(* qpQiMiB#g'
Demo for program"RP Fiber Power": thulium-doped fiber laser, a ]:xsJ~
pumped at 790 nm. Across-relaxation process allows for efficient <isU D6TC
population of theupper laser level. Hh%"
*) !(* *)注释语句 ahdwoB
Lf:#koaC
diagram shown: 1,2,3,4,5 !指定输出图表 2Jky,YLcb
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 DJ0jtv6nQ-
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 ^ ;K"Y'f$
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 W9{i ~.zo
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 '9'f\
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 \?wKs
XI:+EeM?
include"Units.inc" !读取“Units.inc”文件中内容 H2xDC_Fs
\irKM8]LJ
include"Tm-silicate.inc" !读取光谱数据 39m8iI%w[
^?_MIS`4N
; Basic fiberparameters: !定义基本光纤参数 d}
5
L_f := 4 { fiberlength } !光纤长度 S(Z\h_m(
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 -aLM*nIoe
r_co := 6 um { coreradius } !纤芯半径 W0;QufV
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 +U<.MVOo.
KYy oN
; Parameters of thechannels: !定义光信道 I]HLWF
l_p := 790 nm {pump wavelength } !泵浦光波长790nm o6RT 4`
dir_p := forward {pump direction (forward or backward) } !前向泵浦 QE pCU)
P_pump_in := 5 {input pump power } !输入泵浦功率5W TD-B\ @_
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um _>)@6srC
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 R%~~'/2V
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 ++UxzUd
)y6
l_s := 1940 nm {signal wavelength } !信号光波长1940nm W4qnXD1n
w_s := 7 um !信号光的半径 fLeHn,*,"
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 I?nU+t;
loss_s := 0 !信号光寄生损耗为0 EuA352x
iaQfxQP1w%
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 `gF]
V6+:g=@U-l
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 E:O/=cT
calc R6`mmJ+'
begin :?}>Q
global allow all; !声明全局变量 Sj:c {jyJd
set_fiber(L_f, No_z_steps, ''); !光纤参数 t0Lt+E|J
add_ring(r_co, N_Tm); Ki1 zi~
def_ionsystem(); !光谱数据函数 *>!-t
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 1d842pt
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 fB&i{_J
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 Z"KrirZ
set_R(signal_fw, 1, R_oc); !设置反射率函数 -;;m/QM
finish_fiber(); _{
2`sL)
end; )Jw$&%/{1
6;@:/kl t
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出
_,v>P2)
show "Outputpowers:" !输出字符串Output powers: 9xK#(M
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) "rc QS
H
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) *v: .]_;
D(&Zq7]n
!s !el;G
; ------------- knzo 6
diagram 1: !输出图表1 9
&Ry51
dj4a)p|YN
"Powers vs.Position" !图表名称 ]dV$H
I)9,
x: 0, L_f !命令x: 定义x坐标范围 O;&5>
W,Z
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 #Uep|A
y: 0, 15 !命令y: 定义y坐标范围 +QOK]NJN
y2: 0, 100 !命令y2: 定义第二个y坐标范围 EY.m,@{
frame !frame改变坐标系的设置 gxJ12'
m
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) w_;$ahsu~
hx !平行于x方向网格 56u_viZ=8
hy !平行于y方向网格 kIe)ocJg
2|(lKFkQ
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 0bD\`Jiv,
color = red, !图形颜色 Z0v&AD=
width = 3, !width线条宽度 biForT_no
"pump" !相应的文本字符串标签 pB]*cd B?
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 {qU;>;(
color = blue, )4hA Fy6l
width = 3, cBU3Q<^
"fw signal" H(O|y2
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 TTWiwPo59
color = blue, ,|;\)tT
style = fdashed, d+5v[x~'
width = 3, (/9 erfuJ
"bw signal" e~9g~k]s
YY$Z-u(
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 5^CWF|
yscale = 2, !第二个y轴的缩放比例 fQ-IM/z
color = magenta, b`Jsu!?{
width = 3, NO/5pz}1
style = fdashed, kbbHa_;aqV
"n2 (%, right scale)" !/!Fc'A
ux17q>G
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 ?(}~[
yscale = 2, i[z#5;x+<
color = red, Gv[(0
width = 3, JW=q'ibR
style = fdashed, "`4M4`'
"n3 (%, right scale)" W@%g_V}C*
G,1g~h%I$
A!uiM*"W
; ------------- IJ:JH=8
diagram 2: !输出图表2 0,8RA_Ca}
Adfnd
"Variation ofthe Pump Power" *Uf>Xr&
|@f\[v9`
x: 0, 10 g:6`1C
"pump inputpower (W)", @x {h.j6
y: 0, 10 :o~]d
y2: 0, 100 q$`>[&I~)
frame 3;!!`R>e
hx 5)0'$Xxqa0
hy u_8Z^T
legpos 150, 150 g&8-X?^Q
Um*&S.y
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 Gq%,'amf
step = 5, *<h )q)HS
color = blue, 23a:q{R
width = 3, X+N8r^&
"signal output power (W, leftscale)", !相应的文本字符串标签 'e$8
IZm
finish set_P_in(pump, P_pump_in) m}>Q#IVZ
qagR?)N)u
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 m6A\R KJ'
yscale = 2, k\g:uIsv$
step = 5, KYl!Iw67d
color = magenta, ~8-xj6^
width = 3, glBS|b$\:
"population of level 2 (%, rightscale)", |8)\8b|VuC
finish set_P_in(pump, P_pump_in) h}DKFrHW;-
hrXk 7}9
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 K `A8N
yscale = 2, ,e
GF~
step = 5, @%fL*^yr;C
color = red, \6aisK
width = 3, _?eT[!oO8
"population of level 3 (%, rightscale)", [| N73m,&
finish set_P_in(pump, P_pump_in) CT'#~~QB
$H&:R&Us
/bo`@ !-#
; ------------- gg Nvm
diagram 3: !输出图表3 ;Sp/N4+
7*He 8G[W
"Variation ofthe Fiber Length" \Xr*1DI<
o*oFCR]j
x: 0.1, 5 k<NxI\s8]
"fiber length(m)", @x K}'?#a(aX=
y: 0, 10 MN:LL
<
"opticalpowers (W)", @y tX,x% (
frame E@AV?@<sc
hx aY6F4,7/B
hy 'T;;-M3*
0ZZ Wj%
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 u*rHKZ9i
step = 20, N:Ir63X*#
color = blue, *>xCX
width = 3, .nEiYS|T
"signal output" O]Yz7
Ynp#3 r
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 xLgZtLt9
step = 20, color = red, width = 3,"residual pump" U\-R'Z>M
~@T`0W-Py
! set_L(L_f) {restore the original fiber length } Hxleh><c-
#wZH.i#
Lg|d[*;'7
; ------------- z*9 ke
diagram 4: !输出图表4 Zq5~M bldh
)CgH|z:=b
"TransverseProfiles" io@f5E+?
Iv*u#]{t
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) py'xBi6}v
\Pe+]4R-Xo
x: 0, 1.4 * r_co /um :H+8E5
"radialposition (µm)", @x bfy=
y: 0, 1.2 * I_max *cm^2 `;j$]
"intensity (W/ cm²)", @y r\)bN4-g
y2: 0, 1.3 * N_Tm IaU%L6Q]
frame 2IUd?i3~l
hx tf[)| /M
hy ,J:Ro N_:
t+{vbS0
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 ;V?d;O4u
yscale = 2, ~@#a*="
color = gray, :T<5Tq*+x
width = 3, <y&&{*KW8m
maxconnect = 1, &y(%d 7@/
"N_dop (right scale)" 9Hd_sNUu\
? nq%'<^^
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 xErb11
color = red, 9PMIF9"
maxconnect = 1, !限制图形区域高度,修正为100%的高度 \k^ojz J
width = 3, 8;#yXlf
"pump" ?-)v{4{s
h[Uo6`
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 y0~ttfv
color = blue, ;~'& m
maxconnect = 1, !Lw]aHb
width = 3, n|KYcU#
"signal" i83[':
Iga#,k+%
Yy6$q\@rV
; ------------- a,r
B7aD
diagram 5: !输出图表5 ),|z4~
$48Z>ij?f
"TransitionCross-sections" +_+j"BT
`*U$pg
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) o"_'cNAz
%%zlqd"0
x: 1450, 2050 beSU[
"wavelength(nm)", @x Rd|8=`)
y: 0, 0.6 ZY@ntV?
"cross-sections(1e-24 m²)", @y /bPs0>5
frame \ Ce*5h
hx `uH7~ r^
hy b&dv("e
4
5$+ssR_?k
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 xc\zRsY`
color = red, ge<D}6GQ
width = 3, <HzL%DX
"absorption" RBBmGZ
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 lk[Y6yE
color = blue, 1X&jlD?
width = 3, h72CGA|
"emission" N_Kdi%q
>P&1or)e%