(* 2ARh-zLb
Demo for program"RP Fiber Power": thulium-doped fiber laser, @#">~P|Hp
pumped at 790 nm. Across-relaxation process allows for efficient -fn~y1
population of theupper laser level. Iqv
5lo
.
*) !(* *)注释语句 ?-i&6 i6Y
9r}}m0
diagram shown: 1,2,3,4,5 !指定输出图表 K~G^jAk+
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 JH9CN
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 tO$M[P=b
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 7 c7SU^hD
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 y.OUn'^d4
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 }=5(*Vg
WOoVVjMM
include"Units.inc" !读取“Units.inc”文件中内容 xRmB?kM3]5
)VrHP9fu
include"Tm-silicate.inc" !读取光谱数据 @wz7jzMi
u/WkqJvw#
; Basic fiberparameters: !定义基本光纤参数 YTsn;3d]}
L_f := 4 { fiberlength } !光纤长度 (>'d`^kjk
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 #4?3OU#
r_co := 6 um { coreradius } !纤芯半径 xNU}uW>>T
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 >d|W>|8e
=s<QN*zJB0
; Parameters of thechannels: !定义光信道 IFe[3mB5
l_p := 790 nm {pump wavelength } !泵浦光波长790nm _1QNO#X
dir_p := forward {pump direction (forward or backward) } !前向泵浦 bcg)K`'N
P_pump_in := 5 {input pump power } !输入泵浦功率5W kQtl&{;k?
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um J<D =\
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 UlR7_
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 Px`yD3
8cl!8gfv
l_s := 1940 nm {signal wavelength } !信号光波长1940nm .7q#{`K^=
w_s := 7 um !信号光的半径 W%x#ps5%
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 `Jo}/c5R
loss_s := 0 !信号光寄生损耗为0 -!"8j"pA:
7O j9~3o4
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 ~ i,my31
:.^{!
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 LBzpaLd
calc '=5N?)
begin _eS*e-@O5
global allow all; !声明全局变量 u]"RAH
set_fiber(L_f, No_z_steps, ''); !光纤参数 %"tf`,d~3
add_ring(r_co, N_Tm); n!2|;|$}Z
def_ionsystem(); !光谱数据函数 snrfHDhUw
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 f/xBR"'
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 j56Y,Tm
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 #frhO;6
set_R(signal_fw, 1, R_oc); !设置反射率函数 xxYFWvi
finish_fiber(); ft5 Bk'ZJ
end; pa7fTd
Ek:u[Uw\
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 #gq3 e
show "Outputpowers:" !输出字符串Output powers: 8EQ;+V
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) mmi~A<
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) 4)?c[aC4P
X~0P+E#
,b/0_Q
; ------------- 6%? NNEM
diagram 1: !输出图表1 B}p/ ,4x6
wI:oe`?H
"Powers vs.Position" !图表名称 ie)Qsw@
}-!$KR]:s
x: 0, L_f !命令x: 定义x坐标范围 a&&EjI
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 d7@ N~<n
y: 0, 15 !命令y: 定义y坐标范围 j_Fr3BWS
y2: 0, 100 !命令y2: 定义第二个y坐标范围
W*
YfyM
frame !frame改变坐标系的设置 }rN"H4)
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) 7}xKiHh:
hx !平行于x方向网格 BJvVZl2h
hy !平行于y方向网格 L^22,B
0
Qx:+n`$/
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 ;^;5"nh
color = red, !图形颜色 k[][Md2Vh
width = 3, !width线条宽度 l{k
"pump" !相应的文本字符串标签 Z]aSo07
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 4h|D[Cb]
color = blue, BD#4=u
width = 3, 0-QkRr_I
"fw signal" HtMlSgx,8>
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 ;@sxE}`?g
color = blue, SU*P@?:/}
style = fdashed, W1#3+
width = 3, 4VK5TWg
"bw signal" Q)v8hNyUmA
/(Y\ <
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 ~j UK-E
yscale = 2, !第二个y轴的缩放比例 Q.nEY6B_
color = magenta, lcih
[M6z
width = 3, 1Eg,iTn2*x
style = fdashed, 1~j.jv$
"n2 (%, right scale)" D}:D,s8UP
%o~zsIl
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 c45Mv_
yscale = 2, k(Ow.nkb
color = red, y`'Ly@s
width = 3, 1wwhTek
style = fdashed, iud%X51
"n3 (%, right scale)" {C
7=
z%b3/rx
u+{5c5_
; ------------- rGoB&% pc
diagram 2: !输出图表2 |ek*wo
)m?oQ#`m
"Variation ofthe Pump Power" /+'@}u
|
"|f ;
x: 0, 10 bMgp
"pump inputpower (W)", @x 5"{wnnY%K}
y: 0, 10 jAF
DkqH
y2: 0, 100 =MMWcK&
frame X~lOFH;}q
hx u6I# D
_
hy XfB;^y=u8
legpos 150, 150 &H*F
.3$iOMCH
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 <{e0i
step = 5, 0ro)e~_@*
color = blue, N:=D@x~]
width = 3, UUX
_x?BD
"signal output power (W, leftscale)", !相应的文本字符串标签 {Ke3
finish set_P_in(pump, P_pump_in) iTD{
10*U2FY)]
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 \,~gA
yscale = 2, _QCAV+K'
step = 5, 1w?X~VZAX
color = magenta, |`#[jHd
width = 3, (/PD;R$b
"population of level 2 (%, rightscale)", vVE^Y
finish set_P_in(pump, P_pump_in) 'tF<7\!
n1$p
esr
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 I#9A\.pO
yscale = 2, ;b(/PH!O
step = 5, ~ 5`Ngpp
color = red, v)BUt,A
width = 3, ^1}}-9q
"population of level 3 (%, rightscale)", AlGD .K
finish set_P_in(pump, P_pump_in) sd
Z=3)
df}B:?Ew.
vrh}X[JEw'
; ------------- $yRbo'-
diagram 3: !输出图表3 |)1"*`z
i9w xP i
"Variation ofthe Fiber Length" >[ywrB ?T
-K+gr sb
g
x: 0.1, 5 URY%+u
"fiber length(m)", @x 3
nb3rHQ
y: 0, 10 (,HAOs
"opticalpowers (W)", @y _k
_F
frame 9v0f4Pbxm
hx ]oZ$,2#;~
hy 2qw~hWX
2L ~U^
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 ;z!~-ByzL
step = 20, n6
)
color = blue, HA"LU;5>2J
width = 3, =v1s@5;~
"signal output" $O7>E!uVD
{P(IA2J'S
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 H<dm;cU
step = 20, color = red, width = 3,"residual pump"
mii9eZ
tHD
mX
! set_L(L_f) {restore the original fiber length } 2i8'*L+j
amgYr$)m
V<P@hAAr
; ------------- -,3Ka:
diagram 4: !输出图表4 no^I![_M
(~,Q-w"
"TransverseProfiles" '^}l|(
Aln\:1MU
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) d(42ob.Tr
TC"mP!1
x: 0, 1.4 * r_co /um :8MpSvCV
"radialposition (µm)", @x A .*}<
y: 0, 1.2 * I_max *cm^2 rn U2EL
"intensity (W/ cm²)", @y KYd2=P6
y2: 0, 1.3 * N_Tm kQwBrb4
frame 99H!~bSS
hx Q{V|{yV^y
hy l\jf]BHX'
8x[q[
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 /3'>MRzR
yscale = 2, :1=mNrg
color = gray, g@KS\.m]
width = 3, <wc=SMmO
maxconnect = 1, -i7W|X"
"N_dop (right scale)" ^~8l|d_
@R(6w{h9
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 Sh}AGNE'
color = red, T'0Ot3m`
maxconnect = 1, !限制图形区域高度,修正为100%的高度 s3Y
\,9\
width = 3,
&-s!ko4z
"pump" q/<.^X
B7_:,R.l
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 #*1\h=bzmW
color = blue, 2Pasmh
maxconnect = 1, ?UQE;0 B
width = 3, 0:Ak4L6k
"signal" x^;nQas;
DpoRR`
N:Q}Lil
; ------------- %v4/.4sR,;
diagram 5: !输出图表5 hA/K>Z
sq\oatMw[
"TransitionCross-sections" =0MW+-
#p6#,PZ
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) wYOSaGyZ0I
aKhI|%5kA
x: 1450, 2050 X+
h|sy
"wavelength(nm)", @x jx+%X\zokA
y: 0, 0.6 uJ {N?
"cross-sections(1e-24 m²)", @y Q Y/36gK
frame +}J2\!Jw
hx Y_xPr%%A
hy -{-w5_B$
<