切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 1475阅读
    • 0回复

    [分享]十字元件热成像分析 [复制链接]

    上一主题 下一主题
    离线infotek
     
    发帖
    6421
    光币
    26250
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-11-18
    简介:本文是以十字元件为背景光源,经过一个透镜元件成像探测器上,并显示其热成像图。 dUOvv/,FZT  
    CUgXpU*  
    成像示意图
    8B C F.y  
    首先我们建立十字元件命名为Target PW"G]G,  
    2]n"7Z8(v8  
    创建方法: @.f@N;z  
    5|!x0H;  
    面1 : UXVjRY`M.\  
    面型:plane M7 &u_Cn?  
    材料:Air  E%\jR  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box F i?2sa  
    %j%}iM/(<  
    Hxft~*  
    辅助数据: RKsr}-1 8  
    首先在第一行输入temperature :300K, 4]jN@@  
    emissivity:0.1; {x e$  
    l/,O9ur-  
    D;.O#bS  
    面2 : \x i wp.  
    面型:plane ooY2"\o  
    材料:Air sZ #Ck"n  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box S+>1yvr),  
    R{.5Z/Vp6E  
    #/zPAcV:  
    位置坐标:绕Z轴旋转90度, Ml)~%ZbF  
    } )O ^xF ~  
    f>i6f@  
    辅助数据: Ym+k \h  
    SovK|b &  
    首先在第一行输入temperature :300K,emissivity: 0.1; @^oOXc,r$  
    :9N~wd  
    r+fR^hv  
    Target 元件距离坐标原点-161mm; rMIr&T  
    bj4cW\b(  
    ab8uY.j  
    单透镜参数设定:F=100, bend=0, 位置位于坐标原点 /%Lj$]S7[4  
    Z.+-MNWV  
    09<O b[%h  
    探测器参数设定: (KR$PLxDK  
    es@_6ol.@  
    在菜单栏中选择Create/Element Primitive /plane XYIZ^_My  
    }Z*@EWc>  
    B Jp\a7`;  
    ]5W0zNb*  
    O1IR+"0  
    ?ihkV? ;)  
    元件半径为20mm*20,mm,距离坐标原点200mm。 8qL*Nf  
    UA$ XjP  
    光源创建: | Zx  
    iLw O4i  
    光源类型选择为任意平面,光源半角设定为15度。 2C^/;z  
    Q{6Bhx *>  
    P]:r'^Yn  
    我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 )K.~A&y@  
    UR6.zE4=_  
    我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线 {aP5Mem  
    IBWUXG;  
    P.mz$M  
    功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 ,-^Grmr4M  
    o5KpiibFM  
    创建分析面: }I<r=?  
    (3YCe{  
    WCT}OiLsL  
    到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 =jIB5".  
    7?<.L  
    ^T`)ltI]V  
    到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 s7=CH   
    _]8FCO  
    FRED在探测器上穿过多个像素点迭代来创建热图 .w3.zZ0[  
    d;O16xcM/  
    FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 <a7y]Py  
    将如下的代码放置在树形文件夹 Embedded Scripts, ($EA/|z  
    fH? e9E4l  
    ^lhV\YxJ  
    打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 Y`jvza%  
    t%Hg8oya  
    绿色字体为说明文字, 89T xd9X  
    -b+VzVJZ  
    '#Language "WWB-COM" ,K=\Y9l3  
    'script for calculating thermal image map ~pA_E!3W  
    'edited rnp 4 november 2005 r'xZF~}k"~  
    Rhh5r0 \5  
    'declarations f tW-  
    Dim op As T_OPERATION SskvxH+7  
    Dim trm As T_TRIMVOLUME $,$bZV  
    Dim irrad(32,32) As Double 'make consistent with sampling {]1o($.u  
    Dim temp As Double _<pSCR0  
    Dim emiss As Double Qa@b-v'by  
    Dim fname As String, fullfilepath As String >+y[HTf-  
    (UWWULV  
    'Option Explicit %PozxF:  
    P6'Oe|+'  
    Sub Main sFv68Ag+  
        'USER INPUTS a^_\#,}  
        nx = 31 eMyh&@7(F  
        ny = 31 |?k3I/;  
        numRays = 1000 - ;1'{v  
        minWave = 7    'microns $sK8l=#  
        maxWave = 11   'microns /H.w0fu&.S  
        sigma = 5.67e-14 'watts/mm^2/deg k^4 "F?p\I)(  
        fname = "teapotimage.dat" Z5 iP1/&D  
    i]&C=X  
        Print "" :YaEMQJ^  
        Print "THERMAL IMAGE CALCULATION"  >d-By  
    .vsrZ_y?  
        detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点  h>\T1PM  
    6'CZfs\  
        Print "found detector array at node " & detnode h[~JCYA  
    " &2Kvsz  
        srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 IcmTF #{D  
    ;NNYJqWd^]  
        Print "found differential detector area at node " & srcnode -X+G_rY  
    "TW%-67  
        GetTrimVolume detnode, trm IzVb  
        detx = trm.xSemiApe kN(*.Q|VZ  
        dety = trm.ySemiApe 6.%M:j0 0E  
        area = 4 * detx * dety K8[vJ7(!|  
        Print "detector array semiaperture dimensions are " & detx & " by " & dety w#|uR^~  
        Print "sampling is " & nx & " by " & ny iUDNm|e  
    |a9d]^  
        'reset differential detector area dimensions to be consistent with sampling fA"N5qQI(  
        pixelx = 2 * detx / nx $yxwB/O(  
        pixely = 2 * dety / ny }e$^v*16  
        SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False tt5t(+5j  
        Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 ipzv]c&  
    Y'-@O"pK  
        'reset the source power JSz;>  
        SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) 8@;|x2=y  
        Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" ,:6gp3  
    #dy z  
        'zero out irradiance array eS(hLXE!7  
        For i = 0 To ny - 1 WUOoK$I~K  
            For j = 0 To nx - 1 qTc-Z5  
                irrad(i,j) = 0.0 4lrF{S8  
            Next j L#U-d zy\  
        Next i Gy}WZ9{  
    h-r\ 1{Q1]  
        'main loop s<3cvF<  
        EnableTextPrinting( False ) Xwz9E!m  
    aumWU{j=  
        ypos =  dety + pixely / 2 +xoh=m  
        For i = 0 To ny - 1 yM* CA,(c  
            xpos = -detx - pixelx / 2 `)5,!QPQ7u  
            ypos = ypos - pixely h8 Wv t's  
    z~Zu >Q1u[  
            EnableTextPrinting( True ) ])`+ 78  
            Print i _0HCtx ;  
            EnableTextPrinting( False ) \Af25Mcf:  
    +yC]f b  
    %[3?vX  
            For j = 0 To nx - 1 /G[2   
    `D *U@iJ  
                xpos = xpos + pixelx E2.@zY|:  
    Q\H1=8  
                'shift source ;MSdTHN"  
                LockOperationUpdates srcnode, True ^YVd^<cE  
                GetOperation srcnode, 1, op sA^_I6>M"  
                op.val1 = xpos GFA D  
                op.val2 = ypos + t%[$"$  
                SetOperation srcnode, 1, op ".0~@W0  
                LockOperationUpdates srcnode, False Ug}dw a  
    LYTx8  
                'raytrace (29h{=P'  
                DeleteRays k@}?!V*l  
                CreateSource srcnode |:qaF  
                TraceExisting 'draw 5a8[0&hA 2  
    lI,lR  
                'radiometry +=_^4  
                For k = 0 To GetEntityCount()-1 sGBm[lplz  
                    If IsSurface( k ) Then gteG*pi  
                        temp = AuxDataGetData( k, "temperature" ) %P3|#0yg0  
                        emiss = AuxDataGetData( k, "emissivity" ) ucP"<,a  
                        If ( temp <> 0 And emiss <> 0 ) Then cx+w_D9b!  
                            ProjSolidAngleByPi = GetSurfIncidentPower( k ) rN$U%\.I  
                            frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) aL)}S%5o?  
                            irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi yM_ta '^$  
                        End If %#AM }MWIa  
    5Q/&,NP  
                    End If 30BFwNE  
    GbFtX\s+5j  
                Next k #\P\(+0K  
    j<*  
            Next j hq[:U?!Tt  
    @%FLT6MY  
        Next i ,Wbr; zb  
        EnableTextPrinting( True ) {pWb*~!k  
    0\B31=N(  
        'write out file iY~.U`b`  
        fullfilepath = CurDir() & "\" & fname |qOoL*z  
        Open fullfilepath For Output As #1 s%cfJe_k  
        Print #1, "GRID " & nx & " " & ny 4J~ZZ  
        Print #1, "1e+308" \]:}lVtxS  
        Print #1, pixelx & " " & pixely e7O9q8b  
        Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 uT Z#85L `  
    sY- ] Q  
        maxRow = nx - 1 >$/<~j]  
        maxCol = ny - 1 LMGo8%2I  
        For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) +VSq[P  
                row = "" YK{E=<:  
            For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) d*B^pDf  
                row = row & irrad(colNum,rowNum) & " "     ' append column data to row string =/#+,  
            Next colNum                     ' end loop over columns g +RgDt9  
    ',_E;(  
                Print #1, row 6x.ZS'y  
    vC [uEx:  
        Next rowNum                         ' end loop over rows )'1rZb5  
        Close #1 mm1fG4 *%  
    1(YEOZ  
        Print "File written: " & fullfilepath V7gv@<1<y  
        Print "All done!!" hf`5NcnP  
    End Sub 0[ BPmO6  
    sC}p_'L  
    在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: TXWYQ~]3w  
    RE<s$B$[  
    kq4ii`zi8  
    找到Tools工具,点击Open plot files in 3D chart并找到该文件 u3k{s  
      
    *+UgrsRk  
    ~+)sL1lx  
    打开后,选择二维平面图: `;c{E%qeq  
    n OQvBc  
    QQ:2987619807
    <E&8g[x6  
     
    分享到