非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 ;]vJ[mi~
function z = zernfun(n,m,r,theta,nflag) O
n/q&h5
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. (pv6V2i
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N \0fS;Q^{j
% and angular frequency M, evaluated at positions (R,THETA) on the W#Eg\nT
% unit circle. N is a vector of positive integers (including 0), and W6^YFN
% M is a vector with the same number of elements as N. Each element OrPi ("/
% k of M must be a positive integer, with possible values M(k) = -N(k) h[(.
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, 6N<
snBmd
% and THETA is a vector of angles. R and THETA must have the same 2QIx~Er
% length. The output Z is a matrix with one column for every (N,M) 'f_[(o+n
% pair, and one row for every (R,THETA) pair. 8*&|Q1`K:
% rK~Obv
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike i K,^|Q8
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi),
:q34KP
% with delta(m,0) the Kronecker delta, is chosen so that the integral 7MZ(tOR
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, qbx}9pp}g
% and theta=0 to theta=2*pi) is unity. For the non-normalized ioT+,li
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 2%_UOEayU
% FKWL{"y
% The Zernike functions are an orthogonal basis on the unit circle. }'u0Q6Obj
% They are used in disciplines such as astronomy, optics, and h?7@]&VJ
% optometry to describe functions on a circular domain. D}T+X;u)K
% +yd{-iH
% The following table lists the first 15 Zernike functions. nnZM{<!hF
% ;%^T*?t
% n m Zernike function Normalization Lj2Au_5
% -------------------------------------------------- %X -G(Z
% 0 0 1 1 Qv
B%X)J
% 1 1 r * cos(theta) 2 }cO}H2m
% 1 -1 r * sin(theta) 2 ]k)h<)nY
% 2 -2 r^2 * cos(2*theta) sqrt(6) A}W}H;8x
% 2 0 (2*r^2 - 1) sqrt(3) }AGdWt@
% 2 2 r^2 * sin(2*theta) sqrt(6)
ovsI2
% 3 -3 r^3 * cos(3*theta) sqrt(8) $s<bKju
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 6~ +/cY-V
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) z8JdA%YBM
% 3 3 r^3 * sin(3*theta) sqrt(8) hQ _gOI
% 4 -4 r^4 * cos(4*theta) sqrt(10) >A.m`w
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) G[lNgVbU@
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) ? t_$C,A+
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) pxV@ fH+`
% 4 4 r^4 * sin(4*theta) sqrt(10) =z4kK_?F,
% -------------------------------------------------- ~]78R!HJ
% 9jf2b
% Example 1: ~8tb^
% 9B9:lR
% % Display the Zernike function Z(n=5,m=1) 94'0X
% x = -1:0.01:1; _ lE
d8Cb
% [X,Y] = meshgrid(x,x); tdi^e;:?
% [theta,r] = cart2pol(X,Y); k:DAko}
% idx = r<=1; RxUzJ
% z = nan(size(X)); {w52]5l
% z(idx) = zernfun(5,1,r(idx),theta(idx)); #xNXCBl]O
% figure \(;X3h
% pcolor(x,x,z), shading interp IRK(y*6
% axis square, colorbar &XZS}n
% title('Zernike function Z_5^1(r,\theta)') j-(k`w\
% #G\;)pT
% Example 2: `kM:5f+>W
% k|;[)gE
% % Display the first 10 Zernike functions hngdeGa
% x = -1:0.01:1; $;As7MI
% [X,Y] = meshgrid(x,x); =*=qleC3
% [theta,r] = cart2pol(X,Y); gaVQ3NqF
% idx = r<=1; MD,+>kh
% z = nan(size(X)); c=u'#|/eb
% n = [0 1 1 2 2 2 3 3 3 3]; !A=>B=.|D
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; o06vC
% Nplot = [4 10 12 16 18 20 22 24 26 28]; SwdUElEp
% y = zernfun(n,m,r(idx),theta(idx)); 50HRgoP5Y
% figure('Units','normalized') YdF\*tZ
% for k = 1:10 ]}A3Pm- t*
% z(idx) = y(:,k); |P`: NAf2
% subplot(4,7,Nplot(k)) B`/p[ U5
% pcolor(x,x,z), shading interp b Fwc >
% set(gca,'XTick',[],'YTick',[]) %Kc 2n9W
% axis square ZuVes?&j
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Xw]L'+V=
% end gQlL0jAV
% =plU3D2
% See also ZERNPOL, ZERNFUN2. tY0C& u2
s* UO!bH a
% Paul Fricker 11/13/2006 !fK9YW(Im
99u9L)
+kZW:t!-
% Check and prepare the inputs: sY@x(qkIOc
% ----------------------------- <p\iB'y
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) (@ixV$Y
error('zernfun:NMvectors','N and M must be vectors.') G;yh$n<"
end o btXtqew
vj4n=F,Z
if length(n)~=length(m) &C6Z{.3V
error('zernfun:NMlength','N and M must be the same length.') :}3;z'2]l
end a_amO<!
m+'vrxTY
n = n(:); $i.)1.x
m = m(:); L_QJS2
if any(mod(n-m,2)) '.1_anE]
error('zernfun:NMmultiplesof2', ...
s2;b-0
'All N and M must differ by multiples of 2 (including 0).') (^;Fyf/
end .F@0`*#rE~
q}MPl 2
if any(m>n) (vb8Mk
error('zernfun:MlessthanN', ... hkoCbR0}8
'Each M must be less than or equal to its corresponding N.') 1@ .Eh8y
end sJB::6+1(|
Gk2R:\/Y
if any( r>1 | r<0 ) %:vM D
error('zernfun:Rlessthan1','All R must be between 0 and 1.') 3e7P
w`gLl
end uwhb-.w
/G& %T
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ^Uq"hT(41
error('zernfun:RTHvector','R and THETA must be vectors.') GEQ3r'B|
end L0dj 76'M
I'>r
r = r(:); '/v@q]!
theta = theta(:); lCC(N?%Q
length_r = length(r); Jrm 9,7/
if length_r~=length(theta) 0VBbSn}Z<
error('zernfun:RTHlength', ... g}Esj"7
'The number of R- and THETA-values must be equal.') d/!R;,^
end ncCgc5uP
x9s1AzM{
% Check normalization: LJ+Qe%|
% -------------------- c037#&Q%#
if nargin==5 && ischar(nflag) wR*>9LjeG
isnorm = strcmpi(nflag,'norm'); f_qW+fN::s
if ~isnorm +=&A1{kR3
error('zernfun:normalization','Unrecognized normalization flag.') o:8*WCiqrN
end YH^h?s
else j@4AY}[tX
isnorm = false; +8~C&K:
end QM'Db`B
MPI=^rc2
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% `am]&0g^+(
% Compute the Zernike Polynomials <C6*-j1oz
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% L]ce13K
rj> _L
% Determine the required powers of r: Z[pMlg6Z
% ----------------------------------- OPP^n-iPr
m_abs = abs(m); 8,m3]Lg
rpowers = []; `R+I(Cb
for j = 1:length(n) @.SuHd
rpowers = [rpowers m_abs(j):2:n(j)]; Kfl#78$d
end .,$<waGD
rpowers = unique(rpowers); \n`)>-
@ky<5r*JU(
% Pre-compute the values of r raised to the required powers, X
cDu&6Dy
% and compile them in a matrix: !.}ZlA
% ----------------------------- |NoTw K
if rpowers(1)==0 l6O8:XI
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); MzudCMF
rpowern = cat(2,rpowern{:}); W{z{AxS
rpowern = [ones(length_r,1) rpowern]; '|JBA.s|
else !0k'fYCa
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); W$bQS!7y
rpowern = cat(2,rpowern{:}); XwNJHOaF
end KqNbIw*sR
*c1)x
% Compute the values of the polynomials: MR{JMo=r
% -------------------------------------- LqA&@
y = zeros(length_r,length(n)); U1!#TD)@
for j = 1:length(n) ?cRGdLP'D
s = 0:(n(j)-m_abs(j))/2; GL<u#[
pows = n(j):-2:m_abs(j); /-v6jiM
for k = length(s):-1:1 UBZ37P
p = (1-2*mod(s(k),2))* ... q*E<~!jL
prod(2:(n(j)-s(k)))/ ... #lld*I"d
prod(2:s(k))/ ... <*'%Xgm
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... `HO_t ek
prod(2:((n(j)+m_abs(j))/2-s(k))); t6JM%
idx = (pows(k)==rpowers);
dr~6}S#
y(:,j) = y(:,j) + p*rpowern(:,idx); `\vqDWh8-
end bh&Wy<Y
W3.(s~)o
if isnorm 7yM "G $
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); !um~P
end psaPrE
end V~%C me
% END: Compute the Zernike Polynomials XHER [8l
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% l}jC$B`5
iXsX@ S^F
% Compute the Zernike functions: >L_nu.x
% ------------------------------ lH#C:n
idx_pos = m>0; jr`;H
idx_neg = m<0; uihU)]+@t/
%/:0x:ns
z = y; f2f2&|7
if any(idx_pos) rTmVHt
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Wp2$L-T&$
end >=+:lD
if any(idx_neg) q@(MD3OE
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); HZJ)q`1E
end &h<\jqN/
BGOajYD
% EOF zernfun