切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 2648阅读
    • 1回复

    [原创]RP Fiber Power仿真设计掺铥光纤激光器代码详解 [复制链接]

    上一主题 下一主题
    离线小火龙果
     
    发帖
    932
    光币
    2176
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-05-28
    (* 60~>f)vu  
    Demo for program"RP Fiber Power": thulium-doped fiber laser, Rr;LV<q+  
    pumped at 790 nm. Across-relaxation process allows for efficient ;aK !eD$  
    population of theupper laser level. ?(NT!es  
    *)            !(*  *)注释语句 QOh w  
    +?5Uy*$  
    diagram shown: 1,2,3,4,5  !指定输出图表 gC_s\WU  
    ; 1: "Powersvs. Position"     !分号是注释;光纤长度对功率的影响 i h$@:^\  
    ; 2:"Variation of the Pump Power"  !泵浦光功率变化对信号输出功率的影响 : ` 6$/DK  
    ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 Eagmafu  
    ; 4:"Transverse Profiles"             !横向分布,横坐标为半径位置 tp0!,ne*  
    ; 5:"Transition Cross-sections"    !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 At[n<8_|  
    %L\{kUam  
    include"Units.inc"         !读取“Units.inc”文件中内容 B:A1W{l  
    LnI{S{]wDh  
    include"Tm-silicate.inc"    !读取光谱数据 :a f;yu  
    peTO-x^a-  
    ; Basic fiberparameters:    !定义基本光纤参数 gcW{]0%L^  
    L_f := 4 { fiberlength }      !光纤长度 mb~=Xyk&  
    No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 zmL~]! ~&  
    r_co := 6 um { coreradius }                !纤芯半径 ^;CR0.4  
    N_Tm := 100e24 { Tmdoping concentration }  !纤芯Tm离子掺杂浓度 !8"$d_=h  
    X@h^T> ["  
    ; Parameters of thechannels:                !定义光信道 il>x!)?o  
    l_p := 790 nm {pump wavelength }                !泵浦光波长790nm rPo\Dz  
    dir_p := forward {pump direction (forward or backward) }   !前向泵浦 x(3 I?#kE  
    P_pump_in := 5 {input pump power }                    !输入泵浦功率5W 1y)$[e   
    w_p := 50 um {radius of pump cladding }               !包层泵浦相应的半径 50um '[=yfh   
    I_p(r) := (r <=w_p) { pump intensity profile }          !泵浦光强度分布 gM;)  
    loss_p := 0 {parasitic losses of pump wave }           !泵浦光寄生损耗为0 msqxPC^I  
    ;oY(I7  
    l_s := 1940 nm {signal wavelength }                   !信号光波长1940nm \Sq"3_m4T  
    w_s := 7 um                          !信号光的半径 74}eF)(me  
    I_s(r) := exp(-2 *(r / w_s)^2)            !信号光的高斯强度分布 we H@S  
    loss_s := 0                            !信号光寄生损耗为0 mOz&6T<|  
    mS)|6=Y  
    R_oc := 0.70 {output coupler reflectivity (right side) }      !输出耦合反射率 HV$9b~(  
    lEyG9Xvi  
    ; Function for defining themodel:   !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 |B1; l<|`  
    calc 9#EHXgz  
      begin ?LV-W  
        global allow all;                   !声明全局变量 <9d-Hz  
        set_fiber(L_f, No_z_steps, '');        !光纤参数 &Xn8oe  
        add_ring(r_co, N_Tm); #E$Z[G]  
        def_ionsystem();              !光谱数据函数 2Pem%HE~P  
        pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p);  !泵浦光信道 /mMAwx  
        signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward);      !前向信号光信道 [ n0##/  
        signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward);    !后向信号光信道 Q2[prrk%j  
        set_R(signal_fw, 1, R_oc);                                 !设置反射率函数 1o;g1Z/  
        finish_fiber();                                   A'~%_}  
      end; Mg a@JA"  
    ~_l6dDJ  
    ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 _Ra<|NVQh  
    show "Outputpowers:"                                   !输出字符串Output powers: dK J@{d  
    show"pump:     ", P_out(pump):d3:"W"  !输出字符串pump:和计算值(格式为3个有效数字,单位W) x:A-p..e  
    show"signal:   ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) ElEv(>G*  
    ##EB; Y  
    H4 }%;m%  
    ; -------------  O ':0V  
    diagram 1:                   !输出图表1 R%Ui6dCLo  
    tL={y*  
    "Powers vs.Position"          !图表名称 't0+:o">:  
    f.aB?\"f6  
    x: 0, L_f                      !命令x: 定义x坐标范围 >op:0on]}  
    "position infiber (m)", @x      !x轴标签;@x 指示这些字符串沿坐标轴放置 z_:eM7]jv  
    y: 0, 15                      !命令y: 定义y坐标范围 }XGMa?WR  
    y2: 0, 100                    !命令y2: 定义第二个y坐标范围 LC,*H0  
    frame          !frame改变坐标系的设置 4GU/V\e|  
    legpos 600, 500  !图行在图表窗口中的位置(相对于左上角而言) n) _dH/"  
    hx             !平行于x方向网格 2qs>Bshf  
    hy              !平行于y方向网格 Hhe{ +W@~  
    ZR;8r Z](  
    f: P(pump, x),    !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 jb|mip@` <  
      color = red,  !图形颜色 ?Do^stq'4  
      width = 3,   !width线条宽度 hzT{3YtY2  
      "pump"       !相应的文本字符串标签 ,67"C2Y  
    f: P(signal_fw, x),  !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 biK)&6|`sa  
      color = blue,     Pl rkgS0J  
      width = 3, ibd$%;bX3  
      "fw signal" P"(z jG9-  
    f: P(signal_bw, x),   !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 KGV.S  
      color = blue, m,W) N9 M  
      style = fdashed, F_A%8)N  
      width = 3,  G"o!}  
      "bw signal" =jg#fdM -  
    jd%Len&p  
    f: 100 * n(x, 2),    !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 @~m=5C  
      yscale = 2,            !第二个y轴的缩放比例 mu6039qy  
      color = magenta, (C8 U   
      width = 3, ]pW86L%  
      style = fdashed, H~A"C'P3#  
      "n2 (%, right scale)" ?M*7@t@  
    o!aLZ3#X  
    f: 100 * n(x, 3),          !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 C`\9c ej  
      yscale = 2,  9R9__w;  
      color = red, 0 HGlf  
      width = 3, S~KS9E~\  
      style = fdashed, y[: ~CL  
      "n3 (%, right scale)" ,Bisu:v6FW  
    X}ZlWJ  
    Vy-28icZ`  
    ; ------------- x(L(l=^"  
    diagram 2:                    !输出图表2 4p.^'2m  
    ' |&>/dyq  
    "Variation ofthe Pump Power" :.*HQt9N  
    D`6iDi t  
    x: 0, 10 95=g Y  
    "pump inputpower (W)", @x !Eq#[Gs  
    y: 0, 10 WfTD7?\dw  
    y2: 0, 100 t)YUPDQ@J  
    frame rh@r\ H@j  
    hx # ;K,,ku x  
    hy Vclr)}5  
    legpos 150, 150 >~_J q|KBB  
    MkwU<ae AB  
    f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 qAoAUD m  
      step = 5, PU W[e%  
      color = blue, {Fbg]'FQ  
      width = 3, > 2#%$lX6  
      "signal output power (W, leftscale)",     !相应的文本字符串标签 93j{.0]X  
      finish set_P_in(pump, P_pump_in) 5sCFzo<=vh  
    +a%xyD:.?  
    f: (set_P_in(pump,x); 100 * n_av(2)),   !改变泵浦信号功率对能级2上激活粒子占比的影响 XAe\s`  
      yscale = 2, 2 P=[  
      step = 5, j&5G\6:  
      color = magenta, ((XE\V\}Z  
      width = 3, 089 k.WG  
      "population of level 2 (%, rightscale)", 7paUpQit  
      finish set_P_in(pump, P_pump_in) #ZJMlJ:q`"  
    aX;A==>  
    f: (set_P_in(pump,x); 100 * n_av(3)),   !改变泵浦信号功率对能级3上激活粒子占比的影响 I,b9t\(6  
      yscale = 2, zh\$t]d<I  
      step = 5, @5xu>gKn  
      color = red, Z7fg 25  
      width = 3, sYJL-2JX  
      "population of level 3 (%, rightscale)", .u l 53 m  
      finish set_P_in(pump, P_pump_in) `H\)e%]  
    &iNwvA%9D  
    >!L&>OOx  
    ; ------------- CK0l9#g  
    diagram 3:                         !输出图表3 Us,)]W.S  
    `\bT'~P  
    "Variation ofthe Fiber Length" \q "N/$5{f  
    RT^v:paNT2  
    x: 0.1, 5 4:7mK/Z  
    "fiber length(m)", @x gY(1,+0-  
    y: 0, 10 R_^/,^1  
    "opticalpowers (W)", @y {CtR+4KD  
    frame  4*TmlY  
    hx iib  
    hy (luKn&826  
    zvY+R\,in  
    f: (set_L(x);P_out(signal_fw)),     !改变光纤长度对信号光输出功率的影响 XM/vDdR  
      step = 20,             iXFP5a>|  
      color = blue, * RWm47  
      width = 3, 5+- I5HX|~  
      "signal output" 9xFO]Y"  
    P`S@n/}  
    ;f: (set_L(x);P_out(pump)),                     !改变光纤长度对泵浦信号输出功率的影响 2C$R4:Ssw)  
       step = 20, color = red, width = 3,"residual pump" Ts9ktPlm  
    x&Cp> +i  
    ! set_L(L_f) {restore the original fiber length } o%`Xa#*Ly  
    nPN?kO=]  
    <P_ea/5:|  
    ; ------------- x({H{'9?  
    diagram 4:                                  !输出图表4 : =Kx/E:1  
    fuUm}N7  
    "TransverseProfiles" gd7^3q[$h  
    @%hCAm  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) JBC$Ku  
    4nqoZk^R  
    x: 0, 1.4 * r_co /um &H||&Z[pk  
    "radialposition (µm)", @x krB'9r<wa`  
    y: 0, 1.2 * I_max *cm^2 oH#v6{y  
    "intensity (W/ cm&sup2;)", @y }tG3tz0%fX  
    y2: 0, 1.3 * N_Tm + H_WlYg-  
    frame 3QXjD/h  
    hx OtTBErQNF  
    hy 2;$ k(x]  
    !TKkec8$  
    f: N_dop(1, x * um,0),      !掺杂浓度的径向分布 usFfMF X  
      yscale = 2, egk7O4zwP  
      color = gray, . ]@=es  
      width = 3, C3'rtY.  
      maxconnect = 1, 17|np2~  
      "N_dop (right scale)" J=W0Xi !  
    71fk.16  
    f: I(pump, -1, x *um, 0) * cm^2,    !泵浦光沿光纤径向的强度分布 W_`A"WdT.  
      color = red, (=4W -z7  
      maxconnect = 1,           !限制图形区域高度,修正为100%的高度 5fJ[}~  
      width = 3, \4d.sy0&>-  
      "pump" C&~1M}I  
    Ju2l?Rr X  
    f: I(signal_fw, -1,x * um, 0) * cm^2,  !信号光沿光纤径向的强度分布 \ HZ9S=  
      color = blue, ?GA&f2]a  
      maxconnect = 1, /) 4GSC}Gg  
      width = 3, 4|?{VQ  
      "signal" *sw7niw  
    S4^N^lQ]  
    23!;}zHp  
    ; ------------- uI~S=;o  
    diagram 5:                                  !输出图表5 nH|,T%  
    D*PYr{z'  
    "TransitionCross-sections" qZv =  
    +rXF{@ l  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) !7bw5H  
    pd[ncL  
    x: 1450, 2050 .|qK +Hnc  
    "wavelength(nm)", @x <A5]]{9 +  
    y: 0, 0.6 e({9]  
    "cross-sections(1e-24 m&sup2;)", @y H( jXI  
    frame i_R e*  
    hx Z?P~z07  
    hy lbdTQ6R  
    YevyN\,}V!  
    f: s12_Tm(x * nm) /1e-24,      !Tm3+吸收截面与波长的关系 ~[WF_NU1y  
      color = red, gi/@ j  
      width = 3, )d\ j I  
      "absorption" "9EE1];NT  
    f: s21_Tm(x * nm) /1e-24,  !Tm3+发射截面与波长的关系 j%u-dr  
      color = blue, uMb> xxf  
      width = 3, J5p"7bc  
      "emission" #11NPo9  
    {`=0 |oP}  
     
    分享到
    离线lileisgsz
    发帖
    14
    光币
    69
    光券
    0
    只看该作者 1楼 发表于: 2021-09-28
    感谢,视频上有点看不清楚