切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11168阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 }0>\%C  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! kLXa1^Lq  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 461p4)  
    function z = zernfun(n,m,r,theta,nflag) 1V]j8  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. y )7;"3Q<  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N & 5'cN  
    %   and angular frequency M, evaluated at positions (R,THETA) on the I=k`VId:  
    %   unit circle.  N is a vector of positive integers (including 0), and cdg &)  
    %   M is a vector with the same number of elements as N.  Each element Qs 'dwc  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) WmblY2  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, j^Ln\N]^  
    %   and THETA is a vector of angles.  R and THETA must have the same $ \ I|6[P  
    %   length.  The output Z is a matrix with one column for every (N,M) Ft@ZK!'@  
    %   pair, and one row for every (R,THETA) pair. c}2"X,  
    % :ZXaJ!  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike p0pA|  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), FCChB7c`  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral Emv9l~mIu  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, WwLV^m]  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized wNl "y  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. TEbE-h0)]  
    % g7K<"Z {M  
    %   The Zernike functions are an orthogonal basis on the unit circle. D Z=OZ.v  
    %   They are used in disciplines such as astronomy, optics, and l YjPrA]TC  
    %   optometry to describe functions on a circular domain. >UV=k :Q  
    % tk+t3+  
    %   The following table lists the first 15 Zernike functions. (2/i1)Cq  
    % p8z"Jn2P  
    %       n    m    Zernike function           Normalization B,A\/%<  
    %       -------------------------------------------------- #/WjKr n  
    %       0    0    1                                 1 oXGP6#  
    %       1    1    r * cos(theta)                    2 J*qo3aJjE  
    %       1   -1    r * sin(theta)                    2 #3-hE  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) JL?|NV-  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 21~~=+)X  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) i]0$ 7s9!  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ZRC7j?ui8`  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) q/3co86c  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) )umW-A  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) P}D5 j  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) ^NO;A=9b[  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) :LD+B1$y  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) P~@I`r567  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) R)9FXz$).  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 4$4n9`odE  
    %       -------------------------------------------------- Q0TKM >  
    % dkOERVRe  
    %   Example 1: / gE9 W  
    % KI5099_/  
    %       % Display the Zernike function Z(n=5,m=1) +/Vzw  
    %       x = -1:0.01:1; bpfSe  
    %       [X,Y] = meshgrid(x,x); Oz.Zxw  
    %       [theta,r] = cart2pol(X,Y); g)iw.M2  
    %       idx = r<=1; }-paGM@'Nd  
    %       z = nan(size(X)); :$oiP  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); Y1 6pT  
    %       figure ` aaT #r  
    %       pcolor(x,x,z), shading interp q<A,S8'm  
    %       axis square, colorbar _P{v=`]Eu  
    %       title('Zernike function Z_5^1(r,\theta)') |r53>,oR<:  
    % \MtdT[*  
    %   Example 2: b'4r5@GO  
    % f8 L3+u  
    %       % Display the first 10 Zernike functions ^Kh>La:>O  
    %       x = -1:0.01:1; .t{?doOT  
    %       [X,Y] = meshgrid(x,x);  SwmX_F#_  
    %       [theta,r] = cart2pol(X,Y); aB4L$M8x  
    %       idx = r<=1; c]:@y"W5$  
    %       z = nan(size(X)); 3hNb ?  
    %       n = [0  1  1  2  2  2  3  3  3  3]; (OHd} YQ  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; g?!;04  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; JT 5+d ,  
    %       y = zernfun(n,m,r(idx),theta(idx)); JLV?n,nF  
    %       figure('Units','normalized') 8\8%FSrc  
    %       for k = 1:10 `jCq`-.  
    %           z(idx) = y(:,k); | b)N;t  
    %           subplot(4,7,Nplot(k)) c#(&\g2H  
    %           pcolor(x,x,z), shading interp `H\NJ,  
    %           set(gca,'XTick',[],'YTick',[]) gPWl#5P:  
    %           axis square WWWfQ_u2  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) {,i='!WIm  
    %       end v7- d+P=  
    % .t9zF-jk  
    %   See also ZERNPOL, ZERNFUN2. =DXvt5G  
    [0hZg  
    %   Paul Fricker 11/13/2006 ]ch=D  
    0B~Q.tyP  
    =u]FKY  
    % Check and prepare the inputs: 2E}^'o  
    % ----------------------------- *gXm&/2*  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ~b{j`T  
        error('zernfun:NMvectors','N and M must be vectors.') ;V3d"@R,  
    end NbW5a3=  
    Y{ 2xokJ N  
    if length(n)~=length(m) G6x2!Ny  
        error('zernfun:NMlength','N and M must be the same length.') 9<I;9.1S?^  
    end ecy41y'~:  
    S~ 3|  
    n = n(:); ,@*`2I>`  
    m = m(:); q CB9z  
    if any(mod(n-m,2)) f7QX"p&P  
        error('zernfun:NMmultiplesof2', ... 1_.#'U>  
              'All N and M must differ by multiples of 2 (including 0).') %uLyL4*L(p  
    end R|H_F#eVn}  
    [u2)kH$  
    if any(m>n) "t" &6\  
        error('zernfun:MlessthanN', ... q! U'DDEP  
              'Each M must be less than or equal to its corresponding N.') '$n#~/#}  
    end uP[:P?,t  
    H=k*;'  
    if any( r>1 | r<0 ) 8?7:sfc  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') XS/5y(W  
    end CiGN?1|  
    _Uz}z#jt  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) f*SAbDE  
        error('zernfun:RTHvector','R and THETA must be vectors.') c F (]`49(  
    end L)ry!BuHI  
    .U !;fJ9  
    r = r(:); emI]'{_G  
    theta = theta(:); 1"CbuV 6  
    length_r = length(r); d\ Z#XzI8  
    if length_r~=length(theta) oWUDTio#[  
        error('zernfun:RTHlength', ... @*c ) s_  
              'The number of R- and THETA-values must be equal.') 'u2Qq"d+  
    end bz? *#S  
    \;A\ vQ[  
    % Check normalization: C&'Y@GE5  
    % -------------------- "V`MNZ  
    if nargin==5 && ischar(nflag) Ma3Hn  
        isnorm = strcmpi(nflag,'norm'); $0zH2W  
        if ~isnorm XDJQO /qN  
            error('zernfun:normalization','Unrecognized normalization flag.') cNG6 A4  
        end PF(P"f.?D  
    else prY9SQd  
        isnorm = false; f(E  'i>  
    end `&U ['_%  
    Do|`wpR  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ? I}T[j  
    % Compute the Zernike Polynomials ?Y~>H 2  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Pz"!8b-MN  
    jjm-%W@  
    % Determine the required powers of r: -j9R%+YW<  
    % ----------------------------------- F#^.L|d4  
    m_abs = abs(m); LV 94i  
    rpowers = []; ;.h5; `&  
    for j = 1:length(n) 3;`93TO{  
        rpowers = [rpowers m_abs(j):2:n(j)]; `#X{.  
    end hGF(E*  
    rpowers = unique(rpowers); kc8T@5+I0  
    XI,F^K  
    % Pre-compute the values of r raised to the required powers, &w3LMOT  
    % and compile them in a matrix: P"u*bqk  
    % ----------------------------- JCZJ\f*EZ  
    if rpowers(1)==0 p$@=N6)I.k  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); <96ih$5D1  
        rpowern = cat(2,rpowern{:}); 0r=Lilu{q  
        rpowern = [ones(length_r,1) rpowern]; FO}4~_W{  
    else k>n^QHM  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); (.!q~G  
        rpowern = cat(2,rpowern{:}); N[ArwV2O  
    end (w% hz']  
    u6jJf@!ws  
    % Compute the values of the polynomials: U'.>wjO  
    % -------------------------------------- s$:]$&5  
    y = zeros(length_r,length(n)); Zk}e?Grc  
    for j = 1:length(n) ( L RX  
        s = 0:(n(j)-m_abs(j))/2; !HDk]   
        pows = n(j):-2:m_abs(j); =W !m`  
        for k = length(s):-1:1 A Sy7")5  
            p = (1-2*mod(s(k),2))* ... fC%;|V'Nd  
                       prod(2:(n(j)-s(k)))/              ... rf1nC$Sop  
                       prod(2:s(k))/                     ... M7,|+W/RK  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 1xq1te)  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); r:Cad0xj;^  
            idx = (pows(k)==rpowers); xYt{=  
            y(:,j) = y(:,j) + p*rpowern(:,idx); wQnr*kyza  
        end =4JVUu~Z  
         ?67j+)  
        if isnorm %v~j10e  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); x_Ais&Gc  
        end iJrscy-  
    end '}4[m>/  
    % END: Compute the Zernike Polynomials >cM U<'&  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% p dnL~sv  
    ^#^u90I  
    % Compute the Zernike functions: ^ad> (W  
    % ------------------------------ gYzKUX@  
    idx_pos = m>0; ocgbBE  
    idx_neg = m<0; 9y]$c1  
    //Tr=!TQu  
    z = y; /e{Oqhf[n  
    if any(idx_pos) R!pV`N  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); <O\z`aA'q  
    end tg8VFH2q.z  
    if any(idx_neg) XcfTE m  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); NKd@ Kp`,  
    end }.b[az\T  
    `(o1&  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) =v;-{oN!  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. *!s4#|h  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated y6PAXvv'{  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive 1  yzxA(  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, C,I N+@  
    %   and THETA is a vector of angles.  R and THETA must have the same mML^kgy\N  
    %   length.  The output Z is a matrix with one column for every P-value, ,<vrDHR  
    %   and one row for every (R,THETA) pair. ?Y hua9  
    % ,-b{oS~u  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike zA"D0fr  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) /p%K[)T(  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) q90S>c,  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 TM^1 {0;r5  
    %   for all p. q/B+F%QiMQ  
    % h |lQ TT  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 %~W}262  
    %   Zernike functions (order N<=7).  In some disciplines it is a<Ns C1  
    %   traditional to label the first 36 functions using a single mode VUnEI oKM  
    %   number P instead of separate numbers for the order N and azimuthal y2qESAZ%k}  
    %   frequency M. YwF6/JA0^  
    % eh`V#%S=  
    %   Example: )>Lsj1qk  
    % VG8rd'Z  
    %       % Display the first 16 Zernike functions -y\N9  
    %       x = -1:0.01:1; j qdI=!H  
    %       [X,Y] = meshgrid(x,x); C3b'Q  
    %       [theta,r] = cart2pol(X,Y); 7K;dVB  
    %       idx = r<=1; &iGl)dDr  
    %       p = 0:15; 5PPy+36<~  
    %       z = nan(size(X)); xLD6A5n,[  
    %       y = zernfun2(p,r(idx),theta(idx)); K4F!?#  
    %       figure('Units','normalized') V!opnLatYS  
    %       for k = 1:length(p) }agl:~C  
    %           z(idx) = y(:,k); vXnpx}B  
    %           subplot(4,4,k) $@Ay0GEI"  
    %           pcolor(x,x,z), shading interp LNN:GD)>  
    %           set(gca,'XTick',[],'YTick',[]) hL3,/^;E,  
    %           axis square XeB>V.<y  
    %           title(['Z_{' num2str(p(k)) '}']) (Dar6>!  
    %       end ipzUF o<w  
    % 8;!Eqyt  
    %   See also ZERNPOL, ZERNFUN. dH/t|.%  
    \Zh)oUHd  
    %   Paul Fricker 11/13/2006 ( Lu.^  
    <zf+Ii1:,  
    ,|4Ye  
    % Check and prepare the inputs: R^2Uh$kk{A  
    % ----------------------------- QlS5B.h,  
    if min(size(p))~=1 |be r:1  
        error('zernfun2:Pvector','Input P must be vector.') b$ x"&&   
    end op|mRJBq;  
    wrO>#`Z  
    if any(p)>35 R|CY4G j  
        error('zernfun2:P36', ... 7>zKW?  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... O7dFz)$  
               '(P = 0 to 35).']) `HM3YC  
    end vaf9b}FL  
     hY1|qp  
    % Get the order and frequency corresonding to the function number: 38m%ifh)  
    % ---------------------------------------------------------------- YMi(Cyja&  
    p = p(:); _RW[]MN3*  
    n = ceil((-3+sqrt(9+8*p))/2); 1SFKP$^  
    m = 2*p - n.*(n+2); 6|KX8\, A@  
    VBX# !K1Q  
    % Pass the inputs to the function ZERNFUN: N#u8{\|8]  
    % ---------------------------------------- |tg?b&QR  
    switch nargin -/-6Td1JY>  
        case 3 0`!Q-G7  
            z = zernfun(n,m,r,theta); E~>6*_?  
        case 4 4{DeF@@  
            z = zernfun(n,m,r,theta,nflag); ?:?4rIZ<  
        otherwise Z0=m:h  
            error('zernfun2:nargin','Incorrect number of inputs.') gr 5]5u  
    end )KqR8UO  
    $CmX &%L=  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) p{a]pG+3  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. e_=pspnZ  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of u- [t~-(a  
    %   order N and frequency M, evaluated at R.  N is a vector of tHtV[We.:  
    %   positive integers (including 0), and M is a vector with the #Q3PzDfj  
    %   same number of elements as N.  Each element k of M must be a #tZf>zrs  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) B~>cNj<  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is $G_Q`w=jM  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix _GO+fB/Q1  
    %   with one column for every (N,M) pair, and one row for every Z va  
    %   element in R. HJ qQlEq  
    % 4$aO;Z_  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- bw<w u}ED  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is ~B!O~nvdQ  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to A$~xG(  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 ^W"Q (sh  
    %   for all [n,m]. .NkAD-k`  
    % T@|l@xm~L  
    %   The radial Zernike polynomials are the radial portion of the z8[H:W#G  
    %   Zernike functions, which are an orthogonal basis on the unit (kC} ,}  
    %   circle.  The series representation of the radial Zernike g6g$nY@Jm  
    %   polynomials is 20VVOnDY  
    % 5w3ZUmjO  
    %          (n-m)/2 9U)t@b  
    %            __ _E6} XNS  
    %    m      \       s                                          n-2s 3%R{"Q"  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r WE[m@K[CR  
    %    n      s=0 Mjj}E >&  
    % s^>lOQ=  
    %   The following table shows the first 12 polynomials. 7B(bH8  
    % i~)N QmH<  
    %       n    m    Zernike polynomial    Normalization Vd +Q:L  
    %       --------------------------------------------- YN@6}B#1  
    %       0    0    1                        sqrt(2) &|N%#pYS  
    %       1    1    r                           2 m1-\qt-yy  
    %       2    0    2*r^2 - 1                sqrt(6) G*\abL  
    %       2    2    r^2                      sqrt(6) 7%9)C[6NSs  
    %       3    1    3*r^3 - 2*r              sqrt(8) >{m2E8U0  
    %       3    3    r^3                      sqrt(8) Cqgk  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) xP/OsaxN  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) C ]'g:93L  
    %       4    4    r^4                      sqrt(10) #9`rXEz  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) wn+j39y?ZY  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) V5a?=vK9  
    %       5    5    r^5                      sqrt(12) # SQvXMT  
    %       --------------------------------------------- 3@)obb  
    % 8?7kIin  
    %   Example: i-,D_   
    % 0/\PZX+  
    %       % Display three example Zernike radial polynomials st?gA"5w  
    %       r = 0:0.01:1; / Mo d=/e  
    %       n = [3 2 5]; l(%k6  
    %       m = [1 2 1]; Sty! atEWT  
    %       z = zernpol(n,m,r); `l/:NF  
    %       figure M XZq  
    %       plot(r,z) 9 g Bjxqm  
    %       grid on [?chK^8  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') P8wy*JvT  
    % ^/>Wr'w   
    %   See also ZERNFUN, ZERNFUN2. {'h_'Y`bOQ  
    ~BZXt7DE  
    % A note on the algorithm. 5"JU?e59M  
    % ------------------------ Gg%tVQu  
    % The radial Zernike polynomials are computed using the series yo'9x s  
    % representation shown in the Help section above. For many special $PSY:Zz  
    % functions, direct evaluation using the series representation can TDlZ!$g(  
    % produce poor numerical results (floating point errors), because N = LM?(H  
    % the summation often involves computing small differences between V+lRi"m?|  
    % large successive terms in the series. (In such cases, the functions Q,.By&  
    % are often evaluated using alternative methods such as recurrence o+<29o  
    % relations: see the Legendre functions, for example). For the Zernike [pii  
    % polynomials, however, this problem does not arise, because the <EMkD1e  
    % polynomials are evaluated over the finite domain r = (0,1), and akT|Y4KxD  
    % because the coefficients for a given polynomial are generally all pW\z\o/2  
    % of similar magnitude. Q|Pbt(44  
    % -(*nSD9  
    % ZERNPOL has been written using a vectorized implementation: multiple EeCFII  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] %}C9  
    % values can be passed as inputs) for a vector of points R.  To achieve ?g2zmI!U  
    % this vectorization most efficiently, the algorithm in ZERNPOL 7*i }km  
    % involves pre-determining all the powers p of R that are required to D?e"U_  
    % compute the outputs, and then compiling the {R^p} into a single Dg~ [#C-  
    % matrix.  This avoids any redundant computation of the R^p, and HZ }6Q  
    % minimizes the sizes of certain intermediate variables. -!c IesK;<  
    % p8=|5.  
    %   Paul Fricker 11/13/2006 {h#6z>p"u2  
    %[w Tz$S"  
    -kl;!:'.3  
    % Check and prepare the inputs: t5paY w-b  
    % ----------------------------- d.`&0  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) sAi&A9"*   
        error('zernpol:NMvectors','N and M must be vectors.') cw;co@!$  
    end *g1L$FBG  
    Q',m{;;  
    if length(n)~=length(m) 7JI:=yY!>:  
        error('zernpol:NMlength','N and M must be the same length.') ivfXat-  
    end /xySwSmh3  
    "u;YI=+  
    n = n(:); iK!dr1:wSw  
    m = m(:); &]< 3 ~6n  
    length_n = length(n); WSLy}@`Vx  
    1}!L][(  
    if any(mod(n-m,2)) Z:@6Lv?CN  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') MiJ6n[iv  
    end WL l_'2h  
    &~#iIk~%  
    if any(m<0) p<KIF>rf|  
        error('zernpol:Mpositive','All M must be positive.') "jR]MZ  
    end ,=|4:F9  
    _A 2Lv]vfV  
    if any(m>n) 0(gq; H5x'  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') Uk,g> LG  
    end #~k[6YR 0  
    ^s{hs(8%R  
    if any( r>1 | r<0 ) -[DWM2C$K4  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') cy|%sf`  
    end ?TpUf  
    CISO<z0  
    if ~any(size(r)==1) d(7NO;S8  
        error('zernpol:Rvector','R must be a vector.') -7%X]  
    end |]W2EV ,b  
    }ptMjT{9  
    r = r(:); .9h)bf+  
    length_r = length(r); uZIJoT  
    y-9+a7j  
    if nargin==4 c?K~/bx.  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); ?n]FNjd  
        if ~isnorm  s;Y<BD  
            error('zernpol:normalization','Unrecognized normalization flag.') Izo!rC  
        end NTmi 2c  
    else CzVmNy)kl  
        isnorm = false; cp6WMHLj   
    end VWi2(@R^  
    =X1?_~}  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% xA h xD|4_  
    % Compute the Zernike Polynomials >7b)y  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 3yV'XxC  
    =o^|bih  
    % Determine the required powers of r: >jx.R  
    % ----------------------------------- cCi I{  
    rpowers = []; DBsDk kB{  
    for j = 1:length(n) p&N#_dmlH  
        rpowers = [rpowers m(j):2:n(j)]; 2e1]}wlK  
    end zY=jXa)K~  
    rpowers = unique(rpowers); ,^$ |R32  
    5`-UMz<]  
    % Pre-compute the values of r raised to the required powers, O#eZ<hN V  
    % and compile them in a matrix: Gy"%R-j7  
    % ----------------------------- qOy=O [+9  
    if rpowers(1)==0 qpp/8M  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); C#Bz >2;#  
        rpowern = cat(2,rpowern{:}); xT*d/Oaw  
        rpowern = [ones(length_r,1) rpowern]; 1n=_y o  
    else UMMB0(0D  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); >v+jh(^  
        rpowern = cat(2,rpowern{:}); +K~NV?c  
    end {1-V]h.<J  
    T!2=*~A  
    % Compute the values of the polynomials: Yu3zM79'k  
    % -------------------------------------- @f1*eo5f  
    z = zeros(length_r,length_n); C~4PE>YtTv  
    for j = 1:length_n \7v)iG|#G&  
        s = 0:(n(j)-m(j))/2; q]% T:A=  
        pows = n(j):-2:m(j); #8h ;Bj  
        for k = length(s):-1:1 v?:: |{  
            p = (1-2*mod(s(k),2))* ... ?1I GYyu!  
                       prod(2:(n(j)-s(k)))/          ... Di5(9]o2  
                       prod(2:s(k))/                 ... OJO!FH)  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... =L-I-e97@  
                       prod(2:((n(j)+m(j))/2-s(k))); T*[ VY1  
            idx = (pows(k)==rpowers); O4iC]5@  
            z(:,j) = z(:,j) + p*rpowern(:,idx); CE%_A[a  
        end e Y$qV}  
         h9s >LY  
        if isnorm GqKsK r2%  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); ExBUpDQc  
        end {zLhiUH a0  
    end }8K4-[\  
    +A8j@d#:  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  WZOY)>K  
    ]k9)G*  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 6x"Q  
    7.DtdyM  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)