切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11054阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 c5iormb"#  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! #zSi/r/=1  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 Lo|NE[b:G  
    function z = zernfun(n,m,r,theta,nflag) |n|U;|'^  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. w&wA >q>&  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N gtaV6sD  
    %   and angular frequency M, evaluated at positions (R,THETA) on the bxd3  
    %   unit circle.  N is a vector of positive integers (including 0), and TZ&4  
    %   M is a vector with the same number of elements as N.  Each element pW*{Mx  
    %   k of M must be a positive integer, with possible values M(k) = -N(k)  Z;j/K  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, :"OZc7 ~  
    %   and THETA is a vector of angles.  R and THETA must have the same mHK@(D7X  
    %   length.  The output Z is a matrix with one column for every (N,M) c W81  
    %   pair, and one row for every (R,THETA) pair. * 1 |YLy  
    % ":UWowJO  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike msA' 5>  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Ax5mP8S  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral ^[X|As2  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 'h!h!  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized {f`lSu  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. olD@W UB  
    % Y=P9:unG  
    %   The Zernike functions are an orthogonal basis on the unit circle. Ph(]?MG\_  
    %   They are used in disciplines such as astronomy, optics, and T7>4 8eH  
    %   optometry to describe functions on a circular domain. .DgoOo%?"  
    % V;>9&'Z3  
    %   The following table lists the first 15 Zernike functions. =&di4'`  
    % MuDFdbtR  
    %       n    m    Zernike function           Normalization :0 W6uFNOU  
    %       -------------------------------------------------- |_l<JQvf`E  
    %       0    0    1                                 1 E/"YId `A  
    %       1    1    r * cos(theta)                    2 ;jRL3gAe)  
    %       1   -1    r * sin(theta)                    2 .+{nA}Bc  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) a~8:rW^  
    %       2    0    (2*r^2 - 1)                    sqrt(3) QRsqPh&-  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) r+imn&FK8  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) x2 w8zT6M  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) <MPeh&_3#  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ,bB( 24LD  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) lTa1pp Zw  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) R(M}0JRm  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Pk$}%;@v  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 1U717u  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Hfh@<'NL]  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) .yZK.[x4  
    %       -------------------------------------------------- o `b`*Z  
    % =jJ H^Y2  
    %   Example 1: NY4!TOp  
    % 4fu'QZ(}  
    %       % Display the Zernike function Z(n=5,m=1) Ty`-r5  
    %       x = -1:0.01:1; JaH* rDs-  
    %       [X,Y] = meshgrid(x,x); 8# 6\+R  
    %       [theta,r] = cart2pol(X,Y); L@7Qs6G2u  
    %       idx = r<=1; ]WTf< W<  
    %       z = nan(size(X)); Bj;\mUsk  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); Vh 2Bz  
    %       figure /yLzDCKn  
    %       pcolor(x,x,z), shading interp uQeqnGp  
    %       axis square, colorbar }BA9Ka#%  
    %       title('Zernike function Z_5^1(r,\theta)') * eA{[  
    % W\HLal  
    %   Example 2: A{4Dzm!  
    % q]F4Lq(  
    %       % Display the first 10 Zernike functions l<u{6o  
    %       x = -1:0.01:1; C>AcK#-x,{  
    %       [X,Y] = meshgrid(x,x); A|2 <A !  
    %       [theta,r] = cart2pol(X,Y); WLE%d]'%M  
    %       idx = r<=1; 6a7vlo  
    %       z = nan(size(X)); #]?tY }~  
    %       n = [0  1  1  2  2  2  3  3  3  3]; \|v`l{  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; .6\T`6H=a  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; J cP~-cp  
    %       y = zernfun(n,m,r(idx),theta(idx)); Kp8fh-4_  
    %       figure('Units','normalized') AnRlH  
    %       for k = 1:10 -oU@D  
    %           z(idx) = y(:,k); Po1hq2-U8  
    %           subplot(4,7,Nplot(k)) 9X!ET!  
    %           pcolor(x,x,z), shading interp 9~=gwP  
    %           set(gca,'XTick',[],'YTick',[]) zT$0xj8  
    %           axis square dAL0.>|`0  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) lco~X DI  
    %       end _B}9 f  
    % a[q84[OQ  
    %   See also ZERNPOL, ZERNFUN2. :*#rRQ>t  
    o1e4.-xI  
    %   Paul Fricker 11/13/2006 a|U}Ammr  
    BlL|s=dlQV  
    :=y0'f V(@  
    % Check and prepare the inputs: l`DtiJ?$$0  
    % ----------------------------- /CH(!\bQ  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) oE$hqd s  
        error('zernfun:NMvectors','N and M must be vectors.') it~Z|$  
    end itw{;j   
    i^R{Ul[  
    if length(n)~=length(m) tzPC/?  
        error('zernfun:NMlength','N and M must be the same length.') Rl1$?l6Rf  
    end e$HQuA~Q;  
    4b]_ #7Qm  
    n = n(:); }X.>4\B5  
    m = m(:); `N$!s7M  
    if any(mod(n-m,2)) k'g$2  
        error('zernfun:NMmultiplesof2', ... ?<! nm&~  
              'All N and M must differ by multiples of 2 (including 0).') "@4ghot t  
    end u %'y_C3  
    _$8{;1$T?  
    if any(m>n) J,RDTXqn  
        error('zernfun:MlessthanN', ... l^ARW E  
              'Each M must be less than or equal to its corresponding N.') vm|!{5l:=y  
    end Vd21,~^>g  
    cs t&0  
    if any( r>1 | r<0 ) pL! a  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') mGO>""<:  
    end ALfiR(!  
    MA$Xv`6I\  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) "NKf0F  
        error('zernfun:RTHvector','R and THETA must be vectors.') @7fm1b  
    end Rnr#$C%  
    C-Ig_Nc  
    r = r(:); U,'EF[t  
    theta = theta(:); F;pQ\Y  
    length_r = length(r); Hng!'  
    if length_r~=length(theta) |:N>8%@6c  
        error('zernfun:RTHlength', ... p'g^Wh  
              'The number of R- and THETA-values must be equal.') 7lR<@$q  
    end JD ]OIh  
    2 Kl a8  
    % Check normalization: \"'\MA  
    % -------------------- b~*i91)\  
    if nargin==5 && ischar(nflag) qi&D+~Gv!  
        isnorm = strcmpi(nflag,'norm'); (8G$(MK  
        if ~isnorm L%XXf3;c  
            error('zernfun:normalization','Unrecognized normalization flag.') -6`;},Yr  
        end W^k,Pmopy  
    else L7}i q0  
        isnorm = false; ]-:1se  
    end N xFUO0O3  
    1[s0Lz  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 84^[/d;!  
    % Compute the Zernike Polynomials 3 z=\ .R  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% j=9ze op %  
    e #M iaX  
    % Determine the required powers of r: 4jGLAor|  
    % ----------------------------------- oNIFx5*Z  
    m_abs = abs(m); %'0&ElQ  
    rpowers = []; m2O&2[g  
    for j = 1:length(n) P6YQK+  
        rpowers = [rpowers m_abs(j):2:n(j)]; (sCAR=5v\  
    end k;Hnu  
    rpowers = unique(rpowers); 4mJFvDZV`  
    ,Kw5Ro`I:  
    % Pre-compute the values of r raised to the required powers, CW-Ae  
    % and compile them in a matrix: `%=<R-/#7S  
    % ----------------------------- Y\( ;!o0a  
    if rpowers(1)==0 \ha-"Aqze3  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); A=X-;N#  
        rpowern = cat(2,rpowern{:}); -zKxf@"  
        rpowern = [ones(length_r,1) rpowern]; =EpJZt  
    else 7$7n71o  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); jct./arK  
        rpowern = cat(2,rpowern{:}); H^ BYd%-  
    end ){ gAj  
    PsbG|~  
    % Compute the values of the polynomials: vq>l>as9O  
    % -------------------------------------- .S7:;%qL6  
    y = zeros(length_r,length(n)); 8+&JQ"UaB  
    for j = 1:length(n) opD-vDa h  
        s = 0:(n(j)-m_abs(j))/2; 5)M 2r!\  
        pows = n(j):-2:m_abs(j); !re1EL  
        for k = length(s):-1:1 * t!r@k  
            p = (1-2*mod(s(k),2))* ... r~>,$[|n})  
                       prod(2:(n(j)-s(k)))/              ... WYszk ,E  
                       prod(2:s(k))/                     ... sV2iITF p  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... y@;%Uv&  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); w z=z?AZW  
            idx = (pows(k)==rpowers); [@G`Afaf  
            y(:,j) = y(:,j) + p*rpowern(:,idx); ;^3$kF  
        end IzUo0D*@  
         Im)EDTm$  
        if isnorm cp%ii'  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); d#>y}H9  
        end -5k2j^r;  
    end hO( RZ '{  
    % END: Compute the Zernike Polynomials ]tY:,Mfs  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% c1%rV`)]  
    y LM"+.?pL  
    % Compute the Zernike functions: :(p )1=I  
    % ------------------------------ KDTDJ8  
    idx_pos = m>0; o8ppMM8_R[  
    idx_neg = m<0; 8omC%a}9m  
    o~1 Kp!U  
    z = y; Phs-(3  
    if any(idx_pos) AIZBo@xg  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ?KP}#>Ba@  
    end BsLG^f  
    if any(idx_neg) _^\$" nw  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); v\%G|8+]  
    end Z cpmquf8L  
    `hrQw)5?r  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) nE|@IGH  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. =6T 4>rP  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated 2]WE({P  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive P Sx304  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, \Fb| {6+  
    %   and THETA is a vector of angles.  R and THETA must have the same R_kQPP  
    %   length.  The output Z is a matrix with one column for every P-value, e3m*i}K}  
    %   and one row for every (R,THETA) pair. uk7'K 0j  
    % )=^w3y  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike nII^mg~  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) } !s!;BOx  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) OB^Tq~i  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 nH[+n `{o  
    %   for all p. * fc-gAj  
    % !GK$[9  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 L,]=vba'$  
    %   Zernike functions (order N<=7).  In some disciplines it is ]v29 Rx  
    %   traditional to label the first 36 functions using a single mode " I+p  
    %   number P instead of separate numbers for the order N and azimuthal =f7r69I"  
    %   frequency M. G|u3UhyB  
    % -1r2K  
    %   Example: >-)h|w i  
    % AuiFbRFi  
    %       % Display the first 16 Zernike functions 0 P|&Pq&IH  
    %       x = -1:0.01:1; NAr1[{^E,  
    %       [X,Y] = meshgrid(x,x); :k,Q,B.I  
    %       [theta,r] = cart2pol(X,Y); 7Z,/g|s}z  
    %       idx = r<=1; L;6.r3bL  
    %       p = 0:15; ;LwqTlJ*[L  
    %       z = nan(size(X)); Nt-<W+,  
    %       y = zernfun2(p,r(idx),theta(idx)); &KC!*}<tx  
    %       figure('Units','normalized') NPjv)TN}3  
    %       for k = 1:length(p) {]}s#vvy  
    %           z(idx) = y(:,k); =VP=|g  
    %           subplot(4,4,k) 6oL1_)  
    %           pcolor(x,x,z), shading interp $t =O:  
    %           set(gca,'XTick',[],'YTick',[]) jE/oA<^  
    %           axis square u{f* M,k  
    %           title(['Z_{' num2str(p(k)) '}']) 8im@4A+n`  
    %       end wts:65~  
    % 'r} fZ  
    %   See also ZERNPOL, ZERNFUN. G*}F5.>8(  
    O&Z' r  
    %   Paul Fricker 11/13/2006 xytr2V ]aV  
    =y]$0nh  
    ?.bnIwQe  
    % Check and prepare the inputs: [`_io>*g  
    % ----------------------------- F[`ZqW  
    if min(size(p))~=1 eC`pnE  
        error('zernfun2:Pvector','Input P must be vector.') M8;lLcgu.  
    end F # YPOH  
    ]B4}eBt5)@  
    if any(p)>35 oQ2KW..q  
        error('zernfun2:P36', ... ,^s  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... edC 4BHE  
               '(P = 0 to 35).']) 4&X*pL2;  
    end &Ral+J  
    ((3}LQ  
    % Get the order and frequency corresonding to the function number: )NW6?Pu"  
    % ---------------------------------------------------------------- "HIXm  
    p = p(:); pa]"iZz  
    n = ceil((-3+sqrt(9+8*p))/2); L/r@ S'  
    m = 2*p - n.*(n+2); }At{'8*n  
    +|RB0}hFS-  
    % Pass the inputs to the function ZERNFUN: /!&R9!6 :  
    % ---------------------------------------- zA+@FR?  
    switch nargin L2z2}U=<  
        case 3 8g/F)~s^F  
            z = zernfun(n,m,r,theta); 6vy7l(%  
        case 4 gUax'^w;V;  
            z = zernfun(n,m,r,theta,nflag); )mcEQ-!b  
        otherwise /Wj,1WX~  
            error('zernfun2:nargin','Incorrect number of inputs.') #Z!b G?="  
    end X]*QUV]i  
    3`V1XE.;  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) mj,fp2D;%  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. -e@!  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of dKhA$f~  
    %   order N and frequency M, evaluated at R.  N is a vector of JC;^--0(z  
    %   positive integers (including 0), and M is a vector with the OyG"1F  
    %   same number of elements as N.  Each element k of M must be a h1"zV6U  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) YoODR  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is CC >=UF  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix <eN R8(P  
    %   with one column for every (N,M) pair, and one row for every ,w)p"[^b  
    %   element in R. ~|+zJ5  
    % PH4%R]{8{  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- $ItF])Bj5N  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is u b?K,  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to q }C+tn"\  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 vR7HF*8  
    %   for all [n,m]. HRa@  
    % Ju` [m  
    %   The radial Zernike polynomials are the radial portion of the &~sfYW  
    %   Zernike functions, which are an orthogonal basis on the unit [Gr*,nVvB  
    %   circle.  The series representation of the radial Zernike >um!Eo  
    %   polynomials is D$e B ,~  
    % F1azZ (  
    %          (n-m)/2 <&!]K?Q9i  
    %            __ ,K9f_bv  
    %    m      \       s                                          n-2s p#d+>7  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r 4g _"ku  
    %    n      s=0 {y^3> 7  
    % _Tm0x>EM  
    %   The following table shows the first 12 polynomials. p#8W#t$  
    % do/)~9[4\  
    %       n    m    Zernike polynomial    Normalization d4^`}6@  
    %       --------------------------------------------- V1=*z  
    %       0    0    1                        sqrt(2) ztM<J+  
    %       1    1    r                           2 'md0]R|  
    %       2    0    2*r^2 - 1                sqrt(6) {OMg d3%14  
    %       2    2    r^2                      sqrt(6) #TJk-1XM*q  
    %       3    1    3*r^3 - 2*r              sqrt(8) rjA@U<o  
    %       3    3    r^3                      sqrt(8) N> Jw  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) 25{ uz  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) Xo5$X7m  
    %       4    4    r^4                      sqrt(10) 5t:8.%<UK  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) <|6%9@  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) wNCCH55Pt  
    %       5    5    r^5                      sqrt(12)  NY  
    %       --------------------------------------------- (g8*d^u#PO  
    % L-i>R:N4  
    %   Example: 3C>qh{z"  
    % `i!wq&1g7  
    %       % Display three example Zernike radial polynomials B~WtZ-%%E  
    %       r = 0:0.01:1; ]L_w$ev'  
    %       n = [3 2 5]; &wH:aD  
    %       m = [1 2 1]; Xg<[fwW  
    %       z = zernpol(n,m,r); VAQ)Hc]  
    %       figure &&8'0 .M{  
    %       plot(r,z) !-]C;9 Zd  
    %       grid on $+= <(*  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') mS=r(3#  
    % - Xupq/[,  
    %   See also ZERNFUN, ZERNFUN2. !R{R??  
    *b(wVvz  
    % A note on the algorithm. 6Y*;{\Rd  
    % ------------------------ [W,|kDK  
    % The radial Zernike polynomials are computed using the series H -t|i  
    % representation shown in the Help section above. For many special pgc3jP!  
    % functions, direct evaluation using the series representation can ('k<XOi  
    % produce poor numerical results (floating point errors), because $Rtgr{ {;"  
    % the summation often involves computing small differences between !|{IVm/J  
    % large successive terms in the series. (In such cases, the functions |WqOk~)[Z3  
    % are often evaluated using alternative methods such as recurrence n~0z_;5  
    % relations: see the Legendre functions, for example). For the Zernike @uleyB  
    % polynomials, however, this problem does not arise, because the T.&7sbE_  
    % polynomials are evaluated over the finite domain r = (0,1), and -e-e9uP  
    % because the coefficients for a given polynomial are generally all cSD{$B:  
    % of similar magnitude. %|Qw9sbd  
    % :J_oj:0r"f  
    % ZERNPOL has been written using a vectorized implementation: multiple ^JeMuU  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] f4t.f*#  
    % values can be passed as inputs) for a vector of points R.  To achieve ! >.vh]8g  
    % this vectorization most efficiently, the algorithm in ZERNPOL a' FN 3  
    % involves pre-determining all the powers p of R that are required to y=N"=Z  
    % compute the outputs, and then compiling the {R^p} into a single 9M$/=>^ Z  
    % matrix.  This avoids any redundant computation of the R^p, and /I{R23o  
    % minimizes the sizes of certain intermediate variables. n@>wwp  
    % +c,[ Q  
    %   Paul Fricker 11/13/2006 v"6 \=@  
    8v_C5d\  
    F4I6P  
    % Check and prepare the inputs: NlPS#  
    % ----------------------------- `aSM8C\  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ?m%h`<wgMc  
        error('zernpol:NMvectors','N and M must be vectors.') ISqfU]>[  
    end cnNOZ$)  
    htJuGfDx1  
    if length(n)~=length(m) YcM;S  
        error('zernpol:NMlength','N and M must be the same length.') 649 !=  
    end I44s(G1j l  
    %_)zWlN  
    n = n(:); Cnh|D^{s  
    m = m(:); *o?i:LE]  
    length_n = length(n); 1 =GI&f2I  
    ! p.^ITM3S  
    if any(mod(n-m,2)) C3;[e0.1b  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') Ej(2w Q  
    end ]#eh&jw  
    wT_^'i*@I  
    if any(m<0) )C]x?R([m  
        error('zernpol:Mpositive','All M must be positive.') pO/%N94s  
    end ?T'][q  
    MK$Jj "  
    if any(m>n) N+Sq}hI  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') EQ >t[ &  
    end Ob@Hng% v  
    :=.*I  
    if any( r>1 | r<0 ) .[pUuVq]  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') ,@CfVQz  
    end EA0iYzV  
    sg?@qc=g  
    if ~any(size(r)==1) lgD]{\O$ip  
        error('zernpol:Rvector','R must be a vector.') NPU^) B  
    end ;bjnL>eW  
    ^X? D#\  
    r = r(:); <|F-Dd  
    length_r = length(r); 4<gJ2a3  
    /^<en(0=P  
    if nargin==4 #+jUhxq  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); MOZu.NmO  
        if ~isnorm /6tcSg)  
            error('zernpol:normalization','Unrecognized normalization flag.') x-Z^Q C  
        end >;lKLGJrd>  
    else L(o#4YH}>J  
        isnorm = false; 9M2f!kJP$  
    end 3E|;r _; 8  
    wq\G|/%  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% PdE>@0X?M  
    % Compute the Zernike Polynomials 0s%6n5>  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 8&(-8  
    %KV2< t?  
    % Determine the required powers of r: Rt4di^v  
    % ----------------------------------- X>3^a'2,E  
    rpowers = [];  Alu5$6X  
    for j = 1:length(n) uQp_':\k  
        rpowers = [rpowers m(j):2:n(j)]; ?!S GiARW?  
    end &9P<qU^N)  
    rpowers = unique(rpowers); @YZ 4AC  
    uWc:jP  
    % Pre-compute the values of r raised to the required powers, @PXXt#  
    % and compile them in a matrix: >>V&yJ_  
    % ----------------------------- j#igu#MB*  
    if rpowers(1)==0 JMsHK,(  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 9q|7<raS  
        rpowern = cat(2,rpowern{:}); b(&] >z  
        rpowern = [ones(length_r,1) rpowern]; $ I<|-]u  
    else m5gI~1(9  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); mw+j|{[  
        rpowern = cat(2,rpowern{:}); .TN2s\:]jw  
    end Je~p%m#e;K  
    {j@+h%sF>+  
    % Compute the values of the polynomials: pt})JMm  
    % -------------------------------------- Phlk1*1n  
    z = zeros(length_r,length_n); =] KIkS3  
    for j = 1:length_n ,"H?hFQ  
        s = 0:(n(j)-m(j))/2; .mt^m   
        pows = n(j):-2:m(j); ;1E_o  
        for k = length(s):-1:1 iS05YW  
            p = (1-2*mod(s(k),2))* ... ZNy9_a:dX  
                       prod(2:(n(j)-s(k)))/          ... ITvHD-,\  
                       prod(2:s(k))/                 ... fI}c 71b`  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... =uc^433.  
                       prod(2:((n(j)+m(j))/2-s(k))); ?!m m a\W  
            idx = (pows(k)==rpowers); K+> V|zKuk  
            z(:,j) = z(:,j) + p*rpowern(:,idx); 8MQ bLj'H  
        end MB O,\t.  
          T{Hf P  
        if isnorm uu@<&.r\C  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); $i%HDt|  
        end Rp eBm#E2  
    end >w2f8tW`PP  
    swt\Ru6,  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  cKaL K#~  
    3 t~X:  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 Z#H@BWN7  
    AEBw#v!,o  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)