(* m= %KaRI
Demo for program"RP Fiber Power": thulium-doped fiber laser, L1&` 3a?pL
pumped at 790 nm. Across-relaxation process allows for efficient @9l$jZ~x
population of theupper laser level. ft~QVe!
*) !(* *)注释语句 I:1Pz|$`
e}(8BF
diagram shown: 1,2,3,4,5 !指定输出图表 2iC BF-,
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 ]ZH6
.@|
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 ,rOh*ebF
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 .N7&Jy
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 mRN[lj
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 w}8=sw
5acC4v!T
include"Units.inc" !读取“Units.inc”文件中内容 ($gmN 4
XANJ A
include"Tm-silicate.inc" !读取光谱数据 t| B<F t^
s~k62
; Basic fiberparameters: !定义基本光纤参数 M XuHA?
L_f := 4 { fiberlength } !光纤长度 C#P>3"
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 M0hR]4T
r_co := 6 um { coreradius } !纤芯半径 -s^cy+jd
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 E!`/XB/nA
}H/94]~tH
; Parameters of thechannels: !定义光信道 =6N=5JePB
l_p := 790 nm {pump wavelength } !泵浦光波长790nm q(BRJ(
dir_p := forward {pump direction (forward or backward) } !前向泵浦 }4Q3S1|U
P_pump_in := 5 {input pump power } !输入泵浦功率5W Wxgs66
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um Equ%6x
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 ;CuL1N#I
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 s"~,Zzy@j
F*Ul#yX
l_s := 1940 nm {signal wavelength } !信号光波长1940nm 3f:]*U+O
w_s := 7 um !信号光的半径 a(uQGyr[k1
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 9l,8:%X_
loss_s := 0 !信号光寄生损耗为0 cW?6Iao
$4kbOqn4
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 sosIu
p*JP='p
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 [=:4^S|M
calc VeH%E.:
begin B5_QH8kt7
global allow all; !声明全局变量
U^-RyE!}
set_fiber(L_f, No_z_steps, ''); !光纤参数 )=5*iWe
add_ring(r_co, N_Tm); }IQ! [T5
def_ionsystem(); !光谱数据函数 z_). -
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 iztgk/(+G
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 >n1UK5QD
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 ObataUxQT
set_R(signal_fw, 1, R_oc); !设置反射率函数 X.rbJyKe
finish_fiber(); yK mHTjX=
end; i,L"%q)C
[7[$P.MS{
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 i6i;{\tc
show "Outputpowers:" !输出字符串Output powers: R5 EC/@
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) `g{eWY1l
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) <!X]$kvG
nVGOhYn
u%Z4 8wr
; ------------- Rb
<{o8
diagram 1: !输出图表1 5!6}g<z&L
@s\}ER3
"Powers vs.Position" !图表名称 >_X(rar0
}-vP~I
x: 0, L_f !命令x: 定义x坐标范围 ~\zIb/ #
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 /#}%c'
y: 0, 15 !命令y: 定义y坐标范围 t'C9;
y2: 0, 100 !命令y2: 定义第二个y坐标范围 t2qWB[r
frame !frame改变坐标系的设置 2 xi@5;!
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) XLm@, A[
hx !平行于x方向网格 !V/p.O
hy !平行于y方向网格 U*T :p>&
xCMuq9zt@
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 !
n?j)p.
color = red, !图形颜色 T8vMBaU!qY
width = 3, !width线条宽度 g$8aB{)
"pump" !相应的文本字符串标签 ~SEIIq
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 |G)bnmi7
color = blue, ;;LiZlf
width = 3, 1EHNg<J(
"fw signal" <"S/M]9
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 +jp^
color = blue, y{nX 6
style = fdashed, >k
u7{1)
width = 3, <%oT}K\;
"bw signal" M5S<N_+Pe
tNW0 C]
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 %'dsb7n
yscale = 2, !第二个y轴的缩放比例 =}W)%Hldr.
color = magenta, K]i2$M
width = 3, E+eC #!&w
style = fdashed, &MP8.(u `
"n2 (%, right scale)" T9gQq
7(l
Oi n:5K)4-
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 *Rj*%S
yscale = 2, y;HJ"5.Mw
color = red, %W$?*Tm
width = 3, ;'| t>'0_
style = fdashed, }@g#S@o
"n3 (%, right scale)" 1)M%]I4
N)$yBzN
, pr ",=
; ------------- }sGH}n<9*
diagram 2: !输出图表2 ;p)fW/<
?s: 2~Qlu
"Variation ofthe Pump Power" s ,GGO3^
H3o Um1
x: 0, 10 =[^_x+x
hE
"pump inputpower (W)", @x fehM{)x2:
y: 0, 10 FDRpK5cw
y2: 0, 100 {7o|*M
frame dp>Lh TLc
hx 26c1Yl,DMn
hy `
_]tN
legpos 150, 150 t8b,@J`R
,vUMy&AV
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 -"3<Ll
step = 5, @Tf5YZ*
color = blue, ^2um.`8
width = 3, 2<5s0GT'/
"signal output power (W, leftscale)", !相应的文本字符串标签 G( y@Tor+
finish set_P_in(pump, P_pump_in) .;9I:YB$
WqRg/
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 U}<;4Px]7v
yscale = 2, nc%ly *
step = 5, _ ;_NM5
color = magenta, g\
p;
width = 3, To19=,:
"population of level 2 (%, rightscale)", |Xl,~-.
finish set_P_in(pump, P_pump_in) l=<
:
| (a<b
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 Wtwh.\Jba
yscale = 2, cLe659 &
step = 5, H?axlRmw3
color = red, }x1p~N+;
width = 3, ? k*s!YCZ
"population of level 3 (%, rightscale)", ``mW\=fe
finish set_P_in(pump, P_pump_in) G@igxnm}
gb_k^wg~1'
&llp*<
i7
; ------------- W.AN0N
diagram 3: !输出图表3 p<3^= 8Y$
X6]eQ PN2
"Variation ofthe Fiber Length" :K_JY
<ib#PLRM
x: 0.1, 5 q@x{6zj
"fiber length(m)", @x ^g2p!7
y: 0, 10
T!N,1"r
"opticalpowers (W)", @y |JW-P`tL0
frame s9Aq-N
hx +kKfx!
hy g^DPbpWxu
PO[
AP%;
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 %maLo RJ
step = 20, RWi~34r
color = blue, 438+zU
width = 3, 2*K _RMr~
"signal output" +[
944n
v/BMzVi
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 n1xN:A
step = 20, color = red, width = 3,"residual pump" L{\au5-4
@^$Xy<x
! set_L(L_f) {restore the original fiber length } *a7&v3X
S5Q$dAL
3%<xM/#
; ------------- nx >PZb
diagram 4: !输出图表4 \$Nx`daFi
*@r)3
"TransverseProfiles" q|.
X[~e|
1dF=BR8
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) -$4#eG%3
do9@6[{Sv
x: 0, 1.4 * r_co /um ~E=.*: 5(
"radialposition (µm)", @x t YmR<^
y: 0, 1.2 * I_max *cm^2 ;w,g|=RQ
"intensity (W/ cm²)", @y Cu0N/hBT
y2: 0, 1.3 * N_Tm $!<J_d*
frame ozbu|9+v
hx +`==US34
hy 8qfg=mu+%
ui,#AZQ#{4
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 Z4/rqU
yscale = 2, j|&?BBa9
color = gray, W,iSN}
width = 3, ?+S& `%?
maxconnect = 1, E3\O?+h#
"N_dop (right scale)" 3n/U4fn_
XU Hu=2F
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 2 fX-J
color = red, H/p<lp
maxconnect = 1, !限制图形区域高度,修正为100%的高度 "]ow1{
width = 3, _W4i?Bde
"pump" 8]Xwj].^C
O1Gd_wDC/i
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 *BYSfcX6
color = blue, ~\c]!%)o
maxconnect = 1, K4i#:7r'b
width = 3, MX 2UYZ&
"signal" ANy=f-V
kE tYuf^
g_}r)CgG|
; ------------- CE>RAerY
diagram 5: !输出图表5 ~l%Dcp
y(B~)T~e@
"TransitionCross-sections" l|`%FB^ k
^IuHc_
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) \.A~>=:
<D4.kM
x: 1450, 2050 +d6/*}ht
"wavelength(nm)", @x
AA9OElCa
y: 0, 0.6 `?PZvGi
"cross-sections(1e-24 m²)", @y .}6 YKKqS
frame Rx*T7*xg{
hx *Wv]DV=\
hy >De\2gbJ
t$8f:*6(*
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 e@s+]a8D-k
color = red, I.j`h2
width = 3, |<\LB
"absorption" \BaN?u)a
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 TSmuNCR
color = blue, uAR!JJ
width = 3, n*%<!\gJ
"emission" ^:K"Tv.=
Qw.""MLmN8