切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11810阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 ik+qx~+`Qv  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! *!,+%0  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 P0Ds7xh]h  
    function z = zernfun(n,m,r,theta,nflag) X8ev uN  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. k*-_CO-h  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N >f^&^28  
    %   and angular frequency M, evaluated at positions (R,THETA) on the Y6`9:97  
    %   unit circle.  N is a vector of positive integers (including 0), and G#HbiVH9  
    %   M is a vector with the same number of elements as N.  Each element Sr)/ Mf  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) jm =E_86_  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, V3$!`T}g4  
    %   and THETA is a vector of angles.  R and THETA must have the same  uw LT$  
    %   length.  The output Z is a matrix with one column for every (N,M) .hg<\-:_  
    %   pair, and one row for every (R,THETA) pair. "}\2zub9  
    % @I]uK[qd  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike O*z x{a6  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), %bt2^  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral ;J2U5Y NO  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ;} gvBI2e  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized C N"V w  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Fw+JhI VP  
    % n #p6i  
    %   The Zernike functions are an orthogonal basis on the unit circle. [{Fr{La`D'  
    %   They are used in disciplines such as astronomy, optics, and (iP,F]  
    %   optometry to describe functions on a circular domain. 8doT`rI1  
    % 7t\kof  
    %   The following table lists the first 15 Zernike functions. u z ` H  
    % ~1S7\e7{  
    %       n    m    Zernike function           Normalization 37ll8  
    %       -------------------------------------------------- .'lc[iI9)d  
    %       0    0    1                                 1 ynw^nmM  
    %       1    1    r * cos(theta)                    2 #"O9\X/B  
    %       1   -1    r * sin(theta)                    2 UIL5K   
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ]b'K BAMy  
    %       2    0    (2*r^2 - 1)                    sqrt(3) && ecq   
    %       2    2    r^2 * sin(2*theta)             sqrt(6) %pc0a^iB  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) <.l5>mgkCw  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 3a:(\:?z  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) wC{ =o`v  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) L -b~#  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) Q&MZ/Nnf  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Aw4Qm2Kf  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) z Rz#0  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) dDi 1{s  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) kX'1.<[  
    %       -------------------------------------------------- j6/ 3p|E  
    % L0UAS'hf  
    %   Example 1: KFA B  
    % }.NR+:0  
    %       % Display the Zernike function Z(n=5,m=1) 3Nr8H.u&q  
    %       x = -1:0.01:1; Kw(/#C:$  
    %       [X,Y] = meshgrid(x,x); U> e@m?  
    %       [theta,r] = cart2pol(X,Y); 8ji!FZf  
    %       idx = r<=1; )Si`>o3T-.  
    %       z = nan(size(X)); vD:.1,72  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); -hQ=0h~\B.  
    %       figure E"#<I*b  
    %       pcolor(x,x,z), shading interp J0@m Ol  
    %       axis square, colorbar >Eik>dQ a  
    %       title('Zernike function Z_5^1(r,\theta)') ?TMo6SU  
    % PgB=<#9  
    %   Example 2: I4m)5G?O2  
    % s<E_74q1  
    %       % Display the first 10 Zernike functions )09_CC!a  
    %       x = -1:0.01:1; [mw#a9  
    %       [X,Y] = meshgrid(x,x); 5Lu m$C c}  
    %       [theta,r] = cart2pol(X,Y); VY=~cVkzS  
    %       idx = r<=1; p&Nw:S  
    %       z = nan(size(X)); 4d!&.Qo9  
    %       n = [0  1  1  2  2  2  3  3  3  3]; 6C r$R]5  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; M[<O]p6  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 49/1#^T"Q>  
    %       y = zernfun(n,m,r(idx),theta(idx)); zL OmtZ(['  
    %       figure('Units','normalized') LMsbTF@E  
    %       for k = 1:10 Y +HVn0~qz  
    %           z(idx) = y(:,k); 0Yfk/}5  
    %           subplot(4,7,Nplot(k)) N%y%)MI8  
    %           pcolor(x,x,z), shading interp w V;y]'  
    %           set(gca,'XTick',[],'YTick',[]) r\_rnM)_xN  
    %           axis square $N,9 e  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) bTO$B2eh|  
    %       end ~+l%}4RZ  
    % xS,):R  
    %   See also ZERNPOL, ZERNFUN2.  ynZ!  
    q?} G?n 4  
    %   Paul Fricker 11/13/2006 !RiPr(m@y  
    (ter+rTv  
    <Y~V!9(~{Q  
    % Check and prepare the inputs: rp=?4^(u  
    % ----------------------------- <@F4{*  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ? 1Z\=s  
        error('zernfun:NMvectors','N and M must be vectors.') m6lNZb]  
    end d[TcA2nF  
    KC}B\~ +  
    if length(n)~=length(m) cTRCQ+W6:  
        error('zernfun:NMlength','N and M must be the same length.') H#w?$?nIWu  
    end Kz$Ijj  
    [jAhw>  
    n = n(:); Q=uwmg86  
    m = m(:); F4bF&% R  
    if any(mod(n-m,2)) S'ikr   
        error('zernfun:NMmultiplesof2', ... '\_ic=&u  
              'All N and M must differ by multiples of 2 (including 0).') ~Ja>x`5  
    end HK2`.'D  
    `kekc.*-[@  
    if any(m>n) qn+mlduU  
        error('zernfun:MlessthanN', ... 61jDI^:  
              'Each M must be less than or equal to its corresponding N.') zoUW}O  
    end !p0FJ].g,  
    K VQZ  
    if any( r>1 | r<0 ) BOh&Db*  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 9]AKNQq m  
    end !u7WCw.Dm  
    /f0_mi,bD  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) jg%D G2  
        error('zernfun:RTHvector','R and THETA must be vectors.') Ln`c DZSM  
    end z,2m7C  
    9F,jvCM63  
    r = r(:); }$$b6G  
    theta = theta(:); d^lA52X6P  
    length_r = length(r); K"g[%O<  
    if length_r~=length(theta) hR= 4w$  
        error('zernfun:RTHlength', ... (MxLw:AV  
              'The number of R- and THETA-values must be equal.') J~c]9t  
    end 1 ViDS  
    Gi{1u}-0  
    % Check normalization: yM\ 1n  
    % -------------------- Z.h`yRhO  
    if nargin==5 && ischar(nflag) =?FA9wm  
        isnorm = strcmpi(nflag,'norm'); #m8Oy|Y9`  
        if ~isnorm -n Hc52,  
            error('zernfun:normalization','Unrecognized normalization flag.') F,lQj7  
        end $}HSU>,%  
    else g$]9xn#_[  
        isnorm = false; HX<5i>]0\u  
    end 7L]fCw p[  
    DtZkrj)D/  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% TF{ xFb)  
    % Compute the Zernike Polynomials d}WAP m  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Zu+Z7@$}/  
    Ex<-<tY  
    % Determine the required powers of r: qbT].,?!U  
    % ----------------------------------- "` 9W"A=  
    m_abs = abs(m); RrRCT.+E  
    rpowers = []; o9Agx{'oV  
    for j = 1:length(n) D.\p7 NJ  
        rpowers = [rpowers m_abs(j):2:n(j)]; j~L{=ojz%  
    end 9D 0ujup  
    rpowers = unique(rpowers); T?% F  
    {v2Q7ZO-  
    % Pre-compute the values of r raised to the required powers, UQhfR}(  
    % and compile them in a matrix: l(<o,Uv[`  
    % ----------------------------- 'zpj_QM  
    if rpowers(1)==0 {@C+Js5  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ?MN?.O9-  
        rpowern = cat(2,rpowern{:}); "lUw{3  
        rpowern = [ones(length_r,1) rpowern]; ? ZN8Ku  
    else &&>OhH`  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); .Mm8\].  
        rpowern = cat(2,rpowern{:}); 67J=#%\  
    end B)Gm"bLCOZ  
    ;AHa|35\  
    % Compute the values of the polynomials: o[8Y%3  
    % -------------------------------------- WE=`8`Li  
    y = zeros(length_r,length(n)); Ip<STz]-  
    for j = 1:length(n) ! .!qJ%  
        s = 0:(n(j)-m_abs(j))/2; ;O.U-s  
        pows = n(j):-2:m_abs(j); g*!2.P  
        for k = length(s):-1:1 Bz ]64/  
            p = (1-2*mod(s(k),2))* ...  \ 1|T  
                       prod(2:(n(j)-s(k)))/              ... A$%%;O   
                       prod(2:s(k))/                     ... b-~Gt]%>m  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... f<y""0L9  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); oIf -s[uH  
            idx = (pows(k)==rpowers); _H%ylAt1j  
            y(:,j) = y(:,j) + p*rpowern(:,idx); {?#g*QF|^  
        end "iOT14J!7  
         ( R Ttz  
        if isnorm jJg 'Y:K9q  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); jcevpKkRG  
        end iPI6 _h  
    end m"jqHGFV  
    % END: Compute the Zernike Polynomials ~6{;3"^<  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% hPhN7E03  
    du`],/ 6  
    % Compute the Zernike functions: Xgop1  
    % ------------------------------ X}g!Lp  
    idx_pos = m>0; FFP>Y*v(  
    idx_neg = m<0; +&Sf$t 1  
    $t[`}I }  
    z = y; E!jM&\Zj  
    if any(idx_pos) /sC$;l  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); = V%s^  
    end 2h u;N  
    if any(idx_neg) @cSz!E}  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); V,{ydxfB  
    end U%j=)VD ])  
    qnru atA  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) B%cjRwOT  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. EZE/~$`3   
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated w6v P a  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive *W%HTt"N  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, gx@b|rj;  
    %   and THETA is a vector of angles.  R and THETA must have the same vvFXdHP  
    %   length.  The output Z is a matrix with one column for every P-value, mgh,)=2cE(  
    %   and one row for every (R,THETA) pair. .B_) w:oF  
    % J{\S+O2,*  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike #Ubzh`v  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) C]\r~f  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) O=u.PRNT8  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 Y)g<> }F  
    %   for all p. tDF6%RG  
    % Vb|DNl@  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 =H3 JRRS  
    %   Zernike functions (order N<=7).  In some disciplines it is F=$2Gz 'RT  
    %   traditional to label the first 36 functions using a single mode uXNJ{]o  
    %   number P instead of separate numbers for the order N and azimuthal tWdj"n%  
    %   frequency M. 4(|x@: wxm  
    % Xc"S"a^\%  
    %   Example: Qte=<Z)  
    % %AXa(C\1  
    %       % Display the first 16 Zernike functions c+ Ejah+  
    %       x = -1:0.01:1; KYu3dC'/,&  
    %       [X,Y] = meshgrid(x,x); I[WW1P5  
    %       [theta,r] = cart2pol(X,Y); a UAPh  
    %       idx = r<=1; #4Xe zj,g*  
    %       p = 0:15; uhbo/7d'7  
    %       z = nan(size(X)); _t 'Kj \  
    %       y = zernfun2(p,r(idx),theta(idx)); `6?r.;wj  
    %       figure('Units','normalized') oslV@v F  
    %       for k = 1:length(p) u B~/W  
    %           z(idx) = y(:,k); /}]X3ng  
    %           subplot(4,4,k) LoPWho[8  
    %           pcolor(x,x,z), shading interp 7-nwfp&|$  
    %           set(gca,'XTick',[],'YTick',[]) `LEk/b1(P  
    %           axis square -A[iTI"  
    %           title(['Z_{' num2str(p(k)) '}']) i:ZpAo+Z{  
    %       end i$?i1z*c}  
    % {ckA  
    %   See also ZERNPOL, ZERNFUN. /<\>j+SC  
    3^xTZ*G  
    %   Paul Fricker 11/13/2006 GX4# IRq  
    TWK(vEDM  
    bT@3fuL4  
    % Check and prepare the inputs: s,\!@[N  
    % ----------------------------- dUk^DI,:l  
    if min(size(p))~=1 aqK<}jy  
        error('zernfun2:Pvector','Input P must be vector.') =.#*MYB.l  
    end w3a`G|  
    24}r;=U  
    if any(p)>35 RM|<(kq  
        error('zernfun2:P36', ... wv # 1s3  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... N0,.cd]y`  
               '(P = 0 to 35).']) Mmq{]q~At  
    end CD:@OI  
    n"Ot'1yr  
    % Get the order and frequency corresonding to the function number: Z f4Xt Yn  
    % ---------------------------------------------------------------- )wQR2$x~  
    p = p(:); qh Rs5QXL  
    n = ceil((-3+sqrt(9+8*p))/2); w4<RV:Vmt  
    m = 2*p - n.*(n+2); \/p\QT@mm  
    EX7gTf#  
    % Pass the inputs to the function ZERNFUN: B<T wTv  
    % ---------------------------------------- N J9H=  
    switch nargin BI?M/pIm  
        case 3 CP)x;  
            z = zernfun(n,m,r,theta); /0>Cy\eN0  
        case 4 !G.)%+Z  
            z = zernfun(n,m,r,theta,nflag); *` >(K&  
        otherwise 9s5gi+l_O  
            error('zernfun2:nargin','Incorrect number of inputs.')  ]O3[Te  
    end j)?I]j/  
    f*04=R?w7>  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) 6H\3  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. W2J"W=:z  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of =ltT6of@o  
    %   order N and frequency M, evaluated at R.  N is a vector of r5t C  
    %   positive integers (including 0), and M is a vector with the rIR~YMv!  
    %   same number of elements as N.  Each element k of M must be a 7 [N1Vr(1  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) \74+ cN  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is /\"=egB9  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix (?Fz{  
    %   with one column for every (N,M) pair, and one row for every B v /]>Z  
    %   element in R. 23 BzD^2a  
    % V4ml& D  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- wyeiz7  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is 02q]^3  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to xG@zy4  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 C vfm ,BL  
    %   for all [n,m]. v@TP_Ka  
    % 6cQh8_/>{#  
    %   The radial Zernike polynomials are the radial portion of the 2uu"0Rm%  
    %   Zernike functions, which are an orthogonal basis on the unit @JVax-N  
    %   circle.  The series representation of the radial Zernike %b<cJ]F  
    %   polynomials is T|`nw_0  
    % [GJ_]w^}j  
    %          (n-m)/2 ~ \z7$9Q  
    %            __ xhLVLXZ9  
    %    m      \       s                                          n-2s ,rx?Ig}k z  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r ;2 y3i5^k  
    %    n      s=0 l?LwQmq6  
    % (9$z+Zmm?  
    %   The following table shows the first 12 polynomials. & F\HR  
    % NPF"_[RoeV  
    %       n    m    Zernike polynomial    Normalization $x#0m  
    %       --------------------------------------------- o5)lTVQ~~  
    %       0    0    1                        sqrt(2) 8`l bKV  
    %       1    1    r                           2 `3m7b!0k  
    %       2    0    2*r^2 - 1                sqrt(6) 'M+iw:R__  
    %       2    2    r^2                      sqrt(6) >J,Rx!fq3  
    %       3    1    3*r^3 - 2*r              sqrt(8) 1Ys6CJ#  
    %       3    3    r^3                      sqrt(8) pLi_)(#z_  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) f-&4x_5  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) KfD=3h=  
    %       4    4    r^4                      sqrt(10) :23w[vt=  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) -,+zA.{+W  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) hF|N81T  
    %       5    5    r^5                      sqrt(12) da<B6!  
    %       --------------------------------------------- _{0'3tI7  
    % 7 06-QE^  
    %   Example: mDZ/Kp{  
    % 5'>DvCp%M  
    %       % Display three example Zernike radial polynomials FY1 >{Bn  
    %       r = 0:0.01:1; b8Gu<Q1k  
    %       n = [3 2 5]; y}Ji( q~  
    %       m = [1 2 1]; IJ >qs8  
    %       z = zernpol(n,m,r); M,nX@8 _h  
    %       figure 3 VNYDY`>  
    %       plot(r,z) x{y}pH"H  
    %       grid on .)J7 \z8m  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') 03Czx`  
    % H8@1Kt  
    %   See also ZERNFUN, ZERNFUN2. x UM,"+h  
    cCOw7<  
    % A note on the algorithm. }o^VEJc`O  
    % ------------------------ =GH>-*qp  
    % The radial Zernike polynomials are computed using the series |hHj7X <?k  
    % representation shown in the Help section above. For many special U4`6S43ki  
    % functions, direct evaluation using the series representation can jD]Ci#|W  
    % produce poor numerical results (floating point errors), because R]L$Ld< ij  
    % the summation often involves computing small differences between YQ/  
    % large successive terms in the series. (In such cases, the functions mk*r^k`a  
    % are often evaluated using alternative methods such as recurrence NL`}rj  
    % relations: see the Legendre functions, for example). For the Zernike ePF)wl;m  
    % polynomials, however, this problem does not arise, because the t @=*k9  
    % polynomials are evaluated over the finite domain r = (0,1), and Xm#rkF[,  
    % because the coefficients for a given polynomial are generally all [\|`C4@3a  
    % of similar magnitude. $#2zxpr,  
    % *nZe|)m  
    % ZERNPOL has been written using a vectorized implementation: multiple ol^uM .k%_  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] B<^yT@Wc  
    % values can be passed as inputs) for a vector of points R.  To achieve Jkf%k3H3I*  
    % this vectorization most efficiently, the algorithm in ZERNPOL \0bao<  
    % involves pre-determining all the powers p of R that are required to \.!+'2!m  
    % compute the outputs, and then compiling the {R^p} into a single :'hc&wk`  
    % matrix.  This avoids any redundant computation of the R^p, and ~1xfE C/  
    % minimizes the sizes of certain intermediate variables. gl.uDO%.  
    % pf&H !-M  
    %   Paul Fricker 11/13/2006 ')G, +d^  
    5t('H`,2  
    R -#40  
    % Check and prepare the inputs: w8(8n&5  
    % ----------------------------- @q(sig00nr  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) v*Dz4K#  
        error('zernpol:NMvectors','N and M must be vectors.') VPC7Dh%.  
    end :`jB1rI  
    )-jA4!&  
    if length(n)~=length(m) _mBFmXHHS$  
        error('zernpol:NMlength','N and M must be the same length.') z8VcV*6  
    end A[7\!bq5  
    ORCG(N  
    n = n(:); JCe%;U  
    m = m(:); ab-z 7g  
    length_n = length(n); Qk5pRoL_  
    :r+BL@9  
    if any(mod(n-m,2)) FGRdA^`  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') 6VUkZKc  
    end 4DwQ7KX  
    '}$]V>/  
    if any(m<0) Yo-$Z-ud  
        error('zernpol:Mpositive','All M must be positive.') EOj.Jrs~  
    end ;xXD2{q  
    UR{OrNg*  
    if any(m>n) _n~[wb5J  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') 2%{(BT6  
    end \3bT0^7B  
    #TUuk  
    if any( r>1 | r<0 ) ByU&fx2Z  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') fK 4,k:YC  
    end c'!+]'Lr  
    c*!xdK  
    if ~any(size(r)==1) E[=# Rw!*  
        error('zernpol:Rvector','R must be a vector.') $wm.,Vb  
    end N{}o*K  
    /:=,mWoO  
    r = r(:); <(E9U.  
    length_r = length(r); QAxR'.d  
    "AuU5G 9'I  
    if nargin==4 &Hj1jM'  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); t&>eZ"  
        if ~isnorm xRrKrs&eE  
            error('zernpol:normalization','Unrecognized normalization flag.') xoB "hNIX  
        end "KHe6otmi_  
    else zcE` .)y  
        isnorm = false; AMSn^ 75  
    end j e;^i,&  
    J|uSj/8  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Fs_zNN  
    % Compute the Zernike Polynomials ^ZD0rp(l  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% b~td ^  
    Y$4dqn  
    % Determine the required powers of r: *eEn8rAr  
    % ----------------------------------- ?l?_8y/ww  
    rpowers = []; EmYu]"${1  
    for j = 1:length(n) d%lwg~@&|5  
        rpowers = [rpowers m(j):2:n(j)]; y**>l{!!  
    end b8O }XB  
    rpowers = unique(rpowers); vO 3-B   
    hmES@^n!_  
    % Pre-compute the values of r raised to the required powers, 5M= S7B3=  
    % and compile them in a matrix: Y- tK  
    % ----------------------------- X B[C&3I  
    if rpowers(1)==0 3FQXp  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); >U#j\2!Sg  
        rpowern = cat(2,rpowern{:}); WW3! ,ln_  
        rpowern = [ones(length_r,1) rpowern]; JfVGs;_,  
    else BnPL>11Y  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 7 : .bqRu  
        rpowern = cat(2,rpowern{:}); FV>xAU$  
    end Lv<)Dur0K  
    @D2KDV3'  
    % Compute the values of the polynomials: p}MH LM  
    % -------------------------------------- #(dERET*  
    z = zeros(length_r,length_n); I`KBj6n  
    for j = 1:length_n G&,2>qxK R  
        s = 0:(n(j)-m(j))/2; r Cn"{.rI  
        pows = n(j):-2:m(j); lFc4| _c g  
        for k = length(s):-1:1 IfF&QBi  
            p = (1-2*mod(s(k),2))* ... v>' mW  
                       prod(2:(n(j)-s(k)))/          ... 1g1gu=|Q  
                       prod(2:s(k))/                 ... /e50&]2w  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... vy{YGT  
                       prod(2:((n(j)+m(j))/2-s(k))); I%# e\  
            idx = (pows(k)==rpowers); eSA%:Is.  
            z(:,j) = z(:,j) + p*rpowern(:,idx); QMBV"E_aY  
        end a4D4*=!G0  
         $-R9J6NN  
        if isnorm h@D</2>  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); =:pN82.G  
        end I.L8A|nZ  
    end Z<~^(W7h  
    :taRCh5  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    857
    光币
    847
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  1}8e@`G0.]  
    ?EX'j >  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 ^s5.jlZr@  
    u>S&?X'a  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)