切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10604阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 `wZ  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! pL!,1D!  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 (T$cw(!  
    function z = zernfun(n,m,r,theta,nflag) 5'+g[eNyBV  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. r7>FH!=:  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N |bSAn*6b  
    %   and angular frequency M, evaluated at positions (R,THETA) on the .a :7|L#a  
    %   unit circle.  N is a vector of positive integers (including 0), and rqiH!R  
    %   M is a vector with the same number of elements as N.  Each element tmoCy0qWz  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) SmD#hE[  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, TTl9xs,nO  
    %   and THETA is a vector of angles.  R and THETA must have the same `7y3C\zyQ  
    %   length.  The output Z is a matrix with one column for every (N,M) @%2crJnkS  
    %   pair, and one row for every (R,THETA) pair. Sz<:WY/(x  
    % %'h:G Bkd  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike W( sit;O  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ,r~^<m  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral F.x7/;  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ;<[!;8  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized XUh&an$  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. H7P}=YW".  
    % "PElQBLP:  
    %   The Zernike functions are an orthogonal basis on the unit circle. 'YG P42#  
    %   They are used in disciplines such as astronomy, optics, and U&:-Vf~&  
    %   optometry to describe functions on a circular domain. COm^ ti-p  
    % ^Ss <<  
    %   The following table lists the first 15 Zernike functions. j DEym&-  
    % RA!m,"RM  
    %       n    m    Zernike function           Normalization bv(+$YR  
    %       -------------------------------------------------- "N_@q2zF  
    %       0    0    1                                 1 a6ryyt 5  
    %       1    1    r * cos(theta)                    2 2-qWR<E  
    %       1   -1    r * sin(theta)                    2 m(:R(K(je  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) eYoc(bG(+  
    %       2    0    (2*r^2 - 1)                    sqrt(3) ZVJ6 {DS/  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) CdCY#$Z  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) Gs|a$^V|o  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) Gw-{`<CxE  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 5xnEkg4q4  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) kSol%C  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) ? eI)m  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) u81F^72U  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) y]obO|AH  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) (QqeMG,Y  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) ] s 2ec  
    %       -------------------------------------------------- []N&,2O  
    % @>~S$nw/  
    %   Example 1: WuF\{bUh  
    % g(s}R ?  
    %       % Display the Zernike function Z(n=5,m=1) zK1\InP  
    %       x = -1:0.01:1; oa7 N6  
    %       [X,Y] = meshgrid(x,x); Wt!;Y,1 s  
    %       [theta,r] = cart2pol(X,Y); A>F&b1  
    %       idx = r<=1; yGWl8\,j0  
    %       z = nan(size(X)); ^i WGGnGS  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); veh=^K%G |  
    %       figure hHcevSr  
    %       pcolor(x,x,z), shading interp ^tm2Duv  
    %       axis square, colorbar d/*EuJYin<  
    %       title('Zernike function Z_5^1(r,\theta)') HlkjyD8  
    % %Gu=Dkz  
    %   Example 2: c<cYX;O  
    % Yu&\a?]\2  
    %       % Display the first 10 Zernike functions P&5vVA6K7  
    %       x = -1:0.01:1; 5HL>2 e[  
    %       [X,Y] = meshgrid(x,x); iK'A m.o+  
    %       [theta,r] = cart2pol(X,Y); i ^N}avO  
    %       idx = r<=1; u|EJ)dT?  
    %       z = nan(size(X)); 6OPNP0@r  
    %       n = [0  1  1  2  2  2  3  3  3  3]; !{uV-c-5,  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; Y%]g,mG  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; S*3$1BTl  
    %       y = zernfun(n,m,r(idx),theta(idx)); l<sWM$ez  
    %       figure('Units','normalized') l{ fL~O  
    %       for k = 1:10 ko!aX;K  
    %           z(idx) = y(:,k); {"|GV~  
    %           subplot(4,7,Nplot(k)) /n,a0U/  
    %           pcolor(x,x,z), shading interp )F'hn+(B|G  
    %           set(gca,'XTick',[],'YTick',[]) P:X X8&#  
    %           axis square r[j@@[)"  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) T%}x%9VO7  
    %       end ,<OS: ]  
    % G Wj !n  
    %   See also ZERNPOL, ZERNFUN2. ^MT20pL  
    .:;q8FL/  
    %   Paul Fricker 11/13/2006 &\/}.rF  
    hE2{m{^A  
    K~5(j{Kb8  
    % Check and prepare the inputs: MI8c>5?  
    % ----------------------------- i~HS"n  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) o+<hI  
        error('zernfun:NMvectors','N and M must be vectors.') ROfke.N\'  
    end 2PSv3?".  
    /h&>tYVio  
    if length(n)~=length(m) yAel4b/}  
        error('zernfun:NMlength','N and M must be the same length.') EJaO"9 (  
    end &hhxp1B  
    9B3}LVg\  
    n = n(:); c/3]M>+M  
    m = m(:); 1b!5h  
    if any(mod(n-m,2)) (%M:=zm  
        error('zernfun:NMmultiplesof2', ... gp{P _  
              'All N and M must differ by multiples of 2 (including 0).') \WVY@eB  
    end n^epC>a"b  
    N9f;X{  
    if any(m>n) n6INI~,  
        error('zernfun:MlessthanN', ... :Sk<0VVd7  
              'Each M must be less than or equal to its corresponding N.') .7#04_aP  
    end B"RZpx  
    cC,gd\}M  
    if any( r>1 | r<0 ) jRjQDK_"ka  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') dFpP_U  
    end {y:+rh&  
    (]<G)+*  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ?[O Sy.6  
        error('zernfun:RTHvector','R and THETA must be vectors.') kca  Y  
    end pQ+4++7ID  
     YwB\kN  
    r = r(:); 2 BwpxV8  
    theta = theta(:); @L^30>?l  
    length_r = length(r); Zxv{qbF  
    if length_r~=length(theta) /lvH p  
        error('zernfun:RTHlength', ... ;\+A6(GX{  
              'The number of R- and THETA-values must be equal.') Bk1gE((  
    end C? b_E  
    Tq >?.bq9  
    % Check normalization: K:sC6|wG  
    % -------------------- N &vQis  
    if nargin==5 && ischar(nflag) ~48mCD  
        isnorm = strcmpi(nflag,'norm');  qZP>h4  
        if ~isnorm <H!; /p/S  
            error('zernfun:normalization','Unrecognized normalization flag.') )'?@raB!  
        end rwdj  
    else hLLg  
        isnorm = false; YPav5<{a  
    end Ucok&)7-  
    )8Sm}aC  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% j6)@kW9x  
    % Compute the Zernike Polynomials ?x &"EhA>  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% FY]z*=  
    9Fxz9_ i  
    % Determine the required powers of r: ;;- I<TL  
    % ----------------------------------- L~(`zO3f  
    m_abs = abs(m); .:s**UiDR  
    rpowers = []; re} P  
    for j = 1:length(n) *gzX=*;x+?  
        rpowers = [rpowers m_abs(j):2:n(j)]; %S4pkFR  
    end %7rWebd-  
    rpowers = unique(rpowers); b$)XS  
    ^?tF'l`  
    % Pre-compute the values of r raised to the required powers, +hS}msu'  
    % and compile them in a matrix: E>?T<!r~j  
    % ----------------------------- xpVYNS{c+|  
    if rpowers(1)==0 enT.9|vm/  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); tpi63<N  
        rpowern = cat(2,rpowern{:}); O ijG@bI8  
        rpowern = [ones(length_r,1) rpowern]; bKH8/*Yk  
    else _nj?au(@`Y  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); C"ZCX6p+$  
        rpowern = cat(2,rpowern{:}); 7nHlDPps)  
    end SNd]c  
    E8Wgm 8  
    % Compute the values of the polynomials: s&$Zgf6Z  
    % -------------------------------------- Mzxy'U V  
    y = zeros(length_r,length(n)); 5fBW#6N/  
    for j = 1:length(n) -pR1xsG  
        s = 0:(n(j)-m_abs(j))/2; x3my8'h@  
        pows = n(j):-2:m_abs(j); +x0-hRD  
        for k = length(s):-1:1 U vOB`Vj  
            p = (1-2*mod(s(k),2))* ... BY$%gIB6>  
                       prod(2:(n(j)-s(k)))/              ... CxtH?9# |  
                       prod(2:s(k))/                     ...  B9^@]  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... N LC}XL  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); d+fi g{<b  
            idx = (pows(k)==rpowers); %zB `Sd<  
            y(:,j) = y(:,j) + p*rpowern(:,idx); .yF7{/  
        end t <#Yr%a  
         NPEs0|  
        if isnorm 7Q.?] k&  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); mOyBSOad4  
        end p9 |r y+t  
    end Ydu=J g5u7  
    % END: Compute the Zernike Polynomials ` oYrW0Vm  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% W6~B~L  
    @&d/}Mx"t  
    % Compute the Zernike functions: :nw4K(:f  
    % ------------------------------ ?!-2G  
    idx_pos = m>0; y4Plm.  
    idx_neg = m<0; 810u +%fu  
    VHB5  
    z = y; /W/ =OPe  
    if any(idx_pos) Wel-a< e  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ,y?0Iwf  
    end .t0Q>:}&b  
    if any(idx_neg) #f~#38_  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); '8wA+N6Zr7  
    end nYMdYt04sl  
    fXBA P10#  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) ^6|Q$]}Ok  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. o6ec\v!l-  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated U*=ebZno  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive Lu6!W  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, S=ebht=  
    %   and THETA is a vector of angles.  R and THETA must have the same {o4m3[C7=}  
    %   length.  The output Z is a matrix with one column for every P-value, ;2-,Xzz8  
    %   and one row for every (R,THETA) pair. 8AVM(d@  
    % TB4|dj-%  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike  J O`S  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) z'JtH^^Z  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) ^c!"*L0E  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 iXMs*G cK  
    %   for all p. gEMxK2MNXj  
    % 1pVagLlb:7  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 m49GCo k+  
    %   Zernike functions (order N<=7).  In some disciplines it is noC ]&4b  
    %   traditional to label the first 36 functions using a single mode `[w:l[i  
    %   number P instead of separate numbers for the order N and azimuthal 1p<m>s=D=e  
    %   frequency M. ]i)m   
    % #)2'I`_E  
    %   Example: KQj5o>} 6  
    % a1_7plg  
    %       % Display the first 16 Zernike functions Zx7Y ,0  
    %       x = -1:0.01:1; %vDN{%h8  
    %       [X,Y] = meshgrid(x,x); WrQe'ny  
    %       [theta,r] = cart2pol(X,Y); 8TZNvN4u  
    %       idx = r<=1; D|@*HX@_Xp  
    %       p = 0:15; c=K . |g,  
    %       z = nan(size(X)); hMh8)S  
    %       y = zernfun2(p,r(idx),theta(idx)); iF?4G^  
    %       figure('Units','normalized') %Iw6oG  
    %       for k = 1:length(p) ,8nu%zcVn  
    %           z(idx) = y(:,k); (PE x<r1   
    %           subplot(4,4,k) nxkbI:+t  
    %           pcolor(x,x,z), shading interp K2<"O qp_W  
    %           set(gca,'XTick',[],'YTick',[]) 1WRQjT=o  
    %           axis square W~z 2Q so  
    %           title(['Z_{' num2str(p(k)) '}']) j BS$xW  
    %       end {M96jjiInf  
    % +] >o@  
    %   See also ZERNPOL, ZERNFUN. D |kdk;Xv  
    ]*|+06  
    %   Paul Fricker 11/13/2006 ) gbns'Z<  
    $' }rBPA/  
    > L_kSC?  
    % Check and prepare the inputs: U}<5%"!;  
    % ----------------------------- _o/LFLq  
    if min(size(p))~=1 zgXg-cr  
        error('zernfun2:Pvector','Input P must be vector.') DJvmwFx  
    end mZQW>A]iE  
    kVR_?ch{  
    if any(p)>35 m r"b/oM{  
        error('zernfun2:P36', ... jR[VPm=  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... t% Sgw%f  
               '(P = 0 to 35).']) >W Tn4SW@  
    end i x2V?\  
    U{/d dCf7  
    % Get the order and frequency corresonding to the function number: D])&>  
    % ---------------------------------------------------------------- DSjEoWj   
    p = p(:); @yp#k>  
    n = ceil((-3+sqrt(9+8*p))/2); #t N9#w[K{  
    m = 2*p - n.*(n+2); E/[>#%@i  
    Q*4{2oQ  
    % Pass the inputs to the function ZERNFUN: Y;2WY 0eq  
    % ---------------------------------------- \#Md3!MG  
    switch nargin >T84NFdz+  
        case 3 4Z8FLA+T,  
            z = zernfun(n,m,r,theta); a',6WugIP  
        case 4 _y:-_q  
            z = zernfun(n,m,r,theta,nflag); FQY{[QvF~  
        otherwise >7g #e,d   
            error('zernfun2:nargin','Incorrect number of inputs.') HiAj3  
    end Ckd j|  
    WH|TdU$V  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) 1S[4@rZ  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. ,~Y[XazT  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of :m]KVcF.  
    %   order N and frequency M, evaluated at R.  N is a vector of {L'uuG\9U  
    %   positive integers (including 0), and M is a vector with the Ml,~@} p  
    %   same number of elements as N.  Each element k of M must be a zv .#9^/y  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) &=f] a  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is  *.us IH2  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix Vh?5  
    %   with one column for every (N,M) pair, and one row for every oUl0w~Xn  
    %   element in R. g)dKXsy(F  
    % O0l1AX"  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- c T21  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is pk8`suZ  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to o[I s$j  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 5J-slNNCQ  
    %   for all [n,m]. dzk1!yy  
    % h ?_@nQ!  
    %   The radial Zernike polynomials are the radial portion of the QXI#gA  =  
    %   Zernike functions, which are an orthogonal basis on the unit  "tT68  
    %   circle.  The series representation of the radial Zernike G^ShN45   
    %   polynomials is \B4f5 L8k  
    % 9y'To JZ6  
    %          (n-m)/2 ]qb>O:T  
    %            __ wY]ejK$0R  
    %    m      \       s                                          n-2s cb=ixn  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r 0VnRtLnqI  
    %    n      s=0 :W.pD:/=v  
    % l&|Tb8_'  
    %   The following table shows the first 12 polynomials. (}RTHpD  
    % /Qu<>#[?  
    %       n    m    Zernike polynomial    Normalization `#*`hH8  
    %       --------------------------------------------- |F4)&xN\  
    %       0    0    1                        sqrt(2) g '+2bQ  
    %       1    1    r                           2 [_`<<!u>-  
    %       2    0    2*r^2 - 1                sqrt(6) P^aNAa  
    %       2    2    r^2                      sqrt(6) g#Z7ReMw  
    %       3    1    3*r^3 - 2*r              sqrt(8) XL/V>`E@  
    %       3    3    r^3                      sqrt(8) ,\ -4X  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) o)wOXF  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) dUQ )&Hv  
    %       4    4    r^4                      sqrt(10) =}" P;4:  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) hbe";(  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) 00LL&ot  
    %       5    5    r^5                      sqrt(12) ZcHd.1fXh  
    %       --------------------------------------------- _b`/QSL  
    % SB|Cr:wM  
    %   Example: ol1J1Zg  
    % Sim$:5P  
    %       % Display three example Zernike radial polynomials _1jbNQa  
    %       r = 0:0.01:1; y1h3Ch>Y  
    %       n = [3 2 5]; >}bkX 6c5  
    %       m = [1 2 1]; B qo#cnlG  
    %       z = zernpol(n,m,r); aA -j  
    %       figure A4*D3\>%u  
    %       plot(r,z) Qe0?n  
    %       grid on SBaTbY0  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') \maj5VlJ  
    % tb>Q#QB&u  
    %   See also ZERNFUN, ZERNFUN2. hltUf5m'b  
    KGf@d*ZOMz  
    % A note on the algorithm. hh$i1n  
    % ------------------------ .] 0:`Y,;  
    % The radial Zernike polynomials are computed using the series -UWyBM3c@  
    % representation shown in the Help section above. For many special cJ>^@pd{  
    % functions, direct evaluation using the series representation can R|k!w]  
    % produce poor numerical results (floating point errors), because i!G<sfL  
    % the summation often involves computing small differences between ~<}?pDA}~  
    % large successive terms in the series. (In such cases, the functions vl!o^_70(  
    % are often evaluated using alternative methods such as recurrence tR .>d  
    % relations: see the Legendre functions, for example). For the Zernike aI;fNy /K  
    % polynomials, however, this problem does not arise, because the +f}w+  
    % polynomials are evaluated over the finite domain r = (0,1), and 1]W8A.ZS  
    % because the coefficients for a given polynomial are generally all J[UTn'M8]  
    % of similar magnitude. [B^V{nUBc  
    % 3*F|`js"  
    % ZERNPOL has been written using a vectorized implementation: multiple (SCZ.G(>  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] 4<- E0  
    % values can be passed as inputs) for a vector of points R.  To achieve -dw/wHf"  
    % this vectorization most efficiently, the algorithm in ZERNPOL "HLh3L~  
    % involves pre-determining all the powers p of R that are required to gF]IAZCi  
    % compute the outputs, and then compiling the {R^p} into a single r!^VCA  
    % matrix.  This avoids any redundant computation of the R^p, and Oiw!d6"Ovq  
    % minimizes the sizes of certain intermediate variables. )7m.n%B!5V  
    % @sRb1+nn  
    %   Paul Fricker 11/13/2006 CX7eCo  
    Of  nN  
    Q@TeU#2Y  
    % Check and prepare the inputs: 9?|m ^  
    % ----------------------------- >p3S,2SM  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) D7v.Xq|  
        error('zernpol:NMvectors','N and M must be vectors.') 0Rn`63#  
    end [3] h(D  
    r2&/Ii+  
    if length(n)~=length(m) HmV JkkksJ  
        error('zernpol:NMlength','N and M must be the same length.') OSK:Cb.-?F  
    end $cGV)[KWp@  
    ZO\bCrk  
    n = n(:); bR=TGL&  
    m = m(:); K&&YxX~ 3  
    length_n = length(n);  P!/:yWd  
     rjHW  
    if any(mod(n-m,2)) 602=qb  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') LfsOGC  
    end 8yGo\\=T  
    ra]\!;}L0  
    if any(m<0) PR>%@-Vgj  
        error('zernpol:Mpositive','All M must be positive.') a]x\e{  
    end 7v(<<>  
    w'Jo).OW~  
    if any(m>n) K st2.Yy  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') peU1 t:k?  
    end &^ =Y76  
    L_AQS9a^D  
    if any( r>1 | r<0 ) M-5zsN  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') KkZo|\V  
    end ":Pfi!9Wl  
    !7uFH PK-  
    if ~any(size(r)==1) d\rs/ee  
        error('zernpol:Rvector','R must be a vector.') v?4MndR  
    end I=V]_Ik4 N  
    }/z\%Y  
    r = r(:); n 4EZy<~m  
    length_r = length(r); ?E7.x%n7X5  
    NZ~"2~Hh  
    if nargin==4 @xAfD{}f!  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); _+nlm5  
        if ~isnorm 5,?Au  
            error('zernpol:normalization','Unrecognized normalization flag.') 9,Ug  
        end a~;`&Uj  
    else aEqDxr6  
        isnorm = false; $g)X,iQu  
    end >l!DW i6  
    %D*yXNsY  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %-[U;pJe;  
    % Compute the Zernike Polynomials w77"?kJ9X  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% C AF{7 `{  
    ^1+&)6s7V  
    % Determine the required powers of r: 2o-Ie/"d\  
    % ----------------------------------- t>%J3S>'ZV  
    rpowers = []; KfLp cV  
    for j = 1:length(n) m_1BB$lyP2  
        rpowers = [rpowers m(j):2:n(j)]; nK|WzUtp  
    end l050n9#9p  
    rpowers = unique(rpowers); ( cqVCys  
    vh^,8pPy  
    % Pre-compute the values of r raised to the required powers, JIU=^6^2'  
    % and compile them in a matrix: @C6.~OiP  
    % ----------------------------- g"L$}#iTsl  
    if rpowers(1)==0 421ol  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); |0/~7l  
        rpowern = cat(2,rpowern{:}); @I|gA  
        rpowern = [ones(length_r,1) rpowern]; +eD+Z.{  
    else 3.s.&^  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false);  uvf}7  
        rpowern = cat(2,rpowern{:}); 7q[a8rUdh  
    end yPza  
    9;u&,R  
    % Compute the values of the polynomials: 4q\bnt  
    % -------------------------------------- [.NG~ cpb  
    z = zeros(length_r,length_n);  ,L}  
    for j = 1:length_n K0O&-v0"1  
        s = 0:(n(j)-m(j))/2; Ljjuf=]  
        pows = n(j):-2:m(j); NJraol  
        for k = length(s):-1:1 0? QTi(  
            p = (1-2*mod(s(k),2))* ... K=82fF(-  
                       prod(2:(n(j)-s(k)))/          ... >HY( Ij<  
                       prod(2:s(k))/                 ... G\1\L*+0  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... 3R sbi  
                       prod(2:((n(j)+m(j))/2-s(k))); na1*^S`[  
            idx = (pows(k)==rpowers); 3KW4 ]qo~  
            z(:,j) = z(:,j) + p*rpowern(:,idx); K`?",G?_  
        end N3J;_=<4  
         5J4'\M  
        if isnorm kq kj.#u  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); .`3O4]N[  
        end 89[5a  
    end i7/I8y  
    C.[abpc  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    850
    光币
    833
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  }ZQ)]Mr  
    !2.(iuE  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 DFgQ1:6[  
    P3 Wnso  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)