切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 1508阅读
    • 0回复

    [分享]十字元件热成像分析 [复制链接]

    上一主题 下一主题
    离线infotek
     
    发帖
    6425
    光币
    26270
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-11-18
    简介:本文是以十字元件为背景光源,经过一个透镜元件成像探测器上,并显示其热成像图。 fhL,aCS=  
    UMAgA!s  
    成像示意图
    S<'[%ihx  
    首先我们建立十字元件命名为Target `tP7ncky  
    y=?)n\ f  
    创建方法: 3EJt%}V$k  
    jv&*uYm  
    面1 : M#(+c_(r  
    面型:plane 6DH~dL_",%  
    材料:Air yKO`rtP  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box sI{ M  
    nBk)WX&[K  
    (sh)TBb5  
    辅助数据: feQ **wI  
    首先在第一行输入temperature :300K, JvY}-}?c  
    emissivity:0.1; dqN5]Sb2B  
    Djg,Lvhm  
    293M\5:  
    面2 : ^]TVo\,N  
    面型:plane 7(pF[LCF  
    材料:Air h5(4*$%  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box \[y`'OD~  
    B)0i:"q  
    U&?v:&c#&n  
    位置坐标:绕Z轴旋转90度, D8$G`~hD  
    !QvZ<5(  
    -3Hy*1A.  
    辅助数据: ZpnxecJUJ  
    R6]Gk)5  
    首先在第一行输入temperature :300K,emissivity: 0.1; k |eBJ%  
    3f,hw5R  
    $m/)FnU/  
    Target 元件距离坐标原点-161mm; VIv&ofyAR  
    H!$o$}A  
    zx)z/1  
    单透镜参数设定:F=100, bend=0, 位置位于坐标原点 b:TLV`>/&  
    E"5*Ei)^3  
    ev*k*0  
    探测器参数设定: Dy:|g1>  
    >Z'NXha  
    在菜单栏中选择Create/Element Primitive /plane ?.Ca|H<  
    MB]<Dyj,  
    *-8&[D0  
    V6@o]*  
    fTK3,s1=  
    UWd=!h^dt  
    元件半径为20mm*20,mm,距离坐标原点200mm。 uC(V  
    G;l_|8<t#\  
    光源创建: OG>}M$ Ora  
    OWg(#pZk  
    光源类型选择为任意平面,光源半角设定为15度。 l4uMG]m  
    cWe"%I  
    y.< m#Zzt  
    我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 %5"9</a&G  
    YwjKAyLU  
    我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线 Na]:_K5Dp  
    )QU  
    <+?7H\b  
    功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 GkQpELO:  
    ]H+8rY%+  
    创建分析面: 0"28'  
    j~[z2tV  
    !ug8SAOaz/  
    到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 o<pf#tifv  
    Nh_Mz;ITuu  
    "hH.#5j  
    到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 EVsC >rz  
    vunHNHltW0  
    FRED在探测器上穿过多个像素点迭代来创建热图 of%Ktm5Qi  
    CVL3VT1j0  
    FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 ! |<Fo'U  
    将如下的代码放置在树形文件夹 Embedded Scripts, \o*5  
    BBwy,\o#  
    U`,6 * MS  
    打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 Whm,F^  
    .6+Z^,3  
    绿色字体为说明文字, 5m&9"T.w  
    O;:mCt _H  
    '#Language "WWB-COM" 4.[^\N  
    'script for calculating thermal image map l5!|I:/*;  
    'edited rnp 4 november 2005 \ `~Ly-  
    oAODp!_c  
    'declarations FWrX3i  
    Dim op As T_OPERATION jFL #s&ft  
    Dim trm As T_TRIMVOLUME MyJ%`@+1  
    Dim irrad(32,32) As Double 'make consistent with sampling %)zodf  
    Dim temp As Double w0rRSD4S8B  
    Dim emiss As Double 6t[+pL\b  
    Dim fname As String, fullfilepath As String Lt?lv2k=L  
    4xjPiHd<  
    'Option Explicit *\+\5pu0  
    qkDI](4  
    Sub Main [1g8*j~L  
        'USER INPUTS bnf'4PAt  
        nx = 31 s~ a"4~f  
        ny = 31 `2("gUCm  
        numRays = 1000 }~e8e   
        minWave = 7    'microns _S<3\%(0  
        maxWave = 11   'microns e^6)Zz1\  
        sigma = 5.67e-14 'watts/mm^2/deg k^4 P{kur} T  
        fname = "teapotimage.dat" bh,[ 3X%  
    EN<F# Y3E  
        Print "" %(3|R@G.  
        Print "THERMAL IMAGE CALCULATION" FtP0krO(  
    ?~BC#B\>o  
        detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 n{n52][J]  
    )WNzWUfn=z  
        Print "found detector array at node " & detnode _mqL8ho  
    lA| 5E?  
        srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 V,lOt4b  
    #xsE3Wj-X  
        Print "found differential detector area at node " & srcnode !JHL\M>A5  
    T0wW<_jh  
        GetTrimVolume detnode, trm {f/~1G[M  
        detx = trm.xSemiApe I667Gz$j5  
        dety = trm.ySemiApe > kG GR  
        area = 4 * detx * dety JFcLv=U  
        Print "detector array semiaperture dimensions are " & detx & " by " & dety !#], hok8X  
        Print "sampling is " & nx & " by " & ny eBZXI)pPh  
    R1adWBD>  
        'reset differential detector area dimensions to be consistent with sampling @K  &GJ  
        pixelx = 2 * detx / nx g0xuxK;9c  
        pixely = 2 * dety / ny ~ (|5/ p7t  
        SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False >c1qpk/  
        Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 GFj{K  
    |7'df&CA  
        'reset the source power YqhAZp<  
        SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) ? &o2st  
        Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" $ Xv*,Bq  
    sXLq*b?  
        'zero out irradiance array B nFwlw  
        For i = 0 To ny - 1 F&4rO\aC"/  
            For j = 0 To nx - 1 ?ZV/U!y  
                irrad(i,j) = 0.0 =Gpylj7?~  
            Next j py$Q  
        Next i -^&<Z 0m  
    ],@rS9K  
        'main loop y;35WtDVb  
        EnableTextPrinting( False ) "Gsc;X'id  
    (yH'{6g\  
        ypos =  dety + pixely / 2 Q- cFtu-w  
        For i = 0 To ny - 1 .?8;qA  
            xpos = -detx - pixelx / 2 Z^bQ^zk-  
            ypos = ypos - pixely 9P1OP Xv*p  
    LC,F <>w1  
            EnableTextPrinting( True ) 8zZvht*  
            Print i ~Otq %MQ  
            EnableTextPrinting( False ) R5N%e%[  
    H*d9l2,KZS  
    jZu[n)u'C  
            For j = 0 To nx - 1 hE-h`'ha`  
    %|s; C  
                xpos = xpos + pixelx HZ aV7dOZ8  
    l.q&D< _  
                'shift source 9g9HlB&Ze  
                LockOperationUpdates srcnode, True !y\'EW3|G  
                GetOperation srcnode, 1, op }zeO]"`  
                op.val1 = xpos v"y-0$M  
                op.val2 = ypos %^?fMeI|Y  
                SetOperation srcnode, 1, op TJ10s%,V  
                LockOperationUpdates srcnode, False rJ`!:f  
    { }:#G  
                'raytrace !{ y@od@T  
                DeleteRays 7BE>RE=)  
                CreateSource srcnode C'>|J9~Gz  
                TraceExisting 'draw ;;!yC  
    GA$V0YQX  
                'radiometry OSRp0G20k\  
                For k = 0 To GetEntityCount()-1 Y4J3-wK5  
                    If IsSurface( k ) Then h=W:^@G  
                        temp = AuxDataGetData( k, "temperature" ) h1j!IG  
                        emiss = AuxDataGetData( k, "emissivity" ) ,1y@Z 5wy  
                        If ( temp <> 0 And emiss <> 0 ) Then 1auIR/=-  
                            ProjSolidAngleByPi = GetSurfIncidentPower( k ) 8V~k5#&Ow  
                            frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) Q)~aiI0  
                            irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi 35h 8O,Y  
                        End If [8Y:65  
    (o 5s"b  
                    End If qEyyT[:  
    OC_+("N  
                Next k NpE*fR')  
    V><,UI=,n  
            Next j F|IAiE  
    /fKx} }g)  
        Next i C/q'=:H;  
        EnableTextPrinting( True ) &xU[E!2H%  
    b(,M1.[qt  
        'write out file a4m n*,  
        fullfilepath = CurDir() & "\" & fname  U'k*_g  
        Open fullfilepath For Output As #1 x,'(5*  
        Print #1, "GRID " & nx & " " & ny RF`.xQ26=  
        Print #1, "1e+308" 9)h"-H;5:  
        Print #1, pixelx & " " & pixely wx]0p  
        Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 4n#M  
    +G$4pt|=  
        maxRow = nx - 1 &pP;Neh;  
        maxCol = ny - 1 "0V.V>-p  
        For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) Wvq27YK'  
                row = "" ]Oe2JfJwx  
            For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) #oS<E1  
                row = row & irrad(colNum,rowNum) & " "     ' append column data to row string )!3V/`I  
            Next colNum                     ' end loop over columns )~GmU9f  
    OyU5DoDz1  
                Print #1, row B |5]Jm]  
    IDad9 Bx  
        Next rowNum                         ' end loop over rows WEw6He;  
        Close #1 %2}-2}[>  
    5us:adm[pD  
        Print "File written: " & fullfilepath 6`&a&%,O  
        Print "All done!!" VRVO-Sk  
    End Sub |O{m2Fi  
    5^}\4.eXo  
    在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: [xK3F+  
    E`kG-Q5Dw  
    |-b#9JQ[A  
    找到Tools工具,点击Open plot files in 3D chart并找到该文件 I:E`PZ  
      
    B*eC3ok3z  
    Fh)IgzFj  
    打开后,选择二维平面图: 5u,{6  
    TeMHm ?1^  
    QQ:2987619807
    raW>xOivR  
     
    分享到