切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 1104阅读
    • 0回复

    [分享]十字元件热成像分析 [复制链接]

    上一主题 下一主题
    离线infotek
     
    发帖
    5545
    光币
    21885
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-11-18
    简介:本文是以十字元件为背景光源,经过一个透镜元件成像探测器上,并显示其热成像图。 c*K-?n9YMz  
    |HI =ykfI  
    成像示意图
    WZdA<<,:o  
    首先我们建立十字元件命名为Target )7c\wAs  
    UL$^zR3%d  
    创建方法: fyT:I6*  
    $jo}?Y+  
    面1 : i0Qg[%{9#  
    面型:plane ]plg@  
    材料:Air ]IXKoJUf  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box yAG4W[  
    ='T<jV`evu  
    _ mhP:O  
    辅助数据: }E[S%W[  
    首先在第一行输入temperature :300K, f8+($Ys  
    emissivity:0.1; $T tCVR  
    \gki!!HQ  
    @G^]kDFM{  
    面2 : YMj z , N  
    面型:plane Tf Q(f?  
    材料:Air !h}x,=`z/  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box {tk42}8k  
    jl{>>TW{x  
    Ra&HzK?  
    位置坐标:绕Z轴旋转90度, zIf/jk  
    Eh#W*Bg  
    ~ULuX"n  
    辅助数据: `fu(  
    VzA~w` $d  
    首先在第一行输入temperature :300K,emissivity: 0.1; L:IaJ?+?  
    d2'9C6t  
    aU<0<Dx  
    Target 元件距离坐标原点-161mm; s7tNAj bgD  
    #b4`Wcrj  
    cT`x,2  
    单透镜参数设定:F=100, bend=0, 位置位于坐标原点 AH;0=<n  
    fa8vY  
    r4@!QR<h  
    探测器参数设定: %E3|b6k\  
    usZmf=p-r  
    在菜单栏中选择Create/Element Primitive /plane Nj1vB;4Nx  
    # 5v 2`|)  
    AA;\7;k{  
    f$Q#xlQM  
    yd]W',c  
    <:-|>R".  
    元件半径为20mm*20,mm,距离坐标原点200mm。 sI, T"D?  
    Wy.2*+5FX0  
    光源创建: HTao)`.  
    C8}ujC  
    光源类型选择为任意平面,光源半角设定为15度。 @`G_6 <.`  
    IxAKIa[HY  
    N8m|Y]^H#  
    我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 BEPeK  
    l}j5EWe  
    我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线 t/yGMR=  
    V.Dqbv  
    .n[!3X|d  
    功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 X3tpW`alo  
    [?r`8K2!,  
    创建分析面: $xNM^O  
    \CM/KrCR  
    {-2I^Ym 5i  
    到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 (/14)"Sk  
    '*MNRduE6  
    P#\L6EO.  
    到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 @\e2Q& O  
    |!euty ::  
    FRED在探测器上穿过多个像素点迭代来创建热图 HUuL3lYka  
    rbS67--]  
    FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 P6&@fwJ<  
    将如下的代码放置在树形文件夹 Embedded Scripts, 4`)`%R$  
    wo5"f}vd#  
    U=\ZeYK.  
    打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 YK!nV ,  
    Z)<ljW  
    绿色字体为说明文字, &%+}bt5  
    n"N!76  
    '#Language "WWB-COM" ~cbq5||  
    'script for calculating thermal image map wASgdGoy  
    'edited rnp 4 november 2005 75v 5/5zRn  
     Iz*'  
    'declarations )WF]v"t  
    Dim op As T_OPERATION 'e^,#L_!o  
    Dim trm As T_TRIMVOLUME "*CQ<@+  
    Dim irrad(32,32) As Double 'make consistent with sampling 2>Hl=bX  
    Dim temp As Double Q#Q]xJH  
    Dim emiss As Double =o^oMn  
    Dim fname As String, fullfilepath As String |&eZ[Sy(=l  
    L}UJ`U  
    'Option Explicit 57k@] 3 4  
     ;)s$Et%  
    Sub Main ,+-l1GpL  
        'USER INPUTS mYJ%gdTpo  
        nx = 31 OJPx V~y  
        ny = 31 s%z\szd*  
        numRays = 1000 rCR?]1*Z  
        minWave = 7    'microns j9)P3=s  
        maxWave = 11   'microns ];i-d7C  
        sigma = 5.67e-14 'watts/mm^2/deg k^4 fw$/@31AP?  
        fname = "teapotimage.dat" ,l^; ZE  
    bO]^TRaiJ  
        Print "" Y f:xM>.%  
        Print "THERMAL IMAGE CALCULATION" :IlRn`9X`  
    92!1I$zi  
        detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 Kmc*z (Q  
    7nM]E_  
        Print "found detector array at node " & detnode @8E mY,{;  
    r CU f,)  
        srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 4Xi _[ Xf  
    xS?[v&"2  
        Print "found differential detector area at node " & srcnode 4scY 8(1  
    G8dC5+h  
        GetTrimVolume detnode, trm rOQ@(aUAZ  
        detx = trm.xSemiApe  >Eg/ir0  
        dety = trm.ySemiApe *@/1]W  
        area = 4 * detx * dety :tU&d(8  
        Print "detector array semiaperture dimensions are " & detx & " by " & dety #=C!Xx&  
        Print "sampling is " & nx & " by " & ny Q%)da)0:c  
    c<-F_+[  
        'reset differential detector area dimensions to be consistent with sampling q}P< Ejq}  
        pixelx = 2 * detx / nx BwMi@r =  
        pixely = 2 * dety / ny X3&-kU  
        SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False eH,r%r,  
        Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 =?g26>dYo  
    ,{==f7|w  
        'reset the source power >a/]8A  
        SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) GcN[bH(@  
        Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" QY2/mtI  
     gP%S{<.?  
        'zero out irradiance array [&12`!;j  
        For i = 0 To ny - 1 qd$Y"~Mco  
            For j = 0 To nx - 1 iR} 3 [  
                irrad(i,j) = 0.0 u~SvR~OE  
            Next j _~~:@fy  
        Next i Mh [TZfV  
    lh^-L+G:Ok  
        'main loop /g$cQ=c  
        EnableTextPrinting( False ) ~*"]XE?M  
    ]^aOYtKX  
        ypos =  dety + pixely / 2 `;KU^dH  
        For i = 0 To ny - 1 Mn$w_Z?  
            xpos = -detx - pixelx / 2 Ja1[vO"YgP  
            ypos = ypos - pixely U`YPzZp_  
    c%|K x  
            EnableTextPrinting( True ) ((KNOa5  
            Print i v9?hcJ=  
            EnableTextPrinting( False ) ^n! j"  
    4#<r}j12z  
    3PRg/vD3  
            For j = 0 To nx - 1 >i&"{GZ  
    Oz8"s4Y7  
                xpos = xpos + pixelx z= \y)'b  
    RbOEXH*]  
                'shift source ++>HU{  
                LockOperationUpdates srcnode, True WY>r9+A?W  
                GetOperation srcnode, 1, op C:r@)Mhq  
                op.val1 = xpos MTnW5W-r9  
                op.val2 = ypos 2EO WbN}M  
                SetOperation srcnode, 1, op Rgstk/1  
                LockOperationUpdates srcnode, False ]|H`?L  
    tW^oa  
                'raytrace V(gmC%6%l*  
                DeleteRays c:*[HO\  
                CreateSource srcnode "+0Yhr?  
                TraceExisting 'draw cj[a^ ZH  
    Fx@ovI- 5  
                'radiometry X  jPPgI  
                For k = 0 To GetEntityCount()-1 7lLh4__;`6  
                    If IsSurface( k ) Then z_i (o  
                        temp = AuxDataGetData( k, "temperature" ) %>];F~z  
                        emiss = AuxDataGetData( k, "emissivity" ) ^uWPbW&/q  
                        If ( temp <> 0 And emiss <> 0 ) Then y 4 wV]1  
                            ProjSolidAngleByPi = GetSurfIncidentPower( k ) @V\ u<n  
                            frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) &gxWdG}qx]  
                            irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi 9mmkFaBQ  
                        End If C {*' p+f  
    =~DQX\  
                    End If -$ VP#%  
    H1t`fyri2  
                Next k +nIjW;RU  
    f,}(= u  
            Next j FHK{cE  
    L*8U.{NY  
        Next i IDY2X+C#U  
        EnableTextPrinting( True ) ^\f1zg9I  
    #FhgKwx  
        'write out file Nd h  
        fullfilepath = CurDir() & "\" & fname "!B\c9q  
        Open fullfilepath For Output As #1 Z}AhDIw!G  
        Print #1, "GRID " & nx & " " & ny |muZv!,E  
        Print #1, "1e+308" W; zzc1v  
        Print #1, pixelx & " " & pixely 1xD?cA\vu  
        Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 Yh["IhjR  
    tch;_7?  
        maxRow = nx - 1 s/0bXM$^  
        maxCol = ny - 1 v&)G~cz  
        For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) "!9FJ Y  
                row = "" =&"a:l  
            For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) rNoCmNm  
                row = row & irrad(colNum,rowNum) & " "     ' append column data to row string LL_@nvu}M  
            Next colNum                     ' end loop over columns H oO1_{q"  
    [85b+SKW  
                Print #1, row n #S?fsQN  
    Sw.Kl 0M  
        Next rowNum                         ' end loop over rows "!R*f $  
        Close #1 #OwxxUeZ  
     (,R\6  
        Print "File written: " & fullfilepath cz1 m05E  
        Print "All done!!" i.0d>G><@  
    End Sub m>^vr7  
    ;qs^+  
    在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: |)OC1=As  
    $wcTUl  
    }\QXPU{UVd  
    找到Tools工具,点击Open plot files in 3D chart并找到该文件 &-L9ws  
      
    7|k2~\@q  
    (_R!:H(]m  
    打开后,选择二维平面图: R(s[JH(&  
    QN;GMX5&  
    QQ:2987619807
    XO5E-Nh  
     
    分享到