切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 1514阅读
    • 0回复

    [分享]十字元件热成像分析 [复制链接]

    上一主题 下一主题
    离线infotek
     
    发帖
    6429
    光币
    26290
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-11-18
    简介:本文是以十字元件为背景光源,经过一个透镜元件成像探测器上,并显示其热成像图。 [KGj70|~  
    W4qT]m  
    成像示意图
    _o?aO C  
    首先我们建立十字元件命名为Target ~|~2B$JeV  
    YJwI@E(l$  
    创建方法: 9^sz,auB  
    :`BG/  
    面1 : E2o8'.~Yd`  
    面型:plane ZBK)rmhMx  
    材料:Air b:O_PS5h  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box Iza#v0  
     N6\m*j,`  
    ZZ}HgPZ  
    辅助数据: 'T|QG@q  
    首先在第一行输入temperature :300K, jv29,46K  
    emissivity:0.1; /55 3v;l<  
    (3x2^M8  
    y9i+EV  
    面2 : uu0t}3l  
    面型:plane jX$U)O  
    材料:Air KCa @0  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box J8@bPS27q  
    |gk"~D  
    m=iKu(2xRq  
    位置坐标:绕Z轴旋转90度, *g'%5i1ed  
    ki `ur%h  
    Sng3B  
    辅助数据: BG-nf1K(  
    A$zC$9{0I  
    首先在第一行输入temperature :300K,emissivity: 0.1; .`D$.|!8g  
    R6GlQ G  
    Ba%b]vp  
    Target 元件距离坐标原点-161mm; DoeE=X*`k  
    }lx'NY~(W  
    C91'dM  
    单透镜参数设定:F=100, bend=0, 位置位于坐标原点 xJ\sm8  
    7S_"h*Ud  
    ^D {v L  
    探测器参数设定: 7W/55ZTmJ  
    7bM H  
    在菜单栏中选择Create/Element Primitive /plane u]3VK  
    )Y1+F,C  
    cR6 #$-a  
    w*Ze5j4@ \  
    kQ6YQsJ.*  
    gyMy;}a  
    元件半径为20mm*20,mm,距离坐标原点200mm。 DT]3q4__Q  
    UPuG&A#VV  
    光源创建: FePWr7Ze  
    @G>&Gu;5  
    光源类型选择为任意平面,光源半角设定为15度。 'Hq#9?<2M  
    y<8o!=Tb5  
    OBM&N  
    我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 C !Lu`y  
    fdKTj =4  
    我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线 <5c^DA  
    l2 #^}-  
    w4uY/!~k  
    功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 _cc9+o  
    a&n}pnEn)  
    创建分析面: #|cr\\2*  
    N?%FVF  
    A$J?-  
    到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 ueJ_F#y  
    2\xEMec  
    7lQ:}&  
    到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 G:PcV_ihx  
    +d8?=LX  
    FRED在探测器上穿过多个像素点迭代来创建热图 Z9I ?j1K|!  
    /5 R?(-  
    FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 S\11 8TpD  
    将如下的代码放置在树形文件夹 Embedded Scripts, lJ4&kF=t  
    ;u?H#\J,  
    0\Myhh~DLE  
    打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 {F$MZ2E  
    .l]w4Hf  
    绿色字体为说明文字, v>p~y u+G  
    O(44Dy@2  
    '#Language "WWB-COM" qRA ,-N  
    'script for calculating thermal image map ]`n6H[6O  
    'edited rnp 4 november 2005 'uV;)~  
    VTJ,;p_UH  
    'declarations 0%hOB :  
    Dim op As T_OPERATION ,W&::/2<7  
    Dim trm As T_TRIMVOLUME Z<Ke /Xi  
    Dim irrad(32,32) As Double 'make consistent with sampling ?Kf?Z`9 *Y  
    Dim temp As Double hQDZ%>  
    Dim emiss As Double S"joXmJ/-C  
    Dim fname As String, fullfilepath As String wfF0+T+IA  
    Mhj.3nN  
    'Option Explicit D4CiB"g3*  
    3SWO_  
    Sub Main tm280  
        'USER INPUTS C{Er%  
        nx = 31  Wfyap)y  
        ny = 31 3eS *U`_  
        numRays = 1000 n g?kl|VG  
        minWave = 7    'microns niP/i  
        maxWave = 11   'microns hiA%Tq?  
        sigma = 5.67e-14 'watts/mm^2/deg k^4 qHQ#^jH  
        fname = "teapotimage.dat" )o@-h85";  
    WscNjWQ^TD  
        Print "" q`DilZ]S  
        Print "THERMAL IMAGE CALCULATION" hA_Y@&=W  
    W"L;8u  
        detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 Qh. : N  
    ZSg["`  
        Print "found detector array at node " & detnode cu V}<3&  
    ZI'Mr:z4  
        srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 ]f"l4ay@M  
    /iekww^54  
        Print "found differential detector area at node " & srcnode <[mvfw  
    %4rPkPAtrp  
        GetTrimVolume detnode, trm hJ1:#%Qe.  
        detx = trm.xSemiApe LxC"j1wfl  
        dety = trm.ySemiApe 92HxZ*t7km  
        area = 4 * detx * dety _~b$6Nf!83  
        Print "detector array semiaperture dimensions are " & detx & " by " & dety ;/phZ$l  
        Print "sampling is " & nx & " by " & ny `CXAE0Fx  
    tag~SG`ov  
        'reset differential detector area dimensions to be consistent with sampling w\z6-qa  
        pixelx = 2 * detx / nx ]B"YW_.x2  
        pixely = 2 * dety / ny 4-:TQp(  
        SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False GGR hM1II  
        Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 E1e#E3Yq}s  
    Q]}aZ4L  
        'reset the source power M4:}`p=  
        SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) * -Kf  
        Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" Kqt,sJ  
    ^"!j m  
        'zero out irradiance array J0vCi}L  
        For i = 0 To ny - 1 1Goju ey  
            For j = 0 To nx - 1 V:w=h>z8  
                irrad(i,j) = 0.0 c_xo6+:l  
            Next j }.UE<>OX  
        Next i 'h&"xXv4|  
    @Gj|X>0  
        'main loop 3K57xJzK  
        EnableTextPrinting( False ) Uxq9H  
    MH>CCT  
        ypos =  dety + pixely / 2 i2EXE0;  
        For i = 0 To ny - 1 7EKQE>xj  
            xpos = -detx - pixelx / 2 /Af:{|'$%  
            ypos = ypos - pixely q{W@J0U  
    )NwIEk>Tf  
            EnableTextPrinting( True ) <d\Lvo[  
            Print i 9aE!! (E  
            EnableTextPrinting( False ) ^=nJ,-(h_  
     OBY  
    tDl1UX  
            For j = 0 To nx - 1 ;n Pjyu'g  
    *@|EaH/  
                xpos = xpos + pixelx ? D?XaRb  
    *k(>Qsb "  
                'shift source K 0i[D"  
                LockOperationUpdates srcnode, True X~O2!F  
                GetOperation srcnode, 1, op :-=,([TJ  
                op.val1 = xpos 'ju{j`b  
                op.val2 = ypos 2<*DL 6  
                SetOperation srcnode, 1, op ly<1]jK  
                LockOperationUpdates srcnode, False 0"~`U.k~M  
    FBYA d@="2  
                'raytrace qd9CKd  
                DeleteRays fJ3*'(  
                CreateSource srcnode  ;Q;u^T`  
                TraceExisting 'draw :h>d'+\  
    '= _}&  
                'radiometry +@Oo)#V|.  
                For k = 0 To GetEntityCount()-1 Khbkv  
                    If IsSurface( k ) Then wsyG~^>  
                        temp = AuxDataGetData( k, "temperature" ) S0_#h)  
                        emiss = AuxDataGetData( k, "emissivity" ) d85\GEF9i  
                        If ( temp <> 0 And emiss <> 0 ) Then TS9=A1J#  
                            ProjSolidAngleByPi = GetSurfIncidentPower( k ) |Go?A/'  
                            frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) %d5;JEgA:g  
                            irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi cC.=,n  
                        End If vpy_piG|  
    HCh;Xi  
                    End If XCNfogl  
    Xj/U~  
                Next k b5hJaXJN  
    Dl kHE8r\  
            Next j ^rI<}cfR  
    g7*ii X  
        Next i km; M!}D  
        EnableTextPrinting( True ) Zc"Vf]:  
    .!ThqYo  
        'write out file "#4p#dM0e  
        fullfilepath = CurDir() & "\" & fname un4q,Ac~0  
        Open fullfilepath For Output As #1 e>-a\g  
        Print #1, "GRID " & nx & " " & ny D@V1}/$UoN  
        Print #1, "1e+308" etX &o5A  
        Print #1, pixelx & " " & pixely =(f+geA"hm  
        Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 [TAW68f'  
    8*nl Wl9qo  
        maxRow = nx - 1 }s_'q~R  
        maxCol = ny - 1 Z&hzsJK{m$  
        For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) lF]cUp#<  
                row = "" <MhjvHg  
            For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) JJHr<|K  
                row = row & irrad(colNum,rowNum) & " "     ' append column data to row string #"^F:: b-  
            Next colNum                     ' end loop over columns TO.71x|  
     5:mS~  
                Print #1, row VtX9}<Ch~  
    -e"~UDq`  
        Next rowNum                         ' end loop over rows x.rOP_rs  
        Close #1 8Z TN  
    8SvPDGu `]  
        Print "File written: " & fullfilepath }QszOi\fV1  
        Print "All done!!" K-&&%Id6R  
    End Sub HH>"J /;c,  
    ~Qzb<^9]  
    在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: Ca[H<nyj  
    Y}_J@&:  
    C WJGr:}&  
    找到Tools工具,点击Open plot files in 3D chart并找到该文件 KdT1Nb=  
      
    ~n:dHK`  
    j?&Rf,,%  
    打开后,选择二维平面图: `6KTQk'  
    4\)"Ih  
    QQ:2987619807
    \{F{yq(  
     
    分享到