切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11052阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 s_:7dD  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! +J [<zxh\  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 ;]vJ[mi~  
    function z = zernfun(n,m,r,theta,nflag) O n/q&h5  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. (pv6V2i  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N \0fS;Q^{j  
    %   and angular frequency M, evaluated at positions (R,THETA) on the W#Eg\nT  
    %   unit circle.  N is a vector of positive integers (including 0), and W6^YFN  
    %   M is a vector with the same number of elements as N.  Each element OrP i ("/  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) h[(.  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 6N< snBmd  
    %   and THETA is a vector of angles.  R and THETA must have the same 2QIx~Er  
    %   length.  The output Z is a matrix with one column for every (N,M) 'f_[(o+n  
    %   pair, and one row for every (R,THETA) pair. 8*&|Q1`K:  
    % rK~Obv  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike i K,^|Q8  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), :q34KP  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 7 MZ(tOR  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, qbx}9pp}g  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ioT+,li  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 2%_UOEayU  
    % FKWL{"y  
    %   The Zernike functions are an orthogonal basis on the unit circle. }'u0Q6Obj  
    %   They are used in disciplines such as astronomy, optics, and h?7@]&VJ  
    %   optometry to describe functions on a circular domain. D}T+X ;u)K  
    % +yd{-iH  
    %   The following table lists the first 15 Zernike functions. nnZM{< !hF  
    % ;%^T*?t  
    %       n    m    Zernike function           Normalization Lj2Au_5  
    %       -------------------------------------------------- %X -G(Z  
    %       0    0    1                                 1 Qv B%X)J  
    %       1    1    r * cos(theta)                    2 }cO}H2m  
    %       1   -1    r * sin(theta)                    2 ]k)h<)nY  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) A}W}H;8x  
    %       2    0    (2*r^2 - 1)                    sqrt(3) }AG dWt@  
    %       2    2    r^2 * sin(2*theta)             sqrt(6)  ovsI2  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) $s<bKju  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 6 ~+/cY-V  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) z8JdA%YBM  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) hQ_g OI  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) >A.m`w  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) G[lNgVbU@  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) ? t_$C,A+  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) pxV@fH+`  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) =z4kK_?F,  
    %       -------------------------------------------------- ~]78R!HJ  
    % 9jf2b  
    %   Example 1: ~8tb^  
    % 9B9:lR  
    %       % Display the Zernike function Z(n=5,m=1) 94'0X  
    %       x = -1:0.01:1; _ lE d8Cb  
    %       [X,Y] = meshgrid(x,x); tdi^e;:?  
    %       [theta,r] = cart2pol(X,Y); k:DAko}  
    %       idx = r<=1; RxUzJ  
    %       z = nan(size(X)); {w52]5l  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); #xNXCBl]O  
    %       figure \(;X3h  
    %       pcolor(x,x,z), shading interp IRK(y*6  
    %       axis square, colorbar &XZS}n  
    %       title('Zernike function Z_5^1(r,\theta)') j-(k`w\  
    % #G\;)pT  
    %   Example 2: `kM:5f+>W  
    % k|; [)gE  
    %       % Display the first 10 Zernike functions h ngdeGa  
    %       x = -1:0.01:1; $;As7MI  
    %       [X,Y] = meshgrid(x,x); =*=qleC3  
    %       [theta,r] = cart2pol(X,Y); gaVQ3NqF  
    %       idx = r<=1; M D,+>kh  
    %       z = nan(size(X)); c=u'#|/eb  
    %       n = [0  1  1  2  2  2  3  3  3  3]; !A=>B=.|D  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; o06vC  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; SwdUElEp  
    %       y = zernfun(n,m,r(idx),theta(idx)); 50HRgoP5Y  
    %       figure('Units','normalized') YdF\*tZ  
    %       for k = 1:10 ]}A3Pm- t*  
    %           z(idx) = y(:,k); |P`:NAf2  
    %           subplot(4,7,Nplot(k)) B`/p[U5  
    %           pcolor(x,x,z), shading interp bFwc>  
    %           set(gca,'XTick',[],'YTick',[]) %Kc2n9W  
    %           axis square ZuVes?&j  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Xw]L'+V=  
    %       end gQlL0jAV  
    % =plU3D2  
    %   See also ZERNPOL, ZERNFUN2. tY0C& u2  
    s*UO!bHa  
    %   Paul Fricker 11/13/2006 !fK9YW(Im  
    99u9L)  
    +kZW:t!-  
    % Check and prepare the inputs: sY@x(qkIOc  
    % ----------------------------- <p\iB'y  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) (@ixV$Y  
        error('zernfun:NMvectors','N and M must be vectors.') G;yh$n<"  
    end obtXtqew  
    vj4n=F,Z  
    if length(n)~=length(m) &C6Z{.3V  
        error('zernfun:NMlength','N and M must be the same length.') :}3;z'2]l  
    end a_amO<!   
    m+'vrxTY  
    n = n(:); $i.)1.x  
    m = m(:); L_QJS2  
    if any(mod(n-m,2)) '.1_anE]  
        error('zernfun:NMmultiplesof2', ... s2;b-0  
              'All N and M must differ by multiples of 2 (including 0).') (^ ;Fyf/  
    end .F@0`*#rE~  
    q}MPl2  
    if any(m>n) (vb8Mk  
        error('zernfun:MlessthanN', ... hkoCbR0}8  
              'Each M must be less than or equal to its corresponding N.') 1@ .Eh8y  
    end sJB::6+1(|  
    Gk2R:\/Y  
    if any( r>1 | r<0 ) %:vMD  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 3e7P w`gLl  
    end uwhb-.w  
    /G& %T  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ^Uq"hT(41  
        error('zernfun:RTHvector','R and THETA must be vectors.') GEQ3r'B|  
    end L0dj 76'M  
    I'>r  
    r = r(:); '/ v@q]!  
    theta = theta(:); lCC(N?%Q  
    length_r = length(r); Jrm 9,7/  
    if length_r~=length(theta) 0VBbSn}Z<  
        error('zernfun:RTHlength', ... g}Esj"7  
              'The number of R- and THETA-values must be equal.') d/!R;,^  
    end ncCgc5uP  
    x9s1AzM{  
    % Check normalization: LJ+Qe%|  
    % -------------------- c037#&Q%#  
    if nargin==5 && ischar(nflag) wR*>9LjeG  
        isnorm = strcmpi(nflag,'norm'); f_qW+fN::s  
        if ~isnorm +=&A1{kR3  
            error('zernfun:normalization','Unrecognized normalization flag.') o:8*WCiqrN  
        end YH^h ?s  
    else j@4AY}[tX  
        isnorm = false; +8~C&K:  
    end QM 'Db`B  
    MPI=^rc2  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% `am]&0g^+(  
    % Compute the Zernike Polynomials <C6*-j1oz  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% L] ce13K  
    rj> _L  
    % Determine the required powers of r: Z[pMlg6Z  
    % ----------------------------------- OPP^n-iPr  
    m_abs = abs(m); 8,m3]Lg  
    rpowers = []; `R+I(Cb  
    for j = 1:length(n) @.SuHd  
        rpowers = [rpowers m_abs(j):2:n(j)]; Kfl#78$d  
    end .,$<waGD  
    rpowers = unique(rpowers); \n`)>-  
    @ky<5r*JU(  
    % Pre-compute the values of r raised to the required powers, X cDu&6Dy  
    % and compile them in a matrix: !.}ZlA  
    % ----------------------------- |NoTwK  
    if rpowers(1)==0 l6O8:XI  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); MzudCMF  
        rpowern = cat(2,rpowern{:}); W{z{AxS  
        rpowern = [ones(length_r,1) rpowern]; '|JBA.s|  
    else !0k'fYCa  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); W$bQS!7y  
        rpowern = cat(2,rpowern{:}); XwNJHOaF  
    end KqNbIw*sR  
    * c1)x  
    % Compute the values of the polynomials: MR{JMo=r  
    % -------------------------------------- LqA&@  
    y = zeros(length_r,length(n)); U1!#TD)@  
    for j = 1:length(n) ?cRGdLP'D  
        s = 0:(n(j)-m_abs(j))/2; GL<u#[  
        pows = n(j):-2:m_abs(j); /-v6jiM  
        for k = length(s):-1:1 UBZ37P  
            p = (1-2*mod(s(k),2))* ... q*E<~!jL  
                       prod(2:(n(j)-s(k)))/              ... #lld*I"d  
                       prod(2:s(k))/                     ... <*'%Xgm  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... `HO_t ek  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); t6JM%  
            idx = (pows(k)==rpowers); dr~6}S#  
            y(:,j) = y(:,j) + p*rpowern(:,idx); `\vqDWh8-  
        end bh&Wy<Y  
         W3.(s~ )o  
        if isnorm 7yM"G$  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); !um~P  
        end psaPrE  
    end V ~%C me  
    % END: Compute the Zernike Polynomials XHER[8l  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% l}jC$B`5  
    iXsX@ S^F  
    % Compute the Zernike functions: >L_nu.x  
    % ------------------------------ lH#C:n  
    idx_pos = m>0; jr`;H  
    idx_neg = m<0; uihU)]+@t/  
    %/:0x:ns  
    z = y; f2f2&|7  
    if any(idx_pos) rT mVHt  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Wp2$L-T&$  
    end >=+: lD  
    if any(idx_neg) q@(MD3OE  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); HZJ)q`1E  
    end &h<\jqN/  
    BGOajYD  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) #M5pQ&yZy  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. h7a/]~  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated F>lM[Lu#  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive kuI$VC  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, gCL?{oVU  
    %   and THETA is a vector of angles.  R and THETA must have the same D_)N!,i  
    %   length.  The output Z is a matrix with one column for every P-value, 7zcmv"`  
    %   and one row for every (R,THETA) pair. l&Cy K#B:\  
    % %+ : $uk[  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike 9~5LKg7Ac  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) {\u6Cjx  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) O/b1^ Y   
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 nIEIb.-  
    %   for all p. K 3.z>.F'h  
    % "~:P-]`G  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 I1 +A$<Fa  
    %   Zernike functions (order N<=7).  In some disciplines it is *ORa@ x  
    %   traditional to label the first 36 functions using a single mode [U@ ;EeS  
    %   number P instead of separate numbers for the order N and azimuthal ZU68\cL  
    %   frequency M. <0btwsv}  
    % E0*62OI~O  
    %   Example: k!0vpps  
    % @>q4hYF  
    %       % Display the first 16 Zernike functions .Mxt F\  
    %       x = -1:0.01:1; 8'-E>+L   
    %       [X,Y] = meshgrid(x,x); "BA&  
    %       [theta,r] = cart2pol(X,Y); fi  
    %       idx = r<=1; Xk?Y  
    %       p = 0:15; 5h [<!f=  
    %       z = nan(size(X)); ^ ~kfo|  
    %       y = zernfun2(p,r(idx),theta(idx)); RHu4cK!5  
    %       figure('Units','normalized') orZwm9#].  
    %       for k = 1:length(p) )CoJ9PO7  
    %           z(idx) = y(:,k); >>T,M@s-:  
    %           subplot(4,4,k) _Rk>yJD7s  
    %           pcolor(x,x,z), shading interp RV>n Op}R  
    %           set(gca,'XTick',[],'YTick',[]) MZ:Ty,pw:O  
    %           axis square },%, v2}  
    %           title(['Z_{' num2str(p(k)) '}']) Ij?Qs{V  
    %       end 1B`JvNtd  
    % \F9HsR6  
    %   See also ZERNPOL, ZERNFUN. ;%mdSaf  
    jL*s(Yq  
    %   Paul Fricker 11/13/2006 H8A=]Gq  
    M!Ywjvw*)3  
    }+fBJ$  
    % Check and prepare the inputs: $xK(bc'{  
    % ----------------------------- F#Bi*YY  
    if min(size(p))~=1 H><! C  
        error('zernfun2:Pvector','Input P must be vector.') p]Q(Z  
    end F$HL \y  
    *fp4u_:`  
    if any(p)>35 3A'9=h,lVK  
        error('zernfun2:P36', ... Q(BM0n)f  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... >K 7]G?+7E  
               '(P = 0 to 35).']) 97n,^t2F\  
    end 9=9R"X>L  
    uWkuw5;  
    % Get the order and frequency corresonding to the function number: ?jn";:  
    % ---------------------------------------------------------------- s@K #M  
    p = p(:); =`t%p1   
    n = ceil((-3+sqrt(9+8*p))/2); A&`7 l5~X  
    m = 2*p - n.*(n+2); jF 6[+bW<  
    6Z!OD(/e  
    % Pass the inputs to the function ZERNFUN: %iD'2e:  
    % ---------------------------------------- v;:. k,E0  
    switch nargin Bw4PxJs-  
        case 3 ,%]x T>kH  
            z = zernfun(n,m,r,theta); Z`yW2ON$'  
        case 4 k-8$ 43  
            z = zernfun(n,m,r,theta,nflag); | (: PX  
        otherwise [p96H)8YU  
            error('zernfun2:nargin','Incorrect number of inputs.') =%0r_#F%=  
    end Ombvp;  
    p2j=73$  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) E{E%nXR)  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. `YPNVm<3)  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of <m+$@:cO  
    %   order N and frequency M, evaluated at R.  N is a vector of ]`}R,'P  
    %   positive integers (including 0), and M is a vector with the S<DS|qOo  
    %   same number of elements as N.  Each element k of M must be a Cs8e("w  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) q /^&si  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is <rFKJ^B  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix pYaq1_<+  
    %   with one column for every (N,M) pair, and one row for every P:2 0i*QU  
    %   element in R. 2Ls  
    % qY%{c-aMA  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- (ZHEPN  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is &HYs^|ydrr  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to "P {T]  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 \!,qXfTMB  
    %   for all [n,m]. O)9{qU:[b  
    % VU 8 ~hF  
    %   The radial Zernike polynomials are the radial portion of the or..e  
    %   Zernike functions, which are an orthogonal basis on the unit 3bPF+(`J  
    %   circle.  The series representation of the radial Zernike Zv)x-48  
    %   polynomials is "jEf$]  
    % J;cTEB  
    %          (n-m)/2 \ D,c*I|p7  
    %            __ i;8tA !  
    %    m      \       s                                          n-2s >$p|W~x  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r  QKtTy>5  
    %    n      s=0 :,BKB*a\  
    % |HMpVT-;j  
    %   The following table shows the first 12 polynomials. xk$U+8K  
    % 63n<4VSH  
    %       n    m    Zernike polynomial    Normalization s6J`i&uu  
    %       --------------------------------------------- B&RgUIrFoY  
    %       0    0    1                        sqrt(2) #OVf2  "  
    %       1    1    r                           2 $E]W U?U  
    %       2    0    2*r^2 - 1                sqrt(6) %{ToWLb{I  
    %       2    2    r^2                      sqrt(6) 298@&_  
    %       3    1    3*r^3 - 2*r              sqrt(8) ]M5w!O!  
    %       3    3    r^3                      sqrt(8) Wa+q[E  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) &?gvW//L2  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) smN |r  
    %       4    4    r^4                      sqrt(10) qg#|1J6e  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) 27-GfC=7*  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) o7;#B)jWS  
    %       5    5    r^5                      sqrt(12) O$,MdhyXC  
    %       --------------------------------------------- 9k[>(LC  
    % PhOtSml0  
    %   Example: q2C._{ 0'  
    % a@&P\"k  
    %       % Display three example Zernike radial polynomials /"%(i#<)xs  
    %       r = 0:0.01:1; k2cC:5Xf3  
    %       n = [3 2 5]; $D)Ajd;  
    %       m = [1 2 1]; vMB`TpZ  
    %       z = zernpol(n,m,r); eAD uk!Iq  
    %       figure rW(<[2vg  
    %       plot(r,z) mE}@}@(  
    %       grid on a{FCg%vD)  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') BQfq]ti  
    % 96FS-`  
    %   See also ZERNFUN, ZERNFUN2. X|w[:[P  
    swh8-_[c/  
    % A note on the algorithm. yhpeP  
    % ------------------------ .sOEqwO}>  
    % The radial Zernike polynomials are computed using the series hPB^|#}  
    % representation shown in the Help section above. For many special t5Oeb<REz  
    % functions, direct evaluation using the series representation can :]hNw1e  
    % produce poor numerical results (floating point errors), because ecRY,MN  
    % the summation often involves computing small differences between @ysc?4% q  
    % large successive terms in the series. (In such cases, the functions <)dHe:  
    % are often evaluated using alternative methods such as recurrence %2jRJ  
    % relations: see the Legendre functions, for example). For the Zernike %P2l@}?a  
    % polynomials, however, this problem does not arise, because the X5gI'u  
    % polynomials are evaluated over the finite domain r = (0,1), and :_f5(N*{5o  
    % because the coefficients for a given polynomial are generally all <_N<L\  
    % of similar magnitude. :7 P/ZC%  
    % 6S GV}dAx  
    % ZERNPOL has been written using a vectorized implementation: multiple W1T% Q88  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] 0<";9qN)6  
    % values can be passed as inputs) for a vector of points R.  To achieve n+XLZf#  
    % this vectorization most efficiently, the algorithm in ZERNPOL \_w>I_=F  
    % involves pre-determining all the powers p of R that are required to =h Lw 1~  
    % compute the outputs, and then compiling the {R^p} into a single BHZCM^  
    % matrix.  This avoids any redundant computation of the R^p, and 5SNa~ kC&  
    % minimizes the sizes of certain intermediate variables. 8*iIJ  
    % Y%1 94fY$  
    %   Paul Fricker 11/13/2006 zv8AvNDK  
    (rfR:[JkC2  
    ?~p]Ey}~9  
    % Check and prepare the inputs: 7B)m/%>3s  
    % ----------------------------- 'C2X9/!,  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ]9P2v X   
        error('zernpol:NMvectors','N and M must be vectors.') 4Nun-(q  
    end 0Kytg\p}  
    7H l>UX,|  
    if length(n)~=length(m) j*' +f~ A  
        error('zernpol:NMlength','N and M must be the same length.') ~Bi>T15e  
    end G8t9Lx  
    wJ%;\06  
    n = n(:); * ",/7(  
    m = m(:); }83a^E9L  
    length_n = length(n); z *FCd6X  
    {gkzo3  
    if any(mod(n-m,2)) Nm7YH@x*o  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') fFYfb4o  
    end BtA_1RO  
    6Lb(oY}\3  
    if any(m<0) J6[V7R[\  
        error('zernpol:Mpositive','All M must be positive.') J{!U;r!6  
    end u _mtdB'  
    JJZu%9~[  
    if any(m>n) "\k| Z  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') ?l9j]  
    end 90[6PSXk  
    I?&/J4o:  
    if any( r>1 | r<0 ) q)j_QbW)  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') RH}i=  
    end >'1 h  
    5(=5GkE)>  
    if ~any(size(r)==1) NHL9qL"qk  
        error('zernpol:Rvector','R must be a vector.') y<g1q"F  
    end m!K`?P]:N  
    { )-8P  
    r = r(:); ) UCc!  
    length_r = length(r); 2z9s$tp  
    #PkZi(k hv  
    if nargin==4 [} zzG@g,J  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); vvI23!H  
        if ~isnorm AxtmG\o>  
            error('zernpol:normalization','Unrecognized normalization flag.') Gl"|t't(  
        end IE|? &O  
    else @xXVJWEU:  
        isnorm = false; @9tzk [  
    end re~T,PPM  
    s(Bcw`'#  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% uc>":V  
    % Compute the Zernike Polynomials Vak\N)=u  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \(A A|;  
    $<QrV,T  
    % Determine the required powers of r: 8c\\-{  
    % ----------------------------------- F )Iz:  
    rpowers = []; 9Vru,7g  
    for j = 1:length(n) R4y]<8}  
        rpowers = [rpowers m(j):2:n(j)]; 45?% D}  
    end ,v%' 2[}  
    rpowers = unique(rpowers); uOO\!Hqq  
    lvsj4 cT  
    % Pre-compute the values of r raised to the required powers, 6CCm1F{`  
    % and compile them in a matrix: JC MUK<CG  
    % ----------------------------- eIJ>bM  
    if rpowers(1)==0 s IFE:/1,  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 3K=%I+G(4  
        rpowern = cat(2,rpowern{:}); ]rG/?1'^i  
        rpowern = [ones(length_r,1) rpowern]; b'W.l1]<-  
    else byFO^pce  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ]OtnekkK$  
        rpowern = cat(2,rpowern{:}); E<jW; trt_  
    end  W,|+Dl  
    i!x>)E  
    % Compute the values of the polynomials: kH5D%`Kw  
    % -------------------------------------- g#MLA5%=u  
    z = zeros(length_r,length_n); u"uL,w 1-  
    for j = 1:length_n 35Yf,@VO  
        s = 0:(n(j)-m(j))/2; j4<K0-?  
        pows = n(j):-2:m(j); 1<Sg@  
        for k = length(s):-1:1 <iA\ZS:  
            p = (1-2*mod(s(k),2))* ... a%A!Dz S  
                       prod(2:(n(j)-s(k)))/          ... MkL)  
                       prod(2:s(k))/                 ... 1uO2I&B  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... ! ,bQ;p3g|  
                       prod(2:((n(j)+m(j))/2-s(k))); ftG3!}  
            idx = (pows(k)==rpowers); _jc_(;KPF  
            z(:,j) = z(:,j) + p*rpowern(:,idx); au04F]-|j8  
        end e P,bFc  
         lm6hFvEZ  
        if isnorm ME$J42  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); *s,[Uy![  
        end 8qqN0"{,  
    end ,3!$mQL=  
    ^?$,sS ;Q  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  /o9it;  
    kG /1  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 EHwb?{  
    I _KHQ&Z*  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)