切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 2564阅读
    • 1回复

    [原创]RP Fiber Power仿真设计掺铥光纤激光器代码详解 [复制链接]

    上一主题 下一主题
    离线小火龙果
     
    发帖
    932
    光币
    2176
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-05-28
    (* XB7Aa)  
    Demo for program"RP Fiber Power": thulium-doped fiber laser, 0Z1ksfLU  
    pumped at 790 nm. Across-relaxation process allows for efficient SIJ7Y{\.  
    population of theupper laser level. [iub}e0  
    *)            !(*  *)注释语句 ga 5Q  
    q? ' 4&  
    diagram shown: 1,2,3,4,5  !指定输出图表 .N X9A b  
    ; 1: "Powersvs. Position"     !分号是注释;光纤长度对功率的影响 M:/NW-:  
    ; 2:"Variation of the Pump Power"  !泵浦光功率变化对信号输出功率的影响 hCcI]#S&  
    ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 gwoe1:F:J  
    ; 4:"Transverse Profiles"             !横向分布,横坐标为半径位置 u7L?9  
    ; 5:"Transition Cross-sections"    !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 @7twe;07r  
    mr\,"S-`  
    include"Units.inc"         !读取“Units.inc”文件中内容 P%aqY~yF3  
    >^s2$@J?p  
    include"Tm-silicate.inc"    !读取光谱数据 :y-;V  
    )QE6X67i  
    ; Basic fiberparameters:    !定义基本光纤参数 ,8@<sF B'  
    L_f := 4 { fiberlength }      !光纤长度 q]? qeF[  
    No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 ^k=<+*9  
    r_co := 6 um { coreradius }                !纤芯半径 Lv%3 jj  
    N_Tm := 100e24 { Tmdoping concentration }  !纤芯Tm离子掺杂浓度 atTR6%!6  
    E(~7NRRm  
    ; Parameters of thechannels:                !定义光信道 Nn LK!Q  
    l_p := 790 nm {pump wavelength }                !泵浦光波长790nm M\R+:O&  
    dir_p := forward {pump direction (forward or backward) }   !前向泵浦 r1L@p[>  
    P_pump_in := 5 {input pump power }                    !输入泵浦功率5W sgfqIe1  
    w_p := 50 um {radius of pump cladding }               !包层泵浦相应的半径 50um |[?Otv  
    I_p(r) := (r <=w_p) { pump intensity profile }          !泵浦光强度分布 5Z>a}s_i  
    loss_p := 0 {parasitic losses of pump wave }           !泵浦光寄生损耗为0 {rc3`<%  
    |?T=4~b  
    l_s := 1940 nm {signal wavelength }                   !信号光波长1940nm ,1sbY!&ekL  
    w_s := 7 um                          !信号光的半径 g0B] ;Y>(  
    I_s(r) := exp(-2 *(r / w_s)^2)            !信号光的高斯强度分布 Hr?lRaV  
    loss_s := 0                            !信号光寄生损耗为0 @+b$43 ^  
    COh#/-`\1  
    R_oc := 0.70 {output coupler reflectivity (right side) }      !输出耦合反射率 MB)<@.A0  
    yB UQ!4e  
    ; Function for defining themodel:   !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 L7rgkxI7k*  
    calc [c,V=:Cq  
      begin b Hr^_ogN  
        global allow all;                   !声明全局变量 duG!QS:  
        set_fiber(L_f, No_z_steps, '');        !光纤参数  d$$5&a  
        add_ring(r_co, N_Tm); dc)%5fV\  
        def_ionsystem();              !光谱数据函数 Cqr{Nssu  
        pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p);  !泵浦光信道 D6bYg `  
        signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward);      !前向信号光信道 EO!,rB7I  
        signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward);    !后向信号光信道 t "VT['8  
        set_R(signal_fw, 1, R_oc);                                 !设置反射率函数 _k@cs^  
        finish_fiber();                                   1-y8Hy_a2  
      end; I$; `^z  
    jFN0xGZ  
    ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 ]Y [N=G  
    show "Outputpowers:"                                   !输出字符串Output powers: cY5&1Shb~  
    show"pump:     ", P_out(pump):d3:"W"  !输出字符串pump:和计算值(格式为3个有效数字,单位W) L`nW&; w'  
    show"signal:   ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) !n-Sh<8  
    |vs5N2_  
    _.s ,gX  
    ; ------------- AG,><UP  
    diagram 1:                   !输出图表1 o +$v0vg%T  
    ,JwX*L<:  
    "Powers vs.Position"          !图表名称 Ey=2 zo^F  
    >?^oxB"<Gc  
    x: 0, L_f                      !命令x: 定义x坐标范围 n #X~"|U`  
    "position infiber (m)", @x      !x轴标签;@x 指示这些字符串沿坐标轴放置 RL` E}:V  
    y: 0, 15                      !命令y: 定义y坐标范围 ZXnacc~s  
    y2: 0, 100                    !命令y2: 定义第二个y坐标范围 g{N}]_%Uh  
    frame          !frame改变坐标系的设置 /|v4]t-  
    legpos 600, 500  !图行在图表窗口中的位置(相对于左上角而言) [icD*N<Gc  
    hx             !平行于x方向网格 IWo'{pk  
    hy              !平行于y方向网格 BE0l2[i?  
    SJiQg-+<Uf  
    f: P(pump, x),    !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 sC3Vj(d!i  
      color = red,  !图形颜色 {!2K-7;  
      width = 3,   !width线条宽度 v2x+_K}J  
      "pump"       !相应的文本字符串标签 ai<qK3!O  
    f: P(signal_fw, x),  !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 7i"b\{5  
      color = blue,     (_pw\zk>  
      width = 3, X_78;T)uA  
      "fw signal" IHEbT   
    f: P(signal_bw, x),   !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 EXSJ@k6=8s  
      color = blue, ]aPf-O*  
      style = fdashed, 0qN`-0Yk  
      width = 3, O\<zQ2m  
      "bw signal" y(|#!m?@  
    #zsaQg, B  
    f: 100 * n(x, 2),    !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 hV@ N -u^  
      yscale = 2,            !第二个y轴的缩放比例 ?M:>2wl  
      color = magenta, 7hk<{gnr  
      width = 3, ta?NO{*  
      style = fdashed, N:lE{IvRJ  
      "n2 (%, right scale)" ]wid;<  
    63E6nW M  
    f: 100 * n(x, 3),          !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 6Q:Wo)^!  
      yscale = 2, 'w ,gYW  
      color = red, !=YEhQ-  
      width = 3, W`x.qumN  
      style = fdashed, l,o'J%<%  
      "n3 (%, right scale)" 7^i7U-A<A  
    Rw'}>?k]  
    ho=!Yy  
    ; ------------- ]T)N{"&N/  
    diagram 2:                    !输出图表2 4. R(`#f  
    n3p@duC4  
    "Variation ofthe Pump Power" =d Q[I6  
    v? ."`,e  
    x: 0, 10 ]njNSn  
    "pump inputpower (W)", @x r|l?2 eO~  
    y: 0, 10 (7qlp*8.s  
    y2: 0, 100 !H\;X`W|~D  
    frame /phMrL=  
    hx i(% 2t(wf+  
    hy H4ie$/[$8  
    legpos 150, 150 4bk`i*-O  
    *)RKU),3nL  
    f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 [)V~U?  
      step = 5, NFTv4$5d  
      color = blue, @aQ:3/  
      width = 3, Q\4tzb]  
      "signal output power (W, leftscale)",     !相应的文本字符串标签 K9zr]7;th  
      finish set_P_in(pump, P_pump_in) zr!7*, p  
    c!E{fSP  
    f: (set_P_in(pump,x); 100 * n_av(2)),   !改变泵浦信号功率对能级2上激活粒子占比的影响 X$UK;O  
      yscale = 2, {m*lt3$k  
      step = 5, P;.roD9  
      color = magenta, anSZWQ  
      width = 3, l,J>[Q`<  
      "population of level 2 (%, rightscale)", n#6{K6}k~  
      finish set_P_in(pump, P_pump_in) ?EC\ .{  
    }Nr6oUn  
    f: (set_P_in(pump,x); 100 * n_av(3)),   !改变泵浦信号功率对能级3上激活粒子占比的影响 &.E/%pQ`  
      yscale = 2, |? V7E\S  
      step = 5, ND1hZ3(^  
      color = red,  _".h(  
      width = 3, X{x(p  
      "population of level 3 (%, rightscale)", 8=$XhC  
      finish set_P_in(pump, P_pump_in) Z7bJ<TpZ  
    :,l16{^  
    HN7tIz@Frc  
    ; ------------- QqQhQGV  
    diagram 3:                         !输出图表3 no8\Oees  
    oJD]h/fQs  
    "Variation ofthe Fiber Length" m]V#fRC  
    ueJ^Q,-t  
    x: 0.1, 5 :h(RS ;  
    "fiber length(m)", @x x'0_lf</ #  
    y: 0, 10 F'|K>!H  
    "opticalpowers (W)", @y ho$}#o  
    frame 9 C)VW  
    hx J&j5@  
    hy IoL P*D  
    Y-bTKSn  
    f: (set_L(x);P_out(signal_fw)),     !改变光纤长度对信号光输出功率的影响 Dh4 Lffy  
      step = 20,             bVz<8b6h'-  
      color = blue, (W#CDw<ja  
      width = 3, @&G}'6vF!  
      "signal output" 8 SU0q9X.  
    pfZ[YC-  
    ;f: (set_L(x);P_out(pump)),                     !改变光纤长度对泵浦信号输出功率的影响 kxKb}> =  
       step = 20, color = red, width = 3,"residual pump" *` mxv0w~(  
    3UXZ|!-  
    ! set_L(L_f) {restore the original fiber length } 3Iqvc v  
    r^6@Zwox]  
    3ibQbk  
    ; ------------- E G+/2o+W  
    diagram 4:                                  !输出图表4 G%k&|  
    gHc1_G]  
    "TransverseProfiles" 1Du5Z9AM  
    8?8V;   
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) 0rL.~2)V  
    %Mj,\J!  
    x: 0, 1.4 * r_co /um 9n is8  
    "radialposition (µm)", @x x"sbm  
    y: 0, 1.2 * I_max *cm^2 C[.Xi  
    "intensity (W/ cm&sup2;)", @y Sed 8Q-m  
    y2: 0, 1.3 * N_Tm /RJ]MQ\*O  
    frame U\Y0v.11  
    hx }J6:D]Q  
    hy ?{aC-3VAT  
    ~]?s A{  
    f: N_dop(1, x * um,0),      !掺杂浓度的径向分布 8H-yT1  
      yscale = 2, Ms+ekY)  
      color = gray, #/ePpSyD  
      width = 3, @p~scE.#\  
      maxconnect = 1, EUs9BJFP  
      "N_dop (right scale)" 3#'8 S_  
    N {{MMIq  
    f: I(pump, -1, x *um, 0) * cm^2,    !泵浦光沿光纤径向的强度分布 i7- i!`<  
      color = red, 05{}@tW-  
      maxconnect = 1,           !限制图形区域高度,修正为100%的高度 Xg]Cq"RJC  
      width = 3, ,mx\ -lWFy  
      "pump" [-[59 H[6)  
    ,+ IFV  
    f: I(signal_fw, -1,x * um, 0) * cm^2,  !信号光沿光纤径向的强度分布 JwxKWVpWv  
      color = blue, lTu& 9)  
      maxconnect = 1, u=Ik&^v Wq  
      width = 3, QY4;qA  
      "signal" d:|x e:  
    ZHjL8Iq  
     ?;v\wx  
    ; ------------- .'A1Eoo0d  
    diagram 5:                                  !输出图表5 @. $- ^-  
    M.,DXEZT  
    "TransitionCross-sections" a9;KS>~bq  
    5- GS@fY  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) L3HC-  
    G=[<KtWa  
    x: 1450, 2050 ,x1OQ jtY  
    "wavelength(nm)", @x qJT/4 8lf_  
    y: 0, 0.6 RtR@wZ2\s  
    "cross-sections(1e-24 m&sup2;)", @y 9tv,,I;iU  
    frame sgi5dQ  
    hx jZ-s6r2=  
    hy 5PZ!ZO&  
    (_4DZMf  
    f: s12_Tm(x * nm) /1e-24,      !Tm3+吸收截面与波长的关系  s&pnB  
      color = red, }\S'oC\[  
      width = 3, Cp/f18zO  
      "absorption" \~A qA!)6  
    f: s21_Tm(x * nm) /1e-24,  !Tm3+发射截面与波长的关系 rxX4Cw]\"y  
      color = blue, ;PC!  
      width = 3, ssLswb  
      "emission" vVSDPlN;  
    17?YN<  
     
    分享到
    离线lileisgsz
    发帖
    14
    光币
    69
    光券
    0
    只看该作者 1楼 发表于: 2021-09-28
    感谢,视频上有点看不清楚