采用matlab编程,其主函数如下,可以模拟各阶的zernike多项式: PS8^=
%Display the Zernike function Z(n=5,m=1) Lp(i&A
clc sX-@
>%l
clear !hjF"Pa
a=5;%%%%%%%%%%Z的阶数下标 s
bd$.6
|&
b=1;%%%%%%%%%%Z的阶数的上标 M:dH>
x = -1:0.01:1; H>o \C
[X,Y] = meshgrid(x,x); %j/pln&
[theta,r] = cart2pol(X,Y); > `mV^QD
idx = r<=1; h^
K]ASj
z = nan(size(X)); Ahc9HA2
z(idx) = zernfun(a,b,r(idx),theta(idx)); +,cd$,18
figure(1) 6AoKuT;
pcolor(x,x,z), shading interp X` J86G )
axis square, colorbar 34Cnbtq^
xlabel('X'); j#xGB]
ylabel('Y'); FmhAUe
title(['Zernike function Z^a_b','(r,\theta)']) $ w+.-Tr
figure(2) @1xIph<z
mesh(x,x,z) `F]
xlabel('X'); }1%%`
ylabel('Y'); e^,IZ{
title(['Zernike function Z^a_b','(r,\theta)'])