非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 w(t1m]pF[
function z = zernfun(n,m,r,theta,nflag) [7[Qw]J
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. }J92TV
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Gm=&[?}
% and angular frequency M, evaluated at positions (R,THETA) on the 8}4.x3uw
% unit circle. N is a vector of positive integers (including 0), and ?hR0
MnP
% M is a vector with the same number of elements as N. Each element pS7y3(_
% k of M must be a positive integer, with possible values M(k) = -N(k) b`^?nD7
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, g}K/ba'
% and THETA is a vector of angles. R and THETA must have the same Aw4)=-LKO
% length. The output Z is a matrix with one column for every (N,M) /6yVbo"
% pair, and one row for every (R,THETA) pair. "{H{-`Ni
% j
\d)#+;
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike },Grg~l
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), KV9~L`=]i
% with delta(m,0) the Kronecker delta, is chosen so that the integral >uQjygjj
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, _4#7 ? p
% and theta=0 to theta=2*pi) is unity. For the non-normalized B>\q!dX3
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. P6ka'!z
% ]W~M?1}
% The Zernike functions are an orthogonal basis on the unit circle. Nl%5OBm
% They are used in disciplines such as astronomy, optics, and f4NN?"W)
% optometry to describe functions on a circular domain. \9od*y
% .W2w/RayC
% The following table lists the first 15 Zernike functions. d/$e#8
% Z.unCf3Q
% n m Zernike function Normalization EQZ/v gho
% -------------------------------------------------- (I>S qM
Y
% 0 0 1 1 $M4_"!
% 1 1 r * cos(theta) 2 hjk]?MC
% 1 -1 r * sin(theta) 2 <8Zs;>YuK
% 2 -2 r^2 * cos(2*theta) sqrt(6) ]rg-=Y k
% 2 0 (2*r^2 - 1) sqrt(3) c*"P+
% 2 2 r^2 * sin(2*theta) sqrt(6) L5 Ai
% 3 -3 r^3 * cos(3*theta) sqrt(8) Ju;^^
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) ybv< 1
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) ?@Tsd@s~r
% 3 3 r^3 * sin(3*theta) sqrt(8) HAs/f#zAk6
% 4 -4 r^4 * cos(4*theta) sqrt(10) L/vw7XNrX
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) {c drMP@""
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) >!o!rs
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) HyYJ"54
% 4 4 r^4 * sin(4*theta) sqrt(10) JPgFTr
% -------------------------------------------------- ;4v`FC>
% w&]$!g4
% Example 1: ;9J6)zg !n
% BI!E mA
% % Display the Zernike function Z(n=5,m=1) wp4
.~E
% x = -1:0.01:1; .O+,1&D5
% [X,Y] = meshgrid(x,x); XZ(<Mo\v
% [theta,r] = cart2pol(X,Y); &Fk|"f+
% idx = r<=1; { W5
_KX
% z = nan(size(X)); WBzPSnS2
% z(idx) = zernfun(5,1,r(idx),theta(idx)); {sq:vu@NC
% figure evVxzU&
% pcolor(x,x,z), shading interp W3%RB[s-
% axis square, colorbar cN\_1
% title('Zernike function Z_5^1(r,\theta)') M%SNq|Lo
% "Z dI~
% Example 2: 2)
2:KX
% }ZiJHj'<
% % Display the first 10 Zernike functions V%zo[A
% x = -1:0.01:1; 8N<mV^|}
% [X,Y] = meshgrid(x,x); nmuU*oL
% [theta,r] = cart2pol(X,Y); y4&x`|tv
% idx = r<=1; r,L`@A=v
% z = nan(size(X)); 4 .(5m\s!
% n = [0 1 1 2 2 2 3 3 3 3]; rQTG-& ,
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; `sd
H
q
% Nplot = [4 10 12 16 18 20 22 24 26 28]; : 'pK
% y = zernfun(n,m,r(idx),theta(idx)); z38Pi
% figure('Units','normalized') "
#U-*Z7
% for k = 1:10 iqsR]mab
% z(idx) = y(:,k); xZ QyH
% subplot(4,7,Nplot(k)) Kc>Rd
% pcolor(x,x,z), shading interp lr
-+|>M)
% set(gca,'XTick',[],'YTick',[]) 7Q&S [])
% axis square FIQHs"#T
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) b,(<74!#8
% end B!)Tytm9u
% 4NIb_E0
% See also ZERNPOL, ZERNFUN2. ^Q!A4qOQ
91k-os(4]
% Paul Fricker 11/13/2006 "!D,9AkZS
,V;HMF.
.j"@7#tW
% Check and prepare the inputs: e_1L J
% ----------------------------- xp]9Z]J1l
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) w@,v$4Oi
error('zernfun:NMvectors','N and M must be vectors.') i> {0h3Y
end &uf|Le4
\+C0Rv^^
if length(n)~=length(m) F$O$Y[
error('zernfun:NMlength','N and M must be the same length.') [X@JH6U
r
end k<rJm
P{
q3GkfgY
n = n(:); mCQ:<#
m = m(:); _gl1Qtv@rf
if any(mod(n-m,2)) hF5(1s}e$
error('zernfun:NMmultiplesof2', ... Lo=n)cV 1,
'All N and M must differ by multiples of 2 (including 0).') 1_M}Dc+J
end zV"'-iP
pK0@H "$8
if any(m>n) -Q%Pg<Q-#
error('zernfun:MlessthanN', ... RE08\gNIt
'Each M must be less than or equal to its corresponding N.') :_o^oi7G
end qga?-oz,<6
ylQ9Su>o
if any( r>1 | r<0 ) A5sz[k
error('zernfun:Rlessthan1','All R must be between 0 and 1.') lZ)
qV!<
end :b;`.`@KL_
y-"QY[
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) V$dhiP
z
error('zernfun:RTHvector','R and THETA must be vectors.') !mUO/6Q hq
end Au:R]7
`X<a(5[vV3
r = r(:); q*cEosi'F?
theta = theta(:); goJ'z|))
length_r = length(r); >G As&\4hs
if length_r~=length(theta) <*oV-A
error('zernfun:RTHlength', ... "w__AYHV
'The number of R- and THETA-values must be equal.') `O0y8
end O9AFQ)u
be?Bf^O>
% Check normalization: M;YJpi
% -------------------- WADEDl&,'
if nargin==5 && ischar(nflag) + f:!9)C
isnorm = strcmpi(nflag,'norm'); n+nZ;GJ5d
if ~isnorm %.HLO.A
error('zernfun:normalization','Unrecognized normalization flag.') ]ZNFrpq
end s-~`Ao'
<
else RF~G{wz
isnorm = false; "F4 3q8 P
end r`<x@,
d1'= \PYr
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% `7[!bCl
% Compute the Zernike Polynomials G2-0r.f
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -<M+ $hK\
*kcc]*6@s
% Determine the required powers of r: [70 5[
% ----------------------------------- C
&y
2I
m_abs = abs(m); w\{#nrhYU
rpowers = []; yB 'C9wEH
for j = 1:length(n) s)KlKh
rpowers = [rpowers m_abs(j):2:n(j)]; 34nfL: y
end NytodVZ'3
rpowers = unique(rpowers); 2A9crL$
q?@*
% Pre-compute the values of r raised to the required powers, R.vOYzo
% and compile them in a matrix: 1}+b4"7]
% ----------------------------- 23 #JmR
if rpowers(1)==0 yrl7
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); zQ<;3+*
rpowern = cat(2,rpowern{:}); L
4Z+8*
rpowern = [ones(length_r,1) rpowern]; OhlK;hvdB*
else .w'b%M
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); t1yOAbI
rpowern = cat(2,rpowern{:}); RDjw|V
end XXA]ukj;r
A|YgA66M
% Compute the values of the polynomials: >yHtGIHe-
% -------------------------------------- %[M0TE=J
y = zeros(length_r,length(n)); H)EL0
Kv/
for j = 1:length(n) rm$dv%q
s = 0:(n(j)-m_abs(j))/2; p<}y'7(
pows = n(j):-2:m_abs(j); K<`W>2"
for k = length(s):-1:1 iA[o;D#
p = (1-2*mod(s(k),2))* ... -Fu,oEj{*
prod(2:(n(j)-s(k)))/ ... 11kyrv
prod(2:s(k))/ ... *'aouS/?<6
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... )N607 Fa-
prod(2:((n(j)+m_abs(j))/2-s(k))); DT)][V^w
idx = (pows(k)==rpowers); * fj`+J
y(:,j) = y(:,j) + p*rpowern(:,idx); ,S(s
end 8oXp8CC
-3azA7tzz
if isnorm ,4 _H{+M
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 1
A0BM
end }#%Ye CA?
end ,Z _@]D@
% END: Compute the Zernike Polynomials jYFmL_{
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% (C"q-0?n
o?t H[
% Compute the Zernike functions: 5U4V_*V
% ------------------------------ R8eBIJ/@_
idx_pos = m>0; Y~A I2H S
idx_neg = m<0; (xVx|:R[<H
(_>SuQK
z = y; zwJ&K;"y(
if any(idx_pos) VP^Yf_
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); yRl
end ilHf5$
if any(idx_neg) 8F`8=L NO
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); %O" Whe
end n*na6rV\k
-WF((s;<#
% EOF zernfun