"Modern Lens Design" 2nd Edition by Warren J. Smith Fku~'30
't.IYBHx
Contents of Modern Lens Design 2nd Edition ,R#pQ
4
YcOPqvQ
1 Introduction 2FU+o\1%
1.1 Lens Design Books [%
\>FT[
1.2 Reference Material )S@e&a|
1.3 Specifications Iv+JEuIi
1.4 Lens Design ]Wr2I M
1.5 Lens Design Program Features R/ix,GC
1.6 About This Book
kw{dvE\K
~"|MwR!0
2 Automatic Lens Design 6
<XQ'tM]N
2.2 The Merit Function `@TWZ%f6
2.3 Local Minima [U]^:sV)
2.4 The Landscape Lens -@L7!,j
2.5 Types of Merit Function 5.! OC5tO
2.6 Stagnation gR1vUad7
2.7 Generalized Simulated Annealing q)te/J@
2.8 Considerations about Variables for Optimization `yF6-F
2.9 How to Increase the Speed or Field of a System and Avoid Ray Failure Problems diHK
2.10 Test Plate Fits, Melt Fits, Thickness Fits and Reverse Aberration Fits Z*/{^ zsE
2.11 Spectral Weighting XuS3#L/3p
2.12 How to Get Started 2^ uP[
&n$kVNE
3 Improving a Design -UY5T@as
3.1 Lens Design Tip Sheet: Standard Improvement Techniques ,2oF t\`.r
3.2 Glass Changes ( Index and V Values ) 6<1
2j7
3.3 Splitting Elements m';j#j)w
3.4 Separating a Cemented Doublet mxD]`F
3.5 Compounding an Element [x{z}rYH
3.6 Vignetting and Its Uses " GRR,7A
3.7 Eliminating a Weak Element; the Concentric Problem idsBw!DB
3.8 Balancing Aberrations Znr6,[U+q
3.9 The Symmetrical Principle ,Tp:. "
3.10 Aspheric Surfaces :m.6a4vx
Nm$Ba.Rg
4 Evaluation: How Good is This Design 5"sd
4.1 The Uses of a Preliminary Evaluation )qSjI_qt5
4.2 OPD versus Measures of Performance xmVW6 ,<?
4.3 Geometric Blur Spot Size versus Certain Aberrations GmhfBW?
4.4 Interpreting MTF - The Modulation Transfer Function ~:FF"T>
4.5 Fabrication Considerations 5 EhOvt8
L a>fvm
5 Lens Design Data ^_\S)P2c
5.1 About the Sample Lens Designs TOT#l6yqdd
5.2 Lens Prescriptions, Drawings, and Aberration Plots u,RR|/@
5.3 Estimating the Potential of a Redesign tJBj9{
5.4 Scaling a Desing, Its Aberrations, and Its MTF '+EtnWHs
5.5 Notes on the Interpretation of Ray Intercept Plots 21k,{FB'?
5.6 Various Evaluation Plot K g6hySb
[#@\A]LO
6 Telescope Objective f/7on|bv
6.1 The Thin Airspaced Doublet *kYJwO^
6.2 Merit Function for a Telescope Objective srlxp_^
6.3 The Design of an f/7 Cemented Doublet Telescope Objective b :WA}x V
6.4 Spherochromatism 8:t!m>(*
6.5 Zonal Spherical Aberration rEHlo[7^
6.6 Induced Aberrations $^:s)Yv
6.7 Three-Element Objectives []lMv
ZW
6.8 Secondary Spectrum (Apochromatic Systems) !;3hN$5
6.9 The Design of an f/7 Apochromatic Triplet 'm=TBNQTS
6.10 The Diffractive Surface in Lens Design knn9s0'Q
6.11 A Final Note *@I/TX'\rY
]l7 r M"
7 Eyepieces and Magnifiers E3hXs6P
7.1 Eyepieces |)VNf.aJZ
7.2 A Pair of Magnifier Designs ="p,~ivrz
7.3 The Simple, Classical Eyepieces Ec9%RAxl
7.4 Design Story of an Eyepiece for a 6*30 Binocular {x,d9I
7.5 Four-Element Eyepieces n\ 'PNB
7.6 Five-Element Eyepieces !C(U9p. 0
7.7 Very High Index Eyepiece/Magnifier mE\)j*Nnv
7.8 Six- and Seven-Element Eyepieces Mfn^v:Q#
VUon>XQ
G
8 Cooke Triplet Anastigmats /
Q| Z&-c
8.1 Airspaced Triplet Anastigmats |A.nP9 hW
8.2 Glass Choice $^e(?Pq
8.3 Vertex Length and Residual Aberrations |&"/u7^
8.4 Other Design Considerations xX?9e3(
8.5 A Plastic, Aspheric Triplet Camera Lens ).)^\
8.6 Camera Lens Anastigmatism Design “from Scrach” – The Cooke Triplet `pb=y}
8.7 Possible Improvement to Our “Basic” Triplet w=_q<1a
8.7 The Rear Earth (Lanthanum) Glasses ToK=`0#LNK
8.9 Aspherizing the Surfaces z"nMR_TTu
8.10 Increasing the Element Thickness YEa<zhO8
z6*r<>Bf+b
9 Split Triplets ;V?3Hwl
k4d;4D?
10 The Tessar, Heliar, and Other Compounded Triplets wP7
E8'
10.1 The Classic Tessar )[ QT?;
10.2 The Heliar/Pentac DH7]TRCMZ)
10.3 The Portrait Lens and the Enlarger Lens {[4.<|26
10.4 Other Compounded Triplets "!Qi$ ]
10.5 Camera Lens Anastigmat Design “from Scratch” – The Tessar and Heliar j.!5&^;u4
e?7y$H-
11 Double-Meniscus Anastigmats C);3GPp
11.1 Meniscus Components j[Jwa*GQP
11.2 The Hypergon, Totogon, and Metrogon "8p<NsU
11.3 A Two Element Aspheric Thick Meniscus Camera Lens Q#F9&{'l
11.4 Protar, Dagor, and Convertible Lenses xS4?M<|L63
11.5 The Split Dagor "S+AkLe(
11.6 The Dogmar
s)jNP\-
11.7 Camera Lens Anastigmat Design “from Scratch” – The Dogmar Lens 2#
% *ng *
12 The Biotar or Double-Gauss Lens O5MV&Zb(
12.1 The Basic Six-Element Version )<%CI#s#
12.2 28 Things You Should Know about the Double-Gauss/Biotar Lens ef7 BG(
12.3 The Seven-Element Biotar - Split-Rear Singlet Q4Nut
12.4 The Seven-Element Biotar - Broken Contact Front Doublet
jM-7
12.5 The Seven-Element Biotar - One Compounded Outer Element 27i-B\r
12.6 The Eight-Element Biotar x~i\*Ox^
12.7 A “Doubled Double-Gauss” Relay PWeWz(]0Z4
O=vD6@QI
13 Telephoto Lenses d}aMdIF!e
13.1 The Basic Telephoto {e$@i
13.2 Close-up or Macro Lenses *~~J1.ja>
13.3 Telephoto Designs I s|_
13.4 Design of a 200-mm f/4 Telephoto for a 35-mm Camera from Scratch Ey.%:
O-Dv
Scug
wSB
1LaJ
hrp?
14 Reversed Telescope (Retrofocus and Fish-Eye) Lenses w`EC6ZN
14.1 The Reverse Telephoto Principle P v=]7>e
14.2 The Basic Retrofocus Lens ._]*Y`5)d
14.3 Fish-Eye, or Extreme Wide-Angle Reverse Telephoto, Lenses p1[|5r5Day
HWIn.ij
15 Wide Angle Lenses with Negative Outer Lenses 1,:QrhC
'[HBKn$`
16 The Petzval Lens; Head-up Display Lenses ^ ;K"Y'f$
16.1 The Petzval Portrait Lens W9{i ~.zo
16.2 The Petzval Projection Lens '9'f\
16.3 The Petzval with a Field Flattener \?wKs
16.4 Very Height Speed Petzval Lenses XI:+EeM?
16.5 Head-up Display (HUD) Lenses, Biocular Lenses, and Head/Helmet Mounted Display(HMD) Systems WZn"I&Z
DxD\o+:r
17 Microscope Objectives ]heVR&bQ
17.1 General Considerations Lxn-M5RPQ
17.2 Classic Objective Design Forms; The Aplanatic Front @#*{*
S8
17.3 Flat-Field Objectives l*(L"]
17.4 Reflecting Objectives WL|71?@C
17.5 The Microscope Objective Designs fu{v(^
jd2 p~W
18 Mirror and Catadioptric Systems belBdxa{"
18.1 The Good and Bad Points of Mirrors Q@|"xKa
18.2 The Classic Two-Mirror Systems 7Le-f
18.3 Catadioptric Systems d04gmc&*
18.4 Aspheric Correctors and Schmidt Systems {3SK|J`
18.5 Confocal Paraboloids m^zD']
18.6 Unobscured Systems 8#R%jjr%T
18.7 Design of a Schmidt-Cassegrain “from Scratch” t<"`gM^|
MR: H3
19 Infrared and Ultraviolet Systems |z8_]o+|r1
19.1 Infrared Optics 1;?w#/&t
19.2 IR Objective Lenses ~.6% %1?
19.3 IR Telescope mE=Tj%+x
19.4 Laser Beam Expanders EuA352x
19,5 Ultraviolet Systems iaQfxQP1w%
19.6 Microlithographic Lenses `gF]
V6+:g=@U-l
20 Zoom Lenses \),zDO+
20.1 Zoom Lenses nET<u;
20.2 Zoom Lenses for Point and Shoot Cameras :?}>Q
20.3 A 20X Video Zoom Lens Sj:c {jyJd
20.4 A Zoom Scanner Lens t|9vb
20.5 A Possible Zoom Lens Design Procedure \acGSW
.c
+3M1^:
21 Projection TV Lenses and Macro Lenses ,Y#f0
21.1 Projection TV Lenses fOKAy'
21.2 Macro Lenses S;/pm$?/
foBF]7Bz?
22 Scanner/ , Laser Disk and Collimator Lenses DZ $O%
22.1 Monochromatic Systems zo8&(XS
22.2 Scanner Lenses U6o]7j&6
22.3 Laser Disk, Focusing, and Collimator Lenses
_,v>P2)
9xK#(M
23 Tolerance Budgeting
1D2RhM%
23.1 The Tolerance Budget *v: .]_;
23.2 Additive Tolerances D(&Zq7]n
23.3 Establishing the Tolerance Budget dtjb(*x
a2]>R<M
24 Formulary 9
&Ry51
24.1 Sign Conventions, Symbols, and Definitions .
Y$xNLoP[
24.2 The Cardinal Points $VP\Ac,!
24.3 Image Equations U]B-B+-
24.4 Paraxial Ray Tracing (Surface by Surface) h#dfhcU>
24.5 Invariants 6OJhF7\0&
24.6 Paraxial Ray Tracing (Component by Component) c/=\YeR
24.7 Two-Componenet Relationships sk_xQo#Y
3
24.8 Third-Order Aberrations – Surface Contributions ,1.Td=lY$
24.9 Third-Order Aberrations – Thin Lens Contributions; The G Sum Eqs IFZw54
24.10 Stop Shift Equations ~ 588md :
24.11 Third-Order Aberrations – Contributions from Aspheric Surfaces mVN\
24.12 Conversion of Aberrations to Wavefront Deformation (OPD) LF)wn-C}
G)f!AuN=
5 /T#>l<
Glossary biForT_no
Reference knfmJUT
Index