利用分子工程提高有机太阳能电池效率
研究人员通过开发一种利用侧链工程改善分子相互作用的方法,在聚合物太阳能电池技术方面取得了重大进展。这种方法无需使用有毒的卤化加工溶剂,从而提高了电池的效率和稳定性。这项研究强调了基于低聚乙二醇(OEG)侧链的优势,标志着向更环保、更高效、更适合可穿戴设备的太阳能电池迈出了关键一步。 聚合物太阳能电池以重量轻、灵活性强而著称,是可穿戴设备的理想选择。然而,生产过程中所需的有毒卤化溶剂却阻碍了它们的广泛应用。这些溶剂带来了环境和健康风险,限制了这些太阳能电池的吸引力。遗憾的是,毒性较低的替代溶剂缺乏相同的溶解性,因此需要更高的温度和更长的加工时间。 这种低效率进一步阻碍了聚合物太阳能电池的应用。开发出一种无需使用卤化溶剂的方法,可以显著提高有机太阳能电池的效率,使其更适用于可穿戴技术。 在最近发表的一篇论文中,研究人员概述了如何利用侧链工程改善聚合物供体和小分子受体之间的分子相互作用,从而减少对卤化加工溶剂的需求。 论文最近发表在《纳米研究能源》(Nano Research Energy)上。 "聚合物供体和小分子受体的混合形态受其分子相互作用的影响很大,而分子相互作用可由供体和受体材料之间的界面能决定。当它们的表面张力值相似时,供体和受体之间的界面能和分子相互作用预计会更有利,"韩国庆尚国立大学教授 Yun-Hi Kim 说。"为了增强聚合物供体的亲水性并减少分子脱杂,侧链工程可能是一条可行的途径。" 侧链工程的作用 侧链工程是指在分子的主链上添加一个称为侧链的化学基团。侧链中的化学基团会影响大分子的性质。研究人员推测,添加基于低聚乙二醇(OEG)的侧链将提高聚合物供体的亲水性,这要归功于侧链中的氧原子。具有亲水性的分子会被水吸引。 聚合物太阳能电池的整体性能和聚合物太阳能电池中亲水侧链分子的热稳定性示意图根据整体性能和热稳定性,在制造 PSC 时,碳氢化合物和亲水性低聚乙二醇 (2EG) 的混合物比标准溶剂的性能更好。资料来源:清华大学出版社《纳米研究能源》 聚合物供体和小分子受体亲水性的不同会影响它们的相互作用。随着聚合物供体亲水性的增加以及它们与小分子受体之间相互作用的改善,可以使用非卤化加工溶剂,而不会影响太阳能电池的性能。事实上,用 OEG 侧链连接苯并二噻吩聚合物供体制成的聚合物太阳能电池的功率转换效率为 17.7%,高于 15.6%。 提高效率和稳定性 |