(* ey3;rY1
Demo for program"RP Fiber Power": thulium-doped fiber laser, :>GT<PPD;
pumped at 790 nm. Across-relaxation process allows for efficient Gj(UA1~1
population of theupper laser level. ||vQW\g
*) !(* *)注释语句 js8GK
;3k6_ub
diagram shown: 1,2,3,4,5 !指定输出图表 uH?lj&
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 DU:
sQS4
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 Zjh9jvsW
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 |
QI-gw
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 !B\[Q$
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 w=H4#a?fc
dwt<s[k
include"Units.inc" !读取“Units.inc”文件中内容 >5!/&D.q
Cb/?hT
include"Tm-silicate.inc" !读取光谱数据 ofA6EmQ37
|~3$L\X
; Basic fiberparameters: !定义基本光纤参数 .+cYzS]!
L_f := 4 { fiberlength } !光纤长度 v^_<K4N`
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 *>XY' -;2e
r_co := 6 um { coreradius } !纤芯半径 6lc/_&0
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 lt&30nf=
H9Pe,eHs
; Parameters of thechannels: !定义光信道 aE2
3[So
l_p := 790 nm {pump wavelength } !泵浦光波长790nm umWZ]8
dir_p := forward {pump direction (forward or backward) } !前向泵浦 8E!I9z
P_pump_in := 5 {input pump power } !输入泵浦功率5W T6ZJ SKM
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um y[!4M+jj
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 "@[xo7T
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 2)^[SpZ
<#9zc'ED:
l_s := 1940 nm {signal wavelength } !信号光波长1940nm ^(0tNX/XD
w_s := 7 um !信号光的半径 S-:7P.#Q
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 tK|hC[
loss_s := 0 !信号光寄生损耗为0 IJn r^S8
s!E-+Gw
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 ].2it{gF?b
=w.#j-jR
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 m&Mvb[
calc =`X;fz
begin "Rp ]2'?
global allow all; !声明全局变量
ka&-tGg
set_fiber(L_f, No_z_steps, ''); !光纤参数 \g}FoN&