(* _*w}"\4_
Demo for program"RP Fiber Power": thulium-doped fiber laser, MB,P#7|
pumped at 790 nm. Across-relaxation process allows for efficient sP NAG
population of theupper laser level. D3emO'`gQ
*) !(* *)注释语句 =7Y gES
7F{=bL
diagram shown: 1,2,3,4,5 !指定输出图表 FE/2.!]&o
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 ,-XJ@@2gM
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 4';]fmf@[i
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 V-(LHv
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置
K{00 V#
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 i#~1|2
#2!M+S
include"Units.inc" !读取“Units.inc”文件中内容 D|D1`CIM
(d C<N3
include"Tm-silicate.inc" !读取光谱数据 3*gWcPGe
].2it{gF?b
; Basic fiberparameters: !定义基本光纤参数 }PY?
ZG
L_f := 4 { fiberlength } !光纤长度 K,IPVjS
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 PHa#;6!5
r_co := 6 um { coreradius } !纤芯半径 ~;;_POm
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 OQA3 ~\Vu
BVC{Zq6hi
; Parameters of thechannels: !定义光信道 VrokEK*qbY
l_p := 790 nm {pump wavelength } !泵浦光波长790nm CFh&z^]PR
dir_p := forward {pump direction (forward or backward) } !前向泵浦 qt}[M|Q^r
P_pump_in := 5 {input pump power } !输入泵浦功率5W `<>8tZS9"
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um m`c(J1Et
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 lC1X9Op
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 vN7ihe[C
x./jTebeO
l_s := 1940 nm {signal wavelength } !信号光波长1940nm 7}r!%<^
w_s := 7 um !信号光的半径 *3<m<<>U
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 _+8$=k2nM
loss_s := 0 !信号光寄生损耗为0 6iFd[<.*j
'eo2a&S2D
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 Hf
%;FaJ=
" I@Z:[=2
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 <!zItFMD[m
calc Z<r&- !z
begin 7@vcQv
kC
global allow all; !声明全局变量 C_#0Y_O
set_fiber(L_f, No_z_steps, ''); !光纤参数 3@}HdLmN|
add_ring(r_co, N_Tm); l{Hi5x'H
def_ionsystem(); !光谱数据函数 U&Ay3/
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 ^%d+nKx9nL
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道
+X;6%O;
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 d<6L&8)<
set_R(signal_fw, 1, R_oc); !设置反射率函数 #IBBaxOk
finish_fiber(); ZrA\a#z"<
end; cx2s|@u0
z6G^ BaT'
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 !4jS=Lhe>
show "Outputpowers:" !输出字符串Output powers: u(ZS sftat
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) J7QlGm,=
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) SsznV}{^
3<+l.Wly
?EX'j
>
; ------------- +d6E)~qKL
diagram 1: !输出图表1 u'K<-U8H
K?T)9
"Powers vs.Position" !图表名称 O~,^x$ve
\0 WMb
x: 0, L_f !命令x: 定义x坐标范围 Y\p
yl
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 ydns_Z
y: 0, 15 !命令y: 定义y坐标范围 9$DVG/
y2: 0, 100 !命令y2: 定义第二个y坐标范围 xJ&StN/'
frame !frame改变坐标系的设置 c=
a+7>
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) 1| gP
:t}
hx !平行于x方向网格 ?>o39|M_w
hy !平行于y方向网格 b vu` =
DR0W)K
^
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 !)9zH
color = red, !图形颜色 W&!Yprr
width = 3, !width线条宽度 Ew;<iY[
"pump" !相应的文本字符串标签 #Y18z5vo
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 QHs]~Ja
color = blue, R9CAw>s
width = 3, p[o2F5 T2
"fw signal" [
objdQU`
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 <![T~<.
color = blue, r>)\"U#
style = fdashed, x9_ Lt4
width = 3, v}_$9&|S
"bw signal" Xj-3C[8@
Pdn.c1[-a
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 {9l4 pT3
yscale = 2, !第二个y轴的缩放比例 84knoC
color = magenta, bm+ Mr
width = 3, v%FVz
style = fdashed, _?r+SRFn
"n2 (%, right scale)" 1QN]9R0`#7
_&z>Id`w
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 16Xwtn72
yscale = 2, ]52_p[hZ}<
color = red, 8%|x)
width = 3, +'Ge?(E4_
style = fdashed, 7]v-2
*
"n3 (%, right scale)" nK|";
!c&^b@
yw
3Q ]MT
; ------------- ~*[}O)7#
diagram 2: !输出图表2 uo{QF5z]
OKU P
"Variation ofthe Pump Power" w}1)am&pD
'RA[_Z
x: 0, 10 ^4fkZh
"pump inputpower (W)", @x 2~@=ua[|=5
y: 0, 10 Z~nl{P#
y2: 0, 100 8r|LFuI
frame *@ o3{0[Z
hx UF{2Gx
hy {l6]O
legpos 150, 150 qQ_B[?+W
v8 X&H
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 *=
71/&B
step = 5, dg!sRm1iZ:
color = blue, s=nds"J
width = 3, _NkN3f5 1L
"signal output power (W, leftscale)", !相应的文本字符串标签 B%pvk.`
finish set_P_in(pump, P_pump_in) |}}]&:w2
Gt%kok
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 /{U{smtdFl
yscale = 2, v\ox:C
step = 5, 6:!fyia
color = magenta, <#Lw.;(U;k
width = 3, 7h<K)aT
"population of level 2 (%, rightscale)", !+6l.`2WI
finish set_P_in(pump, P_pump_in) 1=X=jPwO C
.3&m:P8zV
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 ,*4"d._Y
yscale = 2, :1=?/8h
step = 5, st2>e1vg
color = red, \\qg2yI
width = 3, XJ\q!{;h
"population of level 3 (%, rightscale)", 7S`H?},sR
finish set_P_in(pump, P_pump_in) C;5}/J^E
HA%ye"(y8
yU.0'r5uR
; ------------- Y'5ck(
diagram 3: !输出图表3 (`NRF6'&1L
GN<I|mGLJK
"Variation ofthe Fiber Length" 0o]K6b
#dft-23
x: 0.1, 5 rA`\we)
"fiber length(m)", @x "Pc,+>vh
y: 0, 10 xD=D *W
"opticalpowers (W)", @y 5dF=DCZ
frame a)1,/:7'
hx ie!4z34
hy "!tB";n
IMZKlU3
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 taQ[>x7b
step = 20, ge[i&,.&z
color = blue, %&XX*&
q
width = 3, zEW:Xe)
"signal output" M\&~ Dmd
)rj mJ
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 @nP}q!y
step = 20, color = red, width = 3,"residual pump" }WbN)
l.x }I"tf
! set_L(L_f) {restore the original fiber length } FQFENq''B
8j}m\^si
([Aq
; ------------- 2YKM9Ks
diagram 4: !输出图表4 )US/bC!M$
C=IH#E=
"TransverseProfiles" ,#T3OA!c**
.6NSt
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) !r*;R\!n2
WDdi}i>2
x: 0, 1.4 * r_co /um ^wa9zs2s;/
"radialposition (µm)", @x [,^dM:E/
y: 0, 1.2 * I_max *cm^2 Lf#G?]@
"intensity (W/ cm²)", @y Y14R"*t~
y2: 0, 1.3 * N_Tm 1Q SIZoK7
frame Ij1]GZ`A(
hx k+[KD >;1
hy fWyDWU
pT@!O}'$
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 b3xkJ&Z
yscale = 2, V(u2{4gZ
color = gray, ]$*{<
width = 3, +^?-}v
maxconnect = 1, &ZN'Ey?
"N_dop (right scale)" ?d<:V.1U@
e6HlOGPVQH
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 vvAk<[
color = red, 8(5E<&JP
maxconnect = 1, !限制图形区域高度,修正为100%的高度 4~A#^5J
width = 3, 7;'.5,-3c
"pump" 9>3Ltnn0
YeC,@d[
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 F/*fQAa"
color = blue, i?>>
9f@F
maxconnect = 1, yvWzc
uL#
width = 3, `B\KS*Gya#
"signal" 8TZA T%4
f WjS)
hlFU"u_
; ------------- -`dxx)x
diagram 5: !输出图表5 ckN(`W,xp
qM>OE8c#/
"TransitionCross-sections" $Kz\
h#}
HwW[M[qA
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) udD*E~1q
h:jI
x: 1450, 2050 5u)^FIBj
"wavelength(nm)", @x A
Ok7G?Y
y: 0, 0.6 d =(Yl r
"cross-sections(1e-24 m²)", @y }gi1?a59
frame V87ee,
hx J)8pqa
hy Z"~6yF
r(1pvcWY-
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 'RV\}gqZ
color = red, ,rFLpQl
width = 3, EkStb#
"absorption" B#GZmv1
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 $sc8)d\B
color = blue, Rhv".epz
width = 3, j+13H+dN
"emission" M,\|V3s
oyN+pFVB:$