切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 2434阅读
    • 1回复

    [原创]RP Fiber Power仿真设计掺铥光纤激光器代码详解 [复制链接]

    上一主题 下一主题
    离线小火龙果
     
    发帖
    932
    光币
    2176
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-05-28
    (* `zoHgn7B9q  
    Demo for program"RP Fiber Power": thulium-doped fiber laser, 'o='Q)Dk  
    pumped at 790 nm. Across-relaxation process allows for efficient 5BrN uR$  
    population of theupper laser level. Tzd#!Lvm:,  
    *)            !(*  *)注释语句 C(>!?-.  
    y&\4Wr9m  
    diagram shown: 1,2,3,4,5  !指定输出图表 B:>:$LIL  
    ; 1: "Powersvs. Position"     !分号是注释;光纤长度对功率的影响 N8]DzE0%  
    ; 2:"Variation of the Pump Power"  !泵浦光功率变化对信号输出功率的影响 RHsVG &<j  
    ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 0>[]Da}  
    ; 4:"Transverse Profiles"             !横向分布,横坐标为半径位置 |=5zI6pT  
    ; 5:"Transition Cross-sections"    !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 r1~W(r.x  
    0hY3vBQ!  
    include"Units.inc"         !读取“Units.inc”文件中内容 _DR@P(0>_  
    lhM5a \  
    include"Tm-silicate.inc"    !读取光谱数据 o0Teect=  
    Y`g O:d8  
    ; Basic fiberparameters:    !定义基本光纤参数 UVDMYA0  
    L_f := 4 { fiberlength }      !光纤长度 7\@c1e*e  
    No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注  $H*8H`  
    r_co := 6 um { coreradius }                !纤芯半径 RIkIE=+6  
    N_Tm := 100e24 { Tmdoping concentration }  !纤芯Tm离子掺杂浓度 k7uX!}  
    NG3?OAQTw  
    ; Parameters of thechannels:                !定义光信道 8{Wl   
    l_p := 790 nm {pump wavelength }                !泵浦光波长790nm {?Slo5X|  
    dir_p := forward {pump direction (forward or backward) }   !前向泵浦 SY95s  
    P_pump_in := 5 {input pump power }                    !输入泵浦功率5W _J*l,]}S  
    w_p := 50 um {radius of pump cladding }               !包层泵浦相应的半径 50um Aa-5k3:x]=  
    I_p(r) := (r <=w_p) { pump intensity profile }          !泵浦光强度分布 BMq> Cj+  
    loss_p := 0 {parasitic losses of pump wave }           !泵浦光寄生损耗为0 7,)E1dx -V  
    A":=-$)  
    l_s := 1940 nm {signal wavelength }                   !信号光波长1940nm cO:lpsKYQ  
    w_s := 7 um                          !信号光的半径 rzdQLan  
    I_s(r) := exp(-2 *(r / w_s)^2)            !信号光的高斯强度分布 tk0m[HN@eV  
    loss_s := 0                            !信号光寄生损耗为0 } :?*n:g5  
    9q]f]S.L  
    R_oc := 0.70 {output coupler reflectivity (right side) }      !输出耦合反射率 "d}']M?-h  
    Mn5(Kw?o2J  
    ; Function for defining themodel:   !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 I484c R2.  
    calc 9z?c0W5x  
      begin RZEq@q  
        global allow all;                   !声明全局变量 UhR^Y{W5  
        set_fiber(L_f, No_z_steps, '');        !光纤参数 =nHkFi@D=t  
        add_ring(r_co, N_Tm); ?121 as}z  
        def_ionsystem();              !光谱数据函数 MoxWnJy}  
        pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p);  !泵浦光信道 v1u~[c=|^  
        signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward);      !前向信号光信道 U| yt   
        signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward);    !后向信号光信道 /#5rt&q  
        set_R(signal_fw, 1, R_oc);                                 !设置反射率函数 ;{8 X+H  
        finish_fiber();                                   ke@OG! M/  
      end; vEjf|-Mb9  
    3 85qQppz  
    ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 [#wt3<d`)  
    show "Outputpowers:"                                   !输出字符串Output powers: .|"E:qTD  
    show"pump:     ", P_out(pump):d3:"W"  !输出字符串pump:和计算值(格式为3个有效数字,单位W) lB2 F09`  
    show"signal:   ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) i=5!taxu}E  
    `]]m$  
    %cs" PS  
    ; ------------- Qraq{'3  
    diagram 1:                   !输出图表1 #++:`Z  
    wo62R&ac  
    "Powers vs.Position"          !图表名称 k %{q q v  
    nVlZ_72d  
    x: 0, L_f                      !命令x: 定义x坐标范围 ,aWI&ve6  
    "position infiber (m)", @x      !x轴标签;@x 指示这些字符串沿坐标轴放置 pv4#`.m  
    y: 0, 15                      !命令y: 定义y坐标范围 rhYARr'  
    y2: 0, 100                    !命令y2: 定义第二个y坐标范围 {%6 '|<`[  
    frame          !frame改变坐标系的设置 Z$i?p;HnW  
    legpos 600, 500  !图行在图表窗口中的位置(相对于左上角而言) ,nog6\  
    hx             !平行于x方向网格 Na]ITCVR  
    hy              !平行于y方向网格 Yq/vym-O5  
    %/)z!}{  
    f: P(pump, x),    !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 7aRy])x  
      color = red,  !图形颜色 5T"h7^}e  
      width = 3,   !width线条宽度 dM,{:eID  
      "pump"       !相应的文本字符串标签 E690'\)31  
    f: P(signal_fw, x),  !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 ZCK#=:ln  
      color = blue,     j!L7r'AV5  
      width = 3, 6wOj,}2Mn  
      "fw signal" eVj 8u  
    f: P(signal_bw, x),   !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 ]}S9KP  
      color = blue, zWN]#W`  
      style = fdashed, 8~!h8bkC  
      width = 3, >y}> 5kv  
      "bw signal" ! qtj1.w  
    Mu.tq~b >  
    f: 100 * n(x, 2),    !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 | Eu#mN  
      yscale = 2,            !第二个y轴的缩放比例 Oo!]{[}7  
      color = magenta, F)l1%F Cm  
      width = 3, D41.$t[  
      style = fdashed, -R$Q`Xw  
      "n2 (%, right scale)" yqJ>Z%)hf  
    e*<pO@Uy  
    f: 100 * n(x, 3),          !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 Ug[0l)  
      yscale = 2, #BEXj<m+J  
      color = red, K-(C5 "j_  
      width = 3, ](+u'8  
      style = fdashed, JBV 06T_4o  
      "n3 (%, right scale)" 8XfOM f~d`  
    (e 2.Ru  
    aTaL|&(  
    ; ------------- 1mv5B t  
    diagram 2:                    !输出图表2 M6[O> z  
    !bW^G} <t  
    "Variation ofthe Pump Power" W$}2 $}r0U  
    ZSwhI@|  
    x: 0, 10 *EU1`q*  
    "pump inputpower (W)", @x - Lsl  
    y: 0, 10 * P12d  
    y2: 0, 100 S>[&]  
    frame .L)j ql%  
    hx >)`*:_{  
    hy U,< ?]h  
    legpos 150, 150 pfMmDl5|  
    5 yL"=3&+  
    f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 +D h?MQt?  
      step = 5, BgsU:eKe  
      color = blue, V' sq'XB  
      width = 3, ;MO,HdP;  
      "signal output power (W, leftscale)",     !相应的文本字符串标签 e9F+R@8  
      finish set_P_in(pump, P_pump_in) -9 |)O:  
    V4*/t#L/  
    f: (set_P_in(pump,x); 100 * n_av(2)),   !改变泵浦信号功率对能级2上激活粒子占比的影响 o~x49%X<c  
      yscale = 2, ^Y"|2 :  
      step = 5, 3|Y.+W  
      color = magenta, =1VpO{ q  
      width = 3, )uCa]IR  
      "population of level 2 (%, rightscale)", Qj9'VI>&  
      finish set_P_in(pump, P_pump_in) nI`9|W  
    6(B[(Af  
    f: (set_P_in(pump,x); 100 * n_av(3)),   !改变泵浦信号功率对能级3上激活粒子占比的影响 YQ-V^e6  
      yscale = 2, "6WE6zq   
      step = 5, }vX 1@n7T6  
      color = red, [TmZ\t!5$  
      width = 3, {UuSNZ[^  
      "population of level 3 (%, rightscale)", ib(4Y%U6~  
      finish set_P_in(pump, P_pump_in) jq[Q>"f  
    *)T7DN8  
    ZGS4P0$  
    ; ------------- y#J8Yv8  
    diagram 3:                         !输出图表3 NV18~5#</  
    Zx|VOl,;  
    "Variation ofthe Fiber Length" o|1_I?_  
    9!Bz)dJ 3  
    x: 0.1, 5 qD(dAU  
    "fiber length(m)", @x k|rbh.Q  
    y: 0, 10 z| m-nIM  
    "opticalpowers (W)", @y tIW~Ng  
    frame ov Wm}!r  
    hx t|59/R  
    hy -aM7>YR  
    $*+`;PG-  
    f: (set_L(x);P_out(signal_fw)),     !改变光纤长度对信号光输出功率的影响 #PMi6q~Z  
      step = 20,             K^[Dz\ov5  
      color = blue, HA;G{[X  
      width = 3, u/HNXJ7M`9  
      "signal output" oazy%n(KZ  
     rUBc5@|  
    ;f: (set_L(x);P_out(pump)),                     !改变光纤长度对泵浦信号输出功率的影响 z4s{a(Tsd  
       step = 20, color = red, width = 3,"residual pump" aB~=WWLR\  
    (+.R8  
    ! set_L(L_f) {restore the original fiber length } M~*o =t  
    10..<v7  
    bP1]:^ x@W  
    ; ------------- %H7H0 %qW  
    diagram 4:                                  !输出图表4 82w=t  
    =R||c  
    "TransverseProfiles" Y'x+! &H  
    6V @ [< d  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) +`~kt4W  
    8'VcaU7Nh  
    x: 0, 1.4 * r_co /um HhT6gJWrU  
    "radialposition (µm)", @x dJ=z '?|%g  
    y: 0, 1.2 * I_max *cm^2 `>\>'V<&  
    "intensity (W/ cm&sup2;)", @y -Z&9pI(3R~  
    y2: 0, 1.3 * N_Tm T']G:jkb  
    frame 0`kaT ?>  
    hx Q|nGY:98  
    hy ]|K@0,  
    , n47.S  
    f: N_dop(1, x * um,0),      !掺杂浓度的径向分布 -e_L2<7  
      yscale = 2, l#!6 tw+e?  
      color = gray, ),4c b  
      width = 3, K`twbTU  
      maxconnect = 1, oGqbk x  
      "N_dop (right scale)" oz/Nx{bg  
    DBZ^n9  
    f: I(pump, -1, x *um, 0) * cm^2,    !泵浦光沿光纤径向的强度分布 \t%rIr  
      color = red, 4 JDk ()  
      maxconnect = 1,           !限制图形区域高度,修正为100%的高度 ,I8[tiR"b  
      width = 3, "' ]|o~B  
      "pump" f]]UNS$AYQ  
    Huho|6ohH  
    f: I(signal_fw, -1,x * um, 0) * cm^2,  !信号光沿光纤径向的强度分布 M%1wT9  
      color = blue, Cc>+OUL  
      maxconnect = 1, T8-,t];i  
      width = 3, l5CFm8%  
      "signal" @hj5j;NHK  
    i>=!6Hu2  
    J(=io_\bO  
    ; ------------- *BAR`+;U  
    diagram 5:                                  !输出图表5  @1O.;  
    VL| q`n  
    "TransitionCross-sections" ynU20g  
    /}#@uC  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) .{ r %C4q9  
    h][$1b&B  
    x: 1450, 2050 B0"55g*c  
    "wavelength(nm)", @x y-#01Z  
    y: 0, 0.6 XmX{e.<NZ  
    "cross-sections(1e-24 m&sup2;)", @y \ 3HB  
    frame y#)ad\  
    hx [}Pi $at  
    hy h YEUiQ  
    2s<uT  
    f: s12_Tm(x * nm) /1e-24,      !Tm3+吸收截面与波长的关系 {~+o+LV  
      color = red, a?ux  
      width = 3, !OL[1_-4|K  
      "absorption" *_CzCl^   
    f: s21_Tm(x * nm) /1e-24,  !Tm3+发射截面与波长的关系 < r7s,][&  
      color = blue, (bo-JOOdY(  
      width = 3, BoHpfx1C  
      "emission" F<LRo}j"9Q  
    \O(~:KN  
     
    分享到
    离线lileisgsz
    发帖
    14
    光币
    69
    光券
    0
    只看该作者 1楼 发表于: 2021-09-28
    感谢,视频上有点看不清楚