(* %."@Q$lA
Demo for program"RP Fiber Power": thulium-doped fiber laser, |J0Q,F]T
pumped at 790 nm. Across-relaxation process allows for efficient LfLFu9#:w
population of theupper laser level. is?2DcSl5
*) !(* *)注释语句 [xb]Wf
gNpJ24QK
diagram shown: 1,2,3,4,5 !指定输出图表 %Sk@GNI_
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 CHJ>{b`O
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 (08I
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 LN2D
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 2F`cv1 M
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 i/So6jW
C\ZkGX
include"Units.inc" !读取“Units.inc”文件中内容 w}R~C
ww k
P F
include"Tm-silicate.inc" !读取光谱数据 os lJC$cy'
SP]IUdE\
; Basic fiberparameters: !定义基本光纤参数 a4i:|
L_f := 4 { fiberlength } !光纤长度 m~hoE8C$
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 nqVZqX@oE
r_co := 6 um { coreradius } !纤芯半径 c`*TPqw(B[
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 AJ^#eY5
)yK[ Zb[
; Parameters of thechannels: !定义光信道 8qEK+yi,
l_p := 790 nm {pump wavelength } !泵浦光波长790nm 8ho[I]
dir_p := forward {pump direction (forward or backward) } !前向泵浦 f:B>zp;N
P_pump_in := 5 {input pump power } !输入泵浦功率5W q.4A(,
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um `qVjwJ!+
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 fq[;%cr4
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 SJt<+kg
t*<#<a
l_s := 1940 nm {signal wavelength } !信号光波长1940nm G~7 i@Zs
w_s := 7 um !信号光的半径 ._9
n~=!
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 YC_5YY(k
loss_s := 0 !信号光寄生损耗为0 aVL=K
YXurYwV
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 W1B)]IHc
ORXm&z)
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 c#IYFTz
calc so$(_W3E,
begin _p-t<ytnh
global allow all; !声明全局变量 SUKxkc(
set_fiber(L_f, No_z_steps, ''); !光纤参数 4MuO1W-
add_ring(r_co, N_Tm); Cv
ejb+
def_ionsystem(); !光谱数据函数 0$+fkDf
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 A\_ |un%
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 $;M:TpX
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 h7*W*Bd
set_R(signal_fw, 1, R_oc); !设置反射率函数 5]I| DHmu
finish_fiber(); RB* J=
end; `@[c8j7
B+C);WQ,
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 Uy
?
show "Outputpowers:" !输出字符串Output powers: )*; zW!H
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) g.c8FP+
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) VvFC -r,=G
0;4t&v7
#_Z$2L"U
; ------------- r:&`$8$
diagram 1: !输出图表1 OouPj@r
b^D$jY
"Powers vs.Position" !图表名称 -[U1]R
kr$b^"Ku
x: 0, L_f !命令x: 定义x坐标范围 /!^&;$A'
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 o9xlu.QL{c
y: 0, 15 !命令y: 定义y坐标范围 Yt|6
X:l
y2: 0, 100 !命令y2: 定义第二个y坐标范围 [V'QrcCF
frame !frame改变坐标系的设置 +dA ,P\
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) SS`qJZ|w
hx !平行于x方向网格 `(A5f71MfM
hy !平行于y方向网格 E9?phD
?(*t@
{k
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 >5s6u`\
color = red, !图形颜色 H$G0`LP0/a
width = 3, !width线条宽度 n,$IfC"
"pump" !相应的文本字符串标签 A)%A!
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 V=fEPM
color = blue, mUS_(0q
width = 3, :qChMU|Y6
"fw signal" 5_XV%-wM
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 x(<(t:?o
color = blue, %dQxJMwj
style = fdashed, CPg+f1K
width = 3, dl hdsj:
"bw signal" "D?z
% QKZT=}
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 N3u((y/
yscale = 2, !第二个y轴的缩放比例 JXyM\}9-X
color = magenta, ynA|}X
width = 3, G$ _yy:
style = fdashed, 3%.#}O,(
"n2 (%, right scale)" ~T) Q$
@?YRuwp L
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 V& C/Z}\
yscale = 2, Sz H"
color = red, ]4;PR("aU
width = 3, s21wxu:
style = fdashed, A:7k+4
"n3 (%, right scale)" 3;%5Yu
71vkyn@"
S"Zp D.XX
; ------------- =gcM%=*'
diagram 2: !输出图表2 $Y5)(
+3KEzo1=)
"Variation ofthe Pump Power" gY@N~'f;"
B'^:'uG
x: 0, 10 sZW^!z
"pump inputpower (W)", @x $H+VA@_
y: 0, 10 5uxBK"q
y2: 0, 100 =0;^(/1Mc
frame ?_I[,N?@41
hx 765p/**
hy SJIOI@\b
legpos 150, 150 #>j.$2G>
+[5.WC7J
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 (PfqRk1Y
step = 5, 0{#8',*}m?
color = blue, P;k0W>~k
width = 3, sJ]taY ou
"signal output power (W, leftscale)", !相应的文本字符串标签 {dmj/6Lc
finish set_P_in(pump, P_pump_in) ?s:d[To6
`[C!L *#,
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 bT&: fHc
yscale = 2, gks{\ H]
step = 5, /% kY0 LY
color = magenta, JGuN:c$
width = 3, `F/Tv 5@L
"population of level 2 (%, rightscale)", /~^rr
f
finish set_P_in(pump, P_pump_in) n5{Xj:}
6 ~>FYX
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 U^Xm)lL
yscale = 2, b!)<-|IK
step = 5, "_`F\DGAZu
color = red, )n ,P"0
width = 3, +"1NC\<*
"population of level 3 (%, rightscale)", 6oBfB8]:d
finish set_P_in(pump, P_pump_in) up'Tit
%Q.&ZhB
.jj$ Kh q]
; ------------- [o?*"c
diagram 3: !输出图表3 %JLk$sP9y`
/z}~zO
"Variation ofthe Fiber Length" zToq^T
,mj@sC>
x: 0.1, 5 JJ%ePgWT
"fiber length(m)", @x CxfRVL`7
y: 0, 10 c
9jGq
"opticalpowers (W)", @y &8z[`JW,T
frame Ps 8%J;
hx uV=Qp1~
hy '7oA< R
=KR
NvW
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 rta:f800z
step = 20, ]niJGt
color = blue, 0pbtH8~
width = 3, 4T=u`3pD7l
"signal output" Op_RzZP`
KG=h&
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 5sb\r,kW
step = 20, color = red, width = 3,"residual pump" IV)<5'v
v;0|U:`]
! set_L(L_f) {restore the original fiber length } f/V
2f].
0lv%`,
xe*aC
; ------------- /"B?1?qc,=
diagram 4: !输出图表4 'z$Q rFW
V<j.xd7
"TransverseProfiles" Lliqj1&
gmm|A9+tv
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) mL4] l(U
1n@8Kv
x: 0, 1.4 * r_co /um \.3D~2cU
"radialposition (µm)", @x n+PzA[
y: 0, 1.2 * I_max *cm^2 DS'n
"intensity (W/ cm²)", @y qBCK40
y2: 0, 1.3 * N_Tm {\(L%\sV@
frame ;
k)@DX
hx d`F&aC
hy q5#J~n8Wr
l'3pQ;
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 et }T%~T
yscale = 2, |JVk&8
?8
color = gray, <^lRUw
width = 3, kbMYMx.[
maxconnect = 1, ;]pJj6J&v
"N_dop (right scale)" >2Kh0rIH
PoT`}-9
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 QV&D l_
color = red, 9J?wO9rI
maxconnect = 1, !限制图形区域高度,修正为100%的高度 o5Q{/
width = 3, xa
pq*oj
"pump" G;~V
YxP@!U9dE,
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 sUU{fNC6|
color = blue, lHhUC16>
maxconnect = 1, 48*Do}l]
width = 3, k0Uyf~p~
"signal" )kkhJI*v
afb+GA!
Qu]z)";7
; ------------- ,Bal
diagram 5: !输出图表5 `^4vT3e
FGh]S-A
"TransitionCross-sections" %,k][V
XGkkB
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) p^'3Odd|O
j<)9dEM'
x: 1450, 2050 |e2be1LD
"wavelength(nm)", @x H(&4[%;MP
y: 0, 0.6 \}
^E`b
"cross-sections(1e-24 m²)", @y :"!9_p(,,
frame >z.<u|r2
hx Jyqc2IH
hy |H!9fZO
D7S'*;F
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 PK4iuU`vh
color = red, W<