切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 2149阅读
    • 1回复

    [原创]RP Fiber Power仿真设计掺铥光纤激光器代码详解 [复制链接]

    上一主题 下一主题
    离线小火龙果
     
    发帖
    930
    光币
    2161
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-05-28
    (* !y%+GwoW  
    Demo for program"RP Fiber Power": thulium-doped fiber laser, Z:|9N/>T  
    pumped at 790 nm. Across-relaxation process allows for efficient {V0>iN:~S  
    population of theupper laser level. 0V3gKd7  
    *)            !(*  *)注释语句 SW#BZ3L  
    HUkerV  
    diagram shown: 1,2,3,4,5  !指定输出图表 q`[K3p   
    ; 1: "Powersvs. Position"     !分号是注释;光纤长度对功率的影响 .gq(C9<B[  
    ; 2:"Variation of the Pump Power"  !泵浦光功率变化对信号输出功率的影响 $3 4j6;oN  
    ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 xg} ug[  
    ; 4:"Transverse Profiles"             !横向分布,横坐标为半径位置 5>P7]?U.]  
    ; 5:"Transition Cross-sections"    !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 qOi5WX6F/  
    XVF^,Yf  
    include"Units.inc"         !读取“Units.inc”文件中内容 zP&q7 t;>  
    i b]vX-  
    include"Tm-silicate.inc"    !读取光谱数据 (z2Z)_6L*L  
    MRs,l'  
    ; Basic fiberparameters:    !定义基本光纤参数 thptm  
    L_f := 4 { fiberlength }      !光纤长度 5oJ Dux }  
    No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 z,x" a  
    r_co := 6 um { coreradius }                !纤芯半径  ,1 P[  
    N_Tm := 100e24 { Tmdoping concentration }  !纤芯Tm离子掺杂浓度 ~ezCu_  
    (Y2m md  
    ; Parameters of thechannels:                !定义光信道 sAYV)w3u"  
    l_p := 790 nm {pump wavelength }                !泵浦光波长790nm SX+4 HJB  
    dir_p := forward {pump direction (forward or backward) }   !前向泵浦 vbp-`M(  
    P_pump_in := 5 {input pump power }                    !输入泵浦功率5W %`+'v_iu  
    w_p := 50 um {radius of pump cladding }               !包层泵浦相应的半径 50um x@m<Ym-  
    I_p(r) := (r <=w_p) { pump intensity profile }          !泵浦光强度分布 wbi3lH:;  
    loss_p := 0 {parasitic losses of pump wave }           !泵浦光寄生损耗为0 Qn.[{rw  
    QrC/ssf}  
    l_s := 1940 nm {signal wavelength }                   !信号光波长1940nm VNj@5s  
    w_s := 7 um                          !信号光的半径 ,H39V+Y*  
    I_s(r) := exp(-2 *(r / w_s)^2)            !信号光的高斯强度分布 XsUUJuCG  
    loss_s := 0                            !信号光寄生损耗为0 ],[)uTZc  
    /C$ xH@bb  
    R_oc := 0.70 {output coupler reflectivity (right side) }      !输出耦合反射率 <uD qYT$6  
    d0 -~| `5  
    ; Function for defining themodel:   !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 8bOT*^b$H  
    calc ^PqMi:htc  
      begin :}9j^}"c3  
        global allow all;                   !声明全局变量 o@/xPo|  
        set_fiber(L_f, No_z_steps, '');        !光纤参数 SY1GR n  
        add_ring(r_co, N_Tm); `c(\i$1JY)  
        def_ionsystem();              !光谱数据函数 %8w9E=  
        pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p);  !泵浦光信道 jK3\K/ob(  
        signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward);      !前向信号光信道 TnA?u (R%  
        signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward);    !后向信号光信道 cJ/]+|PQ  
        set_R(signal_fw, 1, R_oc);                                 !设置反射率函数 [M:S`{SbY  
        finish_fiber();                                   #hJQbv=B"  
      end; Au5rR>W  
    U =cWmH  
    ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 R#qI( V  
    show "Outputpowers:"                                   !输出字符串Output powers: O?ktWHUx  
    show"pump:     ", P_out(pump):d3:"W"  !输出字符串pump:和计算值(格式为3个有效数字,单位W) OVR?*"N_  
    show"signal:   ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) 5/M ED}9C(  
    T'1gy}  
    l}}UFEA^  
    ; ------------- VVuR+=.&  
    diagram 1:                   !输出图表1 7>n"}8i  
    &U"X $aFc  
    "Powers vs.Position"          !图表名称 c+2%rh1  
    7pet Hi  
    x: 0, L_f                      !命令x: 定义x坐标范围 XP?*=Z]  
    "position infiber (m)", @x      !x轴标签;@x 指示这些字符串沿坐标轴放置 /\E [  
    y: 0, 15                      !命令y: 定义y坐标范围 )acV-+{  
    y2: 0, 100                    !命令y2: 定义第二个y坐标范围 ?`AGF%zp  
    frame          !frame改变坐标系的设置 G{RTH_p  
    legpos 600, 500  !图行在图表窗口中的位置(相对于左上角而言) |!LnAh  
    hx             !平行于x方向网格 2 9#]Vr  
    hy              !平行于y方向网格 8_xLl2  
    (oaYF+T  
    f: P(pump, x),    !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 3t(c_:[%  
      color = red,  !图形颜色 ^o d<JD4  
      width = 3,   !width线条宽度 AhxGj+  
      "pump"       !相应的文本字符串标签 q`Q}yE> 9  
    f: P(signal_fw, x),  !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 KcXpH]>!9  
      color = blue,     CWlW/>yF B  
      width = 3, Q$a  
      "fw signal" Q2s&L]L=  
    f: P(signal_bw, x),   !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 'MQ%)hipA  
      color = blue, B8V,)rn  
      style = fdashed, s@!$='|  
      width = 3, w sY}JT  
      "bw signal" .y):Rh^  
    ndi+xaQtG  
    f: 100 * n(x, 2),    !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 ,W*H6fw+  
      yscale = 2,            !第二个y轴的缩放比例 q;A;H)?g  
      color = magenta, V'StvU  
      width = 3, _x %1F  
      style = fdashed, ]b}B2F'n  
      "n2 (%, right scale)" 4| Ui?.4=  
    8;n_TMb  
    f: 100 * n(x, 3),          !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 7SS07$B  
      yscale = 2, *H2]H @QHN  
      color = red, Q"VMNvKYB  
      width = 3, 3M<!?%v\A  
      style = fdashed, `fS^ j-_M  
      "n3 (%, right scale)" 0=![fjm  
    &Lt@} 7$8  
    \:&@;!a  
    ; ------------- l\Xd.H" j,  
    diagram 2:                    !输出图表2 *jCW.ZLY  
    *%A}x   
    "Variation ofthe Pump Power" K ,isjh2  
    bQQVj?8jp  
    x: 0, 10 qO()w   
    "pump inputpower (W)", @x J?Iq9f  
    y: 0, 10 3QCVgo i\  
    y2: 0, 100 $YM_G=k  
    frame ^^}Hs-{T  
    hx EUcKN1  
    hy {9'M0=  
    legpos 150, 150 n?QZFeI`  
    (vyz;Ob  
    f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 [m2+9MMl  
      step = 5, !O)qYmK]|  
      color = blue, PRr*]$\&Mj  
      width = 3, 5w<A;f  
      "signal output power (W, leftscale)",     !相应的文本字符串标签 .j?kEN?w  
      finish set_P_in(pump, P_pump_in) m#H_*L0  
    x$B&L`QV  
    f: (set_P_in(pump,x); 100 * n_av(2)),   !改变泵浦信号功率对能级2上激活粒子占比的影响 pP.'wSj  
      yscale = 2, Tr.hmGU  
      step = 5, qrBZvJU  
      color = magenta, fx?$9(r,  
      width = 3, =`t^~.5  
      "population of level 2 (%, rightscale)", N|dD!  
      finish set_P_in(pump, P_pump_in) A3R#z]Ub  
    >*qQ+_  
    f: (set_P_in(pump,x); 100 * n_av(3)),   !改变泵浦信号功率对能级3上激活粒子占比的影响 [Z<Z;=t  
      yscale = 2, I}.i@d'O  
      step = 5, k-jahm4  
      color = red, o`?zF+M0  
      width = 3, EzT`,#b  
      "population of level 3 (%, rightscale)", Iti0qnBN5  
      finish set_P_in(pump, P_pump_in) qd6fU^)i  
    GyC)EFd  
    S`= WF^  
    ; ------------- ~W{-Q.  
    diagram 3:                         !输出图表3 _vl}*/=Hc  
    `;%ZN  
    "Variation ofthe Fiber Length" $a#H,Xv#  
    .SS<MDcqIt  
    x: 0.1, 5 Ix8$njp[  
    "fiber length(m)", @x dULS^i@@  
    y: 0, 10 vg\/DbI'  
    "opticalpowers (W)", @y 5:_hP{ @  
    frame -x]`DQUg  
    hx pn%#w*'  
    hy r>n" 51*  
    erFv(eaDK  
    f: (set_L(x);P_out(signal_fw)),     !改变光纤长度对信号光输出功率的影响 Q{y{rC2P  
      step = 20,             jRj=Awy  
      color = blue, Y83GKh,*  
      width = 3, q=5l4|1  
      "signal output" Mi 0sC24b|  
    C/tr$.2H=  
    ;f: (set_L(x);P_out(pump)),                     !改变光纤长度对泵浦信号输出功率的影响 zx%X~U   
       step = 20, color = red, width = 3,"residual pump" X0$@Ik  
    = r4!V>  
    ! set_L(L_f) {restore the original fiber length } 4s.]M>Yb  
    RFfIF]~3  
    sC7/9</  
    ; ------------- &m'kI  
    diagram 4:                                  !输出图表4 |g&ym Fc  
    w*!wQ,o  
    "TransverseProfiles" C"eXs#A  
    s] au/T6b  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) {"}V&X160o  
    ;hDa@3|]34  
    x: 0, 1.4 * r_co /um Q!'qC*Gyfn  
    "radialposition (µm)", @x GDhM<bVqM*  
    y: 0, 1.2 * I_max *cm^2 eSy(~Y  
    "intensity (W/ cm&sup2;)", @y )&W**!(C  
    y2: 0, 1.3 * N_Tm jai|/"HSXw  
    frame Gi?_ujZR  
    hx 0kDBE3i#  
    hy #I0pYA2m  
    \:_3i\2p  
    f: N_dop(1, x * um,0),      !掺杂浓度的径向分布 ERz;H!pU8  
      yscale = 2, 7+,vTsCd  
      color = gray,  xvm5   
      width = 3, ?dq#e9  
      maxconnect = 1, vNDu9ovs-  
      "N_dop (right scale)" wN Wka7P*  
    gPXa>C  
    f: I(pump, -1, x *um, 0) * cm^2,    !泵浦光沿光纤径向的强度分布 {6,|IGAq V  
      color = red, ` E`HVZ}  
      maxconnect = 1,           !限制图形区域高度,修正为100%的高度 m VxO$A,  
      width = 3, +wfVL|.Wq  
      "pump" = !2NU  
    [M+tB"_  
    f: I(signal_fw, -1,x * um, 0) * cm^2,  !信号光沿光纤径向的强度分布 `=)2<Ca;~@  
      color = blue, ~}ovuf=%  
      maxconnect = 1, HZjf`eM,  
      width = 3, [~mGsXV  
      "signal" *I*i>==Z  
    MQTdk*L_]  
    KtN&,C )lJ  
    ; ------------- >FF5x#^&c  
    diagram 5:                                  !输出图表5 -"TR\/  
    I -@?guZ r  
    "TransitionCross-sections" \=e8%.#@J  
    .zj0Jy8N  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) #/-_1H  
    N/F$bv  
    x: 1450, 2050 b$JBL_U5Ch  
    "wavelength(nm)", @x aMuVqZw  
    y: 0, 0.6 5er@)p_  
    "cross-sections(1e-24 m&sup2;)", @y D]03eu  
    frame .2:\:H~3  
    hx FQsUm?ac:  
    hy U.oksD9 v  
    *VeW?mY,P  
    f: s12_Tm(x * nm) /1e-24,      !Tm3+吸收截面与波长的关系 JMa3btLy(  
      color = red, C"pB"^0  
      width = 3, Qu\@Y[eia5  
      "absorption" UE0$ o?  
    f: s21_Tm(x * nm) /1e-24,  !Tm3+发射截面与波长的关系 uGH?N  
      color = blue, ~}9PuYaD@  
      width = 3, @cvP0A  
      "emission" t%VDRZo7  
    tjnPyaJEl  
     
    分享到
    离线lileisgsz
    发帖
    14
    光币
    69
    光券
    0
    只看该作者 1楼 发表于: 2021-09-28
    感谢,视频上有点看不清楚