Speckle Phenomena in Optics: Theory and Applications Tu-I".d+
R6qC0@*
Joseph W. Goodman "In$|A\?E
h#]LXs
Contents vz`r
!xj)
1 Origins and Manifestations of Speckle 1 rwY{QBSf
1.1 General Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Y$nI9
1.2 Intuitive Explanation of the Cause of Speckle . . . . . . . . . . . . . . . . . . . . . . . . . 2 yvV]|B@sO
1.3 Some Mathematical Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 >on' y+
2 Random Phasor Sums 7 V; 1i/{
2.1 First and Second Moments of the Real and Imaginary Parts of the Resultant Phasor . . . . . 8 trM)&aQto
2.2 Random Walk with a Large Number of Independent Steps . . . . . . . . . . . . . . . . . . 9 s -),Pv|
2.3 Random Phasor Sum Plus a Known Phasor . . . . . . . . . . . . . . . . . . . . . . . . . . 12 +3o
4KB}
2.4 Sums of Random Phasor Sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 mM-7
jz
2.5 Random Phasor Sums with a Finite Number of Equal-Length Components . . . . . . . . . 16 N A9ss
2.6 Random Phasor Sums with a Nonuniform Distribution of Phases . . . . . . . . . . . . . . . 17 -SKcS#IF
3 First-Order Statistical Properties of Optical Speckle 23 A:,R.P>`C
3.1 Definition of Intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 8|-064i>
3.2 First-Order Statistics of the Intensity and Phase . . . . . . . . . . . . . . . . . . . . . . . . 24 Y$N D
3.2.1 Large Number of Random Phasors . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 vL~j6'
3.2.2 Constant Phasor plus a Random Phasor Sum . . . . . . . . . . . . . . . . . . . . . 27 `(pe#Xxn
3.2.3 Finite Number of Equal-Length Phasors . . . . . . . . . . . . . . . . . . . . . . . . 31 8 qwOZ
d
3.3 Sums of Speckle Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 [:cZDVaA|
3.3.1 Sums on an Amplitude Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 }7Y@u@R
3.3.2 Sum of Two Independent Speckle Intensities . . . . . . . . . . . . . . . . . . . . . 34 cT3 s{k
3.3.3 Sum of N Independent Speckle Intensities . . . . . . . . . . . . . . . . . . . . . . 37 9H,Ec,.
3.3.4 Sums of Correlated Speckle Intensities . . . . . . . . . . . . . . . . . . . . . . . . 40 ~A-VgBbU>_
3.4 Partially Polarized Speckle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 o3>D~9
3.5 Partially Developed Speckle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 lZ5TDS
3.6 Speckled Speckle, or Compound Speckle Statistics . . . . . . . . . . . . . . . . . . . . . . 47 _`q ei0
3.6.1 Speckle Driven by a Negative Exponential Intensity Distribution . . . . . . . . . . . 48 3R ZD=`
3.6.2 Speckle Driven by a Gamma Intensity Distribution . . . . . . . . . . . . . . . . . . 50 gclw>((5
3.6.3 Sums of Independent Speckle Patterns Driven by a Gamma Intensity Distribution . . 51 xZp`Ke!
4 Higher-Order Statistical Properties of Optical Speckle 55 WkK.ON^
4.1 Multivariate Gaussian Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 e%.|PZ)
4.2 Application to Speckle Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 i0*6o3h
4.3 Multidimensional Statistics of Speckle Amplitude, Phase and Intensity . . . . . . . . . . . . 58 8u bb~ B;
4.3.1 Joint Density Function of the Amplitudes . . . . . . . . . . . . . . . . . . . . . . . 59 =.f<"P51k
4.3.2 Joint Density Function of the Phases . . . . . . . . . . . . . . . . . . . . . . . . . . 60 h} <Ie <
4.3.3 Joint Density Function of the Intensities . . . . . . . . . . . . . . . . . . . . . . . . 64 5.FAuzz
4.4 Autocorrelation Function and Power Spectrum of Speckle . . . . . . . . . . . . . . . . . . . 66 LOlj8T8Z
4.4.1 Free-Space Propagation Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 eVujur$P
4.4.2 Imaging Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 ,: 4+hJ<q
4.4.3 Speckle Size in Depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 %XK<[BF
4.5 Dependence of Speckle on Scatterer Microstructure . . . . . . . . . . . . . . . . . . . . . . 77 9$e6?<`(Y
4.5.1 Surface vs. Volume Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 S9@)4|3C|p
4.5.2 Effect of a Finite Correlation Area of the ScatteredWave . . . . . . . . . . . . . . . 78 s14; \
4.5.3 A Regime where Speckle Size Is Independent of Scattering Spot Size . . . . . . . . 81 L$s;tJ
4.5.4 Relation between the Correlation Areas of the ScatteredWave and the Surface Height hYv;*]
Fluctuations— Surface Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . 83 b5d;_-~d
4.5.5 Dependence of Speckle Contrast on Surface Roughness— Surface Scattering . . . . 88 pPtw(5bH
4.5.6 Properties of Speckle Resulting from Volume Scattering . . . . . . . . . . . . . . . 92 }[8Nr+y
4.6 Statistics of Integrated and Blurred Speckle . . . . . . . . . . . . . . . . . . . . . . . . . . 94 3(R]QO`%'
4.6.1 Mean and Variance of Integrated Speckle . . . . . . . . . . . . . . . . . . . . . . . 95 lO5*n|Ic,
4.6.2 Approximate Result for the Probability Density Function of AcxC$uh
Integrated Intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Z<n%~z^
4.6.3 “Exact” Result for the Probability Density Function of Integrated Intensity . . . . . 101 ICB'?yZ,
4.6.4 Integration of Partially Polarized Speckle Patterns . . . . . . . . . . . . . . . . . . . 106 ,.PmH.zjmR
4.7 Statistics of Derivatives of Speckle Intensity and Phase . . . . . . . . . . . . . . . . . . . . 108 TrC :CL
4.7.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 c;1Xu1
4.7.2 Parameters for Various Scattering Spot Shapes . . . . . . . . . . . . . . . . . . . . 110 _4MT,kN
4.7.3 Derivatives of Speckle Phase: Ray Directions in a Speckle Pattern . . . . . . . . . . 111 +5IC-=ZB
4.7.4 Derivatives of Speckle Intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 I85bzzZB
4.7.5 Level Crossings of Speckle Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . 116 ?^W`7H F%0
4.8 Zeros of Speckle Patterns: Optical Vortices . . . . . . . . . . . . . . . . . . . . . . . . . . 118 \' ;zD-MX
4.8.1 Conditions Required for a Zero of Intensity to Occur . . . . . . . . . . . . . . . . . 119 \)mV2r!%
4.8.2 Properties of Speckle Phase in the Vicinity of a Zero of Intensity . . . . . . . . . . . 119 #Yr/GNN
4.8.3 The Density of Vortices in Fully Developed Speckle . . . . . . . . . . . . . . . . . 119 O^yDb
4.8.4 The Density of Vortices for Fully Developed Speckle Plus a Coherent Background . 123 !'T,%8']
5 OpticalMethods for Suppressing Speckle 125 ql
c{k/
u
5.1 Polarization Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 n8vteGQ
5.2 Temporal Averaging with a Moving Diffuser . . . . . . . . . . . . . . . . . . . . . . . . . 127 XH{P@2~l
5.2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 R=u!RcvR
5.2.2 Smooth Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 @8xa"Dc
5.2.3 Rough Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 MuCnBx
5.3 Wavelength and Angle Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 _4h[q4Z
5.3.1 Free-Space Propagation, Reflection Geometry . . . . . . . . . . . . . . . . . . . . 136 sFWH*kdP?
5.3.2 Free-Space Propagation, Transmission Geometry . . . . . . . . . . . . . . . . . . . 144 v^QUYsar
5.3.3 Imaging Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 Zfub+A
5.4 Temporal and Spatial Coherence Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . 150 1>e%(k2w%
5.4.1 Coherence Concepts in Optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 %44Z7
5.4.2 Moving Diffusers and Coherence Reduction . . . . . . . . . . . . . . . . . . . . . . 152 Th[Gu8b3
5.4.3 Speckle Suppression by Reduction of Temporal Coherence . . . . . . . . . . . . . . 154 lL{1wCsl
5.4.4 Speckle Suppression by Reduction of Spatial Coherence . . . . . . . . . . . . . . . 157 ;fnE"}
5.5 Use of Temporal Coherence to Destroy Spatial Coherence . . . . . . . . . . . . . . . . . . 163 v a
j
5.6 Compounding Speckle Suppression Techniques . . . . . . . . . . . . . . . . . . . . . . . . 163 _|%l) KO
6 Speckle in Certain Imaging Modalities 165 3D/<R|p
6.1 Speckle in the Eye . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 U6Ws#e
6.2 Speckle in Holography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 }|!9aojr
6.2.1 Principles of Holography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 .B|a.-oA4
6.2.2 Speckle Suppression in Holographic Images . . . . . . . . . . . . . . . . . . . . . . 170 a}#Jcy!e
6.3 Speckle in Optical Coherence Tomography . . . . . . . . . . . . . . . . . . . . . . . . . . 171 "T,^>xD
6.3.1 Overview of the OCT Imaging Technique . . . . . . . . . . . . . . . . . . . . . . . 172 |37y ="
6.3.2 Analysis of OCT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 ]iL>Zxex
6.3.3 Speckle and Speckle Suppression in OCT . . . . . . . . . . . . . . . . . . . . . . . 176 bEc @"^)
6.4 Speckle in Optical Projection Displays . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 7o5~J)qIC
6.4.1 Anatomies of Projection Displays . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 q"sD>Yh&
6.4.2 Speckle Suppression in Projection Displays . . . . . . . . . . . . . . . . . . . . . . 182 eLc@w<yB
6.4.3 Polarization Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 _pS!sY~d
6.4.4 A Moving Screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 w~I;4p~(N
6.4.5 Wavelength Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 5EqC.g.
6.4.6 Angle Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 Q N$Ac.F
6.4.7 Over-Design of the Projection Optics . . . . . . . . . . . . . . . . . . . . . . . . . 186 /,cyp.
6.4.8 Changing Diffuser Projected onto the Screen . . . . . . . . . . . . . . . . . . . . . 188 Udbz;^(
6.4.9 Specially Designed Screens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 Kgw_c:/'
6.5 Speckle in Projection Microlithography . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 %SSBXWP
6.5.1 Coherence Properties of Excimer Lasers . . . . . . . . . . . . . . . . . . . . . . . 200 q
VcZF7
6.5.2 Temporal Speckle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 ~GZpAPg*
6.5.3 From Exposure Fluctuations to Line Position Fluctuations . . . . . . . . . . . . . . 202 'E#;`}&Ah
7 Speckle in Certain Non-imagingModalities 205 r=o\!sh[
7.1 Speckle in Multimode Fibers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 P:8P>#L
7.1.1 Modal Noise in Fibers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 ehCZhi~
7.1.2 Statistics of Constrained Speckle . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 Hg}@2n)/
7.1.3 Frequency Dependence of Modal Noise . . . . . . . . . . . . . . . . . . . . . . . . 211 ?c!W*`yP
7.2 Effects of Speckle on Optical Radar Performance . . . . . . . . . . . . . . . . . . . . . . . 216 -6./bB g
7.2.1 Spatial Correlation of the Speckle Returned from Distant Targets . . . . . . . . . . . 217 g Q@fe3[
7.2.2 Speckle at Low Light Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 31@m36? X
7.2.3 Detection Statistics—Direct Detection . . . . . . . . . . . . . . . . . . . . . . . . 222 +S3r]D3v/
7.2.4 Detection Statistics— Heterodyne Detection . . . . . . . . . . . . . . . . . . . . . 227 E:C-k^/[Y
7.2.5 Comparison of Direct Detection and Heterodyne Detection . . . . . . . . . . . . . . 234 L% cr `<~
7.2.6 Reduction of the Effects of Speckle in Optical Radar Detection . . . . . . . . . . . . 235 )5(Ko<"
7.3 Speckle and Metrology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 iB=v
>8l%
8 Speckle in Imaging Through the Atmosphere 239 %ymM#5A
8.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 3+v+_I>%k
8.1.1 Refractive Index Fluctuations in the Atmosphere . . . . . . . . . . . . . . . . . . . 239 ,{_;q:
8.2 Short-Exposure and Long-Exposure Point-Spread Functions . . . . . . . . . . . . . . . . . 240 N=X(G(
8.3 Long-Exposure and Short-Exposure Average Optical Transfer Functions . . . . . . . . . . . 242 S@'yuAe*G
8.4 Statistical Properties of the Short-Exposure OTF and MTF . . . . . . . . . . . . . . . . . . 243 9:l@8^_o
8.5 Astronomical Speckle Interferometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 ;0!rq^JG
8.5.1 Object Information that Is Retrievable . . . . . . . . . . . . . . . . . . . . . . . . . 248 82bOiN15
8.5.2 Results of a More Complete Analysis of the Form of the Speckle Transfer Function . 250 JG=U@I]
8.6 The Cross-Spectrum or Knox–Thompson Technique . . . . . . . . . . . . . . . . . . . . . 252 [,1\>z|&
8.6.1 The Cross-Spectrum Transfer Function . . . . . . . . . . . . . . . . . . . . . . . . 253 Ea7LPHE#
8.6.2 Recovering Full Object Information from the Cross-Spectrum . . . . . . . . . . . . 254 i[wEH1jR
8.7 The Bispectrum Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 /EpsJb`kj
8.7.1 The Bispectrum Transfer Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 u3>Dvl@
8.7.2 Recovering Full Object Information from the Bispectrum . . . . . . . . . . . . . . . 258 [x.DwU%S
8.8 Speckle Correlography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 x$'0}vnT
A Linear Transformations 263 TnvX&Y'
B Contrast of Partially Developed Speckle 267 ~YX!49XfHh
C Statistics of Derivatives of Speckle 271 lN-[2vT<
C.1 The Correlation Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 8eVQnp*
C.2 Joint Density Function of the Derivatives of Phase . . . . . . . . . . . . . . . . . . . . . . . 274 ]ZjydQjo)
C.3 Joint Density Function of the Derivatives of Intensity . . . . . . . . . . . . . . . . . . . . . 274 c!{]Z_d\
D Wavelength and Angle Dependence 277 =H\ig%%E@
D.1 Free-Space Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 u9 yXHf
D.2 Imaging Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280 34$qV{Y%y
E Speckle Contrast when a Dynamic Diffuser is Projected onto a Random Screen 285 X!w&ib-
E.1 Random Phase Diffusers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285 z^q ~|7
E.2 Diffuser that Just Fills the Projection Optics . . . . . . . . . . . . . . . . . . . . . . . . . . 287 8+irul{H_
E.3 Diffuser Overfills the Projection Optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288 k^ZcgHHgb
F Statistics of Constrained Speckle 289 qL03iV#h*V
Bibliography 291 3~%wA(|A
Index 299