切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11530阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 aT&t_^[]   
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! Jf2e<?`  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 6AAswz'$P  
    function z = zernfun(n,m,r,theta,nflag) U9 bWU'  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. L/yaVU{aEb  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 6|5H=*)DH  
    %   and angular frequency M, evaluated at positions (R,THETA) on the D^|9/qm$  
    %   unit circle.  N is a vector of positive integers (including 0), and g rspt}  
    %   M is a vector with the same number of elements as N.  Each element 1 DqX:WM6  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 4@h;5   
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, h,t:]  
    %   and THETA is a vector of angles.  R and THETA must have the same hCAZ{+`z  
    %   length.  The output Z is a matrix with one column for every (N,M) *1$    
    %   pair, and one row for every (R,THETA) pair. {rDq_^  
    % W qE '(  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike e\D| o?v  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), }RIU8=P  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral RU|X*3";T  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, et` 0Je  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized !p',Za   
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. i$C-)d]  
    % f!x[ln<  
    %   The Zernike functions are an orthogonal basis on the unit circle. WI&lj<*  
    %   They are used in disciplines such as astronomy, optics, and rEM#D]k  
    %   optometry to describe functions on a circular domain. '#q4Bc1  
    % 1'Rmg\(  
    %   The following table lists the first 15 Zernike functions. 2)9r'ai?a  
    % FshC )[w,  
    %       n    m    Zernike function           Normalization <( EyXV  
    %       -------------------------------------------------- ;|HL+je;Z  
    %       0    0    1                                 1 lL0M^Nv  
    %       1    1    r * cos(theta)                    2 ,EI:gLH  
    %       1   -1    r * sin(theta)                    2 wXbsS)#/  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) I3(d<+M  
    %       2    0    (2*r^2 - 1)                    sqrt(3) gi$XB}L+X  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) "}zt`3  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) nZ E)_  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 2khh4?|\  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ?:uNN  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) Skxd<gv  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) ykmv'a$-4  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) : G=FiC  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) #K|9^4jt  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) .Y\EE;8%  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) ~=cmM  
    %       -------------------------------------------------- +qy6d7^  
    % p!DP`Ouc3\  
    %   Example 1: j_GBH8 `  
    % x+7*ADKb  
    %       % Display the Zernike function Z(n=5,m=1) jDX>izg;V  
    %       x = -1:0.01:1; /pykW_`/-  
    %       [X,Y] = meshgrid(x,x); wk @,wOt  
    %       [theta,r] = cart2pol(X,Y); *yez:qnx  
    %       idx = r<=1; E ]f)Os$  
    %       z = nan(size(X)); # yN*',I&  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); ].mqxf  
    %       figure ;dZMa]X0  
    %       pcolor(x,x,z), shading interp ,b|-rU\  
    %       axis square, colorbar S|AjL Ng#  
    %       title('Zernike function Z_5^1(r,\theta)') Fr [7  
    % &%,DZA`  
    %   Example 2: KY.ZT2k  
    % GBQn_(b9I  
    %       % Display the first 10 Zernike functions  rLv;Y  
    %       x = -1:0.01:1; , ;jGJr  
    %       [X,Y] = meshgrid(x,x); {/ 2E*|W~I  
    %       [theta,r] = cart2pol(X,Y); /X#z*GX  
    %       idx = r<=1; N$#\Xdo  
    %       z = nan(size(X)); 27#5y_ `  
    %       n = [0  1  1  2  2  2  3  3  3  3]; N+g@8Q2s;5  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; [po "To  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; fY W|p<Q0  
    %       y = zernfun(n,m,r(idx),theta(idx)); ."6[:MF  
    %       figure('Units','normalized') 5o 0Ch  
    %       for k = 1:10 SSA W52xC  
    %           z(idx) = y(:,k); z]@6fM[  
    %           subplot(4,7,Nplot(k)) Vw~\H Gs/~  
    %           pcolor(x,x,z), shading interp $/Ov2z  
    %           set(gca,'XTick',[],'YTick',[]) cUk*C  
    %           axis square ^3~e/PKM  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) y7lWeBnC  
    %       end XKU=oI0\j  
    % c0rk<V%5+  
    %   See also ZERNPOL, ZERNFUN2. go'j/4Tp  
    0XU}B\'<  
    %   Paul Fricker 11/13/2006 7~UR!T9  
    h{'t5&yY  
    Qa4MZj ;$K  
    % Check and prepare the inputs: dh -,E  
    % ----------------------------- `I;F$`\  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) HdX2YPYn;  
        error('zernfun:NMvectors','N and M must be vectors.') S Xr%kndS  
    end ,r^"#C0J}  
    L%\b'fs  
    if length(n)~=length(m) l#qv 5f  
        error('zernfun:NMlength','N and M must be the same length.') [V}, tO|  
    end [f{VIE*?%  
    @cD uhK"U}  
    n = n(:); `/IKdO*!S  
    m = m(:); h<l1U'Bn7  
    if any(mod(n-m,2)) I4c!m_sr  
        error('zernfun:NMmultiplesof2', ... T.:+3:8|F  
              'All N and M must differ by multiples of 2 (including 0).') @N.jB#nEb  
    end Acm<-de  
    A\sI<WrH  
    if any(m>n) ~r*P]*51x  
        error('zernfun:MlessthanN', ... EbQa?  
              'Each M must be less than or equal to its corresponding N.') {2KFD\i\  
    end N{Qxq>6 G  
    U5r}6D!)  
    if any( r>1 | r<0 ) G}zZQy  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') tkKJh !Q7  
    end kxB.,'  
    5Av=3[kh"%  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) BlC<`2S  
        error('zernfun:RTHvector','R and THETA must be vectors.') 7jG(<!,  
    end |oFAGP1  
    I PCGt{B~  
    r = r(:); #f,y&\Xmf  
    theta = theta(:); hZ$t$3  
    length_r = length(r); 4'>1HW  
    if length_r~=length(theta) j?i#L}.I  
        error('zernfun:RTHlength', ... F7}-!  
              'The number of R- and THETA-values must be equal.') }"s;\?a  
    end WcUJhi^\C  
    1NLg _UBOK  
    % Check normalization: L"(4R^]  
    % -------------------- V!/:53  
    if nargin==5 && ischar(nflag) &, a3@i  
        isnorm = strcmpi(nflag,'norm'); ^A_;#vK  
        if ~isnorm S ZU \i*  
            error('zernfun:normalization','Unrecognized normalization flag.') 5FeFN)  
        end Ri7((x]H"  
    else 8At<Wic  
        isnorm = false; E,[xUz"  
    end ]+ Ixi o  
    [:EvTY  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% _8?o'<!8?^  
    % Compute the Zernike Polynomials 5TKJWO.  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% I/J7rkf  
    ssQ BSbx  
    % Determine the required powers of r: ",qU,0  
    % ----------------------------------- z?]G3$i(  
    m_abs = abs(m); G;iEo4\?  
    rpowers = []; N:5[,O<m_  
    for j = 1:length(n) rRFAD{5)  
        rpowers = [rpowers m_abs(j):2:n(j)]; =6nD sibf  
    end dl]#  
    rpowers = unique(rpowers); n~IVNB*  
    ed!>)Cb  
    % Pre-compute the values of r raised to the required powers, (8a#\Y[b  
    % and compile them in a matrix: GIwh@4;  
    % -----------------------------  a*dQ _  
    if rpowers(1)==0  k+ o|0  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); <'U]`L p  
        rpowern = cat(2,rpowern{:}); z_|oCT!6  
        rpowern = [ones(length_r,1) rpowern];  Ukz;0q  
    else vw>jJ  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); YUWn;#  
        rpowern = cat(2,rpowern{:}); ?uLeFD  
    end ~+F;q vq  
    D@ek9ARAq  
    % Compute the values of the polynomials: WN]<q`.  
    % -------------------------------------- je,}_:7  
    y = zeros(length_r,length(n)); >pL2*O^{9  
    for j = 1:length(n) p*QKK@C  
        s = 0:(n(j)-m_abs(j))/2; d I'SwnR  
        pows = n(j):-2:m_abs(j); CB\{!  
        for k = length(s):-1:1 }ut]\]b  
            p = (1-2*mod(s(k),2))* ... 7*o*6,/  
                       prod(2:(n(j)-s(k)))/              ... &]6) LFm  
                       prod(2:s(k))/                     ... : esg(  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... $^/0<i$   
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 6aft$A}XnD  
            idx = (pows(k)==rpowers); )eeN1G`rDE  
            y(:,j) = y(:,j) + p*rpowern(:,idx); ] ,etZ%z&  
        end ~EiH-z4U  
         7j<e)"  
        if isnorm eU+ {*YJg  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); U\@A _ B  
        end Y,S\2or$  
    end h!@,8y[B  
    % END: Compute the Zernike Polynomials )Q;978:  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% k3!a$0Bs;  
    PG%0yv%  
    % Compute the Zernike functions: Sb2v_o  
    % ------------------------------ XUMX*  
    idx_pos = m>0; NcS.49  
    idx_neg = m<0; {^)70Vz>PE  
    Rg&- 0b  
    z = y; nwI3|&  
    if any(idx_pos) $"JpFT  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); q Dd~2"er  
    end Nil}js27  
    if any(idx_neg) b p<^R  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); unl1*4e+  
    end 66&EBX}  
    -[7O7'  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) ihe(F7\U  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. BG`s6aC|z<  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated &[R8Q|1 j  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive 2RtHg_d_l  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, hn)a@  
    %   and THETA is a vector of angles.  R and THETA must have the same S0/usC[r  
    %   length.  The output Z is a matrix with one column for every P-value, )emOKS  
    %   and one row for every (R,THETA) pair. `iKj  
    % <lxD}DH=  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike .lG5=Th!  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) OKOu`Hz@  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) zJlQ_U-!  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 L6P1L)  
    %   for all p. 1$lh"fHU  
    % f&@BKx  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 v`[Eb27W.  
    %   Zernike functions (order N<=7).  In some disciplines it is :\~+#/=:  
    %   traditional to label the first 36 functions using a single mode E:E4ulak  
    %   number P instead of separate numbers for the order N and azimuthal :,pSWfK H  
    %   frequency M. )vB2!H/  
    % NtGn88='{  
    %   Example: Yd cK&{  
    % a T  l c  
    %       % Display the first 16 Zernike functions Oc?+M 5  
    %       x = -1:0.01:1; {U!St@  
    %       [X,Y] = meshgrid(x,x); q> :$c0JY  
    %       [theta,r] = cart2pol(X,Y); Px@/Q  
    %       idx = r<=1; pI[ZBoR~  
    %       p = 0:15; #_  C  
    %       z = nan(size(X)); ov# 7 hxe  
    %       y = zernfun2(p,r(idx),theta(idx)); I3S9Us-\  
    %       figure('Units','normalized') `BFIC7a  
    %       for k = 1:length(p) R5_i15<  
    %           z(idx) = y(:,k); Pi2|  
    %           subplot(4,4,k) ,SlN zR  
    %           pcolor(x,x,z), shading interp /(C~~XP)  
    %           set(gca,'XTick',[],'YTick',[]) 4JIYbb-a'  
    %           axis square 7EhN u@5-  
    %           title(['Z_{' num2str(p(k)) '}']) 'BMy8  
    %       end cTZ.}eLh  
    % xvLn'8H.  
    %   See also ZERNPOL, ZERNFUN. m(OvD!  
    ;(6g\'m  
    %   Paul Fricker 11/13/2006 @+,pN6}g  
    p\v Mc\  
    /nx'Z0&+X  
    % Check and prepare the inputs: -_VG;$,jE  
    % ----------------------------- 9~IQw#<  
    if min(size(p))~=1 uZKP"Oy  
        error('zernfun2:Pvector','Input P must be vector.') )wXuwdc[  
    end f2)XP$:  
    oSb, :^Wl  
    if any(p)>35 L?&'xzt B  
        error('zernfun2:P36', ... RH;:9_*F  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... )o _j]K+xI  
               '(P = 0 to 35).']) 5-u=o )>  
    end L}{`h  
    D]! aT+  
    % Get the order and frequency corresonding to the function number: ?z-}>$I;  
    % ---------------------------------------------------------------- v]:=K-1n  
    p = p(:); *y[PNqyd  
    n = ceil((-3+sqrt(9+8*p))/2); ']6VB,c`  
    m = 2*p - n.*(n+2); ?@6b>='!  
    )4Q?aMm  
    % Pass the inputs to the function ZERNFUN: 0Rxe~n1o  
    % ---------------------------------------- f5RE9%.#~  
    switch nargin ^{@!['  
        case 3 1MkI0OZE  
            z = zernfun(n,m,r,theta); ^W83ByP  
        case 4 m@Ev~~;  
            z = zernfun(n,m,r,theta,nflag); /Wk9-uH  
        otherwise "L"150Ih  
            error('zernfun2:nargin','Incorrect number of inputs.') Y o0FUj  
    end <S"~vKD'  
    wz8PtfZ  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag)  Rxpn~QQ  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. {xcZ*m!B  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of ]pA(K?Lbg  
    %   order N and frequency M, evaluated at R.  N is a vector of u}hF8eD  
    %   positive integers (including 0), and M is a vector with the &UHPX?x  
    %   same number of elements as N.  Each element k of M must be a $ls[|N:y0l  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) tEd.'D8 s  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is "pxzntY|  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix x90*yaw>h  
    %   with one column for every (N,M) pair, and one row for every [ Mg8/Oy  
    %   element in R. l kIn%=Z  
    % b}ODWdJ1  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- qKS;x@  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is D,l,`jv*  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to ]6Ug>>x5  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 ^yviV Y  
    %   for all [n,m]. FwKj+f"  
    % 5}ie]/[|  
    %   The radial Zernike polynomials are the radial portion of the #4LFG\s  
    %   Zernike functions, which are an orthogonal basis on the unit 9V uq,dv  
    %   circle.  The series representation of the radial Zernike aAvsb$  
    %   polynomials is 0x2!<z  
    % G%p~m%zIK  
    %          (n-m)/2 F7m?xy  
    %            __ >r/rc`Q  
    %    m      \       s                                          n-2s <hnCUg1  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r ]36sZ *  
    %    n      s=0 cNpe_LvW  
    % 1B>Vt*=  
    %   The following table shows the first 12 polynomials. <<A`aU^fX  
    % 2],_^XBvB  
    %       n    m    Zernike polynomial    Normalization <3PL@orO  
    %       --------------------------------------------- EUYCcL'G  
    %       0    0    1                        sqrt(2) %b.UPS@I  
    %       1    1    r                           2 _#e&t"@GS  
    %       2    0    2*r^2 - 1                sqrt(6) vh!v MB}}  
    %       2    2    r^2                      sqrt(6) 6Z?j AXGSq  
    %       3    1    3*r^3 - 2*r              sqrt(8) K[\'"HyQ,X  
    %       3    3    r^3                      sqrt(8) OIHz I2{  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) .Jb$l$5'w  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) ^62|d  
    %       4    4    r^4                      sqrt(10) +Z2MIC|Ud  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) hw_JDv+  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) r9 y.i(j  
    %       5    5    r^5                      sqrt(12) ;32#t[i b  
    %       --------------------------------------------- #BK9 k>i  
    % 8 S`9dSc  
    %   Example: 9ILIEm:  
    % 5(2|tJw-H;  
    %       % Display three example Zernike radial polynomials XALI<ZY  
    %       r = 0:0.01:1; ~H)4)r^  
    %       n = [3 2 5]; M_ 0zC1  
    %       m = [1 2 1]; 'J*<iA*W  
    %       z = zernpol(n,m,r); SQsSa1  
    %       figure WzW-pV]  
    %       plot(r,z) O/%< }3Sq  
    %       grid on C`rLj5E%  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') @Fv=u  
    % 1RLY $M  
    %   See also ZERNFUN, ZERNFUN2. <O?y-$~  
    sH,kW|D  
    % A note on the algorithm. ;wiao(t>4N  
    % ------------------------ 1PaUI#X"2F  
    % The radial Zernike polynomials are computed using the series ^da44Qqu  
    % representation shown in the Help section above. For many special HC {XX>F^  
    % functions, direct evaluation using the series representation can A|#`k{+1-  
    % produce poor numerical results (floating point errors), because 5\mTr)\R  
    % the summation often involves computing small differences between C;AA/4Ib  
    % large successive terms in the series. (In such cases, the functions X#xFFDzN  
    % are often evaluated using alternative methods such as recurrence c;f!!3&  
    % relations: see the Legendre functions, for example). For the Zernike pi(-A  
    % polynomials, however, this problem does not arise, because the 87!C@XlK_  
    % polynomials are evaluated over the finite domain r = (0,1), and js^ ,(CS  
    % because the coefficients for a given polynomial are generally all A % Q!^d  
    % of similar magnitude. [@ <sFP;g  
    % Op.8a`XLt&  
    % ZERNPOL has been written using a vectorized implementation: multiple D\~zS`}  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] 05Fz@31~  
    % values can be passed as inputs) for a vector of points R.  To achieve VO3pm6r5  
    % this vectorization most efficiently, the algorithm in ZERNPOL d|9b~_::V  
    % involves pre-determining all the powers p of R that are required to JE 5  
    % compute the outputs, and then compiling the {R^p} into a single $lIWd  
    % matrix.  This avoids any redundant computation of the R^p, and H?1xjY9sl  
    % minimizes the sizes of certain intermediate variables.  v7  
    % I-D^>\k+  
    %   Paul Fricker 11/13/2006 zo{/'BnU  
    I:&/`K4,x,  
    4nfu6Dq  
    % Check and prepare the inputs: +.B<Hd  
    % ----------------------------- u*S=[dq  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) [,EpN{l  
        error('zernpol:NMvectors','N and M must be vectors.') ?rVy2!  
    end x}/,yaWZ  
    |!|^ v  
    if length(n)~=length(m) <^.=>Q0 S\  
        error('zernpol:NMlength','N and M must be the same length.') Eh</? Qv\  
    end 2A`A\19t  
    [sV"ws  
    n = n(:); 5FVndMM#y  
    m = m(:); 'XQ`g CF=  
    length_n = length(n); t9 \x%=  
    b2(RpY2Y  
    if any(mod(n-m,2)) M4LP$N  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') W+wA_s2&D  
    end ',3HlOJ:  
    2=0DCF;Bv  
    if any(m<0) M$4k;  
        error('zernpol:Mpositive','All M must be positive.') hDP/JN8y  
    end f|A riM  
    0<"k8 k@J  
    if any(m>n) !J1rRPV  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') M j-vgn&/  
    end 5wB =>  
    8bK|:B#6,  
    if any( r>1 | r<0 ) Sgim3):Z  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') CZnK8&VDY  
    end t- u VZ!`\  
    \]Kh[z0"  
    if ~any(size(r)==1) 2M<R(W!&  
        error('zernpol:Rvector','R must be a vector.') -&82$mj  
    end yNW\?Z$@q  
    ,jA)wJ  
    r = r(:); Mwb/jTp  
    length_r = length(r); 0`.^MC?  
    bawJ$_O_  
    if nargin==4 AT2v!mNyCw  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); 2Y}?P+:%>  
        if ~isnorm ZN"j%E{d  
            error('zernpol:normalization','Unrecognized normalization flag.') mS>xGtD&K  
        end  $p!yhn7  
    else gK#mPcn^  
        isnorm = false; o)6pA^+  
    end dpQG[vXe  
    Gir#"5F  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% NW~z&8L  
    % Compute the Zernike Polynomials DU%w1+u  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% s,bERN7'yO  
    o:Qv JcB  
    % Determine the required powers of r: A,su;Q h  
    % ----------------------------------- -?]W*f  
    rpowers = []; A,i75kd  
    for j = 1:length(n) (>J4^``x=  
        rpowers = [rpowers m(j):2:n(j)]; }'r[m5T  
    end G;> _<22  
    rpowers = unique(rpowers); u4z&!MT}  
    =_j vk.  
    % Pre-compute the values of r raised to the required powers, 5tQ1fJze  
    % and compile them in a matrix: !8 &=y  
    % ----------------------------- [{4 MR%--  
    if rpowers(1)==0 `[o)<<}  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); :^UFiUzrE  
        rpowern = cat(2,rpowern{:}); %B.D^]S1:  
        rpowern = [ones(length_r,1) rpowern]; &DqE{bBd!  
    else vVGDDDz/  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); HM>lg`S  
        rpowern = cat(2,rpowern{:}); |6G m:jV  
    end e\O/H<  
    ~['Kgh_;  
    % Compute the values of the polynomials: y@CHR  
    % -------------------------------------- hF2IW{=!  
    z = zeros(length_r,length_n); w\) |  
    for j = 1:length_n A!1;}x  
        s = 0:(n(j)-m(j))/2; zMIT}$L  
        pows = n(j):-2:m(j); +cb6??H  
        for k = length(s):-1:1 jYNrD"n  
            p = (1-2*mod(s(k),2))* ... No2b" G@  
                       prod(2:(n(j)-s(k)))/          ... :Hxv6  
                       prod(2:s(k))/                 ... BL@:!t  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... :JlP[I  
                       prod(2:((n(j)+m(j))/2-s(k))); f#ri'&}c :  
            idx = (pows(k)==rpowers); 04r$>#E  
            z(:,j) = z(:,j) + p*rpowern(:,idx); ;?C #IU  
        end RN=` -*E1  
         vb9OonE2  
        if isnorm P%K4[c W~  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); Y8flrM2CwG  
        end ;#w3{ NB  
    end h6dPO"  
    0!v ->Dk  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  w[ ~#av9  
    [0D Et   
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 :Q@&5!]>d  
    /g4f`$a  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)