"Modern Lens Design" 2nd Edition by Warren J. Smith Q;9-aZ.H
L{;Sc_
Contents of Modern Lens Design 2nd Edition E
P1f6ps
@VdkmqXz
1 Introduction 9o)sSaTx=
1.1 Lens Design Books yT[CC>]l
1.2 Reference Material 9f UD68Nob
1.3 Specifications Q]44A+M]
1.4 Lens Design QaAA@l
1.5 Lens Design Program Features jb0wP01R
1.6 About This Book w ;;yw3
:P,g,
2 Automatic Lens Design Uh6LU5
2.2 The Merit Function Vq8 G( <77
2.3 Local Minima }~W:3A{7;
2.4 The Landscape Lens :/rl \woA>
2.5 Types of Merit Function zN3[W`q+m
2.6 Stagnation eBlWwUy*6f
2.7 Generalized Simulated Annealing dO?zLc0f
2.8 Considerations about Variables for Optimization /l.:GH36f
2.9 How to Increase the Speed or Field of a System and Avoid Ray Failure Problems rV{:'"=y-
2.10 Test Plate Fits, Melt Fits, Thickness Fits and Reverse Aberration Fits DIsK+1
2.11 Spectral Weighting { XI 0KiE
2.12 How to Get Started }j+Af["W?
@`Fv}RY{
3 Improving a Design
b#uNdq3
3.1 Lens Design Tip Sheet: Standard Improvement Techniques #%Hk-a=>)#
3.2 Glass Changes ( Index and V Values ) -|z
]Ir
3.3 Splitting Elements ;$a+ >
3.4 Separating a Cemented Doublet KjWF;VN*[3
3.5 Compounding an Element fyt ODsb>
3.6 Vignetting and Its Uses C8{bqmlm@
3.7 Eliminating a Weak Element; the Concentric Problem <x!q!;
3.8 Balancing Aberrations RB\
Hl
3.9 The Symmetrical Principle V /.Na(C~
3.10 Aspheric Surfaces CdEQiu
HZASIsl
4 Evaluation: How Good is This Design $ol]G`+
4.1 The Uses of a Preliminary Evaluation ~^{>!wU+
4.2 OPD versus Measures of Performance $&25hvK,
4.3 Geometric Blur Spot Size versus Certain Aberrations [c^!;YBp)
4.4 Interpreting MTF - The Modulation Transfer Function XC(:O(jdA2
4.5 Fabrication Considerations .2Q4EbM2
r5RUgt
5 Lens Design Data -1_WE/Ps
5.1 About the Sample Lens Designs [Xa,|
5.2 Lens Prescriptions, Drawings, and Aberration Plots o*k.je1
5.3 Estimating the Potential of a Redesign 2Kkm-#p7
5.4 Scaling a Desing, Its Aberrations, and Its MTF -gQtw%
`x
5.5 Notes on the Interpretation of Ray Intercept Plots N!PPL"5z
5.6 Various Evaluation Plot 1 5heLnei
pD@:]VP
6 Telescope Objective (HEi;
6.1 The Thin Airspaced Doublet Y9/`w@"v
6.2 Merit Function for a Telescope Objective 1+F0$<e}
6.3 The Design of an f/7 Cemented Doublet Telescope Objective
P,Z
K
6.4 Spherochromatism \DiAfx<Ub
6.5 Zonal Spherical Aberration L[s`8u<_)z
6.6 Induced Aberrations 3u 'VPF2
6.7 Three-Element Objectives adcH3rV
6.8 Secondary Spectrum (Apochromatic Systems) +TZVx(Z&A
6.9 The Design of an f/7 Apochromatic Triplet @~z4GTF9i
6.10 The Diffractive Surface in Lens Design ~hZr1hT6L
6.11 A Final Note *b}/fG)XZ
BS.5g<E2q
7 Eyepieces and Magnifiers !+k);;.+
7.1 Eyepieces QO/nUl0E
7.2 A Pair of Magnifier Designs :'
=le*h
7.3 The Simple, Classical Eyepieces }6'%p Bd
7.4 Design Story of an Eyepiece for a 6*30 Binocular {e+}jZ[L
7.5 Four-Element Eyepieces _v#Vf*#
7.6 Five-Element Eyepieces /n2qW.qJ>
7.7 Very High Index Eyepiece/Magnifier &gg Om
7.8 Six- and Seven-Element Eyepieces *@VS^JB
1gA^Qv~?
8 Cooke Triplet Anastigmats .GSK!1{@
8.1 Airspaced Triplet Anastigmats 3v91 yMx
8.2 Glass Choice Zv0'OX~8i
8.3 Vertex Length and Residual Aberrations j].=,M<dxE
8.4 Other Design Considerations %p(X*mVX
8.5 A Plastic, Aspheric Triplet Camera Lens !X5LgMw^ ;
8.6 Camera Lens Anastigmatism Design “from Scrach” – The Cooke Triplet !C& ^%a
8.7 Possible Improvement to Our “Basic” Triplet Z,~PW#8<&
8.7 The Rear Earth (Lanthanum) Glasses 4Uk\h gT0
8.9 Aspherizing the Surfaces kt#t-N;}x
8.10 Increasing the Element Thickness HEk{!Y
hAV@/oQ
9 Split Triplets ae#Qeow`
Gc=uKQ+\V
10 The Tessar, Heliar, and Other Compounded Triplets o
zMn8@R
10.1 The Classic Tessar Z?<&@YQS
10.2 The Heliar/Pentac O@>ZYA%
10.3 The Portrait Lens and the Enlarger Lens [w*]\x'S
10.4 Other Compounded Triplets
a)8;P7
10.5 Camera Lens Anastigmat Design “from Scratch” – The Tessar and Heliar X%98k'h.y
YO9ofT
11 Double-Meniscus Anastigmats S-[S?&c`
11.1 Meniscus Components ;0 4< 9i
11.2 The Hypergon, Totogon, and Metrogon [#SiwhF|
11.3 A Two Element Aspheric Thick Meniscus Camera Lens m++=FsiX=
11.4 Protar, Dagor, and Convertible Lenses >|pN4FS
11.5 The Split Dagor hRNnj
11.6 The Dogmar `)tIXMn
11.7 Camera Lens Anastigmat Design “from Scratch” – The Dogmar Lens Zg4kO;r08
Ov#G 7a"
12 The Biotar or Double-Gauss Lens Ck:+F+7_v
12.1 The Basic Six-Element Version aM4-quaG]
12.2 28 Things You Should Know about the Double-Gauss/Biotar Lens cl'wQ1<:
12.3 The Seven-Element Biotar - Split-Rear Singlet pE {yVs
12.4 The Seven-Element Biotar - Broken Contact Front Doublet zGwM# -
12.5 The Seven-Element Biotar - One Compounded Outer Element xC9?Wt'
12.6 The Eight-Element Biotar n#5S-z1KNw
12.7 A “Doubled Double-Gauss” Relay P&h]uNu
d/[kky}
13 Telephoto Lenses i~LY
13.1 The Basic Telephoto IAJ+n0U
13.2 Close-up or Macro Lenses cAn_:^
13.3 Telephoto Designs ^x2@KMKXZ
13.4 Design of a 200-mm f/4 Telephoto for a 35-mm Camera from Scratch oL7F^34;
P
@~) 9W
(e#f
14 Reversed Telescope (Retrofocus and Fish-Eye) Lenses L1kAAR
14.1 The Reverse Telephoto Principle XG E.*aI
14.2 The Basic Retrofocus Lens }LY)FT4n
14.3 Fish-Eye, or Extreme Wide-Angle Reverse Telephoto, Lenses X.V4YmZ-;
Js&.p9S2
15 Wide Angle Lenses with Negative Outer Lenses t[/APm-k~>
G8.nKoHv7x
16 The Petzval Lens; Head-up Display Lenses ><qA+/4]_
16.1 The Petzval Portrait Lens aP]h03sS
16.2 The Petzval Projection Lens I9<%fv
16.3 The Petzval with a Field Flattener TU*Y?D
L
16.4 Very Height Speed Petzval Lenses E"7[|-`e6
16.5 Head-up Display (HUD) Lenses, Biocular Lenses, and Head/Helmet Mounted Display(HMD) Systems AYAbq}'Yt
k3T374t1b
17 Microscope Objectives <cFj-Ys(T
17.1 General Considerations 6 $K@s
17.2 Classic Objective Design Forms; The Aplanatic Front p/HGI)'
17.3 Flat-Field Objectives !8Y A1 o
17.4 Reflecting Objectives >IipWTVo<
17.5 The Microscope Objective Designs tF6-@T\6
;?y~ h$
18 Mirror and Catadioptric Systems PU4-}!K
18.1 The Good and Bad Points of Mirrors V@nZ_.
18.2 The Classic Two-Mirror Systems d(K}v\3!
18.3 Catadioptric Systems y@r0"cvz9
18.4 Aspheric Correctors and Schmidt Systems Os*s{2OvO
18.5 Confocal Paraboloids FQ0PXYh
18.6 Unobscured Systems 6(>,qt,9S
18.7 Design of a Schmidt-Cassegrain “from Scratch” =y=MljEX
o?^Rw*u0/
19 Infrared and Ultraviolet Systems O"#/>hmv-
19.1 Infrared Optics 6#Rco%07zI
19.2 IR Objective Lenses +p$lVnAt
19.3 IR Telescope e|q~t
{=9S
19.4 Laser Beam Expanders K'y|_XsBB)
19,5 Ultraviolet Systems 8~F?%!X
19.6 Microlithographic Lenses I]%Kd('
hrGX65>
20 Zoom Lenses F\jawoO9
20.1 Zoom Lenses :x3xeVtY
20.2 Zoom Lenses for Point and Shoot Cameras :sttGXQX
20.3 A 20X Video Zoom Lens S%e)br}
20.4 A Zoom Scanner Lens 0lOR.}]q
20.5 A Possible Zoom Lens Design Procedure tO?-@Qf/9<
-`NzBuV$2,
21 Projection TV Lenses and Macro Lenses PsZ>L
21.1 Projection TV Lenses av_ +M;G
21.2 Macro Lenses MY^o0N
[
P,gEYk
22 Scanner/ , Laser Disk and Collimator Lenses VB`% u=
22.1 Monochromatic Systems csA-<}S5]b
22.2 Scanner Lenses /&9R*xNST#
22.3 Laser Disk, Focusing, and Collimator Lenses FF;Fo}no-
o$Y#C{wC%
23 Tolerance Budgeting 06?d#{?M1o
23.1 The Tolerance Budget Er
-rm
23.2 Additive Tolerances r7^v@
23.3 Establishing the Tolerance Budget {vT9I4d8
>WLHw!I!6
24 Formulary y.-Kqa~
24.1 Sign Conventions, Symbols, and Definitions FNw]DJ]
24.2 The Cardinal Points S~R[*Gk_uT
24.3 Image Equations 5#y_EpL"
24.4 Paraxial Ray Tracing (Surface by Surface) =\mJ5v"hA
24.5 Invariants $R+rB;=a!
24.6 Paraxial Ray Tracing (Component by Component) d%RH]j4
24.7 Two-Componenet Relationships 4$81ilBcL
24.8 Third-Order Aberrations – Surface Contributions :i|]iXEI"
24.9 Third-Order Aberrations – Thin Lens Contributions; The G Sum Eqs J/3$I
24.10 Stop Shift Equations wk{]eD%
24.11 Third-Order Aberrations – Contributions from Aspheric Surfaces 4dm0:,
G
24.12 Conversion of Aberrations to Wavefront Deformation (OPD) y0p\Gu;3j
)[u'LgVN/L
FlUO3rc|
Glossary Y/?z8g'p
Reference dn:\V?9
Index