非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 ~Q]5g7k=&
function z = zernfun(n,m,r,theta,nflag) #Ir?v
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 0~^RHb.NA8
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N m\0_1 #(
% and angular frequency M, evaluated at positions (R,THETA) on the ()l3X.t,$
% unit circle. N is a vector of positive integers (including 0), and E6 -*2U)k+
% M is a vector with the same number of elements as N. Each element zZ8 *a\
% k of M must be a positive integer, with possible values M(k) = -N(k) hyf
;f7`o
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, C\GP}:[T3
% and THETA is a vector of angles. R and THETA must have the same ebQgk
Y=
% length. The output Z is a matrix with one column for every (N,M) oIj=ba(n1
% pair, and one row for every (R,THETA) pair. q_h (D/g
% ;x/eb g
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike /GC&@y0yi
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), j/d}B_2
% with delta(m,0) the Kronecker delta, is chosen so that the integral (jDz[b#OPz
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ?l^Xauk4Pj
% and theta=0 to theta=2*pi) is unity. For the non-normalized 7}UG&t{
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. daI_@k Y"
% nOL"6%q
% The Zernike functions are an orthogonal basis on the unit circle. *b.
>
% They are used in disciplines such as astronomy, optics, and ^0OP&s;"
% optometry to describe functions on a circular domain. WqCC4R,-
%
-9i7Ja
% The following table lists the first 15 Zernike functions. nm,LKS7
% 4}uOut
% n m Zernike function Normalization |j`73@6
% -------------------------------------------------- Km8aHc]O~
% 0 0 1 1 ~I@lsCh
% 1 1 r * cos(theta) 2 WI/tWj0
% 1 -1 r * sin(theta) 2 TB!I
% 2 -2 r^2 * cos(2*theta) sqrt(6) 4?'vP '
% 2 0 (2*r^2 - 1) sqrt(3) 6p)AQTh>
% 2 2 r^2 * sin(2*theta) sqrt(6) SXm%X(JU
% 3 -3 r^3 * cos(3*theta) sqrt(8) MVsFi]-
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 9_?xAJ
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) Z,.Hz\y1D
% 3 3 r^3 * sin(3*theta) sqrt(8) ^!&6=rb
% 4 -4 r^4 * cos(4*theta) sqrt(10) Gs,:$Im
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) %'=*utOxy
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) c>B1cR
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) V}#X'~Ob
% 4 4 r^4 * sin(4*theta) sqrt(10) $ s/E}X
% -------------------------------------------------- =Xh)34q
% @owneSD qN
% Example 1: S%i^`_=Q
% vt|R)[,
% % Display the Zernike function Z(n=5,m=1) qq| 5[I.?
% x = -1:0.01:1; M Irx,d
% [X,Y] = meshgrid(x,x); 27e!KG[&
% [theta,r] = cart2pol(X,Y); }aVZ\PDg
% idx = r<=1; _5jT}I<k
% z = nan(size(X)); lD/9:@q\V
% z(idx) = zernfun(5,1,r(idx),theta(idx)); Q!e560@
% figure ?BnU0R_r]
% pcolor(x,x,z), shading interp @Nek;xJ
% axis square, colorbar KhHFJo[8sf
% title('Zernike function Z_5^1(r,\theta)') "La;$7ds
% "]+g5G
% Example 2: O,Q.-
% x;n3 Zr;(
% % Display the first 10 Zernike functions g"! (@]L!@
% x = -1:0.01:1; WTJ 0Q0U
% [X,Y] = meshgrid(x,x); a[-!X7,IU
% [theta,r] = cart2pol(X,Y); uZ!YGv0^
% idx = r<=1; hy5[
L`B
% z = nan(size(X)); -b(DPte
% n = [0 1 1 2 2 2 3 3 3 3]; to'7o8Z
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; u5(8k_7
% Nplot = [4 10 12 16 18 20 22 24 26 28]; wGc7
% y = zernfun(n,m,r(idx),theta(idx)); }Y~Dk]*
% figure('Units','normalized') 7>JTQ CJ
% for k = 1:10 ky2 bj}"p9
% z(idx) = y(:,k); lK0ny>RB
% subplot(4,7,Nplot(k)) .A2$C|a*
% pcolor(x,x,z), shading interp b dgkA
% set(gca,'XTick',[],'YTick',[]) e5|lz.o;
% axis square fE-R(9K
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) !(GyOAb
% end HZyA\FS
% ,QY$:f<
% See also ZERNPOL, ZERNFUN2. 9P?0D
z0[XI 7KK
% Paul Fricker 11/13/2006 *NmY]
q<JCgO-F<
}aZuCe_
% Check and prepare the inputs: qs5>`skX
% ----------------------------- ~]?:v,UIm(
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) p)y5[HX
error('zernfun:NMvectors','N and M must be vectors.') +[7~:e}DZ
end >t+U`6xK
6hxZ5&;(*
if length(n)~=length(m) QNj]wm=mp
error('zernfun:NMlength','N and M must be the same length.') Kxr@!m"
end `2mddx8
s2;~FK#/
n = n(:); $%y q[$^
m = m(:); =&}@GsXdo
if any(mod(n-m,2)) DXs an
error('zernfun:NMmultiplesof2', ... $|N6I
'All N and M must differ by multiples of 2 (including 0).') j#l=%H
end n|( lPbD
U"PcNQy
if any(m>n) -@pjEI
error('zernfun:MlessthanN', ... 2HE@!*z9H
'Each M must be less than or equal to its corresponding N.') X0/slOT
end 77P\:xc
i}-uK,^
if any( r>1 | r<0 ) (jT)o,IW&
error('zernfun:Rlessthan1','All R must be between 0 and 1.') 6 d-\+t8
end xe@1H\7:
ul~ux$a
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) n5:uG'L\
error('zernfun:RTHvector','R and THETA must be vectors.') w'S,{GW
end dljE.peL
^/f~\#R
r = r(:); d>QFmsh-
theta = theta(:); @N=vmtLP
length_r = length(r); cU1o$NRx
if length_r~=length(theta) W__ArV2Z_
error('zernfun:RTHlength', ... kwI``7g8*e
'The number of R- and THETA-values must be equal.') 8Q'Emw |
end >Bt82ibN
HI.*xkBXl&
% Check normalization: u#0snw~)/
% -------------------- 02;jeZ#z
if nargin==5 && ischar(nflag) V=O52?8
isnorm = strcmpi(nflag,'norm'); A;oHji#*
if ~isnorm >B BV/C'9
error('zernfun:normalization','Unrecognized normalization flag.') AGlBvRX7e
end F.9}jd{
else ~tDYo)hH8
isnorm = false; SE'Im
end iC"iR\Qu
c+Q'4E0|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% }w0pi
% Compute the Zernike Polynomials &7L7|{18
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% CIudtY(:
MmF&jd-=
% Determine the required powers of r: 0SQ!lr
% ----------------------------------- *uvM6F$ut
m_abs = abs(m); 19!?oeOU
rpowers = []; b^o4Q[
for j = 1:length(n) X1j8tg
rpowers = [rpowers m_abs(j):2:n(j)]; J'44j;5&
end a<cwrDZ
rpowers = unique(rpowers); o! a,r3
=sJ?]U
% Pre-compute the values of r raised to the required powers, \J'}CX*aQ
% and compile them in a matrix: T{{:p\<]_
% ----------------------------- tsXKhS;/w
if rpowers(1)==0 YQMWhC,8hy
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Kk3+ ]W<
rpowern = cat(2,rpowern{:}); m1$tf
^
rpowern = [ones(length_r,1) rpowern]; '&IGdB I
else DT-VxF6 h
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); {6i|"5_j
rpowern = cat(2,rpowern{:}); X\^nV
end Et=Pr+Q{c
TnrBHaxbo4
% Compute the values of the polynomials: 2]!@)fio`
% -------------------------------------- D,#UJPyg
y = zeros(length_r,length(n)); @]3\*&R}
for j = 1:length(n) NxP(&M(
s = 0:(n(j)-m_abs(j))/2; 5pQpzn=
pows = n(j):-2:m_abs(j); \Kl20?
for k = length(s):-1:1 }(EH5jZ'
p = (1-2*mod(s(k),2))* ... Ailq,c
prod(2:(n(j)-s(k)))/ ... gZ @+62
prod(2:s(k))/ ... 9+ 'i(q
z
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... LrU8!r`a
prod(2:((n(j)+m_abs(j))/2-s(k))); c(Q@5@1y:
idx = (pows(k)==rpowers); ZW4f "
y(:,j) = y(:,j) + p*rpowern(:,idx); (0-Ol9[
end JT+c7W7
qng ~,m
if isnorm HuhQ|~C+~
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); v~$V
end \xYVnjG,
end >|f"EK}m!
% END: Compute the Zernike Polynomials 4XkI? l
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% *22Vc2[i;
Tzq@ic#!B
% Compute the Zernike functions: 05d0p|},
% ------------------------------ d |17G
idx_pos = m>0; ASqYA1p.
idx_neg = m<0; )+.=z
z.Cj%N
z = y; lM-9 J?j
if any(idx_pos) #g{R+#fm
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); xo>0j#
end C- .;m
if any(idx_neg) GJ9>i)+h;
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); <4}m:
end
M @5&.
7;jD>wp9D
% EOF zernfun