镜头设计的标准和考虑因素
今天的镜头设计(或者像光学设计者称之为光路设计)似乎是小菜一碟:在镜头的资料库中有成千上万的设计专利的展示,并且有许多是公开发表的。你似乎可以从大致的设计构思着手,然后利用高速的计算机系统为你的设计草图 ..
今天的镜头设计(或者像光学设计者称之为光路设计)似乎是小菜一碟:在镜头的资料库中有成千上万的设计专利的展示,并且有许多是公开发表的。你似乎可以从大致的设计构思着手,然后利用高速的计算机系统为你的设计草图进行优化,达到你实际想要达到的目标。 但问题是,计算机能够生成一个优秀的镜头设计吗?当然是不可能的。真正的设计其实是源自于人的大脑,就如导航仪器只能在你给它指定明确的目标之后才可以帮助你找到正确的航线一样。商业镜头设计系统当然可以为你优化镜头设计,但如果设计的出发点本身是不足的,那么你是很难更正它的。在光学设计部门中目前大量使用了计算机,但它也毫不例外地表明了计算机及其计算机程序本身是无法给你找到全部答 案的。 镜头设计是极具创造力的工作,它必须基于经验和敏锐的洞察力来了解各种各样光学象差的特性。 首先让我们来看一些镜头设计的基本原理 任何镜头,不管是新的还是老的,都可以用“镜头描述”这个术语来区分镜片的数量、玻璃的种类、镜片的曲面半径、镜片的厚度、镜片与镜片之间的距离、以及每个镜片的直径等等。这些都是用来全面描述一个镜头的参数。当发自于某个物体的光线穿过玻璃表面时,该束光线会被折射,就如我们在中学物理课本中学到的物理知识所描述的那样。 光线折射量取决于玻璃的折射率。如果镜头设计者能知道光线射入镜头前镜片时的确切入射位置以及入射角度,他就可以通过光线理论系统精确地追踪光路。角度和距离可以通过三角函数的正弦和余弦算出来。因此通过简单的平面几何,光线途经的线路就可以被追踪到。我们知道任何一个点光源发出的能量都是散射的,并无任何方向行可言。只有部分能量通过镜头,而且设计者也假设通过简单的数学来计算通过镜头的能量(那些被视为一系列的各自独立的光线)可以追踪那些光线的路径。 镜头设计者首先从光轴上的某点开始追踪少量的光线。这里所假设的是每个物象点都会在胶片平面上形成于之相对应的点,所以发自物体的光线都将被转化为这样的成相点,并且具有同样的相对位置。这就是高斯成相(Gaussian Fiction)。对应那些靠近光轴的点,设计者可以有理由相信高斯成象是相当精确的,这就是平行光轴光学(Paraxial Optics) 。尽管计算公式相当简单(至少对有经验的设计者来说),但要求对于这些数字的计算精确到小数点后5~8位。 在机械和电子计算机到来之前,计算这些数值的唯一方法是借助于对数表。在30年代,每天只能达到50个这样的计算量。因为很容易出错,每个数字都得核对2次才行,比如说,不要把“7” 看成“9” ,而且还有保证手写的字体要工整,容易辨认。我曾经有机会看到Leitz早期在Solms的设计成果,那些长串的数字,为了易于识别和拷贝而认真书写的字体,都表明了当时的工作是何等的辛劳。例如,对于一个有6片镜片的镜头设计,每个镜片的表面需要计算200条光路,整个镜头的计算量到达了3000条光路,需要3个月才能完成全部计算。很令人吃惊的是当时Leitz的工作和组织方式(直到最近Leitz才第一次透露)。 镜头设计者对他的设计所倾注的浪漫构思理所当然的是个迷 在现实设计中,设计主管负责一组工作者,其中大部份是女性,她们负责大量的计算工作中非常重要的一部分。设计主管指导整个设计,他从手下了解的大量光学计算式中获取结果,从中决定究竟是继续原设计还是对设计进行调整。对于任何重要的摄影光学而言,平行光轴光学的计算是没有太大用处的。 对于大口径镜头的设计而言,由于光线的进入量大,因此考虑斜向进入镜头的光线就非常重要,考虑平行进入的光线对于中央区域的成象很重要,但对于远离象场中央区域的成象则不具有多大的意义。斜向进入镜头的光线可以分为两部分:垂直的和水平的。经过垂直面的称为切线光线,经过水平面的称为径向光线。这部分的光路则需要特殊的公式来计算了。但这些公式极为复杂和繁琐,手工计算几乎是不可能的。即使对于现代的电子计算机来说也不是一件容易的事。 因此在现实设计中设计者都力图避免那些计算(径向光线),或者只进行近似计算,Leitz和Zeiss都是这样做的。最终的计算毫无例外的都是折衷的结果,即有已知因素,也有未知因素。 |
1.行业新闻、市场分析。 2.新品新技术(最新研发出来的产品技术介绍,包括产品性能参数、作用、应用领域及图片); 3.解决方案/专业论文(针对问题及需求,提出一个解决问题的执行方案); 4.技术文章、白皮书,光学软件运用技术(光电行业内技术文档);
如果想要将你的内容出现在这里,欢迎联系我们,投稿邮箱:service@opticsky.cn