非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 h7kGs^pP
function z = zernfun(n,m,r,theta,nflag) V5%B,.d:
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. /dhw~|
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N l`fjz-eE
% and angular frequency M, evaluated at positions (R,THETA) on the Y }Rx`%X
% unit circle. N is a vector of positive integers (including 0), and fMI4'.Od
% M is a vector with the same number of elements as N. Each element }3 RqaIY}
% k of M must be a positive integer, with possible values M(k) = -N(k) 4LJUO5(y@
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, q-X)tH_+w@
% and THETA is a vector of angles. R and THETA must have the same lLyMm8E%pZ
% length. The output Z is a matrix with one column for every (N,M) jQC6N#L
% pair, and one row for every (R,THETA) pair. ]X;Ty\UD&
% @T>)fKCg
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike [:TOU^
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), $kvF]|<bu
% with delta(m,0) the Kronecker delta, is chosen so that the integral *5.s@L( VU
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, M($dh9 A_
% and theta=0 to theta=2*pi) is unity. For the non-normalized ,8cw jS2E
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 2*F["E
% <eI7xifD
% The Zernike functions are an orthogonal basis on the unit circle. Tg)Fr)
% They are used in disciplines such as astronomy, optics, and )9{?C4NQ
% optometry to describe functions on a circular domain. <Y9((QSM4
% f[!N]*
% The following table lists the first 15 Zernike functions. %}x/fq
% wQlK[F]!>
% n m Zernike function Normalization j'#W)dp(
% -------------------------------------------------- ]?/[& PP,
% 0 0 1 1 #ZeZs 31
% 1 1 r * cos(theta) 2 rwv_
RN
% 1 -1 r * sin(theta) 2 &5)Kg%r
% 2 -2 r^2 * cos(2*theta) sqrt(6) |wQ|h$|
% 2 0 (2*r^2 - 1) sqrt(3) !2>gC"$nv
% 2 2 r^2 * sin(2*theta) sqrt(6) u&mB;:&
% 3 -3 r^3 * cos(3*theta) sqrt(8) 218ZUg -a
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) AhiZ0W"
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) <RKh%4#~
% 3 3 r^3 * sin(3*theta) sqrt(8) HhH[p E
% 4 -4 r^4 * cos(4*theta) sqrt(10) l;b5 v]~
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) LoPWho[8
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) ''s]6Jjw
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) GG/~)^VMe
% 4 4 r^4 * sin(4*theta) sqrt(10) A d=NJhzl
% -------------------------------------------------- 4?jXbC k~x
% (|Y[5O)
% Example 1: JGHQ_AI
% m%X~EwFc.
% % Display the Zernike function Z(n=5,m=1) Xv|~1v%s7
% x = -1:0.01:1; JLp.bxx
% [X,Y] = meshgrid(x,x); ]<WKi=
% [theta,r] = cart2pol(X,Y); "|gNNmr
% idx = r<=1; .zAB)rNc
|
% z = nan(size(X)); .fk!~8b[Q+
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 3&/5!zOg)
% figure <2HI. @^
% pcolor(x,x,z), shading interp 9mIq9rQ|*
% axis square, colorbar W1w)SS
% title('Zernike function Z_5^1(r,\theta)') Q>cLGdzO
% sV@kQ:
% Example 2: -e3m!h
% o6P)IZ1
% % Display the first 10 Zernike functions d/k&f5
% x = -1:0.01:1; Ie`kzssM
% [X,Y] = meshgrid(x,x); J0~Ha u
% [theta,r] = cart2pol(X,Y); '3 xvQFg
% idx = r<=1; "i<i.6|
% z = nan(size(X)); O{y2tz3
% n = [0 1 1 2 2 2 3 3 3 3]; -4mUGh1dy
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; U{"&Jj
% Nplot = [4 10 12 16 18 20 22 24 26 28]; \(R(S!xr_
% y = zernfun(n,m,r(idx),theta(idx)); Z,.*!S=?h
% figure('Units','normalized') 3l0x~
% for k = 1:10 8sOM%y9M
% z(idx) = y(:,k); ]d&6 ?7 !>
% subplot(4,7,Nplot(k)) cxFfAk\,en
% pcolor(x,x,z), shading interp />S=Y"a/7
% set(gca,'XTick',[],'YTick',[]) ~Y<x-)R
% axis square Q+*o-
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 9He>F7J:p'
% end a.L ?J
% hs}nI/#
% See also ZERNPOL, ZERNFUN2. Ev|2bk \
1tHTjEG4^3
% Paul Fricker 11/13/2006 }rz}>((ZHF
r in#lu&N
,YX[6eZr
% Check and prepare the inputs: I9h?Z&n5
% ----------------------------- {<5rbsqk
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Z#IRNFj
error('zernfun:NMvectors','N and M must be vectors.') 2u4aCfIx
end /v7U~i5
O:"gJ4D
if length(n)~=length(m) eVL'Ao&Ho
error('zernfun:NMlength','N and M must be the same length.') GxL5yeN@(
end :PuJF`k
_V^^%$
n = n(:); ^CX=<
m = m(:); nyD(G=Q5
if any(mod(n-m,2)) #8z2>&:|
error('zernfun:NMmultiplesof2', ... a938l^@;s8
'All N and M must differ by multiples of 2 (including 0).') $rD&rsx6
end YQxVeS(
i{?uIb B
if any(m>n) pPem;i^~
error('zernfun:MlessthanN', ... (?Fz{
'Each M must be less than or equal to its corresponding N.') YIGQDj@
end S-Mn
n,SD JsS^
if any( r>1 | r<0 ) *[t@j*al
error('zernfun:Rlessthan1','All R must be between 0 and 1.') Jf{6'Ub
end _ #288`bU
\^orl9
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Rm`_0}5
error('zernfun:RTHvector','R and THETA must be vectors.') WDNuR#J?
end 5rK7nLb
ZgVYC4=Q-\
r = r(:); NitWIj[U;
theta = theta(:); L l\y2oJ
length_r = length(r); G]X72R?g
if length_r~=length(theta) fT9$0:eO
error('zernfun:RTHlength', ... vzA)pB~;
'The number of R- and THETA-values must be equal.') A
q;]al
end gF,9Kv~
#9uNJla
% Check normalization: BR*,E~%
% -------------------- . S4Xw2MS
if nargin==5 && ischar(nflag) m?VA 1
isnorm = strcmpi(nflag,'norm'); &[ejxK"
if ~isnorm NPF"_[RoeV
error('zernfun:normalization','Unrecognized normalization flag.')
$x# 0m
end o5)lTVQ~~
else 8`l bKV
isnorm = false; `3m7b!0k
end E
Mq P
E9JxntX
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% *f{\ze@5=
% Compute the Zernike Polynomials bim}{wMb
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% O
N..B}J
VgLrufJ
% Determine the required powers of r: KvW{M
% ----------------------------------- 'r3yFoP}
m_abs = abs(m); xwoK#eC~F
rpowers = []; 3.>M=K~09
for j = 1:length(n) 1\K%^<QY
rpowers = [rpowers m_abs(j):2:n(j)]; =0!PnBGYn
end |#G.2hMFr
rpowers = unique(rpowers); <=2\xJfxB
U7i WYdt$
% Pre-compute the values of r raised to the required powers, YQGVQ[P
% and compile them in a matrix: 1 ~fD:
% ----------------------------- =E?kxf[X
if rpowers(1)==0 FJxg9!%d
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); foO/Yc
rpowern = cat(2,rpowern{:}); oZm)@Vv;
rpowern = [ones(length_r,1) rpowern]; u*LMpTnn
else H8@1Kt
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); x UM,"+h
rpowern = cat(2,rpowern{:}); cCOw7<
end 5Us$.p
&5k$v^W5
% Compute the values of the polynomials: SStaS<q'
% -------------------------------------- !7)` g i
y = zeros(length_r,length(n)); ;nS.t_UW.
for j = 1:length(n) 3Wv-olv
s = 0:(n(j)-m_abs(j))/2; =
cQK^$6(
pows = n(j):-2:m_abs(j); K[{hh;7
for k = length(s):-1:1 %%d3M->C}
p = (1-2*mod(s(k),2))* ... "QCtF55X&
prod(2:(n(j)-s(k)))/ ... lRb|GS.h/
prod(2:s(k))/ ... :De@_m
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ob= ](
prod(2:((n(j)+m_abs(j))/2-s(k))); J)7m::%I
idx = (pows(k)==rpowers); ]k0Pe;<
y(:,j) = y(:,j) + p*rpowern(:,idx); I'W`XN
end -lICoRO#
V\Q=EsHj
if isnorm (.r9bl
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Y
1v9sMN,
end `X;' *E]e
end #GoZH?MAF
% END: Compute the Zernike Polynomials yE+Wb[H[
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 5pC+*n.
@-B)a Z
% Compute the Zernike functions: o;w5;TkY
% ------------------------------ U1oZ\Mh
idx_pos = m>0; M{(g"ha
idx_neg = m<0; 'c]Fhe fb
[2~^~K
z = y; Ui:WbH<b{
if any(idx_pos) VPC7Dh%.
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); :`jB1rI
end )-jA4!&
if any(idx_neg) _mBFmXHHS$
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)');
19#s:nt9
end '.{tE*
w;
rQ\gj
% EOF zernfun