切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11648阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 {X+3;&@  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! .t-4o<7 3  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 @/.;Xw]  
    function z = zernfun(n,m,r,theta,nflag) f!uwzHA`?  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 4y?n [/M/  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N R6Km\N  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ,{u yG:  
    %   unit circle.  N is a vector of positive integers (including 0), and Oi'5ytsES  
    %   M is a vector with the same number of elements as N.  Each element y<|7z99L  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 3vN_p$  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, VU(v3^1"  
    %   and THETA is a vector of angles.  R and THETA must have the same %KhI>O<  
    %   length.  The output Z is a matrix with one column for every (N,M) gjwn7_  
    %   pair, and one row for every (R,THETA) pair. uM IIYS  
    % JN-y)L/>  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike H?vdr:WlTN  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), EzM ?Nft  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral ZF9z~9  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, t;}|tgC  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 8B K(4?gC  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. xQ-<WF1i  
    % %~H-)_d20  
    %   The Zernike functions are an orthogonal basis on the unit circle. |O\s|H  
    %   They are used in disciplines such as astronomy, optics, and '4+ ur`  
    %   optometry to describe functions on a circular domain. EReZkvseC  
    % W.f/pu  
    %   The following table lists the first 15 Zernike functions. 30#s aGV  
    % #uG%j  
    %       n    m    Zernike function           Normalization XFHYQ2ME2  
    %       -------------------------------------------------- %+W{iu[|  
    %       0    0    1                                 1 UT~4x|b:O  
    %       1    1    r * cos(theta)                    2 ;;OAQ`  
    %       1   -1    r * sin(theta)                    2 X1x#6 oi  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 2>xF){`  
    %       2    0    (2*r^2 - 1)                    sqrt(3) ArI2wM/v  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) +s,=lL  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) =vCY?I$P  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 'j8:vq^d  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) w7.V6S$Ga  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) C\Wmq [  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) *k(XW_>  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) #C74z$  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) YW,tCtI0_  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) vAF "n  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) Q^9_' t}X  
    %       -------------------------------------------------- Jy`B!S_l  
    % Fx_z6a  
    %   Example 1: _/s$ZCd  
    % ~zJbK. _  
    %       % Display the Zernike function Z(n=5,m=1) :1. L}4"gg  
    %       x = -1:0.01:1;  ul6]!Iy  
    %       [X,Y] = meshgrid(x,x); urs,34h  
    %       [theta,r] = cart2pol(X,Y); p SH=%u>  
    %       idx = r<=1; +aCv&sg  
    %       z = nan(size(X)); TTX5EDCrC  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); W fN2bsx>  
    %       figure j ?3wvw6T  
    %       pcolor(x,x,z), shading interp E1aHKjLQ  
    %       axis square, colorbar *MFIV02[N  
    %       title('Zernike function Z_5^1(r,\theta)') [\98$BN  
    % ?DS@e@lx  
    %   Example 2: w,p PYf/t  
    % ;C9_?u~#  
    %       % Display the first 10 Zernike functions $Ps|HN  
    %       x = -1:0.01:1; { =9,n\85#  
    %       [X,Y] = meshgrid(x,x); ,GhS[VJjR  
    %       [theta,r] = cart2pol(X,Y); iJ)_RSFK  
    %       idx = r<=1; PFlNo` iO  
    %       z = nan(size(X)); CAig ]=2'  
    %       n = [0  1  1  2  2  2  3  3  3  3]; +6M}O[LP  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; "rALt~AX  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; '5#^i:  
    %       y = zernfun(n,m,r(idx),theta(idx)); `!3SF|x&  
    %       figure('Units','normalized') hn7# L  
    %       for k = 1:10 !3c\NbU  
    %           z(idx) = y(:,k); xf\C|@i  
    %           subplot(4,7,Nplot(k)) IYE~t  
    %           pcolor(x,x,z), shading interp )Yh+c=6 ?  
    %           set(gca,'XTick',[],'YTick',[]) Jc&{`s^Nu  
    %           axis square &T?RZ2  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ehGLk7@7&  
    %       end c)6m$5]  
    % lne4-(DJ  
    %   See also ZERNPOL, ZERNFUN2. ,a{P4Bq  
    RtkEGxw*^  
    %   Paul Fricker 11/13/2006 '2A)}uR  
    G/y5H;<9M  
    P[G)sA_"  
    % Check and prepare the inputs: "b~+;<}Q  
    % ----------------------------- ^&9zw\x;z  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) #X+JHl  
        error('zernfun:NMvectors','N and M must be vectors.') n$A9_cHF7  
    end T#T*Zw"+  
    Di,^%  
    if length(n)~=length(m) GLH0 ]  
        error('zernfun:NMlength','N and M must be the same length.') hIYNhZv  
    end y;m|  
    H*?t^  
    n = n(:); @(EAq<5{  
    m = m(:); 9d0@wq.  
    if any(mod(n-m,2)) y>8sZuH0  
        error('zernfun:NMmultiplesof2', ... p#ZCvPE;uH  
              'All N and M must differ by multiples of 2 (including 0).') VD;01"#'  
    end kYE9M8s;  
    (U D nsF  
    if any(m>n) ;>%r9pz ~  
        error('zernfun:MlessthanN', ... f=l rg KE  
              'Each M must be less than or equal to its corresponding N.') Fk&c=V;SU  
    end ueogaifvB  
    "@^k)d$  
    if any( r>1 | r<0 ) `z}?"BW|  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') +qN>.y!Y  
    end nUaJzPl  
    xWH.^o,"  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) c8 )DuJ#U  
        error('zernfun:RTHvector','R and THETA must be vectors.') zF`0J  
    end q^@Q"J =v  
    :^lI`9'*R  
    r = r(:); etQCzYIhn  
    theta = theta(:); do hA0  
    length_r = length(r); ,hDW Ps2S  
    if length_r~=length(theta) dM.f]-g  
        error('zernfun:RTHlength', ... A7 {\</Z  
              'The number of R- and THETA-values must be equal.') ''cInTCr  
    end B&M%I:i  
    1 &jc/*Z"  
    % Check normalization: +uF>2b6'  
    % -------------------- ,C\i^>=  
    if nargin==5 && ischar(nflag) /$Ir5=B  
        isnorm = strcmpi(nflag,'norm'); l ~"^7H?4e  
        if ~isnorm ?6!JCQJ<  
            error('zernfun:normalization','Unrecognized normalization flag.') zEX  
        end 7DogM".}~Q  
    else (Bb5?fw  
        isnorm = false; ZoW?nxY  
    end a@K%06A;'  
    E:_ZA  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Bpo4?nCl}  
    % Compute the Zernike Polynomials V;VHv=9`o  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 98c(<  
    ]"As1"  
    % Determine the required powers of r: [-1^-bb  
    % ----------------------------------- dmtr*pM_  
    m_abs = abs(m); W\$`w  
    rpowers = []; FW;?s+Uyx  
    for j = 1:length(n) T9|m7  
        rpowers = [rpowers m_abs(j):2:n(j)]; VOsR An/N  
    end Wx%H%FeK  
    rpowers = unique(rpowers); ,Q$ q=E;X  
    ;vR4XHl|  
    % Pre-compute the values of r raised to the required powers, .&iawz  
    % and compile them in a matrix: i$"F{|Z0  
    % ----------------------------- (62"8iD6  
    if rpowers(1)==0 |)DGkOtd  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false);  M mj;-u  
        rpowern = cat(2,rpowern{:}); \[i1JG  
        rpowern = [ones(length_r,1) rpowern]; .[KrlfI  
    else 5X$jl;6  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); PcMD])Z{G  
        rpowern = cat(2,rpowern{:}); &ee~p&S,>  
    end np^N8$i:n  
    QD&`^(X1p  
    % Compute the values of the polynomials: ~8Fk(E_  
    % -------------------------------------- )gUR@V>e2  
    y = zeros(length_r,length(n));  :A_@,Q  
    for j = 1:length(n) =_*Zn(>t`  
        s = 0:(n(j)-m_abs(j))/2; ?3`UbN:  
        pows = n(j):-2:m_abs(j); Y=?3 js?O  
        for k = length(s):-1:1 Xf]d. :  
            p = (1-2*mod(s(k),2))* ... x_Y!5yg E  
                       prod(2:(n(j)-s(k)))/              ... zV37$Hb  
                       prod(2:s(k))/                     ... /)>3Nq4Zx  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... !X#OOqPr=  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); ] IQ&>z}<  
            idx = (pows(k)==rpowers); #$07:UJ  
            y(:,j) = y(:,j) + p*rpowern(:,idx); X=&ET)8-Y  
        end .p3,O6y2(F  
         OU_gdp  
        if isnorm !sP {gi#=  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); &-6Gc;f8  
        end ;?i W%:_,  
    end 20h, ^  
    % END: Compute the Zernike Polynomials AM\'RHL  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% BoWg0*5xb  
    -zgI_u9=EB  
    % Compute the Zernike functions: >uB# &Q  
    % ------------------------------ z'n:@E  
    idx_pos = m>0; I-*S&SiXjI  
    idx_neg = m<0; 83\pZ1>)_  
    &)ChQZA  
    z = y; 19)i*\+  
    if any(idx_pos) D?_Zl;bQ'^  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); - %h.t+=U  
    end lT?v^\(H  
    if any(idx_neg) $k%2J9O  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); .@U@xRu7|  
    end s};{ZAtE  
    9~XA q^e  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) ChPmX+.i_  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. [D4SW#  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated UECK:61Me  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive />pI8 g<  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, 3$>1FoSk  
    %   and THETA is a vector of angles.  R and THETA must have the same m@v\(rT.  
    %   length.  The output Z is a matrix with one column for every P-value, X *"i6 *  
    %   and one row for every (R,THETA) pair. c9u`!'g`i  
    % xj;H&swo  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike dOH &  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) m nX2a  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) @,7GaK\  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 #a,PZDaE  
    %   for all p. k(G^z   
    % f+)L#>Gl?  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 #'szP\  
    %   Zernike functions (order N<=7).  In some disciplines it is Hd ={CFip  
    %   traditional to label the first 36 functions using a single mode ,m|h<faZL  
    %   number P instead of separate numbers for the order N and azimuthal F/kWHVHU[  
    %   frequency M. 8^1 Te m  
    % YZ8>OwQz2  
    %   Example: oY3;.;'bk  
    % ^A&1^B  
    %       % Display the first 16 Zernike functions O-hAFKx  
    %       x = -1:0.01:1; LCKV>3+_#  
    %       [X,Y] = meshgrid(x,x); L^?qOylu  
    %       [theta,r] = cart2pol(X,Y); %pL''R9VF  
    %       idx = r<=1; )}Kf=  
    %       p = 0:15; qt"m  
    %       z = nan(size(X)); 0pd'93C  
    %       y = zernfun2(p,r(idx),theta(idx)); AH7}/Rc  
    %       figure('Units','normalized') pO3SUOP  
    %       for k = 1:length(p) 5e^ChK0Q  
    %           z(idx) = y(:,k); 2eY_%Y0  
    %           subplot(4,4,k) jLm ;ty2;  
    %           pcolor(x,x,z), shading interp <<5(0#y#  
    %           set(gca,'XTick',[],'YTick',[]) B%6)}Nl[  
    %           axis square iz PDd{[  
    %           title(['Z_{' num2str(p(k)) '}']) Y]2A&0  
    %       end j6 z^Tt12  
    % ?NsW|w_  
    %   See also ZERNPOL, ZERNFUN. _Q4)X)F  
    ndMA-`Ny,  
    %   Paul Fricker 11/13/2006 7[XRd9a5(  
    >} i  E(  
    C33J5'(CA  
    % Check and prepare the inputs: 9qzHS~l  
    % ----------------------------- <`r>h  
    if min(size(p))~=1 {hrX'2:ClT  
        error('zernfun2:Pvector','Input P must be vector.') i<Zc"v;  
    end BW*rIn<?G  
    ~=l;=7 T  
    if any(p)>35 S_UIO.K  
        error('zernfun2:P36', ... v PG},m~-  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... A$0fKko  
               '(P = 0 to 35).']) = m#?neop  
    end ]&+s6{}  
    ]Q)OL  
    % Get the order and frequency corresonding to the function number: /@TF5]Ri  
    % ---------------------------------------------------------------- SoSb+\* @h  
    p = p(:); JP [K;/  
    n = ceil((-3+sqrt(9+8*p))/2); s9DYi~/,  
    m = 2*p - n.*(n+2); w_K1]<Q*  
    .4!=p*Y  
    % Pass the inputs to the function ZERNFUN: vV-`jsq20H  
    % ---------------------------------------- 6mxfLlZ  
    switch nargin ,R* ]>'  
        case 3 1K50Z.o&@  
            z = zernfun(n,m,r,theta); ` 7V]y -  
        case 4 <}9lZEqY  
            z = zernfun(n,m,r,theta,nflag); Ean5b>\  
        otherwise 5K8^WK  
            error('zernfun2:nargin','Incorrect number of inputs.') ~dTrf>R8M  
    end e1Hg w[l`  
    k=T\\]KxC  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) 7a<DKB  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. p947w,1![  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of e^1Twz3z  
    %   order N and frequency M, evaluated at R.  N is a vector of &`2)V;t  
    %   positive integers (including 0), and M is a vector with the m#\ dSl}  
    %   same number of elements as N.  Each element k of M must be a Wt~BU.  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) f x+/C8GK  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is z9Rp`z&`E  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix ((M>s&\y*Y  
    %   with one column for every (N,M) pair, and one row for every j3E7zRm] \  
    %   element in R. 4ID5q~  
    % <=C!VVk4f  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- "87:?v[[1  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is &\*(Q*2N  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to OYn}5RN  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 Se =`N  
    %   for all [n,m]. nUOz\ y  
    % /jJw0 5;L  
    %   The radial Zernike polynomials are the radial portion of the I^$fMdT  
    %   Zernike functions, which are an orthogonal basis on the unit ] >E s4 s  
    %   circle.  The series representation of the radial Zernike gV_}-VvP  
    %   polynomials is oe-\ozJ0  
    % amY!qg0P*  
    %          (n-m)/2 w NdisI  
    %            __ 4^|3TntO  
    %    m      \       s                                          n-2s Z4 =GMXj  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r sD#.Oq4&]y  
    %    n      s=0 Qd3 j%(  
    % ^s"R$?;h  
    %   The following table shows the first 12 polynomials. "S?z@ i(K^  
    % ~2-1 j  
    %       n    m    Zernike polynomial    Normalization nZYBE030  
    %       --------------------------------------------- </*6wpN  
    %       0    0    1                        sqrt(2) kMN~Y  
    %       1    1    r                           2 4@ai6,<  
    %       2    0    2*r^2 - 1                sqrt(6) gc$l^`+M  
    %       2    2    r^2                      sqrt(6) U&p${IcEm  
    %       3    1    3*r^3 - 2*r              sqrt(8) 2g! +<YZ~  
    %       3    3    r^3                      sqrt(8) 61'XgkacDS  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) +@wD qc  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) H"WprHe  
    %       4    4    r^4                      sqrt(10) Z/+#pWBI!  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) tK\~A,=  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) 0flRh)[J  
    %       5    5    r^5                      sqrt(12) $*fMR,~t&  
    %       --------------------------------------------- s!$7(Q86R  
    % mc\"yC ^s  
    %   Example: v`1M[  
    % {3aua:q  
    %       % Display three example Zernike radial polynomials oXF.1f/h  
    %       r = 0:0.01:1; 5$C-9  
    %       n = [3 2 5]; $6SW;d+>n  
    %       m = [1 2 1]; g3y+&Y_  
    %       z = zernpol(n,m,r); h~zT ydnH  
    %       figure j&qub_j"xX  
    %       plot(r,z) /9fR'EO{x  
    %       grid on vx5Zl&6r  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') [d ]9Oa4  
    % /mzlH  
    %   See also ZERNFUN, ZERNFUN2. Z4ImV~m  
    {I't]Qj_e  
    % A note on the algorithm. e$rZ5X  
    % ------------------------ Mb*?5R6;  
    % The radial Zernike polynomials are computed using the series 'TB2:W3  
    % representation shown in the Help section above. For many special }@d@3  
    % functions, direct evaluation using the series representation can lrIe"H@  
    % produce poor numerical results (floating point errors), because --BW9]FW  
    % the summation often involves computing small differences between h <<v^+m  
    % large successive terms in the series. (In such cases, the functions ^^ixa1H<  
    % are often evaluated using alternative methods such as recurrence 8YSAf+{FtK  
    % relations: see the Legendre functions, for example). For the Zernike pTLCWbF?  
    % polynomials, however, this problem does not arise, because the uoh7Sz5!^  
    % polynomials are evaluated over the finite domain r = (0,1), and om:VFs\U  
    % because the coefficients for a given polynomial are generally all 7 HYwLG:\~  
    % of similar magnitude. uQKT  
    % bV3|6]k^  
    % ZERNPOL has been written using a vectorized implementation: multiple Cq~dp/V  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] b@hqz!)l`  
    % values can be passed as inputs) for a vector of points R.  To achieve SXP]%{@ R/  
    % this vectorization most efficiently, the algorithm in ZERNPOL Uw<nxD/+  
    % involves pre-determining all the powers p of R that are required to [ub e6  
    % compute the outputs, and then compiling the {R^p} into a single sK?twg;D*|  
    % matrix.  This avoids any redundant computation of the R^p, and |M;7>'YNC*  
    % minimizes the sizes of certain intermediate variables. )zDCu`  
    % j^RmrOg ,  
    %   Paul Fricker 11/13/2006 <lJ345Q  
    >Cq<@$I2EB  
    a/xn'"eli  
    % Check and prepare the inputs: M kXmA`cP  
    % ----------------------------- c'\dFb9a  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) SNk=b6`9  
        error('zernpol:NMvectors','N and M must be vectors.') wi{3/  
    end Q S;f\'1bb  
    'i|YlMFIg  
    if length(n)~=length(m) /PXzwP_(A  
        error('zernpol:NMlength','N and M must be the same length.') b^vQpiz  
    end tw)mepwB  
    mgU<htMr1  
    n = n(:); aV0"~5  
    m = m(:); Xne1gms  
    length_n = length(n); =~LJ3sIX  
     6(R<{{  
    if any(mod(n-m,2)) +D*Z_Yh6  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') 4Ftu  
    end 42ge3>  
    .O<obq~;C  
    if any(m<0) :NTO03F7v  
        error('zernpol:Mpositive','All M must be positive.') ~6md !o%i  
    end !C.4<?*|  
    }"%N4(Kd  
    if any(m>n) EU Fa5C:  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') XW92gI<O  
    end @BMx!r5kn  
    gbD KE{  
    if any( r>1 | r<0 ) ;5( UzQU  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') P16~Qj  
    end `){.+S(5C  
    ,|/f`Pl  
    if ~any(size(r)==1) Zx>=tx}  
        error('zernpol:Rvector','R must be a vector.') $3kH~3{]  
    end Q\0'lQJdy  
    */S_Icf  
    r = r(:); [{/jI\?v  
    length_r = length(r); )0k53-h&  
    )D%~` ,#pQ  
    if nargin==4 J] r^W)O  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); I)HPO,7  
        if ~isnorm % A0/1{(  
            error('zernpol:normalization','Unrecognized normalization flag.') ;-Aa|aT!  
        end b%c9oR's^  
    else >=w)x,0yX  
        isnorm = false; fI|$K )K  
    end {id4:^u&;  
    @>7%qS  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Y}KNKO;  
    % Compute the Zernike Polynomials MiX43Pk]  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% iH'p>s5L  
    G^@5H/)  
    % Determine the required powers of r: 9: lFo=  
    % ----------------------------------- +aAc9'k   
    rpowers = []; + >!;i6|  
    for j = 1:length(n) An0GPhC  
        rpowers = [rpowers m(j):2:n(j)]; ?Z}&EH  
    end (**oRwr%  
    rpowers = unique(rpowers); 1=v*O.XW`  
    NwfVL4Xg  
    % Pre-compute the values of r raised to the required powers, 1{.9uw"2S  
    % and compile them in a matrix: ]/{)bpu  
    % ----------------------------- PZzMHK?hP  
    if rpowers(1)==0 f%8C!W]Dm  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); $<OD31T  
        rpowern = cat(2,rpowern{:}); TkF[x%o  
        rpowern = [ones(length_r,1) rpowern]; Pc]HP  
    else 1xx}~|F?|  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); W} ofAkF  
        rpowern = cat(2,rpowern{:}); u$`a7Lp,n  
    end Ew$C ;&9  
    ` G kX  
    % Compute the values of the polynomials: Ni7nq8B<  
    % -------------------------------------- f?)-}\[IR{  
    z = zeros(length_r,length_n); J9 I:Q<;  
    for j = 1:length_n wKY_Bo/d  
        s = 0:(n(j)-m(j))/2; 3iU=c&P  
        pows = n(j):-2:m(j); U%/+B]6jP  
        for k = length(s):-1:1 &9>vl*  
            p = (1-2*mod(s(k),2))* ... CNx8] _2  
                       prod(2:(n(j)-s(k)))/          ... &,)&%Sg[  
                       prod(2:s(k))/                 ... 7x8  yxE  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... 7PF%76TO  
                       prod(2:((n(j)+m(j))/2-s(k))); Y\hBd$lQ~  
            idx = (pows(k)==rpowers); ,]/X\t5]D  
            z(:,j) = z(:,j) + p*rpowern(:,idx); VG~Vs@c(  
        end . 'yCw#f  
         P+HXn8@  
        if isnorm `QY)!$mUIF  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); #,v {Ihn  
        end B|X!>Q<g  
    end |+"(L#wk  
    a09<!0Rp  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  sON|w86B  
    =C.$ UX  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 9q[oa5INd  
    CzEd8jeh7  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)