(* [1 w
Demo for program"RP Fiber Power": thulium-doped fiber laser, %L<VnY#%u
pumped at 790 nm. Across-relaxation process allows for efficient }4
P@`>e/`
population of theupper laser level. gWv/3hWWB
*) !(* *)注释语句 P0k|33;7L
"xdXHuX
diagram shown: 1,2,3,4,5 !指定输出图表 :$dGcX}
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 }g5h"N\$o
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 AX<TkS@wjb
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 KX[_eOL
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 !`)-seTm
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 M+
8!#n
Yf7n0Etd,
include"Units.inc" !读取“Units.inc”文件中内容 9\R:J"X
O&E1(M|*>
include"Tm-silicate.inc" !读取光谱数据 gO gZ
%* vYX0W"
; Basic fiberparameters: !定义基本光纤参数 Uk6Y6mU V
L_f := 4 { fiberlength } !光纤长度 x44)o:
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 ol:,02E&
r_co := 6 um { coreradius } !纤芯半径 ?U iwr{Q
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 ov*zQP
,BOB &u
; Parameters of thechannels: !定义光信道 ?K|PM<A
l_p := 790 nm {pump wavelength } !泵浦光波长790nm TM[Z~n(wt
dir_p := forward {pump direction (forward or backward) } !前向泵浦 +\\*Iy'xK
P_pump_in := 5 {input pump power } !输入泵浦功率5W %4imlP
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um D0us<9q
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 el;^cMY
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 K:465r:
rV[#4,} PF
l_s := 1940 nm {signal wavelength } !信号光波长1940nm
yL_-w/a
w_s := 7 um !信号光的半径 Y%anR|
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 *{)[:;
loss_s := 0 !信号光寄生损耗为0 Q^b_+M
k_-=:(Z
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 f/eT4y
/^P^K
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 }8fxCW*|
calc vXq=f:y4
begin --Dw8FR9
global allow all; !声明全局变量 #fzvK+
set_fiber(L_f, No_z_steps, ''); !光纤参数 WFjNS'WI_
add_ring(r_co, N_Tm); vObP(@0AM
def_ionsystem(); !光谱数据函数 Y^2`)':
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 Iwize,J~X
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 b+[9)B)a?
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 |\XjA4j
set_R(signal_fw, 1, R_oc); !设置反射率函数 [qIi_(%o
finish_fiber(); JUF[Y^C
end; >Y1?`
ryW1OV6?_0
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 os/~6
show "Outputpowers:" !输出字符串Output powers: n-}:D<\7
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) y@nWa\iG
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) UH%oGp$ykX
NQ'^z
E@JxY
; ------------- (X)$8y
diagram 1: !输出图表1 ,B5Ptf#
k#c BBrY
"Powers vs.Position" !图表名称 4CW/
h<Yn0(.
x: 0, L_f !命令x: 定义x坐标范围 OcQ_PE5\
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 ~V`D@-VND
y: 0, 15 !命令y: 定义y坐标范围 6pLB`1[v
y2: 0, 100 !命令y2: 定义第二个y坐标范围 -=Q_E^'
frame !frame改变坐标系的设置 MPAZ%<gmD
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) 0`h[|FYV
hx !平行于x方向网格 d?v#gW
hy !平行于y方向网格 0u,=OvU
69dFd!G\
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 @1*lmFq'kV
color = red, !图形颜色 &M6)-V4
width = 3, !width线条宽度 6!n"E@Bwu
"pump" !相应的文本字符串标签 &VY;Al
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 9x;/q7
color = blue, T!"<Kv]J
width = 3, ojs&W]r0Z
"fw signal" Zj<oh8
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 p0qQ(
color = blue, 'uo `-Y
style = fdashed, Dr6Br<yi
width = 3, [9BlP
"bw signal" jm.pb/
~9kvC&/{[
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 W#u}d2mP
yscale = 2, !第二个y轴的缩放比例 "*RCV6{
color = magenta, Ook3B
width = 3, JV36@DVQ
style = fdashed, `DG6ollp{
"n2 (%, right scale)" JEdtj1v{O
tPO.^
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 "sAR<5b
yscale = 2, i#kRVua/
color = red, O.&6J/
width = 3, xXA$16kd
style = fdashed, -fL|e/
"n3 (%, right scale)" C;dA?Es>R
4=o3ZRV
iUS379wM}
; ------------- n\,TW&3
diagram 2: !输出图表2 K ANE"M
0a8nBo7A-X
"Variation ofthe Pump Power" ;cp-jY_U
Pk8L-[&v
x: 0, 10 Se0/ysVB
"pump inputpower (W)", @x oq8~PTw
y: 0, 10 }K<;ygcWE@
y2: 0, 100 ]DmqhK`
frame Q Aygr4\X^
hx '3+S5p8
hy R3?~+y&
legpos 150, 150 PO&xi9_
&=$8
v"&^
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 Ic#+*W\ZW
step = 5, _j%Rm:m;<
color = blue, .8b4
width = 3, mNb+V /*x3
"signal output power (W, leftscale)", !相应的文本字符串标签 Sw5H+!
finish set_P_in(pump, P_pump_in) 1 _5[5K^
`(Q58wR}
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 Z]w_2- -
yscale = 2, v|{*y
step = 5, y*uL,WH
color = magenta, ZmmuP/~2K
width = 3, HoRLy*nU
"population of level 2 (%, rightscale)", +% U@
finish set_P_in(pump, P_pump_in) ?ZDx9*f
,l0s(Cg
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 Q=^}B}G
yscale = 2, 5VG@Q%
step = 5, *
+OAc`8
color = red, _F@FcFG1Z*
width = 3, A]H+rxg
"population of level 3 (%, rightscale)", l\$C)q6O
finish set_P_in(pump, P_pump_in) 6\::Ku4_2
PU-~7h+$
q8kt_&Ij
; ------------- ;H:qDBH
diagram 3: !输出图表3 )s6tjlf8
zR{TWk]
"Variation ofthe Fiber Length" L"}@>&6
#e8CuS
x: 0.1, 5 jU4Ir{f
"fiber length(m)", @x *Gu=O|Mm
y: 0, 10 ?|s[/zPS=
"opticalpowers (W)", @y o,aI<5"
frame .S?,%4v%%
hx 8V}c(2m
hy =A!I-@]q<
7XR[`Tn9<
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 !2{MWj
step = 20, "4"L"lJ
color = blue, |#-Oz#Eg'
width = 3, u"|.]r
"signal output" J41ZQ
[,1j(s`N5
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 ^8MgNVoJ)
step = 20, color = red, width = 3,"residual pump" .S5&MNE
eGguq~s`
! set_L(L_f) {restore the original fiber length } pbgCcO~xm
4cV(Z-\
c69C=WQ
; ------------- x1Si&0T0P<
diagram 4: !输出图表4 el[6E0!@
7
'f>
"TransverseProfiles" E3gQ`+wNg?
l|uN-{w
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) Y:byb68
-7pZRnv
x: 0, 1.4 * r_co /um L3kms6ch
"radialposition (µm)", @x V'6%G:?0a
y: 0, 1.2 * I_max *cm^2 dvXu?F55
"intensity (W/ cm²)", @y zF{z_c#3@
y2: 0, 1.3 * N_Tm (JF\%Yj/
frame =E,*8O]
hx z!F?#L5
hy FD`V39##
YE^|G,]
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 ]0O pd9
yscale = 2, ZM)a4h,kcm
color = gray, H7\EvIM=
width = 3, R_Hdi~ k
maxconnect = 1, r-!8in2
"N_dop (right scale)" 8<g5.$xyz
VTV-$Du[}
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 h\20
color = red, k@wxN!w;
maxconnect = 1, !限制图形区域高度,修正为100%的高度 0<P
-` |X
width = 3, 7Y$p3]0e+
"pump" Y]Xal
$:<KG&Br
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 gx9H=c>/
color = blue, r?Z8_5Y
maxconnect = 1, gGZ$}vX
width = 3, nNL9B~d
"signal" &1VC0"YJWy
jmAWto}.
D&]SPhX
; ------------- q'1rSK
diagram 5: !输出图表5 gN(8T_r
#|gt(p]C
"TransitionCross-sections" H(""So7L
/gPn2e;
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) pET5BMxGG
.ipYZg'V
x: 1450, 2050 ,c7 8O8|
"wavelength(nm)", @x XRaq\a`=:
y: 0, 0.6 ;zp0,[r
"cross-sections(1e-24 m²)", @y ,H.q%!{h_
frame h"q`gj
hx G-T:7
hy #Ok*Or
j4Lf6aUOX
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 CjykM])
color = red, &%INfl>o7.
width = 3, nC2A&n