非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 E}lNb
function z = zernfun(n,m,r,theta,nflag) v|IG
G'r
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. /NB;eV?
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N K<E|29t^k
% and angular frequency M, evaluated at positions (R,THETA) on the AGMrBd|J{
% unit circle. N is a vector of positive integers (including 0), and mO^)k
% M is a vector with the same number of elements as N. Each element j|owU
% k of M must be a positive integer, with possible values M(k) = -N(k) _FxQl]@
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, (5h+b_eB
% and THETA is a vector of angles. R and THETA must have the same C^ 1;r9
% length. The output Z is a matrix with one column for every (N,M) v=J[p;H^H
% pair, and one row for every (R,THETA) pair. ov|/=bzro
% x.%x|6G*
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike krecUpo
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), oGKk2oP
% with delta(m,0) the Kronecker delta, is chosen so that the integral mvXIh";
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 94'0X
% and theta=0 to theta=2*pi) is unity. For the non-normalized _ lE
d8Cb
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. i1^#TC$x
% _i pY;
% The Zernike functions are an orthogonal basis on the unit circle. R4AKp1Y
% They are used in disciplines such as astronomy, optics, and X;QhK] Z
% optometry to describe functions on a circular domain. #xNXCBl]O
% \(;X3h
% The following table lists the first 15 Zernike functions. IRK(y*6
% &XZS}n
% n m Zernike function Normalization j-(k`w\
% -------------------------------------------------- )uazB!X
% 0 0 1 1 LWIPq"
% 1 1 r * cos(theta) 2 0u=FlQ
}h
% 1 -1 r * sin(theta) 2 cIOM}/gqv
% 2 -2 r^2 * cos(2*theta) sqrt(6) HOb0\X
% 2 0 (2*r^2 - 1) sqrt(3) dW9Ci"~v
% 2 2 r^2 * sin(2*theta) sqrt(6) dS)c~:&+
% 3 -3 r^3 * cos(3*theta) sqrt(8) 'eg;)e:`b+
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) dFzlcKFFD
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 't#E-+o
% 3 3 r^3 * sin(3*theta) sqrt(8) tWa_-Un3
% 4 -4 r^4 * cos(4*theta) sqrt(10) V)3S.*]
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) -iySU 6
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) ?X~U[dV?
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) vI0::ah/
% 4 4 r^4 * sin(4*theta) sqrt(10) lQl
% -------------------------------------------------- Wer.VL
% "2>_eZ#b
% Example 1: W8Aii'Q8C/
% {N`<THPP
% % Display the Zernike function Z(n=5,m=1) ,_!MI+o0
% x = -1:0.01:1; <}t<A
% [X,Y] = meshgrid(x,x); /5r!Fhx
% [theta,r] = cart2pol(X,Y); HK4 *+
% idx = r<=1; ]`u_d}`
% z = nan(size(X)); U`)o$4Bq
% z(idx) = zernfun(5,1,r(idx),theta(idx)); ? yek\X
% figure HV\l86}
% pcolor(x,x,z), shading interp b&xlT+GN
% axis square, colorbar &'A8R;b}-?
% title('Zernike function Z_5^1(r,\theta)') N3?@CM^hHw
% +5oK91o[y
% Example 2: oa:30@HSb
% Qv/Kb w
N{
% % Display the first 10 Zernike functions \zv?r:1t
% x = -1:0.01:1; @ !m+s~~]h
% [X,Y] = meshgrid(x,x); p}9bZKyf
% [theta,r] = cart2pol(X,Y); \%$z!]S>
% idx = r<=1; HRF;qR9v
% z = nan(size(X)); /d-d8n
% n = [0 1 1 2 2 2 3 3 3 3]; > ?<C+ZHh
% m = [0 -1 1 -2 0 2 -3 -1 1 3];
vY'E+M"+@
% Nplot = [4 10 12 16 18 20 22 24 26 28]; pqnZ:'V
% y = zernfun(n,m,r(idx),theta(idx)); CI~ll=9`
% figure('Units','normalized') ]}HuK#
% for k = 1:10 =x^b
% z(idx) = y(:,k); 4.qW
~W{
% subplot(4,7,Nplot(k)) 5,u'p8}.
% pcolor(x,x,z), shading interp >uVr;,=y
% set(gca,'XTick',[],'YTick',[]) _NkbB"+L
% axis square
QX>Pni
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) \&.]!!Q
% end $G.ws
% 7<7
/NZ<I
% See also ZERNPOL, ZERNFUN2. a[A9(Ftn
PA<<{\dp
% Paul Fricker 11/13/2006 59Lmv
&s
Y!nxHRE
(OT&:WwW
% Check and prepare the inputs: -3T~+
% ----------------------------- k.("<)
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) C,#FH}
error('zernfun:NMvectors','N and M must be vectors.') ^L +@oS
end k CVA~%d7
g}Esj"7
if length(n)~=length(m) d/!R;,^
error('zernfun:NMlength','N and M must be the same length.') ncCgc5uP
end /
+9o?Kxya
1@vlbgLr@
n = n(:); c037#&Q%#
m = m(:); 3r]N\c
if any(mod(n-m,2)) wR*>9LjeG
error('zernfun:NMmultiplesof2', ... f_qW+fN::s
'All N and M must differ by multiples of 2 (including 0).') +=&A1{kR3
end o:8*WCiqrN
M^3pJ=;5
if any(m>n) Uf<hzP
error('zernfun:MlessthanN', ... mZ^ev;
'Each M must be less than or equal to its corresponding N.') fBRU4q=^T
end S=.7$PY
UthH
if any( r>1 | r<0 ) bUBQ
error('zernfun:Rlessthan1','All R must be between 0 and 1.') I|oS`iLl$
end ^;=L|{Xl
NsY D~n
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) /Xo8 kC
error('zernfun:RTHvector','R and THETA must be vectors.') ">D7wX,.>
end %}0B7_6B+@
\C eP.,<
r = r(:); 1w/Ur'8we
theta = theta(:); Z<^TO1xs9B
length_r = length(r); ]|PDsb"e
if length_r~=length(theta) AQ`
`Dp
error('zernfun:RTHlength', ... ]H_|E
'The number of R- and THETA-values must be equal.') k;W`6:Kjp
end kvo V?<!
V.U9Q{y"
% Check normalization: L/sMAB
% -------------------- 1QPS=;|)
if nargin==5 && ischar(nflag) P/hV{@x
isnorm = strcmpi(nflag,'norm'); d?Y|w3lB
if ~isnorm SV}C]<
error('zernfun:normalization','Unrecognized normalization flag.') U81--'@y
end DtrR< &m
else zIE{U
isnorm = false; J jp)%c#_
end WXzSf.8p|
W-UMX',0zS
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% i`hr'}x
% Compute the Zernike Polynomials ZgD%*bH*B
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 6-oy%OnN
o<Z
% Determine the required powers of r: G&LOjd2
% ----------------------------------- ~ WO
m_abs = abs(m); AZgeu$:7p<
rpowers = []; ]dj
W^C]94
for j = 1:length(n) ?0%3~E`l:
rpowers = [rpowers m_abs(j):2:n(j)]; ! O~:
end Z|k>)pv@
rpowers = unique(rpowers); uz%<K(:Ov
?n0Z4 8%
% Pre-compute the values of r raised to the required powers, C ks;f6G
% and compile them in a matrix: =]swhF+l-
% ----------------------------- Uzzt+Iwm
if rpowers(1)==0 2b i:Q9
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); d)yu`U
rpowern = cat(2,rpowern{:}); :fx^{N!T
rpowern = [ones(length_r,1) rpowern]; tzn+
M0'
else iS]4F_|vd
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ah9P
C7[
rpowern = cat(2,rpowern{:}); *?v_AZ
end b:6NVHb%
DY(pU/q
% Compute the values of the polynomials: ??u*qO:p
% -------------------------------------- d(X/N2~g
y = zeros(length_r,length(n)); Wq}Y|0c
for j = 1:length(n) j'QPJ(`~1l
s = 0:(n(j)-m_abs(j))/2; ;ifPqLkO
pows = n(j):-2:m_abs(j); 5z~O3QX
for k = length(s):-1:1 B}U:c]
p = (1-2*mod(s(k),2))* ... }gR!]Cs)^
prod(2:(n(j)-s(k)))/ ... *&nIxb60b{
prod(2:s(k))/ ... Z&![W@m@0N
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... =lOdg3#\a
prod(2:((n(j)+m_abs(j))/2-s(k))); 3Ud{W$Ym
idx = (pows(k)==rpowers); oH]_2[
!
y(:,j) = y(:,j) + p*rpowern(:,idx); mNk@WY_F
end <<M1:1
$c0<I59&|
if isnorm Qt+i0xd
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); x=VLTH/oo
end =73aME}
end WM8])}<L
% END: Compute the Zernike Polynomials ][TA7pDPV
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% q*'-G]tH=
RE%25t|
% Compute the Zernike functions: uy'qIq
% ------------------------------ vi;yT.
idx_pos = m>0; -%)S~R
idx_neg = m<0; zc.r&(d
lK%)a +2
z = y; R}E$SmFg
if any(idx_pos) _fM=J+
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); e,DRQ2AU
end s/\<;g:u^
if any(idx_neg) Memb`3
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); m8,jV R
end "%rzL.</
V
M{Sng
% EOF zernfun