(* Obw?_@X
Demo for program"RP Fiber Power": thulium-doped fiber laser, &2-L.Xb
pumped at 790 nm. Across-relaxation process allows for efficient a</D_66
population of theupper laser level. 'tN25$=V&W
*) !(* *)注释语句 Fg$3N5*
xX0-]Y h:
diagram shown: 1,2,3,4,5 !指定输出图表 &Gm$:T'~
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 #B'aU#$u
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 h0?2j)X_
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 =O _z(
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 B:"THN^
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 C
]Si|D
TGuiNobD
include"Units.inc" !读取“Units.inc”文件中内容 ULc`~]
in<Rq"L
include"Tm-silicate.inc" !读取光谱数据 hA 3HVP_
O_$dI*RK
; Basic fiberparameters: !定义基本光纤参数 5`~mmAUk;`
L_f := 4 { fiberlength } !光纤长度 yix'rA -T
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 B)$c|dUV
r_co := 6 um { coreradius } !纤芯半径 UE _fpq
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 j9qREf9)
E'1+ Yq
; Parameters of thechannels: !定义光信道 ~mV"i7VX
l_p := 790 nm {pump wavelength } !泵浦光波长790nm Bhqft;Nuh
dir_p := forward {pump direction (forward or backward) } !前向泵浦 s57N) 0kP
P_pump_in := 5 {input pump power } !输入泵浦功率5W }14{2=!Q
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um eLwTaW !C
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布
N-lGa@ j
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 ?6Cz[5\
~/_9P Fk
l_s := 1940 nm {signal wavelength } !信号光波长1940nm -B#yy]8
w_s := 7 um !信号光的半径 W$dn_9W
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 "SN4*
loss_s := 0 !信号光寄生损耗为0 ]!:oYAm
#5sD{:f`
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 E< 4l#Z<
Xqp|VbDca
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 >idBS
calc ;vhyhP.oM
begin wI M{pK
global allow all; !声明全局变量 RO\gax
set_fiber(L_f, No_z_steps, ''); !光纤参数 L+B?~_*
add_ring(r_co, N_Tm); DPe]daF
def_ionsystem(); !光谱数据函数 7Y=cn_
wU
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 _|<d5TI
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 Q8p&Ki;i
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 Z>F^C}8f
set_R(signal_fw, 1, R_oc); !设置反射率函数 v/uO&iQw5
finish_fiber(); (-7ZI"Ku
end; ]u-SL md
F0~k1TDw
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 vv6$>SU
show "Outputpowers:" !输出字符串Output powers: 0uVv<Q~
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) ||2Q~*:
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) *VSel4;\t
MB);!qy
,F+B Wot4
; ------------- 5OM?3M
diagram 1: !输出图表1 zHB_{(o7
Y izE5[*
"Powers vs.Position" !图表名称 sK$wN4k
XXmE+aI
x: 0, L_f !命令x: 定义x坐标范围 Ocg"M Gb
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 _\5~>g_
y: 0, 15 !命令y: 定义y坐标范围 +5<k-0v
y2: 0, 100 !命令y2: 定义第二个y坐标范围 sfp,Lq`
frame !frame改变坐标系的设置 G"
b60RQ
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) UbJ*'eoX
hx !平行于x方向网格 Ue5O9;y]u
hy !平行于y方向网格 m:tiY
[c>W
l2v_?j-)x
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 Q+|{Bs)6i1
color = red, !图形颜色 J}spiVM
width = 3, !width线条宽度 5G}6;U Y
"pump" !相应的文本字符串标签 E
?2O(
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 7&}P{<}o^
color = blue, h4&;?T S
width = 3, c"YXxAJ
"fw signal" -ML6d&cm
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 &Y|Xd4:
color = blue, #~:P}<h
style = fdashed, xtV[p4U
width = 3, Ob +9W
"bw signal" x
FJg
LDT(]HJ
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 (Ha@s^?.C
yscale = 2, !第二个y轴的缩放比例 H(+<)qH
color = magenta, =Cf]
width = 3, ,a|@d}U
style = fdashed, 9pWy"h$H
"n2 (%, right scale)" 4\X||5.c
:bM+&EP
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 6y+b5-{'
yscale = 2, -H(vL=
color = red, Q}%tt=KD
width = 3, tgFJZA
style = fdashed, e&Y0}oY
"n3 (%, right scale)" jdRq6U^
,#u\l>&$
O>r-]0DI[
; ------------- a^nAZ
diagram 2: !输出图表2 \9c$`nn
g1m-+a
"Variation ofthe Pump Power" y+mElG$F
A;K(J4y*
x: 0, 10 pck >;V
"pump inputpower (W)", @x {5:Zl<0
y: 0, 10 >mu)/kl
y2: 0, 100 _"f :`
frame <dR,'
hx y%B X]~
hy B:oF;~d/,
legpos 150, 150 N{akg90
MOz}Q1`a
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 GKtS6$1d#
step = 5, ,\ldz(D?+
color = blue, <HoAj"xf
width = 3, gy_$#e
"signal output power (W, leftscale)", !相应的文本字符串标签 $%qg"
finish set_P_in(pump, P_pump_in) LVtu*k
kl7A^0Qrz
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 L ^Y3=1#"g
yscale = 2, y%(X+E"n*
step = 5, 'w<BJTQIL
color = magenta, ?T*";_o,B
width = 3, >Wi s.e%b
"population of level 2 (%, rightscale)", 2hOPzv&B
finish set_P_in(pump, P_pump_in) f@z*3I;
<!x+eE`
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 L@)&vn]
yscale = 2, U{1z;lJ
step = 5, KsdG(.I+ek
color = red, QXQ
width = 3, D[Iqn
"population of level 3 (%, rightscale)", Vu]h4S :
finish set_P_in(pump, P_pump_in) +$pJ5+v
YB!!/ SX4
Wc'Ehyi;
; ------------- %`\]Y']R
diagram 3: !输出图表3 }5gr5g\OtP
#}o<v|;
"Variation ofthe Fiber Length" mvTb~)
RsSXhPk?
x: 0.1, 5 jMU9{Si
"fiber length(m)", @x HhSjR%6HY;
y: 0, 10 1bRL"{m^)-
"opticalpowers (W)", @y H?:Jq\Ba0
frame X%4h(7;v
hx &hN,xpC
hy n(&*kfk
1L[S*X
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 0=[0|`x
step = 20, Npa-$N&P{S
color = blue, J?jeYW
width = 3, @>O&Cpt
"signal output" M\UWWb&%\
|9s wZ[
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响
KOSyh<&
step = 20, color = red, width = 3,"residual pump" \Hum }0[
<-)9>c:k
! set_L(L_f) {restore the original fiber length } q|{tQJfYg
Z{}+)Q*Q
8XbR
; ------------- yX9B97XyC
diagram 4: !输出图表4 &%e"9v2`
u2lmwE
"TransverseProfiles" wItz cY1m
hEOJb
@:R
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) k,]{NO
.
bG{T|
x: 0, 1.4 * r_co /um NgxO&Zp
"radialposition (µm)", @x M[,^KJ!
y: 0, 1.2 * I_max *cm^2 f[@#7,2~M
"intensity (W/ cm²)", @y Yq;&F0paK
y2: 0, 1.3 * N_Tm {Gkn_h-^
frame % +8
hx # U`&jBU
hy 4TJ!jDkox
eCL?mh K
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 LW?2}`+
yscale = 2, UCF[oO>v
color = gray, ):E'`ZP!F
width = 3, JS2!)aqc
maxconnect = 1, g
=\13#F
"N_dop (right scale)" ro]L}oE+
m/N(%oMWB=
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 ~%G Ssm\J
color = red, `w=!o.1
maxconnect = 1, !限制图形区域高度,修正为100%的高度 ^V,@=QL3U
width = 3, /O"0L/hc^
"pump" %0(>!SY
MZi8Fo'
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 ]Hj`2\KD.d
color = blue, fW[.r== Kf
maxconnect = 1, .Bijc G
width = 3, 1
'%-y
"signal" V9]uFL
]eL~L_[G\
B)d@RAk
; ------------- G[B*TM6$
diagram 5: !输出图表5 m-#d8sD2C
%J3lK]bv(
"TransitionCross-sections" -CZ-l;5
"U{mMd!9L
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) w`38DF@K
U#l.E1Z
x: 1450, 2050 CY\mU_.b
"wavelength(nm)", @x t9n'!
y: 0, 0.6 !j'guT&9]
"cross-sections(1e-24 m²)", @y p!V)55J*
frame {kv4g\a;
hx @) ]t8(
hy xKisL=l6Y
s={X-H< 2
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 n/:Z{
color = red, @~Rk^/0
width = 3, -kt1t@O
"absorption" 4v i B=>
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 sd7Y6?_C
color = blue, <`b|L9
width = 3, l$qmn$Uc
"emission" )z|_*||WU^
F\l!A'Q+t