切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 2615阅读
    • 1回复

    [原创]RP Fiber Power仿真设计掺铥光纤激光器代码详解 [复制链接]

    上一主题 下一主题
    离线小火龙果
     
    发帖
    932
    光币
    2176
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-05-28
    (* y my/`%  
    Demo for program"RP Fiber Power": thulium-doped fiber laser, XN@F6Gj  
    pumped at 790 nm. Across-relaxation process allows for efficient ,U\F <$O  
    population of theupper laser level. %Y7\0q~Z  
    *)            !(*  *)注释语句 T( UPWsj  
    |2#)lGA  
    diagram shown: 1,2,3,4,5  !指定输出图表 =BN_Kvza^6  
    ; 1: "Powersvs. Position"     !分号是注释;光纤长度对功率的影响 bT^6AtsJ  
    ; 2:"Variation of the Pump Power"  !泵浦光功率变化对信号输出功率的影响 'rZYl Qm  
    ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 dX4"o?KD>  
    ; 4:"Transverse Profiles"             !横向分布,横坐标为半径位置 fO+$`r>9  
    ; 5:"Transition Cross-sections"    !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 95 7Cr  
    9"5J-a'  
    include"Units.inc"         !读取“Units.inc”文件中内容 KiXRBFo  
    aNX M~;5~  
    include"Tm-silicate.inc"    !读取光谱数据 2 1b  
    8<gYB$* S  
    ; Basic fiberparameters:    !定义基本光纤参数 AATiI+\S  
    L_f := 4 { fiberlength }      !光纤长度 >h?!6L- d  
    No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 ZK1H%&P=R  
    r_co := 6 um { coreradius }                !纤芯半径 B:-qUuS?R  
    N_Tm := 100e24 { Tmdoping concentration }  !纤芯Tm离子掺杂浓度 ^W&qTSjh  
    O$=[m9V  
    ; Parameters of thechannels:                !定义光信道 X,)`< >=O  
    l_p := 790 nm {pump wavelength }                !泵浦光波长790nm ^EK]z8;|  
    dir_p := forward {pump direction (forward or backward) }   !前向泵浦 jea{BhdUr  
    P_pump_in := 5 {input pump power }                    !输入泵浦功率5W lr>P/W\  
    w_p := 50 um {radius of pump cladding }               !包层泵浦相应的半径 50um 8.9Z0  
    I_p(r) := (r <=w_p) { pump intensity profile }          !泵浦光强度分布 w}wABO  
    loss_p := 0 {parasitic losses of pump wave }           !泵浦光寄生损耗为0 bi^[Eh  
    %r1NRg8  
    l_s := 1940 nm {signal wavelength }                   !信号光波长1940nm u0&QStI  
    w_s := 7 um                          !信号光的半径 8F?6Aq1B  
    I_s(r) := exp(-2 *(r / w_s)^2)            !信号光的高斯强度分布 .c+NsI9}  
    loss_s := 0                            !信号光寄生损耗为0 Fj?gXc5{  
    5cr d.1@^  
    R_oc := 0.70 {output coupler reflectivity (right side) }      !输出耦合反射率 fC$Rz#5?  
    (!^i6z0Sp  
    ; Function for defining themodel:   !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 L_TM]0D>7  
    calc I?2S{]!?  
      begin :Pa^/i  
        global allow all;                   !声明全局变量 MLbmz\8a  
        set_fiber(L_f, No_z_steps, '');        !光纤参数 it Byw1/  
        add_ring(r_co, N_Tm); P!c.!8C$  
        def_ionsystem();              !光谱数据函数 P2U^%_~  
        pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p);  !泵浦光信道 U`G  
        signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward);      !前向信号光信道 #@rvoi  
        signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward);    !后向信号光信道 >S<`ri'5_  
        set_R(signal_fw, 1, R_oc);                                 !设置反射率函数 }0Q_yuzx0m  
        finish_fiber();                                   S.u1[Yz^  
      end; C;mcb$@  
    Pdq}~um3{  
    ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 ,~ z*V;y)  
    show "Outputpowers:"                                   !输出字符串Output powers: %T~3xQ  
    show"pump:     ", P_out(pump):d3:"W"  !输出字符串pump:和计算值(格式为3个有效数字,单位W) NNOemTh  
    show"signal:   ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) T?4pV#  
    ^Z dDs8j  
    25 NTtj:X  
    ; ------------- 2=\} 0  
    diagram 1:                   !输出图表1 7?U)V03  
    ECZ`I Z.  
    "Powers vs.Position"          !图表名称 <D_UF1Pk  
    DG%vEM,y  
    x: 0, L_f                      !命令x: 定义x坐标范围 9oe=*#Ig1m  
    "position infiber (m)", @x      !x轴标签;@x 指示这些字符串沿坐标轴放置 2LO8SJ#  
    y: 0, 15                      !命令y: 定义y坐标范围 |^S{vub  
    y2: 0, 100                    !命令y2: 定义第二个y坐标范围 QfdATK P  
    frame          !frame改变坐标系的设置 d[0 R#2y=  
    legpos 600, 500  !图行在图表窗口中的位置(相对于左上角而言) J~}%j.QQ7  
    hx             !平行于x方向网格 ^k* h  
    hy              !平行于y方向网格 5_H`6-q  
    C\3;o]  
    f: P(pump, x),    !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 q(Q$lRj/I-  
      color = red,  !图形颜色 5 $58z  
      width = 3,   !width线条宽度 '<Fr}Cn  
      "pump"       !相应的文本字符串标签 Em<B 9S  
    f: P(signal_fw, x),  !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 ?:sk [f6  
      color = blue,     S S)9+0$  
      width = 3, D1ep7ykY  
      "fw signal" (aeS+d x  
    f: P(signal_bw, x),   !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 r5> 1n/+6  
      color = blue, EE{]EW(  
      style = fdashed, QWncKE,O$  
      width = 3, M:PEY*4H  
      "bw signal" Bu]PNKIi  
    prk@uYCa =  
    f: 100 * n(x, 2),    !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 ^t 2b`n60  
      yscale = 2,            !第二个y轴的缩放比例 (XU( e  
      color = magenta, e|-%-juI  
      width = 3, iAl.(j  
      style = fdashed, f>!H<4 ]  
      "n2 (%, right scale)" ITt*TuS 2c  
    d,5,OJY2f  
    f: 100 * n(x, 3),          !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 at )m*  
      yscale = 2, PwC9@c%c  
      color = red, )8Q;u8jm1  
      width = 3, x+Ws lN 2a  
      style = fdashed, ~WW!P_wI,  
      "n3 (%, right scale)" A)5;ae  
    83i;:cn  
    ['%$vnS5S  
    ; ------------- x@p1(V.  
    diagram 2:                    !输出图表2 9OS~;9YR  
    Y 9SaYSX  
    "Variation ofthe Pump Power" Clo}kdkd_  
    nu6p{_M  
    x: 0, 10 %(X^GL  
    "pump inputpower (W)", @x r,r"?}Z  
    y: 0, 10 8 U<$u,WS  
    y2: 0, 100 _kZ&t_]  
    frame a !yBEpMo  
    hx EJid@  
    hy 4;|@eN  
    legpos 150, 150 O' ~>AC5{  
    A=f)ntH~  
    f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 W}iDT?Qi  
      step = 5, 7%sx["%@  
      color = blue, o]<@E uG  
      width = 3, j9r%OZw{  
      "signal output power (W, leftscale)",     !相应的文本字符串标签 sDZ<X A  
      finish set_P_in(pump, P_pump_in) 5L0w!q'W  
    r}4   
    f: (set_P_in(pump,x); 100 * n_av(2)),   !改变泵浦信号功率对能级2上激活粒子占比的影响 bCg)PJuB  
      yscale = 2, 3-T"[tCe  
      step = 5, GTocN1,Z~a  
      color = magenta, qCI0[U@  
      width = 3, >h9T/J8  
      "population of level 2 (%, rightscale)", ~5;2ni8n  
      finish set_P_in(pump, P_pump_in) 2~ y<l  
    "+Kp8n6  
    f: (set_P_in(pump,x); 100 * n_av(3)),   !改变泵浦信号功率对能级3上激活粒子占比的影响 (Rs|"];?Z  
      yscale = 2, 7csMk5NU'<  
      step = 5,  5?34<B  
      color = red, %%{f-\-7Ig  
      width = 3, 3>#io^35  
      "population of level 3 (%, rightscale)", l,k.Jo5  
      finish set_P_in(pump, P_pump_in) g?gF*^_0  
    K9_@[}Ge  
    w gkY \Q  
    ; ------------- bNG7A[|B  
    diagram 3:                         !输出图表3 EG J/r  
    9zNMv-  
    "Variation ofthe Fiber Length" YfUo=ku  
    y(yBRR  
    x: 0.1, 5 _X~xfmU  
    "fiber length(m)", @x c{{RP6o/j=  
    y: 0, 10 Y?4N%c_;  
    "opticalpowers (W)", @y fU>4Ip1?y/  
    frame -1%AM40j  
    hx wqF_hs(O  
    hy P0l.sVqL  
    .F]"%RK[  
    f: (set_L(x);P_out(signal_fw)),     !改变光纤长度对信号光输出功率的影响 KSR'X0'  
      step = 20,             #^9a[ZLj0  
      color = blue, 3a?dNwM@  
      width = 3, *@fVogr^  
      "signal output" <.U(%`|  
    iHk/#a  
    ;f: (set_L(x);P_out(pump)),                     !改变光纤长度对泵浦信号输出功率的影响 2SXy)m !  
       step = 20, color = red, width = 3,"residual pump" bmw"-W^U[  
    q\d/-K  
    ! set_L(L_f) {restore the original fiber length } 4v#A#5+O E  
    a/gr1  
    " XlXu  
    ; ------------- T5+ (Fz  
    diagram 4:                                  !输出图表4 >8EmfjUoc  
    XSktb k  
    "TransverseProfiles" |D~#9  
    psAr>:\3  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) '&F Pk T:5  
     Eikt,  
    x: 0, 1.4 * r_co /um DxzNg_E]  
    "radialposition (µm)", @x xeKfc}:&z  
    y: 0, 1.2 * I_max *cm^2 i,mo0CSa  
    "intensity (W/ cm&sup2;)", @y 2T-3rC)  
    y2: 0, 1.3 * N_Tm 8C5*:x9l  
    frame 0:zDt~Ju  
    hx ,H5o/qNU`{  
    hy %!V=noo  
    :pGgxO%q  
    f: N_dop(1, x * um,0),      !掺杂浓度的径向分布 O/lu0acI  
      yscale = 2, wyUfmk_}  
      color = gray, ~?:Xi_3Lo  
      width = 3, X~rHNRIU  
      maxconnect = 1, PaBqv]  
      "N_dop (right scale)" F=V_ACU  
     m8z414o  
    f: I(pump, -1, x *um, 0) * cm^2,    !泵浦光沿光纤径向的强度分布 [OwrIL  
      color = red, T#=&oy7  
      maxconnect = 1,           !限制图形区域高度,修正为100%的高度 `YK%I8  
      width = 3, $m0-IyXcv  
      "pump" M6*8}\  
    D|"^ :Gi  
    f: I(signal_fw, -1,x * um, 0) * cm^2,  !信号光沿光纤径向的强度分布 eS;W>d  
      color = blue, Wf9K+my  
      maxconnect = 1, v$EgVc K  
      width = 3, z{G@t0q  
      "signal" DTM xfQdk  
    xwZ7I  
    (d}z>?L  
    ; ------------- 'Q4V(.   
    diagram 5:                                  !输出图表5 jrm L>0NZ  
    @^K_>s9B  
    "TransitionCross-sections" Yf[GpSej  
    W=?s-*F[~  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) (0QYX[(r~o  
    1/ vcj~|)t  
    x: 1450, 2050 Z=y^9]  
    "wavelength(nm)", @x k+As#7V  
    y: 0, 0.6 )jaNFJ 3  
    "cross-sections(1e-24 m&sup2;)", @y \t+q1S1  
    frame 9|&%"~6'  
    hx TDjjaO  
    hy n Y=]KU  
    uf}Q{@Ab  
    f: s12_Tm(x * nm) /1e-24,      !Tm3+吸收截面与波长的关系 f*GdHUZ*  
      color = red, q@&.)sLPgO  
      width = 3, ,?>:Cdz4  
      "absorption" *Q:EICDE7  
    f: s21_Tm(x * nm) /1e-24,  !Tm3+发射截面与波长的关系 GeCyq%dN  
      color = blue, A]mXV4RmI  
      width = 3, * 57y.](w  
      "emission" pk:2>sx/  
    bhc .UmH  
     
    分享到
    离线lileisgsz
    发帖
    14
    光币
    69
    光券
    0
    只看该作者 1楼 发表于: 2021-09-28
    感谢,视频上有点看不清楚