(* Y`BRh9Sa
Demo for program"RP Fiber Power": thulium-doped fiber laser, =Vw
5q},3
pumped at 790 nm. Across-relaxation process allows for efficient NxA)@9Q
population of theupper laser level. _S`o1^Ad
*) !(* *)注释语句 mJ}opy!{;
@t*t+Vqw
diagram shown: 1,2,3,4,5 !指定输出图表 ,xfO;yd
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 eOI (6U!
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 S DLvi!y
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 {d<;BLA
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 r]Lc9dL
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 &ldBv_
ye}p~&
include"Units.inc" !读取“Units.inc”文件中内容 eq4C+&O&
om h{0jA0
include"Tm-silicate.inc" !读取光谱数据 c>"cX&
?OlV"zK
; Basic fiberparameters: !定义基本光纤参数 x[3A+
L_f := 4 { fiberlength } !光纤长度 [U/(<?F{(
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 Np+&t}
r_co := 6 um { coreradius } !纤芯半径 o*rQP!8,oy
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 eKvV*[Na
Qnd5X`jF#
; Parameters of thechannels: !定义光信道 -E"GX
l_p := 790 nm {pump wavelength } !泵浦光波长790nm ^-z=`>SrS"
dir_p := forward {pump direction (forward or backward) } !前向泵浦 Bun><Y
@
P_pump_in := 5 {input pump power } !输入泵浦功率5W ^=
0m-/
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um c%m3}mrb
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 \</b4iR)LT
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 ?>"Yr,b?
ig}A9j?]
l_s := 1940 nm {signal wavelength } !信号光波长1940nm qqrq11W
w_s := 7 um !信号光的半径 ]n."<qxeT
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 qMt++*Ls
loss_s := 0 !信号光寄生损耗为0 6Htg5o|W
-#!x|ne
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 6(d }W2GP
4;`oUt'.
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 3I\n_V<
calc =L;] ;i
begin y\dEk:\)
global allow all; !声明全局变量 W6 H,6v
set_fiber(L_f, No_z_steps, ''); !光纤参数 r$Co0!.
add_ring(r_co, N_Tm); B/~%h |
def_ionsystem(); !光谱数据函数 ~vlype3/EF
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 8{`?=&%6
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 %1}K""/
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 a<}#HfC;'
set_R(signal_fw, 1, R_oc); !设置反射率函数 om?-WJI
finish_fiber(); s*U1
end; >{\7&}gz
<1%f@}+8
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 <\kr1qHH
show "Outputpowers:" !输出字符串Output powers: [ i#zP
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) $/!{OU.t`
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) >h0-;
`W/sP\3
"BX!
; ------------- /|6;Z}2
diagram 1: !输出图表1 pvmC$n^zc
[q !TIq
"Powers vs.Position" !图表名称 Xp0F
[>h
M%jPH
x: 0, L_f !命令x: 定义x坐标范围 Xd^\@
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 (Jz;W<E
y: 0, 15 !命令y: 定义y坐标范围 ~3uP6\F
y2: 0, 100 !命令y2: 定义第二个y坐标范围 ")=X4]D
frame !frame改变坐标系的设置 T)r9-wOq
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) [1.+HyJ}
hx !平行于x方向网格 "*G.EiLq
hy !平行于y方向网格 R<OI1,..r
B&D}F=U
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 u\eEh*<7q
color = red, !图形颜色 M Y|w
width = 3, !width线条宽度 c("_bOAT
"pump" !相应的文本字符串标签 Q7W>qe%4
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 7jdb)l\p=
color = blue, &x3VCsC\|
width = 3, OpHsob~
"fw signal" %2v4<icvq
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 LD!Q8"
color = blue, D9M:^
style = fdashed, =UV`.d2[
width = 3, l+V>]?j
"bw signal" 7hsGu a
:0h_K
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 o"*AtGR+"
yscale = 2, !第二个y轴的缩放比例 e=.]F*:J
color = magenta, }sxYxn~
width = 3, r?/'!!4
style = fdashed, (DI>5.x"
"n2 (%, right scale)" cFJY^A
Qjb:WC7he
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 >p"c>V& 8
yscale = 2, 55z]&5N
color = red, [UH||qW
width = 3, *c2YRbU(
style = fdashed, (SvWvm
"n3 (%, right scale)" EKO[ !,
|j,"Pl}il^
k?,1x~
; ------------- ga`3 (
diagram 2: !输出图表2 sIy^m}02
: 2EDjW
"Variation ofthe Pump Power" _ jsK}- \
!_Wi!Vr_
x: 0, 10 76`8=!]R
"pump inputpower (W)", @x Q637N|01
y: 0, 10 ;XBI{CW
y2: 0, 100 T
\_]^]>
frame 3eF-8Z(f
hx :>C2gS@
hy lz?$f4TzA
legpos 150, 150 Rd#WMo2Xd
e7sp =I,
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 2%_vXo=I
step = 5, '!eKTC>
color = blue, VcXq?f>\
width = 3, W>j !Q^?
"signal output power (W, leftscale)", !相应的文本字符串标签 }F#okU
finish set_P_in(pump, P_pump_in) j3{D^|0bP
)84 ~ugs
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 ?k(7 LX0j
yscale = 2, 6;ixa
hZV
step = 5, U`2e{>'4t
color = magenta, xwq+j "
width = 3, .N
,3od@
"population of level 2 (%, rightscale)", f}9zgWU
finish set_P_in(pump, P_pump_in) ?j"KV_
PoxK{Y
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 e?8HgiP-
yscale = 2, ~Vr.J}]J
step = 5, sTn<#l6
color = red, ~T1XLu
width = 3, n$$SNWgM
"population of level 3 (%, rightscale)", o!kbK#k
finish set_P_in(pump, P_pump_in) m}7iTDJR9
*%%g{
3$
^\4h<M
; ------------- 6\g cFfo
diagram 3: !输出图表3 ;V *l.gr'2
Ab{ K<:l
"Variation ofthe Fiber Length" v|dBSX9k0
tMf}
x: 0.1, 5 LG9+y
"fiber length(m)", @x [YlKR'_
y: 0, 10 DH\0z[
"opticalpowers (W)", @y fSK]|"c
frame y1dDO2mA
hx ,-8"R`UI8
hy n\*!CXc
au:
fw
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 3G}x;Cp\D
step = 20, u)}$~E>
color = blue, F8jd'OR
width = 3, D1zBsi94D
"signal output" $u]jy0X<Y;
_K l_61k
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 c;Pe/ d
step = 20, color = red, width = 3,"residual pump" M2OIBH4!
a_f~N1kq
! set_L(L_f) {restore the original fiber length } PgtJ3oq[}
ON=@O
"{@A5A
; ------------- kMi/>gpQ
diagram 4: !输出图表4 JtYP E?
g{OwuAC_
"TransverseProfiles"
M+||rct
$rv8K j+
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) &"f";
U>=Z-
T
x: 0, 1.4 * r_co /um .}t~'*D
"radialposition (µm)", @x Ta
?_5
y: 0, 1.2 * I_max *cm^2 l=S 35og
"intensity (W/ cm²)", @y DS+}UO
y2: 0, 1.3 * N_Tm @XLy7_}
frame UQ)W%Y;[0
hx tItX y
hy be]bZ
1f
@L<*9sLWh
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 IHam 4$~-
yscale = 2, mHV%I@`Y6
color = gray, `Nz/Oh7
width = 3, 0
HGM4[)=
maxconnect = 1, hn5h\M?
"N_dop (right scale)" RQ vft
2`7==?
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 5]KW^sL
color = red, diJLZikk
maxconnect = 1, !限制图形区域高度,修正为100%的高度 7!@-*/|!S9
width = 3, )Xk0VDNp$/
"pump" .`HYA*8_
.{ocV#{s
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 R)_%i<nq\
color = blue, /Y9>8XSc
maxconnect = 1, !}YAdZJ
width = 3, KK&rb~
"signal" aZ2!i
%eX{WgH
h].<t&
; ------------- .>=(' -
diagram 5: !输出图表5 H5DC[bZMb%
>.Chl$)<
"TransitionCross-sections" 1C<uz29
"@%7 -nu
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) +]*zlE\N`
F~T]u2qt
x: 1450, 2050 pXrFljoYl[
"wavelength(nm)", @x v25R_""~
y: 0, 0.6 iP
=V8g?L
"cross-sections(1e-24 m²)", @y ockTe5U
frame N >FKy'.gk
hx ]JCvyz
H
hy FG6h,7+
DgUT5t1
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 r[2ILe
color = red, #xho[\
width = 3, \n$u)Xj~6^
"absorption" *!q1Kr6r
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 )Ub_@)X3%l
color = blue, H\h3TdL
width = 3, d;zai]]
"emission" E)TN,@%
NG--6\