切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 1608阅读
    • 0回复

    [分享]十字元件热成像分析 [复制链接]

    上一主题 下一主题
    离线infotek
     
    发帖
    6441
    光币
    26350
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-11-18
    简介:本文是以十字元件为背景光源,经过一个透镜元件成像探测器上,并显示其热成像图。 EAPLe{qw:q  
    K\bA[5+N  
    成像示意图
    Q+Sx5JUR~  
    首先我们建立十字元件命名为Target m$ubxI)  
    E46+B2_~zk  
    创建方法: RM5$O+"  
    |%V-|\GJ~j  
    面1 : )~u<u:N  
    面型:plane ~d9R:t1  
    材料:Air <Mt>v2a3Y  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box !=-{$& {  
    | Ns-l (l  
    ,aA%,C.0U  
    辅助数据: :1O49g3R  
    首先在第一行输入temperature :300K, n7CwGN%  
    emissivity:0.1; ><l|&&e-  
    =>y%Aj&4  
    dKG2f  
    面2 : kMCg fL  
    面型:plane '}F=U(!  
    材料:Air x{o&nhuk[S  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box _J N$zZ{  
    s<GR ?  
    Q5kf-~Jx+  
    位置坐标:绕Z轴旋转90度, SU8vz/\%y  
    rV5QKz6'  
    BEfP#h=hr  
    辅助数据: eeOE\  
    @xq jAcfg  
    首先在第一行输入temperature :300K,emissivity: 0.1; `A\|qH5`W  
    t XbMP  
    eHIsTL@Fp  
    Target 元件距离坐标原点-161mm; gq:2`W&5  
    /x2MW5H  
     x%$as;  
    单透镜参数设定:F=100, bend=0, 位置位于坐标原点 q]^Q?r<g::  
    f@)GiLC'"  
    (mR ;MC  
    探测器参数设定: $-J=UT2m  
    saPg2N,  
    在菜单栏中选择Create/Element Primitive /plane #rps2nf.j  
    S.E'fc1  
    #P^cR_|\  
    C7hJE -  
    ywCF{rRd  
    ZD`9Ez)5  
    元件半径为20mm*20,mm,距离坐标原点200mm。 m })EYs1  
    1dE |q{  
    光源创建: k~|5TO  
    p10i_<J]=  
    光源类型选择为任意平面,光源半角设定为15度。 &% infPI'  
    7hq$vI%0  
    iN]#XIQ%  
    我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 $I$ B8  
    #]MV  
    我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线 X1N*}@:/  
    w~lxWgaY7  
    ;vkk$ -  
    功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 61*inGRB  
    wpW3%r;9  
    创建分析面: D'UYHc {  
    gA/8Df\G:l  
    8 FJ>W.  
    到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 0DR:qw  
    Zf [#~4  
    ! ,v!7I  
    到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 D( YNa  
    C3#mmiL-  
    FRED在探测器上穿过多个像素点迭代来创建热图 1#OM~v6B  
    !#' y#  
    FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 rO;Vr},3\%  
    将如下的代码放置在树形文件夹 Embedded Scripts, :}[RDF?  
    'U %L\v,  
    6Y 4I $[  
    打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 9U=~t%qW$  
    /P}Wp[)u  
    绿色字体为说明文字, '_`O&rbT  
     +bC=yR  
    '#Language "WWB-COM" _go1gf7  
    'script for calculating thermal image map Pd^v-}[  
    'edited rnp 4 november 2005 9[7Gxmf  
    hOTqbd}  
    'declarations {rE]y C^  
    Dim op As T_OPERATION E5EAk6  
    Dim trm As T_TRIMVOLUME 017(I:V?(:  
    Dim irrad(32,32) As Double 'make consistent with sampling O&( @Ka  
    Dim temp As Double ~,: FZ1wh  
    Dim emiss As Double |mO4+:-~D+  
    Dim fname As String, fullfilepath As String _+?v'#  
    3ug-cq  
    'Option Explicit d_r1 }+ao  
    <:gNx%R  
    Sub Main FJYc*l  
        'USER INPUTS g,,'Pdd7Pn  
        nx = 31 U`HSq=J  
        ny = 31 h+<F,0  
        numRays = 1000 ?--EIA8mfp  
        minWave = 7    'microns N*CcJp{Q  
        maxWave = 11   'microns #y4+O;{  
        sigma = 5.67e-14 'watts/mm^2/deg k^4 /A{/  
        fname = "teapotimage.dat" tI-u@ g  
    <8_~60  
        Print "" 4#c-?mh_  
        Print "THERMAL IMAGE CALCULATION" g /v"E+  
    S.$/uDwo  
        detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 q8 _8rp-@  
    qx+ .v2G  
        Print "found detector array at node " & detnode S7fX1y[  
    >I^_kBa  
        srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 (uk-c~T!u  
    O 6}eV^y  
        Print "found differential detector area at node " & srcnode )t#v55M  
    -%g&O-i\  
        GetTrimVolume detnode, trm %l.5c Sn@  
        detx = trm.xSemiApe btZ9JZvMx  
        dety = trm.ySemiApe Qe6'W  
        area = 4 * detx * dety F#S )))#  
        Print "detector array semiaperture dimensions are " & detx & " by " & dety (aQNe{D#  
        Print "sampling is " & nx & " by " & ny Qv`Lc]'  
    &P,z$H{o@  
        'reset differential detector area dimensions to be consistent with sampling Dno'-{-  
        pixelx = 2 * detx / nx =bwuLno>  
        pixely = 2 * dety / ny btV Tt5  
        SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False $afE= qC*  
        Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 R3`h$`G  
    ]LE  
        'reset the source power `YinhO:Z  
        SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) 1m5 =Nu  
        Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" c%bGVRhE  
    S# 9EBw7  
        'zero out irradiance array #XaTUT  
        For i = 0 To ny - 1 MS~|F^g  
            For j = 0 To nx - 1 g=gWkN <  
                irrad(i,j) = 0.0 X-$\DXRIo  
            Next j lNQ8$b  
        Next i N;A#K 7A[@  
    P t)Ni  
        'main loop y_F{C 9KE  
        EnableTextPrinting( False ) 2Kg+SLU[~  
    H}[kit*9  
        ypos =  dety + pixely / 2 |~y>R#u8pm  
        For i = 0 To ny - 1 d;-/F b{4  
            xpos = -detx - pixelx / 2 ktu{I  
            ypos = ypos - pixely @2>j4Sc  
    2Y`C\u  
            EnableTextPrinting( True ) 3S97hn{|=  
            Print i ~$PQ8[=  
            EnableTextPrinting( False ) ha%3%O8Z  
    vj?6,Ae  
    "{&?t}rj+  
            For j = 0 To nx - 1 Z|h&Zd1z  
    1$]hyC/f  
                xpos = xpos + pixelx s?JNc4q  
    h ?Ni5  
                'shift source wy1xZQ<5  
                LockOperationUpdates srcnode, True :k"VR,riF  
                GetOperation srcnode, 1, op O6[,K1,  
                op.val1 = xpos x<S?"  
                op.val2 = ypos ?<l,a!V'6  
                SetOperation srcnode, 1, op !}TZmwf'  
                LockOperationUpdates srcnode, False O'OVj  
    ^Iz(V2  
                'raytrace Eed5sm$H  
                DeleteRays g20,et  
                CreateSource srcnode etPb^&#$  
                TraceExisting 'draw /;[Zw8K7  
    te 0a6  
                'radiometry ^zv,VD  
                For k = 0 To GetEntityCount()-1 OjUZ-_J  
                    If IsSurface( k ) Then n&`=.[+A  
                        temp = AuxDataGetData( k, "temperature" ) S"/M+m+ ]  
                        emiss = AuxDataGetData( k, "emissivity" ) S S/9fT"[  
                        If ( temp <> 0 And emiss <> 0 ) Then ZE!dg^-L  
                            ProjSolidAngleByPi = GetSurfIncidentPower( k ) :+G1=TuXw~  
                            frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) :ziV3jRM  
                            irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi $Eo)i  
                        End If .BWCGb2bH  
    ?/SIA9VK  
                    End If |BO!q9633V  
    ?0U.1N  
                Next k t81}jD  
    78iu<L+If  
            Next j h{R>L s  
    $Ka-ZPy<#  
        Next i EqN_VT@  
        EnableTextPrinting( True ) "-pQL )f  
    jmDQKqEc|l  
        'write out file tY1M7B^~  
        fullfilepath = CurDir() & "\" & fname ;~2RWj=-  
        Open fullfilepath For Output As #1 e)Be*J]4  
        Print #1, "GRID " & nx & " " & ny >AbgJ*X.  
        Print #1, "1e+308" &<s[(w!%%  
        Print #1, pixelx & " " & pixely @F+zME   
        Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 Spnshv8  
    bpQ5B'9  
        maxRow = nx - 1 `<0{U]m  
        maxCol = ny - 1 x}8 U\  
        For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) #i8] f{  
                row = "" J<<Ph  
            For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) L=ala1{O  
                row = row & irrad(colNum,rowNum) & " "     ' append column data to row string Q*W`mFul  
            Next colNum                     ' end loop over columns v(=?ge YLo  
    g3} K  
                Print #1, row ?gp:uxq,.  
    8f""@TTp  
        Next rowNum                         ' end loop over rows HI` q!LPv  
        Close #1 &.> 2@  
    O0"u-UX{  
        Print "File written: " & fullfilepath ypCarvQT  
        Print "All done!!" baD`k?](  
    End Sub Fp_?1 y  
    qqmhh_[T  
    在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: yXuF<+CJ  
    IQ${2Dpg[  
    ^""Ss  
    找到Tools工具,点击Open plot files in 3D chart并找到该文件 Gk!06   
      
    O?6ph4'  
    m0: IFE($  
    打开后,选择二维平面图: _y,? Cj=u|  
     !e+^}s  
    QQ:2987619807
    *Zj2*e{Z9U  
     
    分享到