切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 1366阅读
    • 0回复

    [分享]十字元件热成像分析 [复制链接]

    上一主题 下一主题
    离线infotek
     
    发帖
    6374
    光币
    26015
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-11-18
    简介:本文是以十字元件为背景光源,经过一个透镜元件成像探测器上,并显示其热成像图。 K1*oYHB  
    }\-"L/D?+  
    成像示意图
    K4.GAGd  
    首先我们建立十字元件命名为Target 5:T)hoF@  
    \NgBF  
    创建方法: i wFI lJ@  
    "3\C;B6I  
    面1 : S8S<>W  
    面型:plane Q,AM<\S  
    材料:Air 7K.in3M(  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box C=y[WsT  
    KeIk9T13O  
    |o5F%1o  
    辅助数据: zA<Hj;9SM  
    首先在第一行输入temperature :300K, @/DHfs4O  
    emissivity:0.1; })Pq!u:3  
    >^U$2P  
    S1`;2mAf*  
    面2 : c^%vyBMY  
    面型:plane l&2}/A  
    材料:Air  Ie<`WU K  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box 9^AfT>b~f  
    ruf*-&Kr7  
    )ld !(d=  
    位置坐标:绕Z轴旋转90度, $%%K9Y  
    wv6rjg:7  
    ~AX@o-WU  
    辅助数据: doj$chy  
    N8-!}\,  
    首先在第一行输入temperature :300K,emissivity: 0.1; QnJ(C]cW  
    \i}:Vb(^  
    0>aAI3E  
    Target 元件距离坐标原点-161mm; <z2*T \B!8  
    'u)zQAaw.  
    /HiRbwQK#  
    单透镜参数设定:F=100, bend=0, 位置位于坐标原点 "j]85  
    a2vZ'  
    'T_Vm%\)  
    探测器参数设定: QL{^  
    u\uYq  
    在菜单栏中选择Create/Element Primitive /plane /2&:sHWW  
    6cm&=n_u  
    Hyj<Fqr!.  
    =Ll:Ba Q  
    /^XGIQ/W  
    mh8{`W&  
    元件半径为20mm*20,mm,距离坐标原点200mm。 P_:~!+W,  
    ;<?mMi@<E  
    光源创建: $vQ#ah/k  
    LKx<hl$O  
    光源类型选择为任意平面,光源半角设定为15度。 $7~T+fmF  
    555*IT3b  
    hh$V[/iK  
    我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 th 9I]g^=t  
    $!Pm*s  
    我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线 Oosr`e@S  
    bL)7 /E  
    -76l*=|  
    功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 ,o\-'   
    RdtF5#\z  
    创建分析面: m&36$>r=  
    ^#Ruw?D  
    kg@Okz N%  
    到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 (C=.&',P  
     r*gQGvc  
    ~%8T_R/3  
    到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 x_yQoae  
    tzKIi_2  
    FRED在探测器上穿过多个像素点迭代来创建热图 wk'12r6=(-  
    F"?OLV1B&  
    FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 w}`TJijl  
    将如下的代码放置在树形文件夹 Embedded Scripts, t[yu3U  
    Vp5i i]B4  
    ! qF U  
    打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 *nj={Ss&  
    >&mNC \PA  
    绿色字体为说明文字, Y<"BhE  
    , Ac gsC  
    '#Language "WWB-COM" I1 Jo8s  
    'script for calculating thermal image map ROv(O;.Ty  
    'edited rnp 4 november 2005 Yr\pgK,  
    .*3.47O  
    'declarations 7tEkQZMDI  
    Dim op As T_OPERATION +Ui @3Q  
    Dim trm As T_TRIMVOLUME 2D"n#O`y  
    Dim irrad(32,32) As Double 'make consistent with sampling ^)|!nd  
    Dim temp As Double ev$\Ns^g$3  
    Dim emiss As Double ?$>#FKrt  
    Dim fname As String, fullfilepath As String cU+% zk  
    ;nDCyn4i]  
    'Option Explicit I &jiH)  
    bGO[P<<  
    Sub Main m4=[e!  
        'USER INPUTS Tf|?j=f  
        nx = 31 &T i:IC%M  
        ny = 31 WFYbmfmV  
        numRays = 1000 *j9hjq0j  
        minWave = 7    'microns )C@O7m*.4  
        maxWave = 11   'microns zn=Ifz)#|  
        sigma = 5.67e-14 'watts/mm^2/deg k^4 jIzkI)WC|  
        fname = "teapotimage.dat" 7jZE(|G-  
    Vg>\@ C .s  
        Print "" WPN4mEow  
        Print "THERMAL IMAGE CALCULATION" ^~iFG+g5  
    X*Qtbm,  
        detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 0pC}+ +  
    4IT`8n~  
        Print "found detector array at node " & detnode i xf~3Y8  
    cg]\R1Gm  
        srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 7;w x,7CUq  
    +J`HI1  
        Print "found differential detector area at node " & srcnode MPtn$@  
    ['*{f(AI  
        GetTrimVolume detnode, trm ,"@Tm01os  
        detx = trm.xSemiApe 8 BHtN  
        dety = trm.ySemiApe Q7~9~  
        area = 4 * detx * dety -$; h+9BO  
        Print "detector array semiaperture dimensions are " & detx & " by " & dety ;`{PA !>  
        Print "sampling is " & nx & " by " & ny ;?*`WB  
    >E9:3&[F  
        'reset differential detector area dimensions to be consistent with sampling "X.JD  
        pixelx = 2 * detx / nx _`H2CXG g  
        pixely = 2 * dety / ny !' D1aea5  
        SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False 4F-r}Fj3  
        Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 v4pFts$J  
    ~"Kf+eFi  
        'reset the source power <8JV`dTywC  
        SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) >BDK?YMx  
        Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" G<5i %@  
    sp/l-a  
        'zero out irradiance array z)Yk&;XC  
        For i = 0 To ny - 1 Zgw;AY.R>  
            For j = 0 To nx - 1 mr4W2Z@L  
                irrad(i,j) = 0.0 fpDx)lQ  
            Next j [\Ks+S  
        Next i =)2sehU/  
    _D{V(c<WD  
        'main loop J0 [^hH  
        EnableTextPrinting( False ) <3 b|Sk:T  
    [32]wgw+{1  
        ypos =  dety + pixely / 2 .[@TC@W  
        For i = 0 To ny - 1 DR d|m<Z  
            xpos = -detx - pixelx / 2 9i&(VzY[=  
            ypos = ypos - pixely |#&{`3$CG[  
    qHGwD20 ~  
            EnableTextPrinting( True ) a-A>A_.  
            Print i !vaS fL*]  
            EnableTextPrinting( False ) (.CEEWj%{  
    \NiW(!Z}  
    <~%e{F:[#  
            For j = 0 To nx - 1 X\z `S##kj  
    /8)-j}gZa  
                xpos = xpos + pixelx #[Z1W8e  
    eaG_)y  
                'shift source H/rJ:3  
                LockOperationUpdates srcnode, True ;2NJkn9t  
                GetOperation srcnode, 1, op o~aK[   
                op.val1 = xpos 'aWrjfDy:  
                op.val2 = ypos ?yfw3s  
                SetOperation srcnode, 1, op x)wlp{rLf  
                LockOperationUpdates srcnode, False MRI`h.  
    xrXfLujn%  
                'raytrace i gyTvt!  
                DeleteRays bv NXA*0  
                CreateSource srcnode D?)^{)49  
                TraceExisting 'draw NSsLuM=.  
    ;fdROI  
                'radiometry RS8tE(  
                For k = 0 To GetEntityCount()-1 H}nPaw]G  
                    If IsSurface( k ) Then xw>\6VNt  
                        temp = AuxDataGetData( k, "temperature" ) (oftq!X2  
                        emiss = AuxDataGetData( k, "emissivity" ) ]12ypcf  
                        If ( temp <> 0 And emiss <> 0 ) Then _#jR6g TY  
                            ProjSolidAngleByPi = GetSurfIncidentPower( k ) o_(@v2G`  
                            frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) c2tf7fkH  
                            irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi 9{A[n}  
                        End If Hv>16W$_  
    ']x`d  
                    End If r?:zKj8/u  
    (=T%eJ61  
                Next k =SY`Xkj[  
    Wubvvm8U  
            Next j }.L\O]~{  
    "%mu~&Ga  
        Next i }#b[@3/T  
        EnableTextPrinting( True ) gsSUmf1  
    aw3 oG?3I  
        'write out file =vpXYj  
        fullfilepath = CurDir() & "\" & fname N084k}io  
        Open fullfilepath For Output As #1 :vsF4  
        Print #1, "GRID " & nx & " " & ny oZ /z{`  
        Print #1, "1e+308" [?=Vqd  
        Print #1, pixelx & " " & pixely zL%ruWNG  
        Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 HW@r1[Y  
    ik;S!S\v  
        maxRow = nx - 1 u>K(m))5W3  
        maxCol = ny - 1 Cuk!I$  
        For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) mZ[tB/  
                row = "" fH> I/%  
            For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) .$rt>u,8<  
                row = row & irrad(colNum,rowNum) & " "     ' append column data to row string cl'#nLPz;  
            Next colNum                     ' end loop over columns =B/Ac0Y  
    8+?|4'\`  
                Print #1, row @[s+5_9nk  
    cD6T4  
        Next rowNum                         ' end loop over rows Jtv~n  
        Close #1 *!wBn  
    Hy*_4r  
        Print "File written: " & fullfilepath k>'c4ay290  
        Print "All done!!" IHrG!owf  
    End Sub TA~FP#.  
    -Y{=bZS u  
    在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: $#HPwmd  
    &|LP>'H;  
    J/{!_M-  
    找到Tools工具,点击Open plot files in 3D chart并找到该文件 l>J>?b=x"[  
      
    CZ~%qPwDw  
    "UVqHW1%K  
    打开后,选择二维平面图: zYz0R:@n+  
    m,qMRcDF  
    QQ:2987619807
    iVQ)hs W/  
     
    分享到