切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11508阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 V31<~&O~%  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! S{7A3 x'B  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 .$pW?C 3e  
    function z = zernfun(n,m,r,theta,nflag) |2z?8lx  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. =Yg36J4[  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N WvQK$}Ax4N  
    %   and angular frequency M, evaluated at positions (R,THETA) on the (LbAP9Zj#f  
    %   unit circle.  N is a vector of positive integers (including 0), and +P:xB0Tm D  
    %   M is a vector with the same number of elements as N.  Each element <5X?6*Qvr  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) Ab ,n^  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 2oyTS*2u_&  
    %   and THETA is a vector of angles.  R and THETA must have the same FR&4i" +  
    %   length.  The output Z is a matrix with one column for every (N,M) 0*^ J;QGE  
    %   pair, and one row for every (R,THETA) pair. Fa:fBs{  
    % %{ WZ  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike /n;Ll](ri  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ofH=h  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral A{3Aw|;  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, _:DnF  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized yr?*{;  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. q<Gn@xc'  
    % v6(Yz[  
    %   The Zernike functions are an orthogonal basis on the unit circle. QWz5iM  
    %   They are used in disciplines such as astronomy, optics, and sLrSi  
    %   optometry to describe functions on a circular domain. F9@,T8I  
    % {\3k(NdEX  
    %   The following table lists the first 15 Zernike functions. nm5zX,  
    % ChO?Lm$y  
    %       n    m    Zernike function           Normalization __o`+^FS  
    %       -------------------------------------------------- 8|*#r[x  
    %       0    0    1                                 1 41Bp^R}^/  
    %       1    1    r * cos(theta)                    2 q_S`@2Dzz,  
    %       1   -1    r * sin(theta)                    2 QFt7L  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) z(V?pHv+  
    %       2    0    (2*r^2 - 1)                    sqrt(3) Ja<pvb  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) _yk} [x0>  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) E]$YM5  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) '?7th>pC  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) m}/LMY  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) GPlAQk  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 7fRL'I#[@  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) FdwT  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) jm9J-%?  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) =+;1^sZ  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) AKs=2N> 7  
    %       -------------------------------------------------- lCT N dW+=  
    % 7oaa)  
    %   Example 1: y Nb&;E7 H  
    % %.^8&4$+  
    %       % Display the Zernike function Z(n=5,m=1) eLE9-K+  
    %       x = -1:0.01:1; i\hH .7G1  
    %       [X,Y] = meshgrid(x,x); {T|sU\|Q  
    %       [theta,r] = cart2pol(X,Y); `~|8eKFq!  
    %       idx = r<=1; at7|r\`?-  
    %       z = nan(size(X)); 3S='/^l  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); u=^0n2ez  
    %       figure Fq3[/'M^  
    %       pcolor(x,x,z), shading interp kB_uU !G  
    %       axis square, colorbar s!S,;H  
    %       title('Zernike function Z_5^1(r,\theta)') Ch-56   
    % p_h)|*W{  
    %   Example 2: \%\b* OO  
    % nTrfbK@  
    %       % Display the first 10 Zernike functions ]}z;!D>  
    %       x = -1:0.01:1; K|*Cka{  
    %       [X,Y] = meshgrid(x,x); bDd$79@m  
    %       [theta,r] = cart2pol(X,Y); lsmzy_gV7  
    %       idx = r<=1; iw1((&^)"  
    %       z = nan(size(X)); 63:0Vt>hZ^  
    %       n = [0  1  1  2  2  2  3  3  3  3]; `L0aQ$'>z  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; _Y F~DU  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; .gUceXWH3  
    %       y = zernfun(n,m,r(idx),theta(idx)); dLOUL9hf  
    %       figure('Units','normalized') XvBEC_xWZ  
    %       for k = 1:10 A6w/X`([O  
    %           z(idx) = y(:,k); !M:m(6E1  
    %           subplot(4,7,Nplot(k)) +wd} '4)  
    %           pcolor(x,x,z), shading interp mY"DYYR>  
    %           set(gca,'XTick',[],'YTick',[]) pAg;Rib  
    %           axis square  v|+}>g  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Fs_,RXW"  
    %       end ( 8+_~_  
    % W"9iFj X  
    %   See also ZERNPOL, ZERNFUN2. .N~qpynY  
    TSu^.K  
    %   Paul Fricker 11/13/2006 it!i'lG  
    X;_0"g  
    Q"c!%`\  
    % Check and prepare the inputs: Sd'Meebu  
    % ----------------------------- lh`inAt)"  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) =y>P>&sI  
        error('zernfun:NMvectors','N and M must be vectors.') (?-5p;  
    end 5xW)nEV  
    m'1NZV%#  
    if length(n)~=length(m) rN? L8  
        error('zernfun:NMlength','N and M must be the same length.') .K^'Q|?  
    end @'[w7HsJ  
    gOw|s1`2,  
    n = n(:); }8Wp X2U  
    m = m(:); 2L.UEAt  
    if any(mod(n-m,2)) 5n;|K]UW  
        error('zernfun:NMmultiplesof2', ... S8j;oJ2 d  
              'All N and M must differ by multiples of 2 (including 0).') .UbmU^y|  
    end Ne/jvWWN  
    /1++ 8=  
    if any(m>n) (\FjbY9&  
        error('zernfun:MlessthanN', ... dtjaQsJM^  
              'Each M must be less than or equal to its corresponding N.') bj` cYL%  
    end >K#Z]k  
    js Tb0  
    if any( r>1 | r<0 ) o*/\ oVOq  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') SqY;2:  
    end W#'c6Hq2c  
    Y5LESZWo  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) {neE(0c  
        error('zernfun:RTHvector','R and THETA must be vectors.') FsZM_0>/s  
    end f ;|[  
    aq"E@fb  
    r = r(:); :YjOv  
    theta = theta(:); 4,f[D9|:  
    length_r = length(r); )Y~q6D K  
    if length_r~=length(theta) 7d/wT+f  
        error('zernfun:RTHlength', ... 3hR7 . /  
              'The number of R- and THETA-values must be equal.') qM@][]j:  
    end @FkNT~OZ  
    P>euUVMPz4  
    % Check normalization: .}ZX~k&P  
    % -------------------- DLyHC=%{+h  
    if nargin==5 && ischar(nflag) $Z 10Zf=  
        isnorm = strcmpi(nflag,'norm'); =pWpHbB.  
        if ~isnorm P;KbS~ SlC  
            error('zernfun:normalization','Unrecognized normalization flag.') h0n0Dc{4  
        end W_8 FzXA  
    else `(;d+fof  
        isnorm = false; MS^,h>KI  
    end [k-7Kq  
    wO} 3i6  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% I>/`W  
    % Compute the Zernike Polynomials KGi@H%NN  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 2 T{PIJg3  
    SfJ/(q  
    % Determine the required powers of r: lGG1d  
    % ----------------------------------- H#U{i  
    m_abs = abs(m); O,qR$#l   
    rpowers = []; \+GXUnkj  
    for j = 1:length(n) ~\<ZWU<BE  
        rpowers = [rpowers m_abs(j):2:n(j)]; #2yOqUO\  
    end B>X+eK  
    rpowers = unique(rpowers); pY=?r{@  
    /7S]%UY  
    % Pre-compute the values of r raised to the required powers, ?RWd"JTGue  
    % and compile them in a matrix: k`)LO`))  
    % ----------------------------- AG}' W  
    if rpowers(1)==0 .NjdkHYR  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); m)_1->K  
        rpowern = cat(2,rpowern{:}); \<lV),  
        rpowern = [ones(length_r,1) rpowern]; rF~q"9  
    else '4Z%{.;  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); G&C)`};  
        rpowern = cat(2,rpowern{:}); *B:{g>0  
    end qx0o,oZN!  
    N0 ?O*a  
    % Compute the values of the polynomials: I]SR.Yp%  
    % -------------------------------------- qwFn(pK[  
    y = zeros(length_r,length(n)); }T,E$vsx  
    for j = 1:length(n) $<s@S;Ri  
        s = 0:(n(j)-m_abs(j))/2; <S$y=>.9  
        pows = n(j):-2:m_abs(j); aE{b65'Dt  
        for k = length(s):-1:1 =j;o, J:(  
            p = (1-2*mod(s(k),2))* ... P#ru-0DD  
                       prod(2:(n(j)-s(k)))/              ... {##A|{$3%  
                       prod(2:s(k))/                     ... {z F  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... P\zi:]h[Gh  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); dje3&a  
            idx = (pows(k)==rpowers); 4zf#zJw  
            y(:,j) = y(:,j) + p*rpowern(:,idx); GMNf#;x  
        end BM&'3K_y  
         eHnC^W}|s  
        if isnorm Wnf`Rf)1z  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); BMX x(W]  
        end gu:..'V  
    end tQ&#FFt,)  
    % END: Compute the Zernike Polynomials _l8oB)  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /=r&9P@Ay<  
    :cC`wX$  
    % Compute the Zernike functions: -;~_]t^a  
    % ------------------------------ q"5 2-42  
    idx_pos = m>0; Y(A?ib~K  
    idx_neg = m<0; J7cqnj  
    uwQ4RYz  
    z = y; fZ %ZV  
    if any(idx_pos) IB;y8e,  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); \pPq ]k  
    end O0$ijJa|  
    if any(idx_neg) wy -!1wd  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); wK\SeX  
    end H+ M ~|Ju7  
    M]_vb,=1  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) ;;`KkNys m  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. b~~}(^Bg  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated oDP|>yXC)  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive b QeYFY#^  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, s3knh&'zb  
    %   and THETA is a vector of angles.  R and THETA must have the same . LS.Z 4@  
    %   length.  The output Z is a matrix with one column for every P-value, .s9Iymz  
    %   and one row for every (R,THETA) pair. gSv<.fD"  
    % l3MH+o  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike i)p__Is  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) SwL\=nq+~  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) bQ4 }no0  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 +I~?8*  
    %   for all p. Bh.'%[',  
    % nbRg<@  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 \G"/Myi  
    %   Zernike functions (order N<=7).  In some disciplines it is q>X:z0H  
    %   traditional to label the first 36 functions using a single mode d+w<y~\ q  
    %   number P instead of separate numbers for the order N and azimuthal h}d7M55#|  
    %   frequency M. Umd!j,  
    % $R5-JvJJH  
    %   Example: -|T^  
    % V cL  
    %       % Display the first 16 Zernike functions -Tt}M#W   
    %       x = -1:0.01:1; 4NzHzn  
    %       [X,Y] = meshgrid(x,x); lt]U?VZ   
    %       [theta,r] = cart2pol(X,Y); !6%mt}h  
    %       idx = r<=1; LH8?0 N[  
    %       p = 0:15; :({<"H)!'  
    %       z = nan(size(X)); `fRy"44nR  
    %       y = zernfun2(p,r(idx),theta(idx)); M#p,Z F  
    %       figure('Units','normalized') zhe5i;M  
    %       for k = 1:length(p) ]aR4U`  
    %           z(idx) = y(:,k); D0P% .r"v  
    %           subplot(4,4,k) lyPXlt  
    %           pcolor(x,x,z), shading interp }:irjeI,  
    %           set(gca,'XTick',[],'YTick',[]) r]S9z  
    %           axis square IY:O?M  
    %           title(['Z_{' num2str(p(k)) '}']) +OmSR*fA0  
    %       end uj@<_|7  
    % IO'Q}bU4vs  
    %   See also ZERNPOL, ZERNFUN. `iI"rlc  
    ?x0yiV~dL  
    %   Paul Fricker 11/13/2006 P:TpB6.=q  
    3{z|301<m  
    ?uN(" I  
    % Check and prepare the inputs: ..:V3]-D  
    % ----------------------------- mI0r,Z*+M  
    if min(size(p))~=1 ,W-0qN&%/  
        error('zernfun2:Pvector','Input P must be vector.') <j#EyGAV  
    end #.)>geLC>9  
    $5IrM 7i  
    if any(p)>35 ("6W.i>  
        error('zernfun2:P36', ... a3 x~B=E  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... <7^~r(DP  
               '(P = 0 to 35).']) H^g<`XEgw  
    end ;cr6Xop#?  
     R'/wOE2  
    % Get the order and frequency corresonding to the function number: fz3*oJ'  
    % ---------------------------------------------------------------- Mvv=)?:  
    p = p(:); sdWl5 "  
    n = ceil((-3+sqrt(9+8*p))/2); xNkY'4%  
    m = 2*p - n.*(n+2); "BRE0Ir:  
    cZ>W8{G  
    % Pass the inputs to the function ZERNFUN: 895 7$g  
    % ---------------------------------------- G#: !wI  
    switch nargin Oy&'zigJ  
        case 3 <^Tj}5 )n  
            z = zernfun(n,m,r,theta); ^Q>*f/.KN  
        case 4 F21[r!3  
            z = zernfun(n,m,r,theta,nflag); t] wM_]+  
        otherwise 6hK"k  
            error('zernfun2:nargin','Incorrect number of inputs.') gpWS_Dw9  
    end @E2nF|N  
    %b;+/s2W  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) - >I{ :#  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. 5R`6zhf  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of \STvBI?  
    %   order N and frequency M, evaluated at R.  N is a vector of p0y?GNQ  
    %   positive integers (including 0), and M is a vector with the K)&XQ`&  
    %   same number of elements as N.  Each element k of M must be a uk  f\*  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) j#P4Le[t  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is 9Fx z!-9m  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix t[,T}BCy.  
    %   with one column for every (N,M) pair, and one row for every MIF[u:&  
    %   element in R. -_DiD^UcXn  
    % ]wpYxos  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- IQ=|Kj9h  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is ' ,`4 U F  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to [KI`e  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 y~c[sW   
    %   for all [n,m]. 8;\tP29  
    % MZW Y  
    %   The radial Zernike polynomials are the radial portion of the |/=p  
    %   Zernike functions, which are an orthogonal basis on the unit Y~hd<8 ~  
    %   circle.  The series representation of the radial Zernike irb.F>(x  
    %   polynomials is RK:sQWG  
    % X1[R*a/p  
    %          (n-m)/2 ioa_AG6B  
    %            __ @-@rG>y^:  
    %    m      \       s                                          n-2s zRoEx1  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r ,tF" 4|#  
    %    n      s=0 SA 4je9H%  
    % W#7-%o T  
    %   The following table shows the first 12 polynomials. IOZ|85u =  
    % Y_3YO 2K]  
    %       n    m    Zernike polynomial    Normalization 5uJP) S?  
    %       --------------------------------------------- k>;r9^D  
    %       0    0    1                        sqrt(2) *5'6 E'  
    %       1    1    r                           2 "jJdUFN  
    %       2    0    2*r^2 - 1                sqrt(6) \ Q8q9|g?]  
    %       2    2    r^2                      sqrt(6) 5`'au61/2  
    %       3    1    3*r^3 - 2*r              sqrt(8) Xa%&.&V  
    %       3    3    r^3                      sqrt(8) \]#;!6ge  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) j X!ftm2  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) `{Di*  
    %       4    4    r^4                      sqrt(10) K^& ]xFW  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) 2td|8vDA  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) ="w8U'  
    %       5    5    r^5                      sqrt(12) +JAfHQm-  
    %       --------------------------------------------- aco}pXz  
    % lyH X#]  
    %   Example: }Oh'YX#[  
    % 9c5G6n0  
    %       % Display three example Zernike radial polynomials =']};  
    %       r = 0:0.01:1; 8j+:s\  
    %       n = [3 2 5]; p9 ,\{Is  
    %       m = [1 2 1]; sEJ;t0.LX  
    %       z = zernpol(n,m,r); 3G/ mB  
    %       figure b}*@=X=4o  
    %       plot(r,z) Y=Ar3O*F  
    %       grid on yZ~eLWz  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') 5nM9!A\D  
    % CbH T #  
    %   See also ZERNFUN, ZERNFUN2. %=mwOoMk0L  
    ic{.#R.BY  
    % A note on the algorithm. yw Q!9 \  
    % ------------------------ D7_Hu'y<o  
    % The radial Zernike polynomials are computed using the series =.f +}y  
    % representation shown in the Help section above. For many special W/ZahPPq  
    % functions, direct evaluation using the series representation can voej ~z+  
    % produce poor numerical results (floating point errors), because z2nUul(2  
    % the summation often involves computing small differences between OxHw1k  
    % large successive terms in the series. (In such cases, the functions q~' K9  
    % are often evaluated using alternative methods such as recurrence #9hXZr/8  
    % relations: see the Legendre functions, for example). For the Zernike gQpD]p%k  
    % polynomials, however, this problem does not arise, because the <&Y}j&(  
    % polynomials are evaluated over the finite domain r = (0,1), and e<O;pM:  
    % because the coefficients for a given polynomial are generally all oB{}-[G  
    % of similar magnitude. X?v ^>mA  
    % Xm^h5jAr  
    % ZERNPOL has been written using a vectorized implementation: multiple $6&GAJe  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] I bv_D$cT  
    % values can be passed as inputs) for a vector of points R.  To achieve ?m9UhLeaS=  
    % this vectorization most efficiently, the algorithm in ZERNPOL q{De&Bu  
    % involves pre-determining all the powers p of R that are required to D@r n@N  
    % compute the outputs, and then compiling the {R^p} into a single 8T.5Mhx0jS  
    % matrix.  This avoids any redundant computation of the R^p, and {7![3`%7  
    % minimizes the sizes of certain intermediate variables. o~.o^0Y  
    % hNq8 uyKx  
    %   Paul Fricker 11/13/2006 $kD`$L@U  
    $G-N0LV  
    M8",t{7  
    % Check and prepare the inputs: ^;CR0.4  
    % ----------------------------- !8"$d_=h  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) X@h^T> ["  
        error('zernpol:NMvectors','N and M must be vectors.') il>x!)?o  
    end !AD0 -fZ  
    Ky '3z"  
    if length(n)~=length(m) (9YYv+GGd*  
        error('zernpol:NMlength','N and M must be the same length.') (4{ C7  
    end 2NA rE@  
     $`XN  
    n = n(:); 8W1K3[Jj<  
    m = m(:); ;*)fO? TG)  
    length_n = length(n); _sf#J|kQ  
    8%2rgA  
    if any(mod(n-m,2)) A}#]g>L  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') )S wG+k,  
    end vzohq1r5  
    .^W\OJ`G  
    if any(m<0) ;1R?9JN"  
        error('zernpol:Mpositive','All M must be positive.') hk5E=t~&  
    end "3Xv%U9@  
    :uIi ?  
    if any(m>n) 7$1fy0f[l  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') bU:}ZO^S  
    end P+;CE|J`X  
    dY4k9p8  
    if any( r>1 | r<0 ) d Ik8TJ  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') dxkRk#mf:  
    end j2 o1"  
    A'~%_}  
    if ~any(size(r)==1) Mg a@JA"  
        error('zernpol:Rvector','R must be a vector.') ~_l6dDJ  
    end _Ra<|NVQh  
    y} $ P,  
    r = r(:); EZ%w=  
    length_r = length(r); !e:iB7<  
    T<TcV9vM  
    if nargin==4 ^8';8+$  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); Bg 7j5  
        if ~isnorm $TD~k;   
            error('zernpol:normalization','Unrecognized normalization flag.') `FzYvd"N  
        end '#,e @v  
    else v.l7Q  
        isnorm = false; Uw2,o|=O  
    end  /i-xX*  
    bVa+kYE  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% BrlzN='j}  
    % Compute the Zernike Polynomials M1/M}~  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% E'e8&3!bx  
    <THZ2`tTK3  
    % Determine the required powers of r: ? fbgU  
    % ----------------------------------- .pS&0gBo\  
    rpowers = []; lC'{QUC  
    for j = 1:length(n) (|0.m8D~D  
        rpowers = [rpowers m(j):2:n(j)]; ~ Ho{p Oq  
    end :jt;EzCLg%  
    rpowers = unique(rpowers); V>b2b5QAH,  
    /~3N@J  
    % Pre-compute the values of r raised to the required powers, b 0LGH. z4  
    % and compile them in a matrix: &v5G92  
    % ----------------------------- ]6$,IKE7  
    if rpowers(1)==0 j4~7akG  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 8)^B32  
        rpowern = cat(2,rpowern{:}); V=j-Um;  
        rpowern = [ones(length_r,1) rpowern]; ||-nmOy  
    else S=0"f}Jo.  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); prNhn:j  
        rpowern = cat(2,rpowern{:}); ,op]-CY 5  
    end ?muDTD%c  
    mu6039qy  
    % Compute the values of the polynomials: q"gqO%Wb|  
    % -------------------------------------- EMVk:Vt]  
    z = zeros(length_r,length_n); Ds%9cp*6  
    for j = 1:length_n R)0N0gH  
        s = 0:(n(j)-m(j))/2; A6Ghj{~  
        pows = n(j):-2:m(j); o&(wg(Rv  
        for k = length(s):-1:1 YBb)/ZghY  
            p = (1-2*mod(s(k),2))* ... z$JX'(<Z7  
                       prod(2:(n(j)-s(k)))/          ... QWrIa1.JC  
                       prod(2:s(k))/                 ... LHs-&  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... J|V K P7  
                       prod(2:((n(j)+m(j))/2-s(k))); 2 ;JQX!  
            idx = (pows(k)==rpowers); Ye9Y^+-  
            z(:,j) = z(:,j) + p*rpowern(:,idx); c_ La^HS  
        end ShQ|{P9  
         ?Bo?JMV  
        if isnorm nz4<pvC,*  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); 0cHfxy3  
        end sX+`wc  
    end ;{|X,;s  
    o^3FL||P#r  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  ?F7o!B  
    +G F#?X0^  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 zR;X*q"T$4  
     d$W  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)