切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11493阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 4j(`koX_  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! 4'Y a-x x  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 Ya(3Z_f+VZ  
    function z = zernfun(n,m,r,theta,nflag) H)CoByaj  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 7|jy:F,w%  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N <j/wK]d*/  
    %   and angular frequency M, evaluated at positions (R,THETA) on the e)m6xiZ  
    %   unit circle.  N is a vector of positive integers (including 0), and 3Tp8t6*nL  
    %   M is a vector with the same number of elements as N.  Each element *`LrvE@t  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) Mpco8b-b  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, DLD9  
    %   and THETA is a vector of angles.  R and THETA must have the same +KWO`WR  
    %   length.  The output Z is a matrix with one column for every (N,M) C6h[L  
    %   pair, and one row for every (R,THETA) pair. oOaLD{g>  
    % D7m uf  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike @(+\*]?^&  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), d_ x jW  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 3to!C"~\K-  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ,X;$-.  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized |_QpB?b  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. *'tGi_2?(  
    % U#Iwe=  
    %   The Zernike functions are an orthogonal basis on the unit circle. ]&9=f#k%  
    %   They are used in disciplines such as astronomy, optics, and } E[vW  
    %   optometry to describe functions on a circular domain. G9GHBwT  
    % f6nuh&!-  
    %   The following table lists the first 15 Zernike functions. hpYv*WH:  
    % 4mtO"'|  
    %       n    m    Zernike function           Normalization TBky+]p@  
    %       -------------------------------------------------- `Q#)N0  
    %       0    0    1                                 1 R(,m!  
    %       1    1    r * cos(theta)                    2 p=#/H ,2  
    %       1   -1    r * sin(theta)                    2 j}`ku9S~  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6)  WFhppi   
    %       2    0    (2*r^2 - 1)                    sqrt(3) :ln?PT  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) "5'eiYm s  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) BUV4L5(  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) {d]B+'  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 2oOos%0  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) X.FoX  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 3x 7fa^umR  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 8~~ k?  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 33wVP}e5  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) fY?:SPR+  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) -B! a O65^  
    %       -------------------------------------------------- &4 #%xg  
    % 9_.pLLx  
    %   Example 1: Xw jm T  
    % G2 V$8lh  
    %       % Display the Zernike function Z(n=5,m=1) EwgNd Gcj  
    %       x = -1:0.01:1; P}(c0/  
    %       [X,Y] = meshgrid(x,x); s{{8!Q  
    %       [theta,r] = cart2pol(X,Y); )EQI>1_  
    %       idx = r<=1; VUP. \Vry  
    %       z = nan(size(X)); ?^MH:o  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); qFLt/ >  
    %       figure Qh6 vH9(D  
    %       pcolor(x,x,z), shading interp -N5h`Ii7  
    %       axis square, colorbar >Z<ZT  
    %       title('Zernike function Z_5^1(r,\theta)') o?~27   
    % X+<9 -]=  
    %   Example 2: {7MY*&P$,  
    % Y,EF'Ot  
    %       % Display the first 10 Zernike functions %cDDu$9;  
    %       x = -1:0.01:1; +2}Ar<elP  
    %       [X,Y] = meshgrid(x,x); L<XX?I\p  
    %       [theta,r] = cart2pol(X,Y); ^,?>6O  
    %       idx = r<=1; Pgq(yPC  
    %       z = nan(size(X)); l@u  "iGw  
    %       n = [0  1  1  2  2  2  3  3  3  3]; O8N1gf;t  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; i_+e&Bjd4j  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; Z=;=9<vA  
    %       y = zernfun(n,m,r(idx),theta(idx)); qW|h"9sr  
    %       figure('Units','normalized') 4>fj @X(3  
    %       for k = 1:10 (~! @Uz5  
    %           z(idx) = y(:,k); 6 b?K-)kL  
    %           subplot(4,7,Nplot(k)) T+rym8.p  
    %           pcolor(x,x,z), shading interp nD>X?yz2  
    %           set(gca,'XTick',[],'YTick',[]) k`]76C7  
    %           axis square zlTLp-^Y  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ZtP/|P5@  
    %       end w^n&S=E E~  
    % AW9%E/{  
    %   See also ZERNPOL, ZERNFUN2. !vc 5NKv#n  
    /R?*i@rvf  
    %   Paul Fricker 11/13/2006 45iO2W uur  
    h.Sbds  
    UfV { m  
    % Check and prepare the inputs: +W8#]u|  
    % ----------------------------- 4`cfFowK~  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) uC#] F@  
        error('zernfun:NMvectors','N and M must be vectors.') S$R=!3* "V  
    end 0"+QWh  
    :B|rs&  
    if length(n)~=length(m) jGJf[:M&Pm  
        error('zernfun:NMlength','N and M must be the same length.') ^L Xr4  
    end R`@7f$;wG  
    jv1p'qs4  
    n = n(:); &9.3-E47*  
    m = m(:); #q9BU:  
    if any(mod(n-m,2)) 5H 1x-b  
        error('zernfun:NMmultiplesof2', ... @T.F/Pjhc  
              'All N and M must differ by multiples of 2 (including 0).') g u' +kw  
    end m}: X\G(6Q  
    \,:7=  
    if any(m>n) Gz8JOl  
        error('zernfun:MlessthanN', ...  #.Ly  
              'Each M must be less than or equal to its corresponding N.') ANj%q9e!Yi  
    end Bxj4rC[  
    ~{kA;uw  
    if any( r>1 | r<0 ) !y!s/i&P%  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') -~lrv#5Q  
    end _n4`mL8>kH  
    !ueh%V Ky  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) M$f_I +  
        error('zernfun:RTHvector','R and THETA must be vectors.') I>-}ys`[  
    end |BGzdBm^x:  
    `$3P@SO"  
    r = r(:); AP=SCq;  
    theta = theta(:); \S~<C[P  
    length_r = length(r); &qa16bz  
    if length_r~=length(theta) &;Go CU Le  
        error('zernfun:RTHlength', ... y4!fu<[i  
              'The number of R- and THETA-values must be equal.')  Y!|};  
    end P5"B7>L:  
    soKR*gJ,  
    % Check normalization: mcQ\"9;pY  
    % -------------------- +OB&PE  
    if nargin==5 && ischar(nflag) nRX<$OzTV  
        isnorm = strcmpi(nflag,'norm'); D6e<1W  
        if ~isnorm {z'Gg  
            error('zernfun:normalization','Unrecognized normalization flag.') WCp[6g&%O  
        end $.B}zY{  
    else W$Aypy  
        isnorm = false; &N %-.&t'  
    end !yV)EJ:$  
    ~$Z_#,|i?  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% yG>sBc  
    % Compute the Zernike Polynomials X<1ymb3  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0nlh0u8#  
    DFGgyFay  
    % Determine the required powers of r: icK U)  
    % ----------------------------------- rj5)b:c}  
    m_abs = abs(m); [Kbna>`  
    rpowers = []; SC2g5i`  
    for j = 1:length(n) Ew9 MWlk  
        rpowers = [rpowers m_abs(j):2:n(j)]; \nQEvcH  
    end mj y+_  
    rpowers = unique(rpowers); *I9G"R8  
    a1weTn*  
    % Pre-compute the values of r raised to the required powers, _ g"su #  
    % and compile them in a matrix: 6|%HCxWO  
    % ----------------------------- YeF'r.Y  
    if rpowers(1)==0 HlX7A 1i/  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); hDEZq>&  
        rpowern = cat(2,rpowern{:}); $5>x)jr:w+  
        rpowern = [ones(length_r,1) rpowern]; \z2d=E  
    else #mO.[IuD  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); %5(v'/dQ  
        rpowern = cat(2,rpowern{:}); '9|R7  
    end Gs}lw'pK  
    [{_K[5i  
    % Compute the values of the polynomials: D/WzYc2h]  
    % -------------------------------------- 9Mv4=k^7|4  
    y = zeros(length_r,length(n)); nON "+c*  
    for j = 1:length(n) Q $>SYvW  
        s = 0:(n(j)-m_abs(j))/2; <^8OYnp  
        pows = n(j):-2:m_abs(j); An !i  
        for k = length(s):-1:1 lHPhZ(Z  
            p = (1-2*mod(s(k),2))* ... ;!>>C0s"  
                       prod(2:(n(j)-s(k)))/              ... }HZ'i;~r|9  
                       prod(2:s(k))/                     ... /p@0Q [E  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ]}A yDy6C  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); k${F7I(Tb  
            idx = (pows(k)==rpowers); %M05& <  
            y(:,j) = y(:,j) + p*rpowern(:,idx); Wy$Q!R=i  
        end 2l4`h)_q  
         5c l%>U  
        if isnorm 5wMEp" YHE  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); m^,3jssdA  
        end ;V1e>?3  
    end _n< @Jk~  
    % END: Compute the Zernike Polynomials rHgrC MW  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% gH/k}M7tA#  
    UIw6~a3E  
    % Compute the Zernike functions: , Onu%  
    % ------------------------------ V{kgDpB  
    idx_pos = m>0; rYr.mX  
    idx_neg = m<0; *|:]("i  
    g/soop\:  
    z = y; oI%.oP}G  
    if any(idx_pos) h'G8@j;  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); q0 8  
    end GD .>u  
    if any(idx_neg) rx;zd?  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); OAz -w  
    end #Y<b'7yJ  
    ~# |p=Y  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) YEqWTB|w  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. /c1FFkq|K  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated %Gs!oD  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive yS-owtVCGF  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, e: :H1V  
    %   and THETA is a vector of angles.  R and THETA must have the same bx<7@  
    %   length.  The output Z is a matrix with one column for every P-value, sxLq'3(  
    %   and one row for every (R,THETA) pair. xTL"%'|  
    % 0qV!-i  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike bdCpGG9  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) QRv2%^L  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) Z`b{r;`m8  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 R#Bdfmld q  
    %   for all p. g< {jgF  
    % f/qG:yTV`  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 X;0DQnAI8j  
    %   Zernike functions (order N<=7).  In some disciplines it is !(Y23w*  
    %   traditional to label the first 36 functions using a single mode DP9hvu/85  
    %   number P instead of separate numbers for the order N and azimuthal jM90 gPX>,  
    %   frequency M. fW4N+2  
    % Pw'3ya8  
    %   Example: # -Ts]4v  
    % /^\6q"'  
    %       % Display the first 16 Zernike functions L%JmdY;  
    %       x = -1:0.01:1; ZWSYh>"  
    %       [X,Y] = meshgrid(x,x); x*[\$E`v  
    %       [theta,r] = cart2pol(X,Y); g+k0Fw]!  
    %       idx = r<=1; 7 0:a2m  
    %       p = 0:15; mPxph>o  
    %       z = nan(size(X)); ; ,]T|> M  
    %       y = zernfun2(p,r(idx),theta(idx)); sD* 8:Hl  
    %       figure('Units','normalized') igsJa1F  
    %       for k = 1:length(p) ]|[oL6"  
    %           z(idx) = y(:,k); fgP_NYfOj  
    %           subplot(4,4,k) ALiXT8q  
    %           pcolor(x,x,z), shading interp q8.K-"f(Q  
    %           set(gca,'XTick',[],'YTick',[]) A@ EeX4N  
    %           axis square l M5Xw  
    %           title(['Z_{' num2str(p(k)) '}']) .4~n|d>z  
    %       end V Z;ASA?;  
    % ^l6q  
    %   See also ZERNPOL, ZERNFUN. -lm\~VZT3  
    (AdQ6eGMb  
    %   Paul Fricker 11/13/2006 ]-& ehW  
    Qe=!'u.nL  
    'kK}9VKl  
    % Check and prepare the inputs: iP;X8'< BC  
    % ----------------------------- CC>]Gc7  
    if min(size(p))~=1 ,&!Txyye  
        error('zernfun2:Pvector','Input P must be vector.') QOkPliX  
    end @ Sw[+`  
    fNc3&=]]  
    if any(p)>35 #!KbqRt  
        error('zernfun2:P36', ... XU .FLNe  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... 8|`4D 'Ln  
               '(P = 0 to 35).']) K<KyX8$P0  
    end Qj?FUxw  
    DGTSk9iK(  
    % Get the order and frequency corresonding to the function number: Im1e/F]  
    % ---------------------------------------------------------------- E[>4b7{g:  
    p = p(:); Zycu3%JI  
    n = ceil((-3+sqrt(9+8*p))/2);  tQB+_q z  
    m = 2*p - n.*(n+2); t7("geN]  
    _U)DL=a'  
    % Pass the inputs to the function ZERNFUN: '@9h@,tc  
    % ---------------------------------------- i3*S`/]p  
    switch nargin _ pM&Ya  
        case 3 7^h?<X\  
            z = zernfun(n,m,r,theta); v"Fa_+TVx  
        case 4 r"SuE:D  
            z = zernfun(n,m,r,theta,nflag); T+m`a #  
        otherwise AxUj CerNf  
            error('zernfun2:nargin','Incorrect number of inputs.') Aq}]{gfQ1  
    end oBQr6-nZ  
    $6T*\(;T@A  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) b2. xJ4  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. SY_T\ }  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of 0m6Vf x  
    %   order N and frequency M, evaluated at R.  N is a vector of 5@bLD P  
    %   positive integers (including 0), and M is a vector with the *;8tj5du  
    %   same number of elements as N.  Each element k of M must be a bN@V=C3  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) MOY.$M,1  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is MRi QaUg2  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix /i$E|[  
    %   with one column for every (N,M) pair, and one row for every @;M( oFS9  
    %   element in R. (Kd;l &8  
    % kehv85  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- .{LFc|Z[  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is f@Rn&&-  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to V}=9S@$o  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 qi_[@da f?  
    %   for all [n,m]. ~xpU<Pd*  
    % deHhl(U;  
    %   The radial Zernike polynomials are the radial portion of the k!b\qS~Q  
    %   Zernike functions, which are an orthogonal basis on the unit jzSh|a9_  
    %   circle.  The series representation of the radial Zernike h}i /u  
    %   polynomials is v-J*PB.0p  
    % $R%xeih1fz  
    %          (n-m)/2 a33}CVG-e3  
    %            __ *fso6j#%  
    %    m      \       s                                          n-2s I.A7H'j  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r 4<)%Esyb  
    %    n      s=0 rY_)N^B|nF  
    % q [Rqy !,  
    %   The following table shows the first 12 polynomials. >xws  
    % )uiYu3 I  
    %       n    m    Zernike polynomial    Normalization :2{6Pa(eg  
    %       --------------------------------------------- #"fBF/Q  
    %       0    0    1                        sqrt(2) q3adhY9|)0  
    %       1    1    r                           2 lcHw Kd  
    %       2    0    2*r^2 - 1                sqrt(6) j1%o+#df  
    %       2    2    r^2                      sqrt(6) A&rk5y;  
    %       3    1    3*r^3 - 2*r              sqrt(8) j|TcmZGO  
    %       3    3    r^3                      sqrt(8) [URo#  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) )4>M<BO  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) S(eCG2gR  
    %       4    4    r^4                      sqrt(10) u~7mH  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) Ikql  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) im|( 4 f  
    %       5    5    r^5                      sqrt(12) X:bv ?o>Y  
    %       --------------------------------------------- W\:!v%C  
    % MWl?pG!Y  
    %   Example: #'fh'$5"  
    % VliX'.-  
    %       % Display three example Zernike radial polynomials R7}=k)U?d@  
    %       r = 0:0.01:1; Yb\t0:_  
    %       n = [3 2 5]; oa$-o/DhB  
    %       m = [1 2 1]; i"Hec9Ri  
    %       z = zernpol(n,m,r); D*BZp0x  
    %       figure >=BH$4Ce  
    %       plot(r,z) =/Pmi_  
    %       grid on !|;^  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') kIhP 73M  
    % B/.+&AJw  
    %   See also ZERNFUN, ZERNFUN2. JpqZVu"7  
    |VxEW U/  
    % A note on the algorithm. &NZl_7P L  
    % ------------------------ $mOVo'2  
    % The radial Zernike polynomials are computed using the series ivDmPHj{  
    % representation shown in the Help section above. For many special gcDo o2RE  
    % functions, direct evaluation using the series representation can @TF^6)4f  
    % produce poor numerical results (floating point errors), because `!WtKqr%B  
    % the summation often involves computing small differences between .'N:]G@!  
    % large successive terms in the series. (In such cases, the functions |C}n]{*|  
    % are often evaluated using alternative methods such as recurrence C4wJSQl_I  
    % relations: see the Legendre functions, for example). For the Zernike |^9+c2   
    % polynomials, however, this problem does not arise, because the b5K6F:D22  
    % polynomials are evaluated over the finite domain r = (0,1), and @v{lH&K:;  
    % because the coefficients for a given polynomial are generally all ,PC'xrEo  
    % of similar magnitude. )a"rj5~-  
    % 81Ixs Qt  
    % ZERNPOL has been written using a vectorized implementation: multiple &AM<H}>  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] VQ wr8jXye  
    % values can be passed as inputs) for a vector of points R.  To achieve u"eO&Vc  
    % this vectorization most efficiently, the algorithm in ZERNPOL vM )2F  
    % involves pre-determining all the powers p of R that are required to (1pI#H"f9  
    % compute the outputs, and then compiling the {R^p} into a single "c5C0 pK0  
    % matrix.  This avoids any redundant computation of the R^p, and -}avH  
    % minimizes the sizes of certain intermediate variables. OiBDI3,|+  
    % ms9zp?M  
    %   Paul Fricker 11/13/2006 W*?mc2;/  
    JHQc)@E}  
    /){F0Zjjt  
    % Check and prepare the inputs: HQPb  
    % ----------------------------- W=b<"z]RE  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) u\LG_/UJV1  
        error('zernpol:NMvectors','N and M must be vectors.') h1O^~"x  
    end OSP#FjH  
    4HX qRFUD  
    if length(n)~=length(m) E.~;  
        error('zernpol:NMlength','N and M must be the same length.') :eIPPh|\  
    end '2)c;/-E  
    %f??O|O3  
    n = n(:); F>N3GPRl  
    m = m(:); V.<$c1#=$  
    length_n = length(n); vn oI.;H,  
    9gjI;*(z1  
    if any(mod(n-m,2)) )gM3,gSS  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') @ qFE6!  
    end cfZG3 "  
    /P_1vQq  
    if any(m<0) V[E7 mhqy  
        error('zernpol:Mpositive','All M must be positive.') yWS #{| o(  
    end W?+U%bIZ9  
    e|Ip7`  
    if any(m>n) `v2]Jk<  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') $7Sbz&)y3  
    end }mGOEG|F2  
    /48W]a}JS  
    if any( r>1 | r<0 ) W40GW  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') 7\.Ax  
    end D+$k  
    agQ5%t#  
    if ~any(size(r)==1) mX@Un9k  
        error('zernpol:Rvector','R must be a vector.') G`!ff  
    end Ub1?dk   
    @\~qXz{6J  
    r = r(:); NF?FEUoxz  
    length_r = length(r); }h+_kRQ  
    B_f0-nKP  
    if nargin==4 qg7] YT&  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); i&cH  
        if ~isnorm {HgW9N(  
            error('zernpol:normalization','Unrecognized normalization flag.') |. bp  
        end d<*4)MRN  
    else ,H{ /@|RW  
        isnorm = false;  eiLtZQ  
    end V<} ^n  
    $Cu/!GA4.>  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% [\9WqHs  
    % Compute the Zernike Polynomials 6r"PtHr  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ,+p&ZpH  
    mwuFXu/  
    % Determine the required powers of r:  KR  
    % ----------------------------------- FV[6">;g  
    rpowers = []; ++KY+j.^  
    for j = 1:length(n) =hV-E D  
        rpowers = [rpowers m(j):2:n(j)]; 47Y| 1  
    end Z&mV1dxR  
    rpowers = unique(rpowers); Pn{yk`6E  
    lYd#pNN  
    % Pre-compute the values of r raised to the required powers, \!UNa le  
    % and compile them in a matrix: tVx.J'"Y  
    % ----------------------------- `1%SXP1  
    if rpowers(1)==0 {Y5h*BD>  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); uo1G   
        rpowern = cat(2,rpowern{:}); ':,6s  
        rpowern = [ones(length_r,1) rpowern]; l<<G". ?  
    else 2|k*rv}l  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); c$f|a$$b   
        rpowern = cat(2,rpowern{:}); lY}mrb  
    end }?P~qJ|1  
    =q|fe%#  
    % Compute the values of the polynomials: R|Ft@]  
    % -------------------------------------- /p,D01Ws}(  
    z = zeros(length_r,length_n); dRZor gar  
    for j = 1:length_n Q, E!Ew3  
        s = 0:(n(j)-m(j))/2; =J8)Z'Jr  
        pows = n(j):-2:m(j); A>L(#lz#ek  
        for k = length(s):-1:1  =erA.u  
            p = (1-2*mod(s(k),2))* ... *8p\.za1  
                       prod(2:(n(j)-s(k)))/          ... <$.KCLP  
                       prod(2:s(k))/                 ... |Sg *j-.  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... f}4c#x  
                       prod(2:((n(j)+m(j))/2-s(k))); )!dELS \ix  
            idx = (pows(k)==rpowers); 8Gb=aF1  
            z(:,j) = z(:,j) + p*rpowern(:,idx); 0:G@a&Lr  
        end 98C~%+  
         "xdJ9Z-B  
        if isnorm @{_PO{=\C  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); (2@b ,w^  
        end ilK8V4k<T)  
    end ^JtGT  
    6\86E$f=h  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  jXDo!a| 4y  
    iGlZFA  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 #FQVhgc  
    UCWU|r<s,  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)