采用matlab编程,其主函数如下,可以模拟各阶的zernike多项式: 9?~K"+-SI
%Display the Zernike function Z(n=5,m=1) ]&l%L4Z
clc ,V}Vxq3
clear 2%F!aeX
a=5;%%%%%%%%%%Z的阶数下标 r=o\!sh[
b=1;%%%%%%%%%%Z的阶数的上标 Sx^4Y\\
x = -1:0.01:1; =u^{Jvl[
[X,Y] = meshgrid(x,x); auKGm:
[theta,r] = cart2pol(X,Y); *f4BD||
idx = r<=1; !W ,pjW%Y
z = nan(size(X)); iig ({b
z(idx) = zernfun(a,b,r(idx),theta(idx)); V\(p6:1(6K
figure(1) `aw5"ns^V
pcolor(x,x,z), shading interp D+:} D*_&
axis square, colorbar UPI'O %
xlabel('X'); |Q _]+[
ylabel('Y'); yA#-}Y|]b
title(['Zernike function Z^a_b','(r,\theta)']) l~v
BA$,
figure(2) O%n =n3
mesh(x,x,z) %ut7T!Jp
xlabel('X'); ~wdKO7fs
ylabel('Y'); ==z,vxr
title(['Zernike function Z^a_b','(r,\theta)'])