(* ri1;i= W
Demo for program"RP Fiber Power": thulium-doped fiber laser, Ve ipM
pumped at 790 nm. Across-relaxation process allows for efficient ,@]*Xgt=
population of theupper laser level. i*)BFV_-
*) !(* *)注释语句 pt%*Y.)az
m7|S'{+!
diagram shown: 1,2,3,4,5 !指定输出图表 d6f T
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 | Kq<}R
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 ?dyt!>C
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 '!"rE1e
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 %D49A-R
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 M#.dF{%%
[85b+SKW
include"Units.inc" !读取“Units.inc”文件中内容 z^o7&\:
C*stj
include"Tm-silicate.inc" !读取光谱数据 "H\R*\-0
yTR5*{?j
; Basic fiberparameters: !定义基本光纤参数 9yK\<6}}QH
L_f := 4 { fiberlength } !光纤长度 oi7Y?hTj
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 5p>rQq0
r_co := 6 um { coreradius } !纤芯半径 c{3P|O&.
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 2t;3_C
7po;*?Ox
; Parameters of thechannels: !定义光信道 b=kY9!GN,v
l_p := 790 nm {pump wavelength } !泵浦光波长790nm
+O4//FC-"
dir_p := forward {pump direction (forward or backward) } !前向泵浦 T[- %b9h>
P_pump_in := 5 {input pump power } !输入泵浦功率5W Dn48?A[v
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um juA}7
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 TPA*z9n+B
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 ?!u9=??
tP89gN^PA|
l_s := 1940 nm {signal wavelength } !信号光波长1940nm i8!err._
w_s := 7 um !信号光的半径 tN;^{O-(V
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 ~g}blv0q+B
loss_s := 0 !信号光寄生损耗为0 (@NW2
a5/r|BiBK
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 v.53fx
: cPV08i
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 sWKv>bx
calc z+c'-!e/
begin ~xJ^YkyH
global allow all; !声明全局变量 5`QfysR5
set_fiber(L_f, No_z_steps, ''); !光纤参数 #V.u[:mO
add_ring(r_co, N_Tm); "iJAM`Hi
def_ionsystem(); !光谱数据函数 G_}oI|B
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 Rl'xEtaN
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 j:$Z-s
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 +hcJ!$J7
set_R(signal_fw, 1, R_oc); !设置反射率函数 Of#"nu
finish_fiber(); f\z9?Z(~
end; wj8\eK)]L
@9lGU#
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 (!a\23
show "Outputpowers:" !输出字符串Output powers: :4)lmIu
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) w+{{4<+cd
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) p7L6~IN
C't%e
(`<B#D;
; ------------- ]d*O>Pm
diagram 1: !输出图表1 c^R "g)gr
212 =+k
"Powers vs.Position" !图表名称 P0rdGf 5T
%;#9lkOXWH
x: 0, L_f !命令x: 定义x坐标范围 N6v*X+4JH
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 O]l-4X#8F
y: 0, 15 !命令y: 定义y坐标范围 _zLEHEZ-
y2: 0, 100 !命令y2: 定义第二个y坐标范围 qc3?Aplj
frame !frame改变坐标系的设置 I#xhmsF
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) `F~Fb S
hx !平行于x方向网格 0Qg%48u
hy !平行于y方向网格 U+uIuhz
&VxK
AQMxN
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 jRp @-S#V
color = red, !图形颜色 "WqM<kLa
width = 3, !width线条宽度
LNvkC4
"pump" !相应的文本字符串标签 \rCdsN 2H
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 S;BMM8U
color = blue, 7N0m7SC
width = 3, !9^GkFR6n
"fw signal" cSj(u%9}
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 ve4QS P
color = blue, |\]pTA$2
style = fdashed, 5;9.&f
width = 3, 'IER9%V$
"bw signal" |h:3BV_
=OR&,xt
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 l> >BeZ
yscale = 2, !第二个y轴的缩放比例 os(}X(
color = magenta, 6uFGq)4p@
width = 3, jw]IpGTt
style = fdashed, }Z`@Z'
"n2 (%, right scale)" OmP(&t7
\)PS&Y8n
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 sk. rJ
yscale = 2, <pUc(
tPoz
color = red, CjA}-ee
width = 3, ^9kdd[
style = fdashed, <zu)=W'R]
"n3 (%, right scale)" BimM)4g
r3.v ^
q{.~=~
; ------------- taOsC!Bp
diagram 2: !输出图表2 3lNw*M|")
Pq(
)2B
"Variation ofthe Pump Power" 5?|PC.
zdDJcdbGd1
x: 0, 10 Q1'D*F4
"pump inputpower (W)", @x g/,O51f'
y: 0, 10 .]Z,O>N
y2: 0, 100 ~#[ ZuMO?
frame v aaZ
hx #60<$HO:Z
hy @aGS~^Uh
legpos 150, 150 4U:+iumy2
!!t@H\
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 )^'wcBod,
step = 5, >JhIRf
color = blue, Z8Clm:S
width = 3, iAWoKW
"signal output power (W, leftscale)", !相应的文本字符串标签 FkT% -I
finish set_P_in(pump, P_pump_in) -OP5v8c
f
%u|qAF2uS
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 B6vmBmN
yscale = 2, d_Vwjv&@/"
step = 5, 8%#uZG\}
color = magenta, c[0$8F>
width = 3, v]27+/a$c
"population of level 2 (%, rightscale)",
oApI/o
finish set_P_in(pump, P_pump_in) l+ <x
y/2U:H
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 Afa{f}st
yscale = 2, `P4qEsZE>`
step = 5, 4B}w;d@R
color = red, =U".L
width = 3, Lp*T=]C]
"population of level 3 (%, rightscale)", ?0Ca-T Rz
finish set_P_in(pump, P_pump_in) Jq`fD~(7
am05>c9
(;h]'I@
; ------------- j|(bDa4\
diagram 3: !输出图表3 _>:g&pS/
Vt4}!b(O
"Variation ofthe Fiber Length" ig/716r|
$Y0bjS2J
x: 0.1, 5 "WYcw\@U
"fiber length(m)", @x jIc;jjAF
y: 0, 10 IJXH_H_%*
"opticalpowers (W)", @y E(U}$Zey
frame (*fsv
g~
hx :7>Si%
hy cCV"(Oo[H|
0I?3@Nz6
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 UmgLH Cz
step = 20, NV-9C$<n2!
color = blue, .Um%6a-
width = 3, -{b1&
"signal output" d8RpL{9\7
v
V^ GIWK
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 3Yj}ra}
step = 20, color = red, width = 3,"residual pump" BK d(
mQs'2Y6Oa
! set_L(L_f) {restore the original fiber length } fZ g*@RR
BtHvfoT
MthThsr7
; ------------- fp![Pbms.
diagram 4: !输出图表4 f|^f^Hu:{
A^p $~e\)
"TransverseProfiles"
B?%D
ia_8$>xW+
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) };!c]/,
610k#$
x: 0, 1.4 * r_co /um 49zp@a
"radialposition (µm)", @x +li^0+3-'
y: 0, 1.2 * I_max *cm^2 -5ec8m8
"intensity (W/ cm²)", @y "&+0jfLY+
y2: 0, 1.3 * N_Tm TQ2Tt"
frame 6Rf5
hx e #OU {2X
hy +Ae.>%}
::`j@ ]
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 !aEp88u
yscale = 2, 1a!h&!$9
color = gray, 7=AKQ7BB>b
width = 3, P%lLKSA
maxconnect = 1, j{Fo 6##
"N_dop (right scale)" 5,((JxX$
H5I#/j
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 0Yjy
color = red, ,RHHNTB("
maxconnect = 1, !限制图形区域高度,修正为100%的高度 )yK!qu
width = 3, -?'CUm*Od
"pump" g:clSN,
dCK-"#T!
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 7@"X~C
color = blue, J@TM>R
maxconnect = 1, N.`]D)57
width = 3, By_Ui6:D
"signal" [Bh]\I'
Z7/dRc
YBO53S]=
; ------------- 2yZ6:U~
diagram 5: !输出图表5 bcs!4
?f`-&c;
"TransitionCross-sections" wm8x1+P
)pLq^j
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) vSA%A47G
WI,=?~-
x: 1450, 2050 _YS+{0
Vq%
"wavelength(nm)", @x ("oA{:@d
y: 0, 0.6 #50)D wD
"cross-sections(1e-24 m²)", @y }sU\6~
frame Mt Z(\&~
hx j5O*H_D
hy Jq#Cn+zW
{\&"I|dpe
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 gsp7N
color = red, NHF?73:
width = 3, *La =7y:
"absorption" ^IpiNY/%Q
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 w0!,1
Ry
color = blue, S\ZAcz4
width = 3, Q2NnpsA^6
"emission" d/>,U7eS[+
Fzs'@*