切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
  • 太阳能光电化学转换研究

    作者:佚名 来源:本站整理 时间:2011-11-03 00:36 阅读:2406 [投稿]
    0 引言 进入二十世纪以来,人类的工业文明得以迅猛发展,由此引发的能源危机和环境污染成为急待解决的严重问题,利用和转换太阳能是解决世界范围内的能源危机和环境问题的一条重要途径。世界上第一个认识到光电化学 ..
    制备中用Te替代部份Se形成CdSe和Cdse xTe1-x薄膜电极,其光谱响应范围与X值大小有关,当调X=0.63时能量转换效率达到12.3%。CdTe具有吸收太阳光能的最佳能隙(Eg=1.4eV),其单晶电极在多硫溶液中达到15.6%的光电转换效率,但用电沉积法制备多晶薄膜电极却只获得3.6%的转换效率。比较CdX(X=S、Se、Te)光电极性能不难看出,CdSe和Cdse xTe1-x薄膜的光电性能和稳定性能优于CdS和CdTe电极,是光电化学研究中有发展前途的光电极材料。在CdS和CdTe薄膜的研究中证明了表面修饰也是改善光电性能的有效措施,研究Au、Pt、Ru和Pd等贵金属修饰CdS和CdTe电极,发现贵金属在电极表面的构型不同会产生不同效果,大量的Pt岛覆盖电极表面降低了电极界面光电化学反应的极化,增大了反应的交换电流,是电极界面光电催化的最佳构型。Pd的修饰形成了金属致密层,结果使光电性能下降,产生与Pt修饰相反的效果。用LB膜技术实现分子取向、排列结构和浓度可控的条件下研究具有不同氧化还原电位和传递电荷性质的二茂铁衍生物修饰CdSe,薄膜电极,将电极表面的微观分子设计与宏观电极过程联系起来,为修饰分子的优化提供大量信息,使半导体电极表面修饰技术有很大的提高和发展。 
    对Ⅲ~Ⅴ族化合物半导体主要研究GaAs和InP单晶电极,它们具有吸收太阳光能的最 佳带隙,可以构成高效的光电化学电池。n-GaAs电极在多硒溶液中有较好的稳定性,经H2SO4-H2O2混合溶液的反复刻蚀,再吸附Ru3+离子后有效降低表面复合,使光电转换效率大大提高,接近于20%。n-InP电极的晶面取向和掺杂浓度对光电性能有很大影响,掺杂浓度低(1016cm-3)的光电流、光电压优于掺杂浓度高(1018cm-3)的电极;在Fe2+/Fe3+酸性溶液中,性能稳定,转换效率达到18%,p-InP电极在V2+/V3+溶液中表面经Ag修饰和电镀Cu改善背面接触后效率达到18.8%。
    过渡金属二硫族层状化合物具有特殊的电子结构,其过渡金属存在分离的d轨道,受 激电子在d-d轨道间跃迁,最大跃迁能为1.1eV-1.8eV,而且不影响化学键,因此其光稳定性好。研究天然晶体MoS2电极发现其光电性能存在各向异性的特征,电极的表面性质是决定光电性能的关键因素,通过离子特性吸附和表面活性剂处理都能明显提高光电流和光电压,FeS2电极则可通过界面配位化学途径来改善其光电性能。 
    在三元半导体化合物中研究了CuInS2和CuInSe2及其固溶体的烧结多晶电极,通过固 溶体的组成变化来改变电极的能隙及电子亲合势,得到CuInS2(1.51eV)、CuInS1.5Se0.5(1.44eV)、CuInSSe(1.24eV)、CuInS0.5Se1.5(1.13eV)和CuInSe2(1.04eV)不同组成的三元化合物多晶电极,在多硫溶液中以CuInS2,电极的光电流、光电压最大,转换效率达到1.8%,而且间断运行一年光电性能未见衰减。AgInSe2电极在多碘溶液中的光电化学性能优于CuInSe2。 
    氧化物半导体一般具有很好的光稳定性能,但存在的问题是能量转换效率较低,因[page_break]
    此研究的重点是通过光谱敏化、离子掺杂和光电催化作用来改善其光电性能。最有代表性的是TiO2,热氧化制备的多晶薄膜电极在通氮无氧的K4Fe(CN)6 和HClO4混合溶液中浸渍,由于K4Fe(CN)6与TiO2表面中的Ti4+形成电荷转移配合物,使TiO2的吸收光谱由400nm扩展到600nm以上。另外,还研究了铱和钴对TiO2电极光电化学反应的催化作用,铱以大量微孔的透光层形式,钴则以高度分散的微岛固定在TiO2电极表面,都能快速捕获光生空穴催化界面光反应氧化,将钴微粒载在多孔铱层产生了更大的光电流,说明铱和钴的联合作用比单一催化剂有更好效果,ZnO电极只能吸收紫外光用染料罗丹明日B进行光谱敏化,明显增加了可见光波长区(400nm-700nm)的光电流。α-Fe2O3薄膜电极用二茂铁化学真空沉积(VCD法)在高纯Ti层上制备,其工作光谱扩展至670nm,比α-Fe2O3能隙相对应的550nm 红移了120nm,这是归因于在热处理过程中Ti由基底扩散而导致的掺杂效应。
    2有机光敏染料的光电能量转换 
    自然界绿色植物的光合作用是已知最为有效的太阳光能转换体系。许多人利用类似 叶绿素分子结构的有机光敏染料设计人工模拟光合作用的光能转换体系,进行光电转换的研究。由于有机光敏染料可以自行设计合成,与无机半导体材料相比,材料选择余地大,而且易达到价廉的目标。如金属卟啉和金属酞菁是大Π共轭有机分子与金属组成的配合物,具有较高的化学稳定性,能较强吸收可见光谱,作为有机光伏材料,它是目前广泛研究的对象。[/page]
    分享到:
    扫一扫,关注光行天下的微信订阅号!
    【温馨提示】本频道长期接受投稿,内容可以是:
    1.行业新闻、市场分析。 2.新品新技术(最新研发出来的产品技术介绍,包括产品性能参数、作用、应用领域及图片); 3.解决方案/专业论文(针对问题及需求,提出一个解决问题的执行方案); 4.技术文章、白皮书,光学软件运用技术(光电行业内技术文档);
    如果想要将你的内容出现在这里,欢迎联系我们,投稿邮箱:service@opticsky.cn
    文章点评