(* >^<qke
Demo for program"RP Fiber Power": thulium-doped fiber laser, /&kZ)XOi
pumped at 790 nm. Across-relaxation process allows for efficient Em4TEv
population of theupper laser level. )x( *T
*) !(* *)注释语句 X+&@$v1
ld9zOq
diagram shown: 1,2,3,4,5 !指定输出图表 ShCAkaj_
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 5fVdtJk7
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 vja^O
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 x!I7vs~~zW
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 :FxZdE
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 B"+Ygvxb
/eIwv31
include"Units.inc" !读取“Units.inc”文件中内容 .@B\&U7
y99G 3t
include"Tm-silicate.inc" !读取光谱数据 _e`b^_
_^SNI ~
; Basic fiberparameters: !定义基本光纤参数 {Ziq~{W_
L_f := 4 { fiberlength } !光纤长度 .Ta$@sP h}
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 jRgv
8n
r_co := 6 um { coreradius } !纤芯半径 1
#EmZ{*
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 =q6yb@
D.?KgOZ
; Parameters of thechannels: !定义光信道 -Ep-v4}
l_p := 790 nm {pump wavelength } !泵浦光波长790nm t`F%$q
dir_p := forward {pump direction (forward or backward) } !前向泵浦 !3HMGzt
P_pump_in := 5 {input pump power } !输入泵浦功率5W (5Cm+Sy
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um Yt|{l
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 j4G,Z4
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 >aa-ix
&
Q^mJ _~
l_s := 1940 nm {signal wavelength } !信号光波长1940nm [dt1%DD`M
w_s := 7 um !信号光的半径 /]+t$K\cBq
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 hP9+|am%
loss_s := 0 !信号光寄生损耗为0 :+[q`
\f
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 u_:"
u
@8/-^Rh*
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 )0UQy#r
calc $9hOWti
begin Cu/w><h)
global allow all; !声明全局变量 ,Hj=]e2?
set_fiber(L_f, No_z_steps, ''); !光纤参数 3!*J;Y
add_ring(r_co, N_Tm); oq0G@
def_ionsystem(); !光谱数据函数 kyY tL_SD
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 T_B$
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 $e<3z6
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 r--"JO%2
set_R(signal_fw, 1, R_oc); !设置反射率函数 U)c,ZxE
finish_fiber(); #]:nQ(
end; L0uN|?}
t,=khZ
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 iLS'47
show "Outputpowers:" !输出字符串Output powers: \W*ouH
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) Jh }3AoD
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) $=H\#e)]Ug
BQw#PXp3
V1"+4&R^T_
; ------------- Ng;E]2"
diagram 1: !输出图表1 }hl#
e[$
%} \@Wk~
"Powers vs.Position" !图表名称 T.&^1q WWA
4'_uN$${$
x: 0, L_f !命令x: 定义x坐标范围 srC'!I=s>8
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 eR5swy&
y: 0, 15 !命令y: 定义y坐标范围 *=r,V
y2: 0, 100 !命令y2: 定义第二个y坐标范围 SJ+.i
u/
frame !frame改变坐标系的设置 2Uk$9s
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言)
BH%eu 7`t
hx !平行于x方向网格 [nflQW6
hy !平行于y方向网格 w"A'uFXLc
k*lrE4::a
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 E#_}y}7JY
color = red, !图形颜色 4Jo:^JV
width = 3, !width线条宽度 qFvtqv2
"pump" !相应的文本字符串标签 "4L' 2w+
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 4$vya+mAk5
color = blue, #PtV=Ee1
width = 3, 6AzH'HF
"fw signal" nc&V59*
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 -*tP_=- Dg
color = blue, xt40hZ$
style = fdashed, <PJwBA %{
width = 3, RQ|!?\a=
"bw signal" V&NOp
5v>(xl
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 ##yi^;3Y
yscale = 2, !第二个y轴的缩放比例 Ku&0bXP
color = magenta, +h[$\_y
width = 3, #9p{Y}2#
style = fdashed, xB
4A"|
"n2 (%, right scale)" HiVF<tN
0} HKmEM
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 ggX'`bK
yscale = 2, L42C<
color = red, SAXjB;VH6
width = 3, rWSw1(sAA
style = fdashed, U2+CL)al^
"n3 (%, right scale)" W^al`lg+y
<W\~A$
b6oPnP_3P
; ------------- N6yqA)z?;
diagram 2: !输出图表2 J;'?(xO3\
`<+D<x)(3
"Variation ofthe Pump Power" _.wLQL~y
O/l|\n
x: 0, 10 j s7J#b7
"pump inputpower (W)", @x lty`7(\
y: 0, 10 ^K&&O{
y2: 0, 100 ZK_IK)g
frame 4z[Z3|_V
hx g2 4)GjDi
hy Fi(_A
legpos 150, 150 Jp_{PR:&
{"'W!WTb
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 hRGK W
step = 5, <@5#
color = blue, Wi hOGdUS6
width = 3, * F~"4g
"signal output power (W, leftscale)", !相应的文本字符串标签 3vmLftZE}
finish set_P_in(pump, P_pump_in) %E~4 Ur
u[PO'6Kzd
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 >y%$]0F1
yscale = 2, /gXli)
step = 5, o&gcFOM22
color = magenta, CI$F#j
width = 3, g:e|
"population of level 2 (%, rightscale)", ;STO!^9~
finish set_P_in(pump, P_pump_in) N;RZIg(x
t`H^!
b
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 4$d|}ajH
yscale = 2, &R pQ2*4n
step = 5, mMu3B2nke=
color = red, Xp._B4g
width = 3, j08|zUe
"population of level 3 (%, rightscale)", )v8;\1`s:
finish set_P_in(pump, P_pump_in) p !U#53
xg\M9&J
k`2 K?9\
; ------------- EmG`ga)s
diagram 3: !输出图表3 +;U}SR<
7^as~5'&-
"Variation ofthe Fiber Length" `=b*g24z[N
IS]0 3_uQ
x: 0.1, 5 4D9lZa}
"fiber length(m)", @x :h*20iP
y: 0, 10 1H-R-NNJ:
"opticalpowers (W)", @y {Kd9}CDAZ
frame htlsU*x
hx BAg*zYV7
hy @MAk/mb&
@l>\vs<
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 ]Fl+^aLS
step = 20, G-bG}9vc]
color = blue, RAXqRP,iw
width = 3, mcS/-DaN?
"signal output" u|BD%5+J
m!N_TOl-^
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 ./J.OU1
step = 20, color = red, width = 3,"residual pump" >sPu*8D40a
.l !:|Fd
! set_L(L_f) {restore the original fiber length } 5|S|HZ8G
Q gDjc'
burEo.=
; ------------- 1Qhx$If~
diagram 4: !输出图表4 :]=Y1*L\)
^X"G~#v=q
"TransverseProfiles" 0ydAdgD
zu^?9k
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) =n9adq
HBo^8wN
x: 0, 1.4 * r_co /um '1=/G7g
"radialposition (µm)", @x `
n@[=l~
y: 0, 1.2 * I_max *cm^2 !ssE >bDa
"intensity (W/ cm²)", @y >OZ+k(saL
y2: 0, 1.3 * N_Tm ,^:Zf|V
frame V4/P
hx
7$,["cJX
hy DtXXfp@;
w v9s{I{P
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 h7[VXE
yscale = 2, 1K09iB
color = gray, 1fViW^l_
width = 3, JWlH(-U4|
maxconnect = 1, >`'#4!}G5j
"N_dop (right scale)" iDp]lu
pb_mW;JVu
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 ~k|~Q\
color = red, tvf"w`H
maxconnect = 1, !限制图形区域高度,修正为100%的高度 `:i|y
width = 3, 3vQ?vS|2
"pump" Crm](Z?
57v[b-SK
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 p
Ic;9
color = blue, :NA cad
maxconnect = 1, xf % ,UQ
width = 3, ,Xo9gn
"signal" _Dwn@{[(8
Z9~~vf#
*=~
9?
; ------------- <*2.B~
diagram 5: !输出图表5 4-ZiKM
T/)$}#w0i
"TransitionCross-sections" ]bhzB
w+2:eFi=/
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) wb"Jj
&AUL]:<s
x: 1450, 2050 $M$oNOT}Y
"wavelength(nm)", @x f^:9gRt
y: 0, 0.6 }Jjq] lW
"cross-sections(1e-24 m²)", @y !COaPrg
frame @ DU]XKv
hx X7NRQ3P@
hy i.0}qS?
kx]f`b
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 oopTo51,a
color = red, Fm*n>^P@Y
width = 3, XH1so1h
"absorption" PKwHq<vAsB
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 d3 fE[/oU
color = blue, JQQD~J1)E
width = 3, :pDw gd
"emission" ~Jp\'P7*
.F'Fk=N