切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
  • 光学材料的浅低温抛光方法

    作者:佚名 来源:本站整理 时间:2011-10-10 23:45 阅读:2722 [投稿]
    现代科学技术所使用的硬脆材料,如单品硅、功能材料、陶瓷、宝石和光学玻璃等,对这些材料进行超精密加工,并获得很好的面形精度和超光滑表面部是很难的。近代刚刚趋于成熟的金刚石切削技术对此也无能为力。 解决 ..
    微晶玻璃:同样,经过较长时间的抛光,也能接近低温抛光的表面粗糙度水平。金属基镀镍层:实验表明沥青盘常规工艺的去除率高于低温抛光的去除率,粗糙度亦能达到同样量级。
    对比实验结果分析:从实验结果看,浅低温冰模层抛光得到了较好的抛光效果,抛光效率也比较高的实验结果,我们认为:
    (1)浅低温抛光时,抛光磨料被固着在冰模层里,是“固体”,所以可适当提高工件主轴的转速,例如提高到每分钟几百转,而普通传统抛光机器转速是受到限制的,否则磨料外溢,反而效果不好。
    (2)冰模层和工件相接触并作相对运动产生切削作用,不断的去除工件材料。另一方面冰模层和工件接触摩擦生热,冰模层不断熔化,在冰和工件之间形成一层水膜。这时和常规抛光相似,磨料以波动方式对材料进行去除,同时,未熔化的冰中所含的磨粒还有固着磨料的切削作用,直到磨粒脱落。所以,低温抛光的切削作用大于普通沥青盘抛光的去除作用,所以,冰模层抛光效果和去除率都比较好。
    (3)浅低温抛光,我们使用的抛光模盘温度在一30~一50℃。抛光过程中,抛光模盘、工件都在我们人为创造那个小低温空间内,但工件和冰镇层的接触面上,由于生热而形成的某种高温,还原了抛光波的液体状态,抛光液对工件的水解作用照常进行,水解作用有利于材料的去除,所以和常规抛光一样,低温抛光同样是机械化学抛光。
    6.材料去除率测定
    对光学抛光工艺来说,测量给定条件下的材料去除率是一件很不容易的事,因为光学抛光在一段工艺过程之后,表面去除量甚小,这势必要求测试仪器具有非常高的分辨率和很严格的测量重复性,这对采用常规方法无疑是非常困难的。难波在他们的抛光实验中采用了努氏(Knoop)硬度计来测量去除率, Hader和 Weis提出了一种在样件上切出一个微米(μm)量级的平滑的沟槽的方法’14,即在每次抛光后,用轮廓仪去测量沟槽深度的变化进而计算出材料被抛光的去除率。我们根据我们的条件,低温抛光材料去除率的测定是在 MVK—E型显微硬度计上进行的。
    显微硬度计主要是用来测试各种材料的显微硬度(Hv)其测头为金字塔式四方棱锥,相对面银角为136℃,当以不同负荷压材料时,被测材料表面形成一个有一定深度的四方棱锥形的孔。所以,我们在抛光的样件上先压上四方棱锥形孔的压痕,每次抛光后,测量锥孔对角线长度的变化,就可求得锥孔深度的变化,最后换算出抛光材料的去除率。
    设对角线长度为di,四方形锥孔的边长为ai,则每次抛光后的锥孔高度为 所以,测量每次抛光操作后的di就可相应计算出hi,就可求出其变化,如图6所示,最后计算出材料的去除率。
    我们在一个工件盘的不同位置选取三块样件,每块样件又选三个不同位置做棱锥孔压痕(其中一块做四处),每次抛光后计量di,共十个点作统计平均值。
    这里有两个问题,1.显微硬度计的压痕是很浅的,但材料的变形使压痕后在边缘处有隆起出现,所以,在第一次开始计量前,必须把隆起去掉。2.MVK—E型显微硬度计的观测显微镜放大倍数为400×,位移刻度格值为1μm,这给观测带来困难和分辨率不高。所以,我们的每次抛光操作务必使di的变化量大于1μm,以减少视值误差,同时,还压出不同深度的压痕作校准之用,尽量减少偶然误差,佼测试结果基本正确。实验数据:我们的实验是分别对微晶玻璃和金属基镀镍层进行的,表1是微晶玻璃的一组测试数据。
    更换磨料后,继续做实验,另一种磨料材料的去除高度为1.52nm/min去除率为14.54×10-3mm3/min。一组金属基镀银层工件低温抛光测得材料的去除高度为0.2nm/min比微晶玻璃还低。为了对比,我们又分别做了镀银层和微晶玻璃的常规沥青模层抛光实验,结果是沥青模盘抛光金属基镀镍层的去除高度、去除率都比冰模层低温抛光高。另一方面,沥青盘抛光微晶玻璃的去除高度、去除率都不及低温抛光。这一结果是很有趣的。
    测试结果我们认为低温冰模层抛光微晶玻璃和金属基镀镍层,其去除率都很低,因而能抛出超光滑表面。光学材料抛光的去除串,在转速、摆角及压力本变的情况下,仍是一个变数而不是常数,例如,当由一种磨料更换为另一种磨料时,或磨料由粗变细时,刚开始时测得的去除率和以后测得的去除率不一样。
    7.结论
    在常规光学工艺中加上温度效应,利用抛光波加水冷冻结冰,形成“固体”的抛光模层,替代传统的沥青盘或锡盘等抛光模层,这是一种新的尝试。从对几种常用的光学材料的抛光效果来看:
    (1)我们所进行的冰抛光模层浅低温抛光实验,表明这种抛光方法具有散粒磨料和固着磨料抛光的两种效果,可以提高工作效率,易于控制面形并得到了 Ra在 A量级的超光滑表面。
    (2)这种抛光方法由于低温冷冻深度很浅,冰模层制作简单,在常规工艺中不增加设备,适当创造低温条件就可实现,在某些方面具有实用价值。
    (3)低温物理是近年来非常活跃的研究领域,1998年的物理奖就是低温条件下量子行为的研究成果。在低温条件下,特别是在OK附近的深冷温度区内,会发生许多新奇现象,值得深入研究探索,对于工艺技术工作者来说,在深冷区的条件下,被加工的光学材料会有那些新的性质、加工会有那些新现象、表面质量有那些新的效果,有条件是值得深入研究的新问题。本项目为应用光学国家重点实验室资助项目。
    分享到:
    扫一扫,关注光行天下的微信订阅号!
    【温馨提示】本频道长期接受投稿,内容可以是:
    1.行业新闻、市场分析。 2.新品新技术(最新研发出来的产品技术介绍,包括产品性能参数、作用、应用领域及图片); 3.解决方案/专业论文(针对问题及需求,提出一个解决问题的执行方案); 4.技术文章、白皮书,光学软件运用技术(光电行业内技术文档);
    如果想要将你的内容出现在这里,欢迎联系我们,投稿邮箱:service@opticsky.cn
    文章点评