(* 5ykk11!p$
Demo for program"RP Fiber Power": thulium-doped fiber laser, vs'L1$L'c
pumped at 790 nm. Across-relaxation process allows for efficient s5zGg]0
population of theupper laser level. (8@hF#N1
*) !(* *)注释语句 {g!exbVf
}]39
iK`w
diagram shown: 1,2,3,4,5 !指定输出图表 :~0^ib<v;
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 "j.oR}s9?#
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 A&}nRP9
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 Sf4h!ly
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 {-v\&w
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 vS J<
-u3SsU)_%N
include"Units.inc" !读取“Units.inc”文件中内容 LjH&f 4mY
@8Q+=abz
include"Tm-silicate.inc" !读取光谱数据 *OGXu07 !
T^(n+ lv
; Basic fiberparameters: !定义基本光纤参数 y_7XYT!w
L_f := 4 { fiberlength } !光纤长度 %<ptkZK#
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 }^GV(]K
r_co := 6 um { coreradius } !纤芯半径 TgQ|T57
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 ?%za:{
Z:B Y*#B
; Parameters of thechannels: !定义光信道 xo)?XFM2
l_p := 790 nm {pump wavelength } !泵浦光波长790nm 6(<~1{
X%
dir_p := forward {pump direction (forward or backward) } !前向泵浦 wsb=[$C
P_pump_in := 5 {input pump power } !输入泵浦功率5W Lm*LJ_+ B
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um "- j@GCme
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 xeP;"J}
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 N5w]2xz!
uZ2v;]\Y6
l_s := 1940 nm {signal wavelength } !信号光波长1940nm &;@b&p+
w_s := 7 um !信号光的半径 J,^pt Ql
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 \")YKN=W
loss_s := 0 !信号光寄生损耗为0 e/HX,sf_g
/P8eI3R
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 [[66[;
!7NzW7j
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 Dpp52UnTE
calc |Qt`p@W
begin "za*$DU
global allow all; !声明全局变量 _"w!KNX>(~
set_fiber(L_f, No_z_steps, ''); !光纤参数 l&^[cR
add_ring(r_co, N_Tm); [>Kxm
def_ionsystem(); !光谱数据函数 o%~K4 M".
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 Jm J,~_
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 (krG0S:0Q
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 #:\+7mCF
set_R(signal_fw, 1, R_oc); !设置反射率函数 H;7H6fyZ
finish_fiber(); ZV<y=F*~f
end; CQuvbAo
-_4jJxh=OB
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 85@6uBh
show "Outputpowers:" !输出字符串Output powers: E?q'|f
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) X"khuyT_
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) 1\608~ZH
_]r)6RT
+!V%Q
; ------------- {u=\-|t
diagram 1: !输出图表1 $5"-s]
g-V\s&}
"Powers vs.Position" !图表名称 R?9Plzt5
K?O X
x: 0, L_f !命令x: 定义x坐标范围 1yRd10
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 ^nm!NL{z^
y: 0, 15 !命令y: 定义y坐标范围 Z%n.:I<%ZV
y2: 0, 100 !命令y2: 定义第二个y坐标范围 l<K.!z<-:8
frame !frame改变坐标系的设置 k&"qdB(I
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) <ZvPtW
hx !平行于x方向网格 u/:Sf*;?
hy !平行于y方向网格 gMK3o8B/
z?_}+
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 w>q_8V_K
color = red, !图形颜色 4!s k3Cw{
width = 3, !width线条宽度 Sl<-)a:
"pump" !相应的文本字符串标签 &fy8,}
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 vls> 6h
color = blue, 0JRBNh
width = 3, 6=lQT
9u{
"fw signal" |v'5*n9
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 \w_[tPz}
color = blue, eD1MP<>h
style = fdashed, z4fK{S
width = 3, ?d#(ian
"bw signal" <fxjj
.p0n\$r
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 [[DFEvOEh
yscale = 2, !第二个y轴的缩放比例 yrYaKh
color = magenta, L8K 3&[l%
width = 3, !skWe~/
style = fdashed, Sm_:SF!<D6
"n2 (%, right scale)" i@j ?<
E|uXi)!.x
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 b`Ek;nYek
yscale = 2, >)Z2bCe
color = red, O
xaua
width = 3, N)y;owgo
style = fdashed, 44{:UhJkx
"n3 (%, right scale)" vlyNQ7"%
cCKda3v!O
<4HuV.K
; ------------- G8-d%O p
diagram 2: !输出图表2 daJ-H
m/B9)JzY
"Variation ofthe Pump Power" ';!UJWYl
J
2~B<=V
x: 0, 10 IX3yNTW"L
"pump inputpower (W)", @x %a^!~qV
y: 0, 10 Z$K%@q,10+
y2: 0, 100 ;ypO'
frame W&[9x%Ba
hx c+XR
hy 2qR@:^
legpos 150, 150 H$iMP.AK
J@{Bv%
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 BU\NBvX$
step = 5, U]&%EqLS
color = blue, F+^[8zK^
width = 3, $4)guG)
"signal output power (W, leftscale)", !相应的文本字符串标签 8k% :w0H
finish set_P_in(pump, P_pump_in) V0B4<TTAo~
4[j) $!l`
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 gz:c_HJ
yscale = 2, )p](*Z^
step = 5,
0d)n}fm
color = magenta, Y mSaIf
width = 3, iU|C<A%Hh
"population of level 2 (%, rightscale)", ~%q e,
finish set_P_in(pump, P_pump_in) u-cC}DP
kQcQi}e
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 2a}_|#*
yscale = 2, .SFwjriZ
step = 5, 8u23@?
color = red, :{i mRa-
width = 3, >CA1Ub&ls
"population of level 3 (%, rightscale)", 2)H|/
finish set_P_in(pump, P_pump_in)
}trMQ
|LhuZ_;1xo
7]
H4E.(l
; ------------- L>*|T[~
diagram 3: !输出图表3 <7h'MNf&
lTNkm Q
"Variation ofthe Fiber Length" Cr"hu;
#wcoLCjs)
x: 0.1, 5 z(` kWF1<
"fiber length(m)", @x E_#&L({|@
y: 0, 10 ]z$<6+G
"opticalpowers (W)", @y 6
>2!
kM7
frame x6]?}Q>>D
hx ENr&k(>0HQ
hy f:>jH+o.S
Il[WXt<S
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 ^B>6!
step = 20, gnec#j
color = blue, r,\(Y@I
width = 3, AUd}) UR
"signal output" o!N@W
MsiSC
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 (["u"m%
step = 20, color = red, width = 3,"residual pump" :\XD.n-n
l K%Hb=
! set_L(L_f) {restore the original fiber length } 3H2'HO
l,3tU|V
23m+"4t
; ------------- iWEYSi\)n
diagram 4: !输出图表4 k3w#^
"i
G{9y`;
"TransverseProfiles" f&J*(F*u
<XU]%}o
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) bzTM{<]sv
ud1E@4;qf
x: 0, 1.4 * r_co /um jA'+>`@
"radialposition (µm)", @x SqLKF<tY]/
y: 0, 1.2 * I_max *cm^2 5,3h'\ "!
"intensity (W/ cm²)", @y Uk#1PcPd
y2: 0, 1.3 * N_Tm
b(F`$N@7C
frame 4i \n1RW
hx K> U&jH
hy p_D)=Ef|&
od>.5{o
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 4ai3@f5
yscale = 2, lwlR"Z
color = gray, j
yE+?4w;
width = 3, v2^CBKZ+
maxconnect = 1, >ZT3gp?E
"N_dop (right scale)" [?A0{#5)8x
j&r5oD;
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 G}g+2`
color = red, o<;"+ @v
maxconnect = 1, !限制图形区域高度,修正为100%的高度 2P*O^-zRp
width = 3, u&:jQ:[
"pump" 0&)4^->c
"lm3o(Dk
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 (plOV)
color = blue, BR*U9K|W
maxconnect = 1, oz QL2
width = 3, BC3I{Y|
"signal" .$rcTZ
_XN sDW4|
;C3](
; ------------- >8c9-dTmf
diagram 5: !输出图表5 ay2.CBF
wcO_;1_
H
"TransitionCross-sections" zB4gnVhus|
W/+0gh7`,(
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) MC3{LVNK
%%#zO
Z
x: 1450, 2050 JL1Whf
"wavelength(nm)", @x #Uo
9BM
y: 0, 0.6 A-kI_&g\Og
"cross-sections(1e-24 m²)", @y 2gi`^%#k]
frame D<:9pLD(
hx YRl2e`&jt
hy *l}q,9iQ-
i4l?q#X
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 g]S.u8K8m
color = red, 8AK#bna~-
width = 3, N9hBGa$
"absorption" -Rmz`yOq}
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 K=;p^dE
color = blue, Ood&cP'c
width = 3, #'8E%4
"emission" JA&w"2X*E
dS-l2 $n