切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11840阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 FgILQ"+  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! Byf5~OC  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 ,}15Cse  
    function z = zernfun(n,m,r,theta,nflag) 5y7rY!]Bf  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. /\L|F?+@  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N V5y8VT=I  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 3w9j~s  
    %   unit circle.  N is a vector of positive integers (including 0), and 'P{0K?{H-4  
    %   M is a vector with the same number of elements as N.  Each element }Z T{  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) `IQ01FuP  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, I`"8}d@Jm  
    %   and THETA is a vector of angles.  R and THETA must have the same /0Q=}:d  
    %   length.  The output Z is a matrix with one column for every (N,M) YUo{e=m|  
    %   pair, and one row for every (R,THETA) pair. J(*q OGBD  
    % rj[2XIO  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike m1x7f% _  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), sS5 ]d8  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral {@Y|"qIN  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, WPVur{?<  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized V{17iRflf  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. F&US-ce:M  
    % :TU;%@7  
    %   The Zernike functions are an orthogonal basis on the unit circle. ,]?Xf >  
    %   They are used in disciplines such as astronomy, optics, and \\F^uM7,  
    %   optometry to describe functions on a circular domain. c"BFkw  
    % 3V:{_~~  
    %   The following table lists the first 15 Zernike functions. ~_WsjD0O  
    % GOJ*>GpS  
    %       n    m    Zernike function           Normalization [r'PGx  
    %       -------------------------------------------------- sg"J00  
    %       0    0    1                                 1 L3:dANG  
    %       1    1    r * cos(theta)                    2 yM$@*od  
    %       1   -1    r * sin(theta)                    2 } DY{>D>  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) m&/{iCwp  
    %       2    0    (2*r^2 - 1)                    sqrt(3) S,Q!Xb@  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) "&jA CI  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) mG4myQ?$  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) QC7Ceeh]4  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) R;,&s!\<  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) Uc,D&Og  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) H..g2;D  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) / fBi9=}+  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) P7GuFn/p~2  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) UhuEE  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) YXE?b@W"  
    %       -------------------------------------------------- j^ L"l;m  
    % #m_3l s}W$  
    %   Example 1: ]v=*WK  
    % qzk/P1{-  
    %       % Display the Zernike function Z(n=5,m=1) Q 6djfEN>  
    %       x = -1:0.01:1; 0TA{E-A   
    %       [X,Y] = meshgrid(x,x); Kx.'^y  
    %       [theta,r] = cart2pol(X,Y); hE>ux"_2/  
    %       idx = r<=1; j)4:*R.Z]  
    %       z = nan(size(X)); xWk:7,/  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); z3!j>X_w  
    %       figure +a$'<GvP  
    %       pcolor(x,x,z), shading interp 5\RTy}w3x  
    %       axis square, colorbar $hexJzX  
    %       title('Zernike function Z_5^1(r,\theta)') kO:|?}Koc  
    % RlH|G  
    %   Example 2: 0* Ox>O>  
    % eQh@.U*S)  
    %       % Display the first 10 Zernike functions *^j'G^n  
    %       x = -1:0.01:1; hdky:2^3  
    %       [X,Y] = meshgrid(x,x); -# 0(Jm'  
    %       [theta,r] = cart2pol(X,Y); V~j:!=b%v  
    %       idx = r<=1; P{ YUW~  
    %       z = nan(size(X)); rQ~7BlE  
    %       n = [0  1  1  2  2  2  3  3  3  3]; D$C>ZF  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 3vx5dUgl,  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; \Eq,4-q  
    %       y = zernfun(n,m,r(idx),theta(idx)); [ kI|Thx  
    %       figure('Units','normalized') f681i(q"  
    %       for k = 1:10 &L3OP@;  
    %           z(idx) = y(:,k); X}T/6zk  
    %           subplot(4,7,Nplot(k)) YyOPgF] M  
    %           pcolor(x,x,z), shading interp +O`3eP`u  
    %           set(gca,'XTick',[],'YTick',[]) 2aQR#lcv  
    %           axis square =l6aSr  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) }j=UO*|  
    %       end 12 y=Eh  
    % ${(v Er#}k  
    %   See also ZERNPOL, ZERNFUN2. #-76E  
    ^PwZP;On  
    %   Paul Fricker 11/13/2006 { Ju  
    &PY~m<F  
    P2y`d9,Q  
    % Check and prepare the inputs: K9{3,!1  
    % ----------------------------- e/+_tC$@p@  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) |wF_CZ*1  
        error('zernfun:NMvectors','N and M must be vectors.') bf1Tky=/  
    end 0,~f"Dyqy  
    9a\H+Y~  
    if length(n)~=length(m) \o-9~C\c*  
        error('zernfun:NMlength','N and M must be the same length.') a%\6L  
    end m]C|8b7Y  
    WiDl[l"{9  
    n = n(:); C\%T|ZDE  
    m = m(:); s98Jh(~  
    if any(mod(n-m,2)) %6A."sePO  
        error('zernfun:NMmultiplesof2', ... .3xpDVW^e  
              'All N and M must differ by multiples of 2 (including 0).') x`7Ch3`4}  
    end 3y&N}'R(F  
    6"3-8orj   
    if any(m>n) t:MeSO  
        error('zernfun:MlessthanN', ... I,[njlO:  
              'Each M must be less than or equal to its corresponding N.') 'gBns  
    end hw2'.}B"(  
    -PfBL8  
    if any( r>1 | r<0 ) tX'`4!{@+  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') @#HB6B  
    end ;Fo%R$y  
    G =`-w  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) xIt'o(jQH  
        error('zernfun:RTHvector','R and THETA must be vectors.') O} #Ic$38  
    end b/#SkxW#S  
    _*&I[%I5  
    r = r(:); p\;\hHai  
    theta = theta(:); hc"l^a!7ic  
    length_r = length(r); TJYup%q  
    if length_r~=length(theta) )FLDCer  
        error('zernfun:RTHlength', ... MP/@Mf\<E  
              'The number of R- and THETA-values must be equal.') 3H^0v$S  
    end ^)J2tpr;]=  
    RIC\f_Dv  
    % Check normalization: 'SW%EVB  
    % -------------------- }-Ds%L  
    if nargin==5 && ischar(nflag) Uu_g_b:z  
        isnorm = strcmpi(nflag,'norm'); I |PEC-(  
        if ~isnorm tLH:'"{zx  
            error('zernfun:normalization','Unrecognized normalization flag.') t`M4@1S"'  
        end ppm =o4`s[  
    else b]0]*<~y  
        isnorm = false; )2z<5 `  
    end z6IOVQ*r  
    +N6IdDN3  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% I45 kPfu  
    % Compute the Zernike Polynomials D =+md  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /"+CH\) E  
    ^_4e^D]P"  
    % Determine the required powers of r: <mrvuWg0  
    % ----------------------------------- 0Cg}yyOz  
    m_abs = abs(m); }4uHT.)  
    rpowers = []; C33BP}c]  
    for j = 1:length(n) x5w5xw  
        rpowers = [rpowers m_abs(j):2:n(j)]; x/fhlf}a}=  
    end vU,V[1^a  
    rpowers = unique(rpowers); ~mF^t7n]  
    F_U9;*f]  
    % Pre-compute the values of r raised to the required powers, ^l:~r2  
    % and compile them in a matrix: [X9T$7q#  
    % ----------------------------- {})d}dEC  
    if rpowers(1)==0 9T\uOaC"  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); d/8p?Km  
        rpowern = cat(2,rpowern{:}); 'iM#iA8  
        rpowern = [ones(length_r,1) rpowern]; r*q  
    else Z bW!c1s{  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); @Ojbu@A  
        rpowern = cat(2,rpowern{:}); {g C?kp  
    end ybC0Ee@  
    ~|lEi1|  
    % Compute the values of the polynomials: <~ Dq8If  
    % -------------------------------------- l`bl^~xRo  
    y = zeros(length_r,length(n)); ;tJ}*!z W  
    for j = 1:length(n) pqCp>BO?O  
        s = 0:(n(j)-m_abs(j))/2; sck.2-f"  
        pows = n(j):-2:m_abs(j); HUFm@?  
        for k = length(s):-1:1 :[:*kbWN-  
            p = (1-2*mod(s(k),2))* ... 2M+}o"g  
                       prod(2:(n(j)-s(k)))/              ... dO1h1yJJ  
                       prod(2:s(k))/                     ... &ggOm  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... *@VS^JB  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 1gA^Qv~?  
            idx = (pows(k)==rpowers); .GSK!1{@  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 3v91yMx  
        end Zv0'OX~8i  
         j].=,M<dxE  
        if isnorm MpVZL29)  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); %p(X*mVX  
        end @CtnV|  
    end uv&4 A,h  
    % END: Compute the Zernike Polynomials SIZ&0V  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Ez/>3:;  
    zNO,vR[\  
    % Compute the Zernike functions: )Z*nm<=  
    % ------------------------------ c Cx_tGR"  
    idx_pos = m>0; *`_ 2uBz  
    idx_neg = m<0; S l`F`  
    ~<Z7\yS)  
    z = y; aKFY&zN?  
    if any(idx_pos) tZ.hSDH  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); h+!@`c>)Y  
    end >g;995tG  
    if any(idx_neg) #Q1 |]  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); <^w4+5sT/  
    end FfC\uuRe  
    Eb7GiRT#  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) GP(ze-Yp  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. !A:d9 k  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated Nwg?(h#  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive F@b=S0}K  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, Q0%s|8Jc  
    %   and THETA is a vector of angles.  R and THETA must have the same #]h&GX  
    %   length.  The output Z is a matrix with one column for every P-value, A!v:W6yiz  
    %   and one row for every (R,THETA) pair. &a+=@Z)kf  
    % LvCX(yjZ*  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike MJA;P7g  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) RB9ZaL\  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) K 8W99:v  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 &W}6Xg(  
    %   for all p. 2v<O}   
    % [ut[W9  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 M0t9`Z9  
    %   Zernike functions (order N<=7).  In some disciplines it is 8<{i=V*x4  
    %   traditional to label the first 36 functions using a single mode t[/APm-k~>  
    %   number P instead of separate numbers for the order N and azimuthal G8.nKoHv7x  
    %   frequency M. ><qA+/4]_  
    % aP]h03sS  
    %   Example: I 9<%fv  
    % TU*Y?D L  
    %       % Display the first 16 Zernike functions E"7[|-`e6  
    %       x = -1:0.01:1; AYAbq}'Yt  
    %       [X,Y] = meshgrid(x,x); k3T374t1b  
    %       [theta,r] = cart2pol(X,Y); <cFj-Ys(T  
    %       idx = r<=1; 6$K@s  
    %       p = 0:15; p/HGI)'  
    %       z = nan(size(X)); !8YA1 o  
    %       y = zernfun2(p,r(idx),theta(idx)); _K B%g_{  
    %       figure('Units','normalized') yG^pND>_df  
    %       for k = 1:length(p) Hb[P|pPT  
    %           z(idx) = y(:,k); X6j:TF  
    %           subplot(4,4,k) QabLMq@n`  
    %           pcolor(x,x,z), shading interp aK8s0G!z?5  
    %           set(gca,'XTick',[],'YTick',[]) }lP`3e  
    %           axis square $WO{!R  
    %           title(['Z_{' num2str(p(k)) '}']) @SI,V8i  
    %       end 2$'bOo  
    % L^=G(op*  
    %   See also ZERNPOL, ZERNFUN. o?^Rw*u0/  
    O"#/>hmv-  
    %   Paul Fricker 11/13/2006 6#Rco%07zI  
    +p$lVnAt  
    e|q~t {=9S  
    % Check and prepare the inputs: K'y|_XsBB)  
    % ----------------------------- CaVVlL  
    if min(size(p))~=1 TiR00#b  
        error('zernfun2:Pvector','Input P must be vector.') j_h0 hm]  
    end T uC  
    tns4e\  
    if any(p)>35 czsnPmNEI  
        error('zernfun2:P36', ... &UNQ4-s  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... ?g:sAR'  
               '(P = 0 to 35).']) ">5$;{;2r  
    end r[wjE`Z/T  
    D^}2ilk!  
    % Get the order and frequency corresonding to the function number: q8HnPXV  
    % ---------------------------------------------------------------- F:~@e(  
    p = p(:); `lrNH]B  
    n = ceil((-3+sqrt(9+8*p))/2); h^,av^lg^  
    m = 2*p - n.*(n+2); dkeMiL m  
    q7I!wD9Cff  
    % Pass the inputs to the function ZERNFUN: |7Qe{  
    % ---------------------------------------- 6  $`l  
    switch nargin v57<b&p26  
        case 3 Xc4zUEO9  
            z = zernfun(n,m,r,theta); < FY%QB)h  
        case 4 j<R&?*  
            z = zernfun(n,m,r,theta,nflag); t*)!BZ  
        otherwise fe8hgTP|  
            error('zernfun2:nargin','Incorrect number of inputs.') C;%dZ  
    end a}iP +#;  
    X3~` ~J  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) 0g~Cdp  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. ML0_Uc3en  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of 8n:N#4Dh^  
    %   order N and frequency M, evaluated at R.  N is a vector of Q- w_ @~  
    %   positive integers (including 0), and M is a vector with the bR;.KC3C  
    %   same number of elements as N.  Each element k of M must be a 6G}4KGQc  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) .*X=[" F  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is J#q^CWN3R  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix |>1#)cONW  
    %   with one column for every (N,M) pair, and one row for every ,`YIcrya:  
    %   element in R. @sW!g;\T  
    % )3<>H!yG}  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly-  z:   
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is {;6a_L@q;|  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to 3_ .%NgES|  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 vF&0I2T~l  
    %   for all [n,m]. cmAdQ)(Kzd  
    % _g-0"a{-  
    %   The radial Zernike polynomials are the radial portion of the LFZ*mRiuKE  
    %   Zernike functions, which are an orthogonal basis on the unit /8Z&Y`G  
    %   circle.  The series representation of the radial Zernike EXwU{Hl  
    %   polynomials is Z3=N= xY]  
    % k8l7.e*  
    %          (n-m)/2 6'.)z ,ts  
    %            __ jc\y{I\  
    %    m      \       s                                          n-2s Rg+# (y  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r 1Dhu 5ht  
    %    n      s=0 %|1s9?h7\  
    % JT~Dr KI_  
    %   The following table shows the first 12 polynomials. \ H#"  
    % _Vf>>tuW  
    %       n    m    Zernike polynomial    Normalization vp9wRGd  
    %       --------------------------------------------- ggm'9|  
    %       0    0    1                        sqrt(2) 2E`mbT,v&  
    %       1    1    r                           2 )jt?X}  
    %       2    0    2*r^2 - 1                sqrt(6) kP5G}Bp  
    %       2    2    r^2                      sqrt(6) !w@i,zqu  
    %       3    1    3*r^3 - 2*r              sqrt(8) C\vOxBAB  
    %       3    3    r^3                      sqrt(8) Qpj[]c5  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) mlUj%:Gm#  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) rl&.|;5uH;  
    %       4    4    r^4                      sqrt(10) atmW? Z  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) z-:>[Sn  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) k*!iUz{]  
    %       5    5    r^5                      sqrt(12) SLUQFoz}  
    %       --------------------------------------------- E@#<p-@~  
    % wh2E$b(-  
    %   Example: JG7K-W|!c  
    % N R 4\TU  
    %       % Display three example Zernike radial polynomials F2ISg'  
    %       r = 0:0.01:1; m(^N8k1K;  
    %       n = [3 2 5]; g!o2vTt5  
    %       m = [1 2 1]; euW   
    %       z = zernpol(n,m,r); ^HtB!Xc  
    %       figure `e?~c'a@  
    %       plot(r,z) ^4'!B +}F  
    %       grid on Qw }1mRv  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') qZ +K4H  
    % 8?x:PkK  
    %   See also ZERNFUN, ZERNFUN2. ?Zk;NL9  
    RCxwiZaf33  
    % A note on the algorithm. 3-)}.8F  
    % ------------------------ e&Q w\Ze  
    % The radial Zernike polynomials are computed using the series <"xqt7f  
    % representation shown in the Help section above. For many special m~fDDQs  
    % functions, direct evaluation using the series representation can c@)?V>oe  
    % produce poor numerical results (floating point errors), because u8`S*i/)m  
    % the summation often involves computing small differences between &-X51O C  
    % large successive terms in the series. (In such cases, the functions 065=I+Vo  
    % are often evaluated using alternative methods such as recurrence yy&L&v'  
    % relations: see the Legendre functions, for example). For the Zernike +P,ic*Kq*  
    % polynomials, however, this problem does not arise, because the m|t\w|B2  
    % polynomials are evaluated over the finite domain r = (0,1), and oA7|s1  
    % because the coefficients for a given polynomial are generally all -P&uY`  
    % of similar magnitude. R,=8)OI2  
    % ]VE3u_kR  
    % ZERNPOL has been written using a vectorized implementation: multiple R*XZPzg%  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] r4fg!]J ;  
    % values can be passed as inputs) for a vector of points R.  To achieve x; -D}#  
    % this vectorization most efficiently, the algorithm in ZERNPOL +Ar4X-A{y  
    % involves pre-determining all the powers p of R that are required to @Y>PtA&w*  
    % compute the outputs, and then compiling the {R^p} into a single Y6v#0pT  
    % matrix.  This avoids any redundant computation of the R^p, and n:b,zssP  
    % minimizes the sizes of certain intermediate variables. DUH_LnHw)  
    % 0>]&9'cn  
    %   Paul Fricker 11/13/2006 moh,aB#  
    {XUSw8W'  
    C>mFylN  
    % Check and prepare the inputs: W- nS{v(  
    % ----------------------------- R rYNtc  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) s0/m qZ]s  
        error('zernpol:NMvectors','N and M must be vectors.') jp@X,HES  
    end csxn" Dz\  
    ,dw\y/dn  
    if length(n)~=length(m) Q~k|lTf  
        error('zernpol:NMlength','N and M must be the same length.') Ggst s  
    end TXS`ey  
    ZM <UiN  
    n = n(:);  >;%QW  
    m = m(:); n<<arO"cv  
    length_n = length(n); w(t1m]pF[  
    .;.Zbhm  
    if any(mod(n-m,2)) ~ Fl\c-  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') ,j\uvi(Y  
    end * LWihal  
    !?Y71:_!  
    if any(m<0) /BvMNKb$$  
        error('zernpol:Mpositive','All M must be positive.') F$kiSjh9aJ  
    end 8ph1xQ'  
    :`"- Jf  
    if any(m>n) !dcvG9JZ  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') GK6CnSV8d  
    end zb02\xvf  
    8x7TK2r  
    if any( r>1 | r<0 ) LTH, a?lD  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') XFl&(I4tB  
    end hE'7M;  
    oWi#?'  
    if ~any(size(r)==1) @,6*yyO  
        error('zernpol:Rvector','R must be a vector.') #UI`+2w  
    end \yxGE+~P  
    4e; le&  
    r = r(:); Zy:q)'D=  
    length_r = length(r); nGc'xQy0  
    j]5e$e{  
    if nargin==4 zcH"Kh&  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); kApDD[ N  
        if ~isnorm TlX:05/V8  
            error('zernpol:normalization','Unrecognized normalization flag.') '"rm66  
        end 9Av{>W?  
    else p|a`Q5z!  
        isnorm = false;  CWYOzqf  
    end 7v0VZ(UR  
    NiE`u m  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% !bnnUCTb\  
    % Compute the Zernike Polynomials D+jvF  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% wc"~8Ah  
    R$`&g@P="  
    % Determine the required powers of r: ?A r}QN  
    % ----------------------------------- b'R]DS{8  
    rpowers = []; NE) w$>0M  
    for j = 1:length(n) :J2^Y4l2  
        rpowers = [rpowers m(j):2:n(j)]; ]iFW>N*a  
    end Q^l!cL| {  
    rpowers = unique(rpowers); k+je-%hPj  
    EQZ/v gho  
    % Pre-compute the values of r raised to the required powers, [)I W9E v  
    % and compile them in a matrix: TM_bu  
    % ----------------------------- -y?ve od#  
    if rpowers(1)==0 xUa9>=JU{  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); }XpZgd$  
        rpowern = cat(2,rpowern{:}); n:s _2h(u  
        rpowern = [ones(length_r,1) rpowern]; ^"vmIC.h  
    else  :fy,%su  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); VAyAXN~  
        rpowern = cat(2,rpowern{:}); N}{V*H^0QU  
    end O<Ay`p5  
    `Jj b4]  
    % Compute the values of the polynomials: @$$ J}~{  
    % -------------------------------------- ^%g 8OP  
    z = zeros(length_r,length_n); 4Sdj#w  
    for j = 1:length_n /; 21?o  
        s = 0:(n(j)-m(j))/2; z\K %  
        pows = n(j):-2:m(j); t0P_$+w.>  
        for k = length(s):-1:1 PG|Zu3[  
            p = (1-2*mod(s(k),2))* ... %P#| }  
                       prod(2:(n(j)-s(k)))/          ... >Kl_948  
                       prod(2:s(k))/                 ... Ip8:~Fl]  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... p_apVm\t_  
                       prod(2:((n(j)+m(j))/2-s(k))); >Apa^Bp  
            idx = (pows(k)==rpowers); 7suT26C  
            z(:,j) = z(:,j) + p*rpowern(:,idx); I {%( G(  
        end iF.f*3-NJB  
         J^~J&  
        if isnorm [<f9EeziB  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); UalwK  
        end MD,BGO?C  
    end G#uB%:)&0u  
    YX3NZW2i  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    857
    光币
    847
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  DYgz;Y/%l  
    ?rdWhF]  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 J d,9<m $  
    RXO5p d  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)