(* CA,2&v"
Demo for program"RP Fiber Power": thulium-doped fiber laser, a-9sc6@
pumped at 790 nm. Across-relaxation process allows for efficient >%85S >e
population of theupper laser level. #Z}YQ$g
*) !(* *)注释语句 oC(.u ?
C40W@*6S2
diagram shown: 1,2,3,4,5 !指定输出图表 2jyxP6t
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 {$v>3FG
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 Y2(,E e2
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 i[PksT#p
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 |/!RN[<
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 v|2+7N:[;
Ol*|J
include"Units.inc" !读取“Units.inc”文件中内容 8lF:70wia
r1.OLn?C
include"Tm-silicate.inc" !读取光谱数据 'PdUSv|lH
r&nEM6
; Basic fiberparameters: !定义基本光纤参数 >!#or- C
L_f := 4 { fiberlength } !光纤长度 i^V3u
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 JiRfLB
r_co := 6 um { coreradius } !纤芯半径 $H1igYc
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 Tnb5tHjnh
X/23 /_~L`
; Parameters of thechannels: !定义光信道 &u~%5;
l_p := 790 nm {pump wavelength } !泵浦光波长790nm xWKUti i
dir_p := forward {pump direction (forward or backward) } !前向泵浦 >@q4Uez
P_pump_in := 5 {input pump power } !输入泵浦功率5W :bz;_DZP
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um }*56DX
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 ~0Mw\p%}
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 zCSLV>.F
Io<L!
=>
l_s := 1940 nm {signal wavelength } !信号光波长1940nm {EVHkQ+o
w_s := 7 um !信号光的半径 q #X[oVq
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 0mI4hy
loss_s := 0 !信号光寄生损耗为0 WRN}>]NgQ
;f2<vp;U
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 M.KXDD#O
L$= a,$
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 ?^{Ey[)'(
calc C<N7zM wT
begin tMr$N[@r
global allow all; !声明全局变量 :47"c3J
set_fiber(L_f, No_z_steps, ''); !光纤参数 ]0;,M
add_ring(r_co, N_Tm); LgA>,.
def_ionsystem(); !光谱数据函数 $"`e^J9!!
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 D?r% Y
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 QykHB
k
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 sW!MV v
set_R(signal_fw, 1, R_oc); !设置反射率函数 A|BN>?.t
finish_fiber(); QHe:
end; -A1:S'aN-
N#7_)S[@0l
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 LH>h]OTQF
show "Outputpowers:" !输出字符串Output powers: *|)O
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) W29GM -,K
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) v#$}3+KVC
"Kf4v|6;
D0rqte
; ------------- {fu[&@XV
diagram 1: !输出图表1 09Y:(2Qri
eEg>EI_U
"Powers vs.Position" !图表名称 r8[Ywn<u
>I9|N}I
x: 0, L_f !命令x: 定义x坐标范围 jQ5FvuNOy
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 *AA78G|
y: 0, 15 !命令y: 定义y坐标范围 8rSu,&<
y2: 0, 100 !命令y2: 定义第二个y坐标范围 $EPDa?$*
frame !frame改变坐标系的设置 >2;KPV0H
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) R!7a;J}
hx !平行于x方向网格 ^uIKwql
hy !平行于y方向网格 hV"2L4/E
zjwo"6c>
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 "gq_^&
color = red, !图形颜色 l[{Ci|4
width = 3, !width线条宽度 4I3)eS%2
"pump" !相应的文本字符串标签 2%t!3F:
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 tq5o
color = blue, t[x[X4
width = 3, 4mF=A$Q_/
"fw signal"
`;#I_R_K
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 K<7 Db4H
color = blue, dF0:'y
style = fdashed, K@;ls
width = 3, &}vc^io
"bw signal" cUZ^,)8
Z
d15E$?ZLH
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 r;OE6}L>
yscale = 2, !第二个y轴的缩放比例 /lN09j
color = magenta, cUM#|K#6
width = 3, F`
]s
style = fdashed, ?iNihE
"n2 (%, right scale)" _c6 zzGtH
C~:!WRCz
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 k0!D9tk
yscale = 2, ru1FJ{n
color = red, 9/LJtM
width = 3, d)jX%Z$LC
style = fdashed, !FJ_\UST0
"n3 (%, right scale)" /S)&d N`
aFwfF^\(|,
%dA7`7j
; ------------- 0Kenyn4 ?
diagram 2: !输出图表2 [bJAh ` I
AC/8 2$
"Variation ofthe Pump Power" Xu&4|$wB+
qf6}\0
x: 0, 10 cy4V*zwp
"pump inputpower (W)", @x O8S"B6?$~'
y: 0, 10 Y4n;[nHQ(
y2: 0, 100 pM7xnL4
frame @ei:/~y3
hx OPwO`pN
hy t"Djh^=y
legpos 150, 150 RVb}R<yU+
bLi>jE.%.
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 ~`x<;Ts
step = 5, ](H
vx
color = blue, BFyVq
width = 3, +{S^A)
"signal output power (W, leftscale)", !相应的文本字符串标签 _Vxk4KjP5
finish set_P_in(pump, P_pump_in) rJl'+Ae9N|
)t$|'c}
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 )x*pkE**c
yscale = 2, YKs^aQm#
step = 5, Ws(#ThA
color = magenta, DV!) n 6
width = 3, ZICcZG_y
"population of level 2 (%, rightscale)", ,zY!EHpx
finish set_P_in(pump, P_pump_in) +A,t9 3:k
;l6tZ]-"
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 a7UfRG
yscale = 2, /IN/SZx
step = 5, ^~%zPlv
color = red, 3xnu SOdh
width = 3, oZ(T`5
"population of level 3 (%, rightscale)", u2 xb ^vu
finish set_P_in(pump, P_pump_in) \aG:l.IM0
Qv@Z#
+k4SN
; ------------- kf<5`8
diagram 3: !输出图表3 bqDHLoB\1
Fv6<Cz6L
"Variation ofthe Fiber Length" ndIU0kq3
]h$,=Qf
hD
x: 0.1, 5 V+kU^mI
"fiber length(m)", @x 7!E?(3$#"
y: 0, 10 8?rRLM4
"opticalpowers (W)", @y *!*J5/b
frame s) vHLf4 T
hx q0hg0DC[;
hy C,xM)V^a
2 nRL;[L*.
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 z@0*QZ.y1
step = 20, v*7lJNN.
color = blue, e/;chMCq
width = 3, OxraaN`
"signal output" ~D)!zQkD
?>W4*8(
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 p ft6
@'q
step = 20, color = red, width = 3,"residual pump" zU'\r~c
cR1dGNcp/@
! set_L(L_f) {restore the original fiber length } bVc;XZwI
m18 If
9s-op:5
; ------------- kgvB80$4
diagram 4: !输出图表4 8@|rB3J
/i]!=~\qFs
"TransverseProfiles" siHS@S
;$y(Tvd;
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) w-%H\+J
q1Si*?2W
x: 0, 1.4 * r_co /um Oop;Y^gG}
"radialposition (µm)", @x oO4
Wwi
y: 0, 1.2 * I_max *cm^2 bV#U&)|
"intensity (W/ cm²)", @y ^ )Lh5
y2: 0, 1.3 * N_Tm K`nI$l7hg
frame ?5#Ng,8iT
hx pH%cbBm
hy uLsGb=m%b
>Udb*76
D
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 *@q+A1P7@
yscale = 2, d))(hk:
color = gray, lGI5
width = 3, o?f7_8fG
maxconnect = 1, xP.B,1\X
"N_dop (right scale)" 28;D>6c
Vs~^r>
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 B8^tIq
color = red, 5O
Ob(
maxconnect = 1, !限制图形区域高度,修正为100%的高度 p1Q[c0NMK
width = 3, iAX\F`
"pump" U
n#7@8,
6rEt!v #K[
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 @+VvZc2Y
color = blue, 2roPZj
maxconnect = 1, nu] k<^I5|
width = 3, 3,bA&c3
"signal" FX"%
,P ?TYk
W>Y8 u8
; ------------- K h9 $
diagram 5: !输出图表5 PXcpROg56
eB78z@
"TransitionCross-sections" TR,,=3n
C+Wb_
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) j=)Cyg3_%
t@1e9uR
x: 1450, 2050 )^uLZMNaI
"wavelength(nm)", @x ch<Fi%)
y: 0, 0.6 cve(pkl
"cross-sections(1e-24 m²)", @y 0\g;^Zpi
frame "_ b
Sy
hx YNbs*i&
hy hi>Ii2T
/d5_-AB(v
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 hA?j"y0?
color = red, `LnL d;Z
width = 3, .b]g#Du=
"absorption" l!\C"f1o,
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 ](NSpU|*
color = blue, tnbaU%;|J
width = 3, 9U6y<X
"emission" FpE83}@".w
9u1)Kr=e