切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11073阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 W i.& e  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! Oo~; L,  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 mJnIwdW*  
    function z = zernfun(n,m,r,theta,nflag) w& #]-|$  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. L*+@>3mu)  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N )&O %*@F  
    %   and angular frequency M, evaluated at positions (R,THETA) on the /6* 42[r  
    %   unit circle.  N is a vector of positive integers (including 0), and RqrdAkg  
    %   M is a vector with the same number of elements as N.  Each element am'7uy!ka~  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) _{KG 4+5\X  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, )akoa,#%6c  
    %   and THETA is a vector of angles.  R and THETA must have the same {tZ.v@  
    %   length.  The output Z is a matrix with one column for every (N,M) Fxz"DZY6  
    %   pair, and one row for every (R,THETA) pair. "^-a M  
    % ZBthU")?  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike " 8MF_Gu):  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Sm|6 %3  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral *)Zdz9E'1(  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, vE?G7%,  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized >GRxHK@G  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 6{b >p+U  
    % n>YKa)|W`  
    %   The Zernike functions are an orthogonal basis on the unit circle. H <l7ZS:  
    %   They are used in disciplines such as astronomy, optics, and eauF ~md,  
    %   optometry to describe functions on a circular domain. 4[e X e$  
    % +<C!U'  
    %   The following table lists the first 15 Zernike functions. %u'u kcL7  
    % ,O(hMI85]  
    %       n    m    Zernike function           Normalization bG#>uE J-  
    %       -------------------------------------------------- :I#V.  
    %       0    0    1                                 1 Xv^qVn4  
    %       1    1    r * cos(theta)                    2 %h@EP[\  
    %       1   -1    r * sin(theta)                    2 ux4POO3C|  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ,z jv7$L  
    %       2    0    (2*r^2 - 1)                    sqrt(3) #6=  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) 1+s;FJ2}  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) &u !,Hp  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) [W&T(%(W-  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 0H:X3y+  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) ;=z:F<Y  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) ZECfR>`x  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 1qA;/-Zr<o  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) xJe%f\UDu  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) <P_-s*b  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) JZ x[W&]zT  
    %       -------------------------------------------------- bt?5*ETA  
    % x q h  
    %   Example 1: F^:3?JA _  
    % B@ EC5Ap*  
    %       % Display the Zernike function Z(n=5,m=1) Bzf^ivT3L  
    %       x = -1:0.01:1; [/r(__.  
    %       [X,Y] = meshgrid(x,x); uY To 9A  
    %       [theta,r] = cart2pol(X,Y); 6=C<>c %+  
    %       idx = r<=1; /n&&Um\  
    %       z = nan(size(X)); ;xTpE2 -~  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); ? r4>"[  
    %       figure ^\m![T\bX  
    %       pcolor(x,x,z), shading interp ?@x/E&  
    %       axis square, colorbar ~} ~4  
    %       title('Zernike function Z_5^1(r,\theta)') P%n>Tg80M  
    % $`8wJf9@w  
    %   Example 2: ;^L(^Hx  
    % 307I$*%W  
    %       % Display the first 10 Zernike functions ;_=&-mz  
    %       x = -1:0.01:1; HzsdHH(J  
    %       [X,Y] = meshgrid(x,x); [-w%/D%@  
    %       [theta,r] = cart2pol(X,Y); V7/Rby Q  
    %       idx = r<=1; h";L  
    %       z = nan(size(X)); c71y'hnT  
    %       n = [0  1  1  2  2  2  3  3  3  3]; "[N!m1i:{  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; {!`6zBsP  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; x+]"  
    %       y = zernfun(n,m,r(idx),theta(idx)); 2~V*5~fb  
    %       figure('Units','normalized') Fr-SvsNFB  
    %       for k = 1:10 uY*L,j^)  
    %           z(idx) = y(:,k); U<XG{<2  
    %           subplot(4,7,Nplot(k)) zt%Mx>V@  
    %           pcolor(x,x,z), shading interp >\8+: oS^  
    %           set(gca,'XTick',[],'YTick',[]) LzL So"n  
    %           axis square 8P`"M#fI  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) * y,v}-  
    %       end !,PWb3S  
    % XWw804ir  
    %   See also ZERNPOL, ZERNFUN2.  !VpoZ  
    W,u:gzmhw  
    %   Paul Fricker 11/13/2006 7+*WH|Z@  
    "@n%Z  
    ,!9zrYi}  
    % Check and prepare the inputs: `D9$v(Ztr  
    % ----------------------------- j<$2hiI/?&  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) jEwIn1  
        error('zernfun:NMvectors','N and M must be vectors.') <VE@DBWyl~  
    end >Q*Wi  
    ,r}6iFu  
    if length(n)~=length(m) v@pky0  
        error('zernfun:NMlength','N and M must be the same length.') 5zJq9\)d+  
    end 4p wH>1  
    y{Q {'De  
    n = n(:); $cg cX  
    m = m(:); I^]nqK  
    if any(mod(n-m,2)) ^zr`;cJ+c  
        error('zernfun:NMmultiplesof2', ... JXx wr)i  
              'All N and M must differ by multiples of 2 (including 0).') i/.6>4tE:  
    end '%;m?t% q  
    naNghGQ  
    if any(m>n) HOi`$vX }N  
        error('zernfun:MlessthanN', ... gM]:Ma  
              'Each M must be less than or equal to its corresponding N.') +[ZY:ZQ  
    end ry]l.@o;  
    A%vbhD2;W  
    if any( r>1 | r<0 ) Ort(AfW  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') OrW  
    end Rb;'O89Hj@  
    @VI@fN  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 8EYkQ  
        error('zernfun:RTHvector','R and THETA must be vectors.') ^rz_f{c]-  
    end N>E_%]Ch  
    i~72bMwsA  
    r = r(:); jWgX_//!  
    theta = theta(:); ~"bV L[  
    length_r = length(r); =MWHJ'3-/  
    if length_r~=length(theta) sos5Y}  
        error('zernfun:RTHlength', ... 8CE = 4  
              'The number of R- and THETA-values must be equal.') `@%LzeGz  
    end |[lKY+26:{  
    kf9X$d6   
    % Check normalization: y>LBl]  
    % -------------------- ^?|"L>y  
    if nargin==5 && ischar(nflag) #Q5o)x  
        isnorm = strcmpi(nflag,'norm'); MOC/KNb  
        if ~isnorm R-14=|7a-  
            error('zernfun:normalization','Unrecognized normalization flag.') u:b=\T L  
        end 4z)]@:`}z  
    else k{0o9,  
        isnorm = false; 4!$"ayGv;D  
    end r<\u6jF  
    U!]dEW|G  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% (% 9$!v{3  
    % Compute the Zernike Polynomials 1*7@BP5  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% )}v l\7=  
    1x^GWtRp  
    % Determine the required powers of r: V6Dbd" i9  
    % ----------------------------------- 8k79&|  
    m_abs = abs(m); <N @Gu!N8  
    rpowers = []; ]'S^]  
    for j = 1:length(n) !9x}  
        rpowers = [rpowers m_abs(j):2:n(j)]; xD$\,{  
    end 5-M-X#(  
    rpowers = unique(rpowers); ^@]3R QB  
    ]^]wP]R_  
    % Pre-compute the values of r raised to the required powers, 9u:Q,0\  
    % and compile them in a matrix: >3bCTE   
    % ----------------------------- V.Mry`9-  
    if rpowers(1)==0 ;kK/_%gN-G  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); mc3"`+o  
        rpowern = cat(2,rpowern{:}); 05[SC}MCA  
        rpowern = [ones(length_r,1) rpowern]; 11lsf/IP  
    else v,t:+ !8  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); v0y(58Rz.  
        rpowern = cat(2,rpowern{:}); j.YA 2mr  
    end NVs@S-rpX  
    #;<Y[hR{P  
    % Compute the values of the polynomials: =">NQ)98u  
    % -------------------------------------- g .\[o@H  
    y = zeros(length_r,length(n)); ~s{$WL&  
    for j = 1:length(n) ,0k;!YK  
        s = 0:(n(j)-m_abs(j))/2; snJ129}A  
        pows = n(j):-2:m_abs(j); 1&2>LE/P  
        for k = length(s):-1:1 ;G!q Y  
            p = (1-2*mod(s(k),2))* ...  3CJwj  
                       prod(2:(n(j)-s(k)))/              ... 3o qHGA:}  
                       prod(2:s(k))/                     ... liSmjsk  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... r/1(]#kOX  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); \Cj B1] I  
            idx = (pows(k)==rpowers); \DzGQ{`~m  
            y(:,j) = y(:,j) + p*rpowern(:,idx); <QvOs@i*  
        end P*o9a  
         t^L]/$q  
        if isnorm j#6.Gq  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 9VT;ep  
        end 2?x4vI np;  
    end cu6Opq9  
    % END: Compute the Zernike Polynomials ry!!9Z>9n  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% `2snz1>!j  
    {8aTV}Ha2  
    % Compute the Zernike functions: Q20 %"&Xp]  
    % ------------------------------ 6wxs1G  
    idx_pos = m>0; nrb Ok4Dz  
    idx_neg = m<0; 1"g<0 W  
    xfQ1T)F3g  
    z = y; AR=]=8  
    if any(idx_pos) $C\BcKlmv  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); yjAL\U7`T  
    end 8_8l.!~  
    if any(idx_neg) Vc2`b3"Br  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); m2o0y++TjW  
    end hQ i2U  
    XRH!]!  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) G#CXs:1pd+  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. ~`/V(r;o  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated #?E"x/$Y6  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive p[-O( 3Y  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, :svq E+2  
    %   and THETA is a vector of angles.  R and THETA must have the same +:f"Y0  
    %   length.  The output Z is a matrix with one column for every P-value, KP"+e:a%  
    %   and one row for every (R,THETA) pair. g :OI  
    % Th%zn2R B  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike Kgv T"s.  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) <[v[ci  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi)  <Uur^uB  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 9z0p5)]n>  
    %   for all p. G6/m#  
    % ZoeD:xnh[  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 C}X\|J  
    %   Zernike functions (order N<=7).  In some disciplines it is 4W])}C %  
    %   traditional to label the first 36 functions using a single mode !W\+#ez  
    %   number P instead of separate numbers for the order N and azimuthal C+]I@Go'Tk  
    %   frequency M. /{[o ~:'p  
    % lk!@?  
    %   Example: .6> w'F{>  
    % j+!v}*I![  
    %       % Display the first 16 Zernike functions Zc yc*{DS  
    %       x = -1:0.01:1; L-Lvp%%  
    %       [X,Y] = meshgrid(x,x); pw#-_  
    %       [theta,r] = cart2pol(X,Y); 43w}qY1  
    %       idx = r<=1; ,I9bNO,%JK  
    %       p = 0:15; 9$Y=orpWxr  
    %       z = nan(size(X)); No$3"4wk  
    %       y = zernfun2(p,r(idx),theta(idx)); [?gP;,  
    %       figure('Units','normalized') Lr+$_ t}r  
    %       for k = 1:length(p) Y@v>FlqI{  
    %           z(idx) = y(:,k); =%7-ZH9  
    %           subplot(4,4,k) +mPx8P&%  
    %           pcolor(x,x,z), shading interp t7pFW^&  
    %           set(gca,'XTick',[],'YTick',[]) Fu~j8K  
    %           axis square df=f62  
    %           title(['Z_{' num2str(p(k)) '}']) x38 QD;MT  
    %       end ]iWRo'  
    % <%^&2UMg  
    %   See also ZERNPOL, ZERNFUN. 'R)Tn!6  
    6b,V;#Anj  
    %   Paul Fricker 11/13/2006 7^Uv7< pw  
    lYIH/:T  
    l}h!B_P'  
    % Check and prepare the inputs: 2eogY#  
    % ----------------------------- _g8yDfcLG  
    if min(size(p))~=1 =D(j)<9$A  
        error('zernfun2:Pvector','Input P must be vector.') ?M2J wAK5  
    end LD?sh"?b  
    <v2;p}A  
    if any(p)>35 ^ 9sjj  
        error('zernfun2:P36', ... jdN` mosJ  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... TpaInXR  
               '(P = 0 to 35).']) ;a/E42eN;  
    end `V1]k_h  
    s.rm7r@ #  
    % Get the order and frequency corresonding to the function number: 5-V pJ  
    % ---------------------------------------------------------------- l{9Y  
    p = p(:); \['Cj*ek  
    n = ceil((-3+sqrt(9+8*p))/2); #tHK"20  
    m = 2*p - n.*(n+2); =I<R!ZSN  
    ,uvRi)O>a  
    % Pass the inputs to the function ZERNFUN: bcyzhK=  
    % ---------------------------------------- .}t e>]A*  
    switch nargin VVZ'i.*_3?  
        case 3 GyIV Hby  
            z = zernfun(n,m,r,theta); @~e5<:|5#  
        case 4 hxx.9x>ow  
            z = zernfun(n,m,r,theta,nflag); 6863xOv{T  
        otherwise \+etCo   
            error('zernfun2:nargin','Incorrect number of inputs.') PCvWS.{  
    end {ax:RUQxy  
    b}f~il  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) |=w@H]r  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. >%G1"d?j  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of BLttb  
    %   order N and frequency M, evaluated at R.  N is a vector of ]'}L 1r  
    %   positive integers (including 0), and M is a vector with the 8Wx=p#_  
    %   same number of elements as N.  Each element k of M must be a .]u /O`c]  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) pb}*\/s  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is DF= *_,2/  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix >j/w@Fj  
    %   with one column for every (N,M) pair, and one row for every NJ<F>3  
    %   element in R. Z~CjA%l  
    % | (93gJ  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- 3$ pX  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is &pRREu:[4L  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to gJXaPJA{  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 WE?5ehEme  
    %   for all [n,m]. tA;}h7/Lc~  
    % 3n _htgcv  
    %   The radial Zernike polynomials are the radial portion of the  @5FQX  
    %   Zernike functions, which are an orthogonal basis on the unit #a6iuO0I  
    %   circle.  The series representation of the radial Zernike M  >u_4AY  
    %   polynomials is az$FnVNn=  
    % fVlB=8DNk&  
    %          (n-m)/2 ^sw?gH*  
    %            __ [WmM6UEVS  
    %    m      \       s                                          n-2s :> '+"M2r  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r ;TYBx24vD'  
    %    n      s=0 l **X^+=$  
    % z_HdISy0  
    %   The following table shows the first 12 polynomials. UNYqft4  
    % &ncvGDGi  
    %       n    m    Zernike polynomial    Normalization L,\Iasv  
    %       --------------------------------------------- }7Uoh(d  
    %       0    0    1                        sqrt(2) +[VXs~I q  
    %       1    1    r                           2 .nJz G  
    %       2    0    2*r^2 - 1                sqrt(6) 7I}uZ/N  
    %       2    2    r^2                      sqrt(6) d=(mw_-?  
    %       3    1    3*r^3 - 2*r              sqrt(8) *w&e\i|7  
    %       3    3    r^3                      sqrt(8) s!J9|]o  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) Tk}]Gev  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) A^g(k5M*  
    %       4    4    r^4                      sqrt(10) 8LKiS  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) & 21%zPm  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) e+WNk 2  
    %       5    5    r^5                      sqrt(12) 7#Ft|5$~q  
    %       --------------------------------------------- COlqcq'qAu  
    % /: "1Z]@  
    %   Example: 5! {D!  
    % -RwE%  cr  
    %       % Display three example Zernike radial polynomials \e*]Ls#jS  
    %       r = 0:0.01:1; dV_G1'  
    %       n = [3 2 5]; W\3X=@|u)  
    %       m = [1 2 1]; sC'` ~}C  
    %       z = zernpol(n,m,r); lxx2H1([  
    %       figure C+$#y2"z#n  
    %       plot(r,z) vXs"Dst  
    %       grid on 1}x%%RD_  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') N8jIMb'<  
    % #mdc[.  
    %   See also ZERNFUN, ZERNFUN2. +7Gwg  
    [n@] r2g)3  
    % A note on the algorithm. %b$>qW\*&  
    % ------------------------ ZK,G v  
    % The radial Zernike polynomials are computed using the series B#A6v0Ta  
    % representation shown in the Help section above. For many special |Cv!,]9:r  
    % functions, direct evaluation using the series representation can K;?+8(H  
    % produce poor numerical results (floating point errors), because e'~3oqSvR  
    % the summation often involves computing small differences between N~Jda o  
    % large successive terms in the series. (In such cases, the functions  B,@i  
    % are often evaluated using alternative methods such as recurrence ?uu*L6  
    % relations: see the Legendre functions, for example). For the Zernike #qki  
    % polynomials, however, this problem does not arise, because the ch]IzdD  
    % polynomials are evaluated over the finite domain r = (0,1), and *4'"2"  
    % because the coefficients for a given polynomial are generally all J.a]K[ci  
    % of similar magnitude. *dQSw)R  
    % 5pX6t  
    % ZERNPOL has been written using a vectorized implementation: multiple _BufO7 `.  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] =_CzH(=f#  
    % values can be passed as inputs) for a vector of points R.  To achieve Mx}gN:Wt  
    % this vectorization most efficiently, the algorithm in ZERNPOL VY-EmbkG-t  
    % involves pre-determining all the powers p of R that are required to 81F9uM0  
    % compute the outputs, and then compiling the {R^p} into a single \fOEqe*5SM  
    % matrix.  This avoids any redundant computation of the R^p, and 4W75T2q#  
    % minimizes the sizes of certain intermediate variables. M\j.8jG  
    % /vt3>d%B;  
    %   Paul Fricker 11/13/2006 z{q`GwW  
    awRX1:T#;O  
    Qs!5<)6  
    % Check and prepare the inputs: W?& %x(6M  
    % ----------------------------- Eci\a]  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 5P bW[  
        error('zernpol:NMvectors','N and M must be vectors.') UKGPtKE<  
    end ?,/ }`3Vw  
    :FF=a3/"6  
    if length(n)~=length(m) Wwo0%<2y  
        error('zernpol:NMlength','N and M must be the same length.') u8^lB7!e/  
    end T{ "(\X$  
    l/D} X  
    n = n(:); t20K!}D_  
    m = m(:); btB%[]  
    length_n = length(n); /r 5eWR1G  
    BtZyn7a  
    if any(mod(n-m,2)) SbZ6t$"  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') u*R_\*j@  
    end \8tsDG(1 '  
    +ZYn? #IQ  
    if any(m<0) )oZ dj`  
        error('zernpol:Mpositive','All M must be positive.') e20-h3h+  
    end 9WHddDA  
    iU-j"&L5  
    if any(m>n) $b\P|#A  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') b>k y  
    end jIyQ]:*p  
     _F{C\}  
    if any( r>1 | r<0 ) 2%1hdA<  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') a*;b^Ze`v  
    end *hrd5na  
    *j=% #  
    if ~any(size(r)==1) @HW*09TG  
        error('zernpol:Rvector','R must be a vector.') hZ3bVi)L\  
    end *:1ey{w:  
    'qi}|I  
    r = r(:); AW .F3hN)  
    length_r = length(r); 6~{C.No}  
    )jj0^f1!j  
    if nargin==4 llDJ@  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); 6zkaOA46V  
        if ~isnorm 8MBAtVmy  
            error('zernpol:normalization','Unrecognized normalization flag.') $e\M_hp*J  
        end <{pz<io)  
    else :,^gj  
        isnorm = false; NI5``BwpO  
    end Ru XC(qcq  
    g`^x@rj`E  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% l%ZhA=TKQ  
    % Compute the Zernike Polynomials b -y  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ;jPXs  
    ]9L oZ)  
    % Determine the required powers of r: Ymgw-NJ;(  
    % ----------------------------------- p<2,=*2  
    rpowers = []; ?upM>69{  
    for j = 1:length(n) hph4`{T  
        rpowers = [rpowers m(j):2:n(j)]; \ jA~9  
    end Bt#N4m[X*|  
    rpowers = unique(rpowers); ,[Fb[#Qqb  
    Q&&@v4L   
    % Pre-compute the values of r raised to the required powers, edV\-H5<  
    % and compile them in a matrix:  ]k(]qZ  
    % ----------------------------- f)!Z~t &  
    if rpowers(1)==0 "3hMq1NQ`g  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ] - .aL  
        rpowern = cat(2,rpowern{:}); mq[ug>  
        rpowern = [ones(length_r,1) rpowern]; 2tLJU  Z1  
    else 5r_|yu  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); _U0f=m  
        rpowern = cat(2,rpowern{:}); /bEAK-  
    end R3! t$5HG  
    q;U,s)Uz^  
    % Compute the values of the polynomials: X.V~SeS  
    % -------------------------------------- q=G+Tocv  
    z = zeros(length_r,length_n); &{RDM~  
    for j = 1:length_n <Qq*p  
        s = 0:(n(j)-m(j))/2; oE~RyS X  
        pows = n(j):-2:m(j); Tr|JYLwF  
        for k = length(s):-1:1 R4@6G&2d>  
            p = (1-2*mod(s(k),2))* ... AEuG v}#  
                       prod(2:(n(j)-s(k)))/          ... q =Il|Nb>  
                       prod(2:s(k))/                 ... dd["dBIZ '  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... [2koe.?(  
                       prod(2:((n(j)+m(j))/2-s(k))); fLVAKn  
            idx = (pows(k)==rpowers); Bf:Q2slqI  
            z(:,j) = z(:,j) + p*rpowern(:,idx); &?vgP!d&M  
        end l]cFqL p  
         nd(S3rct&  
        if isnorm e*!kZAf  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); |M_UQQAB|  
        end {|\.i  
    end Mq8L0%j  
    Ha ]YJ}  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  z%LIX^q9  
    ,<p}o\6  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 ~BkCp pI  
    A$xF$l  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)