切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 2458阅读
    • 1回复

    [原创]RP Fiber Power仿真设计掺铥光纤激光器代码详解 [复制链接]

    上一主题 下一主题
    离线小火龙果
     
    发帖
    932
    光币
    2176
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-05-28
    (* |gv{z"  
    Demo for program"RP Fiber Power": thulium-doped fiber laser, > aG=T{  
    pumped at 790 nm. Across-relaxation process allows for efficient w{`Acu  
    population of theupper laser level. a8Uk[^5  
    *)            !(*  *)注释语句 tuxRVV8l  
    BSgTde|3y  
    diagram shown: 1,2,3,4,5  !指定输出图表 vd (?$  
    ; 1: "Powersvs. Position"     !分号是注释;光纤长度对功率的影响 ]JdJe6`Mc  
    ; 2:"Variation of the Pump Power"  !泵浦光功率变化对信号输出功率的影响 6\n?4 8x}  
    ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 >b48>@~bY  
    ; 4:"Transverse Profiles"             !横向分布,横坐标为半径位置 <bUXC@3W  
    ; 5:"Transition Cross-sections"    !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 z)}!e,7  
    % 5z gd>  
    include"Units.inc"         !读取“Units.inc”文件中内容 "|t!7hC  
    G;s"h%Xw98  
    include"Tm-silicate.inc"    !读取光谱数据 =K(JqSw+M  
    #{*LvI&  
    ; Basic fiberparameters:    !定义基本光纤参数 ?3q@f\fZ  
    L_f := 4 { fiberlength }      !光纤长度 3v1 7"  
    No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 ){P^P!s$  
    r_co := 6 um { coreradius }                !纤芯半径 BpH%STEN  
    N_Tm := 100e24 { Tmdoping concentration }  !纤芯Tm离子掺杂浓度 9I .^LZ"  
    ag 8`O&+  
    ; Parameters of thechannels:                !定义光信道 Z\ )C_p\-  
    l_p := 790 nm {pump wavelength }                !泵浦光波长790nm /t5p-  
    dir_p := forward {pump direction (forward or backward) }   !前向泵浦 uel{`T[S  
    P_pump_in := 5 {input pump power }                    !输入泵浦功率5W f~ZEdq8  
    w_p := 50 um {radius of pump cladding }               !包层泵浦相应的半径 50um ? ?[g}>  
    I_p(r) := (r <=w_p) { pump intensity profile }          !泵浦光强度分布 `PlOwj@u0`  
    loss_p := 0 {parasitic losses of pump wave }           !泵浦光寄生损耗为0 ,j178EX  
    {C")#m-0  
    l_s := 1940 nm {signal wavelength }                   !信号光波长1940nm e |V]  
    w_s := 7 um                          !信号光的半径 C6jR=@42Q  
    I_s(r) := exp(-2 *(r / w_s)^2)            !信号光的高斯强度分布 ;>>C)c4V"  
    loss_s := 0                            !信号光寄生损耗为0 e2w&&B-  
    D4Etl5k  
    R_oc := 0.70 {output coupler reflectivity (right side) }      !输出耦合反射率 aG{$Ic  
    =&vFVIhWcf  
    ; Function for defining themodel:   !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 .H~YI  
    calc "2{%JFE  
      begin .L EY=j!-s  
        global allow all;                   !声明全局变量 O{]9hm(tN  
        set_fiber(L_f, No_z_steps, '');        !光纤参数 gzdG6"  
        add_ring(r_co, N_Tm); Vn|1v4U!  
        def_ionsystem();              !光谱数据函数 RMP9y$~3pU  
        pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p);  !泵浦光信道 2@khSWV  
        signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward);      !前向信号光信道 ke%pZ 7{u  
        signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward);    !后向信号光信道 F)Oe9x\/  
        set_R(signal_fw, 1, R_oc);                                 !设置反射率函数 :O-1rD  
        finish_fiber();                                   }]6f+  
      end; FvdeQsc!  
    "G?Yrh  
    ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 (sTuG}  
    show "Outputpowers:"                                   !输出字符串Output powers: )L5i&UK.  
    show"pump:     ", P_out(pump):d3:"W"  !输出字符串pump:和计算值(格式为3个有效数字,单位W) cWLqU  
    show"signal:   ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) ,}SCa'PB  
    M.[rLJZ4  
    T!|=El>  
    ; ------------- ig!7BxM)<h  
    diagram 1:                   !输出图表1 L'Q<>{;Ig  
    =L]Q2V}  
    "Powers vs.Position"          !图表名称 dl~|Izm  
    -e]7n*}H$  
    x: 0, L_f                      !命令x: 定义x坐标范围 '0Q,  
    "position infiber (m)", @x      !x轴标签;@x 指示这些字符串沿坐标轴放置 bC6oqF'#  
    y: 0, 15                      !命令y: 定义y坐标范围 & ,hr8  
    y2: 0, 100                    !命令y2: 定义第二个y坐标范围 ~E5z"o6$  
    frame          !frame改变坐标系的设置 ;zH HIdQ>-  
    legpos 600, 500  !图行在图表窗口中的位置(相对于左上角而言) %)(Cp-b!  
    hx             !平行于x方向网格 & E}mX]t  
    hy              !平行于y方向网格 ZH 6\><My  
    1iBP,:>*  
    f: P(pump, x),    !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 h6D^G5i  
      color = red,  !图形颜色 )> a B  
      width = 3,   !width线条宽度 nH-V{=**  
      "pump"       !相应的文本字符串标签 vVxD!EL  
    f: P(signal_fw, x),  !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 G }nO@  
      color = blue,     cr;`Tl~}s  
      width = 3, ^Q}eatEn  
      "fw signal" 4JyM7ePND}  
    f: P(signal_bw, x),   !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 S<wj*"|.s  
      color = blue, \cJa;WM>  
      style = fdashed, Rl~T$ Ey  
      width = 3, 3'`dFY,  
      "bw signal" 9 ; i\g=  
    ]d}0l6  
    f: 100 * n(x, 2),    !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 9i q""  
      yscale = 2,            !第二个y轴的缩放比例 Kg\R+i@#<  
      color = magenta, b;cMl'  
      width = 3, #FxPj-3(ix  
      style = fdashed, pv)`%<  
      "n2 (%, right scale)" ~FU@wV^   
    kFLB> j97  
    f: 100 * n(x, 3),          !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 5 `/< v^  
      yscale = 2, DGESba\2+  
      color = red, |I;$M;'r&  
      width = 3, V@-)\RZm  
      style = fdashed, =n(3o$r(  
      "n3 (%, right scale)" C#0Qd%  
    s#9Ui#[=h  
    , E )|y4  
    ; ------------- ?/hZb"6W  
    diagram 2:                    !输出图表2 LPd\-S_rsP  
    {-/^QX]6  
    "Variation ofthe Pump Power" Dh4 6o|P  
    2/ rt@{V(  
    x: 0, 10 Z~  
    "pump inputpower (W)", @x _l`e#XbG  
    y: 0, 10 OX]V) QHVZ  
    y2: 0, 100 >o,^b\  
    frame R"v 3!P  
    hx o`S ?  
    hy R\3VB NX.g  
    legpos 150, 150 *jq7X  
    "UFs~S|e  
    f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 Io`P,l:  
      step = 5, ZD/jX_!t  
      color = blue, 9p* gU[  
      width = 3, Elj_,z  
      "signal output power (W, leftscale)",     !相应的文本字符串标签 2-*V=El  
      finish set_P_in(pump, P_pump_in) iSLGwTdLn  
    ]  ]U<UJ  
    f: (set_P_in(pump,x); 100 * n_av(2)),   !改变泵浦信号功率对能级2上激活粒子占比的影响 `O?T.p)   
      yscale = 2, y m,H@~  
      step = 5, 75T_Dx(H  
      color = magenta, p/Sbt/R  
      width = 3, Cs3^9m6;d  
      "population of level 2 (%, rightscale)", ]va>ex$d  
      finish set_P_in(pump, P_pump_in) e>rRTN  
    EI~"L$?  
    f: (set_P_in(pump,x); 100 * n_av(3)),   !改变泵浦信号功率对能级3上激活粒子占比的影响 `$LWmm#  
      yscale = 2, Rgy- OA  
      step = 5, BAj-akc f  
      color = red, T  VmH  
      width = 3, INs!Ame2  
      "population of level 3 (%, rightscale)", %q ;jVj[  
      finish set_P_in(pump, P_pump_in) h5_G4J{1  
    @Hb'8F  
    1F8 W9b^D  
    ; ------------- u6V/JI}g  
    diagram 3:                         !输出图表3 `?g`bN`Vn  
    }TQ{`a@  
    "Variation ofthe Fiber Length" Y}*\[}l:&x  
    U6ZR->:  
    x: 0.1, 5 l ASL8O&\  
    "fiber length(m)", @x N]EcEM#  
    y: 0, 10 [S]S^ej*8  
    "opticalpowers (W)", @y BcjP+$k4_  
    frame ?^mi3VM  
    hx x&Vm!,%:1  
    hy @oF$LMD  
     9fnA  
    f: (set_L(x);P_out(signal_fw)),     !改变光纤长度对信号光输出功率的影响 ]?1Y e8>Y<  
      step = 20,             >Iewx Gb>  
      color = blue, >7`<!YJkK  
      width = 3, 1 2++RkL#  
      "signal output" sbkQ71T:  
    enNiI$H]`_  
    ;f: (set_L(x);P_out(pump)),                     !改变光纤长度对泵浦信号输出功率的影响 1be %G [*  
       step = 20, color = red, width = 3,"residual pump" v0Dq@Q1  
    r"2V  
    ! set_L(L_f) {restore the original fiber length } 4(neKr5\#  
    -4w=s|#.\  
    ne61}F"E  
    ; ------------- EpS(o>'  
    diagram 4:                                  !输出图表4 p^nL&yIW,%  
    iqQUtE]E_  
    "TransverseProfiles" aV o;~h~  
    t>GfM  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) (BxJryXm  
    aSuM2  
    x: 0, 1.4 * r_co /um o*x*jn:hm  
    "radialposition (µm)", @x l+V,DCE  
    y: 0, 1.2 * I_max *cm^2 CM)Q&:  
    "intensity (W/ cm&sup2;)", @y $WYbm}j  
    y2: 0, 1.3 * N_Tm - K%,^6  
    frame K3uG2g(>2  
    hx "'8KV\/D  
    hy x83 !C}4:  
    l kyzNy9R  
    f: N_dop(1, x * um,0),      !掺杂浓度的径向分布 ^=n+T7"J  
      yscale = 2, (Rk_-9_E.  
      color = gray, f\+f o  
      width = 3, 9YsR~SM  
      maxconnect = 1, RjF'x  
      "N_dop (right scale)" ONNpiK-  
    Q$obOEr2(  
    f: I(pump, -1, x *um, 0) * cm^2,    !泵浦光沿光纤径向的强度分布 x:vu'A  
      color = red, <2!v(EkI  
      maxconnect = 1,           !限制图形区域高度,修正为100%的高度 lf>*Y.!@me  
      width = 3, GU't%[  
      "pump" ^JI o? R  
    kt[:@Nda9  
    f: I(signal_fw, -1,x * um, 0) * cm^2,  !信号光沿光纤径向的强度分布 xvzr:p P  
      color = blue, J$4wL F3  
      maxconnect = 1, ;U1UFqZ`  
      width = 3, V._6=ZJ  
      "signal" T5Q{{@Q  
    @prG%vb"  
    <9=9b_z  
    ; ------------- O\K_q7iO6  
    diagram 5:                                  !输出图表5 BR'I+lQ  
    j-CnT)W<  
    "TransitionCross-sections" Tu{h<Zy  
    $M_x!f'{>  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) @)kO=E d  
    "'g[1Li  
    x: 1450, 2050 f:g,_|JD$  
    "wavelength(nm)", @x pE{yv1Yg  
    y: 0, 0.6 OmM=o*d  
    "cross-sections(1e-24 m&sup2;)", @y ]M)O YY  
    frame 7iHK_\tn  
    hx Q^p|Ldj  
    hy Ggh.dZI4  
    _3]][a,  
    f: s12_Tm(x * nm) /1e-24,      !Tm3+吸收截面与波长的关系 Hk>79};  
      color = red, Oz|K8p  
      width = 3, &t5{J53  
      "absorption" $?,a[79  
    f: s21_Tm(x * nm) /1e-24,  !Tm3+发射截面与波长的关系 UgWs{y2SE.  
      color = blue, ZKg{0DY  
      width = 3, )s1Ib4C  
      "emission" ,uzN4_7u  
    ]$U xCu  
     
    分享到
    离线lileisgsz
    发帖
    14
    光币
    69
    光券
    0
    只看该作者 1楼 发表于: 2021-09-28
    感谢,视频上有点看不清楚