切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 2477阅读
    • 1回复

    [原创]RP Fiber Power仿真设计掺铥光纤激光器代码详解 [复制链接]

    上一主题 下一主题
    离线小火龙果
     
    发帖
    932
    光币
    2176
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-05-28
    (* dR /UXzrc  
    Demo for program"RP Fiber Power": thulium-doped fiber laser, H+2J.&Ch  
    pumped at 790 nm. Across-relaxation process allows for efficient [dL?N  
    population of theupper laser level. =09j1:''<d  
    *)            !(*  *)注释语句 s?K4::@Fv  
    El&pu x2  
    diagram shown: 1,2,3,4,5  !指定输出图表 S+OI?QS  
    ; 1: "Powersvs. Position"     !分号是注释;光纤长度对功率的影响 cl7+DAE  
    ; 2:"Variation of the Pump Power"  !泵浦光功率变化对信号输出功率的影响 /C8(cVNZ  
    ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 !r!Mq~X<=  
    ; 4:"Transverse Profiles"             !横向分布,横坐标为半径位置 I0jEhg%JZ  
    ; 5:"Transition Cross-sections"    !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 `TsfscN  
    Q+ST8  
    include"Units.inc"         !读取“Units.inc”文件中内容 dl$l5z\  
    R QO{fC  
    include"Tm-silicate.inc"    !读取光谱数据 f&cG;Y  
    t@19a6:Co  
    ; Basic fiberparameters:    !定义基本光纤参数 %J%gXk}]  
    L_f := 4 { fiberlength }      !光纤长度 |QgXSe7  
    No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 s*#|EdD6@  
    r_co := 6 um { coreradius }                !纤芯半径 izW l5}+'B  
    N_Tm := 100e24 { Tmdoping concentration }  !纤芯Tm离子掺杂浓度 @%cJjZ5y  
    qP<,"9!I  
    ; Parameters of thechannels:                !定义光信道 /~tfP  
    l_p := 790 nm {pump wavelength }                !泵浦光波长790nm  FZ2-e  
    dir_p := forward {pump direction (forward or backward) }   !前向泵浦 n _ez6{  
    P_pump_in := 5 {input pump power }                    !输入泵浦功率5W ujWHO$uz!  
    w_p := 50 um {radius of pump cladding }               !包层泵浦相应的半径 50um IKr7"`  
    I_p(r) := (r <=w_p) { pump intensity profile }          !泵浦光强度分布 D3lYy>~d5;  
    loss_p := 0 {parasitic losses of pump wave }           !泵浦光寄生损耗为0 hA\8&pI;  
    $xZk{ rK  
    l_s := 1940 nm {signal wavelength }                   !信号光波长1940nm n0i&P9@B1  
    w_s := 7 um                          !信号光的半径 K+$c,1wb  
    I_s(r) := exp(-2 *(r / w_s)^2)            !信号光的高斯强度分布 h5l Lb+  
    loss_s := 0                            !信号光寄生损耗为0 +@qk=]3a  
    A0X0t  
    R_oc := 0.70 {output coupler reflectivity (right side) }      !输出耦合反射率 < 5_Ys  
    M2EN(Y_k0  
    ; Function for defining themodel:   !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 `U1%d7[vY  
    calc f8^58]wx0  
      begin (Mm{"J3uv  
        global allow all;                   !声明全局变量 ry]7$MQyV  
        set_fiber(L_f, No_z_steps, '');        !光纤参数 p+7BsW.l  
        add_ring(r_co, N_Tm); EH "g`r  
        def_ionsystem();              !光谱数据函数 xA5$!Oq7  
        pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p);  !泵浦光信道 EXFxiw  
        signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward);      !前向信号光信道 E6@ ;e-]j  
        signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward);    !后向信号光信道 ` U3  
        set_R(signal_fw, 1, R_oc);                                 !设置反射率函数 @YB\ PVhW  
        finish_fiber();                                   9c7 }-Go  
      end; +r!h*4  
    l>(G3l Iw  
    ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 "qm>z@K  
    show "Outputpowers:"                                   !输出字符串Output powers: !Cy2>6v7  
    show"pump:     ", P_out(pump):d3:"W"  !输出字符串pump:和计算值(格式为3个有效数字,单位W) .nH /=  
    show"signal:   ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) @Kr)$F  
    %UJ4wm  
    f,a %@WT  
    ; ------------- dJ^`9W  
    diagram 1:                   !输出图表1 ?mAw"Rb!  
    ?.4l1X6Ba  
    "Powers vs.Position"          !图表名称 <"+C<[n.  
    JAz;_wS(k  
    x: 0, L_f                      !命令x: 定义x坐标范围 Fb' wC  
    "position infiber (m)", @x      !x轴标签;@x 指示这些字符串沿坐标轴放置 /nP=E  
    y: 0, 15                      !命令y: 定义y坐标范围 NFc8"7Mz}  
    y2: 0, 100                    !命令y2: 定义第二个y坐标范围 ,s76]$%4  
    frame          !frame改变坐标系的设置 F]*-i 55S  
    legpos 600, 500  !图行在图表窗口中的位置(相对于左上角而言) %S#"pKE6 R  
    hx             !平行于x方向网格 cj#q7  
    hy              !平行于y方向网格 !v L :P2  
    \IfgL$+  
    f: P(pump, x),    !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 :GYv9OG  
      color = red,  !图形颜色 urB3  
      width = 3,   !width线条宽度 ~\G3 l,4  
      "pump"       !相应的文本字符串标签 P.B'Gh#^  
    f: P(signal_fw, x),  !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 /,UkT*+>!  
      color = blue,     3T/j5m}+!  
      width = 3, 2AW{qwk7  
      "fw signal" WCu%@hh=h  
    f: P(signal_bw, x),   !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 z0[ZO1Fo(  
      color = blue, uCfp+  
      style = fdashed, []0~9,u  
      width = 3, [ d7]&i}*|  
      "bw signal" 6w;|-/:`  
    " G6j UTt  
    f: 100 * n(x, 2),    !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 %Ab_PAw  
      yscale = 2,            !第二个y轴的缩放比例 >pvg0Fh  
      color = magenta, }z+"3A|  
      width = 3, pd3&AsU  
      style = fdashed, n^02@Aw  
      "n2 (%, right scale)" p&mtKLv  
    3rg^R"&  
    f: 100 * n(x, 3),          !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 [Mc5N  
      yscale = 2, a?~csP^?}  
      color = red, c.Z4f 7  
      width = 3, mm-UQ\h  
      style = fdashed, 3&fFIab9  
      "n3 (%, right scale)" )6 <byO  
    4"x;XVNM[  
    WUS9zK  
    ; ------------- _l=  
    diagram 2:                    !输出图表2 qjzW9yV+  
    D])YP0|}  
    "Variation ofthe Pump Power" gdE`UZ\  
    So.P @CCd  
    x: 0, 10 GPLt<K!<#  
    "pump inputpower (W)", @x Z[S+L"0  
    y: 0, 10 TeCpT2!5j  
    y2: 0, 100 E2H<{Q   
    frame *;E+9^:V  
    hx `lezJ (Xm  
    hy .r5oN+?e  
    legpos 150, 150 >TnQ4^;v.  
    '#PqI)P  
    f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 :;;WK~* #  
      step = 5, 2 U`W[  
      color = blue, 2 RUR=%C  
      width = 3, yUmsE-W  
      "signal output power (W, leftscale)",     !相应的文本字符串标签 /NX7Vev  
      finish set_P_in(pump, P_pump_in) Ca@=s  
    8{SU?MHQLE  
    f: (set_P_in(pump,x); 100 * n_av(2)),   !改变泵浦信号功率对能级2上激活粒子占比的影响 g+ 1=5g  
      yscale = 2, TTZxkK  
      step = 5, k+#l;<\2  
      color = magenta, ]Bd3d%  
      width = 3, N^( lUba  
      "population of level 2 (%, rightscale)",  L|lmStwe  
      finish set_P_in(pump, P_pump_in) 6mpg&'>  
    N46$EsO!h  
    f: (set_P_in(pump,x); 100 * n_av(3)),   !改变泵浦信号功率对能级3上激活粒子占比的影响 :@%-f:iDj  
      yscale = 2, K}E7|gdG  
      step = 5, 795Jwv  
      color = red, ,o@~OTja*  
      width = 3, u@_!mjXQ  
      "population of level 3 (%, rightscale)", 5Sjr6l3Vq8  
      finish set_P_in(pump, P_pump_in) ;s\;78`0  
    TF0-?vBWh  
    Ryba[Fz4Di  
    ; -------------  ;[KriW  
    diagram 3:                         !输出图表3 [}ZPg3Y  
    .d~]e2x  
    "Variation ofthe Fiber Length" rH&r6Xv[  
    K+@eH#Cv,(  
    x: 0.1, 5  Ep\  
    "fiber length(m)", @x EhIV(q9x  
    y: 0, 10 A?IZ( Zx(`  
    "opticalpowers (W)", @y me:|!lI7YU  
    frame {#1j"  
    hx 7}'A)C>J;  
    hy x #tu  
    !q$&JZY  
    f: (set_L(x);P_out(signal_fw)),     !改变光纤长度对信号光输出功率的影响 {nQ)4.e6  
      step = 20,             MO~~=]Y'  
      color = blue, 12tJrS*Z  
      width = 3, ewAH'H]o  
      "signal output" {;iH Yr-zs  
    :qAc= IC%  
    ;f: (set_L(x);P_out(pump)),                     !改变光纤长度对泵浦信号输出功率的影响 XnE %$NJ  
       step = 20, color = red, width = 3,"residual pump" UROj9CO v  
    wAu[pWD'6;  
    ! set_L(L_f) {restore the original fiber length } cNuHXaWp  
    EO].qN-8  
    S"P9Nf?9  
    ; ------------- S?Bc~y  
    diagram 4:                                  !输出图表4 %R5Com  
    dgco*TIGO  
    "TransverseProfiles" pG!(6V-x<E  
    &gA6+b'  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) .lvI8Jf~X  
    vr{'FMc  
    x: 0, 1.4 * r_co /um N4a`8dS|  
    "radialposition (µm)", @x B0)`wsb_  
    y: 0, 1.2 * I_max *cm^2 [arTx ^  
    "intensity (W/ cm&sup2;)", @y BEXQTM3])I  
    y2: 0, 1.3 * N_Tm F<yy>Wf  
    frame VelB-vy&  
    hx Bn~\HW\Lh  
    hy .Na&I)udX.  
    0~+NB-L}  
    f: N_dop(1, x * um,0),      !掺杂浓度的径向分布 1m>^{u  
      yscale = 2, W&+y(Z-t  
      color = gray, <H5n>3#pH  
      width = 3, g>~cs_N@  
      maxconnect = 1, k-WHHoU>o  
      "N_dop (right scale)" mW~i c  
    NqJ<!q)  
    f: I(pump, -1, x *um, 0) * cm^2,    !泵浦光沿光纤径向的强度分布 X~v4"|a  
      color = red, i1qS ns  
      maxconnect = 1,           !限制图形区域高度,修正为100%的高度 lo+xo;Nd  
      width = 3, ~@T+mHny  
      "pump" y$IaXr5L  
    m<FF$pTT  
    f: I(signal_fw, -1,x * um, 0) * cm^2,  !信号光沿光纤径向的强度分布 E tJ~dL)  
      color = blue, M!N` Orz  
      maxconnect = 1, N@Xg5huO  
      width = 3, 81g9ZV(4  
      "signal" N9i}p^F<_  
    #_.g2 Y  
     d?:`n 9`  
    ; ------------- |x &Z~y  
    diagram 5:                                  !输出图表5 V~OUE]]Q  
    0jR){G9+  
    "TransitionCross-sections" sA/,+aM  
    ~TYbP  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) =m`l%V[  
    uuu\f*<  
    x: 1450, 2050 f5@.^hi[  
    "wavelength(nm)", @x ;"1/#CY773  
    y: 0, 0.6 zzX<?6MS  
    "cross-sections(1e-24 m&sup2;)", @y KHvIN}V5?3  
    frame /@&(P#h  
    hx xN6?yr  
    hy R=`U4Ml;  
    3PfiQ|/b  
    f: s12_Tm(x * nm) /1e-24,      !Tm3+吸收截面与波长的关系 "E.\6sC  
      color = red, }dy9I H  
      width = 3, ~6p5H}'H1  
      "absorption" D899gGe  
    f: s21_Tm(x * nm) /1e-24,  !Tm3+发射截面与波长的关系 j7f5|^/x3  
      color = blue, $zdd=.!KiK  
      width = 3, vx'l> @]k  
      "emission" XmP;L(wa   
    >f>V5L%1  
     
    分享到
    离线lileisgsz
    发帖
    14
    光币
    69
    光券
    0
    只看该作者 1楼 发表于: 2021-09-28
    感谢,视频上有点看不清楚