(* gRqz8UI
Demo for program"RP Fiber Power": thulium-doped fiber laser, EEo+#
pumped at 790 nm. Across-relaxation process allows for efficient cEQa 6
population of theupper laser level. VmT5?i
*) !(* *)注释语句 pF !vW
x)U;
diagram shown: 1,2,3,4,5 !指定输出图表 '+QgZ>q"
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 v*^2[pf
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 L"-&B$B:
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 ut,"[+J
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 U92hv~\
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 v4.V%tg!
QA 9vH'
include"Units.inc" !读取“Units.inc”文件中内容 ;yXnPAtJ
^}[
N4
include"Tm-silicate.inc" !读取光谱数据 ixH7oWH#
nagto^5X
; Basic fiberparameters: !定义基本光纤参数 p}!pT/KmpH
L_f := 4 { fiberlength } !光纤长度 ?-Z:N`YP
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 [}Iq-sz;0
r_co := 6 um { coreradius } !纤芯半径 |V7a26h
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 ~VGK#'X:
sI'HS+~pU
; Parameters of thechannels: !定义光信道 puyL(ohem
l_p := 790 nm {pump wavelength } !泵浦光波长790nm lyeoSd1AN
dir_p := forward {pump direction (forward or backward) } !前向泵浦 K;ML'
P_pump_in := 5 {input pump power } !输入泵浦功率5W lpM{@JC
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um u'b_zlW@
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 ;(,Fe/wvC
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 gc:>HX);)
qs b4@jt+
l_s := 1940 nm {signal wavelength } !信号光波长1940nm _L72Ae(_
w_s := 7 um !信号光的半径 \*
#4
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 =>J#_Pprn
loss_s := 0 !信号光寄生损耗为0 )5v .9N6v
Qw-qcG
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 s#fmGe"8
f$'D2o, O
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 ?yb{DZ46
calc :F\f}G3
begin OY#_0p)i
global allow all; !声明全局变量 m>!#}EJ|
set_fiber(L_f, No_z_steps, ''); !光纤参数 Q!{Dw:7
add_ring(r_co, N_Tm); I$LO0avvH2
def_ionsystem(); !光谱数据函数 !;a<E:
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 ATHz~a
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 J"MJVMo$T
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 @$R a
set_R(signal_fw, 1, R_oc); !设置反射率函数 [ub\DLl
finish_fiber(); 3"n8B6
end; jg8P4s
M2S|$6t:
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 I2T2'_I
show "Outputpowers:" !输出字符串Output powers: UXJl;Mb
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) wp*1HnWj8Y
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) YLo$n
}b(e
#w@Pa L iS
; ------------- J;`~
!g
diagram 1: !输出图表1 (I.`bR
xW4+)F5P(
"Powers vs.Position" !图表名称 e8 aV
qq[
"tARJW
x: 0, L_f !命令x: 定义x坐标范围 cFvx*n
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 WU\bJ}
y: 0, 15 !命令y: 定义y坐标范围 z;fSd
y2: 0, 100 !命令y2: 定义第二个y坐标范围 *% *^a\2
frame !frame改变坐标系的设置 /f<(K-o]
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) WRyLpTr-
hx !平行于x方向网格 B vc=gW
hy !平行于y方向网格 bn35f<+
X%CPz.G
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 2A|6o*s"
color = red, !图形颜色 v!xrUyN~m
width = 3, !width线条宽度 w#,v n8
"pump" !相应的文本字符串标签 a6E"
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 GcCs}(eo
color = blue, G |^X:+
width = 3, I "2FTGA
"fw signal" w"i Zn
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 4?&a?*M
color = blue, R
<\Yg3m8
style = fdashed, ooSd6;'
width = 3, AHY)#|/)
"bw signal" E |
Q{hOn]"
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 ="R6YL
yscale = 2, !第二个y轴的缩放比例 pH%c7X/[3L
color = magenta, qu+2..3
width = 3, -%l,Zd9
style = fdashed, :q<%wLs
"n2 (%, right scale)" 2kq@*}ys
E(_I3mftm
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 qXGLv4c`Q
yscale = 2, y03a\K5[KQ
color = red, F@bCm+z-
width = 3, ~HRWKPb
style = fdashed, j]O[I^5
"n3 (%, right scale)" #%"TU,[+
EsB'nf r
N-YZ0/c
; ------------- g GT,PP(k
diagram 2: !输出图表2 no6]{qn=6
G3^]Wwu
"Variation ofthe Pump Power" mm<iT59
4(GgaQFO?
x: 0, 10 Q8cPKDB
"pump inputpower (W)", @x an[~%vxw}
y: 0, 10 72vGfT2HtZ
y2: 0, 100 1|w:xG^
frame 'OW"*b
hx 4$GRCq5N;
hy 6_K#,_oZ
legpos 150, 150 @b\_696.
E(+wl
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 N:jiZ)
step = 5, .r%|RWs6W
color = blue, >1pH 91c'
width = 3, oe|<xWu
"signal output power (W, leftscale)", !相应的文本字符串标签 x0$:"68PW
finish set_P_in(pump, P_pump_in) i=H>D
Le:mMd= G
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 7h&`BS
yscale = 2, '=G
Ce%A
step = 5, gJ8 c]2c
color = magenta, LNxE-Dp
width = 3, :fKz^@mY4
"population of level 2 (%, rightscale)", h]DECd{
finish set_P_in(pump, P_pump_in) #]a51Vss
B%:9P
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 aC
Lg~g4
yscale = 2, jTUf4&b-
step = 5, "M0l;
color = red, #L=
eK8^e
width = 3, KM(9&1/
"population of level 3 (%, rightscale)", 9.OwH(Ax7
finish set_P_in(pump, P_pump_in) z/&a\`DsU
"mK i$FV
R{KIkv
; ------------- nC.2./OwMf
diagram 3: !输出图表3 +y4AUU:Q
! }?jCp p
"Variation ofthe Fiber Length" {r2|fgi
JrWBcp:Y
x: 0.1, 5 c^bk:=uj
"fiber length(m)", @x 5~%,u2
y: 0, 10 {AL9o2
"opticalpowers (W)", @y XL/o y'_
frame =<zSF\Zr_
hx P(gVF|J?
hy U;Ll.BFP
V52C,]qQH
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 V]kGcS}
step = 20, eQaxZMU
color = blue, sqpOS!]
width = 3, PWN'.HQ
"signal output" CL'Xip')T
m_Ac/ctf
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 5-WRv;
step = 20, color = red, width = 3,"residual pump" m":SE? {{&
.i&ZT}v3
! set_L(L_f) {restore the original fiber length } T'b/]&0Tio
l*\~ew
W
aGcoj
; ------------- @-&(TRbZo
diagram 4: !输出图表4 #DK3p0d
!MJe+.
"TransverseProfiles" ;y~{+{{Ow
)x8;.@U
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) %w8GGm8^/
c6Aut`dK
x: 0, 1.4 * r_co /um ~l*?D7[o
"radialposition (µm)", @x H&=n:'k^
y: 0, 1.2 * I_max *cm^2 r -q3+c^+
"intensity (W/ cm²)", @y 6(J4IzZ
y2: 0, 1.3 * N_Tm (YYj3#|
frame G]mWaA
hx ,s><kHJ
hy M9s43XL(&
pgd8`$(Q
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 %t~SOkx
yscale = 2, (e8G
(
color = gray, o`\.I&Ij
width = 3, Vp]D
maxconnect = 1, ]KXMGH_
"N_dop (right scale)" "\/^/vn?
t`Y!"l
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 ![@T iM
color = red, R{)
Q1~H=q
maxconnect = 1, !限制图形区域高度,修正为100%的高度 hH1lgc
width = 3, Wyq~:vU.S
"pump" MZ5Y\-nq\
Cl6m$YUt
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 @1qdd~B}
color = blue, Jh43)#G-
maxconnect = 1, !0ce kSesr
width = 3, l 70,Jo?78
"signal" &v$,pg%-:
v.Xoq
-*|:v67C&
; ------------- 3T|Y}
diagram 5: !输出图表5 JvfQib
yOWOU`y?
"TransitionCross-sections" Zn@W7c,_I
}qiF^D}
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) L\ }Pzxn
-!J2x8Ri
x: 1450, 2050 &:c:9w
"wavelength(nm)", @x T~%H%O(F
y: 0, 0.6 BrJ
o!@<
"cross-sections(1e-24 m²)", @y aXdf>2c{JD
frame i s L{9^
hx 2'wr={>W
hy 4l&"]9D
E
&7@#'l
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 Mlv<r=E
color = red, =s'XR@
width = 3, 4E=0qbt8
"absorption" M o}H_8y
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 L
42|>%uo
color = blue, 8F zHNG
width = 3, r8uqcKfU
"emission" 8RdP:*HY
|l|_dn