切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 2222阅读
    • 1回复

    [原创]RP Fiber Power仿真设计掺铥光纤激光器代码详解 [复制链接]

    上一主题 下一主题
    离线小火龙果
     
    发帖
    932
    光币
    2171
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-05-28
    (* +nE>)ZH  
    Demo for program"RP Fiber Power": thulium-doped fiber laser, OP`f[lCiL  
    pumped at 790 nm. Across-relaxation process allows for efficient d5$D[,`1  
    population of theupper laser level. c_3B:F7  
    *)            !(*  *)注释语句 2aj1IBnz6/  
    ^.6[vmmq  
    diagram shown: 1,2,3,4,5  !指定输出图表 eX+36VG\  
    ; 1: "Powersvs. Position"     !分号是注释;光纤长度对功率的影响 VBX)xQazU  
    ; 2:"Variation of the Pump Power"  !泵浦光功率变化对信号输出功率的影响 t3@+idEb  
    ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 YNr"]SA@;  
    ; 4:"Transverse Profiles"             !横向分布,横坐标为半径位置 ; Z]Wj9iY  
    ; 5:"Transition Cross-sections"    !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 Y;/@[AwF  
    fB8, )&  
    include"Units.inc"         !读取“Units.inc”文件中内容 PMfW;%I.  
    zmo2uUEd  
    include"Tm-silicate.inc"    !读取光谱数据 +>"s)R43  
    gQ_<;'m)2  
    ; Basic fiberparameters:    !定义基本光纤参数 DZSS  
    L_f := 4 { fiberlength }      !光纤长度 0$*7lQ<a#M  
    No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 h} `v0E  
    r_co := 6 um { coreradius }                !纤芯半径 xDo0bR(  
    N_Tm := 100e24 { Tmdoping concentration }  !纤芯Tm离子掺杂浓度 i g(O$y  
    $Zu?Gd?  
    ; Parameters of thechannels:                !定义光信道 F\m^slsu7=  
    l_p := 790 nm {pump wavelength }                !泵浦光波长790nm  0k (-  
    dir_p := forward {pump direction (forward or backward) }   !前向泵浦 rYb5#aT[  
    P_pump_in := 5 {input pump power }                    !输入泵浦功率5W wZ(1\ M(  
    w_p := 50 um {radius of pump cladding }               !包层泵浦相应的半径 50um J$#T_4 )  
    I_p(r) := (r <=w_p) { pump intensity profile }          !泵浦光强度分布 `HX:U3/  
    loss_p := 0 {parasitic losses of pump wave }           !泵浦光寄生损耗为0 \O5L#dc#  
    k+J%o%* <  
    l_s := 1940 nm {signal wavelength }                   !信号光波长1940nm cnu&!>8V  
    w_s := 7 um                          !信号光的半径 o701RG ~)  
    I_s(r) := exp(-2 *(r / w_s)^2)            !信号光的高斯强度分布 j%6p:wDl  
    loss_s := 0                            !信号光寄生损耗为0 731Lz*IFg  
    '(.5!7?Qc  
    R_oc := 0.70 {output coupler reflectivity (right side) }      !输出耦合反射率 yaR>?[h  
    y98FEG#S}  
    ; Function for defining themodel:   !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 .C'\U[A{  
    calc "^#O7.oVi+  
      begin cibl j?"Wi  
        global allow all;                   !声明全局变量 7kLu rv  
        set_fiber(L_f, No_z_steps, '');        !光纤参数 S2$66xr#  
        add_ring(r_co, N_Tm); bo\ bs1  
        def_ionsystem();              !光谱数据函数 jZA1fV  
        pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p);  !泵浦光信道 uj8saNu  
        signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward);      !前向信号光信道 o(hUC$vW  
        signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward);    !后向信号光信道 $gl|^c\  
        set_R(signal_fw, 1, R_oc);                                 !设置反射率函数 mkSu $c  
        finish_fiber();                                   Nf| 0O\+%y  
      end; 0z>IYw|UB  
    4|?(LHBD)  
    ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 }>{R<[I!G  
    show "Outputpowers:"                                   !输出字符串Output powers: ),x0G*oebj  
    show"pump:     ", P_out(pump):d3:"W"  !输出字符串pump:和计算值(格式为3个有效数字,单位W) 2j-l<!s  
    show"signal:   ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) rS [4Pey  
    dcf,a<K\  
    k-~}KlP  
    ; ------------- RdX+:!lD  
    diagram 1:                   !输出图表1 b 7sfr!t_d  
    WsHD Ip  
    "Powers vs.Position"          !图表名称 d:'{h"M6  
    Ichg,d-M-K  
    x: 0, L_f                      !命令x: 定义x坐标范围 5gf ~/Zr  
    "position infiber (m)", @x      !x轴标签;@x 指示这些字符串沿坐标轴放置 2XR!2_)O5  
    y: 0, 15                      !命令y: 定义y坐标范围 n*\o. :f  
    y2: 0, 100                    !命令y2: 定义第二个y坐标范围 \l!+l  
    frame          !frame改变坐标系的设置 iHv+I~/  
    legpos 600, 500  !图行在图表窗口中的位置(相对于左上角而言) jkk%zu  
    hx             !平行于x方向网格 -b!?9T?}  
    hy              !平行于y方向网格 %Xc,l Y1?  
    b$@I(.X:  
    f: P(pump, x),    !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 ^&;,n.X5Z  
      color = red,  !图形颜色 |>ztx}\  
      width = 3,   !width线条宽度 rZgu`5 <a  
      "pump"       !相应的文本字符串标签 q]4h#?.-1v  
    f: P(signal_fw, x),  !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 &b (*  
      color = blue,     H,D5)1Uu  
      width = 3, Qb {[xmc  
      "fw signal" 7&id(&y/  
    f: P(signal_bw, x),   !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 6w%n$tiX  
      color = blue, vAM1|,U  
      style = fdashed, N:B<5l '  
      width = 3, /4+L2O[  
      "bw signal" ozY$}|sjDT  
    X@kgc&`0  
    f: 100 * n(x, 2),    !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 Z` kVyuQ  
      yscale = 2,            !第二个y轴的缩放比例 +(!/(2>~  
      color = magenta, u0W6u} 4;  
      width = 3, Z(q]rX5"  
      style = fdashed, qlM<X?  
      "n2 (%, right scale)" ,=e.Q AF!"  
    :i{M1z I  
    f: 100 * n(x, 3),          !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 4rDV CXE  
      yscale = 2, GJdL1ptc  
      color = red, }k.yLcXM  
      width = 3, e#hg,I  
      style = fdashed, ViW2q"4=  
      "n3 (%, right scale)" &Sg]P  
    29=ob("  
    f I%8@ :  
    ; ------------- Gd|kAC g  
    diagram 2:                    !输出图表2 '9QEG/v  
    R?1Z[N  
    "Variation ofthe Pump Power" 8pEA3py  
    ;HCK iHC  
    x: 0, 10 '`;=d<'  
    "pump inputpower (W)", @x g(zeOS]q}  
    y: 0, 10 ^zTe9:hz/\  
    y2: 0, 100 r\QV%09R  
    frame iuj%.}  
    hx |fyzb=Lg  
    hy xbi\KT`~  
    legpos 150, 150 1>[#./@  
    >&\.{ aj  
    f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 kMW9UUw  
      step = 5, Y;R,ph.a  
      color = blue, vJs6nVbK  
      width = 3, k5>UAea_  
      "signal output power (W, leftscale)",     !相应的文本字符串标签 R1 SFMI   
      finish set_P_in(pump, P_pump_in) GH':Yk  
    TfJ*G6\7e#  
    f: (set_P_in(pump,x); 100 * n_av(2)),   !改变泵浦信号功率对能级2上激活粒子占比的影响 wdt2T8`I/  
      yscale = 2, +wz1kPRs  
      step = 5, Cgln@Rz  
      color = magenta, Y'000#+  
      width = 3, 4RctYMz  
      "population of level 2 (%, rightscale)", db_Qt'>  
      finish set_P_in(pump, P_pump_in) #)n$Q^9&  
    0,-]O=   
    f: (set_P_in(pump,x); 100 * n_av(3)),   !改变泵浦信号功率对能级3上激活粒子占比的影响 9_==C"F  
      yscale = 2, {Y/0BS2D  
      step = 5, r]-n,  
      color = red, MtwlZg`c3  
      width = 3, pq]z%\$u  
      "population of level 3 (%, rightscale)", 7Cp /{l;d  
      finish set_P_in(pump, P_pump_in) { k=3OIp  
    CH(Y.Kj-  
    y=pW+$k  
    ; ------------- P0; y  
    diagram 3:                         !输出图表3 >VZxDJ$R  
    ~)#E?:h5  
    "Variation ofthe Fiber Length" 0t7)x8c  
    >l8?B L  
    x: 0.1, 5 0'f\>4B  
    "fiber length(m)", @x ysi=}+F.  
    y: 0, 10 s]e `q4ip  
    "opticalpowers (W)", @y tq,^!RSbZ  
    frame wEq&O|Vj  
    hx k?HdW(HA  
    hy Kg~D~ +j  
    UhDf6A`]  
    f: (set_L(x);P_out(signal_fw)),     !改变光纤长度对信号光输出功率的影响 Py #EjF12  
      step = 20,             ,<!*@xy7v  
      color = blue, dh%O {t  
      width = 3, Ohj^Z&j  
      "signal output" 2.</n}g  
    l z"o( %D  
    ;f: (set_L(x);P_out(pump)),                     !改变光纤长度对泵浦信号输出功率的影响 &HLG<ISw  
       step = 20, color = red, width = 3,"residual pump" !"<rlB,J  
    /Z]nV2$n)V  
    ! set_L(L_f) {restore the original fiber length } L_9uwua.B~  
    W4av?H  
    \IC^z  
    ; ------------- \15'~ ]d  
    diagram 4:                                  !输出图表4 '\d ldg#P  
    Rs{8vV  
    "TransverseProfiles" E@otV6Wk[@  
    SIm1fC  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) ]v5/K  
    "oiN8#Hf  
    x: 0, 1.4 * r_co /um sZ&6g<8#y  
    "radialposition (µm)", @x I)#8}[vK  
    y: 0, 1.2 * I_max *cm^2 GK-P6d  
    "intensity (W/ cm&sup2;)", @y SJX9oVJeZ  
    y2: 0, 1.3 * N_Tm _(?`eWo  
    frame #%ld~dgz-  
    hx ld#x'/  
    hy "y*3p0E  
    ( ./MFf  
    f: N_dop(1, x * um,0),      !掺杂浓度的径向分布 # "c'eG0  
      yscale = 2, Q jXJo$I6  
      color = gray, :4)x  
      width = 3, &QD)1b[U  
      maxconnect = 1, Eo ^m; p5  
      "N_dop (right scale)" fsK=]~<g  
    Hmm0H6&u  
    f: I(pump, -1, x *um, 0) * cm^2,    !泵浦光沿光纤径向的强度分布 4x-,l1NMR  
      color = red, Oq% TW|a#  
      maxconnect = 1,           !限制图形区域高度,修正为100%的高度 ^/}4M'[w  
      width = 3, Qp[ Jw?a  
      "pump" qov<@FvE0  
    zd8A8]&-  
    f: I(signal_fw, -1,x * um, 0) * cm^2,  !信号光沿光纤径向的强度分布 N2 3:+u<)E  
      color = blue, Kv!:2br  
      maxconnect = 1, 6 %aaK|0  
      width = 3, &d6ud |  
      "signal" jK/F zD0-  
    6W1+@ q  
    glo G_*W  
    ; ------------- u"oO._a(  
    diagram 5:                                  !输出图表5 kmTYRl )j  
    _3%:m||,XP  
    "TransitionCross-sections" XNx$^I=  
    gQSVPbzK  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) k ?6d\Q  
    1}c /l<d  
    x: 1450, 2050 y2?9pVLa\y  
    "wavelength(nm)", @x hR0a5   
    y: 0, 0.6 GTfM *b  
    "cross-sections(1e-24 m&sup2;)", @y Oprfp^L  
    frame @$5~`?  
    hx 4P)#\$d:  
    hy 1 Vc_jYO@  
    !nJl.Y$  
    f: s12_Tm(x * nm) /1e-24,      !Tm3+吸收截面与波长的关系 MUZ]*n&0  
      color = red, kq(><T  
      width = 3, =AzkE]   
      "absorption" \$4z@`nY  
    f: s21_Tm(x * nm) /1e-24,  !Tm3+发射截面与波长的关系 Hci>q`p#  
      color = blue, [S]q'c)  
      width = 3, OW=3t#"7Kp  
      "emission" D9P,[:"  
    ,KM%/;1Dm  
     
    分享到
    离线lileisgsz
    发帖
    14
    光币
    69
    光券
    0
    只看该作者 1楼 发表于: 2021-09-28
    感谢,视频上有点看不清楚