(* 'dv(
Demo for program"RP Fiber Power": thulium-doped fiber laser, hAP2DeT$
pumped at 790 nm. Across-relaxation process allows for efficient #T`1Z"h<
population of theupper laser level.
-*-"kzgd
*) !(* *)注释语句 m")p]B&i=
,W/Y@ScC
diagram shown: 1,2,3,4,5 !指定输出图表 R mo'3
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 d>r ]xXB6
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 D$w?
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 o"A?Aq
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 d`j<Bbf-
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 <$#^)]Ts
*7#5pT~
include"Units.inc" !读取“Units.inc”文件中内容 rsw=a_S
E>2AG3)
include"Tm-silicate.inc" !读取光谱数据 8|+@A1)&4
_6]CT0
; Basic fiberparameters: !定义基本光纤参数 Eq8:[o
L_f := 4 { fiberlength } !光纤长度 J%!vhQ
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 hQvI}
r_co := 6 um { coreradius } !纤芯半径 \Il?$Kb/
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 cA|
n*A-j<
_=cuOo"!
; Parameters of thechannels: !定义光信道 BE0Xg
l_p := 790 nm {pump wavelength } !泵浦光波长790nm zY-?Bv_D
dir_p := forward {pump direction (forward or backward) } !前向泵浦 9OlJC[
P_pump_in := 5 {input pump power } !输入泵浦功率5W hVJ}EF0
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um ^(BE_<~
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 r $ YEq5
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 "-G7eGQ
qK%#$JgqA
l_s := 1940 nm {signal wavelength } !信号光波长1940nm , 0?_?
GO
w_s := 7 um !信号光的半径 <u?\%iJ"
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 8hSw4S"$
loss_s := 0 !信号光寄生损耗为0 KmWd$Qy,
@f,/ K1k
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 -afNiNiY
};gcM@]]E
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 \vpX6!T
calc y7'9KQ
begin
?dk)2
global allow all; !声明全局变量 BXytAz3
set_fiber(L_f, No_z_steps, ''); !光纤参数 rf!i?vAe
add_ring(r_co, N_Tm); `?d`
#)Ck
def_ionsystem(); !光谱数据函数 Ksk[sf?J&
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 f/m0,EERk
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 5E}]U,$
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 sn'E}.uhXH
set_R(signal_fw, 1, R_oc); !设置反射率函数 {T0Au{88H
finish_fiber(); P"[{s^mb
end; SI=7$8T5=5
'+*'sQvH[
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 h66mzV:`
show "Outputpowers:" !输出字符串Output powers: BJp~/H`vd
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) ajf(Ii\/
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) `@So6%3Y|
]v+yeGIK S
A3J=,aRI_v
; ------------- UunZ/A$]m
diagram 1: !输出图表1 .B!
Z0
FyChH7
"Powers vs.Position" !图表名称 dChMjaix
jFI`CA6P
x: 0, L_f !命令x: 定义x坐标范围 ~h3~<p#M`
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 ih: XC
y: 0, 15 !命令y: 定义y坐标范围 fW=eB'Sl
y2: 0, 100 !命令y2: 定义第二个y坐标范围 =yPV9#(I/
frame !frame改变坐标系的设置 E7I$GD
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) {?r5~T`2
hx !平行于x方向网格
| 1a}p
hy !平行于y方向网格 Kv ajk~
yMpZ-b$*~
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 =i},$"Bf*%
color = red, !图形颜色 f7;<jj;w7
width = 3, !width线条宽度 <2N=cH'
"pump" !相应的文本字符串标签 \AB)L{
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 `:Oje
color = blue, HzsQ`M4cA
width = 3, _KZTY`/*
"fw signal" WM
]eb, 8q
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 !1
Y[e^
color = blue, /?V-
style = fdashed, Q9&H/]"v
width = 3, ,G[Y< ~Hy
"bw signal" ~9@83Cs2
8/lgM'Eux
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 b&9~F6aM
yscale = 2, !第二个y轴的缩放比例 3KtJT&RuL
color = magenta, -Q|]C{r
width = 3, s?
2ikJq
style = fdashed, bas1(/|S
"n2 (%, right scale)" 9|m:2["|?
ryb81 .|
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 |<MSV KW
yscale = 2, /.>%IcK
color = red, {+EnJ"
width = 3, ?}(B8^
style = fdashed, s(r4m/
"n3 (%, right scale)" {HFx+<JG
'LR|DS[Ne
ClNuO
; ------------- "/%o'Fq
diagram 2: !输出图表2 /<Z3x
_c
FuG;$';H75
"Variation ofthe Pump Power" p =-~qBw
w:mm@8N
x: 0, 10 5<P6PHdY
"pump inputpower (W)", @x b.RFvq5Z
y: 0, 10 yR"mRy1
y2: 0, 100 Kq(JHB+
frame B&<P >AZ
hx DcE4r>8B
hy JEF ;Q
legpos 150, 150 R@U4Ae{+
|/n
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 IR8yE`(h
step = 5, LjIkZ'HuF
color = blue, 7m}fVLk
width = 3, 5=R]1YI~$
"signal output power (W, leftscale)", !相应的文本字符串标签 M`E}1WNQ?]
finish set_P_in(pump, P_pump_in) `Jh<8~1
)JJF}m=
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 4um^7Ns)7
yscale = 2, ^F&j;8U
step = 5, ~YByyJG
color = magenta, hD4>mpk
width = 3, mA@!t>=oMq
"population of level 2 (%, rightscale)", KLG29G
finish set_P_in(pump, P_pump_in) \[]?9Z=n
/rky
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 0& ?L%Y
yscale = 2, jmcys
_N3
step = 5, +r&:c[
color = red, NK'@.=$
width = 3, $VhY"<
"population of level 3 (%, rightscale)", oxdX2"WwU
finish set_P_in(pump, P_pump_in) Nr).*]g@~
?Iq{6O>D.
) TRUx
; ------------- 5"X@<;H%
diagram 3: !输出图表3 +cKOIMu9
*||Q_tlz
"Variation ofthe Fiber Length" 9ExI,
&I%E8E
x: 0.1, 5 IW-|"5?9'
"fiber length(m)", @x ]2
$T 6
y: 0, 10 Et0)6^-v
"opticalpowers (W)", @y n{&;@mgI
frame b*/Mco 9O
hx `zB bB^\`W
hy 1'F!C
)dh`aQ%N "
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 vVrM[0*c
step = 20, eTay/i<-
color = blue, sZEa8
width = 3, \9uK^oS
"signal output" pM}~/
1
-C~C]&
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 FCWk8/
step = 20, color = red, width = 3,"residual pump" xGOVMo
+
p1K]m>Y{?
! set_L(L_f) {restore the original fiber length } ?~(#~3x
Xo&\~b#-
h=JW^\?\]
; ------------- 3:xKq4?
diagram 4: !输出图表4 +\)Y,@cw
gNc;P[
"TransverseProfiles" u[oV
Jvc
|lZp5MOc
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) uG +ZR:
_
&Yc'X+'4
x: 0, 1.4 * r_co /um 3^xq+{\)
"radialposition (µm)", @x Yl:[b{Py
y: 0, 1.2 * I_max *cm^2 YDj5+'y
"intensity (W/ cm²)", @y = ^Vp \
y2: 0, 1.3 * N_Tm iz{TSU
frame (|rf>=B+H
hx . UH'U\M
hy DEt!/a{X
.N@+Ms3
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 9%"`9j~H>
yscale = 2, .\&k]}0qA?
color = gray, bN03}&I
width = 3, Bq1}"092
maxconnect = 1, <RZqs
"N_dop (right scale)" dv+ZxP%g
^8J`*R8CL
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 )rt%.`
color = red, xI~AZ:m
maxconnect = 1, !限制图形区域高度,修正为100%的高度 zSU,le
width = 3, {
0&l*@c&
"pump" ';My"/
Z-
j"aY\cLr t
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 BV
}CmU&DA
color = blue, E_DQ.!U!o
maxconnect = 1, 'Cz*p,
width = 3, RyG6_G}
"signal" } .Z`
+!E9$U>6%
DV[FZ
; ------------- @rDBK] V
diagram 5: !输出图表5 X!mJUDzh]
'3Q~y"C+4
"TransitionCross-sections" &5${k'
hayJgkZ'
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) VB#&`]rdo
8iOHav4
x: 1450, 2050 '`.-75T
"wavelength(nm)", @x 0t}v@-abU
y: 0, 0.6 8q9ATB-^>
"cross-sections(1e-24 m²)", @y /3K)$Er
frame 6M_:D
hx :z&kbG
hy P}UxA!
G
&NK
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 ~cfXEjE6
color = red, l>`66~+s,`
width = 3, $u'"C|>8
"absorption" FQ1B%u|
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 a:`<=^:4,
color = blue, 6)ln,{
width = 3, xW*Lceb
"emission" &rD8ng+$
w,vnpdT