-
UID:317649
-
- 注册时间2020-06-19
- 最后登录2025-11-26
- 在线时间1892小时
-
-
访问TA的空间加好友用道具
|
简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 xA nAW #gOITXKs 成像示意图 '3wte9E/ 首先我们建立十字元件命名为Target
3\FiQ/? Vkex&?>v$ 创建方法: ZYBNS~Q 1$fA9u$ 面1 : :yvUHx 面型:plane l[^bo/ 材料:Air -aGv#!aIl 孔径:X=1.5, Y=6,Z=0.075,形状选择Box MB\vgKY -5A@FGh ^HKxaW9W 辅助数据: K}O~tff 首先在第一行输入temperature :300K, 7/(C1II.Q emissivity:0.1; C+}uH:I'L K/Axojo K:P gkc 面2 : '<m[ 面型:plane SZc6=^$ 材料:Air ltHC+8aZ 孔径:X=1.5, Y=6,Z=0.075,形状选择Box a2iaP -4b9( <acAc2 位置坐标:绕Z轴旋转90度, $,icKa 4 !~JNO K^H=E 辅助数据: CQ sVGn{x }(J6zo9(x 首先在第一行输入temperature :300K,emissivity: 0.1;
~J"*ahl CN:
36 &nj@t>5Bs$ Target 元件距离坐标原点-161mm; &cDnZ3Q; RKIqg4>E g<KBsz!{ 单透镜参数设定:F=100, bend=0, 位置位于坐标原点 L4SFu.J' \rADwZm _}`iLA!$I 探测器参数设定: R^dAwt`.D 5nqj 在菜单栏中选择Create/Element Primitive /plane &e_M \D BWL~)Hx Lc*i[J<s *BBP"_$ y"!+Fus9 suPQlU>2sj 元件半径为20mm*20,mm,距离坐标原点200mm。 tTF/$`Q#* tb&{[|O^ 光源创建: kYxn5+~ >F,~ QHcz 光源类型选择为任意平面,光源半角设定为15度。 |??uVA)\X |/ZpZ7 5H==m~ 我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 E[2c`XFd8 u;~/B[ 我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 t
7;V`[ ^7TM.lE y| @[?B 功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 .yQDW]q81G O>|Q Zd 创建分析面: Aq QArSu, )"A+T& +Medu?K
` 到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 W?F+QmD 292e0cE lXW.G 到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 }I,]"0b 2HkP$;lED FRED在探测器上穿过多个像素点迭代来创建热图 e][U ; mm\J]Cc` FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 lkFv5^% 将如下的代码放置在树形文件夹 Embedded Scripts, ?$pp% q%Obrk \ tF>< 打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 Z!~~6Sq ,V.X-`Y 绿色字体为说明文字, ui YZk3 z~L(kf4 '#Language "WWB-COM" @aY 8VL7C0 'script for calculating thermal image map O|?>rK 'edited rnp 4 november 2005 vkASp&a f77Jn^Dt 'declarations B Lw ssr. Dim op As T_OPERATION : )cPc7$8 Dim trm As T_TRIMVOLUME 29 Yg>R!/ Dim irrad(32,32) As Double 'make consistent with sampling V
;1$FNR
Dim temp As Double Z-*L[ Dim emiss As Double j2=jD G Dim fname As String, fullfilepath As String DZilK: !d&K,k 'Option Explicit Qg<_te)\ UOy`N~\gh+ Sub Main sZFjkfak 'USER INPUTS JN$v=Ox{ nx = 31 hcWkAR ny = 31 $cSrT)u: numRays = 1000 \=XAl >}\ minWave = 7 'microns }tua0{N:z maxWave = 11 'microns SwV0q sigma = 5.67e-14 'watts/mm^2/deg k^4 xCEEv5(5 fname = "teapotimage.dat" /3L1Un* Ym8G=KA Print "" bezT\F/\ Print "THERMAL IMAGE CALCULATION" @vCPX=c U_wn/wcLS detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 imZi7o m5v9:5{ Print "found detector array at node " & detnode $[by) /![S 3Ol srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 -sh S?kV Wr a W Print "found differential detector area at node " & srcnode cWA9 n}Z T\{ on[O GetTrimVolume detnode, trm Tu?+pz`h detx = trm.xSemiApe J3Qv|w[3Y dety = trm.ySemiApe Yo/U /dB area = 4 * detx * dety 4h@jJm
Print "detector array semiaperture dimensions are " & detx & " by " & dety <IC=x(T Print "sampling is " & nx & " by " & ny `|XE B _*>bf G 'reset differential detector area dimensions to be consistent with sampling {Uz@`QO3 pixelx = 2 * detx / nx ^&03D5@LoY pixely = 2 * dety / ny N /p9Ws SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False TUw^KSa Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 #5wOgOv eB%KXPhMm 'reset the source power {KxeH7S SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) c*-8h{} Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" h3Nwxj~E '_lyoVP 'zero out irradiance array {0nZ;1,m For i = 0 To ny - 1 XI}
C|]# For j = 0 To nx - 1 jrbEJ. irrad(i,j) = 0.0 n#uH^@#0 Next j n (7m Next i J;W(}"cFq gbsRf&4h 'main loop Uq5wN05 EnableTextPrinting( False ) `KqMcAW ^VK-[Sz& ypos = dety + pixely / 2 m4bfW For i = 0 To ny - 1 peCmb)>Sa xpos = -detx - pixelx / 2 %<lfe<;^t ypos = ypos - pixely 7g[m,48{ *Z>Yv37P EnableTextPrinting( True ) (o~f6pNB, Print i 1L]7*NJe EnableTextPrinting( False ) Z.am^Q^Y! IfzHe8> g0v},n For j = 0 To nx - 1 !
E`Tt[ x%23oPM xpos = xpos + pixelx Fq!12/Nn xphw0Es 'shift source J]UlCg LockOperationUpdates srcnode, True d)1)/Emyj GetOperation srcnode, 1, op >!s=f op.val1 = xpos WMnR+?q op.val2 = ypos (JH LWAH SetOperation srcnode, 1, op
F' s($n LockOperationUpdates srcnode, False f{xR
s-u] h#'(i<5v
'raytrace }YW0?-G.$ DeleteRays i>HipD,TD CreateSource srcnode vo)pT TraceExisting 'draw %^n9Z/I mr6/d1af_ 'radiometry RIOR%~U For k = 0 To GetEntityCount()-1 |7,|-s[R^ If IsSurface( k ) Then VgtWT`F.I temp = AuxDataGetData( k, "temperature" ) [_hHZMTH emiss = AuxDataGetData( k, "emissivity" ) .281;] = If ( temp <> 0 And emiss <> 0 ) Then >8_#L2@ ProjSolidAngleByPi = GetSurfIncidentPower( k ) py`RH) frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) `*cT79 irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi s\i=-` End If j!q5 Bc? h>-JXuN End If &dF$:$'s x|i"x+o Next k 3t22KY[` ^29w@* Next j eZWN9#p2 V#.;OtF] Next i }^Be^a<ub EnableTextPrinting( True ) ^prseO?A ?jbE3fW 'write out file n)uvN fullfilepath = CurDir() & "\" & fname o"~ODN"L Open fullfilepath For Output As #1 N(>a-a Print #1, "GRID " & nx & " " & ny :LBG6J Print #1, "1e+308" `<kHNcm Print #1, pixelx & " " & pixely [?x9NQ{ Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 ?#!Hm`\. x- kCNy maxRow = nx - 1 vA@Kb3, maxCol = ny - 1 C=(-oI n
For rowNum = 0 To maxRow ' begin loop over rows (constant X) ]vJZ v"ACn row = "" QLH&WF For colNum = maxCol To 0 Step -1 ' begin loop over columns (constant Y) TJ[C,ic=D row = row & irrad(colNum,rowNum) & " " ' append column data to row string D.Rk{0se8 Next colNum ' end loop over columns yaD<jc(O >Z?fX Print #1, row 4@OnMj{M |7]7~ 6l Next rowNum ' end loop over rows WXu:mv,'e Close #1 tW 53&q\= ,Q4U<`ds! Print "File written: " & fullfilepath | qtdmm Print "All done!!" "}Kvx{L8 End Sub A`<#}~A }uo5rB5D 在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: D5fJuT-bp pg~vteq5 '#$Y:/ 找到Tools工具,点击Open plot files in 3D chart并找到该文件 'Wjuv9)/ z_R^n#A~r 6TJ5G8z_ 打开后,选择二维平面图: Y(GH/jw Pc>$[kT0
QQ:2987619807 (A O]f fBU
|