(* |M&4[ka}
Demo for program"RP Fiber Power": thulium-doped fiber laser, p|C[T]J\@
pumped at 790 nm. Across-relaxation process allows for efficient .P
<3+
population of theupper laser level. Fw S>V2R
*) !(* *)注释语句 Sv_Nb >
9=mc3m:Tb(
diagram shown: 1,2,3,4,5 !指定输出图表 _U_O0@xi
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 kuI~lBWI
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 wRvh/{xB
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 9Pb6Z}
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 T]JmnCX>:
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 57~y 7/ 0
o_1N "o%
include"Units.inc" !读取“Units.inc”文件中内容 Mj{w/'
W=#AfPi$&
include"Tm-silicate.inc" !读取光谱数据 ?-zuy US
$J^fp XO
; Basic fiberparameters: !定义基本光纤参数 AhD C5ue=
L_f := 4 { fiberlength } !光纤长度 F"bz<{
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 9QaE)wt
r_co := 6 um { coreradius } !纤芯半径 V)5K/ U{
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 =W &Mt
QtwQVOK
; Parameters of thechannels: !定义光信道 ME$J42
l_p := 790 nm {pump wavelength } !泵浦光波长790nm f4
qVUU
dir_p := forward {pump direction (forward or backward) } !前向泵浦 pCDN9*0/
P_pump_in := 5 {input pump power } !输入泵浦功率5W ,3!$mQL=
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um -72EXO=|
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 XC5/$3'M&
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 ESNI$[`
7o0zny3?
l_s := 1940 nm {signal wavelength } !信号光波长1940nm 6Cz
O
ztn
w_s := 7 um !信号光的半径 (Vr%4Z8
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 2j:0!%
loss_s := 0 !信号光寄生损耗为0 oNtoqYwH
hJ$9Hb
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 n m<?oI*\
gfs ;?vP
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 Z,/K$;YWo
calc ~ney~Pz_
begin d\ 8v
VZ
global allow all; !声明全局变量 Kp6 @?
set_fiber(L_f, No_z_steps, ''); !光纤参数 #R{>@]x`
add_ring(r_co, N_Tm); [lg!*
def_ionsystem(); !光谱数据函数 *I)J%#
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 ~N/r;omVc
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 -?-XO<I
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 kzjuW
set_R(signal_fw, 1, R_oc); !设置反射率函数 ~W [I
finish_fiber(); dYwkP^KB
end; odSPl{. >d
v&|65[<
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 QYMfxpiC
show "Outputpowers:" !输出字符串Output powers: ^3TNj
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) a8f#q]TyQ
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) >Jmla~A
ly-(F2
N^dQX,j
; ------------- !JDr58
diagram 1: !输出图表1 iCPm7AU
pY`$k#5
"Powers vs.Position" !图表名称 CtXbAcN2B
%(1OjfZc
x: 0, L_f !命令x: 定义x坐标范围 4kjfYf@A
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 O|V0WiY<
y: 0, 15 !命令y: 定义y坐标范围 K9lekevB
y2: 0, 100 !命令y2: 定义第二个y坐标范围 N#K)Z5J)b
frame !frame改变坐标系的设置 8u2k-_9
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) kU[hB1D5
hx !平行于x方向网格 >`\.i,X.D
hy !平行于y方向网格 /@F'f@;
->rqr#
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 ?
`p/jA
color = red, !图形颜色 H-PVV&r
width = 3, !width线条宽度
xgcxA:
"pump" !相应的文本字符串标签 WM'!|lg
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 TKR#YJQ?K
color = blue, |Dn Zk3M,
width = 3, vN'+5*Cgy6
"fw signal" 8YFG*HSa
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 -Cs( 3[
color = blue, Jh3
style = fdashed, rO7_K>g?
width = 3, Gr\ ]6
"bw signal" CefFUqo4
kk /#&b2
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 Z)s
!p
yscale = 2, !第二个y轴的缩放比例 }PBme'kP
color = magenta, WT'-.UX m
width = 3, MY,~leP&
style = fdashed, rLsY_7!
"n2 (%, right scale)" ^OKm (
h mRmU{(Y
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 &DWSf`:Hx
yscale = 2, o8R_Ojh
color = red, = LNU%0m
width = 3, 0]4X/u#N
style = fdashed, CPJ21^
"n3 (%, right scale)" H~Uf2A)C
2Mt$Dah
+MX~1RU+
; ------------- V
vrsf6l]
diagram 2: !输出图表2 |dgiW"tUm
8\rca:cF
"Variation ofthe Pump Power" "z{/*uM2<
G}8tFo.d1
x: 0, 10 #c:s2EL
"pump inputpower (W)", @x FBXktSg
y: 0, 10 z}[u~P,
y2: 0, 100 TRi'l #m4
frame s9ix&m
hx \p(S4?I7
hy ni/s/^
legpos 150, 150 JKZVd`fF
G<?RH"RZr
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 b-_l&;NWg
step = 5, rr
tMd
color = blue, 05 6K) E
width = 3, ZWCsrV*;
"signal output power (W, leftscale)", !相应的文本字符串标签 =3035{\
finish set_P_in(pump, P_pump_in) sWlxt q g
NCKR<!(
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 tx5bmF;b)
yscale = 2, 0eA<nK
step = 5, ~rV $.:%va
color = magenta, `,V&@}&"n
width = 3, U2A-ub>7
"population of level 2 (%, rightscale)", HIc;Lc8$
finish set_P_in(pump, P_pump_in) ^UvL1+
6|EOB~|
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 XZOBK^,5^B
yscale = 2, >)WE3PT/O"
step = 5, }ekNZNcuM
color = red, lf(+]k30
width = 3, ._0$#J S[
"population of level 3 (%, rightscale)", 2!6hB sEr
finish set_P_in(pump, P_pump_in) 96\FJHtZ
7**zb"#y
zu}uW,XH-
; ------------- +O8[4zn&k
diagram 3: !输出图表3 xQZOGq
1O Ft}>1
"Variation ofthe Fiber Length" vu.ug$T
Z2W&_(^.h
x: 0.1, 5 &3iI\s[
"fiber length(m)", @x a0ms9%Y;Q[
y: 0, 10 ]4t1dVD
"opticalpowers (W)", @y >7WT4l)7!b
frame d[h=<?E5
hx OFohyy(
hy !S<p"
)P7oL.)
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 QO$18MBcc
step = 20, Ge)G.> c
color = blue, 'cCM[P+
width = 3, /[Nkk)8-
"signal output" |~76dxU
yHY2 SXm
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 Wgf
f+7k
step = 20, color = red, width = 3,"residual pump" /*g0M2+OZo
#IppjaPl8
! set_L(L_f) {restore the original fiber length } CM~x1f *v
p!E*ANwX
c:=HN-*vQ
; ------------- C,ldi"|
diagram 4: !输出图表4 Ks3YrKk;p
Y3|_&\v6
"TransverseProfiles" LI-ewea
GB+$ed5@<
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) c
CjN8<
"S@]yL
x: 0, 1.4 * r_co /um ]Y,V)41gCE
"radialposition (µm)", @x #}1yBxB<=
y: 0, 1.2 * I_max *cm^2 .5HD i-
"intensity (W/ cm²)", @y \HD:#a
y2: 0, 1.3 * N_Tm #+i5'p(4
frame *r4FOA%P
hx iJZvVs',
hy a"cw%L
&OvA[<qT
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 % M_F/ O
yscale = 2, WG3_(mM
color = gray, eLH=PDdO
width = 3, l(MjLXw5
maxconnect = 1, -4Q\FLC'k
"N_dop (right scale)" ,H|K3nh
Nt
tu)wr
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 4{,!'NA
color = red, Yi-,Pb?
maxconnect = 1, !限制图形区域高度,修正为100%的高度 ,jnaa (n
width = 3, (wH+ 0
"pump" 6Po{tKU
;Gp9
? 0
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 lE+Duap:
color = blue, R<3 -!p1v
maxconnect = 1, CT\rx>[J.6
width = 3, -{oZK{a1
"signal" %f\j)qw
AO-~dV
-f'&JwE0=
; ------------- z3^gufOkQ
diagram 5: !输出图表5 sCf)#6mI
B&(/,.
"TransitionCross-sections" O*F= xG
,=pn}\R
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) A(XX2f!i
^]/V-!j
x: 1450, 2050 ,7d#t4
"wavelength(nm)", @x 1n)YCSA
y: 0, 0.6 Tv,ZS
"cross-sections(1e-24 m²)", @y <\d`}A:&
frame Rto/-I0l
hx d_[zt)
hy A/ Sj>Y1j
p`"Ic2xPJ
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 fn5!Nr ,
color = red, &`'@}o>2
width = 3, ;Rxc(tR!n
"absorption" z+c8G
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 f]Zj"Tt-
color = blue, Ln4Dq[M
width = 3, ;wHyX)&X$
"emission" $7O3+R/=
^= kr`5