切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11144阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 X&\d)/Y  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! x~DLW1I  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 @'FE2^~Jj  
    function z = zernfun(n,m,r,theta,nflag) Z9`TwS@x[  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. wD \ZOn_J  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N j f~wBm d7  
    %   and angular frequency M, evaluated at positions (R,THETA) on the sp9W?IJ 6c  
    %   unit circle.  N is a vector of positive integers (including 0), and OEhHR  
    %   M is a vector with the same number of elements as N.  Each element s<QkDERMX  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) +=$  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, u0s8yPA  
    %   and THETA is a vector of angles.  R and THETA must have the same rVSZ.+n  
    %   length.  The output Z is a matrix with one column for every (N,M) @I3eK^#|P  
    %   pair, and one row for every (R,THETA) pair. =Ufr^naA  
    % Q\Kx"Y3i  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike T3%C%BcX  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), |9K<-yD  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral "h"NW[R  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 3)Ac"nuyqH  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized dE`-\J  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. yx{3J  
    % dR^"X3$  
    %   The Zernike functions are an orthogonal basis on the unit circle. D1s4`V -  
    %   They are used in disciplines such as astronomy, optics, and H U+ I  
    %   optometry to describe functions on a circular domain. _RkuBOv@e  
    % Z=S>0|`R  
    %   The following table lists the first 15 Zernike functions. s0u{d qP  
    % Y'VBz{brf  
    %       n    m    Zernike function           Normalization JC?N_kP%W  
    %       -------------------------------------------------- ? zDa=7 J  
    %       0    0    1                                 1 2{,n_w?Wy  
    %       1    1    r * cos(theta)                    2 A Io|TD5{~  
    %       1   -1    r * sin(theta)                    2 n'FwM\  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) sq/]wzT:  
    %       2    0    (2*r^2 - 1)                    sqrt(3) ?`_jFj+<\S  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) c:!zO\P#  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ~ Hy,7  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) _Xcn N:Rt  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) .4y>QN#VL  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) # uCB)n&.  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) E-5_{sc  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) xw^.bz|  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) P$GjF-!:  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) &[mZD,  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) ` Nh"  
    %       -------------------------------------------------- cE'L% Z  
    % ~p0c3*  
    %   Example 1: K0pac6]  
    % >g ll-&;t  
    %       % Display the Zernike function Z(n=5,m=1) !9iGg*0dx  
    %       x = -1:0.01:1; &;TJ~r#K  
    %       [X,Y] = meshgrid(x,x); UYP9c}_,4  
    %       [theta,r] = cart2pol(X,Y); `6Qdfmk=  
    %       idx = r<=1; K5t0L!6<+  
    %       z = nan(size(X)); "6ECgyD+E!  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); G9P!_72  
    %       figure T GB_~Bqe  
    %       pcolor(x,x,z), shading interp D('2p8;2"7  
    %       axis square, colorbar mog[pu:!,  
    %       title('Zernike function Z_5^1(r,\theta)') >O9o,o/6R  
    % t`'iU$:1f  
    %   Example 2: 5+Mdh`  
    % t>)45<PEw  
    %       % Display the first 10 Zernike functions BI?@1q}:  
    %       x = -1:0.01:1; y&[y=0!  
    %       [X,Y] = meshgrid(x,x); t+r:"bb  
    %       [theta,r] = cart2pol(X,Y); ~I}9;XT  
    %       idx = r<=1; ~tFqb<n  
    %       z = nan(size(X)); /e}#' H   
    %       n = [0  1  1  2  2  2  3  3  3  3]; DaHZ{T8>d  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; wd@aw/  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; m(iR|Zx  
    %       y = zernfun(n,m,r(idx),theta(idx)); 6 9y;`15  
    %       figure('Units','normalized') A=zPL q{Sb  
    %       for k = 1:10 >kZ57,  
    %           z(idx) = y(:,k); lS^(&<{  
    %           subplot(4,7,Nplot(k)) ?YM4b5!3T  
    %           pcolor(x,x,z), shading interp 1_'? JfY-  
    %           set(gca,'XTick',[],'YTick',[]) Mp$@`8X`  
    %           axis square w@\vHH.;V  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) !}+tdT(y  
    %       end XZNY4/ 25G  
    % :q<Z'EnW  
    %   See also ZERNPOL, ZERNFUN2. 8N%Bn&   
    }V;+l8  
    %   Paul Fricker 11/13/2006 :1q 4"tv|  
    'uDjFQX  
    jDM w2#<  
    % Check and prepare the inputs: bOp54WI-g  
    % ----------------------------- R #]jSiS  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) qH,l#I\CG  
        error('zernfun:NMvectors','N and M must be vectors.') u}bf-;R  
    end >gKh  
    # {fTgq  
    if length(n)~=length(m) gnp~OVDqfL  
        error('zernfun:NMlength','N and M must be the same length.') <mMTD8Sx]  
    end V}o n|A  
    XNM a0  
    n = n(:); kU-t7'?4  
    m = m(:); Z4$cyL'$P  
    if any(mod(n-m,2)) d1@%W;qX!  
        error('zernfun:NMmultiplesof2', ... ;;$#)b  
              'All N and M must differ by multiples of 2 (including 0).') Wjh/M&,  
    end (}r|yE  
    0Z<I%<8bK  
    if any(m>n) {K{EOB_u  
        error('zernfun:MlessthanN', ... Lj\/Ji_  
              'Each M must be less than or equal to its corresponding N.') gG%V 9eOQ  
    end Ch()P.n?  
    $GQ`clj<  
    if any( r>1 | r<0 ) F;lI+^}}  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') /WV7gO&L1  
    end R:JX<Ba  
    l&VjUPz_  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) _{vkX<s  
        error('zernfun:RTHvector','R and THETA must be vectors.') plu$h-$d  
    end m\>a,oZH  
    !J*,)kRN  
    r = r(:); `u!l3VZ/4  
    theta = theta(:); 49Df?sx  
    length_r = length(r); wfL-oi'5  
    if length_r~=length(theta) b?4/#&z]  
        error('zernfun:RTHlength', ... e6X[vc|Y}  
              'The number of R- and THETA-values must be equal.') thO ~=RB  
    end ]u-]'P  
    LIU} a5  
    % Check normalization: KD1=Y80P  
    % -------------------- v]% WH~>  
    if nargin==5 && ischar(nflag) S|rgCh!h  
        isnorm = strcmpi(nflag,'norm'); 6ZgU"!|r  
        if ~isnorm {u!)y?}I-  
            error('zernfun:normalization','Unrecognized normalization flag.') 1Kvx1p   
        end 8;y&Pb~)  
    else >3:?)  
        isnorm = false; UY2X  
    end e}@)z3Q<l  
    KV|}#<dD  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -S,ln  
    % Compute the Zernike Polynomials o]{uc,  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% hqk}akXt  
    { 74mf'IW  
    % Determine the required powers of r: )5%C3/Dl!  
    % ----------------------------------- [U#72+K  
    m_abs = abs(m); ,y9iKkg  
    rpowers = []; 8,O33qwH  
    for j = 1:length(n) !|2VWI}  
        rpowers = [rpowers m_abs(j):2:n(j)]; ]Ni$.@Hu$  
    end e&MC|US=\  
    rpowers = unique(rpowers); obK*rdg ,  
    <]C$xp<2  
    % Pre-compute the values of r raised to the required powers, k{tMzx]F__  
    % and compile them in a matrix: T9 <2A1  
    % ----------------------------- wOQ#N++C  
    if rpowers(1)==0 s{ V*1$e~  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); wn>edn  
        rpowern = cat(2,rpowern{:}); Fg$3N5*  
        rpowern = [ones(length_r,1) rpowern]; xX0-]Y h:  
    else =S[yE]v^  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); sfr(/mp(  
        rpowern = cat(2,rpowern{:}); iFSJL,QZ3  
    end KucV3-I  
    d1!i(MaV!  
    % Compute the values of the polynomials: EzW)'Zzw~  
    % -------------------------------------- ,1q_pep~?%  
    y = zeros(length_r,length(n)); P+MA*:  
    for j = 1:length(n) m6eZ_ &+u  
        s = 0:(n(j)-m_abs(j))/2; %2'A pp  
        pows = n(j):-2:m_abs(j); >$gG/WD?KR  
        for k = length(s):-1:1 O_$dI*RK  
            p = (1-2*mod(s(k),2))* ... U%7i=Z{^Ks  
                       prod(2:(n(j)-s(k)))/              ... O2{)WWOT  
                       prod(2:s(k))/                     ... yix'rA-T  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... B) $c|dUV  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); I O%6 O  
            idx = (pows(k)==rpowers); cN! uV-e  
            y(:,j) = y(:,j) + p*rpowern(:,idx); %CZ-r"A  
        end 7;.xc{  
         N_4eM,7t  
        if isnorm 53QfTP  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); sGY_{CZ:  
        end %I!:ITa  
    end QU{Ech'  
    % END: Compute the Zernike Polynomials ggt DN{t  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% C0.'_  
    gw+9x<e  
    % Compute the Zernike functions: "Th$#3  
    % ------------------------------ |6J ?8y  
    idx_pos = m>0; q,<[hBri-  
    idx_neg = m<0; d;tkJ2@NO  
    Zn:R PMk*  
    z = y; kH*Pn'  
    if any(idx_pos) Jxf~&!zR  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 8T;IZ(s  
    end Gy1xG.yM~  
    if any(idx_neg) ^/wfXm  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); tC8(XMVx  
    end O <9~Kgd8h  
    /|{,sWf2  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) 7RU}FE  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. N;F)jO xsl  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated G@!z$  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive f<i7@%  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, >Sk[vI0Y  
    %   and THETA is a vector of angles.  R and THETA must have the same n9LGP2#!  
    %   length.  The output Z is a matrix with one column for every P-value, $ E1Tb{'  
    %   and one row for every (R,THETA) pair. _\5~>g_  
    % +5<k-0v  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike sfp,Lq`  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) GYRYbiwqdi  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) D|I Ec?  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 i< (s}wg  
    %   for all p. ~CRSL1?  
    % z^* '@  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 )!9Ifk0KH  
    %   Zernike functions (order N<=7).  In some disciplines it is gLD`wfZR  
    %   traditional to label the first 36 functions using a single mode <Pqv;WI|R  
    %   number P instead of separate numbers for the order N and azimuthal u'Q?T7  
    %   frequency M. OL59e %X  
    % iY[+Ywh  
    %   Example: ;'T{li2  
    % g]mtFrP  
    %       % Display the first 16 Zernike functions FD7H@L5  
    %       x = -1:0.01:1; A)n W  
    %       [X,Y] = meshgrid(x,x); n_[i0x7#  
    %       [theta,r] = cart2pol(X,Y); Dkw%`(Oh/,  
    %       idx = r<=1; +\`vq"e  
    %       p = 0:15; 4YG/`P  
    %       z = nan(size(X)); uE_c4Hp  
    %       y = zernfun2(p,r(idx),theta(idx)); wWW~_zP0  
    %       figure('Units','normalized') 9G?ldp8  
    %       for k = 1:length(p) AH7L.L+$M  
    %           z(idx) = y(:,k); 9~AWng  
    %           subplot(4,4,k) &!.HuRiuC  
    %           pcolor(x,x,z), shading interp qX:B4,|ck  
    %           set(gca,'XTick',[],'YTick',[]) `ue[q!Qq  
    %           axis square <~Q i67I  
    %           title(['Z_{' num2str(p(k)) '}']) A(6xg)_XQ  
    %       end C.a5RF0  
    % I\P Bu$Ww  
    %   See also ZERNPOL, ZERNFUN. ?dy~ mob  
    7l8[xV  
    %   Paul Fricker 11/13/2006 E,G<_40  
    N?r>%4  
     |qcD;  
    % Check and prepare the inputs: qV1O-^&[f=  
    % ----------------------------- u/^|XOy  
    if min(size(p))~=1 V}8$p8#<@  
        error('zernfun2:Pvector','Input P must be vector.') >G)qns9  
    end d{+(Lpj^  
    oT+(W,G  
    if any(p)>35 8m=Z|"H@  
        error('zernfun2:P36', ... ^i%A7pg  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... AMlV%U#  
               '(P = 0 to 35).']) sLh0&R7   
    end =iz,S:[  
    9G+f/k,P  
    % Get the order and frequency corresonding to the function number: a_T,t'6  
    % ---------------------------------------------------------------- _j#SpL'P  
    p = p(:); oN2=DYC41  
    n = ceil((-3+sqrt(9+8*p))/2); tiQ;#p7%  
    m = 2*p - n.*(n+2); Rph%*~'  
    rnhFqNT:  
    % Pass the inputs to the function ZERNFUN: eMMx8E)B  
    % ---------------------------------------- 9/TY\?U  
    switch nargin L ^Y3=1#"g  
        case 3 y%(X+E"n*  
            z = zernfun(n,m,r,theta); 'w<BJTQIL  
        case 4 ?T*";_o,B  
            z = zernfun(n,m,r,theta,nflag); >Wi s.e%b  
        otherwise 2hOPzv&B  
            error('zernfun2:nargin','Incorrect number of inputs.') f@z*3I;  
    end <! x+e E`  
    L@)&vn]  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) g()m/KS<  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. b~Z=:'m8  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of p5*lEz|$  
    %   order N and frequency M, evaluated at R.  N is a vector of %?tq;~|]Q  
    %   positive integers (including 0), and M is a vector with the aWvd`qA9r  
    %   same number of elements as N.  Each element k of M must be a |-kEGLH[*V  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) kV)' a  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is :m`/Q_y"  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix 1j3=o }m  
    %   with one column for every (N,M) pair, and one row for every k i4f*Ej  
    %   element in R. )!-S|s'  
    % RO oE%%8I  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- hZuYdV{'h  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is %W;u}`  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to h([0,:\  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 :XS"# ^aJ  
    %   for all [n,m]. Q4%IxR?  
    % R;THA!  
    %   The radial Zernike polynomials are the radial portion of the -CU,z|g+  
    %   Zernike functions, which are an orthogonal basis on the unit _T~H[&Hl  
    %   circle.  The series representation of the radial Zernike XZO<dhZX:  
    %   polynomials is #v8Cy|I  
    % XiG88Kwv  
    %          (n-m)/2 Kym:J \}9B  
    %            __ ;BTJ%F.  
    %    m      \       s                                          n-2s 6FjVmje  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r ,OB&nN t>  
    %    n      s=0 G%OpO.Wf  
    % /=M.-MU2  
    %   The following table shows the first 12 polynomials. 1URsHV!xcM  
    % 4(m3c<'P  
    %       n    m    Zernike polynomial    Normalization `u=<c  
    %       --------------------------------------------- %HEmi;  
    %       0    0    1                        sqrt(2) ? ).(fP  
    %       1    1    r                           2 nHU3%%%cU  
    %       2    0    2*r^2 - 1                sqrt(6) z(UX't (q  
    %       2    2    r^2                      sqrt(6) :yD@5)  
    %       3    1    3*r^3 - 2*r              sqrt(8) A_Gp&acs$  
    %       3    3    r^3                      sqrt(8) 1UyH0`&  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) y''V"Be  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) zjWyGt(Q  
    %       4    4    r^4                      sqrt(10) }}s) +d  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) V'yxqI?  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) KgU[  
    %       5    5    r^5                      sqrt(12) qS82/e)7  
    %       --------------------------------------------- ddMM74  
    % P rt#L8  
    %   Example: Ap,q `S  
    % Vx(;|/:  
    %       % Display three example Zernike radial polynomials :+A; TV  
    %       r = 0:0.01:1; j)@oRWL<  
    %       n = [3 2 5]; <Am^z~[  
    %       m = [1 2 1]; m2MPWy5s  
    %       z = zernpol(n,m,r); #ZwY?T x  
    %       figure ke</x+\F  
    %       plot(r,z) s.e y!ew  
    %       grid on EM~7#Y  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') / GZV_H%v  
    % Q }8C  
    %   See also ZERNFUN, ZERNFUN2. 3DHvaq q7  
    $YR{f[+L w  
    % A note on the algorithm. Xa\]ua_  
    % ------------------------ Ot"(uW4$[  
    % The radial Zernike polynomials are computed using the series C$0 ITw  
    % representation shown in the Help section above. For many special 0Cv4/Ar(  
    % functions, direct evaluation using the series representation can /^WE@r[:  
    % produce poor numerical results (floating point errors), because *Ag,kW"  
    % the summation often involves computing small differences between kjfxjAS=m  
    % large successive terms in the series. (In such cases, the functions @@xF#3   
    % are often evaluated using alternative methods such as recurrence $q=hcu  
    % relations: see the Legendre functions, for example). For the Zernike @) ]t8(  
    % polynomials, however, this problem does not arise, because the *xho  
    % polynomials are evaluated over the finite domain r = (0,1), and $o: :PDQ?  
    % because the coefficients for a given polynomial are generally all s={X-H< 2  
    % of similar magnitude. {)GQV`y  
    % m R"9&wq  
    % ZERNPOL has been written using a vectorized implementation: multiple 3pzOt&T|w  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] EID(M.G  
    % values can be passed as inputs) for a vector of points R.  To achieve ; vhnA$'a  
    % this vectorization most efficiently, the algorithm in ZERNPOL 0honHP  
    % involves pre-determining all the powers p of R that are required to ;+! xZOmm  
    % compute the outputs, and then compiling the {R^p} into a single Z'Zd[."s  
    % matrix.  This avoids any redundant computation of the R^p, and gB'`I(q5.  
    % minimizes the sizes of certain intermediate variables. A` oa|k!U  
    % pzYG?9cwz  
    %   Paul Fricker 11/13/2006 | eK,Td%  
    Y-?51g[u  
    .|tQ=l@I  
    % Check and prepare the inputs: ]oo|o1H87  
    % ----------------------------- j= p|'`  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) +._f.BRmX.  
        error('zernpol:NMvectors','N and M must be vectors.') J78Qj[v  
    end "otr+.{`*  
    yzODF>KJ  
    if length(n)~=length(m) puk4D  
        error('zernpol:NMlength','N and M must be the same length.') 3<yCe%I:  
    end ',<{X (#(  
    4t"*)xy  
    n = n(:); thR|h+B  
    m = m(:); "4k"U1  
    length_n = length(n); R#r h  
    6i55Ja  
    if any(mod(n-m,2)) (p}9^Y  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') 6B4hSqjh  
    end B/[hi%~  
    @faF`8LwA  
    if any(m<0) )I^)*(}  
        error('zernpol:Mpositive','All M must be positive.') &*h`b{]  
    end pvK \fSr  
    >I R` ]  
    if any(m>n) &n,xGIG  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') z0FR33-  
    end +<vqkc  
    ajg7xF{l)  
    if any( r>1 | r<0 ) !:R^}pMhIk  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') jKe$&.q@  
    end .CB"@.7  
    S8rW'}XJ=H  
    if ~any(size(r)==1) zSX'  
        error('zernpol:Rvector','R must be a vector.') hA$c.jJr.Z  
    end _S[Rvb1e   
    _CYmG"mY  
    r = r(:); ]a &x'  
    length_r = length(r); xV }:M  
    fwz5{>ON]  
    if nargin==4 O#<|[Dzw  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); bUEt0wRR  
        if ~isnorm 7l4InR]  
            error('zernpol:normalization','Unrecognized normalization flag.') (dw3'W  
        end mRix0XBI~  
    else "1=.5:yG  
        isnorm = false; IDL^0:eg<.  
    end T/X?ZK(T  
    kM}ic(K  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% FN8=YUYK%  
    % Compute the Zernike Polynomials v{\n^|=])  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% JCQx8;V%I  
    8=u+BDG  
    % Determine the required powers of r: Dg];(c+/  
    % ----------------------------------- .jrR4@  
    rpowers = []; @8x6#|D  
    for j = 1:length(n) -hJ>wGI  
        rpowers = [rpowers m(j):2:n(j)]; vi()1LS/!  
    end 2!"\;/  
    rpowers = unique(rpowers); LmT[N@>"  
    `eA&C4oFOO  
    % Pre-compute the values of r raised to the required powers, 0YTtA]|`4  
    % and compile them in a matrix: ?Sd~u1w8K  
    % ----------------------------- 1'@lg*^9  
    if rpowers(1)==0 LgD{!  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); /oix tO)  
        rpowern = cat(2,rpowern{:}); 8M(|{~~3:  
        rpowern = [ones(length_r,1) rpowern]; +p%5/ smfs  
    else 1zEZ\G  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); u" NIG  
        rpowern = cat(2,rpowern{:}); g)| ++?  
    end 5;i!PuL  
    HK,G8:T  
    % Compute the values of the polynomials: %I2xK.8=  
    % --------------------------------------  el*pYI  
    z = zeros(length_r,length_n); &>wce 5uV  
    for j = 1:length_n 7T(OV<q;#  
        s = 0:(n(j)-m(j))/2; j@_) F^12  
        pows = n(j):-2:m(j); ^|hRu{Q W  
        for k = length(s):-1:1 zi DlJ3]^  
            p = (1-2*mod(s(k),2))* ... <PuB3PEvV  
                       prod(2:(n(j)-s(k)))/          ... s poWdRM2  
                       prod(2:s(k))/                 ... 9OO_Hp#|9  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... $'mB8 S  
                       prod(2:((n(j)+m(j))/2-s(k))); KE)D =P  
            idx = (pows(k)==rpowers); B$[%pm`'2  
            z(:,j) = z(:,j) + p*rpowern(:,idx); po](6V  
        end /B#lju!  
         O|7{%5h  
        if isnorm ?3E_KGI  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); SpTORR8  
        end  F>oxnhp6  
    end "!_ 4%z-  
    F~rY jAFTi  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  ?\VN`8Yb  
    \eN/fTPm  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 1c~#]6[  
    MdjMTe s  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)