?摘 要:将可靠性优化设计方法应用于普通圆柱蜗杆减速器设计,使普通圆柱蜗杆减速器在满足承载能力及强度要求条件下,效率最高、体积最小、润滑条件最佳。 ,fj~BkW{
关键词:普通圆柱蜗杆减速器;可靠性优化设计;多目标 zhU^~4F
nDNK}O~'
kZ!&3G9>-
E%$[*jZ
1前言 <O{G&
蜗杆传动具有传动比大而结构尺寸紧凑等优点,在许多设备的传动系统中得到了广泛的应用,而目前对蜗杆减速器进行设计时,常把设计变量作为确定性变量而忽略其随机性,这样便使设计结果很难真实地反映减速器的运行情况。另一方面,对蜗杆减速器进行优化设计时,大多是进行单目标优化设计,为使蜗杆减速器的设计既具有运行可靠性的定量描述,又有获得其整体综合功能最优的设计方案,运用可靠性优化设计方法,对圆柱蜗杆减速器进行了可靠性多目标优化设计。? cN)noGkp
2可靠性多目标优化模型的建立 ^L'<%_#.
根据蜗杆减速器的工作特点和结构要求,将圆柱蜗杆减速器的体积最小、传动效率最高、润滑条件最佳作为多目标优化设计的分目标函数。 Gn<e&|4>i}
普通圆柱蜗杆减速器的简图如图1所示。 tz2$j@!=
\G6V -W
d)0 hAdh
2.1目标函数? M*F`s&vM
2.1.1体积最小分目标函数f1(x)的确定 a(x#6
由于蜗杆减速器体积主要取决于蜗杆、蜗轮和蜗轮轴的体积,故取三者的体积之和作为目标函数。 TH+TcYqO
07Oagq(
式中,蜗轮齿宽B2=[m(q+2)-0.5m]sinγ+0.8m;其中γ为蜗轮齿宽角之半,一般γ=50°;蜗杆螺纹部分长度L1=(12.5+0.09Z2)m+25;蜗轮轮毂端面与箱体内壁间的距离,一般取Δ2=15mm;轴承中心至箱体内壁间的距离,一般取Δ3=0.25ds2。? _Fjax
2.1.2效率最高分目标函数?f2(x)的确定 GGFrV8
为使蜗杆传动效率最大,发热量与磨损最小,应使齿面相对滑动速度Vs趋于最小,即
kb'l@d#E
= Ruq
2.1.3润滑条件最佳分目标函数f3(x)的确定 lsVg'k/Z!
由磨擦学可知,为建立弹性流体动压润滑状态创造有力条件,需使蜗杆蜗轮齿面接触点处的诱导法曲率半径R趋于最大,即其曲率1/R趋于最小。 V}Pv}j:;
^1XnnQa
式中:α为标准压力角(α=20°)。? ^0/!:*?
2.1.4统一目标函数的确定 :Z]\2(x
对此多目标优化设计问题,可采用线性加权的方法,将其统一到一个总的目标函数f(x)中,即 Vje LPbk)
?)4c!3#
其中,W1、W2、W3为加权因子。 ;5}"2hU>
(1)由于fi(x)函数值在数量级上有较大的差别,为了消除各分目标函数值在数量级上的差别,可采用转换函数法,对其进行如下规范化处理: Q5;EQ.#
在边界约束条件下,求各分目标函数fi(x)的上、下界βi、αi,得无量纲化的分目标函数为: ts=+k/Z
NaeG)u#+
(2)?Wi确立 6!RKZj)
在分目标函数经过规范化处理后,其加权因子应满足,且Wi的大小可根据各分目标函数对设计方案的重要程度由经验来确定。 smX&B,&@
(3)统一目标函数 Y+3r{OI
SuA`F|7?P
对统一目标函数F(x)组成的优化模型进行求解,可得全约束下本减速器多目标概率优化设计最优解x*及F(x*)?。? I@q4D1g
2.2设计变量 ?gS~9jgcd
由统一目标函数式可知,设计变量为X=[X1、X2、X3、X4]T=[m、z1、λ、ds2]T。 1@`mpm#Y
依据普通圆柱蜗杆减速器的设计经验,假设设计各随机变量均服从正态分布,并取各分布参数如下: =7zvp,B
~93+Oxg
2.3约束条件的建立? d'p@[1/
2.3.1蜗轮接触强度条件按脉动接触应力建立 _?9|,
bd`}2vr
式中,[σ]H为蜗轮许用接触应力。? lAx8m't}6
2.3.2蜗轮齿根弯曲疲劳强度 {^Q1b.=
o]0\Km
2.3.3蜗轮轴的强度 SY+$8^
_^Q =n>G
式中,[σ1]为蜗轮轴的许用应力;为危险剖面的弯矩均值;为危险剖面的抗弯剖面模量。?? @|9V]bk
2.3.4设计规范 tVAH\*a,/
(1)蜗杆导程角λ (M,*R
v
-}Gk@=$G
(2)蜗杆直径数q 9icy&'
zA&]#mc
(3)模数m IaRq6=[
一般推荐2≤m≤25,则随机约束为: .4,l0Nn`W
gOn^}%4.I
(4)蜗杆刚度条件 ~`VD}{[,B
蜗杆变形会导致蜗杆传动副的不正常啮合,故要求y=FCL33/48EI≤0.0025d1,则随机约束为: B6]M\4v
CGCSfoS9f
? Ft1为蜗杆所受圆周力; W$u/tRF
? Fr1为蜗杆所受径向力; liVj-*m
? L3为蜗杆的跨距,一般可取L3=0.9d2; zvh&o*\2<d
? E为蜗杆材料的弹性模量; EN~ha:9
? I为蜗杆危险剖面处的惯性矩。 <>[]-Vq
(5)蜗杆头数Z1 t0o'_>*?A
传递动力蜗杆一般推荐2≤Z1≤4,则确定型约束条件为: _<;westq
wfBf&Z0{
3减速器系统的可靠性设计? 7f
q\
H{
3.1减速器系统可靠度分配 tfq; KR
闭式蜗杆传动,在润滑良好的条件下,主要失效形式为蜗轮齿面点蚀。取蜗轮可靠度R1=0.92865,蜗杆可靠度R2=0.961,蜗轮轴可靠度R3=0.961,联轴器的可靠度R4=0.92865,滚动轴承的可靠度R5=0.98,则该减速箱的可靠度为: "\x\P)j0>
ZbLN:g}
3.2 将概率约束条件转化为确定性约束条件的概率计算 ;O *o
前述约束条件式(6)~(15)为概率约束条件式,求解时应进行规范化处理,只有将其转化为确定型约束条件才能使用。现以概率约束条件式(6)为例,说明其转化方法如下:? 9rQw~B<S
3.2.1工作应力随机变量分布特征的确定
ScTeh
由式(6)知,影响蜗轮接触强度σH的参数i、T1、m、λ均具有随机性,故根据估取的分布特征以及这些参数与应力的函数关系,则可求得服从正态分布的随机变量σH的均值μσH和标准差SσH。 mX
QVL.P\
-hpMd/F
3.2.2强度分布的确定 <Z9N}wY,8
根据蜗轮材料及特性,可得出蜗轮的接触强度的分布,即: NFlrr*=t>
H%`|yUE(
3.2.3将概率约束模型转化为确定约束模型 ? Eh)JJt
采用应力—强度干涉理论,将式(6)转化为如下确定型约束条件为: "(SZ;y
~JxAo\2i
式中,φ-1?(R1)为对R1(蜗轮强度可靠度)取标准正态分布函数的反函数。 tvvRHvL
因此,在完成式(6)~(15)的概率约束式的转化后,便可进行蜗杆减速器的概率优化模型的优化求解。? xouy|Nn'
4模型求解 L9(!L$
问题是一个4个变量、14个约束、3个目标的多目标概率优化设计问题。对该模型可采用复合型法求解。? a gxR
V
5设计实例 >-<