切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11078阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 /SR^C$h'I  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! -_^c6!i  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 %Z]'!X  
    function z = zernfun(n,m,r,theta,nflag) le>Wm&E  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. qN| fEO>  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N L\aBc}  
    %   and angular frequency M, evaluated at positions (R,THETA) on the RuRt0Sd3  
    %   unit circle.  N is a vector of positive integers (including 0), and {bNXedZ\  
    %   M is a vector with the same number of elements as N.  Each element Cpl;vQ  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) !dcwq;Ea  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, <fO4{k*&  
    %   and THETA is a vector of angles.  R and THETA must have the same =!MY4&YX  
    %   length.  The output Z is a matrix with one column for every (N,M) ||B;o-  
    %   pair, and one row for every (R,THETA) pair. Wsj=!Obc  
    % -p,x&h,p  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike :VA.QrKW  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), bha?eN  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral ./-JbW  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, hZ\+FOx;  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ug&[ IL~lc  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Vd9@Dy  
    % W  0[N0c  
    %   The Zernike functions are an orthogonal basis on the unit circle. JqUADm  
    %   They are used in disciplines such as astronomy, optics, and UHO_Z  
    %   optometry to describe functions on a circular domain. VV_l$E$  
    % 9l/EjF^  
    %   The following table lists the first 15 Zernike functions. Q[ieaL6&  
    % v Y|!  
    %       n    m    Zernike function           Normalization &~DTZg Y  
    %       -------------------------------------------------- n]!fO 6kj  
    %       0    0    1                                 1 Ju` [m  
    %       1    1    r * cos(theta)                    2 &~sfYW  
    %       1   -1    r * sin(theta)                    2 [Gr*,nVvB  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) `cB_.&  
    %       2    0    (2*r^2 - 1)                    sqrt(3) xl4=++pu)  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) BNGe exs@  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 4jm K].  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) }odV_WT  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) _sHK*&W{CT  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) =v6*|  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) {y^3> 7  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) _Tm0x>EM  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) p#8W#t$  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) do/)~9[4\  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) d4^`}6@  
    %       -------------------------------------------------- V1=*z  
    % ztM<J+  
    %   Example 1: 'md0]R|  
    % Bd0eC#UGkQ  
    %       % Display the Zernike function Z(n=5,m=1) v[k5.\No  
    %       x = -1:0.01:1; 6iezLG 5  
    %       [X,Y] = meshgrid(x,x); Bn wzcl  
    %       [theta,r] = cart2pol(X,Y); 7hNb/O004  
    %       idx = r<=1; 7LZ^QC  
    %       z = nan(size(X)); B33$ u3d  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); ]hw-Bu\{  
    %       figure 0&Gl@4oZ"  
    %       pcolor(x,x,z), shading interp v@ C,RP9  
    %       axis square, colorbar MLVB^<qkeH  
    %       title('Zernike function Z_5^1(r,\theta)') |KCOfVh?|.  
    % f?fKhu2  
    %   Example 2: y f1CXldi  
    % V-O(U*]  
    %       % Display the first 10 Zernike functions VkmRh,T  
    %       x = -1:0.01:1; g;p)n  
    %       [X,Y] = meshgrid(x,x); MEZ{j%-a  
    %       [theta,r] = cart2pol(X,Y); KlxN~/gyik  
    %       idx = r<=1; `d]Z)*9  
    %       z = nan(size(X)); =5]n\"/  
    %       n = [0  1  1  2  2  2  3  3  3  3]; |!z2oO  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 8}p8r|d!ls  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; haSM=;uPM  
    %       y = zernfun(n,m,r(idx),theta(idx)); [`fI:ao|  
    %       figure('Units','normalized') Ibr%d2yS=  
    %       for k = 1:10 1hQN8!:<  
    %           z(idx) = y(:,k); \|= mD}N  
    %           subplot(4,7,Nplot(k)) Va<H U:<  
    %           pcolor(x,x,z), shading interp PBqy F  
    %           set(gca,'XTick',[],'YTick',[]) c-]fKj7  
    %           axis square &K%aw  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) %n?vJ#aX%  
    %       end [IX+M#mf  
    % :Hy]  
    %   See also ZERNPOL, ZERNFUN2. :> -1'HC  
    Ggm` ~fS  
    %   Paul Fricker 11/13/2006 Rs;15@t@  
    D9ufoa&ua  
    u</8w&!  
    % Check and prepare the inputs: ;<Qdy` T  
    % ----------------------------- D#rrW?-z  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) <lwuTow  
        error('zernfun:NMvectors','N and M must be vectors.') GlYly5F  
    end i2,U,>.  
    I2Ev~!  
    if length(n)~=length(m) w<wV]F*  
        error('zernfun:NMlength','N and M must be the same length.') qt?*MyfV  
    end }7/e8 O2  
    %CH6lY=lI  
    n = n(:); /Bv#) -5  
    m = m(:); HxwlYx,4  
    if any(mod(n-m,2)) HOW7cV'X  
        error('zernfun:NMmultiplesof2', ... fv'4f$U  
              'All N and M must differ by multiples of 2 (including 0).') fib#CY  
    end Utl t<  
    >%%=0!,yX  
    if any(m>n) gSi5u# }J  
        error('zernfun:MlessthanN', ... 70gg4BS  
              'Each M must be less than or equal to its corresponding N.') _9If/RD  
    end |7F*MP  
    +&v\ /  
    if any( r>1 | r<0 ) 7k8n@39?  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') )/t6" "  
    end |"7Pv skT  
    ,Qc.;4s-  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Fz"ff4Bx [  
        error('zernfun:RTHvector','R and THETA must be vectors.') kA?_%fi1  
    end L:f)i,S"5q  
    UZxmh sv  
    r = r(:); h[Tk; h  
    theta = theta(:); [/9(NUf  
    length_r = length(r); f=:.BR{  
    if length_r~=length(theta) m#@_8_ M  
        error('zernfun:RTHlength', ... c[(Pg%  
              'The number of R- and THETA-values must be equal.') 3(_!`0#F%  
    end !q /5yEJ>h  
    D'i6",Z>  
    % Check normalization: 'p}`i/  
    % -------------------- "Ai6<:ml  
    if nargin==5 && ischar(nflag) @z,*K_AKr  
        isnorm = strcmpi(nflag,'norm'); ~l4f{uOD>]  
        if ~isnorm Hcv u7uD  
            error('zernfun:normalization','Unrecognized normalization flag.') k=n "+  
        end KCqqJ}G  
    else #uvJH8)D  
        isnorm = false; +<(a}6dt  
    end Uene=Q6>  
    /=T"=bP#/  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 3:`XG2'  
    % Compute the Zernike Polynomials TipHV;|e  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% (F5ttQPh  
    sBW3{uK  
    % Determine the required powers of r: 9YKDguG  
    % ----------------------------------- X0i3_RVa  
    m_abs = abs(m); s (PY/{8  
    rpowers = []; aj7dH5SZl  
    for j = 1:length(n) _/x& <,3  
        rpowers = [rpowers m_abs(j):2:n(j)]; 8F6h#%9  
    end G}Z4g  
    rpowers = unique(rpowers); l)Mh2lA,=  
     rz  
    % Pre-compute the values of r raised to the required powers, sBjXE>_#)  
    % and compile them in a matrix: `BT^a =5  
    % ----------------------------- 6Z c)0I'  
    if rpowers(1)==0 :JV\){P  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); dr]&kqm  
        rpowern = cat(2,rpowern{:}); 19I:%$U3  
        rpowern = [ones(length_r,1) rpowern]; OgMI  
    else 2VYvO=KA  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); gxM[V>[  
        rpowern = cat(2,rpowern{:}); AzjMv6N   
    end SMO*({/  
    TA;,>f*  
    % Compute the values of the polynomials: Z3;=w%W  
    % -------------------------------------- i^/54  
    y = zeros(length_r,length(n)); qi\n]I  
    for j = 1:length(n) |5ONFd e"0  
        s = 0:(n(j)-m_abs(j))/2; P|}\/}{`  
        pows = n(j):-2:m_abs(j); $ I<|-]u  
        for k = length(s):-1:1 g!^J,e=  
            p = (1-2*mod(s(k),2))* ... <Cq"| A  
                       prod(2:(n(j)-s(k)))/              ... M,..Kw/ }~  
                       prod(2:s(k))/                     ... *.8:'F  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... OmNn,PCl8  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); qZsnd7o{l.  
            idx = (pows(k)==rpowers); +Jq`$+%C  
            y(:,j) = y(:,j) + p*rpowern(:,idx); \(u@F<s-  
        end (j N]OE^  
         <%?uYCD  
        if isnorm 6\`DlUn'*  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); !%62Phai  
        end I#c(J  
    end W-Of[X{<  
    % END: Compute the Zernike Polynomials s`vSt* ]K  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% U.Hdbmix  
    u}CG>^0C  
    % Compute the Zernike functions: f\'G`4e  
    % ------------------------------ V.j#E 1P  
    idx_pos = m>0; 8p,>y(o  
    idx_neg = m<0; P#bm uCOS  
    k~|ZO/X@l%  
    z = y; ` ,-STIh)  
    if any(idx_pos) Iaa|qJ4  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); <G9<"{  
    end 88YC0!Ni  
    if any(idx_neg) >w2f8tW`PP  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); swt\Ru6,  
    end bL MkPty  
    j4vB`Gr]  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) SZE`J:w  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. &m4f1ZO*  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated o{g@Nk'f  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive 8E=vR 8  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, C\/b~HU  
    %   and THETA is a vector of angles.  R and THETA must have the same ~QO< B2hS}  
    %   length.  The output Z is a matrix with one column for every P-value, CQ jV!d0j  
    %   and one row for every (R,THETA) pair. BiE$mM  
    % (I!1sE!?1  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike 8z0Hx  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) u{pTva  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) w4aiI2KFq  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 k3 /4Bt G/  
    %   for all p. a YR\<02  
    % @21u I{  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 %'kX"}N/  
    %   Zernike functions (order N<=7).  In some disciplines it is eoC<a"bJ>  
    %   traditional to label the first 36 functions using a single mode \Qp}|n1JY  
    %   number P instead of separate numbers for the order N and azimuthal 03] r*\  
    %   frequency M. #yX^?+Rc  
    % O/nqNQ?<  
    %   Example: ,A^L=+  
    % _3I3AG0e  
    %       % Display the first 16 Zernike functions EO"=\C,  
    %       x = -1:0.01:1; Zr5'TZ`$  
    %       [X,Y] = meshgrid(x,x); C\J@fpH(t`  
    %       [theta,r] = cart2pol(X,Y); Od*v5qT;$  
    %       idx = r<=1; Y0rf9  
    %       p = 0:15; H]U "+52h  
    %       z = nan(size(X)); rrbZ+*U  
    %       y = zernfun2(p,r(idx),theta(idx)); #%qqL  
    %       figure('Units','normalized') D . 77WjwQ  
    %       for k = 1:length(p) & 8zk3  
    %           z(idx) = y(:,k); XpOCQyFnM  
    %           subplot(4,4,k) l#mtND3  
    %           pcolor(x,x,z), shading interp vW9^hbdx  
    %           set(gca,'XTick',[],'YTick',[]) l;XUh9RF`A  
    %           axis square Q4#\{" N!  
    %           title(['Z_{' num2str(p(k)) '}']) uAChu]  
    %       end N4' .a=1  
    % h!ZZ2[  
    %   See also ZERNPOL, ZERNFUN. 7jhl0  
    F=:F>6`  
    %   Paul Fricker 11/13/2006 gq=0L:  
    Wnb)*pPP  
    >Zi|$@7t-  
    % Check and prepare the inputs:  'Dnq+  
    % ----------------------------- ='KPT1dW*  
    if min(size(p))~=1 TeOFAIU  
        error('zernfun2:Pvector','Input P must be vector.') UzXDi#Ky  
    end 4GEjW4E  
    H 3W_}f  
    if any(p)>35 6ch@Be5*  
        error('zernfun2:P36', ... W=q?tD~V  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... #d3[uF]OmW  
               '(P = 0 to 35).']) )kFme=;  
    end }ZxW"5oq  
    \?aOExG I  
    % Get the order and frequency corresonding to the function number: g8C+1G8  
    % ---------------------------------------------------------------- ~4l6unCI  
    p = p(:); .0 rJIO  
    n = ceil((-3+sqrt(9+8*p))/2); R9S7_u  
    m = 2*p - n.*(n+2); 3xc:Y> *`  
    ~Ay  
    % Pass the inputs to the function ZERNFUN: 4X<Oux*  
    % ---------------------------------------- 4KN0i  
    switch nargin O<gP)ZW~  
        case 3 f:)]FHPB1  
            z = zernfun(n,m,r,theta); F^4*|g  
        case 4 9 ?EY.}~  
            z = zernfun(n,m,r,theta,nflag); |j\eBCnH3  
        otherwise =f/avGX  
            error('zernfun2:nargin','Incorrect number of inputs.') 1Al=v  
    end jJiCF,m  
    w;yar=n  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) Ip1QVND  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. 6'3Ey'drH  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of CJ37:w{%*Y  
    %   order N and frequency M, evaluated at R.  N is a vector of B$iMU?B3  
    %   positive integers (including 0), and M is a vector with the zwF7DnW<<  
    %   same number of elements as N.  Each element k of M must be a oW` *FD  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) ^;v.ytO*  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is ]kU~#WT  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix ^^W`Lh%9  
    %   with one column for every (N,M) pair, and one row for every hNgcE,67q  
    %   element in R. mo97GW  
    % *;~{_Disz  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- *{L<BB^  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is #==[RNM%ap  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to av$\@4I  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1  Wl}G[>P  
    %   for all [n,m]. Tg}H < T  
    % .-gm"lB  
    %   The radial Zernike polynomials are the radial portion of the *>R/(Q  
    %   Zernike functions, which are an orthogonal basis on the unit c"jhbH!u4  
    %   circle.  The series representation of the radial Zernike l%3Q=c  
    %   polynomials is @5 POgQ8  
    % ln_EL?V  
    %          (n-m)/2 ./z"P]$  
    %            __ FZLzu  
    %    m      \       s                                          n-2s *AJezhR  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r 3n=cw2FG  
    %    n      s=0 ^!{ oAzy9  
    % QyBK*uNdV  
    %   The following table shows the first 12 polynomials. $(!D/bvJ  
    % YV>VA<c  
    %       n    m    Zernike polynomial    Normalization ~S~x@&yR  
    %       --------------------------------------------- (,Zz&3 AV  
    %       0    0    1                        sqrt(2) wLg:YM"  
    %       1    1    r                           2 RaJ }>e  
    %       2    0    2*r^2 - 1                sqrt(6) v:so85(S<  
    %       2    2    r^2                      sqrt(6) 7cQHRM+1  
    %       3    1    3*r^3 - 2*r              sqrt(8) _a:!U^4  
    %       3    3    r^3                      sqrt(8) :D)&>{?  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) ocuNrkZ  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) >H]|A<9u(  
    %       4    4    r^4                      sqrt(10) gEe W1:AB  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) X_Of k  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) {e!uvz,e  
    %       5    5    r^5                      sqrt(12) D=Yag!1  
    %       --------------------------------------------- ~N+/ZVo&y  
    % 2&G1Q'!  
    %   Example: [sh"?  
    % f%{ ag  
    %       % Display three example Zernike radial polynomials &t@6qi`d  
    %       r = 0:0.01:1; ~dX@5+Gd  
    %       n = [3 2 5]; clU3#8P!=  
    %       m = [1 2 1]; k kuQ"^<J  
    %       z = zernpol(n,m,r); &B>uPZ]  
    %       figure [n@!=T  
    %       plot(r,z) =Z$=-\<x0.  
    %       grid on Eo3Aak o  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') wh[:wE]eX  
    % F<'l'AsC-  
    %   See also ZERNFUN, ZERNFUN2. M#gGD-  
    dzC&7 9$  
    % A note on the algorithm. kJ5?BdvM&  
    % ------------------------ lr= !:D=K  
    % The radial Zernike polynomials are computed using the series M`,Z#)Af  
    % representation shown in the Help section above. For many special . I9] `Q  
    % functions, direct evaluation using the series representation can dJ"xW; "  
    % produce poor numerical results (floating point errors), because P+cFp7nC  
    % the summation often involves computing small differences between h[v3G<C~r  
    % large successive terms in the series. (In such cases, the functions I3y4O^?  
    % are often evaluated using alternative methods such as recurrence {UVm0AeUq  
    % relations: see the Legendre functions, for example). For the Zernike 7)5$1  
    % polynomials, however, this problem does not arise, because the zk_hDhg&'  
    % polynomials are evaluated over the finite domain r = (0,1), and $oBZe>s .  
    % because the coefficients for a given polynomial are generally all | 3/p8  
    % of similar magnitude. e, 3(i!47  
    % >Ki]8 &  
    % ZERNPOL has been written using a vectorized implementation: multiple M:q ;z(  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] Q)i`.mHfFI  
    % values can be passed as inputs) for a vector of points R.  To achieve @%B!$\]  
    % this vectorization most efficiently, the algorithm in ZERNPOL D0_x|a  
    % involves pre-determining all the powers p of R that are required to vrEaNT$J-  
    % compute the outputs, and then compiling the {R^p} into a single C36.UZoc  
    % matrix.  This avoids any redundant computation of the R^p, and K*i1! "w  
    % minimizes the sizes of certain intermediate variables. rH_:7#.E  
    % 8$xKg3-3M  
    %   Paul Fricker 11/13/2006 hx;kEJ  
    jtOsb91c}  
    YD>>YaH_3@  
    % Check and prepare the inputs: Nk~dfY<s  
    % ----------------------------- K@u."eaD  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) |ssIUJ  
        error('zernpol:NMvectors','N and M must be vectors.') *"bp}3$^^  
    end OU5|m%CmO  
    Zkep7L   
    if length(n)~=length(m) CoN/L`.SN  
        error('zernpol:NMlength','N and M must be the same length.') F!cAaL1  
    end KO;61y:  
    x;]{ 8#-z  
    n = n(:); = y,avR  
    m = m(:); ;Z~.54Pf{d  
    length_n = length(n); 0mi[|~x=  
    ]O ` [v  
    if any(mod(n-m,2)) PvBbtC-9b  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') w+(wvNmNEK  
    end s7.*o@G  
    5K-)X9z?  
    if any(m<0) (dt_ D  
        error('zernpol:Mpositive','All M must be positive.') =}KbE4D+8  
    end %{_ YJXpO  
    xa*gQ%+F  
    if any(m>n) #\["y%;W  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') \uPTk)oaB  
    end D}U<7=\3H  
    BfLZ  
    if any( r>1 | r<0 ) 3^UsyZS)  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') dct#E CT  
    end >Ga1p'8FtU  
    <vuX " 8  
    if ~any(size(r)==1) nEEGO~e  
        error('zernpol:Rvector','R must be a vector.') <|G~S<y}  
    end W)~.o/;  
    `v{X@x  
    r = r(:); *c c+Fd  
    length_r = length(r); |;-r};  
    ng*E9Puu[  
    if nargin==4 q,&T$Tw  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); WkIV  
        if ~isnorm e>Y2q|S85  
            error('zernpol:normalization','Unrecognized normalization flag.') f)P /@rh  
        end lM%fgyX  
    else ghj~r  
        isnorm = false; W A}@n  
    end gD =5M\  
    S:\hcW6  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 1y;zPJ<ntm  
    % Compute the Zernike Polynomials wKbymmG  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% (32nI?)a  
    9v2 ;  
    % Determine the required powers of r: r2'rf pQ  
    % ----------------------------------- 2:F  
    rpowers = []; _If?&KJ r  
    for j = 1:length(n) T+D]bfjr&&  
        rpowers = [rpowers m(j):2:n(j)]; Rw 8o]  
    end [0#hgGO]P  
    rpowers = unique(rpowers); h'KtG<+  
    <J`xCm K  
    % Pre-compute the values of r raised to the required powers, mIo7 K5z{  
    % and compile them in a matrix: l$9,  
    % ----------------------------- ~]M"  
    if rpowers(1)==0 r/2:O92E  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); db~:5#*  
        rpowern = cat(2,rpowern{:}); /D+$|k mW]  
        rpowern = [ones(length_r,1) rpowern]; )c !S@Hs  
    else L|w-s4L  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); S>E.*]_  
        rpowern = cat(2,rpowern{:}); i8.[d5  
    end b{Ss+F  
    ]l%.X7M9  
    % Compute the values of the polynomials: H-w|JH>g  
    % -------------------------------------- Y sV  
    z = zeros(length_r,length_n); RkwY3 s"  
    for j = 1:length_n o |iLBh$)  
        s = 0:(n(j)-m(j))/2; SqB|(~S  
        pows = n(j):-2:m(j); >6+K"J-@  
        for k = length(s):-1:1 &N0|tn  
            p = (1-2*mod(s(k),2))* ... NM.B=<Aw*  
                       prod(2:(n(j)-s(k)))/          ... ,&G M\FTeb  
                       prod(2:s(k))/                 ... qKC*j DW  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... mO.U )tL[  
                       prod(2:((n(j)+m(j))/2-s(k))); ] '/]j  
            idx = (pows(k)==rpowers); %m3efaC  
            z(:,j) = z(:,j) + p*rpowern(:,idx); o+TZUMm  
        end }wXD%X@)l  
         5 ZPUY  
        if isnorm "mK (?U!A  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); B,,d~\  
        end YYW70k:  
    end *rT(dp!Y  
    E2D8s=r  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  bNpIC/#0K  
    'S4EKV]  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 rspoSPnY1  
    @))}\:  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)