切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 2470阅读
    • 1回复

    [原创]RP Fiber Power仿真设计掺铥光纤激光器代码详解 [复制链接]

    上一主题 下一主题
    离线小火龙果
     
    发帖
    932
    光币
    2176
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-05-28
    (* Y8xnvK*  
    Demo for program"RP Fiber Power": thulium-doped fiber laser, bB :X<  
    pumped at 790 nm. Across-relaxation process allows for efficient m6ws #%|[  
    population of theupper laser level. CoN/L`.SN  
    *)            !(*  *)注释语句 $Lbe5d?\  
    Br$PL&e~  
    diagram shown: 1,2,3,4,5  !指定输出图表 CO+jB  
    ; 1: "Powersvs. Position"     !分号是注释;光纤长度对功率的影响 $%"}N_M  
    ; 2:"Variation of the Pump Power"  !泵浦光功率变化对信号输出功率的影响 Y>m=cqR  
    ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 JBJ7k19;  
    ; 4:"Transverse Profiles"             !横向分布,横坐标为半径位置 3tcsj0Rb  
    ; 5:"Transition Cross-sections"    !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 7%FZXsD  
    p%y\`Nlgdx  
    include"Units.inc"         !读取“Units.inc”文件中内容 t'/;Z:  
    :NyEd<'  
    include"Tm-silicate.inc"    !读取光谱数据 ]<?)(xz  
    ZvKMRW  
    ; Basic fiberparameters:    !定义基本光纤参数 4gNRln-  
    L_f := 4 { fiberlength }      !光纤长度 ~0{Kga  
    No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 ^<Tp-,J$EN  
    r_co := 6 um { coreradius }                !纤芯半径 `*!>79_2C  
    N_Tm := 100e24 { Tmdoping concentration }  !纤芯Tm离子掺杂浓度 YGmdiY:;1  
    j7 3@Yi%  
    ; Parameters of thechannels:                !定义光信道 P&^7wud-sb  
    l_p := 790 nm {pump wavelength }                !泵浦光波长790nm #E@i@'T  
    dir_p := forward {pump direction (forward or backward) }   !前向泵浦 (`Mz.VN  
    P_pump_in := 5 {input pump power }                    !输入泵浦功率5W twS3J)UH  
    w_p := 50 um {radius of pump cladding }               !包层泵浦相应的半径 50um Oo .Qz   
    I_p(r) := (r <=w_p) { pump intensity profile }          !泵浦光强度分布 Z69 IHA[  
    loss_p := 0 {parasitic losses of pump wave }           !泵浦光寄生损耗为0 `v{X@x  
    *c c+Fd  
    l_s := 1940 nm {signal wavelength }                   !信号光波长1940nm z$5C(!)  
    w_s := 7 um                          !信号光的半径 F}DD;K  
    I_s(r) := exp(-2 *(r / w_s)^2)            !信号光的高斯强度分布 Y--8v#t  
    loss_s := 0                            !信号光寄生损耗为0 !Qzp!k9d  
    A+DYIS  
    R_oc := 0.70 {output coupler reflectivity (right side) }      !输出耦合反射率 eV%bJkt.  
    itgO#(g$Q  
    ; Function for defining themodel:   !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 p>O< "X@  
    calc nv{4 U}&P  
      begin 1 *CWHs  
        global allow all;                   !声明全局变量 3) 0~:  
        set_fiber(L_f, No_z_steps, '');        !光纤参数 AAY UXY!  
        add_ring(r_co, N_Tm); lhj2u]yU0S  
        def_ionsystem();              !光谱数据函数 e !Okc*,  
        pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p);  !泵浦光信道 m3-J0D<  
        signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward);      !前向信号光信道 ]<LU NxBR  
        signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward);    !后向信号光信道 ,RO(k4  
        set_R(signal_fw, 1, R_oc);                                 !设置反射率函数 XOU$3+8q5  
        finish_fiber();                                   ='>UKy[=  
      end; ;qK6."b`;  
    =1[g`b  
    ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 ,quTMtk~  
    show "Outputpowers:"                                   !输出字符串Output powers: !17Z\Ltqyj  
    show"pump:     ", P_out(pump):d3:"W"  !输出字符串pump:和计算值(格式为3个有效数字,单位W) R  |%  
    show"signal:   ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) *b_54X%3  
    ;BVhkW A  
    +}/!yQtH  
    ; ------------- mkA|gM[g7  
    diagram 1:                   !输出图表1  O+j:L  
    J,Ap9HJt  
    "Powers vs.Position"          !图表名称 GA}^Rh`T-  
    _AbEQ\P{  
    x: 0, L_f                      !命令x: 定义x坐标范围 $ '*BS  
    "position infiber (m)", @x      !x轴标签;@x 指示这些字符串沿坐标轴放置 +cH(nZ*f  
    y: 0, 15                      !命令y: 定义y坐标范围 2GzpWV(  
    y2: 0, 100                    !命令y2: 定义第二个y坐标范围 `p|vutk)U  
    frame          !frame改变坐标系的设置 2&URIQg*J  
    legpos 600, 500  !图行在图表窗口中的位置(相对于左上角而言) G'f"w5%qZv  
    hx             !平行于x方向网格 >cL2PN_y  
    hy              !平行于y方向网格 c<e\JJY5?  
    F k;su,]_  
    f: P(pump, x),    !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 i@L2W>{P  
      color = red,  !图形颜色 3fTI&2:  
      width = 3,   !width线条宽度 s\!vko'M  
      "pump"       !相应的文本字符串标签 Bdepvc}[#  
    f: P(signal_fw, x),  !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 #+k[[; 0  
      color = blue,     T%/w^27E  
      width = 3, Q$j48,e  
      "fw signal" tvRy8u;  
    f: P(signal_bw, x),   !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 1bkUT_  
      color = blue, hh&y2#Io  
      style = fdashed, pa-4|)qY  
      width = 3, 1+($"$ZC&B  
      "bw signal" edx'p`%d5  
    [^~9wFNtd  
    f: 100 * n(x, 2),    !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 y@_?3m7B=  
      yscale = 2,            !第二个y轴的缩放比例 RiG!TTa b  
      color = magenta, w-Fk&dC69  
      width = 3, q/79'>`|ai  
      style = fdashed, caht4N{T  
      "n2 (%, right scale)" [hbp#I~*[  
    ,O$C9pH9  
    f: 100 * n(x, 3),          !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 KW^aARJ)  
      yscale = 2, IIiN1 Lu,5  
      color = red, F-0PmO~3+W  
      width = 3, 5V!XD9P'  
      style = fdashed, taaAwTtk?A  
      "n3 (%, right scale)" i]pG}SJ  
    &S]v+wF  
    *`T &Dlt'8  
    ; ------------- 7+4"+CA  
    diagram 2:                    !输出图表2 c\MDOD%9  
    \l5:A]J  
    "Variation ofthe Pump Power" =lQ[%&  
    I xBO$ 2  
    x: 0, 10 8f5^@K\c  
    "pump inputpower (W)", @x DjvgKy=Jr_  
    y: 0, 10 HH@xn d  
    y2: 0, 100 8Oh3iO  
    frame 1s[-2^D+EM  
    hx yVzg<%CR^  
    hy S]O Hv6  
    legpos 150, 150 ~W{h-z%q  
    vyGLn  
    f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 ZH_4'm!^g|  
      step = 5, cLC7U?-  
      color = blue, =A 6O}0z  
      width = 3, 5N<v'6&=  
      "signal output power (W, leftscale)",     !相应的文本字符串标签 olh3 R.M<  
      finish set_P_in(pump, P_pump_in) 1Z8oN3  
    S'p`ECfVMA  
    f: (set_P_in(pump,x); 100 * n_av(2)),   !改变泵浦信号功率对能级2上激活粒子占比的影响 -$ z"74  
      yscale = 2, I]1Hi?A2  
      step = 5, Gi4dgMVei  
      color = magenta, ,8nZzVo  
      width = 3, @rE )xco  
      "population of level 2 (%, rightscale)", :=v{inN  
      finish set_P_in(pump, P_pump_in) ?Zp!AV  
    @6'E8NFl  
    f: (set_P_in(pump,x); 100 * n_av(3)),   !改变泵浦信号功率对能级3上激活粒子占比的影响 HWOs@ !cL  
      yscale = 2, uA`PZ|  
      step = 5, 6 <S&~q  
      color = red, z}&C(m:al  
      width = 3, 9yw/-nA  
      "population of level 3 (%, rightscale)", h ]$?~YE  
      finish set_P_in(pump, P_pump_in) z>;+'>XXgx  
    MPy][^s!  
    pF+wH MhUe  
    ; ------------- <dPxy`_  
    diagram 3:                         !输出图表3 ) '`AX\  
    C?|3\@7  
    "Variation ofthe Fiber Length" lILtxVBO2o  
    ,!u@:UBT  
    x: 0.1, 5 $: m87cR~  
    "fiber length(m)", @x $= xQX  
    y: 0, 10 bMOM`At>z  
    "opticalpowers (W)", @y g~:(EO(w  
    frame fYM6wYJ  
    hx - :z5m+  
    hy B&k T#  
    zTT  
    f: (set_L(x);P_out(signal_fw)),     !改变光纤长度对信号光输出功率的影响 C_ZD<UPA\  
      step = 20,             m{dyVE  
      color = blue, sxwW9_C  
      width = 3, L^{;jgd&T9  
      "signal output" P`I G9  
    1$D`Z/N"A  
    ;f: (set_L(x);P_out(pump)),                     !改变光纤长度对泵浦信号输出功率的影响 :_,]?n  
       step = 20, color = red, width = 3,"residual pump" -<JBKPtA  
    zQ %z "tQ  
    ! set_L(L_f) {restore the original fiber length } ;=\5$J9  
    'qF3,Rw  
    3]OP9!\6  
    ; ------------- nk|N.%E  
    diagram 4:                                  !输出图表4 7e{X$'  
    + >gbZ-S  
    "TransverseProfiles" RR"W O  
    xZ=FH>Y6'  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) (X_,*3Yxk  
    skD k/-*R  
    x: 0, 1.4 * r_co /um ~73i^3yf  
    "radialposition (µm)", @x I<(.i!-x  
    y: 0, 1.2 * I_max *cm^2 P[GX}~_k  
    "intensity (W/ cm&sup2;)", @y Q}?N4kg  
    y2: 0, 1.3 * N_Tm %*6oUb  
    frame LLn{2,jfQ  
    hx H@2"ove-uC  
    hy Ma=6kX]  
    tGO[A#9a  
    f: N_dop(1, x * um,0),      !掺杂浓度的径向分布 Ie&b <k  
      yscale = 2, {q tc \O  
      color = gray, >6l;/J  
      width = 3, 3ES[ N.V#  
      maxconnect = 1, KjwY'aYwr:  
      "N_dop (right scale)" &QOWW}  
    <.=#EV^i  
    f: I(pump, -1, x *um, 0) * cm^2,    !泵浦光沿光纤径向的强度分布 j #I:6yA3  
      color = red, ?%xhe  
      maxconnect = 1,           !限制图形区域高度,修正为100%的高度 NBqV0>vR  
      width = 3, H MjeGO.i  
      "pump" ,8=`*  
    Q),3&4pM  
    f: I(signal_fw, -1,x * um, 0) * cm^2,  !信号光沿光纤径向的强度分布 cR=94i=t  
      color = blue, ]oas  
      maxconnect = 1, l'7Mw%6{  
      width = 3, 0ve`  
      "signal" ,P@/=I5  
    >)n4s Mq  
    #mRFUA  
    ; ------------- LE<u&9I\  
    diagram 5:                                  !输出图表5 ~C"k$;(n  
    c.8((h/  
    "TransitionCross-sections" :(l $^ M  
    Y1fy2\<'  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) b$goF }b'g  
    j FPU zB"  
    x: 1450, 2050 oGJ*Rn)Z  
    "wavelength(nm)", @x ,5\2C{  
    y: 0, 0.6 t8DL9RW'  
    "cross-sections(1e-24 m&sup2;)", @y oEQ{m5O9  
    frame c:llOHA  
    hx xI@$aTGq  
    hy bCA2ik  
    J+71FP`ZH  
    f: s12_Tm(x * nm) /1e-24,      !Tm3+吸收截面与波长的关系 %kK ][2e  
      color = red, 5e#&"sJ.1  
      width = 3, BSfm?ku"!  
      "absorption" SLdN.4idK  
    f: s21_Tm(x * nm) /1e-24,  !Tm3+发射截面与波长的关系 2&.n  
      color = blue, ! EX?m }7  
      width = 3, p<=(GY-  
      "emission" hgweNRTh!  
    15xd~V?ai:  
     
    分享到
    离线lileisgsz
    发帖
    14
    光币
    69
    光券
    0
    只看该作者 1楼 发表于: 2021-09-28
    感谢,视频上有点看不清楚