非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 9#7W+9
function z = zernfun(n,m,r,theta,nflag) $ c-O+~
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. !AJkd.
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N qD*y60~]zz
% and angular frequency M, evaluated at positions (R,THETA) on the _ f";zd
% unit circle. N is a vector of positive integers (including 0), and ^%zhj3#
% M is a vector with the same number of elements as N. Each element 'ux!:b"
% k of M must be a positive integer, with possible values M(k) = -N(k) m
W>Iib|
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, L!*+:L
DL
% and THETA is a vector of angles. R and THETA must have the same w!H(zjv&(
% length. The output Z is a matrix with one column for every (N,M) B(1-u!pz
% pair, and one row for every (R,THETA) pair. [m{sl(Q
% VO eVS&}
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike s!?uLSEdb
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), g(tVghHxt$
% with delta(m,0) the Kronecker delta, is chosen so that the integral Dfzj/spFV
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, @%x2d1FS
% and theta=0 to theta=2*pi) is unity. For the non-normalized Lfi6b%/z
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 1xEOYM)
% MhCU;
!
% The Zernike functions are an orthogonal basis on the unit circle. Q;VuoHj!
% They are used in disciplines such as astronomy, optics, and Z6${nUX
% optometry to describe functions on a circular domain. C`t@tgT
% (eU 4{X7
% The following table lists the first 15 Zernike functions. 'I/_vqp@
% }NyQ<,+mq&
% n m Zernike function Normalization QPB,B>Z
% -------------------------------------------------- -GFZFi
% 0 0 1 1 04dz?`HuB
% 1 1 r * cos(theta) 2 =MQ/z#:-P
% 1 -1 r * sin(theta) 2 nyi!D
% 2 -2 r^2 * cos(2*theta) sqrt(6) R)k\
% 2 0 (2*r^2 - 1) sqrt(3) \\\8{jq
% 2 2 r^2 * sin(2*theta) sqrt(6) MAkr9AKb,
% 3 -3 r^3 * cos(3*theta) sqrt(8) R`c[?U
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) y(QFf*J
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) Jf?6y~X>Y
% 3 3 r^3 * sin(3*theta) sqrt(8) e^\e;>Dh>
% 4 -4 r^4 * cos(4*theta) sqrt(10) hm73Zy
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ~5&4s
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) Godrz*"
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) #PD6LO
% 4 4 r^4 * sin(4*theta) sqrt(10) gm)Uyr$
% -------------------------------------------------- LE<J<~2Z
% exhU!p8
% Example 1: !\4B.
% 1X5g(B
% % Display the Zernike function Z(n=5,m=1) VSY p
% x = -1:0.01:1; h97#(_wV>
% [X,Y] = meshgrid(x,x); SdYf^@%}F
% [theta,r] = cart2pol(X,Y); IyHbl_P ^
% idx = r<=1; V_gKl;Kfe8
% z = nan(size(X)); x']'ODs
% z(idx) = zernfun(5,1,r(idx),theta(idx)); `5@F'tKQ
% figure 5_'lu
% pcolor(x,x,z), shading interp J;obh.}u"{
% axis square, colorbar Z,#H\1v3lB
% title('Zernike function Z_5^1(r,\theta)') ;9k>;g3m
% [o#% Eg;
% Example 2: ia'z9
% Ll|_Wd.K,
% % Display the first 10 Zernike functions W#<1504ip
% x = -1:0.01:1; oVy{~D=
% [X,Y] = meshgrid(x,x); 0mSP
% [theta,r] = cart2pol(X,Y); /jGBQ-X
% idx = r<=1; swF{}S"
% z = nan(size(X)); 0h@FHw2d
% n = [0 1 1 2 2 2 3 3 3 3]; V,_m>$Mo
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; tsc`u>
% Nplot = [4 10 12 16 18 20 22 24 26 28]; }aRib{L
% y = zernfun(n,m,r(idx),theta(idx)); V_SH90@)+
% figure('Units','normalized') e7U\gtZ.
% for k = 1:10 %)r ~GCd
% z(idx) = y(:,k); Zigv;}#
% subplot(4,7,Nplot(k)) 7l69SQo]?
% pcolor(x,x,z), shading interp vt#;j;liG
% set(gca,'XTick',[],'YTick',[]) B}d&tH2^s
% axis square w2nReB z
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 06pvI}
% end bGWfMu=n
% l\s!A&L
% See also ZERNPOL, ZERNFUN2. X@`a_XAfd
p'
>i3T(
% Paul Fricker 11/13/2006 W91yj:
GF ux?8A:%
lv
8EfN
% Check and prepare the inputs: B`}um;T#~,
% ----------------------------- f,HUr% @
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 5Ml=<^
error('zernfun:NMvectors','N and M must be vectors.') G|g^yaq>
end B'}?cG]
?mg@z q8
if length(n)~=length(m) f4f2xe7\Q
error('zernfun:NMlength','N and M must be the same length.') O_:l;D#i
end lxhb)]c
^>
/d3Jd.l!
n = n(:); ~29p|X<
m = m(:); >c,s}HJ
if any(mod(n-m,2)) P"vrYom
error('zernfun:NMmultiplesof2', ... n[ B~C
'All N and M must differ by multiples of 2 (including 0).') sT\:**
end [r/zBF-.
5BhR4+1J
if any(m>n) NHGTV$T`1
error('zernfun:MlessthanN', ... L|'^P3#7`
'Each M must be less than or equal to its corresponding N.') So aqmY;+
end !__0Vk[s
,S-h~x
if any( r>1 | r<0 ) @RoZd?
error('zernfun:Rlessthan1','All R must be between 0 and 1.') &N7ji
end X$Vi=f vt
XNJ4T]><
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) "}]$ag!`q$
error('zernfun:RTHvector','R and THETA must be vectors.') !
xCo{U=
end m^_=^z+
gfQ?k
r = r(:); ukWn@q*
theta = theta(:); z:,PwLU
length_r = length(r); Lzq/^&sc(
if length_r~=length(theta) 9@
tp#
error('zernfun:RTHlength', ... Zl9@E;|=
'The number of R- and THETA-values must be equal.') OR<+y~Rv
end ot^p xun
h|qJ{tUWc$
% Check normalization: YT\@fgBt
% -------------------- ":Wq<Z'
if nargin==5 && ischar(nflag) bNea5u##
isnorm = strcmpi(nflag,'norm'); Y?0/f[Ax,y
if ~isnorm JVE\{ e)
error('zernfun:normalization','Unrecognized normalization flag.') z5>I9R^q;
end qA)OkR'm
else 2c9?,Le/;
isnorm = false;
.Bm%
end WgtLKRZ\
<)VgGjZ-H
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% {7NGfzwp;6
% Compute the Zernike Polynomials CXlbtpK2k
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% G7 %bY
d ]P~
% Determine the required powers of r:
cw Obq\
% ----------------------------------- 2{OR#v~
m_abs = abs(m); .G0 N+)
rpowers = []; 5~*)3z^V
for j = 1:length(n) /(N/DMl[
rpowers = [rpowers m_abs(j):2:n(j)]; Wlj&_~
end / ;]5X
rpowers = unique(rpowers); %By Pwu:f
xA] L0h]
% Pre-compute the values of r raised to the required powers, ,WT>"9+
% and compile them in a matrix: h!EA;2yGKa
% ----------------------------- j|eA*UE
if rpowers(1)==0 OZ[ YB
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ',+yD9 @
rpowern = cat(2,rpowern{:}); /R)wM#&
rpowern = [ones(length_r,1) rpowern]; ^kez]>
else FfoOJzf~o
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); jwZ,_CK
rpowern = cat(2,rpowern{:}); \/a6h
end .fA*WQ!lb
)-C3z
% Compute the values of the polynomials: "W|A^@r}
% -------------------------------------- \CbJU
y = zeros(length_r,length(n)); [ERZ".?
for j = 1:length(n) }lJ;|kx$
s = 0:(n(j)-m_abs(j))/2; bzgC+yT
pows = n(j):-2:m_abs(j); zG!nqSDG
for k = length(s):-1:1 }U_
'7_JT
p = (1-2*mod(s(k),2))* ... "t@p9>
prod(2:(n(j)-s(k)))/ ... c'2d+*[
prod(2:s(k))/ ... K2
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... [Kgb#L'{
prod(2:((n(j)+m_abs(j))/2-s(k))); uV/5f#)
idx = (pows(k)==rpowers); &p0e)o~Ux
y(:,j) = y(:,j) + p*rpowern(:,idx); UO/sv2CN
end VtreOJ+
je4l3Hl
if isnorm .g*j]!_]
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); PnlI {d
end okNo-\Dh!
end sp9gz~Kq
% END: Compute the Zernike Polynomials -N *L1Zj
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% .n-#A
$6hPTc<C
% Compute the Zernike functions: 1<@SMcj>
% ------------------------------ I.2J-pu}
idx_pos = m>0; x&}]8S)
idx_neg = m<0; _T=g?0
q
r~w.J+W
z = y; '%)R}wgV
if any(idx_pos) VJh8`PVX
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 4zug9kFK
end 9>""xt
if any(idx_neg) <Au2e
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); c\bL_
end )G? qX.D
wb-yAQ8
% EOF zernfun