(* p3{x <AO/
Demo for program"RP Fiber Power": thulium-doped fiber laser, (X0`1s
pumped at 790 nm. Across-relaxation process allows for efficient d%S=$}o
population of theupper laser level. <=#lRZW[z
*) !(* *)注释语句 8 /5sv
+"TI_tK,S
diagram shown: 1,2,3,4,5 !指定输出图表 qr7 X-[&
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 z(c@(UD-_
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 &?}kL=
h
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 3(cU)
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 bEoB;]
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 `%KpTh
bS_y_9K
include"Units.inc" !读取“Units.inc”文件中内容 :|*Gnu
c,+L +
include"Tm-silicate.inc" !读取光谱数据 |G|*
}wa}hIqx
; Basic fiberparameters: !定义基本光纤参数 V:nMo2'hb
L_f := 4 { fiberlength } !光纤长度 GhSL%y
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注
muK'h`
r_co := 6 um { coreradius } !纤芯半径 U)O?|
VN^o
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 5bu[}mJ
/k4^&
; Parameters of thechannels: !定义光信道 9~LpO>-
l_p := 790 nm {pump wavelength } !泵浦光波长790nm `@ VM<av
dir_p := forward {pump direction (forward or backward) } !前向泵浦 4*@G&v?n
P_pump_in := 5 {input pump power } !输入泵浦功率5W BXQ\A~P\
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um L:|X/c9r[
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 h(+m<J
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0
c4!c_a2pS
mq|A8>g
l_s := 1940 nm {signal wavelength } !信号光波长1940nm &hSnB~hi
w_s := 7 um !信号光的半径 {<''OwQF~+
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 3D 4]yR5
loss_s := 0 !信号光寄生损耗为0 tEpIyC
k;"R y8[k
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 =8$(i[;6w
7 K;'7
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行
L@g Q L
calc c<JM1
begin wHBHkz
global allow all; !声明全局变量 P;HVL flu
set_fiber(L_f, No_z_steps, ''); !光纤参数 5WtQwN~
add_ring(r_co, N_Tm); i/C
-{+}U
def_ionsystem(); !光谱数据函数 l`~a}y "n
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 CYTuj>Ww
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 Z=e[
!c
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 Qwp\)jVi
set_R(signal_fw, 1, R_oc); !设置反射率函数 MHpL$g=5_
finish_fiber(); gLXvw]
end; FthXFxwx$
q>D4ma^
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 Y1yvI
show "Outputpowers:" !输出字符串Output powers: &2P:A
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) Hm.&f2|(
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) "2vNkO##
)DklOEO
.NNcc4+
; ------------- hX'z]Am<
diagram 1: !输出图表1 n !CP_
4cErk)F4
"Powers vs.Position" !图表名称 c|R3,<Q]
;S{Ld1;
x: 0, L_f !命令x: 定义x坐标范围 K8yyxJ
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 0%qctZy
y: 0, 15 !命令y: 定义y坐标范围 k
Nf!j
y2: 0, 100 !命令y2: 定义第二个y坐标范围 :Z*02JwK
frame !frame改变坐标系的设置 NXWIE4T>*^
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) YQB]t=Ha
hx !平行于x方向网格 w ufKb.4`
hy !平行于y方向网格 ,,wyydG
1=/MT#d^?
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 9m#H24{V'
color = red, !图形颜色 69<rsp(p
width = 3, !width线条宽度 pT_e;,KW
U
"pump" !相应的文本字符串标签 ![X.%
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 kDceBs s
color = blue, "PDSqYA
width = 3, )z4kP09
"fw signal" KH@) +Rj
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 yoA*\V
color = blue, 3' :[i2[
style = fdashed, qu#@F\gX
width = 3, S#0|#Z5qD
"bw signal" ^RFmRn
u{E^<fW]
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 e G*s1uQl
yscale = 2, !第二个y轴的缩放比例 jQK2<-HZ3
color = magenta, t+4%,n f_1
width = 3, #`6OC)1J
style = fdashed, 1
Q0Yer
"n2 (%, right scale)" /O(;~1B
31o7R &v
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 h.s<0.
yscale = 2, 5x1jLPl'
color = red, \A ~I>x
width = 3, BB73'W8y
style = fdashed, D!D%.
"n3 (%, right scale)" ~_ l:b
WE Svkm;
m?R+Z6c[
; ------------- EK- bvZ
diagram 2: !输出图表2 t&Y^W <
|)P;%Fy9
"Variation ofthe Pump Power" n.H`1@
$Bwvw)(%
x: 0, 10 yn ?U7`V
"pump inputpower (W)", @x ~E:/oV:4 >
y: 0, 10 ?H7p6mu
y2: 0, 100 5-QvQ&eH.
frame 3z/O`z
hx <&m
hy j"$b%|
legpos 150, 150 I}Gl*@K&O
Nno={i1jk
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 *}WqYqOow
step = 5, dU04/]modD
color = blue, '?!<I
width = 3, nrD=[kc!w
"signal output power (W, leftscale)", !相应的文本字符串标签 iNrmhiql
finish set_P_in(pump, P_pump_in) ewff(e9
fS$Yl~-m?
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 pcxl2I
yscale = 2, O [ ; 6E
step = 5, 1.OXkgh
color = magenta, o _,$`nEJ
width = 3, ABYW1K=
"population of level 2 (%, rightscale)", N@`9 ~JS
finish set_P_in(pump, P_pump_in) LF,c-Cv!jL
~(doy@0M
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 bA9dbe
yscale = 2, Ei(`gp
step = 5, '~6CGqU*
color = red, >a]
s
width = 3, MS^hsUj}
"population of level 3 (%, rightscale)", PT*@#:MA
finish set_P_in(pump, P_pump_in) O7_NXfh|
w\Eve:
E6IL,Iq9
; ------------- ewlc ^`
diagram 3: !输出图表3 BOcEL%+
2!& ;ZcT,
"Variation ofthe Fiber Length" 7&U+f:-w
KqIe8bi^G
x: 0.1, 5 Vh-h{
"fiber length(m)", @x 5suSR;8
y: 0, 10 -`<N,
"opticalpowers (W)", @y V\lF:3C
frame 3G0\i!*t
hx
!{=%l+^.
hy ,T>2zSk
HOI`F3#XI
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 5UD;ZV%
step = 20, =|zyi|
color = blue, $R}iL
width = 3, 9Yne=R/]
"signal output" 7.'j~hJL
)W7H{#
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 wx7>0[ zE
step = 20, color = red, width = 3,"residual pump" UVRV7^eTe
X~VZ61vNu
! set_L(L_f) {restore the original fiber length } R_&V.\e_
p+1B6 j
?fwr:aP~
; ------------- \nt'I;f
diagram 4: !输出图表4 RR {9
lk'jBl%
"TransverseProfiles" ^g"6p#S=n
UE](`|4H
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) xGQ:7g+qu
$w}aX0dK&
x: 0, 1.4 * r_co /um ;{u#~d}
"radialposition (µm)", @x w0OK.fj
y: 0, 1.2 * I_max *cm^2 e/l?|+m 6
"intensity (W/ cm²)", @y iFT3fP'> 5
y2: 0, 1.3 * N_Tm 5%$kAJZC-
frame c=mFYsSv
hx C
/VXyl@o
hy K_Gf\x
R5~m"bE
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 {_D'\i(Y_
yscale = 2, |-?b)yuAz
color = gray, _$x *CP0(
width = 3, Yhdt8[ 2
maxconnect = 1, sMo%Ayes
"N_dop (right scale)" RLr-xg$K-t
)7TTRL
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 #_5+kBA+>'
color = red, 'Pn`V{a
maxconnect = 1, !限制图形区域高度,修正为100%的高度 FiH!)6T
width = 3, g[Y$SgJ
"pump" cA^7}}?e
7E]l=Z`x
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 5rhdm?Ls0
color = blue, L3Iz]D3s
maxconnect = 1, s;)tLJ!
width = 3, t38T0Ao
"signal" N($]))~3&
aesFv)5DK
{uG_)G Fr0
; ------------- n*|-"'j
diagram 5: !输出图表5 W12K93tO
rGO3
"TransitionCross-sections" 2Ki/K(
r#}%sof
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) m/h0J03'T
~-zC8._w3r
x: 1450, 2050 ZaV@}=Rd8
"wavelength(nm)", @x G 3x1w/L
y: 0, 0.6 ]+S QS^4
"cross-sections(1e-24 m²)", @y <;K/Yv'{r
frame
]YKWa"
hx `_
L|Is=n
hy !Hg#c!eOg
p*,mwKN:
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 8hY)r~!b'
color = red, {,X(fJ
width = 3, 'LI)6;Yc
"absorption" gr7_oJ:R
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 .YlM'E*X
color = blue, .42OSV
width = 3, HBu>BSv:
"emission" )}8%Gs4C
`VbG%y&I