切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 2294阅读
    • 1回复

    [原创]RP Fiber Power仿真设计掺铥光纤激光器代码详解 [复制链接]

    上一主题 下一主题
    离线小火龙果
     
    发帖
    932
    光币
    2176
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-05-28
    (* ntrY =Y  
    Demo for program"RP Fiber Power": thulium-doped fiber laser, _-4n ~(  
    pumped at 790 nm. Across-relaxation process allows for efficient nwa\Lrh  
    population of theupper laser level. tx^92R2/  
    *)            !(*  *)注释语句 /#-,R,Q  
    ~pHJ0g:t  
    diagram shown: 1,2,3,4,5  !指定输出图表 [n!$D(|"!V  
    ; 1: "Powersvs. Position"     !分号是注释;光纤长度对功率的影响 8fJR{jD(s  
    ; 2:"Variation of the Pump Power"  !泵浦光功率变化对信号输出功率的影响 m.1LxM$8  
    ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 NEq t).   
    ; 4:"Transverse Profiles"             !横向分布,横坐标为半径位置 eP V-yy  
    ; 5:"Transition Cross-sections"    !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 !7A"vTs  
    8q_1(& O  
    include"Units.inc"         !读取“Units.inc”文件中内容 @IEI%vH  
    U>/<6 Wd  
    include"Tm-silicate.inc"    !读取光谱数据 Hnfvo*6d.e  
    Ivz+Jj w  
    ; Basic fiberparameters:    !定义基本光纤参数 X HWh'G9  
    L_f := 4 { fiberlength }      !光纤长度 Jz~+J*r;]A  
    No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 sx-EA&5-9k  
    r_co := 6 um { coreradius }                !纤芯半径 Y*5Z)h 1  
    N_Tm := 100e24 { Tmdoping concentration }  !纤芯Tm离子掺杂浓度 5Z* b(R  
    Dl0/-=L  
    ; Parameters of thechannels:                !定义光信道 `)rg|~#k  
    l_p := 790 nm {pump wavelength }                !泵浦光波长790nm f Ub1/-}  
    dir_p := forward {pump direction (forward or backward) }   !前向泵浦 * <B)Z  
    P_pump_in := 5 {input pump power }                    !输入泵浦功率5W v57N^DR{  
    w_p := 50 um {radius of pump cladding }               !包层泵浦相应的半径 50um >nc4v6s  
    I_p(r) := (r <=w_p) { pump intensity profile }          !泵浦光强度分布 whV&qe;sw  
    loss_p := 0 {parasitic losses of pump wave }           !泵浦光寄生损耗为0 Q{H17]W  
    ~Y\QGuT  
    l_s := 1940 nm {signal wavelength }                   !信号光波长1940nm 4st~3,lR$  
    w_s := 7 um                          !信号光的半径 9uuta4&uI  
    I_s(r) := exp(-2 *(r / w_s)^2)            !信号光的高斯强度分布 RxlszyE  
    loss_s := 0                            !信号光寄生损耗为0 6{5q@9F  
    N YCj; ,V  
    R_oc := 0.70 {output coupler reflectivity (right side) }      !输出耦合反射率 W;^Rx.W  
    aML#Z|n  
    ; Function for defining themodel:   !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 qIB>6bv#x  
    calc }16&1@8  
      begin 5iP8D<;o5  
        global allow all;                   !声明全局变量 IeO-O'^&`  
        set_fiber(L_f, No_z_steps, '');        !光纤参数 5i^`vmK  
        add_ring(r_co, N_Tm); [m~b[ZwES  
        def_ionsystem();              !光谱数据函数 ^Y$QR]  
        pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p);  !泵浦光信道 {?w"hjy  
        signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward);      !前向信号光信道 7*+Km'=M  
        signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward);    !后向信号光信道 )V=0IZi  
        set_R(signal_fw, 1, R_oc);                                 !设置反射率函数 :_>\DJ'>  
        finish_fiber();                                   g+e:@@ug  
      end; wHA/b.jH  
    h8em\<;  
    ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 a@Mq J=<L  
    show "Outputpowers:"                                   !输出字符串Output powers: l+t #"3  
    show"pump:     ", P_out(pump):d3:"W"  !输出字符串pump:和计算值(格式为3个有效数字,单位W) q5%2WM]6  
    show"signal:   ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) IDj_l+?c  
    /j11,O?72  
    PXa5g5 !  
    ; ------------- A_@I_V$  
    diagram 1:                   !输出图表1 w- r_H!-  
    =D{B}=D\IM  
    "Powers vs.Position"          !图表名称 ]y.R g{iv  
    nHnk#SAA u  
    x: 0, L_f                      !命令x: 定义x坐标范围 YbzM6u2  
    "position infiber (m)", @x      !x轴标签;@x 指示这些字符串沿坐标轴放置 ]Qd{ '}+  
    y: 0, 15                      !命令y: 定义y坐标范围 mU>&ql?e  
    y2: 0, 100                    !命令y2: 定义第二个y坐标范围 RV}GK L>gn  
    frame          !frame改变坐标系的设置 r)Or\HL  
    legpos 600, 500  !图行在图表窗口中的位置(相对于左上角而言) <]~ZPk[  
    hx             !平行于x方向网格 4ffU;6~l'  
    hy              !平行于y方向网格  -H`\? R  
    `n6/ A)  
    f: P(pump, x),    !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 9WOu8Ia  
      color = red,  !图形颜色 s\_l=v3  
      width = 3,   !width线条宽度 !z?0 :Jg  
      "pump"       !相应的文本字符串标签 %06vgjOa (  
    f: P(signal_fw, x),  !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 Vz'HM$  
      color = blue,     &2Q*1YXj  
      width = 3,  U7E  
      "fw signal" *_ PPrx5  
    f: P(signal_bw, x),   !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 !I~C0u  
      color = blue, \9'!"-i  
      style = fdashed, -xz|ayn  
      width = 3, un6cD$cHr  
      "bw signal" W+.{4 K  
    IJ0#iA. T  
    f: 100 * n(x, 2),    !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 `YU=~xQ  
      yscale = 2,            !第二个y轴的缩放比例 3^XVQS***  
      color = magenta, Gbn4 *<N  
      width = 3, U~wjR"='  
      style = fdashed, nx B32  
      "n2 (%, right scale)" DKTD Z*  
      La9r  
    f: 100 * n(x, 3),          !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 zi }(^~Fe  
      yscale = 2, ^Z#@3 =  
      color = red, '#A:.P  
      width = 3, l0Y?v 4  
      style = fdashed, f|#8qiUS  
      "n3 (%, right scale)" tfA}`*$s  
    q4k.f_{  
    p-,Iio+  
    ; ------------- ;T>+,  
    diagram 2:                    !输出图表2 qi&D+~Gv!  
    ZjS(ad*.2  
    "Variation ofthe Pump Power" srK53vKMHW  
    -6`;},Yr  
    x: 0, 10 W^k,Pmopy  
    "pump inputpower (W)", @x L7}i q0  
    y: 0, 10 ]-:1se  
    y2: 0, 100 .TJ">?  
    frame 3{e'YD~hP  
    hx 84^[/d;!  
    hy DT\ym9  
    legpos 150, 150 LWD#a~  
    #9\THfb  
    f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 U(*yL-  
      step = 5, (ND%}  
      color = blue, Xu6K%]i^  
      width = 3, UOt8Q0)}  
      "signal output power (W, leftscale)",     !相应的文本字符串标签 B?3juyB`--  
      finish set_P_in(pump, P_pump_in) r|fO7PD  
    Vo M6  
    f: (set_P_in(pump,x); 100 * n_av(2)),   !改变泵浦信号功率对能级2上激活粒子占比的影响 _B[WY  
      yscale = 2, MwAJ(  
      step = 5, |` "?  
      color = magenta, /H)Br~ l  
      width = 3, kiX%3(  
      "population of level 2 (%, rightscale)", Xa,\EEmQ  
      finish set_P_in(pump, P_pump_in) mxp Y&Y  
    1TZPef^y  
    f: (set_P_in(pump,x); 100 * n_av(3)),   !改变泵浦信号功率对能级3上激活粒子占比的影响 ")%r}:0  
      yscale = 2, 7@l<? (  
      step = 5, k':s =IXW  
      color = red, NXI[q 'y  
      width = 3, [zh"x#AyI  
      "population of level 3 (%, rightscale)", R=M!e<'  
      finish set_P_in(pump, P_pump_in) [PWL<t::c  
    lhO2'#]i  
    3m=2x5 {L  
    ; ------------- 7ZsA5%s=,  
    diagram 3:                         !输出图表3 [/$N!2'5  
    ,{KCY[}|  
    "Variation ofthe Fiber Length" !ni>\lZ  
    ?WHy0x20  
    x: 0.1, 5 FN?3XNp.  
    "fiber length(m)", @x OipqoI2  
    y: 0, 10 d~Mg vh'  
    "opticalpowers (W)", @y ^npJUa  
    frame +pp9d-n  
    hx P^i.La,  
    hy Uu'dv#4Iw  
    |=5/Rax^  
    f: (set_L(x);P_out(signal_fw)),     !改变光纤长度对信号光输出功率的影响 CT*,<l-D  
      step = 20,             9Cvn6{  
      color = blue, g_z/{1$  
      width = 3, ;`UecLb#  
      "signal output" Fo}7hab  
    .=<$S#x^Hb  
    ;f: (set_L(x);P_out(pump)),                     !改变光纤长度对泵浦信号输出功率的影响 _~M^ uW^l  
       step = 20, color = red, width = 3,"residual pump" &=Y e6 f[  
    ^E,1V5  
    ! set_L(L_f) {restore the original fiber length } 0m)&Y FZ[(  
    1*UN sEr  
    WG5W0T_  
    ; ------------- d8OL!Rk  
    diagram 4:                                  !输出图表4 Y7SacRO  
    DWm SC}{.  
    "TransverseProfiles" F]_cbM{8/  
    | vu>;*K  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) _0(7GE13p  
    XsL#;a C  
    x: 0, 1.4 * r_co /um  &`Ck  
    "radialposition (µm)", @x HOZRYIQB  
    y: 0, 1.2 * I_max *cm^2 6rX_-Mm6w  
    "intensity (W/ cm&sup2;)", @y Qh`:<KI  
    y2: 0, 1.3 * N_Tm PDP[5q r  
    frame ax|1b`XUr"  
    hx FWY2s(5p  
    hy `78V%\  
    bx}fj#J]En  
    f: N_dop(1, x * um,0),      !掺杂浓度的径向分布 \#,t O%D  
      yscale = 2, kWW w<cA  
      color = gray, yL1CZ_  
      width = 3, ~cqryr9  
      maxconnect = 1, M1!pQC_9  
      "N_dop (right scale)" 8;"*6vHZ  
    '2nqHX D  
    f: I(pump, -1, x *um, 0) * cm^2,    !泵浦光沿光纤径向的强度分布 N1x@-/xa|  
      color = red, lMifpK  
      maxconnect = 1,           !限制图形区域高度,修正为100%的高度 Q+$Tt7/  
      width = 3, <@uOCRb V  
      "pump" ]%dnKP~  
    cQUC.TZ_  
    f: I(signal_fw, -1,x * um, 0) * cm^2,  !信号光沿光纤径向的强度分布 0q6I;$H  
      color = blue, ,k0r  
      maxconnect = 1, ~?Omy8#  
      width = 3, tE"Si<[]H$  
      "signal" MI#mAg<  
    f CcD&<%  
    Y+-xvx :  
    ; ------------- E4[}lX}  
    diagram 5:                                  !输出图表5 csQfic  
    LE=k  
    "TransitionCross-sections" %[QV,fD'E  
    S h4wqf  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) acW'$@y9?N  
    uCP>y6I  
    x: 1450, 2050 r)T[(D'Tm-  
    "wavelength(nm)", @x oC |WBS  
    y: 0, 0.6 E]} n(  
    "cross-sections(1e-24 m&sup2;)", @y Nt-<W+,  
    frame &KC!*}<tx  
    hx NPjv)TN}3  
    hy t+TYb#Tc  
    X%{'<baR  
    f: s12_Tm(x * nm) /1e-24,      !Tm3+吸收截面与波长的关系 slW3qRT\k  
      color = red, V'gw\mcb  
      width = 3, fI|[Z+"  
      "absorption" Qx`~g,wk8  
    f: s21_Tm(x * nm) /1e-24,  !Tm3+发射截面与波长的关系 % _M2N.n  
      color = blue, \5><3*\  
      width = 3, O8u3y  
      "emission" k#JQxLy#  
    0ZI(/r  
     
    分享到
    离线lileisgsz
    发帖
    14
    光币
    69
    光券
    0
    只看该作者 1楼 发表于: 2021-09-28
    感谢,视频上有点看不清楚