切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 1416阅读
    • 0回复

    [分享]十字元件热成像分析 [复制链接]

    上一主题 下一主题
    离线infotek
     
    发帖
    6401
    光币
    26150
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-11-18
    简介:本文是以十字元件为背景光源,经过一个透镜元件成像探测器上,并显示其热成像图。 7Mb# O_eh  
    s7Ub@  
    成像示意图
    Lzu.)C@Amx  
    首先我们建立十字元件命名为Target h3LE>}6D  
    $,+O9Et  
    创建方法: &e 6CJ  
    'Vyt4^$%  
    面1 : h$4Hw+Yxs]  
    面型:plane Zjbc3 M5  
    材料:Air wiz$fj  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box R" ;x vo*  
    P"B0_EuR<T  
    Tb3J9q+ya  
    辅助数据: S S2FTb-m  
    首先在第一行输入temperature :300K, &?mD$Eo  
    emissivity:0.1; Zt.'K(]2h  
    DxUKUE  
    _%5R o6  
    面2 : sZx/Ee   
    面型:plane B!vmQR*1  
    材料:Air $5Xh,DOg  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box D6>HN[D"  
    $STaQ28C  
    U2bjFLd"  
    位置坐标:绕Z轴旋转90度, (p2K36,9m  
    `s\?w5[  
    0NS<?p~_S  
    辅助数据: bbrXgQ`s+w  
    l c+g&f  
    首先在第一行输入temperature :300K,emissivity: 0.1; b )B? F  
     o4|M0  
    G1vNt7  
    Target 元件距离坐标原点-161mm; {phNds%  
    Ney/[3 A  
    :A/d to  
    单透镜参数设定:F=100, bend=0, 位置位于坐标原点 mV3cp rRqv  
    S:h{2{  
    ILGMMA_2  
    探测器参数设定: ogyTO|V=  
    ;M)QwF1  
    在菜单栏中选择Create/Element Primitive /plane ;7} VBkH  
    ,6-:VIHQ  
    Tj:B!>>  
    D)L+7N0D~  
    x[a<mk  
    Qk:Y2mL  
    元件半径为20mm*20,mm,距离坐标原点200mm。 o,_? ^'@  
    e 9;~P}  
    光源创建: gt@m?w(  
    uG,5BV.M  
    光源类型选择为任意平面,光源半角设定为15度。 f|\onHI)>  
    f&Gt|  
    be.*#[  
    我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 A~)D[CV  
    bbE!qk;hEP  
    我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线 U|jSa,}  
    { \81i8b]  
    U/!TKic+  
    功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 k$blEa4  
    F(>Np2oi6  
    创建分析面: ,U2*FZ["  
    9Z4nAc  
    ]s<[D$ <,  
    到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 AE[b},-[  
    e"|efE  
    JMC. w!  
    到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 4h|c<-`>t  
    ;r<^a6B  
    FRED在探测器上穿过多个像素点迭代来创建热图 Ayxkv)%:@)  
    nT7%j{e=L  
    FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 y [}.yyye  
    将如下的代码放置在树形文件夹 Embedded Scripts, 0XE4<U   
    |-:()yxs  
    k\5c|Wq|g  
    打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 rC5 p-B%  
    ! >FYK}c7  
    绿色字体为说明文字, >*35C`^  
    l+KY)6o  
    '#Language "WWB-COM" M:Pc,  
    'script for calculating thermal image map ~vm%6CABM  
    'edited rnp 4 november 2005 ]cHgleHQ  
    t}r ' k/[  
    'declarations f6hnTbJ  
    Dim op As T_OPERATION |d{PA.@33  
    Dim trm As T_TRIMVOLUME (ZUHvvL  
    Dim irrad(32,32) As Double 'make consistent with sampling lXW%FH6c+  
    Dim temp As Double gb[5&> (#  
    Dim emiss As Double 6m}Ev95  
    Dim fname As String, fullfilepath As String y%"{I7!A  
    11 Q1AN  
    'Option Explicit SW@$ci  
    (KjoSN( K  
    Sub Main n<LEler#M  
        'USER INPUTS ~!B\(@GU  
        nx = 31 rBQ_iB_  
        ny = 31 ,LHn90S  
        numRays = 1000 ?gA 8x  
        minWave = 7    'microns &* M!lxDN  
        maxWave = 11   'microns T<n  
        sigma = 5.67e-14 'watts/mm^2/deg k^4 X _q\Sg  
        fname = "teapotimage.dat" ,0 M_ Bk"  
    6AAz  
        Print "" |3(' N#|  
        Print "THERMAL IMAGE CALCULATION" Ua:}Vn&!  
    t% d Z-Ym  
        detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 cuax;0{%  
    g];!&R-  
        Print "found detector array at node " & detnode p $S*dr  
    ER%^!xA  
        srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 ~[t[y~Hup  
    G30-^Tr   
        Print "found differential detector area at node " & srcnode wON!MhA;  
    ` 'DmDg  
        GetTrimVolume detnode, trm KjD/o?JUr  
        detx = trm.xSemiApe T$8)u'-pa  
        dety = trm.ySemiApe 4>wP7`/+y  
        area = 4 * detx * dety {:/#Nc$5  
        Print "detector array semiaperture dimensions are " & detx & " by " & dety Xr,1&"B&t  
        Print "sampling is " & nx & " by " & ny 8SMxw~9$  
    T^zXt?  
        'reset differential detector area dimensions to be consistent with sampling X]ipI$'+C  
        pixelx = 2 * detx / nx /:cd\A}  
        pixely = 2 * dety / ny A#e%^{q$  
        SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False wW Lj?;bx  
        Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 #|uCgdi  
    LP.]9ut  
        'reset the source power 5?f ^Rz  
        SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) ^ gdaa>L  
        Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" jk;j2YNPw  
    =>m<GvQz  
        'zero out irradiance array ]vAz  
        For i = 0 To ny - 1 3/P1!:g9  
            For j = 0 To nx - 1 /4yo`  
                irrad(i,j) = 0.0 (Lbbc+1m  
            Next j ]_)yIi"  
        Next i ]=\].% >  
    GV1pn) 4  
        'main loop lt/1f{v[:  
        EnableTextPrinting( False ) vx{}}/B]J  
     CT&|QH{  
        ypos =  dety + pixely / 2 V.U| #n5  
        For i = 0 To ny - 1 % aP!hy  
            xpos = -detx - pixelx / 2 l5~os>  
            ypos = ypos - pixely y5vvu>nd  
    &5>Kl}7  
            EnableTextPrinting( True ) EfqX y>W  
            Print i Q-(zwAaE  
            EnableTextPrinting( False ) ,<.V7(|t)  
    &j;wCvE4+  
    Q 3 ea{!r  
            For j = 0 To nx - 1 |NlO7aQ>2H  
    <;lkUU(WT2  
                xpos = xpos + pixelx ${DUCud,kY  
    (|2t#'m  
                'shift source kj Jn2c:y  
                LockOperationUpdates srcnode, True QL(n} {.%  
                GetOperation srcnode, 1, op pd?M f=>#  
                op.val1 = xpos gM&{=WDG6  
                op.val2 = ypos 8C40%q..  
                SetOperation srcnode, 1, op :'Vf g[Uq  
                LockOperationUpdates srcnode, False td$E/h=3  
    <NMEGit  
                'raytrace 7P } W *  
                DeleteRays 5%"V[lDx@  
                CreateSource srcnode ?d*z8w  
                TraceExisting 'draw IW5,7.  
    ibcRU y0%  
                'radiometry Y/F6\oh  
                For k = 0 To GetEntityCount()-1 t5Sy V:fP  
                    If IsSurface( k ) Then I{|O "8  
                        temp = AuxDataGetData( k, "temperature" ) Cp\6W[2+B  
                        emiss = AuxDataGetData( k, "emissivity" ) w?L6!)oiz  
                        If ( temp <> 0 And emiss <> 0 ) Then 7g^]:3f!   
                            ProjSolidAngleByPi = GetSurfIncidentPower( k ) !aUs>1i  
                            frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) (g]!J_Z"  
                            irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi .xCZ1|+gG  
                        End If -OV&Md:~  
    Ov@gh kr  
                    End If KYm0@O>;  
    2DA]i5  
                Next k }dX*[I   
    X0HZH?V+  
            Next j b! t0w{^w  
    h4gXvPS&r  
        Next i : $1?i)  
        EnableTextPrinting( True ) b`Zx!^  
    #\{l"-  
        'write out file E:68?IJ  
        fullfilepath = CurDir() & "\" & fname { l/U6](  
        Open fullfilepath For Output As #1 b=C*W,Q_#  
        Print #1, "GRID " & nx & " " & ny aqZi:icFa  
        Print #1, "1e+308" %@b0[ZC  
        Print #1, pixelx & " " & pixely qz_7%c]K[  
        Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 )rU  
    >58YjLXb  
        maxRow = nx - 1 K-)] 1BG  
        maxCol = ny - 1 xK[ou'  
        For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) K8|r&`X0  
                row = "" /xBb[44z8  
            For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) Wu/]MBM  
                row = row & irrad(colNum,rowNum) & " "     ' append column data to row string 5Pc;5 o0C  
            Next colNum                     ' end loop over columns v4TQX<0s  
    CZwXTHe  
                Print #1, row B3`5O[ 6  
    P= BZ+6DS  
        Next rowNum                         ' end loop over rows 4i;{!sT  
        Close #1 Y1\}5k{>  
    &J]K3w1p  
        Print "File written: " & fullfilepath { 'eC`04E  
        Print "All done!!" /{J4:N'B>  
    End Sub u/0h$l  
    H7Rx>h_  
    在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: C3f' {}  
    .NC!7+1m  
    9<?M8_  
    找到Tools工具,点击Open plot files in 3D chart并找到该文件 M] %?>G  
      
    [85spub&}  
    8NJqV+jn)t  
    打开后,选择二维平面图: }"H,h)T  
    .hb:s,0mP  
    QQ:2987619807
    iq8<ov  
     
    分享到