非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 M3 TsalF
function z = zernfun(n,m,r,theta,nflag) C-}@.wr(
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. +D@+j
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 2m*g,J?ql
% and angular frequency M, evaluated at positions (R,THETA) on the pef)c,U$
% unit circle. N is a vector of positive integers (including 0), and *3Vic
% M is a vector with the same number of elements as N. Each element UGb<&)
% k of M must be a positive integer, with possible values M(k) = -N(k) <\fB+ AZ
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, XHh!Q0v;
% and THETA is a vector of angles. R and THETA must have the same ROWI.|
% length. The output Z is a matrix with one column for every (N,M) 4ZX6=-u^
% pair, and one row for every (R,THETA) pair. !lnRl8oV
% vg"$&YX9"
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike -r'/PbV0
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), \{@n>Mh
% with delta(m,0) the Kronecker delta, is chosen so that the integral BKV,V/*p
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, moOc
G3=9
% and theta=0 to theta=2*pi) is unity. For the non-normalized C5F=J8pY
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. gB)Cmw*
% `q$a
p$?
% The Zernike functions are an orthogonal basis on the unit circle. ,bGYixIfYZ
% They are used in disciplines such as astronomy, optics, and Sc/\g
% optometry to describe functions on a circular domain. SZ&I4-
% okkMx"
% The following table lists the first 15 Zernike functions. %FhUjHm
% l(<=JUO;
% n m Zernike function Normalization r-s9]0"7~
% -------------------------------------------------- z|k0${iu#
% 0 0 1 1 E5+-N
% 1 1 r * cos(theta) 2 l2*o@&.
% 1 -1 r * sin(theta) 2 AhCqQ.O71
% 2 -2 r^2 * cos(2*theta) sqrt(6) }|j\QjH
% 2 0 (2*r^2 - 1) sqrt(3) Ifu[L&U
% 2 2 r^2 * sin(2*theta) sqrt(6) Tp[-,3L
% 3 -3 r^3 * cos(3*theta) sqrt(8) 5{Oq* |
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) *I6W6y;E=
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) !LX)
% 3 3 r^3 * sin(3*theta) sqrt(8) t8?$q})RL
% 4 -4 r^4 * cos(4*theta) sqrt(10) A0l-H/l7
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 5@-[[ $dk
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) [X7KlS9x2
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) iRIO~XVo
% 4 4 r^4 * sin(4*theta) sqrt(10) b$JrLZs$_
% -------------------------------------------------- @r*w 84
% hR+\,P#G[
% Example 1: >>b <)?3Rv
% 6g-Q
% % Display the Zernike function Z(n=5,m=1) &~K4I
% x = -1:0.01:1; NW4tQ;ad
% [X,Y] = meshgrid(x,x); %Ek!3t
% [theta,r] = cart2pol(X,Y); *mjPNp'3{m
% idx = r<=1; q\n,/#'i~
% z = nan(size(X)); M->BV9
% z(idx) = zernfun(5,1,r(idx),theta(idx)); c2RQwtN|
% figure {bP
)Fon
% pcolor(x,x,z), shading interp !Pc&Sg
% axis square, colorbar Fxx-2(U
% title('Zernike function Z_5^1(r,\theta)') s|[CvjL#0
% ?_t_rF(?6
% Example 2: .gclE~h.
% $V\Dl]a1
% % Display the first 10 Zernike functions >n"4M~I
% x = -1:0.01:1; Aryp!oW
% [X,Y] = meshgrid(x,x); v
vzP t.ag
% [theta,r] = cart2pol(X,Y); !I jU *c@
% idx = r<=1; gA:unsI
% z = nan(size(X)); Kn*LwWne
% n = [0 1 1 2 2 2 3 3 3 3]; ^r@,(r6w
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; ?ocBRla
% Nplot = [4 10 12 16 18 20 22 24 26 28]; TFG0~"4Cz
% y = zernfun(n,m,r(idx),theta(idx)); Y.b?.)u&
% figure('Units','normalized') ^e{]WH?
% for k = 1:10 t\XA
JU
% z(idx) = y(:,k); v];P| Fi
% subplot(4,7,Nplot(k)) GCj[ySCD
% pcolor(x,x,z), shading interp \#!B*:u
% set(gca,'XTick',[],'YTick',[]) mfx-Ja_a
% axis square `>Ms7G9S~e
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) n/ZX$?tKAK
% end u\q(v D.
% Y&j'2!g
% See also ZERNPOL, ZERNFUN2. VVw5)O1'
vyvb-oz;u
% Paul Fricker 11/13/2006 +n>p"+c
adWH';Q:
GDQQ4-|O
% Check and prepare the inputs: lFN|)(X
% ----------------------------- `d}t?qWS;F
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) `4-N@h
error('zernfun:NMvectors','N and M must be vectors.') `b KJ
end <<PXh&wu0
i<{:J -U|
if length(n)~=length(m) ~5o2jTNy`p
error('zernfun:NMlength','N and M must be the same length.') 6F_:,b^
end AfpC >>=@
'Ll'8 ps
n = n(:); Ce/D[%
m = m(:); W1JvLU5L*r
if any(mod(n-m,2)) ?=,7'@e
error('zernfun:NMmultiplesof2', ... X#o<))
'All N and M must differ by multiples of 2 (including 0).') fRjp(m
end 0|6Y%a\U
Z^c\M\`7
if any(m>n) wpD}#LRfm
error('zernfun:MlessthanN', ... 88VI
_<
'Each M must be less than or equal to its corresponding N.') :W#?U yo
end SmUiH9qNd,
6a704l%#hb
if any( r>1 | r<0 ) b%].D(qBy
error('zernfun:Rlessthan1','All R must be between 0 and 1.') u{cb[M
end n?QglN
=&^tfD
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) j8+>E?nm
error('zernfun:RTHvector','R and THETA must be vectors.') u%5 ,U-
end uFuP%f!yY
a4mRu|x
r = r(:); OQVo4yl"
theta = theta(:); C@g/{?\
length_r = length(r); ,n`S
,
if length_r~=length(theta) n5y0$S/D
error('zernfun:RTHlength', ... .O SQ8W}
'The number of R- and THETA-values must be equal.') g"N&*V2
end Oq:$GME
!{CaW4
% Check normalization: BKV:U\QZ
% -------------------- l{Et:W%|
if nargin==5 && ischar(nflag) [Wxf,rW i
isnorm = strcmpi(nflag,'norm'); p^w_-(p
if ~isnorm :jJ0 +Q
error('zernfun:normalization','Unrecognized normalization flag.') U|b)Bw<P
end ==S^IBG
else tYG6Gl
isnorm = false; !DD4Bqez
end %pLqX61t=
_p?s[r*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% B%5"B} nG
% Compute the Zernike Polynomials o*3\xg
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 8@
f+?g*i
-XnOj2
% Determine the required powers of r: nUK;M[
% ----------------------------------- %~M#3Ywa
m_abs = abs(m); 'wWuR@e#&
rpowers = []; ^a$L9p(
for j = 1:length(n) :m36{#
rpowers = [rpowers m_abs(j):2:n(j)]; `NNP}O2
end %r&36d'
rpowers = unique(rpowers); xZ(d*/6E
a*t>Ks'C
% Pre-compute the values of r raised to the required powers, CdMV(
% and compile them in a matrix: rxj#
% ----------------------------- \YHl(
if rpowers(1)==0 cqT%6Si
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ]]y4$[|L
rpowern = cat(2,rpowern{:}); |{RCvm
rpowern = [ones(length_r,1) rpowern]; 'Er\68
else !3{.
V\P)
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ZZYtaVF:
rpowern = cat(2,rpowern{:}); ce*?crOV
end $LG.rJ/*
A-*MH#QUKh
% Compute the values of the polynomials: $j\jT
% -------------------------------------- B5+$VQ
y = zeros(length_r,length(n)); 5=Y(.}6
for j = 1:length(n) yZ]?-7
s = 0:(n(j)-m_abs(j))/2; CAmIwAx6;
pows = n(j):-2:m_abs(j); Hz=s)6$ey
for k = length(s):-1:1 qE8Di\?
p = (1-2*mod(s(k),2))* ... 9<
S
prod(2:(n(j)-s(k)))/ ... #V$sb1u
prod(2:s(k))/ ... JSx[V<7m
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... c~}FYO$
prod(2:((n(j)+m_abs(j))/2-s(k)));
y|NY,{:]
idx = (pows(k)==rpowers); ",' Zr<T
y(:,j) = y(:,j) + p*rpowern(:,idx); 7K+eI!m.s
end DiZ;FHnaG?
Z-yoJZi
if isnorm c`N_MP
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); N34bB>_
end 4G hg~0
end w2jB6NQX
% END: Compute the Zernike Polynomials C
=B a|Z
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% P@x@5uC2
T5}5uk9
% Compute the Zernike functions: Y![8-L|Q
% ------------------------------ *}_i[6_\E
idx_pos = m>0; 6q7jI
)l
idx_neg = m<0; C%j@s|
i[w&