非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 6U,:J'5gP
function z = zernfun(n,m,r,theta,nflag) s !II}'Je
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. -CALU X
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 0*j\i@
% and angular frequency M, evaluated at positions (R,THETA) on the 2o7o~r
% unit circle. N is a vector of positive integers (including 0), and "$q"Kilj%
% M is a vector with the same number of elements as N. Each element Z/;hbbG
% k of M must be a positive integer, with possible values M(k) = -N(k) g@]1H41
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, n.,ZgLx["
% and THETA is a vector of angles. R and THETA must have the same ^c"\%!w"O
% length. The output Z is a matrix with one column for every (N,M) N9vNSmm
% pair, and one row for every (R,THETA) pair. .5tXwxad"
% ssmJ?sl
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike (e9hp2m
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), K3&k+~$
% with delta(m,0) the Kronecker delta, is chosen so that the integral slLTZ]
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Djf~8q V!
% and theta=0 to theta=2*pi) is unity. For the non-normalized a;(,$q3M
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. mn(MgJKQ\
% QRF:6bAxsL
% The Zernike functions are an orthogonal basis on the unit circle. 9QkssI
% They are used in disciplines such as astronomy, optics, and aw7pr464
% optometry to describe functions on a circular domain. 3Q,p,
% NkQain9
% The following table lists the first 15 Zernike functions. uL^X$8K;(
% lxBcO/
% n m Zernike function Normalization !_?HSDAj"n
% --------------------------------------------------
\P*%u
% 0 0 1 1 YL[y3&K
% 1 1 r * cos(theta) 2 (D+%*ax
% 1 -1 r * sin(theta) 2 9~ifST\
% 2 -2 r^2 * cos(2*theta) sqrt(6) FH;)5GGnv
% 2 0 (2*r^2 - 1) sqrt(3) bf[l4$3k
% 2 2 r^2 * sin(2*theta) sqrt(6) - @KT#
% 3 -3 r^3 * cos(3*theta) sqrt(8) y;hco
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) (unJwh{7Q
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) qLB(Th\&'
% 3 3 r^3 * sin(3*theta) sqrt(8) %F<3_#Y
% 4 -4 r^4 * cos(4*theta) sqrt(10) NNRKYdp,
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) PG'I7)Bv
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) =g=Vv"B_
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) #QW%
;^
% 4 4 r^4 * sin(4*theta) sqrt(10) r?`7i'
% -------------------------------------------------- 5jTA6s9z A
% d"+ _`d=`
% Example 1: 3W3d $
% J^Wqa$<;"
% % Display the Zernike function Z(n=5,m=1) 5zt5]zl'
% x = -1:0.01:1; 6|1#Prj
% [X,Y] = meshgrid(x,x); be.Kx< I
% [theta,r] = cart2pol(X,Y); =I+5sCF{g
% idx = r<=1; CS"p3$7,
% z = nan(size(X)); 1EHNg<J(
% z(idx) = zernfun(5,1,r(idx),theta(idx)); <"S/M]9
% figure <a2Kc '
% pcolor(x,x,z), shading interp a0
w
% axis square, colorbar KpO%)M!/Z#
% title('Zernike function Z_5^1(r,\theta)') EtcXzq>w
% XP65
% Example 2: U9R pHh`
% C}]rx{xC
% % Display the first 10 Zernike functions
TJb&f<
% x = -1:0.01:1; iEMIzaR
% [X,Y] = meshgrid(x,x); td2bL4
% [theta,r] = cart2pol(X,Y); 2V*<J:;wb
% idx = r<=1; l"
H/PB<.
% z = nan(size(X)); 79U7<]-!
% n = [0 1 1 2 2 2 3 3 3 3]; m RtE~~p
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 23`pog{n
% Nplot = [4 10 12 16 18 20 22 24 26 28]; 0y#TGM|0D
% y = zernfun(n,m,r(idx),theta(idx)); j<i:rk|
% figure('Units','normalized') 1;+(HB
% for k = 1:10 {>#4{D00
% z(idx) = y(:,k); ;[-y>qU0
% subplot(4,7,Nplot(k)) Q__1QUu
% pcolor(x,x,z), shading interp =/HTe&
% set(gca,'XTick',[],'YTick',[]) 65pC#$F<x
% axis square p5=VGKp
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ;#?+i`9'q
% end 79MB_Is]s
% z^9df(
% See also ZERNPOL, ZERNFUN2. t`A5wqm
Gt?ckMB
% Paul Fricker 11/13/2006 I*8_5?)g<
c::Vh
Hd=!
% Check and prepare the inputs: !rgdOlTR ^
% -----------------------------
*:V"C\`^n
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) lD)QB!*v
error('zernfun:NMvectors','N and M must be vectors.') '=m ?l
end "8`f x
XZ&q5]PJI
if length(n)~=length(m) `LCxxpHi|
error('zernfun:NMlength','N and M must be the same length.') NU|T`gP
end F!yejn
[
\9dC z;
n = n(:); ?QCHkhU
m = m(:); :. a}pgh
if any(mod(n-m,2)) :ugj+
error('zernfun:NMmultiplesof2', ... K)t+lJ
'All N and M must differ by multiples of 2 (including 0).') B(dq$+4
end p[-buB]
rgg3{bU/
if any(m>n) F>A&L8
error('zernfun:MlessthanN', ... d/:zO4v3
'Each M must be less than or equal to its corresponding N.') @~<M_63
end Y>[u(q&09O
bi[gyl#
if any( r>1 | r<0 ) hSDuByoi
error('zernfun:Rlessthan1','All R must be between 0 and 1.') n,NKJt
end iw^(3FcP@C
G@igxnm}
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) skP2IMa75
error('zernfun:RTHvector','R and THETA must be vectors.') O486:tF
end mam2]St"
-kd_gbnr3
r = r(:); `$D2w|
theta = theta(:); pV^hZ.
length_r = length(r); r$~
f[cA
if length_r~=length(theta) v-@xO&<
error('zernfun:RTHlength', ... ,-*oc>
'The number of R- and THETA-values must be equal.') Jm8#M z
end C.$`HGv
Y8 a![
% Check normalization: niV= Ijt{5
% -------------------- +kKfx!
if nargin==5 && ischar(nflag) g^DPbpWxu
isnorm = strcmpi(nflag,'norm'); P=V=\T<4_
if ~isnorm
D=nuK25
error('zernfun:normalization','Unrecognized normalization flag.') vxzOG?Xc:
end QNH5Cq;Y
else w%[`'_[
isnorm = false; 7.PG*q
end =?f\o*J)
w|>O!]K]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ,#42ebGHR
% Compute the Zernike Polynomials c91rc>
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 9+\3E4K
;Qc_Tf=,
% Determine the required powers of r: 'i|z>si[*
% ----------------------------------- YRYAQj/7
m_abs = abs(m); wV;qc3
rpowers = []; Y|=/*?o}
for j = 1:length(n) H}QOoXWkg
rpowers = [rpowers m_abs(j):2:n(j)]; L;0ZB=3n
end FXPw 5
rpowers = unique(rpowers); Ncu\;K\N
Ii,Lj1Q
% Pre-compute the values of r raised to the required powers, b:nHcxDU<
% and compile them in a matrix: ?2;r#)
% ----------------------------- f`?Y+nu}
if rpowers(1)==0 lk6*?EJ
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); HUtuU X
rpowern = cat(2,rpowern{:}); }F1|&
A
rpowern = [ones(length_r,1) rpowern]; ]3C&l+m$ot
else ~/6m|k
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); k4+F
rpowern = cat(2,rpowern{:}); 6Uk[_)1
end W,iSN}
?+S& `%?
% Compute the values of the polynomials: L
"L@4B
% -------------------------------------- 0SXWt? }
y = zeros(length_r,length(n)); :mU,g|~55
for j = 1:length(n) ;Bo{.916
s = 0:(n(j)-m_abs(j))/2; t>h<XPJi
pows = n(j):-2:m_abs(j); 95,y@~*]
for k = length(s):-1:1 !+4}x;!8
p = (1-2*mod(s(k),2))* ... 6<+R55
prod(2:(n(j)-s(k)))/ ... :cmfy6h]
prod(2:s(k))/ ... gg(^:`+
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... mfO:#]K
prod(2:((n(j)+m_abs(j))/2-s(k))); x[3kCa|4A
idx = (pows(k)==rpowers); _^'fp
y(:,j) = y(:,j) + p*rpowern(:,idx); xQC.ap
end u2^oXl
(u-i{<
if isnorm e*e}X&|(g
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); MPMJkL$F^
end &E$jAqc
end 9)Y]05us
% END: Compute the Zernike Polynomials rp.S4;=Q 9
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% C:g2E[#
'2a }1?
% Compute the Zernike functions: 4w^B&e%
% ------------------------------ P8e1J0A
idx_pos = m>0; K3&v6 #]
idx_neg = m<0; gM20n^
C_?L$3 U0
z = y; @c{=:kg5
if any(idx_pos) *TA${$K
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); NjVuwIm+
end %O;"Z`I
if any(idx_neg) Zgo^M,g
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); dRyK'Xr
end 9kzytx
!SIGzj
% EOF zernfun