非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 +8\1.vY
function z = zernfun(n,m,r,theta,nflag) Y
&"rf
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. =u#xPI0:
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N )$_b?
% and angular frequency M, evaluated at positions (R,THETA) on the
LU=`K4
% unit circle. N is a vector of positive integers (including 0), and )k}UjU`!
% M is a vector with the same number of elements as N. Each element CHPu$eu
% k of M must be a positive integer, with possible values M(k) = -N(k) -*I Dzm
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, 3HP o*~"]
% and THETA is a vector of angles. R and THETA must have the same a
J&)-ge
% length. The output Z is a matrix with one column for every (N,M) 3"ii_#1
% pair, and one row for every (R,THETA) pair. b^~"4 fU
% 2!+saf^-,
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike `"* ]C
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), aV9QIH~
% with delta(m,0) the Kronecker delta, is chosen so that the integral ?onTW2cG;
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Vo2{aK;
% and theta=0 to theta=2*pi) is unity. For the non-normalized
1:+f@#
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. %kRQ9I".
% w`")^KXi
% The Zernike functions are an orthogonal basis on the unit circle. ~Kr_[X:d5
% They are used in disciplines such as astronomy, optics, and D[5Qd)PIL
% optometry to describe functions on a circular domain. L6-zQztn
% !leLOi2T
% The following table lists the first 15 Zernike functions. #o]/&T=N=
% bm+
#OI
% n m Zernike function Normalization @{|vW
% -------------------------------------------------- dO{a!Ca
% 0 0 1 1 np#RBy
% 1 1 r * cos(theta) 2 "DniDA
% 1 -1 r * sin(theta) 2 =I}8-AS~V
% 2 -2 r^2 * cos(2*theta) sqrt(6)
Pq@%MF]5
% 2 0 (2*r^2 - 1) sqrt(3) ksB-fOv*N
% 2 2 r^2 * sin(2*theta) sqrt(6) TzJp3
% 3 -3 r^3 * cos(3*theta) sqrt(8) '8$*gIQ8
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) @6N$!Q?
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) XsVp7zk\
% 3 3 r^3 * sin(3*theta) sqrt(8) -J$,W`#z
% 4 -4 r^4 * cos(4*theta) sqrt(10) {xzs{)9|Y4
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ~$O.KF:
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) &r)i6{w81
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) dP0%<Q|
% 4 4 r^4 * sin(4*theta) sqrt(10) ,a&&y0,
% -------------------------------------------------- :Rq>a@Rp
% {|;5P.,l
% Example 1: k_^|%xJ
% srbU}u3VZ
% % Display the Zernike function Z(n=5,m=1) ;c!}'2>vM
% x = -1:0.01:1; E9]/sFA-]
% [X,Y] = meshgrid(x,x); |NsrO8H
% [theta,r] = cart2pol(X,Y); /R2K3E#
% idx = r<=1; 0KQDw
% z = nan(size(X)); tocZO
% z(idx) = zernfun(5,1,r(idx),theta(idx)); sSM^net0
% figure _|!FhZ
% pcolor(x,x,z), shading interp 91
] "D;NN
% axis square, colorbar U49#?^?
% title('Zernike function Z_5^1(r,\theta)') _qZ?|;o^
% ^+hqGu]M
% Example 2: m,,FNYW
% h]6"~ m
% % Display the first 10 Zernike functions tdl Y
% x = -1:0.01:1; ]Ywj@-*q
% [X,Y] = meshgrid(x,x); U',9t
% [theta,r] = cart2pol(X,Y); J(%Jg
% idx = r<=1; LZ97nvK
% z = nan(size(X)); Y_H|Fl^
% n = [0 1 1 2 2 2 3 3 3 3]; k|Hxd^^I
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; o]#M8)=
% Nplot = [4 10 12 16 18 20 22 24 26 28]; b R6g^Yf
% y = zernfun(n,m,r(idx),theta(idx)); Y'75DE<BC
% figure('Units','normalized') 3kl<~O|Fs
% for k = 1:10 Z`?Z1SBt
% z(idx) = y(:,k); 80p? qe
% subplot(4,7,Nplot(k)) rW~hFSrV[o
% pcolor(x,x,z), shading interp $[p<}o/6v]
% set(gca,'XTick',[],'YTick',[]) 9q##)
% axis square 'q#$^='o
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) HW{si]~q
% end 8hTtBa
% tKnvNOhn
% See also ZERNPOL, ZERNFUN2. "I)*W8wTn
jK[~dY
% Paul Fricker 11/13/2006 $6(,/}==0
/GzA89N(
IsaL+elq|
% Check and prepare the inputs: i|@lUXBp
% ----------------------------- Qj?qWVapA
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) $*%ipD}f
error('zernfun:NMvectors','N and M must be vectors.') M!{;:m28X!
end C&&*6E5
b"au9:F4@7
if length(n)~=length(m) /``4!jU
error('zernfun:NMlength','N and M must be the same length.') ),G?f {`!
end
[a\U8
w
rNdeD~\
n = n(:); 5$v,%~$Xds
m = m(:); jLANv{"
if any(mod(n-m,2)) G lz0`z
error('zernfun:NMmultiplesof2', ... {Z529Ns
'All N and M must differ by multiples of 2 (including 0).') @_gCGI>Q
end our$Ka31
h83;}>
if any(m>n) B=>:w%<Ii
error('zernfun:MlessthanN', ... D!K){E
'Each M must be less than or equal to its corresponding N.') q`l&G%
end "kLu]M<
MOiTzL*
if any( r>1 | r<0 ) -QUr|:SK:
error('zernfun:Rlessthan1','All R must be between 0 and 1.') (&25 8i,
end VSK!Pc.G}
:MOr?"
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) (QO8_
error('zernfun:RTHvector','R and THETA must be vectors.') '7+e!>"
end hdi/ k!9[\
eV?._-G
r = r(:); J 8/]&Ow
theta = theta(:); ` ^rN"\
length_r = length(r); m&GxLT6
if length_r~=length(theta) Km5#$IiP;
error('zernfun:RTHlength', ... j{.P'5e@pZ
'The number of R- and THETA-values must be equal.') To x{Sk3L
end S,K'y?6
: ryE`EhB
% Check normalization: kRCuc}:SB
% -------------------- So?ScX\lG
if nargin==5 && ischar(nflag) fM[Qn*.
isnorm = strcmpi(nflag,'norm'); E]^wsS>=
if ~isnorm g4NxNjM;
error('zernfun:normalization','Unrecognized normalization flag.') oKl^Ttr
end xQ4'$rL1d
else &f}a` /{@
isnorm = false; O!0YlIvWv
end X[Lwx.Ly8
y7K&@Y
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% y"|QY!fK
% Compute the Zernike Polynomials yfBVy8Sm
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 4LO U[D
@yBg)1AL
% Determine the required powers of r: %J*z!Fe8s
% ----------------------------------- D1&%N{
m_abs = abs(m); bCM&Fe0GM
rpowers = []; kC=e>v
for j = 1:length(n) !"*!du28jo
rpowers = [rpowers m_abs(j):2:n(j)]; `m6>r9:
end NVEjUt/
rpowers = unique(rpowers); %SV5PO@
&<!DNXQ
% Pre-compute the values of r raised to the required powers, o80"ZU|=
% and compile them in a matrix: +*dG'U6
% ----------------------------- `0l)\
if rpowers(1)==0 q Ee1OB
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); [dm&I#m=
rpowern = cat(2,rpowern{:}); 'cs!(z-{x
rpowern = [ones(length_r,1) rpowern]; vvJ{fi
else (x}>tm
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); JArSJ:}
rpowern = cat(2,rpowern{:}); (!-gX"<b
end q[6tvPfkX
"62vwWrwO
% Compute the values of the polynomials: R3nCk-Dq
% -------------------------------------- XcOfQs
y = zeros(length_r,length(n)); @ ;%+Ms
for j = 1:length(n) X^!n'$^u
s = 0:(n(j)-m_abs(j))/2; J%G
EIe|
pows = n(j):-2:m_abs(j); Vy]y73~
for k = length(s):-1:1 )ZxDfRjL
p = (1-2*mod(s(k),2))* ... ]*I:N
prod(2:(n(j)-s(k)))/ ... VO_! +
prod(2:s(k))/ ... =x9SvIm/tH
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ^[K3]*!@
prod(2:((n(j)+m_abs(j))/2-s(k))); 6S#Y$2
P
idx = (pows(k)==rpowers); ZLsfF
=/G
y(:,j) = y(:,j) + p*rpowern(:,idx); t')47k\
end U} EaV<
q=NI}k
if isnorm #fq%903=
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); >s
4"2X
end pGQP9r%
end 9`83cL
% END: Compute the Zernike Polynomials BCDmce`=l
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% lHRs3+
2K^D%U
% Compute the Zernike functions: kq;1Ax0{
% ------------------------------ VrV
)qfG
idx_pos = m>0; ]_Cm 5Z7
idx_neg = m<0; gZa/?[+
F32N e6Y6"
z = y; @J`o
pR
if any(idx_pos) $uw[X
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 1&zvf4
end C,*3a`/2M^
if any(idx_neg) (mO{W
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); YX A|1
end OT1
#6t 4 vJ1
% EOF zernfun