切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 2500阅读
    • 1回复

    [原创]RP Fiber Power仿真设计掺铥光纤激光器代码详解 [复制链接]

    上一主题 下一主题
    离线小火龙果
     
    发帖
    932
    光币
    2176
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-05-28
    (* [1 w  
    Demo for program"RP Fiber Power": thulium-doped fiber laser, %L<VnY#%u  
    pumped at 790 nm. Across-relaxation process allows for efficient }4 P@`>e/`  
    population of theupper laser level. gWv/3hWWB  
    *)            !(*  *)注释语句 P0k|33;7L  
    "xdXHuX  
    diagram shown: 1,2,3,4,5  !指定输出图表 :$dGcX}  
    ; 1: "Powersvs. Position"     !分号是注释;光纤长度对功率的影响 }g5h"N\$o  
    ; 2:"Variation of the Pump Power"  !泵浦光功率变化对信号输出功率的影响 AX<TkS@wjb  
    ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 KX[_eO L  
    ; 4:"Transverse Profiles"             !横向分布,横坐标为半径位置 !`)-seTm  
    ; 5:"Transition Cross-sections"    !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 M+ 8!#n  
    Yf7n0Etd,  
    include"Units.inc"         !读取“Units.inc”文件中内容 9\R:J"X  
    O&E1(M|*>  
    include"Tm-silicate.inc"    !读取光谱数据 gO gZ  
    %* vYX0W"  
    ; Basic fiberparameters:    !定义基本光纤参数 Uk6Y6mU V  
    L_f := 4 { fiberlength }      !光纤长度 x4 4)o:  
    No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 ol:,02E&  
    r_co := 6 um { coreradius }                !纤芯半径 ?U iwr{Q  
    N_Tm := 100e24 { Tmdoping concentration }  !纤芯Tm离子掺杂浓度 ov*zQP  
    ,BOB &u  
    ; Parameters of thechannels:                !定义光信道 ?K|PM <A  
    l_p := 790 nm {pump wavelength }                !泵浦光波长790nm TM[Z~n(wt  
    dir_p := forward {pump direction (forward or backward) }   !前向泵浦 +\\*Iy'xK  
    P_pump_in := 5 {input pump power }                    !输入泵浦功率5W %4imlP  
    w_p := 50 um {radius of pump cladding }               !包层泵浦相应的半径 50um D0us<9q  
    I_p(r) := (r <=w_p) { pump intensity profile }          !泵浦光强度分布 el;^cMY  
    loss_p := 0 {parasitic losses of pump wave }           !泵浦光寄生损耗为0 K:465r:  
    rV[#4,}PF  
    l_s := 1940 nm {signal wavelength }                   !信号光波长1940nm yL_-w/a  
    w_s := 7 um                          !信号光的半径 Y%anR|  
    I_s(r) := exp(-2 *(r / w_s)^2)            !信号光的高斯强度分布 *{)[:;  
    loss_s := 0                            !信号光寄生损耗为0 Q^b_+M  
    k_-=:(Z  
    R_oc := 0.70 {output coupler reflectivity (right side) }      !输出耦合反射率 f/eT4y  
    /^P^K  
    ; Function for defining themodel:   !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 }8fxCW*|  
    calc vXq=f:y4  
      begin --Dw8FR9  
        global allow all;                   !声明全局变量 #fzvK+  
        set_fiber(L_f, No_z_steps, '');        !光纤参数 WFjNS'WI_  
        add_ring(r_co, N_Tm); vObP(@0AM  
        def_ionsystem();              !光谱数据函数 Y^2`)':  
        pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p);  !泵浦光信道 Iwize,J~X  
        signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward);      !前向信号光信道 b+[9) B)a?  
        signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward);    !后向信号光信道 |\XjA4j  
        set_R(signal_fw, 1, R_oc);                                 !设置反射率函数 [qIi_(%o  
        finish_fiber();                                   JUF[Y^C  
      end; >Y1?`  
    ryW1OV6?_0  
    ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 os/~6  
    show "Outputpowers:"                                   !输出字符串Output powers: n-}:D<\7  
    show"pump:     ", P_out(pump):d3:"W"  !输出字符串pump:和计算值(格式为3个有效数字,单位W) y@nWa\i G  
    show"signal:   ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) UH%oGp$ykX  
    NQ'^ z  
    E@JxY  
    ; ------------- ( X)$8y  
    diagram 1:                   !输出图表1 ,B5Ptf#  
    k#c BBrY  
    "Powers vs.Position"          !图表名称 4CW/  
    h<Yn0(.  
    x: 0, L_f                      !命令x: 定义x坐标范围 OcQ_PE5\  
    "position infiber (m)", @x      !x轴标签;@x 指示这些字符串沿坐标轴放置 ~V`D@-VND  
    y: 0, 15                      !命令y: 定义y坐标范围 6pLB`1[v  
    y2: 0, 100                    !命令y2: 定义第二个y坐标范围 -=Q_E^'  
    frame          !frame改变坐标系的设置 MPAZ%<gmD  
    legpos 600, 500  !图行在图表窗口中的位置(相对于左上角而言) 0`h[|FYV  
    hx             !平行于x方向网格 d?v#gW  
    hy              !平行于y方向网格 0 u,=OvU  
    69dFd!G\  
    f: P(pump, x),    !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 @1*lmFq'kV  
      color = red,  !图形颜色 &M6)-V4  
      width = 3,   !width线条宽度 6!n"E@Bwu  
      "pump"       !相应的文本字符串标签 &VY;Al  
    f: P(signal_fw, x),  !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 9x;/q7  
      color = blue,     T!"<Kv]J  
      width = 3, ojs&W]r0Z  
      "fw signal" Zj<oh8  
    f: P(signal_bw, x),   !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 p0qQ(  
      color = blue, ' uo`-Y  
      style = fdashed, Dr6Br<yi  
      width = 3, [9BlP  
      "bw signal" jm.pb/  
    ~9kvC&/{[  
    f: 100 * n(x, 2),    !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 W#u}d2mP  
      yscale = 2,            !第二个y轴的缩放比例 "*RCV6{  
      color = magenta, Ook3B  
      width = 3, JV36@DVQ  
      style = fdashed, `DG6ollp{  
      "n2 (%, right scale)" JEdtj1v{O  
    tPO.^  
    f: 100 * n(x, 3),          !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 "sAR< 5b  
      yscale = 2, i#kRVua/  
      color = red, O.& 6J/  
      width = 3, xXA$16kd  
      style = fdashed, -fL|e/   
      "n3 (%, right scale)" C;dA?Es>R  
    4=o3 ZRV  
    iUS379wM}  
    ; ------------- n\,TW&3  
    diagram 2:                    !输出图表2 K ANE"M   
    0a8nBo7A-X  
    "Variation ofthe Pump Power" ;cp-jY_U  
    Pk8L- [&v  
    x: 0, 10 Se0/ysVB  
    "pump inputpower (W)", @x oq8~PTw  
    y: 0, 10 }K<;ygcWE@  
    y2: 0, 100 ]DmqhK`  
    frame QAygr4\X^  
    hx '3+S5p8  
    hy R3?~+ y&  
    legpos 150, 150 PO&xi9_  
    &=$8 v"&^  
    f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 Ic#+*W\ZW  
      step = 5, _j%Rm:m;<  
      color = blue, .8b 4  
      width = 3, mNb+V/*x3  
      "signal output power (W, leftscale)",     !相应的文本字符串标签 Sw5H+!  
      finish set_P_in(pump, P_pump_in) 1 _5[5K^  
    `(Q58wR}  
    f: (set_P_in(pump,x); 100 * n_av(2)),   !改变泵浦信号功率对能级2上激活粒子占比的影响 Z]w_2- -  
      yscale = 2, v|{*y  
      step = 5, y*uL,WH  
      color = magenta, ZmmuP/~2K  
      width = 3, HoRLy*nU  
      "population of level 2 (%, rightscale)", +%U@  
      finish set_P_in(pump, P_pump_in) ?ZDx9*f  
    ,l0s(Cg  
    f: (set_P_in(pump,x); 100 * n_av(3)),   !改变泵浦信号功率对能级3上激活粒子占比的影响 Q=^}B}G  
      yscale = 2, 5VG@Q%  
      step = 5, * +OAc `8  
      color = red, _F@FcFG1Z*  
      width = 3, A]H+rxg  
      "population of level 3 (%, rightscale)", l\$C)q6O  
      finish set_P_in(pump, P_pump_in) 6\::Ku4_2  
    PU -~7h+$  
    q8kt_&Ij  
    ; ------------- ; H:qDBH  
    diagram 3:                         !输出图表3 )s6tj lf8  
    zR{TWk]  
    "Variation ofthe Fiber Length" L"}@>&6  
    #e8CuS  
    x: 0.1, 5 jU4Ir {f  
    "fiber length(m)", @x *Gu=O|Mm  
    y: 0, 10 ?|s[/zPS=  
    "opticalpowers (W)", @y o,aI<5"  
    frame .S?,%4v%%  
    hx 8V}c(2m  
    hy =A!I-@]q<  
    7XR[`Tn9<  
    f: (set_L(x);P_out(signal_fw)),     !改变光纤长度对信号光输出功率的影响 !2{MWj  
      step = 20,             "4"L"lJ   
      color = blue, |#-Oz#Eg'  
      width = 3, u"|.]r  
      "signal output" J41ZQ  
    [,1j(s`N5  
    ;f: (set_L(x);P_out(pump)),                     !改变光纤长度对泵浦信号输出功率的影响 ^8MgNVoJ)  
       step = 20, color = red, width = 3,"residual pump" .S5&MNE  
    eGguq~s`  
    ! set_L(L_f) {restore the original fiber length } pbgCcO~xm  
    4cV(Z-\  
    c69C=WQ  
    ; ------------- x1Si&0T0P<  
    diagram 4:                                  !输出图表4 el[6E0!@  
    7 'f>  
    "TransverseProfiles" E3gQ`+wNg?  
    l|uN-{ w  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) Y: byb68  
    -7pZRnv  
    x: 0, 1.4 * r_co /um L3kms6ch  
    "radialposition (µm)", @x V'6%G:?0a  
    y: 0, 1.2 * I_max *cm^2 dvXu?F55  
    "intensity (W/ cm&sup2;)", @y zF{ z_c#3@  
    y2: 0, 1.3 * N_Tm (JF\%Yj/  
    frame =E,*8O]  
    hx  z!F?#L5  
    hy FD`V39##  
    YE^|G,]  
    f: N_dop(1, x * um,0),      !掺杂浓度的径向分布 ]0O pd9  
      yscale = 2, ZM)a4h,kcm  
      color = gray, H7\EvIM=  
      width = 3, R_H di~ k  
      maxconnect = 1, r-!8in2  
      "N_dop (right scale)" 8<g5.$xyz  
    VTV-$Du[}  
    f: I(pump, -1, x *um, 0) * cm^2,    !泵浦光沿光纤径向的强度分布 h\20  
      color = red, k@wxN!w;  
      maxconnect = 1,           !限制图形区域高度,修正为100%的高度 0<P -`|X  
      width = 3, 7Y$p3]0e+  
      "pump" Y]Xal   
    $:<KG&Br  
    f: I(signal_fw, -1,x * um, 0) * cm^2,  !信号光沿光纤径向的强度分布 gx9H=c>/  
      color = blue, r?Z8_5Y  
      maxconnect = 1, gGZ$}vX  
      width = 3, nNL9B~d  
      "signal" &1VC0"YJWy  
    jmAWto}.  
    D&]SPhX  
    ; ------------- q'1rSK  
    diagram 5:                                  !输出图表5 gN(8T_r  
    #|gt(p]C  
    "TransitionCross-sections" H(""So7L  
    /gPn2e;  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) pET5BMxGG  
    .ipYZg'V  
    x: 1450, 2050 ,c7 8O8|  
    "wavelength(nm)", @x XRaq\a`=:  
    y: 0, 0.6 ;zp0,[r  
    "cross-sections(1e-24 m&sup2;)", @y ,H.q%!{h_  
    frame h"q`gj  
    hx G-T:7  
    hy #Ok*O r  
    j4Lf6aUOX  
    f: s12_Tm(x * nm) /1e-24,      !Tm3+吸收截面与波长的关系 Cj ykM])  
      color = red, &%INfl>o7.  
      width = 3, nC2A&n&>  
      "absorption" 4Kx;F 9!%~  
    f: s21_Tm(x * nm) /1e-24,  !Tm3+发射截面与波长的关系 M3x%D)*  
      color = blue, WzZb-F  
      width = 3, D[9eu>"'9M  
      "emission" sH#UM(N  
    7zy6`O P  
     
    分享到
    离线lileisgsz
    发帖
    14
    光币
    69
    光券
    0
    只看该作者 1楼 发表于: 2021-09-28
    感谢,视频上有点看不清楚