我国科研团队发现强引力透镜候选体

发布:cyqdesign 2020-08-02 21:10 阅读:7152
近日,中国科学院云南天文台丽江天文观测站研究员龙潜与云南大学中国西南天文研究所宇宙学研究组教授尔欣中团队合作,利用人工智能深度学习的方法,发现38个新的强引力透镜候选体。相关研究成果发表在《英国皇家天文学会月刊》(MNRAS)上。 {7o#Ve  
8xpplo8  
星系尺度的强引力透镜系统是重要的宇宙学探针,可用于深入地研究宇宙学和天体物理中的诸多科学问题,如暗物质性质、星系形成和演化以及哈勃常数的测量等。然而,目前已证认的强透镜系统数目过少,制约了相关天体物理学问题研究的开展。 WzMYRKZ  
2|1fb-AR  
如何搜寻证认更多强透镜样本是当前工作中的主要问题。通过下一代大规模测光巡天项目的开展,人们期待发现数以万计的强透镜系统。但如何在海量的天体图像中快速地找到强透镜候选体?近年来,人工智能的快速发展为我们提供了新的可能。国际上已有相关研究团队利用卷积神经网络方法搜索强引力透镜系统。 9 _d2u#  
iyskADS  
龙潜长期从事人工智能深度学习方面的研究,与尔欣中团队合作构建并训练了一个卷积神经网络,该神经网络使用Julia语言根据引力透镜数据的特点专门定制,具有规模小、速度快、针对性强的特点。科研人员将其应用于欧洲南方天文台2.6米巡天望远镜(VST)千平方度巡天(Kilo-Degree Survey—KiDS)数据,发现38个新的强透镜候选体。 EeIDlm0o  
IRdt:B|@  
此外,通过测试卷积神经网络在不同观测条件上的表现以及用不同大小的训练集训练网络,研究人员对卷积神经网络的稳定性作了测试。该研究构建的神经网络亦可应用于其他的巡天数据。 ON?Y Df  
~5 ^Jv m  
|s|}u`(@9  
新发现的38个强透镜候选体其中4个的图像
X1L@ G  
龙潜是论文共同通讯作者。研究工作受到国家自然基金面上项目、云南省海外高层次人才计划等的资助。 S63 Zk0(25  
xQy,1f3s+  
论文链接:https://academic.oup.com/mnras/article-abstract/497/1/556/5869256?redirectedFrom=fulltext
关键词: 引力透镜
分享到:

最新评论

tassy 2020-08-05 00:16
神经网络亦可应用于其他的巡天数据。
dushunli 2020-08-05 00:26
强引力透镜候选体!
星空38 2020-08-05 01:04
星系尺度的强引力透镜系统是重要的宇宙学探针,可用于深入地研究宇宙学和天体物理中的诸多科学问题,如暗物质性质、星系形成和演化以及哈勃常数的测量等。
mang2004 2020-08-05 05:25
Deep learning for strong lensing search: tests of the convolutional neural networks and new candidates from KiDS DR3 *yq65yZi5  
{QG.> lB  
ABSTRACT LIg1U  
Convolutional neural networks have been successfully applied in searching for strong lensing systems, leading to discoveries of new candidates from large surveys. On the other hand, systematic investigations about their robustness are still lacking. In this paper, we first construct a neutral network, and apply it to r-band images of luminous red galaxies (LRGs) of the Kilo Degree Survey (KiDS) Data Release 3 to search for strong lensing systems. We build two sets of training samples, one fully from simulations, and the other one using the LRG stamps from KiDS observations as the foreground lens images. With the former training sample, we find 48 high probability candidates after human inspection, and among them, 27 are newly identified. Using the latter training set, about 67 per cent of the aforementioned 48 candidates are also found, and there are 11 more new strong lensing candidates identified. We then carry out tests on the robustness of the network performance with respect to the variation of PSF. With the testing samples constructed using PSF in the range of 0.4–2 times of the median PSF of the training sample, we find that our network performs rather stable, and the degradation is small. We also investigate how the volume of the training set can affect our network performance by varying it from 0.1 to 0.8 million. The output results are rather stable showing that within the considered range, our network performance is not very sensitive to the volume size.
tomryo 2020-08-05 07:43
我国科研团队发现强引力透镜候选体
songshaoman 2020-08-05 07:51
发现而已
copland 2020-08-05 08:07
强引力透镜候选体
bmw0501 2020-08-05 08:25
我国科研团队发现强引力透镜候选体
thorn12345 2020-08-05 08:28
强引力透镜候
蠊蠊 2020-08-05 08:29
龙潜长期从事人工智能深度学习方面的研究,与尔欣中团队合作构建并训练了一个卷积神经网络,该神经网络使用Julia语言根据引力透镜数据的特点专门定制,具有规模小、速度快、针对性强的特点。科研人员将其应用于欧洲南方天文台2.6米巡天望远镜(VST)千平方度巡天(Kilo-Degree Survey—KiDS)数据,发现38个新的强透镜候选体。
我要发表 我要评论
限 50000 字节
关于我们
网站介绍
免责声明
加入我们
赞助我们
服务项目
稿件投递
广告投放
人才招聘
团购天下
帮助中心
新手入门
发帖回帖
充值VIP
其它功能
站内工具
清除Cookies
无图版
手机浏览
网站统计
交流方式
联系邮箱:广告合作 站务处理
微信公众号:opticsky 微信号:cyqdesign
新浪微博:光行天下OPTICSKY
QQ号:9652202
主办方:成都光行天下科技有限公司
Copyright © 2005-2025 光行天下 蜀ICP备06003254号-1