切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11783阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 }Kgi!$<aQx  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! }MRgNr'k  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 A5Jadz~  
    function z = zernfun(n,m,r,theta,nflag) ; pBLmm*F  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. kc2B_+Y1  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N H>/,Re  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 0BC @wV  
    %   unit circle.  N is a vector of positive integers (including 0), and UmVn:a  
    %   M is a vector with the same number of elements as N.  Each element j_rO_m<8  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) =cl#aS}e8  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, vb~%u;zrC@  
    %   and THETA is a vector of angles.  R and THETA must have the same @sn:%/x_  
    %   length.  The output Z is a matrix with one column for every (N,M) j>JBZ#g  
    %   pair, and one row for every (R,THETA) pair. B1}i0pV,,  
    % > V(C>^%->  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 4xW~@m eNB  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 66?`7j X  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral T/|!^qLF  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, HMUx/M.j  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized /1LN\Eu  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. !b`fykC  
    % D/=05E%[81  
    %   The Zernike functions are an orthogonal basis on the unit circle. P[ o"%NZ'  
    %   They are used in disciplines such as astronomy, optics, and !6|_`l>G,  
    %   optometry to describe functions on a circular domain. 2*D2jw  
    % m%J?5rR3  
    %   The following table lists the first 15 Zernike functions. [ 6VM4l"  
    % q,fp DNo  
    %       n    m    Zernike function           Normalization `S((F|Ty=;  
    %       -------------------------------------------------- .'M.yE~5J  
    %       0    0    1                                 1 2Di~}*9&  
    %       1    1    r * cos(theta)                    2 AIOGa<^  
    %       1   -1    r * sin(theta)                    2 YTTy6*\,_  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) Kc]cJ`P4.  
    %       2    0    (2*r^2 - 1)                    sqrt(3) w-WAgAch  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) R,D/:k'~k  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) {($mLfC4  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) Qf0P"s`  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) %t_'rv  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) qsp3G7\'=  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) TgV-U  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) A&1EOQ=N  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) T+XcEI6w  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 6'*6tS  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) fAStM:  
    %       -------------------------------------------------- a'` i#U  
    % 60~*$`  
    %   Example 1: 1N _"Mm{  
    % d >L8S L  
    %       % Display the Zernike function Z(n=5,m=1) ,Z|O y|+'  
    %       x = -1:0.01:1; 0*:n<T9  
    %       [X,Y] = meshgrid(x,x); rs4:jS$)  
    %       [theta,r] = cart2pol(X,Y); fX9b1x  
    %       idx = r<=1; >;G_o="X  
    %       z = nan(size(X)); wa[J\lW  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); Onqapm0  
    %       figure <8%+-[(  
    %       pcolor(x,x,z), shading interp X ([^i;mr  
    %       axis square, colorbar TH4f"h+B3"  
    %       title('Zernike function Z_5^1(r,\theta)') q:up8-LAr  
    % 8Ie0L3d-  
    %   Example 2: Y]R=z*i%  
    % LL:N/1ysG  
    %       % Display the first 10 Zernike functions n S$4[!0  
    %       x = -1:0.01:1; CNuE9|W(vI  
    %       [X,Y] = meshgrid(x,x); dT1UYG}>j  
    %       [theta,r] = cart2pol(X,Y); s7E %Et  
    %       idx = r<=1; q@1A2L\Om  
    %       z = nan(size(X)); zhE4:g9v  
    %       n = [0  1  1  2  2  2  3  3  3  3]; "j`T'%EV  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; xg%{p``  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; ZK{1z|  
    %       y = zernfun(n,m,r(idx),theta(idx)); `o_i+?E  
    %       figure('Units','normalized') ,f>^ q"  
    %       for k = 1:10 U#Kw+slM  
    %           z(idx) = y(:,k); \Q`#E'?  
    %           subplot(4,7,Nplot(k)) BB,-HhYT0  
    %           pcolor(x,x,z), shading interp 78T;b7!-C  
    %           set(gca,'XTick',[],'YTick',[]) aG"  
    %           axis square MAqETjB  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) p^{yA"MQ  
    %       end N<(rP1)`v  
    % %xx;C{g;a  
    %   See also ZERNPOL, ZERNFUN2. oM n'{+(w  
    '#K~hep  
    %   Paul Fricker 11/13/2006 ^l(,'>Cn  
    " d~M \Az  
    "}uu-5]3  
    % Check and prepare the inputs: ,iiI5FR  
    % ----------------------------- ?fU{?nI}>p  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ieEt C,U  
        error('zernfun:NMvectors','N and M must be vectors.') M(^IRI-  
    end qyE*?73W  
    5U_ar   
    if length(n)~=length(m) _n*gj-  
        error('zernfun:NMlength','N and M must be the same length.') ('_S1?y  
    end _ Axw$oYS  
    VF-[O  
    n = n(:); UA0R)BH'  
    m = m(:); y(Pv1=e  
    if any(mod(n-m,2)) T2T?)_f /  
        error('zernfun:NMmultiplesof2', ... <p_2&& ?  
              'All N and M must differ by multiples of 2 (including 0).') ~8Ef`zL  
    end }q/[\3  
    sQzr+]+#9  
    if any(m>n) p{V(! v|  
        error('zernfun:MlessthanN', ... '~6l 6wi  
              'Each M must be less than or equal to its corresponding N.') /{ 8.Jcx$  
    end ]_ y;Igaj  
    Q!fk|D+j  
    if any( r>1 | r<0 ) )/v`k>E  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') d D^?%,a  
    end ]%5gPfv[T  
    +zFEx%3^  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) G|$n,X1O(  
        error('zernfun:RTHvector','R and THETA must be vectors.') MIv,$  
    end %+$!ctn  
    # WL5p.  
    r = r(:); ^F"eHUg  
    theta = theta(:); n{F&GE="  
    length_r = length(r); SMm$4h R  
    if length_r~=length(theta) G>^ _&(c@2  
        error('zernfun:RTHlength', ... T 6rjtq  
              'The number of R- and THETA-values must be equal.') tUFXx\p  
    end Yceex}X*5  
    M<)Vtn  
    % Check normalization: `MMZR=LA  
    % -------------------- Gc!&I+kd  
    if nargin==5 && ischar(nflag) iEBxBsz_  
        isnorm = strcmpi(nflag,'norm'); "k7C   
        if ~isnorm %t-}dC&  
            error('zernfun:normalization','Unrecognized normalization flag.') "CT`]:GGK  
        end Z5>}  
    else 3D rW[\  
        isnorm = false; y{qKb:~wv  
    end ViG-tb   
    }l@7t&T|  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% FE?^}VH  
    % Compute the Zernike Polynomials xHwcP21  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 5NYYrA8,^  
    U| 1&=8l  
    % Determine the required powers of r: cNRe>  
    % ----------------------------------- q}7(w$&  
    m_abs = abs(m); 6~(iLtd#  
    rpowers = []; jowR!rqf  
    for j = 1:length(n) [IuF0$w=dj  
        rpowers = [rpowers m_abs(j):2:n(j)]; |Q~5TL>b  
    end 8J#TP7;  
    rpowers = unique(rpowers); T ;JA.=I  
    ZGWZ2>k  
    % Pre-compute the values of r raised to the required powers, wo!;Bxo N  
    % and compile them in a matrix: d[Rs  
    % ----------------------------- u*H V  
    if rpowers(1)==0 c:z<8#A}  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); V_7QWIdiy>  
        rpowern = cat(2,rpowern{:}); 4EEXt<c.  
        rpowern = [ones(length_r,1) rpowern]; 0Z~G:$O/i  
    else q1o)l  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); |-k~Fa  
        rpowern = cat(2,rpowern{:}); bG9$&,  
    end #kDJ>r |&-  
    syLpnNx=  
    % Compute the values of the polynomials: C")NN s =  
    % -------------------------------------- Q |J$ R  
    y = zeros(length_r,length(n)); XB-l[4?  
    for j = 1:length(n) BnLE +X  
        s = 0:(n(j)-m_abs(j))/2; ~C2[5r{So  
        pows = n(j):-2:m_abs(j); 0(dXU\Y  
        for k = length(s):-1:1 t12 xPtN1  
            p = (1-2*mod(s(k),2))* ... *6%r2l'kZ  
                       prod(2:(n(j)-s(k)))/              ... f)K1j{TZ  
                       prod(2:s(k))/                     ... 'gwh:8Xc  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... <swY o<?J#  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 5%Q[X  
            idx = (pows(k)==rpowers); /WKp\r(Hp  
            y(:,j) = y(:,j) + p*rpowern(:,idx); QZ51}i  
        end 6*H F`@(  
         b:}+l;e5 2  
        if isnorm ' fm}&0  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); J~vK`+Zs  
        end kUG3_ *1 .  
    end ^iq$zHbc0u  
    % END: Compute the Zernike Polynomials WH^r M`9  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% HN tl>H  
    S7 Tem:/  
    % Compute the Zernike functions: D#,P-0+%  
    % ------------------------------ w_!]_6%{b  
    idx_pos = m>0; +b]+5!  
    idx_neg = m<0; *aF<#m v  
    (GdL(H#IL  
    z = y; 6- @n$5W0  
    if any(idx_pos) C7[CfcPA  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); )FrXD3 p  
    end %v(\;&@  
    if any(idx_neg) &<sN( ;%0R  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); \;G97o  
    end #E( n  
    wN ![SM/+  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) Nz&J&\X)tD  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. 3wBc`vJ!  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated Uv06f+P(  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive +FoR;v)z=F  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, J 8"Cw<=O  
    %   and THETA is a vector of angles.  R and THETA must have the same =y/VrF.bV  
    %   length.  The output Z is a matrix with one column for every P-value, p&L`C |0  
    %   and one row for every (R,THETA) pair. 5[|MO.CB$  
    % U9KnW]O%"  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike 5"[Qs|VjA6  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) TY=BP!s  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) m*BtD-{  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 }>w;(R  
    %   for all p. *HwTq[y  
    % ;q&>cnLDR  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 *p.P/w@1  
    %   Zernike functions (order N<=7).  In some disciplines it is hNV" {V3`{  
    %   traditional to label the first 36 functions using a single mode vTD`Ja#h  
    %   number P instead of separate numbers for the order N and azimuthal Xa2QtJq  
    %   frequency M. [Uezi1I  
    % $ #C$V>  
    %   Example: H5Rn.n(|  
    % otXB:a  
    %       % Display the first 16 Zernike functions 'W~O ?  
    %       x = -1:0.01:1; xcz1(R  
    %       [X,Y] = meshgrid(x,x); =J,aBp  
    %       [theta,r] = cart2pol(X,Y); mB$r>G/'  
    %       idx = r<=1; :CN,I!:  
    %       p = 0:15; /._wXH  
    %       z = nan(size(X)); .(  vS/  
    %       y = zernfun2(p,r(idx),theta(idx)); 6|05-x|  
    %       figure('Units','normalized') ?<Dinq  
    %       for k = 1:length(p) C,w$)x5kls  
    %           z(idx) = y(:,k); 33\{S$p  
    %           subplot(4,4,k) 4 ~17s`+  
    %           pcolor(x,x,z), shading interp )#r]x1[Kn  
    %           set(gca,'XTick',[],'YTick',[]) ,c6ID|\  
    %           axis square }0T1* .Cz  
    %           title(['Z_{' num2str(p(k)) '}']) aIk%$Mat  
    %       end laqW {sX^5  
    % +EcN[-~  
    %   See also ZERNPOL, ZERNFUN. (i7]N[  
    1dOVH7  
    %   Paul Fricker 11/13/2006 Ku_`F2Q  
    aU2O5z&  
    Xb42R1  
    % Check and prepare the inputs: -lyT8qZ:(  
    % ----------------------------- 38%]G Q  
    if min(size(p))~=1 ~l-Q0wg  
        error('zernfun2:Pvector','Input P must be vector.') fw_V'l#\  
    end 8 @!/%"Kt2  
    r9G<HKl  
    if any(p)>35 )[6H!y5  
        error('zernfun2:P36', ... 8p7Uvn+m*  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... ;t@zH+*}  
               '(P = 0 to 35).']) oa+Rr&t'  
    end W\zg#5fmK  
    -ny[Lh^b  
    % Get the order and frequency corresonding to the function number: =_8  
    % ---------------------------------------------------------------- 9S.Uo[YY  
    p = p(:); TC3xrE:U<m  
    n = ceil((-3+sqrt(9+8*p))/2); j%b/1@I  
    m = 2*p - n.*(n+2); @q2Yka  
    ZYrXav<  
    % Pass the inputs to the function ZERNFUN: rU5gQq;  
    % ---------------------------------------- B[Uvj~g  
    switch nargin w@ 4q D  
        case 3 &D uvy#J  
            z = zernfun(n,m,r,theta); H__9%p#  
        case 4 Jk|c!,!  
            z = zernfun(n,m,r,theta,nflag); $\$5::}r  
        otherwise C2,,+* v  
            error('zernfun2:nargin','Incorrect number of inputs.') cI'&gT5  
    end 5FnWlFc  
    vj^vzFbK  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) MMD4b}p  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. @X"p"3V  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of =g2; sM/  
    %   order N and frequency M, evaluated at R.  N is a vector of qn6Y(@<[  
    %   positive integers (including 0), and M is a vector with the S-npJh 6  
    %   same number of elements as N.  Each element k of M must be a .#6Dad=S*  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) P6zy<w  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is Ytc  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix 1fm\5/}'`1  
    %   with one column for every (N,M) pair, and one row for every t*< .^+Vd  
    %   element in R. M SoLx' <  
    % $985q@pV0  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- 7Nw7a;h  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is ioIUIp+B~u  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to ^LE`Y>&m  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 Y>{K2#k  
    %   for all [n,m]. |%g^6RN  
    % k;R*mg*K  
    %   The radial Zernike polynomials are the radial portion of the A}FEM[2  
    %   Zernike functions, which are an orthogonal basis on the unit OnC|9  
    %   circle.  The series representation of the radial Zernike f:GZb?Wyd  
    %   polynomials is B8'" ^a^&-  
    % :z56!qU  
    %          (n-m)/2 tEf_XBjKV  
    %            __ Y{B|*[xM  
    %    m      \       s                                          n-2s k+{ -iPm{  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r B9/x?Jv1  
    %    n      s=0 n@mWB UM  
    % ^TJn&k  
    %   The following table shows the first 12 polynomials. #qGfo)  
    % Bl2y~fCA  
    %       n    m    Zernike polynomial    Normalization h-=3 b  
    %       --------------------------------------------- KY<>S/  
    %       0    0    1                        sqrt(2) @H"~/m_o  
    %       1    1    r                           2 3 ~0Z.!O  
    %       2    0    2*r^2 - 1                sqrt(6) |Ma"B4  
    %       2    2    r^2                      sqrt(6) Pq>r|/~_  
    %       3    1    3*r^3 - 2*r              sqrt(8) PCH&eTKN  
    %       3    3    r^3                      sqrt(8) # nwEF QA  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) .vj`[?T  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) }a,j1r_Hl&  
    %       4    4    r^4                      sqrt(10) ^<'5 V)  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) 9; HR  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) 'xm_oGWE  
    %       5    5    r^5                      sqrt(12) #Sr_PEo _  
    %       --------------------------------------------- z/)HJo2#  
    % ]vMr@JM-G  
    %   Example: IExo#\0'6  
    % $*V:; -H  
    %       % Display three example Zernike radial polynomials a?.hvI   
    %       r = 0:0.01:1; ykH?;Xu  
    %       n = [3 2 5]; k]!Fh^O~,  
    %       m = [1 2 1]; ~C6d5\  
    %       z = zernpol(n,m,r); Yj|Oy  
    %       figure DnS# cs~  
    %       plot(r,z) nPj%EKdY4  
    %       grid on <f&z~y=  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') QU_O9 BN  
    % dkt'~  
    %   See also ZERNFUN, ZERNFUN2.  /L'r L  
    .$y}}/{j?[  
    % A note on the algorithm. nR-`;lrF~  
    % ------------------------ cu5Yvp  
    % The radial Zernike polynomials are computed using the series r5h}o)J  
    % representation shown in the Help section above. For many special t8DyS FT  
    % functions, direct evaluation using the series representation can L!Iu\_{q  
    % produce poor numerical results (floating point errors), because @cA`del  
    % the summation often involves computing small differences between uV!Ax *'  
    % large successive terms in the series. (In such cases, the functions :^tw!U%y1  
    % are often evaluated using alternative methods such as recurrence w>>)3:Ytd  
    % relations: see the Legendre functions, for example). For the Zernike ` =g9Rg/<  
    % polynomials, however, this problem does not arise, because the T3,"g=  
    % polynomials are evaluated over the finite domain r = (0,1), and l)m\i_r:  
    % because the coefficients for a given polynomial are generally all sy=M#WGS  
    % of similar magnitude. /_5I}{  
    % v=zqj}T  
    % ZERNPOL has been written using a vectorized implementation: multiple 3e~ab#/  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] "Lk -R5iFd  
    % values can be passed as inputs) for a vector of points R.  To achieve ]ppi962Z  
    % this vectorization most efficiently, the algorithm in ZERNPOL D::$YR ~R  
    % involves pre-determining all the powers p of R that are required to fCdd,,,}  
    % compute the outputs, and then compiling the {R^p} into a single 55MrsiW  
    % matrix.  This avoids any redundant computation of the R^p, and la:i!q AH  
    % minimizes the sizes of certain intermediate variables. u@tJu'X  
    %  17AJT  
    %   Paul Fricker 11/13/2006 ||a 5)D  
    :Fz;nG-G  
    aT1T.3 a  
    % Check and prepare the inputs: =QFnab?N  
    % ----------------------------- ,_@C(O  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) *{8<4CVv  
        error('zernpol:NMvectors','N and M must be vectors.') QlmZBqK}&  
    end 7cV9xIe^  
    2\h}6DGx2  
    if length(n)~=length(m) mX3~rK>@~  
        error('zernpol:NMlength','N and M must be the same length.') M3c!SXx\  
    end F(c~D0  
    V9[-# Ti  
    n = n(:); 8.FBgZh*  
    m = m(:); fmyyQ|]O"  
    length_n = length(n); px;5X4U  
    hfT HP  
    if any(mod(n-m,2)) 35I y\  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') 2c`m8EaJ  
    end VN`T:!&  
    p?(w !O  
    if any(m<0) |g<1n  
        error('zernpol:Mpositive','All M must be positive.') ~nJcHJ1nb4  
    end UQ6UZd37   
    g /D@/AU1u  
    if any(m>n)  $0>>Z  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') "S#4  
    end ]vj4E"2;  
    Z0*Lm+d9z  
    if any( r>1 | r<0 ) 3Z=OUhn9  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') ^*.S7.;2o  
    end c&r8q]u  
    4|*b{Ni  
    if ~any(size(r)==1) e+jp03m\W  
        error('zernpol:Rvector','R must be a vector.') "Y0:Y?Vz"  
    end L".Qf|b*  
    ,FR FH8p  
    r = r(:); #eSVFD5ZU  
    length_r = length(r); EOJk7  
    B;xw @:H  
    if nargin==4 [=M0%"  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); Lt ; !q b.  
        if ~isnorm /*3[9,  
            error('zernpol:normalization','Unrecognized normalization flag.') .3WDtVE  
        end Tdtn-  
    else tYV%izE  
        isnorm = false; :Awnj!KNCc  
    end XQL"D)fw  
    s`"o-w\$>  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% C"l_78  
    % Compute the Zernike Polynomials hz#S b~g  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% )9'eckt  
    6&/H XqP  
    % Determine the required powers of r: BDoL)}bRE  
    % ----------------------------------- |O0=Q,<m  
    rpowers = []; xbJ@z {  
    for j = 1:length(n) SN2X{Q|*  
        rpowers = [rpowers m(j):2:n(j)]; :M" NB+T  
    end Y"qKe,  
    rpowers = unique(rpowers); P|}~=2J  
    N)'oX3?x  
    % Pre-compute the values of r raised to the required powers, L B`=+FD  
    % and compile them in a matrix: @Dc?fyY*o<  
    % ----------------------------- `L<f15][  
    if rpowers(1)==0 L~e\uP  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); xK4b(KJj  
        rpowern = cat(2,rpowern{:}); P(?i>F7s  
        rpowern = [ones(length_r,1) rpowern]; 9^l[d<  
    else j" wX7  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); e='bc7$  
        rpowern = cat(2,rpowern{:}); BLx tS  
    end Z9-HQ5>  
    zTi %j$o  
    % Compute the values of the polynomials: e*5TZ7.  
    % -------------------------------------- qc^ u%  
    z = zeros(length_r,length_n); [@D+kL*>  
    for j = 1:length_n =6j4_+5mnH  
        s = 0:(n(j)-m(j))/2; z 9mmZqhK\  
        pows = n(j):-2:m(j); gb 6 gIFq;  
        for k = length(s):-1:1 GCx1lm  
            p = (1-2*mod(s(k),2))* ... ;{b 1'  
                       prod(2:(n(j)-s(k)))/          ... m~s.al(G91  
                       prod(2:s(k))/                 ... {XYv &K  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... TTjj.fq6  
                       prod(2:((n(j)+m(j))/2-s(k))); ^bpxhf x  
            idx = (pows(k)==rpowers); yjCY2T E  
            z(:,j) = z(:,j) + p*rpowern(:,idx); $<^4G  
        end pQ0yZpN%;  
         3md yY\+&  
        if isnorm K{[ySB  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); 1_vaSEov  
        end 9vc3&r  
    end uS :3Yo  
    SF*! Z2K  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    857
    光币
    847
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  +pc_KR  
    d6,%P 6  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 `zRgP#  
    yAR''>  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)