切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11089阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 s 15 oN  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! ve2u=eQ1  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 ``\i58K{e  
    function z = zernfun(n,m,r,theta,nflag) dS!:JO27  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. JJ2_hVU  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ]<rkxgMW>  
    %   and angular frequency M, evaluated at positions (R,THETA) on the MWpQ^dL_  
    %   unit circle.  N is a vector of positive integers (including 0), and $ig0j`  
    %   M is a vector with the same number of elements as N.  Each element %Iv,@}kvT+  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) g<f <Ip=  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, $r8 ^0ZRr  
    %   and THETA is a vector of angles.  R and THETA must have the same dj7hx"BI  
    %   length.  The output Z is a matrix with one column for every (N,M) IIF] /Ek]  
    %   pair, and one row for every (R,THETA) pair. Et/\xL  
    % h!.^?NF  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike q?DTMKx  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ^l=!JP=M=  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral [] `&vWZ  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, b#toM';T  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized C=)A6 ;=se  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. e .2ib?8  
    % #_J@-f7^  
    %   The Zernike functions are an orthogonal basis on the unit circle. ?DQsc9y  
    %   They are used in disciplines such as astronomy, optics, and A1D^a,  
    %   optometry to describe functions on a circular domain. nvJf/90$  
    % Ix!Iw[CNd  
    %   The following table lists the first 15 Zernike functions. `c5"d  
    % s{S4J'VW  
    %       n    m    Zernike function           Normalization >eqxV|]i  
    %       -------------------------------------------------- ^*8G8'k;$  
    %       0    0    1                                 1 n}_JB>i~  
    %       1    1    r * cos(theta)                    2 2w_WAdi  
    %       1   -1    r * sin(theta)                    2 dzsmIV+  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) o+QE8H43  
    %       2    0    (2*r^2 - 1)                    sqrt(3) uK$9Ll{lk  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) ,)Ju[  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 1#*a:F&re  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) D2!X?"[ P  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) Y*>#T  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) =/Mq5.  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) s'a/j)^  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) t2"O  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) G_{&sa  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) C8e !H  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) D 38$`j  
    %       -------------------------------------------------- EB=-H#  
    % TI#''XCB5  
    %   Example 1: "B4;,+4kR  
    % =Z+nz^'b  
    %       % Display the Zernike function Z(n=5,m=1) V_RTI.3p  
    %       x = -1:0.01:1; #Jn_c0  
    %       [X,Y] = meshgrid(x,x); *-q"3 D`  
    %       [theta,r] = cart2pol(X,Y); i;jw\ed  
    %       idx = r<=1; OK6] e3UO  
    %       z = nan(size(X)); =aj/,Q]  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 8lb%eb]U  
    %       figure W?aI|U1  
    %       pcolor(x,x,z), shading interp pUq1|)g  
    %       axis square, colorbar ,M6 Sy]Aj  
    %       title('Zernike function Z_5^1(r,\theta)') ( Qcp{q  
    % O<"}|nbmQ[  
    %   Example 2: wsN?[=l{s  
    % Bck7\  
    %       % Display the first 10 Zernike functions #u"k~La  
    %       x = -1:0.01:1; m&\h4$[kql  
    %       [X,Y] = meshgrid(x,x); f3{MvAy[  
    %       [theta,r] = cart2pol(X,Y); =p?WBZT|:  
    %       idx = r<=1; SWQ5fcPu  
    %       z = nan(size(X)); 6s\Kt3=  
    %       n = [0  1  1  2  2  2  3  3  3  3]; W#BM(I  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; @,u/w4  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; \B 0ywN?  
    %       y = zernfun(n,m,r(idx),theta(idx)); PSVc+s[Q+V  
    %       figure('Units','normalized') 1_ C]*p  
    %       for k = 1:10 Y&_&s7z  
    %           z(idx) = y(:,k); 6290ZNvr  
    %           subplot(4,7,Nplot(k)) J-) XQDD  
    %           pcolor(x,x,z), shading interp A~ +S1  
    %           set(gca,'XTick',[],'YTick',[]) 2 fS[J'-o  
    %           axis square 1~ t{aLPz  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) >teO m?@U  
    %       end IlE_@gS8  
    % @@rEs40  
    %   See also ZERNPOL, ZERNFUN2. pT1[<X!<s  
    .YnFH$;$  
    %   Paul Fricker 11/13/2006 psC mbN   
    \eb|eN0i  
    MpqZH{:?G  
    % Check and prepare the inputs: S.Ma$KL~'^  
    % ----------------------------- :ORR_f`>  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) .G(llA}  
        error('zernfun:NMvectors','N and M must be vectors.') )+"'oY$]}  
    end Ru>uL@w  
    nJ"YIT1K]p  
    if length(n)~=length(m) HJ[/|NZU$  
        error('zernfun:NMlength','N and M must be the same length.') _uKZMl  
    end d,tU#N{Q6  
    !F4@KAv  
    n = n(:); n?ctLbg  
    m = m(:); {^rs#, W  
    if any(mod(n-m,2)) 7aYn0_NKp  
        error('zernfun:NMmultiplesof2', ... a/U2xq{x  
              'All N and M must differ by multiples of 2 (including 0).') -,aeM~  
    end hf<^/@^tK  
    ;?~$h-9)  
    if any(m>n) >'xGp7}y  
        error('zernfun:MlessthanN', ... ND,Kldji  
              'Each M must be less than or equal to its corresponding N.') 5"]~oPK  
    end 8kOKwEX  
    EVUq--)~  
    if any( r>1 | r<0 ) { "xln/  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') X3:XTuV   
    end c8M2 ^{O,`  
    qdG~!h7j  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) L9ap(  
        error('zernfun:RTHvector','R and THETA must be vectors.') P^Q[-e{  
    end 2Nm>5l  
    m6yIR6H  
    r = r(:); OxtOd\0$  
    theta = theta(:); d:q +  
    length_r = length(r); s/e"'Hz  
    if length_r~=length(theta) xc:!cA{V  
        error('zernfun:RTHlength', ... 9F- )r'  
              'The number of R- and THETA-values must be equal.') ai^4'{#zi  
    end Hb(B?!M)  
    _l], "[d  
    % Check normalization: u=NS sTP&  
    % -------------------- /.eeO k  
    if nargin==5 && ischar(nflag) \[>9UC%  
        isnorm = strcmpi(nflag,'norm'); =GBI0&U  
        if ~isnorm `L5~mb;7*  
            error('zernfun:normalization','Unrecognized normalization flag.') H,<7G;FPT  
        end -/dEsgO  
    else xwZ8D<e-,  
        isnorm = false; vF/ =J  
    end ia{c  
    BtdXv4V  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Q U F$@)A  
    % Compute the Zernike Polynomials ]G}B 0u3  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Xvok1NM,  
    \#x}q'BC4  
    % Determine the required powers of r: qxJQPz  
    % ----------------------------------- eL.7#SIr}  
    m_abs = abs(m); pA#}-S%  
    rpowers = []; Dli^2hD  
    for j = 1:length(n) O^I[ (8Y8  
        rpowers = [rpowers m_abs(j):2:n(j)]; "4j:[9vR\  
    end wVA|!>v  
    rpowers = unique(rpowers); a>B[5I5  
    qy!Ou3^  
    % Pre-compute the values of r raised to the required powers, >(tn"2  
    % and compile them in a matrix: '7B"(dA&C  
    % ----------------------------- zN_:nY>  
    if rpowers(1)==0 oXt,e   
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); @TA9V@?)  
        rpowern = cat(2,rpowern{:}); 7C?.L70ZY  
        rpowern = [ones(length_r,1) rpowern]; l??;3kh1  
    else ,rwuy[Q8  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ) I@L+  
        rpowern = cat(2,rpowern{:}); I#FF*@oeM  
    end }98>5%Uv  
    VnJMmMM  
    % Compute the values of the polynomials: i"^<CR@e  
    % -------------------------------------- y466A]|  
    y = zeros(length_r,length(n)); A~{f/%8D  
    for j = 1:length(n) :H[\;Z1_  
        s = 0:(n(j)-m_abs(j))/2; <<|H=![  
        pows = n(j):-2:m_abs(j); )06iV  
        for k = length(s):-1:1 w.+Eyu_I\  
            p = (1-2*mod(s(k),2))* ... lZt(&^T  
                       prod(2:(n(j)-s(k)))/              ... 6j8 <Q 2  
                       prod(2:s(k))/                     ... ;ggy5?>Qu  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... tllBCuAe  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); bYh9sO/l  
            idx = (pows(k)==rpowers); g.#+z'l  
            y(:,j) = y(:,j) + p*rpowern(:,idx); -05U%l1e  
        end {lzG*4?  
         a%J6f$A#  
        if isnorm 9 K  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); vh>{_ #  
        end C@HD(..#  
    end NyI ;v =  
    % END: Compute the Zernike Polynomials ZAg;q#z j  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% L]2< &%N2  
    KLt %[$CTi  
    % Compute the Zernike functions: WY)^1Gb$ux  
    % ------------------------------ N^elVu4 K  
    idx_pos = m>0; ~j,TVY  
    idx_neg = m<0; G\Q9IcJ0dY  
    K:qOoY  
    z = y; n*qN 29sx  
    if any(idx_pos) mR":z|6  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); de-0?6  
    end 3BMS_,P  
    if any(idx_neg) DB&SOe  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); j+748QAhh  
    end n2;9geq+  
    `.k5v7!o  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) ~{ .,8jE  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. ofEqvoi@  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated wd`R4CKhP]  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive PbUI!Xqe`  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, mW$ot.I  
    %   and THETA is a vector of angles.  R and THETA must have the same X"J%R/f  
    %   length.  The output Z is a matrix with one column for every P-value, S_!R^^ySG9  
    %   and one row for every (R,THETA) pair. q=[U }{  
    % `p"U  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike l Z~+u  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) H*qD: N  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) $T)d!$  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 ^X;JT=r  
    %   for all p. @dhH;gt.I  
    % ECdfLn*c  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 u@"o[e':  
    %   Zernike functions (order N<=7).  In some disciplines it is OX,F09.C  
    %   traditional to label the first 36 functions using a single mode )% |r>{  
    %   number P instead of separate numbers for the order N and azimuthal n^Au*'  
    %   frequency M. pFH?/D/q  
    % c20|Cx2m  
    %   Example: fbL!=]A*3  
    % [xS5z1;  
    %       % Display the first 16 Zernike functions }@4| 7  
    %       x = -1:0.01:1; '?L%F{g/9  
    %       [X,Y] = meshgrid(x,x); F0: &>'}  
    %       [theta,r] = cart2pol(X,Y); 4O Zy&,  
    %       idx = r<=1; xfU hSt  
    %       p = 0:15; ks^|>  
    %       z = nan(size(X)); IgiqFV {  
    %       y = zernfun2(p,r(idx),theta(idx)); bfc.rZ  
    %       figure('Units','normalized') (jneEo=vr  
    %       for k = 1:length(p) ]*h&hsS 0  
    %           z(idx) = y(:,k); Gm*Uv6?H?  
    %           subplot(4,4,k) 0JOju$Bl,  
    %           pcolor(x,x,z), shading interp <lX:eR1  
    %           set(gca,'XTick',[],'YTick',[]) pgfu+K7?w  
    %           axis square *%f3rvt7@)  
    %           title(['Z_{' num2str(p(k)) '}']) I1J)#p%H.  
    %       end 8I {56$  
    % x_pMG!2  
    %   See also ZERNPOL, ZERNFUN. >|S>J+(  
    JbVi1?c  
    %   Paul Fricker 11/13/2006 *kV#)j  
    bAdAp W  
    u;{T2T  
    % Check and prepare the inputs: m4\g o  
    % ----------------------------- ?-M)54b\  
    if min(size(p))~=1 t;~-_{  
        error('zernfun2:Pvector','Input P must be vector.') -q|*M:R  
    end 7vdHR\#;$  
    n+S&!PB  
    if any(p)>35 GHqBnE{B  
        error('zernfun2:P36', ... A<1l^%i  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... d<)s@Ntgm  
               '(P = 0 to 35).'])  2w;G4  
    end CYMM*4#  
    AzW%+ LUD  
    % Get the order and frequency corresonding to the function number: {K6Kx36  
    % ---------------------------------------------------------------- k.h^ $f  
    p = p(:); ^w ]1qjGw  
    n = ceil((-3+sqrt(9+8*p))/2); 1pl2;!  
    m = 2*p - n.*(n+2); 6#/LyzZq|  
    /G[+E&vj  
    % Pass the inputs to the function ZERNFUN: @b>YkJDk  
    % ---------------------------------------- vJzxP y|  
    switch nargin 9O2a | d  
        case 3 Ed8U;U b  
            z = zernfun(n,m,r,theta); @ICejB<  
        case 4 fjF!>Dy  
            z = zernfun(n,m,r,theta,nflag); aslNlH6  
        otherwise >zN" z)  
            error('zernfun2:nargin','Incorrect number of inputs.') kz3?j<  
    end D'Jm!Ap  
    [Ja(ArO3|[  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) [w+yQ7P  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. )ylv(qgV  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of ;Hz`0V  
    %   order N and frequency M, evaluated at R.  N is a vector of MxFt;GgE8  
    %   positive integers (including 0), and M is a vector with the qBf wN1  
    %   same number of elements as N.  Each element k of M must be a _3-RoA'UZr  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) p3>Q<  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is H'j_<R N  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix g]oc(RM  
    %   with one column for every (N,M) pair, and one row for every /gMa"5?,  
    %   element in R. .rD#1)O  
    % W o<PmSt9i  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- ?[a7l:3-[  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is `!5tH?bX  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to 8YT_DM5iI  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 FB?q/ _  
    %   for all [n,m]. *FI5z[8,  
    % jpPdjQ  
    %   The radial Zernike polynomials are the radial portion of the E.En$'BvB  
    %   Zernike functions, which are an orthogonal basis on the unit EU&6 Tg  
    %   circle.  The series representation of the radial Zernike ~_/<PIm  
    %   polynomials is vfk7J5y  
    % e|OG-t[$*  
    %          (n-m)/2 lN*1zM<6;  
    %            __ wz|Q%.%?[  
    %    m      \       s                                          n-2s A>ug'.  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r ^=heen<S%  
    %    n      s=0 Azdz3/  
    % &+|jJ{93z  
    %   The following table shows the first 12 polynomials. ImT+8p a  
    % \]~kyy  
    %       n    m    Zernike polynomial    Normalization 3.GdKP.%  
    %       --------------------------------------------- @[[C s*-  
    %       0    0    1                        sqrt(2) LRqw\fKk[  
    %       1    1    r                           2 CIxVR  
    %       2    0    2*r^2 - 1                sqrt(6) CguU+8 ]  
    %       2    2    r^2                      sqrt(6) )\:lYI}Wpm  
    %       3    1    3*r^3 - 2*r              sqrt(8) a3(7{,Ew  
    %       3    3    r^3                      sqrt(8) 3=G5(0  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) }tl8(kjm  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) 0|wKR|zW  
    %       4    4    r^4                      sqrt(10) /o}0oo5B  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) )0 42?emn  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) fjz2m   
    %       5    5    r^5                      sqrt(12) zd*W5~xKg  
    %       --------------------------------------------- qQ?,|4)y  
    % ] _]6&PZXk  
    %   Example: OJC*|kN-#^  
    % Jte:l:yjtA  
    %       % Display three example Zernike radial polynomials [/#k$-  
    %       r = 0:0.01:1; <or>bo^  
    %       n = [3 2 5]; O. .@<.  
    %       m = [1 2 1]; ,& pF:ql F  
    %       z = zernpol(n,m,r); g)zn.]  
    %       figure hjm .Ath  
    %       plot(r,z) x:&L?eOT  
    %       grid on F%ylR^H>  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') ck4T#g;=  
    % H(*=9  
    %   See also ZERNFUN, ZERNFUN2. l52n/w#qFB  
    |WwFE|<  
    % A note on the algorithm. C\hZ;Z1  
    % ------------------------ uN? O*h/(  
    % The radial Zernike polynomials are computed using the series q[,R%6&'  
    % representation shown in the Help section above. For many special zdpLAr  
    % functions, direct evaluation using the series representation can l2KxZteXY0  
    % produce poor numerical results (floating point errors), because >-./kI "  
    % the summation often involves computing small differences between e>i8=U` ;  
    % large successive terms in the series. (In such cases, the functions hvv>UC/  
    % are often evaluated using alternative methods such as recurrence 0z<]\a4  
    % relations: see the Legendre functions, for example). For the Zernike +ouy]b0`t  
    % polynomials, however, this problem does not arise, because the M0"g/W  
    % polynomials are evaluated over the finite domain r = (0,1), and 7`'fUhB!  
    % because the coefficients for a given polynomial are generally all *"9)a6T t+  
    % of similar magnitude. : QhEu%e  
    % 6w`}+3  
    % ZERNPOL has been written using a vectorized implementation: multiple $d"f/bRWy  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] 4`'BaUU(  
    % values can be passed as inputs) for a vector of points R.  To achieve pl^"1Z=*  
    % this vectorization most efficiently, the algorithm in ZERNPOL gm%bxr@X~  
    % involves pre-determining all the powers p of R that are required to S5[RSAbf*t  
    % compute the outputs, and then compiling the {R^p} into a single W;AWO0+  
    % matrix.  This avoids any redundant computation of the R^p, and AB|VO4-?  
    % minimizes the sizes of certain intermediate variables. A%2M]];%X  
    % kBQenMm  
    %   Paul Fricker 11/13/2006 2KNKdV3NK  
    :tS>D5dz(  
    kjKpzdbD  
    % Check and prepare the inputs: lO[jf6gB  
    % ----------------------------- iJj?~\zp  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) +>9^])K|  
        error('zernpol:NMvectors','N and M must be vectors.') \oZUG  
    end =K< I)2   
    y2hFUq  
    if length(n)~=length(m) %JH_Nw.P  
        error('zernpol:NMlength','N and M must be the same length.') UFY~D"% /  
    end X]^E:'E!  
    GWE0 UO}  
    n = n(:); v]Q_  
    m = m(:); Ru\Lr=9  
    length_n = length(n); )LMuxj  
    `]I5WTt*X  
    if any(mod(n-m,2)) NCpn^m)Q}  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') 9h0,L/;\  
    end WHj4#v(  
    0-; P&m!!  
    if any(m<0) dcTM02kEh  
        error('zernpol:Mpositive','All M must be positive.') v+_Y72h*a  
    end GBOmVQ $Hb  
    .p*D[o2 9  
    if any(m>n) <|.! Px86  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') lNeF>zz  
    end nXaX=  
    FveK|-  
    if any( r>1 | r<0 ) +6Fdi*:  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') jO N}&/  
    end kvVz-P Jy  
    SIVLYi  
    if ~any(size(r)==1) nKJ7K8)  
        error('zernpol:Rvector','R must be a vector.') bRe*(  
    end _eeX]xSSl  
    Pi sr&"A  
    r = r(:); \ #c+vfq  
    length_r = length(r); w^6N :]d  
    IMw)X0z  
    if nargin==4 0aoHv  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); *H<g9<Dn  
        if ~isnorm SJ_cwYwI$  
            error('zernpol:normalization','Unrecognized normalization flag.') V~"d`j  
        end R6o<p<fTh  
    else &fhurzzAm  
        isnorm = false; r&~iEO|?\  
    end 8VGXw;(Y,d  
    _ll aH  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 2s ,n!u Fd  
    % Compute the Zernike Polynomials y:zT1I@>  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% b'"%   
    -"fq34v  
    % Determine the required powers of r: Jl9TMu!1]  
    % ----------------------------------- zk~rKQ,  
    rpowers = []; |3o@I uGt  
    for j = 1:length(n) BFu9KS+@)  
        rpowers = [rpowers m(j):2:n(j)]; Z`KXXlJ^i  
    end "T[jQr  
    rpowers = unique(rpowers); T>o# *{q n  
    vXZz=E AH  
    % Pre-compute the values of r raised to the required powers, u)]sJ1p  
    % and compile them in a matrix: [zd-=.:+M[  
    % ----------------------------- UimZ/\r  
    if rpowers(1)==0 S.>9tV2Ca  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 6_><W"r:]  
        rpowern = cat(2,rpowern{:}); o*BI^4  
        rpowern = [ones(length_r,1) rpowern]; FLOJ  
    else ~m&oa@*=y  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); e(N <Mf  
        rpowern = cat(2,rpowern{:}); w' >v@`y  
    end )BrqE uX@"  
    -^"?a]B  
    % Compute the values of the polynomials: lY?d*qED  
    % -------------------------------------- 0t0:soZ x  
    z = zeros(length_r,length_n); J0plQDe  
    for j = 1:length_n 64s;6=  
        s = 0:(n(j)-m(j))/2; 9}_f\Bs  
        pows = n(j):-2:m(j); )fr\ V."  
        for k = length(s):-1:1 \~1+T  
            p = (1-2*mod(s(k),2))* ... bv];Gk*Z-  
                       prod(2:(n(j)-s(k)))/          ... W5g!`f  
                       prod(2:s(k))/                 ... \Nyxi7  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... _9 O'  
                       prod(2:((n(j)+m(j))/2-s(k))); mmK_xu~f28  
            idx = (pows(k)==rpowers); 'FXZ`+r|  
            z(:,j) = z(:,j) + p*rpowern(:,idx); EZW?(%b>H  
        end }PuO$ L  
         7!)%%K.z6  
        if isnorm E/ )+hK&  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); Ip-jqN J~  
        end 0~+ k  
    end j(2T,WM  
    |sAg@kM  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  kjH0u$n  
    ebf0;1!  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 ?(Nls.c  
    : 7'anj  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)