(* nfjwWDH
Demo for program"RP Fiber Power": thulium-doped fiber laser, 8Ir
= @
pumped at 790 nm. Across-relaxation process allows for efficient 3 n=ftkI
population of theupper laser level. ir3EA'_>N
*) !(* *)注释语句 Kh2!c+Mw
.Zv uhOn^
diagram shown: 1,2,3,4,5 !指定输出图表 +HNM$yp
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 H~r":A'"*
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 "iTi+UZxe
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 !%%(o%bi~
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 &>%9JXU
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 O0,=@nw8.
q <Zza
include"Units.inc" !读取“Units.inc”文件中内容 ;B!u=_'
c0u1L@tj
include"Tm-silicate.inc" !读取光谱数据 %.VFj7J
ua>YI
; Basic fiberparameters: !定义基本光纤参数 M[7$cfp-Y~
L_f := 4 { fiberlength } !光纤长度 `E2HQA@
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 Ow4H7sl
r_co := 6 um { coreradius } !纤芯半径 % /Y;
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度
tEHgQto
-yP_S~\n
; Parameters of thechannels: !定义光信道 Dk`(Wgk2
l_p := 790 nm {pump wavelength } !泵浦光波长790nm ct![eWsuB
dir_p := forward {pump direction (forward or backward) } !前向泵浦 wxSJ
P_pump_in := 5 {input pump power } !输入泵浦功率5W EgT?Hvx:
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um ,c9K]>8m`
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 \t^h|<`
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 % #$K P
,@4~:OY
l_s := 1940 nm {signal wavelength } !信号光波长1940nm eT6T@C](
w_s := 7 um !信号光的半径 j0+l-]F-
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 8rY[Q(]
loss_s := 0 !信号光寄生损耗为0 Cmj+>$')0
$I }k>F
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 r>ca17
r`GA5}M
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 A$ Ok^
calc sw$$I~21
begin cHjnuL0fsy
global allow all; !声明全局变量 G=l-S\0@
set_fiber(L_f, No_z_steps, ''); !光纤参数 pDV8B/{
add_ring(r_co, N_Tm); |g,99YIv>
def_ionsystem(); !光谱数据函数 ].r~?9'/
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 Usz O--.C
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 R7ze~[oF
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 e'0BP,\f_}
set_R(signal_fw, 1, R_oc); !设置反射率函数 * faG0le
finish_fiber(); @K=C`N_22
end; -#<AbT
KO3X)D<3
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 NY3.?@Z
show "Outputpowers:" !输出字符串Output powers: d !=AS
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) {k8R6l1
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) %"CF-K@th
^9fY%98
!
n13B
; ------------- f1,VbuS9I
diagram 1: !输出图表1 U~1)a(Yu;
5e}adHjM
"Powers vs.Position" !图表名称 &UfP8GE9
R;3nL[{U
x: 0, L_f !命令x: 定义x坐标范围 :^H2D=z@
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 Jy?; <
y: 0, 15 !命令y: 定义y坐标范围 My<.^~
y2: 0, 100 !命令y2: 定义第二个y坐标范围 1 3K|=6si
frame !frame改变坐标系的设置 5/YGu=,
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) _2
oZhJ
hx !平行于x方向网格 :Fh#"<A&&
hy !平行于y方向网格 (bp4ly^
;fe~PPT
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 k$3Iv"gbx
color = red, !图形颜色 T7R,6qt
width = 3, !width线条宽度 '|J~2rbyr
"pump" !相应的文本字符串标签 / ?Hq
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 C8t;E`
color = blue, _Nacqa
width = 3, fR>"d<;T
"fw signal" MnTJFo"
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 &t:~e" 5<
color = blue, H;{IOBo
style = fdashed, *b8AN3!
width = 3, H7%q[O
"bw signal" %sCG}?
y
_qa9wK/
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 7_ s7);
yscale = 2, !第二个y轴的缩放比例 V
`7(75
color = magenta, #5%ipWPHb
width = 3, #Q` TH<
style = fdashed, fUq:`#Q
"n2 (%, right scale)" ^C'{# p"
)~-r&Q5d
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 8_/,`}9
yscale = 2, |.;*,bb|3
color = red, xSrjN
width = 3, RA1K$D ?A
style = fdashed, @%BsQm
"n3 (%, right scale)" sA2esA@C<o
MSE0z!t
ZRj/lQ2D
; ------------- 0K4A0s_R`
diagram 2: !输出图表2 3b[.s9Q
*i>hFNLdOM
"Variation ofthe Pump Power" -QK- w>
Ug )eyu
x: 0, 10 apjoIO-<
"pump inputpower (W)", @x S!66t?vHB
y: 0, 10 ?Ta<.j
y2: 0, 100 C#n.hgo>I
frame '| p"HbJ
hx a66Ns7Rb
hy fd$nAE
legpos 150, 150 $8}'h
OlP1Zd/l
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 F^.~37=@
step = 5, Rj3ad 3z'E
color = blue, '^`iF,rg
width = 3, t;V^OGflv
"signal output power (W, leftscale)", !相应的文本字符串标签 ?[;>1+D
finish set_P_in(pump, P_pump_in) 7(d#zu6n
}W0_eQ
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 0#CmB4!<O
yscale = 2, 3_8W5J3I
step = 5, , Xxp]*K2
color = magenta, a4n5i.;
width = 3, 3&6sQ-}*
"population of level 2 (%, rightscale)", nNf*Q
r%Z
finish set_P_in(pump, P_pump_in) oqo7Ge2
~G1B}c]
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 <G'M/IR a
yscale = 2, 45k.U $<|
step = 5, UF$O@l
color = red, ~n$\[rQ
width = 3, A7 6HM@Q
"population of level 3 (%, rightscale)", C3'?E<F
finish set_P_in(pump, P_pump_in) ;iW>i8
1Tr%lO5?6
Xck`"RU<xA
; ------------- WL?qulC}h1
diagram 3: !输出图表3 @,9YF}
h_]*|[g
"Variation ofthe Fiber Length" Ww"]3
yb,X
}"Et
x: 0.1, 5 N>CNgUyP
"fiber length(m)", @x T;]Ob3(BpW
y: 0, 10 p[&b@U#
"opticalpowers (W)", @y a?xZsR
frame &*745,e
hx q0DRT4K
hy )7p(htCz5
U9K'O !i>
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 lF
t^dl^
step = 20, 4;Vi@(G)
color = blue, PEg]z
width = 3, {T-^xwc
"signal output" j+rY
r`\@Fv,
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 &;~?\>?I
step = 20, color = red, width = 3,"residual pump" `sDLxgwI
=dsEt\
j
! set_L(L_f) {restore the original fiber length } yZN~A:
e)N<r
4j8$&~/
; ------------- ANgt\8
diagram 4: !输出图表4 mkhWbzD'S
W 1u!&:O
"TransverseProfiles" hC9EL=
A
CO9PQ`9+
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) R1/c@HQw?
/]U;7)
x: 0, 1.4 * r_co /um IRueq @4
"radialposition (µm)", @x 7XLqP
y: 0, 1.2 * I_max *cm^2 gVe]?Jva`
"intensity (W/ cm²)", @y !
,{zDMA
y2: 0, 1.3 * N_Tm J_fs}Y1q\
frame s;..a&C'
hx |28'<BL
hy ; O(M l }z
uE<8L(*B
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 |>[qC O
yscale = 2, #C~ </R%
color = gray, a
9{:ot8,
width = 3, 99(@O,*(Y
maxconnect = 1, h"/'H)G7_&
"N_dop (right scale)" ^*.+4iHx
tTF<DD}8
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 J@"UFL'^
color = red, jm@,Ihz=wI
maxconnect = 1, !限制图形区域高度,修正为100%的高度 FJ4,|x3v[x
width = 3, G+Bk!o
"pump" R\XS5HOE(
fVf:voh
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 0kNKt(_
color = blue, Bs` {qmbC
maxconnect = 1, V.*y_=i8t
width = 3, }2;iIw`
"signal" /]_|uN)Q
LnKgT1
+2}cR66%
; ------------- 9bM kP2w>
diagram 5: !输出图表5 ivn2
#/jug[wf*!
"TransitionCross-sections" =[&+R9s
PTLlLa85<
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) Z^z{,
u;!
dvqg H
x: 1450, 2050 Yh!=mW!OY
"wavelength(nm)", @x MmfBFt*
y: 0, 0.6 vd(S&&]o1
"cross-sections(1e-24 m²)", @y c;Tp_e@
frame dQZdL4
hx ~*"ZF-c,
hy K;WQV,
4hLk+ z<n
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 t72u%M6
color = red, c61OT@dZEA
width = 3, 8)=(eI$
"absorption" |59)6/i
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 %OB>FY:|
color = blue, ZI;*X~h
width = 3, : r ~iFP*
"emission" Bpm COA
{9-9!jN{"