(* g9GE0DbT`
Demo for program"RP Fiber Power": thulium-doped fiber laser, r}D`15IHJ
pumped at 790 nm. Across-relaxation process allows for efficient <`H:Am`
population of theupper laser level. JgYaA*1X
*) !(* *)注释语句 aR*z5p2-w
]*[S#Jk
diagram shown: 1,2,3,4,5 !指定输出图表 G?'L1g[lc
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 DE."XSni
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 S7E:&E&
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 S[X bb=n
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 QmT]~4PqS
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 -UUPhGC
}"Hf/{E$_"
include"Units.inc" !读取“Units.inc”文件中内容 1UyI.U]
Kn=P~,FaG3
include"Tm-silicate.inc" !读取光谱数据 #*}4=
'WxcA)z0cQ
; Basic fiberparameters: !定义基本光纤参数 {j ${i
L_f := 4 { fiberlength } !光纤长度 wKXKc\r
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 ran
Q_\
r_co := 6 um { coreradius } !纤芯半径 <CzH'!FJN
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 f{^C+t{r
?J%$;"q
; Parameters of thechannels: !定义光信道 z)]_ (zZ^
l_p := 790 nm {pump wavelength } !泵浦光波长790nm MFiX8zwhx+
dir_p := forward {pump direction (forward or backward) } !前向泵浦 Vyu 0OiGcR
P_pump_in := 5 {input pump power } !输入泵浦功率5W $@}6P,mg
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um `[VoW2CLH+
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 y5BNHweaRb
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 D0lgKQ
6$9n_AS
l_s := 1940 nm {signal wavelength } !信号光波长1940nm qyp"q{k0
w_s := 7 um !信号光的半径 UT==x<
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 0Evmq3,9
loss_s := 0 !信号光寄生损耗为0 FL/@e$AK
bn~=d@'
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 E`u=$~K
d]0fgwwGC
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 2Z\6xb|u
calc |9~{&<^X
begin 2\CFt;fk
global allow all; !声明全局变量 ;]KGRT
set_fiber(L_f, No_z_steps, ''); !光纤参数 D(@#Gd\Z@
add_ring(r_co, N_Tm); [ -{L@
def_ionsystem(); !光谱数据函数 jxZR%D
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 K /g\x0
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 #gUM%$
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 `:}GE@]
set_R(signal_fw, 1, R_oc); !设置反射率函数 Ac^}wXp
finish_fiber(); `k
a!`nfo
end; 1Xu\Tm\Ux
/V$[M
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 g$EjIHb
show "Outputpowers:" !输出字符串Output powers: CJ
{?9z@$.
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) hz>&E,<8q
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) $s)G0/~W
R`:Y&)c_$
UqsVqi
h(
; ------------- r*p<7
diagram 1: !输出图表1 6}K|eUak/
z"Gk K T
"Powers vs.Position" !图表名称 !FA^~
[8^jwnAYS
x: 0, L_f !命令x: 定义x坐标范围 H9xxId?3u
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 L/"u,~[
y: 0, 15 !命令y: 定义y坐标范围 q/ 6d^&
y2: 0, 100 !命令y2: 定义第二个y坐标范围 /H: '(W_b;
frame !frame改变坐标系的设置 QG4#E$c
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) =L
7scv%i
hx !平行于x方向网格 /IxMRi=
hy !平行于y方向网格 "6gu6f
H8`K?SXU
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 V+nqQ~pJ&
color = red, !图形颜色 0"ZB|^c=
width = 3, !width线条宽度 V2u^sy
"pump" !相应的文本字符串标签 :eo2t>zF-<
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 Hd
U1gV>
color = blue, eg3zpgZ
width = 3, WW:@% cQ@
"fw signal" q-KN{y/
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 3R
!Mfz*
color = blue, Vv
B%,_\
style = fdashed, #W @6@Mv
width = 3, &s_[~g<
"bw signal" PxM]3Aoa
THi*'D/
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 !}9k
@=[
yscale = 2, !第二个y轴的缩放比例 {-PD3 [f"
color = magenta, g|9'Lk
width = 3, pa~.[cBI
style = fdashed, 1Yo9Wf;vP
"n2 (%, right scale)" _ncqd,&z
&DYHkG
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 J-:\^uP
yscale = 2, Dr^#e
color = red, f[6;)ZA
width = 3, /VgA}[%y
style = fdashed, GO.mT/rB
"n3 (%, right scale)" %4Y/-xF}9,
q=M!YWz
9*h?g+\
; ------------- z:u e]7(.
diagram 2: !输出图表2 DBWe>Ef(
6wYd)MDLL
"Variation ofthe Pump Power" npkE[JE:
f\nF2rlu
x: 0, 10 L%# #U'e3
"pump inputpower (W)", @x f]tc$`vb
y: 0, 10 ZZL.&Ho
y2: 0, 100 :EJ+#
frame _ n,Ye&m
hx 6Z] * ce<r
hy ;?"]S/16,
legpos 150, 150 _Y4%Fv>@
Vahfz8~w/
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 \{ r%.G
step = 5, /XEUJC4
color = blue, OGw =e{
width = 3, ftw\oGrS
"signal output power (W, leftscale)", !相应的文本字符串标签 Cu3^de@h
finish set_P_in(pump, P_pump_in) 9+)5 #!0
H4ml0SS^
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 *.#d'~+
yscale = 2, vn}:$|r$J
step = 5,
UIc )]k%
color = magenta, ak 94"<p
width = 3, `rzgC \
"population of level 2 (%, rightscale)", Nih8(pbe
finish set_P_in(pump, P_pump_in) ~L)9XK^15
PE4#dx^
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 $TyV<
G
yscale = 2, #]>Z4=]v
step = 5, y=_8ae}aD~
color = red, (%=[J/F/
width = 3, KP`{ UD)
"population of level 3 (%, rightscale)", g)c<\%
finish set_P_in(pump, P_pump_in) 8XZS BR(Z
Hy`Ee7>
f'` QW@U
; ------------- 0Ah'G
diagram 3: !输出图表3 ^vPM\qP#g
r9G}[#DO
"Variation ofthe Fiber Length" [LDsn]{
FvQ>Y')R7Z
x: 0.1, 5 Bj5_=oo+d
"fiber length(m)", @x %g1:yx
y: 0, 10 K;Qlg{v
"opticalpowers (W)", @y lArYlR}
frame T{-<G13
hx Goa0OC,
hy ]f#1G$
W'WZ@!!
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 wN'Q\l+
step = 20, N]f"+
color = blue, [9dW9[Z+!
width = 3, N) D;)ZH
"signal output" }{/3yXk[G
J%]</J
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 `IL''eJug_
step = 20, color = red, width = 3,"residual pump" ?hu}wl)
QS.t_5<U
! set_L(L_f) {restore the original fiber length } Q'xZ\t
S?TyC";!
=g)|g+[H
; ------------- |t](4
diagram 4: !输出图表4 &}%rZU
ig|ol*~
"TransverseProfiles" E{+V_.tlu
cYHHCaCS
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) &cy@Be}|T
|]FJfMX
x: 0, 1.4 * r_co /um 4mNg(w=NF
"radialposition (µm)", @x sswYwU
y: 0, 1.2 * I_max *cm^2 )1f8
H,q^
"intensity (W/ cm²)", @y eaSf[!24"
y2: 0, 1.3 * N_Tm F#d`nZ=M
frame lQ/u#c$n
hx (prqo1e@
hy 5y3V duE
"W!Uxc
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 DLMM1
A
yscale = 2, mc37Y.
color = gray, lU6?p")F1
width = 3, Wc]L43u
maxconnect = 1, n
*Y+y
"N_dop (right scale)" |-kU]NJFR
'Bul_D4B
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 aNn\URR
color = red, Npu#.)G
maxconnect = 1, !限制图形区域高度,修正为100%的高度 6, =oTmFP
width = 3, Lckb*/jV&
"pump" 6R_G{AWLL
H#yBWvj*H
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 a
W1y0
color = blue, :mOHR&2xR%
maxconnect = 1, ca~nfo
width = 3, doeYc
"signal" w=]id'`?q
MA9Oi(L)K
B5FRe'UC
; ------------- %p? +r
diagram 5: !输出图表5 =2-!ay:
R`%C]uG
"TransitionCross-sections" _; 7{1n
k;aV4
0N9
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) aE]/w1a
! 2]eVO
x: 1450, 2050 !{hC99q6
"wavelength(nm)", @x ~o"VZp
y: 0, 0.6 ShFC@)<lJ
"cross-sections(1e-24 m²)", @y
v E4ce
frame >\J({/ #O
hx WKjE^u
hy TCb 7-s
8HL$y-F
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 0M[O(.x
color = red, iv3=J
width = 3, jS_fwuM
"absorption" {& Pk$Q!
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 fU?P__zU4
color = blue, cu)ssT
width = 3, 4.>rd6BAN-
"emission" ="yN4+0-p
2QUZBrs s