(* '^F|k`$r
Demo for program"RP Fiber Power": thulium-doped fiber laser, q:-]d0B+
pumped at 790 nm. Across-relaxation process allows for efficient %is,t<G
population of theupper laser level. ySuLt@X
*) !(* *)注释语句 fs3-rXoB
cdJ`Gk
diagram shown: 1,2,3,4,5 !指定输出图表 -M1~iOb
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 nT@6g|!
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 6h:?u4
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 N+C)/EN$
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 wKi}@|0[@
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 {glqWFT
LG Y!j_bD
include"Units.inc" !读取“Units.inc”文件中内容 Pi"~/MGP$
T[4[/n>i
include"Tm-silicate.inc" !读取光谱数据 1O]5/Eu
fNAo$O4cm
; Basic fiberparameters: !定义基本光纤参数 "BLv4s|y7L
L_f := 4 { fiberlength } !光纤长度 RI5g+Du?
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 (N*<\6kr
r_co := 6 um { coreradius } !纤芯半径 XAQ\OX#
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 X@bn??
_d\u!giy
; Parameters of thechannels: !定义光信道 43{_Y]
l_p := 790 nm {pump wavelength } !泵浦光波长790nm 4Wi8$
dir_p := forward {pump direction (forward or backward) } !前向泵浦 `bZ2x@
P_pump_in := 5 {input pump power } !输入泵浦功率5W kyRh k\X
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um 5D]30
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布
d-ag
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 C>Omng1>^
g:uvoMUD
l_s := 1940 nm {signal wavelength } !信号光波长1940nm *w'q
w_s := 7 um !信号光的半径 )p/=u@8_f
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 {8!ZKlB
loss_s := 0 !信号光寄生损耗为0 f!M[awj%
pB g|n=^
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 WA]%,6
xf V,==uF
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 08Pt(kzNA
calc e(OwS?K
begin 7d|*postv
global allow all; !声明全局变量 ,>bGbx
set_fiber(L_f, No_z_steps, ''); !光纤参数 YM#
add_ring(r_co, N_Tm); .0nn0)"
def_ionsystem(); !光谱数据函数 ;NiArcAS!
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 3~[`[4n^
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 h*;g0QBkl
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 lgkl? 0!
set_R(signal_fw, 1, R_oc); !设置反射率函数 H4PbO/{xO
finish_fiber(); ] ?DDCew
end; H
Z;ZjC*
4
[R8(U[g
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 F\-B3i%0
show "Outputpowers:" !输出字符串Output powers: 5u2{n rc
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) Vl5SL{+D
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) |eH wp
]dPVtk
&\;<t,3A~
; ------------- ?1GY%-
diagram 1: !输出图表1 '}U_D:o.b
Q!4i_)rM
"Powers vs.Position" !图表名称 wF|0n t
ioB|*D<U2
x: 0, L_f !命令x: 定义x坐标范围 T"L0Iy!k;
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 !cq=)xR
y: 0, 15 !命令y: 定义y坐标范围 vKcl6bVT
y2: 0, 100 !命令y2: 定义第二个y坐标范围 .ocx(_3G
frame !frame改变坐标系的设置 t$U3|r
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) ;]2x
hx !平行于x方向网格 vOos*&
hy !平行于y方向网格 ,sO:$
Yw6DJY
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 AuoxZ?V
color = red, !图形颜色 5h_<R!jA
width = 3, !width线条宽度 <lC]>L
"pump" !相应的文本字符串标签 "KMLk
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 6eOrs-ty
color = blue, IZv~[vi_
width = 3, ^y:FjQC:
"fw signal" 7cIC&(h5
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 El~-M`Gf
color = blue, :z
B}z^8-
style = fdashed, p]wP36<S!
width = 3,
@bY('gC,
"bw signal" VLf
g[*k
uWUR3n
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 J__;.rnk
yscale = 2, !第二个y轴的缩放比例 }X=87ud
color = magenta, HH"$#T^-
width = 3, 'I&|1I^
style = fdashed, _Ny8j~
"n2 (%, right scale)" ;(K
1s Br.+p
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 Hl4\M]]/&
yscale = 2, 7N>oY$&)
color = red, vT?Q^PTO
width = 3, CXTt(-FT
style = fdashed, *i`v~>
"n3 (%, right scale)" ]\OWZ{T'j
!tI=`Ml[
:bwM]k*$
; ------------- ?$3r5sx
diagram 2: !输出图表2 6^Ph '
VJ3hC[
"Variation ofthe Pump Power" +W6Hva.
;P3>>DZ
x: 0, 10 #e*X0;m
"pump inputpower (W)", @x SC'BmR"ox
y: 0, 10 "ml?7Xl,n
y2: 0, 100 2A*/C7
frame .AXdo'&2i
hx ,E&Bn8L~O
hy NUMi])HkN
legpos 150, 150 ]pWP?Ws
Xtft*Z
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 {1~9vHAZ
step = 5, rnu
e(t
color = blue, ;
yyO0Ha
width = 3, T j`y J!0
"signal output power (W, leftscale)", !相应的文本字符串标签 Y&s2C%jT
finish set_P_in(pump, P_pump_in) 6)ycmu;!$
U h.Sc:trA
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 ;+
G9-
yscale = 2, s;J\Kc?"|
step = 5, va5FxF*%
color = magenta, 4b4QbJ$
width = 3, CN/IH
"population of level 2 (%, rightscale)", ;W0]66&
finish set_P_in(pump, P_pump_in) Vu[:A
84'?um
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 Y;,Hzmbs6w
yscale = 2, ~Eq \DK
step = 5, ('t kZt%8
color = red, "x&3Z@q7
width = 3, JvkL37^n:
"population of level 3 (%, rightscale)", O6iCZ
finish set_P_in(pump, P_pump_in) Noh?^@T`Ov
$M':&i5`,
RlsVC_H\
; ------------- Tr&E4e
diagram 3: !输出图表3 L,~MicgV
y? "@v.
"Variation ofthe Fiber Length" [Uli>/%JB
H?uukmZl
x: 0.1, 5 h>wcT VF
"fiber length(m)", @x <*u C
y: 0, 10 hmZvIy(
"opticalpowers (W)", @y 4<.O+hS
frame cx^{/U?9}
hx YsP/p-
hy B!b sTvX
)47MFNr~>
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 ?+r!z
step = 20, qX$u4I!,
color = blue, LmQ/#Gx
width = 3, m=TJDr-
"signal output" TY.F pW
0Q~@F3N-\>
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 .0|=[|
step = 20, color = red, width = 3,"residual pump" %M&3VQ9w
SMoz:J*Q(
! set_L(L_f) {restore the original fiber length } D|_V<'
NP/>H9Q2%
%6ub3PLw8
; ------------- gLQ #4H
diagram 4: !输出图表4 3]U]?h
+y&d;0!
"TransverseProfiles" 8~ #M{}
@(:v_l
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) )ofm_R'q*
? _<[T
x: 0, 1.4 * r_co /um }q!_!q,@
"radialposition (µm)", @x 0xpx(T[
y: 0, 1.2 * I_max *cm^2 ip``v0Nf
"intensity (W/ cm²)", @y ^bUxLa[.
y2: 0, 1.3 * N_Tm '{f=hE_/
frame Y
?'tUV
hx PuXUuJx(
hy b2kWjg.4
1f4bt6[
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 dqe7s Zl!
yscale = 2, ?znSx}t
color = gray, GBP-V66
width = 3, =Q(vni83<
maxconnect = 1, KJh,,xI>by
"N_dop (right scale)" XM~~y~j
&uM^0eM
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 t`|,6qEG
color = red, I,O#X)O|i
maxconnect = 1, !限制图形区域高度,修正为100%的高度 Cca0](R*&
width = 3, !gP0ndRJ=
"pump" O~@fXMthh
z`$J_Cj Y
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 K:5eek
color = blue, 'C?NJ~MN
maxconnect = 1, XU-m"_t
width = 3, mlu 3K
"signal" N.j
"S'(i
bAF )Bli
.px:e)iW
; ------------- ~]uZy=P? 5
diagram 5: !输出图表5 x5Zrz<Y$w
^_>!B)
"TransitionCross-sections" 0ys~2Y!eH
nr\q7
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) +F@_Es<6
w'ybbv{c
x: 1450, 2050 UUtbD&\
"wavelength(nm)", @x G&9#*<F$c
y: 0, 0.6 \ijMw
"cross-sections(1e-24 m²)", @y c3xl9S,5
frame Hs0pW5oZ
hx E9 Y\X
hy UAYd?r
c-CYdi@
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 ;D2E_!N
dt
color = red, WDx
Mo`zT
width = 3, '2^
Yw
"absorption" Fu _@!K
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 smU4jh9S
color = blue, 'Ud|Ex@A9
width = 3, ..KwTf
"emission" F^kwdS
svhrf;3: