切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11131阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 ]:$ O{y  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! LaIJ1jf  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 N<_Ko+VF  
    function z = zernfun(n,m,r,theta,nflag) } i)$n(A)K  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. YY4-bNj[p  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N D;F{1[s(  
    %   and angular frequency M, evaluated at positions (R,THETA) on the :PnSQjV:  
    %   unit circle.  N is a vector of positive integers (including 0), and )yb+M ez  
    %   M is a vector with the same number of elements as N.  Each element c;I, O  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) ;+I4&VieK  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, e}cnX`B  
    %   and THETA is a vector of angles.  R and THETA must have the same [ij,RE7,T  
    %   length.  The output Z is a matrix with one column for every (N,M) I(n* _bFq  
    %   pair, and one row for every (R,THETA) pair. =ziy`#fm,  
    % gw3NS8 A+  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike _b4fS'[  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi),  D\T!4q'Q  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral F}rPY:  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, oBlzHBn>0  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized '3kcD7  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ~k4W<   
    % O'}l lo  
    %   The Zernike functions are an orthogonal basis on the unit circle. cc >  
    %   They are used in disciplines such as astronomy, optics, and /'>;JF  
    %   optometry to describe functions on a circular domain. }Pg' vJW  
    % t&814Uf&\  
    %   The following table lists the first 15 Zernike functions. ? Ekq6uz\)  
    % .Tm- g#  
    %       n    m    Zernike function           Normalization {.#zHL ;  
    %       -------------------------------------------------- 3BMS_,P  
    %       0    0    1                                 1 DB&SOe  
    %       1    1    r * cos(theta)                    2 ,bSVVT-b  
    %       1   -1    r * sin(theta)                    2 BxX$5u  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) gf$HuCh|  
    %       2    0    (2*r^2 - 1)                    sqrt(3) u5gZxO1J5  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) t58m=4  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 4&}\BU*  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) coB6 rW  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) r2G*!qK*1  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) Xn7 [n  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) .9\Cy4_qSd  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) D$_8rHc\A  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) q?VVYZXP  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) .w FU:y4r  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) ?2~U2Ir]:  
    %       -------------------------------------------------- oa9)Dv  
    % ?\yB)Nd y  
    %   Example 1: $k(9 U\y-  
    % ofEqvoi@  
    %       % Display the Zernike function Z(n=5,m=1) pa] TeH  
    %       x = -1:0.01:1; mvf _@2^  
    %       [X,Y] = meshgrid(x,x); p6blD-v  
    %       [theta,r] = cart2pol(X,Y); q lY\*{x4  
    %       idx = r<=1; _XN~@5elrC  
    %       z = nan(size(X)); s}b*5@8|tA  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); tq E>Zx=X  
    %       figure CSL4P)  
    %       pcolor(x,x,z), shading interp t61'LCEis  
    %       axis square, colorbar H*qD: N  
    %       title('Zernike function Z_5^1(r,\theta)') "=`~iXT{e  
    % By/bVZks  
    %   Example 2: anZIB  
    % dt.-C_MO  
    %       % Display the first 10 Zernike functions S 1>Z6  
    %       x = -1:0.01:1; 9XN~Ln@}  
    %       [X,Y] = meshgrid(x,x); jg^^\n  
    %       [theta,r] = cart2pol(X,Y); 0O ['w<_  
    %       idx = r<=1; |7S:l9;  
    %       z = nan(size(X)); S^g]:Xh&  
    %       n = [0  1  1  2  2  2  3  3  3  3]; :A$wX$H01  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; s@M  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; g Np-f  
    %       y = zernfun(n,m,r(idx),theta(idx)); B=x~L  
    %       figure('Units','normalized') ) hPVX()O!  
    %       for k = 1:10 Hrv),Ce  
    %           z(idx) = y(:,k); ;G$)MS'nB  
    %           subplot(4,7,Nplot(k)) vcD'~)G(*  
    %           pcolor(x,x,z), shading interp &1$8q0  
    %           set(gca,'XTick',[],'YTick',[]) AuM:2N2  
    %           axis square '!j(u@&!  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) +wjlAqMQ  
    %       end 1'OD3~[R  
    % h&'J+b  
    %   See also ZERNPOL, ZERNFUN2. Dpp@*xX>  
    I9s$bRbT  
    %   Paul Fricker 11/13/2006 9e76 pP(  
    S%P3ek>3  
    k%a?SU<f  
    % Check and prepare the inputs: $ACe\R/%  
    % ----------------------------- [EcV\.  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 6g5]=Q@U:  
        error('zernfun:NMvectors','N and M must be vectors.') <e^6.!;W  
    end 0<"tl0p_  
    YmA) @1@U  
    if length(n)~=length(m) ees^O{ 8  
        error('zernfun:NMlength','N and M must be the same length.') A&?WP\_z  
    end IM2/(N.%  
    |3W3+Rn!  
    n = n(:); FRD<0o/`  
    m = m(:); (T`q++  
    if any(mod(n-m,2)) j?d!}v  
        error('zernfun:NMmultiplesof2', ... 'NRN_c9  
              'All N and M must differ by multiples of 2 (including 0).') 0I6499FQ  
    end %!W 6<ioW  
    5D >BV *"  
    if any(m>n) %G^(T%q| m  
        error('zernfun:MlessthanN', ... N+[}Gb"8q  
              'Each M must be less than or equal to its corresponding N.') \Z8Y(]6*  
    end 8:BQHYeJK  
    O\:;q*]  
    if any( r>1 | r<0 ) u<J2p?`\&`  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') ] +sSg=N7i  
    end @b>YkJDk  
    vJzxP y|  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 5!2J;.&  
        error('zernfun:RTHvector','R and THETA must be vectors.') MH2OqiCI  
    end .Lp Nm'=R  
    U5 -zB)V  
    r = r(:); v^57j:sD  
    theta = theta(:); ``/y=k/au  
    length_r = length(r); 2M5*bNU_:  
    if length_r~=length(theta) o4U]lK$  
        error('zernfun:RTHlength', ... h7)VJY  
              'The number of R- and THETA-values must be equal.') u_hE7#i  
    end ,5`."-0}  
    /"g[Ay  
    % Check normalization: |A2W8b {]  
    % -------------------- &8o  :  
    if nargin==5 && ischar(nflag) ]Sk#a-^~  
        isnorm = strcmpi(nflag,'norm'); | 3hT{  
        if ~isnorm ,Uv{dG  
            error('zernfun:normalization','Unrecognized normalization flag.') KLj4 LOs  
        end GC,vQ\  
    else y_;]=hEL  
        isnorm = false; j P{:A9T\  
    end #%9oQ6nO  
    &T5f H!?4  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% e@6RC bj  
    % Compute the Zernike Polynomials 7/[TE  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ktkn2Twa/  
    [w+yQ7P  
    % Determine the required powers of r: &zaW"uy3T  
    % ----------------------------------- K*J4&5?/  
    m_abs = abs(m); A} x_zt  
    rpowers = []; ..v@Q%  
    for j = 1:length(n) 8T!fGzHx  
        rpowers = [rpowers m_abs(j):2:n(j)]; 58a)&s[+  
    end  3J'Bm"  
    rpowers = unique(rpowers); 'Y~8_+J?  
    v3=&{}+j.  
    % Pre-compute the values of r raised to the required powers, 3Qm t]q  
    % and compile them in a matrix: *B)Jv9  
    % ----------------------------- >e5q2U   
    if rpowers(1)==0 .I f"'hMY  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ;C7BoHB9  
        rpowern = cat(2,rpowern{:}); z&6]vN'  
        rpowern = [ones(length_r,1) rpowern]; d&$.jk8 2  
    else `[g# Mxw  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); [MSDk"o&  
        rpowern = cat(2,rpowern{:}); KqG/a  
    end tk] _QX %  
    \Nh^Ig   
    % Compute the values of the polynomials: ?Oe_} jv;  
    % -------------------------------------- fwar8 i1  
    y = zeros(length_r,length(n)); \ (3Qqbw  
    for j = 1:length(n) |e.3FjTH  
        s = 0:(n(j)-m_abs(j))/2; '? !7 Be  
        pows = n(j):-2:m_abs(j); w[J (E  
        for k = length(s):-1:1 }+QhW]nO{F  
            p = (1-2*mod(s(k),2))* ... ImT+8p a  
                       prod(2:(n(j)-s(k)))/              ... \_-kOS  
                       prod(2:s(k))/                     ... S>vVjq?~l(  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... @[[C s*-  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); LRqw\fKk[  
            idx = (pows(k)==rpowers); CIxVR  
            y(:,j) = y(:,j) + p*rpowern(:,idx); CguU+8 ]  
        end )\:lYI}Wpm  
         a3(7{,Ew  
        if isnorm 3=G5(0  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); +lk\oj$S+  
        end z_[ 3IAZ  
    end ,/[dmoe  
    % END: Compute the Zernike Polynomials =%#$HQ=  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% s$+: F$Y0  
     5K_N  
    % Compute the Zernike functions: ,~ia$vI}R  
    % ------------------------------ It!.*wp  
    idx_pos = m>0; H*:r>Lm=  
    idx_neg = m<0; >uqS  
    k8t Na@H  
    z = y; )Zu Q;p  
    if any(idx_pos) ki][qvXJ  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); b|V4Fp  
    end ,& pF:ql F  
    if any(idx_neg) g)zn.]  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); hjm .Ath  
    end x:&L?eOT  
    F%ylR^H>  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) ^VLUZ  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. O ]4 x;`)  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated ] l qFht  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive RWm Q]  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, '%|20 j  
    %   and THETA is a vector of angles.  R and THETA must have the same yZPFo  
    %   length.  The output Z is a matrix with one column for every P-value, w _6Y+  
    %   and one row for every (R,THETA) pair. Xy(SzJ %  
    % 5l7L@Ey  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike Xk9r"RmiOb  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) \ ]e w@C  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) odT7Gq  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 F~0%j}ve  
    %   for all p. KA*l6`(  
    % Gv2./<{#  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 " ih>T^|  
    %   Zernike functions (order N<=7).  In some disciplines it is kBQenMm  
    %   traditional to label the first 36 functions using a single mode 2KNKdV3NK  
    %   number P instead of separate numbers for the order N and azimuthal *U^\Mwp  
    %   frequency M. `] dx%  
    % OTjryJ^  
    %   Example: ,I:m*.q  
    % +>9^])K|  
    %       % Display the first 16 Zernike functions y2ws*IZ"  
    %       x = -1:0.01:1; =K< I)2   
    %       [X,Y] = meshgrid(x,x); t-gNG!B  
    %       [theta,r] = cart2pol(X,Y); ^1& LHrT  
    %       idx = r<=1; UFY~D"% /  
    %       p = 0:15; X]^E:'E!  
    %       z = nan(size(X)); e.Q K%  
    %       y = zernfun2(p,r(idx),theta(idx)); p'c<v)ia  
    %       figure('Units','normalized') JX,#W!d  
    %       for k = 1:length(p) #WmAkzvq  
    %           z(idx) = y(:,k); N(/<qv  
    %           subplot(4,4,k) 4a50w:Jy]  
    %           pcolor(x,x,z), shading interp u|*| RuY  
    %           set(gca,'XTick',[],'YTick',[]) C-b%PgA  
    %           axis square ~ z&A  
    %           title(['Z_{' num2str(p(k)) '}']) Am`A[rV0  
    %       end )B5gs%u]  
    % G?1V~6  
    %   See also ZERNPOL, ZERNFUN. I)/7M}t`  
    %oKc?'L0  
    %   Paul Fricker 11/13/2006  G#n)|p  
    7Mg7B  
    ?g#t3j>zoF  
    % Check and prepare the inputs: qy(/   
    % ----------------------------- F3|pS:  
    if min(size(p))~=1 adPU)k_j:  
        error('zernfun2:Pvector','Input P must be vector.') ~I^[rP~  
    end nKJ7K8)  
    )0V]G{QN  
    if any(p)>35 @X><lz  
        error('zernfun2:P36', ... nVA'O  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... ?D 9#dGK  
               '(P = 0 to 35).']) W%ZU& YBc  
    end ;Sl0kSu  
    ]~ eWr2uG?  
    % Get the order and frequency corresonding to the function number: mSw?iL  
    % ---------------------------------------------------------------- bc}OmPE  
    p = p(:); Wk#-LkI  
    n = ceil((-3+sqrt(9+8*p))/2); V~"d`j  
    m = 2*p - n.*(n+2); U$J_:~  
    v7u}nx  
    % Pass the inputs to the function ZERNFUN: Bo(l!G  
    % ---------------------------------------- .vF< 3p|  
    switch nargin )7mJ+d[  
        case 3 / H/Ne )r  
            z = zernfun(n,m,r,theta); Sq]1SW3  
        case 4 &{{f|o=u.  
            z = zernfun(n,m,r,theta,nflag); /1 %0A  
        otherwise -t#a*?"$w  
            error('zernfun2:nargin','Incorrect number of inputs.') aq| [g  
    end vX24W*7  
    t|"d#5'  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) .]l2)OlLQ  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. WX"M_=lc-@  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of 2b` M(QL  
    %   order N and frequency M, evaluated at R.  N is a vector of ,"R_ve  
    %   positive integers (including 0), and M is a vector with the NistW+{<  
    %   same number of elements as N.  Each element k of M must be a ts$UC $  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) R7b*(33  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is $^ 3 f}IzA  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix `t2! M\)  
    %   with one column for every (N,M) pair, and one row for every bG?[":k  
    %   element in R. dK$dQR#  
    % d7gSkna`5c  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- 0P >dXd)T  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is ] 6B!eB !  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to C(+BrIS*  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1  e n":  
    %   for all [n,m]. h:90K  
    % #<3\}*/  
    %   The radial Zernike polynomials are the radial portion of the %c{)'X  
    %   Zernike functions, which are an orthogonal basis on the unit *r3vTgo$  
    %   circle.  The series representation of the radial Zernike 7QFEQ}  
    %   polynomials is !!>G{  
    % 7NEn+OI4  
    %          (n-m)/2 ,' B=eY,  
    %            __ [RuY'  
    %    m      \       s                                          n-2s e /Y+S;a  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r %V/]V,w:*R  
    %    n      s=0 g H.^NO5\'  
    % Rw% KEUDm  
    %   The following table shows the first 12 polynomials. {`55nwd  
    % ;hDr+&J|  
    %       n    m    Zernike polynomial    Normalization WRM}gWv*  
    %       --------------------------------------------- \)WjkhG<w#  
    %       0    0    1                        sqrt(2) D._r@~o  
    %       1    1    r                           2 qo|iw+0Y  
    %       2    0    2*r^2 - 1                sqrt(6) .ji%%f  
    %       2    2    r^2                      sqrt(6) ( PlNaasV  
    %       3    1    3*r^3 - 2*r              sqrt(8) `-m7CT sA  
    %       3    3    r^3                      sqrt(8) voEc'JET  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) (H^o8J   
    %       4    2    4*r^4 - 3*r^2            sqrt(10) GK+w1%6)  
    %       4    4    r^4                      sqrt(10) V:18]:  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) &|eQLY #l  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) ,Nh X%  
    %       5    5    r^5                      sqrt(12) 1uMdgrJRR  
    %       --------------------------------------------- !}?]&[N=  
    % uI/ A_  
    %   Example: o~p^`5#  
    % i9tM]/SP  
    %       % Display three example Zernike radial polynomials {wySH[V  
    %       r = 0:0.01:1; uyIA]OtyN  
    %       n = [3 2 5]; jT',+   
    %       m = [1 2 1]; va<pHSX&I@  
    %       z = zernpol(n,m,r); db|$7]!w  
    %       figure Ns(F%zkm  
    %       plot(r,z) 8pk">"#s  
    %       grid on /FY_LM  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') ML-g"wv  
    % >E3OYa?G  
    %   See also ZERNFUN, ZERNFUN2. we3t,?`rk7  
    10(N|2'q  
    % A note on the algorithm. mDUS9>  
    % ------------------------ fsoS!6h0k  
    % The radial Zernike polynomials are computed using the series qS>el3G  
    % representation shown in the Help section above. For many special =UN:IzT  
    % functions, direct evaluation using the series representation can gO%3~f!vY#  
    % produce poor numerical results (floating point errors), because ; V8 =B8w  
    % the summation often involves computing small differences between wvD|c%   
    % large successive terms in the series. (In such cases, the functions zuw6YY8kQ  
    % are often evaluated using alternative methods such as recurrence I]58;|J  
    % relations: see the Legendre functions, for example). For the Zernike FU zY&@Y  
    % polynomials, however, this problem does not arise, because the cqDnZ`|6  
    % polynomials are evaluated over the finite domain r = (0,1), and IV76#jL  
    % because the coefficients for a given polynomial are generally all `fXcW)  
    % of similar magnitude. #"l=Lv  
    % L`6`NYR  
    % ZERNPOL has been written using a vectorized implementation: multiple  OxRzKT  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] W;7cF8fu4  
    % values can be passed as inputs) for a vector of points R.  To achieve eo !{rs@f  
    % this vectorization most efficiently, the algorithm in ZERNPOL ja2LXM  
    % involves pre-determining all the powers p of R that are required to *P>F# ~X  
    % compute the outputs, and then compiling the {R^p} into a single Ex<0@Oz  
    % matrix.  This avoids any redundant computation of the R^p, and cVN|5Y   
    % minimizes the sizes of certain intermediate variables. TD'1L:mv  
    % Em;zi.Y+V  
    %   Paul Fricker 11/13/2006 P$Nwf,d2u  
    8I%1 `V  
    4?`7XJ0a  
    % Check and prepare the inputs: q-'zZ#  
    % ----------------------------- tP3Upw"U  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) raCxHY  
        error('zernpol:NMvectors','N and M must be vectors.') @L0.Z1 ).  
    end *:iFhKFU  
    Dcq^C LPY  
    if length(n)~=length(m) 9496ayi  
        error('zernpol:NMlength','N and M must be the same length.') /1YqDK0  
    end hq|/XBd||  
    p 4=^ UP  
    n = n(:); #H|]F86(  
    m = m(:); K=V)"v5o3  
    length_n = length(n); /}Max@.`  
    PM{kiz^  
    if any(mod(n-m,2)) ]'{<O3:7  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') t2>Vj>U  
    end 'Q# KjY  
    wml`3$"cf  
    if any(m<0) 5=eGiF;0\  
        error('zernpol:Mpositive','All M must be positive.') n,`&f~tap  
    end "Mth<%i  
    3/iGSG`  
    if any(m>n) q*>`HTPcU  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') 9!tRM-  
    end gqE{  
    N7XRk= J  
    if any( r>1 | r<0 ) ~%cbp&s*/q  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') krgsmDi7  
    end vb# d%1b5  
    l&zd7BM9(  
    if ~any(size(r)==1) a!;?!f-i  
        error('zernpol:Rvector','R must be a vector.') WlU5`NJl]2  
    end <S<(wFE@4  
    ."dmL=  
    r = r(:); y 2bZo'Z  
    length_r = length(r); DEIn:d  
    fN@2 B  
    if nargin==4 ds`a6>746  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); e(cctC|l  
        if ~isnorm L0}"H .  
            error('zernpol:normalization','Unrecognized normalization flag.') WL<Cj_N_{H  
        end wT;D<rqe`  
    else C;_10Rb2ut  
        isnorm = false; Eg>MG87  
    end F9N)UW:w  
    d+$a5 [^9  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% k \|Hd"T  
    % Compute the Zernike Polynomials $w{#o E  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% G0^NkH,k  
    k/Z}nz   
    % Determine the required powers of r: UW!!!  
    % ----------------------------------- 1qtu,yIf  
    rpowers = []; nI&Tr_"tm  
    for j = 1:length(n) ;a2TONW   
        rpowers = [rpowers m(j):2:n(j)]; smJ%^'x  
    end L9(fa+$+#  
    rpowers = unique(rpowers); KnKV+:"  
    IWX%6*Zz  
    % Pre-compute the values of r raised to the required powers, 4Y[tx]<  
    % and compile them in a matrix: J=ZNx;{6  
    % ----------------------------- j*xxOwf  
    if rpowers(1)==0 vn7<>k> dx  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); wj /OYnMw  
        rpowern = cat(2,rpowern{:}); ?Jio9Zr  
        rpowern = [ones(length_r,1) rpowern]; Q u{#4qToA  
    else #)z_TM07P  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); lUbQ@7a<'  
        rpowern = cat(2,rpowern{:}); H1]G<N3  
    end SnRk` 5t  
    VU9w2/cM  
    % Compute the values of the polynomials: X0O@,  
    % -------------------------------------- CNQ>J`4  
    z = zeros(length_r,length_n); 3+rud9T  
    for j = 1:length_n 6"b =aPTi  
        s = 0:(n(j)-m(j))/2; 0& 54xP  
        pows = n(j):-2:m(j);  1)U%p  
        for k = length(s):-1:1 @|sDb?J  
            p = (1-2*mod(s(k),2))* ... uDbz`VpK  
                       prod(2:(n(j)-s(k)))/          ... N;Wm{~Zhb  
                       prod(2:s(k))/                 ... rjHL06qE  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... T_i]y4dg  
                       prod(2:((n(j)+m(j))/2-s(k))); sE{A~{a`  
            idx = (pows(k)==rpowers); bd_&=VLTC  
            z(:,j) = z(:,j) + p*rpowern(:,idx); x8+W9i0[1  
        end V*U{q%p(  
         eTw sh]  
        if isnorm kWZ?86!  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); 0rP`BK|  
        end Sxa+"0d6  
    end E]/` JI'%  
    k` cz$>  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  N;)Y+amg^  
    .Vy*p")"  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 {u/G!{N$  
    =x8F!W}Bt<  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)