(* dR/UXzrc
Demo for program"RP Fiber Power": thulium-doped fiber laser, H+2J.&Ch
pumped at 790 nm. Across-relaxation process allows for efficient [dL?N
population of theupper laser level. =09j1:''<d
*) !(* *)注释语句 s?K4::@Fv
El&pux2
diagram shown: 1,2,3,4,5 !指定输出图表 S+OI?QS
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 cl7+DAE
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 /C8(cVNZ
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 !r!Mq~X<=
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 I0jEhg%JZ
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 `TsfscN
Q+ST8
include"Units.inc" !读取“Units.inc”文件中内容 dl$l5z\
R QO{fC
include"Tm-silicate.inc" !读取光谱数据 f&cG;Y
t@19a6:Co
; Basic fiberparameters: !定义基本光纤参数 %J%gXk}]
L_f := 4 { fiberlength } !光纤长度 |QgXSe7
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 s*#|EdD6@
r_co := 6 um { coreradius } !纤芯半径 izWl5}+'B
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 @%cJjZ5y
qP<,"9!I
; Parameters of thechannels: !定义光信道 /~tfP
l_p := 790 nm {pump wavelength } !泵浦光波长790nm FZ2-e
dir_p := forward {pump direction (forward or backward) } !前向泵浦 n_ez6{
P_pump_in := 5 {input pump power } !输入泵浦功率5W ujWHO$uz!
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um IKr7"`
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 D3lYy>~d5;
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 hA\8&pI;
$xZk{ rK
l_s := 1940 nm {signal wavelength } !信号光波长1940nm n0i&P9@B1
w_s := 7 um !信号光的半径 K+$c,1wb
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 h5l
Lb+
loss_s := 0 !信号光寄生损耗为0 +@qk=]3a
A0X0t
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 < 5_Ys
M2EN(Y_k0
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 `U1%d7[vY
calc f8^58]wx0
begin (Mm{"J3uv
global allow all; !声明全局变量 ry]7$MQyV
set_fiber(L_f, No_z_steps, ''); !光纤参数 p+7BsW.l
add_ring(r_co, N_Tm); EH "g`r
def_ionsystem(); !光谱数据函数 xA5$!Oq7
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 EXFxiw
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 E 6@;e-]j
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 `U3
set_R(signal_fw, 1, R_oc); !设置反射率函数 @YB\PVhW
finish_fiber(); 9c7}-Go
end; +r!h* 4
l>(G3lIw
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 "qm> z@K
show "Outputpowers:" !输出字符串Output powers: !Cy2>6v7
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) .nH
/=
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) @Kr)$F
%UJ4wm
f,a %@WT
; ------------- dJ^`9W
diagram 1: !输出图表1 ?mAw"Rb!
?.4l1X6Ba
"Powers vs.Position" !图表名称 <"+C<[n.
JAz;_wS(k
x: 0, L_f !命令x: 定义x坐标范围 Fb'wC
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 /nP=E
y: 0, 15 !命令y: 定义y坐标范围 NFc8"7Mz}
y2: 0, 100 !命令y2: 定义第二个y坐标范围 ,s76]$%4
frame !frame改变坐标系的设置 F]*-i 55S
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) %S#"pKE6R
hx !平行于x方向网格 cj#q7
hy !平行于y方向网格 !v L:P2
\IfgL$+
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 :GYv9OG
color = red, !图形颜色 urB3
width = 3, !width线条宽度 ~\G3l,4
"pump" !相应的文本字符串标签 P.B'Gh#^
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 /,UkT*+>!
color = blue, 3T/j5m}+!
width = 3, 2AW{qwk7
"fw signal" WCu%@hh=h
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 z0[ZO1Fo(
color = blue, uCfp+
style = fdashed, []0~9,u
width = 3, [ d7]&i}*|
"bw signal" 6w;|-/:`
" G6jUTt
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 %Ab_PAw
yscale = 2, !第二个y轴的缩放比例 >pvg0Fh
color = magenta, }z+"3A|
width = 3, p d3&AsU
style = fdashed, n^02@Aw
"n2 (%, right scale)" p&mtKLv
3rg^R"&
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 [Mc5N
yscale = 2, a?~csP^?}
color = red, c.Z4f7
width = 3, mm-UQ\h
style = fdashed, 3&fFIab9
"n3 (%, right scale)" )6
<byO
4"x;XVNM[
WUS9zK
; ------------- _l=
diagram 2: !输出图表2 qjzW9yV+
D])YP0|}
"Variation ofthe Pump Power" gdE `UZ\
So.P @CCd
x: 0, 10 GPLt<K!<#
"pump inputpower (W)", @x Z[S+L"0
y: 0, 10 TeCpT2!5j
y2: 0, 100 E2H<{Q
frame *;E+9^:V
hx `lezJ(Xm
hy .r5oN +?e
legpos 150, 150 >TnQ4^;v.
'#PqI)P
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 :;;WK~*#
step = 5, 2U`W[
color = blue, 2RUR=%C
width = 3, yUmsE-W
"signal output power (W, leftscale)", !相应的文本字符串标签 /NX7Vev
finish set_P_in(pump, P_pump_in) Ca@=s
8{SU?MHQLE
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 g+ 1=5g
yscale = 2, TT ZxkK
step = 5, k +#l;<\2
color = magenta, ]Bd3d%
width = 3, N^(lUba
"population of level 2 (%, rightscale)",
L|lmStwe
finish set_P_in(pump, P_pump_in) 6mpg&'>
N46$EsO!h
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 :@%-f:iDj
yscale = 2, K}E7|gdG
step = 5, 795Jwv
color = red, ,o@~OTja*
width = 3, u@_!mjXQ
"population of level 3 (%, rightscale)", 5Sjr6l3Vq8
finish set_P_in(pump, P_pump_in) ;s\;78`0
TF0-?vBWh
Ryba[Fz4Di
; ------------- ;[KriW
diagram 3: !输出图表3 [}ZPg3Y
.d~]e2x
"Variation ofthe Fiber Length" rH&r6Xv[
K+@eH#Cv,(
x: 0.1, 5
Ep\
"fiber length(m)", @x EhIV(q9x
y: 0, 10 A?IZ(
Zx(`
"opticalpowers (W)", @y me:|!lI7YU
frame {#1j"
hx 7}'A)C>J;
hy x #tu
!q$&JZY
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 {nQ)4.e6
step = 20, MO~~=]Y'
color = blue, 12tJrS*Z
width = 3, ewAH'H]o
"signal output" {;iHYr-zs
:qAc= IC%
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 XnE
%$NJ
step = 20, color = red, width = 3,"residual pump" UROj9COv
wAu[pWD'6;
! set_L(L_f) {restore the original fiber length } cNuHXaWp
EO].qN-8
S"P9Nf?9
; ------------- S?Bc~y
diagram 4: !输出图表4 %R5Com
dgco*TIGO
"TransverseProfiles" pG!(6V-x<E
&gA6+b'
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) .lvI8Jf~X
vr{'FMc
x: 0, 1.4 * r_co /um N4a`8dS|
"radialposition (µm)", @x B0)`wsb_
y: 0, 1.2 * I_max *cm^2 [arTx^
"intensity (W/ cm²)", @y BEXQTM3])I
y2: 0, 1.3 * N_Tm F<yy>Wf
frame VelB-vy&
hx Bn~\HW\Lh
hy .Na&I)udX.
0~+NB-L}
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 1m>^{u
yscale = 2, W&+y(Z-t
color = gray, <H5n>3#pH
width = 3, g> ~cs_N@
maxconnect = 1, k-WHHoU>o
"N_dop (right scale)"
mW~i
c
NqJ<!q)
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 X~v4"|a
color = red, i1qS ns
maxconnect = 1, !限制图形区域高度,修正为100%的高度 lo+xo;Nd
width = 3, ~@T+mHny
"pump" y$IaXr5L
m<FF$pTT
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 E tJ~dL)
color = blue, M!N`
Orz
maxconnect = 1, N@Xg5huO
width = 3, 81g9ZV(4
"signal" N9i}p^F<_
#_.g2 Y
d?:`n9`
; ------------- |x &Z~y
diagram 5: !输出图表5 V~OUE]]Q
0jR){G9+
"TransitionCross-sections" sA/,+aM
~TYbP
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) =m`l%V[
uuu\f*<
x: 1450, 2050 f5@.^hi[
"wavelength(nm)", @x ;"1/#CY773
y: 0, 0.6 zzX<?6MS
"cross-sections(1e-24 m²)", @y KHvIN}V5?3
frame /@&(P#h
hx xN6?yr
hy R=`U 4Ml;
3PfiQ|/b
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 "E.\6sC
color = red, }dy9IH
width = 3, ~6p5H}'H1
"absorption" D899gGe
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 j7f5|^/x3
color = blue, $zdd=.!KiK
width = 3, vx'l>@]k
"emission" XmP;L(wa
>f>V5L%1