非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 #6HA\dE
function z = zernfun(n,m,r,theta,nflag) wG-HF'0L
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. =h5H~G5AT
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N o9dY9o+Z
% and angular frequency M, evaluated at positions (R,THETA) on the N@Uy=?)ZJ
% unit circle. N is a vector of positive integers (including 0), and lSVp%0jR
% M is a vector with the same number of elements as N. Each element _v> }_S
% k of M must be a positive integer, with possible values M(k) = -N(k) Evg_q>
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, %2{%Obp'
% and THETA is a vector of angles. R and THETA must have the same ud'-;W
% length. The output Z is a matrix with one column for every (N,M) .Z
`av n
% pair, and one row for every (R,THETA) pair. 1oWED*B
% GQUe!G9
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike .7avpOfz
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), EWkLXU6t
% with delta(m,0) the Kronecker delta, is chosen so that the integral _8F`cuyW
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Ssou
% and theta=0 to theta=2*pi) is unity. For the non-normalized '9
[vDG~
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. jk [1{I/
% &&8IU;J
% The Zernike functions are an orthogonal basis on the unit circle. QLiu2U o
% They are used in disciplines such as astronomy, optics, and 'R'*kxf
% optometry to describe functions on a circular domain. nz=GlO'[
% b)qoh^
% The following table lists the first 15 Zernike functions. K1+)4!}%U
% "AsKlKz{B
% n m Zernike function Normalization SBfT20z[
% -------------------------------------------------- DN-+osPi
% 0 0 1 1 qh|_W(`y
% 1 1 r * cos(theta) 2 %4,O 2\0?&
% 1 -1 r * sin(theta) 2 Q/(K$6]j
% 2 -2 r^2 * cos(2*theta) sqrt(6) {byBcG
% 2 0 (2*r^2 - 1) sqrt(3) zck#tht4
n
% 2 2 r^2 * sin(2*theta) sqrt(6) 1AM!8VR2
% 3 -3 r^3 * cos(3*theta) sqrt(8) U4C 9<h&
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) q$Zh@
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 7WkB>cn
% 3 3 r^3 * sin(3*theta) sqrt(8) KyYM fC
% 4 -4 r^4 * cos(4*theta) sqrt(10)
H Y&DmE
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) g"p%C:NN
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) p93r'&Q
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 6z#acE1)M
% 4 4 r^4 * sin(4*theta) sqrt(10) -w}]fb2Q>
% -------------------------------------------------- 8hOk{xs8
% wnEyl[ac
% Example 1: |y!=J$$_H
% ZojIR\F^
% % Display the Zernike function Z(n=5,m=1) =S+wCN
% x = -1:0.01:1; diL+:H
% [X,Y] = meshgrid(x,x); >~[c|ffyo/
% [theta,r] = cart2pol(X,Y); P2BWuhF
% idx = r<=1; N `5,\TR2f
% z = nan(size(X)); "55skmD.P
% z(idx) = zernfun(5,1,r(idx),theta(idx)); M "p
% figure Wz49i9e+d
% pcolor(x,x,z), shading interp 7Bzq,2s
% axis square, colorbar {JZZZY!n2
% title('Zernike function Z_5^1(r,\theta)') !;Yg/'vD-
% 8dZSi
% Example 2: la0BiLzb]
% PV'x+bN5
% % Display the first 10 Zernike functions B}Z63|/N
% x = -1:0.01:1; q<[P6}.
% [X,Y] = meshgrid(x,x); LrM=*Rh,O
% [theta,r] = cart2pol(X,Y); ]@j*/IP
% idx = r<=1; 4B =7:r
% z = nan(size(X)); ~:kZgUP_f
% n = [0 1 1 2 2 2 3 3 3 3]; rb5~XnJk
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; QdH\LL^8R4
% Nplot = [4 10 12 16 18 20 22 24 26 28]; -3t7*
% y = zernfun(n,m,r(idx),theta(idx)); Xx."$l
% figure('Units','normalized') 0%&1\rm+j
% for k = 1:10 R]c+?4J
% z(idx) = y(:,k); 591>rh)
% subplot(4,7,Nplot(k)) DBW[{DE
% pcolor(x,x,z), shading interp :mh_G
% set(gca,'XTick',[],'YTick',[]) S!jTyY7e
% axis square Q('r<v96
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) m[?E
% end L-jJg,eY
% qON|4+~u%
% See also ZERNPOL, ZERNFUN2. ]i&6c
rdl;M>0@
% Paul Fricker 11/13/2006 V)Z}En["1
fxgPhnaC>
`18qbot
% Check and prepare the inputs: 0bceI
% ----------------------------- >BIMi^
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) $UMFNjL
error('zernfun:NMvectors','N and M must be vectors.') W98i[Q9A7
end ]
bM)t<
\rx3aJl
if length(n)~=length(m) / ;$#d}R
error('zernfun:NMlength','N and M must be the same length.') 1tEgl\u\
end Fsmycr!R
9_# >aOqL
n = n(:); dsb `xw
m = m(:); 6Z>FTz_
if any(mod(n-m,2)) @K\~O__
error('zernfun:NMmultiplesof2', ... ^W`<gR
'All N and M must differ by multiples of 2 (including 0).') k$R~R-'
end N=4G=0 `ke
5gb|w\N>
if any(m>n) PlU*X8
error('zernfun:MlessthanN', ... B -?6M6#
'Each M must be less than or equal to its corresponding N.') 4,bv)Im+ `
end |'.*K]Yp
G"-?&)M#a
if any( r>1 | r<0 ) 6LOnU~l,
error('zernfun:Rlessthan1','All R must be between 0 and 1.') p#01gB
end iqC|G/
oz,np@f)J
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) <6EeD5{*
error('zernfun:RTHvector','R and THETA must be vectors.') PXK7b2fE.
end +DW~BS3
}\z.)B4,
r = r(:); 8;d:-Cp
theta = theta(:); 8ZM?)#`@{
length_r = length(r); `n#H5Oyn
if length_r~=length(theta) ;\a
YlV-
error('zernfun:RTHlength', ... 5QW=&zI`=
'The number of R- and THETA-values must be equal.') mPOGidxix
end ]9YJ,d@J
$Z!`Hb
% Check normalization: wF
IegC(
% -------------------- -|J"s$yO4
if nargin==5 && ischar(nflag) D8inB+/-
isnorm = strcmpi(nflag,'norm'); ujDd1Bxf?
if ~isnorm 9i'jjN
error('zernfun:normalization','Unrecognized normalization flag.') v/Py"hQ
end VvvRRP^q
else *i\Qo
isnorm = false; ?+_Gs;DGVE
end zO~8?jDN4|
gD,1 06%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |*oZ_gI
% Compute the Zernike Polynomials un)4eo!7
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% M}`B{]lLz
G^~k)6v=m
% Determine the required powers of r: $:cE ^8K
% ----------------------------------- qOe+ZAJ{%N
m_abs = abs(m); E.r>7`E
rpowers = []; 1_o],?Q
for j = 1:length(n) oo,uO;0G
rpowers = [rpowers m_abs(j):2:n(j)]; pf%=h
|
end nc~F_i=
rpowers = unique(rpowers); I
CZ4A{I
f* !j[U/r_
% Pre-compute the values of r raised to the required powers, W,4QzcQR
% and compile them in a matrix: yL%K4$z
% ----------------------------- QP@%(]f G
if rpowers(1)==0 jq-p;-i
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 8
BY j
rpowern = cat(2,rpowern{:}); o]+z)5zC
rpowern = [ones(length_r,1) rpowern]; E%+Dl=
else :H7D~ n
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); L;
T8?+ x
rpowern = cat(2,rpowern{:}); u6M.'
end o4`hY/<t
,oN8HpGs
% Compute the values of the polynomials: ?5U2D%t
% -------------------------------------- Da&vb
D-Bg
y = zeros(length_r,length(n)); IC#>X5
for j = 1:length(n) |M>eEE*F<
s = 0:(n(j)-m_abs(j))/2; FqkDKTS\&
pows = n(j):-2:m_abs(j); H9KKed47d/
for k = length(s):-1:1 hhSy0
p = (1-2*mod(s(k),2))* ... dA-2%uJ
prod(2:(n(j)-s(k)))/ ... kQ4dwF~
prod(2:s(k))/ ... BHd&yIyI
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... _9faBrzd
prod(2:((n(j)+m_abs(j))/2-s(k))); R?v>Q` Qi
idx = (pows(k)==rpowers); ]Oh@,V8
y(:,j) = y(:,j) + p*rpowern(:,idx); ln$&``L
end \X<bH&x:z
~hZ"2$(0
if isnorm .clP#r{U
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); tna .52*/
end x1Lb*3Fe
end ` BDLW%aL
% END: Compute the Zernike Polynomials kv8Fko
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 4A@NxihH
So{x]x:f
% Compute the Zernike functions: j;']cWe
% ------------------------------ .EpV;xq}
idx_pos = m>0; P.6nA^hXB
idx_neg = m<0; _ 6O\W%it
P6E3-?4j
z = y; N<f"]
if any(idx_pos) CJ(NgYC h
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); B,M(@5wz
end uJOJ-5}yt
if any(idx_neg) $>*3/H
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); (>F%UY
end f_[<L
I{
HN67O
% EOF zernfun