非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 :#N]s
function z = zernfun(n,m,r,theta,nflag) #.,LWL]
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. #B_H/9f(
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N mK^E@uxN
% and angular frequency M, evaluated at positions (R,THETA) on the }%y5<n*v\
% unit circle. N is a vector of positive integers (including 0), and {t]8#[lo
% M is a vector with the same number of elements as N. Each element ?+{_x^
% k of M must be a positive integer, with possible values M(k) = -N(k) dtV7YPz4+
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, _ vAc/_N
% and THETA is a vector of angles. R and THETA must have the same (H]NL
% length. The output Z is a matrix with one column for every (N,M) .`&k`
% pair, and one row for every (R,THETA) pair. T*(mi{[T
% 4P7r\hs
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike cF"}}c1*M
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), I%z,s{9p
% with delta(m,0) the Kronecker delta, is chosen so that the integral Z:,`hW*A6
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, (7??5gjh
% and theta=0 to theta=2*pi) is unity. For the non-normalized 8>I4e5Ym
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ^i@0P}K<
% , $cpm=1
% The Zernike functions are an orthogonal basis on the unit circle. D'UIxc8
% They are used in disciplines such as astronomy, optics, and _]0<G8|Rv
% optometry to describe functions on a circular domain. F$YT4414
% A":cS }Ui
% The following table lists the first 15 Zernike functions. <(45(6fQ
% >``
% n m Zernike function Normalization #aE>-81SS&
% -------------------------------------------------- fM(~>(q&
% 0 0 1 1 p$Floubh]
% 1 1 r * cos(theta) 2 CX]L'
% 1 -1 r * sin(theta) 2 ''p<C)Q
% 2 -2 r^2 * cos(2*theta) sqrt(6) .kfx\,lgm
% 2 0 (2*r^2 - 1) sqrt(3) ;2aPhA
% 2 2 r^2 * sin(2*theta) sqrt(6) wf^p?=Ke
% 3 -3 r^3 * cos(3*theta) sqrt(8) !R[~Z7b6
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) Vf$$e)
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) qtz~Y~h|>
% 3 3 r^3 * sin(3*theta) sqrt(8) #w!ewC vt
% 4 -4 r^4 * cos(4*theta) sqrt(10) K}Q:L(SSr\
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) TALiH'w6|e
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) }E&:
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) bUuQ"!>ppu
% 4 4 r^4 * sin(4*theta) sqrt(10) NjO_Y t
% -------------------------------------------------- 8RcLs1n/
% @E"lN
% Example 1: K[Vj+qdyl
% ZT<VDcP{
% % Display the Zernike function Z(n=5,m=1) 1%";|
% x = -1:0.01:1; nJwP|P_
% [X,Y] = meshgrid(x,x); G4\|bwh
% [theta,r] = cart2pol(X,Y); 5>VX]nE3!
% idx = r<=1; {r#uD5NJ/
% z = nan(size(X)); JOwu_%
% z(idx) = zernfun(5,1,r(idx),theta(idx)); D8WKy
% figure qu;$I'Ul%
% pcolor(x,x,z), shading interp [|\#cVWs
% axis square, colorbar x+[ATZ([
% title('Zernike function Z_5^1(r,\theta)') >Udq{<]#r
% {"|la;*I
% Example 2: m;ju@5X
% $s"-r9@q
% % Display the first 10 Zernike functions m\MI 6/
% x = -1:0.01:1; #@E:|^$1y
% [X,Y] = meshgrid(x,x); ^-"tK:{
% [theta,r] = cart2pol(X,Y); S Erh"~[
% idx = r<=1; ~^fb`f+%
% z = nan(size(X)); I]WvcDJ}C
% n = [0 1 1 2 2 2 3 3 3 3]; UQbk%K2
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; .S]*A b
% Nplot = [4 10 12 16 18 20 22 24 26 28]; hd`jf97*
% y = zernfun(n,m,r(idx),theta(idx)); jrX`_Y
% figure('Units','normalized') #JN4K>_4
% for k = 1:10 /bL L!nD=^
% z(idx) = y(:,k); 0#~k)>(7lR
% subplot(4,7,Nplot(k)) Z tc\4
% pcolor(x,x,z), shading interp f6{.Uq%SGp
% set(gca,'XTick',[],'YTick',[]) #] ;ulDq
% axis square {Ia$!q)
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Zu94dFP
% end $"?$r
% _`,ZI{.J^
% See also ZERNPOL, ZERNFUN2. .eyJ<b9
[I7=]X
% Paul Fricker 11/13/2006 . "7-f]!
Qkc9X0J!
>'jkL5l
% Check and prepare the inputs: e{^^u$C1.e
% ----------------------------- -vc
,O77z"
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) e7plL^^`
error('zernfun:NMvectors','N and M must be vectors.') FRXaPod
end w}e_17A
86a,J3C[
if length(n)~=length(m) { _Y'%Ggh
error('zernfun:NMlength','N and M must be the same length.') q(Ow:3&
end
qq@]xdl
&>G8DvfJ9
n = n(:); 9_~9?5PU
m = m(:); N0N%~3
if any(mod(n-m,2)) qx*N-,M%k(
error('zernfun:NMmultiplesof2', ... 9Q\RCl_1
'All N and M must differ by multiples of 2 (including 0).') 8~g~XUl
end U~dqxR"Q
FtlJ3fB@
if any(m>n) A+FQmLS
error('zernfun:MlessthanN', ... B9H.8+~(
'Each M must be less than or equal to its corresponding N.') mP?}h
end 9#kk5 )J
SL
+\{V2
if any( r>1 | r<0 ) }g:'K
error('zernfun:Rlessthan1','All R must be between 0 and 1.') 7p>T6jK)
end MM( ,D&
Z
D[4%CQ1m
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) yV31OBC:
error('zernfun:RTHvector','R and THETA must be vectors.') E )2/Vn2
end Q5_ ,`r`
0wAB;|~*62
r = r(:); u`Kc\BSn
theta = theta(:); S"`{ JCW$
length_r = length(r); ~RZN+N
if length_r~=length(theta) bL{D*\HF
error('zernfun:RTHlength', ... Ds{bYK_y
'The number of R- and THETA-values must be equal.') <vu~EY0.
end p4kK"
\ln
3Q2NiYg3
% Check normalization: n8D'fvY
% -------------------- i+lq:St
if nargin==5 && ischar(nflag) uLNOhgSUf
isnorm = strcmpi(nflag,'norm'); k0TQFx.A
if ~isnorm )Lk2tvr
error('zernfun:normalization','Unrecognized normalization flag.') ,mz7!c9H^a
end #Yy5@A}`o
else eKU4"XTk
isnorm = false; Ec }9R3 m
end ?9?o8!
Ok}e|b[D
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% n7zM;@{7
% Compute the Zernike Polynomials "chf\-!$
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% gV*4{d`
i.7$~}
% Determine the required powers of r: L:Faq1MG
% ----------------------------------- $}EARW9
m_abs = abs(m); "cbJ{ G1pk
rpowers = []; !"aGo1$$
for j = 1:length(n) )]Sf|@K]
rpowers = [rpowers m_abs(j):2:n(j)]; T~4HeEG>uH
end K)h<#F
rpowers = unique(rpowers); nFro#qx
{7v|\6@e3
% Pre-compute the values of r raised to the required powers, Z+4Mo*#
% and compile them in a matrix: ZvK3Su)f1
% ----------------------------- ?*<1B
if rpowers(1)==0 u/N_62sk5
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); U8%IpI;
rpowern = cat(2,rpowern{:}); VRHS 4
rpowern = [ones(length_r,1) rpowern]; &?']EcU5h9
else {yi!vw
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); >z,Y%A
rpowern = cat(2,rpowern{:}); Upm#:i|"
end `[ZA#8Ma
z_8Bl2tl
% Compute the values of the polynomials: 'uwq^b_
% -------------------------------------- b'xBPTN
y = zeros(length_r,length(n)); v~p?YYOm<
for j = 1:length(n) R80|q#h,]
s = 0:(n(j)-m_abs(j))/2; TBHd)BhI.
pows = n(j):-2:m_abs(j); @#9xSs#
for k = length(s):-1:1 ~u?rjkSFoh
p = (1-2*mod(s(k),2))* ... AAF;M}le,
prod(2:(n(j)-s(k)))/ ... z,VXH ?.Zo
prod(2:s(k))/ ... YG>Eop
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... IEfm>N-]
prod(2:((n(j)+m_abs(j))/2-s(k))); Ysi@wK-LnF
idx = (pows(k)==rpowers); dO-Zj#%7z8
y(:,j) = y(:,j) + p*rpowern(:,idx); c3\p@}
end 6O@Lx]t
8"u.GL.
if isnorm 4dh>B>Q
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); {4%ddJn[.)
end "{jVsih0
end Af^9WJ
% END: Compute the Zernike Polynomials D9n+eZ
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% B\`${O(
u R!'v
% Compute the Zernike functions: ZV07;`I
% ------------------------------ Zh?n;n}
idx_pos = m>0; YT@H^=
idx_neg = m<0; C{6m?6
tV7{j'If
z = y; Pfm B{
if any(idx_pos) \ow(4O#
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 4XeO^#
end E/E|*6R
if any(idx_neg) Wx8;+!2Q/
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Z,F1n/7
end J!'IkC$>
X0KUnxw
% EOF zernfun