(* \M(#FS
Demo for program"RP Fiber Power": thulium-doped fiber laser, zNg8Oq&
pumped at 790 nm. Across-relaxation process allows for efficient V'n4iM
population of theupper laser level. L`"B;a&
*) !(* *)注释语句 %N.qu_,IZ
-%I 0Q
diagram shown: 1,2,3,4,5 !指定输出图表 tZ4Zj`x|^
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 (>.+tq}
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 JY6&CL`C
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 s}m.r5
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 j=>:{`*c
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 zI$24L9*
@-d0~.S
include"Units.inc" !读取“Units.inc”文件中内容 7|vB\[s
)wFr%wNe
include"Tm-silicate.inc" !读取光谱数据 9pY`_lxa>
;_]Z3
; Basic fiberparameters: !定义基本光纤参数 P%%[_6<%M
L_f := 4 { fiberlength } !光纤长度 A~Uqw8n$\
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 )cF1?2
r_co := 6 um { coreradius } !纤芯半径 Wu:@+~J.h
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 m`3Mev
.WeP]dX%:f
; Parameters of thechannels: !定义光信道 Zcq4?-&
l_p := 790 nm {pump wavelength } !泵浦光波长790nm v8PH(d2{@
dir_p := forward {pump direction (forward or backward) } !前向泵浦 0qdgt
P_pump_in := 5 {input pump power } !输入泵浦功率5W Td|x~mZv:
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um yEvuTgDv
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 W{JNNf6G
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 u=mJI*
+|SvJ
l_s := 1940 nm {signal wavelength } !信号光波长1940nm Hf^Tok^6@]
w_s := 7 um !信号光的半径 }3rWmo8V
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 d7O\p(M1
loss_s := 0 !信号光寄生损耗为0 Wd0$t
HJV8P2f8`
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 #c2InwZV
GiF})e}
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 Dq~PxcnI
calc K9BoIHo
begin s</llJ$
global allow all; !声明全局变量 A\6Q*VhK
set_fiber(L_f, No_z_steps, ''); !光纤参数 'yq'J)
add_ring(r_co, N_Tm); tG{?
def_ionsystem(); !光谱数据函数 &;V3[
*W"
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 %s#`i$|z*n
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 C}~/(;1V=
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 e 1k\:]6
set_R(signal_fw, 1, R_oc); !设置反射率函数 2k^dxk~$V;
finish_fiber(); _:tclBc8R
end; HOb-q|w
j5cc"s
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 N,><,7!q$,
show "Outputpowers:" !输出字符串Output powers: I8<s4q
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W)
W1@Q)i
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) #=MQE
`Al[gG?/!
0H V-e
; ------------- /&+6nOP
diagram 1: !输出图表1 !Qg%d&q.Sx
>v+ia%o
"Powers vs.Position" !图表名称 9t$%Tc#Z
.%@=,+nqz
x: 0, L_f !命令x: 定义x坐标范围 z~g7O4#
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 LX
%8a^?;
y: 0, 15 !命令y: 定义y坐标范围 jaoGm$o>"F
y2: 0, 100 !命令y2: 定义第二个y坐标范围 kRk=8^."By
frame !frame改变坐标系的设置 \I\'c.$I.Y
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) Q&rf&8iH
hx !平行于x方向网格 !6wbg
hy !平行于y方向网格 OGy/8B2c
F7(~v2|
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 ;'Pi(TA)
color = red, !图形颜色 ]Mh7;&<6[
width = 3, !width线条宽度 ]c8$%
"pump" !相应的文本字符串标签 jH*+\:UP-
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 u&=SZX&G k
color = blue, 6]|NB &
width = 3, EO|r
"fw signal" !d1}IU-h
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 r: _-Cj
color = blue, N_vVEIO9
style = fdashed, 6,Q{/
width = 3, n7vLw7
"bw signal" X;5U@l
t9&z|?Vz
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 zXB]Bf3TH
yscale = 2, !第二个y轴的缩放比例 ,EgIH%*g
color = magenta, i\S } aCm
width = 3, 5L<}u`0J
style = fdashed, X$O,L[] 4
"n2 (%, right scale)" hfY
Ieb#91
XR^VRn6O
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 /$hfd?L
yscale = 2, %J`;
color = red, ~6'6v8
width = 3, ~'WvIA
(
style = fdashed, KJa?TwnC
"n3 (%, right scale)" 1K'0ajl1A
=+{.I,g}g@
%r5&CUE5?
; ------------- `4cs.ab
diagram 2: !输出图表2 {uO8VL5+Qx
O0xL;@rBe
"Variation ofthe Pump Power" 'f`~"@
?lb1K'(
x: 0, 10 L%a ni}V
"pump inputpower (W)", @x ->}K- n ),
y: 0, 10 6|#^4D)
y2: 0, 100 `n:IXD5'
frame V/+r"le
hx (Jfi 3 m
hy r0kA47
legpos 150, 150 |xH"Xvp:
?B %y)K
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 tc@U_>{
step = 5, zQ
{g~x
color = blue, XJ]MPiXj
width = 3, hQBeM7$F_
"signal output power (W, leftscale)", !相应的文本字符串标签 ? 9i7+Y"
finish set_P_in(pump, P_pump_in) 2 c'=^0:
uw+v]y
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 n?pCMS|
yscale = 2, }i/&m&VU
step = 5, 0+8ThZ?n
color = magenta, Ts;W,pgP
width = 3, t1B0M4x9
"population of level 2 (%, rightscale)", d\, 4Wet;#
finish set_P_in(pump, P_pump_in) O6;>]/`
bm1ngI1oI
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 P58U8MEG
yscale = 2, aQN`C{nY
step = 5, )QTk5zt
color = red, ckt^D/c2
width = 3, 9Pd~
"population of level 3 (%, rightscale)", mo#4jtCE
finish set_P_in(pump, P_pump_in) P1
(8foZA
OP2!lEs
&tD`~
; ------------- *@G4i
diagram 3: !输出图表3 `+B+RQl}[
g$dL5N7
"Variation ofthe Fiber Length" l4F4o6:]n
X>%2\S
x: 0.1, 5 ; Z61|@Y
"fiber length(m)", @x \9se~tAl3
y: 0, 10 Lj(hk@
"opticalpowers (W)", @y :c)<B@NqNo
frame 8t}=?:B+{
hx NfR, m]
hy Di *+Cz;gK
y%TR2CvT
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 <$Uj
~jN
step = 20, ]vQo^nOo
color = blue, UXQ{J5Ox+
width = 3, V.Xz
n
"signal output" wc bs-arH
Z
mi<Z
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 (:+IS
W
step = 20, color = red, width = 3,"residual pump" _5
tw1 >
-ZQ3^'f:0J
! set_L(L_f) {restore the original fiber length } K!I]/0L
^#3$C?d
4N$svA
; ------------- tO[+O=d
diagram 4: !输出图表4 ).oqlA!
Rdt8jY6F/
"TransverseProfiles" Q(]-\L'
9d[0i#` :q
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) 1LPfn(
0M8JE9 Kx
x: 0, 1.4 * r_co /um f!LZT! y
"radialposition (µm)", @x wmo'Pl
y: 0, 1.2 * I_max *cm^2 ~BS*x+M
"intensity (W/ cm²)", @y { tR=D_5
y2: 0, 1.3 * N_Tm :-"J)^V
frame mnmwO(.
hx y\0^c5}
hy %m+MEh"b5
R@VO3zs W
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 (sqS(xIY
yscale = 2, ['s_qCA[
color = gray, o=`9JKB~
width = 3, VpVw:Rh>
maxconnect = 1, /0o 2
"N_dop (right scale)" _L$)~},cT
6J|f^W-fs
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 uqQMS&;+,|
color = red, ^w&TTo(
maxconnect = 1, !限制图形区域高度,修正为100%的高度 (ZEVbAY?i
width = 3, !zJ.rYZ=g`
"pump" M;iaNL(
3@"VS_;?
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 )<^ ~${$U
color = blue, t9`NCng
5
maxconnect = 1, ~36c0 =
width = 3, +'n1?^U
"signal" \pzvoj7{
ycE<7W
1|.
0]~0
; ------------- 6wu/6DO
diagram 5: !输出图表5 aSF&^/j
=~0XdS/1
"TransitionCross-sections" Y4714
njq-iU
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) sQ)4kF&,
=OHDp7GXO>
x: 1450, 2050 ix#
"wavelength(nm)", @x F
5JgR-P
y: 0, 0.6 kW:!$MX!
"cross-sections(1e-24 m²)", @y }jk^M|Z"Oz
frame 4xYo2X,B
hx zp9 ?Ia
hy `nM4kt7
hqds T
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 3+$O#>
color = red, 8n:D#`K
width = 3, (gmB$pwS
"absorption" mPD'"
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 r9t{/})A
color = blue, W
,U'hk%
width = 3, K5ph x
"emission" N-Z 9
jF5JpyOc