采用matlab编程,其主函数如下,可以模拟各阶的zernike多项式: [< g9jX5
%Display the Zernike function Z(n=5,m=1) {m3#1iV9
clc myVa5m!7Q
clear GL>YJ%
a=5;%%%%%%%%%%Z的阶数下标 ,%A|:T]
b=1;%%%%%%%%%%Z的阶数的上标 T)<^S(57
x = -1:0.01:1; nT01B1/<]
[X,Y] = meshgrid(x,x); Q3hSWXq'
[theta,r] = cart2pol(X,Y); fp(zd;BSQ
idx = r<=1; *otgI"y\
z = nan(size(X)); ]Hl{(v\HO
z(idx) = zernfun(a,b,r(idx),theta(idx)); PepR]ym
figure(1) [X /s^42
pcolor(x,x,z), shading interp D=%1?8K
axis square, colorbar ?Hdu=+ZV
xlabel('X'); .>r3ZwrE'
ylabel('Y'); %${$P+a`D
title(['Zernike function Z^a_b','(r,\theta)']) _pb*kJ
figure(2) zICCSF&H
mesh(x,x,z) =rZ'!Pa
xlabel('X'); wA7\K~fHV
ylabel('Y'); +-),E.
title(['Zernike function Z^a_b','(r,\theta)'])