采用matlab编程,其主函数如下,可以模拟各阶的zernike多项式: %w%zv2d
%Display the Zernike function Z(n=5,m=1) oG9SO^v_
clc gU*I;s>
clear zN/Gy}
a=5;%%%%%%%%%%Z的阶数下标 &:,fb]p
b=1;%%%%%%%%%%Z的阶数的上标 ,XP@ pi
x = -1:0.01:1; W.sD2f
[X,Y] = meshgrid(x,x); kjfxjAS=m
[theta,r] = cart2pol(X,Y); $q=hcu
idx = r<=1; |W/Hi^YE2
z = nan(size(X)); F6h/0i
z(idx) = zernfun(a,b,r(idx),theta(idx)); M{y|7e%K
figure(1) "URVX1#(r
pcolor(x,x,z), shading interp -hm9sNox
axis square, colorbar [/n'@cjNZ
xlabel('X'); ]n/jJ_[
ylabel('Y'); &<OMGGQ[h
title(['Zernike function Z^a_b','(r,\theta)']) PK9Qm'W b
figure(2) 4v i B=>
mesh(x,x,z) p@`4 Qz
xlabel('X'); [kQ"6wh8
ylabel('Y'); y& Gw.N}<r
title(['Zernike function Z^a_b','(r,\theta)'])