切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 2223阅读
    • 1回复

    [原创]RP Fiber Power仿真设计掺铥光纤激光器代码详解 [复制链接]

    上一主题 下一主题
    离线小火龙果
     
    发帖
    932
    光币
    2171
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-05-28
    (* '4+ ur`  
    Demo for program"RP Fiber Power": thulium-doped fiber laser, (z {#Eq4  
    pumped at 790 nm. Across-relaxation process allows for efficient )9{0]u;9  
    population of theupper laser level. ;~ )5s'  
    *)            !(*  *)注释语句 x:NY\._  
    f P 1[[3i  
    diagram shown: 1,2,3,4,5  !指定输出图表 )Xz,j9GzJS  
    ; 1: "Powersvs. Position"     !分号是注释;光纤长度对功率的影响 QC OM_$y  
    ; 2:"Variation of the Pump Power"  !泵浦光功率变化对信号输出功率的影响 X1x#6 oi  
    ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 2>xF){`  
    ; 4:"Transverse Profiles"             !横向分布,横坐标为半径位置 ArI2wM/v  
    ; 5:"Transition Cross-sections"    !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 s^G.]%iU  
    =vCY?I$P  
    include"Units.inc"         !读取“Units.inc”文件中内容 'j8:vq^d  
    w7.V6S$Ga  
    include"Tm-silicate.inc"    !读取光谱数据 VGy<")8D/  
    *k(XW_>  
    ; Basic fiberparameters:    !定义基本光纤参数 #C74z$  
    L_f := 4 { fiberlength }      !光纤长度 Z*]9E^  
    No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 O~#!l"0 L+  
    r_co := 6 um { coreradius }                !纤芯半径 Q^9_' t}X  
    N_Tm := 100e24 { Tmdoping concentration }  !纤芯Tm离子掺杂浓度 ]b:Lo  
    b7?uq9  
    ; Parameters of thechannels:                !定义光信道 H7&8\ FNa  
    l_p := 790 nm {pump wavelength }                !泵浦光波长790nm 0y'H~(  
    dir_p := forward {pump direction (forward or backward) }   !前向泵浦 \R9(x]nZ%  
    P_pump_in := 5 {input pump power }                    !输入泵浦功率5W Y1W1=Uc uk  
    w_p := 50 um {radius of pump cladding }               !包层泵浦相应的半径 50um .nf#c.DI  
    I_p(r) := (r <=w_p) { pump intensity profile }          !泵浦光强度分布 1Ti f{i,B  
    loss_p := 0 {parasitic losses of pump wave }           !泵浦光寄生损耗为0 G#q@v(_b  
     L2[($l  
    l_s := 1940 nm {signal wavelength }                   !信号光波长1940nm 2+ N]PW\V  
    w_s := 7 um                          !信号光的半径 b5dD/-Vj  
    I_s(r) := exp(-2 *(r / w_s)^2)            !信号光的高斯强度分布 hP%M?MKC  
    loss_s := 0                            !信号光寄生损耗为0 ?|\ER#z  
    W dK #ZOR  
    R_oc := 0.70 {output coupler reflectivity (right side) }      !输出耦合反射率 Tj` ,Z5vy  
    .]Y$o^mf  
    ; Function for defining themodel:   !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 Drgv`z  
    calc 'A=^Se`=  
      begin ,GhS[VJjR  
        global allow all;                   !声明全局变量 UawyDs  
        set_fiber(L_f, No_z_steps, '');        !光纤参数 9IdA%RM~mH  
        add_ring(r_co, N_Tm); CAig ]=2'  
        def_ionsystem();              !光谱数据函数 Fc)@,/R"v  
        pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p);  !泵浦光信道 HTv2#  
        signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward);      !前向信号光信道 }z'8Bu  
        signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward);    !后向信号光信道 PfAgM1   
        set_R(signal_fw, 1, R_oc);                                 !设置反射率函数 p}z<Fdu 0  
        finish_fiber();                                   b4%??"&<Y  
      end; W s3)gvpPA  
    xf\C|@i  
    ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 }1L4 "}L.  
    show "Outputpowers:"                                   !输出字符串Output powers: cN-?l7  
    show"pump:     ", P_out(pump):d3:"W"  !输出字符串pump:和计算值(格式为3个有效数字,单位W) Jc&{`s^Nu  
    show"signal:   ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) a_^\=&?'  
    ehGLk7@7&  
    c)6m$5]  
    ; ------------- lne4-(DJ  
    diagram 1:                   !输出图表1 ,a{P4Bq  
    RtkEGxw*^  
    "Powers vs.Position"          !图表名称 DD+7V@  
    ?um;s-x)  
    x: 0, L_f                      !命令x: 定义x坐标范围 rQ{7j!Im  
    "position infiber (m)", @x      !x轴标签;@x 指示这些字符串沿坐标轴放置 .FP$m?  
    y: 0, 15                      !命令y: 定义y坐标范围 ^&9zw\x;z  
    y2: 0, 100                    !命令y2: 定义第二个y坐标范围 xk9%F?)  
    frame          !frame改变坐标系的设置 ,1.p%UE]>  
    legpos 600, 500  !图行在图表窗口中的位置(相对于左上角而言) {K~'K+TPu  
    hx             !平行于x方向网格 b i',j0B  
    hy              !平行于y方向网格 K C*e/J  
    x xHY+(m  
    f: P(pump, x),    !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 5zK4Fraf  
      color = red,  !图形颜色 w8")w*9Lmg  
      width = 3,   !width线条宽度 XAD- 'i  
      "pump"       !相应的文本字符串标签 D%[mWc@1I  
    f: P(signal_fw, x),  !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 ih-#5M@  
      color = blue,     CCs%%U/=  
      width = 3, )J o: pkM  
      "fw signal" <`8n^m*  
    f: P(signal_bw, x),   !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 o*+"|  
      color = blue, ]#i igPZ7  
      style = fdashed, nmee 'oEw  
      width = 3, x /(^7#u,  
      "bw signal" Y,qI@n<  
    j7Yu>cr  
    f: 100 * n(x, 2),    !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 ]? c B:}  
      yscale = 2,            !第二个y轴的缩放比例 ; }I:\P  
      color = magenta, '&P%C" 5  
      width = 3, ?> 9/#Nv  
      style = fdashed, + )AG*  
      "n2 (%, right scale)" &Q/W~)~  
    ^`i#$  
    f: 100 * n(x, 3),          !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 LRxZcxmy  
      yscale = 2, ;HfmzY(  
      color = red, X;+sUj8  
      width = 3, 9Z$"K-G  
      style = fdashed, B6+khuG(  
      "n3 (%, right scale)" B B{$&Oh  
    L?b~k=  
    ql Ax  
    ; ------------- $j%'{)gK  
    diagram 2:                    !输出图表2 RXMISt3+{y  
    tH@Erh|%  
    "Variation ofthe Pump Power" DaQ?\uq  
    {S]}.7`l9(  
    x: 0, 10 nAAs{  
    "pump inputpower (W)", @x 7DogM".}~Q  
    y: 0, 10 @,j*wnR  
    y2: 0, 100 EmWn%eMN  
    frame a@K%06A;'  
    hx }^WdJd]P  
    hy zy?|ODM  
    legpos 150, 150 6xmZXp d!  
    -a}Dp~j  
    f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 PA{PD.4Du  
      step = 5, y-pJF{ R  
      color = blue, @}u*|P*  
      width = 3, D(op)]8  
      "signal output power (W, leftscale)",     !相应的文本字符串标签 biD$qg  
      finish set_P_in(pump, P_pump_in) T3.&R#1M8-  
    S&5&];Ag  
    f: (set_P_in(pump,x); 100 * n_av(2)),   !改变泵浦信号功率对能级2上激活粒子占比的影响 HQ_Ok `  
      yscale = 2, aH(J,XY  
      step = 5, h]&GLb&<?  
      color = magenta, Ux!p8  
      width = 3, Vi$~-6n&  
      "population of level 2 (%, rightscale)", 4}baSV  
      finish set_P_in(pump, P_pump_in) m#Jmdb_  
    h|9L5  
    f: (set_P_in(pump,x); 100 * n_av(3)),   !改变泵浦信号功率对能级3上激活粒子占比的影响 ' ,wFTV&  
      yscale = 2, G^|:N[>B  
      step = 5, Pl06:g2I  
      color = red, 8}x:`vDK  
      width = 3, e`_LEv  
      "population of level 3 (%, rightscale)", GT.,  
      finish set_P_in(pump, P_pump_in) QD&`^(X1p  
    wo{gG?B  
    mfn,Gjt3O  
    ; ------------- ^$jb7HMObI  
    diagram 3:                         !输出图表3 \~mT] '5  
    2DDtu[}  
    "Variation ofthe Fiber Length" @l5"nBs<_:  
    U[-o> W#  
    x: 0.1, 5 vzAaxk%  
    "fiber length(m)", @x z6\UGSL  
    y: 0, 10 _Kf%\xg  
    "opticalpowers (W)", @y Ms#M+[a  
    frame N7zft  
    hx yjX9oxhtL  
    hy ZgcMv,=  
    h 0Q5-EA  
    f: (set_L(x);P_out(signal_fw)),     !改变光纤长度对信号光输出功率的影响 '3tCH)s  
      step = 20,             ibk6|pp  
      color = blue, 13=AW  
      width = 3, *I.f1lz%*  
      "signal output" CNyIQ}NJ  
    ,AFu C <  
    ;f: (set_L(x);P_out(pump)),                     !改变光纤长度对泵浦信号输出功率的影响 s?}e^/"v  
       step = 20, color = red, width = 3,"residual pump" (NU NHxi5B  
    R4cM%l_#W  
    ! set_L(L_f) {restore the original fiber length } c ( C%Hld  
    =z69e%.  
    n0 {i&[I~+  
    ; ------------- 6,"Q=9k4[  
    diagram 4:                                  !输出图表4 B%b4v  
    L|xbR#v  
    "TransverseProfiles" -<!NXm|kvz  
    I3I/bofz  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) nh>vixe  
    wKxtre(v  
    x: 0, 1.4 * r_co /um <{cQM$ #  
    "radialposition (µm)", @x \V8PhO;j  
    y: 0, 1.2 * I_max *cm^2 K=k"a  
    "intensity (W/ cm&sup2;)", @y Rtl"Ub@HV  
    y2: 0, 1.3 * N_Tm ZhaP2pC%4  
    frame ,!y$qVg'\f  
    hx b=NxUd O  
    hy ?P`K7  
    7,o7Cf2z  
    f: N_dop(1, x * um,0),      !掺杂浓度的径向分布 i%]EEVmN  
      yscale = 2, 6SkaH<-&K  
      color = gray,  "Og7rl  
      width = 3, E A1?)|}n  
      maxconnect = 1, .j0$J\:i  
      "N_dop (right scale)" P@Oo$ o  
    IY\5@PVZ  
    f: I(pump, -1, x *um, 0) * cm^2,    !泵浦光沿光纤径向的强度分布 *C*U5~Zq7:  
      color = red, UECK:61Me  
      maxconnect = 1,           !限制图形区域高度,修正为100%的高度 u0c1:Uv#~e  
      width = 3, DU/]  
      "pump" X51:  
    k"zv~`i'  
    f: I(signal_fw, -1,x * um, 0) * cm^2,  !信号光沿光纤径向的强度分布 q ^N7 I@Y  
      color = blue, | rtD.,m   
      maxconnect = 1, c9 _ rmz8  
      width = 3, |FZ/[9*  
      "signal" :KP @RZm  
    Ai?*s%8v  
    bJ {'<J  
    ; ------------- "_NN3lD)X  
    diagram 5:                                  !输出图表5 8^+%I/S$  
    H3=qe I  
    "TransitionCross-sections" A[{yCn`tM  
    D'PI1 0t  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) }!.(n=idZ  
    /{n-Y/j p  
    x: 1450, 2050 )g%d:xI  
    "wavelength(nm)", @x O-hAFKx  
    y: 0, 0.6 2-v%`fA  
    "cross-sections(1e-24 m&sup2;)", @y |3"KK  
    frame KU(&%|;g  
    hx %XQ(fj>  
    hy #r\4sVg  
    #f]SK[nR  
    f: s12_Tm(x * nm) /1e-24,      !Tm3+吸收截面与波长的关系 =>v#4zFd  
      color = red, >@_^fw)  
      width = 3, XK@E;Rv  
      "absorption" V&2l5v  
    f: s21_Tm(x * nm) /1e-24,  !Tm3+发射截面与波长的关系 SZ'R59Ee<  
      color = blue,  >Abdd  
      width = 3, 8wFJ4v3  
      "emission" 2uW; xfeY  
    #h ]g?*}OJ  
     
    分享到
    离线lileisgsz
    发帖
    14
    光币
    69
    光券
    0
    只看该作者 1楼 发表于: 2021-09-28
    感谢,视频上有点看不清楚