Speckle Phenomena in Optics: Theory and Applications |$w-}$jq5
^}[
N4
Joseph W. Goodman H5%I?ZXw4
7>mYD3
Contents pxC5a i
1 Origins and Manifestations of Speckle 1 U{}7:&As
1.1 General Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2M1mdkP3
1.2 Intuitive Explanation of the Cause of Speckle . . . . . . . . . . . . . . . . . . . . . . . . . 2 k %rP*b*
1.3 Some Mathematical Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 nc{<v
2 Random Phasor Sums 7 `&6]P :_qp
2.1 First and Second Moments of the Real and Imaginary Parts of the Resultant Phasor . . . . . 8 _
o(h]G1].
2.2 Random Walk with a Large Number of Independent Steps . . . . . . . . . . . . . . . . . . 9 N} h%8\
2.3 Random Phasor Sum Plus a Known Phasor . . . . . . . . . . . . . . . . . . . . . . . . . . 12 v;8XRR:
2.4 Sums of Random Phasor Sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 18HHEW{
2.5 Random Phasor Sums with a Finite Number of Equal-Length Components . . . . . . . . . 16 SYwNx">Bq
2.6 Random Phasor Sums with a Nonuniform Distribution of Phases . . . . . . . . . . . . . . . 17 $3Ia+O
3 First-Order Statistical Properties of Optical Speckle 23 w#$k$T)
3.1 Definition of Intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Bx)&MYY}[[
3.2 First-Order Statistics of the Intensity and Phase . . . . . . . . . . . . . . . . . . . . . . . . 24 eC39C2q\
3.2.1 Large Number of Random Phasors . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Lgfr"{C
3.2.2 Constant Phasor plus a Random Phasor Sum . . . . . . . . . . . . . . . . . . . . . 27 *Wa u7
3.2.3 Finite Number of Equal-Length Phasors . . . . . . . . . . . . . . . . . . . . . . . . 31 |Wgab5D>V
3.3 Sums of Speckle Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ,'6GG+
3.3.1 Sums on an Amplitude Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 <>oW f
3.3.2 Sum of Two Independent Speckle Intensities . . . . . . . . . . . . . . . . . . . . . 34 }>:X|4]
3.3.3 Sum of N Independent Speckle Intensities . . . . . . . . . . . . . . . . . . . . . . 37 D-!%L<<
3.3.4 Sums of Correlated Speckle Intensities . . . . . . . . . . . . . . . . . . . . . . . . 40 %G&v@R
3.4 Partially Polarized Speckle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 z~5'p(|@f
3.5 Partially Developed Speckle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 el%Qxak`"
3.6 Speckled Speckle, or Compound Speckle Statistics . . . . . . . . . . . . . . . . . . . . . . 47 )1,&YJM*6l
3.6.1 Speckle Driven by a Negative Exponential Intensity Distribution . . . . . . . . . . . 48 `!8Z"xD
3.6.2 Speckle Driven by a Gamma Intensity Distribution . . . . . . . . . . . . . . . . . . 50 /{va<