(* q8ImrC.'^
Demo for program"RP Fiber Power": thulium-doped fiber laser, htP|3 B
pumped at 790 nm. Across-relaxation process allows for efficient oVCmI"'
population of theupper laser level. *V(Fn-6(
*) !(* *)注释语句 (Vg}Hh?p
(c v!Y=]
diagram shown: 1,2,3,4,5 !指定输出图表 yg]2erR
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 s=Q(C[%I
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 E2B>b[
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 @/%{15s.
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 R.s|j=
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 5.tvB
<Q<+4Y{R
include"Units.inc" !读取“Units.inc”文件中内容 Ri>?KrQF%
$\AEWFB
include"Tm-silicate.inc" !读取光谱数据 A>.2OC+
@tRMe64
; Basic fiberparameters: !定义基本光纤参数 #pdUJ2)yM
L_f := 4 { fiberlength } !光纤长度 Ml>( tec
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 7m5Co>NkuK
r_co := 6 um { coreradius } !纤芯半径 NN
0Q`r,8}
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 x O7IzqY
\.e4.[%[2-
; Parameters of thechannels: !定义光信道 #ZiT-
l_p := 790 nm {pump wavelength } !泵浦光波长790nm 7 gB{In0
dir_p := forward {pump direction (forward or backward) } !前向泵浦 VSOz.g>
P_pump_in := 5 {input pump power } !输入泵浦功率5W q;AT>" = )
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um *Dr5O 9Y
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 "Mmf6hu
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 VanB>|p6
#l1Q e`
l_s := 1940 nm {signal wavelength } !信号光波长1940nm ZEbLL4n
w_s := 7 um !信号光的半径 b~7drf
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 N<z`yV
loss_s := 0 !信号光寄生损耗为0 @LLTB(@wR
&S74mV
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 A~lIa$U$b
klWYuStZ
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 %c^ m\E
calc xk~Nmb}
begin -pTI?
global allow all; !声明全局变量 #WE]`zd
set_fiber(L_f, No_z_steps, ''); !光纤参数 8
|h9sn;P
add_ring(r_co, N_Tm); S T8!i`Q$
def_ionsystem(); !光谱数据函数 : cp
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 dYOF2si~%
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 g8pm2o@S
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 2Eh@e([PMs
set_R(signal_fw, 1, R_oc); !设置反射率函数 :,*eX' fH
finish_fiber(); HW7FP]NH
end; a}.Y!O&
jOtX
60;
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 sM\&.<B
show "Outputpowers:" !输出字符串Output powers: S-E++f9D~
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) ]jM^Z.mI+
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) 9]_GNk-D
nbvkP
W7G9Kx1Y
; ------------- 2DMrMmLI
diagram 1: !输出图表1 J l7z|Q S
& QZV q"
"Powers vs.Position" !图表名称 @eQld\h'
w;`m- 9<Y
x: 0, L_f !命令x: 定义x坐标范围 hH+bt!aH
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 q/6UK =
y: 0, 15 !命令y: 定义y坐标范围 @Y'I,e
y2: 0, 100 !命令y2: 定义第二个y坐标范围 fCEz-TMW
frame !frame改变坐标系的设置 + Oobb-v
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) "xwM+ AC
hx !平行于x方向网格 ~oi_r8K
hy !平行于y方向网格 +*EKR
h$h]%y
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 a[O6YgO
color = red, !图形颜色 g_D-(J`IK,
width = 3, !width线条宽度 $@87?Ab
"pump" !相应的文本字符串标签 -ID!pT vW
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 dm^H5D/A
color = blue, !7` [i
width = 3, I($,9|9F
"fw signal" $N.`)S<
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 ujx-jIhT_
color = blue, {
R*Y=Ie
style = fdashed, 3&J&^O
width = 3, ;mJkqbVol
"bw signal" )}|mDN&P
Q#rt<S1zW
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 Hhf72IX
yscale = 2, !第二个y轴的缩放比例 BRtXf0~&p
color = magenta, Kx]> fHK
width = 3, dM|g`rr
E
style = fdashed, 2YIF=YWO},
"n2 (%, right scale)" FX 1C
e
<qn,
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 mmN|F$;r
yscale = 2, tP]q4i
color = red, |a(Q4 e/,
width = 3, <P pYl
style = fdashed, OWV/kz5'H
"n3 (%, right scale)" 8?Wgawx
9 }n,@@
h3t$>vs2F"
; ------------- |LFUzq>j
diagram 2: !输出图表2 oWrE2U;
k.>6nho`TV
"Variation ofthe Pump Power" z+6QZQk
5vGioO
x: 0, 10 =L16hDk o
"pump inputpower (W)", @x C@)pmSQ
y: 0, 10 8|vld3;
y2: 0, 100 !c_u-&b)
frame y1Z1=U*!
hx '{^8_k\}B
hy #[,= 1Od(q
legpos 150, 150 :tlE`BIp
k1wr/G'H[
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 r:#Q9EA
step = 5, 3*2I$e!Jt
color = blue, x.G"D(
width = 3, 4[_L=zD
"signal output power (W, leftscale)", !相应的文本字符串标签 r+TK5|ke
finish set_P_in(pump, P_pump_in) e7's)C>/'
_y-B";Vmm
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 ~%KM3Vap
yscale = 2, EJ8I[(
step = 5, rV U:VL`2
color = magenta, \L
%q[
width = 3, kyK'
"population of level 2 (%, rightscale)", OT%V{hD
finish set_P_in(pump, P_pump_in) ,$PFI(Whk
'oCm.~;_
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 @jKDj]\
yscale = 2, A8mlw#`E8b
step = 5, RCCv>o
color = red, c G*(C
width = 3, 4D GY6PS
"population of level 3 (%, rightscale)", fo;6huz
finish set_P_in(pump, P_pump_in) t,1in4sN
zw<
4G[u
[tOuNj:
; ------------- jF4csO=E
diagram 3: !输出图表3 |""=)-5N
>kZ6f 4
"Variation ofthe Fiber Length" hXPocP
Y[h#hZ
x: 0.1, 5 J2'W =r_#
"fiber length(m)", @x htV#5SUx&
y: 0, 10 W?=$V>)
"opticalpowers (W)", @y FQ0KUb}0
frame PaxK^*
hx 0 K/G&c?;=
hy b h*^{
@~s~/[
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 / =-6:L
step = 20, U>in2u9
color = blue, |G)Y8 #D
width = 3, 64h_1,U
"signal output" !e&rVoA
rAM*\=
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 }'DC
Q
step = 20, color = red, width = 3,"residual pump" _Q)d+Fl
u0s'6=
! set_L(L_f) {restore the original fiber length } @81-kdTx
#UBB
lE#
G l_\Vy
; ------------- B>sCP"/uV
diagram 4: !输出图表4 W=UqX{-j)
oHOW5
"TransverseProfiles" B;SzuCW
DCt\E/
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) T<f2\q8Uo=
8~.iuFp
x: 0, 1.4 * r_co /um ]7v81G5E
"radialposition (µm)", @x Wx}M1&d/J
y: 0, 1.2 * I_max *cm^2 L{Q4=p,A
"intensity (W/ cm²)", @y O%fUm0O d
y2: 0, 1.3 * N_Tm l6V%"Lo/)
frame ] xb]8]
hx vc )9Re$
hy K*HCFqrU"
iD.0J/
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 ax<g0=^R
yscale = 2, *e%Dg{_
color = gray, 3T"#T&eL
width = 3, 1$);V,DK!
maxconnect = 1, 'BqrJfv
"N_dop (right scale)" aF,jJ}On
jo<>Hc{g>
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 `<S/?I8
color = red, 9!5b2!JL
maxconnect = 1, !限制图形区域高度,修正为100%的高度 -E6J f$
width = 3, N )'8o}E
"pump" ?hxK/%)
6
M*b 6
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 CKx\V+\O
color = blue, :-$cdZ3E
maxconnect = 1, /z/hUa
width = 3, '&N: S-
"signal" Km[]^;6
?UxG/]",
GEhdk]<a7
; ------------- )\um"l*\c
diagram 5: !输出图表5 \k|_&hG
h~,x7]w6
"TransitionCross-sections" B1x'5S;Bq
Z"l`e0{
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) Z~duJsH
$|>6z_3%
x: 1450, 2050 UVc>i9,0
"wavelength(nm)", @x Qe7"Z
y: 0, 0.6 *d^9,GGn-
"cross-sections(1e-24 m²)", @y !8wZw68"
frame imo'(j7
hx X=fPGyhZ
hy `DI{wqV9
)3k)2X F
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 JOA%Y;`<#
color = red, \%w7D6dEZ
width = 3, @uQ%o%Ru6
"absorption" w;lx:j!Vp$
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 +#|'|}j
color = blue, on]\J
width = 3, &Tf=~6
"emission" L@C >-F|p
N5:D8oWWXR