(* %j4AX
Demo for program"RP Fiber Power": thulium-doped fiber laser, GUH-$rA
pumped at 790 nm. Across-relaxation process allows for efficient sngM4ikhs
population of theupper laser level. ]Te,m}E
*) !(* *)注释语句 PN"s^]4
]ML(=7z"
diagram shown: 1,2,3,4,5 !指定输出图表 IizPu4|
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 a\]glw\;
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 >JUOS2
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 + _"AF|
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 |9*8u>|RC
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 aFf(m-
8Ts_;uId
include"Units.inc" !读取“Units.inc”文件中内容 1Ax{Y#<
q7kE+z
include"Tm-silicate.inc" !读取光谱数据 X1Vj"4'wT
p?idl`?^3
; Basic fiberparameters: !定义基本光纤参数 ra]lC7<H
L_f := 4 { fiberlength } !光纤长度 79MF;>=tV
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 5N
/NUs
r_co := 6 um { coreradius } !纤芯半径 f:u3fL
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 |g1~-
2, R5mL$
; Parameters of thechannels: !定义光信道 1n-+IR"
l_p := 790 nm {pump wavelength } !泵浦光波长790nm H:5- S
dir_p := forward {pump direction (forward or backward) } !前向泵浦 Q xm:5P
P_pump_in := 5 {input pump power } !输入泵浦功率5W ~M Mv+d88
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um a]4h5kJ';
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 <l!{j? Kx
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 0T7c =5z4W
"fN=Y$G
l_s := 1940 nm {signal wavelength } !信号光波长1940nm dK d"2+fH
w_s := 7 um !信号光的半径 {[:]}m(c
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 rZ:-%#Q4
loss_s := 0 !信号光寄生损耗为0 %k=c9ll@:
,
aJC7'(
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 {\p&?
sp8P[W1a
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 4Gor*{
calc :c}"a(|
begin O]VHX![Y$
global allow all; !声明全局变量 UB2Ft=
set_fiber(L_f, No_z_steps, ''); !光纤参数 6z2W N|78
add_ring(r_co, N_Tm); <1eD*sC?g
def_ionsystem(); !光谱数据函数 P0<)E
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 5[0W+W
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 ./i5VBP5
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 }/J<#}t
set_R(signal_fw, 1, R_oc); !设置反射率函数 =x3T+)qCNX
finish_fiber(); {'NXJ!I;t
end; \IX|{]*D
##5e:<c&[
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 _ZHDr[
show "Outputpowers:" !输出字符串Output powers: c@|f'V4
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) &hu3A)%
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) <TEDqQ
L#MgoBXr
`b*x}HP$
; ------------- w[]\%`69}Z
diagram 1: !输出图表1 ?%ei+
F~C7$
"Powers vs.Position" !图表名称 ]6;G#
@d_9NOmNT
x: 0, L_f !命令x: 定义x坐标范围 <Gj]XAoe%
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 on.m
'-s
y: 0, 15 !命令y: 定义y坐标范围 lXip%6c7
y2: 0, 100 !命令y2: 定义第二个y坐标范围 O&}`R5Y;
frame !frame改变坐标系的设置 }iRRf_
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) =|V [^#V
hx !平行于x方向网格 4vyJ<b
hy !平行于y方向网格 xp%LXxj
iD)P6"
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 Cig!3
color = red, !图形颜色 6F; |x
width = 3, !width线条宽度 f"Kl?IN8
"pump" !相应的文本字符串标签 ZO&F15$P
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 qDPl( WXb
color = blue, %
|G"ZPO?
width = 3, pGP$2
"fw signal" e$N1m:1*
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 ,~>u<Wc!S
color = blue, ofuQ`g1hb
style = fdashed, }*,z~y}V#
width = 3, CO{AC~
"bw signal" +m4?a\U
no9=K4h`
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 \:>eZl?
yscale = 2, !第二个y轴的缩放比例 q],/%W
color = magenta, 4IXa[xAm
width = 3, <5npVm
style = fdashed, ZG)6{WS
"n2 (%, right scale)" LsaRw-4.c
vg\fBHzn
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 wj9Hh
yscale = 2, Y*YV/E.
color = red, seA=7c5E
width = 3, :s#&nY
style = fdashed, %kL]-Z
"n3 (%, right scale)" w
C-x'
*wV`7\@
%i@Jw
; ------------- CM
8Ub%
diagram 2: !输出图表2 g&O!w!T
J"
U!j
"Variation ofthe Pump Power" ^vc#)tm5p
J#Agk^Y 5
x: 0, 10 1VB{dgr
"pump inputpower (W)", @x \g:Bg%43h
y: 0, 10 &I?d(Z=:\
y2: 0, 100 %-3wR@
frame ;\gHFG}
hx bf$4Z: Y
hy zwdi$rM5
legpos 150, 150 qrY]tb^K
>?ckBU9
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 *+>QKR7
step = 5, "U
iv[8B
color = blue, )}4xmf@gl
width = 3, AHdh]pfH
"signal output power (W, leftscale)", !相应的文本字符串标签 RyZy2^0<
finish set_P_in(pump, P_pump_in) P~u~`eH*
<amdPo+2D
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 6F08$,%Y
yscale = 2, j(];b+>
step = 5, _2nNCu (
color = magenta, ,B$m8wlI|
width = 3, h}f l:J1C
"population of level 2 (%, rightscale)", {{Z3M>Q
finish set_P_in(pump, P_pump_in) o;7_*=i
uDsof?z
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 dnstm@0k
yscale = 2, #~:@H&f790
step = 5,
d/&~IR
color = red, ~"i4"Op&
width = 3, LV$`bZ
"population of level 3 (%, rightscale)", 46M?Gfd,X
finish set_P_in(pump, P_pump_in) P |kfPohI=
1bpjj'2%x
b%D}mxbS
; ------------- l]KxUkA+
diagram 3: !输出图表3 Kf'oXCs
qo5WZ
be
"Variation ofthe Fiber Length" \EOPlyf8x
jY ~7-
x: 0.1, 5 U8icP+Y
"fiber length(m)", @x @/0-`Y@?
y: 0, 10 o%$'-N
"opticalpowers (W)", @y K9+%rqC.|`
frame */E5<DO
hx I.RmBUq):s
hy R[_UbN 28
zd^QG
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 |)IS[:X
step = 20, Hv.nO-c
color = blue, 3F|#nq
width = 3, z 2Rg`1B
"signal output" Y76U htYH
Gtpl5g QH
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 .iXIoka
step = 20, color = red, width = 3,"residual pump" n*vzp?+Y
% C.I2J`_
! set_L(L_f) {restore the original fiber length } 13KfI
y0f"UH/
D4e!A@LJ
; ------------- 5
Yf
T
diagram 4: !输出图表4 A6#5 z
^ ;XJG9a0\
"TransverseProfiles" 7"0l>0 \
{e'V^l.v
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) lay)I11->
N% W298
x: 0, 1.4 * r_co /um LIZsDTU
"radialposition (µm)", @x -"Hy%wE
y: 0, 1.2 * I_max *cm^2 0.}WZAYy~
"intensity (W/ cm²)", @y vRn"0Mzl8
y2: 0, 1.3 * N_Tm 2J5RZg9jL
frame `rLy7\@;
hx TaI72"8
hy @K:TGo,%I
WY 'QhieH
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 q"O4}4`
yscale = 2, u~y0H
color = gray, "fTW2D74
width = 3, /$NZj"#
maxconnect = 1, qe{:9
"N_dop (right scale)" ./#F,^F2
,q|;`?R;
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 SZ'2/#R>
color = red, U3UDA
maxconnect = 1, !限制图形区域高度,修正为100%的高度 xYUC|c1Q9
width = 3, OPtFz6
"pump" :G\X
?\7$63gBH
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 $63_*9
color = blue, ljw(cUM
maxconnect = 1, /+g9C(['
width = 3, H;.${u^lhd
"signal" Op2@En|d
#o/
Y"dUxv1Ap
; ------------- )=]u]7p}
diagram 5: !输出图表5 ;[,r./XmH
4[o/p8*/
"TransitionCross-sections" kl0|22"Gz
J+o6*t2|
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) _d`)N
[]I_r=
x: 1450, 2050 QRL+-)DMc
"wavelength(nm)", @x X]T&kdQ6q
y: 0, 0.6 |h6u%t2AY
"cross-sections(1e-24 m²)", @y ]XS[\qo
frame )@,zG(t5;
hx L $ki>._i\
hy Q]7}"B&
z3mo2e
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 Ht_7:5v&
color = red, L7rH=gZ&!]
width = 3, 5%K(tRc|
"absorption" kx.8VUoM
V
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 )ld`2)
4
color = blue, *MM8\p_PuT
width = 3, W#sCvI@
"emission" C=zc6C,
id:6O+\