切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10625阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 c|.te]!ds  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! 'k\j[fk/K  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 eGQ4aQhi  
    function z = zernfun(n,m,r,theta,nflag) 8m' f8.x  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. rT4Q^t"  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N </_QldL_  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ]>)shH=Yx  
    %   unit circle.  N is a vector of positive integers (including 0), and ^V;r  
    %   M is a vector with the same number of elements as N.  Each element o`Z3}  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) "vybVWEE  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ktqFgU#rT  
    %   and THETA is a vector of angles.  R and THETA must have the same )wjpxr  
    %   length.  The output Z is a matrix with one column for every (N,M) X~VI}dJ  
    %   pair, and one row for every (R,THETA) pair. 0O'M^[=d.8  
    % -x6_HibbD  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike QmSj6pB>  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ;q-c[TZC  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral sT1OAK\^  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 4qDO(YWf  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 46T(1_Xt~  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Zex~ $r  
    % <#BK(W~$  
    %   The Zernike functions are an orthogonal basis on the unit circle. aK6dy\  
    %   They are used in disciplines such as astronomy, optics, and 31^/9lb  
    %   optometry to describe functions on a circular domain. k8ILo)  
    % .&b^6$dC  
    %   The following table lists the first 15 Zernike functions. r+%3Y:dZE  
    % JzywSQ  
    %       n    m    Zernike function           Normalization z@IG"D  
    %       -------------------------------------------------- KF *F  
    %       0    0    1                                 1 aO1.9! <v  
    %       1    1    r * cos(theta)                    2 >yn?@ve@  
    %       1   -1    r * sin(theta)                    2 c(Y~5A{TXO  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) )OQm,5F1  
    %       2    0    (2*r^2 - 1)                    sqrt(3) f 1SKOq  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) E^n!h06~G  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) AUF[hzA  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) %6lGRq{/?  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 'g<{l&u  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) vh2/d.MO  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) uu]C;wl  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) nl2Lqu1  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) !Usmm8!K  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Q3+%8zZI  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) IW n G@!  
    %       -------------------------------------------------- tpzWi W/  
    % hs+)a%A3G  
    %   Example 1: <^;~8:0]  
    % B_Gcz5  
    %       % Display the Zernike function Z(n=5,m=1) Rh~j -;  
    %       x = -1:0.01:1; ;LC|1_ '  
    %       [X,Y] = meshgrid(x,x); ]Y$Wv9 S6  
    %       [theta,r] = cart2pol(X,Y); 'Sd+CXS  
    %       idx = r<=1; D3g5#.$,}>  
    %       z = nan(size(X)); jm&[8ApW  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 76[ qFz  
    %       figure ok,O/|E}?  
    %       pcolor(x,x,z), shading interp ByoI+n* U  
    %       axis square, colorbar -|#/KKF  
    %       title('Zernike function Z_5^1(r,\theta)') \s8h.xjU  
    % kQ\l7xd  
    %   Example 2: cJm},  
    % B;Z _'.i,d  
    %       % Display the first 10 Zernike functions Q!-"5P X  
    %       x = -1:0.01:1; e"EGqn&!  
    %       [X,Y] = meshgrid(x,x); _{if"  
    %       [theta,r] = cart2pol(X,Y); -k>k<bDAI  
    %       idx = r<=1; 4Z{R36 {  
    %       z = nan(size(X)); Pj56,qd>s  
    %       n = [0  1  1  2  2  2  3  3  3  3]; xZq, kP^  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; &>.QDO  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; c;29GHs2  
    %       y = zernfun(n,m,r(idx),theta(idx)); yhK9rcJq6}  
    %       figure('Units','normalized') H,;ZFg/v8  
    %       for k = 1:10 ={h^X0<s9  
    %           z(idx) = y(:,k); i%f C`@  
    %           subplot(4,7,Nplot(k)) -{?xl*D  
    %           pcolor(x,x,z), shading interp Wvd-be  
    %           set(gca,'XTick',[],'YTick',[]) "E5=AW d  
    %           axis square WzdlrkD  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) =<M>fJ)  
    %       end rmX5-k  
    % g-x;a0MQx  
    %   See also ZERNPOL, ZERNFUN2. +=L+35M  
    #"C* dNAB  
    %   Paul Fricker 11/13/2006 jtpk5 fJB  
    kiin78W  
    $WE _aNfja  
    % Check and prepare the inputs: V~.SgbLc  
    % ----------------------------- 2l+'p[b0>  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 3uvl'1(%J  
        error('zernfun:NMvectors','N and M must be vectors.') Pa; *%7  
    end w3fD6$  
    (/> yfL]J  
    if length(n)~=length(m) sSiZG  
        error('zernfun:NMlength','N and M must be the same length.') ~Wm'~y>  
    end Mns=X)/hc  
    E}36  
    n = n(:); ;%>X+/.y0  
    m = m(:); 0icB2Jm:D}  
    if any(mod(n-m,2)) DAN"&&  
        error('zernfun:NMmultiplesof2', ... :w4H$+j  
              'All N and M must differ by multiples of 2 (including 0).') D* HK[_5  
    end 8,CL>*A  
    ZkMHy1  
    if any(m>n) OWN|W,  
        error('zernfun:MlessthanN', ... jNIz:_c-~  
              'Each M must be less than or equal to its corresponding N.') i-k(/Y0  
    end k'[\r>T  
    <(qdxdUp  
    if any( r>1 | r<0 ) ov>`MCS,v  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') )pey7-P7g5  
    end =Y3d~~  
    noT}NX%  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) wz:w6q  
        error('zernfun:RTHvector','R and THETA must be vectors.') ~vR<UQz  
    end sg]g;U  
    "bjbJC&T  
    r = r(:); )4+uM'2%  
    theta = theta(:); r^\Wo7q  
    length_r = length(r); R?*-ZI[>w  
    if length_r~=length(theta) B7'2@+(  
        error('zernfun:RTHlength', ... HOPsp  
              'The number of R- and THETA-values must be equal.') :~,akX$  
    end 4T<dI6I0  
    G~4|]^`g  
    % Check normalization: {\= NZ\  
    % -------------------- N4 _V  
    if nargin==5 && ischar(nflag) J= DD/Gp  
        isnorm = strcmpi(nflag,'norm'); afcyAzIB&  
        if ~isnorm 9+>%U~U<  
            error('zernfun:normalization','Unrecognized normalization flag.') `,wX&@sN  
        end l)0yv2[h  
    else {O[ !*+O  
        isnorm = false; fli7Ow?M~  
    end t2%gS" [  
    kZ 9n@($B  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 5YiBw|Z7 "  
    % Compute the Zernike Polynomials W!Rr_'yFe)  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 9**u\H)P6  
    vf_pEkx*wD  
    % Determine the required powers of r: ]JHY(H2|  
    % ----------------------------------- xWty2/!h  
    m_abs = abs(m); 1]jUiX=T  
    rpowers = []; z;i4F.p  
    for j = 1:length(n) '8Lc}-M4  
        rpowers = [rpowers m_abs(j):2:n(j)]; pvd9wKz  
    end IRDD   
    rpowers = unique(rpowers); Vg"Ze[dA  
    n %P,"V  
    % Pre-compute the values of r raised to the required powers, }4I;<%L3`  
    % and compile them in a matrix: L2y{\<JC"  
    % ----------------------------- qv+}|+aL:  
    if rpowers(1)==0 X1h*.reFAL  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); fm,:8%  
        rpowern = cat(2,rpowern{:}); AqP\g k  
        rpowern = [ones(length_r,1) rpowern]; `?Xt ,  
    else 4=n%<U`Z/  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); |a[ :L  
        rpowern = cat(2,rpowern{:}); o)6udRzBv  
    end `r8bBzr@%  
    "LH*T  
    % Compute the values of the polynomials: u&Dd9kMz  
    % -------------------------------------- GUK3`}!%  
    y = zeros(length_r,length(n)); SxCzI$SGu  
    for j = 1:length(n) ?{6[6T  
        s = 0:(n(j)-m_abs(j))/2; qS+Ilg  
        pows = n(j):-2:m_abs(j); 3H47 vm(`  
        for k = length(s):-1:1 =R\-mov$  
            p = (1-2*mod(s(k),2))* ... /T2f~1R  
                       prod(2:(n(j)-s(k)))/              ... pDx}~IB  
                       prod(2:s(k))/                     ... /-)|dP  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... A&fh0E (t  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); Th//uI+  
            idx = (pows(k)==rpowers); Pi|oO-M  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 6Bm2_B  
        end OKq={l  
         /2!"_?<L  
        if isnorm 6ypqnOTr  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); X{riI^(  
        end cM'5m  
    end T)B1V,2j=  
    % END: Compute the Zernike Polynomials *:A )j?(  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% QWGFXy,=1  
    DWH)<\?  
    % Compute the Zernike functions: #TSLgV'U  
    % ------------------------------ CSooJ1Ep~'  
    idx_pos = m>0; RsDI7v  
    idx_neg = m<0; -0doL ^A  
    SB[,}h<u1  
    z = y; Cx/duod p  
    if any(idx_pos) 57b;{kl  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); YR`Mi.,Sfm  
    end [%8+Fa~Wa  
    if any(idx_neg) v)2@;Q  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); {\e wf_pFk  
    end d|sI>6jD  
    CQ3{'"b  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) i,,>@R  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. 4p~:(U[q  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated q+o(`N'~G  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive WiviH#hF  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, +o/;bm*U<K  
    %   and THETA is a vector of angles.  R and THETA must have the same MOmp{@  
    %   length.  The output Z is a matrix with one column for every P-value, {+t'XkA  
    %   and one row for every (R,THETA) pair. I|O~F e.  
    % tY :-13F  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike O!]w J  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) +V8yv-/{  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) .+B)@?  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 }RUC#aW1  
    %   for all p. qW<: `y  
    % IW1]H~1w  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 Vq'&t<K#  
    %   Zernike functions (order N<=7).  In some disciplines it is  (lPNMS|V  
    %   traditional to label the first 36 functions using a single mode y9)l,@D  
    %   number P instead of separate numbers for the order N and azimuthal Ruk6+U  
    %   frequency M. ~0 FqY &4  
    % $C)@GGY  
    %   Example: y~S[0]y>  
    % *} w.xt  
    %       % Display the first 16 Zernike functions {@ , L  
    %       x = -1:0.01:1; iy: ;g  
    %       [X,Y] = meshgrid(x,x); kx UGd)S  
    %       [theta,r] = cart2pol(X,Y); ,.}PZL  
    %       idx = r<=1; IW BVfN->}  
    %       p = 0:15; >LU*F|F]B  
    %       z = nan(size(X)); _Wb-&6{  
    %       y = zernfun2(p,r(idx),theta(idx)); Mc6Cte]3|  
    %       figure('Units','normalized') Iwn@%?7  
    %       for k = 1:length(p) 0`ib_&yI  
    %           z(idx) = y(:,k); aQ~x$T|  
    %           subplot(4,4,k) b]g.>$[nX  
    %           pcolor(x,x,z), shading interp {G{@bUG]p  
    %           set(gca,'XTick',[],'YTick',[]) $qrr]U  
    %           axis square Io"=X! k  
    %           title(['Z_{' num2str(p(k)) '}']) wA~Nfn ^  
    %       end 'FUPv61()  
    % [X~X?By>  
    %   See also ZERNPOL, ZERNFUN. x.r`(  
    -=sxbs.aA  
    %   Paul Fricker 11/13/2006 m9B3]H  
    X)&Z{ V>  
    p$%h!.~99T  
    % Check and prepare the inputs: 9H)uTyuNi  
    % ----------------------------- c3pt?C  
    if min(size(p))~=1 XWUT b\@  
        error('zernfun2:Pvector','Input P must be vector.') m5x>._7le  
    end YI|G pq  
    (7wR*vO^  
    if any(p)>35 AeJM[fCMa  
        error('zernfun2:P36', ... %!$-N!e  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... EqmJXDm  
               '(P = 0 to 35).']) k?8W2fC  
    end P< &/$x6  
    1aDDl-8,  
    % Get the order and frequency corresonding to the function number: mcXakWmi  
    % ---------------------------------------------------------------- FXSDN268  
    p = p(:); SmLYxH3F  
    n = ceil((-3+sqrt(9+8*p))/2); |zT0g]WH  
    m = 2*p - n.*(n+2); Yptsq@s  
    e S=k 48'U  
    % Pass the inputs to the function ZERNFUN: :hr@>Y~r  
    % ---------------------------------------- m{5$4v,[  
    switch nargin i;xMf5Jz  
        case 3 R`?^%1^N  
            z = zernfun(n,m,r,theta); c]n03o  
        case 4 &B85;  
            z = zernfun(n,m,r,theta,nflag); C/vLEpP{(/  
        otherwise U+RPn?Q  
            error('zernfun2:nargin','Incorrect number of inputs.') '_<`dzz  
    end U`Ag|R  
    zn x_p /V  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) {4 d$]o0V  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. 7jbm w<d)9  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of -YyH"f   
    %   order N and frequency M, evaluated at R.  N is a vector of z{jAt6@7  
    %   positive integers (including 0), and M is a vector with the T!A}ipqb  
    %   same number of elements as N.  Each element k of M must be a p4EItRZS  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) g DG m32  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is L# 1vf  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix @/(7kh +  
    %   with one column for every (N,M) pair, and one row for every jq)|7_N  
    %   element in R. EXcjF  
    % LD~'^+W  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- F.5b|&@  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is o)=VPUe  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to Z+W&C@Uw  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 sr+mY;   
    %   for all [n,m]. !q\w"p0X  
    % d@4!^vD;  
    %   The radial Zernike polynomials are the radial portion of the vxT"BvN  
    %   Zernike functions, which are an orthogonal basis on the unit ]r1{%:8  
    %   circle.  The series representation of the radial Zernike %Nl(Y@dD*  
    %   polynomials is 26VdRy{[  
    % gVJ#LJ  
    %          (n-m)/2 8m6nw0   
    %            __ h}>/Z3*  
    %    m      \       s                                          n-2s Jwt I(>cI  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r _5w?v~65  
    %    n      s=0 `>EvT7u  
    % *9ub.:EUwV  
    %   The following table shows the first 12 polynomials. 7B!Qq/E?g  
    % c\{}FGC  
    %       n    m    Zernike polynomial    Normalization ydqmuZ%2h#  
    %       --------------------------------------------- y]_8. 0zM  
    %       0    0    1                        sqrt(2) MxEAs}MDv  
    %       1    1    r                           2 U hhmG+  
    %       2    0    2*r^2 - 1                sqrt(6) f}Tr$r  
    %       2    2    r^2                      sqrt(6) 1 " 7#|=1/  
    %       3    1    3*r^3 - 2*r              sqrt(8) v@uaf=x-  
    %       3    3    r^3                      sqrt(8) 0P40K  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) cu`J2vm3  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) gNN" H#=2  
    %       4    4    r^4                      sqrt(10) ,Z7Z!.TY!  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) L{A-0Ffh  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) nSQ}yqM)  
    %       5    5    r^5                      sqrt(12) 7jH`_58  
    %       --------------------------------------------- *Yu\YjLPG  
    % xyjV dD\  
    %   Example: <bZm  
    % <4e*3WSG  
    %       % Display three example Zernike radial polynomials eoe^t:5&  
    %       r = 0:0.01:1; uBq3.+,x*  
    %       n = [3 2 5]; h4\6h  
    %       m = [1 2 1]; 'b?.\Bm;  
    %       z = zernpol(n,m,r); c_bVF 'Bz  
    %       figure `h9)`*  
    %       plot(r,z) ]z=Vc#+!  
    %       grid on _+ 04M)q0  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') jJ"EGFa8  
    % k-pEBh OH  
    %   See also ZERNFUN, ZERNFUN2. +aw>p_\  
    53t- 'K0l  
    % A note on the algorithm. YATdGLTeq  
    % ------------------------ _=*tDa  
    % The radial Zernike polynomials are computed using the series iQ{&&>V%  
    % representation shown in the Help section above. For many special G P[r^Z  
    % functions, direct evaluation using the series representation can JD{MdhhV  
    % produce poor numerical results (floating point errors), because iqednk%  
    % the summation often involves computing small differences between 4JZHjf0M6  
    % large successive terms in the series. (In such cases, the functions Kxl,] |e>  
    % are often evaluated using alternative methods such as recurrence V}|v!h[O8  
    % relations: see the Legendre functions, for example). For the Zernike C9F+e  
    % polynomials, however, this problem does not arise, because the >6I.%!jU  
    % polynomials are evaluated over the finite domain r = (0,1), and 90qj6.SQ  
    % because the coefficients for a given polynomial are generally all f3TlJ!!U  
    % of similar magnitude. H[7cA9FI  
    % 4iv]N 4  
    % ZERNPOL has been written using a vectorized implementation: multiple |^PLZ>  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] <@e+-$  
    % values can be passed as inputs) for a vector of points R.  To achieve jfY{z=*]u  
    % this vectorization most efficiently, the algorithm in ZERNPOL k<Tez{<  
    % involves pre-determining all the powers p of R that are required to J/x@$'  
    % compute the outputs, and then compiling the {R^p} into a single HD:%Yv  
    % matrix.  This avoids any redundant computation of the R^p, and 3K#mF7)a  
    % minimizes the sizes of certain intermediate variables. zzfn0g  
    % t+ S~u^  
    %   Paul Fricker 11/13/2006 hyOm9WU  
    =`1m-   
    k?HrD"k"  
    % Check and prepare the inputs: YXzZ-28,<  
    % ----------------------------- ;>Ca(Y2M  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) t{X?PF\>o  
        error('zernpol:NMvectors','N and M must be vectors.') ^V: "zzn&  
    end {b,2;w}95  
    #$t}T@t>  
    if length(n)~=length(m) t[?a @S~6  
        error('zernpol:NMlength','N and M must be the same length.') 3@yTzaq6  
    end Be{/2jU%  
    *f TG8h  
    n = n(:); L-z ;:Ztk  
    m = m(:); {x[;5TM  
    length_n = length(n); p/hvQy E  
    *^D@l%av;  
    if any(mod(n-m,2)) b4v(k(<  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') W]O@DS zR  
    end B`*f(  
    v\ %B  
    if any(m<0) /bmXDDYH4  
        error('zernpol:Mpositive','All M must be positive.') MyH[vE^b  
    end ut$,?k!M  
    hD_5~d  
    if any(m>n) ={`CH CI  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') hV-V eKjZ(  
    end lMC{SfdH  
    h`5YA89  
    if any( r>1 | r<0 ) tyEPU^PM  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') gMs+?SNHAh  
    end 2~!R*i  
    +}^|dkc  
    if ~any(size(r)==1) 4mN].X[,  
        error('zernpol:Rvector','R must be a vector.') h(@R]GUX  
    end skIiJ'db  
    V uG?B{  
    r = r(:); )N" Ew0U  
    length_r = length(r); yB,{#nM>8  
    gB>imr#e&  
    if nargin==4 D<U 9m3  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); bVoU|`c  
        if ~isnorm <nWKR,  
            error('zernpol:normalization','Unrecognized normalization flag.') y?pD(u  
        end J7BFk ?=  
    else =&A!C"qK4[  
        isnorm = false; #?{qlgv<p  
    end sM9FE{,mx  
    7qe7F l3  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -<qxO  
    % Compute the Zernike Polynomials 7%}ay  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% e74zR6  
    $Y6I_U  
    % Determine the required powers of r: x\hWyY6J[  
    % ----------------------------------- AGOx@;w  
    rpowers = []; jn-QKdqM  
    for j = 1:length(n) 7J9l.cM3  
        rpowers = [rpowers m(j):2:n(j)]; RU2c*q$^X  
    end "S5S|dBc  
    rpowers = unique(rpowers); g(/{.%\k  
    EM=w?T  
    % Pre-compute the values of r raised to the required powers, ~U6" ?  
    % and compile them in a matrix: CjZZm^O  
    % ----------------------------- ha*X6R  
    if rpowers(1)==0 Sd},_Kh  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); OJAx:&]3  
        rpowern = cat(2,rpowern{:}); 5|ic3  
        rpowern = [ones(length_r,1) rpowern]; N.Dhu~V  
    else #HeM,;Xp  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); !;%y$$gxh  
        rpowern = cat(2,rpowern{:}); kG/X"6pZ  
    end }A]BpSEP  
    H@{Objh 1  
    % Compute the values of the polynomials: AZ[75>  
    % -------------------------------------- gQ37>  
    z = zeros(length_r,length_n); (;a B!(_  
    for j = 1:length_n OL3UgepF  
        s = 0:(n(j)-m(j))/2; |h}B{D  
        pows = n(j):-2:m(j); Sp:l;SGd  
        for k = length(s):-1:1 m0|K#^  
            p = (1-2*mod(s(k),2))* ... `)32&\  
                       prod(2:(n(j)-s(k)))/          ... $>*Yhz `  
                       prod(2:s(k))/                 ... nnNv0 ?>d(  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... s5l3V2k  
                       prod(2:((n(j)+m(j))/2-s(k))); oid[syPB  
            idx = (pows(k)==rpowers); @F>F#-2  
            z(:,j) = z(:,j) + p*rpowern(:,idx); YOyp|%!  
        end ,CciTXf  
         mO P4z'  
        if isnorm hq#kvvi{f  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); 9R p2W  
        end 62[8xn=(%  
    end A\z`c e!  
    Yi(1^'Bi  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    850
    光币
    833
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  =X\^J  
    'k;rH !R  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 [S5\#=_4S  
    ~5FW [_  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)