切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11748阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 '37 <+N  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! 6Z<|L^  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 5DJ!:QY!  
    function z = zernfun(n,m,r,theta,nflag) |3BxNFe`%  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. N!./u(b  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N QB d4ok: R  
    %   and angular frequency M, evaluated at positions (R,THETA) on the y1B' _s  
    %   unit circle.  N is a vector of positive integers (including 0), and UAGh2?q2  
    %   M is a vector with the same number of elements as N.  Each element jS)YYk5  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) ]IH1_?HgP7  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, C(vQR~_  
    %   and THETA is a vector of angles.  R and THETA must have the same fo~>y  
    %   length.  The output Z is a matrix with one column for every (N,M) <8^ws90Y  
    %   pair, and one row for every (R,THETA) pair. DDj:(I?,w  
    %  v> s,*  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike EUW>8kw0  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), OVGB7CB]S  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral wQ8<%qi"L  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ji<(}d~L*  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized <j1r6.E)  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. i,rX. K}X  
    % e.W<pI,  
    %   The Zernike functions are an orthogonal basis on the unit circle. 'n}]  
    %   They are used in disciplines such as astronomy, optics, and Y]!&, e,  
    %   optometry to describe functions on a circular domain. KE-0/m4yJ  
    % gHFQs](G.  
    %   The following table lists the first 15 Zernike functions. ^91Ae!)d  
    % :i|Bz6Ht4  
    %       n    m    Zernike function           Normalization n<1*cL:8B  
    %       -------------------------------------------------- u/V&1In  
    %       0    0    1                                 1 q2/kegAT  
    %       1    1    r * cos(theta)                    2 IY|`$sHb  
    %       1   -1    r * sin(theta)                    2 hV&"  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) jhJ<JDJ?`  
    %       2    0    (2*r^2 - 1)                    sqrt(3) "\u<\CL  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) Awr(}){  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) s1tkiX{>  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) ^$]iUb{\  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) u> =\.d <  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 'uF-}_ |  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) m'M5O@?  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) E{}J-_oS45  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) =Y*@8=V  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) f4VdH#eng`  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) M(I%QD  
    %       -------------------------------------------------- Dl,sl>{  
    % {$ > .I  
    %   Example 1: Y#+Ws0wN  
    % V+r&Z<&  
    %       % Display the Zernike function Z(n=5,m=1) nJ$2RN  
    %       x = -1:0.01:1; a^_W}gzzd  
    %       [X,Y] = meshgrid(x,x); nm_4E8&X  
    %       [theta,r] = cart2pol(X,Y); wPq9`9 #  
    %       idx = r<=1; -2'+GO7G  
    %       z = nan(size(X)); n5)ml)m  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); EMpq+LrN  
    %       figure q>wO=qWx  
    %       pcolor(x,x,z), shading interp VVcli*  
    %       axis square, colorbar K_k'#j~*?  
    %       title('Zernike function Z_5^1(r,\theta)') }R%*J  
    % Z!*6;[]SfG  
    %   Example 2: h50]%tp\  
    % /%gMzF  
    %       % Display the first 10 Zernike functions y:_>R=sw  
    %       x = -1:0.01:1; u6%\ZK._ \  
    %       [X,Y] = meshgrid(x,x); mg" _3].j  
    %       [theta,r] = cart2pol(X,Y); kU#k#4X4g  
    %       idx = r<=1; =)Fb&h]G^  
    %       z = nan(size(X)); %m [l/,2x  
    %       n = [0  1  1  2  2  2  3  3  3  3]; <H{K&,Z(ZM  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; k~I]Y,  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; w#ZzmO  
    %       y = zernfun(n,m,r(idx),theta(idx)); #f%fY%5q  
    %       figure('Units','normalized') 6uKP BL@,  
    %       for k = 1:10 H@9QEj!Y  
    %           z(idx) = y(:,k); w'XN<RWA  
    %           subplot(4,7,Nplot(k)) x-W~&`UU  
    %           pcolor(x,x,z), shading interp u /DE  
    %           set(gca,'XTick',[],'YTick',[]) j@Pd" Z9  
    %           axis square HXC\``E  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 6J@,bB jVz  
    %       end y%x:~.  
    % %nG>3.%  
    %   See also ZERNPOL, ZERNFUN2. g4YlG"O[~  
    HF"TS*  
    %   Paul Fricker 11/13/2006 e\^}PU  
    %*o  
    6R guUDRQ  
    % Check and prepare the inputs: SlHDBr!.z  
    % ----------------------------- sv!v`zh  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) <Q"G aqZ  
        error('zernfun:NMvectors','N and M must be vectors.') g^x=y  
    end Zu~w:uNmU  
    [zXC\)&!  
    if length(n)~=length(m) byMy- v;  
        error('zernfun:NMlength','N and M must be the same length.') (y~%6o6  
    end "C(yuVK1G  
    ob'" ^LO\  
    n = n(:); {`e-%<  
    m = m(:); l9OpaOVfJ  
    if any(mod(n-m,2)) 87W!R<G  
        error('zernfun:NMmultiplesof2', ... 9Kg yt  
              'All N and M must differ by multiples of 2 (including 0).') OU}eTc(FeC  
    end 4_sJ0=z-  
    pLCS\AUTsv  
    if any(m>n) <m\<yZ2aa  
        error('zernfun:MlessthanN', ... 0rz1b6F5,  
              'Each M must be less than or equal to its corresponding N.') Km!ACA&s6  
    end WPAUY<6f  
    f6Lc"b3s1  
    if any( r>1 | r<0 ) "'@D\e}  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') N ~fE&@-  
    end GB<.kOGQ[  
    /U0Hk>$~(  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 68(^*  
        error('zernfun:RTHvector','R and THETA must be vectors.') IR$d?\O3  
    end aXG|IN5 *m  
    L N.:>,  
    r = r(:); zi_$roq=)  
    theta = theta(:); \8m9^Z7IfK  
    length_r = length(r); Nnr[@^M5  
    if length_r~=length(theta) sD2,!/'  
        error('zernfun:RTHlength', ... 4nP4F +  
              'The number of R- and THETA-values must be equal.') 9 nY|S{L  
    end x?lRObHK  
    oU @!R  
    % Check normalization: kB=B?V~#  
    % -------------------- k;`1Ia  
    if nargin==5 && ischar(nflag) tm1&OY  
        isnorm = strcmpi(nflag,'norm'); e`H>}O/ai  
        if ~isnorm r_T"b  
            error('zernfun:normalization','Unrecognized normalization flag.') _9H]:]1QH  
        end o|vL:| 8Q  
    else FG+pR8aA$  
        isnorm = false; JZ![:$:  
    end !g6=/9  
    &JKQH  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% j~V $q/7S  
    % Compute the Zernike Polynomials n7G`b'  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 3c7i8b$  
    O cPgw/ I  
    % Determine the required powers of r: S)wP];]`K  
    % ----------------------------------- GnUD<P=I  
    m_abs = abs(m); 1aV32oK  
    rpowers = []; (V&d:tW  
    for j = 1:length(n) ?u?mSO/  
        rpowers = [rpowers m_abs(j):2:n(j)]; jO5R~O`  
    end Mzg P@tB  
    rpowers = unique(rpowers); I{>Z0+  
    mSYm18   
    % Pre-compute the values of r raised to the required powers, NqD Hrx  
    % and compile them in a matrix: ZzTkEz >  
    % ----------------------------- V*fv>f:Yv  
    if rpowers(1)==0 i2(v7Gef  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); D29Lu(f  
        rpowern = cat(2,rpowern{:}); oF]]Pl{W  
        rpowern = [ones(length_r,1) rpowern]; O9_1a=M  
    else L@=$0p41;  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); &4}=@'G@  
        rpowern = cat(2,rpowern{:}); V!Sm,S(  
    end WFV'^-4  
    ILl~f\xG)  
    % Compute the values of the polynomials: .{ljhE:  
    % -------------------------------------- cN?/YkW?]  
    y = zeros(length_r,length(n)); SiaW; ks  
    for j = 1:length(n) D}X6I#U'/  
        s = 0:(n(j)-m_abs(j))/2; sR83e|4I  
        pows = n(j):-2:m_abs(j); yEbo`/ ]b  
        for k = length(s):-1:1 4%8den,|  
            p = (1-2*mod(s(k),2))* ... iymN|KdpaZ  
                       prod(2:(n(j)-s(k)))/              ... Y/I)ECm  
                       prod(2:s(k))/                     ... u^|cG{i5"  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 1L'Q;?&2H,  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); WjK[% ;Z!  
            idx = (pows(k)==rpowers); ^0cbN[~/ns  
            y(:,j) = y(:,j) + p*rpowern(:,idx); f.^|2T I1g  
        end X=abaKl  
         vk X+{n  
        if isnorm &g5PPQ18  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 4@Db $PHs  
        end Jq(;BJ90R  
    end XMkRYI1~  
    % END: Compute the Zernike Polynomials {5{VGAD&]>  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% X0^@E   
    |te=DCO  
    % Compute the Zernike functions: hLuv  
    % ------------------------------ .81Y/Gad_  
    idx_pos = m>0; @~|;/OY>"  
    idx_neg = m<0; {'h&[f>zcQ  
    >K4Nn(~ys  
    z = y; `o }+2Cb  
    if any(idx_pos) .*9u_2<  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 52Lp_M  
    end u*I'c2m  
    if any(idx_neg) D]*|Zmr+}  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); bQq/~  
    end $.d,>F6  
    ]>Z9K@  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) XL aD#J  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. W3>9GY90R  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated $6*Yh-"g  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive _L~ 3h  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, fvH{ va.  
    %   and THETA is a vector of angles.  R and THETA must have the same h~9P3 4m  
    %   length.  The output Z is a matrix with one column for every P-value, SZ[?2z  
    %   and one row for every (R,THETA) pair. nM.g8d K  
    % ?K:\WW  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike 3fQ`}OcNr  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) vw3[(_MV3_  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) |T/OOIA=sI  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 tl!dRV92  
    %   for all p. gU|:Y&lFZg  
    % =6:9y}~  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 a*X{hU 9P  
    %   Zernike functions (order N<=7).  In some disciplines it is :X'B K4EN  
    %   traditional to label the first 36 functions using a single mode +CdUr~6  
    %   number P instead of separate numbers for the order N and azimuthal wS9V@  
    %   frequency M. j][&o-Ev  
    % zw+wq+2"  
    %   Example: >5kz#|@P  
    % {X?1}5ry  
    %       % Display the first 16 Zernike functions q|]CA  
    %       x = -1:0.01:1; A_U=`M=-  
    %       [X,Y] = meshgrid(x,x); W&9 qgbO]  
    %       [theta,r] = cart2pol(X,Y); -o"b$[sf=Z  
    %       idx = r<=1; D- C]0Jf3  
    %       p = 0:15; U n)Xe  
    %       z = nan(size(X)); *Us}E7/"'  
    %       y = zernfun2(p,r(idx),theta(idx)); Ekq(  
    %       figure('Units','normalized') L7(FD v,?  
    %       for k = 1:length(p) I|&DXF  
    %           z(idx) = y(:,k); -A<@Pg  
    %           subplot(4,4,k) (Ytr&gh;0  
    %           pcolor(x,x,z), shading interp fm^`   
    %           set(gca,'XTick',[],'YTick',[]) l"dXL"h  
    %           axis square %SIll  
    %           title(['Z_{' num2str(p(k)) '}']) Nk\ni>Du3  
    %       end kBC$dW-  
    % l\AdL$$Mb  
    %   See also ZERNPOL, ZERNFUN. 2Ul8<${c{  
    ,GVX1B?  
    %   Paul Fricker 11/13/2006 6U8esPs,  
    NV/paoyx:*  
    Pb T2- F_  
    % Check and prepare the inputs: 1U/9=b  
    % ----------------------------- :PN%'~}n  
    if min(size(p))~=1 s Y1@~v  
        error('zernfun2:Pvector','Input P must be vector.') L#a!fd  
    end yZp/P%y  
    )ej1)RU"  
    if any(p)>35 %$o[,13=  
        error('zernfun2:P36', ... ]5a3e+  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... jGkDD8K [  
               '(P = 0 to 35).']) fCY??su*   
    end N& F.hi$_  
    @UdF6 :T  
    % Get the order and frequency corresonding to the function number: d\3 %5Y  
    % ---------------------------------------------------------------- + (:Qf+:  
    p = p(:); @,,G]4zZ!  
    n = ceil((-3+sqrt(9+8*p))/2); F`e E*&  
    m = 2*p - n.*(n+2); yLCMu | +  
    L|#0CRiN  
    % Pass the inputs to the function ZERNFUN: .3_u5N|[=W  
    % ---------------------------------------- ~V?z!3r-)  
    switch nargin (r?hD*2r  
        case 3 9\Ff z&  
            z = zernfun(n,m,r,theta); T<Y*();Zo  
        case 4 W-r^ME  
            z = zernfun(n,m,r,theta,nflag); 5-fASN.Lx  
        otherwise 5o4KV?"  
            error('zernfun2:nargin','Incorrect number of inputs.') IOxtuR  
    end R%}<z*~NE@  
    `q^qe>'  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) CflyK@  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. eG2'W  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of nLk`W"irM  
    %   order N and frequency M, evaluated at R.  N is a vector of J_yXL7d  
    %   positive integers (including 0), and M is a vector with the Z 369<  
    %   same number of elements as N.  Each element k of M must be a /TB{|_HbW  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) vAop#V  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is YE*|KL^  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix 3 .j/D^  
    %   with one column for every (N,M) pair, and one row for every  6; )5v  
    %   element in R. gWjr|m<  
    % ;C1#[U1Uy  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- mb3aUFxA;  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is RSB+Saf.8  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to 4|Y1W}!0/  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 =)jo}MB  
    %   for all [n,m]. as/PM"  
    % |${ImP  
    %   The radial Zernike polynomials are the radial portion of the %52x:qGa  
    %   Zernike functions, which are an orthogonal basis on the unit rk;]7Wu  
    %   circle.  The series representation of the radial Zernike {=J:  
    %   polynomials is Ax=)J{4v  
    % E^{!B]/oP  
    %          (n-m)/2 ZO<\rX (  
    %            __ :YkAp9civ  
    %    m      \       s                                          n-2s pih 0ME}z  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r sL\ {.ad5  
    %    n      s=0 yEh{9S%6p  
    % Gi@c`lRd1  
    %   The following table shows the first 12 polynomials. %B1TN#KoT  
    % "+&pd!\  
    %       n    m    Zernike polynomial    Normalization [%6)  
    %       --------------------------------------------- d>MDC . j  
    %       0    0    1                        sqrt(2) #J5_z#-Q;  
    %       1    1    r                           2 t3^`:T\  
    %       2    0    2*r^2 - 1                sqrt(6) };P=|t(r  
    %       2    2    r^2                      sqrt(6) L"S2+F)n  
    %       3    1    3*r^3 - 2*r              sqrt(8) \C>vj+!cJ  
    %       3    3    r^3                      sqrt(8) /ET+`=n  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) 8sI$  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) z9 #-  
    %       4    4    r^4                      sqrt(10) wm ?%&V/#  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) !z2xm3s{]p  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) jxhZOLG  
    %       5    5    r^5                      sqrt(12) 5efN5Kt  
    %       --------------------------------------------- 0SIUp/.  
    % !.pcldx  
    %   Example: b *0uxvLu  
    % {^;7DV:  
    %       % Display three example Zernike radial polynomials \3K7)o^  
    %       r = 0:0.01:1; l:/x &=w  
    %       n = [3 2 5]; rp1+K4]P  
    %       m = [1 2 1]; g6.I~o Q j  
    %       z = zernpol(n,m,r); -,g.39u  
    %       figure 8gt*`]I  
    %       plot(r,z) :mLXB75gH  
    %       grid on k*,+ag*j  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') {+{p.  
    % _"t>72 `  
    %   See also ZERNFUN, ZERNFUN2. |tLD^`bt  
    uz$p'Q  
    % A note on the algorithm. TOa6sB!H  
    % ------------------------ KC(z TY  
    % The radial Zernike polynomials are computed using the series rL+.3ZO):P  
    % representation shown in the Help section above. For many special "j8=%J{  
    % functions, direct evaluation using the series representation can r>*+d|c 4  
    % produce poor numerical results (floating point errors), because uD{ xs  
    % the summation often involves computing small differences between 8s[1-l  
    % large successive terms in the series. (In such cases, the functions v*As:;D_  
    % are often evaluated using alternative methods such as recurrence ~>0H k}Hv  
    % relations: see the Legendre functions, for example). For the Zernike +NvpYz  
    % polynomials, however, this problem does not arise, because the Nx*1m BC  
    % polynomials are evaluated over the finite domain r = (0,1), and 4qsxlN>4O  
    % because the coefficients for a given polynomial are generally all 3a ZS1]/  
    % of similar magnitude. +7_U( |gO  
    % {%y|A{}c  
    % ZERNPOL has been written using a vectorized implementation: multiple _T8S4s8q  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] D8Mq '$-  
    % values can be passed as inputs) for a vector of points R.  To achieve ,PJC FQMR  
    % this vectorization most efficiently, the algorithm in ZERNPOL YvP62c \  
    % involves pre-determining all the powers p of R that are required to I=P<RG7j)  
    % compute the outputs, and then compiling the {R^p} into a single Ux=B*m1@{  
    % matrix.  This avoids any redundant computation of the R^p, and :mf&,?  
    % minimizes the sizes of certain intermediate variables. /P]N40_@  
    %  _X=6M gU  
    %   Paul Fricker 11/13/2006 `/!FZh<  
    !V/7q'&t=  
    ke<5]&x  
    % Check and prepare the inputs: M:&%c3  
    % ----------------------------- z> DQ  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) >*!^pbZfX  
        error('zernpol:NMvectors','N and M must be vectors.') ^mC,Z+!  
    end 15aPoxo>  
    Bx$?*y&f!v  
    if length(n)~=length(m) s&$e}yxVO  
        error('zernpol:NMlength','N and M must be the same length.') '(N(k@>{  
    end ovXk~%_  
    [EZ=tk  
    n = n(:); tw\1&*:  
    m = m(:); \l 8_aj  
    length_n = length(n); eT(X Ri0  
    )<_qTd0`  
    if any(mod(n-m,2)) zx.SRs$  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') W5:fY>7  
    end O2="'w'kR  
    DvOvtd  
    if any(m<0) =9 ^}>u  
        error('zernpol:Mpositive','All M must be positive.') ^~@3X[No  
    end 1cRF0MI  
    qZ@d:u  
    if any(m>n) fy|I3  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') ,\#s_N 7  
    end ]\L+]+u~  
    a69e^;,>q  
    if any( r>1 | r<0 ) DVKb`KJ"  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') }Ujgd2(U  
    end ({!H ()  
    0]=Bqyg  
    if ~any(size(r)==1) du#f_|xG  
        error('zernpol:Rvector','R must be a vector.') EN}XIa>R  
    end e-\/1N84  
    $% gz, {  
    r = r(:); @M'qi=s*  
    length_r = length(r); <X1 lq9 lW  
    X-TGrdoX  
    if nargin==4 NPM2qL9&J  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); yaWY>sB  
        if ~isnorm 7-}5 W  
            error('zernpol:normalization','Unrecognized normalization flag.') Ld/6{w4ir  
        end S{f,EBE  
    else Hr!$mf)h  
        isnorm = false; 83{P7PBQ;]  
    end DBLM0*B  
    %^nNt:N0  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% f\.y z[  
    % Compute the Zernike Polynomials bQwG"N  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ;'08-Et  
    6 v~nEw  
    % Determine the required powers of r: 6PS[OB{3  
    % ----------------------------------- oayu*a.  
    rpowers = []; ki/Cpfq40*  
    for j = 1:length(n) 8c_X`0jy  
        rpowers = [rpowers m(j):2:n(j)]; Cg`lQY U  
    end y'>JT/Q5  
    rpowers = unique(rpowers); !y'>sAf  
    F[!%,-*  
    % Pre-compute the values of r raised to the required powers, tns8B  
    % and compile them in a matrix: *p#@W-:9E  
    % ----------------------------- EN":}!E:  
    if rpowers(1)==0 2 >j0,2  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); zH9*w:"4<_  
        rpowern = cat(2,rpowern{:}); [m 6+I9  
        rpowern = [ones(length_r,1) rpowern]; e#mqerpJ  
    else {&B_b|g*fW  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ~/z%yg  
        rpowern = cat(2,rpowern{:}); la!U  
    end w%\{4T~  
    i^ |G  
    % Compute the values of the polynomials: !IO\g"y~|%  
    % -------------------------------------- *FZav2]-  
    z = zeros(length_r,length_n); ',t*:GBZCf  
    for j = 1:length_n 37Q8Yf_  
        s = 0:(n(j)-m(j))/2; \@N~{72:k  
        pows = n(j):-2:m(j); ,r]H+vWS  
        for k = length(s):-1:1 \0_jmX]p  
            p = (1-2*mod(s(k),2))* ... }HmkTk  
                       prod(2:(n(j)-s(k)))/          ... #=33TvprR2  
                       prod(2:s(k))/                 ... >P\eHR,{-  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... \b8#xT}  
                       prod(2:((n(j)+m(j))/2-s(k))); #)twk `!^  
            idx = (pows(k)==rpowers); m6$&yKQ-=h  
            z(:,j) = z(:,j) + p*rpowern(:,idx); %Q &']  
        end <j,3Dn  
         bM:4i1Z  
        if isnorm V+@}dJS  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); Q@>1z*'I  
        end Pc< "qy  
    end wQjYH!u,YZ  
    xU0iz{9  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    857
    光币
    847
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  {{P 3Z[  
    JC~sz^>p\  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 <HRPloVKo  
    }6%\/d1~ 6  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)