"Modern Lens Design" 2nd Edition by Warren J. Smith Ni;jMc
VB+_ kR6Zv
Contents of Modern Lens Design 2nd Edition &6\E'bBt
sw(|EZ7F
1 Introduction HErG%v]nw
1.1 Lens Design Books *'@T+$3s
1.2 Reference Material *MCkezW7{
1.3 Specifications K[-G2
1.4 Lens Design -OgC. 6
1.5 Lens Design Program Features b u/GaE~
1.6 About This Book ;
jJ%<
'_n$xfH
2 Automatic Lens Design -{*QjP;K
2.2 The Merit Function 8hX/~-H
2.3 Local Minima \VAS<?3
2.4 The Landscape Lens %wq;<'W
2.5 Types of Merit Function `qy@Qo
2.6 Stagnation %$R]NL|
2.7 Generalized Simulated Annealing ukee.:{
2.8 Considerations about Variables for Optimization Is (
Ji
2.9 How to Increase the Speed or Field of a System and Avoid Ray Failure Problems R36A_
2.10 Test Plate Fits, Melt Fits, Thickness Fits and Reverse Aberration Fits .Ax]SNZ+:A
2.11 Spectral Weighting R8,
g^N
2.12 How to Get Started VF:<q
,V+,3TT
3 Improving a Design 7t%
|s!~
3.1 Lens Design Tip Sheet: Standard Improvement Techniques `jGG^w3
3.2 Glass Changes ( Index and V Values ) s";9G^:
3.3 Splitting Elements SivJaY%
3.4 Separating a Cemented Doublet _s0;mvz'
3.5 Compounding an Element ]n4G]ybK%
3.6 Vignetting and Its Uses MF5o\-&dN
3.7 Eliminating a Weak Element; the Concentric Problem M+M\3U
3.8 Balancing Aberrations 0SDyE
3.9 The Symmetrical Principle GUvEOD=p
3.10 Aspheric Surfaces { =IAS}
S),acc(d
4 Evaluation: How Good is This Design $_W kI^
4.1 The Uses of a Preliminary Evaluation e6'y S81
4.2 OPD versus Measures of Performance '!XVz$C
4.3 Geometric Blur Spot Size versus Certain Aberrations 6"c(5#H
4.4 Interpreting MTF - The Modulation Transfer Function 843O}v'
4.5 Fabrication Considerations R\lUE,o]<q
U{&gV~
5 Lens Design Data C.=[K_
5.1 About the Sample Lens Designs `mDCX
5.2 Lens Prescriptions, Drawings, and Aberration Plots s>e)\9c
5.3 Estimating the Potential of a Redesign 9.l*#A^
5.4 Scaling a Desing, Its Aberrations, and Its MTF 6tBe,'*
5.5 Notes on the Interpretation of Ray Intercept Plots GsNZr=;C
5.6 Various Evaluation Plot t`"pn<
t$ 3/ZTx
6 Telescope Objective Ou2p^:C(
6.1 The Thin Airspaced Doublet bG!/%,s
6.2 Merit Function for a Telescope Objective iiTt{ab\Y
6.3 The Design of an f/7 Cemented Doublet Telescope Objective e6I7N?j
6.4 Spherochromatism h9l 6AnbJ
6.5 Zonal Spherical Aberration )8JM.:,
6.6 Induced Aberrations %v<BE
tq
6.7 Three-Element Objectives A0gRX]
6.8 Secondary Spectrum (Apochromatic Systems) !,JV<(7k
6.9 The Design of an f/7 Apochromatic Triplet ;^|:*
6.10 The Diffractive Surface in Lens Design \ H!Klp
6.11 A Final Note c#`&uLp
R2f^dt^
7 Eyepieces and Magnifiers \~I>@SG2W+
7.1 Eyepieces [ih^VlZ
7.2 A Pair of Magnifier Designs lWk/vj<5
7.3 The Simple, Classical Eyepieces Fz@9
@
7.4 Design Story of an Eyepiece for a 6*30 Binocular e4Q2$Q@b
7.5 Four-Element Eyepieces <4%vl+qW
7.6 Five-Element Eyepieces fnJt8Y4
7.7 Very High Index Eyepiece/Magnifier E8b:MY
7.8 Six- and Seven-Element Eyepieces OH6-\U'.Z
irKM?#h
8 Cooke Triplet Anastigmats 2 UPG8]
8.1 Airspaced Triplet Anastigmats d2X?^
8.2 Glass Choice w'a3=_nW
8.3 Vertex Length and Residual Aberrations ~r?VXO p"
8.4 Other Design Considerations M. fA5rJ^
8.5 A Plastic, Aspheric Triplet Camera Lens v]hu5t
8.6 Camera Lens Anastigmatism Design “from Scrach” – The Cooke Triplet )H[Pz.'ah0
8.7 Possible Improvement to Our “Basic” Triplet o!W(
8.7 The Rear Earth (Lanthanum) Glasses b-HELS`nX
8.9 Aspherizing the Surfaces U,7}VdO
8.10 Increasing the Element Thickness 5b;~&N4~
:HkXsZ
9 Split Triplets b
r\_
28LYGrB
10 The Tessar, Heliar, and Other Compounded Triplets ZFRKzPc
{V
10.1 The Classic Tessar X \qG
WpN%
10.2 The Heliar/Pentac J1@skj4#\~
10.3 The Portrait Lens and the Enlarger Lens G]O5irsV
10.4 Other Compounded Triplets gvoYyO#cm
10.5 Camera Lens Anastigmat Design “from Scratch” – The Tessar and Heliar p'\zL:3
F $1f8U8
11 Double-Meniscus Anastigmats 1EA#c>I$
11.1 Meniscus Components p;.M.
11.2 The Hypergon, Totogon, and Metrogon 5Tq*]ZE
11.3 A Two Element Aspheric Thick Meniscus Camera Lens PUErvLt
11.4 Protar, Dagor, and Convertible Lenses cr ~.],$Om
11.5 The Split Dagor *g[MGyF"
11.6 The Dogmar zQaD&2 q
11.7 Camera Lens Anastigmat Design “from Scratch” – The Dogmar Lens l;}3J3/qq]
hd@jm^k
12 The Biotar or Double-Gauss Lens $) m$c5!
12.1 The Basic Six-Element Version -mLS\TF S
12.2 28 Things You Should Know about the Double-Gauss/Biotar Lens f-Zi!AGh>
12.3 The Seven-Element Biotar - Split-Rear Singlet Ix+eP|8F
12.4 The Seven-Element Biotar - Broken Contact Front Doublet ry0YS\W
12.5 The Seven-Element Biotar - One Compounded Outer Element z['2
12.6 The Eight-Element Biotar 8~y&" \
12.7 A “Doubled Double-Gauss” Relay C!)ZRuRv
H`1q8}m
13 Telephoto Lenses P~s u]+
13.1 The Basic Telephoto _fS4a134R
13.2 Close-up or Macro Lenses i(>
WeC+
13.3 Telephoto Designs &pW2R}
13.4 Design of a 200-mm f/4 Telephoto for a 35-mm Camera from Scratch *auT_*
jc HyRR1R
&cwN&XBY
14 Reversed Telescope (Retrofocus and Fish-Eye) Lenses KkCsQ~po
14.1 The Reverse Telephoto Principle gFl@A}
14.2 The Basic Retrofocus Lens "EwzuM8f
14.3 Fish-Eye, or Extreme Wide-Angle Reverse Telephoto, Lenses /h8100
b>Ea_3T/
15 Wide Angle Lenses with Negative Outer Lenses Hb0_QT~
N9 h|_ax
16 The Petzval Lens; Head-up Display Lenses 7[I +1
16.1 The Petzval Portrait Lens <Yg6=e
16.2 The Petzval Projection Lens ~ +h4i'
16.3 The Petzval with a Field Flattener v2k@yxt(
16.4 Very Height Speed Petzval Lenses |5jrl|
16.5 Head-up Display (HUD) Lenses, Biocular Lenses, and Head/Helmet Mounted Display(HMD) Systems vIf-TQw
>R5A@0@d5
17 Microscope Objectives `\GRY @cg
17.1 General Considerations 6q^\pJY%&7
17.2 Classic Objective Design Forms; The Aplanatic Front (__$YQ-
17.3 Flat-Field Objectives 88l1g,`**
17.4 Reflecting Objectives $PRUzFZ
17.5 The Microscope Objective Designs Iw?*y.z|
@km4qJZ
18 Mirror and Catadioptric Systems (I/iD.A
18.1 The Good and Bad Points of Mirrors 29cx(
18.2 The Classic Two-Mirror Systems YQb503W"d~
18.3 Catadioptric Systems }QBL{\E!
18.4 Aspheric Correctors and Schmidt Systems $9P=
18.5 Confocal Paraboloids (2UA ,
18.6 Unobscured Systems 0s79rJ
18.7 Design of a Schmidt-Cassegrain “from Scratch” ~'F.tB
+;4;~>Y
19 Infrared and Ultraviolet Systems oW^>J-
19.1 Infrared Optics W]XM<# ^^
19.2 IR Objective Lenses >@Pw{Zh$
19.3 IR Telescope _>ZC;+c?
19.4 Laser Beam Expanders X}Om)WCr
19,5 Ultraviolet Systems gu:vf/
19.6 Microlithographic Lenses ix$
^1(
2qojU%fiH
20 Zoom Lenses @ qi|}($
20.1 Zoom Lenses O(VWJ@EHn
20.2 Zoom Lenses for Point and Shoot Cameras (<rE1w2s:
20.3 A 20X Video Zoom Lens 'n=bQ"bQu
20.4 A Zoom Scanner Lens |P`b"x
20.5 A Possible Zoom Lens Design Procedure hQ(^;QcSu
mG$N%`aG
21 Projection TV Lenses and Macro Lenses .)=*Yr M
21.1 Projection TV Lenses \GQRpJ#h1
21.2 Macro Lenses p3Ozfk
QUaV;6
4
22 Scanner/ , Laser Disk and Collimator Lenses EV-sEl8ki
22.1 Monochromatic Systems D+BiclJ
22.2 Scanner Lenses w]nt_xj
22.3 Laser Disk, Focusing, and Collimator Lenses q%QvBN
y5F"JjQAa
23 Tolerance Budgeting w,up`W7,
23.1 The Tolerance Budget TspX7<6r
23.2 Additive Tolerances 5gV,^[E-z
23.3 Establishing the Tolerance Budget 4_ypFuS ^
X)6 G :cD
24 Formulary ,i|K} Y&
24.1 Sign Conventions, Symbols, and Definitions :5$ErI
24.2 The Cardinal Points [PB73q8
24.3 Image Equations V8nQ/9R;
24.4 Paraxial Ray Tracing (Surface by Surface) rsa_)iBC
24.5 Invariants B9[vv;lzu
24.6 Paraxial Ray Tracing (Component by Component) +nHr+7}
24.7 Two-Componenet Relationships F(zCvT
24.8 Third-Order Aberrations – Surface Contributions pUS: HJk|
24.9 Third-Order Aberrations – Thin Lens Contributions; The G Sum Eqs xQU//kNL
24.10 Stop Shift Equations bq)1'beW
24.11 Third-Order Aberrations – Contributions from Aspheric Surfaces 6rj iZ%
24.12 Conversion of Aberrations to Wavefront Deformation (OPD) QlV(D<
Pz[UAJ
ms;zC/
Glossary r]&sXKDc
Reference ^;h\#S[%
Index