-
UID:317649
-
- 注册时间2020-06-19
- 最后登录2025-11-19
- 在线时间1888小时
-
-
访问TA的空间加好友用道具
|
简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 N3?d?+A$ jyC6:BNust 成像示意图 cBA[D~s 首先我们建立十字元件命名为Target D%A-& = H~@h
#6 创建方法: }u&JX =VU2# O 面1 : EAfSbK3z 面型:plane 7'I7 材料:Air B/71$i 孔径:X=1.5, Y=6,Z=0.075,形状选择Box 6i4j(P :o:??tqw 4L0LT>'M\ 辅助数据: +D@R'$N 首先在第一行输入temperature :300K, G$j8I~E@ emissivity:0.1; .DQ]q o]OG x#^kv) ka*UyW} 面2 : QKO(8D 6+ 面型:plane 6PH*]#PfoD 材料:Air N_<n$3P\?f 孔径:X=1.5, Y=6,Z=0.075,形状选择Box liTr3T`,V B_S3}g<~ erqB/ C 位置坐标:绕Z轴旋转90度, Ua]zTMI UXP;' cMv3` $ 辅助数据: KkY22_{ac pr"flRQr# 首先在第一行输入temperature :300K,emissivity: 0.1; 1<83MO; $W]bw#NH CmTJa5: Target 元件距离坐标原点-161mm; ,b4&$W]. {aSq3C<r S6mmk&n 单透镜参数设定:F=100, bend=0, 位置位于坐标原点 tTgW^&B #vSI_rt9I N[-)c,O 探测器参数设定: zYL^e @ 4Z] 35* 在菜单栏中选择Create/Element Primitive /plane zCrcCr {@A2jk\ O^#u%/ @jHio\/_ pB./L&h yKJ^hv"# 元件半径为20mm*20,mm,距离坐标原点200mm。 B^9 #X5! 7 SZR#L 光源创建: ;j=1 oW BpT&vbY 光源类型选择为任意平面,光源半角设定为15度。 _HsvF[\[ bed+Ur& '_)tR;s 我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 @Hh"Y1B In&vh9Lw 我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 7W"menw bSLj-vp 6K}=K?3Z 功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 }3 }=tN5 &/9oi_r%r 创建分析面: Kdm5O@tq 3)Y:c2 5ov%(QI 到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 <Tf;p8# @_3$(*n$~ lQ"i]};<D 到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 DlI5} Jh Vm.@qO*= FRED在探测器上穿过多个像素点迭代来创建热图 "[yiNJ"kt T*yveo&j FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 [<QWTMjR 将如下的代码放置在树形文件夹 Embedded Scripts, GwBQ
pNjy MVZ>:G9: S!_?# ^t 打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 K5&C}Ey1 VKz<7K\/ 绿色字体为说明文字, #LJ-IDuF! VWt'Kx" '#Language "WWB-COM" BtChG] N| 'script for calculating thermal image map M7,MxwZ0k 'edited rnp 4 november 2005 <>_WdAOuD gH3kX<e 'declarations 1o>R\g3 Dim op As T_OPERATION i&)C, Dim trm As T_TRIMVOLUME PDng!IQ^ Dim irrad(32,32) As Double 'make consistent with sampling 79H+~1Az Dim temp As Double :'~ gLW>j Dim emiss As Double VAGMI+ - Dim fname As String, fullfilepath As String ZnLk :6' X:&p9_O@ 'Option Explicit ]bb}[#AY 3ohcHQ/a Sub Main yuEOQ\!(u 'USER INPUTS shIi,!bZ nx = 31 pVS2dwBqE ny = 31 K- C-+RB numRays = 1000
}TJ|d= minWave = 7 'microns 5C1Rub) maxWave = 11 'microns L]N2rMM sigma = 5.67e-14 'watts/mm^2/deg k^4 8p{ fname = "teapotimage.dat" #l# [\6 /? 1Yf Print "" jMui+G(h Print "THERMAL IMAGE CALCULATION" &xroms"S= 9Pk3}f)a detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 5dw@g4N %^ ZM`P~N1?)g Print "found detector array at node " & detnode I A#*T` +WN>9V0H srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 ~PW}sN6ppG 7u5\#|yL Print "found differential detector area at node " & srcnode KGmc*Jwy 5|G3t`$pa GetTrimVolume detnode, trm nvo1+W(% detx = trm.xSemiApe #r)1<}_e# dety = trm.ySemiApe gzCMJ<3!D area = 4 * detx * dety "4uUI_E9F; Print "detector array semiaperture dimensions are " & detx & " by " & dety MI'l4<>u Print "sampling is " & nx & " by " & ny p6Dv;@)Yn qbq<O %g= 'reset differential detector area dimensions to be consistent with sampling uf'P9MA}> pixelx = 2 * detx / nx [j]J_S9jJ pixely = 2 * dety / ny i z>y u[| SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False y{Y+2}Dv/ Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 J:Y|O-S! .4re0:V 'reset the source power \*!%YTZ~ SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) iSz@E&[X Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" W$Q)aA7 &xuwke:[ 'zero out irradiance array xT?} wF For i = 0 To ny - 1 |;u%JW$4 For j = 0 To nx - 1 A='+tJa irrad(i,j) = 0.0 ->2wrOH|H Next j (<R\ Next i W;oU +z^t$ dFP-(dX# 'main loop *tfDXQ^mN EnableTextPrinting( False ) hf+/kc!>i l&??2VO/t ypos = dety + pixely / 2 tZu*Asx7 For i = 0 To ny - 1 e(=~K@m xpos = -detx - pixelx / 2 JlDDM
% ypos = ypos - pixely ?WQd eIUuq&( EnableTextPrinting( True ) *- IlF] Print i "ex~LB EnableTextPrinting( False ) M`+e'vdw r5!x,{E6 7hF,gl5 For j = 0 To nx - 1 0I>?_?~l6 Fwx~ ~"I xpos = xpos + pixelx 2VV[*QI HEB/\ 'shift source (\mulj LockOperationUpdates srcnode, True Ih-3t*L GetOperation srcnode, 1, op 2^^'t 6@ op.val1 = xpos j`|^s}8t op.val2 = ypos q?Ku}eID3 SetOperation srcnode, 1, op 2Z;`#{ LockOperationUpdates srcnode, False *0&4mi8 h%1~v$W` 'raytrace ]o[X+;Tj| DeleteRays v(Bp1~PPZM CreateSource srcnode [Zt#
c C+ TraceExisting 'draw "wF
?Hamz PJK]t7vp 'radiometry <nw<v9Z For k = 0 To GetEntityCount()-1 Q@e*$<3 If IsSurface( k ) Then .YjrV+om1 temp = AuxDataGetData( k, "temperature" ) WpJD=C% emiss = AuxDataGetData( k, "emissivity" ) RQo$iISwy If ( temp <> 0 And emiss <> 0 ) Then YV1a3 ProjSolidAngleByPi = GetSurfIncidentPower( k ) iz9\D*or frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) OC?Zw@ irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi Sqdc1zC End If VA=#0w +U+aWk End If LZUA+ x( q?;*g@t Next k Y/^[qD i?a,^UM5n[ Next j sP6 ):h %$ir a\
sM Next i 6^]`-4*W EnableTextPrinting( True ) 192 .W+H< nIV.9#~& 'write out file Tsm1C#6 Y* fullfilepath = CurDir() & "\" & fname YeRcf` Open fullfilepath For Output As #1 e0v9uQ%F5 Print #1, "GRID " & nx & " " & ny `jb0+{08 Print #1, "1e+308" u\()E|?p Print #1, pixelx & " " & pixely &Rt+LN0qB0 Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 6K4`; C(F1VS maxRow = nx - 1 FX|0R#4vm maxCol = ny - 1 P[rAJJN/E For rowNum = 0 To maxRow ' begin loop over rows (constant X) VD9
q5tt7 row = "" CdBthOPX) For colNum = maxCol To 0 Step -1 ' begin loop over columns (constant Y) 00`bL row = row & irrad(colNum,rowNum) & " " ' append column data to row string rPiiC/T.` Next colNum ' end loop over columns ``(}4a < -Hs<T|tW Print #1, row LKR= =;qn Exep+x- Next rowNum ' end loop over rows |u^)RB Close #1 &5kZ{,-eM u;+%Qh Print "File written: " & fullfilepath ee&nU(pK Print "All done!!" ur/Oc24i1n End Sub 6-*~t8 0M#N=%31 在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: :k WZSN8.D vQ:x%=] VFilF< |