(* `zoHgn7B9q
Demo for program"RP Fiber Power": thulium-doped fiber laser, 'o='Q)Dk
pumped at 790 nm. Across-relaxation process allows for efficient 5BrN
uR$
population of theupper laser level. Tzd#!Lvm:,
*) !(* *)注释语句 C(>!?-.
y&\4Wr9m
diagram shown: 1,2,3,4,5 !指定输出图表 B:>:$LIL
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 N8]DzE0%
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 RHsVG &<j
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 0>[]Da}
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 |=5zI6pT
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 r1~W(r.x
0hY3vBQ!
include"Units.inc" !读取“Units.inc”文件中内容 _DR@P(0>_
lhM5a
\
include"Tm-silicate.inc" !读取光谱数据 o0Teect=
Y`gO:d8
; Basic fiberparameters: !定义基本光纤参数 UVDMYA0
L_f := 4 { fiberlength } !光纤长度 7\@c1e*e
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 $H*8H`
r_co := 6 um { coreradius } !纤芯半径 RIkIE=+6
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 k7uX!}
NG3?OAQTw
; Parameters of thechannels: !定义光信道 8{Wl
l_p := 790 nm {pump wavelength } !泵浦光波长790nm {?Slo5X|
dir_p := forward {pump direction (forward or backward) } !前向泵浦 SY9 5s
P_pump_in := 5 {input pump power } !输入泵浦功率5W _J*l,]}S
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um Aa-5k3:x]=
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 BMq> Cj+
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 7,)E1dx -V
A":=-$)
l_s := 1940 nm {signal wavelength } !信号光波长1940nm cO:lpsKYQ
w_s := 7 um !信号光的半径 rzdQLan
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 tk0m[HN@eV
loss_s := 0 !信号光寄生损耗为0 }:?*n:g5
9q ]f]S.L
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 "d}']M?-h
Mn5(Kw?o2J
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 I484cR2.
calc 9z?c0W5x
begin RZEq@q
global allow all; !声明全局变量 UhR^Y{W5
set_fiber(L_f, No_z_steps, ''); !光纤参数 =nHkFi@D=t
add_ring(r_co, N_Tm); ?121 as}z
def_ionsystem(); !光谱数据函数 MoxWnJy}
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 v1u~[c=|^
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 U| yt
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 /#5rt&q
set_R(signal_fw, 1, R_oc); !设置反射率函数 ;{8 X+H
finish_fiber(); ke@OG! M /
end; vEjf|-Mb9
3 85qQppz
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 [#wt3<d`)
show "Outputpowers:" !输出字符串Output powers: .|"E:qTD
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) lB2F09`
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) i=5!taxu}E
`]]m$
%cs"PS
; ------------- Qraq{'3
diagram 1: !输出图表1 #++:`Z
wo62R&ac
"Powers vs.Position" !图表名称 k
%{q
q v
nVlZ_72d
x: 0, L_f !命令x: 定义x坐标范围 ,aWI&ve6
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 p v4#`.m
y: 0, 15 !命令y: 定义y坐标范围 rhYAR r'
y2: 0, 100 !命令y2: 定义第二个y坐标范围 {%6
'|<`[
frame !frame改变坐标系的设置 Z$i?p;HnW
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) ,nog6\
hx !平行于x方向网格 Na]ITCVR
hy !平行于y方向网格 Y q/vym-O5
%/)z!}{
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 7aRy])x
color = red, !图形颜色 5T"h7^}e
width = 3, !width线条宽度 dM,{:eID
"pump" !相应的文本字符串标签 E690'\)31
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 ZCK#=:ln
color = blue, j!L7r'AV5
width = 3, 6wOj,}2Mn
"fw signal" e Vj 8u
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 ]}S9KP
color = blue, zWN]#W`
style = fdashed, 8~!h8bkC
width = 3, >y}> 5kv
"bw signal" ! qtj1.w
Mu.tq~b >
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 |Eu#mN
yscale = 2, !第二个y轴的缩放比例 Oo!]{[}7
color = magenta, F)l1%FCm
width = 3, D41.$t[
style = fdashed, -R$ Q`Xw
"n2 (%, right scale)" yqJ>Z%)hf
e*<pO@Uy
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 Ug[0l)
yscale = 2, #BEXj<m+J
color = red, K-(C5 "j_
width = 3, ](+u'8
style = fdashed, JBV
06T_4o
"n3 (%, right scale)" 8XfOMf~d`
(e
2.Ru
aTaL|&(
; ------------- 1mv5B t
diagram 2: !输出图表2 M6[O>z
!bW^G}
<t
"Variation ofthe Pump Power" W$}2
$}r0U
ZSwhI@|
x: 0, 10 *EU1`q*
"pump inputpower (W)", @x -Lsl
y: 0, 10 *P12d
y2: 0, 100 S>[&]
frame .L)j
ql%
hx >)`*:_{
hy U,<?]h
legpos 150, 150 pfMmDl5|
5 yL"=3&+
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 +D h?MQt?
step = 5, BgsU:eKe
color = blue, V' sq'XB
width = 3, ;M O,HdP;
"signal output power (W, leftscale)", !相应的文本字符串标签 e9F+R@8
finish set_P_in(pump, P_pump_in) -9 |)O:
V4*/t#L/
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 o~x49%X<c
yscale = 2, ^Y"|2 :
step = 5, 3|Y.+W
color = magenta, =1VpO{q
width = 3, )uCa]IR
"population of level 2 (%, rightscale)", Qj9'VI>&
finish set_P_in(pump, P_pump_in) nI`9|W
6(B[(Af
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 YQ-V^e6
yscale = 2, "6WE6zq
step = 5, }vX1@n7T6
color = red, [TmZ\t!5$
width = 3, {UuSNZ[^
"population of level 3 (%, rightscale)", ib(4Y%U6~
finish set_P_in(pump, P_pump_in) jq[Q>"f
*)T7DN8
ZGS4P 0$
; ------------- y#J8Yv8
diagram 3: !输出图表3 NV18~5#</
Zx|VOl,;
"Variation ofthe Fiber Length" o|1_I?_
9!Bz)dJ3
x: 0.1, 5 qD(dAU
"fiber length(m)", @x k|rbh.Q
y: 0, 10 z|m-nIM
"opticalpowers (W)", @y tIW~Ng
frame ov Wm}!r
hx t|59/R
hy -aM7>YR
$*+`;PG-
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 #PMi6q~Z
step = 20, K^[Dz\ov5
color = blue, HA;G{[X
width = 3, u/HNXJ7M`9
"signal output" oazy%n(KZ
rUBc5@|
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 z4s{a(Tsd
step = 20, color = red, width = 3,"residual pump" aB~=WWLR\
(+.R8
! set_L(L_f) {restore the original fiber length } M~*o =t
10..<v7
bP1]:^ x@W
; ------------- %H7H0%qW
diagram 4: !输出图表4 82w=t
=R||c
"TransverseProfiles" Y'x+!&H
6V @ [<d
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0))
+`~kt4W
8'VcaU7Nh
x: 0, 1.4 * r_co /um HhT6gJWrU
"radialposition (µm)", @x dJ=z'?|%g
y: 0, 1.2 * I_max *cm^2 `>\>'V<&
"intensity (W/ cm²)", @y -Z&9pI(3R~
y2: 0, 1.3 * N_Tm T']G:jkb
frame 0`kaT
?>
hx Q|nGY:98
hy ]|K@0,
, n47.S
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 -e_L2<7
yscale = 2, l#!6
tw+e?
color = gray, ),4cb
width = 3, K`twbTU
maxconnect = 1, oGqbk x
"N_dop (right scale)" oz/Nx{bg
DBZ^n9
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 \t%rIr
color = red, 4
JDk()
maxconnect = 1, !限制图形区域高度,修正为100%的高度 ,I8[tiR"b
width = 3, "']|o ~B
"pump" f]]UNS$AYQ
Huho|6ohH
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 M%1wT9
color = blue, Cc>+OUL
maxconnect = 1, T8-,t];i
width = 3, l5CFm8%
"signal" @hj5j;NHK
i>=!6Hu2
J(=io_\bO
; ------------- *BAR`+;U
diagram 5: !输出图表5
@1O.;
VL| q`n
"TransitionCross-sections" ynU20g
/}#@uC
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) .{
r
%C4q9
h][$1b&B
x: 1450, 2050 B0"55g*c
"wavelength(nm)", @x y-#01Z
y: 0, 0.6 XmX{e.<NZ
"cross-sections(1e-24 m²)", @y \ 3HB
frame y#)ad\
hx [}Pi $at
hy hYEUiQ
2 s<uT
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 {~+o+LV
color = red, a?ux
width = 3, !OL[1_-4|K
"absorption" *_CzCl^
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 < r7s,][&
color = blue, (bo-JOOdY(
width = 3, BoHpfx1C
"emission" F<LRo}j"9Q
\O(~:KN