非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 s}% M4
function z = zernfun(n,m,r,theta,nflag) fx>4
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 'y3!fN=h
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N MFAH%Z$
% and angular frequency M, evaluated at positions (R,THETA) on the ';=O 0)u
% unit circle. N is a vector of positive integers (including 0), and <<R*2b
% M is a vector with the same number of elements as N. Each element V%
6I\G2/:
% k of M must be a positive integer, with possible values M(k) = -N(k) KNIn:K^/
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, QW(Mz Hg
% and THETA is a vector of angles. R and THETA must have the same 8q}q{8
% length. The output Z is a matrix with one column for every (N,M) W]5w \
% pair, and one row for every (R,THETA) pair.
O+Y6N
% h{HHLR
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ` v@m-j6
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), psMvq@>
% with delta(m,0) the Kronecker delta, is chosen so that the integral (c
&mCJN
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, tHwMX1 IG
% and theta=0 to theta=2*pi) is unity. For the non-normalized "mvt>X
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. (rm?jDm
% JB[~;nLlC
% The Zernike functions are an orthogonal basis on the unit circle. EGF '"L
% They are used in disciplines such as astronomy, optics, and \ Et3|Iv
% optometry to describe functions on a circular domain. o!ebs0
% XLOh7(
% The following table lists the first 15 Zernike functions. 6.nCV0xA
% o]M5b;1
% n m Zernike function Normalization <s<n
% -------------------------------------------------- PKg@[<g43
% 0 0 1 1 ]a*d#
% 1 1 r * cos(theta) 2 wHMX=N1/
% 1 -1 r * sin(theta) 2 .Od!0(0
% 2 -2 r^2 * cos(2*theta) sqrt(6)
MC.)2B7
% 2 0 (2*r^2 - 1) sqrt(3) 4-H+vNG{%
% 2 2 r^2 * sin(2*theta) sqrt(6) LR.<&m%~.
% 3 -3 r^3 * cos(3*theta) sqrt(8) CSq4x5!_7>
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) )g#T9tx2D
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) *@=/qkaJaI
% 3 3 r^3 * sin(3*theta) sqrt(8) !0L Wa"
% 4 -4 r^4 * cos(4*theta) sqrt(10) dufu|BL|}
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) zFff`]^`
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) c>:wd@w
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 3>`mI8$t
% 4 4 r^4 * sin(4*theta) sqrt(10) .Una+Z
% -------------------------------------------------- RF53J yt
% 9BBmw(M}
% Example 1: ( !fKNia@S
% peuZ&yK+"
% % Display the Zernike function Z(n=5,m=1) EPM-df!=
% x = -1:0.01:1; Y}|X|!0x
% [X,Y] = meshgrid(x,x); ca*DZG/
% [theta,r] = cart2pol(X,Y); tKx~1-
% idx = r<=1; MSqVlj
% z = nan(size(X)); 4`]^@"{
% z(idx) = zernfun(5,1,r(idx),theta(idx)); D_^
nI:
% figure J^5So
% pcolor(x,x,z), shading interp *>'V1b4}
% axis square, colorbar ?u=Fj_N_
% title('Zernike function Z_5^1(r,\theta)') d#rf5<i
% a PfO$b:
% Example 2: 6J6BF%
% 1
A
!bE
% % Display the first 10 Zernike functions udUyh%n
% x = -1:0.01:1; JZ*/,|1}EC
% [X,Y] = meshgrid(x,x); =llvuUd\n
% [theta,r] = cart2pol(X,Y); ujq=F
% idx = r<=1; FvXZ<(A{
% z = nan(size(X)); KNpl:g3{<Q
% n = [0 1 1 2 2 2 3 3 3 3]; "ZoRZ'i
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; >#~& -3
% Nplot = [4 10 12 16 18 20 22 24 26 28]; A) %/[GD2
% y = zernfun(n,m,r(idx),theta(idx)); xU>WEm2
% figure('Units','normalized') ,nLy4T&"
% for k = 1:10 0gy/:T
% z(idx) = y(:,k); u#;7<.D
% subplot(4,7,Nplot(k)) xH(lm2kvT
% pcolor(x,x,z), shading interp }`QUHIF
% set(gca,'XTick',[],'YTick',[]) ag#S6E^%S
% axis square )Y6 +
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) G"U9E5O
% end w/S%YW3*
% A8fOQ
% See also ZERNPOL, ZERNFUN2. so)[59M7
H*&f: