切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11341阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 Vu~mi%UH  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! dYf Vox;  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 )Cu"M #`  
    function z = zernfun(n,m,r,theta,nflag) JMO"(?  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. E*rDwTd  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N #_|b;cf  
    %   and angular frequency M, evaluated at positions (R,THETA) on the Jw;J$ u!d  
    %   unit circle.  N is a vector of positive integers (including 0), and 8M(N   
    %   M is a vector with the same number of elements as N.  Each element /c3 DltOdr  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) B-r9\fi,  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, `9b D%M  
    %   and THETA is a vector of angles.  R and THETA must have the same "F)7!e  
    %   length.  The output Z is a matrix with one column for every (N,M) E hd*  
    %   pair, and one row for every (R,THETA) pair. u) fbR  
    % $zxCv7  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike |D`Zi>lv  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), <<4G GO  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral o?/N4$&5l  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, N \A)P  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized b>I -4  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. i"sVk8+o!  
    % n# Z6d`  
    %   The Zernike functions are an orthogonal basis on the unit circle. Gh42qar`  
    %   They are used in disciplines such as astronomy, optics, and d3^LalAp  
    %   optometry to describe functions on a circular domain. 8l;0)`PU  
    % s^3t18m&1  
    %   The following table lists the first 15 Zernike functions.  {l_R0  
    % D[;6xJ  
    %       n    m    Zernike function           Normalization ]'2p"A0U  
    %       -------------------------------------------------- IxgnZX4N  
    %       0    0    1                                 1 _%Mu{Ni&  
    %       1    1    r * cos(theta)                    2 UmInAH4  
    %       1   -1    r * sin(theta)                    2 1`B5pcuI  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 4?72TBl]  
    %       2    0    (2*r^2 - 1)                    sqrt(3) dtm_~r7~  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) C+-~Gmrb(7  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) X+bLLW>&  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) /c__{?go  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ^>[DG]g  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) Dzc 4J66  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) %o+bO}/9  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) X3X~`~bAD  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 9r\8  !R  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) $0iz;!w  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) <~X=6  
    %       -------------------------------------------------- =NyzX&H6  
    % N-K.#5  
    %   Example 1: $T]1<3\G  
    % <fs2;  
    %       % Display the Zernike function Z(n=5,m=1) J>XaQfzwU  
    %       x = -1:0.01:1; LF*3Iw|v  
    %       [X,Y] = meshgrid(x,x); EzzzH(!j  
    %       [theta,r] = cart2pol(X,Y); p*NC nD*  
    %       idx = r<=1; r/3 !~??x  
    %       z = nan(size(X)); x1mxM#ql  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); +zz9u?2C`  
    %       figure 98o;_tU'  
    %       pcolor(x,x,z), shading interp Ldt7?Y(V(  
    %       axis square, colorbar &v3r#$Hj[  
    %       title('Zernike function Z_5^1(r,\theta)') #;}IHAR  
    % 7{az %I$h  
    %   Example 2: YfF&: "-NU  
    % gEU)UIJ  
    %       % Display the first 10 Zernike functions kDO6:sjR7  
    %       x = -1:0.01:1; 8q_3*++D  
    %       [X,Y] = meshgrid(x,x); }[ux4cd8Y  
    %       [theta,r] = cart2pol(X,Y); wrGd40  
    %       idx = r<=1; eQ9{J9)?  
    %       z = nan(size(X)); $`_(%tl  
    %       n = [0  1  1  2  2  2  3  3  3  3]; :Q$3P+6a  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; z?1G J8  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; R%3H"FU9w  
    %       y = zernfun(n,m,r(idx),theta(idx)); .9 nsW?  
    %       figure('Units','normalized') =p&6A^  
    %       for k = 1:10 8a. |CgI#h  
    %           z(idx) = y(:,k); jnH44  
    %           subplot(4,7,Nplot(k)) % ,~; w0  
    %           pcolor(x,x,z), shading interp !dVcnK1  
    %           set(gca,'XTick',[],'YTick',[]) K%Q^2"Eb0  
    %           axis square [ .dNX  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) D|9B1>A,m  
    %       end -b)p6>G-C  
    % z13"S(5D~  
    %   See also ZERNPOL, ZERNFUN2. VFA1p)n  
    -uO< ]  
    %   Paul Fricker 11/13/2006 1T}|c;fc  
    Of([z!'Gc  
    {} vl^b  
    % Check and prepare the inputs: f()^^+  
    % -----------------------------  4uU(t  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ~}4H=[Zu  
        error('zernfun:NMvectors','N and M must be vectors.') sPc\xY  
    end 0b*a2_|8k  
    \O7,CxD2  
    if length(n)~=length(m) @@ ZcW<Y"  
        error('zernfun:NMlength','N and M must be the same length.') ~Ycz(h'(  
    end <JZ=K5  
    qc*+;Wi+5  
    n = n(:); IwWo-WN7.  
    m = m(:); Q&M(wnl5  
    if any(mod(n-m,2)) +H ="5uO<  
        error('zernfun:NMmultiplesof2', ... ^D vaT9s  
              'All N and M must differ by multiples of 2 (including 0).') `4;<\VYCr  
    end bIWcL$}4Q  
    #/1A:ig  
    if any(m>n) to:hMd1T  
        error('zernfun:MlessthanN', ... ~xvQ?c ?-  
              'Each M must be less than or equal to its corresponding N.') :I<%.|8  
    end @Cqg 2  
    /!AdX0dx  
    if any( r>1 | r<0 ) lD C74g  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') `I m;@_J  
    end JmN;v|wF:c  
    XTZWbhNF  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) uLL#(bhDr  
        error('zernfun:RTHvector','R and THETA must be vectors.') \V: _Zs  
    end CB?.| )Xam  
    g3x192f  
    r = r(:); kO2im+y  
    theta = theta(:); o5Qlp5`:u  
    length_r = length(r); zh50]tX  
    if length_r~=length(theta) D0x+b2x^  
        error('zernfun:RTHlength', ... {bc<0  
              'The number of R- and THETA-values must be equal.') #3/l4`/j  
    end DB>>U>H-  
    vBM\W%T|d  
    % Check normalization: <w2Nh eM 3  
    % -------------------- sBSBDjk[  
    if nargin==5 && ischar(nflag) jl:O~UL6i  
        isnorm = strcmpi(nflag,'norm'); c#{<| .  
        if ~isnorm s|{K?s  
            error('zernfun:normalization','Unrecognized normalization flag.') -,4_ &V  
        end -F5U.6~`!  
    else 4] DmgOru%  
        isnorm = false; ao7|8[  
    end \ 2".Kb@=  
    |: nuT$(  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% AvV.faa  
    % Compute the Zernike Polynomials wlKL|N  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Pv/P<i^  
    F ^E(AE  
    % Determine the required powers of r: 9"V27"s  
    % ----------------------------------- pl"|NZz 7;  
    m_abs = abs(m); 5~.\rcr%  
    rpowers = []; y?5*K  
    for j = 1:length(n) H56e#:[$  
        rpowers = [rpowers m_abs(j):2:n(j)]; &ul9N)A  
    end SXod r}  
    rpowers = unique(rpowers); '`3-X];p  
    }#yRa Ip  
    % Pre-compute the values of r raised to the required powers, SULWPH5Pr  
    % and compile them in a matrix: YHKm{A ]  
    % ----------------------------- DI$z yj~3  
    if rpowers(1)==0 E+7S:B  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); C %EQ9Iq6r  
        rpowern = cat(2,rpowern{:}); n+!.0d}6  
        rpowern = [ones(length_r,1) rpowern]; T-5T`awf  
    else Y%&6qt G  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ;'<K}h  
        rpowern = cat(2,rpowern{:}); ;G},xDGO_m  
    end JBWiTUk  
    ".w*_1G7U  
    % Compute the values of the polynomials: ?T4%"0  
    % -------------------------------------- ( bBetX  
    y = zeros(length_r,length(n)); Dri1A%  
    for j = 1:length(n) FG8bP  
        s = 0:(n(j)-m_abs(j))/2; H%%#^rb^  
        pows = n(j):-2:m_abs(j); }]n&"=Zk-  
        for k = length(s):-1:1 C ]r$   
            p = (1-2*mod(s(k),2))* ... G: @gO2(D  
                       prod(2:(n(j)-s(k)))/              ... O-&n5  
                       prod(2:s(k))/                     ... slPFDBx  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... h hd n9n  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); kYR&t}jlCg  
            idx = (pows(k)==rpowers); @nZFw.  
            y(:,j) = y(:,j) + p*rpowern(:,idx); b1 KiO2 E  
        end }RoM N$r  
         fqZ!Bi  
        if isnorm PD/~@OsxU  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Gwvs~jN  
        end U}qW9X;o  
    end H-rf?R2  
    % END: Compute the Zernike Polynomials [tBIABr  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% *y0`P0V|8  
    +h9CcBd  
    % Compute the Zernike functions: ]X-ZRmB`  
    % ------------------------------ -}N{'S,Bp  
    idx_pos = m>0; R=9j+74U  
    idx_neg = m<0; h+Z|s  
    f0^s*V+  
    z = y; {)%B?75~  
    if any(idx_pos) u_ Q3v9  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Y.hrU*[J0  
    end S`*al<m  
    if any(idx_neg) :X$&g sT/,  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 4wBCs0NIm  
    end UPgZj\t%{  
    -m+2l`DLy  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) G;^iwxzhO  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. I{RktO;1  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated 2'x_zMV  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive y k#:.5H  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, .<j8>1  
    %   and THETA is a vector of angles.  R and THETA must have the same /`'50C j  
    %   length.  The output Z is a matrix with one column for every P-value, P,v}Au( UI  
    %   and one row for every (R,THETA) pair. gZPJZN/cpz  
    % w6E?TI  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike *PMql$  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) ]Wy V bIu  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) qGh rJ6R!  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 ;=n7 Z  
    %   for all p. tRXM8't   
    % 3^fZUldf  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 Y8AU<M  
    %   Zernike functions (order N<=7).  In some disciplines it is Q \{\u J x  
    %   traditional to label the first 36 functions using a single mode "~+K`*0r8  
    %   number P instead of separate numbers for the order N and azimuthal .&[nS<~`  
    %   frequency M. qM9GW`CKA  
    % A2vOI8  
    %   Example: j&&^PH9ZY  
    % .*zQ\P  
    %       % Display the first 16 Zernike functions F_-yT[i  
    %       x = -1:0.01:1; bh_ALu^CSX  
    %       [X,Y] = meshgrid(x,x); "Srp/g]a  
    %       [theta,r] = cart2pol(X,Y); |Jq/kmn  
    %       idx = r<=1; J*;t{M5  
    %       p = 0:15; +V'Z%;/  
    %       z = nan(size(X)); 5fLCmLM`  
    %       y = zernfun2(p,r(idx),theta(idx)); 2N]y)S_<V  
    %       figure('Units','normalized') =_UPZ]  
    %       for k = 1:length(p) -~aVt~{k/  
    %           z(idx) = y(:,k); #A))#sT'R  
    %           subplot(4,4,k) M9N|Ql  
    %           pcolor(x,x,z), shading interp 2+^#<Uok  
    %           set(gca,'XTick',[],'YTick',[]) |4'E&(BU-  
    %           axis square tl4;2m3w  
    %           title(['Z_{' num2str(p(k)) '}']) z^oi15D|{  
    %       end LD6fi  
    % Z@h]dU5%a  
    %   See also ZERNPOL, ZERNFUN. h?R-t*G?  
    QHQj6]  
    %   Paul Fricker 11/13/2006 g =%W"v  
    '2 )d9_ w  
    62zlO{ >rJ  
    % Check and prepare the inputs: 3oIoQj+D  
    % ----------------------------- w5[POo' 5  
    if min(size(p))~=1 pG4Hy$e  
        error('zernfun2:Pvector','Input P must be vector.') >a0;|;hp  
    end Cr[#D$::`  
    gr7W&2x7\  
    if any(p)>35 HD`%Ma Yhc  
        error('zernfun2:P36', ... \l[5U3{  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... "Fke(?X'  
               '(P = 0 to 35).']) j`#|z9`(pB  
    end Z$pR_dazU  
    D ,)~j6OG8  
    % Get the order and frequency corresonding to the function number: <iMkHch  
    % ---------------------------------------------------------------- `"bm Hs7  
    p = p(:); XRz.R/  
    n = ceil((-3+sqrt(9+8*p))/2); lz>5bR'  
    m = 2*p - n.*(n+2); G)putk@   
    ^6`R:SV4Gx  
    % Pass the inputs to the function ZERNFUN: x7/2e{p uu  
    % ---------------------------------------- # ._!.P  
    switch nargin cvC;QRx  
        case 3 @4Y>)wn&;  
            z = zernfun(n,m,r,theta); :l 7\7IT  
        case 4  q)%C|  
            z = zernfun(n,m,r,theta,nflag); a;lCr|*  
        otherwise PEBQ|k8g&  
            error('zernfun2:nargin','Incorrect number of inputs.')  CZuxH  
    end "W1q}4_  
    s$]I@;_  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) )pzXC  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. U} g%`<  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of ~PV>3c3l=  
    %   order N and frequency M, evaluated at R.  N is a vector of 5= F-^  
    %   positive integers (including 0), and M is a vector with the CZ0 {*K:  
    %   same number of elements as N.  Each element k of M must be a :<jf}[w!  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) W6*(Y  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is (* 2"dd  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix 1%+0OmV&  
    %   with one column for every (N,M) pair, and one row for every KYeA=  
    %   element in R. ?r@ZTuq#  
    % f.u{;W  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- ,CvU#ab8$  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is - Zw"o>  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to q6,xsO,+  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 6Z'zB&hM}  
    %   for all [n,m]. @hv9 =v+  
    % |, :(3Ml  
    %   The radial Zernike polynomials are the radial portion of the z,NHH):~  
    %   Zernike functions, which are an orthogonal basis on the unit UjfB+=7I{L  
    %   circle.  The series representation of the radial Zernike qH(2 0Z!  
    %   polynomials is o3`Z@-.G  
    % N1SRnJu<f  
    %          (n-m)/2 w"Z >F]YZ  
    %            __ 7eq;dNB@gq  
    %    m      \       s                                          n-2s A+dY~@*a  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r \myc n/e  
    %    n      s=0 C= Zuy^  
    % & v`kyc  
    %   The following table shows the first 12 polynomials. : Z.mM5  
    % y"]> Rr  
    %       n    m    Zernike polynomial    Normalization n^A=ar.  
    %       --------------------------------------------- Pgo5&SQb  
    %       0    0    1                        sqrt(2) kBT cN D|  
    %       1    1    r                           2 H11Wb(6Wu  
    %       2    0    2*r^2 - 1                sqrt(6) Kzmgy14o  
    %       2    2    r^2                      sqrt(6) ,iHt*SZ,*  
    %       3    1    3*r^3 - 2*r              sqrt(8) $M><K  
    %       3    3    r^3                      sqrt(8) %W c-.E R  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) xNONf4I:6J  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) Vt&I[osC  
    %       4    4    r^4                      sqrt(10) mEqV&M1;7l  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) D~ {)\;w^!  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) H1@"Yg8  
    %       5    5    r^5                      sqrt(12) 6?Wsg`9  
    %       --------------------------------------------- UC0 yrV  
    % cbIW>IbM  
    %   Example: ZzE&?  
    % T&h|sa(   
    %       % Display three example Zernike radial polynomials |[V(u  
    %       r = 0:0.01:1; IEA[]eik>  
    %       n = [3 2 5]; n[clYi@e  
    %       m = [1 2 1]; ^.4<#Qs  
    %       z = zernpol(n,m,r); <&NR3^Eq  
    %       figure [IYs4Y5  
    %       plot(r,z) S }|ea2  
    %       grid on 8=e \^Q+  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') b!N`@m=  
    % kfHLjr.  
    %   See also ZERNFUN, ZERNFUN2. *zx;81X=  
    i44`$ps  
    % A note on the algorithm. {k)MC)%  
    % ------------------------ .=NK^  
    % The radial Zernike polynomials are computed using the series c]O4l2nCL  
    % representation shown in the Help section above. For many special XR+2|o  
    % functions, direct evaluation using the series representation can ~jPe9  
    % produce poor numerical results (floating point errors), because 63~i6  
    % the summation often involves computing small differences between ) HmpVH  
    % large successive terms in the series. (In such cases, the functions &A`QPk8n  
    % are often evaluated using alternative methods such as recurrence )oNomsn  
    % relations: see the Legendre functions, for example). For the Zernike g"!B |  
    % polynomials, however, this problem does not arise, because the yf$7<gwX  
    % polynomials are evaluated over the finite domain r = (0,1), and 59)PJ0E  
    % because the coefficients for a given polynomial are generally all %URyGS]*  
    % of similar magnitude. 5n"'M&Ce  
    % "'8$hV65.p  
    % ZERNPOL has been written using a vectorized implementation: multiple )h/fr|  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] -}>Q0d)  
    % values can be passed as inputs) for a vector of points R.  To achieve ^WRr "3  
    % this vectorization most efficiently, the algorithm in ZERNPOL \t(/I=E8/  
    % involves pre-determining all the powers p of R that are required to *L!R4;ubE  
    % compute the outputs, and then compiling the {R^p} into a single )9*-Q%zc  
    % matrix.  This avoids any redundant computation of the R^p, and eC3ZK"oJ  
    % minimizes the sizes of certain intermediate variables. nqV7Db~  
    % %++q+pa  
    %   Paul Fricker 11/13/2006 S5XFYQ  
    $DQMN  
    Xh{EItk~oO  
    % Check and prepare the inputs:  mbd@4u  
    % ----------------------------- 4[(P>`Unx  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) s5[ Cr"q7B  
        error('zernpol:NMvectors','N and M must be vectors.') } o=g)  
    end ?>w%Lg{L}  
    Y/4B*>kl  
    if length(n)~=length(m) <?I~ +  
        error('zernpol:NMlength','N and M must be the same length.') TN0d fba[  
    end A/o=a#  
    #-{4 Jx  
    n = n(:); y)=Xo7j  
    m = m(:); _qGkTiP  
    length_n = length(n); u=4tW:W,  
    i#eb%9Mn  
    if any(mod(n-m,2)) ^y?? pp<1J  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') _[.`QW~  
    end 8'f:7KF  
    \_+d*hHF~  
    if any(m<0) *%MY. #  
        error('zernpol:Mpositive','All M must be positive.') jbG #__#_  
    end N (43+  
    g{i( 4DHm(  
    if any(m>n) oEfKL`]B  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') 6.k2,C4dT<  
    end /|>z7#?m^  
    P ^D\znvc  
    if any( r>1 | r<0 ) qEywExdiu  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') fghJj@ES  
    end yYW>)  
    pV1~REk$&  
    if ~any(size(r)==1) [aIQ/&Y  
        error('zernpol:Rvector','R must be a vector.') d#A.A<p*  
    end B>JRta;hj  
    7H=/FT?e]  
    r = r(:); @Gl=1  
    length_r = length(r); n}YRE`>D  
    b2ZKhS8  
    if nargin==4 p-;*K(#X  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); g<tr |n  
        if ~isnorm .)Du ;  
            error('zernpol:normalization','Unrecognized normalization flag.') pvcD 61,  
        end Bl(we/r  
    else Id9hC<8$dq  
        isnorm = false; VJm).>E3k  
    end MvQ0"-ZQ  
    g_-Y- .M  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Yz[^?M%(D  
    % Compute the Zernike Polynomials P0|V1,)  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% VBy=X\w]  
    2y,f  
    % Determine the required powers of r: 0<fN<iR`  
    % ----------------------------------- 3!#d&  
    rpowers = []; Kc0KCBd8];  
    for j = 1:length(n) 1_f(;WOg  
        rpowers = [rpowers m(j):2:n(j)]; p'!cGJL  
    end 3g)pLW  
    rpowers = unique(rpowers); Hh,q)(Wo  
    EW|bs#l  
    % Pre-compute the values of r raised to the required powers, PjDYdT[  
    % and compile them in a matrix: >DPC}@Wl  
    % ----------------------------- y&UcTE2;%(  
    if rpowers(1)==0 Q.@9"&)t  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); RYy_Ppn96f  
        rpowern = cat(2,rpowern{:}); ]w"r4HlCx  
        rpowern = [ones(length_r,1) rpowern]; ' FF@I^O  
    else zcy!YB  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); $O?&!8);,  
        rpowern = cat(2,rpowern{:}); ;3 O0O  
    end ]haZT\  
    4uwI=UUB  
    % Compute the values of the polynomials: %;~Vc{Xxt/  
    % -------------------------------------- UXvUU^k"v  
    z = zeros(length_r,length_n); H)ud?vB6  
    for j = 1:length_n I& DEF*  
        s = 0:(n(j)-m(j))/2; ]-&A )M6  
        pows = n(j):-2:m(j); RNiFLD%5  
        for k = length(s):-1:1 w9G (^jS6  
            p = (1-2*mod(s(k),2))* ... jEo)#j];`<  
                       prod(2:(n(j)-s(k)))/          ... JUHmIFjZ  
                       prod(2:s(k))/                 ... K)QM xn  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... 9'Le}`Gf  
                       prod(2:((n(j)+m(j))/2-s(k))); j KGfm9|zj  
            idx = (pows(k)==rpowers); I r]#u]Ap  
            z(:,j) = z(:,j) + p*rpowern(:,idx);  At @H  
        end Y{ijSOl3  
         g Y|f[M|  
        if isnorm UP'~D]J  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); Y23- Im  
        end *eK\W00  
    end 0}$Zr*|;Y  
    H`d595<=i;  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  ;E_Go&Vd  
    9^u}~e #(  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 %4wEAi$I  
    Ze!/b|`xI  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)