切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11689阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 Q{|_"sfJ  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! x7xMSy  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 CH#K0hi  
    function z = zernfun(n,m,r,theta,nflag) {V pk o  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. k }{o: N  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N q65]bs4M  
    %   and angular frequency M, evaluated at positions (R,THETA) on the vN:!{)~z  
    %   unit circle.  N is a vector of positive integers (including 0), and ;%Px~g  
    %   M is a vector with the same number of elements as N.  Each element dz^b(q  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) UM`{V5NG#  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, O c.fvP^ZD  
    %   and THETA is a vector of angles.  R and THETA must have the same puLgc$?  
    %   length.  The output Z is a matrix with one column for every (N,M) B&7NF}CF2  
    %   pair, and one row for every (R,THETA) pair. 9|3sNFGX  
    % L[Ot$  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike A;^ iy]"  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 4*L* "vKa  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral MsBm0r`a  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, E[7E%^:Mg  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized SME9hS$4  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. as'yYn8  
    % 6O,:I  
    %   The Zernike functions are an orthogonal basis on the unit circle. Mna yiJl  
    %   They are used in disciplines such as astronomy, optics, and 8;L;R ~Q  
    %   optometry to describe functions on a circular domain. (@qPyM6~}  
    % m"-kkH{I  
    %   The following table lists the first 15 Zernike functions. {bADMj1  
    % a]P w:lT  
    %       n    m    Zernike function           Normalization a#{"3Z2|  
    %       -------------------------------------------------- yj@k0TWT$  
    %       0    0    1                                 1 //;(KmU9  
    %       1    1    r * cos(theta)                    2 {F2Rv  
    %       1   -1    r * sin(theta)                    2 t|V<K^  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) )iM( \=1ff  
    %       2    0    (2*r^2 - 1)                    sqrt(3) [& Z- *a  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) YU"/p|!1  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) SO.u0!  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) _5H~1G%q  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) M PDRMGR@i  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 7#d:TXS  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) D(;+my2  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) )bR0 >3/  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) [*Ai@:F  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 'l=>H#}<B  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) J <;xkT1x  
    %       -------------------------------------------------- E N%{ $  
    % `^,E4Qy  
    %   Example 1: #g0_8>t  
    % BWQ`8  
    %       % Display the Zernike function Z(n=5,m=1) qHp2;  
    %       x = -1:0.01:1; :o ~'\:/  
    %       [X,Y] = meshgrid(x,x); C0 KFN  
    %       [theta,r] = cart2pol(X,Y); b_a k@LYiu  
    %       idx = r<=1; {lH'T1^m  
    %       z = nan(size(X)); mI!iSVqr  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); \O4s0*gw  
    %       figure xs\<!  
    %       pcolor(x,x,z), shading interp < K!r\^  
    %       axis square, colorbar 1U#W=Fg'  
    %       title('Zernike function Z_5^1(r,\theta)') ;y. ;U#O  
    % qD4s?j-9  
    %   Example 2: yf0v,]v[  
    % Y JMs9X~3  
    %       % Display the first 10 Zernike functions Exqz$'(W9  
    %       x = -1:0.01:1; b@&uwSv  
    %       [X,Y] = meshgrid(x,x); 'G~i;o  2  
    %       [theta,r] = cart2pol(X,Y); .B- b51Uz  
    %       idx = r<=1; 87[ ,.W  
    %       z = nan(size(X)); 717THci3Y  
    %       n = [0  1  1  2  2  2  3  3  3  3]; t6\H  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; T0")Ryu  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 0?8>{!I  
    %       y = zernfun(n,m,r(idx),theta(idx)); l[IL~  
    %       figure('Units','normalized') =1,!EkG  
    %       for k = 1:10 qbsod  
    %           z(idx) = y(:,k); yNXYS  
    %           subplot(4,7,Nplot(k)) $.pCoS]i  
    %           pcolor(x,x,z), shading interp >!@D^3PPA  
    %           set(gca,'XTick',[],'YTick',[]) 2w3LK2`ZL  
    %           axis square s|H7;.3gp  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) G#e]J;   
    %       end 8^+|I,  
    % x%r$/=  
    %   See also ZERNPOL, ZERNFUN2. nvf5a-C+q  
    JyTETf,y  
    %   Paul Fricker 11/13/2006 Ycm.qud ?  
    '%t$m f!nV  
    @,e o*  
    % Check and prepare the inputs: 2<5LQr  
    % ----------------------------- 8)eRm{  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) |(*btdqy3  
        error('zernfun:NMvectors','N and M must be vectors.') Z(c SM  
    end P8ej9ULX,  
    {22ey`@`h  
    if length(n)~=length(m) PvV\b<Pe+  
        error('zernfun:NMlength','N and M must be the same length.') <Tjhj *  
    end MbCz*oW  
    nVWU\$Ft  
    n = n(:); VnSO>O  
    m = m(:); Uz,P^\8^$  
    if any(mod(n-m,2)) W|@SXO)DY  
        error('zernfun:NMmultiplesof2', ... O0z-jZ,])  
              'All N and M must differ by multiples of 2 (including 0).') { CR`~)v&  
    end FT~c|ep.  
    9ThsR&h3  
    if any(m>n) 4y+hr   
        error('zernfun:MlessthanN', ... ;kZD>G8  
              'Each M must be less than or equal to its corresponding N.') EiC["M'}  
    end Y=<ABtertS  
    @HMH>;haE  
    if any( r>1 | r<0 ) iUh7eR9  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') ef{Hj[8  
    end d7b`X<=@s  
    nRqP_*]  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) #UymD-yII  
        error('zernfun:RTHvector','R and THETA must be vectors.') ^0>^5l'n  
    end U&B(uk(2  
    ~h8k4eM  
    r = r(:); W`_Wi*z4  
    theta = theta(:); B^dMYFelJ  
    length_r = length(r); u;^H=7R  
    if length_r~=length(theta) |>j^$^l~  
        error('zernfun:RTHlength', ... @(a~ p  
              'The number of R- and THETA-values must be equal.') Pfvb?Hy  
    end w/o8R3 F  
    u"v$[8  
    % Check normalization: |AvsT{2  
    % --------------------  !vl1#@  
    if nargin==5 && ischar(nflag) `{"V(YMEV  
        isnorm = strcmpi(nflag,'norm'); >^9j>< Z  
        if ~isnorm K[noW  
            error('zernfun:normalization','Unrecognized normalization flag.') b4$.uLY  
        end 502(CO>  
    else 6I=d0m.io  
        isnorm = false; kp[&SKU c  
    end 6@^ ?dQ  
    Iu~(SKr=|$  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% SP2";,%/9  
    % Compute the Zernike Polynomials ~rOvVi&4  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ^v;8 (eF  
    DPnrzV )  
    % Determine the required powers of r: .ejC#vB{KM  
    % ----------------------------------- su\Lxv  
    m_abs = abs(m); O[1Q#  
    rpowers = []; K~UT@,CS60  
    for j = 1:length(n) 7[kDc-  
        rpowers = [rpowers m_abs(j):2:n(j)]; UeB St.  
    end :Oj!J&A  
    rpowers = unique(rpowers); cru&nH*O^  
    !h1|B7N  
    % Pre-compute the values of r raised to the required powers, 25xt*30M  
    % and compile them in a matrix: {2g?+8L$Z  
    % ----------------------------- GZ:1bV37%  
    if rpowers(1)==0 }darXtZKkK  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); K nn<q=';G  
        rpowern = cat(2,rpowern{:}); 2+(SR.oGq  
        rpowern = [ones(length_r,1) rpowern]; K)`l > o1  
    else %tkL<e  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); :Z;kMrU  
        rpowern = cat(2,rpowern{:}); "[L+LPET  
    end Hn)^C{RN*{  
    B$97"$#u  
    % Compute the values of the polynomials: ~ebm,3?  
    % -------------------------------------- = p2AK\  
    y = zeros(length_r,length(n)); :NwFJc  
    for j = 1:length(n) y3'K+?4  
        s = 0:(n(j)-m_abs(j))/2; J0@#xw=+  
        pows = n(j):-2:m_abs(j); )lx;u.$4  
        for k = length(s):-1:1 4NFvX4  
            p = (1-2*mod(s(k),2))* ... pi*?fUg!W  
                       prod(2:(n(j)-s(k)))/              ... %`dVX EO  
                       prod(2:s(k))/                     ... )hA)`hL F  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ` NvJ  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); H8qAj  
            idx = (pows(k)==rpowers); @q" #.?>s  
            y(:,j) = y(:,j) + p*rpowern(:,idx); `@ Ont+  
        end l=&Va+K  
         QbAEW m  
        if isnorm g31\7\)Ir  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); zv\T;_  
        end g7LS  
    end ~ln96*)M;  
    % END: Compute the Zernike Polynomials [*=UH* :'N  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% l) )Cvre+  
    i'Q 4touy  
    % Compute the Zernike functions: +JFE\>O  
    % ------------------------------ +-:G+9L@  
    idx_pos = m>0; -S}^b6WL  
    idx_neg = m<0; o:/yme G  
    O`0A#h&No  
    z = y; 9fq CE619a  
    if any(idx_pos) AUkePp78  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); z6Yx )qBE<  
    end M*jn8OE  
    if any(idx_neg) :+S~N)0j^  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ]M9r<x*  
    end EtvYIfemr  
    #>\8m+h 9  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) Kkds^v6  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. k39;7J  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated PP)-g0^@  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive DWRq \`P  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, mo3HUXf}8  
    %   and THETA is a vector of angles.  R and THETA must have the same _"%-=^_  
    %   length.  The output Z is a matrix with one column for every P-value, vwQ6=  
    %   and one row for every (R,THETA) pair. q--;5"=S  
    % '&$xLZ8  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike HBnnIbEtF'  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) p8MPn>h<  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) 4 '6HX#J  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 )o8]MWT\;  
    %   for all p. "Dwaq*L  
    % +gOv5Eno-  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 VlQaT7Q  
    %   Zernike functions (order N<=7).  In some disciplines it is ?KfV>.()  
    %   traditional to label the first 36 functions using a single mode N-Nq*  
    %   number P instead of separate numbers for the order N and azimuthal T"$yh2tSY  
    %   frequency M. o=VDO,eS  
    % xT$9M"  
    %   Example: ?5g0#wqI  
    % WwM/M!98J  
    %       % Display the first 16 Zernike functions ]1 OZY@  
    %       x = -1:0.01:1; r/vRaOg>X  
    %       [X,Y] = meshgrid(x,x); r8E)GBH-|  
    %       [theta,r] = cart2pol(X,Y); 5b2_{6t  
    %       idx = r<=1; Q7$K,7flf;  
    %       p = 0:15; wfxg@<WR  
    %       z = nan(size(X)); sh%snLw  
    %       y = zernfun2(p,r(idx),theta(idx)); ^B|Q&1  
    %       figure('Units','normalized') U&\8~h  
    %       for k = 1:length(p) #\]:lr{>?4  
    %           z(idx) = y(:,k); Xr@]7: ,  
    %           subplot(4,4,k) 2= 6}! Y  
    %           pcolor(x,x,z), shading interp 5L}qL?S`x|  
    %           set(gca,'XTick',[],'YTick',[]) .:b|imgiv  
    %           axis square *h>KeIB;  
    %           title(['Z_{' num2str(p(k)) '}']) X_eh+>D  
    %       end 8&"@6/)[  
    % ~)JNevLZ  
    %   See also ZERNPOL, ZERNFUN. VY5/C;0^h  
    1c} %_Z/  
    %   Paul Fricker 11/13/2006 [l2ds:  
    .*s1d)\:  
    b!R\u1b  
    % Check and prepare the inputs: Iu`xe  
    % ----------------------------- CN$wlhs  
    if min(size(p))~=1 *L3>:],7  
        error('zernfun2:Pvector','Input P must be vector.') n~g,qEI;<x  
    end RTW4r9~'  
    .'y]Ea  
    if any(p)>35 KU> $=Rd  
        error('zernfun2:P36', ... A@X&d y  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... lIg;>|'Z5&  
               '(P = 0 to 35).']) :i&ZMH,O  
    end EVW{!\8[  
    D,rF?t>=S  
    % Get the order and frequency corresonding to the function number: ZV`D} CQ  
    % ---------------------------------------------------------------- ;L5'3+U  
    p = p(:); #l6L7u0~wC  
    n = ceil((-3+sqrt(9+8*p))/2); ]e'Ol$3U9=  
    m = 2*p - n.*(n+2); S&A, Q'  
    8#9 di  
    % Pass the inputs to the function ZERNFUN: w~eF0 {h  
    % ---------------------------------------- Ccw6,2`&  
    switch nargin &!uN N|W  
        case 3 ~@x@uY$5  
            z = zernfun(n,m,r,theta); $W 46!U3  
        case 4 Y7yh0r_  
            z = zernfun(n,m,r,theta,nflag); R)AFaP |  
        otherwise `[<j5(T  
            error('zernfun2:nargin','Incorrect number of inputs.') d?RKobk  
    end +)#d+@-  
    MVW2 %6  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) 6% @@~"  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. qm-G=EX  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of _7(>0GY  
    %   order N and frequency M, evaluated at R.  N is a vector of N 4$!V}pp  
    %   positive integers (including 0), and M is a vector with the Iz/o|o]#  
    %   same number of elements as N.  Each element k of M must be a iV!o)WvG,F  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) G2]/g  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is / c1=`OJ  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix wf!?'*  
    %   with one column for every (N,M) pair, and one row for every PiMW 29B^  
    %   element in R. +'9l 2DI;  
    % seh1(q?Va4  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- eeX^zaKl]  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is DGl_SMJb  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to ozZW7dveU  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 fRp+-QvE  
    %   for all [n,m]. Om%{fq&  
    % 5CZii=@  
    %   The radial Zernike polynomials are the radial portion of the }Yt/e-Yg%r  
    %   Zernike functions, which are an orthogonal basis on the unit *ip2|2G$  
    %   circle.  The series representation of the radial Zernike &?m|PK)I  
    %   polynomials is p2N;-  
    % X/  
    %          (n-m)/2 ^2L\Y2  
    %            __ d'~ kf#  
    %    m      \       s                                          n-2s c:0nOP  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r 5;wA7@  
    %    n      s=0 +H5= zf2  
    % 1b:3'E.#w  
    %   The following table shows the first 12 polynomials. MA\"JAP/  
    % \2(Uqf#_  
    %       n    m    Zernike polynomial    Normalization A`Vz5WB  
    %       --------------------------------------------- vd Fy}#X  
    %       0    0    1                        sqrt(2) \F;V69'  
    %       1    1    r                           2 $2Y'[Dto\  
    %       2    0    2*r^2 - 1                sqrt(6)  -1Acprr  
    %       2    2    r^2                      sqrt(6) w] b3,b  
    %       3    1    3*r^3 - 2*r              sqrt(8) CV%AqJN  
    %       3    3    r^3                      sqrt(8) !|hxr#q=4  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10)  LAG*H  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) T `x:80  
    %       4    4    r^4                      sqrt(10) (| DmYn!  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) gUf-1#g4\`  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) q<mDs$^K  
    %       5    5    r^5                      sqrt(12) hsIC5@s3  
    %       --------------------------------------------- \ .+.VK  
    % +}H2|vP  
    %   Example: <[O8 {9j  
    % ZS0=xS5q)  
    %       % Display three example Zernike radial polynomials OfC0lb:c  
    %       r = 0:0.01:1; hGmJG,H  
    %       n = [3 2 5]; u_[^gS7  
    %       m = [1 2 1]; FB {4& ;  
    %       z = zernpol(n,m,r); T 9Jv  
    %       figure H)&6I33`  
    %       plot(r,z) %?K1X^52d  
    %       grid on N S*e<9  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') 7=yC*]BH-=  
    % WZq0$:I;R  
    %   See also ZERNFUN, ZERNFUN2. Ox;q +5  
    o<@b]ukl&  
    % A note on the algorithm. cI)T@Zg_o+  
    % ------------------------ _" 0VM >  
    % The radial Zernike polynomials are computed using the series ~|+! xh  
    % representation shown in the Help section above. For many special 5y07@x  
    % functions, direct evaluation using the series representation can MW|Qop[  
    % produce poor numerical results (floating point errors), because p!^.;c  
    % the summation often involves computing small differences between RD_IGV   
    % large successive terms in the series. (In such cases, the functions |_Vi8Ly  
    % are often evaluated using alternative methods such as recurrence r8\"'4B1  
    % relations: see the Legendre functions, for example). For the Zernike a nK7j2  
    % polynomials, however, this problem does not arise, because the }HB)%C50.  
    % polynomials are evaluated over the finite domain r = (0,1), and V?U->0>Z4  
    % because the coefficients for a given polynomial are generally all 0{bGVLp  
    % of similar magnitude. `$j"nP F_  
    % CAg\-*P|  
    % ZERNPOL has been written using a vectorized implementation: multiple =ML6"jr  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] sM)qzO2wh  
    % values can be passed as inputs) for a vector of points R.  To achieve b#%s!  
    % this vectorization most efficiently, the algorithm in ZERNPOL _,V 9^  
    % involves pre-determining all the powers p of R that are required to v'Y)~Kv@!  
    % compute the outputs, and then compiling the {R^p} into a single Bbuy y  
    % matrix.  This avoids any redundant computation of the R^p, and HMsTm}d  
    % minimizes the sizes of certain intermediate variables. D<9FSxl6  
    % ax{+7  k  
    %   Paul Fricker 11/13/2006 U X)k;h  
    My'u('Q%  
    .>z)6S_G  
    % Check and prepare the inputs: D 3m4:z  
    % ----------------------------- e(7F| G*  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) <4,hrx&.  
        error('zernpol:NMvectors','N and M must be vectors.') M&P?/Zi=L  
    end k(|D0%#b7  
    `I+G7K K  
    if length(n)~=length(m) h=6Zvf<x  
        error('zernpol:NMlength','N and M must be the same length.') +*"u(7AV  
    end W]Z;=-CBr  
    dL%?k@R  
    n = n(:); FoY_5/  
    m = m(:); QixEMX4<  
    length_n = length(n); ] h3~>8<  
    H^ _[IkuA%  
    if any(mod(n-m,2)) {fXD@lhi  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') p/jC}[$v  
    end ,!U._ic'B  
    gMe)\5`\Y  
    if any(m<0) 5o;M  
        error('zernpol:Mpositive','All M must be positive.') o*OYZ/_L  
    end 1eue.iuQ  
     pv<$ o  
    if any(m>n) 61e)SIRz9I  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') TVVL1wZ  
    end A&%vog]O  
    @~pIyy\_  
    if any( r>1 | r<0 ) /wplP+w2  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') bt3v`q+V  
    end aewVq@ngq!  
    wZv"tbAWLV  
    if ~any(size(r)==1) E,5XX;|  
        error('zernpol:Rvector','R must be a vector.') K=|x"6\  
    end o'Q"  
    V 8`o71p  
    r = r(:); bup)cX^  
    length_r = length(r); K|Sh  
    !#l>+9  
    if nargin==4 &AR@5M u  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); 0mcZe5RS  
        if ~isnorm Jq0aDf f  
            error('zernpol:normalization','Unrecognized normalization flag.') 13 `Or(>U  
        end A1Tk6i<F1  
    else y;zp*(}f$h  
        isnorm = false; zu8   
    end cMxuG'{=.  
    ;Fw{p{7<  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% VJW%y)_[  
    % Compute the Zernike Polynomials \\Ps*HN  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% _P6e%O8C#  
    t[HfaW1W  
    % Determine the required powers of r: JC| j*x(k/  
    % ----------------------------------- $ ?ayE  
    rpowers = []; o+{]&V->gN  
    for j = 1:length(n) * E$&  
        rpowers = [rpowers m(j):2:n(j)]; l":\@rm`  
    end a2J01B  
    rpowers = unique(rpowers); 9FB k|g"U)  
    TmI~P+5w  
    % Pre-compute the values of r raised to the required powers, $tKz|H)  
    % and compile them in a matrix: V~nqPh!Jc  
    % ----------------------------- H@ab]&  
    if rpowers(1)==0 W=zHD 9  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); S\$=b_.  
        rpowern = cat(2,rpowern{:}); AlZ]UGf^  
        rpowern = [ones(length_r,1) rpowern]; 5d ?\>dA  
    else Mn`);[  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 62L,/?`B$  
        rpowern = cat(2,rpowern{:}); 0\W6X;?  
    end ?@n, 9!  
    b+b].,  
    % Compute the values of the polynomials: D==C"}J  
    % -------------------------------------- l X g.`  
    z = zeros(length_r,length_n); W(~7e?fO  
    for j = 1:length_n {lv@V*_Y0  
        s = 0:(n(j)-m(j))/2; V)|]w[(Y  
        pows = n(j):-2:m(j); ),DLrGOl  
        for k = length(s):-1:1 VsIDd}~C%  
            p = (1-2*mod(s(k),2))* ... {=3&_/9s){  
                       prod(2:(n(j)-s(k)))/          ... -jXO9Q  
                       prod(2:s(k))/                 ... r.WQ6h/eZ5  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... i n $~(+  
                       prod(2:((n(j)+m(j))/2-s(k))); X ? eCK,  
            idx = (pows(k)==rpowers); iX]tL:,~i  
            z(:,j) = z(:,j) + p*rpowern(:,idx); a!?JVhD&  
        end =}F}XSvXH  
         _+B{n^ {  
        if isnorm _!qi`A  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); eMHBY6<~=  
        end T?lp:~d  
    end N [qNSo|  
    Ms>CO7Nvy  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  BE,H`G #h  
    ;hkzL_' E)  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 I`[s(C>3@  
    X0BBJ(e  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)