非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 (,D:6(R7t
function z = zernfun(n,m,r,theta,nflag) g(dReC
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. ) uTFId
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ,olP}
% and angular frequency M, evaluated at positions (R,THETA) on the '7
t:.88
% unit circle. N is a vector of positive integers (including 0), and Mc{-2
% M is a vector with the same number of elements as N. Each element "V`5 $ur
% k of M must be a positive integer, with possible values M(k) = -N(k) ;_#<a*f
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, G7%f|
Y
% and THETA is a vector of angles. R and THETA must have the same 1 %8JMq\
% length. The output Z is a matrix with one column for every (N,M) JHa\"h
% pair, and one row for every (R,THETA) pair. ?\$6"c<G
% EMzJyGt7
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike nP_)PDTFp
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), [1e]_9)p
% with delta(m,0) the Kronecker delta, is chosen so that the integral C!U$<_I\2
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 6+4SMf3
% and theta=0 to theta=2*pi) is unity. For the non-normalized gxmY^"Jy
% polynomials, max(Znm(r=1,theta))=1 for all [n,m].
N@X(YlO
% 54#P
% The Zernike functions are an orthogonal basis on the unit circle. c7D{^$L9v
% They are used in disciplines such as astronomy, optics, and kK:U+`+
% optometry to describe functions on a circular domain. Py#TXzEcC
% " c+$GS
% The following table lists the first 15 Zernike functions. Z1_F)5pn
% x@3cZd0j#
% n m Zernike function Normalization QCO,f
% -------------------------------------------------- $HCgawQ
% 0 0 1 1 1A[(R T]
% 1 1 r * cos(theta) 2 Va A.J
% 1 -1 r * sin(theta) 2 @VQ<X4Za
% 2 -2 r^2 * cos(2*theta) sqrt(6) f)mOeD*u|
% 2 0 (2*r^2 - 1) sqrt(3) =1y~Qlu
% 2 2 r^2 * sin(2*theta) sqrt(6) qWJHb Dd
% 3 -3 r^3 * cos(3*theta) sqrt(8) MT6"b
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) dZX;k0
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) Oh%p1$H
% 3 3 r^3 * sin(3*theta) sqrt(8) BjGfUQ
% 4 -4 r^4 * cos(4*theta) sqrt(10) 5fRr d;
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) *4%%^*g.I
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) jig3M N
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) \/b[V3<"
% 4 4 r^4 * sin(4*theta) sqrt(10) ^7yaMB!
% -------------------------------------------------- Bo\~PV[
% *5{1.7
% Example 1: eAStpG"*
% Tv6y+l
% % Display the Zernike function Z(n=5,m=1) N6`U)=2o>h
% x = -1:0.01:1; 2A:&Cqo
% [X,Y] = meshgrid(x,x); _l+C0lQl=
% [theta,r] = cart2pol(X,Y); eL.WP`Lz
% idx = r<=1; )+ 'r-AF*
% z = nan(size(X)); t+K1ArQc
% z(idx) = zernfun(5,1,r(idx),theta(idx)); d2TIG<6/
% figure kP'm$+1or
% pcolor(x,x,z), shading interp z$Le,+
% axis square, colorbar p{:y?0pGN
% title('Zernike function Z_5^1(r,\theta)') T8&eaAoo
% Q @[gj:w
% Example 2: zszmG^W{
% }9glr]=
% % Display the first 10 Zernike functions jo3(\Bq
% x = -1:0.01:1; OMM5ALc(F
% [X,Y] = meshgrid(x,x); w=3
j'y{f
% [theta,r] = cart2pol(X,Y); sPVE_n
% idx = r<=1; \hn$-'=4
% z = nan(size(X)); 1;'-$K`}
% n = [0 1 1 2 2 2 3 3 3 3]; eoXbZ
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; V.6pfL
% Nplot = [4 10 12 16 18 20 22 24 26 28]; *?$M=tH
% y = zernfun(n,m,r(idx),theta(idx)); 5SZa,+]
% figure('Units','normalized') "Q:h[) a
% for k = 1:10 ~ch%mI~
% z(idx) = y(:,k); Ke=+D'=
% subplot(4,7,Nplot(k)) 9gglyoZ%
% pcolor(x,x,z), shading interp Gs,e8ri!
% set(gca,'XTick',[],'YTick',[]) f/s" 2r
% axis square k"C'8<T)'
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) M< .1U?_#
% end NqGSoOjIO2
% I>##iiKN
% See also ZERNPOL, ZERNFUN2. Od^Sr4C
Z`86YYGK
% Paul Fricker 11/13/2006 [S8*b^t4
S4?WR+:h
U=7nz|
% Check and prepare the inputs: @rAV;D%
% ----------------------------- aC%Q.+-t
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) aEh9za
error('zernfun:NMvectors','N and M must be vectors.') KU*aJl_n,
end .gzfaxi
G
"!v)o
if length(n)~=length(m) SH#*Lc
error('zernfun:NMlength','N and M must be the same length.') M] +.xo+A
end vU5}E\Ny
;<thEWH;Y
n = n(:); KV$4}{
m = m(:); }S3 oX$
if any(mod(n-m,2)) F3]VSI6^E,
error('zernfun:NMmultiplesof2', ... "^!y>]j#A
'All N and M must differ by multiples of 2 (including 0).') pPag@L
end k`A39ln7wu
(x?Tjyzw
if any(m>n) (vX<Bh
error('zernfun:MlessthanN', ... U djYRfk
'Each M must be less than or equal to its corresponding N.') u"m(a:jQ
end |$e'yx6j
jWV}Ua
if any( r>1 | r<0 ) -ucgET`
error('zernfun:Rlessthan1','All R must be between 0 and 1.') UV0[S8A
end `'sD (e
NdSuOkwwt
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) PgGUs4[
error('zernfun:RTHvector','R and THETA must be vectors.') a@<-L
end ;gSRpTS:
>C!^%e;m
r = r(:); Hk@Gkx_
theta = theta(:); {V[}#Mf
length_r = length(r); tq3Rc}
if length_r~=length(theta) %2\tly!{ %
error('zernfun:RTHlength', ... M?L$xE_&
'The number of R- and THETA-values must be equal.') _MLf58
end A_9J~3
CswKT9
% Check normalization: a!-J=\>9
% -------------------- :$,MAQ'9
if nargin==5 && ischar(nflag) {>9ED.t
isnorm = strcmpi(nflag,'norm'); FKz5,PeL
if ~isnorm 2 \}J*0
error('zernfun:normalization','Unrecognized normalization flag.') Cl9 nmyf
end ]VLseF
else O^row1D_
isnorm = false; rf:H$\yw
end B 5|\<CF
Cp"7R&s
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ,&WwADZ-s
% Compute the Zernike Polynomials Cd"{7<OyM4
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ]2qKc
\rzMgR$/rj
% Determine the required powers of r: >20dK
% ----------------------------------- [i ~qVn2vT
m_abs = abs(m);
Pap6JR{7
rpowers = []; h )5S4)
for j = 1:length(n) (H !iK,R
rpowers = [rpowers m_abs(j):2:n(j)]; !p/?IW+
end E KV[cq
rpowers = unique(rpowers); 9%iQ~
!Vw1w1
% Pre-compute the values of r raised to the required powers, n*=#jL
% and compile them in a matrix: {#k[-\|;
% ----------------------------- s{yw1:
if rpowers(1)==0 o?hr>b
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); U>f'j;5
rpowern = cat(2,rpowern{:}); ~Q]5g7k=&
rpowern = [ones(length_r,1) rpowern]; cS9jGD92
else -"dt3$ju
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); /0XMQy
rpowern = cat(2,rpowern{:}); pLtw|S'4
end +)"Rv%.
3EICdC
% Compute the values of the polynomials: ]>VG}e~b
% -------------------------------------- ~s'tr&+
y = zeros(length_r,length(n)); znwKwc8,
for j = 1:length(n) % (y{Sca
s = 0:(n(j)-m_abs(j))/2; n%7?G=_kj
pows = n(j):-2:m_abs(j); c:Nm!+5_(
for k = length(s):-1:1 }ARA K ^%
p = (1-2*mod(s(k),2))* ... (jDz[b#OPz
prod(2:(n(j)-s(k)))/ ... ?l^Xauk4Pj
prod(2:s(k))/ ... 7}UG&t{
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... daI_@k Y"
prod(2:((n(j)+m_abs(j))/2-s(k))); ~!
-JN}H m
idx = (pows(k)==rpowers); R;c9)>8L
y(:,j) = y(:,j) + p*rpowern(:,idx); ?zf3Fn2y
end ?Z7QD8N
7*{f*({
if isnorm
-9i7Ja
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); nm,LKS7
end 4}uOut
end |j`73@6
% END: Compute the Zernike Polynomials Km8aHc]O~
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Z4/D38_
+45SKu=
% Compute the Zernike functions: 4x)vy-y
% ------------------------------ JY CMW!~
idx_pos = m>0; O;RBK&P
idx_neg = m<0; HU>>\t?d
j2,sI4
z = y; bss2<mqlH
if any(idx_pos) 5c::U=
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 'EIe5Op
end Q$5t~*$`
if any(idx_neg) ljK?2z>
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); qj_0
td$
end nRBS&&V
OS#aYER~/
% EOF zernfun