非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 3fPd|F.kF
function z = zernfun(n,m,r,theta,nflag) Xmr|k:z
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. I,;@\
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N )@+lfIE(l
% and angular frequency M, evaluated at positions (R,THETA) on the vFKX@wV S
% unit circle. N is a vector of positive integers (including 0), and /{@^h#4M1
% M is a vector with the same number of elements as N. Each element QP/%+[E.
% k of M must be a positive integer, with possible values M(k) = -N(k) u"eO&Vc
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, +@*}_%^l"
% and THETA is a vector of angles. R and THETA must have the same ,ab_u@
% length. The output Z is a matrix with one column for every (N,M) qYo"-D*
% pair, and one row for every (R,THETA) pair. C+ibLS4i
% !kCMw%[
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike *FhD%><
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), xuBXOr4"P
% with delta(m,0) the Kronecker delta, is chosen so that the integral V6l~Aj}/
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, GP=i6I6C
% and theta=0 to theta=2*pi) is unity. For the non-normalized l{q$[/J~)
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. v`&
% M]9oSi
% The Zernike functions are an orthogonal basis on the unit circle. s}"5uDfn1F
% They are used in disciplines such as astronomy, optics, and ;VM',40
% optometry to describe functions on a circular domain. Zx$q,Zo<
% d'j8P
% The following table lists the first 15 Zernike functions. YdsY2
% `"~s<+
% n m Zernike function Normalization kkWqP20q
% -------------------------------------------------- xW|^2k
% 0 0 1 1 ~{69&T}9
% 1 1 r * cos(theta) 2 "s-e)svB
% 1 -1 r * sin(theta) 2 >6 p
<n
% 2 -2 r^2 * cos(2*theta) sqrt(6) +!_?f'kv`
% 2 0 (2*r^2 - 1) sqrt(3) R}~p1=D
% 2 2 r^2 * sin(2*theta) sqrt(6) zx)^!dEMM
% 3 -3 r^3 * cos(3*theta) sqrt(8) ?}f+PP,
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) ]LGp3)T-
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) RSL%<
% 3 3 r^3 * sin(3*theta) sqrt(8) Q2^~^'Yk
% 4 -4 r^4 * cos(4*theta) sqrt(10) e|Ip7`
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) e| AA7
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) >R|*FYam
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) aJh=4j~.
% 4 4 r^4 * sin(4*theta) sqrt(10) *Nfn6lVB
% -------------------------------------------------- _PTo!aJL
% b1X.#pz7F
% Example 1: .-kqt^Gc
% $#Mew:J
% % Display the Zernike function Z(n=5,m=1) }qf9ra
% x = -1:0.01:1; $^&SEz
% [X,Y] = meshgrid(x,x); 'Na \9b(
% [theta,r] = cart2pol(X,Y); XD1x*#
% idx = r<=1; /t"p^9!^
% z = nan(size(X)); 6yIl)5/=
% z(idx) = zernfun(5,1,r(idx),theta(idx)); *~p~IX{
% figure p)
x.Y
% pcolor(x,x,z), shading interp >)Ih[0~M
% axis square, colorbar ]>utLi5dX
% title('Zernike function Z_5^1(r,\theta)') iU)-YFO
% R'E8>ee;^
% Example 2: m~K[+P
% c[=%v]j:u
% % Display the first 10 Zernike functions Bjg 21bw^
% x = -1:0.01:1; mtfyhFk
% [X,Y] = meshgrid(x,x); Sr7+DCr
% [theta,r] = cart2pol(X,Y); [V#"7O vl
% idx = r<=1; OtopA)
% z = nan(size(X)); 9JF*xXd>Q
% n = [0 1 1 2 2 2 3 3 3 3]; kvU0$1
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; eYL7G-3
% Nplot = [4 10 12 16 18 20 22 24 26 28]; uj.~/W1,!
% y = zernfun(n,m,r(idx),theta(idx)); K;2]c3T
% figure('Units','normalized') +MQvq\%tG
% for k = 1:10 Q]*YIb~D
% z(idx) = y(:,k); K#"@nVWJ.m
% subplot(4,7,Nplot(k)) uO$ujbWZ
% pcolor(x,x,z), shading interp @5gZK[?|I
% set(gca,'XTick',[],'YTick',[]) $s2-O!P?
% axis square l+'1>T.I
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) %iPu51+=
% end N0s)Nao4
% qa ![oMKc
% See also ZERNPOL, ZERNFUN2. {GF>HHQb
2|k*rv}l
% Paul Fricker 11/13/2006 c$f|a$$b
i'!M<>7
W7NHr5RC
% Check and prepare the inputs: ^H+j;K{5,
% ----------------------------- bw*@0;
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) $Z;HE/3
error('zernfun:NMvectors','N and M must be vectors.') ?`F")y
end (4V1%0
LvpHR#K)F5
if length(n)~=length(m) {nQ}t
}B
error('zernfun:NMlength','N and M must be the same length.') _ED1".f
end H+zn:j@~L
*jWU8.W
n = n(:); ADX}
m = m(:); Q}jbk9gM5
if any(mod(n-m,2)) hMJ \a
error('zernfun:NMmultiplesof2', ... vg5zsR0u
'All N and M must differ by multiples of 2 (including 0).') T[))ful
end TJY$<:
T4
SByX9
if any(m>n) Fga9
error('zernfun:MlessthanN', ... k?Jzy
'Each M must be less than or equal to its corresponding N.') '4sT+q
end F *;
+-e
!W:QLOe6F
if any( r>1 | r<0 ) whNRUOK:
error('zernfun:Rlessthan1','All R must be between 0 and 1.') ;J\{r$q
end 8O{]ML
'D(Hqdr;:
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 7kn=j6I
error('zernfun:RTHvector','R and THETA must be vectors.') \Y9=dE}
end 9[N'HpQ3
SU#
S'
r = r(:); @n(=#Q3
theta = theta(:); 1jmhh!,
length_r = length(r); [v-?MS
if length_r~=length(theta) IJ,,aCj4g
error('zernfun:RTHlength', ... r"fu{4aX
'The number of R- and THETA-values must be equal.') MC#bo{Bq3-
end 1,PFz
mQ%kGqs
% Check normalization:
(I.uQP~H
% -------------------- svpWABO
if nargin==5 && ischar(nflag) H@IX$+;z
isnorm = strcmpi(nflag,'norm'); nE-=7S L
if ~isnorm @=wAk5[IN
error('zernfun:normalization','Unrecognized normalization flag.') B_cn[?M
end ^e>v{AE%
else =< CH( 4!
isnorm = false; ?5mVC]W?]
end =|3L'cDC
QHs=Zh;"
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% N83RsL "}_
% Compute the Zernike Polynomials ]VJcV.7`
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% '%RMpyK~
s*9tWSd
% Determine the required powers of r: mA^>Y_:
% ----------------------------------- !W$Br\<
m_abs = abs(m); /HzhgMV3
rpowers = []; YSrFHVq
for j = 1:length(n) l}Xmm^@)
rpowers = [rpowers m_abs(j):2:n(j)]; `MTOe1
end !y] Y'j
rpowers = unique(rpowers); Xkv>@7ec
1}jE?{V*
% Pre-compute the values of r raised to the required powers, X<9DE!/)
% and compile them in a matrix: I:6xDDpZG`
% ----------------------------- 6AQ;P
if rpowers(1)==0 g"Ii'JZ?
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); *R~oA`
rpowern = cat(2,rpowern{:}); CKBi-q FH
rpowern = [ones(length_r,1) rpowern]; oub4/0tN,~
else Y" l!3^
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); It_yh
#s
rpowern = cat(2,rpowern{:}); 8%xtb6#7M
end zV80r+y
VGvOwd)E
% Compute the values of the polynomials: ]lO$oO
% -------------------------------------- rz7yAm
y = zeros(length_r,length(n)); [\.>BK
for j = 1:length(n) %ANPv =
s = 0:(n(j)-m_abs(j))/2; SiBbz4
pows = n(j):-2:m_abs(j); JnsXEkM)
for k = length(s):-1:1 15eHdd d
p = (1-2*mod(s(k),2))* ... Mvcl9
prod(2:(n(j)-s(k)))/ ... g<lX Xj2
prod(2:s(k))/ ... d?{2A84S
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... &0C!P=-p
prod(2:((n(j)+m_abs(j))/2-s(k))); LAwS8t',
idx = (pows(k)==rpowers); qJ!oH&/cD
y(:,j) = y(:,j) + p*rpowern(:,idx); {(MG:
B
end
Y-{spTI
blPC"3}3Vd
if isnorm ud#8`/!mq
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); r=[}7N
end uBMNkN8
end 9E#(i P
% END: Compute the Zernike Polynomials QV 'y6m\
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ./g#<
L%8"d6
% Compute the Zernike functions: w`v\/a_
% ------------------------------ Q?;ntzi
idx_pos = m>0; z"vgwOP su
idx_neg = m<0;
<?7~,#AK
jXDo!a|4y
z = y; K*}j1A
if any(idx_pos) vVf!XZF
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); V9bLm,DtT
end ^R$dG[Qf
if any(idx_neg) enrmjA&3
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); .R"L$V$RU.
end $.cGRz
3gh^a;uC
% EOF zernfun