(* y my/`%
Demo for program"RP Fiber Power": thulium-doped fiber laser, XN@F6Gj
pumped at 790 nm. Across-relaxation process allows for efficient ,U\F<$O
population of theupper laser level. %Y7\0q~Z
*) !(* *)注释语句 T(UPWsj
|2#)lGA
diagram shown: 1,2,3,4,5 !指定输出图表 =BN_Kvza^6
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 bT^6AtsJ
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 'rZYl Qm
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 dX4"o?KD>
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 fO+$`r>9
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 95
7Cr
9"5J-a'
include"Units.inc" !读取“Units.inc”文件中内容 KiXRBFo
aNX M~;5~
include"Tm-silicate.inc" !读取光谱数据 21b
8<gYB$* S
; Basic fiberparameters: !定义基本光纤参数 AATiI+\S
L_f := 4 { fiberlength } !光纤长度 >h?!6L- d
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 ZK1H%&P=R
r_co := 6 um { coreradius } !纤芯半径 B:-qUuS?R
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 ^W&qTSjh
O$=[m9V
; Parameters of thechannels: !定义光信道 X,)`<
>=O
l_p := 790 nm {pump wavelength } !泵浦光波长790nm ^EK]z8;|
dir_p := forward {pump direction (forward or backward) } !前向泵浦 jea{BhdUr
P_pump_in := 5 {input pump power } !输入泵浦功率5W lr>P/W\
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um 8.9Z0
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 w}wABO
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 bi^[Eh
%r1NRg8
l_s := 1940 nm {signal wavelength } !信号光波长1940nm u0&QStI
w_s := 7 um !信号光的半径 8F?6Aq1B
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 .c+NsI9}
loss_s := 0 !信号光寄生损耗为0 Fj?gXc5{
5crd.1@^
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 fC$Rz#5?
(!^i6z0Sp
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 L_TM]0D>7
calc I?2S{]!?
begin :Pa^/i
global allow all; !声明全局变量 MLbmz\8a
set_fiber(L_f, No_z_steps, ''); !光纤参数 it
Byw1/
add_ring(r_co, N_Tm); P!c.!8C$
def_ionsystem(); !光谱数据函数 P2U^%_~
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 U`G
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 #@rvoi
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 >S<`ri'5_
set_R(signal_fw, 1, R_oc); !设置反射率函数 }0Q_yuzx0m
finish_fiber(); S.u1[Yz^
end; C;mcb$@
Pdq}~um3{
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 ,~z*V;y)
show "Outputpowers:" !输出字符串Output powers: %T~3xQ
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) NNOemTh
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) T?4pV#
^Z
dDs8j
25NTtj:X
; ------------- 2=\} 0
diagram 1: !输出图表1 7?U)V03
ECZ`I Z.
"Powers vs.Position" !图表名称 <D_UF1Pk
DG%vEM,y
x: 0, L_f !命令x: 定义x坐标范围 9oe=*#Ig1m
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 2LO8SJ#
y: 0, 15 !命令y: 定义y坐标范围 |^S{vub
y2: 0, 100 !命令y2: 定义第二个y坐标范围 QfdATK P
frame !frame改变坐标系的设置 d[0R#2y=
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) J~}%j.QQ7
hx !平行于x方向网格 ^k*h
hy !平行于y方向网格 5_H`6-q
C\3;o]
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 q(Q$lRj/I-
color = red, !图形颜色 5$58z
width = 3, !width线条宽度 '<Fr}Cn
"pump" !相应的文本字符串标签 Em<B9S
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 ?:sk [f6
color = blue, SS)9+0$
width = 3, D1ep7ykY
"fw signal" (aeS+d x
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 r5>1n/+6
color = blue, EE{]EW(
style = fdashed, QWncKE,O$
width = 3, M:PEY*4H
"bw signal" Bu ]PNKIi
prk@uYCa =
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 ^t2b`n60
yscale = 2, !第二个y轴的缩放比例 (XU(e
color = magenta, e|-%-juI
width = 3, iAl.(j
style = fdashed, f>!H<4
]
"n2 (%, right scale)" ITt*TuS2c
d,5,OJY2f
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 at
)m*
yscale = 2, PwC9@c%c
color = red, )8Q;u8jm1
width = 3, x+Ws lN2a
style = fdashed, ~WW!P_wI,
"n3 (%, right scale)"
A)5;ae
83i;:cn
['%$vnS5S
; ------------- x@p1(V.
diagram 2: !输出图表2 9OS~;9YR
Y9SaYSX
"Variation ofthe Pump Power" Clo}kdkd_
nu6p{_M
x: 0, 10 %(X^GL
"pump inputpower (W)", @x r,r"?}Z
y: 0, 10 8
U<$u,WS
y2: 0, 100 _kZ&t_]
frame a
!yBEpMo
hx EJid@
hy 4;|@eN
legpos 150, 150 O'~>AC5{
A=f)ntH~
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 W}iDT?Qi
step = 5, 7%sx["%@
color = blue, o]<@E u G
width = 3, j9r%OZw{
"signal output power (W, leftscale)", !相应的文本字符串标签 sDZ<XA
finish set_P_in(pump, P_pump_in) 5L 0w!q'W
r}4
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 bCg)PJuB
yscale = 2, 3-T"[tCe
step = 5, GTocN1,Z~a
color = magenta, qCI0[U@
width = 3, >h9T/J8
"population of level 2 (%, rightscale)", ~5;2 ni8n
finish set_P_in(pump, P_pump_in) 2~y<l
"+Kp8n6
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 (Rs|"];?Z
yscale = 2, 7csMk5NU'<
step = 5, 5?34<B
color = red, %%{f-\-7Ig
width = 3, 3>#io^35
"population of level 3 (%, rightscale)", l,k.Jo5
finish set_P_in(pump, P_pump_in) g?gF*^_0
K9_@[}Ge
w gkY\Q
; ------------- bNG7A[|B
diagram 3: !输出图表3 E G J/r
9zNMv-
"Variation ofthe Fiber Length" YfUo=ku
y(yBRR
x: 0.1, 5 _X~xfmU
"fiber length(m)", @x c{{RP6o/j=
y: 0, 10 Y?4N%c_;
"opticalpowers (W)", @y fU>4Ip1?y/
frame -1%AM40j
hx wqF_hs(O
hy P0l.sVqL
.F]"%RK[
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 KS R'X0'
step = 20, #^9a[ZLj0
color = blue, 3a?dNwM@
width = 3, *@fVog r^
"signal output" <.U(%`|
iHk/#a
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 2SXy)m
!
step = 20, color = red, width = 3,"residual pump" bmw"-W^U[
q\d/-K
! set_L(L_f) {restore the original fiber length } 4v#A#5+O E
a/gr1
"
XlXu
; ------------- T5+
(F z
diagram 4: !输出图表4 >8EmfjUoc
XSktbk
"TransverseProfiles" |D~#9
p sAr>:\3
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) '&F
PkT:5
Eikt,
x: 0, 1.4 * r_co /um DxzNg_E]
"radialposition (µm)", @x xeKfc}:&z
y: 0, 1.2 * I_max *cm^2 i,mo0CSa
"intensity (W/ cm²)", @y 2T-3rC)
y2: 0, 1.3 * N_Tm 8C5*: x9l
frame 0:zDt~Ju
hx ,H5o/qNU`{
hy %!V =noo
:pGgxO% q
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 O/lu0acI
yscale = 2, wyUfmk_}
color = gray, ~?:Xi_3Lo
width = 3, X~rHNRIU
maxconnect = 1, PaBqv]
"N_dop (right scale)" F=V_ACU
m8z414o
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 [OwrIL
color = red, T#=&oy7
maxconnect = 1, !限制图形区域高度,修正为100%的高度 `YK%I8
width = 3, $m0-IyXcv
"pump" M6*8}\
D|"^
:Gi
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 eS; W>d
color = blue, Wf9K+my
maxconnect = 1, v$EgVcK
width = 3, z{G@t0q
"signal" DTM
xfQdk
xwZ7I
(d}z>?L
; ------------- 'Q4V(.
diagram 5: !输出图表5 jrm
L>0NZ
@^K_>s9B
"TransitionCross-sections" Yf[GpSej
W=?s-*F[~
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) (0QYX[(r~o
1/vcj~|)t
x: 1450, 2050 Z=y^9]
"wavelength(nm)", @x k+As#7V
y: 0, 0.6 )jaNFJ
3
"cross-sections(1e-24 m²)", @y \t+q1S1
frame 9|&%"~6'
hx TDjjaO
hy nY=]KU
uf}Q{@Ab
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 f*GdHUZ*
color = red, q@&.)sLPgO
width = 3, ,?>:Cdz4
"absorption" *Q:EICDE7
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 GeCyq%dN
color = blue, A]mXV4RmI
width = 3, * 57y.](w
"emission" pk:2>sx/
bhc
.UmH