切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 2164阅读
    • 1回复

    [原创]RP Fiber Power仿真设计掺铥光纤激光器代码详解 [复制链接]

    上一主题 下一主题
    离线小火龙果
     
    发帖
    932
    光币
    2171
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-05-28
    (* O1x0[sy  
    Demo for program"RP Fiber Power": thulium-doped fiber laser, x{NNx:T1  
    pumped at 790 nm. Across-relaxation process allows for efficient U`bC>sCp  
    population of theupper laser level. 'a;ini  
    *)            !(*  *)注释语句 W{fULl  
    U^M@um M  
    diagram shown: 1,2,3,4,5  !指定输出图表 ,+ns {ppn  
    ; 1: "Powersvs. Position"     !分号是注释;光纤长度对功率的影响 {yvb$ND|j{  
    ; 2:"Variation of the Pump Power"  !泵浦光功率变化对信号输出功率的影响 N,j>;x3xT  
    ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 *[d~Nk%Y$  
    ; 4:"Transverse Profiles"             !横向分布,横坐标为半径位置 F=oHl@  
    ; 5:"Transition Cross-sections"    !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 ~vW)1XnK  
    \LIy:$`8  
    include"Units.inc"         !读取“Units.inc”文件中内容 ,}9f(`  
    =cf{f]N  
    include"Tm-silicate.inc"    !读取光谱数据 GB&Nt{  
    P]pmt1a  
    ; Basic fiberparameters:    !定义基本光纤参数 ,U6*kvHS6  
    L_f := 4 { fiberlength }      !光纤长度 {PN:bb  
    No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 cT/3yf  
    r_co := 6 um { coreradius }                !纤芯半径 Z |2E b*  
    N_Tm := 100e24 { Tmdoping concentration }  !纤芯Tm离子掺杂浓度 K#GXpj  
    P['X<Xt8  
    ; Parameters of thechannels:                !定义光信道 KqN!?anPr  
    l_p := 790 nm {pump wavelength }                !泵浦光波长790nm r_4T tP&UW  
    dir_p := forward {pump direction (forward or backward) }   !前向泵浦 a`7%A H)  
    P_pump_in := 5 {input pump power }                    !输入泵浦功率5W jg~_'4f#  
    w_p := 50 um {radius of pump cladding }               !包层泵浦相应的半径 50um HA$Y1}  
    I_p(r) := (r <=w_p) { pump intensity profile }          !泵浦光强度分布 +VSZhg,Np8  
    loss_p := 0 {parasitic losses of pump wave }           !泵浦光寄生损耗为0 ?Wwh _TO  
    rs[?v*R74  
    l_s := 1940 nm {signal wavelength }                   !信号光波长1940nm :&Qb>PH[  
    w_s := 7 um                          !信号光的半径 |n+ #1_t%  
    I_s(r) := exp(-2 *(r / w_s)^2)            !信号光的高斯强度分布 6 0`+ 9(^  
    loss_s := 0                            !信号光寄生损耗为0 3H1Pp*PH  
    fH-NU-"  
    R_oc := 0.70 {output coupler reflectivity (right side) }      !输出耦合反射率 (l Lu?NpIi  
    CXBzX:T?#  
    ; Function for defining themodel:   !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 Q 2*/`L}m\  
    calc @(Z( /P;:  
      begin ;5<P|:^  
        global allow all;                   !声明全局变量 ;!'qtw"CB  
        set_fiber(L_f, No_z_steps, '');        !光纤参数 ?#?e(mpo  
        add_ring(r_co, N_Tm); '4$lL 6ly>  
        def_ionsystem();              !光谱数据函数 GA.BI"l  
        pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p);  !泵浦光信道 T'hml   
        signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward);      !前向信号光信道 doLkrEm&  
        signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward);    !后向信号光信道 ir]Mn.(Y  
        set_R(signal_fw, 1, R_oc);                                 !设置反射率函数 O'fk&&l  
        finish_fiber();                                   uii7b 7[w  
      end; =KV@&Y^x4  
    ; vMn/  
    ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 8fnR1mWG  
    show "Outputpowers:"                                   !输出字符串Output powers: ]K7`-p~T  
    show"pump:     ", P_out(pump):d3:"W"  !输出字符串pump:和计算值(格式为3个有效数字,单位W) ~ 9=27 p  
    show"signal:   ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) QO@6VY@  
    FS8S68  
    @\ }sb]  
    ; ------------- QW2?n`Fa9-  
    diagram 1:                   !输出图表1 k,T_e6(  
    w5,6$#  
    "Powers vs.Position"          !图表名称 VO9XkA7  
    8zAg;b [  
    x: 0, L_f                      !命令x: 定义x坐标范围 JfkTw~'R  
    "position infiber (m)", @x      !x轴标签;@x 指示这些字符串沿坐标轴放置 =:4?>2)  
    y: 0, 15                      !命令y: 定义y坐标范围 Khj=llo,  
    y2: 0, 100                    !命令y2: 定义第二个y坐标范围 )Lb72;!?  
    frame          !frame改变坐标系的设置 L7m`HVCt&  
    legpos 600, 500  !图行在图表窗口中的位置(相对于左上角而言) i(0hvV>'  
    hx             !平行于x方向网格 b7!UZu]IEv  
    hy              !平行于y方向网格 sW?B7o?  
    [g+y_@9s  
    f: P(pump, x),    !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 ~ Yl<S(/4  
      color = red,  !图形颜色 A';n6ne%i  
      width = 3,   !width线条宽度 H-Pq!9[DB  
      "pump"       !相应的文本字符串标签 ^T{8uJ'kn  
    f: P(signal_fw, x),  !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 WKxm9y V  
      color = blue,     } %+qP +O\  
      width = 3, b"t")U==  
      "fw signal" ~6kJ~R4  
    f: P(signal_bw, x),   !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 66 N)  
      color = blue, EX4 C.C|d  
      style = fdashed,  |# V(p^  
      width = 3, -1CEr_(P^  
      "bw signal" *="m3:c'J  
    *2=W5LaK.  
    f: 100 * n(x, 2),    !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 [^M|lf   
      yscale = 2,            !第二个y轴的缩放比例 izf~w^/  
      color = magenta, -AC`q/bCD  
      width = 3, a1|c2kT  
      style = fdashed, ,%Z&*n  
      "n2 (%, right scale)" x{Sd P$  
    2h<U  
    f: 100 * n(x, 3),          !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 [fxuUmU  
      yscale = 2, Pcdf$a"`  
      color = red, U{}!y3[wK  
      width = 3, Xem5@ (u  
      style = fdashed, 4>YU8/Rw  
      "n3 (%, right scale)" |!Fk2Je,  
    )\0q_a  
    TP{Gt.e  
    ; ------------- um[!|g/  
    diagram 2:                    !输出图表2 (]XbPW  
    +zsZNJ(U  
    "Variation ofthe Pump Power" xs%LRF# u  
    uY;R8CiD  
    x: 0, 10 G?/c/rG  
    "pump inputpower (W)", @x  w;+ br  
    y: 0, 10 +T2HE\  
    y2: 0, 100 B+Z13;}B  
    frame 13a(FG  
    hx VgMP^&/gZ  
    hy q{E"pyt36R  
    legpos 150, 150 PrSkHxm  
    4P%m>[   
    f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 xnbsg!`;7W  
      step = 5, JKy#j g:#  
      color = blue, ax_YKJ5#P  
      width = 3, c 0-w6  
      "signal output power (W, leftscale)",     !相应的文本字符串标签  so fu  
      finish set_P_in(pump, P_pump_in) "OL~ul5  
    J &{xP8uq_  
    f: (set_P_in(pump,x); 100 * n_av(2)),   !改变泵浦信号功率对能级2上激活粒子占比的影响 G52Z)^  
      yscale = 2, 94{)"w]  
      step = 5, =VSkl;(O  
      color = magenta, ^.vmF>$+I  
      width = 3, 8a>SC$8"  
      "population of level 2 (%, rightscale)", v"RiPHLT  
      finish set_P_in(pump, P_pump_in) ~;unpym'  
    OJ/SYZ.r  
    f: (set_P_in(pump,x); 100 * n_av(3)),   !改变泵浦信号功率对能级3上激活粒子占比的影响 J?%}=_fsa  
      yscale = 2, 7tgFDLA  
      step = 5, S;=_;&68?  
      color = red, \A<v=VM|  
      width = 3, :c7CiP  
      "population of level 3 (%, rightscale)", TvQ^DZbe  
      finish set_P_in(pump, P_pump_in) ZJ(rG((!  
    a2yE:16o6  
    i8~$o:&HT  
    ; ------------- '7tBvVO_  
    diagram 3:                         !输出图表3 z(H?VfJo  
    }Hy ~i  
    "Variation ofthe Fiber Length" kH?#B%N5  
    vZkXt!%)  
    x: 0.1, 5 8!zb F<W9  
    "fiber length(m)", @x <m-.aK{9  
    y: 0, 10 >]&X ^V%Q#  
    "opticalpowers (W)", @y S&?7K-F>_o  
    frame |0 !I5|<k  
    hx >"("*3AO  
    hy /IR#A%U  
    IU!Ht>  
    f: (set_L(x);P_out(signal_fw)),     !改变光纤长度对信号光输出功率的影响 fbC~WV#  
      step = 20,             2dbRE:v5  
      color = blue, rLF*DB3l  
      width = 3, ssl&5AS  
      "signal output" @6&JR<g*t  
    s[AA7>]3  
    ;f: (set_L(x);P_out(pump)),                     !改变光纤长度对泵浦信号输出功率的影响 sLns3&n2  
       step = 20, color = red, width = 3,"residual pump" JsQ6l%9  
    mhzYz;}  
    ! set_L(L_f) {restore the original fiber length } E4HU 'y~  
    5~r2sCDPk  
    L"vj0@n'0  
    ; ------------- H+l,)Se  
    diagram 4:                                  !输出图表4 uZ(? >  
    (V?@?25  
    "TransverseProfiles" u) *Kws  
    m 22wF>9  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) `ZGcgO<c\  
    n29(!10Px  
    x: 0, 1.4 * r_co /um #a,9B-X  
    "radialposition (µm)", @x kMxjS^fr  
    y: 0, 1.2 * I_max *cm^2 vV^dm)?  
    "intensity (W/ cm&sup2;)", @y z"379b7cN  
    y2: 0, 1.3 * N_Tm w>979g  
    frame DDw''  
    hx ::"E?CQLV  
    hy X9XI;c;b-  
    Rs7 |}Dl}  
    f: N_dop(1, x * um,0),      !掺杂浓度的径向分布 %}b8aG+  
      yscale = 2, `# ^0cW  
      color = gray, ctJ&URCi#  
      width = 3, ai^|N.!  
      maxconnect = 1, )^/0cQcJ  
      "N_dop (right scale)" D:E9!l'  
    9_huI'"p  
    f: I(pump, -1, x *um, 0) * cm^2,    !泵浦光沿光纤径向的强度分布 |y1;&<  
      color = red, K2ewucn  
      maxconnect = 1,           !限制图形区域高度,修正为100%的高度 `|Fp^gM  
      width = 3, '6S%9ahE  
      "pump" {-WTV"L5*2  
    L`3n2DEBf  
    f: I(signal_fw, -1,x * um, 0) * cm^2,  !信号光沿光纤径向的强度分布 )2.)3w1_4  
      color = blue, .  /m hu  
      maxconnect = 1, 'Q|c@t  
      width = 3, qnIew?-*  
      "signal" {#hVD4$b  
    t9u|iTY f!  
    8MF2K6  
    ; ------------- ][:rLs  
    diagram 5:                                  !输出图表5 j_Nm87i]  
    <avQR9'&  
    "TransitionCross-sections" _gV8aH ZyM  
    4v.d-^  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) 4#BRx#\O  
    xsP4\C>  
    x: 1450, 2050 u"+}I,'L  
    "wavelength(nm)", @x 5*G%IR@@LK  
    y: 0, 0.6 @ 4UxRp6+  
    "cross-sections(1e-24 m&sup2;)", @y 2{oThef[O  
    frame @Icq1zb] y  
    hx [1( FgyE  
    hy ^v :Zo  
    W{Z^n(f4  
    f: s12_Tm(x * nm) /1e-24,      !Tm3+吸收截面与波长的关系 Eipp ~GD  
      color = red, oln<yyDs   
      width = 3, ]U_ec*a  
      "absorption"  y4jU{,  
    f: s21_Tm(x * nm) /1e-24,  !Tm3+发射截面与波长的关系 + ^ yq;z  
      color = blue, id,NONb\  
      width = 3, )K0i@hM(n  
      "emission" t;O1IMF  
    APSgnf  
     
    分享到
    离线lileisgsz
    发帖
    14
    光币
    69
    光券
    0
    只看该作者 1楼 发表于: 2021-09-28
    感谢,视频上有点看不清楚