切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10945阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 0>Y3xNb  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! LATizu  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 ^?{&v19m  
    function z = zernfun(n,m,r,theta,nflag) ObM/~{rKx  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. J4eU6W+{  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 0d2RB^"i  
    %   and angular frequency M, evaluated at positions (R,THETA) on the OcUj_Zd  
    %   unit circle.  N is a vector of positive integers (including 0), and E^J &?-  
    %   M is a vector with the same number of elements as N.  Each element -aBhN~  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) z#G\D5yX[*  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, xD*Zcw(vj~  
    %   and THETA is a vector of angles.  R and THETA must have the same @(L}:]{@  
    %   length.  The output Z is a matrix with one column for every (N,M) i\lvxbp  
    %   pair, and one row for every (R,THETA) pair. c) Eu(j\#  
    % !RJ@;S  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Ch{6=k bK  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi),  0Y!"3bw|  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral !84Lvg0&  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ,R=!ts[qi  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized z:S:[X 0  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. iZk4KX  
    % >3&  
    %   The Zernike functions are an orthogonal basis on the unit circle. R@grY:h  
    %   They are used in disciplines such as astronomy, optics, and DI)"F OM6  
    %   optometry to describe functions on a circular domain. [;hkT   
    % Z42q}Fhm*R  
    %   The following table lists the first 15 Zernike functions. Pg.JI:>2Ku  
    % Q.9,W=<6  
    %       n    m    Zernike function           Normalization K'2N:.D:  
    %       -------------------------------------------------- ^jL44? W}l  
    %       0    0    1                                 1 T$mT;k  
    %       1    1    r * cos(theta)                    2 \4qF3#  
    %       1   -1    r * sin(theta)                    2 o#"yFP1  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) >/Z*\6|Zx#  
    %       2    0    (2*r^2 - 1)                    sqrt(3) +|;Ri68  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) ?#c "wA&  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 8oU R/___  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) u gRyUny  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) B (eXWWT_  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) :*g$@T   
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) $'}|/D  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) c\[&IlM  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 7V^j9TC  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) O<wH+k[  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) !!A(A^s  
    %       -------------------------------------------------- 6Jy%4]wK  
    % ;~ Xjk  
    %   Example 1: ?lqqu#;8  
    % O:+y/c  
    %       % Display the Zernike function Z(n=5,m=1) "r;cH53  
    %       x = -1:0.01:1; %;]/Z%!  
    %       [X,Y] = meshgrid(x,x); ^x*J4jl  
    %       [theta,r] = cart2pol(X,Y); .z$UNB(!M  
    %       idx = r<=1; i:N-Q)<Q*)  
    %       z = nan(size(X)); Z  OAg7  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); !1S!)#  
    %       figure %iPIgma  
    %       pcolor(x,x,z), shading interp ~eTp( XG  
    %       axis square, colorbar aiX4;'$x!  
    %       title('Zernike function Z_5^1(r,\theta)') ~Gc@#Msj  
    % T+0z.E!~I  
    %   Example 2: O>f*D+A-  
    % AvIheR  
    %       % Display the first 10 Zernike functions P5dD&  
    %       x = -1:0.01:1; ku57<kb  
    %       [X,Y] = meshgrid(x,x); =|O]X|y-lZ  
    %       [theta,r] = cart2pol(X,Y); ~K)FuL[*  
    %       idx = r<=1; 6_8yQ  
    %       z = nan(size(X)); wBI:}N@.  
    %       n = [0  1  1  2  2  2  3  3  3  3]; IY~I=}  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; MC-Z6l2  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; Ac*)z#H  
    %       y = zernfun(n,m,r(idx),theta(idx)); q 7W7sw  
    %       figure('Units','normalized') \p\p~FVS  
    %       for k = 1:10 @w%kOX  
    %           z(idx) = y(:,k); C<QpUJ`k  
    %           subplot(4,7,Nplot(k)) +yr~UP_ }  
    %           pcolor(x,x,z), shading interp ?TDmW8G}J  
    %           set(gca,'XTick',[],'YTick',[]) Ozulp(8*  
    %           axis square Ir` l*:j$  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}'])  OvC@E]/+  
    %       end 4 y.' O  
    % a~VW?wq  
    %   See also ZERNPOL, ZERNFUN2. &f A1kG%  
    [$>@f{:  
    %   Paul Fricker 11/13/2006 Pr1OQbg]8  
    s)'+,lKw  
    :hB6-CZkqN  
    % Check and prepare the inputs: 1_xkGc-z<  
    % ----------------------------- 7k#>$sY+  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) :1UOT'_  
        error('zernfun:NMvectors','N and M must be vectors.') >_\]c-~<  
    end F_}y[Yn^  
    _+~jZ]o N  
    if length(n)~=length(m) J1r\Cp+h0  
        error('zernfun:NMlength','N and M must be the same length.') <g&GIFE,  
    end  KI\ 9)  
    'L1yFv  
    n = n(:); 't \sXN+1  
    m = m(:); 0|\JbM  
    if any(mod(n-m,2)) sBxCi~  
        error('zernfun:NMmultiplesof2', ... L]X Lv9J0  
              'All N and M must differ by multiples of 2 (including 0).') s }^W2  
    end  W"~"R  
    z`J-J*R>d  
    if any(m>n) tnX W7ej^  
        error('zernfun:MlessthanN', ... hR>`I0|p&  
              'Each M must be less than or equal to its corresponding N.') aO:A pOAO  
    end tQMz1$  
    *MWI`=c  
    if any( r>1 | r<0 ) #Guwbg  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') p8CaD4bE  
    end >^f]Lgp  
    #b&=CsW`  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ~ayU\4B  
        error('zernfun:RTHvector','R and THETA must be vectors.') {!4ZRNy(k  
    end naY#`xig  
    X-"0Zc  
    r = r(:); :' !_PN  
    theta = theta(:); LKud'  
    length_r = length(r); "+&@iL  
    if length_r~=length(theta) p:!FB8  
        error('zernfun:RTHlength', ... 4 $)}d  
              'The number of R- and THETA-values must be equal.') %CrpUx  
    end &9n=!S'Md  
    n>lQ:l~  
    % Check normalization: h5; +5B}D  
    % -------------------- /5XdZu6k`h  
    if nargin==5 && ischar(nflag) XOZ@ek)LY  
        isnorm = strcmpi(nflag,'norm'); 8L))@SA+uJ  
        if ~isnorm ',Oc +jLR  
            error('zernfun:normalization','Unrecognized normalization flag.') 4Gh%PUV#  
        end )B^T7{  
    else y=1(o3(  
        isnorm = false; BQ~\p\  
    end Nu; 9  
    cn ;2&  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \FIOFbwe  
    % Compute the Zernike Polynomials I]~UOl  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% P9#}aw+  
    nlx~yUXL4  
    % Determine the required powers of r: U&gl$/4U@  
    % ----------------------------------- 0mT.J~}1v  
    m_abs = abs(m); *_uGzGB&G  
    rpowers = []; $I3}% '`+  
    for j = 1:length(n) {<Vw55)#0Q  
        rpowers = [rpowers m_abs(j):2:n(j)]; 6)3pnhG9  
    end qEPC]es|T  
    rpowers = unique(rpowers); `9VRT`e  
    SM`n:{N(  
    % Pre-compute the values of r raised to the required powers, #|}EPD9$  
    % and compile them in a matrix:  [ "Jt2  
    % ----------------------------- 5lm>~J!/^  
    if rpowers(1)==0 0~nub  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); UZW)%  
        rpowern = cat(2,rpowern{:}); X gA( D  
        rpowern = [ones(length_r,1) rpowern]; S? (/~Vb%  
    else H[iR8<rhQ  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); )!D,;,aQ  
        rpowern = cat(2,rpowern{:}); k`,>52  
    end ?7aeY5p  
    ;U<rFs40  
    % Compute the values of the polynomials: &;%LTF@I,  
    % -------------------------------------- )>^!X$`3  
    y = zeros(length_r,length(n)); D +9l$**a  
    for j = 1:length(n) 3gba~}c)  
        s = 0:(n(j)-m_abs(j))/2; i}LVBx"K(  
        pows = n(j):-2:m_abs(j); ~0gHh  
        for k = length(s):-1:1 RZ:= ';  
            p = (1-2*mod(s(k),2))* ... >o!~T}J7  
                       prod(2:(n(j)-s(k)))/              ... vF$sVu|B  
                       prod(2:s(k))/                     ... ywbdV-t/  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 2xpI|+ a%  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); H_7EK  
            idx = (pows(k)==rpowers); Wc{/K6]f  
            y(:,j) = y(:,j) + p*rpowern(:,idx); ;[[oZ  
        end m2PI^?|e  
         N/N~>7f  
        if isnorm 4#w Z#}  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi);  i(n BXV{  
        end @7,k0H9Moa  
    end _B^Q;54c  
    % END: Compute the Zernike Polynomials .OSFLY#[?  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Z {*<G x  
    r/mKuGa]  
    % Compute the Zernike functions: |]x>|Z?/u  
    % ------------------------------ xU;;@9X  
    idx_pos = m>0; IkJ-*vI6  
    idx_neg = m<0; {3*Zx"e![  
    D1 f}g  
    z = y; a}/ A]mu  
    if any(idx_pos) Xg1QF^  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 5X,|Pn  
    end rl](0"Y0 t  
    if any(idx_neg) p`06%"#  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Bh<6J&<n  
    end NuC+iC$_/  
    C7 T}:V](q  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag)  &'<e9  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. .FpeVjR''  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated 8a3h)R  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive EK$3T5e  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, S<UWv@`U"  
    %   and THETA is a vector of angles.  R and THETA must have the same 7FGi+  
    %   length.  The output Z is a matrix with one column for every P-value, :SvgXMY@  
    %   and one row for every (R,THETA) pair. ;HoBLxb P  
    % 20A`]-D  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike V(3=j)#  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2)  w0`8el;  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) =`Lci1#pu}  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 'j(F=9)  
    %   for all p. %+HZ4M+hV  
    % 1j?+rs+o-  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 EE$\8Gx']!  
    %   Zernike functions (order N<=7).  In some disciplines it is `A ^  
    %   traditional to label the first 36 functions using a single mode GY wU3`{  
    %   number P instead of separate numbers for the order N and azimuthal ?Es(pwJB  
    %   frequency M. 6tF_u D  
    % X_aC$_b  
    %   Example: U;#9^<^  
    % S^T ><C  
    %       % Display the first 16 Zernike functions 8(ej]9RObU  
    %       x = -1:0.01:1; 5L\&"['  
    %       [X,Y] = meshgrid(x,x); K$/&C:,Q  
    %       [theta,r] = cart2pol(X,Y); B nUWg ^E  
    %       idx = r<=1; TP{2q51yM  
    %       p = 0:15; O QGKH6q  
    %       z = nan(size(X)); -+{<a!Nb  
    %       y = zernfun2(p,r(idx),theta(idx)); ???`BF[|  
    %       figure('Units','normalized') (NC]S  
    %       for k = 1:length(p) Lz{z~xNHW.  
    %           z(idx) = y(:,k); @L?KcGD  
    %           subplot(4,4,k) "."ow|  
    %           pcolor(x,x,z), shading interp h0a|R4J  
    %           set(gca,'XTick',[],'YTick',[]) F<TIZ^gFP  
    %           axis square ~sT1J|  
    %           title(['Z_{' num2str(p(k)) '}']) WT63ve  
    %       end @8*lqV2  
    % y4)iL?!J~  
    %   See also ZERNPOL, ZERNFUN. A~}5T%qb  
    'e/wjV  
    %   Paul Fricker 11/13/2006 LS]0p#  
    sm"s2Ci=}  
    je8 5G`{DC  
    % Check and prepare the inputs: 76cLf~|d~  
    % ----------------------------- fPPC`d&Q3  
    if min(size(p))~=1 /]oQqZHv  
        error('zernfun2:Pvector','Input P must be vector.') .tcdqL-'  
    end 1]69S(  
    ZeLed[J^xJ  
    if any(p)>35 Z\3~7Ek2m  
        error('zernfun2:P36', ... ,pIh.sk7s*  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... 7@ \:l~{  
               '(P = 0 to 35).']) ,&.$r/x|?  
    end % :h %i|  
    PdtL Cgd  
    % Get the order and frequency corresonding to the function number: 1Li*n6tLX`  
    % ---------------------------------------------------------------- $b(CN+#  
    p = p(:); y*%uGG5  
    n = ceil((-3+sqrt(9+8*p))/2); BU#3fPl  
    m = 2*p - n.*(n+2); !_P&SmK3  
    9y&bKB2,  
    % Pass the inputs to the function ZERNFUN: GZ^Qt*5 {  
    % ---------------------------------------- -Xx4:S  
    switch nargin 0X3yfrim  
        case 3 dXfLN<nD>U  
            z = zernfun(n,m,r,theta); TV=K3F5)M  
        case 4 # %EHcgF  
            z = zernfun(n,m,r,theta,nflag); ,Qs%bq{t  
        otherwise ,x$^^  
            error('zernfun2:nargin','Incorrect number of inputs.') T'{9!By,P  
    end =f!clhO  
    )k;;O7C k  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) yzv"sd[8N  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. hJsP;y:@Lm  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of ^=5x1<a9$  
    %   order N and frequency M, evaluated at R.  N is a vector of ^qnmKA>"F  
    %   positive integers (including 0), and M is a vector with the YZ`SF"Bd(  
    %   same number of elements as N.  Each element k of M must be a :AS`1\ C  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) aCI3Tx&2qT  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is 'NZ=DSGIy  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix 5'c#pm\Q  
    %   with one column for every (N,M) pair, and one row for every 2;u i'B  
    %   element in R. $ dF3@(p  
    % :eSsqt9]9  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- k%FA:ms|k  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is *mVg_Kl  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to H>A6VDu  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 4(8tr D6  
    %   for all [n,m]. /0 4US5En  
    % QW$p{ zo  
    %   The radial Zernike polynomials are the radial portion of the Zskj?+1  
    %   Zernike functions, which are an orthogonal basis on the unit |-G2pu;  
    %   circle.  The series representation of the radial Zernike O`Gq7=X  
    %   polynomials is J|].h  
    % !~yBz H;K  
    %          (n-m)/2 ;}j(x;l>t  
    %            __ HA*L*:0  
    %    m      \       s                                          n-2s vj]>X4'i  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r RFy MRE!?  
    %    n      s=0 t`&x.o  
    % Q{RmE:  
    %   The following table shows the first 12 polynomials. 10i$b<O  
    % !TJ,:c]4{!  
    %       n    m    Zernike polynomial    Normalization fj)) Hnt(|  
    %       --------------------------------------------- :Ys~Lt54  
    %       0    0    1                        sqrt(2) kQ}n~Hn  
    %       1    1    r                           2 {X&lgj  
    %       2    0    2*r^2 - 1                sqrt(6) r]UF<*$  
    %       2    2    r^2                      sqrt(6) ,_fz)@)  
    %       3    1    3*r^3 - 2*r              sqrt(8) +)iMJ]>  
    %       3    3    r^3                      sqrt(8) :#pdyJQ_  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) 3_~iq>l  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) %KXiB6<4  
    %       4    4    r^4                      sqrt(10) =i&,I{3  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12)  7P7OTN  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) !6T"J!F#  
    %       5    5    r^5                      sqrt(12) -g]Rs!w'  
    %       --------------------------------------------- <ZF|2  
    % #uw&u6*\q  
    %   Example: jk{(o09  
    % R<Lf>p>_  
    %       % Display three example Zernike radial polynomials *q*3SP/  
    %       r = 0:0.01:1; 12KC4,C&1i  
    %       n = [3 2 5]; )&Oc7\J,  
    %       m = [1 2 1]; r8Mx +r  
    %       z = zernpol(n,m,r); 4 "HX1qP  
    %       figure @)?]u U"L  
    %       plot(r,z) { K]5[bMT  
    %       grid on \A"o[A2v  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') -f)fiQ-<  
    % )ODF6Ag  
    %   See also ZERNFUN, ZERNFUN2. rNii,_  
    ^AS \a4`/  
    % A note on the algorithm. jdP )y]c  
    % ------------------------ jC9us>b  
    % The radial Zernike polynomials are computed using the series 7{L4a\JzT  
    % representation shown in the Help section above. For many special G @..?>  
    % functions, direct evaluation using the series representation can Ki\.w~Qs  
    % produce poor numerical results (floating point errors), because t'v t'[~,U  
    % the summation often involves computing small differences between P5h|* ?=  
    % large successive terms in the series. (In such cases, the functions QEhn  
    % are often evaluated using alternative methods such as recurrence c+9L6}D  
    % relations: see the Legendre functions, for example). For the Zernike !hBpon  
    % polynomials, however, this problem does not arise, because the lmvp,BzC  
    % polynomials are evaluated over the finite domain r = (0,1), and XH"+oW  
    % because the coefficients for a given polynomial are generally all GQqGrUQ*}  
    % of similar magnitude. `hi=y BO  
    % G@[8P?M=Z  
    % ZERNPOL has been written using a vectorized implementation: multiple zTF{ g+  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] b-&iJ &>'  
    % values can be passed as inputs) for a vector of points R.  To achieve lW&(dn)}  
    % this vectorization most efficiently, the algorithm in ZERNPOL IOcQI:4.`  
    % involves pre-determining all the powers p of R that are required to elOeXYO0  
    % compute the outputs, and then compiling the {R^p} into a single cqS :Zq  
    % matrix.  This avoids any redundant computation of the R^p, and BBB@M  
    % minimizes the sizes of certain intermediate variables. $ J`O-"M  
    % MzJCiX^  
    %   Paul Fricker 11/13/2006 G*fo9eu5$  
    oJz2-P mX  
    bbK};u  
    % Check and prepare the inputs: 5Q?Jm~H9  
    % ----------------------------- >='/%Ad  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) }TmOoi(X@  
        error('zernpol:NMvectors','N and M must be vectors.')  Y'iX   
    end 2bp@m;g$  
    t4WB^dHYp  
    if length(n)~=length(m) :v&[ !  
        error('zernpol:NMlength','N and M must be the same length.') 2$JGhgDI  
    end /4:bx#;A  
    Z!1D4`w  
    n = n(:); |*&l?S  
    m = m(:); ]gk1q{Ql<  
    length_n = length(n); `8:)? 0Ez  
    ?"6Zf LRi  
    if any(mod(n-m,2)) /`*{57/3  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') : \+xXb{  
    end ) 7/Cg  
    I"07x'Ahq3  
    if any(m<0) 2Je $SE8  
        error('zernpol:Mpositive','All M must be positive.') _pvB$&  
    end A6N6e\*  
    /{i~CGc ;"  
    if any(m>n) oL<#9)+2*  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') m&.LJ*uM\K  
    end X'Ss#s>g  
    bx0.(Nv/X  
    if any( r>1 | r<0 ) y+k_&ss  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') Jh26!%<Bl  
    end )pB#7aEw  
    ')X (P>  
    if ~any(size(r)==1) J1?;'  
        error('zernpol:Rvector','R must be a vector.') TlqHj  
    end SK<Rk  
    gq+SM  i=  
    r = r(:); :RaQ =C  
    length_r = length(r); Ot=jwvw  
    zC?' Qiuh*  
    if nargin==4 _Cmmx`ln  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); tcD7OC:"6  
        if ~isnorm Q#bW"},^k  
            error('zernpol:normalization','Unrecognized normalization flag.') $@g]?*L:  
        end N'Gq9A  
    else h [TwaR  
        isnorm = false; Njq}M/{U  
    end [BWq9uE  
    o<`vh*U@,4  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  (I[_}l  
    % Compute the Zernike Polynomials a:kAo0@":j  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% *Rgr4-eS  
    xEb>6+-F@  
    % Determine the required powers of r: )H8_.]|  
    % ----------------------------------- h<9s& p  
    rpowers = []; }V?m =y [  
    for j = 1:length(n) j6 wFks  
        rpowers = [rpowers m(j):2:n(j)]; W^(zP/  
    end i2F7O"f.  
    rpowers = unique(rpowers); }K{1Bm@S  
    O[@!1SKT0  
    % Pre-compute the values of r raised to the required powers, 9:j?Jvw$  
    % and compile them in a matrix: 5E!C?dv(z  
    % ----------------------------- <Xf6?nyZ(  
    if rpowers(1)==0 })g<I+]Hf9  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); mypV[  
        rpowern = cat(2,rpowern{:}); sS D8Sx/  
        rpowern = [ones(length_r,1) rpowern]; aukcO ;oG<  
    else S|85g1}t  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); S}6Ld(_  
        rpowern = cat(2,rpowern{:}); h\s/rZg=r  
    end &Mh.PzO=b  
    YIQD9  
    % Compute the values of the polynomials: ]#tB[G  
    % -------------------------------------- inP2y?j  
    z = zeros(length_r,length_n); 222 Y?3>@D  
    for j = 1:length_n b--=GY))F  
        s = 0:(n(j)-m(j))/2; S?J!.(  
        pows = n(j):-2:m(j);  |/Nh#  
        for k = length(s):-1:1 _~kw^!p>Kr  
            p = (1-2*mod(s(k),2))* ... ? SFBUX(p  
                       prod(2:(n(j)-s(k)))/          ... 1\}vU  
                       prod(2:s(k))/                 ... ZU4=&K  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... ^T=9j.e'ja  
                       prod(2:((n(j)+m(j))/2-s(k))); 3I)~;>meo  
            idx = (pows(k)==rpowers); bI):-2&s}  
            z(:,j) = z(:,j) + p*rpowern(:,idx); {u'szO}k  
        end [xS7ae  
         f56yI]*N=<  
        if isnorm cslC+e/  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); TdhfX{nk  
        end S%SYvA  
    end lriezI  
    M2$/x`\-~  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  0L;,\&*u  
    LYAGpcG  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 p*K #s1  
    r@JMf)a]  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)