我国科研团队在低驱动力有机太阳能电池的电荷产生机理研究中获进展

发布:cyqdesign 2021-06-11 21:05 阅读:1813
近日,中国科学院国家纳米科学中心研究员朱凌云、魏志祥与中科院化学研究所研究员易院平合作,在低驱动力有机太阳能电池的电荷产生机理方面取得进展。相关研究成果以Small Exciton Binding Energies Enabling Direct Charge Photogeneration Towards Low-Driving-Force Organic Solar Cells为题,发表在《德国应用化学》杂志上,并被选为Hot paper。 [=*c8  
4_qd5K+n"  
近年来,随着给体-受体-给体(A-D-A)型非富勒烯受体的发展,有机太阳能电池的性能得到显著提升,尤其是基于Y6及其衍生物受体的有机太阳能电池,其单结器件效率已超过18%。这种提高主要归功于在给/受体界面最高占据轨道(HOMO)能级差较小甚至接近于零时,窄带隙受体上的激子可由空穴转移通道高效地产生电荷载流子。然而,电荷产生的内在机理尚不明确。从根本上说,有机太阳能电池激子分离对界面驱动力的需求,归因于有机体系的激子束缚能。 OZ 4uk.)  
SK f9 yS#  
在前期工作中,研究人员对系列非富勒烯体系计算发现,激子分离的驱动力与激子束缚能线性相关,为降低驱动力减小能量损失指明了方向(J. Phys. Chem. C 2018, 122, 22309)。进一步发展了自洽的量子力学/嵌入电荷方法(QM/EC)计算电子极化效应,实现从第一性原理水平上可靠评估静电作用和诱导效应,且能够考虑分子堆积结构的影响。计算发现非富勒烯受体的激子束缚能与单晶中分子堆积结构密切相关,最小值只有40 meV,打破了有机材料激子束缚能在0.3 eV以上的传统认识(J. Phys. Chem. Lett. 2019, 10, 4888)。此外,对具有不同晶相的有机光伏小分子受体研究证明,仅分子排列方式的差异可以大幅改变激子束缚能(J. Phys. Chem. Lett. 2020, 11, 10227)。 DM"nxTVre  
2u 8z>/G  
在此基础上,研究人员结合理论和实验研究了Y6体系的激子束缚能。计算结果表明,由于紧密的三维分子堆积带来较强的电子极化效应,固态Y6具有极小的激子束缚能。变温光致发光光谱测量表明,激子分离产生自由电荷载流子的能垒明显低于室温能量;随着温度升高,电荷复合重新形成激子的几率增大,导致发光反而增强。因此,即使在没有给/受体界面驱动力的帮助下,得益于低的激子束缚能,纯的Y6薄膜在光激发后也能够直接自发地产生自由电荷载流子。该系列工作揭示出电子极化效应对减小有机体系激子束缚能的重要作用,提出了有机光伏自由电荷产生的新机理,为获得高效有机太阳能电池提供了新思路。 )]x/MC:9r  
/V@~Vlww  
w$I<WS{J:Z  
图1.QM/EC方法考虑极化和离域效应计算获得的固相下的激子束缚能
q\wT[W31@  
图2.Y6和ITIC薄膜的变温光致发光光谱以及电荷分离与复合过程示意图
]q@/:I9]  
朱凌云为论文第一作者,易院平和魏志祥为论文通讯作者。研究工作得到国家自然科学基金委员会、科技部和中科院战略性先导科技专项(B类)等的支持。 pvCn+y/U;  
.OFwGOL%  
论文链接:https://onlinelibrary.wiley.com/doi/10.1002/anie.202105156
分享到:

最新评论

tassy 2021-06-13 00:10
有机太阳能电池的性能得到显著提升
bairuizheng 2021-06-13 00:36
看看新闻 ?kBi9^)N4  
tomryo 2021-06-13 07:04
:我国科研团队在低驱动力有机太阳能电池的电荷产生机理研究中获进展
silence唯爱 2021-06-13 07:58
期待电池进一步发展
redplum 2021-06-13 08:12
这个好厉害的
likaihit 2021-06-13 08:13
这个好厉害的
不懂想问 2021-06-13 08:36
前来学习
木子示羊 2021-06-13 09:23
我国科研团队在低驱动力有机太阳能电池的电荷产生机理研究中获进展
sbll 2021-06-13 11:08
提高太阳能转换电能的转换率是根本
wangjin001x 2021-06-13 21:36
我国科研团队在低驱动力有机太阳能电池的电荷产生机理研究中获进展
12
我要发表 我要评论
限 50000 字节
关于我们
网站介绍
免责声明
加入我们
赞助我们
服务项目
稿件投递
广告投放
人才招聘
团购天下
帮助中心
新手入门
发帖回帖
充值VIP
其它功能
站内工具
清除Cookies
无图版
手机浏览
网站统计
交流方式
联系邮箱:广告合作 站务处理
微信公众号:opticsky 微信号:cyqdesign
新浪微博:光行天下OPTICSKY
QQ号:9652202
主办方:成都光行天下科技有限公司
Copyright © 2005-2024 光行天下 蜀ICP备06003254号-1