切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11788阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 ;%}  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! y< 84Gw_  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 [bAv|;  
    function z = zernfun(n,m,r,theta,nflag) U7OW)tUf  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 8u>E(Vmpu  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N +m"iJW0  
    %   and angular frequency M, evaluated at positions (R,THETA) on the RtSk;U1  
    %   unit circle.  N is a vector of positive integers (including 0), and 1iUy*p65:  
    %   M is a vector with the same number of elements as N.  Each element {pVD`#Tl[  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) _vad>-=D*U  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, E@?jsN7  
    %   and THETA is a vector of angles.  R and THETA must have the same DY1o!thz)  
    %   length.  The output Z is a matrix with one column for every (N,M) $Uzc  
    %   pair, and one row for every (R,THETA) pair. X{)M}WO+r  
    % 46*?hA7@r(  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike %;gD_H4mm  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), TygR G+G-  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral ^CX~>j\(  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 9khD7v   
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ;yH/GN#O  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. X/?3ifP6I  
    % 2lQ'rnqS)  
    %   The Zernike functions are an orthogonal basis on the unit circle. |XeuqZa  
    %   They are used in disciplines such as astronomy, optics, and Q?vGg{>  
    %   optometry to describe functions on a circular domain. x ha!.&DO  
    % 67d0JQTu  
    %   The following table lists the first 15 Zernike functions. mWtwp-  
    % hd\iW7  
    %       n    m    Zernike function           Normalization vQA: \!  
    %       -------------------------------------------------- )4j#gHN\  
    %       0    0    1                                 1 mI}'8 .  
    %       1    1    r * cos(theta)                    2 WO]dWO6Mm  
    %       1   -1    r * sin(theta)                    2 Hq=RtW2  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) QQqWJq~  
    %       2    0    (2*r^2 - 1)                    sqrt(3) "}EydG"=  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) ++xEMP)  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) &}rh+z  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) ^G15]Pyw  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) P\SE_*&  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) `6UW?1_Z5  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) aVd{XVE  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 2OEO b,`  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) q W) ,)i  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) gg5`\}  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) X|X6^}  
    %       -------------------------------------------------- HdLVXaD/  
    % < jfi"SJu  
    %   Example 1: xEGI'lt  
    % [&6l=a  
    %       % Display the Zernike function Z(n=5,m=1) .I[uXd  
    %       x = -1:0.01:1; BH\qm (X  
    %       [X,Y] = meshgrid(x,x); aM~M@wS  
    %       [theta,r] = cart2pol(X,Y); BB9Z?}  
    %       idx = r<=1; !<@Zf4m  
    %       z = nan(size(X)); G.1pg]P!  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 9MVW~ V  
    %       figure l1a=r:WhH  
    %       pcolor(x,x,z), shading interp A\gj\&B0"  
    %       axis square, colorbar (m})V0/`  
    %       title('Zernike function Z_5^1(r,\theta)') bc%7-%  
    % @r'8<6hVO  
    %   Example 2: 8 z\WyDz  
    % \3Ys8umKq  
    %       % Display the first 10 Zernike functions B$aboL2  
    %       x = -1:0.01:1; (V}D PA  
    %       [X,Y] = meshgrid(x,x); |>Kf_b Y#  
    %       [theta,r] = cart2pol(X,Y); &!a[rvtZ+  
    %       idx = r<=1; 9w(QM-u  
    %       z = nan(size(X)); b>?X8)f2e  
    %       n = [0  1  1  2  2  2  3  3  3  3]; h$y1"!N(  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; FX 0^I 0  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 7'd_]e-.  
    %       y = zernfun(n,m,r(idx),theta(idx)); L3'o2@$  
    %       figure('Units','normalized') a'rN&*P  
    %       for k = 1:10 | \C{R  
    %           z(idx) = y(:,k); j?#S M!f  
    %           subplot(4,7,Nplot(k)) &$|k<{j[<f  
    %           pcolor(x,x,z), shading interp yD$rls:v<  
    %           set(gca,'XTick',[],'YTick',[]) dyD =R  
    %           axis square ~\(U&2t  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) =k'3rm*ld  
    %       end 0 ; M+8  
    % ?E=&LAI#  
    %   See also ZERNPOL, ZERNFUN2. tNoo3&  
    w*OZ1|  
    %   Paul Fricker 11/13/2006 3;@t {rIin  
    Wl?*AlFlk  
    +kmPQdO;*/  
    % Check and prepare the inputs: 32:q'   
    % ----------------------------- A{Jv`K  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) A7 E*w  
        error('zernfun:NMvectors','N and M must be vectors.') [_#9PH33  
    end M8Q-x-7  
    7?dB&m6W  
    if length(n)~=length(m) UXnd~DA  
        error('zernfun:NMlength','N and M must be the same length.') W EZ(4ah  
    end zsc8Lw  
    ;spuBA)[X  
    n = n(:); A !x" *  
    m = m(:); eOE7A'X   
    if any(mod(n-m,2)) A!x_R {,yH  
        error('zernfun:NMmultiplesof2', ... %DbL|;z1  
              'All N and M must differ by multiples of 2 (including 0).') >x eKO 2o  
    end #swzZyM$  
    ke!)C[^7z  
    if any(m>n) ubjuuha"  
        error('zernfun:MlessthanN', ... HJ:s)As  
              'Each M must be less than or equal to its corresponding N.') fr4#< 6,  
    end EL;IrtU  
    r*OSEzGUz  
    if any( r>1 | r<0 ) j|A *rzL8  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') b,cA mZ  
    end ;lB%N t<,  
    b`usRoD{+  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) SL? ! RQ  
        error('zernfun:RTHvector','R and THETA must be vectors.') e%afK@c  
    end 1>[3(o3t  
    m1heU3BUWU  
    r = r(:); kS%FV;9>(  
    theta = theta(:); G!C2[:[g  
    length_r = length(r); u`xmF/jhQ  
    if length_r~=length(theta) !vHnMY~AG  
        error('zernfun:RTHlength', ... ?kI-o0@O.  
              'The number of R- and THETA-values must be equal.') 6@t4pML  
    end *!ZU" q}i  
    dP=1*  
    % Check normalization: @kenv3[Lc  
    % -------------------- /QZnN?k  
    if nargin==5 && ischar(nflag) nw+L _b  
        isnorm = strcmpi(nflag,'norm'); U}x2,`PI  
        if ~isnorm Ia=wf"JS)  
            error('zernfun:normalization','Unrecognized normalization flag.') 0m(/hK  
        end  Xai ,  
    else z | Hl*T  
        isnorm = false; ; =ai]AYW  
    end L=O,OS+  
    v7&e,:r2E@  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% tKjPLi71  
    % Compute the Zernike Polynomials 3;zJ\a.+  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -v'7;L0K  
    mL?9AxO  
    % Determine the required powers of r: KJo [!|.  
    % ----------------------------------- bae .?+0[  
    m_abs = abs(m); EDcR:Dw3  
    rpowers = []; mT <4@RrB  
    for j = 1:length(n) WO?EzQ ?  
        rpowers = [rpowers m_abs(j):2:n(j)]; ,B(UkPGT  
    end gbL99MZ@~  
    rpowers = unique(rpowers); (YVl5}V  
    \bw71( Q  
    % Pre-compute the values of r raised to the required powers, S7N3L."  
    % and compile them in a matrix: !@{_Qt1  
    % ----------------------------- T^B&GgW  
    if rpowers(1)==0 8  k9(iS  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); IAf,TKfe  
        rpowern = cat(2,rpowern{:}); ^hv  
        rpowern = [ones(length_r,1) rpowern]; DmEmv/N=  
    else Oh9wBV  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); .Qg!_C  
        rpowern = cat(2,rpowern{:}); z9}rT<hy  
    end Q.7Rv XNw8  
    [yM{A<\L  
    % Compute the values of the polynomials: $v#Q'?jE  
    % -------------------------------------- O&.^67\|  
    y = zeros(length_r,length(n)); dd>|1'-]  
    for j = 1:length(n) Wp/!;  
        s = 0:(n(j)-m_abs(j))/2; )HNbWGu  
        pows = n(j):-2:m_abs(j); zNofI$U  
        for k = length(s):-1:1  LKieOgX  
            p = (1-2*mod(s(k),2))* ... dE!{=u(!i  
                       prod(2:(n(j)-s(k)))/              ... RXh0hD  
                       prod(2:s(k))/                     ... 7Te`#"  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... M8X*fYn  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); K++pH~o  
            idx = (pows(k)==rpowers); -|B?pR  
            y(:,j) = y(:,j) + p*rpowern(:,idx); { :xINQ=}D  
        end )_"Cz".|9  
         s Z(LT'}  
        if isnorm oe_l:Y%  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); M;OY+ |uA  
        end x.qn$?3V]  
    end eUPG){"  
    % END: Compute the Zernike Polynomials 'uBXSP#  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -BfZ P5  
    FiMP_ y*S  
    % Compute the Zernike functions: e;~[PYeu  
    % ------------------------------ x^^;/%p  
    idx_pos = m>0; O|m-Uz"+  
    idx_neg = m<0; z=<x.F  
    wvvMesX<L  
    z = y; ';us;xR#  
    if any(idx_pos) >DVjO9Kf  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); pj;cL ]L  
    end AX}l~ sv  
    if any(idx_neg) 9-[g/qrF  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ]^$&Ejpe#  
    end A1e|Y  
    H>AQlO+J  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) "gjy+eosY  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. W4Rs9NA}  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated ' Z:FGSwT  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive XSC._)ztEE  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, ag^EH"%zw  
    %   and THETA is a vector of angles.  R and THETA must have the same 0][PL%3Z  
    %   length.  The output Z is a matrix with one column for every P-value, m-S4"!bl  
    %   and one row for every (R,THETA) pair. wG6>.`:  
    % QyQ&xgS  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike x~C%Hp*#  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) \72(d  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) jR`q  y<  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 hz{=@jX  
    %   for all p. uq~$HXdc  
    % &+;z`A'|8  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 wZ/Zc} .  
    %   Zernike functions (order N<=7).  In some disciplines it is *t.L` G  
    %   traditional to label the first 36 functions using a single mode Jj4!O3\I  
    %   number P instead of separate numbers for the order N and azimuthal ' _Ij9{M  
    %   frequency M. ,0O9!^  
    % (b%&DyOt  
    %   Example: p9rnhqH6  
    % h'YC!hjp   
    %       % Display the first 16 Zernike functions |1C=Ow*"  
    %       x = -1:0.01:1; $ ,Y\  
    %       [X,Y] = meshgrid(x,x);  vp7J';  
    %       [theta,r] = cart2pol(X,Y); B'"(qzE-kM  
    %       idx = r<=1; hi4#8W  
    %       p = 0:15; !PJD+SrG  
    %       z = nan(size(X)); >utm\!Gac  
    %       y = zernfun2(p,r(idx),theta(idx)); *-"DZ  
    %       figure('Units','normalized') k2DT+}u7G  
    %       for k = 1:length(p) }bIbMEMn  
    %           z(idx) = y(:,k); 5:v"^"Sz  
    %           subplot(4,4,k) NF+^  
    %           pcolor(x,x,z), shading interp %_C!3kKv~  
    %           set(gca,'XTick',[],'YTick',[]) GyQu?`  
    %           axis square _tDSG]  
    %           title(['Z_{' num2str(p(k)) '}']) :E'uV" j%  
    %       end $'Z\'<k[  
    % s{x{/Bp(KK  
    %   See also ZERNPOL, ZERNFUN. E-jL"H*  
    #vCtH2  
    %   Paul Fricker 11/13/2006 veX#K#  
    +Qy0K5Ee  
    L5$r<t<  
    % Check and prepare the inputs: k+ [V%[U  
    % ----------------------------- ZP75zeH  
    if min(size(p))~=1 MQ7d IUs  
        error('zernfun2:Pvector','Input P must be vector.') | LdDL953  
    end 5#kN<S!  
    "cSH[/  
    if any(p)>35 KqC8ozup  
        error('zernfun2:P36', ... s/#L?[YH  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... B^Y AKbY  
               '(P = 0 to 35).']) {jB& e,  
    end )fSO|4   
    l]tda(  
    % Get the order and frequency corresonding to the function number: b.HfxYt(  
    % ---------------------------------------------------------------- NvCq5B$C  
    p = p(:); #+dF3]X(&  
    n = ceil((-3+sqrt(9+8*p))/2); t* eZe`|  
    m = 2*p - n.*(n+2); P X/{  
    K[} 5bjh>  
    % Pass the inputs to the function ZERNFUN: AA$+ayzx9{  
    % ---------------------------------------- ~2 aR>R_nT  
    switch nargin e(nT2E  
        case 3  peW4J<,  
            z = zernfun(n,m,r,theta); w0W9N%f#=  
        case 4 \/=w \Tj  
            z = zernfun(n,m,r,theta,nflag); D|m] ]B  
        otherwise fsd,q?{a:  
            error('zernfun2:nargin','Incorrect number of inputs.') +M@p)pyu  
    end o[<lTsw<  
    G&ZpQ)  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) (H=7(  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. A\Ax5eeL  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of m3o+iYkMD  
    %   order N and frequency M, evaluated at R.  N is a vector of /m#!<t7  
    %   positive integers (including 0), and M is a vector with the ]<y _ =>  
    %   same number of elements as N.  Each element k of M must be a s Yp?V\Y"  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) kl4u]MyL#  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is B^8]quOH  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix -TL `nGF  
    %   with one column for every (N,M) pair, and one row for every rID_^g_tP8  
    %   element in R. V* :Q~ ^  
    % WsHC%+\'  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- "XvM1G&s`  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is sqKLz  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to #f *,mY|>  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 \TchRSe  
    %   for all [n,m]. F|Y}X|x8Q  
    % u+ wKs`   
    %   The radial Zernike polynomials are the radial portion of the <|qh5Scp  
    %   Zernike functions, which are an orthogonal basis on the unit funHznRR  
    %   circle.  The series representation of the radial Zernike mn5mdrv3WZ  
    %   polynomials is =2sj$  
    % q ERdQ~M,  
    %          (n-m)/2 > J!J:  
    %            __ .Ioj]r  
    %    m      \       s                                          n-2s *^h$%<QI  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r BbCt_z'  
    %    n      s=0 :Ng4? +@r  
    % SLCV|@G  
    %   The following table shows the first 12 polynomials. o>3g<- ul  
    % +A 3Q$1F  
    %       n    m    Zernike polynomial    Normalization 0iy-FV;J  
    %       --------------------------------------------- FrPpRe%!  
    %       0    0    1                        sqrt(2) hU 3z4|~+  
    %       1    1    r                           2 A4kYE A  
    %       2    0    2*r^2 - 1                sqrt(6) [ij8h,[~]  
    %       2    2    r^2                      sqrt(6) e+_~a8 -|  
    %       3    1    3*r^3 - 2*r              sqrt(8) _PI w""ssr  
    %       3    3    r^3                      sqrt(8)  (C1@f!Z  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) NTj:+z0  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) r$=YhI/=  
    %       4    4    r^4                      sqrt(10) EUVB>%P  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) O-5s}RT  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) -Odk'{nW  
    %       5    5    r^5                      sqrt(12) T(n<@Ac]V  
    %       --------------------------------------------- 7mUpn:U  
    % ;t^8lC?>V  
    %   Example: .1O  
    % vocXk_  
    %       % Display three example Zernike radial polynomials yP&SA+  
    %       r = 0:0.01:1; jsXj9:X I  
    %       n = [3 2 5]; 4nIs+  
    %       m = [1 2 1]; $}9.4` F>  
    %       z = zernpol(n,m,r); tks3xS  
    %       figure mAI<zh&SQ  
    %       plot(r,z) o*d+W7l  
    %       grid on b[mAkm?9+1  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') g{]C@,W  
    % kO1.27D  
    %   See also ZERNFUN, ZERNFUN2. /M Hml0u  
    f,e7;u z%  
    % A note on the algorithm. Iy2KOv@a5  
    % ------------------------ pO2Y'1*  
    % The radial Zernike polynomials are computed using the series xe4F4FC'  
    % representation shown in the Help section above. For many special 7<'4WHi;@s  
    % functions, direct evaluation using the series representation can e-}b]\  
    % produce poor numerical results (floating point errors), because )v4?+$g  
    % the summation often involves computing small differences between {;iG}jK  
    % large successive terms in the series. (In such cases, the functions >9h@Dj[|!  
    % are often evaluated using alternative methods such as recurrence U ?%1:-#F  
    % relations: see the Legendre functions, for example). For the Zernike Pk9 4O  
    % polynomials, however, this problem does not arise, because the 6" s}<  
    % polynomials are evaluated over the finite domain r = (0,1), and E0g` xf 6c  
    % because the coefficients for a given polynomial are generally all ~Sr`Tlp  
    % of similar magnitude. A;pVi;7  
    % 'CTvKW  
    % ZERNPOL has been written using a vectorized implementation: multiple 4bT21J37  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] ]A;{D~X^w  
    % values can be passed as inputs) for a vector of points R.  To achieve >o#5tNm  
    % this vectorization most efficiently, the algorithm in ZERNPOL iMrNp  
    % involves pre-determining all the powers p of R that are required to O{sb{kk  
    % compute the outputs, and then compiling the {R^p} into a single RV*7?y%3  
    % matrix.  This avoids any redundant computation of the R^p, and K#O8P+n5[  
    % minimizes the sizes of certain intermediate variables. [sM~B  
    % p6qza @  
    %   Paul Fricker 11/13/2006 hQm"K~SW=  
    '+!@c&d#%o  
    T8ga)BA  
    % Check and prepare the inputs: (sngq{*%%z  
    % ----------------------------- H*l2,0&W  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) rUb`_W@  
        error('zernpol:NMvectors','N and M must be vectors.') E7XFt#P.  
    end yK1Z&7>J>  
    w(sD}YA)  
    if length(n)~=length(m) -I#]#i@gX  
        error('zernpol:NMlength','N and M must be the same length.') ?qn0].  
    end ~S\Ee 2e>  
    `%8byy@$  
    n = n(:); =Ws-s f]  
    m = m(:); +m> %(?=A  
    length_n = length(n); E(5'vr0  
    y~&R(x~w  
    if any(mod(n-m,2)) :r<uH6x|  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') [OH9/ "  
    end '>GZB  
    qRD]Q  
    if any(m<0) (s/hK  
        error('zernpol:Mpositive','All M must be positive.') g$qNK`y  
    end \]uo^@$bm  
    1 LgzqRq  
    if any(m>n) yq3i=RB(  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') \6UK:'5{  
    end 1:3I G=  
    MX=mGfoa  
    if any( r>1 | r<0 ) n4albG4  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') E^I|%F  
    end W9!EjXg  
    xMk0Xf'_  
    if ~any(size(r)==1) Cf-R?gn]  
        error('zernpol:Rvector','R must be a vector.') vd@ _LcK  
    end ^Vl{IsY  
    s!\:%N  
    r = r(:); ,S|v>i, @  
    length_r = length(r); {Z>OAR#   
    HG(J+ocn   
    if nargin==4 +="?[:  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); &dqC =oK]  
        if ~isnorm #6])\  
            error('zernpol:normalization','Unrecognized normalization flag.') _N4G[jQLJ  
        end #d+bld\  
    else I}5#!s< {&  
        isnorm = false; =.@{ uu;  
    end ogt<vng  
    8pc=Oor2Tv  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /cPe zX  
    % Compute the Zernike Polynomials "Qf X&'09  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% [L.+N@M  
    "3kIQsD|j  
    % Determine the required powers of r: D49yV`  
    % ----------------------------------- Pt/dH+r`%  
    rpowers = []; `QH-VR\_  
    for j = 1:length(n) Z.a`S~U  
        rpowers = [rpowers m(j):2:n(j)]; kaSy 9Y{  
    end S#IlWU  
    rpowers = unique(rpowers); b' 1%g}  
    [.M<h^xrB  
    % Pre-compute the values of r raised to the required powers, ,KXS6:1%5Y  
    % and compile them in a matrix: 3h:"-{MW.  
    % ----------------------------- }9w?[hXW"  
    if rpowers(1)==0 6,nws5dh  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); =(ULfz[:  
        rpowern = cat(2,rpowern{:}); 0w'%10"&U+  
        rpowern = [ones(length_r,1) rpowern]; jB+K)NXHL  
    else ))y`q@  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false);  .;ptgX  
        rpowern = cat(2,rpowern{:}); LvlVZjT  
    end 9#K,@X5 j  
    [LDV*79Z  
    % Compute the values of the polynomials: jQ &$5&o  
    % -------------------------------------- [If%+mHdU  
    z = zeros(length_r,length_n); .h!oo;@  
    for j = 1:length_n "MH_hzbBF  
        s = 0:(n(j)-m(j))/2; I9xQ1WJc`  
        pows = n(j):-2:m(j); ,+0#.N s$  
        for k = length(s):-1:1 T%{qwZc+mJ  
            p = (1-2*mod(s(k),2))* ... {q=(x]C  
                       prod(2:(n(j)-s(k)))/          ... W_ w^"'  
                       prod(2:s(k))/                 ... g_<^kg"  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... 8UH c,np  
                       prod(2:((n(j)+m(j))/2-s(k))); :#CQQ*@  
            idx = (pows(k)==rpowers); -6wjc rTD  
            z(:,j) = z(:,j) + p*rpowern(:,idx); :~K c"Pg  
        end H7&>cM  
         4bV&U=  
        if isnorm blbL49;  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); BCH{0w^D  
        end #\15,!*a=  
    end FW](GWp`:  
    +;Yd<~!c Z  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    857
    光币
    847
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  ;|.~'':  
    ZRD@8'1p  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 @2Spfj_e  
    ; aI`4;  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)