切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11750阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 QLq^[ >n  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! +="?[:  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 s-V5\Lip,  
    function z = zernfun(n,m,r,theta,nflag) >w,o|  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. i:9f#  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N '&?OhSeN  
    %   and angular frequency M, evaluated at positions (R,THETA) on the m+y5Q&;f  
    %   unit circle.  N is a vector of positive integers (including 0), and K `|%-k+D  
    %   M is a vector with the same number of elements as N.  Each element tI2V)i!  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) {)E)&lL  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, zZ rUS'8  
    %   and THETA is a vector of angles.  R and THETA must have the same `Sh#> Jp  
    %   length.  The output Z is a matrix with one column for every (N,M) 1SddZ5  
    %   pair, and one row for every (R,THETA) pair. $a'n{EP  
    % X,m6#vLK2  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike G}!dm0s$  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), _wMc7`6F  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral  V6opV&  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, } 0su[gy[  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized El3Y1g3+3  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. jNKu5"HB  
    % ~RlsgtX"  
    %   The Zernike functions are an orthogonal basis on the unit circle. XH9Y|FX%#  
    %   They are used in disciplines such as astronomy, optics, and b`?$;5  
    %   optometry to describe functions on a circular domain. }$6;g-|HX  
    % e^;<T9Esr  
    %   The following table lists the first 15 Zernike functions. y~,mIM$[@  
    % 60 D0z  
    %       n    m    Zernike function           Normalization P ?- #d\qi  
    %       -------------------------------------------------- G/l 28yt  
    %       0    0    1                                 1 Lt\Wz'6Y  
    %       1    1    r * cos(theta)                    2 !Ee#jCXS  
    %       1   -1    r * sin(theta)                    2 3em&7QM  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) _!vxX ]  
    %       2    0    (2*r^2 - 1)                    sqrt(3) )U6-&-07  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) l* ~".q;S  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) P0 R8 f  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) ,ALEfepo  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) m tPmVze  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) s8i@HO  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) Fjq~^_8  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) -&L(0?*qo  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) I_QWdxn  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 0A]+9@W;  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 5somoV B  
    %       -------------------------------------------------- X\\c=[#8-  
    % N*Is_V\R  
    %   Example 1: lCyBdY9n  
    % =f FTi1]/h  
    %       % Display the Zernike function Z(n=5,m=1) XsOz {?G  
    %       x = -1:0.01:1; &bh%>[  
    %       [X,Y] = meshgrid(x,x); -SyQ`V)T7N  
    %       [theta,r] = cart2pol(X,Y); ,{tz%\, %  
    %       idx = r<=1; E5>y?N  
    %       z = nan(size(X)); qFqK. u  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); puv/+!q  
    %       figure W~EDLLZ  
    %       pcolor(x,x,z), shading interp `$kKTc:f  
    %       axis square, colorbar itH` s<E  
    %       title('Zernike function Z_5^1(r,\theta)') G54,`uz2  
    % >gj%q$@  
    %   Example 2: K<BS%~,I  
    % lWiC$  
    %       % Display the first 10 Zernike functions @ V_@r@A  
    %       x = -1:0.01:1; 0!Zp4>l\Z  
    %       [X,Y] = meshgrid(x,x); U};~ff+  
    %       [theta,r] = cart2pol(X,Y); 2q4dCbJ!  
    %       idx = r<=1; 71g\fGG\  
    %       z = nan(size(X)); 8y9`xRy  
    %       n = [0  1  1  2  2  2  3  3  3  3]; .>/Tc  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; *x0nAo_n  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; am+'j5`Ys  
    %       y = zernfun(n,m,r(idx),theta(idx)); ")gd)_FOS  
    %       figure('Units','normalized') ,McwPHEMB  
    %       for k = 1:10 ZxvqLu  
    %           z(idx) = y(:,k); E%+aqA)f  
    %           subplot(4,7,Nplot(k)) $e99[y@  
    %           pcolor(x,x,z), shading interp JDa=+\_  
    %           set(gca,'XTick',[],'YTick',[]) { \r1A  
    %           axis square @bkZ< Gq  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) <'Ppu  
    %       end -Hx._I$l  
    % vt(A?$j|A  
    %   See also ZERNPOL, ZERNFUN2. $qvk9 B0E  
    Xp_3EQl  
    %   Paul Fricker 11/13/2006 X+R?>xq{=h  
    :!fP~(R'm  
    2D?V0>/  
    % Check and prepare the inputs: $y2"Q,n+  
    % ----------------------------- Nt>wzPd)  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) JA")L0a_  
        error('zernfun:NMvectors','N and M must be vectors.') YtQsSU  
    end rM{3]v{~  
    P7X':  
    if length(n)~=length(m) )P)Zds@F  
        error('zernfun:NMlength','N and M must be the same length.') W-72&\7  
    end }3}{}w0Y  
    $@VQ{S  
    n = n(:); c:$W5j('Z  
    m = m(:); ]>:LHW  
    if any(mod(n-m,2)) {j0c)SETN  
        error('zernfun:NMmultiplesof2', ... `1 tD&te0  
              'All N and M must differ by multiples of 2 (including 0).') =P,h5J  
    end vWGjc2_  
    sF+mfoMtG  
    if any(m>n) hwon ^?  
        error('zernfun:MlessthanN', ... 2O*(F>>dT  
              'Each M must be less than or equal to its corresponding N.') {I]X-+D|_  
    end tB,1+I=   
    )|d]0/<  
    if any( r>1 | r<0 ) H&yK{0H  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.')  Z>O2  
    end EYLqg`2A  
    =Nc}XFq  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) K~U5jp c  
        error('zernfun:RTHvector','R and THETA must be vectors.') 0/vmj,&B(  
    end b }^ylm  
    qMHI-h_A  
    r = r(:); IM^K]$q$47  
    theta = theta(:); xDJs0P4  
    length_r = length(r); cyQ&w>'  
    if length_r~=length(theta) <8'-azpJ6<  
        error('zernfun:RTHlength', ... u4W2 {  
              'The number of R- and THETA-values must be equal.') ;q3"XLV(T[  
    end 2G(RQ\Ro*  
    KA"D2j9wn  
    % Check normalization: 03{pxI  
    % -------------------- +O2z&a;q  
    if nargin==5 && ischar(nflag) e*zt;SR  
        isnorm = strcmpi(nflag,'norm'); ,[Bv\4Ah  
        if ~isnorm I Ceb2R  
            error('zernfun:normalization','Unrecognized normalization flag.') V>Zw" #Q  
        end Hxw 7Q?F  
    else AJ:(NV1=  
        isnorm = false; {dbPMx  
    end 4"=(kC~~  
    =/|2f; Q  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 9/@7NNKJ  
    % Compute the Zernike Polynomials Q&X#( 3&'  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 7M#irCX  
    w7;,+Jq  
    % Determine the required powers of r: u=U. +\f5  
    % ----------------------------------- ]W7e2:Hra  
    m_abs = abs(m); {e1akg.  
    rpowers = []; [ q% Rx!L  
    for j = 1:length(n) &* Aems{-  
        rpowers = [rpowers m_abs(j):2:n(j)]; p1O[QQ|  
    end Ag6^>xb^  
    rpowers = unique(rpowers); ZbZCW:8>k  
    gaIN]9wLm  
    % Pre-compute the values of r raised to the required powers, tr<iFT}C  
    % and compile them in a matrix: Avc9W[4  
    % ----------------------------- JxV 0y  
    if rpowers(1)==0 BbV@ziL  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Hl3%+f  
        rpowern = cat(2,rpowern{:}); Zdm7As]  
        rpowern = [ones(length_r,1) rpowern]; ?Tr]zxtd  
    else %#zqZ|q  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 1dl@2CVS  
        rpowern = cat(2,rpowern{:}); `F^~*FnR,B  
    end 4$wn8!x2|  
    |_Tp:][mf  
    % Compute the values of the polynomials: BSMM3jXb  
    % -------------------------------------- 5g$]ou  
    y = zeros(length_r,length(n)); _!} L\E~  
    for j = 1:length(n) *?-,=%,z/  
        s = 0:(n(j)-m_abs(j))/2; 9Sy|:J0  
        pows = n(j):-2:m_abs(j); |@+/R .l  
        for k = length(s):-1:1 DC-tBbQkk  
            p = (1-2*mod(s(k),2))* ... }C<<l5/ z  
                       prod(2:(n(j)-s(k)))/              ... {?zBc E:  
                       prod(2:s(k))/                     ... o-f;$]yp>  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 8(b C.  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); /ZeN\ybx  
            idx = (pows(k)==rpowers); He}uE0^  
            y(:,j) = y(:,j) + p*rpowern(:,idx); EJz?GM  
        end z :q9~  
         b":3J)Y6.  
        if isnorm +IM: jrT(  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); YIc|0[ ]*|  
        end ]8c%)%Vi  
    end hbOyrjan x  
    % END: Compute the Zernike Polynomials .EXe3!J)!  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @uJ^k >B  
    fGz++;b<S  
    % Compute the Zernike functions: Wt,t5  
    % ------------------------------ 0|^/e -^  
    idx_pos = m>0; #3h~Z)+y  
    idx_neg = m<0; \mIm}+!H  
    ^F e %1Lnt  
    z = y; +pefk+  
    if any(idx_pos) T0Kjnzs  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); *2(W`m  
    end Pcs62aE  
    if any(idx_neg) &l0-0 T>  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Q~y) V  
    end l[P VWM  
    B'kV.3t  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) 97]$*&fH  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. ~dm/U7B:  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated "+@>!U  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive 8e:\T.)M  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, uh8+Y%V p  
    %   and THETA is a vector of angles.  R and THETA must have the same .R<Ke\y/  
    %   length.  The output Z is a matrix with one column for every P-value, (0c L! N;;  
    %   and one row for every (R,THETA) pair. =ll{M{0Q]!  
    % 5YW.s   
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike |LwW/>I  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) ZnVx 'Y  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) KVC$o+<'`%  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 DJu&l  
    %   for all p. sgRD]SF  
    % TSp;Vr OP  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 P_Bhec|#fT  
    %   Zernike functions (order N<=7).  In some disciplines it is YcQ3 :i  
    %   traditional to label the first 36 functions using a single mode /;K?Y#mf~j  
    %   number P instead of separate numbers for the order N and azimuthal ?u)[xEx6}+  
    %   frequency M. 2!y%nkO*  
    % yE80*C~d  
    %   Example: >e4w8Svcy  
    % $d +n},[C{  
    %       % Display the first 16 Zernike functions :/1/i&a  
    %       x = -1:0.01:1; xwm-)~L4T  
    %       [X,Y] = meshgrid(x,x); WL6p+sN'  
    %       [theta,r] = cart2pol(X,Y); L 2Z9g`>  
    %       idx = r<=1; YdT-E  
    %       p = 0:15; I {o\d'/  
    %       z = nan(size(X)); 4wa8Vw`  
    %       y = zernfun2(p,r(idx),theta(idx)); F[65)"^  
    %       figure('Units','normalized') =q4 QBAW  
    %       for k = 1:length(p) ~:|qdv%\  
    %           z(idx) = y(:,k);  Du*O|  
    %           subplot(4,4,k) jxt^d  
    %           pcolor(x,x,z), shading interp :6 \?{xD  
    %           set(gca,'XTick',[],'YTick',[]) ?Ww\D8yV&  
    %           axis square sXmZ0Dv  
    %           title(['Z_{' num2str(p(k)) '}']) u{/!BCKE  
    %       end 7LB#\2  
    % oV 7A"8L^a  
    %   See also ZERNPOL, ZERNFUN. yQ3*~d~U|L  
    v.aSf`K  
    %   Paul Fricker 11/13/2006 ,XZ[L? >  
    ZYBK'&J4m  
    2qY+-yOEt  
    % Check and prepare the inputs: pKM5<1J  
    % ----------------------------- ic+tn9f\  
    if min(size(p))~=1 Ju~8C\Dd  
        error('zernfun2:Pvector','Input P must be vector.') 1 ^k#g,  
    end ZV=)`E`I|  
    GsG9;6c+u  
    if any(p)>35 #CM^f^*  
        error('zernfun2:P36', ... z [qO5z~I  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... OSvv\3=  
               '(P = 0 to 35).']) g[W`4  
    end 9=-!~ _'1-  
    HKr6h?Si^  
    % Get the order and frequency corresonding to the function number: fR4O^6c:  
    % ---------------------------------------------------------------- [P*w$Hn  
    p = p(:); 6 s+ Z  
    n = ceil((-3+sqrt(9+8*p))/2); +QqEUf<U*,  
    m = 2*p - n.*(n+2); (S@H'G"  
    Dyx3N5?C  
    % Pass the inputs to the function ZERNFUN: !7:~"kk  
    % ---------------------------------------- lIN`1vX(  
    switch nargin |VC/ (A  
        case 3 x{B%TM-Ey  
            z = zernfun(n,m,r,theta); fYU-pdWPT  
        case 4 &UWSf  
            z = zernfun(n,m,r,theta,nflag); Tk'YpL#U  
        otherwise *+E9@r=HF  
            error('zernfun2:nargin','Incorrect number of inputs.') 9tnW:Nw~  
    end Cu%|}xq  
    CVi3nS5Yl  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) T[iwP~l  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. ZQHANr= 6  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of f1'NWec  
    %   order N and frequency M, evaluated at R.  N is a vector of X9f!F2x  
    %   positive integers (including 0), and M is a vector with the y@|gG&f T  
    %   same number of elements as N.  Each element k of M must be a .1yp}&e#  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) /=x) 9J  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is s!q6OVJ-  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix 89>U Koc?  
    %   with one column for every (N,M) pair, and one row for every io]e]m%  
    %   element in R. /x6,"M[97  
    % ]-$0?/`p8  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- CL*i,9:NR  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is yIwAJl7Xf  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to _u^ S[  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 1{oq8LB  
    %   for all [n,m]. Fz_SID  
    % Q0f7gY1-%  
    %   The radial Zernike polynomials are the radial portion of the sskwJu1  
    %   Zernike functions, which are an orthogonal basis on the unit Uk u~"OGC  
    %   circle.  The series representation of the radial Zernike 9S0I<<m  
    %   polynomials is g4WN+y`  
    % z?HP%g'M~  
    %          (n-m)/2 -.|V S|y  
    %            __ +'$=\d^  
    %    m      \       s                                          n-2s 'AX/?Srd  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r [N}:Di,S  
    %    n      s=0 :7t~p&J  
    % R 2uo ZA,  
    %   The following table shows the first 12 polynomials. zV\\T(R)  
    % 3_W1)vd{  
    %       n    m    Zernike polynomial    Normalization **V^8'W<  
    %       --------------------------------------------- [q/=%8qLUA  
    %       0    0    1                        sqrt(2) 3 T$gT  
    %       1    1    r                           2 G J=<~S"  
    %       2    0    2*r^2 - 1                sqrt(6) (^'TT>2B  
    %       2    2    r^2                      sqrt(6) +B$ o8V  
    %       3    1    3*r^3 - 2*r              sqrt(8) '~{^c}  
    %       3    3    r^3                      sqrt(8) ST3aiyG  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) ;E /:_DWPD  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) LB_y lfg  
    %       4    4    r^4                      sqrt(10) j4L ) D  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) HTK79 +  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) ?b0VB  
    %       5    5    r^5                      sqrt(12) Kd8V,teH  
    %       --------------------------------------------- e%w>QN`  
    % k:nR'TI  
    %   Example: 0FfBD[E:  
    % klduJ T >  
    %       % Display three example Zernike radial polynomials W is_N3M  
    %       r = 0:0.01:1; >OVi{NyT  
    %       n = [3 2 5]; @.f@N;z  
    %       m = [1 2 1]; wt4uzg8  
    %       z = zernpol(n,m,r); UXVjRY`M.\  
    %       figure M7 &u_Cn?  
    %       plot(r,z) &B\tcF  
    %       grid on i $H aE)qZ  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') je1f\N45  
    % wkK61a h6  
    %   See also ZERNFUN, ZERNFUN2. 3Xgf=yG:M  
    ]q DhGt  
    % A note on the algorithm. vr<6j/ty  
    % ------------------------ beFVjVVHq  
    % The radial Zernike polynomials are computed using the series |'WaBy1  
    % representation shown in the Help section above. For many special "Zd4e2>{M\  
    % functions, direct evaluation using the series representation can @O#4duM4Qz  
    % produce poor numerical results (floating point errors), because 2Q`@lTUv  
    % the summation often involves computing small differences between QLYb>8?"C  
    % large successive terms in the series. (In such cases, the functions gNJ,Bj Pd  
    % are often evaluated using alternative methods such as recurrence :SilQm*Pl  
    % relations: see the Legendre functions, for example). For the Zernike L DD^X@q  
    % polynomials, however, this problem does not arise, because the 7q*L-Xe]k  
    % polynomials are evaluated over the finite domain r = (0,1), and mHjds77e  
    % because the coefficients for a given polynomial are generally all S~fQ8t70  
    % of similar magnitude. @EH:4~  
    % Kl<qp7o0  
    % ZERNPOL has been written using a vectorized implementation: multiple B RF=TL5Z  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] u1a5Vtel  
    % values can be passed as inputs) for a vector of points R.  To achieve m`!C|?hu  
    % this vectorization most efficiently, the algorithm in ZERNPOL #W,BUN}  
    % involves pre-determining all the powers p of R that are required to }:C4T*|  
    % compute the outputs, and then compiling the {R^p} into a single E\Hhi.-  
    % matrix.  This avoids any redundant computation of the R^p, and ]Ln2|$R  
    % minimizes the sizes of certain intermediate variables. :IDD(<^9  
    % ucQ2/B#'4l  
    %   Paul Fricker 11/13/2006 8MgoAX,p  
    hM^#X,7  
    &/*XA  
    % Check and prepare the inputs: tL(B gku9  
    % ----------------------------- !_rAAY  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) l`8S1~j  
        error('zernpol:NMvectors','N and M must be vectors.') rH7|r\]r  
    end 4jefU}e9#  
    %E Jv!u*-  
    if length(n)~=length(m) sh(G{Yz@  
        error('zernpol:NMlength','N and M must be the same length.') `9rwu:3i  
    end .C(Ir  
    N*w/\|  
    n = n(:); u5^fiw]C  
    m = m(:); A\Rkt;:  
    length_n = length(n); mw)KyU#l,:  
    e`ti*1]q  
    if any(mod(n-m,2)) r=6-kC!T9  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') &3l g\&"  
    end -o*IJQ_  
    O_aZ\28};C  
    if any(m<0) XL>v$7`#  
        error('zernpol:Mpositive','All M must be positive.') 9X&Xc  
    end <RY5ZP  
    /n;-f%dL  
    if any(m>n) T X.YTU  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') BYuF$[3ya&  
    end Xwy0dXko  
    W|J8QNL?jm  
    if any( r>1 | r<0 ) |f1 S&b.  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') )$K )`uqb  
    end ?.E6Ube  
    @~% R%Vu  
    if ~any(size(r)==1) aOHf#!/"sb  
        error('zernpol:Rvector','R must be a vector.') 'PRsZ`x.  
    end (@*[^@ipV  
    [2I1W1pd  
    r = r(:); (#GOXz  
    length_r = length(r); = #]^H c  
    |?{3&'`J8w  
    if nargin==4 Q!8AFLff4  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); ,>lOmyh  
        if ~isnorm "!()yjy  
            error('zernpol:normalization','Unrecognized normalization flag.') ,.[T]37  
        end SskvxH+7  
    else $,$bZV  
        isnorm = false; {/`iZzPg  
    end mUY+v>F  
    GJN"43  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% (A(7?eq  
    % Compute the Zernike Polynomials cM%I5F+n  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 7l}P!xa&  
    *YmR7g|k  
    % Determine the required powers of r: vgY ) L  
    % ----------------------------------- 3T^f#UT  
    rpowers = []; dPplZ,Y%  
    for j = 1:length(n) .%;`: dtj  
        rpowers = [rpowers m(j):2:n(j)]; :VpRpj4f  
    end o?(({HH  
    rpowers = unique(rpowers); 3D L7  
    ^`>,~$Q  
    % Pre-compute the values of r raised to the required powers, d-Vttxa6  
    % and compile them in a matrix: S}6Ty2.\  
    % ----------------------------- +bpUb0.W  
    if rpowers(1)==0 Hhx"47:  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ;hb;%<xqT  
        rpowern = cat(2,rpowern{:}); _b8&$\>  
        rpowern = [ones(length_r,1) rpowern]; QND{3Q  
    else 5{nERKaPf  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); xR;>n[6  
        rpowern = cat(2,rpowern{:}); ?O3E.!Q|  
    end {I'8+~|pZL  
    ,aOi:aaZRT  
    % Compute the values of the polynomials: CT5\8C  
    % -------------------------------------- R-8>,  
    z = zeros(length_r,length_n); pu#h:nb>88  
    for j = 1:length_n "(bnr0  
        s = 0:(n(j)-m(j))/2; UhKC:<%  
        pows = n(j):-2:m(j); Y,BzBUWK  
        for k = length(s):-1:1 (jb9Uk_t  
            p = (1-2*mod(s(k),2))* ... ]@E_Hx{S  
                       prod(2:(n(j)-s(k)))/          ... 8R?X$=$]!.  
                       prod(2:s(k))/                 ... BfZAK0+*$  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... }e$^v*16  
                       prod(2:((n(j)+m(j))/2-s(k))); FW* k O  
            idx = (pows(k)==rpowers); /}+VH_N1  
            z(:,j) = z(:,j) + p*rpowern(:,idx); nE.w  
        end  I/YBL  
         OpFe=1Q  
        if isnorm b(^/WCykH  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); }AfX0[!O  
        end 4 mj\wBp  
    end Do1 Ip&X  
    a#3+PB #  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    857
    光币
    847
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  m)1+D"z  
    S - N [  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 /0_^Z2  
    \@8.BCWK  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)