(* . pEeR
Demo for program"RP Fiber Power": thulium-doped fiber laser, /
H/Ne
)r
pumped at 790 nm. Across-relaxation process allows for efficient *(.^$Iq4
population of theupper laser level. Dk6\p~q
*) !(* *)注释语句 0c6AQP"=V
[ +@<T)
diagram shown: 1,2,3,4,5 !指定输出图表 zk~ rKQ,
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 _ShJ3\,K
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 Y]0y
-H
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 CP#MNNvgrw
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 =zGz|YI*?
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 uKzz/Y{
~7lvY+k)<
include"Units.inc" !读取“Units.inc”文件中内容 U4pvQE.m<
pg`;)@
include"Tm-silicate.inc" !读取光谱数据 +-137!x\q
(pNng"/
; Basic fiberparameters: !定义基本光纤参数 =qQQ^`^F'~
L_f := 4 { fiberlength } !光纤长度 F=c_PQO
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 3<E$m*
r_co := 6 um { coreradius } !纤芯半径 I+Cmj]M s0
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 'J2P3t
g o Z#
; Parameters of thechannels: !定义光信道 B\w`)c
l_p := 790 nm {pump wavelength } !泵浦光波长790nm yKhzymS}T
dir_p := forward {pump direction (forward or backward) } !前向泵浦 }=4".V`-o
P_pump_in := 5 {input pump power } !输入泵浦功率5W f#MN-1[67
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um +'4 dP#
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 )fr\V."
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 \~1+T
bv];Gk*Z-
l_s := 1940 nm {signal wavelength } !信号光波长1940nm \./2Qc,
w_s := 7 um !信号光的半径 \Nyxi7
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 ^:j:;\;
loss_s := 0 !信号光寄生损耗为0 mmK_xu~f28
'FXZ`+r|
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 )ISTb
}PuO$
L
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 #<3\}*/
calc %c{)'X
begin Ip-jqN J~
global allow all; !声明全局变量 7QFEQ}
set_fiber(L_f, No_z_steps, ''); !光纤参数 !!>G{
add_ring(r_co, N_Tm); 7NEn+OI4
def_ionsystem(); !光谱数据函数 ,' B=eY,
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 =Ji:nEl]z
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 v[GHqZ
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 2F{IDcJI\
set_R(signal_fw, 1, R_oc); !设置反射率函数 r"{1H
finish_fiber(); zb$U'D_-f
end; r2w7lf66!
nVD
YAg'
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 2uEu,YC
show "Outputpowers:" !输出字符串Output powers: 5}ah%
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) UkKpSL}Q2
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) w:v:znQrW
(
PlNaasV
$!w%=
; ------------- B\yid@e
diagram 1: !输出图表1 #n
r1- sf|
6 [E"
"Powers vs.Position" !图表名称 h08T Q=n
:f:C*mYvu
x: 0, L_f !命令x: 定义x坐标范围 \PJ89u0
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 } d6^
y: 0, 15 !命令y: 定义y坐标范围 ^lj>v}4fkW
y2: 0, 100 !命令y2: 定义第二个y坐标范围 gX<C-y6o
frame !frame改变坐标系的设置 <KX#;v!I
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) 9:s!#FYFM
hx !平行于x方向网格 db|$7]!w
hy !平行于y方向网格 Pipif.
zT8K})#
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 >E3OYa?G
color = red, !图形颜色 J%'|IwA
width = 3, !width线条宽度 AsOI`@FV
"pump" !相应的文本字符串标签 fmh]Y/UC
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 !v=ha%w{
color = blue, 3V]a "C
width = 3, E:AXnnGKO
"fw signal" >b0}X)Z+U
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 lKcnM3n
color = blue, XT)@)c7j
style = fdashed, %o>1$f]
width = 3, e!#:h4I
"bw signal" wB@A?&UY
u}$3.]-.?T
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 %|Vq"MW,I
yscale = 2, !第二个y轴的缩放比例 XQ>m8K?\d
color = magenta, n7vi@^lf(
width = 3, lOZZ-
style = fdashed, Jh1fM`kB5K
"n2 (%, right scale)" A]1](VQ)4
Gwe9<
y
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 ^<c?I re
yscale = 2, uP.3(n[&
color = red, t V</x0#
width = 3, ``{xm1GK
style = fdashed, ET4YoH>
"n3 (%, right scale)" NR" Xn7G
}/=_
i{.!1i:
; ------------- G"]'`2.m
diagram 2: !输出图表2 Ktoxl+I?
%5b2vrg~*
"Variation ofthe Pump Power" ^+88z>
{.v+ iSM
x: 0, 10 1jR<H$aS
"pump inputpower (W)", @x "\30YO>\
y: 0, 10 d}1R<Q;F
y2: 0, 100 ] '..G-
frame bLg1Dd7Q
hx )9s[-W,e
hy k#
/_Zd
legpos 150, 150 ?o2L
z ,vjY$t:/
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 ]`%cTdpLj
step = 5, !"Kg
b;A
color = blue, Q/':<QY
width = 3, tq{
aa
"signal output power (W, leftscale)", !相应的文本字符串标签 |X>:"?4t
finish set_P_in(pump, P_pump_in) /J^yOR9
9!tRM-
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 gqE{
yscale = 2, dbw`E"g
step = 5, m6s32??m
color = magenta, JHcC}+H[
width = 3, %%*t{0!H+
"population of level 2 (%, rightscale)", w1[F]|
finish set_P_in(pump, P_pump_in) H'+P7*k#M
J^U#dYd
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 \\_Qv
yscale = 2, "[76>\'H
step = 5, uCx\Bt"VI
color = red, mhL,:UE
width = 3, 6:Ra3!V"v
"population of level 3 (%, rightscale)", 7yK
>
finish set_P_in(pump, P_pump_in) 13Q|p,^R
E}UlQq
wT;D<rqe`
; ------------- ?_IRO|
diagram 3: !输出图表3 1N2s[ \q$
7^=O^!sa
"Variation ofthe Fiber Length" 6#v"+V
t68h$u
x: 0.1, 5 $Ad 5hkz
"fiber length(m)", @x 7cH[}v`pn
y: 0, 10 &{99Owqg
"opticalpowers (W)", @y ~nw]q<7r
frame $5l 8V
hx lCDXFy(E
hy \xwE4K
9 u{#S}c`
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 0Db#W6*^
step = 20, lj(}{O
color = blue, |oa9 g2
width = 3, -
3kg,=HU;
"signal output" wUab)L
s#>Bwn&b)
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 IZ"d s=w
step = 20, color = red, width = 3,"residual pump" Z3)1!|#Q
iXeywO2nP
! set_L(L_f) {restore the original fiber length } 4 QD.'+L
j"hfsA<_I
*s}dtJ
; ------------- pPUKx=d
diagram 4: !输出图表4 a~=$9+?w
-:&qNY:Vp
"TransverseProfiles" %[b~4,c1
=otJf~
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) ?"\X46Gz;
yc?+L;fN
x: 0, 1.4 * r_co /um adRvAq]mA
"radialposition (µm)", @x @Pb!:HeJE
y: 0, 1.2 * I_max *cm^2 `L /\F,
"intensity (W/ cm²)", @y n]jZ2{g+
y2: 0, 1.3 * N_Tm [kaj8
frame y
~7]9?T
hx lku}I4
hy eKsc ["
fo@2@
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 {
<f]6
yscale = 2, 0j@gC0xu)|
color = gray, v@(Y:\>
width = 3, Ey4%N`H-^
maxconnect = 1, v47Y7s:uQ
"N_dop (right scale)" )5Mf,
v2][gn+58
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 ~ (I'm[
color = red, &;I=*B~kE$
maxconnect = 1, !限制图形区域高度,修正为100%的高度 ;Sl]8IZ
width = 3, (
E;!.=%
"pump" (pJ-_w'G
<?znk8|
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 c0h:Vqk-
color = blue, [<CIh46S.
maxconnect = 1, s~V%eq("}
width = 3, j+YA/54`
"signal" Q4i@y6z
V/"P};n
OiAP%7i9
; ------------- +X#JCLD
diagram 5: !输出图表5 tj7{[3~-[
0<(F
8
"TransitionCross-sections" IY jt*p5
KElzYZl8
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) V}_M\Y^^;
9[31EiT
x: 1450, 2050 4AA3D!$
"wavelength(nm)", @x `IN/1=]5
y: 0, 0.6 tgz
"cross-sections(1e-24 m²)", @y C^2J<
frame xd
}g1c
hx 8Evon&G59
hy ]w*w@:Zk
:jo
!Yi
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 <?h`
color = red, KicPW}_
width = 3, H&
L
"absorption" y{{7)G
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 EdgcdSb7
color = blue, <~D-ew^BU
width = 3, A 9\]y%!
"emission" >Z-f</v03
GO3F[l