非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 !|q<E0@w\
function z = zernfun(n,m,r,theta,nflag) p47S^gW
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. !J*,)kRN
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N `u!l3VZ/4
% and angular frequency M, evaluated at positions (R,THETA) on the 49Df?sx
% unit circle. N is a vector of positive integers (including 0), and wfL-oi'5
% M is a vector with the same number of elements as N. Each element b?4/#&z]
% k of M must be a positive integer, with possible values M(k) = -N(k) e6X[vc|Y}
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, thO ~=RB
% and THETA is a vector of angles. R and THETA must have the same ]u-]'P
% length. The output Z is a matrix with one column for every (N,M) 22<0DhJ
% pair, and one row for every (R,THETA) pair. N!Qg; (
% E+"dqSI/v
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 0U/K7sZ
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), =&0wr6
% with delta(m,0) the Kronecker delta, is chosen so that the integral >StO.Q99
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, =z?%;4'|
% and theta=0 to theta=2*pi) is unity. For the non-normalized nhSb~QqEh
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. xt'tL:d
% vB37M@wm
% The Zernike functions are an orthogonal basis on the unit circle. fl
Jp4-nx
% They are used in disciplines such as astronomy, optics, and {Y}dv`G#Iu
% optometry to describe functions on a circular domain. P X;Ed*y
% 2Nxm@B` {
% The following table lists the first 15 Zernike functions. <X TU8G
% N4;7gSc"
% n m Zernike function Normalization 3'c\;1lhT
% -------------------------------------------------- 3ZTE<zRQ
% 0 0 1 1 ]J9cVp
% 1 1 r * cos(theta) 2 k+V6,V)my
% 1 -1 r * sin(theta) 2 8,O33qwH
% 2 -2 r^2 * cos(2*theta) sqrt(6) !|2VWI}
% 2 0 (2*r^2 - 1) sqrt(3) ]Ni$.@Hu$
% 2 2 r^2 * sin(2*theta) sqrt(6)
Pi%%z
% 3 -3 r^3 * cos(3*theta) sqrt(8) x5dWBGH
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) ~`>e5OgOJ
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) +6smsL~<#v
% 3 3 r^3 * sin(3*theta) sqrt(8) C 8#@+ Q.
% 4 -4 r^4 * cos(4*theta) sqrt(10) T{]~07N?
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 4RKW
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) VN4yn| f/
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) L.xZ_ 6
% 4 4 r^4 * sin(4*theta) sqrt(10) &)i|$J 2.
% -------------------------------------------------- dX8hpQ
% <J(sR
% Example 1: w(L>#?
% *xf ._~E
% % Display the Zernike function Z(n=5,m=1) 41#w|L
\
% x = -1:0.01:1; Mh(]3\
% [X,Y] = meshgrid(x,x); k~%<Ir1V]
% [theta,r] = cart2pol(X,Y); 53HU.
% idx = r<=1; "I;C;}!
% z = nan(size(X)); hA 3HVP_
% z(idx) = zernfun(5,1,r(idx),theta(idx)); $(s\{(Wn
% figure }],Z;:
% pcolor(x,x,z), shading interp pqvOJ#?Q}=
% axis square, colorbar syx\gz
% title('Zernike function Z_5^1(r,\theta)') ERUt'1F?]
% n}A\2bO
% Example 2: OQ :dJe6
% 0s#vwK13
% % Display the first 10 Zernike functions 9[v1h,L
% x = -1:0.01:1; : FAH\
% [X,Y] = meshgrid(x,x); TUL_TR
% [theta,r] = cart2pol(X,Y); X.ONa_
% idx = r<=1; rI5Foh6
% z = nan(size(X)); jk\ dG16
% n = [0 1 1 2 2 2 3 3 3 3]; K\[!SXg@
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; h:XzUxL\
% Nplot = [4 10 12 16 18 20 22 24 26 28]; |5I'CNi\
% y = zernfun(n,m,r(idx),theta(idx)); jO9ip
% figure('Units','normalized') /Y[~-Y+!,
% for k = 1:10 HQ9f ,<
% z(idx) = y(:,k); GZ!|}$8
% subplot(4,7,Nplot(k)) &m3.h!dq
% pcolor(x,x,z), shading interp fsO9EEn7X
% set(gca,'XTick',[],'YTick',[]) =U
OLT>!
% axis square w)E@*h<Z
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) !.7udYmB
% end ^/wfXm
% tC8(XMVx
% See also ZERNPOL, ZERNFUN2. Gx?+9CV
QVZD/shq
% Paul Fricker 11/13/2006 d lH$yub
d
{lP
RVtQ20e";r
% Check and prepare the inputs: HLQ"?OFlz
% ----------------------------- PYB+FcR6?n
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) @J[6,$UVu
error('zernfun:NMvectors','N and M must be vectors.') `Yc_5&"
end x+? 9C
LiDvaF:@L!
if length(n)~=length(m) fkfZ>D^1
error('zernfun:NMlength','N and M must be the same length.') P7r'ffA
end J?)RfK|!
J2GcBzRH
n = n(:); <Y 4:'L6
m = m(:); g*\/N,"z
if any(mod(n-m,2)) h*0S$p<[1
error('zernfun:NMmultiplesof2', ... `|1MlRM9
'All N and M must differ by multiples of 2 (including 0).') I4H`YOD%
end I9$c F)zk
I^*'.z!4Q
if any(m>n) C`oa3B,z
error('zernfun:MlessthanN', ... 3HG;!D~m;
'Each M must be less than or equal to its corresponding N.') B UUf;Vv
end ,Y_{L|:w
fi PIAT}
if any( r>1 | r<0 ) W:&R~R
error('zernfun:Rlessthan1','All R must be between 0 and 1.') NX* O_/
end {hSGv
VCNT4m
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Eu@5L9A
error('zernfun:RTHvector','R and THETA must be vectors.') dtM[E`PL
end X CB?ll*^
bTmL5}n
r = r(:); @b&84Gn2
r
theta = theta(:); !}TMiCK
length_r = length(r); ~ <0Z>qr
if length_r~=length(theta) oR+-+-??$
error('zernfun:RTHlength', ... {B$2"q/~
'The number of R- and THETA-values must be equal.') $KV&\Q3\0
end wyc D>hc
!KS F3sz
% Check normalization: "yb WDWu
% -------------------- 4Tzd; P6_
if nargin==5 && ischar(nflag) }m]q}r
isnorm = strcmpi(nflag,'norm'); `T*U]/zQ
if ~isnorm KV!<Oq
error('zernfun:normalization','Unrecognized normalization flag.') _cJ[
FP1
end D _X8-
else L6:h.1 U$
isnorm = false; <T,A&`/
end 8``;0}'PC
S[M4ukYK
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -H(vL=
% Compute the Zernike Polynomials Q}%tt=KD
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @B1{r|-<^
{E9v`u\
% Determine the required powers of r: E,G<_40
% ----------------------------------- N?r>%4
m_abs = abs(m); $j`
$[tX6l
rpowers = []; qV1O-^&[f=
for j = 1:length(n) Rz <OF^Iy
rpowers = [rpowers m_abs(j):2:n(j)]; V}8$p8#<@
end >G)qns9
rpowers = unique(rpowers); d{+(Lpj^
R zR?&J
% Pre-compute the values of r raised to the required powers, -<f/\U
% and compile them in a matrix: H>7dND2;
% ----------------------------- AMlV%U#
if rpowers(1)==0 sLh0&R7
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); =iz,S:[
rpowern = cat(2,rpowern{:}); C?m,ta3
rpowern = [ones(length_r,1) rpowern]; 7|YrdK<
else 0LVE@qEL
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); VC&c)X
rpowern = cat(2,rpowern{:}); $N+6h#
end CDg AGy
q|#MB7e/
% Compute the values of the polynomials: _+QwREP
% -------------------------------------- E{^^^"z P
y = zeros(length_r,length(n)); 9Ld9N;rWm#
for j = 1:length(n) y0q#R.TOm
s = 0:(n(j)-m_abs(j))/2; QX0Y>&$)
pows = n(j):-2:m_abs(j); W? ,$!]0
for k = length(s):-1:1 s${_K* g6
p = (1-2*mod(s(k),2))* ... T-L5zu
prod(2:(n(j)-s(k)))/ ... |"k&fkS$
prod(2:s(k))/ ... ]
pPz@@xx
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... B!,yfTk]
prod(2:((n(j)+m_abs(j))/2-s(k))); hb^!LtF#Y
idx = (pows(k)==rpowers); sOC&Q&eg
y(:,j) = y(:,j) + p*rpowern(:,idx); L'kq>1QWf
end KsdG(.I+ek
QXQ
if isnorm D[Iqn
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); n.$(}A
end (O5)wej
end =I4.Gf"~f
% END: Compute the Zernike Polynomials ?b$3ob"
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% }=GM?,7b
'F_}xMU
% Compute the Zernike functions: -CBD|fo[h
% ------------------------------ R_e)mkE
idx_pos = m>0; [%8@DC'
idx_neg = m<0; I6dm@{/:>
it}-^3AM
z = y; =MSu3<y,
if any(idx_pos) R2^iSl%pj
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 7kz-V.
end LHi6:G"Y(
if any(idx_neg) !WKk=ysFS
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); *BOBH;s
end h5onRa*7
km>o7V&4G
% EOF zernfun