(* yN6>VD{F
Demo for program"RP Fiber Power": thulium-doped fiber laser, u0Nm.--;_3
pumped at 790 nm. Across-relaxation process allows for efficient t0)<$At6J
population of theupper laser level. IzLQhDJ1
*) !(* *)注释语句 U;q];e:,=}
B9,^mE#
diagram shown: 1,2,3,4,5 !指定输出图表 T'H::^9:E
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 SUM4Di7
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 )"+2Z^1-
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 nNt1C
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 4\M.6])_
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 7U|mu~$.!
ZJ*g))k7
include"Units.inc" !读取“Units.inc”文件中内容 ]#2Y e7+
qIMA6u/
include"Tm-silicate.inc" !读取光谱数据 m3<+yz$!r
BV#78,8(
; Basic fiberparameters: !定义基本光纤参数 NnT g3:.
L_f := 4 { fiberlength } !光纤长度 T~_/Vi
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 =#gEB#$x:
r_co := 6 um { coreradius } !纤芯半径 umi5Wb<
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 y|wlq3o
]X Z-o>+,
; Parameters of thechannels: !定义光信道 Z|"p*5O,
l_p := 790 nm {pump wavelength } !泵浦光波长790nm ~@.%m"<.
dir_p := forward {pump direction (forward or backward) } !前向泵浦 UMl#D>:C<
P_pump_in := 5 {input pump power } !输入泵浦功率5W $(e#aHB
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um 0&_UH}10
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 ,\2:/>2
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 G uQ=gN
z7GTaX$d
l_s := 1940 nm {signal wavelength } !信号光波长1940nm 3jB$2: #
w_s := 7 um !信号光的半径 mE%$HZ}
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 )B,|@ynu
loss_s := 0 !信号光寄生损耗为0 @f]{>OS
jO*l3:!~ \
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 K"j_>63)
10!wqyj&
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 `K~AhlJUQ
calc Suk
begin yeDsJ/L
global allow all; !声明全局变量 ,to+oSZE
set_fiber(L_f, No_z_steps, ''); !光纤参数 D(-yjY8aG
add_ring(r_co, N_Tm); ]0hrRA`
def_ionsystem(); !光谱数据函数 |sRipWh
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 $un?0S
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 )XcOl7XLN
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 NT@;N /I
set_R(signal_fw, 1, R_oc); !设置反射率函数 _4^R9Bt
finish_fiber(); EF3Cdu{]P
end; ;4N;D
;qH O OT
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 dT,o=8fg
show "Outputpowers:" !输出字符串Output powers: )jrV#/m9
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) V,rq0xW
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) .`>y@p!
jReXyRmo({
<! )**
; ------------- A\8}|r(>9E
diagram 1: !输出图表1 2^i(gaXUQ
aaD;jxT&M|
"Powers vs.Position" !图表名称 3U_2! zF3_
qOIW(D
x: 0, L_f !命令x: 定义x坐标范围 e[hcJz!D
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 [1.+HyJ}
y: 0, 15 !命令y: 定义y坐标范围 5^^XQ?"
y2: 0, 100 !命令y2: 定义第二个y坐标范围 )iFJz/n>
frame !frame改变坐标系的设置 B&D}F=U
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) u\eEh*<7q
hx !平行于x方向网格 HRB<Y
mP@
hy !平行于y方向网格 L:@7tc.
pAT7)Ch
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 \7CGUB>L
color = red, !图形颜色 K tNY_&xd
width = 3, !width线条宽度 9k{PBAP
"pump" !相应的文本字符串标签 w*R$o
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 _a1x\,R|DB
color = blue, rtc9wu
width = 3, _%QhOY5tv"
"fw signal" +SwR+H)?
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 "I(xgx*
color = blue, BCA&mi3q
style = fdashed, &RfC"lc
width = 3, P#AW\d^"B
"bw signal" kh`"WN Nt
D*lKn62
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 K.0:C`C
yscale = 2, !第二个y轴的缩放比例 c"[cNZo
color = magenta, 1')%`~
width = 3, &Y }N|q-
style = fdashed, <_7*67{
"n2 (%, right scale)" BqT y~{)+
lv04g} W
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 |j7,Mu+
yscale = 2, 13>0OKg`#
color = red, 5k.oW=
width = 3, jbAx;Xt'=M
style = fdashed, .X;3,D[w
"n3 (%, right scale)" 4T ~}
4M2j!Sw
-PfX0y9n
; ------------- a24"yT
diagram 2: !输出图表2 .4E&/w+
t;}:waZD
"Variation ofthe Pump Power" }|pwz
cH&J{WeZa
x: 0, 10 U[ 0=L`0e
"pump inputpower (W)", @x z*!%g[3I
y: 0, 10 r8xv#r 1
y2: 0, 100 *+#8mA(
frame Ck)*&
hx ye,>A.
hy N'GeHByIT
legpos 150, 150 }n>p4W"OM
32`{7a3!=
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 ]jo1{IcI
step = 5, IhVO@KJI
color = blue, N u<_}
width = 3, I+tb[*X+
"signal output power (W, leftscale)", !相应的文本字符串标签 )% ~OH
finish set_P_in(pump, P_pump_in) :qd`zG3
xwq+j "
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 oY933i@l)P
yscale = 2, f}9zgWU
step = 5, ?j"KV_
color = magenta, PoxK{Y
width = 3, e?8HgiP-
"population of level 2 (%, rightscale)", ~Vr.J}]J
finish set_P_in(pump, P_pump_in) sTn<#l6
~T1XLu
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 n$$SNWgM
yscale = 2, o!kbK#k
step = 5, m}7iTDJR9
color = red, *%%g{
3$
width = 3, ^\4h<M
"population of level 3 (%, rightscale)", Z{]0jhUyNh
finish set_P_in(pump, P_pump_in) 3h$6t7=C
.y!<t}
1;Ou7T9w
; ------------- E2R&[Q"%
diagram 3: !输出图表3 _( {hc+9p
U:^PC
x`
"Variation ofthe Fiber Length" PHZ0P7
'"SEw
w
x: 0.1, 5 21K>`d\
"fiber length(m)", @x wl#@lOv-P
y: 0, 10 \hDlTp}
"opticalpowers (W)", @y
<G|(|E1
frame t*Sa@$p
hx S4Y&
hy Ya3C#=
:~Wrf8UQ
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 K,+LG7ec
step = 20, &$`P,i 1)
color = blue, bDL,S?@
width = 3, kmP]SO?tx
"signal output" 7z JRJ*NB
_>(^tCo
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 cW@Zd5&0S
step = 20, color = red, width = 3,"residual pump" 6dabU*
(^TF%(H
! set_L(L_f) {restore the original fiber length } 9K{%vK
hI]Hp3S
}wr{W:j
; ------------- k/#&qC>]
diagram 4: !输出图表4 _(%d(E2?
hYPl&^
"TransverseProfiles" ObVGV
KL1/^1
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) 8xMEe:}V
n}F&1Z
x: 0, 1.4 * r_co /um U>=Z-
T
"radialposition (µm)", @x *W,]>v0%T
y: 0, 1.2 * I_max *cm^2 %b&".mN
"intensity (W/ cm²)", @y LlX{#R
y2: 0, 1.3 * N_Tm !h"Kq>9T
frame Rdvk
ml@@
hx q rJ`1
hy G&D7a/G\
;RDh~EV
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 #lmB
AL~3
yscale = 2, *scVJ
color = gray, q)X$^oE!6
width = 3, IUE~_7
maxconnect = 1, "c3Grfoz
"N_dop (right scale)" S%bCyK%p
K2M~-S3
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 D!{Y$;
color = red, 1C}NQ!.
maxconnect = 1, !限制图形区域高度,修正为100%的高度 sqEI4~514
width = 3, R;s?$;I
"pump" +giyX7BPJ
q)LMm7
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 %HGD;_bhI
color = blue, UK595n;P
maxconnect = 1, 6t>.[Y"v
width = 3, ii[F]sR\
"signal" d"}k!
0m
xSktg]u Se
qaiNz S@q
; ------------- Isvx7$Vu+
diagram 5: !输出图表5 $ 7O}S.x
/Y9>8XSc
"TransitionCross-sections" !}YAdZJ
KK&rb~
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) aZ2!i
%eX{WgH
x: 1450, 2050 h].<t&
"wavelength(nm)", @x |jI#"LbF
y: 0, 0.6 '8Q]C*Z
"cross-sections(1e-24 m²)", @y pWy=W&0~qf
frame a|%J=k>>
hx ykl
.1(
hy "@%7 -nu
+]*zlE\N`
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 .<jr0,i
color = red, ?u{~>
width = 3, v25R_""~
"absorption" iP
=V8g?L
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 ockTe5U
color = blue, N >FKy'.gk
width = 3, ]JCvyz
H
"emission" FG6h,7+
DgUT5t1