切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10876阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 :QKxpHi  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! |OW/-&)  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 S8=Am7D]1  
    function z = zernfun(n,m,r,theta,nflag) V[9#+l~#  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. /"~ D(bw0=  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N l>(w]  
    %   and angular frequency M, evaluated at positions (R,THETA) on the u_kcuN\Sq  
    %   unit circle.  N is a vector of positive integers (including 0), and X?6E0/r&9  
    %   M is a vector with the same number of elements as N.  Each element XOOWrK7O  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) mT]+wi&  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, j[E8C$lW  
    %   and THETA is a vector of angles.  R and THETA must have the same '(ZJsw  
    %   length.  The output Z is a matrix with one column for every (N,M) *[ ' n8Z  
    %   pair, and one row for every (R,THETA) pair. cZ8lRVaWW  
    % 8PN/*Sa  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike LwPZRE#  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), oAnNdo  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral  L#  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ,(1n(FZ  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized U,G!u=+  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. eA4dDKX+  
    % C-wwQbdG/  
    %   The Zernike functions are an orthogonal basis on the unit circle. "o| f  
    %   They are used in disciplines such as astronomy, optics, and "hE/f~\  
    %   optometry to describe functions on a circular domain. @k< e]@r  
    % =O~ J  
    %   The following table lists the first 15 Zernike functions. t=-t xnlr<  
    % $ 12mS  
    %       n    m    Zernike function           Normalization 1\'?.  
    %       -------------------------------------------------- 3Jt7IM!9[  
    %       0    0    1                                 1 WA'&0i4  
    %       1    1    r * cos(theta)                    2 jwP}{mi*  
    %       1   -1    r * sin(theta)                    2 th!$R  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ZQL4<fy'E  
    %       2    0    (2*r^2 - 1)                    sqrt(3) "ITC P<+  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) y15 MWZ  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) K;n2mXYGM  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) ^Vbx9UN/  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 7m4gGkX#r  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) mbf'xGO  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) i146@<\G{P  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) &1=Je$,  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) d65fkz==A)  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) }Q }&3m~g  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) "7]YvZYu0  
    %       --------------------------------------------------  <>|&%gmz  
    % {2A| F{7>  
    %   Example 1: S1Z~-i*w  
    % gY],U4_:p  
    %       % Display the Zernike function Z(n=5,m=1) ]"ZL<?3g  
    %       x = -1:0.01:1; |JUb 1|gi  
    %       [X,Y] = meshgrid(x,x); uTWij4)a  
    %       [theta,r] = cart2pol(X,Y); n]G_# ;  
    %       idx = r<=1; 9s#Q[\B!  
    %       z = nan(size(X)); iRbTH}4i  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); z%4E~u10  
    %       figure /w!!jj^  
    %       pcolor(x,x,z), shading interp O^Y}fo'  
    %       axis square, colorbar .=~-sj@k  
    %       title('Zernike function Z_5^1(r,\theta)') Q3@MRR^tY  
    % I.4o9Z[?  
    %   Example 2: s8r|48I#;  
    % '7Ad:em  
    %       % Display the first 10 Zernike functions Czl4^STiC  
    %       x = -1:0.01:1; WxLmzSz{xD  
    %       [X,Y] = meshgrid(x,x); vb&1 S  
    %       [theta,r] = cart2pol(X,Y); Hm>7|!  
    %       idx = r<=1; Z(|@C(IL0\  
    %       z = nan(size(X)); N7wKaezE  
    %       n = [0  1  1  2  2  2  3  3  3  3]; eX{:&Do  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; Bq l 5=p  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; zL^`r)H  
    %       y = zernfun(n,m,r(idx),theta(idx)); rXIFCt8J  
    %       figure('Units','normalized') {?!0<0  
    %       for k = 1:10 z1K}] z%  
    %           z(idx) = y(:,k); OI8Hf3d=  
    %           subplot(4,7,Nplot(k)) #mK/xbW  
    %           pcolor(x,x,z), shading interp A`#/:O4|f  
    %           set(gca,'XTick',[],'YTick',[]) (plsL   
    %           axis square #Epx'$9  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) %',bCd{QW  
    %       end (TX\vI&  
    % T#o?@ ;  
    %   See also ZERNPOL, ZERNFUN2. $i|c6&  
    MrW*6jY@  
    %   Paul Fricker 11/13/2006 /Ezx'h3Q  
    ?Z1&ju,Hd-  
    MV(Sb:RZ  
    % Check and prepare the inputs: 7U3b YU~;  
    % ----------------------------- i"B q*b@  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 1#Ls4+]5  
        error('zernfun:NMvectors','N and M must be vectors.') tc|`cB3f  
    end FFG/v`NM  
    lI)RaiMr=  
    if length(n)~=length(m) @) \{u$  
        error('zernfun:NMlength','N and M must be the same length.') un&Z' .   
    end &'mq).I2  
    K3;lst>4  
    n = n(:); I6.!0.G  
    m = m(:); AZHZUd4  
    if any(mod(n-m,2)) #W]4aZ1  
        error('zernfun:NMmultiplesof2', ... @W|N1,sp  
              'All N and M must differ by multiples of 2 (including 0).') eZck$]P(6H  
    end 2 1LJ3rW_  
    u2FD@Xq?  
    if any(m>n) +=N!37+G  
        error('zernfun:MlessthanN', ... lMQ_S"  
              'Each M must be less than or equal to its corresponding N.') ='\Di '*  
    end 7GFE5>H  
    `Z' h[-2`  
    if any( r>1 | r<0 ) b3vPGR  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 2_i9 q>I  
    end 6Hh\ys  
    9>OPaL n  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) O'WB O"  
        error('zernfun:RTHvector','R and THETA must be vectors.') H}p5qW.tH:  
    end &Q>tV+*  
    $vR#<a,7>  
    r = r(:); zxo" +j4Ym  
    theta = theta(:); FG6bKvEQm^  
    length_r = length(r); K<g<xW*X  
    if length_r~=length(theta) P<OSm*;U:  
        error('zernfun:RTHlength', ... 7gx 7NDt  
              'The number of R- and THETA-values must be equal.') !EuqJjh  
    end .^F(&c*['  
    4[.DQ#r  
    % Check normalization: CI}zu;4|  
    % -------------------- Pw :{  
    if nargin==5 && ischar(nflag) f)b+>!  
        isnorm = strcmpi(nflag,'norm'); jMAZ4M  
        if ~isnorm er%D`VHe  
            error('zernfun:normalization','Unrecognized normalization flag.') - Mubq  
        end 3+uCTn0%  
    else w Jr5[p*M  
        isnorm = false; P\nz;}nv  
    end V9 J`LQ\0  
    kgl7l?|O  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% jI;iTKjB(  
    % Compute the Zernike Polynomials |n/qJIE6  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Pc:5*H  
    uex m|5|  
    % Determine the required powers of r: ]}za  
    % ----------------------------------- m8:9Uv  
    m_abs = abs(m); kgZiyPcw  
    rpowers = []; $-Yq?:  
    for j = 1:length(n) Bokpvd-c7  
        rpowers = [rpowers m_abs(j):2:n(j)]; <|kS`y  
    end -yJ%G1R  
    rpowers = unique(rpowers); H[M(t^GM  
    qrw"z iW  
    % Pre-compute the values of r raised to the required powers, Z6S?xfhr'{  
    % and compile them in a matrix: f7y3BWOi]  
    % ----------------------------- MJ..' $>TC  
    if rpowers(1)==0 |}07tUq  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ~ 7^#.  
        rpowern = cat(2,rpowern{:}); g)M"Cx.  
        rpowern = [ones(length_r,1) rpowern]; kM;fxR:-  
    else dJ|/.J$d  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); >[A7oH  
        rpowern = cat(2,rpowern{:}); #JD:i%  
    end t~0!K;nn  
    yOdh?:Imv  
    % Compute the values of the polynomials: *)| EWT?,  
    % -------------------------------------- ~ 5@bW J  
    y = zeros(length_r,length(n)); m5'nqy F  
    for j = 1:length(n) =uil3:,[S  
        s = 0:(n(j)-m_abs(j))/2; 4b/>ZHFOF;  
        pows = n(j):-2:m_abs(j); vWh]1G#'p[  
        for k = length(s):-1:1 "+{>"_KV  
            p = (1-2*mod(s(k),2))* ... ,ej89  
                       prod(2:(n(j)-s(k)))/              ... a^5.gfzA  
                       prod(2:s(k))/                     ... t8:QK9|1  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... {n'+P3\T:  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); vS1#ien#  
            idx = (pows(k)==rpowers); 5%#V>|@e#  
            y(:,j) = y(:,j) + p*rpowern(:,idx); T4fVZd)x  
        end U-6pia /o  
         X?gH(mn  
        if isnorm ->S# `"@$  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); S@^o=B]]  
        end D9 \!97  
    end CEXD0+\q  
    % END: Compute the Zernike Polynomials N, SbJ Z  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 7mT iO?/y<  
    vLT$oiN[c  
    % Compute the Zernike functions: (aUdPo8H^  
    % ------------------------------ 6!T9VL\=H  
    idx_pos = m>0; l6~wm1vO  
    idx_neg = m<0; |1/UC"f  
    ?? 2x*l1  
    z = y; h( V:-D  
    if any(idx_pos) CxbGL  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); HD~o]l=H  
    end !+H)N  
    if any(idx_neg) /JGET  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); d$}!x[g$Z  
    end }|9!|Q  
    $TZjSZ1w  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) kdW$>Jqb  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. k/,7FDO?m  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated U.A:'9K,  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive es!>u{8)  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, pybE0]   
    %   and THETA is a vector of angles.  R and THETA must have the same Z!foD^&R  
    %   length.  The output Z is a matrix with one column for every P-value, 8$~^-_>n/  
    %   and one row for every (R,THETA) pair. !lxq,Whr{  
    % %/}46z9\  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike E5QQI9ea  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) vT{+Z\LL=  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) A81'ca/  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 (8td0zq  
    %   for all p. <X "_S'O  
    % K:L_y 1!T  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 `_+%  
    %   Zernike functions (order N<=7).  In some disciplines it is E@/* eJ  
    %   traditional to label the first 36 functions using a single mode E2i'lO\P  
    %   number P instead of separate numbers for the order N and azimuthal ! z6T_;s  
    %   frequency M. F&u)wI'  
    % k{C03=xk  
    %   Example: n%K^G4k^  
    % L]Dq1q8`  
    %       % Display the first 16 Zernike functions B*OBXN>'P  
    %       x = -1:0.01:1; bZlKy`Z  
    %       [X,Y] = meshgrid(x,x); m"f3hd4D_q  
    %       [theta,r] = cart2pol(X,Y); ,!vI@>nhG  
    %       idx = r<=1; .r~M7 I  
    %       p = 0:15; Px?zih!6  
    %       z = nan(size(X)); $nqVE{ksV  
    %       y = zernfun2(p,r(idx),theta(idx)); :x3"Cj  
    %       figure('Units','normalized') ,lDOo+eE%:  
    %       for k = 1:length(p) gaWJzK Yc_  
    %           z(idx) = y(:,k); _V,bvHWlM  
    %           subplot(4,4,k) _^@>I8ix  
    %           pcolor(x,x,z), shading interp 3W3)%[ 5  
    %           set(gca,'XTick',[],'YTick',[]) @ MKf$O4K  
    %           axis square tLzb*U8'1w  
    %           title(['Z_{' num2str(p(k)) '}']) U W' @3#<?  
    %       end ZtGtJV"H  
    % 2*5pjd{Kt  
    %   See also ZERNPOL, ZERNFUN. XsGc!  o  
    Cg3 d  
    %   Paul Fricker 11/13/2006 O39f  
    D}~uxw;[^  
    ^4Tf6Fw#  
    % Check and prepare the inputs: Eg(.L,dj  
    % ----------------------------- |_m N:(3  
    if min(size(p))~=1 Kh7C7[&  
        error('zernfun2:Pvector','Input P must be vector.') uc Ph*M  
    end "sYZ3  
    Ya;y@44  
    if any(p)>35 7;9 Jn  
        error('zernfun2:P36', ... p&2oe\j$,  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... ~EM(*k._  
               '(P = 0 to 35).']) ]cM,m2^2  
    end X16vvsjw5  
    b6! 7 j  
    % Get the order and frequency corresonding to the function number: @_0tq{  
    % ---------------------------------------------------------------- `r]C%Y4?  
    p = p(:); Ff1!+P,  
    n = ceil((-3+sqrt(9+8*p))/2); {a0yHy$H  
    m = 2*p - n.*(n+2); Zp/$:ny  
    ) uTFId  
    % Pass the inputs to the function ZERNFUN: Sq]QRI/  
    % ---------------------------------------- YySo%\d  
    switch nargin "KgNMNep  
        case 3 Sym}#F\s  
            z = zernfun(n,m,r,theta); 4"veqrC  
        case 4 U(2=fKK;  
            z = zernfun(n,m,r,theta,nflag); sh*/wM  
        otherwise x/0loW?q^  
            error('zernfun2:nargin','Incorrect number of inputs.') !oYNJE Y7  
    end wz>[CXpi_  
    Q5HSik4  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) _9'hmej  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. Pn l}<i  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of 10xza=a  
    %   order N and frequency M, evaluated at R.  N is a vector of >[;L.  
    %   positive integers (including 0), and M is a vector with the 7CH.BY  
    %   same number of elements as N.  Each element k of M must be a 13pu{Xak  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) 4s@Tn>%SP  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is 0rvBjlFT  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix v3{%U1>}v  
    %   with one column for every (N,M) pair, and one row for every }X. Fm'`  
    %   element in R. %/ "yt}"|  
    % Bo\~PV[  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly-  DTa!vg  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is Tv6y +l  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to Yr>0Qg],  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 DF UTQ:N  
    %   for all [n,m]. _l+C0lQl=  
    % eL.WP`Lz  
    %   The radial Zernike polynomials are the radial portion of the )+ 'r-AF*  
    %   Zernike functions, which are an orthogonal basis on the unit t+K1ArQc  
    %   circle.  The series representation of the radial Zernike d2TIG<6/  
    %   polynomials is Uq~b4X$  
    % z$L e,+  
    %          (n-m)/2 T8&eaAoo  
    %            __ !c dY`f6x  
    %    m      \       s                                          n-2s QN|=/c<U  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r 'Lw8l `7  
    %    n      s=0 ZH*h1?\X  
    % y0-UO+ ;  
    %   The following table shows the first 12 polynomials. *Mb'y d/|  
    % XE&h&v=>  
    %       n    m    Zernike polynomial    Normalization 8I Ip,#%v  
    %       --------------------------------------------- &SNH1b#>E  
    %       0    0    1                        sqrt(2) &n#yxv4  
    %       1    1    r                           2 Z/!awf>  
    %       2    0    2*r^2 - 1                sqrt(6) f/s"2r  
    %       2    2    r^2                      sqrt(6) ,7k-LAA  
    %       3    1    3*r^3 - 2*r              sqrt(8) z"mpw mv5  
    %       3    3    r^3                      sqrt(8) E m^Dg9  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) xRdx` YYu  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) cA|vH^:  
    %       4    4    r^4                      sqrt(10) =9W\;xE S  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) k{=dV  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) ~MXhp5PI   
    %       5    5    r^5                      sqrt(12) TI t\  
    %       --------------------------------------------- bM5o-U#^ C  
    % bar=^V)  
    %   Example: 3Zl:rYD?  
    % M_-L#FHX  
    %       % Display three example Zernike radial polynomials 6y1\ar(A  
    %       r = 0:0.01:1; cIG7 Q"4  
    %       n = [3 2 5]; psc Fb$b  
    %       m = [1 2 1]; Pr(@&:v:  
    %       z = zernpol(n,m,r); `C C=?E  
    %       figure h_+  
    %       plot(r,z) j;7E+Yp  
    %       grid on K)se$vb6  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') ^Y+Lf]zz*  
    % x#N_h0[i  
    %   See also ZERNFUN, ZERNFUN2. KX 7 fgC  
    ,W|-?b?   
    % A note on the algorithm. B>m*!n: l  
    % ------------------------ %2\tly!{ %  
    % The radial Zernike polynomials are computed using the series DcdEt=\)h  
    % representation shown in the Help section above. For many special l"1D' Hk  
    % functions, direct evaluation using the series representation can FMI1[|:;  
    % produce poor numerical results (floating point errors), because 1^E5VG1[  
    % the summation often involves computing small differences between rQ_@q_B.  
    % large successive terms in the series. (In such cases, the functions m&gB;g3:  
    % are often evaluated using alternative methods such as recurrence 3X11Gl  
    % relations: see the Legendre functions, for example). For the Zernike `>`b;A4  
    % polynomials, however, this problem does not arise, because the Xa.8-a"hz  
    % polynomials are evaluated over the finite domain r = (0,1), and Ez0zk9  
    % because the coefficients for a given polynomial are generally all ^ r(My}  
    % of similar magnitude. "t(_r@qU/  
    % X~c?C-fV  
    % ZERNPOL has been written using a vectorized implementation: multiple L YF|  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] c$71~|-[  
    % values can be passed as inputs) for a vector of points R.  To achieve 5TB6QLPEwY  
    % this vectorization most efficiently, the algorithm in ZERNPOL htR.p7&Tn  
    % involves pre-determining all the powers p of R that are required to u;-fG9xs  
    % compute the outputs, and then compiling the {R^p} into a single n+hL/aQ+  
    % matrix.  This avoids any redundant computation of the R^p, and .6azUD4  
    % minimizes the sizes of certain intermediate variables. _W_< bI34  
    % cPNc$^Y  
    %   Paul Fricker 11/13/2006 4}v|^_x-i  
    C` ky=  
    ?X6}+  
    % Check and prepare the inputs: 6{HCF-cQd  
    % ----------------------------- X(*O$B{ R  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) pC>h"Hy  
        error('zernpol:NMvectors','N and M must be vectors.') ">z3i`#C'  
    end Q]/%Y[%|  
    w"s@q$}]8M  
    if length(n)~=length(m) \"nut7";2  
        error('zernpol:NMlength','N and M must be the same length.') !h7.xl OpN  
    end dM^Z,; u  
    qz>R"pj0g  
    n = n(:); pLtw|S'4  
    m = m(:); @|vH5Pi  
    length_n = length(n); qrlC U4  
    \>- M&C  
    if any(mod(n-m,2)) znwKwc8,  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') #6< 1 =I'j  
    end qGV_oa74  
    (jDz[b#OPz  
    if any(m<0) 2]]v|Z2M4  
        error('zernpol:Mpositive','All M must be positive.') "U-jZ5o"  
    end R; c9)>8L  
    lbBWOx/|  
    if any(m>n) l\*9rs:!  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') hDW!pnj1  
    end k_=yb^6[U  
    '% QCNO/  
    if any( r>1 | r<0 ) k~"E h]38  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') 6p)AQTh>  
    end MxIa,M <  
    +y?Ilkk;j  
    if ~any(size(r)==1) WR"D7{>tw  
        error('zernpol:Rvector','R must be a vector.') ro{!X,_$,  
    end Dp ](?Yr  
    tbd=A]B-  
    r = r(:); ,KW Q 6  
    length_r = length(r); I4X9RYB6c  
    eyCZ[SC  
    if nargin==4 J, 9NVw$  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); N7+L@CC6T  
        if ~isnorm 5QMra5Nk  
            error('zernpol:normalization','Unrecognized normalization flag.') MY^{[ #Q  
        end \!-BR0+y;  
    else uw}Rr7q  
        isnorm = false; FmL]|~  
    end D(AH3`*|#  
    t;e&[eg  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% j~Aq-8R=  
    % Compute the Zernike Polynomials "jFf}"  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% t~) P1Lof\  
    tJ\ $%  
    % Determine the required powers of r: E7:xPNU  
    % ----------------------------------- hJb2y`,q  
    rpowers = []; 7z b^Z]  
    for j = 1:length(n) )>iOj50n3  
        rpowers = [rpowers m(j):2:n(j)]; fjh|V9H  
    end ZEP?~zV\A  
    rpowers = unique(rpowers); h: ' |)O  
    b2m={q(s  
    % Pre-compute the values of r raised to the required powers, 4l$OO;B  
    % and compile them in a matrix: G,u=ngZ]  
    % ----------------------------- m8q4t ,<J  
    if rpowers(1)==0 uE-(^u  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ?[ xgt )  
        rpowern = cat(2,rpowern{:}); &9L4 t%As  
        rpowern = [ones(length_r,1) rpowern]; -NBVUUAgN  
    else f[@96p ?a[  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); :<QknU}dwy  
        rpowern = cat(2,rpowern{:}); qX\*l m/l  
    end _f1o!4ocx  
    VW-qQe  
    % Compute the values of the polynomials: D)d]o&  
    % -------------------------------------- IPQRdBQ  
    z = zeros(length_r,length_n); 3Z!%td5n  
    for j = 1:length_n xe@1H\7:  
        s = 0:(n(j)-m(j))/2; x/*lNG/  
        pows = n(j):-2:m(j); Qs6<(zaqkt  
        for k = length(s):-1:1 ^/f~\ #R  
            p = (1-2*mod(s(k),2))* ... %~u]|q<{  
                       prod(2:(n(j)-s(k)))/          ... !nvwRQ  
                       prod(2:s(k))/                 ... `|dyT6V0I_  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... F-&tSU,  
                       prod(2:((n(j)+m(j))/2-s(k))); v=U<exM6%  
            idx = (pows(k)==rpowers); V=O52?8  
            z(:,j) = z(:,j) + p*rpowern(:,idx); uo9#(6  
        end {v ?Q9  
         ~tDYo)hH8  
        if isnorm |xO*!NR  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); u47<J?!Q  
        end &7L7|{18  
    end 8&<mg;H,  
    p.DQ|?  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    在线guapiqlh
    发帖
    854
    光币
    834
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  t oGiG|L  
    vn}m-U XA*  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 30v xOkS  
    8i',~[  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)