切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11180阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 +/Z:L$C6  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! sQ`8L+oY  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 N/y.=]  
    function z = zernfun(n,m,r,theta,nflag) 'T.> oP0>  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. D9Q%*DLd$_  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N !>! l=Z  
    %   and angular frequency M, evaluated at positions (R,THETA) on the $+rdzsf)+/  
    %   unit circle.  N is a vector of positive integers (including 0), and lk+)-J-lj'  
    %   M is a vector with the same number of elements as N.  Each element ))+R*k%  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) aUJ&  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, yCQpqh  
    %   and THETA is a vector of angles.  R and THETA must have the same *Fq Nzly  
    %   length.  The output Z is a matrix with one column for every (N,M) ,;{mH]"s  
    %   pair, and one row for every (R,THETA) pair. v|`)~"~  
    % z?cRsqf  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike HM<V$ R  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), j7i[z>:Y  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral *ZY{^f  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 6vmkDL8{A8  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized dz7*a {  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 5[I 9/4,  
    %  m>a6,#I  
    %   The Zernike functions are an orthogonal basis on the unit circle. P+]39p{  
    %   They are used in disciplines such as astronomy, optics, and 1 iE  
    %   optometry to describe functions on a circular domain.  ) .#,1  
    % mjH8q&szf  
    %   The following table lists the first 15 Zernike functions.  Kp!P/Q{  
    % HeR-;L  
    %       n    m    Zernike function           Normalization }-Zfl jj  
    %       -------------------------------------------------- ,g/UPK8K=  
    %       0    0    1                                 1 !5[?n3  
    %       1    1    r * cos(theta)                    2 <FGM/e4  
    %       1   -1    r * sin(theta)                    2 }G-qOt  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) B-Fu/n  
    %       2    0    (2*r^2 - 1)                    sqrt(3) $H-s(3vq  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) o6svSS  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) cDLS)  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) {U&Mo97rzX  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) h NP|  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) siOeR@> X  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) c?[A  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) bu\,2t}B  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) ncu> @K$n  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) B9+oI c O  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) Inr ~9hz  
    %       -------------------------------------------------- "WK.sBFz4  
    % jb77uH_  
    %   Example 1: Th@L68  
    % {KODwP'~  
    %       % Display the Zernike function Z(n=5,m=1) EV]exYWB  
    %       x = -1:0.01:1; z07!i@ue~  
    %       [X,Y] = meshgrid(x,x); )M}bc1 _  
    %       [theta,r] = cart2pol(X,Y); rMLCt Gi  
    %       idx = r<=1; cC>.`1:  
    %       z = nan(size(X)); *}yW8i}36  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); I_N"mnn@Nr  
    %       figure 0*h\/!e  
    %       pcolor(x,x,z), shading interp 2,dG Rf  
    %       axis square, colorbar -O-_F6p'D  
    %       title('Zernike function Z_5^1(r,\theta)') #B>Hq~ vrC  
    % '0w'||#1  
    %   Example 2: r@wWGbQ|L  
    % MYjDO>(_  
    %       % Display the first 10 Zernike functions e8P |eK  
    %       x = -1:0.01:1; !sfUrUu  
    %       [X,Y] = meshgrid(x,x); 00<iv"8  
    %       [theta,r] = cart2pol(X,Y); &W}ooGg  
    %       idx = r<=1; %!x\|@C  
    %       z = nan(size(X)); TB1 1crE  
    %       n = [0  1  1  2  2  2  3  3  3  3]; < R0c=BZ>  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; H.Pts>3r(  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; !*EHr09N7  
    %       y = zernfun(n,m,r(idx),theta(idx)); e,8C} 2  
    %       figure('Units','normalized') 1\_4# @')  
    %       for k = 1:10 i7*4hYY  
    %           z(idx) = y(:,k); m<r.sq&;  
    %           subplot(4,7,Nplot(k)) sL[,J[AN;  
    %           pcolor(x,x,z), shading interp <A+Yo3|7  
    %           set(gca,'XTick',[],'YTick',[]) -s4qm)\  
    %           axis square 7?B]X%  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Ks9"U^bPs  
    %       end b\H~Ot[i  
    % 5(TI2,4  
    %   See also ZERNPOL, ZERNFUN2. KJJ8P`Kx  
    mtmtOG_/=  
    %   Paul Fricker 11/13/2006 BDc*N]m}B1  
    ]J m9D=  
    4z?6[Cg<  
    % Check and prepare the inputs: aRg- rz  
    % ----------------------------- tUL(1:-C  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) l $MX \  
        error('zernfun:NMvectors','N and M must be vectors.') S yX>zN!  
    end oP_'0h0 X  
    0Tg/R4dI  
    if length(n)~=length(m) CP/`ON  
        error('zernfun:NMlength','N and M must be the same length.') aCy2 .Qn  
    end W<k) '|  
    "X"DTP1b  
    n = n(:); xlS t  
    m = m(:); aFd ,   
    if any(mod(n-m,2)) @(&ki~+   
        error('zernfun:NMmultiplesof2', ... ]-["sw  
              'All N and M must differ by multiples of 2 (including 0).') Y#NlbKkzu  
    end 2'_Oi-&  
    \MX>=  
    if any(m>n) ^MDBJ0 I.  
        error('zernfun:MlessthanN', ... ogDyrY}]  
              'Each M must be less than or equal to its corresponding N.') GfPe0&h  
    end !f]F'h8  
    44($a9oa2  
    if any( r>1 | r<0 ) (m~MyT#S  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') ] E`J5o}op  
    end ,7k)cNstW  
    X-6Se  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) rsy'ZVLUj  
        error('zernfun:RTHvector','R and THETA must be vectors.') .\LWV=B  
    end ,$7LMTVDrE  
    1&U'pp|T  
    r = r(:); ]={:VsnL  
    theta = theta(:); 5|&Sg}_  
    length_r = length(r); nD!C9G#oS  
    if length_r~=length(theta) C`7HC2Is  
        error('zernfun:RTHlength', ... J4xt!RW!  
              'The number of R- and THETA-values must be equal.') enK4`+.7  
    end u*}6)=+:  
    jpT!di  
    % Check normalization: 'xvV;bi  
    % -------------------- q$~S?X5\  
    if nargin==5 && ischar(nflag) 1 NLawi6  
        isnorm = strcmpi(nflag,'norm'); )6^b\`  
        if ~isnorm r]" >  
            error('zernfun:normalization','Unrecognized normalization flag.') |4x&f!%m  
        end VqbMFr<k  
    else Su-LZ'C\  
        isnorm = false; ;m@>v?zE  
    end oI/@w  
    `Nc3I\tCM  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Dbz\8gmY  
    % Compute the Zernike Polynomials E&GUg/d  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 2lE { P  
    BDD^*Y  
    % Determine the required powers of r: J+w"{ O  
    % ----------------------------------- GVCyVt[!-  
    m_abs = abs(m); "JbFbcj  
    rpowers = []; 6D/5vM1  
    for j = 1:length(n) 2m/1:5  
        rpowers = [rpowers m_abs(j):2:n(j)]; VOp8 ,!  
    end ~ m, z|  
    rpowers = unique(rpowers); ~u/Enl7\-  
    Xj?j1R>GB  
    % Pre-compute the values of r raised to the required powers, ,dK%[  
    % and compile them in a matrix: GDZe6*  
    % ----------------------------- Bn}@wO  
    if rpowers(1)==0 jFbz:aUF  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ,R3D  
        rpowern = cat(2,rpowern{:}); Op\l  
        rpowern = [ones(length_r,1) rpowern]; 5 -5qm[.;  
    else FV!  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); FzFY2h;n]B  
        rpowern = cat(2,rpowern{:}); UIIunA9  
    end Hg*6I%D[So  
    HaJD2wvr  
    % Compute the values of the polynomials: UOT~L4 G  
    % -------------------------------------- e8--qV#<  
    y = zeros(length_r,length(n)); ?v8B;="#w  
    for j = 1:length(n) YmNBtGhT  
        s = 0:(n(j)-m_abs(j))/2; }eULcgRG  
        pows = n(j):-2:m_abs(j); FwmE1,  
        for k = length(s):-1:1 !N?|[n1  
            p = (1-2*mod(s(k),2))* ... .#lQZo6$\|  
                       prod(2:(n(j)-s(k)))/              ... \ bd? `."  
                       prod(2:s(k))/                     ... hdfNXZ{A"  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... :X,1KR  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); X];a(7+2  
            idx = (pows(k)==rpowers); d+ql@e]  
            y(:,j) = y(:,j) + p*rpowern(:,idx); po\QMe  
        end htkn#s~=  
         ,hYUxh45  
        if isnorm /8 Ca8Ju  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ! FhN(L[=j  
        end HVh+Z k  
    end Cq}LKiu  
    % END: Compute the Zernike Polynomials vAHJP$x  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% <?2[]h:wp  
    I>C;$Lp]  
    % Compute the Zernike functions: | t3_E  
    % ------------------------------ wvBJ?t,  
    idx_pos = m>0; C4#'`8E  
    idx_neg = m<0; <+ >y GPp  
    \b{=&B[Q$'  
    z = y; Rb',"` 7  
    if any(idx_pos) }#a d  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Ag#p )  
    end drNfFx 2  
    if any(idx_neg) !pQQkZol  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Q<wrO  
    end @]gP"Pp  
    %h2U(=/:  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) g()YP  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. cK1r9ED|  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated ikw_t?  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive 4$@5PS#,  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, G\=7d%T+  
    %   and THETA is a vector of angles.  R and THETA must have the same R*'rg-d  
    %   length.  The output Z is a matrix with one column for every P-value, |z-A;uL<  
    %   and one row for every (R,THETA) pair. ysu"+J  
    % CM!bD\5  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike roVGS{4T\  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) pbl;n|  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) qVx4 t"%L>  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 XSpX6fq  
    %   for all p. &Plc  
    % ![0\m2~iv  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 G  ZDyw9  
    %   Zernike functions (order N<=7).  In some disciplines it is !Hr~B.f7  
    %   traditional to label the first 36 functions using a single mode dE%rQE7'  
    %   number P instead of separate numbers for the order N and azimuthal zL+jlUkE  
    %   frequency M. OtBVfA:[  
    % zr-HL:js  
    %   Example: p>Qzz`@e  
    % Xt_8=Q  
    %       % Display the first 16 Zernike functions T oTehVw  
    %       x = -1:0.01:1; B#OnooJI  
    %       [X,Y] = meshgrid(x,x); bd5\Rt  
    %       [theta,r] = cart2pol(X,Y); +ZQf$@+  
    %       idx = r<=1; }N&}6U  
    %       p = 0:15; si.ZTG9m  
    %       z = nan(size(X)); U_K"JOZ  
    %       y = zernfun2(p,r(idx),theta(idx)); 9i;%(b{  
    %       figure('Units','normalized') @/9#Z4&d0  
    %       for k = 1:length(p) W_Z%CBjcT  
    %           z(idx) = y(:,k); 1~zzQ:jAZ  
    %           subplot(4,4,k) 1I{vB eMj  
    %           pcolor(x,x,z), shading interp iV58 m  
    %           set(gca,'XTick',[],'YTick',[]) O&RW[ml*3  
    %           axis square ^KM' O8  
    %           title(['Z_{' num2str(p(k)) '}']) @!"w.@ Y  
    %       end ZUyG }6)J  
    % 'JU(2mF  
    %   See also ZERNPOL, ZERNFUN. SIYBMe  
    ;6KcX\g-  
    %   Paul Fricker 11/13/2006 :k*'M U}  
    ,.A@U*j  
    k Pi%RvuQ  
    % Check and prepare the inputs: W8z4<o[$  
    % ----------------------------- iyKAw   
    if min(size(p))~=1 Ye% e!  
        error('zernfun2:Pvector','Input P must be vector.') Tty_P,  
    end X ^8@T  
    c @7d4Jz  
    if any(p)>35 PV$)k>H-  
        error('zernfun2:P36', ... zkt`7Pg;J  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... Z$LWZg  
               '(P = 0 to 35).']) B52n'.  
    end }Go?j# !  
    #I8)|p?P  
    % Get the order and frequency corresonding to the function number: LM\H%=*L  
    % ---------------------------------------------------------------- Oi%\'biM  
    p = p(:); b+Vfi9<  
    n = ceil((-3+sqrt(9+8*p))/2); l25_J.e  
    m = 2*p - n.*(n+2); P{fT5K|  
    (VV5SvdE  
    % Pass the inputs to the function ZERNFUN: )eIC5>#.  
    % ---------------------------------------- {RH&mu  
    switch nargin -FpZZ8=,M2  
        case 3 v3O+ ;4  
            z = zernfun(n,m,r,theta); @+Y ql  
        case 4 fGj YWw  
            z = zernfun(n,m,r,theta,nflag); '5V} Z3zJ/  
        otherwise )Q= EmZbJz  
            error('zernfun2:nargin','Incorrect number of inputs.') K)b@,/5  
    end \A7{kI  
    |ecK~+  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) Ey|{yUmU+  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. X* 4C?v  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of _D+pJ{@W  
    %   order N and frequency M, evaluated at R.  N is a vector of %#t*3[  
    %   positive integers (including 0), and M is a vector with the ?vt#M^Q   
    %   same number of elements as N.  Each element k of M must be a i4T=4q  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) Ic2Q<V}oq  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is C)UL{n  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix 7N:3  
    %   with one column for every (N,M) pair, and one row for every w#6)XR|+,.  
    %   element in R. CP0;<}k  
    % /U$5'BoS  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- J.;!l   
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is i%@blz:_Y  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to gn//]|#H+  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 Xwp6]lx  
    %   for all [n,m]. ;*%3J$T+  
    % t=nZ1GZyM  
    %   The radial Zernike polynomials are the radial portion of the L|hELWru  
    %   Zernike functions, which are an orthogonal basis on the unit A_e&#O  
    %   circle.  The series representation of the radial Zernike QmgO00{  
    %   polynomials is <)$&V*\  
    % $^:s)Yv  
    %          (n-m)/2 e&@;hDmIX  
    %            __ h* 72 f/#  
    %    m      \       s                                          n-2s f9K+o-P.h  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r +D+v j|fn  
    %    n      s=0 } ~NM\rm  
    % gV}c4>v(  
    %   The following table shows the first 12 polynomials. &]"Z x0t5%  
    % NufRd/q  
    %       n    m    Zernike polynomial    Normalization r01u3!  
    %       --------------------------------------------- ?B+]Ex(\B,  
    %       0    0    1                        sqrt(2) ^HhV ?Iqg  
    %       1    1    r                           2 o9rZ&Q<  
    %       2    0    2*r^2 - 1                sqrt(6) GIb,y,PDB  
    %       2    2    r^2                      sqrt(6) bvW3[ V  
    %       3    1    3*r^3 - 2*r              sqrt(8) LpK? C<?x  
    %       3    3    r^3                      sqrt(8) BOfl hoUX  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) >,x&L[3  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) l{I.l  
    %       4    4    r^4                      sqrt(10) jl>jy6T  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) P5KpFL`B  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) P b-4$n2c  
    %       5    5    r^5                      sqrt(12) E4$y|Ni"  
    %       --------------------------------------------- qTrM*/m:]L  
    % 5BJn_<  
    %   Example: .[r1Qz7G  
    % 4|&_i)S-Y  
    %       % Display three example Zernike radial polynomials VS\| f'E  
    %       r = 0:0.01:1; s !IvUc7'  
    %       n = [3 2 5]; LC7%Bfn!  
    %       m = [1 2 1]; 82)%`$yZw[  
    %       z = zernpol(n,m,r); aX,6y1  
    %       figure I`77[  
    %       plot(r,z) 6d`qgEM3  
    %       grid on wRdN(`;v  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') j[,XJ,5=  
    % [Kg3:]2A  
    %   See also ZERNFUN, ZERNFUN2. eZ]>;5  
    e45)t}'  
    % A note on the algorithm. +B[XTn,Cru  
    % ------------------------ U3jnH  
    % The radial Zernike polynomials are computed using the series Quwq_.DU  
    % representation shown in the Help section above. For many special 4T6: C?V  
    % functions, direct evaluation using the series representation can Co,?<v=Ll  
    % produce poor numerical results (floating point errors), because mBxMDnh  
    % the summation often involves computing small differences between jR9;<qT/  
    % large successive terms in the series. (In such cases, the functions 7g5Pc_  
    % are often evaluated using alternative methods such as recurrence -_xTs(;|8  
    % relations: see the Legendre functions, for example). For the Zernike JXV#V7  
    % polynomials, however, this problem does not arise, because the Z;z,dw  
    % polynomials are evaluated over the finite domain r = (0,1), and |!81M|H  
    % because the coefficients for a given polynomial are generally all ? o&goiM  
    % of similar magnitude. 4k9$' k  
    % _ FNW[V  
    % ZERNPOL has been written using a vectorized implementation: multiple t33\f<e  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] PM i.)%++  
    % values can be passed as inputs) for a vector of points R.  To achieve 7~r_nP_  
    % this vectorization most efficiently, the algorithm in ZERNPOL  HzL~B#  
    % involves pre-determining all the powers p of R that are required to u+y3( 0  
    % compute the outputs, and then compiling the {R^p} into a single ;?q-]J?  
    % matrix.  This avoids any redundant computation of the R^p, and n<P&|RTZ  
    % minimizes the sizes of certain intermediate variables. Q;ZV`D/FA  
    % M6ZXq6J  
    %   Paul Fricker 11/13/2006  @EURp  
    .F'Cb)Z  
    s?"\+b  
    % Check and prepare the inputs: 'pyIMB?x  
    % ----------------------------- t%%zuqF`  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) <`WDNi$Y  
        error('zernpol:NMvectors','N and M must be vectors.') DQ}&J  
    end R_9M-RP6*  
    -'}#j\  
    if length(n)~=length(m) uGn BlR$}  
        error('zernpol:NMlength','N and M must be the same length.') b'C#]DorE  
    end p(-EtxP  
    f*:N*cC  
    n = n(:); L{GlDoFk  
    m = m(:); !u:Fn)j  
    length_n = length(n); OLWn0  
    P'SGt  
    if any(mod(n-m,2)) ^hsr/|  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') U# IPYyV  
    end AHMvh 7O?  
    "!& o|!2  
    if any(m<0) L8Q/!+K  
        error('zernpol:Mpositive','All M must be positive.') #S] O|$&*  
    end \[|X^8j  
    $WE=u9m  
    if any(m>n) +vH#xc\'  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') ?&!!(dWFH  
    end QkWEVL@uM  
    9ei<ou_s  
    if any( r>1 | r<0 ) 'SXLnoeTa  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') ^$mCF%e8H  
    end q,_E HPc  
    tKeozV[V  
    if ~any(size(r)==1) lfG',hlI;  
        error('zernpol:Rvector','R must be a vector.') EiP N44(  
    end C^LxJG{L5  
    4jlwu0L+  
    r = r(:); V)4?y9xZv  
    length_r = length(r); rLY I\  
    SmRFxqtN  
    if nargin==4 t|9vb  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); \acGSW .c  
        if ~isnorm G^z>2P  
            error('zernpol:normalization','Unrecognized normalization flag.') M04u>| ,  
        end @\:@_}Z`_}  
    else `Ba?4_>k  
        isnorm = false; vR pO0qG  
    end O'(D:D?  
    "r8N- h/P  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% asE.!g?  
    % Compute the Zernike Polynomials fGW~xul_  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% &_s^C?x  
    Gm> =s  
    % Determine the required powers of r: ?!$Dr0r  
    % ----------------------------------- N/b$S@  
    rpowers = []; X{[$4\di{  
    for j = 1:length(n) +;*4.}  
        rpowers = [rpowers m(j):2:n(j)]; (LMT'   
    end FW)~e*@8=  
    rpowers = unique(rpowers); In;P33'p  
    l)~$/#k  
    % Pre-compute the values of r raised to the required powers, a1ps'^Qhh  
    % and compile them in a matrix: (WP^}V5  
    % ----------------------------- Su[(IMw  
    if rpowers(1)==0 {$ pi};  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); =s*4y$%I  
        rpowern = cat(2,rpowern{:}); W6r3v)~  
        rpowern = [ones(length_r,1) rpowern]; (=Oo=8\  
    else sHV?njZd  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Eg2SC?5  
        rpowern = cat(2,rpowern{:}); }7K~-  
    end D{q r N6g#  
    Zlt,Us`  
    % Compute the values of the polynomials: z5D*UOy5M  
    % -------------------------------------- V}~',o<m  
    z = zeros(length_r,length_n); sPl3JP&s  
    for j = 1:length_n >5TXLOYZ  
        s = 0:(n(j)-m(j))/2; YN7O Qqa  
        pows = n(j):-2:m(j); " YOl6n  
        for k = length(s):-1:1 U7e2NES  
            p = (1-2*mod(s(k),2))* ... 3qDbfO[  
                       prod(2:(n(j)-s(k)))/          ... f)V6VNW.3  
                       prod(2:s(k))/                 ... m( %PZ*s  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... V&/Cb&~Uw  
                       prod(2:((n(j)+m(j))/2-s(k))); .$Yp~  
            idx = (pows(k)==rpowers); I47sqz7  
            z(:,j) = z(:,j) + p*rpowern(:,idx); ytb1hFs  
        end 9+8N-LZ  
         Uc ; S@  
        if isnorm OHnsfXO_V  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); p;D {?H/  
        end S!^I<#d K  
    end W[e2J&G  
    a] 6d hQ`  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  Iv*u#]{t  
    QGE0pWL-a  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 P4+PY 8  
    Sl@Ucc31  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)