-
UID:317649
-
- 注册时间2020-06-19
- 最后登录2025-11-17
- 在线时间1888小时
-
-
访问TA的空间加好友用道具
|
简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 [ $B pVLfZ?78 成像示意图 tlc&Wx 首先我们建立十字元件命名为Target -v`;^X B+,Z 3* 创建方法: o: qB#8X JWC{ "6 面1 : iB{O"l@w
面型:plane XBCz\f 材料:Air ^*RmT 孔径:X=1.5, Y=6,Z=0.075,形状选择Box ,myl9s p^NYJV 7|*|xLrVY 辅助数据: rT <=`9^{ 首先在第一行输入temperature :300K, j$BM$q/c emissivity:0.1; VDBP]LRF AS~O*(po %*zgN[/w 面2 : S&FMFXF@ 面型:plane ur"ckuG!9 材料:Air YaDr6) 孔径:X=1.5, Y=6,Z=0.075,形状选择Box qpFFvZ
W Jva&"}Cb xrp%b1Sy 位置坐标:绕Z轴旋转90度, PO1sVP.S VQ2)qJ#l Mvu! 辅助数据: uee2WGD S+7>Y? B! 首先在第一行输入temperature :300K,emissivity: 0.1; slXk < gCW.;|2 ohOze\T)= Target 元件距离坐标原点-161mm; 4cl}ouG )lE]DG! xbSix:R=Z 单透镜参数设定:F=100, bend=0, 位置位于坐标原点 X*/jna"* FlttqQQdf %TP0i#J 探测器参数设定: ['Hl$2 j m6bAvy]3<t 在菜单栏中选择Create/Element Primitive /plane [g`P(? LY-fp+
T32C=7 .IE2d%]? amK"Z<V F /z.Y<xOc 元件半径为20mm*20,mm,距离坐标原点200mm。 nZ0-
Kb i]JD::P_H 光源创建: Vr+X!DeY r8A 光源类型选择为任意平面,光源半角设定为15度。 nn5tOV}QE p HXslmrD z1{kZk 我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 /PafIq *VG#SK 我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 ;`p+Vs8C zW+X5yK bH% k) 功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 Z%E;*R2+:> 8M<q-sn4B 创建分析面: c|.~f+ dkVF ~oWCTj- 到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 [+\=x[q UzTFT:\ |qnAqzK| 到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 &@p _g8r# 3#<b!Yz FRED在探测器上穿过多个像素点迭代来创建热图 >\6Tm c>!zJAB FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 w\ 4;5.$ 将如下的代码放置在树形文件夹 Embedded Scripts, Wn6~x2 LaV +m8CN(c f3El9[ 打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 WT;4J<O/ 33IJbg 绿色字体为说明文字, b&BkT%aA(G t.Q}V5t{g '#Language "WWB-COM" #;~`+[y?\ 'script for calculating thermal image map &\),V 1" 'edited rnp 4 november 2005
RdaAS{>Sk Hz~?"ts@; 'declarations u5zL;C3O Dim op As T_OPERATION &B?TX. Dim trm As T_TRIMVOLUME UVa:~c$U4 Dim irrad(32,32) As Double 'make consistent with sampling HEh,Cf7`' Dim temp As Double @D1}). Dim emiss As Double goBl~fqy0 Dim fname As String, fullfilepath As String r&!Ebe- u-qwG/$E 'Option Explicit mWEaUi)Zz R<(kiD\?] Sub Main m03D+@F 'USER INPUTS Uao8#<CkvJ nx = 31 $.HZz ny = 31 rG[iEY numRays = 1000 X%JQ_Z minWave = 7 'microns d?[gd(O maxWave = 11 'microns tV.qdy/]} sigma = 5.67e-14 'watts/mm^2/deg k^4 3mef;!q fname = "teapotimage.dat" 5>CmWMQ eV(nexE Print "" w8veh[%3n Print "THERMAL IMAGE CALCULATION" Dnk} l/*NscYtQ detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 oW
! Z=; Bk)E]Fk| Print "found detector array at node " & detnode Lsu_f'p0 S:5vC{ srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 omdoH? mv1g2f+ Print "found differential detector area at node " & srcnode py|ORVN(Z
Z2P DT GetTrimVolume detnode, trm +>b m~6 detx = trm.xSemiApe S2+X/YeB dety = trm.ySemiApe n <,:;0{ area = 4 * detx * dety TwfQq` Print "detector array semiaperture dimensions are " & detx & " by " & dety l 7T@<V Print "sampling is " & nx & " by " & ny dMd2a4 <[l0zE5Z8' 'reset differential detector area dimensions to be consistent with sampling r ,cz
yE/ pixelx = 2 * detx / nx {4]sJT pixely = 2 * dety / ny 2eC`^ SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False vM3 b\yp Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 yV.E+~y L/Tsq= 'reset the source power Xmb001 SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) sh#hDU/</ Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" EN2H[i+, -tPia=^ 'zero out irradiance array L.ML0H- For i = 0 To ny - 1 ioW&0?,Ym For j = 0 To nx - 1 !=)b2}e/> irrad(i,j) = 0.0 Sgp1p} Next j 6 Mc&gnN Next i 9M12|X\]8 %VH{bpS|i: 'main loop L$zB^lSM EnableTextPrinting( False ) &"gQrBa uD=FTx ypos = dety + pixely / 2 UwtL vd For i = 0 To ny - 1 8pXului xpos = -detx - pixelx / 2 ~fF_]UVq3 ypos = ypos - pixely )lhPl "7z1V{ ;Y EnableTextPrinting( True ) zNo>V8B( Print i fW3awR{ EnableTextPrinting( False ) Ss~yy0 ` W}Bc sx^0*h-Qq For j = 0 To nx - 1 (5/>arDn |Y tZOQu xpos = xpos + pixelx CT0 ~ "3;b,<0 'shift source 9aoGptgN LockOperationUpdates srcnode, True 1@Gmzh
GetOperation srcnode, 1, op 6%A_PP3Z op.val1 = xpos w,x'FZD op.val2 = ypos <=Z`]8 SetOperation srcnode, 1, op ]jRaR~[UN LockOperationUpdates srcnode, False ExxD
w_VGT al1Nmc# 'raytrace A(@VjXl DeleteRays WV&grG| CreateSource srcnode zgn~UC6& TraceExisting 'draw elDt!9Pu [/Vi*Z 'radiometry gp(: o$ For k = 0 To GetEntityCount()-1 N<e72x If IsSurface( k ) Then ym*oCfu= temp = AuxDataGetData( k, "temperature" ) /^\UB
fE emiss = AuxDataGetData( k, "emissivity" ) _I/uW|> If ( temp <> 0 And emiss <> 0 ) Then g4f:K=5: ProjSolidAngleByPi = GetSurfIncidentPower( k ) GwM(E^AG frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) a,ZmDkzuv irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi
#V-0-n,` End If !v\_<8 xgq
`l# End If \r`><d SCL8.%z D Next k [X^Oxs We)l_>G Next j _^MkC}8 6F:<c Next i i$gH{wn\` EnableTextPrinting( True ) R>;m6Rb_ 7GDrH/yK 'write out file
!XQq* fullfilepath = CurDir() & "\" & fname rE?Fp Open fullfilepath For Output As #1 i(mQbWpN Print #1, "GRID " & nx & " " & ny L_O*?aaZ Print #1, "1e+308" 8nE}RD7bx Print #1, pixelx & " " & pixely Vk:] aveW Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 VdOcKP. =-%10lOI maxRow = nx - 1 ?F"mZu maxCol = ny - 1 x2h5,.K For rowNum = 0 To maxRow ' begin loop over rows (constant X) f >$V:e([
row = "" /Bs42uJ3 For colNum = maxCol To 0 Step -1 ' begin loop over columns (constant Y) !4mg]~G row = row & irrad(colNum,rowNum) & " " ' append column data to row string hCpcX"wND Next colNum ' end loop over columns B&rw R/d +rFAo00E| Print #1, row c-oIP~, B1i&HoGbz Next rowNum ' end loop over rows <44A*ux Close #1 %4,v2K D^)?*( Print "File written: " & fullfilepath z(eAhK}6? Print "All done!!" $(fhO End Sub 6-Id{m x ),(HCzK` 在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: wAKm]?zB> s2`Qh9R
Pr'Ij 找到Tools工具,点击Open plot files in 3D chart并找到该文件 ~UNK[ ;Q>+#5H6F8 9A,ok[J 打开后,选择二维平面图: YR-Ge hxZL/_n'
QQ:2987619807 h.jO3q
|