(* >L$9fn/J
Demo for program"RP Fiber Power": thulium-doped fiber laser, u\km_e
pumped at 790 nm. Across-relaxation process allows for efficient Hio+k^
population of theupper laser level. ;HiaX<O!
*) !(* *)注释语句 WN o+%
LN9.Q'@r?
diagram shown: 1,2,3,4,5 !指定输出图表 Pd~z%VoO
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 1;v wreJ
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 ${`q!
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 o%K1!'
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 GE\({V.W
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 ]NKz5[9D
1 K]
include"Units.inc" !读取“Units.inc”文件中内容 m~F ~9&
\!k\%j9
include"Tm-silicate.inc" !读取光谱数据 #q8/=,3EG
lE3&8~2
; Basic fiberparameters: !定义基本光纤参数 nFwdW@E9
L_f := 4 { fiberlength } !光纤长度 ^$<:~qq!
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 l
s%'\}
r_co := 6 um { coreradius } !纤芯半径 :^]FpUY
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 jI$7vmO
VYrs4IFT$
; Parameters of thechannels: !定义光信道 ;`Z>^.CB
l_p := 790 nm {pump wavelength } !泵浦光波长790nm r$%,k*X^
k
dir_p := forward {pump direction (forward or backward) } !前向泵浦 \3)U~[O>:
P_pump_in := 5 {input pump power } !输入泵浦功率5W eYPIZ{S7h
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um f?"909&
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 @FN1o4&3
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 ""jl
uNpa2{S'
l_s := 1940 nm {signal wavelength } !信号光波长1940nm F0'8n6zj
w_s := 7 um !信号光的半径
oOGFg3X
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 }RQ'aeVl(
loss_s := 0 !信号光寄生损耗为0 Sf
t,$
(AHTv8
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 uFaT~ 4
l!IN #|{(
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 \]Rmq_O
calc B*fBb.Z
begin kZ!&3G9>-
global allow all; !声明全局变量 E%$[*jZ
set_fiber(L_f, No_z_steps, ''); !光纤参数 KCn#*[
add_ring(r_co, N_Tm); cN)noGkp
def_ionsystem(); !光谱数据函数 ,;yaYF6|/
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 %gTY7LIe1z
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 &cf_?4
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 f1t?<=3Ek<
set_R(signal_fw, 1, R_oc); !设置反射率函数 d)0 hAdh
finish_fiber(); M*F`s&vM
end; a(x#6
TH+TcYqO
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 07Oagq(
show "Outputpowers:" !输出字符串Output powers: _Fjax
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) GGFrV8
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) qtp-w\#S$
qx}*L'xB
:kucDQE({?
; ------------- V}Pv}j:;
diagram 1: !输出图表1 5(y Q-/6C+
&>XSQB(&%
"Powers vs.Position" !图表名称 :Z]\2(x
Vje LPbk)
x: 0, L_f !命令x: 定义x坐标范围 _61tE
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 X&,a=#C^
y: 0, 15 !命令y: 定义y坐标范围 Q5;EQ.#
y2: 0, 100 !命令y2: 定义第二个y坐标范围 {;hRFQ^b
frame !frame改变坐标系的设置 , D`\
RV
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) >F/5`=/'h
hx !平行于x方向网格 )lVplAhZD
hy !平行于y方向网格 !3o]mBH8
KPa&P:R3
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 MUp{2_RA
color = red, !图形颜色 Gdlx0i
width = 3, !width线条宽度 6)9X+U@
"pump" !相应的文本字符串标签 aMyf|l.
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 _"qX6Jc
color = blue, _i0,?U2C
width = 3, E D_J8+
"fw signal" Xyw;Nh!!d
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 9Oc(Gl5az
color = blue, =z2g}X
style = fdashed, }vQY+O
width = 3, <Kq!)) J'
"bw signal" !:|D[1m
:UDe\zcd"
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 Mj:=$}rs^
yscale = 2, !第二个y轴的缩放比例 Yn-;+ 4 K
color = magenta, d~O)mJ
J
width = 3, n}q/:|c
style = fdashed, L(3}
H,t
"n2 (%, right scale)" =bb )B(
Qs\!Kk@
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 {IQCA-AI
yscale = 2, 2@pEuB3$?!
color = red, M"z3F!-j
width = 3, ]q@W(\I
style = fdashed, !*=+E%7
"n3 (%, right scale)" s#V:!
7
M!]g36h[
:JG2xtn
; ------------- FQikFy(YY
diagram 2: !输出图表2 G+jcR; s
o%?~9rf]]
"Variation ofthe Pump Power" )Jd{WC.
<,(Ww
x: 0, 10 WJw
%[_W
"pump inputpower (W)", @x 98t|G5
y: 0, 10 AO^c=^
y2: 0, 100 "z ;ky8
frame JJE0q5[
hx -'::$
{
hy !\N|$-M
legpos 150, 150 sqk$q pV6
v/}hy$7
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 OwG:+T_
step = 5, oA$]%
color = blue, N^By#Z
width = 3, >tVD[wVF0
"signal output power (W, leftscale)", !相应的文本字符串标签 vhu5w#]u*
finish set_P_in(pump, P_pump_in) [}=/?(5
Lw #vHNf6
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 Km,:7#aV
yscale = 2, /km'#f)/
step = 5, .eM
A*C~n
color = magenta, YNWAef4
width = 3, 9_\1cSk'
"population of level 2 (%, rightscale)", &&{_T4
finish set_P_in(pump, P_pump_in) gjhWoZV
_.$g ?E/(
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 k6W
[//
yscale = 2, <{b#nPc!,#
step = 5, N"#=Q=)x
color = red, %4HpTx
width = 3, Dh{sVRA
"population of level 3 (%, rightscale)", $4*k=+wS
finish set_P_in(pump, P_pump_in) t(?tPt4zp
\Dn
an5H/
Na2n4x!
; ------------- K=X13As_
diagram 3: !输出图表3 b py576GwA
E0Jk=cq
"Variation ofthe Fiber Length" +idp1SJ4
>J
No2
x: 0.1, 5 q(cSHHv+
"fiber length(m)", @x ^N_ ?&pgy
y: 0, 10 !]z6?kUK
"opticalpowers (W)", @y EkE U}2
frame - Ado-'aaS
hx -R-|[xN
hy u4p){|x7s
U:o(%dk
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 t=$Hv
step = 20, 0"to]=
color = blue, 2Sg,b8
width = 3, -THU5AB
"signal output" >
:
;*3
Swg%[r=p=
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 "G3zl{?GP
step = 20, color = red, width = 3,"residual pump" lwuslt*E/
L
2:N @TP
! set_L(L_f) {restore the original fiber length } O'}
%Bjl
z4yV1
-^%YrWgd?
; ------------- oDEvhNT
diagram 4: !输出图表4 d;9F2,k$w
gr
y]!4Hy
"TransverseProfiles" ]aF!0Fln~
m=uW:~
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) /}=Bi-
d*{NAq'9X
x: 0, 1.4 * r_co /um XLNR%)l
"radialposition (µm)", @x +P. }<
y: 0, 1.2 * I_max *cm^2 EsR$H2"
"intensity (W/ cm²)", @y ?H2{R:
y2: 0, 1.3 * N_Tm &=d0'3k>
frame j\S}TaH0e
hx PRE\2lLY
hy >^fkHbgNQ
\h}a?T6
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 D7"RZF\)
yscale = 2, ?nya;Z-~Hc
color = gray, atA:v3"
width = 3, Q7-d]xJ^
maxconnect = 1, Z-D4~?Tv
"N_dop (right scale)" 2l9RU}
xYGB{g]
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 L93KsI
color = red, ^5yFb=2
maxconnect = 1, !限制图形区域高度,修正为100%的高度 c<gvUVHIxR
width = 3, ZdP2}w
"pump" g,N"o72)
}L1-2
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 P}Ud7Vil;l
color = blue, X( H-U
q*(
maxconnect = 1, ^Q'^9M2)
width = 3, .;&1"b8G
"signal" u(!@6%?-
(\=iKE4#
CQ+WBTiC
; ------------- R} #6
diagram 5: !输出图表5 ;ESuj'*t
2}^fhMS
"TransitionCross-sections" oL2 a:\7
e(NpX_8
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) DfNX@gbo
.jfkOt?2
x: 1450, 2050 mz~aSbb|
"wavelength(nm)", @x LK'|sO>|
y: 0, 0.6 N d"4*l;
"cross-sections(1e-24 m²)", @y lQolE P.pc
frame #l!Sz247
hx x3JX}yCX
hy )fo9Qwe
w/`I2uYu
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 J,bE[52
color = red, SbLx`]rI
width = 3, *Hnk,?kPq
"absorption" Y0||>LX
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 !\0UEC
color = blue, +H7lkbW
width = 3, 7;UUS1
"emission" $RYsqX\v
P1Z+XRWOM