(* b.F2m(e2
Demo for program"RP Fiber Power": thulium-doped fiber laser, YB[P`Muj
pumped at 790 nm. Across-relaxation process allows for efficient zPn8>J<.0Q
population of theupper laser level. MEE]6nU
*) !(* *)注释语句 Rh39x-`Z
0>vm&W<?)
diagram shown: 1,2,3,4,5 !指定输出图表 $%/Zm*H
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 )57OZ
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 -<.>jX
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 -1[ri8t;nV
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 .d;/6HD[y
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 J?{uG8)
OF)X(bi4j
include"Units.inc" !读取“Units.inc”文件中内容
) s M}BY
umc!KOkL
include"Tm-silicate.inc" !读取光谱数据 *%8dW
7kO
1d{u6b
; Basic fiberparameters: !定义基本光纤参数 =^6]N~*,D
L_f := 4 { fiberlength } !光纤长度 U^.$k-|k
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 QJxcH$
r_co := 6 um { coreradius } !纤芯半径 o9JJ_-O"
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 "p<f#s}
{oO!v}]
; Parameters of thechannels: !定义光信道 C0e<
_6p=
l_p := 790 nm {pump wavelength } !泵浦光波长790nm ],#9L
dir_p := forward {pump direction (forward or backward) } !前向泵浦 Da.v yp
P_pump_in := 5 {input pump power } !输入泵浦功率5W FG?B:Zl%T
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um aXwFQ,
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 qRNGe8
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 % 30&6 "
.iw+#
l_s := 1940 nm {signal wavelength } !信号光波长1940nm y2)~ljR
w_s := 7 um !信号光的半径 Hc}(+wQN%
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 Xf:-K(%e
loss_s := 0 !信号光寄生损耗为0 =r`>tWs
8L0#<"'0
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 g8^ $,
rN
OwB2e
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 W;2y.2*
calc TJ#<wIiX
begin N'IzHyo.
global allow all; !声明全局变量 od!TwGX
set_fiber(L_f, No_z_steps, ''); !光纤参数 RE*;nSVFt
add_ring(r_co, N_Tm); V_h, UYN
def_ionsystem(); !光谱数据函数 >QCVsX>~
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 8g$pfHt|e
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 l]GLkE
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 i9$
-lk
set_R(signal_fw, 1, R_oc); !设置反射率函数 .#CTL|x
finish_fiber(); 21W>}I"0?
end; "H6DiPh.E
'(=krM9;
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 OF!(BJL
show "Outputpowers:" !输出字符串Output powers: . F_pP2A
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) ?bY'J6n.
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) ``U>9S"p)
G3m+E;o1
%vgn>A?]1
; ------------- (FP-
K
diagram 1: !输出图表1 L -<!,CASW
rqSeh/<iD
"Powers vs.Position" !图表名称 / F9BbG{
-:Yx1Y3
[
x: 0, L_f !命令x: 定义x坐标范围 [/\}:#MLe
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 <$R'y6U:
y: 0, 15 !命令y: 定义y坐标范围 KftZ^mk+p
y2: 0, 100 !命令y2: 定义第二个y坐标范围 n}0[EE!
frame !frame改变坐标系的设置 o^H.uBO{
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) Sw%^&*J
hx !平行于x方向网格 "cj6i{x,~w
hy !平行于y方向网格 /U+0T>(HS
WQK ~;GV-
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 g=Rl4F]
color = red, !图形颜色 ;5MI8
width = 3, !width线条宽度 =[`B -?
"pump" !相应的文本字符串标签 XC%u`UG
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 Gu-6~^Km9
color = blue, "]B:QeMeF!
width = 3, &( aw
"fw signal" 7\H jQ7__
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 8k vG<&D
color = blue, <>%2HRn<u
style = fdashed, "MOM@4\
width = 3, n Hz Xp:"
"bw signal" \2#7B8
M8(N9)N
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 Z^wogIAV
yscale = 2, !第二个y轴的缩放比例 9bwG3jn4?
color = magenta, E9<oA.
width = 3, *:}9(8d
style = fdashed, #%5[8~&
"n2 (%, right scale)" $MhfGMk!'
N3"O#C
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 ?g+uJf
yscale = 2, L.X"wIs^
color = red, '(fQtQ%
width = 3, j2^Vz{
style = fdashed, &!N9.e:-]
"n3 (%, right scale)" RA^6c![
2Kwr=t
@^R6}qJ
; ------------- S+2we
diagram 2: !输出图表2 _D.4=2@|l8
{ 0?^ $R8j
"Variation ofthe Pump Power" J@$KF GUs
As"%
u
x: 0, 10 <Ukeq0
"pump inputpower (W)", @x AO[/-Uij
y: 0, 10 \8Y62
y2: 0, 100 o=C:=
frame ((Uw[8#2`
hx %/.yGAPkx
hy T]oVNy
legpos 150, 150 tK7v&[cI
yVfF
*nG
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 CT{mzC8
step = 5, $-AG$1
color = blue, YUjKOPN
width = 3, "vvv@sYxi
"signal output power (W, leftscale)", !相应的文本字符串标签 ,B 2p\
finish set_P_in(pump, P_pump_in) Ky[s&>02
tY@+d*u
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 hik.c3
yscale = 2, zoibinm}Eg
step = 5, E\1e8Wyh
color = magenta, .VXadgM
width = 3, @PzRHnT*
"population of level 2 (%, rightscale)", F81Kxcs
finish set_P_in(pump, P_pump_in) R+r;V ]-/
SiLWy=qbR
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 s.$:.*k
yscale = 2, .C|dGE?,
step = 5, #KUNZW
color = red, Lrjp
width = 3, >zX`qv&>
"population of level 3 (%, rightscale)", <IBWA0A=8a
finish set_P_in(pump, P_pump_in) A= 96N@m6
HC!5AJ&+}v
@Ta0v:Y
; ------------- g|Xjw Ti8$
diagram 3: !输出图表3 IE:;`e:\D
Ve\.7s
"Variation ofthe Fiber Length" Y>2oU`ly,
fA)4'7UT
x: 0.1, 5 TUN6`/"
"fiber length(m)", @x D4jZh+_|S
y: 0, 10 Esdv+f}4;
"opticalpowers (W)", @y wd*V,ZN7
frame nTv^][
hx yk0^m/=C(
hy K!a7Hg
>@tJ7mM
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 Z{^Pnit
step = 20, +2#pP
color = blue, .efbORp
width = 3, .A F94OlE/
"signal output" Mj W{JR)I
^!6T,7B B
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 8vx#QU8E/
step = 20, color = red, width = 3,"residual pump" wvI}|c
)uO 3v
! set_L(L_f) {restore the original fiber length } J9);(
DD'RSV5]
w""
; ------------- $Yj4&Two<
diagram 4: !输出图表4 ~.Er
|@rYh-5
"TransverseProfiles" LHMA-0$ ?)
9gFfbvd
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) 'XI-x[w
s+9b.
x: 0, 1.4 * r_co /um _|>bOI
"radialposition (µm)", @x 4oPr|OKj{*
y: 0, 1.2 * I_max *cm^2 b6^#{))"
"intensity (W/ cm²)", @y Z8:'_#^@a[
y2: 0, 1.3 * N_Tm ;y.<I&
frame <3 I0$?xL
hx i9^m;Y)^I
hy Zr|\T7w 3
es1'z.U J
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 \tfhF#'
yscale = 2, ub-vtRpm
color = gray, &ER,;^H`6
width = 3, ,-)ww:
maxconnect = 1, vPsf{[Kr
"N_dop (right scale)" :@,UPc-+
nXW]9zC"/
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 ?Lem|zo
color = red, A}CpyRVCn
maxconnect = 1, !限制图形区域高度,修正为100%的高度 y^:6D(SR
width = 3, KV|ywcGhT
"pump" "v+%F
lT+N{[kLt*
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 $ItPUYi";
color = blue, 8]&lUMaqVZ
maxconnect = 1, u4~(0
width = 3, 70E@h=oQ
"signal" Dl_SEf6b
S^ JUQx7
HE*P0Yf=
; -------------
C44*qiG.
diagram 5: !输出图表5 J:2Su1"ODh
p/?TU
"TransitionCross-sections" 8zH/a
o[>p
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) D}K/5iU]a
Ffr6P
}I
x: 1450, 2050 aR0v qRF
"wavelength(nm)", @x dMoN19F
y: 0, 0.6 F>rf
cW2
"cross-sections(1e-24 m²)", @y n4G53+y'
frame \?NT,t=3J
hx J.pe&1
hy @-BgPDi.Z
"dBCS
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 AK5$>Pkvk
color = red, Wg5i#6y8w
width = 3, {#%;Hq P
"absorption" p&(~c/0
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 *,p16"Q;
color = blue, D(gpF85t
width = 3, ]@7]mu:oL
"emission" n`g:dz
OvW/{