非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 q-.e9eoc\
function z = zernfun(n,m,r,theta,nflag) UEq;}4Bo
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. x Qh?
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N G@)I
% and angular frequency M, evaluated at positions (R,THETA) on the 4pF U` g=
% unit circle. N is a vector of positive integers (including 0), and @HfWAFT
% M is a vector with the same number of elements as N. Each element I~R<}volu
% k of M must be a positive integer, with possible values M(k) = -N(k) LaZF=<w(
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, -%=StWdb
% and THETA is a vector of angles. R and THETA must have the same fxDY:l
% length. The output Z is a matrix with one column for every (N,M) t#y
% pair, and one row for every (R,THETA) pair. afEp4(X~
% xrT_ro8
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike +fhyw{
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), L-d8bA
% with delta(m,0) the Kronecker delta, is chosen so that the integral wYf=(w\c
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, >5Zpx8W
% and theta=0 to theta=2*pi) is unity. For the non-normalized K)qbd~<\
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. a{h(BI^~
% `~(C\+gUp
% The Zernike functions are an orthogonal basis on the unit circle. yvxC/Jo4
% They are used in disciplines such as astronomy, optics, and We]X+>BlO
% optometry to describe functions on a circular domain. !dLz ?0
% 5Ag>,>kJ6
% The following table lists the first 15 Zernike functions. );h\0w>3
% 1V`]sfRK
% n m Zernike function Normalization <LW|m7
% -------------------------------------------------- 4(4JQ(5
% 0 0 1 1 &1Fcwj
% 1 1 r * cos(theta) 2 N,ik&NIWy
% 1 -1 r * sin(theta) 2 2LYd
# !i
% 2 -2 r^2 * cos(2*theta) sqrt(6) uz4mHyS6
% 2 0 (2*r^2 - 1) sqrt(3) ?E2k]y6<
% 2 2 r^2 * sin(2*theta) sqrt(6) LM'` U-/e$
% 3 -3 r^3 * cos(3*theta) sqrt(8) }bznx[4?I
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) ;_i0@@J
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) s/[i>`g/9
% 3 3 r^3 * sin(3*theta) sqrt(8) V8&/O)} o
% 4 -4 r^4 * cos(4*theta) sqrt(10) wZa;cg.-q
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) zs"AYxr
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) +>qBK}`
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) T *t$
% 4 4 r^4 * sin(4*theta) sqrt(10) |->y'V
% -------------------------------------------------- ~+7yi4(i
% ~v>w%]
% Example 1: Xy*X4JJh^
% ,.FTw,<
% % Display the Zernike function Z(n=5,m=1) %Y Rg1UKY
% x = -1:0.01:1;
k7{fkl9|#
% [X,Y] = meshgrid(x,x); >q &ouVE
% [theta,r] = cart2pol(X,Y); K=5_jE^e
% idx = r<=1; J-PzI FWd
% z = nan(size(X)); HHnabSn}{q
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 0acY@_
% figure @?]-5 ~3;
% pcolor(x,x,z), shading interp e3>Re![_.
% axis square, colorbar GPx S.&
% title('Zernike function Z_5^1(r,\theta)') /1li^</|p`
% L7Oytdc<
% Example 2: IPxfjBC+J
% eBAB7r/7
% % Display the first 10 Zernike functions 3`9*Hoy0c
% x = -1:0.01:1; .`'SL''c
% [X,Y] = meshgrid(x,x); M<$l&%<`G
% [theta,r] = cart2pol(X,Y); ,t+ATaOF
% idx = r<=1; 3X!~*_iC
% z = nan(size(X)); F[=m|MZb
% n = [0 1 1 2 2 2 3 3 3 3]; @&ZTEznbyt
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 3+|6])Hi1
% Nplot = [4 10 12 16 18 20 22 24 26 28]; jATU b-
% y = zernfun(n,m,r(idx),theta(idx)); tiE+x|Ju"
% figure('Units','normalized') 'c$9[|x
% for k = 1:10 1UM]$$:i
% z(idx) = y(:,k); J/<`#XZB
% subplot(4,7,Nplot(k)) iz^wBQ
% pcolor(x,x,z), shading interp 78QFaN$
% set(gca,'XTick',[],'YTick',[]) Wq9s[)F"Z
% axis square >Ed^dsb&
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Z],"<[E
% end * Yr-:s9J9
% @E>^\!nH
% See also ZERNPOL, ZERNFUN2. _@OYC<
/MU<)[*Ro
% Paul Fricker 11/13/2006 CXQ?P
t!u*6W|@
4a @iR2e
% Check and prepare the inputs: sMS`-,37u
% ----------------------------- &"kx(B
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) {f&ga
error('zernfun:NMvectors','N and M must be vectors.') ^r& {V"l]
end )[K3p{4
(KQt%]
if length(n)~=length(m) }1W$9\%
error('zernfun:NMlength','N and M must be the same length.') rODKM-7+
end v4zd
x)
=0)^![y]v
n = n(:); u=l(W(9=
m = m(:); y^A$bTQq
if any(mod(n-m,2)) k`AJ$\=
error('zernfun:NMmultiplesof2', ... OWjZ)f/
'All N and M must differ by multiples of 2 (including 0).') p_AV3
end +-nQ,
fOV
>eTlew<5
if any(m>n) !qpu /
error('zernfun:MlessthanN', ... ^"l$p,P+
'Each M must be less than or equal to its corresponding N.') @iRVY|t/
end |d 3agfS[n
~?&ijhZ
if any( r>1 | r<0 ) f5a](&
error('zernfun:Rlessthan1','All R must be between 0 and 1.') b
tu:@s8ci
end X2uX+}h*tA
3PA'Uk"5Z
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 7asq]Y}<
error('zernfun:RTHvector','R and THETA must be vectors.') R,\
r{@yrz
end $aA.d^
itF+6wv~
r = r(:); VL{#.;QQa
theta = theta(:); HIq1/)
length_r = length(r); W =zG
if length_r~=length(theta) cBI)?
error('zernfun:RTHlength', ... U YQ$c }Z5
'The number of R- and THETA-values must be equal.') 8[C6LG
end v/czW\z
Ds87#/Yfv
% Check normalization: ~{+{p cO}
% -------------------- ja;5:=8A5
if nargin==5 && ischar(nflag) 2f!oA~|2
isnorm = strcmpi(nflag,'norm'); RNdnlD#P
if ~isnorm Wn^^Q5U#
error('zernfun:normalization','Unrecognized normalization flag.') ]K7 64}
end |&Pl 4P
else A,{D9-%
isnorm = false; B0i}Y-Z
end >y9o&D