科学家利用“九章”光量子计算原型机求解图论问题
中国科学技术大学潘建伟、陆朝阳、刘乃乐等组成的研究团队,基于“九章”光量子 计算原型机完成了对“稠密子图”和“Max-Haf”两类图论问题的求解,通过实验和理论研究了“九章”处理这两类图论问题为搜索算法带来的加速,以及该加速对于问题规模和实验噪声的依赖关系。该成果系首次在具有量子计算优越性的光量子计算原型机上开展的面向具有应用价值问题的实验研究。近日,相关研究成果以“编辑推荐”的形式,发表在《物理评论快报》上,并被Physics网站专题报道。
量子计算机的物理实现是当前科技前沿的重大挑战之一。国际学术界对量子计算的实验发展制定了三步走的路线图。其中,第一步是实现“量子计算优越性”。“量子计算优越性”是指通过高精度地操纵近百个物理比特,高效求解超级计算机无法在合理时间内解决的特定的高复杂度数学问题。这一步的意义在于首次从实验上确凿地证明量子计算加速,并挑战“扩展的丘奇—图灵论题”。 2019年底,美国谷歌公司利用超导量子比特宣布实现“量子计算优越性”。而随之经典模拟算法取得快速发展,谷歌的这一宣称受到挑战。2020年,中国科大潘建伟团队构建了76个光子100个模式的高斯玻色取样量子计算原型机“九章”,首次达到基于光子的“量子计算优越性”里程碑。2021年,潘建伟团队进一步研制了 “祖冲之二号”和“九章二号”,使得我国成为唯一在两种技术路线都达到了“量子计算优越性”的国家。 目前,仅有谷歌、中国科大及加拿大Xanadu三个团队实现了“量子计算优越性”的目标。而只有在实现“量子计算优越性”的基础上,量子计算应用的实验研究才有望带来量子加速。因此,国际学术界下一阶段的重要科研目标之一是探索利用量子计算原型机演示具有实用价值的问题的求解。 近期,潘建伟团队在继续发展更高质量和更强拓展性的光量子计算原型机的同时,开展了将“九章”所执行的高斯玻色采样任务应用于图论问题的研究。图论起源于著名的“哥尼斯堡七桥问题”,被广泛用于描述事物之间的关系,如社交网络、分子结构和计算机科学中的许多问题均可对应到图论问题。高斯玻色采样与图论问题具有紧密的数学联系,通过将高斯玻色采样设备的每个输出端口映射到图的顶点,将每个探测到的光子映射到子图的顶点,研究人员可以利用实验得到的样本加速搜索算法寻找具有更大密度或Hafnian的子图的过程,从而帮助这两类图论问题的求解。这两类图论问题在数据挖掘、生物信息、网络分析和某些化学模型研究等领域具有重要应用。该工作首次利用“九章”执行的高斯玻色采样来加速随机搜索算法和模拟退火算法对图论问题的求解。研究人员在实验中使用了超过20万个80光子符合计数样本,相比全球最快超级计算机使用当前最优经典算法精确模拟该实验的速率快约1.8亿倍。 “九章”量子计算原型机与图论问题对应关系原理示意图 研究工作得到安徽省、科学技术部、中国科学院、上海市和国家自然科学基金委员会的支持。 相关链接:https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.130.190601 关键词: 光量子计算
分享到:
|
最新评论
-
redplum 2023-06-11 00:11这个太重要了
-
likaihit 2023-06-11 00:13很有意义啊
-
tassy 2023-06-11 00:36这个有意义
-
phisfor 2023-06-11 08:33科学家利用“九章”光量子计算原型机求解图论问题
-
tomryo 2023-06-11 09:48科学家利用“九章”光量子计算原型机求解图论问题
-
谭健 2023-06-11 11:26很有意义啊
-
wangjin001x 2023-06-11 13:39科学家利用“九章”光量子计算原型机求解图论问题
-
chenming95 2023-06-11 16:10
九章”光量子计算原型机求解图论问
-
sac 2023-06-11 16:47光量子计算
-
jeremiahchou 2023-06-11 17:36潘建伟团队在继续发展更高质量和更强拓展性的光量子计算原型机的同时,开展了将“九章”所执行的高斯玻色采样任务应用于图论问题的研究。图论起源于著名的“哥尼斯堡七桥问题”,被广泛用于描述事物之间的关系,如社交网络、分子结构和计算机科学中的许多问题均可对应到图论问题。高斯玻色采样与图论问题具有紧密的数学联系,通过将高斯玻色采样设备的每个输出端口映射到图的顶点,将每个探测到的光子映射到子图的顶点,研究人员可以利用实验得到的样本加速搜索算法寻找具有更大密度或Hafnian的子图的过程,从而帮助这两类图论问题的求解。这两类图论问题在数据挖掘、生物信息、网络分析和某些化学模型研究等领域具有重要应用。该工作首次利用“九章”执行的高斯玻色采样来加速随机搜索算法和模拟退火算法对图论问题的求解。研究人员在实验中使用了超过20万个80光子符合计数样本,相比全球最快超级计算机使用当前最优经典算法精确模拟该实验的速率快约1.8亿倍
12