切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11269阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 SHh(ujz,  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! v%Xe)D   
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 b.&YUg[#  
    function z = zernfun(n,m,r,theta,nflag) r MlNp?{_  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 7(Kc9sJC%%  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 0b 'R5I.M  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ":ycyN@g  
    %   unit circle.  N is a vector of positive integers (including 0), and EK_^#b  
    %   M is a vector with the same number of elements as N.  Each element J;dFmZOk  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) #4>F%_  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, dGe  
    %   and THETA is a vector of angles.  R and THETA must have the same ;U&VPIX$  
    %   length.  The output Z is a matrix with one column for every (N,M) X*Zv,Wm  
    %   pair, and one row for every (R,THETA) pair. 75f.^4/%  
    % F ReK  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike jYv !}  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), @$]h[   
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral D5x^O2  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, p20Nk$.  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized |1o]d$3m  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 4tjRju?  
    % p WHu[Fu  
    %   The Zernike functions are an orthogonal basis on the unit circle. 6%-2G@6d  
    %   They are used in disciplines such as astronomy, optics, and Ai;Pht9qi  
    %   optometry to describe functions on a circular domain. 65v'/m!ys  
    % #A!0KN;GC2  
    %   The following table lists the first 15 Zernike functions. G)Y!aX  
    % 566EMy|  
    %       n    m    Zernike function           Normalization iKwVYL  
    %       -------------------------------------------------- <3KrhhH  
    %       0    0    1                                 1 S%2qB;uw  
    %       1    1    r * cos(theta)                    2 ln5On_Wm  
    %       1   -1    r * sin(theta)                    2 =RA6p  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) c1[;a>  
    %       2    0    (2*r^2 - 1)                    sqrt(3) gQ~4udla.  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) @p;4g_F  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) l}x{.q7U l  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) \]K-<&f  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) UWHC]V?  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) H UjmJu6f{  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) bHCd|4e,2  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) W3b\LnUa  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 2r,fF<WQ  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) TR|; /yJ  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) e(Ve rd:c  
    %       -------------------------------------------------- #qWEyb2UZ  
    % qF ?S[Z;  
    %   Example 1: (_* a4xGF  
    % dx^3(#B  
    %       % Display the Zernike function Z(n=5,m=1) ;1KhUf;&F  
    %       x = -1:0.01:1; pmC@ fB  
    %       [X,Y] = meshgrid(x,x); /bWV `*  
    %       [theta,r] = cart2pol(X,Y); IX}l)t[:(  
    %       idx = r<=1; E] [DVY  
    %       z = nan(size(X)); 4{|lzo'&  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); _R]h]<TQ  
    %       figure x K/`XY  
    %       pcolor(x,x,z), shading interp k(MQ:9'|  
    %       axis square, colorbar +=R:n^r^,  
    %       title('Zernike function Z_5^1(r,\theta)') hRP0Djc  
    % O1 z>A  
    %   Example 2: Xe5J  
    % bnlL-]]9z  
    %       % Display the first 10 Zernike functions ` F)Iv:;y,  
    %       x = -1:0.01:1; IAfYlS#<yD  
    %       [X,Y] = meshgrid(x,x); |:\h3M  
    %       [theta,r] = cart2pol(X,Y); hm& ~6rB  
    %       idx = r<=1; .}tL:^'~o  
    %       z = nan(size(X)); Z5\6ca  
    %       n = [0  1  1  2  2  2  3  3  3  3]; "-a>Uj")%  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 8)i\d`  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; ?mV[TM{p  
    %       y = zernfun(n,m,r(idx),theta(idx)); ]SQ_*$`  
    %       figure('Units','normalized') T/H*Bo *=5  
    %       for k = 1:10 9DIGK\  
    %           z(idx) = y(:,k); r )T`?y  
    %           subplot(4,7,Nplot(k)) 3yTBkFI!  
    %           pcolor(x,x,z), shading interp { Z|C  
    %           set(gca,'XTick',[],'YTick',[]) ^3e l-dZ  
    %           axis square "PX~Yc  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) /( q*  
    %       end b c+' n  
    % 4o%hH  
    %   See also ZERNPOL, ZERNFUN2. 8'zwy d3  
    @FQ@* XD  
    %   Paul Fricker 11/13/2006 9U+^8,5  
    2-$R@ SVy  
    ^!A{ 4NV  
    % Check and prepare the inputs: b&LhydaJ  
    % ----------------------------- Va1|XQ<CL  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) "MyYu}AD  
        error('zernfun:NMvectors','N and M must be vectors.') 4-m}W;igu  
    end `aCcTs7~]p  
    QPBf++|  
    if length(n)~=length(m) C4b3ZcD2  
        error('zernfun:NMlength','N and M must be the same length.') 1f}Dza9  
    end V482V#BP  
    er97&5  
    n = n(:); 0py0zE6,,  
    m = m(:); Q 5Ln'La$  
    if any(mod(n-m,2)) 9{+B l NZ  
        error('zernfun:NMmultiplesof2', ... d@C93VYp  
              'All N and M must differ by multiples of 2 (including 0).') Z rvb %  
    end ]+J]}C]\d  
    tf>?;  
    if any(m>n) aa$+(  
        error('zernfun:MlessthanN', ... ]Fa VKC~3  
              'Each M must be less than or equal to its corresponding N.') `LNRl'Z m  
    end }APf^Ry  
    u\6:Txqq  
    if any( r>1 | r<0 ) `TAhW  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') .rwZ`MP  
    end T,k`WR  
    ).k=[@@V  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) lx%<oC+M  
        error('zernfun:RTHvector','R and THETA must be vectors.') H=B8'N  
    end [^aow-4z  
    ;X\,-pjv  
    r = r(:); ni9/7  
    theta = theta(:); x H\5T!  
    length_r = length(r); la f b^  
    if length_r~=length(theta) e5MX5 T^  
        error('zernfun:RTHlength', ... mhh8<BI  
              'The number of R- and THETA-values must be equal.') |',MgA  
    end Uh*V>HA#  
    N{f RZN  
    % Check normalization: mlX^5h'  
    % -------------------- ,LG6py&aT  
    if nargin==5 && ischar(nflag) ) _"`{2  
        isnorm = strcmpi(nflag,'norm'); X5=Dc+  
        if ~isnorm "(/.3`g  
            error('zernfun:normalization','Unrecognized normalization flag.') l,L#y 4#  
        end |]^OX$d  
    else q0$}MB6  
        isnorm = false; waldLb>7D  
    end 1)H+iN|im/  
    *uNa( yd  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 1Qv5m^>vj  
    % Compute the Zernike Polynomials ShFSBD\M#  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% sFMSH :5z  
    a3JG&6-  
    % Determine the required powers of r: :4/RB%)"  
    % ----------------------------------- rD fUTfv|Q  
    m_abs = abs(m); 9tWu>keu  
    rpowers = []; "\Z.YZUa\  
    for j = 1:length(n) X& pK#=  
        rpowers = [rpowers m_abs(j):2:n(j)]; zJOL\J'  
    end YrFB~z.V  
    rpowers = unique(rpowers); WM~@/J  
    89@gYA"Su  
    % Pre-compute the values of r raised to the required powers, )mS Aog<  
    % and compile them in a matrix: #1+1q{=Z<  
    % ----------------------------- G)G5eXXX  
    if rpowers(1)==0 ,)|nxX  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); hxGZ}zq*S  
        rpowern = cat(2,rpowern{:}); ):31!IC  
        rpowern = [ones(length_r,1) rpowern]; ymiOtA Z  
    else ilHZx2 k  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Rra<MOR  
        rpowern = cat(2,rpowern{:}); QJjqtOf>  
    end tY~EB.%  
    *xI0hFJIM  
    % Compute the values of the polynomials: s,)Z8H  
    % -------------------------------------- .k|8nNj  
    y = zeros(length_r,length(n)); \x5b=~/   
    for j = 1:length(n) N*gnwrP{  
        s = 0:(n(j)-m_abs(j))/2; 7='lu;=,  
        pows = n(j):-2:m_abs(j); 6=0"3%jn@  
        for k = length(s):-1:1 jTH,GF  
            p = (1-2*mod(s(k),2))* ... q ^Un,h64t  
                       prod(2:(n(j)-s(k)))/              ... >hQeu1 ~W  
                       prod(2:s(k))/                     ... 3dTz$s/[  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Ko|nF-r_  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 9@/ X;zO  
            idx = (pows(k)==rpowers); O4dJ> O  
            y(:,j) = y(:,j) + p*rpowern(:,idx); hRHqG  
        end ?A+-k4l  
         b*&AIiT  
        if isnorm -<h4I aM  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); =dSH8C"  
        end CB]#`|f  
    end c@>Tzk%?"  
    % END: Compute the Zernike Polynomials m-Z<zEQ  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% dj>zy  
    3|x*lmit  
    % Compute the Zernike functions: wc`UcGO  
    % ------------------------------ xkV(E!O  
    idx_pos = m>0; x]{}y_  
    idx_neg = m<0; Y@B0.5U2  
    8w /$!9[  
    z = y; 7uQiP&v  
    if any(idx_pos) -j9Wf=  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); .5*5S[  
    end c&me=WD  
    if any(idx_neg) Is57)(^.-  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); =z#6mSx|W  
    end ?gD^K,A Hd  
    X?whyD)vE@  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) eLFxGZZ  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. FJ-X~^  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated [~_)]"pU  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive BV;dV6`z  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, Z:eB9R#2y  
    %   and THETA is a vector of angles.  R and THETA must have the same k0r93 xa  
    %   length.  The output Z is a matrix with one column for every P-value, 28 Q\{Z.  
    %   and one row for every (R,THETA) pair. Uzh#z eZ`<  
    % a=_+8RyVQ  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike <tUl(q+ty  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) QrBb! .r  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) D *=.;Rq  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 <8)cr0~zy>  
    %   for all p. da ' 1 H  
    % qkXnpv  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 1FA:"0lO  
    %   Zernike functions (order N<=7).  In some disciplines it is rF?gKk  
    %   traditional to label the first 36 functions using a single mode ~}"5KX\=#  
    %   number P instead of separate numbers for the order N and azimuthal ^O6eFD U  
    %   frequency M. LUaOp "  
    % ,{6 Vf|?  
    %   Example: Fv_B(a  
    % R1 C}S  
    %       % Display the first 16 Zernike functions {<cL@W  
    %       x = -1:0.01:1; 7m$EZTw?  
    %       [X,Y] = meshgrid(x,x); h;[<4zw  
    %       [theta,r] = cart2pol(X,Y); <>v=jH|L  
    %       idx = r<=1; d HN"pNNs  
    %       p = 0:15; z!s1$5:"0  
    %       z = nan(size(X)); 0ZM#..3sI  
    %       y = zernfun2(p,r(idx),theta(idx)); _.%U}U  
    %       figure('Units','normalized') 3-/F]}0y6  
    %       for k = 1:length(p) '[Zgwz;z  
    %           z(idx) = y(:,k); z{H=;"+rh  
    %           subplot(4,4,k) J5!-<oJ/  
    %           pcolor(x,x,z), shading interp eC{St0  
    %           set(gca,'XTick',[],'YTick',[]) YMn*i<m  
    %           axis square WhT5NE9t  
    %           title(['Z_{' num2str(p(k)) '}']) x?7z15\  
    %       end CSwPL>tUV  
    % oNhCa>)/  
    %   See also ZERNPOL, ZERNFUN. Y 'y yrn}  
    g@zhhBtQ  
    %   Paul Fricker 11/13/2006 , Dab(  
    0^3n#7m;K  
    "IHFme@^  
    % Check and prepare the inputs: K+\2cf?bU  
    % ----------------------------- 6Vgxfic  
    if min(size(p))~=1 :i3 W U%  
        error('zernfun2:Pvector','Input P must be vector.') 8kLHQ0pmu  
    end i@`qam   
    2#(dfEAy  
    if any(p)>35 vw6>eT  
        error('zernfun2:P36', ... ~KQiNkA\|l  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... B3 |G&Kg  
               '(P = 0 to 35).']) BgT(~8'  
    end [*J?TNk  
    dY{qdQQ}  
    % Get the order and frequency corresonding to the function number: dv Vz#  
    % ---------------------------------------------------------------- mclV" ?  
    p = p(:); .uinv  
    n = ceil((-3+sqrt(9+8*p))/2); :b0|v`FU  
    m = 2*p - n.*(n+2); <Nk:C1Op}  
    bkuJN%  
    % Pass the inputs to the function ZERNFUN: Tb:6IC7="  
    % ---------------------------------------- @_$Un&eo  
    switch nargin l(9AwVoAR|  
        case 3 sd9b9?qiu  
            z = zernfun(n,m,r,theta); _+j#.o>  
        case 4 fg7  
            z = zernfun(n,m,r,theta,nflag); sd%m{P2  
        otherwise @'A0Lq+#  
            error('zernfun2:nargin','Incorrect number of inputs.') ?AO22N|j  
    end Wo(m:q(Om  
    ce [ Maw  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag)  |e<$  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. S['cX ~  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of /ykc`E?f  
    %   order N and frequency M, evaluated at R.  N is a vector of 1?yj<^"  
    %   positive integers (including 0), and M is a vector with the z%1e>`\E  
    %   same number of elements as N.  Each element k of M must be a mMvAA;  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) :`4F0  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is ~MP |L?my  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix Dlpmm2  
    %   with one column for every (N,M) pair, and one row for every yh/JHo;  
    %   element in R. ^i r)z@P?V  
    % sH>`eqY  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- =~"X/ >'  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is F2\&rC4v  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to (S4HU_,88  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 %NfXe[T  
    %   for all [n,m]. 5dhy80|g]  
    % #.!#"8{0_  
    %   The radial Zernike polynomials are the radial portion of the =av0a !  
    %   Zernike functions, which are an orthogonal basis on the unit XUKlgl!+.  
    %   circle.  The series representation of the radial Zernike =j{tFxJ  
    %   polynomials is `*elzW  
    % A*vuSQt(  
    %          (n-m)/2 RO|8NC<oj  
    %            __ MN8>I=p  
    %    m      \       s                                          n-2s Y mL{uV$  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r c1r+?q$f  
    %    n      s=0 _n/73Oh  
    % ^^zj4 }On?  
    %   The following table shows the first 12 polynomials. <f`n[QD2z  
    % 6)p8BUft  
    %       n    m    Zernike polynomial    Normalization xticC>  
    %       --------------------------------------------- LR{bNV[i  
    %       0    0    1                        sqrt(2) hv?T}E  
    %       1    1    r                           2 }6BXa  
    %       2    0    2*r^2 - 1                sqrt(6) V0rQtxE{F  
    %       2    2    r^2                      sqrt(6) I 44]W&  
    %       3    1    3*r^3 - 2*r              sqrt(8) j RcE241  
    %       3    3    r^3                      sqrt(8) (~%NRH<\  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) h _{f_GQ"  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) gS'7:UH,  
    %       4    4    r^4                      sqrt(10) C #iZAR  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) BWvM~no  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) ?AD- n6  
    %       5    5    r^5                      sqrt(12) $8i`h}AM  
    %       --------------------------------------------- <ch}]-_  
    % ;[UI ]?A%  
    %   Example: oH+PlL  
    % N mXRA(m  
    %       % Display three example Zernike radial polynomials Ws7fWK;  
    %       r = 0:0.01:1; 1 z~|SmP1  
    %       n = [3 2 5]; 7K "1^  
    %       m = [1 2 1]; Lui6;NY  
    %       z = zernpol(n,m,r); UWEegFq*  
    %       figure AT+ l%%   
    %       plot(r,z) deArH5&!  
    %       grid on Z5n-3h!+ED  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest')  Igmg&  
    % s+v9H10R  
    %   See also ZERNFUN, ZERNFUN2. [5p3:D  
    )DhE~  
    % A note on the algorithm. jrFPd  
    % ------------------------ k(pJVez  
    % The radial Zernike polynomials are computed using the series n@ SUu7o  
    % representation shown in the Help section above. For many special as]M%|/-I  
    % functions, direct evaluation using the series representation can Exqz$'(W9  
    % produce poor numerical results (floating point errors), because [8UZ5_1WL  
    % the summation often involves computing small differences between f|M^UHt8*  
    % large successive terms in the series. (In such cases, the functions $kxP5q%9  
    % are often evaluated using alternative methods such as recurrence Z^2SG_pD  
    % relations: see the Legendre functions, for example). For the Zernike Y,v9o  
    % polynomials, however, this problem does not arise, because the E"_{S.Wc  
    % polynomials are evaluated over the finite domain r = (0,1), and OblHN*  
    % because the coefficients for a given polynomial are generally all eOiH7{OA,  
    % of similar magnitude. 9#9bm  
    % ?g{[U0)  
    % ZERNPOL has been written using a vectorized implementation: multiple zN!yOlp5  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] g*My1+J!  
    % values can be passed as inputs) for a vector of points R.  To achieve >n3GvZ5%  
    % this vectorization most efficiently, the algorithm in ZERNPOL u&1M(~Ub=  
    % involves pre-determining all the powers p of R that are required to i a!!jK}  
    % compute the outputs, and then compiling the {R^p} into a single ?k4Hk$V  
    % matrix.  This avoids any redundant computation of the R^p, and -%Vh-;Ie(  
    % minimizes the sizes of certain intermediate variables. 'g,_lF  
    % L=qhb;  
    %   Paul Fricker 11/13/2006 AV2Jl"1)z  
    h6?^rS8U  
    &hkD"GGe  
    % Check and prepare the inputs: v~Dobk/n  
    % ----------------------------- 8)eRm{  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) s=-?kcoJ2d  
        error('zernpol:NMvectors','N and M must be vectors.') L!l?tM o  
    end DJgM>&Y6,  
    :*,!gf  
    if length(n)~=length(m) 6Aqv*<1=62  
        error('zernpol:NMlength','N and M must be the same length.') SF*mY=1  
    end Xe\}(O  
    72xf| s=  
    n = n(:); NR(rr.  
    m = m(:); ,"`3N2!Y}  
    length_n = length(n); {$[0YRNk u  
    Qx E%C  
    if any(mod(n-m,2)) SaF0JPm4z  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') hfLe<,  
    end g]HxPq+O  
    ~FYC'd  
    if any(m<0) flqr["czwK  
        error('zernpol:Mpositive','All M must be positive.') D9NRM;v  
    end G@D;_$a  
    0 fT*O  
    if any(m>n) ym6Emf]  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') /];N1  
    end ,e1c,}  
    KYB3n85 1  
    if any( r>1 | r<0 ) 2i!R>`  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') i: UN  
    end 1_LKqBgo  
    7mi*#X}  
    if ~any(size(r)==1) vFJ4`Gjw(  
        error('zernpol:Rvector','R must be a vector.') Ja*,ht(5  
    end mD +9/O!  
    $aTo9{M^  
    r = r(:); 8i`T?KB  
    length_r = length(r); XU}i<5  
    9mMQ  
    if nargin==4 l>`S<rGe  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); %1;Y`>  
        if ~isnorm otjT ?R2g'  
            error('zernpol:normalization','Unrecognized normalization flag.') u SZfim@Z7  
        end j^ 8Hjg  
    else \ :@!rM  
        isnorm = false; Z%.L d2Q{  
    end ?cz7s28a  
    }W " i{s/  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% >/C,1}p[  
    % Compute the Zernike Polynomials ]OKKR/:  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ^v;8 (eF  
    DPnrzV )  
    % Determine the required powers of r: .ejC#vB{KM  
    % ----------------------------------- su\Lxv  
    rpowers = []; O[1Q#  
    for j = 1:length(n) O>X!78]#K  
        rpowers = [rpowers m(j):2:n(j)]; uKIR$n"  
    end UeB St.  
    rpowers = unique(rpowers); :Oj!J&A  
    cru&nH*O^  
    % Pre-compute the values of r raised to the required powers, PR7bu%Y*eD  
    % and compile them in a matrix: 25xt*30M  
    % ----------------------------- {2g?+8L$Z  
    if rpowers(1)==0 u?g;fh6  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); #c<F,` gdi  
        rpowern = cat(2,rpowern{:}); Pa\yp?({q  
        rpowern = [ones(length_r,1) rpowern]; b7M)  
    else )J\ JAUj  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); M _Lj5`  
        rpowern = cat(2,rpowern{:}); JKYl  
    end p_g8d&]V  
    Fok`-U  
    % Compute the values of the polynomials: x?R1/iHv  
    % -------------------------------------- LGRhCOP:  
    z = zeros(length_r,length_n); /4*>.Nmb,f  
    for j = 1:length_n :VRQd}$Pi  
        s = 0:(n(j)-m(j))/2; z*^vdi0  
        pows = n(j):-2:m(j); BXl Y V"  
        for k = length(s):-1:1 %. IW H9P7  
            p = (1-2*mod(s(k),2))* ... rJd-e96  
                       prod(2:(n(j)-s(k)))/          ... c_ 1.  
                       prod(2:s(k))/                 ... J72kjj&C  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... .ddf'$6h  
                       prod(2:((n(j)+m(j))/2-s(k))); d{'u97GDc  
            idx = (pows(k)==rpowers); UUgc>   
            z(:,j) = z(:,j) + p*rpowern(:,idx); $kQQdF  
        end t_X=x`f  
         QN~9O^  
        if isnorm Qo["K}Ty  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); <^A1.o< GN  
        end Q@l.p-:^U  
    end LCpS}L;  
    XlxB%  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  +JMB98+l  
    o7*z@R"  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 bI,gNVN=  
    X;I;CZ={  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)