(* 8G|kKpX
Demo for program"RP Fiber Power": thulium-doped fiber laser, yq\p%z$:
pumped at 790 nm. Across-relaxation process allows for efficient O",*N
population of theupper laser level. hd_<J]C
*) !(* *)注释语句 oC1Nfc+
U9:I"f,
diagram shown: 1,2,3,4,5 !指定输出图表 l5CFm8%
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 5YnTGf&
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 ibQN
p Iz
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 q;=! =aRg
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 QX|y};7\e
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 H+F>#
Q*8=^[x
include"Units.inc" !读取“Units.inc”文件中内容 b=Oec%Adx
*_!}g
]
include"Tm-silicate.inc" !读取光谱数据 o@A|Lm.
)~H&YINhn
; Basic fiberparameters: !定义基本光纤参数 3.<E{E!F
L_f := 4 { fiberlength } !光纤长度 8;1,saA_9
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 ;]sbz4?
r_co := 6 um { coreradius } !纤芯半径 SH/^qDT'
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 fFJu]
oS Apa
; Parameters of thechannels: !定义光信道 S_dM{.!Z(,
l_p := 790 nm {pump wavelength } !泵浦光波长790nm M
Qlx&.>
dir_p := forward {pump direction (forward or backward) } !前向泵浦 vC>8:3Zaq
P_pump_in := 5 {input pump power } !输入泵浦功率5W OVa38Aucr3
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um .|z8WF*
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 oeIza<:=R
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 U6yZKK
Hw
1cc3!
l_s := 1940 nm {signal wavelength } !信号光波长1940nm Z@QJ5F1y
w_s := 7 um !信号光的半径 Eu1t*>ZL
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 GLE"[!s]f
loss_s := 0 !信号光寄生损耗为0 F%^)oQT+c
iFkXt<_A
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 V"DilV$v
Uy5G,!
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 :*dfP/GO
calc 8(|lP58~
begin ,AEaW
global allow all; !声明全局变量 U3b&/z|b?
set_fiber(L_f, No_z_steps, ''); !光纤参数 I*hzlE
add_ring(r_co, N_Tm); Z[?zaQ$
def_ionsystem(); !光谱数据函数 w-wap
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 w
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 c-q=Ct
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 %+0V0.
set_R(signal_fw, 1, R_oc); !设置反射率函数 \:D"#s%x
finish_fiber(); _fE$KaP
end; r0(* ]K:.
W~qVZ(G*U
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 Ic')L*i7O
show "Outputpowers:" !输出字符串Output powers: 8c^Hfjr0
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) =--oH'P=M
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) EEdU\9DH(
bTbF
nC(<eL
; ------------- /;clxtus
diagram 1: !输出图表1 s5
($b
M"
R=;n
"Powers vs.Position" !图表名称 r%412#
;\(X;kQi
x: 0, L_f !命令x: 定义x坐标范围 <tT.m[q g
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 @e:=
D
y: 0, 15 !命令y: 定义y坐标范围 +
[~)a4#
y2: 0, 100 !命令y2: 定义第二个y坐标范围 ~Y 3X*
frame !frame改变坐标系的设置 /wT<p
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) GvI8W)d3,R
hx !平行于x方向网格 =:;K nS
hy !平行于y方向网格 H?cJ'Q,5
8KMo !p\i
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 HvLx
color = red, !图形颜色 $L"h|>b\o
width = 3, !width线条宽度 )];Bo.QA
"pump" !相应的文本字符串标签 CRs@x` 5ue
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 FW)VyVFmk
color = blue, p-XO4Pc6
width = 3, Ge1b_?L_
"fw signal" 2uLBk<m5c
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 -OXC;y
color = blue, TE% i
style = fdashed, r t'pc\|O&
width = 3, hMnm>
"bw signal" mnL+@mm
l!mx,O`
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 _"[Ls?tRX
yscale = 2, !第二个y轴的缩放比例 G.3yuok9
color = magenta, %&j\:X~A
width = 3, d<Dm(
style = fdashed, -CLBf'a
"n2 (%, right scale)" TyY%<NCIb
~'v9/I-"
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 JA~q}C7A7o
yscale = 2, 6uIgyO*;k
color = red, se=;vp]3a
width = 3, B
*%ey?
style = fdashed, c8LMvL
"n3 (%, right scale)" <b:xyHS
OJiwI)a9
QJ +Ml
; ------------- mgMa)yc!dp
diagram 2: !输出图表2 A DVUx}
h43py8v
"Variation ofthe Pump Power" |y
pXO3
"x3x$JQZy
x: 0, 10 jN-!1O._G
"pump inputpower (W)", @x 4W#DLip9
y: 0, 10 XAZPbvG|$
y2: 0, 100 #I1q,fm
frame "
v<O)1QT
hx //'&a-%$^
hy +ZOKfX
legpos 150, 150 ,b4oV
WK0:3q(P
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 Vh?RlIUA
step = 5, (67byO{
color = blue, X;n09 L`CB
width = 3, +)LCYDRV7
"signal output power (W, leftscale)", !相应的文本字符串标签 09qfnQG
finish set_P_in(pump, P_pump_in) BA[ uO3\4
,^RZ1tLz
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 IhRdn1&
yscale = 2, 6-z(34&N
step = 5, g(9kc<`3'D
color = magenta, 8@Bm2?$}g
width = 3, "
sC]z}
"population of level 2 (%, rightscale)", v*OV\h.
finish set_P_in(pump, P_pump_in) =R<92v
J/IRCjQ}
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 *d`KD64
yscale = 2, $01csj
step = 5, NcBz("
color = red, 'E&tEbY
width = 3, `NTtw;%Y
"population of level 3 (%, rightscale)", CF
3V)3}
finish set_P_in(pump, P_pump_in) ,}O33BwJp
Si@6'sw
Wm}gnNwA
; ------------- qV;I<AM
diagram 3: !输出图表3 f >.^7.is
Y'5(exW
"Variation ofthe Fiber Length" YUHiD*
:d pwr9)
x: 0.1, 5 KK6fRtKv>q
"fiber length(m)", @x vZW[y5
y: 0, 10 $s4.Aj
"opticalpowers (W)", @y J?EDz,
frame mz+UkA'
hx &_u.q/~
hy y$9! rbL
>c Lh$;l
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 ^/6P~iK'
step = 20, YWs?2I
color = blue, bkc*it
width = 3, Oet+$ b
"signal output" \7%#4@;?
R}cNhZC
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 }Z{FPW.QK
step = 20, color = red, width = 3,"residual pump" 8\^A;5
!/!ga)Y
! set_L(L_f) {restore the original fiber length } Wa7wV
9
d^J)Mhju
#UhH
; ------------- ca,W:9#.xn
diagram 4: !输出图表4 nJGs ,~"
El@*Fo
"TransverseProfiles" ZX64kk+
vzFpXdt
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) [8^q3o7n
GGhk~H4OP
x: 0, 1.4 * r_co /um K,I
"radialposition (µm)", @x mL pM8~L
y: 0, 1.2 * I_max *cm^2 KN[;z2i
"intensity (W/ cm²)", @y KX]!yA
y2: 0, 1.3 * N_Tm ]d-.Mw,'
frame dzBP<Xyh
hx BV`\6SM~
hy PCHspe9!y
Y)DX
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 S,nELV~!
yscale = 2, U: Wet,
color = gray, @aZ Tx/
width = 3, (y 7X1Qc)
maxconnect = 1, !&>`
"N_dop (right scale)" &H]/'i-
)t"-#$,@
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 "GQ Q8rQ
color = red, @qan &?-Y
maxconnect = 1, !限制图形区域高度,修正为100%的高度 jT=|!,Pn
width = 3, *$W&jfW
"pump" kI)}7e
eF22 ~P
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 nAEyL+6U
color = blue, cO*g4VL"[
maxconnect = 1, sqtz^K ROM
width = 3, w|-3X
"signal" &.\7='$F
)\=xPfs
T1$E][@Iv
; ------------- +q'1P}e
diagram 5: !输出图表5 (pd$?vRy
(+epRC
"TransitionCross-sections" {]<c6*gQ
NBY|U{.g
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) Ly+UY.v"
#%\0][Xf
x: 1450, 2050 5tQz!M
"wavelength(nm)", @x mGj)Zrx>
y: 0, 0.6 O*~z@"\
"cross-sections(1e-24 m²)", @y %7)TiT4V
frame 2CO/K_Q
hx ]`|$nU}v
hy 31a,i2Q4
"mW'tm1+
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 )*;Tt @'y
color = red, >bh+!5Y0
width = 3, GXVx/)H
"absorption" *y?HaU
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 B#Ybdp ;
color = blue, @@Ybg6.+*
width = 3, ORs:S$Nt$
"emission" q>.7VN[
vE
#dWz,e3