非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 mJnIwdW*
function z = zernfun(n,m,r,theta,nflag) w&#]-|$
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. L*+@>3mu)
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N )&O
%*@F
% and angular frequency M, evaluated at positions (R,THETA) on the /6*42[r
% unit circle. N is a vector of positive integers (including 0), and RqrdAkg
% M is a vector with the same number of elements as N. Each element am'7uy!ka~
% k of M must be a positive integer, with possible values M(k) = -N(k) _{KG
4+5\X
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, )akoa,#%6c
% and THETA is a vector of angles. R and THETA must have the same {tZ.v@
% length. The output Z is a matrix with one column for every (N,M) Fxz"DZY6
% pair, and one row for every (R,THETA) pair. "^-a M
% ZBthU")?
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike "8MF_Gu):
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Sm|6 %3
% with delta(m,0) the Kronecker delta, is chosen so that the integral *)Zdz9E'1(
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, vE?G7%,
% and theta=0 to theta=2*pi) is unity. For the non-normalized >GRxHK@G
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 6{b>p+U
% n>YKa)|W`
% The Zernike functions are an orthogonal basis on the unit circle. H
<l7ZS:
% They are used in disciplines such as astronomy, optics, and eauF~md,
% optometry to describe functions on a circular domain. 4[eXe$
% +<C!U'
% The following table lists the first 15 Zernike functions. %u'ukcL7
% ,O(hMI85]
% n m Zernike function Normalization bG#>uE J-
% -------------------------------------------------- :I#V.
% 0 0 1 1 Xv^qVn4
% 1 1 r * cos(theta) 2 %h@EP[\
% 1 -1 r * sin(theta) 2 ux4POO3C|
% 2 -2 r^2 * cos(2*theta) sqrt(6) ,zjv7$L
% 2 0 (2*r^2 - 1) sqrt(3) #6=
% 2 2 r^2 * sin(2*theta) sqrt(6) 1+s;FJ2}
% 3 -3 r^3 * cos(3*theta) sqrt(8) &u
!,Hp
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) [W&T(%(W-
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 0 H:X3y+
% 3 3 r^3 * sin(3*theta) sqrt(8) ;=z:F<Y
% 4 -4 r^4 * cos(4*theta) sqrt(10) ZECfR>`x
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 1qA;/-Zr<o
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) xJe%f\UDu
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) <P_-s*b
% 4 4 r^4 * sin(4*theta) sqrt(10) JZx[W&]zT
% -------------------------------------------------- bt?5*ETA
% xqh
% Example 1: F^:3?JA_
% B@ EC5Ap*
% % Display the Zernike function Z(n=5,m=1) Bzf^ivT3L
% x = -1:0.01:1; [/r(__.
% [X,Y] = meshgrid(x,x); uY To9A
% [theta,r] = cart2pol(X,Y); 6=C<>c%+
% idx = r<=1; /n&&Um\
% z = nan(size(X)); ;xTpE2 -~
% z(idx) = zernfun(5,1,r(idx),theta(idx)); ?r4>" [
% figure ^\m![T\bX
% pcolor(x,x,z), shading interp ?@x/E&
% axis square, colorbar ~}
~4
% title('Zernike function Z_5^1(r,\theta)') P%n>Tg80M
% $`8wJf9@w
% Example 2: ;^L(^Hx
% 307I$*%W
% % Display the first 10 Zernike functions ;_=&-mz
% x = -1:0.01:1; HzsdHH(J
% [X,Y] = meshgrid(x,x); [-w%/D%@
% [theta,r] = cart2pol(X,Y); V7/Rby Q
% idx = r<=1; h";L
% z = nan(size(X)); c71y'hnT
% n = [0 1 1 2 2 2 3 3 3 3]; "[N!m1i:{
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; {!`6zBsP
% Nplot = [4 10 12 16 18 20 22 24 26 28]; x+]"
% y = zernfun(n,m,r(idx),theta(idx)); 2~V*5~fb
% figure('Units','normalized') Fr-SvsNFB
% for k = 1:10 uY*L,j^)
% z(idx) = y(:,k); U<XG{<2
% subplot(4,7,Nplot(k)) zt%Mx>V@
% pcolor(x,x,z), shading interp >\8+:oS^
% set(gca,'XTick',[],'YTick',[]) LzL
So"n
% axis square 8P`"M#fI
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) *
y,v}-
% end !,PWb3S
% XWw804ir
% See also ZERNPOL, ZERNFUN2. !VpoZ
W,u:gzmhw
% Paul Fricker 11/13/2006 7+*WH|Z@
"@ n%Z
,!9zrYi}
% Check and prepare the inputs: `D9$v(Ztr
% ----------------------------- j<$2hiI/?&
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) jEwIn1
error('zernfun:NMvectors','N and M must be vectors.') <VE@DBWyl~
end >Q*Wi
,r}6iFu
if length(n)~=length(m) v@pky0
error('zernfun:NMlength','N and M must be the same length.') 5zJq9\)d+
end 4p wH>1
y{Q
{'De
n = n(:); $cgcX
m = m(:); I^]nqK
if any(mod(n-m,2)) ^zr`;cJ+c
error('zernfun:NMmultiplesof2', ... JXxwr)i
'All N and M must differ by multiples of 2 (including 0).') i/.6>4tE:
end '%;m?t%q
naNghGQ
if any(m>n) HOi`$vX}N
error('zernfun:MlessthanN', ... gM]:Ma
'Each M must be less than or equal to its corresponding N.') +[ZY:ZQ
end ry]l.@o;
A%vbhD2;W
if any( r>1 | r<0 ) Ort(AfW
error('zernfun:Rlessthan1','All R must be between 0 and 1.') OrW
end Rb;'O89Hj@
@VI@fN
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 8EYkQ
error('zernfun:RTHvector','R and THETA must be vectors.') ^rz_f{c]-
end N>E_%]C h
i~72bMwsA
r = r(:); jWgX_//!
theta = theta(:); ~"bVL[
length_r = length(r); =MWHJ'3-/
if length_r~=length(theta) sos5Y}
error('zernfun:RTHlength', ... 8CE = 4
'The number of R- and THETA-values must be equal.') `@%LzeGz
end |[lKY+26:{
kf9X$d6
% Check normalization: y>LBl]
% -------------------- ^?|"L>y
if nargin==5 && ischar(nflag)
#Q5o)x
isnorm = strcmpi(nflag,'norm'); MOC/KNb
if ~isnorm R-14=|7a-
error('zernfun:normalization','Unrecognized normalization flag.') u:b=\T L
end 4z)]@:`}z
else k{0o9,
isnorm = false; 4!$"ayGv;D
end r<\u6jF
U!]dEW|G
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% (%9$! v{3
% Compute the Zernike Polynomials 1*7@BP5
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% )}vl\7=
1x^GWtRp
% Determine the required powers of r: V6Dbd"
i9
% ----------------------------------- 8k79&|
m_abs = abs(m); <N@Gu!N8
rpowers = []; ]'S^]
for j = 1:length(n) !9x}
rpowers = [rpowers m_abs(j):2:n(j)]; xD$\,{
end 5-M-X#(
rpowers = unique(rpowers); ^@]3R QB
]^]wP]R_
% Pre-compute the values of r raised to the required powers, 9u:Q,0\
% and compile them in a matrix: >3bCTE
% ----------------------------- V.Mry`9-
if rpowers(1)==0 ;kK/_%gN-G
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); mc3"`+o
rpowern = cat(2,rpowern{:}); 05[SC}MCA
rpowern = [ones(length_r,1) rpowern]; 11lsf/IP
else v,t:+
!8
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); v0y(58Rz.
rpowern = cat(2,rpowern{:}); j.YA2mr
end NVs@S-rpX
#;<Y[hR{P
% Compute the values of the polynomials: =">NQ)98u
% -------------------------------------- g .\[o@H
y = zeros(length_r,length(n)); ~s{$WL&
for j = 1:length(n) ,0k;!YK
s = 0:(n(j)-m_abs(j))/2; snJ129}A
pows = n(j):-2:m_abs(j); 1&2>LE/P
for k = length(s):-1:1 ;G!q Y
p = (1-2*mod(s(k),2))* ...
3CJwj
prod(2:(n(j)-s(k)))/ ... 3oqHGA:}
prod(2:s(k))/ ... liSmjsk
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... r/1(]#kOX
prod(2:((n(j)+m_abs(j))/2-s(k))); \Cj B1]I
idx = (pows(k)==rpowers); \DzGQ{`~m
y(:,j) = y(:,j) + p*rpowern(:,idx); <QvOs@i*
end P* o9a
t^L]/$q
if isnorm j#6.Gq
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 9VT;ep
end 2?x4vI
np;
end cu6Opq9
% END: Compute the Zernike Polynomials ry!!9Z>9n
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% `2snz1>!j
{8aTV}Ha2
% Compute the Zernike functions: Q20%"&Xp]
% ------------------------------ 6wxs1G
idx_pos = m>0; nrb Ok4Dz
idx_neg = m<0; 1"g<0
W
xfQ1T)F3g
z = y; AR=]=8
if any(idx_pos) $C\BcKlmv
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); yjAL\U7`T
end 8_8l.!~
if any(idx_neg) Vc2`b3"Br
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); m2o0y++TjW
end hQi2U
XRH!]!
% EOF zernfun