(* ]cGA~d
Demo for program"RP Fiber Power": thulium-doped fiber laser, ]8f ms(
pumped at 790 nm. Across-relaxation process allows for efficient W!6qqi{
population of theupper laser level. 1DvR[Lx%
*) !(* *)注释语句 ~:3QBMk::
nIU 6h
diagram shown: 1,2,3,4,5 !指定输出图表 0el9&l9Ew
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 Bc6|n :;u
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 ~[\_N\rm
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 b#K:_ac5
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 3WUTI(
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 }lfnnK#
8erSt!oM
include"Units.inc" !读取“Units.inc”文件中内容 ?)`L$Vr=
{|1Y:&M?
include"Tm-silicate.inc" !读取光谱数据 _g~qu
[1
?zQA
; Basic fiberparameters: !定义基本光纤参数 49w=XJ
L_f := 4 { fiberlength } !光纤长度 xYhrO
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 JvT"bZk(o
r_co := 6 um { coreradius } !纤芯半径 j4;0|zx-i
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 A@sZ14+f
WV #%PJ
; Parameters of thechannels: !定义光信道 Vv8jEZ8
l_p := 790 nm {pump wavelength } !泵浦光波长790nm *7h!w!LN~
dir_p := forward {pump direction (forward or backward) } !前向泵浦 il \$@Bn
P_pump_in := 5 {input pump power } !输入泵浦功率5W j&
<i&
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um Oh'Y0_oB>
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 o]p|-<I Q
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 -mRA#
h3Q21D'f
l_s := 1940 nm {signal wavelength } !信号光波长1940nm -*m+(7G\
w_s := 7 um !信号光的半径 .] sf0S!
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 t| 'N+-T3
loss_s := 0 !信号光寄生损耗为0 yq NzdzX
U
)l,'y2
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 qfK`MhA}
&'DU0c&
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 ^1L>l9F
calc E5N{j4\F
begin 7
<Q5;J&;
global allow all; !声明全局变量 ]@0NO;bK>F
set_fiber(L_f, No_z_steps, ''); !光纤参数 a)#1{JaoY
add_ring(r_co, N_Tm); 6p?JAT5
def_ionsystem(); !光谱数据函数 a(v>Q*zNP
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 >B2q+tA
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 @$2))g`
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 X_g 3rv1J
set_R(signal_fw, 1, R_oc); !设置反射率函数 h<SQL97N
finish_fiber(); ZG du|
end; ^4`Px/&
v0ES;
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 |)K]U
show "Outputpowers:" !输出字符串Output powers: (>I`{9x>6
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) d R]Q$CJ
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) mBG=jI "xh
3neIR@W
qg}O/K
; ------------- #~.w&~:
diagram 1: !输出图表1 `p7&>
BOA
_!?Hu/zo
"Powers vs.Position" !图表名称 LI6hEcM=
V]vc(rH
x: 0, L_f !命令x: 定义x坐标范围 !\,kZ|#>
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 4)<~4 '
y: 0, 15 !命令y: 定义y坐标范围 N]<!j$pOz
y2: 0, 100 !命令y2: 定义第二个y坐标范围 P7x =
frame !frame改变坐标系的设置 `/MvQ/
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) wu4NLgkE
hx !平行于x方向网格 m~D&gGFt
hy !平行于y方向网格 {|yob4N
ryc& n5
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 pOrWg@<\L
color = red, !图形颜色 ^-a8V'
width = 3, !width线条宽度 n9\]S7]52
"pump" !相应的文本字符串标签 $Tb G+Eb8
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 PGARXw+
color = blue, ZZ.m(ATR
width = 3, @j4U^"_QB
"fw signal" = 07]z@s
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 Qo1eXMW
color = blue, f7 'q-
style = fdashed, bQZ*r{g
width = 3, bC3 F
"bw signal" 5 XA=G
|K^"3`SJ
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 f5GdZ_
yscale = 2, !第二个y轴的缩放比例 >"@?ir
color = magenta, \ AC|?/sH
width = 3, !2|=PB' M
style = fdashed, C( id=F
"n2 (%, right scale)" nxJee=qH
k,uK6$Z
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 ejO}t:}P
yscale = 2, n?:=
color = red, $DP&a1'g
width = 3, 7 uarh!
style = fdashed, /2m?15c+
"n3 (%, right scale)" @y/wEBb
eJo3 MK
NKmoG\*
; ------------- kGUJ9Du
diagram 2: !输出图表2 z 8*8OWM
P\&! ]
"Variation ofthe Pump Power" C P3<1~
i#%a- I:M
x: 0, 10 &
``d
"pump inputpower (W)", @x x#N-&baS
y: 0, 10 t
nS+5F
y2: 0, 100 >z`,ch6~
frame 3<?XTv-
hx D5an\gE
hy gs
W0
legpos 150, 150 H\GkW6
"|m|E/Z-9
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 (#oycj^<
step = 5, Cj*-[EL<
color = blue, oR*=|B
width = 3, e2C<PGUUB
"signal output power (W, leftscale)", !相应的文本字符串标签 do-c1;M
finish set_P_in(pump, P_pump_in) ?v-1zCls
==cd>03()
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 |fHB[ W#
yscale = 2, FhIqy %X
step = 5, 8)VgS&B~
color = magenta, u7;~
width = 3, <fdPLw;@e4
"population of level 2 (%, rightscale)", 4q$H
finish set_P_in(pump, P_pump_in) p$k\m|t
rQP"Y[
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 h~7,`fo
yscale = 2, "*7C`y5&P
step = 5, *g;-H&`
color = red, a9~"3y
width = 3, +3,|"g::
"population of level 3 (%, rightscale)", E:nt)Ef,
finish set_P_in(pump, P_pump_in) ;:mY JV
4UAvw
c0 WFlj9b
; ------------- vRPS4@9'
diagram 3: !输出图表3 jLcHY-P0V
T[Pa/j{
"Variation ofthe Fiber Length" G*\h\@
XV'fW~j\
x: 0.1, 5 =ex'22
"fiber length(m)", @x FXo2Y]K3`L
y: 0, 10 *wi}>_\
"opticalpowers (W)", @y 4B?!THjk
frame Gowp
<9 F
hx :[M[(
hy c#b:3dXx9
B(l-}|m_
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 tLcEl'Eo
step = 20, $gp!w8h
color = blue, S2~@nhO`U(
width = 3, ,f:
jioY
"signal output" |xr32gs
)'q%2%Ak
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 3z{S}~
step = 20, color = red, width = 3,"residual pump" nj\_lL+
OYf{?-QD
! set_L(L_f) {restore the original fiber length } uC~g#[I QM
v9}[$HWx
#B\=Aa`*
; ------------- iilyw_$H
diagram 4: !输出图表4 EaS~`
{@M14)-x>_
"TransverseProfiles" ~"ONAX
4FA|[An
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) iUr xJh
LD+f'^>>Z
x: 0, 1.4 * r_co /um MB:n~>ga
"radialposition (µm)", @x Nm8w/Q5D`
y: 0, 1.2 * I_max *cm^2 NMjnL&P`
"intensity (W/ cm²)", @y N"DY?6
y2: 0, 1.3 * N_Tm ^i<}]c_|f
frame > zL|8f
hx CKTrZxR"
hy p27p~b&
ma}}Sn)Q
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 9y"TDo
yscale = 2, Ku3!*n_\
color = gray, ;.Zh,cU
width = 3, jXEGSn
maxconnect = 1, =aow
d4t
"N_dop (right scale)" ) Ypz!
J0Four#MD
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 \;
bWh
color = red, B-Y+F
maxconnect = 1, !限制图形区域高度,修正为100%的高度 \7E`QY4
width = 3, ~eo^`4O{{
"pump" |vy]8?Ak
*1;23BiH-
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 `=!p$hg($
color = blue, jA2ofC
maxconnect = 1, ci7~KewJ*
width = 3, \ j]~>9
"signal" w67xl
*4#on>
3%NE/lw1
; ------------- onzA7Gre
diagram 5: !输出图表5 >5i ?JUZ
DyI2Ye
"TransitionCross-sections" yQS04Bl]
, ;'SVe%
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) ,cQ)cY[
x_ySf!ih
x: 1450, 2050 szn%wZW
"wavelength(nm)", @x |!re8|JV_
y: 0, 0.6 d2ofxfpg+
"cross-sections(1e-24 m²)", @y CTU9~~Xk
frame &5/JfNe3
hx -ddOh<U>
hy "4[<]pq
n49s3|#)G
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 -eYL*Pa
color = red, ?W<cB`J
width = 3, w?;b7i
"absorption" jmPp-}tS7
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 ,$i<@2/=m
color = blue, QAXYrRu
width = 3,
H8"tbU
"emission" ;5RIwD
j}RM.C\7