非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 #ZA
YP
function z = zernfun(n,m,r,theta,nflag) Hik[pVK@
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. v&n&i?
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N oWmla*nCKL
% and angular frequency M, evaluated at positions (R,THETA) on the z{\.3G
% unit circle. N is a vector of positive integers (including 0), and /Ny&;Y
% M is a vector with the same number of elements as N. Each element N;Bal/kd2
% k of M must be a positive integer, with possible values M(k) = -N(k) %:*HzYf
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, @d\F; o<
% and THETA is a vector of angles. R and THETA must have the same Bh?;\D'YC
% length. The output Z is a matrix with one column for every (N,M) K@m^QioMj
% pair, and one row for every (R,THETA) pair. tF|bxXsZ
% i7FEjjGtG
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike g5)VV"
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), PBmt.yF
% with delta(m,0) the Kronecker delta, is chosen so that the integral mX89^
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ~"k'T9QBY
% and theta=0 to theta=2*pi) is unity. For the non-normalized c+JlM1p@
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. !T*izMX}
% KVuv%?
% The Zernike functions are an orthogonal basis on the unit circle. Z>l>@wN m
% They are used in disciplines such as astronomy, optics, and ]G:xT v8
% optometry to describe functions on a circular domain. <mN3:G
% E'Bt1u
% The following table lists the first 15 Zernike functions. }1V&(#H2
% Nu'rn*Y_
% n m Zernike function Normalization o&]qjFo\m
% -------------------------------------------------- {%
P;O ?
% 0 0 1 1 ~J|0G6H
% 1 1 r * cos(theta) 2 yFSL7`p+
% 1 -1 r * sin(theta) 2 KjadX&JD
% 2 -2 r^2 * cos(2*theta) sqrt(6) p.G7Cs
% 2 0 (2*r^2 - 1) sqrt(3) >L%%B-
% 2 2 r^2 * sin(2*theta) sqrt(6) bm;4NA?Gg
% 3 -3 r^3 * cos(3*theta) sqrt(8) cQ`,:t#[
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) <\5{R@A*6
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 3r\QLIr L8
% 3 3 r^3 * sin(3*theta) sqrt(8) g=)@yZ3>v
% 4 -4 r^4 * cos(4*theta) sqrt(10) 5M*p1^ >
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) [Mi~4b
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5)
:9<5GF(
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) oW6.c]Vo
% 4 4 r^4 * sin(4*theta) sqrt(10) C.@TX
% -------------------------------------------------- >2a~hW|,
% zSu2B6YU}
% Example 1: qVfOf\x.e
% T4[eBO
% % Display the Zernike function Z(n=5,m=1) \21!NPXH2
% x = -1:0.01:1; _xJ&p$&
% [X,Y] = meshgrid(x,x); B4kIcHA
% [theta,r] = cart2pol(X,Y); E~B
LY{3:
% idx = r<=1; 8L:0Wp
% z = nan(size(X)); [K5afnq`
% z(idx) = zernfun(5,1,r(idx),theta(idx)); w^~,M3(+)1
% figure z8oSh t`+
% pcolor(x,x,z), shading interp {S?.bT%&
% axis square, colorbar %lBFj/B
% title('Zernike function Z_5^1(r,\theta)') ek9%Xk8
% '
{Q L`L
% Example 2: s
SDBl~g
% ?IK[]=!
% % Display the first 10 Zernike functions 8=d9*lm
% x = -1:0.01:1; U-@\V1;C
% [X,Y] = meshgrid(x,x); J? C"be=
% [theta,r] = cart2pol(X,Y); d/MMPge3
% idx = r<=1; k20tn
ew
% z = nan(size(X)); avQwbAh[
% n = [0 1 1 2 2 2 3 3 3 3]; LVSJK.B
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; '`S,d[~
% Nplot = [4 10 12 16 18 20 22 24 26 28]; j:0z/gHp$
% y = zernfun(n,m,r(idx),theta(idx)); |q?A8@\u
% figure('Units','normalized') @ Fu|et
% for k = 1:10 |.YL2\
% z(idx) = y(:,k); 37VSE@Z+
% subplot(4,7,Nplot(k)) j*GYYEY
% pcolor(x,x,z), shading interp S;Vj5
% set(gca,'XTick',[],'YTick',[]) |g~.]2az
% axis square dI`b AP;\
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) r'&VH]m
% end T!8,R{V]4
% ]\{EUx9
% See also ZERNPOL, ZERNFUN2. DUaj]V{_^
-0Ps.B
% Paul Fricker 11/13/2006 ?Pa5skqR
2vynz,^ET
)gZ yW
% Check and prepare the inputs: uKK+V6}!kj
% ----------------------------- yovC~
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) [j):2
error('zernfun:NMvectors','N and M must be vectors.') _di[PU=Vh
end aPRF
Ay[6rUO
if length(n)~=length(m) [5H#ay
error('zernfun:NMlength','N and M must be the same length.') bO9X;}\6
end uT_bA0jK
&4LrV+`$V
n = n(:);
KrB"2e+J
m = m(:); "5=Gu1
if any(mod(n-m,2)) nBR4j?':i
error('zernfun:NMmultiplesof2', ... MFRM M%`
'All N and M must differ by multiples of 2 (including 0).') q.*k
J/L
end Dc
U$sf*
L^dF
)y?
if any(m>n) O.i.<VD7
error('zernfun:MlessthanN', ... !Eu}ro.}
'Each M must be less than or equal to its corresponding N.') t~3!| @3i
end P9BShC5
5LR
k)@t
if any( r>1 | r<0 ) l4RZ!K*X_"
error('zernfun:Rlessthan1','All R must be between 0 and 1.') O|d"0P
end 09/Mg
n&Bgpt~
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) |Y4c+6@_
error('zernfun:RTHvector','R and THETA must be vectors.') voiWf?X
end }Ge$?ZFH
(cx
Q<5
r = r(:); 1
Qln|b8<
theta = theta(:); 0tK(:9S
length_r = length(r); =A{F&:+a]
if length_r~=length(theta) *jM]:GpyoU
error('zernfun:RTHlength', ... OQ&l/|{O0?
'The number of R- and THETA-values must be equal.') kZ$2Uss
end I|(r1.[K
Fsz;T;
% Check normalization: Qu|H_<8g
% -------------------- K|]/BjB/
if nargin==5 && ischar(nflag) \8g'v@$wG
isnorm = strcmpi(nflag,'norm'); u^, eHO
if ~isnorm :<hM@>eFn
error('zernfun:normalization','Unrecognized normalization flag.') shKTj5s?
end ^VOFkUp)
else =bgWUu\F
isnorm = false; ]lqLC
end Qco8m4n
tnE),
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Kl_(4kQE_
% Compute the Zernike Polynomials HAwdu1$8
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% H%pD9'q~
-!q^/ux
% Determine the required powers of r: VkFMr8@|
% ----------------------------------- >e>%AMzo[
m_abs = abs(m); w{mw?0
rpowers = []; Y
\ Gx|
for j = 1:length(n) gWQ(B
rpowers = [rpowers m_abs(j):2:n(j)]; tTOBKA89
end }k;wSp[3
rpowers = unique(rpowers); C cPOK2
galzk $D
% Pre-compute the values of r raised to the required powers, f*}}Az.4
% and compile them in a matrix: 1%ENgb:8
% ----------------------------- L>L IN 1A
if rpowers(1)==0 # ~Doz7~
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 0CO@@`~4
rpowern = cat(2,rpowern{:}); 1J([*)
rpowern = [ones(length_r,1) rpowern]; t'1g+g
else $Q"D>Qf{G
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); F42<9)I
rpowern = cat(2,rpowern{:}); ulE5lG0c
end gFqF&t
,?P< =M
% Compute the values of the polynomials: 4M#i_.`z
% -------------------------------------- C#-HWoSi
y = zeros(length_r,length(n)); ^hXm=r4ozR
for j = 1:length(n) k3K*{"z
s = 0:(n(j)-m_abs(j))/2; oqAO@<dL!
pows = n(j):-2:m_abs(j);
]VL} eHZ
for k = length(s):-1:1
&(oA/jFQ
p = (1-2*mod(s(k),2))* ... u@1 2:U$
prod(2:(n(j)-s(k)))/ ... `Fie'[F5,)
prod(2:s(k))/ ... C~egF=w
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... @^T~W^+
prod(2:((n(j)+m_abs(j))/2-s(k))); w?>f:2(=[
idx = (pows(k)==rpowers); l^Ob60)2
y(:,j) = y(:,j) + p*rpowern(:,idx); >$7x]f
end XLC9B3Jt
![;={d0
if isnorm ,Kl:4 Tv
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); }f;WYz 5
end /5)*epF+
end P0y DL:X[
% END: Compute the Zernike Polynomials 6@TU9AZS`
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% <o/!M6^:
!NH(EWER
% Compute the Zernike functions: -'Ay(h
% ------------------------------ \_WR:?l
idx_pos = m>0; h;,1BpbM
idx_neg = m<0; ^R=`<jx
$2\8Rn6'
z = y; 7mq&]4-G
if any(idx_pos) i,h 30J
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); aX`uF<c9
end LD ]-IX&L
if any(idx_neg) +N=HI1^54R
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); vof8bQ{&
end @4hzNi+
OKAU*}_
% EOF zernfun