切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11157阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 pcM'j#;  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! W9{>.E?  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 00'R1q4  
    function z = zernfun(n,m,r,theta,nflag) 2G8f4vsC[  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. c+/SvRx^>  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Ij hC@5qk  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ![Z'jC py  
    %   unit circle.  N is a vector of positive integers (including 0), and oc,a  
    %   M is a vector with the same number of elements as N.  Each element 6elmLDMni\  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) Exox&T  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 4r!8_$fN?G  
    %   and THETA is a vector of angles.  R and THETA must have the same dm1W C:b  
    %   length.  The output Z is a matrix with one column for every (N,M) N3Ub|$}q  
    %   pair, and one row for every (R,THETA) pair. ajuwP1I  
    % <">tB"="b  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike mT;1KE{J{  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), :tY ;K2wDM  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral [ZS}P  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, <U=:N~L  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized F{\MIuoy  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. -E#!`~&V  
    % f5+a6s9  
    %   The Zernike functions are an orthogonal basis on the unit circle. ba^cw}5  
    %   They are used in disciplines such as astronomy, optics, and 3k;*xjv6@  
    %   optometry to describe functions on a circular domain. <4,>`#NEo  
    % yw`xK2(C$  
    %   The following table lists the first 15 Zernike functions. lL~T@+J~  
    % w? A&XB+  
    %       n    m    Zernike function           Normalization !L"3Otd  
    %       -------------------------------------------------- c6 cGl]FL  
    %       0    0    1                                 1 2~+_T  
    %       1    1    r * cos(theta)                    2 ;w@PnY  
    %       1   -1    r * sin(theta)                    2 FA ?xp1E  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ]Kb  
    %       2    0    (2*r^2 - 1)                    sqrt(3) E ~xK1x"  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) ,{A-<=6t  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) .WA(X5  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) LUv>0G#L[  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) G<,@|6"w  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) nmp(%;<exN  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) VL"!.^'c  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) #*;(%\q}  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) Er?Wg09  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10)  L3P_  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) u1O?`  
    %       -------------------------------------------------- g?!vR id@S  
    % C)/uX5  
    %   Example 1: WK]SHiHD  
    % x]lv:m\)jT  
    %       % Display the Zernike function Z(n=5,m=1) Q4r)TR,  
    %       x = -1:0.01:1; $;Lb|~  
    %       [X,Y] = meshgrid(x,x); :BG/]7>|V  
    %       [theta,r] = cart2pol(X,Y); orCD?vlh  
    %       idx = r<=1; u^SXg dj  
    %       z = nan(size(X)); K~OfC  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); ,Khhu%$  
    %       figure $A)i}M;uK  
    %       pcolor(x,x,z), shading interp |U%S<X  
    %       axis square, colorbar Qfr%BQV  
    %       title('Zernike function Z_5^1(r,\theta)') ~hPp)- A  
    % h|"98PI  
    %   Example 2: .P.TqT@)r  
    % 4;W eB   
    %       % Display the first 10 Zernike functions 'WkDp a  
    %       x = -1:0.01:1; JzMPLmgG/  
    %       [X,Y] = meshgrid(x,x); :<4:h.gO8  
    %       [theta,r] = cart2pol(X,Y); Q^4j  
    %       idx = r<=1; Zso&.IATng  
    %       z = nan(size(X)); pXPwn(  
    %       n = [0  1  1  2  2  2  3  3  3  3]; gE]) z*tqX  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; t<sg8U.  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; v;AMx-_WH  
    %       y = zernfun(n,m,r(idx),theta(idx)); W+V#z8K  
    %       figure('Units','normalized') Y15KaoK?  
    %       for k = 1:10 <@ D`16%&  
    %           z(idx) = y(:,k); JS% &ipm  
    %           subplot(4,7,Nplot(k)) F@4XORO;  
    %           pcolor(x,x,z), shading interp (nfra,'  
    %           set(gca,'XTick',[],'YTick',[]) 2KMLpO&De  
    %           axis square lg1yj}br  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 1BUdl=o>S  
    %       end nw[DI %Tp  
    % aW]!$  
    %   See also ZERNPOL, ZERNFUN2. ,A9pj k'  
    IO~d.Ra  
    %   Paul Fricker 11/13/2006 zd AqGQfc  
    #=UEx  
    p"f=[awp  
    % Check and prepare the inputs: 3/mVdU?U  
    % ----------------------------- mz;S*ONlV  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) uhvmh  
        error('zernfun:NMvectors','N and M must be vectors.') \dSMF,E  
    end ~fB}v  
    L {(\k$>'  
    if length(n)~=length(m) ) \Mwv&k1  
        error('zernfun:NMlength','N and M must be the same length.') pe=Ou0  
    end YJ_`[LnL  
     Hi#'h  
    n = n(:); 1xg^;3m2  
    m = m(:); YUd*\_  
    if any(mod(n-m,2)) "ut:\%39.  
        error('zernfun:NMmultiplesof2', ... &n+3^JNl  
              'All N and M must differ by multiples of 2 (including 0).') FDM&rQ  
    end `'9Kj9}   
    b{qeu$G R  
    if any(m>n) Z\6&5r=  
        error('zernfun:MlessthanN', ... BUB#\v#a  
              'Each M must be less than or equal to its corresponding N.') c0jdZ#H  
    end xevG)m  
    -Qx:-,.a  
    if any( r>1 | r<0 ) j|gv0SI_ w  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') }r^@Xh  
    end 'bp*hqG[  
    Vzf{gr?  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) dO.?S89L  
        error('zernfun:RTHvector','R and THETA must be vectors.') ^~}|X%q3  
    end D7cOEL<  
    *m:h0[[J  
    r = r(:); V!G&Aen  
    theta = theta(:); <y1V2Np  
    length_r = length(r); !PUbaF-.6  
    if length_r~=length(theta) i>6SY83B}  
        error('zernfun:RTHlength', ... (yQ]n91Q,  
              'The number of R- and THETA-values must be equal.') ~8~B VwZ_  
    end $~c?qU  
    :"? boA#L  
    % Check normalization: K_j$iHqLF  
    % -------------------- 3`_jNPV1  
    if nargin==5 && ischar(nflag) MN\/F4Io  
        isnorm = strcmpi(nflag,'norm'); v<iMlOEt  
        if ~isnorm ^ a%U *>P  
            error('zernfun:normalization','Unrecognized normalization flag.') opTDW)  
        end iA*Z4FKkT  
    else wJ-G7V,)  
        isnorm = false; 1L1_x'tT%  
    end <y5V],-U  
    iK{q_f\"  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0-cqux2U  
    % Compute the Zernike Polynomials 8;9GM^L  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% i$[wgvJIV  
    R_ J=x  
    % Determine the required powers of r: 5(bG  
    % ----------------------------------- j-|YE?AA  
    m_abs = abs(m); 'Ht$LqG  
    rpowers = []; _.0c~\VA  
    for j = 1:length(n) d{+ H|$L`  
        rpowers = [rpowers m_abs(j):2:n(j)]; :0>wm@qCQ  
    end )3v0ex@Jl  
    rpowers = unique(rpowers); @ fm\ H  
    B[7|]"L@  
    % Pre-compute the values of r raised to the required powers, Frn#?n)S9  
    % and compile them in a matrix: /G`&k{SiK  
    % ----------------------------- p.i$[6M  
    if rpowers(1)==0 )l*H$8  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false);  SzkF-yRd  
        rpowern = cat(2,rpowern{:}); Yf Udpa0  
        rpowern = [ones(length_r,1) rpowern]; _`Ey),c_  
    else eU_|.2  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Yu=4j9e_mG  
        rpowern = cat(2,rpowern{:}); L^rtypkJ  
    end ~J!a?]  
    x-+[gNc 6  
    % Compute the values of the polynomials: pWH8ex+  
    % -------------------------------------- hABC rd Em  
    y = zeros(length_r,length(n)); E (tdL,m'  
    for j = 1:length(n) VA.jt}YGE  
        s = 0:(n(j)-m_abs(j))/2; "T5?<c  
        pows = n(j):-2:m_abs(j); EAo7(d@  
        for k = length(s):-1:1 wqBGJ   
            p = (1-2*mod(s(k),2))* ... =BY)>0?z  
                       prod(2:(n(j)-s(k)))/              ... =:`1!W0I  
                       prod(2:s(k))/                     ... pVn 6>\xa  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... U,)Ngnd  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); ~!~VC)a*  
            idx = (pows(k)==rpowers); 8h9t8?  
            y(:,j) = y(:,j) + p*rpowern(:,idx); _m;cX!+~_  
        end iQ*JU2;7 t  
         0TU~Q  
        if isnorm {y<[1Pms  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); l)D18  
        end |GE3.g  
    end w<j6ln+nM  
    % END: Compute the Zernike Polynomials VuFM jY  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% td4*+)'FY  
    #O]F5JB  
    % Compute the Zernike functions: 1YR;dn  
    % ------------------------------ H7G*Vg  
    idx_pos = m>0; =%Gecj  
    idx_neg = m<0; C.@R#a'  
    N J:]jd  
    z = y; $f>Mz|j  
    if any(idx_pos) 3O%[k<S\VO  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); U jVo "K  
    end `d6 {Tli  
    if any(idx_neg) z_!P0`  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); (Z.K3  
    end "m})~va  
    TJ7on.;  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) `kyr\+hp  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. N:0/8jmmO  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated e{Om W  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive cg7NtY  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, W5$jIQ}Bw  
    %   and THETA is a vector of angles.  R and THETA must have the same rj$u_y3S*  
    %   length.  The output Z is a matrix with one column for every P-value, :::"C"Ge  
    %   and one row for every (R,THETA) pair. 1>b kVA  
    % L|S#(0  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike "vH@b_>9|  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) go6Hb>  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) ho#] ?Z#  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 R[wy{4<y  
    %   for all p. .,l ?z  
    % Mb3,!  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 s ZkQJ->  
    %   Zernike functions (order N<=7).  In some disciplines it is )Be}Ev#)Zx  
    %   traditional to label the first 36 functions using a single mode HCb7 `(@  
    %   number P instead of separate numbers for the order N and azimuthal ^O#,%>1J  
    %   frequency M. J\_tigd   
    % #E5#{bra  
    %   Example: q ]rsp0P2  
    % N-3w)23*:  
    %       % Display the first 16 Zernike functions -:pLlN-f  
    %       x = -1:0.01:1; q{ @>2AlK  
    %       [X,Y] = meshgrid(x,x); -DX|[70  
    %       [theta,r] = cart2pol(X,Y); dQ`ch~HVUW  
    %       idx = r<=1; Kx*;!3-V$  
    %       p = 0:15; $"J+3mO  
    %       z = nan(size(X)); (8@._  
    %       y = zernfun2(p,r(idx),theta(idx)); |w6:mtaS  
    %       figure('Units','normalized') r4Pm i  
    %       for k = 1:length(p) wi:]oo#  
    %           z(idx) = y(:,k); S`K8e^]  
    %           subplot(4,4,k) j?/T7a^  
    %           pcolor(x,x,z), shading interp n0O- Bxhl  
    %           set(gca,'XTick',[],'YTick',[]) 1P3^il7  
    %           axis square & @^|=>L  
    %           title(['Z_{' num2str(p(k)) '}']) Sq-mH=rs]  
    %       end %l,p />r  
    % wjo xfPnf  
    %   See also ZERNPOL, ZERNFUN. VZb0x)w  
    xlqRW"  
    %   Paul Fricker 11/13/2006 d '4c?vC  
    *<x EM-  
    U|u v SJ)X  
    % Check and prepare the inputs: PS`v3|d}}}  
    % ----------------------------- F_zs"ex/  
    if min(size(p))~=1 rh${pHl  
        error('zernfun2:Pvector','Input P must be vector.') 0>Z/3i&?<  
    end D"bLJ j/!  
    MJ8z"SKnV  
    if any(p)>35 -HP [IJP  
        error('zernfun2:P36', ... n_)d4d zl  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... 4punJg~1  
               '(P = 0 to 35).']) B:&/*HU  
    end @wYuc{%S  
    Z99%uI3  
    % Get the order and frequency corresonding to the function number: NL0X =i  
    % ---------------------------------------------------------------- FX+Ra@I!  
    p = p(:); 87>\wUJ  
    n = ceil((-3+sqrt(9+8*p))/2); N#6&t8;kTC  
    m = 2*p - n.*(n+2); Y=x]'3}^  
    #8%Lc3n  
    % Pass the inputs to the function ZERNFUN: 1}QU\N(t  
    % ---------------------------------------- 9$)TAI&P  
    switch nargin &( b\jyf  
        case 3 ,l#V eC  
            z = zernfun(n,m,r,theta);  z4&|~-m,  
        case 4 tl CgW)<?  
            z = zernfun(n,m,r,theta,nflag); (4>k+ H  
        otherwise 9%$4Ux*q  
            error('zernfun2:nargin','Incorrect number of inputs.') gK9@-e  
    end #Ji&.T^U/  
    7 H.2]X  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) V'mQ {[{R  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. [_^K}\/+  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of /U`"Xx  
    %   order N and frequency M, evaluated at R.  N is a vector of SYw>P1  
    %   positive integers (including 0), and M is a vector with the eXc`"T,C.  
    %   same number of elements as N.  Each element k of M must be a ("}TW-r~  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) V[(zRGa{  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is bvUjH5.7  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix ,l_"%xYx  
    %   with one column for every (N,M) pair, and one row for every Vge9AH:op  
    %   element in R. ,*+F*:o(m  
    % {<v?Z_!68  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- 'Wn'BRXq3  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is <2fZYt vt  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to -L NJ*?b  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 3T'9_v[Y  
    %   for all [n,m]. 4@u*#Bp`|  
    % lSPQXu*[  
    %   The radial Zernike polynomials are the radial portion of the ?R(fxx  
    %   Zernike functions, which are an orthogonal basis on the unit %u, H2 *  
    %   circle.  The series representation of the radial Zernike yrSmI)&%  
    %   polynomials is D8m1:kU  
    % MXh0a@*]  
    %          (n-m)/2 QgqR93Ic  
    %            __ 2TXrVaM  
    %    m      \       s                                          n-2s 7.,C'^ci  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r bz[U<  
    %    n      s=0 _U?   
    % B36_ OH  
    %   The following table shows the first 12 polynomials. l:-$ulAx  
    % Q_$aiE  
    %       n    m    Zernike polynomial    Normalization F/tGk9v  
    %       --------------------------------------------- 5V':3o;D__  
    %       0    0    1                        sqrt(2) ^RAst1q7  
    %       1    1    r                           2 &GGJ=c\  
    %       2    0    2*r^2 - 1                sqrt(6) FO<PMK   
    %       2    2    r^2                      sqrt(6) 6 6(|3DX  
    %       3    1    3*r^3 - 2*r              sqrt(8) W4%I%&j  
    %       3    3    r^3                      sqrt(8) )\s{\u \  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) x"9`w 42\r  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) 93Kd7x-3  
    %       4    4    r^4                      sqrt(10) r5M {*  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) Hz ) Xn\x  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) F0t-b%w,  
    %       5    5    r^5                      sqrt(12) { 0RwjPYp  
    %       --------------------------------------------- 0ft81RK  
    % fd! bs*\X  
    %   Example: s;Q0  
    % *'H0%GM  
    %       % Display three example Zernike radial polynomials B5{ wSr  
    %       r = 0:0.01:1; D_]4]&QYT  
    %       n = [3 2 5]; 8s16yuM  
    %       m = [1 2 1]; Q"7vzri  
    %       z = zernpol(n,m,r); }$i Kz*nx|  
    %       figure \f\ CK@  
    %       plot(r,z) _JNSl2  
    %       grid on p{ X?_F  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') :d}I`)&  
    % @rI+.X  
    %   See also ZERNFUN, ZERNFUN2. `v?XFwnV`  
    $ha,DlN  
    % A note on the algorithm. 6l]jm j)/  
    % ------------------------ OIJNOuI  
    % The radial Zernike polynomials are computed using the series ~ES6Qw`Oe  
    % representation shown in the Help section above. For many special N!!=9'fGF  
    % functions, direct evaluation using the series representation can 7IkNS  
    % produce poor numerical results (floating point errors), because ;O8'vp  
    % the summation often involves computing small differences between "`g5iUHqUl  
    % large successive terms in the series. (In such cases, the functions Jx@_OE_vp  
    % are often evaluated using alternative methods such as recurrence IJ\4S  
    % relations: see the Legendre functions, for example). For the Zernike +lC?Vpi^  
    % polynomials, however, this problem does not arise, because the 4FQB%3>*  
    % polynomials are evaluated over the finite domain r = (0,1), and qQjd@J}^  
    % because the coefficients for a given polynomial are generally all nl<TM96  
    % of similar magnitude. ;$,b w5  
    % [GQn1ZLc  
    % ZERNPOL has been written using a vectorized implementation: multiple 7}#zF]vHNi  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] j/ [V<  
    % values can be passed as inputs) for a vector of points R.  To achieve ^E~F,]dV=  
    % this vectorization most efficiently, the algorithm in ZERNPOL |ht:_l 8  
    % involves pre-determining all the powers p of R that are required to AS4mJ UU9  
    % compute the outputs, and then compiling the {R^p} into a single {z#!3a  
    % matrix.  This avoids any redundant computation of the R^p, and +xNV1bM  
    % minimizes the sizes of certain intermediate variables. ":@\kw  
    % OFe-e(c1  
    %   Paul Fricker 11/13/2006 IVSOSl|  
    HpP82X xj  
    DwmK?5p  
    % Check and prepare the inputs: Sf*1Z~P|  
    % ----------------------------- ^+p7\D/E(  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) )  )OHGg  
        error('zernpol:NMvectors','N and M must be vectors.') -.xiq0  
    end )iX2r{  
    gcF:/@:Rm  
    if length(n)~=length(m) ^?J3nf{  
        error('zernpol:NMlength','N and M must be the same length.') f8e :J#jbS  
    end jQBL 8<  
    9*Q6/?v  
    n = n(:); V82HO{ D  
    m = m(:); CKI.\o  
    length_n = length(n); ?}RPn f  
    y>^FKN/  
    if any(mod(n-m,2)) 3 C{A  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') &R5zt]4d&  
    end O NVhB  
    xO[V>Ud  
    if any(m<0) ^XX_ qC'1  
        error('zernpol:Mpositive','All M must be positive.') R_W6}  
    end /|0xOiib  
    mqtX7rej  
    if any(m>n) Vx z`  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') P{,A%t  
    end ]sTbEw.[  
    QUeuN?3X\  
    if any( r>1 | r<0 ) ]!q>@b  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') EDT9O  
    end >{S ~(KxK  
    hCBre5  
    if ~any(size(r)==1) 40%fOu,u`  
        error('zernpol:Rvector','R must be a vector.') p$=Z0p4%LL  
    end $J8g)cS  
    Al1_\vx7  
    r = r(:); f$76p!pDa  
    length_r = length(r); C(8VXtx_  
    E+ctiVL  
    if nargin==4 nW)?cQ I  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); ZIN1y;dJ  
        if ~isnorm J}NMF#w/;  
            error('zernpol:normalization','Unrecognized normalization flag.') IwXWtVL  
        end > ^=n|%  
    else IR:GoD+  
        isnorm = false; #_eXybUV  
    end C7O8B;  
    Lk)I;;  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% yg.o?eML  
    % Compute the Zernike Polynomials ebn3r:IU-  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% z3Yi$*q <  
    Mz.C`Z>o  
    % Determine the required powers of r: inY_cn?  
    % ----------------------------------- 5,-g^o7  
    rpowers = []; %~I&T". iC  
    for j = 1:length(n) egK~w8`W%  
        rpowers = [rpowers m(j):2:n(j)]; r?itd)WC<X  
    end ~!S/{Un   
    rpowers = unique(rpowers); Gphy8~eS  
    qfG:v Tm  
    % Pre-compute the values of r raised to the required powers, NE.h/+4  
    % and compile them in a matrix: lz!(OO,g  
    % ----------------------------- R?zlZS.~  
    if rpowers(1)==0 ,hH c -%-  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); N5{v;~Cm}V  
        rpowern = cat(2,rpowern{:}); \q?^DI:`   
        rpowern = [ones(length_r,1) rpowern]; : tBe/(e4#  
    else ?N<,;~  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); [n2zdiiBd  
        rpowern = cat(2,rpowern{:}); B{b?j*fHJ  
    end {+zG.1o^  
    O1UArD  
    % Compute the values of the polynomials: \61H(,  
    % -------------------------------------- z . Z  
    z = zeros(length_r,length_n); \pk9i+t  
    for j = 1:length_n '<3h8\"  
        s = 0:(n(j)-m(j))/2; aGBd~y@e  
        pows = n(j):-2:m(j); FShUw+y  
        for k = length(s):-1:1 b}fC' h  
            p = (1-2*mod(s(k),2))* ...  LtH j  
                       prod(2:(n(j)-s(k)))/          ... !ui t  
                       prod(2:s(k))/                 ... T;5VNRgpI  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... rrR"2WuGO  
                       prod(2:((n(j)+m(j))/2-s(k))); >;XtJJS  
            idx = (pows(k)==rpowers); }]H7uC!t   
            z(:,j) = z(:,j) + p*rpowern(:,idx); 8!0fT}  
        end ^, YTQ.O  
         :1Nc6G  
        if isnorm g4=C]\1  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); (V&8 WN  
        end H#7=s{u  
    end '$Z@oCY#  
    YzQ(\._s  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  S76MY&Vx23  
    dT&u}o3X  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 htrtiJ1  
    ^*UtF9~%n  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)