x,z), shading interp #}.{|'L  
    %       axis square, colorbar .\H-?6R^  
    %       title('Zernike function Z_5^1(r,\theta)') 8r}tf3xMCM  
    % &pl)E$Y  
    %   Example 2: ]l }v  
    % L]=mQo  
    %       % Display the first 10 Zernike functions ?p6@uM\Q7  
    %       x = -1:0.01:1; MuO(%.H  
    %       [X,Y] = meshgrid(x,x); B_#M)d O  
    %       [theta,r] = cart2pol(X,Y); y<gRl/e  
    %       idx = r<=1; ^Zpz@T>m  
    %       z = nan(size(X)); Up-^km  
    %       n = [0  1  1  2  2  2  3  3  3  3]; D7R;IA-w  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 1$))@K-I  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; rSDI.m   
    %       y = zernfun(n,m,r(idx),theta(idx)); Dg^s$2  
    %       figure('Units','normalized') zKk=R6w  
    %       for k = 1:10 x15&U\U  
    %           z(idx) = y(:,k); 1_&W1o  
    %           subplot(4,7,Nplot(k)) q8_E_s-U,  
    %           pcolor(x,x,z), shading interp /hg^hF  
    %           set(gca,'XTick',[],'YTick',[]) _7v4S/V  
    %           axis square `-s]d q  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 0(5qVJ12  
    %       end G{pF! q  
    % xxGQXW  
    %   See also ZERNPOL, ZERNFUN2. ='I2&I,)  
    g:^Hex?Yfd  
    %   Paul Fricker 11/13/2006 E08!a  
    Mj0jpP<uf  
    r"L:Mu  
    % Check and prepare the inputs: rk+s[Qi~  
    % ----------------------------- q%s<y+  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) DbI)tDi5D  
        error('zernfun:NMvectors','N and M must be vectors.') G"J 8i|~  
    end =J-&usX  
    abVEi[nP  
    if length(n)~=length(m) 5[6{o$I  
        error('zernfun:NMlength','N and M must be the same length.') L$Xkx03lz>  
    end +IGSOWL  
    2e,cE6r  
    n = n(:); <@>icDFEHn  
    m = m(:); 4\U"e*  
    if any(mod(n-m,2)) 22d>\u+c  
        error('zernfun:NMmultiplesof2', ... !y1qd  
              'All N and M must differ by multiples of 2 (including 0).') TD;u"  
    end aE]RVyG@L  
    RXO}mu]Iu  
    if any(m>n) m 2%  
        error('zernfun:MlessthanN', ... ZV/g_i #  
              'Each M must be less than or equal to its corresponding N.') Rs]Y/9F;{  
    end !9S!zRy@  
    {- &wV  
    if any( r>1 | r<0 ) LK|rLoia:  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') x;&iLQZh  
    end QF.M%she+  
    [ { F;4> g  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) \!)1n[N  
        error('zernfun:RTHvector','R and THETA must be vectors.') i:R_g]  
    end hs)_h^P   
    gE&83i"  
    r = r(:); ,PWMl [X  
    theta = theta(:); P1qnU  
    length_r = length(r); #9(iu S+BU  
    if length_r~=length(theta) E zU=q E  
        error('zernfun:RTHlength', ... R"`<ZY6(Ou  
              'The number of R- and THETA-values must be equal.') H"JzTo8u  
    end @oRo6Y<-  
    ?Ql<s8  
    % Check normalization: T ^`R  
    % -------------------- 4n\O6$&.x  
    if nargin==5 && ischar(nflag) )k 6z  
        isnorm = strcmpi(nflag,'norm'); bmRp)CYd  
        if ~isnorm eeUEqM$7EX  
            error('zernfun:normalization','Unrecognized normalization flag.') l5Q-M{w0x  
        end a [BIY&/Q  
    else ;3O=lo:$~  
        isnorm = false; .gwT?O,  
    end ibuoq X`  
    UDgUbi^v|D  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% .Nd_p{   
    % Compute the Zernike Polynomials QL@}hw.F  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% D89 (u.h  
    UTxqqcqEny  
    % Determine the required powers of r: YLNJ4nE  
    % ----------------------------------- JW=P} h  
    m_abs = abs(m); Z&Z= 24q_  
    rpowers = []; D7,{p2<2T  
    for j = 1:length(n) V%w]HIhq  
        rpowers = [rpowers m_abs(j):2:n(j)]; X|pOw,"  
    end \ci[<CP  
    rpowers = unique(rpowers); :&=`xAX-  
    {r[g.@  
    % Pre-compute the values of r raised to the required powers, -]Q6Ril  
    % and compile them in a matrix: >KCnmi  
    % ----------------------------- D]5cijO6  
    if rpowers(1)==0 `< cn  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 5cSqo{|En  
        rpowern = cat(2,rpowern{:}); j !rQa^   
        rpowern = [ones(length_r,1) rpowern]; a.G;s2>  
    else "D/\&1.&  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); y[~w2a&+  
        rpowern = cat(2,rpowern{:}); {edjvPlk  
    end l 1Ns~  
    #s]`jdc  
    % Compute the values of the polynomials: ,wH]|`w  
    % -------------------------------------- Xp_G9I,+  
    y = zeros(length_r,length(n)); MN. $a9m  
    for j = 1:length(n) Jbqm?Fy4X  
        s = 0:(n(j)-m_abs(j))/2; [f@[ gE  
        pows = n(j):-2:m_abs(j); #BwkbOgr  
        for k = length(s):-1:1 gK>aR ^*  
            p = (1-2*mod(s(k),2))* ... k|F TT  
                       prod(2:(n(j)-s(k)))/              ... \~@a/J  
                       prod(2:s(k))/                     ... i|OG#PsY-  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... <(dg^;  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); QMWDII&t  
            idx = (pows(k)==rpowers); 0%GQXiy  
            y(:,j) = y(:,j) + p*rpowern(:,idx); u+,  
        end & 0%x6vea  
          Y.v. EZ  
        if isnorm 9/I|oh_ G  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); zQyt1&!  
        end +OX:T) 4h6  
    end ;UDd4@3`S"  
    % END: Compute the Zernike Polynomials u(g0Ob  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Ga#5xAI{a  
    _|vY)4B 4U  
    % Compute the Zernike functions: Q\[2BJo/  
    % ------------------------------ 72{Ce7J4  
    idx_pos = m>0; gOKF%Ej31T  
    idx_neg = m<0; )l"py9STF  
    w>Y!5RnO  
    z = y; Jde@T h  
    if any(idx_pos) A1V^Gi@i  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); }2~$"L,_  
    end %cFqD &6  
    if any(idx_neg) q[MZSg  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); qA5PIEvdq  
    end sAfNu~d  
    Y>2kOE  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) nN$aZSb`  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. N9=1<{Z  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated X6<%SJC  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive XpU%09K  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, )7}f .  
    %   and THETA is a vector of angles.  R and THETA must have the same 1^_V8dm)  
    %   length.  The output Z is a matrix with one column for every P-value, =9y&j-F  
    %   and one row for every (R,THETA) pair. 1O@ D  
    % z}&JapJ  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike c#YW>(  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) mel(C1b"j/  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) Ir :y#  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 CFyu9Al  
    %   for all p. Qy_! +q  
    % ;>Q.r{P  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 HHcWyu  
    %   Zernike functions (order N<=7).  In some disciplines it is n+9rx]W,  
    %   traditional to label the first 36 functions using a single mode Hm*?<o9mxC  
    %   number P instead of separate numbers for the order N and azimuthal qVMBZ\`Qm  
    %   frequency M. \4 5%K|  
    % X[r\ Qa  
    %   Example: 7t~12m8x  
    % QkU6eE<M*  
    %       % Display the first 16 Zernike functions [+4/M3J%  
    %       x = -1:0.01:1; >4&s7][Q|  
    %       [X,Y] = meshgrid(x,x); "{"745H5  
    %       [theta,r] = cart2pol(X,Y); [) S&PK  
    %       idx = r<=1; k1HVvMD<  
    %       p = 0:15; ,J)wn;@  
    %       z = nan(size(X)); |\k,qVQ  
    %       y = zernfun2(p,r(idx),theta(idx)); h<I C d'!  
    %       figure('Units','normalized') jNu`umS  
    %       for k = 1:length(p) 5w#7B  
    %           z(idx) = y(:,k); n 0rAOkW  
    %           subplot(4,4,k) +o[- ED  
    %           pcolor(x,x,z), shading interp LZF %bJv  
    %           set(gca,'XTick',[],'YTick',[]) 9~ JeI/  
    %           axis square ZxvBo4>tH  
    %           title(['Z_{' num2str(p(k)) '}']) q@0g KC&U  
    %       end lPO +dm  
    % \6WVs>z  
    %   See also ZERNPOL, ZERNFUN. }{S f*  
    .&2Nm&y$ K  
    %   Paul Fricker 11/13/2006 z3l(4WP  
    k^C^.[?  
    ll8Zo+-[  
    % Check and prepare the inputs: !5zDnv  
    % ----------------------------- .Mb<.R3  
    if min(size(p))~=1 R7Z7o4jg  
        error('zernfun2:Pvector','Input P must be vector.') ~us1Df0bp  
    end yZcnky  
    3Eu;_u_  
    if any(p)>35 lJIcU RI4  
        error('zernfun2:P36', ... U+2U#v=<  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... o~J~-$T{  
               '(P = 0 to 35).']) [,86||^  
    end @r=v*hu  
    <2,NWn.  
    % Get the order and frequency corresonding to the function number: |Ta-D++]'  
    % ---------------------------------------------------------------- ,!7\?=G6}v  
    p = p(:); QuWW a|g^.  
    n = ceil((-3+sqrt(9+8*p))/2); |rr<4>)X  
    m = 2*p - n.*(n+2); 5[5|_H+0  
    ![H{ndH!Q  
    % Pass the inputs to the function ZERNFUN: PPMAj@B}V  
    % ---------------------------------------- On*pI37(\  
    switch nargin 5R}K8"d  
        case 3 TkyP_*  
            z = zernfun(n,m,r,theta); v-ZTl4j$  
        case 4 u|{(m_"H  
            z = zernfun(n,m,r,theta,nflag); N.D7  
        otherwise ,6AnuA  
            error('zernfun2:nargin','Incorrect number of inputs.') A-*y[/  
    end 7I4<Dj  
    _-c1" Kl  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) ?mn&b G  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. /hp [ +K  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of cJLAP%.L  
    %   order N and frequency M, evaluated at R.  N is a vector of p G(Fw>  
    %   positive integers (including 0), and M is a vector with the ^Gwpx +  
    %   same number of elements as N.  Each element k of M must be a Y?#aUQc  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) FaQz03N\  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is C/#?S=w`4  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix X+[h]A  
    %   with one column for every (N,M) pair, and one row for every twP%+/g]<  
    %   element in R. w:nLm,  
    % S8k<}5  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- RaC8Sq7hW  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is t>}(` 0  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to m(KBg'kQ  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 DI0Wk^m  
    %   for all [n,m]. P{+,?X\  
    % T6nc/|Ot  
    %   The radial Zernike polynomials are the radial portion of the Dp-j(F  
    %   Zernike functions, which are an orthogonal basis on the unit 4QBPN@~t  
    %   circle.  The series representation of the radial Zernike }Uue}VOA  
    %   polynomials is ^y.|KA3[  
    % e:+[}I)  
    %          (n-m)/2 9Yhl q$;g  
    %            __ szUJh9-  
    %    m      \       s                                          n-2s `l?(zy:R  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r ~xt]g zp{  
    %    n      s=0 C 8KV<k  
    % ~FnuO!C  
    %   The following table shows the first 12 polynomials. ?h)T\z  
    % ib%'{?Q.  
    %       n    m    Zernike polynomial    Normalization #`@5`;U>#  
    %       --------------------------------------------- F/u i(4  
    %       0    0    1                        sqrt(2) PwnfXsR  
    %       1    1    r                           2 Nnq r{ub  
    %       2    0    2*r^2 - 1                sqrt(6) QB"+B]rV  
    %       2    2    r^2                      sqrt(6) vD76IG jm  
    %       3    1    3*r^3 - 2*r              sqrt(8) {sW>J0  
    %       3    3    r^3                      sqrt(8) -unQ 4G  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) w*\JA+  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) s0m k<>z  
    %       4    4    r^4                      sqrt(10) %$'Z"njO&  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) a[jNT$8  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) /BwG\GhM  
    %       5    5    r^5                      sqrt(12) c)Ne/E{!0  
    %       --------------------------------------------- !.{"Ttn;s  
    %  y7vA[us  
    %   Example: >Z>s R0s7  
    % :Q ?p^OC  
    %       % Display three example Zernike radial polynomials L KLLBrm:  
    %       r = 0:0.01:1; {~`{bnx^]7  
    %       n = [3 2 5]; V3<#_:;  
    %       m = [1 2 1]; ?{%"v\w  
    %       z = zernpol(n,m,r); ,z~"Mst  
    %       figure kTA4!654  
    %       plot(r,z) 0[p"8+x  
    %       grid on Ctbc!<@o  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') rP IAu[],g  
    % !b?cY{  
    %   See also ZERNFUN, ZERNFUN2. 9B/iQCFtj$  
    nd"$gi  
    % A note on the algorithm. "~q~)T1Z  
    % ------------------------ @<koL  
    % The radial Zernike polynomials are computed using the series |3BxNFe`%  
    % representation shown in the Help section above. For many special  0:$pJtx"  
    % functions, direct evaluation using the series representation can e4FR)d0x  
    % produce poor numerical results (floating point errors), because ko"xR%Q  
    % the summation often involves computing small differences between U6#9W}CE  
    % large successive terms in the series. (In such cases, the functions Ec&_&  
    % are often evaluated using alternative methods such as recurrence 8On MtP  
    % relations: see the Legendre functions, for example). For the Zernike n7.85p@ua  
    % polynomials, however, this problem does not arise, because the %$N,6}n  
    % polynomials are evaluated over the finite domain r = (0,1), and +1^L35\@  
    % because the coefficients for a given polynomial are generally all F{Oaxn  
    % of similar magnitude. HMhdK  
    % |>b;M ,`OO  
    % ZERNPOL has been written using a vectorized implementation: multiple wli H3vA_  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M]  |CAMdU  
    % values can be passed as inputs) for a vector of points R.  To achieve /vpwpVHIpG  
    % this vectorization most efficiently, the algorithm in ZERNPOL 6!H,(Z]j  
    % involves pre-determining all the powers p of R that are required to xT-`dS0u  
    % compute the outputs, and then compiling the {R^p} into a single h)^|VM   
    % matrix.  This avoids any redundant computation of the R^p, and x,HD,VQR/  
    % minimizes the sizes of certain intermediate variables. Zr(eH2}0D  
    % >J#/IjCW  
    %   Paul Fricker 11/13/2006 sl:1P^b  
    JAy-N bb\  
    BS%pS(  
    % Check and prepare the inputs: LtPaTe  
    % ----------------------------- jp|*kBDq\  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) N*+WGsxl$z  
        error('zernpol:NMvectors','N and M must be vectors.') :<HLw.4O  
    end E=91k.  
    :KqSMuKR  
    if length(n)~=length(m) ;U#=H9_  
        error('zernpol:NMlength','N and M must be the same length.') 7g:Lj,Z4L  
    end Y@7n>U  
    + Y!:@d  
    n = n(:); dptfIBYc+  
    m = m(:); 5}a.<  
    length_n = length(n); H;0K4|I  
    @>&b&uj7T  
    if any(mod(n-m,2)) D=K{(0{"/,  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') VQ8Fs/Zt!  
    end ^Jw=5 ImG  
    >M0^R} v  
    if any(m<0) /PbMt  
        error('zernpol:Mpositive','All M must be positive.') gf}*}8D  
    end NKTy!zWh  
    BAi`{?z$<  
    if any(m>n) uN1VkmtDO  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') N`4XlD  
    end ].sD#~L_  
    0|g@; Pc  
    if any( r>1 | r<0 ) db@^CS[P  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') Xka+1c  
    end "H=N>=g0E  
    F6}YM|  
    if ~any(size(r)==1) 2:<H)oB  
        error('zernpol:Rvector','R must be a vector.') ) I(9qt>Y  
    end JJ'f\f9  
    <[w5M?n8  
    r = r(:); }^VikT]>1  
    length_r = length(r); KT+{-"4-  
    XN{WxcZ  
    if nargin==4 Uy*d@vU9c  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); ` TH\0/eE  
        if ~isnorm X&i;WI  
            error('zernpol:normalization','Unrecognized normalization flag.') Zrj#4 E1  
        end a8-V`  
    else 5>UQ3hWo  
        isnorm = false; R0mkEM  
    end 7{7Y[F0  
    %dzO*/8cWo  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% M8$e MS1  
    % Compute the Zernike Polynomials H@9QEj!Y  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% w'XN<RWA  
    gXU(0(Gq  
    % Determine the required powers of r: 1yqsE`4f  
    % ----------------------------------- 9JX@c k  
    rpowers = []; Zz+v3o0  
    for j = 1:length(n) %yd(=%)fMB  
        rpowers = [rpowers m(j):2:n(j)]; 1.PN_9%  
    end W*DK pJy  
    rpowers = unique(rpowers); 4O.R=c2}7>  
    k_uI&,  
    % Pre-compute the values of r raised to the required powers, LbYIRX  
    % and compile them in a matrix:  \m+=|  
    % ----------------------------- 9%53 _nx?  
    if rpowers(1)==0 wmIe x  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 5 8 7;2  
        rpowern = cat(2,rpowern{:}); g-B{K "z  
        rpowern = [ones(length_r,1) rpowern]; o!U(=:*b  
    else g$zGiqzMK  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); /y|ZAN  
        rpowern = cat(2,rpowern{:}); !^s -~`'\~  
    end +6$ -"lf  
    gs=ok8w  
    % Compute the values of the polynomials: U@CAQ?  
    % -------------------------------------- >Vg [ A  
    z = zeros(length_r,length_n); >`/s+V  
    for j = 1:length_n gK@`0/k{  
        s = 0:(n(j)-m(j))/2; v*FbvrY  
        pows = n(j):-2:m(j); D~Ef%!&  
        for k = length(s):-1:1 W7gY$\1<&  
            p = (1-2*mod(s(k),2))* ... /xcXd+k]  
                       prod(2:(n(j)-s(k)))/          ... ,zr,>^ v  
                       prod(2:s(k))/                 ... 12?!Z  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... #:P$a%V  
                       prod(2:((n(j)+m(j))/2-s(k))); 5j$&Zgx51  
            idx = (pows(k)==rpowers); I/!AjB8W4  
            z(:,j) = z(:,j) + p*rpowern(:,idx); >d&0a:  
        end 5S_fvW;  
         4;3Vc%  
        if isnorm V6'u\Ch|  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); |=0w_)Fa]  
        end d*VvQU8C  
    end Bha("kG  
    Bg[yn<) ]  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  0x5Ax=ut  
    $H)!h^7^9  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 &k_*Y- l7]  
    uF}dEDB|;  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)