切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 2495阅读
    • 1回复

    [原创]RP Fiber Power仿真设计掺铥光纤激光器代码详解 [复制链接]

    上一主题 下一主题
    离线小火龙果
     
    发帖
    932
    光币
    2176
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-05-28
    (* !m6=Us  
    Demo for program"RP Fiber Power": thulium-doped fiber laser, k]~|!`  
    pumped at 790 nm. Across-relaxation process allows for efficient g4}K6)@  
    population of theupper laser level. F`M`c%  
    *)            !(*  *)注释语句 g^[BnP)I  
    v?s%qb=T  
    diagram shown: 1,2,3,4,5  !指定输出图表 >N-l2?rE  
    ; 1: "Powersvs. Position"     !分号是注释;光纤长度对功率的影响 x/uC)xm  
    ; 2:"Variation of the Pump Power"  !泵浦光功率变化对信号输出功率的影响 *nlDN4Y[  
    ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 }T&~DVM  
    ; 4:"Transverse Profiles"             !横向分布,横坐标为半径位置 2!? =I'uMA  
    ; 5:"Transition Cross-sections"    !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 /5m~t.Z9M  
    _ pO1XM  
    include"Units.inc"         !读取“Units.inc”文件中内容  wkKSL  
    A?"/ >LM  
    include"Tm-silicate.inc"    !读取光谱数据 O7z5,-  
    g<^-[w4/  
    ; Basic fiberparameters:    !定义基本光纤参数 Y} crE/  
    L_f := 4 { fiberlength }      !光纤长度 (x140_TH~  
    No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 %6E:SI 4  
    r_co := 6 um { coreradius }                !纤芯半径 8XD_p);Oy  
    N_Tm := 100e24 { Tmdoping concentration }  !纤芯Tm离子掺杂浓度 Huf;A1.  
    %nhE588xf  
    ; Parameters of thechannels:                !定义光信道 StU9r0`  
    l_p := 790 nm {pump wavelength }                !泵浦光波长790nm ]:.9:RmEV  
    dir_p := forward {pump direction (forward or backward) }   !前向泵浦 X{8g2](z.  
    P_pump_in := 5 {input pump power }                    !输入泵浦功率5W 495A\8#  
    w_p := 50 um {radius of pump cladding }               !包层泵浦相应的半径 50um w:/QB-`%  
    I_p(r) := (r <=w_p) { pump intensity profile }          !泵浦光强度分布 s_cur-  
    loss_p := 0 {parasitic losses of pump wave }           !泵浦光寄生损耗为0 J=Hyoz+9  
    li9>zjz  
    l_s := 1940 nm {signal wavelength }                   !信号光波长1940nm 5 #Et.P'  
    w_s := 7 um                          !信号光的半径 3Uy(d,N  
    I_s(r) := exp(-2 *(r / w_s)^2)            !信号光的高斯强度分布 ')>D*e  
    loss_s := 0                            !信号光寄生损耗为0 PH>`//D%n?  
    %a|m[6+O  
    R_oc := 0.70 {output coupler reflectivity (right side) }      !输出耦合反射率 E(Zm6~  
    M?QX'fia  
    ; Function for defining themodel:   !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 G3j'A{  
    calc Le*gdoW.  
      begin hE;BT>_dn  
        global allow all;                   !声明全局变量 '1rO&F  
        set_fiber(L_f, No_z_steps, '');        !光纤参数 h I7ur  
        add_ring(r_co, N_Tm); 4nKlW_{,  
        def_ionsystem();              !光谱数据函数 }Apn.DYbbf  
        pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p);  !泵浦光信道 y=LN| vkQ  
        signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward);      !前向信号光信道 z4 KKt&  
        signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward);    !后向信号光信道 3c[]P2Bh  
        set_R(signal_fw, 1, R_oc);                                 !设置反射率函数 ?63ep:QEk  
        finish_fiber();                                   .~fov8  
      end; (W5JVk_o  
    9{8xMM-  
    ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 'M,O(utGv  
    show "Outputpowers:"                                   !输出字符串Output powers: t(p}0}Pp  
    show"pump:     ", P_out(pump):d3:"W"  !输出字符串pump:和计算值(格式为3个有效数字,单位W) `&i\q=u+  
    show"signal:   ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) R})b%y`]  
    i=jY l  
    R<;;Ph  
    ; ------------- $y,tR.5.)[  
    diagram 1:                   !输出图表1 bp>M&1^KY  
    sE!$3|Q  
    "Powers vs.Position"          !图表名称 a LJ d1Q  
    R7/ET"  
    x: 0, L_f                      !命令x: 定义x坐标范围 F"0=r  
    "position infiber (m)", @x      !x轴标签;@x 指示这些字符串沿坐标轴放置 \ {;3'<  
    y: 0, 15                      !命令y: 定义y坐标范围 $Z<x r  
    y2: 0, 100                    !命令y2: 定义第二个y坐标范围 $^`@lyr  
    frame          !frame改变坐标系的设置 aV#phP  
    legpos 600, 500  !图行在图表窗口中的位置(相对于左上角而言) 0A')zKik  
    hx             !平行于x方向网格 96i #  
    hy              !平行于y方向网格 i9D<jkc  
    tv%B=E!r  
    f: P(pump, x),    !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 </D )i  
      color = red,  !图形颜色 m^>v~Q~~  
      width = 3,   !width线条宽度 pyp0SGCM:  
      "pump"       !相应的文本字符串标签 m(Iy W734I  
    f: P(signal_fw, x),  !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 y#i` i  
      color = blue,     _ O;R  
      width = 3, #Ve@D@d[  
      "fw signal" {_UOS8j7  
    f: P(signal_bw, x),   !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 Z u/w>  
      color = blue, WJy\{YAG  
      style = fdashed, Dq+S'x~>  
      width = 3, 8~AL+*hn  
      "bw signal" v(p<88.!m  
    ~W-5-Nl{s  
    f: 100 * n(x, 2),    !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 3EH7H W  
      yscale = 2,            !第二个y轴的缩放比例 ;*cCaB0u  
      color = magenta, !Y10UmMu  
      width = 3, PxA OKUpI  
      style = fdashed, 4@QR2K|  
      "n2 (%, right scale)" #U.6HBuQa  
    1AQy 8n*  
    f: 100 * n(x, 3),          !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 Qcn;:6_&W  
      yscale = 2, g0#w 4rGF)  
      color = red, fWyXy%Qq  
      width = 3, L| ;WE=  
      style = fdashed, N 1hj[G[H"  
      "n3 (%, right scale)" !,R=6b$E5  
    +*wr=9>  
    Ho1V)T>  
    ; ------------- 9ePom'1f1  
    diagram 2:                    !输出图表2 >65\  
    KBa0  
    "Variation ofthe Pump Power" k|^`0~E  
    U#|6n ,  
    x: 0, 10 3 Scc"9]  
    "pump inputpower (W)", @x XrI$@e*  
    y: 0, 10 a3L-q>h  
    y2: 0, 100 (wf3HEb_  
    frame 0wt4C% .0  
    hx w<Bw2c  
    hy `eeA,K_  
    legpos 150, 150 "O~kIT?/v  
    E6zPN?\ <  
    f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 mJYD"WgY  
      step = 5, <GLn!~Px@5  
      color = blue, 6zI}?KZf  
      width = 3, gBOF#"-  
      "signal output power (W, leftscale)",     !相应的文本字符串标签 nPk&/H%5hn  
      finish set_P_in(pump, P_pump_in) d>V#?1$h  
    %e:[[yq)G  
    f: (set_P_in(pump,x); 100 * n_av(2)),   !改变泵浦信号功率对能级2上激活粒子占比的影响 Kl<NAv%j  
      yscale = 2, 7"1]5\p^g  
      step = 5, \\;y W~  
      color = magenta, t9)S^: 0  
      width = 3, $laUkD#vz  
      "population of level 2 (%, rightscale)", A9MTAm{  
      finish set_P_in(pump, P_pump_in) z0Z1J8Qq6.  
    FH%M5RD  
    f: (set_P_in(pump,x); 100 * n_av(3)),   !改变泵浦信号功率对能级3上激活粒子占比的影响 'mZQ}U=<  
      yscale = 2, qfjUJ/  
      step = 5, r1 b"ta  
      color = red, FIUQQQ\3  
      width = 3, eJeL{`NS  
      "population of level 3 (%, rightscale)", d.HcO^  
      finish set_P_in(pump, P_pump_in) T3I{D@+0  
    !j}L-1*{ l  
    E6z&pM8<8  
    ; ------------- kK/XYC 0D  
    diagram 3:                         !输出图表3 >`p? CE  
    d{"@<0i?  
    "Variation ofthe Fiber Length" hVAatn[  
    hzT)5'_  
    x: 0.1, 5 %m+7$iD  
    "fiber length(m)", @x P#D|CP/Cu  
    y: 0, 10 Q>71uM%e`  
    "opticalpowers (W)", @y =2}V=E/85  
    frame 8H|ac[hXK2  
    hx JKy~'>Q  
    hy 6OoOkNWF  
    *F!1xyg  
    f: (set_L(x);P_out(signal_fw)),     !改变光纤长度对信号光输出功率的影响 k SgE_W)  
      step = 20,             _?bO /y_y  
      color = blue, /4@ [^}x  
      width = 3, O<E8,MCA[a  
      "signal output" x=+>J$~Pb  
    jAU&h@  
    ;f: (set_L(x);P_out(pump)),                     !改变光纤长度对泵浦信号输出功率的影响 K)5j  
       step = 20, color = red, width = 3,"residual pump" Sp*4Z`^je  
    CD%Cb53  
    ! set_L(L_f) {restore the original fiber length } tzv4uD]  
    { {:Fs  
    6P:fM Y  
    ; ------------- DEbMb6)U  
    diagram 4:                                  !输出图表4 K/j u=>  
    @_7rd  
    "TransverseProfiles" [ D.%v~j  
    -y{(h% 6  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) o\]U;#YD  
    tP"6H-)X&  
    x: 0, 1.4 * r_co /um v1Q 78P  
    "radialposition (µm)", @x b%vIaP|]B  
    y: 0, 1.2 * I_max *cm^2 boHbiE  
    "intensity (W/ cm&sup2;)", @y +vxOCN4}v  
    y2: 0, 1.3 * N_Tm _ Yc"{d3S  
    frame !zllv tK4  
    hx r7L.W  
    hy cpALs1j:  
    {+nf&5E 6  
    f: N_dop(1, x * um,0),      !掺杂浓度的径向分布 U^7bj  
      yscale = 2, [`s0 L#  
      color = gray, R PoBF~>  
      width = 3, qDYNY`  
      maxconnect = 1, _>rM[\|X  
      "N_dop (right scale)" ' QMcQvU  
    vhAgX0k  
    f: I(pump, -1, x *um, 0) * cm^2,    !泵浦光沿光纤径向的强度分布 'O\ y7"a  
      color = red, O5Z9`_9<  
      maxconnect = 1,           !限制图形区域高度,修正为100%的高度 ^g5E&0a`g  
      width = 3, EwkSUA>Tm  
      "pump" "|[9 Q?  
    d~QM@<SV  
    f: I(signal_fw, -1,x * um, 0) * cm^2,  !信号光沿光纤径向的强度分布 Rb.vyQ  
      color = blue, =B5{7g\  
      maxconnect = 1, U$~6V%e  
      width = 3, y_w  <3  
      "signal" I:G8B5{J  
    '4<o&b^yQ  
    k sXQ}BE  
    ; ------------- euVDrJ^  
    diagram 5:                                  !输出图表5 "lLh#W1d  
    Bv!{V)$  
    "TransitionCross-sections" J"LLj*,0"  
    y_}vVHT,  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) [P =P8-5  
    NjpWK ;L  
    x: 1450, 2050 6lv@4R^u  
    "wavelength(nm)", @x 2#sFY/@  
    y: 0, 0.6 B^r?N-Z A  
    "cross-sections(1e-24 m&sup2;)", @y Q?1J<(oq9  
    frame 6]~/`6Dub  
    hx "a(4])  
    hy E;{RNf|  
    q,O_y<uw  
    f: s12_Tm(x * nm) /1e-24,      !Tm3+吸收截面与波长的关系 lnHY?y7{  
      color = red, \)rMC]  
      width = 3, -grmmE]/  
      "absorption" pu]U_Ll@  
    f: s21_Tm(x * nm) /1e-24,  !Tm3+发射截面与波长的关系 /51$o\4 S  
      color = blue, kN Ll|in@  
      width = 3, !p!Qg1O6o  
      "emission" A,~KrRd  
    n]`]gLF\i  
     
    分享到
    离线lileisgsz
    发帖
    14
    光币
    69
    光券
    0
    只看该作者 1楼 发表于: 2021-09-28
    感谢,视频上有点看不清楚