(* JGSeu =)
Demo for program"RP Fiber Power": thulium-doped fiber laser, O{&5 /xBA
pumped at 790 nm. Across-relaxation process allows for efficient m:/@DZ
population of theupper laser level. X#5dd.RR
*) !(* *)注释语句 #O^H?3Q3
A,MRK#1u
diagram shown: 1,2,3,4,5 !指定输出图表 ;=hl!CB
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 8nQlmWpJ
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 Gp$[u4-6M6
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 7'j?GzaQ+
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 KU3lAjzN
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 ]1%H.pF
0F`@/C1y55
include"Units.inc" !读取“Units.inc”文件中内容 p{!aRB%
u~Q0V J~
include"Tm-silicate.inc" !读取光谱数据 KwWqsuju
G-Z_pGer^
; Basic fiberparameters: !定义基本光纤参数 %B3E9<9>U
L_f := 4 { fiberlength } !光纤长度 X.,SXNS+B
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 b.h~QyI/W
r_co := 6 um { coreradius } !纤芯半径 wlC_rRj~
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 aC X](sN
X6!u(plVQ
; Parameters of thechannels: !定义光信道 M\,0<{
l_p := 790 nm {pump wavelength } !泵浦光波长790nm y .S0^
dir_p := forward {pump direction (forward or backward) } !前向泵浦 1]fqt[*)
P_pump_in := 5 {input pump power } !输入泵浦功率5W x+nrdW+
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um Hy|$7]1
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 J^pL_
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 c>!>D7:7
=bZ>>-<
l_s := 1940 nm {signal wavelength } !信号光波长1940nm Mmbb}(<
w_s := 7 um !信号光的半径 Ws4aCH 1
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 jr*A1y*
loss_s := 0 !信号光寄生损耗为0 sBu=@8R]y
:r:5a(sq
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 C$aiOK-]+
m=PSCIb
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 <'-}6f3
calc U[c,cdA
begin 9HRYk13ae
global allow all; !声明全局变量 @;fdf 3ian
set_fiber(L_f, No_z_steps, ''); !光纤参数 7w|W\J^7r
add_ring(r_co, N_Tm); jbn{5af
def_ionsystem(); !光谱数据函数 P00d#6hPJ
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 pJVzT,poh
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 EHcqj;@m
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 p<`q^D
set_R(signal_fw, 1, R_oc); !设置反射率函数 4kT| /bp
finish_fiber(); j?+FS`a!
end; _z)G!_7.>\
'- 4);:(^
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 t\CVL?e`
show "Outputpowers:" !输出字符串Output powers: my[)/'
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) $9+}$lpPd
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) 6t*pV
[
/o.wCy,J<
`;*Wt9
; ------------- 8K]fw{-$L
diagram 1: !输出图表1
IpoZ6DB$
D+LeZBJ
"Powers vs.Position" !图表名称 (pH13qU5
MQD UJ^I$
x: 0, L_f !命令x: 定义x坐标范围 `U#*O+S-^
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 K:V_,[gO
y: 0, 15 !命令y: 定义y坐标范围 Zu_m$Mx
y2: 0, 100 !命令y2: 定义第二个y坐标范围 3:YZC9
frame !frame改变坐标系的设置 -G(z!ed
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) +AtZltM i
hx !平行于x方向网格 s IY`H^
hy !平行于y方向网格 y!1%Kqx1,n
9|D!&=8
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 p;"pTGoWi
color = red, !图形颜色 Ii,e=RG>
width = 3, !width线条宽度 H"WkyvqXb
"pump" !相应的文本字符串标签 iPa!pg4m
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 Z$k4T$,[-
color = blue, gJ+MoAM"
width = 3, \Bw9%P~ G
"fw signal" 245(ajxHC
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 ,`^B!U3m
color = blue, Qa5<go{
style = fdashed, eq<xO28z
width = 3, }C}~)qaZv+
"bw signal" z/.x*A=
;jfjRcU
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 ^a[7qX_B
yscale = 2, !第二个y轴的缩放比例 [ j?n}D@L
color = magenta, b~Y$!fc
width = 3, 1wW8D>f]K
style = fdashed, I+!w9o2nZ
"n2 (%, right scale)" oR[,?qu@f
.YYiUA-i9n
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 =xSFKu*
yscale = 2, k*J}/HO
color = red, 5H6m{ng
width = 3, gLsl/G
style = fdashed, N~;=*)_VH
"n3 (%, right scale)" [`Ol&R4k
ZC_b`q<
=V5<>5"M?
; ------------- I')URk[
diagram 2: !输出图表2 _ ;O$ot\5
\wCj$-;Jt
"Variation ofthe Pump Power" z[M LMf[c
K,&)\r kzD
x: 0, 10 9jDV]!N4
"pump inputpower (W)", @x -n?|,cO
y: 0, 10 `4'v)!?
y2: 0, 100 ^'lx5+-
frame :2^%^3+V
hx ~=lm91W
hy RgHPYf{
legpos 150, 150 |qH -^b.F
0vbn!<:
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 y"#o9"&>&
step = 5, lE78Yl]
color = blue, }y(1mzb
width = 3, )-xx$0mL-
"signal output power (W, leftscale)", !相应的文本字符串标签 }N]|zCEj
finish set_P_in(pump, P_pump_in) LcoJltY{5
Vk5}d[[l
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 $iUK,
?
yscale = 2, !>TVDN>
step = 5, Dkayk
color = magenta, w,SOvbAxX2
width = 3, q{ItTvL
"population of level 2 (%, rightscale)", a9j
f7r1
finish set_P_in(pump, P_pump_in) E
y1mlW
M/x49qO#
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 a}|B[b
yscale = 2, SQDllG84E
step = 5, Jt\?,~,
color = red, Z*tB=
width = 3, 1.+0=M[h
"population of level 3 (%, rightscale)", s$4!?b$tw
finish set_P_in(pump, P_pump_in) ry\Nm[SQ
N\ChA]Ck
jAB~XaT ,
; ------------- 12U1DEd>-
diagram 3: !输出图表3 =Bcwd7+
#f0J.)M
"Variation ofthe Fiber Length" tV%:sk^d
>'iXwe-
x: 0.1, 5 y2;uG2IS_g
"fiber length(m)", @x Qh<_/X?
y: 0, 10 LX[<Wh_X(
"opticalpowers (W)", @y %JeT,{
frame V|e9G,z~A
hx : KhAf2A
hy X,y0J
hm*1w6 =
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 R*VRxQ,h6+
step = 20, m^Qc9s#D
color = blue, N_(qMW
width = 3, Q '/v-bd?o
"signal output" ShbW[*5
C ?JcCD2
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 R".~{6
step = 20, color = red, width = 3,"residual pump" =&jLwy
3qwi)nm
! set_L(L_f) {restore the original fiber length } 7TD%vhbiwi
Y>
ElE-
[vh&o-6
; ------------- _;/onM
diagram 4: !输出图表4 bHZXMUewC
O
W`yv
"TransverseProfiles" *WdnP.'Y
{_T?0L
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) )F*;7]f
d+[GMIxg
x: 0, 1.4 * r_co /um `d]D=DtH
"radialposition (µm)", @x ^h
#0e:7<
y: 0, 1.2 * I_max *cm^2 z/Z
0cM#
"intensity (W/ cm²)", @y CzDJbvv]
y2: 0, 1.3 * N_Tm {ZQ|Ydpk
frame xc{$=>'G
hx )RV.N}NU
hy :Rl*64}
Af y\:&j
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 ;U$Fz~rJ
yscale = 2, 3"afrA
color = gray, U0>Uqk",
width = 3, Ot,eAiaX
maxconnect = 1, sg0HYb%_E
"N_dop (right scale)" (#,0\ea{x
6WUP#c@{
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 ${ fJ]
color = red, |hGi8
maxconnect = 1, !限制图形区域高度,修正为100%的高度 #$k6OlK-r"
width = 3, Z
,4G'[d
"pump" kq+`.
$;~
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 4FLL*LCNX
color = blue, 'KL!)}B$h
maxconnect = 1, ~Psv[b=]
width = 3, BhFyEY(
"signal" o}QtKf)W
w
K)/m`{g
oMdqg4HUF
; ------------- QxUsdF?p
diagram 5: !输出图表5 e:2e5gz
L{)*evBL
"TransitionCross-sections" leY fF
JSKAlw
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) xn1=@0
a
-bJC+Yn
x: 1450, 2050 s,~)5nL
"wavelength(nm)", @x yex4A)n9"'
y: 0, 0.6 iH&BhbRu_
"cross-sections(1e-24 m²)", @y v>ygr8+C,
frame iLhxcM2K
hx gFBMARxi
hy m~$S ]Wf
+,wCV2>\3
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 N5]}m:"pk
color = red, R>|)-"b( `
width = 3, LS(J%\hMDm
"absorption" Cx,)$!1
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 QVEGd"WvvO
color = blue, svT1b'=\$I
width = 3, hlIh(\JZ4s
"emission" IgxZ_2hO
A08b=S