(* !y%+GwoW
Demo for program"RP Fiber Power": thulium-doped fiber laser, Z:|9N/>T
pumped at 790 nm. Across-relaxation process allows for efficient { V0>iN:~S
population of theupper laser level. 0V3gKd7
*) !(* *)注释语句 SW#BZ3L
H UkerV
diagram shown: 1,2,3,4,5 !指定输出图表 q`[K3p
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 .gq(C9<B[
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 $3 4j6;oN
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 xg} ug[
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 5>P7]?U.]
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 qOi5WX6F/
XVF^,Yf
include"Units.inc" !读取“Units.inc”文件中内容 zP&q7 t;>
ib]vX-
include"Tm-silicate.inc" !读取光谱数据 (z2Z)_6L*L
MRs,l'
; Basic fiberparameters: !定义基本光纤参数 thptm
L_f := 4 { fiberlength } !光纤长度 5oJ Dux }
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 z,x"a
r_co := 6 um { coreradius } !纤芯半径 ,1
P[
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 ~ezCu_
(Y2mmd
; Parameters of thechannels: !定义光信道 sAYV)w3u"
l_p := 790 nm {pump wavelength } !泵浦光波长790nm SX+4HJB
dir_p := forward {pump direction (forward or backward) } !前向泵浦 vbp-`M(
P_pump_in := 5 {input pump power } !输入泵浦功率5W %`+'v_iu
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um x@m<Ym-
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 wbi3lH:;
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 Qn.[{rw
QrC/ssf}
l_s := 1940 nm {signal wavelength } !信号光波长1940nm VNj@5s
w_s := 7 um !信号光的半径 ,H39V+Y*
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 XsUUJuCG
loss_s := 0 !信号光寄生损耗为0 ],[)uTZc
/C$
xH@bb
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率
<uD qYT$6
d0
-~|`5
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 8bOT*^b$H
calc ^PqMi:htc
begin :}9j^}"c3
global allow all; !声明全局变量 o@/xPo|
set_fiber(L_f, No_z_steps, ''); !光纤参数 SY1GR n
add_ring(r_co, N_Tm); `c(\i$1JY)
def_ionsystem(); !光谱数据函数 %8w9E=
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 jK3\K/ob(
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 Tn A?u (R%
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 cJ/]+|PQ
set_R(signal_fw, 1, R_oc); !设置反射率函数 [M:S`{SbY
finish_fiber(); #hJQbv=B"
end; Au5rR>W
U=cWmH
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 R#qI(V
show "Outputpowers:" !输出字符串Output powers: O?ktWHUx
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) OVR?*"N_
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) 5/MED}9C(
T'1gy}
l}}UFEA^
; ------------- VVuR+=.&
diagram 1: !输出图表1 7>n"}8i
&U"X$aFc
"Powers vs.Position" !图表名称 c+2%rh1
7petHi
x: 0, L_f !命令x: 定义x坐标范围 XP?*=Z]
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 /\E [
y: 0, 15 !命令y: 定义y坐标范围 )a cV-+{
y2: 0, 100 !命令y2: 定义第二个y坐标范围 ?`AGF%zp
frame !frame改变坐标系的设置 G{RTH_p
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) |!LnAh
hx !平行于x方向网格 2
9#]Vr
hy !平行于y方向网格 8_xLl2
(oaYF+T
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 3t(c_:[%
color = red, !图形颜色 ^od<JD4
width = 3, !width线条宽度 AhxGj+
"pump" !相应的文本字符串标签 q`Q}yE>9
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 KcXpH]>!9
color = blue, CWlW/>yF
B
width = 3, Q$a
"fw signal" Q2s&L]L=
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 'MQ%)hipA
color = blue, B8V,)rn
style = fdashed, s@!$='|
width = 3, w sY}JT
"bw signal" .y): Rh^
ndi+xaQtG
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 ,W*H6fw+
yscale = 2, !第二个y轴的缩放比例 q;A;H)?g
color = magenta, V'StvU
width = 3, _x % 1 F
style = fdashed, ]b}B2F'n
"n2 (%, right scale)" 4|Ui?.4=
8;n_TMb
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 7SS07$B
yscale = 2, *H2]H@QHN
color = red, Q"VMNvKYB
width = 3, 3M<!?%v\A
style = fdashed, `fS^
j-_M
"n3 (%, right scale)" 0=![fjm
&Lt@} 7$8
\:&@;!a
; ------------- l\Xd.H" j,
diagram 2: !输出图表2 *jCW.ZLY
*%A}x
"Variation ofthe Pump Power" K
,isjh2
bQQVj?8jp
x: 0, 10 qO()w
"pump inputpower (W)", @x J?Iq9f
y: 0, 10 3 QCVgo
i\
y2: 0, 100 $YM_G=k
frame ^^}Hs-{T
hx EUcKN1
hy {9'M0=
legpos 150, 150 n?QZFeI`
(vyz;Ob
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 [m2+9MMl
step = 5, !O)qYmK]|
color = blue, PRr*]$\&Mj
width = 3, 5w<A;f
"signal output power (W, leftscale)", !相应的文本字符串标签 .j?kEN?w
finish set_P_in(pump, P_pump_in) m#H_*L0
x$B&L`QV
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 pP.'wSj
yscale = 2, Tr .hmG U
step = 5, qrBZvJU
color = magenta, fx?$9(r,
width = 3, = `t^~.5
"population of level 2 (%, rightscale)", N|dD!
finish set_P_in(pump, P_pump_in) A3R#z]Ub
>*qQ+_
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 [Z<Z;=t
yscale = 2, I}.i@d'O
step = 5, k-jahm4
color = red, o`? zF+M0
width = 3, E zT`,#b
"population of level 3 (%, rightscale)", Iti0qnBN5
finish set_P_in(pump, P_pump_in) qd6fU^)i
GyC)EFd
S`=WF^
; ------------- ~W{-Q.
diagram 3: !输出图表3 _vl}*/=Hc
`;%Z N
"Variation ofthe Fiber Length" $a#H,Xv#
.SS<MDcqIt
x: 0.1, 5 Ix8$njp[
"fiber length(m)", @x dULS^i@@
y: 0, 10 vg\/DbI'
"opticalpowers (W)", @y 5:_hP{ @
frame -x]`DQUg
hx pn%#w*'
hy r>n"
51*
erFv(eaDK
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 Q{y{rC2P
step = 20, jRj=Awy
color = blue, Y83GKh,*
width = 3, q=5l4|1
"signal output" Mi0sC24b|
C/tr$.2H=
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 zx%X~U
step = 20, color = red, width = 3,"residual pump" X0$@Ik
=r4!V>
! set_L(L_f) {restore the original fiber length } 4s.]M>Yb
RFfIF]~3
sC7/9</
; ------------- &m'kI
diagram 4: !输出图表4 |g&ymFc
w *!wQ,o
"TransverseProfiles" C"eXs#A
s] au/T6b
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) {"}V&X160o
;hDa@3|]34
x: 0, 1.4 * r_co /um Q!'qC*Gyfn
"radialposition (µm)", @x GDhM<bVqM*
y: 0, 1.2 * I_max *cm^2 eSy(~Y
"intensity (W/ cm²)", @y )&W**!(C
y2: 0, 1.3 * N_Tm jai|/"HSXw
frame Gi?_ujZR
hx 0kDBE3i#
hy #I0pYA2m
\:_3i\2p
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 ERz;H!pU8
yscale = 2, 7+,vTsCd
color = gray, xvm5
width = 3, ?dq#e9
maxconnect = 1,
vNDu9ovs-
"N_dop (right scale)" wNWka7P*
gPXa>C
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 {6,|IGAq
V
color = red, `E`HVZ}
maxconnect = 1, !限制图形区域高度,修正为100%的高度 m
VxO$A,
width = 3, +wfVL|.Wq
"pump" = !2NU
[M+tB"_
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 `=)2<Ca;~@
color = blue, ~}ovuf=%
maxconnect = 1, HZjf`eM,
width = 3, [~mGsXV
"signal" *I*i>==Z
MQTdk*L_]
KtN&,C )lJ
; ------------- >FF5x#^&c
diagram 5: !输出图表5 -"TR\/
I-@?guZ r
"TransitionCross-sections" \=e8%.#@J
.zj0Jy8N
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) #/-_1H
N/F$bv
x: 1450, 2050 b$JBL_U5Ch
"wavelength(nm)", @x aMuVqZw
y: 0, 0.6 5er@)p_
"cross-sections(1e-24 m²)", @y D ]03eu
frame .2:\:H~3
hx FQsUm?ac:
hy U.oksD9v
*VeW?mY,P
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 JMa3btLy(
color = red, C"pB"^0
width = 3, Qu\@Y[eia5
"absorption" UE0$ o?
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 uGH?N
color = blue, ~}9PuYaD@
width = 3, @cvP0A
"emission" t%VDRZo7
tjnPyaJEl