(* =?aB@&
Demo for program"RP Fiber Power": thulium-doped fiber laser, [ RuY'
pumped at 790 nm. Across-relaxation process allows for efficient 4(IP
population of theupper laser level. @SXgaWr
*) !(* *)注释语句 Yw
`VL)v(y
8A_(]Q
diagram shown: 1,2,3,4,5 !指定输出图表 q;JQs:U!
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 >fQN"(tf
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 $
7!GA9Bn
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 mYX) =B{
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 c5pG?jr+d
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 SO"P3X
@I:&ozy }=
include"Units.inc" !读取“Units.inc”文件中内容 ,Fiiw
sJ=B:3jS0
include"Tm-silicate.inc" !读取光谱数据 AR^Di`n!
[8#l~
|U
; Basic fiberparameters: !定义基本光纤参数 Bw[V K7
L_f := 4 { fiberlength } !光纤长度 PN=yf@<V3F
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 3.Kdz}
r_co := 6 um { coreradius } !纤芯半径 *ni|I@8
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 {lJpcS
;GSj}Nq
; Parameters of thechannels: !定义光信道 LLiX%XOh
l_p := 790 nm {pump wavelength } !泵浦光波长790nm p10->BBg
dir_p := forward {pump direction (forward or backward) } !前向泵浦 Sq%R
P_pump_in := 5 {input pump power } !输入泵浦功率5W ,fRb6s-
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um s]UeDZ<a
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 |1R@Jz`
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 AaVlNjB
"H8N,eb2
l_s := 1940 nm {signal wavelength } !信号光波长1940nm XlPy(>
w_s := 7 um !信号光的半径 00+5a
TrE
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 TuL(
/
loss_s := 0 !信号光寄生损耗为0 *6DKUCA/
3@*8\
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 uQCS%|8C
PoZBiw@
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 2z:9^a/]Na
calc X +R_TC
begin cxV3Vrx@A
global allow all; !声明全局变量 X*@Sj;|m
set_fiber(L_f, No_z_steps, ''); !光纤参数 |>)mYLN!y
add_ring(r_co, N_Tm); -L@=j
def_ionsystem(); !光谱数据函数 }<p%PyM
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 &CgD smJo#
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 :M16ijkx
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 q_bB/
set_R(signal_fw, 1, R_oc); !设置反射率函数 wuCODz@~
finish_fiber(); ,O(uuq
end; kmwFw>#
1ARIZ;H
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 utv.uwfat
show "Outputpowers:" !输出字符串Output powers: V!p;ME
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) I5{SC-7
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) #\qES7We6
,b{4GU$3
zK v}J
; ------------- wbTw\b=
diagram 1: !输出图表1 V.qB3V$
$|KbjpQ
"Powers vs.Position" !图表名称 GI/o!0"_
S"*wP[d.9
x: 0, L_f !命令x: 定义x坐标范围 >Uz3F7nHi
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 _F3 :j9^
y: 0, 15 !命令y: 定义y坐标范围 1QThAFN
y2: 0, 100 !命令y2: 定义第二个y坐标范围 WukD|BCC
frame !frame改变坐标系的设置 c;VW>&,B
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) gwyz)CUkL
hx !平行于x方向网格 9#+X?|p+0
hy !平行于y方向网格 eG.?s;J0
N]3XDd|q
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 ^VD14V3
color = red, !图形颜色 ;TYkJH"
width = 3, !width线条宽度 8WMC ~
"pump" !相应的文本字符串标签 92EvCtf
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 c(:GsoO
color = blue, czafBO6
width = 3, 3LG)s:p$/
"fw signal" qbjRw!2?w
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 wml`3$"cf
color = blue, 5=eGiF;0\
style = fdashed, n,`&f~tap
width = 3, @<_4Nb
"bw signal" W1 E((2
O:4.xe
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 d:3G4g
yscale = 2, !第二个y轴的缩放比例 vq|W&
color = magenta, HghNI
width = 3, Hc71 .rqS
style = fdashed, JHcC}+H[
"n2 (%, right scale)" %%*t{0!H+
w1[F]|
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 H'+P7*k#M
yscale = 2, Xr-eDUEi
color = red, h/d&P
width = 3, J*.qiUAgW
style = fdashed, t<rhrW75P
"n3 (%, right scale)" f5AK@]4G
)]'?yS"
(V*ggii@
; ------------- tR1
kn&w
diagram 2: !输出图表2 :WE(1!P@
!RV}dhI
"Variation ofthe Pump Power" A >Js`s
jlItPdCv
x: 0, 10 0EOpK%{
"pump inputpower (W)", @x ]w({5i
y: 0, 10 OPar"z^EV
y2: 0, 100 \59+JLmP4
frame G0^NkH,k
hx k/Z}nz
hy UW!!!
legpos 150, 150 1qtu,yIf
z6\Y& {
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 C,.$g>)MZK
step = 5, k? X7h2
color = blue, Iq MXd K|
width = 3, Ji gc@@B.
"signal output power (W, leftscale)", !相应的文本字符串标签 iphe0QE[#}
finish set_P_in(pump, P_pump_in) wUab)L
s#>Bwn&b)
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 qlO(z5Ak
yscale = 2, Z3)1!|#Q
step = 5, iXeywO2nP
color = magenta, 4 QD.'+L
width = 3, j"hfsA<_I
"population of level 2 (%, rightscale)", *s}dtJ
finish set_P_in(pump, P_pump_in) m
z) O
/2 ')u|
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 -:&qNY:Vp
yscale = 2, %[b~4,c1
step = 5, =otJf~
color = red, b$[O^p9x
width = 3, })%WL;~
"population of level 3 (%, rightscale)", t[|^[%i
finish set_P_in(pump, P_pump_in) <J!#k@LY]7
30 bScW<08
F<VoPqHq
; ------------- EA8K*>'pv
diagram 3: !输出图表3 C;QIp6"1
Ou>L|#=!
"Variation ofthe Fiber Length" eJlTCXeZ|
ED[`Y.;
x: 0.1, 5 Yjx*hv&?
"fiber length(m)", @x %#7Yr(&
y: 0, 10 eX;C.[&7;8
"opticalpowers (W)", @y v!JQ;OX
frame H:TRJ.!w2
hx NBU[> P
hy v2][gn+58
B@U;[cO&
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 !36jtKdM
step = 20, *z&m=G\
color = blue, U=QfInB
width = 3, vau0Jn%=ck
"signal output" {@ ygq-TZ
'[g@A>xDvW
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 dz3chy,3
step = 20, color = red, width = 3,"residual pump" ] ;"blB
/Sy:/BQ
! set_L(L_f) {restore the original fiber length } J0K25w
qn=~4rg]R
X]
cI ?
; ------------- '@t}8J
diagram 4: !输出图表4 [Vzp D 4
fsRRnD
"TransverseProfiles" b}s)3=X@q
b5NPG N
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) h' #C$i
9[31EiT
x: 0, 1.4 * r_co /um kB:6e7D|[
"radialposition (µm)", @x /a@gE^TM
y: 0, 1.2 * I_max *cm^2 ) bRj'*
"intensity (W/ cm²)", @y D_VAtz
y2: 0, 1.3 * N_Tm %+0
7>/
frame e!BablG[
hx 4K{<R!2I
hy JWzN 'a R
9OI&De5?=V
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 (^,4{;YQ5
yscale = 2, vK@t=d
color = gray, wd86 y
width = 3, g<d#zzP"T
maxconnect = 1, ,-({m'
"N_dop (right scale)" <B"M} Y>_P
9 8"/]ERJ
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 |1M+FBT$w
color = red, %z9eVkPI~
maxconnect = 1, !限制图形区域高度,修正为100%的高度 EkWipF(
width = 3, (4ueO~jb$
"pump" \l$gcFXb
5ctH=t0
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 \r4QS
color = blue, LNm{}VJ%
maxconnect = 1, YhpNeP{A
width = 3, ;G
27S<Q
"signal" %UV'HcO/gp
J^"
9#C hn~ \
; ------------- B-EVo&.
diagram 5: !输出图表5 !>olD_
~x}/>-d
"TransitionCross-sections" <]9%Pm#X
Nw74T
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) L!fiW`>0G
q>JW$8
x: 1450, 2050 |gl~wG1@
"wavelength(nm)", @x i]sz*\P~
y: 0, 0.6 ^##tk
"cross-sections(1e-24 m²)", @y OanH G
frame f[}N
hx 8
oK;Tzh
hy ]gxt+'iAFS
<[N"W82p
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 `F)Q=
color = red, EKwA1,Xz
width = 3, 7x,c)QES`
"absorption" wTT_jyH)
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 4d\"gk
color = blue, [5KzawV
width = 3, yW3X<
"emission" ~Z ,bd$
mn5"kYy?