切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11702阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 XT*/aa-1'  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! FCOa|IKsN  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 =R 4]Kf  
    function z = zernfun(n,m,r,theta,nflag) GA` bWl  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. !4gHv4v ;  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N s-(c-E09  
    %   and angular frequency M, evaluated at positions (R,THETA) on the -sdzA6dp  
    %   unit circle.  N is a vector of positive integers (including 0), and S.`hl/  
    %   M is a vector with the same number of elements as N.  Each element ;&f(7 Q+T_  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) e6H}L:;  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ]dl.~;3~~  
    %   and THETA is a vector of angles.  R and THETA must have the same O"kb*//  
    %   length.  The output Z is a matrix with one column for every (N,M) 1zG6^U  
    %   pair, and one row for every (R,THETA) pair. *93=}1gN  
    % w8j pOvj  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ,)!%^ ~v  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), yiXb<g+B  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral R]Z#VnL@qz  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, S!x;w7j  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized #`U?,>2q  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. t6`(9o@}  
    % cTn (Tv9s  
    %   The Zernike functions are an orthogonal basis on the unit circle. #`= >Mza  
    %   They are used in disciplines such as astronomy, optics, and M #0v# {o  
    %   optometry to describe functions on a circular domain. . XbDb  
    % n[qnrk*3 %  
    %   The following table lists the first 15 Zernike functions. lKU{jWA  
    % ) ?B-en\  
    %       n    m    Zernike function           Normalization $bF+J8%D  
    %       -------------------------------------------------- 7\$b%A  
    %       0    0    1                                 1 .I]v D#o  
    %       1    1    r * cos(theta)                    2 .HGK  3  
    %       1   -1    r * sin(theta)                    2 ])bgUH  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6)  $s]&9 2  
    %       2    0    (2*r^2 - 1)                    sqrt(3) p\#;(pf}s  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) *SI,K)BP  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ]]`[tVaFr  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) yw%E S  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ",[/pb  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) `1Md1e:J  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) b"}ya/  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) @MFEBc}  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) $sb@*K}:4  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) >Wx9a"H^(  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) uh#E^~5S  
    %       -------------------------------------------------- {|j-e{*  
    % V4CA*FEA  
    %   Example 1: Mh3L(z]/E  
    % sAs`O@  
    %       % Display the Zernike function Z(n=5,m=1) Au/'|%2#(  
    %       x = -1:0.01:1; -iW>T5f  
    %       [X,Y] = meshgrid(x,x); fpjFO&ML  
    %       [theta,r] = cart2pol(X,Y); 8'fF{C  
    %       idx = r<=1; J|o<;9dg1  
    %       z = nan(size(X)); |a /cw"  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); Uvi@HB HJ  
    %       figure -Gl!W`$I `  
    %       pcolor(x,x,z), shading interp 0pB'^Q{  
    %       axis square, colorbar <&B] p  
    %       title('Zernike function Z_5^1(r,\theta)') &`>dY /Y  
    % ,If"4C!w  
    %   Example 2: [xGL0Z%)t  
    % Z$m&F0g  
    %       % Display the first 10 Zernike functions _U*1D*kLI[  
    %       x = -1:0.01:1; DAtAc(05)  
    %       [X,Y] = meshgrid(x,x); &Q\k`0vzVB  
    %       [theta,r] = cart2pol(X,Y); EL2z&  
    %       idx = r<=1; B=X_c5  
    %       z = nan(size(X)); 8(A k  
    %       n = [0  1  1  2  2  2  3  3  3  3]; yTe25l{QaF  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; ntL%&wY  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; c^&:':Z%'  
    %       y = zernfun(n,m,r(idx),theta(idx)); 7<2?NLE8*  
    %       figure('Units','normalized') ,g|ht%"  
    %       for k = 1:10 _jxysFl=  
    %           z(idx) = y(:,k); |qf9-36   
    %           subplot(4,7,Nplot(k)) (f#{<^gd  
    %           pcolor(x,x,z), shading interp -wNhbV2  
    %           set(gca,'XTick',[],'YTick',[]) u+jx3aP:  
    %           axis square 7-9HCP  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) P;&U3i  
    %       end {cw+kY]m4-  
    % w#bdb;  
    %   See also ZERNPOL, ZERNFUN2. ,>TDxI;  
    A v/y  
    %   Paul Fricker 11/13/2006 xFp9H'j{  
     M[R'  
    RcI0n"Gi_  
    % Check and prepare the inputs: (t,|FkVLV  
    % ----------------------------- *iPBpEWC  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) IY(;:#l  
        error('zernfun:NMvectors','N and M must be vectors.') :ZM=P3QZ  
    end ,qdZ6bv,]|  
    j2n 4; m  
    if length(n)~=length(m) ~%: TE}  
        error('zernfun:NMlength','N and M must be the same length.') 9!D c=  
    end =A"z.KfV  
    G#'G9/Tm  
    n = n(:); AIA4c"w.EO  
    m = m(:); f_QZ ql  
    if any(mod(n-m,2)) cavzXz  
        error('zernfun:NMmultiplesof2', ... sNC~S%[  
              'All N and M must differ by multiples of 2 (including 0).') S8]YS@@D   
    end uv7tbI"r  
    |X~vsM0  
    if any(m>n) w /CD-  
        error('zernfun:MlessthanN', ... oR<;Tr~{q  
              'Each M must be less than or equal to its corresponding N.') %-NG eN8  
    end $[(FCS  
    qKuHd~M{ 1  
    if any( r>1 | r<0 ) mi sPJO&QD  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') M;@/697G  
    end 8RVeKnpXTV  
    -9"[/  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 0Jm)2@  
        error('zernfun:RTHvector','R and THETA must be vectors.') x^UAtKSy  
    end v%Su#xq/  
    [>kzQYT[  
    r = r(:); YzAGhAyw  
    theta = theta(:); @'?7au ''  
    length_r = length(r); ')E4N+h/  
    if length_r~=length(theta) UTuOean ]'  
        error('zernfun:RTHlength', ... 3:!5 ]  
              'The number of R- and THETA-values must be equal.') {=E,.%8  
    end QPsvc6ds  
    BUEV+SZ4  
    % Check normalization: y@]:7  
    % -------------------- 6J\A%i  
    if nargin==5 && ischar(nflag) K%>3ev=y.s  
        isnorm = strcmpi(nflag,'norm'); dxWG+S  
        if ~isnorm D4QL lP  
            error('zernfun:normalization','Unrecognized normalization flag.') i}ti  
        end xgB-m[Xi  
    else "NO*(<C.R  
        isnorm = false; Jb` yK@x  
    end f<2<8xS  
    [Z+E_Lbz  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ,6^V)F  
    % Compute the Zernike Polynomials _ ~E_#cNn  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% JuXuS  
    NE!]  
    % Determine the required powers of r: &0@AM_b  
    % ----------------------------------- 1BA5|  
    m_abs = abs(m); VxGR[kq$]  
    rpowers = []; )m$i``*<  
    for j = 1:length(n) <o&\/uO~H  
        rpowers = [rpowers m_abs(j):2:n(j)]; CZ/:(sOJ  
    end q8f nUK?i  
    rpowers = unique(rpowers); l#%G~c8x  
    YU%U  
    % Pre-compute the values of r raised to the required powers, >W@3_{0  
    % and compile them in a matrix: 5B+I\f&  
    % ----------------------------- e5.sqft  
    if rpowers(1)==0 &GLe4zEh  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Ng<oz*>U  
        rpowern = cat(2,rpowern{:}); {}v<2bS  
        rpowern = [ones(length_r,1) rpowern]; _,]@xFCOH  
    else \"hP*DJ"  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); G_n~1?  
        rpowern = cat(2,rpowern{:}); )u(Dqu\t  
    end :jioF{,  
    I r;Z+}4>Y  
    % Compute the values of the polynomials: q#!c6lG  
    % -------------------------------------- L k]/{t0  
    y = zeros(length_r,length(n)); e.pq6D5  
    for j = 1:length(n) c9N5c  
        s = 0:(n(j)-m_abs(j))/2; )qV&sru.$  
        pows = n(j):-2:m_abs(j); g7U>G=,;?U  
        for k = length(s):-1:1 S.A|(?x  
            p = (1-2*mod(s(k),2))* ... 5Gsjt+ o  
                       prod(2:(n(j)-s(k)))/              ... ~l>2NY  
                       prod(2:s(k))/                     ... $79-)4;z4  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... _i+7O^=d6X  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); - -H%FYF`  
            idx = (pows(k)==rpowers); 92S,W?(  
            y(:,j) = y(:,j) + p*rpowern(:,idx); QF`o%mI  
        end B< BS>(Nr>  
         9$:+5f,%a  
        if isnorm E'4 dI:  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); y@Q? guB  
        end B(|dT66K  
    end 8ORr  
    % END: Compute the Zernike Polynomials H@hHEzO  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \Zms  
    Di8;Tq  
    % Compute the Zernike functions: ^5d9n<_xnQ  
    % ------------------------------ _Zs]za.#)|  
    idx_pos = m>0; 4Z<  
    idx_neg = m<0; \H5{[ZUn  
    T hLR<\  
    z = y; PFnq:G^L  
    if any(idx_pos) E?Ofkc$q  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); f.y~Sew  
    end K+s xO/}h  
    if any(idx_neg) w_eUU)z  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); |;6l1]hk6  
    end !u=,bfyH  
    z("Fy  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) B 8ycr~  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. h*GU7<F:a  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated az2CFd^M  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive ?nAKB5=  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, T>;Kq;(9  
    %   and THETA is a vector of angles.  R and THETA must have the same t846:Z%[  
    %   length.  The output Z is a matrix with one column for every P-value, eZWR)+aq  
    %   and one row for every (R,THETA) pair. d@72z r  
    % )bG d++2  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike MjHjL~Tg  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) dnP3{!"b  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) ].eY]o}=  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 9w! G  
    %   for all p. C8 b%r|^#  
    % =_L  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 `1[GY){?)  
    %   Zernike functions (order N<=7).  In some disciplines it is S3k>34_%9  
    %   traditional to label the first 36 functions using a single mode 'Na/AcRdg  
    %   number P instead of separate numbers for the order N and azimuthal !B3lsXLSY  
    %   frequency M. >xt*(j&}  
    % p3NTI/-  
    %   Example:  Dy[ YL  
    % Xkv+"F=-  
    %       % Display the first 16 Zernike functions 6/#5TdJA  
    %       x = -1:0.01:1; z4nVsgQ$  
    %       [X,Y] = meshgrid(x,x); S}hg*mWn{$  
    %       [theta,r] = cart2pol(X,Y); 9$xEktfV  
    %       idx = r<=1; Tcglt>tj"  
    %       p = 0:15; ew n/@;E  
    %       z = nan(size(X)); U&|$B|[  
    %       y = zernfun2(p,r(idx),theta(idx)); U "qO&;m  
    %       figure('Units','normalized') X; gN[  
    %       for k = 1:length(p) 0P_Y6w+  
    %           z(idx) = y(:,k); r]=3aebR.  
    %           subplot(4,4,k) Z0~}'K   
    %           pcolor(x,x,z), shading interp Mlpq2I_x  
    %           set(gca,'XTick',[],'YTick',[]) D^Z~>D6  
    %           axis square e<p_u)m  
    %           title(['Z_{' num2str(p(k)) '}']) 2Z-BZuK6p  
    %       end lE54RX}e4  
    % A/U tf0{3"  
    %   See also ZERNPOL, ZERNFUN. ~%Ws"1  
    YSuw V)Y  
    %   Paul Fricker 11/13/2006 rwxJR@Ttn  
    +M\*C#  
    i#jCf3%+ h  
    % Check and prepare the inputs: y^C; ?B<  
    % ----------------------------- b'N"?W^YQ  
    if min(size(p))~=1 , "zS  pN  
        error('zernfun2:Pvector','Input P must be vector.') FVsNOU  
    end B(MO!GNg=  
    Dz&4za+{  
    if any(p)>35 ubhem(p#  
        error('zernfun2:P36', ... OD"eB?  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... qR_"aQ7s2  
               '(P = 0 to 35).']) !UUh7'W4u  
    end O'."ca]:5  
    |k'I?:'  
    % Get the order and frequency corresonding to the function number: e<^tY0rR&  
    % ---------------------------------------------------------------- <,0& Ox  
    p = p(:); kmW!0hm;e  
    n = ceil((-3+sqrt(9+8*p))/2); ji( S ?^  
    m = 2*p - n.*(n+2); "VWxHRVg4M  
    e7L;{+XI  
    % Pass the inputs to the function ZERNFUN: q9Y0Lk  
    % ---------------------------------------- @fpxGMy&  
    switch nargin "0L@cOyG  
        case 3 $^7 &bQ  
            z = zernfun(n,m,r,theta); d*3R0Q|#{  
        case 4 i=2+1 ;K  
            z = zernfun(n,m,r,theta,nflag); CWkm\=  
        otherwise Dz)bP{iq"  
            error('zernfun2:nargin','Incorrect number of inputs.') yB. 6U56  
    end rMlbj2T  
    kX1hcAa  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) tOko %vY8  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. V,M8RYOnC!  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of 0\Oeo8<7)~  
    %   order N and frequency M, evaluated at R.  N is a vector of &P {%C5?{  
    %   positive integers (including 0), and M is a vector with the jEO;  
    %   same number of elements as N.  Each element k of M must be a K->p&6s  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) FyS K&  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is 9)YG)A~<  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix qbAoab53  
    %   with one column for every (N,M) pair, and one row for every Tf0#+6 1>  
    %   element in R. E>V8|Hz;  
    % *smo{!0Gg  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- d7G'+B1  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is w|5}V6WD  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to z(%Zji@!N  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 0^[$0]Mt[  
    %   for all [n,m]. :e9E#o  
    % 1%=,J'AH  
    %   The radial Zernike polynomials are the radial portion of the uC;@Yi8  
    %   Zernike functions, which are an orthogonal basis on the unit [D?E\Nkk  
    %   circle.  The series representation of the radial Zernike Y|lMa?\E  
    %   polynomials is LQQhn{[D  
    % tIvtiN6[|l  
    %          (n-m)/2 da<1,hF  
    %            __ Q%>,5(_V]  
    %    m      \       s                                          n-2s yi%B5KF~Al  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r @LmUCP~  
    %    n      s=0 >3Y&jsh<  
    % %Mu dc  
    %   The following table shows the first 12 polynomials. <St`"H  
    % rj5:Y QEH;  
    %       n    m    Zernike polynomial    Normalization k4l72 'P  
    %       --------------------------------------------- 7vWB=r>5@  
    %       0    0    1                        sqrt(2) PRUGUHY  
    %       1    1    r                           2 Gce_gZH7{  
    %       2    0    2*r^2 - 1                sqrt(6) [lJ[kr*7  
    %       2    2    r^2                      sqrt(6) @rdC/=Y[  
    %       3    1    3*r^3 - 2*r              sqrt(8) 9(I4x]`  
    %       3    3    r^3                      sqrt(8) FPMW"~v  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) C/$IF M<  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) 1GNA x\(  
    %       4    4    r^4                      sqrt(10) }l2JXf55  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) BdYh:  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) O|/tRkDMP{  
    %       5    5    r^5                      sqrt(12) bC{~/ JP  
    %       --------------------------------------------- xSf3Ir(,  
    % {!4%Z9G  
    %   Example: I[|I\tW  
    % mU_O64  
    %       % Display three example Zernike radial polynomials n#R!`*[  
    %       r = 0:0.01:1; S,v`rmI  
    %       n = [3 2 5]; g$97"d'  
    %       m = [1 2 1]; {J]|mxo  
    %       z = zernpol(n,m,r); &d2/F i+  
    %       figure Psv!`K  
    %       plot(r,z) "&ks8 3  
    %       grid on E0|aI4S4  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') }0TY  
    % ~Mx fud  
    %   See also ZERNFUN, ZERNFUN2. A4^+p0@  
    )>/c/ B  
    % A note on the algorithm. v3NaX.  
    % ------------------------ tEUmED0FY  
    % The radial Zernike polynomials are computed using the series hG67%T'}A  
    % representation shown in the Help section above. For many special cQR1v-Xt  
    % functions, direct evaluation using the series representation can g[$B9 0  
    % produce poor numerical results (floating point errors), because qq` RfZjL  
    % the summation often involves computing small differences between y{N9.H2  
    % large successive terms in the series. (In such cases, the functions 2Ar<(v$  
    % are often evaluated using alternative methods such as recurrence @K/I a!Lw  
    % relations: see the Legendre functions, for example). For the Zernike YJy*OS_&  
    % polynomials, however, this problem does not arise, because the u%pief  
    % polynomials are evaluated over the finite domain r = (0,1), and UdGoPzN  
    % because the coefficients for a given polynomial are generally all gr;M  
    % of similar magnitude. (pmo[2kg  
    % cNVdGY%&  
    % ZERNPOL has been written using a vectorized implementation: multiple *t_&im%E  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] H07j&  
    % values can be passed as inputs) for a vector of points R.  To achieve ST3qg6Cq2J  
    % this vectorization most efficiently, the algorithm in ZERNPOL Vo%d;>!G\;  
    % involves pre-determining all the powers p of R that are required to 1bBK1Uw  
    % compute the outputs, and then compiling the {R^p} into a single T)uw2  
    % matrix.  This avoids any redundant computation of the R^p, and [a3 0iE  
    % minimizes the sizes of certain intermediate variables. I?>#neHc6  
    % e-VL U;  
    %   Paul Fricker 11/13/2006 -db+Y:xUZ  
    ]Q3Gj@6  
    ZwMw g t  
    % Check and prepare the inputs: <}%ir,8  
    % ----------------------------- .*j+?  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) P5>CSWy%  
        error('zernpol:NMvectors','N and M must be vectors.') "7HB3?2>W  
    end '!R,)5l0h  
    {UcIt LjY  
    if length(n)~=length(m) `9ox?|iJ  
        error('zernpol:NMlength','N and M must be the same length.') =r~. I  
    end HhL%iy1  
    0REWbcxd"  
    n = n(:); RVfe}4Stm#  
    m = m(:); aW"!bAdx`,  
    length_n = length(n); 'T[zh#v>S  
    mw[4<vfB0a  
    if any(mod(n-m,2)) mV,R0olF  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') o(P:f)B  
    end 9^u?v`!  
    aJ8pJ{,P  
    if any(m<0) D@^ZpN8r  
        error('zernpol:Mpositive','All M must be positive.') ' l|_$3  
    end A-5 +#  
    Aq!['G  
    if any(m>n) WM"^#=+$  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') 5F"?]'*/  
    end O@iW?9C+  
    tWn m{mF  
    if any( r>1 | r<0 ) W[Bu&?h$  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') oui!fTy  
    end u7?juI#Cl  
    !9, pX  
    if ~any(size(r)==1) >|)0Amt  
        error('zernpol:Rvector','R must be a vector.') Ug21d42Z4  
    end h '[vB^  
    (x qA.(F  
    r = r(:); bZ.N7X PH  
    length_r = length(r); ?Z>.G{Wm@  
    au|^V^m  
    if nargin==4 \'Ta8  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); 4_+Pv6  
        if ~isnorm /\rq$W_  
            error('zernpol:normalization','Unrecognized normalization flag.') /y)"j#-eW  
        end Y/H^*1  
    else vo(NB !x$  
        isnorm = false; 8/"|VE DOr  
    end "<x~{BN?  
    Jwd&[ O  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% </gp3WQ.  
    % Compute the Zernike Polynomials rxj@NwAno  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% xGfD z*t  
    _-]!;0E IV  
    % Determine the required powers of r: T[-c|  
    % ----------------------------------- *O> aqu  
    rpowers = []; -fJ@R1]  
    for j = 1:length(n) 1?|6odc  
        rpowers = [rpowers m(j):2:n(j)]; O}_a3>1DY  
    end cmhN(==  
    rpowers = unique(rpowers); Q)`gPX3F  
    ;#s}b1  
    % Pre-compute the values of r raised to the required powers, GWhAjL/N  
    % and compile them in a matrix: `QdQ?9x{F  
    % ----------------------------- M~Qj'VVL  
    if rpowers(1)==0 _sR9   
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); K3:|Tc(  
        rpowern = cat(2,rpowern{:}); t*d >eK`:N  
        rpowern = [ones(length_r,1) rpowern]; ]<T8ZA_Y;  
    else fu<2t$Cn>  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ?[VpN2*  
        rpowern = cat(2,rpowern{:}); V.ji _vX  
    end W Gw!Y1wq  
    kt{C7qpD  
    % Compute the values of the polynomials: _/}Hqh  
    % -------------------------------------- rEyz|k:  
    z = zeros(length_r,length_n); 6_<s=nTX  
    for j = 1:length_n 1N9< d,  
        s = 0:(n(j)-m(j))/2; rN1U.FRe/  
        pows = n(j):-2:m(j); yd ND$@; Z  
        for k = length(s):-1:1 ]}[Yf  
            p = (1-2*mod(s(k),2))* ... zk 5=Opmvh  
                       prod(2:(n(j)-s(k)))/          ... {kPe#n>xT  
                       prod(2:s(k))/                 ... eh:}X}c=J]  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... Bw<zc=%  
                       prod(2:((n(j)+m(j))/2-s(k))); 7~"(+f  
            idx = (pows(k)==rpowers);  (X(1kj3  
            z(:,j) = z(:,j) + p*rpowern(:,idx); 5m^Hi} S _  
        end U2V^T'Y[  
         %gu$_S  
        if isnorm sQ}%7BMK  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); j\'+wVyo  
        end W 9Vz[  
    end LR3`=Z9  
    X#DL/#z k  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  mjbTy"}"  
    IroPx#s:i  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 zX98c  
    1I ""X]I_  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)