(* O1x0[sy
Demo for program"RP Fiber Power": thulium-doped fiber laser, x{NNx:T1
pumped at 790 nm. Across-relaxation process allows for efficient U`bC>sCp
population of theupper laser level. 'a;ini
*) !(* *)注释语句 W{fULl
U^M@um M
diagram shown: 1,2,3,4,5 !指定输出图表 ,+ns
{ppn
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 {yvb$ND|j{
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 N,j>;x3xT
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 *[d~Nk%Y$
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 F=oHl@
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 ~vW)1XnK
\LIy:$`8
include"Units.inc" !读取“Units.inc”文件中内容 ,}9f(`
=cf{f]N
include"Tm-silicate.inc" !读取光谱数据 GB&Nt{
P]pmt1a
; Basic fiberparameters: !定义基本光纤参数 ,U6*kvHS6
L_f := 4 { fiberlength } !光纤长度 {PN:bb
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 cT/3yf
r_co := 6 um { coreradius } !纤芯半径 Z|2Eb*
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 K#GXpj
P['X<Xt8
; Parameters of thechannels: !定义光信道 KqN!?anPr
l_p := 790 nm {pump wavelength } !泵浦光波长790nm r_4TtP&UW
dir_p := forward {pump direction (forward or backward) } !前向泵浦 a`7%A H)
P_pump_in := 5 {input pump power } !输入泵浦功率5W jg~_'4f#
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um HA$Y1}
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 +VSZhg,Np8
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 ?Wwh
_TO
rs[?v*R74
l_s := 1940 nm {signal wavelength } !信号光波长1940nm :&Qb>PH[
w_s := 7 um !信号光的半径 |n+#1_t%
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 60`+9(^
loss_s := 0 !信号光寄生损耗为0 3H1Pp*PH
fH-NU-"
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 (l
Lu?NpIi
CXBzX:T?#
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 Q2*/`L}m\
calc @(Z( /P;:
begin ;5<P|:^
global allow all; !声明全局变量 ;!'qtw"CB
set_fiber(L_f, No_z_steps, ''); !光纤参数 ?#?e(mpo
add_ring(r_co, N_Tm); '4$lL6ly>
def_ionsystem(); !光谱数据函数 GA.BI"l
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 T'hml
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 doLkrEm&
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道
ir]Mn.(Y
set_R(signal_fw, 1, R_oc); !设置反射率函数 O'fk&&l
finish_fiber(); uii7b7[w
end; =KV@&Y^x4
;vMn/
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 8fnR1mWG
show "Outputpowers:" !输出字符串Output powers: ]K7`-p~T
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) ~
9=27p
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) QO@6VY@
FS8S68
@\ }sb]
; ------------- QW2?n`Fa9-
diagram 1: !输出图表1 k,T_e6(
w5,6$#
"Powers vs.Position" !图表名称 VO9XkA7
8zAg;b[
x: 0, L_f !命令x: 定义x坐标范围 JfkTw~'R
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 =:4?>2)
y: 0, 15 !命令y: 定义y坐标范围 Khj=llo,
y2: 0, 100 !命令y2: 定义第二个y坐标范围 )Lb72;!?
frame !frame改变坐标系的设置 L7m`HVCt&
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) i (0hvV>'
hx !平行于x方向网格 b7!UZu]IEv
hy !平行于y方向网格 sW?B7o?
[g +y_@9s
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 ~Yl<S(/4
color = red, !图形颜色 A';n6ne%i
width = 3, !width线条宽度 H-Pq!9[DB
"pump" !相应的文本字符串标签 ^T{8uJ'kn
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 WKxm9y
V
color = blue, }%+qP+O\
width = 3, b"t")U==
"fw signal" ~6kJ~R4
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 66
N)
color = blue, EX4
C.C|d
style = fdashed, |#V(p^
width = 3, -1CEr_(P^
"bw signal" *="m3:c'J
*2=W5LaK.
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 [^M|lf
yscale = 2, !第二个y轴的缩放比例 izf~w^/
color = magenta, -AC`q/bCD
width = 3, a1|c2kT
style = fdashed, ,%Z&*n
"n2 (%, right scale)" x{Sd
P$
2 h<U
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 [fxuUmU
yscale = 2, Pcdf$a"`
color = red, U{}!y3[wK
width = 3, Xem5@
(u
style = fdashed, 4>YU8/Rw
"n3 (%, right scale)" |!Fk2Je,
)\0q_a
TP{Gt.e
; ------------- um[!|g/
diagram 2: !输出图表2 (]XbPW
+zsZNJ(U
"Variation ofthe Pump Power" xs%LRF#u
uY;R8CiD
x: 0, 10 G?/c/r G
"pump inputpower (W)", @x w;+ br
y: 0, 10 +T2HE\
y2: 0, 100 B+Z13;}B
frame 13a(FG
hx VgMP^&/gZ
hy q{E"pyt36R
legpos 150, 150 PrSkHxm
4P%m>[
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 xnbsg!`;7W
step = 5, JKy#j g:#
color = blue, ax_YKJ5#P
width = 3, c
0-w6
"signal output power (W, leftscale)", !相应的文本字符串标签 sofu
finish set_P_in(pump, P_pump_in) "OL~ul5
J &{xP8uq_
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 G52Z)^
yscale = 2, 94{)"w]
step = 5, =VSkl;(O
color = magenta, ^.vmF>$+I
width = 3, 8a>SC$8"
"population of level 2 (%, rightscale)", v"RiPHLT
finish set_P_in(pump, P_pump_in) ~;unpym'
OJ/SYZ.r
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 J?%}=_fsa
yscale = 2, 7tgFDLA
step = 5, S;=_;&68?
color = red, \A<v=VM|
width = 3, :c7CiP
"population of level 3 (%, rightscale)", TvQ^DZbe
finish set_P_in(pump, P_pump_in) ZJ(rG((!
a2yE:16o6
i8~$o:&HT
; ------------- '7tBvVO_
diagram 3: !输出图表3 z(H?VfJo
}Hy ~i
"Variation ofthe Fiber Length" kH?#B%N5
vZkXt!%)
x: 0.1, 5 8!zbF<W9
"fiber length(m)", @x <m-.aK{9
y: 0, 10 >]&X ^V%Q#
"opticalpowers (W)", @y S&?7K-F>_o
frame |0
!I5|<k
hx >"("*3AO
hy /IR#A%U
IU!Ht>
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 fbC~WV#
step = 20, 2dbRE:v5
color = blue, rLF*DB3l
width = 3, ssl&5AS
"signal output" @6&JR<g*t
s[AA7>]3
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 sLns3&n2
step = 20, color = red, width = 3,"residual pump" JsQ6l%9
mhzYz;}
! set_L(L_f) {restore the original fiber length } E4HU 'y~
5~r2sCDPk
L"vj0@n'0
; ------------- H+l,)Se
diagram 4: !输出图表4 u Z(? >
(V?@?25
"TransverseProfiles" u) *Kws
m22wF>9
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) `ZGcgO<c\
n29(!10Px
x: 0, 1.4 * r_co /um #a,9B-X
"radialposition (µm)", @x kMxjS^fr
y: 0, 1.2 * I_max *cm^2 vV^dm)?
"intensity (W/ cm²)", @y z"379b7cN
y2: 0, 1.3 * N_Tm w> 979g
frame DDw''
hx ::"E?CQLV
hy X9XI;c;b-
Rs7|}Dl}
f: N_dop(1, x * um,0), !掺杂浓度的径向分布
%}b8aG+
yscale = 2, `# ^0cW
color = gray, ctJ&URCi#
width = 3, ai^|N.!
maxconnect = 1, )^/0cQcJ
"N_dop (right scale)" D:E9!l'
9_huI'"p
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 |y1;&<
color = red, K2ewucn
maxconnect = 1, !限制图形区域高度,修正为100%的高度 ` |Fp^gM
width = 3, '6S %9ahE
"pump" {-WTV"L5*2
L`3n2DEBf
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 )2.)3w1_4
color = blue, .
/m hu
maxconnect = 1, 'Q|c@t
width = 3, qnIew?-*
"signal" {#hVD4$b
t9u|iTY
f!
8MF2K6
; ------------- ][:rLs
diagram 5: !输出图表5 j_Nm87i]
<avQR9'&
"TransitionCross-sections" _gV8aH ZyM
4v.d-^
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) 4#BRx#\O
xsP4\C>
x: 1450, 2050 u"+}I,'L
"wavelength(nm)", @x 5*G%IR@@LK
y: 0, 0.6 @ 4UxRp6+
"cross-sections(1e-24 m²)", @y 2{oThef[O
frame @Icq1zb]
y
hx [1(FgyE
hy ^v:Z o
W{Z^n(f4
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 Eipp~GD
color = red, oln<yyDs
width = 3, ]U_ec*a
"absorption" y4jU{,
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 +^ yq;z
color = blue, id,NONb\
width = 3, )K0i@hM(n
"emission" t;O1IMF
APSgnf