切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10445阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 U%pB  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! zgz!"knVx  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 9#7W+9  
    function z = zernfun(n,m,r,theta,nflag) $ c-O+~  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle.  !AJkd.  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N qD*y60~]zz  
    %   and angular frequency M, evaluated at positions (R,THETA) on the _f";zd  
    %   unit circle.  N is a vector of positive integers (including 0), and ^%zhj3#  
    %   M is a vector with the same number of elements as N.  Each element 'u x!:b"  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) m W>Iib|  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, L!*+: L DL  
    %   and THETA is a vector of angles.  R and THETA must have the same w!H(zjv&(  
    %   length.  The output Z is a matrix with one column for every (N,M) B(1-u!pz  
    %   pair, and one row for every (R,THETA) pair. [m{sl(Q  
    % VO eVS&}  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike s !?uLSEdb  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), g(tVghHxt$  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral Dfzj/spFV  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, @%x2d1FS  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized Lfi6b%/z  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 1xEOYM)  
    % MhCU; !  
    %   The Zernike functions are an orthogonal basis on the unit circle. Q;VuoHj!  
    %   They are used in disciplines such as astronomy, optics, and Z6${nUX  
    %   optometry to describe functions on a circular domain. C`t @tgT  
    % (eU4{X7  
    %   The following table lists the first 15 Zernike functions. 'I/_vqp@  
    % }NyQ<,+mq&  
    %       n    m    Zernike function           Normalization QPB,B>Z  
    %       -------------------------------------------------- -GFZFi  
    %       0    0    1                                 1 04dz ?`HuB  
    %       1    1    r * cos(theta)                    2 =MQ/z#:-P  
    %       1   -1    r * sin(theta)                    2 nyi!D   
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) R)k\  
    %       2    0    (2*r^2 - 1)                    sqrt(3) \\\8{jq  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) MAkr9AKb,  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) R`c[ ?U  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) y(QFf*J  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) Jf?6y~X>Y  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) e^\e;>Dh>  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) hm73Zy  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ~5&4s  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) Godrz*"  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) #PD6LO  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) gm)Uyr$  
    %       -------------------------------------------------- LE<J<~2Z  
    % exhU!p8  
    %   Example 1: !\4B.  
    % 1X5g(B  
    %       % Display the Zernike function Z(n=5,m=1) VSY  p  
    %       x = -1:0.01:1; h97#(_wV>  
    %       [X,Y] = meshgrid(x,x); SdYf^@%}F  
    %       [theta,r] = cart2pol(X,Y); IyHbl_ P ^  
    %       idx = r<=1; V_gKl;Kfe8  
    %       z = nan(size(X)); x ']'ODs  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); `5@F'tKQ  
    %       figure 5_'lu  
    %       pcolor(x,x,z), shading interp J;obh.}u"{  
    %       axis square, colorbar Z,#H\1v3lB  
    %       title('Zernike function Z_5^1(r,\theta)') ;9k>; g3m  
    % [o#% Eg;  
    %   Example 2: ia'z9  
    % Ll|_Wd.K,  
    %       % Display the first 10 Zernike functions W#<1504ip  
    %       x = -1:0.01:1; oVy{~D=  
    %       [X,Y] = meshgrid(x,x); 0mSP  
    %       [theta,r] = cart2pol(X,Y); /j GBQ-X  
    %       idx = r<=1; swF{}S"  
    %       z = nan(size(X)); 0h@FHw2d  
    %       n = [0  1  1  2  2  2  3  3  3  3]; V,_m>$Mo  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; tsc `u>  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; }aRib{L  
    %       y = zernfun(n,m,r(idx),theta(idx)); V_SH90@)+  
    %       figure('Units','normalized') e7U\gtZ.  
    %       for k = 1:10 %)r ~GCd  
    %           z(idx) = y(:,k); Zigv;}#  
    %           subplot(4,7,Nplot(k)) 7l69SQo]?  
    %           pcolor(x,x,z), shading interp vt#;j;liG  
    %           set(gca,'XTick',[],'YTick',[]) B}d&tH2^s  
    %           axis square w2nReB z  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 06pvI}   
    %       end bGWfMu=n  
    % l\s!A&L  
    %   See also ZERNPOL, ZERNFUN2. X@`a_XAfd  
    p' >i3T(  
    %   Paul Fricker 11/13/2006 W91yj:  
    GF ux?8A:%  
    lv 8EfN  
    % Check and prepare the inputs: B`}um;T#~,  
    % ----------------------------- f,HUr% @  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 5Ml=<^  
        error('zernfun:NMvectors','N and M must be vectors.') G|g^yaq>  
    end B'}?cG]  
    ?mg@zq8  
    if length(n)~=length(m) f4f2xe7\Q  
        error('zernfun:NMlength','N and M must be the same length.') O_:l;D#i  
    end lxhb)]c ^>  
    /d3Jd .l!  
    n = n(:); ~ 29p|X<  
    m = m(:); >c,s}HJ  
    if any(mod(n-m,2)) P"vrYom  
        error('zernfun:NMmultiplesof2', ... n[ B~C  
              'All N and M must differ by multiples of 2 (including 0).') sT\:**  
    end [r/zBF-.  
    5BhR4+1J  
    if any(m>n) NHGTV$T`1  
        error('zernfun:MlessthanN', ... L|'^P3#7`  
              'Each M must be less than or equal to its corresponding N.') So aqmY;+  
    end !__0Vk[s  
    ,S-h~x  
    if any( r>1 | r<0 ) @RoZd?  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') &N7ji  
    end X$Vi=fvt  
    X NJ4T]><  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) "}]$ag!`q$  
        error('zernfun:RTHvector','R and THETA must be vectors.') ! xCo{U=  
    end m^_=^z+  
    gfQ?k  
    r = r(:); ukWn@q*  
    theta = theta(:);  z:,PwLU  
    length_r = length(r); Lzq/^&sc(  
    if length_r~=length(theta) 9@ tp#  
        error('zernfun:RTHlength', ... Zl9@E;|=  
              'The number of R- and THETA-values must be equal.') OR <+y~Rv  
    end ot^pxun  
    h|qJ{tUWc$  
    % Check normalization: YT\@fgBt  
    % -------------------- ":Wq<Z'  
    if nargin==5 && ischar(nflag) bNea5u##  
        isnorm = strcmpi(nflag,'norm'); Y?0/f[Ax,y  
        if ~isnorm JVE\{ e)  
            error('zernfun:normalization','Unrecognized normalization flag.') z5>I9R^q;  
        end q A)O kR'm  
    else 2c9?,Le/;  
        isnorm = false; .Bm%  
    end WgtLKRZ\  
    <)VgGjZ-H  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% {7NGfzwp;6  
    % Compute the Zernike Polynomials CXlbtpK2k  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% G7%bY  
    d ]P~  
    % Determine the required powers of r: cw Obq\  
    % ----------------------------------- 2{OR#v~  
    m_abs = abs(m); .G0 N+)  
    rpowers = []; 5~*)3z^V  
    for j = 1:length(n) /(N/DMl[  
        rpowers = [rpowers m_abs(j):2:n(j)]; Wl j&_~  
    end / ;]5X  
    rpowers = unique(rpowers); %ByPwu:f  
    xA] L0h]  
    % Pre-compute the values of r raised to the required powers, ,WT>"9+  
    % and compile them in a matrix: h!EA;2yGKa  
    % ----------------------------- j|eA*UE  
    if rpowers(1)==0 OZ[YB  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ',+yD9 @  
        rpowern = cat(2,rpowern{:}); /R)wM#&  
        rpowern = [ones(length_r,1) rpowern]; ^kez]>   
    else FfoOJzf~o  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); jwZ,_CK  
        rpowern = cat(2,rpowern{:}); \/a6h   
    end .fA*WQ!lb  
    )- C3z   
    % Compute the values of the polynomials: "W|A^@r}  
    % -------------------------------------- \CbJU  
    y = zeros(length_r,length(n)); RZ".?  
    for j = 1:length(n) }lJ;|kx$  
        s = 0:(n(j)-m_abs(j))/2; bzg C+yT  
        pows = n(j):-2:m_abs(j); zG!nqSDG  
        for k = length(s):-1:1 }U_ ' 7_JT  
            p = (1-2*mod(s(k),2))* ... "t@p9>  
                       prod(2:(n(j)-s(k)))/              ... c'2d+*[  
                       prod(2:s(k))/                     ... K2   
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... [Kg b#L'{  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); uV/5f#)  
            idx = (pows(k)==rpowers); &p0e)o~Ux  
            y(:,j) = y(:,j) + p*rpowern(:,idx); UO/sv2CN  
        end VtreOJ+  
         je4l3Hl  
        if isnorm .g*j]!_]  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); PnlI {d  
        end okNo- \Dh!  
    end sp9gz~Kq  
    % END: Compute the Zernike Polynomials -N *L1Zj  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% .n-#A  
    $6hPTc<C  
    % Compute the Zernike functions: 1<@SMcj>  
    % ------------------------------ I.2J-pu}  
    idx_pos = m>0; x&}]8S)  
    idx_neg = m<0; _T=g?0 q  
    r~w.J+W  
    z = y; '%)R}wgV  
    if any(idx_pos) VJh8`PVX  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 4zug9kFK  
    end 9>""xt  
    if any(idx_neg) <Au2e  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); c\bL_  
    end )G? qX.D  
    wb-yAQ8  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) }`"`VLh  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. )Q)qz$h@  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated tAX* CMW  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive 3} A$+PX  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, U=>S|>daR  
    %   and THETA is a vector of angles.  R and THETA must have the same ?RRO  
    %   length.  The output Z is a matrix with one column for every P-value, :Pud%}'  
    %   and one row for every (R,THETA) pair. PnsBDf%v  
    % @@EI=\  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike >rnVT K  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) V\V /2u5-  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) _|HhT^\P  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 "LyD  
    %   for all p. >1y6DC  
    %  8*ZsR)!  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 ^?z%f_ri  
    %   Zernike functions (order N<=7).  In some disciplines it is Cj5mM[:s  
    %   traditional to label the first 36 functions using a single mode O5\r%&$xd  
    %   number P instead of separate numbers for the order N and azimuthal b@:OlZ~ %  
    %   frequency M. Io6/Fv>!  
    % %36x'Dn ?  
    %   Example: u\R?(G&  
    % ^xo<$zn  
    %       % Display the first 16 Zernike functions Bx\&7|,x  
    %       x = -1:0.01:1; 5*0zI\  
    %       [X,Y] = meshgrid(x,x); ~lj~]j  
    %       [theta,r] = cart2pol(X,Y); kmB!NxF>)F  
    %       idx = r<=1; F_-Lu]*  
    %       p = 0:15; $JE,u' JQ  
    %       z = nan(size(X)); b*|~F  
    %       y = zernfun2(p,r(idx),theta(idx)); 37AVk`a  
    %       figure('Units','normalized') i1iP'`r  
    %       for k = 1:length(p) g40Hj Y  
    %           z(idx) = y(:,k); %E?Srs}j  
    %           subplot(4,4,k) gGqrFh\  
    %           pcolor(x,x,z), shading interp +z >)'#  
    %           set(gca,'XTick',[],'YTick',[]) 8`=?_zF  
    %           axis square gY}In+S  
    %           title(['Z_{' num2str(p(k)) '}']) m 0HK1'  
    %       end wjarQog5Y  
    % P5S ]h  
    %   See also ZERNPOL, ZERNFUN. K+g[E<x\=  
    'H1~Zhv  
    %   Paul Fricker 11/13/2006 "CJVtO  
    0zt]DCdY  
    ,GbmL8P7Y  
    % Check and prepare the inputs: OV>& `puL  
    % ----------------------------- &(F c .3m  
    if min(size(p))~=1 8f@}-  
        error('zernfun2:Pvector','Input P must be vector.') h$S#fY8   
    end OvfluFu7  
    >7U/TVd&  
    if any(p)>35 }$6L]   
        error('zernfun2:P36', ... }\4yU=JP K  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... 3i^X9[.  
               '(P = 0 to 35).']) |}"YUk^  
    end @!ChPl  
    &OR(]Wt0  
    % Get the order and frequency corresonding to the function number: ]4:QqdV  
    % ---------------------------------------------------------------- k %I83,+  
    p = p(:); Xfiwblg  
    n = ceil((-3+sqrt(9+8*p))/2); S zo'[/ [R  
    m = 2*p - n.*(n+2); m$0W^u  
    a`O'ZY  
    % Pass the inputs to the function ZERNFUN: <o EAy  
    % ---------------------------------------- ?_Qe45 @  
    switch nargin <z Gh}.6v  
        case 3 Koa9W >!  
            z = zernfun(n,m,r,theta); J}|X  
        case 4 fRp]  
            z = zernfun(n,m,r,theta,nflag); %ms%0%  
        otherwise LI,wSTVjC  
            error('zernfun2:nargin','Incorrect number of inputs.') $b8[/],  
    end hgU;7R,?ir  
    qHt/,w='Q  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) }#z1>y!#  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. QM,#:m1o  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of *l5?_tF  
    %   order N and frequency M, evaluated at R.  N is a vector of }[0nTd  
    %   positive integers (including 0), and M is a vector with the jAJ='|[X\  
    %   same number of elements as N.  Each element k of M must be a DrRK Sc(u9  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) {f06Ki  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is O9ex=m `L  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix qS?o22  
    %   with one column for every (N,M) pair, and one row for every :EX>Y<`]  
    %   element in R. 7_~ A*LM  
    % reu[rZ&  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- NcA `E_3  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is C% -Tw]T$_  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to j>8DaEfwx  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 }*fBHzNN  
    %   for all [n,m]. sn"((BsO<  
    % yan^\)HZ  
    %   The radial Zernike polynomials are the radial portion of the aZ@pfWwa:  
    %   Zernike functions, which are an orthogonal basis on the unit ~${~To8$CW  
    %   circle.  The series representation of the radial Zernike 161P%sGx2  
    %   polynomials is i/:L^SQAq  
    % 4`O[U#?  
    %          (n-m)/2 2w|5SK_  
    %            __ WD5J2EePT  
    %    m      \       s                                          n-2s OP/DWf  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r !h? HfpYv  
    %    n      s=0 @*%3+9`yq  
    % s|C[{n<_  
    %   The following table shows the first 12 polynomials. Y?^liI`#  
    % zgD?e?yPO  
    %       n    m    Zernike polynomial    Normalization 0/HFLz'  
    %       --------------------------------------------- $dM_uSt  
    %       0    0    1                        sqrt(2) i6Z7O )V  
    %       1    1    r                           2 cSL6V2F  
    %       2    0    2*r^2 - 1                sqrt(6) @CNJpQ ujn  
    %       2    2    r^2                      sqrt(6) Es>' N3A z  
    %       3    1    3*r^3 - 2*r              sqrt(8) <]Td7-n  
    %       3    3    r^3                      sqrt(8) ^4=#, K  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) o z*;q]  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) -A#p22D,5  
    %       4    4    r^4                      sqrt(10) ; Z:[LJd  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) 3IYFvq~  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) y._'o7%  
    %       5    5    r^5                      sqrt(12) I\*6 >  
    %       --------------------------------------------- =lAjQt  
    % KV0*dB;  
    %   Example: b1Vr>:sK47  
    % ?]><#[?'L  
    %       % Display three example Zernike radial polynomials /LFuf`bXV  
    %       r = 0:0.01:1; 4/ ` *mPW  
    %       n = [3 2 5]; WK|5:V8E  
    %       m = [1 2 1]; AJyN lQ  
    %       z = zernpol(n,m,r); 7z? ;z<VJ  
    %       figure p]L]=-(qI  
    %       plot(r,z) O)jD2X?  
    %       grid on Y`~B> J  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') h,c*:  
    % Kq[4I[+R  
    %   See also ZERNFUN, ZERNFUN2. #mV2VIX#Jv  
    W&5/1``u\  
    % A note on the algorithm. kQkc+sGJf  
    % ------------------------ [}szM^  
    % The radial Zernike polynomials are computed using the series GDSV:]hL  
    % representation shown in the Help section above. For many special !hVbx#bXl  
    % functions, direct evaluation using the series representation can Snk+ZQ-  
    % produce poor numerical results (floating point errors), because $0$sM/%  
    % the summation often involves computing small differences between MpOU>\  
    % large successive terms in the series. (In such cases, the functions N sdpE?V  
    % are often evaluated using alternative methods such as recurrence FKO2UY#&7  
    % relations: see the Legendre functions, for example). For the Zernike 5G355 ,}E  
    % polynomials, however, this problem does not arise, because the N3"JouP  
    % polynomials are evaluated over the finite domain r = (0,1), and 1$b@C-B@g  
    % because the coefficients for a given polynomial are generally all iC3z5_g*@  
    % of similar magnitude. tWn dAM(U7  
    % T'pL&@,Q  
    % ZERNPOL has been written using a vectorized implementation: multiple s4bV0k  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] qfsPX6]  
    % values can be passed as inputs) for a vector of points R.  To achieve u1meys a{0  
    % this vectorization most efficiently, the algorithm in ZERNPOL P<g(i 6]  
    % involves pre-determining all the powers p of R that are required to F85_Lz4  
    % compute the outputs, and then compiling the {R^p} into a single F! =l r  
    % matrix.  This avoids any redundant computation of the R^p, and vM/*S 6[  
    % minimizes the sizes of certain intermediate variables. 3(c-o0M  
    % 'xH^ksb"  
    %   Paul Fricker 11/13/2006 HAjl[c  
    )- W1Wtom  
    u"h/ERCa  
    % Check and prepare the inputs: xr'1CP  
    % ----------------------------- MZGhN brd  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) uHU@j(&c  
        error('zernpol:NMvectors','N and M must be vectors.') Ef]Hpjvp  
    end X,Na4~JO(  
    e!5} #6Kd  
    if length(n)~=length(m) [v~,|N>w  
        error('zernpol:NMlength','N and M must be the same length.') b,Wm]N  
    end u%C oo  
    c|/HX%Y  
    n = n(:); R!dC20IMvH  
    m = m(:); Cu7{>"  
    length_n = length(n); BAQ-1kSz  
    D|q~n)TW5  
    if any(mod(n-m,2)) O|H:  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') #Ha:O,|  
    end aDdxR:  
    poBeEpbs  
    if any(m<0) m|q,i xg  
        error('zernpol:Mpositive','All M must be positive.') h]<S0/  
    end G[KjK$.Ts?  
    2u$-(JfoS  
    if any(m>n) rxyv+@~Nc  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') |<Ls;:5.  
    end zA5nr`  
    a/ A c^!(  
    if any( r>1 | r<0 ) 9[qOfIny  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') aEN` `  
    end 2Wzx1_D "a  
    |2do8z  
    if ~any(size(r)==1) 2W+~{3[#  
        error('zernpol:Rvector','R must be a vector.') YF{MXK}  
    end 8$NVVw]2,  
    OD)X7PU  
    r = r(:); LhO\a  
    length_r = length(r); 3%*igpj\)  
    ,1ev2T  
    if nargin==4 ^BF}wQb :j  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); xJ3C^b%H  
        if ~isnorm @JGmOwZ  
            error('zernpol:normalization','Unrecognized normalization flag.') [S'1OR$FQ\  
        end 58Ibje  
    else r(r(&NU  
        isnorm = false; TKnWhB/J  
    end &>qUT]w  
    5qrD~D '  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% JwMRquQv  
    % Compute the Zernike Polynomials Aits<0  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% b d 1^  
    `%Fp'`ZM$8  
    % Determine the required powers of r: <ww D*t  
    % ----------------------------------- ZSu.0|0#  
    rpowers = []; ;VLDXvGd  
    for j = 1:length(n) yx8G9SO?  
        rpowers = [rpowers m(j):2:n(j)]; #R5\k-I  
    end Kxr{Nx  
    rpowers = unique(rpowers); *}vvS^c0  
    !` 1h *}  
    % Pre-compute the values of r raised to the required powers, +,spC`M6h  
    % and compile them in a matrix: s* GZOz  
    % ----------------------------- wm@j(h4  
    if rpowers(1)==0 jz f~n~  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); _&, A  
        rpowern = cat(2,rpowern{:}); Iynks,ikA  
        rpowern = [ones(length_r,1) rpowern]; k1,k 9BK  
    else &6\&McmkX  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); s:_hsmc"  
        rpowern = cat(2,rpowern{:}); kZF]BPh.  
    end v:SHaUS  
    PzPNvV/o  
    % Compute the values of the polynomials: k^oSG1F  
    % -------------------------------------- i6paNHi*  
    z = zeros(length_r,length_n); z<eu=OD4t  
    for j = 1:length_n uUfw"*D  
        s = 0:(n(j)-m(j))/2; s{dm,|?Jl,  
        pows = n(j):-2:m(j); %R$)bGT  
        for k = length(s):-1:1 FJ84 'T\~  
            p = (1-2*mod(s(k),2))* ... E6GubU  
                       prod(2:(n(j)-s(k)))/          ... _-fLD  
                       prod(2:s(k))/                 ... | va@&;#wf  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... !5dn7Wuj  
                       prod(2:((n(j)+m(j))/2-s(k))); lH3.q4D 5  
            idx = (pows(k)==rpowers); mH,s!6j?Vp  
            z(:,j) = z(:,j) + p*rpowern(:,idx); '5aA+XP|  
        end \y7?w*K  
         9,fV  
        if isnorm W_XFTqp^  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); 7ZI{A*^vB  
        end HJr/N)d  
    end 1tXc7NA<  
    *{?2M6Z  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    850
    光币
    833
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    8426
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  1J *wW# e  
    Y=rW.yK8  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 &(^>}&XS.<  
    lR^dT4  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)