(* ?-<t-3%hyV
Demo for program"RP Fiber Power": thulium-doped fiber laser, oD{V_/pdx
pumped at 790 nm. Across-relaxation process allows for efficient BO[Q"g$Kon
population of theupper laser level. H#U{i
*) !(* *)注释语句 "+nURdicO
dG7sY
O@U
diagram shown: 1,2,3,4,5 !指定输出图表 4)2*|w
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 *-+~H1tP
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 0x^$q?
\A
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 Vu`dEvL?
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 TOMvJ>bF
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 b{sE#m%r
1I3u~J3]/
include"Units.inc" !读取“Units.inc”文件中内容 yF0,}
Si]Z `_
include"Tm-silicate.inc" !读取光谱数据
4EB$e?
w0/W=!_
; Basic fiberparameters: !定义基本光纤参数 ]CC~Eo-%-
L_f := 4 { fiberlength } !光纤长度 |&n dQ(!l
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 w#PaN83+
r_co := 6 um { coreradius } !纤芯半径 vW$]:).
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 R~RY:[5?w
" "a+Nc
; Parameters of thechannels: !定义光信道 7C2/^x P
l_p := 790 nm {pump wavelength } !泵浦光波长790nm m$LZ3=v%8
dir_p := forward {pump direction (forward or backward) } !前向泵浦 D4#,9?us
P_pump_in := 5 {input pump power } !输入泵浦功率5W )CR8-z1`
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um qWE"vI22M
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布
L$jyeFB5
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 AU'{aC+p
?U-p
jjM
l_s := 1940 nm {signal wavelength } !信号光波长1940nm ;;nmF#
w_s := 7 um !信号光的半径 RB &s$6A
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 ^ *
DKF
loss_s := 0 !信号光寄生损耗为0 ui 2RTAb
UO:>^,(j
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 1~7y]d?%
yAi4v[
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 =?*V3e3{
calc q6_1`Ew
begin t&r?O dc&m
global allow all; !声明全局变量 z%g<&Cq
set_fiber(L_f, No_z_steps, ''); !光纤参数 @XIwp2A{+
add_ring(r_co, N_Tm); 9(X
*[X#
def_ionsystem(); !光谱数据函数 cuKgO{.GH
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 &R^mpV5
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 , JZ@qmQ,
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 > %Y#(_~a
set_R(signal_fw, 1, R_oc); !设置反射率函数 "R9kF-
finish_fiber(); ,RT\&Ze5
end; T@vVff
JK_$A;Q
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 g:,4Kd|
show "Outputpowers:" !输出字符串Output powers: ^9{ 2
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) }<Me%`x"
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W)
54^hBejQ
H+ M~|Ju7
M]_vb,=1
; ------------- ]B7t9l
diagram 1: !输出图表1 O-'T*M>
Ahwu'mgnC
"Powers vs.Position" !图表名称 Hd2_Cg FB
XqwdJND
x: 0, L_f !命令x: 定义x坐标范围 r}5GJ|p0
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 e4`KnHsL
y: 0, 15 !命令y: 定义y坐标范围 <'vM+Lk
y2: 0, 100 !命令y2: 定义第二个y坐标范围 dkn_`j\v
frame !frame改变坐标系的设置 4%6Q+LS']Q
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) >C&!#
3
hx !平行于x方向网格 ,}|V'y
hy !平行于y方向网格 tllg$CQ5
2 rBF<z7
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 &a(w0<
color = red, !图形颜色 0yZw`|Zh[
width = 3, !width线条宽度 i*; V4zh
"pump" !相应的文本字符串标签 Rd!.8K[
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 $fn^i.
color = blue, $N
]P#g?Q
width = 3, wGxLs>|
4
"fw signal" ;s!H
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 EXi+pm
color = blue, a&cV@~
style = fdashed, rLXn35O
width = 3, 'qD9kJ`
"bw signal" UM]wDFn'E
g ` {0I[
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 \ lKQ'_
yscale = 2, !第二个y轴的缩放比例 GkO6r'MVE
color = magenta, =0-qBodbl
width = 3, *w6N&
style = fdashed, Xg)yz~Ug
"n2 (%, right scale)" g[n8N{s
IpP0|:}
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 [/kO>
yscale = 2, V:+bq`
color = red, S`^W#,rj
width = 3, iUKj:q:
style = fdashed, WT)")0)[
"n3 (%, right scale)" *~"`&rM(
4~/6d9f
]aR4U`
; ------------- D0P% .r"v
diagram 2: !输出图表2 lyPXlt
i_@RWka<
"Variation ofthe Pump Power" S.jjB
%xruPWT:k
x: 0, 10 vP2QAGk<
"pump inputpower (W)", @x P&YaJUq.u
y: 0, 10 izw}25SW
y2: 0, 100 4ca-!pI0
frame :}z%N7T
hx /%c^ i!=f"
hy QUDVsN#
legpos 150, 150 1L|(:m+
}M9al@"
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 a8 1%M
step = 5, [:'n+D=T3M
color = blue, Hn~1x'$
width = 3, MocH>^,
"signal output power (W, leftscale)", !相应的文本字符串标签 $^!w`>0C
finish set_P_in(pump, P_pump_in) !O-+h0Z
H-W)Tq_?-
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 ~}AP@t*
yscale = 2, \2,18E
step = 5, :I('xVNPz
color = magenta, ss<'g@R
width = 3, h"ylpv+
"population of level 2 (%, rightscale)", }}_uN-m
finish set_P_in(pump, P_pump_in) m+UdT854
$%JyM
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 :c t+.#
yscale = 2, (0Cszm.
step = 5, ,LZ:y1z'V-
color = red, x,dv~QU
width = 3, d@tr]v5 B
"population of level 3 (%, rightscale)", N 3c*S"1
finish set_P_in(pump, P_pump_in) E2IV R]C2^
=@ZtUjcJx
R!,)?j;
; ------------- ];;w/$zke
diagram 3: !输出图表3 @45 H8|:k
&*aU2{,s,;
"Variation ofthe Fiber Length" >G2-kL_
P{eRDQ=
x: 0.1, 5 J"rwWIxO*
"fiber length(m)", @x #:|?t&On
y: 0, 10 l`&6W?C
"opticalpowers (W)", @y J36@Pf]h
frame F* }Q^%
hx >EtP^Lu~f_
hy hhAC@EGG
2hJ3m+N^
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 Nh9!lB m*]
step = 20, (dF;Gcw+
color = blue, R+0"B
width = 3, )`mF.87b&h
"signal output" PAV2w_X~
r5!M;hU1j
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 acY[?L_6J
step = 20, color = red, width = 3,"residual pump" B5HdC%8/}
!h>$bm
! set_L(L_f) {restore the original fiber length } "n }fEVJ,
~^~RltY
K=TW}ZO
; ------------- JK"uj%
diagram 4: !输出图表4 (B,t
1+%
T1HiHvJ
"TransverseProfiles" y%bqeo
L~
D{c>i`\G
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) $Wzv$4;
Y0O<]2yVx
x: 0, 1.4 * r_co /um :TYzzl43
"radialposition (µm)", @x zl
0^EltiU
y: 0, 1.2 * I_max *cm^2 up3<=u{>
"intensity (W/ cm²)", @y
MVP)rugU
y2: 0, 1.3 * N_Tm \Ntdl:fSw
frame YCBML!L
hx `AHNk7 t=
hy :YXQ9/iRr
y'|W['
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 p]|ME
yscale = 2, '3UIriY6
color = gray, gc7:Rb^E5t
width = 3, GnrW{o
maxconnect = 1, u|>U`[Zpj
"N_dop (right scale)" ;
9&.QR(
{R!TUQ5
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 *Gh8nQbh
color = red, A;j$rGx
maxconnect = 1, !限制图形区域高度,修正为100%的高度 #u5;utY:F
width = 3, Doc'7P
"pump" pD_eo6xX
2a(yR>#
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 1\J1yOL
color = blue, `)!2E6 =
maxconnect = 1, 9g5{3N3
width = 3, ySK Yqt z
"signal" UFAMbI
LOUKURe E
k&_u\D"^"%
; ------------- FlA\Ad;v
diagram 5: !输出图表5 }V#9tWW
JS7}K)A2B6
"TransitionCross-sections" 5A]LNA4i
\
NSw<.
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) -KJ!
grfdvN
x: 1450, 2050 9Bvn>+_K
"wavelength(nm)", @x \
[^)
WQ
y: 0, 0.6 bb0McEQy
"cross-sections(1e-24 m²)", @y -anFt+f-
frame (zro7gKked
hx /Zeg\}/4[
hy GE8D3V;*V
e5>5/l]jsg
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系
vH?+JN"A
color = red, `ToRkk&&>{
width = 3, MV;Y?%>
"absorption" VRQbf
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 sHPwW5j/o'
color = blue, cM<hG:4%wX
width = 3, iI@Gyq=
"emission" 60~>f)vu
}!yD^:[5