(* !m6=Us
Demo for program"RP Fiber Power": thulium-doped fiber laser, k]~|!`
pumped at 790 nm. Across-relaxation process allows for efficient g4}K6)@
population of theupper laser level. F`M`c%
*) !(* *)注释语句 g^[BnP)I
v?s%qb= T
diagram shown: 1,2,3,4,5 !指定输出图表 >N-l2?rE
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 x/uC)xm
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 *nlDN4Y[
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 } T&~DVM
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 2!?=I'uMA
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 /5m ~t.Z9M
_ pO1XM
include"Units.inc" !读取“Units.inc”文件中内容 wkKSL
A?"/ >LM
include"Tm-silicate.inc" !读取光谱数据 O7z5,-
g<^-[w4/
; Basic fiberparameters: !定义基本光纤参数 Y}
crE/
L_f := 4 { fiberlength } !光纤长度 (x140_TH~
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 %6E:SI4
r_co := 6 um { coreradius } !纤芯半径 8XD_p);Oy
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 Huf;A1.
%nhE588xf
; Parameters of thechannels: !定义光信道 StU9r0`
l_p := 790 nm {pump wavelength } !泵浦光波长790nm ]:.9:RmEV
dir_p := forward {pump direction (forward or backward) } !前向泵浦 X{8g2](z.
P_pump_in := 5 {input pump power } !输入泵浦功率5W
495A\8#
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um w:/QB-`%
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 s_cur-
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 J=Hyoz+9
li9>zjz
l_s := 1940 nm {signal wavelength } !信号光波长1940nm 5#Et.P'
w_s := 7 um !信号光的半径 3Uy(d,N
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 ')>D*e
loss_s := 0 !信号光寄生损耗为0 PH>`//D%n?
%a|m[6+O
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 E(Zm6~
M?QX'fia
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 G3j'A{
calc Le*gdoW .
begin hE;BT>_dn
global allow all; !声明全局变量 '1rO&F
set_fiber(L_f, No_z_steps, ''); !光纤参数 h
I7ur
add_ring(r_co, N_Tm); 4nKlW_{,
def_ionsystem(); !光谱数据函数 }Apn.DYbbf
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 y=LN|vkQ
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 z4 KKt&
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 3c[]P2Bh
set_R(signal_fw, 1, R_oc); !设置反射率函数 ?63ep:QEk
finish_fiber(); .~fov8
end; (W5JVk_o
9{8xMM-
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 'M,O(utGv
show "Outputpowers:" !输出字符串Output powers: t(p}0}Pp
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) `&i\q=u+
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) R})b%y`]
i= jYl
R<;;Ph
; ------------- $y,tR.5.)[
diagram 1: !输出图表1 bp>M&1^KY
sE! $3|Q
"Powers vs.Position" !图表名称 a LJ
d1Q
R7/ET"
x: 0, L_f !命令x: 定义x坐标范围 F"0=r
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 \{;3'<
y: 0, 15 !命令y: 定义y坐标范围 $Z<x r
y2: 0, 100 !命令y2: 定义第二个y坐标范围 $^`@ lyr
frame !frame改变坐标系的设置 a V#phP
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) 0A')zKik
hx !平行于x方向网格 96i#
hy !平行于y方向网格 i9D<jkc
tv%B=E!r
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 </D )i
color = red, !图形颜色 m^>v~Q~~
width = 3, !width线条宽度 pyp0SGCM:
"pump" !相应的文本字符串标签 m(IyW734I
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 y#i` i
color = blue, _ O;R
width = 3, #Ve@D@d[
"fw signal" {_UOS8j7
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 Z u/w>
color = blue, WJy\{YAG
style = fdashed, Dq+S'x~>
width = 3, 8~AL+*hn
"bw signal" v(p<88.!m
~W-5-Nl{s
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 3EH7HW
yscale = 2, !第二个y轴的缩放比例 ;*cCaB0u
color = magenta, !Y10UmMu
width = 3, PxA
OKUpI
style = fdashed, 4@QR2K|
"n2 (%, right scale)" #U.6HBuQa
1AQy8n*
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 Qcn;:6_&W
yscale = 2, g0#w
4rGF)
color = red, fWyXy%Qq
width = 3, L| ;WE=
style = fdashed, N1hj[G[H"
"n3 (%, right scale)" !,R=6b$E5
+*wr=9>
Ho1 V)T>
; ------------- 9ePom'1f1
diagram 2: !输出图表2 >65\
KBa0
"Variation ofthe Pump Power" k|^`0~E
U#|6n ,
x: 0, 10 3Scc"9]
"pump inputpower (W)", @x XrI$@e*
y: 0, 10 a3L-q>h
y2: 0, 100 (wf3HEb_
frame 0wt4C% .0
hx w<Bw2c
hy `eeA,K_
legpos 150, 150 "O~kIT?/v
E6zPN?\ <
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 mJYD"WgY
step = 5, <GLn!~Px@5
color = blue, 6zI}?KZf
width = 3, gBOF#"-
"signal output power (W, leftscale)", !相应的文本字符串标签 nPk&/H%5hn
finish set_P_in(pump, P_pump_in) d>V#?1$h
%e:[[yq)G
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 Kl<NAv%j
yscale = 2, 7"1]5\p^g
step = 5, \\;y W~
color = magenta, t9)S^: 0
width = 3, $laUkD#vz
"population of level 2 (%, rightscale)", A9MTAm{
finish set_P_in(pump, P_pump_in) z0Z1J8Qq6.
FH%M5RD
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 'mZQ}U=<
yscale = 2, qfjUJ/
step = 5, r1 b"ta
color = red, FIUQQQ\3
width = 3, eJeL{`NS
"population of level 3 (%, rightscale)", d.HcO^
finish set_P_in(pump, P_pump_in) T3I{D@+0
!j}L-1*{ l
E6z&pM8<8
; ------------- kK/XYC
0D
diagram 3: !输出图表3 >`p?
CE
d{"@<0i?
"Variation ofthe Fiber Length" hVAatn[
hzT)5'_
x: 0.1, 5 %m+7$iD
"fiber length(m)", @x P#D|CP/Cu
y: 0, 10 Q>71uM%e`
"opticalpowers (W)", @y =2}V=E/85
frame 8H|ac[hXK2
hx JKy~'>Q
hy 6OoOkNWF
*F!1xyg
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 k SgE_W)
step = 20, _?bO
/y_y
color = blue, /4@
[^}x
width = 3, O<E8,MCA[a
"signal output" x=+>J$~Pb
jAU&h@
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 K)5j
step = 20, color = red, width = 3,"residual pump" Sp*4Z`^je
CD%Cb53
! set_L(L_f) {restore the original fiber length } tzv4uD]
{ {:Fs
6P:fM Y
; ------------- DEbMb6)U
diagram 4: !输出图表4 K/j u=>
@_7rd
"TransverseProfiles" [ D.%v~j
-y{(h%6
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) o\]U;#YD
tP"6H-)X&
x: 0, 1.4 * r_co /um v1Q78P
"radialposition (µm)", @x b%vIaP|]B
y: 0, 1.2 * I_max *cm^2 boHbiE
"intensity (W/ cm²)", @y +vxOCN4}v
y2: 0, 1.3 * N_Tm _ Yc"{d3S
frame !zllvtK4
hx r7L.W
hy cpALs1j:
{+nf&5E 6
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 U^7bj
yscale = 2, [`s0 L#
color = gray, R PoBF~>
width = 3, qDYNY`
maxconnect = 1, _>rM[\|X
"N_dop (right scale)" ' QMcQvU
vhAgX0k
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 'O\ y7"a
color = red, O5Z9`_9<
maxconnect = 1, !限制图形区域高度,修正为100%的高度 ^g5E&0a`g
width = 3, EwkSUA>Tm
"pump" "|[9 Q?
d~QM@<SV
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 Rb. vyQ
color = blue, =B5{ 7g\
maxconnect = 1, U$~6V%e
width = 3, y_w
<3
"signal" I:G8B5{J
'4<o&b^yQ
k sXQ}BE
; ------------- euVDrJ^
diagram 5: !输出图表5 "lLh#W1d
Bv!{V)$
"TransitionCross-sections" J"LLj*,0"
y_}vVHT,
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) [P =P8-5
NjpWK;L
x: 1450, 2050 6lv@4R^u
"wavelength(nm)", @x 2#sFY/@
y: 0, 0.6 B^r?N-Z A
"cross-sections(1e-24 m²)", @y Q?1J<(oq9
frame 6]~/`6Dub
hx "a(4])
hy E;{RNf|
q,O_y<uw
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 l nHY?y7{
color = red, \)r M C]
width = 3, -grmmE]/
"absorption" pu]U_Ll@
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 /51$o\4S
color = blue, kN
Ll|in@
width = 3, !p!Qg1O6o
"emission" A,~KrRd
n]`]gLF\i