切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11215阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 0R HS]cN  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! C4QeDvpI  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 vT|`%~Be  
    function z = zernfun(n,m,r,theta,nflag) q:I$EpKf?Q  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. Wf#VA;d  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 3jjMY  
    %   and angular frequency M, evaluated at positions (R,THETA) on the lbQQtpEKO  
    %   unit circle.  N is a vector of positive integers (including 0), and O] Y v   
    %   M is a vector with the same number of elements as N.  Each element  qve ./  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) bu>qsU3  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, C|MQ $~5:w  
    %   and THETA is a vector of angles.  R and THETA must have the same hoa7   
    %   length.  The output Z is a matrix with one column for every (N,M)  Tc6:UF  
    %   pair, and one row for every (R,THETA) pair. #B8*gFZB  
    % e  ^Ds  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike b_TS<,  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Lxv6!?v|  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral B z^|SkEit  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, z-dFDtiA  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized F.tfgW(A@  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ,R?np9wc  
    % _]b3,% 2  
    %   The Zernike functions are an orthogonal basis on the unit circle. y%S1ZT ScO  
    %   They are used in disciplines such as astronomy, optics, and hfqqQ!,l!  
    %   optometry to describe functions on a circular domain. :_ROJ  
    % !v|FT. T`  
    %   The following table lists the first 15 Zernike functions. 5;\gJf  
    % Wy4$*$  
    %       n    m    Zernike function           Normalization  8"%RCE  
    %       -------------------------------------------------- %@Oma  
    %       0    0    1                                 1 w]u@G-e  
    %       1    1    r * cos(theta)                    2 OoBCY-gj*  
    %       1   -1    r * sin(theta)                    2 )[L^Dmd,  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) G,f-.  
    %       2    0    (2*r^2 - 1)                    sqrt(3) "T2"]u<52  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) Q8D&tJg  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) a2w T6jY  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 08s_v=cF  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) iCj2"T4TN  
    %       3    3    r^3 * sin(3*theta)             sqrt(8)  7I=C+  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) hB9Ee@  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) IvHh4DU3Z  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) [kV;[c}  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) /ASaB  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) \25/$Ae}c  
    %       -------------------------------------------------- p5\]5bb  
    % : i~W } r  
    %   Example 1: JIm4vS  
    % G(iJi  
    %       % Display the Zernike function Z(n=5,m=1) K+Y^>N4m  
    %       x = -1:0.01:1; gU&%J4O  
    %       [X,Y] = meshgrid(x,x); j}1zdA  
    %       [theta,r] = cart2pol(X,Y); D&G"BZx|  
    %       idx = r<=1; P 1XK*GZ  
    %       z = nan(size(X)); G{Yz8]m  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); lg :  
    %       figure 5cJ !"  
    %       pcolor(x,x,z), shading interp %" D%:   
    %       axis square, colorbar 6$U]9D  
    %       title('Zernike function Z_5^1(r,\theta)') t5B7I59  
    % <TGn=>u  
    %   Example 2: hR#-u1C  
    % e~l#4{w  
    %       % Display the first 10 Zernike functions h `}}  
    %       x = -1:0.01:1; VU`OO$,W  
    %       [X,Y] = meshgrid(x,x); oA] KE"T  
    %       [theta,r] = cart2pol(X,Y); sRSz}]  
    %       idx = r<=1; 7hP<f}xL  
    %       z = nan(size(X)); k%s_0 @  
    %       n = [0  1  1  2  2  2  3  3  3  3]; =m89z}Ot  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; #Z+i~t{e(  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; r;BT,jiX  
    %       y = zernfun(n,m,r(idx),theta(idx)); ~{hxR)x9  
    %       figure('Units','normalized') E>b2+;Jv  
    %       for k = 1:10 Zxr!:t7  
    %           z(idx) = y(:,k); Vd^g9  
    %           subplot(4,7,Nplot(k)) uvDzKMw~R  
    %           pcolor(x,x,z), shading interp fmqb` %  
    %           set(gca,'XTick',[],'YTick',[]) C+[%7vF1  
    %           axis square )J]9 lW&y  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) [^CV>RuO  
    %       end Y3.$G1{#0w  
    % q6Rr.A  
    %   See also ZERNPOL, ZERNFUN2. :Z`:nq.a  
    &|>S|  
    %   Paul Fricker 11/13/2006 m>USD? i  
    o#) {1<0vg  
    'c2W}$q  
    % Check and prepare the inputs: **9x?s  
    % ----------------------------- :NJ_n6E  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ]]7 mlQ  
        error('zernfun:NMvectors','N and M must be vectors.') j',W 64  
    end 1b=lpw 1}  
    W} WI; cI  
    if length(n)~=length(m) {3;AwhN0H  
        error('zernfun:NMlength','N and M must be the same length.') \(226^|j  
    end L,y6^J!  
    sn7AR88M;  
    n = n(:); QaUm1 i#  
    m = m(:); rpeJkG@+  
    if any(mod(n-m,2)) |,9JNm$  
        error('zernfun:NMmultiplesof2', ... >U F  
              'All N and M must differ by multiples of 2 (including 0).') X%yO5c\l2  
    end BA\/YW @  
    HhO".GA  
    if any(m>n) J>fQNW!{  
        error('zernfun:MlessthanN', ... ?X@fKAj  
              'Each M must be less than or equal to its corresponding N.') n>@oBG)!  
    end pv| Pm  
    YK|bXSA[  
    if any( r>1 | r<0 ) f0Bto/,>~  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') DNGvpKY@  
    end LYlDc;<A  
    /cc\fw1+  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) )  >S$Z  
        error('zernfun:RTHvector','R and THETA must be vectors.') gV&z2S~"  
    end .<kqJ|SVi  
    'SQG>F Uy  
    r = r(:); h iNEJ_f  
    theta = theta(:); l5L.5 $N  
    length_r = length(r); Bl=tYp|a  
    if length_r~=length(theta) lu Q~YjH  
        error('zernfun:RTHlength', ... ~]ZpA-*@Ut  
              'The number of R- and THETA-values must be equal.') wAnb Di{W  
    end =8U&[F  
    H'Yh2a`!o  
    % Check normalization: n3J53| %v  
    % -------------------- CI3XzH\IX*  
    if nargin==5 && ischar(nflag) J\ e+}{  
        isnorm = strcmpi(nflag,'norm'); Df3rV'/~  
        if ~isnorm R8.CC1Ix  
            error('zernfun:normalization','Unrecognized normalization flag.') Y@PI {;!  
        end 2NB L}x  
    else q^6+!&"  
        isnorm = false; V!)O6?l  
    end j0@[Br%7  
    42]pYm(jk3  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% fS^!ZPe1  
    % Compute the Zernike Polynomials Nj(" |`9"  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% IIq1\khh  
    Ivb 4P`{  
    % Determine the required powers of r: eb*#'\~'  
    % ----------------------------------- =y=cW1TG  
    m_abs = abs(m); bXS:x  
    rpowers = []; !UFfsNiXZ  
    for j = 1:length(n) z0/} !  
        rpowers = [rpowers m_abs(j):2:n(j)]; 9cJH"  
    end 5xii(\lC  
    rpowers = unique(rpowers); u,3#M ~  
    .!JVr"8  
    % Pre-compute the values of r raised to the required powers, PfkrOsV/m  
    % and compile them in a matrix: s3W@WH^.  
    % ----------------------------- eI@ q|"U  
    if rpowers(1)==0 u ElAnrm  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); [TNj;o5J  
        rpowern = cat(2,rpowern{:}); dx ;k`r$w  
        rpowern = [ones(length_r,1) rpowern]; S4=R^];l  
    else .L~Nq%g1  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); E= `6-H{  
        rpowern = cat(2,rpowern{:}); LdB($4,  
    end .Lfo)?zG  
    }x&N^Ky3c  
    % Compute the values of the polynomials: Z{H5oUk  
    % -------------------------------------- A'nq}t 3  
    y = zeros(length_r,length(n)); v!%5&: c3  
    for j = 1:length(n) 8XsguC  
        s = 0:(n(j)-m_abs(j))/2; ^Idle*+  
        pows = n(j):-2:m_abs(j); Vx @|O%  
        for k = length(s):-1:1 $y b4xU  
            p = (1-2*mod(s(k),2))* ... `%j~|i)4  
                       prod(2:(n(j)-s(k)))/              ... HI@syFaJM  
                       prod(2:s(k))/                     ... 5aa<qtUjH  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... GIAc?;zY  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); lSH6>0#B  
            idx = (pows(k)==rpowers); nVJPR  
            y(:,j) = y(:,j) + p*rpowern(:,idx); M?;y\vS?.  
        end 3"{.37Q  
         cCR+D.F  
        if isnorm a<fUI%_  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); #0Tq=:AE>  
        end /x1MPP>fu  
    end z,|{fKtY}  
    % END: Compute the Zernike Polynomials &hk-1y9QS  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ?Mee 6  
    is/scv<  
    % Compute the Zernike functions: {8I.`U  
    % ------------------------------ +b3^.wkq  
    idx_pos = m>0; h;jIYxj  
    idx_neg = m<0; Zc?ppO  
    *cO sv  
    z = y; SI8%M=P>  
    if any(idx_pos) mLL340c#\  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); _@R0x#p5M  
    end n-TQ*&h]3S  
    if any(idx_neg) ?)\a_ Tn  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); *FJZi Py  
    end K!KMQr`  
    #:d =)Qj0  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) ?^j^K-rx  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. PH{_ ,X  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated w eQYQrN  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive C4NTh}6t T  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, !|<=ZF2  
    %   and THETA is a vector of angles.  R and THETA must have the same Q%-di=  
    %   length.  The output Z is a matrix with one column for every P-value, {%#)5l)  
    %   and one row for every (R,THETA) pair. CZbYAxNl  
    % Rml2"9"`  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike !'Q -yoHKD  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) 4Yl;  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) FV,4pi  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 $fgf Y8  
    %   for all p. oc^Br~ Th  
    % @2*]"/)*0  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 4hw@yTUo  
    %   Zernike functions (order N<=7).  In some disciplines it is wR{'y)$  
    %   traditional to label the first 36 functions using a single mode -)~SM&  
    %   number P instead of separate numbers for the order N and azimuthal wd/< 8>2X  
    %   frequency M. eX_D/25 $  
    % b}Zd)2G  
    %   Example: q:<{% U$  
    % ujJI 1I  
    %       % Display the first 16 Zernike functions fQP{|+4  
    %       x = -1:0.01:1; }(<%`G6N  
    %       [X,Y] = meshgrid(x,x); G7=p Bf  
    %       [theta,r] = cart2pol(X,Y); D/=5tOy  
    %       idx = r<=1; M?/jkc.8H  
    %       p = 0:15; sN("+ sZ.n  
    %       z = nan(size(X)); >><.3  
    %       y = zernfun2(p,r(idx),theta(idx)); I=;+n-  
    %       figure('Units','normalized') 9 fMau  
    %       for k = 1:length(p) XO <y +  
    %           z(idx) = y(:,k); 1jX3ey~  
    %           subplot(4,4,k) 5Q=P4w!'  
    %           pcolor(x,x,z), shading interp & /4k7X}y  
    %           set(gca,'XTick',[],'YTick',[]) ,TRTRb;  
    %           axis square 5E0eyW  
    %           title(['Z_{' num2str(p(k)) '}']) z]3 `*/B  
    %       end Er k?}E  
    % #oJ5k8Wy  
    %   See also ZERNPOL, ZERNFUN. Od?qz1  
    oDcKtB+2  
    %   Paul Fricker 11/13/2006 W>b(Om_%  
    mm5$> [%U  
    + S4fGT  
    % Check and prepare the inputs: x3rlJs`$;  
    % ----------------------------- +ht| N[P  
    if min(size(p))~=1 +-B^Z On  
        error('zernfun2:Pvector','Input P must be vector.') e:AHVep j{  
    end ,&4qgp{)  
    r 6eb}z!i  
    if any(p)>35 "KJ%|pg_C  
        error('zernfun2:P36', ... }Yv\0\~'W|  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... ~}ET?Q7t  
               '(P = 0 to 35).']) >*$;  
    end ESoAz o,u  
    B4XZko(  
    % Get the order and frequency corresonding to the function number: mQ}ny(K'  
    % ---------------------------------------------------------------- kw`WH)+F  
    p = p(:); S^Au#1e   
    n = ceil((-3+sqrt(9+8*p))/2); +wW@'X  
    m = 2*p - n.*(n+2); _hG;.=sr  
    iE.-FZc  
    % Pass the inputs to the function ZERNFUN: na^sBq?\  
    % ---------------------------------------- {J5JYdK  
    switch nargin Vpp;\  
        case 3 t\v+ogbk)  
            z = zernfun(n,m,r,theta); +}Av-47`h  
        case 4 ,_ag;pt9)  
            z = zernfun(n,m,r,theta,nflag); \Ey~3&x9f  
        otherwise 7FO'{Qq  
            error('zernfun2:nargin','Incorrect number of inputs.') IHC1G1KW=A  
    end S-#q~X!yJ  
    =:+0)t=ao  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) hnWo|! ,O$  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. *^ \FIUd  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of YxJD_R  
    %   order N and frequency M, evaluated at R.  N is a vector of G%u9+XV1#  
    %   positive integers (including 0), and M is a vector with the `:M^8SYrL  
    %   same number of elements as N.  Each element k of M must be a +CM7C%U   
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) Eaad,VBtU  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is 7m5Co>NkuK  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix 1px\K8  
    %   with one column for every (N,M) pair, and one row for every b]gY~cbI8  
    %   element in R. F=)eLE{W  
    % j;K#]  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- zGc(Ef5`M6  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is Hoz56y  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to 0=v{RQ;W4  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 TJ6#P<M  
    %   for all [n,m]. ;+pOP |P=  
    % M,:Bl}  
    %   The radial Zernike polynomials are the radial portion of the VanB>|p6  
    %   Zernike functions, which are an orthogonal basis on the unit #l1Qe`  
    %   circle.  The series representation of the radial Zernike f"&Xr!b.h  
    %   polynomials is UBO^EVJ  
    % h7qBp300  
    %          (n-m)/2 |sgXh9%x<  
    %            __ e<gx~N9l'  
    %    m      \       s                                          n-2s ZI ?W5ISdg  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r PI5j"u UO  
    %    n      s=0 k5+]SG`]]  
    % j nwQV  
    %   The following table shows the first 12 polynomials. EEf ]u7  
    % $M"0BZQ?y!  
    %       n    m    Zernike polynomial    Normalization -+U/Lrt>8  
    %       --------------------------------------------- (*l2('e#@  
    %       0    0    1                        sqrt(2) < 8(?7QI  
    %       1    1    r                           2 =?0QqCjK)  
    %       2    0    2*r^2 - 1                sqrt(6) +lO'wa7|3  
    %       2    2    r^2                      sqrt(6) \Rk$t7ZH  
    %       3    1    3*r^3 - 2*r              sqrt(8) F@YV]u>N  
    %       3    3    r^3                      sqrt(8) %hT4qzJj  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) M:ai<TZ]  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) B!aK  
    %       4    4    r^4                      sqrt(10) L~FTr  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) n+2J Dq|?p  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) |Svk^mq  
    %       5    5    r^5                      sqrt(12) w!q&  
    %       --------------------------------------------- ]"x\=A  
    % =g@9>3~{!  
    %   Example: DOm-)zl{|x  
    % r!/0 j)  
    %       % Display three example Zernike radial polynomials 9Yw]Y5l  
    %       r = 0:0.01:1; P6?0r_Y  
    %       n = [3 2 5]; +p/1x'J  
    %       m = [1 2 1]; jv}=&d  
    %       z = zernpol(n,m,r); T'rjh"C&|  
    %       figure Q2~5"  
    %       plot(r,z) I 8Y*@$h  
    %       grid on ^GXEJU 7U  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') gAE!a Ky  
    % 9d[qh kPu)  
    %   See also ZERNFUN, ZERNFUN2. "xwM+AC  
    ,@Z_{,b  
    % A note on the algorithm. ^Qh-(u`  
    % ------------------------ E5x]zXy4  
    % The radial Zernike polynomials are computed using the series g_D-(J`IK,  
    % representation shown in the Help section above. For many special $@87?Ab  
    % functions, direct evaluation using the series representation can k0&lu B%  
    % produce poor numerical results (floating point errors), because {Jx7_T&  
    % the summation often involves computing small differences between }]h \/,  
    % large successive terms in the series. (In such cases, the functions <lld*IH  
    % are often evaluated using alternative methods such as recurrence <NQyP{p  
    % relations: see the Legendre functions, for example). For the Zernike WV_`1hZX  
    % polynomials, however, this problem does not arise, because the 3YTIH2z 5  
    % polynomials are evaluated over the finite domain r = (0,1), and  ~u/@rqF  
    % because the coefficients for a given polynomial are generally all .98.G4J>  
    % of similar magnitude. @P70W<<  
    % DPPS?~Pq  
    % ZERNPOL has been written using a vectorized implementation: multiple %aLCH\e  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] <:cpz* G4  
    % values can be passed as inputs) for a vector of points R.  To achieve G\mKCaI8  
    % this vectorization most efficiently, the algorithm in ZERNPOL iB{xvyR  
    % involves pre-determining all the powers p of R that are required to ^('cbl  
    % compute the outputs, and then compiling the {R^p} into a single )<LI%dQ:'l  
    % matrix.  This avoids any redundant computation of the R^p, and =K6c;  
    % minimizes the sizes of certain intermediate variables. -931'W[s,  
    % b{HhS6<K?  
    %   Paul Fricker 11/13/2006 y"R("j $  
    @W [{2d  
    PdM*5g4  
    % Check and prepare the inputs: aiR5/ ZD  
    % ----------------------------- 4I.1D2 1jA  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) $eCGez<E  
        error('zernpol:NMvectors','N and M must be vectors.') Y2vj}9jK  
    end {h^c  
    BQU/QoDY  
    if length(n)~=length(m) j1Fw U  
        error('zernpol:NMlength','N and M must be the same length.') fIEw(k<*  
    end r9 ;`  
    _@|fva&s,;  
    n = n(:); T:n< db,Px  
    m = m(:); zn[QvY  
    length_n = length(n); kC|Tubs(  
    #[,= 1Od(q  
    if any(mod(n-m,2)) :tlE`BIp  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') k1wr/G'H[  
    end r:#Q9EA  
    3*2I$e!Jt  
    if any(m<0) x.G"D(  
        error('zernpol:Mpositive','All M must be positive.') 4[_L=zD  
    end D@5s8xv  
    iha9!kf  
    if any(m>n) 8vO;IK]9b^  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') :Fo4O'UC  
    end -=>U =|  
    _]Ey Ea  
    if any( r>1 | r<0 ) p Dm K  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') 4n4j=x]@  
    end NJ>,'s  
    Zr9d&|$  
    if ~any(size(r)==1) $*i7?S@~-  
        error('zernpol:Rvector','R must be a vector.') cLHF9B5  
    end Dx0O'uwR  
    p}f-c  
    r = r(:); F1\`l{B,\  
    length_r = length(r); O*ImLR)i+s  
    :F9q>  
    if nargin==4 uNg'h/^NZ|  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); Q-jf8A]  
        if ~isnorm fIH#  
            error('zernpol:normalization','Unrecognized normalization flag.') P!9;} &  
        end 44Q9* ."  
    else )]tvwEo  
        isnorm = false; p}&Md-$1  
    end {GK(fBE  
    yT&x`3f"i  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% SF"#\{cjj  
    % Compute the Zernike Polynomials ">4PePt.n  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% [u7 vY@  
    xl3zy~;M  
    % Determine the required powers of r: P3i^S_  
    % ----------------------------------- }2h't.Z<u  
    rpowers = []; k06xz#pL  
    for j = 1:length(n) =MCNCV/<  
        rpowers = [rpowers m(j):2:n(j)]; %N>\:8 5?  
    end 64h_1,U  
    rpowers = unique(rpowers); 5St`@  
    =?HzNA$yh  
    % Pre-compute the values of r raised to the required powers, W  _J&M4  
    % and compile them in a matrix: C`3V=BB  
    % ----------------------------- |.Em_*VG  
    if rpowers(1)==0 m$,cH>E  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Ut]2`8-  
        rpowern = cat(2,rpowern{:}); sRi?]9JIl  
        rpowern = [ones(length_r,1) rpowern]; TF%3uH  
    else oPCrD.s  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); "havi,m  
        rpowern = cat(2,rpowern{:}); O@nqHZ  
    end phr2X*Z/)Y  
    IF5sqv  
    % Compute the values of the polynomials: Ap% d<\,Z  
    % -------------------------------------- Hw\([j*  
    z = zeros(length_r,length_n); <{E;s)hD?  
    for j = 1:length_n Q! Kn|mnN  
        s = 0:(n(j)-m(j))/2; ax4*xxU  
        pows = n(j):-2:m(j); s fyBw  
        for k = length(s):-1:1 O%fUm0O d  
            p = (1-2*mod(s(k),2))* ... J`YnT  
                       prod(2:(n(j)-s(k)))/          ... cES;bwQ  
                       prod(2:s(k))/                 ... bo&\3  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... I ca3  
                       prod(2:((n(j)+m(j))/2-s(k))); 09G9nu;&{  
            idx = (pows(k)==rpowers); r@olC7&  
            z(:,j) = z(:,j) + p*rpowern(:,idx); qx Wgt(Os  
        end w~4 z@/^"p  
         K?9WY ]Ot  
        if isnorm kmmL>fCV"M  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); :-w@^mli  
        end EbG_43SV  
    end 8oa)qaG1  
    ;0;3BH A  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  [nhLhl4S  
    ?(`nBlWQ5  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 \8C*O{w  
    4`^TC[  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)