非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 ! ^TCe8
function z = zernfun(n,m,r,theta,nflag) {# Vp`ji
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. m"RSDM!
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 9]PMti
% and angular frequency M, evaluated at positions (R,THETA) on the Z:Y_{YAD
% unit circle. N is a vector of positive integers (including 0), and ]r(s02
% M is a vector with the same number of elements as N. Each element &W$s-qf".
% k of M must be a positive integer, with possible values M(k) = -N(k) .[C@p`DZ
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, y5`$Aa4~
% and THETA is a vector of angles. R and THETA must have the same lkaWwjv_D
% length. The output Z is a matrix with one column for every (N,M) ,HtXD~N
% pair, and one row for every (R,THETA) pair. xpB*>zb
% 4s7&*dJ
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 7~m[:Eg6[s
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), tu5T^"BqO
% with delta(m,0) the Kronecker delta, is chosen so that the integral {P!1VYs5
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, I7Xm~w!{qk
% and theta=0 to theta=2*pi) is unity. For the non-normalized S$ Z?T
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ] Wx?k7T
% \,-e>
% The Zernike functions are an orthogonal basis on the unit circle. l3HfaCP6:
% They are used in disciplines such as astronomy, optics, and
} @4by<
% optometry to describe functions on a circular domain. \<W/Z.}/
% U~q2j#pJ
% The following table lists the first 15 Zernike functions. /SD(g@G,
% -DL"Yw}
% n m Zernike function Normalization nr- 32u
% -------------------------------------------------- Fb\ E39
% 0 0 1 1 4{CeV7
% 1 1 r * cos(theta) 2 ';KWHk8C
% 1 -1 r * sin(theta) 2 8\Kpc;zb
% 2 -2 r^2 * cos(2*theta) sqrt(6) BKk+<#Ti
% 2 0 (2*r^2 - 1) sqrt(3) xt1Ug~5
% 2 2 r^2 * sin(2*theta) sqrt(6) LW!>_~g-
% 3 -3 r^3 * cos(3*theta) sqrt(8) a9g~(#?a
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) (DY&{vudF
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) T$*#q('1"}
% 3 3 r^3 * sin(3*theta) sqrt(8) @!p0<&R@x
% 4 -4 r^4 * cos(4*theta) sqrt(10) L*(`ccU
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) g<g$c<sm
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) ) m(!lDz3
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) UOn:@Qn
% 4 4 r^4 * sin(4*theta) sqrt(10) aI_[h
v
% -------------------------------------------------- m"GgaH3,
% r2T$
;m.
% Example 1: n.OsmCR N;
% L'u*WHj|v
% % Display the Zernike function Z(n=5,m=1) kc/"
% x = -1:0.01:1; N^f_hL|:9
% [X,Y] = meshgrid(x,x); S9%ZeM+
% [theta,r] = cart2pol(X,Y); P71] Z
% idx = r<=1; {h0T_8L/
% z = nan(size(X)); ToM1#]4
% z(idx) = zernfun(5,1,r(idx),theta(idx)); z>z9xG'
% figure c'SjH".[
% pcolor(x,x,z), shading interp ;e0-FF+
% axis square, colorbar d'@i8N["{
% title('Zernike function Z_5^1(r,\theta)') eL88lV]I
% uSUog+i
% Example 2: (/KeGgkhv
% ~Z' /b|x<3
% % Display the first 10 Zernike functions %>Mcme>(W
% x = -1:0.01:1; oaG;i51!
% [X,Y] = meshgrid(x,x); 3 L:SJskYR
% [theta,r] = cart2pol(X,Y); `Gh J)WA<
% idx = r<=1; [xo-ZDIoG
% z = nan(size(X)); WOi+y
% n = [0 1 1 2 2 2 3 3 3 3]; 3v~[kVhoG
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 17#t 7Yk
% Nplot = [4 10 12 16 18 20 22 24 26 28]; zE+^WeH|
% y = zernfun(n,m,r(idx),theta(idx)); M}]4tAyT
% figure('Units','normalized') c!N#nt_<
% for k = 1:10 l'7'G$v
% z(idx) = y(:,k); eI98J"h%?
% subplot(4,7,Nplot(k)) z&yVU<;
% pcolor(x,x,z), shading interp iX-.mq$
% set(gca,'XTick',[],'YTick',[]) F0tcVdv
% axis square M)3'\x:
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 9XmbHS[0V
% end U#:N/ts*(
% Yf_/c*t\5
% See also ZERNPOL, ZERNFUN2. ,*8)aZ1k
ndu$N$7+
% Paul Fricker 11/13/2006 eW;c
3<
$}B&u )
<[vsGUbc
% Check and prepare the inputs: AnoA5H
% ----------------------------- $B`ETI9g-N
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) +2>, -V
error('zernfun:NMvectors','N and M must be vectors.') a fLE9
end L@.Trso
baGV]=j
if length(n)~=length(m) a]!u
go}
error('zernfun:NMlength','N and M must be the same length.') iUq_vQ@}}
end <Ok7-:OxA
Q5]rc`}
5
n = n(:); U/ax`_
m = m(:); mbHMy[R
if any(mod(n-m,2)) F`>qg2wO
error('zernfun:NMmultiplesof2', ... ~( :$c3\
'All N and M must differ by multiples of 2 (including 0).') hqa6aYY x
end Q)\[wYMt
5b->pc
if any(m>n) 9Y?``QBN
error('zernfun:MlessthanN', ... 6=96 ^o*
'Each M must be less than or equal to its corresponding N.') pm2]
end F^&@[k7WW
>7z(?nQYT^
if any( r>1 | r<0 ) 3;88a!AA!
error('zernfun:Rlessthan1','All R must be between 0 and 1.') c3WF!~1r
end ,YRBYK:
h+}{FB 29
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) #<G:&
error('zernfun:RTHvector','R and THETA must be vectors.') 5=V 29
end W6):IW(E
89t"2|9 u
r = r(:); &~'i,v|E
theta = theta(:); b>]UNf"-
length_r = length(r); u Yc}eMb
if length_r~=length(theta) ZCA= n
error('zernfun:RTHlength', ... }{mS"
'The number of R- and THETA-values must be equal.') EyHL&
end *+(eH#_2/
qDgy7kkQ
% Check normalization: qcge#S>
% -------------------- [E/. r{S
if nargin==5 && ischar(nflag) Kd\d>&b
isnorm = strcmpi(nflag,'norm'); PP]7_h^2
if ~isnorm ]Bs{9=2
error('zernfun:normalization','Unrecognized normalization flag.') `l %,4qR
end ru|*xNXKgC
else VxE;tJ>1
isnorm = false; GC_c.|'6[
end Pa"Kk9!o36
CZ>Ujw=&k
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ]W5p\(1g
% Compute the Zernike Polynomials c4zGQoeH:
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% uX%$3k
I9xkqj
% Determine the required powers of r: L uW""P/
% ----------------------------------- _C19eW'
m_abs = abs(m); !pHI`FeAV
rpowers = []; ,W;|K 5
for j = 1:length(n) Fl*<N
rpowers = [rpowers m_abs(j):2:n(j)]; OLV3.~T
end K[x=knFO
rpowers = unique(rpowers); (iIzoEpb8W
h92KU
% Pre-compute the values of r raised to the required powers, CWJN{
% and compile them in a matrix: #o,FVYYj
% ----------------------------- Ul3xeu
if rpowers(1)==0 /lhk}
y^
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); f8G<5_!K_
rpowern = cat(2,rpowern{:}); 7r2p+LP[
rpowern = [ones(length_r,1) rpowern]; r]]:/pw?t
else HVzkS|^F
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); K /%5\h
rpowern = cat(2,rpowern{:}); (*,R21<%
end F!w|5,)
^/#8 "
% Compute the values of the polynomials: 9<kMxtk$
% -------------------------------------- |?hsMN
y = zeros(length_r,length(n)); 4n1 g@A=y
for j = 1:length(n) : %uaaFl
s = 0:(n(j)-m_abs(j))/2; %a:T9v
pows = n(j):-2:m_abs(j); /c6]DQ<?
for k = length(s):-1:1 `wr*@/P
p = (1-2*mod(s(k),2))* ... F?ps?
e
prod(2:(n(j)-s(k)))/ ... cl |}0Q5
prod(2:s(k))/ ... S~&9DQNj
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... [;o>q;75Jz
prod(2:((n(j)+m_abs(j))/2-s(k))); F&B E+b/#
idx = (pows(k)==rpowers); CrG!8}
y(:,j) = y(:,j) + p*rpowern(:,idx); t:xTmK&vt
end O^ 5C
ZI8@ 6 L\
if isnorm (+<66
TO
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); U??OiKVZ+
end px(~ZZB"
end #r1y|)m`
% END: Compute the Zernike Polynomials 7!)VOD8Z
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% (ak&>pk;
y,@yaM}-/K
% Compute the Zernike functions: 9[lk=1.qN
% ------------------------------ DF'~ #G8
idx_pos = m>0; 9e}%2,
idx_neg = m<0; 3(gOF&Uf9
9l:[jsk<d
z = y; x<@i3Y{[
if any(idx_pos) 52^,qP'6
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 8i<]$
end "L8Hgwg
if any(idx_neg) gvL*]U7
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); G>jC+0nkry
end .q!i
+0
1/6}E]-F
% EOF zernfun