切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11031阅读
    • 29回复

    [讨论]Tracepro 模拟数据可靠吗? [复制链接]

    上一主题 下一主题
    离线shirley996
     
    发帖
    137
    光币
    214
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2010-09-16
    大家好,想问下,大家觉得Tracepro模拟的数据可靠吗?下面有个例子,Tracepro模拟的数据跟理论值差很大,所以引发了我关于Tracepro模拟数据的可靠性的疑问。 % H/V iC  
    -F7P$/9  
    欢迎大家各抒己见,讨论讨论啊! &d sXK~9M>  
    A  r,fmq  
    例子:模拟点光源的不同空间角锥的利用率。 cZR9rnZT  
    模型设置:做一个0.1毫米见方的surface source,能量1瓦,光线10000条,以lambertion形式沿z轴正方向传播。 `En>o~L;  
                       在距离光源1米处,也就是在z=1000毫米的 位置,设置一个圆形侦测面,侦测面的半径r=1000*tanθ 。 m:-=K  
             目的:测试此侦测面上的光能利用率,也就是侦测面上的光能相对于光源的利用率。 H3#rFO"C*  
    {J~VB~('  
    例子的理论值及模拟值: pE4yx5r5  
         角度      理论值                模拟值 Ht4A   
         10        0.0152                0.0292 ;)Fc@OXN>  
         20        0.0603                0.1215 T;C0t9Yew  
         30        0.1340                0.2516 (Q(=MEar  
         40        0.2340                0.4132 1[:tiTG|C  
         50        0.3572                0.586 `=%mU/v  
         60        0.5000                0.744 g>*P}r~;^b  
         70        0.6580                0.8749 +?9. &<?  
         80        0.8264                0.9672 \DMZ M  
         90        1.0000 .o(S60iH!(  
    qw<~v?{|C  
    注:理论上半球的立体空间角为2π ,某一张角为θ的角锥所对应的球面空间角为2π*(1-cosθ), &zV; p  
          那么,一个lambertion的点光源,在θ度的角锥的能量相对于全部2π立体角的能量利用率为1-cosθ,上面数据中的理论值即根据这个公式得出的。 ,z5B"o{Et  
         实测值则是根据上面的例子模型模拟出来的数据。 wN]]t~K)Q  
         理论上这两个数据,应该是一样的,但是,为什么模拟的值会比理论值高呢? wNm1H[{  
    b}HwvS:  
    大家都有什么看法啊?是什么原因啊? It#T\fU  
    B%(-UTQf  
    附,数据曲线图: jJqq:.XqB8  
    本主题包含附件,请 登录 后查看, 或者 注册 成为会员
    1条评分
    cyqdesign 光币 +5 欢迎使用原创内容发起讨论! 2010-09-16
     
    分享到
    离线懒懒的天
    发帖
    613
    光币
    2673
    光券
    0
    只看该作者 1楼 发表于: 2010-09-16
    呵呵,这个问题值得探讨,等待高手解答
    离线zyxzyx1913
    发帖
    216
    光币
    338
    光券
    0
    只看该作者 2楼 发表于: 2010-09-16
    那么,一个lambertion的点光源,在θ度的角锥的能量相对于全部2π立体角的能量利用率为1-cosθ,上面数据中的理论值即根据这个公式得出的。 dkAY%ztwo  
    这里错了,lambertion的点光源在2π立体角内的分布是不均匀的
    离线100jinglei
    发帖
    358
    光币
    97
    光券
    0
    只看该作者 3楼 发表于: 2010-09-16
    楼上讲得对,朗伯体,朗伯体,分布均匀了能是朗伯体吗???
    离线100jinglei
    发帖
    358
    光币
    97
    光券
    0
    只看该作者 4楼 发表于: 2010-09-16
    理论值你得立体角内积分的!!
    离线shirley996
    发帖
    137
    光币
    214
    光券
    0
    只看该作者 5楼 发表于: 2010-09-17
    问题我已经解决了。 a[ A*9%a  
    先回答楼上的, 3fhlMOm  
    2,、3楼的,麻烦先搞搞清楚琅勃体的定义。 HK4 *+  
    4楼的正确, ]`u_d}`  
    因为光源不是理想的点光源,且要考虑立体角内的积分。 M'}iIO`L  
    CSNfLGA  
    积分处理过后,的关系就不是1-cosθ  了,而应该是sinθ的平方, 这个关系, MtXTh*4  
    满足这个关系的数据,跟实际模拟的数据很接近。 , Vr'F  
    E;Q ,{{#  
    附数据: HN~  
    L0EF CQ7  
    角度    理论1-cosθ     模拟    理论sin2(θ) |^T?5=&Kt  
    10    0.015     0.0292    0.03015369 5/C#*%EH'  
    20    0.060     0.1215    0.116977778 `uLH3sr  
    30    0.134     0.2516    0.25 B<6Ye9zuG  
    40    0.234     0.4132    0.413175911 :}3;z'2]l  
    50    0.357     0.586    0.586824089 (f>~+-IL  
    60    0.500     0.744    0.75 m+'vrxTY  
    70    0.658     0.8749    0.883022222 $i.)1.x  
    80    0.826     0.9672    0.96984631 L_QJS2  
    90    1.000         1 +"F9yb  
                 .vk|aIG  
    说明,其中θ指立体角锥半角。 Dfl%Knl@J  
    V7q-Pfh!y  
    无论如何,谢谢楼上每位参与讨论者。 `AcT}. u  
    8"KaW2/%  
    离线shirley996
    发帖
    137
    光币
    214
    光券
    0
    只看该作者 6楼 发表于: 2010-09-17
    不知道什么原因,部分数据看不到。 $pGdGV\H  
    补: #0gwN2Nv"L  
    t-3y`31i.  
    角度    理论1-cosθ     模拟    理论sin2(θ) \'.#of  
    10    0.015     0.0292    0.03015369 _5JwJcQ  
    20    0.060     0.1215    0.116977778 &(t/4)IZox  
    30    0.134     0.2516    0.25 jce^Xf  
    40    0.234     0.4132    0.413175911 `D9AtN] R  
    50    0.357     0.586    0.586824089 RT$.r5l_@  
    60    0.500     0.744    0.75 'v:%} qMv  
    70    0.658     0.8749    0.883022222 Fg<rz&MR  
    80    0.826     0.9672    0.96984631 SxWK@)tP  
    90    1.000         1 F3pBk)>a\  
                 +*vg) F:  
    说明,其中θ指立体角锥半角。 E[E7GsmqV  
    Cp[ NVmN  
    谢谢!
    离线asm
    发帖
    379
    光币
    358
    光券
    0
    只看该作者 7楼 发表于: 2010-09-17
    引用第5楼shirley996于2010-09-17 09:28发表的  : qPI1\!z6  
    问题我已经解决了。 [;n/|/m,  
    先回答楼上的, DtrR< &m  
    2,、3楼的,麻烦先搞搞清楚琅勃体的定义。 q+}KAk|]V  
    4楼的正确, ;ZVT[gi*  
    因为光源不是理想的点光源,且要考虑立体角内的积分。 p,'Z{7HG  
    ....... ]`,jaD  
    0`D` Je<t  
    没觉得2-3楼有说错 pi|P&?yw  
    跟点光源没有关系,sin^2(θ)的关系也是根据点光源积分的结果,正因为朗伯体发光强度分布不均匀(正比于cosθ),才需要积分阿,如果考虑非点光源,结果的形式更复杂一些 ?!Bf# "TY  
    那个空间角变化的探测器所服从的变化应该正比于光源的发光强度,因为在你列出的条件下,物体已经非常接近点光源(一般标准是物体线度/探测距离<1:20,而模型中已经是~1:10000),这个因素不必考虑。所以应该的分布是∫[0,2π]{∫[0,θ]cosθ∙sinθ∙dθ}∙dφ=π∙sin^2θ +91j 1?  
    离线zyxzyx1913
    发帖
    216
    光币
    338
    光券
    0
    只看该作者 8楼 发表于: 2010-09-19
    楼上说得很对,我上次觉得大家应该都了解什么是朗伯型分布就没具体写出来  朗伯型是cosθ的函数,而不是各向均匀分布的。这里光源大小相对与空间已经完全可以忽略了
    离线jxm212
    发帖
    338
    光币
    418
    光券
    0
    只看该作者 9楼 发表于: 2010-09-19
    学习了