(* ;FflEL<7Y
Demo for program"RP Fiber Power": thulium-doped fiber laser, vqZM89xY
pumped at 790 nm. Across-relaxation process allows for efficient =Fl4tY#X
population of theupper laser level. CoXL;\
*) !(* *)注释语句 i>zyn-CuW
JjML!;
diagram shown: 1,2,3,4,5 !指定输出图表 jk}PucV
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 }"H900WE|
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 &B7KWvAy
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 ]%hI-
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 nDw9
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 u Aa>6R
x[6Bc
include"Units.inc" !读取“Units.inc”文件中内容 ur7a%NH
x:lf=DlA
include"Tm-silicate.inc" !读取光谱数据 &2pM3re/f
W78-'c
; Basic fiberparameters: !定义基本光纤参数 !Sh5o'D28
L_f := 4 { fiberlength } !光纤长度 nzl,y,
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 dL)5~V8s
r_co := 6 um { coreradius } !纤芯半径 ;0q6 bp(<H
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 @$G
K<jl
0k<%l6Bq
; Parameters of thechannels: !定义光信道 uB5o
Ghu-
l_p := 790 nm {pump wavelength } !泵浦光波长790nm 1bs95Fh9Q
dir_p := forward {pump direction (forward or backward) } !前向泵浦 6mLE-(
Z7
P_pump_in := 5 {input pump power } !输入泵浦功率5W '8
#*U
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um k"zHrn"$
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 Q NEaj\
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 )6WU&0>AU8
Big-)7?
l_s := 1940 nm {signal wavelength } !信号光波长1940nm p?nVPTh
w_s := 7 um !信号光的半径 QLl44*@
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 ,1L^#?Q~
loss_s := 0 !信号光寄生损耗为0 9z}kkYk
R!CUR~F
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 -E"o)1Pj6C
li^E$9oWC
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 A???s,F_
calc e~dU "
begin -+/|
global allow all; !声明全局变量 30"G%DFd
set_fiber(L_f, No_z_steps, ''); !光纤参数 4HAfTQ 1G
add_ring(r_co, N_Tm);
^k=[P
def_ionsystem(); !光谱数据函数 n1h+`nsf
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 kfV}w,
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 JJXf%o0yq
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 k2;yl_7
set_R(signal_fw, 1, R_oc); !设置反射率函数 gO36tc:ce
finish_fiber(); ]dFWIvC
end; eO#)QoHj^
>TgO|mq
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 ERplDSfO-
show "Outputpowers:" !输出字符串Output powers: 4e sf&-gG
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) d[de5Xra
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) qm@hD>W+
up6LO7drW/
s!Vtwp9
; ------------- 9UX-)!
diagram 1: !输出图表1 S1JB]\
V qf}(3K0
"Powers vs.Position" !图表名称 M Cz3RZK
[gDvAtTZ5
x: 0, L_f !命令x: 定义x坐标范围 O^GTPYW
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 EBm\rM8
y: 0, 15 !命令y: 定义y坐标范围 xi0&"?7la
y2: 0, 100 !命令y2: 定义第二个y坐标范围 +dRTHz
frame !frame改变坐标系的设置 y|ZJ-[qg
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) ~mU#u\r(*
hx !平行于x方向网格 #'T@mA
hy !平行于y方向网格 Bvwk6NBN
XUWza=BR"
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 dc *#?G6^
color = red, !图形颜色 =`")\?z}
width = 3, !width线条宽度 v{+*/NQ_
"pump" !相应的文本字符串标签 KT}}=st%
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 .u)YZN0\
color = blue, }v{F9dv
width = 3, <GC:aG
"fw signal" (1R,
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 zKZ6Qjd8!
color = blue, aOOY_S
E
style = fdashed, *|cvx:GO
width = 3, );C !:?
"bw signal" MLJ8m
KMv|;yXYj4
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 yl*S|= 8;k
yscale = 2, !第二个y轴的缩放比例 +VfJ:[q
color = magenta, qe0@tKim
width = 3, t}K?.To$
style = fdashed, SU1,+7"
"n2 (%, right scale)" HV>W f"1
/lUb9&yV
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 [Gu]p&
yscale = 2, 0&Qn7L
color = red, ) ":~`Z*@
width = 3, )g-*fSa
style = fdashed, ky*-_
"n3 (%, right scale)" 2>mDT
YVzK$k'3U
+IU]=qS
; ------------- WW&0FugY_
diagram 2: !输出图表2 E:%%Dm
s)> ]'ii
"Variation ofthe Pump Power" edch'H^2+P
=,sMOJc>
x: 0, 10 FT=w`NE,+
"pump inputpower (W)", @x -y~JNDS1]
y: 0, 10 tFRWxy[5
y2: 0, 100 tTY (I1
frame dJ$}]
hx ^0VI J)y
hy Ts^IA67&<
legpos 150, 150 O32:j
oo2VT
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 ";Lpf]<
step = 5, -.xs=NwB.|
color = blue, +* &!u=%G
width = 3, upWq=_
"signal output power (W, leftscale)", !相应的文本字符串标签 =U?"#
finish set_P_in(pump, P_pump_in) FG'1;x!
yNO5h]o
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 Yx,
yscale = 2, gB?#T
step = 5, [
%r :V"
color = magenta, idV4hMF9
width = 3, Pocm.
"population of level 2 (%, rightscale)", jn]{|QZ
finish set_P_in(pump, P_pump_in) ?g!py[CrE
(CEJg|,
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 ]NN9FM.2b/
yscale = 2, 7D4P=$UJp
step = 5, 2mI=V.X[&
color = red, FFPO?y$
width = 3, kz+P?mopm
"population of level 3 (%, rightscale)", '9-8_;
finish set_P_in(pump, P_pump_in) "= HCP,
4"0`J
IGVNX2
; ------------- s fazrz`h
diagram 3: !输出图表3 U<*ZY` B3
ze]2-B4
"Variation ofthe Fiber Length" =d`,W9D
dqnxhN+&
x: 0.1, 5 +
6O5hZ
"fiber length(m)", @x Qu!Lc:oM?
y: 0, 10 >lRX+?
"opticalpowers (W)", @y @2]_jW
frame lQldW|S>
hx ?%F*{3IP
hy {p+7QlgK
~[Mm0L}8
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 J'|qFS
step = 20, !|hv49!H
color = blue, 2BEF8o]Np
width = 3, 4$@)yZ
"signal output" ]k5l]JB
Ydh]EO0'
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 J)6f"{} &
step = 20, color = red, width = 3,"residual pump" nUD)G<v
ggfL
d r
! set_L(L_f) {restore the original fiber length } Av]<[ F/
L+bU~N,+A
t(}\D]mj
; ------------- '*|Wi}0R
diagram 4: !输出图表4 # KK>D?.:
=.f]OWehu.
"TransverseProfiles" (pNA8i%=G
5Jlz$]f
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) F`r=M%yh
eo4;?z
x: 0, 1.4 * r_co /um ~bhesWk8!
"radialposition (µm)", @x d\+smED
y: 0, 1.2 * I_max *cm^2 wz<YflF
"intensity (W/ cm²)", @y ojni+} >_
y2: 0, 1.3 * N_Tm ?>LsIPa
frame \E5%.KR
hx uAwT)km
{
hy QG$LbuZ`
d~u+:[\=/
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 iZyhj%#
yscale = 2, !inonR
color = gray, =rFgOdj
width = 3, "z8L}IC!e5
maxconnect = 1, q4C$-W%rj
"N_dop (right scale)" J.N%=-8
IDyf9Zra?
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 be}^}w=
color = red, 8&\<p7}=h
maxconnect = 1, !限制图形区域高度,修正为100%的高度 >LRt,.hy6
width = 3, Ox#%Dm2
"pump" m_wBRan
n(\5Z&
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 E=+v1\t)]
color = blue, ]#z^[XG
maxconnect = 1, UJ3l8
%/`k
width = 3, ov.7FZ+
"signal" 21_>|EKp
A
M8bem~
<05\
; ------------- \#Ez["mD
diagram 5: !输出图表5 %{Ez0XwGCn
Q&S\?cKe
"TransitionCross-sections" I'%vN^e^
Gqvj
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) 481J=8H
t&MJSFkiA
x: 1450, 2050 ~ x-
R78'
"wavelength(nm)", @x {B8W>>E
y: 0, 0.6 gh>'O/9
"cross-sections(1e-24 m²)", @y A6v<+`?
frame $\h\,N$y
hx rP Wn
hy a/Z >-
R`sU5 :n
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 ,g\%P5
color = red, |7KW'=O
width = 3, \WKly
"absorption" x2/L`q"M?=
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 u?6L.^Op
color = blue, G41 gil6k
width = 3, 5RD\XgyN]
"emission" b.V\EOk
-F\xZ