切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11809阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 )Cl!,m)~  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! h ,;f6  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 I75>$"$<  
    function z = zernfun(n,m,r,theta,nflag) w\wS?E4G  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 7P!<c/ E  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 2xy &mNx  
    %   and angular frequency M, evaluated at positions (R,THETA) on the *xY}?vSs  
    %   unit circle.  N is a vector of positive integers (including 0), and s~OGl PK  
    %   M is a vector with the same number of elements as N.  Each element [k)xn3[  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) dN'2;X  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 9I3vW]0x[  
    %   and THETA is a vector of angles.  R and THETA must have the same " sh%8 <N  
    %   length.  The output Z is a matrix with one column for every (N,M) :oRR1k  
    %   pair, and one row for every (R,THETA) pair. @wa2Z  
    % r 334E  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike "[W${q+0x  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), bvVEV  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral # `}(x;ge  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, )*!"6d)^  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized Q4;eN w  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 70s.  
    % $$my,:nH  
    %   The Zernike functions are an orthogonal basis on the unit circle. M'Fa[n*b?!  
    %   They are used in disciplines such as astronomy, optics, and v/dyu  
    %   optometry to describe functions on a circular domain. d1MY>zq  
    % >,JLYz|</  
    %   The following table lists the first 15 Zernike functions. 01bBZWX  
    % wNzALfS  
    %       n    m    Zernike function           Normalization .Pz( 0Y  
    %       -------------------------------------------------- Ur^~fW1 o  
    %       0    0    1                                 1 #Av6BGM|,  
    %       1    1    r * cos(theta)                    2 f+*wDH  
    %       1   -1    r * sin(theta)                    2 VKzY6  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ]`[r=cG  
    %       2    0    (2*r^2 - 1)                    sqrt(3) sfLH[Q?  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) 'rWu}#Nb  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) VU~ R  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) Grot3a  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) kGaK(^w  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) "'389*-  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) aI8k:FK"  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Z' cQ< f  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) ]#)1(ZE  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ARcPHV<(2  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) \SA"DT  
    %       -------------------------------------------------- ^;on  
    % r3~~4Q4XI>  
    %   Example 1: hN(sz  
    % /$]#L%   
    %       % Display the Zernike function Z(n=5,m=1) Ww(($e!  
    %       x = -1:0.01:1; Jptzc:~B  
    %       [X,Y] = meshgrid(x,x); DyZe+,g;S  
    %       [theta,r] = cart2pol(X,Y); &hciv\YT2W  
    %       idx = r<=1; g~zz[F 8U  
    %       z = nan(size(X)); qx#k()E.U  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); >FrF"u:kM  
    %       figure &c;@u?:@S  
    %       pcolor(x,x,z), shading interp eVRFb#EU0e  
    %       axis square, colorbar h>s|MZQ:*  
    %       title('Zernike function Z_5^1(r,\theta)') m(~5X0  
    % }zA kUt  
    %   Example 2: # X~{p4Lr  
    % [A@K)A$f  
    %       % Display the first 10 Zernike functions hXxgKi%  
    %       x = -1:0.01:1; |~QHCg<  
    %       [X,Y] = meshgrid(x,x); UkO L7M  
    %       [theta,r] = cart2pol(X,Y); @I\&-Z ^  
    %       idx = r<=1; axf4N@  
    %       z = nan(size(X)); #2N']VP  
    %       n = [0  1  1  2  2  2  3  3  3  3]; mFL"h  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; desrKnY  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; N$Pi4  
    %       y = zernfun(n,m,r(idx),theta(idx)); ifo^ M]v  
    %       figure('Units','normalized') u!NY@$Wc  
    %       for k = 1:10 ~d+.w%Z `  
    %           z(idx) = y(:,k); yrp;G_  
    %           subplot(4,7,Nplot(k)) 1e Wl:S}  
    %           pcolor(x,x,z), shading interp 9XU"Ppv  
    %           set(gca,'XTick',[],'YTick',[]) <r[5 S5y  
    %           axis square _RzwE$+9  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) )v1y P  
    %       end 7/p&]0w  
    % @-uV6X8|  
    %   See also ZERNPOL, ZERNFUN2. fgmu*\x<  
    [K(|V  
    %   Paul Fricker 11/13/2006 y)`f$Hl@1  
    <"Ox)XG3]W  
    `# N j8  
    % Check and prepare the inputs: K^H{B& b8  
    % ----------------------------- v]"W.<B,  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) cba  
        error('zernfun:NMvectors','N and M must be vectors.') QKj8~l(  
    end Zd2B4~V  
    )qg cz<p?W  
    if length(n)~=length(m) sTn}:A6  
        error('zernfun:NMlength','N and M must be the same length.') <=]wh|D  
    end  s~A#B)wB  
    --(e(tvf  
    n = n(:); s-\.j-Sa  
    m = m(:); p};B*[ki  
    if any(mod(n-m,2)) <!+T#)Qi  
        error('zernfun:NMmultiplesof2', ... 'qhi8=*  
              'All N and M must differ by multiples of 2 (including 0).') 4$j7DJ8dj  
    end 6P0\t\D0  
    h .A@o#x  
    if any(m>n) jRk"#:  
        error('zernfun:MlessthanN', ... 3ID 1>  
              'Each M must be less than or equal to its corresponding N.') (?9@nS  
    end d&!;uzOx  
    f)~j'e  
    if any( r>1 | r<0 ) h92'~X36  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') C\ ~!2cy  
    end YQ\c0XG  
    !=C74$TH  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) PrA?e{B5m  
        error('zernfun:RTHvector','R and THETA must be vectors.') (qf%,F,_L  
    end C-vFl[@a0  
    @X_<y  
    r = r(:); C}i1)   
    theta = theta(:); *.4VO+^  
    length_r = length(r); ,Z2fVz~9  
    if length_r~=length(theta) k<bA\5K  
        error('zernfun:RTHlength', ... <{t*yMr   
              'The number of R- and THETA-values must be equal.') **oa R  
    end 8'niew 5d  
    mes/gqrJ1I  
    % Check normalization: A/WmVv6  
    % -------------------- {S+  $C  
    if nargin==5 && ischar(nflag) *,hg+?lZ  
        isnorm = strcmpi(nflag,'norm'); S< TUZ /;  
        if ~isnorm *wSz2o),  
            error('zernfun:normalization','Unrecognized normalization flag.') %K9 9_Cl3  
        end <)D)j[  
    else X9|={ng)g#  
        isnorm = false; ;x]CaG)f  
    end GmjTxNU@  
    ?h7,q*rxk  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% m$ubxI)  
    % Compute the Zernike Polynomials kjS9?>i  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 6k1;62Ntk  
    vpnOc2 -  
    % Determine the required powers of r: 1FkS$ j8:  
    % ----------------------------------- ~d9R:t1  
    m_abs = abs(m); M, uQ8SZA[  
    rpowers = []; W7\s=t\  
    for j = 1:length(n) ^lI>&I&1  
        rpowers = [rpowers m_abs(j):2:n(j)]; VL[}  
    end &jbZL5  
    rpowers = unique(rpowers); h(<2{%j  
    <WWn1k_  
    % Pre-compute the values of r raised to the required powers, V2v}F=  
    % and compile them in a matrix: \dB)G<_  
    % ----------------------------- li4"|T&  
    if rpowers(1)==0 a 8(mU%  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ` oPUf!  
        rpowern = cat(2,rpowern{:}); _J N$zZ{  
        rpowern = [ones(length_r,1) rpowern]; s<GR ?  
    else AW\#)Em  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); v` G[6Z  
        rpowern = cat(2,rpowern{:}); i_[nW  
    end dTATJ)NH  
    y)Y0SY1\j  
    % Compute the values of the polynomials: l-~ o&n  
    % -------------------------------------- a7Xa3 vlpO  
    y = zeros(length_r,length(n)); h#e((j3-2Z  
    for j = 1:length(n) rQrh(~\:  
        s = 0:(n(j)-m_abs(j))/2; y} .?`/Q#  
        pows = n(j):-2:m_abs(j); kuQ+MQHs  
        for k = length(s):-1:1 8c1ma  
            p = (1-2*mod(s(k),2))* ... s)eU^4m  
                       prod(2:(n(j)-s(k)))/              ... ,`su0P\%#.  
                       prod(2:s(k))/                     ... n/zTS3<  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... lk(q>dvK  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); pS) &d4i  
            idx = (pows(k)==rpowers); 9pehQFfH  
            y(:,j) = y(:,j) + p*rpowern(:,idx); Bh%Yu*.f  
        end I<&(Dg|XQ  
         r;~2NxMF/  
        if isnorm u3VSS4RG%  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); MlVVST  
        end 01br l^5K  
    end ;d#`wSF`G  
    % END: Compute the Zernike Polynomials &B c$8ZR  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% =KCAHNr4?  
    vIK+18v7  
    % Compute the Zernike functions: Jh6 z5xUV  
    % ------------------------------ }Q<c E$c  
    idx_pos = m>0; SI~MTUqt  
    idx_neg = m<0; =Felo8+   
    bS2)L4MQY  
    z = y; ej^pFo  
    if any(idx_pos) *D_pFS^l  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); (& =gM  
    end )LRso>iOO  
    if any(idx_neg) M{   
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Y \oz9tf8  
    end [<!4 a  
    D'UYHc {  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) mY& HK)  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. p>#QFd"m  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated @*s7~:VQ  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive "n Zh u k  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, &|j^?ro6  
    %   and THETA is a vector of angles.  R and THETA must have the same r'/H3  
    %   length.  The output Z is a matrix with one column for every P-value, dK^WZQ  
    %   and one row for every (R,THETA) pair. 0DIXd*oj&  
    % "^3pP(8;~  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike E5EAk6  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) 7Ns1b(kU  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) sfuA {c'v  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 gb,X"ODq  
    %   for all p. omEnIfQSO  
    % F ~O}@e{  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 ~ v21b?   
    %   Zernike functions (order N<=7).  In some disciplines it is ^7zXi xp  
    %   traditional to label the first 36 functions using a single mode Jd0I!L  
    %   number P instead of separate numbers for the order N and azimuthal *|F ;An.N^  
    %   frequency M. {;0+N -U  
    % ]!=,8dY  
    %   Example: 8G6[\P3fQ  
    % B[8`l} t  
    %       % Display the first 16 Zernike functions %I 3D/!%  
    %       x = -1:0.01:1; {YoK63b$  
    %       [X,Y] = meshgrid(x,x); yo=0Ov  
    %       [theta,r] = cart2pol(X,Y); CPj8`kl  
    %       idx = r<=1; W.O]f.h  
    %       p = 0:15; ^]A,Q%1q^  
    %       z = nan(size(X)); (='e9H!3D  
    %       y = zernfun2(p,r(idx),theta(idx)); m0(]%Kdw  
    %       figure('Units','normalized') q4wS<, 3  
    %       for k = 1:length(p) d4]9oi{}  
    %           z(idx) = y(:,k); 74u_YA<"  
    %           subplot(4,4,k) QT\=>,Fz _  
    %           pcolor(x,x,z), shading interp X u+^41  
    %           set(gca,'XTick',[],'YTick',[]) O 6}eV^y  
    %           axis square )t#v55M  
    %           title(['Z_{' num2str(p(k)) '}']) -%g&O-i\  
    %       end %l.5c Sn@  
    % btZ9JZvMx  
    %   See also ZERNPOL, ZERNFUN. "{igrl8  
    }kK6"]Tj  
    %   Paul Fricker 11/13/2006 o8A1cb4<T  
    :Q@qR((&o  
    d2!A32m  
    % Check and prepare the inputs: c'gV  
    % ----------------------------- u}:p@j}Zv  
    if min(size(p))~=1 TjswB#  
        error('zernfun2:Pvector','Input P must be vector.') m\];.Da  
    end 2xx  
    [Jjb<6[o  
    if any(p)>35 h jCkj(b  
        error('zernfun2:P36', ... OlwORtWzZ  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... |'R^\M Q  
               '(P = 0 to 35).']) (*CGZDg  
    end ?8O %k<?  
    (Q/Kp*a  
    % Get the order and frequency corresonding to the function number: ^G~C#t^  
    % ---------------------------------------------------------------- C72!::o  
    p = p(:); s,*kWy"jp  
    n = ceil((-3+sqrt(9+8*p))/2); 0OrT{jo  
    m = 2*p - n.*(n+2); ;:/<XfZ  
    A3#^R%2)W  
    % Pass the inputs to the function ZERNFUN: km(Mv  
    % ---------------------------------------- hj_%'kk-A  
    switch nargin wj$J} F  
        case 3 42Vz6 k:  
            z = zernfun(n,m,r,theta); ktu{I  
        case 4 -hpJL\ng  
            z = zernfun(n,m,r,theta,nflag); 2Y`C\u  
        otherwise 3S97hn{|=  
            error('zernfun2:nargin','Incorrect number of inputs.') hA0g'X2eC  
    end i3s,C;7[2  
    Gd]!D~[1  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) x2KIGG ^  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. g20,et  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of 9AxeA2/X  
    %   order N and frequency M, evaluated at R.  N is a vector of /;[Zw8K7  
    %   positive integers (including 0), and M is a vector with the te 0a6  
    %   same number of elements as N.  Each element k of M must be a ^zv,VD  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) OjUZ-_J  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is n&`=.[+A  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix has \W\(  
    %   with one column for every (N,M) pair, and one row for every S S/9fT"[  
    %   element in R. 5c W2  
    % T/A[C  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- TCC([  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is qNH= W?T8.  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to .BWCGb2bH  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 ?/SIA9VK  
    %   for all [n,m]. |BO!q9633V  
    % f*{~N!g  
    %   The radial Zernike polynomials are the radial portion of the YCWt%a*I'  
    %   Zernike functions, which are an orthogonal basis on the unit NJVAvq2E.  
    %   circle.  The series representation of the radial Zernike SXA`o<Ma  
    %   polynomials is vp4l g1/  
    % i"#36CVT~  
    %          (n-m)/2 /]mfI&l+9  
    %            __ p\7(`0?8VN  
    %    m      \       s                                          n-2s sI@y)z  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r rr@S|k:|  
    %    n      s=0 Y\Z.E ;  
    % nO'lN<L  
    %   The following table shows the first 12 polynomials. /MErS< 6  
    % \5MW65  
    %       n    m    Zernike polynomial    Normalization ;{zgp  
    %       --------------------------------------------- B ``)  
    %       0    0    1                        sqrt(2) Vm_waa  
    %       1    1    r                           2 E*uz|w3S)Y  
    %       2    0    2*r^2 - 1                sqrt(6) tML[~AZh  
    %       2    2    r^2                      sqrt(6) @Qlh  
    %       3    1    3*r^3 - 2*r              sqrt(8) y rSTU-5u  
    %       3    3    r^3                      sqrt(8) 8: x{  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) * mzJ)4A  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) AB!P(  
    %       4    4    r^4                      sqrt(10) l;N?*2zm[  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) 4H<@da}  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) "M)kV5v%  
    %       5    5    r^5                      sqrt(12) pCE,l'Xa  
    %       --------------------------------------------- Xx=jN1=,  
    % GE2^v_  
    %   Example: (iwZs:k-  
    % WSt&?+Y  
    %       % Display three example Zernike radial polynomials V<ZohB?y  
    %       r = 0:0.01:1; <vMdfw"(  
    %       n = [3 2 5]; O% 1X[  
    %       m = [1 2 1]; \c"{V-#o\  
    %       z = zernpol(n,m,r); mHm"QBa!  
    %       figure 3kTOWIX  
    %       plot(r,z) yX^/Oc@j  
    %       grid on b6@(UneVM  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') oi@hZniP?  
    % lWVvAoe  
    %   See also ZERNFUN, ZERNFUN2. :sf(=Y.qA  
    +@U}gk;#c  
    % A note on the algorithm. tAI<[M@  
    % ------------------------ b5-WK;  
    % The radial Zernike polynomials are computed using the series h!vq~g  
    % representation shown in the Help section above. For many special 7K 8tz}  
    % functions, direct evaluation using the series representation can tX<. Ud  
    % produce poor numerical results (floating point errors), because C EzTErn  
    % the summation often involves computing small differences between ?)8OC(B8q  
    % large successive terms in the series. (In such cases, the functions sPu@t&$  
    % are often evaluated using alternative methods such as recurrence Wfw6(L  
    % relations: see the Legendre functions, for example). For the Zernike gc ce]QS  
    % polynomials, however, this problem does not arise, because the !| G 8b'  
    % polynomials are evaluated over the finite domain r = (0,1), and BI BBp=+  
    % because the coefficients for a given polynomial are generally all ;tBc&LJ?  
    % of similar magnitude. U{8]TEv  
    % MmZs|pXk  
    % ZERNPOL has been written using a vectorized implementation: multiple $KmhG1*s  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] jjT|@\-u  
    % values can be passed as inputs) for a vector of points R.  To achieve  QB/H  
    % this vectorization most efficiently, the algorithm in ZERNPOL i9QL}d  
    % involves pre-determining all the powers p of R that are required to ]*M VVzF  
    % compute the outputs, and then compiling the {R^p} into a single gcaXN6C  
    % matrix.  This avoids any redundant computation of the R^p, and u_;&+o2  
    % minimizes the sizes of certain intermediate variables. S)$)AN<O  
    % e\9H'$1\  
    %   Paul Fricker 11/13/2006 .4t-5,7s%  
    i^i^g5l!  
    m(B,a,g<  
    % Check and prepare the inputs: w9Eb\An  
    % ----------------------------- 4v=NmO }  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) n1"QHA  
        error('zernpol:NMvectors','N and M must be vectors.') 7sC8|+  
    end shn{]Y  
    l6[0i  
    if length(n)~=length(m) z_A:MoYf o  
        error('zernpol:NMlength','N and M must be the same length.') jt*VD>ji  
    end eSC69mfD  
    fsA-}Qc  
    n = n(:); XOdkfmc+s'  
    m = m(:); B9Ha6kj  
    length_n = length(n); Zi!6dl ev  
    $bGe1\  
    if any(mod(n-m,2)) B!;qz[]I  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') iG.qMf.  
    end h rksPK"s2  
    YFGQPg  
    if any(m<0) K|OowM4tv  
        error('zernpol:Mpositive','All M must be positive.') viLK\>>  
    end cNd;qO0$  
    "!fvEE  
    if any(m>n) 4!I;U>b b  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') *Dz<Pi^  
    end bnm3 cR:h"  
    ZeL v!  
    if any( r>1 | r<0 ) 3 zF"GT  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') e%B;8)7  
    end P ]prrKZe,  
    ssWSY(j]  
    if ~any(size(r)==1) Dd=iYM m7  
        error('zernpol:Rvector','R must be a vector.') aCwb[7N  
    end &ND8^lR=Y;  
    hPM:=@ N$  
    r = r(:); =LUDg7P  
    length_r = length(r); dV:vM9+x  
    DaK2P;WP  
    if nargin==4 r N.<S[  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); ^<}>]F_  
        if ~isnorm r=`]L-}V  
            error('zernpol:normalization','Unrecognized normalization flag.') W{{{c2 .  
        end #U=}Pv~wM  
    else _F"o0K!u  
        isnorm = false; Yw\7`  
    end 0VA$ Ige  
    z1WF@ Ej  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% fG^#G/n2  
    % Compute the Zernike Polynomials -%h0`hOG{  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %"1*,g{  
    ?11\@d  
    % Determine the required powers of r: +dt b~M  
    % ----------------------------------- 6?CBa]QG  
    rpowers = []; 8%Wg;:DZx  
    for j = 1:length(n) pFUW7jE  
        rpowers = [rpowers m(j):2:n(j)]; //ZYN2lT4  
    end L'*P;z7<  
    rpowers = unique(rpowers); 7Lv5@  
    l5}b.B^w  
    % Pre-compute the values of r raised to the required powers, %U4w@jp  
    % and compile them in a matrix: hlgBx~S[  
    % ----------------------------- '%D$|)  
    if rpowers(1)==0 YTtuR`  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); .\W6XRw  
        rpowern = cat(2,rpowern{:}); ~I+}u]J  
        rpowern = [ones(length_r,1) rpowern]; 9aE.jpN  
    else LMV0:\>  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); t]j4PNzn  
        rpowern = cat(2,rpowern{:}); f\Fk+)e@  
    end -d|VXD5N  
    yXpU)|o  
    % Compute the values of the polynomials: `D#3  
    % -------------------------------------- bhI yq4N  
    z = zeros(length_r,length_n); T{L{<+9%  
    for j = 1:length_n 5_d=~whO&2  
        s = 0:(n(j)-m(j))/2; gEE6O%]g  
        pows = n(j):-2:m(j); lF=l|.c  
        for k = length(s):-1:1 8olR#>  
            p = (1-2*mod(s(k),2))* ... +>F #{b  
                       prod(2:(n(j)-s(k)))/          ... 6L2Si4OGjG  
                       prod(2:s(k))/                 ... I>]t% YKj  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... !Gphs`YI  
                       prod(2:((n(j)+m(j))/2-s(k))); kRyt|ryWh  
            idx = (pows(k)==rpowers); y[}O(  
            z(:,j) = z(:,j) + p*rpowern(:,idx); Ix"hl0Kh  
        end 8@S5P$b};  
         .Fz5K&E=  
        if isnorm 4/Vy@h"A3  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); w84 ] s%y  
        end A ko}v"d  
    end T@GR Tg  
    ql Uw;{;p  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    857
    光币
    847
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  (Q !4\Gy  
    E|D~:M%~  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 Nt#zr]Fz  
    : j&M&+  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)