(* ?r^>Vk}
Demo for program"RP Fiber Power": thulium-doped fiber laser, ]9hhAT44
pumped at 790 nm. Across-relaxation process allows for efficient #Z}YQ$g
population of theupper laser level. oC(.u ?
*) !(* *)注释语句 C40W@*6S2
m<|fdS'@
diagram shown: 1,2,3,4,5 !指定输出图表 {$v>3FG
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 Y2(,E e2
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 Fc a_(jw
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 |/!RN[<
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 v|2+7N:[;
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 EKzYL#(i
/(Ryh6M
include"Units.inc" !读取“Units.inc”文件中内容 `5Em : 8 M
5>rjL;
include"Tm-silicate.inc" !读取光谱数据 c~ Q5A
BU=Ta$#BZ
; Basic fiberparameters: !定义基本光纤参数 -m Sf`1l0
L_f := 4 { fiberlength } !光纤长度 ]wV_xZ)l^A
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 )7a
4yTg!~
r_co := 6 um { coreradius } !纤芯半径 USbFUHdDc
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 `B7? F$J
#=I5_u
; Parameters of thechannels: !定义光信道 \7 }{\hY-
l_p := 790 nm {pump wavelength } !泵浦光波长790nm .$ 5*v
dir_p := forward {pump direction (forward or backward) } !前向泵浦 oNRp
P_pump_in := 5 {input pump power } !输入泵浦功率5W tflUy\H>
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um Klqte*!
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 p.!p6ve){
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 VBe&of+
gdG#;T'
l_s := 1940 nm {signal wavelength } !信号光波长1940nm ~lH2#u>g
w_s := 7 um !信号光的半径 }K9Ji]tOK:
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 .<-~k@ P
loss_s := 0 !信号光寄生损耗为0 Lq{/r+tt/
dt(Lp_&v
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 H:X(><J
\,yg@R
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 OCI{)r<O2m
calc n$ZxN"q <
begin fx/If
global allow all; !声明全局变量 Xvn \~Vr
set_fiber(L_f, No_z_steps, ''); !光纤参数 l7uEUMV
add_ring(r_co, N_Tm); >~@ABLp6
def_ionsystem(); !光谱数据函数 |=EwZmj-c
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 B[[1=
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 ".
wG~H
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 Hu$JCB-%
set_R(signal_fw, 1, R_oc); !设置反射率函数 qX*Xo[Xp
finish_fiber(); ?f=7F
%
end; CpC6vA.R
10$:^
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 _)^`+{N<
show "Outputpowers:" !输出字符串Output powers: kI/%|L%6D
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) Sigu p#.p
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) )Tad]Hd"W
HG[gJ7
RJLhR_t7n
; ------------- *jo1?
diagram 1: !输出图表1 $
Bdxu
@{x+ln1r
"Powers vs.Position" !图表名称 n]bxG8~t
mp17d$R-
x: 0, L_f !命令x: 定义x坐标范围 @1)C3(=A
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 l
?gh7m_ej
y: 0, 15 !命令y: 定义y坐标范围 5
OF*PBZ
y2: 0, 100 !命令y2: 定义第二个y坐标范围 l u V_
frame !frame改变坐标系的设置 $lf\1)B~*
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) `-<m#HF:)d
hx !平行于x方向网格 ]`eJSk.
hy !平行于y方向网格 +g8uV hC
"gq_^&
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 l[{Ci|4
color = red, !图形颜色 rOXh?r
width = 3, !width线条宽度 [300F=R
"pump" !相应的文本字符串标签 tq5o
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 t[x[X4
color = blue, 4mF=A$Q_/
width = 3,
`;#I_R_K
"fw signal" K<7 Db4H
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 ?XO}6q<tM
color = blue, f`_6X~
p
style = fdashed, k{pn~)xg
width = 3, o1@.
<Q+}
"bw signal" }o9(Q8
KPs
@v@5M
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 j:'!P<#
yscale = 2, !第二个y轴的缩放比例 +/2:
color = magenta, u^&,~n@n7
width = 3, ~aRcA|`
style = fdashed, w0$l3^}z
"n2 (%, right scale)" Lcy>!3q3~
e+P|PW
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 ({p@Ay
yscale = 2, DwH=ln=
color = red, ,Y2){8#l
width = 3, -xc'P,`
style = fdashed, 407;M%?'A
"n3 (%, right scale)" aFwfF^\(|,
%dA7`7j
0Kenyn4 ?
; ------------- p4I6oS`/.
diagram 2: !输出图表2 iC\t@BVS
^tFgkzXm
"Variation ofthe Pump Power" <D{_q.`vA
<=7^D
x: 0, 10 6d|%8.q1
"pump inputpower (W)", @x sBD\;\I
y: 0, 10 NI%
()
y2: 0, 100 oi}\;TG
frame Bc2PF;n
hx
p(Bn!
hy F6\r"63
legpos 150, 150 pM'AhzS
s7TV@Y)
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 EL-1o02-
step = 5, Cn(0ID+3f
color = blue, WL5!H.q
width = 3, } ~#^FFe
"signal output power (W, leftscale)", !相应的文本字符串标签 9b*1-1"
finish set_P_in(pump, P_pump_in) nH]F$'rtA
JK9}Kb};
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 nFfwVqV
yscale = 2, w/m~#`a
step = 5, 4`+hX'
color = magenta, K# dV.
width = 3, y1:#0
"population of level 2 (%, rightscale)", kKg%[zXS
finish set_P_in(pump, P_pump_in)
[{!5{k!
xlWTHn!j
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 O<v9i4*
yscale = 2, RW.
>;|m
step = 5, Gd5J<K
color = red, (j;6}@
width = 3, ?krgZ;Jj
"population of level 3 (%, rightscale)", y}bE'Od
finish set_P_in(pump, P_pump_in) H:HJHd"W
H|iY<7@
13nXvYo'
; ------------- #7A_p8
diagram 3: !输出图表3 pZ4]oK\*
X6dv+&=?
"Variation ofthe Fiber Length" p KF>_\
/n SmGAO
x: 0.1, 5 e.|_=Gd2/
"fiber length(m)", @x }6Uw4D61
y: 0, 10 z2QZ;ZjvRS
"opticalpowers (W)", @y *.DTcV
frame &zYo
hx c{u~=24;%#
hy z@0*QZ.y1
v*7lJNN.
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 e/;chMCq
step = 20, OxraaN`
color = blue, ~D)!zQkD
width = 3,
TVP.)%
"signal output" Vnv9<=R
~agzp`!M
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 3S'juHTe
step = 20, color = red, width = 3,"residual pump" @{Q[M3l
}bVWV0Aeim
! set_L(L_f) {restore the original fiber length } +89s+4Jn
oiq7I@Y`x
+)Pv6Zog[
; ------------- jyt#C7mj-A
diagram 4: !输出图表4 I%NPc4p
e:Zc-
"TransverseProfiles" AqKl}8
I9`R LSn
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) w$cic
=x4:jas
x: 0, 1.4 * r_co /um /QsFeH
"radialposition (µm)", @x <ealt
y: 0, 1.2 * I_max *cm^2 ''Y}Q"
"intensity (W/ cm²)", @y 3 G?^/nB
y2: 0, 1.3 * N_Tm yVyh'd:Ik
frame "bRg_]\q6
hx /]Fs3uf
hy AT:T%a:G?
AFWcTz6 #d
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 \:8 eN}B
yscale = 2, @83h/Wcxd
color = gray, :4"SJ
width = 3, U/2g N
H
maxconnect = 1, }TZ5/zn.Dw
"N_dop (right scale)" )K8k3]y&
4'W| '4'b
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 zv]-(<B
color = red, zn T85#]\@
maxconnect = 1, !限制图形区域高度,修正为100%的高度 %:n1S]Vr
width = 3, YWSo:)LY
"pump" ,uD F#xjl,
hv'~S
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 h94SLj]
color = blue, OYJy;u3"
maxconnect = 1, 8{HeHU
width = 3, EOrWax@k$}
"signal" w0Fi~:b
<R7*00
:".:Wd
; ------------- 22\Buk}?
diagram 5: !输出图表5 UAT46
J'4{+Q_pa
"TransitionCross-sections" XnQd(B`M
BciwS_Qx
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) )p"37Ct?
v.)'be*u
x: 1450, 2050 $V~r*#$.
"wavelength(nm)", @x a}a_&rf~Z
y: 0, 0.6 2#LcL
"cross-sections(1e-24 m²)", @y >\K<q>*
frame =y8HOT}8
hx |2XEt\P
hy 5+GW%U/
!arcQ:T@G
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 -[s*R%w
color = red, k0?4vA
width = 3, g# :|Mjgh
"absorption" -Q;5A;sr2
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 ?L#C'Lz2+
color = blue, 2](R}
width = 3, )_b#c+
"emission" MQ2gzKw>
gh}FZs5P