切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 2490阅读
    • 1回复

    [原创]RP Fiber Power仿真设计掺铥光纤激光器代码详解 [复制链接]

    上一主题 下一主题
    离线小火龙果
     
    发帖
    932
    光币
    2176
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-05-28
    (* CA ,2&v"  
    Demo for program"RP Fiber Power": thulium-doped fiber laser, a-9sc6@  
    pumped at 790 nm. Across-relaxation process allows for efficient >%85S>e  
    population of theupper laser level. #Z}YQ $g  
    *)            !(*  *)注释语句 oC(.u?  
    C40W@*6S2  
    diagram shown: 1,2,3,4,5  !指定输出图表 2jyxP6t  
    ; 1: "Powersvs. Position"     !分号是注释;光纤长度对功率的影响 {$v>3FG  
    ; 2:"Variation of the Pump Power"  !泵浦光功率变化对信号输出功率的影响 Y2(,E e2  
    ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 i[PksT#p  
    ; 4:"Transverse Profiles"             !横向分布,横坐标为半径位置 |/!RN[<   
    ; 5:"Transition Cross-sections"    !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 v|2+7N:[;  
    Ol*|J  
    include"Units.inc"         !读取“Units.inc”文件中内容 8lF:70wia  
    r1.OLn?C  
    include"Tm-silicate.inc"    !读取光谱数据 'PdUSv|lH  
    r& nE M6  
    ; Basic fiberparameters:    !定义基本光纤参数 >!#or- C  
    L_f := 4 { fiberlength }      !光纤长度 i^V3u  
    No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 JiRfLB  
    r_co := 6 um { coreradius }                !纤芯半径 $H1igYc  
    N_Tm := 100e24 { Tmdoping concentration }  !纤芯Tm离子掺杂浓度 Tnb5tHjnh  
    X/23 /_~L`  
    ; Parameters of thechannels:                !定义光信道 &u~%5;  
    l_p := 790 nm {pump wavelength }                !泵浦光波长790nm xWKUti i  
    dir_p := forward {pump direction (forward or backward) }   !前向泵浦 > @q4Uez  
    P_pump_in := 5 {input pump power }                    !输入泵浦功率5W :bz;_DZP  
    w_p := 50 um {radius of pump cladding }               !包层泵浦相应的半径 50um }*56 DX  
    I_p(r) := (r <=w_p) { pump intensity profile }          !泵浦光强度分布 ~0 Mw\p%}  
    loss_p := 0 {parasitic losses of pump wave }           !泵浦光寄生损耗为0 zCSLV>.F  
    Io<L! =>  
    l_s := 1940 nm {signal wavelength }                   !信号光波长1940nm {EVHkQ+o  
    w_s := 7 um                          !信号光的半径  q #X[oVq  
    I_s(r) := exp(-2 *(r / w_s)^2)            !信号光的高斯强度分布 0mI4hy  
    loss_s := 0                            !信号光寄生损耗为0 WRN}>]NgQ  
    ;f2<vp;U  
    R_oc := 0.70 {output coupler reflectivity (right side) }      !输出耦合反射率 M.KXDD#O  
    L$=a,$  
    ; Function for defining themodel:   !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 ?^{Ey[)'(  
    calc C<N7zMwT  
      begin tMr$N[@r  
        global allow all;                   !声明全局变量 :47"c3J  
        set_fiber(L_f, No_z_steps, '');        !光纤参数 ]0 ;,M  
        add_ring(r_co, N_Tm); LgA> ,.  
        def_ionsystem();              !光谱数据函数 $"`e^J9!!  
        pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p);  !泵浦光信道 D?r% Y  
        signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward);      !前向信号光信道 QykHB k  
        signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward);    !后向信号光信道 sW!MVv  
        set_R(signal_fw, 1, R_oc);                                 !设置反射率函数 A|BN >?.t  
        finish_fiber();                                   QHe:  
      end; -A1:S'aN-  
    N#7_)S[@0l  
    ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 LH>h]OTQF  
    show "Outputpowers:"                                   !输出字符串Output powers: *|)O  
    show"pump:     ", P_out(pump):d3:"W"  !输出字符串pump:和计算值(格式为3个有效数字,单位W) W29GM -,K  
    show"signal:   ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) v#$}3+KVC  
    "Kf4v|6;  
    D0 rqte  
    ; ------------- {fu[&@XV  
    diagram 1:                   !输出图表1 09Y:(2Qri  
    eEg> EI_U  
    "Powers vs.Position"          !图表名称 r8[Ywn <u  
    >I9|N}I  
    x: 0, L_f                      !命令x: 定义x坐标范围 jQ5FvuNOy  
    "position infiber (m)", @x      !x轴标签;@x 指示这些字符串沿坐标轴放置 *AA78G|  
    y: 0, 15                      !命令y: 定义y坐标范围 8rSu,&<  
    y2: 0, 100                    !命令y2: 定义第二个y坐标范围 $EPDa?$*  
    frame          !frame改变坐标系的设置 >2;KPV0H  
    legpos 600, 500  !图行在图表窗口中的位置(相对于左上角而言) R!7a;J}  
    hx             !平行于x方向网格 ^uIKwql  
    hy              !平行于y方向网格 hV"2L4/E  
    zjwo"6c>  
    f: P(pump, x),    !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 "gq _^&  
      color = red,  !图形颜色 l[{Ci|4  
      width = 3,   !width线条宽度 4I3)eS%2  
      "pump"       !相应的文本字符串标签 2%t!3F:  
    f: P(signal_fw, x),  !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 tq5o  
      color = blue,     t[x[X4  
      width = 3, 4mF=A$Q_/  
      "fw signal" `;#I_R_K  
    f: P(signal_bw, x),   !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 K<7 Db4H  
      color = blue, dF0:'y  
      style = fdashed, K@;ls  
      width = 3, &}vc^io  
      "bw signal" cUZ^,)8 Z  
    d15E$?ZLH  
    f: 100 * n(x, 2),    !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 r;OE6}L>  
      yscale = 2,            !第二个y轴的缩放比例 / lN09j  
      color = magenta, cUM#|K#6  
      width = 3, F` ]s  
      style = fdashed, ?iNihE  
      "n2 (%, right scale)" _c6 zzGtH  
    C~:!WRCz  
    f: 100 * n(x, 3),          !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 k0!D9tk  
      yscale = 2, ru1FJ{n  
      color = red, 9/LJ tM  
      width = 3, d)jX%Z$LC  
      style = fdashed, !FJ_\UST0  
      "n3 (%, right scale)" / S)&dN`  
    aFwfF^\(|,  
    %dA7`7j  
    ; ------------- 0Kenyn4?  
    diagram 2:                    !输出图表2 [bJAh ` I  
    AC/82$  
    "Variation ofthe Pump Power" Xu&4|$wB+  
    qf6}\0   
    x: 0, 10 cy4V*zwp  
    "pump inputpower (W)", @x O8S"B6?$~'  
    y: 0, 10 Y4n; [nHQ(  
    y2: 0, 100 pM7xnL4  
    frame @ei:/~y3  
    hx OPwO`pN  
    hy t"Djh^=y  
    legpos 150, 150 RVb}R<yU+  
    bLi>jE.%.  
    f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 ~`x<;Ts  
      step = 5, ](H vx  
      color = blue, BFyVq  
      width = 3, +{S^A)  
      "signal output power (W, leftscale)",     !相应的文本字符串标签 _Vxk4KjP5  
      finish set_P_in(pump, P_pump_in) rJl'+Ae9N|  
    )t$|'c}  
    f: (set_P_in(pump,x); 100 * n_av(2)),   !改变泵浦信号功率对能级2上激活粒子占比的影响 )x*pkE**c  
      yscale = 2, YKs^aQm#  
      step = 5, Ws(#ThA  
      color = magenta, DV!) n 6  
      width = 3, ZICcZG_y  
      "population of level 2 (%, rightscale)", ,zY!EHpx  
      finish set_P_in(pump, P_pump_in) +A,t9 3:k  
    ;l6tZ]-"  
    f: (set_P_in(pump,x); 100 * n_av(3)),   !改变泵浦信号功率对能级3上激活粒子占比的影响  a7UfRG  
      yscale = 2, /IN/SZx  
      step = 5, ^~%z Plv  
      color = red, 3xnu SOdh  
      width = 3, oZ(T`5  
      "population of level 3 (%, rightscale)", u2xb^vu  
      finish set_P_in(pump, P_pump_in) \aG:l.IM0  
    Qv@Z#  
    +k4 SN  
    ; ------------- kf<5`8  
    diagram 3:                         !输出图表3 bqDHLoB\1  
    Fv6<Cz6L  
    "Variation ofthe Fiber Length" ndIU0kq3  
    ]h$,=Qf hD  
    x: 0.1, 5 V+kU^mI  
    "fiber length(m)", @x 7!E?(3$#"  
    y: 0, 10 8?r RLM4  
    "opticalpowers (W)", @y *!*J5/ b  
    frame s) vHLf4T  
    hx q0hg0 DC[;  
    hy C,xM) V^a  
    2nRL;[L*.  
    f: (set_L(x);P_out(signal_fw)),     !改变光纤长度对信号光输出功率的影响 z@0*QZ.y 1  
      step = 20,             v*7lJNN.  
      color = blue, e/;chMCq  
      width = 3, OxraaN`  
      "signal output" ~D)!zQkD  
    ?>W4*8 (  
    ;f: (set_L(x);P_out(pump)),                     !改变光纤长度对泵浦信号输出功率的影响 p ft6 @ 'q  
       step = 20, color = red, width = 3,"residual pump" zU'\r~c  
    cR1dGNcp/@  
    ! set_L(L_f) {restore the original fiber length } bVc;XZwI  
    m18If  
    9s-op:5  
    ; ------------- kgvB80$4  
    diagram 4:                                  !输出图表4 8@|rB3J  
    /i]!=~\qFs  
    "TransverseProfiles" siHS@S  
    ;$y(Tvd;  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) w-%H\+J  
    q1Si*?2W  
    x: 0, 1.4 * r_co /um Oop;Y^gG}  
    "radialposition (µm)", @x oO4 Wwi  
    y: 0, 1.2 * I_max *cm^2 bV#U&)|  
    "intensity (W/ cm&sup2;)", @y ^ )Lh5   
    y2: 0, 1.3 * N_Tm K`nI$l7hg  
    frame ?5#Ng,8iT  
    hx pH%cbBm  
    hy uLsGb=m%b  
    >Udb*76 D  
    f: N_dop(1, x * um,0),      !掺杂浓度的径向分布 *@q+A1P7@  
      yscale = 2, d))(hk:  
      color = gray, lGI5  
      width = 3, o?f7_8fG  
      maxconnect = 1, xP.B,1\X  
      "N_dop (right scale)" 28;D>6c  
    Vs~^r>  
    f: I(pump, -1, x *um, 0) * cm^2,    !泵浦光沿光纤径向的强度分布 B8^tIq  
      color = red, 5O Ob(  
      maxconnect = 1,           !限制图形区域高度,修正为100%的高度 p1Q[c0NMK  
      width = 3, iAX\F`  
      "pump" U n#7@8,  
    6rEt!v #K[  
    f: I(signal_fw, -1,x * um, 0) * cm^2,  !信号光沿光纤径向的强度分布 @+ VvZc2Y  
      color = blue, 2roPZj  
      maxconnect = 1, nu] k<^I5|  
      width = 3, 3,bA&c3  
      "signal" FX"%  
    ,P ?TYk  
    W>Y8 u8  
    ; ------------- K h9$  
    diagram 5:                                  !输出图表5 PXcpROg56  
    eB78z@  
    "TransitionCross-sections" TR,,=3n  
    C+Wb_  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) j=)Cyg3_%  
    t@1e9uR  
    x: 1450, 2050 )^uLZMNaI  
    "wavelength(nm)", @x c h<Fi%)  
    y: 0, 0.6 cve(pkl  
    "cross-sections(1e-24 m&sup2;)", @y 0\g;^Zpi  
    frame "_ b Sy  
    hx YNbs* i&  
    hy hi>Ii2T  
    /d5_-AB(v  
    f: s12_Tm(x * nm) /1e-24,      !Tm3+吸收截面与波长的关系 hA?j"y0?  
      color = red, `LnLd;Z  
      width = 3, .b]g# Du=  
      "absorption" l!\C"f1o,  
    f: s21_Tm(x * nm) /1e-24,  !Tm3+发射截面与波长的关系 ](NSpU|*  
      color = blue, tnbaU%;|J  
      width = 3, 9U6y<X  
      "emission" FpE83}@".w  
    9u1)Kr=e  
     
    分享到
    离线lileisgsz
    发帖
    14
    光币
    69
    光券
    0
    只看该作者 1楼 发表于: 2021-09-28
    感谢,视频上有点看不清楚