切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11446阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 $R NHRA.  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! gNc;P[  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 0NKgtH~+  
    function z = zernfun(n,m,r,theta,nflag) x[&<e<6  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. NQX?&9L`r  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N &R?to>xr \  
    %   and angular frequency M, evaluated at positions (R,THETA) on the \E<Qi3W>*  
    %   unit circle.  N is a vector of positive integers (including 0), and dr+(C[=  
    %   M is a vector with the same number of elements as N.  Each element Y_n3O@,  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) hITYBPqRO  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 8iOHav4  
    %   and THETA is a vector of angles.  R and THETA must have the same '`. -75T  
    %   length.  The output Z is a matrix with one column for every (N,M) 4,Oa(b  
    %   pair, and one row for every (R,THETA) pair. F:q8.^HTJ  
    % U]_WX(4 @  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike O9/)_:Wdh  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), UnP<`z#  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 5u;//Cm  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, H9_iTGBQ  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized x<Gjr}  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. >u(^v@Ejf  
    % HKI\i)c  
    %   The Zernike functions are an orthogonal basis on the unit circle. Ry"4v_e9  
    %   They are used in disciplines such as astronomy, optics, and S50}]5K  
    %   optometry to describe functions on a circular domain. WZPj?ou`G  
    % qtozMa  
    %   The following table lists the first 15 Zernike functions. s%`l>#H  
    % 5`+9<8V  
    %       n    m    Zernike function           Normalization n%#3xo a  
    %       -------------------------------------------------- "~._G5i.  
    %       0    0    1                                 1 )lJAMZ 5xp  
    %       1    1    r * cos(theta)                    2 ~<9e }J  
    %       1   -1    r * sin(theta)                    2 ]1Wxa?  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 2[uFAgf@  
    %       2    0    (2*r^2 - 1)                    sqrt(3)  C=@4U}  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) naH(lz|v  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 1iLo$  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) =b>TFB=*N  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) /|P{t{^WM  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) -3v\ c~  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) KV|D]}  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) : [328X2  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) v @0G^z|  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) U5H%wA['m  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 5QuRwu_  
    %       -------------------------------------------------- e98QT9  
    % UH}lKc=t  
    %   Example 1: +hr|$  
    % "0[`U(/  
    %       % Display the Zernike function Z(n=5,m=1) R6o  D  
    %       x = -1:0.01:1; ng9e)lU~*b  
    %       [X,Y] = meshgrid(x,x); LQ4:SV'3  
    %       [theta,r] = cart2pol(X,Y); h]t v+\0  
    %       idx = r<=1; SO(BkxV@  
    %       z = nan(size(X)); IF|;;*Z8  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); l5Ko9CG  
    %       figure 9?hZf$z  
    %       pcolor(x,x,z), shading interp H1B%}G*Ir-  
    %       axis square, colorbar 7x>^ip"7  
    %       title('Zernike function Z_5^1(r,\theta)') T)7U+~nQ"  
    % 5$'[R ;r  
    %   Example 2: b~:)d>s8wY  
    % oxN5:)  
    %       % Display the first 10 Zernike functions P(b[|QF  
    %       x = -1:0.01:1; -V}xvSVg  
    %       [X,Y] = meshgrid(x,x); OObAn^bt  
    %       [theta,r] = cart2pol(X,Y); xatq  
    %       idx = r<=1; X5VNj|IE  
    %       z = nan(size(X)); |C z7_Rn  
    %       n = [0  1  1  2  2  2  3  3  3  3]; EYj~Xj8_  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; F I[BZZW  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; + c3pe4  
    %       y = zernfun(n,m,r(idx),theta(idx)); ?{aJ#w   
    %       figure('Units','normalized') b3R( O|  
    %       for k = 1:10 5;" $X 1{  
    %           z(idx) = y(:,k); _v0iH   
    %           subplot(4,7,Nplot(k))  @9_mk@  
    %           pcolor(x,x,z), shading interp (1^;l;7H  
    %           set(gca,'XTick',[],'YTick',[]) y,|2hrj/0E  
    %           axis square #2ta8m),  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) L{&2 P  
    %       end .#SgU<Wq  
    % =LV-n  
    %   See also ZERNPOL, ZERNFUN2. !(?7V  
    1_q!E~)  
    %   Paul Fricker 11/13/2006 P4_B.5rrJ  
    l+P!I{n  
    9GCK3  
    % Check and prepare the inputs: 6JZ>&HA  
    % ----------------------------- eg}g} a  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) FsWp>}o  
        error('zernfun:NMvectors','N and M must be vectors.') r[}nrH&8  
    end JFX}))7  
    c( U,FUS  
    if length(n)~=length(m) {!wW,3|Pu  
        error('zernfun:NMlength','N and M must be the same length.') D|)_c1g  
    end 1q-;+Pd;  
    qm><}N7f  
    n = n(:); RVwS<g)~1  
    m = m(:); n8;p]{  
    if any(mod(n-m,2)) 4>V@+#Ec5  
        error('zernfun:NMmultiplesof2', ... b7\>=  
              'All N and M must differ by multiples of 2 (including 0).') y@I 9>}"y  
    end sYDav)L.  
    3c6e$/  
    if any(m>n) n5UUoBv  
        error('zernfun:MlessthanN', ... ,:L^vG@*  
              'Each M must be less than or equal to its corresponding N.') |"9&F  
    end !nkIXgWz  
    dGOFSH  
    if any( r>1 | r<0 )  W;7$Dq:  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') uGC5XX^  
    end 0*5Jq#5  
    ]R)wBug  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ;a1DIUm'  
        error('zernfun:RTHvector','R and THETA must be vectors.') l3F$5n  
    end K)>F03=uE  
    BT8)t.+pv  
    r = r(:); N7lg6$s Aj  
    theta = theta(:); "A+7G5  
    length_r = length(r); H%Vf$1/TF  
    if length_r~=length(theta) &nr{-][  
        error('zernfun:RTHlength', ... W[Q<# Ju  
              'The number of R- and THETA-values must be equal.') ;-~E !_$  
    end hGV_K"~I0  
    _"Ym]y28li  
    % Check normalization: .tG3g:  
    % -------------------- i *:QbMb  
    if nargin==5 && ischar(nflag) )r{Wj*u  
        isnorm = strcmpi(nflag,'norm'); e`={_R{N  
        if ~isnorm 1T|")D  
            error('zernfun:normalization','Unrecognized normalization flag.') "*<vE7  
        end =Mwuhk|*  
    else SJP3mq/^K  
        isnorm = false; %8u9:Cl):  
    end XV%R Mr6  
    iy]L"7&Z2  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% SF; \*]["f  
    % Compute the Zernike Polynomials yOEy3d=*  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ?sdSi--  
    lq_UCCnv5  
    % Determine the required powers of r: auAz>6L  
    % ----------------------------------- D1-/#QN$1  
    m_abs = abs(m); M&/4SVBF  
    rpowers = []; ._tEDY/1m  
    for j = 1:length(n) <t(H+ykh  
        rpowers = [rpowers m_abs(j):2:n(j)]; akr2Os  
    end mB>0$l y  
    rpowers = unique(rpowers); s(fkb7W,gO  
    "t^RZ45  
    % Pre-compute the values of r raised to the required powers, B/a`5&G]  
    % and compile them in a matrix: ${z#{c1  
    % ----------------------------- !5De?OXe   
    if rpowers(1)==0 ;5X~"#%U_  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Rl cL(HM  
        rpowern = cat(2,rpowern{:}); Axb=1_--  
        rpowern = [ones(length_r,1) rpowern]; NbU4|O i  
    else z{ eZsh b  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); vd#)+  
        rpowern = cat(2,rpowern{:}); qB_s<cpn>  
    end dF51_Kk  
    S'|PA7a}h  
    % Compute the values of the polynomials: X);'[/]E*  
    % -------------------------------------- b(|&e  
    y = zeros(length_r,length(n)); ~fD\=- S1  
    for j = 1:length(n) ",aNYJR>*!  
        s = 0:(n(j)-m_abs(j))/2; 08jk~$%  
        pows = n(j):-2:m_abs(j); TC<Rg?&yb  
        for k = length(s):-1:1 ^g(qP tQ  
            p = (1-2*mod(s(k),2))* ... 9a=:e=q3#  
                       prod(2:(n(j)-s(k)))/              ... !l#aq\:}~e  
                       prod(2:s(k))/                     ... @Hp%4$=  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ~tfd9,t  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 30WOH 'n  
            idx = (pows(k)==rpowers); #J/RI[a  
            y(:,j) = y(:,j) + p*rpowern(:,idx); bnkZWw'9  
        end +2:HgW  
         _XP}f x7$C  
        if isnorm ]}'bRq*]  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 2 ^"j]g>mj  
        end X(E`cH |  
    end _y6iR&&x  
    % END: Compute the Zernike Polynomials YBj*c$.D0  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% l*hWws[  
    L / PAC  
    % Compute the Zernike functions:  "9[2vdSX  
    % ------------------------------ d`V.i6u  
    idx_pos = m>0; a Tm R~k  
    idx_neg = m<0; + @fEw  
    xPm{'J+b~  
    z = y; O95gdxc  
    if any(idx_pos) 4Dzg r,V  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); V/\Y(Mxc  
    end c ZYvP  
    if any(idx_neg) MkGQ  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); w6> P[oW  
    end ;lE=7[UJ3X  
    7wWx8  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) vCt][WX(  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. 8*?H~q~  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated U:7w8$_  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive UzSDXhzObf  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, b-VQn5W  
    %   and THETA is a vector of angles.  R and THETA must have the same X)j%v\#`U  
    %   length.  The output Z is a matrix with one column for every P-value, *^{j!U37s  
    %   and one row for every (R,THETA) pair. '-f` 5X  
    % t5b c Q@Y  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike uIO?4\s&G  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) J80&npsO  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) i4>M  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 z7?SuJ  
    %   for all p. njJTEUd">  
    % v0\M$@N[  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 KRd'!bG=1  
    %   Zernike functions (order N<=7).  In some disciplines it is 89 m.,  
    %   traditional to label the first 36 functions using a single mode v0&DD&mp  
    %   number P instead of separate numbers for the order N and azimuthal K ~-V([tWg  
    %   frequency M. YVF@v-v-,  
    %  = v?V  
    %   Example: U3]/ NV*   
    % 0wqw5KC  
    %       % Display the first 16 Zernike functions s+ *LVfau  
    %       x = -1:0.01:1; 9_svtO]P  
    %       [X,Y] = meshgrid(x,x); Kn1u1@&Xd  
    %       [theta,r] = cart2pol(X,Y); 6&~Z3|<e  
    %       idx = r<=1; &a\w+  
    %       p = 0:15; IAb.Z+ig  
    %       z = nan(size(X)); &uaSp, L  
    %       y = zernfun2(p,r(idx),theta(idx)); leSBR,C  
    %       figure('Units','normalized') ,f ?B((l  
    %       for k = 1:length(p) KDP& I J  
    %           z(idx) = y(:,k); beYGP  
    %           subplot(4,4,k) D=D.s)ns*  
    %           pcolor(x,x,z), shading interp N1y,~Z  
    %           set(gca,'XTick',[],'YTick',[]) 1=>b\"P#E  
    %           axis square I%[Tosud<  
    %           title(['Z_{' num2str(p(k)) '}']) 07(LLhk@d  
    %       end 2C"i2/NH'  
    % '>bn94$  
    %   See also ZERNPOL, ZERNFUN. k&K'FaM!  
    7r(c@4yPI  
    %   Paul Fricker 11/13/2006 b/T k$&  
    h;(mb2[R  
    [<^'}-SJ  
    % Check and prepare the inputs: l%i*.b(  
    % ----------------------------- SFP?ND+7  
    if min(size(p))~=1 QDK }e:4q  
        error('zernfun2:Pvector','Input P must be vector.') if1)AE-  
    end (Cti,g~  
    y^X]q[-?  
    if any(p)>35 VyIJ)F.c  
        error('zernfun2:P36', ... ]5j>O^c<  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... 8 f~M6  
               '(P = 0 to 35).']) %[L/JJbP&Z  
    end ^{8CShUCv  
    IK4(r /  
    % Get the order and frequency corresonding to the function number: *ZRk)  
    % ---------------------------------------------------------------- Ka)aBU9  
    p = p(:); _-v$fDrz  
    n = ceil((-3+sqrt(9+8*p))/2); fpzEh}:H\  
    m = 2*p - n.*(n+2); ^MhMYA  
    vON7~KA  
    % Pass the inputs to the function ZERNFUN: //$^~} wt  
    % ---------------------------------------- D iHj!tZN  
    switch nargin Csgby(D*O  
        case 3 /bC@^Y&}  
            z = zernfun(n,m,r,theta); :.-KM7tDI1  
        case 4 cqb6]  
            z = zernfun(n,m,r,theta,nflag); oq>jCOVh  
        otherwise {pRa%DF  
            error('zernfun2:nargin','Incorrect number of inputs.') r24 s_  
    end ^#w9!I{4.  
    _39VL  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) P^BSl7cT  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. JJ_KfnH  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of u<+RA  
    %   order N and frequency M, evaluated at R.  N is a vector of G1,u{d-_  
    %   positive integers (including 0), and M is a vector with the [Fd[(  
    %   same number of elements as N.  Each element k of M must be a U!lWP#m  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) Qeq=4Nq  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is (b.Mtd  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix 4`"Q!T_'  
    %   with one column for every (N,M) pair, and one row for every 7:C2xC  
    %   element in R. iA"H*0  
    % `|[UF^9  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- 'GZ,  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is 8 vvNn>Q  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to Vgj[m4l  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 ugW.nf*O  
    %   for all [n,m]. s*kSl:T @O  
    % AeW_W0j  
    %   The radial Zernike polynomials are the radial portion of the O;#0Yg  
    %   Zernike functions, which are an orthogonal basis on the unit Xpmi(~n  
    %   circle.  The series representation of the radial Zernike z8PV&o  
    %   polynomials is H)+wkR!~  
    % UzkX;UA  
    %          (n-m)/2 niCq`!  
    %            __ wA%,_s/U  
    %    m      \       s                                          n-2s +|O& k  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r wH qbTA  
    %    n      s=0 8{-bG8L> 5  
    % 7(zY:9|(  
    %   The following table shows the first 12 polynomials. $0;Dk,  
    % kx[h41|n  
    %       n    m    Zernike polynomial    Normalization m\|ie8  
    %       --------------------------------------------- Biy$p6  
    %       0    0    1                        sqrt(2) YYd!/@|N5  
    %       1    1    r                           2 /}-LaiS  
    %       2    0    2*r^2 - 1                sqrt(6) S#Pni}JD  
    %       2    2    r^2                      sqrt(6) @p7*JLO  
    %       3    1    3*r^3 - 2*r              sqrt(8) !~f!O"n)3r  
    %       3    3    r^3                      sqrt(8) ?OWJUmQ  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) x):h|/B  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) H|B4.z  
    %       4    4    r^4                      sqrt(10) {(`xA,El  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) =q*j". <  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) &28%~&L  
    %       5    5    r^5                      sqrt(12) nnnq6Z}  
    %       --------------------------------------------- q6N6QI8/  
    % E`UEl$($  
    %   Example: P:HmT   
    % Vg? 1&8>  
    %       % Display three example Zernike radial polynomials ;kF+V*  
    %       r = 0:0.01:1; !W45X}/o  
    %       n = [3 2 5]; C%kIxa)  
    %       m = [1 2 1]; K(p6P3Z  
    %       z = zernpol(n,m,r); JXF@b-c  
    %       figure +# tmsv]2  
    %       plot(r,z) Q2!vO4!<N  
    %       grid on LD)P. f  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') AU^5N3%j  
    % Ba]^0Y u  
    %   See also ZERNFUN, ZERNFUN2. dht*1i3v  
    6 VuMx7W1  
    % A note on the algorithm. c{K[bppJ*  
    % ------------------------ r4Jc9Tv d  
    % The radial Zernike polynomials are computed using the series c7(Lk"G8  
    % representation shown in the Help section above. For many special Ln5g"g8gb%  
    % functions, direct evaluation using the series representation can A<s9c=d6  
    % produce poor numerical results (floating point errors), because =LMM]'no,  
    % the summation often involves computing small differences between :/'oh]T|  
    % large successive terms in the series. (In such cases, the functions la[>C:8IG  
    % are often evaluated using alternative methods such as recurrence VTvNn  
    % relations: see the Legendre functions, for example). For the Zernike 6.g k6  
    % polynomials, however, this problem does not arise, because the <ULydBom  
    % polynomials are evaluated over the finite domain r = (0,1), and \ POQeZ  
    % because the coefficients for a given polynomial are generally all H{j jA+0  
    % of similar magnitude. E >lW'  
    % ;B !u=_'  
    % ZERNPOL has been written using a vectorized implementation: multiple c0u1L@tj  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] 8P3"$2q  
    % values can be passed as inputs) for a vector of points R.  To achieve ^5BQ=  
    % this vectorization most efficiently, the algorithm in ZERNPOL [}t^+^/  
    % involves pre-determining all the powers p of R that are required to ,fW%Qv  
    % compute the outputs, and then compiling the {R^p} into a single j?y_ H[Z  
    % matrix.  This avoids any redundant computation of the R^p, and ^26}j uQ  
    % minimizes the sizes of certain intermediate variables. JE.s?k  
    % tEHgQto  
    %   Paul Fricker 11/13/2006 r5S5;jL%t  
    x C+TO  
    eJwHeG  
    % Check and prepare the inputs: DDwm;,eZ  
    % ----------------------------- VgyY7INx9  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) @Lf-=9  
        error('zernpol:NMvectors','N and M must be vectors.') =S:Snk%  
    end ~V6wcXd  
    A 2Rp  
    if length(n)~=length(m) C4^o= 6{  
        error('zernpol:NMlength','N and M must be the same length.') !omf>CW;ud  
    end XPQY*.l&.  
    2\J-7o=P  
    n = n(:); XdxSi"+  
    m = m(:); ;o-c.-!F  
    length_n = length(n); NANgV~Y&  
    G"|`&r@  
    if any(mod(n-m,2)) 9B<aYp)  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') Ne9S90HsB6  
    end Ek%mX"  
    w=feXA3-S  
    if any(m<0) &Y3 r'"  
        error('zernpol:Mpositive','All M must be positive.') SM8Wg>  
    end !b4v}70,  
    "9bd;Tt:  
    if any(m>n) FH7h?!|t  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') r!e:sJAB.  
    end GLtd6;V  
    {7Q)2NC  
    if any( r>1 | r<0 ) G3_HX<|f*  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') I)wc&>Lc  
    end @Tz}y"VG  
    *BFG{P  
    if ~any(size(r)==1) &-zW1wf  
        error('zernpol:Rvector','R must be a vector.') 6Mh"{N7  
    end 7X`]}z4g  
    [Lal_}m?  
    r = r(:); S}/5W  
    length_r = length(r); GLWEoV9<  
    (utk)  
    if nargin==4 My<.^~  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); 13K|=6si  
        if ~isnorm 3}kG ]#  
            error('zernpol:normalization','Unrecognized normalization flag.') 1=z6m7@'-  
        end u%sfHGrH  
    else Ci(c`1av  
        isnorm = false; IC6r?  
    end oFL7dL  
    D A_}pS"  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 34<k)0sO  
    % Compute the Zernike Polynomials gJBw6'Z  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /^hc8X  
    jT=fq'RK  
    % Determine the required powers of r: Xb2.t^ ]f  
    % ----------------------------------- TY;%nT  
    rpowers = []; _|VF^\i  
    for j = 1:length(n) %Hu?syo  
        rpowers = [rpowers m(j):2:n(j)]; ex6 QHUQ  
    end F4DJML-(  
    rpowers = unique(rpowers); ,{2= nb[  
    QERj`/g  
    % Pre-compute the values of r raised to the required powers, ;u;_\k<qK  
    % and compile them in a matrix: 9 iV_  
    % ----------------------------- H/}W_ h^^  
    if rpowers(1)==0 zS*vKyye>  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); crQ_@@X?<  
        rpowern = cat(2,rpowern{:}); =*{Ii]D  
        rpowern = [ones(length_r,1) rpowern]; Pl\NzB,`  
    else 3HqTVq`&  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Q8D#kAYw  
        rpowern = cat(2,rpowern{:}); z-N N( G+  
    end [*U.bRs  
    rT(b t~Z  
    % Compute the values of the polynomials: `*",_RO;  
    % -------------------------------------- V 5D8z  
    z = zeros(length_r,length_n); MSE0z !t  
    for j = 1:length_n ZRj/lQ2D  
        s = 0:(n(j)-m(j))/2; 0K4A0s_R`  
        pows = n(j):-2:m(j); 3b[.s9Q  
        for k = length(s):-1:1 *i>hFNLdOM  
            p = (1-2*mod(s(k),2))* ... -QK- w>  
                       prod(2:(n(j)-s(k)))/          ... Ug  )eyu  
                       prod(2:s(k))/                 ... 4s 6,`-  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... S!66t?vHB  
                       prod(2:((n(j)+m(j))/2-s(k))); ?Ta<.j  
            idx = (pows(k)==rpowers); 5,J.$Sax  
            z(:,j) = z(:,j) + p*rpowern(:,idx); '| p"HbJ  
        end a66Ns7Rb  
         fd$nAE  
        if isnorm $8}'h  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); {q! :t0X.Y  
        end -"rANP-UI  
    end nK}-^Ur  
    .uSVZqJ7  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  @}:E{J#g  
    #"lb9. _ M  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 dJ/gc"7aO  
    (z.n9lkfi  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)