非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 tRpY+s~Fq
function z = zernfun(n,m,r,theta,nflag) 7f}uRXBV$A
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. YrJUs]A
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N l=b!O
% and angular frequency M, evaluated at positions (R,THETA) on the 0ki- /{;
% unit circle. N is a vector of positive integers (including 0), and "p*'HQ
% M is a vector with the same number of elements as N. Each element p_g`f9q6D
% k of M must be a positive integer, with possible values M(k) = -N(k) BvsSrse
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, 1*yxSU@uY
% and THETA is a vector of angles. R and THETA must have the same ccrWk*tr
% length. The output Z is a matrix with one column for every (N,M) DnFzCJ
% pair, and one row for every (R,THETA) pair. tj'~RQvO
% ,f2oO?L}
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Q"ZpT
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 4~&3.1
% with delta(m,0) the Kronecker delta, is chosen so that the integral a_V\[V{R=
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 0cE9O9kE
% and theta=0 to theta=2*pi) is unity. For the non-normalized rHTZM,zM=H
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 6e rYjq
% cZQ8[I
% The Zernike functions are an orthogonal basis on the unit circle. 9xO@_pkX
% They are used in disciplines such as astronomy, optics, and X!qK[b@Z
% optometry to describe functions on a circular domain. Sz@z
0'
% HWsV_VAw}
% The following table lists the first 15 Zernike functions. Xg96I:r'p
% 4hy-M>!D|
% n m Zernike function Normalization 5, ,~k=
% -------------------------------------------------- S)rr
% 0 0 1 1 CYLab5A
% 1 1 r * cos(theta) 2 [9${4=Kq
% 1 -1 r * sin(theta) 2 b9RHsr]V
% 2 -2 r^2 * cos(2*theta) sqrt(6) vII{i
% 2 0 (2*r^2 - 1) sqrt(3) &F
uPd}F
% 2 2 r^2 * sin(2*theta) sqrt(6) aL4^ po
% 3 -3 r^3 * cos(3*theta) sqrt(8) D9[19,2r`
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) >jsY'Bm
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) {#qUZ z-
% 3 3 r^3 * sin(3*theta) sqrt(8) V!+iq*Z|=
% 4 -4 r^4 * cos(4*theta) sqrt(10) wKLYyetM!
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) j*<J&/luYZ
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) D[/fs`XES
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) /iFn=pk1?
% 4 4 r^4 * sin(4*theta) sqrt(10) \ s aV8U7B
% -------------------------------------------------- Vo@7G@7K(
% LDc EjFK(
% Example 1: K2zln_W
% } +}nrJv
% % Display the Zernike function Z(n=5,m=1) %-!%n=P
% x = -1:0.01:1; ~tA ^[tK
% [X,Y] = meshgrid(x,x); 1~c\J0h)d
% [theta,r] = cart2pol(X,Y); ng3ZK
% idx = r<=1; "00j]e.
% z = nan(size(X)); <#h,_WP*
% z(idx) = zernfun(5,1,r(idx),theta(idx)); SYYx>1;8`
% figure Y7.+
Ma#|
% pcolor(x,x,z), shading interp e'.BTt58Y
% axis square, colorbar 94+^K=lAX
% title('Zernike function Z_5^1(r,\theta)') ;[}OZt
% &T,|?0>~=J
% Example 2: 4{YA['
% \R<MQ#
x
% % Display the first 10 Zernike functions g:M;S"U3*Y
% x = -1:0.01:1; C8|V?bL
% [X,Y] = meshgrid(x,x); -U /)y:k!%
% [theta,r] = cart2pol(X,Y); KMj\A
d
% idx = r<=1; t2o{=!$WH
% z = nan(size(X)); CW+kKN
% n = [0 1 1 2 2 2 3 3 3 3]; 9 8|sWI3B
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; X[o+Y@bc
% Nplot = [4 10 12 16 18 20 22 24 26 28]; <R]m(
% y = zernfun(n,m,r(idx),theta(idx)); w0_P9g:
% figure('Units','normalized') [7I bT:ph
% for k = 1:10 >J7slDRo
% z(idx) = y(:,k); }ssV"5M
% subplot(4,7,Nplot(k)) m[}k]PB>
% pcolor(x,x,z), shading interp -i`jS_-Cv-
% set(gca,'XTick',[],'YTick',[]) _ p\L,No
% axis square ]eKuR"ob0
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 7#R)+
% end ']1n?K=A
% r%.k,FzGZY
% See also ZERNPOL, ZERNFUN2. }=/zG!+
W#F9Qw
% Paul Fricker 11/13/2006 ?XHQdN3e
[<#jK}g
lnyb4d/
% Check and prepare the inputs: 9>~pA]j%
% ----------------------------- \_`qon$9
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 61S;M8tNv
error('zernfun:NMvectors','N and M must be vectors.') e'K~WNT
end 5skN'*oG
Me.I>7c
if length(n)~=length(m) duG3-E
error('zernfun:NMlength','N and M must be the same length.') pN[WYM?[
end ^X96yj'?
lp
*GJP]T
n = n(:); qdix@@
m = m(:); mXRkR.zu+
if any(mod(n-m,2)) |UB$^)Twb
error('zernfun:NMmultiplesof2', ... +K1M&(
'All N and M must differ by multiples of 2 (including 0).') ZM.'W}J{*
end =-2~>B
OIP]9lM$nC
if any(m>n) Y:!L
error('zernfun:MlessthanN', ... XQy`5iv
'Each M must be less than or equal to its corresponding N.') 1p}Wj*mc
end gHe:o`
t1?aw<
if any( r>1 | r<0 ) 'zI(OnIS
error('zernfun:Rlessthan1','All R must be between 0 and 1.') l8oaDL\f
end u_k[<&$
z5jw\jBD
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) OS z71;j
error('zernfun:RTHvector','R and THETA must be vectors.') KnG7w^
end no*) M7
iww/ s
r = r(:); ' h7Faj
theta = theta(:); RrMEDMhk6
length_r = length(r); >jI.$%L$
if length_r~=length(theta) |[.-pA^
error('zernfun:RTHlength', ... TDH^x1P
'The number of R- and THETA-values must be equal.') |oPRP1F-;e
end '`2KLO>!
E#J})cPzw
% Check normalization: pQiC#4b
% -------------------- ok\-IU?
if nargin==5 && ischar(nflag) X!]v4ma`
isnorm = strcmpi(nflag,'norm'); u}5CzV `
if ~isnorm KqFI2@v
error('zernfun:normalization','Unrecognized normalization flag.') &D<R;>iI
end v #+ECx
else gQeQy
isnorm = false; E.K^v/dNdq
end EOB8|:*
zy,SL
|6:
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% a}UmD
HS-
% Compute the Zernike Polynomials \|,| )
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ;C@mT;hR
1=)M15
% Determine the required powers of r: /*#o1W?wQZ
% ----------------------------------- +M-tYE
5n
m_abs = abs(m); D4L&6[W
rpowers = []; es)^^kGj6f
for j = 1:length(n) Pe_O(
rpowers = [rpowers m_abs(j):2:n(j)]; ,:t,$A
end ^ptybVo
rpowers = unique(rpowers); ~Gfytn9x.;
1B;2 ~2X
% Pre-compute the values of r raised to the required powers, eh9?GUr5
% and compile them in a matrix: ^\}qq>_
% ----------------------------- *`H*@2
if rpowers(1)==0 ^-"Iwy
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); z.8/[)
rpowern = cat(2,rpowern{:}); X)3(.L
rpowern = [ones(length_r,1) rpowern]; @62,.\F
else &ksuk9M
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); >PA*L(Dh%
rpowern = cat(2,rpowern{:}); ,U\s89
end zH]oAu=H
Tx.N#,T|
% Compute the values of the polynomials: &>\;4E.O5
% -------------------------------------- So1TH%
y = zeros(length_r,length(n)); Q a (Sb
for j = 1:length(n) roQI;gq^
s = 0:(n(j)-m_abs(j))/2; (h0@;@@7hW
pows = n(j):-2:m_abs(j); R/~!km
for k = length(s):-1:1 ^2kjO/
p = (1-2*mod(s(k),2))* ... gy.UTAs
N
prod(2:(n(j)-s(k)))/ ... GB$`b'x@S
prod(2:s(k))/ ... [D~]
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... <wSJK
prod(2:((n(j)+m_abs(j))/2-s(k))); 7p1Y g
idx = (pows(k)==rpowers); <e UsMo<
y(:,j) = y(:,j) + p*rpowern(:,idx); 5&