切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 1506阅读
    • 0回复

    [分享]十字元件热成像分析 [复制链接]

    上一主题 下一主题
    离线infotek
     
    发帖
    6425
    光币
    26270
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-11-18
    简介:本文是以十字元件为背景光源,经过一个透镜元件成像探测器上,并显示其热成像图。 oifv+oY  
    rZ^v?4Z\  
    成像示意图
    xs:n\N  
    首先我们建立十字元件命名为Target c8>hc V  
    tAte)/0C  
    创建方法: *nsAgGKKM^  
    O1*NzY0Y%-  
    面1 : S.q].a  
    面型:plane _DNHc*  
    材料:Air ux3<l+jv^  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box #x3ujJ  
    `poE6\  
    ?Poq2  
    辅助数据: '07P&g-  
    首先在第一行输入temperature :300K, sWblFvHqrU  
    emissivity:0.1; sZm$|T0  
    pV,P|>YTf  
    E7)= `kSl  
    面2 : FMkzrs  
    面型:plane oK%K}{`  
    材料:Air 09kt[  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box Fa_VKAq  
    jR#~I@q^  
    S"k *6 U  
    位置坐标:绕Z轴旋转90度, *b}lF4O?  
    )V:]g\t  
    3UQ;X**F  
    辅助数据: [[Y0  
    {aC!~qR  
    首先在第一行输入temperature :300K,emissivity: 0.1; Eb>78k(3I)  
    nn9wdt@.]  
    ADk8{L{UU  
    Target 元件距离坐标原点-161mm; 1=a>f "cyf  
    ku a) K!  
    TdGnf   
    单透镜参数设定:F=100, bend=0, 位置位于坐标原点 UaViI/ks  
    \Z/)Y;|mi0  
    _#}n~}d  
    探测器参数设定: F. =Bnw/-  
    9Xo[(h)5d  
    在菜单栏中选择Create/Element Primitive /plane *[R eb %  
    V{&rQ@{W  
    Css l{B  
    N**g]T 0`  
    pOkLb #  
    R$Tp8G>j  
    元件半径为20mm*20,mm,距离坐标原点200mm。 3y~r72J  
    P?]aWJ  
    光源创建: \7 NpT}dj  
    -TOIc%  
    光源类型选择为任意平面,光源半角设定为15度。 ^T,Gu-2>  
    -+em!g'  
    pdEiqLhH  
    我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 fiN3xP]V  
    {E0z@D)U-  
    我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线 0W()lQ   
    ~w;]c_{.b  
    y tf b$;|  
    功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 A &9(mB  
    G>+1*\c  
    创建分析面: vuFBET,  
    3QOUU,Dt$  
    EmT`YNuc  
    到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 y{a$y}7#X  
    *cg( ?yg  
    ?[MsQQd~  
    到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 iIGbHn,/  
    v^7LctcVm  
    FRED在探测器上穿过多个像素点迭代来创建热图 $eBX  
    s{4\xAS>  
    FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 b]JI@=s?  
    将如下的代码放置在树形文件夹 Embedded Scripts, W Qc>  
    LR,7,DH$9'  
    EIf ~dOgH  
    打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 hwDbs[:  
    N9rBW   
    绿色字体为说明文字, Lh-`OmO0>F  
    %,*G[#*&  
    '#Language "WWB-COM" `j9$T:`  
    'script for calculating thermal image map 9r2IuS0  
    'edited rnp 4 november 2005 :p4"IeKs  
    x)_@9ldYv  
    'declarations -sMytHH.  
    Dim op As T_OPERATION iY bX  
    Dim trm As T_TRIMVOLUME @E53JKYhY  
    Dim irrad(32,32) As Double 'make consistent with sampling S-nlr@w8  
    Dim temp As Double ='E$-_  
    Dim emiss As Double =)OC|?9 C\  
    Dim fname As String, fullfilepath As String l#wdpD a{  
    D8# on!  
    'Option Explicit a/uo}[Y  
    %AnW~v  
    Sub Main -)y%~Zn  
        'USER INPUTS D=)f )-u'  
        nx = 31 '?yCq$&  
        ny = 31 H2-28XGc  
        numRays = 1000 S2VVv$r_6  
        minWave = 7    'microns 41 vL"P K  
        maxWave = 11   'microns ehAu^^Q>  
        sigma = 5.67e-14 'watts/mm^2/deg k^4 H_IGFZCh  
        fname = "teapotimage.dat" s Fgadz6O  
    L{ymI) Y^  
        Print "" efuK  
        Print "THERMAL IMAGE CALCULATION" 8S;CFyT\n  
    i(6J>^I  
        detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 &(xUhX T  
    vVs#^"-nW  
        Print "found detector array at node " & detnode 0D(cXzQP  
    !1uzX Kb  
        srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 (a6?s{(  
    b]]N{: I  
        Print "found differential detector area at node " & srcnode C6& ( c  
    7XyOB+aQO  
        GetTrimVolume detnode, trm cUDgM  
        detx = trm.xSemiApe $'[q4wo<  
        dety = trm.ySemiApe ,c)g,J9  
        area = 4 * detx * dety u>Ki$xP1  
        Print "detector array semiaperture dimensions are " & detx & " by " & dety _hCJ|Rrln  
        Print "sampling is " & nx & " by " & ny Ca$c;  
    :a< hQ|p  
        'reset differential detector area dimensions to be consistent with sampling ad`_>lA4Lp  
        pixelx = 2 * detx / nx ^i:\@VA:  
        pixely = 2 * dety / ny r[Zq3  
        SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False 3#<* k>1G?  
        Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 (=T$_-Dj`}  
    xNN@1P[*  
        'reset the source power b5e@oIK  
        SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) Dr"/3xm  
        Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" hPufzhT  
    8 HoP( +?  
        'zero out irradiance array X$wehMBX  
        For i = 0 To ny - 1 |j_`z@7(  
            For j = 0 To nx - 1 $<ddy/4  
                irrad(i,j) = 0.0 ?G/hJ?3  
            Next j E:VGji7s  
        Next i <Ns &b.\h6  
    9[|4[3K  
        'main loop G+Dpma ]  
        EnableTextPrinting( False ) X_70]^XL  
    ,{j4  
        ypos =  dety + pixely / 2 -WT3)On  
        For i = 0 To ny - 1 \OHv|8!EI@  
            xpos = -detx - pixelx / 2 =2oUZjA  
            ypos = ypos - pixely ~|) 9RUXr>  
    #Mi|IwL  
            EnableTextPrinting( True ) EE%s<_k`  
            Print i R^Bk]  
            EnableTextPrinting( False ) If}lJ6jZ  
    ( D}" &2  
    o?!uX|Fy  
            For j = 0 To nx - 1 =FBIrw{w  
    bc}dYK3$q  
                xpos = xpos + pixelx  0:dB 9  
    ?*K<*wBw#  
                'shift source YIDg'a+z  
                LockOperationUpdates srcnode, True &LU'.jY  
                GetOperation srcnode, 1, op (G5xkygR9  
                op.val1 = xpos #O</\|aH)i  
                op.val2 = ypos <-|SIF  
                SetOperation srcnode, 1, op SLA#= K  
                LockOperationUpdates srcnode, False oO:LG%q  
    #S i|!  
                'raytrace #K`B<2+T  
                DeleteRays !Y%D 9  
                CreateSource srcnode xzK>Xi?  
                TraceExisting 'draw z]>9nv`b  
    ^W['A]l  
                'radiometry kukaim>K  
                For k = 0 To GetEntityCount()-1 zH+<bEo=1=  
                    If IsSurface( k ) Then ]7F)bIG[  
                        temp = AuxDataGetData( k, "temperature" ) &HxT41pku  
                        emiss = AuxDataGetData( k, "emissivity" ) _5h0@^m7y  
                        If ( temp <> 0 And emiss <> 0 ) Then l%bq2,-%  
                            ProjSolidAngleByPi = GetSurfIncidentPower( k ) K.h]JD]o  
                            frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) /.-m}0h|W-  
                            irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi ' PL_~  
                        End If /'+4vXc@  
    M+UMR+K  
                    End If w)<4>(D  
    0|Q.U  
                Next k L{K*~B-p  
    Y\>\[*.v  
            Next j 5V rcR=?O  
    di<B~:l58  
        Next i Fc{((x s  
        EnableTextPrinting( True ) D'?]yyrf  
    `]LODgk~  
        'write out file dp< au A  
        fullfilepath = CurDir() & "\" & fname ws().IZ  
        Open fullfilepath For Output As #1 q @*UUj@   
        Print #1, "GRID " & nx & " " & ny )x9]xqoR  
        Print #1, "1e+308" 5 {fwlA  
        Print #1, pixelx & " " & pixely |3|wdzV  
        Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 \y,; Cfl<  
    &X7ttB"#h  
        maxRow = nx - 1 S r[IoF)  
        maxCol = ny - 1 o5V`'[c  
        For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) ^s.oZj q  
                row = "" @6[x%j/!bt  
            For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) (mY(\mu}  
                row = row & irrad(colNum,rowNum) & " "     ' append column data to row string eAU"fu6d  
            Next colNum                     ' end loop over columns C*]AL/  
    c_[ JjG^?P  
                Print #1, row w=gQ3j#s  
    ],$6&Cm  
        Next rowNum                         ' end loop over rows x:vrK#8D>  
        Close #1 (S3jZ  
    mf#fA2[  
        Print "File written: " & fullfilepath #VQ36pCd  
        Print "All done!!" 4KZSL: A  
    End Sub w8U2y/:>  
    r8<JX5zyuo  
    在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: 6WCmp,*  
    i$g|?g~]  
    d[yrNB6|  
    找到Tools工具,点击Open plot files in 3D chart并找到该文件 "{mt?  
      
    }1@n(#|c  
     s"#CkG  
    打开后,选择二维平面图: ?#U0eb5u  
    V_{vZ/0e  
    QQ:2987619807
    ^v#+PyW  
     
    分享到