切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 2601阅读
    • 1回复

    [原创]RP Fiber Power仿真设计掺铥光纤激光器代码详解 [复制链接]

    上一主题 下一主题
    离线小火龙果
     
    发帖
    932
    光币
    2176
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-05-28
    (* =? aB@&  
    Demo for program"RP Fiber Power": thulium-doped fiber laser, [RuY'  
    pumped at 790 nm. Across-relaxation process allows for efficient 4(IP  
    population of theupper laser level. @SXgaWr  
    *)            !(*  *)注释语句 Yw `VL)v(y  
    8A_(]Q  
    diagram shown: 1,2,3,4,5  !指定输出图表 q;JQs:U!  
    ; 1: "Powersvs. Position"     !分号是注释;光纤长度对功率的影响 >fQN"(tf  
    ; 2:"Variation of the Pump Power"  !泵浦光功率变化对信号输出功率的影响 $ 7!GA9Bn  
    ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 mYX) =B{  
    ; 4:"Transverse Profiles"             !横向分布,横坐标为半径位置 c5pG?jr+d  
    ; 5:"Transition Cross-sections"    !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 SO"P3X  
    @I:&ozy }=  
    include"Units.inc"         !读取“Units.inc”文件中内容 ,Fiiw  
    sJ=B:3jS0  
    include"Tm-silicate.inc"    !读取光谱数据 AR^Di`n!  
    [8#l~ |U  
    ; Basic fiberparameters:    !定义基本光纤参数 Bw[VK7  
    L_f := 4 { fiberlength }      !光纤长度 PN=yf@<V3F  
    No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 3.Kdz}  
    r_co := 6 um { coreradius }                !纤芯半径 *ni|I@8  
    N_Tm := 100e24 { Tmdoping concentration }  !纤芯Tm离子掺杂浓度 {lJpcS  
    ;GSj }Nq  
    ; Parameters of thechannels:                !定义光信道 LLiX%XOh  
    l_p := 790 nm {pump wavelength }                !泵浦光波长790nm p10->BBg  
    dir_p := forward {pump direction (forward or backward) }   !前向泵浦 Sq%R  
    P_pump_in := 5 {input pump power }                    !输入泵浦功率5W ,fRb6s-  
    w_p := 50 um {radius of pump cladding }               !包层泵浦相应的半径 50um s]UeDZ <a  
    I_p(r) := (r <=w_p) { pump intensity profile }          !泵浦光强度分布 |1R @Jz`  
    loss_p := 0 {parasitic losses of pump wave }           !泵浦光寄生损耗为0 AaVlNjB  
    "H8N,eb2  
    l_s := 1940 nm {signal wavelength }                   !信号光波长1940nm XlPy(>  
    w_s := 7 um                          !信号光的半径 00+5a TrE  
    I_s(r) := exp(-2 *(r / w_s)^2)            !信号光的高斯强度分布 TuL( /  
    loss_s := 0                            !信号光寄生损耗为0 *6DKU CA/  
     3@*8\  
    R_oc := 0.70 {output coupler reflectivity (right side) }      !输出耦合反射率 u QCS%|8C  
    PoZBiw@  
    ; Function for defining themodel:   !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 2z:9^a/]Na  
    calc X +R_TC  
      begin cxV3Vrx@A  
        global allow all;                   !声明全局变量 X*@S j;|m  
        set_fiber(L_f, No_z_steps, '');        !光纤参数 |>)mYLN!y  
        add_ring(r_co, N_Tm); -L@=j  
        def_ionsystem();              !光谱数据函数 }<p%PyM  
        pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p);  !泵浦光信道 &CgD smJo#  
        signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward);      !前向信号光信道 :M16ijkx  
        signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward);    !后向信号光信道 q_bB/   
        set_R(signal_fw, 1, R_oc);                                 !设置反射率函数 wuCODz@~  
        finish_fiber();                                   ,O(uuq  
      end; kmwFw>#  
    1ARIZ;H  
    ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 utv.uwfat  
    show "Outputpowers:"                                   !输出字符串Output powers: V! p;ME  
    show"pump:     ", P_out(pump):d3:"W"  !输出字符串pump:和计算值(格式为3个有效数字,单位W) I5{SC-7  
    show"signal:   ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) #\qES7We 6  
    ,b{4GU$3  
    zKv}J  
    ; ------------- wbTw\b=  
    diagram 1:                   !输出图表1 V.qB3 V$  
    $|KbjpQ  
    "Powers vs.Position"          !图表名称 GI/o!0"_  
    S"*wP[d.9  
    x: 0, L_f                      !命令x: 定义x坐标范围 >U z3F7nHi  
    "position infiber (m)", @x      !x轴标签;@x 指示这些字符串沿坐标轴放置 _F3:j9^  
    y: 0, 15                      !命令y: 定义y坐标范围 1QThAFN  
    y2: 0, 100                    !命令y2: 定义第二个y坐标范围 WukD|BCC  
    frame          !frame改变坐标系的设置 c ;VW>&,B  
    legpos 600, 500  !图行在图表窗口中的位置(相对于左上角而言) gwyz)CUkL  
    hx             !平行于x方向网格 9#+X?|p+0  
    hy              !平行于y方向网格 eG.?s ;J0  
    N]3XDd|q  
    f: P(pump, x),    !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 ^VD14V3  
      color = red,  !图形颜色 ;TYkJH"  
      width = 3,   !width线条宽度 8WMC ~  
      "pump"       !相应的文本字符串标签 92EvCtf  
    f: P(signal_fw, x),  !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 c(:GsoO  
      color = blue,     czafBO6  
      width = 3, 3LG)s:p$/  
      "fw signal" qbjRw!2?w  
    f: P(signal_bw, x),   !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 wml`3$"cf  
      color = blue, 5=eGiF;0\  
      style = fdashed, n,`&f~tap  
      width = 3, @<_4Nb  
      "bw signal" W1 E(( 2  
    O:4.xe  
    f: 100 * n(x, 2),    !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 d:3G4g  
      yscale = 2,            !第二个y轴的缩放比例 v q|W&  
      color = magenta, HghNI  
      width = 3, Hc71 .rqS  
      style = fdashed, JHcC}+H[  
      "n2 (%, right scale)" % %*t{0!H+  
    w1[F]|  
    f: 100 * n(x, 3),          !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 H'+P7*k#M  
      yscale = 2, Xr-eDUEi  
      color = red, h/d&P  
      width = 3, J*.qiUAgW  
      style = fdashed, t<rhrW75P  
      "n3 (%, right scale)" f5AK@]4G  
    )]'?yS"  
    (V*ggii@  
    ; ------------- tR1 kn&w  
    diagram 2:                    !输出图表2 :WE(1!P@  
    !RV}dhI  
    "Variation ofthe Pump Power" A>Js`s  
    jlItPd C v  
    x: 0, 10 0EOpK%{  
    "pump inputpower (W)", @x ]w({5i  
    y: 0, 10 OPar"z^EV  
    y2: 0, 100 \59+JLmP4  
    frame G0^NkH,k  
    hx k/Z}nz   
    hy UW!!!  
    legpos 150, 150 1qtu,yIf  
    z6\Y& {  
    f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 C,.$g>)MZK  
      step = 5, k? X7h2  
      color = blue, Iq MXd K|  
      width = 3, Ji gc@@B.  
      "signal output power (W, leftscale)",     !相应的文本字符串标签 iphe0QE[#}  
      finish set_P_in(pump, P_pump_in) wUab)L  
    s#>Bwn&b)  
    f: (set_P_in(pump,x); 100 * n_av(2)),   !改变泵浦信号功率对能级2上激活粒子占比的影响 qlO(z5Ak  
      yscale = 2, Z3)1!|#Q  
      step = 5, iXeywO2nP  
      color = magenta, 4 QD.'+ L  
      width = 3, j"hfsA<_I  
      "population of level 2 (%, rightscale)", *s} dtJ  
      finish set_P_in(pump, P_pump_in) m z) O  
    /2 ')u|  
    f: (set_P_in(pump,x); 100 * n_av(3)),   !改变泵浦信号功率对能级3上激活粒子占比的影响 -:&qNY:Vp  
      yscale = 2, % [b~4,c1  
      step = 5, =otJf~  
      color = red, b$[O^p9x  
      width = 3, })%WL;~  
      "population of level 3 (%, rightscale)", t[|^[%i  
      finish set_P_in(pump, P_pump_in) <J!#k@LY]7  
    30bScW<08  
    F<VoPqHq  
    ; ------------- EA8K*>'pv  
    diagram 3:                         !输出图表3 C;QIp6"1  
    Ou>L|#=!  
    "Variation ofthe Fiber Length" eJlTCXeZ|  
    ED [` Y.;  
    x: 0.1, 5 Yjx*hv&?  
    "fiber length(m)", @x %#7Yr(&  
    y: 0, 10 eX;C.[&7;8  
    "opticalpowers (W)", @y v!JQ;OX  
    frame H:TRJ.!w2  
    hx NBU[>P  
    hy v2][gn+58  
    B@U;[cO&  
    f: (set_L(x);P_out(signal_fw)),     !改变光纤长度对信号光输出功率的影响 !36jtKdM  
      step = 20,             *z&m=G\  
      color = blue, U= QfInB  
      width = 3, vau0Jn%=ck  
      "signal output" {@ ygq-TZ  
    '[g@A>xDvW  
    ;f: (set_L(x);P_out(pump)),                     !改变光纤长度对泵浦信号输出功率的影响 dz3chy,3  
       step = 20, color = red, width = 3,"residual pump" ] ;" blB  
    /Sy:/BQ  
    ! set_L(L_f) {restore the original fiber length } J0K25w  
    qn=~4rg]R  
    X] cI ?  
    ; ------------- '@t}8J  
    diagram 4:                                  !输出图表4 [Vzp D 4  
    f sRRnD  
    "TransverseProfiles" b}s)3=X@q  
    b5NPG N  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) h' #C$i  
    9[31EiT  
    x: 0, 1.4 * r_co /um kB:6e7D|[  
    "radialposition (µm)", @x /a@gE^TM  
    y: 0, 1.2 * I_max *cm^2 ) bRj'*  
    "intensity (W/ cm&sup2;)", @y D_VAtz  
    y2: 0, 1.3 * N_Tm %+0 7>/  
    frame e !BablG[  
    hx 4K{<R!2I  
    hy JWzN 'a R  
    9OI&De5?=V  
    f: N_dop(1, x * um,0),      !掺杂浓度的径向分布 (^,4{;YQ5  
      yscale = 2, vK@t=d  
      color = gray, wd 86 y  
      width = 3, g<d#zzP"T  
      maxconnect = 1, ,-({m'  
      "N_dop (right scale)" <B"M} Y>_P  
    98"/]ERJ  
    f: I(pump, -1, x *um, 0) * cm^2,    !泵浦光沿光纤径向的强度分布 |1M+FBT$w  
      color = red, %z9eVkPI~  
      maxconnect = 1,           !限制图形区域高度,修正为100%的高度 EkWipF(  
      width = 3, (4ueO~jb $  
      "pump" \l$gcFXb  
    5ctH=t0  
    f: I(signal_fw, -1,x * um, 0) * cm^2,  !信号光沿光纤径向的强度分布 \r4QS  
      color = blue, LNm{}VJ%  
      maxconnect = 1, YhpNeP{A  
      width = 3, ;G 27S<Q  
      "signal" %UV'HcO/gp  
     J^"  
    9#C hn~ \  
    ; ------------- B-EVo&.  
    diagram 5:                                  !输出图表5 !>olD_  
    ~x}/>-d  
    "TransitionCross-sections" <]9%Pm#X  
    Nw 74T  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) L!fiW`>0G  
    q>JW$8  
    x: 1450, 2050 |gl~wG1@  
    "wavelength(nm)", @x i]sz*\P~  
    y: 0, 0.6  ^##tk  
    "cross-sections(1e-24 m&sup2;)", @y OanHG  
    frame f[}N  
    hx 8 oK;Tzh  
    hy ]gxt+'iAFS  
    <[N"W82p  
    f: s12_Tm(x * nm) /1e-24,      !Tm3+吸收截面与波长的关系 `F)Q=  
      color = red, EKwA1,Xz  
      width = 3, 7x,c)QES`  
      "absorption" wTT_jyH)  
    f: s21_Tm(x * nm) /1e-24,  !Tm3+发射截面与波长的关系 4d\"gk  
      color = blue, [5KzawV  
      width = 3, yW3X<  
      "emission" ~Z ,bd$  
    mn5"kYy?  
     
    分享到
    离线lileisgsz
    发帖
    14
    光币
    69
    光券
    0
    只看该作者 1楼 发表于: 2021-09-28
    感谢,视频上有点看不清楚