切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 2529阅读
    • 1回复

    [原创]RP Fiber Power仿真设计掺铥光纤激光器代码详解 [复制链接]

    上一主题 下一主题
    离线小火龙果
     
    发帖
    932
    光币
    2176
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-05-28
    (* [szwPNQ_  
    Demo for program"RP Fiber Power": thulium-doped fiber laser, A5nu`e9&  
    pumped at 790 nm. Across-relaxation process allows for efficient =g&0CFF<  
    population of theupper laser level. Nl(Aa5:!  
    *)            !(*  *)注释语句 V^f'4*~'  
    H%/$Rqg  
    diagram shown: 1,2,3,4,5  !指定输出图表 `yxk Sb  
    ; 1: "Powersvs. Position"     !分号是注释;光纤长度对功率的影响 B'=*92i>S  
    ; 2:"Variation of the Pump Power"  !泵浦光功率变化对信号输出功率的影响 G& ;W  
    ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 Y@pa+~[{h3  
    ; 4:"Transverse Profiles"             !横向分布,横坐标为半径位置 S4 tdW A  
    ; 5:"Transition Cross-sections"    !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 MLp5Y\8*  
    6b)1B\p  
    include"Units.inc"         !读取“Units.inc”文件中内容 1~_]"Y'  
    Et7AAV*8g  
    include"Tm-silicate.inc"    !读取光谱数据 !>! l=Z  
    bb#w]!q  
    ; Basic fiberparameters:    !定义基本光纤参数 lk+)-J-lj'  
    L_f := 4 { fiberlength }      !光纤长度 ))+R*k%  
    No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 aUJ&  
    r_co := 6 um { coreradius }                !纤芯半径 b^%4_[uRu  
    N_Tm := 100e24 { Tmdoping concentration }  !纤芯Tm离子掺杂浓度 )"q2DjfX*  
    ,;{mH]"s  
    ; Parameters of thechannels:                !定义光信道 @@! R Iq!  
    l_p := 790 nm {pump wavelength }                !泵浦光波长790nm D@0eYX4s  
    dir_p := forward {pump direction (forward or backward) }   !前向泵浦 .&L#%C  
    P_pump_in := 5 {input pump power }                    !输入泵浦功率5W sSvQatwS  
    w_p := 50 um {radius of pump cladding }               !包层泵浦相应的半径 50um WLizgVM  
    I_p(r) := (r <=w_p) { pump intensity profile }          !泵浦光强度分布 rb9 x||  
    loss_p := 0 {parasitic losses of pump wave }           !泵浦光寄生损耗为0 )ll}hGS  
    #%x4^A9 q  
    l_s := 1940 nm {signal wavelength }                   !信号光波长1940nm lv{Qn~\y&  
    w_s := 7 um                          !信号光的半径 9}":}!  
    I_s(r) := exp(-2 *(r / w_s)^2)            !信号光的高斯强度分布 9m8`4%y=  
    loss_s := 0                            !信号光寄生损耗为0 ^D6JckW  
    {)`5*sd  
    R_oc := 0.70 {output coupler reflectivity (right side) }      !输出耦合反射率 _tYt<oB~%  
    ?SS?I  
    ; Function for defining themodel:   !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 Vg2s~ce{  
    calc |>p\*Dl}H  
      begin kR'!;}s  
        global allow all;                   !声明全局变量 ZL-@2ZU{1  
        set_fiber(L_f, No_z_steps, '');        !光纤参数 =:#$_qR  
        add_ring(r_co, N_Tm); o6svSS  
        def_ionsystem();              !光谱数据函数 X, J.!:4`  
        pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p);  !泵浦光信道 =`{!" 6a  
        signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward);      !前向信号光信道 h NP|  
        signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward);    !后向信号光信道 |~'{ [?a*  
        set_R(signal_fw, 1, R_oc);                                 !设置反射率函数 Oa*/jZjr  
        finish_fiber();                                   F!.@1Fi1  
      end; ncu> @K$n  
    B9+oI c O  
    ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 l&E-H@Pe  
    show "Outputpowers:"                                   !输出字符串Output powers: }!B<MGBd  
    show"pump:     ", P_out(pump):d3:"W"  !输出字符串pump:和计算值(格式为3个有效数字,单位W) 7 +?  
    show"signal:   ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) {KODwP'~  
    II),m8G  
    ?2Bp^3ytJ  
    ; ------------- `qX'9e3VP+  
    diagram 1:                   !输出图表1 ) D(XDN  
    IDcu#Nz`  
    "Powers vs.Position"          !图表名称 %B#Ewt@[  
    &oNy~l o  
    x: 0, L_f                      !命令x: 定义x坐标范围 u\>Ed9^  
    "position infiber (m)", @x      !x轴标签;@x 指示这些字符串沿坐标轴放置 '0w'||#1  
    y: 0, 15                      !命令y: 定义y坐标范围 r@wWGbQ|L  
    y2: 0, 100                    !命令y2: 定义第二个y坐标范围 ]`+>{Sx 1  
    frame          !frame改变坐标系的设置 @{~x:P5g  
    legpos 600, 500  !图行在图表窗口中的位置(相对于左上角而言) 3wa }p^   
    hx             !平行于x方向网格 Z\TH=UA  
    hy              !平行于y方向网格 |9 }G  
    3/4xP|  
    f: P(pump, x),    !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 d(R3![:  
      color = red,  !图形颜色 =q>eoXp  
      width = 3,   !width线条宽度 ~I2 IgEj>]  
      "pump"       !相应的文本字符串标签 C9({7[k^%  
    f: P(signal_fw, x),  !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 1G$kO90  
      color = blue,     !%]]lxi  
      width = 3, !MQo= k  
      "fw signal" `}Q+:  
    f: P(signal_bw, x),   !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 ~"{Kjr#R  
      color = blue, t5[{ihv~:  
      style = fdashed, YdIV_&-W  
      width = 3, ~pwp B2c  
      "bw signal" jG8 ihi  
    R (4 :_ xc  
    f: 100 * n(x, 2),    !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 c5^i5de  
      yscale = 2,            !第二个y轴的缩放比例 BL,YJM(y  
      color = magenta, [+>$'Du  
      width = 3, \y#gh95  
      style = fdashed, R6CxNPRJ  
      "n2 (%, right scale)"  8tLkJOu  
    yn4Xi@9Pri  
    f: 100 * n(x, 3),          !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 p4|:u[:&  
      yscale = 2, P}JA"V&  
      color = red, Y{um1 )k  
      width = 3, >.QD:_@:  
      style = fdashed, Ca]vK'(  
      "n3 (%, right scale)" }fL8<HM\'c  
    F5{~2~Cw(  
    "5ah{,  
    ; ------------- Z}$.Tm  
    diagram 2:                    !输出图表2 D",ZrwyJ  
    Cz m`5  
    "Variation ofthe Pump Power" ]r6,^"  
    n%@xnB $ZX  
    x: 0, 10 }Geip@Ot  
    "pump inputpower (W)", @x "k5 C?~  
    y: 0, 10 *#dXW\8qu  
    y2: 0, 100 HI)ks~E/  
    frame u!X[xe;  
    hx _9""3O  
    hy y}nM'$p  
    legpos 150, 150 (m~MyT#S  
    ] E`J5o}op  
    f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 ,7k)cNstW  
      step = 5, X-6Se  
      color = blue, rsy'ZVLUj  
      width = 3, + ECV|mkk  
      "signal output power (W, leftscale)",     !相应的文本字符串标签 a'XCT@B  
      finish set_P_in(pump, P_pump_in) Y |n_Ro^~  
    ]:Ocu--  
    f: (set_P_in(pump,x); 100 * n_av(2)),   !改变泵浦信号功率对能级2上激活粒子占比的影响 :n{rVn}G  
      yscale = 2, FHqa|4Ie  
      step = 5, q1`uS^3`  
      color = magenta, jpT!di  
      width = 3, b]Oc6zR,,~  
      "population of level 2 (%, rightscale)", Fu!:8Wp!(  
      finish set_P_in(pump, P_pump_in) 5{[3I|m{  
    Vr`UF0_3q  
    f: (set_P_in(pump,x); 100 * n_av(3)),   !改变泵浦信号功率对能级3上激活粒子占比的影响 hFyN|Dqhds  
      yscale = 2, @N1ta-D#  
      step = 5, 9{?<.%  
      color = red, NS mo(c >5  
      width = 3, c{s<W}3Ds  
      "population of level 3 (%, rightscale)", * vEG%Y  
      finish set_P_in(pump, P_pump_in) kVe}_[{m  
    o!wz:|\S  
    a(BWV?A  
    ; ------------- ^~eT# Y8  
    diagram 3:                         !输出图表3 , N5Rdgzk  
    {b7P1}>-*  
    "Variation ofthe Fiber Length" Et# }XVCJ  
    JwxI8Pi*y  
    x: 0.1, 5 C7eaioW$  
    "fiber length(m)", @x Pg|q{fc  
    y: 0, 10 x.>z2.  
    "opticalpowers (W)", @y rL&585  
    frame >2Z:=HT  
    hx L'z;*N3D  
    hy *M6M'>Tin  
    ?)5}v4b  
    f: (set_L(x);P_out(signal_fw)),     !改变光纤长度对信号光输出功率的影响 qyQPR  
      step = 20,             W~Eq_J?I  
      color = blue, |o|0qG@g  
      width = 3, 64h r| v  
      "signal output" :q0C$xF  
    V92e#AR  
    ;f: (set_L(x);P_out(pump)),                     !改变光纤长度对泵浦信号输出功率的影响 T->O5t c  
       step = 20, color = red, width = 3,"residual pump" !>  
    6TlkPM$~2  
    ! set_L(L_f) {restore the original fiber length } 3[-L'!pOX3  
    d+[hB4!l2  
    nke[}Hqf  
    ; ------------- ~Se/uL;*  
    diagram 4:                                  !输出图表4 F~)xZN3=  
    )TVyRYZ1  
    "TransverseProfiles" >eWHPO  
    SI8mr`gJ  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) ]C}z3hhk  
    \7jcZ~FBX%  
    x: 0, 1.4 * r_co /um i,$*+2Z  
    "radialposition (µm)", @x f)?s.DvUB  
    y: 0, 1.2 * I_max *cm^2 "((6)U#  
    "intensity (W/ cm&sup2;)", @y GriL< =?t  
    y2: 0, 1.3 * N_Tm : R.,<DQM  
    frame /J wQ5  
    hx )u(`s`zd  
    hy e9o(hL  
    6 @'v6 1'  
    f: N_dop(1, x * um,0),      !掺杂浓度的径向分布 Cf@WjgR  
      yscale = 2, oT_k"]~Q~2  
      color = gray, L+9a4/q  
      width = 3, *-Z JF6  
      maxconnect = 1, ~~&8I!r e  
      "N_dop (right scale)" cuW$%$ F  
    `?2S4lN/  
    f: I(pump, -1, x *um, 0) * cm^2,    !泵浦光沿光纤径向的强度分布 G'#a&6  
      color = red, xud =(HLl  
      maxconnect = 1,           !限制图形区域高度,修正为100%的高度 s)8g4Yc*  
      width = 3, _u]Wr%D@  
      "pump" "qMd%RP  
    u=p([ 5]  
    f: I(signal_fw, -1,x * um, 0) * cm^2,  !信号光沿光纤径向的强度分布 sj0Hv d9  
      color = blue, {Lrez E4  
      maxconnect = 1, u2@:[:Ao  
      width = 3, Ycn*aR2  
      "signal" xpRQ"6  
    6psK2d0  
    Jd7+~isu~  
    ; ------------- BQ2DQ7q  
    diagram 5:                                  !输出图表5 q: ?6  
    nH/V2> Lm  
    "TransitionCross-sections" zxT&K|  
    D-69/3PvP  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) [8l8 m6  
    = 0Z}s  
    x: 1450, 2050 yI)~- E.  
    "wavelength(nm)", @x BJB'o  
    y: 0, 0.6 @'7'3+ c  
    "cross-sections(1e-24 m&sup2;)", @y (wo.OH  
    frame 3l-8TR  
    hx 6zaO$  
    hy '>@ evrG  
    ")i4w{_y  
    f: s12_Tm(x * nm) /1e-24,      !Tm3+吸收截面与波长的关系 7??+8T#n*  
      color = red, _r?H by<b  
      width = 3, L|u\3.:  
      "absorption" LW{7|g  
    f: s21_Tm(x * nm) /1e-24,  !Tm3+发射截面与波长的关系 BwEO2a{  
      color = blue, ?WKFDL'_0j  
      width = 3, Gh>Rt=Qu%  
      "emission"  wC}anq>>  
    eYOwdTrq  
     
    分享到
    离线lileisgsz
    发帖
    14
    光币
    69
    光券
    0
    只看该作者 1楼 发表于: 2021-09-28
    感谢,视频上有点看不清楚