切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11154阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 w5Lev}Rb  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! %'+}-w  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 "UYlC0 S\  
    function z = zernfun(n,m,r,theta,nflag) n:"0mWnL$y  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. EQ [K  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ls({{34NF  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 0}mVP  
    %   unit circle.  N is a vector of positive integers (including 0), and g|Tkl  
    %   M is a vector with the same number of elements as N.  Each element \ gO!6  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) <sTY<iVR  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, =JaxT90x  
    %   and THETA is a vector of angles.  R and THETA must have the same V7<w9MM  
    %   length.  The output Z is a matrix with one column for every (N,M) A$3ll|%j  
    %   pair, and one row for every (R,THETA) pair. ]bP1gV(b-  
    % w ,*#z  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike .QW@rV:T  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), {ui{Yc  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral qDS~|<Y5  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, A'aYH`j  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 1lYQR`Uh  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. P"{yV?CNg  
    % 3~%M4(  
    %   The Zernike functions are an orthogonal basis on the unit circle. ku)/ 8Z`$  
    %   They are used in disciplines such as astronomy, optics, and zDf96eK  
    %   optometry to describe functions on a circular domain. C1==a FD  
    % MX"M2>"pT  
    %   The following table lists the first 15 Zernike functions. m1D,#=C,_  
    % ThY\K>@]  
    %       n    m    Zernike function           Normalization )YVs=0j  
    %       -------------------------------------------------- Q k2*=BVh  
    %       0    0    1                                 1 d(YAH@  
    %       1    1    r * cos(theta)                    2 *X!+wK-+  
    %       1   -1    r * sin(theta)                    2 .npD<*  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ]+5Y\~I  
    %       2    0    (2*r^2 - 1)                    sqrt(3) G0u H6x?  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) [(; .D  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) T"DG$R,Aj  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) |RH^|2:x9Q  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) *7{{z%5Pu  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) N C3XJ 4  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) +h? Gps  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) " 1h~P,  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) )}J}d)  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) T"e"?JSRJ  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) RF [81/w]  
    %       -------------------------------------------------- 79uAsI2-Y  
    % ZEB,Q~  
    %   Example 1: Jq:Wt+a  
    % TU1W!=Z  
    %       % Display the Zernike function Z(n=5,m=1) Tdxc%'l  
    %       x = -1:0.01:1; mUfANlQ:  
    %       [X,Y] = meshgrid(x,x); IN@ =UAc&  
    %       [theta,r] = cart2pol(X,Y); XzW\p8D^u  
    %       idx = r<=1; %<>|cO  
    %       z = nan(size(X)); &x3R+(H {  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); "`V:4uz  
    %       figure ?NxaJ^  
    %       pcolor(x,x,z), shading interp %~\I*v04  
    %       axis square, colorbar 6RfS_  
    %       title('Zernike function Z_5^1(r,\theta)') Hv*+HUc(:  
    % &r!jjT  
    %   Example 2: ?s]?2>p  
    % m'eM&1Ba  
    %       % Display the first 10 Zernike functions 82YZN5S3]3  
    %       x = -1:0.01:1; L;U?s2&Y  
    %       [X,Y] = meshgrid(x,x); =&mdxKoT0  
    %       [theta,r] = cart2pol(X,Y); 0KN'\KE  
    %       idx = r<=1; c^~R %Bx  
    %       z = nan(size(X)); .X"\ Mg  
    %       n = [0  1  1  2  2  2  3  3  3  3]; +hIMfhF  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; ahR-^^'$  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 1`9'.w+r  
    %       y = zernfun(n,m,r(idx),theta(idx)); bLC+73BjC  
    %       figure('Units','normalized') Q SvgbjdE  
    %       for k = 1:10 + 7nA; C  
    %           z(idx) = y(:,k); eMjW^-RgE5  
    %           subplot(4,7,Nplot(k)) iwfH~  
    %           pcolor(x,x,z), shading interp Lw6}b B`}  
    %           set(gca,'XTick',[],'YTick',[]) ]eI|_O^u  
    %           axis square Gdr7d  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) [a k[ZXC,  
    %       end  s-S|#5  
    % V7?Pv Q  
    %   See also ZERNPOL, ZERNFUN2. mW#p&{  
    J6J; !~>_  
    %   Paul Fricker 11/13/2006 1ifPc5j}  
    lmx'w  
    3 Ol`i$  
    % Check and prepare the inputs: > M4QEv  
    % ----------------------------- !I Byv%m&\  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) {+ WI>3  
        error('zernfun:NMvectors','N and M must be vectors.') @|}=W Q  
    end - P'c0I9z  
     KRh?{  
    if length(n)~=length(m) {&h=  
        error('zernfun:NMlength','N and M must be the same length.') G:;(,  
    end ;CA7\&L>  
    I z)~h>-F  
    n = n(:); &Fl* ,  
    m = m(:); T0BM:ofx  
    if any(mod(n-m,2)) /pz(s+4=  
        error('zernfun:NMmultiplesof2', ... ]ChN]>o  
              'All N and M must differ by multiples of 2 (including 0).') tH9BC5+r}  
    end $1myf Z  
    =)2!qoE  
    if any(m>n) X-5&c$hv  
        error('zernfun:MlessthanN', ... +WSM<S2 U  
              'Each M must be less than or equal to its corresponding N.') 3qq 6X?y*  
    end *Ui>NTl  
    _pR7sNeV  
    if any( r>1 | r<0 ) vLh,dzuo  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') pAd SOR2  
    end !S[7IBk%  
    z*&r@P -  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ]39A1&af}  
        error('zernfun:RTHvector','R and THETA must be vectors.') +#g?rCz  
    end fu7J{-<<R  
    lof}isOz  
    r = r(:); WAp#[mW.fx  
    theta = theta(:); df!n.&\y!  
    length_r = length(r); VTxLBFK;  
    if length_r~=length(theta) RLX?3u&  
        error('zernfun:RTHlength', ... .\b# 0w  
              'The number of R- and THETA-values must be equal.') LxxFosi8  
    end X&({`Uw<K  
    `xd{0EvF  
    % Check normalization: JheF}/Bx  
    % -------------------- H He~OxWg  
    if nargin==5 && ischar(nflag) 6WX+p3Kv  
        isnorm = strcmpi(nflag,'norm'); ""^.fh  
        if ~isnorm 9oJ=:E~CP  
            error('zernfun:normalization','Unrecognized normalization flag.') *dm?,~f%<  
        end lBnG!!VrWa  
    else I4^}C;p0?  
        isnorm = false; 6GtXM3qtS  
    end C!aK5rqhv  
    9% AL f 9  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% $@:z4S(  
    % Compute the Zernike Polynomials 3ws}E6\D  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% jaI mO  
    C/x<_VJzN/  
    % Determine the required powers of r: JOJ? .H&su  
    % ----------------------------------- edD"jq)J  
    m_abs = abs(m); zE\@x+k.  
    rpowers = []; N HL{.8L{  
    for j = 1:length(n) CJu3h&Rp  
        rpowers = [rpowers m_abs(j):2:n(j)]; 9K5[a^q|My  
    end naoH685R4  
    rpowers = unique(rpowers); pg'3j3JW$  
    ?H_'L4Wv  
    % Pre-compute the values of r raised to the required powers, %8lF%uu!x  
    % and compile them in a matrix: -(fvb  
    % ----------------------------- #D&]5"0cX  
    if rpowers(1)==0 xl~%hwBd  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ;n,@[v  
        rpowern = cat(2,rpowern{:}); 9@."Y>1G  
        rpowern = [ones(length_r,1) rpowern]; DIu rFDQSS  
    else  uM9[  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); vQpR0IEf]e  
        rpowern = cat(2,rpowern{:}); v"&Fj  
    end :LwNOuavN  
    51k^?5cO  
    % Compute the values of the polynomials: BI,j/SRK  
    % -------------------------------------- .Z"p'v  
    y = zeros(length_r,length(n)); yprf `D>  
    for j = 1:length(n) EK6fd#J?1  
        s = 0:(n(j)-m_abs(j))/2; d8? }69:h  
        pows = n(j):-2:m_abs(j); ,Si23S\  
        for k = length(s):-1:1 {D jz']  
            p = (1-2*mod(s(k),2))* ... o(I[_oUy\  
                       prod(2:(n(j)-s(k)))/              ... @P^8?!i+  
                       prod(2:s(k))/                     ... @]H:=Q'gj  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... tGs=08`  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); .Qp5wCkM  
            idx = (pows(k)==rpowers); 6NV- &0 _  
            y(:,j) = y(:,j) + p*rpowern(:,idx); /M-%]sayj  
        end Ta38/v;S  
         !v2D 18(  
        if isnorm yH8 N8  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 1Yy5bg6+E  
        end 5]&vs!wH  
    end $#dPM*E  
    % END: Compute the Zernike Polynomials 9@-^! DBM  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% MT,LO<.  
    XTHy CK  
    % Compute the Zernike functions: mk;l;!*T8  
    % ------------------------------ 1X4v:rI  
    idx_pos = m>0; )hHkaI>eYv  
    idx_neg = m<0; m>gok0{pm  
    Syn>;FX  
    z = y; 05\A7.iy  
    if any(idx_pos) p AzPi  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); r`|/qP:T[  
    end ;K:)R_H  
    if any(idx_neg) yFT)R hN  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); RpE69:~PV  
    end &P%3'c}G  
    L[d 7@  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) =Uta5$\a)  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. \FSkI0  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated /a%5!)NE%  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive E ?(  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, NamBJ\2E1[  
    %   and THETA is a vector of angles.  R and THETA must have the same 5tg  
    %   length.  The output Z is a matrix with one column for every P-value, ?k~(E`ZE3  
    %   and one row for every (R,THETA) pair. ]l>)Di#*o  
    % MJJy mi'b  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike Dx =ms^oN5  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) g*b`V{/Vw  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) 1Fn+nDn O6  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 BhkJ >4#  
    %   for all p. w4 <FC$  
    % Ql> DS~a  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 sn&y;Vc[$  
    %   Zernike functions (order N<=7).  In some disciplines it is "#2z 'J  
    %   traditional to label the first 36 functions using a single mode zg&<HJO  
    %   number P instead of separate numbers for the order N and azimuthal o+SD(KVn-  
    %   frequency M. cA1"Nek  
    % 6~sb8pK.=  
    %   Example: * c] :,5  
    % etj8M y6=  
    %       % Display the first 16 Zernike functions o`HZS|>K*  
    %       x = -1:0.01:1; |k:MXI  
    %       [X,Y] = meshgrid(x,x); TmG$Cjf84  
    %       [theta,r] = cart2pol(X,Y); aEVBU  
    %       idx = r<=1; ]S4kWq{Y  
    %       p = 0:15; A^2VH$j]+  
    %       z = nan(size(X)); n'{cU(  
    %       y = zernfun2(p,r(idx),theta(idx)); )_OKw?Zi  
    %       figure('Units','normalized') I0=YIcH5  
    %       for k = 1:length(p) - *!R  
    %           z(idx) = y(:,k); '<~l% q  
    %           subplot(4,4,k) _6&x$ *O  
    %           pcolor(x,x,z), shading interp [k.|iCD  
    %           set(gca,'XTick',[],'YTick',[]) &,2h=H,M  
    %           axis square ps"DL4*  
    %           title(['Z_{' num2str(p(k)) '}']) )y(pd  
    %       end D(D:/L8T,  
    % yazC2Enes8  
    %   See also ZERNPOL, ZERNFUN. V} Y %9V  
    Y  9]  
    %   Paul Fricker 11/13/2006 Z:W6@j-~  
    '5.n2 8W>  
    "qUUH4mR`  
    % Check and prepare the inputs: |GtTz&  
    % ----------------------------- f8kPbpV,  
    if min(size(p))~=1 ~;k-/Z"  
        error('zernfun2:Pvector','Input P must be vector.') NARW3\  
    end zE5%l`@|o  
    W/9dT^1y4'  
    if any(p)>35 a:Js i=  
        error('zernfun2:P36', ... 4G0Er?D   
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... "5u*C#T2$  
               '(P = 0 to 35).']) .w\AyXp  
    end '9%72yG  
    cS/\&%7u  
    % Get the order and frequency corresonding to the function number: m!5P5U x  
    % ---------------------------------------------------------------- XRCiv  
    p = p(:); J`a$"G B.  
    n = ceil((-3+sqrt(9+8*p))/2); ciVN-;vi  
    m = 2*p - n.*(n+2); bB@1tp0+  
    jIwz G+)$P  
    % Pass the inputs to the function ZERNFUN: UVlD]oXKh  
    % ---------------------------------------- 0Lmq?D  
    switch nargin 7{=/rbZT?  
        case 3 T1jAY^^I  
            z = zernfun(n,m,r,theta); g-"@%ps  
        case 4 L\}o(P(  
            z = zernfun(n,m,r,theta,nflag); Z`<S_PPz  
        otherwise Y%y=  
            error('zernfun2:nargin','Incorrect number of inputs.') Ac}+U q  
    end p'fq&a+  
    `"zXf-qeE  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) T#kPn#|  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. ?aOx b  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of 9$ZQuHSw 7  
    %   order N and frequency M, evaluated at R.  N is a vector of |N, KA|Gdq  
    %   positive integers (including 0), and M is a vector with the xR}^~14Bz  
    %   same number of elements as N.  Each element k of M must be a ewHk (ru  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) '4k l$I  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is  #v+ 2W  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix l =~EweuM  
    %   with one column for every (N,M) pair, and one row for every Vc0C@*fVM  
    %   element in R. "j-Z<F]]  
    % x6Zhw9RV  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- EYWRTh  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is t4(Z@X$  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to OQ>8Q`  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 0Cd )w4C  
    %   for all [n,m]. |8^53*f ?  
    % A) {q 7WI  
    %   The radial Zernike polynomials are the radial portion of the OZ>w.$ue  
    %   Zernike functions, which are an orthogonal basis on the unit Ug(;\*yg  
    %   circle.  The series representation of the radial Zernike B!{vSBq  
    %   polynomials is L~9Q7 6w  
    % *UBukn  
    %          (n-m)/2 VRden>vKN  
    %            __ K|[p4*6  
    %    m      \       s                                          n-2s qj|P0N{7  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r cW%QKdTQY0  
    %    n      s=0 tDw(k[aK@  
    % NMJX `  
    %   The following table shows the first 12 polynomials.  ;;>hWAS  
    % Y$JGpeq8w  
    %       n    m    Zernike polynomial    Normalization y2Eq-Ie  
    %       --------------------------------------------- ; '6`hZ  
    %       0    0    1                        sqrt(2) b,C2(?hg  
    %       1    1    r                           2 V+`gkWe/  
    %       2    0    2*r^2 - 1                sqrt(6) lGoP(ki  
    %       2    2    r^2                      sqrt(6) u NmbR8Mx  
    %       3    1    3*r^3 - 2*r              sqrt(8) 3 s%Kw,z  
    %       3    3    r^3                      sqrt(8) ` mvPbZ0<  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) rdj_3Utv  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) WXq=FZ-  
    %       4    4    r^4                      sqrt(10) 7Yv1et |  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) YkWv*l  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) !fX&i6  
    %       5    5    r^5                      sqrt(12) Oly"ll*K  
    %       --------------------------------------------- 287g 5  
    %  9t$#!2z  
    %   Example: aMv?D(Meb  
    % yV"k:_O{  
    %       % Display three example Zernike radial polynomials sr S2v\1:  
    %       r = 0:0.01:1; <'T:9  
    %       n = [3 2 5]; Kd='l~rby  
    %       m = [1 2 1];  6chcpP0  
    %       z = zernpol(n,m,r); )NF5,eD  
    %       figure }xx"  
    %       plot(r,z) z6'Cz}%EP'  
    %       grid on 6DkFIkS  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') 8Cx6Me>,=  
    % Ow" e3]}Mt  
    %   See also ZERNFUN, ZERNFUN2. ZYS`M?Au  
    7Gh+EJJ3I  
    % A note on the algorithm. nu(;yIRP  
    % ------------------------ yN@3uYBF  
    % The radial Zernike polynomials are computed using the series ()}(3>O-  
    % representation shown in the Help section above. For many special $Wy(Wtrx|  
    % functions, direct evaluation using the series representation can 8_W=)w6  
    % produce poor numerical results (floating point errors), because xF8U )j !  
    % the summation often involves computing small differences between 9ZJn 8ki  
    % large successive terms in the series. (In such cases, the functions -s3q(SH  
    % are often evaluated using alternative methods such as recurrence APgjT' ;P^  
    % relations: see the Legendre functions, for example). For the Zernike H^3f!\MC;o  
    % polynomials, however, this problem does not arise, because the q"@>rU4  
    % polynomials are evaluated over the finite domain r = (0,1), and )k^y<lC2a  
    % because the coefficients for a given polynomial are generally all ohJo1}{  
    % of similar magnitude. zH5pe  
    % n[K LY!  
    % ZERNPOL has been written using a vectorized implementation: multiple !-veL1r  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] n 9>**&5L  
    % values can be passed as inputs) for a vector of points R.  To achieve PtTL tiE~  
    % this vectorization most efficiently, the algorithm in ZERNPOL $,.XPK5Q u  
    % involves pre-determining all the powers p of R that are required to fEo5j`}  
    % compute the outputs, and then compiling the {R^p} into a single 0 :iR=S  
    % matrix.  This avoids any redundant computation of the R^p, and wPE\?en  
    % minimizes the sizes of certain intermediate variables. 79*f <Gr  
    % eae`#>XP  
    %   Paul Fricker 11/13/2006 c 8t  
    P#!^9)3  
    {Mpx33  
    % Check and prepare the inputs: sRI0;  
    % ----------------------------- 6!Q,X Hs  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) JT p+&NS  
        error('zernpol:NMvectors','N and M must be vectors.') g:fkM{"{  
    end un F=";9H  
    '" 4;;(  
    if length(n)~=length(m) O#@G .~n?  
        error('zernpol:NMlength','N and M must be the same length.') 29HyeLB@  
    end  ID]E3K  
    I}sb0 Q&  
    n = n(:); GY t|[GC  
    m = m(:); Kh8  
    length_n = length(n); /jl/SV+  
    cC*H.N  
    if any(mod(n-m,2)) 7>V*gV?v  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') .3'U(U  
    end hHk9O?  
    O?`_RN4l  
    if any(m<0) qKD Nw8>  
        error('zernpol:Mpositive','All M must be positive.') r i/CLq^D  
    end 7'!DK;=TD6  
    _:\zbn0\  
    if any(m>n) eakQZ-Q  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') +>ld  
    end K=Z.<f  
    /o^/ J~/3  
    if any( r>1 | r<0 ) - i#Kpf  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') z5J$".O`  
    end &0`i(l4]l  
    7Ucq(,\./  
    if ~any(size(r)==1) iN9G`qF3!Q  
        error('zernpol:Rvector','R must be a vector.') X7rsO^}W  
    end .*X=JFxl  
    050V-S>s  
    r = r(:); feJl[3@tO  
    length_r = length(r); aH_0EBRc  
    $H`{wJ?2(  
    if nargin==4 N;v]ypak  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); [pC2#_}  
        if ~isnorm #}HdylI\}  
            error('zernpol:normalization','Unrecognized normalization flag.') ,1B` Ve  
        end sp&gw XPG  
    else W]5Hc|!^^  
        isnorm = false; Nt|Fw$3*5{  
    end P]O=K  
    _fccZf(yC.  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% h=4 GSU  
    % Compute the Zernike Polynomials CK#i 6!~r  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% c,:nWf  
    uO)vGzt3^x  
    % Determine the required powers of r: $)eS Gslz  
    % ----------------------------------- N 9s+Tm  
    rpowers = []; +{#L,0t  
    for j = 1:length(n) 1H?I?IT30  
        rpowers = [rpowers m(j):2:n(j)]; M0T z('~s  
    end {rwT4]4  
    rpowers = unique(rpowers); Qff.QI,  
    &xpvHKJl  
    % Pre-compute the values of r raised to the required powers, -ykD/  
    % and compile them in a matrix: 4y.qtiIP>$  
    % ----------------------------- S0tkqA4  
    if rpowers(1)==0 uu.}<VM.1  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); lL&U ioo}D  
        rpowern = cat(2,rpowern{:}); 1ASoH,D/  
        rpowern = [ones(length_r,1) rpowern]; [C\B2iU7_M  
    else (*_lLM@Cd  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); tAPf#7{|   
        rpowern = cat(2,rpowern{:}); cbYQ';{  
    end .%!^L#g  
    pfs]pDjS:  
    % Compute the values of the polynomials: CDPu(,^  
    % -------------------------------------- os7xwI;T  
    z = zeros(length_r,length_n); aU@1j;se@  
    for j = 1:length_n cwOa"]t}  
        s = 0:(n(j)-m(j))/2; ^wD`sj<Qg  
        pows = n(j):-2:m(j); Z6-ZAS(>m  
        for k = length(s):-1:1 l"7#(a  
            p = (1-2*mod(s(k),2))* ... LpL$=9  
                       prod(2:(n(j)-s(k)))/          ... 5,4m_fBoW  
                       prod(2:s(k))/                 ... @j"6f|d  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... lwz\" 8  
                       prod(2:((n(j)+m(j))/2-s(k))); LIrebz  
            idx = (pows(k)==rpowers); w IP4Z^  
            z(:,j) = z(:,j) + p*rpowern(:,idx); {5fL!`6w  
        end :>/6:c?atG  
         D&@Iuo  
        if isnorm mlPvF%Ba  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); zkiwFEHA=  
        end Abi(1nXdQ  
    end >_\[C?8  
    "LSzF_mK  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  Ih|4ISI  
    ~Yi4?B<  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 ~Jr'4%   
    f^B'BioW(  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)