(* %$xFnGb
Demo for program"RP Fiber Power": thulium-doped fiber laser, !gf3%!%
pumped at 790 nm. Across-relaxation process allows for efficient X8x>oV;8
population of theupper laser level. eFI4(Y
*) !(* *)注释语句 *$$V,6O.
fdG.=7`
diagram shown: 1,2,3,4,5 !指定输出图表 mD)O\.uA
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 @GtZK
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 ACYn87tq
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 fO>~V1
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 Z5[:Zf?h7J
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 [;AcV73
[ d7]&i}*|
include"Units.inc" !读取“Units.inc”文件中内容 6w;|-/:`
" G6jUTt
include"Tm-silicate.inc" !读取光谱数据 %Ab_PAw
>pvg0Fh
; Basic fiberparameters: !定义基本光纤参数 }z+"3A|
L_f := 4 { fiberlength } !光纤长度 hY 2PV7"[;
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 n^02@Aw
r_co := 6 um { coreradius } !纤芯半径 p&mtKLv
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 30E v"
[Mc5N
; Parameters of thechannels: !定义光信道 7~nCK
l_p := 790 nm {pump wavelength } !泵浦光波长790nm vqi$}=%n?W
dir_p := forward {pump direction (forward or backward) } !前向泵浦 9nS!
P_pump_in := 5 {input pump power } !输入泵浦功率5W l|em E
^
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um veg!mY2&
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 ok2~B._+;
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 H`lD@q'S
ja- ~`
l_s := 1940 nm {signal wavelength } !信号光波长1940nm AuipK*&g
w_s := 7 um !信号光的半径 c| ( ?
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 a
BH1J]_
loss_s := 0 !信号光寄生损耗为0 'a^tL[rLP1
8G] m7Z
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 b|o!&9Yyr
E2H<{Q
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 \N , ' +
calc 2\B9o `Y
begin >TnQ4^;v.
global allow all; !声明全局变量 E0^%|Mh]b
set_fiber(L_f, No_z_steps, ''); !光纤参数 YQdX>k
add_ring(r_co, N_Tm); H&Y{jqua
def_ionsystem(); !光谱数据函数 cNlY=L
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 \Fg6b6
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 ?VP!1O=J
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 <Iyot]E
set_R(signal_fw, 1, R_oc); !设置反射率函数 ZWRRh^
finish_fiber(); .`>l.gmi&
end; 0/@ X!|X
355Sd;*
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 F*JvpI[7n
show "Outputpowers:" !输出字符串Output powers: 5vX8mPR_
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) |EV\a[
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) l()MYuLNV
qJXsf M6
pNE\@U|4E
; ------------- k7|z$=zY
diagram 1: !输出图表1 fb.\V]K
W#jZRviyq!
"Powers vs.Position" !图表名称 W({TC
-F+P;S
x: 0, L_f !命令x: 定义x坐标范围 {_XrZ(y/
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 tK|9qs<%
y: 0, 15 !命令y: 定义y坐标范围
-N7L#a
y2: 0, 100 !命令y2: 定义第二个y坐标范围 hdr}!wV
frame !frame改变坐标系的设置 lAn+gDP
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) DxKfWb5 R
hx !平行于x方向网格 Wd`
QpW
hy !平行于y方向网格
SU%rWH
,)rZAI
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 ?(/j<,m^
color = red, !图形颜色 yOUX E>-
width = 3, !width线条宽度 iQ|,&K0d]
"pump" !相应的文本字符串标签 leES YSY:
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 k'ZUBTRq!
color = blue, '`]n_$f'
width = 3, &H4uvJ_<
"fw signal" !q$&JZY
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 ?l,
X!o6
color = blue, O/Y\ps3r
style = fdashed, 12tJrS*Z
width = 3, ewAH'H]o
"bw signal" JU'WiR
bcb
:qAc= IC%
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 XnE
%$NJ
yscale = 2, !第二个y轴的缩放比例 -4?xwz9o$7
color = magenta, wAu[pWD'6;
width = 3, cNuHXaWp
style = fdashed, EO].qN-8
"n2 (%, right scale)" S"P9Nf?9
S?Bc~y
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 %R5Com
yscale = 2, dgco*TIGO
color = red, pG!(6V-x<E
width = 3, &gA6+b'
style = fdashed, -OrY{^F
"n3 (%, right scale)" vr{'FMc
N4a`8dS|
B0)`wsb_
; ------------- oI_oz0nHk
diagram 2: !输出图表2 5@ bc(H
1iNsX\M
"Variation ofthe Pump Power" f`hyYp`d5
~JwpNJs
x: 0, 10 Mhe|eD#)
"pump inputpower (W)", @x |oe!P}u
y: 0, 10 %XJQ0CE<(
y2: 0, 100 |jahpji6
frame |;A9A's
hx U#;51_
hy y@o9~?M
legpos 150, 150 ptV4s=G2
{H=oxa
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 x?, ~TC4
step = 5, 8%o~4u3
color = blue, Gr5`1`8|
width = 3, G;(onJz
"signal output power (W, leftscale)", !相应的文本字符串标签 "_K}rI6(t
finish set_P_in(pump, P_pump_in) ^uyN v-'F
y#S1c)vU
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 O9t=lrYV!
yscale = 2, F+ffl^BQ
step = 5, L]k*QIn:h
color = magenta, -|m$YrzG
width = 3,
6Xdtr
"population of level 2 (%, rightscale)", %{R_^Y8t
finish set_P_in(pump, P_pump_in) 2c}B
Q0V^PDF
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 |EF>Y9
yscale = 2, O6y @G
.+
step = 5, +w "XNl
color = red, ;#3ekl{-g
width = 3, 7w "sJ
"population of level 3 (%, rightscale)", p QluGIX0V
finish set_P_in(pump, P_pump_in) &&X$d!V
\Y*!f|=of
p1Q/g Il
; ------------- `$J'UXtGc
diagram 3: !输出图表3 U?8i'5)
\).Nag +
"Variation ofthe Fiber Length" eh$G.-2N
z>6.[Z(T
x: 0.1, 5 5pO]vBT
"fiber length(m)", @x gf+o1\5t@
y: 0, 10 RNGO~:k?r
"opticalpowers (W)", @y Js/N()X
frame uu}'i\Q
hx mHKJ
hy X$/E>I
sNL+F
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 I$n+DwKcN
step = 20, !?jK1{E3
color = blue, J;S-+
width = 3, ]de\i=?|
"signal output" $u:<x
O{~KR/
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 5i6VZv
step = 20, color = red, width = 3,"residual pump" pg+b[7
\H^;'agA
! set_L(L_f) {restore the original fiber length } W/sY#"
^[#=L4
Ddb-@YD&+0
; ------------- gt'*B5F(
diagram 4: !输出图表4 7m\vRMK
y>`5Kyj3-@
"TransverseProfiles" >E,Q
Wj&nUp{
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) ]
@ufV
#00D?nC
x: 0, 1.4 * r_co /um QCWf.@n
"radialposition (µm)", @x )T9~8p.
y: 0, 1.2 * I_max *cm^2 $%Z3;:<Uf-
"intensity (W/ cm²)", @y rS4%$p"
y2: 0, 1.3 * N_Tm Y~}5axSPH
frame }w#F6
hx ?IILt=)<
hy J smB^
T<P0T<
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 k=`$6(>Fz
yscale = 2, q(gjT^aN
color = gray, z|I0-1tAK
width = 3, }-74 f
maxconnect = 1, X &D{5~qC
"N_dop (right scale)" ~q 7;8<U
6lsEGe
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 1DqX:WM6
color = red, 4@h;5
maxconnect = 1, !限制图形区域高度,修正为100%的高度 h,t:]
width = 3, <[ZI.+_Wt
"pump" n}JPYu
NO2(vE
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 ~@D/A/|
color = blue, wG8
nw;
maxconnect = 1, gqfDacDJL
width = 3, ?`H[u7*%
"signal" N'QqJe7Z
,5{$+
FAw1o
; ------------- {~_Y _-
diagram 5: !输出图表5 VO_dA4C}z
:b@igZ<
"TransitionCross-sections" CW p#^1F
/P:EWUf'
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) :RiF3h(
y^R4I_* z
x: 1450, 2050 )c+k_;t'+
"wavelength(nm)", @x DZk1ZLz
y: 0, 0.6 Q+'nw9:;T
"cross-sections(1e-24 m²)", @y ,F9nDF@)
frame `eR 7H>I
hx O,'#C\
hy r[pF^y0
N 9LgU)-Jt
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 C6]OAUXy:F
color = red, m*Cu-6&qd
width = 3, 4-^[%&>}
"absorption" v+6e;xl8
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 2+Yb
7 uI,
color = blue, |##GIIv;i
width = 3, ^~1<f1(
"emission" vy9dAl
:o8MUXH$