切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10996阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 i)A`Vpn  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! e}{8a9J<%_  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 V^/h;/! ^  
    function z = zernfun(n,m,r,theta,nflag) \rw'QAi8r  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. &;uGIk>s  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N xc3Ov9`8%  
    %   and angular frequency M, evaluated at positions (R,THETA) on the !VJT"Ds_  
    %   unit circle.  N is a vector of positive integers (including 0), and }RC. Q`b  
    %   M is a vector with the same number of elements as N.  Each element VC_3ll]vr  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) (_s!,QUe  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, jS5t?0  
    %   and THETA is a vector of angles.  R and THETA must have the same AOvH&9**  
    %   length.  The output Z is a matrix with one column for every (N,M) +E""8kW- Z  
    %   pair, and one row for every (R,THETA) pair. DbPBgD>Q  
    % ul5::  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 7+A-7ci  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), *`\4j*$^  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 8&`T<ECq>  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, cSHtl<UY  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized $AL|d[[T[  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. %oSfL;W7  
    % Q xj|lr  
    %   The Zernike functions are an orthogonal basis on the unit circle. 6w .iEb  
    %   They are used in disciplines such as astronomy, optics, and <7RkM  
    %   optometry to describe functions on a circular domain. EP% M8  
    % [\ w>{  
    %   The following table lists the first 15 Zernike functions. "~ i#9L/H  
    % ni02N3R  
    %       n    m    Zernike function           Normalization p lz=G}Y  
    %       -------------------------------------------------- *Kp ^al  
    %       0    0    1                                 1 9R t(G_'  
    %       1    1    r * cos(theta)                    2 y+~Aw"J}  
    %       1   -1    r * sin(theta)                    2 % 'L=  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) JqH.QnKcv  
    %       2    0    (2*r^2 - 1)                    sqrt(3) ]>]H:NEq  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) U%S NROj  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ~ jrU#<'G9  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) Vv* 5{_  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) a}+ _Yo(Q  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 9BgQ oK@  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) Xb07 l3UG  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ,"HpV  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) >=RHE@  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ^,\se9=(  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) g]hn@{[  
    %       -------------------------------------------------- W1M/Z[h6)5  
    % BRQ5  
    %   Example 1: jl ?y}  
    % 70 D Q/b  
    %       % Display the Zernike function Z(n=5,m=1) A5 J#x6@  
    %       x = -1:0.01:1; $F==n4)  
    %       [X,Y] = meshgrid(x,x); N'1[t  
    %       [theta,r] = cart2pol(X,Y); v(WL 3[y;  
    %       idx = r<=1; 61 HqBa  
    %       z = nan(size(X)); kv`3Y0R-"  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); %>QSeX  
    %       figure \?Oa}&k$F8  
    %       pcolor(x,x,z), shading interp Zp P6Q  
    %       axis square, colorbar m$e@<~To  
    %       title('Zernike function Z_5^1(r,\theta)') TTjjyZ@  
    % N6 Cc%,  
    %   Example 2: -ZMl[;OM  
    % uc `rt"  
    %       % Display the first 10 Zernike functions cVt$#A)  
    %       x = -1:0.01:1; 9HBx[2&  
    %       [X,Y] = meshgrid(x,x); U*#E aL  
    %       [theta,r] = cart2pol(X,Y); sRI=TE]s  
    %       idx = r<=1; 'J<zVD}0  
    %       z = nan(size(X)); ~s^6Q#Z9|  
    %       n = [0  1  1  2  2  2  3  3  3  3]; i2Iu 2  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; Mdq'> <ajL  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; /:];2P6#X  
    %       y = zernfun(n,m,r(idx),theta(idx)); MZ#2WP)F  
    %       figure('Units','normalized') 1F%*k &R  
    %       for k = 1:10 _O'rZ5}&  
    %           z(idx) = y(:,k); nHL>}Yg  
    %           subplot(4,7,Nplot(k)) G;.u>92r|  
    %           pcolor(x,x,z), shading interp XcW3IO  
    %           set(gca,'XTick',[],'YTick',[]) O#ajoE  
    %           axis square xo@/k   
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}'])  7qdl,z  
    %       end 5EZr"  
    % n@8{FoF  
    %   See also ZERNPOL, ZERNFUN2. >5Rw~  
    A-NC,3  
    %   Paul Fricker 11/13/2006 j-\^ }K.&  
    xn#I7]]G  
    t7& GCZ  
    % Check and prepare the inputs: 5|H(N}S_  
    % ----------------------------- Ib<+m%Ac  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) +]2~@=<@  
        error('zernfun:NMvectors','N and M must be vectors.') 5^R#e(mr  
    end Kwmo)|7uPU  
    H<3b+Sg  
    if length(n)~=length(m) [}Yci:P_ +  
        error('zernfun:NMlength','N and M must be the same length.') eT \Q  
    end i}12mjF  
    5s2}nIe  
    n = n(:); Y  .X-8  
    m = m(:); BwA~*5TFu  
    if any(mod(n-m,2)) n!,TBCNX  
        error('zernfun:NMmultiplesof2', ... {ca^yHgGy  
              'All N and M must differ by multiples of 2 (including 0).') ~ .=HN}E  
    end IOsDVIXL\  
    Nd!=3W5?  
    if any(m>n) :BiR6>1:  
        error('zernfun:MlessthanN', ... ))-M+CA  
              'Each M must be less than or equal to its corresponding N.') (B4 A$t  
    end Hm[!R:HW,S  
    bao5^t}  
    if any( r>1 | r<0 ) X"r$,~  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') ?v*7!2;  
    end v[=E f  
    rm;"98~zJ?  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Tm,L?Jh  
        error('zernfun:RTHvector','R and THETA must be vectors.') 833t0Ml1A/  
    end -s84/E4Y*  
    +m},c-,=$w  
    r = r(:); E^ti !4{<  
    theta = theta(:); !!pi\J?sk  
    length_r = length(r); uw&,pq  
    if length_r~=length(theta) d|HM  
        error('zernfun:RTHlength', ... s:.XF|e{  
              'The number of R- and THETA-values must be equal.') q.Mck9R7  
    end +VFwYdW,  
    qf{B  
    % Check normalization: +F6_P  
    % -------------------- c.> (/  
    if nargin==5 && ischar(nflag) lt"*y.%@b  
        isnorm = strcmpi(nflag,'norm'); Q";eyYdOL  
        if ~isnorm `cRB!w=KHV  
            error('zernfun:normalization','Unrecognized normalization flag.') s$G8`$+i1  
        end NGzqiu"J  
    else YA8~O5  
        isnorm = false; F'Vl\qPt  
    end x/^zNO\1  
    *a.*Ha  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% (pg9cM]NA  
    % Compute the Zernike Polynomials @=1``z#  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ,_-*/- 7;8  
    1W7BN~p14  
    % Determine the required powers of r: I(S6DkU  
    % ----------------------------------- md s\~l73  
    m_abs = abs(m); .`RC,R`C  
    rpowers = []; m^+ ~pC5  
    for j = 1:length(n) AXI:h"so  
        rpowers = [rpowers m_abs(j):2:n(j)]; w\4m -Z{  
    end MPc=cLv  
    rpowers = unique(rpowers); tYa*%|!v  
    T`;M!-)2  
    % Pre-compute the values of r raised to the required powers, y?hW#l~#X  
    % and compile them in a matrix: }A ^,y  
    % ----------------------------- GjG3aqP&!  
    if rpowers(1)==0 8B9zo&  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); rpWy 6oD  
        rpowern = cat(2,rpowern{:}); _ RYZyw   
        rpowern = [ones(length_r,1) rpowern]; r/f;\w7  
    else >$F]Ss)$  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); _XPc0r:?>  
        rpowern = cat(2,rpowern{:}); tsD^8~ t|h  
    end 6Fb~`J~s  
    !}7m^  
    % Compute the values of the polynomials: s9>!^MzBK  
    % -------------------------------------- kRPg^Fw"Vw  
    y = zeros(length_r,length(n)); \:7EKzQ  
    for j = 1:length(n) +3CMfYsr8  
        s = 0:(n(j)-m_abs(j))/2; A@r,A?(  
        pows = n(j):-2:m_abs(j); NR{:4zJT  
        for k = length(s):-1:1 T(DE^E@a  
            p = (1-2*mod(s(k),2))* ... 4N&}hOM'S  
                       prod(2:(n(j)-s(k)))/              ... E .5xzY  
                       prod(2:s(k))/                     ... e+TNG &_  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... (0S7  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); "N_?yA#(j  
            idx = (pows(k)==rpowers); ^p/mJ1/s7  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 70eN]OY  
        end F^-4Pyq@  
         1\uS~RR  
        if isnorm 5JXLfYTUI  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 7j8_O@_  
        end =UY@,*q:c  
    end ,d#4Ib  
    % END: Compute the Zernike Polynomials .M lE1n'  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Sy~1U  
    '>BHwc  
    % Compute the Zernike functions: {'%=tJ[YX  
    % ------------------------------ ";]m]PRAam  
    idx_pos = m>0; jC%I]#!n  
    idx_neg = m<0; h>?OWI  
    ,fn=%tiUk  
    z = y; }{J8U2])k  
    if any(idx_pos) oLoa71Q}  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); FBsw\P5w  
    end sTDBK!9I  
    if any(idx_neg) m`~ Qr~  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); vNIQc "\-  
    end MZ'HMYed   
    2X`M&)"X  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) 43Q&<r$[T  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. )8;'fE[p}  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated "<n{/x(  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive {<@~;iq  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, pyKMi /)bL  
    %   and THETA is a vector of angles.  R and THETA must have the same `*]r.u0  
    %   length.  The output Z is a matrix with one column for every P-value, _[ x(p6Xp  
    %   and one row for every (R,THETA) pair. i!NGX  
    % ~$`b{  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike hf[K\aAk  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) LBg#KQ @  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) zv41Yv!x}  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 m<E7cY3mX  
    %   for all p. jVDNThm+  
    % =GF+hM/~  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 0pQ>V)  
    %   Zernike functions (order N<=7).  In some disciplines it is rTH@PDk>)  
    %   traditional to label the first 36 functions using a single mode <:?&}'aA  
    %   number P instead of separate numbers for the order N and azimuthal m#Cp.|>kP4  
    %   frequency M. )~6974  
    % W6pS.}  
    %   Example: aD4ln]sFxG  
    % -Je+7#P1  
    %       % Display the first 16 Zernike functions ]n+:lsiV  
    %       x = -1:0.01:1; *)`:Nm~y  
    %       [X,Y] = meshgrid(x,x); k@w&$M{tPF  
    %       [theta,r] = cart2pol(X,Y); 8]O|$8'"  
    %       idx = r<=1; ;BqX=X+#  
    %       p = 0:15; Th8xh=F[  
    %       z = nan(size(X)); @wo9;DW`  
    %       y = zernfun2(p,r(idx),theta(idx)); <C&UD j  
    %       figure('Units','normalized') ,GK>|gNsb  
    %       for k = 1:length(p) |A2.W8`o  
    %           z(idx) = y(:,k); @t_<oOI2  
    %           subplot(4,4,k) r )T`?y  
    %           pcolor(x,x,z), shading interp 3yTBkFI!  
    %           set(gca,'XTick',[],'YTick',[]) { Z|C  
    %           axis square ^3e l-dZ  
    %           title(['Z_{' num2str(p(k)) '}']) "PX~Yc  
    %       end /( q*  
    % b c+' n  
    %   See also ZERNPOL, ZERNFUN. 4o%hH  
    4EOu)#  
    %   Paul Fricker 11/13/2006 @FQ@* XD  
    9U+^8,5  
    2-$R@ SVy  
    % Check and prepare the inputs: ]|-y[iu  
    % ----------------------------- ^0r @",  
    if min(size(p))~=1 Cnn,$R=/s  
        error('zernfun2:Pvector','Input P must be vector.') 6:e0?R^aD"  
    end n44j]+P  
    pD){K  
    if any(p)>35 R8ZW1  
        error('zernfun2:P36', ... &oT]ycz%  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... 1f}Dza9  
               '(P = 0 to 35).']) jildiT[s  
    end Ngg (<ZN  
    [x@iqFO9  
    % Get the order and frequency corresonding to the function number: W] RxRdY6[  
    % ---------------------------------------------------------------- f1Rm9``  
    p = p(:); c^m}ep\F5L  
    n = ceil((-3+sqrt(9+8*p))/2); P/^:IfuR  
    m = 2*p - n.*(n+2); 5Eq_L  
    C3 D1rS/I  
    % Pass the inputs to the function ZERNFUN: HbCM{A9  
    % ---------------------------------------- GLEGyT?~  
    switch nargin ~x824xW  
        case 3 f9; M"Pd  
            z = zernfun(n,m,r,theta); v=|ahsYC  
        case 4 eQMY3/#  
            z = zernfun(n,m,r,theta,nflag); ,UY],;ib  
        otherwise (;!&RZ  
            error('zernfun2:nargin','Incorrect number of inputs.') p`Ax)L\f  
    end d kPfdK}G  
    :[,n`0lH  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) -fYgTst2  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. 1H%LUA  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of Ow<=K:^  
    %   order N and frequency M, evaluated at R.  N is a vector of W,}C*8{+  
    %   positive integers (including 0), and M is a vector with the uT ngDk  
    %   same number of elements as N.  Each element k of M must be a s-Bpd#G>/  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) L= hPu#&/  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is N_Yop  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix 6!O~:\`DJ  
    %   with one column for every (N,M) pair, and one row for every GoZr[=d  
    %   element in R. B_nim[72  
    % 5^*I]5t8  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- ux'!1mN  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is )y_MI r  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to G-xW&wC-  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 fC52nK&T8  
    %   for all [n,m]. t*~V]wZ  
    % k#&d`?X  
    %   The radial Zernike polynomials are the radial portion of the NO8)XJ3s  
    %   Zernike functions, which are an orthogonal basis on the unit l>Z"y\l =  
    %   circle.  The series representation of the radial Zernike c&J,O1){\  
    %   polynomials is NvQN  
    % +.:- :  
    %          (n-m)/2 .sgP3Ah  
    %            __ RdRF~~R%  
    %    m      \       s                                          n-2s FTsvPLIv"  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r *v_+a:  
    %    n      s=0 ".Luc 7  
    % 3a_~18W  
    %   The following table shows the first 12 polynomials. { owK~  
    % O'*KNJX  
    %       n    m    Zernike polynomial    Normalization = a$7OV.  
    %       --------------------------------------------- ?zM]p"M  
    %       0    0    1                        sqrt(2) l`M{Ravvn*  
    %       1    1    r                           2 )OS^tG[=  
    %       2    0    2*r^2 - 1                sqrt(6) +:+q,0~*]  
    %       2    2    r^2                      sqrt(6) =`Pgo5A  
    %       3    1    3*r^3 - 2*r              sqrt(8) 1 \:5ow&a  
    %       3    3    r^3                      sqrt(8) TFjb1 a,)  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) buu~#m 1z  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) xy5&}_Y  
    %       4    4    r^4                      sqrt(10) Y92 w L}  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) Mj|\LF +  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) "AMbU6 8  
    %       5    5    r^5                      sqrt(12) pX `BDYg.  
    %       --------------------------------------------- SvLI%>B=9  
    % $F"'= +0  
    %   Example: bz<f u  
    % y@Z@ eK3  
    %       % Display three example Zernike radial polynomials 50q(8F-N  
    %       r = 0:0.01:1; i=jwk_y  
    %       n = [3 2 5]; PUZH[-:c  
    %       m = [1 2 1]; -fKo~\Pr  
    %       z = zernpol(n,m,r);  Wa7-N4  
    %       figure +"Flu.+['  
    %       plot(r,z) [|.IXdJ!  
    %       grid on H0r@dn  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') 4+I@   
    % "H\1Z,P<m  
    %   See also ZERNFUN, ZERNFUN2. ]-]K4*{   
    H\H4AAP5F$  
    % A note on the algorithm. @)k/t>r(  
    % ------------------------ jkTC/9AE|  
    % The radial Zernike polynomials are computed using the series /vO8s??  
    % representation shown in the Help section above. For many special .^ djt  
    % functions, direct evaluation using the series representation can m[n=t5~  
    % produce poor numerical results (floating point errors), because tqbYrF)  
    % the summation often involves computing small differences between +L(|?|i8  
    % large successive terms in the series. (In such cases, the functions AQ+MjS,  
    % are often evaluated using alternative methods such as recurrence AUjZYp  
    % relations: see the Legendre functions, for example). For the Zernike ;+C2P@M  
    % polynomials, however, this problem does not arise, because the )S"!)\4 b  
    % polynomials are evaluated over the finite domain r = (0,1), and ~;$,h ET  
    % because the coefficients for a given polynomial are generally all m'HAt~  
    % of similar magnitude. Bl[4[N  
    % %x{jmZ$}  
    % ZERNPOL has been written using a vectorized implementation: multiple ,Y9bXC8+dU  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] x9\z^GU%H  
    % values can be passed as inputs) for a vector of points R.  To achieve BPO)<bx_  
    % this vectorization most efficiently, the algorithm in ZERNPOL V9`?s0nn^  
    % involves pre-determining all the powers p of R that are required to lEAf\T7  
    % compute the outputs, and then compiling the {R^p} into a single M]|tXo$?  
    % matrix.  This avoids any redundant computation of the R^p, and x Zp`  
    % minimizes the sizes of certain intermediate variables. 'aV])(Wm>  
    % f[1 s4Dp3-  
    %   Paul Fricker 11/13/2006 p.@ kv  
    Y]!WPJ`f2  
    U/ds(*g@  
    % Check and prepare the inputs: (>]frlEU~  
    % ----------------------------- gpT~3c;l=  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 'k'"+  
        error('zernpol:NMvectors','N and M must be vectors.') Z-%zR'-?*  
    end JsP<etX  
    iy!SqC  
    if length(n)~=length(m) ) KvGJo)("  
        error('zernpol:NMlength','N and M must be the same length.') 'Nkd *  
    end wF=?EK(;P{  
    Hnft1   
    n = n(:); t]gZ^5  
    m = m(:); )x5t']w`K  
    length_n = length(n); 8yCt(ms  
    _w}l,   
    if any(mod(n-m,2)) GBYeiEgZh  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') Kj53"eW  
    end )WNw0cV}J>  
    Efp[K}Z^$  
    if any(m<0) )&6ZgRq  
        error('zernpol:Mpositive','All M must be positive.') -#Bk  
    end ]A=yj@o$xN  
     L}=DC =E  
    if any(m>n) @#r6->%W  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') S:lie*Aux*  
    end sEymwpm9  
    6%^A6U  
    if any( r>1 | r<0 ) <EKTFHJ!  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') 1SF8D`3  
    end k3+LP7|*  
    HT:V;?"  
    if ~any(size(r)==1) -{XDQ{z<%  
        error('zernpol:Rvector','R must be a vector.') 3*zywcTH  
    end SPT?Tt  
    [a_'pAH  
    r = r(:); ?zuKVi? I  
    length_r = length(r); K+\2cf?bU  
    6Vgxfic  
    if nargin==4 :i3 W U%  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); 8kLHQ0pmu  
        if ~isnorm HDO_r(i  
            error('zernpol:normalization','Unrecognized normalization flag.') |b4f3n  
        end w8D6j%C  
    else 2kcDJ{(  
        isnorm = false; g43(N!@g  
    end -}1TT@  
    0`/CoP<U  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \`0s %F:V}  
    % Compute the Zernike Polynomials esM r@Oc  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ]JR2Av  
    GdYQq.  
    % Determine the required powers of r: a9u2Wlz  
    % ----------------------------------- @#=yC.s  
    rpowers = []; Kzx` E>,z'  
    for j = 1:length(n) eI9#JM|2  
        rpowers = [rpowers m(j):2:n(j)]; 7,s5Gd-  
    end IISdC(5  
    rpowers = unique(rpowers); Ft^X[5G4L  
     p9 G{Q  
    % Pre-compute the values of r raised to the required powers, Jot7 L%,TB  
    % and compile them in a matrix: =9h!K:,k  
    % ----------------------------- ?AO22N|j  
    if rpowers(1)==0 nAC>']K4$  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); iR"6VO  
        rpowern = cat(2,rpowern{:}); v@4vitbG9  
        rpowern = [ones(length_r,1) rpowern]; H$V`,=H  
    else GExr] 2r  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); zR4]buHnE  
        rpowern = cat(2,rpowern{:}); b<%c ]z  
    end ^T#jBqe  
    xI_0`@do  
    % Compute the values of the polynomials: |c>.xt~  
    % -------------------------------------- *07?U")  
    z = zeros(length_r,length_n); &e78xtA{  
    for j = 1:length_n on;>iKta9  
        s = 0:(n(j)-m(j))/2; $<9u:.9xf  
        pows = n(j):-2:m(j); \a4X},h\  
        for k = length(s):-1:1 "Zy:q'`o  
            p = (1-2*mod(s(k),2))* ... ;b (ww{&  
                       prod(2:(n(j)-s(k)))/          ... .C.b5x!  
                       prod(2:s(k))/                 ... W~PMR/^i  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... P4zwTEk`  
                       prod(2:((n(j)+m(j))/2-s(k))); k }{o: N  
            idx = (pows(k)==rpowers); \H9:%Tlp~4  
            z(:,j) = z(:,j) + p*rpowern(:,idx); l-P6B9e|\  
        end &Yo|Pj  
         NG`Y{QT6N  
        if isnorm P,xIDj4d  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); &6vWz6!P  
        end O._\l?m  
    end t3!OqM  
    u0]u"T&N!  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  Z(tJd ,  
    ^|.T \  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 jd ;)8^7K  
    =23B9WT   
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)