切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11472阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 J2z/XHS  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! Kip&YB%rk  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 rq%]CsRY5  
    function z = zernfun(n,m,r,theta,nflag) |*bUcS<S  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. "Z@P&jl  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N !^arWH[od  
    %   and angular frequency M, evaluated at positions (R,THETA) on the Y% iqSY  
    %   unit circle.  N is a vector of positive integers (including 0), and 5Kzt8Tv[  
    %   M is a vector with the same number of elements as N.  Each element 5H3o?x   
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 65LtCQ }  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, o#qdgZ  
    %   and THETA is a vector of angles.  R and THETA must have the same j )J |'b|  
    %   length.  The output Z is a matrix with one column for every (N,M) _o~ pVBl/  
    %   pair, and one row for every (R,THETA) pair. tT]@yo|?e/  
    % DGvuo 8  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike rL5=8l  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), r^ r+h[V  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral + <bj}"  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, )qxt<  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized LK'(OZ  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. %vmd2}dA  
    % K=f4<tP_  
    %   The Zernike functions are an orthogonal basis on the unit circle. m212 gc0u  
    %   They are used in disciplines such as astronomy, optics, and Jm4uj &}3  
    %   optometry to describe functions on a circular domain. hUMG}<  
    % wv\X  
    %   The following table lists the first 15 Zernike functions. Ca |}i+  
    % PD&e6;rj;  
    %       n    m    Zernike function           Normalization +5y^c |L0  
    %       -------------------------------------------------- FvsVfV U  
    %       0    0    1                                 1 A]bb*a1  
    %       1    1    r * cos(theta)                    2 'w:ugb9]  
    %       1   -1    r * sin(theta)                    2 jF6_yw  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) U%vTmdOY  
    %       2    0    (2*r^2 - 1)                    sqrt(3) w{tA{{  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) Fs]N9],=I  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) |V34;}\4  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) A'EI1_3{  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) I0 t#{i  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) /d&m#%9Up]  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) MHwfJ{"zo  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) <#0i*PM_  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) J^8j|%h%e  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) -ssb|r  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) @5Tl84@Q  
    %       -------------------------------------------------- Pt"K+]Ym  
    % \Z5Wp5az},  
    %   Example 1: ANm@$xO*  
    % . X!!dx1<  
    %       % Display the Zernike function Z(n=5,m=1) H; `F}qQ3  
    %       x = -1:0.01:1; ^; KC E  
    %       [X,Y] = meshgrid(x,x);  +P(*S  
    %       [theta,r] = cart2pol(X,Y); rmg\Pa8W>  
    %       idx = r<=1; A"*=K;u/|m  
    %       z = nan(size(X)); rxp|[>O<  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); S257+ K9  
    %       figure MZ3 8=nJ  
    %       pcolor(x,x,z), shading interp KR.;X3S}  
    %       axis square, colorbar AE~zm tW  
    %       title('Zernike function Z_5^1(r,\theta)') qT?{}I  
    % NDRD PD  
    %   Example 2: !gI0"p?  
    % HxbzFu?h  
    %       % Display the first 10 Zernike functions 21!X[) r  
    %       x = -1:0.01:1; u(zgKoF9A  
    %       [X,Y] = meshgrid(x,x); :'DX M{  
    %       [theta,r] = cart2pol(X,Y); |5flvkid  
    %       idx = r<=1; v7(7WfqP  
    %       z = nan(size(X)); RxP~%oADw  
    %       n = [0  1  1  2  2  2  3  3  3  3]; !$Uo$?gC  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 3nA^s"#p  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; Lv+{@)  
    %       y = zernfun(n,m,r(idx),theta(idx)); ]*NYuEgc  
    %       figure('Units','normalized') $z!G%PO1%  
    %       for k = 1:10 {/noYB<;  
    %           z(idx) = y(:,k); 6vNW)1{nn  
    %           subplot(4,7,Nplot(k)) >FE8CH!W&  
    %           pcolor(x,x,z), shading interp C2<TR PT  
    %           set(gca,'XTick',[],'YTick',[]) ^mC~<p P(  
    %           axis square 5=;cN9M@  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) gb,ZN^3<-  
    %       end cK|Uwzif d  
    % @. sn  
    %   See also ZERNPOL, ZERNFUN2. jNxTy UU  
    ?EUg B\  
    %   Paul Fricker 11/13/2006 \zU<o~gs  
    !W XV1S  
    ,?LE5]  
    % Check and prepare the inputs: e\~nqKCb  
    % ----------------------------- K2*rqg  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) KY&Lv^1_|  
        error('zernfun:NMvectors','N and M must be vectors.') Kjbk zc1  
    end /BgX Y}JC.  
    tHzgZo Bz  
    if length(n)~=length(m) {5VJprTbv  
        error('zernfun:NMlength','N and M must be the same length.') aUL7 ]'q}  
    end 8`S1E0s  
    1*A^v  
    n = n(:); 7mS Nz.  
    m = m(:); }S iR;2W  
    if any(mod(n-m,2)) Zf>:h   
        error('zernfun:NMmultiplesof2', ... <5L99<E  
              'All N and M must differ by multiples of 2 (including 0).') ]$#bNt/p  
    end wHbmK  
    g]j&F65D  
    if any(m>n) NtGJpT4YX  
        error('zernfun:MlessthanN', ... [!U%''  
              'Each M must be less than or equal to its corresponding N.') W7C1\'T  
    end p7AsNqEp  
    ok6t| 7sq  
    if any( r>1 | r<0 ) RQ0^ 1 R  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 7zzFM  
    end TgJ+:^+0  
    ms3"  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) .hckZx /  
        error('zernfun:RTHvector','R and THETA must be vectors.') 2aTq?ZR|8A  
    end v,opyTwG|  
    C_3,|Zq?|  
    r = r(:); T0A=vh;S  
    theta = theta(:); ~;6^n  
    length_r = length(r); @ddCVxd  
    if length_r~=length(theta) )09ltr0@"  
        error('zernfun:RTHlength', ... #[i3cn  
              'The number of R- and THETA-values must be equal.') Iep_,o.Sk  
    end !]?kvf-3e  
    R{[v#sF >#  
    % Check normalization: #e=E  
    % -------------------- ;^JMX4[  
    if nargin==5 && ischar(nflag) S*n5d>;  
        isnorm = strcmpi(nflag,'norm'); |;:Kn*0/]  
        if ~isnorm fP 3eR>e  
            error('zernfun:normalization','Unrecognized normalization flag.') <FR!x#!   
        end #"oLz"{  
    else KCpq<A%  
        isnorm = false; W $mw9  
    end 3u t<o-  
    {oAD;m`  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ouyZh0 G  
    % Compute the Zernike Polynomials G_qt~U  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #'@@P6o5  
    cjtcEW  
    % Determine the required powers of r: G/~b(V;>  
    % ----------------------------------- Vo[.^0  
    m_abs = abs(m); 4h?@D_{k  
    rpowers = []; uEhPO  
    for j = 1:length(n) Hi2JG{i  
        rpowers = [rpowers m_abs(j):2:n(j)]; H6 ,bpjY  
    end 'A3*[e|OS  
    rpowers = unique(rpowers); [xb'73  
    UdcV<#  
    % Pre-compute the values of r raised to the required powers, -1hCi !  
    % and compile them in a matrix: S.>fB7'(?=  
    % ----------------------------- Zcw <USF8  
    if rpowers(1)==0 'ahz@+l O  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); zXUB6. e  
        rpowern = cat(2,rpowern{:}); 9W-" mD;  
        rpowern = [ones(length_r,1) rpowern]; *Cp:<M nd  
    else DD  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ^} Y}Iz  
        rpowern = cat(2,rpowern{:}); PYNY1 |3  
    end )x?)v#k  
    }!r pH{y  
    % Compute the values of the polynomials: I d8MXdV  
    % -------------------------------------- 4Q1R:Ra  
    y = zeros(length_r,length(n)); X%og}Cfi  
    for j = 1:length(n) +2p}KpOsL  
        s = 0:(n(j)-m_abs(j))/2; 1:yil9.\*  
        pows = n(j):-2:m_abs(j); Piw i  
        for k = length(s):-1:1 1Ke9H!_P  
            p = (1-2*mod(s(k),2))* ... Z6-  
                       prod(2:(n(j)-s(k)))/              ... v=dK2FaY  
                       prod(2:s(k))/                     ... ' Qlj"U  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Kv:.bHN}  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); Ps(oxj7  
            idx = (pows(k)==rpowers); X,lhVT |  
            y(:,j) = y(:,j) + p*rpowern(:,idx); a*&&6Fo  
        end }fef*>>}  
         aMT=pGU  
        if isnorm oO7)7$|1  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); =j20A6gND  
        end ]R!YRu  
    end \QG2V$  
    % END: Compute the Zernike Polynomials p<mBC2!%  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% XL;WU8>  
    B+jh|@-  
    % Compute the Zernike functions: C%ZPWOc_8  
    % ------------------------------ ']sj W'~  
    idx_pos = m>0; +BhJske  
    idx_neg = m<0; <gFisc/#r  
    CbxWK#aMmB  
    z = y; UxF9Ko( ]d  
    if any(idx_pos) 9s7TLT k  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); b>#=7;  
    end nWK7*  
    if any(idx_neg) TI2K_'  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); j, *= D6  
    end 2 p}I  
    zN)).a  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) cF EO}  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. 35x]'  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated DSq?|H  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive p&4n"hC  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, o=Mm=;H  
    %   and THETA is a vector of angles.  R and THETA must have the same v046  
    %   length.  The output Z is a matrix with one column for every P-value, ;n|%W,b-  
    %   and one row for every (R,THETA) pair. w8:  
    % , )TnIByM  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike 9HPwl  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) MR5[|kHJT  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) .RAyi>\e  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 ]Wjcr2Wq  
    %   for all p. m],.w M8  
    % Nz*,m'-1e  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 \D]9:BNJ  
    %   Zernike functions (order N<=7).  In some disciplines it is 3` D['  
    %   traditional to label the first 36 functions using a single mode .N# KW  
    %   number P instead of separate numbers for the order N and azimuthal L8Z@Dk7Y  
    %   frequency M. 9`"#OQPn1  
    % PY3bn).uR  
    %   Example: o Q*LP{M  
    % 7[K3kUm[  
    %       % Display the first 16 Zernike functions s5Wb iOF  
    %       x = -1:0.01:1; l]Ym)QP  
    %       [X,Y] = meshgrid(x,x); Y}Dk>IG  
    %       [theta,r] = cart2pol(X,Y); 0V^I.S/q  
    %       idx = r<=1; 1A#/70Mo  
    %       p = 0:15; ^-|~c`&}B  
    %       z = nan(size(X)); u86@zlzd  
    %       y = zernfun2(p,r(idx),theta(idx)); !;d>}iE   
    %       figure('Units','normalized') 7`^Y*:(  
    %       for k = 1:length(p) 3)2{c  
    %           z(idx) = y(:,k); _V0%JE'  
    %           subplot(4,4,k) 6-g>(g   
    %           pcolor(x,x,z), shading interp iC>%P&|-)|  
    %           set(gca,'XTick',[],'YTick',[]) UlNV%34"  
    %           axis square 7&%HE\  
    %           title(['Z_{' num2str(p(k)) '}']) {X_I>)Wg  
    %       end fBz|-I:k +  
    % :qj;f];|  
    %   See also ZERNPOL, ZERNFUN. \1n (Jr.<  
    ` vFDO$K  
    %   Paul Fricker 11/13/2006 JL{fW>5y|  
    $<&_9T#&w  
    .)p%|A#^  
    % Check and prepare the inputs: ~t$ng l$  
    % ----------------------------- @,c` #,F/  
    if min(size(p))~=1 n6M#Xc'JA  
        error('zernfun2:Pvector','Input P must be vector.') X?&{< vz  
    end kUT^o  
    C@zG(?X  
    if any(p)>35 PBFpV8P,  
        error('zernfun2:P36', ... SXO.|"M  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... ue@W@pj  
               '(P = 0 to 35).']) ?U O aqcL  
    end 2Qh)/=8lM  
    5ug|crX  
    % Get the order and frequency corresonding to the function number: H!OX1F  
    % ---------------------------------------------------------------- wi+L 4v  
    p = p(:); L%<]gJtrO  
    n = ceil((-3+sqrt(9+8*p))/2); %B1)mA;  
    m = 2*p - n.*(n+2); 9k6/D.Dz  
    HVhd#Q;  
    % Pass the inputs to the function ZERNFUN: )UTjP/\gN  
    % ---------------------------------------- Qb55q`'z  
    switch nargin G`Z<a  
        case 3 r ?<kWR?w  
            z = zernfun(n,m,r,theta); B9KBq $e  
        case 4 ;(;~yB|NZ5  
            z = zernfun(n,m,r,theta,nflag); A"s?;hv\fS  
        otherwise ur=:Ha  
            error('zernfun2:nargin','Incorrect number of inputs.') AkdO:hVtG  
    end ~gOZ\jm}  
    UIg?3J}R  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) Li0+%ijM  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. XP:fL NpQ  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of v&7<f$5  
    %   order N and frequency M, evaluated at R.  N is a vector of ` "-P g5  
    %   positive integers (including 0), and M is a vector with the WPlf8* -fQ  
    %   same number of elements as N.  Each element k of M must be a f&$;iE  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) &(l.jgqg&  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is \*qradgx$  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix }Qe(6'l_  
    %   with one column for every (N,M) pair, and one row for every :hW(2=%  
    %   element in R. e{Vn{.i,5  
    % N;BuBm5K  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- m_Z(osoE#W  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is % WXl*  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to K`uPPyv  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 U:eX^LE7  
    %   for all [n,m]. 9(}d7y  
    % O;McPw<&\:  
    %   The radial Zernike polynomials are the radial portion of the P2iuB|B@  
    %   Zernike functions, which are an orthogonal basis on the unit JC~4B3!  
    %   circle.  The series representation of the radial Zernike zSk`Ou8M  
    %   polynomials is *B{]  
    % eY^zs0  
    %          (n-m)/2 x?u@ j7[  
    %            __ ~)>.%`v&  
    %    m      \       s                                          n-2s 3 Fy C D4#  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r bj 8pqw|;  
    %    n      s=0 tlg}"lY  
    % nhC8Tq[m  
    %   The following table shows the first 12 polynomials. %H&WihQ  
    % i O?f&u  
    %       n    m    Zernike polynomial    Normalization PNo:vRtsq  
    %       --------------------------------------------- [q_62[-X  
    %       0    0    1                        sqrt(2) qdKqc,R1{  
    %       1    1    r                           2 r|\{!;7  
    %       2    0    2*r^2 - 1                sqrt(6) ahCwA}  
    %       2    2    r^2                      sqrt(6) ].aFdy  
    %       3    1    3*r^3 - 2*r              sqrt(8) ht>/7.p]  
    %       3    3    r^3                      sqrt(8)  iycceZ  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) yD.(j*bMK;  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) Jg{K!P|i  
    %       4    4    r^4                      sqrt(10) E]g6|,4~-  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) @p^EXc*|  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) _5(p=Zc  
    %       5    5    r^5                      sqrt(12) h"Wpb}FT  
    %       --------------------------------------------- `'3 De(  
    % 5WxNH}{  
    %   Example: w2/3[VZ}l  
    % fO^s4gWTg  
    %       % Display three example Zernike radial polynomials /38I (0  
    %       r = 0:0.01:1; YPq:z"`-y4  
    %       n = [3 2 5]; qTwl\dcncC  
    %       m = [1 2 1]; @(E6P;+{  
    %       z = zernpol(n,m,r); F`(;@LO  
    %       figure \T<F#a  
    %       plot(r,z) t]]Ig  
    %       grid on |JWYsqJ0U  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') jTV4iX  
    % QfPw50N;  
    %   See also ZERNFUN, ZERNFUN2. pr4y*!|Y$  
    4^nHq 4_  
    % A note on the algorithm. Iw( wT_  
    % ------------------------ 9kqR-T|Q  
    % The radial Zernike polynomials are computed using the series oTXIs4+G  
    % representation shown in the Help section above. For many special hgE :2@  
    % functions, direct evaluation using the series representation can P ecZuv  
    % produce poor numerical results (floating point errors), because SK@ p0:  
    % the summation often involves computing small differences between {YrA [9  
    % large successive terms in the series. (In such cases, the functions 8f)pf$v`   
    % are often evaluated using alternative methods such as recurrence H_x} -  
    % relations: see the Legendre functions, for example). For the Zernike r)Zk-!1  
    % polynomials, however, this problem does not arise, because the /?XI,#j3kM  
    % polynomials are evaluated over the finite domain r = (0,1), and 52Dgul  
    % because the coefficients for a given polynomial are generally all [P ;fv  
    % of similar magnitude. }0@@_Y]CC  
    % u(f;4`  
    % ZERNPOL has been written using a vectorized implementation: multiple QXL .4r%  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] P0hr=/h4  
    % values can be passed as inputs) for a vector of points R.  To achieve ZHeq)5C ;f  
    % this vectorization most efficiently, the algorithm in ZERNPOL Q!=`|X|:  
    % involves pre-determining all the powers p of R that are required to bT T>  
    % compute the outputs, and then compiling the {R^p} into a single Xppb|$qp4H  
    % matrix.  This avoids any redundant computation of the R^p, and ev+H{5W8  
    % minimizes the sizes of certain intermediate variables. v JVh%l+  
    % 3b_/QT5!  
    %   Paul Fricker 11/13/2006 =OPX9oG  
    ^*B@=  
    ,2^A<IwR  
    % Check and prepare the inputs: %0}}Qt  
    % ----------------------------- wS&D-!8v  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) u#^l9/tl  
        error('zernpol:NMvectors','N and M must be vectors.') ,mi7WW9  
    end 3#]IIj`\  
    .j|uf[?h  
    if length(n)~=length(m) *HGhm04F{  
        error('zernpol:NMlength','N and M must be the same length.') B|$o.$5  
    end 7j&EQm5\9  
    ;E.f%   
    n = n(:); s] ;P<  
    m = m(:); N1.1  
    length_n = length(n); \awkt!Wa  
    *f>\X[wN  
    if any(mod(n-m,2)) S&]r6ss  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') Ct~j/.  
    end V,'_BUl+x  
    }oSgx  
    if any(m<0) g&EK^q  
        error('zernpol:Mpositive','All M must be positive.') @)[8m8paV  
    end P{_%p<:V  
    L%{YLl-zf]  
    if any(m>n) j)YX=r;xM  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') #9.%>1{6Y  
    end Ij =NcP  
    m}oR*<.  
    if any( r>1 | r<0 ) _FcTY5."S  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') (3!6nQj-t  
    end |_7k*:#q:  
    ,RY;dX-#  
    if ~any(size(r)==1) .\ya  
        error('zernpol:Rvector','R must be a vector.') g.%} +5  
    end birc&<  
    t)?K@{ 9  
    r = r(:); 7I&o  
    length_r = length(r); 'r\RN\PT  
    |s(Ih_Zn  
    if nargin==4 N3MPW  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); Qy[S~D_  
        if ~isnorm /N<aN9Z<x,  
            error('zernpol:normalization','Unrecognized normalization flag.') +,$pcf<[V  
        end p9u'nDi  
    else c?}G;$  
        isnorm = false; f>4|>kS  
    end Qo^(r$BD  
    kTI5CoXzq  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% .oT'(6#  
    % Compute the Zernike Polynomials 74:~F)BP  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% &k)v/  
    J` gG`?  
    % Determine the required powers of r: xDH#K0-#L  
    % ----------------------------------- _-543B}  
    rpowers = []; /EP zT7  
    for j = 1:length(n) zF>;7'\x  
        rpowers = [rpowers m(j):2:n(j)]; 9%NobT  
    end _O'!C!K6  
    rpowers = unique(rpowers); ePJ_O~c  
    OgC,oj,!/  
    % Pre-compute the values of r raised to the required powers, X/vyb^:U  
    % and compile them in a matrix: JN`$Fq+  
    % ----------------------------- )1Y?S;  
    if rpowers(1)==0 h!|Uj  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ;fW~Gb?"  
        rpowern = cat(2,rpowern{:}); bolG3Tf|  
        rpowern = [ones(length_r,1) rpowern]; ;s3\Z^h4kd  
    else hwL`9.w  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); |W=-/~X  
        rpowern = cat(2,rpowern{:}); \O;/wf0Hg  
    end `sso Wn4  
    G7v<Q,s  
    % Compute the values of the polynomials: c(2?./\|  
    % -------------------------------------- GQhy4ji'z  
    z = zeros(length_r,length_n); gt(p%~  
    for j = 1:length_n s2|.LmC3|B  
        s = 0:(n(j)-m(j))/2; ' 7oCWHq[  
        pows = n(j):-2:m(j); wuYak"KX  
        for k = length(s):-1:1 ?a% F3B  
            p = (1-2*mod(s(k),2))* ... ' v CMf  
                       prod(2:(n(j)-s(k)))/          ... z~~pH9=c2  
                       prod(2:s(k))/                 ... "9QZX[J|*  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... =SeQ- H#  
                       prod(2:((n(j)+m(j))/2-s(k))); S5ai@Ks f  
            idx = (pows(k)==rpowers); a@|H6:|  
            z(:,j) = z(:,j) + p*rpowern(:,idx); UQ;2g\([  
        end fpC":EX@r  
         kp<Au)u  
        if isnorm ;|?_C8  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); RN[x\",  
        end +>*=~R  
    end )AR- b8..o  
    Tsb}\  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  3jJV5J'"  
    \k=%G_W  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 AFYdBK]  
    \' A- Lp  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)