(* J)-T:.i|0
Demo for program"RP Fiber Power": thulium-doped fiber laser, cDfx)sL
pumped at 790 nm. Across-relaxation process allows for efficient [yO=S0 e
population of theupper laser level. oR-O~_)U
*) !(* *)注释语句 q $t&|{
G1kDM.L
diagram shown: 1,2,3,4,5 !指定输出图表 y:qx5Mi
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 #.~ga7Q
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 +#0~:&!9
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 $kD7y5
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 AnRlH
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 Po1hq2-U8
9~=gwP
include"Units.inc" !读取“Units.inc”文件中内容 dAL0.>|`0
UMT\Q6p
include"Tm-silicate.inc" !读取光谱数据 *U
M!(
&j3`
)N
; Basic fiberparameters: !定义基本光纤参数 n;%y
L_f := 4 { fiberlength } !光纤长度 xsYE=^uv
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 dl:-k r8
r_co := 6 um { coreradius } !纤芯半径 hBjVe?{
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 JwjI{,jY
,`yyR:F
; Parameters of thechannels: !定义光信道 2%5?Fn=
l_p := 790 nm {pump wavelength } !泵浦光波长790nm 6nc0=~='$
dir_p := forward {pump direction (forward or backward) } !前向泵浦 F%Kp9I*
P_pump_in := 5 {input pump power } !输入泵浦功率5W Z{} n8b*
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um $Y6 3!*
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 {$0&R$v3
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 3B;}j/h2
\2j|=S6
l_s := 1940 nm {signal wavelength } !信号光波长1940nm `os8;`G
w_s := 7 um !信号光的半径 Rnr#$C%
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 G)8ChnJa!m
loss_s := 0 !信号光寄生损耗为0 D;jK/2
l0Y?v 4
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 tfA}`*$s
J,(7.+`~#
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 :@/"abv
calc h8jB=e, H
begin a8zZgIV
global allow all; !声明全局变量 3b@VY'P
set_fiber(L_f, No_z_steps, ''); !光纤参数 ) "[HZ/
add_ring(r_co, N_Tm); @o&Ytd;i
def_ionsystem(); !光谱数据函数 =U"dPLax
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 s/t11;
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 P6YQK+
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 @1g&Z}L
o
set_R(signal_fw, 1, R_oc); !设置反射率函数 /c#l9&,
finish_fiber(); Y@%`ZPJ
end; \ha-"Aqze3
a$$ Wt<&Y
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 =EpJZt
show "Outputpowers:" !输出字符串Output powers:
\bold"
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) :gf;}
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) k>5 O`Y:
mU@xcN
3m=2x5{L
; ------------- sS9%3i/>
diagram 1: !输出图表1 /g76Hw>H
1bSD,;$sQ
"Powers vs.Position" !图表名称 ,@.EpbB
J@]k%h
x: 0, L_f !命令x: 定义x坐标范围 @Y-TOCadT
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 f Iy]/
y: 0, 15 !命令y: 定义y坐标范围 F8=nhn
y2: 0, 100 !命令y2: 定义第二个y坐标范围 A,#2 ^dR
frame !frame改变坐标系的设置 r}W2 Ak\
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) W)4QOS&
hx !平行于x方向网格 zOB=aG?/
hy !平行于y方向网格 4!%F\c46
&leK}je [
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 n:4uA`Vg
color = red, !图形颜色 =k{`oO~:9+
width = 3, !width线条宽度 Tlodn7%",
"pump" !相应的文本字符串标签 4c159wsnQ
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 _Qd,VE
8u
color = blue, H%}IuHhN)
width = 3, `78V%\
"fw signal" \#,t O%D
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 UVEz;<5@\
color = blue, uf' 4'
style = fdashed, R_kQPP
width = 3, io%')0p5q
"bw signal" Q+$Tt7/
..<3%fL3
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 ,)fkr]`<
yscale = 2, !第二个y轴的缩放比例 JPx7EEkZR4
color = magenta, L,]=vba'$
width = 3, 5#2F1NX
style = fdashed,
l]_=:)" ]
"n2 (%, right scale)" eon!CE0
pa<qZZ
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 b~0N^p[&%
yscale = 2, L;6.r3bL
color = red, l{WjDed
width = 3, XcfKx@l
style = fdashed, b1`r!B,
"n3 (%, right scale)" JXU2CyMY
#-#NqX:
\fLvw
; ------------- [=TCEU{"~
diagram 2: !输出图表2 j 6)Y
PX,rWkOce
"Variation ofthe Pump Power" E^Gg
'1
2 WBq
x: 0, 10 eC`pnE
"pump inputpower (W)", @x "^CXY3v
y: 0, 10 %i0\1hhV<
y2: 0, 100 HZ"Evl|n
frame n \G Ry'
hx B|{I:[
hy ;[0&G6g
legpos 150, 150 5z/Er".P
+|RB0}hFS-
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 ]]iPEm"@
step = 5, +5p{5 q(o
color = blue, Zm TDQ`Ix
width = 3, E+xuWdp.*
"signal output power (W, leftscale)", !相应的文本字符串标签 6j9)/ HP
finish set_P_in(pump, P_pump_in) &*,:1=p
e 9$C#D>D
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 d5 j_6X
yscale = 2, m~l
F`?
step = 5, $&P?l=UG
color = magenta, 773/#c
width = 3, omX?Bl
"population of level 2 (%, rightscale)", QBJ3iQs1
finish set_P_in(pump, P_pump_in) 4rNL":"O
ZU2laqa_
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 `TKD<&oL
yscale = 2, }-<zWI{p
step = 5, ]> !<G8=N
color = red, J{"kw1Lu
width = 3, D^F{uDlb
"population of level 3 (%, rightscale)", \k8rxW
finish set_P_in(pump, P_pump_in) $a;]_ Y
MQ/
A]EeL
q 2?X"!
; ------------- 72db[
diagram 3: !输出图表3 mryN}
}OShT+xeX
"Variation ofthe Fiber Length" `cB_.&
uZ6d35MJ
x: 0.1, 5 V~{
_3YY
"fiber length(m)", @x |01?w |
y: 0, 10 /FY2vDfU6
"opticalpowers (W)", @y _Tm0x>EM
frame cd@.zg'sYn
hx !UBO_X%dz
hy ,\PVC@xJ
-f(/B9}
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 ),^eA
step = 20, e,1u
color = blue, n(Y%Vmy
width = 3, 5t:8.%<UK
"signal output" p
QE)p
ENh8kD
l5
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 2h~-
step = 20, color = red, width = 3,"residual pump" yf1CXldi
A]`:VC=IU
! set_L(L_f) {restore the original fiber length } |lQ;ALH!
>O`l8tM
!-]C;9Zd
; ------------- Qu*1g(el!o
diagram 4: !输出图表4 Z)<
wv&K
<+`(\
"TransverseProfiles" w; TkkDH
jRZ%}KX
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) c-]fKj7
g$37;d3Tx
x: 0, 1.4 * r_co /um `H%G3M0a
"radialposition (µm)", @x j.?:Gaab?#
y: 0, 1.2 * I_max *cm^2 3 x*z\VJ
"intensity (W/ cm²)", @y 8QgA@y"
y2: 0, 1.3 * N_Tm 6Z:YT&,f
frame Pi6C/$
K
hx 5mB]N%rfW%
hy a' FN 3
cgZaPw2
bw
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 kEN#u
yscale = 2, +c,[ Q
color = gray, 5N/Lk>p1u
width = 3, :-+4:S
maxconnect = 1, `aSM8C\
"N_dop (right scale)" -$k>F#
o+?@5zw-&
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 UsW5d]i}Y
color = red, U@lV
maxconnect = 1, !限制图形区域高度,修正为100%的高度 VV3}]GjC
width = 3, *o?i:LE]
"pump" )c<6Sfp^B
Lk,+Tfk"
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 #6> 6S;Ib
color = blue, f=:.BR{
maxconnect = 1, hl/itSl$
width = 3, K b(9)Re
"signal" s;.=5wcvi?
dk5|@?pe
7>.OVh<
; ------------- oK+Lzb\d{M
diagram 5: !输出图表5 |r=DBd3
"dCzWFet
"TransitionCross-sections" i57(
$1.
2<6j1D^jM
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) mb1IQ &
otriif@+Z
x: 1450, 2050 @EZ>f5IO+
"wavelength(nm)", @x L(o#4YH}>J
y: 0, 0.6 L,M+sN
"cross-sections(1e-24 m²)", @y UzQ$B> f
frame f_<Y\
hx uw_?O[ZA[
hy YKx 1NC
\qq-smcM-
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 TVkcDS
color = red, Rc9<^g`
width = 3, r*d Q5
_
"absorption" "iek,Y}j7
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 Bw-s6MS
color = blue, 6VR[)T%
width = 3, <Jwo?[a
"emission" eP |)SU
mxL;;-