切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
  • 太阳能光电化学转换研究

    作者:佚名 来源:本站整理 时间:2011-11-03 00:36 阅读:2408 [投稿]
    0 引言 进入二十世纪以来,人类的工业文明得以迅猛发展,由此引发的能源危机和环境污染成为急待解决的严重问题,利用和转换太阳能是解决世界范围内的能源危机和环境问题的一条重要途径。世界上第一个认识到光电化学 ..
    3.1超晶格量子阶半导体电极 
    超晶格量子阶半导体是由两种不同的半导体材料交替生长厚度为几到几十原子层的 超薄层,形成一个比原晶格大若干倍的新周期结构的人工半导体晶体。超晶格量子阱半导体电极具有独特的晶体结构和优于体材料的光电特性,如激子二维运动受限,不仅寿命长而且光吸收性能强,在相同浓度下载流子迁移率比体材料大,热载流子寿命大,增强了热载流子效应等,有利于提高光电转换效率,而且可以在单分子层水平上通过选择半导体材料的种类,调节势垒高度、势阱层的厚度等结构参数,设计生长高量子产率的超晶格量子阱电极。实现“能带工程”在光电化学能量转换中的应用。用分子束外延法设计生长适合于光电化学研究的晶格匹配型GaAs/A1xGa1-xAs量子阱电极(两种半导体材料的晶格常数之差小于1%)和应变型InxGa1-xAs/GaAs量子阱电极(两种半导体材料的晶格常数之差大于1%),研究其在非水溶液中的光电转换性能以及阱宽、垒宽、外垒及周期等因素对光电性能的影响。在室温下观察到对应于激子强吸收的光电流峰,随量子阱宽度从10nm减小到5nm,量子阱内能级分离程度增加,激子光电流峰明显蓝移,呈现显著的光电化学量子化效应和强激子光吸收性能,而阱宽10nm的单量子阱光电流量子产率与阱宽5nm的单量子阱量子产率基本相同,表现出二维激子的光吸收与量子阱宽基本无关的特性。但外垒厚度的增加,不利于光生载流子的界面电荷转移,激子强吸收效应退化。在多量子阱电极中的各量子阱是独立地参与界面电荷转移的,多量子阱电极的量子产率基本上可认为是各量子阱的加和。在以上研究的基础上成功设计生长了50周期四种不同阱宽GaAs/AlxGa1-xAs多量子阱电极,其激子吸收覆盖了整个测量波长,在二茂铁乙腈溶液中量子产率为GaAs体电极的三倍,表现出优良的光电转换性能。 
    通过多种瞬态、稳态技术的研究得到不同于体材料的界面热力学和动力学性能,如GaAs/AlxGa1-xAs量子阱电极在非水溶液中空间电荷层电场分布——量子阱中是匀强电场。内垒则为较理想的耗尽层模型。量子限制Stark效应受溶液氧化还原离子与电极表面相互作用强弱的影响。实验结果和理论计算都表明,量子阱电极的表面复合速率比体材料GaAs慢,这是由于量子阱中的光生载流子主要通过热发射进行分离,限域在量子阱中空穴热发射到价带连续带能级的时间比电子快数百倍,因此空穴界面分离速率远高于电子。这也是GaAs/A1xGa1-xAs电极量子产率高的一个重要原因。另外GaAs/AlxGa1-xAs和InxGa1-x /GaAs两种量子阱在非水溶液中都表现出光生载流子界面隧穿电荷转移所导致的不同于体材料的光电流一电压关系的异常行为。[/page]
    分享到:
    扫一扫,关注光行天下的微信订阅号!
    【温馨提示】本频道长期接受投稿,内容可以是:
    1.行业新闻、市场分析。 2.新品新技术(最新研发出来的产品技术介绍,包括产品性能参数、作用、应用领域及图片); 3.解决方案/专业论文(针对问题及需求,提出一个解决问题的执行方案); 4.技术文章、白皮书,光学软件运用技术(光电行业内技术文档);
    如果想要将你的内容出现在这里,欢迎联系我们,投稿邮箱:service@opticsky.cn
    文章点评