非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 xx!8cvD4?
function z = zernfun(n,m,r,theta,nflag) v^ @)&,
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. Oe;#q
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N R ?iCJ5 m
% and angular frequency M, evaluated at positions (R,THETA) on the ,:PMS8pS
% unit circle. N is a vector of positive integers (including 0), and |:5O|m '
% M is a vector with the same number of elements as N. Each element TiI /I`A
% k of M must be a positive integer, with possible values M(k) = -N(k) <b
H*f w
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, K bLSK
% and THETA is a vector of angles. R and THETA must have the same ?d3K:|g
% length. The output Z is a matrix with one column for every (N,M) *@' 'OyL
% pair, and one row for every (R,THETA) pair. L0"|4=
% r{v3XD/
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike **%&|9He
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), .4\I?
% with delta(m,0) the Kronecker delta, is chosen so that the integral b_RO%L:"yL
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, +"-l~`+<es
% and theta=0 to theta=2*pi) is unity. For the non-normalized FzX ;~CA
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. kVQm|frUz
% Lbrl CB+
% The Zernike functions are an orthogonal basis on the unit circle. 4,LS08&gh
% They are used in disciplines such as astronomy, optics, and FDD=I\Ic
% optometry to describe functions on a circular domain. A#cFO)"
% THhxj)
% The following table lists the first 15 Zernike functions. 5kw
K%
% d[9{&YnH !
% n m Zernike function Normalization &Tt7VYJfIV
% -------------------------------------------------- YCiG~y/~
% 0 0 1 1 cEu_p2(7!B
% 1 1 r * cos(theta) 2 U!q2bF<@
% 1 -1 r * sin(theta) 2 [<@T%yq
% 2 -2 r^2 * cos(2*theta) sqrt(6) 'Hx#DhiFz
% 2 0 (2*r^2 - 1) sqrt(3) >`UqS`YQK
% 2 2 r^2 * sin(2*theta) sqrt(6) 68,j~e3-i
% 3 -3 r^3 * cos(3*theta) sqrt(8) yZ6WbI8n
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 6d]4
%Q T
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) k_]'?f7Z
% 3 3 r^3 * sin(3*theta) sqrt(8) Pg T3E
% 4 -4 r^4 * cos(4*theta) sqrt(10) LSc^3=X
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) :bct+J}l~
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) Eh8GqFEM
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Bbs1U
% 4 4 r^4 * sin(4*theta) sqrt(10) OU%"dmSDk
% -------------------------------------------------- P?V+<c{
% C{/U;Ie-b
% Example 1: TNqL ')f
% k*;U?C!
% % Display the Zernike function Z(n=5,m=1) ;>Z+b#C[
% x = -1:0.01:1; 4A@HR
% [X,Y] = meshgrid(x,x); .t\J@?Z
% [theta,r] = cart2pol(X,Y); r5s{t4 ;Ch
% idx = r<=1; lVT*Ev{&.
% z = nan(size(X)); 2?%*UxcO
% z(idx) = zernfun(5,1,r(idx),theta(idx)); e=VSO!(rY
% figure y`zdI_!7
% pcolor(x,x,z), shading interp >bV3~m$a+
% axis square, colorbar R?)Yh.vi=t
% title('Zernike function Z_5^1(r,\theta)') (Z>?\iNJ
% 1R@G7m
% Example 2: VgXT4gO!
% zqj|$YNC
% % Display the first 10 Zernike functions _UTN4z2aTG
% x = -1:0.01:1; [,Rc&7p~R
% [X,Y] = meshgrid(x,x); ^Ak?2,xB#+
% [theta,r] = cart2pol(X,Y); 12#yHsk
% idx = r<=1; \uHC 9}0
% z = nan(size(X)); t8RtJ2;
% n = [0 1 1 2 2 2 3 3 3 3]; <7`k[~)VB
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; %R4 \[e
% Nplot = [4 10 12 16 18 20 22 24 26 28]; !QVhP+l'H
% y = zernfun(n,m,r(idx),theta(idx)); EgG3XhfS
% figure('Units','normalized') $MDmY4\
% for k = 1:10 }5PC53q
% z(idx) = y(:,k); } OIe!
% subplot(4,7,Nplot(k)) f`ibP6%
% pcolor(x,x,z), shading interp m<j;f
% set(gca,'XTick',[],'YTick',[]) l7T?Yx j
% axis square cRKLyb
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ?a,#p
% end Mo3%OR
% dn'|~zf.
% See also ZERNPOL, ZERNFUN2. ^"<Bk<b(
C"n!mr{srt
% Paul Fricker 11/13/2006 \1<aBgKi
=A,T:!}'
1ik.|T<f0
% Check and prepare the inputs: kO`!!M[Oo
% ----------------------------- k+[oYd
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) IY.M#Q]
error('zernfun:NMvectors','N and M must be vectors.') lPz`?Hn
end }8 ;,2E*z
lGahwn:
if length(n)~=length(m) =4+2y '
error('zernfun:NMlength','N and M must be the same length.') zfDfy!\2_
end yq x!{8=V
K+/wJ9^B
n = n(:); KJ/Gv#Kj
m = m(:); &^&0,g?To
if any(mod(n-m,2)) e%:vLE
9
error('zernfun:NMmultiplesof2', ... dCn9]cj/
'All N and M must differ by multiples of 2 (including 0).') U&(gNuR>J
end vO?sHh
5hEA/G
if any(m>n) GBZ u<t/
error('zernfun:MlessthanN', ... j@nK6`d+1
'Each M must be less than or equal to its corresponding N.') jHT^I
as
end j/oc+ M^
_)pOkS
if any( r>1 | r<0 ) <J~6Q
error('zernfun:Rlessthan1','All R must be between 0 and 1.') J0bcW25
end 4J'0k<5S
U43U2/^
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) (5`(H.(
error('zernfun:RTHvector','R and THETA must be vectors.') a"4X7
D+
end jK\kASwG
30w(uF
r = r(:); ~~WY?I-
theta = theta(:); n=DmdQ}
length_r = length(r); BJHWx,v
if length_r~=length(theta) GZ5 DI+3
error('zernfun:RTHlength', ... )X *_oH=
'The number of R- and THETA-values must be equal.') (oCpQDab@
end ,*V%
rUV'DC?eE
% Check normalization: zO9WqP_`iR
% -------------------- TG?>;It&
if nargin==5 && ischar(nflag) $pPc}M[h
isnorm = strcmpi(nflag,'norm'); d+h~4'ebv
if ~isnorm
m5J@kE%
error('zernfun:normalization','Unrecognized normalization flag.') |jH Yf42Q
end 8:I-?z;S
else LD WYFOGQ
isnorm = false; FN26f*/
end Zl#';~9W
`|nJAW3
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% g]MgT-C|
% Compute the Zernike Polynomials s 64@<oU<"
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @QpL*F
vfDX~_N
% Determine the required powers of r: 'SE5sB
% ----------------------------------- 5<KBMCn
m_abs = abs(m); 6R3/"&P(/#
rpowers = []; o@$pyU8
for j = 1:length(n) SdI>
rpowers = [rpowers m_abs(j):2:n(j)]; iqX%pR~Yo
end %Y.@AiViz
rpowers = unique(rpowers); (3x2^M8
AKLFUk
% Pre-compute the values of r raised to the required powers, !*qQ7
% and compile them in a matrix: /viBJ`-O
% ----------------------------- lUnC+w#[
if rpowers(1)==0 ^Kl<<pUaV
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); |1!OwQax
rpowern = cat(2,rpowern{:}); ^5!"[RB\
rpowern = [ones(length_r,1) rpowern]; Qdc#v\B
else -:!T@rV,d
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); %t.\J:WN;
rpowern = cat(2,rpowern{:}); $Vs5d=B
end CC`#2j
{9F}2
SJ
% Compute the values of the polynomials: ucLh|}jJ5
% -------------------------------------- p)Ht =~
y = zeros(length_r,length(n)); F CfU=4O
for j = 1:length(n) >"]t4]GVf
s = 0:(n(j)-m_abs(j))/2; 1X&scVw
pows = n(j):-2:m_abs(j); n#P?JyGm1g
for k = length(s):-1:1 &oVZ2.O#(
p = (1-2*mod(s(k),2))* ... 68qCY
prod(2:(n(j)-s(k)))/ ... KAy uv
prod(2:s(k))/ ... ,/p.!+
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... d$MewDWUN
prod(2:((n(j)+m_abs(j))/2-s(k))); Q;z'"P
idx = (pows(k)==rpowers); Q^lgtb
y(:,j) = y(:,j) + p*rpowern(:,idx); ` gor
end .,p@ee$q
l2!ztK1^
if isnorm t<p4H^
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); >o"0QD
end Ao9=TC'v$'
end %LL?' &&
% END: Compute the Zernike Polynomials h&Q-QU
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% b]Lp_t
_>{"vY
% Compute the Zernike functions: &xFs0Ri(
% ------------------------------ c<)O#i@3/
idx_pos = m>0; 2+\@0j[q
idx_neg = m<0; \xk8+= /A
j4D`Xq2X
z = y; l2
#^}-
if any(idx_pos) \T`iq[+6
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ^12}#I
end `v Ebm Xb
if any(idx_neg) u|ru$cIo
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); AT^MQvn
end ]<o^Q[OL
v kW2&
% EOF zernfun