非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 {QHVo#
function z = zernfun(n,m,r,theta,nflag) qq) rd
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. +$C4\$t
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 6x h:/j3
% and angular frequency M, evaluated at positions (R,THETA) on the kbTm^y"
% unit circle. N is a vector of positive integers (including 0), and -fwoTGlX
% M is a vector with the same number of elements as N. Each element 96 q_K84K
% k of M must be a positive integer, with possible values M(k) = -N(k) {1V($aBl
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, QMa;Gy
% and THETA is a vector of angles. R and THETA must have the same +Z7th7W/,
% length. The output Z is a matrix with one column for every (N,M) YQ+tDZY8`
% pair, and one row for every (R,THETA) pair. k9:{9wW
% MBt9SXM
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike "U!AlZ`g
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), *5vV6][
% with delta(m,0) the Kronecker delta, is chosen so that the integral [Sr,h0h6
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 0fb`08,^
% and theta=0 to theta=2*pi) is unity. For the non-normalized & -{DfNK c
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. [5zx17'
% o.w\l\
% The Zernike functions are an orthogonal basis on the unit circle. ^B(V4-|
% They are used in disciplines such as astronomy, optics, and YP.5fq:
% optometry to describe functions on a circular domain. [`{Z}q&
% wfU7G[
% The following table lists the first 15 Zernike functions. TD'L'm|2
% T*#/^%HSG
% n m Zernike function Normalization Bg&i63XL$$
% -------------------------------------------------- LQ(yScA@
% 0 0 1 1 WFO4gB*
% 1 1 r * cos(theta) 2 @y='^DQ*
% 1 -1 r * sin(theta) 2 ]w;rfn9D
% 2 -2 r^2 * cos(2*theta) sqrt(6) +W:=e,=
% 2 0 (2*r^2 - 1) sqrt(3) Wc,~ {
% 2 2 r^2 * sin(2*theta) sqrt(6) 4]h
=yc R
% 3 -3 r^3 * cos(3*theta) sqrt(8) _d"b;4l
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) M)eO6oX|
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) [q/Abz'i
% 3 3 r^3 * sin(3*theta) sqrt(8) ?&|5=>u2}$
% 4 -4 r^4 * cos(4*theta) sqrt(10) 19O,a#{KHf
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) gZLP\_CL
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) G B>QK
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) w8kOVN2b
% 4 4 r^4 * sin(4*theta) sqrt(10) 4SlADvGl
% -------------------------------------------------- r G4';V^q
% ~aMlr6;
% Example 1: N['qgO/
% 85n1eE
% % Display the Zernike function Z(n=5,m=1) 5jd,{<
% x = -1:0.01:1; R_sr?V|"
% [X,Y] = meshgrid(x,x); 62 O.?Ij
% [theta,r] = cart2pol(X,Y); Pa{%\dsv
% idx = r<=1; LXbP 2
% z = nan(size(X)); 3gv|9T
% z(idx) = zernfun(5,1,r(idx),theta(idx)); <\NY<QIwFw
% figure ?Cl%{2omO
% pcolor(x,x,z), shading interp &d"G/6
% axis square, colorbar .q9
$\wM/
% title('Zernike function Z_5^1(r,\theta)') ( M7pT
% -i)ZQCE
% Example 2: D+>4AqG
% Tav*+
% % Display the first 10 Zernike functions @&X|5p"[g
% x = -1:0.01:1; &;+-?k|
% [X,Y] = meshgrid(x,x); BReJ!|{m}
% [theta,r] = cart2pol(X,Y); kKAP"'v
% idx = r<=1; (vb
SM}P
% z = nan(size(X)); ;?8_G%va
% n = [0 1 1 2 2 2 3 3 3 3]; _(h&7P9
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; K{[%7AM
% Nplot = [4 10 12 16 18 20 22 24 26 28];
|QU <e
% y = zernfun(n,m,r(idx),theta(idx)); c17_2 @N
% figure('Units','normalized') ~NQ72wph{
% for k = 1:10 NMa}
<
% z(idx) = y(:,k); TMig-y*[
% subplot(4,7,Nplot(k)) 73xAG1D$r
% pcolor(x,x,z), shading interp 0URji~?|x
% set(gca,'XTick',[],'YTick',[]) |962G1.
% axis square 5<UVD:~z
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) S4G^z}{_
% end v#.r.{t
% j#+!\ft5
% See also ZERNPOL, ZERNFUN2. ;j^H)."A\
t0IEaj75c
% Paul Fricker 11/13/2006 qNYN-f~@,
1XD,uoxB
-F<Wd/Xse
% Check and prepare the inputs: 3wC' r
% -----------------------------
hRs&t,{&
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) kP-3"ACG
error('zernfun:NMvectors','N and M must be vectors.') 8=gjY\Dp
end K?BOvDW"`
h&--,A >
if length(n)~=length(m) K#pNec
error('zernfun:NMlength','N and M must be the same length.') |NpP2|4h
end BDR.AZ
ie2WL\tR4
n = n(:); R'C2o]
m = m(:); paKSr|O
if any(mod(n-m,2)) P@9t;dZN
error('zernfun:NMmultiplesof2', ... X4 A<[&F/
'All N and M must differ by multiples of 2 (including 0).') ,M^ P!
end X{\F;Cb*
iZM+JqfU|D
if any(m>n) v"#mzd.tW
error('zernfun:MlessthanN', ... fSs4ZXC
'Each M must be less than or equal to its corresponding N.') bT^I"
end 0cJWJOj&
H;YP8MoQ
if any( r>1 | r<0 ) @>W(1mRi
error('zernfun:Rlessthan1','All R must be between 0 and 1.') $shoasSuI
end 0V'nK V"|
PfC!lI
BU
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) A29gz:F(
error('zernfun:RTHvector','R and THETA must be vectors.') !V
i@1E
end IW@PF7
G>1eFBh }
r = r(:); Kfh|
theta = theta(:); \}p6v }
length_r = length(r); *=+td)S/1
if length_r~=length(theta) >g+?Oebgw
error('zernfun:RTHlength', ... 9983aFam
'The number of R- and THETA-values must be equal.') QlO0qbG[y
end }j*KcB_
f]JM /
% Check normalization: %l,,_:7{
% -------------------- hvDNz"ec{
if nargin==5 && ischar(nflag) XT@-$%u
isnorm = strcmpi(nflag,'norm'); _Jme!Oaa
if ~isnorm v"OY 1<8
error('zernfun:normalization','Unrecognized normalization flag.') n&-qaoNl
end Q4f/Z
else YN!>}
isnorm = false; -Xxqm%([71
end Axe8n1*y
\H=&`?
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% PzA|t;*
% Compute the Zernike Polynomials DjN|Wr)*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% t4-pM1]1_
(&+kl q
% Determine the required powers of r:
?sMP~RHQ
% ----------------------------------- rz@=pR :
m_abs = abs(m); b+f'[;
rpowers = []; lJE93rXU
for j = 1:length(n) LAd\ Tvms
rpowers = [rpowers m_abs(j):2:n(j)]; ZE2$I^DY-
end 20Z8HwQi
rpowers = unique(rpowers); a^=-Mp
AO=h
23ZI
% Pre-compute the values of r raised to the required powers, BI $
% and compile them in a matrix: $aN&nhoO<
% ----------------------------- \>7^f
3m
if rpowers(1)==0 WnGGo'Z
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); +TQ47Zc
rpowern = cat(2,rpowern{:}); [L:o`j
rpowern = [ones(length_r,1) rpowern]; 49w=XJ
else xYhrO
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); V\^EfQ
rpowern = cat(2,rpowern{:}); @ ]/AjjLt
end n(L\||#+
/C4^<k\
% Compute the values of the polynomials: Vv8jEZ8
% -------------------------------------- unBy&?&p
y = zeros(length_r,length(n)); iv>SsW'p_
for j = 1:length(n) IaT$6\>
s = 0:(n(j)-m_abs(j))/2; 4Rvf
pows = n(j):-2:m_abs(j); C@bm
for k = length(s):-1:1 IiZ&Pr
p = (1-2*mod(s(k),2))* ... av$/Om:
prod(2:(n(j)-s(k)))/ ... ?_Q/}@`
prod(2:s(k))/ ... ;uW}`Q<
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Sp^9&^
prod(2:((n(j)+m_abs(j))/2-s(k))); t$A%*JBKm
idx = (pows(k)==rpowers); |j VM&R2s
y(:,j) = y(:,j) + p*rpowern(:,idx); }C#;fp"L
end @)-$kk*
-tyK~aasQ
if isnorm r%.do;5
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); E5N{j4\F
end 7
<Q5;J&;
end ]@0NO;bK>F
% END: Compute the Zernike Polynomials a)#1{JaoY
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 6p?JAT5
a(v>Q*zNP
% Compute the Zernike functions: >B2q+tA
% ------------------------------ S}ECW,K
idx_pos = m>0; #*g5u{k'P
idx_neg = m<0; 5GPo*Qpl
Ko/ I#)
z = y; >+
4huRb
if any(idx_pos) =@8H"&y`
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); [w&$| h:;
end IrWD%/$H
if any(idx_neg) r,Nq7Txn?
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); LbZ:&/t^y8
end SJ};TEA
mK [0L
% EOF zernfun