切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 3956阅读
    • 0回复

    [分享]提高数控仿形精度的控制方法 [复制链接]

    上一主题 下一主题
    在线cyqdesign
     
    发帖
    28593
    光币
    96325
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2006-10-27
    — 本帖被 cyqdesign 从 机械加工与制造 移动到本区(2010-12-09) —
    仿形速度对于仿形加工的精度有主要影响,对于曲面过渡变化较大的型面,速度太快,仿形运动稳定性较差,仿形精度就会很低。而对于仿形运动来讲,未来路径上的模型表面是未知的,因此仿形加工也就不可能有前瞻(Look-ahead)的功能。如果仿形加工始终采用一种速度,要想得到理想的精度,就不得不降低仿形速度,这样就严重影响了加工效率。因此,在仿形过程中,针对不同的模型表面情况,采用特殊的控制方法,实时地调整仿形速度,进而得到较高的仿形加工稳定性和精度,就显得极有意义了。 42$ pvw<  
    Xna58KF/  
    1 仿形运动分析 R*0]*\C z  
    $,u>,  
    对于仿形加工,仿形仪压偏量的大小影响加工的稳定性和精度。在仿形加工中总要设定一个预期的压偏量,仿形过程中实际压偏量越接近预期压偏量,仿形稳定性和精度就越高,反之,仿形稳定性和精度就越低。 p{|!LcSU$2  
    C(CwsdlP  
    图1和图2是仿形过程中模型型面、仿形速度及压偏量的关系曲线图,图1a,图2a为沿仿形方向截得的模型表面轮廓曲线图,两轮廓基本相同,图1b、图2b为与之对应的仿形仪压偏量变化图,但速度不同。仿形过程中预期压偏量为400μm。分析图1和图2的实验结果,可以得到如下结论: &?g!)O  
    sg`   
    ·平面仿形精度高于曲面仿形,且仿形精度受仿形速度的影响较小; QNbV=*F?  
    ·曲面过渡越平缓,实际的压偏量越接近预期压偏量,仿形精度也越高;曲面过渡越剧烈,实际压偏量偏离预期压偏量的值越大,精度就越低; ,="hI:*<  
    ·曲面仿形速度对仿形精度的影响较大,在同样的曲面上,仿形速度越大,仿形精度越低; A |u-VXQ  
    ·模型曲面上的形状急剧变化处,如棱角、直壁、边缘等处,仿形仪压偏量变化很大,严重时会造成不正常的离模现象。

    6|uv+$  
    图1 仿形压偏量曲线(v=1000mm/min) 图2 仿形压偏量曲线 (v=2000mm/min)

    2 仿形控制的改进方法 gcF:/@:Rm  
    hXnfZx%  
    仿形加工过程中,在模型曲面过渡平缓的位置时,可以采用较高的仿形速度,而当仿形头在接近模型曲面变化剧烈的位置时,通过特殊控制方法使之减速,这时仿形头的速度较低,惯性较小,这样就可以使超调和欠调减小到最低限度,进而提高仿形加工的稳定性和精度。同时也可提高仿形加工的效率。 C&|K7Zp0v  
    AjVX  
    1)软减速电位线法 or,:5Z  
    4SVIdSA  
    在仿形过程中,在模型棱角部分、曲面急剧变化等特殊位置附近设置软减速电位线(图3)。当仿形头在软减速线控制范围中时,以较低的速度进行仿形加工,其余均采用较高的理想仿形速度。以XOZ平面扫描,Y方向周期进给仿形方式为例进行讨论。软减速电位线的节点用Point来表示: +[vI ocu  
    {ty)2  
    struct Point{ ylm # Xa  
    float X;∥节点的X方向坐标 fHK.q({Qc  
    float Y;∥节点的Y方向坐标 :a/l9 m(  
    }P[n]; ∥N个节点

    "?%2`*\  
    图3 软减速电位线法

    根据模型的特点,输入num≤n个节点坐标,就可以确定软减速电位线的位置。考虑到模型型面的复杂程度,可以最多设置m条软减速电位线。下面讨论中软减速电位线个数取为m,节点个数取为n。软减速电位线用Line表示: }#r awVe=  
    `%A vn<  
    struct Line{ mF:Pplf<  
    struct P[n]∥软减速电位线的节点 p<[MU4  
    float rg;∥软减速电位线的控制范围 t"JE+G  
    }L[m]; ∥m条软减速电位线 <$(y6+lY  
    E$.fAIt  
    2)自记录控制法 n&l(aRoyx  
    (^oN, 7  
    在仿形加工过程中,利用自记录控制法,记录第一次扫描路径中模型表面的形状急剧变化处,如直壁、边缘、折角等的位置。在以后的扫描路径中,遇到这些位置,仿形速度提前降低,进而避免仿形仪压偏量的大幅度波动,提高仿形加工稳定性和精度。该控制方法针对的模型有一定局限性,比较适合图3中的在某方向截面有类似性的模型,但其程序实现较为简单,并且实际中的模型也多为此种情况。 v]Fw~Y7l!  
    'B:8tv  
    当然,也可以边仿形边记录模型表面的特殊位置,即把新的特殊位置按一定格式(该格式应与仿形方式相对应,以便于查找)插入到记录点的序列中去,并且始终检查本采样周期记录点处压偏量的变化情况,当其实时值与预定压偏量的差值小于某设定值时,便认为该记录点处的模型表面情况已平缓,进而把该记录点剔除。该过程要占用相当的CPU时间,由于该控制模块嵌在伺服控制模块中,为中断执行方式,所以会对控制过程产生一定影响,比如数据采集的速度。程序实现也较复杂。

    D%}rQ,*  
    图4 软减速电位线控制模块程序框图

    在此,仍以XOZ平面扫描、Y方向周期进给仿形方式为例。记录采用偏差控制,仅记录第一次仿形路径上的特殊位置。在仿形过程中,当实际仿形压偏量Dact与预期压偏量Ddes的偏差|Dact-Ddes|≥Dlim(其中Dlim是预定的偏差量),则记录该位置点。为了避免记录点记录得过密,而占用过多内存,且在实际应用上不具意义,通过实验人为设定一个最大记录距离,当本采样点与前一记录点的距离小于该最大距离时,该点不作为被记录点。利用链表结构有利于节省内存,且便于记录和查找,可节省时间。记录点用以下Learn表示 :6MV@{;PJ  
    v-Tkp Yn  
    struct Learn{ nuH=pIq6x  
    float X;∥记录点的位置 =(+]ee!Ti  
    int Dir;∥减速的方向 Al1_\vx7  
    struct learn*next; f$76p!pDa  
    }; C(8VXtx_  
    E+ctiVL  
    该控制方法的程序实现见图5、图6。其中Fdir为仿形方向,Flg为减速标志,Xact为实时的仿形头位置。

    |k$6"dXSO  
    图5 “自记录”记录模块程序框图

    Q.?(h! )9  
    图6 “自记录”判断模块程序框图

    3 实验 [QFAkEJ--o  
    !RP0W  
    对这两种控制方法进行实验,仍采用图1、2中的模型截面进行仿形,理想仿形速度为2000mm/min,低速度为1000mm/min。在“软减速电位线法”中,两条软电位线对应于截面的节点分别在X,Y=10mm和X,Y=75mm处,控制范围为20mm,仿形过程中记录实时压偏量变化情况,得到图7的压偏量与位置关系图。通过分析可以得出,在0~10mm、30~75mm及最终路径上,虽采用较高速度,但由于模型型面变化较为平缓,压偏量波动较小。在10~30mm、75~95mm型面变化较为剧烈的特殊位置上,由于采用了低速度,压偏量波动情况明显好于图2中的情况。在“自记录控制法”中,预定的偏差量为50μm,记录压偏量波动情况,会得到同图7极为类似的图形,在此不再赘述。

    !9.k%B:  
    图7 软减速电位线法压偏量曲线图

    4 结束语 +E^2]F7Zk  
    jW]"Um-]  
    1)实验证明,利用“软减速电位线法”和“自记录控制法”可以较好地解决由于模型表面形状带来的仿形加工不稳定问题,提高了仿形加工精度,同时也提高了仿形加工的效率; V0NLwl O  
    C$p012D1  
    2)由于仿形速度对仿形精度有较大影响,如果要求较高的加工速度,可以利用数字化方法采集数据,处理后进行数字化加工,这样就可以避免仿形加工中高速度带来的问题,进而获得较高的加工精度; ~&?57Sw*m  
    E{0e5.{  
    3)同一曲面,同一仿形速度,不同的仿形方式,获得的加工精度存在较大差异,因此应当针对具体模型的表面形状,采用合适的仿形加工方式,以获得理想的加工精度。
     
    光行天下网站、公众号广告投放、企业宣传稿件发布,请联系QQ:9652202,微信号:cyqdesign
    分享到