切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11538阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 VQI(Vp|  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! f ).1]~  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 !|q<E0@w\  
    function z = zernfun(n,m,r,theta,nflag) p47S^gW  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. !J*,)kRN  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N `u!l3VZ/4  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 49Df?sx  
    %   unit circle.  N is a vector of positive integers (including 0), and wfL-oi'5  
    %   M is a vector with the same number of elements as N.  Each element b?4/#&z]  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) e6X[vc|Y}  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, thO ~=RB  
    %   and THETA is a vector of angles.  R and THETA must have the same ]u-]'P  
    %   length.  The output Z is a matrix with one column for every (N,M) 22<0DhJ  
    %   pair, and one row for every (R,THETA) pair. N!Qg;(  
    % E+"dqSI/v  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 0U/K7sZ  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), =&0wr6  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral >StO.Q99  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, =z?%;4'|  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized nhSb~QqEh  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. xt'tL:d  
    % vB37M@wm  
    %   The Zernike functions are an orthogonal basis on the unit circle. fl Jp4-nx  
    %   They are used in disciplines such as astronomy, optics, and {Y}dv`G#Iu  
    %   optometry to describe functions on a circular domain. P X;Ed*y  
    % 2Nxm@B` {  
    %   The following table lists the first 15 Zernike functions. < XTU8G  
    % N4;7gSc"  
    %       n    m    Zernike function           Normalization 3'c\;1lhT  
    %       -------------------------------------------------- 3ZTE<zRQ  
    %       0    0    1                                 1 ]J9cVp  
    %       1    1    r * cos(theta)                    2 k+V6,V)my  
    %       1   -1    r * sin(theta)                    2 8,O33qwH  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) !|2VWI}  
    %       2    0    (2*r^2 - 1)                    sqrt(3) ]Ni$.@Hu$  
    %       2    2    r^2 * sin(2*theta)             sqrt(6)  Pi%%z  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) x 5dWBGH  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) ~ `>e5OgOJ  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) +6smsL~<#v  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) C8#@+Q.  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) T{]~07N?  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 4RKW  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) VN4yn| f/  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) L.xZ_ 6  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) &)i|$J 2.  
    %       -------------------------------------------------- dX8hpQ  
    % <J(sR  
    %   Example 1: w(L>#?  
    % *xf._~E  
    %       % Display the Zernike function Z(n=5,m=1) 41#w|L \  
    %       x = -1:0.01:1; Mh(]3\  
    %       [X,Y] = meshgrid(x,x); k~%<Ir1V]  
    %       [theta,r] = cart2pol(X,Y); 53HU.  
    %       idx = r<=1; "I;C;}!  
    %       z = nan(size(X)); hA 3HVP_  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); $(s\{(Wn  
    %       figure }],Z;:  
    %       pcolor(x,x,z), shading interp pqvOJ#?Q}=  
    %       axis square, colorbar syx\gz  
    %       title('Zernike function Z_5^1(r,\theta)') ERUt'1F?]  
    % n}A\2bO  
    %   Example 2: OQ :dJe6  
    % 0s#vwK13  
    %       % Display the first 10 Zernike functions 9[v1h,L  
    %       x = -1:0.01:1; : FAH\  
    %       [X,Y] = meshgrid(x,x); TUL_TR  
    %       [theta,r] = cart2pol(X,Y); X.ONa_  
    %       idx = r<=1; rI5F oh6  
    %       z = nan(size(X)); jk\ dG16  
    %       n = [0  1  1  2  2  2  3  3  3  3]; K\[!SXg@  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; h :Xz UxL\  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; |5I'CNi\  
    %       y = zernfun(n,m,r(idx),theta(idx)); jO9ip  
    %       figure('Units','normalized') /Y[~-Y+!,  
    %       for k = 1:10 HQ9f ,<  
    %           z(idx) = y(:,k); GZ!| }$ 8  
    %           subplot(4,7,Nplot(k)) &m3.h!dq  
    %           pcolor(x,x,z), shading interp fsO9EEn7 X  
    %           set(gca,'XTick',[],'YTick',[]) =U OLT>!  
    %           axis square w)E@*h<Z  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) !.7udYmB  
    %       end ^/wfXm  
    % tC8(XMVx  
    %   See also ZERNPOL, ZERNFUN2. Gx?+9C V  
    QVZD/shq  
    %   Paul Fricker 11/13/2006 d lH$yub  
    d {lP  
    RVtQ20e";r  
    % Check and prepare the inputs: HLQ"?OFlz  
    % ----------------------------- PYB+FcR6?n  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) @J[6,$UVu  
        error('zernfun:NMvectors','N and M must be vectors.') `Yc _5&"  
    end x+? 9C  
    LiDvaF:@L!  
    if length(n)~=length(m) fkfZ>D^1  
        error('zernfun:NMlength','N and M must be the same length.') P7r'ffA  
    end J?)RfK|!  
    J2GcBzRH  
    n = n(:); <Y 4:'L6  
    m = m(:); g*\/N,"z  
    if any(mod(n-m,2)) h*0S$p<[1  
        error('zernfun:NMmultiplesof2', ... `|1MlRM9  
              'All N and M must differ by multiples of 2 (including 0).') I4H`YOD%  
    end I9$c F)zk  
    I^*'.z!4Q  
    if any(m>n) C`oa3B,z  
        error('zernfun:MlessthanN', ... 3HG;!D~m;  
              'Each M must be less than or equal to its corresponding N.') BUUf;Vv  
    end ,Y_{L|:w  
    fi PIAT}  
    if any( r>1 | r<0 ) W:&R~R  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') NX* O_/  
    end {hSGv   
    VCNT4m  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Eu@5L9A  
        error('zernfun:RTHvector','R and THETA must be vectors.') dtM[E`PL  
    end XCB?ll*^  
    bTmL5}n  
    r = r(:); @b&84Gn2 r  
    theta = theta(:); !}TMiCK  
    length_r = length(r); ~ <0Z>qr  
    if length_r~=length(theta) oR+-+-? ?$  
        error('zernfun:RTHlength', ... {B$2"q/~  
              'The number of R- and THETA-values must be equal.') $KV&\Q3\0  
    end wyc D>hc  
    !KS F3sz  
    % Check normalization: "yb WDWu  
    % -------------------- 4Tzd; P6_  
    if nargin==5 && ischar(nflag) }m]q}r  
        isnorm = strcmpi(nflag,'norm'); `T*U]/zQ  
        if ~isnorm KV!<Oq  
            error('zernfun:normalization','Unrecognized normalization flag.') _cJ[ FP1  
        end D  _X8-  
    else L6:h.1 U$  
        isnorm = false; <T,A&`/  
    end 8``;0}'PC  
    S[M4ukYK  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -H(vL=  
    % Compute the Zernike Polynomials Q}%tt=KD  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @B1{r|-<^  
     {E9v`u\  
    % Determine the required powers of r: E,G<_40  
    % ----------------------------------- N?r>%4  
    m_abs = abs(m); $j` $[tX6l  
    rpowers = []; qV1O-^&[f=  
    for j = 1:length(n) Rz <OF^Iy  
        rpowers = [rpowers m_abs(j):2:n(j)]; V}8$p8#<@  
    end >G)qns9  
    rpowers = unique(rpowers); d{+(Lpj^  
    R zR?&J  
    % Pre-compute the values of r raised to the required powers, -<f/\U  
    % and compile them in a matrix: H>7dND 2;  
    % ----------------------------- AMlV%U#  
    if rpowers(1)==0 sLh0&R7   
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); =iz,S:[  
        rpowern = cat(2,rpowern{:}); C? m,ta3  
        rpowern = [ones(length_r,1) rpowern]; 7| YrdK<  
    else 0LVE@qEL  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); VC&c)X  
        rpowern = cat(2,rpowern{:}); $N+6h#  
    end CDg AGy  
    q|#MB7e/  
    % Compute the values of the polynomials: _+QwREP  
    % -------------------------------------- E{^^^"z P  
    y = zeros(length_r,length(n)); 9Ld9N;rWm#  
    for j = 1:length(n) y0q#R.TOm  
        s = 0:(n(j)-m_abs(j))/2; QX0 Y>&$ )  
        pows = n(j):-2:m_abs(j); W?,$!]0  
        for k = length(s):-1:1 s${_K*g6  
            p = (1-2*mod(s(k),2))* ... T-L5zu  
                       prod(2:(n(j)-s(k)))/              ... |"k&fkS$  
                       prod(2:s(k))/                     ... ] pPz@@xx  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... B!,yfTk]  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); hb^!LtF#Y  
            idx = (pows(k)==rpowers); sOC&Q&eg  
            y(:,j) = y(:,j) + p*rpowern(:,idx); L'kq>1QWf  
        end KsdG(.I+ek  
         QXQ  
        if isnorm D[Iq n  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); n.$(}A  
        end (O5)wej   
    end =I4.Gf"~f  
    % END: Compute the Zernike Polynomials ?b$3ob"  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% }=GM ?,7b  
    'F_}xMU  
    % Compute the Zernike functions: -CBD|fo[h  
    % ------------------------------ R_e)mkE  
    idx_pos = m>0; [%8@D C'  
    idx_neg = m<0; I6dm@{/:>  
    it}-^3A M  
    z = y; =MSu3<y,  
    if any(idx_pos) R2^iSl%pj  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 7kz-V.  
    end LHi6:G"Y(  
    if any(idx_neg) !WKk=ysFS  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); * BOBH;s  
    end h5onRa *7  
    km>o7V&4G  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) N$Hqa^!'T  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. 37>MJ  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated lIq~~cv)  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive r<(kLpOH%  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, <nA3Sd"QfV  
    %   and THETA is a vector of angles.  R and THETA must have the same q3\!$IM.  
    %   length.  The output Z is a matrix with one column for every P-value, M[,^KJ!  
    %   and one row for every (R,THETA) pair. f[@#7,2~M  
    % Yq;&F0paK  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike {Gkn_h-^  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) % +8  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) # U`&jBU  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 4TJ!jDkox  
    %   for all p. eCL?mhK  
    % LW?2}`+  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 Mcb<[~m  
    %   Zernike functions (order N<=7).  In some disciplines it is '#f?#(  
    %   traditional to label the first 36 functions using a single mode lt%-m@#/  
    %   number P instead of separate numbers for the order N and azimuthal S ljZ~x,!  
    %   frequency M. 6QptKXu7  
    % m){&:Hs  
    %   Example: Ph\F'xROe  
    % [N R1d-Wg  
    %       % Display the first 16 Zernike functions w{ m#Yt  
    %       x = -1:0.01:1; )`RZkCe  
    %       [X,Y] = meshgrid(x,x); 3mA/Nu_  
    %       [theta,r] = cart2pol(X,Y); $y4M#yv  
    %       idx = r<=1; HjPH  
    %       p = 0:15; *<3iEeO/R  
    %       z = nan(size(X)); g{&PrE'e9  
    %       y = zernfun2(p,r(idx),theta(idx)); 8)`5P\  
    %       figure('Units','normalized') g[<uwknf  
    %       for k = 1:length(p) 2^ kn5  
    %           z(idx) = y(:,k); XAlD ww  
    %           subplot(4,4,k) k`Y,KuBpM  
    %           pcolor(x,x,z), shading interp G[B*TM6$  
    %           set(gca,'XTick',[],'YTick',[]) m-#d8sD2C  
    %           axis square %J3lK]bv(  
    %           title(['Z_{' num2str(p(k)) '}']) -CZ-l;5  
    %       end qZc)Sa.S  
    % a!{hC)d*  
    %   See also ZERNPOL, ZERNFUN. ceI [hM  
    y7 <(,uT  
    %   Paul Fricker 11/13/2006 w5=EtKTi  
    Ae3#>[]{  
    p!V) 55J*  
    % Check and prepare the inputs: m&{rBz0  
    % ----------------------------- 33S`aJ  
    if min(size(p))~=1 4t(QvIydA  
        error('zernfun2:Pvector','Input P must be vector.') ";58B} ki  
    end <#!8?o&i  
    (N9`WuI  
    if any(p)>35 :4b- sg#  
        error('zernfun2:P36', ... ;W =by2x*  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... @~Rk^/0  
               '(P = 0 to 35).']) {S# 5g2  
    end 0$(jBnE  
    *+# k{D,  
    % Get the order and frequency corresonding to the function number: Xek E#?.  
    % ---------------------------------------------------------------- DwQp$l'NfW  
    p = p(:); <`b|L9  
    n = ceil((-3+sqrt(9+8*p))/2); 9yp^zL  
    m = 2*p - n.*(n+2); $Jt8d|UP  
    ]lC4+{V  
    % Pass the inputs to the function ZERNFUN: J\9jsx!WQ  
    % ---------------------------------------- F\l!A'Q+t  
    switch nargin 1gO//fdI  
        case 3 8~rT  
            z = zernfun(n,m,r,theta); ;%lJD"yF  
        case 4 ],WwqD=  
            z = zernfun(n,m,r,theta,nflag); ZO]E@?Oav  
        otherwise -U&098}<K  
            error('zernfun2:nargin','Incorrect number of inputs.') agGgJ@  
    end ggzAU6J  
    P[r}(@0rJ  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) &n,xGIG  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. n C\(+K1%  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of eU<]h>2  
    %   order N and frequency M, evaluated at R.  N is a vector of gogl[gHO  
    %   positive integers (including 0), and M is a vector with the |YMzp8Da(  
    %   same number of elements as N.  Each element k of M must be a gt(X!iN]  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) N GX-'w  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is =Td#2V;0  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix w;g)Iy6x  
    %   with one column for every (N,M) pair, and one row for every pRb+'v&_k  
    %   element in R. $u(M 4(}  
    % j58Dki->.  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- Y,p2eAss  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is @8T Vr2uy  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to j@!BOL~?  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 CYY X\^hA  
    %   for all [n,m]. m&;zLBA;  
    % m7bn%j-{$f  
    %   The radial Zernike polynomials are the radial portion of the VhJyWH%(  
    %   Zernike functions, which are an orthogonal basis on the unit @8}-0c  
    %   circle.  The series representation of the radial Zernike U/ v"?pg[  
    %   polynomials is 0DW'(#`  
    % @p?b"?QaB  
    %          (n-m)/2 rVc zO+E  
    %            __ ?kG#qt]Q5  
    %    m      \       s                                          n-2s Q)7L^  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r %m0L!|E  
    %    n      s=0 3/#R9J#  
    % c+YYM :S  
    %   The following table shows the first 12 polynomials. &9GR2GY  
    % DT1i2!  
    %       n    m    Zernike polynomial    Normalization B[2h   
    %       --------------------------------------------- pfT`WT  
    %       0    0    1                        sqrt(2) I*`=[nR  
    %       1    1    r                           2 7J </7\  
    %       2    0    2*r^2 - 1                sqrt(6) V8|q"UX  
    %       2    2    r^2                      sqrt(6) )SlUQ7f>  
    %       3    1    3*r^3 - 2*r              sqrt(8) v\r7.l:hf  
    %       3    3    r^3                      sqrt(8) UH.}B3H   
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) ~ L i%  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) 6O[wVaC1u  
    %       4    4    r^4                      sqrt(10) Y~\`0?ST  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) <LOx.}fv  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) o 0cc+  
    %       5    5    r^5                      sqrt(12) E?;T:7.%  
    %       --------------------------------------------- C$Hl`>?$  
    % is _ dPc  
    %   Example: #xJGuYdv  
    % cxF?&0[mY  
    %       % Display three example Zernike radial polynomials )b:~kuHi  
    %       r = 0:0.01:1; 3 MI) E  
    %       n = [3 2 5]; S &lTKYP  
    %       m = [1 2 1]; ytcG6WN3  
    %       z = zernpol(n,m,r); 9^[5!SMzCj  
    %       figure X?k V1  
    %       plot(r,z) s5Bmv\e.i5  
    %       grid on Z2pN<S{5  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') 8bKWIN g_n  
    % +Hm+ #o  
    %   See also ZERNFUN, ZERNFUN2. ZE3ysLk m  
    `__?7"p )\  
    % A note on the algorithm. b&V]|Z (  
    % ------------------------ Osvz 3UMY3  
    % The radial Zernike polynomials are computed using the series wDC/w[4:  
    % representation shown in the Help section above. For many special #Ot*jb1  
    % functions, direct evaluation using the series representation can IP4b[|ef  
    % produce poor numerical results (floating point errors), because ~IJZM`gN  
    % the summation often involves computing small differences between >cr_^(UW&  
    % large successive terms in the series. (In such cases, the functions ?3E_KGI  
    % are often evaluated using alternative methods such as recurrence yPxG`w'  
    % relations: see the Legendre functions, for example). For the Zernike i2%m}S;D9  
    % polynomials, however, this problem does not arise, because the ~)_ ?:.Da  
    % polynomials are evaluated over the finite domain r = (0,1), and YO!7D5rV#  
    % because the coefficients for a given polynomial are generally all l1|,Lr  
    % of similar magnitude. =QKgsgLh  
    % >a`zkl  
    % ZERNPOL has been written using a vectorized implementation: multiple 6L`+ z  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] GO GXM4I  
    % values can be passed as inputs) for a vector of points R.  To achieve ("M#R!3  
    % this vectorization most efficiently, the algorithm in ZERNPOL A(@gv8e[H^  
    % involves pre-determining all the powers p of R that are required to oJ;O>J@c  
    % compute the outputs, and then compiling the {R^p} into a single kI[O{<kQ  
    % matrix.  This avoids any redundant computation of the R^p, and o:Os_NaD  
    % minimizes the sizes of certain intermediate variables. cPBy(5^  
    % `J7Lecgo  
    %   Paul Fricker 11/13/2006 LXfeXWw?,  
    /5'<w(  
    &)f++(i  
    % Check and prepare the inputs: a]=vq(N'r  
    % ----------------------------- o_KcnVQ\  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) g!) LhE  
        error('zernpol:NMvectors','N and M must be vectors.') <B{VL8IA>  
    end SUi1*S  
    !DUg"o3G>  
    if length(n)~=length(m) Jc#)T;# 6  
        error('zernpol:NMlength','N and M must be the same length.') Xgth|C}k  
    end % oL&~6l$  
    Y l3[~S  
    n = n(:); hv8[_p`>  
    m = m(:); bz@=zLBt  
    length_n = length(n); W yJfF=<  
    [tf^i:2  
    if any(mod(n-m,2)) l|tp0[  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') ~aR='\<  
    end cyP* QW[  
    JO6vzoS3  
    if any(m<0) Gv nclnG  
        error('zernpol:Mpositive','All M must be positive.') @`+$d=rO`  
    end W me1w\0  
    gx9sBkoq5D  
    if any(m>n) VGUDUM.8  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') ez:o9)N4  
    end <l s/3!  
    M|kDys  
    if any( r>1 | r<0 ) KXbYv62  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') Dt'e<d Is  
    end 0]w[wc <  
    #cF8)GC  
    if ~any(size(r)==1) Py0 i%pZ  
        error('zernpol:Rvector','R must be a vector.') x4A~MuGU  
    end K]*ERAfM%m  
    T:~W.3  
    r = r(:); 7MJ)p$&  
    length_r = length(r); mb`}sTU).  
    VP[!ji9P   
    if nargin==4 WK)k-A^q  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); Nl)jQ  
        if ~isnorm x[@3;_'K  
            error('zernpol:normalization','Unrecognized normalization flag.') $"n)C  
        end !4.^@^L|\  
    else uqeWdj*Y  
        isnorm = false; g UAPjR  
    end  %!h+  
    92_H!m/  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ssbyvzQ  
    % Compute the Zernike Polynomials 'n.9qxY;  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 'wq:F?viF  
    959jp85  
    % Determine the required powers of r: P2RL\`<"  
    % ----------------------------------- mBkQ 8e  
    rpowers = []; }'v ?Qq  
    for j = 1:length(n) 7TY"{? ~O5  
        rpowers = [rpowers m(j):2:n(j)]; .Tqvy)'  
    end J|8YB3K,  
    rpowers = unique(rpowers); {#Cm> @')  
    &: 8&;vk  
    % Pre-compute the values of r raised to the required powers, `;2`H, G'  
    % and compile them in a matrix: oDI*\S>  
    % ----------------------------- (Sp~+#XnF  
    if rpowers(1)==0 rGL{g&_  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ]-L E'Px|  
        rpowern = cat(2,rpowern{:}); 1c~#]6[  
        rpowern = [ones(length_r,1) rpowern]; gy`qEY~B&  
    else mU>* NP(L  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); m 4LM10  
        rpowern = cat(2,rpowern{:}); j=QjvWD  
    end %b4(wn?n:B  
    <bppu>&  
    % Compute the values of the polynomials: wIHz TL  
    % -------------------------------------- SntYi0,`  
    z = zeros(length_r,length_n); D];([:+4  
    for j = 1:length_n y~1php>2f1  
        s = 0:(n(j)-m(j))/2; dj**,*s  
        pows = n(j):-2:m(j); d>psqmQ  
        for k = length(s):-1:1 XKIJ6M~5k  
            p = (1-2*mod(s(k),2))* ... !qve1H4d2  
                       prod(2:(n(j)-s(k)))/          ... hKeh9 Bt  
                       prod(2:s(k))/                 ... ..mz!:Zs0  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... "evV/Fg (  
                       prod(2:((n(j)+m(j))/2-s(k))); %,RU)}  
            idx = (pows(k)==rpowers); @6 `@.iZ  
            z(:,j) = z(:,j) + p*rpowern(:,idx); lI<8)42yq  
        end ka [NYW{.  
         7^X_tQf  
        if isnorm 7s3<}  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); PyE<`E  
        end t4uxon  
    end L]")TQ  
    Xxw.{2Ji!q  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  >@X=E3  
    M$)+Uo 2  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 5FMKJ7sC9  
    PQK_*hJG"  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)