(* |gv{z"
Demo for program"RP Fiber Power": thulium-doped fiber laser, >aG= T{
pumped at 790 nm. Across-relaxation process allows for efficient w{`Acu
population of theupper laser level. a8Uk[^5
*) !(* *)注释语句 tuxRVV8l
BSgTde|3y
diagram shown: 1,2,3,4,5 !指定输出图表 vd (?$
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 ]JdJe6`Mc
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 6\n?48x}
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 >b48>@~bY
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 <bUXC@3W
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 z)}!e,7
%
5z
gd>
include"Units.inc" !读取“Units.inc”文件中内容 "|t!7hC
G;s"h%Xw98
include"Tm-silicate.inc" !读取光谱数据 =K(JqSw+M
#{*LvI&
; Basic fiberparameters: !定义基本光纤参数 ?3q@f\fZ
L_f := 4 { fiberlength } !光纤长度 3v1 7"
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 ){P^P!s$
r_co := 6 um { coreradius } !纤芯半径 BpH%STEN
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 9I.^LZ"
ag8`O&+
; Parameters of thechannels: !定义光信道 Z\ )C_p\-
l_p := 790 nm {pump wavelength } !泵浦光波长790nm / t5p-
dir_p := forward {pump direction (forward or backward) } !前向泵浦 uel{`T[S
P_pump_in := 5 {input pump power } !输入泵浦功率5W f~ZEdq8
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um ? ?[g}>
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 `PlOwj@u0`
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 ,j178EX
{C")#m-0
l_s := 1940 nm {signal wavelength } !信号光波长1940nm e |V]
w_s := 7 um !信号光的半径 C6jR=@42Q
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 ;>>C)c4V "
loss_s := 0 !信号光寄生损耗为0 e2w&&B-
D4Etl5k
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 aG{$Ic
=&vFVIhWcf
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 .H~YI
calc "2{%JFE
begin .L EY=j!-s
global allow all; !声明全局变量 O{]9hm(tN
set_fiber(L_f, No_z_steps, ''); !光纤参数 gzdG6"
add_ring(r_co, N_Tm); Vn|1v4U!
def_ionsystem(); !光谱数据函数 RMP9y$~3pU
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 2@khSWV
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 ke%pZ7{u
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 F)Oe9x\/
set_R(signal_fw, 1, R_oc); !设置反射率函数 :O-1rD
finish_fiber(); }]6f+
end; FvdeQsc!
"G?Yrh
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 (sTuG}
show "Outputpowers:" !输出字符串Output powers: )L5i&UK.
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) cWLqU
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) ,}SCa'PB
M.[rLJZ4
T!|=El>
; ------------- ig!7BxM)<h
diagram 1: !输出图表1 L'Q<>{;Ig
=L]Q2V}
"Powers vs.Position" !图表名称 dl~|Izm
-e]7n*}H$
x: 0, L_f !命令x: 定义x坐标范围 '0Q,
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 bC6oqF'#
y: 0, 15 !命令y: 定义y坐标范围 &
,hr8
y2: 0, 100 !命令y2: 定义第二个y坐标范围 ~E5z"o6$
frame !frame改变坐标系的设置 ;zH
HIdQ>-
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) %)(Cp-b!
hx !平行于x方向网格 &
E}mX]t
hy !平行于y方向网格 ZH 6\><My
1iBP,:>*
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 h6D^G5i
color = red, !图形颜色 )>a B
width = 3, !width线条宽度 nH-V{=**
"pump" !相应的文本字符串标签 vVxD!EL
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 G}nO@
color = blue, cr;`Tl~}s
width = 3, ^Q}eatEn
"fw signal" 4JyM7ePND}
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 S<wj*"|.s
color = blue, \cJa;WM>
style = fdashed, Rl~T$
Ey
width = 3, 3'`dFY,
"bw signal" 9 ;i\g=
]d}0l6
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 9i q""
yscale = 2, !第二个y轴的缩放比例 Kg\R+i@#<
color = magenta, b;cMl'
width = 3, #FxPj-3(ix
style = fdashed, pv)`%<
"n2 (%, right scale)" ~FU@wV^
kFLB> j97
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 5 `/< v^
yscale = 2, DGESba\2+
color = red, |I;$M;'r&
width = 3, V@-)\RZm
style = fdashed, =n(3o$r(
"n3 (%, right scale)" C#0Qd%
s#9Ui#[=h
,E )|y4
; ------------- ?/hZb"6W
diagram 2: !输出图表2 LPd\-S_rsP
{-/^QX]6
"Variation ofthe Pump Power" Dh4
6o|P
2/
rt@{V(
x: 0, 10 Z~
"pump inputpower (W)", @x _l`e#XbG
y: 0, 10 OX]V)QHVZ
y2: 0, 100 >o,^b\
frame R"v 3!P
hx o`S?
hy R\3VB NX.g
legpos 150, 150 *jq7X
"UFs~S|e
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 Io`P,l:
step = 5, ZD/jX_!t
color = blue, 9p* gU[
width = 3, Elj_,z
"signal output power (W, leftscale)", !相应的文本字符串标签 2-*V=El
finish set_P_in(pump, P_pump_in) iSLGwTdLn
] ]U<UJ
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 `O?T.p)
yscale = 2, ym,H@~
step = 5, 75T_Dx(H
color = magenta, p/Sbt/R
width = 3, Cs3^9m6;d
"population of level 2 (%, rightscale)", ]va>ex$d
finish set_P_in(pump, P_pump_in) e> rRTN
EI~"L$?
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 `$LWmm#
yscale = 2, Rgy-OA
step = 5, BAj-akc f
color = red, T VmH
width = 3, INs!Ame2
"population of level 3 (%, rightscale)", %q;jVj[
finish set_P_in(pump, P_pump_in) h5_G4J{1
@Hb'8F
1F8 W9b^D
; ------------- u6V/JI}g
diagram 3: !输出图表3 `?g`bN`Vn
}TQ{`a@
"Variation ofthe Fiber Length" Y}*\[}l:&x
U6ZR->:
x: 0.1, 5 lASL8O&\
"fiber length(m)", @x N]EcEM #
y: 0, 10 [S]S^ej*8
"opticalpowers (W)", @y BcjP+$k4_
frame ?^mi3VM
hx x&Vm!,%:1
hy @oF$LMD
9fnA
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 ]?1Y
e8>Y<
step = 20, >Iewx
Gb>
color = blue, >7`<!YJkK
width = 3, 1 2++RkL#
"signal output" sbkQ71T:
enNiI$H]`_
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 1be %G [*
step = 20, color = red, width = 3,"residual pump" v0D q@Q1
r"2V
! set_L(L_f) {restore the original fiber length } 4(neKr5\#
-4w=s|#.\
ne61}F"E
; ------------- EpS(o>'
diagram 4: !输出图表4 p^nL&yIW,%
iqQUtE]E_
"TransverseProfiles" aV o;~h~
t>GfM
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) (BxJryXm
aSuM2
x: 0, 1.4 * r_co /um o*x*jn:hm
"radialposition (µm)", @x l+V,DCE
y: 0, 1.2 * I_max *cm^2 CM )Q&