切换到宽版
  • 广告投放
  • 稿件投递
  • 婄體中文
    • 1201阅读
    • 0回复

    [分享]十字元件热成像分析 [复制链接]

    上一主题 下一主题
    离线infotek
     
    发帖
    5762
    光币
    22962
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-11-18
    简介:本文是以十字元件为背景光源,经过一个透镜元件成像探测器上,并显示其热成像图。 <inl{CX/  
    uRP Ff77  
    成像示意图
    ;F|jG}M"  
    首先我们建立十字元件命名为Target Gj6<s./  
    SO7(K5H,  
    创建方法: &u&2D$K,tp  
    /#29Y^Z)=  
    面1 : A8J?A#R*{q  
    面型:plane 5@K\c6   
    材料:Air IT,"8 s  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box n:F@gZd`  
    P;jlHZ9?O  
    : g&>D#{  
    辅助数据: VcP:}a< B\  
    首先在第一行输入temperature :300K, [S%J*sz~  
    emissivity:0.1; !5NGlqEF#  
    &/HoSj>HS  
    )#C_mB$-#  
    面2 : ACgt" M.3F  
    面型:plane Yi[4DfA  
    材料:Air #&k8TY  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box ^Wf S\M`  
     j|ozGO  
    /=bSt  
    位置坐标:绕Z轴旋转90度, rYbCOazr  
    q Z#!CPHS  
    }lH;[+u3  
    辅助数据: fa"\=V2S  
    5H~@^!7t  
    首先在第一行输入temperature :300K,emissivity: 0.1; Il|GCj*N  
    W.IH#`-9E  
    ej<`CQ  
    Target 元件距离坐标原点-161mm; Ur n  
     -W9gH  
    )mj<{Td`  
    单透镜参数设定:F=100, bend=0, 位置位于坐标原点 L,6MF,vx  
    j+nv=p  
    ~bWhth2*  
    探测器参数设定: - gB{:UYi3  
    :fhB*SYK  
    在菜单栏中选择Create/Element Primitive /plane a`s/qi  
    wBLsz/  
    rJX\6{V!_  
    ("b*? : B  
    &eU3(F`.  
    Zct!/u9 Q  
    元件半径为20mm*20,mm,距离坐标原点200mm。 DDWp4`CS|  
     C[R`Ml  
    光源创建: ve6x/ PD  
    E3bwyK!s  
    光源类型选择为任意平面,光源半角设定为15度。 ]uAS+shQ&  
    <;aJ#qT  
    =88t*dH(,"  
    我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 7pz\ScSe  
    Ep<YCSQy$i  
    我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线 ^zHRSO  
    y>)MAzz~\  
    Qd?CTYNsv  
    功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 u|T%Xy=LU  
    V +.Q0$~F5  
    创建分析面: bK?MT]%}r  
    sLZ>v  
    g [AA,@p+  
    到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 G8noQ_-  
    ZOC#i i`:  
    S{- f $Q*  
    到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 .8:+MW/  
    h^Qh9G0dn  
    FRED在探测器上穿过多个像素点迭代来创建热图 an.`dBm  
    -( (Z@T1k  
    FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 .x>HA^4  
    将如下的代码放置在树形文件夹 Embedded Scripts, 9N^+IZ@l  
    ex!XB$X  
    uS&LG#a  
    打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 &lq^dFP&Su  
    Hxn<(gd G  
    绿色字体为说明文字, +O4(a.  
    EQ/^&  
    '#Language "WWB-COM" oE6|Zw  
    'script for calculating thermal image map bb}?h]a   
    'edited rnp 4 november 2005 _Ds@lVY  
    1TIlINlJ  
    'declarations JdO)YlM-  
    Dim op As T_OPERATION /h7.oD8CU  
    Dim trm As T_TRIMVOLUME ydB$4ZB3[  
    Dim irrad(32,32) As Double 'make consistent with sampling Hsgy'X%om  
    Dim temp As Double EavX8r  
    Dim emiss As Double XddHP;x  
    Dim fname As String, fullfilepath As String _; 7fraqX  
    dl_{iMhF&E  
    'Option Explicit Gnk|^i;t  
    ]Z/R!y?l"G  
    Sub Main C 0>=x{,v  
        'USER INPUTS L_k9g12  
        nx = 31 %Ci^*zb  
        ny = 31 Qm; BUG]  
        numRays = 1000 JN|VPvjE   
        minWave = 7    'microns >T QZk4$  
        maxWave = 11   'microns ogJ<e_ m  
        sigma = 5.67e-14 'watts/mm^2/deg k^4 yhwy>12,K  
        fname = "teapotimage.dat" |by@ :@*y  
     VGB-h'  
        Print "" *Q5x1!#z #  
        Print "THERMAL IMAGE CALCULATION" p/3BD&6  
    4\HsU9x  
        detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 -;U3w.-  
    p1~*;;F  
        Print "found detector array at node " & detnode sl^n6N  
    R1/q3x  
        srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 LN\[Tmd &  
    jq[x DwPG  
        Print "found differential detector area at node " & srcnode v8~YR'T0`V  
    Fg4@On[,i  
        GetTrimVolume detnode, trm &XtRLt gS  
        detx = trm.xSemiApe xW\,KSK  
        dety = trm.ySemiApe ).Gd1pE  
        area = 4 * detx * dety lJ&y&N<O  
        Print "detector array semiaperture dimensions are " & detx & " by " & dety C\A49q  
        Print "sampling is " & nx & " by " & ny {xToz]YA  
    5 VKcV&D  
        'reset differential detector area dimensions to be consistent with sampling '?8Tx&}U8  
        pixelx = 2 * detx / nx OX^3Q:Z=  
        pixely = 2 * dety / ny fhr-Y'  
        SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False ;ctU&`  
        Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 7k~Lttuk  
    Y"*:&E2)r  
        'reset the source power cix36MR_  
        SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) Ihqs%;V  
        Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" 0;<OYbm3<  
    Sr"/-  
        'zero out irradiance array GS4_jvD-  
        For i = 0 To ny - 1 Pr/]0<s  
            For j = 0 To nx - 1 r.<JDdj  
                irrad(i,j) = 0.0 HY*\ k#  
            Next j <xqba4O  
        Next i hfv%,,e  
    7wi%j!  
        'main loop @RVOXkVo  
        EnableTextPrinting( False ) 5r7h=[N  
    [q3+$W \r  
        ypos =  dety + pixely / 2 t !~ S9c  
        For i = 0 To ny - 1 m|1n x  
            xpos = -detx - pixelx / 2 pX_b6%yX(  
            ypos = ypos - pixely .`J:xL%Z  
    {cR3.%wX  
            EnableTextPrinting( True ) V.2[ F|P;3  
            Print i #KE;=$(S  
            EnableTextPrinting( False ) 7xT[<?,  
    rN#\AN  
    */_@a?  
            For j = 0 To nx - 1 x5F@ad 9  
    u*2JUI*  
                xpos = xpos + pixelx 4U{m7[  
    q~O>a0f0  
                'shift source #8UseK  
                LockOperationUpdates srcnode, True LM6]kll  
                GetOperation srcnode, 1, op JJ-i_5\q  
                op.val1 = xpos ox4W$YdMG  
                op.val2 = ypos }NwN2xTB  
                SetOperation srcnode, 1, op -_|]N/v\  
                LockOperationUpdates srcnode, False y\z > /q  
    R@n5AN(  
                'raytrace =fWdk\Wv  
                DeleteRays ls @5^g  
                CreateSource srcnode fnOIv#  
                TraceExisting 'draw (}"S) #C  
    +'%\Pr(  
                'radiometry M2p<u-6 "  
                For k = 0 To GetEntityCount()-1 Pb4q`!  
                    If IsSurface( k ) Then RH~sbnZ)F  
                        temp = AuxDataGetData( k, "temperature" ) [%~^kq=|  
                        emiss = AuxDataGetData( k, "emissivity" ) h. ^o)T  
                        If ( temp <> 0 And emiss <> 0 ) Then OL9]*G?F  
                            ProjSolidAngleByPi = GetSurfIncidentPower( k ) gn.Ol/6D  
                            frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) GoD ?KC  
                            irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi [#Fg\2bq_y  
                        End If i~8DSshA  
    jsdBd2Gdc  
                    End If p8>R#9  
    lsFfb'>  
                Next k Z"D W 2k  
    :kN5?t=  
            Next j PG"@A  
     (YrR8  
        Next i f3t. T=S  
        EnableTextPrinting( True ) ~S;!T  
    b0YNac.l  
        'write out file f~*K {7  
        fullfilepath = CurDir() & "\" & fname HamEIL-l.  
        Open fullfilepath For Output As #1 pL)xqKj  
        Print #1, "GRID " & nx & " " & ny >h%\HMKk  
        Print #1, "1e+308" i@6wO?Tv  
        Print #1, pixelx & " " & pixely 9A+M|;O  
        Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 =qX*]  
    ymkR!  
        maxRow = nx - 1 I.9o`Q[8&  
        maxCol = ny - 1 ]#5^&w)'  
        For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) -#%X3F7/w  
                row = "" |*E"G5WZM  
            For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) *%?d\8d  
                row = row & irrad(colNum,rowNum) & " "     ' append column data to row string 9v$qrM`8  
            Next colNum                     ' end loop over columns ns26$bU  
    gVA; `<  
                Print #1, row  0Ve%.k  
    |Ng"C`$oqv  
        Next rowNum                         ' end loop over rows 6ZOAmH fs  
        Close #1 -5xCQJ[  
    <A{y($  
        Print "File written: " & fullfilepath "*bk{)dz}  
        Print "All done!!" B-dlm8gX  
    End Sub IXJ6PpQLv  
    ZOn_dYjC  
    在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: 97S? ;T  
    :A#+=O0\z  
    pg!`SxFD  
    找到Tools工具,点击Open plot files in 3D chart并找到该文件 w%rg\E  
      
    ~v\hIm3=m  
    48k 7/w\  
    打开后,选择二维平面图: RpAiU  
    avy=0Jmj  
    QQ:2987619807
    \n;g2/VjO  
     
    分享到