(* DG%vEM,y
Demo for program"RP Fiber Power": thulium-doped fiber laser, ? Zhnb0/
pumped at 790 nm. Across-relaxation process allows for efficient -~Ll;}nZC
population of theupper laser level. `RF0%Vm~t
*) !(* *)注释语句 8^ujA
W(gOidKKz
diagram shown: 1,2,3,4,5 !指定输出图表 ]!um}8!}
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 b.N$eJlQ&
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 IonphTcU!
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 51sn+h<w
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 Ie z`g<r
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 m@,u&9K
NFsCq_f
include"Units.inc" !读取“Units.inc”文件中内容 6rP?$mn2
Wx:He8N] H
include"Tm-silicate.inc" !读取光谱数据 {V7W!0;!
'{ $7Dbo
; Basic fiberparameters: !定义基本光纤参数 ^uV=|1<%
L_f := 4 { fiberlength } !光纤长度 ~Y_5q)t(
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 es6]c%o:t^
r_co := 6 um { coreradius } !纤芯半径 Y\
C"3+I
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 T4JG5
-$A
>b8
; Parameters of thechannels: !定义光信道 X$Y\/|!z
l_p := 790 nm {pump wavelength } !泵浦光波长790nm pXhN? joe
dir_p := forward {pump direction (forward or backward) } !前向泵浦 RSTA!?K/.
P_pump_in := 5 {input pump power } !输入泵浦功率5W k9*6`w
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um L=_
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 %7S{g
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 nK8IW3fX9)
a
!yBEpMo
l_s := 1940 nm {signal wavelength } !信号光波长1940nm =^5#o)~BB
w_s := 7 um !信号光的半径 1)BIh~1{p
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 DUMC4+i
loss_s := 0 !信号光寄生损耗为0 wqasI@vyu
ev[!:*6P
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 `gSJEq
p6&6^v\
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 wZs jbNf`K
calc *K'#$`2
begin -d]v6q'1
global allow all; !声明全局变量 <"z9(t(V\%
set_fiber(L_f, No_z_steps, ''); !光纤参数 nkO4~p
add_ring(r_co, N_Tm); 6
9s%
def_ionsystem(); !光谱数据函数 l|S_10x5
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 5@nvcCp
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 (v0i]1ly[
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 Vwpy/5Hmp
set_R(signal_fw, 1, R_oc); !设置反射率函数 Blox~=cW
finish_fiber(); 7Ml OBPh
end; 9zNMv-
Vif)e4{Pn
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 C,) e7
show "Outputpowers:" !输出字符串Output powers: |H'wDw8
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) >f:OU,"
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) d:g0XP
%g7B*AX]
*@fVog r^
; ------------- yaK4% k
diagram 1: !输出图表1 S.*.nv
bb!cZ>Z
"Powers vs.Position" !图表名称 N 8pzs"
_53NuEM1
x: 0, L_f !命令x: 定义x坐标范围
PX5U)
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 X-F:)/$xG
y: 0, 15 !命令y: 定义y坐标范围 Eikt,
y2: 0, 100 !命令y2: 定义第二个y坐标范围 n=%D}W
frame !frame改变坐标系的设置 iz:O]kI
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) zxy/V^mu
hx !平行于x方向网格 DC,]FmWs!+
hy !平行于y方向网格 ^dRgYi"(A
`m\l#r2C
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 DX<xkS[P
color = red, !图形颜色 4@"n7/<
width = 3, !width线条宽度 WbHI>tt
"pump" !相应的文本字符串标签 d^G5Pq
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 .!Q?TSQ+{!
color = blue, H 2UR
width = 3, 3.D|xE]g
"fw signal" xi! R[xr1
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 ^Z G 3{>
color = blue, RRJN@|"
style = fdashed, @^K_>s9B
width = 3, $6yr:2Xvt
"bw signal" B{-+1f4
Jk=d5B
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 q-nM]Gm
yscale = 2, !第二个y轴的缩放比例 !_LRuqQ?"
color = magenta, uJ>_
2
width = 3, YLe$Vv735
style = fdashed, e(;nhU3a*,
"n2 (%, right scale)" q
NE(@at
.LEn~ 8
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 o _DZ
yscale = 2, 1
Ll<^P
color = red, SBqx_4}
width = 3, "\u_gk{g
style = fdashed, @qWes@
"n3 (%, right scale)" *WX,bN6Ot
aBx8wl*Vm
hu''"/raM
; ------------- c=A)_ZFg
diagram 2: !输出图表2 *O@uF4+!1
}Qo:;&"3
"Variation ofthe Pump Power" ]@UJ 8hDy
En]+mIEo
x: 0, 10 X1{U''$
K
"pump inputpower (W)", @x 2V 9vS
y: 0, 10 nkvkHh
y2: 0, 100 d
%Z+.O
frame "vnWq=E2
hx msiftP.
hy /\&Wk;u3
legpos 150, 150 yxU??#v|g
09>lx$
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 (e$/@3*
step = 5, p|b&hgA
color = blue, t6H9Q>*
width = 3, E6NrBPm
"signal output power (W, leftscale)", !相应的文本字符串标签 7>Oa, \
finish set_P_in(pump, P_pump_in) (Mw<E<f
>nL9%W}8M
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 eVYUJ,
yscale = 2, 6s"Erq5q
step = 5, uBe1{Z
color = magenta, O]Mz1 ev|
width = 3, _(<D*V[
"population of level 2 (%, rightscale)", bl)iji`]
finish set_P_in(pump, P_pump_in) '"=Mw;p
J0hY~B~X
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 ;|e6Qc9
yscale = 2, A%G
\
AT
step = 5, nPj+mg
color = red, \5wC&|WEB
width = 3, !%x=o&
"population of level 3 (%, rightscale)", : Jh
finish set_P_in(pump, P_pump_in) esM<.
Ti@X<C
[We(0wF[`
; ------------- m_7)r
diagram 3: !输出图表3 0-^wY8n-=
I<I?ks
"Variation ofthe Fiber Length" ]g/%w3G
Z81{v<c;
x: 0.1, 5 q >9F21 W
"fiber length(m)", @x aeESS;JxJj
y: 0, 10 |xTf:@hgHf
"opticalpowers (W)", @y \@kY2,I V
frame }@pe`AF^
hx HHbkR2H1
hy RoXU>a:nS
9's/~T
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 $+Hv5]/hb
step = 20, a; Ihv#q
color = blue, >sE5zj|V
width = 3, -IR9^)
"signal output" ;X u&['
'iN8JO>
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 ,=tVa])
step = 20, color = red, width = 3,"residual pump" 1rV?^5
;bd\XHwMUP
! set_L(L_f) {restore the original fiber length } xA nAW
#gOITXKs
A+j~oR
; ------------- @ :i>q$aF
diagram 4: !输出图表4 RIUJ20PfYQ
5|:=#Ql*
"TransverseProfiles" nTjQ4y
W K#lE&V3
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) ;w?zmj<Dm
il-v>GJU7{
x: 0, 1.4 * r_co /um knypSgk_
"radialposition (µm)", @x yPm)r2Ck
y: 0, 1.2 * I_max *cm^2 n$}c+1
"intensity (W/ cm²)", @y 8(%iYs$
y2: 0, 1.3 * N_Tm z@VY s
frame 6R@
v>}
hx \VPU)
hy CN:
36
$|z8WCJ
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 u9m"{KnV
yscale = 2, $K\\8$Z
color = gray, Old5E&
width = 3, .he%a3e
maxconnect = 1, nb22bXt
"N_dop (right scale)" ~oT0h[<
a+zE`uY
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 ngEjbCV+
color = red, H*yX
Iq:
maxconnect = 1, !限制图形区域高度,修正为100%的高度 -YHlVz
width = 3, R$(,~~MH
"pump" Tp[ub(/;7
sEe^:aSN
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 wvJm)Mj+
color = blue, wC <!,tB(8
maxconnect = 1, '!{zO"
1*
width = 3, +Medu?K
`
"signal" 398}a!XM
lXW.G
*"O7ml]
; ------------- Q>JJI:uC4
diagram 5: !输出图表5 GJ
ZT~
#Cvjv;
QwY
"TransitionCross-sections" J L`n12$m
Z!~~6Sq
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) ga6M8eOI
l>7`D3
x: 1450, 2050 JQi)6A?J
"wavelength(nm)", @x a0CmCv2#
y: 0, 0.6 wb.47S8
"cross-sections(1e-24 m²)", @y MY4cMMjp~
frame P8).Qn
hx _CciU.1k&,
hy x<~ pqq8]
^4_. 5~(
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 yFH)PQ_
color = red, vtv|H
width = 3, +0;6.PK
"absorption" [- a2<E
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 pI,QkDJ0
color = blue, :hwZz2Dhi
width = 3, jL6u#0
"emission" B'lWs;
O3j:Y|N@F