切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11390阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 PTP0 _|K  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! S(#v<C,hd  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 '<1Q;3Ho  
    function z = zernfun(n,m,r,theta,nflag) GsiT!OP]y  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. o+g\\5s  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N /NUu^ N  
    %   and angular frequency M, evaluated at positions (R,THETA) on the <(_${zR  
    %   unit circle.  N is a vector of positive integers (including 0), and bo[[<j!"I  
    %   M is a vector with the same number of elements as N.  Each element .6A{   
    %   k of M must be a positive integer, with possible values M(k) = -N(k) # B@*-  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, pGP$2  
    %   and THETA is a vector of angles.  R and THETA must have the same j"9Zaq_  
    %   length.  The output Z is a matrix with one column for every (N,M) 5"z~BE7  
    %   pair, and one row for every (R,THETA) pair. xcX^L84\  
    % DAQozhP8  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike , %A2wV  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), J5SOPG  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 6. 6x$y3v  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ,lQfsntk'  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized J~lKN <w  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. v-XB\|f  
    % e_dsBmTh  
    %   The Zernike functions are an orthogonal basis on the unit circle. cdTG ]n  
    %   They are used in disciplines such as astronomy, optics, and r<pt_Cd  
    %   optometry to describe functions on a circular domain. q(Zu;ecBN  
    % 9&Ny;oy#6  
    %   The following table lists the first 15 Zernike functions. NT<}-^  
    % 3yu,qb'"&  
    %       n    m    Zernike function           Normalization @!::_E+F]  
    %       -------------------------------------------------- ~QU\kZ7Z  
    %       0    0    1                                 1 Bi|-KS.9  
    %       1    1    r * cos(theta)                    2 ZmZ7E]c  
    %       1   -1    r * sin(theta)                    2 oB%j3aAH  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) qhOV>j,d  
    %       2    0    (2*r^2 - 1)                    sqrt(3) =' &TqiIv"  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) Z[9f8/6<b  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) H;Gd  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) hEAP,)>F  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) Xagz(tm/  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) Rip[  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) Eg0qY\'  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) D`NQEt"(  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) z6'l" D'h  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) #.|MV}6rQ  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) ]Ab$IK Y  
    %       -------------------------------------------------- +?uZ~VSl  
    % `.YMbj#T  
    %   Example 1: .2/W.z2  
    % 9On(b|mT  
    %       % Display the Zernike function Z(n=5,m=1) GtkZ%<KF9  
    %       x = -1:0.01:1; J#Agk^Y 5  
    %       [X,Y] = meshgrid(x,x); T9]:, z  
    %       [theta,r] = cart2pol(X,Y); !N\i9w}  
    %       idx = r<=1; _}Ec[c  
    %       z = nan(size(X)); HfA@tZ5q|U  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); s3oQ( wC %  
    %       figure %-3wR@  
    %       pcolor(x,x,z), shading interp z5 :53,`D'  
    %       axis square, colorbar XZ_vbYTj  
    %       title('Zernike function Z_5^1(r,\theta)') Te@=8-u-  
    % ;{ESo?$*  
    %   Example 2: 7-[^0qS  
    % qrY]tb^K  
    %       % Display the first 10 Zernike functions $GX9-^og=T  
    %       x = -1:0.01:1; |=#uzp7*  
    %       [X,Y] = meshgrid(x,x); ,{g B$8z^  
    %       [theta,r] = cart2pol(X,Y); *"sDsXo- I  
    %       idx = r<=1; p"o_0 {8  
    %       z = nan(size(X)); C%;J9(r  
    %       n = [0  1  1  2  2  2  3  3  3  3]; cfUG)-]P~  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; Tw!_=zy(Gw  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; HsAKz]Mq  
    %       y = zernfun(n,m,r(idx),theta(idx)); EALgBv>#ZL  
    %       figure('Units','normalized') +t<'{KZ7;  
    %       for k = 1:10 u;=a=>05IR  
    %           z(idx) = y(:,k); t"FB}%G  
    %           subplot(4,7,Nplot(k)) at5=Zo[bP  
    %           pcolor(x,x,z), shading interp uOQl;}Lk5  
    %           set(gca,'XTick',[],'YTick',[]) NZt 8L?  
    %           axis square @1+({u#B  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) .{66q#.  
    %       end 1n EW'F  
    % rPF2IS(5  
    %   See also ZERNPOL, ZERNFUN2. /Pgc W  
    PVX23y;  
    %   Paul Fricker 11/13/2006 >kG: MJj  
    .?;"iv+  
    {%XDr,myd  
    % Check and prepare the inputs: :DR}lOi`  
    % ----------------------------- Oo8"s+G  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) #~:@H&f790  
        error('zernfun:NMvectors','N and M must be vectors.') .eG_>2'1  
    end R^tDL  
    ~"i4"Op&  
    if length(n)~=length(m) ^y3snuLtE  
        error('zernfun:NMlength','N and M must be the same length.') /|aD,JVN"  
    end AJR`ohh  
    T`SpIdzB.  
    n = n(:); f>jAu;S  
    m = m(:); ip2BvN&  
    if any(mod(n-m,2)) Ah1fcXED  
        error('zernfun:NMmultiplesof2', ... 9xIz[`)i.  
              'All N and M must differ by multiples of 2 (including 0).') g;t>jgX  
    end -`} d@x  
    F}{uY(hv"[  
    if any(m>n) |(O _K(  
        error('zernfun:MlessthanN', ... 2^T`> ?{X  
              'Each M must be less than or equal to its corresponding N.') a^.5cJ$]  
    end 9{XC9 \~  
    K*fh`Kz  
    if any( r>1 | r<0 )  ylBjuD+  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') @#KZ2^  
    end GsvB5i  
    FvV:$V|  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) V~_aM@q1  
        error('zernfun:RTHvector','R and THETA must be vectors.') !%Qm{R  
    end ucgp=bye  
    "[p-Iy1  
    r = r(:); 1 8kzR6(W  
    theta = theta(:); ieG%D HN  
    length_r = length(r); =r1 @?x  
    if length_r~=length(theta) n0< I  
        error('zernfun:RTHlength', ... KiO1l{.s8n  
              'The number of R- and THETA-values must be equal.') t&L+]I'P3  
    end |XoW Z,K  
    k\`~v$R3  
    % Check normalization: )TV{n#n  
    % -------------------- X!ad~bt  
    if nargin==5 && ischar(nflag) S6bW?8`  
        isnorm = strcmpi(nflag,'norm'); xcA5  
        if ~isnorm k^v P|*eu  
            error('zernfun:normalization','Unrecognized normalization flag.') Fi_JF;  
        end j1U,X  
    else *mTx0sQz(J  
        isnorm = false; =&xN dc  
    end y7WO:X&  
    N)b.$aC  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% MW$ X4<*KD  
    % Compute the Zernike Polynomials T`gR&n<D  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% BA t0YE`-,  
    v6q oH)n  
    % Determine the required powers of r: -OPJB:7Z  
    % ----------------------------------- *aT\V64  
    m_abs = abs(m); u?+i5=N9{  
    rpowers = []; YqSkz|o}m  
    for j = 1:length(n) Y}Gf%Xi,  
        rpowers = [rpowers m_abs(j):2:n(j)]; "g>, X[g  
    end -VVJf5/  
    rpowers = unique(rpowers); I# U"DwM  
    XlGDv*d:#d  
    % Pre-compute the values of r raised to the required powers, LIZsDTU  
    % and compile them in a matrix: `bx}!;{lx  
    % ----------------------------- z c7P2@  
    if rpowers(1)==0 0.}WZAYy~  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ]E!b&  
        rpowern = cat(2,rpowern{:}); 01/yog  
        rpowern = [ones(length_r,1) rpowern]; FyV)Nmc%t  
    else Mp`2[S@$  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Bp>Z?"hTe  
        rpowern = cat(2,rpowern{:}); cgevP`*]  
    end u >W:SM  
    s 8 c#_  
    % Compute the values of the polynomials: 3(n+5~{e  
    % -------------------------------------- aS,M=uqqK  
    y = zeros(length_r,length(n)); ;+-M+9"?O  
    for j = 1:length(n) mxQPOu  
        s = 0:(n(j)-m_abs(j))/2; *8?0vkZZ2  
        pows = n(j):-2:m_abs(j); m^M sp:T,  
        for k = length(s):-1:1 /$NZj" #  
            p = (1-2*mod(s(k),2))* ... ]= nM|e  
                       prod(2:(n(j)-s(k)))/              ... u|}p3-z|Y  
                       prod(2:s(k))/                     ... B(TE?[ #  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... K~DQUmU@  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); o,yP9~8\  
            idx = (pows(k)==rpowers); SZ'2/#R>  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 9C_Vb39::$  
        end gJUawK  
         xYUC|c1Q9  
        if isnorm %SHgXd#X  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); mv;;0xH  
        end :G\X  
    end :t8?!9g  
    % END: Compute the Zernike Polynomials 1U(P0$C  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% $63_* 9  
    ta'{S=^j  
    % Compute the Zernike functions: -mur` tC  
    % ------------------------------ lUJ~_`D  
    idx_pos = m>0; ;Or]x?-  
    idx_neg = m<0; H;.${u^lhd  
    ,6iXlch  
    z = y; #5b}"xK{  
    if any(idx_pos) n#Y=y#  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); N!#0O.6  
    end X}@'FxIF  
    if any(idx_neg) +8#hi5e  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); E[8R )xC@  
    end f+xhS,iDR  
    (+w>hCI  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) 2C59fXfd  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. }3DZ`8u  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated Fk*C8  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive zHu w[  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, &hco3HfW  
    %   and THETA is a vector of angles.  R and THETA must have the same (l ]_0-Z  
    %   length.  The output Z is a matrix with one column for every P-value, 4!k 0  
    %   and one row for every (R,THETA) pair. - D&d1`N4  
    % ];63QJU  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike A]_5O8<buW  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) l?Qbwv}  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) %%h0 H[5*  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 A/A; '9  
    %   for all p. XKQ\Ts2<k  
    % wk[4Qsk<  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 OS]FGD3a  
    %   Zernike functions (order N<=7).  In some disciplines it is `vc?*"  
    %   traditional to label the first 36 functions using a single mode =`W#R  
    %   number P instead of separate numbers for the order N and azimuthal XRx^4]c  
    %   frequency M. IQNvhl.{  
    % @5:#J !  
    %   Example: yZyB.wT  
    % 3:ELYn  
    %       % Display the first 16 Zernike functions L_{gM`UFc  
    %       x = -1:0.01:1; uJ9 hU`h  
    %       [X,Y] = meshgrid(x,x); ;cD&qheDV  
    %       [theta,r] = cart2pol(X,Y); 1h,m  
    %       idx = r<=1; iQ#dWxw4  
    %       p = 0:15; ]~d!<x#+  
    %       z = nan(size(X)); 5kdh!qy[$,  
    %       y = zernfun2(p,r(idx),theta(idx)); u|EHe"V"  
    %       figure('Units','normalized') 7S.E,\Tws  
    %       for k = 1:length(p) 8d|#W  
    %           z(idx) = y(:,k); K^f&+`v6_  
    %           subplot(4,4,k) FL?Ndy"I  
    %           pcolor(x,x,z), shading interp 'eDV-cB  
    %           set(gca,'XTick',[],'YTick',[])  \s^4f#  
    %           axis square <S@XK%  
    %           title(['Z_{' num2str(p(k)) '}']) @ ?CEi#-  
    %       end 5ji#rIAhxh  
    % {O"N2W  
    %   See also ZERNPOL, ZERNFUN. MNWuw;:v  
    <4,LTB]9-  
    %   Paul Fricker 11/13/2006 O&@pi-=o  
    t^5xq8w8  
    gt|:K)[,6  
    % Check and prepare the inputs: B82SAV/O  
    % ----------------------------- H*R4AE0  
    if min(size(p))~=1 gv}J"anD  
        error('zernfun2:Pvector','Input P must be vector.') v FWg0 $,  
    end )FSa]1t;x  
    \@F~4,VT  
    if any(p)>35 1!p7N$QR  
        error('zernfun2:P36', ... R!y`p:O C  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... ,f)#&}x*2+  
               '(P = 0 to 35).']) F7lzc)  
    end kDWMget$  
    RElIWqgY  
    % Get the order and frequency corresonding to the function number: p|RFpn2ygF  
    % ---------------------------------------------------------------- Qoom[@$  
    p = p(:); '8V>:dy>  
    n = ceil((-3+sqrt(9+8*p))/2); F*J@OY8i  
    m = 2*p - n.*(n+2); mr<camL5  
    <BX'Owbs!O  
    % Pass the inputs to the function ZERNFUN: owKOH{otf  
    % ---------------------------------------- b 67l\L  
    switch nargin 4ztU) 1  
        case 3 cVuT|b^  
            z = zernfun(n,m,r,theta); 4ZCD@C  
        case 4 9?.  
            z = zernfun(n,m,r,theta,nflag); @D+2dT0[M  
        otherwise 'wd&O03&  
            error('zernfun2:nargin','Incorrect number of inputs.') LyNLz m5  
    end +Vw]DLWR  
    "[`/J?W  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) Kw87 0n<  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. ~fY\;  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of ,HECHA_"  
    %   order N and frequency M, evaluated at R.  N is a vector of K_o[m!:jU  
    %   positive integers (including 0), and M is a vector with the 7QM1E(cMg  
    %   same number of elements as N.  Each element k of M must be a 1g>>{ y  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) S:{`eDk\A_  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is DW >|'w%  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix YES-,;ZQ'  
    %   with one column for every (N,M) pair, and one row for every I~) A!vp  
    %   element in R. J?_-Dg(=  
    % G6q*U,  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- f?W"^6Df  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is (,;4f7\  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to gtRVXgI  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 $*c!9Etl4  
    %   for all [n,m]. 6L,"gF<n  
    % !eA6Ejf  
    %   The radial Zernike polynomials are the radial portion of the M%v 6NxN  
    %   Zernike functions, which are an orthogonal basis on the unit bA02)?L  
    %   circle.  The series representation of the radial Zernike a+,zXJQYq  
    %   polynomials is %6cbHH  
    % Mt\.?V:  
    %          (n-m)/2 C8AR ^F W  
    %            __ "9O8#i<Nr  
    %    m      \       s                                          n-2s }dpE>  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r Xz\X 8I  
    %    n      s=0 8)XAdAr  
    % nUScDb2|  
    %   The following table shows the first 12 polynomials. \e' oAhM  
    % d:JP935  
    %       n    m    Zernike polynomial    Normalization ()(^B}VK  
    %       --------------------------------------------- v(~EO(n.  
    %       0    0    1                        sqrt(2) ZDbzH=[  
    %       1    1    r                           2 w-P;E!gTt  
    %       2    0    2*r^2 - 1                sqrt(6) 04#<qd&ob@  
    %       2    2    r^2                      sqrt(6) FE3uNfQs|  
    %       3    1    3*r^3 - 2*r              sqrt(8) c!]Q0ib6  
    %       3    3    r^3                      sqrt(8) *QA{xvT  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) OPJ(ub  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) ?yKG\tPhM  
    %       4    4    r^4                      sqrt(10) xwa@h}\#  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) j026CVL  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) (N?nOOQ  
    %       5    5    r^5                      sqrt(12) z C 7b  
    %       --------------------------------------------- [7h/ 2La#  
    % o,[Em<  
    %   Example: 9v?rNJs  
    % [E)&dl_k  
    %       % Display three example Zernike radial polynomials ?$.x%G+  
    %       r = 0:0.01:1; qflOi8  
    %       n = [3 2 5]; ]e(\<R6Gf  
    %       m = [1 2 1]; <[' ucp  
    %       z = zernpol(n,m,r); eqk.+~^  
    %       figure (g0U v.*  
    %       plot(r,z) 2[i(XG{/  
    %       grid on : $N43_Wb  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') _*-b0}T   
    % wo9`-o6  
    %   See also ZERNFUN, ZERNFUN2. h(p c GE  
    wQ?Z y;/S  
    % A note on the algorithm. -q&7q  
    % ------------------------ &Xh=bM'/%m  
    % The radial Zernike polynomials are computed using the series ~toR)=Yv  
    % representation shown in the Help section above. For many special : `,#z?Rk  
    % functions, direct evaluation using the series representation can \|6Q]3l  
    % produce poor numerical results (floating point errors), because m'WGK`WIm  
    % the summation often involves computing small differences between &neB$m3y  
    % large successive terms in the series. (In such cases, the functions !*PX -  
    % are often evaluated using alternative methods such as recurrence ]-jaIvM  
    % relations: see the Legendre functions, for example). For the Zernike Mo]aB:a  
    % polynomials, however, this problem does not arise, because the [~ !9t9+~  
    % polynomials are evaluated over the finite domain r = (0,1), and "r HPcp"m  
    % because the coefficients for a given polynomial are generally all c3(0BSv  
    % of similar magnitude. \-D[C+1(  
    % =yZ6$ hK  
    % ZERNPOL has been written using a vectorized implementation: multiple {EJ+   
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] F`CDv5  
    % values can be passed as inputs) for a vector of points R.  To achieve B$MHn?  
    % this vectorization most efficiently, the algorithm in ZERNPOL 'j;i4ie>*x  
    % involves pre-determining all the powers p of R that are required to `2`h4[^ [X  
    % compute the outputs, and then compiling the {R^p} into a single 7>f)pfLM  
    % matrix.  This avoids any redundant computation of the R^p, and ,qj M1xkL$  
    % minimizes the sizes of certain intermediate variables. .F3~eas  
    % kH?PEA! \  
    %   Paul Fricker 11/13/2006 FpZ5@  
    vdd>\r)v  
    K~+x@O*  
    % Check and prepare the inputs: ! q+>'Mt  
    % ----------------------------- Iv/h1j> H  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ekd;sEO  
        error('zernpol:NMvectors','N and M must be vectors.') irMBd8WG  
    end p+V::O&&r  
    k#G+<7c<  
    if length(n)~=length(m) ;}'Z2gZ B  
        error('zernpol:NMlength','N and M must be the same length.') 0yxwsBLy  
    end q#`;G,rs  
    dTqL[?wH?  
    n = n(:); Si68_]:^  
    m = m(:); c3*9{Il^  
    length_n = length(n); H>wXQ5?W;  
    n1)].`  
    if any(mod(n-m,2)) USH>`3  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') `+(4t4@ew  
    end caZEZk#r;  
    m}+_z^@j9  
    if any(m<0) !J(6E:,b#  
        error('zernpol:Mpositive','All M must be positive.') Lbu,VX  
    end SDO~g~NTp  
    BJjxy0+  
    if any(m>n) Tj=@5lj0  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') 1pT/`x  
    end zwK$ q=-:  
    iOiXo6YE  
    if any( r>1 | r<0 ) #-/_J?  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') i}>} %l|  
    end yppXecFJ  
    CFeAKjG  
    if ~any(size(r)==1) %3T:W\h  
        error('zernpol:Rvector','R must be a vector.') 8xHjdQr  
    end i~tps  
    `3.bux~  
    r = r(:); =<U'Jtu6'  
    length_r = length(r); \>+BvF  
    2>im'x 5  
    if nargin==4 ;(IAhWE?7  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); BXr._y, cr  
        if ~isnorm m^4Ojik  
            error('zernpol:normalization','Unrecognized normalization flag.') <9`/Y"\p  
        end :U-yO 9!j  
    else )T@+"Pw8t  
        isnorm = false; M B,Z4 ^  
    end }te dh  
    WiFZY*iu5  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% _RX*Ps=  
    % Compute the Zernike Polynomials b2YOnV  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %j?7O00 @  
    uQkQ#'e|  
    % Determine the required powers of r: E /V`NqC  
    % ----------------------------------- Y 4*?QBYA  
    rpowers = []; >u=nGeO  
    for j = 1:length(n) -3C$br  
        rpowers = [rpowers m(j):2:n(j)]; (Jk:Qz5  
    end s$VLVT*6  
    rpowers = unique(rpowers); E5$uvxCI  
    LdyE*u_  
    % Pre-compute the values of r raised to the required powers, IE&G7\>(yO  
    % and compile them in a matrix: _2WIi/6K  
    % ----------------------------- a0Q\]S  
    if rpowers(1)==0 VM"*@T  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); T\L LOx\  
        rpowern = cat(2,rpowern{:}); U6 H@l#  
        rpowern = [ones(length_r,1) rpowern]; zuvP\Y=V`  
    else q|e<b  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); }fz;La:b  
        rpowern = cat(2,rpowern{:}); !Ly1!;<  
    end Zy > W2(<  
    2|LkCu)~,"  
    % Compute the values of the polynomials: x[2eA!NC  
    % -------------------------------------- &r V  
    z = zeros(length_r,length_n); C-ipxL"r  
    for j = 1:length_n uB 35CRd  
        s = 0:(n(j)-m(j))/2; mOx>p"n  
        pows = n(j):-2:m(j); r;8$ 7C.  
        for k = length(s):-1:1 6Q9S~YYq  
            p = (1-2*mod(s(k),2))* ... j(\jYH>   
                       prod(2:(n(j)-s(k)))/          ... i- r y5x  
                       prod(2:s(k))/                 ... Y--Uo|H  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... vjD||!g'  
                       prod(2:((n(j)+m(j))/2-s(k))); >HQ<KFA  
            idx = (pows(k)==rpowers); D i #Em[  
            z(:,j) = z(:,j) + p*rpowern(:,idx); xr-v"-  
        end uJ/ &!q<3  
         G-sA)WOF  
        if isnorm ^ZO3:"t!w  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); AN-;*n<'  
        end NeY,Of|  
    end 5}2XnM2  
    3UQ~U 8  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  U<*8KiI  
    9a*}&fL[  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 wA#w] 8SM  
    m%bw$hr  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)