(* ~ KK9aV{
Demo for program"RP Fiber Power": thulium-doped fiber laser, <Ij!x`MS+
pumped at 790 nm. Across-relaxation process allows for efficient 9#LMK 1ge
population of theupper laser level. GqFx^dY4*
*) !(* *)注释语句 *7Dba5B
tMr7d
diagram shown: 1,2,3,4,5 !指定输出图表 npP C;KD
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 *0WVrM06?
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 .soCU8i3
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 _ %s#Cb
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 W?7l-k=S
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 "EW8ll7r
FOaA}D `]
include"Units.inc" !读取“Units.inc”文件中内容 %zavSm"
$+gQnI3w
include"Tm-silicate.inc" !读取光谱数据 !3Dq)ebBz
4^_6~ YP7
; Basic fiberparameters: !定义基本光纤参数 ,CE/o7.FG
L_f := 4 { fiberlength } !光纤长度 =4ygbk
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 D(cD8fn,J
r_co := 6 um { coreradius } !纤芯半径 ?y>N&\pt2
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 68%aDs
IrwQ~z3I
; Parameters of thechannels: !定义光信道 c
'|*{%<e2
l_p := 790 nm {pump wavelength } !泵浦光波长790nm egmUUuO
dir_p := forward {pump direction (forward or backward) } !前向泵浦 7T[~~V^x
P_pump_in := 5 {input pump power } !输入泵浦功率5W !E70e$Th
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um sA0Ho6
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 AR"2?2<mJ7
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 m l`xLZN>L
^0,}y]5p
l_s := 1940 nm {signal wavelength } !信号光波长1940nm .5JIQWE(
w_s := 7 um !信号光的半径 8jK=A2pTa
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 1nVQYqT_
loss_s := 0 !信号光寄生损耗为0 ]l7W5$26 @
+]l?JKV
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 YOxgpQ:i
q|5WHB
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 SH*'<
calc *i#2>=)
begin /08FV|tX)
global allow all; !声明全局变量 ;H$Cq'
I
set_fiber(L_f, No_z_steps, ''); !光纤参数 O{ :{P5
add_ring(r_co, N_Tm); " <bjS
def_ionsystem(); !光谱数据函数 z:'m50'
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 -:}vf?
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 pj'gTQ),0
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 3
98)\3o
set_R(signal_fw, 1, R_oc); !设置反射率函数 KFM[caKeJO
finish_fiber(); r#-
end; 'afW'w@
tqZ91QpW
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 zD_5TGM=
show "Outputpowers:" !输出字符串Output powers: \Z*:l(
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) Ff<cY%t
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) as07~Xvp-
$W._FAAJ#
`&;#A*C0
; ------------- q/U-WQ<+
diagram 1: !输出图表1 hB?#b`i^
'!>9j,BJ
"Powers vs.Position" !图表名称 Owp]>e
DpHubqWz
x: 0, L_f !命令x: 定义x坐标范围 +Q&l}2
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 A-x^JC=
y: 0, 15 !命令y: 定义y坐标范围 at>_EiS
y2: 0, 100 !命令y2: 定义第二个y坐标范围 UG vIH m
frame !frame改变坐标系的设置 r*HSi.'21
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) ,~L*N*ML
hx !平行于x方向网格 =i~
= |K!
hy !平行于y方向网格 -J]?M
W83d$4\d
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 4DIU7#GG
color = red, !图形颜色 t/i*.>7
width = 3, !width线条宽度 St;9&A
"pump" !相应的文本字符串标签 /X8a3Eqp9
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 SiNgV\('U
color = blue, !&%KJS6p4
width = 3, V7$ m.P#uM
"fw signal" j)ic7b
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 Vy&X1lG:
color = blue, f:j:L79}
style = fdashed, P IG,a~
width = 3, (~|)Gmq2
"bw signal" \:'GAByy
j,rc9
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 ~HY)$Yp;
yscale = 2, !第二个y轴的缩放比例 Dw=L]i
:0v
color = magenta, 5|0}bv O
width = 3, l@4pZkdq
style = fdashed, DzC`yWstP
"n2 (%, right scale)" jS,Pu%fR
AB
$N`+&
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 f y|JE9Io_
yscale = 2, U/c+j{=~
color = red, |@d(2f8
width = 3, X&Oo[Z
style = fdashed, 03?ADjO
"n3 (%, right scale)" :M6|V_Yp
h`Jc%6o
(R=ZI
; ------------- "'BDVxp'w
diagram 2: !输出图表2 R14&V1 tZ
j1Ys8k%$l
"Variation ofthe Pump Power" 3 EAr=E]
LBio$67F
x: 0, 10 $%U}k=-
"pump inputpower (W)", @x 7]@M
y: 0, 10 3SM'vV0[
y2: 0, 100 %n]jsdE^|
frame ]:ca=&>
hx 9f['TG,"
hy t:dvgRJt*
legpos 150, 150 ?23J(;)s
DN9x<%/-
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 \*PE#RB#6
step = 5, VI3fvGHat{
color = blue, j gV^{8qG
width = 3, TaF*ZT2
"signal output power (W, leftscale)", !相应的文本字符串标签 h-.^*=]R6
finish set_P_in(pump, P_pump_in) z:UkMn[
ym
p*:lH(
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 j % MY6"
yscale = 2, VK9E{~0=
step = 5, uP7|#>1%
color = magenta, r:xg#&"*
width = 3, gISA13
"population of level 2 (%, rightscale)", H/f}tw
finish set_P_in(pump, P_pump_in) 8<Nz34Y
C&q}&=3r
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 HJr*\%D}1
yscale = 2, XffHF^l9F
step = 5, q.:a4w J
color = red, Gj#BG49g2
width = 3, <)cmI .J3
"population of level 3 (%, rightscale)", sS)tSt{C
finish set_P_in(pump, P_pump_in) +=`w
a"+/fC`
8}z PDs
; ------------- :U1V 2f'l3
diagram 3: !输出图表3 1_~'?'&^
HDo=W qG
"Variation ofthe Fiber Length" 54JI/!a
Q<osYO{l
x: 0.1, 5 11J:>A5zt
"fiber length(m)", @x 7|m{hSc
y: 0, 10 9 Up>e
"opticalpowers (W)", @y .GnoK?
frame e mq%"
;.
hx =0@ o(#gM
hy }Ny~.EV5^
(_q&QI0{
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 a0FU[*q
step = 20, Qe<c@i"
color = blue, :Ea]baM"
width = 3, Dx3Sf}G
`
"signal output" KueI*\ p
(w 'k\y
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 . Vq_O
u
step = 20, color = red, width = 3,"residual pump" is-{U?-
M+Y^ A7
! set_L(L_f) {restore the original fiber length } iL IKrU+`
/3vj`#jD
j%0g*YI
; ------------- 9e1KH'
diagram 4: !输出图表4 c_2kHT
1n
ZE9;o
"TransverseProfiles" 6? (8KsaN
`^E(P1oJ3
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) *Oe;JqQkK
-E!V;Tgc%U
x: 0, 1.4 * r_co /um #KSB%
"radialposition (µm)", @x
X?"Ro`S
y: 0, 1.2 * I_max *cm^2 M7lMOG(\
"intensity (W/ cm²)", @y [C~{g#
y2: 0, 1.3 * N_Tm 2TC7${^9}J
frame "V_PWEi
hx Yc'7F7.<6
hy z3}4+~~
lO|H:7
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 5h(]S[Zf3
yscale = 2, Ib4 8`
color = gray, uRNc9
width = 3, k@R)_,2HH
maxconnect = 1, W,n0'";')
"N_dop (right scale)" My'6yQL
?3i-wpzMp
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 hAZ"M:f
color = red, ]pA}h.R#-
maxconnect = 1, !限制图形区域高度,修正为100%的高度 k4-C*Gx$h
width = 3, {=d\t<p*n
"pump" mY1$N}8fm
BPKeG0F7
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 :XZ
color = blue, m;LeaD}0
maxconnect = 1, LNU9M>
width = 3, BO ^T
:
"signal" o' DXd[y
oM-@B'TK
pr-!otz
; ------------- MgLz:2
:F
diagram 5: !输出图表5 f;%4O'
N1!|nS3w
"TransitionCross-sections" Hw/1~O$T
Hca)5$yL
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) ji2if.t@
[XQoag;!
x: 1450, 2050 ;z7iUke0%
"wavelength(nm)", @x vexQP}N0
y: 0, 0.6 AuU:613]W8
"cross-sections(1e-24 m²)", @y gGdZ}9
frame uoKC+8GA
hx P>kS$U)
hy #,qikKjt2
@,sg^KB
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 femAVx}go
color = red, _" F(w"|
width = 3, Wm.SLr,o0
"absorption" ?Zoq|Q+
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 A\.M/)Qo
color = blue, YKUs>tQ!
width = 3, kF.PLn'iS
"emission" crC];LMl/
D1lHq/