切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11708阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 QYf/tQg$  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! -Fok %iQ'5  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 'j,Li(@}  
    function z = zernfun(n,m,r,theta,nflag) Ek B6- nz  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. q:~`7I  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Cf1wM:K|8  
    %   and angular frequency M, evaluated at positions (R,THETA) on the c^[1]'y  
    %   unit circle.  N is a vector of positive integers (including 0), and (HV~ '5D  
    %   M is a vector with the same number of elements as N.  Each element M5ySs\O4  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) Er)_[^) HG  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, -RqAT1  
    %   and THETA is a vector of angles.  R and THETA must have the same zQ6 -2 A  
    %   length.  The output Z is a matrix with one column for every (N,M) oN6*WN tJ  
    %   pair, and one row for every (R,THETA) pair. }Cq9{0by?a  
    % W|-N>,G  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 3EW f|6RI  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), A2O_pbQti  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral Zxxy1Fl#.[  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, B 1ZHV^  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 8yo6v3JqC  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. |>o0d~s  
    % "/K&qj  
    %   The Zernike functions are an orthogonal basis on the unit circle. <}Wy;!L  
    %   They are used in disciplines such as astronomy, optics, and @tv];t  
    %   optometry to describe functions on a circular domain. + x ;ML  
    % g7}z &S ;_  
    %   The following table lists the first 15 Zernike functions. vL=--#  
    % 2}#wd J`  
    %       n    m    Zernike function           Normalization KutgW#+40  
    %       -------------------------------------------------- 3_eml\CY  
    %       0    0    1                                 1 A7,$y!D  
    %       1    1    r * cos(theta)                    2 `@.s!L(V  
    %       1   -1    r * sin(theta)                    2 V8U`%/`N  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) /%q9hI   
    %       2    0    (2*r^2 - 1)                    sqrt(3) !wb~A0m  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) ^(m6g&$(  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 1q233QSW)  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) LX?r=_\  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) N5an9r&z(1  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) .lF\bA|  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) ,ZP3F+XKb  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) GqD!W8+  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) r5qx! >  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) rs<&x(=Hv  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) .8PO7#  
    %       -------------------------------------------------- y>cmKE  
    % [Fj#7VZK  
    %   Example 1: B[_bJ *  
    % Z2j*%/  
    %       % Display the Zernike function Z(n=5,m=1) 2=,Sz1`t  
    %       x = -1:0.01:1; I/b8  
    %       [X,Y] = meshgrid(x,x); [QqNsco)  
    %       [theta,r] = cart2pol(X,Y); S{)n0/_  
    %       idx = r<=1; Am?Hkh2  
    %       z = nan(size(X)); >dm._*M  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); Z a1|fB  
    %       figure O2/w:zOg'  
    %       pcolor(x,x,z), shading interp #|_UA}Y  
    %       axis square, colorbar 5eSTT#[+R  
    %       title('Zernike function Z_5^1(r,\theta)') ._8cJf.ae  
    % ;pyJ O_R[  
    %   Example 2: |mE +f]7$  
    % L(n~@ gq  
    %       % Display the first 10 Zernike functions R6$F<;nw  
    %       x = -1:0.01:1; E!~2\qKT  
    %       [X,Y] = meshgrid(x,x); DfzUGX  
    %       [theta,r] = cart2pol(X,Y); -GWzMBS S  
    %       idx = r<=1; 8*PAgPj a  
    %       z = nan(size(X)); MMr7,?,$  
    %       n = [0  1  1  2  2  2  3  3  3  3]; HN~4-6[q  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; ec[[OIO  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 3a)Q:#okD  
    %       y = zernfun(n,m,r(idx),theta(idx)); c%Cae3;  
    %       figure('Units','normalized') 4kF .  
    %       for k = 1:10 _ * s  
    %           z(idx) = y(:,k); m;+1;B  
    %           subplot(4,7,Nplot(k)) nzJi)A./  
    %           pcolor(x,x,z), shading interp K/d &c]  
    %           set(gca,'XTick',[],'YTick',[]) xA'#JN<*  
    %           axis square -qP[$Q  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) j=QR*8*  
    %       end f=O>\  
    % aq\TO?  
    %   See also ZERNPOL, ZERNFUN2. `&[:!U2]F  
    kCjI`=7$[  
    %   Paul Fricker 11/13/2006 BOQV X&g%  
    ~(L+4]  
    %c/"A8{eb  
    % Check and prepare the inputs: y* Q-4_%,  
    % ----------------------------- 9.#R?YP$  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) >37}JUG  
        error('zernfun:NMvectors','N and M must be vectors.') (0m$W<  
    end zYF&Dv/u/  
    m9w ; a  
    if length(n)~=length(m) SA n=9MG  
        error('zernfun:NMlength','N and M must be the same length.') |A/_Qe|s2  
    end ZjW| qb  
    !,!tNs1 K  
    n = n(:); WM )g(i~(  
    m = m(:); ;U3Vows  
    if any(mod(n-m,2)) n >PM_W  
        error('zernfun:NMmultiplesof2', ... Wc;D{p?Lb  
              'All N and M must differ by multiples of 2 (including 0).') Eq;frnw>q  
    end J3S+| x h~  
    &:f'{>3z  
    if any(m>n)  /r@  
        error('zernfun:MlessthanN', ... 5nqdY*  
              'Each M must be less than or equal to its corresponding N.') +1fOW4!5  
    end vS__*} ^  
    k#NMD4(%O  
    if any( r>1 | r<0 ) sZBO_](S  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 6-}e-H  
    end J$*["y`+  
    L\CM);y  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Dx*oSP.qX  
        error('zernfun:RTHvector','R and THETA must be vectors.') vUx$[/<  
    end /M `y LI  
    E?D{/ k,zZ  
    r = r(:); 7$P(1D4  
    theta = theta(:); ?Cfp=85ea!  
    length_r = length(r); :?6$}GcW  
    if length_r~=length(theta) vbh#[,lh  
        error('zernfun:RTHlength', ... zn$ Ld,  
              'The number of R- and THETA-values must be equal.') W%Q>< 'c  
    end rWKLxK4oU  
    l<_mag/j9o  
    % Check normalization: _?LI0iIFx  
    % -------------------- I19F\ L`4  
    if nargin==5 && ischar(nflag) 1U9N8{xg9  
        isnorm = strcmpi(nflag,'norm'); zb,`K*Z{  
        if ~isnorm !O_^Rn+<2  
            error('zernfun:normalization','Unrecognized normalization flag.') >(KUYX?p  
        end "E!p1  
    else pR>QIZq<gT  
        isnorm = false; [N+ruc?)  
    end \ jdO,-(  
    2dW-WHaM  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% m|FONQ,@D  
    % Compute the Zernike Polynomials {\Y,UANZ  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% =H?5fT^  
    ^q r[?ky]&  
    % Determine the required powers of r: Z i&X ,K~  
    % ----------------------------------- HV(*6b@  
    m_abs = abs(m); x l=|]8w  
    rpowers = []; q`zR6  
    for j = 1:length(n) 9 NSYrIQ"  
        rpowers = [rpowers m_abs(j):2:n(j)]; }gaKO 5  
    end ~36XJ  
    rpowers = unique(rpowers); Z9bPj8d  
    |.nWy"L  
    % Pre-compute the values of r raised to the required powers, ,1h(k<-  
    % and compile them in a matrix: ?IO/zkeXg  
    % ----------------------------- tvCTC ey  
    if rpowers(1)==0 D"5~-9<  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 74wa  
        rpowern = cat(2,rpowern{:}); H}rP{`m  
        rpowern = [ones(length_r,1) rpowern]; P ^+>QJ1  
    else ;%9ZL[-  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 5|z[%x~f  
        rpowern = cat(2,rpowern{:}); ueo3i1  
    end #R| 4(HlL  
    Y :BrAa[  
    % Compute the values of the polynomials: 40/[ uW"  
    % -------------------------------------- X)5O@"4 ?  
    y = zeros(length_r,length(n)); ^S$w,  
    for j = 1:length(n) v9kzMxs,  
        s = 0:(n(j)-m_abs(j))/2; w` :KexD+  
        pows = n(j):-2:m_abs(j); ^r$5];n  
        for k = length(s):-1:1 3E:<  
            p = (1-2*mod(s(k),2))* ... :D-vE7  
                       prod(2:(n(j)-s(k)))/              ... wu'60po  
                       prod(2:s(k))/                     ... oWOZ0]H1  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Fd'L:A~  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); I !~Omr@P  
            idx = (pows(k)==rpowers); AP@d2{"m}  
            y(:,j) = y(:,j) + p*rpowern(:,idx); )~kb 7rfl  
        end L1K_|X  
         dq&d>f1  
        if isnorm Xu0*sQK  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); EQ-~e   
        end ),|bP`V  
    end ST.W{:X   
    % END: Compute the Zernike Polynomials t trp| (  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% hw2Hn   
    j+seJg<_  
    % Compute the Zernike functions: p%'((!a2  
    % ------------------------------ g`8|jg0]`I  
    idx_pos = m>0; G&-h,"yo^  
    idx_neg = m<0; ['<rfK  
    `dhK$jYD  
    z = y; "w1jr 6"  
    if any(idx_pos) o,I642R~  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); yKJp37R  
    end O;"%z*g.  
    if any(idx_neg) I&0yUhn  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); =?hlgQ  
    end !h\3cs`QU  
    eS|p3jk;  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) `,O^=HBM  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. LWE !+(n  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated -XBNtM_ "  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive VTdZ&%@  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, a@. /e @p  
    %   and THETA is a vector of angles.  R and THETA must have the same V !$m{)Y  
    %   length.  The output Z is a matrix with one column for every P-value, #S5vX<"9  
    %   and one row for every (R,THETA) pair. K!X8KPo  
    % KpL82  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike 5+r#]^eQY-  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) wpvaTHo  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) &wfM:a/c  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 STMcMm3  
    %   for all p. {+MMqJCa  
    % :?TV6M  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 d?>sy\{2  
    %   Zernike functions (order N<=7).  In some disciplines it is ]!QeJ'BLM  
    %   traditional to label the first 36 functions using a single mode T&%>/7I>  
    %   number P instead of separate numbers for the order N and azimuthal a Sj$62G"  
    %   frequency M. S@_GjCpn  
    % mP-+];gg  
    %   Example: J=sQ].EK  
    % S=Zjdbd  
    %       % Display the first 16 Zernike functions UkUdpZ.[il  
    %       x = -1:0.01:1; k"6^gup(U  
    %       [X,Y] = meshgrid(x,x); 7@`(DU`z  
    %       [theta,r] = cart2pol(X,Y); wR KGJ  
    %       idx = r<=1; g8C+j6uR0  
    %       p = 0:15; BB-`=X~:m  
    %       z = nan(size(X)); rRMC< .=  
    %       y = zernfun2(p,r(idx),theta(idx)); t|/ /oEY  
    %       figure('Units','normalized') &lD4-_2J  
    %       for k = 1:length(p) O/-xkzR*  
    %           z(idx) = y(:,k); ;Wr$hDt^  
    %           subplot(4,4,k) C$_H)I  
    %           pcolor(x,x,z), shading interp .R1)i-^  
    %           set(gca,'XTick',[],'YTick',[]) zr,jaR;  
    %           axis square e&:fzO<~I  
    %           title(['Z_{' num2str(p(k)) '}']) k3Y>QN|q8  
    %       end 3wK)vW  
    % yF*JzE 7,  
    %   See also ZERNPOL, ZERNFUN. l4; LV7Ji  
    _K8-O>I "  
    %   Paul Fricker 11/13/2006 c;Li~FLR  
    vUW!  
    *I~F7Z]|  
    % Check and prepare the inputs: =I?p(MqW  
    % ----------------------------- 6>l-jTM  
    if min(size(p))~=1 #2pgh?  
        error('zernfun2:Pvector','Input P must be vector.') 2oN lQiE_  
    end ukN#>e+L1  
    6D$xG"c  
    if any(p)>35 twJck~l~n  
        error('zernfun2:P36', ...  9TeDLp  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... *e^ ZH  
               '(P = 0 to 35).']) 5~qr+la  
    end ]xuq2MU,l  
    {#7t(:x  
    % Get the order and frequency corresonding to the function number: ALFw[1X  
    % ---------------------------------------------------------------- fx*Swv%r  
    p = p(:); [ML4<Eb+ x  
    n = ceil((-3+sqrt(9+8*p))/2); ohwQ%NDl  
    m = 2*p - n.*(n+2); A/'G.H  
    -wY6da*.W  
    % Pass the inputs to the function ZERNFUN: ct/I85c@P  
    % ---------------------------------------- __zsrIUJ  
    switch nargin R (6Jvub"I  
        case 3 #0weN%  
            z = zernfun(n,m,r,theta); 7UMsKE-  
        case 4 BKN]DxJ6  
            z = zernfun(n,m,r,theta,nflag); 2-8<uUy  
        otherwise rt"\\sOlMB  
            error('zernfun2:nargin','Incorrect number of inputs.') ,Qp58u2V  
    end #x'C  
    -2f0CAh~  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) eE1w<] Eg  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. (R.k.,z  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of y9:|}Vh  
    %   order N and frequency M, evaluated at R.  N is a vector of ^5xY&1j  
    %   positive integers (including 0), and M is a vector with the  ~B/|#o2  
    %   same number of elements as N.  Each element k of M must be a R9{6$djq\:  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) ([s2F%S`@  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is 16x M?P  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix >:8GU f*  
    %   with one column for every (N,M) pair, and one row for every :  wb\N'b  
    %   element in R. az7L0pp  
    % ,OG sx  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- *S*;rLH9c  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is {n{ j*+  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to m/CA  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 cLX~NPD/  
    %   for all [n,m]. @eR>?.:&  
    % c}$?k@=  
    %   The radial Zernike polynomials are the radial portion of the ?f:FmgQk  
    %   Zernike functions, which are an orthogonal basis on the unit )J5(M`  
    %   circle.  The series representation of the radial Zernike $7,n8ddRy  
    %   polynomials is |7%M:7 Q  
    % 'Ko T8g\b  
    %          (n-m)/2 9CW .xX8  
    %            __ Au@U;a4UU  
    %    m      \       s                                          n-2s R /iB  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r Q_]O[Kx  
    %    n      s=0 Zn&X Uvdl  
    % Bz]j&`  
    %   The following table shows the first 12 polynomials. J$@3,=L6V  
    % <{:$ ]3  
    %       n    m    Zernike polynomial    Normalization eCdMDSFO3  
    %       --------------------------------------------- q=Q5s?sQc  
    %       0    0    1                        sqrt(2) C {gYrz)  
    %       1    1    r                           2 6imDA]5N&  
    %       2    0    2*r^2 - 1                sqrt(6) D CFYpkR%  
    %       2    2    r^2                      sqrt(6)  KGFmC[  
    %       3    1    3*r^3 - 2*r              sqrt(8) e&#qj^  
    %       3    3    r^3                      sqrt(8) @/yef3  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) Dtt[a  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) cC b'z1  
    %       4    4    r^4                      sqrt(10) ^DM^HSm  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) tBp dKJn##  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) J_<ENs-  
    %       5    5    r^5                      sqrt(12) @'jC>BS8`  
    %       --------------------------------------------- m<hR Lo  
    % t@.M;b8  
    %   Example: Q3'\Vj,S&  
    % `pOiv&>  
    %       % Display three example Zernike radial polynomials  ze{  
    %       r = 0:0.01:1; >a5CW~Z]  
    %       n = [3 2 5]; hZU @35~BN  
    %       m = [1 2 1]; gfR B  
    %       z = zernpol(n,m,r); ZQZ>{K  
    %       figure ]|@RWzA  
    %       plot(r,z) {?$-p%CF`8  
    %       grid on XSkx<"U*  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') UW8 8JA0  
    % o!dTB,Molr  
    %   See also ZERNFUN, ZERNFUN2. c>,|[zP{  
    |Rf4^vN  
    % A note on the algorithm. _r^Cu.[7  
    % ------------------------ UPfH~H[1)  
    % The radial Zernike polynomials are computed using the series L*"Q5NzB]  
    % representation shown in the Help section above. For many special !:'%'@uc  
    % functions, direct evaluation using the series representation can *$0u A N  
    % produce poor numerical results (floating point errors), because UMuRB>ey  
    % the summation often involves computing small differences between >T'^&l(:  
    % large successive terms in the series. (In such cases, the functions ` zeZ7:  
    % are often evaluated using alternative methods such as recurrence QI0d:7!W1  
    % relations: see the Legendre functions, for example). For the Zernike 9~J  
    % polynomials, however, this problem does not arise, because the Tky\W%Ag  
    % polynomials are evaluated over the finite domain r = (0,1), and +vY8HQ|v  
    % because the coefficients for a given polynomial are generally all Ml@,xJ/aia  
    % of similar magnitude. w z}BH  
    % }'U "HHv  
    % ZERNPOL has been written using a vectorized implementation: multiple %3M1zZY  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] <DxUqCE  
    % values can be passed as inputs) for a vector of points R.  To achieve UC"<5z lcu  
    % this vectorization most efficiently, the algorithm in ZERNPOL D~P I_*h.  
    % involves pre-determining all the powers p of R that are required to HTA@en[5  
    % compute the outputs, and then compiling the {R^p} into a single Ei2hI  
    % matrix.  This avoids any redundant computation of the R^p, and [7]Kvb2t  
    % minimizes the sizes of certain intermediate variables. 3C=ON.1eg  
    % 0p YO-@E  
    %   Paul Fricker 11/13/2006 :OT~xU==H  
    6nRXRO  
    .KSPr  
    % Check and prepare the inputs: Oc8]A=M12  
    % ----------------------------- |]kcgLqj  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) v1*Lf/  
        error('zernpol:NMvectors','N and M must be vectors.') G}<%%U D  
    end I<PKwT/?  
    V<A_c^unO  
    if length(n)~=length(m) !#wd~: H  
        error('zernpol:NMlength','N and M must be the same length.') #+I)<a7\  
    end ^@5#jS2  
    5Arx"=c  
    n = n(:); vN'Y);$  
    m = m(:); c'ExZ)RJ  
    length_n = length(n); )GhMM  
    |E/U(VS3l~  
    if any(mod(n-m,2)) t6V@00M@  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') sq1Z;l31"  
    end _?$P?  
    1n|)05p  
    if any(m<0) [ }-CXB  
        error('zernpol:Mpositive','All M must be positive.') P4@<`Eb  
    end &.~Xl:lq  
    O%?noW  
    if any(m>n) 5:ca6 H  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') jLRUWg  
    end rWzw7T~  
    HMDQEd;  
    if any( r>1 | r<0 ) IWbW=0IsS  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') Q%:#xG5AmE  
    end ,QU2xw D[  
     lt%bGjk  
    if ~any(size(r)==1) l;_zXN   
        error('zernpol:Rvector','R must be a vector.') 7[aSP5e>T  
    end lrQ +G@#  
    }H2<w-,+  
    r = r(:); doM}vh)6  
    length_r = length(r); QJ1_LJ4)a  
    $42%H#  
    if nargin==4 ~{MmUp rS  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); 2' fg  
        if ~isnorm 3N%%69JN)  
            error('zernpol:normalization','Unrecognized normalization flag.') 9;,_Q q  
        end Gc6`]7 s  
    else bj)dYj f  
        isnorm = false; R?bF b|5t  
    end B]jI^( P  
    3e~X`K1Q<  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% k\,01Y^  
    % Compute the Zernike Polynomials u`GzYG-L  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% haj\Dm  
    @k.j6LKbc  
    % Determine the required powers of r: 57:Wh= x  
    % ----------------------------------- h!#!}|Q'  
    rpowers = []; -?)` OHc^  
    for j = 1:length(n) h|z{ (v  
        rpowers = [rpowers m(j):2:n(j)]; O}VI8OB(&  
    end erG@8CG  
    rpowers = unique(rpowers); pC9Ed9uRK  
    w783e  
    % Pre-compute the values of r raised to the required powers, d3 h^L  
    % and compile them in a matrix: sA6Ku(9  
    % ----------------------------- <3]Qrjl ,b  
    if rpowers(1)==0 ;Kb]v\C:  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); %\xwu(|kN  
        rpowern = cat(2,rpowern{:}); SVvR]T&_  
        rpowern = [ones(length_r,1) rpowern]; >C|/%$kk:f  
    else )dFTH?Mpo  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); QC+oSb!!?  
        rpowern = cat(2,rpowern{:}); cZn B 2T?  
    end r +X%0@K  
    Y>eypfK"  
    % Compute the values of the polynomials: F,B,D^WD  
    % -------------------------------------- 7=jeq|&kN  
    z = zeros(length_r,length_n); )2c[]d /a4  
    for j = 1:length_n [;5?=X,LD  
        s = 0:(n(j)-m(j))/2; oe1Dm   
        pows = n(j):-2:m(j); Yjo$^q  
        for k = length(s):-1:1 0Me *X  
            p = (1-2*mod(s(k),2))* ... Q<]~>cd^  
                       prod(2:(n(j)-s(k)))/          ... Z$h39hm?c  
                       prod(2:s(k))/                 ...  lZ^UAFF  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... (C;oot,  
                       prod(2:((n(j)+m(j))/2-s(k))); /mST<{(_G\  
            idx = (pows(k)==rpowers); 'IrwlS  
            z(:,j) = z(:,j) + p*rpowern(:,idx); 7.O1 ~-  
        end r{~K8!=oU]  
         kzs}U'U  
        if isnorm @C),-TM  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); _J}vPm  
        end eit>4xMu  
    end 8e_ITqV%  
    a8fLj  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  W,Dr2$V  
    ~,':PUkiV  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 GUat~[lUrj  
    , {z$M  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)