(* w@![rH6~F
Demo for program"RP Fiber Power": thulium-doped fiber laser, ~=P#7l\o1
pumped at 790 nm. Across-relaxation process allows for efficient gLDO|ADni
population of theupper laser level. q`Rc \aWB%
*) !(* *)注释语句 5cUz^ >
'?Jz8iu-
diagram shown: 1,2,3,4,5 !指定输出图表 U/#X,Bi~
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 `i `F$ ;
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 #Dz. 58A
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 'bQjJRq!
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 "W b>y*S
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 B>;`$-
EXF|;@-"
include"Units.inc" !读取“Units.inc”文件中内容 Z[ 53cVT^
DqJzsk'd3
include"Tm-silicate.inc" !读取光谱数据 qo*%S
[mcER4]}
; Basic fiberparameters: !定义基本光纤参数 al{}_1XoU
L_f := 4 { fiberlength } !光纤长度 Hk 0RT%PK
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 I.6
qA *
r_co := 6 um { coreradius } !纤芯半径 a5k![sw\
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 D7lRZb
]as+gZ8
; Parameters of thechannels: !定义光信道 9Ro7xSeD
l_p := 790 nm {pump wavelength } !泵浦光波长790nm \Dx;AK s
dir_p := forward {pump direction (forward or backward) } !前向泵浦 Z[G[.\0
P_pump_in := 5 {input pump power } !输入泵浦功率5W A4tb>OM
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um D[
v2#2
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 Yq-Vwh/
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 MqAN~<l [
0{'m":D9
l_s := 1940 nm {signal wavelength } !信号光波长1940nm 4T>d%Tt+)
w_s := 7 um !信号光的半径 Vr7L9%/wg
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 &5y|Q?
loss_s := 0 !信号光寄生损耗为0 D~zk2
-NPX;e$<
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 0: Nw8J
ROr|n]aJj
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 MP|$+yuR~
calc P,s>xM
begin <{cf'"O7 )
global allow all; !声明全局变量 M^&^g
set_fiber(L_f, No_z_steps, ''); !光纤参数 {O!B8a
add_ring(r_co, N_Tm); W_L;^5Y;m
def_ionsystem(); !光谱数据函数 v;nnr0;
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 cz41<SFL
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 E#~J"9k98
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 Ez+8B|0P
set_R(signal_fw, 1, R_oc); !设置反射率函数 T0X+\&W
finish_fiber(); <xlyk/
end; Y#zHw<<E
f;%=S:3
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 tx$`1KA
show "Outputpowers:" !输出字符串Output powers: c=f;3N
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) >x*ef]aS
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) `hDH7u!U.
Pyp#'du>
LO;6g~(1
; ------------- ID~}pEQ
diagram 1: !输出图表1 ncpNesB
GGU>={D)
"Powers vs.Position" !图表名称 /[I#3|
qm6 X5T
x: 0, L_f !命令x: 定义x坐标范围 $#-O^0D
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 5i-VnG
y: 0, 15 !命令y: 定义y坐标范围 (H;,E-
y2: 0, 100 !命令y2: 定义第二个y坐标范围 {XH3zMk[
frame !frame改变坐标系的设置 Zg3
/,:1
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) VKcVwq
hx !平行于x方向网格 pwVaSnre`
hy !平行于y方向网格 7;a
Z=beki]
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 G4^6o[ x
color = red, !图形颜色 r8>Qs RnU%
width = 3, !width线条宽度 fwi
-
"pump" !相应的文本字符串标签 y=2nV
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 m>f8RBp]'
color = blue, t]hfq~Ft
width = 3, +t8#rT ^B
"fw signal" FK@Gd)(
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 0.&-1pw
color = blue, dN@C)5pm5`
style = fdashed, tu^C<MV
width = 3, _Mi*Fvj
"bw signal" 'yR\%#s6
t4UL|fI
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 :Q}Zb,32
yscale = 2, !第二个y轴的缩放比例 :)F0~Q
color = magenta, |#sY(1
width = 3, U^kk0OT^
style = fdashed, ),lE8A{ H
"n2 (%, right scale)" k54b@U52 h
,+v>(h>q
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 -ZoAbp$
yscale = 2, $ncP#6
color = red, rQ(u@u;
width = 3, M63t4; 0A
style = fdashed, hV NT
"n3 (%, right scale)" l6N"{iXU
ir~4\G!
1sq1{|NW~
; ------------- :464~tHI[`
diagram 2: !输出图表2 L-Mf{z
drJUfsxV
"Variation ofthe Pump Power" yJdkDVxYr
\eXuNv_
x: 0, 10 ~&D5RfK5f
"pump inputpower (W)", @x P:UR:y([
y: 0, 10 L0*f(H
y2: 0, 100 v)~!HCG
frame QO %;%p*
hx \=H+m%
hy {[bB$~7Eu
legpos 150, 150 s14ot80)
QzY5S0
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 UYGO|lkEU
step = 5, 2tS,q_-=
color = blue, oGL2uQXX
width = 3, 9O\yIL
"signal output power (W, leftscale)", !相应的文本字符串标签 X.AE>fx*h
finish set_P_in(pump, P_pump_in) 6%MM)Vj+u
|eksvO'~
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 K/$5SN1
yscale = 2, lt%9Zgr[u
step = 5, _Nf%x1m5s
color = magenta,
!Y*O0_
width = 3, {5(M
"population of level 2 (%, rightscale)", |N|[E5Cn
finish set_P_in(pump, P_pump_in) P}vk5o'
M&KJZ
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 W(EN01d \
yscale = 2, ZeH=]G4Zv7
step = 5, T/tC X[}
color = red, VP^{-mDph
width = 3, x5k6"S"1,
"population of level 3 (%, rightscale)", 5>-~!Mg1
finish set_P_in(pump, P_pump_in) 7b(r'b@N
>[<f\BN|
B %
; ------------- Z& bIjp
diagram 3: !输出图表3 HG3iK
# (-?i\i
"Variation ofthe Fiber Length" 0QBK(_O`
kQ|phtbI
x: 0.1, 5 ~I@ %ysR
"fiber length(m)", @x k;HI-v
y: 0, 10 _8wT4|z5
"opticalpowers (W)", @y eY_BECJ+OO
frame 6>[J^k%~w)
hx <<&SyP
hy ew,g'$drD
?}No'E1!I
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 x) R4_3
step = 20, iThf\
color = blue, +XAM2uN5_.
width = 3, x";4)u=
"signal output" ~zFwSF
=g)SZK
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 uf`/-jY
step = 20, color = red, width = 3,"residual pump" "F?p Y@4
]T%wRd5&-
! set_L(L_f) {restore the original fiber length } B]PG
dl+c+w"
j:0<
tjE
; ------------- _!k\~4U
diagram 4: !输出图表4 e*39/B0S
1r<'&f5
"TransverseProfiles" SA~oGgk=P
4TcW%
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) G$jw#a[L
q^b12@.
x: 0, 1.4 * r_co /um WB" 90!
"radialposition (µm)", @x o3.b='HAm
y: 0, 1.2 * I_max *cm^2 H4BuxM_r
"intensity (W/ cm²)", @y GX N:=
y2: 0, 1.3 * N_Tm G.qjw]Llf
frame /?S,u,R
hx q ;e/gP2
hy @XH@i+{B
_
Uv3glK
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 <\L=F8[
yscale = 2, &izk$~
color = gray, XZxzw*Y1J
width = 3, Z`ZML+;~6
maxconnect = 1, /re0"!0y
"N_dop (right scale)" Zrq\:KxX
20 )8e!jP
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 G4"[ynlWV
color = red, a'7RzN ,]
maxconnect = 1, !限制图形区域高度,修正为100%的高度 Jy0(g T
width = 3, <'O|7.
^^
"pump" &usum~@
r,ep{
p
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 n&FRjq9y
color = blue, E>kgEfzxP
maxconnect = 1, "=UhTE
width = 3, R'aA\k-
"signal" 2XV3f$, H
KvlLcE~`o
HG)h,&nc-
; ------------- @Cl1G
diagram 5: !输出图表5 #|6M*;l N|
)"s(;kU!
"TransitionCross-sections" SOvo%L@
(E \lLlN
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) a7e.Z9k!
Ki%RSW(_`
x: 1450, 2050 YF13&E2`\
"wavelength(nm)", @x hJ(S]1B~G
y: 0, 0.6 N)X51;+
"cross-sections(1e-24 m²)", @y A )xfO-
frame cnM`ywKW
hx XI5q>cd\Sz
hy yu=(m~KX
I(+%`{Wv
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 Ml+O -
3T
color = red, bYy7Ul6]
width = 3, Pol
c.
"absorption" h5@JS1cY
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 @;{iCVW
color = blue, 3@mW/l>X
width = 3, j6BFh=?D
"emission" nY_+V{F
\_|r>vQ