(* -g<oS9
Demo for program"RP Fiber Power": thulium-doped fiber laser, ,: ^u-b|
pumped at 790 nm. Across-relaxation process allows for efficient A}w/OA97RO
population of theupper laser level. iDD$pd,e\
*) !(* *)注释语句
b2*TgnRq
.Y|!:t|
diagram shown: 1,2,3,4,5 !指定输出图表 +,l-Nz
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 3U}%2ARo_
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 xx $cnG
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 {h4E8.E
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 fsXy"#mOkD
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 g{LP7D;6
T4F/w|Q
include"Units.inc" !读取“Units.inc”文件中内容 {)Xy%QV
r|Z{-*`
include"Tm-silicate.inc" !读取光谱数据 {G-kNU
)gi9f1n`
; Basic fiberparameters: !定义基本光纤参数 <Z$J<]I
L_f := 4 { fiberlength } !光纤长度 m+9#5a-
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 X{VOAcugr
r_co := 6 um { coreradius } !纤芯半径 .]Z"C&"N]
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 k=^xVQuI
lRQYpc\
; Parameters of thechannels: !定义光信道 2zpr~cB=
l_p := 790 nm {pump wavelength } !泵浦光波长790nm ,,TnIouy
dir_p := forward {pump direction (forward or backward) } !前向泵浦 M%#e1"n
P_pump_in := 5 {input pump power } !输入泵浦功率5W Va8&Z
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um x^CS"v7
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 `h;[TtIX4
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 -qoH,4w
AwN!;t_0+N
l_s := 1940 nm {signal wavelength } !信号光波长1940nm [-&Zl(9&
w_s := 7 um !信号光的半径 .^.z2
e
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 nFn5v'g
loss_s := 0 !信号光寄生损耗为0 pk~WrqK}
w
= KPT''!
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 >d6| ^h'0
7Lt)nq-b
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 "#48% -'x
calc M3AXe]<eC1
begin 45oR=Atn
global allow all; !声明全局变量 W!<U85-#S
set_fiber(L_f, No_z_steps, ''); !光纤参数 PW4q~rc=:
add_ring(r_co, N_Tm); ;d?R:Uw8
def_ionsystem(); !光谱数据函数 vv7I_nK?
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 W9)&!&<o
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 pJ{Y
lS{
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 i9$ Av
set_R(signal_fw, 1, R_oc); !设置反射率函数 r
:dTz
finish_fiber(); @XVTU
end; cnLro
Wjc'*QCPl
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 tVjsRnb{
show "Outputpowers:" !输出字符串Output powers: d'2A,B~_*
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) `{Ul!
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) Cyp'?N
/(LL3cZK
<QvOs@i*
; ------------- Mfs?x
a
diagram 1: !输出图表1 t^L]/$q
j#6.Gq
"Powers vs.Position" !图表名称 9VT;ep
2?x4vI
np;
x: 0, L_f !命令x: 定义x坐标范围 cu6Opq9
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 S[N5 ikg
y: 0, 15 !命令y: 定义y坐标范围 `2snz1>!j
y2: 0, 100 !命令y2: 定义第二个y坐标范围 u4j5w
frame !frame改变坐标系的设置 ;);kEq/=P
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) 6wxs1G
hx !平行于x方向网格 M`>E|"<
hy !平行于y方向网格 &FD>&WRV
.u:GjL'$
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 ]{iQ21`a-
color = red, !图形颜色 /o[w4d8
width = 3, !width线条宽度 ZW}_DT0
"pump" !相应的文本字符串标签 }'.m*#Y
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 oQ# 8nu{k
color = blue, nK,w]{<wG!
width = 3, 9gFUaDLo
"fw signal" =}*0-\QG
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 Uv.)?YeGh
color = blue, HDLk>_N_s,
style = fdashed, 1qch]1
^G
width = 3,
grYe&(`X
"bw signal" r,udO,Yi=c
w@b)g
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 yw!{MO
yscale = 2, !第二个y轴的缩放比例 Fp:'M X
color = magenta, E3i4=!Y
width = 3, w &(ag$p'
style = fdashed, _^;Z~/.
"n2 (%, right scale)" FtZ?C@1/
Ei|\3Kx
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 ""H?gsL[
yscale = 2, q@&6#B
color = red, H. c7Nle
width = 3, u"8yK5!
style = fdashed, '7/)Ot(
"n3 (%, right scale)" *fdTpXa
n ;Ei\\p!
Gq6*SaTk
; ------------- Th%zn2R B
diagram 2: !输出图表2 Kgv T"s.
<[v[ci
"Variation ofthe Pump Power" AdmC&!nH
9z0p5)]n>
x: 0, 10 G6/m#
"pump inputpower (W)", @x ZoeD:xnh[
y: 0, 10 C}X\|J
y2: 0, 100 ),)lzN%!
frame O8o3O
6[Y
hx SKtr tm
hy #ABCDi={zA
legpos 150, 150 v^iAD2X/F
s.#`&Sd>
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 92c HwWZ!
step = 5, omFz@
color = blue, @c#(.=
width = 3, q| 7(
"signal output power (W, leftscale)", !相应的文本字符串标签 n|hNM?v
finish set_P_in(pump, P_pump_in) 4
:v=pZ
>eaaaq9B-
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 ~>G^=0LT
yscale = 2, 3
{V>S,O3]
step = 5, QnDg6m)+
color = magenta, D=$)n_F
width = 3, =*Lfl'sr_
"population of level 2 (%, rightscale)", Fcx&hj1gQ
finish set_P_in(pump, P_pump_in) [K Qi.u
C^){.UGmJ
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 I'Hf{Erw
yscale = 2, ~~.}ah/_d
step = 5, b$7 +;I;
color = red, IgzQr >
width = 3, YR70BOxK
"population of level 3 (%, rightscale)", [ )F<V!
finish set_P_in(pump, P_pump_in) \*da6Am
"7
yD0T)2
>!JS:5|
; ------------- iCoX&"lb
diagram 3: !输出图表3 QPx^_jA
maZ)cW?
"Variation ofthe Fiber Length"
y7{?Ip4[
0J|3kY-n>
x: 0.1, 5 :m;p:l|W
"fiber length(m)", @x _aphkeqd
y: 0, 10 \wZe] G%S
"opticalpowers (W)", @y + 3gp%`c4
frame ("@!>|H
hx *a)n62
hy !Cs_F&l"j
X2_=agEP
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 y5r4&~04
step = 20, km(Po}
color = blue, s~>}a
width = 3, B~mj 8l4
"signal output" wzA$'+Mb
+|v90ed
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 (:_$5&i7
step = 20, color = red, width = 3,"residual pump" 1 zZlC#V
[0of1eCSl
! set_L(L_f) {restore the original fiber length } b>|6t~}M
#cJ@uqR
DXo|.!P=3
; ------------- K9[UB
diagram 4: !输出图表4 1oS/`)
M:8R-c#![
"TransverseProfiles" !if
c$,P ~Ws'
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) >z03{=sAN
E./2jCwI(Y
x: 0, 1.4 * r_co /um |4JEU3\$
"radialposition (µm)", @x Q8NX)R
y: 0, 1.2 * I_max *cm^2
XX@ZQcN
"intensity (W/ cm²)", @y
Hz~zu{;{J
y2: 0, 1.3 * N_Tm :h$$J
lP
frame IPk4
;,
hx \RiP
hy 97]E1j]
sx%[=g+<2(
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 eDMO]5}Ht
yscale = 2, 6<]lW
color = gray, rsQtMtS2
width = 3, |=w@H]r
maxconnect = 1, uT{q9=w
"N_dop (right scale)" H)?z
#x
Wri<h:1
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 )UR7i8]!0
color = red, %{|p j
+
maxconnect = 1, !限制图形区域高度,修正为100%的高度 ?}0 ,o.
width = 3, O?2DQY?jT
"pump" .3;;;K9a~]
vt8By@]:
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 2 nCA<&
color = blue, 6t$8M[0-U
maxconnect = 1, rH-23S
width = 3, \85i+q:LuA
"signal" p'%s=TGwv
N['.BN
yAt^;
; ------------- kj_c%T
]/
diagram 5: !输出图表5 py4 h(04u
WcAkCH!L
"TransitionCross-sections" b;n[mk
! mHO$bQ"
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) ]esC[r]PJ
HtFDlvdy]
x: 1450, 2050 DVA:Cmh\
"wavelength(nm)", @x s_Sk0}e
y: 0, 0.6 icgfB-1|i
"cross-sections(1e-24 m²)", @y uFE)17E
frame se)TzI^]b@
hx UNYqft4
hy Hka2
D~m*!w*
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 @]j1:PN-
color = red, {FkF
width = 3, p{_" bB
"absorption" :X=hQ:>P
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 'DR!9De
color = blue, m`XHKRp
width = 3, jp,4h4C^)
"emission" 7! Nsm
_f83-':W6