切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10923阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 '&B4Ccn<V  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! P/|1,S k  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 ~Q]5g7k=&  
    function z = zernfun(n,m,r,theta,nflag) #Ir?v  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 0~^RHb.NA8  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N m\0_1 #(  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ()l3X.t,$  
    %   unit circle.  N is a vector of positive integers (including 0), and E6-*2U)k+  
    %   M is a vector with the same number of elements as N.  Each element zZ8*a\  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) hyf ;f7`o  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, C\GP}:[T3  
    %   and THETA is a vector of angles.  R and THETA must have the same ebQgk Y=  
    %   length.  The output Z is a matrix with one column for every (N,M) oIj=ba(n1  
    %   pair, and one row for every (R,THETA) pair. q_h (D/g  
    % ;x/eb g  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike /GC&@y0yi  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), j/d}B_2  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral (jDz[b#OPz  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ?l^Xauk4Pj  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 7}UG&t{  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. daI_@kY"  
    % nOL"6%q  
    %   The Zernike functions are an orthogonal basis on the unit circle. *b. >  
    %   They are used in disciplines such as astronomy, optics, and ^0OP&s;"  
    %   optometry to describe functions on a circular domain. WqCC4R,-  
    % -9i7Ja  
    %   The following table lists the first 15 Zernike functions. nm,LKS7  
    % 4}uOut  
    %       n    m    Zernike function           Normalization |j`73@6   
    %       -------------------------------------------------- Km8aHc]O~  
    %       0    0    1                                 1 ~I@ls Ch  
    %       1    1    r * cos(theta)                    2 WI/tWj0  
    %       1   -1    r * sin(theta)                    2 TB! I  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 4?'vP'  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 6p)AQTh>  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) SXm%X(JU  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) MVsFi]-  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 9_?xAJ  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) Z,.Hz\y1D  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) ^!&6 =rb  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) Gs,:$Im  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) %'=*utOxy  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) c>B1cR  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) V}#X'~Ob  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) $s/E } X  
    %       -------------------------------------------------- =Xh)34q  
    % @owneSD qN  
    %   Example 1: S%i^`_=Q  
    % vt|R)[,  
    %       % Display the Zernike function Z(n=5,m=1) qq| 5[I.?  
    %       x = -1:0.01:1; MIrx,d  
    %       [X,Y] = meshgrid(x,x); 27e!KG[&  
    %       [theta,r] = cart2pol(X,Y); }aVZ\PDg  
    %       idx = r<=1; _5jT}I<k  
    %       z = nan(size(X)); lD/9:@q\V  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); Q!e560@  
    %       figure ?BnU0R_r]  
    %       pcolor(x,x,z), shading interp @Nek;xJ  
    %       axis square, colorbar KhHFJo[8sf  
    %       title('Zernike function Z_5^1(r,\theta)') "La;$7ds  
    % "]+g5G  
    %   Example 2: O,Q.-  
    % x;n3 Zr;(  
    %       % Display the first 10 Zernike functions g"!(@]L!@  
    %       x = -1:0.01:1; WTJ 0Q0U  
    %       [X,Y] = meshgrid(x,x); a[-!X7,IU  
    %       [theta,r] = cart2pol(X,Y); uZ!YGv0^  
    %       idx = r<=1; hy5[ L`B  
    %       z = nan(size(X)); -b(DPte  
    %       n = [0  1  1  2  2  2  3  3  3  3]; to'7o8Z  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; u5(8k_7  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; wGc7  
    %       y = zernfun(n,m,r(idx),theta(idx)); }Y~Dk]*  
    %       figure('Units','normalized') 7>JTQ CJ  
    %       for k = 1:10 ky2 bj}"p9  
    %           z(idx) = y(:,k); lK0ny>RB  
    %           subplot(4,7,Nplot(k)) .A2$C|a*  
    %           pcolor(x,x,z), shading interp b dgkA  
    %           set(gca,'XTick',[],'YTick',[]) e5|lz.o;  
    %           axis square fE-R(9K  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) !(GyOAb  
    %       end HZyA\FS  
    % ,QY$:f<  
    %   See also ZERNPOL, ZERNFUN2. 9P?0D  
    z0[XI7KK  
    %   Paul Fricker 11/13/2006 *NmY]  
    q< JCgO-F<  
    }aZuCe_  
    % Check and prepare the inputs: qs5>`skX  
    % ----------------------------- ~]?:v,UIm(  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) p)y5[HX  
        error('zernfun:NMvectors','N and M must be vectors.') +[7~:e}DZ  
    end >t+U`6xK  
    6hxZ5&;(*  
    if length(n)~=length(m) QNj]wm=mp  
        error('zernfun:NMlength','N and M must be the same length.') Kxr@!m"  
    end `2mddx8  
    s2; ~FK#/  
    n = n(:); $%y q[$^  
    m = m(:); =&}@GsXdo  
    if any(mod(n-m,2)) DX s an  
        error('zernfun:NMmultiplesof2', ... $|N6I  
              'All N and M must differ by multiples of 2 (including 0).') j#l=%H  
    end n|(lPbD  
    U"PcNQy  
    if any(m>n) -@pjEI  
        error('zernfun:MlessthanN', ... 2HE@!*z9H  
              'Each M must be less than or equal to its corresponding N.') X0/slOT  
    end 77P\:xc  
    i}-uK,^  
    if any( r>1 | r<0 ) (jT)o,IW&  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 6d-\+ t8  
    end xe@1H\7:  
    ul~ux$a  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) n5:uG'L\  
        error('zernfun:RTHvector','R and THETA must be vectors.') w'S,{GW  
    end dljE.peL  
    ^/f~\ #R  
    r = r(:); d>QFmsh-  
    theta = theta(:); @N=vmtLP  
    length_r = length(r); cU1o$NRx  
    if length_r~=length(theta) W__ArV2Z_  
        error('zernfun:RTHlength', ... kwI``7g8*e  
              'The number of R- and THETA-values must be equal.') 8Q'Emw |  
    end >Bt82ibN  
    HI.*xkBXl&  
    % Check normalization: u#0snw~)/  
    % -------------------- 02;jeZ#z  
    if nargin==5 && ischar(nflag) V=O52?8  
        isnorm = strcmpi(nflag,'norm'); A;oHji#*  
        if ~isnorm >B BV/C'9  
            error('zernfun:normalization','Unrecognized normalization flag.') AGlBvRX7e  
        end F.9}jd{  
    else ~tDYo)hH8  
        isnorm = false; SE'Im  
    end iC"iR\Qu  
    c+Q'4E0 |  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% }w0pi  
    % Compute the Zernike Polynomials &7L7|{18  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% CIudtY(:  
    MmF&jd-=  
    % Determine the required powers of r: 0SQ!lr  
    % ----------------------------------- *uvM6F$ut  
    m_abs = abs(m); 19 !?oeOU  
    rpowers = []; b^o4Q[  
    for j = 1:length(n) X1j8tg  
        rpowers = [rpowers m_abs(j):2:n(j)]; J'44j;5&  
    end a<cwrDZ  
    rpowers = unique(rpowers); o!a,r3  
    =sJ?]U  
    % Pre-compute the values of r raised to the required powers, \J'}CX*aQ  
    % and compile them in a matrix: T{{:p\<]_  
    % ----------------------------- tsXKhS;/w  
    if rpowers(1)==0 YQMWhC,8hy  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Kk3+ ]W<  
        rpowern = cat(2,rpowern{:}); m1$tf ^  
        rpowern = [ones(length_r,1) rpowern]; '&IGdB I  
    else DT-VxF6h  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); {6i|"5_j  
        rpowern = cat(2,rpowern{:});  X\^nV  
    end Et=Pr+Q{c  
    TnrBHaxbo4  
    % Compute the values of the polynomials: 2]!@)fio`  
    % -------------------------------------- D,#UJPyg  
    y = zeros(length_r,length(n)); @]3 \*&R}  
    for j = 1:length(n) NxP(&M(  
        s = 0:(n(j)-m_abs(j))/2; 5pQpzn =  
        pows = n(j):-2:m_abs(j); \Kl20?  
        for k = length(s):-1:1 }(EH5jZ'  
            p = (1-2*mod(s(k),2))* ... Ailq,  c  
                       prod(2:(n(j)-s(k)))/              ... gZ@+62  
                       prod(2:s(k))/                     ... 9+ 'i(q z  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... LrU8!r`a  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); c(Q@5@1y:  
            idx = (pows(k)==rpowers); ZW4f "  
            y(:,j) = y(:,j) + p*rpowern(:,idx); (0-Ol9[  
        end JT+ c7W7  
         qng ~,m  
        if isnorm HuhQ|~C+~  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); v~$ V  
        end \xYVnjG,  
    end >|f"EK}m!  
    % END: Compute the Zernike Polynomials 4XkI? l  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% *22Vc2[i;  
    Tzq@ic#!B  
    % Compute the Zernike functions: 05d0p|},  
    % ------------------------------ d |17G  
    idx_pos = m>0; ASqYA1p.  
    idx_neg = m<0; )+ .=z  
    z.Cj%N  
    z = y; lM-9J?j  
    if any(idx_pos) #g{R+#fm  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); xo>0j#  
    end C- .;m  
    if any(idx_neg) GJ9>i)+h;  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); <4}m:  
    end M @5&.  
    7;jD>wp 9D  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) 1wFu3fh@  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. Giyh( DL  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated ale'-V)5  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive }c/p;<  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, >Hf{Mx{<  
    %   and THETA is a vector of angles.  R and THETA must have the same 2KLMFI.F  
    %   length.  The output Z is a matrix with one column for every P-value, !se1W5ke#  
    %   and one row for every (R,THETA) pair. eiMP:  
    % >wW{ $  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike O= S[ n  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) Qs1p  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) |A&;m}(Mt  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 :nx+(xgw  
    %   for all p. wf8{v  
    % h/EIFve  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 u8-6s+ O  
    %   Zernike functions (order N<=7).  In some disciplines it is (*S<2HN5  
    %   traditional to label the first 36 functions using a single mode VYG@_fd!x  
    %   number P instead of separate numbers for the order N and azimuthal 7zu\tCWb  
    %   frequency M. s"jvO>[  
    % =gVMt  
    %   Example: j iKHx_9P  
    % #,#`< h!  
    %       % Display the first 16 Zernike functions l7-lXl"%q  
    %       x = -1:0.01:1; Z^kE]Ir#EV  
    %       [X,Y] = meshgrid(x,x); En\@d@j<u  
    %       [theta,r] = cart2pol(X,Y); Wga2).j6  
    %       idx = r<=1; DNGyEC  
    %       p = 0:15; Y 9$jJ1V  
    %       z = nan(size(X)); .W{CJh  
    %       y = zernfun2(p,r(idx),theta(idx)); eoiz]L  
    %       figure('Units','normalized') Spn[:u@  
    %       for k = 1:length(p) $1.-m{Bd  
    %           z(idx) = y(:,k); Z9vMz3^N  
    %           subplot(4,4,k) C.?^] Y  
    %           pcolor(x,x,z), shading interp m.D8@[y  
    %           set(gca,'XTick',[],'YTick',[]) WARiw[  
    %           axis square /a\i  
    %           title(['Z_{' num2str(p(k)) '}']) !)bZ.1o  
    %       end ?UsCSJ1V  
    % )LGVR 3#  
    %   See also ZERNPOL, ZERNFUN. OBWb0t5H?  
    {o~TbnC  
    %   Paul Fricker 11/13/2006 e]~p:  
    in>+D|q c  
    )U~|QdZ  
    % Check and prepare the inputs: i^DMnvV.  
    % ----------------------------- cKTjQJ#  
    if min(size(p))~=1 "z9C@T  
        error('zernfun2:Pvector','Input P must be vector.') 6{6hz 8  
    end ~cc }yDe  
    ."wF86jW|  
    if any(p)>35 ( v*xW.  
        error('zernfun2:P36', ... /ZyMD(_J  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... SZH`-xb!+5  
               '(P = 0 to 35).']) wN.S]  
    end u\ _yjv#  
    ]hV!lG1_  
    % Get the order and frequency corresonding to the function number: 7<su8*?  
    % ---------------------------------------------------------------- >ZJ]yhbhK  
    p = p(:); Hs)Cf)8u  
    n = ceil((-3+sqrt(9+8*p))/2); Nvd(?+c  
    m = 2*p - n.*(n+2); w=#'8ZuU  
    'LMj.#A<g  
    % Pass the inputs to the function ZERNFUN: @_kF&~  
    % ---------------------------------------- lk>\6o:  
    switch nargin N>(w+h+  
        case 3 ]In7%Qb  
            z = zernfun(n,m,r,theta); 'Q=;I  
        case 4 - VJx)g  
            z = zernfun(n,m,r,theta,nflag); jJIP $  
        otherwise D% jGK  
            error('zernfun2:nargin','Incorrect number of inputs.') IL|Q-e}Ol  
    end S]fu M%  
    $z[S0Cm  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) G:1d6[Q5{  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. PcC@}3  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of 0Agse)  
    %   order N and frequency M, evaluated at R.  N is a vector of 1dLc/, |  
    %   positive integers (including 0), and M is a vector with the %[|^7  
    %   same number of elements as N.  Each element k of M must be a &IN%2c  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) jMn,N9Mf  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is SAdT#0J  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix +51heuu[o  
    %   with one column for every (N,M) pair, and one row for every ~yJ2@2I  
    %   element in R. {A/^;X{N^  
    % ~)f^y!PMQ  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- bg Ux&3  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is zx%WV@O9  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to Rq}lW.<r  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 N[@H107`  
    %   for all [n,m]. *,JE[M  
    % :e7\z  
    %   The radial Zernike polynomials are the radial portion of the @[lMh9`  
    %   Zernike functions, which are an orthogonal basis on the unit ES4Wtc)&  
    %   circle.  The series representation of the radial Zernike '?Dxe B  
    %   polynomials is 'TS_Am?o  
    % ^7y t>  
    %          (n-m)/2 #VrIU8Q7'  
    %            __ ^m%#1Zd  
    %    m      \       s                                          n-2s #B5,k|"/,M  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r %]Z4b;W[Y  
    %    n      s=0 gl+d0<R zw  
    % K\2{SjL:B  
    %   The following table shows the first 12 polynomials. rD=D.1_   
    % 14 & KE3`  
    %       n    m    Zernike polynomial    Normalization f7a4E+}  
    %       --------------------------------------------- ?zBu` 7j  
    %       0    0    1                        sqrt(2) ]i#p2?BR  
    %       1    1    r                           2 YHEn{z7  
    %       2    0    2*r^2 - 1                sqrt(6) ! $$>D"  
    %       2    2    r^2                      sqrt(6) \I!mzo  
    %       3    1    3*r^3 - 2*r              sqrt(8) 1x|3|snz)  
    %       3    3    r^3                      sqrt(8) o=YOn&@%  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) \Sd8PGl*'  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) nq{/fD(2  
    %       4    4    r^4                      sqrt(10) L"&T3i  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) gNEcE9y 2  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) :rL%,o"  
    %       5    5    r^5                      sqrt(12) 7Jlkn=9e:  
    %       --------------------------------------------- ZwDL  
    % Q7uJ9Y{X  
    %   Example: OPNRBMD  
    % -F7F 6!s  
    %       % Display three example Zernike radial polynomials &q>8D'  
    %       r = 0:0.01:1; ]B3](TH"  
    %       n = [3 2 5];  ?CAU+/  
    %       m = [1 2 1]; hty'L61\z  
    %       z = zernpol(n,m,r); w!"L\QT  
    %       figure `0NU c)`  
    %       plot(r,z) ~^obf(N`  
    %       grid on _<c"/B  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') Xd+H()nR  
    % vR\E;V  
    %   See also ZERNFUN, ZERNFUN2. =R=V  
    eJo" Z  
    % A note on the algorithm. K+`GVmD  
    % ------------------------ ? uYO]!VC  
    % The radial Zernike polynomials are computed using the series 'u<e<hU  
    % representation shown in the Help section above. For many special sYS 8]JU  
    % functions, direct evaluation using the series representation can 6RbDc *  
    % produce poor numerical results (floating point errors), because w80X~  
    % the summation often involves computing small differences between Y_Gd_+oJ  
    % large successive terms in the series. (In such cases, the functions 9;L4\  
    % are often evaluated using alternative methods such as recurrence mEJ7e#  
    % relations: see the Legendre functions, for example). For the Zernike XKTDBaON  
    % polynomials, however, this problem does not arise, because the qO"QSSbZqQ  
    % polynomials are evaluated over the finite domain r = (0,1), and z}Cjk6z@  
    % because the coefficients for a given polynomial are generally all %f'pAc|#  
    % of similar magnitude. B!Wp=9)G  
    % tKt}]KHV  
    % ZERNPOL has been written using a vectorized implementation: multiple ytY\&m  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] 0i\>(o  
    % values can be passed as inputs) for a vector of points R.  To achieve 50MM05aC  
    % this vectorization most efficiently, the algorithm in ZERNPOL  [^ }$u[  
    % involves pre-determining all the powers p of R that are required to \s#~ %l  
    % compute the outputs, and then compiling the {R^p} into a single >2s6Y  
    % matrix.  This avoids any redundant computation of the R^p, and - jZAvb  
    % minimizes the sizes of certain intermediate variables. 7"Xy8]i{z  
    % 0HWSdf|w  
    %   Paul Fricker 11/13/2006 sc]#T)xG  
    \) dp  
    7SHllZ  
    % Check and prepare the inputs: 9CS" s_  
    % ----------------------------- 0Ye/  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) QT+kCN  
        error('zernpol:NMvectors','N and M must be vectors.') qA '^b~  
    end =u2~=t=LV  
    ~+'f[!^  
    if length(n)~=length(m) 1R}9k)JQ  
        error('zernpol:NMlength','N and M must be the same length.') G|jHic!  
    end ug]2wftlQ  
    -dovk?'Gj  
    n = n(:); LhAN( [  
    m = m(:); FC+-|1?C  
    length_n = length(n); fcdXj_u  
    D N!V".m`J  
    if any(mod(n-m,2)) qVh?%c1.Y  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') ,C6(  
    end i]<@  
    |WaWmp(pQ  
    if any(m<0) >aJmRA-C}  
        error('zernpol:Mpositive','All M must be positive.') O h e^{:  
    end `mcb0  
    ky|kg@n{  
    if any(m>n) )vq}$W!:9  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') #om Gj&  
    end eM!Oc$C8[  
    R>"pJbS;L  
    if any( r>1 | r<0 ) .*N,x(V  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') 9 5!xJdq  
    end #q:j~4)h  
    P6%qNR/ x  
    if ~any(size(r)==1) #^RIp>NN9  
        error('zernpol:Rvector','R must be a vector.') 1CJ1-]S(3  
    end O_ r-(wE4  
    dUB;ZB7  
    r = r(:); YN)qMI_ `A  
    length_r = length(r); oTvg%bX  
    /mJb$5=1  
    if nargin==4 Gu{1%bb#kL  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); \GHj_r  
        if ~isnorm c@,1?q1bv  
            error('zernpol:normalization','Unrecognized normalization flag.') .?#Q(eLj  
        end CHS}tCfos>  
    else L2Cb/!z`c  
        isnorm = false; rui 8x4c  
    end EiD41N  
    ipu~T)}  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% [|$C2Dhw=  
    % Compute the Zernike Polynomials kK6t|Yn&  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ,^CG\);  
    sz%]rN6$  
    % Determine the required powers of r: @[FO;4w  
    % ----------------------------------- UK'8cz9  
    rpowers = []; i*l =xW;bM  
    for j = 1:length(n) -c8h!.Q$  
        rpowers = [rpowers m(j):2:n(j)]; M.SF}U  
    end _$A?  
    rpowers = unique(rpowers); S9*68l  
    0 {d)f1  
    % Pre-compute the values of r raised to the required powers, UH&1QV  
    % and compile them in a matrix: 2 .Xx)(>  
    % ----------------------------- ~Q^.7.-T  
    if rpowers(1)==0 A~{vja0?  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Z[ !kEW  
        rpowern = cat(2,rpowern{:}); Jl\U~i  
        rpowern = [ones(length_r,1) rpowern]; I7h v'3u  
    else ;<o?JM  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); "8) %XSb  
        rpowern = cat(2,rpowern{:}); h+_:zWU  
    end  f^}n#  
    LCXWpU j~  
    % Compute the values of the polynomials: H9;IA>  
    % -------------------------------------- Ta3* G  
    z = zeros(length_r,length_n); C5KUIOg  
    for j = 1:length_n \0i0#Dt9  
        s = 0:(n(j)-m(j))/2; z2R?GQ5 A  
        pows = n(j):-2:m(j); %Ze7d&  
        for k = length(s):-1:1 D1ik*mDA=  
            p = (1-2*mod(s(k),2))* ... n[;)(  
                       prod(2:(n(j)-s(k)))/          ... Q4Wz5n1yp7  
                       prod(2:s(k))/                 ... jc32s}/H  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... lV./K;\T  
                       prod(2:((n(j)+m(j))/2-s(k))); )`<&~>qp  
            idx = (pows(k)==rpowers); RHd no C  
            z(:,j) = z(:,j) + p*rpowern(:,idx); -jNnx*  
        end "Qc4v@~)  
         3:w_49~: ~  
        if isnorm Ii3F|Vb G  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); giIPK&  
        end ~md06"AYJ  
    end f6( 1jx"  
    <}xgp[O  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  ki1j~q  
    9^nRwo  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 &rl;+QS  
    Zp9kxm'  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)