切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 2617阅读
    • 1回复

    [原创]RP Fiber Power仿真设计掺铥光纤激光器代码详解 [复制链接]

    上一主题 下一主题
    离线小火龙果
     
    发帖
    932
    光币
    2176
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-05-28
    (* ' dv(  
    Demo for program"RP Fiber Power": thulium-doped fiber laser, hAP2DeT$  
    pumped at 790 nm. Across-relaxation process allows for efficient #T`1Z"h<  
    population of theupper laser level. -*-"kzgd  
    *)            !(*  *)注释语句 m")p]B&i=  
    ,W/Y@ScC  
    diagram shown: 1,2,3,4,5  !指定输出图表 R mo'3  
    ; 1: "Powersvs. Position"     !分号是注释;光纤长度对功率的影响 d>r]xXB6  
    ; 2:"Variation of the Pump Power"  !泵浦光功率变化对信号输出功率的影响 D$w?  
    ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 o"A?Aq  
    ; 4:"Transverse Profiles"             !横向分布,横坐标为半径位置 d`j<Bbf-  
    ; 5:"Transition Cross-sections"    !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 <$#^)]Ts  
    *7#5pT~  
    include"Units.inc"         !读取“Units.inc”文件中内容 rsw= a_S  
    E>2AG3)  
    include"Tm-silicate.inc"    !读取光谱数据 8|+@A1)&4  
    _6]CT0  
    ; Basic fiberparameters:    !定义基本光纤参数 Eq8:[o  
    L_f := 4 { fiberlength }      !光纤长度 J%!vhQ  
    No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 hQvI}  
    r_co := 6 um { coreradius }                !纤芯半径 \Il?$Kb/  
    N_Tm := 100e24 { Tmdoping concentration }  !纤芯Tm离子掺杂浓度 cA| n*A-j<  
    _=cuOo"!  
    ; Parameters of thechannels:                !定义光信道 BE0Xg  
    l_p := 790 nm {pump wavelength }                !泵浦光波长790nm zY-?Bv_D  
    dir_p := forward {pump direction (forward or backward) }   !前向泵浦 9 OlJC[  
    P_pump_in := 5 {input pump power }                    !输入泵浦功率5W hVJ}EF 0  
    w_p := 50 um {radius of pump cladding }               !包层泵浦相应的半径 50um ^(BE_<~  
    I_p(r) := (r <=w_p) { pump intensity profile }          !泵浦光强度分布 r $YEq5  
    loss_p := 0 {parasitic losses of pump wave }           !泵浦光寄生损耗为0 "-G7eGQ  
    qK%#$JgqA  
    l_s := 1940 nm {signal wavelength }                   !信号光波长1940nm , 0?_? GO  
    w_s := 7 um                          !信号光的半径 <u?\%iJ"  
    I_s(r) := exp(-2 *(r / w_s)^2)            !信号光的高斯强度分布 8hSw4S "$  
    loss_s := 0                            !信号光寄生损耗为0 KmWd$Qy,  
    @f,/K1k  
    R_oc := 0.70 {output coupler reflectivity (right side) }      !输出耦合反射率 -afNiNiY  
    };gcM @]]E  
    ; Function for defining themodel:   !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 \vpX6!T  
    calc y7'9KQ  
      begin ?d k)2  
        global allow all;                   !声明全局变量 BXytAz3  
        set_fiber(L_f, No_z_steps, '');        !光纤参数 rf!i?vAe  
        add_ring(r_co, N_Tm); `?d` #) Ck  
        def_ionsystem();              !光谱数据函数 Ksk[sf?J&  
        pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p);  !泵浦光信道 f/m0,EERk  
        signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward);      !前向信号光信道 5E}]U,$  
        signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward);    !后向信号光信道 sn'E}.uhXH  
        set_R(signal_fw, 1, R_oc);                                 !设置反射率函数 {T0Au{88H  
        finish_fiber();                                   P"[{s^mb  
      end; SI=7$8T5=5  
    '+*'sQvH[  
    ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 h66mzV:`  
    show "Outputpowers:"                                   !输出字符串Output powers: BJp~/H`vd  
    show"pump:     ", P_out(pump):d3:"W"  !输出字符串pump:和计算值(格式为3个有效数字,单位W) ajf(Ii\/  
    show"signal:   ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) `@So6%3Y|  
    ]v+yeGIKS  
    A3J=,aRI_v  
    ; ------------- UunZ/A$]m  
    diagram 1:                   !输出图表1 .B!  Z0  
    FyChH7  
    "Powers vs.Position"          !图表名称 dChMjaix  
    jFI`CA6P  
    x: 0, L_f                      !命令x: 定义x坐标范围 ~h3~<p#M`  
    "position infiber (m)", @x      !x轴标签;@x 指示这些字符串沿坐标轴放置 ih : XC  
    y: 0, 15                      !命令y: 定义y坐标范围 fW=eB'Sl  
    y2: 0, 100                    !命令y2: 定义第二个y坐标范围 =yPV9#(I/  
    frame          !frame改变坐标系的设置 E7I$GD  
    legpos 600, 500  !图行在图表窗口中的位置(相对于左上角而言) {?r5~ T`2  
    hx             !平行于x方向网格  | 1a}p  
    hy              !平行于y方向网格 Kv ajk~  
    yMpZ-b$*~  
    f: P(pump, x),    !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 =i},$"Bf*%  
      color = red,  !图形颜色 f7;<jj;w7  
      width = 3,   !width线条宽度 <2N=cH'  
      "pump"       !相应的文本字符串标签 \ AB)L{  
    f: P(signal_fw, x),  !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 ` :Oje  
      color = blue,     HzsQ`M4cA  
      width = 3, _KZ TY`/*  
      "fw signal" WM ]eb, 8q  
    f: P(signal_bw, x),   !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 &#!1 Y[e^  
      color = blue, /?V-  
      style = fdashed, Q9&H/]"v  
      width = 3, ,G[Y< ~Hy  
      "bw signal" ~9@83Cs2  
    8/lgM'Eux  
    f: 100 * n(x, 2),    !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 b&9~F6aM  
      yscale = 2,            !第二个y轴的缩放比例 3KtJT&RuL  
      color = magenta, -Q|]C{r  
      width = 3, s? 2ikJq  
      style = fdashed, bas1(/|S  
      "n2 (%, right scale)" 9|m:2["|?  
    ryb81.|  
    f: 100 * n(x, 3),          !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 |<MSV KW  
      yscale = 2, /. >%IcK  
      color = red, {+EnJ"  
      width = 3, ?}(B8^  
      style = fdashed, s(r4m/  
      "n3 (%, right scale)" {HFx+<JG  
    'LR|DS[Ne  
    ClNuO  
    ; ------------- "/%o'Fq  
    diagram 2:                    !输出图表2 /<Z3x _c  
    FuG;$';H75  
    "Variation ofthe Pump Power" p =-~qBw  
    w: mm@8N  
    x: 0, 10 5<P6PHdY  
    "pump inputpower (W)", @x b.RFvq5Z  
    y: 0, 10 yR"mRy1  
    y2: 0, 100 Kq(JHB+  
    frame B&<P>AZ  
    hx DcE4r>8B  
    hy JEF;Q  
    legpos 150, 150 R@U4Ae{+  
    | /n  
    f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 IR8yE`(h  
      step = 5, LjIkZ'HuF  
      color = blue, 7m}fVLk  
      width = 3, 5=R]1YI~$  
      "signal output power (W, leftscale)",     !相应的文本字符串标签 M`E}1WNQ?]  
      finish set_P_in(pump, P_pump_in) `Jh<8~1  
    )JJF}m=  
    f: (set_P_in(pump,x); 100 * n_av(2)),   !改变泵浦信号功率对能级2上激活粒子占比的影响 4um^7Ns)7  
      yscale = 2, ^F&j;8U  
      step = 5, ~YByyJG   
      color = magenta, hD4>mpk  
      width = 3, mA@!t>=oMq  
      "population of level 2 (%, rightscale)", KLG29G  
      finish set_P_in(pump, P_pump_in) \[]?9Z=n  
    /rky  
    f: (set_P_in(pump,x); 100 * n_av(3)),   !改变泵浦信号功率对能级3上激活粒子占比的影响 0& ?L%Y  
      yscale = 2, jmcys _N3  
      step = 5, +r&:c[  
      color = red, NK'@.=$  
      width = 3, $VhY"<  
      "population of level 3 (%, rightscale)", oxdX2"WwU  
      finish set_P_in(pump, P_pump_in) Nr).*]g@~  
    ?Iq{6O>D.  
     ) TRUx  
    ; ------------- 5"X@<;H%  
    diagram 3:                         !输出图表3  +cKOIMu9  
    *||Q_tlz  
    "Variation ofthe Fiber Length" 9ExI,  
    &I%E8E  
    x: 0.1, 5 IW-|"5?9'  
    "fiber length(m)", @x ]2 $T 6  
    y: 0, 10 Et0)6^-v  
    "opticalpowers (W)", @y n{&;@mgI  
    frame b*/Mco 9O  
    hx `zB bB^\`W  
    hy  1'F!C  
    )dh`aQ%N "  
    f: (set_L(x);P_out(signal_fw)),     !改变光纤长度对信号光输出功率的影响 vVrM[0*c  
      step = 20,             eTay/i<-  
      color = blue, sZEa8  
      width = 3, \9uK^oS  
      "signal output" pM}~/  
    1 -C~C]&  
    ;f: (set_L(x);P_out(pump)),                     !改变光纤长度对泵浦信号输出功率的影响 FCWk8/  
       step = 20, color = red, width = 3,"residual pump" xGOVMo +  
    p1K]m>Y{?  
    ! set_L(L_f) {restore the original fiber length } ?~(#~3x  
    Xo&\~b#-  
    h=JW^\?\]  
    ; ------------- 3:xKq4?  
    diagram 4:                                  !输出图表4 +\)Y,@cw  
    gNc;P[  
    "TransverseProfiles" u[oV Jvc  
    |lZp5MOc  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) uG +ZR: _  
    &Yc'X+'4  
    x: 0, 1.4 * r_co /um 3^xq+{\)  
    "radialposition (µm)", @x Yl:[b{Py  
    y: 0, 1.2 * I_max *cm^2 YDj5+'y  
    "intensity (W/ cm&sup2;)", @y = ^Vp \  
    y2: 0, 1.3 * N_Tm iz{TSU  
    frame (|rf>=B+H  
    hx . UH'U\M  
    hy DEt!/a{X  
    .N@+Ms3  
    f: N_dop(1, x * um,0),      !掺杂浓度的径向分布 9%"`9j~H>  
      yscale = 2, .\&k]}0qA?  
      color = gray, bN03}&I  
      width = 3, Bq1}"092  
      maxconnect = 1, <RZqs  
      "N_dop (right scale)" dv+ZxP%g  
    ^8J`*R8CL  
    f: I(pump, -1, x *um, 0) * cm^2,    !泵浦光沿光纤径向的强度分布 )rt%.`  
      color = red, xI~A Z:m  
      maxconnect = 1,           !限制图形区域高度,修正为100%的高度 zSU,le  
      width = 3, { 0&l*@c&  
      "pump" ';My"/ Z-  
    j"aY\cLr t  
    f: I(signal_fw, -1,x * um, 0) * cm^2,  !信号光沿光纤径向的强度分布 BV }CmU&DA  
      color = blue, E_DQ.!U!o  
      maxconnect = 1, 'Cz*p,  
      width = 3, RyG6_ G}  
      "signal" }.Z `   
    +!E9$U>6%  
    DV[FZ  
    ; ------------- @rDBK] V  
    diagram 5:                                  !输出图表5 X!mJUDzh]  
    '3Q~y"C+4  
    "TransitionCross-sections" &5${k'  
    hayJgkZ '  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) VB#&`]r do  
    8iOHav4  
    x: 1450, 2050 '`. -75T  
    "wavelength(nm)", @x 0t}v@-abU  
    y: 0, 0.6 8q9ATB-^>  
    "cross-sections(1e-24 m&sup2;)", @y /3K)$Er  
    frame 6M_:D  
    hx :z&kbG  
    hy P}UxA!  
    G &NK  
    f: s12_Tm(x * nm) /1e-24,      !Tm3+吸收截面与波长的关系 ~cfXEjE6  
      color = red, l>`66~+s,`  
      width = 3, $u'"C|>8  
      "absorption" FQ1B%u|  
    f: s21_Tm(x * nm) /1e-24,  !Tm3+发射截面与波长的关系 a:`<=^:4,  
      color = blue, 6)ln,{  
      width = 3, xW*Lceb  
      "emission" & rD8ng+$  
    w,vnpdT  
     
    分享到
    离线lileisgsz
    发帖
    14
    光币
    69
    光券
    0
    只看该作者 1楼 发表于: 2021-09-28
    感谢,视频上有点看不清楚