(* ,]: <l
Demo for program"RP Fiber Power": thulium-doped fiber laser, =p=/@ FN
pumped at 790 nm. Across-relaxation process allows for efficient \<T7EV.
population of theupper laser level. )8#-IXxp
*) !(* *)注释语句 _a& Z$2O
rCczQ71W
diagram shown: 1,2,3,4,5 !指定输出图表 ~?fl8RF\
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 3%GsTq2o
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 cNmAr8^}
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 wEX<[#a-
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 %k['<BYG<
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 O#18a,o@
}s@IQay+
include"Units.inc" !读取“Units.inc”文件中内容 x"RF[d
a.gMH
uL
include"Tm-silicate.inc" !读取光谱数据 Q%?%zuU
]S@T|08b
; Basic fiberparameters: !定义基本光纤参数 ;}U]^LT=
L_f := 4 { fiberlength } !光纤长度 tx9%.)M:n
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 bCC &5b
r_co := 6 um { coreradius } !纤芯半径 h?OSmzRLd
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 8N9,HNBT$
@d|Sv1d%
; Parameters of thechannels: !定义光信道 ~uZ9%UB_m
l_p := 790 nm {pump wavelength } !泵浦光波长790nm ^%Cd@!dk
dir_p := forward {pump direction (forward or backward) } !前向泵浦 7_qsVhh]$E
P_pump_in := 5 {input pump power } !输入泵浦功率5W B]<N7NYn1
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um {Ke
IYjE
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 ;y@zvec4
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 >yT1oD0+x
SnXM`v,
l_s := 1940 nm {signal wavelength } !信号光波长1940nm `fX\pOk~e
w_s := 7 um !信号光的半径 SIR2 Kc0
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 0]'
2i
loss_s := 0 !信号光寄生损耗为0 .6
0yQ[aE
z2,NWmP|w
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 -#/DK
nFG X2|d
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 R_GA`U\ {
calc K,|3?CjS
begin w%)RX<h dI
global allow all; !声明全局变量 %++:
K
set_fiber(L_f, No_z_steps, ''); !光纤参数 <kwF<J
add_ring(r_co, N_Tm); +,ar`:x&a
def_ionsystem(); !光谱数据函数 pxedj
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 %P<fz1
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 P(8
u L|^
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 US9aW)8
set_R(signal_fw, 1, R_oc); !设置反射率函数 *& );-r`.
finish_fiber(); d$+0;D4E
end;
xele;)Y
U*sQ5uq
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 XfMUodV-OZ
show "Outputpowers:" !输出字符串Output powers: e<`?$tZ3
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) 'w72i/
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) 4[;}/-
)AdwA+-x
)y:))\>
; ------------- 7^! zT
diagram 1: !输出图表1 ^*$!9~
fiSX( 9
"Powers vs.Position" !图表名称 N!dBF t"
E2cZk6~m{
x: 0, L_f !命令x: 定义x坐标范围 w^nA/=;r
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 o::9M_;
y: 0, 15 !命令y: 定义y坐标范围 ;ud"1wH
y2: 0, 100 !命令y2: 定义第二个y坐标范围 4A(h'(^7A
frame !frame改变坐标系的设置 811QpYA
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) 2MYez>D
hx !平行于x方向网格 saQ
~v@
hy !平行于y方向网格 ks%;_~b
$;=?[Cn
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 xmC5uT6L3M
color = red, !图形颜色 |)%H_TXTy
width = 3, !width线条宽度 Oz]$zRu/0
"pump" !相应的文本字符串标签 a#CjGj)
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 FS @55mQ
color = blue, HEa7!h[a'
width = 3, bvhV
"fw signal" %Q]thv:
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 ?LU>2!jN
color = blue, UM21Cfqex
style = fdashed, OQ<;w
width = 3, awz.~c++
"bw signal" x*TJYST
c`lL&*]
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 ".( G,TW
yscale = 2, !第二个y轴的缩放比例 TEj"G7]1$A
color = magenta, ta x:9j|~
width = 3, >MRuoJ
style = fdashed, J#3[,~
"n2 (%, right scale)" [Ran/D\.
i=P}i8,^=
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 rqm":N8@
yscale = 2, N;>s|ET
color = red, f$dIPt(
width = 3, z_{_wAuY
style = fdashed, P39oHW
"n3 (%, right scale)" H%Lln#
v|]"uPxH?
^4<&"aoo
; ------------- ,TB$D]u8
diagram 2: !输出图表2 N
Mx:Jh-YN
\&Bdi6xAy
"Variation ofthe Pump Power" +/ M%%:>mY
;3bUgI}.J
x: 0, 10 u'DpZ
"pump inputpower (W)", @x _nX8f
&
y: 0, 10 ;$4&Qp:#
y2: 0, 100 a=9QwEZ
frame %S$$*|_G
hx AKk&
hy |*-<G3@
legpos 150, 150 2vsV:LS.
pDvznpQ
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 ,LmP >Q.
step = 5, Wa&!1'
@
color = blue, AUIp
vd
width = 3,
cJTwgm?
"signal output power (W, leftscale)", !相应的文本字符串标签 aS\$@41"
finish set_P_in(pump, P_pump_in) i*!2n1c[
|pq9i)e&
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 /Ah&d@b
yscale = 2, N&Ho$,2s
step = 5, 0O*kC43E_
color = magenta, @A*>lUo
width = 3, QH,(iX6RY
"population of level 2 (%, rightscale)", ` QW=<Le?
finish set_P_in(pump, P_pump_in) k{UeY[,jb
x#R6Ez7
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 _./s[{ek
yscale = 2, L<Z,@q`
step = 5, Jo~fri([%Q
color = red, ev_' .t'
width = 3, S)4p'cUwq
"population of level 3 (%, rightscale)", _z 5W*..
finish set_P_in(pump, P_pump_in) T5.^
w
)E^4U9v),
_jgtZ
; ------------- 3hUP>F8
diagram 3: !输出图表3 1v,R<1)&
6f
?,v5
"Variation ofthe Fiber Length" |')PQ
gxAy{
t
x: 0.1, 5 {B6ywTK\`
"fiber length(m)", @x @>V;guJC%
y: 0, 10 YgS,5::SU
"opticalpowers (W)", @y DL!%Np?`
frame ;ny 9q
hx J1~E*t^
hy .V3e>8gw3
wEJzLFCn
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 BNI)y@E^X
step = 20, jiLJiYMg
color = blue, CXyb8z4/+
width = 3, 1KBGML-K3
"signal output" =oI6yf&8 Z
g%!U7CM6h
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 `<M>"~W
step = 20, color = red, width = 3,"residual pump" WW&Wh<4
&;L=f;
! set_L(L_f) {restore the original fiber length } c$tX3ug6I
aJA( UN45
N0vECk
; ------------- !@N?0@$/
diagram 4: !输出图表4 FOMJRq
c-n/E. E
"TransverseProfiles" j0a=v}j3
Y#~A":A
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) e"NP]_vh,
]t`SCsoo
x: 0, 1.4 * r_co /um $gD8[NAIx=
"radialposition (µm)", @x VO=Ibu&X
y: 0, 1.2 * I_max *cm^2 5$N#=i`V
"intensity (W/ cm²)", @y u#Jr_ze
y2: 0, 1.3 * N_Tm xSSEDfq
frame ;e/F( J
hx 150-'Q
hy 6o(IL-0]c
GdVF;
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 7Zdg314
yscale = 2, P R3Arfle
color = gray, AovBKB
$
width = 3, ugE!EEy[^
maxconnect = 1, QHf&Z*Xtl
"N_dop (right scale)" >][D"
v:yU+s|kN
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 -GHd]7n
color = red, ih^FH>@
maxconnect = 1, !限制图形区域高度,修正为100%的高度 ,$>l[G;Bm
width = 3, Vdd
"pump" WulyMcJ
3,6f}:CG
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 =|ODa/2p
color = blue, .SER,],P
maxconnect = 1, rVl 8?uy
width = 3, *vuI'EbM
"signal" N!3Tg564j
(=Kv1
H aD
-eyF9++`
; ------------- *qk7e[IP
diagram 5: !输出图表5 T]-MrnO
9 i/
(
"TransitionCross-sections" <<A#4!f
!U m9ceK
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) 6uFw+Ya#
83t/\x,Q
x: 1450, 2050 P~=yTW
"wavelength(nm)", @x /:(A9b-B
y: 0, 0.6 Z_m<x!
"cross-sections(1e-24 m²)", @y !3Pmjip
frame 'o#oRK{#
hx p'2IlQ\
hy jga \Ry=nw
Bps%>P~.
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 PE4
L7
color = red, #O\as~-
width = 3, 2[qfF6FHA
"absorption" _OuNX.yrG
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 m x |V)
color = blue, $m2#oI'D
width = 3, d9;&Y?fp
"emission" c:7F
2+p
Y'iyfnk