(* R?~h7 d
Demo for program"RP Fiber Power": thulium-doped fiber laser, |S:!+[
pumped at 790 nm. Across-relaxation process allows for efficient ~!F4JRf
population of theupper laser level. PX2k,%
*) !(* *)注释语句 dJ:x1j
Bq]O &>\hX
diagram shown: 1,2,3,4,5 !指定输出图表 l6c%_<P|
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 /2Lo{v=0[
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 :V~*vLvR
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 ,l .U^d6>
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置
t} i97 ;
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 u7&'3 ef
'Q>z**
include"Units.inc" !读取“Units.inc”文件中内容 YG~ o
0"psKf'
include"Tm-silicate.inc" !读取光谱数据 ]}7rWs[|1
gQ=POJ=G
; Basic fiberparameters: !定义基本光纤参数 36x:(-GFq
L_f := 4 { fiberlength } !光纤长度 4)+IO;
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 ]Y&)98
r_co := 6 um { coreradius } !纤芯半径 ,i?!3oLT
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 0nn]]B@l
;c-
]bhBB
; Parameters of thechannels: !定义光信道 Z#6~N/b
l_p := 790 nm {pump wavelength } !泵浦光波长790nm r`R~{;oT
dir_p := forward {pump direction (forward or backward) } !前向泵浦 prEu9$:t
P_pump_in := 5 {input pump power } !输入泵浦功率5W p?$G>nkdq
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um PT#eXS9_
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 ~]W[ {3 ;
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 `XSc >
(:-Jl"&R@
l_s := 1940 nm {signal wavelength } !信号光波长1940nm aXbNDj
][
w_s := 7 um !信号光的半径 2\63&C^
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 )s<WG}
loss_s := 0 !信号光寄生损耗为0 3V
Mh)
P%@rH@^Y
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 n R\n\
dH2]ZE0V
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 fb"J Bc}X
calc ::OFW@dS
begin 9c^skNbS
global allow all; !声明全局变量 n!ZP?]FR
set_fiber(L_f, No_z_steps, ''); !光纤参数 >=~Fo)V!(V
add_ring(r_co, N_Tm); hK39_A-
def_ionsystem(); !光谱数据函数 4Wla&yy
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 gJPDNZ*6pk
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 f']sU/c=
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 <Hh5u~
set_R(signal_fw, 1, R_oc); !设置反射率函数 e-iYJ?
finish_fiber(); K)Zkj"y
end; &cu] vw
7^I$%o 1g
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 o'^;tLs15
show "Outputpowers:" !输出字符串Output powers: &7($kj
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) mC:X4l]5
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) 4aN+}TkH@G
0n*rs=\VG
kQwm"Z
; ------------- ?UZ$bz
diagram 1: !输出图表1 V9zywM
2~M;L&9-
"Powers vs.Position" !图表名称 AJ\VY;m7F
i<#h]o
C}
x: 0, L_f !命令x: 定义x坐标范围 gp$EXJ=
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 q8?=*1g
y: 0, 15 !命令y: 定义y坐标范围 XhE$&Ff
y2: 0, 100 !命令y2: 定义第二个y坐标范围 Kd/[Bs%
frame !frame改变坐标系的设置 Sf'i{xye
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) (F,(]71Z+
hx !平行于x方向网格 ,b6kTQq
hy !平行于y方向网格 [_
M6/
gHi~nEH
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 'f-
color = red, !图形颜色 8Wdkztp/S
width = 3, !width线条宽度 GB<R7J
"pump" !相应的文本字符串标签 1 [fo'M
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 #)_J)/h
color = blue, k;;nE o~6
width = 3, >`hSye{
"fw signal" 3VcT7y*{P
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 rWoe
?g
color = blue, j6tP)f^tD
style = fdashed, /&D'V_Q`*
width = 3, j`2B}@ 2
"bw signal" e=gboR
oMh~5
W
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 |h^K M
yscale = 2, !第二个y轴的缩放比例 GFdZ`i
color = magenta, 3TU'*w
&
width = 3, 8?e
style = fdashed, Az9X#h.vf
"n2 (%, right scale)" nU}~I)@V
%<aImR]
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 ?_VRfeztw
yscale = 2, a?zR8$t|
color = red, 2;~KL-h0TK
width = 3, $Q8P@L)[
style = fdashed, '"`
Lv/
"n3 (%, right scale)" D^,\cZbY
H9%l?r5
tgO+*q5B
; ------------- T?H\&2CLT
diagram 2: !输出图表2 n&_YYEHx
} c{Fa&
"Variation ofthe Pump Power" Z,0O/RFJ.q
1KW3l<v-6
x: 0, 10 /GsSrP_?]
"pump inputpower (W)", @x UG6M9
y: 0, 10 TT|-aS0l(u
y2: 0, 100 w`M]0'zls
frame >W8bWQ^fK
hx )*!1bgXQ
hy *I=_*LoG2
legpos 150, 150 %z1{Kus
j: <t
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 9n_ eCb)H
step = 5, (tJ91SBl
color = blue, Nt HbwU,
width = 3, xC)7eQn/R
"signal output power (W, leftscale)", !相应的文本字符串标签
^[en3aQ
finish set_P_in(pump, P_pump_in) rwoF}}
r k@UsHy
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 DWuRJ
yscale = 2, ]a)IMIh;
step = 5, F
b1EMVu
color = magenta, ,MRvuw0P
width = 3, @|^jq
"population of level 2 (%, rightscale)", ]yo_wGiwY
finish set_P_in(pump, P_pump_in) =Wj{]&`
{n\6BTs
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 h:f;mn?x
yscale = 2, !@( M_Z'
step = 5, Wt(Kd5k0'2
color = red, /;DjJpwf0
width = 3, ^ b@!dS
"population of level 3 (%, rightscale)", /n(9&'H<
finish set_P_in(pump, P_pump_in) s){Q&E~X
0X.TF
n9DbiL1{
; ------------- @Eo4U]-
diagram 3: !输出图表3 3a%xn4P
[qiOd!
"Variation ofthe Fiber Length" .M8=^,h^K
Q2q|*EL
x: 0.1, 5 N. jA 8X
"fiber length(m)", @x Z^<Sj5}6
y: 0, 10 z=B<
`}@3
"opticalpowers (W)", @y 2pz4rc
frame +1x)z~q=
hx 0EyAMu
hy F% }7cm2
Uh*@BmDA
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 N^lAG"Jao[
step = 20, mzu<C)9d,
color = blue, w3d34*0$
width = 3, +SyUWoM
"signal output" yu=piP
q4)Ey
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 G,B?&gFX
step = 20, color = red, width = 3,"residual pump" 8|6~o.B.G
<z',]hy
! set_L(L_f) {restore the original fiber length } Z&A0hI4d
kAeNQRjR
"(<%Ua
; ------------- a/b92*&k
diagram 4: !输出图表4 g#}tm<
J)#S-ZB+'k
"TransverseProfiles" nW11wtiO.
e]+7DE
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) 0TmZ*?3!4
L$SMfx
x: 0, 1.4 * r_co /um AxEc^Cof
"radialposition (µm)", @x {d,?bs)
y: 0, 1.2 * I_max *cm^2 w]}f6VlEl
"intensity (W/ cm²)", @y $D}"k!H
y2: 0, 1.3 * N_Tm 3
&Sp@,
frame -qfnUh
hx Ts#pUoE~+H
hy SetX#e?q~
D&-vq,c
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 Tv1]v.
yscale = 2, $C$ub&D
~"
color = gray, R1Yqz $#
width = 3, %7 /,m
maxconnect = 1, B>, A(X&
"N_dop (right scale)" \WX@PfL
&*A:[b\
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 a(f(R&-:$Y
color = red, \+9;!VWhl
maxconnect = 1, !限制图形区域高度,修正为100%的高度 Bh,Q8%\6
width = 3, n7S;
Xve#
"pump" (Igu:=
z>p]/Sa
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 \f<z*!,D$
color = blue, ZL,8,;]
maxconnect = 1, 5x2L(l-2
width = 3, .zIgbv s
"signal" Hr&Ere8.4p
6#vI;d[^
A$:|Qd7F1
; ------------- 'B,KFA<
diagram 5: !输出图表5 e,"FnW
w,/6B&|
"TransitionCross-sections" ;Yv14{T!
fdLBhe#9M
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) pZjpc#*9N
8jNOEM(0Y+
x: 1450, 2050 ]VDn'@uM
"wavelength(nm)", @x 7 OWsHlU
y: 0, 0.6 TaWaHf
"cross-sections(1e-24 m²)", @y =+\$e1Mb*
frame qX?[mdCHZ
hx dXK-&Po'
hy /?U!y?t&@
%N1"*</q
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 }/"4|U
color = red, x)5LT}p
width = 3, 7f
r>ZY^
"absorption" c 6q/X*
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 }uiPvO+&p
color = blue, P7UJ-2%Y+
width = 3, \%4|t,en
"emission" ai9
_A3X6