切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 2060阅读
    • 1回复

    [原创]RP Fiber Power仿真设计掺铥光纤激光器代码详解 [复制链接]

    上一主题 下一主题
    离线小火龙果
     
    发帖
    923
    光币
    2136
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-05-28
    (* m= %KaRI  
    Demo for program"RP Fiber Power": thulium-doped fiber laser, L1&` 3a?pL  
    pumped at 790 nm. Across-relaxation process allows for efficient @9l$j Z~x  
    population of theupper laser level. ft~QVe!  
    *)            !(*  *)注释语句 I:1Pz|$`  
    e}(8BF  
    diagram shown: 1,2,3,4,5  !指定输出图表 2iC BF-,  
    ; 1: "Powersvs. Position"     !分号是注释;光纤长度对功率的影响 ]ZH6 .@|  
    ; 2:"Variation of the Pump Power"  !泵浦光功率变化对信号输出功率的影响 ,rOh*ebF  
    ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 .N7&Jy  
    ; 4:"Transverse Profiles"             !横向分布,横坐标为半径位置 mRN[l j  
    ; 5:"Transition Cross-sections"    !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 w }8=sw  
    5acC4v!T  
    include"Units.inc"         !读取“Units.inc”文件中内容 ($ gmN 4  
    XANJA  
    include"Tm-silicate.inc"    !读取光谱数据 t| B<F t^  
    s~k62  
    ; Basic fiberparameters:    !定义基本光纤参数 M XuHA?  
    L_f := 4 { fiberlength }      !光纤长度 C#P>3"  
    No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 M0hR]4T  
    r_co := 6 um { coreradius }                !纤芯半径 -s ^cy+jd  
    N_Tm := 100e24 { Tmdoping concentration }  !纤芯Tm离子掺杂浓度 E!`/XB/nA  
    }H/94]~tH  
    ; Parameters of thechannels:                !定义光信道 =6N=5JePB  
    l_p := 790 nm {pump wavelength }                !泵浦光波长790nm q(BRJ(  
    dir_p := forward {pump direction (forward or backward) }   !前向泵浦 }4Q3S1|U  
    P_pump_in := 5 {input pump power }                    !输入泵浦功率5W Wxgs66   
    w_p := 50 um {radius of pump cladding }               !包层泵浦相应的半径 50um Equ%6x  
    I_p(r) := (r <=w_p) { pump intensity profile }          !泵浦光强度分布 ;CuL1N#I  
    loss_p := 0 {parasitic losses of pump wave }           !泵浦光寄生损耗为0 s"~,Zzy@j  
    F*Ul#yX  
    l_s := 1940 nm {signal wavelength }                   !信号光波长1940nm 3f:]*U+O  
    w_s := 7 um                          !信号光的半径 a(uQGyr[k1  
    I_s(r) := exp(-2 *(r / w_s)^2)            !信号光的高斯强度分布 9l,8:%X_  
    loss_s := 0                            !信号光寄生损耗为0 cW ?6Iao  
    $4kbOqn4  
    R_oc := 0.70 {output coupler reflectivity (right side) }      !输出耦合反射率 sosIu  
    p*JP='p  
    ; Function for defining themodel:   !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 [=:4^S|M  
    calc VeH%E.:  
      begin B5_QH8kt7  
        global allow all;                   !声明全局变量 U^-RyE!}  
        set_fiber(L_f, No_z_steps, '');        !光纤参数 )=5*iWe  
        add_ring(r_co, N_Tm); }IQ![T5  
        def_ionsystem();              !光谱数据函数 z_). -  
        pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p);  !泵浦光信道 iztgk/(+G  
        signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward);      !前向信号光信道 >n1UK5QD  
        signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward);    !后向信号光信道 ObataUxQT  
        set_R(signal_fw, 1, R_oc);                                 !设置反射率函数 X.rbJyKe  
        finish_fiber();                                   yKmHTjX=  
      end; i,L"%q)C  
    [7[$P.MS{  
    ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 i6i;{\tc  
    show "Outputpowers:"                                   !输出字符串Output powers: R5 EC/@  
    show"pump:     ", P_out(pump):d3:"W"  !输出字符串pump:和计算值(格式为3个有效数字,单位W) `g{eWY1l  
    show"signal:   ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) <!X]$kvG  
    nVGOhYn  
    u%Z4 8wr  
    ; ------------- Rb <{o8  
    diagram 1:                   !输出图表1 5!6}g<z&L  
    @s\}ER3  
    "Powers vs.Position"          !图表名称 >_X(rar0  
    }-&#vP~I  
    x: 0, L_f                      !命令x: 定义x坐标范围 ~\zIb/ #  
    "position infiber (m)", @x      !x轴标签;@x 指示这些字符串沿坐标轴放置 /#}%c'  
    y: 0, 15                      !命令y: 定义y坐标范围 t'C9;  
    y2: 0, 100                    !命令y2: 定义第二个y坐标范围 t2qWB[r  
    frame          !frame改变坐标系的设置 2 xi@5;!  
    legpos 600, 500  !图行在图表窗口中的位置(相对于左上角而言) XLm@, A[  
    hx             !平行于x方向网格 !V/p.O  
    hy              !平行于y方向网格 U* T :p>&  
    xCMuq9zt@  
    f: P(pump, x),    !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 ! n?j)p.  
      color = red,  !图形颜色 T8vMBaU!qY  
      width = 3,   !width线条宽度 g$8a B{)  
      "pump"       !相应的文本字符串标签 ~SEIIq  
    f: P(signal_fw, x),  !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 |G)bnmi7  
      color = blue,     ;;LiZlf  
      width = 3, 1 EHNg<J(  
      "fw signal" <"S/M]9  
    f: P(signal_bw, x),   !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 +jp^  
      color = blue, y{nX 6  
      style = fdashed, >k u7{1)  
      width = 3, <%oT}K\;  
      "bw signal" M5S<N_+Pe  
    tNW0 C]  
    f: 100 * n(x, 2),    !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 %'dsb7n  
      yscale = 2,            !第二个y轴的缩放比例 =}W)%Hldr.  
      color = magenta, K]i2$M  
      width = 3, E+eC #!&w  
      style = fdashed, &MP8.( u `  
      "n2 (%, right scale)" T9gQq 7(l  
    Oin:5K)4-  
    f: 100 * n(x, 3),          !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 *Rj*%S  
      yscale = 2, y;HJ"5.Mw  
      color = red, %W$?*Tm  
      width = 3, ;'|t>'0_  
      style = fdashed, }@g#S@o  
      "n3 (%, right scale)" 1)M%]I4  
    N)$yBzN  
    , p r ",=  
    ; ------------- }sGH}n<9*  
    diagram 2:                    !输出图表2 ;p)fW/<  
    ?s: 2~Qlu  
    "Variation ofthe Pump Power" s ,GGO3^  
    H3o Um1  
    x: 0, 10 =[^_x+x hE  
    "pump inputpower (W)", @x fehM{)x2:  
    y: 0, 10 FDRpK 5cw  
    y2: 0, 100 {7o|*M  
    frame dp>LhTLc  
    hx 26c1Yl,DMn  
    hy ` _]tN  
    legpos 150, 150 t8b,@J`R  
    ,vUMy&AV  
    f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 -"3<Ll  
      step = 5, @Tf5YZ*  
      color = blue, ^2um.`8  
      width = 3, 2<5s0GT'/  
      "signal output power (W, leftscale)",     !相应的文本字符串标签 G(y@Tor+  
      finish set_P_in(pump, P_pump_in) .;9I:YB$  
    WqRg/  
    f: (set_P_in(pump,x); 100 * n_av(2)),   !改变泵浦信号功率对能级2上激活粒子占比的影响 U}<;4Px]7v  
      yscale = 2, nc%ly *  
      step = 5, _ ;_NM5  
      color = magenta, g\ p;  
      width = 3, To19=,:  
      "population of level 2 (%, rightscale)", |Xl,~-.  
      finish set_P_in(pump, P_pump_in) l=< :  
    |(a< b  
    f: (set_P_in(pump,x); 100 * n_av(3)),   !改变泵浦信号功率对能级3上激活粒子占比的影响 Wtwh.\Jba  
      yscale = 2, cLe659&  
      step = 5, H?axlRmw3  
      color = red, }x1p~N+;  
      width = 3, ?k*s!YCZ  
      "population of level 3 (%, rightscale)", ``mW\=fe  
      finish set_P_in(pump, P_pump_in) G@igxnm}  
    gb_k^wg~1'  
    &llp*< i7  
    ; ------------- W.AN0N  
    diagram 3:                         !输出图表3 p<3^= 8Y$  
    X6]eQ PN2  
    "Variation ofthe Fiber Length" :K_JY   
    <ib# PLRM  
    x: 0.1, 5 q@x{6zj  
    "fiber length(m)", @x ^g2p!7  
    y: 0, 10 T!N,1"r  
    "opticalpowers (W)", @y |JW-P`tL0  
    frame s9Aq-N  
    hx +kKfx!  
    hy g^DPb pWxu  
    PO[ AP%;  
    f: (set_L(x);P_out(signal_fw)),     !改变光纤长度对信号光输出功率的影响 %maLo RJ  
      step = 20,             RWi~34r  
      color = blue, 438+ zU  
      width = 3, 2*K _RMr~  
      "signal output" +[ 944n  
    v/BMzVi  
    ;f: (set_L(x);P_out(pump)),                     !改变光纤长度对泵浦信号输出功率的影响 n1xN:A  
       step = 20, color = red, width = 3,"residual pump" L{\au5-4  
    @^$Xy<x  
    ! set_L(L_f) {restore the original fiber length } *a7&v3X  
    S 5Q$dAL  
    3%<xM/#  
    ; ------------- nx >PZb  
    diagram 4:                                  !输出图表4 \$Nx`d aFi  
    *@r)3  
    "TransverseProfiles" q|. X[~e|  
    1dF=BR8  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) -$4#eG%3  
    do9@6[{Sv  
    x: 0, 1.4 * r_co /um ~E=.*: 5(  
    "radialposition (µm)", @x t YmR<^  
    y: 0, 1.2 * I_max *cm^2 ;w,g|=RQ  
    "intensity (W/ cm&sup2;)", @y Cu0N/hBT  
    y2: 0, 1.3 * N_Tm $!<J_ d*  
    frame ozbu|9 +v  
    hx +`==US34  
    hy 8qfg=mu+ %  
    ui,#AZQ#{4  
    f: N_dop(1, x * um,0),      !掺杂浓度的径向分布 Z4/rqU  
      yscale = 2, j|&?BBa9  
      color = gray, W,i SN}  
      width = 3, ?+S&`%?  
      maxconnect = 1, E3\O?+ h#  
      "N_dop (right scale)" 3 n/U4fn_  
    XU Hu=2F  
    f: I(pump, -1, x *um, 0) * cm^2,    !泵浦光沿光纤径向的强度分布 2 fX-J  
      color = red, H/p<lp  
      maxconnect = 1,           !限制图形区域高度,修正为100%的高度 "]ow1{  
      width = 3, _W4i?Bde  
      "pump" 8]Xwj].^C  
    O1Gd_wDC/i  
    f: I(signal_fw, -1,x * um, 0) * cm^2,  !信号光沿光纤径向的强度分布 *BYSfcX6  
      color = blue, ~\c]!%)o  
      maxconnect = 1, K4i#:7r'b  
      width = 3, MX 2UYZ&  
      "signal" ANy=f-V  
    kEtYuf^  
    g_}r)CgG|  
    ; ------------- CE>RAerY  
    diagram 5:                                  !输出图表5 ~l%Dcp  
    y(B~)T~e@  
    "TransitionCross-sections" l|`%FB^k  
    ^IuHc_  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) \. A~>=:  
    <D4.kM  
    x: 1450, 2050 +d6/*}ht  
    "wavelength(nm)", @x AA9OElCa  
    y: 0, 0.6 `?PZvGi  
    "cross-sections(1e-24 m&sup2;)", @y .}6 YKKqS  
    frame Rx*T7*xg{  
    hx *Wv]DV=\  
    hy >De\2gbJ  
    t$8f:*6(*  
    f: s12_Tm(x * nm) /1e-24,      !Tm3+吸收截面与波长的关系 e@s+]a8D-k  
      color = red, I.j`h2  
      width = 3, |<\L B  
      "absorption" \BaN?u)a  
    f: s21_Tm(x * nm) /1e-24,  !Tm3+发射截面与波长的关系 TSmuNCR  
      color = blue, uAR!JJ  
      width = 3, n *%<!\gJ  
      "emission" ^:K"Tv.=  
    Qw.""MLmN8  
     
    分享到
    离线lileisgsz
    发帖
    14
    光币
    69
    光券
    0
    只看该作者 1楼 发表于: 2021-09-28
    感谢,视频上有点看不清楚