(* \0,8?S
Demo for program"RP Fiber Power": thulium-doped fiber laser, ZR8%h<
pumped at 790 nm. Across-relaxation process allows for efficient E gD$A!6N8
population of theupper laser level. o^8Z cN>
*) !(* *)注释语句 j' }4ZwEh
pAtt=R,Ht
diagram shown: 1,2,3,4,5 !指定输出图表 6'[gd
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 r"&uW!~0
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 #6F|}E
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 mTU[khEmL=
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 Bag_0.H&m
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 \TS.9 >\
jb83Y>
include"Units.inc" !读取“Units.inc”文件中内容 &WJ;s*
Min{&?a
include"Tm-silicate.inc" !读取光谱数据 ~oX`Gih
Z/e^G f#i
; Basic fiberparameters: !定义基本光纤参数 C1w6[f1+
L_f := 4 { fiberlength } !光纤长度 #DA ,*
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 Ov~vK\
r_co := 6 um { coreradius } !纤芯半径 H.]p\UY9
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 S|
@QfbIP9
; Parameters of thechannels: !定义光信道 -,qGEJ
l_p := 790 nm {pump wavelength } !泵浦光波长790nm !IC@^kkh{
dir_p := forward {pump direction (forward or backward) } !前向泵浦 KSve_CBOh
P_pump_in := 5 {input pump power } !输入泵浦功率5W 9WT{~PGj
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um iit 5IV
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 XYze*8xUb
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 cXIuGvE&=
U&o~U] rm
l_s := 1940 nm {signal wavelength } !信号光波长1940nm k[a5D/b
w_s := 7 um !信号光的半径 ?`3G5at)9f
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 >>T,M@s-:
loss_s := 0 !信号光寄生损耗为0 _Rk>yJD7s
RV>n Op}R
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 MZ:Ty,pw:O
},%,v2}
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 9/PX~j9O?
calc *(o^w'5
begin J?/NJ-F
global allow all; !声明全局变量 |[iEi
set_fiber(L_f, No_z_steps, ''); !光纤参数 "P!zu(h4
add_ring(r_co, N_Tm); 0~Iq9}{*P
def_ionsystem(); !光谱数据函数 +%H2;8{F
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 gJg%3K~,
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 c|F2 6$rv
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 |]'gd)%S\
set_R(signal_fw, 1, R_oc); !设置反射率函数 A"wso[{
finish_fiber(); A",Xn/d
end; !|-:"hE1h
yHs'E4V`$
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 SD .c9
show "Outputpowers:" !输出字符串Output powers: M5`wfF,j
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) 2>vn'sXdj
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) /rnP/X)T
CA3`Ee+rD
@5\/L6SRfL
; ------------- _Kv;hR>
diagram 1: !输出图表1 1Ba.'~:
{W%/?d9m
"Powers vs.Position" !图表名称 Tl
S904'
6BObV/S Jg
x: 0, L_f !命令x: 定义x坐标范围 zvKypx
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 X({R+
y: 0, 15 !命令y: 定义y坐标范围 Dw&_6\F@
y2: 0, 100 !命令y2: 定义第二个y坐标范围 *?!A
frame !frame改变坐标系的设置 ,a\pdEPj
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) WZf}1.Mh*
hx !平行于x方向网格 #IxCI)!I{[
hy !平行于y方向网格 , R $ZZ4
V]|P>>`v9p
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 2rqYm6
color = red, !图形颜色 ktiC*|fd
width = 3, !width线条宽度 9m}c2:p
"pump" !相应的文本字符串标签 qViolmDz
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 fHacVjJ
color = blue, p}
i5z_tS
width = 3, !po29w:S
"fw signal" )5l9!1j
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 NplkhgSj
color = blue, S*a_
style = fdashed, K2ry@haN
width = 3, (\ Gs7
"bw signal" "kkZK=}Nv
_.BX#BIF
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 #3((f[
yscale = 2, !第二个y轴的缩放比例 8\rHSsP
color = magenta, `YPNVm<3)
width = 3, <m+$@:cO
style = fdashed, ]`}R,'P
"n2 (%, right scale)" &&($LnyA]
j~`rc2n%
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 ZH=oQV)6
yscale = 2, <rFKJ^ B
color = red, p Yaq1_<+
width = 3, ntEf-x<
style = fdashed, 2Ls
"n3 (%, right scale)" qY%{c-aMA
(ZHEPN
&HYs^|ydrr
; ------------- "P{T]
diagram 2: !输出图表2 EFS2 zU
O)9{qU:[b
"Variation ofthe Pump Power" @M ]7',2"
tJ@5E^'4
x: 0, 10 K;#9:
Z^+
"pump inputpower (W)", @x w|WehNGr
y: 0, 10 -<.b3M h
y2: 0, 100 J;cTEB
frame \D,c*I|p7
hx
i;8tA!
hy >$p|W~x
legpos 150, 150
QKtTy>5
:,BKB*a\
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 KsBi<wY
step = 5, _ya_Jf*
color = blue, J\x.:=V
width = 3, =)9@rV&~
"signal output power (W, leftscale)", !相应的文本字符串标签 G!3d!$t
finish set_P_in(pump, P_pump_in) 2^C>orKQ0
[p#
}=&d
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 T?'Vb
yscale = 2, and)>$)|
step = 5, #Jqa_$\.
color = magenta, ESt@%7.F
width = 3, ',P E25Z
"population of level 2 (%, rightscale)", {expx<+4F
finish set_P_in(pump, P_pump_in) "iY=1F"\R
p2:>m\
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 ^E(:nxQ6s
yscale = 2, jsOid5bs
step = 5, >|@i8?|E
color = red, wc#E:GJcK
width = 3, y,QJy=?
"population of level 3 (%, rightscale)", `c~J&@|
finish set_P_in(pump, P_pump_in) 8Mf{6&F=
x[5uz))
K6l{wyMb|
; ------------- !+# pGSk
diagram 3: !输出图表3 Wy`ve~y
j"c30AY
"Variation ofthe Fiber Length" =1'vXPv`
YXr"
x: 0.1, 5 qoXncdDHZ
"fiber length(m)", @x O^,%V{]6\
y: 0, 10 w`$M}oX(
"opticalpowers (W)", @y fyE#8h_>4
frame z nxAP|
hx mWPA]g(
hy OEFALt
p\ }Ep
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 ?]]d
s]
step = 20, *P.Dbb8vn
color = blue, ?|;q=p`t-
width = 3, }[gk9uM_7
"signal output" ?'$Yj>R6
m=hUHA,p4
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 O<o>/HH$
step = 20, color = red, width = 3,"residual pump" U$,W/G}m
_^5OoE"}!
! set_L(L_f) {restore the original fiber length } g VPtd[r
GF=rGn@,)`
ZcLW8L
; ------------- (6Tvu5*4U
diagram 4: !输出图表4 aF41?.s
;0c
-+,
"TransverseProfiles" L"
GQQ
f6r~Ycf,f
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) i=^!?
i
%H AforH
x: 0, 1.4 * r_co /um Jb (CH4|7
"radialposition (µm)", @x >3MzsAH\
y: 0, 1.2 * I_max *cm^2 %qYiE!%&
"intensity (W/ cm²)", @y ;qN;oSK
y2: 0, 1.3 * N_Tm !\6<kQg#
frame miTySY6^
hx w4fz!l]
hy W:gpcR]>
Ump$N#
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 Ap<kK0#h
yscale = 2, ~stJO]) a
color = gray, QK`5KB(k'
width = 3, Sr#\5UDS
maxconnect = 1, nign"r
"N_dop (right scale)" 5mYX#//:
DQ*T2*L
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 ,ut-Di=6
color = red, NtfzAz/
maxconnect = 1, !限制图形区域高度,修正为100%的高度 (& UQ^
width = 3,
MOia]5
"pump" a7@':Rb n
Oe~x,=X)
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 pRys 5/&v
color = blue, :2zga=)g
maxconnect = 1, J_S8=`f%
width = 3, `]7==c #Y
"signal" pv[Gg^
Kt#_Ln_6
YstR
T1
; ------------- 8= kwc
diagram 5: !输出图表5 ki6Lt
90[6PSXk
"TransitionCross-sections" R0g^0K.
kfV}ta'^S
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) e=^^TX`I
,`
64t'g
x: 1450, 2050 !*1$j7`tP
"wavelength(nm)", @x v8} vk]b
y: 0, 0.6 Ls`[7w
"cross-sections(1e-24 m²)", @y teKx^ 'c'
frame ZccvZl ;b
hx \_]X+o;
hy ]?6Pt:N2
fg)VO6Wo&
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 jP{&U&!i
color = red, lsaA
width = 3, r@a]fTf
"absorption" "qrde4O
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 ve]hE}o/}
color = blue, Xwo%DZKN
width = 3, awv$ }EFo
"emission" w7@TM%nS
KTq+JT u