切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11095阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 cQ:"-!ff  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! ~afg)[(  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 mW%?>Z1=>d  
    function z = zernfun(n,m,r,theta,nflag) .lhn;*Yi  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. |lH;Fq{\  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N w#i[_  
    %   and angular frequency M, evaluated at positions (R,THETA) on the @5) 8L/[l  
    %   unit circle.  N is a vector of positive integers (including 0), and midsnG+jnf  
    %   M is a vector with the same number of elements as N.  Each element  g/UaYCjM  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) hC_Vts[v/  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, fQ+VT|jzx  
    %   and THETA is a vector of angles.  R and THETA must have the same Cc?TSZ8[  
    %   length.  The output Z is a matrix with one column for every (N,M) *]JdHO  
    %   pair, and one row for every (R,THETA) pair. UueD(T;p  
    % l!E7A Kk8  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike AGA`fRVx  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), (SVWdgb  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral (eCFWmO  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, SvvUkQ#1w  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized a'\By?V]  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. n3MWs);5  
    % ;jK#[*y  
    %   The Zernike functions are an orthogonal basis on the unit circle. 5W =(+Q>C  
    %   They are used in disciplines such as astronomy, optics, and @&1Wy p  
    %   optometry to describe functions on a circular domain. 4\.V   
    % ,~zj=F  
    %   The following table lists the first 15 Zernike functions. zm9TvoC%}  
    % HEqWoV]{d  
    %       n    m    Zernike function           Normalization zBf-8]"^  
    %       -------------------------------------------------- x r(|*  
    %       0    0    1                                 1 +kdySWF  
    %       1    1    r * cos(theta)                    2 Uh.Zi3X6}6  
    %       1   -1    r * sin(theta)                    2 1gO2C $  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) Q4s&E\}  
    %       2    0    (2*r^2 - 1)                    sqrt(3) "%8A :^1  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) v}J;ZIb  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 2}}?'PwwT  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) `P+(&taT  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) vjViX<#(V  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) !}3,B28  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) (B>Zaro#  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 7dh1W@\  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) C-P06Q]  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) TY;U2.Ud  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) @D`zKYwX1  
    %       -------------------------------------------------- VS?@y/\In  
    % &ntBU]< q  
    %   Example 1: M/V(5IoP (  
    % ~!%0Z9>ap  
    %       % Display the Zernike function Z(n=5,m=1) &A!KJ.  
    %       x = -1:0.01:1; NnxM3*  
    %       [X,Y] = meshgrid(x,x); UkR3}{i  
    %       [theta,r] = cart2pol(X,Y); D1,O:+[;.  
    %       idx = r<=1; aI#4H+/  
    %       z = nan(size(X)); ^c9ThV.v  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); <2  
    %       figure hQJWKAf,/  
    %       pcolor(x,x,z), shading interp Q F-)^`N  
    %       axis square, colorbar }F`beoMAkM  
    %       title('Zernike function Z_5^1(r,\theta)') |U[y_Y\a  
    % !^U6Z@&/R  
    %   Example 2: 0/]_nd  
    % urY`^lX~  
    %       % Display the first 10 Zernike functions 2xmk,&s  
    %       x = -1:0.01:1; VlW9UF-W  
    %       [X,Y] = meshgrid(x,x); b5ie <s  
    %       [theta,r] = cart2pol(X,Y); ;np_%?is  
    %       idx = r<=1; D#sf i,O  
    %       z = nan(size(X)); m^!Sv?hV  
    %       n = [0  1  1  2  2  2  3  3  3  3]; MM#cLw  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; ~ }KzJiL  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; eVnbRT2y&  
    %       y = zernfun(n,m,r(idx),theta(idx)); {K aN,td9  
    %       figure('Units','normalized') ]H2R  
    %       for k = 1:10 4E"d/  
    %           z(idx) = y(:,k); 7#4%\f+'t  
    %           subplot(4,7,Nplot(k)) R$b,h  
    %           pcolor(x,x,z), shading interp I"!'AI-  
    %           set(gca,'XTick',[],'YTick',[]) y~#\#w {  
    %           axis square |paP<$  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) l[n@/%2  
    %       end R lg#z4m  
    % LZWS^77  
    %   See also ZERNPOL, ZERNFUN2. {Qtq7q.  
    =Q?f96T  
    %   Paul Fricker 11/13/2006 `!c,y~r[  
    @[r={s\  
    ?M&4pO&Y  
    % Check and prepare the inputs: $^vP<  
    % ----------------------------- H/i<_LP  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) DA <ynBQ  
        error('zernfun:NMvectors','N and M must be vectors.') Tx+ p8J|Yr  
    end QaMDGD  
    me./o(!?  
    if length(n)~=length(m) 1k>naf~O  
        error('zernfun:NMlength','N and M must be the same length.') g37q/nEv  
    end ce5nG0@#  
    ?:}Pa<D&K  
    n = n(:); 9y+[o  
    m = m(:); ltEF:{mLe#  
    if any(mod(n-m,2)) A^pW]r=Xtk  
        error('zernfun:NMmultiplesof2', ... N#Ag'i4HF  
              'All N and M must differ by multiples of 2 (including 0).') xURw,  
    end xYT}>#[  
    Kfjryo9  
    if any(m>n) gB+ G'I  
        error('zernfun:MlessthanN', ... PRp E$`WK  
              'Each M must be less than or equal to its corresponding N.') ;:_(7|  
    end 9-- dRTG  
    5^F]tRz-  
    if any( r>1 | r<0 ) ??I:H  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') :`zV [A:D  
    end ;f(n.i  
    {bTeAfbf]  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ,I39&;Iq  
        error('zernfun:RTHvector','R and THETA must be vectors.') R92R}=G!  
    end G;2[  
    %^')G+>i  
    r = r(:); e`ex]py<C  
    theta = theta(:); ?waebuj>  
    length_r = length(r); e?vj+ZlS$f  
    if length_r~=length(theta) \1{_lynD  
        error('zernfun:RTHlength', ... PSEWL6=]N  
              'The number of R- and THETA-values must be equal.') V2QW\2@$  
    end 86{ZFtv  
    sS'{QIRC'  
    % Check normalization: cKpQr7]ur  
    % -------------------- /#IH -2N  
    if nargin==5 && ischar(nflag) paYz[Xq  
        isnorm = strcmpi(nflag,'norm'); 82 .HH5Z{  
        if ~isnorm iPkT*Cl8  
            error('zernfun:normalization','Unrecognized normalization flag.') +U=KXv  
        end \d5}5J]a&n  
    else 5*XH6g F  
        isnorm = false; }#|2z}!  
    end uH] m]t  
    /1N)d?Pcl  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% [ )k2=67  
    % Compute the Zernike Polynomials r"[L0Cbb  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% "MTq{f2?  
    } Ab _o#Zy  
    % Determine the required powers of r: ebD{ pc`&  
    % ----------------------------------- 'rh\CA/}D  
    m_abs = abs(m); DZ%8 |PmB  
    rpowers = []; Y)v%  
    for j = 1:length(n) aLHrl6"  
        rpowers = [rpowers m_abs(j):2:n(j)]; |QMT A5  
    end `{WCrw6)  
    rpowers = unique(rpowers); -rRz@Cr  
    acy"ct*I  
    % Pre-compute the values of r raised to the required powers, XJ _%!  
    % and compile them in a matrix: @M9_j{A  
    % ----------------------------- ?9qAe  
    if rpowers(1)==0 |/t K-c6J  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); @@; 1%z  
        rpowern = cat(2,rpowern{:}); J:[3;Z  
        rpowern = [ones(length_r,1) rpowern]; hN}5u"pS  
    else Mi;Tn;3er  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); #-A5Z;TD.  
        rpowern = cat(2,rpowern{:}); }Uq/kei^P  
    end .$OjUlzr-H  
    %K`4k.gN  
    % Compute the values of the polynomials: {6DpPw^"  
    % -------------------------------------- 7%X+O8  
    y = zeros(length_r,length(n)); ?SB5b,  
    for j = 1:length(n) R,XD6'Q  
        s = 0:(n(j)-m_abs(j))/2; VgUvD1v?}  
        pows = n(j):-2:m_abs(j); y.%i  
        for k = length(s):-1:1 "^!j5fZ  
            p = (1-2*mod(s(k),2))* ... J511AoQ{R  
                       prod(2:(n(j)-s(k)))/              ... 2Sv>C `FMU  
                       prod(2:s(k))/                     ... zab w!@]  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... x={kjym L  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); ;A`IYRzt  
            idx = (pows(k)==rpowers); Xk;Uk[  
            y(:,j) = y(:,j) + p*rpowern(:,idx); kK08W3@&t  
        end zv&ePq\#  
         O#A8t<f|M  
        if isnorm aS2a_!f  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 1fmSk$ y.9  
        end 5Gc_LI&v7  
    end iz,]%<_PE  
    % END: Compute the Zernike Polynomials #vnefIcBf  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 7O]J^H+7  
    Bi %Z2/  
    % Compute the Zernike functions: !>?4[|?n<  
    % ------------------------------ q|?`Gsr  
    idx_pos = m>0; ?=TL2"L  
    idx_neg = m<0; eUi> Mp  
    NU BpIx&  
    z = y; z&\Il#'\m+  
    if any(idx_pos) nYo&x'  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); xn0s`I[  
    end !k4 }v'=  
    if any(idx_neg) (K!M*d+  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); n U+pnkMj  
    end yIn/Y0No  
    &Xj{:s#  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) =vB]*?;9  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. 5 ]A$P\7~1  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated T)$ 6H}[c  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive F(?Fz8  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, \ SoYx5lf  
    %   and THETA is a vector of angles.  R and THETA must have the same tuL\7 (R  
    %   length.  The output Z is a matrix with one column for every P-value, v9X7-GJ~  
    %   and one row for every (R,THETA) pair. xkk@ {}J\  
    % N>W;0u!  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike G_4K+ -K  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) nsM>%+o  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) ]j%*"V  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 A52LH,  
    %   for all p. 9&|12x$  
    % [qO5~E`;  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 OX#eLco  
    %   Zernike functions (order N<=7).  In some disciplines it is a+4`}:KA#  
    %   traditional to label the first 36 functions using a single mode yoq\9* ?u^  
    %   number P instead of separate numbers for the order N and azimuthal u&?yPR  
    %   frequency M. !;xf>API  
    % s= -WB0E  
    %   Example: LLXg  
    % [="g|/M)  
    %       % Display the first 16 Zernike functions op.PS{_t  
    %       x = -1:0.01:1; yH0yO*R Z  
    %       [X,Y] = meshgrid(x,x); XZUB*P}]D  
    %       [theta,r] = cart2pol(X,Y); PU]7c2.y  
    %       idx = r<=1; k8Su/U  
    %       p = 0:15; t wa(M?  
    %       z = nan(size(X)); >uP{9kDm  
    %       y = zernfun2(p,r(idx),theta(idx));  )zk?yY6  
    %       figure('Units','normalized') U#UVenp@  
    %       for k = 1:length(p) .&* ({UM  
    %           z(idx) = y(:,k); ArEH%e  
    %           subplot(4,4,k) 82^ z -t{  
    %           pcolor(x,x,z), shading interp ZYl-p]\*y  
    %           set(gca,'XTick',[],'YTick',[]) Sh~ 8jEk  
    %           axis square lu G023'  
    %           title(['Z_{' num2str(p(k)) '}']) /:*R -VdF  
    %       end W[jW;uk  
    % ?-(w][MT\  
    %   See also ZERNPOL, ZERNFUN. wt_?B_nR  
    "R\\\I7u  
    %   Paul Fricker 11/13/2006 ^=-*L 3f  
    >ji}j~cH  
    |2+F I<v4  
    % Check and prepare the inputs: dH2j*G Ij  
    % ----------------------------- Z7KB?1{G  
    if min(size(p))~=1 V;[ __w  
        error('zernfun2:Pvector','Input P must be vector.') gs`27Gih  
    end 3LmBV\["  
    (Ay4B*|!  
    if any(p)>35 g[D,\  
        error('zernfun2:P36', ... c!(~BH3p  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... +i q+  
               '(P = 0 to 35).']) |+$j( YuH  
    end ~3*ZG  
    am$-sh72  
    % Get the order and frequency corresonding to the function number: 7Da^Jv k  
    % ---------------------------------------------------------------- gl(6m`a>  
    p = p(:); ,pGCgOG#}c  
    n = ceil((-3+sqrt(9+8*p))/2); )n3bi QL_  
    m = 2*p - n.*(n+2); dTU.XgX)1^  
    Fm[?@Z&wP  
    % Pass the inputs to the function ZERNFUN: ek0;8Ds9  
    % ---------------------------------------- Jb)eC?6O  
    switch nargin u=ds]XP@  
        case 3 Sj]T{3mi  
            z = zernfun(n,m,r,theta); ui#1+p3G  
        case 4 [jtj~]&mO  
            z = zernfun(n,m,r,theta,nflag); 3Oig/KZ  
        otherwise NGb! 7Mu9  
            error('zernfun2:nargin','Incorrect number of inputs.') ]= QCCC  
    end WSpg(\Cs  
    RZ,<D I  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) 'm p{O  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. !^"!fuoNC  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of 2" {]A;@  
    %   order N and frequency M, evaluated at R.  N is a vector of DGuUI}|)  
    %   positive integers (including 0), and M is a vector with the F# 37Qv  
    %   same number of elements as N.  Each element k of M must be a m LxwJ  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) f!R^;'a  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is cwD*>[j  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix kk\zZC <  
    %   with one column for every (N,M) pair, and one row for every E,yzy[gl  
    %   element in R. .Mft+,"  
    % Z_4H2HseL  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- Go+,jT-  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is u{lDof>  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to fOjt` ~ToI  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 D(ntVR  
    %   for all [n,m]. 63dtO{:4  
    % yW=hnV{  
    %   The radial Zernike polynomials are the radial portion of the 6_}){ZR  
    %   Zernike functions, which are an orthogonal basis on the unit ~aq?Kk  
    %   circle.  The series representation of the radial Zernike ujHzG}2z  
    %   polynomials is )+{omQ7v  
    % ; dHOH\,:  
    %          (n-m)/2 $=g.-F% *=  
    %            __ 2,QApW_Y  
    %    m      \       s                                          n-2s &/#Tk>:  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r rpP+20v  
    %    n      s=0 mM^8YL  
    % s1b\I6&:J  
    %   The following table shows the first 12 polynomials. xp;8p94   
    % mt6uW+t/  
    %       n    m    Zernike polynomial    Normalization c68$pgG  
    %       --------------------------------------------- DBrzw+;e3  
    %       0    0    1                        sqrt(2) snzH}$Ls  
    %       1    1    r                           2 AeQ&V d|  
    %       2    0    2*r^2 - 1                sqrt(6) N*)8L[7_;  
    %       2    2    r^2                      sqrt(6) =d4',[O  
    %       3    1    3*r^3 - 2*r              sqrt(8) ^0?cyv\>LA  
    %       3    3    r^3                      sqrt(8) Ty`=U>K|  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) !rmo*-=^=  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) )^@V*$D  
    %       4    4    r^4                      sqrt(10) ScmzbDu  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) ,?N_67  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) Dq1XZ%8  
    %       5    5    r^5                      sqrt(12) u2m{Yx|  
    %       --------------------------------------------- 2 ]6u B e  
    % BCDf9]X  
    %   Example: 0J,d9a [1  
    % $,v+i -  
    %       % Display three example Zernike radial polynomials IG@&l0ARL  
    %       r = 0:0.01:1; M@ZpgAfq  
    %       n = [3 2 5]; Ox1QP2t6Y  
    %       m = [1 2 1]; "YU~QOGx@  
    %       z = zernpol(n,m,r); EC\:uK  
    %       figure $<DA[ %pv  
    %       plot(r,z) ] Lft^,7  
    %       grid on iK0J{'  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') y(BLin!O.  
    % u\Q**m2XP  
    %   See also ZERNFUN, ZERNFUN2. "JGig!9  
    HSFf&|qqx  
    % A note on the algorithm. _; RD-kv  
    % ------------------------ gM[ J'DMW  
    % The radial Zernike polynomials are computed using the series 3$f5][+U  
    % representation shown in the Help section above. For many special on&=%tCAL  
    % functions, direct evaluation using the series representation can KvOI)"0(  
    % produce poor numerical results (floating point errors), because L. ?dI82c  
    % the summation often involves computing small differences between Mp}NUQHE  
    % large successive terms in the series. (In such cases, the functions ^u&Khc~ y  
    % are often evaluated using alternative methods such as recurrence 4gt "dfy+  
    % relations: see the Legendre functions, for example). For the Zernike 3sIM7WD?  
    % polynomials, however, this problem does not arise, because the iz5wUyeg  
    % polynomials are evaluated over the finite domain r = (0,1), and TTak[e&j3  
    % because the coefficients for a given polynomial are generally all JJ06f~Iw[  
    % of similar magnitude. yp'>+cLa  
    % "lb!m9F{  
    % ZERNPOL has been written using a vectorized implementation: multiple Pu*UZcXY  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] -zkL)<7  
    % values can be passed as inputs) for a vector of points R.  To achieve qnV9TeU)  
    % this vectorization most efficiently, the algorithm in ZERNPOL @n'ss!h  
    % involves pre-determining all the powers p of R that are required to UwT$IKR  
    % compute the outputs, and then compiling the {R^p} into a single [m&ZAq  
    % matrix.  This avoids any redundant computation of the R^p, and Upen/1bA  
    % minimizes the sizes of certain intermediate variables. -{mq\GvGn  
    % _ 9]3S>Rn  
    %   Paul Fricker 11/13/2006 5ml}TSMu'  
    l[{}ZKZ  
    u6d~d\  
    % Check and prepare the inputs: 4u7>NQUDu  
    % ----------------------------- 1<e%)? G  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) K0a 50@B]  
        error('zernpol:NMvectors','N and M must be vectors.') SXF_)1QO\W  
    end sUMn (@r  
    DMW:%h{  
    if length(n)~=length(m) GQWTQIl]  
        error('zernpol:NMlength','N and M must be the same length.') a}hM}U!  
    end b;ZAz  
    =_3qUcOP  
    n = n(:); ~[6|VpGc:  
    m = m(:); %W@IB8]Vr  
    length_n = length(n); _ @76eZd  
    c17==S  
    if any(mod(n-m,2)) 6%1o<{(%f  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') 6GvnyJ{[  
    end i|'t!3I^m  
    $4,6&dwg  
    if any(m<0) I/|n ma/ $  
        error('zernpol:Mpositive','All M must be positive.') _.LWc^Sg  
    end essW,2,rjC  
    NWj@iyi<  
    if any(m>n) k JFHUR  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') !%9I%Ak^  
    end ??Ac=K\  
    z6(Q 3@iO  
    if any( r>1 | r<0 ) EV$n>.  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') X:/t>0e  
    end ?yK\L-ad  
    OSk9Eb4ld  
    if ~any(size(r)==1) H:6$) #  
        error('zernpol:Rvector','R must be a vector.') uD3_'a  
    end JnJz{(c  
    m"]ys #  
    r = r(:); A4h/oMis  
    length_r = length(r); "<#:\6aym  
    1YL5 ![T  
    if nargin==4 F{tSfKy2  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); p7er04/}\  
        if ~isnorm O?Tg`]EX  
            error('zernpol:normalization','Unrecognized normalization flag.') XvY-C  
        end yjzNU5F  
    else Ymom 0g+ f  
        isnorm = false; 37Y]sJrs$  
    end =ndKG5  
    qC1@p?8$  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ]9Hy "#Fz  
    % Compute the Zernike Polynomials W[s>TDc`v  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% g(k|"g`*  
    /G;yxdb  
    % Determine the required powers of r: P+h&tXZn8  
    % ----------------------------------- OFv} jT  
    rpowers = []; p6'8l~W+  
    for j = 1:length(n) AAcbY;  
        rpowers = [rpowers m(j):2:n(j)]; HxaUVg0  
    end _(foJRr  
    rpowers = unique(rpowers); +&@0;zSga  
    4aC#Cv:0  
    % Pre-compute the values of r raised to the required powers, X$f%Ss  
    % and compile them in a matrix: iXFaQ  
    % ----------------------------- E12k1gC`  
    if rpowers(1)==0 T^_9R;  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ZI7<E  
        rpowern = cat(2,rpowern{:}); se[};t:  
        rpowern = [ones(length_r,1) rpowern]; 0J~4  
    else -}@9lhS,  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); >Fz$DKr[  
        rpowern = cat(2,rpowern{:}); hr5)$qZW  
    end }T,uw8?f!  
    hh9{md\  
    % Compute the values of the polynomials: [@6iStRg7  
    % -------------------------------------- @#apOoVW>  
    z = zeros(length_r,length_n); V_!i KEU  
    for j = 1:length_n nP^$p C  
        s = 0:(n(j)-m(j))/2; o6 /?WR9  
        pows = n(j):-2:m(j); zKNk(/y  
        for k = length(s):-1:1 eORt qX8*  
            p = (1-2*mod(s(k),2))* ... 3nO|A: t  
                       prod(2:(n(j)-s(k)))/          ... k&b>-QP6  
                       prod(2:s(k))/                 ... '#PT C,0UJ  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... (agdgy:#  
                       prod(2:((n(j)+m(j))/2-s(k))); \+xsJbEV  
            idx = (pows(k)==rpowers); RulIzv  
            z(:,j) = z(:,j) + p*rpowern(:,idx); 9[`6f8S_$  
        end FWg7 e3  
         C7#$s<>TO  
        if isnorm 9=|5-? ^  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); 0N xaQ`\  
        end L6^h3*JyD  
    end q`P:PRgM  
    Zu,f&smb  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  y\S}U{*Z'  
    +d<o2n4!  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 3:s!0ty"  
    'bTtdFvJ  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)