(* LPu*Lkx
Demo for program"RP Fiber Power": thulium-doped fiber laser, ckY#oRQ1
pumped at 790 nm. Across-relaxation process allows for efficient 7Vh
population of theupper laser level. 5 m-/N?c
*) !(* *)注释语句 Qg(;>ops
]YFjz/f
diagram shown: 1,2,3,4,5 !指定输出图表 wS#Uw_[
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 )?(Ux1:w)
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 )lS04|s
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 &,jUaC5I
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 u^{p'a'
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 qmFbq<&
pFNU~y'Kf
include"Units.inc" !读取“Units.inc”文件中内容 [w@S/K[_|
[Tbnfst
include"Tm-silicate.inc" !读取光谱数据 4aBVO%t
^tG,H@95
; Basic fiberparameters: !定义基本光纤参数 W$NFk(
L_f := 4 { fiberlength } !光纤长度 ?z l<"u
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 O)VcW/
r_co := 6 um { coreradius } !纤芯半径 O$m &!J
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 #\m.3!Hcr
Kd+E]$F_OH
; Parameters of thechannels: !定义光信道 sfn^R+x4,9
l_p := 790 nm {pump wavelength } !泵浦光波长790nm ?yq=c
dir_p := forward {pump direction (forward or backward) } !前向泵浦 HB5-B XBU
P_pump_in := 5 {input pump power } !输入泵浦功率5W .Hqq!&
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um g1[BrT,
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 ,;w~ VZ4
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 T:{r*zLSN
#.HnO_sK_
l_s := 1940 nm {signal wavelength } !信号光波长1940nm GEf=A.WAfw
w_s := 7 um !信号光的半径 E\s1p:%
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 U{oM*[
loss_s := 0 !信号光寄生损耗为0 ]7W!f 2@
{Oy|c
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 sZ&|omN
$G"\@YC<
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 o(Z~J}l({
calc 7UW\|r
begin L f"!:]
global allow all; !声明全局变量 1aRTvaGo
set_fiber(L_f, No_z_steps, ''); !光纤参数 -;_"Y]#
add_ring(r_co, N_Tm); ;2`6eyr
def_ionsystem(); !光谱数据函数 >\?
z,Nin
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 0Pf88 '6
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 +)q ,4+K%}
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 ^t
gjs$M|
set_R(signal_fw, 1, R_oc); !设置反射率函数 6X h7Bx1
finish_fiber(); ?|W3RK;
end; W)Y`8&,
1%B9xLq
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 Evm3Sm!S
show "Outputpowers:" !输出字符串Output powers: `I wZVz
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) n)q8y0if
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) 9 CZ@IFS
aQx6;PC
}>BNdm"Er
; ------------- _yN5sLLyb
diagram 1: !输出图表1 W1"NKg~4
P`Ku.
ONQ
"Powers vs.Position" !图表名称 U3:|!CC)T
qfJ2iE|o2.
x: 0, L_f !命令x: 定义x坐标范围 }a5TY("d9H
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 g tMR/P:S
y: 0, 15 !命令y: 定义y坐标范围 o ;Z"I &
y2: 0, 100 !命令y2: 定义第二个y坐标范围 A)n_ST0
frame !frame改变坐标系的设置 .cs x"JC
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) "]]LQb$
hx !平行于x方向网格
p )JR5z
hy !平行于y方向网格 =T2SJ)
v0)Y, hW
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 K(upzn*a
color = red, !图形颜色
B(s^(__]
width = 3, !width线条宽度 _4Eq_w`
"pump" !相应的文本字符串标签 QEt"T7a[/
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 A? B+
color = blue, '1b8>L
width = 3, 8o|C43Q_
"fw signal" ZJ2
MbV.6
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 VZcW
3/Y
color = blue, T=-UcF
style = fdashed, o#wly%i')
width = 3, Ir>4- @
"bw signal" 7=?!B#hm!
p#P<V%
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 M("sekL
yscale = 2, !第二个y轴的缩放比例 ~Oq
_lM
color = magenta, `O2P&!9&
width = 3, Z9M$*Zp
style = fdashed, u5ZyOZ;
"n2 (%, right scale)" l([aKm#
Jb*QlsGd
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 OV;VsF
yscale = 2, =ZURh_{xV
color = red, *l
=f=
width = 3, v?]a tb/h`
style = fdashed, hL/u5h%$
"n3 (%, right scale)" #|je m
8=Oym~
kI(3Pf].
; ------------- CQ6I4k
diagram 2: !输出图表2 Yu" Q
/Lr`Aka5
"Variation ofthe Pump Power" +i!HMyM
ZlC+DXg#S
x: 0, 10 8f~x\.
"pump inputpower (W)", @x L%$-?O|
y: 0, 10 iupkb
y2: 0, 100 !Q~>)$Cf^
frame zT)cg$8%fY
hx e{87n>+,
hy h&L-G j
legpos 150, 150 #lqH/>`>
^(+q1O'
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 VS ECD;u4c
step = 5, 7NT}
Zwf
color = blue, p({@t=L3g
width = 3, dO2?&f
"signal output power (W, leftscale)", !相应的文本字符串标签 cA4?[F
finish set_P_in(pump, P_pump_in) r3' DXP
lbt8S.fx
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 dDl+
yscale = 2, rz&V.,s
step = 5, 5>%^"f
color = magenta, M/.M~/~
width = 3, tik*[1it
"population of level 2 (%, rightscale)", J/Y9 X,
finish set_P_in(pump, P_pump_in) ,m`&J?
YC 4c-M
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 ~),%w*L
yscale = 2, ,_(=w.F
step = 5, NvIg,@}
color = red, rG~W=!bj
width = 3, "4WnDd5"
"population of level 3 (%, rightscale)", U}X'RCM
finish set_P_in(pump, P_pump_in) zP0<4E$M`
"zNS6I?rzE
0$`pYW]
; ------------- lU
Zj
diagram 3: !输出图表3 ,2Ed^!`
vA:ZR=)F
"Variation ofthe Fiber Length" p#4*:rpq4
J&h59dm-
x: 0.1, 5 \6a' p
Q,
"fiber length(m)", @x mIG>`7`7N
y: 0, 10 ulN1z
"opticalpowers (W)", @y {~51h}>b#
frame [-l>fP0
hx $~:ZzZO
hy @Yb8CB
S"Vr+x?
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 :,p3&2I
step = 20, :
^}!"4{
color = blue, @ ^F{
width = 3,
{}'Jr1
"signal output" mp sX4
9(HGe+R4o
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 6@#=z
step = 20, color = red, width = 3,"residual pump" 4IW90"uc
R6 ej
! set_L(L_f) {restore the original fiber length } H&*&n}vh5y
}T}c%p
{-7ovH?
; ------------- T7ShE-X
diagram 4: !输出图表4 _+)OL-
n3V$Xtxw
"TransverseProfiles" 9({ 9 r[U
2<0".5+I
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) P;y!Y/$ C
^|h_[>
x: 0, 1.4 * r_co /um 3VMaD@nYa
"radialposition (µm)", @x @/As|)
y: 0, 1.2 * I_max *cm^2 dmkGIg}
"intensity (W/ cm²)", @y S]fkA6v
y2: 0, 1.3 * N_Tm N!?~Dgw
frame 0nI*9
hx $ta"Ug.z
hy M^l%*QF[,q
\hlS?uD\
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 h
Ks
yscale = 2, obbg#,
color = gray, 7w5l[a/
width = 3, :G9d,B7*
maxconnect = 1, {Gfsiz6
"N_dop (right scale)" .aWwJZ=[
(mi=I3A(
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 Gz\wmH&rVz
color = red, fRk'\jzT
maxconnect = 1, !限制图形区域高度,修正为100%的高度 WQw11uMt@q
width = 3, 0.!vp?
"pump" eUa:@cA
~Odclrs
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 uW}M1kq?+l
color = blue, 2"
v{
maxconnect = 1, c2GTN "
width = 3, Ygfy;G%
"signal" g(jn
/Cx
]B&jMj~y&
k+@ :+RL
; ------------- I)%bOK]
diagram 5: !输出图表5 I)3LJK
fWg3gRI
"TransitionCross-sections" XI ><;#
#cD$
DA
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) %AT/g&M&1#
4rCw#mVtB
x: 1450, 2050 -DZ5nx
"wavelength(nm)", @x ;L],i<F
y: 0, 0.6 w1F)R^tU
"cross-sections(1e-24 m²)", @y N-p||u
frame KxJDAP
hx 54]UfmT%I
hy 'UCClj;?K
|U~\;m@
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 A i#~Eu*
color = red, Kx;l a
width = 3, c;
1f$$>b
"absorption" b9Eb"
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 aNICSxDN
color = blue, @%MGLR{pH
width = 3, .q 4FGPWz
"emission" uXGAcUx(
T%PUV \LV