(* 1w!O&kn
Demo for program"RP Fiber Power": thulium-doped fiber laser, $Ph#pM(
pumped at 790 nm. Across-relaxation process allows for efficient ,,c+R?D
population of theupper laser level. /lS5B6NU
*) !(* *)注释语句 elGwS\sw
: Tcvj5
diagram shown: 1,2,3,4,5 !指定输出图表 0FcG;i+
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 64UrD{$o
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 /(u# D[
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 "wR1=&gk
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 *x-@}WY$U
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 z -c1,GOD
Qv
WvS9]
include"Units.inc" !读取“Units.inc”文件中内容 B,fVNpqo
ipe8U1Sc
include"Tm-silicate.inc" !读取光谱数据 `iNH`:[w
5X73@Aj
; Basic fiberparameters: !定义基本光纤参数 A2.GNk
L_f := 4 { fiberlength } !光纤长度 .TM.
v5B
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 b_ vKP
r_co := 6 um { coreradius } !纤芯半径 ` 7P%muY.
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 g#q7~#9
/!'Png0!
; Parameters of thechannels: !定义光信道 8ZF!}kb0F
l_p := 790 nm {pump wavelength } !泵浦光波长790nm wEF"'T
dir_p := forward {pump direction (forward or backward) } !前向泵浦 [XhG7Ly
P_pump_in := 5 {input pump power } !输入泵浦功率5W Yosfk\D
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um D>-srzw
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 ZmDM=qN
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 pkf$%{"e
hTQ8y10a
l_s := 1940 nm {signal wavelength } !信号光波长1940nm fuU
3?SG
w_s := 7 um !信号光的半径 t3b M4+n
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 N*f]NCSi
loss_s := 0 !信号光寄生损耗为0 t"Bp#
U1
;efF]")
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 d%K&
}` YtXD-o
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 mX%T"_^
calc TQtHU6
begin Iqci}G%r
global allow all; !声明全局变量 Nwo*tb:
set_fiber(L_f, No_z_steps, ''); !光纤参数 rvacCwI
add_ring(r_co, N_Tm); S.Q:O{]
def_ionsystem(); !光谱数据函数 p}Um+I=1
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 3a[ LM!
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 Ga_Pt8L6
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 Q@uWh:
set_R(signal_fw, 1, R_oc); !设置反射率函数 R=3|(R+kA
finish_fiber(); ~d3|zlh
end; "A*;V
q|}O-A*wa
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 z(u,$vZ_
show "Outputpowers:" !输出字符串Output powers: qu\U^F
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) q"5\bh1"
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) Z*b$&nM
&;bey4_J
?[|A sw1t
; ------------- H.;2o(vD
diagram 1: !输出图表1 p"6ydXn%
'h@&rr@5
"Powers vs.Position" !图表名称 3 Q~0b+k
2tg 07
x: 0, L_f !命令x: 定义x坐标范围 1#*^+A E
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 =te4p@
y: 0, 15 !命令y: 定义y坐标范围 IR{XL\WF
y2: 0, 100 !命令y2: 定义第二个y坐标范围 K_n
GZ/`[
frame !frame改变坐标系的设置 KF1Zy;
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) dV{mmHL
hx !平行于x方向网格 j]U~ZAn,K
hy !平行于y方向网格 qnb/zr)p
l_4^TYF
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 vw$b]MO!
color = red, !图形颜色 ?-~<Vc*
width = 3, !width线条宽度 ]4r&Q4d>O
"pump" !相应的文本字符串标签 ;<*USS6X
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 505ejO|
color = blue, K"[\)&WBG
width = 3, 8;"9A
"fw signal" xSm~V3bc
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 zf]e"e
color = blue, %Eugy
style = fdashed, /bn$@Cy@
width = 3, F vTswM>
"bw signal" cNikLd~?A
RUq[HxF)
6
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 j;qV+Rq]t
yscale = 2, !第二个y轴的缩放比例 HRJ\H-
V
color = magenta, "%bU74>
width = 3, Dc*
H:x;
style = fdashed, t&p I
"n2 (%, right scale)" l8J2Xd @
c[V.j+Iy#^
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 ;>/yY]F7
yscale = 2, ^QjkZ^<dD
color = red, ;at1|E*
width = 3, vRn]u57O
style = fdashed, 5wdKu,nq
"n3 (%, right scale)" Y
DW^N]G
`mI5Z*]-
7<=p*
; ------------- cL!A,+S[_
diagram 2: !输出图表2 ?`xm_udc
$-|$4lrS
"Variation ofthe Pump Power" }I MV@z B
9~$E+m(
x: 0, 10 Q^=0p0
"pump inputpower (W)", @x Kv:Rvo
y: 0, 10 >y,. `ECn
y2: 0, 100 u.G aMl4 (
frame p] N/]2rR
hx 4"3.7.<Q`
hy ir>S\VT4
legpos 150, 150 !G6h~`[
s|:1z"q
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 x%O6/rl
step = 5, `8tstWYa]Y
color = blue, OHW|?hI=[
width = 3, @Kn@j D;
"signal output power (W, leftscale)", !相应的文本字符串标签 SjY|aW+wAL
finish set_P_in(pump, P_pump_in) FC~%G&K/q^
S{v]B_N[M
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 KK5_;<
yscale = 2, Ryygq,>VD.
step = 5, A|]#b?-
color = magenta, _~D#?cFY6
width = 3, -rjQ^ze
"population of level 2 (%, rightscale)", Jf0i$
finish set_P_in(pump, P_pump_in) e ky1}
l!KPgRw
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 )v11j.D
yscale = 2, ()w;~$J
step = 5, 6`G8 UDK>F
color = red, hF5T9^8
width = 3,
>@ xe-0z
"population of level 3 (%, rightscale)", !*HJBZ]q
finish set_P_in(pump, P_pump_in) Pa+_{9
h:U#F )
l(-"rE
; ------------- R*FDg;t4
diagram 3: !输出图表3 bq8Wvlv04
D^V)$ME
"Variation ofthe Fiber Length" En#Q
p3
bBXLW}W
x: 0.1, 5 &['x+vL9
"fiber length(m)", @x "wg$ H1K
y: 0, 10 h^qZi@L
"opticalpowers (W)", @y : vx<m_
frame [~RO9=;L
hx ~Hv>^u
Mh
hy c#`IF6qj
V82I%gPF
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 "frioi`a2
step = 20, wHQ$xO;vD'
color = blue, }<@-=
width = 3, >3ZhPvE-p'
"signal output" bd-iog(
sKsMF:|OT
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 'Ha> >2M
step = 20, color = red, width = 3,"residual pump" }p)Hw2
xGbq,~_r
! set_L(L_f) {restore the original fiber length } 3 =c#LUA`
W[a"&,okqO
W,[QK~
; ------------- H?M:<q0|G
diagram 4: !输出图表4 GCiG50Z=
fA?v\'Qq/
"TransverseProfiles" V/#J>-os}W
<|?)^;R5!
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) aaw[ia_E L
vu91"
4Fa
x: 0, 1.4 * r_co /um TXXG0 G
"radialposition (µm)", @x s :BW}PM
y: 0, 1.2 * I_max *cm^2 @1gURx&2_
"intensity (W/ cm²)", @y yzT1Zg_ER
y2: 0, 1.3 * N_Tm frDMFEXXP
frame *| W*Mu
hx -$:*!55:j
hy $w <R".4
<_Z.fdUA
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 m&DI2he
yscale = 2, r\F2X J^
color = gray, dT% eq7=
width = 3, XzX2V">(%
maxconnect = 1, DO~[VK%|
"N_dop (right scale)" @ <2y+_e
s3nt2$=:t
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 ~o|sm a5.
color = red, MMC$c=4"
maxconnect = 1, !限制图形区域高度,修正为100%的高度 "aI)LlyCY
width = 3, :t9![y[=|
"pump" `w`N5 !
~<O.Gu&"R
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 OHj>ufwVq
color = blue, bc~$"
maxconnect = 1, n'{jc6&|
width = 3, (|o@
"signal" 8-7Ml3G*
3)LS#=
vE8'B^h1
; ------------- , %8)I("
diagram 5: !输出图表5 +/eJ#Xw3u8
\9tJ/~
"TransitionCross-sections" V9}\0joM
rr\9HA
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) 3+d^Bpp4
DO-M0L
x: 1450, 2050 NIQ}+xpC
"wavelength(nm)", @x wb(S7OsMO
y: 0, 0.6 IemhHf ^l
"cross-sections(1e-24 m²)", @y GHn0(o &K
frame z"\w9 @W
hx
Rx"+i0
hy eN
</H.bm]
\b"|p%CL8
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 `8O Bw
color = red, :@P6ibcX
width = 3, `$FX%p
"absorption" KU{zzn;g
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 :E|Jqi \
color = blue, islHtX
VE
width = 3, >R6mI
"emission" bXc*d9]
4gev^/^^