(* i%eq!q
Demo for program"RP Fiber Power": thulium-doped fiber laser, /agX! E4s
pumped at 790 nm. Across-relaxation process allows for efficient 6e.?L
population of theupper laser level. {#X]D~;s+
*) !(* *)注释语句 22gk1'~dO
^wm>\o;
diagram shown: 1,2,3,4,5 !指定输出图表 xU_Dg56z'&
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 "ZU CYYre
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 Q1?09
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 ~i ImM|*0
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 H^N
5yOj/
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 S LSbEm
2AK]x`GY
include"Units.inc" !读取“Units.inc”文件中内容 lyYi2& %
rfVHPMD0
include"Tm-silicate.inc" !读取光谱数据 .uGvmD<;x
Q4vl
; Basic fiberparameters: !定义基本光纤参数 zPKx: I3
L_f := 4 { fiberlength } !光纤长度 2IGoAt>V
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 Bw;LGEHi|
r_co := 6 um { coreradius } !纤芯半径 quEP"
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 /degBL+
IxQ(g#sj_k
; Parameters of thechannels: !定义光信道 a.O pxd
l_p := 790 nm {pump wavelength } !泵浦光波长790nm xOAA1#
dir_p := forward {pump direction (forward or backward) } !前向泵浦 VkChRzhC
P_pump_in := 5 {input pump power } !输入泵浦功率5W :s5wFumD
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um /PuN+M
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 QFS5PZ
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 C%l+<wpXO
2GRdfX
l_s := 1940 nm {signal wavelength } !信号光波长1940nm E"l/r4*f@
w_s := 7 um !信号光的半径 5i42o+'
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 [~[)C]-=
loss_s := 0 !信号光寄生损耗为0 f,_EPh>
Z:2a_Atm
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 6pCQP
c*A
~Os1ir.
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 Arzyq_ Yk
calc ~dFdO7
begin {hmC=j
global allow all; !声明全局变量 ZWH9E.uj
set_fiber(L_f, No_z_steps, ''); !光纤参数 !lk
-MN.
add_ring(r_co, N_Tm); j~Cch%%G
def_ionsystem(); !光谱数据函数 +=Q/'g
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 Z&VH7gi
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 x #Um`
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 &=-ZNWNo
set_R(signal_fw, 1, R_oc); !设置反射率函数 7i$)iNW
finish_fiber(); xR`W9Z5
end; [$<\*d/
~5Cid)Q}@o
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 % >\v6ea
show "Outputpowers:" !输出字符串Output powers: c :{#H9
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) UbnX%2TW
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) \69h>h
G'M;]R9EP
TJY
[s-
; ------------- ,R~{$QUl
diagram 1: !输出图表1 8NJxtT~0c~
%]m/fo4b
"Powers vs.Position" !图表名称 XJ3p<
abW[hp
x: 0, L_f !命令x: 定义x坐标范围 m/T3Um
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 `v|w&ty*
y: 0, 15 !命令y: 定义y坐标范围 N-9Vx#i
y2: 0, 100 !命令y2: 定义第二个y坐标范围 3;hztCZj
frame !frame改变坐标系的设置 {%"n[DLps
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) rEF0A&5
hx !平行于x方向网格 fy6<KEea
hy !平行于y方向网格 ?m(]@6qa
T|%pvTIe
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 t{ R\\j
color = red, !图形颜色 T.}wcQf&*
width = 3, !width线条宽度 UBm L:Qv
"pump" !相应的文本字符串标签 0,z3A>C
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 '<JNS8h
color = blue, Biva{'[m
width = 3, `Q@w*ta)
"fw signal" 4Ucs9w3[
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 hp$/O4fD
color = blue, WEnI[JGe
style = fdashed, OtVRhR3>
width = 3, JoCZ{MhM
"bw signal" ,Hzz:ce
zJ=lNb?q
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 <y}9Twdy
yscale = 2, !第二个y轴的缩放比例 w!j 'k|b>
color = magenta, i eL7jN,'m
width = 3, XsXO S8
style = fdashed, D"z3SLFW{
"n2 (%, right scale)" 2d# 3LnO
~\oF}7l$
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比
mdtG W
yscale = 2, dKk#j@[n"
color = red, ^vHh*Ub
width = 3, T)Zef
style = fdashed, yd|ro G/
"n3 (%, right scale)" =<;C5kSD
z]%c6ty
IrMUw$
; ------------- (2J\o
diagram 2: !输出图表2 =.48^$LWx
x_+-TC4IXn
"Variation ofthe Pump Power" vH?rln
}mYxI^n
x: 0, 10 ixY[ HDPq
"pump inputpower (W)", @x 1`Ig A0V`"
y: 0, 10 K7-z.WTUR
y2: 0, 100 3-PqUJT$
frame 0z
=?}xr
hx !0Mx Bem
hy +L,V_z
legpos 150, 150 GyZpdp!
yp!7^
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 GiK4LJ~cH)
step = 5, Q;xJ/4 Z"
color = blue, }`~n$OVx
width = 3, Ht"?ajW{
"signal output power (W, leftscale)", !相应的文本字符串标签 x>bGxDtu*
finish set_P_in(pump, P_pump_in) *8I"7'xh
*yZ `aKfH
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 Xmm)z
yscale = 2, PrKH{nyJk
step = 5, 67g"8R#.V
color = magenta, KSAE!+
width = 3, S
aH':UN
"population of level 2 (%, rightscale)", OfK>-8
finish set_P_in(pump, P_pump_in) KDS}"/
7C9_;81_Dt
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 vk4Q2P
yscale = 2, G`Df'Yy
step = 5, |Zk2]eUO+
color = red, nCS" l5
width = 3, 3`TD>6rs
"population of level 3 (%, rightscale)", 6Qk[TL)t
finish set_P_in(pump, P_pump_in) 3oOr*N3R
M5kw3Jy 5
Lb,wn{
; ------------- cSTF$62E
diagram 3: !输出图表3 #M)+sK$H%f
<Ej`zGhWz
"Variation ofthe Fiber Length" 2}n7f7[/b
P?ms^
x: 0.1, 5 #:NY9.\o
"fiber length(m)", @x #,9s\T
y: 0, 10 t$e' [;w
"opticalpowers (W)", @y c`@";+|r
frame _CMNmmp`e
hx tE#;$Ss
hy kMx)G]
3yrb7Rn3
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 zd6F}2*6
step = 20, mxE<
color = blue, G}Ko*:fWS
width = 3, w{*PZb4
"signal output" 1\a.o[g3e
Ew JNpecX
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 dmWCNeja.
step = 20, color = red, width = 3,"residual pump" );zLgNx,
j5wfqi
! set_L(L_f) {restore the original fiber length }
LS$zA>:
oOHY+'V
)Dp0swJ
; ------------- M1icj~Jr
diagram 4: !输出图表4 =4$ErwI_dm
4T-"\tmg/
"TransverseProfiles" c'>_JlG~
DL<;qhte
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) )$ h!lAo
*M)M!jTv
x: 0, 1.4 * r_co /um {;N2 &S o
"radialposition (µm)", @x s"XwO8yhM
y: 0, 1.2 * I_max *cm^2 S=gby
"intensity (W/ cm²)", @y &1Cs'
y2: 0, 1.3 * N_Tm gyb99c,)
frame {
V)`6
hx U\u07^h[
hy \Si p
zW\s{
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 Y1ks'=c>
yscale = 2, Cs(sar:7
color = gray, T%;V_iW-
width = 3, JA*+F1s
maxconnect = 1, z-qbe97
"N_dop (right scale)" pztfm'
Y]7503J
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 I tb_ H
color = red, =P%&]5ts
maxconnect = 1, !限制图形区域高度,修正为100%的高度 Q:|W/RD~
width = 3, 3FtL<7B'.
"pump" Vm[F~2+HX
L+*:VP6WD
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 8ok=&Gq4
color = blue, OIJT~Z}
maxconnect = 1, @H<*|3J
width = 3, h!ogH >S~
"signal" 51`&%V{daL
r^a:s]
LRg]'?
; ------------- t>AOF\
diagram 5: !输出图表5 [}M!ez
@TQ/Z$y
"TransitionCross-sections" qY$ [2]
WrSc@j&Ycv
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) ,zdGY]$
} lDX3h
x: 1450, 2050 b"Q8[k |d
"wavelength(nm)", @x tRpY+s~Fq
y: 0, 0.6 ^86M94k
"cross-sections(1e-24 m²)", @y bU}v@Uk
frame J
jm={+@+
hx 6Iqy"MQuq
hy .1q}mw
p #{y9s4h
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 BvsSrse
color = red, 1*yxSU@uY
width = 3, ccrWk*tr
"absorption" +]nIr'V
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 :-5[0Mx=
color = blue, *g,ls(r\[
width = 3, @lF?+/=$
"emission" [8a(4]4
v\5O\ I ^