切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11462阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 E]} n(  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! D'[Uc6  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 cPF<D$B  
    function z = zernfun(n,m,r,theta,nflag) C2F0tr|  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 5z/Er".P  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N m:CTPzAt  
    %   and angular frequency M, evaluated at positions (R,THETA) on the .p6+l!"  
    %   unit circle.  N is a vector of positive integers (including 0), and 0Bolv_e  
    %   M is a vector with the same number of elements as N.  Each element 3sm M,fi  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 9@VO+E$7L  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, +C{p%`<  
    %   and THETA is a vector of angles.  R and THETA must have the same 6LUC!Sh  
    %   length.  The output Z is a matrix with one column for every (N,M) `sHuM*  
    %   pair, and one row for every (R,THETA) pair. I4_d[O9  
    % LLAa1Wq  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike t-e5ld~a  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), =[tSd)D,y  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral c| ~6Ie  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, @e2}BhB2  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized viaJblYj(f  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. udqS'g&  
    % @9G- m(?*  
    %   The Zernike functions are an orthogonal basis on the unit circle. e;95a  
    %   They are used in disciplines such as astronomy, optics, and Xa 9TS"  
    %   optometry to describe functions on a circular domain. $ 0Yh!L?\  
    % omX?Bl  
    %   The following table lists the first 15 Zernike functions. |QZ 58)>  
    % >v5k{Cbp0  
    %       n    m    Zernike function           Normalization u:gtOjk2  
    %       -------------------------------------------------- fZWGn6$   
    %       0    0    1                                 1 5i So8*9}  
    %       1    1    r * cos(theta)                    2 A2H4k|8  
    %       1   -1    r * sin(theta)                    2 F@<0s&)1  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) gPC@Yy  
    %       2    0    (2*r^2 - 1)                    sqrt(3) ~%y@Xsot>  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) ]dPZ.r  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) *JCQu0  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) .V'V:;BE%  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) sKaE-sbJY  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) s4= "kT]  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) ,w)p"[^b  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ~|+zJ5  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) rnm03 '{  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) MQ/ A]EeL  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) Q[ieaL6&  
    %       -------------------------------------------------- v Y|!  
    % &~DTZg Y  
    %   Example 1: HRa@  
    % ]rBM5~  
    %       % Display the Zernike function Z(n=5,m=1) ><?BqRm+  
    %       x = -1:0.01:1; Jc*XXu)  
    %       [X,Y] = meshgrid(x,x); CZ{k@z`r  
    %       [theta,r] = cart2pol(X,Y); Q}AE.Ef@<  
    %       idx = r<=1; h rN%  
    %       z = nan(size(X)); w=b(X q+:  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 2h^WYpCm  
    %       figure ,t$,idcT+  
    %       pcolor(x,x,z), shading interp JN3cg  
    %       axis square, colorbar 5ua?I9fY  
    %       title('Zernike function Z_5^1(r,\theta)') b B  
    % *e"a0  
    %   Example 2: {==pZpyyh  
    % "E!mva*NU  
    %       % Display the first 10 Zernike functions Tp%(I"H'_;  
    %       x = -1:0.01:1; =H]F`[B=  
    %       [X,Y] = meshgrid(x,x);  :S %lv  
    %       [theta,r] = cart2pol(X,Y); 1qdZ c_x  
    %       idx = r<=1; D #2yIec  
    %       z = nan(size(X)); \&xl{64  
    %       n = [0  1  1  2  2  2  3  3  3  3]; PFSLyV*  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; %Q|eiXD  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; /L=(^k=a.;  
    %       y = zernfun(n,m,r(idx),theta(idx)); (il0M=M  
    %       figure('Units','normalized') *tQk;'/A]  
    %       for k = 1:10 p QE)p  
    %           z(idx) = y(:,k); E;\M1(\u  
    %           subplot(4,7,Nplot(k)) 7()?C}Ni-  
    %           pcolor(x,x,z), shading interp j#A%q"]8  
    %           set(gca,'XTick',[],'YTick',[]) 5CYo7mJ6+  
    %           axis square N"5fmY<  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) / l>.mK()  
    %       end j} HFs0<L  
    % 8pZ< 9t'  
    %   See also ZERNPOL, ZERNFUN2. Y0uvT7+[hi  
    d 4{FDqto  
    %   Paul Fricker 11/13/2006 |  FM }  
    #} ,x @]p  
    3-Bl  
    % Check and prepare the inputs: mS=r(3#  
    % ----------------------------- - Xupq/[,  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) %FkLQ+v/<  
        error('zernfun:NMvectors','N and M must be vectors.') w:=V@-S 8  
    end F}?<v8#z0  
    NC23Z0y  
    if length(n)~=length(m) +JdZPb  
        error('zernfun:NMlength','N and M must be the same length.') T3J'fjY  
    end #XIc "L)c  
    O_,O,1  
    n = n(:); GY!C|7kN  
    m = m(:); P~$< X  
    if any(mod(n-m,2)) V-W'RunnW  
        error('zernfun:NMmultiplesof2', ... t=wXTK5"  
              'All N and M must differ by multiples of 2 (including 0).') nL `9l1  
    end -$8.3\6h  
    bi[7!VQf  
    if any(m>n) uGtV}-t:  
        error('zernfun:MlessthanN', ... I+?hG6NM  
              'Each M must be less than or equal to its corresponding N.') _]>JB0IY  
    end C*~aSl7  
    %IZ)3x3l  
    if any( r>1 | r<0 ) '?Bg;Z'L%  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 1JS2SxF  
    end TRvZ  
    `^F: -  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) @s* ,xHE  
        error('zernfun:RTHvector','R and THETA must be vectors.') E)p9eU[#  
    end $^%N U  
    ETw]! br  
    r = r(:); $xW **&  
    theta = theta(:); o \L!(hm  
    length_r = length(r); 0irr7Y  
    if length_r~=length(theta) S q@H  
        error('zernfun:RTHlength', ... bY8GA  
              'The number of R- and THETA-values must be equal.') -$k>F#  
    end XX;6 P  
    jZ9[=?   
    % Check normalization: gT52G?-  
    % -------------------- dSK 0h(8  
    if nargin==5 && ischar(nflag) f?UzD#50D  
        isnorm = strcmpi(nflag,'norm'); Di(9]: +  
        if ~isnorm 440FhD Mj  
            error('zernfun:normalization','Unrecognized normalization flag.') 7!4V >O8@  
        end #a~"K|' G  
    else pa/9F[  
        isnorm = false; b)} +>Wx  
    end Lk, +Tfk"  
    b5`KB75sbo  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% v548ysE)  
    % Compute the Zernike Polynomials Zr/r2  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% C8b''9t.  
    C7"HQQ  
    % Determine the required powers of r: .Ao0;:;(2-  
    % ----------------------------------- !vqC+o>@  
    m_abs = abs(m); LsTffIP  
    rpowers = []; s@@1 *VQ  
    for j = 1:length(n) Eu<r$6Q0}o  
        rpowers = [rpowers m_abs(j):2:n(j)]; Bq}x9C&<  
    end F+aQ $pQ  
    rpowers = unique(rpowers); wyQb5n2`;~  
    K&`Awv  
    % Pre-compute the values of r raised to the required powers, ZXXiL#^  
    % and compile them in a matrix: &d^=s iL  
    % ----------------------------- ?S`>>^  
    if rpowers(1)==0 \HSicV#i  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Ol+Kp!ocY  
        rpowern = cat(2,rpowern{:}); DdjCn`jqlf  
        rpowern = [ones(length_r,1) rpowern]; uH{'gd,q8  
    else 3)E(RyQA3  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); F @SG((`  
        rpowern = cat(2,rpowern{:}); ,x#ztdvr  
    end zB)%lb  
    Lo`F  
    % Compute the values of the polynomials: \Ow,CUd  
    % -------------------------------------- (cV  
    y = zeros(length_r,length(n)); v*TeTA %  
    for j = 1:length(n) zy)i1d  
        s = 0:(n(j)-m_abs(j))/2; ejcwg*i  
        pows = n(j):-2:m_abs(j); \r -N(;m  
        for k = length(s):-1:1 7'j9rmTXs  
            p = (1-2*mod(s(k),2))* ... SGf9U^ds  
                       prod(2:(n(j)-s(k)))/              ... 4XG]z_+I  
                       prod(2:s(k))/                     ... #x)}29%e#  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Jt=>-Spj  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); UxqWnHH.`  
            idx = (pows(k)==rpowers); $WaZ_kt  
            y(:,j) = y(:,j) + p*rpowern(:,idx); n<R \w''x  
        end Yn<)k_kp  
         a@ W7<9fY;  
        if isnorm .E<Dz  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Uf2:gLrF  
        end G11cNr>*  
    end Q_}n%P:u  
    % END: Compute the Zernike Polynomials K2|7%  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \y~)jq:d"  
    'lQYJ0  
    % Compute the Zernike functions: [x_s/"Md;  
    % ------------------------------ *zQOJsg"e  
    idx_pos = m>0; ,)$Wm-  
    idx_neg = m<0; Mq+< mX7  
    BjZ>hhs!*  
    z = y; %$9:e J?  
    if any(idx_pos) otnV-7)@  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); `ue?Z%p|  
    end ~CFMIQ et  
    if any(idx_neg) 1n3$V:00  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Xp^$ E6YFy  
    end [=~!w_  
    !R{em48D  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) Iaa|qJ4  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. #M:B3C!ouY  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated RAOKZ~`  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive iiN?\OO^~  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, gvr]]}h:O  
    %   and THETA is a vector of angles.  R and THETA must have the same Hdna{@~  
    %   length.  The output Z is a matrix with one column for every P-value, .f%vDBJS  
    %   and one row for every (R,THETA) pair. kA,4$ 2_o  
    % I+~\ w N  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike @>Ek'~m  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) J[o${^  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) &<t79d%{  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 =W |vOfy  
    %   for all p. "i(U  
    % un&>  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 pLo;#e8'f  
    %   Zernike functions (order N<=7).  In some disciplines it is ec1Fg0Fa  
    %   traditional to label the first 36 functions using a single mode `.`FgaJ |  
    %   number P instead of separate numbers for the order N and azimuthal wOM<X hZ  
    %   frequency M. fv/v|  
    % ~D_ rZ&  
    %   Example: UL ck  
    % 7_7xL(F/  
    %       % Display the first 16 Zernike functions 4V>vg2 d  
    %       x = -1:0.01:1; ^T+<!k  
    %       [X,Y] = meshgrid(x,x); 0@w&J9yG  
    %       [theta,r] = cart2pol(X,Y); s)Gb!-``  
    %       idx = r<=1; \`&xprqAw  
    %       p = 0:15; d}pGeU'  
    %       z = nan(size(X)); *.,8,e8Vq  
    %       y = zernfun2(p,r(idx),theta(idx)); IY~ {)X  
    %       figure('Units','normalized') a YR\<02  
    %       for k = 1:length(p) @21u I{  
    %           z(idx) = y(:,k); %'kX"}N/  
    %           subplot(4,4,k) eoC<a"bJ>  
    %           pcolor(x,x,z), shading interp \Qp}|n1JY  
    %           set(gca,'XTick',[],'YTick',[]) 03] r*\  
    %           axis square #yX^?+Rc  
    %           title(['Z_{' num2str(p(k)) '}']) O/nqNQ?<  
    %       end ,A^L=+  
    % _3I3AG0e  
    %   See also ZERNPOL, ZERNFUN. EO"=\C,  
    2-PI JO  
    %   Paul Fricker 11/13/2006 Ag<4r  
    ?'T"?b<  
    uH= Gt^_  
    % Check and prepare the inputs: g8Ok ^  
    % ----------------------------- tI `w;e%HN  
    if min(size(p))~=1 2"zIR (  
        error('zernfun2:Pvector','Input P must be vector.') rx{#+ iw  
    end +OKA_b"wB  
    XpOCQyFnM  
    if any(p)>35 l#mtND3  
        error('zernfun2:P36', ... vW9^hbdx  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... $`ON!,oa  
               '(P = 0 to 35).']) RLv&,$$0  
    end y+l<vJu  
    1o(+rR<h9  
    % Get the order and frequency corresonding to the function number: |_!PD$i-  
    % ---------------------------------------------------------------- `Nkx7Z~w:  
    p = p(:); nIG[{gGX  
    n = ceil((-3+sqrt(9+8*p))/2); |WQD=J%~(  
    m = 2*p - n.*(n+2); ZV0) ."^Z  
    [;)~nPjI  
    % Pass the inputs to the function ZERNFUN: }'%$7vL`Ft  
    % ---------------------------------------- {|G&W^`  
    switch nargin 1LV|t+Sex  
        case 3 #@IQlqJfY7  
            z = zernfun(n,m,r,theta); O2/%mFS.  
        case 4 {c.}fyN  
            z = zernfun(n,m,r,theta,nflag); $hC~af6  
        otherwise %`bLmfm  
            error('zernfun2:nargin','Incorrect number of inputs.') Mf!owpW T  
    end L!`*R)I45  
    _.u~)Q`6  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) f J,8g/f8  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. wCqE4i  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of :DF`A(  
    %   order N and frequency M, evaluated at R.  N is a vector of g`y/ _  
    %   positive integers (including 0), and M is a vector with the 89 _&X[X  
    %   same number of elements as N.  Each element k of M must be a ?14X8Mb8W_  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) EuhF$L1  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is {'cs![U  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix "i;*\+x  
    %   with one column for every (N,M) pair, and one row for every QSlf=VK*y  
    %   element in R. EfMG(oI  
    % T#ecLD#  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- vq@#Be?@  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is h9@gs,'   
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to -K{\S2  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1  M}_M_  
    %   for all [n,m]. Cf8R2(-4  
    % LGdf_M-f  
    %   The radial Zernike polynomials are the radial portion of the \J#I}-a&j  
    %   Zernike functions, which are an orthogonal basis on the unit F!DrZd>\  
    %   circle.  The series representation of the radial Zernike FuRn%)DA5  
    %   polynomials is r-Xjy*T  
    % @pyA;>U  
    %          (n-m)/2 cHfK-R  
    %            __ 0hEF$d6U  
    %    m      \       s                                          n-2s U^WQWa  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r ePFC$kMn  
    %    n      s=0 GcU(:V2o  
    % tFb|y+  
    %   The following table shows the first 12 polynomials. TU^tW  
    % x %!OP\  
    %       n    m    Zernike polynomial    Normalization I+-Rs2wb  
    %       --------------------------------------------- @)FXG~C*  
    %       0    0    1                        sqrt(2) 5wVi{P5+  
    %       1    1    r                           2 #oS  
    %       2    0    2*r^2 - 1                sqrt(6) `K ~>!d_  
    %       2    2    r^2                      sqrt(6) J[Ylo&w3  
    %       3    1    3*r^3 - 2*r              sqrt(8) 9 ;! uV>-H  
    %       3    3    r^3                      sqrt(8) U7f#Z  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) #&HarBxx  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) w^vK7Z 1$  
    %       4    4    r^4                      sqrt(10) YjMbd?v  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) DXw9@b  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) 2gNBPd)I  
    %       5    5    r^5                      sqrt(12) FL*w(Br.  
    %       --------------------------------------------- /3bca!O  
    % G=0}IPfp  
    %   Example: c9F[pfi(  
    % WHh2fN'A5  
    %       % Display three example Zernike radial polynomials wN%DM)*k  
    %       r = 0:0.01:1; _@}MGWlAPt  
    %       n = [3 2 5]; U~QCN[gh  
    %       m = [1 2 1]; 5#A1u Nb  
    %       z = zernpol(n,m,r); E,nYtn|B  
    %       figure xHR+((  
    %       plot(r,z)  \1c`)  
    %       grid on i(TDJ@}  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') A1&>L9nUx  
    % 1+y6W1m^R  
    %   See also ZERNFUN, ZERNFUN2. )l81R  
    5>^ W}0s  
    % A note on the algorithm. mqfEs0~I  
    % ------------------------ ~N+/ZVo&y  
    % The radial Zernike polynomials are computed using the series DdA}A>47  
    % representation shown in the Help section above. For many special 0zk T8'v  
    % functions, direct evaluation using the series representation can -^NAHE$bW  
    % produce poor numerical results (floating point errors), because q2"'W|I  
    % the summation often involves computing small differences between "Ezr-4  
    % large successive terms in the series. (In such cases, the functions "=0 lcb C  
    % are often evaluated using alternative methods such as recurrence 9 h{:!  
    % relations: see the Legendre functions, for example). For the Zernike +xu/RY_  
    % polynomials, however, this problem does not arise, because the E;+OD&|  
    % polynomials are evaluated over the finite domain r = (0,1), and #+5mpDh  
    % because the coefficients for a given polynomial are generally all ]idD&5gd  
    % of similar magnitude. A0 w `o  
    % J7aK3 he  
    % ZERNPOL has been written using a vectorized implementation: multiple  ]9l%  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] "Z1&z-   
    % values can be passed as inputs) for a vector of points R.  To achieve B7QtB3bn  
    % this vectorization most efficiently, the algorithm in ZERNPOL M%dl?9pbq  
    % involves pre-determining all the powers p of R that are required to fgz'C?  
    % compute the outputs, and then compiling the {R^p} into a single 2$/gg"g+  
    % matrix.  This avoids any redundant computation of the R^p, and h,RUL  
    % minimizes the sizes of certain intermediate variables. (YWc%f4  
    % QR-R5XNT[  
    %   Paul Fricker 11/13/2006 mQ `r`DW  
    R S_lQ{'  
    $5 p'+bE  
    % Check and prepare the inputs: 38.J:?Q  
    % ----------------------------- fbbl92p  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 7&S|y]$~  
        error('zernpol:NMvectors','N and M must be vectors.') ?@ye*%w_  
    end -JW6@L@  
    7Mb t*[n  
    if length(n)~=length(m) XIW: Nk!S  
        error('zernpol:NMlength','N and M must be the same length.') :FgRe,D  
    end >"My\o  
    &JQ@(w  
    n = n(:); ;w&yGm  
    m = m(:); /xbF1@XtL  
    length_n = length(n); xbC- ueEj  
    .KMi)1L)  
    if any(mod(n-m,2)) ;{C{V{  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') ,(Hmk(,  
    end blkJm9]v  
    .6A:t? .  
    if any(m<0) pD.@&J~  
        error('zernpol:Mpositive','All M must be positive.') +W3>Yg%)X  
    end h+d;`7Z>  
    X!+ a;wr  
    if any(m>n) =id $  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') '|R@k_nx  
    end D{d$L9.  
    ~oR&0et  
    if any( r>1 | r<0 ) ')cgx9   
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') 7CN[Z9Y^}  
    end }4ju2K  
    6&Ir0K/  
    if ~any(size(r)==1) V.[#$ip6:  
        error('zernpol:Rvector','R must be a vector.') P+|8MT0  
    end %YAiSSsV  
    NjyIwo0  
    r = r(:); ; SM^  
    length_r = length(r); ) CTM  
    >43yty\   
    if nargin==4 ~F6gF7]z  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); ?B!ZqJ#  
        if ~isnorm #\["y%;W  
            error('zernpol:normalization','Unrecognized normalization flag.') \uPTk)oaB  
        end D}U<7=\3H  
    else BfLZ  
        isnorm = false; 3^UsyZS)  
    end e[dRHl  
    */e5lRO\  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% y5D?Bg|M  
    % Compute the Zernike Polynomials 0qUap*fvC  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ABDUp:  
    )t=u(:u]  
    % Determine the required powers of r: L=FvLii.  
    % ----------------------------------- cb,sb^-  
    rpowers = []; j}*+-.YF  
    for j = 1:length(n) F}DD;K  
        rpowers = [rpowers m(j):2:n(j)]; OIT;fKl9  
    end bD-Em#>  
    rpowers = unique(rpowers); jch8d(`?d  
    <%7 V`,*g/  
    % Pre-compute the values of r raised to the required powers, sB/s17ar  
    % and compile them in a matrix: s@iCfXU  
    % ----------------------------- Y/(-mcR  
    if rpowers(1)==0 :vT%5CQ  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); R u-rp^a  
        rpowern = cat(2,rpowern{:}); mcG$V0D <{  
        rpowern = [ones(length_r,1) rpowern]; HwuPjc#  
    else F ;&e5G  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 6|Q'\  
        rpowern = cat(2,rpowern{:}); -;-"i J0  
    end n"Vd"}sU.  
    " ?,6{\y,  
    % Compute the values of the polynomials: Vatt9  
    % -------------------------------------- <~+  
    z = zeros(length_r,length_n); 0M98y!A 5^  
    for j = 1:length_n mhuaXbr  
        s = 0:(n(j)-m(j))/2; .U%"oD  
        pows = n(j):-2:m(j); c `; LF'!  
        for k = length(s):-1:1 {jf~?/<  
            p = (1-2*mod(s(k),2))* ... jsQ$.)nO  
                       prod(2:(n(j)-s(k)))/          ... :L0W"$  
                       prod(2:s(k))/                 ... y*(j{0yd  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... 1U7HS2  
                       prod(2:((n(j)+m(j))/2-s(k))); b\S}?{m5  
            idx = (pows(k)==rpowers); sR .j~R  
            z(:,j) = z(:,j) + p*rpowern(:,idx); wm71,R1  
        end 9#6/c  
         LS;anNk@.}  
        if isnorm ii9/ UtIQ  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); `p|vutk)U  
        end 2&URIQg*J  
    end G'f"w5%qZv  
    e8bJ]  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  F>(#Af9  
    v/.h%6n?  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 ~7WXjVZ  
    i/~QJ1C  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)