(* ntrY =Y
Demo for program"RP Fiber Power": thulium-doped fiber laser, _-4n~(
pumped at 790 nm. Across-relaxation process allows for efficient nwa\Lrh
population of theupper laser level. tx^92R2/
*) !(* *)注释语句 /#-,R,Q
~pHJ0g:t
diagram shown: 1,2,3,4,5 !指定输出图表 [n!$D(|"!V
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 8fJR{jD(s
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 m.1LxM$8
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 NEqt).
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 ePV-yy
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 !7A"vTs
8q_1(& O
include"Units.inc" !读取“Units.inc”文件中内容 @IEI%vH
U>/<6Wd
include"Tm-silicate.inc" !读取光谱数据 Hnfvo*6d.e
Ivz+Jjw
; Basic fiberparameters: !定义基本光纤参数 XHWh'G9
L_f := 4 { fiberlength } !光纤长度 Jz~+J*r;]A
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 sx-EA&5-9k
r_co := 6 um { coreradius } !纤芯半径 Y*5Z)h
1
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 5Z*
b(R
Dl0/-=L
; Parameters of thechannels: !定义光信道 `)rg|~#k
l_p := 790 nm {pump wavelength } !泵浦光波长790nm fUb1/-}
dir_p := forward {pump direction (forward or backward) } !前向泵浦 *<B)Z
P_pump_in := 5 {input pump power } !输入泵浦功率5W v57N^DR{
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um >nc4v6s
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 whV&qe;sw
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 Q{H17]W
~Y\QGuT
l_s := 1940 nm {signal wavelength } !信号光波长1940nm 4st~3,lR$
w_s := 7 um !信号光的半径 9uuta4&uI
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 RxlszyE
loss_s := 0 !信号光寄生损耗为0 6{5q@9F
N YCj; ,V
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率
W;^Rx.W
aML#Z |n
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 qIB>6bv#x
calc }16&1@8
begin 5iP8D<;o5
global allow all; !声明全局变量 IeO-O'^&`
set_fiber(L_f, No_z_steps, ''); !光纤参数 5i^ `vmK
add_ring(r_co, N_Tm); [m~b[ZwES
def_ionsystem(); !光谱数据函数 ^Y$QR]
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 {?w"hjy
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 7*+Km'=M
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 )V=0IZi
set_R(signal_fw, 1, R_oc); !设置反射率函数 :_>\DJ'>
finish_fiber(); g+e:@@ug
end; wHA/b.jH
h8em\<;
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 a@Mq J=<L
show "Outputpowers:" !输出字符串Output powers: l+t #"3
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) q5%2WM]6
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) IDj_l+?c
/j11,O?72
PXa5g5!
; ------------- A_@I_V$
diagram 1: !输出图表1 w-r_H!-
=D{B}=D\IM
"Powers vs.Position" !图表名称 ]y.Rg{iv
nHnk#SAAu
x: 0, L_f !命令x: 定义x坐标范围 YbzM6u2
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 ]Qd{ '}+
y: 0, 15 !命令y: 定义y坐标范围 mU>&ql?e
y2: 0, 100 !命令y2: 定义第二个y坐标范围 RV}GK
L>gn
frame !frame改变坐标系的设置 r)Or\HL
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) <]~ZPk[
hx !平行于x方向网格 4ffU;6~l'
hy !平行于y方向网格 -H`\?
R
`n6/ A)
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 9WOu8Ia
color = red, !图形颜色 s\_l=v3
width = 3, !width线条宽度 !z?0 :Jg
"pump" !相应的文本字符串标签 %06vgjOa (
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 Vz'HM$
color = blue, &2Q*1YXj
width = 3, U7E
"fw signal" *_PPrx5
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 !I~C0u
color = blue, \9'!"-i
style = fdashed, -xz|ayn
width = 3, un6cD$cHr
"bw signal" W+.{4K
IJ0#iA. T
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 `YU=~xQ
yscale = 2, !第二个y轴的缩放比例 3^XVQS***
color = magenta, Gbn4*<N
width = 3, U~wjR"='
style = fdashed, nx B32
"n2 (%, right scale)" DKTD Z*
La9r
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 zi
}(^~Fe
yscale = 2, ^Z#@3=
color = red, '#A:.P
width = 3, l0Y?v 4
style = fdashed, f|#8qiUS
"n3 (%, right scale)" tfA}`*$s
q4k.f_{
p-,Iio+
; ------------- ;T>+,
diagram 2: !输出图表2 qi&D+~Gv!
ZjS(ad*.2
"Variation ofthe Pump Power" srK53vKMHW
-6`;},Yr
x: 0, 10 W^k,Pmopy
"pump inputpower (W)", @x L7}i
q0
y: 0, 10 ]-:1se
y2: 0, 100 .TJ">?
frame 3{e'YD~hP
hx 84^[/d;!
hy DT\ym9
legpos 150, 150 LWD#a~
#9\THfb
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 U(*yL-
step = 5, (ND%}
color = blue, Xu6K%]i^
width = 3, UOt8Q0)}
"signal output power (W, leftscale)", !相应的文本字符串标签 B?3juyB`--
finish set_P_in(pump, P_pump_in) r|fO7PD
VoM6
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 _B[WY
yscale = 2, MwAJ(
step = 5, |` "?
color = magenta, /H)Br~ l
width = 3, kiX%3(
"population of level 2 (%, rightscale)", Xa,\EEmQ
finish set_P_in(pump, P_pump_in) mxp Y&Y
1TZPef^y
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 ")%r}:0
yscale = 2, 7@l<?
(
step = 5, k':s =IXW
color = red, NXI[q'y
width = 3, [zh"x#AyI
"population of level 3 (%, rightscale)", R=M!e<'
finish set_P_in(pump, P_pump_in) [PWL<t::c
lhO2'#]i
3m=2x5{L
; ------------- 7ZsA5%s=,
diagram 3: !输出图表3 [/$N!2'5
,{KCY[}|
"Variation ofthe Fiber Length" !ni>\lZ
?WHy0x20
x: 0.1, 5 FN?3XNp.
"fiber length(m)", @x OipqoI2
y: 0, 10 d~Mg
vh'
"opticalpowers (W)", @y ^npJUa
frame +pp9d-n
hx P^i.La,
hy Uu'dv#4Iw
|=5/Rax^
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 CT*,<l-D
step = 20, 9 Cvn6{
color = blue, g_z/{1$
width = 3, ;`UecLb#
"signal output" Fo}7hab
.=<$S#x^Hb
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 _~M^ uW^l
step = 20, color = red, width = 3,"residual pump" &=Y e6 f[
^E,1V5
! set_L(L_f) {restore the original fiber length } 0m)&YFZ[(
1*UNsEr
WG5W0T_
; ------------- d8OL!Rk
diagram 4: !输出图表4 Y7SacRO
DWm SC}{.
"TransverseProfiles" F]_cbM{8/
|vu>;*K
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) _0(7GE13p
XsL#;a C
x: 0, 1.4 * r_co /um &`Ck
"radialposition (µm)", @x HOZRYIQB
y: 0, 1.2 * I_max *cm^2 6rX_-Mm6w
"intensity (W/ cm²)", @y Qh`:<KI
y2: 0, 1.3 * N_Tm PDP[5q r
frame ax|1b`XUr"
hx FWY2s(5p
hy `78V%\
bx}fj#J]En
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 \#,t O%D
yscale = 2, kWW w<cA
color = gray, yL1CZ_
width = 3, ~cqryr9
maxconnect = 1, M1!pQC_9
"N_dop (right scale)" 8;" *6vHZ
'2nqHX
D
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 N1x@-/xa|
color = red, lMifpK
maxconnect = 1, !限制图形区域高度,修正为100%的高度 Q+$Tt7/
width = 3, <@uOCRbV
"pump" ]%dnKP~
cQUC.TZ_
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 0q6I;$H
color = blue, ,k0r
maxconnect = 1, ~?Omy8#
width = 3, tE"Si<[]H$
"signal" MI#mAg<
f CcD&<%
Y+-xvx
:
; ------------- E4[}lX}
diagram 5: !输出图表5 csQfic
LE=k
"TransitionCross-sections" %[QV,fD'E
S h4wqf
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) acW'$@y9?N
uCP>y6I
x: 1450, 2050 r)T[(D'Tm-
"wavelength(nm)", @x oC|WB S
y: 0, 0.6 E]} n(
"cross-sections(1e-24 m²)", @y Nt -<W+,
frame &KC!*}<tx
hx NPjv)TN}3
hy t+TYb#Tc
X% {'<baR
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 slW3qRT\k
color = red, V'gw\mcb
width = 3, fI|[Z+"
"absorption" Qx`~g,wk8
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 %_M2N.n
color = blue, \5><3*\
width = 3, O8u3y
"emission" k#JQxLy#
0ZI(/r