切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11479阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 +~7@K{6 q-  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! 291v R]  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 dnH?@ K  
    function z = zernfun(n,m,r,theta,nflag) yo3'\I  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. qHklu2_%  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N // g~1(  
    %   and angular frequency M, evaluated at positions (R,THETA) on the g?)9zJ9  
    %   unit circle.  N is a vector of positive integers (including 0), and y~jTI[kS  
    %   M is a vector with the same number of elements as N.  Each element c)+IX;q-C  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) PO1sVP.S  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, VQ2)qJ#l  
    %   and THETA is a vector of angles.  R and THETA must have the same Mvu!  
    %   length.  The output Z is a matrix with one column for every (N,M) % ?@PlQ  
    %   pair, and one row for every (R,THETA) pair. S+7>Y? B!  
    % s lXk <  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike v~9PS2  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ^dld\t:tV7  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral M5CFW >T  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, b1R%JY7/S  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized z1*8 5?  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. d?.ewsC  
    % {b}Ri&oEOH  
    %   The Zernike functions are an orthogonal basis on the unit circle. 9ssTG4Sa  
    %   They are used in disciplines such as astronomy, optics, and ]W]o6uo7  
    %   optometry to describe functions on a circular domain. 8 W79  
    % "o+< \B~  
    %   The following table lists the first 15 Zernike functions. %[l5){:05  
    % vg5i+ry<  
    %       n    m    Zernike function           Normalization  (0bvd  
    %       -------------------------------------------------- )\8l6Gw  
    %       0    0    1                                 1 qn5e[Vn  
    %       1    1    r * cos(theta)                    2 C5c@@ch :  
    %       1   -1    r * sin(theta)                    2 Vr+X!DeY  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 7LbBS:@3z_  
    %       2    0    (2*r^2 - 1)                    sqrt(3) D37N*9}  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) @2nar<  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 1k EXTs=,  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 4$oNh)+/h  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) |7LhE+E  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) |#^wYZO1U  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) `A_CLVE  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Kc$j<MRtv  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 4V@raI-  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) d="Oge8  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) MqDz cB]  
    %       -------------------------------------------------- <b.?G  
    % }6*+>?  
    %   Example 1: G>& Tap>  
    % 2~h! ouleY  
    %       % Display the Zernike function Z(n=5,m=1) ry)g<OA  
    %       x = -1:0.01:1; &@p_g8r#  
    %       [X,Y] = meshgrid(x,x); % put=I  
    %       [theta,r] = cart2pol(X,Y); ?%-VSL>$w=  
    %       idx = r<=1; bFD vCF  
    %       z = nan(size(X)); M=:!d$c  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); "%ou'\}  
    %       figure aDce Ohfx  
    %       pcolor(x,x,z), shading interp E!nEB(FD  
    %       axis square, colorbar VbyGr~t  
    %       title('Zernike function Z_5^1(r,\theta)') .0+=#G>  
    % T#KF@8'-  
    %   Example 2: 6Lj=%&  
    % O< [h  
    %       % Display the first 10 Zernike functions xMsSZ{j%5  
    %       x = -1:0.01:1; }-4@EC>  
    %       [X,Y] = meshgrid(x,x); Xo[j*<=0  
    %       [theta,r] = cart2pol(X,Y); 8S/SXyS  
    %       idx = r<=1; #[Z ToE4  
    %       z = nan(size(X)); g^ .g9"  
    %       n = [0  1  1  2  2  2  3  3  3  3]; 69/aP=  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; {,xI|u2R  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; tQ~vLPi$  
    %       y = zernfun(n,m,r(idx),theta(idx)); 9j<qi\SSI  
    %       figure('Units','normalized') u-qwG/$E  
    %       for k = 1:10 mW EaUi)Zz  
    %           z(idx) = y(:,k); l Oxz&m  
    %           subplot(4,7,Nplot(k)) m03D+@F  
    %           pcolor(x,x,z), shading interp Uao8#<CkvJ  
    %           set(gca,'XTick',[],'YTick',[]) $.HZz  
    %           axis square  rG[iEY  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) X% JQ_Z  
    %       end d?[gd(O  
    % tV.qdy/]}  
    %   See also ZERNPOL, ZERNFUN2. ^V6cx2M  
    ?|,dHqh{nM  
    %   Paul Fricker 11/13/2006 W3Gg<!*Uo  
    /Q]6"nY  
    Hreu3N  
    % Check and prepare the inputs: t"# .I?S0  
    % ----------------------------- c+S<U*  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) X;:qnnO  
        error('zernfun:NMvectors','N and M must be vectors.') j}s<Pn%4  
    end hSkI]%  
    ({&\~"  
    if length(n)~=length(m) ~V34j:  
        error('zernfun:NMlength','N and M must be the same length.') 0nOkQVMk>  
    end X 8/9x-E_  
    y-#{v.|L  
    n = n(:); Dfhu  
    m = m(:); g}@W9'!  
    if any(mod(n-m,2)) mH`K~8pRg  
        error('zernfun:NMmultiplesof2', ... [p Y1\$,  
              'All N and M must differ by multiples of 2 (including 0).') srL|Y&8p  
    end /FJ.W<hw  
    r< MW8  
    if any(m>n) 9N[(f-`  
        error('zernfun:MlessthanN', ... WR|n>i@m  
              'Each M must be less than or equal to its corresponding N.') 7=3'PfS  
    end };{Qx  
    +4 W6{`  
    if any( r>1 | r<0 ) X mb001  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') sh#hDU/</  
    end EN2H[i+,  
    t GS>f>i  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ~SzHIVj:6  
        error('zernfun:RTHvector','R and THETA must be vectors.') ob. Br:x  
    end |7CFm  
    ]&b>P ;j:  
    r = r(:); wjzR 8g0bQ  
    theta = theta(:); 2#jBh   
    length_r = length(r); 1ze\ U>  
    if length_r~=length(theta) %VH{bpS|i:  
        error('zernfun:RTHlength', ... y|b&Rup  
              'The number of R- and THETA-values must be equal.') M7`iAa.}  
    end q 3nF\Me0  
    faIHmU  
    % Check normalization: [z[<onFIq  
    % -------------------- H@uDP  
    if nargin==5 && ischar(nflag) ?y/LMja  
        isnorm = strcmpi(nflag,'norm'); 0FAe5 BE7  
        if ~isnorm XG!s+ShFV  
            error('zernfun:normalization','Unrecognized normalization flag.') 0rrNVaM  
        end 1 !8 b9  
    else q?##S'  
        isnorm = false; <*Bk.>f!  
    end .P:mY C  
    Cs2F/M'  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 5 (cgHr"  
    % Compute the Zernike Polynomials Z#vU~1W  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %G`GdG}T  
    |& Pa`=sp  
    % Determine the required powers of r: z)_h"y?H{%  
    % ----------------------------------- }7HR<%< 7  
    m_abs = abs(m); '$0~PH&  
    rpowers = []; $! R]!s  
    for j = 1:length(n) qP5'&!s&!  
        rpowers = [rpowers m_abs(j):2:n(j)]; s(0"r.  
    end NsN =0ff  
    rpowers = unique(rpowers); "i^< H  
    pNNvg,hS8  
    % Pre-compute the values of r raised to the required powers, o6ag{Yp  
    % and compile them in a matrix: $6DA<v^=z  
    % ----------------------------- "8l& m6`U-  
    if rpowers(1)==0 =\FV_4)  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); *=b36M   
        rpowern = cat(2,rpowern{:}); NpAZuISD!  
        rpowern = [ones(length_r,1) rpowern]; L ]Y6/Q   
    else SL$ bV2T  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); CzfGb4  
        rpowern = cat(2,rpowern{:}); 9#MY(Hr  
    end oYR OGU  
    /'QfLW>6  
    % Compute the values of the polynomials: 9g~"Y[ ]  
    % -------------------------------------- 6 k+4R<  
    y = zeros(length_r,length(n)); vrX@T ?>  
    for j = 1:length(n) nXJG4$G  
        s = 0:(n(j)-m_abs(j))/2; Bm$(4  
        pows = n(j):-2:m_abs(j); Iw[7;B5v  
        for k = length(s):-1:1 | k?r1dj%O  
            p = (1-2*mod(s(k),2))* ... OzA'd\|  
                       prod(2:(n(j)-s(k)))/              ... $'%.w|MJp  
                       prod(2:s(k))/                     ... oD.[T)G?  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 8Cef ]@x  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 4N[KmNi<  
            idx = (pows(k)==rpowers); $mu*iW\{  
            y(:,j) = y(:,j) + p*rpowern(:,idx); ~]V}wZt>h  
        end chakp!S=  
         ?Rd{`5.D  
        if isnorm r7Zx<c  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); kCHYLv3.  
        end U#6<80Ke  
    end P}~nL  
    % END: Compute the Zernike Polynomials ,GUOq!z  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% w#^z:7fI  
    60z8U#upM  
    % Compute the Zernike functions: q+{$"s9v  
    % ------------------------------ Nv5)A=6#AA  
    idx_pos = m>0; A +41JMH  
    idx_neg = m<0; B>UF dj]-  
    .I%`yhCW  
    z = y; AMre(lgh  
    if any(idx_pos) _?oofE:{  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); AU 4K$hC^  
    end *?3c2Jg=E  
    if any(idx_neg) ]$&N"&q  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); $2w][ d1  
    end 5j~1%~,#  
    Ohn?>qQ  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) *!^l ZpF  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. Vrn+"2pdJ  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated I7XJPc4}   
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive e!=~f%c<N  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, 7g|EqJ7  
    %   and THETA is a vector of angles.  R and THETA must have the same ^v5<*uf%m  
    %   length.  The output Z is a matrix with one column for every P-value, #HTq \J!  
    %   and one row for every (R,THETA) pair. }fJLY\  
    % -pW*6??+?  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike nArG I}@  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) Ajm4q_  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) F%IvgXt5  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 D{rM  
    %   for all p. /|m0)H.>  
    % "1Y'VpKm(~  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 t76B0L{  
    %   Zernike functions (order N<=7).  In some disciplines it is eX'U d%  
    %   traditional to label the first 36 functions using a single mode [H@71+_Q  
    %   number P instead of separate numbers for the order N and azimuthal fS$;~@p  
    %   frequency M. [`kk<$=,&  
    % $38)_{  
    %   Example: z/,&w_8,:  
    % JbAmud,  
    %       % Display the first 16 Zernike functions m "96%sB  
    %       x = -1:0.01:1; IU;a$  
    %       [X,Y] = meshgrid(x,x); FfNUFx2N  
    %       [theta,r] = cart2pol(X,Y); ^^B~v<uK  
    %       idx = r<=1; m5v IS  
    %       p = 0:15; 8n35lI ( [  
    %       z = nan(size(X)); zbI|3  
    %       y = zernfun2(p,r(idx),theta(idx)); h [@}} 6  
    %       figure('Units','normalized') s:3b.*t<  
    %       for k = 1:length(p) 3EHB~rL/C  
    %           z(idx) = y(:,k); '+\t,>nRkl  
    %           subplot(4,4,k) 2ck0k,WP  
    %           pcolor(x,x,z), shading interp hp`ZmLq/[  
    %           set(gca,'XTick',[],'YTick',[]) 82iFk`)T  
    %           axis square [1nUq!uTm  
    %           title(['Z_{' num2str(p(k)) '}']) l b;P&V  
    %       end qKrxln/T  
    % Zs4NN 2~  
    %   See also ZERNPOL, ZERNFUN. hHZ'*,9 y  
    5z&>NI  
    %   Paul Fricker 11/13/2006 7,zE?KG /  
    _2Mpzv  
    ]iMqIh"  
    % Check and prepare the inputs: A*g-pJ h  
    % ----------------------------- Y,Lx6kU  
    if min(size(p))~=1 W{c Z7$d  
        error('zernfun2:Pvector','Input P must be vector.') m(D+!I9  
    end M@o^V(j  
    KP&xk1 3)  
    if any(p)>35 (vp#?-i  
        error('zernfun2:P36', ... ;W]9DBAB  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... j^%N:BQ&  
               '(P = 0 to 35).']) ?:h*=0>  
    end g^^pPV K_  
    %/ctt_p0x  
    % Get the order and frequency corresonding to the function number: Nz}PcWF/  
    % ---------------------------------------------------------------- !ewT#afyu(  
    p = p(:); J;=T"C&  
    n = ceil((-3+sqrt(9+8*p))/2); \!xCmQ  
    m = 2*p - n.*(n+2); hI 9q);g  
    )KEW`BC5T  
    % Pass the inputs to the function ZERNFUN: q}!h(-y}5n  
    % ---------------------------------------- AvPPsN0  
    switch nargin !6x7^E;c  
        case 3 '/)qI.  
            z = zernfun(n,m,r,theta); d&\3}uH  
        case 4 2$ &B@\WY  
            z = zernfun(n,m,r,theta,nflag); : _tt9J  
        otherwise {xH?b0>  
            error('zernfun2:nargin','Incorrect number of inputs.') Cv}^]_`Q  
    end R1*4  
    VFzIBgJ3  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) z:@:B:E  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. fvcS=nRQv  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of 7}g4ePYag  
    %   order N and frequency M, evaluated at R.  N is a vector of 6JDaZh"=K  
    %   positive integers (including 0), and M is a vector with the R|v'+bv  
    %   same number of elements as N.  Each element k of M must be a g `%in  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) /isalOT  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is ]8}51y8  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix  ?C#E_  
    %   with one column for every (N,M) pair, and one row for every N0.|Mb"?t  
    %   element in R. DU0/if9.  
    % Pc_aEBq  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- tAF?. \x"g  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is nYFrp)DLK  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to -(t7>s  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 z9*e%$+S  
    %   for all [n,m]. s2#Ia>5!  
    % ]%)<9 ]}  
    %   The radial Zernike polynomials are the radial portion of the #{vC =m73  
    %   Zernike functions, which are an orthogonal basis on the unit T!8^R|!a6  
    %   circle.  The series representation of the radial Zernike  UXs)$  
    %   polynomials is BMy3tyO  
    % m3gv %h  
    %          (n-m)/2 +.Ij%S[Px5  
    %            __ 3iIy_nWC  
    %    m      \       s                                          n-2s SkE<V0  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r 0] kKF<s  
    %    n      s=0 vWZXb `  
    % 8.[F3Tk=  
    %   The following table shows the first 12 polynomials. 8 {V9)U  
    % ca{MJz'  
    %       n    m    Zernike polynomial    Normalization $[A\i<#  
    %       --------------------------------------------- 1^4:l!0D  
    %       0    0    1                        sqrt(2) EU%,tp   
    %       1    1    r                           2 )63 $,y-;$  
    %       2    0    2*r^2 - 1                sqrt(6) +yp:douERi  
    %       2    2    r^2                      sqrt(6) <;6{R#Tuh  
    %       3    1    3*r^3 - 2*r              sqrt(8) pA6KiY&  
    %       3    3    r^3                      sqrt(8) jYFJk&c  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) p 1'l D  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) ]7O<|8n!d  
    %       4    4    r^4                      sqrt(10) D&" D[|@  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) n7cy[%yT  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) x}yl Rg`[  
    %       5    5    r^5                      sqrt(12) :<t=??4m  
    %       --------------------------------------------- f9W:-00QD  
    % #GE]]7:Na  
    %   Example: <qwf"Ey  
    % yQiY:SH  
    %       % Display three example Zernike radial polynomials FfdB%  
    %       r = 0:0.01:1; cm(*F 0<  
    %       n = [3 2 5]; (?fU l$q\  
    %       m = [1 2 1]; x#J9GP.  
    %       z = zernpol(n,m,r); ]>t~Bcn m  
    %       figure  u]P|  
    %       plot(r,z) lh8Q tPe  
    %       grid on wlT8|  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') mdWA5p(  
    % -B *W^-;*  
    %   See also ZERNFUN, ZERNFUN2. JaCX}[R  
    ,~1'L6Ri?  
    % A note on the algorithm. R}ki%i5|  
    % ------------------------ *M1GVhW(+  
    % The radial Zernike polynomials are computed using the series 0O9b 7F  
    % representation shown in the Help section above. For many special Vx h39eW  
    % functions, direct evaluation using the series representation can d:@+dS  
    % produce poor numerical results (floating point errors), because i6WH^IQM  
    % the summation often involves computing small differences between Y%XF64)6  
    % large successive terms in the series. (In such cases, the functions {^WK#$]  
    % are often evaluated using alternative methods such as recurrence tk&AZb,sP  
    % relations: see the Legendre functions, for example). For the Zernike ; oyV8P$  
    % polynomials, however, this problem does not arise, because the 2R[v*i^S  
    % polynomials are evaluated over the finite domain r = (0,1), and >}+{;d  
    % because the coefficients for a given polynomial are generally all jE\ G_>  
    % of similar magnitude. gV2vwe  
    %  ]n!V  
    % ZERNPOL has been written using a vectorized implementation: multiple HwUaaK   
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] ipu!{kJ  
    % values can be passed as inputs) for a vector of points R.  To achieve H9mNnZ_k  
    % this vectorization most efficiently, the algorithm in ZERNPOL S6<o?X9,I  
    % involves pre-determining all the powers p of R that are required to --K) 7  
    % compute the outputs, and then compiling the {R^p} into a single ?veeW6E(  
    % matrix.  This avoids any redundant computation of the R^p, and x+X@&S  
    % minimizes the sizes of certain intermediate variables. 2~kx3` Q  
    % ?zW'Hi  
    %   Paul Fricker 11/13/2006 nTeA=0 4  
    Zhfp>D  
    b^/u9  
    % Check and prepare the inputs: ;m]V12  
    % ----------------------------- EYT^*1,E*  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) j&8YE7  
        error('zernpol:NMvectors','N and M must be vectors.') #a e@VedM  
    end T}&A-V$  
    .U!EA0B  
    if length(n)~=length(m) ;_,jy7lf  
        error('zernpol:NMlength','N and M must be the same length.') Jt_=aMY:7  
    end K4Q{U@ZJ  
    w2s`9  
    n = n(:); MntmBj-T  
    m = m(:); 3:,%># "  
    length_n = length(n); LT%~C uf  
    U,W OP7z  
    if any(mod(n-m,2)) `% 9Y)a/e  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') /5,6 {R9  
    end JHxcHh  
    TGJz[Ny  
    if any(m<0) #{6VdWZ  
        error('zernpol:Mpositive','All M must be positive.') +^AdD8U  
    end Et0gPX-  
    S5).\1m h[  
    if any(m>n) q[U pP`Z%  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') )I%M]K]F  
    end sp\6-*F  
    (JbRhcg  
    if any( r>1 | r<0 ) `oxBIn*BD  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') v}DNeIh~  
    end NS[Z@@  
    IVxJN(N^  
    if ~any(size(r)==1) If&))$7u  
        error('zernpol:Rvector','R must be a vector.') zA#pgX[#  
    end *).  
    u>'0Xo9R  
    r = r(:); K_M Ed1l  
    length_r = length(r); W? G4>zA  
    WL+EpNKSf  
    if nargin==4 dp W`e>o  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); ^tTM 7  
        if ~isnorm > )4~,-;k  
            error('zernpol:normalization','Unrecognized normalization flag.') r*{.|>me  
        end [r2V+b.C  
    else g3ukx$Q{>  
        isnorm = false; #66i!}  
    end "-:H$  
    }0&Fu?sP  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 2m$C;j!D  
    % Compute the Zernike Polynomials $?ss5: S  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -o/Vp>_UOE  
    nKE^km  
    % Determine the required powers of r: 61_PSScSY  
    % ----------------------------------- IR"C?  
    rpowers = []; `C4(C4u  
    for j = 1:length(n) |21V OPBS  
        rpowers = [rpowers m(j):2:n(j)]; +P))*0(c_  
    end @0@WklAJA  
    rpowers = unique(rpowers); Eq_@ xT0>  
    -']Idn6  
    % Pre-compute the values of r raised to the required powers, OsOfo({I_  
    % and compile them in a matrix: W2<'b05  
    % ----------------------------- 5]G%MB/|$  
    if rpowers(1)==0 tO&n$$  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); c6jVx_tt.  
        rpowern = cat(2,rpowern{:}); -[*y{K@dh  
        rpowern = [ones(length_r,1) rpowern]; /Igz[P^\9  
    else ?jmL4V2-f  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 2a-]TVL3  
        rpowern = cat(2,rpowern{:}); 0=+feB1T  
    end eJf]"-  
    HMD\)vMK6  
    % Compute the values of the polynomials: U^}7DJ  
    % -------------------------------------- q"269W:  
    z = zeros(length_r,length_n); zSA"f_e  
    for j = 1:length_n sC"w{_D@*4  
        s = 0:(n(j)-m(j))/2; \Ec*Gq?.  
        pows = n(j):-2:m(j); ,]t_9B QK  
        for k = length(s):-1:1 w.rcYywI  
            p = (1-2*mod(s(k),2))* ... zjH8 S  
                       prod(2:(n(j)-s(k)))/          ... (0@b4}Z  
                       prod(2:s(k))/                 ... W2`3PEa  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... n+ H2cl }  
                       prod(2:((n(j)+m(j))/2-s(k))); U `lp56  
            idx = (pows(k)==rpowers); 3 K||(  
            z(:,j) = z(:,j) + p*rpowern(:,idx); P\@kqf~pC  
        end  zv"NbN  
         {.U:Ce  
        if isnorm X6}W]  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); o]I8Ghk>/z  
        end I@qGDKz;  
    end qQf NT.  
    N*[b 26  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  4 83rU  
    q{B?j%.o  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 -/Wf iE  
    bX:h"6{=R  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)