切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 2557阅读
    • 1回复

    [原创]RP Fiber Power仿真设计掺铥光纤激光器代码详解 [复制链接]

    上一主题 下一主题
    离线小火龙果
     
    发帖
    932
    光币
    2176
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-05-28
    (* qpQiMiB#g'  
    Demo for program"RP Fiber Power": thulium-doped fiber laser, a ]:xsJ~  
    pumped at 790 nm. Across-relaxation process allows for efficient <isU D6TC  
    population of theupper laser level. Hh%"  
    *)            !(*  *)注释语句 ahdwoB   
    Lf:#koaC  
    diagram shown: 1,2,3,4,5  !指定输出图表 2Jky,YLcb  
    ; 1: "Powersvs. Position"     !分号是注释;光纤长度对功率的影响 DJ0jtv6nQ-  
    ; 2:"Variation of the Pump Power"  !泵浦光功率变化对信号输出功率的影响 ^;K"Y'f$  
    ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 W9{i~.zo  
    ; 4:"Transverse Profiles"             !横向分布,横坐标为半径位置  '9'f\  
    ; 5:"Transition Cross-sections"    !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 \?wKs  
    XI:+EeM?  
    include"Units.inc"         !读取“Units.inc”文件中内容 H2xDC_Fs  
    \irKM8]LJ  
    include"Tm-silicate.inc"    !读取光谱数据 39m8iI%w[  
    ^?_MIS`4N  
    ; Basic fiberparameters:    !定义基本光纤参数 d}  5  
    L_f := 4 { fiberlength }      !光纤长度 S(Z\h_m(  
    No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 -aLM*nIoe  
    r_co := 6 um { coreradius }                !纤芯半径 W0;QufV  
    N_Tm := 100e24 { Tmdoping concentration }  !纤芯Tm离子掺杂浓度 +U<.MVOo.  
    KYyoN  
    ; Parameters of thechannels:                !定义光信道 I]HLWF  
    l_p := 790 nm {pump wavelength }                !泵浦光波长790nm o6RT4`  
    dir_p := forward {pump direction (forward or backward) }   !前向泵浦 Q E pCU)  
    P_pump_in := 5 {input pump power }                    !输入泵浦功率5W TD-B\ @_  
    w_p := 50 um {radius of pump cladding }               !包层泵浦相应的半径 50um _>)@6srC  
    I_p(r) := (r <=w_p) { pump intensity profile }          !泵浦光强度分布 R%~~'/2V  
    loss_p := 0 {parasitic losses of pump wave }           !泵浦光寄生损耗为0 ++UxzUd  
     )y6  
    l_s := 1940 nm {signal wavelength }                   !信号光波长1940nm W4qnXD1n  
    w_s := 7 um                          !信号光的半径 fLeHn,*,"  
    I_s(r) := exp(-2 *(r / w_s)^2)            !信号光的高斯强度分布 I?nU+t;  
    loss_s := 0                            !信号光寄生损耗为0 EuA352x  
    iaQfxQP1w%  
    R_oc := 0.70 {output coupler reflectivity (right side) }      !输出耦合反射率 `gF ]  
    V6+:g=@U-l  
    ; Function for defining themodel:   !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 E:O/=cT  
    calc R6`mmJ+'  
      begin :?}> Q  
        global allow all;                   !声明全局变量 Sj:c {jyJd  
        set_fiber(L_f, No_z_steps, '');        !光纤参数 t0Lt+E|J  
        add_ring(r_co, N_Tm); Ki1 zi~  
        def_ionsystem();              !光谱数据函数 *>!-t   
        pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p);  !泵浦光信道 1d842pt  
        signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward);      !前向信号光信道 fB&i{_J  
        signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward);    !后向信号光信道 Z"KrirZ  
        set_R(signal_fw, 1, R_oc);                                 !设置反射率函数 -;;m/QM  
        finish_fiber();                                   _{ 2`sL)  
      end; )Jw$&%/{1  
    6;@:/kl t  
    ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 _,v>P2)  
    show "Outputpowers:"                                   !输出字符串Output powers: 9xK#( M  
    show"pump:     ", P_out(pump):d3:"W"  !输出字符串pump:和计算值(格式为3个有效数字,单位W) "rc QS H  
    show"signal:   ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) *v: .]_;  
    D(&Zq7]n  
    !s ! el;G  
    ; ------------- k nzo6  
    diagram 1:                   !输出图表1 9 &Ry51  
    dj4a)p|YN  
    "Powers vs.Position"          !图表名称 ]dV $H  
    I)9 ,  
    x: 0, L_f                      !命令x: 定义x坐标范围 O;&5> W,Z  
    "position infiber (m)", @x      !x轴标签;@x 指示这些字符串沿坐标轴放置 #Uep|A  
    y: 0, 15                      !命令y: 定义y坐标范围 +QOK]NJN  
    y2: 0, 100                    !命令y2: 定义第二个y坐标范围 EY.m,@{  
    frame          !frame改变坐标系的设置 gxJ12' m  
    legpos 600, 500  !图行在图表窗口中的位置(相对于左上角而言) w_;$ahsu~  
    hx             !平行于x方向网格 56u_viZ=8  
    hy              !平行于y方向网格 kIe)ocJg  
    2|(lKFkQ  
    f: P(pump, x),    !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 0bD\`Jiv,  
      color = red,  !图形颜色 Z 0v&AD=  
      width = 3,   !width线条宽度 biForT_no  
      "pump"       !相应的文本字符串标签 pB]*cd B?  
    f: P(signal_fw, x),  !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 {qU;>;(  
      color = blue,     )4hA Fy6l  
      width = 3, cBU3Q<^  
      "fw signal" H(O|y2   
    f: P(signal_bw, x),   !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 TTWiwPo59  
      color = blue, ,|;\)tT  
      style = fdashed, d+5v[x~'  
      width = 3, (/9erfuJ  
      "bw signal" e~9g~k]s  
    YY$Z-u(  
    f: 100 * n(x, 2),    !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 5^CWF|  
      yscale = 2,            !第二个y轴的缩放比例 fQ -IM/z  
      color = magenta, b`Jsu!?{  
      width = 3, NO/5pz}1  
      style = fdashed, kbbHa_;aqV  
      "n2 (%, right scale)" !/! Fc'A  
    ux 17q>G  
    f: 100 * n(x, 3),          !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 ?(}~[  
      yscale = 2, i[z#5;x+<  
      color = red, Gv[(0  
      width = 3, JW=q'ibR  
      style = fdashed, "`4M4`'  
      "n3 (%, right scale)" W@%g_V}C*  
    G,1g~h%I$  
    A!uiM*"W  
    ; ------------- IJ:JH=8  
    diagram 2:                    !输出图表2 0,8RA_Ca}  
    Adfnd  
    "Variation ofthe Pump Power" *Uf>Xr&  
    |@f\[v9`  
    x: 0, 10 g:6 `1C  
    "pump inputpower (W)", @x {h.j6  
    y: 0, 10 :o~ ]d  
    y2: 0, 100 q$`>[&I~)  
    frame 3;!!`R>e  
    hx 5)0'$Xxqa0  
    hy u_8Z^T  
    legpos 150, 150 g&8-X?^Q  
    Um*&S.y  
    f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 Gq%,'am f  
      step = 5, *<h)q)HS  
      color = blue, 23a:q{R  
      width = 3, X+N8r^&  
      "signal output power (W, leftscale)",     !相应的文本字符串标签 'e$8 IZm  
      finish set_P_in(pump, P_pump_in) m}>Q#IVZ  
    qagR?)N)u  
    f: (set_P_in(pump,x); 100 * n_av(2)),   !改变泵浦信号功率对能级2上激活粒子占比的影响 m6A\R KJ'  
      yscale = 2, k\g:uIsv$  
      step = 5, KYl!Iw67d  
      color = magenta, ~8-xj6^  
      width = 3, glBS|b$\:  
      "population of level 2 (%, rightscale)", |8)\8b|VuC  
      finish set_P_in(pump, P_pump_in) h}DKFrHW;-  
    hrXk7}9  
    f: (set_P_in(pump,x); 100 * n_av(3)),   !改变泵浦信号功率对能级3上激活粒子占比的影响 K `A8N  
      yscale = 2, ,e GF~  
      step = 5, @%fL*^yr;C  
      color = red, \6aisK  
      width = 3, _?eT[!oO8  
      "population of level 3 (%, rightscale)", [| N73m,&  
      finish set_P_in(pump, P_pump_in) CT'#~~QB  
    $H&:R&Us  
    /bo`@ !-#  
    ; ------------- gg Nvm  
    diagram 3:                         !输出图表3 ;Sp/N4+  
    7*He 8G[W  
    "Variation ofthe Fiber Length" \Xr*1DI<  
    o*oFCR]j  
    x: 0.1, 5 k<NxI\s8]  
    "fiber length(m)", @x K}'?#a(aX=  
    y: 0, 10 MN:LL <  
    "opticalpowers (W)", @y tX,x%(  
    frame E@AV?@<sc  
    hx aY6F4,7/B  
    hy 'T;;-M3*  
    0ZZ Wj%  
    f: (set_L(x);P_out(signal_fw)),     !改变光纤长度对信号光输出功率的影响 u*rHKZ9i  
      step = 20,             N:Ir63X*#  
      color = blue, *>xCX  
      width = 3, .nEiYS|T  
      "signal output" O]Y   z7  
    Ynp#3 r  
    ;f: (set_L(x);P_out(pump)),                     !改变光纤长度对泵浦信号输出功率的影响 xLgZtLt9  
       step = 20, color = red, width = 3,"residual pump" U\-R'Z>M  
    ~@T`0W-Py  
    ! set_L(L_f) {restore the original fiber length } Hxleh><c-  
    #wZH.i #  
    Lg|d[*;'7  
    ; ------------- z*9 ke  
    diagram 4:                                  !输出图表4 Zq5~M bldh  
    )CgH|z:=b  
    "TransverseProfiles" io@f5E+?  
    Iv*u#]{t  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) py'xB i6}v  
    \Pe+]4R-Xo  
    x: 0, 1.4 * r_co /um :H+8E5  
    "radialposition (µm)", @x bfy=  
    y: 0, 1.2 * I_max *cm^2 `; j$]  
    "intensity (W/ cm&sup2;)", @y r\)bN4-g  
    y2: 0, 1.3 * N_Tm IaU%L6Q]  
    frame 2IUd?i3~l  
    hx tf[)| /M  
    hy ,J:Ro N_:  
    t+{vb S0  
    f: N_dop(1, x * um,0),      !掺杂浓度的径向分布 ;V?d;O4u  
      yscale = 2, ~@#a*="  
      color = gray, :T<5Tq*+x  
      width = 3, <y&&{*KW8m  
      maxconnect = 1, &y(%d 7@/  
      "N_dop (right scale)" 9Hd_sNUu\  
    ?nq%'<^^  
    f: I(pump, -1, x *um, 0) * cm^2,    !泵浦光沿光纤径向的强度分布 xErb11  
      color = red, 9PMIF9"   
      maxconnect = 1,           !限制图形区域高度,修正为100%的高度 \k^ojzJ  
      width = 3, 8;# yXlf  
      "pump" ?-)v{4{s  
    h[Uo6`  
    f: I(signal_fw, -1,x * um, 0) * cm^2,  !信号光沿光纤径向的强度分布 y0~ttfv  
      color = blue, ;~'&m  
      maxconnect = 1, !Lw]aHb  
      width = 3, n|KYcU#  
      "signal" i83[':  
    Iga#,k+%  
    Yy6$q\@rV  
    ; ------------- a,r B7aD  
    diagram 5:                                  !输出图表5 ),|z4~  
    $48 Z>ij?f  
    "TransitionCross-sections" +_+j"BT  
    `*U$pg  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) o"_'cNAz  
    %%zlqd"0  
    x: 1450, 2050 beSU[  
    "wavelength(nm)", @x Rd|8=`)  
    y: 0, 0.6 ZY@ntV?  
    "cross-sections(1e-24 m&sup2;)", @y /bPs0>5  
    frame \ Ce*5h  
    hx `uH7~ r^  
    hy b&dv("e 4  
    5$+ssR_?k  
    f: s12_Tm(x * nm) /1e-24,      !Tm3+吸收截面与波长的关系 xc\zRsY`  
      color = red, ge<D}6GQ  
      width = 3, <HzL%DX  
      "absorption" RBBmGZ  
    f: s21_Tm(x * nm) /1e-24,  !Tm3+发射截面与波长的关系 lk[Y6yE  
      color = blue,  1X&jlD?  
      width = 3, h72CGA|  
      "emission" N_Kdi%q  
    >P&1or)e%  
     
    分享到
    离线lileisgsz
    发帖
    14
    光币
    69
    光券
    0
    只看该作者 1楼 发表于: 2021-09-28
    感谢,视频上有点看不清楚