非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 P@5^`b|
function z = zernfun(n,m,r,theta,nflag)
RMi
2Ip
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. ^k)f oD
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N U{ O\
% and angular frequency M, evaluated at positions (R,THETA) on the !Uj !Oy
% unit circle. N is a vector of positive integers (including 0), and rg'? ?rq
% M is a vector with the same number of elements as N. Each element #%{\59/w
% k of M must be a positive integer, with possible values M(k) = -N(k) huq6rA/i
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, b _u&%
% and THETA is a vector of angles. R and THETA must have the same jr9ZRHCU
% length. The output Z is a matrix with one column for every (N,M) M>]%Iu
% pair, and one row for every (R,THETA) pair. w}(xs)`num
% )0GnTB;5Z
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 9
/zz@
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), !^LvNW\|
% with delta(m,0) the Kronecker delta, is chosen so that the integral ow$#kQ&R O
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1,
RB\WttI
% and theta=0 to theta=2*pi) is unity. For the non-normalized =~arj
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. !
\gRXP}
% \hq8/6=4s
% The Zernike functions are an orthogonal basis on the unit circle. N%_~cR;
% They are used in disciplines such as astronomy, optics, and ~/#?OLj(T
% optometry to describe functions on a circular domain. NV91{o(-7
%
pIrAGA;
% The following table lists the first 15 Zernike functions. Bdg*XfXXk
% Lhc@*_2
% n m Zernike function Normalization 3@&H)fdp6a
% -------------------------------------------------- tFSdi.|G=
% 0 0 1 1 .ClCP?HG
% 1 1 r * cos(theta) 2 y-@!, @e
% 1 -1 r * sin(theta) 2 ]_=HC5"
% 2 -2 r^2 * cos(2*theta) sqrt(6) /~^I]D
% 2 0 (2*r^2 - 1) sqrt(3) .{;!bw
% 2 2 r^2 * sin(2*theta) sqrt(6) s7
KKH
w
% 3 -3 r^3 * cos(3*theta) sqrt(8) 87Uv+((H
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 0!VLPA:
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) `MwQ6%lf
% 3 3 r^3 * sin(3*theta) sqrt(8) <F3sQAe
% 4 -4 r^4 * cos(4*theta) sqrt(10) 6nfkZvn
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) '-S&i{H
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) c6uKKh>
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) < t (Pw
% 4 4 r^4 * sin(4*theta) sqrt(10) *0hiPj:
% -------------------------------------------------- 6uXW`/lvX
% ~fF}
% Example 1: &0eB@8{N
% .fsk DW
% % Display the Zernike function Z(n=5,m=1) }J?fJ(
% x = -1:0.01:1; `eWcp^|
% [X,Y] = meshgrid(x,x); tN{t-xUgk
% [theta,r] = cart2pol(X,Y); 7
h1"8#X
% idx = r<=1; +.lWck
% z = nan(size(X)); Tb={g;0@
% z(idx) = zernfun(5,1,r(idx),theta(idx)); $048y
X 7M
% figure tvOAN|+F
% pcolor(x,x,z), shading interp ]k:m2$le
% axis square, colorbar k2uiu
% title('Zernike function Z_5^1(r,\theta)') <VU4rk^=
% {~t4
% Example 2: kxW>Da<6
% GeaDaYh#T
% % Display the first 10 Zernike functions /plUzy2Yu
% x = -1:0.01:1; ,imvA5
% [X,Y] = meshgrid(x,x); S%X\,N
% [theta,r] = cart2pol(X,Y); b_jZL'en
% idx = r<=1; @pGlWw9*
% z = nan(size(X)); p,iCM?[|
% n = [0 1 1 2 2 2 3 3 3 3]; NceB'YG|
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 2-V)>98
% Nplot = [4 10 12 16 18 20 22 24 26 28]; H@MFj>~
% y = zernfun(n,m,r(idx),theta(idx)); Px#QZZ
% figure('Units','normalized') iEpq*Qj
% for k = 1:10 N
2"3~ #
% z(idx) = y(:,k); vA;F]epr!
% subplot(4,7,Nplot(k)) aGe(vQPi9
% pcolor(x,x,z), shading interp %x6Ov\s2
% set(gca,'XTick',[],'YTick',[]) *?bk?*?s
% axis square ^+as\
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) :5S |x/
% end =~hsKBt*
% &'(a$S>v
% See also ZERNPOL, ZERNFUN2.
_@!QY
g. ?*F#2
% Paul Fricker 11/13/2006 WBr:|F+~s
=zm0w~']E!
~`2&'8
% Check and prepare the inputs: @fqV0l!GR
% ----------------------------- JOrELrMx
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) j /H>0^
error('zernfun:NMvectors','N and M must be vectors.') 7G.o@p6$
end 9q1HSJ1)
.Iwur;/\
if length(n)~=length(m) 2.LJp}>
error('zernfun:NMlength','N and M must be the same length.') 1E5a(
end =.36y9Mfo
RpO@pd m
n = n(:); U*3AM_w
m = m(:); {f+N]Oo*
if any(mod(n-m,2)) +0XL5('2
error('zernfun:NMmultiplesof2', ... C8IkpAD
'All N and M must differ by multiples of 2 (including 0).') 1,"I=
end `$s)X$W?
FXP6zHsV
if any(m>n) DR:8oo&E
error('zernfun:MlessthanN', ... G2.|fp_}pG
'Each M must be less than or equal to its corresponding N.') b4>``n
end EL^8zyg%%
&v^!y=Bt
if any( r>1 | r<0 ) `|$'g^eCL
error('zernfun:Rlessthan1','All R must be between 0 and 1.') KH7VR^;mk
end XJqTmj3
AXwaVLEBQ
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) I@2 uF-
error('zernfun:RTHvector','R and THETA must be vectors.') HTmI1
end l)4O . *
lT2 4JhJ#
r = r(:); :Sr?6FPc
theta = theta(:); ~h-C&G,v
length_r = length(r); =#qZ3 Qz_
if length_r~=length(theta) 7kKuZW@K-
error('zernfun:RTHlength', ... vY6oVjM
'The number of R- and THETA-values must be equal.') oM!xz1kVL
end j^flwk
A{# Nwd>
% Check normalization: 7BR8/4gcPu
% -------------------- nVE9^')8V
if nargin==5 && ischar(nflag) 1B|8ZmFJj
isnorm = strcmpi(nflag,'norm'); NYwR2oX
if ~isnorm IOL L1ar
error('zernfun:normalization','Unrecognized normalization flag.') oH^(qZ8W
end xl(@C*.sC1
else .%}?b~
isnorm = false;
aTd
D`h
end X&M4MuL
pd3,pQ
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% mMSh2B
% Compute the Zernike Polynomials S4N(cn&
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Yw'NX5#)g
UH?
p]4Nz
% Determine the required powers of r: xe4Oxo
% ----------------------------------- eg/<[ A:
m_abs = abs(m); hB9Ee@
rpowers = []; =-KMb`xT
for j = 1:length(n) /ASaB
rpowers = [rpowers m_abs(j):2:n(j)]; FOwnxYGVf
end 6Wj^*L!
rpowers = unique(rpowers); xYfD()w<I
~g#r6pzN-
% Pre-compute the values of r raised to the required powers, (#D*Pl
% and compile them in a matrix: @%/]Q<<q
% ----------------------------- 5| B(\wqG
if rpowers(1)==0 Z[Qza13lo
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 6e,xDr
rpowern = cat(2,rpowern{:}); ({s6eqMhDd
rpowern = [ones(length_r,1) rpowern]; q:\g^_!OGA
else j;b42G~p
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); = ?D(g
rpowern = cat(2,rpowern{:}); B* kcNlW
end \u,}vppz
Ub1hHA*)
% Compute the values of the polynomials: VKp*9%9
% -------------------------------------- +mj*o(
y = zeros(length_r,length(n)); IU FH:w]
for j = 1:length(n) ,DdB^Ig<r
s = 0:(n(j)-m_abs(j))/2; W>_]dPB S/
pows = n(j):-2:m_abs(j); S$)*&46g
for k = length(s):-1:1 $rIoHxh. y
p = (1-2*mod(s(k),2))* ... N`iwC!
prod(2:(n(j)-s(k)))/ ... <+MyZM(z>
prod(2:s(k))/ ... %^sTU4D5
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... [(Xy.L7x
prod(2:((n(j)+m_abs(j))/2-s(k))); |-sPLU&s%
idx = (pows(k)==rpowers); ^;!0j9"*:
y(:,j) = y(:,j) + p*rpowern(:,idx); OsBo+fwT
end 3 LDS
Z1f
;g{qYj_
if isnorm +$4(zPs@
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); sn7AR88M;
end Lg8nj< TF
end w=b)({`M
% END: Compute the Zernike Polynomials _zlqtO
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% oFOnjK"|F
g^*<f8 ~d
% Compute the Zernike functions: zJe#m|Z
% ------------------------------ YK|bXSA[
idx_pos = m>0; OL4z%mDZi
idx_neg = m<0; h -iJlm
V_plq6z
z = y; o7IxJCL=Q
if any(idx_pos) xsWur(> ]
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); pr%nbl
end 2]% h$f+
if any(idx_neg) [M+f-kl
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); AwQ?l(iZ"p
end R|i/lEq
i2~
% EOF zernfun