切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11338阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 RLL ph  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! /kyO,g$9  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 r6Vw!^]8u8  
    function z = zernfun(n,m,r,theta,nflag) \VIY[6sn\M  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 5QXU"kWH  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N QaEiPn~  
    %   and angular frequency M, evaluated at positions (R,THETA) on the jCtk3No  
    %   unit circle.  N is a vector of positive integers (including 0), and Bx}"X?%S  
    %   M is a vector with the same number of elements as N.  Each element +?3RC$jyw  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) UJp'v_hN  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, # SCLU9-  
    %   and THETA is a vector of angles.  R and THETA must have the same Rl0"9D87z  
    %   length.  The output Z is a matrix with one column for every (N,M) .j,xh )v"  
    %   pair, and one row for every (R,THETA) pair. y_W?7 S  
    % B[YyA  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Cb<7?),vK  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), !.V_?aYi8  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral cy mC?8<  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ,3}+t6O"  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized &Q"vXs6Gt  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 3I}AA.h'00  
    % !~F oy F  
    %   The Zernike functions are an orthogonal basis on the unit circle. "#0P*3-c  
    %   They are used in disciplines such as astronomy, optics, and {df;R|8 l  
    %   optometry to describe functions on a circular domain. .i_ gE5  
    % 3HP { a  
    %   The following table lists the first 15 Zernike functions. af6<w.i  
    % 6 mLC{X[  
    %       n    m    Zernike function           Normalization mP15PZ  
    %       -------------------------------------------------- # Dgkl  
    %       0    0    1                                 1 B[8 RBTsA  
    %       1    1    r * cos(theta)                    2 G='`*_$  
    %       1   -1    r * sin(theta)                    2 1z2v[S&pk  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) V#b*:E.cA  
    %       2    0    (2*r^2 - 1)                    sqrt(3) >#mKM%T2MJ  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) T$r/XAs  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) xZ2 1i QeN  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) N@k' s   
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) yCkWuU9  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) \J?&XaO=  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) q\!"FDOl4  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Dqwd=$2%  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) ]!P6Z?  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 5M)B  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) ^_G#JJ\@$  
    %       -------------------------------------------------- ~v/` `s  
    % qx >Z@o  
    %   Example 1: CP"5E?dcK  
    % Z9% u,Cb  
    %       % Display the Zernike function Z(n=5,m=1) l1 08.ao  
    %       x = -1:0.01:1; $`0^E#Nl  
    %       [X,Y] = meshgrid(x,x); ~/SLGyu  
    %       [theta,r] = cart2pol(X,Y); ^HP$r*  
    %       idx = r<=1; T=V{3v@zs  
    %       z = nan(size(X)); g_tEUaiK  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); g0/ R\  
    %       figure 3~WI3ZIR  
    %       pcolor(x,x,z), shading interp \KpJIHkBRy  
    %       axis square, colorbar 4TU\SP8sM  
    %       title('Zernike function Z_5^1(r,\theta)') !m_y@~pV#u  
    % MB>4Y]rtU  
    %   Example 2: yl' IL#n]r  
    % d@Bd*iI<  
    %       % Display the first 10 Zernike functions J$jLGy&'  
    %       x = -1:0.01:1; sKiy 1Ww  
    %       [X,Y] = meshgrid(x,x); g;o5m}  
    %       [theta,r] = cart2pol(X,Y); n~w[ajC/  
    %       idx = r<=1; bccf4EyQ Y  
    %       z = nan(size(X)); c(3idO*R)  
    %       n = [0  1  1  2  2  2  3  3  3  3]; <Z~Nz>'r  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; yQu/({D  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; <7ag=IgDy  
    %       y = zernfun(n,m,r(idx),theta(idx)); Gh{9nM_\"  
    %       figure('Units','normalized') K;\fJ2ag  
    %       for k = 1:10 Pa|*Jcr  
    %           z(idx) = y(:,k); ZL!5dT&@W  
    %           subplot(4,7,Nplot(k)) T0@<u  
    %           pcolor(x,x,z), shading interp a{By U%  
    %           set(gca,'XTick',[],'YTick',[]) ]wbV1Y"  
    %           axis square cUi6 On1C  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) VeFfkg4  
    %       end 6(A"5B=\  
    % =7~;*Ts  
    %   See also ZERNPOL, ZERNFUN2. OCqknA  
    h: z$uG  
    %   Paul Fricker 11/13/2006 G&6`?1k  
    fE>JoQs38  
    ?6MUyH]a  
    % Check and prepare the inputs: 7Z}T!HFMr  
    % ----------------------------- 8k Sb92  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) +rrA>~  
        error('zernfun:NMvectors','N and M must be vectors.') O6q5qA  
    end _t X1z ^  
    mI^S% HT  
    if length(n)~=length(m) { ux'9SA  
        error('zernfun:NMlength','N and M must be the same length.') vhU $GG8  
    end -7I %^u  
    %wJ>V-\e  
    n = n(:); 1yc$b+TH  
    m = m(:); j3 @Q  
    if any(mod(n-m,2)) `Z2-<:]6&a  
        error('zernfun:NMmultiplesof2', ... e&<=+\ul  
              'All N and M must differ by multiples of 2 (including 0).') 2rf#Bq?7  
    end U'}[:h~)  
    ~>%% kQt  
    if any(m>n) xCu\jc)2  
        error('zernfun:MlessthanN', ... B|AIl+y  
              'Each M must be less than or equal to its corresponding N.') /5f=a  
    end @[ '?AsO  
    CT=5V@_u\  
    if any( r>1 | r<0 ) f_.0 uM  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') !,DA`Yt  
    end BL\H@D  
    1HRcEzA  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Gx%f&H~Z^  
        error('zernfun:RTHvector','R and THETA must be vectors.') Oj7).U0;#  
    end ]#FQde4]5  
    ;l@Ge`&u  
    r = r(:); t0ZaIE   
    theta = theta(:); !3*%-8bp  
    length_r = length(r); Oh7wyQiV  
    if length_r~=length(theta) J>0RN/38o  
        error('zernfun:RTHlength', ... T'14OU2N{Y  
              'The number of R- and THETA-values must be equal.') 6s:  
    end '"V]>)  
    7C@m(oK  
    % Check normalization: xI5zP? _v  
    % -------------------- ^%33&<mB}  
    if nargin==5 && ischar(nflag) ,Mn?h\  
        isnorm = strcmpi(nflag,'norm'); R+=Xr<`%U|  
        if ~isnorm l]5!$N*  
            error('zernfun:normalization','Unrecognized normalization flag.') S^SF!k=  
        end Ec!R3+  
    else _&$nJu  
        isnorm = false; Ke\FzZ]  
    end 69``j{Z+  
    ;E\e.R  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% tj" EUqKQ  
    % Compute the Zernike Polynomials )!l1   
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \.`{nq  
    <IQ}j^u-F  
    % Determine the required powers of r: J~5+=V7OV  
    % ----------------------------------- l`EKL2n  
    m_abs = abs(m); k NUNh[  
    rpowers = []; -lI6!a^  
    for j = 1:length(n) =K6{AmG$  
        rpowers = [rpowers m_abs(j):2:n(j)]; ']>/$[!  
    end 1lHBg  
    rpowers = unique(rpowers); $"{I| UFC  
    v ,)vW5jGI  
    % Pre-compute the values of r raised to the required powers, e>_Il']Mb  
    % and compile them in a matrix: Z}r9jM  
    % ----------------------------- I oC}0C7  
    if rpowers(1)==0 XCE<].w  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 2P VQSwW:  
        rpowern = cat(2,rpowern{:}); R-BN}ZS  
        rpowern = [ones(length_r,1) rpowern]; $7&t`E)qY  
    else NYF 7Ep; _  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 20BU;D3  
        rpowern = cat(2,rpowern{:}); M}!E :bv'  
    end >L88`  
    `g,i `<  
    % Compute the values of the polynomials: e\H1IR3  
    % -------------------------------------- '<hg c  
    y = zeros(length_r,length(n)); Vg1MA  
    for j = 1:length(n) Jnq}SUev  
        s = 0:(n(j)-m_abs(j))/2; 1(m[L=H5>  
        pows = n(j):-2:m_abs(j); 2[Bw+<YA`  
        for k = length(s):-1:1 bBXUD;$  
            p = (1-2*mod(s(k),2))* ... sj%\lq  
                       prod(2:(n(j)-s(k)))/              ... w?A6S-z  
                       prod(2:s(k))/                     ... ,gn**E  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... uBxs`'C  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); <FU1|  
            idx = (pows(k)==rpowers); 'FmnlC1  
            y(:,j) = y(:,j) + p*rpowern(:,idx); v\Xyz )  
        end #TG.weTC  
         fTV}IP  
        if isnorm :pg]0X;  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); -jL10~/  
        end 8H2A<&3i  
    end `:;fc  
    % END: Compute the Zernike Polynomials U jB5Xks  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% HT=-mwa_]  
    2vX!j!_  
    % Compute the Zernike functions: iig@$ i#  
    % ------------------------------ fk?(mxx"  
    idx_pos = m>0; WxF0LhM  
    idx_neg = m<0; hG lRf_{  
    > R2o7~  
    z = y; _J33u3v  
    if any(idx_pos) `ouCQ]tKz  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); }#QYZ nR  
    end 3`DwKv `+  
    if any(idx_neg) J nf@u  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); aj@<4A=;  
    end E0<$zP}V}F  
    SW*Y u{  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) Pvu*Y0_p  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. L&h90Az1W  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated 4Q n5Mr@<  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive 4]%v%6 4U  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, +'QE-#%{=  
    %   and THETA is a vector of angles.  R and THETA must have the same v* /}s :a  
    %   length.  The output Z is a matrix with one column for every P-value, eJ tfQ@?  
    %   and one row for every (R,THETA) pair. s2Hx ?~  
    % g|PRk9  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike W<s5rMx  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) oV Hh  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) xRPU GGv  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 v\b@;H`  
    %   for all p. ju{\7X5  
    % a>XlkkX  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 S67>yqha  
    %   Zernike functions (order N<=7).  In some disciplines it is v'H\KR-;  
    %   traditional to label the first 36 functions using a single mode e:kd0)9  
    %   number P instead of separate numbers for the order N and azimuthal EwH_k  
    %   frequency M. %$H~  
    % g6 Nw].{  
    %   Example: x;p7n 2_  
    % QvjOOc@k~n  
    %       % Display the first 16 Zernike functions >xJh!w<pB  
    %       x = -1:0.01:1; L>Soj|WUy(  
    %       [X,Y] = meshgrid(x,x); ;^Hg\a  
    %       [theta,r] = cart2pol(X,Y); :r,o-D  
    %       idx = r<=1; Jt}0%C3d  
    %       p = 0:15; l/F'W}  
    %       z = nan(size(X)); 9 9S-P}xd  
    %       y = zernfun2(p,r(idx),theta(idx)); tWN hFQ'  
    %       figure('Units','normalized') UOAL7  
    %       for k = 1:length(p) ( 17=|s  
    %           z(idx) = y(:,k); J_ S]jE{  
    %           subplot(4,4,k) 5<?s86GHh'  
    %           pcolor(x,x,z), shading interp ~99DE78  
    %           set(gca,'XTick',[],'YTick',[]) 3'D<'S}[  
    %           axis square KoL3CA"N  
    %           title(['Z_{' num2str(p(k)) '}']) c[QXc9  
    %       end h8me.=S&  
    % g(D r/D  
    %   See also ZERNPOL, ZERNFUN. S LSbEm  
    xesZ 7{ o  
    %   Paul Fricker 11/13/2006 mFdj+ &2\  
    ~KF>Jow?Y  
    w;Jby  
    % Check and prepare the inputs: nNJMQb'K  
    % ----------------------------- x."/+/  
    if min(size(p))~=1 7(oX 1hN  
        error('zernfun2:Pvector','Input P must be vector.') ~gA p`Q  
    end c Oi:bC@  
    )lsR8Hi8  
    if any(p)>35 8Q2qroT  
        error('zernfun2:P36', ... .3 JLa8y  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... 'ixu+.ZL/  
               '(P = 0 to 35).']) 1>"[b8a/  
    end $xl>YYEBMH  
    B"rfR_B2M#  
    % Get the order and frequency corresonding to the function number: CCQ38P@rv  
    % ---------------------------------------------------------------- wmQT$`$b  
    p = p(:); B<p -.tv  
    n = ceil((-3+sqrt(9+8*p))/2); |)pRkn8x  
    m = 2*p - n.*(n+2); y$7vJl.uS/  
    5!pof\/a  
    % Pass the inputs to the function ZERNFUN: <*4BT}r,^2  
    % ---------------------------------------- ;I^+u0ga  
    switch nargin ra4$/@3n  
        case 3 I}S~,4  
            z = zernfun(n,m,r,theta); {-fhp@;  
        case 4 v.Y?<=E+<d  
            z = zernfun(n,m,r,theta,nflag); MY]<^/Q  
        otherwise !iO%?nW;  
            error('zernfun2:nargin','Incorrect number of inputs.') ".Q``d&X  
    end (-:lO{@FsC  
    +Kz baBK  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) BM,]Wjfdj  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. +[R,wsG  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of &O:IRR7p  
    %   order N and frequency M, evaluated at R.  N is a vector of P,}cH;w6Ck  
    %   positive integers (including 0), and M is a vector with the +=:*[JEK,U  
    %   same number of elements as N.  Each element k of M must be a lI<Q=gd  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) 0S%xm'|N  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is Ddr.kXIpo  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix Us.")GiHE  
    %   with one column for every (N,M) pair, and one row for every w I7iE4\vz  
    %   element in R. QQPT=_P]  
    % !pqfx93R*  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- D\ ;(BB  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is iaAj|:  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to T.}wcQf&*  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 R. (fo:ve>  
    %   for all [n,m]. !*tV[0 i2  
    % XjRk1 ~  
    %   The radial Zernike polynomials are the radial portion of the =sYUzYm  
    %   Zernike functions, which are an orthogonal basis on the unit U $2"ZyFii  
    %   circle.  The series representation of the radial Zernike s.#%hPX{  
    %   polynomials is XB.xIApmy  
    % Hrk]6*  
    %          (n-m)/2 zarxv| }$  
    %            __ ~v$1@DQ}  
    %    m      \       s                                          n-2s 0{q>'dv  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r l@irA tg4  
    %    n      s=0 QCD MRh n  
    % aWCZ1F  
    %   The following table shows the first 12 polynomials. ;K$ !c5  
    % 0|J]EsPxu  
    %       n    m    Zernike polynomial    Normalization %2;Nj; J$  
    %       --------------------------------------------- ~\oF}7l$  
    %       0    0    1                        sqrt(2) ]VkM)< +  
    %       1    1    r                           2 <l.l6okp  
    %       2    0    2*r^2 - 1                sqrt(6) X"k:+  
    %       2    2    r^2                      sqrt(6) )/y7Fh  
    %       3    1    3*r^3 - 2*r              sqrt(8) 'xP&u<(F  
    %       3    3    r^3                      sqrt(8) lA/.4"nN  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) JH|]B|3  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) %A$5mi^  
    %       4    4    r^4                      sqrt(10) @fc-[pv  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) E-`3}"{  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) V'q?+p] a  
    %       5    5    r^5                      sqrt(12) 28! ke  
    %       --------------------------------------------- s?5vJ:M Xr  
    % 1 O?bT,"b  
    %   Example: E^`-:L(_  
    % 4F`&W*x  
    %       % Display three example Zernike radial polynomials $A;%p6PO)  
    %       r = 0:0.01:1; */6lyODf  
    %       n = [3 2 5];  CK"OHjR  
    %       m = [1 2 1]; gJZH??b  
    %       z = zernpol(n,m,r); =`KA@~XH4  
    %       figure Uk'bOp  
    %       plot(r,z) Mgp+#w+,  
    %       grid on {44#<A<  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') Nrn_Gy>|D  
    % B6yTD7  
    %   See also ZERNFUN, ZERNFUN2. 6KRC_-  
    `6:B0-r  
    % A note on the algorithm. ^ 7SE2Zi  
    % ------------------------ SYd6D@^2j  
    % The radial Zernike polynomials are computed using the series =G9I7Y@  
    % representation shown in the Help section above. For many special kj>!&W57  
    % functions, direct evaluation using the series representation can UasU/Q <   
    % produce poor numerical results (floating point errors), because W8_$]}G8E  
    % the summation often involves computing small differences between 4o<rj4G>  
    % large successive terms in the series. (In such cases, the functions *6bO2LO"  
    % are often evaluated using alternative methods such as recurrence ;EB^1*A Ew  
    % relations: see the Legendre functions, for example). For the Zernike x:6c@2  
    % polynomials, however, this problem does not arise, because the |[Rlg`TQ;*  
    % polynomials are evaluated over the finite domain r = (0,1), and ZYS]Et[Q  
    % because the coefficients for a given polynomial are generally all B2,c_[UZ.  
    % of similar magnitude. >i_ #q$o  
    % %6W%-`  
    % ZERNPOL has been written using a vectorized implementation: multiple ^m/7T wD  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] fgoLN\  
    % values can be passed as inputs) for a vector of points R.  To achieve .]e_je_  
    % this vectorization most efficiently, the algorithm in ZERNPOL QnA~,z/ .w  
    % involves pre-determining all the powers p of R that are required to yu>o7ie+;Y  
    % compute the outputs, and then compiling the {R^p} into a single }0Ie Kpu5  
    % matrix.  This avoids any redundant computation of the R^p, and x']Fe7nv  
    % minimizes the sizes of certain intermediate variables. b+CJRB1  
    % #,9s\T  
    %   Paul Fricker 11/13/2006 t$e'[;w  
    c`@";+|r  
    $Jo4n>/  
    % Check and prepare the inputs:  tE#;$Ss  
    % ----------------------------- kMx)G]  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 3yrb7Rn3  
        error('zernpol:NMvectors','N and M must be vectors.') SLW|)Q24  
    end bXi!_'z$  
    yv|`A2@9  
    if length(n)~=length(m) ,M9e *  
        error('zernpol:NMlength','N and M must be the same length.') X;1yQ |su  
    end Q2!5  
    3rY\y+m  
    n = n(:); suS[P?4  
    m = m(:); M@z_tR'3\  
    length_n = length(n); 3 "iBcsLn  
    ?<` ;lu/eL  
    if any(mod(n-m,2)) CTS1."kx1  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') nMK$&h,{  
    end |\W53,n9  
    +e, c'.  
    if any(m<0) & 'CUc/,  
        error('zernpol:Mpositive','All M must be positive.') guG&3{&\s  
    end )8!*,e=4  
    JW!.+ Q  
    if any(m>n) -xG6J.S  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') O0FUJGuTS  
    end ,+ 5:}hR+  
    UiVGOQq  
    if any( r>1 | r<0 ) +0?1"2  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') ez5J+  
    end ?qb35  
    fTso[r:F.  
    if ~any(size(r)==1) SpImd IpD  
        error('zernpol:Rvector','R must be a vector.') >(-A"jf  
    end `{|w*)mD  
    {-lpYD^k3  
    r = r(:); ap8q`a{j^  
    length_r = length(r); T(qTipq0  
    ,kf.'N  
    if nargin==4 zE<Iv\Q  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm');  Q6RTH  
        if ~isnorm L9<\vJ  
            error('zernpol:normalization','Unrecognized normalization flag.') i)'tt9f$  
        end |dz"uIrT  
    else r6nnRN/S=  
        isnorm = false; _!E&%=f  
    end zO---}[9a  
    ' '(rC38  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% damG*-7Svx  
    % Compute the Zernike Polynomials }h=PW'M{  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% T-#4hY`  
    v3aPHf  
    % Determine the required powers of r: =7JSJ98  
    % ----------------------------------- q-+:1E  
    rpowers = []; F}7sb#G  
    for j = 1:length(n) NYr)=&)Ke.  
        rpowers = [rpowers m(j):2:n(j)]; KzP{bK5/  
    end i!RfUod  
    rpowers = unique(rpowers); 7FJ4;HLQ  
    /y$Fw9R;  
    % Pre-compute the values of r raised to the required powers, ,<* I5:  
    % and compile them in a matrix:  |iI dm  
    % ----------------------------- 8]Tv1Wc  
    if rpowers(1)==0 !:m.-TE  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); K"x_=^,Yu*  
        rpowern = cat(2,rpowern{:}); NhCucSU<K  
        rpowern = [ones(length_r,1) rpowern]; FuBt`H  
    else {x?qz~W  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); :dh; @kp  
        rpowern = cat(2,rpowern{:}); lOp. c U  
    end ol*,&C:{  
    mEbI\!}H0  
    % Compute the values of the polynomials: I`_I^C3  
    % -------------------------------------- 1C8xJ6F  
    z = zeros(length_r,length_n); Ku%tM7ad  
    for j = 1:length_n YR*gO TD  
        s = 0:(n(j)-m(j))/2; y^,QM[&  
        pows = n(j):-2:m(j); rHTZM,zM=H  
        for k = length(s):-1:1 ":8\2Qp  
            p = (1-2*mod(s(k),2))* ... ;aV3j/  
                       prod(2:(n(j)-s(k)))/          ... 9xO@_pkX  
                       prod(2:s(k))/                 ... @ <{%r  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... kqm(D#  
                       prod(2:((n(j)+m(j))/2-s(k))); DH yv^  
            idx = (pows(k)==rpowers); mmbe.$73  
            z(:,j) = z(:,j) + p*rpowern(:,idx); hAAh  
        end j(Lz& *4  
         Wu^Rv-xA  
        if isnorm m~5 unB9  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); fwv^dEe  
        end Vf&U`K  
    end &J&'J~N  
    *: @KpYWx"  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  <F7a!$zQ  
    Zonjk%tC  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 8}0wSVsxV$  
    O&l4/RtQ\)  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)