切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11717阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 7R: WX:  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! [a@ B =E  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 6 Uw;C84!  
    function z = zernfun(n,m,r,theta,nflag) frc{>u~t  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. D"cKlp-I6|  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N %K?iNe  
    %   and angular frequency M, evaluated at positions (R,THETA) on the wu2:'y>n  
    %   unit circle.  N is a vector of positive integers (including 0), and _IxamWpX$  
    %   M is a vector with the same number of elements as N.  Each element FZp<|t  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) EjSD4  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ,T$r9!WTM  
    %   and THETA is a vector of angles.  R and THETA must have the same 4 \ F P  
    %   length.  The output Z is a matrix with one column for every (N,M) zmb@*/fK  
    %   pair, and one row for every (R,THETA) pair. @h#Xix7  
    % nhewDDu  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike j=W@P-  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 3D[=b%2\  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral \5hw9T&[B  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ]G*$W+G]  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 1i'Z ei)  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Fg=v6j4W  
    % K2HvI7$-  
    %   The Zernike functions are an orthogonal basis on the unit circle. :tLbFW[  
    %   They are used in disciplines such as astronomy, optics, and X`1p'JD  
    %   optometry to describe functions on a circular domain. Cw#V`70a  
    % 2r;GcjezH  
    %   The following table lists the first 15 Zernike functions. M"(6&M=?  
    % o?wt$j-  
    %       n    m    Zernike function           Normalization B\[-fq  
    %       -------------------------------------------------- -!TcQzHUs  
    %       0    0    1                                 1 JYV\oV{  
    %       1    1    r * cos(theta)                    2 fhRjYYGI  
    %       1   -1    r * sin(theta)                    2 3ji:O T  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) OQFi.  8  
    %       2    0    (2*r^2 - 1)                    sqrt(3) H&bh<KPMh  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) V#J"c8n  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ffk4mhH  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) a#y{pT2 b  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) g$w6kz_[  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) nY0sb8lZJ  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) E >}q2  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) QNArZ6UQ  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) iBoEZEHjw  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) g 1@wf  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) *1bzg/T<  
    %       -------------------------------------------------- s.:r;%a  
    % s;1e0n  
    %   Example 1: cPuHLwwYf  
    % _{Y$o'*#I  
    %       % Display the Zernike function Z(n=5,m=1) _~A~+S}  
    %       x = -1:0.01:1; 9m8ee&,  
    %       [X,Y] = meshgrid(x,x); M|r8KW~S)  
    %       [theta,r] = cart2pol(X,Y); 0 d4cE10  
    %       idx = r<=1; G{o+R]Us  
    %       z = nan(size(X)); j=ihbR^]Tl  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 31}W6l88c  
    %       figure /U*yw5  
    %       pcolor(x,x,z), shading interp "={L+di:M  
    %       axis square, colorbar bulboyA&#  
    %       title('Zernike function Z_5^1(r,\theta)')  $Nu)E  
    % u D(t`W"  
    %   Example 2: L~eAQR  
    % |zpx)8Q  
    %       % Display the first 10 Zernike functions m r4b  
    %       x = -1:0.01:1; ~/|zlu*jpc  
    %       [X,Y] = meshgrid(x,x); r1Z<:}ZwK  
    %       [theta,r] = cart2pol(X,Y); [ H,u)8)  
    %       idx = r<=1; <&U!N'CE  
    %       z = nan(size(X)); C).2gQ G  
    %       n = [0  1  1  2  2  2  3  3  3  3]; f1Zt?=  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; zZ,Yfd |W  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 7Fl-(Nv`  
    %       y = zernfun(n,m,r(idx),theta(idx)); D1Yh,P<CF\  
    %       figure('Units','normalized') [6R fS  
    %       for k = 1:10 ' msmXX@q  
    %           z(idx) = y(:,k); uvB1VV4  
    %           subplot(4,7,Nplot(k)) 254~:eB0  
    %           pcolor(x,x,z), shading interp Jqru AW<  
    %           set(gca,'XTick',[],'YTick',[]) ~E*d G  
    %           axis square V`k8j-*s  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 4;*f1_;f~  
    %       end A*'V+(  
    % If'2rE7J  
    %   See also ZERNPOL, ZERNFUN2. VXIQw' Cq  
    2jA%[L9d^  
    %   Paul Fricker 11/13/2006 YKs4{?vw  
    Wsm`YLYkt!  
    VPd,]]S5(  
    % Check and prepare the inputs: #J$qa Ul  
    % ----------------------------- m;/i<:`  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) m mw-a0  
        error('zernfun:NMvectors','N and M must be vectors.') Q6^x8  
    end }.{}A(^YR  
    :'*DMW~  
    if length(n)~=length(m) Np)aS[9W  
        error('zernfun:NMlength','N and M must be the same length.') 0H:dv:#WAI  
    end @2e2^8X7f  
    l`gTU?<xd  
    n = n(:); 5I,$EGG  
    m = m(:); ;[6&0! N\  
    if any(mod(n-m,2)) _e'Y3:  
        error('zernfun:NMmultiplesof2', ... ^l!L)iw  
              'All N and M must differ by multiples of 2 (including 0).') \0AiCMX[  
    end P(h5=0`*PR  
    /F~X,lm*~  
    if any(m>n) ;nB2o-%  
        error('zernfun:MlessthanN', ... _P 5P(^/  
              'Each M must be less than or equal to its corresponding N.') 2k1aX~?  
    end FA$zZs10\  
    !R:y'Y%j  
    if any( r>1 | r<0 ) z $6JpG  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') Z+idLbIs  
    end #Lka+l;L7  
    .>]N+:O  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) xl] ;*&  
        error('zernfun:RTHvector','R and THETA must be vectors.') <NB41/  
    end 'b[0ci:  
    fp&Got!pB  
    r = r(:); `ROEV~  
    theta = theta(:); UK3a{O[ 5  
    length_r = length(r); )5yj/0oT  
    if length_r~=length(theta) t ;-L{`mW  
        error('zernfun:RTHlength', ... @{}rG8  
              'The number of R- and THETA-values must be equal.') P5URvEnz:  
    end kRot7-7I|  
    R^8B3-aA`  
    % Check normalization: 7B FN|S_l  
    % -------------------- kuS/S\Z5K  
    if nargin==5 && ischar(nflag) p4mY0Y]mP  
        isnorm = strcmpi(nflag,'norm'); f a5]a  
        if ~isnorm oR %agvc^^  
            error('zernfun:normalization','Unrecognized normalization flag.') y\[r(4h  
        end b5 Q NEi  
    else nj2gs,k  
        isnorm = false; K $-;;pUl  
    end |.w;r   
    V}9;eJRvw  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% SrZ50Se  
    % Compute the Zernike Polynomials ?q Xs-  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 1K[(ou'rl  
    'ZnIRE,N  
    % Determine the required powers of r: uva\0q  
    % ----------------------------------- )H+kB<n  
    m_abs = abs(m); xzikD,FV  
    rpowers = []; - ]Y wl  
    for j = 1:length(n) 7~vqf3ON4J  
        rpowers = [rpowers m_abs(j):2:n(j)]; Z.Pi0c+  
    end GS%b=kc  
    rpowers = unique(rpowers); sh6(z?KP  
    fIyPFqf7w)  
    % Pre-compute the values of r raised to the required powers, #x~_`>mDN  
    % and compile them in a matrix: A&N*F"q  
    % ----------------------------- % h+uD^^$  
    if rpowers(1)==0 D'L{wm  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); [ud|dwP"  
        rpowern = cat(2,rpowern{:}); &O tAAE  
        rpowern = [ones(length_r,1) rpowern]; /DU*M,  
    else `P.CNYR<J  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); IVteF*8hU  
        rpowern = cat(2,rpowern{:}); iz`jDa Q|1  
    end p>p'.#M  
    -,GEv%6c  
    % Compute the values of the polynomials: kZ[mM'u#  
    % -------------------------------------- o}~3JBn T  
    y = zeros(length_r,length(n)); \_ -DyD#3  
    for j = 1:length(n) 2Xgx*'t\  
        s = 0:(n(j)-m_abs(j))/2; mo9$NGM&}  
        pows = n(j):-2:m_abs(j); ;$;rD0i|  
        for k = length(s):-1:1 0&$xX!]  
            p = (1-2*mod(s(k),2))* ... jG8;]XP  
                       prod(2:(n(j)-s(k)))/              ... v@_in(dk  
                       prod(2:s(k))/                     ... Mi74Xl i  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ,qy&|4Jz  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 3;y_mg  
            idx = (pows(k)==rpowers); hW%p#g;  
            y(:,j) = y(:,j) + p*rpowern(:,idx); Dh`=ydI5  
        end xF8 :^'  
         *V|zx#RN  
        if isnorm BXA]9eK  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 1+^n!$  
        end J px'W  
    end ^s*\Qw{Ii  
    % END: Compute the Zernike Polynomials 1Z:R,\+L  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /{we;Ut=g  
    \)R-A '*U  
    % Compute the Zernike functions: .)`-Hkxa  
    % ------------------------------ @?/\c:cp  
    idx_pos = m>0; c[{UI  
    idx_neg = m<0; }+DDJ6Jzs  
    rfTe  
    z = y; wOcg4HlW  
    if any(idx_pos) ]fC7%"nB  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); N D* ]gM  
    end b~as64  
    if any(idx_neg) \`gEu{  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); +H}e)1^ I  
    end u]*5Ex(?  
    :#SNpn=@  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) 8KKz5\kn7  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. :rL?1"   
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated fz8h]PZ  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive 5Hy3\_ +  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, `Sx.|`x8  
    %   and THETA is a vector of angles.  R and THETA must have the same M8_R  
    %   length.  The output Z is a matrix with one column for every P-value, zn^v!:[  
    %   and one row for every (R,THETA) pair. 0BDoBR  
    % mt^`1ekoY  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike N(BiOLZL6  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) 9m~t j_  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) P57GqT  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 ol#yjrv  
    %   for all p. .FJ j  
    % )-#i8?y3C  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 TZBVU&,{Z  
    %   Zernike functions (order N<=7).  In some disciplines it is 0@v 2*\D#  
    %   traditional to label the first 36 functions using a single mode 8~qlLa>jc  
    %   number P instead of separate numbers for the order N and azimuthal -xTKdm D  
    %   frequency M. WP!il(Gr  
    % ki4Xp'IK  
    %   Example: dFMAh&:>  
    % ^Rk^XQCh  
    %       % Display the first 16 Zernike functions yF;?Hg  
    %       x = -1:0.01:1; _eh3qs:  
    %       [X,Y] = meshgrid(x,x); _j>L4bT  
    %       [theta,r] = cart2pol(X,Y); g41<8^(  
    %       idx = r<=1; }{t3SGsJ  
    %       p = 0:15; lfgtcR{l5  
    %       z = nan(size(X)); FR(QFt!g  
    %       y = zernfun2(p,r(idx),theta(idx));  RY9. n  
    %       figure('Units','normalized') ( mt*y]p?  
    %       for k = 1:length(p) EO"6Dq(  
    %           z(idx) = y(:,k); cTy'JT7  
    %           subplot(4,4,k) F#KF6)P  
    %           pcolor(x,x,z), shading interp j^{b^!4~}  
    %           set(gca,'XTick',[],'YTick',[]) s"N\82z)  
    %           axis square \eT/%$  
    %           title(['Z_{' num2str(p(k)) '}']) L, #Byao  
    %       end %2,/jhHL  
    % P]- #wz=S  
    %   See also ZERNPOL, ZERNFUN. :^5>wDu{  
    G4O3h Y.`  
    %   Paul Fricker 11/13/2006 g kn)V~ij  
    n@_)fFD%  
    _trpXkQp  
    % Check and prepare the inputs: K9^"NS3  
    % ----------------------------- x?gQ\ 0S<  
    if min(size(p))~=1 :k\} I k  
        error('zernfun2:Pvector','Input P must be vector.') ZLuPz#  
    end gz#+  
    ) u-ns5  
    if any(p)>35 # 'wL\3  
        error('zernfun2:P36', ... *iYMX[$  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... C&e8a9*,(a  
               '(P = 0 to 35).']) 8ZFH}v@V1'  
    end R7,p ukK  
    Z|}H^0~7S  
    % Get the order and frequency corresonding to the function number: i"< ZVw  
    % ---------------------------------------------------------------- -G FwFkWm  
    p = p(:); :Fc8S9  
    n = ceil((-3+sqrt(9+8*p))/2); d;<.;Od$`  
    m = 2*p - n.*(n+2); k5q(7&C  
    Vl-D<M+i h  
    % Pass the inputs to the function ZERNFUN: t={poQC~  
    % ---------------------------------------- pA*i!.E/b  
    switch nargin 8z?$t-DO  
        case 3 x~%\y  
            z = zernfun(n,m,r,theta); 8cB=}XgYS  
        case 4 UYH|?Jw!N  
            z = zernfun(n,m,r,theta,nflag); L-j/R1fTvl  
        otherwise *Q0lC1GQ  
            error('zernfun2:nargin','Incorrect number of inputs.') 9Il'E6 J  
    end 75<el.'H  
    |I(%7K  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) y(V&z"wk[  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. ^kc>m$HY  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of 9+W!k^VWq  
    %   order N and frequency M, evaluated at R.  N is a vector of $3lt{ %  
    %   positive integers (including 0), and M is a vector with the )gL&   
    %   same number of elements as N.  Each element k of M must be a m9 ^m  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) j )<;g(  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is ',:3>{9  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix er#8D6*  
    %   with one column for every (N,M) pair, and one row for every hkkF1 h  
    %   element in R. r4;^c}  
    % Cm99?K  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- L00Sp#$\  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is ?.]o_L_K  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to )Uc$t${en  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 -/@|2!d  
    %   for all [n,m]. 7YoofI  
    % .i1jFwOd|G  
    %   The radial Zernike polynomials are the radial portion of the 5`(((_Um+  
    %   Zernike functions, which are an orthogonal basis on the unit @?'t@P:4  
    %   circle.  The series representation of the radial Zernike vd2uD2%con  
    %   polynomials is [c,|Lw4  
    % 2,rY\Nu_  
    %          (n-m)/2 @$2`DI{_^  
    %            __ 5cPSv?x^F@  
    %    m      \       s                                          n-2s XYz,NpK  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r xgZV0!%  
    %    n      s=0 er&uC4Y]a  
    % }qG?Vmq*R[  
    %   The following table shows the first 12 polynomials. le "JW/BD  
    % |Ba4 G`  
    %       n    m    Zernike polynomial    Normalization Fr1;)WV  
    %       --------------------------------------------- lCM6T;2ID  
    %       0    0    1                        sqrt(2) |!?2OTY  
    %       1    1    r                           2 tI/mE[W  
    %       2    0    2*r^2 - 1                sqrt(6) T*7S;<2  
    %       2    2    r^2                      sqrt(6) Zm"!E6`69  
    %       3    1    3*r^3 - 2*r              sqrt(8) <B|n<R<?  
    %       3    3    r^3                      sqrt(8) :DS2zA  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) Q `J,dzY  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) <Tj"GVZAEO  
    %       4    4    r^4                      sqrt(10) oO!1  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) dSA [3V  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) pko!{,c  
    %       5    5    r^5                      sqrt(12) X ,V= od>  
    %       --------------------------------------------- -o=P85 V  
    % hP'~  
    %   Example: 8:3oH!n  
    % TFiuz; *|  
    %       % Display three example Zernike radial polynomials w>H%[\Qs  
    %       r = 0:0.01:1; >S?C {_g  
    %       n = [3 2 5]; rahHJp.Ws  
    %       m = [1 2 1]; 23B^g  
    %       z = zernpol(n,m,r); pIU#c&%<9  
    %       figure l<0[ K(  
    %       plot(r,z) /xX,   
    %       grid on v*C+U$_3\1  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') *:fw6mnJ#  
    % g:~?U*f-  
    %   See also ZERNFUN, ZERNFUN2. ?3B t ;<^  
    H{Y5YTg]  
    % A note on the algorithm. V7K tbL#  
    % ------------------------ !Vp,YN+yN  
    % The radial Zernike polynomials are computed using the series Egjk^:@  
    % representation shown in the Help section above. For many special hJ$C%1;  
    % functions, direct evaluation using the series representation can 3isXgp8  
    % produce poor numerical results (floating point errors), because !}Woo$#ND  
    % the summation often involves computing small differences between WwCK  K  
    % large successive terms in the series. (In such cases, the functions -Y 6.?z  
    % are often evaluated using alternative methods such as recurrence .yFg$|yG  
    % relations: see the Legendre functions, for example). For the Zernike \>aa8LOe  
    % polynomials, however, this problem does not arise, because the 1drqWI~  
    % polynomials are evaluated over the finite domain r = (0,1), and 3[|:sa8?s  
    % because the coefficients for a given polynomial are generally all N%n1>!X)!  
    % of similar magnitude. ..Uw8u/  
    % \@ WsF$  
    % ZERNPOL has been written using a vectorized implementation: multiple $Z(g=nS>  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] &bS"N)je  
    % values can be passed as inputs) for a vector of points R.  To achieve BRSgB-Rr7  
    % this vectorization most efficiently, the algorithm in ZERNPOL |)!k @?_  
    % involves pre-determining all the powers p of R that are required to 0$F _hZU  
    % compute the outputs, and then compiling the {R^p} into a single k_En_\c?p2  
    % matrix.  This avoids any redundant computation of the R^p, and VFO&)E/-  
    % minimizes the sizes of certain intermediate variables. Z)6nu)  
    % [#P`_hx  
    %   Paul Fricker 11/13/2006 %Zv(gI`A  
     n_xa)  
    CwEWW\Bu  
    % Check and prepare the inputs: U~){$kpI#  
    % ----------------------------- 6ljRV)  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) QU,TAO  
        error('zernpol:NMvectors','N and M must be vectors.') _/z)&0DO  
    end ;f ;*Q>!  
    KHc/x8^9  
    if length(n)~=length(m) ;*37ta  
        error('zernpol:NMlength','N and M must be the same length.') g.`t!6Hc  
    end :}3qZX  
    !rsqr32]  
    n = n(:); 3>@qQ_8%~  
    m = m(:); 3<UDVt@0  
    length_n = length(n); J.1ln = Y  
    ;SlS!6.W-  
    if any(mod(n-m,2)) G|6|;   
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') [ilv/V<  
    end abJ@>7V  
    qqom$H<  
    if any(m<0) @cTZ`bg  
        error('zernpol:Mpositive','All M must be positive.') WT ~dA95  
    end G(|(y=ck  
    +N(YR3  
    if any(m>n) K^cWj_a"  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') OL ]T+6X  
    end c^[1]'y  
    (HV~ '5D  
    if any( r>1 | r<0 ) 8a$jO+UvN  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') O.up%' %,  
    end -RqAT1  
    zQ6 -2 A  
    if ~any(size(r)==1) oN6*WN tJ  
        error('zernpol:Rvector','R must be a vector.') M-qxD"VtV=  
    end W|-N>,G  
    3EW f|6RI  
    r = r(:); A2O_pbQti  
    length_r = length(r); Zxxy1Fl#.[  
    Eztz ~oFo  
    if nargin==4 M@2Qn-I  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); k.%W8C<Pa  
        if ~isnorm tm36Lw  
            error('zernpol:normalization','Unrecognized normalization flag.') WJh;p: q[  
        end L};;o+5uJD  
    else .L(j@I t  
        isnorm = false; ao" ;5 m  
    end fe9& V2Uu  
    v`ZusHJ1d  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 6_ &6'Vq  
    % Compute the Zernike Polynomials +8vzkfr3It  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Mb 2 L32  
    a^}P_hg}-  
    % Determine the required powers of r: Z"%O&O  
    % ----------------------------------- &_^*rD~  
    rpowers = []; )6R#k8'ERr  
    for j = 1:length(n) r dG2| Tp  
        rpowers = [rpowers m(j):2:n(j)]; d @kLLDP  
    end Q}f}Jf3P  
    rpowers = unique(rpowers); `=l{kBZT|  
    NUNn[c  
    % Pre-compute the values of r raised to the required powers, io33+/  
    % and compile them in a matrix: U#]eN[  
    % ----------------------------- !%\To(r[  
    if rpowers(1)==0 |KrG3-i3X  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); =5=Vm[  
        rpowern = cat(2,rpowern{:}); `0G.Y  
        rpowern = [ones(length_r,1) rpowern]; s$\8)V52  
    else UV8r&O  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); k| cI!   
        rpowern = cat(2,rpowern{:}); cxJK>%84  
    end u+gXBU  
    W*DIW;8p  
    % Compute the values of the polynomials: ~md|k  
    % -------------------------------------- 1 l*(8!_  
    z = zeros(length_r,length_n); WT!\X["FI$  
    for j = 1:length_n I~ ]mX;  
        s = 0:(n(j)-m(j))/2; FR6I+@ oX~  
        pows = n(j):-2:m(j); g*c\'~f;  
        for k = length(s):-1:1 F#bo4'&>@  
            p = (1-2*mod(s(k),2))* ... @SG="L  
                       prod(2:(n(j)-s(k)))/          ... %iS]+Sa.K  
                       prod(2:s(k))/                 ... Y&!]I84]  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... <^q"31f  
                       prod(2:((n(j)+m(j))/2-s(k))); GV@E<dg$R  
            idx = (pows(k)==rpowers); m#K%dR  
            z(:,j) = z(:,j) + p*rpowern(:,idx); l5OV!<7~X  
        end _,0!ZP-  
         C<@1H>S4_  
        if isnorm l}-`E@w  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); =bg&CZV T  
        end ?_j6})2zY  
    end 3jeV4|  
    xPJJ !mY  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    在线guapiqlh
    发帖
    857
    光币
    847
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  iAhRlQ{Qu  
    oC>~r 1.j  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 c3-bn #  
    o62gLO]z@  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)