(* [nrP;
_
Demo for program"RP Fiber Power": thulium-doped fiber laser, *?S\0a'W@
pumped at 790 nm. Across-relaxation process allows for efficient ;DTNw=
population of theupper laser level. {ig@Iy~DT
*) !(* *)注释语句 i y 5
c=gUY~Rl
diagram shown: 1,2,3,4,5 !指定输出图表 F
7=-k/k
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 1N&U{#4
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 '%,Re-8O
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 5V0=-K
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 g=.5*'Xlp
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 Dcf`+?3
}|d:(*
include"Units.inc" !读取“Units.inc”文件中内容 @N$r'@
+J} 41
include"Tm-silicate.inc" !读取光谱数据 &zR}jD>
SO%5ts
; Basic fiberparameters: !定义基本光纤参数 E$T#o{pai
L_f := 4 { fiberlength } !光纤长度 T]xGE
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 ]8#{rQ(
r_co := 6 um { coreradius } !纤芯半径 P|?z1JUd
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 .&ZVy{uP
2a^(8A`7W
; Parameters of thechannels: !定义光信道 ATU@5,9
l_p := 790 nm {pump wavelength } !泵浦光波长790nm @P-7a`3*
dir_p := forward {pump direction (forward or backward) } !前向泵浦 \?o%<c5{
P_pump_in := 5 {input pump power } !输入泵浦功率5W `C1LR,J
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um sM-*[Q=_
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 G~PP1sf
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 "YBA$ef$
>@X=E3
l_s := 1940 nm {signal wavelength } !信号光波长1940nm OKP?^%kD
w_s := 7 um !信号光的半径 M$)+Uo2
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 gSC@uf
loss_s := 0 !信号光寄生损耗为0 %wO~\:F8
N P"z
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 buoz La
-'nx7wnj2
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 %bsdC0xM
calc }8svd#S+
begin ,%C$~+xjM
global allow all; !声明全局变量 sw&Qks?V
set_fiber(L_f, No_z_steps, ''); !光纤参数 y|aWUX/a
add_ring(r_co, N_Tm); %[0"[ <1a
def_ionsystem(); !光谱数据函数 ^ey\ c1K
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 L \$zr,=C
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 L*_xu _F
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 bhI8b/
set_R(signal_fw, 1, R_oc); !设置反射率函数 >eXNw}_j
finish_fiber(); Kq*^*vWC
end; [kXe)dMX8
ldxUq,p
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 IoX(Pa
show "Outputpowers:" !输出字符串Output powers: qHj4`&
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) (X8N?tJ
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) Eg9502Bl~8
RHxd6Gs"
dug RO[
; ------------- 5xiYCOy
diagram 1: !输出图表1 *cd9[ ~
aV ^2
"Powers vs.Position" !图表名称 K,R Ia0)
*-n$n
x: 0, L_f !命令x: 定义x坐标范围 (T ^aZuuS
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 V;z?m)ur
y: 0, 15 !命令y: 定义y坐标范围 Ze~\=X" "
y2: 0, 100 !命令y2: 定义第二个y坐标范围 njIvVs`q
frame !frame改变坐标系的设置 ugCc&~`
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) $&4Z w6"=
hx !平行于x方向网格 Y,a.9AWw)
hy !平行于y方向网格 n"pADTaB
XH. _Z
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 Kb}N!<Z*
color = red, !图形颜色 ?]})Xf.A
width = 3, !width线条宽度 WgIVhj
"pump" !相应的文本字符串标签 YONg1.^!(
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 l`1ZS8 [.
color = blue, Cr&ua|%F
width = 3, T7,tJk,(
"fw signal" g5cR.]oz
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 bi5'- .B
color = blue, Wc)^@f[~<
style = fdashed, d ][E;$
width = 3, K)k!`du!6
"bw signal" [)a,rrhj
CN >q`[!
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 .v;Npm2
yscale = 2, !第二个y轴的缩放比例 -uh/W=Q1R
color = magenta, gt
?&!S^
width = 3, c{E-4PYbah
style = fdashed, $Fn# b|e
"n2 (%, right scale)" w90y-^p%
l+#`
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 LWW0lG!_F
yscale = 2, O`2%@%?I
color = red, Fb_~{q
width = 3, !ine|NM
style = fdashed, KL xg
"n3 (%, right scale)" ^c2 8Q.<w(
3:C *'@
)I*V('R6|
; ------------- UVUHLu|^
diagram 2: !输出图表2 ]M2> %Dvw
'Hq}h)`
"Variation ofthe Pump Power" fpzTv3D=I
R &-bA3w$
x: 0, 10 2^juLXc|R
"pump inputpower (W)", @x 3(CUC
y: 0, 10 Lrk^<:8;
y2: 0, 100 :gR`rc!
frame 0!^{V:DtQ
hx {u!,TDt*
hy F|"NJ*o}
legpos 150, 150 co;2s-X
;eWVc;H
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 5$y<nMP
step = 5, ";GLX%C!{@
color = blue, h+vKai
width = 3, |~>8]3. Y
"signal output power (W, leftscale)", !相应的文本字符串标签 2;q6~Y,
finish set_P_in(pump, P_pump_in) "BTA"
pIh@!C
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 b)df V=
yscale = 2, \^_F>M
step = 5, T$+}Srb
color = magenta, "=Ziy4V
width = 3, 8*|@A6ig
"population of level 2 (%, rightscale)", j6Vuj/+}
finish set_P_in(pump, P_pump_in) #$8tBo
N!P* B$d
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 ov|s5yH8e
yscale = 2, K%Rx5 S
step = 5, f'}23\>
color = red, (5atU |8r
width = 3, (g
"population of level 3 (%, rightscale)", Kyv$yf9
finish set_P_in(pump, P_pump_in) ((H}d?^AJ
]A_)&`"Cb
nc`[f y|}
; ------------- {6~W2zX&
diagram 3: !输出图表3 u|Db%)[
@ws3X\`<C
"Variation ofthe Fiber Length" &gq\e^0CRZ
tv?~LJYN
x: 0.1, 5 ost~<4~
"fiber length(m)", @x ;8UNM
y: 0, 10 Qs~;?BH&
"opticalpowers (W)", @y 9g>ay-W[(
frame Um*{~=;u
hx cnI!}Bu
hy 73P(oVj<
398%16}
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 }J:~}?^%n
step = 20, W~gFY#w
color = blue, ]T+{]t
width = 3, b`1P%OjC
"signal output" c1Dhx,]ad
Z>o20uA
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 cz.-cuD[iD
step = 20, color = red, width = 3,"residual pump" sfx:j~bsL
V}3.K\7
! set_L(L_f) {restore the original fiber length } <~f/T]E,
YsDn?p D@
(3W<yAM+
; ------------- .vwOp*3\
diagram 4: !输出图表4 #OG_OI
MT a.Ubs
"TransverseProfiles" jH\@Oc;7
x@Q}sW92
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) y%iN9 -t
c6Wy1d^
x: 0, 1.4 * r_co /um ij%\ld9kd
"radialposition (µm)", @x 8r+R~{
y: 0, 1.2 * I_max *cm^2 Z1*y$=D?3[
"intensity (W/ cm²)", @y CkIICx
y2: 0, 1.3 * N_Tm sexnO^s
frame mM>{^%2Q:
hx % &{>oEQ
hy QIGMP=!j
O[Nc$dc
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 =XyK/$
yscale = 2, !*N#}6Jd
color = gray, T*O!r`.Ak
width = 3, "o%N`Xlx
maxconnect = 1, _ 4pBJOJQ6
"N_dop (right scale)" &yWl8O
tOS%.0W5J
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 w#]%I+
color = red, |fq1Mn8
maxconnect = 1, !限制图形区域高度,修正为100%的高度 TRG"fVR
width = 3, }h EBX:-
"pump" 7G!SlC
X}W
Lab{?!E>U
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 iiKFV>;t/
color = blue, mI"`.
maxconnect = 1, Nmns3D
width = 3, ~cQP4
kBD]
"signal" >\%44ba6
rB)m{)
@UE0.R<
; ------------- .}%$l.#a
diagram 5: !输出图表5 -Z)$].~|t
3]M
YHb
"TransitionCross-sections" Ond"Eq=r
:>;-uve8'
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) K-(,,wS
0X~Dxs
x: 1450, 2050 rN8 ZQiJC
"wavelength(nm)", @x !G Z2|~f9
y: 0, 0.6 kfM}j
"cross-sections(1e-24 m²)", @y :/K 'P`JaL
frame fw'$HV76
hx q$0^U{j/
hy u7<B*d:
<j-Bj$3
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 0q>f x
color = red, k-Le)8+b
width = 3, s=u0M;A0Q
"absorption" ^7vhize
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 ?20y6c <
color = blue, -;_NdL@
width = 3, l3)(aay!
"emission" HkGzyDt
hnmFhJ !g