非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 iQczvn)"m
function z = zernfun(n,m,r,theta,nflag) qy`95^
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. ExDH@Lb
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N }b+tD3+
% and angular frequency M, evaluated at positions (R,THETA) on the rO%
|PRP
% unit circle. N is a vector of positive integers (including 0), and //G5lW/*
% M is a vector with the same number of elements as N. Each element +igFIoHTM
% k of M must be a positive integer, with possible values M(k) = -N(k) xo0",i
f8
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, MOJ-q3H^W
% and THETA is a vector of angles. R and THETA must have the same L&qzX)
% length. The output Z is a matrix with one column for every (N,M) kb?QQ\e
% pair, and one row for every (R,THETA) pair. VT1W#@`e-
% )-824?Nl:
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 30Nya$$A=
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 5=g{%X
% with delta(m,0) the Kronecker delta, is chosen so that the integral 4uv'l3
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, (=${@=!z
% and theta=0 to theta=2*pi) is unity. For the non-normalized im^G{3z
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. tr2@{xb
% #F5O>9hA
% The Zernike functions are an orthogonal basis on the unit circle. ,cs`6Bd4
% They are used in disciplines such as astronomy, optics, and CTt3W>'=+
% optometry to describe functions on a circular domain. " *xQN "F
% xW{_c[oA
% The following table lists the first 15 Zernike functions. v709#/cR
% >R/^|hnJ
% n m Zernike function Normalization 5AR\'||u
% -------------------------------------------------- ?Zu=UVb
% 0 0 1 1 oUEpzv,J
% 1 1 r * cos(theta) 2 "])X0z yM
% 1 -1 r * sin(theta) 2 Z>Nr"7k
% 2 -2 r^2 * cos(2*theta) sqrt(6) 4E:HO\
% 2 0 (2*r^2 - 1) sqrt(3) h2+vl@X
% 2 2 r^2 * sin(2*theta) sqrt(6) 8^ ;[c
% 3 -3 r^3 * cos(3*theta) sqrt(8) %FGPsHH
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) :{C#<g`
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) ):eX*
% 3 3 r^3 * sin(3*theta) sqrt(8) &|xN=U/
% 4 -4 r^4 * cos(4*theta) sqrt(10) eKpH|S!xU
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) e J>(SkR:[
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) ,U2
/J
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) o"t+G/M
% 4 4 r^4 * sin(4*theta) sqrt(10) vk+TWf
% -------------------------------------------------- GiB3.%R`
% N(Us 9
% Example 1: Y_S^B)y
%
N\DEY]
% % Display the Zernike function Z(n=5,m=1) UaCEh?D+Y
% x = -1:0.01:1; 'OSZ'F3PV
% [X,Y] = meshgrid(x,x); $k*E^~qT
% [theta,r] = cart2pol(X,Y); L #p-AK
% idx = r<=1; nCEt*~t9VE
% z = nan(size(X)); :{%6<j
% z(idx) = zernfun(5,1,r(idx),theta(idx)); ofl3G
{u
% figure ]7v-qd
% pcolor(x,x,z), shading interp `N}<lg(0#
% axis square, colorbar .Xh ^L
% title('Zernike function Z_5^1(r,\theta)') eh nN
% ~my\{q
% Example 2: ROr$S z
% gA~BhDS
% % Display the first 10 Zernike functions sN 1x|pkN
% x = -1:0.01:1; BqK|4-Pf
% [X,Y] = meshgrid(x,x); 'Wl))lB
% [theta,r] = cart2pol(X,Y); Lp20{R
% idx = r<=1; Ua\g*Cxh
% z = nan(size(X)); / O6n[qj|
% n = [0 1 1 2 2 2 3 3 3 3]; 25*/]iu
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 3zY"9KUN
% Nplot = [4 10 12 16 18 20 22 24 26 28]; MOP
%vS
% y = zernfun(n,m,r(idx),theta(idx)); -MJ6~4k2
% figure('Units','normalized') ,\4@Ao
% for k = 1:10 ItHKpTer
% z(idx) = y(:,k); V:)k@W?P
% subplot(4,7,Nplot(k)) w<&Nn`V
% pcolor(x,x,z), shading interp ;2kiEATQ
1
% set(gca,'XTick',[],'YTick',[]) fXvJ3w(
% axis square [oKc<o7)~"
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) jwyJ=W-
% end R*/%+
% {%^q8l4j
% See also ZERNPOL, ZERNFUN2. y _>HQs,:
SoS[yr
% Paul Fricker 11/13/2006 S%-L!V ,
(A\qZtnyl
qbu Lcy3
% Check and prepare the inputs: ["Ep.7=SU
% ----------------------------- !0`44Gbq
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 5W>i'6*
error('zernfun:NMvectors','N and M must be vectors.') nsij;C
end ;$&&tEh)
NtkEb :
if length(n)~=length(m) 6gY5v@!w
error('zernfun:NMlength','N and M must be the same length.') ;"
'`P[
end 9yajtR
thOQcOf0$
n = n(:); N-]h+Cnyu
m = m(:); pY!@w0.
if any(mod(n-m,2)) P )_g t
error('zernfun:NMmultiplesof2', ... zGj0'!!-
'All N and M must differ by multiples of 2 (including 0).') ae{%*
\J
end YMj
z,N
[IF3,C
if any(m>n) fxXZ^#2wX
error('zernfun:MlessthanN', ... }N:0%Gk[;
'Each M must be less than or equal to its corresponding N.') [ahD%UxO5
end L,p5:EW8.
TjncW/\Z
if any( r>1 | r<0 ) jl{>>TW{x
error('zernfun:Rlessthan1','All R must be between 0 and 1.') Ra&HzK?
end `]_#_
tmDI2Z%7
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 29z+<?K{
error('zernfun:RTHvector','R and THETA must be vectors.') =S4_^UY;
end _S{HVc
{kD|8["Ie'
r = r(:); ;3h[=hyS
theta = theta(:); I?lQN$A.E
length_r = length(r); BR8z%R
if length_r~=length(theta) =7e~L 3 K
error('zernfun:RTHlength', ... j0>S)Q
'The number of R- and THETA-values must be equal.') %g^dB M#
end |t1D8){!
J)oa:Q
% Check normalization: V?kJYf(<
% -------------------- 5O#CdN-S
if nargin==5 && ischar(nflag) xqmP/1=NO
isnorm = strcmpi(nflag,'norm'); XG@_Lcv*
if ~isnorm }at8b ^
error('zernfun:normalization','Unrecognized normalization flag.') )Uw
QsP
end .!\y<9
else Q[;!z1ur
isnorm = false; o )GNV
end oil s;*q
X<Rh-1$8F
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ELk$lm&