非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 Q}Ze-JIL$
function z = zernfun(n,m,r,theta,nflag) V"7<[u]K|
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. I^M#[xA
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 11B{gUv.]
% and angular frequency M, evaluated at positions (R,THETA) on the {wpMg
% unit circle. N is a vector of positive integers (including 0), and V8nz-DL{
% M is a vector with the same number of elements as N. Each element Y*kh$E%<#
% k of M must be a positive integer, with possible values M(k) = -N(k) %%as>}.
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, 2%5^Fi
% and THETA is a vector of angles. R and THETA must have the same 4h;f>BG
% length. The output Z is a matrix with one column for every (N,M) =MJ-s;raq
% pair, and one row for every (R,THETA) pair. 8sR
% Pu$kj"|q*[
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike co<2e#p;
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Zr.\`mG4f
% with delta(m,0) the Kronecker delta, is chosen so that the integral +(z_"[l"
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, L,L ~
.E
% and theta=0 to theta=2*pi) is unity. For the non-normalized (RDa,&
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. o5=)~D{/G3
% FtFv<UV
% The Zernike functions are an orthogonal basis on the unit circle. "$~}'`(]
% They are used in disciplines such as astronomy, optics, and _OJ0 < {E
% optometry to describe functions on a circular domain. qXrt0s[
% N"Y K@)*Q
% The following table lists the first 15 Zernike functions. ot@|blVC8
% l$k]O
% n m Zernike function Normalization ;L
G
%s
% -------------------------------------------------- GhG%>U#&a
% 0 0 1 1 24H^hN9
% 1 1 r * cos(theta) 2 J.bFv/R
% 1 -1 r * sin(theta) 2 P\q <d
% 2 -2 r^2 * cos(2*theta) sqrt(6) < v|%K.yd
% 2 0 (2*r^2 - 1) sqrt(3) }[>RxHd
% 2 2 r^2 * sin(2*theta) sqrt(6) X+dR<GN+YX
% 3 -3 r^3 * cos(3*theta) sqrt(8) ]5} -y3
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) _l24Ba$F6
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) L _vblUDq
% 3 3 r^3 * sin(3*theta) sqrt(8) <CZI7]PM7
% 4 -4 r^4 * cos(4*theta) sqrt(10) Mvy6"Q:
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) jw/'*e
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) '[>\N4WD
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) FF%\gJ
% 4 4 r^4 * sin(4*theta) sqrt(10) ~/j$TT"
% -------------------------------------------------- /*u#Ba<<
% .mvB99P{<
% Example 1: {E3xI2
% z>cIiprX
% % Display the Zernike function Z(n=5,m=1) t{/:( Nu
% x = -1:0.01:1; Rr o?q
% [X,Y] = meshgrid(x,x); .abyYVrN4?
% [theta,r] = cart2pol(X,Y); Y
brx%
% idx = r<=1; =dgo!k
% z = nan(size(X)); [kPD`be2#
% z(idx) = zernfun(5,1,r(idx),theta(idx)); |7svA<<[
% figure 5~@?>)TBv
% pcolor(x,x,z), shading interp o2;(VSKhS
% axis square, colorbar p//T7rs
% title('Zernike function Z_5^1(r,\theta)') lo cW_/
% ! 9d_Gf-
% Example 2: ~gu=x&{
% wVx,JL5Jr
% % Display the first 10 Zernike functions XOu+&wOu
% x = -1:0.01:1; J?._/RL8-
% [X,Y] = meshgrid(x,x); 1pd 9s8CA
% [theta,r] = cart2pol(X,Y); _REqT
% idx = r<=1; yJDeX1+,
% z = nan(size(X)); EfFz7j&X
% n = [0 1 1 2 2 2 3 3 3 3]; Gx.P]O 3
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; {I4%
% Nplot = [4 10 12 16 18 20 22 24 26 28]; v2Dt3$@H6
% y = zernfun(n,m,r(idx),theta(idx)); 4cott^K.
% figure('Units','normalized') )HEfU31IC
% for k = 1:10 MVeFe\r
% z(idx) = y(:,k); 7sXy`+TZ->
% subplot(4,7,Nplot(k)) D,c!#(v cK
% pcolor(x,x,z), shading interp sB?2*S"X)<
% set(gca,'XTick',[],'YTick',[]) *R5`.j =
% axis square "Owct(9
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) k) "ao2iXL
% end cb+l"FI7
% >eQbipn
% See also ZERNPOL, ZERNFUN2. Rb)|66&3&
`&7mHa61
% Paul Fricker 11/13/2006 yC
W*fIaq
F7\BF
VLiIO"u;
% Check and prepare the inputs: G;/Q>V
% ----------------------------- 1hR
(N
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) &B}Lo
error('zernfun:NMvectors','N and M must be vectors.') 5B1G?`]?
end cC'
~
#;`Oj
if length(n)~=length(m) :-)GNf yGz
error('zernfun:NMlength','N and M must be the same length.') ,"B?_d6
end 4AQ[igTDP
7skljw(
n = n(:); C)OG62
m = m(:); b6|Z"{TI
_
if any(mod(n-m,2)) ~F;CE"3A
error('zernfun:NMmultiplesof2', ... cQX:%Ix=
'All N and M must differ by multiples of 2 (including 0).') :V-k'hm
&
end "#2pT H~
qYK4)JP
if any(m>n) [9OSpq
error('zernfun:MlessthanN', ... h}h^L+4
'Each M must be less than or equal to its corresponding N.') BBxc*alG0
end #:#Dz.$L
r@k"4ce-
if any( r>1 | r<0 ) cJ.
7Mt
error('zernfun:Rlessthan1','All R must be between 0 and 1.') \ZMP_UU(
end -j&Vtr
qbb6,DL7J
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ll%G!VR
error('zernfun:RTHvector','R and THETA must be vectors.') ^2EhlK^)
end ?KB@Zm+#~
+i. u< T
r = r(:); )7dEi+v52
theta = theta(:); 9*\g`fWc}{
length_r = length(r); }#6xFTH
if length_r~=length(theta) \,R!S /R#
error('zernfun:RTHlength', ... F;P5D<
'The number of R- and THETA-values must be equal.') o\4CoeG
end zJY']8ah
Qs l80~n_7
% Check normalization: Ux}W&K/?'
% -------------------- rLzW`
if nargin==5 && ischar(nflag) \0?$wIH?
isnorm = strcmpi(nflag,'norm'); 2JZdw
if ~isnorm qnJ50 VVW
error('zernfun:normalization','Unrecognized normalization flag.') |@RpWp>2
end tuLH}tkNY
else ^I`a;
isnorm = false; 1k[GuG%/K
end *~2cG;B"e
jXp. qK\"
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Nqcp1J"
% Compute the Zernike Polynomials mb1Vu
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% m[:K"lZ
]2
a9l8{3
% Determine the required powers of r: ^m%52Tm
h
% ----------------------------------- OCNPi4
m_abs = abs(m); 9x?'}
rpowers = []; &94W-zh
for j = 1:length(n) &RO7{,`
rpowers = [rpowers m_abs(j):2:n(j)]; V_"f|[1
end {DwIjy31T
rpowers = unique(rpowers); TSjIz5
,mKObMu
% Pre-compute the values of r raised to the required powers, 9S>g6}[E#0
% and compile them in a matrix: f%XJ;y\,9H
% ----------------------------- "^Rv#
if rpowers(1)==0 zvO:"w}
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 6kR\xP]Kr
rpowern = cat(2,rpowern{:}); bd==+
rpowern = [ones(length_r,1) rpowern]; ^DB{qU
else 0<.RA%dj
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ,T|x)"uA`
rpowern = cat(2,rpowern{:}); cWa)#:JOV
end zzIr2so
kOjf #@c
% Compute the values of the polynomials: UyiJU~r1
% -------------------------------------- %3o`j<
y = zeros(length_r,length(n)); <)U4Xz ?
for j = 1:length(n) U| 5-0 u5
s = 0:(n(j)-m_abs(j))/2; 6BAW
pows = n(j):-2:m_abs(j); fS=hpL6]@
for k = length(s):-1:1 (Rd$VYuf
p = (1-2*mod(s(k),2))* ... qP1FJ89H
prod(2:(n(j)-s(k)))/ ... ;Vu5p#,O<M
prod(2:s(k))/ ... 41Ve}%
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 2SG$LIV 9Y
prod(2:((n(j)+m_abs(j))/2-s(k))); sKL:p3r
idx = (pows(k)==rpowers); )9L/sKz
y(:,j) = y(:,j) + p*rpowern(:,idx); %j+xgX/&
end rv7{Ow_Y
3BQ!qO17^d
if isnorm _}gtcyx
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); )uheV,ZnY
end d@ Ja}`
end N#ioJ^}n:
% END: Compute the Zernike Polynomials c#cx>wq9
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 'V&Y[7Aeq
M;.ZM<Ga
% Compute the Zernike functions: V diJ>d[
% ------------------------------ GTl
xq%?b
idx_pos = m>0; dl~|Izm
idx_neg = m<0; -e]7n*}H$
",Cr,;]
z = y; n<7q`tM#
if any(idx_pos) bt/ =Kq#
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); r ?m6$
end @n+=vC.xO
if any(idx_neg) _NZ@4+aW
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 3n;K!L%zMT
end z=Cr7-
l.+yn91%>
% EOF zernfun