切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9861阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 l1iF}>F2  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! N('S2yfDR  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 AN:RY/ %Wo  
    function z = zernfun(n,m,r,theta,nflag) ]rX?n  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. [Yahxw}  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N g]PLW3  
    %   and angular frequency M, evaluated at positions (R,THETA) on the $M3A+6["H  
    %   unit circle.  N is a vector of positive integers (including 0), and w]5f3CIm  
    %   M is a vector with the same number of elements as N.  Each element 39a]B`y  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) T~ q'y~9o  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, R82Zr@_  
    %   and THETA is a vector of angles.  R and THETA must have the same :+dWJNY:  
    %   length.  The output Z is a matrix with one column for every (N,M) 3PR7g  
    %   pair, and one row for every (R,THETA) pair. w2C!>fJ]1  
    % z1@sEfk>  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike PuoJw~^h  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ZX5A%`<M  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral }AH|~3|D  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, (!&O4C5  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized a ~iEps  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. [ sO<6?LY  
    % <+1w'-  
    %   The Zernike functions are an orthogonal basis on the unit circle. d(B;vL@R2V  
    %   They are used in disciplines such as astronomy, optics, and *,XJN_DKj  
    %   optometry to describe functions on a circular domain. H1ui#5n2  
    % O@(.ei*HJ!  
    %   The following table lists the first 15 Zernike functions. ~\s &]L  
    % #uw*8&%0  
    %       n    m    Zernike function           Normalization HgBEV  
    %       -------------------------------------------------- )yH#*~X_   
    %       0    0    1                                 1 Y(!)G!CMc  
    %       1    1    r * cos(theta)                    2  E_I6  
    %       1   -1    r * sin(theta)                    2 \iLd6Qo_aq  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) }lvP|6Y: y  
    %       2    0    (2*r^2 - 1)                    sqrt(3) E|A_|FS&%  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) "BNmpP  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) :IKp7BS  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) {ZYCnS&?CL  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) h|>n3-k|p  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) `3s-%>  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) Yiw^@T\H`  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) *l8vCa9Y  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 5lA 8e  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ] j?Fk$C  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 3&d+U)E  
    %       -------------------------------------------------- vlKKPS  
    % T-cVM>u\D  
    %   Example 1: @3= < wz<  
    % }Ml z\'{  
    %       % Display the Zernike function Z(n=5,m=1) g wjv&.T6^  
    %       x = -1:0.01:1; G,* uj0g  
    %       [X,Y] = meshgrid(x,x); E0x$;CG!  
    %       [theta,r] = cart2pol(X,Y); %_LHD|<  
    %       idx = r<=1; J3JRWy@?P  
    %       z = nan(size(X)); ]vyF&`phb  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); Oua/NF)  
    %       figure {7szo`U2  
    %       pcolor(x,x,z), shading interp WW/m /+  
    %       axis square, colorbar O6 J<Lqgh  
    %       title('Zernike function Z_5^1(r,\theta)') NOr*+N\  
    % IHMyP~{  
    %   Example 2: BTQC1;;N  
    % 1{glRY'  
    %       % Display the first 10 Zernike functions yBjWPx?  
    %       x = -1:0.01:1; !8M'ms>s=  
    %       [X,Y] = meshgrid(x,x); s-DL=MD  
    %       [theta,r] = cart2pol(X,Y); vPq\reKe  
    %       idx = r<=1; t/BiZo|zl  
    %       z = nan(size(X)); G7{:d  
    %       n = [0  1  1  2  2  2  3  3  3  3]; Jg6[/7*m  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; ~PvzUT-^  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; R20GjWy=  
    %       y = zernfun(n,m,r(idx),theta(idx)); kqB 00 ;  
    %       figure('Units','normalized') IY6S\Gn  
    %       for k = 1:10 /[T8/7;_l  
    %           z(idx) = y(:,k); 9r*T3=u.S  
    %           subplot(4,7,Nplot(k)) ]/naH#8G  
    %           pcolor(x,x,z), shading interp No|{rYYKK  
    %           set(gca,'XTick',[],'YTick',[]) } dlNMW  
    %           axis square a2FIFWvW  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 74OM tLL$  
    %       end O|m-k0n  
    % Nr+1N83S}  
    %   See also ZERNPOL, ZERNFUN2. @Ec9Do>  
    LJ#P- `!{&  
    %   Paul Fricker 11/13/2006 fJV VW  
    Q1B! W  
    (R,n`x2^  
    % Check and prepare the inputs: Om~C0  
    % ----------------------------- J#WPXE+Ds  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) \F3t&:  
        error('zernfun:NMvectors','N and M must be vectors.') pQ\ [F  
    end ]<= t  
    5ZxBmQ  
    if length(n)~=length(m) r!uAofIi_  
        error('zernfun:NMlength','N and M must be the same length.') S"z4jpqn3  
    end @vh>GiR){  
    @/iLC6QF  
    n = n(:); Uij$ eBN  
    m = m(:); |Ay#0uQ5Y  
    if any(mod(n-m,2)) 5xKR ]u  
        error('zernfun:NMmultiplesof2', ... > `M\xt  
              'All N and M must differ by multiples of 2 (including 0).') +[DVD  
    end bhYaG i0  
    \ed(<e>  
    if any(m>n) uIwyan-  
        error('zernfun:MlessthanN', ... OR{"9)I  
              'Each M must be less than or equal to its corresponding N.') $!@f{9+  
    end &YMj\KmlSg  
    56dl;Z)  
    if any( r>1 | r<0 ) ;0E 4S  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') ~3 (>_r  
    end >6 q@Tr  
    V5 w^Le_^  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) P&;I]2#  
        error('zernfun:RTHvector','R and THETA must be vectors.') PGGJpD?  
    end q[ZYlF,Ho  
    VPbNLi  
    r = r(:); 'fsOKx4Z  
    theta = theta(:); E~Nr4vq  
    length_r = length(r); HC+R :Dz  
    if length_r~=length(theta) 'l;|t"R12  
        error('zernfun:RTHlength', ... Af~AE2b3"  
              'The number of R- and THETA-values must be equal.') v/dcb%  
    end oJy/PR 3  
    <s >SnOD  
    % Check normalization: =t2epIr 5  
    % -------------------- zx*f*L,6F  
    if nargin==5 && ischar(nflag) }Of^Y@{q.  
        isnorm = strcmpi(nflag,'norm'); k6\c^%x  
        if ~isnorm 40XI\yE_?  
            error('zernfun:normalization','Unrecognized normalization flag.') 3*<W`yed  
        end .v{ty  
    else XJ+sm^`vOf  
        isnorm = false; teb(\% ,  
    end 8:MYeE5  
     o~B=[  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /~:ztv\$M"  
    % Compute the Zernike Polynomials c 9@*  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% :&MiO3#+  
    paY%pU  
    % Determine the required powers of r: !O*n6}nPE  
    % ----------------------------------- r%4:,{HF  
    m_abs = abs(m); CAO$Zt  
    rpowers = []; ~7v^7;tT  
    for j = 1:length(n) .jU9{;[  
        rpowers = [rpowers m_abs(j):2:n(j)]; RA}PM?D/  
    end BKk*<WMD  
    rpowers = unique(rpowers); 9z#IdY$a  
    i2DR}%U  
    % Pre-compute the values of r raised to the required powers, "q8wEu,z[  
    % and compile them in a matrix: cQjJ9o7  
    % ----------------------------- ^]HwStn&=  
    if rpowers(1)==0 r\zK>GVm_  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); (@zn[ Nq  
        rpowern = cat(2,rpowern{:}); O7W}Z1G  
        rpowern = [ones(length_r,1) rpowern]; 'CvZiW[_r  
    else S1."2AxO  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 9Bn dbS i  
        rpowern = cat(2,rpowern{:}); Kmtr.]Nj  
    end QnqX/vnR  
    #AHIlUH"m  
    % Compute the values of the polynomials: Y+E@afsKs  
    % -------------------------------------- *T3"U|0_y  
    y = zeros(length_r,length(n)); lWR  
    for j = 1:length(n) ;8!D8o(+  
        s = 0:(n(j)-m_abs(j))/2; .s+e hZ  
        pows = n(j):-2:m_abs(j); ?~$y3<[  
        for k = length(s):-1:1 <]<50  
            p = (1-2*mod(s(k),2))* ... F~ :5/-zs  
                       prod(2:(n(j)-s(k)))/              ... <NUZPX29  
                       prod(2:s(k))/                     ... ZISR]xay  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 5HB4B <2  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); NJ~'`{3v  
            idx = (pows(k)==rpowers); x-"7{@lz  
            y(:,j) = y(:,j) + p*rpowern(:,idx); oq|K:<l  
        end C]k\GlhB  
         \%K6T)9  
        if isnorm L:31toGK  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); >[#4Pb7_Y  
        end :c\NBKHv*  
    end $]_=B Jyu  
    % END: Compute the Zernike Polynomials m+L:\mvA  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% )}EwEM  
    7M4iBk4I  
    % Compute the Zernike functions: 90q*V%cS  
    % ------------------------------ \"Np'$4eu  
    idx_pos = m>0; OSBE5  
    idx_neg = m<0; + 7Z%N9  
    hAY_dM  
    z = y; N7NK1<vw2  
    if any(idx_pos) v K$W)(Z  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); d"V^^I)yx&  
    end u`ZnxD>  
    if any(idx_neg) WA<~M) rb  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); %T&kK2d;  
    end H;v*/~zl  
    % $J^dF_0  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) n|8fdiK#}  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. kw!! 5U;7  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated  G=wJz  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive x]F:~(P  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, #zfBNkk&@  
    %   and THETA is a vector of angles.  R and THETA must have the same m~2PpO  
    %   length.  The output Z is a matrix with one column for every P-value, gI[x OK#  
    %   and one row for every (R,THETA) pair. &L_(yJ~-  
    % z+;+c$X  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike /: B!hvpw  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) /WfpA\4S  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) tYVmB:l  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 SoCa_9*X  
    %   for all p. ]@_*O$  
    % 6z~6o0s~  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 P#iBwmwN+.  
    %   Zernike functions (order N<=7).  In some disciplines it is v&|o5om  
    %   traditional to label the first 36 functions using a single mode orJN#0v4  
    %   number P instead of separate numbers for the order N and azimuthal oB+drDp8U  
    %   frequency M. HG{OkDx]fl  
    % p?ICZg:  
    %   Example: BjSLbw-C  
    % Uh{|@D  
    %       % Display the first 16 Zernike functions kid@*.I  
    %       x = -1:0.01:1; \:8 >@Q  
    %       [X,Y] = meshgrid(x,x); rxt)l  
    %       [theta,r] = cart2pol(X,Y); uq'T:d  
    %       idx = r<=1; VTS8IXz  
    %       p = 0:15; ]e!9{\X,*  
    %       z = nan(size(X)); Ww:,O48%  
    %       y = zernfun2(p,r(idx),theta(idx)); /alJN`g  
    %       figure('Units','normalized') udgf{1EB&2  
    %       for k = 1:length(p) 54v}iG  
    %           z(idx) = y(:,k); <8~bb- U$  
    %           subplot(4,4,k) Ns Pt1_ Y8  
    %           pcolor(x,x,z), shading interp xO{yr[x"L  
    %           set(gca,'XTick',[],'YTick',[]) ] %pr1Ey  
    %           axis square ibha`  
    %           title(['Z_{' num2str(p(k)) '}']) yHe%e1  
    %       end n2cb,b/7  
    % x:4 :G(  
    %   See also ZERNPOL, ZERNFUN. ]sB-}n)  
    5NH NnDhuL  
    %   Paul Fricker 11/13/2006 bu$YW'  
    Q3T@=z2j%  
    t[ cHdI  
    % Check and prepare the inputs: MDAJ p>o  
    % ----------------------------- {%gMA?b|"  
    if min(size(p))~=1 R `  
        error('zernfun2:Pvector','Input P must be vector.') v;1<K@UT  
    end s,Azcqem  
    vq=nG]cE)  
    if any(p)>35 /6QwV->  
        error('zernfun2:P36', ... GKIO@!@[  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... m7!M stu  
               '(P = 0 to 35).']) B)*?H=f/  
    end @~sJ ((G[5  
    MfNsor  
    % Get the order and frequency corresonding to the function number: #TS:| =  
    % ---------------------------------------------------------------- ebfT%_N  
    p = p(:); )B)e cJJ_  
    n = ceil((-3+sqrt(9+8*p))/2); u0p[ltJ,  
    m = 2*p - n.*(n+2); ^ZP $(a4  
    hh#p=Y(f  
    % Pass the inputs to the function ZERNFUN: ?h\fwF3  
    % ---------------------------------------- e*)*__$O  
    switch nargin UB^OMB-W.m  
        case 3 %^Zu^uu   
            z = zernfun(n,m,r,theta); 2+s#5K&i  
        case 4 /0CS2mLC  
            z = zernfun(n,m,r,theta,nflag); A*^aBWFR  
        otherwise jzvrJ14  
            error('zernfun2:nargin','Incorrect number of inputs.') XtCG.3(LY  
    end Ui|z#{8&  
    QNWGUg4*&  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) Lo,uH`qU  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. }i._&x`):  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of P"[\p|[U  
    %   order N and frequency M, evaluated at R.  N is a vector of +R"Y~ m{F  
    %   positive integers (including 0), and M is a vector with the Nnx dO0X  
    %   same number of elements as N.  Each element k of M must be a n{$! ]^>  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) ,J(shc_F  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is Q2qT[aD,  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix ;vG%[f`K  
    %   with one column for every (N,M) pair, and one row for every 70 -nAv  
    %   element in R. .no<#l  
    % l#IN)">1  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- vN&(__3((  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is >=1Aa,_tc  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to m`BE{%  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 uA4x xY  
    %   for all [n,m]. qr4.s$VGs*  
    % i0n u5kD+d  
    %   The radial Zernike polynomials are the radial portion of the @.)WS\Cv#E  
    %   Zernike functions, which are an orthogonal basis on the unit ]w0_!Z&  
    %   circle.  The series representation of the radial Zernike smKp3_r  
    %   polynomials is 8 qlQC.VA[  
    % &6e A.  
    %          (n-m)/2 yXQ 28A  
    %            __ `*WzHDv5p  
    %    m      \       s                                          n-2s 6L"b O'_5K  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r )=nB32~J"  
    %    n      s=0 'i <%kL@  
    % jr(|-!RVMN  
    %   The following table shows the first 12 polynomials. 4&AGVplgF  
    % ";jKTk7  
    %       n    m    Zernike polynomial    Normalization -e O>d}  
    %       --------------------------------------------- $px1D$F!  
    %       0    0    1                        sqrt(2) cHC1l  
    %       1    1    r                           2 j1 H eX  
    %       2    0    2*r^2 - 1                sqrt(6) VpX*l3  
    %       2    2    r^2                      sqrt(6) !i_~<6Wa7  
    %       3    1    3*r^3 - 2*r              sqrt(8) 3"Zc|Ck <?  
    %       3    3    r^3                      sqrt(8) yMEI^,0"  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) s.^+y7$  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) qND:LP\_v  
    %       4    4    r^4                      sqrt(10) ;o158H$gz;  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) lWDSF]ZYV  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) @HE<\Z{ KI  
    %       5    5    r^5                      sqrt(12) cx[[K.  
    %       --------------------------------------------- lS|F&I5j  
    % xb2j |KY7  
    %   Example: `(r0+Qx  
    % [0D.+("EW  
    %       % Display three example Zernike radial polynomials %?3$~d\n  
    %       r = 0:0.01:1; Bk] `n'W  
    %       n = [3 2 5]; 9* P-k.Bl  
    %       m = [1 2 1]; BCO (,k  
    %       z = zernpol(n,m,r); 7^;-[? l  
    %       figure BoXPX2:  
    %       plot(r,z) oT|:gih5  
    %       grid on YZAQt* x  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') drvz [ 9;  
    % z SjZTA/Z  
    %   See also ZERNFUN, ZERNFUN2. !D!"ftOm  
    k*OHI/uiow  
    % A note on the algorithm. I+QM":2  
    % ------------------------ w\M"9T  
    % The radial Zernike polynomials are computed using the series [b3$em<^JV  
    % representation shown in the Help section above. For many special 3e>U(ES  
    % functions, direct evaluation using the series representation can cfPp>EK  
    % produce poor numerical results (floating point errors), because y7,t "XV  
    % the summation often involves computing small differences between 411z -aS  
    % large successive terms in the series. (In such cases, the functions vXZ )  
    % are often evaluated using alternative methods such as recurrence pd|l&xvka  
    % relations: see the Legendre functions, for example). For the Zernike #7"";"{ z|  
    % polynomials, however, this problem does not arise, because the N/[!$B0H@  
    % polynomials are evaluated over the finite domain r = (0,1), and zDBm^ s  
    % because the coefficients for a given polynomial are generally all ps^["3e  
    % of similar magnitude. >%5GMx>m  
    % l3+G]C&<  
    % ZERNPOL has been written using a vectorized implementation: multiple _;R#B`9Iu  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] {L \TO,  
    % values can be passed as inputs) for a vector of points R.  To achieve ol~ tfS  
    % this vectorization most efficiently, the algorithm in ZERNPOL ,kUg"\_k  
    % involves pre-determining all the powers p of R that are required to (1[Z#y[  
    % compute the outputs, and then compiling the {R^p} into a single fm$Qd^E|e  
    % matrix.  This avoids any redundant computation of the R^p, and N'PK4:  
    % minimizes the sizes of certain intermediate variables. `<#O8,7`  
    % |WNI[49  
    %   Paul Fricker 11/13/2006 %0({ MU  
    L3\( <[  
    B`w8d[cL7  
    % Check and prepare the inputs: &XW ~l>!+  
    % ----------------------------- TxH amI l  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) XjmAM/H4  
        error('zernpol:NMvectors','N and M must be vectors.') w4R~0jXy  
    end b>9?gmR{  
    UGvUU<N|N  
    if length(n)~=length(m) i ~)V>x  
        error('zernpol:NMlength','N and M must be the same length.') <tm=  
    end a '?LC)^  
    `)kxFD_bH  
    n = n(:); It VVI"-  
    m = m(:); sGh TP/  
    length_n = length(n); \tA@A  
    VA`VDUG,  
    if any(mod(n-m,2)) ;Zc0imYL  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') CtUAbR  
    end *^XMf  
    I}|E_U1Qj  
    if any(m<0) Iu(]i?Y  
        error('zernpol:Mpositive','All M must be positive.') i2-]Xl  
    end ^E)8Sb9t  
    ` +)Bl%*  
    if any(m>n) ~@e=+Z  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') %s;5  
    end !| q19$  
    4q?R3 \e;  
    if any( r>1 | r<0 ) >>M7#hmt  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') n0t+xvNDF_  
    end LoSrXK~0~J  
    \^!<Y\\  
    if ~any(size(r)==1) 7UqDPEXU]`  
        error('zernpol:Rvector','R must be a vector.') uc\G)BN  
    end A<(Fn_ &W  
    sQ&<cBs2  
    r = r(:); I|2dV9y  
    length_r = length(r); - /cf3  
    9JeT1\VvHY  
    if nargin==4 m63>P4h?  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); p9!jM\(  
        if ~isnorm G7KOJZb+D  
            error('zernpol:normalization','Unrecognized normalization flag.') xCyD0^KY  
        end l[<o t9P[  
    else vg1E@rH|}  
        isnorm = false; ? :A%$T  
    end uLfk>&hc  
    &V%faa1  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #MviO!@  
    % Compute the Zernike Polynomials yNG|YB;  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% iQgr8[ SFf  
    BqavI&1=  
    % Determine the required powers of r: ^* CKx  
    % ----------------------------------- Tt_QAIl  
    rpowers = []; Ci[Ja#p7$h  
    for j = 1:length(n) g6$\i m  
        rpowers = [rpowers m(j):2:n(j)]; e:.D^G Fi  
    end *ozXilO  
    rpowers = unique(rpowers); mZ0_^  
    QVmJ_WT  
    % Pre-compute the values of r raised to the required powers, CUft  
    % and compile them in a matrix: ?5EMDawt  
    % ----------------------------- X@/wsW(kM\  
    if rpowers(1)==0 c0_512  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); [Kb)Q{=)  
        rpowern = cat(2,rpowern{:}); Ax9A-|  
        rpowern = [ones(length_r,1) rpowern]; UnyJD%a  
    else 9U@>&3[v  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); j*~z.Q|  
        rpowern = cat(2,rpowern{:}); O7J V{'?  
    end w;kiH+&  
    |-%dN }O  
    % Compute the values of the polynomials: 1C/Vwf:@  
    % -------------------------------------- 4KW_#d`t  
    z = zeros(length_r,length_n); -AQ 7Bd  
    for j = 1:length_n Ss1&fZoj  
        s = 0:(n(j)-m(j))/2; \SWuylE  
        pows = n(j):-2:m(j); ' R= OeH  
        for k = length(s):-1:1   [ L  
            p = (1-2*mod(s(k),2))* ... D+h`Z]"|  
                       prod(2:(n(j)-s(k)))/          ... COxJ,v(  
                       prod(2:s(k))/                 ... ,8DjQz0ZPo  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... xj5MKX{CJT  
                       prod(2:((n(j)+m(j))/2-s(k))); y+7A?"s)  
            idx = (pows(k)==rpowers); \}gITc).j  
            z(:,j) = z(:,j) + p*rpowern(:,idx); VT;cz6"6b4  
        end  \Awqr:A&  
         u~Y+YzCxV  
        if isnorm }To-c'  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); ! OOOc  
        end K~qKr<)  
    end `R-VJR 2"  
    #-PUm0|  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    850
    光币
    833
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    8420
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  }F (lffb  
    F6#U31Q=  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 ^->vUf7PX  
    c)=UX_S!  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)