切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 1401阅读
    • 0回复

    [分享]十字元件热成像分析 [复制链接]

    上一主题 下一主题
    离线infotek
     
    发帖
    6401
    光币
    26150
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-11-18
    简介:本文是以十字元件为背景光源,经过一个透镜元件成像探测器上,并显示其热成像图。 3iIURSG@  
    PX- PVW  
    成像示意图
    cC*H.N  
    首先我们建立十字元件命名为Target 7>V*gV?v  
    H?_wsh4J  
    创建方法: i+Lqj  
    Xqy9D ZIn  
    面1 : gX|We}H  
    面型:plane Y 8n*o3jM  
    材料:Air $(]E$ek  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box 5{xK&[wR*  
     y 2C Jk~  
    hLr\;Swyp  
    辅助数据: sOO_J!bblP  
    首先在第一行输入temperature :300K, {O6yJckH  
    emissivity:0.1; Ys0N+  
    K|Xr~\=  
    OWc~=Cr  
    面2 : [Y4Wm?  
    面型:plane ?="?)t[  
    材料:Air W)<t7q+  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box (h|E@gRa  
    [(2XL"4D  
    @\WeI"^F8  
    位置坐标:绕Z轴旋转90度, 9$L2 a  
    BS=~G+/:|  
    K: |-s4=  
    辅助数据: Gl%N}8Cim  
    d2?#&d'aq  
    首先在第一行输入temperature :300K,emissivity: 0.1; bao"iv~z  
    z?@N+||,.  
    F_Gc_eT  
    Target 元件距离坐标原点-161mm; qP$)V3l  
    '5(T0Ws/w  
    ^fQa whub  
    单透镜参数设定:F=100, bend=0, 位置位于坐标原点 ^'n;W<\p)  
    %NDr5E^cc  
    IgN^~ag`  
    探测器参数设定: =6 3tp 9  
    &x\cEI)!  
    在菜单栏中选择Create/Element Primitive /plane )nGH$Mu  
    YkbuyUui  
    26;Gt8  
    nkzH}F=<  
    '6cXCO-_P  
    6!se,SCvw  
    元件半径为20mm*20,mm,距离坐标原点200mm。 X}wo$t  
    \ B'AXv 6  
    光源创建: RT(ejkLZm  
    m8V}E& 6  
    光源类型选择为任意平面,光源半角设定为15度。 |\>Ifv%{  
    4Y{;%;-i  
    dQz#&&s-  
    我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 IL1iTR H  
    LLKYcy  
    我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线 _'4S1  
    K $WMrp  
    (I#mo2  
    功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 *I[tIO\  
    G+2 ,x0(  
    创建分析面: ROXa/  
    ?E<9H/  
    ^wD`sj<Qg  
    到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 Z6-ZAS(>m  
    0gG r/78   
    Ss0I{0  
    到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 5,4m_fBoW  
    CvR-lKV<  
    FRED在探测器上穿过多个像素点迭代来创建热图 }KO <II  
    ,"F0#5  
    FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 w IP4Z^  
    将如下的代码放置在树形文件夹 Embedded Scripts, {5fL!`6w  
    DN iH" 0%  
    D&@Iuo  
    打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 mlPvF%Ba  
    zkiwFEHA=  
    绿色字体为说明文字, Abi(1nXdQ  
    _''un3eCY  
    '#Language "WWB-COM" "LSzF_mK  
    'script for calculating thermal image map =ZO lE|4  
    'edited rnp 4 november 2005 ~ivOSr7s}  
    CB X}_]9X  
    'declarations vt n T   
    Dim op As T_OPERATION o@7U4#E  
    Dim trm As T_TRIMVOLUME 0OQ*V~>f  
    Dim irrad(32,32) As Double 'make consistent with sampling n @,.  
    Dim temp As Double d WY{x47  
    Dim emiss As Double 3Fxr=  
    Dim fname As String, fullfilepath As String u:f.;?  
    $7ix(WL<%  
    'Option Explicit }'faf{W  
    nt+OaXe5D  
    Sub Main i(OeE"YA  
        'USER INPUTS oam;hmw  
        nx = 31 qGX#(,E9;  
        ny = 31 $PI9vyS  
        numRays = 1000 2gZ nrU  
        minWave = 7    'microns gWoUE7.3`  
        maxWave = 11   'microns OScqf]H  
        sigma = 5.67e-14 'watts/mm^2/deg k^4 .ANR|G  
        fname = "teapotimage.dat" !%D';wQ,/  
    "<{|ni}  
        Print "" rmo\UCD  
        Print "THERMAL IMAGE CALCULATION" 15q^&l[Q  
    jd,i=P%  
        detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 ZHa>8x;Mjl  
    Wy*+8~@A  
        Print "found detector array at node " & detnode | oK9o6m4  
    ,lStT+A  
        srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 > <Zu+HX  
    uo J0wG.  
        Print "found differential detector area at node " & srcnode k].swvIi  
    aidQ,(PDj  
        GetTrimVolume detnode, trm wpN3-D  
        detx = trm.xSemiApe RRB=JP{r  
        dety = trm.ySemiApe 1^2Q`~,g  
        area = 4 * detx * dety lgS7;  
        Print "detector array semiaperture dimensions are " & detx & " by " & dety i>]PW|]  
        Print "sampling is " & nx & " by " & ny * Ogf6  
    gBi3^GxjM?  
        'reset differential detector area dimensions to be consistent with sampling mJ=V <_  
        pixelx = 2 * detx / nx HKJBR)T  
        pixely = 2 * dety / ny y`j=(|DV  
        SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False -4sKB>b  
        Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 rhy-o?  
    DU$#tg}{  
        'reset the source power $Seh4  
        SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) -{k8^o7$  
        Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" JO0o@M5H  
    TH'8^wf  
        'zero out irradiance array bT&{8a  
        For i = 0 To ny - 1 Q}OloA(+  
            For j = 0 To nx - 1 .=TXi<8Brw  
                irrad(i,j) = 0.0 BZHoRd{EH  
            Next j \U]K!K=  
        Next i @$n $f  
    kx?Yin8K  
        'main loop kj[box N  
        EnableTextPrinting( False ) 0bM_EC  
    iiMS3ueF  
        ypos =  dety + pixely / 2 ^@O 7d1&y  
        For i = 0 To ny - 1 {yWL|:#K  
            xpos = -detx - pixelx / 2 G^#>HE|  
            ypos = ypos - pixely HXSryjF?  
    hN6wp_  
            EnableTextPrinting( True ) l^nvwm`f#:  
            Print i #gO[di0WhC  
            EnableTextPrinting( False ) k|?[EWIi^  
    T+&fUhSy  
    m2jts(stp  
            For j = 0 To nx - 1 a-Y6ghs  
    U364'O8_  
                xpos = xpos + pixelx xZ P SUEG  
    J ( d[05x0  
                'shift source }7 +%k/  
                LockOperationUpdates srcnode, True r8:"\%"f>  
                GetOperation srcnode, 1, op 1Ub=RyB  
                op.val1 = xpos aH?Ygzw  
                op.val2 = ypos qi7C.w;  
                SetOperation srcnode, 1, op '(3 QyCD  
                LockOperationUpdates srcnode, False eG!ma`v  
    } SW p~3P  
                'raytrace 452kE@=49  
                DeleteRays r^}0 qO,XM  
                CreateSource srcnode %p )"_q!ge  
                TraceExisting 'draw H Eq{TUTr  
    j67ppt  
                'radiometry p03I&d@w>  
                For k = 0 To GetEntityCount()-1 = NZgbl  
                    If IsSurface( k ) Then V&:x+swt  
                        temp = AuxDataGetData( k, "temperature" ) t e-xhJ&K  
                        emiss = AuxDataGetData( k, "emissivity" ) MWA,3I\.  
                        If ( temp <> 0 And emiss <> 0 ) Then %K|f,w=m  
                            ProjSolidAngleByPi = GetSurfIncidentPower( k ) 3`%E;?2  
                            frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) /\-}-"dm  
                            irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi ajk}&`Wj"  
                        End If h>D;QY  
    n'V{  
                    End If Slg *[r#  
    JS^DyBXc  
                Next k <hCO-r#  
    ?[zw5fUDS  
            Next j *{#C;"  
    Y?J/KW3  
        Next i GJcxqgk$  
        EnableTextPrinting( True ) 1m"WrTen  
    rIcgf1v70  
        'write out file T^|k`  
        fullfilepath = CurDir() & "\" & fname eZ(ThA*2=t  
        Open fullfilepath For Output As #1 Dh2Cj-| ~  
        Print #1, "GRID " & nx & " " & ny .(q'7Q Z/  
        Print #1, "1e+308" (Q=o 9o:b  
        Print #1, pixelx & " " & pixely  FNH)wk  
        Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 iZy>V$Aq  
    8bdO-LJ9  
        maxRow = nx - 1 Jk>vn+q8P^  
        maxCol = ny - 1 5s3QN{h8  
        For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) _-y1>{]H  
                row = "" 2H.g!( Oza  
            For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) Q&r. wV|  
                row = row & irrad(colNum,rowNum) & " "     ' append column data to row string ]-X6Cl  
            Next colNum                     ' end loop over columns D tZ?sG  
    gjG SI'M0B  
                Print #1, row GxD`M2  
    KF+r25uy[+  
        Next rowNum                         ' end loop over rows WyatHC   
        Close #1 %50)?J=zB  
    r+C4<-dT  
        Print "File written: " & fullfilepath XyN " Jr  
        Print "All done!!" 7ihcjyXB  
    End Sub 3JQ7Cc>  
    @ !su7  
    在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: Wjl2S+Cc  
    9!X3Cv|+L  
    H%Gz"  
    找到Tools工具,点击Open plot files in 3D chart并找到该文件 G$TO'Ciu:  
      
    Z[*unIk  
    p2 1|  
    打开后,选择二维平面图: ugTsI~aE  
    8]`#ax 5  
    QQ:2987619807
    \OkZ\!<hg  
     
    分享到