(* =QXLr+
y@
Demo for program"RP Fiber Power": thulium-doped fiber laser, Uv?s <
pumped at 790 nm. Across-relaxation process allows for efficient `&xo;Vnc
population of theupper laser level. OLp;eb1g
*) !(* *)注释语句 G41 gil6k
5RD\XgyN]
diagram shown: 1,2,3,4,5 !指定输出图表 b.V\EOk
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 )D?\ru H
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 4
qMO@E_
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 f Glvx~
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 tCH4-~,#
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 "5Orj*{
p w(eWP
include"Units.inc" !读取“Units.inc”文件中内容 Qvo(2(
szW_cjS
include"Tm-silicate.inc" !读取光谱数据 Jv(9w[
+s?0yH-%p
; Basic fiberparameters: !定义基本光纤参数 _EMq"\ND
L_f := 4 { fiberlength } !光纤长度 M5DQ{d<r
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 ~u|k1
r_co := 6 um { coreradius } !纤芯半径 "|<6bA
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 ?`T<
sk8c
7 $AEh+f
; Parameters of thechannels: !定义光信道
L7oLV?k
l_p := 790 nm {pump wavelength } !泵浦光波长790nm CZaUrr
dir_p := forward {pump direction (forward or backward) } !前向泵浦 (s`oJLW>
P_pump_in := 5 {input pump power } !输入泵浦功率5W Teq1VK3Hr
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um 5MUM{(C
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 3>LyEXOW
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 d67Q@')00
k+Ew+j1_
l_s := 1940 nm {signal wavelength } !信号光波长1940nm n/*BK;
w_s := 7 um !信号光的半径 v[4A_WjT
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 Zqwxi1
loss_s := 0 !信号光寄生损耗为0 e_mUO"
m]LR4V6k|
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 {@j0?s
: V16bRpjL
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 ukM11LD5x
calc 022nn-~
begin l-|hvv5g
global allow all; !声明全局变量 ia=eFWt.
set_fiber(L_f, No_z_steps, ''); !光纤参数 OT-!n
add_ring(r_co, N_Tm); AL*P2\8
def_ionsystem(); !光谱数据函数 JBX#U@k>I
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 FnkB
z5D
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 =~;SUO
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 $@]tTz;b
set_R(signal_fw, 1, R_oc); !设置反射率函数 Lbb{ z
finish_fiber(); v4_p3&aj
end; S<),
,(
F<SCW+>z2a
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 qm30,$\c`~
show "Outputpowers:" !输出字符串Output powers: X;$g7A
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) !YUMAp/
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) ERSo&8
YbS$D
="%nW3e@
; ------------- BGAqg=nDV
diagram 1: !输出图表1 )C>4?)
qf7:Q?+.|
"Powers vs.Position" !图表名称 S0X%IG
%C&HR2
x: 0, L_f !命令x: 定义x坐标范围 iCA!=%M@D
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 B_;W!
y: 0, 15 !命令y: 定义y坐标范围 P_:A%T
y2: 0, 100 !命令y2: 定义第二个y坐标范围 `dB!Ia|
frame !frame改变坐标系的设置 @
s
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) yO@KjCv"
hx !平行于x方向网格 cW+6Emh
hy !平行于y方向网格 9Z! j
G/Ll4
:
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 :^
9sy
color = red, !图形颜色 XL@Y!
width = 3, !width线条宽度 |Ld/{&Qr
"pump" !相应的文本字符串标签 [Yt!uhww
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 :4o08M%
color = blue, KIt:ytFx
width = 3, \9[_*
"fw signal" v0pyyUqS
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 !@ERAPuk
color = blue, f<!3vAh
style = fdashed, I%dFVt@
width = 3, V*an0@
"bw signal" 8u+FWbOl]
HS1Gy/6'
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 "BN-Jvb7q
yscale = 2, !第二个y轴的缩放比例 JzhbuWwF-
color = magenta, [X >sG)0S~
width = 3, YS$?Wz
style = fdashed, 1$cX`D`
"n2 (%, right scale)" qw]:oh&G
1PwqWg-\\
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 ppv/A4Kv
yscale = 2, eUiJl6^x
color = red, 5)=XzO0
width = 3, Vf
Jpiv1
style = fdashed, P\"|b\O1
"n3 (%, right scale)" FScE3~R
YHoj^=/b
lYZ5FacqC
; ------------- ,^dyS]!d$
diagram 2: !输出图表2 a-I3#3VJ@
_ZgIm3p0A
"Variation ofthe Pump Power" ]
i;xeo,
d1=kHU4_9
x: 0, 10 E1,Sr?'
"pump inputpower (W)", @x f< A@D"m/
y: 0, 10 ?sb
Ob
y2: 0, 100 idL6 *%M
frame >eHSbQu/Bu
hx D;@*
hy }*+?1kv
legpos 150, 150 (h8M
5w:
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 oH/6
step = 5, a<CN2e_Z
color = blue, &<</[h/B/F
width = 3, _sU| <1
"signal output power (W, leftscale)", !相应的文本字符串标签
x Bn+-V
finish set_P_in(pump, P_pump_in) H ]BH
zo*YPDEm"
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 JX_hLy@`
yscale = 2, P19nF[A
step = 5, p"9a`/
color = magenta, i#I+
width = 3, &V;^xMO!
"population of level 2 (%, rightscale)", xpo<1Sr>S
finish set_P_in(pump, P_pump_in) cnm&oC 6
5@3[t`n'
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 imcq
H
yscale = 2, R/)cEvB-0
step = 5, : `D[0
color = red, z@E-pYV
width = 3, Rpit>
"population of level 3 (%, rightscale)", _is<.&f6
finish set_P_in(pump, P_pump_in) G([8Q8B4+
J 00<NRxj"
N>z<v\`
; ------------- Do@:|n
diagram 3: !输出图表3 !,}W|(P)
A^+G
w\
"Variation ofthe Fiber Length" J[9yQ
=ogzq.+|
x: 0.1, 5 bH}6N>Fp
"fiber length(m)", @x [jl'5l d
y: 0, 10 =j[zMO
"opticalpowers (W)", @y YxH"*)N
frame h>v;1QO9D
hx wN,DTmtD
hy K5U=%z
FY%v \`@1*
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 I(fq4$
step = 20, b#p)bcz!I
color = blue, @NMFurm
width = 3, a`5ODW+
"signal output" x2B~1edf
V$u~}]z
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 @vWC "W
step = 20, color = red, width = 3,"residual pump" jbQ2G|:Q
3nt&Sf
! set_L(L_f) {restore the original fiber length } srfFJX7*
D8P<mIu}Y
t59"[kQ
; ------------- qJ QE|VM&
diagram 4: !输出图表4 ZN!OM)@:!
T^h;T{H2
"TransverseProfiles" qM
F'&
0;z-I"N
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) =jvM$
)|`eCzCB
x: 0, 1.4 * r_co /um CC1\0$ /
"radialposition (µm)", @x Zd@'s.,J
y: 0, 1.2 * I_max *cm^2 p2}$S@GD
"intensity (W/ cm²)", @y J<x?bIetj
y2: 0, 1.3 * N_Tm Eq-fR~<9
frame ? lC.
Pq
hx 96;17h$
hy "'H$YhY]
Pxu!,Mi[d
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 K1>.%m
yscale = 2, &fA`Od6l"
color = gray, xN
wKTIK$
width = 3, }$u]aX<
maxconnect = 1, -jsNAQ
"N_dop (right scale)" n k]tq3.[
\3dMA_5
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 DX.u"&Mm
color = red, :kSA^w8
maxconnect = 1, !限制图形区域高度,修正为100%的高度 Q:Q)-|,
width = 3, ~[XDK`B
"pump" ($*bwqp]}
T[M?:~
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 Be+'&+
color = blue, @O+yxGA
maxconnect = 1, I@P[}XS
width = 3, 3/8o)9f.
"signal" :)}iWKAse
0-"ps ]X
B`OggdE
; ------------- xB:,l'\G
diagram 5: !输出图表5 uyP)5,
a?6
r4u0
"TransitionCross-sections" ]d?`3{h9LD
:~loy'
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) T/G1v;]
E :*!an
x: 1450, 2050 1\q(xka{
"wavelength(nm)", @x XOzPi*V**
y: 0, 0.6 =zXpeo&|m
"cross-sections(1e-24 m²)", @y FT73P0!8.
frame +U&aK dQs
hx uRG0}>]|U
hy (:E_m|00;
e:{v.C0ez
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 qgrRH'
color = red, ju8tNL,J
width = 3, I=l() ET=
"absorption" i;xH
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 N kp>yVj
color = blue, tu6oa[s
width = 3, *%(8z~(\
"emission" 1C+Y|p?KA
'-3AWBWI1