切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 2537阅读
    • 1回复

    [原创]RP Fiber Power仿真设计掺铥光纤激光器代码详解 [复制链接]

    上一主题 下一主题
    离线小火龙果
     
    发帖
    932
    光币
    2176
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-05-28
    (* q\a[S*  
    Demo for program"RP Fiber Power": thulium-doped fiber laser, sT)6nV  
    pumped at 790 nm. Across-relaxation process allows for efficient }ppVR$7]0  
    population of theupper laser level. }c} ( 5  
    *)            !(*  *)注释语句 /@Ez" ?V2  
    -g:lOht  
    diagram shown: 1,2,3,4,5  !指定输出图表 3@&bxYXm  
    ; 1: "Powersvs. Position"     !分号是注释;光纤长度对功率的影响 >B0D/:R9  
    ; 2:"Variation of the Pump Power"  !泵浦光功率变化对信号输出功率的影响 w|=gSC-o  
    ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 {]=v]O |,  
    ; 4:"Transverse Profiles"             !横向分布,横坐标为半径位置 $Z/klSEf  
    ; 5:"Transition Cross-sections"    !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 mKV'jm0  
    XdcG0D^  
    include"Units.inc"         !读取“Units.inc”文件中内容 K>kLUcC7Z  
    fCB:733H  
    include"Tm-silicate.inc"    !读取光谱数据 8)sg_JC  
    C*7!dW6  
    ; Basic fiberparameters:    !定义基本光纤参数 p"KU7-BfvC  
    L_f := 4 { fiberlength }      !光纤长度 nB=0T`vQ  
    No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 )7W6-.d  
    r_co := 6 um { coreradius }                !纤芯半径 #Rc5c+/(  
    N_Tm := 100e24 { Tmdoping concentration }  !纤芯Tm离子掺杂浓度 )%s +?  
    )!cI|tovs  
    ; Parameters of thechannels:                !定义光信道 =HMmrmz:  
    l_p := 790 nm {pump wavelength }                !泵浦光波长790nm Xem 05%,  
    dir_p := forward {pump direction (forward or backward) }   !前向泵浦 F+Z2U/'a  
    P_pump_in := 5 {input pump power }                    !输入泵浦功率5W N<(HPE};  
    w_p := 50 um {radius of pump cladding }               !包层泵浦相应的半径 50um kBbl+1{H  
    I_p(r) := (r <=w_p) { pump intensity profile }          !泵浦光强度分布 .!i0_Rv5x  
    loss_p := 0 {parasitic losses of pump wave }           !泵浦光寄生损耗为0 Yj3P 7k$c  
    co/7lsW  
    l_s := 1940 nm {signal wavelength }                   !信号光波长1940nm 4b4QbJ$  
    w_s := 7 um                          !信号光的半径 rR]-RX(  
    I_s(r) := exp(-2 *(r / w_s)^2)            !信号光的高斯强度分布 k^^:;OR  
    loss_s := 0                            !信号光寄生损耗为0 AliRpxxd  
    ^/*KNnAWp  
    R_oc := 0.70 {output coupler reflectivity (right side) }      !输出耦合反射率 k5@d! }#c  
    >dk 9f}7-  
    ; Function for defining themodel:   !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 /&h+t^l_Qj  
    calc S8%n.<OB  
      begin hq?jdNy :  
        global allow all;                   !声明全局变量 ~s#e,Kav"  
        set_fiber(L_f, No_z_steps, '');        !光纤参数 vBNZ<L\|a  
        add_ring(r_co, N_Tm); NhA#bn9y?  
        def_ionsystem();              !光谱数据函数 Q2eXK[?*  
        pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p);  !泵浦光信道 ) r9b:c\  
        signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward);      !前向信号光信道 w>qCg XU3  
        signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward);    !后向信号光信道 :tM?%=Q  
        set_R(signal_fw, 1, R_oc);                                 !设置反射率函数 H?uukmZl  
        finish_fiber();                                   ANMYX18M  
      end; Gy!P,a)z  
    jJ~Y]dQi  
    ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 3sFeP &  
    show "Outputpowers:"                                   !输出字符串Output powers: $}R$t-  
    show"pump:     ", P_out(pump):d3:"W"  !输出字符串pump:和计算值(格式为3个有效数字,单位W) ,)h)5o(?  
    show"signal:   ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) C c*( {  
    ~F w<eY  
    pUCK-rL  
    ; ------------- iCTQ]H3  
    diagram 1:                   !输出图表1 MdC<4^|  
    xhw-2dl*H  
    "Powers vs.Position"          !图表名称 cS|VJWgTZ  
    ,+._;[k  
    x: 0, L_f                      !命令x: 定义x坐标范围 EvE,Dm?h  
    "position infiber (m)", @x      !x轴标签;@x 指示这些字符串沿坐标轴放置 s-k_d<  
    y: 0, 15                      !命令y: 定义y坐标范围 frN3S  
    y2: 0, 100                    !命令y2: 定义第二个y坐标范围 X \f[  
    frame          !frame改变坐标系的设置 %y"J8;U  
    legpos 600, 500  !图行在图表窗口中的位置(相对于左上角而言) @Z;1 g  
    hx             !平行于x方向网格 nxaT.uFd1  
    hy              !平行于y方向网格 Bf]$X>d  
    +;q.Y?  
    f: P(pump, x),    !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 >qR~'$,$  
      color = red,  !图形颜色 g:<?  
      width = 3,   !width线条宽度 \t3qS eWc/  
      "pump"       !相应的文本字符串标签 J!h^egP  
    f: P(signal_fw, x),  !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 KrKu7]If6#  
      color = blue,     }B q^3?,#{  
      width = 3, Yv )aAWEa  
      "fw signal" H"CUZ  
    f: P(signal_bw, x),   !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 *8)2iv4[  
      color = blue, 4/*H.Fl  
      style = fdashed, E'c%d[:H,  
      width = 3, {8@\Ij  
      "bw signal" G> \T bx  
    )%Ru#}1X6  
    f: 100 * n(x, 2),    !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 4 tXSYHd3  
      yscale = 2,            !第二个y轴的缩放比例 lKKERO5+  
      color = magenta, |}[nH>  
      width = 3, EO)%UrWnC  
      style = fdashed, "Xn%at4  
      "n2 (%, right scale)" R1ktj  
    (~s|=Hxq|-  
    f: 100 * n(x, 3),          !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 $h28(K%  
      yscale = 2, 5j^NV&/_  
      color = red, 2~c~{ jl\  
      width = 3, O~@fXMthh  
      style = fdashed, NY.k.  
      "n3 (%, right scale)" c ~F dx  
    N[U9d}Zv  
    nWWM2v  
    ; ------------- D59T?B|BdD  
    diagram 2:                    !输出图表2 ^J x$t/t  
    Ec]|p6a3  
    "Variation ofthe Pump Power" cA;js;x@  
    "5!BU&   
    x: 0, 10 HIf{Z* mb  
    "pump inputpower (W)", @x Q\kub_I{@  
    y: 0, 10 :&VcB$  
    y2: 0, 100 nr2r8u9r  
    frame @Doyt{|T  
    hx Z=+03  
    hy ii4B?E  
    legpos 150, 150 IA*KaX2S<  
    ?o[L7JI  
    f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 MZv\ C  
      step = 5, S~F`  
      color = blue, p!W[X%`)  
      width = 3, )\ 0F7Z  
      "signal output power (W, leftscale)",     !相应的文本字符串标签 9dKul,c  
      finish set_P_in(pump, P_pump_in) ,&]MOe4@>  
    SR7j\1a/2A  
    f: (set_P_in(pump,x); 100 * n_av(2)),   !改变泵浦信号功率对能级2上激活粒子占比的影响 Xm_$ dZ  
      yscale = 2, v[S-Pi1  
      step = 5, 61K"(r~  
      color = magenta, l]#!+@  
      width = 3, ?m"|QS!!K  
      "population of level 2 (%, rightscale)", 'BqZOZw  
      finish set_P_in(pump, P_pump_in) wu~hqd  
    wH6u5*$p  
    f: (set_P_in(pump,x); 100 * n_av(3)),   !改变泵浦信号功率对能级3上激活粒子占比的影响 k%Vv?{g  
      yscale = 2, raB+,Oi$G  
      step = 5, 3$p#;a:=n  
      color = red, (ku5WWJ  
      width = 3, ,x_Z JL  
      "population of level 3 (%, rightscale)", eD;6okdP  
      finish set_P_in(pump, P_pump_in) ' UMFS  
    ZX.TqvK/r  
    BWq/TG=>  
    ; ------------- FY#!N L  
    diagram 3:                         !输出图表3 $Ua56Y  
    =Hu0v}i/  
    "Variation ofthe Fiber Length" B BL485`  
    3 <SqoJSp  
    x: 0.1, 5 H{`{)mS  
    "fiber length(m)", @x RA/EpD:H  
    y: 0, 10 5cfA;(H  
    "opticalpowers (W)", @y s ic$uT  
    frame 5nLDj:C~  
    hx 6rDfQ`f\p  
    hy 2WCLS{@'  
    e<=;i" |  
    f: (set_L(x);P_out(signal_fw)),     !改变光纤长度对信号光输出功率的影响 <,8l *1C  
      step = 20,             >Hwc,j q  
      color = blue, \8b6\qF/\  
      width = 3, lAASV{s{  
      "signal output" 'jaoO9KY K  
    Ex(3D[WmMW  
    ;f: (set_L(x);P_out(pump)),                     !改变光纤长度对泵浦信号输出功率的影响 ;Ss$2V'a  
       step = 20, color = red, width = 3,"residual pump" jX */piSq  
    ;4~U,+Av  
    ! set_L(L_f) {restore the original fiber length } nkY@_N  
    ;+_8&wbqW  
    3fkk [U  
    ; ------------- PEXq:TA  
    diagram 4:                                  !输出图表4 SN">gmY+  
    8b&uU [  
    "TransverseProfiles" l I-p_K  
    #$1$T  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) ecHP &Z$  
    =!.m GW-Q}  
    x: 0, 1.4 * r_co /um g1[&c+=U`P  
    "radialposition (µm)", @x BGWAh2w6  
    y: 0, 1.2 * I_max *cm^2 ; st\I  
    "intensity (W/ cm&sup2;)", @y $& {IKP)u  
    y2: 0, 1.3 * N_Tm 9O98Q6-s  
    frame wyY*:{lZ  
    hx x0+glQrNN  
    hy \U@3`  
    %u!XzdG  
    f: N_dop(1, x * um,0),      !掺杂浓度的径向分布 ]H[8Z|i""  
      yscale = 2, *Xr$/N  
      color = gray, E`D%PEps+  
      width = 3, a39hP*  
      maxconnect = 1, ?p^2Z6J'$  
      "N_dop (right scale)" FjKq%.=#  
    _m'ysCjA  
    f: I(pump, -1, x *um, 0) * cm^2,    !泵浦光沿光纤径向的强度分布 ;A#~` P  
      color = red, ujzW|HW^v  
      maxconnect = 1,           !限制图形区域高度,修正为100%的高度 1/iE`Si  
      width = 3, bXdY\&fE  
      "pump" m4/er539T  
    T@ 48qg  
    f: I(signal_fw, -1,x * um, 0) * cm^2,  !信号光沿光纤径向的强度分布 SI-X[xf  
      color = blue, ?d-70pm  
      maxconnect = 1, "yh Pm  
      width = 3, FC>d_=V  
      "signal" j6>tH"i  
    A WJWtUa  
    @.$MzPQQI  
    ; ------------- x>3@R0A 1:  
    diagram 5:                                  !输出图表5 5K.+CO<  
    ;VzMU ;j  
    "TransitionCross-sections" r0\f;q  
    C1B'#F9EO  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) Mq\~`8V  
    %a 8&W  
    x: 1450, 2050 r6Nm!Bq7  
    "wavelength(nm)", @x  s>[{}7ca  
    y: 0, 0.6 C{m&}g`  
    "cross-sections(1e-24 m&sup2;)", @y la, h  
    frame fI:H8  
    hx b X,Siz:F  
    hy N}Q FGX  
    O|z%DkH[  
    f: s12_Tm(x * nm) /1e-24,      !Tm3+吸收截面与波长的关系 x)viY5vjH  
      color = red, =ApY9`  
      width = 3, `,#!C`E 9  
      "absorption" +{-]P\oc  
    f: s21_Tm(x * nm) /1e-24,  !Tm3+发射截面与波长的关系 ExrY>*v  
      color = blue, 4rp6 C/i  
      width = 3, ^.HWkS`e  
      "emission" X"/~4\tJ"  
    ;z>p8N  
     
    分享到
    离线lileisgsz
    发帖
    14
    光币
    69
    光券
    0
    只看该作者 1楼 发表于: 2021-09-28
    感谢,视频上有点看不清楚