(* q\a[S*
Demo for program"RP Fiber Power": thulium-doped fiber laser, sT)6nV
pumped at 790 nm. Across-relaxation process allows for efficient }ppVR$7]0
population of theupper laser level.
}c}
( 5
*) !(* *)注释语句 /@Ez" ?V2
-g:lOht
diagram shown: 1,2,3,4,5 !指定输出图表 3@&bxYXm
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 >B0D/:R9
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 w|=gSC-o
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 {]=v]O|,
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 $Z/klSEf
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 mKV'jm0
XdcG0D^
include"Units.inc" !读取“Units.inc”文件中内容 K>kLUcC7Z
fCB:733H
include"Tm-silicate.inc" !读取光谱数据 8)sg_JC
C*7!dW6
; Basic fiberparameters: !定义基本光纤参数 p"KU7-BfvC
L_f := 4 { fiberlength } !光纤长度 nB=0T`vQ
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 )7W6-.d
r_co := 6 um { coreradius } !纤芯半径 #Rc5c+/(
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 )%s +?
)!cI|tovs
; Parameters of thechannels: !定义光信道 =HMmrmz:
l_p := 790 nm {pump wavelength } !泵浦光波长790nm Xem 05%,
dir_p := forward {pump direction (forward or backward) } !前向泵浦 F+Z2U/'a
P_pump_in := 5 {input pump power } !输入泵浦功率5W N<(HPE};
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um kBbl+1{H
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 .!i0_Rv5x
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 Yj3 P 7k$c
co/7l sW
l_s := 1940 nm {signal wavelength } !信号光波长1940nm 4b4QbJ$
w_s := 7 um !信号光的半径 rR]-RX(
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 k^^:;OR
loss_s := 0 !信号光寄生损耗为0 AliRpxxd
^/*KNnAWp
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 k5@d! }#c
>dk9f}7-
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 /&h+t^l_Qj
calc S8%n .<OB
begin hq?jdNy
:
global allow all; !声明全局变量 ~s#e,Kav"
set_fiber(L_f, No_z_steps, ''); !光纤参数 vBNZ<L\|a
add_ring(r_co, N_Tm); NhA#bn9y?
def_ionsystem(); !光谱数据函数 Q2eXK[?*
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 )r9b:c\
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 w>qCg XU3
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道
: tM?%=Q
set_R(signal_fw, 1, R_oc); !设置反射率函数 H?uukmZl
finish_fiber(); ANMYX18M
end; Gy!P,a)z
jJ~Y]dQi
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 3sFeP&
show "Outputpowers:" !输出字符串Output powers: $}R$t-
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) ,)h)5o(?
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) C c*({
~Fw<eY
pUCK-rL
; ------------- iCTQ]H3
diagram 1: !输出图表1 MdC<4^|
xhw-2dl*H
"Powers vs.Position" !图表名称 cS|VJWgTZ
,+._;[k
x: 0, L_f !命令x: 定义x坐标范围 EvE,Dm?h
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 s-k_d<
y: 0, 15 !命令y: 定义y坐标范围 frN3S
y2: 0, 100 !命令y2: 定义第二个y坐标范围 X
\f[
frame !frame改变坐标系的设置 %y"J8;U
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) @Z;1 g
hx !平行于x方向网格 nxaT.uFd1
hy !平行于y方向网格 Bf]$X>d
+;q.Y?
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 >qR~'$,$
color = red, !图形颜色 g:<?
width = 3, !width线条宽度 \t3qS
eWc/
"pump" !相应的文本字符串标签 J!h^egP
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 KrKu7]If6#
color = blue, }B q^3?,#{
width = 3, Yv)aAWEa
"fw signal" H"CUZ
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 *8)2iv4[
color = blue, 4/*H.Fl
style = fdashed, E'c%d[:H,
width = 3, {8@\Ij
"bw signal" G>
\Tbx
)%Ru#}1X6
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 4tXSYHd3
yscale = 2, !第二个y轴的缩放比例 lKKERO5+
color = magenta, |}[nH>
width = 3, EO)%UrWnC
style = fdashed, "Xn%at4
"n2 (%, right scale)" R1ktj
(~s|=Hxq|-
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 $h28(K%
yscale = 2, 5j^NV&/_
color = red, 2~c~{ jl\
width = 3, O~@fXMthh
style = fdashed, NY.k.
"n3 (%, right scale)" c
~Fdx
N[U9d}Zv
nWWM2v
; ------------- D59T?B|BdD
diagram 2: !输出图表2 ^Jx$t/t
Ec]|p6a3
"Variation ofthe Pump Power" cA;js;x@
"5!BU&
x: 0, 10 HIf{Z* mb
"pump inputpower (W)", @x Q\kub_I{@
y: 0, 10 :&VcB$
y2: 0, 100 nr2r8u9r
frame @Doyt{|T
hx Z=+03
hy ii4B?E
legpos 150, 150 IA*KaX2S<
?o[L7JI
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 MZv\ C
step = 5, S~F`
color = blue, p!W[X%`)
width = 3, )\ 0F7Z
"signal output power (W, leftscale)", !相应的文本字符串标签 9dKul,c
finish set_P_in(pump, P_pump_in) ,&]MOe4@>
SR7j\1a/2A
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响
Xm_$
dZ
yscale = 2, v[S-Pi1
step = 5, 61K"(r~
color = magenta, l]#!+@
width = 3, ?m"|QS!!K
"population of level 2 (%, rightscale)", 'Bq ZOZw
finish set_P_in(pump, P_pump_in) wu~hqd
wH6u5*$p
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 k%Vv?{g
yscale = 2, raB+,Oi$G
step = 5, 3$p#;a:=n
color = red, (ku5WWJ
width = 3, ,x_Z JL
"population of level 3 (%, rightscale)", eD;6okdP
finish set_P_in(pump, P_pump_in) ' UMFS
ZX.TqvK/r
BWq/TG=>
; ------------- FY#!N
L
diagram 3: !输出图表3 $Ua56Y
=Hu0v}i/
"Variation ofthe Fiber Length" BBL485`
3 <SqoJSp
x: 0.1, 5 H{`{)mS
"fiber length(m)", @x RA/EpD:H
y: 0, 10 5cfA;(H
"opticalpowers (W)", @y sic$uT
frame 5nLDj:C~
hx
6rDfQ`f\p
hy 2WCLS{@'
e<=;i" |
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 <,8l *1C
step = 20, >Hwc,j
q
color = blue, \8b6\qF/\
width = 3, lAASV{s{
"signal output" 'jaoO9KY
K
Ex(3D[WmMW
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 ;Ss$2V'a
step = 20, color = red, width = 3,"residual pump" jX
*/piSq
;4~U,+Av
! set_L(L_f) {restore the original fiber length } nkY@_N
;+_8&wbqW
3fkk
[U
; ------------- PEXq:TA
diagram 4: !输出图表4 SN">gmY+
8b&uU [
"TransverseProfiles" l I-p_K
#$ 1$T
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) ecHP
&Z$
=!.mGW-Q}
x: 0, 1.4 * r_co /um g1[&c+=U`P
"radialposition (µm)", @x BGWAh2w6
y: 0, 1.2 * I_max *cm^2 ;st\I
"intensity (W/ cm²)", @y $&{IKP)u
y2: 0, 1.3 * N_Tm 9O98Q6-s
frame wyY*:{lZ
hx x0+glQrNN
hy \U @3`
%u!XzdG
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 ]H[8Z|i""
yscale = 2, *Xr$/N
color = gray, E`D%PEps+
width = 3, a39h P*
maxconnect = 1, ?p^2Z6J'$
"N_dop (right scale)" FjKq%.=#
_m'ysCjA
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 ;A#~`P
color = red, ujzW|HW^v
maxconnect = 1, !限制图形区域高度,修正为100%的高度 1/iE`Si
width = 3, bXdY\&fE
"pump" m4/er539T
T@48 qg
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 SI-X[xf
color = blue, ?d-70pm
maxconnect = 1, "yh Pm
width = 3, FC>d_=V
"signal" j6>tH"i
A WJWtUa
@.$MzPQQI
; ------------- x>3@R0A1:
diagram 5: !输出图表5 5K.+CO<
;VzMU ;j
"TransitionCross-sections" r0\f;q
C1B'#F9EO
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) Mq\~`8V
%a8&W
x: 1450, 2050 r6Nm!Bq7
"wavelength(nm)", @x s>[{}7ca
y: 0, 0.6 C{m&}g`
"cross-sections(1e-24 m²)", @y la,
h
frame fI:H8
hx b X,Siz:F
hy N}QFGX
O|z%DkH[
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 x)viY5vjH
color = red, =ApY9`
width = 3, `,#!C`E 9
"absorption" +{-]P\oc
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 ExrY>*v
color = blue, 4rp6 C/i
width = 3, ^.HWkS`e
"emission" X"/~4\tJ"
;z>p8N