切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11238阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 s!>9od6^  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! }w-M .  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 lNtxM"G&  
    function z = zernfun(n,m,r,theta,nflag) \okv}x^L=Z  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. \NEk B&^n  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N c h((u(G  
    %   and angular frequency M, evaluated at positions (R,THETA) on the X%kJ3{  
    %   unit circle.  N is a vector of positive integers (including 0), and UUb0[oy  
    %   M is a vector with the same number of elements as N.  Each element m^3j|'mG  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) X.[bgvm~C  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, AE~@F4MK  
    %   and THETA is a vector of angles.  R and THETA must have the same 5 6.JB BZZ  
    %   length.  The output Z is a matrix with one column for every (N,M) B3u/ y  
    %   pair, and one row for every (R,THETA) pair. dNF_ T?E\  
    % q-uzu!  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike nZ (wfNk  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), lSO$Q]!9  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral w-xigm>{Z  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, f?ibyoXL  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized kE8s])Z,+  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. \i@R5v=zL  
    % 3}&3{kt  
    %   The Zernike functions are an orthogonal basis on the unit circle. VmN7a6a  
    %   They are used in disciplines such as astronomy, optics, and "PO8Q  
    %   optometry to describe functions on a circular domain. D6+3f #k6  
    % yNn=r;FZQ  
    %   The following table lists the first 15 Zernike functions. _nEVmz!zg  
    % }Nwp{["}]L  
    %       n    m    Zernike function           Normalization O>a1S*mxP  
    %       -------------------------------------------------- 3S2Alx!6  
    %       0    0    1                                 1 jYFmL_{  
    %       1    1    r * cos(theta)                    2 !MOsP<2  
    %       1   -1    r * sin(theta)                    2 96QY0  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) _)!*,\*`{  
    %       2    0    (2*r^2 - 1)                    sqrt(3) Dj'?12Onu=  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) &}7R\co3  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 0GeL">v,:=  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) VBF:MAA  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) fjl 9*  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) ->.9[|lIg  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) #N >66!/V  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) o$Nhx_F  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) W6i9mER-  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) g1"Z pD  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) d|7LCW+HW  
    %       -------------------------------------------------- Q^nf D  
    % i8-Y,&>V  
    %   Example 1: e@TwZ6l  
    % 9+s&|XS*  
    %       % Display the Zernike function Z(n=5,m=1) &z:bZH]DH  
    %       x = -1:0.01:1; 8F`8=L NO  
    %       [X,Y] = meshgrid(x,x); `BG>%#  
    %       [theta,r] = cart2pol(X,Y); X;GU#8W  
    %       idx = r<=1; 2;s[m3  
    %       z = nan(size(X)); JS%LJ _J  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); HiU)q  
    %       figure uL1lB@G@  
    %       pcolor(x,x,z), shading interp Zl3e=sg=  
    %       axis square, colorbar CM++:Y vJ  
    %       title('Zernike function Z_5^1(r,\theta)') t&q~ya/C  
    % oVn&L*H   
    %   Example 2: PsXCpyY!s  
    % LD5`9-  
    %       % Display the first 10 Zernike functions lN,a+S/'  
    %       x = -1:0.01:1; ~wv$uL8y  
    %       [X,Y] = meshgrid(x,x); q{f\_2[  
    %       [theta,r] = cart2pol(X,Y); F`x_W;\  
    %       idx = r<=1; /_{ZWLi(  
    %       z = nan(size(X)); !bYVLFp=\_  
    %       n = [0  1  1  2  2  2  3  3  3  3]; tp7$t#  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; tcv(<0  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; ckY#oRQ1  
    %       y = zernfun(n,m,r(idx),theta(idx)); B>!mD{N  
    %       figure('Units','normalized') a EIz,^3  
    %       for k = 1:10 $`/UG0rdC  
    %           z(idx) = y(:,k); ZCc23UwI  
    %           subplot(4,7,Nplot(k)) tUc<ExvP,  
    %           pcolor(x,x,z), shading interp *PL&CDu=)  
    %           set(gca,'XTick',[],'YTick',[]) 4* >j:1  
    %           axis square {4Kvr4)4  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) uyB2   
    %       end &,jUaC5I  
    % OQKg/1  
    %   See also ZERNPOL, ZERNFUN2. 37a1O>A  
    q mFbq<&  
    %   Paul Fricker 11/13/2006 2-8Dc4H]r  
    GF% /q:9  
    ~//E'V-  
    % Check and prepare the inputs: 4}/gV)  
    % ----------------------------- ppvlU H5;  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ly[d V.<P  
        error('zernfun:NMvectors','N and M must be vectors.') :dULsl$Nz  
    end NFEr ,n  
    jmaw-Rx  
    if length(n)~=length(m) UhS:tT]7  
        error('zernfun:NMlength','N and M must be the same length.') K&NH?  
    end 0LL0\ly]  
    : q%1Vi  
    n = n(:); 0q-lyVZ^X  
    m = m(:); }k%6X@  
    if any(mod(n-m,2)) ^ IuhHP  
        error('zernfun:NMmultiplesof2', ... FP=- jf/  
              'All N and M must differ by multiples of 2 (including 0).') xlwf @XW  
    end ZZo<0kDk  
    "D_:`@V(  
    if any(m>n) PLs`Ci|`  
        error('zernfun:MlessthanN', ... `Tyd1!~  
              'Each M must be less than or equal to its corresponding N.') 1Xm>nF~  
    end ROQ]sQpk  
    j;_  
    if any( r>1 | r<0 ) +z?gf*G_W'  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') U~7udUR  
    end ?VE'!DW  
    A~a 3bCX+"  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) P* 0kz@  
        error('zernfun:RTHvector','R and THETA must be vectors.') [y'blCb  
    end zE$HHY2ovi  
    ,v8e7T  
    r = r(:); H<i!C|AF  
    theta = theta(:); ZJ)Z  
    length_r = length(r); 2 >O[Y1  
    if length_r~=length(theta) 8Z\q)T  
        error('zernfun:RTHlength', ... [iq^'E  
              'The number of R- and THETA-values must be equal.') eQ/w Mr  
    end CA`V)XIsP  
    zc)nDyn  
    % Check normalization: zytN leyc  
    % -------------------- I P#vfM  
    if nargin==5 && ischar(nflag) ]YhQQH1> ]  
        isnorm = strcmpi(nflag,'norm'); vJ'22)n  
        if ~isnorm kGAgXtE  
            error('zernfun:normalization','Unrecognized normalization flag.') :K2 X~Ty  
        end 0O`Rh"O  
    else T2w4D !  
        isnorm = false; ff.k1%wr^  
    end Q34u>VkdQI  
    !vu-`u~86  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% j`.&4.7+  
    % Compute the Zernike Polynomials g*oX`K.  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% qF bj~ec  
    dNt^lx  
    % Determine the required powers of r: uVU)LOx  
    % ----------------------------------- hfY/)-60o  
    m_abs = abs(m); \os"w "  
    rpowers = []; r7R'beiH  
    for j = 1:length(n) 4_QfM}Fyp  
        rpowers = [rpowers m_abs(j):2:n(j)]; /fT"WaTEK  
    end SQK82 /  
    rpowers = unique(rpowers); #*CMf.OCh  
    O8\f]!O(  
    % Pre-compute the values of r raised to the required powers, &&C70+_po  
    % and compile them in a matrix: Q}B]b-c+E  
    % ----------------------------- 8h=m()Eu  
    if rpowers(1)==0 hizM}d-"C  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); )GG9[%H!  
        rpowern = cat(2,rpowern{:}); N80ogio_Tk  
        rpowern = [ones(length_r,1) rpowern]; )YEAk@h@  
    else +:jonN9d  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ya~;Of5  
        rpowern = cat(2,rpowern{:}); iKPgiL~  
    end KQ]sUNH  
    MhHh`WUGh  
    % Compute the values of the polynomials: sv% E5@  
    % -------------------------------------- @,sjM]  
    y = zeros(length_r,length(n)); lJFy(^KQG,  
    for j = 1:length(n) ^rq\kf*]  
        s = 0:(n(j)-m_abs(j))/2; `O2P&!9&  
        pows = n(j):-2:m_abs(j); Psx"[2iZm  
        for k = length(s):-1:1 \)uA:v  
            p = (1-2*mod(s(k),2))* ... a~LA&>@  
                       prod(2:(n(j)-s(k)))/              ... wMCg`rk  
                       prod(2:s(k))/                     ... nm<VcCc  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... |VaJ70\o  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); ]}b  
            idx = (pows(k)==rpowers); F5x*#/af  
            y(:,j) = y(:,j) + p*rpowern(:,idx); ^TZmc{i  
        end dcmf~+T  
         zL+t&P[\  
        if isnorm UJqh~s  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); em,1Yn?  
        end %(&ja_oO  
    end Yu" Q  
    % END: Compute the Zernike Polynomials /Lr`Aka5  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% <v -YMk@  
    *Lz'<=DLoW  
    % Compute the Zernike functions: "TaLvworb4  
    % ------------------------------ l+2NA4s  
    idx_pos = m>0; Z|*#)<| ~  
    idx_neg = m<0; ]3,9 ."^  
    L$O\fhO?  
    z = y; D ON.)F  
    if any(idx_pos) :X}SuM ?c  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); G.L}VpopM  
    end Z_bVCe{  
    if any(idx_neg) 0^V<,CAV  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); :t`W&z41  
    end +jF |8  
    S[$9_Jf  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) +Eb-|dM  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. V*s\~h)  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated jEQ_#KKYJ  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive f@ |[pT  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, d!T,fz/-.  
    %   and THETA is a vector of angles.  R and THETA must have the same X1P1 $RdkR  
    %   length.  The output Z is a matrix with one column for every P-value, b*S,8vE]  
    %   and one row for every (R,THETA) pair. 3,G|oR{D  
    % ,2Ed^!`  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike vA:ZR=)F  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) p#4*:rpq4  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) J&h59dm-  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 :9 (kU  
    %   for all p. 3C!|!N1Hn  
    % a'Cny((  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 |*J;X<Vm  
    %   Zernike functions (order N<=7).  In some disciplines it is _z%\53h  
    %   traditional to label the first 36 functions using a single mode g&p(XuN  
    %   number P instead of separate numbers for the order N and azimuthal p@Os  
    %   frequency M. q7aqbkwz}  
    % V}<<?_  
    %   Example: <75x@!  
    % LEnv/t6U  
    %       % Display the first 16 Zernike functions J|U~W kW  
    %       x = -1:0.01:1; \M.?*p  
    %       [X,Y] = meshgrid(x,x); 9.dZA9l@g  
    %       [theta,r] = cart2pol(X,Y); 9(HGe+R4o  
    %       idx = r<=1; 6@# =z  
    %       p = 0:15; 4IW90"uc  
    %       z = nan(size(X)); R6 ej  
    %       y = zernfun2(p,r(idx),theta(idx)); ts[8;<YD  
    %       figure('Units','normalized') tOnOzD  
    %       for k = 1:length(p) * wqR.n?  
    %           z(idx) = y(:,k); Yy/,I]F  
    %           subplot(4,4,k) /J-.K*xKt  
    %           pcolor(x,x,z), shading interp +ah4 K(+3  
    %           set(gca,'XTick',[],'YTick',[]) l8+1{6xP  
    %           axis square 7`L]aRS[  
    %           title(['Z_{' num2str(p(k)) '}']) D8w.r"ne  
    %       end c{D<+XM  
    % o\W>$$EXD  
    %   See also ZERNPOL, ZERNFUN. 7?k3jDK  
    ^o C>,%7  
    %   Paul Fricker 11/13/2006 ?6vGE~ MuR  
    l#ct;KZ  
    @fo(#i&  
    % Check and prepare the inputs: JM0+-,dl[  
    % ----------------------------- bSI*`Dc"!  
    if min(size(p))~=1 A`vRUl,c=  
        error('zernfun2:Pvector','Input P must be vector.') w(+ L&IBC  
    end 0#yH<h$   
    7w5l[a/  
    if any(p)>35 23=wz%tF  
        error('zernfun2:P36', ... /;q 3Q#  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... Gl{2"!mt=  
               '(P = 0 to 35).']) *}HDq(/>w  
    end `3K."/N6c  
    9P <1/W!  
    % Get the order and frequency corresonding to the function number: $i8oLSRV  
    % ---------------------------------------------------------------- P&c O2  
    p = p(:); HWou&<EK  
    n = ceil((-3+sqrt(9+8*p))/2); P%[ { 'u  
    m = 2*p - n.*(n+2); ;/23CFYM  
    _8`S&[E?  
    % Pass the inputs to the function ZERNFUN: Qd3ppJn  
    % ---------------------------------------- 7PfNPz<4+  
    switch nargin .gRb'  
        case 3 k+@ :+ RL  
            z = zernfun(n,m,r,theta); I )% bOK]  
        case 4 I)3LJK  
            z = zernfun(n,m,r,theta,nflag); fWg 3gRI  
        otherwise XI ><;#  
            error('zernfun2:nargin','Incorrect number of inputs.') .Q</0*sp  
    end d"ZsOq10D  
    z:Ru`  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) >^@~}]L  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. +WxD=|p;  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of 70R_O&f-k  
    %   order N and frequency M, evaluated at R.  N is a vector of ,k:>Z&:  
    %   positive integers (including 0), and M is a vector with the ^m.%FIwR  
    %   same number of elements as N.  Each element k of M must be a 8RZqoQDH  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) _>t6]?*  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is T}'*Gry  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix \3 rgwbF  
    %   with one column for every (N,M) pair, and one row for every ?%>S5,f_  
    %   element in R. w0.;86<MV  
    % L1SZutWD?  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- V1,4M_Z  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is %NhZTmWm  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to D|C!KF (  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 i Hcy,PBD  
    %   for all [n,m]. ]*rK;  
    % Jjx1`S*i  
    %   The radial Zernike polynomials are the radial portion of the #("E) P  
    %   Zernike functions, which are an orthogonal basis on the unit -{*QjP;K  
    %   circle.  The series representation of the radial Zernike uH} }z!  
    %   polynomials is YO.+ 06X  
    % kKVNE h Tp  
    %          (n-m)/2 |)ALJJ=+  
    %            __ ^7`gf  
    %    m      \       s                                          n-2s T' )l  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r FbD9G6h5  
    %    n      s=0 phcYQqR  
    % ?[X^'zz}  
    %   The following table shows the first 12 polynomials. EHq?yj;  
    % 2B=BRVtSs  
    %       n    m    Zernike polynomial    Normalization #/>OW2Ny  
    %       --------------------------------------------- {k<mN Y  
    %       0    0    1                        sqrt(2) A9y3B^\*  
    %       1    1    r                           2 Z~g7^,-t  
    %       2    0    2*r^2 - 1                sqrt(6) ?$H=n{iW  
    %       2    2    r^2                      sqrt(6) HAcC& s8  
    %       3    1    3*r^3 - 2*r              sqrt(8) p<(b^{EX  
    %       3    3    r^3                      sqrt(8) >s ;dooZ  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) Ij7[2V]c  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) gCI{g. [I!  
    %       4    4    r^4                      sqrt(10) h`MTB!o  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) ]6?6 k4@  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) I^gLiLUN*6  
    %       5    5    r^5                      sqrt(12) ";w"dfC^  
    %       --------------------------------------------- %Wg8dy|  
    % p,S/-ph  
    %   Example: zhC5%R &n/  
    % Wtj* Z.=:  
    %       % Display three example Zernike radial polynomials qZh}gu*>  
    %       r = 0:0.01:1; !='L`.  
    %       n = [3 2 5]; J@(69&  
    %       m = [1 2 1]; 1>_2 =^[  
    %       z = zernpol(n,m,r); G@6F<L~$1  
    %       figure &jE@i#  
    %       plot(r,z) .QM>^(o$Z  
    %       grid on ^[hx`Rh`t  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') bb`8YF+?'  
    % 9h0Y">}`b  
    %   See also ZERNFUN, ZERNFUN2. mq oB]H,  
    IFW"S fdZk  
    % A note on the algorithm. ]9$^=z%SE  
    % ------------------------ V\r2=ok@y  
    % The radial Zernike polynomials are computed using the series !s[[X5  
    % representation shown in the Help section above. For many special CdNb&Nyz  
    % functions, direct evaluation using the series representation can #HmZe98[%  
    % produce poor numerical results (floating point errors), because 9 EV.![  
    % the summation often involves computing small differences between bm-&H   
    % large successive terms in the series. (In such cases, the functions oYrg;]H  
    % are often evaluated using alternative methods such as recurrence /NFm6AA]  
    % relations: see the Legendre functions, for example). For the Zernike Kr@6m80E5  
    % polynomials, however, this problem does not arise, because the 7) Qq  
    % polynomials are evaluated over the finite domain r = (0,1), and :$&v4IW  
    % because the coefficients for a given polynomial are generally all t/(rB}  
    % of similar magnitude. wp>L}!  
    % Z3z"c B  
    % ZERNPOL has been written using a vectorized implementation: multiple )cBO_  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] d&t,^Hj  
    % values can be passed as inputs) for a vector of points R.  To achieve RfzYoBN  
    % this vectorization most efficiently, the algorithm in ZERNPOL 1R7w  
    % involves pre-determining all the powers p of R that are required to ~ qezr\$2  
    % compute the outputs, and then compiling the {R^p} into a single .CBb%onx  
    % matrix.  This avoids any redundant computation of the R^p, and &O^t]7  
    % minimizes the sizes of certain intermediate variables. )EIT>u=  
    % gE~LPwM  
    %   Paul Fricker 11/13/2006 XWq@47FR  
    V5bB$tL}3  
    *w[0uQL5Z  
    % Check and prepare the inputs: >|g(/@IO  
    % ----------------------------- x5eSPF1  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) v] hu5t  
        error('zernpol:NMvectors','N and M must be vectors.') wg]VG,  
    end #7p!xf^  
    -s9()K(vZG  
    if length(n)~=length(m) Ex@o&j\93  
        error('zernpol:NMlength','N and M must be the same length.') s-JS[  
    end ygYy [IZ  
    b r\_  
    n = n(:); 28LYGrB  
    m = m(:); ZFRKzPc {V  
    length_n = length(n); z^\-x9vL  
    CX#d9 8\b  
    if any(mod(n-m,2))  a S ,  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') 9G^gI}bY  
    end ;2l|0:  
    |Ju d*z  
    if any(m<0) 63Z^ k(  
        error('zernpol:Mpositive','All M must be positive.') r>B|JPm  
    end {fS~G2@1  
    PUErvL t  
    if any(m>n) cr~.],$Om  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') *g[MGyF "  
    end zQaD&2 q  
    l;}3J3/qq]  
    if any( r>1 | r<0 ) #O^%u,mJj  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') CI^s~M >  
    end 1G )I|v9R  
    zV8{|-2]No  
    if ~any(size(r)==1) K>G.HN@  
        error('zernpol:Rvector','R must be a vector.') %F13*hOu  
    end nB6 $*'  
    T}59m;I  
    r = r(:); ) (0=w4  
    length_r = length(r); bL/DjsZ@  
    iAZbh"I  
    if nargin==4 OxN[w|2\4  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); Ty}Y/jW  
        if ~isnorm `\J,%J  
            error('zernpol:normalization','Unrecognized normalization flag.') 4))N(m%3F  
        end ZP '0=  
    else -quJX;~  
        isnorm = false; t8M\  
    end 17-B'Gl!<%  
    WV}HN  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% LZ RP}|  
    % Compute the Zernike Polynomials Z?u}?-b1\H  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ^G4@cR.An  
    J T6}m  
    % Determine the required powers of r: YP>J'{?b*"  
    % ----------------------------------- +QP(ATdM  
    rpowers = []; d .%2QkL  
    for j = 1:length(n) p}8?#5`/w  
        rpowers = [rpowers m(j):2:n(j)]; ik1asj1  
    end g{CU1c)B  
    rpowers = unique(rpowers); v[V7$.%5Q  
    TG% w  
    % Pre-compute the values of r raised to the required powers, 8*Ty`G&v  
    % and compile them in a matrix: S_?sJwM  
    % ----------------------------- AG><5 }  
    if rpowers(1)==0 oX7_v_:J\R  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); xxA^A  
        rpowern = cat(2,rpowern{:}); 3^5h:OaT  
        rpowern = [ones(length_r,1) rpowern]; NS-0-o|4#  
    else =\G`g #  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 2#/23(Wc  
        rpowern = cat(2,rpowern{:}); I51I(QF=  
    end kU,g=+ 2J  
    ]- _ ma  
    % Compute the values of the polynomials: QseV\;z  
    % -------------------------------------- 2MmHO2  
    z = zeros(length_r,length_n); _0UE*l$t  
    for j = 1:length_n *W;;L_V"   
        s = 0:(n(j)-m(j))/2; NY|hE@{2.  
        pows = n(j):-2:m(j); d0R;|p''Z  
        for k = length(s):-1:1 4U~'Oa @p  
            p = (1-2*mod(s(k),2))* ... xT(0-o*  
                       prod(2:(n(j)-s(k)))/          ... 5zh6l+S[  
                       prod(2:s(k))/                 ... 2_ 1RJ  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... MJkusR/  
                       prod(2:((n(j)+m(j))/2-s(k))); suE8"v!sk  
            idx = (pows(k)==rpowers); e N v\ZR1  
            z(:,j) = z(:,j) + p*rpowern(:,idx); f@[)*([  
        end m#[9F']Z`  
         TO.STK`  
        if isnorm O(VWJ@EHn  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1));  A@9\Qd  
        end  q*94vo-  
    end /:ZwGyT;  
    hQ(^;QcSu  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  3hBYx@jTO  
    0Bp0ScE|FA  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 G7,v:dlK   
    35AH|U7b  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)