切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 1470阅读
    • 0回复

    [分享]十字元件热成像分析 [复制链接]

    上一主题 下一主题
    离线infotek
     
    发帖
    6421
    光币
    26250
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-11-18
    简介:本文是以十字元件为背景光源,经过一个透镜元件成像探测器上,并显示其热成像图。 0eLK9u3<  
    Xu$*ZJ5w  
    成像示意图
    -1o1k-8d  
    首先我们建立十字元件命名为Target 5Q88OxH  
    H0HYb\TX?  
    创建方法: jQDxbkIuzE  
    pg<>Ow5,~l  
    面1 : 0(kp>%mbB  
    面型:plane . FruI#99  
    材料:Air  l gC  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box ?m!FM:%  
    Nh))U  
    n>Ei1  
    辅助数据: /<C=9?Ok  
    首先在第一行输入temperature :300K, ?/wloLS47  
    emissivity:0.1; Gl:AS PZ6  
    s,RS}ek~|  
    h(L5MZs  
    面2 : )t4C*+9<U  
    面型:plane :o:??tqw  
    材料:Air Yem\`; *  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box pI`Ke"  
    oW_WW$+N  
    tFwlx3  
    位置坐标:绕Z轴旋转90度, Ixw,$%-]y6  
    *v9G#[gG  
    cMg /T.O  
    辅助数据: _=MWt_A '3  
    ,aJrN!fzU  
    首先在第一行输入temperature :300K,emissivity: 0.1; D H^^$)  
    e#('`vGB  
    v^tKT&  
    Target 元件距离坐标原点-161mm; $enh45Wy  
    9 2EMDKJ  
    R<=t{vTJ5  
    单透镜参数设定:F=100, bend=0, 位置位于坐标原点 .phQ7":`  
    iH>djGhTh  
    S%oGBY*Z  
    探测器参数设定: _X[c19q  
    *pMA V [^  
    在菜单栏中选择Create/Element Primitive /plane NEk [0  
    ,zFN3NLtA  
    lg1D>=(mY  
    | QA8"&r  
    J[l K  
    zvD5i,I  
    元件半径为20mm*20,mm,距离坐标原点200mm。 m%&B4E#3T  
    +[ zo2lBx  
    光源创建: =m:W  
    YO,ldsSz|r  
    光源类型选择为任意平面,光源半角设定为15度。 Oq5k4  
    5glGlD6R  
    F?B=:8,}  
    我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 i`qh|w/b_  
    YLGLr @:q  
    我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线 .yPx'_e  
    : +Kesa:E  
    R 6Em^A/>  
    功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 67x^{u7  
    sYpogFfV  
    创建分析面: t3G'x1  
    c &HoS  
    B}X#oA  
    到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。  6qlr+f  
    3:Wr)>l}#  
    ;>N ~ ,Q  
    到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 =HHg:"  
    Q_.Fw\l$`  
    FRED在探测器上穿过多个像素点迭代来创建热图 _3a 5/IZ  
    @{uc  
    FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。  ZsZ1  
    将如下的代码放置在树形文件夹 Embedded Scripts, <Tf;p8#  
    qS al~  
    lQ"i]};<D  
    打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 v=VmiBq[  
    Vm.@qO*=  
    绿色字体为说明文字, A]$+ `uS\  
    ?M^t4nj  
    '#Language "WWB-COM" #9OP.4  
    'script for calculating thermal image map Umg81!  
    'edited rnp 4 november 2005 EB<q.  
    ,6"n5Ks}  
    'declarations tpONSRY  
    Dim op As T_OPERATION sfE8b/Z8  
    Dim trm As T_TRIMVOLUME Q%^bA,$&D  
    Dim irrad(32,32) As Double 'make consistent with sampling J B@VP{  
    Dim temp As Double Z"X*FzFo  
    Dim emiss As Double o"[bIXf-h  
    Dim fname As String, fullfilepath As String kB#vh  
    Bq_P?Q+\  
    'Option Explicit ~b0qrjF;O  
    S8m&Rj3O&  
    Sub Main D5u"4\g< &  
        'USER INPUTS (14kR  
        nx = 31 "b4iOp&:=  
        ny = 31 4tJ4X' U  
        numRays = 1000 T0%TeFY  
        minWave = 7    'microns lVtn$frp  
        maxWave = 11   'microns /g'-*:a  
        sigma = 5.67e-14 'watts/mm^2/deg k^4 r:4IKuTR  
        fname = "teapotimage.dat" ;bX ~4O&v+  
    pIiED9  
        Print "" : "te-  
        Print "THERMAL IMAGE CALCULATION" \/'n[3x  
    QYXx7h r=$  
        detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 y4We}/-<  
    &>.1%x@R  
        Print "found detector array at node " & detnode @n* D>g  
    &\|<3sd(  
        srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 fMPq  
    N09+idg  
        Print "found differential detector area at node " & srcnode g4aX  
    GD{fXhgk  
        GetTrimVolume detnode, trm pm@Z[g  
        detx = trm.xSemiApe A>%UYA  
        dety = trm.ySemiApe %L>nXj  
        area = 4 * detx * dety R(N(@KC  
        Print "detector array semiaperture dimensions are " & detx & " by " & dety oV>AFs6  
        Print "sampling is " & nx & " by " & ny |!5T+H{Sj  
    cqL7dlhIl  
        'reset differential detector area dimensions to be consistent with sampling Z !25xqNCd  
        pixelx = 2 * detx / nx Fi% W\Y'  
        pixely = 2 * dety / ny *jw$d8q2  
        SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False DPQGh`J  
        Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 F%Umau*1  
    Tv,.  
        'reset the source power H9Q7({v  
        SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) f\_!N "HW  
        Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" }_(^/pnk  
    OMI!=Upz  
        'zero out irradiance array L Yg$M@  
        For i = 0 To ny - 1 _% 9+U [@  
            For j = 0 To nx - 1 pUMB)(<k  
                irrad(i,j) = 0.0 X#I`(iHY  
            Next j [S&O-b8A  
        Next i a05:iFoJ  
    :CST!+)o  
        'main loop J*~2 :{=%  
        EnableTextPrinting( False ) ,x"yZ  
    yb{{ z@  
        ypos =  dety + pixely / 2 *RbOQ86vP  
        For i = 0 To ny - 1  vs])%l%t  
            xpos = -detx - pixelx / 2 p/WH#4Xdr  
            ypos = ypos - pixely Jv^cOc  
    @W\4UX3dK  
            EnableTextPrinting( True ) +}XL>=-5  
            Print i {&}/p-S  
            EnableTextPrinting( False ) '=,rb  
    $K.%un Gm  
    }d3N`TT  
            For j = 0 To nx - 1 4 ^~zN"6]  
    %f_OP$;fc  
                xpos = xpos + pixelx A6UdWK  
    +.(}u ,:8  
                'shift source |Iok(0V  
                LockOperationUpdates srcnode, True O})u'  
                GetOperation srcnode, 1, op :O'C:n<g  
                op.val1 = xpos Fwx~ ~"I  
                op.val2 = ypos 2VV[*QI  
                SetOperation srcnode, 1, op HEB/\  
                LockOperationUpdates srcnode, False (\mulj  
    g"!#]LLe  
                'raytrace /x:(SR2,  
                DeleteRays bg1"v a#2  
                CreateSource srcnode <qq'h  
                TraceExisting 'draw o(d_uJOB  
    C*EhexK,}  
                'radiometry BsK|:MM]  
                For k = 0 To GetEntityCount()-1 ;Up'~BP(  
                    If IsSurface( k ) Then eC^0I78x  
                        temp = AuxDataGetData( k, "temperature" ) 8>VI$   
                        emiss = AuxDataGetData( k, "emissivity" ) SGBVR^  
                        If ( temp <> 0 And emiss <> 0 ) Then }} ``~  
                            ProjSolidAngleByPi = GetSurfIncidentPower( k ) (U(/ C5'  
                            frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) pqH( Tbjq  
                            irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi wj#J>C2]  
                        End If )+w/\~@  
    qb-2QPEB  
                    End If iFnOl*TC  
    ~X~xE]1o|U  
                Next k Wd^lt7(j  
    X"TUe>cM  
            Next j T@Ss&eGT2  
    YHO;IQ5  
        Next i ovQS ET18b  
        EnableTextPrinting( True ) ~}$\B^z+  
    zM_DE  
        'write out file 2Ft8dfdm`  
        fullfilepath = CurDir() & "\" & fname H b A3*2  
        Open fullfilepath For Output As #1 @~$F;M=.*  
        Print #1, "GRID " & nx & " " & ny J@ktj(  
        Print #1, "1e+308" "GwWu-GS  
        Print #1, pixelx & " " & pixely qab) 1ft  
        Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 cyGN3t9`.  
    l$qStL*8O  
        maxRow = nx - 1 to!mz\F  
        maxCol = ny - 1 WyBQ{H{So  
        For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) W$JY M3!  
                row = "" S_T{L  
            For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) TV1e bH7q  
                row = row & irrad(colNum,rowNum) & " "     ' append column data to row string ?jNF6z*M6  
            Next colNum                     ' end loop over columns 9feD!0A  
    J0?$v6S  
                Print #1, row -GDV[Bg  
    vx\nr8'k  
        Next rowNum                         ' end loop over rows Wj&<"Z6'm(  
        Close #1 kZU"Xn  
    JHvFIo   
        Print "File written: " & fullfilepath Y]+e  Df  
        Print "All done!!"  /,1SE(  
    End Sub !y>lOw})Q  
    _l#3]#  
    在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: |`_ <@b  
    $kxu;I  
    )3]83:lD2  
    找到Tools工具,点击Open plot files in 3D chart并找到该文件 lSn5=^]q  
      
    ]PR|d\O  
    `"xk,fVYd  
    打开后,选择二维平面图: 9nng}em>.  
    z3^RUoGU  
    QQ:2987619807
    Jj=yG"$!  
     
    分享到