(* G%HG6
Demo for program"RP Fiber Power": thulium-doped fiber laser, 2n3&uvf'TL
pumped at 790 nm. Across-relaxation process allows for efficient a_!H_J
population of theupper laser level. zV}:~;w
*) !(* *)注释语句 >rlUV"8jY;
|?J57(
diagram shown: 1,2,3,4,5 !指定输出图表 60|PVsmDm
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 w>*Jgc@A*
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 %P ~;>4i,
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 v_Vw!u
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 wL~A L
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 c<Cf|W
3:xx:Jt
include"Units.inc" !读取“Units.inc”文件中内容 G~y:ZEnN[
+JYb)rn$^
include"Tm-silicate.inc" !读取光谱数据
[{2v}
fNi&r0/-t
; Basic fiberparameters: !定义基本光纤参数 2'=)ese
L_f := 4 { fiberlength } !光纤长度 F_0D)H)N@
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 w-JWMgY8w
r_co := 6 um { coreradius } !纤芯半径 n@tt.n!{l
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 1|8Bv0-b
Psf'^42(v
; Parameters of thechannels: !定义光信道 ^[SW07o~
l_p := 790 nm {pump wavelength } !泵浦光波长790nm d:iJUVpr
dir_p := forward {pump direction (forward or backward) } !前向泵浦 A5F(-
P_pump_in := 5 {input pump power } !输入泵浦功率5W &-FG}|*4M
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um >"IG\//I
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 1c QF(j_
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 J>#hu3&UOQ
rZwSo]gp
l_s := 1940 nm {signal wavelength } !信号光波长1940nm <ot`0
w_s := 7 um !信号光的半径 W*s=No3C
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 41=H&G&
loss_s := 0 !信号光寄生损耗为0 G9-ETj}
'^m'r+B"
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 Vaf,
R\ 8[6H
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 NsYEBT7f
calc s@$0!8sxm
begin :vIJ>6lIR
global allow all; !声明全局变量 PeIi@0vA
set_fiber(L_f, No_z_steps, ''); !光纤参数 ;bG?R0a
add_ring(r_co, N_Tm); 4u*n7di$9d
def_ionsystem(); !光谱数据函数 }Ifa5Lq)
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 h1(i/{}:
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 OcMB)1uh\
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 9mk@\Gqqm
set_R(signal_fw, 1, R_oc); !设置反射率函数 O)V;na
finish_fiber(); jA {BG_
end; 2He R1m<
E4o{Z+C
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 b]?5r)GK
show "Outputpowers:" !输出字符串Output powers: {hN\=_6*EW
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) HaL'/V~
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) Wn6m$ =
uSYI
X
H(K!{k
; ------------- *YH!L{y
diagram 1: !输出图表1 HOu$14g
g&$5!ifgi
"Powers vs.Position" !图表名称 q&[G^9
d, g~.iS~
x: 0, L_f !命令x: 定义x坐标范围 c}$>UhLe
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 =Bc{0p*
y: 0, 15 !命令y: 定义y坐标范围 O[$X36z
y2: 0, 100 !命令y2: 定义第二个y坐标范围 kD+#| f
frame !frame改变坐标系的设置 tk-)N+M.
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) NUb$PT
hx !平行于x方向网格 y|BHSc3
hy !平行于y方向网格 %"c;kvw
Uu+ibVM$
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 |FT.x9e-
color = red, !图形颜色 Zjn1,\(t~u
width = 3, !width线条宽度 %4rlB$x
"pump" !相应的文本字符串标签 +%[,
m&
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 4J`-&05O
color = blue, gA_oJW4_
width = 3, D1deh=
"fw signal" |UlR+'rl
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 Fv,c8f
color = blue, GD}rsBQNkJ
style = fdashed, 0=7Ud<
width = 3, d<
XY"Y%
"bw signal" >Giw\|:f(
:T PG~`k(
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 Y:+:>[F
yscale = 2, !第二个y轴的缩放比例 V6ECL6n
color = magenta, [-#1;!k
width = 3, ,0HID:&
style = fdashed, }Gb^%1%M
"n2 (%, right scale)"
n}b/9
Vm@VhCsp
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 M7Z&t'=
yscale = 2, 0Z((cI\J
color = red, Qu<HeSA_
width = 3, 8KP
style = fdashed, R.*
k7-(;
"n3 (%, right scale)" ~ cu+QR)
p}GTOJT}
OmK0-fa/
; ------------- *a_QuEw_k
diagram 2: !输出图表2 6,CK1j+tZ
+N B5Fd4
"Variation ofthe Pump Power" $hk_v~zM
8zeD%Uv
x: 0, 10 JKp@fQT *
"pump inputpower (W)", @x y&4im;X0
y: 0, 10 N/0Q`cQ-
y2: 0, 100 #Sg/
frame YP"%z6N@v
hx &,XPMT
hy uY3$nlhP6
legpos 150, 150 wN0?~
WV|9d}5
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 0j#$Swa
step = 5, eBECY(QMQ
color = blue, tnmz5Q
width = 3, 7V\M)r{q7
"signal output power (W, leftscale)", !相应的文本字符串标签 \=W t{
finish set_P_in(pump, P_pump_in) 5oD%~Fk l
,qgR+]?({
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 Tc;BE
yscale = 2, h2]GV-
step = 5, E&W4`{6K4
color = magenta, cz>`$Zz
width = 3, !G~\9
"population of level 2 (%, rightscale)", Me,AE^pgL'
finish set_P_in(pump, P_pump_in) #0qMYe>Y
oB}rd9
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 v}z{OB
yscale = 2, qp1rP#
step = 5, s.}:!fBk
color = red, ?v@q&
width = 3, '&xRb*
"population of level 3 (%, rightscale)", M^A;tPw
finish set_P_in(pump, P_pump_in) [;INVUwG^
@)@hzXQ
<_Po/a!c3
; ------------- b WZX
diagram 3: !输出图表3 U
&W}c^#
}5;3c %
"Variation ofthe Fiber Length" T^ah'WmNw
p7)b@,
x: 0.1, 5 0.t1p(x;
"fiber length(m)", @x }JWk?
y: 0, 10 b{JxTT}03
"opticalpowers (W)", @y ?K?v64[
frame 3D7phq>.q
hx G Q+g.{c
hy &4l>_
?#;zB
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响
1(U\vMb
step = 20, {~d8_%:b
color = blue, o[eIwGxZ
width = 3, d5B96;3
"signal output" nR~L$Wu5_a
ut^^,w{o>
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 )%5T*}j
step = 20, color = red, width = 3,"residual pump" '||),>~
A|U_$!cLZ
! set_L(L_f) {restore the original fiber length } wms8z
?_c*(2i&^
E
:Y
*;
; ------------- [I` 6F6
diagram 4: !输出图表4 Z)zmT%t
|LDo<pE*V4
"TransverseProfiles" nK9A=H'Hc
S}*%l)vfR
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) #G ZGk?
"&/&v
x: 0, 1.4 * r_co /um NLxsxomj
"radialposition (µm)", @x `#~HCl
y: 0, 1.2 * I_max *cm^2 wMB<^zZmv
"intensity (W/ cm²)", @y rx#\Dc}
y2: 0, 1.3 * N_Tm /\9X0a2h|E
frame VXAgp6
hx /TgG^|
hy !>+Na~eN
9m
fYB
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 WNPdy m
yscale = 2, x~tG[Y2F?
color = gray, OC]_b36v
width = 3, ^25[%aJI
maxconnect = 1, S|%f<zAtJ
"N_dop (right scale)" [
Q6v #I
`QlChxd
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 %h%^i
color = red, 8W"~>7/>D
maxconnect = 1, !限制图形区域高度,修正为100%的高度 Mc6?]wDB]
width = 3, =ITMAC\
"pump" d(L u|/~
b&Sk./
J6
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 "+ji`{
color = blue, vxo iPqo
maxconnect = 1, q*<Df=+B
width = 3, T(^<sjOs
"signal" "rr,P0lgX
Bk1Q.Un
jn#
; ------------- *r+i=i8{
diagram 5: !输出图表5 ds4)Nk4%O
!R WX1Z
"TransitionCross-sections" Rd5r~iT
SL/ FMYdd
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) Z;W`deA
!58-3F%P
x: 1450, 2050 -<i&`*zG
"wavelength(nm)", @x @fbB3
y: 0, 0.6 .Tdl'y:..
"cross-sections(1e-24 m²)", @y ;ePmN|rq;
frame E#T-2^nD
hx U&/Jh^Yy
hy h"')D
q7wd9 6G:
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 Tp`by
1s
color = red, ^6ZA2-f/<8
width = 3, n}yqpW!%n
"absorption" b#.hw2?a`
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 SN'LUwaMp!
color = blue, 1k\1U
width = 3, Db=
iJ68
"emission" 5_nkN`x
+MeEy{;