(* .cQwjL
Demo for program"RP Fiber Power": thulium-doped fiber laser, -nN }8&l
pumped at 790 nm. Across-relaxation process allows for efficient 8NPt[*
population of theupper laser level. &Dqg<U
*) !(* *)注释语句 u` `FD
a[xEN7L~4D
diagram shown: 1,2,3,4,5 !指定输出图表 oVb6,Pn
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 h?bm1e5kE
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 F_zs"ex/
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 rh${pHl
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 d;:+Xd`
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 pUYa1 =
8D)*~C'85E
include"Units.inc" !读取“Units.inc”文件中内容 3Q~ng2Wv%
4B-v\3Ff
include"Tm-silicate.inc" !读取光谱数据 I Vq9z
/AjGj*O
; Basic fiberparameters: !定义基本光纤参数 dW,$yH_
L_f := 4 { fiberlength } !光纤长度 t{Q9Kv
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 ;?yd;GOt)
r_co := 6 um { coreradius } !纤芯半径 My:wA;#
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 fE|([` !
G7M:LcX
; Parameters of thechannels: !定义光信道 mj%Iow.
l_p := 790 nm {pump wavelength } !泵浦光波长790nm .^l;3*X@
dir_p := forward {pump direction (forward or backward) } !前向泵浦 v\c.xtjI5x
P_pump_in := 5 {input pump power } !输入泵浦功率5W oslrv7EK
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um wP+wA}SN
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 ]EE}ax%#aq
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 Av_1cvR:
hoO8s#0ED
l_s := 1940 nm {signal wavelength } !信号光波长1940nm xx#;)]WT
w_s := 7 um !信号光的半径 \H*"UgS
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 !HY+6!hk
loss_s := 0 !信号光寄生损耗为0 jQj`GnN|
o D*h@yL
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 kRTT
~
O6YYOmt3
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 )C<c{mjk(
calc 3O:Z;YP:<
begin 7$\;G82_
global allow all; !声明全局变量 G;yf]xFd
set_fiber(L_f, No_z_steps, ''); !光纤参数 = =cAL"Z
add_ring(r_co, N_Tm); <nvz*s
def_ionsystem(); !光谱数据函数 ql2>C.k3L
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 U9y[b82
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 Mf<Pms\F
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 R}#?A%,*
set_R(signal_fw, 1, R_oc); !设置反射率函数 ^^{K[sLB
finish_fiber(); rMH\;\
I|U
end; w=rh@S]
2Rc#{A
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 ]pzf{8%
show "Outputpowers:" !输出字符串Output powers: }<[@)g.h.
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) 2x"&8Bg3
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) ido'<;4>
~Ub'5M
,*+F*:o(m
; ------------- {<v?Z_!68
diagram 1: !输出图表1 'Wn'BRXq3
<2fZYt vt
"Powers vs.Position" !图表名称 ^GD"aerNr
quTM|>=_R
x: 0, L_f !命令x: 定义x坐标范围 4@u*#Bp`|
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 lSPQXu*[
y: 0, 15 !命令y: 定义y坐标范围 d!D#:l3;
y2: 0, 100 !命令y2: 定义第二个y坐标范围 *_}ft-*w
frame !frame改变坐标系的设置 }:])1!a
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) MD1n+FgTu
hx !平行于x方向网格 }G]6Rip3
hy !平行于y方向网格 `%ZM(9T
F
*=>=
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 i/6(~v
color = red, !图形颜色 9f\Lon4lX
width = 3, !width线条宽度 -lQ8
&eB
"pump" !相应的文本字符串标签 @>}!g9c
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 Rp^kD ,*
color = blue, az*c0Z<pl
width = 3, %?Yf!)owh
"fw signal" IE+{W~y\
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 D|9xD
color = blue, e4fh<0gX
style = fdashed, =2F;'T\6
width = 3, mXtsP1
"bw signal" --6C>iY[&u
!i,Eo-[Z
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 M4w,J2_8MK
yscale = 2, !第二个y轴的缩放比例 i%_W{;e
color = magenta, 8oK*NB29
width = 3, <~@}r\
style = fdashed, f~%|Iu1ob
"n2 (%, right scale)" Y``50{7
,bzE`6
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 }`ox;Q
yscale = 2, wj!YYBH
color = red, HL]8E}e\"
width = 3, Lp.dF)C\
style = fdashed, % CV@FdB
"n3 (%, right scale)" -+?ZJ^A
#Z#rOh
mE=%+:o.
; ------------- R&KFF'%
diagram 2: !输出图表2 6hp>w{+
^ >JAl<k
"Variation ofthe Pump Power" td JA?
', ~
x: 0, 10 UCV1 {
"pump inputpower (W)", @x 4zKmoYt
y: 0, 10 I!1|);li
y2: 0, 100 ]s_,;PG U
frame N iw~0"-V
hx *lyy |3z
hy e0;0 X7
legpos 150, 150 5QN~^
W5cBT?V
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 CoZOKRoaH
step = 5, u#!QIQW
color = blue, .3>`y L
width = 3, #djby}hi
"signal output power (W, leftscale)", !相应的文本字符串标签 XX&4OV,^%D
finish set_P_in(pump, P_pump_in) eFKF9m
8! eYax
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 RGEgYOO
yscale = 2, lldNIL6B%
step = 5, +a3H1 tt~
color = magenta, P^[eTR*?
width = 3, eF-U
1ZJT
"population of level 2 (%, rightscale)", 3qf?n5"8
finish set_P_in(pump, P_pump_in) 9Xl[AVs:M
['m7Wry
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 59Lc-JJ
yscale = 2, Ui?iMtDr
step = 5, HpP82X xj
color = red, DwmK?5 p
width = 3, Sf*1Z~P|
"population of level 3 (%, rightscale)", ^+p7\D/E(
finish set_P_in(pump, P_pump_in) )OHGg
-.xiq0
)iX2r{
; ------------- gcF:/@:Rm
diagram 3: !输出图表3 hXnfZx%
C&|K7Zp0v
"Variation ofthe Fiber Length" AjVX
Zzn
N"Si,
x: 0.1, 5 `6y=ky.,
"fiber length(m)", @x W6gI#
y: 0, 10 |PtfG2Ty?
"opticalpowers (W)", @y qP{Fwn
frame fHK.q({Qc
hx :a/l9 m(
hy r[g
,I6li7V
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 y0f:N
U
step = 20, @U+#@6
color = blue, 5o6X.sC8e
width = 3, 3iM7c.f*/
"signal output" "7q!u,u
}1
,\*)5
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 S86,m=
step = 20, color = red, width = 3,"residual pump" ee/3=/H|;
2cEvsvw>
! set_L(L_f) {restore the original fiber length } r=-b@U.fk>
)x+P9|
t!-\:8n
; ------------- j"hNkCF
diagram 4: !输出图表4 H-rxn
6(=B`Z}a
"TransverseProfiles" 8Kw,
1O:
n:|a;/{I]9
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) Vy=P*
O^J=19Ri
x: 0, 1.4 * r_co /um 8eVy*h2:=
"radialposition (µm)", @x 5^D094J|^
y: 0, 1.2 * I_max *cm^2 4VF4 8
"intensity (W/ cm²)", @y 8WE@ X)e
y2: 0, 1.3 * N_Tm 7KesfH?
frame Mz6\T'rC
hx
STl8h}C
hy H#i,Ve'
Z`_x|cU?J
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 <Drm#2x!E
yscale = 2, ku4Gc6f#gG
color = gray, qt(4?_J
width = 3, =r4sF!g
maxconnect = 1, zo1T`"Y
"N_dop (right scale)" #{*5rKiL
X%mga~fB
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 `dw">z,
color = red, P3 .
maxconnect = 1, !限制图形区域高度,修正为100%的高度 7t+d+sQ-l
width = 3, Gphy8~eS
"pump" qfG:vTm
NE.h/+4
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 lz!(OO,g
color = blue, A!,c@Kv
3
maxconnect = 1, oi
m7=I0
width = 3, {yv_Ni*6!
"signal" Tdade+
w$IUm_~waa
=;+gge!?bB
; ------------- ~j>yQ%[v
diagram 5: !输出图表5 V~VUl)
]
)iP?2{
"TransitionCross-sections" gg.]\#3g
@<3E`j'p
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) tA^+RO4
@ R[K8
x: 1450, 2050 O&MH5^I
"wavelength(nm)", @x 1d~d1Rd
y: 0, 0.6 A@Q6}ESD
"cross-sections(1e-24 m²)", @y BYu(a
frame r95,X!
hx JNY ?]|=
hy *v%gNq
<o9AjASv\,
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 gyq6LRb
color = red, ~r?tFE*+
width = 3, bfpeK>T
"absorption" kQe<a1 8
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 g4=C]\1
color = blue, (V&8
WN
width = 3, H#7=s{u
"emission" q_6lD~~q^
{ TI,|'>5[