切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11251阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 !'Ww%ZL\   
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! s8SCEpz  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 }R`}Ey|{  
    function z = zernfun(n,m,r,theta,nflag) _#w5hX cu  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. L>!MEMqm  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N \oO &c  
    %   and angular frequency M, evaluated at positions (R,THETA) on the mWuhXY^Q  
    %   unit circle.  N is a vector of positive integers (including 0), and 'h 7n}  
    %   M is a vector with the same number of elements as N.  Each element f0g&=k{OD  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) n;k B_i*l  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, X iM{YZ`B  
    %   and THETA is a vector of angles.  R and THETA must have the same +'UxO'v3]  
    %   length.  The output Z is a matrix with one column for every (N,M) $'bb)@_  
    %   pair, and one row for every (R,THETA) pair. BA_l*h%=Cc  
    % aW b5w  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike i>;6Z s>S  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), @@|H8mP}H  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral `(8RK  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 5S4`.'  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized D$SO 6X~  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. #}xPOz7:  
    % >IHf5})R  
    %   The Zernike functions are an orthogonal basis on the unit circle. #DcK{|ty  
    %   They are used in disciplines such as astronomy, optics, and ~PCS_  
    %   optometry to describe functions on a circular domain. i(kr#XsU  
    % DkBVk+  
    %   The following table lists the first 15 Zernike functions. }j,G)\g#  
    % ,tuZ_"?M  
    %       n    m    Zernike function           Normalization 'Y5=A!*@tf  
    %       -------------------------------------------------- _x?S0R1  
    %       0    0    1                                 1 dZ\T@9+j+  
    %       1    1    r * cos(theta)                    2 IFWP&20  
    %       1   -1    r * sin(theta)                    2  34~[dY  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) .T}S[`Yx5  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 66cPoG  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) r-o6I:y  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) [Kd"M[1[ <  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) .vXe}%  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) BO;LK-V  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 'w}/ o+x@  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 6}PoBhgSg-  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) JP 8v2) p  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) [R Hji47  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 2graLJ?9Z  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) jI807g+  
    %       -------------------------------------------------- }C&kzJBEF  
    % If(IG]>`D  
    %   Example 1: b=Y3O  
    % ^ v@& q  
    %       % Display the Zernike function Z(n=5,m=1) oOK&+r7  
    %       x = -1:0.01:1; WG3 .qLH%  
    %       [X,Y] = meshgrid(x,x); PWs=0.Wj  
    %       [theta,r] = cart2pol(X,Y); u/L\e.4  
    %       idx = r<=1; GZ/vUe  
    %       z = nan(size(X)); +)TOcxF%  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); I`EgR?5 `  
    %       figure XJi^gT N  
    %       pcolor(x,x,z), shading interp O.+X,CQG*  
    %       axis square, colorbar gNzamorv[  
    %       title('Zernike function Z_5^1(r,\theta)') 6o ]X.plr  
    % `oo(\O7t=  
    %   Example 2: G7H'OB &  
    % ~UV$(5&-  
    %       % Display the first 10 Zernike functions -AU!c^-o  
    %       x = -1:0.01:1; STgYXA(  
    %       [X,Y] = meshgrid(x,x); GFtE0IQ  
    %       [theta,r] = cart2pol(X,Y); 8p~G)J3U  
    %       idx = r<=1; ?TVR{e:  
    %       z = nan(size(X)); -pm^k-%v  
    %       n = [0  1  1  2  2  2  3  3  3  3]; 4f> s2I&pQ  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; d/`Q,Vl  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; _ ?Z :m  
    %       y = zernfun(n,m,r(idx),theta(idx)); I%31MU9  
    %       figure('Units','normalized') 4 g^oy^~  
    %       for k = 1:10 ?]u=5gqUU  
    %           z(idx) = y(:,k); %1VfTr5  
    %           subplot(4,7,Nplot(k)) zAdZXa[MRY  
    %           pcolor(x,x,z), shading interp S4BU!  
    %           set(gca,'XTick',[],'YTick',[]) >pn5nn1a  
    %           axis square 6)~J5Fb  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ;p'Ej'E  
    %       end h ?%]uFJC  
    % . 'rC'FT  
    %   See also ZERNPOL, ZERNFUN2. F%>`?NG+c  
    L5yv}:.U  
    %   Paul Fricker 11/13/2006 Vtr5<:eEx  
    p8Wik<'^  
    \@HsMV2+zN  
    % Check and prepare the inputs: wsLfp82  
    % ----------------------------- YX:[],FP  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) LdM9k(  
        error('zernfun:NMvectors','N and M must be vectors.') w*"h#^1z  
    end JgY#W1>  
    L@HWm;aN  
    if length(n)~=length(m)  @Iy&Qo  
        error('zernfun:NMlength','N and M must be the same length.') csay\Q{  
    end 11 >K\"K}  
    h\i>4^]X.  
    n = n(:); N/&t) 7  
    m = m(:); x#_0 6  
    if any(mod(n-m,2)) i'bUX=JK  
        error('zernfun:NMmultiplesof2', ... |SF5'\d'  
              'All N and M must differ by multiples of 2 (including 0).') q!P{a^Fnc  
    end N^{+1u7  
    V,CVMbn/%N  
    if any(m>n) R59'KR2?  
        error('zernfun:MlessthanN', ... |}>;wZ[7  
              'Each M must be less than or equal to its corresponding N.') oCftI':@  
    end wO {-qrN  
    Cs ND:m  
    if any( r>1 | r<0 ) `<:D.9vO "  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') *N #{~  
    end x:O;Z~ |.  
    0'9z XJ"  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) + (|6Wv  
        error('zernfun:RTHvector','R and THETA must be vectors.') `vFYe N;  
    end L'?0*t  
    \.%GgTF  
    r = r(:); wJQ"|  
    theta = theta(:); V]$Tbxg  
    length_r = length(r); 8Ekk"h 6  
    if length_r~=length(theta) EecV%E  
        error('zernfun:RTHlength', ... fudIUG.  
              'The number of R- and THETA-values must be equal.') +/E yX =  
    end KLn.vA.  
    xiW;Y{kZ  
    % Check normalization: a!US:^}lu  
    % -------------------- `:I<Jp  
    if nargin==5 && ischar(nflag) ZRd,V~iz  
        isnorm = strcmpi(nflag,'norm'); Y@Zv52,  
        if ~isnorm jw"]U jub  
            error('zernfun:normalization','Unrecognized normalization flag.') VTt{ 0 ~  
        end ,{br6*E  
    else WTcrfs)T  
        isnorm = false; GrB+Y!{{  
    end *uq}jlD`!  
    U<*8KiI  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% }H4Z726  
    % Compute the Zernike Polynomials v iJK%^U=-  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /T_ G9zc  
    [*k25N  
    % Determine the required powers of r: '!%Zf;Fjr  
    % ----------------------------------- x(Us O}  
    m_abs = abs(m); 2/c^3[ccR  
    rpowers = []; W_E0+  
    for j = 1:length(n) :6*FnKD  
        rpowers = [rpowers m_abs(j):2:n(j)]; [;F%6MPK^  
    end z[I3k  
    rpowers = unique(rpowers); kq SpZoV0'  
    AMhHq/Dw  
    % Pre-compute the values of r raised to the required powers, nKzS2 u=:Y  
    % and compile them in a matrix: DhAQ|SdCf  
    % ----------------------------- w)hH8jx{  
    if rpowers(1)==0 GuV.7&!x  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); x@ZxV*T^  
        rpowern = cat(2,rpowern{:}); i@C1}o-/  
        rpowern = [ones(length_r,1) rpowern]; : ;nvqbd  
    else xSQ:#o=8G  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); "0(H! }D  
        rpowern = cat(2,rpowern{:}); QyGTm"9l  
    end s5DEuu>g  
    nYcj6?  
    % Compute the values of the polynomials: /2!Wy6 p  
    % -------------------------------------- k-$5H~(PZ  
    y = zeros(length_r,length(n)); \!erP!$x .  
    for j = 1:length(n) QD6in>+B@  
        s = 0:(n(j)-m_abs(j))/2; tR,&|?0  
        pows = n(j):-2:m_abs(j); )e$}sw{t  
        for k = length(s):-1:1 J m5).  
            p = (1-2*mod(s(k),2))* ... NEpomE(>x  
                       prod(2:(n(j)-s(k)))/              ... ya<nD'%9  
                       prod(2:s(k))/                     ... `n*e8T  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... W_%p'8,  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); }W:Rg}v  
            idx = (pows(k)==rpowers); =peodj^  
            y(:,j) = y(:,j) + p*rpowern(:,idx); O]>FNsh!  
        end UkE  fuH  
         w$X"E*~>8  
        if isnorm Y~P1r]piB  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); w&vZ$n-|  
        end <}@*i  
    end 4pin\ZS:C  
    % END: Compute the Zernike Polynomials [IF5Iv\b  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% s\)0f_I  
    s+@+<QE  
    % Compute the Zernike functions: ScgaWJ  
    % ------------------------------ 0%Y8M` ~s7  
    idx_pos = m>0; i;u#<y{E  
    idx_neg = m<0; 8QYP\7}o  
    m44"qp  
    z = y; &%@b;)]J  
    if any(idx_pos) ^/0c`JG!x  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); B1x# 7>K  
    end r9nyEzk  
    if any(idx_neg) Q"6:W2#v  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Z%Kkh2-uh  
    end b9 F:X  
    A5UZUU^  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) }f l4^F  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. mMNT.a  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated o*fNY  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive $ $=N'Q  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, IL]Js W  
    %   and THETA is a vector of angles.  R and THETA must have the same _d[4EY  
    %   length.  The output Z is a matrix with one column for every P-value, q =\3jd  
    %   and one row for every (R,THETA) pair. R{3?`x!fY  
    % Smt&/~7D%  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike ?tA<:.<vtY  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) #OQT@uF!  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) G1=/G  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 8wi2&j_  
    %   for all p. ?;bsg 9  
    % P^)J^{r  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 PnUYL.v  
    %   Zernike functions (order N<=7).  In some disciplines it is LX!MDZz  
    %   traditional to label the first 36 functions using a single mode iI]E%H}  
    %   number P instead of separate numbers for the order N and azimuthal pV^(8!+  
    %   frequency M. R v/=bY  
    % ;8~tt I  
    %   Example: ;Y^.SR"  
    % # :)yh]MP  
    %       % Display the first 16 Zernike functions "PK`Ca@`v  
    %       x = -1:0.01:1; [X\<C '<  
    %       [X,Y] = meshgrid(x,x); URo#0fV4C  
    %       [theta,r] = cart2pol(X,Y); :L6,=#  
    %       idx = r<=1; gG,"wzj  
    %       p = 0:15; IyV%tOy  
    %       z = nan(size(X)); DNyU]+\L[l  
    %       y = zernfun2(p,r(idx),theta(idx)); ZLS\K/F>>=  
    %       figure('Units','normalized') O>M4%p  
    %       for k = 1:length(p) U WU PY  
    %           z(idx) = y(:,k);  |Ok=aV7  
    %           subplot(4,4,k) )HL[_WfY  
    %           pcolor(x,x,z), shading interp eyIbjgpV  
    %           set(gca,'XTick',[],'YTick',[]) YQ`m;<  
    %           axis square UNC%<=  
    %           title(['Z_{' num2str(p(k)) '}']) sN8)p%'Lg  
    %       end ssx #\  
    % uto E}U7]  
    %   See also ZERNPOL, ZERNFUN. ImG7E w  
    79bt%P  
    %   Paul Fricker 11/13/2006 n a3st*3V_  
     &$ x1^  
    S_|VlI  
    % Check and prepare the inputs: )Bb:?!EuEH  
    % ----------------------------- DOa%|H'P  
    if min(size(p))~=1 % k}+t3aF  
        error('zernfun2:Pvector','Input P must be vector.') 'Cp]Q@]\  
    end v6#i>n~x,  
    q qFN4AO  
    if any(p)>35 V-N`R-FSr  
        error('zernfun2:P36', ... B']}n`g  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... # VAL\Z  
               '(P = 0 to 35).']) DZ*m"Bi  
    end "/~KB~bB  
    t91z<Y|  
    % Get the order and frequency corresonding to the function number: tDQo1,(oY  
    % ---------------------------------------------------------------- 6$ \69   
    p = p(:); dSkx*#FEE  
    n = ceil((-3+sqrt(9+8*p))/2); : 6|nXL  
    m = 2*p - n.*(n+2); UVlXDebl  
    +)06*"I  
    % Pass the inputs to the function ZERNFUN: Tz<@k  
    % ---------------------------------------- f8 vWN  
    switch nargin SbX#$; ks~  
        case 3 k "Qr  
            z = zernfun(n,m,r,theta); 0/~20KD{s  
        case 4 2$=I+8IL  
            z = zernfun(n,m,r,theta,nflag); loByT p ^  
        otherwise kWm[Lt  
            error('zernfun2:nargin','Incorrect number of inputs.') ])vWvNx  
    end _2 Hehw  
    '6zk> rN  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag)  &C&?kS(  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. ;: 4PT~\*  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of 88~ lP7J  
    %   order N and frequency M, evaluated at R.  N is a vector of s{@3G8  
    %   positive integers (including 0), and M is a vector with the sA1 XtO<&7  
    %   same number of elements as N.  Each element k of M must be a geJO#;  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) E*]%@6tH  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is +~l`rJ  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix 0{Bhr12V  
    %   with one column for every (N,M) pair, and one row for every oaMh5 FPy  
    %   element in R. ;UoXj+Z  
    % qytH<UB  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- QbG`F8dj  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is O9jpt>:kZ  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to 6fcn(&Qk  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 u8sK~1CPf  
    %   for all [n,m]. IP-}J$$1  
    % DY'1#$;  
    %   The radial Zernike polynomials are the radial portion of the Tj_~BT  
    %   Zernike functions, which are an orthogonal basis on the unit #`Gh8n#  
    %   circle.  The series representation of the radial Zernike !Q" 3B6 86  
    %   polynomials is S)~Riuy$  
    % Yh 9fIRR  
    %          (n-m)/2 u[yUUYe  
    %            __ p&<X&D   
    %    m      \       s                                          n-2s 6z>Zm1h  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r w 7Y>B`wm?  
    %    n      s=0 Tt*n.HA  
    % /m+q!yi &  
    %   The following table shows the first 12 polynomials. o])2_e5  
    % &] euL:C  
    %       n    m    Zernike polynomial    Normalization tW7*(D  
    %       --------------------------------------------- F G5e{  
    %       0    0    1                        sqrt(2) `Q~`Eq?@  
    %       1    1    r                           2 G>H',iOI  
    %       2    0    2*r^2 - 1                sqrt(6) SYZS@o  
    %       2    2    r^2                      sqrt(6) Ow7}&\;^-  
    %       3    1    3*r^3 - 2*r              sqrt(8) (y;8izp9!  
    %       3    3    r^3                      sqrt(8) H;nq4;^yK  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) AroXf#.  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) EPMdR66  
    %       4    4    r^4                      sqrt(10) %U$PcHOo  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) q9`!T4,  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) =|G l  
    %       5    5    r^5                      sqrt(12) yg-uL48q  
    %       --------------------------------------------- 7<?~A6  
    % 3cztMi  
    %   Example: |Lz:i +;  
    % #H1ng<QV  
    %       % Display three example Zernike radial polynomials r\sQ8/  
    %       r = 0:0.01:1; Ikbz3]F^V  
    %       n = [3 2 5]; '5vgpmn  
    %       m = [1 2 1]; kb>/R/,9  
    %       z = zernpol(n,m,r); DTw3$:  
    %       figure Gj}P6V _  
    %       plot(r,z) L8zY?v(bG  
    %       grid on .5PcprE/  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') B{0m0-l  
    % 8`/nk `;  
    %   See also ZERNFUN, ZERNFUN2. 38hAg uZX  
    SmJ6Fm6  
    % A note on the algorithm. G()- NJ{  
    % ------------------------ <r%QaQRbm  
    % The radial Zernike polynomials are computed using the series M6+_Mi.  
    % representation shown in the Help section above. For many special k!lz_Y  
    % functions, direct evaluation using the series representation can 5YG?m{hyn_  
    % produce poor numerical results (floating point errors), because -r!N; s$t  
    % the summation often involves computing small differences between UEvRK?mm=  
    % large successive terms in the series. (In such cases, the functions 3B<$6  
    % are often evaluated using alternative methods such as recurrence fem>WPvG  
    % relations: see the Legendre functions, for example). For the Zernike oKJj?%dHK9  
    % polynomials, however, this problem does not arise, because the ^BruRgc+  
    % polynomials are evaluated over the finite domain r = (0,1), and p7A&r:qq#  
    % because the coefficients for a given polynomial are generally all ttwfWfX  
    % of similar magnitude. i-b++R/WN  
    % 4ZK8Y[]Lv  
    % ZERNPOL has been written using a vectorized implementation: multiple fdD?"z  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] i 7fQj, q  
    % values can be passed as inputs) for a vector of points R.  To achieve U[a;e OLx  
    % this vectorization most efficiently, the algorithm in ZERNPOL .cQ<F4)!tu  
    % involves pre-determining all the powers p of R that are required to &a>fZ^Y=k  
    % compute the outputs, and then compiling the {R^p} into a single @Ee'nP   
    % matrix.  This avoids any redundant computation of the R^p, and L.[ H   
    % minimizes the sizes of certain intermediate variables. f@R j;R~Jp  
    % I]]3=?Y  
    %   Paul Fricker 11/13/2006 FX FTf2*T  
    8- ?.Q"D7%  
    "(hhb>V1Wl  
    % Check and prepare the inputs: 1r?<1vh:z  
    % ----------------------------- Fvy__ qcHi  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 7J]tc1-re  
        error('zernpol:NMvectors','N and M must be vectors.') TvE M{  
    end McgTTM;E  
    -$E_L :M  
    if length(n)~=length(m) pr8eRV!x  
        error('zernpol:NMlength','N and M must be the same length.') ?Mg&e/^  
    end >5&'_  
    Wb] ha1$  
    n = n(:); `4RraJj>0~  
    m = m(:); M%dXy^e  
    length_n = length(n); 4ey m$UWw  
    sS, Swgr  
    if any(mod(n-m,2)) &k /uR;yw  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') V fJYYR  
    end jmbwV,@Q2  
     iK$)Iy0  
    if any(m<0) I_('Mr)  
        error('zernpol:Mpositive','All M must be positive.') _-&\~w  
    end Cg/L/0Ak  
    [a;U'v*  
    if any(m>n) u=h:d+rq@  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') U5]{`C0H?  
    end P {x`eD0  
    hHsCr@i  
    if any( r>1 | r<0 ) L'LZK  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') X !g"D6'  
    end M-3kF"  
    IcMfZ {H1  
    if ~any(size(r)==1) .eAN`-t;  
        error('zernpol:Rvector','R must be a vector.') NDW6UFd>1  
    end Cpu L[|51  
    Q# w`ZQX3  
    r = r(:); Amf gc>eJ  
    length_r = length(r); 37DyDzW)'  
    hPa:>e  
    if nargin==4 PG<tic<?  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); m$ZPQ0X  
        if ~isnorm f"zXiUV  
            error('zernpol:normalization','Unrecognized normalization flag.') $<.\,wW*'w  
        end :?%$={m  
    else 9k mkF,  
        isnorm = false; TU4"7]/{M  
    end fr$E'+l)  
    Eg&xIyRmm  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ES[H^}|Gi  
    % Compute the Zernike Polynomials ;*^2,_  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% JsohhkJNGi  
    3-z; pk  
    % Determine the required powers of r: {3F;:%$`c  
    % ----------------------------------- BbEWa  
    rpowers = []; q(sEN!^L`  
    for j = 1:length(n) 1zwk0={x-%  
        rpowers = [rpowers m(j):2:n(j)]; r>4HF"Nm  
    end YqhZndktX  
    rpowers = unique(rpowers); SJb+:L>  
    ]n9o=^q/  
    % Pre-compute the values of r raised to the required powers, pvdM3+6  
    % and compile them in a matrix: EkotVzR5  
    % ----------------------------- #@s[!4)_I  
    if rpowers(1)==0 v?e@`;- <  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); .?T,>#R  
        rpowern = cat(2,rpowern{:}); yd#SB)&  
        rpowern = [ones(length_r,1) rpowern]; EXDZehLD<]  
    else npC:SrI%  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); LpwjP4vWJ  
        rpowern = cat(2,rpowern{:}); cPD&xVwq>  
    end Lc.=CBQ  
    dU`kJ,=Z  
    % Compute the values of the polynomials: ~9%L)nC2'  
    % -------------------------------------- _L }k.  
    z = zeros(length_r,length_n); Dv~W!T i  
    for j = 1:length_n "Sm'TZx  
        s = 0:(n(j)-m(j))/2; RCM;k;@8V  
        pows = n(j):-2:m(j); }LK +w+h~  
        for k = length(s):-1:1 !'|^`u=eL  
            p = (1-2*mod(s(k),2))* ... P2la/jN  
                       prod(2:(n(j)-s(k)))/          ... h9<*+T  
                       prod(2:s(k))/                 ... SU>2MT^  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... +9LIpU&5  
                       prod(2:((n(j)+m(j))/2-s(k))); +i"^"/2f{  
            idx = (pows(k)==rpowers); !1G6ZC:z  
            z(:,j) = z(:,j) + p*rpowern(:,idx); <'WS -P%U  
        end vmEbk/Vy  
         yW3!V-iA  
        if isnorm ?'>pfU  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); u^2)oL  
        end Qy0Zj$,Z  
    end #aHPB#  
    -|F(qf  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  bA*T1Db,t>  
    zrazFI0G  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 j87IxB?o  
    RxrUnMF  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)