(* w&KK3*=""
Demo for program"RP Fiber Power": thulium-doped fiber laser, '&|=0TDd+
pumped at 790 nm. Across-relaxation process allows for efficient $+I;oHWI
population of theupper laser level. \<)9?M :
*) !(* *)注释语句 PuZf/um
ut I"\1hQ
diagram shown: 1,2,3,4,5 !指定输出图表 y7i*s^ys{
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 Os1>kwC
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 d|yAs5@
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 !f+H,]D"
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 y)@[Sl>
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 L-k@-)98
}dd8N5b
include"Units.inc" !读取“Units.inc”文件中内容 qDfd. gL
c. 2).Jt,
include"Tm-silicate.inc" !读取光谱数据 TBT:/Vfun
9
o&`5
; Basic fiberparameters: !定义基本光纤参数 6gs01c,BA
L_f := 4 { fiberlength } !光纤长度 2mGaD\?K
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 AQiwugs
r_co := 6 um { coreradius } !纤芯半径 UaB @
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 k>g_Z`%<
5w@4:$=I
; Parameters of thechannels: !定义光信道 -xA2pYz"
l_p := 790 nm {pump wavelength } !泵浦光波长790nm |VNnOM
dir_p := forward {pump direction (forward or backward) } !前向泵浦 07^iP>?
P_pump_in := 5 {input pump power } !输入泵浦功率5W ssN6M./6
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um @0u~?!g@
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 x-?Sn' m
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 pj?f?.^
x}8yXE"
l_s := 1940 nm {signal wavelength } !信号光波长1940nm csW43&
w_s := 7 um !信号光的半径 AGYc |;
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 n$ou- Q
loss_s := 0 !信号光寄生损耗为0 De(Hw&
IV
aN8|J?JH
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 N<-gI9_
TmV,&['mg
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 [CXrSST")E
calc 8Hn|cf0
begin ^8AXxE
global allow all; !声明全局变量 ?}U(3
set_fiber(L_f, No_z_steps, ''); !光纤参数 %*0^0wz
add_ring(r_co, N_Tm); h*u
def_ionsystem(); !光谱数据函数 9vvx*rD
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 &-B^~M*??
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 k@3Q|na
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 2vWx)Drb6
set_R(signal_fw, 1, R_oc); !设置反射率函数 9#MBaO8_"
finish_fiber(); ~3WF,mW
end; P<a)25be/
O#S;q5L@
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 /! "|_W|n
show "Outputpowers:" !输出字符串Output powers: qfMo7e@6*
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) G#u6Am)T
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) +>{Y.`a;Jo
h1B16)
AN/;)wc
; -------------
c_'OPJ
diagram 1: !输出图表1 2;DuHO1
C8V/UbA
/
"Powers vs.Position" !图表名称 |6K+E6H
@c;|G$E@3
x: 0, L_f !命令x: 定义x坐标范围 #0P$M!%
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 C,ARXW1
y: 0, 15 !命令y: 定义y坐标范围 G <i@ 5\#
y2: 0, 100 !命令y2: 定义第二个y坐标范围 lrIS{MJ+-
frame !frame改变坐标系的设置 rPLm5ni
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) opy("qH
hx !平行于x方向网格 /2=#t-p+
hy !平行于y方向网格 mR?5G:W~R
%)/P^9I6
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 Pa
V@aM~3
color = red, !图形颜色 C(#u[8
width = 3, !width线条宽度 a!"$~y$*
"pump" !相应的文本字符串标签 @M_oH:GV
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 /tf5Bv'<
color = blue, LHkc7X$
width = 3, %'s>QF]'
"fw signal" 3TY5 ;6
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 gT0BkwIV
color = blue, m
g4nrr\
style = fdashed, w~"KA6^
width = 3, 6/r)y+H
"bw signal" w&o&jAb-M
N D(/uyI
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 -ZRO@&tMD
yscale = 2, !第二个y轴的缩放比例 S||}nJ0
color = magenta, C9n?@D;S
width = 3, rA5=dJ"I
style = fdashed, \KQ71yqY
"n2 (%, right scale)" @Z\,q's
V C24sU
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 {f2S/$q
yscale = 2, clL2k8VS
color = red, g!?:Ye`5
width = 3, tG9BfGF
style = fdashed, @` 1Ds
"n3 (%, right scale)" *n 6s.$p)%
S+atn]eU@
BGD8w2
; ------------- $Q96,rb}k;
diagram 2: !输出图表2 [z`31F
||hb~%JK6
"Variation ofthe Pump Power" El[)?+;D
G~2jUyv
x: 0, 10 1 u| wMO
"pump inputpower (W)", @x Crho=RJPR
y: 0, 10 3=FZ9>by
y2: 0, 100 ]B%v+uaW
frame aB{vFTD5
hx i|w81p^o
hy )Ch2E|C?=8
legpos 150, 150 LcB]Xdsa(
-0$55pa/@:
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 }z _
step = 5, b[t> te
color = blue, [E!oQVY
width = 3, G7qG$wd8h
"signal output power (W, leftscale)", !相应的文本字符串标签 E:JJ3X|
finish set_P_in(pump, P_pump_in) 9`I _Et
zR1^I~
%
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 2ORNi,_I
yscale = 2, F)&@P-9+
step = 5, (@<lRA
^
color = magenta, 'IZI:V"
width = 3, dJ2Hr;Lc
"population of level 2 (%, rightscale)", Oiz ,w7LRh
finish set_P_in(pump, P_pump_in) )0"wB
ein4^o<f.
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 TcjEcMw,
yscale = 2, ?s\:hNNY
step = 5, b J=Jg~&
color = red, bJRN;g
width = 3, h{HF8>u[
"population of level 3 (%, rightscale)", v 1z
finish set_P_in(pump, P_pump_in) E^ P,*s
<j*;.yyC
%{AO+u2i
; ------------- qq) rd
diagram 3: !输出图表3 *.sVr7=j
A+SE91m
"Variation ofthe Fiber Length" 'Jt]7;04p
W-x?:X<}
x: 0.1, 5 *)ardZV${
"fiber length(m)", @x WN{ 9
y: 0, 10 -8eoNzut
"opticalpowers (W)", @y r@v,T8
frame hd>aZ"nm1
hx <3xyjX'NE
hy =|M>l
(qqOjz
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 Z*y`R
XE
step = 20, %_+2@\
color = blue, ,uo'c_f(e
width = 3, A'q#I>j`
"signal output" 2^mJ+v<
]ndvt[4L
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 :=/85\P0SU
step = 20, color = red, width = 3,"residual pump" KM}f:_J*lg
|X0Y-
! set_L(L_f) {restore the original fiber length } |]J>R
<(-= 'QA
Rv#]I#O
; -------------
U*(izD
diagram 4: !输出图表4 p<TpK )
OTGofd2zf
"TransverseProfiles" DF1I[b=]
3HLNCt09
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) jGXO\:sO
|zQ4u
x: 0, 1.4 * r_co /um :"=ez<t
"radialposition (µm)", @x 4]h
=yc R
y: 0, 1.2 * I_max *cm^2 _d"b;4l
"intensity (W/ cm²)", @y )-0kb~;|
y2: 0, 1.3 * N_Tm ~%^
tB
frame qQA}Z*(m
hx +?u~APjNN
hy D B-l$rj
AvdXEY(-
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 plb!.g
yscale = 2, Y' %^NP}o
color = gray, o_@4Sl8
width = 3, Gnfd;.
(.
maxconnect = 1, :uWw8`
"N_dop (right scale)" *
mOo@+89
D}dn.$
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 1QLbf*zeIW
color = red, FN\E*@>X=
maxconnect = 1, !限制图形区域高度,修正为100%的高度 A6:es_
width = 3, BFL`!^
"pump" t?}zdI(4
]z l[H7
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 B$b +Ymu
color = blue, AtdlZ
maxconnect = 1, k p<OJy
width = 3, /LO-HnJ
"signal" 1#.>a$>
Zb1<:[
i'9vL:3
; ------------- 2^^`n1?'
diagram 5: !输出图表5 ~(Q)"s\1I
I_<I&{N>
"TransitionCross-sections" P"W2(d
g=QDu7Ux
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) 7g%E`3)"
4:|S` jm
x: 1450, 2050 Zrvz;p@~
"wavelength(nm)", @x Zn
''_fjh
y: 0, 0.6 ?,&
tNP{jq
"cross-sections(1e-24 m²)", @y Wn(6,MDUN
frame c2&q*]?l;
hx vU767/
hy ,wIONDnLZ
byTh/ H
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 @^T1XX
color = red, $Hj.{;eC/k
width = 3, o| #Qu8Lk
"absorption" JKGc3j,+#
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 SzjkI+-$:
color = blue, huJ&]"C
width = 3, .u4
W /
"emission" f ` R/
i
KTP8?Q"n0