非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 A&NC0K}G!
function z = zernfun(n,m,r,theta,nflag) ifJv~asp
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 8k+q7
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ,$MWk(S
% and angular frequency M, evaluated at positions (R,THETA) on the Xm"w,J&
% unit circle. N is a vector of positive integers (including 0), and 'Yaf\Hp
% M is a vector with the same number of elements as N. Each element _/QKWk&j
% k of M must be a positive integer, with possible values M(k) = -N(k) ~>}dse
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, I,],?DQX2)
% and THETA is a vector of angles. R and THETA must have the same Gx(K N57D
% length. The output Z is a matrix with one column for every (N,M) 7
SjF9x
% pair, and one row for every (R,THETA) pair. OBKC$e6I
% t7C!}'g&'
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike |g7nh[
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 'mBLf&fB
% with delta(m,0) the Kronecker delta, is chosen so that the integral M(.uu`B
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 5p]urfN-f
% and theta=0 to theta=2*pi) is unity. For the non-normalized X <ba|(
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 3oppV_^JdT
% uZqu xu.
% The Zernike functions are an orthogonal basis on the unit circle. O" X!S_R
% They are used in disciplines such as astronomy, optics, and G:h;C].
% optometry to describe functions on a circular domain. \jF" nl
% r
48;_4d)D
% The following table lists the first 15 Zernike functions. 2HvTM8
% WL)_8!
% n m Zernike function Normalization J[&
7,}
% -------------------------------------------------- {|Mxvp*Hg
% 0 0 1 1 k$$S!qi#
% 1 1 r * cos(theta) 2 E5Snl#Gl\0
% 1 -1 r * sin(theta) 2 =#POMK".6
% 2 -2 r^2 * cos(2*theta) sqrt(6) ~
X]"P4 u
% 2 0 (2*r^2 - 1) sqrt(3) D*d 3w
% 2 2 r^2 * sin(2*theta) sqrt(6) i
h`y0(<
% 3 -3 r^3 * cos(3*theta) sqrt(8) 1eE]4Z4Q
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) Y-neD?V N
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) evndw>
% 3 3 r^3 * sin(3*theta) sqrt(8) X_0{*!v8
% 4 -4 r^4 * cos(4*theta) sqrt(10) m&3HFf
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Sq?6R}q%
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) 6?<`wGs(
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Q?Bjq>
% 4 4 r^4 * sin(4*theta) sqrt(10) )<}VP&:X
% -------------------------------------------------- .=b
+O~
% XqE55Jclp
% Example 1: QRg"/62WCD
% Y>dg10=
% % Display the Zernike function Z(n=5,m=1) %CsTB0Y7n,
% x = -1:0.01:1; N)
V7yo?
% [X,Y] = meshgrid(x,x); 2t]! {L
% [theta,r] = cart2pol(X,Y); 9|G=KN)P:
% idx = r<=1; 8,H#t@+MT
% z = nan(size(X)); RBv=
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 9sO{1rF
% figure 0-t4+T
% pcolor(x,x,z), shading interp R+ #.bQg
% axis square, colorbar )K\k6HC.
% title('Zernike function Z_5^1(r,\theta)') QX.F1T2e?
% Be14$7r
% Example 2: x%:>Ol
% VvMU)
% % Display the first 10 Zernike functions <4!&iU+;
% x = -1:0.01:1; vU\w3
% [X,Y] = meshgrid(x,x); !Lg}q!*%>V
% [theta,r] = cart2pol(X,Y); n_xQSVI0F
% idx = r<=1; [r/Seg"
% z = nan(size(X)); JI[rIL\Ey
% n = [0 1 1 2 2 2 3 3 3 3]; fbx;-He!
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; d'g{K]=tF
% Nplot = [4 10 12 16 18 20 22 24 26 28]; @=<TA0;LL
% y = zernfun(n,m,r(idx),theta(idx)); $CQwBsYb=
% figure('Units','normalized') `X.=uG+m
% for k = 1:10 d=+Lv<
% z(idx) = y(:,k); rY_C3;B
% subplot(4,7,Nplot(k)) a,0o{*(u$
% pcolor(x,x,z), shading interp 7"CH\*%
% set(gca,'XTick',[],'YTick',[]) EH!EyNNb
% axis square yS.fe[
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) }&C!^v
o
% end 82@;.%
% |z<wPJ,;2
% See also ZERNPOL, ZERNFUN2. ^)0{42!]
2G:{ FY
% Paul Fricker 11/13/2006 !,(bXa\^
x_H7=\pX]
n`I
jG
% Check and prepare the inputs: OTFu4"]M
% ----------------------------- 8Jy1=R*S
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 3xCA\*
error('zernfun:NMvectors','N and M must be vectors.') ^J5V!i$
end [2j(\vC!
WCfe!P?g
if length(n)~=length(m) ,w58n%)H
error('zernfun:NMlength','N and M must be the same length.') szsZFyW)+
end /jL{JF>I
. =foXN
n = n(:); HI?~t|[y
m = m(:); %Pvb>U(Xs
if any(mod(n-m,2)) U+}9X^
error('zernfun:NMmultiplesof2', ... 1.d9{LO [-
'All N and M must differ by multiples of 2 (including 0).') X9`C2fyVd
end :~A1Ud4c
2.&V
if any(m>n) \3Ald.EqtM
error('zernfun:MlessthanN', ... #]\G*>{
'Each M must be less than or equal to its corresponding N.') uxJiec`&
end [,A'
b%~3+c
if any( r>1 | r<0 ) ^5@"|m1
error('zernfun:Rlessthan1','All R must be between 0 and 1.') 90if:mYA
end m&z%kVsg]
Zz*mf+
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 9kg>)ty@
error('zernfun:RTHvector','R and THETA must be vectors.') ,c %gwzU
end 0v)mgrl=,
fD}]Mi:V
r = r(:); ;@-5lCvC(+
theta = theta(:); C%7)sLWjJS
length_r = length(r); +n~rM'^4/
if length_r~=length(theta) ps;o[gB@5
error('zernfun:RTHlength', ... AkQFb2|ir
'The number of R- and THETA-values must be equal.') -Aym+N9
end J1ro\"
V^5k>`A
% Check normalization: <.B> LU
% -------------------- M,U=zNPnk
if nargin==5 && ischar(nflag) cZ2,
u,4
isnorm = strcmpi(nflag,'norm'); "=TTsxyM6P
if ~isnorm #w?%&,Kp
error('zernfun:normalization','Unrecognized normalization flag.') A(sx5Ynp
end 5Fm?,^
else nk,Mo5iqV
isnorm = false; n[S*gX0
end ..{^"`FQ
.0;k|&eBD
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Us~wv"L=UX
% Compute the Zernike Polynomials tfIBsw.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 6]A\8Ty
| BWK"G
% Determine the required powers of r: ' g!_Flk
% ----------------------------------- f!Nc+
m_abs = abs(m); <