非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 cmzu
@zq
function z = zernfun(n,m,r,theta,nflag) LEq"g7YH
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. W;Rx(o>
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N {M7`z,,[
% and angular frequency M, evaluated at positions (R,THETA) on the 'E4`qq
% unit circle. N is a vector of positive integers (including 0), and (6aSDx
Sc
% M is a vector with the same number of elements as N. Each element \k#|[d5W
% k of M must be a positive integer, with possible values M(k) = -N(k) 4>uy+"8PO
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, b.`<T"y
% and THETA is a vector of angles. R and THETA must have the same },"T,t#
% length. The output Z is a matrix with one column for every (N,M) SNV[KdvP*
% pair, and one row for every (R,THETA) pair. ,Zpc vK/S
% G2bZl%
,D
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike !J5k?J&{=
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), cB;:}Q08#
% with delta(m,0) the Kronecker delta, is chosen so that the integral n~1'M/wh
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, +0w~Skd,
% and theta=0 to theta=2*pi) is unity. For the non-normalized {*=+g>RgD
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. \(nb
>K
% h6*&1r
% The Zernike functions are an orthogonal basis on the unit circle. hmA$gR_
% They are used in disciplines such as astronomy, optics, and ?e`4
sf_~
% optometry to describe functions on a circular domain. )yV|vn
% %:v59:i}
% The following table lists the first 15 Zernike functions. hPCt-
% ){AtV&{$
% n m Zernike function Normalization x>>#<hOz[
% -------------------------------------------------- *4i)aj
% 0 0 1 1 L[]*vj
% 1 1 r * cos(theta) 2 vhw"Nl
% 1 -1 r * sin(theta) 2 0XrB+nt
% 2 -2 r^2 * cos(2*theta) sqrt(6) *V\z]Dy-[
% 2 0 (2*r^2 - 1) sqrt(3) rjmKe*_1V
% 2 2 r^2 * sin(2*theta) sqrt(6) [79 eq=
% 3 -3 r^3 * cos(3*theta) sqrt(8) e}x}Fj</(
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) (xp<@-
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) DFgr,~
% 3 3 r^3 * sin(3*theta) sqrt(8) >m}U|#;W
% 4 -4 r^4 * cos(4*theta) sqrt(10) Yy 4EM
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) `1cGb *b/
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) AL%gqt]
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ^2gDhoO_
% 4 4 r^4 * sin(4*theta) sqrt(10) [0_JS 2KE
% -------------------------------------------------- 6sRe. ct<