切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11784阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 ~vO'p  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! /%2:+w  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 r1^m#!=B  
    function z = zernfun(n,m,r,theta,nflag) LZZ:P  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. Ty e$na&$}  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 2l\D~ y  
    %   and angular frequency M, evaluated at positions (R,THETA) on the YU ]G5\UU  
    %   unit circle.  N is a vector of positive integers (including 0), and ,6%hu|Y*  
    %   M is a vector with the same number of elements as N.  Each element 3. K{T  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) aHVdClD2o  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, =+SVzK,+3  
    %   and THETA is a vector of angles.  R and THETA must have the same O,V6hU/ *  
    %   length.  The output Z is a matrix with one column for every (N,M) 1DI"LIL  
    %   pair, and one row for every (R,THETA) pair. /: \VwH  
    % Mo?t[]L   
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike B~ 'VDOG$Z  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), buxI-wv  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral <?=mLOo =  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ^R8U-V8:  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized O[5_ 9W 4  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. pJ)+}vascR  
    % yccuTQvz  
    %   The Zernike functions are an orthogonal basis on the unit circle. 6S&=OK^  
    %   They are used in disciplines such as astronomy, optics, and \h'E5LO  
    %   optometry to describe functions on a circular domain. GWA!Ab'<U  
    % 7B:ZdDj  
    %   The following table lists the first 15 Zernike functions. 8R??J>h5\  
    % Ndug9j\2  
    %       n    m    Zernike function           Normalization [iO$ c]!H  
    %       -------------------------------------------------- XYxm8ee"j  
    %       0    0    1                                 1 F`ZIc7(.{  
    %       1    1    r * cos(theta)                    2 ftI+#0?[!  
    %       1   -1    r * sin(theta)                    2 kS\.  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) |)72E[lL  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 7S~9E2N  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) 44fq1<.K  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) >`rNT|rg  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) +~i+k~{`H  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) mC[U)` ey  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) _WjETyh [H  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) /i~^LITH  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) kT } '"  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) _ c(C;s3o  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) s2kZZP8-  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) Rm\ '];  
    %       -------------------------------------------------- ,Q /nS$  
    % / Vm}+"BCS  
    %   Example 1: L/iVs`qF  
    % k vgs $  
    %       % Display the Zernike function Z(n=5,m=1) V^$rH<  
    %       x = -1:0.01:1; >$S,>d_k`  
    %       [X,Y] = meshgrid(x,x); 1N$gE  
    %       [theta,r] = cart2pol(X,Y); ^ Mvsq)  
    %       idx = r<=1; ?:''VM.  
    %       z = nan(size(X)); (HrkUkw  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); ";S*[d.2tA  
    %       figure ch,Zk )y:_  
    %       pcolor(x,x,z), shading interp N>nvt.`P  
    %       axis square, colorbar ?lwQne8/  
    %       title('Zernike function Z_5^1(r,\theta)') EDidg"0p  
    % 3!oQmG_T  
    %   Example 2: :@@A  
    % va/4q+1GfH  
    %       % Display the first 10 Zernike functions I\uB"Z{9  
    %       x = -1:0.01:1; ,<P[CUD&&  
    %       [X,Y] = meshgrid(x,x); _l{ 5 'm  
    %       [theta,r] = cart2pol(X,Y); |gRgQGeB  
    %       idx = r<=1; n-b<vEZw#  
    %       z = nan(size(X)); % 6hw  
    %       n = [0  1  1  2  2  2  3  3  3  3]; S_ -QvG2  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; ME10dr  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; `7qp\vYL  
    %       y = zernfun(n,m,r(idx),theta(idx)); /jn3'q_,  
    %       figure('Units','normalized') lKhh=Pc2  
    %       for k = 1:10 QH' [ (  
    %           z(idx) = y(:,k); 6[h$r/GXh"  
    %           subplot(4,7,Nplot(k)) &<P^Tvqq&  
    %           pcolor(x,x,z), shading interp } Ved  
    %           set(gca,'XTick',[],'YTick',[]) wAOVH].  
    %           axis square ~q T1<k  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) U1HD~  
    %       end Nb!6YY=Ez-  
    % F3 l^^ Mc  
    %   See also ZERNPOL, ZERNFUN2. j]l}K*8(  
    PUZXmnB  
    %   Paul Fricker 11/13/2006 \;:@=9`  
    pn%|;  
    vwH7/+  
    % Check and prepare the inputs: u r.T YKF  
    % ----------------------------- n `T[eb~  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) =O'%)Y&  
        error('zernfun:NMvectors','N and M must be vectors.') AUjTcu>i  
    end 'kg]|"M  
    #Xw[i  
    if length(n)~=length(m) L%O8vn^3  
        error('zernfun:NMlength','N and M must be the same length.') (:Hbtr I  
    end Cz);mOb%M%  
    y3[)zv  
    n = n(:); ;$L!`"jn  
    m = m(:); ;ld~21#m  
    if any(mod(n-m,2)) Nl<,rD+KSD  
        error('zernfun:NMmultiplesof2', ... No&[ \;  
              'All N and M must differ by multiples of 2 (including 0).') iN4'jD^oP  
    end V\`= "  
    Hr*Pi3dSI  
    if any(m>n) MVv^KezD  
        error('zernfun:MlessthanN', ... >;r05,mc  
              'Each M must be less than or equal to its corresponding N.') 2-c0/?_4  
    end 2T%f~yQ^  
    y^46z( I  
    if any( r>1 | r<0 ) Cl.T'A$  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') _%Ld E z  
    end 1HWJxV"  
    r4ttEJ-jG  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Ahbu >LPk  
        error('zernfun:RTHvector','R and THETA must be vectors.') L.:QI<n  
    end \ J:T]  
    gI5nWEM0{  
    r = r(:); N&h!14]{ Z  
    theta = theta(:); UYrzsUjg&  
    length_r = length(r); 'I>#0VRr  
    if length_r~=length(theta) sK/"  
        error('zernfun:RTHlength', ... D=sc41]  
              'The number of R- and THETA-values must be equal.') _";pk  _  
    end }~'Wz*Gm  
    +vSE}  
    % Check normalization: .) ;:K  
    % -------------------- A y[L{!)2{  
    if nargin==5 && ischar(nflag) T|2%b*/  
        isnorm = strcmpi(nflag,'norm'); U*:'/.  
        if ~isnorm 9:w,@Phe  
            error('zernfun:normalization','Unrecognized normalization flag.') . \0=1P:  
        end I8]NY !'cW  
    else .%Q Ea_\  
        isnorm = false; $[CA#AXE  
    end iQ"F`C  
    `#8R+c=$  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% gK\7^95  
    % Compute the Zernike Polynomials azc:C  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% V>92/w.fe  
    u`@FA?+E1  
    % Determine the required powers of r: X hX'*{3k  
    % ----------------------------------- dKTAc":-}  
    m_abs = abs(m); 9,eR=M]+:  
    rpowers = []; !QS<;)N@  
    for j = 1:length(n) " z'!il#  
        rpowers = [rpowers m_abs(j):2:n(j)]; 'k Z1&_{  
    end /-4B)mL  
    rpowers = unique(rpowers); J4#]8!A  
    S5a<L_  
    % Pre-compute the values of r raised to the required powers, + qqN  
    % and compile them in a matrix: wT yM9wz&  
    % ----------------------------- JW'acD  
    if rpowers(1)==0 a\_,_psK  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); lFY8^#@  
        rpowern = cat(2,rpowern{:}); j1+Y=@MA  
        rpowern = [ones(length_r,1) rpowern]; 3*2pacHpE  
    else U/o}{,$A  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); s2=X>,kz?  
        rpowern = cat(2,rpowern{:}); =W*`HV-w  
    end Qo *]l_UO;  
    !PIdw~YC  
    % Compute the values of the polynomials: 53 05N!  
    % -------------------------------------- eJp-s" %  
    y = zeros(length_r,length(n)); y<d#sv(s  
    for j = 1:length(n) w/6@R 4)p  
        s = 0:(n(j)-m_abs(j))/2; 'FFc"lqj  
        pows = n(j):-2:m_abs(j); <U pjAuG8  
        for k = length(s):-1:1 Fsj[JE  
            p = (1-2*mod(s(k),2))* ... 3y,?>-  
                       prod(2:(n(j)-s(k)))/              ... Ps\^OJR  
                       prod(2:s(k))/                     ... 26K~m@  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... >;W(Jb7e  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); <5~>.DuE  
            idx = (pows(k)==rpowers); @ RBwT  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 6|}mTG^  
        end 7*"LW  
         N@0scfO6<  
        if isnorm h cXqg  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); [Cp{i<C  
        end = g}yA=.  
    end zUqDX{I8  
    % END: Compute the Zernike Polynomials ht9b=1wd%s  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% $8r:&Iw  
    3k^jR1  
    % Compute the Zernike functions: ?9TogW>W  
    % ------------------------------  64fG,b  
    idx_pos = m>0; -m/4\D  
    idx_neg = m<0; K^ \9R  
    3IFU{0a`  
    z = y; E76:}(  
    if any(idx_pos) S &u94hlC  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); E:k?*l  
    end F9W5x=EK\  
    if any(idx_neg) 4PQWdPv;  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); .vMi <U;  
    end kM`#U *j  
    !&[4T#c  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) bAp`lmFI  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. Je,8{J|e  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated r$5!KO  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive $hio (   
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, x}d\%* B  
    %   and THETA is a vector of angles.  R and THETA must have the same RMK U5A7  
    %   length.  The output Z is a matrix with one column for every P-value, 9"S3AEI  
    %   and one row for every (R,THETA) pair. fp0Va!T(V  
    % .Ko`DH~!,C  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike hM}2++V  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) uk,f}Xc  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) M_K&x-H0  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 2lRZ/xaF%P  
    %   for all p. :Kiu*&{  
    %  >pKI'  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 D$HxPfDZ  
    %   Zernike functions (order N<=7).  In some disciplines it is J++D\x#@  
    %   traditional to label the first 36 functions using a single mode A7H=#L+C  
    %   number P instead of separate numbers for the order N and azimuthal ? t-2oLE  
    %   frequency M. |4vk@0L  
    % 5 *_#"  
    %   Example: V QI7lJV"  
    % G1rgp>m  
    %       % Display the first 16 Zernike functions ^gG,}GTl  
    %       x = -1:0.01:1; ( C&f~U  
    %       [X,Y] = meshgrid(x,x); ,P^"X5$   
    %       [theta,r] = cart2pol(X,Y); 6]VTn-  
    %       idx = r<=1; R)/w   
    %       p = 0:15; bPNsy@"6  
    %       z = nan(size(X)); \XC1/LZQ  
    %       y = zernfun2(p,r(idx),theta(idx)); ("Zi,3"+  
    %       figure('Units','normalized') L6T_&AiL$  
    %       for k = 1:length(p) * 7CI q  
    %           z(idx) = y(:,k); $3>|R lxYA  
    %           subplot(4,4,k) *d(Dk*(  
    %           pcolor(x,x,z), shading interp vJ!t.Vou  
    %           set(gca,'XTick',[],'YTick',[]) g:HIiGN0Ic  
    %           axis square ]P.S5s'  
    %           title(['Z_{' num2str(p(k)) '}']) y03l_E,  
    %       end a^BD55d?  
    % RaAq>B WPr  
    %   See also ZERNPOL, ZERNFUN. rAWBuEU;!  
    VuGSP]$q  
    %   Paul Fricker 11/13/2006 @ o]F~x  
    l<5!R;?$  
    XZhhr1-<a  
    % Check and prepare the inputs: ; ?!sU  
    % ----------------------------- XIU2l}g  
    if min(size(p))~=1 <T['J]k%  
        error('zernfun2:Pvector','Input P must be vector.') ]^!#0(  
    end Rzp-Q5@M Y  
    ws=y*7$y  
    if any(p)>35 0/c4%+ Ln  
        error('zernfun2:P36', ... ]BA8[2=m  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... 1*Z}M%  
               '(P = 0 to 35).']) QeGU]WU{  
    end /)~M cP3  
    Z EW`?6  
    % Get the order and frequency corresonding to the function number: V5=Injs *  
    % ---------------------------------------------------------------- fYwumx`J  
    p = p(:); ^VA)vLj@  
    n = ceil((-3+sqrt(9+8*p))/2); 1!~9%=%  
    m = 2*p - n.*(n+2); epQ7@9,Q  
    /SyiJCx0  
    % Pass the inputs to the function ZERNFUN: Xr@0RFdr[  
    % ---------------------------------------- Q,>AT$|  
    switch nargin t<4+CC2H  
        case 3 9rhz#w  
            z = zernfun(n,m,r,theta); [.2>=3T  
        case 4 !$j'F?2 >  
            z = zernfun(n,m,r,theta,nflag); xMe[/7)4  
        otherwise B|!Re4`0  
            error('zernfun2:nargin','Incorrect number of inputs.') Xs4`bbap  
    end Ox58L>:0m  
    uJi|@{V  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) < d?O#(  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. .Ir5gz  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of >XB Lm`a  
    %   order N and frequency M, evaluated at R.  N is a vector of t'^/}=c-  
    %   positive integers (including 0), and M is a vector with the !iMsTH<  
    %   same number of elements as N.  Each element k of M must be a YqYCW}$  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) 9\V^q9l  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is )nQ.6  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix z`lDD  
    %   with one column for every (N,M) pair, and one row for every 8dP^zjPj  
    %   element in R.  a(F%M  
    % O3Yv ->#  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- ?,]25q   
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is @`)A )  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to |[8&5[);  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 I U/gYFT  
    %   for all [n,m]. 8@Pv nOL  
    % -Zkl\A$>  
    %   The radial Zernike polynomials are the radial portion of the  t;{/Q&C  
    %   Zernike functions, which are an orthogonal basis on the unit N\rbnr  
    %   circle.  The series representation of the radial Zernike +Ibcc8Qud  
    %   polynomials is s~,Ypo?  
    % >A#]60w.  
    %          (n-m)/2 u[})|x*N  
    %            __ c5pF?kFaD  
    %    m      \       s                                          n-2s &;|/I`+  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r _dj_+<Y?  
    %    n      s=0 K%O%#Kk  
    % z.--"cF  
    %   The following table shows the first 12 polynomials. h49|x&03  
    % .hXxh)F  
    %       n    m    Zernike polynomial    Normalization '`I&g8I\  
    %       --------------------------------------------- J;HkR9<C  
    %       0    0    1                        sqrt(2) UO>ADRs}  
    %       1    1    r                           2 ^ 14U]<  
    %       2    0    2*r^2 - 1                sqrt(6) h#a,<B|  
    %       2    2    r^2                      sqrt(6) :>]= YE  
    %       3    1    3*r^3 - 2*r              sqrt(8) CtfI&rb[  
    %       3    3    r^3                      sqrt(8) %N04k8z  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) g?qm >X  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) !ffdeWHR  
    %       4    4    r^4                      sqrt(10) f.4r'^  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) (]>= y  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) W{<_gD9  
    %       5    5    r^5                      sqrt(12) _SY4Q s`d  
    %       ---------------------------------------------  R5(<:]  
    % VyK[*k yN  
    %   Example: 9ePG-=5I  
    % gs7h`5[es  
    %       % Display three example Zernike radial polynomials ~dg7c{o5  
    %       r = 0:0.01:1; Cz` !j  
    %       n = [3 2 5]; Bvb.N$G  
    %       m = [1 2 1]; Yi1lvB?m  
    %       z = zernpol(n,m,r); c 2t<WRG  
    %       figure G(" S6u  
    %       plot(r,z) yY+)IU.  
    %       grid on WBvh<wTw;  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') ',$Uw|N  
    % 2dg+R)%  
    %   See also ZERNFUN, ZERNFUN2. *mwHuGbZed  
    `lygJI?H+{  
    % A note on the algorithm. ji9 (!G  
    % ------------------------ >]s\%GO  
    % The radial Zernike polynomials are computed using the series ,T& =*q  
    % representation shown in the Help section above. For many special GG<{n$h  
    % functions, direct evaluation using the series representation can X:PB }  
    % produce poor numerical results (floating point errors), because 845a%A$  
    % the summation often involves computing small differences between QhR.8iS  
    % large successive terms in the series. (In such cases, the functions B)>r~v]  
    % are often evaluated using alternative methods such as recurrence o}O"  
    % relations: see the Legendre functions, for example). For the Zernike <+o*"z\mI  
    % polynomials, however, this problem does not arise, because the n@>h"(@i  
    % polynomials are evaluated over the finite domain r = (0,1), and $=3&qg"!  
    % because the coefficients for a given polynomial are generally all ;r'y/ Y'?  
    % of similar magnitude. dp;;20z  
    % ,41Z_h  
    % ZERNPOL has been written using a vectorized implementation: multiple  qmQ}  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] =A[:]),v  
    % values can be passed as inputs) for a vector of points R.  To achieve #y;TSHx/  
    % this vectorization most efficiently, the algorithm in ZERNPOL s[<a(  
    % involves pre-determining all the powers p of R that are required to jT/}5\  
    % compute the outputs, and then compiling the {R^p} into a single +c'b=n9j  
    % matrix.  This avoids any redundant computation of the R^p, and (OS -v~{r@  
    % minimizes the sizes of certain intermediate variables. nz_=]PHO&  
    % PY.4J4nn|  
    %   Paul Fricker 11/13/2006 ]$Ud`<Xnx  
    Q5%$P\  
    F9h'.{@d  
    % Check and prepare the inputs: S\wh *'Y  
    % ----------------------------- wMc/O g  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) b~$B 0o)  
        error('zernpol:NMvectors','N and M must be vectors.') $FR1^|P/G  
    end uT1xvXfqP  
    n@1;5)&k~  
    if length(n)~=length(m) d6RO2^  
        error('zernpol:NMlength','N and M must be the same length.') QEtf-xNn^  
    end -o: if F|  
    tFj[>_d7  
    n = n(:); Hg[g{A_G[  
    m = m(:); R;yi58Be  
    length_n = length(n); .0ov>4,R  
    ,^Ug[pGG-  
    if any(mod(n-m,2)) 4S9hz  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') o4Ny9s  
    end &ZyZmB  
    AlPk o($E*  
    if any(m<0) Dqxtc|vo  
        error('zernpol:Mpositive','All M must be positive.') EuH[G_5e0  
    end g<b(q|  
    SK][UxoHm  
    if any(m>n) ko7*9`  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') #k}x} rn<'  
    end $nf5bo/;  
    {:@MBA 34  
    if any( r>1 | r<0 ) \}:RG^*m  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') *HC[LM  
    end 4k7 LM]  
    E8gbm&x*  
    if ~any(size(r)==1) fC4#b?Q  
        error('zernpol:Rvector','R must be a vector.') JyiP3whW  
    end LA +BH_t&  
    6x]x>:8  
    r = r(:); `S)*(s?T  
    length_r = length(r); h=a-~= 8  
    mK Ta.  
    if nargin==4 !Py SYY  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); Jm#mC  
        if ~isnorm ]'"aVGqa.  
            error('zernpol:normalization','Unrecognized normalization flag.') 1K&_t  
        end 3AQu\4+A  
    else 6Wn"h|S  
        isnorm = false; +KcD Y1[  
    end 31cC*  
    NP+*L|-;  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% __mnz``/Y  
    % Compute the Zernike Polynomials \gU=B|W  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% LK>J]p  
    \h{M\bSIEa  
    % Determine the required powers of r: U??T>  
    % ----------------------------------- Hyn*O)q!  
    rpowers = []; Le?yzf  
    for j = 1:length(n) p?Rq  
        rpowers = [rpowers m(j):2:n(j)]; 7^hwRZJ{  
    end C@P4}X0,=  
    rpowers = unique(rpowers); g!![%*' b  
    s{Wj&.)M  
    % Pre-compute the values of r raised to the required powers, hQFF%xl  
    % and compile them in a matrix: *LA2@9l  
    % ----------------------------- E0lro+'lS  
    if rpowers(1)==0 )@hG#KMK  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); >Nho`m(  
        rpowern = cat(2,rpowern{:}); #P,C9OQD  
        rpowern = [ones(length_r,1) rpowern]; yG/_k !{9  
    else { K,KIj"  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); `A0trC3  
        rpowern = cat(2,rpowern{:}); wI{ED  
    end ^_0l(ke  
    \v,m r|  
    % Compute the values of the polynomials: =Z~nzyaN  
    % -------------------------------------- um5n3=K  
    z = zeros(length_r,length_n); _oU}>5  
    for j = 1:length_n bdBFDg  
        s = 0:(n(j)-m(j))/2; ? CabVj-r  
        pows = n(j):-2:m(j); \J?l7mG  
        for k = length(s):-1:1 ^{l^Z +b.  
            p = (1-2*mod(s(k),2))* ... Xlp$ xp"  
                       prod(2:(n(j)-s(k)))/          ... YT@D*\  
                       prod(2:s(k))/                 ... cy%S5Rz  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... J|gRG0O9Ya  
                       prod(2:((n(j)+m(j))/2-s(k))); Ojwhcb^  
            idx = (pows(k)==rpowers); +jv&V%IL  
            z(:,j) = z(:,j) + p*rpowern(:,idx); QKAt%"1&  
        end h,Nq:"}  
         <q<kqy5s-R  
        if isnorm MmL)CT  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); &}+^*X  
        end &}."sGK  
    end 1 Vq)& N  
    #CcC& I :c  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    857
    光币
    847
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  <-avC/M$d  
    v5Qp[O_  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 gI5"\"T{  
    :3$$PdZ  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)