非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 XI/LVP,.
function z = zernfun(n,m,r,theta,nflag) c8<qn+=%?
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. xa&5o`>1G
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N knb 9s`wR
% and angular frequency M, evaluated at positions (R,THETA) on the 1RM@~I$0
% unit circle. N is a vector of positive integers (including 0), and M[1!#Q><!
% M is a vector with the same number of elements as N. Each element 9o<5Z=
% k of M must be a positive integer, with possible values M(k) = -N(k) \#%1t
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, O*dtVX
% and THETA is a vector of angles. R and THETA must have the same kWW$*d$
% length. The output Z is a matrix with one column for every (N,M) KP*cb6vA
% pair, and one row for every (R,THETA) pair. 41oXOB
% ;GF+0~5>
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike F15Yn
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), zxhE9 [`*e
% with delta(m,0) the Kronecker delta, is chosen so that the integral gAxf5A_x)
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 8Ts_;uId
% and theta=0 to theta=2*pi) is unity. For the non-normalized s-lNpOi
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. *^=zQ~
% Z6\H4,k&
% The Zernike functions are an orthogonal basis on the unit circle. q1_iV.G<
% They are used in disciplines such as astronomy, optics, and appWq}db
% optometry to describe functions on a circular domain. VlbS\Y.
% d(!g9H
% The following table lists the first 15 Zernike functions. JK=0juv<E
% fnZ?YzLI
% n m Zernike function Normalization n=1_- )
% -------------------------------------------------- 5N
/NUs
% 0 0 1 1 #[B]\HO
% 1 1 r * cos(theta) 2 sO$X5S C9
% 1 -1 r * sin(theta) 2 j.O+e|kxU
% 2 -2 r^2 * cos(2*theta) sqrt(6) 7^<{aE:
% 2 0 (2*r^2 - 1) sqrt(3) mR3-+dB/
% 2 2 r^2 * sin(2*theta) sqrt(6) =+
vl+h
% 3 -3 r^3 * cos(3*theta) sqrt(8) 40$- ]i
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) ^X\SwgD2w
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) Q xm:5P
% 3 3 r^3 * sin(3*theta) sqrt(8) (Ee5Af,4
% 4 -4 r^4 * cos(4*theta) sqrt(10) 7%)KB4(\_
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) =6H
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) AdGDs+at,
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) l)K8.(2
% 4 4 r^4 * sin(4*theta) sqrt(10) Z#znA4;)
% -------------------------------------------------- |SSe n#PYp
% /O{iL:`
% Example 1: 2Sb68hJIE
% /kH
7I
% % Display the Zernike function Z(n=5,m=1) 1ww#]p`1
% x = -1:0.01:1; J2avt
% [X,Y] = meshgrid(x,x); 5!jU i9
% [theta,r] = cart2pol(X,Y); ?Jy/]j5fI
% idx = r<=1; ,We'AR3X
% z = nan(size(X)); @CNe)&U
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 1a@b-V2
d&
% figure oUNuM%g9Dy
% pcolor(x,x,z), shading interp <;P40jDL
% axis square, colorbar Q4e+vBECkq
% title('Zernike function Z_5^1(r,\theta)') HF;$Wf+=J
% q<Z`<e
% Example 2: }BN!Xa
% {({Rb$
% % Display the first 10 Zernike functions o8c5~fG1
% x = -1:0.01:1; -J]j=
% [X,Y] = meshgrid(x,x); 7N4)T'B
% [theta,r] = cart2pol(X,Y); Z3qr2/
% idx = r<=1; H63?Erh>a
% z = nan(size(X)); -I'Jm=q3]
% n = [0 1 1 2 2 2 3 3 3 3]; <sw fYT!N
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; h\lyt(.s
% Nplot = [4 10 12 16 18 20 22 24 26 28]; ./@C
% y = zernfun(n,m,r(idx),theta(idx)); ,*m{Q
% figure('Units','normalized') mV++7DY
% for k = 1:10 PFI^+';
% z(idx) = y(:,k); H84Zg/ ^
% subplot(4,7,Nplot(k)) b-?d(-
% pcolor(x,x,z), shading interp }F4%5go
% set(gca,'XTick',[],'YTick',[]) K)N'~jCG
% axis square *6/OLAkyF
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) c@|f'V4
% end BK)3b6L=%
% 7!PU}[:
% See also ZERNPOL, ZERNFUN2. 34:Y_*
ZO8r8
[
% Paul Fricker 11/13/2006 ap wA
1TlMB
RXw }Tb/D8
% Check and prepare the inputs: #&,~5
% ----------------------------- .kc{)d*0K
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Oh;V%G
error('zernfun:NMvectors','N and M must be vectors.') IylfMwLC
end OfPv'rW{x
yF@72tK
if length(n)~=length(m) @B9O*x+n:
error('zernfun:NMlength','N and M must be the same length.') b NR@d'U
end G]RFGwGt
d$B+xW
n = n(:); ~u-_DOA
m = m(:); lXip%6c7
if any(mod(n-m,2)) -'rb+<v
error('zernfun:NMmultiplesof2', ... [13NhF3.P
'All N and M must differ by multiples of 2 (including 0).') x\b+B
end "Tnmn@
Vo(>K34
if any(m>n) vl>_;}W7
error('zernfun:MlessthanN', ... Fd/Ra]@\Y
'Each M must be less than or equal to its corresponding N.') b&P2VqYgl
end C:ntr=3J
]zh6[0V7V
if any( r>1 | r<0 ) }WnoI2
error('zernfun:Rlessthan1','All R must be between 0 and 1.') g`I$U%a_2
end KvmXRf*z
%`0*KMO3
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) gr \vC
error('zernfun:RTHvector','R and THETA must be vectors.') PMZ*ECIJU
end :wz]d ~)
8V@\$4@b!#
r = r(:); suE#'0K
theta = theta(:); * TByAa{
length_r = length(r); ?P"j5
if length_r~=length(theta) 1O+$"5H
error('zernfun:RTHlength', ... j$Vtd&
'The number of R- and THETA-values must be equal.') ^w*&7.Z
end N4w&g-
b5?k)s2
% Check normalization: N{?Qkkgx
% -------------------- #C+7~ns'
if nargin==5 && ischar(nflag) bYwe/sR
isnorm = strcmpi(nflag,'norm'); ,B$e'KQ
if ~isnorm
fK NDl\SD
error('zernfun:normalization','Unrecognized normalization flag.') qbKcI+)47
end &Vbcwv@
else -)[~%n#X+t
isnorm = false; K-n]m#U4o
end i+~H~k}"X
dF'oZQz
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ^3ysY24 Q
% Compute the Zernike Polynomials `! _mIh}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% A?H.EZ
ni-4~k
% Determine the required powers of r: [cT7Iqip
% ----------------------------------- $o^N_`l
m_abs = abs(m); uZ+vYF^
rpowers = []; )w0K2&)A
for j = 1:length(n) N[wyi&m4
rpowers = [rpowers m_abs(j):2:n(j)]; Atod&qH
end -9yWf8;
rpowers = unique(rpowers); 9`G}GU]@}
,S-zY\XB
% Pre-compute the values of r raised to the required powers, Vm%0436wOY
% and compile them in a matrix: crU]P $a
% ----------------------------- DHh30b$c
if rpowers(1)==0 X -_0wR
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); X_#,5t=7
rpowern = cat(2,rpowern{:}); )P9&I.a8
rpowern = [ones(length_r,1) rpowern]; J>^KQ
else ^i6`w_ /
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 7F8>w 7Y]
rpowern = cat(2,rpowern{:}); ,e+S7YX
end Z'_EX7r
V#\ iO
% Compute the values of the polynomials: xcC^9BAj
% -------------------------------------- 6Lz:J:Q)
y = zeros(length_r,length(n)); gkld}t*U
for j = 1:length(n) U_AmRiy
s = 0:(n(j)-m_abs(j))/2; #RP7?yGM,
pows = n(j):-2:m_abs(j); !\|L(Paf
for k = length(s):-1:1 kXW$[R
p = (1-2*mod(s(k),2))* ... 9`5qVM1O{
prod(2:(n(j)-s(k)))/ ... <26Jif:
prod(2:s(k))/ ... ]`\~(*;[W9
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... #&&
prod(2:((n(j)+m_abs(j))/2-s(k))); d5 U+]g
idx = (pows(k)==rpowers); F/U38[
y(:,j) = y(:,j) + p*rpowern(:,idx); eG%Q
3h
end ;(;{~1~
"U
iv[8B
if isnorm Awlw6?
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ' O d_:]
end AHdh]pfH
end nHIW_+<Mf
% END: Compute the Zernike Polynomials
ui1h M
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% pR7 D3Q:^7
{WN??eys,
% Compute the Zernike functions: |v= */e
% ------------------------------ q|kkdK|N/Y
idx_pos = m>0;
bj U]]
idx_neg = m<0; P: )YKro]
%<;PEQQ|C
z = y; @ \JoICz
if any(idx_pos) Nx<%'-9)|
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ZR@PqS+O/
end Dt]*M_
if any(idx_neg) U-lN-/=l6
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); "[wP1n!G
end ]B9Ut&mF;
V.~C.x
% EOF zernfun