切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11062阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 iKa}@U  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! 2Av3.u8%u  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 ;Aiuy{<  
    function z = zernfun(n,m,r,theta,nflag) [kgT"?w=  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 7am._K  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 9]BpP0f\  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ~;,]/'O  
    %   unit circle.  N is a vector of positive integers (including 0), and ~d ~$fR  
    %   M is a vector with the same number of elements as N.  Each element 3'O+  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) PkQuN;a  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 3k5OYUk  
    %   and THETA is a vector of angles.  R and THETA must have the same {*As-Y:'F  
    %   length.  The output Z is a matrix with one column for every (N,M) Vp\BNq_!s  
    %   pair, and one row for every (R,THETA) pair. Ec[=~>;n{l  
    % "0+_P{w+  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike "{&\nt  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 0O+s3#"?@  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral gzvEy^X  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, bT*MJ7VVm  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized P*T 'R  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 97e fWYj  
    % zht^gOs  
    %   The Zernike functions are an orthogonal basis on the unit circle. \CM(  
    %   They are used in disciplines such as astronomy, optics, and K0yTHX?(.  
    %   optometry to describe functions on a circular domain. ]nhLv!Co  
    % 7w_`<b6  
    %   The following table lists the first 15 Zernike functions. K!"[,=u_  
    % FJKt5}`8  
    %       n    m    Zernike function           Normalization c~b[_J)  
    %       -------------------------------------------------- ~ d^+yR-  
    %       0    0    1                                 1 WZ'8{XY8  
    %       1    1    r * cos(theta)                    2 p@/!+$^{  
    %       1   -1    r * sin(theta)                    2 a Umcs!@  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) NQ !t`  
    %       2    0    (2*r^2 - 1)                    sqrt(3) FAJ\9  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) C;}~C:aJ  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) THWT\3~,  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) U_m<W$"HF  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 9kuL1tcY  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) U")~bU  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 7gfNe kr~W  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) `MlQPLH  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 'ADt<m_$  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 49^;T;'v  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) BJ<hP9 #  
    %       -------------------------------------------------- `QXO+'j4  
    % JGX E{FT  
    %   Example 1: 2PE|4zG  
    % @zB{Ig  
    %       % Display the Zernike function Z(n=5,m=1) ~tn*y4uK  
    %       x = -1:0.01:1; }RYr)  
    %       [X,Y] = meshgrid(x,x); t@QaxZIlt;  
    %       [theta,r] = cart2pol(X,Y); )7Gm<r  
    %       idx = r<=1; wAkpk&R  
    %       z = nan(size(X)); kq8:h  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); r@f8-!{s2h  
    %       figure %RG kXOgp  
    %       pcolor(x,x,z), shading interp xmb]L:4F  
    %       axis square, colorbar RZ:Yu  
    %       title('Zernike function Z_5^1(r,\theta)') fQ=Yf?b  
    % "yXKu)_  
    %   Example 2: g2JNa?z  
    % <w` R ;  
    %       % Display the first 10 Zernike functions d^mw&F)S  
    %       x = -1:0.01:1; ;"-(QE?Mv  
    %       [X,Y] = meshgrid(x,x); f)l:^/WP+  
    %       [theta,r] = cart2pol(X,Y); UX;?~X  
    %       idx = r<=1; Ij` %'/J  
    %       z = nan(size(X)); S3EY9:^ C  
    %       n = [0  1  1  2  2  2  3  3  3  3]; 8{#W F#  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; V$VqYy9 *  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; ynvU$}w ~'  
    %       y = zernfun(n,m,r(idx),theta(idx)); >N62t9Ll[  
    %       figure('Units','normalized') z6]dF"N  
    %       for k = 1:10 U BzX%:A  
    %           z(idx) = y(:,k); &YGd!Q  
    %           subplot(4,7,Nplot(k)) G|Rsj{2'  
    %           pcolor(x,x,z), shading interp z85%2Apd  
    %           set(gca,'XTick',[],'YTick',[]) +%7v#CY &  
    %           axis square M(KsLu1   
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) @)1>ba  
    %       end 7n9&@D3 :P  
    % f_Ma~'3   
    %   See also ZERNPOL, ZERNFUN2. :JH#*5%gQ:  
    y^zII5|s  
    %   Paul Fricker 11/13/2006 <k!M+}a 9V  
    'i;1n  
    1"YN{Ut;G  
    % Check and prepare the inputs: X]8(_[Y  
    % ----------------------------- JFH3)Q  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) FeoI+K A  
        error('zernfun:NMvectors','N and M must be vectors.') r&oR|-2hRk  
    end O B`(,m#  
    c.dk4v%Y5  
    if length(n)~=length(m) L[lX?g?Ob  
        error('zernfun:NMlength','N and M must be the same length.') U$v|c%6  
    end I{tY;b'w  
    ]6L;   
    n = n(:); N;4bEcWjp  
    m = m(:); p.6C.2q~s]  
    if any(mod(n-m,2)) Swz{5 J2C  
        error('zernfun:NMmultiplesof2', ... )UbPG`x8  
              'All N and M must differ by multiples of 2 (including 0).') $9+|_[ ]v.  
    end 3 9to5 s,  
    H xs'VK*  
    if any(m>n) ]xC#XYE:dy  
        error('zernfun:MlessthanN', ... WJWi'|C4  
              'Each M must be less than or equal to its corresponding N.') \~ m\pf?  
    end uP, iGA  
    ${m;x:'  
    if any( r>1 | r<0 ) q\s"B.(G"  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') |_."U9!Z^  
    end VzfaUAIZl  
    [ )3rc}:1  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) n2} (Pt.  
        error('zernfun:RTHvector','R and THETA must be vectors.') K8#MQR2@  
    end $`j%z@[g  
    jq%%|J.x  
    r = r(:); Em)U`"j/9  
    theta = theta(:); } I>68dS[  
    length_r = length(r); $inlI_  
    if length_r~=length(theta) g)$/'RB  
        error('zernfun:RTHlength', ... 6&| hpp#[  
              'The number of R- and THETA-values must be equal.') #1*#3p9UL  
    end 4> k"$l/:  
    yq.<,b=87  
    % Check normalization: ICck 0S!  
    % -------------------- RO+ jVY~H-  
    if nargin==5 && ischar(nflag) ]%M&pc3U  
        isnorm = strcmpi(nflag,'norm'); JfD-CoQS'  
        if ~isnorm e}dGK=`  
            error('zernfun:normalization','Unrecognized normalization flag.') .3 >"qv  
        end pwvzs`[;  
    else F>Pr`T?>  
        isnorm = false; a-e_q  
    end &!P' M  
    @)#EZQix  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% RW~!)^  
    % Compute the Zernike Polynomials .~$!BWP  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% $%BI8_  
    nQGl]2  
    % Determine the required powers of r: Cj%n?-  
    % ----------------------------------- e!W U  
    m_abs = abs(m); cWtuI(.  
    rpowers = []; [Ef6@  
    for j = 1:length(n) mR|L'[l  
        rpowers = [rpowers m_abs(j):2:n(j)]; 9?X8H1  
    end :@uIEvD?  
    rpowers = unique(rpowers); >``sM=Wat  
    9xi nX-x;n  
    % Pre-compute the values of r raised to the required powers, r7)qr%n  
    % and compile them in a matrix: Qy ghNImp  
    % ----------------------------- IR2=dQS  
    if rpowers(1)==0 = N&5]Z  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); L4DT*(;!E  
        rpowern = cat(2,rpowern{:}); Vv54;Js9  
        rpowern = [ones(length_r,1) rpowern]; OZc4 -5  
    else F f{,zfN+3  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); l1bkhA b  
        rpowern = cat(2,rpowern{:}); :KmnwYm  
    end 44NM of8N  
    HQvJ*U4++  
    % Compute the values of the polynomials: GO?hB4 9T  
    % -------------------------------------- xi51,y+(5  
    y = zeros(length_r,length(n)); 3 ,zW6 -}  
    for j = 1:length(n) 4#CHX^De  
        s = 0:(n(j)-m_abs(j))/2; X+1Mv  
        pows = n(j):-2:m_abs(j); NSa6\.W)  
        for k = length(s):-1:1 fB80&G9  
            p = (1-2*mod(s(k),2))* ... ]_BH"ng}  
                       prod(2:(n(j)-s(k)))/              ... ZDG~tCh=@  
                       prod(2:s(k))/                     ... yk y% +@2q  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... e2e!"kEF  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); G9^xv  
            idx = (pows(k)==rpowers); IRGcE&m  
            y(:,j) = y(:,j) + p*rpowern(:,idx); :8K}e]!c1  
        end q<j9l'dHG  
         \TZSn1isZX  
        if isnorm @9eN\b%I^H  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 2x>7>;>  
        end U9ZuD40\  
    end M8V c5  
    % END: Compute the Zernike Polynomials 6Df*wi!jI  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Jz}`-fU`  
    <UF0Xc&X'  
    % Compute the Zernike functions: Xp] jF^5  
    % ------------------------------ nY7gST  
    idx_pos = m>0; QChncIqc  
    idx_neg = m<0; Esu {c9,  
    ta6>St7.  
    z = y; jST4O"DjM  
    if any(idx_pos) eT Fep^[  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); O6/:J#X%  
    end oYdE s&qq  
    if any(idx_neg) $*VZa3B\  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); T/A2Y+@N;  
    end _p>F43%p  
    r<'DS9m  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag)  z3]W #  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. p U9 .#O  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated ;p2b^q'  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive >{QO$F#  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, T>]T=  
    %   and THETA is a vector of angles.  R and THETA must have the same =6qTz3t  
    %   length.  The output Z is a matrix with one column for every P-value, DI8<0.L  
    %   and one row for every (R,THETA) pair. q\}+]|nGs  
    % H<[~V0=  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike `vMhrn  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) 5VP0Xa ~  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) 8q%y(e  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 70GBf"  
    %   for all p. ax>j3HKi  
    % g9q}D-  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 PcEE`.  
    %   Zernike functions (order N<=7).  In some disciplines it is t[J=8rhER  
    %   traditional to label the first 36 functions using a single mode En1LGi4#  
    %   number P instead of separate numbers for the order N and azimuthal W^H3=hZ  
    %   frequency M.  *<W8j[?  
    % /zt M'  
    %   Example: PWyf3  
    % ! ig& 8:  
    %       % Display the first 16 Zernike functions n8F~!|lQ0  
    %       x = -1:0.01:1; );':aX j  
    %       [X,Y] = meshgrid(x,x); tH)j EY9  
    %       [theta,r] = cart2pol(X,Y); h Fik>B#!  
    %       idx = r<=1; GkX Se)#p  
    %       p = 0:15; C&>*~  
    %       z = nan(size(X)); Bp_R"DS7A  
    %       y = zernfun2(p,r(idx),theta(idx));  k`Ifl)  
    %       figure('Units','normalized') ')!X1A{  
    %       for k = 1:length(p) C=V2Y_j  
    %           z(idx) = y(:,k); YO.+-(   
    %           subplot(4,4,k) n'v\2(&uYN  
    %           pcolor(x,x,z), shading interp UL-_z++G  
    %           set(gca,'XTick',[],'YTick',[]) VO8rd>b4  
    %           axis square <BED&j!qvP  
    %           title(['Z_{' num2str(p(k)) '}']) o^vX\a?`u  
    %       end Nw'03Jzx_  
    % K\rQb  
    %   See also ZERNPOL, ZERNFUN. A$3Rbn}"  
    ;o3gR4u_L  
    %   Paul Fricker 11/13/2006 .a]#AFX  
    q9_ $&9  
    <kdlXS>J.  
    % Check and prepare the inputs: <- !1`@l>  
    % ----------------------------- 4lB??`UN  
    if min(size(p))~=1 bO2?DszT5  
        error('zernfun2:Pvector','Input P must be vector.')  vUJ; D  
    end -p&u=  
    8^>c_%e}  
    if any(p)>35 ]~I+d/k d  
        error('zernfun2:P36', ... )rK2%\Z  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... Os@b8V 8,A  
               '(P = 0 to 35).']) 6sSwSS  
    end yl~_~<s6  
    Mg.%&vH\  
    % Get the order and frequency corresonding to the function number: ^iMr't\b  
    % ---------------------------------------------------------------- )"pvF8JR%3  
    p = p(:); ^;RK-)  
    n = ceil((-3+sqrt(9+8*p))/2); 3NtUB;!  
    m = 2*p - n.*(n+2); *z?Uh$I4  
    +QU>D:l  
    % Pass the inputs to the function ZERNFUN: uqC#h,~ 0  
    % ---------------------------------------- Zk%@GOu\  
    switch nargin Z 5>~l  
        case 3 4u 6 FvN  
            z = zernfun(n,m,r,theta); &.,K@OFE}  
        case 4 w'2FYe{wj  
            z = zernfun(n,m,r,theta,nflag); P>C'? 'Q7  
        otherwise g0tnt)]  
            error('zernfun2:nargin','Incorrect number of inputs.') !k)6r6  
    end +:.Jl:fx4  
    aDK b78 1d  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) etr-\Cp  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. R&Y_  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of Sf*)Z3f  
    %   order N and frequency M, evaluated at R.  N is a vector of f8]sjeY  
    %   positive integers (including 0), and M is a vector with the ,-#MEr  
    %   same number of elements as N.  Each element k of M must be a KS$t  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) zFq%[ X  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is W`;;fJe  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix ^3$l!>me  
    %   with one column for every (N,M) pair, and one row for every UphTMyn3  
    %   element in R. Jj-\Eb?  
    % OyZR&,q  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- *): |WDR  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is 9(N  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to 1Z# $X`  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 OUv<a `0  
    %   for all [n,m]. o&?c,FwN  
    % c@t?R$c  
    %   The radial Zernike polynomials are the radial portion of the _Je 4&KU  
    %   Zernike functions, which are an orthogonal basis on the unit JI "/,fK^  
    %   circle.  The series representation of the radial Zernike ] 3{t}qY$A  
    %   polynomials is +` Md5.w  
    % AByl1)r|  
    %          (n-m)/2 V.GM$  
    %            __ GJ,&$@8)  
    %    m      \       s                                          n-2s .EKlw##  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r 0|P=S|%~  
    %    n      s=0 ,X?/FAcb  
    % ?"x4u#x  
    %   The following table shows the first 12 polynomials. F0:]@0>r  
    % 4[gmA  
    %       n    m    Zernike polynomial    Normalization 7rjl-FUA~  
    %       --------------------------------------------- = l`)b  
    %       0    0    1                        sqrt(2) o1.~g'!^  
    %       1    1    r                           2 d51lTGH7Z  
    %       2    0    2*r^2 - 1                sqrt(6) C*Vm}|)  
    %       2    2    r^2                      sqrt(6) 3V k8'  
    %       3    1    3*r^3 - 2*r              sqrt(8) VE )D4RL  
    %       3    3    r^3                      sqrt(8) 3(BL  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) 'c35%? ]  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) T2e-RR  
    %       4    4    r^4                      sqrt(10) yfG;OnkZ  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) KL&/Yt   
    %       5    3    5*r^5 - 4*r^3            sqrt(12) s@\3|e5g  
    %       5    5    r^5                      sqrt(12) v)5;~.+%  
    %       --------------------------------------------- vzIo2 ,/7  
    % C`.YOkpj  
    %   Example: P<]U  
    % J>Ar(p  
    %       % Display three example Zernike radial polynomials AFAg3/  
    %       r = 0:0.01:1; $J7V]c*-b  
    %       n = [3 2 5]; ,!:c6F+  
    %       m = [1 2 1]; C]L)nCOBX  
    %       z = zernpol(n,m,r); r[L.TX3Ah=  
    %       figure c!Hz'W  
    %       plot(r,z) ReaZg ?:h  
    %       grid on K.  ;ev  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') -"[4E0g0  
    % !M~:#k  
    %   See also ZERNFUN, ZERNFUN2. ,>j3zjf^  
    A0{xt*g   
    % A note on the algorithm. zj`c%9N+  
    % ------------------------ 'LYDJ~  
    % The radial Zernike polynomials are computed using the series #/G!nN #  
    % representation shown in the Help section above. For many special iXWHI3  
    % functions, direct evaluation using the series representation can g257jarkMF  
    % produce poor numerical results (floating point errors), because Ik:G5m<ta  
    % the summation often involves computing small differences between SyL"Bmi  
    % large successive terms in the series. (In such cases, the functions b<a3Ue%  
    % are often evaluated using alternative methods such as recurrence mY 1l2  
    % relations: see the Legendre functions, for example). For the Zernike i2qN 0?n  
    % polynomials, however, this problem does not arise, because the YgEd%Z%4  
    % polynomials are evaluated over the finite domain r = (0,1), and +Br<;sW  
    % because the coefficients for a given polynomial are generally all u3h(EAH>  
    % of similar magnitude. k \OZ'dS  
    % j7P49{  
    % ZERNPOL has been written using a vectorized implementation: multiple uX7L1~s-  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] <-`bWz=+  
    % values can be passed as inputs) for a vector of points R.  To achieve mI lg=8:  
    % this vectorization most efficiently, the algorithm in ZERNPOL KMhrw s{&B  
    % involves pre-determining all the powers p of R that are required to zdP?HJ=F  
    % compute the outputs, and then compiling the {R^p} into a single qCI&H7u@  
    % matrix.  This avoids any redundant computation of the R^p, and RZz?_1'  
    % minimizes the sizes of certain intermediate variables.  ^*P?gG  
    % G@s:|oe  
    %   Paul Fricker 11/13/2006 +R~]5Rxd  
    r]e{~v/  
    C >OeULD  
    % Check and prepare the inputs: !&U75FpN}:  
    % ----------------------------- |.; N_i  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) K'&,]r#  
        error('zernpol:NMvectors','N and M must be vectors.') Jk.x^  
    end i@/%E~W  
    Q4mtfpiDx  
    if length(n)~=length(m) Z_ElLY  
        error('zernpol:NMlength','N and M must be the same length.') 5H._Q  
    end NZGO8u  
    SlsNtaNt  
    n = n(:); $ DN.  
    m = m(:); cC8$oCR?  
    length_n = length(n); oCo~,~kTR  
    0hS&4nW  
    if any(mod(n-m,2)) m0G"Aj  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') IQBL;=.J.  
    end LsR<r1KDJ  
    ca=MUm=B  
    if any(m<0) Kj0)/Fjl+  
        error('zernpol:Mpositive','All M must be positive.') }%KQrlbHJl  
    end &tOo[U?  
    rbf5~sw&8+  
    if any(m>n) h x^@aI  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.')  ZPf&4#|  
    end R5sEQ| E  
    ( %sf wv  
    if any( r>1 | r<0 ) B~o3Z  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') x.gzsd  
    end 5T/+pC$e=  
    -t_&H\_T  
    if ~any(size(r)==1) [CHN3&l-5S  
        error('zernpol:Rvector','R must be a vector.') z{R Mb  
    end @Hj]yb5  
    6?"Gj}|r  
    r = r(:); py$Gy-I~[  
    length_r = length(r); e\z,^  
    ,5 ,r .  
    if nargin==4 r[E#JHw  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); F]OWqUV  
        if ~isnorm E.#JCO|(1  
            error('zernpol:normalization','Unrecognized normalization flag.') >u%Bn \G  
        end nR%w5oe  
    else drCL7.j#L  
        isnorm = false; 2Jo|P A` 9  
    end Ez <YD  
    w[2E:Nj  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% _WV13pnRu  
    % Compute the Zernike Polynomials #~Kno@  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 5P*jGOg.  
    QP%AJ[3ea%  
    % Determine the required powers of r:  ^Oj^7.T+  
    % ----------------------------------- i?>>%juK  
    rpowers = []; JA >&$h  
    for j = 1:length(n) ,9OER!$y  
        rpowers = [rpowers m(j):2:n(j)]; T&dc)t`o  
    end }T%E;m-  
    rpowers = unique(rpowers); #E4oq9{0*W  
    ,*$Y[UT  
    % Pre-compute the values of r raised to the required powers, a;i} <n7  
    % and compile them in a matrix: P EzT|uY  
    % ----------------------------- k]4CN  
    if rpowers(1)==0 >U:-U"rA?  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); y=GDuU%  
        rpowern = cat(2,rpowern{:}); 1\TkI=N3  
        rpowern = [ones(length_r,1) rpowern]; HELTL$j,b  
    else @$b7 eu  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); {s@&3i?ZiC  
        rpowern = cat(2,rpowern{:}); $jC+oYXj  
    end )x5w`N]lm  
    L#Ve [  
    % Compute the values of the polynomials: r*7J#M /  
    % -------------------------------------- s_u! RrC  
    z = zeros(length_r,length_n); *eAt'  
    for j = 1:length_n 'mU\X!- 4<  
        s = 0:(n(j)-m(j))/2; H8c -/  
        pows = n(j):-2:m(j); (!ud"A|ab4  
        for k = length(s):-1:1 V" 5rIk  
            p = (1-2*mod(s(k),2))* ... h#h)=;  
                       prod(2:(n(j)-s(k)))/          ... 8LtkP&Wx  
                       prod(2:s(k))/                 ... 3qfQlqJ&3  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... <.|]%7  
                       prod(2:((n(j)+m(j))/2-s(k))); NS4W!o;"  
            idx = (pows(k)==rpowers); 5t-(MY  
            z(:,j) = z(:,j) + p*rpowern(:,idx); %e: hVU  
        end <l)I% 1T_c  
         ;S2/n$Ju_  
        if isnorm o`jVd,aj  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); Xp^71A?>  
        end Mc|UD*Z  
    end :JxuaM8  
    A*{V%7hs&  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  V*1hoC#  
    .>Fy ]Cqoh  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 cg]>*lH  
    85GU~.  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)