(* ^loF#d=s
Demo for program"RP Fiber Power": thulium-doped fiber laser, "m<eHz]D
pumped at 790 nm. Across-relaxation process allows for efficient Xv<;[vq}F
population of theupper laser level. '=@H2T6=
*) !(* *)注释语句 >8.v.;`
1GyA QHx,
diagram shown: 1,2,3,4,5 !指定输出图表 8z3I~yL_`+
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 ~Iu21Q(*
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 d[qEP6B
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 Q:Nwy(,I
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 HCn]#
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 D+@/x{wX2
[f0oB$
include"Units.inc" !读取“Units.inc”文件中内容 {R6Zwjs
, L AJ
include"Tm-silicate.inc" !读取光谱数据 bo?3E +B
c=U$$|qHV
; Basic fiberparameters: !定义基本光纤参数 F"HI>t)>
L_f := 4 { fiberlength } !光纤长度 0wa!pE"
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 (tz_D7c$F
r_co := 6 um { coreradius } !纤芯半径 WP#_qqO
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 ?AM8*w
UHsrZgIRYT
; Parameters of thechannels: !定义光信道 p.W*j^';Q
l_p := 790 nm {pump wavelength } !泵浦光波长790nm Z ^9{Qq
dir_p := forward {pump direction (forward or backward) } !前向泵浦 W>
-E.#!_
P_pump_in := 5 {input pump power } !输入泵浦功率5W dp%pbn6w
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um M}KM]<
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 wshp{ y
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 ]oWZ{#r2
<PuB3PEvV
l_s := 1940 nm {signal wavelength } !信号光波长1940nm 1RUbY>K#U
w_s := 7 um !信号光的半径 9OO_Hp#|9
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 Ubos#hP
loss_s := 0 !信号光寄生损耗为0 PU/Br;2A
lXL7q?,9
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 /B#lju!
O|7{%5h
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 zL!~,B8C
calc ^J}$y7
begin h/+I-],RF
global allow all; !声明全局变量 ^xkppN2
set_fiber(L_f, No_z_steps, ''); !光纤参数 [E
:`jY
add_ring(r_co, N_Tm); la"A$Tbu~
def_ionsystem(); !光谱数据函数 FsPDWy&x
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 1j)!d$8
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 A>1p]#
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 Hk~
gcG
set_R(signal_fw, 1, R_oc); !设置反射率函数 >7Sl(
UY-
finish_fiber(); :,z3:PL
end; TWR#MVMI
'Tan6Qa
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 sz2SWk^&
show "Outputpowers:" !输出字符串Output powers: I3rnCd(
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) f [I'j0H%
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) { `|YX_HS
vaCdfO&
~FCSq:_
; ------------- "i<3}6/*
diagram 1: !输出图表1 AqKx3p6
|I^Jn@Mq:
"Powers vs.Position" !图表名称 )PoI~km
jvQ+u L
x: 0, L_f !命令x: 定义x坐标范围 JE:n`l/p
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 !}Ou|r4_
y: 0, 15 !命令y: 定义y坐标范围 Xgth|C}k
y2: 0, 100 !命令y2: 定义第二个y坐标范围 /$.vHt5nt
frame !frame改变坐标系的设置 "M#`y!__
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) HF=C8ZtlL
hx !平行于x方向网格 {hq ;7
hy !平行于y方向网格 'GdlqbX(%
xS-nO_t 'E
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 G~hILW^
color = red, !图形颜色 &*:)5F5
width = 3, !width线条宽度 x^#{2}4u
"pump" !相应的文本字符串标签 qsRfG~Cg
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 C`T5d
color = blue, DW%K'+@M
width = 3, Cy> +j{%!
"fw signal" }/}`onRZ
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 KA{DN!
color = blue, .VEfd4+ni{
style = fdashed, IV#My9}e
width = 3, >W]"a3E
"bw signal" o[r6sz:
f I-"8f0_
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 CZ%"Pqy&1L
yscale = 2, !第二个y轴的缩放比例
#YYvc`9
color = magenta, ao5yW;^y
width = 3, :yFCp@&
style = fdashed, 5%aKlx9^#
"n2 (%, right scale)" Bv]wHPun
\bl,_{z?
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 +/lj~5:y
yscale = 2, _$_CR\$
color = red,
~zC fan/
width = 3, M~Dc5\T
style = fdashed, ? /X6x1PN
"n3 (%, right scale)" 9@*>$6
ef;="N
>#n-4NZ;p9
; ------------- @z JZoJL]J
diagram 2: !输出图表2 r9'H7J
jy|xDQ
"Variation ofthe Pump Power" V+ ~2q=
moI<b\G@
x: 0, 10 lc(iy:z@
"pump inputpower (W)", @x 1L
qJ@v0
y: 0, 10 g)6 k?Y
y2: 0, 100 >:nJTr
frame F9J9pgVP
hx ?G<IN)
hy < io8
b|A
legpos 150, 150 _\[JMhd}
'=Y~Ir+
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 ?+tZP3'
step = 5, {v/6|
color = blue, .[85<"C
width = 3, rGL{g&_
"signal output power (W, leftscale)", !相应的文本字符串标签 ]-LE'Px|
finish set_P_in(pump, P_pump_in) *n?:)(
MdjMTe s
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 +%$V?y
(
yscale = 2, HD|)D5wH|
step = 5, +N&(lj
color = magenta, w~?eX/;
width = 3, 6x8|v7cMH
"population of level 2 (%, rightscale)", t^;Fq{>
finish set_P_in(pump, P_pump_in) v!C+W$,T
wf$ JuHPt
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 &}=,8Gt1G
yscale = 2, H hH'\-[t
step = 5, ,R6$SrNcd
color = red, _Hj,;Z
width = 3, DdBrJ x
"population of level 3 (%, rightscale)", t4f\0`jN
finish set_P_in(pump, P_pump_in) <u/({SZ&
_J;a[Ky+[
&"n9,$
; ------------- eA^|B zU
diagram 3: !输出图表3 Bn:sN_N
kO"aE~
"Variation ofthe Fiber Length" P*sCrGO%
W4a20KM2
x: 0.1, 5 GdY^}TJrh
"fiber length(m)", @x
jK1!
\j
y: 0, 10 8#B;nyGD1I
"opticalpowers (W)", @y th|Q NG
frame Sp:de,9@
hx ;r}<o?'RM
hy nzDY!Y
.1}(Bywm5
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 'J$NW
step = 20, (Cd`~*5
color = blue, FM];+d0
width = 3, Mpx.n]O.
"signal output" \C|06Bs$
]h@:Y]
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 ]0E- lD0J
step = 20, color = red, width = 3,"residual pump" Mq$=zsj
xy>mM"DOH
! set_L(L_f) {restore the original fiber length } inrL'z
nfB9M1Svn
P*]g*&*Y +
; ------------- K.Z{4x=0
diagram 4: !输出图表4 U5=J;[w}N
f#mpd]e+6
"TransverseProfiles" =h{2!Ah7
X
>O=V1
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) K2Zy6lGOZ
qsx1:Ny1
x: 0, 1.4 * r_co /um ~qH@Kz\%
"radialposition (µm)", @x { q<l]jn9
y: 0, 1.2 * I_max *cm^2 i|Wn*~yFOO
"intensity (W/ cm²)", @y ]B||S7idq
y2: 0, 1.3 * N_Tm &5<lQ1
frame &h-1Z}
hx 0kfw8Lon
hy GS%Dn^l
HL]?CWtGP
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 $'Z!Y;Ue
yscale = 2, i`;I"oY4
color = gray, ~5b %~:
width = 3, nFSa~M
maxconnect = 1, :nt%z0_
"N_dop (right scale)" ~MX@-Ff
cjk5><}`H7
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 sYzG_*)
color = red, H Vy^^$
maxconnect = 1, !限制图形区域高度,修正为100%的高度 I(e>ff
width = 3, rYJvI
"pump" 5YasD6l
+nuQC{^>
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 Oc>-jhx?
color = blue, {U9jA_XX
maxconnect = 1, *?S\0a'W@
width = 3, M}>q>
"signal" [B[ J%?NS
ia[wVxd
ZpyRvDz
; ------------- M<729M
diagram 5: !输出图表5 6~s,j({^
JcP'+@X"
"TransitionCross-sections" Velmq'n
~Y(M>u.+!
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) c/u;v69r
#LZ`kSlv4
x: 1450, 2050 jn[a23;G)
"wavelength(nm)", @x ntT|G0E
y: 0, 0.6 g6farLBF
"cross-sections(1e-24 m²)", @y \ gN) GR
frame -:QyWw/d
hx
1Sy#*
hy vR,'':
y.Py>GJJ1S
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 }y1M0^M-$
color = red, R[(,wY_1
width = 3, {:Q2Itsy
"absorption" VXa]L4jJ9
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 1\2 m'o
color = blue, A28w/=e7
width = 3, I.>LG
"emission" jy?^an}#h
"~ /3