非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 -|g~--@Q
function z = zernfun(n,m,r,theta,nflag) L \pe
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. XSXS;Fh)
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N
1I_(!F{Ho
% and angular frequency M, evaluated at positions (R,THETA) on the EiSS_Lc
% unit circle. N is a vector of positive integers (including 0), and ~qs97'
% M is a vector with the same number of elements as N. Each element p;g$D=2
% k of M must be a positive integer, with possible values M(k) = -N(k) sk9*3d5I
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, WJ8i,7
% and THETA is a vector of angles. R and THETA must have the same <yBZsSj
% length. The output Z is a matrix with one column for every (N,M) JW
(.,Ztm
% pair, and one row for every (R,THETA) pair. Ao(Xz$cQfW
% K%O%#Kk
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ^As^hY^p
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), qy"#XbBeV
% with delta(m,0) the Kronecker delta, is chosen so that the integral Bi9 S1p
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ) m[0,
% and theta=0 to theta=2*pi) is unity. For the non-normalized jUYb8:B
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. "1t%J7c_
% V^[o{'+
% The Zernike functions are an orthogonal basis on the unit circle. ng"R[/)In
% They are used in disciplines such as astronomy, optics, and >T=($:n
% optometry to describe functions on a circular domain. CtfI&rb[
% |#>\GU=!
% The following table lists the first 15 Zernike functions. g ?qm >X
% x[zt(kC0+
% n m Zernike function Normalization ?Mtd3F^o?
% -------------------------------------------------- 'gI q_t|^
% 0 0 1 1 LY(YgqL
% 1 1 r * cos(theta) 2 NJRk##Z
% 1 -1 r * sin(theta) 2 *F[@lY\p
% 2 -2 r^2 * cos(2*theta) sqrt(6) -A^18r
% 2 0 (2*r^2 - 1) sqrt(3) Kf/1;:^
% 2 2 r^2 * sin(2*theta) sqrt(6) A!\g!*
% 3 -3 r^3 * cos(3*theta) sqrt(8) Y j;KKgk
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) f%<kcM2
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) [@(M%
% 3 3 r^3 * sin(3*theta) sqrt(8) ~bC{R&p
% 4 -4 r^4 * cos(4*theta) sqrt(10) h\k@7wgu
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) O`<id+rx
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) `7[z%cuK
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) tJ;<=.n
% 4 4 r^4 * sin(4*theta) sqrt(10) %ukFn
&-2@
% -------------------------------------------------- >)\x\e
% CY"&@v1
% Example 1: j51Wod<[
% 0]p!
Bscaf
% % Display the Zernike function Z(n=5,m=1) LQ(z~M0B
% x = -1:0.01:1; Q8OA{EUtq
% [X,Y] = meshgrid(x,x); kK\G+{z?
% [theta,r] = cart2pol(X,Y); 6aRPm%
% idx = r<=1; TrD2:N}dI
% z = nan(size(X)); Myaj81
% z(idx) = zernfun(5,1,r(idx),theta(idx)); M$iDaEu-
% figure CobMagPhr
% pcolor(x,x,z), shading interp ++1<A&a
% axis square, colorbar lV924mh
% title('Zernike function Z_5^1(r,\theta)') O|wu;1pQ
% Ad$CHx-
% Example 2: Va"H.]
% b|jdYJbol&
% % Display the first 10 Zernike functions ,41Z_h
% x = -1:0.01:1; ])Rs.Y{Q5
% [X,Y] = meshgrid(x,x); PY.4J4nn|
% [theta,r] = cart2pol(X,Y); ^K[WFi N}
% idx = r<=1; Y%$@ZYW
% z = nan(size(X)); I!LSDi3
% n = [0 1 1 2 2 2 3 3 3 3]; ^jY/w>UdH
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; t3LRmjL
% Nplot = [4 10 12 16 18 20 22 24 26 28]; p=13tQS<
% y = zernfun(n,m,r(idx),theta(idx)); 0
]K\G55
% figure('Units','normalized') o9GtS$O\
% for k = 1:10 EY+/
foP
% z(idx) = y(:,k); Z/
w}so
% subplot(4,7,Nplot(k)) 'DLgOUvh
% pcolor(x,x,z), shading interp d}B_ wz'
% set(gca,'XTick',[],'YTick',[]) "^gV.
% axis square {9mXJu$cc
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) o}^/Km+t
% end pX 4:WV
% s0D,n1x
% See also ZERNPOL, ZERNFUN2. ppYIVI
|aWeo.;c
% Paul Fricker 11/13/2006 AlPk o($E*
]\TYVv)
/i!3Fr"
% Check and prepare the inputs: *;N6S~_'Y
% ----------------------------- dio<?6ZD9P
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) cpY'::5.%
error('zernfun:NMvectors','N and M must be vectors.') <xn96|$
end ;pH&YBY
O8\> ?4)
if length(n)~=length(m) 3P}^Wu
error('zernfun:NMlength','N and M must be the same length.') 2D'b7zPJ3
end HLL:nczj
}^b7x;O|
n = n(:); `qXCY^BH2
m = m(:); 7A,QA5G]C
if any(mod(n-m,2)) dx.,
error('zernfun:NMmultiplesof2', ... 6_rgj{L
'All N and M must differ by multiples of 2 (including 0).') *- S/{
.&
end Gl!fT1zh0
,V`zW<8
if any(m>n) QXaE2}}P
error('zernfun:MlessthanN', ... r}>q*yx:
'Each M must be less than or equal to its corresponding N.') '!V5 #J
end nuvRjd^N
t%k1=Ow5i
if any( r>1 | r<0 ) $T#yxx
error('zernfun:Rlessthan1','All R must be between 0 and 1.') - WEEnwZ
end #&$a7L}
7RpAsLH=
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) \c1NIuJR
error('zernfun:RTHvector','R and THETA must be vectors.') 2SABu796j
end =cP7"\
0m&
r = r(:); f+c<