(* [szwPNQ_
Demo for program"RP Fiber Power": thulium-doped fiber laser, A5nu`e9&
pumped at 790 nm. Across-relaxation process allows for efficient =g&0CFF <
population of theupper laser level. Nl(Aa5:!
*) !(* *)注释语句 V^f'4*~'
H%/$Rqg
diagram shown: 1,2,3,4,5 !指定输出图表 `yxk
Sb
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 B'=*92i>S
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 G&;W
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 Y@pa+~[{h3
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 S4tdWA
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 MLp5Y\8*
6b)1B\p
include"Units.inc" !读取“Units.inc”文件中内容 1~_]"Y'
Et7AAV*8g
include"Tm-silicate.inc" !读取光谱数据 !>! l=Z
bb#w]!q
; Basic fiberparameters: !定义基本光纤参数 lk+)-J-lj'
L_f := 4 { fiberlength } !光纤长度 ))+R*k%
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 aUJ&
r_co := 6 um { coreradius } !纤芯半径 b^%4_[uRu
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 )"q2DjfX*
,;{mH]"s
; Parameters of thechannels: !定义光信道 @@! R
Iq!
l_p := 790 nm {pump wavelength } !泵浦光波长790nm
D@0eYX4s
dir_p := forward {pump direction (forward or backward) } !前向泵浦 .&L#%C
P_pump_in := 5 {input pump power } !输入泵浦功率5W sSvQatwS
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um WLizgVM
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 rb9x||
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 )ll}hGS
#%x4^A9 q
l_s := 1940 nm {signal wavelength } !信号光波长1940nm lv{Qn~\y&
w_s := 7 um !信号光的半径 9}": }!
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 9m8`4%y=
loss_s := 0 !信号光寄生损耗为0 ^D6 JckW
{)`5*sd
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 _tYt<oB~%
?SS?I
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 Vg2s~ce{
calc |>p\*Dl}H
begin kR'!;}s
global allow all; !声明全局变量 ZL-@2ZU{1
set_fiber(L_f, No_z_steps, ''); !光纤参数 =:#$_qR
add_ring(r_co, N_Tm); o6svSS
def_ionsystem(); !光谱数据函数 X, J.!:4`
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 =`{!" 6a
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 hNP|
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 |~'{ [?a*
set_R(signal_fw, 1, R_oc); !设置反射率函数 Oa*/jZjr
finish_fiber(); F!.@1Fi1
end; ncu>
@K$n
B9+oI cO
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 l&E- H@Pe
show "Outputpowers:" !输出字符串Output powers: }!B<MGBd
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) 7 +?
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) {KODwP'~
II),m8G
?2Bp^3ytJ
; ------------- `qX'9e3VP+
diagram 1: !输出图表1 )D(XDN
IDcu#Nz`
"Powers vs.Position" !图表名称 %B#Ewt@[
&oNy~l
o
x: 0, L_f !命令x: 定义x坐标范围 u\>Ed9^
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 '0w'||#1
y: 0, 15 !命令y: 定义y坐标范围 r@wWGbQ|L
y2: 0, 100 !命令y2: 定义第二个y坐标范围 ]`+>{Sx 1
frame !frame改变坐标系的设置 @{~x:P5g
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) 3wa }p^
hx !平行于x方向网格 Z\TH=UA
hy !平行于y方向网格 |9}G
3/4xP|
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 d(R3![:
color = red, !图形颜色 =q>eoXp
width = 3, !width线条宽度 ~I2IgEj>]
"pump" !相应的文本字符串标签 C9({7[k^%
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 1G$kO90
color = blue, !%]]lxi
width = 3, !MQo=k
"fw signal" `} Q+:
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 ~"{Kjr#R
color = blue, t5[{ihv~:
style = fdashed, YdIV_&-W
width = 3, ~pwp B2c
"bw signal" jG8ihi
R (4 :_ xc
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 c5^i5de
yscale = 2, !第二个y轴的缩放比例 BL,YJM(y
color = magenta, [+>$'Du
width = 3, \y#gh95
style = fdashed, R6CxNPRJ
"n2 (%, right scale)" 8tLkJOu
yn4Xi@9Pri
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 p4|:u[:&
yscale = 2, P}JA"V&
color = red, Y{um1)k
width = 3, >.QD:_@:
style = fdashed, Ca]vK'(
"n3 (%, right scale)" }fL8<HM\'c
F5{~2~Cw(
"5ah{,
; ------------- Z}$.Tm
diagram 2: !输出图表2 D",ZrwyJ
Cz m`5
"Variation ofthe Pump Power" ]r6,^"
n%@xnB$ZX
x: 0, 10 }Geip@Ot
"pump inputpower (W)", @x "k5 C? ~
y: 0, 10 *#dXW\8qu
y2: 0, 100 HI)ks~E/
frame u!X[xe;
hx _9""3O
hy y}nM'$p
legpos 150, 150 (m~MyT#S
] E`J5o}op
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 ,7k)cNstW
step = 5, X -6Se
color = blue, rsy'ZVLUj
width = 3, +
ECV|mkk
"signal output power (W, leftscale)", !相应的文本字符串标签 a'XCT@B
finish set_P_in(pump, P_pump_in) Y |n_Ro^~
]:Ocu--
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 :n{rVn}G
yscale = 2, FHqa|4Ie
step = 5, q1`uS^3`
color = magenta, jpT!di
width = 3, b]Oc6zR,,~
"population of level 2 (%, rightscale)", Fu!:8Wp!(
finish set_P_in(pump, P_pump_in) 5{[3I|m{
Vr`UF0_3q
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 hFyN|Dqhds
yscale = 2, @N1ta-D#
step = 5, 9{?<.%
color = red, NS mo(c>5
width = 3, c{s<W}3Ds
"population of level 3 (%, rightscale)", *
vEG%Y
finish set_P_in(pump, P_pump_in) kVe}_[{m
o!wz:|\S
a(BWV?A
; ------------- ^~eT#Y8
diagram 3: !输出图表3 ,N5Rdgzk
{b7P1}>-*
"Variation ofthe Fiber Length" Et# }XVCJ
JwxI8Pi*y
x: 0.1, 5 C7eaioW$
"fiber length(m)", @x Pg|q{fc
y: 0, 10 x.>z2.
"opticalpowers (W)", @y rL&585
frame >2Z:=HT
hx L'z;*N3D
hy *M6M'>Tin
?)5}v4b
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 q yQPR
step = 20, W~Eq_J?I
color = blue, |o|0qG@g
width = 3, 64hr|v
"signal output" :q0C$xF
V92e#AR
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 T->O5t c
step = 20, color = red, width = 3,"residual pump" !>
6TlkPM$~2
! set_L(L_f) {restore the original fiber length } 3[-L'!pOX3
d+[hB4!l2
nke[}Hqf
; ------------- ~Se/uL;*
diagram 4: !输出图表4 F~)xZN3=
)TVyRY Z1
"TransverseProfiles" >eW HPO
SI8mr`gJ
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) ]C}z3hhk
\7jcZ~FBX%
x: 0, 1.4 * r_co /um i,$*+2Z
"radialposition (µm)", @x f)?s.DvUB
y: 0, 1.2 * I_max *cm^2 "((6)U#
"intensity (W/ cm²)", @y GriL< =?t
y2: 0, 1.3 * N_Tm :
R.,<DQM
frame /J wQ5
hx )u(`s `zd
hy e9o(hL
6 @'v6 1'
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 Cf@WjgR
yscale = 2, oT_k"]~Q~2
color = gray, L+9a4/q
width = 3, *-ZJF6
maxconnect = 1, ~~&8I!r e
"N_dop (right scale)" cuW$%$F
`?2S4lN/
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 G'#a&6
color = red, xud =(HLl
maxconnect = 1, !限制图形区域高度,修正为100%的高度 s)8g4Yc*
width = 3, _u]Wr%D@
"pump" "qMd%RP
u=p([
5]
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 sj0Hv d9
color = blue, {LrezE4
maxconnect = 1, u2@:[:Ao
width = 3, Ycn*aR2
"signal" xpRQ"6
6psK2d0
Jd7+~isu~
; ------------- BQ2DQ7q
diagram 5: !输出图表5 q: ?6
nH/V2>Lm
"TransitionCross-sections" zxT&K|
D-69/3 PvP
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) [8l8m6
= 0Z}s
x: 1450, 2050 yI)~- E.
"wavelength(nm)", @x
BJB'o
y: 0, 0.6 @'7'3+ c
"cross-sections(1e-24 m²)", @y (wo.OH
frame 3l-8TR
hx 6zaO$
hy '>@evrG
")i4w{_y
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 7??+8T#n*
color = red, _r?H by<b
width = 3, L|u\3.:
"absorption" LW{7|g
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 BwEO2a{
color = blue, ?WKFDL'_0j
width = 3, Gh>Rt=Qu%
"emission" wC}anq>>
eYOwdTrq