非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 Smh,zCc>s
function z = zernfun(n,m,r,theta,nflag) 7^Uv7<pw
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. y}
'@R$
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N >l m&iF3y
% and angular frequency M, evaluated at positions (R,THETA) on the zCA2X
!7F
% unit circle. N is a vector of positive integers (including 0), and K:M8h{Ua
% M is a vector with the same number of elements as N. Each element rOYx
b }1
% k of M must be a positive integer, with possible values M(k) = -N(k) xo)P?-
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, ]|@^1we
% and THETA is a vector of angles. R and THETA must have the same <v2;p}A
% length. The output Z is a matrix with one column for every (N,M) pCDmXB
% pair, and one row for every (R,THETA) pair. _{>vTBU4F
% 3q.q
YX
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike K"6vXv4QO
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Mt$
*a
% with delta(m,0) the Kronecker delta, is chosen so that the integral TC('H[
]
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Sdo-nt
% and theta=0 to theta=2*pi) is unity. For the non-normalized V9vTsmo(
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. $qiya[&G4
% Sz~OX6L
% The Zernike functions are an orthogonal basis on the unit circle. U:`Kss`
% They are used in disciplines such as astronomy, optics, and ~u{uZ(~
% optometry to describe functions on a circular domain. }bDm@NU
% wkq 66?
% The following table lists the first 15 Zernike functions. 965jtn
% |)&%A%m
% n m Zernike function Normalization 4*L_)z&4;
% -------------------------------------------------- l}
/F*
% 0 0 1 1 .`lCWeHN
% 1 1 r * cos(theta) 2 %>yL1BeA4
% 1 -1 r * sin(theta) 2 Gt1U!dP
% 2 -2 r^2 * cos(2*theta) sqrt(6) R-:2HRaA
% 2 0 (2*r^2 - 1) sqrt(3) s7<AfaJPF
% 2 2 r^2 * sin(2*theta) sqrt(6) /z!%d%"
% 3 -3 r^3 * cos(3*theta) sqrt(8) Dv"9qk
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) qM`}{
/i
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) [
3Gf2_
% 3 3 r^3 * sin(3*theta) sqrt(8) 7v kL1IA
% 4 -4 r^4 * cos(4*theta) sqrt(10) 0[`^\Mv4y
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) _#niyW+?~
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) 0@(&eH=
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) |>Vb9:q9Po
% 4 4 r^4 * sin(4*theta) sqrt(10) $`c:&
% -------------------------------------------------- j.Hf/vi`z
% hM{bavd
% Example 1: p ?!/+
% Z r8*et
% % Display the Zernike function Z(n=5,m=1) f 2.HF@
% x = -1:0.01:1; P?\6@_ Z
% [X,Y] = meshgrid(x,x); M7T5
~/4
% [theta,r] = cart2pol(X,Y); /(cPfZZ
% idx = r<=1; pkzaNY/q
% z = nan(size(X)); zdYjF|
% z(idx) = zernfun(5,1,r(idx),theta(idx)); :]KAkhFkbb
% figure |N2#ItBbW
% pcolor(x,x,z), shading interp +R &gqja
% axis square, colorbar uph(V
% title('Zernike function Z_5^1(r,\theta)') #4PN"o@
% 6'/ #+,d'
% Example 2: khe}*y
% NOva'qk
% % Display the first 10 Zernike functions gJXaPJA{
% x = -1:0.01:1; DI>s-7
% [X,Y] = meshgrid(x,x); 29KiuP
% [theta,r] = cart2pol(X,Y); 0;k# *#w
% idx = r<=1; cr3^6HB
% z = nan(size(X)); py4 h(04u
% n = [0 1 1 2 2 2 3 3 3 3]; WcAkCH!L
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; b;n[mk
% Nplot = [4 10 12 16 18 20 22 24 26 28]; xpt:BBo
% y = zernfun(n,m,r(idx),theta(idx)); CrLrw T
% figure('Units','normalized') HtFDlvdy]
% for k = 1:10 [WmM6UEVS
% z(idx) = y(:,k); ;+%rw 2Z,B
% subplot(4,7,Nplot(k)) #mF"1QW
% pcolor(x,x,z), shading interp l**X^+=$
% set(gca,'XTick',[],'YTick',[]) CZ;6@{ o
% axis square
ep8
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) CTb%(<r
% end 5O%{{J
% aUp
g u"
% See also ZERNPOL, ZERNFUN2. A"]YM'.
Psf#c:*_)
% Paul Fricker 11/13/2006 @dKTx#gZ
GOPfXtkC
vaLSH
xi
% Check and prepare the inputs: 7dWS
% ----------------------------- ]Um/FA W
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 9w"*y#_
error('zernfun:NMvectors','N and M must be vectors.') #"!<W0
end %EH)&k
h{Y",7]!
if length(n)~=length(m) ]kSG R
error('zernfun:NMlength','N and M must be the same length.') .Mbz3;i0
end vP&(-a
b}`TLn
n = n(:); 7#XzrT]
m = m(:); )`:UP~)H
if any(mod(n-m,2)) ?9/G[[(
error('zernfun:NMmultiplesof2', ... c{|p.hd
'All N and M must differ by multiples of 2 (including 0).') %J(:ADu]
end e
,(mR+a8
_>+Ld6.T6
if any(m>n) T)/eeZ$
error('zernfun:MlessthanN', ... -n
1v3
'Each M must be less than or equal to its corresponding N.') V
gWRW7Se
end @"A4$`Xi3
iS^QTuk3%
if any( r>1 | r<0 ) Cdn J&N{
error('zernfun:Rlessthan1','All R must be between 0 and 1.') o!Zb0/AP)
end )nkY_'BV
^qs $v06
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) SUiOJ[5,
error('zernfun:RTHvector','R and THETA must be vectors.') D*jM1w_`
end Sjqpec8
oA
1yIp
r = r(:); /uc>@!F
theta = theta(:); I7onX,U+
length_r = length(r); {: /}NpA$
if length_r~=length(theta) X'ag)|5ot
error('zernfun:RTHlength', ... $Sq:q0
'The number of R- and THETA-values must be equal.') |yCMt:Hk
end * 4'"2"
J.a]K[ci
% Check normalization: :WEDAFq0
% -------------------- 5pX6t
if nargin==5 && ischar(nflag) _BufO7`.
isnorm = strcmpi(nflag,'norm'); 5BIY<B+i
if ~isnorm rq{$,/6.
error('zernfun:normalization','Unrecognized normalization flag.') 5P2K5,o|n~
end 6ujWNf
else X|dlt{Gf
isnorm = false; vx
=&QavL
end 2?C)&
203s^K61
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0GwR~Z}Z
% Compute the Zernike Polynomials 8*X4\3:*N
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% KI.unP%
0GL M(JmK
% Determine the required powers of r: ".%k6W<n
% ----------------------------------- WJi]t9 3
m_abs = abs(m); >P(.:_^p
rpowers = []; HS$r8`S?)
for j = 1:length(n) C!gZN9-
rpowers = [rpowers m_abs(j):2:n(j)]; i8p6Xht
end gXU8hTd8
rpowers = unique(rpowers); +`4A$#$+y
6Wn1{v0
% Pre-compute the values of r raised to the required powers, +@UV?"d
% and compile them in a matrix: k6^Z~5
Sy
% ----------------------------- Z+SRXKQ
if rpowers(1)==0 hH.G#-JO
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); P?<y%c<
rpowern = cat(2,rpowern{:}); 'u658Tj
rpowern = [ones(length_r,1) rpowern]; [g,}gyeS(
else c-w)|-ac.
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); #yen8SskB
rpowern = cat(2,rpowern{:}); @EAbF>>
end qs6aB0ln
f$( e\++
% Compute the values of the polynomials: ooGM$U
% -------------------------------------- xw%0>K[
y = zeros(length_r,length(n)); kfNWI#'9
for j = 1:length(n) 2oW"'43X
s = 0:(n(j)-m_abs(j))/2; d9ihhqq3}
pows = n(j):-2:m_abs(j); fA-7VdR`R
for k = length(s):-1:1 zs;JJk^
p = (1-2*mod(s(k),2))* ... PF2nLb2-
prod(2:(n(j)-s(k)))/ ... *hrd5na
prod(2:s(k))/ ... 1YA% -~
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... IV-{ve6
prod(2:((n(j)+m_abs(j))/2-s(k))); X&zis1A<
idx = (pows(k)==rpowers); g0H[*"hj
y(:,j) = y(:,j) + p*rpowern(:,idx); $]1=\I
end G3]4A&h9v~
0(Ij%Wi,
if isnorm 6@o*xK7L
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); oU|c.mYe
end b6[j%(
end V~bD)?M
% END: Compute the Zernike Polynomials e!`i3KYn"
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |{;G2G1[
)"LJ
hLg
% Compute the Zernike functions: g}i61(
% ------------------------------ $(
)>g>%
idx_pos = m>0; v=k$A
idx_neg = m<0; ;4a{$Lw~^9
mmsPLv6
z = y; l2d{ 73h
if any(idx_pos) MDN--p08
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Q\)F;: |
end _ |p8M!
if any(idx_neg) *I'yH8Fcn
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); h![#;>(
end +"(jjxJm
uEYtE7
% EOF zernfun