切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11553阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 #~>ykuq  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! *Z=:?4u  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 +8\1.vY  
    function z = zernfun(n,m,r,theta,nflag) Y &"rf   
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. =u#xPI0:  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N )$_b?  
    %   and angular frequency M, evaluated at positions (R,THETA) on the LU=`K4  
    %   unit circle.  N is a vector of positive integers (including 0), and )k}UjU`!  
    %   M is a vector with the same number of elements as N.  Each element CHPu$eu  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) -*I Dzm  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 3HP o*~"]  
    %   and THETA is a vector of angles.  R and THETA must have the same a J&)-ge  
    %   length.  The output Z is a matrix with one column for every (N,M) 3"ii_#1  
    %   pair, and one row for every (R,THETA) pair. b^~"4fU  
    % 2!+saf^-,  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike `"* ]C  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), aV9QIH~  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral ?onTW2cG;  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Vo2{aK;  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 1:+f@#  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. %kRQ9I".  
    % w`")^KXi  
    %   The Zernike functions are an orthogonal basis on the unit circle. ~Kr_[X:d5  
    %   They are used in disciplines such as astronomy, optics, and D[5Qd)PIL  
    %   optometry to describe functions on a circular domain. L6-zQztn  
    % !leLOi2T  
    %   The following table lists the first 15 Zernike functions. #o]/&T=N=  
    % bm+ #OI  
    %       n    m    Zernike function           Normalization  @{|vW  
    %       -------------------------------------------------- dO{a!Ca  
    %       0    0    1                                 1 np#RBy  
    %       1    1    r * cos(theta)                    2 "DniDA  
    %       1   -1    r * sin(theta)                    2 =I}8-AS~V  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) Pq@%MF]5  
    %       2    0    (2*r^2 - 1)                    sqrt(3) ksB-fOv*N  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) TzJp3  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) '8$*gIQ8  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) @6N$!Q?  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) XsVp7zk\  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) -J$,W`#z  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) {xzs{)9|Y4  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ~$O.KF:  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) &r)i6{w81  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) dP0%<Q|  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) ,a&&y0,  
    %       -------------------------------------------------- :Rq>a@Rp  
    % {|;5P.,l  
    %   Example 1: k_^| %xJ  
    % srbU}u3VZ  
    %       % Display the Zernike function Z(n=5,m=1) ;c!}'2>vM  
    %       x = -1:0.01:1; E9]/sFA-]  
    %       [X,Y] = meshgrid(x,x); |NsrO8H   
    %       [theta,r] = cart2pol(X,Y); /R2K3E#  
    %       idx = r<=1; 0KQDw  
    %       z = nan(size(X)); tocZO  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); sSM^net0  
    %       figure _|!FhZ  
    %       pcolor(x,x,z), shading interp 91 ]"D;NN  
    %       axis square, colorbar U49#?^?  
    %       title('Zernike function Z_5^1(r,\theta)') _qZ?|;o^  
    % ^+hqGu]M  
    %   Example 2:  m,,FNYW  
    % h]6"~ m  
    %       % Display the first 10 Zernike functions  t dl Y  
    %       x = -1:0.01:1; ]Ywj@-*q  
    %       [X,Y] = meshgrid(x,x); U',9t  
    %       [theta,r] = cart2pol(X,Y); J(%Jg  
    %       idx = r<=1; LZ97nvK  
    %       z = nan(size(X)); Y_H|Fl^  
    %       n = [0  1  1  2  2  2  3  3  3  3]; k|Hxd^^I  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; o]#M8)=  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; bR6g^Yf  
    %       y = zernfun(n,m,r(idx),theta(idx)); Y'75DE<BC  
    %       figure('Units','normalized') 3kl<~O|Fs  
    %       for k = 1:10 Z`?Z1SBt  
    %           z(idx) = y(:,k); 80p?qe  
    %           subplot(4,7,Nplot(k)) rW~hFSrV[o  
    %           pcolor(x,x,z), shading interp $[p<}o/6v]  
    %           set(gca,'XTick',[],'YTick',[]) 9q ##)  
    %           axis square 'q#$^ ='o  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) HW{si]~q  
    %       end 8hTtBa  
    % tKnvNOhn  
    %   See also ZERNPOL, ZERNFUN2. "I)*W8wTn  
    jK[~d Y  
    %   Paul Fricker 11/13/2006 $6(,/}==0  
    /G zA89N(  
    IsaL+elq|  
    % Check and prepare the inputs: i|@lUXBp  
    % ----------------------------- Qj?qWVapA  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) $*%ipD}f  
        error('zernfun:NMvectors','N and M must be vectors.') M!{;:m28X!  
    end C&&*6E5  
    b"au9:F4@7  
    if length(n)~=length(m) /``4!jU  
        error('zernfun:NMlength','N and M must be the same length.') ),G?f {`!  
    end [a\U8 w  
    rNdeD~\  
    n = n(:); 5$v,%~$Xds  
    m = m(:); jLANv{"  
    if any(mod(n-m,2)) G lz0`z  
        error('zernfun:NMmultiplesof2', ... {Z529Ns  
              'All N and M must differ by multiples of 2 (including 0).') @_gCGI>Q  
    end ou r$Ka31  
    h83;}>  
    if any(m>n) B=>:w%<Ii  
        error('zernfun:MlessthanN', ... D!K){ E  
              'Each M must be less than or equal to its corresponding N.') q`l&G%  
    end "kLu]M<  
    MOiTz L*  
    if any( r>1 | r<0 ) -QUr|:SK:  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') (&2 5 8i,  
    end VSK!Pc.G}  
    : MOr?"  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) (QO8_  
        error('zernfun:RTHvector','R and THETA must be vectors.') '7+e!>"  
    end hdi/k!9[\  
    eV?._-G  
    r = r(:); J 8/]&Ow  
    theta = theta(:); `^rN"\  
    length_r = length(r); m&GxL T6  
    if length_r~=length(theta) Km5#$IiP;  
        error('zernfun:RTHlength', ... j{.P'5e@pZ  
              'The number of R- and THETA-values must be equal.') To x{Sk3L  
    end S,K'y?6  
    : ryE`EhB  
    % Check normalization: kRCuc}:SB  
    % -------------------- So ?ScX\lG  
    if nargin==5 && ischar(nflag) fM[Qn*.  
        isnorm = strcmpi(nflag,'norm'); E]^wsS>=  
        if ~isnorm g4NxNjM;  
            error('zernfun:normalization','Unrecognized normalization flag.') oKl^Ttr  
        end xQ4'$rL1d  
    else &f}a`/{@  
        isnorm = false; O!0YlIvWv  
    end X[Lwx.Ly8  
    y7K&@ Y  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% y"|QY!fK  
    % Compute the Zernike Polynomials yfBVy8Sm  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 4LO U[D  
    @yBg)1AL  
    % Determine the required powers of r: %J*z!Fe8s  
    % ----------------------------------- D1&%N{  
    m_abs = abs(m); bCM&Fe0GM  
    rpowers = []; kC =e>v  
    for j = 1:length(n) !"*!du28jo  
        rpowers = [rpowers m_abs(j):2:n(j)]; `m6>r9:  
    end NVEjUt/  
    rpowers = unique(rpowers); %SV5 PO@  
    &<!DNXQ  
    % Pre-compute the values of r raised to the required powers, o80"ZU|=  
    % and compile them in a matrix: +*dG 'U6  
    % ----------------------------- `0l)\  
    if rpowers(1)==0 q Ee1OB  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); [dm&I#m=  
        rpowern = cat(2,rpowern{:}); 'cs!(z-{x  
        rpowern = [ones(length_r,1) rpowern]; vvJ{fi  
    else (x} >tm  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); JArSJ:}  
        rpowern = cat(2,rpowern{:}); (!-gX" <b  
    end q[6tvPfkX  
    "62vwWrwO  
    % Compute the values of the polynomials: R3nCk-Dq  
    % -------------------------------------- XcOfQ s  
    y = zeros(length_r,length(n)); @ ;%+Ms  
    for j = 1:length(n) X^!n'$^u  
        s = 0:(n(j)-m_abs(j))/2; J%G EIe|  
        pows = n(j):-2:m_abs(j); Vy]y73~  
        for k = length(s):-1:1 )ZxDfRjL  
            p = (1-2*mod(s(k),2))* ... ]*I:N  
                       prod(2:(n(j)-s(k)))/              ... VO _! +  
                       prod(2:s(k))/                     ... =x9SvIm/tH  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ^[K3]*!@  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 6S#Y$2 P  
            idx = (pows(k)==rpowers); ZLsfF =/G  
            y(:,j) = y(:,j) + p*rpowern(:,idx); t' )47k\  
        end U} EaV<  
         q=NI}k  
        if isnorm #fq%903=  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); >s 4"2X  
        end pGQP9r%  
    end 9`83cL  
    % END: Compute the Zernike Polynomials BCDmce`=l  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% lHRs3+  
    2K^D%U  
    % Compute the Zernike functions: kq;1Ax0 {  
    % ------------------------------ VrV )qfG  
    idx_pos = m>0; ]_Cm 5Z7  
    idx_neg = m<0; gZa/?[+  
    F32N e6Y6"  
    z = y; @J`o pR  
    if any(idx_pos) $uw[X  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 1&zvf4  
    end C,*3a`/2M^  
    if any(idx_neg) (mO{ W   
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); YX A|1  
    end OT1  
    #6t 4 vJ1  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) gN,O)@N'd3  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. [/h3HyZ.  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated Ck:RlF[6C  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive ~lBb%M  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, OQlmzg  
    %   and THETA is a vector of angles.  R and THETA must have the same $|kq{@<  
    %   length.  The output Z is a matrix with one column for every P-value, [&_7w\m  
    %   and one row for every (R,THETA) pair. Rz sgPk  
    % [Lck55V+Q  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike z7vc|Z|  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) 0bG[pp$[  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) ~]sj.>P  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 b 7XTOB_HO  
    %   for all p. / @v V^!#1  
    % f ZEyXb  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 0+-"9pED>E  
    %   Zernike functions (order N<=7).  In some disciplines it is 4*AkUkP:T  
    %   traditional to label the first 36 functions using a single mode 2 m"2>gX  
    %   number P instead of separate numbers for the order N and azimuthal FUt{-H!<  
    %   frequency M. y?6J%~\WP  
    % [Rj_p&'  
    %   Example: Z\YCjs%  
    % =3h?!$#?  
    %       % Display the first 16 Zernike functions 1K* `i(  
    %       x = -1:0.01:1; Kw%to9 eh)  
    %       [X,Y] = meshgrid(x,x); *F<Ar\f5  
    %       [theta,r] = cart2pol(X,Y); F"-u8in`  
    %       idx = r<=1; :P2{^0$  
    %       p = 0:15; V 4#bW  
    %       z = nan(size(X)); ^Z |WD!>`  
    %       y = zernfun2(p,r(idx),theta(idx)); 1bz%O2U-(  
    %       figure('Units','normalized') *VUD!`F  
    %       for k = 1:length(p) A#o ~nC<  
    %           z(idx) = y(:,k); ?[Sac]h ys  
    %           subplot(4,4,k) {yzo#"4Oy  
    %           pcolor(x,x,z), shading interp  ff;9P5X  
    %           set(gca,'XTick',[],'YTick',[]) B*OEG*t  
    %           axis square T`zUgZ]  
    %           title(['Z_{' num2str(p(k)) '}']) Ad}Nc"O  
    %       end ^P!(* k#T  
    % .](~dVp%~  
    %   See also ZERNPOL, ZERNFUN. &Z3u(Eb  
    +^6a$ N  
    %   Paul Fricker 11/13/2006 wsKOafrV  
    .OM^@V~T  
    r"_U-w  
    % Check and prepare the inputs: C8Oh]JF4d  
    % ----------------------------- 5cF7w  
    if min(size(p))~=1 }R9>1u}6  
        error('zernfun2:Pvector','Input P must be vector.') .),Fdrg  
    end rq#\x{l  
    6"oG bte  
    if any(p)>35 On~w`  
        error('zernfun2:P36', ... F(; =^w  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... (ri eg F  
               '(P = 0 to 35).']) T5_/*`F  
    end 20,}T)}Tm  
    Op_(10|  
    % Get the order and frequency corresonding to the function number: WvoJ^{\4N*  
    % ---------------------------------------------------------------- !hugn6  
    p = p(:); H3xMoSs  
    n = ceil((-3+sqrt(9+8*p))/2); 3j6Am{9  
    m = 2*p - n.*(n+2); $=9g,39  
    Yn_v'Os2  
    % Pass the inputs to the function ZERNFUN: `C&@6{L  
    % ---------------------------------------- ii5dTimRJ  
    switch nargin f q&(&(|  
        case 3 &SW~4{n:  
            z = zernfun(n,m,r,theta); K'c[r0Ew  
        case 4 N|2PW ~,  
            z = zernfun(n,m,r,theta,nflag); oFi_ op  
        otherwise sTu]C +A  
            error('zernfun2:nargin','Incorrect number of inputs.') zHX7%x,Cq  
    end .[:y`PCF  
    @@3%lr71   
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) X?$"dqA  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. &9ERlZ(A  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of 2AXf'IOqE  
    %   order N and frequency M, evaluated at R.  N is a vector of blKF78  
    %   positive integers (including 0), and M is a vector with the ] 1s6=  
    %   same number of elements as N.  Each element k of M must be a WS.lDMYE7  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) 7n[0)XR>  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is ,: Ij@u>)  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix T2}X~A  
    %   with one column for every (N,M) pair, and one row for every g!;a5p6  
    %   element in R. Oh3A?!y#  
    % !PfdY&.)  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- wW, n~W  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is C.RXQ`-P}  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to F):1@.S  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 'd]t@[#  
    %   for all [n,m]. *&~(>gNF,  
    % "XLFw;o  
    %   The radial Zernike polynomials are the radial portion of the 1oI2  
    %   Zernike functions, which are an orthogonal basis on the unit : j`4nXm  
    %   circle.  The series representation of the radial Zernike |~B`[p]5H  
    %   polynomials is -#Jp@6'k%  
    % >W6?!ue_  
    %          (n-m)/2 ;0o% hx  
    %            __ g~XR#vl$  
    %    m      \       s                                          n-2s zym6b@+jN  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r MDoV84Fh  
    %    n      s=0 :pLaxWus!  
    % ,rX|_4 n*  
    %   The following table shows the first 12 polynomials. oml^f~pm  
    % O jH"qi  
    %       n    m    Zernike polynomial    Normalization !8|?0>3)  
    %       --------------------------------------------- xk7VuS *  
    %       0    0    1                        sqrt(2) i,mZg+;w  
    %       1    1    r                           2 ! u9LZ  
    %       2    0    2*r^2 - 1                sqrt(6) y\=^pla  
    %       2    2    r^2                      sqrt(6) SNC)cq+{  
    %       3    1    3*r^3 - 2*r              sqrt(8) L]E.TvM1*  
    %       3    3    r^3                      sqrt(8) p@eW*tE  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) QsBC[7<jd-  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) Bo;{ QoB  
    %       4    4    r^4                      sqrt(10) i.gagb  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) }J6 y NoXu  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) 825 QS`  
    %       5    5    r^5                      sqrt(12) a>&dAo}  
    %       --------------------------------------------- 2>g!+p Ox  
    % s=Xg6D  
    %   Example: %zN~%mJG  
    % Q"K`~QF"  
    %       % Display three example Zernike radial polynomials ;P^}2i[q>[  
    %       r = 0:0.01:1; z8j7K'vV1  
    %       n = [3 2 5]; y>c Yw!  
    %       m = [1 2 1]; jEm =A8q  
    %       z = zernpol(n,m,r); '26 ,.1  
    %       figure bZ}T;!U?I  
    %       plot(r,z) zh5ovA%  
    %       grid on w& )ApfL  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') 5Vr#>W  
    % esd9N'.Q*  
    %   See also ZERNFUN, ZERNFUN2. 4!A(7 s4t  
    @2sr/gX^  
    % A note on the algorithm. XdE|7=+s  
    % ------------------------ A3|X`X  
    % The radial Zernike polynomials are computed using the series ^@<Ia-x  
    % representation shown in the Help section above. For many special g6@^n$Y  
    % functions, direct evaluation using the series representation can (8(P12l  
    % produce poor numerical results (floating point errors), because |P-kyY34  
    % the summation often involves computing small differences between .SDE6nvbW  
    % large successive terms in the series. (In such cases, the functions &X,6v  
    % are often evaluated using alternative methods such as recurrence {d%hkbN+{  
    % relations: see the Legendre functions, for example). For the Zernike @&GY5<&b  
    % polynomials, however, this problem does not arise, because the Fnuheb'&m  
    % polynomials are evaluated over the finite domain r = (0,1), and m,Mg  
    % because the coefficients for a given polynomial are generally all j07b!j:"\}  
    % of similar magnitude. QG5 c>Q  
    % c1<jY~U  
    % ZERNPOL has been written using a vectorized implementation: multiple 0y%s\,PsT  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] oN,9#*PVL  
    % values can be passed as inputs) for a vector of points R.  To achieve $PMD$c  
    % this vectorization most efficiently, the algorithm in ZERNPOL OpmPw4?}  
    % involves pre-determining all the powers p of R that are required to QEP|%$:i  
    % compute the outputs, and then compiling the {R^p} into a single q& esI  
    % matrix.  This avoids any redundant computation of the R^p, and / }(\P@Z  
    % minimizes the sizes of certain intermediate variables. q*}$1 zb  
    % awSi0*d~  
    %   Paul Fricker 11/13/2006 b<BkI""b  
    cK75Chsu  
    $ Zj3#l:rK  
    % Check and prepare the inputs: ^ R3g7 DG  
    % ----------------------------- ,#hNHFa'JH  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) |5*:ThC[  
        error('zernpol:NMvectors','N and M must be vectors.') jWK>=|)=c  
    end JTTI`b2l_  
    G#3$sz  
    if length(n)~=length(m) vkLyGb7r<  
        error('zernpol:NMlength','N and M must be the same length.') ?Skv2!X|  
    end =- !B4G$  
    5KW n>n  
    n = n(:); ;pG5zRe  
    m = m(:); {?X9juc/#  
    length_n = length(n); .]/k#Hv  
    %V92q0XW  
    if any(mod(n-m,2)) h_B  nQZ\  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') .8XkB<[wb  
    end @1V?94T1  
    n M `pnR_  
    if any(m<0) `rpmh7*WV  
        error('zernpol:Mpositive','All M must be positive.') ?$=Ml$  
    end 5Z[HlN|-!  
    }sM_^&e4X  
    if any(m>n) \o5/, C  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') W\O.[7JP  
    end "Jg* /F  
    >viLvDng  
    if any( r>1 | r<0 ) P?zL`czWd  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') v&xhS yZ  
    end l>pnY%(A  
    Rc}#4pM8  
    if ~any(size(r)==1) %Z yt;p2  
        error('zernpol:Rvector','R must be a vector.') .19_EQ>+  
    end UM. Se(kS  
    Pk:b:(4  
    r = r(:); g8]$BhRIfr  
    length_r = length(r); rR(\fX!dg  
    {mA#'75a#  
    if nargin==4 (n2=.9k!  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); 1(/rg  
        if ~isnorm I}\`l+  
            error('zernpol:normalization','Unrecognized normalization flag.') FwDEYG  
        end (!T\[6  
    else z[0t%]7l  
        isnorm = false; S>R40T=e  
    end nu6v@<<F>  
    ^F-AZP /5F  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% V""3#Tw   
    % Compute the Zernike Polynomials ^;;gPhhWV  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Suk;##I  
    TWU1@5?Ct  
    % Determine the required powers of r: 8e_9u@p+w  
    % ----------------------------------- [UB]vPXm$  
    rpowers = []; &IFXU2t}  
    for j = 1:length(n) #wF6WxiG  
        rpowers = [rpowers m(j):2:n(j)]; 3MoVIf1  
    end Rc~63![O.  
    rpowers = unique(rpowers); V/J-zH&  
    df9$k0Fx  
    % Pre-compute the values of r raised to the required powers, da$ErN '{  
    % and compile them in a matrix: }SGb`l  
    % ----------------------------- VpB+|%@p  
    if rpowers(1)==0 V4|l7  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 03 ;L  
        rpowern = cat(2,rpowern{:}); }Q_ }c9?  
        rpowern = [ones(length_r,1) rpowern]; 3EyVoS6D  
    else O_Z   
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Sp@{5  
        rpowern = cat(2,rpowern{:}); a7e.Z9k!  
    end Ki%RSW(_`  
    dhi9=Co;  
    % Compute the values of the polynomials: <#e!kWGR?  
    % -------------------------------------- \C`2z]V%  
    z = zeros(length_r,length_n); hFDo{yI  
    for j = 1:length_n vVH*\&H\T  
        s = 0:(n(j)-m(j))/2; Oyy E0  
        pows = n(j):-2:m(j); Y NGS"3F  
        for k = length(s):-1:1 86~q pN  
            p = (1-2*mod(s(k),2))* ... 't3nh  
                       prod(2:(n(j)-s(k)))/          ... Bmi9U   
                       prod(2:s(k))/                 ... "XKd#ncP  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... qa5 T(:8  
                       prod(2:((n(j)+m(j))/2-s(k))); g;!,2,De}  
            idx = (pows(k)==rpowers); d0-T\\U  
            z(:,j) = z(:,j) + p*rpowern(:,idx); +qmV|$rmM  
        end >\>!Q V1@  
         _Zbgmasb  
        if isnorm c 4L++ u#  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); MW)=l | G  
        end "ax"k0  
    end E=l^&[dIl  
    eed!SmP  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  T&PLvyBL  
    {r2fIj~V  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 8  }(ul  
    cPm-)/E)i  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)