切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11037阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 YK~%xo  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! igAtRX%Qx  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 9Lfv^V0  
    function z = zernfun(n,m,r,theta,nflag) /vb`H>P  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. Oz#{S:24M+  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N wn)W ?P;k  
    %   and angular frequency M, evaluated at positions (R,THETA) on the !$>R j  
    %   unit circle.  N is a vector of positive integers (including 0), and ji,kkipY?w  
    %   M is a vector with the same number of elements as N.  Each element HLHz2-lI  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) i(+p0:< 0  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, _t}WsEQ+P  
    %   and THETA is a vector of angles.  R and THETA must have the same gbagi+8s`%  
    %   length.  The output Z is a matrix with one column for every (N,M) Jqi%|,/]N  
    %   pair, and one row for every (R,THETA) pair. [;sRV<  
    % t<?,F  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike @!d{bQd,  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), eGbG w  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral Pd]|:W< E  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, R_S.tT!  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized w^0nqh  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ib791  
    % 5d!-G$ @  
    %   The Zernike functions are an orthogonal basis on the unit circle. 26x[X.C:  
    %   They are used in disciplines such as astronomy, optics, and QnX(V[  
    %   optometry to describe functions on a circular domain. i<g-+Qs  
    % 1]/.` ]1  
    %   The following table lists the first 15 Zernike functions. n>U5R_T  
    % U_c*6CK  
    %       n    m    Zernike function           Normalization QoH6  
    %       -------------------------------------------------- 9490o:s  
    %       0    0    1                                 1 6Sn.I1Wy  
    %       1    1    r * cos(theta)                    2 .Rf_Cl  
    %       1   -1    r * sin(theta)                    2 DrK{}uM  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) # c^z&0B}  
    %       2    0    (2*r^2 - 1)                    sqrt(3) K@w{"7}  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) \:F_xq  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 4#hSJ(~7S  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) delu1r  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ,U dVNA  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) G?Hdq;  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) .y:U&Rw4  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) x `)&J B  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) T:W4$P  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) x;<W&s}(  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) Q#[9|A9  
    %       -------------------------------------------------- CF5`-wj/#  
    % (7=9++uU  
    %   Example 1: n#_$\ p>Yd  
    % Vj>8a)"B5a  
    %       % Display the Zernike function Z(n=5,m=1) %sQ^.` 2  
    %       x = -1:0.01:1; A1zjPG&]  
    %       [X,Y] = meshgrid(x,x); [QT#Yf0  
    %       [theta,r] = cart2pol(X,Y); *$ %a:q1U  
    %       idx = r<=1; 0v$~90)  
    %       z = nan(size(X)); c=.(!qdH  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); e'b(gD}  
    %       figure 2x0<&Xy#P  
    %       pcolor(x,x,z), shading interp _b;{_g  
    %       axis square, colorbar / FEVmH?  
    %       title('Zernike function Z_5^1(r,\theta)') EG |A_m85  
    % ~Vjl7G\7i  
    %   Example 2: bhlG,NTP  
    % tT?cBg{  
    %       % Display the first 10 Zernike functions `$ aZ0+  
    %       x = -1:0.01:1; 'u<juFr  
    %       [X,Y] = meshgrid(x,x); s#=7IH30  
    %       [theta,r] = cart2pol(X,Y); -5QZJF2~  
    %       idx = r<=1; S\!ana])  
    %       z = nan(size(X)); 3"KCh\\b  
    %       n = [0  1  1  2  2  2  3  3  3  3]; :1KpGj*F  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 9|CN8x-  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; _MX>#!l  
    %       y = zernfun(n,m,r(idx),theta(idx)); QbpFE)TYJ|  
    %       figure('Units','normalized') 9o:Lz5 o  
    %       for k = 1:10 $aXer:  
    %           z(idx) = y(:,k); ]1pIj i[  
    %           subplot(4,7,Nplot(k)) .z}~4BY  
    %           pcolor(x,x,z), shading interp <1\Nb{5  
    %           set(gca,'XTick',[],'YTick',[]) 0T5L_%c  
    %           axis square L AAHEv  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) o"R7,N0rB  
    %       end ]^K 4i)\  
    % G?/DrnK:  
    %   See also ZERNPOL, ZERNFUN2. qVwIo.g!  
    .$)  
    %   Paul Fricker 11/13/2006 a]tVd#  
    ^V Zk+'4  
    Bad:n o\W  
    % Check and prepare the inputs: 2{G:=U  
    % ----------------------------- F,)%?<!I  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ZlzjVU/E  
        error('zernfun:NMvectors','N and M must be vectors.') g0ly  
    end e|WJQd4+S  
    i|*)I:SHU  
    if length(n)~=length(m) Qtv&ijFC  
        error('zernfun:NMlength','N and M must be the same length.') R>mmoG}MQ[  
    end h/hmlnOQl  
    tQYM&6g  
    n = n(:); +<3X J7D  
    m = m(:); *QQzvhk  
    if any(mod(n-m,2)) t+T4-1 3a  
        error('zernfun:NMmultiplesof2', ... T&o(N3lW  
              'All N and M must differ by multiples of 2 (including 0).') !fR3 (=oN  
    end bsA-2*Q+  
    s?,Ek  
    if any(m>n) C-6F]2:  
        error('zernfun:MlessthanN', ... :~N-.#  
              'Each M must be less than or equal to its corresponding N.') '|p$)yx2  
    end ktBj|-'>  
    ~=RT*>G_  
    if any( r>1 | r<0 ) 2OR{[L*  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') ^qQZT]  
    end f-G :uI_  
    KP5C} ZK+s  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) k:F9. j%*  
        error('zernfun:RTHvector','R and THETA must be vectors.') % *INT  
    end nWYN Np?h  
    "PTZ%7YH}  
    r = r(:); kbMWGB%;  
    theta = theta(:); ll.N^y;a  
    length_r = length(r); kN4{13Qs*  
    if length_r~=length(theta) T1Z;r*}  
        error('zernfun:RTHlength', ... Df<xWd2  
              'The number of R- and THETA-values must be equal.') aYS!xh206  
    end *>2W#D)b=  
    sAS:-wp  
    % Check normalization: 27O|).yKX  
    % -------------------- wL 4dTc  
    if nargin==5 && ischar(nflag) 5aZ2j26  
        isnorm = strcmpi(nflag,'norm'); $ig0j`  
        if ~isnorm bITPQ7+  
            error('zernfun:normalization','Unrecognized normalization flag.') @ljA  
        end ~8P!XAU56%  
    else UK O[r;  
        isnorm = false; :LRYYw  
    end mmEYup(l0;  
    7k9G(i[-+  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% p#?7 w  
    % Compute the Zernike Polynomials vZ&T}H~8  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% _R13f@NWB:  
    6ZG+ZHUC&  
    % Determine the required powers of r: Hmd] FC,_  
    % ----------------------------------- *4+"Lh.KS  
    m_abs = abs(m); 2ZMb<b4H  
    rpowers = []; -Rd/G x  
    for j = 1:length(n) (# Gw1  
        rpowers = [rpowers m_abs(j):2:n(j)]; '\ey<}?5V  
    end wq(7|!Eix  
    rpowers = unique(rpowers); N OiN^::m  
    wKY Za# u  
    % Pre-compute the values of r raised to the required powers, o9%)D<4M  
    % and compile them in a matrix: L> 9V&\  
    % ----------------------------- >eqxV|]i  
    if rpowers(1)==0 ^*8G8'k;$  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); n}_JB>i~  
        rpowern = cat(2,rpowern{:}); 2w_WAdi  
        rpowern = [ones(length_r,1) rpowern]; . Z.)t  
    else "2P&X  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); hp* /#D  
        rpowern = cat(2,rpowern{:}); ^~@U]  
    end 1[qLA!+  
    */|lJm'R  
    % Compute the values of the polynomials: %Yicg6:  
    % -------------------------------------- s'a/j)^  
    y = zeros(length_r,length(n)); t2"O  
    for j = 1:length(n) f3&[#%  
        s = 0:(n(j)-m_abs(j))/2; l@H  
        pows = n(j):-2:m_abs(j); K[Kh&`T  
        for k = length(s):-1:1 cU@SIJ)  
            p = (1-2*mod(s(k),2))* ... 6c"0})p  
                       prod(2:(n(j)-s(k)))/              ... Co9QW/'i  
                       prod(2:s(k))/                     ... Q}K#'Og  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 5b/|!{  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); o/6-3QUak  
            idx = (pows(k)==rpowers); XZJ+h,f  
            y(:,j) = y(:,j) + p*rpowern(:,idx); &8>IeK {I  
        end xA 1hfe.9  
         | e?64%l5P  
        if isnorm 8V)^R(\;  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ph[#QHB  
        end c^u"I'#Q  
    end B}?5]N==]  
    % END: Compute the Zernike Polynomials 'wI"Bo6e  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% "@d[h,TM  
    Vf'd*-_!Q<  
    % Compute the Zernike functions: 8p9bCE>\  
    % ------------------------------ C\nhqkn  
    idx_pos = m>0; =fve/_Q~  
    idx_neg = m<0; 2viM)+  
    9C[ywp  
    z = y; gu<'QV"  
    if any(idx_pos) *@Y3oh}S  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Ikiib WQL+  
    end n;U`m$vL%  
    if any(idx_neg) Y$Y_fjd_  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); !+4cqO  
    end @t`Xq1  
    1_ C]*p  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) vR=6pl$|~~  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. q7Dw _<  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated P*@2.#oO  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive t" 7yNs(I  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, Wg0g/  
    %   and THETA is a vector of angles.  R and THETA must have the same =;|QZ"%E  
    %   length.  The output Z is a matrix with one column for every P-value, ]oV{t<0a  
    %   and one row for every (R,THETA) pair. eKz?"g/j  
    % HXYRH  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike ^Q ps> A(  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) >sjhA|gXk  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) qY$qaM^=  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 TsUOpEuX  
    %   for all p. VY"9?2?/  
    % E55t*^`  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 -,aeM~  
    %   Zernike functions (order N<=7).  In some disciplines it is RZ7( J  
    %   traditional to label the first 36 functions using a single mode |vMpXiMxxT  
    %   number P instead of separate numbers for the order N and azimuthal ~+bGN  
    %   frequency M. e9Pk"HHl  
    % 5"]~oPK  
    %   Example: 8kOKwEX  
    % EVUq--)~  
    %       % Display the first 16 Zernike functions { "xln/  
    %       x = -1:0.01:1; }%`~T>/  
    %       [X,Y] = meshgrid(x,x); z%7SrUj2  
    %       [theta,r] = cart2pol(X,Y);  ^eGNgE  
    %       idx = r<=1; [kzd(u  
    %       p = 0:15; 9cx =@  
    %       z = nan(size(X)); sv(f;ib  
    %       y = zernfun2(p,r(idx),theta(idx)); ^(f4*m6`  
    %       figure('Units','normalized') JwRF(1_sM  
    %       for k = 1:length(p) ?D)<,  
    %           z(idx) = y(:,k); ]cC[-F[  
    %           subplot(4,4,k) Z,;cCxE  
    %           pcolor(x,x,z), shading interp Hiv!BV|  
    %           set(gca,'XTick',[],'YTick',[]) 5,;`$'?a%  
    %           axis square /?6|&  
    %           title(['Z_{' num2str(p(k)) '}'])  6vTo*8D  
    %       end gx:;&4AD  
    % qXW})(  
    %   See also ZERNPOL, ZERNFUN. 70Yjv 1i  
    %q322->Z  
    %   Paul Fricker 11/13/2006 *P!e:Tm)  
    J3b4cxm  
    1b>C<\  
    % Check and prepare the inputs: o}'bv  
    % ----------------------------- omf  Rs  
    if min(size(p))~=1 H{c?lT  
        error('zernfun2:Pvector','Input P must be vector.') )Vk6;__  
    end >x@P|\  
    F;!2(sPS  
    if any(p)>35 LsGiu9~S  
        error('zernfun2:P36', ... FNQX7O52  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... desThnT w  
               '(P = 0 to 35).']) +wk`;0sA  
    end cj|*_}  
    eL.7#SIr}  
    % Get the order and frequency corresonding to the function number: pA#}-S%  
    % ---------------------------------------------------------------- Dli^2hD  
    p = p(:); O^I[ (8Y8  
    n = ceil((-3+sqrt(9+8*p))/2); "4j:[9vR\  
    m = 2*p - n.*(n+2); wVA|!>v  
    fKa\7{R  
    % Pass the inputs to the function ZERNFUN: 5[9 bWB{  
    % ---------------------------------------- ]AS"z<  
    switch nargin ZDYJhJ.  
        case 3 '69ZdP/xX  
            z = zernfun(n,m,r,theta); zN_:nY>  
        case 4 oXt,e   
            z = zernfun(n,m,r,theta,nflag); 6`"M  
        otherwise QI[}(O7#6  
            error('zernfun2:nargin','Incorrect number of inputs.') A?"h@-~2  
    end Q1&P@Io$  
    & Rz, J]  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) C;\VO)]t  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. mf|pNiQ,  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of g "!\\:M  
    %   order N and frequency M, evaluated at R.  N is a vector of ;? uC=o>Z{  
    %   positive integers (including 0), and M is a vector with the ~HUZ#rUHm>  
    %   same number of elements as N.  Each element k of M must be a P-JfV7(O8  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) jlKGXD)Q[  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is NyI ;v =  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix ZAg;q#z j  
    %   with one column for every (N,M) pair, and one row for every #DP7SO  
    %   element in R. /k7wwZiY@  
    % dNV v4{S  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- =!-5+I#e  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is !Zwf 397  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to 0v"&G<J  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 `:-J+<`  
    %   for all [n,m]. H] qq ~bO[  
    % nY) .|\|i  
    %   The radial Zernike polynomials are the radial portion of the Gbd?%{Xc-  
    %   Zernike functions, which are an orthogonal basis on the unit <qiICb)~  
    %   circle.  The series representation of the radial Zernike ]u&dJL  
    %   polynomials is Q59/ex  
    % B$`lY DqaG  
    %          (n-m)/2 Q.(51]'  
    %            __ )hL^+Nn bR  
    %    m      \       s                                          n-2s qZ G-Lh  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r 2%]hYr;  
    %    n      s=0 ix Ow=!@  
    % wt7.oKbW  
    %   The following table shows the first 12 polynomials. +X!+'>  
    % = ?N^>zie  
    %       n    m    Zernike polynomial    Normalization Ww87  
    %       --------------------------------------------- y-`I) w%  
    %       0    0    1                        sqrt(2) C"T ,MH  
    %       1    1    r                           2 g+Ph6W  
    %       2    0    2*r^2 - 1                sqrt(6) K M]Wl_z  
    %       2    2    r^2                      sqrt(6) R/N<0!HZ  
    %       3    1    3*r^3 - 2*r              sqrt(8) p\ txlT  
    %       3    3    r^3                      sqrt(8) 8)Tj H'  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) tvWH04T  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) \FI^ Vk  
    %       4    4    r^4                      sqrt(10) O~Uw&Bq  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) E0bFx5e5fu  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) &y3B)#dIJ  
    %       5    5    r^5                      sqrt(12) E2yz=7sv5  
    %       --------------------------------------------- 6IF|3@yD  
    % ._BB+G  
    %   Example: Rk[8Bd?  
    % iy 3DX|]  
    %       % Display three example Zernike radial polynomials 0e9A+&r  
    %       r = 0:0.01:1; T^.{9F]*S  
    %       n = [3 2 5]; Z)v)\l9d  
    %       m = [1 2 1]; Nzc>)2% N  
    %       z = zernpol(n,m,r); ;^.9#B,<  
    %       figure 2<.Vv\ =  
    %       plot(r,z) mSj76' L#  
    %       grid on !`h~`-]O  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') I;iR(Hf)?q  
    % VEo^ :o)r  
    %   See also ZERNFUN, ZERNFUN2. ArdJ."  
    H5^Y->  
    % A note on the algorithm. WA$ p_% r=  
    % ------------------------ "w1(g=n  
    % The radial Zernike polynomials are computed using the series }` @?X"r  
    % representation shown in the Help section above. For many special NQ3|\<Wt  
    % functions, direct evaluation using the series representation can InX{V|CW?  
    % produce poor numerical results (floating point errors), because ^k9rDn/AW  
    % the summation often involves computing small differences between ~g96o81V  
    % large successive terms in the series. (In such cases, the functions +wjlAqMQ  
    % are often evaluated using alternative methods such as recurrence 1'OD3~[R  
    % relations: see the Legendre functions, for example). For the Zernike h&'J+b  
    % polynomials, however, this problem does not arise, because the Dpp@*xX>  
    % polynomials are evaluated over the finite domain r = (0,1), and r?XDvU  
    % because the coefficients for a given polynomial are generally all a j_:|]j  
    % of similar magnitude. 8I {56$  
    % x_pMG!2  
    % ZERNPOL has been written using a vectorized implementation: multiple >|S>J+(  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] JbVi1?c  
    % values can be passed as inputs) for a vector of points R.  To achieve *kV#)j  
    % this vectorization most efficiently, the algorithm in ZERNPOL o[H\{a>  
    % involves pre-determining all the powers p of R that are required to :=B[y D!  
    % compute the outputs, and then compiling the {R^p} into a single zXDd,ltm  
    % matrix.  This avoids any redundant computation of the R^p, and R=DPeUy;  
    % minimizes the sizes of certain intermediate variables. {9,R@>R  
    % =z']s4  
    %   Paul Fricker 11/13/2006 s2%0#6c'c  
    zVn*!c  
    *@=fq|6l 2  
    % Check and prepare the inputs: )[RpZpd`*  
    % ----------------------------- )m>6hk  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) w-8)YJ Y  
        error('zernpol:NMvectors','N and M must be vectors.') KXDz'9_  
    end pIrv$^  
    "Vq@bNtu+  
    if length(n)~=length(m) |4LQ\'N&  
        error('zernpol:NMlength','N and M must be the same length.') ?RqTbT@~  
    end T=O l`?5  
    =NI.d>kvC  
    n = n(:); xQ_:]\EZ  
    m = m(:); AIf[W">\  
    length_n = length(n); \_)02ZT:  
    }$&);7(w  
    if any(mod(n-m,2)) -!JlM@  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') sd]0Hx[  
    end 4E,hcu  
    ~m3V]v(q7  
    if any(m<0) 'G3+2hah  
        error('zernpol:Mpositive','All M must be positive.') ?cA8P.?^A  
    end WCWSLEAza  
    0fZ:")&4,  
    if any(m>n) 6Eij>{v  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') yDDghW'\WU  
    end z1)$  
    m.|qVN  
    if any( r>1 | r<0 ) Bl:{p>-q  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') O>kXysMv>  
    end &3+1D1"y/  
    D6"~fjHh  
    if ~any(size(r)==1) Qj{$dqmDN  
        error('zernpol:Rvector','R must be a vector.') h,Y{t?Of  
    end $ $W{HsX  
    ~k"eE V p  
    r = r(:); ID_|H?.  
    length_r = length(r); X=-gAutfE=  
    _wIBm2UO  
    if nargin==4 ^/ULh,w!fP  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); V7Vbl?*n  
        if ~isnorm n$}R/*  
            error('zernpol:normalization','Unrecognized normalization flag.') )UxQf37  
        end A} x_zt  
    else A8CIP:Z  
        isnorm = false; g!~-^_F  
    end <yPq;#z(!  
    &/z+A{Hi  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% g]oc(RM  
    % Compute the Zernike Polynomials /gMa"5?,  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% .rD#1)O  
    W o<PmSt9i  
    % Determine the required powers of r: H-nFsJ(R!c  
    % ----------------------------------- .I f"'hMY  
    rpowers = []; V NJDl  
    for j = 1:length(n) L<{OBuR  
        rpowers = [rpowers m(j):2:n(j)]; ;p?42rCIcl  
    end Xs.$2  
    rpowers = unique(rpowers); ,E n(gm  
    /*mFP.en  
    % Pre-compute the values of r raised to the required powers, zyQ,unu  
    % and compile them in a matrix: {+9^PC_hm;  
    % ----------------------------- rH [+/&w5  
    if rpowers(1)==0 +aXMHT"U  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); $\JQGic`  
        rpowern = cat(2,rpowern{:}); 0%q{UW2  
        rpowern = [ones(length_r,1) rpowern]; GA%"w=M\  
    else >Rz#g*@E  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Wfi:wCqZG  
        rpowern = cat(2,rpowern{:}); E#&c]9QM75  
    end { c6DT  
    [TpA26#TTO  
    % Compute the values of the polynomials: tq4"Q BIKh  
    % -------------------------------------- ouu-wQ|(mM  
    z = zeros(length_r,length_n); xC=3|,U  
    for j = 1:length_n X=*Yzz}  
        s = 0:(n(j)-m(j))/2; wXIe5  
        pows = n(j):-2:m(j); ;N> {1  
        for k = length(s):-1:1 2:6Y83  
            p = (1-2*mod(s(k),2))* ... +lk\oj$S+  
                       prod(2:(n(j)-s(k)))/          ... z_[ 3IAZ  
                       prod(2:s(k))/                 ... h~^qG2TYWq  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... Pv/%s) &y&  
                       prod(2:((n(j)+m(j))/2-s(k))); )U/@J+{{  
            idx = (pows(k)==rpowers); b@Mng6R  
            z(:,j) = z(:,j) + p*rpowern(:,idx); C4X{Ps \  
        end GFy0R"&d[  
         1,*Z_ F=y  
        if isnorm dmTW]P2  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); 2+r )VF:  
        end B[U.CAUn  
    end cr=FMfhB  
    nw]e_sm  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  6i=wAkn_J  
    ${,eQ\  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 72.IhBNtT  
    ewPdhCK  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)