(* fu]N""~
Demo for program"RP Fiber Power": thulium-doped fiber laser, <kbyZXV@K
pumped at 790 nm. Across-relaxation process allows for efficient :E'P7A
population of theupper laser level. 3n48 %5
*) !(* *)注释语句 ~xDw*AC-
|[1D$Qv
diagram shown: 1,2,3,4,5 !指定输出图表 5<+KR.W
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 /!T> b:0
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 O3qM1-k}S
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 4l @)K9F
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 LchnBtjn
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 B42sb_
LM"y\q ]
include"Units.inc" !读取“Units.inc”文件中内容 $$1qF"GF
#/
"+
include"Tm-silicate.inc" !读取光谱数据 qSD9P ue
79BaDB`{a
; Basic fiberparameters: !定义基本光纤参数 BX< dSK
L_f := 4 { fiberlength } !光纤长度 o#D.9K(
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 yPgmg@G@/
r_co := 6 um { coreradius } !纤芯半径 XG 0v
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 T):SGW
`i fiL
; Parameters of thechannels: !定义光信道 y%cO#P@
l_p := 790 nm {pump wavelength } !泵浦光波长790nm x0Z5zV9
dir_p := forward {pump direction (forward or backward) } !前向泵浦 }roG(
P_pump_in := 5 {input pump power } !输入泵浦功率5W e@n!x}t8
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um %*W<vu>H
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 <Q5Le dN
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 J4aBPq`
gEJi[E@
l_s := 1940 nm {signal wavelength } !信号光波长1940nm @i%YNI5*
w_s := 7 um !信号光的半径 M+xdHBg
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 ;3m!:l
loss_s := 0 !信号光寄生损耗为0 thW<
;[$n=VX`
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 m,_d^
t"AzI8O
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 ga0'zo9K
calc I021p5h|
begin Q-eCHr)
global allow all; !声明全局变量 !;
v~^#M]~
set_fiber(L_f, No_z_steps, ''); !光纤参数 c&'JmKV>&
add_ring(r_co, N_Tm); <J{'o`{
def_ionsystem(); !光谱数据函数 (@sp/:`6
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 5VE2@Fn}
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 aT!;{+
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 6Bt=^~d
set_R(signal_fw, 1, R_oc); !设置反射率函数 |$+5@+Zz
finish_fiber(); yR71%]*.
end; |m
G7XL,
P0GeZ02]
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 vO@s$qi
show "Outputpowers:" !输出字符串Output powers: Q^_/By@
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) KL?) akk
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) {}Ejt:rKN
U4,2 br>
olYsT**'
; ------------- d"Q |I
diagram 1: !输出图表1 Bl;KOR
z2yJ#
"Powers vs.Position" !图表名称 /Cr/RG:OX
s8gU7pT49
x: 0, L_f !命令x: 定义x坐标范围 'mM jjG9
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 "ZMkL)'7-
y: 0, 15 !命令y: 定义y坐标范围 s(2GFc
y2: 0, 100 !命令y2: 定义第二个y坐标范围 5g
;ac~g
frame !frame改变坐标系的设置 (lH,JX`$a
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) %$ceJ`%1e
hx !平行于x方向网格 8cWZ"v
hy !平行于y方向网格 UlovXb
!?FK We
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 7C,T&g
1:
color = red, !图形颜色 v."Dnl
width = 3, !width线条宽度
>'=MH2;
"pump" !相应的文本字符串标签 9w4sSj`
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 -_^c6!i
color = blue, ;</Lf=+Vm
width = 3, XhW %,/<
"fw signal" )j&"%[2F
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 RDQ^dui
color = blue, 3Rv7Qx
style = fdashed, lE#m]D
width = 3, #`SD$;
"bw signal" mDMt5(.
j|(Z#3J
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 w
YNloU
yscale = 2, !第二个y轴的缩放比例 'c`jyn
color = magenta, (Xxn\*S
width = 3, 1yqoA*
style = fdashed, L/r@ S'
"n2 (%, right scale)" }At{'8*n
+|RB0}hFS-
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 {I1~-8
yscale = 2, .0y%5wz8j
color = red, 3smM,fi
width = 3, t} p@:'
style = fdashed, +C{p%`<
"n3 (%, right scale)" 6LUC!Sh
`sHuM*
I4_d[O9
; ------------- LLAa1Wq
diagram 2: !输出图表2 -pb&-@Hul
}ZOFYu0f
"Variation ofthe Pump Power" ^CT&0
_7)F
?
x: 0, 10 i8pU|VpA
"pump inputpower (W)", @x '3(l-nPiG^
y: 0, 10 )M<vAUF
y2: 0, 100 U]4pA#*{|
frame rP=sG;d
hx JiS5um=(.
hy \}]iS C.2
legpos 150, 150 j .A6S`
|$lwkC)O
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 yubSj*
step = 5, dj9?t
color = blue, t!;/Z6\Pb
width = 3, Yx d X#3
"signal output power (W, leftscale)", !相应的文本字符串标签 f|7u_f
finish set_P_in(pump, P_pump_in) }-<zWI{p
IO$z%r7
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 #
'|'r+
yscale = 2, hsLzj\)6
step = 5, !b|' Vp^U
color = magenta, QDmYSY$
width = 3, T3&`<%,f
"population of level 2 (%, rightscale)", _!V%fw
finish set_P_in(pump, P_pump_in) f^Bc
E_ucab-Fi
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 R!x:
C!{
yscale = 2, q 2?X"!
step = 5, t2{~bzq1X
color = red, ~[PKcEX
width = 3, T6#"8qz<
"population of level 3 (%, rightscale)", )hKS0`$|
finish set_P_in(pump, P_pump_in) |BU+:+
k)(Biz398E
2s ,8R
; ------------- uZ6d35MJ
diagram 3: !输出图表3 :Og:v#r8=
*<V^2z$y_
"Variation ofthe Fiber Length" e&It
kUHE\L.Y]
x: 0.1, 5 ``Q2P%
"fiber length(m)", @x ,5k-.Md>2*
y: 0, 10 M~T.n)x2
"opticalpowers (W)", @y cd@.zg'sYn
frame q`|CrOzO
hx P1zK2sL_
hy 8Z#j7)G
vxlOh.a|/L
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 ;."<m
step = 20, wOgE|n
color = blue, %kI}
[6J_
width = 3, oUDVy_k
"signal output" @)YY\l#
^+70<#Xc
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 (il0M=M
step = 20, color = red, width = 3,"residual pump" qztV,R T
y7u^zH6wj
! set_L(L_f) {restore the original fiber length } ENh8kD
l5
Eh8Pwt7C@
,8Iv9M}2
; ------------- 5CYo7mJ6+
diagram 4: !输出图表4 N"5fmY<
/ l>.mK()
"TransverseProfiles" j}HFs0<L
8pZ<9t'
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) Y0uvT7+[hi
d 4{FDqto
x: 0, 1.4 * r_co /um eBW=^B"y+
"radialposition (µm)", @x m$Y
:0_^-
y: 0, 1.2 * I_max *cm^2 yOXO)u1n
"intensity (W/ cm²)", @y aC=['a>)
y2: 0, 1.3 * N_Tm FY0%XW
frame Q%ad q-B
hx Xh3;
hy !F4;_A`X
|cbd6e{!
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 oh8L`=>&a
yscale = 2, OmMX$YID
color = gray, {5Lj8N5
width = 3, gvavs+H%
maxconnect = 1, E$\~lcq
"N_dop (right scale)" $< %B#axL
EYzg%\HH
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 :>
-1'HC
color = red, Ggm` ~fS
maxconnect = 1, !限制图形区域高度,修正为100%的高度 >wON\N0V_
width = 3, |w&~g9
"pump" xh9qg0d
fZryG
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 3!9Z=-tD
color = blue, %HuyK
maxconnect = 1, |^n3{m
width = 3, j+ ::y) $
"signal" pK_?}~
_2Py\+$
d.F)9h]XHO
; ------------- 'Z!Ga.I
diagram 5: !输出图表5 7qIB7 _K5
$g8}^1
"TransitionCross-sections" m\0cE1fir
H'g?llh1J
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) >9K//co"of
S'i;xL>
x: 1450, 2050 4*H"Z(HP
"wavelength(nm)", @x rzLd"`
y: 0, 0.6 zQ)+/e(8
"cross-sections(1e-24 m²)", @y I}0_nge
frame i?}>.$j
hx Iin#Wd-/
hy ur%$aX)
[Eq<":)
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 QJX/7RA
color = red, p]|LV)R n
width = 3, {[OwMk
"absorption" ? Nj)6_&
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 #gZ|T
M/h
color = blue, M@7Xp)S"
width = 3, pA4 ,@O
"emission" &w\I<J`T
-;c