(* tl,.fjZn
Demo for program"RP Fiber Power": thulium-doped fiber laser, Ln')QN
pumped at 790 nm. Across-relaxation process allows for efficient &5fJPv &
population of theupper laser level. Xqg@ e:g
*) !(* *)注释语句 la0BiLzb]
XHK<AO^
diagram shown: 1,2,3,4,5 !指定输出图表 O`x;,6Vr
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 V@e?#iz
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 CrC^1K
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 .h@rLorm>
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 jnK WZ/R
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 Vd,jlt.t
=n5zM._S-
include"Units.inc" !读取“Units.inc”文件中内容 ZRh~`yy
Ch&a/S}
include"Tm-silicate.inc" !读取光谱数据 9YIM'q>`v
nBjqTud
; Basic fiberparameters: !定义基本光纤参数 vM*-D{
L_f := 4 { fiberlength } !光纤长度 u]<,,
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 `<``8
r_co := 6 um { coreradius } !纤芯半径 jVv0ST*z
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 X@+{5%
[,t*Pfq'W8
; Parameters of thechannels: !定义光信道 #%a;"w
l_p := 790 nm {pump wavelength } !泵浦光波长790nm u)X=Qm)
dir_p := forward {pump direction (forward or backward) } !前向泵浦 R}
eN@#"D
P_pump_in := 5 {input pump power } !输入泵浦功率5W gf#{k2r
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um zT=Ho
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 b#uL?f
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 PWaw]*dFmy
f2Klt6"9
l_s := 1940 nm {signal wavelength } !信号光波长1940nm Qi,j+xBp
w_s := 7 um !信号光的半径 /\ y?Y
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 2Nu=/tMN
loss_s := 0 !信号光寄生损耗为0 ~("5yG
|{BIHgMh
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 8##-EN;ag
0Is,*Srr
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 !O+)sbd<
calc lGV0*Cji
begin 3c#BKHNC
global allow all; !声明全局变量 63q^ $I
set_fiber(L_f, No_z_steps, ''); !光纤参数 UldXYtGe
add_ring(r_co, N_Tm); nW PF6V>
def_ionsystem(); !光谱数据函数 (Mo*^pVr
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 rXmn7;B}g
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 v~f HYa>
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 IpINH3odT
set_R(signal_fw, 1, R_oc); !设置反射率函数 F3N?Nk/
finish_fiber(); nF54tR[
end; oI0M%/aM
nno}e/zqf
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 H7z,j}l
show "Outputpowers:" !输出字符串Output powers: @oNH@a
j%
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) Od)Uv1
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) #X%~B'
bx#>BK!
?x$"+,
; ------------- fV &KM*W*@
diagram 1: !输出图表1 oiF}?:7Q7
gy,ht3
"Powers vs.Position" !图表名称 gQ o]
O!mvJD
x: 0, L_f !命令x: 定义x坐标范围 j2Cks_$:
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 6%'.A]"
y: 0, 15 !命令y: 定义y坐标范围 u8gS<\
y2: 0, 100 !命令y2: 定义第二个y坐标范围 W^0w
frame !frame改变坐标系的设置 R}G4rO-J
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) o>).Cj
hx !平行于x方向网格 H35S#+KX
hy !平行于y方向网格 VvvRRP^q
*i\Qo
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 B( ]M&
color = red, !图形颜色 J4QXz[dG
width = 3, !width线条宽度 -l`f)0{
"pump" !相应的文本字符串标签 w zYzug
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 33o9Yg|J~
color = blue, di?K"Z>
width = 3, xO$lsZPG
"fw signal" `e(c^ z#
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 t#Z-mv:(
color = blue, w&$`cD
style = fdashed, j.C`U(n}`
width = 3, pf%=h
|
"bw signal" H(R1o~
6 )Hwt_b
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 aK&b{d
yscale = 2, !第二个y轴的缩放比例 dq7x3v^"ZG
color = magenta, KX!T8+Y
width = 3, NMW#AZVd
style = fdashed, )`SES."
"n2 (%, right scale)" iWei
&%8'8,.
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 4zASMu
yscale = 2, Wl;.%.]>
color = red, ]=.\-K
width = 3, ;o^eC!:/%
style = fdashed, !;EjB*&
"n3 (%, right scale)" P<PJ)>
m`IC6*
@PN#p"KaT
; ------------- R?,an2
diagram 2: !输出图表2 s8QMewU
Q~814P8]
"Variation ofthe Pump Power" +!k&Yje
nA?`BOe(
x: 0, 10 <:(6EKJAq}
"pump inputpower (W)", @x l\BVS)
y: 0, 10 G %N
$C
y2: 0, 100 m$`RcwO
frame &J55P]7w
hx ZtV9&rd7
hy YsG%6&zEq
legpos 150, 150 :@kGAI
6,"IDH|ND
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 e`@ # *}A
step = 5, -mC0+}h
color = blue, h"Xg;(K
width = 3, 7q?9Tj3
"signal output power (W, leftscale)", !相应的文本字符串标签 nnCGg+l
finish set_P_in(pump, P_pump_in) $u7;TW6QD
`D>S;[~S7
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 UQ8M~x5$3%
yscale = 2, j;']cWe
step = 5, +)k b(
color = magenta, ^:6{2 2C{
width = 3, E_Im^a
"population of level 2 (%, rightscale)", D Gr>
2
finish set_P_in(pump, P_pump_in) bQE};wM,
0F@"b{&0
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 ;E@G`=0St
yscale = 2, f_[<L
step = 5, I{
HN67O
color = red, ,pqGX3
width = 3, 7P"| J\
"population of level 3 (%, rightscale)", =fu
:@+
finish set_P_in(pump, P_pump_in) wyp|qIS;
;ToKJ6hN|*
+hvO^?4j
; ------------- OH;b"]
diagram 3: !输出图表3 Nqw&< x+
TS /.`.gT
"Variation ofthe Fiber Length" RD\
y(Y!?X I
x: 0.1, 5 .zS?9MP
"fiber length(m)", @x k9)jjR*XxG
y: 0, 10 fYp'&Btb]x
"opticalpowers (W)", @y g$HwxA9Gp/
frame A~Y^VEn
hx D<|qaHB=
hy ;epV<{e$q4
aD=a ,
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 ElS 9?Q+
step = 20, Is]aj-#r
color = blue, !xP8#|1
width = 3, EG0WoUX|
"signal output" ~(x;5{
HU%o6c w
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 r;>*_Oc7g
step = 20, color = red, width = 3,"residual pump" Z^V6K3GSz-
?z}=B
! set_L(L_f) {restore the original fiber length } !
vP[;6
GN-mrQo
x\F,SEj
; ------------- VS9`{
diagram 4: !输出图表4 vN|l\!~
SxdE?uCUS
"TransverseProfiles" "
Om[~-31
hJwC~HG5
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) %FXfqF9
NLS%S q
x: 0, 1.4 * r_co /um cs T2B[f9D
"radialposition (µm)", @x j;s"q]"x]
y: 0, 1.2 * I_max *cm^2 *:>"q ej
"intensity (W/ cm²)", @y qY~`8
x
y2: 0, 1.3 * N_Tm L !=4N!j
frame QA2borfy
hx ]?3un!o3o
hy '&.#
._8KsuJG
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 4D['^q
yscale = 2, 4!+pc-}-
color = gray, [
j3&/
width = 3, %6L^2
X
maxconnect = 1, ~.A)bp
"N_dop (right scale)" &krwf
]|
/rq VB|M
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 ox:[f9.5
color = red, 6b%WHLUeT
maxconnect = 1, !限制图形区域高度,修正为100%的高度 j'%$XvI
width = 3, bhkUKxd
"pump" IB#
@yH
zunV<2~(2}
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 LEW'G"+
color = blue, U>V&-kxtV
maxconnect = 1, #+$G=pS'v
width = 3, Jd5:{{Lb
"signal" 8>X d2X
}-~X4u#
%^I88,$&L
; ------------- JNkwEZhHyg
diagram 5: !输出图表5 #ggf' QIHp
H2
$GIY
"TransitionCross-sections" 2zVJ vn7
YyTSyP4
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) 9:`(Q3Ei
F%i^XA]a*
x: 1450, 2050 -8r
"wavelength(nm)", @x kGd<5vCs
y: 0, 0.6 jeGj<m
"cross-sections(1e-24 m²)", @y L]d-hs
frame 0PU8#2pR
hx Nluv/?<
hy @y82L8G/
aYuD>rD
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 TF 'U
color = red, 4'-|UPhx
width = 3, ZQ_xDKqRV
"absorption" s<9RKfm
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 DXa=|T
color = blue, ]u4Hk?j~<
width = 3, ~er\~kp
"emission" ;9~6_@,@o
U Z|HJ8_