非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 <NJ7mR}
function z = zernfun(n,m,r,theta,nflag) xVl90ak
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. jC\R8_
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N x<ENN>mW1
% and angular frequency M, evaluated at positions (R,THETA) on the /$9/,5|EA
% unit circle. N is a vector of positive integers (including 0), and DdSUB
% M is a vector with the same number of elements as N. Each element p{-1%jQ}]
% k of M must be a positive integer, with possible values M(k) = -N(k) ;m`I}h<
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, ]iz5VI@
% and THETA is a vector of angles. R and THETA must have the same (|6qN
% length. The output Z is a matrix with one column for every (N,M) j zPC9
% pair, and one row for every (R,THETA) pair. DV%tby
% Tu6he8Q-
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 10[~ki-1;
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), hM8G"b
% with delta(m,0) the Kronecker delta, is chosen so that the integral ^k)f oD
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, [ B (lJz
% and theta=0 to theta=2*pi) is unity. For the non-normalized U{ O\
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Q?Nzt;)!.
% Q z/pz_}
% The Zernike functions are an orthogonal basis on the unit circle. oOUVU}H
% They are used in disciplines such as astronomy, optics, and 2j"%}&
% optometry to describe functions on a circular domain. n]o+KT\
% *|=&MU*+
% The following table lists the first 15 Zernike functions. k~vmHb
% L>L4%?
% n m Zernike function Normalization r+lY9l
% -------------------------------------------------- olYSr .Q`
% 0 0 1 1 A?7%q^;E
% 1 1 r * cos(theta) 2 NA3yd^sr
% 1 -1 r * sin(theta) 2 ?%LD1 <ya
% 2 -2 r^2 * cos(2*theta) sqrt(6) T\WNT#My
% 2 0 (2*r^2 - 1) sqrt(3) 3oKqj>
% 2 2 r^2 * sin(2*theta) sqrt(6) *508PY
% 3 -3 r^3 * cos(3*theta) sqrt(8) q7)$WXe2LM
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) Maxnk3n
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) >`NM?KP s
% 3 3 r^3 * sin(3*theta) sqrt(8) .K7A!;
% 4 -4 r^4 * cos(4*theta) sqrt(10) h:GOcLYM@X
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 1L9^N
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) vj_oMmjKw
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) c:$:j,i}
% 4 4 r^4 * sin(4*theta) sqrt(10) 7"[lWC!As5
% -------------------------------------------------- q2f/#"k
% z)]EB6uRg
% Example 1: _Ng*K]0/E
% nRo`O
% % Display the Zernike function Z(n=5,m=1) ~/#?OLj(T
% x = -1:0.01:1; z`Q5J9_<cV
% [X,Y] = meshgrid(x,x); JA)gM
% [theta,r] = cart2pol(X,Y); K9P"ncMt
% idx = r<=1; P"]+6sm&es
% z = nan(size(X)); %-*vlNC )
% z(idx) = zernfun(5,1,r(idx),theta(idx)); \W\6m0-x
% figure H\b5]q%
% pcolor(x,x,z), shading interp QO?ha'Sl
% axis square, colorbar 05zHL j
% title('Zernike function Z_5^1(r,\theta)') bFVdv&
% Mb9q<4
% Example 2: Z8 # I
% $x)'_o}e
% % Display the first 10 Zernike functions m3XH3FgKz
% x = -1:0.01:1; )N6R#
% [X,Y] = meshgrid(x,x); Mu (Y6
% [theta,r] = cart2pol(X,Y); QbNv+Eu5
% idx = r<=1; |l?ALP_g
% z = nan(size(X)); PRLV1o1#
% n = [0 1 1 2 2 2 3 3 3 3]; XVLuhwi
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; _F*w
,b$8
% Nplot = [4 10 12 16 18 20 22 24 26 28]; ,G:4H%?
% y = zernfun(n,m,r(idx),theta(idx)); TZP{=v<
% figure('Units','normalized') N1Z8I:
% for k = 1:10 YH[_0!JY^
% z(idx) = y(:,k); O}`01A!u;
% subplot(4,7,Nplot(k)) 4l1=l#\S
% pcolor(x,x,z), shading interp Gzfb|9,q
% set(gca,'XTick',[],'YTick',[]) v\k,,sI
% axis square F@*lR(4C
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) pd;-z
% end WV @Tm$r
% xh6x
B|Z
% See also ZERNPOL, ZERNFUN2. %~;Q_#CR/K
[s34N+vU
% Paul Fricker 11/13/2006 __fR #D
6C0_. =7#
W@C56fCa
% Check and prepare the inputs: 0;H6b=
% ----------------------------- u20b+c4
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 6uXW`/lvX
error('zernfun:NMvectors','N and M must be vectors.') IX*S:7S[
end CU;nrd "
)[)]@e
if length(n)~=length(m) -5cH$]1\
error('zernfun:NMlength','N and M must be the same length.') R>U<8z"i
end D{4hNO
/C:'qhY,
n = n(:); 5Hm!5:ZB
m = m(:); `eWcp^|
if any(mod(n-m,2)) j~E +6f\
error('zernfun:NMmultiplesof2', ... ?iLd5 Z
'All N and M must differ by multiples of 2 (including 0).') ]18ygqt
end -h@0 1
H/3Zdj 9
if any(m>n) N39nJqo>"
error('zernfun:MlessthanN', ... D,n}Qf!GYk
'Each M must be less than or equal to its corresponding N.') BXo|CITso
end V0 F30rK
KYu(H[a
if any( r>1 | r<0 ) tvOAN|+F
error('zernfun:Rlessthan1','All R must be between 0 and 1.') w~U`+2a3
end Inc:t_
iW}l[g8sw!
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) J4}\V$ysN
error('zernfun:RTHvector','R and THETA must be vectors.') rH9}nL
end hcgc
=$^
)h0E$*
r = r(:); IOkC [([
theta = theta(:); S@g/Tn
length_r = length(r); 0c61q Q6
if length_r~=length(theta) o$ce1LO?|N
error('zernfun:RTHlength', ... uvDoo6'
'The number of R- and THETA-values must be equal.') gc@#O#K~h^
end @sHw+to|p)
~Ex.Yp8.
% Check normalization: &fSc{/
% -------------------- VMIX$#
if nargin==5 && ischar(nflag) $XQxWH|
isnorm = strcmpi(nflag,'norm'); = (gmd>N
if ~isnorm bjBeiKH
error('zernfun:normalization','Unrecognized normalization flag.') _`_IUuj$E
end 8q [c
else }=hoATs
isnorm = false; <i'u96
end I26gGp
dBMe`hM)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% vaRwhE:
% Compute the Zernike Polynomials .W :
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 9J7J/]7f
NVJ&C]H6
% Determine the required powers of r: +qUkMx
% ----------------------------------- RF5q5<0
m_abs = abs(m); 48CI8[T
rpowers = []; Z SRRlkU
for j = 1:length(n) %L
j0
rpowers = [rpowers m_abs(j):2:n(j)]; 9*|3E"Vr
end !p,hy`
rpowers = unique(rpowers); 5Y Q
#t@x6Vt
% Pre-compute the values of r raised to the required powers, M7DLs;sD
% and compile them in a matrix: %A62xnX
% ----------------------------- :@ E1Pun?
if rpowers(1)==0 4`6c28K0?
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 3_MS'&M
rpowern = cat(2,rpowern{:}); (.,'}+1
rpowern = [ones(length_r,1) rpowern]; Q+d.%qhc
else
_@!QY
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); z,bX.*.-
rpowern = cat(2,rpowern{:}); ,|.8nk"
end KR=d"t Qw
[vWkAJ'K
% Compute the values of the polynomials: 9$+^"ilk
% -------------------------------------- Y=a v8Y|`
y = zeros(length_r,length(n)); "%E-X:Il#
for j = 1:length(n) :4ja@~
s = 0:(n(j)-m_abs(j))/2; @fqV0l!GR
pows = n(j):-2:m_abs(j); ?+n&hHRg
for k = length(s):-1:1 -XVEV
p = (1-2*mod(s(k),2))* ... wb6 L?t
prod(2:(n(j)-s(k)))/ ... u
m:0y,
prod(2:s(k))/ ... i_=?eUq%q/
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... hza> jR
prod(2:((n(j)+m_abs(j))/2-s(k))); KQ4kZN
idx = (pows(k)==rpowers); xHJ8?bD p
y(:,j) = y(:,j) + p*rpowern(:,idx); .Iwur;/\
end :}@C9pqr2
dG\U)WA(p
if isnorm +Y>"/i.
N
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); h
`\$sT!Z
end @S}/g/+2
end 1Xy8|OFc[
% END: Compute the Zernike Polynomials 0]T.Lh$3
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% uu}`warW
ietRr!$.
% Compute the Zernike functions: t7w-TJvP
% ------------------------------ z\fW )/
idx_pos = m>0; YDQ:eebg(
idx_neg = m<0; `^7:7Wr]=
R_1)mPQ^P
z = y; C.J`8@a]?
if any(idx_pos) zL:&Q<
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); PiMKu|,3
end o84UFhm
if any(idx_neg) %G;0T;0L
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); )0#j\B
end (O\U /daB
h+,'B&=|_
% EOF zernfun