切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10986阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 50F6jj  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! kVCS FF*  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 22"M#:r$  
    function z = zernfun(n,m,r,theta,nflag) ^o+2:G5z}  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. q(M[ij  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N S7N3L."  
    %   and angular frequency M, evaluated at positions (R,THETA) on the !@{_Qt1  
    %   unit circle.  N is a vector of positive integers (including 0), and 2f9~:.NgF  
    %   M is a vector with the same number of elements as N.  Each element #O6SEK|Z  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) &?IOrHSv!  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, DmEmv/N=  
    %   and THETA is a vector of angles.  R and THETA must have the same Oh9wBV  
    %   length.  The output Z is a matrix with one column for every (N,M) 6a[D]46y,2  
    %   pair, and one row for every (R,THETA) pair. ,>A9OTSN\  
    % ;{ u{F L  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike iT1"Le/N  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), !MS z%QcO  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 1_%jDMYH  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, <6Q]FH!6  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized "#z4  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. )tl=tH/$  
    % {";5n7<<)  
    %   The Zernike functions are an orthogonal basis on the unit circle. y:WRpCZoa  
    %   They are used in disciplines such as astronomy, optics, and 6^F"np{w  
    %   optometry to describe functions on a circular domain. 'C)^hj.  
    % $)\%i=  
    %   The following table lists the first 15 Zernike functions. @a#qq`b;  
    % j*t>CB4  
    %       n    m    Zernike function           Normalization bAms-cXm  
    %       -------------------------------------------------- t_6sDr'.  
    %       0    0    1                                 1 t uo'4%]i  
    %       1    1    r * cos(theta)                    2 m8,P-m  
    %       1   -1    r * sin(theta)                    2 D-\\L[  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) O Ul+es  
    %       2    0    (2*r^2 - 1)                    sqrt(3) VJJGTkm  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) :BKY#uH~  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) XL c&7  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 1fM= >Z  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8)  7m_Jb5  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) d!7cIYVZ  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) q4@n pbx  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) A(X~pP &oF  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) A ^ $9[_  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 6[,*2a8  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) m663%b(5>  
    %       -------------------------------------------------- I~y[8  
    % 9_V'P]@  
    %   Example 1: p)vyZY[  
    % /1:`?% ,2  
    %       % Display the Zernike function Z(n=5,m=1) XmXp0b7  
    %       x = -1:0.01:1; &1YAPxX  
    %       [X,Y] = meshgrid(x,x); <use+C2  
    %       [theta,r] = cart2pol(X,Y); 8.HqQ:?&2t  
    %       idx = r<=1; cG1-.,r  
    %       z = nan(size(X)); [_*%  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); J @C8;]  
    %       figure XFeHkU`C  
    %       pcolor(x,x,z), shading interp s`GwRH<#  
    %       axis square, colorbar @;2,TY>Di  
    %       title('Zernike function Z_5^1(r,\theta)') J7W]Str  
    % <\eHK[_*  
    %   Example 2: mG@xehH  
    % -1d2Qed  
    %       % Display the first 10 Zernike functions jjL(=n<J<"  
    %       x = -1:0.01:1; W4Rs9NA}  
    %       [X,Y] = meshgrid(x,x); ' Z:FGSwT  
    %       [theta,r] = cart2pol(X,Y); 9i GUE  
    %       idx = r<=1; A+w51Q  
    %       z = nan(size(X)); Q!(16  
    %       n = [0  1  1  2  2  2  3  3  3  3]; )D_#  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; y3 @R>@$  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; g0GC g  
    %       y = zernfun(n,m,r(idx),theta(idx)); z40uY]Ck  
    %       figure('Units','normalized') Tn,'*D@l  
    %       for k = 1:10 S {gB~W  
    %           z(idx) = y(:,k); ^+tAgK2   
    %           subplot(4,7,Nplot(k)) pt<!b0G  
    %           pcolor(x,x,z), shading interp $50A!h  
    %           set(gca,'XTick',[],'YTick',[]) "- @{ )  
    %           axis square | YmQO#''  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) (@@t,\iF  
    %       end <o,]f E[  
    % C-' n4AY^  
    %   See also ZERNPOL, ZERNFUN2. QxG:NN;jW  
    H4p N+  
    %   Paul Fricker 11/13/2006 ~6L\9B )  
    Q$Qs$  
    4^\5]d!  
    % Check and prepare the inputs: ]8FSs/4  
    % ----------------------------- XoEiW R  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) $K>'aI;|  
        error('zernfun:NMvectors','N and M must be vectors.') |n3fAN  
    end v MTWtc!6  
    INqD(EG   
    if length(n)~=length(m) L;$Gn"7~  
        error('zernfun:NMlength','N and M must be the same length.') 1uBnU2E  
    end $\?BAkx  
    ,pL%,>R5  
    n = n(:); N@Pf\D  
    m = m(:); xD+n2:I{  
    if any(mod(n-m,2)) F33&A<(,  
        error('zernfun:NMmultiplesof2', ... %K[_;8  
              'All N and M must differ by multiples of 2 (including 0).') 7.7P>U  
    end 3p`*'j2R  
    k)j, ~JH  
    if any(m>n) AX3iB1):K  
        error('zernfun:MlessthanN', ... TY}9;QL:  
              'Each M must be less than or equal to its corresponding N.') gz8>uGx&V!  
    end h^o>9s/|/H  
    7(c7-  
    if any( r>1 | r<0 ) W(U:D?e  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') t@(S=i7}-  
    end |35"V3bs  
    t;X  !+  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 5Y77g[AX2-  
        error('zernfun:RTHvector','R and THETA must be vectors.') x[l_dmq  
    end xQ4 5B` $  
    GBnf]A,^ @  
    r = r(:); yg34b}m{  
    theta = theta(:); MNd8#01q`  
    length_r = length(r); iV<4#aBg  
    if length_r~=length(theta) &L6xagR7M  
        error('zernfun:RTHlength', ... CqHCJ '  
              'The number of R- and THETA-values must be equal.') ~nO]R   
    end j6x1JM  
    #nG?}*#  
    % Check normalization: Sh&n DdF"  
    % -------------------- O#Y;s;)i"  
    if nargin==5 && ischar(nflag) u.W}{-+kp  
        isnorm = strcmpi(nflag,'norm'); 9w\ yWxl  
        if ~isnorm b5WtL+Z  
            error('zernfun:normalization','Unrecognized normalization flag.') x?T.ItW:K  
        end \$;Q3t3  
    else pxC:VJ;  
        isnorm = false; /S9s%scAy  
    end fCg"tckE  
    K(bid0 Y  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% es]S]}JV  
    % Compute the Zernike Polynomials ErZYPl  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ,au-g)IFZ  
     ?X{ul  
    % Determine the required powers of r: &oi*]:<FNe  
    % ----------------------------------- Gp*U2LB  
    m_abs = abs(m); um.s :vj$  
    rpowers = []; rqa?A }'  
    for j = 1:length(n) j;%RV)e  
        rpowers = [rpowers m_abs(j):2:n(j)]; )0F\[Jl}  
    end MPSoRA: h  
    rpowers = unique(rpowers); S#gIfb<D  
    xnz(hz6  
    % Pre-compute the values of r raised to the required powers, \~j6}4XS1.  
    % and compile them in a matrix: #"PI%&  
    % ----------------------------- %A 4F?/E  
    if rpowers(1)==0 #$/SM_X14C  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); o0SQJ1.a$  
        rpowern = cat(2,rpowern{:}); St9+/Md=jQ  
        rpowern = [ones(length_r,1) rpowern]; 9hoTxWpmy  
    else *hugQh ]a  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Ekq&.qjYG"  
        rpowern = cat(2,rpowern{:}); f~bZTf  
    end & QO9/!  
    "Yh[-[,  
    % Compute the values of the polynomials: 5Z (1&  
    % -------------------------------------- x[%z \  
    y = zeros(length_r,length(n)); w?u4-GT  
    for j = 1:length(n) gD$bn=  
        s = 0:(n(j)-m_abs(j))/2; /m>%=_nz  
        pows = n(j):-2:m_abs(j); t?bc$,S"\(  
        for k = length(s):-1:1 0LQ|J(u  
            p = (1-2*mod(s(k),2))* ... }vzZWe  
                       prod(2:(n(j)-s(k)))/              ... p~X=<JM  
                       prod(2:s(k))/                     ... ^5BLuN6  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Iv J ;9d  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); xw1@&QwM  
            idx = (pows(k)==rpowers); [):&R1U  
            y(:,j) = y(:,j) + p*rpowern(:,idx); |[%CFm}+?  
        end Ky6.6Y<.|  
         8vP:yh@  
        if isnorm g7>p,  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); G5;N#^myJ  
        end f[S$ Gu4-  
    end fDq`.ZW)s  
    % END: Compute the Zernike Polynomials 4 VPJv>^  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% j?eWh#[K"  
    CuS"Wj  
    % Compute the Zernike functions: hu=b ,  
    % ------------------------------ h~\bJ*Zp  
    idx_pos = m>0; L\O}q  
    idx_neg = m<0; -;VKtBXP</  
     G{4~{{tI  
    z = y; d5b \kRr  
    if any(idx_pos) *ud"?{)Z  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); f76bEe/B9  
    end dV~yIxD}C*  
    if any(idx_neg) KN41 kkN  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); fi/[(RBG  
    end ="M7F0k  
    qa|"kRCO  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) zVSbEcr,C~  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. SI/@Bbd=  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated nWrkn m  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive k!%[W,*  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, <%@S-+D`]  
    %   and THETA is a vector of angles.  R and THETA must have the same {nl]F  
    %   length.  The output Z is a matrix with one column for every P-value, Oyfc!  
    %   and one row for every (R,THETA) pair. kX\\t.nH  
    % ,g2oqq ?  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike ^p'iX4M  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) upD 2vtU  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) 9}\{0;9  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 2N,<~L`FX'  
    %   for all p. .6@qU}  
    % ]i}3`e?  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 >:2Br(S  
    %   Zernike functions (order N<=7).  In some disciplines it is d#?.G3YmK  
    %   traditional to label the first 36 functions using a single mode 0cd`. ZF  
    %   number P instead of separate numbers for the order N and azimuthal Q t!X<.  
    %   frequency M. C2 ~t  
    % h^u 9W7.  
    %   Example: dHE\+{K%-  
    % OS X5S:XS  
    %       % Display the first 16 Zernike functions -ZmccT"8  
    %       x = -1:0.01:1; FG?69b>  
    %       [X,Y] = meshgrid(x,x); L(a){<c  
    %       [theta,r] = cart2pol(X,Y); K):MT[/"  
    %       idx = r<=1; e``X6=rcG  
    %       p = 0:15; ~|LlT^C  
    %       z = nan(size(X)); =bVaB<!  
    %       y = zernfun2(p,r(idx),theta(idx)); "`sr#  
    %       figure('Units','normalized') z[7j`J|Kk  
    %       for k = 1:length(p) F]#rH   
    %           z(idx) = y(:,k); **zh>Y}6  
    %           subplot(4,4,k) ?5%0zMC  
    %           pcolor(x,x,z), shading interp O Oa}+^-j  
    %           set(gca,'XTick',[],'YTick',[]) 4 Ar\`{c>  
    %           axis square B/*`u  
    %           title(['Z_{' num2str(p(k)) '}']) dy4! >zxF  
    %       end dkz79G}e  
    % LI>tN R~  
    %   See also ZERNPOL, ZERNFUN. o6FSSKM  
    SiD [54OM  
    %   Paul Fricker 11/13/2006 U%swqle4  
    %&c+} m  
    jKOjw#N  
    % Check and prepare the inputs: 8=]R6[,fD  
    % ----------------------------- b*-g@S  
    if min(size(p))~=1 :RJ=f  
        error('zernfun2:Pvector','Input P must be vector.') LX4*3c|i,  
    end p4 \r`  
    !y8/El  
    if any(p)>35 S nMHk3(\  
        error('zernfun2:P36', ... D6 2xC5  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... g;bfi{8s_  
               '(P = 0 to 35).']) R:= %gl!  
    end vm3B>ACJ  
    R7/"ye:7J  
    % Get the order and frequency corresonding to the function number: 4X0k1Fw)Y  
    % ---------------------------------------------------------------- qusX]Tst z  
    p = p(:); {b|:q>Be8  
    n = ceil((-3+sqrt(9+8*p))/2); ]Zfg~K(  
    m = 2*p - n.*(n+2); G~oGBq6Gz  
    KL2#Bm_  
    % Pass the inputs to the function ZERNFUN: B&l5yI b  
    % ---------------------------------------- {x3"/sF  
    switch nargin DEGEr-  
        case 3 67Z.aaXD1  
            z = zernfun(n,m,r,theta); QLq^[ >n  
        case 4 Et\z^y  
            z = zernfun(n,m,r,theta,nflag); Ig&=(Kmr  
        otherwise Q4gsOx P  
            error('zernfun2:nargin','Incorrect number of inputs.') hOI| #(-  
    end _N4G[jQLJ  
    #d+bld\  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) %3L4&W _T  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. b' 1%g}  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of KrcL*j&^  
    %   order N and frequency M, evaluated at R.  N is a vector of ,KXS6:1%5Y  
    %   positive integers (including 0), and M is a vector with the 3h:"-{MW.  
    %   same number of elements as N.  Each element k of M must be a }9w?[hXW"  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) 6,nws5dh  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is <ID/\Qx`q  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix 0w'%10"&U+  
    %   with one column for every (N,M) pair, and one row for every L&[uE;ro  
    %   element in R. B}Q.Is5  
    % =!rdn#KH  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- U)Cv_qe  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is ]a4rA+NFLB  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to |@{4zoP_N  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 w +QXSa_D  
    %   for all [n,m]. Ks|qJ3;  
    % q;&\77i$  
    %   The radial Zernike polynomials are the radial portion of the Igowz7  
    %   Zernike functions, which are an orthogonal basis on the unit ~YQC!x  
    %   circle.  The series representation of the radial Zernike (*{Y#XD{  
    %   polynomials is #t.)4$  
    % q~*9A-MH  
    %          (n-m)/2 "E4;M/  
    %            __ 1P (5+9"s  
    %    m      \       s                                          n-2s ~p9nAACU  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r ?P<8Zw  
    %    n      s=0 a[ Pyxx_K  
    % eko$c,&jY  
    %   The following table shows the first 12 polynomials. _J'V5]=4  
    % 84xA/BRW  
    %       n    m    Zernike polynomial    Normalization }m!L2iK4qk  
    %       --------------------------------------------- H/qv%!/o  
    %       0    0    1                        sqrt(2) U?vG?{A  
    %       1    1    r                           2 [1 pWg^  
    %       2    0    2*r^2 - 1                sqrt(6) FW](GWp`:  
    %       2    2    r^2                      sqrt(6) @'go?E)f  
    %       3    1    3*r^3 - 2*r              sqrt(8) >=G-^z:  
    %       3    3    r^3                      sqrt(8) V1[Cc?o  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) x+?P/Ckg  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) @FC|1=+  
    %       4    4    r^4                      sqrt(10) g^ @9SU  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) iUNlNl ?  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) uBdS}U  
    %       5    5    r^5                      sqrt(12) [1OX: O|  
    %       --------------------------------------------- R07 7eX  
    % * z,] mi%  
    %   Example: M1{ru~Z9  
    %  t 0 $}  
    %       % Display three example Zernike radial polynomials ;5i~McH# t  
    %       r = 0:0.01:1; woQ UrO(  
    %       n = [3 2 5]; (jR7D"I  
    %       m = [1 2 1]; 7x 6q:4Ep\  
    %       z = zernpol(n,m,r); -&L(0?*qo  
    %       figure {#-I;I:  
    %       plot(r,z) 3>Ne_kY  
    %       grid on dRl*rP/  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') |wef[|@%  
    % wrORyj  
    %   See also ZERNFUN, ZERNFUN2. ~353x%e'  
    R^[b I;  
    % A note on the algorithm. 3&39M&  
    % ------------------------ %E1_)^ ^  
    % The radial Zernike polynomials are computed using the series >bgx o<  
    % representation shown in the Help section above. For many special O r {9?;G  
    % functions, direct evaluation using the series representation can h-0#h/u>M  
    % produce poor numerical results (floating point errors), because &OK[n1M  
    % the summation often involves computing small differences between  l,}^<P]  
    % large successive terms in the series. (In such cases, the functions |j?iD  
    % are often evaluated using alternative methods such as recurrence 6[\b]I\Q  
    % relations: see the Legendre functions, for example). For the Zernike m%?+;V  
    % polynomials, however, this problem does not arise, because the 3Ryae/Nk  
    % polynomials are evaluated over the finite domain r = (0,1), and ymNL`GYN[  
    % because the coefficients for a given polynomial are generally all `E@TPdu  
    % of similar magnitude. V_1'` F  
    % fga{ b7  
    % ZERNPOL has been written using a vectorized implementation: multiple UKfC!YR2J8  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] TGSUbBgU  
    % values can be passed as inputs) for a vector of points R.  To achieve /'yi!:FZFC  
    % this vectorization most efficiently, the algorithm in ZERNPOL @<^_ _."  
    % involves pre-determining all the powers p of R that are required to at N%csA0  
    % compute the outputs, and then compiling the {R^p} into a single :6N'%LKK  
    % matrix.  This avoids any redundant computation of the R^p, and ceKR?%8s  
    % minimizes the sizes of certain intermediate variables. L%h Vts'  
    % HU~,_m  
    %   Paul Fricker 11/13/2006 \J)ffEKIp  
    8w 2$H  
    ZUkrJ'  
    % Check and prepare the inputs: XIS.0]~  
    % ----------------------------- <@+>A$~0  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) mN!5JZ' 2  
        error('zernpol:NMvectors','N and M must be vectors.') f@G3,u!]i  
    end 7W7!X\0Y  
    Y6&B%t<bo  
    if length(n)~=length(m) e9F\U   
        error('zernpol:NMlength','N and M must be the same length.') >Rnj6A|Q  
    end D'nO  
    U]8 @  
    n = n(:); ~|FKl%  
    m = m(:); bwr}Ge  
    length_n = length(n); *8WcRx  
    t;^NgkP{$  
    if any(mod(n-m,2)) TgDx3U[  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') ;z>?- j  
    end /4Df 'd  
    Ts~MkO  
    if any(m<0) {6/Yu: ;  
        error('zernpol:Mpositive','All M must be positive.') iC$mb~G  
    end \!]Zq#*kH  
    ;|.~'':  
    if any(m>n) WNE=|z#|  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') Q5!"tF p  
    end 0EA<ip  
    RD$"ft]Vc  
    if any( r>1 | r<0 ) ^")SU(`  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') j/C.='?%  
    end >$%rsc}^  
    Msk^H7  
    if ~any(size(r)==1) FHoY=fCI  
        error('zernpol:Rvector','R must be a vector.') Gtyy^tz[  
    end t%B ,ATW  
    c~bTK" u  
    r = r(:); qjtrU#n  
    length_r = length(r); 2V-zmyJs5  
    t 7(#Cuv-  
    if nargin==4 uyp|Xh,  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); Em(&cra  
        if ~isnorm xM#+jI  
            error('zernpol:normalization','Unrecognized normalization flag.') ya*KA.EGg  
        end qMHI-h_A  
    else BB>R=kt  
        isnorm = false; SF 7p/gG  
    end 52zD!(   
    t+2!"Jr  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% R cz;|h8  
    % Compute the Zernike Polynomials &~6W!w  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% $_u9Y!  
    ,g"[7Za  
    % Determine the required powers of r: 5Az4<  
    % ----------------------------------- o'`:$ (  
    rpowers = []; O< \i{4}}  
    for j = 1:length(n) IKm_YQ$XOy  
        rpowers = [rpowers m(j):2:n(j)]; ]P5|V4FXo  
    end [VsTyqV a  
    rpowers = unique(rpowers); \dq}nOsX*  
    tbNIl cAWS  
    % Pre-compute the values of r raised to the required powers,  UE-+P  
    % and compile them in a matrix: Pd~{XM,yfW  
    % ----------------------------- h VQj$TA  
    if rpowers(1)==0 wcd1.$ n  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); !:N&tuJEv  
        rpowern = cat(2,rpowern{:}); $v6`5;#u  
        rpowern = [ones(length_r,1) rpowern]; .o&Vu,/H  
    else |$)+h\h  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false);  /uyZ[=5  
        rpowern = cat(2,rpowern{:}); JIA'3"C  
    end l-} );zH74  
    :'F7^N3;H  
    % Compute the values of the polynomials: R)<PCe`vf  
    % -------------------------------------- 5V{> 82  
    z = zeros(length_r,length_n); (PM!{u=  
    for j = 1:length_n t& *K  
        s = 0:(n(j)-m(j))/2; uxKj7!(#  
        pows = n(j):-2:m(j); `E4+#_ v  
        for k = length(s):-1:1 T+0Z2H  
            p = (1-2*mod(s(k),2))* ... 8d!t"oj68  
                       prod(2:(n(j)-s(k)))/          ... o~(/Twxam  
                       prod(2:s(k))/                 ... : }q~<  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... z|^+uL  
                       prod(2:((n(j)+m(j))/2-s(k))); #7Pnw.s3zz  
            idx = (pows(k)==rpowers); _T{ "F  
            z(:,j) = z(:,j) + p*rpowern(:,idx); &azy1.i~  
        end j&c YRKpz  
         sgc pH  
        if isnorm T=kR!Gx  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); Fr,qVYf  
        end '&OJ hLE  
    end iz0GL&<  
    e[:i`J2  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  %mv9+WJN.  
    +"!=E erKi  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 JuD$CHg;#  
    HVz,liq  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)