切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 2429阅读
    • 1回复

    [原创]RP Fiber Power仿真设计掺铥光纤激光器代码详解 [复制链接]

    上一主题 下一主题
    离线小火龙果
     
    发帖
    932
    光币
    2176
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-05-28
    (* 5ykk11!p$  
    Demo for program"RP Fiber Power": thulium-doped fiber laser, vs'L1$L'c  
    pumped at 790 nm. Across-relaxation process allows for efficient s5zGg]0  
    population of theupper laser level. (8@h F#N1  
    *)            !(*  *)注释语句 {g!exbVf  
    }]39 iK`w  
    diagram shown: 1,2,3,4,5  !指定输出图表 :~0^ib<v;  
    ; 1: "Powersvs. Position"     !分号是注释;光纤长度对功率的影响 "j.oR}s9?#  
    ; 2:"Variation of the Pump Power"  !泵浦光功率变化对信号输出功率的影响 A&}nRP9  
    ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 Sf4h!ly  
    ; 4:"Transverse Profiles"             !横向分布,横坐标为半径位置 {-v\&w  
    ; 5:"Transition Cross-sections"    !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 vS J<  
    -u3SsU)_%N  
    include"Units.inc"         !读取“Units.inc”文件中内容 LjH&f 4mY  
    @8Q+=abz  
    include"Tm-silicate.inc"    !读取光谱数据 *OGXu07 !  
    T^(n+lv  
    ; Basic fiberparameters:    !定义基本光纤参数 y_7XYT!w  
    L_f := 4 { fiberlength }      !光纤长度 %<ptkZK#  
    No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 } ^GV(]K  
    r_co := 6 um { coreradius }                !纤芯半径 TgQ|T57  
    N_Tm := 100e24 { Tmdoping concentration }  !纤芯Tm离子掺杂浓度 ?%za:{  
    Z:B Y*#B  
    ; Parameters of thechannels:                !定义光信道 xo)?XFM2  
    l_p := 790 nm {pump wavelength }                !泵浦光波长790nm 6(<~1{ X%  
    dir_p := forward {pump direction (forward or backward) }   !前向泵浦 wsb=[$C  
    P_pump_in := 5 {input pump power }                    !输入泵浦功率5W Lm*LJ_+ B  
    w_p := 50 um {radius of pump cladding }               !包层泵浦相应的半径 50um "-j@GCme  
    I_p(r) := (r <=w_p) { pump intensity profile }          !泵浦光强度分布 xeP;"J}  
    loss_p := 0 {parasitic losses of pump wave }           !泵浦光寄生损耗为0 N5w]2xz!  
    uZ2v;]\Y6  
    l_s := 1940 nm {signal wavelength }                   !信号光波长1940nm &;@b&p+  
    w_s := 7 um                          !信号光的半径 J,^pt Ql  
    I_s(r) := exp(-2 *(r / w_s)^2)            !信号光的高斯强度分布 \")YKN=W  
    loss_s := 0                            !信号光寄生损耗为0 e/HX,sf_g  
    /P8eI3R  
    R_oc := 0.70 {output coupler reflectivity (right side) }      !输出耦合反射率 [[66[;  
    !7Nz W7j  
    ; Function for defining themodel:   !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 Dpp52UnT E  
    calc |Qt`p@W  
      begin "za*$DU  
        global allow all;                   !声明全局变量 _"w!KNX>(~  
        set_fiber(L_f, No_z_steps, '');        !光纤参数 l&^[cR  
        add_ring(r_co, N_Tm); [>Kxm  
        def_ionsystem();              !光谱数据函数 o%~K4 M".  
        pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p);  !泵浦光信道 JmJ,~_  
        signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward);      !前向信号光信道 (krG0S:0Q  
        signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward);    !后向信号光信道 #:\+7mCF  
        set_R(signal_fw, 1, R_oc);                                 !设置反射率函数 H;7H6fyZ  
        finish_fiber();                                   ZV<y=F*~f  
      end; CQuvbAo  
    -_4jJxh=OB  
    ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 85@6uBh  
    show "Outputpowers:"                                   !输出字符串Output powers: E?q'|f  
    show"pump:     ", P_out(pump):d3:"W"  !输出字符串pump:和计算值(格式为3个有效数字,单位W) X"khuyT_  
    show"signal:   ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) 1\608~ZH  
    _]r)6RT  
    +!V%Q  
    ; ------------- {u=\-|t  
    diagram 1:                   !输出图表1 $5"-s]  
    g-V\ s&}  
    "Powers vs.Position"          !图表名称 R?9Plzt5  
    K?OX  
    x: 0, L_f                      !命令x: 定义x坐标范围 1yRd10  
    "position infiber (m)", @x      !x轴标签;@x 指示这些字符串沿坐标轴放置 ^nm!NL{z^  
    y: 0, 15                      !命令y: 定义y坐标范围 Z%n.:I<%ZV  
    y2: 0, 100                    !命令y2: 定义第二个y坐标范围 l<K.!z<-:8  
    frame          !frame改变坐标系的设置 k&"qdB(I  
    legpos 600, 500  !图行在图表窗口中的位置(相对于左上角而言) <ZvPtW  
    hx             !平行于x方向网格 u/:Sf*;?  
    hy              !平行于y方向网格 gMK3o8B/  
    z?_}+  
    f: P(pump, x),    !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 w>q_8V_K  
      color = red,  !图形颜色 4!s k3Cw{  
      width = 3,   !width线条宽度 Sl<-)a:  
      "pump"       !相应的文本字符串标签 &fy8,}  
    f: P(signal_fw, x),  !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 vls> 6h  
      color = blue,     0JRB Nh  
      width = 3, 6=lQT 9u{  
      "fw signal" | v'5*n9  
    f: P(signal_bw, x),   !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 \w_[tPz}  
      color = blue, eD1MP<>h  
      style = fdashed, z4fK{S  
      width = 3, ?d#(ian  
      "bw signal" <fxjj  
    .p0n\ $r  
    f: 100 * n(x, 2),    !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 [[DFEvOEh  
      yscale = 2,            !第二个y轴的缩放比例 yrYaKh  
      color = magenta, L8K3&[l%  
      width = 3, !skWe~/  
      style = fdashed, Sm_:SF!<D6  
      "n2 (%, right scale)" i@j ?<  
    E|uXi)!.x  
    f: 100 * n(x, 3),          !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 b`Ek;nYek  
      yscale = 2, >)Z2bCe  
      color = red, O xaua  
      width = 3, N)y;owgo  
      style = fdashed, 44{:UhJkx  
      "n3 (%, right scale)" vlyNQ7"%  
    cCKda3v!O  
    <4HuV.K  
    ; ------------- G8-d%O p  
    diagram 2:                    !输出图表2 daJ-H  
    m/B9)JzY  
    "Variation ofthe Pump Power" ';!UJWYl  
    J 2~B<=V  
    x: 0, 10 IX3 yNTW"L  
    "pump inputpower (W)", @x %a^!~qV  
    y: 0, 10 Z$K%@q,10+  
    y2: 0, 100 ;ypO'  
    frame W&[9x%Ba  
    hx c+XR  
    hy 2qR@: ^  
    legpos 150, 150 H$iMP.AK  
    J@{ Bv%  
    f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 BU\NBvX$  
      step = 5, U]&%EqLS  
      color = blue, F+^[8zK^  
      width = 3, $4) g uG)  
      "signal output power (W, leftscale)",     !相应的文本字符串标签 8k% :w0H  
      finish set_P_in(pump, P_pump_in) V0B4<TTAo~  
    4[j) $!l`  
    f: (set_P_in(pump,x); 100 * n_av(2)),   !改变泵浦信号功率对能级2上激活粒子占比的影响 gz:c_HJ  
      yscale = 2, )p](*Z^  
      step = 5,  0d)n} fm  
      color = magenta, Y mSaIf  
      width = 3, iU|C<A%Hh  
      "population of level 2 (%, rightscale)", ~%q e,  
      finish set_P_in(pump, P_pump_in) u-cC}DP  
    kQcQi}e  
    f: (set_P_in(pump,x); 100 * n_av(3)),   !改变泵浦信号功率对能级3上激活粒子占比的影响 2a}_|#*  
      yscale = 2, .SFwjriZ  
      step = 5, 8u23@?  
      color = red, :{imRa-  
      width = 3, >CA1Ub&ls  
      "population of level 3 (%, rightscale)", 2)H|/  
      finish set_P_in(pump, P_pump_in) } trMQ  
    |LhuZ_;1xo  
    7] H4E.(l  
    ; ------------- L>*|T[~  
    diagram 3:                         !输出图表3 <7h'MNf&  
    lTNkmQ  
    "Variation ofthe Fiber Length" Cr"hu;  
    #wcoLCjs)  
    x: 0.1, 5 z(` kWF1<  
    "fiber length(m)", @x E_#&L({|@  
    y: 0, 10 ]z$<6+G  
    "opticalpowers (W)", @y 6 >2! kM7  
    frame x6]?}Q>>D  
    hx ENr&k(>0HQ  
    hy f:>jH+o.S  
    Il[WXt<S  
    f: (set_L(x);P_out(signal_fw)),     !改变光纤长度对信号光输出功率的影响 ^B>6 !  
      step = 20,             gne c#j  
      color = blue, r,\(Y@I  
      width = 3, AUd}) UR  
      "signal output" o! N@W  
    MsiSC  
    ;f: (set_L(x);P_out(pump)),                     !改变光纤长度对泵浦信号输出功率的影响 (["u"m%  
       step = 20, color = red, width = 3,"residual pump" :\XD.n-n  
    l K%Hb=  
    ! set_L(L_f) {restore the original fiber length } 3H2'HO  
    l,3tU|V  
    23m+"4t  
    ; ------------- iWEYSi\)n  
    diagram 4:                                  !输出图表4 k3w#^ "i  
    G{9y`;  
    "TransverseProfiles" f&J*(F*u  
    < XU]%}o  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) bzTM{<]sv  
    ud1E@4;qf  
    x: 0, 1.4 * r_co /um jA'+>`@  
    "radialposition (µm)", @x SqLKF<tY]/  
    y: 0, 1.2 * I_max *cm^2 5,3h'\ "!  
    "intensity (W/ cm&sup2;)", @y Uk#1PcPd  
    y2: 0, 1.3 * N_Tm b(F`$N@7C  
    frame 4i\n1RW  
    hx K>U &jH  
    hy p_D)=Ef|&  
    od>.5{o  
    f: N_dop(1, x * um,0),      !掺杂浓度的径向分布 4ai3@f5  
      yscale = 2,  lwlR"Z  
      color = gray, j yE+?4w;  
      width = 3, v2^CBKZ+  
      maxconnect = 1, >ZT3gp?E  
      "N_dop (right scale)" [?A0{#5)8x  
    j&r5oD;  
    f: I(pump, -1, x *um, 0) * cm^2,    !泵浦光沿光纤径向的强度分布 G}g+2`  
      color = red, o<;"+@v  
      maxconnect = 1,           !限制图形区域高度,修正为100%的高度 2P*O^-zRp  
      width = 3, u&:jQ:[  
      "pump" 0&)4^->c  
    "lm3o(Dk  
    f: I(signal_fw, -1,x * um, 0) * cm^2,  !信号光沿光纤径向的强度分布 (pl OV)  
      color = blue, BR*U9K|W  
      maxconnect = 1, o z QL2  
      width = 3, BC3I{Y |  
      "signal" .$rcTZ  
    _XN sDW4|  
    ;C3](  
    ; ------------- >8c9-dTmf  
    diagram 5:                                  !输出图表5 ay2.C BF  
    wcO_;1_ H  
    "TransitionCross-sections" zB4gnVhus|  
    W/+0gh7`,(  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) MC3{LVNK  
    %%#zO Z  
    x: 1450, 2050 JL1Whf  
    "wavelength(nm)", @x #Uo 9BM  
    y: 0, 0.6 A-kI_&g\Og  
    "cross-sections(1e-24 m&sup2;)", @y 2gi`^%#k]  
    frame D<:9pLD(  
    hx YRl2e`&jt  
    hy *l}q,9iQ-  
    i4l?q#X  
    f: s12_Tm(x * nm) /1e-24,      !Tm3+吸收截面与波长的关系 g]S.u8K8m  
      color = red, 8AK#bna~-  
      width = 3, N9hBGa$  
      "absorption" -Rmz`yOq}  
    f: s21_Tm(x * nm) /1e-24,  !Tm3+发射截面与波长的关系 K=;p^dE  
      color = blue, Ood&cP'c  
      width = 3, #'8E%4  
      "emission" JA&w"2X*E  
    dS-l2 $n  
     
    分享到
    离线lileisgsz
    发帖
    14
    光币
    69
    光券
    0
    只看该作者 1楼 发表于: 2021-09-28
    感谢,视频上有点看不清楚