非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 0NKgtH~+
function z = zernfun(n,m,r,theta,nflag) x[&<e<6
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. NQX?&9L`r
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N &R?to>xr\
% and angular frequency M, evaluated at positions (R,THETA) on the \E<Qi3W>*
% unit circle. N is a vector of positive integers (including 0), and dr+(C[=
% M is a vector with the same number of elements as N. Each element Y_n3O@,
% k of M must be a positive integer, with possible values M(k) = -N(k) hITYBPqRO
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, 8iOHav4
% and THETA is a vector of angles. R and THETA must have the same '`.-75T
% length. The output Z is a matrix with one column for every (N,M) 4,Oa(b
% pair, and one row for every (R,THETA) pair. F:q8.^HTJ
% U]_WX(4 @
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike O9/)_:Wdh
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), UnP<`z#
% with delta(m,0) the Kronecker delta, is chosen so that the integral 5u;//Cm
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, H9_iTGBQ
% and theta=0 to theta=2*pi) is unity. For the non-normalized x<Gjr}
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. >u(^v@Ejf
% HKI\i)c
% The Zernike functions are an orthogonal basis on the unit circle. Ry"4v_e9
% They are used in disciplines such as astronomy, optics, and S50}]5K
% optometry to describe functions on a circular domain. WZPj?ou`G
% qtozMa
% The following table lists the first 15 Zernike functions. s%`l>#H
% 5`+9<8V
% n m Zernike function Normalization n%#3xoa
% -------------------------------------------------- "~._G5i.
% 0 0 1 1 )lJAMZ 5xp
% 1 1 r * cos(theta) 2 ~<9e}J
% 1 -1 r * sin(theta) 2 ]1W xa?
% 2 -2 r^2 * cos(2*theta) sqrt(6) 2[uFAgf@
% 2 0 (2*r^2 - 1) sqrt(3) C=@4U}
% 2 2 r^2 * sin(2*theta) sqrt(6) naH(lz|v
% 3 -3 r^3 * cos(3*theta) sqrt(8) 1iLo$
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) =b>TF B=*N
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) /|P{t{^WM
% 3 3 r^3 * sin(3*theta) sqrt(8) -3v\ c~
% 4 -4 r^4 * cos(4*theta) sqrt(10) KV|D]}
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) : [328X2
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) v
@0G^z|
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) U5H%wA['m
% 4 4 r^4 * sin(4*theta) sqrt(10) 5 QuRwu_
% -------------------------------------------------- e98QT9
% UH}lKc=t
% Example 1: +hr|$
% "0[`U(/
% % Display the Zernike function Z(n=5,m=1) R6oD
% x = -1:0.01:1; ng9e)lU~*b
% [X,Y] = meshgrid(x,x); LQ4:SV'3
% [theta,r] = cart2pol(X,Y); h]t v+\0
% idx = r<=1; SO(BkxV@
% z = nan(size(X)); IF|;;*Z8
% z(idx) = zernfun(5,1,r(idx),theta(idx)); l5Ko9CG
% figure 9?hZf$z
% pcolor(x,x,z), shading interp H1B%}G*Ir-
% axis square, colorbar 7x>^ip"7
% title('Zernike function Z_5^1(r,\theta)') T)7U+~nQ"
% 5$'[R;r
% Example 2: b~:)d>s8wY
% oxN5:)
% % Display the first 10 Zernike functions P(b[|QF
% x = -1:0.01:1; -V}xvSVg
% [X,Y] = meshgrid(x,x); OObAn^bt
% [theta,r] = cart2pol(X,Y); xatq
% idx = r<=1; X5VNj|IE
% z = nan(size(X)); |C z7_Rn
% n = [0 1 1 2 2 2 3 3 3 3]; EYj~Xj8_
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; FI[BZZW
% Nplot = [4 10 12 16 18 20 22 24 26 28]; +
c3pe4
% y = zernfun(n,m,r(idx),theta(idx)); ?{aJ#w
% figure('Units','normalized') b3R(O|
% for k = 1:10 5;" $X 1{
% z(idx) = y(:,k); _v 0iH
% subplot(4,7,Nplot(k)) @9_mk@
% pcolor(x,x,z), shading interp (1^;l;7H
% set(gca,'XTick',[],'YTick',[]) y,|2hrj/0E
% axis square #2ta8m),
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) L{&2 P
% end .#SgU<Wq
% =LV-n
% See also ZERNPOL, ZERNFUN2. !(? 7V
1_q!E~)
% Paul Fricker 11/13/2006 P4_B.5rrJ
l+P!I{n
9GCK3
% Check and prepare the inputs: 6JZ>&HA
% ----------------------------- eg}g}a
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) FsWp>}o
error('zernfun:NMvectors','N and M must be vectors.') r[}nr H&8
end JFX}))7
c(
U,FUS
if length(n)~=length(m) {!wW,3|Pu
error('zernfun:NMlength','N and M must be the same length.') D|)_c1g
end 1q-;+Pd;
qm><}N7f
n = n(:); RVwS<g)~1
m = m(:); n8; p]{
if any(mod(n-m,2)) 4>V@+#Ec5
error('zernfun:NMmultiplesof2', ...
b7\> =
'All N and M must differ by multiples of 2 (including 0).') y@I9>}"y
end sYDav)L.
3c6e$/
if any(m>n) n5UUoBv
error('zernfun:MlessthanN', ... ,:L^vG@*
'Each M must be less than or equal to its corresponding N.') |"9&F
end !nkIXgWz
dGOFSH
if any( r>1 | r<0 ) W;7$Dq:
error('zernfun:Rlessthan1','All R must be between 0 and 1.') uGC5XX^
end 0*5Jq#5
]R)wBug
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ;a1DIUm'
error('zernfun:RTHvector','R and THETA must be vectors.') l3 F$5n
end K)>F03=uE
BT8)t.+pv
r = r(:); N7lg6$s Aj
theta = theta(:); "A+7G5
length_r = length(r); H%Vf$1/TF
if length_r~=length(theta) &nr{-][
error('zernfun:RTHlength', ... W[Q<# Ju
'The number of R- and THETA-values must be equal.') ;-~E!_$
end hGV_K" ~I0
_"Ym]y28li
% Check normalization: .tG3g:
% -------------------- i*:QbMb
if nargin==5 && ischar(nflag) )r{Wj*u
isnorm = strcmpi(nflag,'norm'); e`={_R{N
if ~isnorm 1T|")D
error('zernfun:normalization','Unrecognized normalization flag.') "*<vE7
end =Mwuhk|*
else SJP3mq/^K
isnorm = false; %8u9:Cl):
end XV%R Mr6
iy]L"7&Z2
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% SF;\*]["f
% Compute the Zernike Polynomials yOEy3d=*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ?sdSi--
lq_UCCnv5
% Determine the required powers of r: auAz>6L
% ----------------------------------- D1-/#QN$1
m_abs = abs(m); M&/4SVBF
rpowers = []; ._tEDY/1m
for j = 1:length(n) <t(H+ykh
rpowers = [rpowers m_abs(j):2:n(j)]; akr2Os
end mB>0$l y
rpowers = unique(rpowers); s(fkb7W,gO
"t^RZ45
% Pre-compute the values of r raised to the required powers, B/a`5&G]
% and compile them in a matrix: ${z#{c1
% ----------------------------- !5De?OXe
if rpowers(1)==0 ;5X~"#%U_
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Rl cL(HM
rpowern = cat(2,rpowern{:}); Axb=1_--
rpowern = [ones(length_r,1) rpowern]; NbU4|Oi
else z{ eZsh
b
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); vd#)+
rpowern = cat(2,rpowern{:}); qB_s<cpn>
end dF51_Kk
S'|PA7a}h
% Compute the values of the polynomials: X);'[/]E*
% -------------------------------------- b(|&e
y = zeros(length_r,length(n)); ~fD\=- S1
for j = 1:length(n) ",aNYJR>*!
s = 0:(n(j)-m_abs(j))/2; 08jk~$%
pows = n(j):-2:m_abs(j); TC<Rg?&yb
for k = length(s):-1:1 ^g(qPtQ
p = (1-2*mod(s(k),2))* ... 9a=:e=q3#
prod(2:(n(j)-s(k)))/ ... !l#aq\:}~e
prod(2:s(k))/ ... @Hp%4$=
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ~tfd9,t
prod(2:((n(j)+m_abs(j))/2-s(k))); 30WOH
'n
idx = (pows(k)==rpowers); #J/RI[a
y(:,j) = y(:,j) + p*rpowern(:,idx); bnkZWw'9
end +2:HgW
_XP}fx7$C
if isnorm ]}'bRq*]
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 2 ^"j]g>mj
end X(E`cH
|
end _y6iR&&x
% END: Compute the Zernike Polynomials YBj*c$.D0
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% l*hWws[
L
/ PAC
% Compute the Zernike functions: "9[2vdSX
% ------------------------------ d`V.i6u
idx_pos = m>0; aTm R~k
idx_neg = m<0; +@fEw
xPm{'J+b~
z = y; O95gdxc
if any(idx_pos) 4Dzg r,V
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); V /\Y(Mxc
end cZYvP
if any(idx_neg) MkGQ
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); w6>P[oW
end ;lE=7[UJ3X
7wW x 8
% EOF zernfun