切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 1886阅读
    • 1回复

    [原创]RP Fiber Power仿真设计掺铥光纤激光器代码详解 [复制链接]

    上一主题 下一主题
    离线小火龙果
     
    发帖
    873
    光币
    1926
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-05-28
    (* {aC!~qR  
    Demo for program"RP Fiber Power": thulium-doped fiber laser,  \qR %%S  
    pumped at 790 nm. Across-relaxation process allows for efficient fpN- o  
    population of theupper laser level. %T9  sz4V  
    *)            !(*  *)注释语句 1`9xIm*9w  
    ${nX:!)  
    diagram shown: 1,2,3,4,5  !指定输出图表 n` TSu$  
    ; 1: "Powersvs. Position"     !分号是注释;光纤长度对功率的影响 UNi`P9D]3  
    ; 2:"Variation of the Pump Power"  !泵浦光功率变化对信号输出功率的影响 AT)a :i  
    ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 7ei|XfR  
    ; 4:"Transverse Profiles"             !横向分布,横坐标为半径位置 /?1nHBYPM  
    ; 5:"Transition Cross-sections"    !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 ]$\|ktY!  
    =)` p_W  
    include"Units.inc"         !读取“Units.inc”文件中内容 [ $T(WGF  
    *(>}Y  
    include"Tm-silicate.inc"    !读取光谱数据 { F};n?'  
    ^~HQC*  
    ; Basic fiberparameters:    !定义基本光纤参数 \7 NpT}dj  
    L_f := 4 { fiberlength }      !光纤长度 [wB9s{CX  
    No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 gxMfu?zk"  
    r_co := 6 um { coreradius }                !纤芯半径 FSb Hn{@  
    N_Tm := 100e24 { Tmdoping concentration }  !纤芯Tm离子掺杂浓度 t/PlcV_M"  
    k8uvNLA)a  
    ; Parameters of thechannels:                !定义光信道 gOK\%&S]  
    l_p := 790 nm {pump wavelength }                !泵浦光波长790nm )& <=.q  
    dir_p := forward {pump direction (forward or backward) }   !前向泵浦 %F*|;o7s  
    P_pump_in := 5 {input pump power }                    !输入泵浦功率5W 1#4PG'H  
    w_p := 50 um {radius of pump cladding }               !包层泵浦相应的半径 50um RTu4@7XP  
    I_p(r) := (r <=w_p) { pump intensity profile }          !泵浦光强度分布 >xn}N6Rj2~  
    loss_p := 0 {parasitic losses of pump wave }           !泵浦光寄生损耗为0 |s)?cpb  
    A?T<",bO  
    l_s := 1940 nm {signal wavelength }                   !信号光波长1940nm KyO8A2'U  
    w_s := 7 um                          !信号光的半径 nbTVU+  
    I_s(r) := exp(-2 *(r / w_s)^2)            !信号光的高斯强度分布 [ dE.[  
    loss_s := 0                            !信号光寄生损耗为0 "A)( "  
    ?}Lg)EFH  
    R_oc := 0.70 {output coupler reflectivity (right side) }      !输出耦合反射率 34R!x6W0  
    Vax^8 -  
    ; Function for defining themodel:   !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 vHE^"l5v  
    calc eV cANP  
      begin %D`,k*X  
        global allow all;                   !声明全局变量 'XUKN/.  
        set_fiber(L_f, No_z_steps, '');        !光纤参数 DF{ Qw@P!  
        add_ring(r_co, N_Tm); Q!FLR>8  
        def_ionsystem();              !光谱数据函数 X5*C+ I=2  
        pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p);  !泵浦光信道 O!Z|r ?  
        signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward);      !前向信号光信道 45H!;Q sk  
        signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward);    !后向信号光信道 ^U8r0]9  
        set_R(signal_fw, 1, R_oc);                                 !设置反射率函数 9r2IuS0  
        finish_fiber();                                   `:G%   
      end; 35*\_9/#  
    90Hjx>[  
    ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 uGl| pJ\y=  
    show "Outputpowers:"                                   !输出字符串Output powers: y9|K|xO[  
    show"pump:     ", P_out(pump):d3:"W"  !输出字符串pump:和计算值(格式为3个有效数字,单位W) T=YzJyQC)  
    show"signal:   ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) w_iamqe,  
    Bz`yfl2  
    =[<m[.)i  
    ; ------------- zK+52jhi  
    diagram 1:                   !输出图表1 pNE(n4v  
    N|2y"5  
    "Powers vs.Position"          !图表名称 -)y%~Zn  
    Pu>N_^  C  
    x: 0, L_f                      !命令x: 定义x坐标范围 b( ^^m:(w  
    "position infiber (m)", @x      !x轴标签;@x 指示这些字符串沿坐标轴放置 jAsO8  
    y: 0, 15                      !命令y: 定义y坐标范围 e[t<<u3"  
    y2: 0, 100                    !命令y2: 定义第二个y坐标范围 (,xZGa  
    frame          !frame改变坐标系的设置 9%iFV N'  
    legpos 600, 500  !图行在图表窗口中的位置(相对于左上角而言) I6LD)?  
    hx             !平行于x方向网格 J:F^ #gW  
    hy              !平行于y方向网格 U~2`P  
    k,Zm GllQ]  
    f: P(pump, x),    !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 2PSTGG8JV  
      color = red,  !图形颜色 - n6jG}01b  
      width = 3,   !width线条宽度 XDD<oo  
      "pump"       !相应的文本字符串标签 $YG1z  
    f: P(signal_fw, x),  !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 8"vwU@cfC  
      color = blue,     qsg>5E  
      width = 3, g9my=gY  
      "fw signal" H%z@h~s>  
    f: P(signal_bw, x),   !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 lg1PE7  
      color = blue, !@ YXZ  
      style = fdashed, 1{2eY%+C  
      width = 3, c~dM`2J,  
      "bw signal" '?Iif#Z1  
    Ca$c;  
    f: 100 * n(x, 2),    !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 ;' e@t8i6  
      yscale = 2,            !第二个y轴的缩放比例 ad`_>lA4Lp  
      color = magenta, }1%r%TikY  
      width = 3, [D'Gr*5~{  
      style = fdashed, px9>:t[P  
      "n2 (%, right scale)" f3 ]  
    <kD#SV%"  
    f: 100 * n(x, 3),          !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 }G1&]Wt_  
      yscale = 2, z4} %TT@^  
      color = red, Y&'8VdW  
      width = 3, ?|t/mo|K?  
      style = fdashed, Kv+Bfh  
      "n3 (%, right scale)" '0+$ m=   
    vg8O] YF  
    %3a|<6  
    ; ------------- |tG+iF@4  
    diagram 2:                    !输出图表2 `% E9xcD%  
    Uk-HP\C"7  
    "Variation ofthe Pump Power" < `Z%O<X  
    Xi~9&ed#$i  
    x: 0, 10 ~/`X*n&  
    "pump inputpower (W)", @x {:Vf0Mhb  
    y: 0, 10 $+:(f{Va*  
    y2: 0, 100 vg5NY =O  
    frame mpef]9  
    hx 9)yG.9d1  
    hy R^Bk]  
    legpos 150, 150 1| xN%27>  
    V8'`nuC+  
    f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 "r-l8r,  
      step = 5, o?!uX|Fy  
      color = blue, cztS]dcf>~  
      width = 3, u3wL<$2[8  
      "signal output power (W, leftscale)",     !相应的文本字符串标签 pVOI5>f\  
      finish set_P_in(pump, P_pump_in) -fux2?8M  
    .k]#XoE  
    f: (set_P_in(pump,x); 100 * n_av(2)),   !改变泵浦信号功率对能级2上激活粒子占比的影响 Jqg3.2q  
      yscale = 2, 5L &:_iQZy  
      step = 5, M j~${vj  
      color = magenta, 8t9aHla  
      width = 3, 98<zCSe\]  
      "population of level 2 (%, rightscale)", glor+  
      finish set_P_in(pump, P_pump_in) DM2Q1Dh3  
    %\yK5V5  
    f: (set_P_in(pump,x); 100 * n_av(3)),   !改变泵浦信号功率对能级3上激活粒子占比的影响 /w~C~6z @!  
      yscale = 2, B+D`\Nlo  
      step = 5, W#45a.v  
      color = red, MYTS3(  
      width = 3, z^~U]S3  
      "population of level 3 (%, rightscale)", %UmbDGDWI  
      finish set_P_in(pump, P_pump_in) ]7F)bIG[  
    WTu{,Q  
    B,0+HoP  
    ; ------------- cMtJy"kK  
    diagram 3:                         !输出图表3 n^6TP'r  
    aL$j/SC  
    "Variation ofthe Fiber Length" M,L@k  
    HWR& C  
    x: 0.1, 5 8D T@h8tA  
    "fiber length(m)", @x 0|Q.U  
    y: 0, 10 L{K*~B-p  
    "opticalpowers (W)", @y R`7n^,  
    frame 3YRB I|XO  
    hx 7xR|_+%~K  
    hy t>@yv#  
    h*l4Y!7  
    f: (set_L(x);P_out(signal_fw)),     !改变光纤长度对信号光输出功率的影响 n +d J c  
      step = 20,             5@.zz"o.`  
      color = blue, .9I_N G  
      width = 3, s'AQUUrb <  
      "signal output" L)G">T;  
    'Ix5,^M}B  
    ;f: (set_L(x);P_out(pump)),                     !改变光纤长度对泵浦信号输出功率的影响 )x9]xqoR  
       step = 20, color = red, width = 3,"residual pump" 7C YH'DL  
    Vd[  2u  
    ! set_L(L_f) {restore the original fiber length } ]kH}lr yG  
    4Qhx[Hv>(  
    UR\ZN@O  
    ; ------------- Qq>ElQ@  
    diagram 4:                                  !输出图表4 ! fX9*0L  
    gx#J%k,f  
    "TransverseProfiles" A<;0L . J  
    >VypE8H]x  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) <M`-`v6H  
    ,iohfZz  
    x: 0, 1.4 * r_co /um 5A;"jp^ Z  
    "radialposition (µm)", @x [5-!d!a|st  
    y: 0, 1.2 * I_max *cm^2 x:vrK#8D>  
    "intensity (W/ cm&sup2;)", @y (S3jZ  
    y2: 0, 1.3 * N_Tm 4Z],+?.[  
    frame }P16Xb)p  
    hx qY# m*R  
    hy @#1cx  
    zAu}hVcW  
    f: N_dop(1, x * um,0),      !掺杂浓度的径向分布 F1/6&u9I  
      yscale = 2, gnYnL8l`J  
      color = gray, IS .g);Gj  
      width = 3, I S.F  
      maxconnect = 1, T?Z OHH8  
      "N_dop (right scale)" .k p $oAL  
    # e$\~cPd  
    f: I(pump, -1, x *um, 0) * cm^2,    !泵浦光沿光纤径向的强度分布 |@OJ~5H/{  
      color = red, s%FP6u7[i  
      maxconnect = 1,           !限制图形区域高度,修正为100%的高度 -uO%[/h;N  
      width = 3, 5~*=#v:`  
      "pump" %{=4Fa(Jux  
    M3)v-"  
    f: I(signal_fw, -1,x * um, 0) * cm^2,  !信号光沿光纤径向的强度分布 ?i/73H+;D3  
      color = blue, 2c!h2$w  
      maxconnect = 1, d|R HG  
      width = 3, GsR-#tV@  
      "signal" `9]P/J^  
    5ZZd.9ZgM  
    `x5ll;"J  
    ; ------------- ]cS&8{ ^2  
    diagram 5:                                  !输出图表5 .Y+mwvLpRG  
    _QD/!~O  
    "TransitionCross-sections" `6dy U_f  
    30t:O&2<  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) :17ee  
    |Tj`qJGVw  
    x: 1450, 2050 #tCIuQ,  
    "wavelength(nm)", @x ;D6x=v=2  
    y: 0, 0.6 $z~jnc  
    "cross-sections(1e-24 m&sup2;)", @y m>g}IX&K'  
    frame F%w\D9+P  
    hx hQ\#Fhu7  
    hy Rs`Vr_?Hk  
    ~oEXM ?M  
    f: s12_Tm(x * nm) /1e-24,      !Tm3+吸收截面与波长的关系 c-? Ygr  
      color = red, DX]z=d)tc  
      width = 3, PEMxoe<+  
      "absorption" 3 (Gygq#  
    f: s21_Tm(x * nm) /1e-24,  !Tm3+发射截面与波长的关系 1Kp?bwh"u  
      color = blue, $Vd?K@W[h  
      width = 3,  ^xBb$  
      "emission" _:oMyK'  
    .N?|t$J  
     
    分享到
    离线lileisgsz
    发帖
    14
    光币
    69
    光券
    0
    只看该作者 1楼 发表于: 2021-09-28
    感谢,视频上有点看不清楚