采用matlab编程,其主函数如下,可以模拟各阶的zernike多项式: N#p%^GH
%Display the Zernike function Z(n=5,m=1) V.-cm51I
clc 8.zYa(<2
clear g-4j1yJV<
a=5;%%%%%%%%%%Z的阶数下标 T$"sw7<
b=1;%%%%%%%%%%Z的阶数的上标 D%*Ryg
x = -1:0.01:1; u\q(v D.
[X,Y] = meshgrid(x,x); Y&j'2!g
[theta,r] = cart2pol(X,Y); VVw5)O1'
idx = r<=1; vyvb-oz;u
z = nan(size(X)); +n>p"+c
z(idx) = zernfun(a,b,r(idx),theta(idx)); L _Xbca=
figure(1) v|R#[vtFd
pcolor(x,x,z), shading interp |)y-EBZe\"
axis square, colorbar &Lbh?C
xlabel('X'); s=>^ 8[0O
ylabel('Y'); gE9x+g
title(['Zernike function Z^a_b','(r,\theta)']) jct'B}@X(
figure(2) t\WU}aKML
mesh(x,x,z) )4R[C={
xlabel('X'); :?j]W2+kR
ylabel('Y'); 9I [k3
title(['Zernike function Z^a_b','(r,\theta)'])