(* G%anot
Demo for program"RP Fiber Power": thulium-doped fiber laser, 7,|-%!p[
pumped at 790 nm. Across-relaxation process allows for efficient VLtb16|
population of theupper laser level. Tk/K7h^
*) !(* *)注释语句 A20_a;V
C,-V>bx g
diagram shown: 1,2,3,4,5 !指定输出图表 52*zX 3
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 NF0} eom
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 qwA:o-q"
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 G:'-|h
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 xYRL4
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 xJ%b<y{@
e)\s0#
include"Units.inc" !读取“Units.inc”文件中内容 9 VkuYm,3
,Mc}U9)F
include"Tm-silicate.inc" !读取光谱数据 eUqsvF}l!
z;'"c3qG8
; Basic fiberparameters: !定义基本光纤参数 qX:54$t
L_f := 4 { fiberlength } !光纤长度 Oa7`Y`6
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 bQ0m=BzF
r_co := 6 um { coreradius } !纤芯半径 w0moC9#$?
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 k`.-PU
?
_[gs/i}
; Parameters of thechannels: !定义光信道 5nqj
l_p := 790 nm {pump wavelength } !泵浦光波长790nm &e_M \D
dir_p := forward {pump direction (forward or backward) } !前向泵浦
61T"K
P_pump_in := 5 {input pump power } !输入泵浦功率5W Lc*i[J<s
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um 4jis\W}%L3
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 ^fS~va
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 WABq6q!
EEn}Gw
l_s := 1940 nm {signal wavelength } !信号光波长1940nm *;+lF
w_s := 7 um !信号光的半径 RIl%p~
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 )F]E[sga
loss_s := 0 !信号光寄生损耗为0 5Z6$90!k
YG?W8)T
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 sxnj`z
rN$_(%m_N
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 #i.M-6SRd
calc <8r%_ ']
begin wp.<}=|u
global allow all; !声明全局变量 v8
ggPI
set_fiber(L_f, No_z_steps, ''); !光纤参数 b V;R}3)
add_ring(r_co, N_Tm); v2JC{XqrI
def_ionsystem(); !光谱数据函数 hRxR2
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 3boINmX
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 z9&$Xao
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 \|DcWH1
set_R(signal_fw, 1, R_oc); !设置反射率函数 D19uI&U4
finish_fiber(); j3IxcG}f
end; o*I=6`j
./[%%"
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 ~;il{ym
show "Outputpowers:" !输出字符串Output powers: cL<
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) QF'N8Kla
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) LurBqr
Po(9BRd7
[)#,~L3
; ------------- ];Bh1
diagram 1: !输出图表1 o}7`SYn
~e ]83?
"Powers vs.Position" !图表名称 y!mjZR,&
PRWS[2[yk
x: 0, L_f !命令x: 定义x坐标范围 vDv:3qN7(
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 (6>8Dt 9[
y: 0, 15 !命令y: 定义y坐标范围 hqD]^P>l1
y2: 0, 100 !命令y2: 定义第二个y坐标范围 FuLP{]Y+AM
frame !frame改变坐标系的设置
. sgV
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) ZnI_<iFR*
hx !平行于x方向网格 pDCQ?VW
hy !平行于y方向网格 ~H7m7
Z-*L[
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 j2=jD G
color = red, !图形颜色 DZilK:
width = 3, !width线条宽度 !d&K,k
"pump" !相应的文本字符串标签 Qg<_te)\
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 UOy`N~\gh+
color = blue, sZFjkfak
width = 3, JN$v=Ox{
"fw signal" m/Q@ -
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 @i$9c)D
color = blue, loLQ@?E
style = fdashed, +I;b,p
width = 3, 1ePZs$
"bw signal" b{b2L.
!WR(H&uBr\
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 iLws;3UX;x
yscale = 2, !第二个y轴的缩放比例 o(u&n3Q'
color = magenta, F(Pe@ #)A
width = 3, #78p#E
style = fdashed, |K,9EM3
"n2 (%, right scale)" ^j0Mu.+_
bT|a]b:
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 -*_D!
yscale = 2, SirjWYap
color = red, 0gL]^_+7
width = 3, i"_)91RA
style = fdashed, mawomna
"n3 (%, right scale)" \rF6"24t6
<_dyUiT$J
{W)Kz_
; ------------- \A6MVMF8
diagram 2: !输出图表2 5IOOV Yl
[}9sq+##
"Variation ofthe Pump Power" 1y2D]h /'
_[<R<&jG
x: 0, 10 t>)iC)^u
"pump inputpower (W)", @x +?w 7Nm`
y: 0, 10 &BY%<h0c
y2: 0, 100 rr>QG<i;G
frame X};m \Bz
hx X|TEeE c[L
hy nL%;^`*8
legpos 150, 150 mSp-
Hzcy'
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 1XSA3;ZEc
step = 5, 9z$]hl
color = blue, IEfzu L<v
width = 3, X,C&nqVFm8
"signal output power (W, leftscale)", !相应的文本字符串标签 `MAee8u'
finish set_P_in(pump, P_pump_in) !
@{rkp
u_;*Ay
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 +FfT)8@W
yscale = 2, :3^b>(W.
step = 5, o@>{kzCx
color = magenta, ;5:g%Dt
width = 3, EgOAEv
"population of level 2 (%, rightscale)", b'Pq[ )
finish set_P_in(pump, P_pump_in) |5_bFB+&
|s-q+q{|
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 O$k;p<?M
yscale = 2, 'YIFHn$!
step = 5, +0rMv
color = red, guz{DBlK
width = 3, l=8)_z;~D
"population of level 3 (%, rightscale)", "u~l+aW0
finish set_P_in(pump, P_pump_in) QZB2yK3]h
Q/m))!ikMt
.;yy=
Rj
; ------------- r5jiB L~
diagram 3: !输出图表3 {_0Efc=7
pisk v[
"Variation ofthe Fiber Length" Fh9%5-t:J
' @>FtF[Gu
x: 0.1, 5 ]wh8m1
"fiber length(m)", @x )8kcOBG^L
y: 0, 10 DQ :w9
"opticalpowers (W)", @y `au('
xi<
frame X&o!xV -+
hx @[#U_T- I
hy )A:2y +
fzO4S^mTo8
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 b#bdz1@s
step = 20, [_hHZMTH
color = blue, .281;] =
width = 3, >8_#L2@
"signal output" py`RH)
`*cT79
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响
Bj09?#~[
step = 20, color = red, width = 3,"residual pump" ;j])h!8X
ZHUAM59bx
! set_L(L_f) {restore the original fiber length } 4 d4le
Rn~FCj,-
Qmle0ae
; ------------- |7n&I`#
diagram 4: !输出图表4 J\<7M8
Ug_5INK
"TransverseProfiles" $C0NvJf
, C2qP3yg
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) mt3j- Mw
b/Y9fQn
x: 0, 1.4 * r_co /um ?P@fV'Jo
"radialposition (µm)", @x K&0op 4&
y: 0, 1.2 * I_max *cm^2 :_JZn`Cab
"intensity (W/ cm²)", @y <9 lZ%j;
y2: 0, 1.3 * N_Tm 5%"${ywI
frame -NtT@ +AE
hx LuY`mi
hy s,m+q)
biG=4?Xl
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 wNL!T6"G
yscale = 2, ljVtFm<
color = gray, []:;8fY
width = 3, )QE7$|s
maxconnect = 1, O=LS~&=,
"N_dop (right scale)" hDJq:g
wD
q4{Pm $OW
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 G7 >
color = red, #&0)kr66
maxconnect = 1, !限制图形区域高度,修正为100%的高度 '$pT:4EuGq
width = 3, `l@[8H%aw
"pump" 3{RuR+yi
m6^Ua
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 I"Y d6M%
;
color = blue, $fhrGe
maxconnect = 1, Dww]D|M
width = 3, @;kw6f:{d
"signal" q9.)p
au7%K5
(Z5=GJM?$
; ------------- F{)YdqQ
diagram 5: !输出图表5 geU-T\1[l
+jYO?uaT
"TransitionCross-sections" Cnd70tbD )
r)Ts(#Z
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) r_p9YS@I
xEQ2iCeC
x: 1450, 2050 t^ LXGQ
"wavelength(nm)", @x w{k8Y?
y: 0, 0.6 kf\n
"cross-sections(1e-24 m²)", @y v{`Z
frame J9S9rir&
hx d=V4,:=S
hy DfwxPt#
c+?L?s`"
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 _'<V<OjVM!
color = red, -
{<`Z
width = 3, 6la# 0U23
"absorption" u\=gps/Z
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 /tRzb8`
color = blue, _?>!Bz
m
width = 3, mN+~fuh
"emission" l=D E|:
c_clpMx=