(* S`s]zdUTP
Demo for program"RP Fiber Power": thulium-doped fiber laser, ]+I9{%zB%8
pumped at 790 nm. Across-relaxation process allows for efficient PysDDU}v
population of theupper laser level. {!2K-7;
*) !(* *)注释语句 PNm@mC_fh
ai<qK3!O
diagram shown: 1,2,3,4,5 !指定输出图表 7i" b\{5
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 (_pw\zk>
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 kK75 (x
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 Tt: (l/1
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 &PC6C<<f
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 sa.H,<;
:ts3_-cr
include"Units.inc" !读取“Units.inc”文件中内容 <+*0{8?0
'Ix@<$~i3F
include"Tm-silicate.inc" !读取光谱数据 mqZK1<r
&{j!!LL
; Basic fiberparameters: !定义基本光纤参数 %IO*(5f
L_f := 4 { fiberlength } !光纤长度 v< P0f"GH
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 `KZV@t
r_co := 6 um { coreradius } !纤芯半径 QT c{7&
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 ,b5'<3\
;.4y@?B
; Parameters of thechannels: !定义光信道 iy~h|YK;
l_p := 790 nm {pump wavelength } !泵浦光波长790nm PMsb"=Ds
dir_p := forward {pump direction (forward or backward) } !前向泵浦 $`lWW6>P
P_pump_in := 5 {input pump power } !输入泵浦功率5W *EuX7LEu_
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um 1m5l((d
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 cX9o'e:C
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 [63\2{_^v
1'f_C<.0
l_s := 1940 nm {signal wavelength } !信号光波长1940nm z|Y54o3
w_s := 7 um !信号光的半径 ;a?<7LIx
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 v?."`,e
loss_s := 0 !信号光寄生损耗为0 O|t>.<T?
f&CQn.K"
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 >5t!
Xt
I0x)d`
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 v*V(hMy
calc @XJ7ff&
begin -*7i:mg
global allow all; !声明全局变量 BWxfY^,'&6
set_fiber(L_f, No_z_steps, ''); !光纤参数 ~u%$ 9IhM
add_ring(r_co, N_Tm); azZtuDfv
def_ionsystem(); !光谱数据函数 6:(s8e
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 1Le8W)J
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 mo^E8t.
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 AE:(:U\
set_R(signal_fw, 1, R_oc); !设置反射率函数 Ue
\A ,
finish_fiber(); <eXGtD
end; dU3A:uS^
ymm]+v5S.]
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 0J+WCm`
show "Outputpowers:" !输出字符串Output powers: CcUF)$kz
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) kn}^oRT
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) &pY'
Tw';;euw
<TVJ9l
; ------------- }W^@mi
diagram 1: !输出图表1 (m'-1wX.
nFJW\B&(`
"Powers vs.Position" !图表名称 rCF=m]1zxT
S*<J y(:n
x: 0, L_f !命令x: 定义x坐标范围 (l%?YME
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 rf=l1GW
y: 0, 15 !命令y: 定义y坐标范围 ZV--d'YiEm
y2: 0, 100 !命令y2: 定义第二个y坐标范围 PPl o0R
frame !frame改变坐标系的设置 f$FO 1B)
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) "_&ZRcd*
hx !平行于x方向网格 /W .s1N
hy !平行于y方向网格 \d;)U4__!
Ug+ K:YUq
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 i[[.1MnS
color = red, !图形颜色 oz=V|7,
width = 3, !width线条宽度 }Hb0@
b_
"pump" !相应的文本字符串标签 HWV A5E[`Y
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 O1~7#nJ*4[
color = blue, by+xK~>
width = 3, *f 7rLM*
"fw signal" +ZbNSN=
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 sg=G<50i
color = blue, "*HM8\
style = fdashed, $e+4Kt
,
width = 3, Vz0(D
"bw signal" 0uD3a-J
FdE?uw
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 2FZT
yscale = 2, !第二个y轴的缩放比例 q6pHL
color = magenta, g$NUu
width = 3, ?5CE<[
style = fdashed, ?#GTD?3d
"n2 (%, right scale)" {X<g93
]*P9=!x|M
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 1Du5Z9AM
yscale = 2, 0S:&wb
color = red,
s7n7u7$j
width = 3, oUn+tu:
style = fdashed, T%oJmp?0
"n3 (%, right scale)" Sed8Q-m
/RJ]MQ\*O
U\Y0v.11
; ------------- I(AlRh
diagram 2: !输出图表2 :[+8(~| za
&[{sA;
"Variation ofthe Pump Power" $}vzBuWHwN
sCw>J#@2>
x: 0, 10 ;%d<Uk?
"pump inputpower (W)", @x JmDxsb^
y: 0, 10 7[P-;8)tq
y2: 0, 100
m#_Rv
frame <[n:Ij
hx I!?Xq
hy 7_PY%4T"
legpos 150, 150 9QX!HQ|5y8
m-$}'mEO
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 %\-E
R!b
step = 5, 1K#[Ef4
color = blue, dhA~Yu
width = 3, d+G%\qpzQ
"signal output power (W, leftscale)", !相应的文本字符串标签 s<"|'~<n
finish set_P_in(pump, P_pump_in) ;_SSR8uHv
baD063P;
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 {
i6L/U.
yscale = 2, g_{N^wS
step = 5, }wRm ~
color = magenta, ]QHp?Ii1
width = 3, l'q%bi=f
"population of level 2 (%, rightscale)", SF-E>s!XL
finish set_P_in(pump, P_pump_in) yYGs]+
W/\VpD) ?;
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 P<Bx1H-z-
yscale = 2, 3QBzyJWf
step = 5, .xwskzJ3
color = red, 6QA`u*
width = 3, MvZa;B
"population of level 3 (%, rightscale)", "~r)_Ko
finish set_P_in(pump, P_pump_in) 'WhJ}Uo\
d'Bxi"K
i,^3aZwJ'
; ------------- sM MtU@<x
diagram 3: !输出图表3 9vyf9QE;
LA_{[VWYp>
"Variation ofthe Fiber Length" E"VFBKB
wH!$TAZ:Yw
x: 0.1, 5 G\F>*
"fiber length(m)", @x OFtf)cGE
y: 0, 10 z]rr
Q=dAA
"opticalpowers (W)", @y r@C~_LgL)
frame d/yF}%0QI
hx ~Z/,o)
hy }R16WY_'
Jn=;gtD-*
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 1|4,jm $
step = 20, v.<mrI#?
color = blue, @:Zk,
width = 3, P#!N
"signal output" 5C1EdQ4S0
|?VJf3A
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 siI%6Gn;
step = 20, color = red, width = 3,"residual pump" YhV<.2^k
f%.Ngf9
! set_L(L_f) {restore the original fiber length } B2j1GJEO
M\4`S&
cg3}33Z;6
; ------------- l[:Aq&[o3
diagram 4: !输出图表4 $4xSI"+M%
Bz_'>6w
"TransverseProfiles" t}_ #N'`
0)Ephsw
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) MBg[hu%
7xeqs
q
x: 0, 1.4 * r_co /um r~)fAb?
"radialposition (µm)", @x )pHlWi|h
y: 0, 1.2 * I_max *cm^2 z5$Q"Y.D
"intensity (W/ cm²)", @y 9r]|P}yuS
y2: 0, 1.3 * N_Tm 8-x-?7
frame \wA:58 -j
hx ErNYiYLi]
hy _|GbU1Hz
Oh$:qu7o0&
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 ?'P}ZC8P
yscale = 2, -sQ[f18
color = gray, &$/
#"lW,V
width = 3, ,J|,wNDU!K
maxconnect = 1, q5R|
^uf
"N_dop (right scale)" HCN/|z1Xq
o0 C&ol_
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 KCTX2eNN&h
color = red, yV8J-YdsG
maxconnect = 1, !限制图形区域高度,修正为100%的高度 RN(I}]] a
width = 3, _aPAn|.
"pump" ;`#R9\C=h
A!bG 2{r
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 )k,n}
color = blue, P'U2hCif
maxconnect = 1, X-HE9PT.
width = 3, pjFO0h_Y
"signal" kh0cJE\_^
EB*sd S
f zo'9
; ------------- Os"('@jd>
diagram 5: !输出图表5 ^-Od*DTL
DRQx5fgL
"TransitionCross-sections" h`|04Q
mF*x&^ie
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) tNTSy=
m]2xOR_
x: 1450, 2050 <PpvVDy3
"wavelength(nm)", @x tz@MZs09
y: 0, 0.6 )JS6W
"cross-sections(1e-24 m²)", @y sFFQ]ST2p
frame R
p&J!hlA
hx LQR2T5S/Q,
hy |GnTRahV.
SQ>i:D;
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系
BNK]Os
color = red, &j4pC$Dj
width = 3, O{LCHtN
"absorption" Ki;SONSV~|
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 E]`7_dG+T
color = blue, }S/i3$F0~
width = 3, dDPQDIx
"emission" |ri)-Bk
,
Z4VFfGCTL