(* mpAHL(
Demo for program"RP Fiber Power": thulium-doped fiber laser,
J,(7.+`~#
pumped at 790 nm. Across-relaxation process allows for efficient ;T>+,
population of theupper laser level. qi&D+~Gv!
*) !(* *)注释语句 ZjS(ad*.2
srK53vKMHW
diagram shown: 1,2,3,4,5 !指定输出图表 -6`;},Yr
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 ~r&D6Y
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 qU -!7=}7
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 lVoik*,B
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 @(>XOj?+
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 g8l5.Mpx
E M Q4yK
include"Units.inc" !读取“Units.inc”文件中内容 v,jhE9_O0
2d 8=h6
include"Tm-silicate.inc" !读取光谱数据 q$T8bh,2
B6MkF"J<
; Basic fiberparameters: !定义基本光纤参数 s/t11;
L_f := 4 { fiberlength } !光纤长度 *T1~)z}j<
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 bAiJn<
r_co := 6 um { coreradius } !纤芯半径 (sCAR=5v\
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 k;Hnu
4mJFvDZV`
; Parameters of thechannels: !定义光信道 6G}c1nWU
l_p := 790 nm {pump wavelength } !泵浦光波长790nm CW-A e
dir_p := forward {pump direction (forward or backward) } !前向泵浦 `%=<R-/#7S
P_pump_in := 5 {input pump power } !输入泵浦功率5W K&dT(U
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um NAJVr}4f
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 h/K@IAd
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 ,{8v4b-
Kam]Mn'
l_s := 1940 nm {signal wavelength } !信号光波长1940nm mxp Y&Y
w_s := 7 um !信号光的半径 :u/mTZDi
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 b#a@rh
loss_s := 0 !信号光寄生损耗为0 J633uH}}
`WnQ
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 .6m_>Y6
9Ejyg*
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 ,E}$[mHyjz
calc J +q|$K6
begin :YNp8!?T?
global allow all; !声明全局变量 V`bs&5#Sx
set_fiber(L_f, No_z_steps, ''); !光纤参数 ]?&FOzN5$P
add_ring(r_co, N_Tm); vv+J0f^
def_ionsystem(); !光谱数据函数 n8u*JeN
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 3?`"
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道
;:OsSq&
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 Jhy(x1%
set_R(signal_fw, 1, R_oc); !设置反射率函数 pbLGe'
finish_fiber(); "U8S81'
end; ; )llt
G
&{z<kmc$6
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 Uc&iZFid2K
show "Outputpowers:" !输出字符串Output powers: ;GOz>pg
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) Cj^{9'0
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) #SnvV
H~o <AmE0!
Cv^`&\[SW+
; ------------- _| zBUrN
diagram 1: !输出图表1 rMp9jG@3
r}W2 Ak\
"Powers vs.Position" !图表名称
q3S+Y9L
XUSvhr$|
x: 0, L_f !命令x: 定义x坐标范围 A5nO=
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 F,T~\gO5,
y: 0, 15 !命令y: 定义y坐标范围 Cq\I''~8
y2: 0, 100 !命令y2: 定义第二个y坐标范围 !p[`IWZ
frame !frame改变坐标系的设置
>|*yh~
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) "b,%8
hx !平行于x方向网格 50n}my'2h
hy !平行于y方向网格 33a uho
/3B6Mtb
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 XvKFPr0~
color = red, !图形颜色 926Tl
width = 3, !width线条宽度 ]KuMz p!
"pump" !相应的文本字符串标签 yI)~]K
r
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 ,Z~;U
color = blue, _Qd,VE
8u
width = 3, Uyx&E?SlEq
"fw signal" k;Fh4Hv
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 IIz0m3';+
color = blue, .CbGDZ
style = fdashed, p#@Z$gTH`'
width = 3, KnzsHli,~k
"bw signal" Vrp[r *V@E
\x+3f
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 ;>"nn
VW
yscale = 2, !第二个y轴的缩放比例 -]S.<8<$
color = magenta, [j9E pi(
width = 3, n&Yk<
style = fdashed, ig_2={Q@
"n2 (%, right scale)" 11UB4CA
kXc25y'blP
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 EKZVF`L
yscale = 2, jirbUl
color = red, XL5Es:"+?S
width = 3, \a|L/9%
style = fdashed, ]axh*J3`i
"n3 (%, right scale)" RBGX_v?
HY}j!X
L,]=vba'$
; ------------- ]v 29 Rx
diagram 2: !输出图表2 K : LL_,
~;#MpG;e
"Variation ofthe Pump Power" Is.WZYa
P?ep]
x: 0, 10 '0t-]NAc
"pump inputpower (W)", @x b ,^*mx=
y: 0, 10 x?yD=Mq_
y2: 0, 100 ,,<PVTd
frame ^TFs;|..
hx =o=1"o[
hy !Pj/7JC0
legpos 150, 150 .dmi#%W
lmCZ8 j(FF
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 XcfKx@l
step = 5, b=[?b+
color = blue, @QEqB_W
width = 3, 2+"r~#K*
"signal output power (W, leftscale)", !相应的文本字符串标签 lWZuXb,G
finish set_P_in(pump, P_pump_in) 3f76kl(&
f [o%hCS
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 )Y]/^1hx
yscale = 2, /VTM 9)u
step = 5, +cB&Mi5
color = magenta, eE]hy'{d<
width = 3, +M\8>/0oA
"population of level 2 (%, rightscale)", bKbp?-]
finish set_P_in(pump, P_pump_in) vS?odqi#n
cu7(.
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 }
:?.>#
yscale = 2, !.HnGb+
step = 5, ?Dsm~bkX[
color = red, KFWJ}pNq
width = 3, 4Yjx{5QSAG
"population of level 3 (%, rightscale)", N2,D:m\
finish set_P_in(pump, P_pump_in) `NNf&y)y
eiMH['X5
{rH9grb
; ------------- EeQ5vqU
diagram 3: !输出图表3 f-RK,#^?,
+8P,s[0<R_
"Variation ofthe Fiber Length" 4dh+
w!3>N"em
x: 0.1, 5 cPF<D$B
"fiber length(m)", @x 5\4g>5PD
y: 0, 10 :`,3h%
"opticalpowers (W)", @y 2y GOzc
frame +|RB0}hFS-
hx {I1~-8
hy .0y%5wz8j
O>0VTW
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 9@VO+E$7L
step = 20, fP-|+TyO
color = blue, UVuDQ
width = 3, d]v+mVAyE
"signal output" r0dDHj~F
<,%:
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 -pb&-@Hul
step = 20, color = red, width = 3,"residual pump" &*,:1=p
o4^Fo p
! set_L(L_f) {restore the original fiber length } U bz"rCjq
%1U`@0
'3(l-nPiG^
; ------------- )M<vAUF
diagram 4: !输出图表4 kJK,6mN
SAv<&
"TransverseProfiles" JiS5um=(.
6tjcAsV
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) $.mQ7XDA9
' P"g\;Ij
x: 0, 1.4 * r_co /um 83ipf"]*
"radialposition (µm)", @x e]>ori
8
y: 0, 1.2 * I_max *cm^2 r64u31.)
"intensity (W/ cm²)", @y .m4;^S2cO
y2: 0, 1.3 * N_Tm `TKD<&oL
frame KpiF0K
hx W0`Gc
{
hy - M5=r>1;
p='-\M74K
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 *wbZ;rfF
yscale = 2, A7XnHPIw
color = gray, jFG0`n}I
width = 3, [bQj,PZ&
maxconnect = 1, $a;]_ Y
"N_dop (right scale)" ^s/
irBDGT~
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 r4 dOK] 0
color = red, g=)J~1&p
maxconnect = 1, !限制图形区域高度,修正为100%的高度 H^%.=kf
width = 3, T6#"8qz<
"pump" $6>?;
T)CzK<LbR
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 vq'c@yw;
color = blue, 2s ,8R
maxconnect = 1, uZ6d35MJ
width = 3, :Og:v#r8=
"signal" *<V^2z$y_
4N?v
bMoAD.}
; ------------- M~
h8Crz
diagram 5: !输出图表5 ,5k-.Md>2*
M~T.n)x2
"TransitionCross-sections" cd@.zg'sYn
q`|CrOzO
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) P1zK2sL_
8Z#j7)G
x: 1450, 2050 vxlOh.a|/L
"wavelength(nm)", @x tB(4Eq
\
y: 0, 0.6 ;^k7zNf-
"cross-sections(1e-24 m²)", @y ph:3|d
frame ;-mdi/*g
hx ik1tidw
hy /L=(^k=a.;
(il0M=M
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 <!^
[~`
color = red, }E<^gAh}
width = 3, !3&kQpF
"absorption" 8s}J!/2
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 5rxA<Gs
color = blue, %uESrc-;
width = 3, N"5fmY<
"emission" / l>.mK()
j}HFs0<L