(* OROvy
Demo for program"RP Fiber Power": thulium-doped fiber laser, l%}q&_
pumped at 790 nm. Across-relaxation process allows for efficient HGAi2+&
population of theupper laser level. DpggZ|J
*) !(* *)注释语句 np2&W'C/i
+yI$4MY
diagram shown: 1,2,3,4,5 !指定输出图表 ZK;/~9KU
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 D>k(#vYKB
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 TG;[,oa
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 Jqb~RP~
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 XaCvBQ
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 {9(0s| pr
gcnX^[`S
include"Units.inc" !读取“Units.inc”文件中内容 1\}XL=BE
5r)8MklZ
include"Tm-silicate.inc" !读取光谱数据 ;8oe-xS\+
LEM%B??&5z
; Basic fiberparameters: !定义基本光纤参数 'IY?=#xr'`
L_f := 4 { fiberlength } !光纤长度 &|Wqzdo?#
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 frUs'j/bZ
r_co := 6 um { coreradius } !纤芯半径 i&m_G5u88
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 hDi~{rbmc
/a*){JQ5j
; Parameters of thechannels: !定义光信道 ,c"J[$i$
l_p := 790 nm {pump wavelength } !泵浦光波长790nm ^?RH<z
dir_p := forward {pump direction (forward or backward) } !前向泵浦 CNb(\]
P_pump_in := 5 {input pump power } !输入泵浦功率5W ^mn!;nu
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um W`PJflr|
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 uD@ZM
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 T; tY7;<
`Pc6
G*p
l_s := 1940 nm {signal wavelength } !信号光波长1940nm W8 Ssv
w_s := 7 um !信号光的半径 _cvX$(Sg
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 \(Oc3+n6
loss_s := 0 !信号光寄生损耗为0 +YZo-tE
>SQzE
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 WP*}X7IS
q{`1[R
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 %SB4_ r*<
calc RWv4/=}(G
begin }$z(?b
global allow all; !声明全局变量 `E1G9BbU
set_fiber(L_f, No_z_steps, ''); !光纤参数 QL8C!&=
add_ring(r_co, N_Tm); 2b7-=/[6
def_ionsystem(); !光谱数据函数 q;bw}4
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 Xr=BxBttp
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 I'*,<BPG
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 C W#:'
set_R(signal_fw, 1, R_oc); !设置反射率函数 @]q^OMLY
finish_fiber(); W+;=8S
end; 3"m]A/6C}
-XXsob}/8
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出
i=\)[;U
show "Outputpowers:" !输出字符串Output powers: Uk] jy>7;!
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) x)=l4A\
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) nBp6uNK[
@=l6zd@
3v\P6
; ------------- 5H.~pc2y
diagram 1: !输出图表1 w^Y/J4 I0
[hSJ)IZh
"Powers vs.Position" !图表名称 !b_(|~7Lc
!*Is0``
x: 0, L_f !命令x: 定义x坐标范围 Bk\Y v0
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 |P]W#~Y-
y: 0, 15 !命令y: 定义y坐标范围 B>c$AS\5y
y2: 0, 100 !命令y2: 定义第二个y坐标范围 5e.aTW;U
frame !frame改变坐标系的设置 rmzzbLTu
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) `$Rgn3
hx !平行于x方向网格 :0:Tl/))
hy !平行于y方向网格 ,2$<Pt;
LUD.
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 QNOdt 2NN
color = red, !图形颜色 .x%w#
width = 3, !width线条宽度 i*/i"W<
"pump" !相应的文本字符串标签 1v|-+p42
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 0&sa#g2
color = blue, *JDz0M4f
width = 3, \1G'{#Q
"fw signal" 2j8GJU/L
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 dscah0T
color = blue, \4wMv[;7
style = fdashed, _M/N_Fm
width = 3, OJpfiZ@Q_
"bw signal" :wS&3:h
%4m Nk}tyH
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 Qpv#&nfUi6
yscale = 2, !第二个y轴的缩放比例 enJ;#aA
color = magenta, xx!8cvD4?
width = 3, 'wEQvCS
style = fdashed, :W, S
"n2 (%, right scale)" 6}-No
=xm7i#1
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 ~g/"p`2-N
yscale = 2, QO}~"lMj
color = red, ldUZ\z(*
width = 3, Mu>
style = fdashed, E#+2)Q
"n3 (%, right scale)" kyAN O
r\Y,*e
3GF67]
; ------------- :ZY%-]u7
diagram 2: !输出图表2 (0.oE%B",1
\85%d0@3
"Variation ofthe Pump Power" +"-l~`+<es
r%f Q$q>
x: 0, 10 kVQm|frUz
"pump inputpower (W)", @x Lbrl CB+
y: 0, 10 4,LS08&gh
y2: 0, 100 FDD=I\Ic
frame A#cFO)"
hx THhxj)
hy Y:;_R=M
legpos 150, 150 %TQ4ZFD3
+ )Qu,%2
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 SX"|~Pi(
step = 5, mv99SOe[Fz
color = blue, vU,7Y|t`
width = 3, >
f X^NX
"signal output power (W, leftscale)", !相应的文本字符串标签 "O>~osj
finish set_P_in(pump, P_pump_in) P^<3 Z)L
[<f2h-V$
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 [T_[QU:A
yscale = 2, }d}gb`Du
step = 5, qI9j=4s.
color = magenta, G,!j P2S
width = 3, >u>
E !5O
"population of level 2 (%, rightscale)", uSR%6=$
finish set_P_in(pump, P_pump_in) ,nYa+e
xcw:H&\w6
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 uuEvH<1
yscale = 2, 6Sd:5eTEQ
step = 5, M}o.= Iqa
color = red, s?}qia\~m
width = 3, ^5]9B<i[Y
"population of level 3 (%, rightscale)", ivgX o'=
finish set_P_in(pump, P_pump_in) 'S6zk wC]
n)X%&_
Pr}
l
y
; ------------- >P
j#?j*Y
diagram 3: !输出图表3 t RU/[?!
dY}5Kmt
"Variation ofthe Fiber Length" A x8 >
0J'^<GTL
x: 0.1, 5 |.Vgk8oTl
"fiber length(m)", @x OE(y$+L3_I
y: 0, 10 @@\qso
"opticalpowers (W)", @y } 9zi5o8
frame ,]0BmlD
hx 1oO(;--u_
hy k?7"r4Vc)S
E|9`J00
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 #WG}"[ ,c
step = 20, @Dsw.@/
color = blue, O:GP uVb\
width = 3, l tNI+G
"signal output" )8^E{w^D}
bJMsB|r
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 I@m(}
step = 20, color = red, width = 3,"residual pump" Z#u{th
Ec<33i]h*p
! set_L(L_f) {restore the original fiber length } vGsAM*vw6
| t:UpP
FFZ?-sE
; ------------- n#"G)+h3#
diagram 4: !输出图表4 [@qjy*5p
0Md.3kY
"TransverseProfiles" u^SInanw
vWmt<E|e
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) rEp\ld
[H\0
'
x: 0, 1.4 * r_co /um 6k@F?qHS
"radialposition (µm)", @x a :*N0
y: 0, 1.2 * I_max *cm^2 wq.'8Y~BE
"intensity (W/ cm²)", @y ^(
y2: 0, 1.3 * N_Tm ?;Sg,.J
frame On
O_7'4 t
hx +vJ}'uR3P
hy &zgliT!If
L %ac sb}
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 91R7Rrne
yscale = 2, q<.k:v&
color = gray, S@pdCH, n
width = 3, #@YKNS[
maxconnect = 1, KJ/Gv#Kj
"N_dop (right scale)" &^&0,g?To
e%:vLE
9
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 J0k!&d8
color = red, & +`g~6U
maxconnect = 1, !限制图形区域高度,修正为100%的高度 Rmn|!C%%K
width = 3, hy#nK:B
"pump" IIMf\JdM
u)EtEl7Wq
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 1Bs t|
color = blue, ghW`xm87
maxconnect = 1, xH28\]F5n
width = 3, ,]JIp~=nsh
"signal" ])qnPoQ<n
F&p42!"
hyPS 6Y'1
; ------------- `;G@qp:A
diagram 5: !输出图表5 TPx0LDk%(
*>aVU'
"TransitionCross-sections" Cs"ivET
;L76V$&
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) oJ5n*[qUI
d$\n@}8eZp
x: 1450, 2050 x/]G"?Uix
"wavelength(nm)", @x (JOR:
1aT
y: 0, 0.6 G?~Yw'R^8
"cross-sections(1e-24 m²)", @y RI'}C`%v
frame .0/"~5
hx '"%hX&]5
hy |R91|-H
-{A64gfFxT
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 d+h~4'ebv
color = red,
m5J@kE%
width = 3, |jH Yf42Q
"absorption" 8:I-?z;S
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 0ZD)(ps|
color = blue, 3^H-,b0^
width = 3, wmbG$T%k
"emission" m bhh
!6taOT>v