切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11566阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 4\4FolsK  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! d~JKH&x<  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 t ]_VG  
    function z = zernfun(n,m,r,theta,nflag) A.EbXo/  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. K%F,='P}  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N jO1r)hw N>  
    %   and angular frequency M, evaluated at positions (R,THETA) on the FMClSeO7  
    %   unit circle.  N is a vector of positive integers (including 0), and OVhE??#  
    %   M is a vector with the same number of elements as N.  Each element &' Ne! o8  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) |>tKq;/  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, Z`KC%!8K  
    %   and THETA is a vector of angles.  R and THETA must have the same -/g B|J  
    %   length.  The output Z is a matrix with one column for every (N,M) G}:lzOlMH  
    %   pair, and one row for every (R,THETA) pair. 5[YDZ7g"~  
    % znaUBv_  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike D-4f >  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), zY('t!u8  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral LS88.w\=S@  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ~XWQhIAM4  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 1M 781  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. f,:9N5Z  
    % Db1pW=66:  
    %   The Zernike functions are an orthogonal basis on the unit circle. /5:bvg+  
    %   They are used in disciplines such as astronomy, optics, and 1][S#H/?  
    %   optometry to describe functions on a circular domain. [`rba'  
    % b+&% 1C  
    %   The following table lists the first 15 Zernike functions. h >s!K9  
    % \3S8 62B7  
    %       n    m    Zernike function           Normalization <\}KT*Xp  
    %       -------------------------------------------------- C@L$~iG  
    %       0    0    1                                 1 f^"N!f a  
    %       1    1    r * cos(theta)                    2 (KF=On;=Y  
    %       1   -1    r * sin(theta)                    2 @)4]b+8Z  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) MgNU``  
    %       2    0    (2*r^2 - 1)                    sqrt(3) }`,t$NV`  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) j&Wl0  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) (r D_(%o  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) B3 5E8/  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 6DuEL=C  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) %+K<<iyR|  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) R]btAu;Z  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) R5 9S@MsuD  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) \8 h;K>=h  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) KjE+QUa  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) J_v$YwE  
    %       -------------------------------------------------- A3S<.. g2  
    % YGPy@-,E  
    %   Example 1: \DD0s8  
    % ~(IB0=A{v  
    %       % Display the Zernike function Z(n=5,m=1) dOoKLry  
    %       x = -1:0.01:1; MvWaB  
    %       [X,Y] = meshgrid(x,x); iIq)~e/ Z  
    %       [theta,r] = cart2pol(X,Y); +[tE^`-F  
    %       idx = r<=1; ?}a;}Q 6  
    %       z = nan(size(X)); qh2ON>e;  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); ,J{ei7TN  
    %       figure 2m35R&  
    %       pcolor(x,x,z), shading interp ;Mpy#yIU.  
    %       axis square, colorbar x\s|n{  
    %       title('Zernike function Z_5^1(r,\theta)') Gmq/3tw  
    % ,;Hu=;  
    %   Example 2: D6G oa(!9d  
    % H+ 0$tHi  
    %       % Display the first 10 Zernike functions W034N[9  
    %       x = -1:0.01:1; [5MJwRM^!;  
    %       [X,Y] = meshgrid(x,x); ZOQTINf  
    %       [theta,r] = cart2pol(X,Y); (v}>tb*#`  
    %       idx = r<=1; PV/7 7{'  
    %       z = nan(size(X)); r;Gi+Ca5  
    %       n = [0  1  1  2  2  2  3  3  3  3]; (s7;^)}zx  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; R%qGPO5Z\c  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; [I$ BmGQ  
    %       y = zernfun(n,m,r(idx),theta(idx)); 6u`)QUmItg  
    %       figure('Units','normalized') 72Iy^Y[MX  
    %       for k = 1:10 |*'cF-lp6v  
    %           z(idx) = y(:,k); !>e5z|1   
    %           subplot(4,7,Nplot(k)) ,>eMG=C;g  
    %           pcolor(x,x,z), shading interp 0DmMG  
    %           set(gca,'XTick',[],'YTick',[]) weE/TW\e  
    %           axis square wm$}Pch  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) !2'jrJGc  
    %       end l#H#+*F  
    % ]zQo>W$  
    %   See also ZERNPOL, ZERNFUN2. -xDGH  
    MV\|e1B}  
    %   Paul Fricker 11/13/2006 3plzHz,x  
    p Wt) A  
    k-HCeZ  
    % Check and prepare the inputs: _',prZ*  
    % ----------------------------- Z6_N$Z.A  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) sM?MLB\Za  
        error('zernfun:NMvectors','N and M must be vectors.') _-9@qe  
    end I{lT>go  
    ni6{pK4Wqm  
    if length(n)~=length(m) %9M~f*  
        error('zernfun:NMlength','N and M must be the same length.') j^;I3_P  
    end N#Zhxu,g!  
    y6IXdW  
    n = n(:); FcRW;e8-  
    m = m(:); spGB)k,^  
    if any(mod(n-m,2)) >9q&PEc  
        error('zernfun:NMmultiplesof2', ... KTn}w:+B\  
              'All N and M must differ by multiples of 2 (including 0).') <0QH<4  
    end ewfP G,S  
    N^pJS6cJkl  
    if any(m>n) niqN{  
        error('zernfun:MlessthanN', ... Tjl:|F8  
              'Each M must be less than or equal to its corresponding N.') BvR-K\rx  
    end '{J&M|<A  
    B:e @0049  
    if any( r>1 | r<0 ) \L(*]:EP  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') BwBm[jtP  
    end GF>'\@Th  
    ( @3\`\X  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) C":o/;,1  
        error('zernfun:RTHvector','R and THETA must be vectors.') ;Ww7"-=sw  
    end 05spovO/'  
    Z7_ zMM  
    r = r(:); $zyIuJN#  
    theta = theta(:); VH(S=G5Yb  
    length_r = length(r); W ]Nv33i [  
    if length_r~=length(theta) /,X[k !  
        error('zernfun:RTHlength', ... E[*Fz1>  
              'The number of R- and THETA-values must be equal.') c{&*w")J  
    end 8S<@"v  
    KM !k$;my  
    % Check normalization: ']>Mp#j  
    % -------------------- qqu.EE  
    if nargin==5 && ischar(nflag) s.x&LG  
        isnorm = strcmpi(nflag,'norm'); ~,BIf+ \XF  
        if ~isnorm +{/*z  
            error('zernfun:normalization','Unrecognized normalization flag.') sp ]zbX?  
        end K,e w>U  
    else S=nP[s  
        isnorm = false; \N4 y<  
    end _^ 'I  
    ,N e;kI  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% GN0`rEh  
    % Compute the Zernike Polynomials q-`RI*1]  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 9!Ar`Io2@  
    ]Z oD'-,  
    % Determine the required powers of r: GQl$yZaK{  
    % ----------------------------------- UH"#2< |b  
    m_abs = abs(m); ~{D[ >j][  
    rpowers = []; bg3"W,bv%  
    for j = 1:length(n) :Pg}Zz<  
        rpowers = [rpowers m_abs(j):2:n(j)]; 7 As|Ns`  
    end OZIW_'Wm/  
    rpowers = unique(rpowers); )6w}<W*1E  
    2{Chu85   
    % Pre-compute the values of r raised to the required powers, (C\hVy2X?N  
    % and compile them in a matrix: %rF?dvb;?  
    % ----------------------------- !p[9{U->o;  
    if rpowers(1)==0 !j\" w p  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); @0eHS +  
        rpowern = cat(2,rpowern{:}); b.@P%`@a.  
        rpowern = [ones(length_r,1) rpowern]; ^<:sdv>Y5  
    else :mS# h@l  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 4_UU<GEp  
        rpowern = cat(2,rpowern{:}); Pf$pt  
    end W?We6.%  
    cwuO[^S}  
    % Compute the values of the polynomials: a3VM '  
    % -------------------------------------- 3VUWX5K?  
    y = zeros(length_r,length(n)); #CnHf  
    for j = 1:length(n) AxZD-|.  
        s = 0:(n(j)-m_abs(j))/2; #!9S}b$  
        pows = n(j):-2:m_abs(j); q\q=PB6r  
        for k = length(s):-1:1 _kdL'x  
            p = (1-2*mod(s(k),2))* ... DEw8*MN  
                       prod(2:(n(j)-s(k)))/              ... `-\/$M9s=  
                       prod(2:s(k))/                     ... &%2*Wu;  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ; h`0ir4[A  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); R.s^o]vT  
            idx = (pows(k)==rpowers); 2~*Ez!.3  
            y(:,j) = y(:,j) + p*rpowern(:,idx); k`{@pt.  
        end S8l1"/?aHE  
         Y(+^;Y3U  
        if isnorm x%<  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 2iU7 0(H  
        end e } *0ghKI  
    end Lqp8yVO  
    % END: Compute the Zernike Polynomials Pe_!?:vF  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% `$YP<CJeq  
    |w*R8ro_  
    % Compute the Zernike functions: 'i8 U  
    % ------------------------------ JI/_ce  
    idx_pos = m>0; oR~e#<$;  
    idx_neg = m<0; Ln.ZVMZ;  
    m$LVCB  
    z = y; KT.?Xp:z  
    if any(idx_pos) NJ MJ  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); @O}7XRJ_8  
    end /?6gdN  
    if any(idx_neg) 8*SP~q  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); JTqq0OD}  
    end EQe5JFR  
    +"ueq  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) .la&P,j_L  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. o\`>c:.  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated kJ(A,s|  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive -#29xRPk  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, Qpt&3_   
    %   and THETA is a vector of angles.  R and THETA must have the same tehUD&  
    %   length.  The output Z is a matrix with one column for every P-value, *8ExRQZ$  
    %   and one row for every (R,THETA) pair. *fO{ a  
    % U,lJ"$'  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike ibdO*E  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) p\bFdxv#  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) n^hocGH*  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 tJ=di5&  
    %   for all p. lM#A3/=K  
    % gcJF`H/iNK  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 DP7C?}(  
    %   Zernike functions (order N<=7).  In some disciplines it is plV7+?G  
    %   traditional to label the first 36 functions using a single mode R< zG^m  
    %   number P instead of separate numbers for the order N and azimuthal JeY' 8B  
    %   frequency M. S^f:`9ab9  
    % }'=h 4yI  
    %   Example: Ae?e 70bY  
    % }wSy  
    %       % Display the first 16 Zernike functions l SkEuN  
    %       x = -1:0.01:1; 4S L_-Hm.  
    %       [X,Y] = meshgrid(x,x); |z^pL1Z]5  
    %       [theta,r] = cart2pol(X,Y); (\dK4JJ  
    %       idx = r<=1; 2 [!Mx&^  
    %       p = 0:15; ~ E=\t9r  
    %       z = nan(size(X)); 3]n0 &MZAR  
    %       y = zernfun2(p,r(idx),theta(idx)); \,sg)^w@  
    %       figure('Units','normalized') .h;Se  
    %       for k = 1:length(p) ^GYq#q9Q  
    %           z(idx) = y(:,k); :+ ,st&(E  
    %           subplot(4,4,k) 1]\TI7/ n  
    %           pcolor(x,x,z), shading interp =V|Nn0E  
    %           set(gca,'XTick',[],'YTick',[]) EX?h0Uy  
    %           axis square 5@XV6  
    %           title(['Z_{' num2str(p(k)) '}']) X^< >6|)  
    %       end wH!#aB>kP  
    % o6?l/nJ  
    %   See also ZERNPOL, ZERNFUN. j[P8  
    %^9:%ytt  
    %   Paul Fricker 11/13/2006 k|O,1  
    =p&sl;PsLw  
    (BERY  
    % Check and prepare the inputs: 98*x 'Wp  
    % ----------------------------- Dw |3Z  
    if min(size(p))~=1 ]0D9N"  
        error('zernfun2:Pvector','Input P must be vector.') z};ZxN  
    end BDpF }  
    Z~3u:[x";  
    if any(p)>35 {rPk3  
        error('zernfun2:P36', ... fQQ |gwVki  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... ):bu;3E  
               '(P = 0 to 35).']) wO"GtVd  
    end -NDi5i\  
    lIuXo3  
    % Get the order and frequency corresonding to the function number: { (\(m/!Z  
    % ---------------------------------------------------------------- KtMbze  
    p = p(:); 3C"_$?y"  
    n = ceil((-3+sqrt(9+8*p))/2); fr#Qz{  
    m = 2*p - n.*(n+2); k!doIMj  
    tF`MT%{Va  
    % Pass the inputs to the function ZERNFUN: KzkgWMM  
    % ---------------------------------------- >%c*Xe  
    switch nargin \n@V-b  
        case 3 +{6`F1MO  
            z = zernfun(n,m,r,theta); 8X~h?^Vz  
        case 4 @\~tHJ?hQd  
            z = zernfun(n,m,r,theta,nflag);  C6)R#  
        otherwise e}Q>\t45  
            error('zernfun2:nargin','Incorrect number of inputs.') l#6&WWmr  
    end Wg(bD,  
    &r:m&?!|VQ  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) tzNaw %\  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. v?%3~XoH  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of 7O461$4v  
    %   order N and frequency M, evaluated at R.  N is a vector of e;;):\p4  
    %   positive integers (including 0), and M is a vector with the \c68n  
    %   same number of elements as N.  Each element k of M must be a M*H< n*  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) _vIO !*h0  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is 3"vRK5Bf  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix ^5>du~d  
    %   with one column for every (N,M) pair, and one row for every /p}{#DLB  
    %   element in R. F8 ?uQP8  
    % gr\@sx?b  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- *N'hA5.z  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is <c\]Ct  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to QmHwn)Ly  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 `+^sW#ki  
    %   for all [n,m]. Ivjw<XP6K  
    % ` #=fA  
    %   The radial Zernike polynomials are the radial portion of the CfY7<o1>  
    %   Zernike functions, which are an orthogonal basis on the unit YnD#p[Wo^  
    %   circle.  The series representation of the radial Zernike X/wmKi  
    %   polynomials is \2Xx%SX  
    % Dh?vU~v(6  
    %          (n-m)/2 enPLaiJ'|q  
    %            __ ,,}sK  
    %    m      \       s                                          n-2s u x#. :C|  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r g#Mv&tU  
    %    n      s=0 5=m3J !?  
    % E\_W  
    %   The following table shows the first 12 polynomials.  *0-v!\{  
    % W8x[3,gT  
    %       n    m    Zernike polynomial    Normalization &8waih(|  
    %       --------------------------------------------- . Jb?]n  
    %       0    0    1                        sqrt(2) s1Okoxh/!V  
    %       1    1    r                           2 H):-! ?:  
    %       2    0    2*r^2 - 1                sqrt(6) 0w'|d@*wV  
    %       2    2    r^2                      sqrt(6) o|+E+l9\  
    %       3    1    3*r^3 - 2*r              sqrt(8) 2@4x"F]U;  
    %       3    3    r^3                      sqrt(8) 2 mSD"[%  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) PlF!cr7:4  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) {:3.27jQ  
    %       4    4    r^4                      sqrt(10) q`cEA<~S  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) }U(\~ =D  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) \ U Ax(;  
    %       5    5    r^5                      sqrt(12) jjX'_E  
    %       --------------------------------------------- 90?,-6  
    % rQn{L{  
    %   Example: .B6`OX&k  
    % (lieiye^  
    %       % Display three example Zernike radial polynomials ^t`f1rGR  
    %       r = 0:0.01:1; E3LBPXK  
    %       n = [3 2 5]; =zz+<!!  
    %       m = [1 2 1]; xkF$D:s P  
    %       z = zernpol(n,m,r); HRj7n<>L=  
    %       figure yB=C5-\F  
    %       plot(r,z) jT{f<P0  
    %       grid on c1PViko,>  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') 0Y[*lM-  
    % Y:rJK|m  
    %   See also ZERNFUN, ZERNFUN2. kSB3KR;~n  
    ?_8%h`z  
    % A note on the algorithm. P$6W`^D Z  
    % ------------------------ N4A&"1d&  
    % The radial Zernike polynomials are computed using the series &K+  
    % representation shown in the Help section above. For many special ~."!l'a  
    % functions, direct evaluation using the series representation can f V*}c`  
    % produce poor numerical results (floating point errors), because c]e`m6  
    % the summation often involves computing small differences between r >E\Cco  
    % large successive terms in the series. (In such cases, the functions #NW Zk.S  
    % are often evaluated using alternative methods such as recurrence *Ao2j;  
    % relations: see the Legendre functions, for example). For the Zernike =d}gv6v2S  
    % polynomials, however, this problem does not arise, because the T!Xm")d  
    % polynomials are evaluated over the finite domain r = (0,1), and .V8/ELr]  
    % because the coefficients for a given polynomial are generally all D&4u63^  
    % of similar magnitude. k& WS$R?u  
    % (W7;}gysh  
    % ZERNPOL has been written using a vectorized implementation: multiple 3fm;r5  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] R:]/{b4Uq  
    % values can be passed as inputs) for a vector of points R.  To achieve U~oBNsU"  
    % this vectorization most efficiently, the algorithm in ZERNPOL YR?3 61FK  
    % involves pre-determining all the powers p of R that are required to $*YC7f  
    % compute the outputs, and then compiling the {R^p} into a single O~${&(  
    % matrix.  This avoids any redundant computation of the R^p, and :a#F  
    % minimizes the sizes of certain intermediate variables. *~"zV`*Q  
    % qUifw @  
    %   Paul Fricker 11/13/2006 fL(':W&n-  
    v&p,Clt-2  
    P#w}3^  
    % Check and prepare the inputs: &7$,<9.  
    % ----------------------------- ;RNM   
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) f-vZ2+HP  
        error('zernpol:NMvectors','N and M must be vectors.') "|(rVj=  
    end gsLr=  
    ?H y%ULk  
    if length(n)~=length(m) AF6d#Klog  
        error('zernpol:NMlength','N and M must be the same length.') F5<"ktnI  
    end u(8_[/_B  
    Oyi;bb<#  
    n = n(:); Sg/:n,68  
    m = m(:); }l,T~Pjb  
    length_n = length(n); <P+G7!KZ&  
    &=v/VRan[  
    if any(mod(n-m,2)) *eHA: A_I  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') H(X+.R,Thp  
    end u^}7Vs .  
    fn1 ?Qp|  
    if any(m<0) //#xK D  
        error('zernpol:Mpositive','All M must be positive.') 8|w5QvCU?3  
    end ^zvA?'s  
    A Oby*c  
    if any(m>n) ybD{4&ZE  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') 3C> 2x(]M  
    end -s9Y(>  
    i!CKA}",  
    if any( r>1 | r<0 ) fQ=&@ >e  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') XD;15a  
    end lAdOC5+JX  
    cEDDO&u  
    if ~any(size(r)==1) @J~ lV\  
        error('zernpol:Rvector','R must be a vector.') ]NaMZ  
    end iifc;62  
    :'5G_4y)h  
    r = r(:); ?D RFsA  
    length_r = length(r); F3k C"H  
    UI|v/(_^F  
    if nargin==4 2uvQf&,  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); z1Bj_u{  
        if ~isnorm Gl?P.BCW.&  
            error('zernpol:normalization','Unrecognized normalization flag.') PWf{aHsr  
        end :N^@a-  
    else hKk\Y{wv'  
        isnorm = false; Fy}MXe"f  
    end [<#<:h &\  
    uS! 35{.>  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% L eG7x7n  
    % Compute the Zernike Polynomials '_q: vjX  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% uznoyj6g  
    *k3 d^9o#  
    % Determine the required powers of r: '+ o:,6  
    % ----------------------------------- c[wQJc  
    rpowers = []; #,f}lV,&  
    for j = 1:length(n) o9U0kI=W  
        rpowers = [rpowers m(j):2:n(j)]; naec"Kut  
    end &[?u1qQ%o  
    rpowers = unique(rpowers); "C$!mdr7  
    1R5\GKF6o  
    % Pre-compute the values of r raised to the required powers, hRuo,FS#:  
    % and compile them in a matrix: s=^r/Sz902  
    % ----------------------------- ,Az`6PW  
    if rpowers(1)==0 :GwSs'$O  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); *_4n2<W$  
        rpowern = cat(2,rpowern{:}); dO 1-c`  
        rpowern = [ones(length_r,1) rpowern]; % +kT  
    else O84v*=uA  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); b qg]DO$*  
        rpowern = cat(2,rpowern{:}); w8m8r`h  
    end >gX0Ij#G  
    BNL8hK`D  
    % Compute the values of the polynomials: RE`J"&  
    % -------------------------------------- `}k&HRn  
    z = zeros(length_r,length_n); f>\bUmk(  
    for j = 1:length_n \U)2 Tg  
        s = 0:(n(j)-m(j))/2; ~uhyROO,G"  
        pows = n(j):-2:m(j); M5cOz|j/*R  
        for k = length(s):-1:1 zCBtD_@  
            p = (1-2*mod(s(k),2))* ... H0D>A<Ue  
                       prod(2:(n(j)-s(k)))/          ... 4pfix1F g  
                       prod(2:s(k))/                 ... 5CY@R  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... X%4uShM  
                       prod(2:((n(j)+m(j))/2-s(k))); ]v^`+s}3  
            idx = (pows(k)==rpowers); IS0HV$OI  
            z(:,j) = z(:,j) + p*rpowern(:,idx); @n~>j&Kp  
        end |l6<GWG+  
         Oi kU$~|  
        if isnorm L#7)X5a__  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); F$6])F  
        end S1H47<)UF  
    end Kh:#S|   
    I |<+'G  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  *~<]|H5~  
    FiU;>t<)  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 Z Lio8  
    zm3MOH^a  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)