(* -`'|z+V
Demo for program"RP Fiber Power": thulium-doped fiber laser, 0~U0s3
pumped at 790 nm. Across-relaxation process allows for efficient K e4oLF2
population of theupper laser level. Xy(QK2|
*) !(* *)注释语句 OH@"]Nc~
:lai0>
D
diagram shown: 1,2,3,4,5 !指定输出图表 |*?N#0s5h
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 SNqSp.>-U"
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 Ubu&$4a
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 [R4#bl
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 C@Wzg
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 v:SHaUS
k^oSG1F
include"Units.inc" !读取“Units.inc”文件中内容 i6paNHi*
]-t)wGr
include"Tm-silicate.inc" !读取光谱数据 k*A(7qQA`4
r $S9/
; Basic fiberparameters: !定义基本光纤参数 0'd@8]|H
L_f := 4 { fiberlength } !光纤长度 ()6%1zCO
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 |&@q$d
r_co := 6 um { coreradius } !纤芯半径 ZSNbf|ldiE
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 b=Nsz$[
:Pq&l.
; Parameters of thechannels: !定义光信道 DG;u_6;JR
l_p := 790 nm {pump wavelength } !泵浦光波长790nm ftY&Q#[
dir_p := forward {pump direction (forward or backward) } !前向泵浦 D:9^^uVp
P_pump_in := 5 {input pump power } !输入泵浦功率5W 4&NB xe
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um a >fA-@
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 KJFQ)#SW!
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 !po,Z&
S+06pj4Ie
l_s := 1940 nm {signal wavelength } !信号光波长1940nm wA{)9.
w_s := 7 um !信号光的半径 I0Do%
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 Q3>qT84
loss_s := 0 !信号光寄生损耗为0 "dCIg{j
4AhFE@
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 rv[BL.qV
>IQ&*Bb
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 rX$-K\4W
calc xd3mAf
begin GYw/KT~$
global allow all; !声明全局变量 HV!P]82Pa
set_fiber(L_f, No_z_steps, ''); !光纤参数 6No.2Oo
add_ring(r_co, N_Tm); ub 2'|CYw
def_ionsystem(); !光谱数据函数 wSjy31
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 Rb<|
<D+
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 Yy
4Was#
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 cY} jPDH
set_R(signal_fw, 1, R_oc); !设置反射率函数 ;2h"YU-b
finish_fiber();
=pe O%
end; mV]~}7*Y;
IO#)r[JZ
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 2^s@n3t
show "Outputpowers:" !输出字符串Output powers: C|}yE;*a
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) e~QLzZ3
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) toF6 Z
-6 v?iiZr
z*nztvY@e
; ------------- Nj6Np^@sH
diagram 1: !输出图表1 akw:3+`
M/V"Ke"N
"Powers vs.Position" !图表名称 .~'q
yD2V
CWs;1`aP
x: 0, L_f !命令x: 定义x坐标范围 e7G>'K
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 y3*IF2G
y: 0, 15 !命令y: 定义y坐标范围 pnz@;+f
y2: 0, 100 !命令y2: 定义第二个y坐标范围 Ct/6<
frame !frame改变坐标系的设置 @W+8z#xr'
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) Qvny$sr2
hx !平行于x方向网格 l$BKE{rg
hy !平行于y方向网格 ~l+~MB
rGH7S!\AM
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 6:r1^q6A9L
color = red, !图形颜色 8Pom^QopK
width = 3, !width线条宽度 d{!zJ+n
"pump" !相应的文本字符串标签 IKp(KlA
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 ziW[qH {
color = blue, ?fs#K;w
width = 3, 'iYaA-9j
"fw signal" W6B o\UK
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 r'}#usB(
color = blue, b(ryk./ogx
style = fdashed, k!@/|]3z
width = 3, RAyR&p
"bw signal" n O}x,sG2'
zJ0'KHF}o
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 '.&,.E&{$
yscale = 2, !第二个y轴的缩放比例 }=3W(1cu-
color = magenta, gvZLW!={
width = 3, D/{ Spw@
style = fdashed, OQX ek@~2
"n2 (%, right scale)" WY~}sE
6a`_i
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 FH H2
yscale = 2, $0iN43WSQ
color = red, sEfGf.
width = 3, ^_Z Qf
style = fdashed, q14A'XW
"n3 (%, right scale)" EZiGi[t7
.yj=*N.
{&(bKQ
; ------------- [dL?N
diagram 2: !输出图表2 e$(i!G)
eEe8T=mD
"Variation ofthe Pump Power" <Q-ufF85)
J=]w$e ?.P
x: 0, 10 cl7+DAE
"pump inputpower (W)", @x /C8(cVNZ
y: 0, 10 0\}j[-`pF
y2: 0, 100 ~(0Y`+gC
frame Iei4yDv ;
hx l1_X5DI
hy KF-gcRh
legpos 150, 150 kAk,:a;P
s9:2aLZ{
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 Z*e7W O.
step = 5, E[Io8|QA
color = blue, 1aMBCh<}JN
width = 3, U ._1'pW
"signal output power (W, leftscale)", !相应的文本字符串标签 RBgkC+2
finish set_P_in(pump, P_pump_in) 5BCaE)J
$BBfsaJPT
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 |)JoxqR
yscale = 2, @x J^JcE
step = 5, x}>tX
color = magenta, n_ez6{
width = 3, ujWHO$uz!
"population of level 2 (%, rightscale)", /7"1\s0 U
finish set_P_in(pump, P_pump_in) D3lYy>~d5;
;qk~>
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 /+1Fa):
yscale = 2, 1k%ko?
step = 5, O}f(h5!k
color = red, {4m"S7O
width = 3, Zz&i0r
"population of level 3 (%, rightscale)",
]D-48o0
finish set_P_in(pump, P_pump_in)
O}D8
CC-:dNb
=K>Z{%i
; ------------- -5 W0 K}
diagram 3: !输出图表3 x[^A9
835Upj>
"Variation ofthe Fiber Length" #f~a\}$I
)?bb]hZg?O
x: 0.1, 5 \mu9ikZ<
"fiber length(m)", @x d$,i?d,
y: 0, 10 TxCQGzqe
"opticalpowers (W)", @y "AK3t'
jF*
frame dGteYt_F
hx CzEn_ZMb
hy O({_x@
Wkk Nyg,
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 @!'H'GvA
step = 20, B;~agr
color = blue, uWInx6p
width = 3, -d3y!|\>a
"signal output" @Kr)$F
|\(/dXXP
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 ?^vZ{B)&0E
step = 20, color = red, width = 3,"residual pump" =5M>\vt]
L K~,
! set_L(L_f) {restore the original fiber length } ZtLn*M
(*x"6)`
^aW[~ c
; ------------- {|E7N"Qzg
diagram 4: !输出图表4 bC{8yV=)
Zn0fgQd
"TransverseProfiles" VT7NWTJ,
"\[>@_p h
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) F]*-i 55S
%S#"pKE6R
x: 0, 1.4 * r_co /um 7dJaWD:&
"radialposition (µm)", @x *]6dV'
y: 0, 1.2 * I_max *cm^2 4"{wga~%/
"intensity (W/ cm²)", @y 6<Wr
8u,
y2: 0, 1.3 * N_Tm $bosGG
frame k >CtWV5B
hx fNJ;{
hy _64@zdL+
j2Y(Q/i
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 $\!;*SSj
yscale = 2, q_&IZ,{Vk
color = gray, ,GnU]f
width = 3, \pGO}{3e*
maxconnect = 1, |pR$' HO
"N_dop (right scale)" $@kw>2
\Agg6tYr
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 _[o^23Hj
color = red, .A/H+.H;
maxconnect = 1, !限制图形区域高度,修正为100%的高度 n5/Tn7hY
width = 3, QZox3LM1&.
"pump" `=DCX%Vw
T_[\(K`w!
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 K>6k@okO
color = blue, Q$L(fHkw
maxconnect = 1, 30E v"
width = 3, Sg>0P*K@
"signal" 7~nCK
vqi$}=%n?W
MjC%6%HI
; ------------- ^(*O$N*#
diagram 5: !输出图表5 a[g|APZz
ok2~B._+;
"TransitionCross-sections" a3O_#l-Z
ja- ~`
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) AuipK*&g
c| ( ?
x: 1450, 2050 a
BH1J]_
"wavelength(nm)", @x (x0*(*A}
y: 0, 0.6 b|o!&9Yyr
"cross-sections(1e-24 m²)", @y E2H<{Q
frame {WeXURp&nF
hx ]=VS~azZ5
hy /&as)
n o+tVm|
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 0DVZRB
color = red, 3,L3C9V'
width = 3, .]s(c!{y
"absorption" 1 3`0d
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 S5u#g`I]
color = blue, {V%O4/
width = 3, )z235}P
"emission" 'F"Y?y:!
uE#,c\[8