非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 7+IRI|d
function z = zernfun(n,m,r,theta,nflag) Plhakngj
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 6V}xgfB
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N o^MoU2c
% and angular frequency M, evaluated at positions (R,THETA) on the @8+v6z
% unit circle. N is a vector of positive integers (including 0), and [hk/Rp7{
% M is a vector with the same number of elements as N. Each element TJ_6:;4,|_
% k of M must be a positive integer, with possible values M(k) = -N(k) {`T^&bk
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, [tElt4uG
% and THETA is a vector of angles. R and THETA must have the same LR\8M(rtvH
% length. The output Z is a matrix with one column for every (N,M) 5tzO=gO[
% pair, and one row for every (R,THETA) pair. i[ws%GfEv
% 8OO[Le]1
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike fO
.=i1
E}
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), m6]6!_
% with delta(m,0) the Kronecker delta, is chosen so that the integral ll- KK`Ka
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 7s!rer>
% and theta=0 to theta=2*pi) is unity. For the non-normalized '
I!/I
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. eT ]*c?"
% 412E7
% The Zernike functions are an orthogonal basis on the unit circle. zMBGpqdP
% They are used in disciplines such as astronomy, optics, and :^xNHMp!
% optometry to describe functions on a circular domain. M)AvcZNs
% &A`,hF8
% The following table lists the first 15 Zernike functions. [9:";JSl"Y
% 3(vm'r&5n>
% n m Zernike function Normalization bd% M.,
% -------------------------------------------------- +c,
^KHW
% 0 0 1 1 _-^mxC|M
% 1 1 r * cos(theta) 2 |F<%gJ
% 1 -1 r * sin(theta) 2 q^n
LC6q
% 2 -2 r^2 * cos(2*theta) sqrt(6) <*-8E(a
% 2 0 (2*r^2 - 1) sqrt(3) }gB^C3b6
% 2 2 r^2 * sin(2*theta) sqrt(6) %y*'bS
% 3 -3 r^3 * cos(3*theta) sqrt(8) $b2~H+u(
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) V0&7MY *
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) kC6Y?g
% 3 3 r^3 * sin(3*theta) sqrt(8) yLK %lP
% 4 -4 r^4 * cos(4*theta) sqrt(10) ! hEZV&y
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) "a33m:]J
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) [McqwU/Q
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 5p5"3m;M7
% 4 4 r^4 * sin(4*theta) sqrt(10) W
tHJG5
% -------------------------------------------------- g)D@4RM
% *M0O&" ~j
% Example 1: 8bO+[" c
% bn5O2
% % Display the Zernike function Z(n=5,m=1) pSIXv%1J
% x = -1:0.01:1; Y9vVi]4
% [X,Y] = meshgrid(x,x); 'zT7$ .L
% [theta,r] = cart2pol(X,Y); ,:MUf]Ky
% idx = r<=1; nn$^iw`
% z = nan(size(X)); [KbLEMrPba
% z(idx) = zernfun(5,1,r(idx),theta(idx));
E}a.qM'
% figure yf`_?gJ6d
% pcolor(x,x,z), shading interp )
LTV+?
% axis square, colorbar FeQo,a
% title('Zernike function Z_5^1(r,\theta)') PYY<
% mqUDve(
% Example 2: Fm6]mz%~u#
% 9F6dKPN:
% % Display the first 10 Zernike functions -f1}N|hy
% x = -1:0.01:1; ImH9 F\
% [X,Y] = meshgrid(x,x); ]Y76~!N
% [theta,r] = cart2pol(X,Y); _5O~]}
% idx = r<=1; hNgT/y8
% z = nan(size(X)); x_?K6[G&}
% n = [0 1 1 2 2 2 3 3 3 3]; A&%7Z^Pp
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; R~hIo aiN
% Nplot = [4 10 12 16 18 20 22 24 26 28]; _^zs(
% y = zernfun(n,m,r(idx),theta(idx)); nA.U'=`
% figure('Units','normalized') j
\d)#+;
% for k = 1:10 QR8]d1+GV
% z(idx) = y(:,k); :eB+t`M
% subplot(4,7,Nplot(k)) O&~
@ior
% pcolor(x,x,z), shading interp nU\.`.39
+
% set(gca,'XTick',[],'YTick',[]) B9cWxe4R#
% axis square *ezft&{)`
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) T?=]&9Y'
% end -49I3&
% Z("N
*`VP;
% See also ZERNPOL, ZERNFUN2. GkU$Z @
ba
,n/yH
% Paul Fricker 11/13/2006 ]W~M?1}
H_Sv,lwz;c
e7&RZ+s#wZ
% Check and prepare the inputs: Sz')1<
% ----------------------------- )"M;7W?R0
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) w
T_l>u
error('zernfun:NMvectors','N and M must be vectors.') l
6aD3?8LN
end BePb8
k<y
Dvl\o;
if length(n)~=length(m) RF4B]Gqd
error('zernfun:NMlength','N and M must be the same length.') ;b=7m#5
end HJpx,NU'
w-v8P`V
n = n(:); k*F9&-rtN
m = m(:); !,5qAGi0
if any(mod(n-m,2)) '}(Fj2P79
error('zernfun:NMmultiplesof2', ... ~Hj c?*
'All N and M must differ by multiples of 2 (including 0).') JnnxXj30,
end l^}5PHLd
r~fnK%|
if any(m>n) O~x{p,s
U
error('zernfun:MlessthanN', ... w Bm4~~_
'Each M must be less than or equal to its corresponding N.') Fy$C._C$
end 7*Zm{r@u
kXUJlLod
if any( r>1 | r<0 ) wGIRRM !b
error('zernfun:Rlessthan1','All R must be between 0 and 1.') )
R\";{`M
end Ep')@7^n
J\'f5)k
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) h2:TbQ
error('zernfun:RTHvector','R and THETA must be vectors.') #,})N*7
end rfSEL
57'
%P#|
}
r = r(:); vQ$"|8,
theta = theta(:); BZXee>3"
length_r = length(r); 9O^~l2`
if length_r~=length(theta) O]F(vHK\
error('zernfun:RTHlength', ... ATmyoN2@>
'The number of R- and THETA-values must be equal.') q%/.+g2-\
end AAB_Ytf
uOKdb6]r6
% Check normalization: 1UB.2}/:
% -------------------- Zx6h%l,%
if nargin==5 && ischar(nflag) "EWq{l_I5$
isnorm = strcmpi(nflag,'norm'); 9j5Z!Vsy
if ~isnorm jC?l :m?
error('zernfun:normalization','Unrecognized normalization flag.') BuC\Bd^0
end ]f wW
dtz1
else ^d(gC%+!u
isnorm = false; Bw[IW[(~!
end Lc-WfzT
S'@Ok=FSy
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 4`RZ&w;1H2
% Compute the Zernike Polynomials X"HVK+
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% { W5
_KX
|&bucG=
% Determine the required powers of r: 4)L};B=
% ----------------------------------- ;vpq0t`
m_abs = abs(m); "uyr@u0b
rpowers = []; V;~\+@
for j = 1:length(n) I;, n|o
rpowers = [rpowers m_abs(j):2:n(j)]; ;MlPP)*k
end G2|G}#E
rpowers = unique(rpowers); #D>:'ezm
p2+K-/}ApP
% Pre-compute the values of r raised to the required powers, Ggv*EsN/cC
% and compile them in a matrix: #AO}JP
% ----------------------------- $"0`2C
if rpowers(1)==0 wg:\$_Og
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); uOd1:\%*
rpowern = cat(2,rpowern{:}); Zl]@;*u
rpowern = [ones(length_r,1) rpowern]; x{rjngp2
else 8#1o
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); -|=)
rpowern = cat(2,rpowern{:}); ##1/{9ywy
end n+vv
%
Mdu\ci)lr
% Compute the values of the polynomials: Sj8fo^K50
% -------------------------------------- C 8d9(u
y = zeros(length_r,length(n)); jpMMnEVj6P
for j = 1:length(n) *Rc?rMF !
s = 0:(n(j)-m_abs(j))/2; E?Qg'|+_
pows = n(j):-2:m_abs(j); Uqly|FS &n
for k = length(s):-1:1 !y2yS/
p = (1-2*mod(s(k),2))* ... V*@&<x"E
prod(2:(n(j)-s(k)))/ ... : 'pK
prod(2:s(k))/ ... Ngm/5Lc
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ]2[\E~^KU
prod(2:((n(j)+m_abs(j))/2-s(k))); XuU>.T$] c
idx = (pows(k)==rpowers); Z 2$S'}F
y(:,j) = y(:,j) + p*rpowern(:,idx); IiX2O(*ZE
end ~BnmAv$m[
m/,8\+
if isnorm OE}c$!@
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Kc>Rd
end rD c$#
end lg^Lk\Y+re
% END: Compute the Zernike Polynomials cf%2A1I2W
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% `bd9N!K
%PK(Z*>
% Compute the Zernike functions: (^<skx>
% ------------------------------ _m%Ab3iT~
idx_pos = m>0; y'^b{q@
idx_neg = m<0; Qv8 =CnuOT
"|PX5
z = y; +NOq>kH@
if any(idx_pos) yv$hIU2X
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 91k-os(4]
end JbXi|OS/
if any(idx_neg) K>-01AGHL
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); /d$kz&aIV
end A[:(#iR5-E
]l
% EOF zernfun