切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11045阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 snm1EPj  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! RAUD8Z  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 g7@.Fa.u'!  
    function z = zernfun(n,m,r,theta,nflag) "^&Te%x_b  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. _<m yM2z  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N a"bael  
    %   and angular frequency M, evaluated at positions (R,THETA) on the >4iVVs  
    %   unit circle.  N is a vector of positive integers (including 0), and aYrbB#  
    %   M is a vector with the same number of elements as N.  Each element /pYp, ak  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) ipH'}~=ID  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ;tG@ 6  
    %   and THETA is a vector of angles.  R and THETA must have the same S<Od`I  
    %   length.  The output Z is a matrix with one column for every (N,M) 1Q6~O2a  
    %   pair, and one row for every (R,THETA) pair. nz_1Fu>g|  
    % kpLx?zW--q  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike o|bm=&f  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), vH)V\V  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral \I+#M-V  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, }+dDGFk  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 6!$2nK+  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. pZV=Co3!I  
    % k#DMd9  
    %   The Zernike functions are an orthogonal basis on the unit circle. kS1?%E,)q  
    %   They are used in disciplines such as astronomy, optics, and !63]t?QXMG  
    %   optometry to describe functions on a circular domain. G-Dc(QhU&  
    % r"bV{v  
    %   The following table lists the first 15 Zernike functions. MR}h}JEx0  
    % %pBc]n@_  
    %       n    m    Zernike function           Normalization #CTeZ/g  
    %       -------------------------------------------------- y41,T&ja  
    %       0    0    1                                 1 gvCQ![  
    %       1    1    r * cos(theta)                    2 ~Hb2-V  
    %       1   -1    r * sin(theta)                    2 7x//4G   
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ck\TTNA  
    %       2    0    (2*r^2 - 1)                    sqrt(3) BVe c  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) . l-eJ  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) A| s\5"??  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) |$G|M=*LN  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 4"d'iY  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) "fOxS\er  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) d$#DXLA\P  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 3fd?xhWbN  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) Cd'`rs}3  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) E:ti]$$  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) qj1Fj  
    %       -------------------------------------------------- v0u, :eZ4  
    % B'8T+qvA  
    %   Example 1: v&r\Z @%  
    % 2f0qfF  
    %       % Display the Zernike function Z(n=5,m=1) r O-=):2  
    %       x = -1:0.01:1; [iUy_ C=qp  
    %       [X,Y] = meshgrid(x,x); PS'SIX  
    %       [theta,r] = cart2pol(X,Y); ^ RIWW0  
    %       idx = r<=1; 6S&OE k  
    %       z = nan(size(X)); )JXy>q#  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); !~ fy".|x  
    %       figure 0@/C5 v  
    %       pcolor(x,x,z), shading interp (g3@3.Kk)  
    %       axis square, colorbar ,?(U4pzX  
    %       title('Zernike function Z_5^1(r,\theta)') g66x;2Q  
    % fx*Q,}t  
    %   Example 2: @~C C$Y$  
    % MwTouEGGgA  
    %       % Display the first 10 Zernike functions $5N\sdyZxg  
    %       x = -1:0.01:1; X1 FKcWv  
    %       [X,Y] = meshgrid(x,x); {VT**o  
    %       [theta,r] = cart2pol(X,Y); 6oy[0hj  
    %       idx = r<=1; 3S{3AmKj?  
    %       z = nan(size(X)); NN] 8T  
    %       n = [0  1  1  2  2  2  3  3  3  3]; ZYs?65.  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 7_CX6:  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; DyM<aT  
    %       y = zernfun(n,m,r(idx),theta(idx)); 0s .X  
    %       figure('Units','normalized') +O!4~k^  
    %       for k = 1:10 pIl[)%F  
    %           z(idx) = y(:,k); 6ac_AsFK  
    %           subplot(4,7,Nplot(k)) a Juv{  
    %           pcolor(x,x,z), shading interp vpz l{  
    %           set(gca,'XTick',[],'YTick',[]) c_Jcy   
    %           axis square nQ08(8  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) >Y=qSg>Ik  
    %       end .tA=5 QY,  
    % {-1N@*K  
    %   See also ZERNPOL, ZERNFUN2. 04#<qd&ob@  
    SlI wLv^  
    %   Paul Fricker 11/13/2006 `i)Pf WdBN  
    N fND@m{/  
    J6gn!  
    % Check and prepare the inputs: V<Co!2S  
    % ----------------------------- Mw|lEctN0  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) JQ9+kZ  
        error('zernfun:NMvectors','N and M must be vectors.') TTD#ovo'  
    end He1~27+99  
    =4 NKXP~C  
    if length(n)~=length(m) Xa_:B\ic  
        error('zernfun:NMlength','N and M must be the same length.') ?G 'sb}.  
    end mNKcaM?h  
    +zZ]Txb(  
    n = n(:); S~U5xM^s  
    m = m(:); O:Wd ,3_  
    if any(mod(n-m,2)) 2Ws'3Jz  
        error('zernfun:NMmultiplesof2', ... rm4t  
              'All N and M must differ by multiples of 2 (including 0).') lw _@(E]E  
    end iz3Hoj  
    :eFyd`Syw  
    if any(m>n) %J+k.UrM  
        error('zernfun:MlessthanN', ... j+[oZfH  
              'Each M must be less than or equal to its corresponding N.') &(h@]F!  
    end xtK}XEhG!  
    >OKc\m2%Q  
    if any( r>1 | r<0 ) 4@=[r Zb9  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') y(X^wC  
    end J3hhh(  
    ?N]G;%3/  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) &'u%|A@  
        error('zernfun:RTHvector','R and THETA must be vectors.') Z_s]2y1  
    end C:z7R" yj  
    +>Pq]{Uf1j  
    r = r(:); F&HvSt}l5  
    theta = theta(:); WF-^pfRq~  
    length_r = length(r); R'qBG(?i  
    if length_r~=length(theta) \jr-^n]  
        error('zernfun:RTHlength', ... jQ['f\R  
              'The number of R- and THETA-values must be equal.') DI[  
    end HG^~7oMf  
    wlpcuz@  
    % Check normalization: .J?RaH{i  
    % -------------------- 7pM&))R  
    if nargin==5 && ischar(nflag) Iv/h1j> H  
        isnorm = strcmpi(nflag,'norm'); 7%W@Hr,%F  
        if ~isnorm f{U,kCv  
            error('zernfun:normalization','Unrecognized normalization flag.') p+V::O&&r  
        end k#G+<7c<  
    else ;}'Z2gZ B  
        isnorm = false; j]m|}n  
    end ~*L@|?  
    KN~Repcz@  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ]W7&ZpF  
    % Compute the Zernike Polynomials jF-0fK;)*  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 3 <Zo{;  
    A_+*b [P  
    % Determine the required powers of r: S*%:ID|/C2  
    % ----------------------------------- syk,e4:oA  
    m_abs = abs(m); uzL|yxt  
    rpowers = []; \wV ?QH  
    for j = 1:length(n) GK&R.R]  
        rpowers = [rpowers m_abs(j):2:n(j)]; ~zDFL15w  
    end u?KG%  
    rpowers = unique(rpowers); .jl^"{@6  
    LG'1^W{a  
    % Pre-compute the values of r raised to the required powers, ^+Njz{rpG  
    % and compile them in a matrix: -v=tM6  
    % ----------------------------- qot {#tk d  
    if rpowers(1)==0 xLw[ aYy4  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); -l{ wB"  
        rpowern = cat(2,rpowern{:}); ZK8DziO  
        rpowern = [ones(length_r,1) rpowern]; 9g7Ok9dF  
    else 1~[GGl  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); l#a*w  
        rpowern = cat(2,rpowern{:}); *-gmWATC6  
    end yn04[PN2  
    `3.bux~  
    % Compute the values of the polynomials: =<U'Jtu6'  
    % -------------------------------------- \>+BvF  
    y = zeros(length_r,length(n)); `!.c_%m2  
    for j = 1:length(n) \$ :)Ka  
        s = 0:(n(j)-m_abs(j))/2; t}gK)"g  
        pows = n(j):-2:m_abs(j); 4}Hf"L[ l  
        for k = length(s):-1:1 EI@ep~  
            p = (1-2*mod(s(k),2))* ... RMa#z [{0  
                       prod(2:(n(j)-s(k)))/              ... uN6xOq/  
                       prod(2:s(k))/                     ... \p\rPf Y{>  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 94.M 8  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); BF U#FE)s  
            idx = (pows(k)==rpowers); h|ja67VG  
            y(:,j) = y(:,j) + p*rpowern(:,idx); D66!C{  
        end `;&=m, W'  
         hYh~[Kr^@^  
        if isnorm ]v.Yt/&C{  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); D$SO 6X~  
        end b<KKF'  
    end ? \NT'CG  
    % END: Compute the Zernike Polynomials VqeW;8&*iv  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% CxVrnb[`q  
    6/Z 8/PL  
    % Compute the Zernike functions: qGie~S ##  
    % ------------------------------ <@=w4\5j9  
    idx_pos = m>0; c1StA  
    idx_neg = m<0; < !]7Gt  
    kYkck]|  
    z = y; UbSD?Ew@35  
    if any(idx_pos) G_?qY#"(  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 6 i]B8Ziq{  
    end =Lr# *ep[  
    if any(idx_neg) "`5BAv;u  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); .,SWa;[iB  
    end `Dv &.  
    ]BBjFs4#  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) S|ADu]H(  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. PWs=0.Wj  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated sxQMfbN  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive JKs&!!  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, +)TOcxF%  
    %   and THETA is a vector of angles.  R and THETA must have the same I`EgR?5 `  
    %   length.  The output Z is a matrix with one column for every P-value, %R1$M318  
    %   and one row for every (R,THETA) pair. #[Vk#BIiv8  
    % 8BwJWxBQ  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike 6o ]X.plr  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) `oo(\O7t=  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) G7H'OB &  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 ~UV$(5&-  
    %   for all p. -AU!c^-o  
    % JZB@K6 ~dO  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 }K\m.+%=d  
    %   Zernike functions (order N<=7).  In some disciplines it is i fbO<  
    %   traditional to label the first 36 functions using a single mode ?TVR{e:  
    %   number P instead of separate numbers for the order N and azimuthal Oe}6jcb6&  
    %   frequency M. d512Y[ R  
    % J2~oIe2!+  
    %   Example: 4';(\42  
    % o9uir"=  
    %       % Display the first 16 Zernike functions j#E&u*IR  
    %       x = -1:0.01:1; n:[GK_  
    %       [X,Y] = meshgrid(x,x); 0CRk&_ht  
    %       [theta,r] = cart2pol(X,Y); IEW[VU)  
    %       idx = r<=1; .[4Dv t|>6  
    %       p = 0:15; 0|_d{/VK4  
    %       z = nan(size(X)); t.WWahNyY  
    %       y = zernfun2(p,r(idx),theta(idx)); `.a~G y  
    %       figure('Units','normalized') _m|Tr*i8  
    %       for k = 1:length(p) U49 `!~b7  
    %           z(idx) = y(:,k); \Lu] %}  
    %           subplot(4,4,k) -|~tZuf  
    %           pcolor(x,x,z), shading interp 4Fpu68y  
    %           set(gca,'XTick',[],'YTick',[]) 'w5g s}1D  
    %           axis square iZ-"l3) D  
    %           title(['Z_{' num2str(p(k)) '}']) Yn }Ivg  
    %       end |*WE@L5  
    % DQOEntw  
    %   See also ZERNPOL, ZERNFUN. (Cjw^P|Y@  
    X6Hd%}*mN  
    %   Paul Fricker 11/13/2006 Z6xM(*vg  
    /DBldL7yi  
    \z PcnDB  
    % Check and prepare the inputs: +_LWN8F  
    % ----------------------------- OwM.N+ z#T  
    if min(size(p))~=1 Cn>RUGoUsI  
        error('zernfun2:Pvector','Input P must be vector.') !%4&O  
    end ESAFsJ$r;  
    Fxr$j\bm  
    if any(p)>35 2{o eJ  
        error('zernfun2:P36', ... i5 F9*  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... d]6#pSE  
               '(P = 0 to 35).']) {)d{:&*K.  
    end fer~NlX  
    J<'I.KZ\z  
    % Get the order and frequency corresonding to the function number: d2e4=/ A%  
    % ---------------------------------------------------------------- Cs ND:m  
    p = p(:); `<:D.9vO "  
    n = ceil((-3+sqrt(9+8*p))/2); *N #{~  
    m = 2*p - n.*(n+2); # U j~F  
    0'9z XJ"  
    % Pass the inputs to the function ZERNFUN: + (|6Wv  
    % ---------------------------------------- `vFYe N;  
    switch nargin L'?0*t  
        case 3 CAl]Kpc  
            z = zernfun(n,m,r,theta); z_LN*u  
        case 4 b:w {7  
            z = zernfun(n,m,r,theta,nflag); otgU6S7F  
        otherwise (NBq!;_2,x  
            error('zernfun2:nargin','Incorrect number of inputs.') 3'zm)SXJ  
    end fmhqm"  
    PV_q=70%T  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) Do&/+Ssnu  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. mw*BaDN@Q  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of /T_ G9zc  
    %   order N and frequency M, evaluated at R.  N is a vector of s@ ~Y!A  
    %   positive integers (including 0), and M is a vector with the O*ql!9}E{  
    %   same number of elements as N.  Each element k of M must be a _K?{DnTb  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) VkNg Vjg  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is I,@f*o  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix ^U`Bj*"2  
    %   with one column for every (N,M) pair, and one row for every u,R;=DNl  
    %   element in R. c9eLNVM  
    % h!L/ZeRaV  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- 9y~5@/3 2R  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is sr&hQ  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to BSGC.>$s  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 J AK+v  
    %   for all [n,m]. ; SS/bS|  
    % mQ@A3/=`  
    %   The radial Zernike polynomials are the radial portion of the .ZB(!v/2  
    %   Zernike functions, which are an orthogonal basis on the unit POtj6 ?a  
    %   circle.  The series representation of the radial Zernike J ^J$I!  
    %   polynomials is g(i_di  
    % =wEqI)Td  
    %          (n-m)/2 %`cP|k  
    %            __ E26zw9d  
    %    m      \       s                                          n-2s J\BTrN7  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r 0 2lI-xHe  
    %    n      s=0 9"=1 O  
    % 6Ch [!=p{  
    %   The following table shows the first 12 polynomials. .FarKW  
    % FC:+[.fi  
    %       n    m    Zernike polynomial    Normalization .^fVm  
    %       --------------------------------------------- ld-Cb 3R^  
    %       0    0    1                        sqrt(2) ya<nD'%9  
    %       1    1    r                           2 `n*e8T  
    %       2    0    2*r^2 - 1                sqrt(6) W_%p'8,  
    %       2    2    r^2                      sqrt(6) }W:Rg}v  
    %       3    1    3*r^3 - 2*r              sqrt(8) =peodj^  
    %       3    3    r^3                      sqrt(8) vbo:,]T<A  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) KkIxtFM  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) :/c40:[  
    %       4    4    r^4                      sqrt(10) &X^ -|7~N  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) < ] ~FX 25  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) A{HP*x~t  
    %       5    5    r^5                      sqrt(12) <Be:fnPX7  
    %       --------------------------------------------- o1m+4.-  
    % R|jt mI?  
    %   Example: ']N1OVw^vf  
    % 3N(5V;ti  
    %       % Display three example Zernike radial polynomials E^)>9f7  
    %       r = 0:0.01:1; aDV~T24  
    %       n = [3 2 5]; fd{75J5%  
    %       m = [1 2 1]; M x/G^yO9  
    %       z = zernpol(n,m,r); ~]MACG:'  
    %       figure KlMSkdmW  
    %       plot(r,z) ^dR="N  
    %       grid on qHZ!~Kq,"'  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') m#\I&(l+  
    % 9vQI ~rz?  
    %   See also ZERNFUN, ZERNFUN2. ZU=om Rh5  
    4jOq.j  
    % A note on the algorithm. X=8CZq4  
    % ------------------------ (R.l{(A  
    % The radial Zernike polynomials are computed using the series hu ]l{TXi  
    % representation shown in the Help section above. For many special *{t]fds  
    % functions, direct evaluation using the series representation can lUL6L 4m  
    % produce poor numerical results (floating point errors), because W E-cq1)  
    % the summation often involves computing small differences between =bx;TV  
    % large successive terms in the series. (In such cases, the functions #-]!;sY>  
    % are often evaluated using alternative methods such as recurrence DRDn;j  
    % relations: see the Legendre functions, for example). For the Zernike p;y\%i_  
    % polynomials, however, this problem does not arise, because the eWN[EJI<  
    % polynomials are evaluated over the finite domain r = (0,1), and }f l4^F  
    % because the coefficients for a given polynomial are generally all CFLWo1  
    % of similar magnitude. % `4\ 8H`  
    % n(}W[bZ4  
    % ZERNPOL has been written using a vectorized implementation: multiple 9JDdOjqo  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] 4Y2!q$}I+  
    % values can be passed as inputs) for a vector of points R.  To achieve tdCD!rV`{  
    % this vectorization most efficiently, the algorithm in ZERNPOL X6T*?t3!9[  
    % involves pre-determining all the powers p of R that are required to ;JD/4:  
    % compute the outputs, and then compiling the {R^p} into a single "^Ax}Jr  
    % matrix.  This avoids any redundant computation of the R^p, and #FZoi:'Q  
    % minimizes the sizes of certain intermediate variables. CeZ+!-lG  
    % kH.W17D~  
    %   Paul Fricker 11/13/2006 !`A]YcQ  
    0SHF 8kek  
    w1Xe9'$Qb  
    % Check and prepare the inputs: j(QK0"z  
    % ----------------------------- 6>X9|w  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) B24,;2J  
        error('zernpol:NMvectors','N and M must be vectors.') R4#56#d<  
    end 3pk=c-x  
    ~S85+OJ;M  
    if length(n)~=length(m) <o aVI?  
        error('zernpol:NMlength','N and M must be the same length.') *_ U=KpZF  
    end J7RO*.O&Iq  
    oMUyP~1  
    n = n(:); 7m<;"e)  
    m = m(:); :L6,=#  
    length_n = length(n); 1MPn{#Ff  
    z6Xn9  
    if any(mod(n-m,2)) q-3e^-S*  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') ta*6xpz-\Q  
    end Pf,lZU?f  
    Qy!;RaA3T  
    if any(m<0) o6v'`p '  
        error('zernpol:Mpositive','All M must be positive.') Y) ig:m]#  
    end L'@@ewA  
    &^I2NpT  
    if any(m>n) `{B<|W$=  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') h{Zd, 9H  
    end /SvB w>gQ  
    $Lc-}m9n  
    if any( r>1 | r<0 ) <y!(X"n`  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') 2," (  
    end <CIy|&J6  
    rHMr8,J;  
    if ~any(size(r)==1) Wu1">|  
        error('zernpol:Rvector','R must be a vector.') l2S1?*  
    end ,WKWin  
    1M<;}hJ{/  
    r = r(:); 7_^JgA|Kk7  
    length_r = length(r); B=;p wX  
    )_H>d<di  
    if nargin==4 PX$_."WA  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); }TDoQ]P  
        if ~isnorm I&s!}$cD  
            error('zernpol:normalization','Unrecognized normalization flag.') ]tnf< 5x  
        end 0+m4 }]6l  
    else 4r- CF#o  
        isnorm = false; tm#[.  
    end )C^@U&h&  
    Z< 4Du  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Vgg' 5o&.  
    % Compute the Zernike Polynomials 4*Y`Pn@  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% X[;-SXq  
    i9O;D*  
    % Determine the required powers of r: KrzIL[;2o  
    % ----------------------------------- l(j._j~p  
    rpowers = []; *_,: &Ur  
    for j = 1:length(n) P6 ~& ,a  
        rpowers = [rpowers m(j):2:n(j)]; ~ ~U,  
    end E8Y(C_:s  
    rpowers = unique(rpowers); zAA3bgaa  
    %'3Y?d  
    % Pre-compute the values of r raised to the required powers, }u&,;]  
    % and compile them in a matrix: '1NZSiv+C?  
    % ----------------------------- 0\DlzIO  
    if rpowers(1)==0 8HxtmFqG  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ^a #  
        rpowern = cat(2,rpowern{:}); <)4>"SN&^  
        rpowern = [ones(length_r,1) rpowern]; ^3 6oqe{  
    else ;>jLRx<KC  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ll#_v^  
        rpowern = cat(2,rpowern{:}); )>+J`NFa  
    end yE=tuHv(0  
    {K ,-fbE  
    % Compute the values of the polynomials: o7^u@*"F  
    % -------------------------------------- .'Rz tBv  
    z = zeros(length_r,length_n); ZD`p$:pT  
    for j = 1:length_n &$<7]a\dM  
        s = 0:(n(j)-m(j))/2; _fmOTz G  
        pows = n(j):-2:m(j); me`|i-   
        for k = length(s):-1:1 9|5>?'CqP  
            p = (1-2*mod(s(k),2))* ... {+  @M!  
                       prod(2:(n(j)-s(k)))/          ... ,Z aPY  
                       prod(2:s(k))/                 ... s& Lyg>>`  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... a$2 WL g,  
                       prod(2:((n(j)+m(j))/2-s(k))); ^QbaMX  
            idx = (pows(k)==rpowers); je`w$ ^w  
            z(:,j) = z(:,j) + p*rpowern(:,idx); Q|&Wcxq2!  
        end NU |vtD  
         r;'Vy0?AL  
        if isnorm b+!I_g4P  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); LvbS")  
        end ,mm9X\ '  
    end iD`>Bt7gD  
    &8'QD~  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  v_gQCS  
    5$e|@/(0  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 Jz!8Xg%a  
    <E(#;F^y  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)