非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 =H3tkMoi2
function z = zernfun(n,m,r,theta,nflag) z1]nC]2
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. :Nv7Wt!
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N hNhEA $X5
% and angular frequency M, evaluated at positions (R,THETA) on the ,<Z,- 0S
% unit circle. N is a vector of positive integers (including 0), and ;b:'i&r
% M is a vector with the same number of elements as N. Each element }Z{FPW.QK
% k of M must be a positive integer, with possible values M(k) = -N(k) 8\^A;5
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, !/!ga)Y
% and THETA is a vector of angles. R and THETA must have the same -7]j[{?w
% length. The output Z is a matrix with one column for every (N,M) }i,r{Y]s]
% pair, and one row for every (R,THETA) pair. c#>(8#'.U
% 22=sh;y+2
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Rk[a|T &
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Uqb]&2
% with delta(m,0) the Kronecker delta, is chosen so that the integral xQ7U$QF|]
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, pB#I_?(
% and theta=0 to theta=2*pi) is unity. For the non-normalized gnjhy1o
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. +'-.c"
% &^#u=w?^x
% The Zernike functions are an orthogonal basis on the unit circle. s'oNW
% They are used in disciplines such as astronomy, optics, and pu+Q3NfR
% optometry to describe functions on a circular domain. jz![#-G
% yi*EobP
% The following table lists the first 15 Zernike functions. amdgb,vh
% ~bCA8
% n m Zernike function Normalization %T\hL\L?
% -------------------------------------------------- huS*1xl
% 0 0 1 1 D[ #V
% 1 1 r * cos(theta) 2 M:{Aq&.
% 1 -1 r * sin(theta) 2 /.<v,CR
% 2 -2 r^2 * cos(2*theta) sqrt(6) |oke)w=gn
% 2 0 (2*r^2 - 1) sqrt(3) /KX+'@
% 2 2 r^2 * sin(2*theta) sqrt(6) !{(Bc8
hT
% 3 -3 r^3 * cos(3*theta) sqrt(8) Z#L4n#TT
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) )0iN2L]U;
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) Zi.' V
% 3 3 r^3 * sin(3*theta) sqrt(8) i/%lB
% 4 -4 r^4 * cos(4*theta) sqrt(10) (or"5}\6-
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) J
(?qk
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) giX[2`^NG
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) |Ia9bg'1U
% 4 4 r^4 * sin(4*theta) sqrt(10) |Rz.Pt6
% -------------------------------------------------- >>,G3/Zd*
% GaG>0x
% Example 1: 4minzrKM\
% 8ZVQM7O
% % Display the Zernike function Z(n=5,m=1) *
l1*zaE
% x = -1:0.01:1; (X,i,qK/
% [X,Y] = meshgrid(x,x); h7!O
K
% [theta,r] = cart2pol(X,Y); m]!hP^^
% idx = r<=1; >e>3:~&2
% z = nan(size(X)); G:":CX"O(
% z(idx) = zernfun(5,1,r(idx),theta(idx)); NFZ(*v1U
% figure B(++*#T!^m
% pcolor(x,x,z), shading interp ZQ_6I}i")
% axis square, colorbar T5."3i
% title('Zernike function Z_5^1(r,\theta)') Ly+UY.v"
% JRo/ HY+
% Example 2: ^0}ma*gi~
% +h4W<YnW
% % Display the first 10 Zernike functions z6C(?R
% x = -1:0.01:1; =+Fb\HvX{
% [X,Y] = meshgrid(x,x); o+A1-&qhN
% [theta,r] = cart2pol(X,Y); kFWwz^x
% idx = r<=1; $TXxhd 6
% z = nan(size(X)); #BUq;5
% n = [0 1 1 2 2 2 3 3 3 3]; *uhQP47B
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 0X5cn 0L^
% Nplot = [4 10 12 16 18 20 22 24 26 28]; **Ioy+
% y = zernfun(n,m,r(idx),theta(idx)); b4e~Z
% figure('Units','normalized') fx5S2%f^
% for k = 1:10 BsIF3sS#9
% z(idx) = y(:,k); !%,7*F(
% subplot(4,7,Nplot(k)) \D? '.Wo%
% pcolor(x,x,z), shading interp B2ln8NF#Q
% set(gca,'XTick',[],'YTick',[]) u^tQ2&?O!P
% axis square /{i~-DVME
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Nrr})
g
% end /'rj L<M
% %Hbq3U30
% See also ZERNPOL, ZERNFUN2. THp_ dTD
FBNLszT{L
% Paul Fricker 11/13/2006 ^?`fN'!p
RW. qw4
0Idek
% Check and prepare the inputs: @(sz "
% ----------------------------- ;`78h?`
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) wf\"&xwh?
error('zernfun:NMvectors','N and M must be vectors.') Sv n7.Ivep
end \34vE@V*
BV~J*e
if length(n)~=length(m) rv*{[K
error('zernfun:NMlength','N and M must be the same length.') s|Mo3_>
end ?}cmES kX@
#KJ# 1
n = n(:); *(OG+OkC
m = m(:); ?.46X^
if any(mod(n-m,2)) @s LN
error('zernfun:NMmultiplesof2', ... fs'SCwx
'All N and M must differ by multiples of 2 (including 0).') VhUWws3E
end '? 5-
5^g*
if any(m>n) ,<Q
error('zernfun:MlessthanN', ... odhS0+d^
'Each M must be less than or equal to its corresponding N.') %;'~TtW5
end 6<];}M_{
v1OVrk>s>
if any( r>1 | r<0 ) P8z%*/
3NF
error('zernfun:Rlessthan1','All R must be between 0 and 1.') Qo#]Lo> \g
end BIWe Hx
yJ $6vmQ
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 9&Jf4lC94
error('zernfun:RTHvector','R and THETA must be vectors.') [I
*_0
end WywS1viD
6m:$mhA5
r = r(:); %10ONe}
theta = theta(:); x6UXd~
L
e
length_r = length(r); xuK"pS
if length_r~=length(theta) zXY8:+f
error('zernfun:RTHlength', ... r].n=455[
'The number of R- and THETA-values must be equal.') QHR,p/p
end EqW~K@
Ek{Q NlQ]4
% Check normalization: !Y~UO)u2
% -------------------- Lnh=y2
if nargin==5 && ischar(nflag) <YaT r9%w
isnorm = strcmpi(nflag,'norm'); 9J3fiA_
if ~isnorm >yC=@Uq+
error('zernfun:normalization','Unrecognized normalization flag.') d_!Z /M,
end W+ S~__K
else G4cgY|71
isnorm = false; i>Q!5
end )5}<@Ql
T*x2+(r
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% aK_5@8+ZD
% Compute the Zernike Polynomials l0Q5q)U1A
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 2ioHhcYdJU
:$k*y%Z*N&
% Determine the required powers of r: oYqHl1cs
% ----------------------------------- CP7dn/
m_abs = abs(m); z?o8h
N\
rpowers = []; m+(Cl#+
for j = 1:length(n) =D`8,n [
rpowers = [rpowers m_abs(j):2:n(j)]; =
lo.LFV
end q1}!O kr"2
rpowers = unique(rpowers); Q~,Mzt"}W
up5f]:!
% Pre-compute the values of r raised to the required powers, p!UR;xHI\
% and compile them in a matrix: (4YLUN&1O$
% ----------------------------- P[3i!"O>
if rpowers(1)==0 [}L~zn6>?a
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); l\UjvG
rpowern = cat(2,rpowern{:}); >#]A2,
rpowern = [ones(length_r,1) rpowern]; )~U1sW&t
else FIq'W:q:
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); F&B\ X
rpowern = cat(2,rpowern{:}); yK*vn]}
end %qc_kQ5%
Kip&YB%rk
% Compute the values of the polynomials: MmT/J1zM
% -------------------------------------- _ ;HdX$op
y = zeros(length_r,length(n)); ;R?@
D]
for j = 1:length(n) K%z!#RyJ4
s = 0:(n(j)-m_abs(j))/2; ?NMk|+
pows = n(j):-2:m_abs(j); T fLqxioqZ
for k = length(s):-1:1 w!f2~j~
p = (1-2*mod(s(k),2))* ... 2"ax*MQH<^
prod(2:(n(j)-s(k)))/ ... <],{at` v
prod(2:s(k))/ ... cH5i420;aO
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... I6.rN\%b
prod(2:((n(j)+m_abs(j))/2-s(k))); 6K.2VY#
idx = (pows(k)==rpowers); `zQuhD 8W
y(:,j) = y(:,j) + p*rpowern(:,idx); _p )NZ7yC
end HI8mNX3 "j
.6wPpL G?{
if isnorm [^hW>O=@TN
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); !5ps,+o
end z!}E2j_9P
end dFz"wvu` o
% END: Compute the Zernike Polynomials <h#*wy:o2
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% *'Yy@T8M
p2STy\CS
% Compute the Zernike functions: 8V:;HY#
% ------------------------------ F-m%d@P&X
idx_pos = m>0; d/d)MoaJ*t
idx_neg = m<0; P $`1}
Q|_F
P:
z = y; {$frR "K
if any(idx_pos) 2-4N)q
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); (|QJ[@?q
end 7b"fpB
if any(idx_neg) w#.3na
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); u
BEwYQB
end CNNqS^ct
lod+]*MD
% EOF zernfun