(* estiS
Demo for program"RP Fiber Power": thulium-doped fiber laser,
U${W3Ra
pumped at 790 nm. Across-relaxation process allows for efficient Os<E7l zqO
population of theupper laser level. >[Vc$[62
*) !(* *)注释语句 _Gq6xv\b1
ZGZNZ}~#
diagram shown: 1,2,3,4,5 !指定输出图表 8</wQ6&|
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 %_W4\
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 :V.@:x>id
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 @e<(o
UE
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 <-k!
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 Bh&pZcm|
^:-GPr
include"Units.inc" !读取“Units.inc”文件中内容 Ysu\CZGX
R`<^/h
include"Tm-silicate.inc" !读取光谱数据 [XY%<P3D
$Wj= V
; Basic fiberparameters: !定义基本光纤参数 k^Qf |
L_f := 4 { fiberlength } !光纤长度 s21}
a,eB
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 gl+d0<Rzw
r_co := 6 um { coreradius } !纤芯半径 J[<Zy^"Y;
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 w*6b%h%ww
{|u"I@M*O
; Parameters of thechannels: !定义光信道 {]+t<
l_p := 790 nm {pump wavelength } !泵浦光波长790nm y;ElSt;S
dir_p := forward {pump direction (forward or backward) } !前向泵浦 CIIjZ)T
P_pump_in := 5 {input pump power } !输入泵浦功率5W esJ7#Gxt
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um wNHn.
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 tQ{/9bN?P
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 bvtpqI QZ
o=YOn&@%
l_s := 1940 nm {signal wavelength } !信号光波长1940nm {[2o
w_s := 7 um !信号光的半径 ]QaKXg)3q
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 8)0]cX
loss_s := 0 !信号光寄生损耗为0 ?z1v_Jh
MOD&3>NI
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 o^/
#i`)
3Cj)upc
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 elR'e6Q
calc _4N.]jr5
begin &q>8D'
global allow all; !声明全局变量 P{9:XSa%
set_fiber(L_f, No_z_steps, ''); !光纤参数 <}J!_$A
add_ring(r_co, N_Tm); {T-\BTh&Q
def_ionsystem(); !光谱数据函数 _uO$=4Sd
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 #zl1#TC{(
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 :dt[ #
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 Y ]([K.I=
set_R(signal_fw, 1, R_oc); !设置反射率函数 K[y")ooE<j
finish_fiber(); B!/kC)bF:
end; 8b?nr;@
fi
HE`]0
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 ;}+M2Ec51
show "Outputpowers:" !输出字符串Output powers: ,LA'^I?
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) (C.
$w
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) iI<c
2G~{x7/[@
D;!sH?J@+
; ------------- Y_Gd_+oJ
diagram 1: !输出图表1 9;L 4\
XN<!.RCw
"Powers vs.Position" !图表名称 {}$rN@OM$
U(f@zGV
x: 0, L_f !命令x: 定义x坐标范围 I#MPJ@*WT
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 >.qFhO\1so
y: 0, 15 !命令y: 定义y坐标范围 futYMoV
y2: 0, 100 !命令y2: 定义第二个y坐标范围 QDn_`c
frame !frame改变坐标系的设置 ^# $IoW
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) 1x_EAHZ>7
hx !平行于x方向网格 4;L|Ua
hy !平行于y方向网格 4C`RxQJM
>2s6Y
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 -
jZAvb
color = red, !图形颜色 7"Xy8]i{z
width = 3, !width线条宽度 0HWSdf|w
"pump" !相应的文本字符串标签 sc]#T)xG
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 \)dp
color = blue, 7SHllZ
width = 3, 9CS"s_
"fw signal" 0Ye/
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 XdJD"|,h
color = blue, ^P9mJ:
style = fdashed, (n k g
width = 3, ,&,%B|gT]
"bw signal" KRxJ2
.8QhJHwd
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 wxHd^b
yscale = 2, !第二个y轴的缩放比例 #+o$Tg
color = magenta, _AF$E"f@
width = 3, gqv+|:#
style = fdashed, vT#R>0@mi
"n2 (%, right scale)" d9JAt-6z2
= -oP,$k
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 Y!j/,FU
yscale = 2, _t-6m2A
color = red, <9&GOaJ
width = 3, p|gVIsg[-e
style = fdashed, :WWHEZK
"n3 (%, right scale)" FZgf"XM>
,IhQ %)l
M;XU"8
; ------------- ( 72%au
diagram 2: !输出图表2 ?xwi2<zz
3DO*kM1s@
"Variation ofthe Pump Power" 2(!W
9#]
j?C[ids<
x: 0, 10 Q.$/I+&j
"pump inputpower (W)", @x _8$xsj4_
y: 0, 10 $E[O}+L$#
y2: 0, 100 qf K
gNZ
frame NCg("n,jx
hx y3(~8n
hy 8o:h/F
legpos 150, 150 2.nT k
O)^F z:
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 ~<u\YIJ
step = 5, d0T 8Cwcb
color = blue, ?6*\M
width = 3, 1g=T"O&=
"signal output power (W, leftscale)", !相应的文本字符串标签 +9LzDH
finish set_P_in(pump, P_pump_in) <>KQ8:
uLv
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 R[j'<gd.
yscale = 2, W/RB|TMT
step = 5, DBy%"/c
color = magenta, ih("`//nP
width = 3, !}|'1HIC
"population of level 2 (%, rightscale)", NfQQJ@*
finish set_P_in(pump, P_pump_in) UK'8cz9
i*l=xW;bM
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 M`7lYw\Or!
yscale = 2, Jm=3%H
step = 5, TyO]|Q5
color = red, D
Q4O
width = 3, SIM>Lz
"population of level 3 (%, rightscale)", F +5
5p8
finish set_P_in(pump, P_pump_in)
*pO`sC>
<bJ|WS|
PQi(Oc
; ------------- ~d<&OL
diagram 3: !输出图表3 yEB#*}K?
dM}c-=w`
"Variation ofthe Fiber Length" GS>YfJ&DZ
ENA"T-p
x: 0.1, 5 $2]>{g
"fiber length(m)", @x ?w'03lr%
y: 0, 10 OGH,K'l
"opticalpowers (W)", @y Cw!tB1D
frame ^[I>#U
hx 3 q8S
hy |U'` Sc
<2O#!bX1
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 hw`pi6
step = 20, ,ZYPffu<*
color = blue, Lf.Ia*R:
width = 3, 1"t9x.
"signal output" HOPl0fY$L
$<VH~Q<
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 ijcF[bmE
step = 20, color = red, width = 3,"residual pump" a$iDn_{
Qo]qs+
! set_L(L_f) {restore the original fiber length } TrgKl2xfx
N3Q
.4?
z9
r^E(GmW
; ------------- ^!O!HMX0
diagram 4: !输出图表4 o*~=NoR
tJ7tZ~Ak
"TransverseProfiles" 7^!iGhI]r
qs8^qn0A
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) vEE\{1
mWP&N#vwh
x: 0, 1.4 * r_co /um Q`O~ f<a
"radialposition (µm)", @x P=P']\`p+
y: 0, 1.2 * I_max *cm^2 .f[z_%ar
"intensity (W/ cm²)", @y `.~*pT*u
y2: 0, 1.3 * N_Tm @5??`n
frame qm9=Ga5
hx [k%u$
hy Tqs|2at<t
&\ad.O/Q
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 b'4}=Xpn
yscale = 2, ;i [;%
color = gray, wrJ"(:VZ
width = 3, ;S&anC#E
maxconnect = 1, t8lGC R
"N_dop (right scale)" /nh3/[u
iTT7<x
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布
1=X1<@*
color = red, 1'\s7P
maxconnect = 1, !限制图形区域高度,修正为100%的高度 JCB3 BZg7&
width = 3, }QCn>LXE
"pump" g&_f%hx?
mYk~ ]a-
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 GUJ?6;
color = blue, UsCaO<A
maxconnect = 1, hoiC
J}us
width = 3, V~-tp^
"signal" ,CB E&g
F[B=sI
8h=K S
; ------------- A^|~>9
diagram 5: !输出图表5 #Hl?R5
3/c%4b.Z
"TransitionCross-sections" k|jr+hmn":
m3(p7Z^Bq
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) fCX8s(|F
s?Gv/&
x: 1450, 2050 F{
C2%
s#
"wavelength(nm)", @x CLuQ=-[|
y: 0, 0.6 +'VYqu/
"cross-sections(1e-24 m²)", @y L@?3E`4/v
frame wT,=C'
hx s._,IW;
hy 4~;M\h
Vhe$vH
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 .jbxA2
color = red, ,nV4%Aa
width = 3, =L?2[a$2;
"absorption" <<Z, 1{3F
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 I%<pS,p
color = blue, X]W(
width = 3, }YM[aq?6
"emission" N>)Db
Ue>{n{H"y