非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 A;xH{vo{
function z = zernfun(n,m,r,theta,nflag) {Y+e|B0
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. Zz|et206
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N rJ4A9d3:
% and angular frequency M, evaluated at positions (R,THETA) on the 4fL>Ou[YuX
% unit circle. N is a vector of positive integers (including 0), and 6[Mu3.T
% M is a vector with the same number of elements as N. Each element u~t% GIg
% k of M must be a positive integer, with possible values M(k) = -N(k) FLumI-se!
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, lE bV)&'
% and THETA is a vector of angles. R and THETA must have the same 'cN3Vv k
% length. The output Z is a matrix with one column for every (N,M) nwJub$5
% pair, and one row for every (R,THETA) pair. ],<pZ1V;
% lA,[&
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike F{&0(6^p!
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), /z1-4:^`A[
% with delta(m,0) the Kronecker delta, is chosen so that the integral %B>>J%
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, uq!d8{IMu
% and theta=0 to theta=2*pi) is unity. For the non-normalized Urm(A9|N
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. /u'V>=D;f
% =b3<}]
% The Zernike functions are an orthogonal basis on the unit circle. fQf d1=4
% They are used in disciplines such as astronomy, optics, and a{I(Qh!}
% optometry to describe functions on a circular domain. "f!H[F1~
% w`Cs,
% The following table lists the first 15 Zernike functions. UnTvot6~
% )"bP]t^_
% n m Zernike function Normalization +o6"Z)
% -------------------------------------------------- I~M@v59C
% 0 0 1 1 s9b+uUt%
% 1 1 r * cos(theta) 2 `g'9)Xf4KT
% 1 -1 r * sin(theta) 2 C%P"\>5@
% 2 -2 r^2 * cos(2*theta) sqrt(6) F^DDN7AKH
% 2 0 (2*r^2 - 1) sqrt(3) %&$s0=+
% 2 2 r^2 * sin(2*theta) sqrt(6) ];{CNDAL2
% 3 -3 r^3 * cos(3*theta) sqrt(8) >
8!9
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) Qv;^nj{\qV
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) dr=h;[Q'
% 3 3 r^3 * sin(3*theta) sqrt(8) ' '|R$9\@
% 4 -4 r^4 * cos(4*theta) sqrt(10) /n9,XD&)
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) H3|x
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) y(6*)~Dh
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) )K0rPnYV
% 4 4 r^4 * sin(4*theta) sqrt(10) kSqMI'89
% -------------------------------------------------- ?Hf8<C} 3
% <QRRD*\
% Example 1: <`=(Ui$fD
% u85Uy
yN
% % Display the Zernike function Z(n=5,m=1) ^' b[#DG>F
% x = -1:0.01:1; Cbr>\;sc2Z
% [X,Y] = meshgrid(x,x); ,6T3:qkkvF
% [theta,r] = cart2pol(X,Y); Ei\tn`I&
% idx = r<=1; !-|{B3"6
% z = nan(size(X)); >~* w
% z(idx) = zernfun(5,1,r(idx),theta(idx)); ,uhOf! |
% figure -*0U&]T
% pcolor(x,x,z), shading interp .5YW>P V
% axis square, colorbar ujoJ6UOG
% title('Zernike function Z_5^1(r,\theta)') v?#W/].C+
% ~i9'9PHX@
% Example 2: /-C6I:
% sxn^1|O;m
% % Display the first 10 Zernike functions l%xjCuuhU
% x = -1:0.01:1; _*dUH5
% [X,Y] = meshgrid(x,x); A:Kit_A
% [theta,r] = cart2pol(X,Y); {$qLMx';
% idx = r<=1; A}(Q^|6
% z = nan(size(X)); `Ct fe8
% n = [0 1 1 2 2 2 3 3 3 3]; :)Z.!
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 5|bc*iqU
% Nplot = [4 10 12 16 18 20 22 24 26 28]; 6nHyd<o
% y = zernfun(n,m,r(idx),theta(idx)); drf?7%v
% figure('Units','normalized') 5>"X?U}He
% for k = 1:10 Hyz:i)2
% z(idx) = y(:,k); #bdSH)V
% subplot(4,7,Nplot(k)) 0X4%Ccs
% pcolor(x,x,z), shading interp (GDW9:
% set(gca,'XTick',[],'YTick',[]) r2xIbZ
% axis square V.kRV{43
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) LHgEb9\Q
% end ~"#[<d
% }E](NvCq
% See also ZERNPOL, ZERNFUN2. Kv>P+I'|r
e"ur+7
% Paul Fricker 11/13/2006 )_Wo6l)i
`\#J&N
<aGfQg|554
% Check and prepare the inputs: -}Q^A_xK
% ----------------------------- B|6_4ry0U
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 5AO'Ihp L
error('zernfun:NMvectors','N and M must be vectors.') wYLJEuS|
end vSG$2g=
f"g-Hbl5
if length(n)~=length(m) ,5HC&@
error('zernfun:NMlength','N and M must be the same length.') u:s[6T0
end d{G*1l(X
M*lCoJ
n = n(:); MWron_xg
m = m(:); FJ(}@U}57
if any(mod(n-m,2)) k_hs g6Ur.
error('zernfun:NMmultiplesof2', ... Dt\rMSjZ9
'All N and M must differ by multiples of 2 (including 0).') uQ'Izdm
end s'yT}XQ;r
;7w4BJcq']
if any(m>n) ,f?+QV\T.
error('zernfun:MlessthanN', ... LyA}Nd]pyq
'Each M must be less than or equal to its corresponding N.') i*ErxWzu
end G[M{TS3&Ds
B~t[Gy
if any( r>1 | r<0 ) d\A!5/LG
error('zernfun:Rlessthan1','All R must be between 0 and 1.') ;<)<4N"
end Rt2<F-gY
"`&1"*
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) :o+&>z
error('zernfun:RTHvector','R and THETA must be vectors.') TW5Pt{X=f
end ]3bXJE
ym.:I@b?6
r = r(:); ( ,!G$~Sy
theta = theta(:); #Qnl,lf
length_r = length(r); , UiA?7k
if length_r~=length(theta) 3}9c0%}F
error('zernfun:RTHlength', ... [/IN820t
'The number of R- and THETA-values must be equal.') ?A`8c R=)I
end l0-zu6iw
5svM3 #
% Check normalization: IFfB3{J
% -------------------- 8Jb N&C
if nargin==5 && ischar(nflag) 3C7}V{?
isnorm = strcmpi(nflag,'norm'); }{(J*T
if ~isnorm <Gkmk?x`A
error('zernfun:normalization','Unrecognized normalization flag.') mKN#dmw6
end T5b*Ia
else !au%D?w
isnorm = false; i]M:ntB"
end L>.*^]
C])b 3tM,7
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
i_M0P1 2
% Compute the Zernike Polynomials %6eQ;Rp*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% _m2p>(N|
QdtGFY4f,
% Determine the required powers of r: dAkJ5\=*
% ----------------------------------- 1}Mdo&:t
m_abs = abs(m); C6ry]R@
rpowers = []; QssU\@/Q
for j = 1:length(n) FhVoN}
rpowers = [rpowers m_abs(j):2:n(j)]; .qGfLvx%
end h}knn3"S
rpowers = unique(rpowers); g6p:1;Evf
T>qI,BEY
% Pre-compute the values of r raised to the required powers, ^a{cK
% and compile them in a matrix: L
j>HZS$F
% ----------------------------- |E5\_Z
if rpowers(1)==0 t`oH7)nut
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); i^2-PKPg{
rpowern = cat(2,rpowern{:}); yHIZpU|(j
rpowern = [ones(length_r,1) rpowern]; Wd<|DmSy
else fNnX{Wq
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); AaX][2y8
rpowern = cat(2,rpowern{:}); W&`{3L
end c|KN@)A
>3&Oe
% Compute the values of the polynomials: s !XJ
% -------------------------------------- F\IJim-Rh
y = zeros(length_r,length(n)); (`me}8
for j = 1:length(n) ~us1Df0bp
s = 0:(n(j)-m_abs(j))/2; yZcnky
pows = n(j):-2:m_abs(j); 3Eu;_u_
for k = length(s):-1:1 lJIcU
RI4
p = (1-2*mod(s(k),2))* ... U+2U#v=<
prod(2:(n(j)-s(k)))/ ... o~ J~-$T{
prod(2:s(k))/ ... [,86||^
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... @r=v*hu
prod(2:((n(j)+m_abs(j))/2-s(k))); <2,NWn.
idx = (pows(k)==rpowers); +u\kTn
y(:,j) = y(:,j) + p*rpowern(:,idx); w+W!dM
end QuWWa|g^.
}Md5a%s<
if isnorm 5[5|_H+0
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); cf`g.9pjlx
end {;-wXzv`
end iPeW;=-2Wk
% END: Compute the Zernike Polynomials }eq*dr1`
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% X4I+
K);)$8K
% Compute the Zernike functions: G%FLt[
% ------------------------------ i2&I<:
idx_pos = m>0; E hw2o-s^
idx_neg = m<0; "HwSW4a]
-.!+i8d>
z = y; J_`a}ox
if any(idx_pos) )~2~q7
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); M,we9];N
end up==g
if any(idx_neg) [
@ASAhV^+
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); V7(-<})8
end Or3GrZ!H
-50Qy[0. "
% EOF zernfun