(* 'w_Qs~6~{
Demo for program"RP Fiber Power": thulium-doped fiber laser, 1c4:'0
pumped at 790 nm. Across-relaxation process allows for efficient ne=CN!=
population of theupper laser level. O?iLLfs
*) !(* *)注释语句 c>wne\(5H
[vxHsY3z
diagram shown: 1,2,3,4,5 !指定输出图表 KuMH,rXF
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 \Z-Fu=8J8^
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 2W;2._
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 1}OM"V
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 B9]bv]
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 P3TM5
6Z{(.'Be
include"Units.inc" !读取“Units.inc”文件中内容 %t]{C06w+{
ZN!<!"~
include"Tm-silicate.inc" !读取光谱数据 !'a
<Dw5
ym2"D?P
(
; Basic fiberparameters: !定义基本光纤参数 0Q[;{}W}
L_f := 4 { fiberlength } !光纤长度 ]qiX"<s>~C
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 d/\ajQ1::
r_co := 6 um { coreradius } !纤芯半径 BVS
SO's
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 FPu$N d&\
X5=I{eY}
; Parameters of thechannels: !定义光信道 p,7?rI\N
l_p := 790 nm {pump wavelength } !泵浦光波长790nm h79~d%-
dir_p := forward {pump direction (forward or backward) } !前向泵浦 .L.9e#?3
P_pump_in := 5 {input pump power } !输入泵浦功率5W }bnodb^.7
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um /b410NP5
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 -f"{%<Q
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 1tl qw
@GF3g=
l_s := 1940 nm {signal wavelength } !信号光波长1940nm d1 lxz?r
w_s := 7 um !信号光的半径 @%r"7%tq>
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 Fm+V_.H/;
loss_s := 0 !信号光寄生损耗为0 ,?wxW
=0SJf 3
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 m1M6N`f
>".@;
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 L),bPfz
calc M0%nGpVj>
begin &5QvUn
global allow all; !声明全局变量 KIY9?B=+
set_fiber(L_f, No_z_steps, ''); !光纤参数 Q|G|5X
add_ring(r_co, N_Tm); /`j2%8^N
def_ionsystem(); !光谱数据函数 _.SpU`>/f
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 lz_ r
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 c!mMH~#
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 :)%cL8Nz]$
set_R(signal_fw, 1, R_oc); !设置反射率函数 kR{$&cE^
finish_fiber(); Q<(aU{
end; $dug"[
j3j^cO[ 8v
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 =]1g*~%
show "Outputpowers:" !输出字符串Output powers: JY3!jtv
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) WZ UeW*#=
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) R#s_pW{op
18]Q4s8E
6rlvSdB
; ------------- GK#D R/OM
diagram 1: !输出图表1 ypx`!2Q$
$9Gra#
"Powers vs.Position" !图表名称 "+hUt
)M8@|~~
x: 0, L_f !命令x: 定义x坐标范围 {~#d_!(
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 D!i|KI/
y: 0, 15 !命令y: 定义y坐标范围 f4vdJ5pV
y2: 0, 100 !命令y2: 定义第二个y坐标范围 "tu*(>'~5
frame !frame改变坐标系的设置 5[~C!t;
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) Sp]ov:]%f
hx !平行于x方向网格 ::@JL
hy !平行于y方向网格 #z}0]GJKj
!e('T@^u6u
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 /9| 2uw`
color = red, !图形颜色 S(lqj6aa}
width = 3, !width线条宽度 -?Cu-'
"pump" !相应的文本字符串标签 R S] N%`]
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 kRH
D{6mol
color = blue, qipS`:TER
width = 3, !. :b}t
"fw signal" 3M>y.MS
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 ACF_;4%&
color = blue, pE$*[IvQ'
style = fdashed, 1U
='"
width = 3, y|3!E>Up
"bw signal" ^[v>B@p*{
}MtORqK
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 #*3 vE& p
yscale = 2, !第二个y轴的缩放比例 ,QLy}=N
color = magenta, jEK{47i v
width = 3, /K_*Drk>
style = fdashed, ;XXEvRk
"n2 (%, right scale)" Vc+~yh.)
@9\E
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 ZL9|/
PY
yscale = 2, N8X)/W
color = red, 4ZB]n,pfT
width = 3, Kc+9n%sp
style = fdashed, 8an_s%,AW
"n3 (%, right scale)" {(h!JeQ
{7K l#b
Htep3Ol3
; ------------- lLEEre
diagram 2: !输出图表2 +:u
&]
mOb@w/f
"Variation ofthe Pump Power" f1U:_V^d
Apkb!"}>
x: 0, 10 dCzS f4:
"pump inputpower (W)", @x jjg&C9w T
y: 0, 10 ,Uy~O(Ft
y2: 0, 100 =HMuAUa.
frame ca%XA|_J
hx o^u}(wZ{
hy c32"$g
legpos 150, 150 M$3/jl*#}
)F6p+i="
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 (dym*_J
step = 5, 8,:lw3x1
color = blue, VC^QCuSq
width = 3, IOl0=+p
"signal output power (W, leftscale)", !相应的文本字符串标签 A$TFa:O|
finish set_P_in(pump, P_pump_in) mQ\oR|
yRz l}
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 Ljk0K3Q6>
yscale = 2, 4rD&Lg'
step = 5, ~Yg+bwh
color = magenta, _Fjax
width = 3, GGFrV8
"population of level 2 (%, rightscale)",
kb'l@d#E
finish set_P_in(pump, P_pump_in) lsVg'k/Z!
V}Pv}j:;
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 ^1XnnQa
yscale = 2, ^0/!:*?
step = 5, 6Q`7>l.|?
color = red, g]._J
width = 3, &tw{d DD6
"population of level 3 (%, rightscale)", ['I5(M@
finish set_P_in(pump, P_pump_in) 7gt%[r M
&I/C^/F&
N ^H
H&~V
; ------------- YTfMYH=}
diagram 3: !输出图表3 j7C&&G q
smX&B,&@
"Variation ofthe Fiber Length" fJn4'Q*U
z!^3%kJJ>
x: 0.1, 5 EyV6uk~
"fiber length(m)", @x |LE*R@|3$
y: 0, 10 u2l`%
F`x
"opticalpowers (W)", @y ] -G~
frame QC+BEN$
hx
5R O_)G<
hy 6Ou[t6
nAyyjd3!S
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 +4K'KpFzZ
step = 20, Y^,G}
&p
color = blue, Q_A?p$%;L
width = 3, >8DZj&j
"signal output" M\=/i\-
xx,|n
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 1$uO%
step = 20, color = red, width = 3,"residual pump" 7XiR)jYo*
wU5= '
! set_L(L_f) {restore the original fiber length } u]t#Vf-$u
N#vV;
9jrlB0
; ------------- 4+au6ABy
diagram 4: !输出图表4 $-_@MT~
)>WSuf
j
"TransverseProfiles" q6V\n:hKV
OyTp^W`&
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) YXTd^M~@D
yv.(Oy
x: 0, 1.4 * r_co /um 4:qM'z
"radialposition (µm)", @x c +]5[6
y: 0, 1.2 * I_max *cm^2 *7!*kqg!u
"intensity (W/ cm²)", @y F0+@FS0
y2: 0, 1.3 * N_Tm _6MNEoy?
frame I$1~;!<
hx wTu=v
hy > 0NDlS%Q:
Rs1JCP=d8
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 m-}6DN
yscale = 2, r!O4]j_3
color = gray, 8J+:5b_?
width = 3, *qL"&h5W
maxconnect = 1, (khMjFOg
"N_dop (right scale)" "pkn
~ (d#T |ez
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 di#:KW
color = red, Ih5F\eM
maxconnect = 1, !限制图形区域高度,修正为100%的高度 <}^l MBa
width = 3, YDo,9
"pump" 4Awl
<!.Qn
Y
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 ='GY:. N
color = blue, e=EM07z
maxconnect = 1, &io*pmUm6
width = 3, hS:j$je
"signal" he1W22
99..]
%^66(n)
; ------------- mRC6m
K>
diagram 5: !输出图表5 ,daZKxT
P
:D6w){
"TransitionCross-sections" <bxp/#6D
334tg'2]
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) 9x9~u8j
!Typ_Cs
x: 1450, 2050 XveG#oyiU
"wavelength(nm)", @x %y}l^P5z
y: 0, 0.6 Qg4g(0E@
"cross-sections(1e-24 m²)", @y 8t
Ef>
frame ]R s
hx (3M7 RpsL@
hy q<*UeyE
S
by%k*y
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 ^\zf8kPti
color = red, 60&4?<lR4
width = 3, ~J,e^$u
"absorption" .|9o`mF7
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 >@NGX-gp
color = blue, 8q#Be1u<s2
width = 3, {!rpE7P-
"emission" vx8-~Oq{|;
a)GT\1q