切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 1189阅读
    • 0回复

    [分享]十字元件热成像分析 [复制链接]

    上一主题 下一主题
    离线infotek
     
    发帖
    5734
    光币
    22822
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2020-11-18
    简介:本文是以十字元件为背景光源,经过一个透镜元件成像探测器上,并显示其热成像图。 >^@~}]L  
    UY\E uA9  
    成像示意图
    wUS w 9xg  
    首先我们建立十字元件命名为Target T}'*Gry  
    `- 9p)@'8k  
    创建方法: H7{kl  
    0o@eE3^  
    面1 : 1q*=4O  
    面型:plane a8y*Jz-E  
    材料:Air p@YbIn  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box b u/GaE~  
    #("E) P  
    8hX /~-H  
    辅助数据: YO.+ 06X  
    首先在第一行输入temperature :300K, ge&!GO  
    emissivity:0.1; .Jc<Gg  
    kbx4I?  
    FCt %of#  
    面2 : 5.U|CL  
    面型:plane =kW7|c5Z  
    材料:Air [Al} GM  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box s%l^zA(  
    [_tBv" z  
    eC$ Jdf  
    位置坐标:绕Z轴旋转90度, MF5o\-&dN  
    F*,RDM'M  
    8SO(pw9  
    辅助数据: ]6?6 k4@  
    K|wB0TiXP  
    首先在第一行输入temperature :300K,emissivity: 0.1; z dUSmb  
    ^r 9  
    {60U6n  
    Target 元件距离坐标原点-161mm; c"S{5xh0&  
    z~RE}k  
    u'"]{.K>fb  
    单透镜参数设定:F=100, bend=0, 位置位于坐标原点 Sk%*Zo{|  
    mq oB]H,  
    ]9$^=z%SE  
    探测器参数设定: ![aa@nOSa  
    ee .,D  
    在菜单栏中选择Create/Element Primitive /plane yo!Y%9  
    (Ujry =f  
    2X@"#wIg  
    l !:kwF  
    9wP,Z"  
    %.  W56  
    元件半径为20mm*20,mm,距离坐标原点200mm。 "<yJ<lS&>  
    o6)U\z  
    光源创建: `z<I<  
    IOOK[g.?h  
    光源类型选择为任意平面,光源半角设定为15度。 (A\\s$fE/1  
    I@:"Qee  
    wg]VG,  
    我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 -s9()K(vZG  
    P$*9Z@  
    我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线 |?4NlB6  
    2[g kDZ  
    V3q [ $~9  
    功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 "43F.!P  
    YU/?AQg  
    创建分析面: c[a^fu!  
    0n*D](/NK  
    >1RL5_US  
    到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 Cm;M; ?  
    @z>DJ>htN  
    '+7"dHLC;  
    到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 h}4yz96WD  
    -9(pOwN |m  
    FRED在探测器上穿过多个像素点迭代来创建热图 D 3Tqk^5  
    bL/DjsZ@  
    FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 r*9*xZ>8u  
    将如下的代码放置在树形文件夹 Embedded Scripts, c/E'GG%Q%  
    C%H?vrR  
    -`UOqjb]3  
    打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 Sg*+!  
    gFl@A}  
    绿色字体为说明文字, h 27f0x9  
    oSIP{lfp2Q  
    '#Language "WWB-COM" d'iSvd.  
    'script for calculating thermal image map o pTH6a  
    'edited rnp 4 november 2005 tXcZl!3x  
    [}yPy))A  
    'declarations \,'4eV  
    Dim op As T_OPERATION 'I$kDM mwh  
    Dim trm As T_TRIMVOLUME o2[$X ONTl  
    Dim irrad(32,32) As Double 'make consistent with sampling  \>||  
    Dim temp As Double b[<L l%K  
    Dim emiss As Double 5p6/dlN-a  
    Dim fname As String, fullfilepath As String bo1J'pU  
    H3 -?cy  
    'Option Explicit 5zh6l+S[  
    %J Jp/I  
    Sub Main wY ??#pS  
        'USER INPUTS 41P0)o  
        nx = 31 #%w+PL:*O  
        ny = 31 aRElk&M  
        numRays = 1000 4>OS2b`.;  
        minWave = 7    'microns B!&y>Z^$  
        maxWave = 11   'microns {]dG 9  
        sigma = 5.67e-14 'watts/mm^2/deg k^4  ? 8/r=  
        fname = "teapotimage.dat"  P_'{|M<?  
    d2d8,Vg  
        Print "" 8:)[.  
        Print "THERMAL IMAGE CALCULATION" 7r^Cs#b+I  
    ^$}O?y7O  
        detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 TGU7o:2  
    4_ypFuS^  
        Print "found detector array at node " & detnode 'n>44_7L  
    mZc;n.$U  
        srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 g],]l'7H  
    ~5h4 Gy)  
        Print "found differential detector area at node " & srcnode F(zCvT   
    w\ 0vP  
        GetTrimVolume detnode, trm (+;D~iN`k  
        detx = trm.xSemiApe s,f2[6\Y  
        dety = trm.ySemiApe \!30t1EZ  
        area = 4 * detx * dety D\+x/r?-I  
        Print "detector array semiaperture dimensions are " & detx & " by " & dety ] Ok &%-  
        Print "sampling is " & nx & " by " & ny vea{o 35!  
    gK;dfrU.8Y  
        'reset differential detector area dimensions to be consistent with sampling JP0a Nu  
        pixelx = 2 * detx / nx ULu@"  
        pixely = 2 * dety / ny );AtFP0Y  
        SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False }~=<7|N.  
        Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 A'7Y{oPHX  
    Gey-8  
        'reset the source power PX_9i@ZG  
        SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) :h(3Ep  
        Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" ~Q Q1ZP3  
    ?lgE9I]  
        'zero out irradiance array 4[gbRn'  
        For i = 0 To ny - 1 ^H2TSaJ;  
            For j = 0 To nx - 1 )quQI)Ym  
                irrad(i,j) = 0.0 2]Cn<zJ  
            Next j -6uLww=w4  
        Next i ^GrSvl}v'  
    l{.PyU5)  
        'main loop ~,};FI  
        EnableTextPrinting( False ) .#Z'CZO|  
    #K@!jh)y^  
        ypos =  dety + pixely / 2 bZgo}`o%  
        For i = 0 To ny - 1 lul  
            xpos = -detx - pixelx / 2 ^`dMjeF  
            ypos = ypos - pixely .pe.K3G &  
    m(:R(K(je  
            EnableTextPrinting( True ) eYoc(bG(+  
            Print i ZVJ6 {DS/  
            EnableTextPrinting( False ) SeS ZMv  
    )BI%cD  
    *P7n YjG  
            For j = 0 To nx - 1 *L>usLh  
    ?P9VdS1-  
                xpos = xpos + pixelx J0e^v  
    DwFvM0O6\  
                'shift source G@~e :v)  
                LockOperationUpdates srcnode, True _C1u}1hW#  
                GetOperation srcnode, 1, op ^-s7>F`jx  
                op.val1 = xpos &WAU[{4W  
                op.val2 = ypos U v>^ Z2  
                SetOperation srcnode, 1, op rGt]YG#C  
                LockOperationUpdates srcnode, False ZJGIib  
    bzZdj6>kX  
                'raytrace #z.\pd  
                DeleteRays Gv8Z  
                CreateSource srcnode {i3x\|  
                TraceExisting 'draw hZUS#75M5  
    l,A\]QDvl  
                'radiometry b+ZaZ\-y |  
                For k = 0 To GetEntityCount()-1 3)&rj 7  
                    If IsSurface( k ) Then rc%*g3ryLG  
                        temp = AuxDataGetData( k, "temperature" ) T}XJFV  
                        emiss = AuxDataGetData( k, "emissivity" ) r[kHVT8  
                        If ( temp <> 0 And emiss <> 0 ) Then Sqmjf@o$>  
                            ProjSolidAngleByPi = GetSurfIncidentPower( k ) +U<Ae^V  
                            frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) DX3jE p2  
                            irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi MfLus40;n  
                        End If R~TG5^(  
    rvnm*e,  
                    End If >2mY%  
    (lit^v,9  
                Next k R5uz<  
    5/m*Lc+r  
            Next j T%}x%9VO7  
    ,<OS: ]  
        Next i N;m62N  
        EnableTextPrinting( True ) ^MT20pL  
    .:;q8FL/  
        'write out file &\/}.rF  
        fullfilepath = CurDir() & "\" & fname hE2{m{^A  
        Open fullfilepath For Output As #1 ]Qx-f* D6  
        Print #1, "GRID " & nx & " " & ny )5;|mV  
        Print #1, "1e+308" S|@ Y !  
        Print #1, pixelx & " " & pixely dwzk+@]8  
        Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 Uf[Gs/!NV  
    L#IY6t  
        maxRow = nx - 1 aO\@5i_r  
        maxCol = ny - 1 ><6g-+*k  
        For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) ,?GAFg K:  
                row = "" ,}Ic($ To  
            For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) VN@ZYSs  
                row = row & irrad(colNum,rowNum) & " "     ' append column data to row string rIH+X2 x  
            Next colNum                     ' end loop over columns %o0.8qVJi  
    OPKmYzf@b  
                Print #1, row gBd~:ZUa  
    9>5]y}.{  
        Next rowNum                         ' end loop over rows GlXzH1wZ  
        Close #1 MS%h`Ypo  
    UFa00t^5  
        Print "File written: " & fullfilepath R&}{_1dj8  
        Print "All done!!" n 8e}8.Bu  
    End Sub Yg`z4 U'6~  
    b@[5xv\J  
    在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: Nx(y_.I{K  
    MWc{7,  
    @/?$ZX/e[  
    找到Tools工具,点击Open plot files in 3D chart并找到该文件 0`e- ;  
      
    aw0xi,Jz  
    zB{be_Tw  
    打开后,选择二维平面图: {D&:^f  
    %G~%:uJ5  
    QQ:2987619807
    en gh3TZC  
     
    分享到