采用matlab编程,其主函数如下,可以模拟各阶的zernike多项式: LPtx|Sx![
%Display the Zernike function Z(n=5,m=1) F[Qs v54
clc K+(m'3`
clear y}s
0J K
a=5;%%%%%%%%%%Z的阶数下标 eW<!^Aer
b=1;%%%%%%%%%%Z的阶数的上标 0tn7Rkiw
x = -1:0.01:1; !H2C9l:rd
[X,Y] = meshgrid(x,x); \Qe'?LRu{
[theta,r] = cart2pol(X,Y); k
i~Raa/e
idx = r<=1; "i;*\+x
z = nan(size(X)); QSlf=VK*y
z(idx) = zernfun(a,b,r(idx),theta(idx)); EfMG(oI
figure(1) F>hVrUD8
pcolor(x,x,z), shading interp Zb5T90s%
axis square, colorbar ,i1 fv
"
xlabel('X'); UFSEobhg&5
ylabel('Y'); -Hl\j(D7
title(['Zernike function Z^a_b','(r,\theta)']) ?etj.\q6
figure(2) Iwd"f
mesh(x,x,z) B{=,VwaP_
xlabel('X'); 0O@[on;Bd
ylabel('Y'); f?oI'5R41
title(['Zernike function Z^a_b','(r,\theta)'])