花了好几天时间,把CPC的大部分知识弄懂了。花了两个半天时间把这些知识整理出来,希望对大家有帮助。有些概念还不是很清晰,文中难免有错漏,请大家多多指教。
P}El#y#& t*&O*T+fgy 转载请注明作者:shogun@
www.opticsky.cn,E-mail:
charmingglass008@163.com iw$n*1M xfE:r: 同时,搭贴求两本书的电子版:《Nonimaging Optics》、《High Collection Nonimaging Optics》
laQM*FLg 以下是正文:
BZP~m=kq T%\f$jh6 =nmvG%.hd CPC学习笔记 -]?F o$=D`B ?1f(@ shogun@
www.opticsky.cn,E-mail:
charmingglass008@163.com 7|"gMw/ >c~Fgs HZ#<+~J §1.1什么是CPC(Compound Parabolic Concetrator)
Wn9b</tf CPC全名为复合抛物面聚光器。CPC及其多种变型广泛应用于太阳能系统中。CPC将光能量采集到焦平面,焦平面的吸收体吸收光能并转化为可储存的热能、电能等。
5 GP,J,J qOV6Kh) §1.2抛物线方程(Parabolic Function)
Xiyh3/%yy zuR F6?un
!H5r+%Oo| 如图1.1,抛物线的极坐标方程为:
*W#_W]Tu ρ=2f/(1+cosθ (1.1)
YXR%{GUP[ 则抛物面的半口径R为:
%Tn0r|K R=ρsinθ (1.2)
~;f,Ad`Q 对于一束平行光,经理想抛物面反射后总能汇集到焦点。若将光源置于焦点位置,根据光路可逆性,从抛物面出来的是比较完美的平行光。抛物面的这个特性使它被广泛应用在各种照明系统中。
d +]Gw vB :_|B 仔细分析,我们可以发现:
d0`5zd@S AC+CF=BD+DF (1.3)
RSNukg A、B为平行光束与平行光束垂直面m的交点。
bOi`JJ^ 事实上,抛物线即是从平行光出发点到焦点光程相等点的轨迹的集合。后文的string method将用到这一概念。
`xO9xo#
在图1.1中,假设f=8mm,θ=135°,则R=ρsinθ=38.6mm。
jH1!'1s| §1.3边缘光线原理(Edge-Ray Principle)
GTw3rD^wg 对聚光器经常采用边缘光线法进行分析。边缘光线即是以最大入射角入射于聚光器边缘,并被反射器反射一次后出射在接收器(吸收面)边缘的光线。
"v"w ER? §1.3.1聚光比(Concentration Ratio)
Uv(THxVh 对于一个聚光器,我们定义聚光比为:
!Ol>![ C=Aentry/Aexit (1.4)
pMB~Lt9 Aentry为入射光束的截面积,Aexit 为出射光束的截面积;C越大,聚光效果越好。读者可以自行计算图1.2中聚光器的C值。(见式1.5)
i_? S#L]h §1.3.2接收角(Acceptance Angle)
} #[MV+D 如图1.2,接收角定义为边缘光线被反射器反射一次后出射在接收器边缘时(仍在出射面内)入射光线与垂直方向的夹角θmax。
03iD(,@ 0<{+M` G/
#8!xIy §1.3.3拉线法(String Method)分析抛物线轨迹
-N')LY 如图1.2,将一根圆杆(rod)与水平面成θmax角放置于聚光器入射端。圆杆上有一个圆环,圆环上系有细线(string),细线的一端系于焦点d。将细线拉直,并保证垂直于圆杆,圆环从A走到C,细线另一头a走过的轨迹即为抛物线。显而易见,Aa+ad=Bb+bd=Cc+cd。
BCE}Er& e7j30Iy $6ZO
V/0 图1.2是拉线法的最简单示意。在Solar Energy System中,不同的吸收面(如Cylindrical Absorber)都可以用string method来显示反射面的轨迹。这种轨迹可能是渐开线与抛物线的结合。
p~T)Af<(
)$* T>.JA .,C8ASfh §1.4抛物面的倾斜(Tilt of Parabolic)
fE\;C bi 首先,CPC并非是通常的聚光器。从截面来看,两个反射面的焦点并不一定是同一点。也就是说,并非共焦系统,所以是非成像系统(Nonimaging System)。如图1.2,右面反射镜的焦点在d点。左面反射镜的焦点在c点。这就是“复合(compound)”的真正意思,是由两片反射镜组合在一起的。两片反射镜的光轴并不重合,但是它们有自己的对称轴Z。
kp~@Ub
@O3 不同形态的CPC可由抛物线经旋转(tilt)得到。如图1.3,虚线1、2是未经旋转的抛物线(Original Parabolic),两者的光轴本来是水平的。反射镜1的光轴Axis1绕自己的焦点f1旋转了20°,反射镜1也跟着旋转了20°,到1’的位置。抛物线2也经过的同样的旋转,只是方向相反。
$)5F3a|
p+O2: 0 ttM_]#q 经过旋转,可以获得我们需要的接收角。大于接收角的光线将会被系统反射出去,无法到达吸收面(exit aperture)(见图1.9)。
PXZZPW/ 事实上,由式(1.5)可知,减少接收角也就增大了集光率C:
1k5o?'3& *Ge2P3 C=1/sinθmax (1.5)
W2F %E ( aGwe@AS 下面我们对旋转前后的参数进行一些计算。
A~CQ@ -?A,N,nnX
8+Y+\XZG rUX1Iu7 如图1.4,简单地,可以得到:
!<wM?Q: \BT 8-} R=2fl/(1-cosΦ (1.6)
p/|":(U r=Rsin(Φ-θmax)-a’ (1.7)
$J>J@4 z=Rcos(Φ-θmax) (1.8)
Nw`}iR0i fl=a’(1+sinθmax) (1.9)
;:JTb2xbb KJ
Gh) 在tracepro中,根据需要,Axis tilt可任意选择,只要保证开口口径(entry aperture)不为0即可。对于规范的聚光器(textbook concentrator),Axis tilt即为接收角θmax。Lateral focal shift,顾名思义就是焦点(focal point)在Lateral方向(图1.5的Y方向)上的移动量(shift)。若Lateral focal shift=0,焦点未发生移动,仍在焦平面与中心轴的交点。对于规范的聚光器(textbook concentrator),Lateral focal shift即为a',即保证满足边缘光线原理。
D\~*| J ]j.??'+rg kI>Iq
Q-h nVqFCBB §1.5tracepro中CPC的建立与模拟
aZ% 见图1.5,未经旋转的CPC即为conical parabolic。图1.5中front length可由图1.1中得到,front length= |ρcosθ|=R=38.6mm。此CPC的出光面(exit aperture)为焦平面,所以back length为0。
C.r9)#G
E\5cb[Y 旋转后的CPC如图1.6:
9/rX%
#tyHj k 对旋转前后的CPC进行模拟:
*5DOTWos
qB`zyd8yu
^^[MDjNy@ >&K1+FSmyJ [vuqH:Ln 若θ>θmax,光束将被系统反射出去。如图1.9:
,Db+c3 )q?z"F| 
[ 此贴被shogun在2007-04-23 16:45重新编辑 ]