切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11773阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 (9#$za>  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! <}G*/ z?/  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 qZV.~F+  
    function z = zernfun(n,m,r,theta,nflag) H%peE9>$  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. hT=6XO od4  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N W Ai91K@  
    %   and angular frequency M, evaluated at positions (R,THETA) on the L[D<e?j  
    %   unit circle.  N is a vector of positive integers (including 0), and ;R_H8vp  
    %   M is a vector with the same number of elements as N.  Each element 1edeV48{:  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) !kTI@103Wd  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, R_vF$X'Ow  
    %   and THETA is a vector of angles.  R and THETA must have the same j>}<FW-N  
    %   length.  The output Z is a matrix with one column for every (N,M) + a,x  
    %   pair, and one row for every (R,THETA) pair. m,Fug1+N  
    % <>Nq ]WqA  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike pV^(8!+  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), R v/=bY  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral ;8~tt I  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ;Y^.SR"  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized x%Fy1.  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. r(VGdG  
    % fz[-pJ5[  
    %   The Zernike functions are an orthogonal basis on the unit circle. tO@n3"O  
    %   They are used in disciplines such as astronomy, optics, and * NB:"1x  
    %   optometry to describe functions on a circular domain. 1.U9EuI  
    % U2DE zr  
    %   The following table lists the first 15 Zernike functions. GyVRe]<>B  
    % ta*6xpz-\Q  
    %       n    m    Zernike function           Normalization e8Y;~OAj[  
    %       -------------------------------------------------- 3G.-JLhs  
    %       0    0    1                                 1 oIJ.Tv@N(  
    %       1    1    r * cos(theta)                    2 Mb1K:U  
    %       1   -1    r * sin(theta)                    2 tLD(%s_  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 0ECQ>Ux:  
    %       2    0    (2*r^2 - 1)                    sqrt(3) b~u53   
    %       2    2    r^2 * sin(2*theta)             sqrt(6) gK6_vS4K)  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) VQV%1f  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) }jI=*  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) .szc-r{  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) {S Oy-  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) k ^:+Pp  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) p(8[n^~,i  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) (nUSgZz5  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) iiWm>yy  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) }u `~lw(Z  
    %       -------------------------------------------------- Z{ AF8r  
    % YM`I&!n  
    %   Example 1: )_H>d<di  
    % PX$_."WA  
    %       % Display the Zernike function Z(n=5,m=1) Yo^9Y@WDW  
    %       x = -1:0.01:1; <`P7^ 'z!  
    %       [X,Y] = meshgrid(x,x); 'k1vV  
    %       [theta,r] = cart2pol(X,Y); +p\+ 15  
    %       idx = r<=1; <W2 YG6^i  
    %       z = nan(size(X)); .1@8rVp7  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); nu<kx  
    %       figure ol#4AU`  
    %       pcolor(x,x,z), shading interp #FwTV@  
    %       axis square, colorbar SU$%nK)  
    %       title('Zernike function Z_5^1(r,\theta)') +DR,&;  
    % iYR`|PJi  
    %   Example 2: }%lk$g';  
    % F=9-po  
    %       % Display the first 10 Zernike functions /f Ui2[y  
    %       x = -1:0.01:1; ?Dn 6  
    %       [X,Y] = meshgrid(x,x); }P(<]UF  
    %       [theta,r] = cart2pol(X,Y); 5@/hqOiu  
    %       idx = r<=1; tsys</E&  
    %       z = nan(size(X)); #BOLq`9 f  
    %       n = [0  1  1  2  2  2  3  3  3  3]; J*zm*~8\  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; -S6^D/(;  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 9_&N0>OF  
    %       y = zernfun(n,m,r(idx),theta(idx)); J!"#N}[  
    %       figure('Units','normalized') "( NJ{J#A  
    %       for k = 1:10 032PR;]  
    %           z(idx) = y(:,k); k>W}9^ cK  
    %           subplot(4,7,Nplot(k)) Cz)/Bq  
    %           pcolor(x,x,z), shading interp tFrNnbmlQ  
    %           set(gca,'XTick',[],'YTick',[]) KpF/g[m  
    %           axis square NB)$l2<d  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ^>/] Qi  
    %       end p/4}SU  
    % = t!$72g\  
    %   See also ZERNPOL, ZERNFUN2. c[zaYcbl  
    qV&ai{G:  
    %   Paul Fricker 11/13/2006 JXKo zy41  
    : kw14?]_  
    'joE-{  
    % Check and prepare the inputs: I5H#]U  
    % ----------------------------- g(-}M`  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) d.:.f_|  
        error('zernfun:NMvectors','N and M must be vectors.') %YV3-W8S0  
    end nZP%Z=p7  
    Y. 1dk  
    if length(n)~=length(m) &?(472<f**  
        error('zernfun:NMlength','N and M must be the same length.') Q2jl61d_9  
    end geJO#;  
    Ks FkC=  
    n = n(:); 2& ZoG%)  
    m = m(:); H;kk:s'  
    if any(mod(n-m,2)) s3+6Z~g'B  
        error('zernfun:NMmultiplesof2', ... ~9h/{$  
              'All N and M must differ by multiples of 2 (including 0).') }&qr"z4  
    end D4;6}gRC  
    P%_PG%O2p  
    if any(m>n) Y>a2w zr  
        error('zernfun:MlessthanN', ... wfY]J0l  
              'Each M must be less than or equal to its corresponding N.') j`LvS  
    end .p?kAf`  
    rwCjNky!  
    if any( r>1 | r<0 ) y - Ge"mY  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') DfX}^'#m+  
    end \h UE, ^  
    $,DX^I%!  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 6,:`esl  
        error('zernfun:RTHvector','R and THETA must be vectors.') 3X]\p}]z  
    end ^ e4y:#Nu  
    C Y K W4  
    r = r(:); M%@ =BT  
    theta = theta(:); ;&?l1Vu  
    length_r = length(r); a]nyZdt`  
    if length_r~=length(theta) &.`/ln  
        error('zernfun:RTHlength', ... $bo 5:c  
              'The number of R- and THETA-values must be equal.') [2Rw)!N  
    end B%^ $fJ|  
    oNa*|CSE>  
    % Check normalization: L; f  
    % -------------------- oMer+=vH  
    if nargin==5 && ischar(nflag) (25v7 Y ]  
        isnorm = strcmpi(nflag,'norm'); 97~*Z|#<+  
        if ~isnorm (U#9  
            error('zernfun:normalization','Unrecognized normalization flag.') eq(Xzh  
        end F2k)hG*|{  
    else \5=fC9*G  
        isnorm = false; {nl4(2$  
    end WeqQw?-  
    Bvy(vc=UDW  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ^"hsbk&Yu  
    % Compute the Zernike Polynomials W$_@9W(Bl  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% )Og,VXEB  
    d/3 k3HdL  
    % Determine the required powers of r: ~e@pL*s  
    % ----------------------------------- 8`j;v>2  
    m_abs = abs(m); 4zw5?$YWO"  
    rpowers = []; n gC|BLT%h  
    for j = 1:length(n) 2(Ez H  
        rpowers = [rpowers m_abs(j):2:n(j)]; ]/C1pG*o  
    end h=Xr J  
    rpowers = unique(rpowers); U3zwC5}BN  
    )s';m$  
    % Pre-compute the values of r raised to the required powers, B\z4o\am%  
    % and compile them in a matrix: d,0Yi u.p  
    % ----------------------------- Nq3q##Ut:  
    if rpowers(1)==0 5 LZ+~!2+  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); "0yO~;a  
        rpowern = cat(2,rpowern{:}); USrg,A  
        rpowern = [ones(length_r,1) rpowern]; h0)Wy>B=,  
    else U]h5Q.<SG  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); |( =`l  
        rpowern = cat(2,rpowern{:}); s]p3dB#  
    end #[a+m  
    "jyh.@<  
    % Compute the values of the polynomials: E?/Bf@a28=  
    % -------------------------------------- WV'FW)%  
    y = zeros(length_r,length(n)); @'yD(ZMAz  
    for j = 1:length(n) m+J3t @$  
        s = 0:(n(j)-m_abs(j))/2; TLk=H Gw  
        pows = n(j):-2:m_abs(j); /o19/Pvwm  
        for k = length(s):-1:1 ,.ln  
            p = (1-2*mod(s(k),2))* ... 2nFSu9}+r  
                       prod(2:(n(j)-s(k)))/              ... 9V%s1@K  
                       prod(2:s(k))/                     ... j+c<0,Kj  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ~Z'3(n*9  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); PB :Lj  
            idx = (pows(k)==rpowers); M8,W|eTM  
            y(:,j) = y(:,j) + p*rpowern(:,idx); W&U Nk,  
        end u!X$M?D4  
         mt+IB4`  
        if isnorm N:y3tpG  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); #.(6.Li  
        end xM/B"SG2  
    end YAIDSZ&l[  
    % END: Compute the Zernike Polynomials s C9j73 vf  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% (Hcd{]M~  
    s9wc ZO  
    % Compute the Zernike functions: q,JMmhWaT  
    % ------------------------------ f3+@u2Pv  
    idx_pos = m>0; H-9%/e  
    idx_neg = m<0; !6pOY*> j  
    WJ9=hr  
    z = y; A(mU,^  
    if any(idx_pos) }/yhwijg  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); oXc!JZ^  
    end d (Fb_  
    if any(idx_neg) ?dukK3u  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); @}K'Ic  
    end A3p@hQl  
    P8Bv3  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) -v4kW0G  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. X ?/C9  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated dyRKmLb  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive [a;U'v*  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, u=h:d+rq@  
    %   and THETA is a vector of angles.  R and THETA must have the same U5]{`C0H?  
    %   length.  The output Z is a matrix with one column for every P-value, i2SR.{&  
    %   and one row for every (R,THETA) pair. ~a:0Q{>a  
    % ')w:`8Tl  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike _uuxTNN0x*  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) l+'@y (}Q  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) MO+g*N  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 %vvA'WG  
    %   for all p. $DZ\61  
    % \0iF <0oy  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 QAigbSn]  
    %   Zernike functions (order N<=7).  In some disciplines it is PpD ?TAlA  
    %   traditional to label the first 36 functions using a single mode kh /n|2  
    %   number P instead of separate numbers for the order N and azimuthal n*6Oa/JG7  
    %   frequency M. %e2,p&0G  
    % 7t7"glP  
    %   Example: 5w)tsGX\  
    % GndU}[0J  
    %       % Display the first 16 Zernike functions _jOu`1w  
    %       x = -1:0.01:1; Vu '3%~  
    %       [X,Y] = meshgrid(x,x); \kU0D  
    %       [theta,r] = cart2pol(X,Y); D<5;4Mb  
    %       idx = r<=1; \jDD=ew  
    %       p = 0:15;  ")MjR1p  
    %       z = nan(size(X)); i>YD_#w  
    %       y = zernfun2(p,r(idx),theta(idx)); M=$ qus  
    %       figure('Units','normalized') !63p?Q=  
    %       for k = 1:length(p) T u>5H`  
    %           z(idx) = y(:,k); ?IR]y-r  
    %           subplot(4,4,k) >J+'hm@  
    %           pcolor(x,x,z), shading interp ezn%*X y,  
    %           set(gca,'XTick',[],'YTick',[]) 4.:2!Q  
    %           axis square <rZ( B>$  
    %           title(['Z_{' num2str(p(k)) '}']) fvn`$  
    %       end kLa9'c0  
    % {  O+d7,C  
    %   See also ZERNPOL, ZERNFUN. yOwo(+ 2  
    W($}G_j[B1  
    %   Paul Fricker 11/13/2006 TbqH-R3W  
    @>n7  
    h.PVRAwk  
    % Check and prepare the inputs: )[&'\SOO  
    % ----------------------------- n qSjP5  
    if min(size(p))~=1 2Wwzcvs@  
        error('zernfun2:Pvector','Input P must be vector.') 22aS <@}  
    end F !DDlYUz.  
    xj8 yQ Y1  
    if any(p)>35 N `-\'h  
        error('zernfun2:P36', ... Y 3W_Z  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... Z<L|WRe  
               '(P = 0 to 35).']) 8aDh HXI  
    end 1h uU7xuf  
    dU`kJ,=Z  
    % Get the order and frequency corresonding to the function number: ~9%L)nC2'  
    % ---------------------------------------------------------------- _L }k.  
    p = p(:); Dv~W!T i  
    n = ceil((-3+sqrt(9+8*p))/2); /J''`Tf  
    m = 2*p - n.*(n+2);  -D*,*L  
    g\_J  
    % Pass the inputs to the function ZERNFUN: xQLVFgd  
    % ---------------------------------------- g=*'kj7c3  
    switch nargin {m%]`0  
        case 3 6Ih8~Hu  
            z = zernfun(n,m,r,theta); $*N^ bj  
        case 4 HK_Vk\e  
            z = zernfun(n,m,r,theta,nflag); ncw)VH;_-  
        otherwise KrVP#|9%"  
            error('zernfun2:nargin','Incorrect number of inputs.') =.T50~+M  
    end ykAZP[^'  
    zt&"K0X|  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) O4`am:@  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. i&K-|[3{g  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of .VD:FFkW  
    %   order N and frequency M, evaluated at R.  N is a vector of %?2:1o  
    %   positive integers (including 0), and M is a vector with the {&u`d.Lk2p  
    %   same number of elements as N.  Each element k of M must be a JSp V2c5Q  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) \S5YS2,P  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is ;@5N  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix 9Rf})$o+  
    %   with one column for every (N,M) pair, and one row for every `1xJ1 z#  
    %   element in R. _;z IH5 H  
    % +"yt/9AO  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- |.]g&m)y^h  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is 8PRKSJ[@K  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to tBB\^xq:  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 P3e}G-Oz  
    %   for all [n,m]. 0:C^-zrx  
    % v35!? 5{  
    %   The radial Zernike polynomials are the radial portion of the :o37 V!  
    %   Zernike functions, which are an orthogonal basis on the unit ;\mTm;]G  
    %   circle.  The series representation of the radial Zernike xZ\`f-zL  
    %   polynomials is }c]u'a!4  
    % z5tOsU  
    %          (n-m)/2 n0 q$/Y.  
    %            __ tKP zM  
    %    m      \       s                                          n-2s m)\wbkC  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r +.3,(l  
    %    n      s=0 =NNA7E7c  
    % g&]n:qx  
    %   The following table shows the first 12 polynomials. }LA7ku  
    % 1EmZ/@k/Y  
    %       n    m    Zernike polynomial    Normalization @Jh;YDr`A  
    %       --------------------------------------------- bnZ`Wc*5b  
    %       0    0    1                        sqrt(2) _~}n(?>  
    %       1    1    r                           2 iJaA&z5sr  
    %       2    0    2*r^2 - 1                sqrt(6) ^`*p;&(K\^  
    %       2    2    r^2                      sqrt(6) Kk9eJ\  
    %       3    1    3*r^3 - 2*r              sqrt(8) (?ofL|Cg(  
    %       3    3    r^3                      sqrt(8) Z*Lv!6WS  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) yN/Uyhq  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) dN)@/R^E;  
    %       4    4    r^4                      sqrt(10) ]"X} FU  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) nW"ml$  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) BpR#3CfW  
    %       5    5    r^5                      sqrt(12) lm[LDtc  
    %       --------------------------------------------- *.P3fVlZ  
    % \L5h&  
    %   Example: <&m `)FJ  
    % x6iT"\MO  
    %       % Display three example Zernike radial polynomials R=m9[TgBm  
    %       r = 0:0.01:1; Su>UXuNdE#  
    %       n = [3 2 5]; d{FD.eI 0  
    %       m = [1 2 1]; tj< 0q<is  
    %       z = zernpol(n,m,r); U/j+\Kc~  
    %       figure z@tIC^s  
    %       plot(r,z) F#>^S9Gml  
    %       grid on JQO%-=t  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest')  XKEbK\  
    % <x->.R_  
    %   See also ZERNFUN, ZERNFUN2. nNP{>\x;"  
    4+2hj*I  
    % A note on the algorithm. yS"; q  
    % ------------------------ ^BN?iXQhN  
    % The radial Zernike polynomials are computed using the series UEh-k"  
    % representation shown in the Help section above. For many special }DzN-g<K  
    % functions, direct evaluation using the series representation can X)^&5;\`  
    % produce poor numerical results (floating point errors), because R1/87eB  
    % the summation often involves computing small differences between s]@k,%  
    % large successive terms in the series. (In such cases, the functions -)o0P\cTEt  
    % are often evaluated using alternative methods such as recurrence # fkOm Y7X  
    % relations: see the Legendre functions, for example). For the Zernike @;P\`[(*  
    % polynomials, however, this problem does not arise, because the kFZjMchm A  
    % polynomials are evaluated over the finite domain r = (0,1), and 8pE0ANbq  
    % because the coefficients for a given polynomial are generally all 5;yVA  
    % of similar magnitude. +jrMvk"  
    % 38HnW  
    % ZERNPOL has been written using a vectorized implementation: multiple = k|hH~  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] (.J8Q  
    % values can be passed as inputs) for a vector of points R.  To achieve :d`8:gv?  
    % this vectorization most efficiently, the algorithm in ZERNPOL S /)J<?<b  
    % involves pre-determining all the powers p of R that are required to *=~X1s  
    % compute the outputs, and then compiling the {R^p} into a single FK!UUy;  
    % matrix.  This avoids any redundant computation of the R^p, and DNp4U9  
    % minimizes the sizes of certain intermediate variables. }rbsarG@  
    % K26x,m]p  
    %   Paul Fricker 11/13/2006 fNZ:l=L3):  
    "YQ%j+  
    ,Y_[+  
    % Check and prepare the inputs: =^D{ZZw{  
    % ----------------------------- -mPrmapb3  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) g$eZT{{W  
        error('zernpol:NMvectors','N and M must be vectors.') u*C"d1v=  
    end _0c$SK  
    mzoNXf:x  
    if length(n)~=length(m) |= U(8t  
        error('zernpol:NMlength','N and M must be the same length.') QnPgp(d <  
    end J`@#yHL  
    VN[i;4o:|  
    n = n(:); f8X/kz  
    m = m(:); eH y.<VX  
    length_n = length(n); M!E#T-)  
    /naGn@m5u  
    if any(mod(n-m,2)) W;9Jah.  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') 2xJT!lN  
    end Hz] p]  
    G*$a81dAX  
    if any(m<0) !&=%#i  
        error('zernpol:Mpositive','All M must be positive.') 0Fi&7%  
    end ( O>oN~  
    H%:u9DlEK/  
    if any(m>n) &ivPY  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') fX 41o#  
    end <0hJo=6a8  
     GP/G v  
    if any( r>1 | r<0 ) 9X2 lH~C  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') c6NCy s  
    end T2$V5RyX  
    }:5>1FfX=  
    if ~any(size(r)==1) }hjJt,m  
        error('zernpol:Rvector','R must be a vector.') Q, !b  
    end Gr a(DGX  
    ^"Nsb&  
    r = r(:); rH<iUiA?O  
    length_r = length(r); ErDt~FH  
    2r]!$ hto  
    if nargin==4 VN1a\  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); .+"SDt oX  
        if ~isnorm ecI[lB  
            error('zernpol:normalization','Unrecognized normalization flag.') :8<\]}J  
        end fP9k(mQX  
    else VC6S4FU4K  
        isnorm = false; N>A*N,+  
    end qt#a_F*rV  
    &2!F:L  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% cP~?Iz8nD  
    % Compute the Zernike Polynomials Cl+TjmOV\`  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% W]v[Xm$q  
    X[cSmkp7  
    % Determine the required powers of r: vG<JOxP  
    % ----------------------------------- %joIe w]V3  
    rpowers = []; M!s@w%0?'  
    for j = 1:length(n) Odo"S;)  
        rpowers = [rpowers m(j):2:n(j)]; AjQ^ {P  
    end AwKxt'()^  
    rpowers = unique(rpowers); B0:[3@P7  
    "lp),  
    % Pre-compute the values of r raised to the required powers, mYudUn4Wo  
    % and compile them in a matrix: g8{?;  
    % ----------------------------- "DFj4XKXY9  
    if rpowers(1)==0 4^KoH eM6  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); hOX$|0i  
        rpowern = cat(2,rpowern{:}); jnK8 [och  
        rpowern = [ones(length_r,1) rpowern]; M-2:$;D  
    else m_TZY_;  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); cs?@Ri=g  
        rpowern = cat(2,rpowern{:}); 'xdM>y#S  
    end eqSCNYN  
    lxRzyx  
    % Compute the values of the polynomials: GLe(?\Ug=  
    % -------------------------------------- S!GjCog^J  
    z = zeros(length_r,length_n); H>-?/H  
    for j = 1:length_n H]. 4~ 8  
        s = 0:(n(j)-m(j))/2; Bu'PDy~W,  
        pows = n(j):-2:m(j); N>OF tP  
        for k = length(s):-1:1 H7e/6t<x  
            p = (1-2*mod(s(k),2))* ... >8 V;:(nt  
                       prod(2:(n(j)-s(k)))/          ... F*QD\sG:  
                       prod(2:s(k))/                 ... sX3Vr&r  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... 62}bs/%  
                       prod(2:((n(j)+m(j))/2-s(k))); (WK $ )f  
            idx = (pows(k)==rpowers); lHpo/ R :  
            z(:,j) = z(:,j) + p*rpowern(:,idx); Q~4o{"3.'  
        end [H#I:d-+\  
         NA`3   
        if isnorm gFvFd:"uZ  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); DU7kZ  
        end J ,fXXi)J  
    end FeS6>/  
    N1Y*IkW"  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    857
    光币
    847
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  X dB#+"[  
    <hy>NM@$  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 ]vT  
    {_[l,tdZ  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)