切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 2550阅读
    • 1回复

    [原创]RP Fiber Power仿真设计掺铥光纤激光器代码详解 [复制链接]

    上一主题 下一主题
    离线小火龙果
     
    发帖
    932
    光币
    2176
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-05-28
    (* gJBw6'Z  
    Demo for program"RP Fiber Power": thulium-doped fiber laser, jT=fq'RK  
    pumped at 790 nm. Across-relaxation process allows for efficient ^2C \--=;  
    population of theupper laser level. R1vuf*A5,  
    *)            !(*  *)注释语句 H[2W(q6  
    .OcI.1H[  
    diagram shown: 1,2,3,4,5  !指定输出图表 $|m'~AmI  
    ; 1: "Powersvs. Position"     !分号是注释;光纤长度对功率的影响 4@r76v}{  
    ; 2:"Variation of the Pump Power"  !泵浦光功率变化对信号输出功率的影响 .s-*aoj  
    ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 {R8)DK  
    ; 4:"Transverse Profiles"             !横向分布,横坐标为半径位置 Z;~7L*|  
    ; 5:"Transition Cross-sections"    !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 \=uD)9 V  
    OF/hD2V  
    include"Units.inc"         !读取“Units.inc”文件中内容 +$$5Cv5#<&  
    +vt?3i\^.  
    include"Tm-silicate.inc"    !读取光谱数据 N$N 7aE$  
    9";qR,  
    ; Basic fiberparameters:    !定义基本光纤参数 pv8vW'G\E  
    L_f := 4 { fiberlength }      !光纤长度 oy\U\#k   
    No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 ]w_JbFmT  
    r_co := 6 um { coreradius }                !纤芯半径 H5Bh?mw2  
    N_Tm := 100e24 { Tmdoping concentration }  !纤芯Tm离子掺杂浓度 yb6gYN  
    %l[]n;*$  
    ; Parameters of thechannels:                !定义光信道 c2Wp 8l  
    l_p := 790 nm {pump wavelength }                !泵浦光波长790nm "7J38Ej\  
    dir_p := forward {pump direction (forward or backward) }   !前向泵浦 -% \LW1  
    P_pump_in := 5 {input pump power }                    !输入泵浦功率5W ,!dVhG#  
    w_p := 50 um {radius of pump cladding }               !包层泵浦相应的半径 50um x %W%  
    I_p(r) := (r <=w_p) { pump intensity profile }          !泵浦光强度分布 -QK- w>  
    loss_p := 0 {parasitic losses of pump wave }           !泵浦光寄生损耗为0 Ug  )eyu  
    4s 6,`-  
    l_s := 1940 nm {signal wavelength }                   !信号光波长1940nm S!66t?vHB  
    w_s := 7 um                          !信号光的半径  kMZo7 y  
    I_s(r) := exp(-2 *(r / w_s)^2)            !信号光的高斯强度分布 5,J.$Sax  
    loss_s := 0                            !信号光寄生损耗为0 uCoy~kt292  
    YI>9C 76L  
    R_oc := 0.70 {output coupler reflectivity (right side) }      !输出耦合反射率 \aN7[>R.Q  
    t:"%d9]  
    ; Function for defining themodel:   !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 35J VF*z  
    calc dU-nE5  
      begin RFPcH8-u7  
        global allow all;                   !声明全局变量 Qs ysy  
        set_fiber(L_f, No_z_steps, '');        !光纤参数 DE+k'8\T  
        add_ring(r_co, N_Tm); qOv`&%txW  
        def_ionsystem();              !光谱数据函数 Y`."=8R~  
        pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p);  !泵浦光信道 X?o6=)SC|  
        signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward);      !前向信号光信道 G > t  
        signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward);    !后向信号光信道 mt~E&Z(A  
        set_R(signal_fw, 1, R_oc);                                 !设置反射率函数 .bUj  
        finish_fiber();                                   PD~vq^@Q  
      end; wLzV#8>  
    86);0EBX  
    ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 =IKgi-l*  
    show "Outputpowers:"                                   !输出字符串Output powers: />wE[`  
    show"pump:     ", P_out(pump):d3:"W"  !输出字符串pump:和计算值(格式为3个有效数字,单位W) .FN 6/N\  
    show"signal:   ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) =]S,p7*7  
    +8Y|kC{9"  
    .03Rp5+v  
    ; ------------- &?}A/(#  
    diagram 1:                   !输出图表1 5O;D\M{>  
    my0iE:  
    "Powers vs.Position"          !图表名称 nok-![  
    @}2EEo#  
    x: 0, L_f                      !命令x: 定义x坐标范围 >pp#>{}  
    "position infiber (m)", @x      !x轴标签;@x 指示这些字符串沿坐标轴放置 v#EFklOP  
    y: 0, 15                      !命令y: 定义y坐标范围 OZA^L;#>  
    y2: 0, 100                    !命令y2: 定义第二个y坐标范围 E 02Y,C  
    frame          !frame改变坐标系的设置 f!H/X%F  
    legpos 600, 500  !图行在图表窗口中的位置(相对于左上角而言) %|j8#09  
    hx             !平行于x方向网格 KcUR /o5K  
    hy              !平行于y方向网格 %=$Knc_!T^  
    vqZBDQ0  
    f: P(pump, x),    !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 n5z|@I`S_  
      color = red,  !图形颜色 q\-P/aN_  
      width = 3,   !width线条宽度 =K_&@|f+B  
      "pump"       !相应的文本字符串标签 Wt=\hixj-  
    f: P(signal_fw, x),  !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 G;d3.ml/aZ  
      color = blue,     FmhAUe  
      width = 3, $ w+.-Tr  
      "fw signal" @1xIph<z  
    f: P(signal_bw, x),   !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 t1G__5wp  
      color = blue, =k>fW7e  
      style = fdashed, YrYmPSb=  
      width = 3, `sDLxgwI  
      "bw signal" =dsEt\ j  
    iXq*EZb"R  
    f: 100 * n(x, 2),    !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 OL%}C*Zq  
      yscale = 2,            !第二个y轴的缩放比例 MiR$N  
      color = magenta, wWSo+40  
      width = 3, ns *:mGh  
      style = fdashed, 3 q J00A  
      "n2 (%, right scale)" 81C;D`!K  
    @biU@[D  
    f: 100 * n(x, 3),          !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 9aNOfs8(  
      yscale = 2, Ql%B=vgKL  
      color = red, {> <1K6t  
      width = 3, K|l}+:k  
      style = fdashed, }+Q4s]  
      "n3 (%, right scale)" J_fs}Y1q\  
    (z8 ;J> 7  
    JU.!<  
    ; ------------- ; O(Ml}z  
    diagram 2:                    !输出图表2 uE<8L(*B  
    \<\H1;=.@'  
    "Variation ofthe Pump Power" ' MBXk2?b  
    a 9{:ot8,  
    x: 0, 10 8};kNW^2m  
    "pump inputpower (W)", @x =<7z :]  
    y: 0, 10  wlsx|  
    y2: 0, 100 seRf q&  
    frame cy)-Rfg  
    hx lSlZ^.&  
    hy QqRF?%7q"q  
    legpos 150, 150 I$p1^8~L  
    0kNKt(_  
    f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 ck%YEMs  
      step = 5, M@P%k`6C  
      color = blue, ^yqRa&  
      width = 3, !h|,wq]k  
      "signal output power (W, leftscale)",     !相应的文本字符串标签 MBU|<tc  
      finish set_P_in(pump, P_pump_in) @x!,iT  
    _x1W\#  
    f: (set_P_in(pump,x); 100 * n_av(2)),   !改变泵浦信号功率对能级2上激活粒子占比的影响 qp/1 tC`  
      yscale = 2, bJ 2>@|3*  
      step = 5, vz>9jw:Y  
      color = magenta, c;Tp_e@  
      width = 3, U\B9Ab  
      "population of level 2 (%, rightscale)", 9(O eH7  
      finish set_P_in(pump, P_pump_in) ]jC{o,?s  
    HfgTc h  
    f: (set_P_in(pump,x); 100 * n_av(3)),   !改变泵浦信号功率对能级3上激活粒子占比的影响 ot[ZFF\  
      yscale = 2, |JF,n~n  
      step = 5, /]'&cD 1  
      color = red, J(@" 7RX  
      width = 3, q g=`=]j  
      "population of level 3 (%, rightscale)", 2 oV6#!{Z  
      finish set_P_in(pump, P_pump_in) 1^*ogMe  
     J]XLWAM  
    TWGn: mi  
    ; ------------- iE HWD.u  
    diagram 3:                         !输出图表3 w8R7Ksn(  
    C?>d$G8  
    "Variation ofthe Fiber Length" =0] K(p,  
    yP"}(!~m  
    x: 0.1, 5 axph]o@ y@  
    "fiber length(m)", @x G4*&9Wo  
    y: 0, 10 8s2y!pn7Q  
    "opticalpowers (W)", @y r7g@(K  
    frame NK/y,f6  
    hx LKp;sV  
    hy #n{4f1TZ  
    Anu:  
    f: (set_L(x);P_out(signal_fw)),     !改变光纤长度对信号光输出功率的影响 6vAZLNG3  
      step = 20,             9aLd!P uTN  
      color = blue, ar\|D\0V  
      width = 3, =pi,]m  
      "signal output" )Sb-e(sl  
    `ovMfL.u  
    ;f: (set_L(x);P_out(pump)),                     !改变光纤长度对泵浦信号输出功率的影响 2 G2+oS ?  
       step = 20, color = red, width = 3,"residual pump" jT$J~M pHh  
    p7-\a1P3  
    ! set_L(L_f) {restore the original fiber length } 3IQI={:k|D  
    xWXLk )A  
    %a WRXW@c  
    ; ------------- <=GZm}/]N  
    diagram 4:                                  !输出图表4 1uN;JN `_  
    .=Oww  
    "TransverseProfiles" {[tmz;C  
    X>yDj]*4P  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) ukEJD3i  
    / 7\q#qIm:  
    x: 0, 1.4 * r_co /um 035jU'  
    "radialposition (µm)", @x - K?lhu  
    y: 0, 1.2 * I_max *cm^2 oF>`>  
    "intensity (W/ cm&sup2;)", @y ,'HjL:r  
    y2: 0, 1.3 * N_Tm qhvT,"  
    frame B E8_.>  
    hx WwTl|wgvyI  
    hy HQ9tvSc  
    EK=0oy[  
    f: N_dop(1, x * um,0),      !掺杂浓度的径向分布 '_4apyq|  
      yscale = 2, F7O*%y.';  
      color = gray, 8)?&eE'  
      width = 3, C F','gPnc  
      maxconnect = 1, G4 :\6fu  
      "N_dop (right scale)" 3%(r,AD  
    %n9ukc~$p  
    f: I(pump, -1, x *um, 0) * cm^2,    !泵浦光沿光纤径向的强度分布 !ITM:%  
      color = red, 1c#\CO1l  
      maxconnect = 1,           !限制图形区域高度,修正为100%的高度 4hxP`!<  
      width = 3, )'f=!'X  
      "pump" ejyx[CF  
    Hy\q{  
    f: I(signal_fw, -1,x * um, 0) * cm^2,  !信号光沿光纤径向的强度分布 (nq""kO6'  
      color = blue, s<#BxN  
      maxconnect = 1, G \MeJSt*  
      width = 3, tjRw bnT"  
      "signal" ElpZzGj+  
    %La7);SeY  
    %G 2g @2  
    ; ------------- $t^Td<  
    diagram 5:                                  !输出图表5 TA/hj>rV  
    H $Az,-P  
    "TransitionCross-sections" *5oQZ".vA*  
    e#k rr  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) 2HBey  
    3bezYk  
    x: 1450, 2050 @]#[TbNo  
    "wavelength(nm)", @x !y~nsy:&7x  
    y: 0, 0.6 OET/4( C  
    "cross-sections(1e-24 m&sup2;)", @y qF$y p>|#  
    frame ^_\m@   
    hx /D^ g"  
    hy F%$q]J[  
    tlD^"eq4:  
    f: s12_Tm(x * nm) /1e-24,      !Tm3+吸收截面与波长的关系 NY<qoV  
      color = red, t^KQv~  
      width = 3, FO[ s;dmzu  
      "absorption" oKGF'y?A>  
    f: s21_Tm(x * nm) /1e-24,  !Tm3+发射截面与波长的关系 @.a59kP8X  
      color = blue, *rw6?u9I  
      width = 3, c-&Q_lB  
      "emission" ,7s+-sRG  
    Tim/7*vx  
     
    分享到
    离线lileisgsz
    发帖
    14
    光币
    69
    光券
    0
    只看该作者 1楼 发表于: 2021-09-28
    感谢,视频上有点看不清楚