切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 1431阅读
    • 0回复

    [分享]十字元件热成像分析 [复制链接]

    上一主题 下一主题
    离线infotek
     
    发帖
    6409
    光币
    26190
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-11-18
    简介:本文是以十字元件为背景光源,经过一个透镜元件成像探测器上,并显示其热成像图。 [[T6X9  
    l*hWws[  
    成像示意图
    ?QF xds  
    首先我们建立十字元件命名为Target {9|*au(K  
    |) ~-Wy  
    创建方法: H~JgZ pw  
    e}{#VB<  
    面1 : o<lmU8xB=  
    面型:plane nl(GoX$vRQ  
    材料:Air :Wx7a1.Jz  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box Ms5qQ<0v_  
    q90RTX'CY  
    XgVhb<l_  
    辅助数据: `'iO+/;GY  
    首先在第一行输入temperature :300K, 8dx 7@y?z  
    emissivity:0.1; M]Vi]s  
    O{c#&/.K  
    w2b(,w  
    面2 : Zp[>[1@+  
    面型:plane {7oPDP  
    材料:Air ua=7YG  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box ul_E{v  
    5#|&&$)  
    PtQ[({d3R  
    位置坐标:绕Z轴旋转90度, _\IA[-C+O  
    /,~]1&?}1  
    <%w TI<m,-  
    辅助数据: vCt][WX(  
    ex~"M&^  
    首先在第一行输入temperature :300K,emissivity: 0.1; sF :pwI5^  
    ~~&Bp_9QXN  
    D0bpD  
    Target 元件距离坐标原点-161mm; rIB./,  
    *B@#A4f"  
    ,if~%'9j  
    单透镜参数设定:F=100, bend=0, 位置位于坐标原点 _&gO>G,uy  
    ZR=i*y  
    l{3zlXk3z  
    探测器参数设定: cr0/.Zv)  
    5FB3w48  
    在菜单栏中选择Create/Element Primitive /plane hJ%$Te  
    v0\M$@N[  
    cCZ$TH  
    89 m.,  
    v0&DD&mp  
    EGv]K|  
    元件半径为20mm*20,mm,距离坐标原点200mm。 Y cL((6A  
    .i )K#82  
    光源创建: 8f~*T  
    YsCY~e&  
    光源类型选择为任意平面,光源半角设定为15度。 &'PLOyWw  
    @S~n^v,)  
    {_4Hsw?s6  
    我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 sng6U;Z  
    _(=g[=Mer  
    我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线 ! B`  
    *b{Hj'HaH  
    ,f ?B((l  
    功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 KDP& I J  
    {='wGx  
    创建分析面: .8'uIA{_2  
    %2'4h(Oq^  
    %( %EEt  
    到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 .3XSF$;  
    VJ&-Z |  
    g=v'[JPd  
    到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 uJ1oo| sn  
    9"D t3>Z  
    FRED在探测器上穿过多个像素点迭代来创建热图 .;bU["fn)  
    !p36OEx  
    FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 WT,dTn;W  
    将如下的代码放置在树形文件夹 Embedded Scripts, 71<4q {n  
    3h o'\Ysu/  
    ZX+0{E8a  
    打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 %qrUP\rn  
    h3\(660>$  
    绿色字体为说明文字, n sN n>{  
    S n~P1C  
    '#Language "WWB-COM" \G/ZA) t  
    'script for calculating thermal image map 8<6@O  
    'edited rnp 4 november 2005 $_a/!)bP  
    $K\;sn; |:  
    'declarations I&1.}{G>F  
    Dim op As T_OPERATION IK4(r /  
    Dim trm As T_TRIMVOLUME E.*wNah"U  
    Dim irrad(32,32) As Double 'make consistent with sampling #{)mr [c|  
    Dim temp As Double *r~6R  
    Dim emiss As Double F5UHkv"K&O  
    Dim fname As String, fullfilepath As String 3-0jxx(  
    i3(5 '  
    'Option Explicit `'(@"-L:7  
    U+ D#  
    Sub Main CRzLyiRvU&  
        'USER INPUTS Ms%C:KG  
        nx = 31 PCBV6Y7r  
        ny = 31 "x:-#2+h  
        numRays = 1000 @@!]Raj=  
        minWave = 7    'microns h^{ aG])  
        maxWave = 11   'microns #H8QX5b)  
        sigma = 5.67e-14 'watts/mm^2/deg k^4 iP^[xB~v  
        fname = "teapotimage.dat" 54s90  
    Mp J3*$Dr  
        Print "" #aP;a-Q|k  
        Print "THERMAL IMAGE CALCULATION" rb>2l3g*  
    b!EqYT  
        detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 3)^ 2X  
    %3K'[2F  
        Print "found detector array at node " & detnode m[N&UM#  
    4!M0)Nix  
        srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 K_X(j$2Xc  
    UrS%t>6k  
        Print "found differential detector area at node " & srcnode z`dnS]q9  
    B SEP*#s  
        GetTrimVolume detnode, trm bGj<Dojl  
        detx = trm.xSemiApe tKi ^0vE8  
        dety = trm.ySemiApe #g Rns  
        area = 4 * detx * dety |Y+[_D}  
        Print "detector array semiaperture dimensions are " & detx & " by " & dety EY:EpVin  
        Print "sampling is " & nx & " by " & ny IPY[x|  
    Z= pvoTY  
        'reset differential detector area dimensions to be consistent with sampling Ao9|t;i  
        pixelx = 2 * detx / nx gX5.u9%C\  
        pixely = 2 * dety / ny K}LF ${bS  
        SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False M!PK3  
        Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 Ei@al>.\  
    qyBo|AQ5  
        'reset the source power ~~,#<g[  
        SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) -K5u5l}  
        Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" .m%ygoO  
    j6rwlwN  
        'zero out irradiance array \AD|;tA\vE  
        For i = 0 To ny - 1 lI[O!Vu Kc  
            For j = 0 To nx - 1 $! UEpQ  
                irrad(i,j) = 0.0 `~qVo4V6Z  
            Next j rAu@`H?  
        Next i Hn?v  /3  
    &!8u4*K5j  
        'main loop =XUt?5  
        EnableTextPrinting( False ) QnH~' k  
    qd [Z\B  
        ypos =  dety + pixely / 2 rf2-owWN  
        For i = 0 To ny - 1 #X<s_.7DJ  
            xpos = -detx - pixelx / 2 k8ymOx  
            ypos = ypos - pixely l]P3oB}Yo  
    pH.&OW%  
            EnableTextPrinting( True ) h{VGh kU9f  
            Print i Snas:#B!  
            EnableTextPrinting( False ) Y &*nj`n  
    5'"9)#Ve  
    y]%Io]!d  
            For j = 0 To nx - 1 % wh>_Ho  
    E njSio0  
                xpos = xpos + pixelx sHMZ'9b  
    d ?OsVT; U  
                'shift source &qeM YYY  
                LockOperationUpdates srcnode, True 6\/(TW&  
                GetOperation srcnode, 1, op U\tujK1  
                op.val1 = xpos nx`I9j\  
                op.val2 = ypos j1P#({z[  
                SetOperation srcnode, 1, op :]IY w!_-p  
                LockOperationUpdates srcnode, False JVNp= ikK  
    >z69r0)>  
                'raytrace 8>V)SAI'  
                DeleteRays Hz3KoO &  
                CreateSource srcnode j}@n`[V1  
                TraceExisting 'draw Z;GZ?NOlY  
    5 ]@"f/  
                'radiometry l=t$ XWh!  
                For k = 0 To GetEntityCount()-1 ]s:%joj%^  
                    If IsSurface( k ) Then gLPgh%B4  
                        temp = AuxDataGetData( k, "temperature" ) !5[5l!{x  
                        emiss = AuxDataGetData( k, "emissivity" ) 8 gzf$Oc  
                        If ( temp <> 0 And emiss <> 0 ) Then 2t"&>1  
                            ProjSolidAngleByPi = GetSurfIncidentPower( k ) *`wgqin  
                            frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) VpmD1YSn  
                            irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi i;}mIsNBY  
                        End If \TXCq@  
    #x5?RHX56  
                    End If qCgoB 0  
    97L# 3L6t  
                Next k p v*n.U6  
    H~r":A'"*  
            Next j "iTi+UZxe  
    JQ]A"xTIa*  
        Next i :Z5Twb3h  
        EnableTextPrinting( True ) Q !G^CG  
    YhNO{4D  
        'write out file @a}jnl(2  
        fullfilepath = CurDir() & "\" & fname l|&DI]gw  
        Open fullfilepath For Output As #1 K';x2ffj  
        Print #1, "GRID " & nx & " " & ny z;ko )  
        Print #1, "1e+308" h1.<\GO  
        Print #1, pixelx & " " & pixely /p_#8}Uh  
        Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 z1 P=P%F  
    80;^]l   
        maxRow = nx - 1 H|*Ual  
        maxCol = ny - 1 ,$<="kJk  
        For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) (S1Co&SX  
                row = "" 6E@qZvQ  
            For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) }:a:E~5y  
                row = row & irrad(colNum,rowNum) & " "     ' append column data to row string N.@@ebuE  
            Next colNum                     ' end loop over columns <m X EX`?  
    rGb<7b%  
                Print #1, row B(h%>mT[  
    .7|Iausv  
        Next rowNum                         ' end loop over rows s'JbG&T[J  
        Close #1 wPrqFpf  
    UCVdR<<Z  
        Print "File written: " & fullfilepath s'Wu \r'  
        Print "All done!!" o6T'U#7P  
    End Sub 3r-oZ8/n  
    UY$Lqe~  
    在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: U/l3C(bc!  
    lLi)?  
    KoKd.%  
    找到Tools工具,点击Open plot files in 3D chart并找到该文件 Iu|4QE  
      
    $Cx?%X^b  
    FEwPLViso  
    打开后,选择二维平面图: {YigB  
    / U5!]7&gB  
    QQ:2987619807
    B EB[K2[9  
     
    分享到