切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 2577阅读
    • 1回复

    [原创]RP Fiber Power仿真设计掺铥光纤激光器代码详解 [复制链接]

    上一主题 下一主题
    离线小火龙果
     
    发帖
    932
    光币
    2176
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-05-28
    (* [nrP; _  
    Demo for program"RP Fiber Power": thulium-doped fiber laser, *?S\0a'W@  
    pumped at 790 nm. Across-relaxation process allows for efficient ;DTNw=  
    population of theupper laser level. {ig@Iy~DT  
    *)            !(*  *)注释语句 iy 5  
    c=gUY~Rl  
    diagram shown: 1,2,3,4,5  !指定输出图表 F 7=-k/k  
    ; 1: "Powersvs. Position"     !分号是注释;光纤长度对功率的影响 1N &U{#4  
    ; 2:"Variation of the Pump Power"  !泵浦光功率变化对信号输出功率的影响 '%,Re-8O  
    ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 5V0=-K  
    ; 4:"Transverse Profiles"             !横向分布,横坐标为半径位置 g=.5*'Xlp  
    ; 5:"Transition Cross-sections"    !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 Dcf`+?3  
    }|d:(*  
    include"Units.inc"         !读取“Units.inc”文件中内容 @N$r'@  
    +J} 41  
    include"Tm-silicate.inc"    !读取光谱数据 &zR}jD>  
    SO%5ts  
    ; Basic fiberparameters:    !定义基本光纤参数 E$T#o{pai  
    L_f := 4 { fiberlength }      !光纤长度 T]xGE   
    No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 ]8#{rQ(  
    r_co := 6 um { coreradius }                !纤芯半径 P|?z1JUd  
    N_Tm := 100e24 { Tmdoping concentration }  !纤芯Tm离子掺杂浓度 .&Z Vy{uP  
    2a^(8A`7W  
    ; Parameters of thechannels:                !定义光信道 ATU@5,9  
    l_p := 790 nm {pump wavelength }                !泵浦光波长790nm @P-7a`3*  
    dir_p := forward {pump direction (forward or backward) }   !前向泵浦 \?o%<c5{  
    P_pump_in := 5 {input pump power }                    !输入泵浦功率5W ` C1LR,J  
    w_p := 50 um {radius of pump cladding }               !包层泵浦相应的半径 50um sM-*[Q=_  
    I_p(r) := (r <=w_p) { pump intensity profile }          !泵浦光强度分布 G~PP1sf  
    loss_p := 0 {parasitic losses of pump wave }           !泵浦光寄生损耗为0 "YBA$ef$  
    >@X=E3  
    l_s := 1940 nm {signal wavelength }                   !信号光波长1940nm OKP?^%kD  
    w_s := 7 um                          !信号光的半径 M$)+Uo 2  
    I_s(r) := exp(-2 *(r / w_s)^2)            !信号光的高斯强度分布 gSC@uf  
    loss_s := 0                            !信号光寄生损耗为0 %wO~\:F8  
    N  P"z  
    R_oc := 0.70 {output coupler reflectivity (right side) }      !输出耦合反射率 buoz La  
    -'nx7wnj2  
    ; Function for defining themodel:   !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 %bsdC0xM  
    calc } 8svd#S+  
      begin ,%C$~+xjM  
        global allow all;                   !声明全局变量 sw&Qks? V  
        set_fiber(L_f, No_z_steps, '');        !光纤参数 y|aWUX/a  
        add_ring(r_co, N_Tm); %[0"[<1a  
        def_ionsystem();              !光谱数据函数 ^ey\ c1K  
        pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p);  !泵浦光信道 L \$zr,=C  
        signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward);      !前向信号光信道 L*_xu _F  
        signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward);    !后向信号光信道 bhI8b/  
        set_R(signal_fw, 1, R_oc);                                 !设置反射率函数 >eXNw}_j  
        finish_fiber();                                   Kq*^*vWC  
      end; [kXe)dMX8  
    ldxUq,p  
    ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 IoX(Pa  
    show "Outputpowers:"                                   !输出字符串Output powers: qHj4`&  
    show"pump:     ", P_out(pump):d3:"W"  !输出字符串pump:和计算值(格式为3个有效数字,单位W) (X8N?tJ  
    show"signal:   ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) Eg9502Bl~8  
    RHxd6Gs"  
    dug RO[  
    ; ------------- 5 xiYCOy  
    diagram 1:                   !输出图表1 *cd9[ ~  
    aV ^2  
    "Powers vs.Position"          !图表名称 K,RIa0)  
    *-n$n  
    x: 0, L_f                      !命令x: 定义x坐标范围 (T^aZuuS  
    "position infiber (m)", @x      !x轴标签;@x 指示这些字符串沿坐标轴放置 V;z?m)ur  
    y: 0, 15                      !命令y: 定义y坐标范围 Ze~\=X" "  
    y2: 0, 100                    !命令y2: 定义第二个y坐标范围 njIvVs`q  
    frame          !frame改变坐标系的设置 ugCc&~`  
    legpos 600, 500  !图行在图表窗口中的位置(相对于左上角而言) $&4Zw6"=  
    hx             !平行于x方向网格 Y,a.9AWw)  
    hy              !平行于y方向网格 n"pADTaB  
    XH. _Z  
    f: P(pump, x),    !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 Kb}N!<Z*  
      color = red,  !图形颜色 ?]})Xf.A  
      width = 3,   !width线条宽度 WgIVhj  
      "pump"       !相应的文本字符串标签 YONg1.^!(  
    f: P(signal_fw, x),  !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 l`1ZS8 [.  
      color = blue,     Cr&ua|%F  
      width = 3, T7,tJk,(  
      "fw signal" g5cR.]oz  
    f: P(signal_bw, x),   !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 bi5'-.B  
      color = blue, Wc)^@f[~<  
      style = fdashed, d ] [E;$  
      width = 3, K)k!`du!6  
      "bw signal" [)a,rrhj  
    CN >q`[!  
    f: 100 * n(x, 2),    !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 . v;Npm2  
      yscale = 2,            !第二个y轴的缩放比例 -uh/W=Q1R  
      color = magenta, gt ?&!S^  
      width = 3, c{E-4PYbah  
      style = fdashed, $Fn# b|e  
      "n2 (%, right scale)" w90y-^p%  
    l +#`  
    f: 100 * n(x, 3),          !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 LWW0lG!_F  
      yscale = 2, O`2%@%?I  
      color = red, Fb_~{q  
      width = 3, !ine|NM  
      style = fdashed, KLxg  
      "n3 (%, right scale)" ^c2 8Q.<w(  
    3:C *'@  
    )I*V('R6|  
    ; ------------- UVUHLu|^  
    diagram 2:                    !输出图表2 ]M2>%Dvw  
    'Hq}h)`  
    "Variation ofthe Pump Power" fpzTv3D=I  
    R&-bA3w$  
    x: 0, 10 2^juLXc|R  
    "pump inputpower (W)", @x 3(CUC  
    y: 0, 10 Lrk^<:8;  
    y2: 0, 100 :gR`rc!  
    frame 0!^{V:DtQ  
    hx {u!,TDt*  
    hy F|"NJ*o}  
    legpos 150, 150 co;2s-X  
    ;eWVc;H  
    f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 5$y<nMP  
      step = 5, ";GLX%C!{@  
      color = blue, h+vKai  
      width = 3, |~>8]3. Y  
      "signal output power (W, leftscale)",     !相应的文本字符串标签 2;q6~Y,  
      finish set_P_in(pump, P_pump_in) "BTA"  
    pIh@!C  
    f: (set_P_in(pump,x); 100 * n_av(2)),   !改变泵浦信号功率对能级2上激活粒子占比的影响 b)df V=  
      yscale = 2, \^_F>M  
      step = 5, T$+}Srb  
      color = magenta, "=Ziy4V  
      width = 3, 8*|@A6ig  
      "population of level 2 (%, rightscale)", j6Vuj/+}  
      finish set_P_in(pump, P_pump_in) #$8tBo  
    N!P* B $d  
    f: (set_P_in(pump,x); 100 * n_av(3)),   !改变泵浦信号功率对能级3上激活粒子占比的影响 ov|s5yH8e  
      yscale = 2, K%Rx5 S  
      step = 5, f'}23\>  
      color = red, (5atU |8r  
      width = 3, (g   
      "population of level 3 (%, rightscale)", Kyv$yf 9  
      finish set_P_in(pump, P_pump_in) ((H}d?^AJ  
    ]A_)&`"Cb  
    nc`[fy|}  
    ; ------------- {6~W2zX&  
    diagram 3:                         !输出图表3 u|Db%)[  
    @ws3X\`<C  
    "Variation ofthe Fiber Length" &gq\e^0CRZ  
    tv?~LJYN  
    x: 0.1, 5 ost~<4~  
    "fiber length(m)", @x ;8U NM  
    y: 0, 10 Qs~;?BH&  
    "opticalpowers (W)", @y 9g>ay-W[(  
    frame Um*{~=;u  
    hx cnI!}Bu  
    hy 73P(oVj<  
    398%16}  
    f: (set_L(x);P_out(signal_fw)),     !改变光纤长度对信号光输出功率的影响 }J:~}?^%n  
      step = 20,             W~gFY#w  
      color = blue, ]T+{]t  
      width = 3, b`1P%OjC  
      "signal output" c1Dhx,]ad  
    Z>o20uA  
    ;f: (set_L(x);P_out(pump)),                     !改变光纤长度对泵浦信号输出功率的影响 cz.-cuD[iD  
       step = 20, color = red, width = 3,"residual pump" sfx:j~bsL  
    V}3.K\7  
    ! set_L(L_f) {restore the original fiber length } <~f/T]E,  
    YsDn?pD@  
    (3W<yAM+  
    ; ------------- .vwOp*3\  
    diagram 4:                                  !输出图表4 #O G_O I  
    MTa.Ubs  
    "TransverseProfiles" jH \@Oc;7  
     x@Q}sW92  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) y%iN9 -t  
    c6Wy1d^  
    x: 0, 1.4 * r_co /um ij%\ld9kd  
    "radialposition (µm)", @x 8r+R~{  
    y: 0, 1.2 * I_max *cm^2 Z1*y$=D?3[  
    "intensity (W/ cm&sup2;)", @y CkIICx  
    y2: 0, 1.3 * N_Tm sexnO^s  
    frame mM>{^%2Q:  
    hx %  &{>oEQ  
    hy QIG MP=!j  
    O[Nc$dc  
    f: N_dop(1, x * um,0),      !掺杂浓度的径向分布 =XyK/$  
      yscale = 2, !*N#}6Jd  
      color = gray, T*O!r`.Ak  
      width = 3, "o% N`Xlx  
      maxconnect = 1, _ 4pBJOJQ6  
      "N_dop (right scale)" &yWl8O  
    tOS%.0W5J  
    f: I(pump, -1, x *um, 0) * cm^2,    !泵浦光沿光纤径向的强度分布 w#]%I+  
      color = red, |fq1Mn8  
      maxconnect = 1,           !限制图形区域高度,修正为100%的高度 TRG"fVR  
      width = 3, }hEBX:-  
      "pump" 7G!SlC X}W  
    Lab{?!E>U  
    f: I(signal_fw, -1,x * um, 0) * cm^2,  !信号光沿光纤径向的强度分布 iiKFV>;t/  
      color = blue, mI"`.  
      maxconnect = 1, Nmns3D  
      width = 3, ~cQP4 kBD]  
      "signal" >\%44ba6  
    r B)m{)  
    @UE0.R<  
    ; ------------- .}%$l.#a  
    diagram 5:                                  !输出图表5 -Z)$].~|t  
    3]M YH b  
    "TransitionCross-sections" On d"Eq=r  
    :>;-uve8'  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) K-(,,wS  
    0X~Dxs   
    x: 1450, 2050 rN8 ZQiJC  
    "wavelength(nm)", @x !G Z2|~f9  
    y: 0, 0.6 kfM}j  
    "cross-sections(1e-24 m&sup2;)", @y :/K 'P`JaL  
    frame fw'$HV76  
    hx q$0^U{j/  
    hy u7<B*d:  
    <j-Bj$3  
    f: s12_Tm(x * nm) /1e-24,      !Tm3+吸收截面与波长的关系 0q>f x  
      color = red, k-Le)8+b  
      width = 3, s=u0M;A0Q  
      "absorption" ^7vh ize  
    f: s21_Tm(x * nm) /1e-24,  !Tm3+发射截面与波长的关系 ?20y6c<  
      color = blue, -;_NdL@  
      width = 3, l3)(aay!  
      "emission" HkGzyDt  
    hnmFhJ !g  
     
    分享到
    离线lileisgsz
    发帖
    14
    光币
    69
    光券
    0
    只看该作者 1楼 发表于: 2021-09-28
    感谢,视频上有点看不清楚