切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 2533阅读
    • 1回复

    [原创]RP Fiber Power仿真设计掺铥光纤激光器代码详解 [复制链接]

    上一主题 下一主题
    离线小火龙果
     
    发帖
    932
    光币
    2176
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-05-28
    (* [ sJ f)<  
    Demo for program"RP Fiber Power": thulium-doped fiber laser, ]vRte!QJ;  
    pumped at 790 nm. Across-relaxation process allows for efficient gV@FT|j!i  
    population of theupper laser level. Yl%1e|WV  
    *)            !(*  *)注释语句 ^6j: lL  
    Iko1%GJ1Z  
    diagram shown: 1,2,3,4,5  !指定输出图表 rZ`ob x\S  
    ; 1: "Powersvs. Position"     !分号是注释;光纤长度对功率的影响 8&?Kg>M  
    ; 2:"Variation of the Pump Power"  !泵浦光功率变化对信号输出功率的影响 N>##} i  
    ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 Zg1=g_xY  
    ; 4:"Transverse Profiles"             !横向分布,横坐标为半径位置 FrBoE#  
    ; 5:"Transition Cross-sections"    !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 =.`(KXT  
    6L[Yn?;  
    include"Units.inc"         !读取“Units.inc”文件中内容 1y@d`k`t:  
    y J*`OU#  
    include"Tm-silicate.inc"    !读取光谱数据 d_s=5+Yj  
    ApHs`0=(  
    ; Basic fiberparameters:    !定义基本光纤参数 {`,dWjy{%  
    L_f := 4 { fiberlength }      !光纤长度 ~t7?5b?*\  
    No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 Hx[YHu KL^  
    r_co := 6 um { coreradius }                !纤芯半径 &R+/Ie#0dz  
    N_Tm := 100e24 { Tmdoping concentration }  !纤芯Tm离子掺杂浓度 wSoIU,I  
    Vg'vL[Y  
    ; Parameters of thechannels:                !定义光信道 x`n$4a'7b  
    l_p := 790 nm {pump wavelength }                !泵浦光波长790nm B1)gudP`  
    dir_p := forward {pump direction (forward or backward) }   !前向泵浦 xUl=N   
    P_pump_in := 5 {input pump power }                    !输入泵浦功率5W  *R1 m=  
    w_p := 50 um {radius of pump cladding }               !包层泵浦相应的半径 50um SQ%B"1&$D  
    I_p(r) := (r <=w_p) { pump intensity profile }          !泵浦光强度分布 |Iei!jm  
    loss_p := 0 {parasitic losses of pump wave }           !泵浦光寄生损耗为0 ~I[Z 2&I  
    q6DuLFatc*  
    l_s := 1940 nm {signal wavelength }                   !信号光波长1940nm V4I5PPz~  
    w_s := 7 um                          !信号光的半径 4/UY*Us&  
    I_s(r) := exp(-2 *(r / w_s)^2)            !信号光的高斯强度分布 UhKC:<%  
    loss_s := 0                            !信号光寄生损耗为0 Y,BzBUWK  
    }ie  O  
    R_oc := 0.70 {output coupler reflectivity (right side) }      !输出耦合反射率 |a9d]^  
    fA"N5qQI(  
    ; Function for defining themodel:   !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 BfZAK0+*$  
    calc BUcPMF%\y:  
      begin to9~l"n.s  
        global allow all;                   !声明全局变量 E4;vC ?K{  
        set_fiber(L_f, No_z_steps, '');        !光纤参数 Y'-@O"pK  
        add_ring(r_co, N_Tm); 4WCWu}  
        def_ionsystem();              !光谱数据函数 \fC)]QZ  
        pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p);  !泵浦光信道 ,:6gp3  
        signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward);      !前向信号光信道 #dy z  
        signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward);    !后向信号光信道 eS(hLXE!7  
        set_R(signal_fw, 1, R_oc);                                 !设置反射率函数 m?3!  
        finish_fiber();                                   S,ZlS<Z#  
      end; 4lrF{S8  
    L#U-d zy\  
    ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 Gy}WZ9{  
    show "Outputpowers:"                                   !输出字符串Output powers: -u)f@e  
    show"pump:     ", P_out(pump):d3:"W"  !输出字符串pump:和计算值(格式为3个有效数字,单位W) )~W 35  
    show"signal:   ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) sBUK v(U)  
    \dvzL(,  
    dH]0 (aJ  
    ; ------------- U\OfB'Dn  
    diagram 1:                   !输出图表1 z+3G zDLy  
    r~f*aD  
    "Powers vs.Position"          !图表名称 l Tpn/  
    MnToL@  
    x: 0, L_f                      !命令x: 定义x坐标范围 2@7f^be  
    "position infiber (m)", @x      !x轴标签;@x 指示这些字符串沿坐标轴放置 =NJ:%kvF  
    y: 0, 15                      !命令y: 定义y坐标范围 kyV!ATL1F  
    y2: 0, 100                    !命令y2: 定义第二个y坐标范围 ?\ Fo|__  
    frame          !frame改变坐标系的设置 n^}M*#  
    legpos 600, 500  !图行在图表窗口中的位置(相对于左上角而言) 117`=9F  
    hx             !平行于x方向网格 ~x67v+I  
    hy              !平行于y方向网格 wXUP%i]i=  
    WFHS8SI  
    f: P(pump, x),    !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 >~%!#,C(|U  
      color = red,  !图形颜色 \iN3/J4  
      width = 3,   !width线条宽度 ad <z+a  
      "pump"       !相应的文本字符串标签 8 ckcTNPu  
    f: P(signal_fw, x),  !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 ,orq&#*Wd  
      color = blue,     {B;<R1  
      width = 3, [\i0@  
      "fw signal" @:2<cn`  
    f: P(signal_bw, x),   !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 d}d1]@Y\  
      color = blue, .kbo]P  
      style = fdashed, R0 yPmh,{  
      width = 3, *\gS 2[S  
      "bw signal" k[_)5@2  
    `vbd7i  
    f: 100 * n(x, 2),    !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 sY|by\-c  
      yscale = 2,            !第二个y轴的缩放比例 ajr);xd  
      color = magenta, #.Q3}[M  
      width = 3, u/s,#  
      style = fdashed, `5SLo=~  
      "n2 (%, right scale)" ,=Q;@Z4 vJ  
    .( )rb y  
    f: 100 * n(x, 3),          !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 mZ%"""X\Ei  
      yscale = 2, %R?B=W7 ;Q  
      color = red, x6n(BMr  
      width = 3, !UzMuGj  
      style = fdashed, QaVxP1V#U  
      "n3 (%, right scale)" ]t2zwHo#  
    ]TE(:]o7V  
    c@|!0 U%j  
    ; ------------- M53{e;.kN  
    diagram 2:                    !输出图表2 N~=,RPjq  
    N<d0C  
    "Variation ofthe Pump Power" 1\t#*N  
    b-/8R|Mem  
    x: 0, 10 X=1Po|  
    "pump inputpower (W)", @x {zck Y  
    y: 0, 10 H$@5\pP>  
    y2: 0, 100 7%MD0qm-  
    frame 9~rrN60Q  
    hx wI0NotC  
    hy pq T+lai)#  
    legpos 150, 150 yG v7^d  
    fen~k#|l  
    f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 6@rebe!&=  
      step = 5, DqH?:`G  
      color = blue, s^&Oh*SP*  
      width = 3, l* ap$1'  
      "signal output power (W, leftscale)",     !相应的文本字符串标签 tz^2?wO  
      finish set_P_in(pump, P_pump_in) nO\c4#ce  
    <<SUIY@X  
    f: (set_P_in(pump,x); 100 * n_av(2)),   !改变泵浦信号功率对能级2上激活粒子占比的影响 $~;h}I  
      yscale = 2, NMy+=GZu^  
      step = 5, xj!G9x<!  
      color = magenta, uY_vX\;67z  
      width = 3, M+|J;caX  
      "population of level 2 (%, rightscale)", Nn/f*GDvK  
      finish set_P_in(pump, P_pump_in) yIq. m=  
    .#OD=wkN0  
    f: (set_P_in(pump,x); 100 * n_av(3)),   !改变泵浦信号功率对能级3上激活粒子占比的影响 m)1+D"z  
      yscale = 2, j@o \d%.'!  
      step = 5, :>q*#vlb  
      color = red, 8mc0(Z@  
      width = 3, W"meH~[Cp  
      "population of level 3 (%, rightscale)", 5R%4fzr&g  
      finish set_P_in(pump, P_pump_in) #Fwf]{J  
    H6oU Ne  
    NZQl#ZJH:  
    ; ------------- L ,/(^0;  
    diagram 3:                         !输出图表3 ,_iR  
    ! N!A%  
    "Variation ofthe Fiber Length" l~C=yP(~  
    O;6am++M@  
    x: 0.1, 5 3UNmUDl[~  
    "fiber length(m)", @x /QW-#K|S&  
    y: 0, 10 \i.Yhl:O  
    "opticalpowers (W)", @y ?= R C?K  
    frame nYb{?{_ca8  
    hx q(XO_1W0V  
    hy X+%5q =N  
    JFOXrRR=d  
    f: (set_L(x);P_out(signal_fw)),     !改变光纤长度对信号光输出功率的影响 bm\Zp  
      step = 20,             sQ aP:@  
      color = blue, pIhy3@bY  
      width = 3, S)\Yc=~h  
      "signal output" .QLjaEja  
    j&|>Aa${  
    ;f: (set_L(x);P_out(pump)),                     !改变光纤长度对泵浦信号输出功率的影响 Q~-MB]'  
       step = 20, color = red, width = 3,"residual pump" ^V?W'~  
    ^fqco9^;  
    ! set_L(L_f) {restore the original fiber length } 2'-!9!C  
    5<77o|  
    JBMJR  
    ; ------------- }{SpV  
    diagram 4:                                  !输出图表4 nsjrzO79L8  
    Y7GHIzX  
    "TransverseProfiles" 9k*1_  
    6!A+$"  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) %4I13|<A`  
    tg"NWp6  
    x: 0, 1.4 * r_co /um ZQN%!2  
    "radialposition (µm)", @x P/Zp3O H  
    y: 0, 1.2 * I_max *cm^2 py%_XL=w,  
    "intensity (W/ cm&sup2;)", @y Z` zyE P A  
    y2: 0, 1.3 * N_Tm %|o2d&i  
    frame vD91t/_+  
    hx iZ; y(  
    hy Hq!|(  
    @w @SOzS)  
    f: N_dop(1, x * um,0),      !掺杂浓度的径向分布 f2,\B6+  
      yscale = 2, (!:+q$#BK  
      color = gray, I%'6IpR"d  
      width = 3, h 7  c  
      maxconnect = 1, 'nP;IuMP  
      "N_dop (right scale)" #7BX,jvn>  
    bo_Tp~ j  
    f: I(pump, -1, x *um, 0) * cm^2,    !泵浦光沿光纤径向的强度分布 Q$:>yveR*  
      color = red, M|9=B<6`7  
      maxconnect = 1,           !限制图形区域高度,修正为100%的高度 vcz?;lg  
      width = 3, D"ecwx{%;C  
      "pump" ?>T (  
    m-AW}1:\f  
    f: I(signal_fw, -1,x * um, 0) * cm^2,  !信号光沿光纤径向的强度分布 )o N#%%SB<  
      color = blue, @lu` oyM  
      maxconnect = 1, LG:Mksd8=4  
      width = 3, MzpDvnI9  
      "signal" ?:c:D5N  
    3c[< #] 8S  
    Tq,xW  
    ; ------------- x2$Y"b?vz  
    diagram 5:                                  !输出图表5 m5kt O^EU  
    5169E*  
    "TransitionCross-sections" b6ui&Y8z  
    ~(Xzm  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) Wo, "$Z6B  
    h%+6 y  
    x: 1450, 2050 35 3*D%8  
    "wavelength(nm)", @x ^w+)A;?W  
    y: 0, 0.6 R|JBzdK+P  
    "cross-sections(1e-24 m&sup2;)", @y [e?vqm .  
    frame +H6cZ,  
    hx n"|1A..^  
    hy i564<1`x  
    rw%1>]os  
    f: s12_Tm(x * nm) /1e-24,      !Tm3+吸收截面与波长的关系 w)Wg 8  
      color = red, ^M7pCetjdW  
      width = 3, &!0%"4  
      "absorption" ~ "stI   
    f: s21_Tm(x * nm) /1e-24,  !Tm3+发射截面与波长的关系 p$!Q?&AV/  
      color = blue, 8%#pv}  
      width = 3, V 2/?1  
      "emission" x/,(G~  
    !6pE0(V^+4  
     
    分享到
    离线lileisgsz
    发帖
    14
    光币
    69
    光券
    0
    只看该作者 1楼 发表于: 2021-09-28
    感谢,视频上有点看不清楚