切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 2626阅读
    • 1回复

    [原创]RP Fiber Power仿真设计掺铥光纤激光器代码详解 [复制链接]

    上一主题 下一主题
    离线小火龙果
     
    发帖
    932
    光币
    2176
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-05-28
    (* ?r^>Vk}  
    Demo for program"RP Fiber Power": thulium-doped fiber laser, ]9hhAT44  
    pumped at 790 nm. Across-relaxation process allows for efficient #Z}YQ $g  
    population of theupper laser level. oC(.u?  
    *)            !(*  *)注释语句 C40W@*6S2  
    m<|fdS'@  
    diagram shown: 1,2,3,4,5  !指定输出图表 {$v>3FG  
    ; 1: "Powersvs. Position"     !分号是注释;光纤长度对功率的影响 Y2(,E e2  
    ; 2:"Variation of the Pump Power"  !泵浦光功率变化对信号输出功率的影响 Fc a_(jw  
    ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 |/!RN[<   
    ; 4:"Transverse Profiles"             !横向分布,横坐标为半径位置 v|2+7N:[;  
    ; 5:"Transition Cross-sections"    !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 EK zYL#(i  
    /(Ryh6M  
    include"Units.inc"         !读取“Units.inc”文件中内容 `5Em: 8 M  
    5>rjL ;  
    include"Tm-silicate.inc"    !读取光谱数据 c~ Q 5A  
    BU=Ta$#BZ  
    ; Basic fiberparameters:    !定义基本光纤参数 -m Sf`1l0  
    L_f := 4 { fiberlength }      !光纤长度 ]wV_xZ)l^A  
    No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 )7a 4yTg!~  
    r_co := 6 um { coreradius }                !纤芯半径 USbFUHdDc  
    N_Tm := 100e24 { Tmdoping concentration }  !纤芯Tm离子掺杂浓度 `B7?F$J  
    #=I5_u  
    ; Parameters of thechannels:                !定义光信道 \7 }{\hY-  
    l_p := 790 nm {pump wavelength }                !泵浦光波长790nm .$ 5*v  
    dir_p := forward {pump direction (forward or backward) }   !前向泵浦 oN Rp  
    P_pump_in := 5 {input pump power }                    !输入泵浦功率5W t flUy\H>  
    w_p := 50 um {radius of pump cladding }               !包层泵浦相应的半径 50um Klqte*!  
    I_p(r) := (r <=w_p) { pump intensity profile }          !泵浦光强度分布 p.!p6ve){  
    loss_p := 0 {parasitic losses of pump wave }           !泵浦光寄生损耗为0 VBe&of+  
    gdG#;T'  
    l_s := 1940 nm {signal wavelength }                   !信号光波长1940nm ~lH2# u>g  
    w_s := 7 um                          !信号光的半径 }K9Ji]tOK:  
    I_s(r) := exp(-2 *(r / w_s)^2)            !信号光的高斯强度分布 .< -~k@ P  
    loss_s := 0                            !信号光寄生损耗为0 Lq{/r+tt/  
    dt(Lp_&v  
    R_oc := 0.70 {output coupler reflectivity (right side) }      !输出耦合反射率 H:X(><J  
    \,yg@ R  
    ; Function for defining themodel:   !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 OCI{)r<O2m  
    calc n$ZxN"q <  
      begin fx/If  
        global allow all;                   !声明全局变量 Xvn \~Vr  
        set_fiber(L_f, No_z_steps, '');        !光纤参数 l7uEUMV  
        add_ring(r_co, N_Tm); >~@ABLp 6  
        def_ionsystem();              !光谱数据函数 |=EwZ mj-c  
        pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p);  !泵浦光信道 B[[1=  
        signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward);      !前向信号光信道 ". wG~H  
        signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward);    !后向信号光信道 Hu$JCB-%  
        set_R(signal_fw, 1, R_oc);                                 !设置反射率函数 qX*Xo[Xp  
        finish_fiber();                                   ?f=7F %  
      end; CpC6vA.R  
    10$:^  
    ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 _)^`+{N<  
    show "Outputpowers:"                                   !输出字符串Output powers: kI/%|L%6D  
    show"pump:     ", P_out(pump):d3:"W"  !输出字符串pump:和计算值(格式为3个有效数字,单位W) Sigu p#.p  
    show"signal:   ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) )Tad]Hd"W  
    HG[gJ7  
    RJLhR_t7n  
    ; ------------- *jo1?  
    diagram 1:                   !输出图表1 $ Bdxu  
    @{x+ln1r  
    "Powers vs.Position"          !图表名称 n]bxG8~t  
    mp17d$R-  
    x: 0, L_f                      !命令x: 定义x坐标范围 @1)C3(=A  
    "position infiber (m)", @x      !x轴标签;@x 指示这些字符串沿坐标轴放置 l ?gh7m_ej  
    y: 0, 15                      !命令y: 定义y坐标范围 5 OF*PBZ  
    y2: 0, 100                    !命令y2: 定义第二个y坐标范围 luV_  
    frame          !frame改变坐标系的设置 $lf\1)B~*  
    legpos 600, 500  !图行在图表窗口中的位置(相对于左上角而言) `-<m#HF:)d  
    hx             !平行于x方向网格 ]`eJSk.  
    hy              !平行于y方向网格 +g8uV hC  
    "gq _^&  
    f: P(pump, x),    !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 l[{Ci|4  
      color = red,  !图形颜色 rOXh?r  
      width = 3,   !width线条宽度 [300F=R  
      "pump"       !相应的文本字符串标签 tq5o  
    f: P(signal_fw, x),  !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 t[x[X4  
      color = blue,     4mF=A$Q_/  
      width = 3, `;#I_R_K  
      "fw signal" K<7 Db4H  
    f: P(signal_bw, x),   !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 ?XO}6q<tM  
      color = blue, f`_6X~ p  
      style = fdashed, k{pn~)xg  
      width = 3, o1 @. <Q+}  
      "bw signal" }o9(Q8  
    KPs @v@5M  
    f: 100 * n(x, 2),    !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 j:'!P<#  
      yscale = 2,            !第二个y轴的缩放比例 +/2:  
      color = magenta, u^&,~n@n7  
      width = 3, ~aRcA|`  
      style = fdashed, w0$l3^}z  
      "n2 (%, right scale)" Lcy>!3q3~  
    e+P|PW  
    f: 100 * n(x, 3),          !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 ({p @Ay  
      yscale = 2, DwH=ln=  
      color = red, ,Y2){8#l  
      width = 3, -xc'P,`  
      style = fdashed, 407;M%?'A  
      "n3 (%, right scale)" aFwfF^\(|,  
    %dA7`7j  
    0Kenyn4?  
    ; ------------- p4I6oS`/.  
    diagram 2:                    !输出图表2 iC\t@BVS  
    ^tFgkzXm  
    "Variation ofthe Pump Power" <D{_q.`vA  
    <=7^D  
    x: 0, 10 6d|%8.q1  
    "pump inputpower (W)", @x sBD\;\I  
    y: 0, 10 NI% ()  
    y2: 0, 100 oi}\;TG  
    frame Bc2PF;n  
    hx  p(Bn!  
    hy F6\r"63  
    legpos 150, 150 pM'AhzS  
    s7TV@Y)  
    f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 EL-1o0 2-  
      step = 5, Cn(0ID+3f  
      color = blue, W L5!H.q  
      width = 3, } ~#^FFe  
      "signal output power (W, leftscale)",     !相应的文本字符串标签 9b*1-1"  
      finish set_P_in(pump, P_pump_in) nH]F$'rtA  
    JK9}Kb};  
    f: (set_P_in(pump,x); 100 * n_av(2)),   !改变泵浦信号功率对能级2上激活粒子占比的影响 nFfwVqV  
      yscale = 2, w/m ~#`a  
      step = 5, 4`+hX'  
      color = magenta, K# dV.  
      width = 3, y1:#0  
      "population of level 2 (%, rightscale)", kKg%[zXS  
      finish set_P_in(pump, P_pump_in) [{!5{k!  
    xlWTHn!j  
    f: (set_P_in(pump,x); 100 * n_av(3)),   !改变泵浦信号功率对能级3上激活粒子占比的影响 O<v9i4*  
      yscale = 2, RW. >;|m  
      step = 5, Gd 5J<K  
      color = red, (j;6}@  
      width = 3, ?krgZ;Jj  
      "population of level 3 (%, rightscale)", y}bE'Od  
      finish set_P_in(pump, P_pump_in) H:HJHd"W  
    H|iY<7@  
    13nXvYo'  
    ; ------------- #7A_p8  
    diagram 3:                         !输出图表3 pZ4]oK\*  
    X6dv+&=?  
    "Variation ofthe Fiber Length" p KF>_\   
    /n SmGAO  
    x: 0.1, 5 e.|_=Gd2/  
    "fiber length(m)", @x } 6Uw4D61  
    y: 0, 10 z2QZ;ZjvRS  
    "opticalpowers (W)", @y *.DTcV  
    frame &zYo   
    hx c{u~=24;%#  
    hy z@0*QZ.y 1  
    v*7lJNN.  
    f: (set_L(x);P_out(signal_fw)),     !改变光纤长度对信号光输出功率的影响 e/;chMCq  
      step = 20,             OxraaN`  
      color = blue, ~D)!zQkD  
      width = 3,  TVP.)%  
      "signal output" V nv9 <=R  
    ~agzp`!M  
    ;f: (set_L(x);P_out(pump)),                     !改变光纤长度对泵浦信号输出功率的影响 3S'juHT e  
       step = 20, color = red, width = 3,"residual pump" @{Q[M3l  
    }bVWV0Aeim  
    ! set_L(L_f) {restore the original fiber length } +89s+4Jn  
    oiq7I@Y`x  
    +)Pv6Zog[  
    ; ------------- jyt#C7mj-A  
    diagram 4:                                  !输出图表4 I%NPc4p  
    e:Zc-  
    "TransverseProfiles" A qKl}8  
    I9`R L Sn  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) w$cic  
    =x4:jas  
    x: 0, 1.4 * r_co /um /QsFeH  
    "radialposition (µm)", @x < ealt  
    y: 0, 1.2 * I_max *cm^2 ''Y}Q"  
    "intensity (W/ cm&sup2;)", @y 3 G?^/nB  
    y2: 0, 1.3 * N_Tm yVyh'd:Ik  
    frame "bRg_]\q6  
    hx /]Fs3uf  
    hy AT:T%a:G?  
    AFWcTz6#d  
    f: N_dop(1, x * um,0),      !掺杂浓度的径向分布 \ :8eN}B  
      yscale = 2, @83h/Wcxd  
      color = gray, :4"SJ  
      width = 3, U/2g N H  
      maxconnect = 1, }TZ5/zn.Dw  
      "N_dop (right scale)" )K8k3]y&  
    4'W|'4'b  
    f: I(pump, -1, x *um, 0) * cm^2,    !泵浦光沿光纤径向的强度分布 zv]-(<B  
      color = red, zn T85#]\@  
      maxconnect = 1,           !限制图形区域高度,修正为100%的高度 %:n1S]Vr  
      width = 3, Y WSo:)LY  
      "pump" ,uD F#xjl,  
    hv'~S  
    f: I(signal_fw, -1,x * um, 0) * cm^2,  !信号光沿光纤径向的强度分布 h94SLj]  
      color = blue, OYJy;u3"  
      maxconnect = 1, 8{HeHU  
      width = 3, EOrWax@k$}  
      "signal" w0Fi~:b  
    <R7* 00  
    :".:Wd  
    ; ------------- 22\Buk}?  
    diagram 5:                                  !输出图表5 U A T46  
    J'4{+Q_pa  
    "TransitionCross-sections" XnQd(B`M  
    BciwS_Qx  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) )p"37Ct?  
    v.)'b e*u  
    x: 1450, 2050 $V~r*#$.  
    "wavelength(nm)", @x a}a_&rf~Z  
    y: 0, 0.6 2#LcL  
    "cross-sections(1e-24 m&sup2;)", @y >\K<q>*  
    frame =y8HOT}8  
    hx |2X Et\P  
    hy 5+GW% U/  
    !arcQ:T@G  
    f: s12_Tm(x * nm) /1e-24,      !Tm3+吸收截面与波长的关系 -[s*R%w  
      color = red, k0?4vA  
      width = 3, g# :|Mjgh  
      "absorption" -Q;5A;sr2  
    f: s21_Tm(x * nm) /1e-24,  !Tm3+发射截面与波长的关系 ?L#C'Lz2+  
      color = blue, 2](R}  
      width = 3, )_b #c+  
      "emission" MQ2gzKw>  
    gh}FZs5 P  
     
    分享到
    离线lileisgsz
    发帖
    14
    光币
    69
    光券
    0
    只看该作者 1楼 发表于: 2021-09-28
    感谢,视频上有点看不清楚