非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 )Cu"M#`
function z = zernfun(n,m,r,theta,nflag) JMO"(?
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. E*rDwTd
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N #_|b;cf
% and angular frequency M, evaluated at positions (R,THETA) on the Jw;J$
u!d
% unit circle. N is a vector of positive integers (including 0), and 8M(N
% M is a vector with the same number of elements as N. Each element /c3DltOdr
% k of M must be a positive integer, with possible values M(k) = -N(k) B-r9\fi,
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, `9b D%M
% and THETA is a vector of angles. R and THETA must have the same "F)7!e
% length. The output Z is a matrix with one column for every (N,M) E
hd*
% pair, and one row for every (R,THETA) pair. u )
fbR
% $zxCv7
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike |D`Zi>lv
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), <<4G GO
% with delta(m,0) the Kronecker delta, is chosen so that the integral o?/N4$&5l
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, N \A)P
% and theta=0 to theta=2*pi) is unity. For the non-normalized b>I -4
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. i"sVk8+o!
% n#Z6 d`
% The Zernike functions are an orthogonal basis on the unit circle. Gh42qar`
% They are used in disciplines such as astronomy, optics, and d3^LalAp
% optometry to describe functions on a circular domain. 8l;0)`PU
% s^3t18m&1
% The following table lists the first 15 Zernike functions. {l_R0
% D[;6xJ
% n m Zernike function Normalization ]'2p"A0U
% -------------------------------------------------- IxgnZX4N
% 0 0 1 1 _%Mu{Ni&
% 1 1 r * cos(theta) 2 UmInAH4
% 1 -1 r * sin(theta) 2 1`B5pcuI
% 2 -2 r^2 * cos(2*theta) sqrt(6) 4?72TBl]
% 2 0 (2*r^2 - 1) sqrt(3) dtm_~r7~
% 2 2 r^2 * sin(2*theta) sqrt(6) C+-~Gmrb(7
% 3 -3 r^3 * cos(3*theta) sqrt(8) X+bLLW>&
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) /c__{?go
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) ^>[DG]g
% 3 3 r^3 * sin(3*theta) sqrt(8) Dzc 4J66
% 4 -4 r^4 * cos(4*theta) sqrt(10) %o+bO}/9
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) X3X~`~bAD
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) 9r\8 !R
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) $0iz;!w
% 4 4 r^4 * sin(4*theta) sqrt(10) <~X=6
% -------------------------------------------------- =NyzX&H6
% N-K.#5
% Example 1: $T]1<3\G
% <fs2;
% % Display the Zernike function Z(n=5,m=1) J>X aQfzwU
% x = -1:0.01:1; LF*3Iw|v
% [X,Y] = meshgrid(x,x); EzzzH(!j
% [theta,r] = cart2pol(X,Y); p*NC nD*
% idx = r<=1; r/3!~??x
% z = nan(size(X)); x1mxM#ql
% z(idx) = zernfun(5,1,r(idx),theta(idx)); +zz9u?2C`
% figure 98o;_tU'
% pcolor(x,x,z), shading interp Ldt7?Y(V(
% axis square, colorbar &v3r#$Hj[
% title('Zernike function Z_5^1(r,\theta)') #; }IHAR
% 7{az %I$h
% Example 2: YfF&: "-NU
% gEU)UIJ
% % Display the first 10 Zernike functions kDO6:sjR7
% x = -1:0.01:1; 8q_3*++D
% [X,Y] = meshgrid(x,x); }[ux4cd8Y
% [theta,r] = cart2pol(X,Y); wrGd40
% idx = r<=1; eQ9{J9)?
% z = nan(size(X)); $`_(%tl
% n = [0 1 1 2 2 2 3 3 3 3]; :Q$3P+6 a
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; z?1GJ8
% Nplot = [4 10 12 16 18 20 22 24 26 28]; R%3H"FU9w
% y = zernfun(n,m,r(idx),theta(idx)); .9nsW?
% figure('Units','normalized') =p&6A^
% for k = 1:10 8a.
|CgI#h
% z(idx) = y(:,k); jnH44
% subplot(4,7,Nplot(k)) %,~; w0
% pcolor(x,x,z), shading interp !dVcnK1
% set(gca,'XTick',[],'YTick',[]) K%Q^2"Eb0
% axis square [.dNX
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) D|9B1>A,m
% end -b)p6>G-C
% z13"S(5D~
% See also ZERNPOL, ZERNFUN2. VFA1p)n
-uO< ]
% Paul Fricker 11/13/2006 1T}|c;fc
Of([z!'Gc
{} vl^b
% Check and prepare the inputs: f()^^ +
% -----------------------------
4uU(t
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ~}4H=[Zu
error('zernfun:NMvectors','N and M must be vectors.') sPc\xY
end 0b*a2_|8k
\O7,CxD2
if length(n)~=length(m) @@ZcW<Y"
error('zernfun:NMlength','N and M must be the same length.') ~Ycz(h'(
end <JZ=K5
qc*+;Wi+5
n = n(:); IwWo-WN7.
m = m(:); Q&M(wnl5
if any(mod(n-m,2)) +H="5uO<
error('zernfun:NMmultiplesof2', ... ^D vaT9s
'All N and M must differ by multiples of 2 (including 0).') `4;<\VYCr
end bIWcL$}4Q
#/1A:ig
if any(m>n) to:hMd1T
error('zernfun:MlessthanN', ... ~xvQ?c?-
'Each M must be less than or equal to its corresponding N.') :I<%.|8
end @ Cqg2
/!AdX0dx
if any( r>1 | r<0 ) lD C74g
error('zernfun:Rlessthan1','All R must be between 0 and 1.') `I
m;@_J
end JmN;v|wF:c
XTZWbhNF
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) uLL#(bhDr
error('zernfun:RTHvector','R and THETA must be vectors.') \V:
_Zs
end CB?.|)Xam
g3x192f
r = r(:); kO2im+y
theta = theta(:); o5Qlp5`:u
length_r = length(r); zh50]tX
if length_r~=length(theta) D0x+b2x^
error('zernfun:RTHlength', ... {bc<0
'The number of R- and THETA-values must be equal.') #3/l4`/j
end DB>>U>H-
vBM\W%T|d
% Check normalization: <w2Nh eM 3
% -------------------- sBSBDjk[
if nargin==5 && ischar(nflag) jl:O~UL6i
isnorm = strcmpi(nflag,'norm'); c#{<|
.
if ~isnorm s|{K?s
error('zernfun:normalization','Unrecognized normalization flag.') -,4_ &V
end -F5U.6~`!
else 4]
DmgOru%
isnorm = false; a o7|8[
end \
2".Kb@=
|:
nuT$(
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% AvV.faa
% Compute the Zernike Polynomials wlKL|N
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Pv/P<i^
F ^E(AE
% Determine the required powers of r: 9"V27"s
% ----------------------------------- pl"|NZz
7;
m_abs = abs(m); 5~.\rcr%
rpowers = []; y?5*K
for j = 1:length(n) H56e#:[$
rpowers = [rpowers m_abs(j):2:n(j)]; &ul9N)A
end SXod r}
rpowers = unique(rpowers); '`3-X];p
}#yRaIp
% Pre-compute the values of r raised to the required powers, SULWPH5Pr
% and compile them in a matrix: YHKm{A ]
% ----------------------------- DI$zyj~3
if rpowers(1)==0 E+ 7S:B
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); C %EQ9Iq6r
rpowern = cat(2,rpowern{:}); n+!.0d}6
rpowern = [ones(length_r,1) rpowern]; T-5T`awf
else Y%&6qt G
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ;'<K}h
rpowern = cat(2,rpowern{:}); ;G},xDGO_m
end JBWiTUk
".w*_1G7U
% Compute the values of the polynomials:
?T4%"0
% -------------------------------------- (bBetX
y = zeros(length_r,length(n)); Dri1A%
for j = 1:length(n) FG8bP
s = 0:(n(j)-m_abs(j))/2; H%%#^rb^
pows = n(j):-2:m_abs(j); }]n&" =Zk-
for k = length(s):-1:1 C]r$
p = (1-2*mod(s(k),2))* ... G:@gO2(D
prod(2:(n(j)-s(k)))/ ... O-&n5
prod(2:s(k))/ ... s lPFDBx
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... h hdn9n
prod(2:((n(j)+m_abs(j))/2-s(k))); kYR&t}jlCg
idx = (pows(k)==rpowers); @nZFw.
y(:,j) = y(:,j) + p*rpowern(:,idx); b1 KiO2
E
end }RoM N$r
fqZ!Bi
if isnorm PD/~@OsxU
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Gwvs~jN
end U}qW9X;o
end H-rf?R2
% END: Compute the Zernike Polynomials [tBIABr
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
*y0`P0V|8
+h9CcBd
% Compute the Zernike functions: ]X-ZRmB`
% ------------------------------ -}N{'S,Bp
idx_pos = m>0; R=9j+74U
idx_neg = m<0; h+Z|s
f0^s*V+
z = y; {)%B?75~
if any(idx_pos) u_Q3v9
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Y.hrU*[J0
end S`*al<m
if any(idx_neg) :X$&gsT/,
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 4wBCs0NIm
end UPgZj\t%{
-m+2l`DLy
% EOF zernfun