(* $w*L'
<
Demo for program"RP Fiber Power": thulium-doped fiber laser, U>lf-iI2B
pumped at 790 nm. Across-relaxation process allows for efficient %[|^7
population of theupper laser level. `rVru= zoy
*) !(* *)注释语句 5TJd9:\Af
estiS
diagram shown: 1,2,3,4,5 !指定输出图表 by<@\n2B:U
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 l$&~(YE f
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 qt}M&=}8Q
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 Wu
0:X*>}p
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 ./ {79
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 $.vm n,:.
V<UChD)N`
include"Units.inc" !读取“Units.inc”文件中内容 94-BcN
o*)Sg6Yk
include"Tm-silicate.inc" !读取光谱数据 o#p%IGG`
o,WjM[e
; Basic fiberparameters: !定义基本光纤参数 Bh&pZcm|
L_f := 4 { fiberlength } !光纤长度 ^:-GPr
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 Ysu\CZGX
r_co := 6 um { coreradius } !纤芯半径 R`<^/h
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 :m<&Ff}
I6
?(@,
; Parameters of thechannels: !定义光信道 Uuy$F
l_p := 790 nm {pump wavelength } !泵浦光波长790nm o{y}c->
dir_p := forward {pump direction (forward or backward) } !前向泵浦 '{AB{)1
P_pump_in := 5 {input pump power } !输入泵浦功率5W Z jmQ
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um UiG/Rn
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 -g~+9/;n
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 @#4-4.6I<x
aB6xRn9
l_s := 1940 nm {signal wavelength } !信号光波长1940nm c9nR&m8(+
w_s := 7 um !信号光的半径 h&i*=&<HP6
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 1*=ev,Z
loss_s := 0 !信号光寄生损耗为0 sm-[=d%@L
JVuju$k
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 &MSU<S?1
hiS|&5#
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 ;Xt<\^e
calc 8NHm#Z3Ol
begin 0<%$lr
global allow all; !声明全局变量
-qj[ck(y
set_fiber(L_f, No_z_steps, ''); !光纤参数 (j'\h/
add_ring(r_co, N_Tm); M<Wi:r:
def_ionsystem(); !光谱数据函数 Y_CVDKdcY
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 w&?XsO@0W
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 y`va6 %u{
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 w5 . ^meU
set_R(signal_fw, 1, R_oc); !设置反射率函数 cp@Fj"
finish_fiber(); 8Nzn%0(Q
end; |4mvB2r
5e+j51
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 zz*PAYl.
show "Outputpowers:" !输出字符串Output powers: AU\=n,K7
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) Bg]VaTm[=
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) itzUq,T
Y2DL%'K^
D<J'\mo
; -------------
RU~na/3
diagram 1: !输出图表1 8QTry%
jg?UwR&
"Powers vs.Position" !图表名称 DDr\Kv)k(
WRD
z*Zf
x: 0, L_f !命令x: 定义x坐标范围 r)|~Rs!y,
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 =v<w29P(g
y: 0, 15 !命令y: 定义y坐标范围 %k#+nad
y2: 0, 100 !命令y2: 定义第二个y坐标范围 n 0=]C%wr
frame !frame改变坐标系的设置 U(f@zGV
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) 5$=[x!x
hx !平行于x方向网格 ]00 so`
hy !平行于y方向网格 "zcAYg^U
STnM Bz7
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 \s#~ %l
color = red, !图形颜色 1;/SXJ s
width = 3, !width线条宽度 9Vm
aB
"pump" !相应的文本字符串标签 sc]#T)xG
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 7SHllZ
color = blue, *B3f ry
width = 3, d`=
~8`
"fw signal" eA1g}ipm
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 1R}9k)JQ
color = blue, ={xRNNUj_
style = fdashed, H}r]j\
width = 3, JAHg_!
"bw signal" o*204BGB
MX]#|hEeQ
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 r#WqXh_uk
yscale = 2, !第二个y轴的缩放比例 qK$O /g,
color = magenta, -F/)-s6#!'
width = 3, Zw)=Y.y!
style = fdashed, $@6q5Iz!&
"n2 (%, right scale)" Dl.<(/
dXDyY
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 fP<==DK
yscale = 2, o%Q9]=%!
color = red, A@~9r9Uf
width = 3, b6S"&hs
style = fdashed, _L)LyQD]T
"n3 (%, right scale)" F
lVG, Z
8cfsl lI
/QS Nv
; ------------- b:9"nALgC
diagram 2: !输出图表2 :JBtqpo2
0;a1 0b
"Variation ofthe Pump Power" V9ZM4.,OCN
|9i[*]
x: 0, 10 t(UBs-t
"pump inputpower (W)", @x !*DYdqQ/
y: 0, 10 0XljFQ
y2: 0, 100 y z3=#
frame 7&etnQJ{
hx &9gI?b8
hy d?5oJ'JU
legpos 150, 150
= <A0;
"WY5Pzsi:
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 V,Bol(wY
step = 5, tHqa%
color = blue, E}zGY2Xx
width = 3, NHU5JSlB
"signal output power (W, leftscale)", !相应的文本字符串标签 ?!"pzDg
finish set_P_in(pump, P_pump_in) j7Zv"Vq@
BQ,749^S
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 uCt?(E>
yscale = 2, sOz
{spA
step = 5, q( EN]W],
color = magenta, J10 /pS
width = 3, /^K-tz-R
"population of level 2 (%, rightscale)", 0T@axQ[%
finish set_P_in(pump, P_pump_in) D
@wIbU
6e|uA7i4
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 ME>Sh~C\
yscale = 2, PXl%"O%d
step = 5, |BtFT
color = red, %IIFLlD
width = 3, LGtw4'yr
"population of level 3 (%, rightscale)", u>] )q7s
finish set_P_in(pump, P_pump_in) > B;YYj~f}
]#S<]v A
Fv(FRZ)
; ------------- lQgavP W!
diagram 3: !输出图表3 .i;?8?
]T40VGJ:h
"Variation ofthe Fiber Length" kTzO4s?
4F -<j!
x: 0.1, 5 wqjR-$c
"fiber length(m)", @x :v45Ls4J
y: 0, 10 ;xFB
/,
"opticalpowers (W)", @y M`iE'x
frame {a2Gb
hx 4"nYxL"<4
hy b"Nd8f[
h*hkl#
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 CCC9I8rZD
step = 20, %<|<%~l&
color = blue, D#,A_GA{A
width = 3, $E8}||d
"signal output" J}bLp
Z
P~&J@8)c
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 trA ^JY
step = 20, color = red, width = 3,"residual pump" oFzmH!&ED
?{L'd
! set_L(L_f) {restore the original fiber length } 2H] 7 =j
Q7zpu/5?
ym` 4v5w
; ------------- qx0F*EH|
diagram 4: !输出图表4 -) +B!"1
_$vbb#QXZG
"TransverseProfiles" Jh4pY#aF
xMpgXB!'
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) WXf[W
+'w6=qI
x: 0, 1.4 * r_co /um pI_:3D
xe
"radialposition (µm)", @x %5n'+- XVj
y: 0, 1.2 * I_max *cm^2 J{5p4bkb
"intensity (W/ cm²)", @y p9MJa[}V
y2: 0, 1.3 * N_Tm E2=vLI]
frame !X[7m
hx L|'B*
hy s I 0:<6W
tQ.H/;
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 NE &{_i!
yscale = 2, JPZH%#E(
color = gray, n0 V^/j}
width = 3, [CAFh:o
maxconnect = 1, 8RVRfy,w
"N_dop (right scale)" <a+@4d;
>I;.q|T
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 iJKGzHvS
color = red, Nn?$}g
maxconnect = 1, !限制图形区域高度,修正为100%的高度 fgA-+y
width = 3, ,sg\K>H=
"pump" V8pZr+AJ
Oe "%v;-
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 9.9B#?
color = blue, :/"5x
maxconnect = 1, ^nFP#J)_5
width = 3, 0<f.r~
"signal" _ib
@<%
"kVzN22
|v1*
[(
; ------------- 6y^GMlsI
diagram 5: !输出图表5 {([`[7B>a<
lPtML<a
"TransitionCross-sections" m|OB_[9
.Ep&O#
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) s+=':Gcb(C
bV"t;R9
x: 1450, 2050 *|@386\
"wavelength(nm)", @x /?S^#q>m%
y: 0, 0.6 LEX @hkh
"cross-sections(1e-24 m²)", @y "];@N!dA
frame _~F
0i?
hx ID{XZ
hy );n/G
Y|tK19
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 W|s";EAM
color = red, OpK_?XG
width = 3, :s-9@Yl|
"absorption" zW)Wt.svP
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 O*W<za;
color = blue, xZ>j Q_}
width = 3, K(WKx7Kky^
"emission" ":GC}VIS
S a}P
|qI