(* (U.**9b;
Demo for program"RP Fiber Power": thulium-doped fiber laser, @kngI7=E
pumped at 790 nm. Across-relaxation process allows for efficient d+z[\i
population of theupper laser level. @%i>XAe#0
*) !(* *)注释语句 nYv#4*
"2n;3ByR
diagram shown: 1,2,3,4,5 !指定输出图表 ~] =?b)B
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 SqB/4P
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 GCE!$W
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 `]2@_wa
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 9rj('F&1
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 cV$lobqO
y{rn-?`{
include"Units.inc" !读取“Units.inc”文件中内容 m% bE-#
5]"BRn1*
include"Tm-silicate.inc" !读取光谱数据 LZWS^77
!y vJpdsof
; Basic fiberparameters: !定义基本光纤参数 eYP=T+
L_f := 4 { fiberlength } !光纤长度 \ZnN D1A
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 4UCwT1
r_co := 6 um { coreradius } !纤芯半径 hYvNcOSks
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 g5R,% 6
CM 9P"-
; Parameters of thechannels: !定义光信道 )*[
""&
l_p := 790 nm {pump wavelength } !泵浦光波长790nm d7~j^v)=^
dir_p := forward {pump direction (forward or backward) } !前向泵浦 @%B4;c
P_pump_in := 5 {input pump power } !输入泵浦功率5W 6+%-GgPf
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um Pf8u/?/
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 3_J>y
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 E/"SU*Co
^g]xU1] *
l_s := 1940 nm {signal wavelength } !信号光波长1940nm XM!M%.0WS
w_s := 7 um !信号光的半径 (UzPkl kZ
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 >-<F)
loss_s := 0 !信号光寄生损耗为0 VG\mo?G
,I39&;Iq
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 6K//1U$
{5 Kz' FT
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 ;Vo mFp L
calc U?EG6t
begin QT_^M1%
global allow all; !声明全局变量 BvI 0v:
set_fiber(L_f, No_z_steps, ''); !光纤参数 [0(mFMC`
add_ring(r_co, N_Tm); \>;%Ji
def_ionsystem(); !光谱数据函数 {_Np<r;j<
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 0x4l5x$8
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 u7 u~
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 S| "TP\o
set_R(signal_fw, 1, R_oc); !设置反射率函数 uH]
m]t
finish_fiber(); Cn/q=
end; DCK_F8
q06@SD$
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 ebD{ pc`&
show "Outputpowers:" !输出字符串Output powers: &&*wmnWCS{
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) dL(4mR8
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) th90O|;
VHj*aBHB
uAQg"j
; ------------- tB!|p 6
diagram 1: !输出图表1 H<{*ub4'L*
$ JuLAqq
"Powers vs.Position" !图表名称 <@%ma2
wV?[3bEhM
x: 0, L_f !命令x: 定义x坐标范围 #W.bZ]&WA
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 R<t&F\>
y: 0, 15 !命令y: 定义y坐标范围 *eMLbU7
y2: 0, 100 !命令y2: 定义第二个y坐标范围 R,XD6' Q
frame !frame改变坐标系的设置 z^"?sd
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) a3*.,%d
hx !平行于x方向网格 <)"iL4 kDI
hy !平行于y方向网格 [10$a(g\x
5'),)
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 zabw!@]
color = red, !图形颜色 %OTQRe:
width = 3, !width线条宽度 0VG^GKmx
"pump" !相应的文本字符串标签 Xk;Uk[
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 r';Hxa '
color = blue, McO@p=M
width = 3, 5X#i65_-
"fw signal" .`b4h"g:
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 5Gc_LI&v7
color = blue, lrq>TJEcx
style = fdashed, 3#7ENV`
width = 3, /YS@[\j4
"bw signal" hYs82P|2Ol
Xq[:GUnt
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 X^u4%O['
yscale = 2, !第二个y轴的缩放比例 S5zpUF=
color = magenta, f6@^Mg
width = 3, ,ZsYXW
style = fdashed, Cij$GYkv
"n2 (%, right scale)" vsOdp:Yp9!
`M towXj
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 Cb4d|yiS8
yscale = 2, b\<lNE!L
color = red, cg>!<T*
width = 3, oHv{Y
style = fdashed, s|fCR
"n3 (%, right scale)" ahK?]:&QO
|?4~T:
3tJ=d'U
; ------------- Z1XUYe62
diagram 2: !输出图表2 ,(1vEE[9-
v9X7-GJ~
"Variation ofthe Pump Power" +H2m<
g] 7{5
x: 0, 10 ze#rYN vo/
"pump inputpower (W)", @x pe`TH::p
y: 0, 10 GqmDDL1
y2: 0, 100 ^=4I|+P,6.
frame =rf)yp-D
hx
o>/uW8
hy =H.<"7
legpos 150, 150 \FY/eQ*07
rw40<SS"Z
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 &sr:\Qn X/
step = 5, 5p#o1I
color = blue, S\yu%=h
width = 3, F1{?]>G
"signal output power (W, leftscale)", !相应的文本字符串标签 &"~,V6,q
finish set_P_in(pump, P_pump_in) =DmPPl{
LXTipWKz
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响
Xv?
S
yscale = 2, 1%]{0P0?[
step = 5, W[jW;uk
color = magenta, kG|>_5
width = 3, U&d-? PI
"population of level 2 (%, rightscale)", O;&yA<
finish set_P_in(pump, P_pump_in) b6?Xo/lJ.
Z7KB?1{G
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 Wj
yscale = 2, Zo}\gg3
step = 5, |~=?vw<W
color = red, =5s~$C
width = 3, |+$j(YuH
"population of level 3 (%, rightscale)", /%}YuN
finish set_P_in(pump, P_pump_in) 6"rFfdns
T^=Ee?e
b/D9P~cE
; ------------- B 3,ig9
diagram 3: !输出图表3 Vqv2F @.
CB{k;H
"Variation ofthe Fiber Length" Sj]T{3mi
m?kIa!GM=
x: 0.1, 5 6&xW9' 6b:
"fiber length(m)", @x f'zFg["aZS
y: 0, 10 [#3Cg%V
"opticalpowers (W)", @y :BZx)HxQ
frame (1r>50Ge
hx n9-q5X^e>
hy mGyIr kE
{dSU
\':
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 DHu jpZXQ
step = 20, h+'eFAZ
color = blue, (=&bo p
width = 3, +EB,7<5<
"signal output" g9r5t';
J'Mgj$T $
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 |~"A:gf
step = 20, color = red, width = 3,"residual pump" : z,vJ~PW
Bc"}nSjH
! set_L(L_f) {restore the original fiber length } XGup,7e9
:M?')
ThqfZl=V
; ------------- L4A/7Ep
diagram 4: !输出图表4 2Z9gOd<M~
Px?At5
"TransverseProfiles" 2] wf`9ZH
g}og@UY7#
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) "E[*rnsLN
Cq;K,B9
x: 0, 1.4 * r_co /um hw.demD
"radialposition (µm)", @x MVU'GHv
y: 0, 1.2 * I_max *cm^2 Ue\oIi
"intensity (W/ cm²)", @y wTuRo
J
y2: 0, 1.3 * N_Tm 8{=(#]
frame WF.$gBH"
hx exMPw;8
hy Fu$Gl$qV?%
QR"O)lP
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 )^@V*$D
yscale = 2, VqT[ca\
color = gray, $A0]v!P~i-
width = 3, 2o3k=hKS
maxconnect = 1, .?)oiPW#
"N_dop (right scale)" - OGy-"
91Sb=9
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 [B;Ek\ 5W
color = red, z{+; '9C
maxconnect = 1, !限制图形区域高度,修正为100%的高度 TZ_'nB~
width = 3, ;xC~{O
"pump" JWjp<{Q;1
F&j|Y>m
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 $>37PVVW
color = blue, ! { aA*E{
maxconnect = 1, Q"_T040B
width = 3, B{7/A[$%C
"signal" W
9MZ
| (9FV^_
m8A1^ R
; ------------- 9uoj3Rh<
diagram 5: !输出图表5 yp'>+cLa
T1[ZrY'0
"TransitionCross-sections" |W];v@b\y
$F$R4?_
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) Pt;Ahmi
_qNLy/AY
x: 1450, 2050 Y}z?I%zL
"wavelength(nm)", @x l~c>jm8.
y: 0, 0.6 ,1+_k ="Z
"cross-sections(1e-24 m²)", @y &h[}5
frame ZJM^P'r.1c
hx SXF_)1QO\W
hy ,6pH *b$
&cE,9o%FZ
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 @b({QM|
color = red, 1OS3Gv8jc~
width = 3, %W@IB8]Vr
"absorption" ,KaWP
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 fdW={}~
color = blue, o)WSMV(&f
width = 3, {mGWMv
"emission" _.LWc^Sg
@U5>w\