切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11820阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 ~t ZB1+%)  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! ?/-WH?1I  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 ^;.u }W  
    function z = zernfun(n,m,r,theta,nflag) qu dY9_  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 1s(]@gt  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N "PO8Q  
    %   and angular frequency M, evaluated at positions (R,THETA) on the D6+3f #k6  
    %   unit circle.  N is a vector of positive integers (including 0), and yNn=r;FZQ  
    %   M is a vector with the same number of elements as N.  Each element x?0K'  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) .XiO92d9  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, z,7;+6*=L  
    %   and THETA is a vector of angles.  R and THETA must have the same U{LS_VI~  
    %   length.  The output Z is a matrix with one column for every (N,M) *" C9F/R  
    %   pair, and one row for every (R,THETA) pair. -)3+/4Q(  
    % ^FBu|e AkE  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike _)!*,\*`{  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Dj'?12Onu=  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral &}7R\co3  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 0GeL">v,:=  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized VBF:MAA  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. JX[]u<h?  
    % _KxR~k^  
    %   The Zernike functions are an orthogonal basis on the unit circle. )oz2V9X{  
    %   They are used in disciplines such as astronomy, optics, and T]tu#h{ a  
    %   optometry to describe functions on a circular domain. rKI<!  
    % un -h%-e |  
    %   The following table lists the first 15 Zernike functions. ID! S}D  
    % Zv=pS (9  
    %       n    m    Zernike function           Normalization D1v0`od'  
    %       -------------------------------------------------- J5HK1  
    %       0    0    1                                 1 [u2t1^#Ol  
    %       1    1    r * cos(theta)                    2 8F`8=L NO  
    %       1   -1    r * sin(theta)                    2 `BG>%#  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) X;GU#8W  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 2;s[m3  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) OY:rcGc`t  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) q/54=8*h0  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) -WF((s;<#  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ]4 c+{  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) r<!nU&FPD:  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) *?HoN;^  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Fb8d= Zc  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) {z0iWY2Xw  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) X#JUorGp  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 4 l-Urn Z  
    %       -------------------------------------------------- j3/6hE>  
    % Og1vD5a  
    %   Example 1: 5V =mj+X?  
    % hCr,6ncC  
    %       % Display the Zernike function Z(n=5,m=1) =RRv& "2r  
    %       x = -1:0.01:1; 6vE#$(n#a&  
    %       [X,Y] = meshgrid(x,x); OW\vbWX  
    %       [theta,r] = cart2pol(X,Y); M|%bxG^l  
    %       idx = r<=1; 0 D '^:  
    %       z = nan(size(X)); 7Vh  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); x< 2]UB`  
    %       figure  HB'9&  
    %       pcolor(x,x,z), shading interp Z@&%"nO  
    %       axis square, colorbar Pvi2j&W84  
    %       title('Zernike function Z_5^1(r,\theta)') .IdbaH _a  
    % !3k-' ),z&  
    %   Example 2: ``:[Jr &  
    % K|-m6!C!7  
    %       % Display the first 10 Zernike functions ]3f[v:JQ  
    %       x = -1:0.01:1; v G\J8s  
    %       [X,Y] = meshgrid(x,x); U), HrI>;  
    %       [theta,r] = cart2pol(X,Y); M 80Q6K  
    %       idx = r<=1; WH1 " HO  
    %       z = nan(size(X)); Y3&,U  
    %       n = [0  1  1  2  2  2  3  3  3  3]; \OFmd!Cz  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; W4d32+V  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 9cP{u$  
    %       y = zernfun(n,m,r(idx),theta(idx)); `P !idg*  
    %       figure('Units','normalized') *9kg \#  
    %       for k = 1:10 O)VcW/  
    %           z(idx) = y(:,k); O$m &!J  
    %           subplot(4,7,Nplot(k)) xi "3NF%=  
    %           pcolor(x,x,z), shading interp Kd+E]$F_OH  
    %           set(gca,'XTick',[],'YTick',[]) sfn^R+x4,9  
    %           axis square ~B"HI+:\L  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) np6G~0Y`  
    %       end C{uT1`  
    % IBJNs$  
    %   See also ZERNPOL, ZERNFUN2. !s1<)%Jt  
    !0Nf`iCQ(  
    %   Paul Fricker 11/13/2006 }Cw,m0KV/  
    g%S/)R,,ct  
    PN]hG,q*4O  
    % Check and prepare the inputs: hZ e{Ri  
    % ----------------------------- M NwY   
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) _%D7D~2r|  
        error('zernfun:NMvectors','N and M must be vectors.') sZ&|omN  
    end $G"\@YC<  
    #vyf*jPr  
    if length(n)~=length(m) aaY AS"/:  
        error('zernfun:NMlength','N and M must be the same length.') lD[@D9  
    end Fovah4q%V  
    <zn)f@W  
    n = n(:); ,v8e7T  
    m = m(:); H<i!C|AF  
    if any(mod(n-m,2)) ZJ)Z  
        error('zernfun:NMmultiplesof2', ... 2 >O[Y1  
              'All N and M must differ by multiples of 2 (including 0).') @#,/6s7?  
    end -`\rDPGf  
    ,Owk;MV@  
    if any(m>n) 67Pmnad  
        error('zernfun:MlessthanN', ... p+]S)K GZw  
              'Each M must be less than or equal to its corresponding N.') JnK<:]LcK  
    end Q?>r:vMi  
    q%kCTw  
    if any( r>1 | r<0 ) l%GArH`  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 0/f|ZH ~!  
    end Bv@p9 ] n  
    )Wq1 af   
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) TU~y;:OJ  
        error('zernfun:RTHvector','R and THETA must be vectors.') N^oP,^+U  
    end zi6J|u  
    v0 :n:q  
    r = r(:); SEzjc ~@3  
    theta = theta(:); "*X\'LPs=  
    length_r = length(r); UG`~RO  
    if length_r~=length(theta) y<- ]'Yts  
        error('zernfun:RTHlength', ... v\?J=|S+  
              'The number of R- and THETA-values must be equal.') IW<rmP=R&  
    end A)n_ST0  
    A ~vx,|I  
    % Check normalization: "M iJM+,  
    % -------------------- U~ a\v8l~  
    if nargin==5 && ischar(nflag) \D z? h  
        isnorm = strcmpi(nflag,'norm'); 2H9hN4N  
        if ~isnorm ^|Fy!kp  
            error('zernfun:normalization','Unrecognized normalization flag.') fG>3gS6&  
        end 8TB|Y  
    else d9TTAaf  
        isnorm = false; (jU_lsG  
    end A? B +  
    Q<V1`e  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 6?M/7 1  
    % Compute the Zernike Polynomials 5"57F88Y1  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% (nB[aM  
    SceHdx(]  
    % Determine the required powers of r: y-.{){uaD  
    % ----------------------------------- (y!bvp[" m  
    m_abs = abs(m); s;oe Qa}TB  
    rpowers = []; w"[T  
    for j = 1:length(n) Sq,>^|v4&e  
        rpowers = [rpowers m_abs(j):2:n(j)]; s1cu5eCt  
    end t6+W  
    rpowers = unique(rpowers); xP_%d,  
    y'^U4# (  
    % Pre-compute the values of r raised to the required powers, rMIX{K)'f  
    % and compile them in a matrix: l@GJcCufE  
    % ----------------------------- W3UxFs]$  
    if rpowers(1)==0 3)W_^6>bM  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); V^Z5i]zT  
        rpowern = cat(2,rpowern{:}); #OM'2@  
        rpowern = [ones(length_r,1) rpowern]; Q+Q"JU  
    else *\'t$se+  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); z~`X4Segw  
        rpowern = cat(2,rpowern{:}); jcj8w  
    end d*Mqs}8  
    8~Zw"  
    % Compute the values of the polynomials: oCkG  
    % -------------------------------------- {c3FJ5:  
    y = zeros(length_r,length(n)); Gu$J;bXVj  
    for j = 1:length(n) Hm'fK$y(  
        s = 0:(n(j)-m_abs(j))/2; s/hWhaS<  
        pows = n(j):-2:m_abs(j); 9b=0 4aWHm  
        for k = length(s):-1:1 MQw}R7  
            p = (1-2*mod(s(k),2))* ... D['J4B  
                       prod(2:(n(j)-s(k)))/              ... HEFgEYlO  
                       prod(2:s(k))/                     ... [8Y7Q5Had  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... )_C>hWvo_  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); IYq#|^)5+  
            idx = (pows(k)==rpowers); Fl($0}ER  
            y(:,j) = y(:,j) + p*rpowern(:,idx); ldp9+7n~  
        end a"YVr'|  
         zOSUYn  
        if isnorm ?q4`&";{3  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); I^f|U  
        end [N~7PNdS  
    end Xux[  
    % END: Compute the Zernike Polynomials pm=O.)g4`  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% n[!QrEeR},  
    XZk%5t|t  
    % Compute the Zernike functions: x^)?V7[t  
    % ------------------------------ {:"<E?+  
    idx_pos = m>0; \PT!mbB?  
    idx_neg = m<0; &uE )Vr4R  
    Dx /w&v  
    z = y; ?/MkH0[G=  
    if any(idx_pos) _I;hM  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); V2?{ebx`  
    end )?radg  
    if any(idx_neg) p2l@6\m\  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); (Q||5  
    end g,WTXRy  
    -eK0 +beQ  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) ={cM6F}a@  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. sdCG}..`  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated <astIu Au  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive ~2hzyEh  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, 11QZ- ^  
    %   and THETA is a vector of angles.  R and THETA must have the same -tWxB GSa@  
    %   length.  The output Z is a matrix with one column for every P-value, 1r.2bL*~jw  
    %   and one row for every (R,THETA) pair. r%=a:GdAg  
    % L=Aj+  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike ] g9SUFM  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) "&D0Sd@[?  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) Gl{'a1  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 YG*<jKcX  
    %   for all p. ,ynN801\m  
    % )ZLj2H<  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 VWdTnu  
    %   Zernike functions (order N<=7).  In some disciplines it is fuHNsrNlm  
    %   traditional to label the first 36 functions using a single mode K($+ILZ  
    %   number P instead of separate numbers for the order N and azimuthal dMjQV&  
    %   frequency M. ?\4kV*/Cqz  
    % hA/Es?U]  
    %   Example: ho^c#>81  
    % 8%4v6No&*  
    %       % Display the first 16 Zernike functions ^o C>,%7  
    %       x = -1:0.01:1; ?6vGE~ MuR  
    %       [X,Y] = meshgrid(x,x); l#ct;KZ  
    %       [theta,r] = cart2pol(X,Y); @fo(#i&  
    %       idx = r<=1; JM0+-,dl[  
    %       p = 0:15; bSI*`Dc"!  
    %       z = nan(size(X)); A`vRUl,c=  
    %       y = zernfun2(p,r(idx),theta(idx)); w(+ L&IBC  
    %       figure('Units','normalized') ixM#|Yq  
    %       for k = 1:length(p) *R4=4e2#S  
    %           z(idx) = y(:,k); ScInOPb'K  
    %           subplot(4,4,k) 2HE<WI^#h  
    %           pcolor(x,x,z), shading interp L*Ffic  
    %           set(gca,'XTick',[],'YTick',[]) #+" D?  
    %           axis square g] IPNW^n  
    %           title(['Z_{' num2str(p(k)) '}']) )knK'H(  
    %       end WQw11uMt@q  
    % *hFJI9G  
    %   See also ZERNPOL, ZERNFUN. .{;RJ:O  
    :& $v.#  
    %   Paul Fricker 11/13/2006 uW}M1kq?+l  
    2" v{  
    c2GTN"  
    % Check and prepare the inputs: Ygfy;G%  
    % ----------------------------- ~|{e"!(}  
    if min(size(p))~=1 kp?_ir  
        error('zernfun2:Pvector','Input P must be vector.') t]3:vp5N]  
    end =VWH8w.3  
    CIwI1VR^  
    if any(p)>35 %ID48_>*  
        error('zernfun2:P36', ... M!VW/vdywL  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... Wa?\W&  
               '(P = 0 to 35).']) ) cOBP}j+  
    end VD,g3B p  
    N1:)Z`r  
    % Get the order and frequency corresonding to the function number: tnb'\}Vn  
    % ---------------------------------------------------------------- /8dRql-Ne  
    p = p(:); c2gZ<[~  
    n = ceil((-3+sqrt(9+8*p))/2); 5P);t9O6  
    m = 2*p - n.*(n+2); ] :](xW%  
    0yUn~'+(Sp  
    % Pass the inputs to the function ZERNFUN: 'UCClj;?K  
    % ---------------------------------------- 0'5N[Bvp  
    switch nargin lYm00v6y  
        case 3 ]REF1<)4z  
            z = zernfun(n,m,r,theta); ~-yq,x  
        case 4 'vZWk eo  
            z = zernfun(n,m,r,theta,nflag); =.`e4}u \X  
        otherwise (w<llb`]  
            error('zernfun2:nargin','Incorrect number of inputs.') (c3O> *M  
    end (G>g0(;D-  
    loyhNT=  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) \VAS<?3  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. vF{{$)c  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of `q y@Qo  
    %   order N and frequency M, evaluated at R.  N is a vector of 9$R}GK  
    %   positive integers (including 0), and M is a vector with the v?q)E%5j  
    %   same number of elements as N.  Each element k of M must be a +4]f6Zz({  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) Q\le3KB  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is ^"J)^3j<  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix N/B-u)?\:  
    %   with one column for every (N,M) pair, and one row for every Cj6$W5I m  
    %   element in R. VF:<q  
    % ,V+,3TT  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- [:{HX U7y  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is 1|7t q  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to o7fJ@3B/  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 [_tBv" z  
    %   for all [n,m]. a7fn{VU8  
    % $viZ[Lu!m  
    %   The radial Zernike polynomials are the radial portion of the _GL:4  
    %   Zernike functions, which are an orthogonal basis on the unit kK]L(ZU +  
    %   circle.  The series representation of the radial Zernike j@jUuYuDgl  
    %   polynomials is @B>pPCowa  
    % KA9v?_@{F  
    %          (n-m)/2 h}GzQry1  
    %            __ T5TA kEVl  
    %    m      \       s                                          n-2s @t#Ju1Y  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r 6PRP&|.#  
    %    n      s=0 :T/I%|;f  
    % z dUSmb  
    %   The following table shows the first 12 polynomials. ALp|fZ\vp  
    % SOJkeN  
    %       n    m    Zernike polynomial    Normalization ! X<dN..  
    %       --------------------------------------------- -j}zr yG-  
    %       0    0    1                        sqrt(2) AKUmh  
    %       1    1    r                           2 `R_;n#3F0  
    %       2    0    2*r^2 - 1                sqrt(6) 9.l*#A^  
    %       2    2    r^2                      sqrt(6) zHQSx7Ow 5  
    %       3    1    3*r^3 - 2*r              sqrt(8) ~d=Y98'xS  
    %       3    3    r^3                      sqrt(8) FWQNO(  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) ~:"//%M3l  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) jtQ}  
    %       4    4    r^4                      sqrt(10) ,\ zx4 *  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) c[4I> "w  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) \2y [Hy?  
    %       5    5    r^5                      sqrt(12)  s{T6qJ  
    %       --------------------------------------------- *~jTE;J  
    % K\^S>dV  
    %   Example: h5 PZ?Zd  
    % @@#h-k%k-  
    %       % Display three example Zernike radial polynomials yz^Rm2$f9  
    %       r = 0:0.01:1; L<ET"&b;4  
    %       n = [3 2 5]; ze#r/j;sw  
    %       m = [1 2 1]; !,JV<( 7k  
    %       z = zernpol(n,m,r); ;^|:*  
    %       figure \ H!Klp  
    %       plot(r,z) ->a |  
    %       grid on ?!$:I8T  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') {1J4Q[N9m  
    % *w23(f  
    %   See also ZERNFUN, ZERNFUN2. d&t,^Hj  
    RfzYoBN  
    % A note on the algorithm. %@Nu{?I  
    % ------------------------ zEs:OOM  
    % The radial Zernike polynomials are computed using the series .CBb%onx  
    % representation shown in the Help section above. For many special &O^t]7  
    % functions, direct evaluation using the series representation can >AUzsQ  
    % produce poor numerical results (floating point errors), because c4(og|ifk  
    % the summation often involves computing small differences between j4}Q  
    % large successive terms in the series. (In such cases, the functions b_a6|  
    % are often evaluated using alternative methods such as recurrence 4* V[^mht  
    % relations: see the Legendre functions, for example). For the Zernike Z6IWQo,)Rh  
    % polynomials, however, this problem does not arise, because the 0K^?QM|S  
    % polynomials are evaluated over the finite domain r = (0,1), and $9?<mP2-*  
    % because the coefficients for a given polynomial are generally all i^"!"&tW#  
    % of similar magnitude. #7p!xf^  
    % -s9()K(vZG  
    % ZERNPOL has been written using a vectorized implementation: multiple Ex@o&j\93  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] 5b;~&N4~  
    % values can be passed as inputs) for a vector of points R.  To achieve :HkX sZ  
    % this vectorization most efficiently, the algorithm in ZERNPOL O*ER3  
    % involves pre-determining all the powers p of R that are required to -Rbv#Y  
    % compute the outputs, and then compiling the {R^p} into a single #.@-ng6C  
    % matrix.  This avoids any redundant computation of the R^p, and 0@kL<\u  
    % minimizes the sizes of certain intermediate variables. @k-iy-|3 )  
    % 4XIc|a Aa  
    %   Paul Fricker 11/13/2006 #i=k-FA)H  
    9i+`,r  
    40HhMTZ0-  
    % Check and prepare the inputs: (0^ZZe`# j  
    % ----------------------------- l9f%?<2D  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) #N;McF;W  
        error('zernpol:NMvectors','N and M must be vectors.') lwm 9gka  
    end 3_ko=& B$  
    e$o]f"(  
    if length(n)~=length(m) dK>sHUu  
        error('zernpol:NMlength','N and M must be the same length.') 59BB-R,V  
    end @z>DJ>htN  
    1\-r5e; BE  
    n = n(:); eD!mR3Ai@D  
    m = m(:); d8K|uEHVz  
    length_n = length(n); %#C9E kr  
    PP8627uP  
    if any(mod(n-m,2)) -9(pOwN |m  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') ]D[\l$(  
    end BRXDE7vw  
    in`|.#  
    if any(m<0) r0*Y~ KHw  
        error('zernpol:Mpositive','All M must be positive.') USZBk0$  
    end >35W{ d  
    JJy.)-R  
    if any(m>n) /h9v'Y}c  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') 4`Lr^q}M+  
    end  w>\_d  
    ]Hg6Mz>Mj  
    if any( r>1 | r<0 ) 8^sh@j2L  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') z! :0%qu  
    end \&[(PNl  
    ox5WboL  
    if ~any(size(r)==1) CV)K=Br5&_  
        error('zernpol:Rvector','R must be a vector.') 0X5b32  
    end UjS+Ddp  
    3:T~$M`]  
    r = r(:); iP6?[pl8  
    length_r = length(r); ~I;|ipK4m  
    "r1 !hfIYf  
    if nargin==4 *P8CzF^>\&  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); zwk& 3  
        if ~isnorm D>0(*O  
            error('zernpol:normalization','Unrecognized normalization flag.') [9G=x[  
        end s"R5'W\U  
    else i6<uj  
        isnorm = false; c#TV2@   
    end 3n~O&{  
    -kHJH><j  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 'I$kDM mwh  
    % Compute the Zernike Polynomials u~PZK.Uf0  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% )!~,xl^j{}  
    #x`K4f)  
    % Determine the required powers of r: 3)I]bui  
    % ----------------------------------- F}=_"IkZ  
    rpowers = []; LW k/h 1  
    for j = 1:length(n) 2MmHO2  
        rpowers = [rpowers m(j):2:n(j)]; _0UE*l$t  
    end *W;;L_V"   
    rpowers = unique(rpowers); NY|hE@{2.  
    &2S-scP  
    % Pre-compute the values of r raised to the required powers, H3 -?cy  
    % and compile them in a matrix: QAAuFZs  
    % ----------------------------- 5zh6l+S[  
    if rpowers(1)==0 2_ 1RJ  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); e4|a^lS;  
        rpowern = cat(2,rpowern{:}); z?pi /`y8>  
        rpowern = [ones(length_r,1) rpowern]; {Q c,Nl [?  
    else 5h|aX  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); s\<UDW  
        rpowern = cat(2,rpowern{:}); B):ZX#  
    end w 62m}5eA  
    Y=?{TX=6<[  
    % Compute the values of the polynomials: <v/aquLN  
    % -------------------------------------- yEk|(6+^  
    z = zeros(length_r,length_n); (:F]@vT  
    for j = 1:length_n MV2$0  
        s = 0:(n(j)-m(j))/2; .)=*Yr M  
        pows = n(j):-2:m(j); \GQRpJ#h1  
        for k = length(s):-1:1 ~`="tzr:  
            p = (1-2*mod(s(k),2))* ... y4l-o  
                       prod(2:(n(j)-s(k)))/          ... u80C>sQ  
                       prod(2:s(k))/                 ... ![$`Ivro`  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... % 8wBZ~1-  
                       prod(2:((n(j)+m(j))/2-s(k))); `\|tXl.  
            idx = (pows(k)==rpowers); BMI`YGjY1  
            z(:,j) = z(:,j) + p*rpowern(:,idx); <$K=3&:s8q  
        end Ijap%l1I  
         `JY+3d,Ui  
        if isnorm \o=9WKc  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); T+aNX/c|>  
        end &-{%G=5~e%  
    end ,]nRnI^  
    Wp+lI1t  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    857
    光币
    847
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  %jq R^F:J  
    xOg|<Nnl  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 SJj_e-  
    ^tm2Duv  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)