(* gJBw6'Z
Demo for program"RP Fiber Power": thulium-doped fiber laser, jT=fq'RK
pumped at 790 nm. Across-relaxation process allows for efficient ^2C
\--=;
population of theupper laser level. R1vuf*A5,
*) !(* *)注释语句 H[2W(q6
.OcI.1H [
diagram shown: 1,2,3,4,5 !指定输出图表 $|m'~AmI
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 4@r76v}{
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 .s-*aoj
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 {R8)DK
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 Z;~ 7L*|
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 \=uD)9V
OF/hD2V
include"Units.inc" !读取“Units.inc”文件中内容 +$$5Cv5#<&
+vt?3i\^.
include"Tm-silicate.inc" !读取光谱数据 N$N7aE$
9";qR,
; Basic fiberparameters: !定义基本光纤参数 pv8vW'G\E
L_f := 4 { fiberlength } !光纤长度 oy\U\#k
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 ]w_JbFmT
r_co := 6 um { coreradius } !纤芯半径 H5Bh?mw2
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 yb6gYN
%l[]n;*$
; Parameters of thechannels: !定义光信道 c2Wp 8l
l_p := 790 nm {pump wavelength } !泵浦光波长790nm "7J38Ej\
dir_p := forward {pump direction (forward or backward) } !前向泵浦 -% \LW1
P_pump_in := 5 {input pump power } !输入泵浦功率5W ,!dVhG#
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um x%W%
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 -QK- w>
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 Ug )eyu
4s6,`-
l_s := 1940 nm {signal wavelength } !信号光波长1940nm S!66t?vHB
w_s := 7 um !信号光的半径 kMZo7 y
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 5,J.$Sax
loss_s := 0 !信号光寄生损耗为0 uCoy~kt292
YI>9C 76L
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 \aN7[>R.Q
t:"%d9]
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 35JVF*z
calc dU-nE5
begin RFPcH8-u7
global allow all; !声明全局变量 Qs ysy
set_fiber(L_f, No_z_steps, ''); !光纤参数 DE+k'8\T
add_ring(r_co, N_Tm); qOv`&%txW
def_ionsystem(); !光谱数据函数 Y`."=8R~
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 X?o6=)SC|
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 G
> t
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 mt~E&Z(A
set_R(signal_fw, 1, R_oc); !设置反射率函数 .bUj
finish_fiber(); PD~vq^@Q
end; wLzV#8>
86);0EBX
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 =IKgi-l*
show "Outputpowers:" !输出字符串Output powers: />wE[`
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) .F N
6/N\
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) =]S,p7* 7
+8Y|kC{9"
.03Rp5+v
; ------------- &?}A/(#
diagram 1: !输出图表1 5O;D\M{>
my0iE:
"Powers vs.Position" !图表名称 nok-![
@}2EEo#
x: 0, L_f !命令x: 定义x坐标范围 >pp#>{}
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 v#EFklOP
y: 0, 15 !命令y: 定义y坐标范围 OZA^L;#>
y2: 0, 100 !命令y2: 定义第二个y坐标范围 E 02Y,C
frame !frame改变坐标系的设置 f!H/X%F
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) %|j8#09
hx !平行于x方向网格 KcUR
/o5K
hy !平行于y方向网格 %=$Knc_!T^
vqZBDQ0
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 n5z|@I`S_
color = red, !图形颜色 q\-P/aN_
width = 3, !width线条宽度 =K_&@|f+B
"pump" !相应的文本字符串标签 Wt=\hixj-
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 G;d3.ml/aZ
color = blue, FmhAUe
width = 3, $ w+.-Tr
"fw signal" @1xIph<z
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 t1G__5wp
color = blue, =k>fW7e
style = fdashed, YrYmPSb=
width = 3, `sDLxgwI
"bw signal" =dsEt\
j
iXq*EZb"R
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 OL%}C*Zq
yscale = 2, !第二个y轴的缩放比例 MiR$N
color = magenta, wWSo+40
width = 3, ns*:mGh
style = fdashed, 3 qJ00A
"n2 (%, right scale)" 81C;D`!K
@biU@[D
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 9aNOfs8(
yscale = 2, Ql%B=vgKL
color = red, {> <1K6t
width = 3, K|l}+:k
style = fdashed, }+Q4s]
"n3 (%, right scale)" J_fs}Y1q\
(z8;J>7
JU.!<
; ------------- ; O(M l }z
diagram 2: !输出图表2 uE<8L(*B
\<\H1;=.@'
"Variation ofthe Pump Power" 'MBXk2?b
a
9{:ot8,
x: 0, 10 8};kNW^2m
"pump inputpower (W)", @x =<7z
:]
y: 0, 10 wlsx|
y2: 0, 100 seRf q&
frame cy)-Rfg
hx lSlZ^.&
hy QqRF?%7q"q
legpos 150, 150 I$p1^8~L
0kNKt(_
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 ck%YEMs
step = 5, M@P%k`6C
color = blue, ^y qRa&
width = 3, !h|,wq]k
"signal output power (W, leftscale)", !相应的文本字符串标签 MBU|<tc
finish set_P_in(pump, P_pump_in) @x!,iT
_x1W\#
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 qp/1tC`
yscale = 2, bJ2>@|3*
step = 5, vz>9jw:Y
color = magenta, c;Tp_e@
width = 3, U\B9Ab
"population of level 2 (%, rightscale)", 9(OeH7
finish set_P_in(pump, P_pump_in) ]jC{o,?s
HfgTc
h
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 ot[ZFF\
yscale = 2, |JF,n~n
step = 5, /]'&cD 1
color = red, J(@" 7RX
width = 3, qg=`=]j
"population of level 3 (%, rightscale)", 2oV6#!{Z
finish set_P_in(pump, P_pump_in) 1^*ogMe
J]XLWAM
TWGn:mi
; ------------- iE
HWD.u
diagram 3: !输出图表3 w8R7Ksn(
C?>d$G8
"Variation ofthe Fiber Length" =0]K(p,
yP"}(!~m
x: 0.1, 5 axph]o@ y@
"fiber length(m)", @x G4*&9Wo
y: 0, 10 8s2y!pn7Q
"opticalpowers (W)", @y r7g@(K
frame NK/y,f6
hx LKp;sV
hy #n{4f1TZ
Anu:
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 6vAZLNG3
step = 20, 9aLd!PuTN
color = blue,
ar\|D\0V
width = 3, =pi,]m
"signal output" )Sb-e(sl
`ovMfL.u
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 2 G2+oS
?
step = 20, color = red, width = 3,"residual pump" jT$J~MpHh
p7-\a1P3
! set_L(L_f) {restore the original fiber length } 3IQI={:k|D
xWXLk )A
%a
WRXW@c
; ------------- <=GZm}/]N
diagram 4: !输出图表4 1uN;JN
`_
.=Oww
"TransverseProfiles" {[tmz;C
X>yDj]*4P
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) ukEJ D3i
/7\q#qIm:
x: 0, 1.4 * r_co /um 035jU '
"radialposition (µm)", @x -K?lhu
y: 0, 1.2 * I_max *cm^2 oF>`>
"intensity (W/ cm²)", @y ,'HjL:r
y2: 0, 1.3 * N_Tm qhvT,"
frame B
E8_.>
hx WwTl|wgvyI
hy HQ9tvSc
EK=0oy[
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 '_4apyq|
yscale = 2, F7O*%y.';
color = gray, 8)?&eE'
width = 3, CF','gPnc
maxconnect = 1, G4:\6fu
"N_dop (right scale)" 3%(r,AD
%n9ukc~$p
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 !ITM:%
color = red, 1c#\CO1l
maxconnect = 1, !限制图形区域高度,修正为100%的高度 4hxP`!<
width = 3, )'f=!'X
"pump" ejyx[CF
Hy\q{
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 (nq""kO6'
color = blue, s<# BxN
maxconnect = 1, G\MeJSt*
width = 3, tjRwbnT"
"signal" ElpZzGj+
%La7);SeY
%G2g
@2
; ------------- $t^Td<
diagram 5: !输出图表5 TA/hj>rV
H
$Az,-P
"TransitionCross-sections" *5oQZ".vA*
e#k rr
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) 2HBey
3bezYk
x: 1450, 2050 @]#[TbNo
"wavelength(nm)", @x !y~nsy:&7x
y: 0, 0.6 OET/4(C
"cross-sections(1e-24 m²)", @y qF$y
p>|#
frame ^_\m@
hx /D^ g"
hy F%$ q]J[
tlD^"eq4:
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 NY<qoV
color = red, t^K Qv~
width = 3, FO[ s;dmzu
"absorption" oKGF'y?A>
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 @.a59kP8X
color = blue, *rw6?u9I
width = 3, c-&Q_lB
"emission" ,7s+-sRG
Tim/7*vx