光纤布拉格光栅的光学传感技术
基于光纤布拉格光栅(FBG)的光学传感技术,利用“光”作为介质取代“电”,使用标准光纤替代铜线,从而克服种种的挑战。
在这种方法中,会用一个广谱的光源照射FBG传感器 (或者一系列FBG传感器)。这些反射光束会通过一个分散性单元,分散性单元会将波长不同的反射光束分别分配到电荷耦合器件(CCD)表面不同的位置上去。如下图5所示。 图5.使用波长位置转换法探询FBG光学传感器 这种方法可以快速并且同时地对挂接在光纤上的所有FBG传感器进行测量,但是它只提供了非常有限的分辨率以及信噪比 (SNR)。举例来说,如果我们希望在80纳米的波长范围中实现1皮米的分辨率,那么我们需要一个包含80,000个像素点的线性CCD器件,这个像素指标已经比目前在市面上能够找到的最好的线性CCD器件 (截至2010年7月) 的指标高出了10倍以上。另外,因为广谱光源的能量是被分散到一个很广的波长范围中,所以FBG反射光束的能量会非常小,有时候甚至会给测量带来困难。 目前最流行的方法是利用一个可调法珀滤波器来创造一束具有高能量,并且能够快速扫频的激光源来代替传统的广谱的光源。可调的激光源将能量集中在一个很窄的波长范围里面,提供了一个具有很高信噪比的高能量的光源。这种体系结构提供的高光学功率让使用一条光纤挂载多个光学通道成为可能,这样就能有效地减少多通道探询器的成本并且降低系统的复杂度。基于这种可调激光架构的探询器可以在一个相对大的波长范围里面以很窄的光谱带进行扫描,另一方面,一台光探测器将与这个扫描同步,测量从FBG传感器反射回来的激光束。当可调激光器发射的激光波长与FBG传感器的布拉格波长吻合的时候,光探测器就能测量到相应的响应。该响应发生的时候可调激光的波长就对应了此时FBG传感器处测得的温度以及/或者应变,如图 6所示。 图6.用可调激光源法探询FBG光学传感器 使用这种方法进行探询可以达到大概1皮米的精度,对应到传统FBG传感器的精度即是约1.2微应变(FBG应变传感器)或约0.1摄氏度(FBG温度传感器)。因为可调激光源法相对于其它的方法来说具有很高的光学功率,所以这种探询法还可以适用于光纤长度更大 (超过10千米) 的测量应用中。 FBG光学传感器的优势 通过使用光波代替电流以及使用标准光纤代替铜线作为传输介质,FBG光学传感解决了许多使用电气传感需要面临的挑战和解决的困难。光纤和FBG光学传感器都是绝缘体,具有被动性电学特性,并且不受电磁感应噪声的影响。具有高光学功率可调激光源的探询器可以以很低的数据丢失率甚至是零丢失来完成长距离的测量。同时,与电气传感器系统不同,一个光学通道可以同时完成多个FBG传感器的测试,极大地减小了测试系统的体积,重量以及复杂度。 在一些外部环境条件恶劣的应用现场中,一些常用的电气传感器,例如箔应变片,热电偶,以及振弦式传感器已经很难使用甚至已经失效的情况下,光学传感器是一个非常理想的解决办法。因为光学传感器的用途以及安装方法和这些传统的电气传感器类似,所以从电气测试方案过渡到光学测试方案会相对简单。如果能够对光纤和FBG的工作原理有一个比较好的了解,那将帮助你更好地接受光学测试技术并驾驭这种新技术所带来的所有优势。 |
1.行业新闻、市场分析。 2.新品新技术(最新研发出来的产品技术介绍,包括产品性能参数、作用、应用领域及图片); 3.解决方案/专业论文(针对问题及需求,提出一个解决问题的执行方案); 4.技术文章、白皮书,光学软件运用技术(光电行业内技术文档);
如果想要将你的内容出现在这里,欢迎联系我们,投稿邮箱:service@opticsky.cn