非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 gT?:zd=;
function z = zernfun(n,m,r,theta,nflag) k0Rd:DxO
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. !S$LRm\'
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Jvgx+{Xu
% and angular frequency M, evaluated at positions (R,THETA) on the DTH;d-Z
% unit circle. N is a vector of positive integers (including 0), and 7CWz)LT
% M is a vector with the same number of elements as N. Each element <$qe2FtUq
% k of M must be a positive integer, with possible values M(k) = -N(k) 'M VE5
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, -Uh3A\#(
% and THETA is a vector of angles. R and THETA must have the same r[ni{&
% length. The output Z is a matrix with one column for every (N,M) ]>B>.s
% pair, and one row for every (R,THETA) pair. :bNqK0[rS
% ..)O/g.
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike *@^9]$*$
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ViKN|W>T
% with delta(m,0) the Kronecker delta, is chosen so that the integral 6Q"fRXM
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ?:H4Xd7
% and theta=0 to theta=2*pi) is unity. For the non-normalized *S%~0=
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ~M _@_
% `O/1aW1
% The Zernike functions are an orthogonal basis on the unit circle. #{-B`FAQ
% They are used in disciplines such as astronomy, optics, and ckykRqk}
% optometry to describe functions on a circular domain. bbddbRj;
% @Fvp~]jCb
% The following table lists the first 15 Zernike functions. k[#<=G_=/E
% pMndyuoJl
% n m Zernike function Normalization {DlQTgP
% -------------------------------------------------- THEpW{.E
% 0 0 1 1 /Ps/m!
% 1 1 r * cos(theta) 2 -Ri/I4Xj
% 1 -1 r * sin(theta) 2 g3B%}!|
% 2 -2 r^2 * cos(2*theta) sqrt(6) RrA9@95+
% 2 0 (2*r^2 - 1) sqrt(3) AWo\u!j
% 2 2 r^2 * sin(2*theta) sqrt(6) ~XU%_Hz
% 3 -3 r^3 * cos(3*theta) sqrt(8) L6<.>\^Z"
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 8~*
|muN.e
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) "Tt5cqUQoY
% 3 3 r^3 * sin(3*theta) sqrt(8) 57@6O-t-
% 4 -4 r^4 * cos(4*theta) sqrt(10) s3<gq x-&r
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) GO4IAUA
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) vJI]ZnL{
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) #$n >+lc
% 4 4 r^4 * sin(4*theta) sqrt(10) tx`gXtO$
% -------------------------------------------------- [/E|n[Bx
% FWC\(f
% Example 1: F)K&a
% ^jhc(ZW"
% % Display the Zernike function Z(n=5,m=1) U</Vcz
% x = -1:0.01:1; S,0h
&A9
% [X,Y] = meshgrid(x,x); ?$$Xg3w_#
% [theta,r] = cart2pol(X,Y); )@(IhU)
% idx = r<=1; W=G8l%
% z = nan(size(X)); }jdMo83
% z(idx) = zernfun(5,1,r(idx),theta(idx)); W?TvdeBx
% figure 1#tFO
% pcolor(x,x,z), shading interp 2Sgv
% axis square, colorbar D*0[7:NSO
% title('Zernike function Z_5^1(r,\theta)') db*yA@2Lg
% 8f`r!/j
% Example 2: s$g3__|Y
% ^ruz-N^Y!
% % Display the first 10 Zernike functions W79Sz}):
% x = -1:0.01:1; LS:^K
% [X,Y] = meshgrid(x,x); Wr+/9
% [theta,r] = cart2pol(X,Y); SL[ EOz#
% idx = r<=1; 9z#z9|hj)3
% z = nan(size(X)); @oKW$\
% n = [0 1 1 2 2 2 3 3 3 3]; GHWt3K:*w
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; W*;r}!ro
% Nplot = [4 10 12 16 18 20 22 24 26 28]; A'6-E{
% y = zernfun(n,m,r(idx),theta(idx)); (l+0*o,(
% figure('Units','normalized') QtHK`f>4#n
% for k = 1:10 &v)/mc7D
% z(idx) = y(:,k); .+)
AeGh
% subplot(4,7,Nplot(k)) zFi)R }Ot
% pcolor(x,x,z), shading interp (&i
c3/-
% set(gca,'XTick',[],'YTick',[]) X<sM4dwxE
% axis square FFtB#
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 6w`.'5
% end 7TtDI=f
% ]y9u5H^
% See also ZERNPOL, ZERNFUN2. `T,^os#6
W"!{f
% Paul Fricker 11/13/2006 JA09 o(
&|fPskpy
}D]y-BbA.
% Check and prepare the inputs: y9Pw'4R
% ----------------------------- |mQC-=6t;Y
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) sK@]|9ciQ
error('zernfun:NMvectors','N and M must be vectors.') :z-?L0C=0
end 0" F\V
MK.TBv
if length(n)~=length(m) b5)1\ANq
error('zernfun:NMlength','N and M must be the same length.') SFjR SMi
end >H5_,A}f
3Yf~5csY
n = n(:); PDpuHHB
m = m(:); zeshM8=
if any(mod(n-m,2)) 5SEGV|%
error('zernfun:NMmultiplesof2', ... 8I~*9MUp
'All N and M must differ by multiples of 2 (including 0).') B{K_?ae!
end 6!@p$ pm)a
]+5Y\~I
if any(m>n) G0u
H6x?
error('zernfun:MlessthanN', ... [(; .D
'Each M must be less than or equal to its corresponding N.') T"DG$R,Aj
end |RH^|2:x9Q
*7{{z%5Pu
if any( r>1 | r<0 ) !{F\\D/
error('zernfun:Rlessthan1','All R must be between 0 and 1.') XnKf<|j6k
end "
1h~P,
&,QBJx<#
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) qzWnl[3
error('zernfun:RTHvector','R and THETA must be vectors.') \I7&F82e
end I@kMM12>c
_D{{C
r = r(:); 4}t$Lf_
theta = theta(:); &hEkm
length_r = length(r); r*c x_**
if length_r~=length(theta) s(:N>K5*
error('zernfun:RTHlength', ... =)f.Yf|A*
'The number of R- and THETA-values must be equal.') nTE\EZ+=2
end v2ab84
C*
je74As[
% Check normalization: ^YB3$:@$U
% -------------------- 8w ]'U
if nargin==5 && ischar(nflag) ?NxaJ^
isnorm = strcmpi(nflag,'norm'); %~\I*v04
if ~isnorm 6RfS_
error('zernfun:normalization','Unrecognized normalization flag.') CN6b982&
end V8G.KA "
else g6h=Q3@
isnorm = false; M1eM^m8U
end gMPvzBpP
ynn>d
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% z
J V>;
% Compute the Zernike Polynomials )%q )!x
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% [M?&JA