切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 2417阅读
    • 1回复

    [原创]RP Fiber Power仿真设计掺铥光纤激光器代码详解 [复制链接]

    上一主题 下一主题
    离线小火龙果
     
    发帖
    932
    光币
    2176
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-05-28
    (* z{@R.'BD  
    Demo for program"RP Fiber Power": thulium-doped fiber laser, Z<ajET`)  
    pumped at 790 nm. Across-relaxation process allows for efficient Wyq~:vU.S  
    population of theupper laser level. ran^te^Ks(  
    *)            !(*  *)注释语句 0Ws;|Yg  
    {+"g':><  
    diagram shown: 1,2,3,4,5  !指定输出图表 sp=OT-Pfp  
    ; 1: "Powersvs. Position"     !分号是注释;光纤长度对功率的影响 AUxM)H  
    ; 2:"Variation of the Pump Power"  !泵浦光功率变化对信号输出功率的影响 ]dHB}  
    ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 Q'|0?nBOY  
    ; 4:"Transverse Profiles"             !横向分布,横坐标为半径位置 ^}o7*   
    ; 5:"Transition Cross-sections"    !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 \6lh `U  
    kYxl1n v  
    include"Units.inc"         !读取“Units.inc”文件中内容 [Y$5zeA  
    7}?k^x,1  
    include"Tm-silicate.inc"    !读取光谱数据 4O`6h)!NQ  
    bR`rT4.F  
    ; Basic fiberparameters:    !定义基本光纤参数 LZM,QQ  
    L_f := 4 { fiberlength }      !光纤长度 )d +hZ'  
    No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 @8=vFP'  
    r_co := 6 um { coreradius }                !纤芯半径 G[3k  
    N_Tm := 100e24 { Tmdoping concentration }  !纤芯Tm离子掺杂浓度 tx0Go'{  
    /Fv/oY  
    ; Parameters of thechannels:                !定义光信道 F&QTL-pQW  
    l_p := 790 nm {pump wavelength }                !泵浦光波长790nm )RwBg8  
    dir_p := forward {pump direction (forward or backward) }   !前向泵浦 2'wr={>W  
    P_pump_in := 5 {input pump power }                    !输入泵浦功率5W >*dQqJI  
    w_p := 50 um {radius of pump cladding }               !包层泵浦相应的半径 50um K8 b+   
    I_p(r) := (r <=w_p) { pump intensity profile }          !泵浦光强度分布 {J~(#i k   
    loss_p := 0 {parasitic losses of pump wave }           !泵浦光寄生损耗为0 LY-lTr@A^  
    M[aT2A  
    l_s := 1940 nm {signal wavelength }                   !信号光波长1940nm 2wx!Lpr<i_  
    w_s := 7 um                          !信号光的半径 B(j02<-  
    I_s(r) := exp(-2 *(r / w_s)^2)            !信号光的高斯强度分布 )Fqy%uR8  
    loss_s := 0                            !信号光寄生损耗为0 {~"7vkc+  
    tu\mFHvlg  
    R_oc := 0.70 {output coupler reflectivity (right side) }      !输出耦合反射率 iOT)0@f'  
    r^$\t0h(U8  
    ; Function for defining themodel:   !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 Ue(r} *  
    calc E'5Ajtw;  
      begin 2Co@+I[,4&  
        global allow all;                   !声明全局变量 ajn-KG!A  
        set_fiber(L_f, No_z_steps, '');        !光纤参数 "~u_\STn <  
        add_ring(r_co, N_Tm); iQt!PMF.  
        def_ionsystem();              !光谱数据函数 R? O-x9  
        pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p);  !泵浦光信道 HWqLcQ d:P  
        signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward);      !前向信号光信道 izCaB~{/  
        signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward);    !后向信号光信道 *FV0Vy  
        set_R(signal_fw, 1, R_oc);                                 !设置反射率函数 31~hlp;  
        finish_fiber();                                   W*k`  
      end; &Hv;<  
    9Z&?R++?  
    ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 c~P)4(udT  
    show "Outputpowers:"                                   !输出字符串Output powers: Hu[]h]  
    show"pump:     ", P_out(pump):d3:"W"  !输出字符串pump:和计算值(格式为3个有效数字,单位W) ZP"yq6!i  
    show"signal:   ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) $#5klA  
    ~}BJ0P(VMc  
    ?>sQF4 V"  
    ; ------------- Bn\l'T  
    diagram 1:                   !输出图表1 $^t<9" t  
    \}Dpb%^\  
    "Powers vs.Position"          !图表名称 1h2H1gy5I3  
    n ]w7Zj  
    x: 0, L_f                      !命令x: 定义x坐标范围 <}d/v_+pnh  
    "position infiber (m)", @x      !x轴标签;@x 指示这些字符串沿坐标轴放置 9Uk(0A  
    y: 0, 15                      !命令y: 定义y坐标范围 a\=-D:  
    y2: 0, 100                    !命令y2: 定义第二个y坐标范围 huz86CO  
    frame          !frame改变坐标系的设置 Yi 6Nw+$  
    legpos 600, 500  !图行在图表窗口中的位置(相对于左上角而言) yVaUt_Zi  
    hx             !平行于x方向网格 dY8(nQG  
    hy              !平行于y方向网格 qNpu}\L  
    Z | We9%  
    f: P(pump, x),    !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 sGSsUO:@j;  
      color = red,  !图形颜色 e#.\^   
      width = 3,   !width线条宽度 <"?*zx&  
      "pump"       !相应的文本字符串标签 K"L_`.&Q  
    f: P(signal_fw, x),  !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 rJ DnuR  
      color = blue,     /|?F)%v\  
      width = 3, Rp0|zP,5  
      "fw signal" yO=p3PV d  
    f: P(signal_bw, x),   !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 cf)J )  
      color = blue, n12UBvc}%  
      style = fdashed, 4.8nY\_WF  
      width = 3, 4d0#86l~J/  
      "bw signal" `fz,Lh*v  
    ym\(PCa5`  
    f: 100 * n(x, 2),    !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 RX'-99M  
      yscale = 2,            !第二个y轴的缩放比例 ),=@q+{E{  
      color = magenta, oU8>Llt=$  
      width = 3, JkU1daTe  
      style = fdashed, {b1UX9y  
      "n2 (%, right scale)" & 1_U1  
    '<7S^^ax  
    f: 100 * n(x, 3),          !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 MAnp{  
      yscale = 2, J*j5#V];  
      color = red, gz;&u)  
      width = 3, 4O(@'#LLz  
      style = fdashed, %hc'dZ  
      "n3 (%, right scale)" 4=xq:Tf  
    L]I3P|y_  
    {^J!<k,R\;  
    ; ------------- U'y,YtF@  
    diagram 2:                    !输出图表2 'a#mViPTQ)  
    `4V"s-T'  
    "Variation ofthe Pump Power" zmiZ]uq  
    Fnb2.R'+  
    x: 0, 10 _ij$f<  
    "pump inputpower (W)", @x "~/9F  
    y: 0, 10 o>F*Itr{  
    y2: 0, 100 \5TxE  
    frame WDkuB  
    hx *P!s{i  
    hy ong""K4H  
    legpos 150, 150 , ECLqs%  
    blahi]{Y9  
    f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 rk|a5-i  
      step = 5, 8:thWGLN  
      color = blue, ]\Xc9N8w  
      width = 3, )DT|(^  
      "signal output power (W, leftscale)",     !相应的文本字符串标签 0/ !,Dn  
      finish set_P_in(pump, P_pump_in) Yp1bH+/u  
    MR$>!Nlp  
    f: (set_P_in(pump,x); 100 * n_av(2)),   !改变泵浦信号功率对能级2上激活粒子占比的影响 cSK&[>i)4  
      yscale = 2, 5f^>b\8+ |  
      step = 5, j1q[c,  
      color = magenta, KKEN'-3  
      width = 3, =P`~t<ajB  
      "population of level 2 (%, rightscale)", _<zfQZai  
      finish set_P_in(pump, P_pump_in) 88lxHoPV  
    S&(^<gwl  
    f: (set_P_in(pump,x); 100 * n_av(3)),   !改变泵浦信号功率对能级3上激活粒子占比的影响 \NK-L."[  
      yscale = 2, 0 [8=c&F  
      step = 5, :!Ig- +W  
      color = red, ;AIc?Cg  
      width = 3, C4\,z\Q  
      "population of level 3 (%, rightscale)", bk<FL6z z  
      finish set_P_in(pump, P_pump_in) BFVAw  
    347eis'  
    LA%bq_> f  
    ; ------------- iiG f'@/  
    diagram 3:                         !输出图表3 {6G?[ `&ca  
    y(a!YicA?  
    "Variation ofthe Fiber Length" &aG*k*  
    W^\d^)  
    x: 0.1, 5 nfdq y)  
    "fiber length(m)", @x Ai"-w"  
    y: 0, 10 Jblj^n?Bm  
    "opticalpowers (W)", @y kKiA  
    frame u~1o(Zn =  
    hx 7&B$HZ  
    hy ROc`BH=  
    r~7:daG*  
    f: (set_L(x);P_out(signal_fw)),     !改变光纤长度对信号光输出功率的影响 E9}{1A  
      step = 20,             MYLsHIPC  
      color = blue, $uj(G7_  
      width = 3, WYrI|^[>  
      "signal output" Dyg?F )6  
    8K"+,s(%R  
    ;f: (set_L(x);P_out(pump)),                     !改变光纤长度对泵浦信号输出功率的影响 ,Hn^z<f   
       step = 20, color = red, width = 3,"residual pump" 5x8+xw3Eh  
    $uDqqG(^  
    ! set_L(L_f) {restore the original fiber length } 7KjUW\mN2Z  
    0?0Jz  
    v2+!1r7@  
    ; ------------- ihCIh6  
    diagram 4:                                  !输出图表4 ]J7Qgp)i  
    )C%N]9FvY  
    "TransverseProfiles" d3;qsUh$yv  
    \qh *E#j  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) sEc;!L  
    Vz=auM1xZ  
    x: 0, 1.4 * r_co /um I97yt[,Yy  
    "radialposition (µm)", @x w ej[+y-  
    y: 0, 1.2 * I_max *cm^2 ^|MjJsn  
    "intensity (W/ cm&sup2;)", @y +}xaQc:0|  
    y2: 0, 1.3 * N_Tm 28.~iw  
    frame O,@~L$a:YZ  
    hx *^%*o?M~  
    hy a->3`c  
    !g!5_ |  
    f: N_dop(1, x * um,0),      !掺杂浓度的径向分布 dt}_D={Be  
      yscale = 2, -O!/Jv"{,[  
      color = gray, a2 +~;{?g  
      width = 3, 4qi[r)G  
      maxconnect = 1, 6NWn(pZ]p  
      "N_dop (right scale)" R(Kk{c:-@  
    5ExDB6Bx@y  
    f: I(pump, -1, x *um, 0) * cm^2,    !泵浦光沿光纤径向的强度分布 ufV!+$C)is  
      color = red, txgQ"MGA%  
      maxconnect = 1,           !限制图形区域高度,修正为100%的高度 Q Fm|-j  
      width = 3, \55VqGyxu9  
      "pump" (~~w7L s  
    Nes=;%&]G  
    f: I(signal_fw, -1,x * um, 0) * cm^2,  !信号光沿光纤径向的强度分布 kX`[Y@nUN  
      color = blue, /Ci*Az P  
      maxconnect = 1, aUHcYc\u  
      width = 3, '(Gi F  
      "signal" $Xm6N@  
    `o]g~AKX  
    #>=j79~  
    ; ------------- RwI[R)k  
    diagram 5:                                  !输出图表5 gKz(=  
    wr(*?p]R  
    "TransitionCross-sections" Z/;Xl~  
    5irwz4.4  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) fA/m1bYxg  
    1923N]b  
    x: 1450, 2050 \s"U{N-  
    "wavelength(nm)", @x 'H5M|c$s  
    y: 0, 0.6 ]?O2:X  
    "cross-sections(1e-24 m&sup2;)", @y j>uj=B@  
    frame X$%4$  
    hx 9,j-V p!G  
    hy <JMcIV837  
     qy)_wM  
    f: s12_Tm(x * nm) /1e-24,      !Tm3+吸收截面与波长的关系 $$b 9&mTl#  
      color = red, &k-Vcrcz  
      width = 3, #U8rO;$  
      "absorption" xx{!3 F  
    f: s21_Tm(x * nm) /1e-24,  !Tm3+发射截面与波长的关系 J^R=dT!  
      color = blue, 0Wa}<]:^  
      width = 3, o<IAeH {+  
      "emission" 98=wnWX 6$  
    q9w~A-Oh`1  
     
    分享到
    离线lileisgsz
    发帖
    14
    光币
    69
    光券
    0
    只看该作者 1楼 发表于: 2021-09-28
    感谢,视频上有点看不清楚