切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11195阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 D-/A>  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! O5"80z38[  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 "|H0 X#  
    function z = zernfun(n,m,r,theta,nflag) NUseYU``  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. `CBTZG09  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N =6hf'lP  
    %   and angular frequency M, evaluated at positions (R,THETA) on the Gbhaibk O  
    %   unit circle.  N is a vector of positive integers (including 0), and 78kk"9h'  
    %   M is a vector with the same number of elements as N.  Each element aE}u5L$#  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) i@6 kI C  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, E6uIp^E  
    %   and THETA is a vector of angles.  R and THETA must have the same Zv_<*uzKZ  
    %   length.  The output Z is a matrix with one column for every (N,M) f#?R!pR  
    %   pair, and one row for every (R,THETA) pair. DuaOi1Gw  
    % +Aq}BjD#  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ;NEHbLH#F  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), k K(,FB  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral ?:,j9:m?  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, mi+I)b=  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized fjf\/%  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. xE:p)B-]  
    % {chl+au*l  
    %   The Zernike functions are an orthogonal basis on the unit circle. &e{&<ZVR  
    %   They are used in disciplines such as astronomy, optics, and H~&'`h1  
    %   optometry to describe functions on a circular domain. .nnAI@7E  
    % >A6lX)  
    %   The following table lists the first 15 Zernike functions. = 619+[fK  
    % Sn0 Gw  
    %       n    m    Zernike function           Normalization X#fI$9a  
    %       -------------------------------------------------- dCBJV  
    %       0    0    1                                 1 S&yCclM  
    %       1    1    r * cos(theta)                    2 5,A/6b  
    %       1   -1    r * sin(theta)                    2 :?zOLw?(  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) KpWQ;3D2  
    %       2    0    (2*r^2 - 1)                    sqrt(3) ><Z2uJZ4x  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) 4IVCTz[  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) Q[ IaA"  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) My)/d]a  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 9tJiIr8i  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) ^K8Ey#T  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) |&7l*j(\  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) dPS}\&1  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) VHy$\5oYg  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 0YKG`W  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) Q~`n%uYg\{  
    %       -------------------------------------------------- IP-mo!Y.  
    % FXIQS'  
    %   Example 1: *5 5yF `  
    % 2`x[y?Tn  
    %       % Display the Zernike function Z(n=5,m=1) '_2~8w  
    %       x = -1:0.01:1; \JX8`]|&  
    %       [X,Y] = meshgrid(x,x); nlKWZYv  
    %       [theta,r] = cart2pol(X,Y); &N,c:dNe  
    %       idx = r<=1; 3K{'~?mM  
    %       z = nan(size(X)); Al! P=h  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); t6j|q nfw  
    %       figure *@dqAr%  
    %       pcolor(x,x,z), shading interp 0-7xcF@s  
    %       axis square, colorbar X\_ku?]v  
    %       title('Zernike function Z_5^1(r,\theta)') Pr" 2d\  
    % jGId)f!)  
    %   Example 2: x.!%'{+ {  
    % d+l@hgz~  
    %       % Display the first 10 Zernike functions  'y1=Z  
    %       x = -1:0.01:1; 60*=Bs%b  
    %       [X,Y] = meshgrid(x,x); m)&2zV/Q  
    %       [theta,r] = cart2pol(X,Y); zXB.)4T  
    %       idx = r<=1; |iU#!+zY  
    %       z = nan(size(X));  \:Q)Ef  
    %       n = [0  1  1  2  2  2  3  3  3  3]; tONxV`  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; .(D-vkz'  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; JPRl/P$  
    %       y = zernfun(n,m,r(idx),theta(idx)); /S%{`F=  
    %       figure('Units','normalized') ZPHB$]ri  
    %       for k = 1:10 R'He(x  
    %           z(idx) = y(:,k); 5G|(od3  
    %           subplot(4,7,Nplot(k)) XfharJ_b  
    %           pcolor(x,x,z), shading interp cl[rgj  
    %           set(gca,'XTick',[],'YTick',[]) oQAD 3a  
    %           axis square =*fOej>G  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) .,I^)8c  
    %       end @#;2P'KL  
    % ?FJU>+{">  
    %   See also ZERNPOL, ZERNFUN2. jCkYzQUPz  
    f/aSqhAW  
    %   Paul Fricker 11/13/2006 y]+q mNw"+  
    }<m9w\pA  
    y\]:&)?&C^  
    % Check and prepare the inputs: ~0eJ6i  
    % ----------------------------- *Mk5*_  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) !{jDZ?z{h  
        error('zernfun:NMvectors','N and M must be vectors.') C0J/FFBQ^  
    end @uApm~}  
    n'>`2 s  
    if length(n)~=length(m) Xi$2MyRd  
        error('zernfun:NMlength','N and M must be the same length.') Qt` }$]  
    end &c%;Lo  
    v,^2'C$o  
    n = n(:); [7 oU =  
    m = m(:); yP. ,Dh s  
    if any(mod(n-m,2)) ,ir(~g+{g  
        error('zernfun:NMmultiplesof2', ... F$X"?fj  
              'All N and M must differ by multiples of 2 (including 0).') 1%g%I8W%  
    end Y {a#2(xn  
    EVX*YGxx6  
    if any(m>n) 8Th{(J_  
        error('zernfun:MlessthanN', ... JlR (U. "  
              'Each M must be less than or equal to its corresponding N.') lcO;3CrJ!  
    end >NDI<9<'0}  
    8iQ8s;@S&>  
    if any( r>1 | r<0 ) _HjS!(lMk  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') :(ni/,~Q  
    end ,ELbm  
    [M?'N w/[S  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) F|nJ3:v  
        error('zernfun:RTHvector','R and THETA must be vectors.') j S~W cu  
    end M<$a OW0  
    _[M*o0[@W  
    r = r(:); cHP~J%&L  
    theta = theta(:); `3GYV|LeQ  
    length_r = length(r); uf q9+}  
    if length_r~=length(theta) R<]f[  
        error('zernfun:RTHlength', ... X!6oviT|m  
              'The number of R- and THETA-values must be equal.') $IUe](a{d  
    end D[#6jJ Ab  
    =zBc@VTp  
    % Check normalization: d>k)aIYp  
    % -------------------- L{&5Ets  
    if nargin==5 && ischar(nflag) &RF*pU>  
        isnorm = strcmpi(nflag,'norm'); A}"aH  
        if ~isnorm n;QMiz:yY  
            error('zernfun:normalization','Unrecognized normalization flag.') $1KvL8  
        end -aSj-  
    else {_[\k^98>  
        isnorm = false; m6+4}=Cn  
    end ~&{LMf  
    q#pD}Xe$  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -0P(lkylf  
    % Compute the Zernike Polynomials T*pcS'?'  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \+,%RN.  
    T'8d|$X  
    % Determine the required powers of r: ZF@T,i9  
    % ----------------------------------- Ynxzkm S  
    m_abs = abs(m); m6wrG`-di  
    rpowers = []; jc0Trs{Jf  
    for j = 1:length(n) ku*H*o~  
        rpowers = [rpowers m_abs(j):2:n(j)]; )+L.$h  
    end Le,e,#hiY  
    rpowers = unique(rpowers); ?xX9o  
    HnlCEW,^o  
    % Pre-compute the values of r raised to the required powers, (?y (0%q  
    % and compile them in a matrix: Fx!NRY_  
    % ----------------------------- crvq]J5  
    if rpowers(1)==0 8r{:d i*  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); @T 5dPmn  
        rpowern = cat(2,rpowern{:}); Fm-D>PR  
        rpowern = [ones(length_r,1) rpowern]; v#X l  
    else qL;u59  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); }[FP"#  
        rpowern = cat(2,rpowern{:}); DWXxB  
    end 4;;K1< 1  
    t?l0L1;  
    % Compute the values of the polynomials: Lkf}+aY  
    % -------------------------------------- o W<Z8s;p  
    y = zeros(length_r,length(n)); )y#~eYn  
    for j = 1:length(n) GI. =\s  
        s = 0:(n(j)-m_abs(j))/2; ,Y+J.8.H   
        pows = n(j):-2:m_abs(j); 1^v?Ly8  
        for k = length(s):-1:1 <h"07.y  
            p = (1-2*mod(s(k),2))* ... CT2L }5L&  
                       prod(2:(n(j)-s(k)))/              ... myq:~^L ;  
                       prod(2:s(k))/                     ... ,RXfJh  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... (?W[#.=7  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); D^-6=@<3KD  
            idx = (pows(k)==rpowers); EEI !pi  
            y(:,j) = y(:,j) + p*rpowern(:,idx); rb_FBa%  
        end 0YsBAfRG  
         42B_8SK  
        if isnorm %D_pTD\  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); !8jr $  
        end +!6dsnr8  
    end /$-Tg)o5i  
    % END: Compute the Zernike Polynomials 'h*^;3@*  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% IN!,|)8s  
    qZ=%r u  
    % Compute the Zernike functions: Y;I>rC (  
    % ------------------------------ \:/~IZdzF  
    idx_pos = m>0; 5&Vp(A[m[  
    idx_neg = m<0; }K3!ujvR  
    4z*An}ol]  
    z = y; JlMD_pA  
    if any(idx_pos) 0D.qc8/V4.  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); yRdME>_L  
    end 7#pu(:T$  
    if any(idx_neg) lO+6|oF0  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); +=o?&  
    end @!np 0#  
    rdBF+YN9/?  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) <RaUs2Q3.  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. ^6kE tTO*  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated :d{-"RAG"  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive lXnzomU  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, 1[U`,(C1  
    %   and THETA is a vector of angles.  R and THETA must have the same  O86[`,  
    %   length.  The output Z is a matrix with one column for every P-value, s%OPoRE  
    %   and one row for every (R,THETA) pair. PN"s ^]4  
    % fC<pCdsg  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike z7$,m#tw  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) IMT]!j&Y,  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) </B<=tc  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 q y\Z2k  
    %   for all p. fFiFS\''V  
    % yZc_PC`  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 #fQ}8UxU,  
    %   Zernike functions (order N<=7).  In some disciplines it is ymo].  
    %   traditional to label the first 36 functions using a single mode (;6vT'hE  
    %   number P instead of separate numbers for the order N and azimuthal ^(c.A YI  
    %   frequency M. ~A-Y%P  
    % 6aq=h`Y  
    %   Example: N:% }KAc  
    % *k^'xL  
    %       % Display the first 16 Zernike functions _GF{Duxh  
    %       x = -1:0.01:1; cy{ ado2  
    %       [X,Y] = meshgrid(x,x); P+2@,?9#  
    %       [theta,r] = cart2pol(X,Y); )/mBq#ZS  
    %       idx = r<=1; Mep ct  
    %       p = 0:15; c80!Ub@  
    %       z = nan(size(X)); o >Faq+@  
    %       y = zernfun2(p,r(idx),theta(idx)); F!*tE&Se+  
    %       figure('Units','normalized') l1#F1q`^t  
    %       for k = 1:length(p) K Ml>~r  
    %           z(idx) = y(:,k); Y k @/+PE  
    %           subplot(4,4,k) E9 6` aF{]  
    %           pcolor(x,x,z), shading interp chs] ,7R  
    %           set(gca,'XTick',[],'YTick',[]) 3-6Lbe9H  
    %           axis square C;jV)hr6P  
    %           title(['Z_{' num2str(p(k)) '}']) A(v5VvgZE  
    %       end S|pf.l  
    % 8%Eemk>G{  
    %   See also ZERNPOL, ZERNFUN. Zv|TvlyT"  
     U rL|r.  
    %   Paul Fricker 11/13/2006 @{LD_>R  
     J]4pPDm  
    XN %tcaY  
    % Check and prepare the inputs: 2R=Fc@MXs  
    % ----------------------------- ms/!8X$Mz  
    if min(size(p))~=1 qS?uMms7w  
        error('zernfun2:Pvector','Input P must be vector.') b-Xc6f  
    end 6i7+.#s  
    W"[Q=$2<<  
    if any(p)>35 ,(y6XUV~  
        error('zernfun2:P36', ... u?%FD~l:uU  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... D@?Tq,= [  
               '(P = 0 to 35).']) , aJC7'(  
    end zbgH}6b  
    efX iZ  
    % Get the order and frequency corresonding to the function number: sp8P[W1a  
    % ---------------------------------------------------------------- P,W(9&KM  
    p = p(:); _/[}PQC6G  
    n = ceil((-3+sqrt(9+8*p))/2); ^+k~{F,)  
    m = 2*p - n.*(n+2); `JzP V/6  
    MiN|u  
    % Pass the inputs to the function ZERNFUN: D&-cNxh  
    % ---------------------------------------- :/XWk %  
    switch nargin F\Q X=n  
        case 3 IlfH  
            z = zernfun(n,m,r,theta); h,@tfd U^  
        case 4 .g?Ppma  
            z = zernfun(n,m,r,theta,nflag); wY xk[)&Y  
        otherwise 'izv[{!n{  
            error('zernfun2:nargin','Incorrect number of inputs.') r(OH  
    end ,vs#(d6G  
    WWgJ !Uz  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) ["0DXm%t  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. 1TlMB  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of $Y?[[>u  
    %   order N and frequency M, evaluated at R.  N is a vector of ]=G  dAW  
    %   positive integers (including 0), and M is a vector with the 4WXr~?Vq9  
    %   same number of elements as N.  Each element k of M must be a o7kQ&w   
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) AYsiaSTRqW  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is Fp~0 ^  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix OICH:(t_  
    %   with one column for every (N,M) pair, and one row for every b NR@d'U  
    %   element in R. ZLlAK?N  
    % [vn"r^P  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- ~u-_DOA  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is #3}!Q0   
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to ~tZy-1  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 v9MliD'  
    %   for all [n,m]. YJB/*SV^  
    % "Tnmn@  
    %   The radial Zernike polynomials are the radial portion of the Vo(>K34  
    %   Zernike functions, which are an orthogonal basis on the unit vl>_;} W7  
    %   circle.  The series representation of the radial Zernike Fd/Ra]@\Y  
    %   polynomials is b&P2VqYgl  
    % C:ntr=3J  
    %          (n-m)/2 ]zh6[0V7V  
    %            __ of/' 9Tj  
    %    m      \       s                                          n-2s 48LzI@H&  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r 4$ ^rzAi5  
    %    n      s=0 o+g\\5s  
    % /NUu^ N  
    %   The following table shows the first 12 polynomials. 9)J)r \  
    % seiE2F[  
    %       n    m    Zernike polynomial    Normalization xG:7AGZ$[  
    %       --------------------------------------------- LX</xI08W  
    %       0    0    1                        sqrt(2) sWFw[ Y>  
    %       1    1    r                           2 IPk"{T3  
    %       2    0    2*r^2 - 1                sqrt(6) =~q Xzq  
    %       2    2    r^2                      sqrt(6) PBb'`PV  
    %       3    1    3*r^3 - 2*r              sqrt(8)  rqEP!S^  
    %       3    3    r^3                      sqrt(8) 4?Qc&e{5  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) S4D~`"4 $/  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) ;"]?&ri  
    %       4    4    r^4                      sqrt(10) kk ZMoK  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) O#`y;%  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) 3Y=uBl  
    %       5    5    r^5                      sqrt(12) %h}3}p#4  
    %       --------------------------------------------- nmoC(| r  
    % Hh'o:j(^  
    %   Example: # 66vkf*  
    % 7l3Dx w/N  
    %       % Display three example Zernike radial polynomials  \z?-  
    %       r = 0:0.01:1; T#ehJq 5  
    %       n = [3 2 5]; iCdq-r/r!6  
    %       m = [1 2 1]; Kgb<uXk  
    %       z = zernpol(n,m,r); }0 =gP?.kE  
    %       figure G$1gk^G's  
    %       plot(r,z) -z'6.I cO  
    %       grid on `g'z6~c7n  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') 3$P GLM  
    % 7%yP5c B  
    %   See also ZERNFUN, ZERNFUN2. hSXZu?/  
    oD_#oX5\  
    % A note on the algorithm. k!{h]D0  
    % ------------------------ PY[!H<tt  
    % The radial Zernike polynomials are computed using the series !uN_<!  
    % representation shown in the Help section above. For many special \&4)['4,  
    % functions, direct evaluation using the series representation can _SqUPTb"u  
    % produce poor numerical results (floating point errors), because I ka V g L  
    % the summation often involves computing small differences between 0 2q*z>:^  
    % large successive terms in the series. (In such cases, the functions j,v2(e5:  
    % are often evaluated using alternative methods such as recurrence g&O!w!T  
    % relations: see the Legendre functions, for example). For the Zernike {%QWv%|  
    % polynomials, however, this problem does not arise, because the 2x:aMWh  
    % polynomials are evaluated over the finite domain r = (0,1), and ^vc#)tm5p  
    % because the coefficients for a given polynomial are generally all ^A$p)`KR  
    % of similar magnitude. l%v2O'h  
    % nACKSsWqI  
    % ZERNPOL has been written using a vectorized implementation: multiple A~#w gLGn  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] 3/*<i  
    % values can be passed as inputs) for a vector of points R.  To achieve @^^,VgW[  
    % this vectorization most efficiently, the algorithm in ZERNPOL zN>tSdNkI-  
    % involves pre-determining all the powers p of R that are required to * NdL4c~  
    % compute the outputs, and then compiling the {R^p} into a single { u1\M  
    % matrix.  This avoids any redundant computation of the R^p, and $<d3g :  
    % minimizes the sizes of certain intermediate variables.  S/Gy:GIf  
    % Q3aZB*$K  
    %   Paul Fricker 11/13/2006 NXdT"O=P  
    UE K$  
    >?ckBU9  
    % Check and prepare the inputs: ?#VkzT  
    % ----------------------------- 5j#XNc)"  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 7_ao?}g  
        error('zernpol:NMvectors','N and M must be vectors.') |oTA $bln  
    end 8&++S> <  
    X XC(R  
    if length(n)~=length(m) z?Qt%1q  
        error('zernpol:NMlength','N and M must be the same length.') (kZ2D  
    end j/w*2+&v  
    CO"Nv  
    n = n(:); ,Cj` 0v#  
    m = m(:); |Whkq/Zg  
    length_n = length(n); H05U{vR  
    ( 2i{8  
    if any(mod(n-m,2)) Ui05o7xg~p  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') ?V(h@T  
    end S01 Bc  
    .u&GbM%Ga  
    if any(m<0) XV:icY  
        error('zernpol:Mpositive','All M must be positive.') ^:,I #]  
    end jHBP:c  
    8B|B[,`  
    if any(m>n) }XIUz|  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') *)um^O  
    end xQ@gh ( (  
    H@BU/{  
    if any( r>1 | r<0 ) nfA#d-  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') TZ]o6Bb  
    end y<*/\]t9L[  
    Xjnv8{X  
    if ~any(size(r)==1) Qj(|uGqm3  
        error('zernpol:Rvector','R must be a vector.') L(\o66a-rV  
    end pXq5|,aC  
    i2 m+s;  
    r = r(:); >e9xM Gv  
    length_r = length(r); B&4NdL/  
    rd!4u14  
    if nargin==4 l]KxUkA+  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); v="2p8@F  
        if ~isnorm 0v'FE35~s  
            error('zernpol:normalization','Unrecognized normalization flag.') V] 0~BV  
        end }pL#C  
    else tU, >EbwO  
        isnorm = false; GN@(!V#/4  
    end I-o |~  
    iBy &#^  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Mh*^@_h?  
    % Compute the Zernike Polynomials Y+ea  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 6 xAR:  
    \KT}T  
    % Determine the required powers of r: +6+!M_0wA  
    % ----------------------------------- OAd}#R\U  
    rpowers = []; :/941?%M  
    for j = 1:length(n) <ZgbmRY8  
        rpowers = [rpowers m(j):2:n(j)]; gDBdaxR<  
    end V j"B/@  
    rpowers = unique(rpowers); .m_-L Y-  
    fKjUEMRK  
    % Pre-compute the values of r raised to the required powers, |% xgob  
    % and compile them in a matrix: 8sGaq [  
    % ----------------------------- DSc:>G  
    if rpowers(1)==0 Ph|\%P`>%  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); "L~qsFL  
        rpowern = cat(2,rpowern{:}); Y76UhtYH  
        rpowern = [ones(length_r,1) rpowern]; $l<(*,,l  
    else cR"?EQ] `N  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); l8Ks{(wh  
        rpowern = cat(2,rpowern{:}); Mo_(WSs  
    end ?5MOp  
    6 s1lf!  
    % Compute the values of the polynomials: yp.\KLq8)  
    % -------------------------------------- +YK/^;Th  
    z = zeros(length_r,length_n); (!^; ar^  
    for j = 1:length_n 'o.A8su,  
        s = 0:(n(j)-m(j))/2; MH=;[| N  
        pows = n(j):-2:m(j); *='J>z.]  
        for k = length(s):-1:1 _"R /k`8  
            p = (1-2*mod(s(k),2))* ... U5x&? n<  
                       prod(2:(n(j)-s(k)))/          ... gS$?#!f  
                       prod(2:s(k))/                 ... ?7"6d p_K  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... K,Z_lP_~Vw  
                       prod(2:((n(j)+m(j))/2-s(k))); Y6r<+#V  
            idx = (pows(k)==rpowers); +ZK12D}  
            z(:,j) = z(:,j) + p*rpowern(:,idx); uDXRw*rTv  
        end %an&lcoX  
         \>@QJ  
        if isnorm K:\db'``  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); j`A3N7;  
        end 6o!Y^^/U  
    end HbXYinG%  
    ` $N()P  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  V|`w/P9g4  
    N`xXH  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。  57`*5X  
    oa q!<lI  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)