非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 S8=Am7D]1  
function z = zernfun(n,m,r,theta,nflag) V[9#+l~#  
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. /"~	D(bw0=  
%   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N l>(w]  
%   and angular frequency M, evaluated at positions (R,THETA) on the u_kcuN\Sq
  
%   unit circle.  N is a vector of positive integers (including 0), and X?6E0/r&9  
%   M is a vector with the same number of elements as N.  Each element XOOWrK7O  
%   k of M must be a positive integer, with possible values M(k) = -N(k) mT]+wi&  
%   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, j[E8C$lW  
%   and THETA is a vector of angles.  R and THETA must have the same '(ZJsw  
%   length.  The output Z is a matrix with one column for every (N,M) *[
'	n8Z  
%   pair, and one row for every (R,THETA) pair. cZ8lRVaWW   
% 8PN/*Sa   
%   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike LwPZR E#  
%   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi),  oAnNdo  
%   with delta(m,0) the Kronecker delta, is chosen so that the integral L#  
%   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ,(1n(FZ  
%   and theta=0 to theta=2*pi) is unity.  For the non-normalized U,G!u =+  
%   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. eA4dDKX+  
% C-wwQbdG/  
%   The Zernike functions are an orthogonal basis on the unit circle. "o| f  
%   They are used in disciplines such as astronomy, optics, and "hE/f~\  
%   optometry to describe functions on a circular domain. @k<
e]@r  
% =O~	J  
%   The following table lists the first 15 Zernike functions. t=-t xnlr<  
% $	12mS  
%       n    m    Zernike function           Normalization 1\'?.  
%       -------------------------------------------------- 3Jt7IM!9[  
%       0    0    1                                 1 WA'&