采用matlab编程,其主函数如下,可以模拟各阶的zernike多项式: N^>g=Ub
%Display the Zernike function Z(n=5,m=1) 3Q6#m3AWY
clc zXO.NSC[
clear 1%{(?uz9
a=5;%%%%%%%%%%Z的阶数下标 +w/o
b=1;%%%%%%%%%%Z的阶数的上标 0
N^V&k
x = -1:0.01:1; r F-yD1
[X,Y] = meshgrid(x,x); UY^f|f&
[theta,r] = cart2pol(X,Y); G]4+Qr?
idx = r<=1; U%olH >1K
z = nan(size(X)); uSbg*OA
z(idx) = zernfun(a,b,r(idx),theta(idx)); g9Ll>d)tE3
figure(1) {RO=4ba{J
pcolor(x,x,z), shading interp Gj0NN:
axis square, colorbar b(,[g>xH
xlabel('X'); ,1kV9_x
ylabel('Y'); "d\8OOU
title(['Zernike function Z^a_b','(r,\theta)']) CbQ%[x9|
figure(2) c}cboe2
mesh(x,x,z) [O'p&j@
xlabel('X'); sJvn#cS
ylabel('Y'); suSIz 7:
title(['Zernike function Z^a_b','(r,\theta)'])