非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 _'=,c"
function z = zernfun(n,m,r,theta,nflag) 5;a*Xf%V
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. P%3pM*.
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N G|wtl(}3
% and angular frequency M, evaluated at positions (R,THETA) on the 0fsVbC
% unit circle. N is a vector of positive integers (including 0), and 4zoQe>v~
% M is a vector with the same number of elements as N. Each element NAR6q{c
% k of M must be a positive integer, with possible values M(k) = -N(k) ~t6q-P
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, 5n@YNaoIb
% and THETA is a vector of angles. R and THETA must have the same 2Rk}ovtD[
% length. The output Z is a matrix with one column for every (N,M) Yuvi{ 0
% pair, and one row for every (R,THETA) pair. YF5}~M ymF
% !}&|a~U@`k
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike }HgG<.H>
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), I|@+O#
% with delta(m,0) the Kronecker delta, is chosen so that the integral gEh/m.L7
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, B~]Kqp7yU
% and theta=0 to theta=2*pi) is unity. For the non-normalized }3(!kW
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. XM$~HG
% oZ'a}kF
% The Zernike functions are an orthogonal basis on the unit circle. y*
+y&
% They are used in disciplines such as astronomy, optics, and /R#zu_i
% optometry to describe functions on a circular domain. /"{d2
% 2\xw2VQ@P
% The following table lists the first 15 Zernike functions. 4EB\R"rWXf
% @*6fEG{,q
% n m Zernike function Normalization :Jd7q.
% -------------------------------------------------- \-\>JPO~<
% 0 0 1 1 8Y($ F2
% 1 1 r * cos(theta) 2 l1 +l@r\
% 1 -1 r * sin(theta) 2 fUT[tkb/!
% 2 -2 r^2 * cos(2*theta) sqrt(6) EZUaYp~M
% 2 0 (2*r^2 - 1) sqrt(3) m:H^m/g
% 2 2 r^2 * sin(2*theta) sqrt(6) 3lP;=*m.
% 3 -3 r^3 * cos(3*theta) sqrt(8) /$~1e7W
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) FQZ*i\G>>
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 7({)ou x
% 3 3 r^3 * sin(3*theta) sqrt(8) yaUtDC.|
% 4 -4 r^4 * cos(4*theta) sqrt(10) !=[Y yh
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Y
;Ym=n'
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) _7Y
h[I4
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 1.3#PdMR,
% 4 4 r^4 * sin(4*theta) sqrt(10) 7)Toj
% -------------------------------------------------- iU)I"#\l'k
% ?@64gdlwq
% Example 1: W`>|OiuF
% Rh="<'d
% % Display the Zernike function Z(n=5,m=1) 6!<I'M'[e
% x = -1:0.01:1; P>/:dt'GJ}
% [X,Y] = meshgrid(x,x); s(,S~
% [theta,r] = cart2pol(X,Y); ]J7qsMw
% idx = r<=1; !cW rB9
% z = nan(size(X)); _4S^'FDo
% z(idx) = zernfun(5,1,r(idx),theta(idx)); VPMu)1={:p
% figure mqSVd^
% pcolor(x,x,z), shading interp mF7Ak&So^
% axis square, colorbar CoN[Yf3\
% title('Zernike function Z_5^1(r,\theta)') C=?S
% Sn=6[RQ>P
% Example 2: MB]E[&Q!
% o_:v?Y>0
% % Display the first 10 Zernike functions Ot=>~(u0
% x = -1:0.01:1; E_,/)U8
% [X,Y] = meshgrid(x,x); )GP;KUVae
% [theta,r] = cart2pol(X,Y); &#p1ogf:
% idx = r<=1; hx$]fvDevD
% z = nan(size(X)); ~D52b1f
% n = [0 1 1 2 2 2 3 3 3 3]; )V1XL
% m = [0 -1 1 -2 0 2 -3 -1 1 3];
s*uA3}j
% Nplot = [4 10 12 16 18 20 22 24 26 28]; rj4@
% y = zernfun(n,m,r(idx),theta(idx)); E7uIur=g!
% figure('Units','normalized') >* -IIo
% for k = 1:10 'Ru(`"
1|
% z(idx) = y(:,k); 1XGg0SC
% subplot(4,7,Nplot(k)) ~ k*]Z8Z
% pcolor(x,x,z), shading interp .:S/x{~
% set(gca,'XTick',[],'YTick',[]) :.:^\Q0
% axis square ]kj^T?&n.
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) AL]gK)R
% end 8Km&3nCv$Q
% K?.~}82c
% See also ZERNPOL, ZERNFUN2. vs@d)$N
bZowc {!\
% Paul Fricker 11/13/2006 !I7$e&Uz@
iI GK"}
x ;DoQx
% Check and prepare the inputs: |Ajd$+3
% ----------------------------- WK%cbFq(
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) x'|ty[87
error('zernfun:NMvectors','N and M must be vectors.') De$~ *2
end /T _M't@j
bT:u|/I
if length(n)~=length(m) (UkP AE
error('zernfun:NMlength','N and M must be the same length.') ~j!n`#.\
end tP'v;$)9F
u>>|ZPe
n = n(:); {&1L &f<
m = m(:); Wa;N(zw0h
if any(mod(n-m,2)) -` ]9o3E7H
error('zernfun:NMmultiplesof2', ... ne#dEUD
'All N and M must differ by multiples of 2 (including 0).') f;E#CjlTL
end j0l{Mc5
jcCAXk055
if any(m>n) EX)&|2w
error('zernfun:MlessthanN', ... L>Y+}]~
'Each M must be less than or equal to its corresponding N.') ,%pCcM)
end l*ltS(?
1RAkqw<E
if any( r>1 | r<0 ) ]d*9@+Iu
error('zernfun:Rlessthan1','All R must be between 0 and 1.') }dc0ZRKgx
end Ca-"3aQkc
GcO2oq
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) )
>a"J);p
error('zernfun:RTHvector','R and THETA must be vectors.') @IG's-
end #`Su3~T=S
:WB uU
r = r(:); Z`TfS+O6
theta = theta(:); /^=1]+_!
length_r = length(r); IMM;LC%rD9
if length_r~=length(theta) ,_V V;P
error('zernfun:RTHlength', ... @eYpARF
'The number of R- and THETA-values must be equal.') a`wjZ"}'[
end Xi="gxp$%
9p_?t'&>q
% Check normalization: p?gm=b#
% -------------------- L;V8c
if nargin==5 && ischar(nflag) n Bm ]?
isnorm = strcmpi(nflag,'norm'); ~RR!~q
if ~isnorm -Y_,
.'ex
error('zernfun:normalization','Unrecognized normalization flag.') tLzLO#/n
end .`D'eS6b
else # ~<]z
isnorm = false; hBU)gP75
end %lCZ7z2o
&d6@SQ
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% "7cty\
% Compute the Zernike Polynomials [Uup5+MCv
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Zc7;&cz
l>6tEOXt
% Determine the required powers of r: J[}H^FR
% ----------------------------------- R3B+vLGX
m_abs = abs(m); oN032o?S
rpowers = []; '/O:@P5qY
for j = 1:length(n) %`]+sg[i
rpowers = [rpowers m_abs(j):2:n(j)]; x/,;:S
end Yjoe|
rpowers = unique(rpowers); oc1BOW z
dN2JOyS
% Pre-compute the values of r raised to the required powers, :^7w
% and compile them in a matrix: JxIJxhA>
% ----------------------------- ;!<}oZp{
if rpowers(1)==0 xXJ*xYn"}
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Ph3;;,v '
rpowern = cat(2,rpowern{:}); _xKn2 ?d8g
rpowern = [ones(length_r,1) rpowern]; uj.i(Us
else W
)FxN,
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); sK2N3B&6
rpowern = cat(2,rpowern{:}); UhH#>2r_
end R4p Pt
4c5BlD
% Compute the values of the polynomials: --$* q"
% -------------------------------------- c~<;}ve^z
y = zeros(length_r,length(n)); +byOThuE
for j = 1:length(n) m?w_
]
s = 0:(n(j)-m_abs(j))/2; O`Tz^Q/D
pows = n(j):-2:m_abs(j); ACyK#5E
for k = length(s):-1:1 Y4k2=w:D
p = (1-2*mod(s(k),2))* ... 9KVJk</:n
prod(2:(n(j)-s(k)))/ ... |62` {+
prod(2:s(k))/ ... 4!dc/K
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... c}(H*VY2n
prod(2:((n(j)+m_abs(j))/2-s(k))); I=dG(?#7%
idx = (pows(k)==rpowers); xF8r+{_J)
y(:,j) = y(:,j) + p*rpowern(:,idx); Znb={hh
end zud_BOq{f
S;4:`?s=i
if isnorm (=j;rfvP
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); }$_@yt<{W@
end ofB:7
end J?o
% END: Compute the Zernike Polynomials wQSan&81Q
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% t6"%u3W8M
wv9HiHz8gD
% Compute the Zernike functions: 7P1Pk?pxy
% ------------------------------ Qu|CXUk
idx_pos = m>0; 1_+ h"LE
idx_neg = m<0; ?tLApy^`?
O},}-%G
z = y; G4(R/<J,BQ
if any(idx_pos) v]k-xn|$j
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); r `PJb5^\|
end AR[m+E
if any(idx_neg) _,drOF|e
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); \V-N~_-H
end O,r;-t4vYU
R1zt6oY
% EOF zernfun