切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 2019阅读
    • 1回复

    [原创]RP Fiber Power仿真设计掺铥光纤激光器代码详解 [复制链接]

    上一主题 下一主题
    离线小火龙果
     
    发帖
    916
    光币
    2113
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-05-28
    (* -`' |z+V  
    Demo for program"RP Fiber Power": thulium-doped fiber laser, 0~U0s3  
    pumped at 790 nm. Across-relaxation process allows for efficient Ke4oLF2  
    population of theupper laser level. Xy(QK2|  
    *)            !(*  *)注释语句 OH@"]Nc~  
    :la i0> D  
    diagram shown: 1,2,3,4,5  !指定输出图表 |*?N#0s5h  
    ; 1: "Powersvs. Position"     !分号是注释;光纤长度对功率的影响 SNqSp.>-U"  
    ; 2:"Variation of the Pump Power"  !泵浦光功率变化对信号输出功率的影响 Ubu&$4a  
    ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 [R4# bl  
    ; 4:"Transverse Profiles"             !横向分布,横坐标为半径位置 C@Wzg  
    ; 5:"Transition Cross-sections"    !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 v:SHaUS  
    k^oSG1F  
    include"Units.inc"         !读取“Units.inc”文件中内容 i6paNHi*  
    ]-t )wGr  
    include"Tm-silicate.inc"    !读取光谱数据 k*A(7qQA`4  
    r $S9/  
    ; Basic fiberparameters:    !定义基本光纤参数 0'd@8]|H  
    L_f := 4 { fiberlength }      !光纤长度 ()6% 1zCO  
    No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 |&@q$d  
    r_co := 6 um { coreradius }                !纤芯半径 ZSNbf|ldiE  
    N_Tm := 100e24 { Tmdoping concentration }  !纤芯Tm离子掺杂浓度 b=Nsz$[  
    :P q&l.  
    ; Parameters of thechannels:                !定义光信道 DG;u_6;JR  
    l_p := 790 nm {pump wavelength }                !泵浦光波长790nm ftY&Q#[  
    dir_p := forward {pump direction (forward or backward) }   !前向泵浦 D:9^^uVp  
    P_pump_in := 5 {input pump power }                    !输入泵浦功率5W 4&NB xe  
    w_p := 50 um {radius of pump cladding }               !包层泵浦相应的半径 50um a >fA-@  
    I_p(r) := (r <=w_p) { pump intensity profile }          !泵浦光强度分布 KJFQ)#SW!  
    loss_p := 0 {parasitic losses of pump wave }           !泵浦光寄生损耗为0 !po,Z&  
    S+06pj4Ie  
    l_s := 1940 nm {signal wavelength }                   !信号光波长1940nm wA{) 9.  
    w_s := 7 um                          !信号光的半径 I0Do%  
    I_s(r) := exp(-2 *(r / w_s)^2)            !信号光的高斯强度分布 Q3>qT84  
    loss_s := 0                            !信号光寄生损耗为0 "dCIg{j   
    4AhF E@  
    R_oc := 0.70 {output coupler reflectivity (right side) }      !输出耦合反射率 rv[BL.qV  
    >IQ&*Bb  
    ; Function for defining themodel:   !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 rX$-K\4W  
    calc xd3mAf  
      begin GYw/KT~$  
        global allow all;                   !声明全局变量 HV!P]82Pa  
        set_fiber(L_f, No_z_steps, '');        !光纤参数 6No.2Oo  
        add_ring(r_co, N_Tm); ub 2'|CYw  
        def_ionsystem();              !光谱数据函数 wSjy31  
        pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p);  !泵浦光信道 Rb<| <D+  
        signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward);      !前向信号光信道 Yy 4Was#  
        signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward);    !后向信号光信道 cY} jPDH  
        set_R(signal_fw, 1, R_oc);                                 !设置反射率函数 ;2h"YU-b  
        finish_fiber();                                   =pe O %  
      end; mV]~}7*Y;  
    IO #)r[JZ  
    ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 2^s&#@n3t  
    show "Outputpowers:"                                   !输出字符串Output powers: C|}yE ;*a  
    show"pump:     ", P_out(pump):d3:"W"  !输出字符串pump:和计算值(格式为3个有效数字,单位W) e~QLzZ3  
    show"signal:   ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) toF6 Z  
    -6 v?iiZr  
    z*nztvY@e  
    ; ------------- Nj6Np^@sH  
    diagram 1:                   !输出图表1 akw:3+`  
    M/V"Ke"N  
    "Powers vs.Position"          !图表名称 .~'q yD2V  
    CWs;1`aP  
    x: 0, L_f                      !命令x: 定义x坐标范围 e7G>'K  
    "position infiber (m)", @x      !x轴标签;@x 指示这些字符串沿坐标轴放置 y3*IF2G  
    y: 0, 15                      !命令y: 定义y坐标范围 pnz@;+f  
    y2: 0, 100                    !命令y2: 定义第二个y坐标范围 Ct /6<  
    frame          !frame改变坐标系的设置 @W+8z#xr'  
    legpos 600, 500  !图行在图表窗口中的位置(相对于左上角而言) Qvny$sr2  
    hx             !平行于x方向网格 l$BKE{rg  
    hy              !平行于y方向网格 ~l+~MB  
    rGH7S!\AM  
    f: P(pump, x),    !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 6:r1^q6A9L  
      color = red,  !图形颜色 8Pom^QopK  
      width = 3,   !width线条宽度 d{!zJ+n  
      "pump"       !相应的文本字符串标签 IKp(KlA  
    f: P(signal_fw, x),  !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 ziW[qH {  
      color = blue,     ?fs#K;w  
      width = 3, 'iYaA-9j  
      "fw signal" W6B o\UK  
    f: P(signal_bw, x),   !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 r'}#usB(  
      color = blue, b(ryk./ogx  
      style = fdashed, k!@/|]3z  
      width = 3, RAyR&p  
      "bw signal" n O}x,sG2'  
    zJ0'KHF}o  
    f: 100 * n(x, 2),    !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 '.&,.E&{$  
      yscale = 2,            !第二个y轴的缩放比例 }=3W(1cu-  
      color = magenta, gvZLW!={  
      width = 3, D/{Spw@  
      style = fdashed, OQX ek@~2  
      "n2 (%, right scale)" WY~}sE  
    6a`_i  
    f: 100 * n(x, 3),          !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 FHH2  
      yscale = 2, $0iN43WSQ  
      color = red, sEfGf.  
      width = 3, ^_ZQf  
      style = fdashed, q14A 'XW  
      "n3 (%, right scale)" EZiGi[t7  
    .yj=*N.  
    {&(bKQ  
    ; ------------- [dL?N  
    diagram 2:                    !输出图表2 e$(i!G)  
    eEe8T=mD  
    "Variation ofthe Pump Power" <Q-ufF85)  
    J=]w$e ?.P  
    x: 0, 10 cl7+DAE  
    "pump inputpower (W)", @x /C8(cVNZ  
    y: 0, 10 0\}j[-`pF  
    y2: 0, 100 ~(0Y`+gC  
    frame Iei4yDv ;  
    hx l1_X5DI  
    hy KF-gcRh  
    legpos 150, 150 kAk,:a;P  
    s9:2aLZ {  
    f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 Z*e7W O.  
      step = 5, E[Io8|QA  
      color = blue, 1aMBCh<}JN  
      width = 3, U ._1'pW  
      "signal output power (W, leftscale)",     !相应的文本字符串标签 RBgkC+2  
      finish set_P_in(pump, P_pump_in) 5BCaE)J  
    $BBfsaJPT  
    f: (set_P_in(pump,x); 100 * n_av(2)),   !改变泵浦信号功率对能级2上激活粒子占比的影响 |)JoxqR  
      yscale = 2, @x J^JcE  
      step = 5, x}>tX  
      color = magenta, n _ez6{  
      width = 3, ujWHO$uz!  
      "population of level 2 (%, rightscale)", /7"1\s0U  
      finish set_P_in(pump, P_pump_in) D3lYy>~d5;  
    ;qk~>  
    f: (set_P_in(pump,x); 100 * n_av(3)),   !改变泵浦信号功率对能级3上激活粒子占比的影响 /+1Fa):  
      yscale = 2, 1k%ko?  
      step = 5, O}f(h5!k  
      color = red, {4m"S 7O  
      width = 3, Zz&i0 r  
      "population of level 3 (%, rightscale)", ]D-48o0  
      finish set_P_in(pump, P_pump_in) O}D8  
    CC-:dNb  
    =K>Z{% i  
    ; ------------- -5 W0K}  
    diagram 3:                         !输出图表3 x[^A9  
    835Upj>  
    "Variation ofthe Fiber Length" #f~a\}$I  
    )?bb]hZg?O  
    x: 0.1, 5 \mu9ikZ<  
    "fiber length(m)", @x d$,i?d,  
    y: 0, 10 TxCQGzqe  
    "opticalpowers (W)", @y "AK3t' jF*  
    frame dGteYt_F  
    hx CzEn_ZMb  
    hy O({_x@  
    Wkk Nyg,  
    f: (set_L(x);P_out(signal_fw)),     !改变光纤长度对信号光输出功率的影响 @!'H'GvA  
      step = 20,             B;~agr  
      color = blue, uWInx6p  
      width = 3, -d3y!| \>a  
      "signal output" @Kr)$F  
    |\(/dXXP  
    ;f: (set_L(x);P_out(pump)),                     !改变光纤长度对泵浦信号输出功率的影响 ?^vZ{B)&0E  
       step = 20, color = red, width = 3,"residual pump" =5M>\vt]  
    L K~,  
    ! set_L(L_f) {restore the original fiber length } ZtLn*M  
    (*x "6)`  
    ^aW[~ c  
    ; ------------- {|E7N"Qzg  
    diagram 4:                                  !输出图表4 bC{8yV=)  
    Zn0fgQd  
    "TransverseProfiles" VT7NWT J,  
    "\[>@_p h  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) F]*-i 55S  
    %S#"pKE6 R  
    x: 0, 1.4 * r_co /um 7dJaWD:&   
    "radialposition (µm)", @x *]6dV '  
    y: 0, 1.2 * I_max *cm^2 4"{wga~%/  
    "intensity (W/ cm&sup2;)", @y 6<Wr 8u,  
    y2: 0, 1.3 * N_Tm $bosGG  
    frame k>CtWV5B  
    hx fNJ;{&#  
    hy _64@zdL+  
    j2Y(Q/i  
    f: N_dop(1, x * um,0),      !掺杂浓度的径向分布 $\!;*SSj  
      yscale = 2, q_&IZ,{Vk  
      color = gray, ,GnU]f  
      width = 3, \pGO}{3 e*  
      maxconnect = 1, |pR$' HO  
      "N_dop (right scale)" $@k w>2  
    \Agg6tY r  
    f: I(pump, -1, x *um, 0) * cm^2,    !泵浦光沿光纤径向的强度分布 _[o^23Hj  
      color = red, .A/H+.H;  
      maxconnect = 1,           !限制图形区域高度,修正为100%的高度 n5/Tn7hY  
      width = 3, QZox3LM1&.  
      "pump" `=DCX%Vw  
    T_[\(K`w!  
    f: I(signal_fw, -1,x * um, 0) * cm^2,  !信号光沿光纤径向的强度分布 K>6k@okO  
      color = blue, Q$L(fH kw  
      maxconnect = 1, 30E v"  
      width = 3, Sg>0P*K@  
      "signal"  7~nCK  
    vqi$}=%n?W  
    MjC%6%HI  
    ; ------------- ^(*O$N*#  
    diagram 5:                                  !输出图表5 a[g|APZz  
    ok2~B._+;  
    "TransitionCross-sections" a3O_#l-Z  
     ja- ~`  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) AuipK*&g  
    c|( ?  
    x: 1450, 2050 a BH1J]_  
    "wavelength(nm)", @x (x0*(*A}  
    y: 0, 0.6 b|o!&9Yyr  
    "cross-sections(1e-24 m&sup2;)", @y E2H<{Q   
    frame {WeXURp&nF  
    hx ]=VS~azZ5  
    hy /&as)  
    n o+tVm|  
    f: s12_Tm(x * nm) /1e-24,      !Tm3+吸收截面与波长的关系 0DVZRB  
      color = red, 3,L3C9V'  
      width = 3, .]s( c!{y  
      "absorption" 1 3 `0d  
    f: s21_Tm(x * nm) /1e-24,  !Tm3+发射截面与波长的关系 S5u#g`I]  
      color = blue, {V% O4/  
      width = 3, )z235}P  
      "emission" 'F"Y?y:!  
    uE#,c\[8  
     
    分享到
    离线lileisgsz
    发帖
    14
    光币
    69
    光券
    0
    只看该作者 1楼 发表于: 2021-09-28
    感谢,视频上有点看不清楚