非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 L$c%u
function z = zernfun(n,m,r,theta,nflag) +{i"G,3
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. P3ev4DL
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N _|wY[YJ[
% and angular frequency M, evaluated at positions (R,THETA) on the >E ;o"
% unit circle. N is a vector of positive integers (including 0), and )60f
% M is a vector with the same number of elements as N. Each element bK$D lBZ
% k of M must be a positive integer, with possible values M(k) = -N(k) / !
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, U{uWk3I_b
% and THETA is a vector of angles. R and THETA must have the same G:C6`uiy`
% length. The output Z is a matrix with one column for every (N,M) }6,bq`MN
% pair, and one row for every (R,THETA) pair. ';|>`<
% ! vVjZ
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike as|c`4r\O
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), =)1YYJTe9
% with delta(m,0) the Kronecker delta, is chosen so that the integral ^O Xr: P
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ^npS==Y]!.
% and theta=0 to theta=2*pi) is unity. For the non-normalized Iki+5
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 4\SBf\ c
% gXLZ) >+A+
% The Zernike functions are an orthogonal basis on the unit circle. $F`<&o
% They are used in disciplines such as astronomy, optics, and ~EWfEHf*BJ
% optometry to describe functions on a circular domain. <bXWkj
% qb&NS4#
% The following table lists the first 15 Zernike functions. 1o~U+s_r
% YEPG[W<kg
% n m Zernike function Normalization mc=!X
% -------------------------------------------------- $N+{r=
% 0 0 1 1 HZ<f(
% 1 1 r * cos(theta) 2 Nw>T$RzS
% 1 -1 r * sin(theta) 2 d7tD|[(J
% 2 -2 r^2 * cos(2*theta) sqrt(6) R ms01m>Y
% 2 0 (2*r^2 - 1) sqrt(3) W*rU,F|9
% 2 2 r^2 * sin(2*theta) sqrt(6) R{xyme@"^
% 3 -3 r^3 * cos(3*theta) sqrt(8) &J/4J
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) ctUF/[_w;
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) wH_n$w
% 3 3 r^3 * sin(3*theta) sqrt(8) .Lr)~
% 4 -4 r^4 * cos(4*theta) sqrt(10) *[1u[H9Cv
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) CVSsB:H6e
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) s3_e7D ^H
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) _?]BVw
% 4 4 r^4 * sin(4*theta) sqrt(10) 'UvS3]bSYW
% -------------------------------------------------- ^Im%D(MY
% Rp`_Grcd
% Example 1: JfP\7
% :OQ:@Yk
% % Display the Zernike function Z(n=5,m=1) 2hwXWTSu
% x = -1:0.01:1; ^'u;e(AaE
% [X,Y] = meshgrid(x,x);
kulQR>u
% [theta,r] = cart2pol(X,Y); U_}A{bFG
% idx = r<=1; \abAPo
% z = nan(size(X)); o&XMgY~
% z(idx) = zernfun(5,1,r(idx),theta(idx)); |N=@E,33
% figure r0g/ :lJi
% pcolor(x,x,z), shading interp bDFCZH-:'O
% axis square, colorbar 4j/ iG\
% title('Zernike function Z_5^1(r,\theta)') d7_ g
u
% m]=oaj@9
% Example 2: u_6BHsU
% !,6v=n[Nz
% % Display the first 10 Zernike functions v<7Gln
% x = -1:0.01:1; B/sBYVU
% [X,Y] = meshgrid(x,x); 5e/qgI)M5
% [theta,r] = cart2pol(X,Y); |DFvZ6}
% idx = r<=1; Hr<C2p^a
% z = nan(size(X)); u$%D9Z ^
% n = [0 1 1 2 2 2 3 3 3 3]; %7(kP}y*
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; :B*vkwT
% Nplot = [4 10 12 16 18 20 22 24 26 28]; Bd[L6J)
% y = zernfun(n,m,r(idx),theta(idx)); Nr]8P/[~
% figure('Units','normalized') 1t\b a1x
% for k = 1:10 3u?`q%Y-e
% z(idx) = y(:,k); {n'qKurxY
% subplot(4,7,Nplot(k)) "Ql}Y1
% pcolor(x,x,z), shading interp "'F;lzq
% set(gca,'XTick',[],'YTick',[]) gP%|:"
% axis square L*UV
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) U7]<U-.&
% end S[L#M;n
% I NPYJ#%
% See also ZERNPOL, ZERNFUN2. 2GiUPtO&Gj
,XeyE;||
% Paul Fricker 11/13/2006 yWv<A^C&
MS st
|ilv|U V
% Check and prepare the inputs: UBhciZ
% ----------------------------- ?y>Y$-v/C
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) uOG-IHuF
error('zernfun:NMvectors','N and M must be vectors.') dcl.wD0~V
end $*AC>i\
&& DD
if length(n)~=length(m) o9m
error('zernfun:NMlength','N and M must be the same length.') ^zaKO'KcV
end y^mWG1"O
N>A{)_k3
n = n(:); aJ5H3X}Y
m = m(:); X!7VyE+n
if any(mod(n-m,2)) 2/v35| ?
error('zernfun:NMmultiplesof2', ... RHwaJ;:)#
'All N and M must differ by multiples of 2 (including 0).') *3_f&Y
end `%t$s,TiP
I #M%%5e
if any(m>n) VG<Hw{ c3r
error('zernfun:MlessthanN', ... tjZ \h=
'Each M must be less than or equal to its corresponding N.') HDF!`
end i\=z'
SUH mBo"}
if any( r>1 | r<0 ) OuOk=
error('zernfun:Rlessthan1','All R must be between 0 and 1.') *<*0".#
end HY jMNj0
;dqk@@O"(
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 5q|+p?C
error('zernfun:RTHvector','R and THETA must be vectors.') ioC@n8_[G
end <i_>
y~v`
u\{qH!?t
r = r(:); y4xT:G/M
theta = theta(:); gohAp
length_r = length(r); May&@x/oMS
if length_r~=length(theta) \4h>2y
error('zernfun:RTHlength', ... 87QZun%
'The number of R- and THETA-values must be equal.') ds*m6#1b
end ,c4c@|Bh?
*:=];1O
% Check normalization: I86e&"40
% -------------------- xn(+G$m
if nargin==5 && ischar(nflag) D9 qX->p
isnorm = strcmpi(nflag,'norm'); nE/=:{~Ws
if ~isnorm 5/& 1Oxo
error('zernfun:normalization','Unrecognized normalization flag.') ss?]
end 5cD
XWF
else XzlKP;r0
isnorm = false; R<f#r0 3@|
end 9o-!ecx}
]>tq|R78
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %mY|
% Compute the Zernike Polynomials z^4KU\/JK
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 9<xTu>7J
M[ x_#m|
% Determine the required powers of r: F\>oxttS1
% ----------------------------------- `kv1@aQPL
m_abs = abs(m); 'oleB_B
rpowers = []; ]e^R@w
for j = 1:length(n) w[
Axs8N'
rpowers = [rpowers m_abs(j):2:n(j)]; PC*m%
?+
end ~O \}/I28
rpowers = unique(rpowers); (# JMB)
h^}_YaT\
% Pre-compute the values of r raised to the required powers, }<vvxi
% and compile them in a matrix: mO#I nTO
% ----------------------------- N<9w{zIK(
if rpowers(1)==0 Rr%tbt.sE
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ./$
<J6-J
rpowern = cat(2,rpowern{:}); b.QpHrnhtK
rpowern = [ones(length_r,1) rpowern]; x+4vss
else >G]?
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); e#tIk;9Xz
rpowern = cat(2,rpowern{:}); m7JPH7P@BM
end *5e<\{!
f%c06Un=
% Compute the values of the polynomials: 3 h#s([uL
% -------------------------------------- hQXxG/yFm
y = zeros(length_r,length(n)); Q~phGD3!~
for j = 1:length(n) Q/p(#/y#b
s = 0:(n(j)-m_abs(j))/2; yL.^ =
pows = n(j):-2:m_abs(j); l$F_"o?&S@
for k = length(s):-1:1 My. dD'C
p = (1-2*mod(s(k),2))* ... P*0f~eu
prod(2:(n(j)-s(k)))/ ... JfMJF[Mb
prod(2:s(k))/ ... h-7A9:
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ~L~]QN\3
prod(2:((n(j)+m_abs(j))/2-s(k))); 29%=: *R$
idx = (pows(k)==rpowers); b7bSTFZxC
y(:,j) = y(:,j) + p*rpowern(:,idx); >;,gGH
end pDGT@qJ
j~epbl)pC
if isnorm F#su5<d
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); V"O9n[ |
end {(;B5rs
end {gsW(T>)
% END: Compute the Zernike Polynomials VUp. j
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% "=qv#mZ#9
o5P&JBX<
% Compute the Zernike functions: q-YL]PgV
% ------------------------------ I:F
<vE
idx_pos = m>0; .:8[wI_f
idx_neg = m<0; \7yJ\I
q3+I<qsAz
z = y; EY~7oNfc`R
if any(idx_pos) 6+iK!&+=
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Hq?& Qo
end w,Q)@]_
if any(idx_neg) ~
7}]
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); QWw"K$l
end IP04l;p/
hfg
O
% EOF zernfun