非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 +frkC| .
function z = zernfun(n,m,r,theta,nflag) fF\s5f#:
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. )l|/lj
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 8)1k>=
% and angular frequency M, evaluated at positions (R,THETA) on the z
TM1 e
% unit circle. N is a vector of positive integers (including 0), and %nmD>QCe
% M is a vector with the same number of elements as N. Each element ZMI!Sl
% k of M must be a positive integer, with possible values M(k) = -N(k) S5W*,?
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, heAbxs
% and THETA is a vector of angles. R and THETA must have the same <H,q( :pM
% length. The output Z is a matrix with one column for every (N,M) <DM
/"^*
% pair, and one row for every (R,THETA) pair. giDe
% !='?+Ysxs
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike |K H&,
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), (eOzntp8
% with delta(m,0) the Kronecker delta, is chosen so that the integral 5c W2
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, T/A[C
% and theta=0 to theta=2*pi) is unity. For the non-normalized TCC([
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. qNH=
W?T8.
% .BWCGb2bH
% The Zernike functions are an orthogonal basis on the unit circle. ?/SI A9VK
% They are used in disciplines such as astronomy, optics, and |BO!q9633V
% optometry to describe functions on a circular domain. f*{~N!g
% {NS6y \,
% The following table lists the first 15 Zernike functions. exnFy-
% Yb~[XS |p
% n m Zernike function Normalization L*rND15
% -------------------------------------------------- ;Tn$c70
% 0 0 1 1 |fJpX5W-l
% 1 1 r * cos(theta) 2 m~LB0u$ac
% 1 -1 r * sin(theta) 2 Q1?0R<jOU
% 2 -2 r^2 * cos(2*theta) sqrt(6)
Y\Z.E;
% 2 0 (2*r^2 - 1) sqrt(3) nO'lN<L
% 2 2 r^2 * sin(2*theta) sqrt(6) /MErS< 6
% 3 -3 r^3 * cos(3*theta) sqrt(8) \5MW65
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) ;{zgp
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) B``)
% 3 3 r^3 * sin(3*theta) sqrt(8) efK|)_i
:
% 4 -4 r^4 * cos(4*theta) sqrt(10) 7V^\fh5~
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) !c;Z<@
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) @Qlh
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) y rSTU-5u
% 4 4 r^4 * sin(4*theta) sqrt(10) 8:x{
% -------------------------------------------------- * mzJ)4A
% wNHvYulI
% Example 1: :U,n[.$5'
% aCq ) hR
% % Display the Zernike function Z(n=5,m=1) wRa$b
% x = -1:0.01:1; yc#0c[ZQu
% [X,Y] = meshgrid(x,x); ?!h
jI;_&
% [theta,r] = cart2pol(X,Y); O0"u-UX{
% idx = r<=1; ypCarvQT
% z = nan(size(X)); baD`k?](
% z(idx) = zernfun(5,1,r(idx),theta(idx)); x*Lm{c5+
% figure K,!"5W rX*
% pcolor(x,x,z), shading interp <vMdfw"(
% axis square, colorbar O%1X[
% title('Zernike function Z_5^1(r,\theta)') ;^Q- 1
% j~|pSu.<
% Example 2: N^ )\+*tf1
% 6`ZHFem
% % Display the first 10 Zernike functions zdL"PF
% x = -1:0.01:1; <B
}4}-}
% [X,Y] = meshgrid(x,x); |>/T*zk<
% [theta,r] = cart2pol(X,Y); deRnP$u0
% idx = r<=1; $jpAnZR- /
% z = nan(size(X)); J=%(f1X<W
% n = [0 1 1 2 2 2 3 3 3 3]; Gu3# y"a>
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; )_m#|U?Rex
% Nplot = [4 10 12 16 18 20 22 24 26 28]; 4x`.nql
% y = zernfun(n,m,r(idx),theta(idx)); %Sgdhgk1
% figure('Units','normalized') cc*xHv^
% for k = 1:10 _{eH"
,(
% z(idx) = y(:,k); F5hOKUjv
% subplot(4,7,Nplot(k)) F%Xj'=
% pcolor(x,x,z), shading interp R\^n2gK
% set(gca,'XTick',[],'YTick',[]) 8&g`Uy/b
% axis square &jg..R
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ([mC!d@a
% end sQ4~oZZ
% i`FskEoijq
% See also ZERNPOL, ZERNFUN2. NZP>aV-
'aW}&!H M
% Paul Fricker 11/13/2006 4axc05
h#Z5vH
q ,C)AZ
% Check and prepare the inputs: P?.j
w I
% ----------------------------- *0*1.>Vg
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ,%bG]5
error('zernfun:NMvectors','N and M must be vectors.') /2<1/[#
end c{qoASc?
Vb
_W&Nwd
if length(n)~=length(m) #o(c=
error('zernfun:NMlength','N and M must be the same length.') I6jDRC0<
end X;~3 U
9
K&\3j-8^
n = n(:); =;) M+"
m = m(:); 6r|Bi HP
if any(mod(n-m,2)) `8.Oc;*zu
error('zernfun:NMmultiplesof2', ... xu]>TC1
'All N and M must differ by multiples of 2 (including 0).') |i}5vT78
end Zx1 I&K\Cd
q h+c}"4m
if any(m>n) qoifzEc`U
error('zernfun:MlessthanN', ... ,h#U<CnP#
'Each M must be less than or equal to its corresponding N.') f&n6;N
end b<1k$0J6
Hq>"rrVhx
if any( r>1 | r<0 ) )\!-n]+A
error('zernfun:Rlessthan1','All R must be between 0 and 1.') 5D~>Ed;
end YFGQPg
9b8kRz[ c
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) |%i|P)]
error('zernfun:RTHvector','R and THETA must be vectors.') cNd;qO0$
end
K F:W:8
^2|G0d@.:
r = r(:); *Dz<Pi^
theta = theta(:); bnm3
cR:h"
length_r = length(r); tH}$j
if length_r~=length(theta) 7jf%-X
error('zernfun:RTHlength', ... M_ GN3
'The number of R- and THETA-values must be equal.') 2E*k@
end m9&MTRD\
Dd=iYMm7
% Check normalization: aCwb[7N
% -------------------- 09r0Rb
if nargin==5 && ischar(nflag) SviGLv;oR
isnorm = strcmpi(nflag,'norm'); hPM:=@N$
if ~isnorm =LUDg7P
error('zernfun:normalization','Unrecognized normalization flag.') dV:vM9+x
end DaK2P;WP
else r
N.<S[
isnorm = false; ^<