非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 eGQ4aQhi
function z = zernfun(n,m,r,theta,nflag) 8m' f8.x
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. rT4Q^t"
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N </_QldL_
% and angular frequency M, evaluated at positions (R,THETA) on the ]>)shH=Yx
% unit circle. N is a vector of positive integers (including 0), and ^V; r
% M is a vector with the same number of elements as N. Each element o`Z3}
% k of M must be a positive integer, with possible values M(k) = -N(k) "vybVWEE
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, ktqFgU#rT
% and THETA is a vector of angles. R and THETA must have the same )wjpxr
% length. The output Z is a matrix with one column for every (N,M) X~VI} dJ
% pair, and one row for every (R,THETA) pair. 0O'M^[=d.8
% -x6_HibbD
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike QmSj6pB>
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ;q-c[TZC
% with delta(m,0) the Kronecker delta, is chosen so that the integral sT1OAK\^
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 4qDO(YWf
% and theta=0 to theta=2*pi) is unity. For the non-normalized 46T(1_Xt~
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Zex~ $r
% <#BK(W~$
% The Zernike functions are an orthogonal basis on the unit circle. a K6dy\
% They are used in disciplines such as astronomy, optics, and 31^/9lb
% optometry to describe functions on a circular domain. k8ILo)
% .&b^6$dC
% The following table lists the first 15 Zernike functions. r+%3Y:dZE
% JzywSQ
% n m Zernike function Normalization z@IG"D
% -------------------------------------------------- KF
*F
% 0 0 1 1 aO1.9!<v
% 1 1 r * cos(theta) 2 >yn?@ve@
% 1 -1 r * sin(theta) 2 c(Y~5A{TXO
% 2 -2 r^2 * cos(2*theta) sqrt(6) )OQm,5F1
% 2 0 (2*r^2 - 1) sqrt(3) f1SKOq
% 2 2 r^2 * sin(2*theta) sqrt(6) E^n!h06~G
% 3 -3 r^3 * cos(3*theta) sqrt(8) AUF[hzA
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) %6lGRq{/?
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 'g<{l&u
% 3 3 r^3 * sin(3*theta) sqrt(8) vh2/d.MO
% 4 -4 r^4 * cos(4*theta) sqrt(10) uu]C;wl
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) nl2Lqu1
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) !Usmm8!K
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Q3+%8zZI
% 4 4 r^4 * sin(4*theta) sqrt(10) IW nG@!
% -------------------------------------------------- tpzWi
W/
% hs+)a%A3G
% Example 1: <^;~8:0]
% B_Gcz5
% % Display the Zernike function Z(n=5,m=1) Rh~j -;
% x = -1:0.01:1; ;LC|1_ '
% [X,Y] = meshgrid(x,x); ]Y$Wv9S6
% [theta,r] = cart2pol(X,Y); 'Sd+CXS
% idx = r<=1; D3g5#.$,}>
% z = nan(size(X)); jm&[8ApW
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 76[qFz
% figure ok ,O/|E}?
% pcolor(x,x,z), shading interp ByoI+n* U
% axis square, colorbar -|#/KKF
% title('Zernike function Z_5^1(r,\theta)') \s8h.xjU
% kQ\l7xd
% Example 2: cJm},
% B;Z _'.i,d
% % Display the first 10 Zernike functions Q!-"5PX
% x = -1:0.01:1; e"EGqn&!
% [X,Y] = meshgrid(x,x); _{if"
% [theta,r] = cart2pol(X,Y); -k>k<bDAI
% idx = r<=1; 4Z{R36 {
% z = nan(size(X)); Pj56,qd>s
% n = [0 1 1 2 2 2 3 3 3 3]; xZq, kP^
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; &> .QDO
% Nplot = [4 10 12 16 18 20 22 24 26 28]; c;29GHs2
% y = zernfun(n,m,r(idx),theta(idx)); yhK9rcJq6}
% figure('Units','normalized') H,;ZFg /v8
% for k = 1:10 ={h^X0<s9
% z(idx) = y(:,k); i%f
C`@
% subplot(4,7,Nplot(k)) -{?xl*D
% pcolor(x,x,z), shading interp Wvd-be
% set(gca,'XTick',[],'YTick',[]) " E5=AWd
% axis square WzdlrkD
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) =<M>fJ)
% end rmX5-k
% g-x;a0MQx
% See also ZERNPOL, ZERNFUN2. +=L+35M
#"C*dNAB
% Paul Fricker 11/13/2006 jtpk5 fJB
kiin7 8W
$WE_aNfja
% Check and prepare the inputs: V~.SgbLc
% ----------------------------- 2l+'p[b0>
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 3uvl'1(%J
error('zernfun:NMvectors','N and M must be vectors.') Pa; *%7
end w3fD6$
(/>
yfL]J
if length(n)~=length(m) sSiZG
error('zernfun:NMlength','N and M must be the same length.') ~Wm'~y>
end Mns=X)/hc
E}36
n = n(:); ;%>X+/.y0
m = m(:); 0icB2Jm:D}
if any(mod(n-m,2)) DAN"&&
error('zernfun:NMmultiplesof2', ... :w4 H$+j
'All N and M must differ by multiples of 2 (including 0).') D*HK[_5
end 8,CL>*A
ZkMHy1
if any(m>n) OWN|W,
error('zernfun:MlessthanN', ... jNIz:_c-~
'Each M must be less than or equal to its corresponding N.') i-k(/Y0
end k'[\r>T
<(qdxdUp
if any( r>1 | r<0 ) ov>`MCS,v
error('zernfun:Rlessthan1','All R must be between 0 and 1.') )pey7-P7g5
end =Y3 d~~
noT}NX%
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) wz:w6q
error('zernfun:RTHvector','R and THETA must be vectors.') ~vR<UQz
end sg]g;U
"bjbJC&T
r = r(:); )4+uM'2%
theta = theta(:); r^\Wo7q
length_r = length(r); R?*-ZI[>w
if length_r~=length(theta) B7'2@+(
error('zernfun:RTHlength', ... HOPsp
'The number of R- and THETA-values must be equal.') :~,akX$
end 4T<dI6I0
G~4|]^`g
% Check normalization: {\=NZ\
% -------------------- N4_V
if nargin==5 && ischar(nflag) J=DD/Gp
isnorm = strcmpi(nflag,'norm'); afcyAzIB&
if ~isnorm 9+>%U~U<
error('zernfun:normalization','Unrecognized normalization flag.') `,wX&@sN
end l)0yv2[h
else {O[ !*+O
isnorm = false; fli7Ow?M~
end t2%gS"
[
kZ
9n@($B
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 5YiBw|Z7 "
% Compute the Zernike Polynomials W!Rr_'yFe)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 9**u\H)P6
vf_pEkx*wD
% Determine the required powers of r: ]JHY(H2|
% ----------------------------------- xWty2/!h
m_abs = abs(m); 1]jUiX=T
rpowers = []; z;i4F.p
for j = 1:length(n) '8Lc}-M4
rpowers = [rpowers m_abs(j):2:n(j)]; pvd9wKz
end IRDD
rpowers = unique(rpowers); Vg"Ze[dA
n%P,"V
% Pre-compute the values of r raised to the required powers, }4I;<%L3`
% and compile them in a matrix: L2y{\<JC"
% ----------------------------- qv+}|+aL:
if rpowers(1)==0 X1h*.reFAL
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); fm,:8%
rpowern = cat(2,rpowern{:}); Aq P\g k
rpowern = [ones(length_r,1) rpowern]; `?Xt ,
else 4=n%<U`Z/
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); |a[ :L
rpowern = cat(2,rpowern{:}); o)6udRzBv
end `r8bBzr@%
"LH* T
% Compute the values of the polynomials: u&Dd9kMz
% -------------------------------------- GUK3`}!%
y = zeros(length_r,length(n)); SxCzI$SGu
for j = 1:length(n) ?{6[6T
s = 0:(n(j)-m_abs(j))/2; qS+I lg
pows = n(j):-2:m_abs(j); 3H47 vm(`
for k = length(s):-1:1 =R\-mov$
p = (1-2*mod(s(k),2))* ... /T2f~1R
prod(2:(n(j)-s(k)))/ ... pDx}~IB
prod(2:s(k))/ ...
/-)|dP
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... A&fh0E (t
prod(2:((n(j)+m_abs(j))/2-s(k))); Th//u I+
idx = (pows(k)==rpowers); Pi|oO-M
y(:,j) = y(:,j) + p*rpowern(:,idx); 6Bm2_B
end OKq={l
/2!"_?<L
if isnorm 6ypqnOTr
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); X{riI^(
end cM'5m
end T)B1V,2j=
% END: Compute the Zernike Polynomials *:A)j?(
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% QWGFXy,=1
DWH)<\?
% Compute the Zernike functions: #TSLgV'U
% ------------------------------ CSooJ1Ep~'
idx_pos = m>0; RsDI7v
idx_neg = m<0; -0doL^A
SB[,}h<u1
z = y; Cx/duodp
if any(idx_pos) 57b;{kl
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); YR`Mi.,Sfm
end [%8+Fa~Wa
if any(idx_neg) v)2@;Q
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); {\e wf_pFk
end d|sI>6jD
CQ3{'"b
% EOF zernfun