非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 "jq F
function z = zernfun(n,m,r,theta,nflag) Kn+B):OY+
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. K`R
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N )q+;+J`>
% and angular frequency M, evaluated at positions (R,THETA) on the )=h+5Z>E1
% unit circle. N is a vector of positive integers (including 0), and e58tf3
% M is a vector with the same number of elements as N. Each element h>NuQo*
% k of M must be a positive integer, with possible values M(k) = -N(k) -A8CW9|mk
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, n\scOM)3
% and THETA is a vector of angles. R and THETA must have the same k1^&;}/f:
% length. The output Z is a matrix with one column for every (N,M) 9&4z4@on
% pair, and one row for every (R,THETA) pair. $8_b[~%2
% p-8x>dmP(
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike q-0(
Wx9|
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), )J|~'{z:
% with delta(m,0) the Kronecker delta, is chosen so that the integral ~EhM"go
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 'k$j^|r>
% and theta=0 to theta=2*pi) is unity. For the non-normalized /;1h-Rc>
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. sr$JFMTO11
% ^paM{'J\\)
% The Zernike functions are an orthogonal basis on the unit circle. (d5kD#.N
% They are used in disciplines such as astronomy, optics, and "IdN *K
% optometry to describe functions on a circular domain. XuW>GT/
% {Ve_u
% The following table lists the first 15 Zernike functions. X04JQLhy"
% /`B:F5r
% n m Zernike function Normalization LT '2446
% -------------------------------------------------- ,
rc
%#eF
% 0 0 1 1 Pu|3_3^
% 1 1 r * cos(theta) 2 G
C3G=DTt
% 1 -1 r * sin(theta) 2 &p^8zE s
% 2 -2 r^2 * cos(2*theta) sqrt(6) TqXB2`7Ri
% 2 0 (2*r^2 - 1) sqrt(3) Oc?]L&a