(* y $6~&X
Demo for program"RP Fiber Power": thulium-doped fiber laser, L
j>HZS$F
pumped at 790 nm. Across-relaxation process allows for efficient vS'l@`Eg]
population of theupper laser level. j8#xNA
*) !(* *)注释语句 ! uX0G4
FQW{c3%qZ
diagram shown: 1,2,3,4,5 !指定输出图表 vnOl-`Z ~
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 ;2%8tV$V
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 GZCX m+
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 Lk>o`<*
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 "-afHXED
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面
L$Yg*]\
F*rsi7#!pG
include"Units.inc" !读取“Units.inc”文件中内容 3tu:Vc.:M
"B3&v%b
include"Tm-silicate.inc" !读取光谱数据 Q$XNs%7w5,
Oi-=
Fp
; Basic fiberparameters: !定义基本光纤参数 Wi%e9r{hU
L_f := 4 { fiberlength } !光纤长度 6#za\[
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 -gK*&n~
r_co := 6 um { coreradius } !纤芯半径 Iq["(!7E5
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 H{CiN
wJ Qm7n-+
; Parameters of thechannels: !定义光信道 ]**h`9MF
l_p := 790 nm {pump wavelength } !泵浦光波长790nm :Cdqj0O3u
dir_p := forward {pump direction (forward or backward) } !前向泵浦 PqVz^(Wz
P_pump_in := 5 {input pump power } !输入泵浦功率5W g;mX {p_@
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um +pG[
[}/
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 cf`g.9pjlx
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 {;-wXzv`
iPeW;=-2Wk
l_s := 1940 nm {signal wavelength } !信号光波长1940nm }eq*dr1`
w_s := 7 um !信号光的半径 X4I+
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 v-ZTl4j$
loss_s := 0 !信号光寄生损耗为0 u|{(m_"H
b<E+5;u
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 4157!w'\y
"
.<>(bE
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 7Adg;
calc "%E<%g
begin %ZbdWHO#
global allow all; !声明全局变量 )~2~q7
set_fiber(L_f, No_z_steps, ''); !光纤参数 M,we9];N
add_ring(r_co, N_Tm); 67D{^K"KT
def_ionsystem(); !光谱数据函数 [
@ASAhV^+
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 V7(-<})8
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 LTlbrB
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 ;6AanwR6
set_R(signal_fw, 1, R_oc); !设置反射率函数 b9RJ>K
finish_fiber(); )&vuT
q'7'
end; V ah&)&n
ec3zoKtV
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 `W9~u: F
show "Outputpowers:" !输出字符串Output powers: X`JoXNqm
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W)
k(ho?
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) K=N8O8R$y
U~I
y),5
aExt TE
; ------------- 4H*M^?h\#
diagram 1: !输出图表1 ?"-1QG
Ou7nk:I@
"Powers vs.Position" !图表名称 E]dc4US
1uco{JX<S
x: 0, L_f !命令x: 定义x坐标范围 ifI0s)Pn
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 0`KR8# A@
y: 0, 15 !命令y: 定义y坐标范围 D5"Xjo*
y2: 0, 100 !命令y2: 定义第二个y坐标范围 8T5W6Zs1
frame !frame改变坐标系的设置 z2~\
b3G
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) 9}A\BhtiM
hx !平行于x方向网格 6lob&+
hy !平行于y方向网格 BT^HlW<
":!1gC
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 u9u'!hAGH
color = red, !图形颜色 Nh[H[1"J
width = 3, !width线条宽度 ~c`%k>$
"pump" !相应的文本字符串标签 }uiD8b{I
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 kca#ssN
color = blue, I3;03X<2
width = 3, P!u0_6
"fw signal" fLg
:+Ue<B
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 !QlCt>{
color = blue, aIo%~w
style = fdashed, G#YBfPmr
width = 3, K1CgM1 v
"bw signal" 45Lzq6
BG_6$9y
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 4w#:?Y
_\[
yscale = 2, !第二个y轴的缩放比例 )(+q~KA}
color = magenta, Ij2Th]
width = 3, 8lFYk`|g
style = fdashed, sB0m^Y'
"n2 (%, right scale)" m+QZ|
nm,(Wdr
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 KGrYF
yscale = 2, d+p^fBz
color = red, z:oi@q
width = 3, m:Fdgu9
style = fdashed, PIHKSAnq
"n3 (%, right scale)" eCjyx|:J
L, 2;-b|
^B$cfs@*
; ------------- j[4l'8Ek
diagram 2: !输出图表2 D<'G\#n3I=
>02p,W6S>
"Variation ofthe Pump Power" 8&SWQ
'HJ<"<
x: 0, 10 ',!>9Dj
"pump inputpower (W)", @x Z5eM
y: 0, 10 0[p"8+x
y2: 0, 100 e"|ZTg+U
frame rP IAu[],g
hx !b?cY{
hy 9B/iQCFtj$
legpos 150, 150 C8%MKNPd
w\a6ga!xt"
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 =w7+Yt
step = 5, |3BxNFe`%
color = blue,
0:$pJtx"
width = 3, e4FR)d0x
"signal output power (W, leftscale)", !相应的文本字符串标签 +5Ju `Z
finish set_P_in(pump, P_pump_in) piFZu/~Gq\
gOr%N!5
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 [Pl''[
yscale = 2, Y+eDE:4
step = 5, ]U&<y8Q_6
color = magenta, k\Y*tY#2
width = 3, F{Oaxn
"population of level 2 (%, rightscale)", HMhdK
finish set_P_in(pump, P_pump_in) =R)w=ce
h:i FLS f
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 :r7!HG_
yscale = 2, Sa@T#%oU
step = 5, N]-skz<v
color = red, ^ywDa^;-
width = 3, LTuT"}dT[
"population of level 3 (%, rightscale)", m#<Jr:-
finish set_P_in(pump, P_pump_in) _k#GjAPM
N~P1^x~
T.W^L'L`
; ------------- ~=9S AJr]
diagram 3: !输出图表3 `3*QKi$
Rh%@N.Z*
"Variation ofthe Fiber Length" ^fE8|/]nG9
iNilk!d6Q3
x: 0.1, 5 .)<l69ZD Z
"fiber length(m)", @x 7rG+)kHG
y: 0, 10 *JAC+<~d
"opticalpowers (W)", @y 7g:Lj,Z4L
frame Y@7n>U
hx +
Y!:@d
hy dptfIBYc+
5}a.<
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 l| y.6v
step = 20, 3p]\l ]=
color = blue, g _0| `Sm
width = 3, p_vldTIW
"signal output" #CcEI
"{Hl! Zq/
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 /PbMt
step = 20, color = red, width = 3,"residual pump" gf}*}8D
NKTy!zWh
! set_L(L_f) {restore the original fiber length } BAi`{?z$<
uN1VkmtDO
N`4XlD
; ------------- ].sD#~L_
diagram 4: !输出图表4 0|g@;Pc
db@^CS[P
"TransverseProfiles" .hUlI3z9
CR;E*I${
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) Ti7
@{7>
9W,%[
x: 0, 1.4 * r_co /um ) I(9qt>Y
"radialposition (µm)", @x JJ'f\f9
y: 0, 1.2 * I_max *cm^2 9|Ylv:sR
"intensity (W/ cm²)", @y 5,-:31(j\
y2: 0, 1.3 * N_Tm AMASh*
frame #m;o)KkH$r
hx CHq5KB98+
hy [XubzZ9
aX*9T8H/
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 .jiJgUa7
yscale = 2, f'*/IG
color = gray, w`fbUh6/
width = 3, Xk1uCVUe5
maxconnect = 1, ya[f?0b0
"N_dop (right scale)" k7j[tB#
l]j;0 i
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 7SNdC8GZ~
color = red, UZ "!lpg
maxconnect = 1, !限制图形区域高度,修正为100%的高度 1OqVV?oz
width = 3, x-W~&`UU
"pump" u /DE
j@Pd"
Z9
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 <4<y
color = blue, pvb&vtp
maxconnect = 1, 78 ]Kv^l^_
width = 3, ,In%r`{i
"signal" FnI}N;"
8aKS=(Z!j
sKJr34
; ------------- &5XEjY>@
diagram 5: !输出图表5 |=KzQY|u
+@yU `
"TransitionCross-sections" =F}qT|K
iX<" \pV
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) qkz|r?R)
)=`DEbT
x: 1450, 2050 b)M-q{
"wavelength(nm)", @x m{$}u@a
y: 0, 0.6 %d*0"<v
"cross-sections(1e-24 m²)", @y ~j(vGO3JB
frame LI&E.(:
hx D~Ef%!&
hy `9gV8u
/xcXd+k]
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 ,zr,>^v
color = red, ZJc{P5a1J
width = 3, iH@u3[w
"absorption" Km!ACA&s6
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 -iY-rzW
color = blue, "'@D\e}
width = 3, N~fE&@-
"emission" .MRN)p
%{pjC7j#