切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11558阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 b8QA>]6A  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! ;^}gC}tq  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 ?!=yp#  
    function z = zernfun(n,m,r,theta,nflag) 095:"GvO  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. K,{P b?  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N +G';no\h  
    %   and angular frequency M, evaluated at positions (R,THETA) on the U}ei2q\  
    %   unit circle.  N is a vector of positive integers (including 0), and ]z EatY  
    %   M is a vector with the same number of elements as N.  Each element 45` i  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) .UF](  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, \ s^a4l 2  
    %   and THETA is a vector of angles.  R and THETA must have the same P` Hxj> {  
    %   length.  The output Z is a matrix with one column for every (N,M) '\8gY((7   
    %   pair, and one row for every (R,THETA) pair. m~c z  
    % u`I&&  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike XKD0n^L[  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 7\>P@s  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral U5N/'p%)<  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, (jbHV.]P9  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized m20:{fld  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. e P]L  
    % ru#,pJ=O(  
    %   The Zernike functions are an orthogonal basis on the unit circle. NUBf>~_}  
    %   They are used in disciplines such as astronomy, optics, and HriY-=ji>a  
    %   optometry to describe functions on a circular domain. ~NT2QY5!K  
    % 5VD(fW[OW]  
    %   The following table lists the first 15 Zernike functions. '4-J0S<<_  
    % f]Jn\7j4  
    %       n    m    Zernike function           Normalization \ng!qN  
    %       -------------------------------------------------- nBw4YDR!  
    %       0    0    1                                 1 _L }k.  
    %       1    1    r * cos(theta)                    2 Dv~W!T i  
    %       1   -1    r * sin(theta)                    2 /J''`Tf  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6)  -D*,*L  
    %       2    0    (2*r^2 - 1)                    sqrt(3) g\_J  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) WzD=Ol  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) nn[OC=cDN  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) i\~@2  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) MIa#\tJj  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) X{cFq W7  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) J @eu ]?h  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) (QS4<J"  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) .[mI9dc  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 8@b,>l$  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) @JB9qT  
    %       -------------------------------------------------- S7i,oP7  
    % F|mppY'<J  
    %   Example 1: /e|vz^#+1,  
    % N_jpCCG~  
    %       % Display the Zernike function Z(n=5,m=1) P){b"`f  
    %       x = -1:0.01:1; D,R"P }G  
    %       [X,Y] = meshgrid(x,x); l9Xz,H   
    %       [theta,r] = cart2pol(X,Y); 1jHugss9|  
    %       idx = r<=1; `Vph=`0  
    %       z = nan(size(X)); 'uy\vR&Pz  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); ]#$l"ss,  
    %       figure f/"? (7F  
    %       pcolor(x,x,z), shading interp i|N%dl+T=  
    %       axis square, colorbar *vFXe_.  
    %       title('Zernike function Z_5^1(r,\theta)') +95: O 8  
    % dgbqMu"  
    %   Example 2: UdGa#rcNW  
    % 1u`{yl*+?  
    %       % Display the first 10 Zernike functions $TU:iv1Fm  
    %       x = -1:0.01:1; {&u`d.Lk2p  
    %       [X,Y] = meshgrid(x,x); JSp V2c5Q  
    %       [theta,r] = cart2pol(X,Y); A^L8"  
    %       idx = r<=1; -_`dA^  
    %       z = nan(size(X)); p.%lE! v  
    %       n = [0  1  1  2  2  2  3  3  3  3]; @%"+;D  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; B}?$kp  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; FaA'%P@  
    %       y = zernfun(n,m,r(idx),theta(idx)); ][D/=-  
    %       figure('Units','normalized') F7!q18ew  
    %       for k = 1:10 5~ip N/)E  
    %           z(idx) = y(:,k); 77zfRSb+  
    %           subplot(4,7,Nplot(k)) cc0e(\  
    %           pcolor(x,x,z), shading interp GkU]>8E'"  
    %           set(gca,'XTick',[],'YTick',[]) "pA24Ze  
    %           axis square Zqi;by%  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Aq]*$s2\G  
    %       end xZE%Gf_U  
    % ?z{Z!Bt?=)  
    %   See also ZERNPOL, ZERNFUN2. zn+5pn&?  
    U"T>L  
    %   Paul Fricker 11/13/2006 ,$oz1,Q/  
    sKCfI]  
    ]y kMh  
    % Check and prepare the inputs: 9coN >y  
    % ----------------------------- sjW;Nsp  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 'uBagd>*  
        error('zernfun:NMvectors','N and M must be vectors.') E9N.b.Q)  
    end ! <O,xI'  
    |V dr/'  
    if length(n)~=length(m) (~U1 X4  
        error('zernfun:NMlength','N and M must be the same length.') Y^(NzN  
    end nqv#?>Z^OT  
    yt 5'2!jc  
    n = n(:); Yn>y1~  
    m = m(:); M/x*d4b_  
    if any(mod(n-m,2)) .ng:Z7  
        error('zernfun:NMmultiplesof2', ... ]"X} FU  
              'All N and M must differ by multiples of 2 (including 0).') nW"ml$  
    end 7dh--.i  
    1)N~0)dO  
    if any(m>n) b!l/O2 G  
        error('zernfun:MlessthanN', ... a? <Ar#)j  
              'Each M must be less than or equal to its corresponding N.') 2;`F` }BA  
    end j0(+Kq:J  
    kN8?.V%Utw  
    if any( r>1 | r<0 ) ;p8,=w  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') nq,P.~l  
    end |]=s  
    tj< 0q<is  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) U/j+\Kc~  
        error('zernfun:RTHvector','R and THETA must be vectors.') ;)rs#T;$  
    end F#>^S9Gml  
    Q<UKR|6  
    r = r(:); iJ%`ym4Y  
    theta = theta(:); O8<@+xlX  
    length_r = length(r); ~'u %66  
    if length_r~=length(theta) #- z(]Y,y  
        error('zernfun:RTHlength', ... *#&s+h,^  
              'The number of R- and THETA-values must be equal.') Z.{r%W{2  
    end R2B0?fu  
    jHx)q|2\  
    % Check normalization: 1 GB  
    % -------------------- \CKf/:"  
    if nargin==5 && ischar(nflag) B`;DAsmT  
        isnorm = strcmpi(nflag,'norm'); <uL0 M`u3  
        if ~isnorm $8t\|O3  
            error('zernfun:normalization','Unrecognized normalization flag.') ~'3hK4  
        end 0o*  
    else zrazFI0G  
        isnorm = false; ZnXq+^ Z4  
    end RXWS,rF  
    38HnW  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% = k|hH~  
    % Compute the Zernike Polynomials (.J8Q  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% .:?cU#.  
    1 z5\>F  
    % Determine the required powers of r: *s}j:fJ  
    % ----------------------------------- 7nOn^f D  
    m_abs = abs(m); )WR*8659e  
    rpowers = []; TkjPa};R  
    for j = 1:length(n) [R9!Tz  
        rpowers = [rpowers m_abs(j):2:n(j)]; ?[~)D}] j  
    end .!`v2_  
    rpowers = unique(rpowers); eK_Yt~dj  
    [-*8 S1  
    % Pre-compute the values of r raised to the required powers, OK1f Y`$z  
    % and compile them in a matrix: %. -nZC  
    % ----------------------------- ;x~[om21;  
    if rpowers(1)==0 l0g`;BI_  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); /{7we$+,p  
        rpowern = cat(2,rpowern{:}); y |0I3n]e  
        rpowern = [ones(length_r,1) rpowern]; 8~s-@3J  
    else @[] A&)B  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); PdNxuy  
        rpowern = cat(2,rpowern{:}); f8X/kz  
    end eH y.<VX  
    M!E#T-)  
    % Compute the values of the polynomials: /naGn@m5u  
    % -------------------------------------- W;9Jah.  
    y = zeros(length_r,length(n)); dtT2h>h9  
    for j = 1:length(n) 8OW504AD  
        s = 0:(n(j)-m_abs(j))/2; |Sf` Cs  
        pows = n(j):-2:m_abs(j); A[.5Bi  
        for k = length(s):-1:1 va_TC!{;  
            p = (1-2*mod(s(k),2))* ... I-`qo7dQ_S  
                       prod(2:(n(j)-s(k)))/              ... -a(\(^NW  
                       prod(2:s(k))/                     ... Y =BXV7\  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... *E-VS= #  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); fpK`  
            idx = (pows(k)==rpowers); +iL,8eW  
            y(:,j) = y(:,j) + p*rpowern(:,idx); Hxm CKW!  
        end S3(2.c~  
         !1M=9 ~$!  
        if isnorm T2$V5RyX  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); $3C$])k  
        end D@yuldx'/  
    end b2vc  
    % END: Compute the Zernike Polynomials : %hxg  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ^M Zdht   
    >&kb|)  
    % Compute the Zernike functions: `Wf)qMb  
    % ------------------------------ 0- 'f1 1S  
    idx_pos = m>0; U2(|/M+  
    idx_neg = m<0; |NiW r1&i0  
    T'TxC)  
    z = y; E*t0ia8  
    if any(idx_pos) U.@j !UrZ  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); fDa$TbhjI  
    end t,8p}2,$  
    if any(idx_neg) #(`@D7S"  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Y=6b oT  
    end .7nr:P  
    s: .5S  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) cXJtNW@  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. f(O`t}Ed  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated 3}H"(5dL}z  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive j;O{Hvvz  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, [Q/')5b  
    %   and THETA is a vector of angles.  R and THETA must have the same Ge|& H]W  
    %   length.  The output Z is a matrix with one column for every P-value, <9S?wju4W'  
    %   and one row for every (R,THETA) pair. "}bk *2  
    % up~l4]b+  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike z:aT5D  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) X^#.4:>.  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) .bOueB-  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 #_+T@|r  
    %   for all p. R0y@#}JH  
    % :zC'jceO  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 sg(L`P  
    %   Zernike functions (order N<=7).  In some disciplines it is Qhnz7/a9  
    %   traditional to label the first 36 functions using a single mode c?0uv2*Yh  
    %   number P instead of separate numbers for the order N and azimuthal #=f ]"uM<  
    %   frequency M. `F>1xMm  
    % FxKb  
    %   Example: v UAYYe  
    % E\r5!45r  
    %       % Display the first 16 Zernike functions E( M\U5o:  
    %       x = -1:0.01:1; O,_2dj d  
    %       [X,Y] = meshgrid(x,x);  -> -  
    %       [theta,r] = cart2pol(X,Y); %>uGzQ61  
    %       idx = r<=1; x7J|  
    %       p = 0:15; hGH{Xp[mW  
    %       z = nan(size(X)); <ZJ>jZV0*  
    %       y = zernfun2(p,r(idx),theta(idx)); >qn@E?Uf  
    %       figure('Units','normalized') HnVUG4yZTD  
    %       for k = 1:length(p) {sy#&m(el  
    %           z(idx) = y(:,k); [&rW+/  
    %           subplot(4,4,k) :y'D] ,_  
    %           pcolor(x,x,z), shading interp 2I:vie  
    %           set(gca,'XTick',[],'YTick',[]) 0+O)~>v  
    %           axis square VG'oy  
    %           title(['Z_{' num2str(p(k)) '}']) V9"Kro  
    %       end o(~>a  
    % }0uSm%,"  
    %   See also ZERNPOL, ZERNFUN. : H<u@%  
    ?Z] }G  
    %   Paul Fricker 11/13/2006 J%xp1/= 2  
    9 il!w g?  
    F5%-6@=  
    % Check and prepare the inputs:  'TV^0D"  
    % ----------------------------- `4Z#/g  
    if min(size(p))~=1 -(>x@];r0  
        error('zernfun2:Pvector','Input P must be vector.') r{kV*^\E  
    end 5JI+42S \  
    C4Q ^WU+$j  
    if any(p)>35 N7Z&_$Bx  
        error('zernfun2:P36', ... qo.~5   
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... L]#J?lE&  
               '(P = 0 to 35).']) *ZGQ`#1.X6  
    end 9L?EhDcDV  
    'E0{zk  
    % Get the order and frequency corresonding to the function number: t9m: E  
    % ---------------------------------------------------------------- quf,Z K5  
    p = p(:); Bw"L!sZ  
    n = ceil((-3+sqrt(9+8*p))/2); [j}%&$  
    m = 2*p - n.*(n+2); .F)b9d[?  
    ;oC85I  
    % Pass the inputs to the function ZERNFUN: {Y'DUt5j  
    % ---------------------------------------- +F 6KGK[  
    switch nargin e?L$RY,7  
        case 3 h=4m2m  
            z = zernfun(n,m,r,theta); 3Du&KZ  
        case 4 X!,Ngmw.  
            z = zernfun(n,m,r,theta,nflag); r7*[k[^[^  
        otherwise y~1UU3k5  
            error('zernfun2:nargin','Incorrect number of inputs.') NEZF q?  
    end LjXtOF  
    <g,k[  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) $j{ynh)^  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. p//">l=Ps  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of Z1\_[GA  
    %   order N and frequency M, evaluated at R.  N is a vector of S~/iH Xm  
    %   positive integers (including 0), and M is a vector with the \|j`jsq  
    %   same number of elements as N.  Each element k of M must be a C)#:zv m  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) S3qUzK  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is $am7 xd  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix "!Mu5Ga  
    %   with one column for every (N,M) pair, and one row for every ej%C<0/%n  
    %   element in R. Q:-H U bB  
    % .D4 D!!  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- A2rr>  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is rM bb%d:  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to '` [nt25N  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 mvUYp,JECl  
    %   for all [n,m]. &g) `  
    % L<8y5B~W  
    %   The radial Zernike polynomials are the radial portion of the m> NRIEA6  
    %   Zernike functions, which are an orthogonal basis on the unit ~01r c  
    %   circle.  The series representation of the radial Zernike wM!QU{Lz  
    %   polynomials is 4f"be  
    % hH[JY(V  
    %          (n-m)/2 Z"!C  
    %            __ `i{o8l  
    %    m      \       s                                          n-2s %WCpn<)  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r rKJ%/7m  
    %    n      s=0 E/s3@-/  
    % 0^[ " &K/  
    %   The following table shows the first 12 polynomials. XkdNWR0  
    % te:"1:e  
    %       n    m    Zernike polynomial    Normalization Tm3$|+}$f  
    %       --------------------------------------------- UdL`.D,  
    %       0    0    1                        sqrt(2) ' {:(4>&  
    %       1    1    r                           2 )-jvp8%BK  
    %       2    0    2*r^2 - 1                sqrt(6) >Q5 SJZ/  
    %       2    2    r^2                      sqrt(6) ^@[[,1"K  
    %       3    1    3*r^3 - 2*r              sqrt(8) })!n1kt  
    %       3    3    r^3                      sqrt(8) N(1jm F  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) mDV 2vg  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) bjQfZT(  
    %       4    4    r^4                      sqrt(10) &S|laq H  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) 0|GxOzNd  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) 2_F`ILCML  
    %       5    5    r^5                      sqrt(12) h{PLyWH  
    %       --------------------------------------------- m,up37-{  
    % f "-<Z_  
    %   Example: dOiy[4s  
    % },f7I^s|  
    %       % Display three example Zernike radial polynomials Rf%ver  
    %       r = 0:0.01:1; ~Kb(`Px@  
    %       n = [3 2 5]; d[$1:V  
    %       m = [1 2 1];  K8 ThZY%  
    %       z = zernpol(n,m,r); 0q`'65 lx  
    %       figure R9#Z= f,  
    %       plot(r,z) }W|CIgF*  
    %       grid on  WHpbQQX  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') HE( U0<9c  
    % #x%O0  
    %   See also ZERNFUN, ZERNFUN2. ;TW@{re  
    YK[O#V  
    % A note on the algorithm. 5Cz:$-+  
    % ------------------------ +>:X4A *  
    % The radial Zernike polynomials are computed using the series '*~{1gG `  
    % representation shown in the Help section above. For many special uP* >-s'm  
    % functions, direct evaluation using the series representation can vF([mOZ  
    % produce poor numerical results (floating point errors), because KY"~Ta`  
    % the summation often involves computing small differences between T:}Ed_m}q  
    % large successive terms in the series. (In such cases, the functions -nd6hx  
    % are often evaluated using alternative methods such as recurrence #Ta@A~.L  
    % relations: see the Legendre functions, for example). For the Zernike ix$+NM<n  
    % polynomials, however, this problem does not arise, because the RyM2CQg[  
    % polynomials are evaluated over the finite domain r = (0,1), and , 1`eH[  
    % because the coefficients for a given polynomial are generally all P4N{lQ.>  
    % of similar magnitude. 8;Pdd1GyUL  
    % (sl]%RjGa  
    % ZERNPOL has been written using a vectorized implementation: multiple ?3z x?>sG  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] mV4} -  
    % values can be passed as inputs) for a vector of points R.  To achieve OVivJx  
    % this vectorization most efficiently, the algorithm in ZERNPOL ` 86b  
    % involves pre-determining all the powers p of R that are required to Fvv6<E  
    % compute the outputs, and then compiling the {R^p} into a single Tw`l4S&  
    % matrix.  This avoids any redundant computation of the R^p, and Aw|3W ]  
    % minimizes the sizes of certain intermediate variables. }5S2v+zE  
    % }3i@5ctQ  
    %   Paul Fricker 11/13/2006 |6;.C1\,  
    Q,DumOq  
    Ugs<WVp$  
    % Check and prepare the inputs: vu#:D1/BB  
    % ----------------------------- Jq; }q63:  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) f~U|flL^  
        error('zernpol:NMvectors','N and M must be vectors.') '%~zu]f'  
    end >:Oo[{)  
    \Lc]6?,R  
    if length(n)~=length(m) ahf$#UQLb  
        error('zernpol:NMlength','N and M must be the same length.') P]x@h  
    end &#)3v8  
    r%a$u%)oD  
    n = n(:); xGH%4J\  
    m = m(:); L_A|  
    length_n = length(n); p1D-Q7F  
    "?il07+w%  
    if any(mod(n-m,2)) 9\n}!{@i  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') UU !I@  
    end AKWw36lm  
    uL= \t=  
    if any(m<0) 0FW=8hFp,  
        error('zernpol:Mpositive','All M must be positive.') m[7a~-3:J  
    end '1{~y3  
    [n^___7  
    if any(m>n) zZ wD)p?_g  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') vTP_vsdeG  
    end \:#b9t{B-  
    h?O-13v   
    if any( r>1 | r<0 ) < 37vWK1+  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') H _2hr[  
    end Gm%[@7-  
    :V"}"{ (6  
    if ~any(size(r)==1) +Rvj]vd}&  
        error('zernpol:Rvector','R must be a vector.') !Zwl9DX3  
    end (sl~n_<ds8  
    *GDU=D}  
    r = r(:); fXqe7[  
    length_r = length(r); L\B+j+~  
    Jv?e ?U  
    if nargin==4 rm cy-}e  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); KOxD%bX_  
        if ~isnorm 5N6%N1  
            error('zernpol:normalization','Unrecognized normalization flag.') V:+}]"yJ,  
        end -OHG1"/  
    else J'7Oxjlg  
        isnorm = false; +`4|,K7'  
    end l)|CPSN?w  
    E=B9FIx~<  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% }I;W  
    % Compute the Zernike Polynomials Du{]r[[C  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% < FJ#Hy+  
    emaNmpg  
    % Determine the required powers of r: vJ{\67tK  
    % ----------------------------------- 8R z=)J  
    rpowers = []; "-Ns1A8  
    for j = 1:length(n) IS!+J.2  
        rpowers = [rpowers m(j):2:n(j)]; (>jME  
    end m&x0,8  
    rpowers = unique(rpowers); 7}#vANm  
    (PNvv/A  
    % Pre-compute the values of r raised to the required powers, FxUH ?%w  
    % and compile them in a matrix: a2i   
    % ----------------------------- l^vq'<kI  
    if rpowers(1)==0 |fA[s7)  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); x;SrJVDN  
        rpowern = cat(2,rpowern{:}); ;aF / <r  
        rpowern = [ones(length_r,1) rpowern]; <E ^:{J95  
    else kz&)a>aA  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Uarb [4OZ  
        rpowern = cat(2,rpowern{:}); CeZ5Ti?F  
    end GM%|mFqeu  
    5p>a]gp  
    % Compute the values of the polynomials: mkWIJH  
    % -------------------------------------- 6 Ym[^U  
    z = zeros(length_r,length_n); @M,_mX  
    for j = 1:length_n ]EK"AuEz`  
        s = 0:(n(j)-m(j))/2; X=JSqO6V9  
        pows = n(j):-2:m(j); A6sBObw;  
        for k = length(s):-1:1 @NVq .z  
            p = (1-2*mod(s(k),2))* ... 1"'//0 7  
                       prod(2:(n(j)-s(k)))/          ... $+mmqc8  
                       prod(2:s(k))/                 ... IlE! zRA  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... '`RCN k5l  
                       prod(2:((n(j)+m(j))/2-s(k))); X23TS`  
            idx = (pows(k)==rpowers); A>PM'$"sT  
            z(:,j) = z(:,j) + p*rpowern(:,idx); [$V_qFv{  
        end _ x7Vyy5  
         }r i"u;.R  
        if isnorm \nJr jH A  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); <Ei|:m  
        end mr/^lnO  
    end  =HSE  
    )jH"6my_  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  =n$,Vv4A  
    (?~F}u v  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 <iL+/^#  
    }z[ O_S,X  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)