(* '4+
ur`
Demo for program"RP Fiber Power": thulium-doped fiber laser, (z{#Eq4
pumped at 790 nm. Across-relaxation process allows for efficient )9{0]u;9
population of theupper laser level. ;~)5s'
*) !(* *)注释语句 x:NY\._
fP
1[[3i
diagram shown: 1,2,3,4,5 !指定输出图表 )Xz,j9GzJS
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 QC
OM_$ y
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 X1x#6
oi
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 2>xF){`
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 ArI2wM/v
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 s^G.]%iU
=vCY?I$P
include"Units.inc" !读取“Units.inc”文件中内容 'j8:vq^d
w7.V6S$Ga
include"Tm-silicate.inc" !读取光谱数据 VGy<")8D/
*k( XW_>
; Basic fiberparameters: !定义基本光纤参数 #C74z$
L_f := 4 { fiberlength } !光纤长度 Z*]9E^
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 O~#!l"0 L+
r_co := 6 um { coreradius } !纤芯半径 Q^9_'t}X
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 ]b:Lo
b7?uq9
; Parameters of thechannels: !定义光信道 H7&8\FNa
l_p := 790 nm {pump wavelength } !泵浦光波长790nm 0y'H~(
dir_p := forward {pump direction (forward or backward) } !前向泵浦 \R9(x]nZ%
P_pump_in := 5 {input pump power } !输入泵浦功率5W Y1W1=Uc uk
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um .nf#c.DI
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 1Ti f{i,B
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 G#q@v(_b
L2[($l
l_s := 1940 nm {signal wavelength } !信号光波长1940nm 2+N]PW\V
w_s := 7 um !信号光的半径 b5dD/-Vj
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 hP%M?MKC
loss_s := 0 !信号光寄生损耗为0 ?|\ER#z
W dK #ZOR
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 Tj`,Z5vy
.]Y$o^mf
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 Drgv`z
calc 'A=^Se`=
begin ,GhS[VJjR
global allow all; !声明全局变量 UawyDs
set_fiber(L_f, No_z_steps, ''); !光纤参数 9IdA%RM~mH
add_ring(r_co, N_Tm); CAig]=2'
def_ionsystem(); !光谱数据函数 Fc)@,/R"v
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 HTv2#
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 }z'8Bu
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 PfAgM1
set_R(signal_fw, 1, R_oc); !设置反射率函数 p}z<Fdu0
finish_fiber(); b4%??"&<Y
end; Ws3)gvpPA
xf\ C|@i
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 }1L4"}L.
show "Outputpowers:" !输出字符串Output powers: cN-?l7
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) Jc&{`s^Nu
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) a_^\=&?'
ehGLk7@7&
c)6m$5]
; ------------- lne4-(DJ
diagram 1: !输出图表1 ,a{P4Bq
RtkEGxw*^
"Powers vs.Position" !图表名称 DD+7V@
?um;s-x)
x: 0, L_f !命令x: 定义x坐标范围 rQ{7j!Im
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 .FP$m?
y: 0, 15 !命令y: 定义y坐标范围 ^&9zw\x;z
y2: 0, 100 !命令y2: 定义第二个y坐标范围 xk9%F?)
frame !frame改变坐标系的设置 ,1.p%UE]>
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) {K~ 'K+TPu
hx !平行于x方向网格 bi',j0B
hy !平行于y方向网格 KC*e/J
x xHY+(m
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 5zK4Fraf
color = red, !图形颜色 w8")w*9Lmg
width = 3, !width线条宽度 XAD- 'i
"pump" !相应的文本字符串标签 D%[mWc@1I
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 ih-#5M@
color = blue, CCs%%U/=
width = 3, )J o:pkM
"fw signal" <`8n^m*
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 o*+"|
color = blue, ]#iigPZ7
style = fdashed, nmee 'oEw
width = 3, x /(^7#u,
"bw signal" Y,qI@n<
j7Yu>cr
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 ]? c
B:}
yscale = 2, !第二个y轴的缩放比例 ;}I:\P
color = magenta, '&P%C" 5
width = 3, ?>9/#Nv
style = fdashed, +)AG*
"n2 (%, right scale)" &Q/ W~)~
^`i#$
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 LRxZcxmy
yscale = 2, ;HfmzY(
color = red, X;+sUj8
width = 3, 9Z$"K- G
style = fdashed, B6+khuG(
"n3 (%, right scale)" B B{$&Oh
L?b~k=
ql Ax
; ------------- $j%'{)gK
diagram 2: !输出图表2 RXMISt3+{y
tH@Erh|%
"Variation ofthe Pump Power" DaQ?\uq
{S]}.7`l9(
x: 0, 10 nAAs{
"pump inputpower (W)", @x 7DogM".}~Q
y: 0, 10 @,j*wnR
y2: 0, 100 EmWn%eMN
frame a@K%06A;'
hx }^WdJd]P
hy zy?|ODM
legpos 150, 150 6xmZXpd!
-a}Dp~j
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 PA{PD.4Du
step = 5, y-pJF{ R
color = blue, @}u*|P*
width = 3, D(op)]8
"signal output power (W, leftscale)", !相应的文本字符串标签 biD$qg
finish set_P_in(pump, P_pump_in) T3.&R#1M8-
S&5&];Ag
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 HQ_Ok`
yscale = 2, aH(J,XY
step = 5, h]&GLb&<?
color = magenta,
Ux!p8
width = 3, Vi$~-6n&
"population of level 2 (%, rightscale)", 4}baSV
finish set_P_in(pump, P_pump_in) m#Jmdb_
h|9L5
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 ' ,wFTV&
yscale = 2, G^|:N[>B
step = 5, Pl06:g2I
color = red, 8}x:`vDK
width = 3, e`_LEv
"population of level 3 (%, rightscale)", GT.,
finish set_P_in(pump, P_pump_in) QD&`^(X1p
wo{gG?B
mfn,Gjt3O
; ------------- ^$jb7HMObI
diagram 3: !输出图表3 \~mT]
'5
2DDtu[}
"Variation ofthe Fiber Length" @l5"nBs<_:
U[-o> W#
x: 0.1, 5 vzAax k%
"fiber length(m)", @x z6\UGSL
y: 0, 10 _Kf% \xg
"opticalpowers (W)", @y Ms#M+[a
frame N7zft
hx yjX9oxhtL
hy ZgcMv,=
h
0Q5-EA
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 '3tCH)s
step = 20, ibk6|pp
color = blue, 13=AW
width = 3, *I.f1lz%*
"signal output" CNyIQ}NJ
,AFu C<
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 s?}e^/"v
step = 20, color = red, width = 3,"residual pump" (NU
NHxi5B
R4cM%l_#W
! set_L(L_f) {restore the original fiber length } c
( C%Hld
=z69e%.
n0 {i&[I~+
; ------------- 6,"Q=9k4[
diagram 4: !输出图表4 B%b4v
L|xbR#v
"TransverseProfiles" -<!NXm|kvz
I3I/bofz
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) nh>vixe
wKxtre(v
x: 0, 1.4 * r_co /um <{cQM$#
"radialposition (µm)", @x \V8PhO;j
y: 0, 1.2 * I_max *cm^2 K=k"a
"intensity (W/ cm²)", @y Rtl"Ub@HV
y2: 0, 1.3 * N_Tm ZhaP2pC%4
frame ,!y$qVg'\f
hx b=NxUd O
hy
?P`K7
7,o7Cf2 z
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 i%]EEVmN
yscale = 2, 6SkaH<-&K
color = gray, "Og7rl
width = 3, E
A1?)|}n
maxconnect = 1, .j0$J\:i
"N_dop (right scale)" P@Oo$ o
IY\5@PVZ
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 *C*U5~Zq7:
color = red, UECK:61Me
maxconnect = 1, !限制图形区域高度,修正为100%的高度 u0c1:Uv#~e
width = 3, DU/]
"pump" X51:
k"zv~`i'
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 q ^N7I@Y
color = blue, | rtD.,m
maxconnect = 1, c9 _rmz8
width = 3, |FZ/[9*
"signal"
:KP@RZm
Ai?*s%8v
bJ {'<J
; ------------- "_NN3lD)X
diagram 5: !输出图表5 8^+%I/S$
H3=qe I
"TransitionCross-sections" A[{yCn`tM
D'PI1
0t
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) }!.(n=idZ
/{n-Y/jp
x: 1450, 2050 )g%d:xI
"wavelength(nm)", @x O-hAFKx
y: 0, 0.6 2-v%`fA
"cross-sections(1e-24 m²)", @y |3"KK
frame KU(&%|;g
hx %XQ(fj>
hy #r\4sVg
#f]SK[nR
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 =>v#4zFd
color = red, >@_^fw)
width = 3, XK@E;Rv
"absorption" V&2l5v
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 SZ'R59Ee<
color = blue,
>Abdd
width = 3, 8wFJ4v3
"emission" 2uW;
xfeY
#h
]g?*}OJ