Speckle Phenomena in Optics: Theory and Applications emaNmpg
O{4m-;
Joseph W. Goodman #eaey+~
+:t1P V;l
Contents `?$R_uFh:
1 Origins and Manifestations of Speckle 1 " c]Mz&z
1.1 General Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 vZKo&jUk
1.2 Intuitive Explanation of the Cause of Speckle . . . . . . . . . . . . . . . . . . . . . . . . . 2 %iGME%oXr
1.3 Some Mathematical Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 yJrPb"
2 Random Phasor Sums 7 7~65 @&P>
2.1 First and Second Moments of the Real and Imaginary Parts of the Resultant Phasor . . . . . 8 l(`w]=t&
2.2 Random Walk with a Large Number of Independent Steps . . . . . . . . . . . . . . . . . . 9 e^FS/=
2.3 Random Phasor Sum Plus a Known Phasor . . . . . . . . . . . . . . . . . . . . . . . . . . 12 s810714
2.4 Sums of Random Phasor Sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 dV5$L
e#y
2.5 Random Phasor Sums with a Finite Number of Equal-Length Components . . . . . . . . . 16 QVP
$e`4
2.6 Random Phasor Sums with a Nonuniform Distribution of Phases . . . . . . . . . . . . . . . 17 -8o8lz
3 First-Order Statistical Properties of Optical Speckle 23 x88$#N>Q5
3.1 Definition of Intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 0Icyi#N
3.2 First-Order Statistics of the Intensity and Phase . . . . . . . . . . . . . . . . . . . . . . . . 24 + ]__zm/^
3.2.1 Large Number of Random Phasors . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 N7E[wOP
3.2.2 Constant Phasor plus a Random Phasor Sum . . . . . . . . . . . . . . . . . . . . . 27 }C'z$i( y
3.2.3 Finite Number of Equal-Length Phasors . . . . . . . . . . . . . . . . . . . . . . . . 31 ,Bta)
3.3 Sums of Speckle Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 mrJQB I+
3.3.1 Sums on an Amplitude Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ve.4""\a
3.3.2 Sum of Two Independent Speckle Intensities . . . . . . . . . . . . . . . . . . . . . 34 k/LV=e7
3.3.3 Sum of N Independent Speckle Intensities . . . . . . . . . . . . . . . . . . . . . . 37 Jd%#eD*k9
3.3.4 Sums of Correlated Speckle Intensities . . . . . . . . . . . . . . . . . . . . . . . . 40 $a-~ozr`C
3.4 Partially Polarized Speckle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 b2 ),J
3.5 Partially Developed Speckle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 }:BF3cH> 0
3.6 Speckled Speckle, or Compound Speckle Statistics . . . . . . . . . . . . . . . . . . . . . . 47 \\'!<Bn2d
3.6.1 Speckle Driven by a Negative Exponential Intensity Distribution . . . . . . . . . . . 48 1S=I(n?E
3.6.2 Speckle Driven by a Gamma Intensity Distribution . . . . . . . . . . . . . . . . . . 50 v-l):TL+=
3.6.3 Sums of Independent Speckle Patterns Driven by a Gamma Intensity Distribution . . 51 Y,8M[UIK
4 Higher-Order Statistical Properties of Optical Speckle 55 p5bH-km6
4.1 Multivariate Gaussian Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 s<5t}{x
4.2 Application to Speckle Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 :4WwCpgz,
4.3 Multidimensional Statistics of Speckle Amplitude, Phase and Intensity . . . . . . . . . . . . 58 \Lc
pl-;?
4.3.1 Joint Density Function of the Amplitudes . . . . . . . . . . . . . . . . . . . . . . . 59 X+*| nvq]
4.3.2 Joint Density Function of the Phases . . . . . . . . . . . . . . . . . . . . . . . . . . 60 uM\~*@
4.3.3 Joint Density Function of the Intensities . . . . . . . . . . . . . . . . . . . . . . . . 64 2`lit@u&u
4.4 Autocorrelation Function and Power Spectrum of Speckle . . . . . . . . . . . . . . . . . . . 66 RJWlG'i
4.4.1 Free-Space Propagation Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Mpj3<vj
4.4.2 Imaging Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 K.cNx
4.4.3 Speckle Size in Depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 |e9}G,1
4.5 Dependence of Speckle on Scatterer Microstructure . . . . . . . . . . . . . . . . . . . . . . 77 Yd,*LYd2EL
4.5.1 Surface vs. Volume Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 ;Y~;G7
4.5.2 Effect of a Finite Correlation Area of the ScatteredWave . . . . . . . . . . . . . . . 78 nc3 1X
4.5.3 A Regime where Speckle Size Is Independent of Scattering Spot Size . . . . . . . . 81 ,mRN;|N
4.5.4 Relation between the Correlation Areas of the ScatteredWave and the Surface Height P2oRC3~
Fluctuations— Surface Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . 83 x3vz4m[
4.5.5 Dependence of Speckle Contrast on Surface Roughness— Surface Scattering . . . . 88 CSD8?k]2
4.5.6 Properties of Speckle Resulting from Volume Scattering . . . . . . . . . . . . . . . 92 >2wjV"W?
4.6 Statistics of Integrated and Blurred Speckle . . . . . . . . . . . . . . . . . . . . . . . . . . 94 #v v
k7
4.6.1 Mean and Variance of Integrated Speckle . . . . . . . . . . . . . . . . . . . . . . . 95 6 o+zhi;E
4.6.2 Approximate Result for the Probability Density Function of eF2<L [9
Integrated Intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 dJ|]W|q<
4.6.3 “Exact” Result for the Probability Density Function of Integrated Intensity . . . . . 101 }FFW,x
4.6.4 Integration of Partially Polarized Speckle Patterns . . . . . . . . . . . . . . . . . . . 106 f2d"b+H#
4.7 Statistics of Derivatives of Speckle Intensity and Phase . . . . . . . . . . . . . . . . . . . . 108 d8x$NW-s
4.7.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 2V
4.7.2 Parameters for Various Scattering Spot Shapes . . . . . . . . . . . . . . . . . . . . 110 W0?yPP=.
4.7.3 Derivatives of Speckle Phase: Ray Directions in a Speckle Pattern . . . . . . . . . . 111 ?d_Cy\G
4.7.4 Derivatives of Speckle Intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 EatpORq
4.7.5 Level Crossings of Speckle Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . 116 N7jAPI@a\i
4.8 Zeros of Speckle Patterns: Optical Vortices . . . . . . . . . . . . . . . . . . . . . . . . . . 118 Bg#NB
4.8.1 Conditions Required for a Zero of Intensity to Occur . . . . . . . . . . . . . . . . . 119 ,+q5e^P
4.8.2 Properties of Speckle Phase in the Vicinity of a Zero of Intensity . . . . . . . . . . . 119 bg$e80
4.8.3 The Density of Vortices in Fully Developed Speckle . . . . . . . . . . . . . . . . . 119 & XrV[d[>
4.8.4 The Density of Vortices for Fully Developed Speckle Plus a Coherent Background . 123 Bz24U wcZ
5 OpticalMethods for Suppressing Speckle 125 =GLsoc-b
5.1 Polarization Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 c\R!z&y~
5.2 Temporal Averaging with a Moving Diffuser . . . . . . . . . . . . . . . . . . . . . . . . . 127 ir\
5.2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 LN7;Yr
5.2.2 Smooth Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 nVYh1@yLy
5.2.3 Rough Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 )`U T#5
5.3 Wavelength and Angle Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 !,1~:*:
5.3.1 Free-Space Propagation, Reflection Geometry . . . . . . . . . . . . . . . . . . . . 136 B[Tw0rQ
5.3.2 Free-Space Propagation, Transmission Geometry . . . . . . . . . . . . . . . . . . . 144 3FS:]|oC
5.3.3 Imaging Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 Mk^o*L{H
5.4 Temporal and Spatial Coherence Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . 150 9,9( mbWJv
5.4.1 Coherence Concepts in Optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 *M8 4Dry`y
5.4.2 Moving Diffusers and Coherence Reduction . . . . . . . . . . . . . . . . . . . . . . 152 fCTjTlh
5.4.3 Speckle Suppression by Reduction of Temporal Coherence . . . . . . . . . . . . . . 154 (57x5qP
X
5.4.4 Speckle Suppression by Reduction of Spatial Coherence . . . . . . . . . . . . . . . 157 %fxGdzu7.
5.5 Use of Temporal Coherence to Destroy Spatial Coherence . . . . . . . . . . . . . . . . . . 163 #7g~Um%p
5.6 Compounding Speckle Suppression Techniques . . . . . . . . . . . . . . . . . . . . . . . . 163 %i^%D
6 Speckle in Certain Imaging Modalities 165 $x 2t0@
6.1 Speckle in the Eye . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 F 6SIhf.;
6.2 Speckle in Holography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 [,fMh $t
6.2.1 Principles of Holography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 5[;^Em)C
6.2.2 Speckle Suppression in Holographic Images . . . . . . . . . . . . . . . . . . . . . . 170 n'R
8nn6^
6.3 Speckle in Optical Coherence Tomography . . . . . . . . . . . . . . . . . . . . . . . . . . 171 5 :AAqMa
6.3.1 Overview of the OCT Imaging Technique . . . . . . . . . . . . . . . . . . . . . . . 172 #ocT4
6.3.2 Analysis of OCT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 Xe*
L^8+
6.3.3 Speckle and Speckle Suppression in OCT . . . . . . . . . . . . . . . . . . . . . . . 176 9aXm}
6.4 Speckle in Optical Projection Displays . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 LxG :?=O.
6.4.1 Anatomies of Projection Displays . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 b9:E0/6
6.4.2 Speckle Suppression in Projection Displays . . . . . . . . . . . . . . . . . . . . . . 182 ebQYk$@
6.4.3 Polarization Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 kiXa2Yn*(d
6.4.4 A Moving Screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 OtnYv
6.4.5 Wavelength Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 A]>0lB
6.4.6 Angle Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 7$w:~VZ
6.4.7 Over-Design of the Projection Optics . . . . . . . . . . . . . . . . . . . . . . . . . 186 &18} u~M
6.4.8 Changing Diffuser Projected onto the Screen . . . . . . . . . . . . . . . . . . . . . 188 3<Cd>o.
6.4.9 Specially Designed Screens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 8T1`TGSFC
6.5 Speckle in Projection Microlithography . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 rb9x||
6.5.1 Coherence Properties of Excimer Lasers . . . . . . . . . . . . . . . . . . . . . . . 200 ZL@7Mr!e
6.5.2 Temporal Speckle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 fXL$CgXG\x
6.5.3 From Exposure Fluctuations to Line Position Fluctuations . . . . . . . . . . . . . . 202 =JEnK_@?K\
7 Speckle in Certain Non-imagingModalities 205 } #$Y^ +UN
7.1 Speckle in Multimode Fibers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 id*UTY
Tg
7.1.1 Modal Noise in Fibers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 n RXf \*"3
7.1.2 Statistics of Constrained Speckle . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 H,?AaM[V
7.1.3 Frequency Dependence of Modal Noise . . . . . . . . . . . . . . . . . . . . . . . . 211 esxU44
7.2 Effects of Speckle on Optical Radar Performance . . . . . . . . . . . . . . . . . . . . . . . 216 zf^!Zqn[8z
7.2.1 Spatial Correlation of the Speckle Returned from Distant Targets . . . . . . . . . . . 217 ##FN0|e&
7.2.2 Speckle at Low Light Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 AR)&W/S)7,
7.2.3 Detection Statistics—Direct Detection . . . . . . . . . . . . . . . . . . . . . . . . 222 X3q'x}{
7.2.4 Detection Statistics— Heterodyne Detection . . . . . . . . . . . . . . . . . . . . . 227 m-;u]X=a
7.2.5 Comparison of Direct Detection and Heterodyne Detection . . . . . . . . . . . . . . 234 %Uuhi&PA-l
7.2.6 Reduction of the Effects of Speckle in Optical Radar Detection . . . . . . . . . . . . 235 jd~r~.y
7.3 Speckle and Metrology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 w\85D|u
8 Speckle in Imaging Through the Atmosphere 239 Amz7j8zJ
8.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 <]"aP1+C
8.1.1 Refractive Index Fluctuations in the Atmosphere . . . . . . . . . . . . . . . . . . . 239 Prr<:q
8.2 Short-Exposure and Long-Exposure Point-Spread Functions . . . . . . . . . . . . . . . . . 240 RMsr7M4<91
8.3 Long-Exposure and Short-Exposure Average Optical Transfer Functions . . . . . . . . . . . 242 3"q%-M|+Q
8.4 Statistical Properties of the Short-Exposure OTF and MTF . . . . . . . . . . . . . . . . . . 243 ZfMJU
8.5 Astronomical Speckle Interferometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 `<[Zs]Fe4
8.5.1 Object Information that Is Retrievable . . . . . . . . . . . . . . . . . . . . . . . . . 248 2< ^B]N
8.5.2 Results of a More Complete Analysis of the Form of the Speckle Transfer Function . 250 9B<y w.
8.6 The Cross-Spectrum or Knox–Thompson Technique . . . . . . . . . . . . . . . . . . . . . 252 D<nTo&m_
8.6.1 The Cross-Spectrum Transfer Function . . . . . . . . . . . . . . . . . . . . . . . . 253 C[wnor!
8.6.2 Recovering Full Object Information from the Cross-Spectrum . . . . . . . . . . . . 254 X8Gw8^t
8.7 The Bispectrum Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 0Wk}d(f
8.7.1 The Bispectrum Transfer Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 M a_! 1Y
8.7.2 Recovering Full Object Information from the Bispectrum . . . . . . . . . . . . . . . 258 +-xA/nU.c
8.8 Speckle Correlography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 BEu9gu
A Linear Transformations 263 CK.Z-_M
B Contrast of Partially Developed Speckle 267 b7HS3NYk
C Statistics of Derivatives of Speckle 271 3WaYeol`
C.1 The Correlation Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 lOYwYMi
C.2 Joint Density Function of the Derivatives of Phase . . . . . . . . . . . . . . . . . . . . . . . 274 vsLn@k3
C.3 Joint Density Function of the Derivatives of Intensity . . . . . . . . . . . . . . . . . . . . . 274 [NJ!
D Wavelength and Angle Dependence 277 pNE!waR>
D.1 Free-Space Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 011 _(v
D.2 Imaging Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280 Pbz-I3+66
E Speckle Contrast when a Dynamic Diffuser is Projected onto a Random Screen 285 Rqu;;VI[
E.1 Random Phase Diffusers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285 !sfUrUu
E.2 Diffuser that Just Fills the Projection Optics . . . . . . . . . . . . . . . . . . . . . . . . . . 287 Z\TH=UA
E.3 Diffuser Overfills the Projection Optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288 #&&^5r-b-
F Statistics of Constrained Speckle 289 KWU#Swa`
Bibliography 291 XnV|{X%]U
Index 299