基于声波创建可重构光计算模块

发布:cyqdesign 2024-04-19 23:26 阅读:281

德国马克斯·普朗克光科学研究所与美国麻省理工学院研究人员合作,通过向光子机器学习添加声波维度,成功地为可重构神经形态模块奠定了基础。此次成果是利用光在光纤中产生临时声波,对生成式人工智能(AI)高效解释上下文语义信息至关重要。研究成果17日发表在美国科学促进会网站上。

ChatGPT等语言模型能创建出表达自然的文本,并以结构化方式总结段落。但缺点是,实现这一点需要巨大的能源支撑,这也意味着,随着它们飞速发展,这些智能设备必须要有新的解决方案来加速信号处理并降低能耗。

光声计算的艺术渲染图

神经网络被认为有潜力成为AI的支柱。将它们构建为基于光而不是电信号的光学神经网络,就能高速且高效地处理大量数据。然而,迄今为止,许多实现光学神经网络的实验方法都依赖于固定组件和稳定设备。

研究团队此次找到一种基于声波构建可重构模块的方法,用于光子机器学习。该研究的关键是光驱动产生的行进声波,其可操纵光学神经网络的后续计算步骤。比起光信息流,声波的传输时间要长得多,因此,它们在光纤中保留的时间更长,并且可依次链接到每个后续处理步骤。

该团队用实验演示了第一个构建模块——循环算子,这是循环神经网络领域广泛使用的技术。它允许链接一系列计算步骤,并可为执行的每个计算步骤提供上下文。

光声循环算子利用光波导的固有特性,无需人工储层或新制造结构,现已被用来区分多达27种不同的模式,展示了其在节能的同时,高效处理上下文的能力。

分享到:

最新评论

jeremiahchou 2024-04-21 00:11
研究团队此次找到一种基于声波构建可重构模块的方法,用于光子机器学习。该研究的关键是光驱动产生的行进声波,其可操纵光学神经网络的后续计算步骤。比起光信息流,声波的传输时间要长得多,因此,它们在光纤中保留的时间更长,并且可依次链接到每个后续处理步骤。 _ nz^+  
bSn={O"M  
该团队用实验演示了第一个构建模块——循环算子,这是循环神经网络领域广泛使用的技术。它允许链接一系列计算步骤,并可为执行的每个计算步骤提供上下文。 df {\O* 6  
T tnJ u*  
光声循环算子利用光波导的固有特性,无需人工储层或新制造结构,现已被用来区分多达27种不同的模式,展示了其在节能的同时,高效处理上下文的能力。
tassy 2024-04-21 00:53
创建可重构光计算模块。
bairuizheng 2024-04-21 01:47
光学神经网络
redplum 2024-04-21 08:04
太厉害了
likaihit 2024-04-21 08:05
神经网络
phisfor 2024-04-21 08:29
基于声波创建可重构光计算模块
willh 2024-04-21 10:59
厉害可以
3330634618 2024-04-21 11:28
德国马克斯·普朗克光科学研究所与美国麻省理工学院研究人员合作
sac 2024-04-21 15:11
可重构光计算
gangzi0801 2024-04-24 22:41
关注科研。
我要发表 我要评论
限 50000 字节
关于我们
网站介绍
免责声明
加入我们
赞助我们
服务项目
稿件投递
广告投放
人才招聘
团购天下
帮助中心
新手入门
发帖回帖
充值VIP
其它功能
站内工具
清除Cookies
无图版
手机浏览
网站统计
交流方式
联系邮箱:广告合作 站务处理
微信公众号:opticsky 微信号:cyqdesign
新浪微博:光行天下OPTICSKY
QQ号:9652202
主办方:成都光行天下科技有限公司
Copyright © 2005-2024 光行天下 蜀ICP备06003254号-1