非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 HF9\SVR
B
function z = zernfun(n,m,r,theta,nflag) yIab3/#`
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. &1O!guq%
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N RL|13CG OP
% and angular frequency M, evaluated at positions (R,THETA) on the [DW}z
% unit circle. N is a vector of positive integers (including 0), and /`M>3q[
% M is a vector with the same number of elements as N. Each element T;cyU9
% k of M must be a positive integer, with possible values M(k) = -N(k) \hjGw,d
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, .Z,3:3,]
% and THETA is a vector of angles. R and THETA must have the same 'bH',X8gF
% length. The output Z is a matrix with one column for every (N,M) |G2hm8
Y
% pair, and one row for every (R,THETA) pair. \5+?wpH
% _xg4;W6M=
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike i\P?Y(-{
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Fq{Z-yVp
% with delta(m,0) the Kronecker delta, is chosen so that the integral [x{S ,?6
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, e
~X<+3<
% and theta=0 to theta=2*pi) is unity. For the non-normalized '%W'HqVcG1
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. qz|`\^
% Wvhg:vup
% The Zernike functions are an orthogonal basis on the unit circle. u9WQ0.
% They are used in disciplines such as astronomy, optics, and Qg)=4(<Hr
% optometry to describe functions on a circular domain. Mo+mO&B
% KY)rkfo B
% The following table lists the first 15 Zernike functions. +]n.uA-`[a
% z3l=aAw8
% n m Zernike function Normalization $rB20!
% -------------------------------------------------- o8!gV/oy
% 0 0 1 1 aR }|^ex
% 1 1 r * cos(theta) 2 cJEOwAN
% 1 -1 r * sin(theta) 2 _ n.2'
% 2 -2 r^2 * cos(2*theta) sqrt(6) traJub
% 2 0 (2*r^2 - 1) sqrt(3) P);:t~
% 2 2 r^2 * sin(2*theta) sqrt(6) =F!DwaZ
% 3 -3 r^3 * cos(3*theta) sqrt(8)
G P"(+5
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) us&!%`
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 8\Y/?$on
% 3 3 r^3 * sin(3*theta) sqrt(8) aBPaC=g{HO
% 4 -4 r^4 * cos(4*theta) sqrt(10) 'xNPy =#
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ^wL
n
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) SZOcFmC?
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) V\ud4
% 4 4 r^4 * sin(4*theta) sqrt(10) @PXb^x#k
% -------------------------------------------------- KRS_6G],{
% >U~B"'!xV
% Example 1: 5XO eYO{
% FHNK%Ko
% % Display the Zernike function Z(n=5,m=1) :Zy7h7P,lT
% x = -1:0.01:1; `aFy2x`3
% [X,Y] = meshgrid(x,x); Da)rzr|}>3
% [theta,r] = cart2pol(X,Y); b P>!&s_
% idx = r<=1; ;T0Y=yC
% z = nan(size(X)); lYlU8l5>
% z(idx) = zernfun(5,1,r(idx),theta(idx)); !P7##ho0
% figure 39;Z+s";
% pcolor(x,x,z), shading interp qyP|`Pm4
% axis square, colorbar gf!hO$sQ3
% title('Zernike function Z_5^1(r,\theta)') ICNS+KsI
% |Rr^K5hmD
% Example 2: zcrLd={
% !B==cNq
% % Display the first 10 Zernike functions Ep%5wR
% x = -1:0.01:1; gf]biE"k
% [X,Y] = meshgrid(x,x); (>qX>
% [theta,r] = cart2pol(X,Y); Wt +,6Cq
% idx = r<=1; )!1; =
% z = nan(size(X)); iST r;>A
% n = [0 1 1 2 2 2 3 3 3 3]; I)~&6@Jn
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; Jtj_Rl
!
% Nplot = [4 10 12 16 18 20 22 24 26 28]; }i1p&EN^
% y = zernfun(n,m,r(idx),theta(idx)); %K^l]tWa@
% figure('Units','normalized') gY AXUM,
% for k = 1:10 g-=)RIwm
% z(idx) = y(:,k); ^'S0A=1
% subplot(4,7,Nplot(k)) ,s'78Dc$
% pcolor(x,x,z), shading interp @Taj++ua
% set(gca,'XTick',[],'YTick',[]) /#Y)nyE
% axis square (~/VP3.S
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) !FweXFl
% end e";r_J3w
% $'3`$
% See also ZERNPOL, ZERNFUN2. W G2 E3y
a^qLyF&F
% Paul Fricker 11/13/2006 zdCeOZ 6
\F%5TRoC
<{7CS=)
% Check and prepare the inputs: ZF
:e6em
% ----------------------------- 8tWOVLquJ
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) @R=gJ:&a
error('zernfun:NMvectors','N and M must be vectors.') mrDIt4$D
end .gNWDk0$Y
%iWup:
if length(n)~=length(m) aH)$#6${Ap
error('zernfun:NMlength','N and M must be the same length.') -f0Nb+AR
end ~LPxVYhK
16MRLDhnD
n = n(:);
NLFSw
m = m(:); 6#XB'PR2p
if any(mod(n-m,2)) `r+"2.z*
error('zernfun:NMmultiplesof2', ... ^4^1)' %
'All N and M must differ by multiples of 2 (including 0).') uhL+bj+W
end yc5C`r +6
W=M`Bkw{
if any(m>n) O"4Q=~Y
error('zernfun:MlessthanN', ... ;crQ7}k
'Each M must be less than or equal to its corresponding N.') BP2-LG&\
end IM&2SSmYNH
E"5
zT1d
if any( r>1 | r<0 ) U@+
@Mc
error('zernfun:Rlessthan1','All R must be between 0 and 1.') &^e%gU8!\
end ~lMw*Qw^
5T;M,w6DV
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) TEl:;4
error('zernfun:RTHvector','R and THETA must be vectors.') &P&LjHFK
end 7QP%Pny%
{hB7F"S
r = r(:); &~U!X~PpB
theta = theta(:); ~vnG^y>%
length_r = length(r); +MPM^ m
if length_r~=length(theta) Q[^IX
error('zernfun:RTHlength', ... FX7=81**4
'The number of R- and THETA-values must be equal.') }f np}L
end J&}/Xw)
\o9-[V#Gm
% Check normalization: ]Mi
~vG
q
% -------------------- oK&LYlU
if nargin==5 && ischar(nflag) 98h,VuKVaB
isnorm = strcmpi(nflag,'norm'); obRR))
if ~isnorm IbC(/i#%`
error('zernfun:normalization','Unrecognized normalization flag.') Ed ,`1+
end :G9+-z{Y&
else SCE5|3j
isnorm = false; L+Yn}"gIs
end !s#25}9zX5
tWQ_.,ld
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 8R Wfv}:X
% Compute the Zernike Polynomials WS8m^~S@\
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% LY2oBX@fC
%o9@[o
.]
% Determine the required powers of r: j?%^N\9
% ----------------------------------- 0ZPwEP
m_abs = abs(m); C
J S
rpowers = []; C{!L +]/
for j = 1:length(n) $j:$
`
rpowers = [rpowers m_abs(j):2:n(j)]; SV16]Vc
end 3}=r.\]U
rpowers = unique(rpowers); ,<F =\G_f
G$pTTT6#
% Pre-compute the values of r raised to the required powers, S!<YVQq
% and compile them in a matrix: #pP4\n-~hU
% ----------------------------- jW*|Mu>2
if rpowers(1)==0 ?|'+5$
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); :@)UI,
rpowern = cat(2,rpowern{:}); 3^
~M7=k
rpowern = [ones(length_r,1) rpowern]; km2('t7?
else D].!u{##
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); v.:aICB5
rpowern = cat(2,rpowern{:}); ia
1Sf3
end e*p7(b-
\$YKw0K
% Compute the values of the polynomials: ;EbGW&T
% -------------------------------------- |m7U^
y = zeros(length_r,length(n)); ~K}iVX
for j = 1:length(n) M*FUtu
s = 0:(n(j)-m_abs(j))/2; P'f
=r%
pows = n(j):-2:m_abs(j); }S51yDV G_
for k = length(s):-1:1 W[BZ/
p = (1-2*mod(s(k),2))* ... JP`$A
prod(2:(n(j)-s(k)))/ ... rF:C({y
prod(2:s(k))/ ... ;q]Jm
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... [
qt
hn[3
prod(2:((n(j)+m_abs(j))/2-s(k))); RY'f%c
idx = (pows(k)==rpowers); >(mp$#+w
y(:,j) = y(:,j) + p*rpowern(:,idx); ~$n4Yuu2[
end E^w2IIw
Q\Dx/?g!vx
if isnorm .?R~!K{`
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); r_nB-\
end l+!!S"=8)~
end .zQ:u{FT
% END: Compute the Zernike Polynomials IvGQ7
VLr
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% wBZ=IMDu\
|N_tVE
% Compute the Zernike functions: 2g5i3C.q$
% ------------------------------ MyB&mC7Es
idx_pos = m>0; jGpSECs
idx_neg = m<0; c} )U:?6
hw! l{yv
z = y; -F=?M+9[
if any(idx_pos) 2Ya)I k{
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); NRu_6~^^
end }5c%v1
if any(idx_neg) gU\pP,a
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Ie{98
end I?`}h}7.
$/;D8P5/&=
% EOF zernfun