切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11413阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 nXM9Px!  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! @dE 3  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 "%.|n|  
    function z = zernfun(n,m,r,theta,nflag) <t?x 'r?@  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. bK_0NrXP  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N xVsa,EX b  
    %   and angular frequency M, evaluated at positions (R,THETA) on the (!3Yc:~RE  
    %   unit circle.  N is a vector of positive integers (including 0), and 27Kc -rcB  
    %   M is a vector with the same number of elements as N.  Each element V!pq,!C$v  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) lgCHGv2@  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, <O,'5+zG%  
    %   and THETA is a vector of angles.  R and THETA must have the same I<D&,LFH*w  
    %   length.  The output Z is a matrix with one column for every (N,M) dAYI DE  
    %   pair, and one row for every (R,THETA) pair. ?VMi!-POE  
    % [Vrc:%Jk  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike S F&M (=w<  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), %mK3N2N$  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral ['51FulDR  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ^w;o\G  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized =Q/w%8G  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. T8,k7 7  
    % ]6a/0rg:t  
    %   The Zernike functions are an orthogonal basis on the unit circle. 6T^N!3p_  
    %   They are used in disciplines such as astronomy, optics, and @K,2mhE~h  
    %   optometry to describe functions on a circular domain. >Jm-2W5J  
    % pX>ua5Z  
    %   The following table lists the first 15 Zernike functions. G]L0eV  
    % kdK*MUB  
    %       n    m    Zernike function           Normalization &%|xc{i  
    %       -------------------------------------------------- w$DG=!  
    %       0    0    1                                 1 Qv&T E3  
    %       1    1    r * cos(theta)                    2 c^ixdk  
    %       1   -1    r * sin(theta)                    2 hr J$%U  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 96.IuwL*.s  
    %       2    0    (2*r^2 - 1)                    sqrt(3) _N>wzkJ  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) [b7it2`dl  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) KW&nDu t  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) /`7 IK  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) T5 K-gz7A  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) #@nZ4=/z  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) L/qZ ;{  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) RtW4 n:c  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) q1N4X7<_  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) a='IT 5  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) |x1$b 7  
    %       -------------------------------------------------- fl!mYCPv  
    % 98D{{j92  
    %   Example 1: hVlyEsLg  
    % Z 7`5x  
    %       % Display the Zernike function Z(n=5,m=1) ,DE(5iDS  
    %       x = -1:0.01:1; TZ^{pvBy  
    %       [X,Y] = meshgrid(x,x);  K&j' c  
    %       [theta,r] = cart2pol(X,Y); ,$HHaoo g  
    %       idx = r<=1; y\[L?Rmd  
    %       z = nan(size(X)); vg+r?4Q3  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); o&CghF  
    %       figure R!sNg   
    %       pcolor(x,x,z), shading interp V8-4>H}Cb/  
    %       axis square, colorbar b2a'KczV  
    %       title('Zernike function Z_5^1(r,\theta)') IetCMp  
    % k%"$$uo  
    %   Example 2: V %i<;C  
    % ;])I>BT[  
    %       % Display the first 10 Zernike functions l>A\ V)  
    %       x = -1:0.01:1; ].LJt['%8  
    %       [X,Y] = meshgrid(x,x); 5fU!'ajaN7  
    %       [theta,r] = cart2pol(X,Y); wG_4$kyj  
    %       idx = r<=1; cB{%u '  
    %       z = nan(size(X)); 6!*K/2:O  
    %       n = [0  1  1  2  2  2  3  3  3  3]; 0 9tikj1  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; ! &Z*yH  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; O\%j56Bf  
    %       y = zernfun(n,m,r(idx),theta(idx)); bSQ_"  
    %       figure('Units','normalized') 3QH(4N  
    %       for k = 1:10 8a7YHUL<3i  
    %           z(idx) = y(:,k); `$H7KIG  
    %           subplot(4,7,Nplot(k)) TV? ^c?{5  
    %           pcolor(x,x,z), shading interp VIetcs  
    %           set(gca,'XTick',[],'YTick',[]) ,bxz]S1W  
    %           axis square fQxSMPWB  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 4>l0V<  
    %       end ;D:=XA%  
    % /({P1ti:C  
    %   See also ZERNPOL, ZERNFUN2. 'HCnB]1  
    5qGGu.$Ihi  
    %   Paul Fricker 11/13/2006 anLbl#UV  
    "X`Qe!zk4  
    4yhcK&  
    % Check and prepare the inputs: r;9z 5'  
    % ----------------------------- fD0{ 5  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Il|GCj*N  
        error('zernfun:NMvectors','N and M must be vectors.') (Bsw/wv  
    end bea|?lK  
    )TM!ms+K  
    if length(n)~=length(m) $]Jf0_  
        error('zernfun:NMlength','N and M must be the same length.') ad9EG#mD#  
    end - gB{:UYi3  
    _$!`VA%  
    n = n(:); D]jkR} t  
    m = m(:); 7O"hiDQ  
    if any(mod(n-m,2)) /Ad6+cY  
        error('zernfun:NMmultiplesof2', ... `6UtxJSx  
              'All N and M must differ by multiples of 2 (including 0).') f*v1J<1#  
    end 0Lx3]"v  
    p x0Sy|  
    if any(m>n) =88t*dH(,"  
        error('zernfun:MlessthanN', ... %iX/y  
              'Each M must be less than or equal to its corresponding N.') N70zjy4?fL  
    end jK e.gA  
    ,b4g.CV  
    if any( r>1 | r<0 ) *CzCUu:%t  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') xuF5/(__  
    end j!7Qw 8  
    /e .D /;]  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 0lBat_<8  
        error('zernfun:RTHvector','R and THETA must be vectors.') wW^Zb  
    end k},>^qE  
    s+'XQs^{aj  
    r = r(:); ex!XB$X  
    theta = theta(:); IyOpju)?  
    length_r = length(r); Hxn<(gd G  
    if length_r~=length(theta) `2,a(Sk#  
        error('zernfun:RTHlength', ... oE6|Zw  
              'The number of R- and THETA-values must be equal.') }s(C^0x  
    end k8 u%$G  
    KXq_K:r?  
    % Check normalization: :6zC4Sr^  
    % -------------------- 4T%cTH:.9N  
    if nargin==5 && ischar(nflag) _F^$aZt?e  
        isnorm = strcmpi(nflag,'norm'); R5gado  
        if ~isnorm u0g*O]Y  
            error('zernfun:normalization','Unrecognized normalization flag.') 1|]xo3j"'  
        end -Uri|^t  
    else -~\f2'Q  
        isnorm = false; JN|VPvjE   
    end ol<lCp  
    GkciA{  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% i5VG2S  
    % Compute the Zernike Polynomials M%|f+u&  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% [Y$V\h=V  
    R:f7LRF/\  
    % Determine the required powers of r: [IMQIX  
    % ----------------------------------- =hGJAU  
    m_abs = abs(m); ;y OD  
    rpowers = []; B4^`Sw  
    for j = 1:length(n) B=dseeG[To  
        rpowers = [rpowers m_abs(j):2:n(j)]; vK:QX$b  
    end $kl$D"*0  
    rpowers = unique(rpowers); {xToz]YA  
    p[-{]!  
    % Pre-compute the values of r raised to the required powers, N+J>7_k   
    % and compile them in a matrix: nE7JLtbH  
    % ----------------------------- 7k~Lttuk  
    if rpowers(1)==0 sf)W~Lx 5a  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Ihqs%;V  
        rpowern = cat(2,rpowern{:}); fv2=B )8$  
        rpowern = [ones(length_r,1) rpowern]; M(2`2-/xh  
    else e9:P9Di(b  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); :Eo8v$W\RB  
        rpowern = cat(2,rpowern{:}); 4TVwa(cB  
    end v)+@XU2wZ  
    Q6x%  
    % Compute the values of the polynomials: L=g_@b   
    % -------------------------------------- 8^vArS;  
    y = zeros(length_r,length(n)); Ia7D F'  
    for j = 1:length(n) gl "_:atW  
        s = 0:(n(j)-m_abs(j))/2; _Ex|f5+  
        pows = n(j):-2:m_abs(j); Bm} iU~(Z`  
        for k = length(s):-1:1 +N R n0 z(  
            p = (1-2*mod(s(k),2))* ... m8AAp1=  
                       prod(2:(n(j)-s(k)))/              ... +*.1}r&  
                       prod(2:s(k))/                     ... v20~^gKo=m  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... eXG57<t ON  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); tT-=hDw  
            idx = (pows(k)==rpowers); K(3&27sGN  
            y(:,j) = y(:,j) + p*rpowern(:,idx); A{(T'/~"  
        end lwJipIO  
         |_nC6 ;  
        if isnorm  Q; 20T  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); afUTAP@  
        end c/'M#h)"  
    end [%~^kq=|  
    % END: Compute the Zernike Polynomials Abf1"#YImy  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #_fY4vEO  
    ^@"c`  
    % Compute the Zernike functions: W_m!@T"@H  
    % ------------------------------ 4+Ti7p06&\  
    idx_pos = m>0; BKZ v9  
    idx_neg = m<0; Azn:_4O  
    "mt p0  
    z = y; Q S;F+cmTh  
    if any(idx_pos) ugxw!cj  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); f~*K {7  
    end HlRAD|]\  
    if any(idx_neg) ppFYc\&=  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 6(.H3bu  
    end e?=elN  
    ^ $wJi9D6  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) 5H*>  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. P\T|[%E'  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated `*d{PJTv  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive 48k 7/w\  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, RpAiU  
    %   and THETA is a vector of angles.  R and THETA must have the same EZ{/]gCK  
    %   length.  The output Z is a matrix with one column for every P-value, /Zx8nx'{V  
    %   and one row for every (R,THETA) pair. 8 ?" Ze(  
    % '%ebcL  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike pI 5_Hg  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) X(b1/lzA  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) 6}STp_x  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 8sWr\&!  
    %   for all p. |K)p]i+  
    % u?Z <n:  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 FW5}oD( H  
    %   Zernike functions (order N<=7).  In some disciplines it is .?Auh2nr  
    %   traditional to label the first 36 functions using a single mode \ =Nm5:  
    %   number P instead of separate numbers for the order N and azimuthal n. I2$._(b  
    %   frequency M. -nG wuEngP  
    % ,02w@we5  
    %   Example: P{Lg{I_w.B  
    % c>rKgx  
    %       % Display the first 16 Zernike functions f,JX"  
    %       x = -1:0.01:1; gg(k7e  
    %       [X,Y] = meshgrid(x,x); ;le0QA Pf  
    %       [theta,r] = cart2pol(X,Y); Hh@2m\HA  
    %       idx = r<=1; ?CFoe$M  
    %       p = 0:15; H@4/#V|Uy  
    %       z = nan(size(X)); i3d y  
    %       y = zernfun2(p,r(idx),theta(idx)); PK}vh%  
    %       figure('Units','normalized') N;g$)zCV1  
    %       for k = 1:length(p) 9 R  
    %           z(idx) = y(:,k); ?lyltAxs'  
    %           subplot(4,4,k)  ^ `je  
    %           pcolor(x,x,z), shading interp I5Q~T5Ar  
    %           set(gca,'XTick',[],'YTick',[]) ZBC@xM&-  
    %           axis square ([tG y  
    %           title(['Z_{' num2str(p(k)) '}']) E$R_rX4x  
    %       end Wxc^_iqA1  
    % A'`P2Am  
    %   See also ZERNPOL, ZERNFUN. {Y^c*Iqn  
    fRFYJFc n  
    %   Paul Fricker 11/13/2006 q}e]*]dJZ  
    9ClF<5?M  
    ,$ mLL  
    % Check and prepare the inputs: ^9s"FdB]24  
    % ----------------------------- 8lpzSJP4k  
    if min(size(p))~=1 l<Lz{)OR  
        error('zernfun2:Pvector','Input P must be vector.') 5Fh8*8u6hL  
    end 2$3kKY6$e  
    =nw0# '  
    if any(p)>35 (qbc;gBy  
        error('zernfun2:P36', ...  -?Ejbko  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... 5c)<'EP  
               '(P = 0 to 35).']) 7G2vYKC'  
    end [*t U}9  
    mgxz1d  
    % Get the order and frequency corresonding to the function number: I0(8Z]x  
    % ---------------------------------------------------------------- O[L\T  
    p = p(:); /XN*)m  
    n = ceil((-3+sqrt(9+8*p))/2); $M-NR||k  
    m = 2*p - n.*(n+2); RpjSTV8Tkm  
     J(^ >?d'  
    % Pass the inputs to the function ZERNFUN: p#z;cjfSt  
    % ---------------------------------------- }pt-q[s>  
    switch nargin y6\ [1nZ  
        case 3 \3M1.Q4$Gr  
            z = zernfun(n,m,r,theta); 1aVgwAI  
        case 4 s 8Jj6V  
            z = zernfun(n,m,r,theta,nflag); lR, G;  
        otherwise GgT=t)}wu  
            error('zernfun2:nargin','Incorrect number of inputs.') _m" ^lo  
    end Na-q%ru  
    e`vUK.UoW  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) gW/QFZjY  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. ^GrNfB[Qu  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of H7y&N5.V  
    %   order N and frequency M, evaluated at R.  N is a vector of Hxj'38Y  
    %   positive integers (including 0), and M is a vector with the 5c*p2:]  
    %   same number of elements as N.  Each element k of M must be a w/hh 4ir  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) 3KDu!w@  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is _!| =AIX  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix "9TxK6  
    %   with one column for every (N,M) pair, and one row for every ^u=PdBY  
    %   element in R. W<Bxm|  
    % 9@kc K  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- 8+=p8e~An  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is iXt4|0  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to uPM8GIvZX.  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 Ym3 "  
    %   for all [n,m]. e?_c[`sg  
    % .LWOM8)  
    %   The radial Zernike polynomials are the radial portion of the F+lm[4n  
    %   Zernike functions, which are an orthogonal basis on the unit V]+o)A$  
    %   circle.  The series representation of the radial Zernike tU8g(ep,o  
    %   polynomials is Z $ p^v*y  
    % de*,MkZN  
    %          (n-m)/2 ;a#}fX  
    %            __ Xi1q]ps  
    %    m      \       s                                          n-2s ';i"?D?NAk  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r 6RR4L^(m  
    %    n      s=0 rTN"SQt  
    % <\qY " .`  
    %   The following table shows the first 12 polynomials. Y*]l|)a6_]  
    % cq+nWHqF{J  
    %       n    m    Zernike polynomial    Normalization NN31?wt  
    %       --------------------------------------------- dqIZ#;:g  
    %       0    0    1                        sqrt(2) FKDamHL<  
    %       1    1    r                           2 U[K0{PbY  
    %       2    0    2*r^2 - 1                sqrt(6) AAeQ-nbP  
    %       2    2    r^2                      sqrt(6) *[XN.sb8E  
    %       3    1    3*r^3 - 2*r              sqrt(8) +&&MUT{ 3  
    %       3    3    r^3                      sqrt(8) 2@"0} po#  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) @5<]W+jk4  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) Ek gZxT_&  
    %       4    4    r^4                      sqrt(10) l}U~I 3}).  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) V{7lltu  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) :)^# xE(  
    %       5    5    r^5                      sqrt(12) 0KWy?6 X  
    %       --------------------------------------------- ;EE{ ~  
    % [Gh%nsH  
    %   Example: FFD*e-i  
    % t?3{s\z8+  
    %       % Display three example Zernike radial polynomials n1k$)S$iiy  
    %       r = 0:0.01:1; o O{|C&A  
    %       n = [3 2 5]; -eSPoZ  
    %       m = [1 2 1]; *SMoodFBS  
    %       z = zernpol(n,m,r); te!]9rR  
    %       figure %l9WZ*yZ`2  
    %       plot(r,z) <;TP@-a  
    %       grid on ~/]\iOL  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') 7(nz<z p  
    % !ch[I#&J-  
    %   See also ZERNFUN, ZERNFUN2. c(_oK ?  
    N9>'/jgZX  
    % A note on the algorithm. v4Fnh`{  
    % ------------------------  \\E_W9.u  
    % The radial Zernike polynomials are computed using the series E980yXJR  
    % representation shown in the Help section above. For many special &cn%4Er  
    % functions, direct evaluation using the series representation can #%} u8\q  
    % produce poor numerical results (floating point errors), because IV 3@6t4k  
    % the summation often involves computing small differences between .SRuyioF&  
    % large successive terms in the series. (In such cases, the functions V5(tf'  
    % are often evaluated using alternative methods such as recurrence /ut~jf`  
    % relations: see the Legendre functions, for example). For the Zernike #h #mOJ5  
    % polynomials, however, this problem does not arise, because the +QCU]Fozk  
    % polynomials are evaluated over the finite domain r = (0,1), and ~ (l2%(3G  
    % because the coefficients for a given polynomial are generally all % 0y3/W  
    % of similar magnitude. cfy/*|  
    % 9$4/frd  
    % ZERNPOL has been written using a vectorized implementation: multiple YWn6wzu%Vc  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] U{za m  
    % values can be passed as inputs) for a vector of points R.  To achieve aQym= 6 %e  
    % this vectorization most efficiently, the algorithm in ZERNPOL R; Gl{  
    % involves pre-determining all the powers p of R that are required to r-\T}e2Gz  
    % compute the outputs, and then compiling the {R^p} into a single FRJ:ym=E  
    % matrix.  This avoids any redundant computation of the R^p, and X'3`Q S:!  
    % minimizes the sizes of certain intermediate variables. dWq/)%@t  
    % k_|v)\4B  
    %   Paul Fricker 11/13/2006 tl,x@['p`  
    C.9eXa1wkT  
    `)( <g  
    % Check and prepare the inputs: x" :Bw;~  
    % ----------------------------- 71n uTE%!  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) >1)@n3.<O  
        error('zernpol:NMvectors','N and M must be vectors.') u;'<- _  
    end w'zO(6 `  
    Dry;$C}P  
    if length(n)~=length(m) Ivl^,{4  
        error('zernpol:NMlength','N and M must be the same length.') 6GrMcI@hS  
    end  <*6y`X  
     >Wr   
    n = n(:); ja,L)b:  
    m = m(:); .KwuhmR  
    length_n = length(n); #&`WMLl+8  
    b1 ['uJF  
    if any(mod(n-m,2)) ^?S@v1~7d  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') L_zmU_zD  
    end Zy+QA>d|  
    i&s=!`  
    if any(m<0) 2I(@aB+  
        error('zernpol:Mpositive','All M must be positive.') 2Ws/0c  
    end v BeU  
    xf F&$K"  
    if any(m>n) /x8C70W^  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') as\K(c9  
    end />2$ XwP  
    Mpl,}Q!c  
    if any( r>1 | r<0 ) JjTzq2'%  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') J-%PyvK$?  
    end Z :i"|;  
    )]>Y*<s }  
    if ~any(size(r)==1) 4kY{X%9  
        error('zernpol:Rvector','R must be a vector.') x ;?1#W  
    end )}9}"jrDlx  
    7J!d3j2TR  
    r = r(:); K&P{2Hndr  
    length_r = length(r); u b>K^  
    r1[T:B'  
    if nargin==4 /wRK[i  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); ALt";8Oa  
        if ~isnorm ^{sI'l~  
            error('zernpol:normalization','Unrecognized normalization flag.') \,IDLXqp  
        end rM~IF+f0XD  
    else "ZPbK$+=yU  
        isnorm = false; +?m=f}>W1  
    end +7vh__  
    E|A_|FS&%  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% z'}t@R#H  
    % Compute the Zernike Polynomials P}u<NPy3Q  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% x)sDf!d4bi  
    2iINQK$  
    % Determine the required powers of r: 1Y0oo jD  
    % ----------------------------------- ~hw4gdtS  
    rpowers = []; s#Y7*?Sm  
    for j = 1:length(n) |2]WA'q  
        rpowers = [rpowers m(j):2:n(j)]; >0okb3+  
    end G,* uj0g  
    rpowers = unique(rpowers); ]CJ>iS!V  
    J#;m)5[ a%  
    % Pre-compute the values of r raised to the required powers, [5#/& k{  
    % and compile them in a matrix: lxJ.h&"P  
    % ----------------------------- g wiC ,  
    if rpowers(1)==0 F(n))`(  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 5DBd [u3  
        rpowern = cat(2,rpowern{:}); _4#psxl[M  
        rpowern = [ones(length_r,1) rpowern]; (Q} ijwj  
    else (NV=YX?s  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); }XE/5S}D  
        rpowern = cat(2,rpowern{:}); [5:7 WqB  
    end @8d})X33  
    c{P`oB8  
    % Compute the values of the polynomials: `^h##WaXap  
    % -------------------------------------- _NN{Wk/3w  
    z = zeros(length_r,length_n); 6$;)CO!h  
    for j = 1:length_n kqB 00 ;  
        s = 0:(n(j)-m(j))/2; IY6S\Gn  
        pows = n(j):-2:m(j); /[T8/7;_l  
        for k = length(s):-1:1 9r*T3=u.S  
            p = (1-2*mod(s(k),2))* ... ]/naH#8G  
                       prod(2:(n(j)-s(k)))/          ... No|{rYYKK  
                       prod(2:s(k))/                 ... } dlNMW  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... a2FIFWvW  
                       prod(2:((n(j)+m(j))/2-s(k))); 4hz,F/ I  
            idx = (pows(k)==rpowers); a6#PZ!1  
            z(:,j) = z(:,j) + p*rpowern(:,idx); hiM!htc;M  
        end @_nhA/rlc  
         *9&YkVw~  
        if isnorm Q1B! W  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); (R,n`x2^  
        end 8TvPCZ$x  
    end J#WPXE+Ds  
    7FFYSv,[:  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  ,F1$Of/'@\  
    \l`;]cA  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 975KRnj  
    9wYbY* j  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)