(* L]zNf71RD
Demo for program"RP Fiber Power": thulium-doped fiber laser, z<a2cQ?XQ
pumped at 790 nm. Across-relaxation process allows for efficient .1ddv4Hk
population of theupper laser level. s'2Rs^,hN
*) !(* *)注释语句 \K`jCsT
l`rC0kJ]
diagram shown: 1,2,3,4,5 !指定输出图表 8&a_A:h
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 kr_oUXiX
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 *)PG-$6X&
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 y1(P<7:t?
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 8Uj:
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 Ku%6$C!,
3YTIH2z5
include"Units.inc" !读取“Units.inc”文件中内容 $Qq_qTJu?G
>rRf9wO1l
include"Tm-silicate.inc" !读取光谱数据 r>3^kL5UI
F_PTMl=Q|J
; Basic fiberparameters: !定义基本光纤参数 q,,j',8kq/
L_f := 4 { fiberlength } !光纤长度 T]2U fi.
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 me'(lQ6^
r_co := 6 um { coreradius } !纤芯半径 <3#<I)#
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 tBl#o ^
Zps&[;R$-
; Parameters of thechannels: !定义光信道 rdI]\UH
l_p := 790 nm {pump wavelength } !泵浦光波长790nm 2NR7V*A
dir_p := forward {pump direction (forward or backward) } !前向泵浦 ta! V=U
P_pump_in := 5 {input pump power } !输入泵浦功率5W |e"/Mf[
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um 1jOKcm'#
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 DNho%Xk
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 F^sw0 .b
J8h7e}n?
l_s := 1940 nm {signal wavelength } !信号光波长1940nm $n*%v85
w_s := 7 um !信号光的半径 RO(iHR3cA
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 l4`^!
loss_s := 0 !信号光寄生损耗为0 =5_y<0`4
,Qo}J@e(
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 C"9"{
UG=I~{L
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 As}eUm)B5c
calc ZV#$Z
begin .P%ym~S
global allow all; !声明全局变量 f#mx:Q.7I
set_fiber(L_f, No_z_steps, ''); !光纤参数 V(I7*_ZFl
add_ring(r_co, N_Tm); @{bb'q['@
def_ionsystem(); !光谱数据函数 9i[4"&K
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 d"!yD/RD
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 \CtQ*[FmN
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 $/.<z(F
set_R(signal_fw, 1, R_oc); !设置反射率函数 7%tR&F -u
finish_fiber(); 0&B:\
end; {0fz9"|U
#ZF>WoC@e?
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 8qmknJC
show "Outputpowers:" !输出字符串Output powers: Lv3XYZgW~
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) w#<^RKk
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) kyK'
OT%V{hD
,$PFI(Whk
; ------------- 'oCm.~;_
diagram 1: !输出图表1 @jKDj]\
9c6 '
"Powers vs.Position" !图表名称 86#-q7aX
}"0{zrz
x: 0, L_f !命令x: 定义x坐标范围 BP:(IP!&
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 w=5
y: 0, 15 !命令y: 定义y坐标范围 ,y%ziay
y2: 0, 100 !命令y2: 定义第二个y坐标范围 hLSTSD}
frame !frame改变坐标系的设置 "]w!`^'_
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) $59nu7yr
hx !平行于x方向网格 |a>}9:g,=*
hy !平行于y方向网格 8T<@ @6`T
d<_NB]V&F
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 yqYhe-"
color = red, !图形颜色 n{L:MT9TD
width = 3, !width线条宽度 `i9N)3
X
"pump" !相应的文本字符串标签 FQ0KUb}0
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 PaxK^*
color = blue, 0 K/G&c?;=
width = 3, b h*^{
"fw signal" @~s~/[
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 z'T=]-
D
color = blue, (Hl8U
style = fdashed, }$<^wt
width = 3, .hc|t-7f
"bw signal" 487YaioB$
[f=.!\0\
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 \WiqN*ZF
yscale = 2, !第二个y轴的缩放比例 z'_&|-m
color = magenta, di--:h/
width = 3, ka!Bmv)
style = fdashed, 0hFH^2%UY
"n2 (%, right scale)" B~WK)UR
WN$R[N
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 6zv;lx0<D&
yscale = 2, 3IGCl w(
color = red, (=`Z0)=
width = 3, Z(KmS(
style = fdashed, c%ZeX%p
"n3 (%, right scale)" xC[~Fyhp
m"<4\;GK
;i.I&*t
; ------------- xrfPZBLy
diagram 2: !输出图表2 sZ]'DH&_(
^p$1D
"Variation ofthe Pump Power" U@#?T
xLe
=d |6
x: 0, 10 |3S'8OeCI
"pump inputpower (W)", @x \{[D|_
y: 0, 10 "\4]X"3<+
y2: 0, 100 ~B<97x(X
frame y!SF/i?Py
hx kxygf9I!;
hy LE8K)i
legpos 150, 150 GhtbQM1[H
I<c@uXXV;!
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 /X@7ju;
step = 5, ('T4Db
color = blue, l8er$8S}
width = 3,
(L`l+t1
"signal output power (W, leftscale)", !相应的文本字符串标签 MJ1W*'9</W
finish set_P_in(pump, P_pump_in) 5LO4P>fq
^CfM|L8>
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 mr@_%U
yscale = 2, sk~ za
step = 5, U&,r4>V@h>
color = magenta, ^uC"dfH
width = 3, `@4 2jG}*
"population of level 2 (%, rightscale)", Sc% aJ1
finish set_P_in(pump, P_pump_in) Uc\|X;nkRk
ooomi"u
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 b;Hm\aK
yscale = 2, 6 lN?) <uQ
step = 5, ^Vl^,@
color = red, N{ : [/
width = 3, 9@(O\ xr
"population of level 3 (%, rightscale)", 's =Q.s
finish set_P_in(pump, P_pump_in) Z"l`e0{
Z~duJsH
$|>6z_3%
; ------------- UVc>i9,0
diagram 3: !输出图表3 Qe7"Z
*d^9,GGn-
"Variation ofthe Fiber Length" !8wZw68"
imo'(j7
x: 0.1, 5 3js)niT9u
"fiber length(m)", @x OI'uH$y
y: 0, 10 bq c;.4$
"opticalpowers (W)", @y Bx\#`Y
frame :X3rd|;kc
hx 4aj[5fhb-
hy [P.@1mV
C*"Rd
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 O4lxeiRgC
step = 20, F6RyOUma
color = blue, <'g0il
width = 3, *raIV]W3
"signal output" zi?qK?m
WpZy](,
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 Q'FX:[@x-S
step = 20, color = red, width = 3,"residual pump" M\:"~XW
VFe-#"0ZO
! set_L(L_f) {restore the original fiber length } ODM>Z8@W/
)v*v
gg lNpzj
; ------------- P Xyyyir{
diagram 4: !输出图表4 `l
HKQwu
OU0xZ=G
"TransverseProfiles" *D,v>(
d_4n0Kh0
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) t:?<0yfp&
9`LU=Xv/
x: 0, 1.4 * r_co /um 8r7/IGFg
"radialposition (µm)", @x f9h:"Dnzin
y: 0, 1.2 * I_max *cm^2 )a4E&D
"intensity (W/ cm²)", @y G:E+s(x
y2: 0, 1.3 * N_Tm ]=$-B
frame 9b{g+lMZo
hx -L^0-g
hy w\0Oz?N
[15hci+-
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 TzD:bKE&
yscale = 2, ,Ut!u)
color = gray, b?+Yo>yF8
width = 3, R7\{w(`K
maxconnect = 1, zJB+C=]D7H
"N_dop (right scale)" Li?{e+ g
S>/I?(J
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 (P]^8qc
color = red, Og&0Z)%
maxconnect = 1, !限制图形区域高度,修正为100%的高度 n:}MULy;
width = 3, @&am!+z
"pump" 1s^$oi}
^)eessZ
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 Gaw,1Ow!`2
color = blue, -r6(=A
maxconnect = 1, a9mr-`<
width = 3, MJ*oeI!.=
"signal" |-cALQ
Ggxrj'r
S7\|/h:4
; ------------- f:)K
diagram 5: !输出图表5 LyCV_6;D
@; j0c_^"!
"TransitionCross-sections" H|(*$!~e
d ~Z:$&r
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) hj#+8=
q) zu}m
x: 1450, 2050 4`^TC[
"wavelength(nm)", @x \fQgiX
y: 0, 0.6 w
oY)G7%
"cross-sections(1e-24 m²)", @y a*$1la'Uf
frame %_i0go,^
hx |)>GeE
hy R&-W_v+
;M(ehX
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 K{[Fa,]'
color = red, 0ghwFo
width = 3, ^*owD;]4_
"absorption" XQ|j5]
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 JOE{&^j
color = blue, 9g^./k\8%
width = 3, ={&TeMMA
"emission" hc4`'r;
'!|E+P-