(* _[yBwh
Demo for program"RP Fiber Power": thulium-doped fiber laser, X[Lwx.Ly8
pumped at 790 nm. Across-relaxation process allows for efficient Q(P'4XCm
population of theupper laser level. 24ojjxz+
*) !(* *)注释语句 $=7'Cm?
`MMh"# xN
diagram shown: 1,2,3,4,5 !指定输出图表 )2@_V %
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 -&PiD
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 F9hh- "(Z
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 y*Egt `W
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 0!WF,)/T7i
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 ?tWcx;h:>
K#j<G]I( @
include"Units.inc" !读取“Units.inc”文件中内容 '=|2, H]
A!([k}@=j
include"Tm-silicate.inc" !读取光谱数据 `yjHLg
@a AR99 M
; Basic fiberparameters: !定义基本光纤参数 )!h(o R
L_f := 4 { fiberlength } !光纤长度 /Iwnl
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 [dm&I#m=
r_co := 6 um { coreradius } !纤芯半径 K;%P_f/KJP
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 !.\EU*)1
5XSr K
; Parameters of thechannels: !定义光信道 zTDB]z!A
l_p := 790 nm {pump wavelength } !泵浦光波长790nm 8|>$M
dir_p := forward {pump direction (forward or backward) } !前向泵浦 m).S0
P_pump_in := 5 {input pump power } !输入泵浦功率5W Uu~7+oaQ
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um |}~2=r z
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 p0 @,-
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 l+6y$2QR
4)L(41h
l_s := 1940 nm {signal wavelength } !信号光波长1940nm r(ej=aR
w_s := 7 um !信号光的半径 ~F?vf@k
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 / S32)=(
loss_s := 0 !信号光寄生损耗为0 72hN%l
I{8fTod
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 \)\uAI-
3;M7^DM
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 *R] Ob9X
calc %2 A-u
begin 9FB[`}
global allow all; !声明全局变量 ^Eu]i
set_fiber(L_f, No_z_steps, ''); !光纤参数 i/ED_<_Vg
add_ring(r_co, N_Tm); \;al@yC=T
def_ionsystem(); !光谱数据函数 (@t O1g
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 bSOxM/N
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 %4F
Q~
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 ET]PF ,`
set_R(signal_fw, 1, R_oc); !设置反射率函数 grvm2`u
finish_fiber(); Y ^s_v_s
end; ^/nj2"
81m3j`b
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 G?:{9. (
show "Outputpowers:" !输出字符串Output powers: }6;K+INT
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) @J`o
pR
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) RCXm</
)e#KL$B)v
-6 WjYJx
; ------------- Q5[x2 s_ d
diagram 1: !输出图表1 &|/@;EA$8
Ttr)e:
"Powers vs.Position" !图表名称 "4Joou"U
9YpgzCx
Z
x: 0, L_f !命令x: 定义x坐标范围 ^$8@B]*
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 vrRbUwL!
y: 0, 15 !命令y: 定义y坐标范围 8*nv+
y2: 0, 100 !命令y2: 定义第二个y坐标范围 U
GA_^?4
frame !frame改变坐标系的设置 ``;.Oy6jS
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) r[doN{%
hx !平行于x方向网格 4LG[i}u.N
hy !平行于y方向网格 [v@3|@
]><K8N3Z
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 C`G+b{o
color = red, !图形颜色 N>R\,n|I
width = 3, !width线条宽度 k|C~qe3E
"pump" !相应的文本字符串标签 Xk9mJ]31LC
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 to2;. ~X
color = blue, |PGF g0li
width = 3, mf~JolucJ
"fw signal" \a<7DTV
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 jL9g.q4^
color = blue, -cgLEl1 J
style = fdashed, mLEJt,X
width = 3, l#%qF Db
"bw signal" C bWz;$r
cTC -cgp
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 ;(&$Iw9X
yscale = 2, !第二个y轴的缩放比例 BiFU3FlTf
color = magenta, KT5amct
width = 3, {gL8s
style = fdashed, XmZs4~\K$G
"n2 (%, right scale)" 2 m"2>gX
FUt{-H!<
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 y?6J%~\WP
yscale = 2, .Us)YVbk
color = red, `w&A;fR!H
width = 3, HbOLf
style = fdashed, 2XX-
"n3 (%, right scale)" k.."_4
9"W 3t]
)WBp.j /#
; ------------- tPp9=e2[s
diagram 2: !输出图表2 Mb!b0
Arr(rM
"Variation ofthe Pump Power" CXQ +h
Ci-CY/]s
x: 0, 10 Vn=K5nm
"pump inputpower (W)", @x o+],L_Ab
y: 0, 10 jv;8Mm
y2: 0, 100 {6I)6}w!k
frame q1a*6*YB
hx ?&`PN<~2z
hy /` ;rlH*
legpos 150, 150 z|M+
FHl$
`{oFdvL~)
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 _J,lF-,
step = 5, gzMp&J
color = blue, wsKOafrV
width = 3, +=Y[RCXT
"signal output power (W, leftscale)", !相应的文本字符串标签 o?{-K-'B$
finish set_P_in(pump, P_pump_in) 67tB8X
K^ 5f
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 +s j2C
yscale = 2, zhC#<
step = 5, APJVD-
color = magenta, *^3&Y@
width = 3, 1 u~Xk?
"population of level 2 (%, rightscale)", ip+?k<]z
finish set_P_in(pump, P_pump_in) kgb:<{pJ
{3* Ne /
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 ,
3&DA
yscale = 2, p
2>\
step = 5, TWeup6k
color = red, C JYpgSr
width = 3, 9
df GV!Z
"population of level 3 (%, rightscale)", vNDf1B5z
finish set_P_in(pump, P_pump_in) #rI4\K
oazY?E]}3
J1u&Ga
; ------------- {9XN\v=$"*
diagram 3: !输出图表3 0woLB#v9
J$^"cCMr
"Variation ofthe Fiber Length" hnnVp_<]
Ln$= 8x^T
x: 0.1, 5 adn2&7H
"fiber length(m)", @x X|'[\v2ld
y: 0, 10 ="('
#o
"opticalpowers (W)", @y "oT&KW
frame nIqNhJ+
hx pf`vH`r
hy n`X}&(O
ce<88dL
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 l+#uQo6cqQ
step = 20, bO'?7=SC
color = blue, "rnVPHnQR
width = 3, veAdk9
"signal output" s^"*]9B"
NtG^t}V
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 P
r2WF~NuO
step = 20, color = red, width = 3,"residual pump" 1wy?<B.f
T(=Z0M
! set_L(L_f) {restore the original fiber length } S=a>rnF
-`CE;
nC}Y+_wo0
; ------------- P]0/ S
diagram 4: !输出图表4 %$&_!
Ys>Z=Eky
"TransverseProfiles" .k"unclT0
J(5#fo{Q.g
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) Sg<
B+u\\
f<;eNN
x: 0, 1.4 * r_co /um }E^k*S
"radialposition (µm)", @x 2-%9k)KH
y: 0, 1.2 * I_max *cm^2 fp?/Dg"49.
"intensity (W/ cm²)", @y }BWT21'-Y
y2: 0, 1.3 * N_Tm H}cq|hodn
frame IOY<'t+
hx PQrc#dfc|
hy k !V@Q!>,
eWr2UXv$
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 1nR\m+{
yscale = 2, 39bw,lRPV
color = gray, Ae*
6&R4
width = 3, =J`M}BBx
maxconnect = 1, i|xC#hV
"N_dop (right scale)" ub]s>aqy
%-L
T56T
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 MDoV84Fh
color = red, OCu/w1bc
maxconnect = 1, !限制图形区域高度,修正为100%的高度 ,rX|_4n*
width = 3, oml^f~pm
"pump" 6J <.i
V*W H
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 {$I1(DYN
color = blue, Ry40:;MYN
maxconnect = 1, 'yR\%#s6
width = 3, ;( (|0Xa
"signal" :Q}Zb,32
L]E.TvM1*
K.Y.K$NjP{
; ------------- QsBC[7<jd-
diagram 5: !输出图表5 P1&Irwb`
i.gagb
"TransitionCross-sections" _adW>-wQ!d
|Es,$
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) GHQm$|3I
)3ZkKv;zY
x: 1450, 2050 $ve*j=p
"wavelength(nm)", @x kBtzJ#j B
y: 0, 0.6 8{ )N%r
"cross-sections(1e-24 m²)", @y sj&1I.@,>
frame n2Y a'YF
hx W^i[7 r
hy |Y30B,=M
usw(]CnH
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 v?l*jr1-2
color = red, |=[._VH1
width = 3, cvC 7#i[G
"absorption" KB$Y8[
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 C_&ZQlgQ
color = blue, QO %;%p*
width = 3, \=H+m%
"emission" {[bB$~7Eu
%<1_\N7