切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11811阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 Ur]/kij  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! tr5j<O  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 u7^(?"x  
    function z = zernfun(n,m,r,theta,nflag) P3`$4p?  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 7UY4* j|[C  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ~;?<OOt|wG  
    %   and angular frequency M, evaluated at positions (R,THETA) on the xL1Li]fM!'  
    %   unit circle.  N is a vector of positive integers (including 0), and }NoP(&ebz*  
    %   M is a vector with the same number of elements as N.  Each element VP>*J`'H  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) ,cL;,YN  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, )l$}plT4  
    %   and THETA is a vector of angles.  R and THETA must have the same y+T[="W  
    %   length.  The output Z is a matrix with one column for every (N,M) ;}iB9 Tl  
    %   pair, and one row for every (R,THETA) pair. "!D y[J  
    % 'AX5V-t  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike m3BL  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), O >pv/Ns  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral Yb-{+H8{J  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, oz>2P.7  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized X3a9-  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. .=9WY_@SZ  
    % ;:j1FOj  
    %   The Zernike functions are an orthogonal basis on the unit circle. zxx\jpBBk  
    %   They are used in disciplines such as astronomy, optics, and |dqHpogh  
    %   optometry to describe functions on a circular domain. OtoM  
    % vjS=ZinN"  
    %   The following table lists the first 15 Zernike functions. ;<N:!$p  
    % uf9 0  
    %       n    m    Zernike function           Normalization 'Gqv`rq&  
    %       -------------------------------------------------- %2T i Rb  
    %       0    0    1                                 1 | bz%SB  
    %       1    1    r * cos(theta)                    2 3PGAUQR#"q  
    %       1   -1    r * sin(theta)                    2 ^l|b>z"0ao  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) >iae2W`  
    %       2    0    (2*r^2 - 1)                    sqrt(3) chKK9SC+|  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) y7M{L8{0  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) + x=)Kp>  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) cd1G.10  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) HB8s[]A:D  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) vo`&  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) }VZExqm)  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) HK8sn1j  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 6ki2/ Q  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) s 91[@rh/  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) @2/|rq  
    %       -------------------------------------------------- 1*9.K'  
    % ?}Zt&(#  
    %   Example 1: \O;2^  
    % (_zlCHB  
    %       % Display the Zernike function Z(n=5,m=1)  vUJ; D  
    %       x = -1:0.01:1; -p&u=  
    %       [X,Y] = meshgrid(x,x); 8^>c_%e}  
    %       [theta,r] = cart2pol(X,Y); ]~I+d/k d  
    %       idx = r<=1; ve ysW(z  
    %       z = nan(size(X)); bu|.Jw"  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); +ODua@ULFB  
    %       figure nf/?7~3?[  
    %       pcolor(x,x,z), shading interp SOhM6/ID2/  
    %       axis square, colorbar "0PrdZMx  
    %       title('Zernike function Z_5^1(r,\theta)') \]V:>=ry>  
    % IibrZ/n6  
    %   Example 2: Q2VF+g,  
    % 1j$\ 48Z  
    %       % Display the first 10 Zernike functions \~l_w ,Poo  
    %       x = -1:0.01:1; &)mZ~cPU3  
    %       [X,Y] = meshgrid(x,x); 9pqsr~  
    %       [theta,r] = cart2pol(X,Y); ZpVkgX4  
    %       idx = r<=1; ZOqS"3j! j  
    %       z = nan(size(X)); :J`@@H  
    %       n = [0  1  1  2  2  2  3  3  3  3]; -!Myw&*\V  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; %hsCB .r>|  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; e4tIO   
    %       y = zernfun(n,m,r(idx),theta(idx)); ;Z d_2CZ  
    %       figure('Units','normalized') b$,Hlh,^  
    %       for k = 1:10 z6iKIw $  
    %           z(idx) = y(:,k); 2+gbMd4n  
    %           subplot(4,7,Nplot(k)) HE,L8S  
    %           pcolor(x,x,z), shading interp qh~bX i!  
    %           set(gca,'XTick',[],'YTick',[]) T+v*@#iJ_  
    %           axis square iPTQqx-m$7  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ;>v.(0FE6  
    %       end {R!yw`#^B  
    % |6*Bu1  
    %   See also ZERNPOL, ZERNFUN2. CJ\a7=*i  
    )x|;%.8FX7  
    %   Paul Fricker 11/13/2006 NS[eQ_rT  
    z l@^[km{  
    %+(AKZu:  
    % Check and prepare the inputs: /l*v *tl  
    % ----------------------------- eWcqf/4?"  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ep"[; $Eb  
        error('zernfun:NMvectors','N and M must be vectors.') _J l(:r\%  
    end 0SIC=p=J  
    a{]=BY oL  
    if length(n)~=length(m) \)6glAtN  
        error('zernfun:NMlength','N and M must be the same length.') ?bB>}:~j)  
    end VI2lw E3  
    Tn}`VW~  
    n = n(:); )hZ7`"f,ZN  
    m = m(:); fwFJe(.  
    if any(mod(n-m,2)) D~6[C:m  
        error('zernfun:NMmultiplesof2', ... uQ5h5Cfz  
              'All N and M must differ by multiples of 2 (including 0).') DXLXGvcM  
    end N)X Tmh2v|  
    r<UVO$N  
    if any(m>n) k&dXK  
        error('zernfun:MlessthanN', ... ,MCTb'=G  
              'Each M must be less than or equal to its corresponding N.') z'q~%1t  
    end f$o^Xu  
    IOl_J>D]F  
    if any( r>1 | r<0 ) fu "cX;  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') TEC^|U`G  
    end U**8^:*y#:  
    F^yW3|Sb  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Y!<m8\  
        error('zernfun:RTHvector','R and THETA must be vectors.') ^[?y 2A:  
    end h6h6B.\ Ld  
    (;l@d|g  
    r = r(:); kTb$lLG\xk  
    theta = theta(:); D\Ak-$kJ^  
    length_r = length(r); GcVQz[E  
    if length_r~=length(theta) 6 8tyWd}  
        error('zernfun:RTHlength', ... d51lTGH7Z  
              'The number of R- and THETA-values must be equal.') iq; | i!  
    end | &X<-  
    0'Pjnk-i  
    % Check normalization: 0JlNUO5Nt  
    % -------------------- VgH O&vU  
    if nargin==5 && ischar(nflag) s6 yvq#:  
        isnorm = strcmpi(nflag,'norm'); ],]Rv#`  
        if ~isnorm %B%_[<B  
            error('zernfun:normalization','Unrecognized normalization flag.') cJo%j -AM  
        end /Y0~BQC7!  
    else 0?7yM:!l  
        isnorm = false; -n _Y.~  
    end H/D=$)3op  
    P<]U  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% J>Ar(p  
    % Compute the Zernike Polynomials AFAg3/  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% $J7V]c*-b  
    ,!:c6F+  
    % Determine the required powers of r:  FOiwA.:0  
    % ----------------------------------- ?H=YJK$k  
    m_abs = abs(m); k~tEUsv  
    rpowers = []; Qte5E}V`  
    for j = 1:length(n) .(@=L1C<}J  
        rpowers = [rpowers m_abs(j):2:n(j)]; :aNjh  
    end {T4_Xn-I  
    rpowers = unique(rpowers); z$1RD)TQB  
    0+>g/ >  
    % Pre-compute the values of r raised to the required powers, A0{xt*g   
    % and compile them in a matrix: zj`c%9N+  
    % ----------------------------- 'LYDJ~  
    if rpowers(1)==0 #/G!nN #  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); iXWHI3  
        rpowern = cat(2,rpowern{:}); g257jarkMF  
        rpowern = [ones(length_r,1) rpowern]; Ik:G5m<ta  
    else j\uZo.Ot+  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); F-;JN  
        rpowern = cat(2,rpowern{:}); ?@"@9na  
    end 6N@=*0kh-  
    q%3VcR$J  
    % Compute the values of the polynomials:  /~"-q  
    % -------------------------------------- n_QuuUB  
    y = zeros(length_r,length(n)); g0,~|.  
    for j = 1:length(n) xg p)G!  
        s = 0:(n(j)-m_abs(j))/2; ~^F]t$rz  
        pows = n(j):-2:m_abs(j); FWW4n_74  
        for k = length(s):-1:1 Q7+WV`&  
            p = (1-2*mod(s(k),2))* ... 3! P^?[p3  
                       prod(2:(n(j)-s(k)))/              ... ktU:Uq  
                       prod(2:s(k))/                     ... | R,dsBd  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 8{4'G$6  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); RRO@r}A!y  
            idx = (pows(k)==rpowers); >{^_]phlb  
            y(:,j) = y(:,j) + p*rpowern(:,idx); cj>@Jx}]M  
        end Sm/8VSY  
         `gl?y;xC  
        if isnorm HYl+xH'.j  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); "@x( 2(Y&  
        end :V9Q<B^  
    end ]@U?hD  
    % END: Compute the Zernike Polynomials S]H[&o1o  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% xM_#FxJb  
    2^XmtT  
    % Compute the Zernike functions: L4iWR/&  
    % ------------------------------ ckX8eg!f  
    idx_pos = m>0; }w f8y  
    idx_neg = m<0; #c|l|Xvq2  
    }cz58%  
    z = y; L`t786 (M  
    if any(idx_pos) SrA6}kS  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); IsE&k2 SD  
    end ~criZI/  
    if any(idx_neg) |1wZ`wGZ:L  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); UB@(r86 d  
    end {JWixbA  
    i?_Q@uA~<:  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) @Hj]yb5  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. .UxkTads  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated Xp;'Wa"@  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive :{w3l O  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, 9Zx| L/\  
    %   and THETA is a vector of angles.  R and THETA must have the same [?z;'O}y  
    %   length.  The output Z is a matrix with one column for every P-value, ufR|V-BWx  
    %   and one row for every (R,THETA) pair. q4:zr   
    % mcwd2)  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike li3X}  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) aR6~r^jB  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) ,>6mc=p  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 8\il~IFyi  
    %   for all p. ~,W|i  
    % +46& Zb35  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 DI{Qs[  
    %   Zernike functions (order N<=7).  In some disciplines it is V^(W)\  
    %   traditional to label the first 36 functions using a single mode s#~VN;-I  
    %   number P instead of separate numbers for the order N and azimuthal !le#7Kii  
    %   frequency M. + fvVora  
    % FkMM>X  
    %   Example: ZrYRLg  
    % uToi4]w"y  
    %       % Display the first 16 Zernike functions %5ov!nm7  
    %       x = -1:0.01:1; *o=Z~U9z  
    %       [X,Y] = meshgrid(x,x); Sn97DCdk  
    %       [theta,r] = cart2pol(X,Y); :4:U\k;QwA  
    %       idx = r<=1; !rx5i  
    %       p = 0:15; RCkmxO;b&  
    %       z = nan(size(X)); Y}vV.q  
    %       y = zernfun2(p,r(idx),theta(idx)); =)#XZ[#F  
    %       figure('Units','normalized') kH06Cb  
    %       for k = 1:length(p) Kj"n Id)  
    %           z(idx) = y(:,k); %i&am=  
    %           subplot(4,4,k) f`}u9!jVR  
    %           pcolor(x,x,z), shading interp ?zo7.R-Vac  
    %           set(gca,'XTick',[],'YTick',[]) |r*y63\T  
    %           axis square GWx?RIKF  
    %           title(['Z_{' num2str(p(k)) '}'])  LWo)x  
    %       end MNfc1I_#  
    % tjZS:@3 Z  
    %   See also ZERNPOL, ZERNFUN. T5[(vTp  
    r*7J#M /  
    %   Paul Fricker 11/13/2006 8v)Z/R-  
    2V @ pt  
    CS^|="Zs  
    % Check and prepare the inputs: =+e;BYD#!  
    % ----------------------------- |$T?P*pI.  
    if min(size(p))~=1 i;2V   
        error('zernfun2:Pvector','Input P must be vector.') 4YMUkwh  
    end Ud-c+, xX  
    Swv =gu  
    if any(p)>35 m,J9:S<5;  
        error('zernfun2:P36', ... C-2#-{<  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... gZ (\/m8Z  
               '(P = 0 to 35).']) u_=>r_J[b  
    end `)jAdad-s  
    <l)I% 1T_c  
    % Get the order and frequency corresonding to the function number: ;S2/n$Ju_  
    % ---------------------------------------------------------------- o`jVd,aj  
    p = p(:); YZ0Q?7l7  
    n = ceil((-3+sqrt(9+8*p))/2); P; =,Q$e8  
    m = 2*p - n.*(n+2); &'5 j!  
    =HoA2,R)  
    % Pass the inputs to the function ZERNFUN: 7*&q"   
    % ---------------------------------------- ;;17 #T2  
    switch nargin ]T<RC\o  
        case 3 P= 26! b  
            z = zernfun(n,m,r,theta); xqKj&RuLu  
        case 4 ^@maF<Jb  
            z = zernfun(n,m,r,theta,nflag); cj3P]2B#  
        otherwise |>p?Cm  
            error('zernfun2:nargin','Incorrect number of inputs.') 9H%L;C5<  
    end H+5N+AKb@  
    k8sjW!2  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) Rp"" &0  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. dxeLu  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of #ruL+- 8!<  
    %   order N and frequency M, evaluated at R.  N is a vector of n#5%{e>  
    %   positive integers (including 0), and M is a vector with the "PY&NL?  
    %   same number of elements as N.  Each element k of M must be a 1O;q|p'9  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) ^5*9BwH`  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is w'D=K_h  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix fnO>v/&B  
    %   with one column for every (N,M) pair, and one row for every 4] I7t  
    %   element in R. _QOZ`st  
    % ZC:7N{a  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- T|Fl$is  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is f+W %X  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to <@2g.+9  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 ^NiS7)FX  
    %   for all [n,m]. (\NZ)Ys  
    % /jv4# 9  
    %   The radial Zernike polynomials are the radial portion of the 'e06QMp@  
    %   Zernike functions, which are an orthogonal basis on the unit P>i[X0UnL  
    %   circle.  The series representation of the radial Zernike 1$ C\ `  
    %   polynomials is 3]g|Cwu  
    % 5QUL-*t  
    %          (n-m)/2 dBMr%6tz  
    %            __ W~FM^xR?p  
    %    m      \       s                                          n-2s mXXU{IwUe  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r 5ki<1{aVtZ  
    %    n      s=0 V0!$k.Wk  
    % j UCrj'  
    %   The following table shows the first 12 polynomials. 1US4:6xX_  
    % e2l!L*[g  
    %       n    m    Zernike polynomial    Normalization W #kOcw  
    %       --------------------------------------------- "xKykSk  
    %       0    0    1                        sqrt(2) <^8&2wAkJ  
    %       1    1    r                           2 },LO]N|  
    %       2    0    2*r^2 - 1                sqrt(6) v46 5Z  
    %       2    2    r^2                      sqrt(6) HTU?hbG(  
    %       3    1    3*r^3 - 2*r              sqrt(8) 7[?{wbq  
    %       3    3    r^3                      sqrt(8) E1-BB  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) WvJidz?5  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) Zf~Z&"C)  
    %       4    4    r^4                      sqrt(10) zBTyRL l  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) 1iTI8h&[@  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) m]#oZVngy  
    %       5    5    r^5                      sqrt(12) z->[:)c  
    %       --------------------------------------------- nL@(|nJ[  
    % zo~5(O@  
    %   Example: YA[\|I33  
    % #.^A5`k  
    %       % Display three example Zernike radial polynomials Q&A^(z}  
    %       r = 0:0.01:1; aBonq]W  
    %       n = [3 2 5]; sV`!4 u7%}  
    %       m = [1 2 1]; u#"L gG.X  
    %       z = zernpol(n,m,r); ^\ocH|D  
    %       figure NP^j5|A*"  
    %       plot(r,z) *kE<7  
    %       grid on :@8N${7`$A  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') +<o}@hefY2  
    % -- chU5  
    %   See also ZERNFUN, ZERNFUN2. 3"HW{=  
    wYAi-gdOi  
    % A note on the algorithm. A, ;V|jv9  
    % ------------------------ 7uW=fkxT  
    % The radial Zernike polynomials are computed using the series LW '3m5  
    % representation shown in the Help section above. For many special mW&hUP Rx  
    % functions, direct evaluation using the series representation can {oK4 u  
    % produce poor numerical results (floating point errors), because \7U'p:h=U  
    % the summation often involves computing small differences between O4.`N?Xq  
    % large successive terms in the series. (In such cases, the functions g`9`/  
    % are often evaluated using alternative methods such as recurrence he\ pW5p  
    % relations: see the Legendre functions, for example). For the Zernike p.|NZXk%%a  
    % polynomials, however, this problem does not arise, because the iVe"iH  
    % polynomials are evaluated over the finite domain r = (0,1), and %ot4$ eY  
    % because the coefficients for a given polynomial are generally all JRYCM}C]  
    % of similar magnitude. 9H#;i]t&  
    % Z]\VOA>  
    % ZERNPOL has been written using a vectorized implementation: multiple v%$c_'d  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] t#BQB<GI  
    % values can be passed as inputs) for a vector of points R.  To achieve yJn<S@)VT:  
    % this vectorization most efficiently, the algorithm in ZERNPOL ^ 9`O ^  
    % involves pre-determining all the powers p of R that are required to wX Kg^%t\  
    % compute the outputs, and then compiling the {R^p} into a single :'0.  
    % matrix.  This avoids any redundant computation of the R^p, and si=m5$V  
    % minimizes the sizes of certain intermediate variables. 2{;~Bg d  
    % DO{Lj# @  
    %   Paul Fricker 11/13/2006 O=;}VZ<9  
    ;5PBZ<w  
    RR9G$}WS(  
    % Check and prepare the inputs: A$o7<Hx  
    % ----------------------------- 7Z[6_WD3  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) )N'rYS' 9  
        error('zernpol:NMvectors','N and M must be vectors.') UrJrv x  
    end { d|lN:B  
    I:Q3r"1  
    if length(n)~=length(m) >,}SP;  
        error('zernpol:NMlength','N and M must be the same length.') #)b0&wyW6i  
    end 8qF OO3c\V  
    5|_El/G  
    n = n(:); ;@$v_i   
    m = m(:); ]7DS>%m Y(  
    length_n = length(n); 'S#D+oF(1~  
    vMv? fE"  
    if any(mod(n-m,2)) X 3q2XU  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') bJ5 VlK67R  
    end q'1 86L87  
     Xn=  
    if any(m<0) ` ),ACkU>U  
        error('zernpol:Mpositive','All M must be positive.') =GJ)4os  
    end YG K7b6  
    h"ZR`?h  
    if any(m>n) bBg=X}9  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') |kK_B :K  
    end ]Mb:zs<r  
    Tx:S{n7&  
    if any( r>1 | r<0 ) B`mTp01  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') teX)!N [  
    end ~.&PQE$DF  
    /0z#0gNp  
    if ~any(size(r)==1) =";G&)H-  
        error('zernpol:Rvector','R must be a vector.') kxWcWl8  
    end S2<evs1d  
    Lm1  -  
    r = r(:); _MxKfah'  
    length_r = length(r); < VrHWJo  
    5-2#H?:U  
    if nargin==4 pKNrEq  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); 7&w$@zs87  
        if ~isnorm P TMJ.;  
            error('zernpol:normalization','Unrecognized normalization flag.') vugGMP;D(  
        end oc PM zq-  
    else KybrSa  
        isnorm = false; n@_aTY  
    end 05s{Z.aK  
    Q/]t $  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ~ya@ YP]';  
    % Compute the Zernike Polynomials ')zf8>,  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% d:3OC&  
    sg%Ptp  
    % Determine the required powers of r: t~_bquGk  
    % ----------------------------------- w42=tN+ B  
    rpowers = []; IutU ~%wv  
    for j = 1:length(n) )SzgMbF6  
        rpowers = [rpowers m(j):2:n(j)]; >SHP,><H/  
    end 0x,NMS  
    rpowers = unique(rpowers); iCIU'yI  
    *IQQsfL)  
    % Pre-compute the values of r raised to the required powers, U#g ,XJ  
    % and compile them in a matrix: Jk} Dj0o  
    % -----------------------------  RxO !h8  
    if rpowers(1)==0 7u<C&Z/  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); oef]  
        rpowern = cat(2,rpowern{:}); RN"Ur'+  
        rpowern = [ones(length_r,1) rpowern]; {66P-4Ev(  
    else e N^6gub  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Ef\&3TcQ  
        rpowern = cat(2,rpowern{:}); ^SWV!rrg  
    end @TvDxY1)6Z  
    g27)$0&0  
    % Compute the values of the polynomials: pSdtAv  
    % -------------------------------------- A@ZsL  
    z = zeros(length_r,length_n); >)6k)$x%%  
    for j = 1:length_n 9}$'q$0R]  
        s = 0:(n(j)-m(j))/2; E-v^eMWX  
        pows = n(j):-2:m(j); `=P=i>,  
        for k = length(s):-1:1 -9; XNp  
            p = (1-2*mod(s(k),2))* ... E~ +g6YlT  
                       prod(2:(n(j)-s(k)))/          ... 1~y\MD*-j  
                       prod(2:s(k))/                 ... X}ft7;Jpy  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... 9s&dN  
                       prod(2:((n(j)+m(j))/2-s(k))); 3XcFBFE  
            idx = (pows(k)==rpowers); Qb#iT}!p%  
            z(:,j) = z(:,j) + p*rpowern(:,idx); !0X/^Xv@=  
        end o?/fObV@(  
         ,A[NcFdCB  
        if isnorm mGh8/Xt  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); 1eOQ;#OV  
        end ]N{jF$  
    end eOZ"kw"uHu  
    -+fW/Uo  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    857
    光币
    847
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  CzI/Z+\  
    AizLzR$OG  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 k.wm{d]J  
    gZ6tb p,X  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)