切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 1253阅读
    • 0回复

    [分享]十字元件热成像分析 [复制链接]

    上一主题 下一主题
    离线infotek
     
    发帖
    5987
    光币
    24088
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-11-18
    简介:本文是以十字元件为背景光源,经过一个透镜元件成像探测器上,并显示其热成像图。 GDHK.?GY  
    97(Xu=tX  
    成像示意图
    c/<Sa|'  
    首先我们建立十字元件命名为Target so!w!O@@  
    wc7mJxJxA  
    创建方法: b46[fa   
    W,HH *!  
    面1 : lh\ICN\O  
    面型:plane ':4}O#  
    材料:Air r=~WMDCz@  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box @K$VV^wp  
    4d^ \l!  
    =My}{n[  
    辅助数据: :DdBn.  
    首先在第一行输入temperature :300K, AV:Xg4UJv  
    emissivity:0.1; M5GY>3P$c  
    K\{b!Cfr^  
    \7Gg2;TA6o  
    面2 : .M9d*qp`S  
    面型:plane w4e%-Ln  
    材料:Air 7P<r`,~k-  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box [G{rHSK5tQ  
    M.ZEqV+k  
    {OB-J\7Y  
    位置坐标:绕Z轴旋转90度, Em e'Gk  
    1Pk mg%+  
    4S,.R  
    辅助数据: r]A" Og_U  
    lLuID  
    首先在第一行输入temperature :300K,emissivity: 0.1; uY^v"cw/F  
    xS6(K  
    \Fj5v$J-  
    Target 元件距离坐标原点-161mm; "?apgx 6  
    9=t#5J#O  
    <^lJr82  
    单透镜参数设定:F=100, bend=0, 位置位于坐标原点 %55@3)V8Rf  
    9$7&URwSDI  
    &w+;N5}3  
    探测器参数设定: -1qZqU$h  
    fCgBH~w,9  
    在菜单栏中选择Create/Element Primitive /plane ry.;u*F  
    *#3*;dya]  
    C=fsJ=a5;  
    9 YP*f  
    `J72+RA  
    iM:yX=>a  
    元件半径为20mm*20,mm,距离坐标原点200mm。 F-_%>KJS  
    =%!e(N'p  
    光源创建: MaZM%W8Z  
    7OB%A&  
    光源类型选择为任意平面,光源半角设定为15度。 q5Fs)B  
    bf& }8I$  
    (2UW_l  
    我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 "mP&8y 9F  
    _|N}4a  
    我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线 /:bKqAz;M  
    z5x _fAT(  
    KX!i\NHz  
    功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 l^.K'Q1~a  
    P Q7A~dw9  
    创建分析面: j5PL{6  
    m23+kj)+VY  
    |+>uA[6#  
    到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 ))!Bg?t-  
    N;uUx#z  
    KkEv#2n  
    到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 dd]?9  
    7_-w_"X  
    FRED在探测器上穿过多个像素点迭代来创建热图 a Sf/4\  
    OB(pIzSe  
    FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 U#bl=%bF  
    将如下的代码放置在树形文件夹 Embedded Scripts, ][,4,?T7  
    f\fdg].!  
    Frk cO  
    打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 ~4Pc_%&i  
    #/|75 4]]  
    绿色字体为说明文字, J1bA2+5.*e  
    qD#VbvRc9+  
    '#Language "WWB-COM" Y$g}XN*)E  
    'script for calculating thermal image map f|U0s  
    'edited rnp 4 november 2005 ,|+Gls  
    =+Im*mgNn  
    'declarations h4/X 0@l`  
    Dim op As T_OPERATION mLwoi!]m  
    Dim trm As T_TRIMVOLUME Wqra8u#  
    Dim irrad(32,32) As Double 'make consistent with sampling D==Mb~  
    Dim temp As Double .x!T+`l>8I  
    Dim emiss As Double H6gU?9%  
    Dim fname As String, fullfilepath As String I^D0<lHl~  
    RsW9:*R  
    'Option Explicit YzAFC11,  
    'Hw4j:pS  
    Sub Main Q.+|xwz  
        'USER INPUTS m#f{]+6U  
        nx = 31 - hzjV|  
        ny = 31 &-%X:~|:X  
        numRays = 1000 4,G w#@  
        minWave = 7    'microns Tv5g`/e=Ej  
        maxWave = 11   'microns Tr& }$kird  
        sigma = 5.67e-14 'watts/mm^2/deg k^4 X<]qU3k5  
        fname = "teapotimage.dat" M"{uX  
    oE?QnH3R  
        Print "" EVt? C+  
        Print "THERMAL IMAGE CALCULATION" |%1?3Mpn  
    Ri#H.T<'  
        detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 BByCM Y  
    N8v'70  
        Print "found detector array at node " & detnode Ue*C>F   
    |Ps% M|8~  
        srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 $Z?\>K0i  
    @*MC/fe  
        Print "found differential detector area at node " & srcnode W2Luz;(U  
    15{Y9!  
        GetTrimVolume detnode, trm :!fG; )=  
        detx = trm.xSemiApe 5Y\!pf7SQ|  
        dety = trm.ySemiApe Xl_Uz8Hp  
        area = 4 * detx * dety ,e`'4H  
        Print "detector array semiaperture dimensions are " & detx & " by " & dety TZRcd~5$  
        Print "sampling is " & nx & " by " & ny C`V)VJM  
    ,RxYd6  
        'reset differential detector area dimensions to be consistent with sampling }P9Ap3?  
        pixelx = 2 * detx / nx `zpbnxOL$T  
        pixely = 2 * dety / ny ]"~51HQZ  
        SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False 8FkFM^\1L  
        Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 @kFu*"  
    hWo=;#B*  
        'reset the source power B*1W`f  
        SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) >TjJA #  
        Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" B[5r|d'  
    ;AJTytE>%  
        'zero out irradiance array 7=XL!:P  
        For i = 0 To ny - 1 %XTcP2pRJ  
            For j = 0 To nx - 1 E7zm{BX]  
                irrad(i,j) = 0.0 WO</Mw  
            Next j 3WY$WRv  
        Next i aqU' T  
    zsXoBD\h  
        'main loop v"^~&q0x  
        EnableTextPrinting( False ) J;$N{"M  
    r\`+R"  
        ypos =  dety + pixely / 2 1w(JEqY3h:  
        For i = 0 To ny - 1 P u0uKE  
            xpos = -detx - pixelx / 2 }!>=|1 fY  
            ypos = ypos - pixely !T,AdNa8  
    nqVZqX@oE  
            EnableTextPrinting( True ) c`*TPqw(B[  
            Print i Q,h7Sk*  
            EnableTextPrinting( False ) D4JLtB'=  
    f.B>&%JRZ  
    ra N)8w}-  
            For j = 0 To nx - 1 US [dkbKo  
    -62'}%?A<C  
                xpos = xpos + pixelx %ir:AS k  
    YW \0k5[  
                'shift source X[gn+6WB%  
                LockOperationUpdates srcnode, True 6x)$Dl  
                GetOperation srcnode, 1, op J[~5U~F  
                op.val1 = xpos R9rj/Co  
                op.val2 = ypos !QI\Fz?  
                SetOperation srcnode, 1, op %M|,b!eF  
                LockOperationUpdates srcnode, False Em 6Qe  
    KOz(TZ?u  
                'raytrace !HeSOzN  
                DeleteRays "1`Oh<={b  
                CreateSource srcnode >gwz,{  
                TraceExisting 'draw dC\ZjZZ  
    9+s.w25R  
                'radiometry 73#x|lY  
                For k = 0 To GetEntityCount()-1 E{^XlY  
                    If IsSurface( k ) Then W!!S!JF  
                        temp = AuxDataGetData( k, "temperature" ) 5 < wnva  
                        emiss = AuxDataGetData( k, "emissivity" ) bwM@/g%DL  
                        If ( temp <> 0 And emiss <> 0 ) Then dz [!-M  
                            ProjSolidAngleByPi = GetSurfIncidentPower( k ) OA/WtQ5  
                            frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) ~=<}\a~  
                            irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi l {jmlT  
                        End If R" )bDy?  
    2&c9q5.b  
                    End If uXDq~`S  
    ]lw|pvtd  
                Next k Z[\ O=1E,  
    Hn>B!Bm*  
            Next j kF;D BN  
    m-^ 8W[r+_  
        Next i K{b(J Nd  
        EnableTextPrinting( True ) :ISMPe3'  
    R8rfM?"W  
        'write out file cLPkK3O\=  
        fullfilepath = CurDir() & "\" & fname t5)+&I2  
        Open fullfilepath For Output As #1 oI)GKA_Ng7  
        Print #1, "GRID " & nx & " " & ny Yt|6 X:l  
        Print #1, "1e+308" :1t~[-h^  
        Print #1, pixelx & " " & pixely Q#h 9n]5  
        Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 '>$]{vQ3  
    Y]]}*8  
        maxRow = nx - 1 ]EwVpvTw  
        maxCol = ny - 1 b=~i)`  
        For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) >5s6u`\  
                row = "" H$G0`LP0/a  
            For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) V[-jD8=' 3  
                row = row & irrad(colNum,rowNum) & " "     ' append column data to row string ) ri}nL.  
            Next colNum                     ' end loop over columns VJ ^dY;  
    <mi-}s  
                Print #1, row OHiQ7#y  
    d*)CT?d&  
        Next rowNum                         ' end loop over rows xss`Y,5?  
        Close #1 ^rvx!?zO  
    ,g%&|FAP  
        Print "File written: " & fullfilepath /Uo y/}!  
        Print "All done!!" zC _<(4$-"  
    End Sub }y9mNT  
    T3`ludm^u  
    在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: h?bb/T+'  
    6c^e\0q  
    ~"UV]Udn  
    找到Tools工具,点击Open plot files in 3D chart并找到该文件 &WNf M+  
      
    rQ7+q;[J  
    el:9wq  
    打开后,选择二维平面图: 8]&i-VFof  
    | 9~GM  
    QQ:2987619807
    j"AU z)x  
     
    分享到