(* XB7Aa)
Demo for program"RP Fiber Power": thulium-doped fiber laser, 0Z1ksfLU
pumped at 790 nm. Across-relaxation process allows for efficient SIJ7Y{\.
population of theupper laser level. [iub}e0
*) !(* *)注释语句 ga5Q
q? '4&
diagram shown: 1,2,3,4,5 !指定输出图表 .N X9Ab
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 M:/NW-:
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 hCcI]#S&
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 gwoe1:F:J
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 u7L?9
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 @7twe;07r
mr\,"S-`
include"Units.inc" !读取“Units.inc”文件中内容 P%aqY~yF3
>^s2$@J?p
include"Tm-silicate.inc" !读取光谱数据 :y-;V
)QE6X67i
; Basic fiberparameters: !定义基本光纤参数 ,8@<sFB'
L_f := 4 { fiberlength } !光纤长度 q]?qeF[
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 ^k=<+*9
r_co := 6 um { coreradius } !纤芯半径 Lv%3 jj
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 atTR6%!6
E(~7NRRm
; Parameters of thechannels: !定义光信道 NnLK!Q
l_p := 790 nm {pump wavelength } !泵浦光波长790nm M\R+:O&
dir_p := forward {pump direction (forward or backward) } !前向泵浦 r1L@p[>
P_pump_in := 5 {input pump power } !输入泵浦功率5W sgfqIe1
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um |[?Otv
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 5Z>a}s_i
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 {rc3`<%
|?T=4~b
l_s := 1940 nm {signal wavelength } !信号光波长1940nm ,1sbY!&ekL
w_s := 7 um !信号光的半径 g0B] ;Y>(
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 Hr?lRaV
loss_s := 0 !信号光寄生损耗为0 @+b$43^
COh#/-`\1
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 MB)<@.A0
yB UQ!4e
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 L7rgkxI7k*
calc [c,V=:Cq
begin b Hr^_ogN
global allow all; !声明全局变量 duG!QS:
set_fiber(L_f, No_z_steps, ''); !光纤参数
d$$5&a
add_ring(r_co, N_Tm); dc)%5fV\
def_ionsystem(); !光谱数据函数 Cqr{Nssu
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 D6bYg `
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 EO !,rB7I
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 t"VT['8
set_R(signal_fw, 1, R_oc); !设置反射率函数 _k@cs^
finish_fiber(); 1-y8Hy_a2
end; I$;`^z
jFN0xGZ
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 ]Y[N=G
show "Outputpowers:" !输出字符串Output powers: cY5&1Shb~
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) L`nW&;w'
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) !n-Sh<8
|vs5N2_
_.s,gX
; ------------- AG,><UP
diagram 1: !输出图表1 o +$v0vg%T
,JwX*L<:
"Powers vs.Position" !图表名称 Ey=2zo^F
>?^oxB"<Gc
x: 0, L_f !命令x: 定义x坐标范围 n#X~"|U`
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 RL`E}:V
y: 0, 15 !命令y: 定义y坐标范围 ZXnacc~s
y2: 0, 100 !命令y2: 定义第二个y坐标范围 g{N}]_%Uh
frame !frame改变坐标系的设置 /|v4]t-
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) [icD*N<Gc
hx !平行于x方向网格 IWo'{pk
hy !平行于y方向网格 BE0l2[i?
SJiQg-+<Uf
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 sC3Vj(d!i
color = red, !图形颜色 {!2K-7;
width = 3, !width线条宽度 v2x+_K}J
"pump" !相应的文本字符串标签 ai<qK3!O
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 7i" b\{5
color = blue, (_pw\zk>
width = 3, X_78;T)uA
"fw signal" IHEbT
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 EXSJ@k6=8s
color = blue, ]aPf-O*
style = fdashed, 0qN`-0Yk
width = 3, O\<zQ2m
"bw signal" y(|#!m?@
#zsaQg,
B
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 hV@ N-u^
yscale = 2, !第二个y轴的缩放比例 ?M:>2wl
color = magenta, 7hk<{gnr
width = 3, ta?NO{*
style = fdashed, N:lE{IvRJ
"n2 (%, right scale)" ]wid;<
63E6nW M
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 6Q :Wo)^!
yscale = 2, 'w,gYW
color = red, !=YE hQ-
width = 3, W` x.qumN
style = fdashed, l,o'J%<%
"n3 (%, right scale)" 7^i7U-A<A
Rw'}>?k]
ho=!Yy
; ------------- ]T)N{"&N/
diagram 2: !输出图表2 4. R(`#f
n3p@duC4
"Variation ofthe Pump Power" =dQ[I6
v?."`,e
x: 0, 10 ]njNSn
"pump inputpower (W)", @x r|l?2 eO~
y: 0, 10 (7qlp*8.s
y2: 0, 100 !H\;X`W|~D
frame /phMrL=
hx i(%2t(wf+
hy H4ie$/[$8
legpos 150, 150 4 bk`i*-O
*)RKU),3nL
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 [)V~U?
step = 5, NFTv4$5d
color = blue, @aQ:3/
width = 3, Q\4tzb]
"signal output power (W, leftscale)", !相应的文本字符串标签 K9zr]7;th
finish set_P_in(pump, P_pump_in) zr!7*,
p
c!E{fS P
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 X$UK;O
yscale = 2, {m*lt3$k
step = 5, P;.roD9
color = magenta,
anSZWQ
width = 3, l,J>[Q`<
"population of level 2 (%, rightscale)", n#6{K6}k~
finish set_P_in(pump, P_pump_in) ?EC\.{
}Nr6oUn
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 &.E/%pQ`
yscale = 2, |?V7E\S
step = 5, ND1hZ3(^
color = red, _".h(
width = 3, X{ x(p
"population of level 3 (%, rightscale)", 8=$X hC
finish set_P_in(pump, P_pump_in) Z7bJ<TpZ
:,l16{^
HN7tIz@Frc
; ------------- QqQhQ GV
diagram 3: !输出图表3 no8\Oees
oJD]h/fQs
"Variation ofthe Fiber Length" m]V#fRC
ueJ^Q,-t
x: 0.1, 5 :h(RS ;
"fiber length(m)", @x x'0_lf</#
y: 0, 10 F'|K>!H
"opticalpowers (W)", @y ho$}#o
frame 9C)VW
hx J&j5@
hy IoLP*D
Y-bTKSn
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 Dh4Lffy
step = 20, bVz<8b6h'-
color = blue, (W#CDw<ja
width = 3, @&G}'6vF!
"signal output" 8SU0q9X.
pfZ[YC-
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 kxKb}>=
step = 20, color = red, width = 3,"residual pump" *` mxv0w~(
3UXZ|!-
! set_L(L_f) {restore the original fiber length } 3Iqvc v
r^6@Zwox]
3ibQbk
; ------------- E
G+/2o+W
diagram 4: !输出图表4 G%k&|
gHc1_G]
"TransverseProfiles" 1Du5Z9AM
8?8V;
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) 0rL.~2)V
%Mj,\J!
x: 0, 1.4 * r_co /um 9n is8
"radialposition (µm)", @x x"sbm
y: 0, 1.2 * I_max *cm^2 C[.Xi
"intensity (W/ cm²)", @y Sed8Q-m
y2: 0, 1.3 * N_Tm /RJ]MQ\*O
frame U\Y0v.11
hx }J6:D]Q
hy ?{aC-3VAT
~]?sA{
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 8H-yT1
yscale = 2, Ms +ekY)
color = gray, #/ePpSyD
width = 3, @p~scE.#\
maxconnect = 1, EUs9BJFP
"N_dop (right scale)" 3#'8S_
N
{{MMIq
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 i7-i!`<
color = red, 05{}@tW-
maxconnect = 1, !限制图形区域高度,修正为100%的高度 Xg]Cq"RJC
width = 3, ,mx\
-lWFy
"pump" [-[59H[6)
,+IFV
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 JwxKWVpWv
color = blue,
lTu& 9)
maxconnect = 1, u=Ik&^v
Wq
width = 3, QY4;qA
"signal" d:|x e :
ZHjL8Iq
?;v\wx
; ------------- .'A1Eoo0d
diagram 5: !输出图表5 @.$-
^-
M.,DXEZT
"TransitionCross-sections" a9;KS>~bq
5-GS@fY
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) L3HC-
G=[<KtWa
x: 1450, 2050 ,x1OQ jtY
"wavelength(nm)", @x qJT/48lf_
y: 0, 0.6 RtR@wZ2\s
"cross-sections(1e-24 m²)", @y 9tv,,I;iU
frame sgi5dQ
hx jZ-s6r2=
hy 5PZ!ZO&
(_4DZMf
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 s&pnB
color = red, }\S'oC\[
width = 3, Cp/f18zO
"absorption" \~A qA!)6
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 rxX4Cw]\"y
color = blue, ;PC!
width = 3, ssLswb
"emission" vVSDPlN;
17?YN<