(* n75)%-
Demo for program"RP Fiber Power": thulium-doped fiber laser, uNCM,J!#~
pumped at 790 nm. Across-relaxation process allows for efficient YbtsJ
<w
population of theupper laser level. |eykb?j`
*) !(* *)注释语句 ,`PC^`0c}o
Su?e\7aj
diagram shown: 1,2,3,4,5 !指定输出图表 .2"-N5Z
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 N(uH y@
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 mSLA4[4{
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 uonCD8
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 ?+av9;Kg
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 h ` qlI1]
\c}_!.xj"
include"Units.inc" !读取“Units.inc”文件中内容 WoM;) Q
X3e&c
include"Tm-silicate.inc" !读取光谱数据 _D~l2M
Ipro6
I
; Basic fiberparameters: !定义基本光纤参数 @<kY,ox@~
L_f := 4 { fiberlength } !光纤长度 oCfO:7
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 5. ibH
r_co := 6 um { coreradius } !纤芯半径 -Zq\x'
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 $B%wK`J
hr$Wt?B
; Parameters of thechannels: !定义光信道 3LGX ^J<f
l_p := 790 nm {pump wavelength } !泵浦光波长790nm Drm#z05i[g
dir_p := forward {pump direction (forward or backward) } !前向泵浦 /2^"c+/'p
P_pump_in := 5 {input pump power } !输入泵浦功率5W !LI6_Oq
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um JLd-{}A""-
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 "5<:Dj/W
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 &1/OwTI4J
$7h]A$$Fv
l_s := 1940 nm {signal wavelength } !信号光波长1940nm L~oy|K67
w_s := 7 um !信号光的半径 m`i_O0T
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 P:D;w2'Q
loss_s := 0 !信号光寄生损耗为0 UE9RrfdN
;~D$rT
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 {zX]41T
l266ufO.u-
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 o|:c{pwq
calc GY>G}bfh
begin fj|b;8_}l
global allow all; !声明全局变量 M*!WXQlud
set_fiber(L_f, No_z_steps, ''); !光纤参数 `j1oxJm
add_ring(r_co, N_Tm); }y%c.
def_ionsystem(); !光谱数据函数 BLN|QaZ
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 rJZR8bo
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 *b'4>U
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 cY5w,.Q/!
set_R(signal_fw, 1, R_oc); !设置反射率函数 ]p8zT|bv
finish_fiber(); xi51,y+(5
end; 3
,zW6 -}
0iYo&q'n
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 lZAXDxhnT
show "Outputpowers:" !输出字符串Output powers: m"@o
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) _tUh*"e&
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) _ amP:h
6r|=^3{
Y-UXr8
; ------------- rFUR9O.{E
diagram 1: !输出图表1 @Jx1n Q^
bwM?DY
"Powers vs.Position" !图表名称 FsO_|r
Fw\g\
x: 0, L_f !命令x: 定义x坐标范围 A XhP3B]
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 +Xp1=2Mq
y: 0, 15 !命令y: 定义y坐标范围 qJ sH
y2: 0, 100 !命令y2: 定义第二个y坐标范围 6P3h955c
frame !frame改变坐标系的设置 ZIKSHC9
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) jDb"|l
hx !平行于x方向网格 WkiPrQ0]:
hy !平行于y方向网格 (3Q$)0t
nY7gST
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 QChncIqc
color = red, !图形颜色 Esu{c9,
width = 3, !width线条宽度 ^U5Qb"hz
"pump" !相应的文本字符串标签 9: .m]QN
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 h%U}Y5Ps~
color = blue, [GPCd@
width = 3, Y)@Y$_
"fw signal" s7afj t
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 MVnN0K4
color = blue, xP_/5N=f
style = fdashed, O wuc9
width = 3, %3O))Ug5
"bw signal" ~`Rar2%B
KF6C=,Yc%
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 NXQ=8o9,9
yscale = 2, !第二个y轴的缩放比例 GGnlkp& E
color = magenta, ,f{w@Er
width = 3, {nXygg
J
style = fdashed, @R}3f6@67
"n2 (%, right scale)" 5F+G8
d)S`.Q
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 &8w#
4*W
yscale = 2, Y0.'u{J*
color = red, ~Th,<w*o
width = 3, 5RvE ),
style = fdashed, #CPLvg#
"n3 (%, right scale)" >s 6ye
&e6UEG
rf-yUH]&S
; ------------- r<vy6
diagram 2: !输出图表2 Xp_m=QQsm
i(pHJP:a:
"Variation ofthe Pump Power" ]+46r!r|
{aN pk,n
x: 0, 10 /2zan}
"pump inputpower (W)", @x Cdib{y<ji
y: 0, 10 0Dna+V/jI
y2: 0, 100 $,2T~1tE
frame 5?F5xiW
hx t"Ci1"U
hy SOq:!Qt
legpos 150, 150 $%q=tn'EX
%0} ^M1
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 }04mJY[
step = 5, w6Nnx5Ay
color = blue, vue^bn
width = 3, aUzCKX%>C
"signal output power (W, leftscale)", !相应的文本字符串标签 4MS#`E7LrC
finish set_P_in(pump, P_pump_in) m)} 01N4
p09p/
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 9M;t4Um
yscale = 2, Qw:!Rw,x
step = 5, >xabn*Kq
color = magenta, R?O)vLmd
width = 3, +:uz=~mo`
"population of level 2 (%, rightscale)", MNWI%*0LO
finish set_P_in(pump, P_pump_in) 3q}j"x?
/$CTz xd1
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 jtlRom}
yscale = 2, jOVF+9M
step = 5, ~<f[7dBv
color = red, Mn(iAsg
width = 3, '"fJA/O
"population of level 3 (%, rightscale)", V-}}?c1 F
finish set_P_in(pump, P_pump_in) IO)#O<
@]vY[O!&;
>i,_qe?V:w
; ------------- [K.1 X=O}
diagram 3: !输出图表3 >4jE[$p]"
#G77q$
"Variation ofthe Fiber Length" X)[tb]U/Wx
HKXC=^}x'
x: 0.1, 5 WA8<:#{e
"fiber length(m)", @x A}SGw.3
y: 0, 10 YND }P9 h
"opticalpowers (W)", @y )rK2%\Z
frame Os@b8V 8,A
hx 6sSwSS
hy yl~_~<s6
Mg.%&vH\
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 ^iMr't\b
step = 20, h<U?WtWT-p
color = blue, &7f8\TG|
width = 3, m4 (pMrJ
"signal output" xKG7d8=
w!7ApEH1
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 >MHlrSH2
step = 20, color = red, width = 3,"residual pump" Bi:lC5d5?
r k W7;!
! set_L(L_f) {restore the original fiber length } &rBe -52
}yEV&&
@
93HVx#
; ------------- N s +g9+<A
diagram 4: !输出图表4 fz=?QEG
#m.e9MU
"TransverseProfiles" }_]AQN$'G
eo0-aHs
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) . ,^WCyvq
jr4xh{Z`
x: 0, 1.4 * r_co /um D=-}&w_T"
"radialposition (µm)", @x @gD)pH
y: 0, 1.2 * I_max *cm^2 4GRD- f[
"intensity (W/ cm²)", @y 6P1s*u
y2: 0, 1.3 * N_Tm 3F2IL)Hn
frame |#@7$#j
hx "l56?@- x
hy ^)Hf%
2h
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 s1D<R,J|H
yscale = 2, _]`7et\=
color = gray, bQt:=>
width = 3,
@'R)$:I%L
maxconnect = 1, .>B'oD
"N_dop (right scale)" h=7q;-@7
'Rn-SD~gIr
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 <?nI O
color = red, VI2lwE3
maxconnect = 1, !限制图形区域高度,修正为100%的高度 / I`TN5~
width = 3, qH}8TC
"pump" <