(* [sJ f)<
Demo for program"RP Fiber Power": thulium-doped fiber laser, ]vRte!QJ;
pumped at 790 nm. Across-relaxation process allows for efficient gV@FT|j!i
population of theupper laser level. Yl%1e|WV
*) !(* *)注释语句 ^6j: lL
Iko1%GJ1Z
diagram shown: 1,2,3,4,5 !指定输出图表 rZ`ob x\S
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 8&?Kg>M
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 N>##}i
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 Zg1=g_xY
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 FrBoE#
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 =.`(KXT
6L[ Yn?;
include"Units.inc" !读取“Units.inc”文件中内容 1y@d`k`t:
yJ*`OU#
include"Tm-silicate.inc" !读取光谱数据 d_s=5+Yj
ApHs`0=(
; Basic fiberparameters: !定义基本光纤参数 {`,dWjy{%
L_f := 4 { fiberlength } !光纤长度 ~t7?5b?*\
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 Hx[YHu
KL^
r_co := 6 um { coreradius } !纤芯半径 &R+/Ie#0dz
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 wSoIU,I
Vg'vL[Y
; Parameters of thechannels: !定义光信道 x`n$4a'7b
l_p := 790 nm {pump wavelength } !泵浦光波长790nm B1)gudP`
dir_p := forward {pump direction (forward or backward) } !前向泵浦 xUl=N
P_pump_in := 5 {input pump power } !输入泵浦功率5W *R1m=
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um SQ%B"1&$D
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 |Iei!jm
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 ~I[Z2&I
q6DuLFatc*
l_s := 1940 nm {signal wavelength } !信号光波长1940nm V4I5PPz~
w_s := 7 um !信号光的半径 4/UY*Us&
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布
UhKC:<%
loss_s := 0 !信号光寄生损耗为0 Y,BzBUWK
}ie O
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 |a9d]^
fA"N5qQI(
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 BfZAK0+*$
calc BUcPMF%\y:
begin to9~l"n.s
global allow all; !声明全局变量 E4;vC ?K{
set_fiber(L_f, No_z_steps, ''); !光纤参数 Y'-@O"pK
add_ring(r_co, N_Tm); 4WCWu}
def_ionsystem(); !光谱数据函数 \fC)]QZ
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 ,:6gp3
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 #dyz
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 eS(hLXE!7
set_R(signal_fw, 1, R_oc); !设置反射率函数 m? 3!
finish_fiber(); S,ZlS<Z#
end; 4lrF{S8
L#U-dzy\
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 Gy}WZ9{
show "Outputpowers:" !输出字符串Output powers: -u)f@e
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) )[S~W 35
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) sBUK v(U)
\dvzL(,
dH]0(aJ
; ------------- U\OfB'Dn
diagram 1: !输出图表1 z+3GzDLy
r~f*aD
"Powers vs.Position" !图表名称 l Tpn/
MnToL@
x: 0, L_f !命令x: 定义x坐标范围 2@7f^be
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 =NJ:%kvF
y: 0, 15 !命令y: 定义y坐标范围 kyV!ATL1F
y2: 0, 100 !命令y2: 定义第二个y坐标范围 ?\Fo|__
frame !frame改变坐标系的设置 n^}M*#
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) 117`=9F
hx !平行于x方向网格 ~x67v+I
hy !平行于y方向网格 wXUP%i]i=
WFHS8SI
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 >~%!#,C(|U
color = red, !图形颜色 \iN3/J4
width = 3, !width线条宽度 ad
<z+a
"pump" !相应的文本字符串标签 8ckcTNPu
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 ,orq*Wd
color = blue, {B;<R1
width = 3, [\i0@
"fw signal" @:2<cn`
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 d}d1]@Y\
color = blue, .kbo]P
style = fdashed, R0yPmh,{
width = 3, *\gS 2[S
"bw signal" k[_)5@2
`vbd7i
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 sY|by\-c
yscale = 2, !第二个y轴的缩放比例 ajr);xd
color = magenta, #.Q3}[M
width = 3, u/s,#
style = fdashed, `5SLo=~
"n2 (%, right scale)" ,=Q;@Z4 vJ
.(
)rby
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 mZ%"""X\Ei
yscale = 2, %R?B=W7;Q
color = red, x6n( BMr
width = 3, !UzMuGj
style = fdashed, QaVxP1V#U
"n3 (%, right scale)" ]t2zwHo#
]TE(:]o7V
c@|!0
U%j
; ------------- M53{e;.kN
diagram 2: !输出图表2 N~=,RPjq
N<d0C
"Variation ofthe Pump Power" 1\t# *N
b-/8R|Mem
x: 0, 10 X=1Po |
"pump inputpower (W)", @x {zckY
y: 0, 10 H$@5\pP>
y2: 0, 100 7%MD0qm-
frame 9~rrN60Q
hx wI0NotC
hy pqT+lai)#
legpos 150, 150 yG v7^d
fen~k#|l
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 6@rebe!&=
step = 5, DqH?:`G
color = blue, s^&Oh*SP*
width = 3, l* ap$1'
"signal output power (W, leftscale)", !相应的文本字符串标签 tz^2?wO
finish set_P_in(pump, P_pump_in) nO\c4#ce
<<SUIY@X
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 $~;h}I
yscale = 2, NMy+=GZu^
step = 5, xj!G9x<!
color = magenta, uY_vX\;67z
width = 3, M+|J;caX
"population of level 2 (%, rightscale)", Nn/f*GDvK
finish set_P_in(pump, P_pump_in) yIq.
m=
.#OD=wkN0
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 m)1+D"z
yscale = 2, j@o
\d%.'!
step = 5, :>q*#vlb
color = red, 8mc0(Z@
width = 3, W"meH~[Cp
"population of level 3 (%, rightscale)", 5R%4fzr&g
finish set_P_in(pump, P_pump_in) #Fwf]{J
H6oU Ne
NZQl#ZJH:
; ------------- L,/(^0;
diagram 3: !输出图表3 ,_iR
! N!A%
"Variation ofthe Fiber Length" l ~C=yP(~
O;6am++M@
x: 0.1, 5 3UNmUDl[~
"fiber length(m)", @x /QW-#K|S&
y: 0, 10 \i.Yhl:O
"opticalpowers (W)", @y ?= RC?K
frame nYb{?{_ca8
hx q(XO_1W0V
hy X+%5q =N
JFOXrRR=d
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 bm\Zp
step = 20, sQ
aP:@
color = blue, pIhy3@bY
width = 3, S)\Yc=~h
"signal output" .QLjaEja
j&|>Aa${
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 Q~-M B]'
step = 20, color = red, width = 3,"residual pump" ^V?W'~
^ fqco9^;
! set_L(L_f) {restore the original fiber length } 2'-!9!C
5<77o|
JBMJR
; ------------- }{S pV
diagram 4: !输出图表4 nsjrzO79L8
Y7GHIzX
"TransverseProfiles" 9k*1_
6!A+$"
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) %4I13|<A`
tg"NWp6
x: 0, 1.4 * r_co /um ZQN%!2
"radialposition (µm)", @x P/Zp3O H
y: 0, 1.2 * I_max *cm^2 py%_XL=w,
"intensity (W/ cm²)", @y Z` zyEP A
y2: 0, 1.3 * N_Tm %|o2d&i
frame vD91t/_+
hx iZ;y(
hy Hq!|(
@w
@SOzS)
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 f2,\B6+
yscale = 2, (!:+q$#BK
color = gray, I%'6IpR"d
width = 3, h7
c
maxconnect = 1, 'nP;IuMP
"N_dop (right scale)" #7BX,jvn>
bo_Tp~j
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 Q$:>yveR*
color = red, M|9=B<6`7
maxconnect = 1, !限制图形区域高度,修正为100%的高度 vcz?;lg
width = 3, D"ecwx{%;C
"pump" ?>T (
m-AW}1:\f
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 )o N#%%SB<
color = blue, @lu`oyM
maxconnect = 1, LG:Mksd8=4
width = 3, MzpDvnI9
"signal" ?:c:D5N
3c[< #]8S
Tq,xW
; ------------- x2$Y"b?vz
diagram 5: !输出图表5 m5kt
O^EU
5169E*
"TransitionCross-sections" b6ui&Y8z
~(Xzm
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) Wo,"$Z6B
h%+6y
x: 1450, 2050 353*D%8
"wavelength(nm)", @x ^w+)A;?W
y: 0, 0.6 R|JBzdK+P
"cross-sections(1e-24 m²)", @y [e?vqm .
frame +H6cZ,
hx n"|1A..^
hy i564<1`x
rw%1>]os
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 w)Wg 8
color = red, ^M7pCetjdW
width = 3, &!0%"4
"absorption" ~ "stI
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 p$!Q?&AV/
color = blue, 8%#pv}
width = 3, V2/?1
"emission" x/,(G~
!6pE0(V^+4