本文系全自动[GAD]齿轮设计软件之内容,限于篇幅,未包含功率部份, 符合ISO.9085 渐开线园柱齿轮标准。 N5 SLF4R1
I 1 b
河海大学常州校区 胡瑞生 2009. 10 . 18 3h9Sz8
n7IL7?!o
m~)Fr8Wh6
[post]---------------------------------------------------------------
&W=V%t>Z
本程序适用于: 速比 u < 4, 求取最大功率, 而且 ;wij}y-6
一般不发生切削干涉与啮合干涉。 E?3 0J3S
当速比 2 > u > 4 尚需作局部修正 m:)Z6
-------------------------------------------------------------- $Wit17j
己知: 产品的工作条件: 中心距 [A`] , 速比 [u] ?HrK\f3wWO
步骤00 1 起步假设 [Z1齿 经验值] b8J@K"
if ( u <=1.25 )Z1 =41.0 )uQ-YC('0
if ( u >1.25 .and. u <=1.50 ) Z1 = 37.0 (jU/Wj!q
if ( u >1.50 .and. u <=1.75 ) Z1 = 33.0 1. #
|QX
if ( u >1.75.and. u <=2.00 ) Z1 = 28.0 #TMm#?lC
if ( u >2.00 .and. u <=2.50 ) Z1 = 25.0 :tRf@bD#
if ( u >2.50 .and. u <=3.00 ) Z1 = 23.0 )Y3EQxXa
if ( u >3.00 .and. u <=3.50 ) Z1 = 21.0 GWF/[%
if ( u >3.50 .and. u <=4.00)Z1 = 19.0 9z5\*b s
if ( u >4.00 .and. u <=4.50 ) Z1 = 18.0 k?3S
if ( u >4.50 .and. u <=5.00) Z1 = 17.0 TZ?Os4+
if ( u >5.00 .and. u <5.50 )Z1 = 16.0 }JRP,YNh
if ( u >5.50 .and. u <6.00 )Z1 = 15.0 01U
*_\
if ( u >6.00 ) Z1 = 14.0 A2m_q>>
!
Z1 = Z1 j*uXB^4
Z2 = int ( Z1 * u +0.50 ) 取整数 9YP*f
u = Z2/ Z1 5Z/yhF.{
齿 数 比[ u] ≡ u ?h/xAl
步骤002起步假设螺旋角 [ β 经验值 ] 8 YNu<
if ( u <=1.25 )β= 24.0 >(hSW~i~
if ( u >1.25 .and. u <=1.50 ) β= 22.0 Ne3R.g9;Z
if ( u >1.50 .and. u <=1.75 ) β= 20.0 *_`76`cz%X
if ( u >1.75. and. u <=2.00 ) β= 18.0 A0G)imsW:_
if ( u >2.00 .and. u <=2.50 ) .β= 16.0 q5Fs )B
if ( u >2.50 .and. u <=3.00 ) β= 14.0 bf& }8I$
if ( u >3.00 .and. u <=3.50 ) β= 12.0 (2UW_l
if ( u >3.50 .and. u <=4.00) β= 11.0 L2KG0i`+
if ( u >4.00 .and. u <=4.50 ) .β= 10.0 z< z*Wz
if ( u >4.50 .and. u <=5.00) β= 10.0 /:bKqAz;M
if ( u >5.00 .and. u <5.50 )β= 9.0 ,zQo {.
if ( u >5.50 .and. u <6.00 )β= 7.0 _eGT2,D5r
if ( u >6.00 ) β= 6.0 v @:~mwy
β= bff FY$fV"s
jtt = Atan ( tand (20) /Cos( bff) ) 6yY.!HRkr
压力角 [初值][αt] = jtt g %f*ofb
步骤003 导出 [Axi] 几何性能综合参数概念 h@=7R
令 [Axi] ≡ Cos(αt) / [ 2*Cos(β)*Cos(α`) ] ]1m"V;vZ
此系数综合包含螺旋角. 压力角. 啮合角因子, 意义很重要 J , V
中心距 [A`] ≡ Mn *Z1 *(1+u) *Axi n5|l|#c$N
常规采用 [V+] 变位体制齿轮 [V-变位制不利于强度] J^ `hbP+2
Axi* Cos(β)≥ 0.5; Axi ≥ 0.5 / Cos(β) ?AEd(_a!q
β= 5, Axi≥ 0.5019 β=10, Axi≥ 0.5077 ]<1HM"D
β=15, Axi≥ 0.5176 β=20, Axi≥ 0.5320 # kyl?E
β=22, Axi≥ 0.5392 β=24, Axi≥ 0.5473 h;-a`@rO ;
故 [Axi]max = 0 .5473, [Axi]min = 0.5019 zbNA\.y
步骤004 计算 模 数 g& k58{e
[Mn]min ≌ A`/ ( Z1*(1+u)*0 .5473 ) F*M|<E=
[Mn]max ≌ A`/ ( Z1*(1+u)*0 .5019 ) F!JJ6d53y
将模 数化为标 准 值 [Mn]≡,Mn jk$86ma!
[Mn]≡Mn, call Xg (ch,Mn ) 询问满意否 ? zrs<#8!Y_!
可人工回答, 如不满意, 可输入新值 Y$g}XN*)E
步骤1000 计算啮合角, 先检验以下算式中有否 [Acos]> 1之情况 P.djd$#
Mn*Z1*(1+i) /[2*A`] ≡ tan (20)* Cos(α`)/ Sin(αt) !22yvT.;[
令 yyy = 0.5* Mn *Z1*(1.0+ u ) / A` l[ne/O
JJ
Cos(α`) ≡ yyy * Sin(αt ) / tan (20) &rp!%]+xAM
tan (αt) ≡ tan (20) / Cos(β) '0:i<`qv#g
aaa = yyy * Sin(jtt) / tand (20) Ow3P-UzU3
[Acos] = aaa #Z\O}<
步骤011 计算啮合角 ,vV]"f
if (aaa >1.0 ) then SVagT'BB
bff = bff -1.0修正 [β`] = bff k@V#HC{t
jtt = Atan( tand (20 ) / Cos(bff) ) } VEq:^o.
goto 步骤 011 end if ZsZcQj6G,
jpt = ACos ( aaa ) r[s!F=^
步骤1200检验啮合角. 螺旋角.值之范畴是否合理 ? V
>Hf9sZ
if ( jpt >20 .and .jpt <= 27 ) then NBjeHtT
go to步骤013 end if go to步骤014 AVG>_$<
步骤013if ( bff >5.0. and. bff<= 24 ) then t|V0x3X
go to步骤1800 end if go to步骤16 C9qJP^F
步骤014 if ( jpt < 20 ) then MxOD8TDF4
bff = bff - 1.0 修正[β`]= bff +E/y ~s
jtt = Atan ( tand (20) / Cos(bff) ) 'xnnLCm.
goto 步骤1000 end if S_v(S^x6
步骤015 If ( jpt >27 ) then /-4$7qd
bff = bff +1.0修正 [β`] = bff *f5l=lDOB
jtt = Atan( tand (20)/Cos(bff) ) e'2Y1h
goto 步骤1000 end if PmR* }Aw
步骤016 if ( bff < 5.0 ) then
1tB[_ $s
Z1= Z1- 1.0 u = Z2/Z1 aE|OTm+@9;
go to步骤1000 end if #`;/KNp 9
步骤017 if ( bff > 24 ) then Ue*C>F
Z1 = Z1+ 1.0 u = Z2/Z1 |Ps% M|8~
go to步骤1000 end if $Z?\>K0i
步骤1800 检验中心距系数 @*MC/fe
Axo = A` / ( Mn *Z1 *(1.0 + u ) ) p@YB?#Im
中心距系数 [初值][Ax]o ≌ Axo ?m0IehI
[Axi] = Cos( jtt ) / ( 2.0 *Cos( bff ) *Cos(jpt ) ) 5\Fz!
修正中心距系数值 [Axi] ≡ Axi cCY/gEv
步骤020 if (Axi > 0.5019. and. Axi <= 0.576 ) then
4f^C\i+q
go to步骤23 end if K-eY|n
步骤021 if ( Axi >0.576 ) then eKN$jlg
Z1= Z1+1.0u = Z2/Z1 >u0w.3r#
go to步骤1000 endif jN0k9O>
步骤022if ( Axi < 0.502 ) then M2@b1;
Z1= Z1-1.0u = Z2/Z1 C+{l7QT$t
go to步骤1000 end if 93O;+Z5J
步骤023Cos(α`) ≡ Cos(αt) / [ 2*Cos(β)*Axi] !}KqB8;
令qqq = Cos( jtt ) / ( 2 .0 *Cos ( bff) *Axi ) %."@Q$lA
jpt = ACos( qqq ) in-C/m#
步骤024if ( jpt >20.0. and. jpt <= 27.0 ) then }-@4vl
x$
go to步骤25 end if go to步骤1200 1l8Etp&<
步骤025jtt = Asin ( 2.0 *tand(20) * Cos(jpt) *Axi ) 'b/<