(* Vf(..8
Demo for program"RP Fiber Power": thulium-doped fiber laser, 4Qi-zNNB
pumped at 790 nm. Across-relaxation process allows for efficient 0W
1bZPM
population of theupper laser level. ]:#W$9,WL
*) !(* *)注释语句 X&Ospl@H
aYtW!+#
diagram shown: 1,2,3,4,5 !指定输出图表 IUWJi\,
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 )eX{a/Be
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 2L.6!THG
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 2Z9ck|L>
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 PTQN.[bBh
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面
zGL.+@
juWbd|ad"
include"Units.inc" !读取“Units.inc”文件中内容 Eg4&D4TGp
tI0D{Xrc
include"Tm-silicate.inc" !读取光谱数据 c?Zi/7
ZlMS=<hgFx
; Basic fiberparameters: !定义基本光纤参数 P-Gp^JX8
L_f := 4 { fiberlength } !光纤长度 B90fUK2g
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 l>oJ^J
r_co := 6 um { coreradius } !纤芯半径 '^Q$:P{G?
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 e=!sMWx6
-23sm~`
; Parameters of thechannels: !定义光信道 ihct~y-9W
l_p := 790 nm {pump wavelength } !泵浦光波长790nm Tj2pEOu
dir_p := forward {pump direction (forward or backward) } !前向泵浦 &j"_hFhv
P_pump_in := 5 {input pump power } !输入泵浦功率5W H-%
B<7
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um bdBLfWe
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 #]*d8
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 8yswi[
i"^ yy+
l_s := 1940 nm {signal wavelength } !信号光波长1940nm n&Q0V.
w_s := 7 um !信号光的半径 ]<;y_
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 Tkj
F/zv
loss_s := 0 !信号光寄生损耗为0 &jrc]
ziQ&M\
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 *y~~~ 'J/
T#}"?A|
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 2H1?f|0>
calc (F*y27_u
begin Eh *u6K)Z
global allow all; !声明全局变量 F:Yp1Wrb <
set_fiber(L_f, No_z_steps, ''); !光纤参数 5^{2g^jH6
add_ring(r_co, N_Tm); XCGK&OGI
def_ionsystem(); !光谱数据函数 k5X-*^U=V}
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 (
_MY;S
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 @><8YN^)%
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 (Kw%fJT
set_R(signal_fw, 1, R_oc); !设置反射率函数 u&j_;Y !6
finish_fiber(); L7yEgYB
end; ~T=a]V
V|2[>\Cv
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 &<(&u`S
show "Outputpowers:" !输出字符串Output powers: &!>.)I`
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) Q^'xVS_.
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) mW3IR3b
.sZ"|j9m
1/=6s5vS}
; ------------- Jb|dpu/e
diagram 1: !输出图表1 Z>.('
o#-^Lg&
"Powers vs.Position" !图表名称 F>k/;@d
nKch:g
x: 0, L_f !命令x: 定义x坐标范围 ,H]S-uK~
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 &8JK^zQq
y: 0, 15 !命令y: 定义y坐标范围 T9YrB
y2: 0, 100 !命令y2: 定义第二个y坐标范围 5[`f(;
frame !frame改变坐标系的设置 iG{xDj{CKv
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) i@ehD@.dH
hx !平行于x方向网格 yh+.Yn=+
hy !平行于y方向网格 >B$B|g~
I9sQPa
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 |Syulus
color = red, !图形颜色 1 l-Y)
width = 3, !width线条宽度 cE*d(g
"pump" !相应的文本字符串标签 Md*.q^:
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 V+$fh2t
color = blue, NqN}] nu6
width = 3, `>HrO}x^
"fw signal" 2zkOs:
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 eY`o=xN
color = blue, p|w0
i[hc
style = fdashed, V?n=yg
width = 3, @lCyH(c%
"bw signal" -T>i5'2)
d M;v39
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 ;y-sd?pAk
yscale = 2, !第二个y轴的缩放比例 8M7Bw[Q1
color = magenta, dlioa Yc
width = 3, O-n JuZJgX
style = fdashed, =F46v{la
"n2 (%, right scale)" OgCz[QXr_
(JT
273
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 YLb$/6gj6
yscale = 2, 8-x)8B
color = red, 9[:TWvd
width = 3, ?DKY;:dZF
style = fdashed, C/q!!
"n3 (%, right scale)" tcJN`N
m-<m[ 49
pzeCdHF
; ------------- !9_'_8
diagram 2: !输出图表2 2u(G:cR
a[E}o<{
"Variation ofthe Pump Power" cT
nC
@jKB[S;JSn
x: 0, 10 +77B656
"pump inputpower (W)", @x M[QQi2:&
y: 0, 10 #j)"#1IE2W
y2: 0, 100 6K^O.VoV^J
frame /z: mi
hx YRU95K[
hy ipS:)4QFxJ
legpos 150, 150 +9B .}t#
cVDcda|PE
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 5 &0qr$
step = 5, P7$/yBI U
color = blue, _IWLC{%V
width = 3, U|x#'jGo'
"signal output power (W, leftscale)", !相应的文本字符串标签 I5ZM U
finish set_P_in(pump, P_pump_in) 4B)%I`
1o?uf,H7O
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 "6Z(0 iu:{
yscale = 2, E@4/<;eKK
step = 5, z#2n+hwE
color = magenta, s%1ZraMvJ
width = 3, <T]ey
"population of level 2 (%, rightscale)", zpZfsn!
finish set_P_in(pump, P_pump_in) %a!gN
G"h}6Za;DO
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 wZWAx
yscale = 2, MfO:BX@$
step = 5, e0hY
color = red, 6w[EJ;=p_
width = 3, *q+X?3
"population of level 3 (%, rightscale)", c:""&>Z
finish set_P_in(pump, P_pump_in) BAtjYPX'w
<LN7+7}
6"R'z#{OF
; ------------- fElFyOo+
diagram 3: !输出图表3 _PSOT5{
L$,yEMCe
"Variation ofthe Fiber Length" [v`kqL~
egVKAR-
x: 0.1, 5 (%mV,2|:20
"fiber length(m)", @x l2I%$|)d
y: 0, 10 _<=h#lH
"opticalpowers (W)", @y I5 qrHBJ >
frame =}.gU WV
hx <. *bJ
hy %Aqf=R_^
8|zOgn{
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 %r8;i
step = 20, <>728;/C
color = blue, <_#2+7Qs
width = 3, E;[Uhh|78!
"signal output" [bRE=Zr$Ry
?'_6M4UKa
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 AQmHa2P
step = 20, color = red, width = 3,"residual pump" 216$,4i
O8SE)R~
! set_L(L_f) {restore the original fiber length } {`,)<R>}
ZJ.an%4
u@CQ+pnf:(
; ------------- W/AF
diagram 4: !输出图表4 eTuKu(0
E
72 |O&`O
"TransverseProfiles" 8KYI Hw
>##Z}auY
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) ,~DV0#"
[:cvy[}v@
x: 0, 1.4 * r_co /um N$x&k$w R
"radialposition (µm)", @x iaLZ|\`3a
y: 0, 1.2 * I_max *cm^2 6|~^P!&
"intensity (W/ cm²)", @y ?)186dp
y2: 0, 1.3 * N_Tm zo8D"
frame M:b#">M
hx ex6R=97uA
hy j[.nk
,Aai-AGG@
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 aU^6FI
yscale = 2, Qd{8.lB~LQ
color = gray, 0Qq<h;8xEc
width = 3, kwL|gO1L
maxconnect = 1, Od)y4nr3~
"N_dop (right scale)" E2d'P
x~vNUyEN)
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 (zsv!U
color = red, ][
I OlR
maxconnect = 1, !限制图形区域高度,修正为100%的高度 y.c6r> }
width = 3, D>-r `
"pump" N9-7YQ`D
oLh ,F"nB
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 28`s+sH
color = blue, c!/+0[
maxconnect = 1, kS8?N`2}LV
width = 3, o~)o/(>ox
"signal" mO;QT
[
'lu;1-,
}Sbk qd5
; ------------- HE%/+mZN
diagram 5: !输出图表5 xcU!bDV
?5J#
"TransitionCross-sections" J E7m5kTa
6{Q-]LOc[.
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) q]I aRho
#[bL9R5NC
x: 1450, 2050 Rd5_{F
"wavelength(nm)", @x !Yv_V]u=
y: 0, 0.6 uVCH<6Cp
"cross-sections(1e-24 m²)", @y oV0T
frame ]i$0s
hx 4&sf{tI
hy ;=jF9mV.
HyVV,q^E
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 Xt<1b
color = red, vxj:Y'}
width = 3, 5P%#5Yr2
"absorption"
}o*A>le
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 N=KtW?C
color = blue, M|mfkIk0MB
width = 3, j2<+[h-
"emission" TZ5TkE;1
eIY`RMo
(