非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 }rfikm
function z = zernfun(n,m,r,theta,nflag) Ge-Bk)6
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. px K&aY8
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N sV
a0eGc
% and angular frequency M, evaluated at positions (R,THETA) on the X'PZCg W
% unit circle. N is a vector of positive integers (including 0), and zvdut ,6<
% M is a vector with the same number of elements as N. Each element =b:XL#VA
% k of M must be a positive integer, with possible values M(k) = -N(k) 'Y)aGH(
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, mW%8`$rVEO
% and THETA is a vector of angles. R and THETA must have the same GT<oYrjU
% length. The output Z is a matrix with one column for every (N,M) pvyEs|f=%
% pair, and one row for every (R,THETA) pair. s%K( hk
% D/."0 #q
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike j9[I6ko5'
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), A|r3c?q
% with delta(m,0) the Kronecker delta, is chosen so that the integral w/nohZF6H
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, N, Ma\D+^t
% and theta=0 to theta=2*pi) is unity. For the non-normalized 37zBX~
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Z5 IWoY
% r9_ ON|
% The Zernike functions are an orthogonal basis on the unit circle. ]E<Z5G1HD
% They are used in disciplines such as astronomy, optics, and YJ6~P
% optometry to describe functions on a circular domain. W"vLCHTh
% Ldz]FB|
% The following table lists the first 15 Zernike functions. 5U475&
% ~k?rP}>0
% n m Zernike function Normalization <C'_:&M
% -------------------------------------------------- .u7}p#
% 0 0 1 1 bLai@mL&a
% 1 1 r * cos(theta) 2 ?/3wO/7[
% 1 -1 r * sin(theta) 2 V)<>W_g
% 2 -2 r^2 * cos(2*theta) sqrt(6) ,]2?S5R
% 2 0 (2*r^2 - 1) sqrt(3) c{/R?<
% 2 2 r^2 * sin(2*theta) sqrt(6) n]IF`kYQV
% 3 -3 r^3 * cos(3*theta) sqrt(8) dRJ
](Gw
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) XMI*obS'z
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) /@ @F
nQ++
% 3 3 r^3 * sin(3*theta) sqrt(8) n;Oe- +oSC
% 4 -4 r^4 * cos(4*theta) sqrt(10) lrv-[}}
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) s0?'mC+p
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) rS BI'op
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) rV%68x9
% 4 4 r^4 * sin(4*theta) sqrt(10) C{J5:ak
% -------------------------------------------------- hUlRtt
%
AfTm#-R
% Example 1: et
1HbX
% o7!A(Eu
% % Display the Zernike function Z(n=5,m=1) IEy$2f>Ns
% x = -1:0.01:1; /(BS<A
% [X,Y] = meshgrid(x,x); |:R\j0t
% [theta,r] = cart2pol(X,Y); :.+w'SEn4M
% idx = r<=1; TRi#
% z = nan(size(X)); L[2qCxB'^
% z(idx) = zernfun(5,1,r(idx),theta(idx)); a 20w.6F
% figure .Od:#(aq
% pcolor(x,x,z), shading interp PuP"(
M
% axis square, colorbar 71nZi`AR
% title('Zernike function Z_5^1(r,\theta)') utZI'5i
% caQ1SV^{9
% Example 2: plWNuEW
% ,/+Mp
% % Display the first 10 Zernike functions 7#E/Q~]'6
% x = -1:0.01:1; 4@0aN6Os
% [X,Y] = meshgrid(x,x); |D)CAQn,
% [theta,r] = cart2pol(X,Y); 2.Vrh@FNRo
% idx = r<=1; =T[P
% z = nan(size(X)); 7T)y"PZ
% n = [0 1 1 2 2 2 3 3 3 3]; -NwG'
U~
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; (10t,n$
% Nplot = [4 10 12 16 18 20 22 24 26 28]; ,'(|,f42
% y = zernfun(n,m,r(idx),theta(idx)); R@3HlGuRKw
% figure('Units','normalized') W8 g13oAu"
% for k = 1:10 5_!L"sJ
% z(idx) = y(:,k); eQ[akVMk
% subplot(4,7,Nplot(k)) Eg`~mE+a
% pcolor(x,x,z), shading interp V4Rs
% set(gca,'XTick',[],'YTick',[]) Sn-#Y(>]o0
% axis square "QOQ
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) vX }iA|`#
% end pqO3(2F9
% 5>9Q<*
% See also ZERNPOL, ZERNFUN2. }SSg>.48w
i
7]o[
% Paul Fricker 11/13/2006 nr]=O`Mvh
Ms6;iW9
%h ;oi/pe
% Check and prepare the inputs: uN<=v&]q
% ----------------------------- c/K#W$ l
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) fh =R
error('zernfun:NMvectors','N and M must be vectors.') {Ycgq%1>]
end |2^mCL.r
= cxO@Fu
if length(n)~=length(m) ti+e U$
error('zernfun:NMlength','N and M must be the same length.') ?/&X_O
end Nt8"6k_
*I?-A(e
n = n(:); N#M>2b<A/T
m = m(:); : _Y^o
if any(mod(n-m,2)) \/1~5mQ+
error('zernfun:NMmultiplesof2', ... oX)a6FXK>
'All N and M must differ by multiples of 2 (including 0).') .'M.yE~5J
end 2Di~}* 9&
AIOGa<^
if any(m>n) |iJz[%
error('zernfun:MlessthanN', ... RgoF4g+@
'Each M must be less than or equal to its corresponding N.') i}LQ}35@
end <T7@,_T
h:Gs9]Lvtv
if any( r>1 | r<0 ) ',hoe
error('zernfun:Rlessthan1','All R must be between 0 and 1.') -!+i
^r
end \Nik`v*Pd
LeN }Q
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 8i"CU:(
error('zernfun:RTHvector','R and THETA must be vectors.') X#axCDM-
end ,'c%S|]U7
Z%o.kd"
r = r(:); ypM,i
theta = theta(:); E*)A!2rlK
length_r = length(r); iOa<=
if length_r~=length(theta) }%w;@[@L
error('zernfun:RTHlength', ... \KJTR0EB:>
'The number of R- and THETA-values must be equal.') !m\By%(
end *><j(uz!
|8}y?kAC
% Check normalization: [x>Pf1
% -------------------- TCzz]?G]la
if nargin==5 && ischar(nflag) rMG[,:V
isnorm = strcmpi(nflag,'norm'); WuVsW3@
if ~isnorm C|H`.|Q
error('zernfun:normalization','Unrecognized normalization flag.') mu0L_u(P
end >7a
ENKOg:
else <EyJ $$
isnorm = false; ShRMzU
end XKp(31])
@I Y<i5(
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 9J%O$sF
% Compute the Zernike Polynomials UV%o&tv|<
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% zk70D_}L
xz@*V>QT
% Determine the required powers of r: q@1A2L\Om
% ----------------------------------- e{2Za
m_abs = abs(m); m?Jnb\0
rpowers = []; sfG9R"
for j = 1:length(n) 2:.$:wS
rpowers = [rpowers m_abs(j):2:n(j)]; ~mH'8K|l
end 56."&0
rpowers = unique(rpowers); 5Mxl({oI]
RU.j[8N$
% Pre-compute the values of r raised to the required powers, BB,-HhYT0
% and compile them in a matrix: 78T;b7!-C
% ----------------------------- aG"
if rpowers(1)==0 MAqETjB
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); p^{yA"MQ
rpowern = cat(2,rpowern{:}); N<(rP1)`v
rpowern = [ones(length_r,1) rpowern]; %xx;C{g;a
else oMn'{+(w
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); '#K~hep
rpowern = cat(2,rpowern{:}); ^l(,'>Cn
end L(y~
,Kc
K:4G(?w
% Compute the values of the polynomials: ,iiI5FR
% -------------------------------------- ?fU{?nI}>p
y = zeros(length_r,length(n)); ieEtC,U
for j = 1:length(n) M(^IRI-
s = 0:(n(j)-m_abs(j))/2; qyE*?73W
pows = n(j):-2:m_abs(j); 5U_ar
for k = length(s):-1:1 _n*gj-
p = (1-2*mod(s(k),2))* ... ('_S1?y
prod(2:(n(j)-s(k)))/ ... _Axw$oYS
prod(2:s(k))/ ... VF-[O
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... UA0R)BH'
prod(2:((n(j)+m_abs(j))/2-s(k))); bnp:J|(ld
idx = (pows(k)==rpowers); z1e+Ob&
y(:,j) = y(:,j) + p*rpowern(:,idx); IOrYm
end {yBd{x<>/
}
F*=+n
if isnorm usugjx^p
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); "g!/^A!!
end \<=.J`o{
end 78mJ3/?rC
% END: Compute the Zernike Polynomials ^3&-!<*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Df$Yn
dI,H:g
% Compute the Zernike functions: G)5Uiu:^X
% ------------------------------ 4=ha$3h$
idx_pos = m>0; d/?0xL W
idx_neg = m<0; j1@PfKh
j;rxr1+w
z = y; ~bjT,i
if any(idx_pos) v@!r$jZ
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 3A b_Z
end SkXx:@
if any(idx_neg) #4sSt-s&
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); >F!X'#Iv
end y*sqnzgF
'Ya- ;5Y]
% EOF zernfun