切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11695阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 F6 mc<n  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! L\0;)eJ#M  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 kM6i{{Q  
    function z = zernfun(n,m,r,theta,nflag) *wk?{ U  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. G2$<Q+UYs?  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N GLO%>&  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 1NAGGr00  
    %   unit circle.  N is a vector of positive integers (including 0), and ,NO2{Ha$  
    %   M is a vector with the same number of elements as N.  Each element 3_bE12  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) jKh:}yl4  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, !hs33@*u~  
    %   and THETA is a vector of angles.  R and THETA must have the same agV z  
    %   length.  The output Z is a matrix with one column for every (N,M) N#``(a  
    %   pair, and one row for every (R,THETA) pair. W [*Go  
    % ` 0$i^,}  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike tJG+k)EE  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), HLe/|x\@<  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral -9] ucmN  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ~dO+kD  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized s.X .SJ  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. &k@\k<2Ia  
    % 6"Ze%:AZZ  
    %   The Zernike functions are an orthogonal basis on the unit circle. MzFFWk  
    %   They are used in disciplines such as astronomy, optics, and >D jJ*vM  
    %   optometry to describe functions on a circular domain. h;+{0a  
    % p4F%FS:`  
    %   The following table lists the first 15 Zernike functions. z''ejq  
    % bm*.*A]  
    %       n    m    Zernike function           Normalization TU6(Q,Yi|  
    %       -------------------------------------------------- ZaBmH|k  
    %       0    0    1                                 1 2Z-[x9t  
    %       1    1    r * cos(theta)                    2 !/ a![Ne  
    %       1   -1    r * sin(theta)                    2 _/czH<   
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) {Gr"lOi*@  
    %       2    0    (2*r^2 - 1)                    sqrt(3) {/FdrS  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) J9*i`8kU.  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) qfkd Q/fP  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) "{S6iH)]8  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 'fs tfk  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) Jc7}z:UB  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) O$nW  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ?f$U8A4lp  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) "38L ,PW0Z  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) f\rE{%  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) .L9g*q/}  
    %       -------------------------------------------------- i zYC0T9  
    % Q>q-6/|UX  
    %   Example 1: O14\_eAu6  
    % cL<,]%SkE  
    %       % Display the Zernike function Z(n=5,m=1) bv;. 6C(T<  
    %       x = -1:0.01:1; ~?4 BP%g-y  
    %       [X,Y] = meshgrid(x,x); W ]$/qyc&J  
    %       [theta,r] = cart2pol(X,Y); qSDn0^y  
    %       idx = r<=1; =r)LG,w212  
    %       z = nan(size(X)); Q #X'.](1  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 8(Q|[  
    %       figure m*L5xxc!  
    %       pcolor(x,x,z), shading interp =van<l4b#n  
    %       axis square, colorbar !{4'=+  
    %       title('Zernike function Z_5^1(r,\theta)') Rt5,/Q0  
    % o!ZG@k?#  
    %   Example 2: L PS,\+  
    % *;(^)Sj4Q  
    %       % Display the first 10 Zernike functions J )^F  
    %       x = -1:0.01:1; 2FW"uYA;6  
    %       [X,Y] = meshgrid(x,x); 52 *ii  
    %       [theta,r] = cart2pol(X,Y); ^9`|QF  
    %       idx = r<=1; [7Q%c!e$*  
    %       z = nan(size(X)); 3GNcnb  
    %       n = [0  1  1  2  2  2  3  3  3  3]; yM}3u4FG  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; P:_bF>r ?  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; M}j[{wW3  
    %       y = zernfun(n,m,r(idx),theta(idx)); Yi]`"\  
    %       figure('Units','normalized') =k*XGbU  
    %       for k = 1:10 =W;e9 6#  
    %           z(idx) = y(:,k); Go!{@ xx>  
    %           subplot(4,7,Nplot(k)) '7pzw>E=:  
    %           pcolor(x,x,z), shading interp c5|sda{  
    %           set(gca,'XTick',[],'YTick',[]) x#5vdBf  
    %           axis square fJP *RVz  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) HYmUD74FR  
    %       end @( \R@`#  
    % c:52pYf+  
    %   See also ZERNPOL, ZERNFUN2. qco uZO  
    8{]nS8i  
    %   Paul Fricker 11/13/2006 o<J6KTLv  
    6O/c%1VHA3  
    ,a?oGi  
    % Check and prepare the inputs: )7]yzc  
    % ----------------------------- nbB*d@"  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) x N7sFSV@  
        error('zernfun:NMvectors','N and M must be vectors.') 6:L2oW 6}{  
    end 98)C 7N'  
    2X[oge0@  
    if length(n)~=length(m) L,.AY?)+7  
        error('zernfun:NMlength','N and M must be the same length.') V%)Tu{L  
    end .P`QCH;Ih  
    hkyO_ns  
    n = n(:); gq;>DY]   
    m = m(:); TpwN2 =  
    if any(mod(n-m,2)) 9R2"(.U  
        error('zernfun:NMmultiplesof2', ... *Wvk~  
              'All N and M must differ by multiples of 2 (including 0).') dA (n,@{  
    end ?;_>BX|Zjl  
    K3<A<&W_-  
    if any(m>n) PqL. ^  
        error('zernfun:MlessthanN', ... u#rbc"  
              'Each M must be less than or equal to its corresponding N.') >MKj~Ud  
    end u]7wd3(  
    (X Oz0.W  
    if any( r>1 | r<0 ) S6_:\Q  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') _~MX~M3MB  
    end v-SX PL]_^  
    n-xdyJD  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) y3o3G  
        error('zernfun:RTHvector','R and THETA must be vectors.') e8T"d%f?  
    end ?]D))_|G  
    VH~YwO!x  
    r = r(:); b1cVAfUP  
    theta = theta(:); Ncsh{.  
    length_r = length(r); 4xq|  
    if length_r~=length(theta) N6of$p'N  
        error('zernfun:RTHlength', ... Y)]C.V,~  
              'The number of R- and THETA-values must be equal.') L-:@Om!  
    end 0 }qlZFB  
    <K<#)mcv  
    % Check normalization: 09anQHa  
    % -------------------- ;3wO1'=  
    if nargin==5 && ischar(nflag) enZZ+|h  
        isnorm = strcmpi(nflag,'norm'); p/RT*?<   
        if ~isnorm ZZZ9C#hK^9  
            error('zernfun:normalization','Unrecognized normalization flag.') ?>7-a~*A@  
        end 9M3"'^ {$  
    else /5/gnp C  
        isnorm = false; 3(\D.Z  
    end G`kz 0Vk  
    W+63B8)4  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ^g|cRI_"  
    % Compute the Zernike Polynomials 8{/.1:  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 6 iMJ0  
    mB"I(>q*M  
    % Determine the required powers of r: Jy% ?"wn  
    % ----------------------------------- A"&<$5Q  
    m_abs = abs(m); ni%)a  
    rpowers = []; J ffaT_"\  
    for j = 1:length(n) 0QW=2rs  
        rpowers = [rpowers m_abs(j):2:n(j)]; _p%n%Oce  
    end P "IR3=  
    rpowers = unique(rpowers); ;>jEeIlT  
    r *6S1bW  
    % Pre-compute the values of r raised to the required powers, Ze8.+Ee  
    % and compile them in a matrix: }.E^_`  
    % ----------------------------- z8awND  
    if rpowers(1)==0 j|wN7@Zc  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); $.,B2}'  
        rpowern = cat(2,rpowern{:}); tkcs6uy  
        rpowern = [ones(length_r,1) rpowern]; <>9!oOa  
    else ) c\Y!vS  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); >8k Xa.)84  
        rpowern = cat(2,rpowern{:}); 6(d6Uwc`  
    end 4Ex&AR8  
    e 9RYk:O  
    % Compute the values of the polynomials: NT.#U?9c  
    % -------------------------------------- h2f8-}fsq  
    y = zeros(length_r,length(n)); $7DW-TA  
    for j = 1:length(n) 6{ ]F#ig=  
        s = 0:(n(j)-m_abs(j))/2; @}g3\xLiK  
        pows = n(j):-2:m_abs(j); (~zu4^9w  
        for k = length(s):-1:1 `qs}L  
            p = (1-2*mod(s(k),2))* ... ;[R6rVHe{  
                       prod(2:(n(j)-s(k)))/              ... `}#rcDK  
                       prod(2:s(k))/                     ... C&H'?0Y@  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... reh{jMC  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); =3-?$  
            idx = (pows(k)==rpowers); y< *-&  
            y(:,j) = y(:,j) + p*rpowern(:,idx); `HQ)][  
        end 94ruQ/  
         Oa~ThbX7  
        if isnorm -i2rcH  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ~ W8X g)  
        end >lUPOc  
    end "nu]3zcd  
    % END: Compute the Zernike Polynomials ;un@E:  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% S \]O8#OX  
    "4\  
    % Compute the Zernike functions: EwN{|34C  
    % ------------------------------ A5yVxSF  
    idx_pos = m>0; Mt-r`W3 q  
    idx_neg = m<0; +:;ddV  
    lxL.ztL  
    z = y; `/>kN%  
    if any(idx_pos) H)D|lt5xy  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); '?veMX  
    end F&czD;F  
    if any(idx_neg) x5Lbe5/P  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); W^ L ^7  
    end 6Bjo9,L  
    5N|LT8P}Z  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) =){ G  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. '2r  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated 1WMZ$vsQUb  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive H<_Tn$<zH.  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, c]|vg=W  
    %   and THETA is a vector of angles.  R and THETA must have the same j;-Wf6h{  
    %   length.  The output Z is a matrix with one column for every P-value, E #,"C`&*  
    %   and one row for every (R,THETA) pair. ]H n:c'aT  
    % kzRvLs4xM  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike 7_1 Iadb  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) y5j:+2|I  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) jy!]MAP#Gk  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 -iDs:J4Iq  
    %   for all p. ZTzec zXpQ  
    % ~][~aEat;V  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 A?lL K&*  
    %   Zernike functions (order N<=7).  In some disciplines it is |KYl'"5\  
    %   traditional to label the first 36 functions using a single mode #Zm`*s`  
    %   number P instead of separate numbers for the order N and azimuthal A`3KE9ED  
    %   frequency M. ..8t1+S6]  
    % <\^o  
    %   Example: ! *sXLlS  
    % 4P3RRS  
    %       % Display the first 16 Zernike functions / 3N2?zS{  
    %       x = -1:0.01:1; D", L.  
    %       [X,Y] = meshgrid(x,x); MT>sRx #  
    %       [theta,r] = cart2pol(X,Y); 9!n:hhJM  
    %       idx = r<=1; pWRdI_  
    %       p = 0:15; }+KM"+@$<  
    %       z = nan(size(X)); ElW\;C:K*  
    %       y = zernfun2(p,r(idx),theta(idx)); W/2y; @  
    %       figure('Units','normalized') 2.Vrh@FNRo  
    %       for k = 1:length(p) =T[P  
    %           z(idx) = y(:,k); Wa^Wn +r  
    %           subplot(4,4,k) G!I++M"  
    %           pcolor(x,x,z), shading interp [}4zqY{  
    %           set(gca,'XTick',[],'YTick',[]) %>*?uO`z[  
    %           axis square FvT4?7-  
    %           title(['Z_{' num2str(p(k)) '}']) %0-oZL  
    %       end $ Lstq_x+  
    % SSF:PTeG>  
    %   See also ZERNPOL, ZERNFUN. eV?%3h.   
    j-1V,V=  
    %   Paul Fricker 11/13/2006 1/9*c *w  
    #-B<u-  
    gV@xu)l  
    % Check and prepare the inputs: $JOz7j(  
    % ----------------------------- )W\ )kDh!  
    if min(size(p))~=1 `?$-T5Rr  
        error('zernfun2:Pvector','Input P must be vector.') }6[jJ`=gOx  
    end ]x metv|7  
    Hj >fg2/  
    if any(p)>35 3J"`mQ  
        error('zernfun2:P36', ... q<E7q Y+  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... k5\V:P=#  
               '(P = 0 to 35).']) hFA |(l6  
    end ^ZsIQ4@`  
    k$%{w\?Jf  
    % Get the order and frequency corresonding to the function number: $R #_c}  
    % ---------------------------------------------------------------- c:K/0zY  
    p = p(:); jF;<9-m&  
    n = ceil((-3+sqrt(9+8*p))/2); aZ~e;}w.Zq  
    m = 2*p - n.*(n+2); Q I";[  
    hXI[FICQU{  
    % Pass the inputs to the function ZERNFUN: ZiR}S  
    % ---------------------------------------- _(f@b1O~  
    switch nargin l^R:W#*+U  
        case 3 O;VqrO  
            z = zernfun(n,m,r,theta); 8x1!15Wiz  
        case 4 BPkMw'a:  
            z = zernfun(n,m,r,theta,nflag); ;*qXjv& K  
        otherwise uO1^Q;F  
            error('zernfun2:nargin','Incorrect number of inputs.') ^iEf"r  
    end !=21K0~t#  
    +iN!$zF5]  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) n2*Ua/J-8  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M.  P:6K  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of %tkqWK:  
    %   order N and frequency M, evaluated at R.  N is a vector of #p=+RTZ<  
    %   positive integers (including 0), and M is a vector with the # d"M(nt  
    %   same number of elements as N.  Each element k of M must be a rMG[,:V  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) C|H`.|Q  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is GX19GI@k  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix q#Otp\f  
    %   with one column for every (N,M) pair, and one row for every GAH<  
    %   element in R. OtL~NTY  
    % 2 br>{^T  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- ZD50-w;  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is J8FzQ2  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to mn1!A`$  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 :fX61S6)  
    %   for all [n,m]. DDIRJd<J  
    % >.39OQ#  
    %   The radial Zernike polynomials are the radial portion of the "nJMS6HJ[  
    %   Zernike functions, which are an orthogonal basis on the unit n"iaE  
    %   circle.  The series representation of the radial Zernike ;N!n06S3  
    %   polynomials is hDJ+Rk@  
    % unYPvrd  
    %          (n-m)/2 g0~m[[  
    %            __ fm^tU0DY  
    %    m      \       s                                          n-2s S%]4['Y  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r M2:3 k  
    %    n      s=0 ~>]Ie~E: (  
    % P[`>*C\9c  
    %   The following table shows the first 12 polynomials. \py&v5J)s!  
    % x6T$HN/2  
    %       n    m    Zernike polynomial    Normalization ViOXmK"  
    %       --------------------------------------------- Qmd2C&Xw  
    %       0    0    1                        sqrt(2) =*4^Dtp  
    %       1    1    r                           2 `h'Ab63  
    %       2    0    2*r^2 - 1                sqrt(6) /ORK9 g  
    %       2    2    r^2                      sqrt(6) ][z!};  
    %       3    1    3*r^3 - 2*r              sqrt(8) <6N3()A)%1  
    %       3    3    r^3                      sqrt(8) ctb , w  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) |Qpo[E }a  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) w0>5#j q#r  
    %       4    4    r^4                      sqrt(10) I`{=[.c  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) ciH TnC  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) i+-=I+L3  
    %       5    5    r^5                      sqrt(12) MmfshnTN  
    %       --------------------------------------------- qqYQ/4Ajw  
    % u8~5e  
    %   Example: s0Y7`uD^  
    % C`oB [  
    %       % Display three example Zernike radial polynomials a<pEVV\NB~  
    %       r = 0:0.01:1; iee`Yg!EOH  
    %       n = [3 2 5]; -RThd"  
    %       m = [1 2 1]; IxlPpS9Wx  
    %       z = zernpol(n,m,r); H'2o84$  
    %       figure 9zehwl]~  
    %       plot(r,z) HRd02tah  
    %       grid on f`J[u!Ja  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') IgF#f%|Q  
    % Wu?[1L:x  
    %   See also ZERNFUN, ZERNFUN2. ^^Q> AfTR.  
    A.P*@}9  
    % A note on the algorithm. n u>6UjV  
    % ------------------------ -fz(]d  
    % The radial Zernike polynomials are computed using the series RoD9  
    % representation shown in the Help section above. For many special su=]gE@  
    % functions, direct evaluation using the series representation can v@!r$jZ  
    % produce poor numerical results (floating point errors), because 3A b_Z  
    % the summation often involves computing small differences between SkXx: @  
    % large successive terms in the series. (In such cases, the functions #4sSt-s&  
    % are often evaluated using alternative methods such as recurrence SMm$4h R  
    % relations: see the Legendre functions, for example). For the Zernike G>^ _&(c@2  
    % polynomials, however, this problem does not arise, because the T 6rjtq  
    % polynomials are evaluated over the finite domain r = (0,1), and tUFXx\p  
    % because the coefficients for a given polynomial are generally all PurY_  
    % of similar magnitude. apm,$Vvjy  
    % ;xE1#ZT  
    % ZERNPOL has been written using a vectorized implementation: multiple ?rwHkPJ{*  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] +Kg3qS"  
    % values can be passed as inputs) for a vector of points R.  To achieve )% ?SWuS?N  
    % this vectorization most efficiently, the algorithm in ZERNPOL ]O M?e  
    % involves pre-determining all the powers p of R that are required to ^W,x  
    % compute the outputs, and then compiling the {R^p} into a single !:dhK  
    % matrix.  This avoids any redundant computation of the R^p, and yH@2nAn  
    % minimizes the sizes of certain intermediate variables. ?Qh[vcF7`  
    % +3;[1dpgf  
    %   Paul Fricker 11/13/2006 rOq>jvy  
    r%oXO]X  
    v.]W{~PI2V  
    % Check and prepare the inputs: U| 1&=8l  
    % ----------------------------- cNRe>  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) q}7(w$&  
        error('zernpol:NMvectors','N and M must be vectors.') 6~(iLtd#  
    end jowR!rqf  
    [IuF0$w=dj  
    if length(n)~=length(m) |Q~5TL>b  
        error('zernpol:NMlength','N and M must be the same length.') "C%* 'k  
    end ![@\p5-e  
    g(zoN0~  
    n = n(:); /T/7O  
    m = m(:); ,`l8KRd  
    length_n = length(n); RjQdlr6*  
    !p"Ijz5  
    if any(mod(n-m,2)) ]a=Bc~g91  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') fyt`$y_E[  
    end ?9AtFT  
    ,n+~S^r  
    if any(m<0) 5-X(K 'Q  
        error('zernpol:Mpositive','All M must be positive.') E./Gt.Na  
    end ~Aq$GH4  
    E?P:!V=_  
    if any(m>n) 0_-NE4SM/  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') nHi6$ } I  
    end 3P2L phW  
    HvVS<Ke  
    if any( r>1 | r<0 ) c1Ta!p{%  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') W_N!f=HW  
    end O_wRI\ !  
    :>otlI<0t  
    if ~any(size(r)==1) 'gwh:8Xc  
        error('zernpol:Rvector','R must be a vector.') <swY o<?J#  
    end 5%Q[X  
    /WKp\r(Hp  
    r = r(:); !NFP=m1  
    length_r = length(r); u9%)_Q!14  
    VjVL/SO/  
    if nargin==4 |F#L{=B  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); JmK[7t  
        if ~isnorm x?B8b-*  
            error('zernpol:normalization','Unrecognized normalization flag.') Z}'"c9oB  
        end  =:-x;  
    else &-0 eWwMW  
        isnorm = false; HN tl>H  
    end S7 Tem:/  
    D#,P-0+%  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% & ]/Z~Vt  
    % Compute the Zernike Polynomials v(tr:[V  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Pa !r*(M)C  
    6+[7UH~pm^  
    % Determine the required powers of r: 9>"To  
    % ----------------------------------- KzC`*U[  
    rpowers = []; mT2Fn8yC1  
    for j = 1:length(n) UF00K1dbz  
        rpowers = [rpowers m(j):2:n(j)]; Eo }mSd  
    end x p#+{}  
    rpowers = unique(rpowers); {r!X W  
    `o~9a N  
    % Pre-compute the values of r raised to the required powers, -]h3s >t  
    % and compile them in a matrix: hD:$Sv/H  
    % ----------------------------- SrVJ Q~ :>  
    if rpowers(1)==0 _ %HyXd  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); CL$mK5u  
        rpowern = cat(2,rpowern{:}); U\A*${  
        rpowern = [ones(length_r,1) rpowern]; LAwl9YnG:  
    else jpCQ2XD:  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Sgt@G=_o  
        rpowern = cat(2,rpowern{:}); qeyBZ8BG  
    end zV }-_u.  
    Nz&J&\X)tD  
    % Compute the values of the polynomials: Qx mVImn"  
    % -------------------------------------- sc! e$@U  
    z = zeros(length_r,length_n); @edi6b1W  
    for j = 1:length_n y8KJoVP iM  
        s = 0:(n(j)-m(j))/2; Iz#h:O  
        pows = n(j):-2:m(j); c!BiGw,;  
        for k = length(s):-1:1 WBA0! g98  
            p = (1-2*mod(s(k),2))* ... b:S#Sz$  
                       prod(2:(n(j)-s(k)))/          ... EK^ld!g(  
                       prod(2:s(k))/                 ... l }?'U  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... 4V7{5:oa  
                       prod(2:((n(j)+m(j))/2-s(k))); '~E&^K5hr  
            idx = (pows(k)==rpowers); \DE`tkV8  
            z(:,j) = z(:,j) + p*rpowern(:,idx); b7/1 ]  
        end yp=2nU"o  
         g=;c*{  
        if isnorm yS#LT3>l  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); (l.`g@(L  
        end or u.a   
    end m#'2 3  
    > @ulvHL  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  Lcf =)GL  
    \D<rT)Tl  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 j{IAZs#@>  
    ATv.3cy  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)