非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 :M22P`:
function z = zernfun(n,m,r,theta,nflag) fg9?3x
Z
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. N+CXOI=6x
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N W NwJM
% and angular frequency M, evaluated at positions (R,THETA) on the *'9)H0
% unit circle. N is a vector of positive integers (including 0), and 2E`~ qn
% M is a vector with the same number of elements as N. Each element 2PVx++*]C
% k of M must be a positive integer, with possible values M(k) = -N(k) |'V DI]p&
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, ]Q6+e(:~ZH
% and THETA is a vector of angles. R and THETA must have the same 3[0w+{(Q
% length. The output Z is a matrix with one column for every (N,M) _ yfdj[Ot`
% pair, and one row for every (R,THETA) pair. Aautih@LX
% zVM4BT(
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike "wA0 LH_
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), {8^Gs^c
c
% with delta(m,0) the Kronecker delta, is chosen so that the integral V19e>
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, EKZ$Q4YE
% and theta=0 to theta=2*pi) is unity. For the non-normalized xn(+G$m
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. D9 qX->p
% *0%4l_i
% The Zernike functions are an orthogonal basis on the unit circle. p+, 1Fi
% They are used in disciplines such as astronomy, optics, and IK*oFo{C=K
% optometry to describe functions on a circular domain. :8p&#M
% /635B*g
% The following table lists the first 15 Zernike functions. t*{,Gk
% 9o-!ecx}
% n m Zernike function Normalization )46
0Ed
% -------------------------------------------------- \\=.6cg<K
% 0 0 1 1 UdT&cG
% 1 1 r * cos(theta) 2 5^)?mA
% 1 -1 r * sin(theta) 2 [f<"p[
% 2 -2 r^2 * cos(2*theta) sqrt(6) ds-
yif6
% 2 0 (2*r^2 - 1) sqrt(3) [NYj.#,oR
% 2 2 r^2 * sin(2*theta) sqrt(6) ?VFM]hO
% 3 -3 r^3 * cos(3*theta) sqrt(8) ?22d},.
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) f?,-j>[.=f
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) TE3*ktB{N
% 3 3 r^3 * sin(3*theta) sqrt(8) pG/
NuImA
% 4 -4 r^4 * cos(4*theta) sqrt(10) '@'B>7C#
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) BjM+0[HC
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) :/+>e
IE
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) }l~]b3@qu
% 4 4 r^4 * sin(4*theta) sqrt(10) as>:\hjP##
% -------------------------------------------------- 82lr4
% 5^\m`gS
% Example 1: cp$.,V
% \CcmePTN#x
% % Display the Zernike function Z(n=5,m=1) IuNkfBe4m
% x = -1:0.01:1; @4;&hP2Z:
% [X,Y] = meshgrid(x,x); +H7y/#e+3
% [theta,r] = cart2pol(X,Y); E]NY
(1
% idx = r<=1; {5>3;.
% z = nan(size(X)); d-~vR(tU
% z(idx) = zernfun(5,1,r(idx),theta(idx)); vCj4;P g
% figure 7'Lp8
% pcolor(x,x,z), shading interp l1&5uwuF
% axis square, colorbar ~%`EeJwT
% title('Zernike function Z_5^1(r,\theta)') d+tj%7
% V|TA:&:7
% Example 2: 'f 3HKn<L
% djUihcqA`
% % Display the first 10 Zernike functions GE@uOJ6H
% x = -1:0.01:1; ;TtaH
% [X,Y] = meshgrid(x,x); 5? Wg%@
% [theta,r] = cart2pol(X,Y); ]GNh)
% idx = r<=1; J==}QEhQ{
% z = nan(size(X)); )]73S@P(=
% n = [0 1 1 2 2 2 3 3 3 3]; ozU2
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; T)8p:}P!
% Nplot = [4 10 12 16 18 20 22 24 26 28]; L/BHexOB
% y = zernfun(n,m,r(idx),theta(idx)); yr5NRs
% figure('Units','normalized') 6z Ay)~
% for k = 1:10 QO2Ut!Y
% z(idx) = y(:,k); T8U[xu.>
% subplot(4,7,Nplot(k)) gV|Y54}T
% pcolor(x,x,z), shading interp H<,bq*@
% set(gca,'XTick',[],'YTick',[]) M+0x;53nz
% axis square $.a|ae|K
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) >PIPp7C
% end Xtkw Z3
% u#FXW_-TK
% See also ZERNPOL, ZERNFUN2. &3I$8v|!?
ilv _D~|
% Paul Fricker 11/13/2006 ;u,rtEMy;
I0iY+@^5
,ijW(95{k
% Check and prepare the inputs: `y2ljIWJ
% ----------------------------- U+} y
%3l
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) wlr Ign%
error('zernfun:NMvectors','N and M must be vectors.') RJx{eck%
end G,]z(%
Wab.|\c
if length(n)~=length(m) t@)my[ !
error('zernfun:NMlength','N and M must be the same length.') .a,(pq Jg
end 9<l-NU9 _
4:U0f;Fs
n = n(:); @bT3'K-4
m = m(:); iS
if any(mod(n-m,2)) j7}lF?cJ2
error('zernfun:NMmultiplesof2', ... q!&B6]
'All N and M must differ by multiples of 2 (including 0).') V9T
4+
end 4[1k\
gLD{1-v
if any(m>n) ^X&)'H
error('zernfun:MlessthanN', ... "y$ qrN-
'Each M must be less than or equal to its corresponding N.') MqdB\OW&
end xl8#=qmCD
J)*8|E9P
if any( r>1 | r<0 ) nWGR5*e:
error('zernfun:Rlessthan1','All R must be between 0 and 1.') @Dj:4
end ufPCx|x~
@+&'%1
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) /PqUXF
error('zernfun:RTHvector','R and THETA must be vectors.') W`x)=y]Z
end uoCGSXsi
PBrnzkoY
r = r(:); OR;&TbWF(R
theta = theta(:); /UHp [yod
length_r = length(r); ;&
~929
if length_r~=length(theta) [D[D`gpjA
error('zernfun:RTHlength', ... t#5:\U5r.
'The number of R- and THETA-values must be equal.') Lm|al.Z
end 6vobta^w
sJ~P:g
% Check normalization: l3p3tT3+
% -------------------- 3gc"_C\$
if nargin==5 && ischar(nflag) D0 ruTS
isnorm = strcmpi(nflag,'norm'); wAh#
if ~isnorm Q#pnj thM
error('zernfun:normalization','Unrecognized normalization flag.') <KLg0L<W
end a5?A!k\2
else C3}Aq8$6
isnorm = false; G9Qe121m
end lw[<STpD;
=dGKF`tR
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% j"hASBTgp
% Compute the Zernike Polynomials TwFb%YM
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% azX`oU,l
9p`r7:
% Determine the required powers of r: B< hEx@
% ----------------------------------- {|6z+vR
m_abs = abs(m); s.:r;%a
rpowers = []; Wc|z7P~',%
for j = 1:length(n) 5UOk)rOf
rpowers = [rpowers m_abs(j):2:n(j)]; |I^y0Q:K
end G),db%,X2
rpowers = unique(rpowers); B 8{
uR
dy:d=Z
% Pre-compute the values of r raised to the required powers, /{X_
.fv<v
% and compile them in a matrix: Ae49n4J
% ----------------------------- {/ &B!zvl
if rpowers(1)==0 :JlDi>B
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); UX_I6_&
rpowern = cat(2,rpowern{:}); uyT/Xzo3
rpowern = [ones(length_r,1) rpowern]; GN%(9N'W
else >^3zU
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); FH*RU1Z
rpowern = cat(2,rpowern{:}); }bMWTT
end Mr*|9h
.pvxh|V
% Compute the values of the polynomials: uV~e|X
"9s
% -------------------------------------- uTGcQs}
y = zeros(length_r,length(n)); H/J<Pd$p
for j = 1:length(n) K@r*;T
s = 0:(n(j)-m_abs(j))/2; Y6ben7j%-
pows = n(j):-2:m_abs(j); *#2Rvt*Ox
for k = length(s):-1:1 @^?XaU
p = (1-2*mod(s(k),2))* ... <AUWby,"
prod(2:(n(j)-s(k)))/ ... ``9 GY
prod(2:s(k))/ ... gX,9Gh
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... >IY,be6>P
prod(2:((n(j)+m_abs(j))/2-s(k))); Y=Hz;Ni
idx = (pows(k)==rpowers); 8i:[:Z
y(:,j) = y(:,j) + p*rpowern(:,idx); @!\K>G >9[
end z+3 9ee
r7I
B{}>-
if isnorm %-j&e44
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); wPnybb{
end {oWsh)[x2
end "^%Z'ou
% END: Compute the Zernike Polynomials ]US[5)EL-
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 1V%'.l9
\L[i9m| e
% Compute the Zernike functions: H06Bj(Y!
% ------------------------------ CLN+I'uX0
idx_pos = m>0; Nn#u%xvJt
idx_neg = m<0; 6vp0*ww
NHiq^ojk
z = y; =Od>;|]m
if any(idx_pos) Dg2uE8k
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); FC}oL"kk
end iV
hJH4
if any(idx_neg) h^M^7S
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 7& 6Y
end HXks_ix )
]}2Ztr)zZ
% EOF zernfun