切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 1168阅读
    • 0回复

    [技术]Savitzky-Golay滤波函数 [复制链接]

    上一主题 下一主题
    离线infotek
     
    发帖
    6569
    光币
    26994
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2022-04-27
    U-F\3a;&  
    在测量信号或数据的情况下,很难(如果不是不可能的话)完全避免所有可能的噪声源,因为这些噪声源会干扰任何实验测量。但是,噪声的存在会干扰数据的重要特征(例如,测量光谱的半宽谱)。 kSW=DE|#}  
    因此,有一些后期处理技巧可能会有所帮助。这里我们只讨论一个这样的工具:Savitzky-Golay滤波器,它通过对一组采样点执行回归算法来平滑局部噪声。在这个例子中,我们讨论了VirtualLab Fusion中这个特性的选项和效果,并以一个绿色LED灯在60 nm带宽下发射的光谱为例进行了测试。 Iax-~{B3AY  
    *R'r=C`  
    QoLp$1O (y  
    *lZ;kW(}p  
    2.如何进入Savitzky-Golay过滤器 a$=BX=  
    C ~e&J&zh  
    e0s*  
    对于每个实值数据数组,都可以在下面找到Savitzky-Golay滤波器 H1bHQB  
    操作→ ON(OYXj  
    杂项→ Dx)>`yJk$;  
    Savitzky-Golay过滤器 mS$9D{  
    <K g=?wb  
    XA b%V'  
    ]|JQH  
    3.可视化的过滤函数 ;C ^!T  
    9f#~RY|#m  
    lF*}l  
    eeVDU$*e=  
    4.影响过滤器-窗口大小 lpq) vKM}^  
    %>p[;>jW  
    更大的窗口大小导致在拟合过程中考虑更多的采样点,因此曲线更平滑。 QJ i5 H  
    ]QU 9|1  
    |~K 5]  
    O'Mo/ u1-  
    更高的阶数允许更详细的曲线,但反过来也可以保留局部噪声。 %fT%,( w}t  
    jo-2D[Q{  
    !Y8+ Z&^2  
    T }}T`Ce  
    5.局部噪声过滤 V jdu9Ez  
    ._E 6?  
    8A jQPDn+  
    c>|1%}"?  
    6.FWHM 检测 ]8n*fo2#  
    @=7[KMb  
    "L0Q"t:  
    cv{icz,%w  
    7.等距的重采样 bcR";cE  
    $+k|\+iJ  
    vh$If0  
     
    分享到