切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10747阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 cn: L]%<  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! .N7<bt@~)  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 =H3tkMoi2  
    function z = zernfun(n,m,r,theta,nflag) z1]nC]2  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. :Nv7Wt!  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N hNhEA $X5  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ,<Z,-0S  
    %   unit circle.  N is a vector of positive integers (including 0), and ;b:'i& r  
    %   M is a vector with the same number of elements as N.  Each element }Z{FPW.QK  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 8\^A;5  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, !/!ga)Y  
    %   and THETA is a vector of angles.  R and THETA must have the same -7]j[{?w  
    %   length.  The output Z is a matrix with one column for every (N,M) }i,r{Y]s]  
    %   pair, and one row for every (R,THETA) pair. c#>(8#'.U  
    % 22=sh;y+2  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Rk[a|T&  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Uqb]&2  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral xQ7U$QF|]  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, pB#I_?(  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized gnjhy1o  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. +'-.c"  
    % &^#u=w?^x  
    %   The Zernike functions are an orthogonal basis on the unit circle. s'oNW  
    %   They are used in disciplines such as astronomy, optics, and pu+Q3NfR  
    %   optometry to describe functions on a circular domain. jz! [#-G  
    % yi*EobP  
    %   The following table lists the first 15 Zernike functions. amdgb,vh  
    % ~bC A8  
    %       n    m    Zernike function           Normalization %T\hL\L?  
    %       -------------------------------------------------- huS*1xl  
    %       0    0    1                                 1 D[#V  
    %       1    1    r * cos(theta)                    2 M:{Aq&.  
    %       1   -1    r * sin(theta)                    2 /.<v,CR  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) |oke)w=gn  
    %       2    0    (2*r^2 - 1)                    sqrt(3) /KX+'@  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) !{ (Bc8 hT  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) Z#L4n#TT  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) )0iN2L]U;  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) Z i.' V  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) i/%l B  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) (or"5}\6-  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) J (?qk  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) giX[2`^NG  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) |Ia9bg'1U  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) |Rz.Pt6  
    %       -------------------------------------------------- >>,G3/Zd*  
    % GaG>0 x   
    %   Example 1: 4minzrKM\  
    % 8ZVQM7O  
    %       % Display the Zernike function Z(n=5,m=1) * l1*zaE  
    %       x = -1:0.01:1; (X,i,qK/  
    %       [X,Y] = meshgrid(x,x); h7!O K  
    %       [theta,r] = cart2pol(X,Y); m]!hP^^  
    %       idx = r<=1; >e>3:~&2  
    %       z = nan(size(X)); G:":CX"O(  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); NFZ(*v1U  
    %       figure B(++*#T!^m  
    %       pcolor(x,x,z), shading interp ZQ_6I}i")  
    %       axis square, colorbar T5."3i  
    %       title('Zernike function Z_5^1(r,\theta)') Ly+UY.v"  
    % JRo/ HY+  
    %   Example 2: ^0}ma*gi~  
    % +h4W<YnW  
    %       % Display the first 10 Zernike functions z6C(?R  
    %       x = -1:0.01:1; =+Fb\HvX{  
    %       [X,Y] = meshgrid(x,x); o+A1-&qhN  
    %       [theta,r] = cart2pol(X,Y); kFWwz^x  
    %       idx = r<=1; $TXxhd 6  
    %       z = nan(size(X)); #BUq;5  
    %       n = [0  1  1  2  2  2  3  3  3  3]; *uhQP47B  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 0X5cn 0L^  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; **Ioy+  
    %       y = zernfun(n,m,r(idx),theta(idx)); b4e~Z  
    %       figure('Units','normalized') fx5S2%f^  
    %       for k = 1:10 BsIF3sS#9  
    %           z(idx) = y(:,k); !%,7*F(  
    %           subplot(4,7,Nplot(k)) \D?'.Wo%  
    %           pcolor(x,x,z), shading interp B2ln8NF#Q  
    %           set(gca,'XTick',[],'YTick',[]) u^tQ2&?O!P  
    %           axis square /{i~-DVME  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Nrr}) g  
    %       end /'rj L<M  
    % %Hbq3U30  
    %   See also ZERNPOL, ZERNFUN2. THp_ dTD  
    FBNLszT{L  
    %   Paul Fricker 11/13/2006 ^?`fN'!p  
    RW. qw4  
    0Idek  
    % Check and prepare the inputs: @(sz"  
    % ----------------------------- ;`78h?`  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) wf\"&xwh?  
        error('zernfun:NMvectors','N and M must be vectors.') Svn7.Ivep  
    end \34vE@V*  
    BV~J*e  
    if length(n)~=length(m) rv*{[K  
        error('zernfun:NMlength','N and M must be the same length.') s|Mo3_>  
    end ?}cmES kX@  
    #KJ# 1  
    n = n(:); *(OG+OkC  
    m = m(:); ?.46X^  
    if any(mod(n-m,2)) @sLN  
        error('zernfun:NMmultiplesof2', ... fs 'SCwx  
              'All N and M must differ by multiples of 2 (including 0).') VhUWws3E  
    end '? 5-  
    5^g*  
    if any(m>n) ,<Q  
        error('zernfun:MlessthanN', ... odhS0+d^  
              'Each M must be less than or equal to its corresponding N.') %;'~TtW5  
    end 6<];}M_{  
    v1OVrk>s>  
    if any( r>1 | r<0 ) P8z%*/ 3NF  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') Qo#]Lo> \g  
    end BIWe Hx  
    yJ $6vmQ  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 9&Jf4lC94  
        error('zernfun:RTHvector','R and THETA must be vectors.') [I *_0  
    end WywS1viD  
    6m:$mhA5  
    r = r(:); %10ONe}  
    theta = theta(:); x6UXd~ L e  
    length_r = length(r); xuK"pS  
    if length_r~=length(theta) zXY8:+f  
        error('zernfun:RTHlength', ... r].n=455[  
              'The number of R- and THETA-values must be equal.') QHR,p/p  
    end EqW~K@  
    Ek{QNlQ]4  
    % Check normalization: !Y~UO)u2  
    % -------------------- Ln h =y2  
    if nargin==5 && ischar(nflag) <YaTr9%w  
        isnorm = strcmpi(nflag,'norm'); 9J3fiA_  
        if ~isnorm >yC=@Uq+  
            error('zernfun:normalization','Unrecognized normalization flag.') d_!Z /M,  
        end W+ S~__K  
    else G4cgY|71  
        isnorm = false; i>Q!5  
    end )5}<@Ql  
    T*x2+(r  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% aK_5@8+ZD  
    % Compute the Zernike Polynomials l0Q5q)U1A  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 2ioHhcYdJU  
    :$k*y%Z*N&  
    % Determine the required powers of r: oYqH l1cs  
    % ----------------------------------- CP7dn/  
    m_abs = abs(m); z?o8h N\  
    rpowers = []; m+(Cl#+  
    for j = 1:length(n) =D`8,n [  
        rpowers = [rpowers m_abs(j):2:n(j)]; = lo.LFV  
    end q1}!Okr"2  
    rpowers = unique(rpowers); Q~,Mzt"}W  
    up5f]:!  
    % Pre-compute the values of r raised to the required powers, p!UR;xHI\  
    % and compile them in a matrix: (4YLUN&1O$  
    % ----------------------------- P[3i!"O>  
    if rpowers(1)==0 [}L~zn6>?a  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); l\UjvG  
        rpowern = cat(2,rpowern{:}); >#]A2,  
        rpowern = [ones(length_r,1) rpowern]; )~U1sW&t  
    else FIq'W:q:  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); F&B\ X  
        rpowern = cat(2,rpowern{:}); yK*vn]}  
    end %qc_kQ5%  
    Kip&YB%rk  
    % Compute the values of the polynomials: MmT/J1zM  
    % -------------------------------------- _;HdX$op  
    y = zeros(length_r,length(n)); ;R?@ D]  
    for j = 1:length(n) K%z!#RyJ4  
        s = 0:(n(j)-m_abs(j))/2; ?N Mk|+  
        pows = n(j):-2:m_abs(j); T fLqxioqZ  
        for k = length(s):-1:1 w!f2~j~  
            p = (1-2*mod(s(k),2))* ... 2"ax*MQH<^  
                       prod(2:(n(j)-s(k)))/              ... <],{at` v  
                       prod(2:s(k))/                     ... cH5i420;aO  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... I6.rN\%b  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 6K.2VY#  
            idx = (pows(k)==rpowers); `zQuhD 8W  
            y(:,j) = y(:,j) + p*rpowern(:,idx); _p )NZ7yC  
        end HI8mNX3 "j  
         .6wPpLG?{  
        if isnorm [^hW>O=@TN  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); !5ps,+o  
        end z!}E2j_9P  
    end dFz"wvu` o  
    % END: Compute the Zernike Polynomials <h#*wy:o2  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% *'Yy@T8M  
    p2STy\CS  
    % Compute the Zernike functions: 8V:;HY#  
    % ------------------------------ F-m%d@P&X  
    idx_pos = m>0; d/d)MoaJ*t  
    idx_neg = m<0; P $`1}  
    Q|_F P:  
    z = y; {$frR "K  
    if any(idx_pos) 2-4N)q  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); (| QJ[@?q  
    end 7b"fpB  
    if any(idx_neg) w#.3na  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); u BEw YQB  
    end CNNqS^ct  
    lod+]*MD  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) <9@n/  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. 45yP {+/-Q  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated p $Tk;;wm  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive =R5W KX  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, #cY[c1cNv  
    %   and THETA is a vector of angles.  R and THETA must have the same Y:\msq1xp  
    %   length.  The output Z is a matrix with one column for every P-value, !Rv ;~f/2  
    %   and one row for every (R,THETA) pair. Gk:fw#R  
    % )LP'4*  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike NpVL;6?7T  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) l,@>J9}Se  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) kQ+y9@=/g  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 dk&F?B{6T  
    %   for all p. .tRm1&Qi  
    % m H:Un{,  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 -zK>{)Z=q  
    %   Zernike functions (order N<=7).  In some disciplines it is _T)y5/[  
    %   traditional to label the first 36 functions using a single mode {K|?i9K  
    %   number P instead of separate numbers for the order N and azimuthal @GQe-04W`  
    %   frequency M. DAw1S$dM  
    % &4%pPL\f  
    %   Example: 8^_:9&)i  
    % p3P8@M  
    %       % Display the first 16 Zernike functions Fyvo;1a  
    %       x = -1:0.01:1; lT[,w9$  
    %       [X,Y] = meshgrid(x,x); nlv,j&  
    %       [theta,r] = cart2pol(X,Y); Yn?beu'  
    %       idx = r<=1; n@pwOHQn<|  
    %       p = 0:15; _9BL7W $;  
    %       z = nan(size(X)); y [McdlH m  
    %       y = zernfun2(p,r(idx),theta(idx)); INnd TF  
    %       figure('Units','normalized') h2Q'5G  
    %       for k = 1:length(p) A"*=K;u/|m  
    %           z(idx) = y(:,k); Z}O]pm>=G  
    %           subplot(4,4,k) z83v J*.  
    %           pcolor(x,x,z), shading interp Jt$YSp=!!  
    %           set(gca,'XTick',[],'YTick',[]) ~~yng-3)1  
    %           axis square +?\JQ|  
    %           title(['Z_{' num2str(p(k)) '}']) kF1$  
    %       end CaYb}.:AX  
    % t|@5 ,J  
    %   See also ZERNPOL, ZERNFUN. [#KY.n  
    9d1km~  
    %   Paul Fricker 11/13/2006 O/eZ1YAC  
    W'6DwV|  
    xa`xHh{0  
    % Check and prepare the inputs: yu_PZ"l  
    % ----------------------------- HQ+{9Z8 ?5  
    if min(size(p))~=1 7~2_'YX>:  
        error('zernfun2:Pvector','Input P must be vector.') % Z6Q/+#fn  
    end yl$Ko  
    sm18u-  
    if any(p)>35 X1w11Z7o  
        error('zernfun2:P36', ... Q7x[08TI  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... F w{:shC  
               '(P = 0 to 35).']) |k~AGc  
    end #JYl%=#,  
    :}_hz )  
    % Get the order and frequency corresonding to the function number: |6So$;`  
    % ---------------------------------------------------------------- w,P@@Q E  
    p = p(:); 8YZ9  
    n = ceil((-3+sqrt(9+8*p))/2); )Q1aAS3  
    m = 2*p - n.*(n+2); M2%@bETJ  
    L\mF[Kd#+T  
    % Pass the inputs to the function ZERNFUN: 4$^mLD$>  
    % ---------------------------------------- kO)Y|zQ  
    switch nargin O n0!>-b,  
        case 3 QYH#WrIVx  
            z = zernfun(n,m,r,theta); ">T\]V$R  
        case 4 '$,yV f  
            z = zernfun(n,m,r,theta,nflag); ql9n`?Q  
        otherwise 'n h^;  
            error('zernfun2:nargin','Incorrect number of inputs.') JOuy_n  
    end Um/l{:S   
    (pH)QG  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) V|A)f@ Fs  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. b B#QIXY/L  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of BoT#b^l  
    %   order N and frequency M, evaluated at R.  N is a vector of io\t>_  
    %   positive integers (including 0), and M is a vector with the M2V`|19Q  
    %   same number of elements as N.  Each element k of M must be a (J4( Ge  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) Z>UM gu3c  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is q-CgX wU  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix Tf=1p1!3  
    %   with one column for every (N,M) pair, and one row for every !hJ!ck]M  
    %   element in R. PkFG0  
    % AxEdQRGk  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- &@xm< A\S  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is #[i3cn  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to &W3srJo  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 fhn$~8[_A  
    %   for all [n,m]. 4,@jSr|I3i  
    % 5222"yn"c  
    %   The radial Zernike polynomials are the radial portion of the H|e7IsY%  
    %   Zernike functions, which are an orthogonal basis on the unit [.Fm-$M-  
    %   circle.  The series representation of the radial Zernike aAP86MHO  
    %   polynomials is m2~`EL>  
    % <FR!x#!   
    %          (n-m)/2 #"oLz"{  
    %            __ d_:f-  
    %    m      \       s                                          n-2s W)Mz1v #s  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r +9]t]Vrw  
    %    n      s=0 CqWO 0  
    % )Ko~6.:5H  
    %   The following table shows the first 12 polynomials. kbvF 9#  
    % 63'% +  
    %       n    m    Zernike polynomial    Normalization rR ^o  
    %       --------------------------------------------- HoX={^aG%  
    %       0    0    1                        sqrt(2) ;TC]<N.YJT  
    %       1    1    r                           2 IRR b^Q6  
    %       2    0    2*r^2 - 1                sqrt(6) CXGMc)#>f  
    %       2    2    r^2                      sqrt(6) ltrti.&  
    %       3    1    3*r^3 - 2*r              sqrt(8) H`k YDp  
    %       3    3    r^3                      sqrt(8) V:t{mu5j  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) e34g=]"  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) :RDk{^b)  
    %       4    4    r^4                      sqrt(10) -1hCi !  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) Y_C6*T%  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) Zcw <USF8  
    %       5    5    r^5                      sqrt(12) -|u yJh  
    %       --------------------------------------------- U:@tdH+A7  
    % ve"tbNL  
    %   Example: ,+Ocb-*  
    % @K S.H  
    %       % Display three example Zernike radial polynomials EqBTN07dZS  
    %       r = 0:0.01:1; =/xx:D/  
    %       n = [3 2 5];  `wIWK7i  
    %       m = [1 2 1]; w87$p821  
    %       z = zernpol(n,m,r); , ExY.'%1  
    %       figure sEKF  
    %       plot(r,z) eVX/<9>  
    %       grid on |}8SjZcQW  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') pKLNBR|  
    % ,* \s  
    %   See also ZERNFUN, ZERNFUN2. "9X!Ewm"P  
    M17+F?27M  
    % A note on the algorithm. (+xT5 2  
    % ------------------------ RZVZ#q(DU  
    % The radial Zernike polynomials are computed using the series '"c`[L7Wn  
    % representation shown in the Help section above. For many special <Mj{pN3  
    % functions, direct evaluation using the series representation can A"qDc  
    % produce poor numerical results (floating point errors), because BhjDyB  
    % the summation often involves computing small differences between \|B\7a'4  
    % large successive terms in the series. (In such cases, the functions ~PAI0+*"q  
    % are often evaluated using alternative methods such as recurrence pVzr]WFx  
    % relations: see the Legendre functions, for example). For the Zernike 4$mtc*tzT  
    % polynomials, however, this problem does not arise, because the Gr}NgyT<!D  
    % polynomials are evaluated over the finite domain r = (0,1), and K:VZ#U(_  
    % because the coefficients for a given polynomial are generally all 1fM`n5?"  
    % of similar magnitude. _d^d1Q}V  
    % \J#&]o)Y  
    % ZERNPOL has been written using a vectorized implementation: multiple FI$ -."F  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] xDPR^xY  
    % values can be passed as inputs) for a vector of points R.  To achieve Hj`\Fm*A  
    % this vectorization most efficiently, the algorithm in ZERNPOL 7 _"G@h  
    % involves pre-determining all the powers p of R that are required to GJU9[  
    % compute the outputs, and then compiling the {R^p} into a single I\M }Dxpp  
    % matrix.  This avoids any redundant computation of the R^p, and Chad}zU`  
    % minimizes the sizes of certain intermediate variables. dK8dC1@,X;  
    % }}rp/16  
    %   Paul Fricker 11/13/2006 xzFQ)t&  
    zK_P3r LsS  
    py%~Qz%  
    % Check and prepare the inputs: C1l'<  
    % ----------------------------- JrX. f  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) &sYxe:H  
        error('zernpol:NMvectors','N and M must be vectors.') WWOt>C~zV  
    end i6P$>8jBQ-  
    Wl+spWqW  
    if length(n)~=length(m) )%kiM<})  
        error('zernpol:NMlength','N and M must be the same length.') \hEIQjfi  
    end #_K<-m%9  
    mC-wPi8  
    n = n(:); 2AMb-&po&f  
    m = m(:); H4T~Kv  
    length_n = length(n); z;/8R7L&  
    1_;{1O+B  
    if any(mod(n-m,2)) mH\2XG8nV  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') x&+&)d  
    end  T-+ uQ3  
    darbL_1  
    if any(m<0) BG.sHI{  
        error('zernpol:Mpositive','All M must be positive.') =:6B`,~C  
    end Eht8~"fj  
    Jt<J#M<}7  
    if any(m>n) C(8!("tU  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') 6hcK%0z  
    end > sQ&5-i  
    })?-)fFD  
    if any( r>1 | r<0 ) i\DU<lD5VN  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') >Y+m54EE  
    end ,Jn` qvmi  
    qzO5p=}  
    if ~any(size(r)==1) Y" rODk1  
        error('zernpol:Rvector','R must be a vector.') W:9l"'  
    end 3J/l>1[  
    \[)SK`cwd  
    r = r(:); N 6\Ey{  
    length_r = length(r); (#)XRm{t  
    !h<O c!9  
    if nargin==4 P3Vh|<'7  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); CBpwtI>p  
        if ~isnorm ma<uXq  
            error('zernpol:normalization','Unrecognized normalization flag.') u86@zlzd  
        end !;d>}iE   
    else 7`^Y*:(  
        isnorm = false; 3)2{c  
    end :)T*:51{#  
    EAxdF u  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% iC>%P&|-)|  
    % Compute the Zernike Polynomials UlNV%34"  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ro3%VA=V  
    o61rTj  
    % Determine the required powers of r: >El]5M7h7  
    % ----------------------------------- j+q)  
    rpowers = []; G-R83Orl  
    for j = 1:length(n) ]w$cqUhM  
        rpowers = [rpowers m(j):2:n(j)]; >ZeARCf"f  
    end 2dHsM'ze  
    rpowers = unique(rpowers); ^SsnCn-e  
    y9LO;{(  
    % Pre-compute the values of r raised to the required powers, [?qzMFb  
    % and compile them in a matrix: KK6z3"tk5  
    % -----------------------------  s_+.xIZ  
    if rpowers(1)==0 h;y}g/HZ  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); C~"UOFX  
        rpowern = cat(2,rpowern{:}); V\e1NS  
        rpowern = [ones(length_r,1) rpowern]; &5z9C=]e  
    else cu'(Hj  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); iWFtb)3B  
        rpowern = cat(2,rpowern{:}); /`nkz  
    end -Lb7=98  
    j(K)CHH  
    % Compute the values of the polynomials: Iu5 9W >  
    % -------------------------------------- Yo=$@~vN]  
    z = zeros(length_r,length_n); ZJF+./vN  
    for j = 1:length_n jENC1T(  
        s = 0:(n(j)-m(j))/2; ;cPPx`0$9  
        pows = n(j):-2:m(j); GRVF/hPn  
        for k = length(s):-1:1 ?$uF(>LD  
            p = (1-2*mod(s(k),2))* ... ~{-Ka>A  
                       prod(2:(n(j)-s(k)))/          ... PlK3;  
                       prod(2:s(k))/                 ... Gr)G-zE  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... =PNkzFUo  
                       prod(2:((n(j)+m(j))/2-s(k))); J|^z>gP(  
            idx = (pows(k)==rpowers); U /~uu  
            z(:,j) = z(:,j) + p*rpowern(:,idx); u2`j\ Vu  
        end r:E4Wi{\  
         F7nwV Dc*  
        if isnorm %6Vb1?x  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); W=LJhCpRHj  
        end Z#(Y%6[u  
    end )PYh./_2  
    `L[q`r7  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    851
    光币
    831
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  n6Uf>5  
    wmXI8'~F&  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 opN4@a7l  
    -JPkC(V7]  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)