非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 f f"Clp
function z = zernfun(n,m,r,theta,nflag) ;2RCgX!'%
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. tZ1iaYbvV
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 9s)YPlDz
% and angular frequency M, evaluated at positions (R,THETA) on the Dbr(Wg
% unit circle. N is a vector of positive integers (including 0), and lkp!S3,
% M is a vector with the same number of elements as N. Each element kl[bDb1p
% k of M must be a positive integer, with possible values M(k) = -N(k) ?Gr<9e2Eo
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, m^_)aS
% and THETA is a vector of angles. R and THETA must have the same )|/t}|DIx
% length. The output Z is a matrix with one column for every (N,M) ))63?_
% pair, and one row for every (R,THETA) pair. =Feavyx
% 5}e-~-
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike GpF, =:
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), C78d29
% with delta(m,0) the Kronecker delta, is chosen so that the integral e*vSGT$KgL
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ihH!"HH+
% and theta=0 to theta=2*pi) is unity. For the non-normalized GMOv$Tn-_L
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ]\P
% [AR$Sw60
% The Zernike functions are an orthogonal basis on the unit circle. ?AY596
% They are used in disciplines such as astronomy, optics, and V&KH{j/P
% optometry to describe functions on a circular domain. ,=>O/!s
% =fBJQK2sk
% The following table lists the first 15 Zernike functions. C%#C|X193
% ]8YHA}P
% n m Zernike function Normalization >T~{_|N
% -------------------------------------------------- ~C=`yj
% 0 0 1 1 c#9 zw[y-L
% 1 1 r * cos(theta) 2 r3ZY`zf
% 1 -1 r * sin(theta) 2 Q}]:lmqH
% 2 -2 r^2 * cos(2*theta) sqrt(6) r3Z-mJ$:
% 2 0 (2*r^2 - 1) sqrt(3) Ltcr]T(Ic
% 2 2 r^2 * sin(2*theta) sqrt(6) @tjC{?5Y
% 3 -3 r^3 * cos(3*theta) sqrt(8) CNcH)2Mk
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) SVXey?A;CJ
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) ZH:#~Zyj
% 3 3 r^3 * sin(3*theta) sqrt(8) 6@o_MtI
% 4 -4 r^4 * cos(4*theta) sqrt(10) $yaE!.Kc
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) snj4MA@I]
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) y9\s[}c_
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) U$VTk
% 4 4 r^4 * sin(4*theta) sqrt(10) L6$,<}l
% -------------------------------------------------- oB9Fas!N
% 2T?t[;-
% Example 1: Q;r 0#"
% */\dH<
% % Display the Zernike function Z(n=5,m=1) v-G(bw3
% x = -1:0.01:1; 9FV#@uA}D
% [X,Y] = meshgrid(x,x); w/G5I )G
% [theta,r] = cart2pol(X,Y); pS%,wjb&P
% idx = r<=1; 4KybN
% z = nan(size(X)); O";r\Z
% z(idx) = zernfun(5,1,r(idx),theta(idx)); "cJ5Fd:*
% figure shn`>=0.&
% pcolor(x,x,z), shading interp .M:,pw"S]
% axis square, colorbar W,Dr2$V
% title('Zernike function Z_5^1(r,\theta)') aKCCFHq t!
% w #(XiH*
% Example 2: E pM
4+
% WHAEB1c#Q
% % Display the first 10 Zernike functions ^@X
=v`C
% x = -1:0.01:1; nk-6W4
% [X,Y] = meshgrid(x,x); 9M01}
% [theta,r] = cart2pol(X,Y); NqqLRgMOR'
% idx = r<=1; V=(4
c
% z = nan(size(X)); Bfw>2
% n = [0 1 1 2 2 2 3 3 3 3]; oF,8j1
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; D"1ciO8^I]
% Nplot = [4 10 12 16 18 20 22 24 26 28]; %_tL}m{?
% y = zernfun(n,m,r(idx),theta(idx)); >y]YF3?
% figure('Units','normalized') )J#@L*
% for k = 1:10 RFA5vCG
% z(idx) = y(:,k); *QLl
jGe
% subplot(4,7,Nplot(k)) \UB<'~z6!
% pcolor(x,x,z), shading interp L**!$k"{5
% set(gca,'XTick',[],'YTick',[]) Fd'Ang6"
% axis square &5d>jEaB}
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) U?|s/U
% end >Ckb9A
% )_bXKYUX*0
% See also ZERNPOL, ZERNFUN2. TS3 00F
<j,7Z>Rk\x
% Paul Fricker 11/13/2006 %8{' XJ!
$g|g}>Sc
/h2`?~k+
% Check and prepare the inputs: kt;X|`V{5z
% ----------------------------- )SDGj;j+
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) )XO2DY1/&
error('zernfun:NMvectors','N and M must be vectors.') $ h_ @`j
end g>f(5
VCc4nn#
if length(n)~=length(m) Mu:*(P/
error('zernfun:NMlength','N and M must be the same length.') };zF&
end 7?hCt
e[e2X<&0RT
n = n(:); @&M$`b
^
m = m(:); g]d"d
if any(mod(n-m,2)) L
YH9P-5H
error('zernfun:NMmultiplesof2', ... * rs_k/2(
'All N and M must differ by multiples of 2 (including 0).') 'Y"q=@Ei9
end `C!Pe84(
o-)E_X
if any(m>n) Z.R^@@RqJ
error('zernfun:MlessthanN', ... "sHD8TUX
'Each M must be less than or equal to its corresponding N.') {h@R\bU
end 6(ja5)sn*
D% 50
if any( r>1 | r<0 ) |`O7>(h
error('zernfun:Rlessthan1','All R must be between 0 and 1.') sHEISNj/^
end c8}1-MKs_R
d;CD~s
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) #vS>^OyP
error('zernfun:RTHvector','R and THETA must be vectors.') fwl
RwH(
end zSq+#O1#
9'4cqR
r = r(:); aX
?ON
theta = theta(:); ul% q6=f)
length_r = length(r); X$st{@}ZB
if length_r~=length(theta) wL%>
error('zernfun:RTHlength', ... m*I5 \
'The number of R- and THETA-values must be equal.') }QC:!e,yG
end 1P[!B[;c
4`*jF'N[
% Check normalization: * |,V$
% -------------------- wPG3Ap8L
if nargin==5 && ischar(nflag) q+m&V#FT%
isnorm = strcmpi(nflag,'norm'); 8"S0E(,mu
if ~isnorm 7tt&/k?Q
error('zernfun:normalization','Unrecognized normalization flag.') *?i~AXJm
end 9h9Y:i*Gh5
else xwz2N5
isnorm = false; lFRgyEPH
end hy6px
-EL"Sv?
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% thq(tK7
% Compute the Zernike Polynomials :z^c<KFX
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% r\em-%:
s=KA(4p
% Determine the required powers of r: F!Nx^M1
% ----------------------------------- &Wn!W
m_abs = abs(m); U:IQWl C
rpowers = []; +i
K.+B
for j = 1:length(n) Z?^AX&F
rpowers = [rpowers m_abs(j):2:n(j)]; UDxfS4yI
end e+&/Tq'2
rpowers = unique(rpowers); r?[Zf2&
Xf Y]qQP
% Pre-compute the values of r raised to the required powers, ]i{-@Ven
% and compile them in a matrix: $osDw1C
% ----------------------------- t4 aa5@r
if rpowers(1)==0 ,{]>U'-
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ="XxS|Mq3
rpowern = cat(2,rpowern{:}); ==Y^~ab;K
rpowern = [ones(length_r,1) rpowern]; rVZkG,Q
else &}*[-z
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); PY) 74sa
rpowern = cat(2,rpowern{:}); )C <sj
end EpPKo
[dUW3}APV
% Compute the values of the polynomials: kkh#VGh"
% -------------------------------------- FVHEb\Z
y = zeros(length_r,length(n)); )2:d8J\
for j = 1:length(n) sx|=*j,_
s = 0:(n(j)-m_abs(j))/2; ,.DU)Wi?}
pows = n(j):-2:m_abs(j); t*n!kXa
for k = length(s):-1:1 Wny{qj)=
p = (1-2*mod(s(k),2))* ... V<(cW'zA/
prod(2:(n(j)-s(k)))/ ... Z(CzU{7c
prod(2:s(k))/ ... :5p`H
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... bY]aADv\
prod(2:((n(j)+m_abs(j))/2-s(k))); KZ&8aulP
idx = (pows(k)==rpowers); ^F_c'
y(:,j) = y(:,j) + p*rpowern(:,idx); d+z8^$z"
end *y u|]T
X(N!y"z
if isnorm OBu$T&
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); i]YH"t8GY
end @_0XK)pW
end UDGVq S!,E
% END: Compute the Zernike Polynomials 4fp}`U
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0(HUy`]>
Sh=z
% Compute the Zernike functions: j#.Aiy:,
% ------------------------------ 3-z57f,}6~
idx_pos = m>0; /2WGo-
idx_neg = m<0; UG 9uNgzQ/
l2z@t3{
z = y; }zj_Pp
if any(idx_pos) Un@d Wf6'
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 5_0Eh!sx
end THkg,*;:
if any(idx_neg) qy/xJ>:
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); kpLDK81I
end +<&_1%5+
XeJn,=
% EOF zernfun