(* dWqn7+:
Demo for program"RP Fiber Power": thulium-doped fiber laser, 98m|&7
pumped at 790 nm. Across-relaxation process allows for efficient 2wf&jGHs
population of theupper laser level. 8HF^^Cva
*) !(* *)注释语句 _n&Nw7d2
M
5J5si<v25
diagram shown: 1,2,3,4,5 !指定输出图表 K*6 "c.D
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 /--p#G h'
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 n|`3d~9$&
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 "4j~2{{F
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 "gM^o
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 HpwMm^
(IJNBJb
include"Units.inc" !读取“Units.inc”文件中内容 E?m~DYnU
%!|w(Povq
include"Tm-silicate.inc" !读取光谱数据 ;*K4{wvG
;C]Ufk
; Basic fiberparameters: !定义基本光纤参数 BD g]M/{
L_f := 4 { fiberlength } !光纤长度 ``o]i{x
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 *kr/,_K
r_co := 6 um { coreradius } !纤芯半径 V\~.
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 ^aFm6HS1
{.Tx70kn
; Parameters of thechannels: !定义光信道 :yay:3qv
l_p := 790 nm {pump wavelength } !泵浦光波长790nm N2r zHK
dir_p := forward {pump direction (forward or backward) } !前向泵浦 n:j'0WW
P_pump_in := 5 {input pump power } !输入泵浦功率5W dZM^?rq
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um V35Vi6*p
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 qsj{0 Go
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 F_-Lu]*
f~IJ4T2#N
l_s := 1940 nm {signal wavelength } !信号光波长1940nm b*|~F
w_s := 7 um !信号光的半径 37AVk`a
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 0^;2
loss_s := 0 !信号光寄生损耗为0 :=QX ^*
L"_XWno
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 =KRM`_QShg
K!|eN_1A
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 [K{{P|(q
calc <}a?<):S
begin O"m7r ds
global allow all; !声明全局变量 9>}&dQ8
set_fiber(L_f, No_z_steps, ''); !光纤参数 K+g[E<x\=
add_ring(r_co, N_Tm); 'H1~Zhv
def_ionsystem(); !光谱数据函数 "CJVtO
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 UBvp32p
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 t;O)
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 ^$c#L1
C
set_R(signal_fw, 1, R_oc); !设置反射率函数 ,0l
Od<
finish_fiber(); \Lx=iKs<
end; =bKDD<(
'K[ml ?_
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 n.%QWhUB
show "Outputpowers:" !输出字符串Output powers: oOFTQB_6
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) 24sMX7Q,i
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) (f/(q-7VWt
^W |YE72Y
*D5 xbkH=.
; ------------- ^'UM@dd?!
diagram 1: !输出图表1 ;?h[WIy
K7}.# *% ~
"Powers vs.Position" !图表名称 0cG'37[
rxCzPF
x: 0, L_f !命令x: 定义x坐标范围 hA=uoe\
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 jP@ @<dt
y: 0, 15 !命令y: 定义y坐标范围 2D\pt
y2: 0, 100 !命令y2: 定义第二个y坐标范围 Y&2FH/(M
frame !frame改变坐标系的设置 .#EU@Hc
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) yi7.9/;a
hx !平行于x方向网格 h*w9{[L
hy !平行于y方向网格 ;QI9 OcE@/
6v%yU3l
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 )g5?5f;
color = red, !图形颜色 F)3+IuY
width = 3, !width线条宽度 '/Aq2
"pump" !相应的文本字符串标签 An2>]\L
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率
]jT}]9Q$
color = blue, VKa+[
width = 3, x}G:n[B7_V
"fw signal" "t|)Kl
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 }YwaN'3p!
color = blue, i_qY=*a?y
style = fdashed, *WE8J#]d
width = 3, CmEqo;Is
"bw signal" zJQh~)
I~,.@{4
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 @K;b7@4y
yscale = 2, !第二个y轴的缩放比例 eORXyh\K
color = magenta, Pnytox
width = 3, IjI'Hx
style = fdashed, 0U42QEG2
"n2 (%, right scale)" Nd8>p.iqO
3%v)!dTa<^
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 bY_'B5$.^2
yscale = 2, 7x)Pt@c
color = red, Okq,p=D6
width = 3, )O'LE&kQ|
style = fdashed, ^PG"
"n3 (%, right scale)" +!lDAkW0
;m7V]h? R
WJ{Iv] }9
; ------------- <4r8H-(%
diagram 2: !输出图表2 ZTmy} @l
Xhe& "rM
"Variation ofthe Pump Power" <J509j
ki1(b]rf
x: 0, 10 \ `Hp/D1
"pump inputpower (W)", @x c^}G=Z1@
y: 0, 10 RZ6y5
y2: 0, 100 *g5bdQ:Av~
frame 161P%sGx2
hx <rC%$tr
hy \, R;
legpos 150, 150 D
e&,^"%
w8lrpbLh
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 5 -i,Tx&:
step = 5, eV7;#w<]
color = blue, A6(Do]M
width = 3, @O"7@%nu
"signal output power (W, leftscale)", !相应的文本字符串标签 z'l$;9(y
finish set_P_in(pump, P_pump_in) t:wBh'K~R8
vQ rxx
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 v[L+PD
U
yscale = 2, Jn+ -G4h$
step = 5, n#!c!EfG
color = magenta, 77\+V 0cF
width = 3, )KZMRAT-
"population of level 2 (%, rightscale)", |5u~L#P
finish set_P_in(pump, P_pump_in) !*]i3 ,{7v
t6Iy5)=zY
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 2 "&GH1
yscale = 2, Yxq!7J
step = 5, s;A7:_z#7
color = red, =3-=p&*
width = 3, $J1`.Q>)4
"population of level 3 (%, rightscale)", ~z^?+MgZ2
finish set_P_in(pump, P_pump_in) )kep:-wm
j]Gn\QF
b<FE
; ------------- O Z
./suR)
diagram 3: !输出图表3 =$OGHc
Fz#@ [1,
"Variation ofthe Fiber Length" /8;m.J>bf
'$FF/|{
x: 0.1, 5 x2v0cR"KL
"fiber length(m)", @x k4Q>J,k
y: 0, 10 Kx9u|fp5
"opticalpowers (W)", @y @i#JlZM_
frame *}2L4]
hx S]3CRJU3`
hy (dlp5:lQz
<7P[)X_
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 \'~
E%=Q
step = 20, Zn9tG:V
color = blue, k`5I"-e
width = 3, *)K\&h<{
"signal output" J9lZ1,22
Vn5T Jw
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 !Cgj
>=
step = 20, color = red, width = 3,"residual pump" hs7!S+[.$$
ZR1U&<0c@
! set_L(L_f) {restore the original fiber length } [ar0{MPYd
<,CrE5Pl
xMr,\r'+
; ------------- prZ
,4\
diagram 4: !输出图表4 mx^Ga=:
?
w_{tS\
"TransverseProfiles" ~| j
eNT
tp`1S+'~j
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) ?tYZ/
cWAw-E5
x: 0, 1.4 * r_co /um R;DU68R
"radialposition (µm)", @x =}Tm8b0
y: 0, 1.2 * I_max *cm^2 C8K2F5c5
"intensity (W/ cm²)", @y OZ\6qMH3e
y2: 0, 1.3 * N_Tm 9gg{i6
frame @1CXc"IgA
hx -,bnj^L
hy >!Yuef
<P
ET.jjV
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 @v2<T1UC
yscale = 2, f$dPDbZQ
color = gray, )JzY%a SP
width = 3, gGMfy]]R
maxconnect = 1, w(@r-2D"
"N_dop (right scale)" >._d2.Q'
n^nE&'[?0g
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 krfXvQJwJ
color = red, oz&`3`
maxconnect = 1, !限制图形区域高度,修正为100%的高度 9JFN8Gf*)
width = 3, BpIyw
"pump" ~&RTLr#\*M
*I 1 H
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 ~xd?y*gk;
color = blue, AYnPxiW|
maxconnect = 1, L('1NN2
width = 3, wsmgkg
"signal" os5$(
*$=i1w
6nTM~]5.
; ------------- e(7#>O%1
diagram 5: !输出图表5 brA#p>4]Wf
[1rQ'FBB^1
"TransitionCross-sections" =e6pv#
(p2`ofj
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) \\SQACN
e \Qys<2r
x: 1450, 2050 DZ|*hQU>K
"wavelength(nm)", @x m[}P
y: 0, 0.6 G|,&V0*
"cross-sections(1e-24 m²)", @y g`pq*D
frame 2W+~{3[#
hx YF{MXK}
hy 8$NVVw]2,
jZ.yt+9
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 dWd%>9}
color = red, 'OnfU{Ai
width = 3, ?("O.<
"absorption" t2,II\Kl
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 4|PWR_x
color = blue, wlNL;W@w
width = 3, $5pCfW8>
"emission" 5&8E{YXr
v*.R<-X: