切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 1587阅读
    • 0回复

    [分享]十字元件热成像分析 [复制链接]

    上一主题 下一主题
    离线infotek
     
    发帖
    6441
    光币
    26350
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-11-18
    简介:本文是以十字元件为背景光源,经过一个透镜元件成像探测器上,并显示其热成像图。 t-.2 +6"\  
    3*CzXK>`M&  
    成像示意图
    qk_p}l-F1  
    首先我们建立十字元件命名为Target 3I'M6WA  
    t}5'(9  
    创建方法: f}L>&^I)  
    /Ki0+(4  
    面1 : >P<k[vF  
    面型:plane +O;OSZ  
    材料:Air LFk5rv'sM0  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box bs<WH`P  
    `ENlV9  
    2(+RIu0d  
    辅助数据: g`%ED0aR  
    首先在第一行输入temperature :300K, ^2&O3s  
    emissivity:0.1; dAu^{1+2  
    ,Hik(22  
    j\XX:uU_  
    面2 : b5iIV1g  
    面型:plane 4@/q_*3o  
    材料:Air [(D}%+2   
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box *Gk<"pEeS  
    sf.E|]isW  
    H]% mP|  
    位置坐标:绕Z轴旋转90度, q#mFN/.(+  
    q8'@dH  
    N:UDbLjw~  
    辅助数据: {u(}ED#p  
    JL" 3#p}  
    首先在第一行输入temperature :300K,emissivity: 0.1; /7UovKKbz  
    m~= ]^e  
    G/LXUhuif  
    Target 元件距离坐标原点-161mm; 902!M65[rG  
    9J-!o]f .b  
    *3w/`R<\  
    单透镜参数设定:F=100, bend=0, 位置位于坐标原点 NPB,q& Th  
    9G`FY:(K  
    eHF(,JI  
    探测器参数设定: b6LC$"t0  
    +P> A P&  
    在菜单栏中选择Create/Element Primitive /plane [[*0MA2Y  
    Ux%\Y.PPI  
    ="#:=i]  
    Vz7w{HY  
    $>S}acuC  
    V'HlAQr  
    元件半径为20mm*20,mm,距离坐标原点200mm。 )$gsU@H -  
    e B(S+p?  
    光源创建: JR? )SGB  
    H}jK3;8E  
    光源类型选择为任意平面,光源半角设定为15度。 ~n8*@9[  
    i#M a -0#  
    X-G~/n-x  
    我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 1,%#O;ya  
    @MlU!oR&  
    我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线 (IoPU+1b  
    7tf81*e  
    f}9PEpa,Z  
    功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 iS:PRa1  
    Zgy2Pot  
    创建分析面: +}`O^#<qLX  
    }0Kqy;  
    |ZST Y}RXA  
    到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 T ,O<LFv  
    "dLMBY~  
    Pw^c2TQ  
    到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 f)AW! /  
    Oc"'ay(g  
    FRED在探测器上穿过多个像素点迭代来创建热图 Q#J>vwi=  
    jOm&yX  
    FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 ;)= zvr17  
    将如下的代码放置在树形文件夹 Embedded Scripts, (4{@oM#H6  
    aoakTi!}  
    sS1J.R  
    打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 +EiUAs~H  
    nuQLq^e  
    绿色字体为说明文字,  'QekQ];  
    OB*Xb*HN  
    '#Language "WWB-COM" c~pUhx1(  
    'script for calculating thermal image map 8x^H<y=O  
    'edited rnp 4 november 2005 zZ+LisSs&  
    eRl?9  
    'declarations Y;> p)'z  
    Dim op As T_OPERATION \}4#**]  
    Dim trm As T_TRIMVOLUME =:n[{/O=  
    Dim irrad(32,32) As Double 'make consistent with sampling ]/V Iff  
    Dim temp As Double UTK.tg  
    Dim emiss As Double bKt3x+x(  
    Dim fname As String, fullfilepath As String E/L?D  
    U+RCQTo  
    'Option Explicit A^r [_dyZ  
    /nMqEHCyg  
    Sub Main 7AtXG^lK  
        'USER INPUTS ^?^|Y?f2P?  
        nx = 31 HDW\S#  
        ny = 31 3]kAb`9[K2  
        numRays = 1000 G$x["  
        minWave = 7    'microns ` .sIZku  
        maxWave = 11   'microns X$9D0;L  
        sigma = 5.67e-14 'watts/mm^2/deg k^4 1O3<%T#LOZ  
        fname = "teapotimage.dat" fssL'DD  
    I|3v&E 1  
        Print "" [>Kxm  
        Print "THERMAL IMAGE CALCULATION" o%~K4 M".  
    JmJ,~_  
        detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 C@?e`=9(  
    #:\+7mCF  
        Print "found detector array at node " & detnode FO'. a  
    *}iT6OJ  
        srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 f $@".  
    8DS5<  
        Print "found differential detector area at node " & srcnode p_40V%y^  
    >'1Q"$;  
        GetTrimVolume detnode, trm +$mskj0s  
        detx = trm.xSemiApe L pi _uK  
        dety = trm.ySemiApe z#E,96R  
        area = 4 * detx * dety sImxa`kb  
        Print "detector array semiaperture dimensions are " & detx & " by " & dety |xgCV@  
        Print "sampling is " & nx & " by " & ny QsF<=b~  
    ~z1KD)^   
        'reset differential detector area dimensions to be consistent with sampling 9B;Sk]y  
        pixelx = 2 * detx / nx pu)9"Ad[ G  
        pixely = 2 * dety / ny \7tvNa,C  
        SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False (PrPH/$  
        Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 {FmFu$z+[  
    Z-p^3t'{  
        'reset the source power Lp]C![\>U  
        SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) G-i_s6Wu  
        Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" Y)5uK:)^  
    =cKk3kJC  
        'zero out irradiance array ?QIQ,?.  
        For i = 0 To ny - 1 Umwg iw  
            For j = 0 To nx - 1 ];}|h|q/{}  
                irrad(i,j) = 0.0 leYmV FE  
            Next j ~ V- o{IA  
        Next i <C`eZ}Qqv  
    +#db_k  
        'main loop gGdYh.K&e5  
        EnableTextPrinting( False ) +4p ;4/=  
    .p0n\ $r  
        ypos =  dety + pixely / 2 Ay6rUN1ef  
        For i = 0 To ny - 1 [3NV #  
            xpos = -detx - pixelx / 2 COL8YY  
            ypos = ypos - pixely !skWe~/  
    Sm_:SF!<D6  
            EnableTextPrinting( True ) L#@$Mtc  
            Print i k 5r*?Os  
            EnableTextPrinting( False ) jW$f(qAbm  
    Oc+L^}elJ  
    ,F9wc<V8  
            For j = 0 To nx - 1 N)y;owgo  
    ~4` ec   
                xpos = xpos + pixelx 5.HztNL  
    8A]q!To  
                'shift source W",jZ"7  
                LockOperationUpdates srcnode, True $/#)  
                GetOperation srcnode, 1, op g\nL n#  
                op.val1 = xpos acZ|H  
                op.val2 = ypos n?fC_dy  
                SetOperation srcnode, 1, op .7Bav5 ;  
                LockOperationUpdates srcnode, False Sh6 NgO  
    5P2FNUKL  
                'raytrace ] r+I D  
                DeleteRays K{h]./%  
                CreateSource srcnode = |zLr"  
                TraceExisting 'draw .@Sh,^v  
    /38Pp%  
                'radiometry #{`NJ2DU]  
                For k = 0 To GetEntityCount()-1 u}0t`w:  
                    If IsSurface( k ) Then JkEQ@x  
                        temp = AuxDataGetData( k, "temperature" ) mYRR==iDL  
                        emiss = AuxDataGetData( k, "emissivity" ) Z{)|w=  
                        If ( temp <> 0 And emiss <> 0 ) Then l{ { #tW  
                            ProjSolidAngleByPi = GetSurfIncidentPower( k ) gz:c_HJ  
                            frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) GDe$p;#"9g  
                            irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi Raqr VC  
                        End If 5S?Xl|8E  
    B|w}z1.  
                    End If uty]-k   
    [vJosbU;  
                Next k 5Z0x2 jV  
    7cSvAX0Z.  
            Next j :P'5_YSi  
    sA j$U^Gp  
        Next i BNLall  
        EnableTextPrinting( True ) ]z@]Fi33Y  
    6n4S$a  
        'write out file }Q*ec/^{f  
        fullfilepath = CurDir() & "\" & fname DvKMb-*S  
        Open fullfilepath For Output As #1 eVJL|uI|  
        Print #1, "GRID " & nx & " " & ny ";%1sK  
        Print #1, "1e+308" g-`NsqzD  
        Print #1, pixelx & " " & pixely w%"q=V  
        Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 v7RDoO]I  
    #wcoLCjs)  
        maxRow = nx - 1 ijT^gsLL  
        maxCol = ny - 1 X13bi}O6#  
        For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) *9 xD]ZZF  
                row = "" @bE?WXY  
            For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) JaTW/~ TU  
                row = row & irrad(colNum,rowNum) & " "     ' append column data to row string DtX{0p<T3  
            Next colNum                     ' end loop over columns ~Y$1OA8  
    Q0A1N[  
                Print #1, row e;v2`2z2  
    uDUSR+E>  
        Next rowNum                         ' end loop over rows "^7Uk#! 7  
        Close #1 8;@eY`0(  
    C8-q<t#SF  
        Print "File written: " & fullfilepath p^3d1H3   
        Print "All done!!" ('Pd GV4V  
    End Sub TlJF{ <E  
    "5FeP;  
    在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: NH!! .Z"  
    2I5@zm ea  
    }r[BME  
    找到Tools工具,点击Open plot files in 3D chart并找到该文件 ny0`~bl{p  
      
    $$w 1%#F =  
    >U]. k8a)  
    打开后,选择二维平面图: e78}  
    %r!-*p<i|  
    QQ:2987619807
    G"(!5+DLy  
     
    分享到