(* 0\wMlV`F
Demo for program"RP Fiber Power": thulium-doped fiber laser, a=gTGG"9
pumped at 790 nm. Across-relaxation process allows for efficient mwCNfwb:
population of theupper laser level. 1j6ZSE/*|
*) !(* *)注释语句 uJMF\G=nb
Kwfrh?
diagram shown: 1,2,3,4,5 !指定输出图表 ?)1h.K1}M
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 "j3Yu4_ks
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 *%'4.He7V
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 oo3ZYA
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 LLg ']9
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 z7MJxjH
p*W4^2(d
include"Units.inc" !读取“Units.inc”文件中内容 WDKj)f9cy
e>1^i;f
include"Tm-silicate.inc" !读取光谱数据 _x z_D12
79u L"N;
; Basic fiberparameters: !定义基本光纤参数 a<sEd p
L_f := 4 { fiberlength } !光纤长度 :q;vZ6Xd
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 (iGk]Rtzt
r_co := 6 um { coreradius } !纤芯半径 z]Z>+|
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 q NU\XO`H
s>~!r.GC
; Parameters of thechannels: !定义光信道 8;p6~&).C~
l_p := 790 nm {pump wavelength } !泵浦光波长790nm H0
km*5Sn
dir_p := forward {pump direction (forward or backward) } !前向泵浦 v@`#!iu
P_pump_in := 5 {input pump power } !输入泵浦功率5W %fh
,e5(LT
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um 6*kY7
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 }0?642 =-
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 [f.[C5f%"'
;:cU /{W
l_s := 1940 nm {signal wavelength } !信号光波长1940nm d4[M{LSl
w_s := 7 um !信号光的半径 O\XN/R3
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 TuBg 4\V
loss_s := 0 !信号光寄生损耗为0 :74^?
w@nN3U+
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 w@X<</`
N+b"LZc
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 ;yY>SaQ
calc f'aUo|^?
begin "X>Z!>
global allow all; !声明全局变量 !s?vj
<
set_fiber(L_f, No_z_steps, ''); !光纤参数 nO$(\
z)
add_ring(r_co, N_Tm); B y6:
def_ionsystem(); !光谱数据函数 YQ4;X8I`r
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 c 3 P
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 9X@y*;w<t
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 5ts8o&|
set_R(signal_fw, 1, R_oc); !设置反射率函数 Vg\EAs>f
finish_fiber(); engql;
end; z++*,2F
%@G<B
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 =:1f
0QF
show "Outputpowers:" !输出字符串Output powers: Io5-[d
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) =YB3^Z
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) *r?g&Vw$m
nC qUg_{D
O%tlj@?
; ------------- NV9D;g$Y
diagram 1: !输出图表1 UALwr>+VJ
{w(6Tc
"Powers vs.Position" !图表名称 E%3WJ%A
HpSgGhL'J&
x: 0, L_f !命令x: 定义x坐标范围 ub{<m^|)
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 c|:H/Y2n|
y: 0, 15 !命令y: 定义y坐标范围 7sC$hm]
y2: 0, 100 !命令y2: 定义第二个y坐标范围 pxM^|?Hxc
frame !frame改变坐标系的设置 S$%T0~PR~
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) ^uMy|d
hx !平行于x方向网格 TRcY!
hy !平行于y方向网格 @mNf(&
I/Hwf
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 %8yfFrk
color = red, !图形颜色 f&js,NU"
width = 3, !width线条宽度 |UZ#2
"pump" !相应的文本字符串标签 f/&Dy'OV7
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 <)uUAh
color = blue, R4_4 FEo
width = 3, x5WFPY$wM
"fw signal" /$! /F@^
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 Gz+Bk5#{
color = blue, ^p|MkB?uM
style = fdashed, Ii?<Lz
width = 3, uPsn~>(4
"bw signal" {K09U^JU
9<.FwV>
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 LU?X|{z
yscale = 2, !第二个y轴的缩放比例 a,#f%#J\
color = magenta, c;&m}ImLe.
width = 3, s!9.o_k
style = fdashed, !Q*.Dw()[
"n2 (%, right scale)" kmi[u8iXD_
SWz+.W{KQ"
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比
PQa{5"
yscale = 2, e/6WhFN#
color = red, Lf3Ri/@ p
width = 3, %q;3bfq@N
style = fdashed, 0 oEw1!cY
"n3 (%, right scale)" R^1sbmwk
z~L4BY @z
TF}<,aR
; ------------- 2wlrei
diagram 2: !输出图表2 d8C?m*3J
YKJk)%;+w
"Variation ofthe Pump Power" T@U_;v|rf
2_x}wB0P
x: 0, 10 ~Hd{+0
"pump inputpower (W)", @x 'aBX>M
y: 0, 10 W|NzdxCY
y2: 0, 100 f` 2W}|(jA
frame O/e5LA
hx $LRvPan`
hy _'ltz!~
legpos 150, 150 m>x.4aO1
kUUN2
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 YjdCCju
step = 5, fZ`b~ZBwIj
color = blue, <K=:_
width = 3, ~%qHJ4C
"signal output power (W, leftscale)", !相应的文本字符串标签 S`8
h]vX
finish set_P_in(pump, P_pump_in) 7m~+HM\
S)iv k x
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 :UoZ`O~
yscale = 2, 94=Wy-
step = 5, %C" wUAY
color = magenta, t4GG@`
width = 3, 5n"b$hMF
"population of level 2 (%, rightscale)", [c+[t3dz
finish set_P_in(pump, P_pump_in) sTP`xaY
b] DF7 U
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 X~*1
yscale = 2, XpJT/&4
step = 5, {VE\}zKF
color = red, 1#qyD3K
width = 3, yd$_XWp?\
"population of level 3 (%, rightscale)", !X$e;V"HX
finish set_P_in(pump, P_pump_in) hk3}}jc
-%E+Yl{v
;vR0O
; ------------- OIGu`%~js
diagram 3: !输出图表3 z4!TK ps
qZ'&zB)
"Variation ofthe Fiber Length" ^q-]."W]t~
o9(:m
x: 0.1, 5 0k>bsn/j
"fiber length(m)", @x {u{n b3/jl
y: 0, 10 bX6eNk-L
"opticalpowers (W)", @y $bI VD
frame L9M0vkgri
hx yDg`9q.ckm
hy ,j>A[e&.
\b95CU
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 5Mf bO3
step = 20, qPDe;$J)
color = blue, 9_)*b
width = 3, cK%Sty'8+
"signal output" bW\OKI1
87l(a,#J
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 -f@~{rK.L
step = 20, color = red, width = 3,"residual pump" Jte:U*2
ZX[@P?A+-
! set_L(L_f) {restore the original fiber length } `qnSq(tNq
FBJw (.Jr
N9QHX
; ------------- o *)>aw
diagram 4: !输出图表4 141@$mMzE
P&@ 2DI3m
"TransverseProfiles" 1vk&;
%"B+;{y(5
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) &o%IKB@
>Vc;s!R
x: 0, 1.4 * r_co /um _Cn[|E
"radialposition (µm)", @x .`*h2
y: 0, 1.2 * I_max *cm^2 70hm9b-
"intensity (W/ cm²)", @y @ px2/x
y2: 0, 1.3 * N_Tm +AkAMZ"Mg
frame OZ##x
hx P7np
-I*
hy "I+71Ce
8 :B(}Y4K
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 &v9*D`7L
yscale = 2, uv,&/,;S
color = gray, "=8= G
width = 3, uU_lC5A|
maxconnect = 1, hDBVL"
"N_dop (right scale)" P(AcDG6K
whFaL}2C
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 0}v_usP
color = red, _voU^-
maxconnect = 1, !限制图形区域高度,修正为100%的高度 f/+UD-@%m
width = 3, zv/owK
"pump" o^HzE;L}
R8ZI}C1
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 |hGi8
color = blue, #$k6OlK-r"
maxconnect = 1, Z
,4G'[d
width = 3, kq+`.
"signal" $;~
4FLL*LCNX
'KL!)}B$h
; ------------- ~Psv[b=]
diagram 5: !输出图表5 BhFyEY(
v:.`~h/b
"TransitionCross-sections" Ujb7uho
=VXxQ\{
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) 3pQ^vbQ"
#>)OLKP
x: 1450, 2050 LYM(eK5V
"wavelength(nm)", @x ;F3#AO4(
y: 0, 0.6 @o otKY`
"cross-sections(1e-24 m²)", @y s,~)5nL
frame 8":O\^i
hx F,F1Axf
hy 2$S^3$k'
"WPFZw:9
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 gFBMARxi
color = red, m~$S ]Wf
width = 3, +,wCV2>\3
"absorption" N5]}m:"pk
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 R>|)-"b( `
color = blue, LS(J%\hMDm
width = 3, Cx,)$!1
"emission" 0J
\hku\
w]-,X`