非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 "%.|n|
function z = zernfun(n,m,r,theta,nflag) <t?x 'r?@
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. bK_0NrXP
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N xVsa,EX b
% and angular frequency M, evaluated at positions (R,THETA) on the (!3Yc:~RE
% unit circle. N is a vector of positive integers (including 0), and 27Kc-rcB
% M is a vector with the same number of elements as N. Each element V!pq,!C$v
% k of M must be a positive integer, with possible values M(k) = -N(k) lgCHGv2@
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, <O,'5+zG%
% and THETA is a vector of angles. R and THETA must have the same I<D&,LFH*w
% length. The output Z is a matrix with one column for every (N,M) dAYI D E
% pair, and one row for every (R,THETA) pair. ?VMi!-POE
% [Vrc:%Jk
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike S F&M
(=w<
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), %mK3N2N$
% with delta(m,0) the Kronecker delta, is chosen so that the integral ['51FulDR
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ^w;o \G
% and theta=0 to theta=2*pi) is unity. For the non-normalized =Q/w% 8G
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. T8,k77
% ]6a/0rg:t
% The Zernike functions are an orthogonal basis on the unit circle. 6T^N!3p_
% They are used in disciplines such as astronomy, optics, and @K,2mhE~h
% optometry to describe functions on a circular domain. >Jm-2W5J
% pX>ua5Z
% The following table lists the first 15 Zernike functions. G]L0eV
% kdK*MUB
% n m Zernike function Normalization &%|xc{i
% -------------------------------------------------- w$DG=!
% 0 0 1 1 Qv&T E3
% 1 1 r * cos(theta) 2 c^ixdk
% 1 -1 r * sin(theta) 2 hrJ$%U
% 2 -2 r^2 * cos(2*theta) sqrt(6) 96.IuwL*.s
% 2 0 (2*r^2 - 1) sqrt(3) _N>wzkJ
% 2 2 r^2 * sin(2*theta) sqrt(6) [b7it2`dl
% 3 -3 r^3 * cos(3*theta) sqrt(8) KW&nDu