切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 1281阅读
    • 0回复

    [分享]十字元件热成像分析 [复制链接]

    上一主题 下一主题
    在线infotek
     
    发帖
    6107
    光币
    24688
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-11-18
    简介:本文是以十字元件为背景光源,经过一个透镜元件成像探测器上,并显示其热成像图。 O =0j I  
    !@4 i:,p@  
    成像示意图
    fF]w[lLDv  
    首先我们建立十字元件命名为Target X(JE]6_  
    ~Y3X*  
    创建方法: ckdXla  
    8Ai\T_l  
    面1 : $~)YI/b  
    面型:plane WO!'("  
    材料:Air #b wGDF  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box :b`ywSp`  
    Q%!Dk0-)  
    2wwJ>iR`  
    辅助数据: kcG_ n  
    首先在第一行输入temperature :300K, L6Io u  
    emissivity:0.1; V[2}  
    0S2/,[-u+  
    0,5)L\{ R  
    面2 : E4, J"T|@  
    面型:plane za!8:(  
    材料:Air N~~ sM"n  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box ;LqpX!Pi f  
    Wn-'iD+9<  
    > PK 6CR  
    位置坐标:绕Z轴旋转90度, %00cC~}4  
    A~({vb'  
    bCqTubbx!t  
    辅助数据: #7['M;_  
    ;cfPS  
    首先在第一行输入temperature :300K,emissivity: 0.1; .,F`*JVFq  
    BlfadM;  
    'Y0h w  
    Target 元件距离坐标原点-161mm; .t7ME{  
    K.Tob,5`  
    qP BOt;N  
    单透镜参数设定:F=100, bend=0, 位置位于坐标原点 i2+_~$f  
    <b:xyHS  
    lokKjs  
    探测器参数设定: X& mD/1  
    '<{Jlz(u9  
    在菜单栏中选择Create/Element Primitive /plane ZI.Czzx\=  
    Cy dV$!&mP  
    `BVXF#sb  
    2Q5 -.2]  
    4W#DLip9  
    iDWM-Ytx  
    元件半径为20mm*20,mm,距离坐标原点200mm。 $plqk^P  
    %,(X R`  
    光源创建: //'&a-%$^  
    +ZOKfX  
    光源类型选择为任意平面,光源半角设定为15度。 ,b4oV  
    WK0:3q(P  
    zx5#eMD  
    我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 (67byO{  
    /cT6X]o8  
    我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线 z*B?Hw),  
    }bSDhMV;  
    >gDeuye  
    功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 _F8THYg (  
     nZ)E @  
    创建分析面: n?;h-KKO:  
    Lt ^*L% x  
    i+F*vTM2,  
    到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 JIIc4fyy8s  
    v: veKA  
    T%Bz>K  
    到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 =3ovaP  
    W1521:  
    FRED在探测器上穿过多个像素点迭代来创建热图 O>'tag  
    m/"([Y_  
    FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 #0PZa$kM(o  
    将如下的代码放置在树形文件夹 Embedded Scripts, xS>vmnW  
    sF>O=F-7  
    IEfYg(c0U  
    打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 #^BttI  
    5KP\#Y  
    绿色字体为说明文字, !C h1q  
    \B^NdG5Y  
    '#Language "WWB-COM" C1+f\A|9FP  
    'script for calculating thermal image map +u&[ j/  
    'edited rnp 4 november 2005 na|sKE;{  
    U>OAtiq JX  
    'declarations cg o  
    Dim op As T_OPERATION 8Ihl}aguW  
    Dim trm As T_TRIMVOLUME DJ*mWi.  
    Dim irrad(32,32) As Double 'make consistent with sampling TMo DN%{  
    Dim temp As Double G$2@N6  
    Dim emiss As Double t|mK5aR4  
    Dim fname As String, fullfilepath As String ``eam8Az_U  
    ;>L8&m)R5  
    'Option Explicit ;rF[y7\  
    H>W8F2VT  
    Sub Main C fM[<w   
        'USER INPUTS 1= 7ASS9  
        nx = 31 ;b:'i& r  
        ny = 31 D6H?*4f]  
        numRays = 1000 R7U%v"F>`  
        minWave = 7    'microns 9K#3JyW*  
        maxWave = 11   'microns -cijLlz%+  
        sigma = 5.67e-14 'watts/mm^2/deg k^4 reNf?7G+m  
        fname = "teapotimage.dat" DIw_"$'At  
    lx=tOfj8  
        Print "" #]6{>n1*+w  
        Print "THERMAL IMAGE CALCULATION" 6M. |W;  
    !\[JWN@v  
        detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 0#DEh|?  
    X9NP,6  
        Print "found detector array at node " & detnode k|\M(Z*(P  
    /`7+Gy<  
        srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 /s~S\dG  
    CGzu(@dd\  
        Print "found differential detector area at node " & srcnode K, I  
    mLpM8~L  
        GetTrimVolume detnode, trm KN[;z2i  
        detx = trm.xSemiApe KX]!yA  
        dety = trm.ySemiApe ]d-.Mw,'  
        area = 4 * detx * dety dzBP<Xyh  
        Print "detector array semiaperture dimensions are " & detx & " by " & dety BV`\6SM~  
        Print "sampling is " & nx & " by " & ny A+gS'DZ9C  
    :)D7_[i  
        'reset differential detector area dimensions to be consistent with sampling e).;;0  
        pixelx = 2 * detx / nx Y*PfU +y~  
        pixely = 2 * dety / ny #XA`n@2Uoo  
        SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False * 70 ZAo4  
        Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 CUYA:R<)  
    V^&*y+  
        'reset the source power E "}@SaB-  
        SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) ON){d!]uJ  
        Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" y/c3x*l.xL  
    R6O v  
        'zero out irradiance array * dw.Ug  
        For i = 0 To ny - 1 xsn=Ji2 F  
            For j = 0 To nx - 1 QcW8A ,\q  
                irrad(i,j) = 0.0 @anjjC5a~  
            Next j gWGDm~+  
        Next i w\YS5!P,V  
    %ACW"2#(  
        'main loop @;tfHoXD  
        EnableTextPrinting( False ) .WqqP  
    >*8V]{f9  
        ypos =  dety + pixely / 2 )\=xPfs  
        For i = 0 To ny - 1 L;%w{,Ji  
            xpos = -detx - pixelx / 2 *k}m?;esb  
            ypos = ypos - pixely  '2*OrY  
    "H).2{3(x  
            EnableTextPrinting( True ) wuA?t  
            Print i z'_Fg0kR{  
            EnableTextPrinting( False ) 'v~'NWfd  
    ~qrSHn}+PU  
    HDhISPg  
            For j = 0 To nx - 1 YE{ [f@i0  
    fk5'v   
                xpos = xpos + pixelx Td|u@l4B  
    oNyYx6q:Q  
                'shift source kFWwz^x  
                LockOperationUpdates srcnode, True $TXxhd 6  
                GetOperation srcnode, 1, op 0bDc 4m  
                op.val1 = xpos fw jo?  
                op.val2 = ypos 0X5cn 0L^  
                SetOperation srcnode, 1, op **Ioy+  
                LockOperationUpdates srcnode, False b4e~Z  
    ^w\22 Q  
                'raytrace bGH#s {'5  
                DeleteRays w W@e#:  
                CreateSource srcnode UxTLr-db^  
                TraceExisting 'draw 7@fS2mu  
    MO8}i?u=z  
                'radiometry BB/wL_=:  
                For k = 0 To GetEntityCount()-1 nc k/Dw  
                    If IsSurface( k ) Then OuTV74  
                        temp = AuxDataGetData( k, "temperature" ) p2Ep(0w,R5  
                        emiss = AuxDataGetData( k, "emissivity" ) |l; Ot=C=  
                        If ( temp <> 0 And emiss <> 0 ) Then Nh.+woFq4  
                            ProjSolidAngleByPi = GetSurfIncidentPower( k ) 9{jMO  
                            frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) Swhz\/u9  
                            irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi 9:USxFM  
                        End If K {' atc  
    q!z"YpYB  
                    End If $v;WmYTJ  
    S{+t>en  
                Next k rUb{iU;~m  
    ZL6HD n!  
            Next j gu(:'5cX  
    /:4J  
        Next i )/$J$'mcxd  
        EnableTextPrinting( True ) ]!B0= XP  
    Trv}YT.  
        'write out file  !Ld5Y$  
        fullfilepath = CurDir() & "\" & fname "/Qz?1>l+  
        Open fullfilepath For Output As #1 s|Mo3_>  
        Print #1, "GRID " & nx & " " & ny ?}cmES kX@  
        Print #1, "1e+308" #KJ# 1  
        Print #1, pixelx & " " & pixely *(OG+OkC  
        Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 ?.46X^  
    @sLN  
        maxRow = nx - 1 fs 'SCwx  
        maxCol = ny - 1 ; j!dbT~5  
        For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) f8:nKb>nq$  
                row = "" e"S?qpJK  
            For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) D;pI!S<#  
                row = row & irrad(colNum,rowNum) & " "     ' append column data to row string r N$0qo  
            Next colNum                     ' end loop over columns %;'~TtW5  
    4E^ ?}_$  
                Print #1, row e'3V4iU]  
    YhN<vZ}U!~  
        Next rowNum                         ' end loop over rows /mex{+p>tO  
        Close #1 _Vr- bpAf  
    C t,p  
        Print "File written: " & fullfilepath 9&Jf4lC94  
        Print "All done!!" "JB4 Uaa  
    End Sub RpivO,   
    6m:$mhA5  
    在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: DhyR  
    n~I-mR)"  
    Nm?^cR5r  
    找到Tools工具,点击Open plot files in 3D chart并找到该文件 qIi \[Ugh  
      
    r].n=455[  
    QHR,p/p  
    打开后,选择二维平面图: EqW~K@  
    5kiW@{m  
    QQ:2987619807
    $tmdE )"&  
     
    分享到