切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11766阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 Sm5"Q  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! 'l;|t"R12  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 qyto`n7  
    function z = zernfun(n,m,r,theta,nflag) #,sJd^uI  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. (@zn[ Nq  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N O7W}Z1G  
    %   and angular frequency M, evaluated at positions (R,THETA) on the K^+B"  
    %   unit circle.  N is a vector of positive integers (including 0), and !jm a --  
    %   M is a vector with the same number of elements as N.  Each element 4b)xW&K{  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) @)}U\=  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 8wOr`ho B  
    %   and THETA is a vector of angles.  R and THETA must have the same `?:'_K i  
    %   length.  The output Z is a matrix with one column for every (N,M) BLRrHaX0  
    %   pair, and one row for every (R,THETA) pair. %2.T1X%!  
    % :}lE@Y,R   
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 8cHZBM7'  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), "F^EfpcJ{9  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral O3Uu{'=0  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, GC~::m~  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized F]&9Lp} "  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. j2z$kw%  
    % |Z<adOg  
    %   The Zernike functions are an orthogonal basis on the unit circle. &8N\ 6K=  
    %   They are used in disciplines such as astronomy, optics, and :?,& u,8  
    %   optometry to describe functions on a circular domain. ,F1$Of/'@\  
    % `JC!uc  
    %   The following table lists the first 15 Zernike functions. WJ%b9{<  
    % ^m~=<4eX  
    %       n    m    Zernike function           Normalization JO$0Z  
    %       -------------------------------------------------- Gfvz%%>l  
    %       0    0    1                                 1 eK`tFs,u  
    %       1    1    r * cos(theta)                    2 *ULXJZ%  
    %       1   -1    r * sin(theta)                    2 TS-[p d  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) .p&M@h w  
    %       2    0    (2*r^2 - 1)                    sqrt(3) `f (!i mN  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) @{bf]Oc  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) E^  rN)  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) W uQdz&s>  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) _*+M'3&=  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) Xd4~N:  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) tlW}lN}  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) uJ%ql5XDV  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) E yNCky  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Zy<0'k%U  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) __a9}m4i7x  
    %       -------------------------------------------------- 3KqylC &.  
    % m~}nM|m%  
    %   Example 1: GK)hK-  
    % hfY2pG9N  
    %       % Display the Zernike function Z(n=5,m=1) ;;2s{{(R  
    %       x = -1:0.01:1; Aoj X)_"z  
    %       [X,Y] = meshgrid(x,x); p4/D%*G^`  
    %       [theta,r] = cart2pol(X,Y); ]WS 7l@  
    %       idx = r<=1; my Po&"_ x  
    %       z = nan(size(X)); O)hNHIF  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 6(eyUgnb  
    %       figure 1PWDK1GI8  
    %       pcolor(x,x,z), shading interp {3l] /X3  
    %       axis square, colorbar 8garRB{  
    %       title('Zernike function Z_5^1(r,\theta)') S-im o  
    % gG#M-2P  
    %   Example 2: DCHU=r  
    % \=w|Zeu{l  
    %       % Display the first 10 Zernike functions V%"aU}   
    %       x = -1:0.01:1; CrK}mbe  
    %       [X,Y] = meshgrid(x,x); AH;h#dT  
    %       [theta,r] = cart2pol(X,Y); _- { >e  
    %       idx = r<=1; 3t8VH`!mL{  
    %       z = nan(size(X)); wz'D4B  
    %       n = [0  1  1  2  2  2  3  3  3  3]; 1"i/*}M  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; . 8k9yk  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; R@;kY S  
    %       y = zernfun(n,m,r(idx),theta(idx)); d}Q;CF3 m:  
    %       figure('Units','normalized') C}7Sh6  
    %       for k = 1:10 b8Y-!] F  
    %           z(idx) = y(:,k); <_h  
    %           subplot(4,7,Nplot(k)) SI-s:%O  
    %           pcolor(x,x,z), shading interp yAaMYF@  
    %           set(gca,'XTick',[],'YTick',[]) Mu TlN  
    %           axis square "I u3&mc  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 1X]?-+',.  
    %       end WxFVbtw  
    % [V =O$X_  
    %   See also ZERNPOL, ZERNFUN2. |'.\}xt7  
    G/b $cO}  
    %   Paul Fricker 11/13/2006 }DoNp[`  
    "1Vuf<?C  
    a8NL  
    % Check and prepare the inputs: )A,M T i  
    % ----------------------------- I t",WFE.  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) | X! d*4  
        error('zernfun:NMvectors','N and M must be vectors.') : W^ k3/t  
    end qEE V&  
    6,| !zaeS  
    if length(n)~=length(m) Z!DGCw  
        error('zernfun:NMlength','N and M must be the same length.') EP,lT.u3  
    end ;~F&b:CyG  
    !2=< MO  
    n = n(:); bDK72cQ  
    m = m(:); q9|'!m5K  
    if any(mod(n-m,2)) YB*I'm3q  
        error('zernfun:NMmultiplesof2', ... oUoDj'JN{  
              'All N and M must differ by multiples of 2 (including 0).') s>ilxLSX]  
    end JZB7?@h%  
    | <gYzb q  
    if any(m>n) 4"7/+6Z  
        error('zernfun:MlessthanN', ... wX[g\,?}'  
              'Each M must be less than or equal to its corresponding N.') WTbq)D(&[_  
    end <<4U:  
    8(]*J8/wt  
    if any( r>1 | r<0 ) 22$M6Qof]n  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') p%[/ _ -7  
    end $9bLD >.  
    fgdqp8~  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) WS6'R    
        error('zernfun:RTHvector','R and THETA must be vectors.') NH~\kV  
    end muc6gwBp  
    l$ ^LY)i  
    r = r(:); >cJfD9-<h  
    theta = theta(:); 6fY-D qF!  
    length_r = length(r); 0o7*5| T4  
    if length_r~=length(theta) c&X2k\  
        error('zernfun:RTHlength', ... ozB2L\D7  
              'The number of R- and THETA-values must be equal.') 8#L V oR  
    end Lh\ 1L  
    lub_2Cb|j  
    % Check normalization: m) QV2n  
    % -------------------- -?nr q <3  
    if nargin==5 && ischar(nflag) #p$iWY>e~  
        isnorm = strcmpi(nflag,'norm'); PUcxlD/a}  
        if ~isnorm 9?]69O  
            error('zernfun:normalization','Unrecognized normalization flag.') l$/.B=]  
        end y!eT>4Oyg  
    else A{|^_1  
        isnorm = false; 9lqH  
    end x18(}4  
    }l"pxp1K  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \:y oS>G  
    % Compute the Zernike Polynomials %>Q[j`9y  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% O pavno%&  
    XCvL`  
    % Determine the required powers of r: 4]G J+a  
    % ----------------------------------- l$Y*ii  
    m_abs = abs(m); p?-qlPl  
    rpowers = []; _TntZv.?  
    for j = 1:length(n) zCji]:  
        rpowers = [rpowers m_abs(j):2:n(j)]; z|bAZKSRYx  
    end ;-kC&GZf  
    rpowers = unique(rpowers); O#Ma Z.=  
    :_k5[KT.]9  
    % Pre-compute the values of r raised to the required powers, L0.F }~S  
    % and compile them in a matrix: qf T71o(  
    % ----------------------------- *q;u%; 4  
    if rpowers(1)==0 -kzp >=  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); BD ,J4xH;  
        rpowern = cat(2,rpowern{:}); <c3Te$.  
        rpowern = [ones(length_r,1) rpowern]; 7K5 tBUNQ  
    else U'@#n2p:k  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); e1Q   
        rpowern = cat(2,rpowern{:}); C&HN#Q_  
    end F/ o }5H  
    3!M|Sf<s  
    % Compute the values of the polynomials: dOX"7kZ  
    % -------------------------------------- >npTUOGL=n  
    y = zeros(length_r,length(n)); [,L>5:T  
    for j = 1:length(n) >t#5eT`_ w  
        s = 0:(n(j)-m_abs(j))/2; fU<_bg  
        pows = n(j):-2:m_abs(j); G4rd<V0[D  
        for k = length(s):-1:1 S ^]mF>xX8  
            p = (1-2*mod(s(k),2))* ... (&MtK1;;  
                       prod(2:(n(j)-s(k)))/              ... +I3j 2u8L  
                       prod(2:s(k))/                     ... =&Z#QD"vl  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ;F|8#! (  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); X'{ o/U.  
            idx = (pows(k)==rpowers); nc3u sq  
            y(:,j) = y(:,j) + p*rpowern(:,idx); "^Vnnb:Z*o  
        end I;Pd}A_}=_  
         jP#I](\eG  
        if isnorm t|P+^SL  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); u-M Td  
        end NY?pvb  
    end 4s9q Q8?  
    % END: Compute the Zernike Polynomials GC`/\~TM  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 6<fcG  
    9zl-C*9vj  
    % Compute the Zernike functions: \ [bJ@f*."  
    % ------------------------------ L"RE[" m  
    idx_pos = m>0; 1}R\L"  
    idx_neg = m<0; 6zIK%<  
    V%'' GF   
    z = y; h<G7ocu!  
    if any(idx_pos) 9^7z"*@#  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); B[~Q0lPih  
    end G/ H>M%M  
    if any(idx_neg) 2y IDyo  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 5,|of{8  
    end </pt($  
    iD.p KG  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) @~&|BvK% \  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. 558!?kx$  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated &oE'|^G  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive \E6 0  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, Y.q$"lm7k  
    %   and THETA is a vector of angles.  R and THETA must have the same *x_e] /}  
    %   length.  The output Z is a matrix with one column for every P-value, xt6%[)  
    %   and one row for every (R,THETA) pair.  PZY6 I  
    % 8_Z"@  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike MO? }$j  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) .e4upT GU  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) ;Fd1:"1pP  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 %XQJ!sC`  
    %   for all p. "EVf1iQ  
    % !C(PfsrR/  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 %jJIR88  
    %   Zernike functions (order N<=7).  In some disciplines it is _C=01 %/  
    %   traditional to label the first 36 functions using a single mode Nxt`5kSx=  
    %   number P instead of separate numbers for the order N and azimuthal fymmA faR  
    %   frequency M. ps^["3e  
    % x_9#:_S'  
    %   Example: ] f5vk  
    % ,&g-DC ag  
    %       % Display the first 16 Zernike functions 9I}Uh#]k<  
    %       x = -1:0.01:1; {L \TO,  
    %       [X,Y] = meshgrid(x,x); ol~ tfS  
    %       [theta,r] = cart2pol(X,Y); 'J)9#  
    %       idx = r<=1; (1[Z#y[  
    %       p = 0:15; fm$Qd^E|e  
    %       z = nan(size(X)); VtMnLF Mw  
    %       y = zernfun2(p,r(idx),theta(idx)); 0>"y)T3   
    %       figure('Units','normalized') aU/y>Y <k  
    %       for k = 1:length(p) W)^%/lAh  
    %           z(idx) = y(:,k); 3m~,6mQ  
    %           subplot(4,4,k) |[p]]) o  
    %           pcolor(x,x,z), shading interp {{)pb>E  
    %           set(gca,'XTick',[],'YTick',[]) 2k m0  
    %           axis square )NTpb  
    %           title(['Z_{' num2str(p(k)) '}']) D&=+PAX  
    %       end 2Ima15^+F  
    % L8oqlq( 9  
    %   See also ZERNPOL, ZERNFUN. qiq=v)  
    s@g _F  
    %   Paul Fricker 11/13/2006 "Xl"H/3r  
    1@}<CWE9  
    ;2[OI  
    % Check and prepare the inputs: E>:#{%  
    % ----------------------------- Zad>i w}  
    if min(size(p))~=1 wKoar  
        error('zernfun2:Pvector','Input P must be vector.') O]?\<&y  
    end b&]z^_m)  
    :;IZ|hU  
    if any(p)>35 +U>Y.YP  
        error('zernfun2:P36', ... i>C%[dk9  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... W e*uZ?+  
               '(P = 0 to 35).']) fF2] 7:  
    end 3lKs>HE0  
    oTr,zRL  
    % Get the order and frequency corresonding to the function number: `=Rxnl,<U  
    % ---------------------------------------------------------------- uL:NWgN  
    p = p(:); /XNC^!z6Js  
    n = ceil((-3+sqrt(9+8*p))/2); mE'HRv  
    m = 2*p - n.*(n+2); Xc&J.Tw#4*  
    -a l  
    % Pass the inputs to the function ZERNFUN: R8YU#D (Q  
    % ---------------------------------------- 5g;mc.Cvt  
    switch nargin f3s4aARP  
        case 3 =L;g:hc<  
            z = zernfun(n,m,r,theta); R?dMM  
        case 4 Y1F%-o  
            z = zernfun(n,m,r,theta,nflag); $7-S\sDr  
        otherwise iG"1~/U  
            error('zernfun2:nargin','Incorrect number of inputs.') W}|k!_/  
    end b?2 \j}  
    p9!jM\(  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) Fr<tk^~/  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. J<9}) m  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of I9nm$,i]7  
    %   order N and frequency M, evaluated at R.  N is a vector of 4tvZJS hV  
    %   positive integers (including 0), and M is a vector with the S2 P9C"  
    %   same number of elements as N.  Each element k of M must be a .R#<Q  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) q4vHsy36  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is X|4Kdi.r@  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix %fXgV\xY  
    %   with one column for every (N,M) pair, and one row for every IK8" 3+(  
    %   element in R. J:IAs:e`  
    % ]6MXG%  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- n" vO?8Sx  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is _^$F^}{&  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to p77=~s  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 `'9t^ 6mk  
    %   for all [n,m]. 6I|9@~!y[  
    % sdKm@p|/|  
    %   The radial Zernike polynomials are the radial portion of the c'Q.2^w^  
    %   Zernike functions, which are an orthogonal basis on the unit M=1~BZQ(Z  
    %   circle.  The series representation of the radial Zernike XAB/S8e  
    %   polynomials is ?9T,sX:  
    % ;0Ih:YY6  
    %          (n-m)/2 @# . a5  
    %            __ BDX>J3h  
    %    m      \       s                                          n-2s /<J5?H  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r D+h`Z]"|  
    %    n      s=0 COxJ,v(  
    % VK|$SY(  
    %   The following table shows the first 12 polynomials. Q.V+s   
    % y+7A?"s)  
    %       n    m    Zernike polynomial    Normalization kZcGe*  
    %       --------------------------------------------- ^~3{n  
    %       0    0    1                        sqrt(2)  \Awqr:A&  
    %       1    1    r                           2 u~Y+YzCxV  
    %       2    0    2*r^2 - 1                sqrt(6) }To-c'  
    %       2    2    r^2                      sqrt(6) ! OOOc  
    %       3    1    3*r^3 - 2*r              sqrt(8) ph3dm\U.  
    %       3    3    r^3                      sqrt(8) JP]-a!5Ru  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) J|8 u  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) V|4k=_-  
    %       4    4    r^4                      sqrt(10) FX~pjM  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) {!pYQ|#  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) Wa iM\h?=#  
    %       5    5    r^5                      sqrt(12) =[)2DJC  
    %       --------------------------------------------- OjK+`D_C  
    % p(yHB([8  
    %   Example: H$,wg!kY!  
    % WmblY2  
    %       % Display three example Zernike radial polynomials j^Ln\N]^  
    %       r = 0:0.01:1; d81[hT}q  
    %       n = [3 2 5]; A*W/Q<~I  
    %       m = [1 2 1]; :ZXaJ!  
    %       z = zernpol(n,m,r); p0pA|  
    %       figure ?u{D-by%&  
    %       plot(r,z) -)e(Qt#ewl  
    %       grid on 9hhYyqGsO  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') ~tB9kLFG  
    % NDG?X s [2  
    %   See also ZERNFUN, ZERNFUN2. (>-(~7PR  
    nwJc%0  
    % A note on the algorithm. Z}>+!Z  
    % ------------------------ WAVEwA`r  
    % The radial Zernike polynomials are computed using the series G+ NTn\  
    % representation shown in the Help section above. For many special 0fa8.g#I$  
    % functions, direct evaluation using the series representation can _2xYDi  
    % produce poor numerical results (floating point errors), because aY %{?8PsB  
    % the summation often involves computing small differences between "I3&a1*  
    % large successive terms in the series. (In such cases, the functions ^!K 8nW{*  
    % are often evaluated using alternative methods such as recurrence l^v,X%{Iz  
    % relations: see the Legendre functions, for example). For the Zernike 02po;  
    % polynomials, however, this problem does not arise, because the f'u[G?C  
    % polynomials are evaluated over the finite domain r = (0,1), and q94*2@KV  
    % because the coefficients for a given polynomial are generally all ,u   
    % of similar magnitude. U5j0i]  
    % D!bi>]Yd  
    % ZERNPOL has been written using a vectorized implementation: multiple buxyZV@1  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] O9:J ^g  
    % values can be passed as inputs) for a vector of points R.  To achieve z_:r&UP`"  
    % this vectorization most efficiently, the algorithm in ZERNPOL 5:l"*  
    % involves pre-determining all the powers p of R that are required to _/F}y[B7d  
    % compute the outputs, and then compiling the {R^p} into a single wKy4Ic+RV  
    % matrix.  This avoids any redundant computation of the R^p, and ^ANz=`N5,  
    % minimizes the sizes of certain intermediate variables. OJ}aN>k  
    % _;k))K^  
    %   Paul Fricker 11/13/2006 NqN9  
    oRl@AhS  
    4cAx9bqA  
    % Check and prepare the inputs: =5M '+>  
    % ----------------------------- ;}Acy VV  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) [Mlmn$it  
        error('zernpol:NMvectors','N and M must be vectors.') %* @hS`  
    end [.4D<}e  
    :$oiP  
    if length(n)~=length(m) &3Mps[u:h  
        error('zernpol:NMlength','N and M must be the same length.') Mm#=d?YUHJ  
    end Ky'\t7p u  
    rXnG"A  
    n = n(:); DZX4c2J  
    m = m(:); CIf""gL9  
    length_n = length(n); \J^xpR_0u  
    f8 L3+u  
    if any(mod(n-m,2)) ^Kh>La:>O  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') .t{?doOT  
    end  SwmX_F#_  
    aB4L$M8x  
    if any(m<0) Py#iC#g~  
        error('zernpol:Mpositive','All M must be positive.') 3hNb ?  
    end (OHd} YQ  
    g?!;04  
    if any(m>n) JT 5+d ,  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') 8R.`*  
    end JPS<e*5  
    vX}mwK8  
    if any( r>1 | r<0 ) lV2MRxI  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') tqK}KL  
    end ^ px)W,O  
    P+;@?ofB  
    if ~any(size(r)==1) ~uu~NTz  
        error('zernpol:Rvector','R must be a vector.')  tD}HL_  
    end 4$b9<:M_  
    hdee]qLS  
    r = r(:); ] mvVX31T  
    length_r = length(r); DR#[\RzNI  
    Q@#Gm9m  
    if nargin==4 Q mn'G4#@E  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); z50f$!?  
        if ~isnorm U>_#,j  
            error('zernpol:normalization','Unrecognized normalization flag.') g].hL  
        end @5(HRd  
    else bLyG3~P;0  
        isnorm = false; Zu%oIk  
    end eE;")t,  
    ;={Z Bx  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Q Ph6 p3bg  
    % Compute the Zernike Polynomials L\UM12  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ;^:$O6J7T~  
    9 8eS f  
    % Determine the required powers of r: J'y*>dW  
    % ----------------------------------- t ~"DQq E  
    rpowers = []; EM.rO/qcW  
    for j = 1:length(n) \78kShx  
        rpowers = [rpowers m(j):2:n(j)]; hKW!kA =gZ  
    end @Ao E>  
    rpowers = unique(rpowers); I Ux svW+  
    4i o02qd 4  
    % Pre-compute the values of r raised to the required powers, R!LKGiN  
    % and compile them in a matrix: cZXra(AD  
    % ----------------------------- -d6*M*{|  
    if rpowers(1)==0 bwAL:  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); iP~dH/B|v  
        rpowern = cat(2,rpowern{:}); wY j~(P"  
        rpowern = [ones(length_r,1) rpowern]; 3 ,?==?  
    else i<Be)Y-'  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false);  g8_IZ(%:  
        rpowern = cat(2,rpowern{:}); JP<Z3 A2q  
    end #FV(a~  
    vXM``|  
    % Compute the values of the polynomials: (&u)F B*  
    % -------------------------------------- d\ Z#XzI8  
    z = zeros(length_r,length_n); oxPb; %  
    for j = 1:length_n @*c ) s_  
        s = 0:(n(j)-m(j))/2; 'u2Qq"d+  
        pows = n(j):-2:m(j); H;n(qBSB  
        for k = length(s):-1:1 O}3M+  
            p = (1-2*mod(s(k),2))* ... J ;wA  
                       prod(2:(n(j)-s(k)))/          ... 8Cr?0Z  
                       prod(2:s(k))/                 ... +>5 "fs$Y  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... RFu]vFff  
                       prod(2:((n(j)+m(j))/2-s(k))); V-w[\u  
            idx = (pows(k)==rpowers); 2v<[XNX  
            z(:,j) = z(:,j) + p*rpowern(:,idx); o^! Zt 9  
        end ]X)EO49  
         rXz,<^Hmj  
        if isnorm gU}?Yy  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); xf@D<}~1  
        end 'm=9&?0S  
    end "zO+!h'o  
    _dEf@==  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    857
    光币
    847
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  )Y *?VqZn  
    s~]nsqLt9p  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 3mm`8!R  
    zA"D0fr  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)