切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11726阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦  r3OtQ  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! yLnTIE3)  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 xBw ua;  
    function z = zernfun(n,m,r,theta,nflag) 8jLO-^X<<  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. '=(yh{W  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N `sRys oW  
    %   and angular frequency M, evaluated at positions (R,THETA) on the -*?{/QmKb  
    %   unit circle.  N is a vector of positive integers (including 0), and [E}pU8.t6  
    %   M is a vector with the same number of elements as N.  Each element Pb@$RAU6 3  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) {gDoktC@M  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ZQ_~ L!ot  
    %   and THETA is a vector of angles.  R and THETA must have the same q'biTn]2  
    %   length.  The output Z is a matrix with one column for every (N,M) lx82:_  
    %   pair, and one row for every (R,THETA) pair.  |FFM Q"  
    % V0F1X s`  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 1py >[II@  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ty9(mtH+  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral n0^3F1Z  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ^c sOXP=Yp  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized C$v !emu  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Mt12 1Q&"  
    % C\ cZ  
    %   The Zernike functions are an orthogonal basis on the unit circle. )L,Nh~  
    %   They are used in disciplines such as astronomy, optics, and K*j1Fy:  
    %   optometry to describe functions on a circular domain. /"1[qT\F  
    % e#tWQM3  
    %   The following table lists the first 15 Zernike functions. #Z_f/@b  
    % p!K]c D  
    %       n    m    Zernike function           Normalization ~~WX#Od*$  
    %       -------------------------------------------------- 7{=+Va5  
    %       0    0    1                                 1 6~8dMy;w  
    %       1    1    r * cos(theta)                    2 :Ui'x8yt  
    %       1   -1    r * sin(theta)                    2 Lez]{%+.`[  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ` B+Pl6l)F  
    %       2    0    (2*r^2 - 1)                    sqrt(3) \&Oc}]  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) E0Kt4%b  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) Jqt|' G3  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) ]5eZLXM  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) T\T>\&nY+|  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) qNbgN{4  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) FOX0  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) L0xh?B  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) d1d:5 b  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) LO ,k'gg<  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) )7N$lY<  
    %       -------------------------------------------------- Xm.["&  
    % [\pp KC  
    %   Example 1: (_~Dyvo  
    % =Xb:.  
    %       % Display the Zernike function Z(n=5,m=1) v;R+{K87  
    %       x = -1:0.01:1; ,#80`&\%  
    %       [X,Y] = meshgrid(x,x); brt` oR  
    %       [theta,r] = cart2pol(X,Y); p!cNn7{;  
    %       idx = r<=1; jX91=78d  
    %       z = nan(size(X)); =xHzhh  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 4:XVu  
    %       figure ;8<lgZ9H<  
    %       pcolor(x,x,z), shading interp #K[6Ai=We}  
    %       axis square, colorbar K db:Q0B  
    %       title('Zernike function Z_5^1(r,\theta)') @LDu08lr  
    % ~2U5Wt  
    %   Example 2: ltG|#(  
    % g6<D 1r  
    %       % Display the first 10 Zernike functions n'Z5rXg  
    %       x = -1:0.01:1; i.>d#S  
    %       [X,Y] = meshgrid(x,x); >`.$Tyw  
    %       [theta,r] = cart2pol(X,Y);  EoHrXv  
    %       idx = r<=1; IgtTYxI  
    %       z = nan(size(X)); fhQ}Z%$  
    %       n = [0  1  1  2  2  2  3  3  3  3]; G!m;J8#m(  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; *Y9'tHI  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; L)/^%/!  
    %       y = zernfun(n,m,r(idx),theta(idx)); >WW5;7$  
    %       figure('Units','normalized') P}bwEj  
    %       for k = 1:10 ;"D I)hd z  
    %           z(idx) = y(:,k); *6 P)HU@  
    %           subplot(4,7,Nplot(k)) H}&4#CQ'!  
    %           pcolor(x,x,z), shading interp RB/;qdqR  
    %           set(gca,'XTick',[],'YTick',[]) a6.0 $'  
    %           axis square '9q:gFO  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) {,CvWL  
    %       end 6I$:mHEhd  
    % GxcW^{;  
    %   See also ZERNPOL, ZERNFUN2. ?$rH yI  
    m^ [VM&%  
    %   Paul Fricker 11/13/2006 5NAB^&{Z<X  
    5QJ FNE  
    #_[W*-|L  
    % Check and prepare the inputs: YXjWk),  
    % ----------------------------- Z?tw#n[T  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) d7Devs k  
        error('zernfun:NMvectors','N and M must be vectors.') ^B7C8YP  
    end >qjV(_?F-  
    e` D?x1-  
    if length(n)~=length(m) j+>&~  
        error('zernfun:NMlength','N and M must be the same length.') AwO'%+Bv  
    end lC(g&(\{  
    K yFR;.F-  
    n = n(:); (J/!9NS:  
    m = m(:); G .k\N(l  
    if any(mod(n-m,2)) Z:s:NvFX  
        error('zernfun:NMmultiplesof2', ... 9\D0mjn=l  
              'All N and M must differ by multiples of 2 (including 0).') b_j8g{/9  
    end @jevY81)  
    2w? 5vSv  
    if any(m>n) \Zms  
        error('zernfun:MlessthanN', ... Di8;Tq  
              'Each M must be less than or equal to its corresponding N.') ^5d9n<_xnQ  
    end _Zs]za.#)|  
    U/I+A|S[  
    if any( r>1 | r<0 ) sz+Uq]Mn  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') JqYt^,,Q:  
    end Ks-aJ+}  
    )!(etB=`y  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Q.Ljz Z  
        error('zernfun:RTHvector','R and THETA must be vectors.') O:3DIT1#>  
    end 8cyC\Rs  
    o|0QstSCl  
    r = r(:); K~JXP5`(  
    theta = theta(:); N`%f+eT(  
    length_r = length(r); 0al8%z9e@  
    if length_r~=length(theta) [v$NxmRu  
        error('zernfun:RTHlength', ... +4%: q~C  
              'The number of R- and THETA-values must be equal.') Jf=$h20x  
    end eEG]JH  
    6 C|]Fm  
    % Check normalization: *=ymK*  
    % -------------------- &k2nt  
    if nargin==5 && ischar(nflag) =q-HR+  
        isnorm = strcmpi(nflag,'norm'); k_<8SG+`  
        if ~isnorm hu+% X.F4  
            error('zernfun:normalization','Unrecognized normalization flag.') pe1_E KU  
        end oPA [vY  
    else 19t'  
        isnorm = false; vz_ZXy9Z  
    end `F<[\@\d5  
    .xp|w^  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% P7iU_CgyW  
    % Compute the Zernike Polynomials JKsdPW<?  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ;c_pa0L  
    "gPAxt  
    % Determine the required powers of r: op%?V :  
    % ----------------------------------- ]XH}G9X^  
    m_abs = abs(m); zUhJr$N$  
    rpowers = []; 1#3 Qa{i  
    for j = 1:length(n) S(f V ,;Z  
        rpowers = [rpowers m_abs(j):2:n(j)]; = 5 E:CP  
    end 4{r_EV[(  
    rpowers = unique(rpowers); a~-^$Fzgy  
    I2wT]L UV  
    % Pre-compute the values of r raised to the required powers, f1RfNiW.  
    % and compile them in a matrix: xf.2Ig  
    % ----------------------------- wCb%{iowH  
    if rpowers(1)==0 fii\&p7z  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); +i[w& P  
        rpowern = cat(2,rpowern{:}); /B?hM&@z  
        rpowern = [ones(length_r,1) rpowern]; G Riu]   
    else ymsqJ   
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); [,|Z<  
        rpowern = cat(2,rpowern{:}); 92k}ON  
    end D?w-uR%Y  
    %T&#JF+;  
    % Compute the values of the polynomials: DjT ekn  
    % -------------------------------------- ;')T}wuq  
    y = zeros(length_r,length(n)); \JLiA>@@  
    for j = 1:length(n) LEJ7.82  
        s = 0:(n(j)-m_abs(j))/2; ,Wp0,>!  
        pows = n(j):-2:m_abs(j); zq5_&AeW  
        for k = length(s):-1:1 Lz VvUVk  
            p = (1-2*mod(s(k),2))* ... ,QpDz{8  
                       prod(2:(n(j)-s(k)))/              ... sKX%<n$  
                       prod(2:s(k))/                     ... %V$ujun`  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... JAA P5ur  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); `f:5w^A  
            idx = (pows(k)==rpowers); C3%,pDh  
            y(:,j) = y(:,j) + p*rpowern(:,idx); [^gSWU  
        end pr-{/6j6  
         JHf}LZu  
        if isnorm k*4?fr  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); (!';  
        end ?nFT51 t/4  
    end pg~`NN  
    % END: Compute the Zernike Polynomials N[}XLhbt  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #oYX0wvl  
    VmTk4?V4  
    % Compute the Zernike functions:  \~  
    % ------------------------------ 'FBvAk6  
    idx_pos = m>0; )N-+,Ms  
    idx_neg = m<0; `.dTkL  
    ,gU9y wg  
    z = y; n20H{TA  
    if any(idx_pos) e<^tY0rR&  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); <,0& Ox  
    end mId{f  
    if any(idx_neg) T^GdN_qF  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); "VWxHRVg4M  
    end e7L;{+XI  
    q9Y0Lk  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) PfrW,R~r  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. kd \G>  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated g6W.Gl"5\w  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive I )B2Z(<Q  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, *rEW@06^\  
    %   and THETA is a vector of angles.  R and THETA must have the same dy`~%lX?  
    %   length.  The output Z is a matrix with one column for every P-value, f\(Kou$  
    %   and one row for every (R,THETA) pair. "Pys3=h  
    % # |UrHK;  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike &2\.6rb.  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) 9DtSYd/  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) G8oQSo;D  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 cRg$~rYd  
    %   for all p. jEO;  
    % ZRxB"a'  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 R a*9d]N@  
    %   Zernike functions (order N<=7).  In some disciplines it is E 0oJ|My  
    %   traditional to label the first 36 functions using a single mode Bv=Z*"Fv  
    %   number P instead of separate numbers for the order N and azimuthal A`r&"i OKA  
    %   frequency M. jY?%LY@5I  
    % Y0hL_46>  
    %   Example: L,kF]  
    % 3 S5QqAm  
    %       % Display the first 16 Zernike functions $K G?d>wx  
    %       x = -1:0.01:1; 4*dT|NU  
    %       [X,Y] = meshgrid(x,x); =q"3a9 pb7  
    %       [theta,r] = cart2pol(X,Y); xjX5PQu  
    %       idx = r<=1; Aqm0|GlJ  
    %       p = 0:15; er<~dqZ}]  
    %       z = nan(size(X)); be@MQ}6>  
    %       y = zernfun2(p,r(idx),theta(idx)); o4Ba l^=[  
    %       figure('Units','normalized') k<f*ns  
    %       for k = 1:length(p) Q%>,5(_V]  
    %           z(idx) = y(:,k); g{a0,B/j  
    %           subplot(4,4,k) I%s/h4x^B[  
    %           pcolor(x,x,z), shading interp ?D~uR2+Z  
    %           set(gca,'XTick',[],'YTick',[]) n_+Iw,a'm  
    %           axis square [,e_2<   
    %           title(['Z_{' num2str(p(k)) '}']) eeX>SL5'i  
    %       end F% |(pHk  
    % (nzzX?`nY  
    %   See also ZERNPOL, ZERNFUN. }z*p2)v`  
    P~*fZ)\}F@  
    %   Paul Fricker 11/13/2006 < <xJ-N  
    A6Qi^TI  
    [gE2lfaEy  
    % Check and prepare the inputs: f Gfv{4R  
    % ----------------------------- l%:_#1?isf  
    if min(size(p))~=1 w7W-=\Hvh  
        error('zernfun2:Pvector','Input P must be vector.') &S{F"z  
    end O|/tRkDMP{  
    D *tBbV  
    if any(p)>35 9PBmBP ~  
        error('zernfun2:P36', ... HvngjP{>  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... 0jyokER  
               '(P = 0 to 35).']) s0h)~z  
    end 8;5/_BwMu  
    Owr`ip\  
    % Get the order and frequency corresonding to the function number: &0"`\~lA  
    % ---------------------------------------------------------------- YUH/ tl  
    p = p(:); #-`lLI:w0  
    n = ceil((-3+sqrt(9+8*p))/2); <eI;Jph5  
    m = 2*p - n.*(n+2); kDKpuA!  
    yqU++;6  
    % Pass the inputs to the function ZERNFUN: i>~?XVU  
    % ---------------------------------------- t>[r88v  
    switch nargin ~DD/\V  
        case 3 `l}-S |a  
            z = zernfun(n,m,r,theta); 4j*}|@x  
        case 4 hG67%T'}A  
            z = zernfun(n,m,r,theta,nflag); Y `{U45  
        otherwise wfdFGoy(  
            error('zernfun2:nargin','Incorrect number of inputs.') bODl q  
    end }B5I#Af7  
    |bk*Lgkzw  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) w#e'K-=  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M.  W 6~=?C  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of FMn&2fH  
    %   order N and frequency M, evaluated at R.  N is a vector of /K^cU;E,  
    %   positive integers (including 0), and M is a vector with the #RF=a7&F  
    %   same number of elements as N.  Each element k of M must be a =(ZGaZ}  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) 3\{Sf /#  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is &Yg/ 08*  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix ZYA(Bg^  
    %   with one column for every (N,M) pair, and one row for every oo!g?X[[  
    %   element in R. my1kF%?  
    % BGX@n#:  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- US4Um>j  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is L,6Y=?  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to yShHFlO=  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 aM~fRra7  
    %   for all [n,m]. 4i,SiFKB  
    % lQ/XJw  
    %   The radial Zernike polynomials are the radial portion of the Db=gS=Qm  
    %   Zernike functions, which are an orthogonal basis on the unit jO 55<s94  
    %   circle.  The series representation of the radial Zernike qx)k1QY  
    %   polynomials is -e~U u  
    % "b 0cj  
    %          (n-m)/2 x/=j$oA  
    %            __ !)O$Q}'\  
    %    m      \       s                                          n-2s 9HX+sB M  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r rHlF& ET  
    %    n      s=0 x1wxB 1)2  
    % S F>D:$a  
    %   The following table shows the first 12 polynomials. c*dww  
    % sh ;uKzQ  
    %       n    m    Zernike polynomial    Normalization 6mdnEmFM]  
    %       --------------------------------------------- R(sM(x5a`  
    %       0    0    1                        sqrt(2) B5:g{,C  
    %       1    1    r                           2 CeTr%j  
    %       2    0    2*r^2 - 1                sqrt(6) BuTIJb+Q\  
    %       2    2    r^2                      sqrt(6) ` a>vPW  
    %       3    1    3*r^3 - 2*r              sqrt(8)  2JP?6N  
    %       3    3    r^3                      sqrt(8) Yys~p2  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) sw|:Z(`  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) 7X(]r1-+\  
    %       4    4    r^4                      sqrt(10) {yR)}r  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) xV#a(>-4  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) 4_+Pv6  
    %       5    5    r^5                      sqrt(12) N;'HR)  
    %       --------------------------------------------- #OWs3$9  
    % Y/H^*1  
    %   Example: vo(NB !x$  
    % s&hA  
    %       % Display three example Zernike radial polynomials Jv <$AI  
    %       r = 0:0.01:1; 6 ]Oxx{|}  
    %       n = [3 2 5]; V:BX"$ J1  
    %       m = [1 2 1]; rxj@NwAno  
    %       z = zernpol(n,m,r); xGfD z*t  
    %       figure PuCDsojclh  
    %       plot(r,z) _}OJPahw  
    %       grid on c1kxKxE  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') /;AZ/Ocy!  
    % VONAw3k7!  
    %   See also ZERNFUN, ZERNFUN2. *Ca)RgM  
    =`~Z@IbdI  
    % A note on the algorithm. "F$o!Vk  
    % ------------------------ =nx:GT3&[  
    % The radial Zernike polynomials are computed using the series S9R]Zl7{-  
    % representation shown in the Help section above. For many special F,M"/hnPT  
    % functions, direct evaluation using the series representation can drKjLo[y  
    % produce poor numerical results (floating point errors), because K;p<f{PE  
    % the summation often involves computing small differences between 1/ pA/UVO  
    % large successive terms in the series. (In such cases, the functions ^}Qj}  
    % are often evaluated using alternative methods such as recurrence &3Z. #*  
    % relations: see the Legendre functions, for example). For the Zernike H:-A; f!Z  
    % polynomials, however, this problem does not arise, because the (\t_Hs::a  
    % polynomials are evaluated over the finite domain r = (0,1), and P5>5ps"iU  
    % because the coefficients for a given polynomial are generally all ^ Wfgwmh  
    % of similar magnitude. `n`"g<K)Q  
    % X@qk>/  
    % ZERNPOL has been written using a vectorized implementation: multiple /;&+ < }  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] ;Q=GJ5`B  
    % values can be passed as inputs) for a vector of points R.  To achieve s)YP%vn#  
    % this vectorization most efficiently, the algorithm in ZERNPOL knOn UU  
    % involves pre-determining all the powers p of R that are required to s S5fd)x  
    % compute the outputs, and then compiling the {R^p} into a single 96pk[5lj{?  
    % matrix.  This avoids any redundant computation of the R^p, and B>Cs&}Y!  
    % minimizes the sizes of certain intermediate variables. wB>S\~i  
    % y[p$/$bgC5  
    %   Paul Fricker 11/13/2006 #)0Tt>d6  
    Bw<zc=%  
    $54=gRo^  
    % Check and prepare the inputs: 0<@KDlF  
    % ----------------------------- Vp $wHB&  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) tB7K&ssi  
        error('zernpol:NMvectors','N and M must be vectors.') 6 W;?8Z_1  
    end ) p<fL  
    -nk#d%a\  
    if length(n)~=length(m) p x|>v8  
        error('zernpol:NMlength','N and M must be the same length.') !ml_S)  
    end 'Z.OF5|eGT  
    N pXgyD  
    n = n(:); b>QM~mq3^I  
    m = m(:); dGsS<@G  
    length_n = length(n); e" Eqi-  
    8nIMZV  
    if any(mod(n-m,2)) K2xH'v O(  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') wI! +L&Q  
    end C NfJ:e2  
    (@ fa~?v>@  
    if any(m<0) ^r>f2 x  
        error('zernpol:Mpositive','All M must be positive.') cXS;z.M\_  
    end jQ_dw\ {0  
    =!(*5\IM  
    if any(m>n) f4'El2>-86  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') K lli$40  
    end %9T~8L @.  
    -".kH<SWv  
    if any( r>1 | r<0 ) JG@L5f  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') EWb(uWC8h  
    end jVad)2D  
    4[TS4p  
    if ~any(size(r)==1) -c+>j  
        error('zernpol:Rvector','R must be a vector.') cgs3qI  
    end eC6>yD6D  
    ]6{(Hjt  
    r = r(:); =`qRu  
    length_r = length(r); VY/|WD~"CW  
    euV$2Fg  
    if nargin==4 R2}kz.  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); ]<27Sw&yaG  
        if ~isnorm EI1W .V>@  
            error('zernpol:normalization','Unrecognized normalization flag.') 5/B#)gm  
        end +65oC x  
    else 9ZDVy7m\i-  
        isnorm = false; & u$(NbK  
    end Hp btj  
    ePp[m zg6  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% J| SwQE~  
    % Compute the Zernike Polynomials t=n+3`g  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% {Q5KV%F_  
    dqqnCXYuW  
    % Determine the required powers of r: (n=9c%w  
    % ----------------------------------- iH-bo@  
    rpowers = []; H LjvKE=W  
    for j = 1:length(n) /8xH$n&xoC  
        rpowers = [rpowers m(j):2:n(j)]; w&p~0cA~  
    end JY{X,?s  
    rpowers = unique(rpowers); [IiwNqZ[~  
    +J|+es  
    % Pre-compute the values of r raised to the required powers, VmN}FMGN  
    % and compile them in a matrix: Hm>-LOCcl  
    % ----------------------------- GI4?|@%vD!  
    if rpowers(1)==0 gU l1CH&  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); !*&4< _  
        rpowern = cat(2,rpowern{:}); \UQ9MX _  
        rpowern = [ones(length_r,1) rpowern]; L-#e?Y}$J  
    else oJ^C]E  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); q75ky1^1:  
        rpowern = cat(2,rpowern{:}); r0>q%eM8  
    end 'KH lrmnr  
    cZqfz  
    % Compute the values of the polynomials: >Q; g0\I_  
    % -------------------------------------- -*?p F_*w  
    z = zeros(length_r,length_n); HmvsYP66  
    for j = 1:length_n 6`acg'sk>  
        s = 0:(n(j)-m(j))/2; jDR')ascn  
        pows = n(j):-2:m(j); _B)s=Snx  
        for k = length(s):-1:1 G.E[6G3  
            p = (1-2*mod(s(k),2))* ... ~i% -WX  
                       prod(2:(n(j)-s(k)))/          ... |2O')3p"9  
                       prod(2:s(k))/                 ... j(j#0dXLh  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... %NNj9Bl<VV  
                       prod(2:((n(j)+m(j))/2-s(k))); 0; 7#ji  
            idx = (pows(k)==rpowers); w&%9IJ  
            z(:,j) = z(:,j) + p*rpowern(:,idx); TN5>"? ?"  
        end B`i$Wt<7  
         H nK!aa  
        if isnorm lr,q{;  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); ymYBm: "  
        end @Tm`d ?^  
    end @K\o4\  
    I_ONbJ9]  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    857
    光币
    847
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  .2) =vf'd  
    _zWfI.o  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 VQ#3#Hj  
    XB59Vm0E=  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)