切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 1375阅读
    • 0回复

    [分享]十字元件热成像分析 [复制链接]

    上一主题 下一主题
    离线infotek
     
    发帖
    6374
    光币
    26015
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-11-18
    简介:本文是以十字元件为背景光源,经过一个透镜元件成像探测器上,并显示其热成像图。 nz>K{(  
    r9<V%PH v  
    成像示意图
    +9TV:T  
    首先我们建立十字元件命名为Target v< Ty|(gd  
    #iiwD|  
    创建方法: 8*vFdoE_oO  
    B+|IZoR  
    面1 : Ac J>$L)  
    面型:plane )TM!ms+K  
    材料:Air D_Guc8*  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box iEe#aO"D!  
    aJa.U^1{  
    D6Dn&/>Zp  
    辅助数据: ekrBNDs9  
    首先在第一行输入temperature :300K, xwi!:PAf,o  
    emissivity:0.1; pVY4q0@  
    3XnE y +  
    & wOE\TCL  
    面2 : ,?I(/jI  
    面型:plane ZxI]I1)  
    材料:Air 2av*o~|J*:  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box 3\]~!;dI  
    ~C0 Pu.{o  
    f*v1J<1#  
    位置坐标:绕Z轴旋转90度, $:(z}sYQ7  
    =Aj"j-r&{  
    4Q$!c{Y r  
    辅助数据: loLKm]yV  
    x+K gc[r  
    首先在第一行输入temperature :300K,emissivity: 0.1; 7pz\ScSe  
    O hi D  
    ^zHRSO  
    Target 元件距离坐标原点-161mm; 2?*||c==*  
    BK*z 4m  
    Jb9F=s+  
    单透镜参数设定:F=100, bend=0, 位置位于坐标原点 ?@>;/@  
    p+vh[+yp  
    qZ&a76t  
    探测器参数设定: dt<~sOT3s  
    t|<FA#  
    在菜单栏中选择Create/Element Primitive /plane MJA~jjy4  
    F'rt>YvF  
    Tn /Ut}]O  
     9|<Be6  
    .N!{ U  
    QE3ryD  
    元件半径为20mm*20,mm,距离坐标原点200mm。 ,2ME2@OP  
    IKo;9|2U  
    光源创建: H}B2A"  
    8!;$qVt  
    光源类型选择为任意平面,光源半角设定为15度。 6Etss!_  
    oE6|Zw  
    IqNpLh|[  
    我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 P,U$ %C!  
    $HxS:3D%D  
    我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线 >gnF]<  
    X% X$Y6  
    i+1Qf  
    功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 -<PC"B  
    )d:K:YXt  
    创建分析面: KxX[ S.C  
    5a6VMqQ6  
      Y<aO  
    到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 R3Ee%0QK  
    YNk|+A.<d  
    %Lyz_2q A  
    到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 >J@egIKzP  
    @+:4J_N  
    FRED在探测器上穿过多个像素点迭代来创建热图 %<AS?Ry  
    |Q5+l.%  
    FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 r ^ Y~mq  
    将如下的代码放置在树形文件夹 Embedded Scripts, $o"g73`3  
    JtFiFaCxY  
    ~$Y|ca  
    打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 ewym 1}o  
    Za0gs @$  
    绿色字体为说明文字, ~#q;bS  
    M%|f+u&  
    '#Language "WWB-COM" a*s\Em7f  
    'script for calculating thermal image map kN.B/itvA  
    'edited rnp 4 november 2005 aHC%19UN  
    UGCox-W"  
    'declarations !*_K.1'  
    Dim op As T_OPERATION <6R"h-u"  
    Dim trm As T_TRIMVOLUME ami09JHy  
    Dim irrad(32,32) As Double 'make consistent with sampling Z7KXWu+6`m  
    Dim temp As Double T/NjNEd#  
    Dim emiss As Double l2s{~IC  
    Dim fname As String, fullfilepath As String `s%QeAde  
    &XtRLt gS  
    'Option Explicit xW\,KSK  
    ;_N"Fdl  
    Sub Main  NpR6  
        'USER INPUTS ]-a{IWVN  
        nx = 31 oq. r\r  
        ny = 31 Ye@t_,)x  
        numRays = 1000 A0>x9XSkJ  
        minWave = 7    'microns }[v~&  
        maxWave = 11   'microns s/h7G}Mu  
        sigma = 5.67e-14 'watts/mm^2/deg k^4 A9;0y jae  
        fname = "teapotimage.dat" u7#z^r  
    r )8z#W>s  
        Print "" r0{]5JZt/  
        Print "THERMAL IMAGE CALCULATION" Pin/qp&Fa8  
    ^j=bObaX  
        detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 d;44;*D  
    auL^%M|$R  
        Print "found detector array at node " & detnode CV3DMA  
    Yf= FeH7"  
        srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 J=9#mOcg"  
    VMF|iB  
        Print "found differential detector area at node " & srcnode o\goE^,aeR  
    0m&3?"5u  
        GetTrimVolume detnode, trm !^L-T?y.2  
        detx = trm.xSemiApe (tKMBxQo8  
        dety = trm.ySemiApe L {qJ-ln:  
        area = 4 * detx * dety pX_b6%yX(  
        Print "detector array semiaperture dimensions are " & detx & " by " & dety .`J:xL%Z  
        Print "sampling is " & nx & " by " & ny {cR3.%wX  
    jI0]LD1k  
        'reset differential detector area dimensions to be consistent with sampling @ae>b  
        pixelx = 2 * detx / nx wDw<KU1UK  
        pixely = 2 * dety / ny @c]Xh:I  
        SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False 6pm~sD  
        Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 2*Q3.2 Z  
    u*2JUI*  
        'reset the source power W_}/O'l{  
        SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) L;yEz[#xaT  
        Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" g`3H(PVg  
    ._,trb>o  
        'zero out irradiance array "i%jQL'.  
        For i = 0 To ny - 1 =~J fVozU  
            For j = 0 To nx - 1 _Wma\(3$  
                irrad(i,j) = 0.0 9I kUZW  
            Next j Nv3tt  
        Next i ? d5h9}B  
    hVf^  
        'main loop >qpqQ; bm  
        EnableTextPrinting( False ) lD3)TAW@o  
    >UWStzH<  
        ypos =  dety + pixely / 2 N9`97;.X  
        For i = 0 To ny - 1 iRs V#s  
            xpos = -detx - pixelx / 2 ^1VbH3M  
            ypos = ypos - pixely OoM_q/oI  
    c/'M#h)"  
            EnableTextPrinting( True ) X+at%L=  
            Print i = UUd8,C/  
            EnableTextPrinting( False ) jb3.W  
    GX5W^//}  
    #_fY4vEO  
            For j = 0 To nx - 1 EneAX&SG  
    S&01SX6  
                xpos = xpos + pixelx jsZY{s=  
    n$W"=Z;`  
                'shift source xlw 2g<s  
                LockOperationUpdates srcnode, True " 5|\X<f  
                GetOperation srcnode, 1, op WIG=D{\Yx  
                op.val1 = xpos ,R~eY?{a  
                op.val2 = ypos g ;LVECk  
                SetOperation srcnode, 1, op 27iy4(4  
                LockOperationUpdates srcnode, False QnU0"_-  
    b pp*  
                'raytrace 7E(%9W6P  
                DeleteRays  f`J|>Vk  
                CreateSource srcnode Yrsp%<qj  
                TraceExisting 'draw x.\XUJ4x  
    pL)xqKj  
                'radiometry >h%\HMKk  
                For k = 0 To GetEntityCount()-1 :'Xr/| s  
                    If IsSurface( k ) Then {82rne `[  
                        temp = AuxDataGetData( k, "temperature" ) MWhwMj!:m  
                        emiss = AuxDataGetData( k, "emissivity" ) 6w!e?B2/%  
                        If ( temp <> 0 And emiss <> 0 ) Then !7c'<[+Hm  
                            ProjSolidAngleByPi = GetSurfIncidentPower( k ) bg1un@%!l  
                            frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) }$:#+ (17  
                            irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi {_7Hz,2U  
                        End If |z+9km7,  
    xE1rxPuq)d  
                    End If df ?eL2v  
    C fSl 54  
                Next k -5xCQJ[  
    <A{y($  
            Next j "& Mou  
    6Hn)pD#U  
        Next i Y-]YDXrPQ  
        EnableTextPrinting( True ) 2Y;!$0_rv  
    B.6`cM^  
        'write out file *:j-zrwu&  
        fullfilepath = CurDir() & "\" & fname 3KT_AJ4}  
        Open fullfilepath For Output As #1 {U6"]f%  
        Print #1, "GRID " & nx & " " & ny M8zE3;5  
        Print #1, "1e+308" AWL[zixR  
        Print #1, pixelx & " " & pixely ~lk@6{`l|1  
        Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 3&9zGy{V+  
    ?} X}#  
        maxRow = nx - 1 avy=0Jmj  
        maxCol = ny - 1 \n;g2/VjO  
        For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) 'z-D%sCA  
                row = "" Wvb Eh|y  
            For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) Wxs>osq  
                row = row & irrad(colNum,rowNum) & " "     ' append column data to row string GmAj</~  
            Next colNum                     ' end loop over columns 6e/7'TYwT  
    E\iJP^n  
                Print #1, row 6y9C@5p}B  
    rg*^w!   
        Next rowNum                         ' end loop over rows D2)i3vFB  
        Close #1 ZMe}M!V  
    {wv&t R;  
        Print "File written: " & fullfilepath f)U6p  
        Print "All done!!" u{P~zyx  
    End Sub k#?| yP:  
    lvx]jd\  
    在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: U$%|0@`~  
    kXMP=j8  
    5Edo%Hd6  
    找到Tools工具,点击Open plot files in 3D chart并找到该文件 3t*#!^$  
      
    sxk*$jO[]  
    ]<q'U> N  
    打开后,选择二维平面图: mZE8.`  
    /:KQAM0  
    QQ:2987619807
    S?2YJ l8B  
     
    分享到