(* .AQTUd(_
Demo for program"RP Fiber Power": thulium-doped fiber laser, A#{I-*D[
pumped at 790 nm. Across-relaxation process allows for efficient -aLM*nIoe
population of theupper laser level. M1]w0~G
*) !(* *)注释语句 "!&
o|!2
c_,pd
diagram shown: 1,2,3,4,5 !指定输出图表 QE pCU)
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 %__ @G_M
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 nTw:BU4jd
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 M?Fv'YE
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 @=}NMoNH
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 A6+qS
[
>0u*E *Y
include"Units.inc" !读取“Units.inc”文件中内容 eY%Ep=J
Lctp=X4
include"Tm-silicate.inc" !读取光谱数据 g6xQQ,q=l
H@1qU|4
; Basic fiberparameters: !定义基本光纤参数 z8r?C
L_f := 4 { fiberlength } !光纤长度 xXnSo0`LF
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 {MN6JGb|'
r_co := 6 um { coreradius } !纤芯半径 V)4?y9xZv
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 Bio QV47B
~}/_QlX` K
; Parameters of thechannels: !定义光信道 Hq~SRc~
l_p := 790 nm {pump wavelength } !泵浦光波长790nm J7`;l6+Gb
dir_p := forward {pump direction (forward or backward) } !前向泵浦 I *f@M}
P_pump_in := 5 {input pump power } !输入泵浦功率5W 1H\5E~X
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um <;@E
.I\N
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 zsj]WP6j
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 :^qUr`)
m&#D ~
l_s := 1940 nm {signal wavelength } !信号光波长1940nm i+Mg[x$.
w_s := 7 um !信号光的半径 *=]UWM~]
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 &4%78K\
loss_s := 0 !信号光寄生损耗为0 QxuU3#l
~OLyG$JJ
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 uKTYb#E7
6ZwQ/~7H
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 T!pA$eE
calc @*uZ+$
begin il"pKQF
global allow all; !声明全局变量 4/_!F'j
set_fiber(L_f, No_z_steps, ''); !光纤参数 .
Y$xNLoP[
add_ring(r_co, N_Tm); $VP\Ac,!
def_ionsystem(); !光谱数据函数 U]B-B+-
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 >6W #v[
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 {iCX?Sb
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 {$pi};
set_R(signal_fw, 1, R_oc); !设置反射率函数 =s*4y$%I
finish_fiber();
hFan$W$
end; (=Oo=8\
sHV?njZd
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 _PQk<QZ
show "Outputpowers:" !输出字符串Output powers: F7/%,vf
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) knfmJUT
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) RE-y5.kE^
x8C
*
cBU3Q<^
; ------------- dDAl n+
diagram 1: !输出图表1 )T&r770
J/,m'wH
"Powers vs.Position" !图表名称 eLV[U
[@3.dd
x: 0, L_f !命令x: 定义x坐标范围 NO/5pz}1
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 rt?*eC1b+Z
y: 0, 15 !命令y: 定义y坐标范围 &Z9rQH81f>
y2: 0, 100 !命令y2: 定义第二个y坐标范围 ?%D nIl>
frame !frame改变坐标系的设置 JW=q'ibR
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) G_WHW(8
hx !平行于x方向网格 G,1g~h%I$
hy !平行于y方向网格 Jp_ :.4
5yj6MaqJ
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 \J;]g\&I"
color = red, !图形颜色 v0bP|h[t
width = 3, !width线条宽度 9C!b
f \
"pump" !相应的文本字符串标签 znIS2{p/`
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 =rkW325O
color = blue, g&8-X?^Q
width = 3, S0LaQ<9.
"fw signal" :KGPQ@:O
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 vfc,{F=Q
color = blue, m}>Q#IVZ
style = fdashed, U]9k,#
width = 3, ;hEeFJ=/G
"bw signal" 9ESV[
[F{P0({%?
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 _NpxV'E
yscale = 2, !第二个y轴的缩放比例 qG]0z_dPE~
color = magenta, PR,8c
width = 3, 7?);wh 7`
style = fdashed, r8[)C cv
"n2 (%, right scale)" Pa$"c?QUy
JBLh4c3
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 $e{}SQ;fW
yscale = 2, >t%@)]*N
color = red, 9o3?
width = 3, LyL(~Jc|
style = fdashed, HK%W7i/k@
"n3 (%, right scale)" n8`WU3&
iqN?'8
vTIRydg2b
; ------------- "^Y zHq6
diagram 2: !输出图表2 }XqC'z
oa`7ClzD
"Variation ofthe Pump Power" `}rk1rl6
@Y}G,i
x: 0, 10 4U u`1gtz
"pump inputpower (W)", @x *M$'dLn
y: 0, 10 fVdu9 l
y2: 0, 100 9`M7 -{
frame {i}E)Np
hx `;j$]
hy C;.,+(G
legpos 150, 150 Eh$1piJG
*dPbV.HCl
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 c@J@*.q]
step = 5, :T<5Tq*+x
color = blue, %E"Z &_3{
width = 3, ExeZj8U
"signal output power (W, leftscale)", !相应的文本字符串标签 )V&hS5P=S
finish set_P_in(pump, P_pump_in) 8(L6I%k*
cv7:5P
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 j0s$}FPUI
yscale = 2, vhcp[=e :
step = 5, ]'-y-kqY
color = magenta, Q|e-)FS)
width = 3, DJAKF
"population of level 2 (%, rightscale)", \-f/\P/ w
finish set_P_in(pump, P_pump_in) `*U$pg
8m=O408Q
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 XUD Ztxa
yscale = 2, '$?!>HN4
step = 5, !&NrbiuN
color = red, o{^`Y
width = 3, F\|4zM
"population of level 3 (%, rightscale)", P,9Pn)M|
finish set_P_in(pump, P_pump_in) T[#q0bv
L"n)fe$
QR _h#N2h
; ------------- Vxu V`Plf
diagram 3: !输出图表3 c&FOt
@BF1X.4-+
"Variation ofthe Fiber Length" D W^Zuu/)
YRFz]
x: 0.1, 5 Jazg n5
"fiber length(m)", @x Pg{1' -
y: 0, 10 ??U/Qi180
"opticalpowers (W)", @y Bc[~'gn
frame 7GWOJ^)
hx <aDZ{T%
hy |ns?c0rM
l {>j8Ln
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 rp{|{>'`.q
step = 20, ,"XiI$Le
color = blue, \7"|'fz
width = 3, G3%Ju=
"signal output" ~~ rR< re
x|(pmqIH+
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 =R|XFZ,
step = 20, color = red, width = 3,"residual pump" V?1 $H
>MYDwH
! set_L(L_f) {restore the original fiber length } oSC'b%
=4a:)g'
I4{xQI
; ------------- +ovK~K$A
diagram 4: !输出图表4 &Xqxuy
]J
rUj\F9*5#
"TransverseProfiles" O9(z"c
'2H?c<Y3
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) I/MY4?(T
bIAE?D
x: 0, 1.4 * r_co /um 0)332}Oh
"radialposition (µm)", @x yXJ25Axb
y: 0, 1.2 * I_max *cm^2 Y(.e e%;,
"intensity (W/ cm²)", @y :aej.>I0
y2: 0, 1.3 * N_Tm uK2HtRY1
frame D=TS IJ@
hx ApXf<MAy
hy &aLTy&8Fv
Q=`yPK>{$N
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 jtP*C_Scv/
yscale = 2, ^w60AqR8
color = gray, w`)5(~b
width = 3, oAQQ OtpZN
maxconnect = 1, `
kT\V'
"N_dop (right scale)" vW1^
qk2E>
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 L0fe
color = red, -G~]e6:zD
maxconnect = 1, !限制图形区域高度,修正为100%的高度 u}[ a
width = 3, |Vx[
"pump" #'_#t/u
ws'e
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 {dpC;jsW1
color = blue, 'Qy6m'esW
maxconnect = 1, P%aqY~yF3
width = 3, _QL|pLf-
"signal" z1J)./BO
]<;7ZNG"Y5
jIubJQR~
; ------------- .G{cx=;
diagram 5: !输出图表5 3ZXAAV
XV]N}~h o`
"TransitionCross-sections" J4T"O<i$58
/mkT7,]
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) Ei!Z]jeK
a
!VWWUTm?
x: 1450, 2050 CvU$Fsb
"wavelength(nm)", @x ``l*;}
y: 0, 0.6 @_ %RQO_X
"cross-sections(1e-24 m²)", @y n
_K1%
frame m_)-
hx `UsJaoR#f
hy 2;v:Z^&
z!g$#hmL>
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 9JA@m
color = red, cW%)C.M
width = 3, +#Pb@^6"m
"absorption" w%])
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 $g>bp<9v4
color = blue, /8l-@P.o
width = 3, o +$v0vg%T
"emission" ?|5M'o|9
*u+DAg'&