切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 2424阅读
    • 1回复

    [原创]RP Fiber Power仿真设计掺铥光纤激光器代码详解 [复制链接]

    上一主题 下一主题
    离线小火龙果
     
    发帖
    932
    光币
    2176
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-05-28
    (* g9GE0DbT`  
    Demo for program"RP Fiber Power": thulium-doped fiber laser, r}D`15IHJ  
    pumped at 790 nm. Across-relaxation process allows for efficient <`H:Am`  
    population of theupper laser level. JgYaA*1X  
    *)            !(*  *)注释语句 aR*z5p2-w  
    ]*[S# Jk  
    diagram shown: 1,2,3,4,5  !指定输出图表 G?'L1g[lc  
    ; 1: "Powersvs. Position"     !分号是注释;光纤长度对功率的影响 DE."XSni  
    ; 2:"Variation of the Pump Power"  !泵浦光功率变化对信号输出功率的影响 S7E:&E&  
    ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 S[X bb=n  
    ; 4:"Transverse Profiles"             !横向分布,横坐标为半径位置 QmT]~4PqS  
    ; 5:"Transition Cross-sections"    !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 -UUP hGC  
    }"Hf/{E$_"  
    include"Units.inc"         !读取“Units.inc”文件中内容 1UyI.U]  
    Kn=P~,FaG3  
    include"Tm-silicate.inc"    !读取光谱数据 #*}4=  
    'WxcA)z0cQ  
    ; Basic fiberparameters:    !定义基本光纤参数 {j ${i  
    L_f := 4 { fiberlength }      !光纤长度 w KXKc\r  
    No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 ran Q_\  
    r_co := 6 um { coreradius }                !纤芯半径 <CzH'!FJN  
    N_Tm := 100e24 { Tmdoping concentration }  !纤芯Tm离子掺杂浓度 f{^C+t{r  
    ?J%$;"q  
    ; Parameters of thechannels:                !定义光信道 z)]_(zZ^  
    l_p := 790 nm {pump wavelength }                !泵浦光波长790nm MFiX8zwhx+  
    dir_p := forward {pump direction (forward or backward) }   !前向泵浦 Vyu0OiGcR  
    P_pump_in := 5 {input pump power }                    !输入泵浦功率5W $@}6P,mg  
    w_p := 50 um {radius of pump cladding }               !包层泵浦相应的半径 50um `[VoW2CLH+  
    I_p(r) := (r <=w_p) { pump intensity profile }          !泵浦光强度分布 y5BNHweaRb  
    loss_p := 0 {parasitic losses of pump wave }           !泵浦光寄生损耗为0 D0lgKQ  
    6$ 9n_AS  
    l_s := 1940 nm {signal wavelength }                   !信号光波长1940nm qyp"q{k0  
    w_s := 7 um                          !信号光的半径 UT==x<  
    I_s(r) := exp(-2 *(r / w_s)^2)            !信号光的高斯强度分布 0Evmq3,9  
    loss_s := 0                            !信号光寄生损耗为0 FL/@e$AK  
    bn~=d@'  
    R_oc := 0.70 {output coupler reflectivity (right side) }      !输出耦合反射率 E`u=$~K  
    d]0fgwwGC  
    ; Function for defining themodel:   !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 2Z\6xb|u  
    calc |9~{&<^X  
      begin 2\CFt;fk  
        global allow all;                   !声明全局变量 ;]KGRT  
        set_fiber(L_f, No_z_steps, '');        !光纤参数 D(@#Gd\Z@  
        add_ring(r_co, N_Tm); [-{L@  
        def_ionsystem();              !光谱数据函数 jxZ R%D  
        pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p);  !泵浦光信道 K /g\x0  
        signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward);      !前向信号光信道 #gUM%$  
        signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward);    !后向信号光信道 `:}GE@]  
        set_R(signal_fw, 1, R_oc);                                 !设置反射率函数 Ac^}wXp  
        finish_fiber();                                   `k a!`nfo  
      end; 1Xu\Tm\Ux  
    /V$ [M  
    ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 g$EjIHb  
    show "Outputpowers:"                                   !输出字符串Output powers: CJ {?9z@$.  
    show"pump:     ", P_out(pump):d3:"W"  !输出字符串pump:和计算值(格式为3个有效数字,单位W) hz>&E,<8q  
    show"signal:   ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) $s)G0/~W  
    R`:Y&)c_$  
    UqsVqi h(  
    ; ------------- r*p<7  
    diagram 1:                   !输出图表1 6}K|eUak/  
    z"Gk K T  
    "Powers vs.Position"          !图表名称 !FA^~  
    [8^j wnAYS  
    x: 0, L_f                      !命令x: 定义x坐标范围 H9x xId?3u  
    "position infiber (m)", @x      !x轴标签;@x 指示这些字符串沿坐标轴放置 L/"u,~[  
    y: 0, 15                      !命令y: 定义y坐标范围 q/6d^&  
    y2: 0, 100                    !命令y2: 定义第二个y坐标范围 /H:'(W_b;  
    frame          !frame改变坐标系的设置 QG4#E$ c  
    legpos 600, 500  !图行在图表窗口中的位置(相对于左上角而言) =L 7scv%i  
    hx             !平行于x方向网格 /IxMRi=  
    hy              !平行于y方向网格 "6gu6f  
    H8`K?SXU  
    f: P(pump, x),    !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 V+nqQ~pJ&  
      color = red,  !图形颜色 0"ZB|^c=  
      width = 3,   !width线条宽度 V2u^sy  
      "pump"       !相应的文本字符串标签 :eo2t>zF-<  
    f: P(signal_fw, x),  !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 Hd U1gV>  
      color = blue,     eg3zp gZ  
      width = 3, WW:@%cQ@  
      "fw signal" q-KN{y/  
    f: P(signal_bw, x),   !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 3R !Mfz*  
      color = blue, Vv B%,_\  
      style = fdashed, #W @6@Mv  
      width = 3, &s_[~g<  
      "bw signal" PxM]3Aoa  
    THi*'D/  
    f: 100 * n(x, 2),    !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 !}9k @=[  
      yscale = 2,            !第二个y轴的缩放比例 {-PD3 [f"  
      color = magenta, g|9' Lk  
      width = 3, pa~.[cBI  
      style = fdashed, 1Yo9Wf;vP  
      "n2 (%, right scale)" _ncqd,&z  
    &DYHkG  
    f: 100 * n(x, 3),          !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 J-:\^uP  
      yscale = 2, Dr^#e  
      color = red, f[6;)ZA  
      width = 3, /VgA}[%y  
      style = fdashed, GO.mT/rB  
      "n3 (%, right scale)" %4Y/-xF}9,  
    q=M!YWz  
    9*h?g+\  
    ; ------------- z:ue]7(.  
    diagram 2:                    !输出图表2 DB We>Ef(  
    6 wYd)MDLL  
    "Variation ofthe Pump Power" npkE [JE:  
    f\nF2rlu  
    x: 0, 10 L%# #U'e3  
    "pump inputpower (W)", @x f]tc$`vb  
    y: 0, 10 ZZL.&Ho  
    y2: 0, 100 :EJ+#  
    frame _n,Ye&m  
    hx 6Z]* ce<r  
    hy ;?"]S/16,  
    legpos 150, 150 _Y4%Fv>@  
    Vahfz8~w/  
    f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 \{ r%.G  
      step = 5, /XEUJC4  
      color = blue, OGw =e{  
      width = 3, ftw\oGrS  
      "signal output power (W, leftscale)",     !相应的文本字符串标签 Cu3^de@h  
      finish set_P_in(pump, P_pump_in) 9+)5#!0  
    H4ml0SS^  
    f: (set_P_in(pump,x); 100 * n_av(2)),   !改变泵浦信号功率对能级2上激活粒子占比的影响 *.#d'~+  
      yscale = 2, vn}:$|r$J  
      step = 5, UIc )]k%  
      color = magenta, ak 94"<p  
      width = 3, `rzgC \  
      "population of level 2 (%, rightscale)", Nih8(pbe  
      finish set_P_in(pump, P_pump_in) ~L)9XK^15  
    PE4#dx^  
    f: (set_P_in(pump,x); 100 * n_av(3)),   !改变泵浦信号功率对能级3上激活粒子占比的影响 $TyV< G  
      yscale = 2, #]>Z4=]v  
      step = 5, y=_8ae}aD~  
      color = red, (%=[J/F/  
      width = 3, KP `{ UD)  
      "population of level 3 (%, rightscale)", g)c<\%  
      finish set_P_in(pump, P_pump_in) 8XZS BR(Z  
    Hy`Ee7>  
    f'` QW@U  
    ; ------------- 0Ah'G  
    diagram 3:                         !输出图表3 ^vPM\qP#g  
    r9 G}[# DO  
    "Variation ofthe Fiber Length" [LDsn]{  
    FvQ>Y')R7Z  
    x: 0.1, 5 Bj5_=oo+d  
    "fiber length(m)", @x %g1:yx  
    y: 0, 10 K;Qlg{v  
    "opticalpowers (W)", @y lArYlR }  
    frame T{-<G13  
    hx Goa0OC,  
    hy ]f#1G$  
    W'WZ@!!  
    f: (set_L(x);P_out(signal_fw)),     !改变光纤长度对信号光输出功率的影响 wN'Q\l+  
      step = 20,             N]f"+  
      color = blue, [9dW9[Z+!  
      width = 3, N) D;)ZH  
      "signal output" }{/3yXk[G  
    J%]< /J  
    ;f: (set_L(x);P_out(pump)),                     !改变光纤长度对泵浦信号输出功率的影响 `IL''eJug_  
       step = 20, color = red, width = 3,"residual pump" ?hu}wl)  
    QS.t_5<U  
    ! set_L(L_f) {restore the original fiber length } Q'xZ\t  
    S?TyC";!  
    =g)|g+[H  
    ; ------------- |t](4  
    diagram 4:                                  !输出图表4 &} %rZU  
    ig|o l*~  
    "TransverseProfiles" E{+V_.tlu  
    cYHHCaCS  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) &cy @Be}|T  
    |]FJfMX  
    x: 0, 1.4 * r_co /um 4mNg(w=NF  
    "radialposition (µm)", @x sswYwU  
    y: 0, 1.2 * I_max *cm^2 )1f8 H,q^  
    "intensity (W/ cm&sup2;)", @y eaSf[!24"  
    y2: 0, 1.3 * N_Tm F#d`nZ=M  
    frame l Q/u#c$n  
    hx (prqo1e@  
    hy 5y3V duE  
    "W!Uxc  
    f: N_dop(1, x * um,0),      !掺杂浓度的径向分布 DLMM1 A  
      yscale = 2, mc37Y.  
      color = gray, lU6?p")F1  
      width = 3, Wc] L43u  
      maxconnect = 1,  n *Y+y  
      "N_dop (right scale)" |-kU]NJFR  
    'Bul_D4B  
    f: I(pump, -1, x *um, 0) * cm^2,    !泵浦光沿光纤径向的强度分布 aN n\URR  
      color = red, N pu#.)G  
      maxconnect = 1,           !限制图形区域高度,修正为100%的高度 6, =oTmFP  
      width = 3, Lckb*/jV&  
      "pump" 6R_G{AWLL  
    H#yBWvj*H  
    f: I(signal_fw, -1,x * um, 0) * cm^2,  !信号光沿光纤径向的强度分布 a W1y0  
      color = blue, :mOHR&2xR%  
      maxconnect = 1, ca~nfo  
      width = 3, doeYc  
      "signal" w=]id'`?q  
    M A9Oi(L)K  
    B5FRe'UC  
    ; ------------- %p?+r  
    diagram 5:                                  !输出图表5 =2-!ay:  
    R`%C]uG  
    "TransitionCross-sections" _; 7{1n  
    k;aV4 0N9  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) aE]/w1a  
    !2]eVO  
    x: 1450, 2050 !{hC99q6  
    "wavelength(nm)", @x ~o"VZp  
    y: 0, 0.6 ShFC@)<lJ  
    "cross-sections(1e-24 m&sup2;)", @y vE4ce  
    frame >\J({/ #O  
    hx WKjE^u  
    hy TCb 7-s  
    8HL$y-F  
    f: s12_Tm(x * nm) /1e-24,      !Tm3+吸收截面与波长的关系 0M[O(.x  
      color = red, iv3=J   
      width = 3, jS_fwuM  
      "absorption" {& Pk$Q!  
    f: s21_Tm(x * nm) /1e-24,  !Tm3+发射截面与波长的关系 fU?P__zU4  
      color = blue, cu)ssT  
      width = 3, 4.>rd6BAN-  
      "emission" ="yN4+0-p  
    2QU ZBrs s  
     
    分享到
    离线lileisgsz
    发帖
    14
    光币
    69
    光券
    0
    只看该作者 1楼 发表于: 2021-09-28
    感谢,视频上有点看不清楚