(* K^[Dz\ov5
Demo for program"RP Fiber Power": thulium-doped fiber laser, zRA,Yi4;+
pumped at 790 nm. Across-relaxation process allows for efficient ej]>*n
population of theupper laser level. p~<d8n4UH
*) !(* *)注释语句 _sqV@ J
RxGZ#!j/
diagram shown: 1,2,3,4,5 !指定输出图表 5J*h7
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 +Y440Tz
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 Dp;6CGYl?
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 l7S&s&W @
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 3\?yjL^
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 ]]V|]}<)m
F t;[>o
include"Units.inc" !读取“Units.inc”文件中内容 90
pt'Jg
g:[yA{Eh
include"Tm-silicate.inc" !读取光谱数据 =\x(Rs3
j.g9O]pi
; Basic fiberparameters: !定义基本光纤参数 h~.z[
L_f := 4 { fiberlength } !光纤长度 a>)|SfsE
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 b^&nr[DC
r_co := 6 um { coreradius } !纤芯半径 Kfs|KIQ>=
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 ^r^) &]
I:o.%5)
; Parameters of thechannels: !定义光信道 .Za)S5U
l_p := 790 nm {pump wavelength } !泵浦光波长790nm +r 8/\'u-
dir_p := forward {pump direction (forward or backward) } !前向泵浦 -<@QR8:
P_pump_in := 5 {input pump power } !输入泵浦功率5W b,-qyJW6
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um Mzj|57:gx
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 +Am\jsq
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 %gV~e@|
FSkz[D_}
l_s := 1940 nm {signal wavelength } !信号光波长1940nm YjwC8#$
w_s := 7 um !信号光的半径 q,2 +\i
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 P(~vqo>!
loss_s := 0 !信号光寄生损耗为0
m7.6;k.
=LojRY
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 bLyaJ%pa\/
gw v
s
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 $g]'$PB
calc %j2ZQ/z
begin 4xzoA'Mb@
global allow all; !声明全局变量 |E9iG
set_fiber(L_f, No_z_steps, ''); !光纤参数 VgcLG ]tE[
add_ring(r_co, N_Tm); vjO@"2YEw
def_ionsystem(); !光谱数据函数 (z.eXo P@>
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 okQ<_1e{
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 \[W)[mH_
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 3YJa3fflK
set_R(signal_fw, 1, R_oc); !设置反射率函数 |lVoL.Z,0
finish_fiber(); NKE,}^C
end; si`h(VD9w
TAKvE=a;
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 o@A|Lm.
show "Outputpowers:" !输出字符串Output powers: )~H&YINhn
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) 3.<E{E!F
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) ad,pHJ`
b]xE^zM-I`
clO9l=g
; ------------- =p7eP
diagram 1: !输出图表1 b*W01ist
IO}53zn<l
"Powers vs.Position" !图表名称 T6fm`uL&L
])H[>.?K
x: 0, L_f !命令x: 定义x坐标范围 TjLW<D(i>
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 )lDmYt7me
y: 0, 15 !命令y: 定义y坐标范围 xJ|_R,>.H
y2: 0, 100 !命令y2: 定义第二个y坐标范围 w4(g]9^Q
frame !frame改变坐标系的设置 |%c"Avc
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) xdkC>o4>
hx !平行于x方向网格 DRuG5| {I:
hy !平行于y方向网格 xmBGZ4f%
PQA}_o
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 Gsa~zGN
color = red, !图形颜色 4g^Xe-
width = 3, !width线条宽度 :*dfP/GO
"pump" !相应的文本字符串标签 { bD:OF
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 #f-pkeaeq
color = blue, d@e2+3<
width = 3, P1I L]
"fw signal" ~3,k8C"pRq
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 $Z[W}7{pt#
color = blue, 'jj|bN
style = fdashed, t?;\'
width = 3, [
F7ru4"{
"bw signal" $v0beN6MG
}`^DO
Ar
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 3T84f[CFJ
yscale = 2, !第二个y轴的缩放比例 6&s"
"J)3
color = magenta, #d;/Me
width = 3, /YHAU5N/}
style = fdashed, 1%`Nu ]D
"n2 (%, right scale)" G7uYkJO
O"V;otlC
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 o#9Q
yscale = 2, lNba[;_
color = red, R8C#DB
width = 3, xnvG5
style = fdashed, pRH'>}rtuH
"n3 (%, right scale)" $~r_&1
Ze"m;T
i$JN
s)I%
; ------------- Y=\:fa
diagram 2: !输出图表2 ne9-
c>>
%=`wN^3t2
"Variation ofthe Pump Power" GvI8W)d3,R
=:;K nS
x: 0, 10 H?cJ'Q,5
"pump inputpower (W)", @x #bwGDF
y: 0, 10 :b`ywSp`
y2: 0, 100 |*n
B2
frame 2wwJ>iR`
hx #6*20w_u
hy /_qW?LKG/
legpos 150, 150 NE4 }!I
9>9,
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 ]8/g[Ii
step = 5, 6<mlx'
color = blue, vo>i36
width = 3, =:BTv[lv
"signal output power (W, leftscale)", !相应的文本字符串标签 L%;[tu(*
finish set_P_in(pump, P_pump_in) E{BX $R_8
dCpDA a3
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 0)rayzv
yscale = 2, RmRPR<vGW
step = 5, qT~a`ou:
color = magenta, 6_g:2=6S
width = 3, #7['M;_
"population of level 2 (%, rightscale)", ;cfPS
finish set_P_in(pump, P_pump_in) .,F`*JVFq
BlfadM;
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 7j8lhrM}^
yscale = 2, Lu
CiO
step = 5, +E-CsNAZ*"
color = red, s;cGf+
width = 3, -G(#,rXk
"population of level 3 (%, rightscale)", 1YNw=
finish set_P_in(pump, P_pump_in) 89Ir}bCr
K5!OvqzG
H3LuRGe&2
; ------------- yw1-4*$c
diagram 3: !输出图表3 +Jh1D_+!9
+w/B3b
"Variation ofthe Fiber Length" 3~1Gts
8]D0)
x: 0.1, 5 iDWM-Ytx
"fiber length(m)", @x ![9$ru
y: 0, 10 ?Wc+
J4
"opticalpowers (W)", @y ow{J;vFy\
frame 0Wj,=9q
hx 2Z>8ROv^X
hy _L+j6N.h1
zx5#eMD
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 (67byO{
step = 20, X;n09 L`CB
color = blue, &0i$Y\g
width = 3, l <p(zLR
"signal output" -^3uQa<zN^
,^RZ1tLz
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 IhRdn1&
step = 20, color = red, width = 3,"residual pump" 6-z(34&N
)-0+O=v
! set_L(L_f) {restore the original fiber length } 0SQrz$y
udXzsY9Ng
'{-Ic?F<P
; ------------- <4n"LJ9
diagram 4: !输出图表4 {Fqwr>e
/b\c<'3NY
"TransverseProfiles" [(eX\kL
5mS/,fs@
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) et"Pb_-U
u=tp80_
x: 0, 1.4 * r_co /um TOhWfl;
"radialposition (µm)", @x mx#%oJnsi
y: 0, 1.2 * I_max *cm^2 C`R<55x6
"intensity (W/ cm²)", @y N\];{pe>
y2: 0, 1.3 * N_Tm \E[6wB>uN%
frame 9J?lNq
hx ,"Fl/AjO
hy Kv2S&P|jXM
s/B_
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 ~KRS0^
yscale = 2, @]]&^ 7
color = gray, g/_0WW] }
width = 3, R$+p4@?S
maxconnect = 1, jZC[_p;
"N_dop (right scale)" "iR:KW@
T@*'}*
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 8N+T=c
color = red, =H3tkMoi2
maxconnect = 1, !限制图形区域高度,修正为100%的高度 ,@/O\fit)
width = 3, K8Q3~bMf
"pump" S~hu(x#
X&kp1Ih<^
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 vQ]d?Tp
color = blue, +g kJrw
maxconnect = 1, nzaA_^`mB
width = 3, jRd$Vt
"signal" {z\K!=X/
_m[DieR
iEZ+Znon
; ------------- d^J)Mhju
diagram 5: !输出图表5 .6T0d
4,1
$dXx@6fP
"TransitionCross-sections" T=)qD2?
&x[7?Y L
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) r~2hTie
:vX%0|
x: 1450, 2050 !><asaB]1
"wavelength(nm)", @x ZOMYo]
y: 0, 0.6 jw9v&/-
"cross-sections(1e-24 m²)", @y o<%0|n_O&
frame M2N8?Ycv3
hx ~!!\#IX
hy TYb$+uY
KX]!yA
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 {?5iK1|}K
color = red, * m^\&
width = 3, k}Q<#
"absorption" jS~Pdz
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 PkI+z_
color = blue, p7@R+F\.};
width = 3, Y*PfU+y~
"emission" x(vQ%JC
:>2wVN&\c