切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11664阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 *&tv(+P  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! %,f(jQfg_  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 /ommM  
    function z = zernfun(n,m,r,theta,nflag) uA~?z :~=  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. @.} @K  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 3ICMH  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ^CW{`eBwk  
    %   unit circle.  N is a vector of positive integers (including 0), and 23/;W|   
    %   M is a vector with the same number of elements as N.  Each element M=Y['w x  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 6rMNp"!  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, c+501's  
    %   and THETA is a vector of angles.  R and THETA must have the same G$VE o8Blb  
    %   length.  The output Z is a matrix with one column for every (N,M) *+_+Z DU  
    %   pair, and one row for every (R,THETA) pair. ]|_+lik#  
    % +!$]a^3l  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 5=/j  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), <aQ5chf7  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral  1t }  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, *vOk21z77d  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized f7:}t+d  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ##nC@h@  
    % RKy!=#;17  
    %   The Zernike functions are an orthogonal basis on the unit circle. qm< mw"]  
    %   They are used in disciplines such as astronomy, optics, and CTJwZY7  
    %   optometry to describe functions on a circular domain. W~/{ct$Y  
    % ;e$YM;;d  
    %   The following table lists the first 15 Zernike functions. 5A+r^xN  
    % r0q?e`nsA  
    %       n    m    Zernike function           Normalization s&1}^'|  
    %       -------------------------------------------------- fT{%zJU  
    %       0    0    1                                 1 ~L:H]_8F l  
    %       1    1    r * cos(theta)                    2 vsJM[$RF  
    %       1   -1    r * sin(theta)                    2 :D~J(Y2  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) <YvW /x  
    %       2    0    (2*r^2 - 1)                    sqrt(3) lr]C'dD  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) %H4>k#b@$  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8)  ^w_\D?  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) Rd[^)q4d$w  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) GOD{?#c$  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) y7x*:xR[  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) fWyXy%Qq  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) NRazI_Z  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) K9ek  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) hG >kx8h  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) u>/Jb+  
    %       -------------------------------------------------- =3dd1n;8>  
    % kAq#cLprG  
    %   Example 1: -PTfsQk  
    % OO\$'% y`  
    %       % Display the Zernike function Z(n=5,m=1) N v6=[_D  
    %       x = -1:0.01:1; Z29aRi  
    %       [X,Y] = meshgrid(x,x); b8!   
    %       [theta,r] = cart2pol(X,Y); Nka 3H7 `  
    %       idx = r<=1; Uh+6fE]p  
    %       z = nan(size(X)); \- 8aTF  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); WZ=$c]gG  
    %       figure D9!$H!T _  
    %       pcolor(x,x,z), shading interp c$x >6&&L  
    %       axis square, colorbar 'xGTaKlm,  
    %       title('Zernike function Z_5^1(r,\theta)') )FN$Jlo  
    % $e:bDZ(hjj  
    %   Example 2: <==6fc>s  
    % xNjWo*y v  
    %       % Display the first 10 Zernike functions Re*_Dt=r  
    %       x = -1:0.01:1; 'V\V=yc1  
    %       [X,Y] = meshgrid(x,x); &0]5zQ  
    %       [theta,r] = cart2pol(X,Y); 6FY.kN\  
    %       idx = r<=1; bnJ4Edy  
    %       z = nan(size(X)); tV h"C%Vkr  
    %       n = [0  1  1  2  2  2  3  3  3  3]; &Bqu2^^  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; ;9LOeH?  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; M0$E_*  
    %       y = zernfun(n,m,r(idx),theta(idx)); ^bq,+1;@Q  
    %       figure('Units','normalized') tG~[E,/`  
    %       for k = 1:10 D@kf^1G  
    %           z(idx) = y(:,k); MaPI<kYQv  
    %           subplot(4,7,Nplot(k)) kn/xt  
    %           pcolor(x,x,z), shading interp !t}yoN n|  
    %           set(gca,'XTick',[],'YTick',[]) ]CPF7Hf  
    %           axis square J|vg<[  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) VOIni<9y  
    %       end s6'=4gM  
    % #qW#>0U  
    %   See also ZERNPOL, ZERNFUN2. |a %Wd  
    [LO=k|&R  
    %   Paul Fricker 11/13/2006 g>l+oH[Tv|  
    wB&5q!{!  
    _!_1=|[  
    % Check and prepare the inputs: `3`.usw  
    % ----------------------------- t7Mq>rFB  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) nLx|$=W  
        error('zernfun:NMvectors','N and M must be vectors.') 6b9J3~d\E  
    end zQ#* O'-n  
    %NM={X|'  
    if length(n)~=length(m) |(AFU3 ~  
        error('zernfun:NMlength','N and M must be the same length.') (][-()YV  
    end .(3ec/i4CF  
    X?XB!D7[  
    n = n(:); v\_\bT1  
    m = m(:); IUNr<w<  
    if any(mod(n-m,2)) q^?a|l  
        error('zernfun:NMmultiplesof2', ... #sxv?r  
              'All N and M must differ by multiples of 2 (including 0).') [P6m8%Y|s  
    end ]"~ x  
    w)B ?j  
    if any(m>n) zWH)\>X59  
        error('zernfun:MlessthanN', ... -m@PqJF^  
              'Each M must be less than or equal to its corresponding N.') WIuYSt)h  
    end r-yUWIr S  
    TiF+rA{t  
    if any( r>1 | r<0 ) Ln t 1  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') -e_o p'`  
    end  .FC+  
    3z u6#3^  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ,aa 4Kh  
        error('zernfun:RTHvector','R and THETA must be vectors.') 1z-A3a/-  
    end >^GV #z  
    0{ ~2mggh  
    r = r(:); SOn)'!g  
    theta = theta(:); 1U/RMN3`  
    length_r = length(r); 9 M%Gnz  
    if length_r~=length(theta) a2tEp+7?  
        error('zernfun:RTHlength', ... ^i_+ugJX  
              'The number of R- and THETA-values must be equal.') H7z)OaM  
    end 0zkMRBe  
    ^+v1[U@  
    % Check normalization: Z)2d4:uv  
    % -------------------- C=]<R< Xy  
    if nargin==5 && ischar(nflag) 6>oc,=MV/  
        isnorm = strcmpi(nflag,'norm'); vSC1n8 /  
        if ~isnorm p)ig~kk`  
            error('zernfun:normalization','Unrecognized normalization flag.') sZT~ 5c8  
        end @c'iT20  
    else #QIY+muN  
        isnorm = false; C\~}ySQc.e  
    end 6h2keyod  
    J?yasjjgP  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% {it}\[3  
    % Compute the Zernike Polynomials rq4g~e!S  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% AvB=/p@]  
    jC4>%!{m  
    % Determine the required powers of r: Nw$OJ9$L>  
    % ----------------------------------- ..X_nF  
    m_abs = abs(m); 7QNx*8p  
    rpowers = []; =CJ`0yDQ>  
    for j = 1:length(n) CuvY^["  
        rpowers = [rpowers m_abs(j):2:n(j)]; ZTV)D  
    end |Z{#DOT  
    rpowers = unique(rpowers); HY FMf3  
    yn_f%^!G  
    % Pre-compute the values of r raised to the required powers, #qY gQ<TM!  
    % and compile them in a matrix: vI0,6fOd6  
    % ----------------------------- &1yJrj9y  
    if rpowers(1)==0 wjwCs`  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); D 5n\h5  
        rpowern = cat(2,rpowern{:}); 1W{oj  
        rpowern = [ones(length_r,1) rpowern]; &K[sb%  
    else TB* t^ E  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); G)%V 3h  
        rpowern = cat(2,rpowern{:}); Zk((VZ(y  
    end }P0bNY5?%  
    Z@Zg3AVU  
    % Compute the values of the polynomials: [`b,SX x  
    % -------------------------------------- <)wLxWalF  
    y = zeros(length_r,length(n)); ~`FRU/@r  
    for j = 1:length(n) @Kz,TP!%A  
        s = 0:(n(j)-m_abs(j))/2; @n?"*B  
        pows = n(j):-2:m_abs(j); KR?aL:RYb  
        for k = length(s):-1:1 ''@Tke3IG6  
            p = (1-2*mod(s(k),2))* ... Rw{' O]Q*  
                       prod(2:(n(j)-s(k)))/              ... [0y,K{8t  
                       prod(2:s(k))/                     ... Zf3(! a[  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... *3`R W<Z  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); L%/>Le}VX  
            idx = (pows(k)==rpowers); Os'E7;:1h  
            y(:,j) = y(:,j) + p*rpowern(:,idx); iYgVSVNg  
        end cM'MgX9  
         hdx_Tduue  
        if isnorm t3Gy *B  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); hS8M|_  
        end &uRT/+18W3  
    end _>\33V-?b  
    % END: Compute the Zernike Polynomials 5?SE?VC=t  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% pI-Qq%Nwt  
    -Yse^(^"s  
    % Compute the Zernike functions: XjN =UhC  
    % ------------------------------ ocWl]h].  
    idx_pos = m>0; (0q`eO2  
    idx_neg = m<0; k- 9i  
    IC'+{3.m8  
    z = y; 3WF]%P%  
    if any(idx_pos) 4;J.$  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); #~nXAs]Q  
    end Ve%ua]qA  
    if any(idx_neg) ~ Ze!F"  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); yZ,pH1  
    end S8dfe~|7:  
    .8^mA1fmX  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) =p[Sd*d  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. Zc_F"KJL  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated )fXw~  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive GPh;r7xg6  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, F%y#)53g  
    %   and THETA is a vector of angles.  R and THETA must have the same xM<aQf\j  
    %   length.  The output Z is a matrix with one column for every P-value, /7S g/d%c  
    %   and one row for every (R,THETA) pair. 8v4krz<Iq  
    % "B__a(  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike h& 4#5{=  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) :dbO|]Xf  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) 7CR#\&h`  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 Z<d=v3q  
    %   for all p. nt>3i! l  
    % dRzeHuF92  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 '>|K d{J0  
    %   Zernike functions (order N<=7).  In some disciplines it is C~>0K,C0^  
    %   traditional to label the first 36 functions using a single mode g/$RuT2U  
    %   number P instead of separate numbers for the order N and azimuthal 8SroA$^n  
    %   frequency M. 3; z1Hp2X  
    % XLiwE$:t%  
    %   Example: cCiDe`T\F  
    % b (@GKH"W  
    %       % Display the first 16 Zernike functions e`LvHU_0  
    %       x = -1:0.01:1; #o~C0`8!B=  
    %       [X,Y] = meshgrid(x,x); S3HyB b  
    %       [theta,r] = cart2pol(X,Y); +}udIi3:l  
    %       idx = r<=1; a6h+?Q7uF  
    %       p = 0:15; J0&-UnJ  
    %       z = nan(size(X)); 9Ut eD@*  
    %       y = zernfun2(p,r(idx),theta(idx)); 3jfAv@I~  
    %       figure('Units','normalized')  l2M(  
    %       for k = 1:length(p) cY!Pv  
    %           z(idx) = y(:,k); mBye)q$  
    %           subplot(4,4,k) fS'` 9  
    %           pcolor(x,x,z), shading interp W +GBSl  
    %           set(gca,'XTick',[],'YTick',[]) %b_0l<+  
    %           axis square S/eplz;  
    %           title(['Z_{' num2str(p(k)) '}']) ;=P!fvHk  
    %       end 9k9}57m.i  
    % '?I3&lYz{  
    %   See also ZERNPOL, ZERNFUN. `N}V i6FG  
    H^o_B1  
    %   Paul Fricker 11/13/2006 #t Pc<p6m  
    FnOa hLS  
    6,1oLvU  
    % Check and prepare the inputs: x3 ( _fS  
    % ----------------------------- wLI1qoDM  
    if min(size(p))~=1 2Gj)fMK38  
        error('zernfun2:Pvector','Input P must be vector.') QS4~":D/C  
    end h4ntjk|{i7  
    ;c|_z 9+  
    if any(p)>35 (ruMOKW  
        error('zernfun2:P36', ... o+k*ia~Fa  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... ~A%+oa*2~  
               '(P = 0 to 35).']) W%&s$b(  
    end o)b-fAd@$  
    -~J5aG[@~>  
    % Get the order and frequency corresonding to the function number: rR{KnM  
    % ---------------------------------------------------------------- "85)2*+  
    p = p(:); 6e.l# c!1}  
    n = ceil((-3+sqrt(9+8*p))/2); /VEK<.,aMv  
    m = 2*p - n.*(n+2); `{IL.9M!f  
    =?]S8cth  
    % Pass the inputs to the function ZERNFUN: ZhRdml4U2  
    % ---------------------------------------- Hd-g|'^K  
    switch nargin 5mL4Zq"  
        case 3 (*vBpJyz%  
            z = zernfun(n,m,r,theta); :T@} CJ  
        case 4 N3KI6p6\  
            z = zernfun(n,m,r,theta,nflag); M= 3w  
        otherwise c*R\fQd  
            error('zernfun2:nargin','Incorrect number of inputs.') }=gD,]2x8  
    end 5K&A2zC|  
    nHF~a?|FT  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) ;Vf{3  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. jWvi% I qi  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of 9`^(M^|c  
    %   order N and frequency M, evaluated at R.  N is a vector of k3Puq1H  
    %   positive integers (including 0), and M is a vector with the )3 f\H  
    %   same number of elements as N.  Each element k of M must be a f4f)9n  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) NP4u/C<  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is c|k(_#\B  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix Qk|+Gj  
    %   with one column for every (N,M) pair, and one row for every VT~%);.#  
    %   element in R. &U([Wd?E2  
    % rmWs o b  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- /m^G 99N  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is KP>1%ap6  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to 'X4)2iFV  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 *<"{(sAvk  
    %   for all [n,m]. eZhF<<Y  
    % Qs#;sy W@~  
    %   The radial Zernike polynomials are the radial portion of the i]@k'2N  
    %   Zernike functions, which are an orthogonal basis on the unit JnqP`kYbTE  
    %   circle.  The series representation of the radial Zernike :>H{?  
    %   polynomials is COBjJ3  
    % !HhF*Rlr  
    %          (n-m)/2 eQ6wEeB9  
    %            __ ) jM-5}"  
    %    m      \       s                                          n-2s 0;OZ|;Z  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r 0 xvSi9  
    %    n      s=0 { utnbtmu  
    % utn,`v   
    %   The following table shows the first 12 polynomials. 4L97UhLL  
    % Z>X]'q03  
    %       n    m    Zernike polynomial    Normalization S<i. O  
    %       --------------------------------------------- -QBM^L  
    %       0    0    1                        sqrt(2) LN5q_ZvR  
    %       1    1    r                           2 nYvkeT  
    %       2    0    2*r^2 - 1                sqrt(6) d@b2XCh<K  
    %       2    2    r^2                      sqrt(6) B| M@o^Tf  
    %       3    1    3*r^3 - 2*r              sqrt(8) Dk2Zl  
    %       3    3    r^3                      sqrt(8) jJ'NYG  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) X%B$*y5  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) E7w^A  
    %       4    4    r^4                      sqrt(10) *1:kIi7_  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) #e@[{s7  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) g 4 $  
    %       5    5    r^5                      sqrt(12) WYcZD_  
    %       --------------------------------------------- z 9WeOs  
    % Y9st3  
    %   Example: +;oR_]l  
    % 8f%OPcr&  
    %       % Display three example Zernike radial polynomials ?zVE7;r4U  
    %       r = 0:0.01:1; \.P#QVuQ  
    %       n = [3 2 5]; v v5rA 6+  
    %       m = [1 2 1]; gt~u/Z%  
    %       z = zernpol(n,m,r); hew"p(`  
    %       figure f^IB:e#j;  
    %       plot(r,z) a6It1%a+  
    %       grid on n 1^h;2gz  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') J?4dafkw  
    % {aK3'-7  
    %   See also ZERNFUN, ZERNFUN2. 4((p?jb C  
    zQ u9LN  
    % A note on the algorithm. }%42Ty  
    % ------------------------ R-mn8N&  
    % The radial Zernike polynomials are computed using the series N{M25ucAHl  
    % representation shown in the Help section above. For many special &Rz-;66bN  
    % functions, direct evaluation using the series representation can A4KkX  
    % produce poor numerical results (floating point errors), because IfI:|w}:"r  
    % the summation often involves computing small differences between E4_,EeC#  
    % large successive terms in the series. (In such cases, the functions ']1a  
    % are often evaluated using alternative methods such as recurrence vuJEPn%  
    % relations: see the Legendre functions, for example). For the Zernike z|(<Co8#.  
    % polynomials, however, this problem does not arise, because the !>kg:xV  
    % polynomials are evaluated over the finite domain r = (0,1), and #2Iw%H2q&  
    % because the coefficients for a given polynomial are generally all Jv]$@>#  
    % of similar magnitude. #nZPnc:  
    % @s,kx.S  
    % ZERNPOL has been written using a vectorized implementation: multiple 13Q87i5B  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] 1jPh0?BY  
    % values can be passed as inputs) for a vector of points R.  To achieve ? 5OK4cR  
    % this vectorization most efficiently, the algorithm in ZERNPOL Ahr  
    % involves pre-determining all the powers p of R that are required to uy<b5.!-  
    % compute the outputs, and then compiling the {R^p} into a single >S{8sN  
    % matrix.  This avoids any redundant computation of the R^p, and W}%[i+  
    % minimizes the sizes of certain intermediate variables. $}us+hGZ  
    % $) qL=kR  
    %   Paul Fricker 11/13/2006 8;f5;7M n  
    'Ddzlip  
    >m%7dU  
    % Check and prepare the inputs: m6gMVon  
    % ----------------------------- 5as5{"l  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) um( xZ6&m  
        error('zernpol:NMvectors','N and M must be vectors.') <;1M!.)5  
    end sl P>;  
    IQ xi@7%&  
    if length(n)~=length(m) E7/i_Xkk  
        error('zernpol:NMlength','N and M must be the same length.') H"?Ndl:  
    end tv: mjS  
    L{&Yh|}  
    n = n(:); g!cW`B'  
    m = m(:); Ya!PV&"Z  
    length_n = length(n); _C|j"f/}  
    M+lr [,c  
    if any(mod(n-m,2)) 0 c,!<\B  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') y,qn9  
    end 8{6`?qst@  
    ,;<M+V3+  
    if any(m<0) jTW8mWNk]  
        error('zernpol:Mpositive','All M must be positive.') qT#NS&T!-  
    end 7>AM zNj  
    Ev3,p`zS._  
    if any(m>n) ]A1'+!1$  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') i4M%{]G3Y  
    end ?t/\ ID  
    PM&NY8|Zy  
    if any( r>1 | r<0 ) -q&,7'V  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') J90 )v7  
    end s'Qmr s a  
    Qx_N,1>S  
    if ~any(size(r)==1) }2Y`Lr  
        error('zernpol:Rvector','R must be a vector.') pA_e{P/  
    end = U[$i"+  
    3[ xHY@c  
    r = r(:); ^a1k"|E?f  
    length_r = length(r); ]a[2QQ+g  
    53^3. .E|  
    if nargin==4 5FsfJpw  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); ]8 <`&~a  
        if ~isnorm )XoMOz  
            error('zernpol:normalization','Unrecognized normalization flag.') t{`krs``  
        end )d|s$l$?7  
    else Fw#1?/K~  
        isnorm = false; X|}Q4T`  
    end 5Z=GFKf|  
    gQ<{NQMzvd  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Kp;a(D  
    % Compute the Zernike Polynomials 3/]~#y%2  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% b%0@nu4  
    XQtV$Lw  
    % Determine the required powers of r: j*d+WZm8-g  
    % ----------------------------------- S9'Xsh  
    rpowers = []; 0vMKyT3 c  
    for j = 1:length(n) +&E\w,Vq^  
        rpowers = [rpowers m(j):2:n(j)]; i 8%@4U/ J  
    end Tz0XBH_  
    rpowers = unique(rpowers); {z9z#8`C;  
    ",aEN=+|hV  
    % Pre-compute the values of r raised to the required powers, w?Cho</Xu  
    % and compile them in a matrix: *Y!RU{w+Z  
    % ----------------------------- '+c@U~d*7  
    if rpowers(1)==0 vZ^U]h V  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 46B'Ec  
        rpowern = cat(2,rpowern{:}); ]Z52L`k  
        rpowern = [ones(length_r,1) rpowern]; Oh,Xjel  
    else A.RG8"  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ^ q3H  
        rpowern = cat(2,rpowern{:}); Lg7dJnf  
    end ^/xb-tuV  
    ,jl4W+s  
    % Compute the values of the polynomials: >\3N#S"PF  
    % -------------------------------------- 43~v1pf{!  
    z = zeros(length_r,length_n); APCE }%1U  
    for j = 1:length_n +4Q1s?`  
        s = 0:(n(j)-m(j))/2; h<n2pz}  
        pows = n(j):-2:m(j); z.OJ1vY7  
        for k = length(s):-1:1 /"^XrVi-  
            p = (1-2*mod(s(k),2))* ... $I<\Yuy-M9  
                       prod(2:(n(j)-s(k)))/          ... _lC0XDZ  
                       prod(2:s(k))/                 ... D z[ ,;  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... ~B7<Yg  
                       prod(2:((n(j)+m(j))/2-s(k))); Gh<#wa['}  
            idx = (pows(k)==rpowers); m/< @Qw  
            z(:,j) = z(:,j) + p*rpowern(:,idx); ,vBB". LY'  
        end F;Q'R |HQ  
         _B vGEM`o  
        if isnorm Qo*OC 9E`  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); xU(b:D Z  
        end EoS6t  
    end i@ 86Ez  
    n]>L"D,  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  Q{~;4+ZD  
    tnq Zl S  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 kAW2vh  
    w~n+hhMF  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)