采用matlab编程,其主函数如下,可以模拟各阶的zernike多项式: ~t{D5#LVHa
%Display the Zernike function Z(n=5,m=1) _l24Ba$F6
clc t4f
(Y,v
clear bU;}!iVc]
a=5;%%%%%%%%%%Z的阶数下标 lfxuc7Rdla
b=1;%%%%%%%%%%Z的阶数的上标 (
oQ'4,F
x = -1:0.01:1; -Q<z1vz
[X,Y] = meshgrid(x,x); bGZhUEq
[theta,r] = cart2pol(X,Y); 22)0zY%\
idx = r<=1; Jh37pI
z = nan(size(X)); a&$Zpf!!
z(idx) = zernfun(a,b,r(idx),theta(idx));
E
fP>O
figure(1) 3)6+1Yc
pcolor(x,x,z), shading interp Y%78>-2L
axis square, colorbar p!HPp Ef+#
xlabel('X'); $R A4U<
ylabel('Y'); ]$m#1Kj
title(['Zernike function Z^a_b','(r,\theta)']) Zg)_cRR
figure(2) DNm(:%)0
mesh(x,x,z) D ?Nd; [
xlabel('X'); &_"ORqn&
ylabel('Y'); \ V[;t-
title(['Zernike function Z^a_b','(r,\theta)'])