切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11786阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 @}#$<6|  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! fuQ? @F  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 8&B{bS  
    function z = zernfun(n,m,r,theta,nflag) ^2XoYgv  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. b>?X8)f2e  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N h$y1"!N(  
    %   and angular frequency M, evaluated at positions (R,THETA) on the o^2.&e+dQ  
    %   unit circle.  N is a vector of positive integers (including 0), and OP{ d(~+  
    %   M is a vector with the same number of elements as N.  Each element sLPFeibof5  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) IKH#[jW'IB  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, }>fL{};Z"  
    %   and THETA is a vector of angles.  R and THETA must have the same |{<g-)  
    %   length.  The output Z is a matrix with one column for every (N,M) 8g^OXZ   
    %   pair, and one row for every (R,THETA) pair. qbpvTTF  
    % 1vu=2|QN  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike %#Fd0L  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 0(h *< g:  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral |&o%c/  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Jx(%t<2  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 3T%WfS+  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. OANn!nZ.  
    % K>"M# T  
    %   The Zernike functions are an orthogonal basis on the unit circle. _ z#zF[%  
    %   They are used in disciplines such as astronomy, optics, and AS'a'x>8>,  
    %   optometry to describe functions on a circular domain. x/R|i%u-s  
    % 8it|yK.G@&  
    %   The following table lists the first 15 Zernike functions. qJKD| =_  
    % P10`X&  
    %       n    m    Zernike function           Normalization O\-cLI<h2  
    %       -------------------------------------------------- dt<PZ.  
    %       0    0    1                                 1 n@Y`g{{e~  
    %       1    1    r * cos(theta)                    2 %HpTQ   
    %       1   -1    r * sin(theta)                    2 ;a*i*{\Rm  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) J+kxb"#d  
    %       2    0    (2*r^2 - 1)                    sqrt(3) [89#8|+  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) 'cu( Sd}  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8)  3_+-t5  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) o'?Y0Wt  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) -H#{[M8xX  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) &1 {RuV&t  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) Nj@k|_1  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ==l p\  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) .TSj8,  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ;Z%ysLA  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) ?TLMoqmXM{  
    %       -------------------------------------------------- _A;jtS)SY  
    % D N GNc  
    %   Example 1: nxA Y]Q  
    % u yzc"d i  
    %       % Display the Zernike function Z(n=5,m=1) 5M;fh)fT  
    %       x = -1:0.01:1; ck){N?y  
    %       [X,Y] = meshgrid(x,x); 4t|ril``]  
    %       [theta,r] = cart2pol(X,Y); pJ;J>7Gt  
    %       idx = r<=1; '(7]jug  
    %       z = nan(size(X)); D\jRF-z  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); m>yk4@a  
    %       figure `_N8A A  
    %       pcolor(x,x,z), shading interp @(,k%84z  
    %       axis square, colorbar Vr D?[&2pE  
    %       title('Zernike function Z_5^1(r,\theta)') ?54=TA|5`F  
    % #KF:(2  
    %   Example 2: &jT>)MXPu  
    % R#"kh/M  
    %       % Display the first 10 Zernike functions A|,\}9)4X[  
    %       x = -1:0.01:1; ,2qJXMg"=$  
    %       [X,Y] = meshgrid(x,x); ;O}%_ef@  
    %       [theta,r] = cart2pol(X,Y); q&B'peT  
    %       idx = r<=1; Zrr3='^s  
    %       z = nan(size(X)); ZT5t~5W  
    %       n = [0  1  1  2  2  2  3  3  3  3]; u-=S_e  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; G|Yw a=  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; d+[yW7%J  
    %       y = zernfun(n,m,r(idx),theta(idx)); v7&e,:r2E@  
    %       figure('Units','normalized') tKjPLi71  
    %       for k = 1:10 3;zJ\a.+  
    %           z(idx) = y(:,k); sU^2I v\%  
    %           subplot(4,7,Nplot(k)) UeIu -[R  
    %           pcolor(x,x,z), shading interp hPE#l?H@A  
    %           set(gca,'XTick',[],'YTick',[]) Ok/~E  
    %           axis square m\(4y Gj  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) #UG|\}Lp  
    %       end /pan{.< k  
    % E{[c8l2B  
    %   See also ZERNPOL, ZERNFUN2. s^TF+d?B  
    };o6|e:2E  
    %   Paul Fricker 11/13/2006 zm-j FY?  
    TR L4r_  
    zmQ V6o=k  
    % Check and prepare the inputs: ({zt=}r,  
    % ----------------------------- s3HwBA  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) }{[H@uhjH  
        error('zernfun:NMvectors','N and M must be vectors.') M=HW2xn  
    end @vh3S+=M  
    ^W5rL@h_  
    if length(n)~=length(m) s-Q-1lKV,  
        error('zernfun:NMlength','N and M must be the same length.') X aW@CW  
    end $qYtN`b,  
    ]:(>r&'  
    n = n(:); FY)vrM*yh  
    m = m(:); Ir|Q2$W2^c  
    if any(mod(n-m,2)) :~3sW< P R  
        error('zernfun:NMmultiplesof2', ... <"{Lv)4  
              'All N and M must differ by multiples of 2 (including 0).') L MC-1  
    end pg1o@^OuL  
    TS^(<+'  
    if any(m>n) H=?v$! i  
        error('zernfun:MlessthanN', ... AR\>P  
              'Each M must be less than or equal to its corresponding N.') W"?|OQ'  
    end mq`N&ABO!K  
    "(PJh\S>S  
    if any( r>1 | r<0 ) I~\j%zD  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') WCA`34(  
    end gRIRc4p  
    IzF7W?k  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ;X<#y2`  
        error('zernfun:RTHvector','R and THETA must be vectors.') 2hdi)C,7Y  
    end qUA&XUJ  
    Vh$~]>t:f  
    r = r(:); ?`V%[~4_I  
    theta = theta(:); E#JDbV1AC  
    length_r = length(r); rV d(H  
    if length_r~=length(theta) 3Wxl7"!x m  
        error('zernfun:RTHlength', ... "2;$?*hO#  
              'The number of R- and THETA-values must be equal.') b)J(0,9`G"  
    end O9wZx%<  
    3.U5Each-  
    % Check normalization: `=Pn{JaD  
    % -------------------- I~y[8  
    if nargin==5 && ischar(nflag) u4bPj2N8I  
        isnorm = strcmpi(nflag,'norm'); 7GY[l3arxv  
        if ~isnorm zk=5uKcPE  
            error('zernfun:normalization','Unrecognized normalization flag.') nF0$  
        end =;!C7VS  
    else (`x6QiG!  
        isnorm = false; CT+pkNC  
    end |B<+Y<)f^  
    &?YbAo_K  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 2LGeRw  
    % Compute the Zernike Polynomials 9Xo'U;J  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 2#~5[PtP^  
    N(q%|h<Z/=  
    % Determine the required powers of r: :$."x '  
    % ----------------------------------- Ug*:o d  
    m_abs = abs(m); 0^nnR7  
    rpowers = []; pqFgi_2m  
    for j = 1:length(n) |0:< Z(  
        rpowers = [rpowers m_abs(j):2:n(j)]; D@*<p h=  
    end 5jD2%"YUV  
    rpowers = unique(rpowers); :"7V,UP @  
    o7<pI8\  
    % Pre-compute the values of r raised to the required powers, `=0}+  
    % and compile them in a matrix: gd^1c}UZX  
    % ----------------------------- |_/q0#"  
    if rpowers(1)==0 Zy _A3m{  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); }eb}oK  
        rpowern = cat(2,rpowern{:}); iI ji[>qz  
        rpowern = [ones(length_r,1) rpowern]; fiqeXE?E  
    else .vYU4g]  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ?RJ ) u  
        rpowern = cat(2,rpowern{:}); L^uO.eI"m  
    end PCDsj_e  
    LPX@oha  
    % Compute the values of the polynomials: zC #[  
    % -------------------------------------- 3Xyu`zS&   
    y = zeros(length_r,length(n)); fBBNP)  
    for j = 1:length(n) Gh}sk-Xk=  
        s = 0:(n(j)-m_abs(j))/2; .)~IoIW=  
        pows = n(j):-2:m_abs(j); 37Ux2t  
        for k = length(s):-1:1 Ae R3wua  
            p = (1-2*mod(s(k),2))* ... F B-?{78~  
                       prod(2:(n(j)-s(k)))/              ... `K37&b;`[  
                       prod(2:s(k))/                     ... IoWh&(+KdH  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... CIAHsbn.A  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); aal5d_Y  
            idx = (pows(k)==rpowers); oV"#1lp*  
            y(:,j) = y(:,j) + p*rpowern(:,idx); Uu ~BErEC  
        end 6=A   
         /\P3UrQ&]  
        if isnorm B|U*2|e  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ^[6eo8Ck>  
        end U86bn(9K  
    end s"*ZQ0OaD  
    % END: Compute the Zernike Polynomials G6wBZ?)k  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \g& P5  
    W,dqk=n  
    % Compute the Zernike functions: 78&(>8@m  
    % ------------------------------ 6qg_&woJ3  
    idx_pos = m>0; l2Z!;Wm(  
    idx_neg = m<0; 21i?$ uU  
    w:%3]2c  
    z = y; #vCtH2  
    if any(idx_pos) veX#K#  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); +Qy0K5Ee  
    end wh8h1I  
    if any(idx_neg) Z9TmX A@  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); pv);LjF  
    end x&>zD0\ :\  
    sbn|D\p  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) }i,LP1R  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. AA$+ayzx9{  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated ~2 aR>R_nT  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive e(nT2E  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1,  peW4J<,  
    %   and THETA is a vector of angles.  R and THETA must have the same w0W9N%f#=  
    %   length.  The output Z is a matrix with one column for every P-value, \/=w \Tj  
    %   and one row for every (R,THETA) pair. w}2;f=  
    % kB~KC-&O  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike eru2.(1  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) Y:UDte[Lb  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) v&}+ps_W  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 rBNl%+ sB  
    %   for all p. =e\E{K'f@  
    % =)tU]kp  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 g Mhn\  
    %   Zernike functions (order N<=7).  In some disciplines it is G.Z4h/1<  
    %   traditional to label the first 36 functions using a single mode 2|a@,TW}-  
    %   number P instead of separate numbers for the order N and azimuthal |S0]qt?  
    %   frequency M. ~+ _|J"\  
    % .FV wZ:d  
    %   Example: B,rpc\_  
    % lM0`yh  
    %       % Display the first 16 Zernike functions J*4byu|  
    %       x = -1:0.01:1; W>jgsR79M  
    %       [X,Y] = meshgrid(x,x); {zGM[A  
    %       [theta,r] = cart2pol(X,Y); Tz/=\_}  
    %       idx = r<=1; T\}?  
    %       p = 0:15; h$\+r<  
    %       z = nan(size(X)); v(Vm:oK,  
    %       y = zernfun2(p,r(idx),theta(idx)); !a %6nBo  
    %       figure('Units','normalized') `{1` >5  
    %       for k = 1:length(p) 1E3'H7k\t  
    %           z(idx) = y(:,k); R^t )~\d  
    %           subplot(4,4,k) >b^|SL  
    %           pcolor(x,x,z), shading interp rID_^g_tP8  
    %           set(gca,'XTick',[],'YTick',[]) V* :Q~ ^  
    %           axis square WsHC%+\'  
    %           title(['Z_{' num2str(p(k)) '}']) "XvM1G&s`  
    %       end sqKLz  
    % h7 uv0a~0  
    %   See also ZERNPOL, ZERNFUN. R 2.y=P8N  
    E]Wnl\Be  
    %   Paul Fricker 11/13/2006 %~z/,[wk  
    3RYg-$NK[  
    <|qh5Scp  
    % Check and prepare the inputs: funHznRR  
    % ----------------------------- |q0MM^%"  
    if min(size(p))~=1 Ojea~Y]Sr  
        error('zernfun2:Pvector','Input P must be vector.') }Z^r<-N  
    end {u 7%Z}<0  
    X9:4oMux7  
    if any(p)>35 -wA^ao   
        error('zernfun2:P36', ... ^LaOl+;S  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... 7*{9 2_M  
               '(P = 0 to 35).']) ;|nC;D]  
    end pUTC~|j%:  
    X?3?R\/  
    % Get the order and frequency corresonding to the function number: g)o?nAr  
    % ---------------------------------------------------------------- )Fa6 'M  
    p = p(:); %Fb4   
    n = ceil((-3+sqrt(9+8*p))/2); :)cn&'l(S  
    m = 2*p - n.*(n+2); 0/r\#"+XT  
    [1Os.G2  
    % Pass the inputs to the function ZERNFUN: Yh^~4S?  
    % ---------------------------------------- 6[iuCMOZ  
    switch nargin 0u,OW  
        case 3 , [ogh  
            z = zernfun(n,m,r,theta); d-cK`pSB  
        case 4 ,F4 _ps?(  
            z = zernfun(n,m,r,theta,nflag); OfSy_#aEK  
        otherwise x37pj)i/  
            error('zernfun2:nargin','Incorrect number of inputs.') /Ah|Po  
    end N sUFM  
    NZj_7j|o9  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) 5)}3C_pmW  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. d;Uzl 1;  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of =Wb!j18]  
    %   order N and frequency M, evaluated at R.  N is a vector of LTSoo.dE  
    %   positive integers (including 0), and M is a vector with the ]+ \]2`?  
    %   same number of elements as N.  Each element k of M must be a .:<-E%  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) I eQF+Xz  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is ;k<n}shD  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix 9`3%o9V9Y  
    %   with one column for every (N,M) pair, and one row for every Cfz020u`g  
    %   element in R. 319 &:  
    % K1vm [Ne  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- d=q&UCC  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is <($'jlZ  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to (k@%04c  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 ]#UyYgPk  
    %   for all [n,m]. l1Zf#]x  
    % p@/i e@DX  
    %   The radial Zernike polynomials are the radial portion of the I 0/enL  
    %   Zernike functions, which are an orthogonal basis on the unit v|VfSLZTb  
    %   circle.  The series representation of the radial Zernike O{sb{kk  
    %   polynomials is RV*7?y%3  
    % K#O8P+n5[  
    %          (n-m)/2 @0XqUcV  
    %            __ xz @/^Cj  
    %    m      \       s                                          n-2s h{dR)#)GF<  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r Bt8   
    %    n      s=0 Z+zx*(X  
    % Z#n!=k TTm  
    %   The following table shows the first 12 polynomials. O<@S,/Q4  
    % kF09t5Lr  
    %       n    m    Zernike polynomial    Normalization m{U+aqAQK  
    %       --------------------------------------------- U~,~GU=X  
    %       0    0    1                        sqrt(2) /uTU*Oe  
    %       1    1    r                           2 r%*UU4xvB  
    %       2    0    2*r^2 - 1                sqrt(6) AWp{n  
    %       2    2    r^2                      sqrt(6) GzJ("RE0)v  
    %       3    1    3*r^3 - 2*r              sqrt(8) Bf&,ACOf  
    %       3    3    r^3                      sqrt(8) }d,iA FG  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) YQB.3  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) JN9 W:X.  
    %       4    4    r^4                      sqrt(10) 2>E.Q@c  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) ;8Z\bHQ>  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) F2;k6M@  
    %       5    5    r^5                      sqrt(12) 7?@s.Sz|fV  
    %       --------------------------------------------- 9~6FWBt  
    % !y8/El  
    %   Example: ' (JSU   
    % 8s,B,s.  
    %       % Display three example Zernike radial polynomials yv.UNcP?  
    %       r = 0:0.01:1; R:= %gl!  
    %       n = [3 2 5]; ls(lL\  
    %       m = [1 2 1]; NH?q/4=I0W  
    %       z = zernpol(n,m,r); DPrFBy  
    %       figure c,$ >u,4  
    %       plot(r,z) ~w<u!  
    %       grid on B2QC#R  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') K_@[%  
    % wnf'-dw]  
    %   See also ZERNFUN, ZERNFUN2. J/M_cO*U  
    ,ux?wa+  
    % A note on the algorithm. vJX3fE }F  
    % ------------------------ L*2YAIG  
    % The radial Zernike polynomials are computed using the series <2cl1Fb  
    % representation shown in the Help section above. For many special we<m%pf  
    % functions, direct evaluation using the series representation can mL!)(Bb  
    % produce poor numerical results (floating point errors), because 'USol<  
    % the summation often involves computing small differences between 3SRz14/W_R  
    % large successive terms in the series. (In such cases, the functions 29]T:I1d[  
    % are often evaluated using alternative methods such as recurrence oW:p6d  
    % relations: see the Legendre functions, for example). For the Zernike u$7o d$&S  
    % polynomials, however, this problem does not arise, because the n'<FH<x  
    % polynomials are evaluated over the finite domain r = (0,1), and *\?t W]8<  
    % because the coefficients for a given polynomial are generally all #q7`"E=M"  
    % of similar magnitude. 6}aIb.j  
    % p[E}:kak_-  
    % ZERNPOL has been written using a vectorized implementation: multiple lyBae?%&  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] ?8cgQf$  
    % values can be passed as inputs) for a vector of points R.  To achieve ?v]EXV3  
    % this vectorization most efficiently, the algorithm in ZERNPOL gO0X-fN8  
    % involves pre-determining all the powers p of R that are required to S>W_p~ @  
    % compute the outputs, and then compiling the {R^p} into a single :iWW2fY  
    % matrix.  This avoids any redundant computation of the R^p, and JXG%Cx!2}  
    % minimizes the sizes of certain intermediate variables. jhd&\z-  
    % C_SJ4Sh  
    %   Paul Fricker 11/13/2006 HZp}<7NR(7  
    &|;XLRHP}  
    ZzU3j^  
    % Check and prepare the inputs: LKCj@NdV  
    % ----------------------------- ),#%jc2_^  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 9,7IsT8  
        error('zernpol:NMvectors','N and M must be vectors.') <cQ)*~hN  
    end ` XAlzI  
    3P{ d~2  
    if length(n)~=length(m) D4e*Wwk  
        error('zernpol:NMlength','N and M must be the same length.') W\JbX<mQ  
    end LvlVZjT  
    9#K,@X5 j  
    n = n(:); [LDV*79Z  
    m = m(:); jQ &$5&o  
    length_n = length(n); `)sC".b7  
    *v+xKy#M  
    if any(mod(n-m,2)) AE1EZ#  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') RR,gC"cTi  
    end #r\,oXTm  
    Ns?8N":  
    if any(m<0) ^Ht!~So  
        error('zernpol:Mpositive','All M must be positive.') Gqe?CM  
    end c{YBCWA  
    OEz'&))J  
    if any(m>n) eko$c,&jY  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') qmNgEz%  
    end ]njObU)[zr  
    J2rw4L  
    if any( r>1 | r<0 ) )f#raXa5+  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') 5F#Q1gP-  
    end nE_g^  
    ^FaBaDcnl  
    if ~any(size(r)==1) drr W?U  
        error('zernpol:Rvector','R must be a vector.') Q8] lz}  
    end zcF`Z {&+  
    `zD]*i(  
    r = r(:); {0a (R2nB  
    length_r = length(r); |?zFm mh  
    S;pKL,d>r  
    if nargin==4 z[zURj-*]  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); `:=af[n   
        if ~isnorm #$vQT}  
            error('zernpol:normalization','Unrecognized normalization flag.') uVnbOqR<X  
        end }n!$)W*?  
    else fk*$}f  
        isnorm = false; TR@*tfS  
    end |=R@nn   
    :Q~Rb<']{x  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% J.nJ@?O+  
    % Compute the Zernike Polynomials "x;|li3;  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% BU3VXnqT[  
    :Z(w,  
    % Determine the required powers of r: ^0 zWiX  
    % ----------------------------------- <4l;I*:2&  
    rpowers = []; {KH!PAh  
    for j = 1:length(n) dfo_R  
        rpowers = [rpowers m(j):2:n(j)]; s&>U-7fx"  
    end jv8diQ.  
    rpowers = unique(rpowers); dA[MjOd3  
    O,$ ?Pj6  
    % Pre-compute the values of r raised to the required powers, uT")j,tz  
    % and compile them in a matrix: 75>)1H)Xm  
    % ----------------------------- -0pAj}_2}  
    if rpowers(1)==0 UEm~5,>$0  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); e}F1ZJz  
        rpowern = cat(2,rpowern{:}); ,CGq_>Z  
        rpowern = [ones(length_r,1) rpowern]; VLLE0W _]  
    else mA{G: d  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); P4h^_*d  
        rpowern = cat(2,rpowern{:}); k15fy"+Ut  
    end etcpto=Mo  
    $w:7$:k  
    % Compute the values of the polynomials: 8-f2$  
    % -------------------------------------- 1[? xU:;9  
    z = zeros(length_r,length_n); \{g;|Z 1  
    for j = 1:length_n !YM;5vte+  
        s = 0:(n(j)-m(j))/2; oRp;9   
        pows = n(j):-2:m(j); ;+86q"&n  
        for k = length(s):-1:1 ;%#.d$cU  
            p = (1-2*mod(s(k),2))* ... ,PmQ}1kGW  
                       prod(2:(n(j)-s(k)))/          ... 5eP0W#  
                       prod(2:s(k))/                 ... P#gY-k&Nr  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... 0j'H5>m"  
                       prod(2:((n(j)+m(j))/2-s(k))); t<UtSkE1  
            idx = (pows(k)==rpowers); ZUkrJ'  
            z(:,j) = z(:,j) + p*rpowern(:,idx); XIS.0]~  
        end <@+>A$~0  
         mN!5JZ' 2  
        if isnorm f@G3,u!]i  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); 7W7!X\0Y  
        end Y6&B%t<bo  
    end e9F\U   
    >Rnj6A|Q  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    857
    光币
    847
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  >7[o=!^:4  
    j&c YRKpz  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 )Gu:eYp+`  
    |P>Yf0  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)