(* 8MCSU'uQ
Demo for program"RP Fiber Power": thulium-doped fiber laser, !*=+E%7
pumped at 790 nm. Across-relaxation process allows for efficient x5!lnN,#
population of theupper laser level. 6s&%~6J,
*) !(* *)注释语句 ziD+% -
(\$=+' hy
diagram shown: 1,2,3,4,5 !指定输出图表 = k>ygD_
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 4CioVQdj
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 /PtmJ2[
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 YN5p@b=FX
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 Kv6#WN~
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 Z~ {[YsG
Xq.GvZS`
include"Units.inc" !读取“Units.inc”文件中内容 PD@@4@^
/Wm3qlv
include"Tm-silicate.inc" !读取光谱数据 RyN?Sn5)
!$.h[z^
; Basic fiberparameters: !定义基本光纤参数 kI#yW!
L_f := 4 { fiberlength } !光纤长度 Z/=HQ8
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 6R%NjEW:
r_co := 6 um { coreradius } !纤芯半径 atjrn:X
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 Ed&M
^[-3qi
; Parameters of thechannels: !定义光信道 J l9w/T
l_p := 790 nm {pump wavelength } !泵浦光波长790nm /?
HLEX
dir_p := forward {pump direction (forward or backward) } !前向泵浦 1N\-Ku
P_pump_in := 5 {input pump power } !输入泵浦功率5W >,QW74o
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um NW@guhK.
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 @1G`d53N
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 #
>L^W7^
BJ7m3[lz
l_s := 1940 nm {signal wavelength } !信号光波长1940nm FQ6{NMz,h
w_s := 7 um !信号光的半径 _.$g ?E/(
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 d"JI4)%
loss_s := 0 !信号光寄生损耗为0 b>"=kN/
XKT2u!Lx
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 <)$b=z
XveG#oyiU
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 z2.Z xL"*
calc Zp*0%x!e
begin =f{YwtG
global allow all; !声明全局变量 gay6dj^
set_fiber(L_f, No_z_steps, ''); !光纤参数 (xhV>hsA
add_ring(r_co, N_Tm); [ZkK)78}k
def_ionsystem(); !光谱数据函数 \Z%V)ZRi=
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 q(cSHHv+
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 aw8q}:
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 ]
cY
set_R(signal_fw, 1, R_oc); !设置反射率函数 ![#>{Q4i
finish_fiber(); {QRrAi
end; $6p|}<u
u4p){|x7s
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 U:o(%dk
show "Outputpowers:" !输出字符串Output powers: gzDNMM
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) 0"to]=
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) 2Sg,b8
-THU5AB
1P+Te,I
; ------------- \@i4im@%xU
diagram 1: !输出图表1 X6g{qz Hg_
q-)Ynp4'
"Powers vs.Position" !图表名称 ;+h-o
K<Qy1y~[
x: 0, L_f !命令x: 定义x坐标范围 | &]04
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 8f0Ytfhw
y: 0, 15 !命令y: 定义y坐标范围 G*lkVQ6?
y2: 0, 100 !命令y2: 定义第二个y坐标范围 d;9F2,k$w
frame !frame改变坐标系的设置 gr
y]!4Hy
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) ]aF!0Fln~
hx !平行于x方向网格 m=uW:~
hy !平行于y方向网格 /}=Bi-
d*{NAq'9X
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 XLNR%)l
color = red, !图形颜色 +P. }<
width = 3, !width线条宽度 EsR$H2"
"pump" !相应的文本字符串标签 ?H2{R:
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 &=d0'3k>
color = blue, j\S}TaH0e
width = 3, PRE\2lLY
"fw signal" >^fkHbgNQ
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 \h}a?T6
color = blue, 8QYM/yAM
style = fdashed, %[9d1F3
width = 3, 56
raZC
"bw signal" Q7-d]xJ^
Z-D4~?Tv
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 2l9RU}
yscale = 2, !第二个y轴的缩放比例 xYGB{g]
color = magenta, L93KsI
width = 3, ^5yFb=2
style = fdashed, oI6l `K$
"n2 (%, right scale)" }dt7n65
;^K4kK&f
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 @a{1vT9b
yscale = 2, f*}H4H E O
color = red, (f*0Wp;
width = 3, b\l +S2
style = fdashed, a;2Lgv0/
"n3 (%, right scale)" J^R#
aF~ 0\XC
;ESuj'*t
; ------------- X_0Ta_u?T
diagram 2: !输出图表2 +%hA6n
`T]1u4^E
"Variation ofthe Pump Power" #~SQujgB
N d"4*l;
x: 0, 10 P{-f./(JD
"pump inputpower (W)", @x DgQw9`WA
y: 0, 10 LS=HX~5C
y2: 0, 100 )Bq~1M 2
frame '<35XjW
hx UaQR0,#0y
hy -m.SN>V
legpos 150, 150 ]ctlK'.
AIR\>.~"i*
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 l$_Yl&!q$
step = 5, Y GZX}-
color = blue, W\tSXM-Hg
width = 3, 5+gSpg]i
"signal output power (W, leftscale)", !相应的文本字符串标签 JY|f zL
finish set_P_in(pump, P_pump_in) _Co*"hl>2
`zjEs8`'
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 R0n#FL^E
yscale = 2, BihXYux*
step = 5, HW)4#nLhh
color = magenta, %b
H1We
width = 3, [a&|c%h
"population of level 2 (%, rightscale)", yX:*TK4
finish set_P_in(pump, P_pump_in) Fnnk}I}
pL{h1^O}
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 _IA@X. )?
yscale = 2, Wq+6`o
step = 5, b|cUKsL5
color = red, RE72%w(oM
width = 3, n6PXPc
"population of level 3 (%, rightscale)", J~6-}z
finish set_P_in(pump, P_pump_in) 4&Q.6HkL
tntQO!pM
uIG,2u,
; ------------- Wgt[ACioN
diagram 3: !输出图表3 HbRDa
!z
!R)6
"Variation ofthe Fiber Length" +w
;2k w
c&1:H1#
x: 0.1, 5 3J2j5N:g
"fiber length(m)", @x ]vJ]
i<|b
y: 0, 10 z*cC2+R}=
"opticalpowers (W)", @y =kp-[7
frame hcvWf\4'#q
hx N{}XHA
hy `g2DN#q[0
X\r?g
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 e B`7C"Z
step = 20, ohFUy}y
color = blue, ?h;Zdv>`xz
width = 3, ^6*2a(S&
"signal output" Vf67gux
_E[zYSo`
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 ZgN )sVJ
step = 20, color = red, width = 3,"residual pump" 2L#$WuM~^
pg\Ylk"T
! set_L(L_f) {restore the original fiber length } 3x=f}SO&
zCvt"!}RRa
_H:mBk,,
; ------------- xwZcO
diagram 4: !输出图表4 vO85h
Le&SN7I
"TransverseProfiles" SH"e x,=
5",@!1ju
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) *C~O[:6D
,)u\G(N
x: 0, 1.4 * r_co /um > .L\ >
"radialposition (µm)", @x PVGvj c
y: 0, 1.2 * I_max *cm^2 sx ;7
"intensity (W/ cm²)", @y UN7>c0B
y2: 0, 1.3 * N_Tm IXp (Aeb
frame 1m*fkM#
hx :G/T{87H
hy n%o"n?e
$
e<&7
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 ?0>%
a$`
yscale = 2, ;aJBx
color = gray, [b-wak})aD
width = 3, Nr\[|||%
maxconnect = 1, y^vB_[6l
"N_dop (right scale)" /Ulv/Thl
W0n/B&C
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 f%Y'7~9bA
color = red, #&JhA2]q
maxconnect = 1, !限制图形区域高度,修正为100%的高度 wb@TYvDt
width = 3, f;<qGM.#|
"pump" W7k\j&x
lkNaSz[
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 oMH-mG7:K
color = blue, bLrC_
maxconnect = 1, *U vh;d{
width = 3, ')kn
"signal" fiuF!<#;6
N=e-"8
N/ 7Q(^
; ------------- V)
#vvnq
diagram 5: !输出图表5 xh$1Rwa
C-Q]f
"TransitionCross-sections" >k gL N
M_-LI4>
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) !a"RHg:HO
Xr54/.{&@
x: 1450, 2050 )24c(
"wavelength(nm)", @x u{F^Ngy
)
y: 0, 0.6 02U5N(s
"cross-sections(1e-24 m²)", @y VqzcTr]_
frame N# o" W
hx Q;m:o8Q5
hy y:6&P6`dx
[D[&aA
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 }cov"o
color = red, iGG;
width = 3, CRK%%;=>
"absorption" 5,3Yt ~\m
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 .G"UM>.}d
color = blue, 4CR.=
width = 3, ]JQ';%dne
"emission" %1E:rw@
Qqt<