切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11175阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 @bfaAh~   
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! `: i|y  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 e9k}n\t3  
    function z = zernfun(n,m,r,theta,nflag) 0 (@8   
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. goIn7ei92  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N rZ w&[ G  
    %   and angular frequency M, evaluated at positions (R,THETA) on the YpL{c*M  
    %   unit circle.  N is a vector of positive integers (including 0), and N%_-5Q)so  
    %   M is a vector with the same number of elements as N.  Each element o+/x8:   
    %   k of M must be a positive integer, with possible values M(k) = -N(k) _S2QY7/  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, Pt";f  
    %   and THETA is a vector of angles.  R and THETA must have the same sBZKf8@/  
    %   length.  The output Z is a matrix with one column for every (N,M) x4.-7%VV%  
    %   pair, and one row for every (R,THETA) pair. A}H)ojG'v  
    % UKMrR9[x*  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ~WR6rc  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), i?4vdL8M  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral t#6gjfIi  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, aR*z5p2-w  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ]*[S# Jk  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. G?'L1g[lc  
    % ,Z&"@g  
    %   The Zernike functions are an orthogonal basis on the unit circle. PO<4rT+B  
    %   They are used in disciplines such as astronomy, optics, and #x':qBv#  
    %   optometry to describe functions on a circular domain. ~iEH?J%i1r  
    % _2}i8q:  
    %   The following table lists the first 15 Zernike functions. .OXvv _?<  
    % C1)TEkc"C  
    %       n    m    Zernike function           Normalization A;Xn#t ,(K  
    %       -------------------------------------------------- ;gK+AU  
    %       0    0    1                                 1 l4L&hY^  
    %       1    1    r * cos(theta)                    2 4SY]Q[  
    %       1   -1    r * sin(theta)                    2 KosAc'/ M  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 6yv*AmFh  
    %       2    0    (2*r^2 - 1)                    sqrt(3) >[O @u4  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) MFiX8zwhx+  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) {p yo  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) Ol{)U;, `  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) _Bb/~^  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) oPo<F5M]d%  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) &AZr (>  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) aoI{<,(  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 9_ KUUA  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) C;G~_if4PR  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 0Evmq3,9  
    %       -------------------------------------------------- FL/@e$AK  
    % bn~=d@'  
    %   Example 1: E`u=$~K  
    % d]0fgwwGC  
    %       % Display the Zernike function Z(n=5,m=1) Rkw)IdB  
    %       x = -1:0.01:1; 2}b1PMpZG  
    %       [X,Y] = meshgrid(x,x); .v/s9'lB  
    %       [theta,r] = cart2pol(X,Y); ~Pv4X2MO  
    %       idx = r<=1; O}Fp\"  
    %       z = nan(size(X)); kNd[M =%  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); ,Hch->?Og  
    %       figure TPvS+_<oL{  
    %       pcolor(x,x,z), shading interp azS"*#r6}  
    %       axis square, colorbar R1 hb-  
    %       title('Zernike function Z_5^1(r,\theta)') ZV,n-M =  
    % ncu &<j}U  
    %   Example 2: 4F??9o8}  
    % H}dsd=yO  
    %       % Display the first 10 Zernike functions /V$ [M  
    %       x = -1:0.01:1; g$EjIHb  
    %       [X,Y] = meshgrid(x,x); 9fzbR~s  
    %       [theta,r] = cart2pol(X,Y); hz>&E,<8q  
    %       idx = r<=1; s'tmak-}|  
    %       z = nan(size(X)); r2M._}bF  
    %       n = [0  1  1  2  2  2  3  3  3  3]; .NiPaUzc<  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; ,*bI0mFZ  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; [ 3]!*Cd  
    %       y = zernfun(n,m,r(idx),theta(idx)); =V/$&96Q  
    %       figure('Units','normalized') V\r5  
    %       for k = 1:10 5owUQg,W  
    %           z(idx) = y(:,k); HulN84  
    %           subplot(4,7,Nplot(k)) [8^j wnAYS  
    %           pcolor(x,x,z), shading interp Y"K7$+5#\  
    %           set(gca,'XTick',[],'YTick',[]) iRPt0?$  
    %           axis square L/"u,~[  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) n^UrHHOL  
    %       end D""d-oI[  
    % n-#?6`>a  
    %   See also ZERNPOL, ZERNFUN2. ;B:'8$j$  
    BBnj}XP*4  
    %   Paul Fricker 11/13/2006 ZgcA[P  
    Yih^ZTf]O?  
    : N>5{  
    % Check and prepare the inputs: +s V$s]U  
    % ----------------------------- V2^(qpM!  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) d-#MRl$rtK  
        error('zernfun:NMvectors','N and M must be vectors.') `-hFk88  
    end xzyV| (  
    6*A S4l  
    if length(n)~=length(m) k =ru) _$2  
        error('zernfun:NMlength','N and M must be the same length.') QukLsl]U  
    end v< xe(dC  
    7;dV]N  
    n = n(:); DQ?'f@I&*  
    m = m(:); &s_[~g<  
    if any(mod(n-m,2)) `|8)A)ZVT  
        error('zernfun:NMmultiplesof2', ... NFDi2L>Ba  
              'All N and M must differ by multiples of 2 (including 0).') b* no.eB  
    end $"!"=v%B  
    %t([  
    if any(m>n) zb OEF  
        error('zernfun:MlessthanN', ... +w?RW^:Q=  
              'Each M must be less than or equal to its corresponding N.') &y;('w  
    end '&I.w p`^  
    J)6RXt*!  
    if any( r>1 | r<0 ) +`r;3kH ..  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 'ZgrN14  
    end 7i`@`0   
    l`:M/z6"  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) W~$YKBW  
        error('zernfun:RTHvector','R and THETA must be vectors.') RC sQLKqF  
    end jQFAlO(E':  
    @{+c6.*}  
    r = r(:); C:"Al-  
    theta = theta(:); ;[R{oW Nw  
    length_r = length(r); r{pTM cDS  
    if length_r~=length(theta) *r6+Vz  
        error('zernfun:RTHlength', ... ^%@(> :)0  
              'The number of R- and THETA-values must be equal.') "~:o#~F6  
    end VC:.ya|Z  
    [[}KCND  
    % Check normalization: EJ`JN|,M  
    % -------------------- +?5nkhH  
    if nargin==5 && ischar(nflag) i(Cd#1<  
        isnorm = strcmpi(nflag,'norm'); 6 D_3Hwrs  
        if ~isnorm 3WZ]9v{k  
            error('zernfun:normalization','Unrecognized normalization flag.') ; f:}gMK  
        end x{`>Il  
    else 6J9^:gXW~  
        isnorm = false; K9\`Wu_qL  
    end 4eMNKIsvY$  
    ]R~K-cN`  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% k_ 9gMO  
    % Compute the Zernike Polynomials eGwrSF#a)  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ujGvrY j  
    L=nyloz,0  
    % Determine the required powers of r: MDGD*Qn~  
    % ----------------------------------- ;i\m:8!;  
    m_abs = abs(m); "a %5on  
    rpowers = []; )R.y>Ucb0  
    for j = 1:length(n) ^  ry   
        rpowers = [rpowers m_abs(j):2:n(j)]; |j($2.  
    end U6;,<-bL  
    rpowers = unique(rpowers); I&^ B?"Y  
    8XZS BR(Z  
    % Pre-compute the values of r raised to the required powers, Hy`Ee7>  
    % and compile them in a matrix: -\O%f)R  
    % ----------------------------- 0Ah'G  
    if rpowers(1)==0 ^vPM\qP#g  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); r9 G}[# DO  
        rpowern = cat(2,rpowern{:}); [LDsn]{  
        rpowern = [ones(length_r,1) rpowern]; &,/_"N"?D  
    else ~UA:_7#\M  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 8R<2I1xn2  
        rpowern = cat(2,rpowern{:}); 't'~p#$,F  
    end {XAm3's  
    FGY4u4y  
    % Compute the values of the polynomials: kXK D>."E*  
    % -------------------------------------- b2]1Dfw  
    y = zeros(length_r,length(n)); FMMQO,BU  
    for j = 1:length(n) w7aC=B/{?i  
        s = 0:(n(j)-m_abs(j))/2; SC/|o  
        pows = n(j):-2:m_abs(j); y ,e# e`  
        for k = length(s):-1:1  0IO#h{t  
            p = (1-2*mod(s(k),2))* ... u hW @ Y+  
                       prod(2:(n(j)-s(k)))/              ... jI:5[. Y  
                       prod(2:s(k))/                     ... VL4ErOoZ  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ]w ^9qS  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); s @\UZ C  
            idx = (pows(k)==rpowers); "l0z?u  
            y(:,j) = y(:,j) + p*rpowern(:,idx); d;1%Ei3K  
        end (|H1zO  
         K'z|a{ru.{  
        if isnorm /sVy"48-  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); iv@ey-,<  
        end _ T ;+*  
    end Qv=F'  
    % END: Compute the Zernike Polynomials ], Xva`"  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 5R"My^G  
    e lj]e  
    % Compute the Zernike functions: 9,8}4Y=GVI  
    % ------------------------------ X;`XkOjk  
    idx_pos = m>0; $]O;D~  
    idx_neg = m<0; 0G@sj7)]  
    x xMV2&,Jq  
    z = y; ?VVtEmIN  
    if any(idx_pos) G1K72M}CW  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); t0t" =(d  
    end a?&{eMEe}  
    if any(idx_neg) .[YM0dt  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)');  5`];[M9  
    end lU6?p")F1  
    UOh % "h  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) M A9Oi(L)K  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. rDr3)*H?0  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated M3>c?,O)J  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive i n}N[  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, e6O+hC]:  
    %   and THETA is a vector of angles.  R and THETA must have the same e}V3dC^pU  
    %   length.  The output Z is a matrix with one column for every P-value, ib$_x:OO"  
    %   and one row for every (R,THETA) pair. f]N.$,:$  
    % $A>\I3B  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike +OGa}9j-  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) Zp:(U3%  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) %OS}BAh^i  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 iIZDtZFF  
    %   for all p. fcDiYJC*  
    % qHM,#W<  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 $_bhZnYp7  
    %   Zernike functions (order N<=7).  In some disciplines it is ^Bkwbj  
    %   traditional to label the first 36 functions using a single mode 6Ja } N  
    %   number P instead of separate numbers for the order N and azimuthal 7r,s+u.  
    %   frequency M. h%2;B;p]  
    % #ZFedK0vv  
    %   Example: x}acxu 2H7  
    % AHg:`Wjv-  
    %       % Display the first 16 Zernike functions }a=<Gl|I;w  
    %       x = -1:0.01:1; T ~=r*4  
    %       [X,Y] = meshgrid(x,x); ui _nvD:  
    %       [theta,r] = cart2pol(X,Y); j%7N\Vb  
    %       idx = r<=1; (f Gmjx  
    %       p = 0:15; w4 R!aWLd  
    %       z = nan(size(X)); gmFCjs  
    %       y = zernfun2(p,r(idx),theta(idx)); H83Gx;  
    %       figure('Units','normalized') nDiy[Y-4Wp  
    %       for k = 1:length(p) 4<P=wK=a8X  
    %           z(idx) = y(:,k); Etv!:\\[  
    %           subplot(4,4,k) 6p;G~,bd~  
    %           pcolor(x,x,z), shading interp xbZx&`(  
    %           set(gca,'XTick',[],'YTick',[]) M|HW$8V3_2  
    %           axis square &Nzq/~uqP  
    %           title(['Z_{' num2str(p(k)) '}']) U/9i'D[|{  
    %       end ly!vbpE_  
    % 4V2}'/|[  
    %   See also ZERNPOL, ZERNFUN. H]^hEQ3DT  
    I-L52%E]  
    %   Paul Fricker 11/13/2006 % s|` 1`c  
    aicvu(%EE  
    _zuaImJ0o  
    % Check and prepare the inputs: lfle7;  
    % ----------------------------- nTy8:k']  
    if min(size(p))~=1 1R}rL#h;=  
        error('zernfun2:Pvector','Input P must be vector.') ?W6qwm,?L  
    end %9^^X6yLM  
    NVt612/'7y  
    if any(p)>35 5X4 #T&.  
        error('zernfun2:P36', ... j@7%%   
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... MKl`9 Y3Ge  
               '(P = 0 to 35).']) TnuNoMD.  
    end +-s$Htx  
    .dbZ;`s  
    % Get the order and frequency corresonding to the function number: D'F j"&LK  
    % ---------------------------------------------------------------- pZVT:qFF  
    p = p(:); b8QQS#q)V  
    n = ceil((-3+sqrt(9+8*p))/2); ()Tl\  
    m = 2*p - n.*(n+2); 1" k_l.\,0  
    YI877T9>  
    % Pass the inputs to the function ZERNFUN: C i?BJ,  
    % ---------------------------------------- -VC k k  
    switch nargin jV}tjwq  
        case 3 sf7~hN*  
            z = zernfun(n,m,r,theta); )U2cS\k'7n  
        case 4 4V6^@   
            z = zernfun(n,m,r,theta,nflag); ApT8;F B  
        otherwise @k|V4  
            error('zernfun2:nargin','Incorrect number of inputs.') &d%0[Ui`  
    end z_;:6*l=:  
    ryC7O'j_P  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) QEC4!$L^  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. 1Zr J7a7=  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of i".nnAI:  
    %   order N and frequency M, evaluated at R.  N is a vector of WDF;`o*3  
    %   positive integers (including 0), and M is a vector with the ?D\6@G:,#@  
    %   same number of elements as N.  Each element k of M must be a \>G:mMk/  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) !gyEw1Re7  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is Gg,&~ jHib  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix R(1N]>  
    %   with one column for every (N,M) pair, and one row for every r@30y/C  
    %   element in R. SjmWlf,  
    % :TZ</3Sw  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- C/JFb zVx  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is U65a _dakk  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to o8ERU($/  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 n N_Ylw  
    %   for all [n,m]. N!Q~?/!d  
    % c %f'rj  
    %   The radial Zernike polynomials are the radial portion of the l&2pUv=  
    %   Zernike functions, which are an orthogonal basis on the unit myvn@OsEw  
    %   circle.  The series representation of the radial Zernike ~%D=\iE  
    %   polynomials is GV"X) tGo  
    % te*|>NRS  
    %          (n-m)/2 {L#+v~d^'n  
    %            __ !RPPwvNk4  
    %    m      \       s                                          n-2s TIIwq H+h.  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r 4k]DktY}.  
    %    n      s=0 RAs5<US:  
    % Z37%jdr  
    %   The following table shows the first 12 polynomials. D8O&`!mf  
    % u,88V@^  
    %       n    m    Zernike polynomial    Normalization 2@jlF!zC  
    %       --------------------------------------------- kw$*o k  
    %       0    0    1                        sqrt(2) uO{'eT~  
    %       1    1    r                           2 I7-6|J@#^  
    %       2    0    2*r^2 - 1                sqrt(6) * ak"}s  
    %       2    2    r^2                      sqrt(6) scZSnCrR  
    %       3    1    3*r^3 - 2*r              sqrt(8)  TNj WZ  
    %       3    3    r^3                      sqrt(8) qJZ:\u8oO  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) x3C^S~  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) hlO,mU  
    %       4    4    r^4                      sqrt(10) \)/dFo\l  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) :dML+R#Ymh  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) h4,S /n  
    %       5    5    r^5                      sqrt(12) IV]2#;OO?  
    %       --------------------------------------------- Gc0/*8u/  
    % An2Wj  
    %   Example: 0XLoGQ=  
    % )2Dm{T  
    %       % Display three example Zernike radial polynomials {{+woL'C  
    %       r = 0:0.01:1; IPxK$nI^  
    %       n = [3 2 5]; M!Wjfq ^~  
    %       m = [1 2 1]; .CAcG"42  
    %       z = zernpol(n,m,r); ^1jZwP;5eW  
    %       figure D/<;9hw  
    %       plot(r,z) ;R4qE$u2^  
    %       grid on &"/IV$H  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') AfqthI$*m  
    % ns}"[44C}l  
    %   See also ZERNFUN, ZERNFUN2. T!3_Q/~^r  
    hL(zVkYI  
    % A note on the algorithm.  1cvH  
    % ------------------------ Xt%>XP  
    % The radial Zernike polynomials are computed using the series slRD /  
    % representation shown in the Help section above. For many special lE 09Y  
    % functions, direct evaluation using the series representation can C0#"U f  
    % produce poor numerical results (floating point errors), because j{: >"6  
    % the summation often involves computing small differences between 5.o{A#/NTl  
    % large successive terms in the series. (In such cases, the functions "i1r9TLc  
    % are often evaluated using alternative methods such as recurrence 0<4Sw j3s7  
    % relations: see the Legendre functions, for example). For the Zernike .`5BgX7W  
    % polynomials, however, this problem does not arise, because the |.;LI= CT  
    % polynomials are evaluated over the finite domain r = (0,1), and 2[e^mm&.   
    % because the coefficients for a given polynomial are generally all k,M %"FLQ  
    % of similar magnitude. lRr={ >s  
    % G&f~A;'7k  
    % ZERNPOL has been written using a vectorized implementation: multiple |`c=`xK7'  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] c_+y~X)i  
    % values can be passed as inputs) for a vector of points R.  To achieve D8r=V f  
    % this vectorization most efficiently, the algorithm in ZERNPOL B 4my  
    % involves pre-determining all the powers p of R that are required to Ix1[ $9  
    % compute the outputs, and then compiling the {R^p} into a single HLp9_Y{X.  
    % matrix.  This avoids any redundant computation of the R^p, and Im0#_ \  
    % minimizes the sizes of certain intermediate variables. ^cz;UQX~}  
    % O9Fg_qfuT_  
    %   Paul Fricker 11/13/2006 Ua](o H  
    }3xZ`vX[T  
    [T>a}}@  
    % Check and prepare the inputs: pQ/ bIuq  
    % ----------------------------- s"g"wh',  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) TLC&@o :  
        error('zernpol:NMvectors','N and M must be vectors.') %^VQw!  
    end %@4/W  N  
    d%C :%d  
    if length(n)~=length(m) Eg;xj@S<2  
        error('zernpol:NMlength','N and M must be the same length.') cJQ&#u  
    end gyx4='Q  
    ),#hBB`ZA  
    n = n(:); gXThdNU4G  
    m = m(:); ,U?W  
    length_n = length(n); I[$SVPe#  
    di,?`  
    if any(mod(n-m,2)) WymBjDos:  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') zJCm0HLJ  
    end $4Ko  
    ZUiI nO  
    if any(m<0) !/|^ )d^U  
        error('zernpol:Mpositive','All M must be positive.') Y#[>j4<T  
    end xO nW~Z  
    klqN9d9k  
    if any(m>n) <z+b88D  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') z')zV oW,  
    end 0*-nVC1  
    $k= 5nJ  
    if any( r>1 | r<0 ) tUR9ti  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') n;+e(ob;;  
    end -'jPue2\  
    Il&}4#:  
    if ~any(size(r)==1) 3$hbb6N%6.  
        error('zernpol:Rvector','R must be a vector.') SFdSA4D"  
    end {?zbrgQ<Z  
    v!b 8_0~u6  
    r = r(:); tm[e?+Iq  
    length_r = length(r); o"5[~$O  
    Q[U_ 0O,A9  
    if nargin==4 ['l.]k-b}  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); *[MK{m  
        if ~isnorm >*"6zR2 o  
            error('zernpol:normalization','Unrecognized normalization flag.') :>t^B+  
        end *w[\(d'T  
    else 7:>VH>?D  
        isnorm = false; Y3J;Kk#AH  
    end V7qc9Gd@I  
    NX5A{  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% }CyS_Tc  
    % Compute the Zernike Polynomials on=I*?+R  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% >.]' N:5  
    w`?Rd  
    % Determine the required powers of r: &D[pX|!  
    % ----------------------------------- !^ /Mn  
    rpowers = []; ,@b7N[h  
    for j = 1:length(n) 49("$!  
        rpowers = [rpowers m(j):2:n(j)]; ,%a7sk<5k  
    end xn)eb#r  
    rpowers = unique(rpowers); O^AF+c\n  
    qXQ/M]  
    % Pre-compute the values of r raised to the required powers, Wveba)"$  
    % and compile them in a matrix: /K WR08ftp  
    % ----------------------------- ctzaqsr  
    if rpowers(1)==0 ;Q0WCm\5  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); b35Z1sfD j  
        rpowern = cat(2,rpowern{:}); S _B $-H|  
        rpowern = [ones(length_r,1) rpowern]; ^S'#)H-8C3  
    else W"@FRWcd  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); xq2 ,S  
        rpowern = cat(2,rpowern{:}); K[XFJ9  
    end |=Mn~`9p  
    Q.8)_w  
    % Compute the values of the polynomials: >,JA=s  
    % -------------------------------------- ,VM)ZK=Tr  
    z = zeros(length_r,length_n); Du3nK" -g  
    for j = 1:length_n HcrI3v|6  
        s = 0:(n(j)-m(j))/2; us^2Oplq<  
        pows = n(j):-2:m(j); J}035  
        for k = length(s):-1:1 bS9<LQ*  
            p = (1-2*mod(s(k),2))* ... H$/r{gfg^  
                       prod(2:(n(j)-s(k)))/          ... 8>}^W  
                       prod(2:s(k))/                 ... ;BR`}~m  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... N~%F/`Z<+  
                       prod(2:((n(j)+m(j))/2-s(k))); gDmwJr  
            idx = (pows(k)==rpowers); o~*5FN}%+l  
            z(:,j) = z(:,j) + p*rpowern(:,idx); {[&_)AW6m%  
        end Z{|U!tn  
         H9^DlIv('  
        if isnorm O-M4NKl]6  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); ZXf^HK  
        end RtR5ij1  
    end c 4<~? L  
    NTHy!y<!h  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  | 1H"ya  
    -C wx %  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 Bry\"V"'g  
    [ZS}P  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)