切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11775阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 v{SYz<(  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! sZa>+  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 ~gbq^  
    function z = zernfun(n,m,r,theta,nflag) L5>.ku=T  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. ;Q8rAsf 9  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N <+7-^o _  
    %   and angular frequency M, evaluated at positions (R,THETA) on the !P* z=  
    %   unit circle.  N is a vector of positive integers (including 0), and SJI+$L\'  
    %   M is a vector with the same number of elements as N.  Each element cW, 6 MAQo  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) b"#|0d0  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, Qte'f+  
    %   and THETA is a vector of angles.  R and THETA must have the same D\G P+Ota  
    %   length.  The output Z is a matrix with one column for every (N,M) Y]1b3 9O  
    %   pair, and one row for every (R,THETA) pair. r \]iw v  
    % tB{O6=q  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike n&uD=-  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), R*psL&N  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral itIzs99j  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, s@bo df&  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized >sE{c>R%  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. -J*jW N!  
    % (%EhkTb  
    %   The Zernike functions are an orthogonal basis on the unit circle. h3Z0NJ=xM  
    %   They are used in disciplines such as astronomy, optics, and 3YPoObY  
    %   optometry to describe functions on a circular domain. G8oOFBQD  
    % U ()36  
    %   The following table lists the first 15 Zernike functions. sHulaX{  
    % as6YjE.Yy  
    %       n    m    Zernike function           Normalization 8CKI9  
    %       -------------------------------------------------- w;Na9tR  
    %       0    0    1                                 1 [Y]\sF;J  
    %       1    1    r * cos(theta)                    2 0dgp<  
    %       1   -1    r * sin(theta)                    2 u=h/l!lR  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) hpJi,4r.d  
    %       2    0    (2*r^2 - 1)                    sqrt(3) ;M"JN:J8  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) HGpj(U:`c  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) q\g|K3V)  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) f=Rx8I  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) J@c)SK%2h  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) ']ussFaQ  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) ( XoL,lJ  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ;  u0 MY  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) z@3t>k|K  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) %g4G&My@J  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) o4CgtqRs  
    %       -------------------------------------------------- lclSzC9  
    % )xuvY3BPB?  
    %   Example 1: Pp[?E.]P  
    % Ojf.D6nY  
    %       % Display the Zernike function Z(n=5,m=1) g2v 0!  
    %       x = -1:0.01:1; @<O Bt d  
    %       [X,Y] = meshgrid(x,x); 0XBv8fg  
    %       [theta,r] = cart2pol(X,Y); w QX,a;Br  
    %       idx = r<=1; UmSy p\i  
    %       z = nan(size(X)); wBUn*L  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); /}\EMP  
    %       figure J ;=~QYn[  
    %       pcolor(x,x,z), shading interp ch}t++`l]  
    %       axis square, colorbar j ,' $i[F'  
    %       title('Zernike function Z_5^1(r,\theta)') Ph'P<h:V  
    % Vs)Pg\B?  
    %   Example 2: {re<S<j&  
    % Oozt&* F  
    %       % Display the first 10 Zernike functions %(,Kj ~0  
    %       x = -1:0.01:1; ;{79d8/=  
    %       [X,Y] = meshgrid(x,x); Yp1;5Bbp  
    %       [theta,r] = cart2pol(X,Y); I]|X6  
    %       idx = r<=1; "RH pj3 si  
    %       z = nan(size(X)); Pvq74?an`  
    %       n = [0  1  1  2  2  2  3  3  3  3]; |<l  sv  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; lU0'5!3R,  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; i"~J -{d}  
    %       y = zernfun(n,m,r(idx),theta(idx)); |gW>D=rkj  
    %       figure('Units','normalized') lr:rQw9  
    %       for k = 1:10 ^#T@NN0T  
    %           z(idx) = y(:,k); #MbkU])  
    %           subplot(4,7,Nplot(k)) VFj}{Y  
    %           pcolor(x,x,z), shading interp Qx-/t9`!Z  
    %           set(gca,'XTick',[],'YTick',[]) |^^'GZ%a  
    %           axis square TzT(aWP"  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) /*)zQ?N  
    %       end K]{Y >w  
    % J|-X?V;ZW  
    %   See also ZERNPOL, ZERNFUN2. *"\QR>n   
    (,wIbwa  
    %   Paul Fricker 11/13/2006 EIqe|a+  
    p0jQQg  
    |kPjjVGF{  
    % Check and prepare the inputs: nm)H\i  
    % ----------------------------- ]o18oY(  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) rz%8V igb  
        error('zernfun:NMvectors','N and M must be vectors.') B8){  
    end .tv'`  
    K}e %E&|>  
    if length(n)~=length(m) 'O%itCy)  
        error('zernfun:NMlength','N and M must be the same length.') j\kT H  
    end 1]Q;fe  
    WZ\bm$  
    n = n(:); R_IUuz$e  
    m = m(:); N?Byp&rqI<  
    if any(mod(n-m,2)) V(hM@ztN  
        error('zernfun:NMmultiplesof2', ... v]UT1d=_T  
              'All N and M must differ by multiples of 2 (including 0).') i^SuVca  
    end iI|mFc|V  
    I!FIV^}Z(  
    if any(m>n) .E H&GX  
        error('zernfun:MlessthanN', ... AgEX,SPP  
              'Each M must be less than or equal to its corresponding N.') 0!<qfT a  
    end )k)HQcfjD  
    5G$N  
    if any( r>1 | r<0 ) 3q'["SS  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') lyY\P6 X  
    end 77KB-l2  
    T?vM\o%i3  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 00jWs@K  
        error('zernfun:RTHvector','R and THETA must be vectors.')  GtR!a  
    end B bU%p  
    7+_TdDBYs  
    r = r(:); #0HZ"n  
    theta = theta(:); BC:d@  
    length_r = length(r); nHAET  
    if length_r~=length(theta) BlwAD  
        error('zernfun:RTHlength', ... LqNt.d @  
              'The number of R- and THETA-values must be equal.') O+iNR9O  
    end ?4k/V6n@y  
    WP*xu-(:  
    % Check normalization: %r E:5)  
    % -------------------- _C`&(?}  
    if nargin==5 && ischar(nflag) ;Gc,-BDFw  
        isnorm = strcmpi(nflag,'norm'); #`Af  
        if ~isnorm (*~'#k  
            error('zernfun:normalization','Unrecognized normalization flag.') tx` Z?K[  
        end /b&ka&|t  
    else ,7HlYPec  
        isnorm = false; z) :LF<  
    end O*Gg57a  
    W&g@o@wa  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ^/6LVB*  
    % Compute the Zernike Polynomials _3Kow{y\  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Q$Q>pV;uH  
    VQ}N& H)`  
    % Determine the required powers of r: 4d x4hBd  
    % ----------------------------------- !uZ)0R  
    m_abs = abs(m); ^(+ X|t  
    rpowers = []; cn ~/P|B[  
    for j = 1:length(n) DT;n)7+,  
        rpowers = [rpowers m_abs(j):2:n(j)]; k|hy_? *  
    end NL^;C3u  
    rpowers = unique(rpowers); (YV]T!q  
    :@rq+wvP  
    % Pre-compute the values of r raised to the required powers, 9%#u,I  
    % and compile them in a matrix: d/"%fpp^0G  
    % ----------------------------- <z.Y#{p?k  
    if rpowers(1)==0 _xWX/1DY  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); $?Km3N\?v  
        rpowern = cat(2,rpowern{:}); ,=a+;D]'  
        rpowern = [ones(length_r,1) rpowern]; H*.v*ro9_  
    else tDC?St1  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); D6I-:{ws  
        rpowern = cat(2,rpowern{:}); &0*7]Wo*  
    end V7 OhOLK8  
    ;No i H&  
    % Compute the values of the polynomials: (X?HuWTm  
    % -------------------------------------- UuKW`(?^  
    y = zeros(length_r,length(n)); W{$J)iQ  
    for j = 1:length(n) >sm~te$5  
        s = 0:(n(j)-m_abs(j))/2; *Uw"`l  
        pows = n(j):-2:m_abs(j); PIHix{YR  
        for k = length(s):-1:1 8l>7=~Egp  
            p = (1-2*mod(s(k),2))* ... ul-O3]\'@  
                       prod(2:(n(j)-s(k)))/              ... ([ jm=[E^  
                       prod(2:s(k))/                     ... -<6b[YA  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... %zKTrsMZ  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); >qy$W4  
            idx = (pows(k)==rpowers); #Zg pm"MW  
            y(:,j) = y(:,j) + p*rpowern(:,idx); NwcRH9};i  
        end og?L 9  
         g#iRkz%l)&  
        if isnorm h.pVIO`  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); %ONU0xtqk  
        end 5(>ux@[qI:  
    end HIq e~Vc  
    % END: Compute the Zernike Polynomials -5b#w"^w^  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Eo`'6 3  
    %$<v:eMAs  
    % Compute the Zernike functions:  \4j(el  
    % ------------------------------ ;S9 z@`a.  
    idx_pos = m>0; v t_lM  
    idx_neg = m<0; WCYVonbg"  
    =TGa\iclpB  
    z = y; $ba*=/{[q  
    if any(idx_pos) :sS4T&@1=  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); +ovT?CM o  
    end jL{k!V`s  
    if any(idx_neg) j;<s!A#  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Sa-" G`  
    end 3>v-,S+  
    *`40B6dEr  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) v"*c\,  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. Byh!Snoe  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated ,*sKr)9)  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive #bS}?fj  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, _Qq lOc9  
    %   and THETA is a vector of angles.  R and THETA must have the same SAU` u]E  
    %   length.  The output Z is a matrix with one column for every P-value, w5vzj%6i  
    %   and one row for every (R,THETA) pair. _&M^}||UH  
    % R"{P#U,HNO  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike y\n#`*5k  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) DFb hy  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) :<H4hYt2  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 ,va2:V  
    %   for all p. `Bb32L   
    % `NQ;|!  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 09=w  
    %   Zernike functions (order N<=7).  In some disciplines it is `NyO|9/4  
    %   traditional to label the first 36 functions using a single mode tqpSir  
    %   number P instead of separate numbers for the order N and azimuthal ,uD}1 G<u  
    %   frequency M. / <+F/R'=O  
    % oz%{D@CF  
    %   Example: ^}UFtL i  
    % W!|l_/L'   
    %       % Display the first 16 Zernike functions psuK\ s  
    %       x = -1:0.01:1; )K]<\Q[  
    %       [X,Y] = meshgrid(x,x); )Wk&c8|y  
    %       [theta,r] = cart2pol(X,Y); NAO0b5-h  
    %       idx = r<=1; k&:~l@?O  
    %       p = 0:15; Rsx?8Y^5  
    %       z = nan(size(X)); $,o@&QT?AT  
    %       y = zernfun2(p,r(idx),theta(idx)); }+giQw4  
    %       figure('Units','normalized') a :CeI  
    %       for k = 1:length(p) V"T5<HA9  
    %           z(idx) = y(:,k); [xXV5 JU  
    %           subplot(4,4,k) !{!(yP_  
    %           pcolor(x,x,z), shading interp _`Dz%(c  
    %           set(gca,'XTick',[],'YTick',[]) yQq|!'MKk  
    %           axis square CQA^"Ll  
    %           title(['Z_{' num2str(p(k)) '}']) \Hu?K\SWs  
    %       end D7Ds*X`!l  
    % !>fi3#Fi  
    %   See also ZERNPOL, ZERNFUN. 16"L;r  
    [4-u{Tu  
    %   Paul Fricker 11/13/2006 Gb.}af#v  
    wsj5;(f+  
    +D?Re%HI  
    % Check and prepare the inputs: KcM+ 8W\  
    % ----------------------------- SJlL!<i$  
    if min(size(p))~=1 1]aya(  
        error('zernfun2:Pvector','Input P must be vector.') u"(2Xer  
    end $gdGII&n  
    N::.o+1  
    if any(p)>35 ||;a#FZ^  
        error('zernfun2:P36', ... JY9hD;`6y  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... ,UfB{BW  
               '(P = 0 to 35).']) R4XcWx*pQ  
    end 7H. HiyppW  
    E6xWo)`%5s  
    % Get the order and frequency corresonding to the function number: N8Un42  
    % ---------------------------------------------------------------- h[]3#  
    p = p(:); Mvk#$:8e  
    n = ceil((-3+sqrt(9+8*p))/2); a61?G!]  
    m = 2*p - n.*(n+2); OKCX>'j:S  
    /?C6 oj1  
    % Pass the inputs to the function ZERNFUN: _2eL3xXha.  
    % ---------------------------------------- )J&!>GP  
    switch nargin c#pVN](?  
        case 3 wtQ(R4  
            z = zernfun(n,m,r,theta); BgwZZ<B  
        case 4 G EAVc9V  
            z = zernfun(n,m,r,theta,nflag); u &{|f  
        otherwise S4%MnT6Uy  
            error('zernfun2:nargin','Incorrect number of inputs.') BtP*R,>  
    end cKAZWON8;v  
    9R|B 5.  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) %suXp,j  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. ,6a }l;lv  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of E %> ){Y)  
    %   order N and frequency M, evaluated at R.  N is a vector of FZtILlw  
    %   positive integers (including 0), and M is a vector with the 7 m!e\x8  
    %   same number of elements as N.  Each element k of M must be a (?zZvW8  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) )IZ~!N|-w  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is veGRwir  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix cx(b5Z  
    %   with one column for every (N,M) pair, and one row for every Gex%~';+q  
    %   element in R. -\=kd {*B  
    % ;hp?wb  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- >a1 ovKF  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is c95{Xy  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to lr@H4EJ{  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 8fs::}0  
    %   for all [n,m]. GGchNt  
    % s&*s9F  
    %   The radial Zernike polynomials are the radial portion of the kzb1iBe 6m  
    %   Zernike functions, which are an orthogonal basis on the unit g3uI1]QXLg  
    %   circle.  The series representation of the radial Zernike cX/ ["AM  
    %   polynomials is ^aO\WKkA  
    % a=3{UEi'o  
    %          (n-m)/2 : S |)  
    %            __ >|So`C3:e  
    %    m      \       s                                          n-2s @VcSK`  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r K|LS VN?K  
    %    n      s=0 [-Dl,P=  
    % $:MO/Su z{  
    %   The following table shows the first 12 polynomials. goV[C]|  
    % y|@=j~}Zq  
    %       n    m    Zernike polynomial    Normalization ?QXo]X;f&  
    %       --------------------------------------------- SpUcrK;1  
    %       0    0    1                        sqrt(2) 675x/0}GO  
    %       1    1    r                           2 <U]#722  
    %       2    0    2*r^2 - 1                sqrt(6) ,4%'~8'3  
    %       2    2    r^2                      sqrt(6) ;1 02ddRV  
    %       3    1    3*r^3 - 2*r              sqrt(8) X`k[ J6  
    %       3    3    r^3                      sqrt(8) 8"g.Z*  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) ]%5DuE\M8\  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) i3} ^j?jA2  
    %       4    4    r^4                      sqrt(10) Lqv5"r7eV  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) Ng3MfbFG  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) DHV#PLbN$  
    %       5    5    r^5                      sqrt(12) <ctn_"p Z  
    %       --------------------------------------------- glppb$oB\  
    % xFY;aK  
    %   Example: &~7b-foCq  
    % j@b4)t  
    %       % Display three example Zernike radial polynomials @"#W\m8  
    %       r = 0:0.01:1; UC34AKm  
    %       n = [3 2 5]; w(9.{zF|vQ  
    %       m = [1 2 1]; oA&V,r  
    %       z = zernpol(n,m,r); BZE~k?*  
    %       figure YFCP'J"Z  
    %       plot(r,z) &V&0kp@+  
    %       grid on #`mo5  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') rs R0V+(W  
    % b!ZXQn3X<  
    %   See also ZERNFUN, ZERNFUN2. WoiK _Ud  
    r^k:$wJbRK  
    % A note on the algorithm. ~o+HAc`=v  
    % ------------------------ XY8s\DK  
    % The radial Zernike polynomials are computed using the series TK;*:K8oe  
    % representation shown in the Help section above. For many special 8uX1('+T*  
    % functions, direct evaluation using the series representation can \gL H_$}  
    % produce poor numerical results (floating point errors), because )-2o}KU]>  
    % the summation often involves computing small differences between gHC -Y 0_  
    % large successive terms in the series. (In such cases, the functions HhaUC?JtSK  
    % are often evaluated using alternative methods such as recurrence $3sS&i<  
    % relations: see the Legendre functions, for example). For the Zernike Q+[e)YO)  
    % polynomials, however, this problem does not arise, because the d\dt}&S 5  
    % polynomials are evaluated over the finite domain r = (0,1), and |wZ8O}O{E  
    % because the coefficients for a given polynomial are generally all 0f 1Lu) 2  
    % of similar magnitude. gaC^<\J  
    % J8$G-~MeJ  
    % ZERNPOL has been written using a vectorized implementation: multiple x(z[S$6Y\  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] _Va!Ky =]  
    % values can be passed as inputs) for a vector of points R.  To achieve lu(<(t,Lbs  
    % this vectorization most efficiently, the algorithm in ZERNPOL 0EYK3<k9!  
    % involves pre-determining all the powers p of R that are required to u|7d_3 ::  
    % compute the outputs, and then compiling the {R^p} into a single qDO4&NO  
    % matrix.  This avoids any redundant computation of the R^p, and OZ1+`4 v  
    % minimizes the sizes of certain intermediate variables. F t%f"Z  
    % H>[1D H#b  
    %   Paul Fricker 11/13/2006 dvk? A$  
    \c+)Y}:D  
    ;5A&[]@^^@  
    % Check and prepare the inputs: 2i4FIS|z0  
    % ----------------------------- %,GY&hTw  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) %lchz /  
        error('zernpol:NMvectors','N and M must be vectors.') d^IOB|6Q  
    end o*\kg+8  
    |8h<Ls_  
    if length(n)~=length(m) pK#Ze/!  
        error('zernpol:NMlength','N and M must be the same length.') S?%V o* Y  
    end ?MuM _6  
    1<^"OjQ  
    n = n(:); ]?xF'3#  
    m = m(:); LKG],1n-  
    length_n = length(n); #JGy2Hk$^  
    -3X#$k8  
    if any(mod(n-m,2)) (j+C&*u  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') wYhWRgP  
    end *~fZ9EkD  
    %FQMB  
    if any(m<0) V# |#% 8  
        error('zernpol:Mpositive','All M must be positive.') /g712\?M4  
    end 'bkecC  
    ,-t3gc1~X  
    if any(m>n) Y*O7lZuF%  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') er^z:1'  
    end B}gi /  
    X4&{/;$  
    if any( r>1 | r<0 ) b/'fC%o,  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') q~r )B}  
    end F$ x@ ]  
    f!*b8ND^R  
    if ~any(size(r)==1)  o )cd!,h  
        error('zernpol:Rvector','R must be a vector.') +}>whyX1  
    end Q$W0>bUP  
    @ h([c  
    r = r(:); /9|1eSUa  
    length_r = length(r); TvAA  
    _$0<]O$  
    if nargin==4 }?#<)|_5  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); n<kcK  
        if ~isnorm ^M  PU?k  
            error('zernpol:normalization','Unrecognized normalization flag.') :HRJ49a  
        end B>t$Z5Q^X  
    else oGly|L>  
        isnorm = false; y)|Q~8r  
    end xg'z_W  
    tk<dp7y7  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% KB7CO:  
    % Compute the Zernike Polynomials 7<AHQ<#@  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% J+[&:]=P  
    vd SV6p.d  
    % Determine the required powers of r: 9]VUQl9gh  
    % ----------------------------------- FsY}mql  
    rpowers = []; IQoz8!guh:  
    for j = 1:length(n) hv}rA,Yd  
        rpowers = [rpowers m(j):2:n(j)]; 6~0S%Hz   
    end y VUA7IY  
    rpowers = unique(rpowers); z* YkD"]B  
    p< '#f,o  
    % Pre-compute the values of r raised to the required powers, kG &.|  
    % and compile them in a matrix: ~LuZ pV  
    % ----------------------------- z;GnQfYG  
    if rpowers(1)==0 &'N{v@Oi)  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); "dXRUg"  
        rpowern = cat(2,rpowern{:}); yd`xmc)  
        rpowern = [ones(length_r,1) rpowern]; X + *@  
    else F5wCl2I  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); hkJ4,.  
        rpowern = cat(2,rpowern{:}); Iujly f  
    end C&,&~^_F  
    |J'@-*5?[8  
    % Compute the values of the polynomials: W@`Nn*S  
    % -------------------------------------- Av^{$9yl  
    z = zeros(length_r,length_n); 4Ucg<Z&%  
    for j = 1:length_n OlK3xdg7  
        s = 0:(n(j)-m(j))/2; he wX)  
        pows = n(j):-2:m(j); uo_Y"QiKEH  
        for k = length(s):-1:1 MmI4J$F  
            p = (1-2*mod(s(k),2))* ... (8qMF{  
                       prod(2:(n(j)-s(k)))/          ... :mX c|W3  
                       prod(2:s(k))/                 ... _:Tjq)  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... $}jp=?,t  
                       prod(2:((n(j)+m(j))/2-s(k))); 8t!(!<iF0  
            idx = (pows(k)==rpowers); 4v33{sp  
            z(:,j) = z(:,j) + p*rpowern(:,idx); n&D<l '4  
        end ]IoJ(4f  
         .|JJyjRA+  
        if isnorm xpx Un8.  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); u&/q7EBfP  
        end xKWqDt  
    end :@rE&  
    @ JZ I  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    857
    光币
    847
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  Y$xO&\&)  
    D`p&`]k3v  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 [M>Md-pj  
    x{4Rm,Dxn  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)