(* G `B=:s]
Demo for program"RP Fiber Power": thulium-doped fiber laser, yS[HYq
pumped at 790 nm. Across-relaxation process allows for efficient _\=
/~>Xl
population of theupper laser level. 8DbP$Wwi
*) !(* *)注释语句 +qqCk
:S!!J*0
diagram shown: 1,2,3,4,5 !指定输出图表 `0w!&
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 z(2G"}
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 ,OP\^
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 N=~DSsw
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 d>c`hQ(V
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 i }Zz[b
U!RIeC
include"Units.inc" !读取“Units.inc”文件中内容 =}u?1~V
A{T>Aac
include"Tm-silicate.inc" !读取光谱数据 0;*[}M]Z
Ox)_7A
; Basic fiberparameters: !定义基本光纤参数 %.Kr`#lCr
L_f := 4 { fiberlength } !光纤长度 lL5* l,)To
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 qzLD
r_co := 6 um { coreradius } !纤芯半径 s$0dLEa9
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 9;`hJ!r
7uF
@Xh
; Parameters of thechannels: !定义光信道 -~H
"zu`
l_p := 790 nm {pump wavelength } !泵浦光波长790nm / T_v8{D
dir_p := forward {pump direction (forward or backward) } !前向泵浦 9y} J|z
P_pump_in := 5 {input pump power } !输入泵浦功率5W BGOS(
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um 1]A\@(
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 Zw%:mZN
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 =*>.z@WQ
%zDi|WZ
l_s := 1940 nm {signal wavelength } !信号光波长1940nm fjuPGg~
w_s := 7 um !信号光的半径 vkM_a}%<
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 6{g&9~V
loss_s := 0 !信号光寄生损耗为0 wsc=6/#u
U^DR'X=
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 i1]}Q$
Z[,,(M
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 AXnKhYlu
calc %rEP.T\i
begin /c4$m3?]
global allow all; !声明全局变量 Ywcgt|
set_fiber(L_f, No_z_steps, ''); !光纤参数 Z *v`kl
add_ring(r_co, N_Tm); |Vu`-L'Jz
def_ionsystem(); !光谱数据函数 iuM ,aF
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 pE0@m-p
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 Imyw-8/;
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 (hRg0Z=
set_R(signal_fw, 1, R_oc); !设置反射率函数 %j{*`}
finish_fiber(); * <?KOM
end; ST4[d'|j
R+/kx#^
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 [<Mls@?
show "Outputpowers:" !输出字符串Output powers: ~4] J'E >
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) _=cuOo"!
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) qS
ggZ0*
zY-?Bv_D
9OlJC[
; ------------- 0j}@lOt(
diagram 1: !输出图表1 ,XN4Iy#BZl
{7 ](-
"Powers vs.Position" !图表名称 58`Dcx,yJ
$H/: -v
x: 0, L_f !命令x: 定义x坐标范围 P$@:T[}v
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 ^$rqyWZYp
y: 0, 15 !命令y: 定义y坐标范围 :SZi4:4-J8
y2: 0, 100 !命令y2: 定义第二个y坐标范围 "1p,
r&}
frame !frame改变坐标系的设置 OL@$RTh
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) 9tmnx')_
hx !平行于x方向网格 c s:E^
hy !平行于y方向网格 3b`#)y^y?%
"=$uv
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 bJeF1LjS
color = red, !图形颜色 >yLdrf
width = 3, !width线条宽度 ;D%H}+Z
"pump" !相应的文本字符串标签 3S%/>)k
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 SR<W3a\
color = blue, i|S/g.r
width = 3, F9r|EU#;
"fw signal" uw@-.N^
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 tQTjqy{K
color = blue, ':f,RG
style = fdashed, H5CL0#I
width = 3, iWkC:fQz
"bw signal" oTTE<Ct[
Ac}5,
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 ~Ds3-#mMy
yscale = 2, !第二个y轴的缩放比例 dkQP.Tj$i
color = magenta, `@So6%3Y|
width = 3, ]v+yeGIK S
style = fdashed, /38XaKc{6
"n2 (%, right scale)" QQ %W3D@
Yq{R*HO
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 }z2[w@M
yscale = 2, Q4g69IE
color = red, FB3}M)G>M
width = 3, MaF4lFmS
style = fdashed, E[FE-{B#
"n3 (%, right scale)" 1`~.!yd8(
L3s"L.G
hK %FpGYA
; ------------- ;RMevVw|
diagram 2: !输出图表2 m.lzkS]P
NuXII-
"Variation ofthe Pump Power" o76{;Bl\O
:xY9eq=
x: 0, 10 ghTue*A
"pump inputpower (W)", @x Fnd_\`9{
y: 0, 10 f`[E^zj
y2: 0, 100 F><ficT
frame ezS@`_pR;
hx 9vCCE[9
hy w/9%C(w6
legpos 150, 150 HI[Pf%${
.kB!',v\
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 h&rZR`g
step = 5, 'k[vcnSz\/
color = blue, 7}pg7EF3z
width = 3, x]IJ;
"signal output power (W, leftscale)", !相应的文本字符串标签 s|k&@jH)
finish set_P_in(pump, P_pump_in) zu
7Fq]zD
AP ]`'C
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 1I40N[PE)
yscale = 2, U&#`5u6'j
step = 5, bas1(/|S
color = magenta, Zb:Z,O(vn
width = 3, ryb81 .|
"population of level 2 (%, rightscale)", |<MSV KW
finish set_P_in(pump, P_pump_in) /.>%IcK
dfh 1^Go
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 ,}NTV~
yscale = 2, bL5u;iy)
step = 5, Q(x/&]7=V
color = red, '1~;^rU
width = 3, F
1l8jB\
"population of level 3 (%, rightscale)", s@6Jz\<E
finish set_P_in(pump, P_pump_in) @gw8r[
E;An':j
M(n@ytz
; ------------- L-%'jR
diagram 3: !输出图表3 5kojh _\
8Y:x+v5
"Variation ofthe Fiber Length"
*U`R<mV\
3PlIn0+LX
x: 0.1, 5 7}`FXB
"fiber length(m)", @x yet~
y: 0, 10 \9`.jB~<
"opticalpowers (W)", @y $)d34JM
frame #aiI]'
hx l hST%3Ld
hy .hnq>R\
45OAJ?N
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 ? 51i0~O=
step = 20, 6h0}ZM
color = blue, R`B} T<*
width = 3, <kWkc|zBY
"signal output" 8s
%YudW
vin3
i&k
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响
unKgOvtj
step = 20, color = red, width = 3,"residual pump" e0j4t-lL
dnh~An 9
! set_L(L_f) {restore the original fiber length } 9SJSUv:@
}_('3C,Ba
{qOqtkj
; ------------- }(,{^".[}
diagram 4: !输出图表4 Z*-a=u%gl'
9'@G7*Yn
"TransverseProfiles" {WQ6=wGpS
HJP~
lg
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) S#<y_w%
k|{ 4"4r
x: 0, 1.4 * r_co /um "oyBF CW
"radialposition (µm)", @x cDK)zD
y: 0, 1.2 * I_max *cm^2 #Tt*NU
"intensity (W/ cm²)", @y 4Z5;y[k(
y2: 0, 1.3 * N_Tm %F^,6y
frame mkrVeBp
hx lD-2 5~YV
hy .Lu3LVS
s+z 5"3'n
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 \A)Pcc}7
yscale = 2, oB~V~c}8x
color = gray, Et0)6^-v
width = 3, n{&;@mgI
maxconnect = 1, `r-3"or/$
"N_dop (right scale)" `zB bB^\`W
GLX{EG9Z
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 IAmZ_2
color = red, E0yx
@Vx
maxconnect = 1, !限制图形区域高度,修正为100%的高度 CGkx_E]
width = 3, /Z,hQ>/
"pump" S_ UAz
\Hf/8!q
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 Bf6i{`!G
color = blue, ;tF&r1
maxconnect = 1, Nwe-7/Q
width = 3, ZKq#PB/.
"signal" M'F<1(
&]shBvzl^
mx
UyD[|
; ------------- adAdX;@e`
diagram 5: !输出图表5 zqBzataR:
/J&ks>St
"TransitionCross-sections" `j!_tE`
hQlyqTP|2
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) E!BzE_|i
uG +ZR:
_
x: 1450, 2050 &fl RrJ
"wavelength(nm)", @x </1]eDnU
y: 0, 0.6 E|+<m!
"cross-sections(1e-24 m²)", @y {cb<9Fii
frame Jb^{o+s53
hx ^!0z+M:>^
hy M ?AX:0
/oLY\>pD
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 Nu\<Xr8
color = red, }`%ks
width = 3, C'R6mz% Q?
"absorption" 1uCF9P
ai
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 3HW&\:q5'M
color = blue, ts}OE
width = 3, 3vjOfr`
"emission" Q\T?t
DvB{N`COd