(* SBTPTb
Demo for program"RP Fiber Power": thulium-doped fiber laser, v
dU%R\
pumped at 790 nm. Across-relaxation process allows for efficient G$C}?"l
population of theupper laser level. uFZ~
*) !(* *)注释语句 il12T`a
!tU'J"Zy
diagram shown: 1,2,3,4,5 !指定输出图表 ;o[rQ6+
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 OUzR@$
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 bpW!iY/q3
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 T"?Y5t`(
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 )CLf;@1
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 O~ 27/
G}VDEC
include"Units.inc" !读取“Units.inc”文件中内容 `?|Rc
:\b|dvI<
include"Tm-silicate.inc" !读取光谱数据 ~^&R#4J
$Jp~\_X
; Basic fiberparameters: !定义基本光纤参数 :&qhJtGo
L_f := 4 { fiberlength } !光纤长度 o)&"Rf
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 yHNuU)Ft
r_co := 6 um { coreradius } !纤芯半径 O$qtq(Q%
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 jH>8bXQqZ
H\E7o"m
; Parameters of thechannels: !定义光信道 ([R")~`(l2
l_p := 790 nm {pump wavelength } !泵浦光波长790nm _A{+H^,
dir_p := forward {pump direction (forward or backward) } !前向泵浦 f#$|t>
P_pump_in := 5 {input pump power } !输入泵浦功率5W vT c7an6fy
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um ;F5"}x
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 s\gp5MT
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 oQT2S>cm^
@vRwzc\
l_s := 1940 nm {signal wavelength } !信号光波长1940nm iA'As%S1
w_s := 7 um !信号光的半径 >;4!O%F
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 XA<ozq'
loss_s := 0 !信号光寄生损耗为0 j13DJ.xu
:+ Jt^
6
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 u7s"0f`
#G#g|x*V
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 Icx7.Y
calc Nu^p
begin |sIr?RL{C
global allow all; !声明全局变量 +q{[\#t5
set_fiber(L_f, No_z_steps, ''); !光纤参数 $6h*lT<
add_ring(r_co, N_Tm); `G!M>h@
def_ionsystem(); !光谱数据函数 c8Z A5|
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 V.6)0fKZW
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 mR%FqaN_
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 4^*,jS-9g}
set_R(signal_fw, 1, R_oc); !设置反射率函数 UKtSm%\
finish_fiber(); BT,b-=
;J-
end; W.I\J<=V
y('k`>C
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 h3!$r~T!a:
show "Outputpowers:" !输出字符串Output powers: BRS#Fl:
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) m$wlflt
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) IP3E9z_L
!GwL,)0@^
SeEw.;Xw
; ------------- }Fa%%}
diagram 1: !输出图表1 ,Na^%A@TJ
8wK ~
i
"Powers vs.Position" !图表名称 S6xgiem
?o*I9[Z)
x: 0, L_f !命令x: 定义x坐标范围 PuL<^aJ
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 e6E?t[hEeS
y: 0, 15 !命令y: 定义y坐标范围 ;_O)p,p
y2: 0, 100 !命令y2: 定义第二个y坐标范围 vLT0ETHg6
frame !frame改变坐标系的设置 upy\gkpnGO
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) b2C`g]ibQ
hx !平行于x方向网格 By)u-)g9
hy !平行于y方向网格 VT%:zf
(MLwQiop
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 k@dN$O%p
color = red, !图形颜色 ][&9]omB
width = 3, !width线条宽度 (R!hj w~
"pump" !相应的文本字符串标签 ?D`T7KSe~D
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 U_B((Z(g
color = blue, B<?wh0
width = 3, UUc8*yU)
"fw signal" )h{ ]k=
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 Jh&~ToF!
color = blue, )%d*3\Tsd
style = fdashed, em{(4!W>
width = 3, r^Zg-|gr
"bw signal" 47K1$3P
"N?+VkZEv
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 8s{?v&p
yscale = 2, !第二个y轴的缩放比例 l{j~Q^U})
color = magenta, v'!a\b`9
width = 3, Ho;X4lo[j
style = fdashed, PwB1]p=
"n2 (%, right scale)" <{5EdX
*)M49a*UD
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 v59dh (:`Z
yscale = 2, )3Z ^h<"j
color = red, (Qo I<j""
width = 3, aJ") <_+
style = fdashed, 6Orum/|h
"n3 (%, right scale)" z`UhB%-?
).^}AFta
G3G#ep~)vC
; ------------- jRSUp
E8
diagram 2: !输出图表2 a2'^8;U*_
C?Bl{4-P}*
"Variation ofthe Pump Power" w-wV3Q6X
eq(am%3~
x: 0, 10 Qx;\USv
"pump inputpower (W)", @x E:9"cxx
y: 0, 10 #P
l~R
y2: 0, 100 [I!6PGx
frame =U%Rvm
hx bef_rH@`
hy m< _S_c
legpos 150, 150 ojyIQk+
{M-YHX>*;g
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 ^?7`;/
step = 5, Dn&D!B
color = blue, ![]``g2
width = 3, V-<GT?
"signal output power (W, leftscale)", !相应的文本字符串标签 h$4Hw+Yxs]
finish set_P_in(pump, P_pump_in) Zjbc3M5
[<DZ*|+
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 R"
;xvo*
yscale = 2, P"B0_EuR<T
step = 5, Ag{iq(X
color = magenta, 3|.um_
width = 3, ~HOy:1QhE=
"population of level 2 (%, rightscale)", 8GvJ0Jq}U
finish set_P_in(pump, P_pump_in) r E}%KsZ
9E>xIJ@J2T
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 u%w`:v7Yo(
yscale = 2, =c/wplv*
step = 5, N[<\>Ps|u
color = red, D6>HN[D"
width = 3, ma"3qGy
"population of level 3 (%, rightscale)", cSXwYZDx?
finish set_P_in(pump, P_pump_in) >-H{Z{VDd
S H!
ZosP(Tdq
; ------------- G6T_O
diagram 3: !输出图表3 c-B
cA
.zi_[
"Variation ofthe Fiber Length" ^J$2?!~
DRcNdO/1E
x: 0.1, 5 N<~t3/Nm
"fiber length(m)", @x -i0~]*
y: 0, 10 q@[QjGj@
"opticalpowers (W)", @y z^'gx@YD*v
frame Z'"tB/=W
hx !\7!3$w'8,
hy |Y?HA&
BO;6
u^[
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 +j< p
\Kn>
step = 20, wK?vPS
color = blue, 7S}_F^
width = 3, 3B84^>U<
"signal output" ~ _/(t'9
`{dm;j5/y
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 03q5e
step = 20, color = red, width = 3,"residual pump" A"L&a
l$i
`aciXlqIF
! set_L(L_f) {restore the original fiber length } 59h)-^!
ML|FQ
`@`CG[-9
; ------------- be.*#[
diagram 4: !输出图表4 Y$"O
VC
<J)]mh dm
"TransverseProfiles" E7rDa1
hb}+A=A=+
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) U/!TKic+
k$blEa4
x: 0, 1.4 * r_co /um F(>Np2oi6
"radialposition (µm)", @x ,U2*FZ["
y: 0, 1.2 * I_max *cm^2 8WXQOo8
"intensity (W/ cm²)", @y :tV*7S=)
y2: 0, 1.3 * N_Tm a<^ v(r
frame t'n pG}`tE
hx nLXlU*ES
hy LRL,m_gt
hgPa6Kd
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 pR=@S>!|
yscale = 2, qLD
?juas
color = gray, IxY|>5z
width = 3, uvkz'R=
maxconnect = 1, 0XE4<U
"N_dop (right scale)" l9{hq/V
i@*{27t
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 Y]'Z7<U}*E
color = red, rNXQf'*I
maxconnect = 1, !限制图形区域高度,修正为100%的高度 +^60T$
width = 3, ag [ZW
"pump" j eoz*Dz
o#3ly-ht
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 ^aItoJq
color = blue, )_HA>o_?C:
maxconnect = 1, E(>=rD /+
width = 3, ,Vc6Gwm
"signal" 6'k<+IR
9ijfRqI=x
J,'M4O\S
; ------------- mE+*)gb:Rd
diagram 5: !输出图表5 em%4Ap
fK>L!=Q
"TransitionCross-sections" W=N+VqK
fDv2JdiU
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) @LF,O}[2J
^O?/yV?4c
x: 1450, 2050 <sb~ ^B
"wavelength(nm)", @x 8{^kQ/]'|
y: 0, 0.6 u-QB.iQ+s
"cross-sections(1e-24 m²)", @y ,0M_Bk"
frame 6AAz
hx |3('
N#|
hy Vh|*p&
t%d Z-Ym
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 LBw1g<&
color = red, @ a! #G
width = 3, p$S*dr
"absorption" Z9v31)q(
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 g2+2%6m0
color = blue, 3#LlDC_WC
width = 3, qU \w=
"emission" q}3`|'3
5%Y3 Kwyy