非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 22"M#:r$
function z = zernfun(n,m,r,theta,nflag) ^o+2:G5z}
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. q(M[ij
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N S7N3L."
% and angular frequency M, evaluated at positions (R,THETA) on the !@{_Qt1
% unit circle. N is a vector of positive integers (including 0), and 2f9~:.NgF
% M is a vector with the same number of elements as N. Each element #O6SEK|Z
% k of M must be a positive integer, with possible values M(k) = -N(k) &?IOrHSv!
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, DmEmv/N=
% and THETA is a vector of angles. R and THETA must have the same Oh9wBV
% length. The output Z is a matrix with one column for every (N,M) 6a[D]46y,2
% pair, and one row for every (R,THETA) pair. ,> A9OTSN\
% ;{
u{FL
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike iT1"Le/N
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), !MSz%QcO
% with delta(m,0) the Kronecker delta, is chosen so that the integral 1_%jDMYH
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, <6Q]FH!6
% and theta=0 to theta=2*pi) is unity. For the non-normalized "#z4
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. )tl=tH/$
% {";5n7<<)
% The Zernike functions are an orthogonal basis on the unit circle. y:WRpCZoa
% They are used in disciplines such as astronomy, optics, and 6^F"np{w
% optometry to describe functions on a circular domain. 'C)^hj.
% $)\%i =
% The following table lists the first 15 Zernike functions. @a#qq`b;
% j*t>CB4
% n m Zernike function Normalization bAms-cXm
% -------------------------------------------------- t_6sDr'.
% 0 0 1 1 tuo'4%]i
% 1 1 r * cos(theta) 2 m8,P-m
% 1 -1 r * sin(theta) 2 D-\\L[
% 2 -2 r^2 * cos(2*theta) sqrt(6) O Ul+es
% 2 0 (2*r^2 - 1) sqrt(3) VJJGTkm
% 2 2 r^2 * sin(2*theta) sqrt(6) :BKY#uH~
% 3 -3 r^3 * cos(3*theta) sqrt(8) XL c&7
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 1fM=>Z
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 7m_Jb5
% 3 3 r^3 * sin(3*theta) sqrt(8) d!7cIYVZ
% 4 -4 r^4 * cos(4*theta) sqrt(10) q4@n
pbx
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) A(X~pP&oF
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) A^
$9[_
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 6[,*2a8
% 4 4 r^4 * sin(4*theta) sqrt(10) m663%b(5>
% -------------------------------------------------- I~y[8
% 9_V'P]@
% Example 1: p)vyZY[
% /1:`?% ,2
% % Display the Zernike function Z(n=5,m=1) XmXp0b7
% x = -1:0.01:1; &1YAPxX
% [X,Y] = meshgrid(x,x); <use+C2
% [theta,r] = cart2pol(X,Y); 8.HqQ:?&2t
% idx = r<=1; cG1-.,r
% z = nan(size(X)); [_*%
% z(idx) = zernfun(5,1,r(idx),theta(idx)); J@C8;]
% figure XFeHkU`C
% pcolor(x,x,z), shading interp s`GwRH<#
% axis square, colorbar @;2,TY>Di
% title('Zernike function Z_5^1(r,\theta)') J7W]Str
% <\eHK[_*
% Example 2: mG@xehH
% -1d2Qed
% % Display the first 10 Zernike functions jjL(=n<J<"
% x = -1:0.01:1; W4Rs9NA}
% [X,Y] = meshgrid(x,x); '
Z:FGSwT
% [theta,r] = cart2pol(X,Y); 9iGUE
% idx = r<=1; A+w51Q
% z = nan(size(X)); Q!(16
% n = [0 1 1 2 2 2 3 3 3 3]; )D_#
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; y3@R>@$
% Nplot = [4 10 12 16 18 20 22 24 26 28]; g0GCg
% y = zernfun(n,m,r(idx),theta(idx)); z40uY]Ck
% figure('Units','normalized') Tn,'*D@l
% for k = 1:10 S{gB~W
% z(idx) = y(:,k); ^+tAgK2
% subplot(4,7,Nplot(k)) pt<!b0G
% pcolor(x,x,z), shading interp $50A!h
% set(gca,'XTick',[],'YTick',[]) "- @{ )
% axis square | YmQO#''
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) (@@t,\iF
% end <o,]f E[
% C-'n4AY^
% See also ZERNPOL, ZERNFUN2. QxG:NN;jW
H4p N+
% Paul Fricker 11/13/2006 ~6L\9B)
Q$Qs$
4^\5]d!
% Check and prepare the inputs: ]8FSs/4
% ----------------------------- XoEiW R
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) $K>'aI;|
error('zernfun:NMvectors','N and M must be vectors.') |n3fAN
end v
MTWtc!6
INqD(EG
if length(n)~=length(m) L;$Gn"7~
error('zernfun:NMlength','N and M must be the same length.') 1uBnU2E
end $\?BAkx
,pL%,>R5
n = n(:); N@Pf \D
m = m(:); xD+n2:I{
if any(mod(n-m,2)) F33&A<(,
error('zernfun:NMmultiplesof2', ... %K[_;8
'All N and M must differ by multiples of 2 (including 0).') 7.7P>U
end 3p`*'j 2R
k)j,~JH
if any(m>n) AX3iB1):K
error('zernfun:MlessthanN', ... TY}9;QL:
'Each M must be less than or equal to its corresponding N.') gz8>uGx&V!
end h^o>9s/|/H
7(c7-
if any( r>1 | r<0 ) W(U:D?e
error('zernfun:Rlessthan1','All R must be between 0 and 1.') t@(S=i7}-
end |35"V3bs
t;X
!+
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 5Y77g[AX2-
error('zernfun:RTHvector','R and THETA must be vectors.') x[l_dmq
end xQ4 5B`$
GBnf]A,^@
r = r(:); yg34b}m{
theta = theta(:); MNd8#01q`
length_r = length(r); iV<4#aBg
if length_r~=length(theta) &L6xagR7M
error('zernfun:RTHlength', ... CqHCJ '
'The number of R- and THETA-values must be equal.') ~nO]R
end j6x1JM
#nG?}*#
% Check normalization: Sh&n
DdF"
% -------------------- O#Y;s;)i"
if nargin==5 && ischar(nflag) u.W}{-+kp
isnorm = strcmpi(nflag,'norm'); 9w\yWxl
if ~isnorm b5WtL+Z
error('zernfun:normalization','Unrecognized normalization flag.') x?T.ItW:K
end \$; Q3t3
else pxC:VJ;
isnorm = false; /S9s%scAy
end f Cg"tckE
K(bid0Y
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% es]S]}JV
% Compute the Zernike Polynomials ErZYPl
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ,au-g)IFZ
?X{ul
% Determine the required powers of r: &oi*]:<FNe
% ----------------------------------- Gp*U2LB
m_abs = abs(m); um.s:vj$
rpowers = []; rqa?A}'
for j = 1:length(n) j;%RV)e
rpowers = [rpowers m_abs(j):2:n(j)]; )0F\[Jl}
end MPSoRA: h
rpowers = unique(rpowers); S#gIfb<D
xnz(hz6
% Pre-compute the values of r raised to the required powers, \~j6}4XS1.
% and compile them in a matrix: #"PI%&
% ----------------------------- %A 4F?/E
if rpowers(1)==0 #$/SM_X14C
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); o0SQJ1.a$
rpowern = cat(2,rpowern{:}); St9+/Md=jQ
rpowern = [ones(length_r,1) rpowern]; 9hoTxWpmy
else *hugQh]a
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Ekq&.qjYG"
rpowern = cat(2,rpowern{:}); f~bZTf
end &
QO9 /!
"Yh[-[,
% Compute the values of the polynomials: 5Z
(1&
% -------------------------------------- x[%z \
y = zeros(length_r,length(n)); w?u4-GT
for j = 1:length(n) gD$bn=
s = 0:(n(j)-m_abs(j))/2; /m>%=_nz
pows = n(j):-2:m_abs(j); t?bc$,S"\(
for k = length(s):-1:1 0LQ|J(u
p = (1-2*mod(s(k),2))* ... }vzZWe
prod(2:(n(j)-s(k)))/ ... p~X=<JM
prod(2:s(k))/ ... ^5BLuN6
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... IvJ;9d
prod(2:((n(j)+m_abs(j))/2-s(k))); xw1@&QwM
idx = (pows(k)==rpowers); [):&R1