(* Wb$bCR#?<
Demo for program"RP Fiber Power": thulium-doped fiber laser, }R(_^@]
pumped at 790 nm. Across-relaxation process allows for efficient 4,8 =[
population of theupper laser level. "[,XS`
*) !(* *)注释语句 ~d]7 Cl
*?\Nioii
diagram shown: 1,2,3,4,5 !指定输出图表 s4*,ocyBP
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 =0|evC
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 l1-FL-1
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 "Y6mM_flq
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 r6<}S(
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 6= D;K.!
?U[AE -*
include"Units.inc" !读取“Units.inc”文件中内容 Fh;(1X75I
irS62Xe
include"Tm-silicate.inc" !读取光谱数据 N\$6R-L
R8)"M(u=l
; Basic fiberparameters: !定义基本光纤参数 ^~$
o-IX
L_f := 4 { fiberlength } !光纤长度 ce\-oT
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 #(G&%I A|;
r_co := 6 um { coreradius } !纤芯半径 vhW'2<(
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 1-fz564
TUt)]"h<
; Parameters of thechannels: !定义光信道 =T`-h"E~@
l_p := 790 nm {pump wavelength } !泵浦光波长790nm dE~ns
,+
dir_p := forward {pump direction (forward or backward) } !前向泵浦 u ""=9>0
P_pump_in := 5 {input pump power } !输入泵浦功率5W =r2d{
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um WF7RMQ51j
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 Z^3Risi
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 .nN7*))Fj
#</yX5!V
l_s := 1940 nm {signal wavelength } !信号光波长1940nm '}=M~
w_s := 7 um !信号光的半径 IYFA>*Es
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布
AHb
loss_s := 0 !信号光寄生损耗为0 ~Q0}>m,S
[0Sd +{Q
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 Fu$otMw%l
GupKM%kM
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 |qD<h
calc "Q( 8FF
begin P'+*d#*S
global allow all; !声明全局变量 *SZ<ori
set_fiber(L_f, No_z_steps, ''); !光纤参数 0NGokaD)H
add_ring(r_co, N_Tm); N
Jf''e3
def_ionsystem(); !光谱数据函数 FpEdwzBb<
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 7gkHKdJoMA
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 -Y6JU
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 iDA`pemmi&
set_R(signal_fw, 1, R_oc); !设置反射率函数 jB;+tDC!Co
finish_fiber(); B.o&%5dG
end; f]EHDcC3X
`^/Q"zH
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 B4?P"|
show "Outputpowers:" !输出字符串Output powers: S/4kfsN
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) l6~eb=u;9g
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) qr*/}F6
Wd7*sa3T
Z-:`{dns/
; ------------- ?s//a_nL*
diagram 1: !输出图表1 "](~VF[J8
AQ&;y&+QR
"Powers vs.Position" !图表名称 t9kgACo/M
`fH6E8N
x: 0, L_f !命令x: 定义x坐标范围 B?]^}r
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 t?s1@}G^
y: 0, 15 !命令y: 定义y坐标范围 ^%nAx| 4xQ
y2: 0, 100 !命令y2: 定义第二个y坐标范围 `c icjA@~
frame !frame改变坐标系的设置 q&vr;fB2
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) CAX U
#
hx !平行于x方向网格 o{qbbJBC
hy !平行于y方向网格 5o,82Kti
@!S5FOXipZ
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 6l4l74
color = red, !图形颜色 $I.'7
&h;
width = 3, !width线条宽度 qnOAIP:0
"pump" !相应的文本字符串标签 cj[y]2{1h
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 >7n(*M
color = blue, uwbj`lpf
width = 3, `
p)#!
"fw signal" _jtBU
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 9]Y@eRI<
color = blue, lHx$F?
style = fdashed, Nz m
7E]
width = 3, az w8BK
"bw signal" A >e%rx
]8RcZn
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 ?vXy7y&4
yscale = 2, !第二个y轴的缩放比例 %l>^q`p
color = magenta, qwN-VCj
width = 3, xHf
l>C'
style = fdashed, 'p<(6*,"
"n2 (%, right scale)" z2r{AQ.&
LB>!%Vx
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 ?xy~N?N
yscale = 2, :wIbKs.r
color = red, |[*b[O
1W
width = 3, n04Zji(F@
style = fdashed, /vBp Rm
"n3 (%, right scale)" RJ0w3T]7
@6\8&(|
c(o8uWn
; ------------- C\1Dy5
diagram 2: !输出图表2 . uhP(
Mq$e5&/
"Variation ofthe Pump Power" xC|7"N^/
<h(tW
x: 0, 10 d8av`m
"pump inputpower (W)", @x v,kedKcxv'
y: 0, 10 5{{u #W%=
y2: 0, 100 [~x
Ql
frame n]|[|Rf1
hx 4-sUy
hy @@+\
legpos 150, 150 cd\0
g,\<fY+4
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 ~/QzL.S;p
step = 5, =*}|y;I
color = blue, 8USF;k
width = 3, OD{Rh(Id
"signal output power (W, leftscale)", !相应的文本字符串标签 u" nyx0<
finish set_P_in(pump, P_pump_in) >*EcX 3
z[l17+v
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 o[_{\
yscale = 2, 8hdd1lVKO8
step = 5, w_6h
$"^x
color = magenta,
dY|(
width = 3, jytfGE:
"population of level 2 (%, rightscale)", ^*RmT
finish set_P_in(pump, P_pump_in) ,myl9s
uS3J^=>@(a
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 Y!}BmRLh2
yscale = 2, $kg!XT{V
step = 5, Jgb{Tl:r
color = red, {l![{
width = 3, Sa6}xe."M,
"population of level 3 (%, rightscale)", .Q4EmpByCg
finish set_P_in(pump, P_pump_in) >{V]q*[/;Q
n hS=t8H
VcA87*pel
; ------------- ]QRhTz
diagram 3: !输出图表3 6*Rz}RQ
os"o0?
"Variation ofthe Fiber Length" o^biO!4,
y1B3F5
x: 0.1, 5 t\S}eoc
"fiber length(m)", @x M{1't
y: 0, 10 "2$C_aE
"opticalpowers (W)", @y ?=-18@:.ss
frame u+kXJ
hx !'[f!vsyM{
hy ?FxxH*>"
BNnGtVAbZ
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 $s5LzJn
step = 20, YOy/'Le^:
color = blue, skf7Si0z
width = 3, 7jvf:#\LtL
"signal output" >XM-xK-=
5F18/:\n
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 k& 2U&
step = 20, color = red, width = 3,"residual pump" ^g"G1,[%w
4,`Yx s)%
! set_L(L_f) {restore the original fiber length } ?v\A&d
S)T~vK(n
lo5,E(7~h
; ------------- q{nNWvL
diagram 4: !输出图表4 C5c@@ch :
sFsp`kf
"TransverseProfiles" \GO^2&g(
VE`5bD+%e
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) An{`'U(l
OTY9Q
x: 0, 1.4 * r_co /um T8bk \\Od
"radialposition (µm)", @x 7jQOwzj
y: 0, 1.2 * I_max *cm^2 n<+g{QHi
"intensity (W/ cm²)", @y s3Pr$h
y2: 0, 1.3 * N_Tm T@ (MSgp9
frame KmG*`Es
hx SxI='z_S.f
hy n6Je5fE
`q@5d&d`j
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 {N42z0c
yscale = 2, W2?6f:
color = gray, D2z" Z@
width = 3, gdPv,p19L
maxconnect = 1, O~?H\2S
"N_dop (right scale)" ?Z9C}t]
[H<![Z1*r
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 >slD.rb]
color = red, P MV;A{T
maxconnect = 1, !限制图形区域高度,修正为100%的高度 SVB> 1s9F
width = 3, T a8;
"pump" @-qS[bV
6O"?wN%$
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 va 7I_J
color = blue, +GqK$B(x7
maxconnect = 1, :Aj8u\3!@
width = 3,
`S$zwot
"signal" \]uD"Jqv#
o
b;]
.$&mWytw=
; ------------- zW.I7Z0^
diagram 5: !输出图表5 Mm7;'Zbg
:59fb"^$
"TransitionCross-sections" jeLRS8];
&\6Buw_
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) }x!=F<Q!r
J< Ljg<t+
x: 1450, 2050 !8YZ;l
"wavelength(nm)", @x qw?#~"Ca.
y: 0, 0.6 $1lI6 =
,
"cross-sections(1e-24 m²)", @y M~/7thP{
frame 11Sflj
hx >1uo5,wrF
hy R. :~e
NN>E1d=
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 q9+`pj
color = red, u*}[fQ`aF
width = 3, )bqSM&SO
"absorption" ^i+ d 3
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 'C[{cr.`
color = blue, (dvsGYT|.
width = 3, :DWvH,{+&
"emission" ,jH<i.2R
nUb0R~wr$G