(* +nE>)ZH
Demo for program"RP Fiber Power": thulium-doped fiber laser, OP`f[lCiL
pumped at 790 nm. Across-relaxation process allows for efficient d5$D[,`1
population of theupper laser level. c_3B: F7
*) !(* *)注释语句 2aj1IBnz6/
^.6[vmmq
diagram shown: 1,2,3,4,5 !指定输出图表 eX+36VG\
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 VBX)xQazU
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 t3@+idE b
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 YNr"]SA@ ;
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 ;Z]Wj9iY
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 Y;/@[AwF
fB8, )&
include"Units.inc" !读取“Units.inc”文件中内容 PMfW;%I.
zmo2uUEd
include"Tm-silicate.inc" !读取光谱数据 +>"s)R43
gQ_<;'m)2
; Basic fiberparameters: !定义基本光纤参数 DZSS
L_f := 4 { fiberlength } !光纤长度 0$*7lQ<a#M
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 h}
`v0E
r_co := 6 um { coreradius } !纤芯半径 xDo0bR(
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 i g(O$y
$Zu?Gd?
; Parameters of thechannels: !定义光信道 F\m^slsu7=
l_p := 790 nm {pump wavelength } !泵浦光波长790nm 0k
(-
dir_p := forward {pump direction (forward or backward) } !前向泵浦 rYb5#aT[
P_pump_in := 5 {input pump power } !输入泵浦功率5W wZ(1\
M(
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um J$#T_4 )
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 `HX:U3/
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 \O5L#dc#
k+J%o%* <
l_s := 1940 nm {signal wavelength } !信号光波长1940nm cnu&!>8V
w_s := 7 um !信号光的半径 o701RG~)
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 j%6p:wDl
loss_s := 0 !信号光寄生损耗为0 731Lz*IFg
'(.5!7?Qc
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 yaR>?[h
y98FEG#S}
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 .C'\U[A{
calc "^#O7.oVi+
begin ciblj?"Wi
global allow all; !声明全局变量
7kLurv
set_fiber(L_f, No_z_steps, ''); !光纤参数 S2$66xr#
add_ring(r_co, N_Tm); bo\ bs1
def_ionsystem(); !光谱数据函数 jZA1fV
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 uj8saNu
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 o(hUC$vW
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 $gl|^c\
set_R(signal_fw, 1, R_oc); !设置反射率函数 mkSu
$c
finish_fiber(); Nf| 0O\+%y
end; 0z>IYw|UB
4|?(LHBD)
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 }>{R<[I!G
show "Outputpowers:" !输出字符串Output powers: ),x0G*oebj
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) 2j-l<!s
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) rS [4Pey
dcf,a<K\
k-~}KlP
; ------------- RdX+:!lD
diagram 1: !输出图表1 b7sfr!t_d
WsHDIp
"Powers vs.Position" !图表名称 d:'{h"M6
Ichg,d-M-K
x: 0, L_f !命令x: 定义x坐标范围 5gf
~/Zr
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 2XR!2_)O5
y: 0, 15 !命令y: 定义y坐标范围 n*\o. :f
y2: 0, 100 !命令y2: 定义第二个y坐标范围 \l!+l
frame !frame改变坐标系的设置 iHv+I~/
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) jkk%zu
hx !平行于x方向网格 -b!?9T?}
hy !平行于y方向网格 %Xc,l Y1?
b$@I(.X:
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 ^&;,n.X5Z
color = red, !图形颜色 |>ztx}\
width = 3, !width线条宽度 rZgu`5<a
"pump" !相应的文本字符串标签 q]4h#?.-1v
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 &b (*
color = blue, H,D5)1Uu
width = 3, Qb
{[xmc
"fw signal" 7&id(&y/
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 6w%n$tiX
color = blue, vAM1|,U
style = fdashed, N:B<5l '
width = 3, /4+L2O[
"bw signal" ozY$}|sjDT
X@kgc&`0
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 Z`kVyuQ
yscale = 2, !第二个y轴的缩放比例 +(!/(2>~
color = magenta, u0W6u} 4;
width = 3, Z(q]rX5"
style = fdashed, qlM<X?
"n2 (%, right scale)" ,=e.QAF!"
:i{M1z I
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 4rDVCXE
yscale = 2, GJdL1ptc
color = red, }k.yLcXM
width = 3, e#hg,I
style = fdashed, ViW2q"4=
"n3 (%, right scale)" &Sg]P
29=ob("
f
I%8@ :
; ------------- Gd|kAC
g
diagram 2: !输出图表2 '9QEG/v
R?1Z[N
"Variation ofthe Pump Power" 8pEA3py
;HCK iHC
x: 0, 10 '`;=d<'
"pump inputpower (W)", @x g(zeOS]q}
y: 0, 10 ^zTe9:hz/\
y2: 0, 100 r\QV%09R
frame iuj%.}
hx |fyzb=Lg
hy xbi\KT`~
legpos 150, 150 1>[#./@
>&\.{ aj
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光
kMW9UUw
step = 5, Y;R,ph.a
color = blue, vJs6nVbK
width = 3, k5>UAea_
"signal output power (W, leftscale)", !相应的文本字符串标签 R1SFMI
finish set_P_in(pump, P_pump_in) GH':Yk
TfJ*G6\7e#
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 wdt2T8`I/
yscale = 2, +wz1kPRs
step = 5, Cgln@Rz
color = magenta, Y'000#+
width = 3, 4RctYMz
"population of level 2 (%, rightscale)", db_Qt' >
finish set_P_in(pump, P_pump_in) #)n$Q^9&
0,-]O=
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 9_==C"F
yscale = 2,
{Y/0BS2D
step = 5, r]-n,
color = red, MtwlZg`c3
width = 3, pq]z%\$u
"population of level 3 (%, rightscale)", 7Cp/{l;d
finish set_P_in(pump, P_pump_in) {k=3OIp
CH(Y.Kj-
y=pW+$k
; ------------- P0; y
diagram 3: !输出图表3 >VZxDJ$R
~)#E?:h5
"Variation ofthe Fiber Length" 0t7)x8c
>l8?B L
x: 0.1, 5 0'f\>4B
"fiber length(m)", @x ysi=}+F.
y: 0, 10 s]e`q4ip
"opticalpowers (W)", @y tq,^!RSbZ
frame wEq&O|Vj
hx k?HdW(HA
hy Kg~D~
+j
UhDf6A`]
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 Py#EjF12
step = 20, ,<!*@xy7v
color = blue, dh%O {t
width = 3, Ohj^Z&j
"signal output" 2.</n}g
l
z"o( %D
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 &HLG<ISw
step = 20, color = red, width = 3,"residual pump" !"<rlB,J
/Z]nV2$n)V
! set_L(L_f) {restore the original fiber length } L_9uwua.B~
W4av?H
\IC^z
; ------------- \15'~]d
diagram 4: !输出图表4 '\d
ldg#P
Rs{8vV
"TransverseProfiles" E@otV6Wk[@
SIm1fC
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) ]v5/K
"oiN8#Hf
x: 0, 1.4 * r_co /um sZ&6g<8#y
"radialposition (µm)", @x I)#8}[vK
y: 0, 1.2 * I_max *cm^2 GK-P6d
"intensity (W/ cm²)", @y SJX9oVJeZ
y2: 0, 1.3 * N_Tm _(?`eWo
frame #%ld~dgz-
hx l d#x'/
hy "y*3p0E
(
./MFf
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 #"c'eG0
yscale = 2, QjXJo$I6
color = gray, :4)x
width = 3, &QD)1b[U
maxconnect = 1, Eo^m; p5
"N_dop (right scale)" fsK=]~<g
Hmm0H6&u
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 4x-,l1NMR
color = red, Oq% TW|a#
maxconnect = 1, !限制图形区域高度,修正为100%的高度 ^/}4M'[ w
width = 3, Qp[
Jw?a
"pump" qov<@FvE0
zd8A8]&-
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 N2 3:+u<)E
color = blue, Kv!:2br
maxconnect = 1, 6
%aaK|0
width = 3, &d6ud|
"signal" jK/FzD0-
6W1+@
q
gloG_*W
; ------------- u"oO._a(
diagram 5: !输出图表5 kmTYRl
)j
_3%:m||,XP
"TransitionCross-sections" XNx$^I=
gQSVPbzK
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) k ?6d\Q
1}c/l<d
x: 1450, 2050 y2?9pVLa\y
"wavelength(nm)", @x hR0a5
y: 0, 0.6 GTfM *b
"cross-sections(1e-24 m²)", @y Oprfp^L
frame @$5~`?
hx 4P)#\$d:
hy 1 Vc_jYO@
!nJl.Y$
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 MUZ]*n&0
color = red, kq(><T
width = 3, =AzkE]
"absorption" \$4z@`n Y
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 Hci>q`p#
color = blue, [S]q'c)
width = 3, OW=3t#"7Kp
"emission" D9P,[:"
,KM%/;1Dm