切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11055阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 arK(dg~S  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! v 9k\[E?  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 ZAJ~Tbm[f  
    function z = zernfun(n,m,r,theta,nflag) V= g u'~  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. $~e55X'!+  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 63`5A3rii  
    %   and angular frequency M, evaluated at positions (R,THETA) on the g-pEt#  
    %   unit circle.  N is a vector of positive integers (including 0), and }wB!Bx2  
    %   M is a vector with the same number of elements as N.  Each element '2qbIYanh  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) Qo/pz2N  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, HCKocL/]h  
    %   and THETA is a vector of angles.  R and THETA must have the same /H?) qk  
    %   length.  The output Z is a matrix with one column for every (N,M) FwE<_hq//  
    %   pair, and one row for every (R,THETA) pair. U:AB%gr[  
    % 5d;(D i5z  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike %H[~V f?d  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), j/8q  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral ?7#{#sj  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, %x./>-[t  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized C).+h7{nd  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ^V~^[Yp  
    % >u\'k +=  
    %   The Zernike functions are an orthogonal basis on the unit circle. },=ORIB B:  
    %   They are used in disciplines such as astronomy, optics, and )gx*;z@  
    %   optometry to describe functions on a circular domain. SB|Cr:wM  
    % RDU 'l^  
    %   The following table lists the first 15 Zernike functions. HXN. ,[  
    % QFB2,k6jN  
    %       n    m    Zernike function           Normalization |['SiO$)  
    %       -------------------------------------------------- as73/J6  
    %       0    0    1                                 1 3!h3flE  
    %       1    1    r * cos(theta)                    2 th{ie2$  
    %       1   -1    r * sin(theta)                    2 l*Q OM  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) [s+FX5'K  
    %       2    0    (2*r^2 - 1)                    sqrt(3) uF ;8B]"  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) NxzAlu  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) |kF"p~s  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) - i{1h"  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) g7w#;E  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) =eR#]d  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) tI  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10)  T4J WZ  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) /eBcPu"[Vb  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 5Z(q|nn7P  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) -M+o;  
    %       -------------------------------------------------- |RBL5,t^  
    % gk}.L E  
    %   Example 1: ]D^zTl3=q  
    % =I9hGj6  
    %       % Display the Zernike function Z(n=5,m=1) a *bc#!e  
    %       x = -1:0.01:1; /GO((v+J  
    %       [X,Y] = meshgrid(x,x); -^*8D(j*  
    %       [theta,r] = cart2pol(X,Y); p`S~UBcL.  
    %       idx = r<=1; Gx|/ Jq  
    %       z = nan(size(X)); 29W`L2L  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); -j^G4J  
    %       figure @7sHFwtar?  
    %       pcolor(x,x,z), shading interp ,!^g8zO  
    %       axis square, colorbar ;[7#h8  
    %       title('Zernike function Z_5^1(r,\theta)') 8SBa w'a  
    % PKev)M;C+  
    %   Example 2: @sRb1+nn  
    % CX7eCo  
    %       % Display the first 10 Zernike functions "Z"`X3,-z  
    %       x = -1:0.01:1; rm<`H(cT  
    %       [X,Y] = meshgrid(x,x); sDwE,f0h  
    %       [theta,r] = cart2pol(X,Y); ;`Sn66&  
    %       idx = r<=1; V.!z9AQ  
    %       z = nan(size(X)); orEb+  
    %       n = [0  1  1  2  2  2  3  3  3  3]; wh3Wuh?x  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; t&C0V|s79$  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; F3nPQw{;  
    %       y = zernfun(n,m,r(idx),theta(idx)); -}5dZ;  
    %       figure('Units','normalized') (OG>=h8?  
    %       for k = 1:10 ai)?RF  
    %           z(idx) = y(:,k); @ 3b-  
    %           subplot(4,7,Nplot(k)) gT|&tTS1@  
    %           pcolor(x,x,z), shading interp  P!/:yWd  
    %           set(gca,'XTick',[],'YTick',[]) PkK#HD  
    %           axis square 602=qb  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) AVp"<Uv  
    %       end E;r~8^9)  
    % &RlYw#*1.  
    %   See also ZERNPOL, ZERNFUN2. \qbEC.-K  
    6}_J;g\|  
    %   Paul Fricker 11/13/2006 (k %0|%eR  
    0[s<!k9=  
    !_:|mu'  
    % Check and prepare the inputs: ^p~3H  
    % ----------------------------- sv*xO7D.  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) rzKn5Z  
        error('zernfun:NMvectors','N and M must be vectors.') e)4L}a  
    end f q*V76F  
    (P nrY~9  
    if length(n)~=length(m) HTP~5J  
        error('zernfun:NMlength','N and M must be the same length.') j2:A@ a6  
    end \fC}l Ll  
    q%FXox~b  
    n = n(:); BeM|1pe.  
    m = m(:); R(A"6a8*  
    if any(mod(n-m,2)) YfH+kDT  
        error('zernfun:NMmultiplesof2', ... I=V]_Ik4 N  
              'All N and M must differ by multiples of 2 (including 0).') }/z\%Y  
    end SG3qNM: g  
    M+\LH  
    if any(m>n) o(5 ( ]bJ  
        error('zernfun:MlessthanN', ... #]Q.B\\  
              'Each M must be less than or equal to its corresponding N.') "cX*GTNi8  
    end UyOoyyd.  
    6H!"oC&  
    if any( r>1 | r<0 ) dRLvej,  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') ZSW`/}Dp;  
    end yl~h `b4  
    u}KEH@yv  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) LwIX&\Ub  
        error('zernfun:RTHvector','R and THETA must be vectors.') 4Yl:1rz  
    end Edav }z  
    w77"?kJ9X  
    r = r(:); C AF{7 `{  
    theta = theta(:); 3.I:`>;EO  
    length_r = length(r); iLG~_Ob:  
    if length_r~=length(theta) o*|j}hnbv  
        error('zernfun:RTHlength', ... Qtn%h:i S~  
              'The number of R- and THETA-values must be equal.') WUqfY?5  
    end 38O_PK  
    ZIM 5$JdCv  
    % Check normalization: Kg;1%J>ee  
    % -------------------- 0~j0x#  
    if nargin==5 && ischar(nflag) ZfN%JJOz(  
        isnorm = strcmpi(nflag,'norm'); Tg.}rNA4  
        if ~isnorm 9!oNyqQ  
            error('zernfun:normalization','Unrecognized normalization flag.') NX:i]t  
        end q/yL={H?  
    else '#0'_9}  
        isnorm = false; )}jXC4  
    end _8"%nV  
    v}\Nx[}  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% xA2 "i2k9  
    % Compute the Zernike Polynomials >~k"C,6  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% QWV12t$v  
    S-k:+4  
    % Determine the required powers of r: .`K<Iug1  
    % ----------------------------------- Ox1#}7`0>  
    m_abs = abs(m); X,8 ]g.<  
    rpowers = []; =%V(n{7=  
    for j = 1:length(n) qA6;Q$  
        rpowers = [rpowers m_abs(j):2:n(j)]; pT`oC&  
    end aM|^t:  
    rpowers = unique(rpowers); YCd[s[  
    11(:#4Y,  
    % Pre-compute the values of r raised to the required powers, qE&R.I!o  
    % and compile them in a matrix: 3@/\j^U  
    % ----------------------------- 0xYPK7a=L\  
    if rpowers(1)==0 <wZ2S3RNA  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); F"<TV&xf  
        rpowern = cat(2,rpowern{:}); %nfaU~IqK  
        rpowern = [ones(length_r,1) rpowern]; ]V K%6PQ0  
    else i#Y[I"'  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 9c@."O`  
        rpowern = cat(2,rpowern{:}); ?W(>Yefk  
    end D-tm'APq  
    %`[Oz[V  
    % Compute the values of the polynomials: lU[" ZFP  
    % -------------------------------------- 58@YWv Ak  
    y = zeros(length_r,length(n)); plRBfw>]N  
    for j = 1:length(n) +(-L  
        s = 0:(n(j)-m_abs(j))/2; 9=J+5V^qD<  
        pows = n(j):-2:m_abs(j); #DI%l`B  
        for k = length(s):-1:1 eZMDtB  
            p = (1-2*mod(s(k),2))* ... ;5bzXW#U  
                       prod(2:(n(j)-s(k)))/              ... .A. VOf_  
                       prod(2:s(k))/                     ... +I {ZW}rA  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... %9!, PeRe  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); vO#=]J8`  
            idx = (pows(k)==rpowers); NM;0@ o  
            y(:,j) = y(:,j) + p*rpowern(:,idx); .MzVc42<  
        end '*~_!lE5  
         5DEK`#*  
        if isnorm 69{BJ] q  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 1@)kNg)*$  
        end mu[:b  
    end ,u1Yn}  
    % END: Compute the Zernike Polynomials /Jjub3>Q  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +EZ Lic  
    G' 5p/:  
    % Compute the Zernike functions: {WE1^&Vk-}  
    % ------------------------------ Pde|$!Jo  
    idx_pos = m>0; q*|H*sS  
    idx_neg = m<0; aeQvIob@  
    w@&4dau  
    z = y; `5V=U9zdE  
    if any(idx_pos) K\7\  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); avmuI^LLs  
    end f.%mp$~T  
    if any(idx_neg) 6fozc2h@x%  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); -_bnGY%,  
    end 7S_rN!E1i*  
    7<<-\7`  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) s#%$aQ|Fp  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. ,f4VV\  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated iYqZBLf{S  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive  I~'%  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, KW* 2'C&  
    %   and THETA is a vector of angles.  R and THETA must have the same iP7 Cku}l  
    %   length.  The output Z is a matrix with one column for every P-value, Gb=pQ (n4  
    %   and one row for every (R,THETA) pair. c>_tV3TDA  
    % D5o[z:V7"  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike P=.yXirm?  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) O%g Q  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) L}E~CiL0n  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 #Tz$ona  
    %   for all p. V`/ E$a1&  
    % _JVFn=  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 g[oa'.*OB  
    %   Zernike functions (order N<=7).  In some disciplines it is MI: rH  
    %   traditional to label the first 36 functions using a single mode y&ZyThqg  
    %   number P instead of separate numbers for the order N and azimuthal eP d  
    %   frequency M. 03ol6y )C  
    % hA6   
    %   Example: YXJreM5  
    % p<eu0B_V  
    %       % Display the first 16 Zernike functions o!]muO*Rm  
    %       x = -1:0.01:1; 7L%JCH#F  
    %       [X,Y] = meshgrid(x,x); DFgQ1:6[  
    %       [theta,r] = cart2pol(X,Y); HE;}B!>  
    %       idx = r<=1; {7k Jj(Ue  
    %       p = 0:15; \dm5Em/  
    %       z = nan(size(X)); [>2iz  
    %       y = zernfun2(p,r(idx),theta(idx)); IhIz 7.|  
    %       figure('Units','normalized') Kyf,<z F  
    %       for k = 1:length(p) %^ bHQB%  
    %           z(idx) = y(:,k); RP@U0o  
    %           subplot(4,4,k) )8cb @N  
    %           pcolor(x,x,z), shading interp Uuxx^>"h\  
    %           set(gca,'XTick',[],'YTick',[]) 8t1XZ  
    %           axis square "QKCZ8_C  
    %           title(['Z_{' num2str(p(k)) '}']) #r=Jc8J_  
    %       end TANv)&,|9  
    % 8a,uM :  
    %   See also ZERNPOL, ZERNFUN. Ulf'gD4e  
    L;7u0Yg  
    %   Paul Fricker 11/13/2006 Qe[ejj1o:  
    "{;E+-/ aL  
    x%v[(*F#y  
    % Check and prepare the inputs: h SeXxSb:  
    % ----------------------------- o>6c?Xi&  
    if min(size(p))~=1 ~'9\y"N1  
        error('zernfun2:Pvector','Input P must be vector.') J~]Y  
    end ~WjK'N4n5  
    AV>_ bw.  
    if any(p)>35 ]<3n;*8k?  
        error('zernfun2:P36', ... %.h&W;  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... `WUyffS/!  
               '(P = 0 to 35).']) %(uYYr 6  
    end 9-W3}4'e  
    i_c'E;|  
    % Get the order and frequency corresonding to the function number: K7 J RCLA  
    % ---------------------------------------------------------------- W?F Q  
    p = p(:); Ybkydc  
    n = ceil((-3+sqrt(9+8*p))/2); K8=jkU  
    m = 2*p - n.*(n+2); VLfc6:Yg  
    g@O H,h/  
    % Pass the inputs to the function ZERNFUN: {;L,|(o^  
    % ---------------------------------------- [n2+`A  
    switch nargin Ke;eI+P[  
        case 3 H|IG"JB  
            z = zernfun(n,m,r,theta); :R{pV7<O  
        case 4 $a01">q&y  
            z = zernfun(n,m,r,theta,nflag); \ xJ_ )r  
        otherwise YMU2^,3  
            error('zernfun2:nargin','Incorrect number of inputs.') B? aMX,1  
    end 2dyS_2u  
    :#VdFMC<  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) Dv*d$  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. SajG67  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of |vw],r6  
    %   order N and frequency M, evaluated at R.  N is a vector of 0j!xv(1  
    %   positive integers (including 0), and M is a vector with the *3KSOcQ  
    %   same number of elements as N.  Each element k of M must be a }BUm}.-{u,  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) DbSR(:  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is l>?f+70  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix sU+8'&vBp  
    %   with one column for every (N,M) pair, and one row for every 2 :4o`o  
    %   element in R. v5 @9  
    % =axuLP))  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- vGnFX0?h  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is 6M ;lD5(>  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to D/ VEl{ba-  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 Hr7?#ZX;e  
    %   for all [n,m]. lNsdbyV'  
    % ifNyVE Hy  
    %   The radial Zernike polynomials are the radial portion of the I+F >^4_d  
    %   Zernike functions, which are an orthogonal basis on the unit =A*a9c2  
    %   circle.  The series representation of the radial Zernike gt9(5p  
    %   polynomials is &lgzNC9g%  
    % A>8~deZ9  
    %          (n-m)/2 BCuoFw)  
    %            __ ULhXyItL  
    %    m      \       s                                          n-2s WD_{bd)  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r (< >Lfn  
    %    n      s=0 rvU^W+d  
    % l^^Z}3^Rk  
    %   The following table shows the first 12 polynomials. #].q jOj  
    % >& 4):  
    %       n    m    Zernike polynomial    Normalization  LJ;&02w@  
    %       --------------------------------------------- *fs[]q'Q  
    %       0    0    1                        sqrt(2) X`3_ yeQc  
    %       1    1    r                           2 +_{cq@c  
    %       2    0    2*r^2 - 1                sqrt(6) gj iFpW4  
    %       2    2    r^2                      sqrt(6) ,zuS)?  
    %       3    1    3*r^3 - 2*r              sqrt(8) 2$MoKO x8$  
    %       3    3    r^3                      sqrt(8) (?g+.]Dt,  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) +p`BoF9~  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) Y<jX[ET!  
    %       4    4    r^4                      sqrt(10) vS"h`pL  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) k ~Q 5Cs  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) 3AglvGK7{  
    %       5    5    r^5                      sqrt(12) MkHkM  
    %       --------------------------------------------- Cn{v\Q~.4  
    % jo0XF]  
    %   Example: `K:n=hpF  
    % $f _C~O  
    %       % Display three example Zernike radial polynomials 4JU 2x  
    %       r = 0:0.01:1; 1Jdx#K  
    %       n = [3 2 5]; ~-[!>1!%  
    %       m = [1 2 1]; @/?i|!6  
    %       z = zernpol(n,m,r); P(FlU]q  
    %       figure "O-X*>?f  
    %       plot(r,z) SSCs96  
    %       grid on ul~6zBKO   
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') b !y  
    % |5%T)  
    %   See also ZERNFUN, ZERNFUN2. n$XEazUb0N  
    G3`9'-2q@c  
    % A note on the algorithm. uY(8KW  
    % ------------------------ P 4t@BwU$  
    % The radial Zernike polynomials are computed using the series g Oe!GnO  
    % representation shown in the Help section above. For many special LGW:+c  
    % functions, direct evaluation using the series representation can f^*Yqa  
    % produce poor numerical results (floating point errors), because *r[V[9+y-D  
    % the summation often involves computing small differences between gKl9Nkd!R  
    % large successive terms in the series. (In such cases, the functions =+K?@;?  
    % are often evaluated using alternative methods such as recurrence `A%WCd60Tc  
    % relations: see the Legendre functions, for example). For the Zernike I|c!:4  
    % polynomials, however, this problem does not arise, because the @MVul_@6  
    % polynomials are evaluated over the finite domain r = (0,1), and kS &>g  
    % because the coefficients for a given polynomial are generally all 6WT3-@d  
    % of similar magnitude. j5Da53c#^  
    % 9PA<g3z  
    % ZERNPOL has been written using a vectorized implementation: multiple 7l$ u.[  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] q?Csm\Y  
    % values can be passed as inputs) for a vector of points R.  To achieve Pzq^x]  
    % this vectorization most efficiently, the algorithm in ZERNPOL qEXN} Pq<  
    % involves pre-determining all the powers p of R that are required to 8#lq:  
    % compute the outputs, and then compiling the {R^p} into a single 8C8S) ;  
    % matrix.  This avoids any redundant computation of the R^p, and PuREqa\_[  
    % minimizes the sizes of certain intermediate variables. :H3/+/x  
    % 8Th,C{  
    %   Paul Fricker 11/13/2006 >W8"Ar  
    Ky"F L   
    =f y|Dm74  
    % Check and prepare the inputs: h'};spv  
    % ----------------------------- p&x!m}!  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) _J!&R:]$  
        error('zernpol:NMvectors','N and M must be vectors.') ^~-YS-.J#,  
    end {&>rKCi  
    l*z% Jw  
    if length(n)~=length(m) [.fh2XrVM  
        error('zernpol:NMlength','N and M must be the same length.') fn,hP_  
    end C0/^6Lu"o  
    ZSK_Lux>  
    n = n(:); d8vf kV B  
    m = m(:); z2t+1 In,  
    length_n = length(n); Nj3iZD|  
    -*4*hHmb  
    if any(mod(n-m,2)) pXl[I;  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') ws5Ue4g|  
    end Z3hZy&_I  
    3k9n*jY0  
    if any(m<0) y)&K9 I  
        error('zernpol:Mpositive','All M must be positive.') ;10YG6:  
    end P'OvwA  
    :=;{w~D  
    if any(m>n) jhf3(hx&F  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') El5} f4sl  
    end "}qs +  
    1J"9Y81   
    if any( r>1 | r<0 ) lP`BKc,  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') >*h+ N? m  
    end #DFi-o&-  
    iBAP,cR?`  
    if ~any(size(r)==1) ]$Z:^" JS3  
        error('zernpol:Rvector','R must be a vector.') ]5S`y{j1  
    end aim\ 3y~  
    Na/Y1RW  
    r = r(:); |A 'I!Jm  
    length_r = length(r); Ql)hIf$Oo  
    Cn3 _D  
    if nargin==4 N7J?S~x  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); $N)G:=M!s  
        if ~isnorm :}v-+eIQ  
            error('zernpol:normalization','Unrecognized normalization flag.') lUs$I{2_  
        end d6QrB"J`  
    else }psRgF  
        isnorm = false; }l7+W4~  
    end >[|N%9\  
    c]ARgrH-  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% X n!mdR  
    % Compute the Zernike Polynomials %/ y=_G  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ~SQ xFAto  
    4kM/`g6?,q  
    % Determine the required powers of r: {s0%XG1$  
    % ----------------------------------- |cma7q}p  
    rpowers = []; zW%Em81Wd  
    for j = 1:length(n) 0wv#AT  
        rpowers = [rpowers m(j):2:n(j)]; Z*co\ pW  
    end +`Z1L\gmA  
    rpowers = unique(rpowers); >%U+G0Fq  
     '/.Dxib  
    % Pre-compute the values of r raised to the required powers, f?sm~PwC-  
    % and compile them in a matrix: :9UgERjra  
    % ----------------------------- t Y  
    if rpowers(1)==0 1^WGJ"1  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); =WY'n l'  
        rpowern = cat(2,rpowern{:}); kKSGC?d  
        rpowern = [ones(length_r,1) rpowern]; f"5O'QHGQK  
    else 7a'yO+7-)  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); A ]A{HEX  
        rpowern = cat(2,rpowern{:}); W%g*sc*+  
    end ;yt6Yp.6e  
    SU~a()"  
    % Compute the values of the polynomials: ! dzgi:  
    % -------------------------------------- >s{I@#9  
    z = zeros(length_r,length_n); .r<a Py$  
    for j = 1:length_n ':wf%_Iw  
        s = 0:(n(j)-m(j))/2; elCYH9W^  
        pows = n(j):-2:m(j); Z ;.-UXat  
        for k = length(s):-1:1 /e'3\,2_  
            p = (1-2*mod(s(k),2))* ... ^Qs}2%  
                       prod(2:(n(j)-s(k)))/          ... /88s~=  
                       prod(2:s(k))/                 ... `-L?x2)U  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... +'?Qph6o,7  
                       prod(2:((n(j)+m(j))/2-s(k))); .*zS2 z  
            idx = (pows(k)==rpowers); ,@ 8+%KqG  
            z(:,j) = z(:,j) + p*rpowern(:,idx); &R72$H9C8i  
        end ,5n!a.T  
         lhN@ ,q  
        if isnorm YvU%OO-+,  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); ~wb1sn3  
        end =:WZV8@%  
    end O^@8Drgc  
    p'/\eBhG]=  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  \' O/3Y7?X  
    bJ2-lU% ;2  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 4H 6t" X  
    M+t)#O4  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)