(* ^n~bx*f
Demo for program"RP Fiber Power": thulium-doped fiber laser, u%sfHGrH
pumped at 790 nm. Across-relaxation process allows for efficient DrA\-G_7
population of theupper laser level. :e rfs}I
*) !(* *)注释语句 7tQ?av
hAU@}"=G
diagram shown: 1,2,3,4,5 !指定输出图表 45A|KaVpg
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 ^ DCBL&I
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 x@#aOf4<U
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 e82xBLxR%
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 Lq2ZgKd!
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 Tnoy#w}Ve
.oH)eD
include"Units.inc" !读取“Units.inc”文件中内容 <N{Y*,^z
,s`4k?y
include"Tm-silicate.inc" !读取光谱数据 8h,=yAn5
Dgc}T8R
; Basic fiberparameters: !定义基本光纤参数 )m_q2xV
L_f := 4 { fiberlength } !光纤长度 !xvAy3
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 pS+hE4D
r_co := 6 um { coreradius } !纤芯半径 +$$5Cv5#<&
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 TpcJ1*t
N$N7aE$
; Parameters of thechannels: !定义光信道 g&I|@$\
l_p := 790 nm {pump wavelength } !泵浦光波长790nm j:E3c\a
dir_p := forward {pump direction (forward or backward) } !前向泵浦 L@"&s#~=3
P_pump_in := 5 {input pump power } !输入泵浦功率5W t?wVh0gT
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um Q6;bORN
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 [JYy
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 4^T_" W}
W:>XXUU
l_s := 1940 nm {signal wavelength } !信号光波长1940nm &}r-C97
w_s := 7 um !信号光的半径 ^cCNQS}r
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 TeRH@oI
loss_s := 0 !信号光寄生损耗为0 K_F"j!0
NA=m<n#
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 #'dNSez5
q.VZ P
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 hc*t Q2
calc ?=G{2E.
begin SZvp%hS0
global allow all; !声明全局变量 k)R~o
b
set_fiber(L_f, No_z_steps, ''); !光纤参数 xnxNc5$oE
add_ring(r_co, N_Tm); RTr"#[
def_ionsystem(); !光谱数据函数 W`uq,r0Xsy
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 %7[q%S
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 MM6PaD{
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 Pk>S;KT.
set_R(signal_fw, 1, R_oc); !设置反射率函数 .d6b?t
finish_fiber(); fJ=v?
end; f2u4*X
E\
sQ.t3a3m
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 w=FU:q/
show "Outputpowers:" !输出字符串Output powers: hP}-yW6]
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) YC(X=
D
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) $[oRbH8g
\k{d'R#~(
6O_l;A[=1
; ------------- s|I$c;>
diagram 1: !输出图表1 oqo7Ge2
3YG%YhevO
"Powers vs.Position" !图表名称 wg<t*6&'x
2fg
P
x: 0, L_f !命令x: 定义x坐标范围 Z*Rgik
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 %C_c%3d
y: 0, 15 !命令y: 定义y坐标范围 h>F"GR?U_(
y2: 0, 100 !命令y2: 定义第二个y坐标范围 EQ.K+d*K][
frame !frame改变坐标系的设置 iBwM]Eyv.
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) hj}PL
hx !平行于x方向网格 =RAojoN
hy !平行于y方向网格 {eVv%sbq
sX-@
>%l
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 !hjF"Pa
color = red, !图形颜色 s
bd$.6
|&
width = 3, !width线条宽度 M:dH>
"pump" !相应的文本字符串标签 H>o \C
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 %j/pln&
color = blue, > `mV^QD
width = 3, h^
K]ASj
"fw signal" Ahc9HA2
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 +,cd$,18
color = blue, 6AoKuT;
style = fdashed, X` J86G )
width = 3, 34Cnbtq^
"bw signal" j#xGB]
FmhAUe
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 x4(8
=&Z
yscale = 2, !第二个y轴的缩放比例 )7X$um
color = magenta, [%O f
width = 3, *Q)-"]O(k
style = fdashed, 4H NaE{O4
"n2 (%, right scale)" ~FQHT?DAo
)U7fPKQ
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 _8!x
yscale = 2, v*&jA8D
color = red, ?z2! ?
width = 3, ?rA3<j
style = fdashed, JPHM+3v
"n3 (%, right scale)" "vg.{
#kh:GAp]
K|l}+:k
; ------------- q#SEtyJL
diagram 2: !输出图表2 P]TT8Jgw
A7,%'.k
"Variation ofthe Pump Power" B"zB=Aw
,iY:#E
x: 0, 10 bt(Y@3;
"pump inputpower (W)", @x ^B%c3U$o
y: 0, 10 CyS%11L
y2: 0, 100 c*]f#yr?
frame 1)jeawVmj
hx H=\Tse_.
hy i]J.WFu
legpos 150, 150 ^G2M4+W|
_C(fz CK
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 CBF<53TshR
step = 5, *8uS,s6g
color = blue, N/ '
width = 3, znSlSQpTv
"signal output power (W, leftscale)", !相应的文本字符串标签 p2k`)=iX
finish set_P_in(pump, P_pump_in) oK
7:e~
Jm#p!G+
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 O!^ >YvOh
yscale = 2, J3~%9MCJ
step = 5, r>7+&s*yk
color = magenta, %l14K_
width = 3, *^Ges;5$"
"population of level 2 (%, rightscale)", /-i m
g^^
finish set_P_in(pump, P_pump_in) 9#m3<oSJ
^,mN-.W
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 idGn{f((f
yscale = 2, ExSM=
step = 5, /CMgWGI
color = red, K*{RGE
width = 3, +/l@ou'
"population of level 3 (%, rightscale)", S89j:KRXH%
finish set_P_in(pump, P_pump_in) vz>9jw:Y
< \fA}b
dP(.l}O
; ------------- U\B9Ab
diagram 3: !输出图表3 Kw$@_~BJ6
zi3v,Kq
"Variation ofthe Fiber Length" B@NBN&Fr
cm_5,wB(w
x: 0.1, 5 ACi,$Uq6R
"fiber length(m)", @x `GW&*[.7
y: 0, 10 ^<-)rzTI
"opticalpowers (W)", @y E:dN)
frame Du65>O
hx s]OZ+^Z
hy A%?c1`ZxF
"uT2 DY[
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 -gk2$P-
step = 20, 4H%#Sn#L^!
color = blue, ej@4jpHQN
width = 3, |>.MH
"signal output" 0%%U7GFB5
7M7Lj0Y)L
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 pe0ax-Zv
step = 20, color = red, width = 3,"residual pump" D_0sXIbg
yo->mD
! set_L(L_f) {restore the original fiber length } R]e&JoY
egSs=\
R!QR@*N
; ------------- G+Z ,ic
diagram 4: !输出图表4 G4*&9Wo
8s2y!pn7Q
"TransverseProfiles" M>Tg$^lm
m"/..&'GC
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) 1fMV$T==K
EyVu-4L:#
x: 0, 1.4 * r_co /um 0)g]pG8&ro
"radialposition (µm)", @x V^R,j1*
y: 0, 1.2 * I_max *cm^2 BYMdX J
"intensity (W/ cm²)", @y X/cb1#
y2: 0, 1.3 * N_Tm _AX,}9
frame -dO8Uis$
hx Uq_lT,
hy %(p9AE
"{qnm+G
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 ~cSXBc,+
yscale = 2, tc[Ld#
color = gray, VBPtM{g
width = 3, ,cS#
maxconnect = 1, 9x!kvB6
"N_dop (right scale)" CEkUXsp
O50<h O]l
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 E56
color = red, (}6\_k[}m
maxconnect = 1, !限制图形区域高度,修正为100%的高度 i0/QfB%O
width = 3, aT IzfqCM
"pump" HVoPJ!K3
MXfyj5K
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 /7\q#qIm:
color = blue, 035jU '
maxconnect = 1, -K?lhu
width = 3, oF>`>
"signal" A :KZyd"Z
xtD(tiqh.;
VnkhY
; ------------- }:c~5whN
diagram 5: !输出图表5 qMVuFwPhi
7r'_p$
"TransitionCross-sections" G^nG^HTo5
"*D9.LyM
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) 9%|skTgIqH
hvO$ f.i
x: 1450, 2050 48^C+#Jbc
"wavelength(nm)", @x 4GF3.?3
y: 0, 0.6 D!Y@Og.
"cross-sections(1e-24 m²)", @y \3^V-/SJf
frame i&lW&]
hx +@!\3a4!
hy y7:f^4
frPQi{u$
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 f!yl&ulKU
color = red, 467"pqT
width = 3, R,78}7B
"absorption" kP[fhOpn
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 %i3[x.M
color = blue, H!7?#tRU
width = 3, qGH[kd
"emission" $`7Fk%#+e
[<U=)!Swg