切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11071阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 p ;01a  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! Bd[}A9O[  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 D.f=!rT7E7  
    function z = zernfun(n,m,r,theta,nflag) 0^^i=iE-u  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. &Gl&m@-j  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N XCoOs<O:@  
    %   and angular frequency M, evaluated at positions (R,THETA) on the @x4Dt&:"  
    %   unit circle.  N is a vector of positive integers (including 0), and |+''d  
    %   M is a vector with the same number of elements as N.  Each element {F[Xe_=#"  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) N<%,3W_-_  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 2e=Hjf )  
    %   and THETA is a vector of angles.  R and THETA must have the same \x}UjHYIc&  
    %   length.  The output Z is a matrix with one column for every (N,M) XjNu|H/  
    %   pair, and one row for every (R,THETA) pair. +UtK2<^:o  
    % m+ YgfR  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike zq&lxySa  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), *WG}K?"/  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral ~E~J*R Ze  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, UQ?8dw:E~  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized zKr(Gt8  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. l|{<!7a  
    % biD7(AK  
    %   The Zernike functions are an orthogonal basis on the unit circle. &$f?XdZ7  
    %   They are used in disciplines such as astronomy, optics, and N0f}q1S<-A  
    %   optometry to describe functions on a circular domain. NM]/OKs'H  
    % 2} -W@R  
    %   The following table lists the first 15 Zernike functions. =\.|'  
    % m`cG&Ar5  
    %       n    m    Zernike function           Normalization 2)YLs5>W%  
    %       -------------------------------------------------- ai RNd~\  
    %       0    0    1                                 1 Pe.D[]S  
    %       1    1    r * cos(theta)                    2 0Og =H79<  
    %       1   -1    r * sin(theta)                    2 `1gsrHi4N  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) U$}]zaB  
    %       2    0    (2*r^2 - 1)                    sqrt(3) sBMHf9u  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) t~Ax#H  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) dmne+ufB  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) Nx__zC^r  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 8*X8U:.0o  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) iuEdm:pW  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 6gXc-}dp  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) )C[8#Q-:  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) wpdT "  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) `4MPXfoBL  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) RD^o&VXO  
    %       -------------------------------------------------- h pU7  
    % eJ'ojc3  
    %   Example 1: D? ($R9t  
    % -oj@ c OZ  
    %       % Display the Zernike function Z(n=5,m=1) apXq$wWq{D  
    %       x = -1:0.01:1; '4iu0ie>D  
    %       [X,Y] = meshgrid(x,x); |NqQKot1  
    %       [theta,r] = cart2pol(X,Y); UT-=5  
    %       idx = r<=1; !VW#hc \A5  
    %       z = nan(size(X)); o,L!F`W  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); {sLh=iK  
    %       figure BshS@"8r  
    %       pcolor(x,x,z), shading interp 4Hw8w7us:  
    %       axis square, colorbar Yi:+,-Fso  
    %       title('Zernike function Z_5^1(r,\theta)')  6O}r4*  
    % B!Y;VdX  
    %   Example 2: fXN;N&I  
    % LS`Gg7]S  
    %       % Display the first 10 Zernike functions 4s~o   
    %       x = -1:0.01:1; J GdVSjNC  
    %       [X,Y] = meshgrid(x,x); <}evOw2  
    %       [theta,r] = cart2pol(X,Y); `WVQp"m  
    %       idx = r<=1; M1:m"#=  
    %       z = nan(size(X)); :Vg,[\I{  
    %       n = [0  1  1  2  2  2  3  3  3  3]; +.=a R<Q  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; VH/_0  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; "-9YvB#  
    %       y = zernfun(n,m,r(idx),theta(idx)); e>[QF+e)y  
    %       figure('Units','normalized') W;1Hyk  
    %       for k = 1:10 Z1&8 U=pax  
    %           z(idx) = y(:,k); x|Dj   
    %           subplot(4,7,Nplot(k)) &wJ"9pQ~6E  
    %           pcolor(x,x,z), shading interp <B)lV'!Bd  
    %           set(gca,'XTick',[],'YTick',[]) i<l)To-  
    %           axis square D_@^XS  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) a}yJ$6xi  
    %       end Gc>\L3u  
    % iVD9MHT4  
    %   See also ZERNPOL, ZERNFUN2. qhogcAvE  
    bAgKOfT  
    %   Paul Fricker 11/13/2006 ?/;<32cE,  
    \ZA%"F){  
    [bAv|;  
    % Check and prepare the inputs: {2,V3*NF  
    % ----------------------------- U7OW)tUf  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) )  l)?c3  
        error('zernfun:NMvectors','N and M must be vectors.') wFh{\  
    end h5~tsd}OU  
    A&z  
    if length(n)~=length(m)  @>BFhH  
        error('zernfun:NMlength','N and M must be the same length.') j0Q ;OKu  
    end | #,b1|af  
    B!,})F$x  
    n = n(:); rVkHo*Q  
    m = m(:); :g Ze>  
    if any(mod(n-m,2)) b*$^8%  
        error('zernfun:NMmultiplesof2', ... "kMpa]<c-6  
              'All N and M must differ by multiples of 2 (including 0).') ce@(Ct  
    end _9<Ko.GVq  
    ) yjHABGJ  
    if any(m>n) $v+g3+7  
        error('zernfun:MlessthanN', ... es.`:^A  
              'Each M must be less than or equal to its corresponding N.') C; ! )<(Vw  
    end zdr?1=  
    ifuVVFov  
    if any( r>1 | r<0 ) .*8.{n5   
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') -E.EI@"  
    end <.Pr+g  
    \i{=%[c  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) tvP"t{C6,  
        error('zernfun:RTHvector','R and THETA must be vectors.') &0M^UvO  
    end @L`t/OD  
    m~# O ~)  
    r = r(:); ) ~X\W\  
    theta = theta(:); oSxHTbp?  
    length_r = length(r); zc(- dMlK  
    if length_r~=length(theta) o#G7gzw)  
        error('zernfun:RTHlength', ... Rf7py)  
              'The number of R- and THETA-values must be equal.') dq[CT  
    end 6zyozJA  
    Q&yfl  
    % Check normalization: \ ddbqg?`  
    % -------------------- Kg9REL@,s  
    if nargin==5 && ischar(nflag) _uL m!ku  
        isnorm = strcmpi(nflag,'norm'); ! XA07O[@  
        if ~isnorm I(pU_7mw  
            error('zernfun:normalization','Unrecognized normalization flag.') X)`? P*[  
        end R(3V ! ph  
    else SZE X;M  
        isnorm = false; a Z ^SK|E  
    end JIDE]f  
    Yk[yG;W  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ]ZZ7j  
    % Compute the Zernike Polynomials !qT.D:!@zF  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Aqq%HgY:t  
    ?mnwD]u  
    % Determine the required powers of r: $$`}b^,/  
    % ----------------------------------- X#IVjc:&L  
    m_abs = abs(m); v@[MX- ,8  
    rpowers = []; ?:~ `?  
    for j = 1:length(n) W%) foJ  
        rpowers = [rpowers m_abs(j):2:n(j)]; Z3=t"  
    end +Nyx2(g<m  
    rpowers = unique(rpowers); e%#9|/uP  
    _<&IpT{w+  
    % Pre-compute the values of r raised to the required powers, (V}D PA  
    % and compile them in a matrix: |>Kf_b Y#  
    % ----------------------------- &!a[rvtZ+  
    if rpowers(1)==0 9w(QM-u  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); b>?X8)f2e  
        rpowern = cat(2,rpowern{:}); h$y1"!N(  
        rpowern = [ones(length_r,1) rpowern]; o^2.&e+dQ  
    else OP{ d(~+  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); sLPFeibof5  
        rpowern = cat(2,rpowern{:}); IKH#[jW'IB  
    end }>fL{};Z"  
    |{<g-)  
    % Compute the values of the polynomials: *[k7KG2_U  
    % -------------------------------------- J8~3LE )G  
    y = zeros(length_r,length(n)); E:L =>}  
    for j = 1:length(n) -(@dMY  
        s = 0:(n(j)-m_abs(j))/2; K'7i$bl%  
        pows = n(j):-2:m_abs(j); Kmk<  
        for k = length(s):-1:1 o0_RU<bWN  
            p = (1-2*mod(s(k),2))* ... ^3F[^#"  
                       prod(2:(n(j)-s(k)))/              ...  Hi|'  
                       prod(2:s(k))/                     ... esWgYAc3{  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... FX4](oM  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); G/bWn@  
            idx = (pows(k)==rpowers); A7 E*w  
            y(:,j) = y(:,j) + p*rpowern(:,idx); [_#9PH33  
        end M8Q-x-7  
         UXnd~DA  
        if isnorm 8!'#B^  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); \M'b %  
        end 8(\Az5%  
    end !Yz~HO,u+  
    % END: Compute the Zernike Polynomials 1)X%n)2pr  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ^D ;X  
    %DbL|;z1  
    % Compute the Zernike functions: R4%!W~K  
    % ------------------------------ TY],H=  
    idx_pos = m>0; )UO:J7K  
    idx_neg = m<0; 8yF15['  
    b Bb$0HOF  
    z = y; ,yNPD}@v>  
    if any(idx_pos) {|O8)bW'  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); y}R{A6X)  
    end a{mtG{Wc  
    if any(idx_neg) dc|"34;^"  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); mTwz&N\  
    end V#'sH  
    &>ii2% 4  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) 2G=Bav\n+  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. be|k"s|6)  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated MS)#S&  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive ! k)}p_e  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, BuCU_/H  
    %   and THETA is a vector of angles.  R and THETA must have the same rbHrG<+7zO  
    %   length.  The output Z is a matrix with one column for every P-value, vRpMZ)e  
    %   and one row for every (R,THETA) pair. I3uaEv7OZc  
    % J^R))R=  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike q.yS j  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) Cg |_ ) _w  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) W/<]mm~95  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 tO~DA>R  
    %   for all p. [=z1~dXKb  
    % N6S0(%  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 7hZCh,O  
    %   Zernike functions (order N<=7).  In some disciplines it is ~}q"M[{  
    %   traditional to label the first 36 functions using a single mode dQVV0)z  
    %   number P instead of separate numbers for the order N and azimuthal cKEf- &~  
    %   frequency M. MUh )  
    % BNw^ _j1  
    %   Example: #I|Vyufw  
    % iNUisl  
    %       % Display the first 16 Zernike functions 7L|w~l7R~  
    %       x = -1:0.01:1; |\TOSaZ  
    %       [X,Y] = meshgrid(x,x); : ~"^st_[!  
    %       [theta,r] = cart2pol(X,Y); IHZ WNT2  
    %       idx = r<=1; MCD]n  
    %       p = 0:15; &PI}o  
    %       z = nan(size(X)); $Q{)AN;m  
    %       y = zernfun2(p,r(idx),theta(idx)); rk*Igqf  
    %       figure('Units','normalized') ~aQ>DpSEf  
    %       for k = 1:length(p) VO] Jvf  
    %           z(idx) = y(:,k); TviC1 {2  
    %           subplot(4,4,k) >*(4evU  
    %           pcolor(x,x,z), shading interp T8h.!Vef  
    %           set(gca,'XTick',[],'YTick',[]) m(,vym t  
    %           axis square Wp/!;  
    %           title(['Z_{' num2str(p(k)) '}']) )HNbWGu  
    %       end >d!w&0z>  
    % Vy.A`Hz  
    %   See also ZERNPOL, ZERNFUN. m3 C&QdjRp  
    l~!Tnp\M  
    %   Paul Fricker 11/13/2006 ;n$j?n+|  
    A8&yB;T$y  
    M`Jj!  
    % Check and prepare the inputs: [wG?&l$.KB  
    % ----------------------------- t_6sDr'.  
    if min(size(p))~=1 t uo'4%]i  
        error('zernfun2:Pvector','Input P must be vector.') m8,P-m  
    end D-\\L[  
    E]WammX c  
    if any(p)>35 VJJGTkm  
        error('zernfun2:P36', ... :BKY#uH~  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... XL c&7  
               '(P = 0 to 35).']) 1fM= >Z  
    end W-<E p<7{  
    $%ZEP> ]  
    % Get the order and frequency corresonding to the function number: rQg7r>%Q  
    % ---------------------------------------------------------------- O9wZx%<  
    p = p(:); 3.U5Each-  
    n = ceil((-3+sqrt(9+8*p))/2); `=Pn{JaD  
    m = 2*p - n.*(n+2); }WS%nQA  
    o[q Kf  
    % Pass the inputs to the function ZERNFUN: Yxz(g]  
    % ---------------------------------------- u6IEBYG ((  
    switch nargin y;<^[  
        case 3 28JWQ%-  
            z = zernfun(n,m,r,theta); !yU!ta Q  
        case 4 H>AQlO+J  
            z = zernfun(n,m,r,theta,nflag); >e :&kp  
        otherwise c) Zid1  
            error('zernfun2:nargin','Incorrect number of inputs.') jG)fM?  
    end u:& gp  
    oRFHq>-.g  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) >M[wh>  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. [R*UPa  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of _Z z" `  
    %   order N and frequency M, evaluated at R.  N is a vector of hE0 p> R8  
    %   positive integers (including 0), and M is a vector with the /{ Lo0  
    %   same number of elements as N.  Each element k of M must be a `VY -3  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) Tm~a& p  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is .P+om<~B  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix Cp=DdmR  
    %   with one column for every (N,M) pair, and one row for every vggyQf%  
    %   element in R. zY_BnJ^  
    % S]mXfB(mh  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- +#7 e?B  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is O`1_eK~1<  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to 37Ux2t  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 pYIm43r H  
    %   for all [n,m]. `K37&b;`[  
    % H+y(W5|2/X  
    %   The radial Zernike polynomials are the radial portion of the mu`h6?v  
    %   Zernike functions, which are an orthogonal basis on the unit *m6~x-x  
    %   circle.  The series representation of the radial Zernike Y ]&D;w  
    %   polynomials is tQE=c 7/M  
    % =EwC6+8*M  
    %          (n-m)/2 D_er(  
    %            __ Lpd q^X  
    %    m      \       s                                          n-2s hvCX,^LoJ  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r - `F#MN  
    %    n      s=0 N@Pf\D  
    % xD+n2:I{  
    %   The following table shows the first 12 polynomials. F33&A<(,  
    % %K[_;8  
    %       n    m    Zernike polynomial    Normalization 7.7P>U  
    %       --------------------------------------------- " UaUaSg#  
    %       0    0    1                        sqrt(2) 9nF;$ HB  
    %       1    1    r                           2 7\I,;swo  
    %       2    0    2*r^2 - 1                sqrt(6) &?C% -"|c  
    %       2    2    r^2                      sqrt(6) e<o{3*%p)  
    %       3    1    3*r^3 - 2*r              sqrt(8) ?EQ]f34  
    %       3    3    r^3                      sqrt(8) &U/7D!^X  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) A (z lX_  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) NT+%u-  
    %       4    4    r^4                      sqrt(10) s8;/'?K  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) @9S3u#vP  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) 1}nrVn[B9  
    %       5    5    r^5                      sqrt(12) -DD2   
    %       --------------------------------------------- 46`(u"RP  
    % 9>,$q"M}?  
    %   Example: Xm,w.|dx  
    % @vzv9c[  
    %       % Display three example Zernike radial polynomials 40,u(4.m*  
    %       r = 0:0.01:1; a{*r^m'N  
    %       n = [3 2 5]; i i&kfy  
    %       m = [1 2 1]; &("HH"!  
    %       z = zernpol(n,m,r); %6Wv-:LY  
    %       figure  /6)6  
    %       plot(r,z) =(\ /+ 0-[  
    %       grid on 'MZX"t  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') Q'-g+aN  
    % ~1e?9D  
    %   See also ZERNFUN, ZERNFUN2. ( -^-  
    #+$pE@u7A  
    % A note on the algorithm. >a;0<Ui&Q  
    % ------------------------ pxC:VJ;  
    % The radial Zernike polynomials are computed using the series /S9s%scAy  
    % representation shown in the Help section above. For many special fCg"tckE  
    % functions, direct evaluation using the series representation can J3/2>N]/}  
    % produce poor numerical results (floating point errors), because F?"#1j e  
    % the summation often involves computing small differences between O#[+= ^  
    % large successive terms in the series. (In such cases, the functions 2^Y@e=^A  
    % are often evaluated using alternative methods such as recurrence .A 12Co  
    % relations: see the Legendre functions, for example). For the Zernike YT:])[gVV  
    % polynomials, however, this problem does not arise, because the xF|P6GXg  
    % polynomials are evaluated over the finite domain r = (0,1), and J* V@huF  
    % because the coefficients for a given polynomial are generally all 2|a@,TW}-  
    % of similar magnitude. |S0]qt?  
    % ~+ _|J"\  
    % ZERNPOL has been written using a vectorized implementation: multiple Iu(j"b#  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] r(qAe{  
    % values can be passed as inputs) for a vector of points R.  To achieve VL6_in(  
    % this vectorization most efficiently, the algorithm in ZERNPOL qU!xh )  
    % involves pre-determining all the powers p of R that are required to +%Y`>1I^#  
    % compute the outputs, and then compiling the {R^p} into a single ~\4`tc  
    % matrix.  This avoids any redundant computation of the R^p, and #$/SM_X14C  
    % minimizes the sizes of certain intermediate variables. o0SQJ1.a$  
    % St9+/Md=jQ  
    %   Paul Fricker 11/13/2006 [Ol}GvzJ7  
    ruqx #]-  
    Hz A+Oi  
    % Check and prepare the inputs: 2R W^Nqc9  
    % ----------------------------- #L,>)XkjS  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) d:|(l^]{r  
        error('zernpol:NMvectors','N and M must be vectors.') fg[]>:ZT.  
    end 'dTJE--@  
    UD.&p'^ /{  
    if length(n)~=length(m) ,V$PV,G  
        error('zernpol:NMlength','N and M must be the same length.') lawjGI  
    end 6:PQkr  
    ~lg1S  
    n = n(:); W=Y?_Oz  
    m = m(:); b \pjjb[  
    length_n = length(n); mv%Zh1khn/  
    ZAK NyA2  
    if any(mod(n-m,2)) /K+GM8rtE  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') ZH o#2{F  
    end {R5{v6m_  
    E05RqnqBn0  
    if any(m<0) {3V%  
        error('zernpol:Mpositive','All M must be positive.') qRV5qN2{XY  
    end FPg5!O%  
    .nGYx  
    if any(m>n) c UJUZ@ol  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') 4JOw@/nE  
    end D4';QCwo  
    .W[[Z;D  
    if any( r>1 | r<0 ) nMz~.^Q-  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') Kr;7~`$[  
    end >9?BJv2  
    [ij8h,[~]  
    if ~any(size(r)==1) e+_~a8 -|  
        error('zernpol:Rvector','R must be a vector.') _PI w""ssr  
    end  (C1@f!Z  
    \1^qfw  
    r = r(:); *F ya qJ)  
    length_r = length(r); C`)n\?:Sth  
     P5&mpl1  
    if nargin==4 627xR$U~  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); =%wwepz6  
        if ~isnorm 9lT6fW`v1Q  
            error('zernpol:normalization','Unrecognized normalization flag.') ;t^8lC?>V  
        end .1O  
    else vocXk_  
        isnorm = false; yP&SA+  
    end jsXj9:X I  
    4nIs+  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% $}9.4` F>  
    % Compute the Zernike Polynomials wK0= I\WN9  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% KINKq`Sx  
    vZ<@m2  
    % Determine the required powers of r: Ru1I,QvCj"  
    % ----------------------------------- VaLx-RX  
    rpowers = []; zmREzP#X  
    for j = 1:length(n) \|OW`7Q)k  
        rpowers = [rpowers m(j):2:n(j)]; g91X*$`]  
    end ~-1!?t/%  
    rpowers = unique(rpowers); 81(.{Y839_  
    }!^/<|$=  
    % Pre-compute the values of r raised to the required powers, jl!rCOLt4  
    % and compile them in a matrix: > x$eKN  
    % ----------------------------- ^p'iX4M  
    if rpowers(1)==0 upD 2vtU  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); =z=$S]qN  
        rpowern = cat(2,rpowern{:}); 8SG*7[T7  
        rpowern = [ones(length_r,1) rpowern]; w Ud6xR  
    else AqD)2O{VO  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); RsY7F;  
        rpowern = cat(2,rpowern{:}); |.]:#)^X?  
    end ,gvv297  
    b IS 3  
    % Compute the values of the polynomials: *1Q~/<W  
    % -------------------------------------- hx'p0HDta  
    z = zeros(length_r,length_n); o0f{ePZ=  
    for j = 1:length_n OZHQnvZ  
        s = 0:(n(j)-m(j))/2; jz\LI  
        pows = n(j):-2:m(j); E"EBj7<s  
        for k = length(s):-1:1 0K0[mC}ZwM  
            p = (1-2*mod(s(k),2))* ... [sM~B  
                       prod(2:(n(j)-s(k)))/          ... ~@3X&E0S  
                       prod(2:s(k))/                 ... hQm"K~SW=  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... aNqhxvwf  
                       prod(2:((n(j)+m(j))/2-s(k))); T8ga)BA  
            idx = (pows(k)==rpowers); (sngq{*%%z  
            z(:,j) = z(:,j) + p*rpowern(:,idx); kt.y"^  
        end %E!^SF?Y  
         XT n`$}nz  
        if isnorm yK1Z&7>J>  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); w(sD}YA)  
        end -I#]#i@gX  
    end }'?N+MN  
    MZpG1  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  cg16|  
    3q{op9_T7  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 }m!L2iK4qk  
    q J)[2:.G  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)