非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 T"Y#u
function z = zernfun(n,m,r,theta,nflag) <7J3tn B
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. S#C-j D
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N :V+rC]0
% and angular frequency M, evaluated at positions (R,THETA) on the ~3:hed7:
% unit circle. N is a vector of positive integers (including 0), and 6L8nw+mEK
% M is a vector with the same number of elements as N. Each element u$a K19K/
% k of M must be a positive integer, with possible values M(k) = -N(k) iptA#<Yj
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, /=6_2t#vA
% and THETA is a vector of angles. R and THETA must have the same _j, Tc*T
% length. The output Z is a matrix with one column for every (N,M) _r3Y$^!U
% pair, and one row for every (R,THETA) pair. ]w6F%d
% *>=tmW;%
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike /r~2KZE
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), %;QK5L
% with delta(m,0) the Kronecker delta, is chosen so that the integral 2Cp4aTGv#
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, mnM]@8^G
% and theta=0 to theta=2*pi) is unity. For the non-normalized z]8Mv(eL
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. QZvQ8
% [m:cO6DM,
% The Zernike functions are an orthogonal basis on the unit circle. D|ze0A@
% They are used in disciplines such as astronomy, optics, and 5\quh2Q_
% optometry to describe functions on a circular domain. Hu<]*(lK%
% -"nkC
% The following table lists the first 15 Zernike functions. n zaDO-2!
% *x2!N$b
% n m Zernike function Normalization BGibBF^
% -------------------------------------------------- Qt4mg?X/
% 0 0 1 1 ]j7`3%4uK
% 1 1 r * cos(theta) 2 F!#)l*OX;
% 1 -1 r * sin(theta) 2 k(H]ILL
% 2 -2 r^2 * cos(2*theta) sqrt(6) ]"V_`i7Z
% 2 0 (2*r^2 - 1) sqrt(3) yP$esDP
% 2 2 r^2 * sin(2*theta) sqrt(6) e5bXgmyil
% 3 -3 r^3 * cos(3*theta) sqrt(8) n}Z%D-b$
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) G]aey>)
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) W'vek uM
% 3 3 r^3 * sin(3*theta) sqrt(8) ^x O](,H
% 4 -4 r^4 * cos(4*theta) sqrt(10) o
i'iZX
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) }>@SyE'Q
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) fphCQO^#vW
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) M(+Pd_c6
% 4 4 r^4 * sin(4*theta) sqrt(10) ^oPFLez56
% -------------------------------------------------- Nxe1^F33
% x] wi&
% Example 1: (k!7`<k!Y
% Jt]RU+TB
% % Display the Zernike function Z(n=5,m=1) K]$PRg1|3
% x = -1:0.01:1; k5-4^
% [X,Y] = meshgrid(x,x); Q9OCf"n $
% [theta,r] = cart2pol(X,Y); .S,E=
% idx = r<=1; u
$-&Im<
% z = nan(size(X)); }'wZ)N@
% z(idx) = zernfun(5,1,r(idx),theta(idx)); "|(.W3f1
% figure AAa7)^R
% pcolor(x,x,z), shading interp ((]i}s0S
% axis square, colorbar 3mU~G}ig
% title('Zernike function Z_5^1(r,\theta)') =A,B'n\R
% M2cGr
% Example 2: Nxt:U{`T'
% *D%w r'!>
% % Display the first 10 Zernike functions )@DDs(q=i
% x = -1:0.01:1; Mu/(Xp6 2
% [X,Y] = meshgrid(x,x); P,pC Z+H
% [theta,r] = cart2pol(X,Y); 5T.U=_ag
% idx = r<=1; <Mvniz
% z = nan(size(X)); P0>2}/;o
% n = [0 1 1 2 2 2 3 3 3 3]; /Yi4j,8!|
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; mTu>S
% Nplot = [4 10 12 16 18 20 22 24 26 28]; i;{lY1
% y = zernfun(n,m,r(idx),theta(idx)); 0e0)1;t\
% figure('Units','normalized') :8OT
% for k = 1:10 MkMDI)Y|
% z(idx) = y(:,k); E'4Psx9: =
% subplot(4,7,Nplot(k)) >#:SJ?)`T
% pcolor(x,x,z), shading interp [(Z(8{3i
% set(gca,'XTick',[],'YTick',[]) }y*D(`
% axis square HUjX[w8
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 9Zd\6F,
% end vW eg1
% X[Ufq^fyA
% See also ZERNPOL, ZERNFUN2. [ S
RdD>&D$I
% Paul Fricker 11/13/2006 4r4 #u'Om
!D['}%
s.7=!JQ#]p
% Check and prepare the inputs: %C`P7&8m=O
% ----------------------------- +0U=UV)U
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) o#6QwbU25
error('zernfun:NMvectors','N and M must be vectors.') z<9C-
end BNJ0D
{E%c%zzQ
if length(n)~=length(m) &o x
error('zernfun:NMlength','N and M must be the same length.') |*JMPg?zI
end !`N:.+DT
'dBe,@
n = n(:); kiJ=C2'&
m = m(:); S||W
if any(mod(n-m,2)) vrb@::sy0T
error('zernfun:NMmultiplesof2', ... rzHBop-8
'All N and M must differ by multiples of 2 (including 0).') h(yFr/
end V~*>/2+
Tk[]l7R~
if any(m>n) pW.WJ`Rk
error('zernfun:MlessthanN', ... VK*_pEV,}
'Each M must be less than or equal to its corresponding N.') })<u~r
end F8<G9#%s\
4>oM5Yf8
if any( r>1 | r<0 ) d6*84'|!
error('zernfun:Rlessthan1','All R must be between 0 and 1.') ,Tar?&C:
end py7Zh%k
RiAg:
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) <QvVPE}z
error('zernfun:RTHvector','R and THETA must be vectors.') 7+f6?
end er24}G8
3'x>$5W
r = r(:); 40MKf/9
theta = theta(:); s"#N;
length_r = length(r); ^_3Ey
if length_r~=length(theta) -4+'(3qr
error('zernfun:RTHlength', ... QAx9W%
'The number of R- and THETA-values must be equal.') :k?`gm$
end B|a <=~
D+;4|7s+
% Check normalization: \?t8[N\_[(
% -------------------- ?bM%#x{e
if nargin==5 && ischar(nflag) ,N:^4A
isnorm = strcmpi(nflag,'norm'); mD7NQ2:wA
if ~isnorm |~%RSS~b*
error('zernfun:normalization','Unrecognized normalization flag.') Sak^J.~G[
end sE&nEc
else >
"rM\ Q
isnorm = false; 1@{ov!YB]
end 7r?,wM
$!. [R}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% k-3;3Mq
% Compute the Zernike Polynomials Xh}q/H<
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 2~hdJ/
&Qda|
% Determine the required powers of r: 5'f_~>1Wt
% ----------------------------------- &TRKd)w d
m_abs = abs(m); <2@t~9
rpowers = []; (BtU\f#d
for j = 1:length(n) 1J1Jp|j.
rpowers = [rpowers m_abs(j):2:n(j)]; P=EZ6<c3&
end TJRp/BP
rpowers = unique(rpowers); EsWB |V>
{@L{l1|0
% Pre-compute the values of r raised to the required powers, p'^}J$
% and compile them in a matrix: !QAndg{;D
% ----------------------------- z =H?@z
if rpowers(1)==0 **__&Xp1
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ?MSZO]Q4+
rpowern = cat(2,rpowern{:}); d(t)8k$
rpowern = [ones(length_r,1) rpowern]; Bn8&~
else vM5I2C3_>!
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); %P1zb7:8
rpowern = cat(2,rpowern{:}); dEXhn
end 9Oj b~
vh"';L_*37
% Compute the values of the polynomials: .T8^>z1/\F
% -------------------------------------- )x[=}0C
y = zeros(length_r,length(n)); l2W+VBn6
for j = 1:length(n)
VJK4C8]
s = 0:(n(j)-m_abs(j))/2; bny@AP(CY+
pows = n(j):-2:m_abs(j); Ke@Bf
for k = length(s):-1:1 \I i#R
p = (1-2*mod(s(k),2))* ... U[;ECw@
prod(2:(n(j)-s(k)))/ ... !-qk1+<h
prod(2:s(k))/ ... l]DRJ
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... o/
\o-kC}
prod(2:((n(j)+m_abs(j))/2-s(k))); ?xKiN5q"6
idx = (pows(k)==rpowers); Hh](n<Bs
y(:,j) = y(:,j) + p*rpowern(:,idx); 3@eI? (N
end |1ry*~
xF) .S@
if isnorm |af<2(d
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); :W&klUU"
end tZ=|1lM
end nq7)0F%e
% END: Compute the Zernike Polynomials vQXF$/S
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |#*+#27
>@4Ds"Ye"O
% Compute the Zernike functions: Brg0: 5H
% ------------------------------ wAR:GO'n
idx_pos = m>0; /-<]v3J
idx_neg = m<0; nC/T$
#G
<5]_u:
z = y; Rbm+V{EF&
if any(idx_pos) jj `0w@
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ,t1s#*j\!q
end _mdJIa0D6k
if any(idx_neg) ) tV]h#4
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); {Q K9pZB
end
2 (ux
v/KTEM
% EOF zernfun