非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 9Lfv^V0
function z = zernfun(n,m,r,theta,nflag) /vb`H>P
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. Oz#{S:24M+
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N wn)W
?P;k
% and angular frequency M, evaluated at positions (R,THETA) on the !$>R j
% unit circle. N is a vector of positive integers (including 0), and ji,kkipY?w
% M is a vector with the same number of elements as N. Each element HLHz2-lI
% k of M must be a positive integer, with possible values M(k) = -N(k) i(+p0:< 0
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, _t}WsEQ+P
% and THETA is a vector of angles. R and THETA must have the same gbagi+8s`%
% length. The output Z is a matrix with one column for every (N,M) Jqi%|,/] N
% pair, and one row for every (R,THETA) pair. [;sRV<
% t<?,F
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike @!d{bQd,
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), eGbGw
% with delta(m,0) the Kronecker delta, is chosen so that the integral Pd]|:W< E
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, R_S.tT!
% and theta=0 to theta=2*pi) is unity. For the non-normalized w^0nqh
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ib791
% 5d!-G$@
% The Zernike functions are an orthogonal basis on the unit circle. 26x[X.C:
% They are used in disciplines such as astronomy, optics, and QnX(V[
% optometry to describe functions on a circular domain. i<g-+ Qs
% 1]/.` ]1
% The following table lists the first 15 Zernike functions. n>U5R_T
% U_c *6CK
% n m Zernike function Normalization QoH6
% -------------------------------------------------- 9490o:s
% 0 0 1 1 6Sn .I1Wy
% 1 1 r * cos(theta) 2 .Rf_Cl
% 1 -1 r * sin(theta) 2 DrK{}uM
% 2 -2 r^2 * cos(2*theta) sqrt(6) #
c^z&0B}
% 2 0 (2*r^2 - 1) sqrt(3) K@w{"7}
% 2 2 r^2 * sin(2*theta) sqrt(6) \:F_xq
% 3 -3 r^3 * cos(3*theta) sqrt(8) 4#hSJ(~7S
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) delu1r
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) ,UdVNA
% 3 3 r^3 * sin(3*theta) sqrt(8) G?Hdq;
% 4 -4 r^4 * cos(4*theta) sqrt(10) .y:U&Rw4
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) x`)&J
B
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) T:W4$P
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) x;<W&s}(
% 4 4 r^4 * sin(4*theta) sqrt(10) Q#[9|A9
% -------------------------------------------------- CF5`-wj/#
% (7=9++uU
% Example 1: n#_$\
p>Yd
% Vj>8a)"B5a
% % Display the Zernike function Z(n=5,m=1) %sQ^.` 2
% x = -1:0.01:1; A1zjPG&]
% [X,Y] = meshgrid(x,x); [QT#Yf0
% [theta,r] = cart2pol(X,Y); *$ %a:q1U
% idx = r<=1; 0v$~90)
% z = nan(size(X));
c=.(!qdH
% z(idx) = zernfun(5,1,r(idx),theta(idx)); e'b(gD}
% figure 2x0<&Xy#P
% pcolor(x,x,z), shading interp _b;{_g
% axis square, colorbar /FEVmH?
% title('Zernike function Z_5^1(r,\theta)') EG |A_m85
% ~Vjl7G\7i
% Example 2: bhlG,NTP
% tT?cBg{
% % Display the first 10 Zernike functions `$aZ0+
% x = -1:0.01:1; 'u<juFr
% [X,Y] = meshgrid(x,x); s#=7IH30
% [theta,r] = cart2pol(X,Y); -5QZJF2~
% idx = r<=1; S\!ana])
% z = nan(size(X)); 3"KCh\\b
% n = [0 1 1 2 2 2 3 3 3 3]; :1KpGj*F
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 9|CN8x-
% Nplot = [4 10 12 16 18 20 22 24 26 28]; _MX>#!l
% y = zernfun(n,m,r(idx),theta(idx)); QbpFE)TYJ|
% figure('Units','normalized') 9o:Lz5o
% for k = 1:10 $aXer:
% z(idx) = y(:,k); ]1pIj
i[
% subplot(4,7,Nplot(k)) .z}~4BY
% pcolor(x,x,z), shading interp <1\Nb{5
% set(gca,'XTick',[],'YTick',[]) 0T5L_%c
% axis square L AAHEv
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) o"R7,N0rB
% end ]^K4i)\
% G?/DrnK:
% See also ZERNPOL, ZERNFUN2. qVwIo.g!
.$)
% Paul Fricker 11/13/2006 a ]tVd#
^V Zk+'4
Bad:no\W
% Check and prepare the inputs: 2{G:=U
% ----------------------------- F,)%?<!I
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Z lzjVU/E
error('zernfun:NMvectors','N and M must be vectors.') g0ly
end e|WJQd4+S
i|*)I:SHU
if length(n)~=length(m) Qtv&ijFC
error('zernfun:NMlength','N and M must be the same length.') R>mmoG}MQ[
end h/hmlnOQl
tQYM&6g
n = n(:); +<3XJ7D
m = m(:); *QQzvhk
if any(mod(n-m,2)) t+T4-1 3a
error('zernfun:NMmultiplesof2', ... T&o(N3lW
'All N and M must differ by multiples of 2 (including 0).') !fR3(=oN
end bsA-2*Q+
s?,Ek
if any(m>n) C-6F]2:
error('zernfun:MlessthanN', ... :~N-.#
'Each M must be less than or equal to its corresponding N.') '|p$)yx2
end ktBj|-'>
~=RT*>G_
if any( r>1 | r<0 ) 2OR{[L*
error('zernfun:Rlessthan1','All R must be between 0 and 1.') ^qQZT]
end f-G:uI_
KP5C}ZK+s
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) k:F9. j%*
error('zernfun:RTHvector','R and THETA must be vectors.') %
*INT
end nWYN Np?h
"PTZ%7YH}
r = r(:); kbMWGB%;
theta = theta(:); ll.N^y;a
length_r = length(r); kN4{13Qs*
if length_r~=length(theta) T1Z;r*}
error('zernfun:RTHlength', ... Df<xWd2
'The number of R- and THETA-values must be equal.') aYS!xh206
end *>2W#D)b=
sAS:-wp
% Check normalization: 27O|).yKX
% -------------------- wL
4dTc
if nargin==5 && ischar(nflag) 5aZ2j26
isnorm = strcmpi(nflag,'norm'); $ig0j`
if ~isnorm bITPQ7+
error('zernfun:normalization','Unrecognized normalization flag.') @l jA
end ~8P!XAU56%
else UK O[r;
isnorm = false; :L RYYw
end mmEYup(l0;
7k9G(i[-+
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% p#?7w
% Compute the Zernike Polynomials vZ&T}H~8
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% _R13f@NWB:
6ZG+ZHUC&
% Determine the required powers of r: Hmd]
FC,_
% ----------------------------------- *4+"Lh.KS
m_abs = abs(m); 2ZMb<b4H
rpowers = []; -Rd/Gx
for j = 1:length(n) (#Gw1
rpowers = [rpowers m_abs(j):2:n(j)]; '\ey<}?5V
end wq(7|!Eix
rpowers = unique(rpowers); NOiN^::m
wKYZa# u
% Pre-compute the values of r raised to the required powers, o9%)D<4M
% and compile them in a matrix: L>9V&\
% ----------------------------- >eqxV|]i
if rpowers(1)==0 ^*8G8'k;$
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); n}_JB>i~
rpowern = cat(2,rpowern{:}); 2w_W Adi
rpowern = [ones(length_r,1) rpowern]; .
Z.)t
else "2P&X
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); hp*/#D
rpowern = cat(2,rpowern{:}); ^~@U]
end 1[qLA!+
*/|lJm'R
% Compute the values of the polynomials: %Yicg6:
% -------------------------------------- s'a/j)^
y = zeros(length_r,length(n)); t2"O
for j = 1:length(n) f3&[#%
s = 0:(n(j)-m_abs(j))/2; l@ H
pows = n(j):-2:m_abs(j); K[Kh&`T
for k = length(s):-1:1 cU@SIJ)
p = (1-2*mod(s(k),2))* ... 6c"0})p
prod(2:(n(j)-s(k)))/ ... Co9QW/'i
prod(2:s(k))/ ... Q}K#'Og
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 5b/|!{
prod(2:((n(j)+m_abs(j))/2-s(k))); o/6-3QUak
idx = (pows(k)==rpowers); XZJ+h,f
y(:,j) = y(:,j) + p*rpowern(:,idx); &8>IeK{I
end xA1hfe.9
|e?64%l5P
if isnorm 8V)^R(\;
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ph [#QHB
end c^u"I'#Q
end B}?5]N==]
% END: Compute the Zernike Polynomials 'wI"Bo6e
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% "@d[h ,TM
Vf'd*-_!Q<
% Compute the Zernike functions: 8p9bCE>\
% ------------------------------ C\nhqkn
idx_pos = m>0; =fve/_Q~
idx_neg = m<0; 2viM)+
9C[ywp
z = y; gu<'QV"
if any(idx_pos) *@Y3oh}S
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Ikiib
WQL+
end n;U`m$vL%
if any(idx_neg) Y$Y_fjd_
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); !+4cqO
end @t`Xq1
1_
C]*p
% EOF zernfun