Speckle Phenomena in Optics: Theory and Applications %hb!1I
YN5p@b=FX
Joseph W. Goodman 3AarRQWsn
?L6ACi`9
Contents #Pq.^ ^
1 Origins and Manifestations of Speckle 1 c"CF&vTp
1.1 General Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 7a'@NgiGg
1.2 Intuitive Explanation of the Cause of Speckle . . . . . . . . . . . . . . . . . . . . . . . . . 2 RyN?Sn5)
1.3 Some Mathematical Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Ck^jgB.7
2 Random Phasor Sums 7 c!>",rce
2.1 First and Second Moments of the Real and Imaginary Parts of the Resultant Phasor . . . . . 8 6R%NjEW:
2.2 Random Walk with a Large Number of Independent Steps . . . . . . . . . . . . . . . . . . 9 atjrn:X
2.3 Random Phasor Sum Plus a Known Phasor . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Ed&M
2.4 Sums of Random Phasor Sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 V?+Y[Q
2.5 Random Phasor Sums with a Finite Number of Equal-Length Components . . . . . . . . . 16 Z<6Fq*I
2.6 Random Phasor Sums with a Nonuniform Distribution of Phases . . . . . . . . . . . . . . . 17 #kL4Rm;
3 First-Order Statistical Properties of Optical Speckle 23 t[?O*>
3.1 Definition of Intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 <LOas$
3.2 First-Order Statistics of the Intensity and Phase . . . . . . . . . . . . . . . . . . . . . . . . 24 NW@guhK.
3.2.1 Large Number of Random Phasors . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 )l*6zn`z
3.2.2 Constant Phasor plus a Random Phasor Sum . . . . . . . . . . . . . . . . . . . . . 27 >-<