Speckle Phenomena in Optics: Theory and Applications n)98NSVDbT
%&yPl{
Joseph W. Goodman %z-*C'j5H
)/%5f{+}
Contents NeG`D'
1 Origins and Manifestations of Speckle 1 ;6Yg}L
1.1 General Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 xF8n=Lc
1.2 Intuitive Explanation of the Cause of Speckle . . . . . . . . . . . . . . . . . . . . . . . . . 2 P .m@|w&.K
1.3 Some Mathematical Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 ~}}<+ JEEO
2 Random Phasor Sums 7 ^]nLE]M
2.1 First and Second Moments of the Real and Imaginary Parts of the Resultant Phasor . . . . . 8
Rbf6/C
2.2 Random Walk with a Large Number of Independent Steps . . . . . . . . . . . . . . . . . . 9 #%\0][Xf
2.3 Random Phasor Sum Plus a Known Phasor . . . . . . . . . . . . . . . . . . . . . . . . . . 12 ]*\MIz{56'
2.4 Sums of Random Phasor Sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 mGj)Zrx>
2.5 Random Phasor Sums with a Finite Number of Equal-Length Components . . . . . . . . . 16 O*~z@"\
2.6 Random Phasor Sums with a Nonuniform Distribution of Phases . . . . . . . . . . . . . . . 17 %7)TiT4V
3 First-Order Statistical Properties of Optical Speckle 23 2CO/K_Q
3.1 Definition of Intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 ]`|$nU}v
3.2 First-Order Statistics of the Intensity and Phase . . . . . . . . . . . . . . . . . . . . . . . . 24 3T F_$bd{
3.2.1 Large Number of Random Phasors . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 7TMq#Pb
3.2.2 Constant Phasor plus a Random Phasor Sum . . . . . . . . . . . . . . . . . . . . . 27 )*;Tt @'y
3.2.3 Finite Number of Equal-Length Phasors . . . . . . . . . . . . . . . . . . . . . . . . 31 B/1j4/MS
3.3 Sums of Speckle Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 DFK@/.V
3.3.1 Sums on an Amplitude Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 M`H#Qo5/
3.3.2 Sum of Two Independent Speckle Intensities . . . . . . . . . . . . . . . . . . . . . 34 SQ_?4 s::
3.3.3 Sum of N Independent Speckle Intensities . . . . . . . . . . . . . . . . . . . . . . 37 [~s+,OO9)
3.3.4 Sums of Correlated Speckle Intensities . . . . . . . . . . . . . . . . . . . . . . . . 40 jU j\<aW
3.4 Partially Polarized Speckle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 lD0-S0i
3.5 Partially Developed Speckle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 :rVR{,pL
3.6 Speckled Speckle, or Compound Speckle Statistics . . . . . . . . . . . . . . . . . . . . . . 47 Ig`q[o
3.6.1 Speckle Driven by a Negative Exponential Intensity Distribution . . . . . . . . . . . 48
dZ`Y>wH_
3.6.2 Speckle Driven by a Gamma Intensity Distribution . . . . . . . . . . . . . . . . . . 50 Ak9{P`
3.6.3 Sums of Independent Speckle Patterns Driven by a Gamma Intensity Distribution . . 51 112WryS
4 Higher-Order Statistical Properties of Optical Speckle 55 Nh.+woFq4
4.1 Multivariate Gaussian Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 9{jMO
4.2 Application to Speckle Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 A-CU%G9
4.3 Multidimensional Statistics of Speckle Amplitude, Phase and Intensity . . . . . . . . . . . . 58 C
e-ru)
4.3.1 Joint Density Function of the Amplitudes . . . . . . . . . . . . . . . . . . . . . . . 59 {5E8eQ
4.3.2 Joint Density Function of the Phases . . . . . . . . . . . . . . . . . . . . . . . . . . 60 q !z"YpYB
4.3.3 Joint Density Function of the Intensities . . . . . . . . . . . . . . . . . . . . . . . . 64 $v;WmYTJ
4.4 Autocorrelation Function and Power Spectrum of Speckle . . . . . . . . . . . . . . . . . . . 66 S{+t>en
4.4.1 Free-Space Propagation Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 iWf+wC|
4.4.2 Imaging Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 1'E=R0`pA
4.4.3 Speckle Size in Depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 A*y4<'}<
4.5 Dependence of Speckle on Scatterer Microstructure . . . . . . . . . . . . . . . . . . . . . . 77 |q*yuK/
4.5.1 Surface vs. Volume Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 XIl<rN@-
4.5.2 Effect of a Finite Correlation Area of the ScatteredWave . . . . . . . . . . . . . . . 78 f,TW|Y'{g
4.5.3 A Regime where Speckle Size Is Independent of Scattering Spot Size . . . . . . . . 81 AOR?2u
4.5.4 Relation between the Correlation Areas of the ScatteredWave and the Surface Height =6[.||9
Fluctuations— Surface Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . 83 F?Lt-a+
4.5.5 Dependence of Speckle Contrast on Surface Roughness— Surface Scattering . . . . 88 avRtYL
4.5.6 Properties of Speckle Resulting from Volume Scattering . . . . . . . . . . . . . . . 92 f1 x&Fk
4.6 Statistics of Integrated and Blurred Speckle . . . . . . . . . . . . . . . . . . . . . . . . . . 94 lFBpNUnzU
4.6.1 Mean and Variance of Integrated Speckle . . . . . . . . . . . . . . . . . . . . . . . 95 *#Cx-J
4.6.2 Approximate Result for the Probability Density Function of _`udd)Y2
Integrated Intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 +#FqC/`l
4.6.3 “Exact” Result for the Probability Density Function of Integrated Intensity . . . . . 101 6dIPgie3w
4.6.4 Integration of Partially Polarized Speckle Patterns . . . . . . . . . . . . . . . . . . . 106 bej(Ds0
4.7 Statistics of Derivatives of Speckle Intensity and Phase . . . . . . . . . . . . . . . . . . . . 108 Te+(7
Z
4.7.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 P51M?3&=l
4.7.2 Parameters for Various Scattering Spot Shapes . . . . . . . . . . . . . . . . . . . . 110 <a6pjx>y
4.7.3 Derivatives of Speckle Phase: Ray Directions in a Speckle Pattern . . . . . . . . . . 111 g-sNYd%?a
4.7.4 Derivatives of Speckle Intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 t`Z'TqP R
4.7.5 Level Crossings of Speckle Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . 116 H0af u)$,
4.8 Zeros of Speckle Patterns: Optical Vortices . . . . . . . . . . . . . . . . . . . . . . . . . . 118 ="voJgvw
4.8.1 Conditions Required for a Zero of Intensity to Occur . . . . . . . . . . . . . . . . . 119 ,eyh%k*hz
4.8.2 Properties of Speckle Phase in the Vicinity of a Zero of Intensity . . . . . . . . . . . 119 F06o-xH=
4.8.3 The Density of Vortices in Fully Developed Speckle . . . . . . . . . . . . . . . . . 119 v76Gwu$d
4.8.4 The Density of Vortices for Fully Developed Speckle Plus a Coherent Background . 123 ^^N|:80
5 OpticalMethods for Suppressing Speckle 125 `}Zqmfs
5.1 Polarization Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 TJ"-cWpO1
5.2 Temporal Averaging with a Moving Diffuser . . . . . . . . . . . . . . . . . . . . . . . . . 127 lx:$EJ
5.2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 GmH DG-
5.2.2 Smooth Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 Z3S+")^
5.2.3 Rough Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 Z}+}X|
5.3 Wavelength and Angle Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 \?xM%(:<Q
5.3.1 Free-Space Propagation, Reflection Geometry . . . . . . . . . . . . . . . . . . . . 136 ZyGoOk
5.3.2 Free-Space Propagation, Transmission Geometry . . . . . . . . . . . . . . . . . . . 144 ~7PD/dre
5.3.3 Imaging Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 d0:LJ'<Q
5.4 Temporal and Spatial Coherence Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . 150 L
kK
*.
5.4.1 Coherence Concepts in Optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 0caZ_-zU
5.4.2 Moving Diffusers and Coherence Reduction . . . . . . . . . . . . . . . . . . . . . . 152 Y2r}W3F=
5.4.3 Speckle Suppression by Reduction of Temporal Coherence . . . . . . . . . . . . . . 154 >C|pY6
5.4.4 Speckle Suppression by Reduction of Spatial Coherence . . . . . . . . . . . . . . . 157 LiG$M{ 0
5.5 Use of Temporal Coherence to Destroy Spatial Coherence . . . . . . . . . . . . . . . . . . 163 *dw.=a9
5.6 Compounding Speckle Suppression Techniques . . . . . . . . . . . . . . . . . . . . . . . . 163 U,=f};
6 Speckle in Certain Imaging Modalities 165 3`^@ymY
6.1 Speckle in the Eye . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 +S4n416K
6.2 Speckle in Holography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 i0=U6S:#
6.2.1 Principles of Holography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 dCd~]CI
6.2.2 Speckle Suppression in Holographic Images . . . . . . . . . . . . . . . . . . . . . . 170 4?R979
6.3 Speckle in Optical Coherence Tomography . . . . . . . . . . . . . . . . . . . . . . . . . . 171 _,J+b R+b
6.3.1 Overview of the OCT Imaging Technique . . . . . . . . . . . . . . . . . . . . . . . 172 EF`}*7)
6.3.2 Analysis of OCT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 P.]h`4
6.3.3 Speckle and Speckle Suppression in OCT . . . . . . . . . . . . . . . . . . . . . . . 176 A=N$5ZJ
6.4 Speckle in Optical Projection Displays . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 <s9{o
uZ
6.4.1 Anatomies of Projection Displays . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 ;,f\Wf"BW
6.4.2 Speckle Suppression in Projection Displays . . . . . . . . . . . . . . . . . . . . . . 182 C"I
jr=w
6.4.3 Polarization Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 ;{ifLI0#
6.4.4 A Moving Screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 y :;.r:
6.4.5 Wavelength Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 /lBK )(
6.4.6 Angle Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 .t "VsY|
6.4.7 Over-Design of the Projection Optics . . . . . . . . . . . . . . . . . . . . . . . . . 186 2%%\jlT_
6.4.8 Changing Diffuser Projected onto the Screen . . . . . . . . . . . . . . . . . . . . . 188 47q>
q
6.4.9 Specially Designed Screens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 *Al@|5
6.5 Speckle in Projection Microlithography . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 Ob$``31{s
6.5.1 Coherence Properties of Excimer Lasers . . . . . . . . . . . . . . . . . . . . . . . 200 NM3;l}Y8
6.5.2 Temporal Speckle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 S{=5nR9 j
6.5.3 From Exposure Fluctuations to Line Position Fluctuations . . . . . . . . . . . . . . 202 1/}H
0\9'
7 Speckle in Certain Non-imagingModalities 205 ,2FK$:M\
7.1 Speckle in Multimode Fibers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 gm9*z.S\'
7.1.1 Modal Noise in Fibers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 Uy?jVPL
7.1.2 Statistics of Constrained Speckle . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 meX2Y;
7.1.3 Frequency Dependence of Modal Noise . . . . . . . . . . . . . . . . . . . . . . . . 211 .#( vx;
7.2 Effects of Speckle on Optical Radar Performance . . . . . . . . . . . . . . . . . . . . . . . 216 y]h0c<NP
7.2.1 Spatial Correlation of the Speckle Returned from Distant Targets . . . . . . . . . . . 217 9!( 8o
7.2.2 Speckle at Low Light Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 Aw#<: 6-
7.2.3 Detection Statistics—Direct Detection . . . . . . . . . . . . . . . . . . . . . . . . 222 m}"Hm(,6
7.2.4 Detection Statistics— Heterodyne Detection . . . . . . . . . . . . . . . . . . . . . 227 ;R?@
D]
7.2.5 Comparison of Direct Detection and Heterodyne Detection . . . . . . . . . . . . . . 234 K%z!#RyJ4
7.2.6 Reduction of the Effects of Speckle in Optical Radar Detection . . . . . . . . . . . . 235 ?NMk|+
7.3 Speckle and Metrology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 T fLqxioqZ
8 Speckle in Imaging Through the Atmosphere 239 4XpWDfa.}
8.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 c1f"z1Z
8.1.1 Refractive Index Fluctuations in the Atmosphere . . . . . . . . . . . . . . . . . . . 239 a-NTA
8.2 Short-Exposure and Long-Exposure Point-Spread Functions . . . . . . . . . . . . . . . . . 240 2*Qv6
:qK
8.3 Long-Exposure and Short-Exposure Average Optical Transfer Functions . . . . . . . . . . . 242 zgb$@JC
8.4 Statistical Properties of the Short-Exposure OTF and MTF . . . . . . . . . . . . . . . . . . 243 8['R D`O
8.5 Astronomical Speckle Interferometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 Btm,'kBG
8.5.1 Object Information that Is Retrievable . . . . . . . . . . . . . . . . . . . . . . . . . 248 <`nShP>vl
8.5.2 Results of a More Complete Analysis of the Form of the Speckle Transfer Function . 250 rW?WdEg
8.6 The Cross-Spectrum or Knox–Thompson Technique . . . . . . . . . . . . . . . . . . . . . 252 xw #CwMbbi
8.6.1 The Cross-Spectrum Transfer Function . . . . . . . . . . . . . . . . . . . . . . . . 253 v)
n-
8.6.2 Recovering Full Object Information from the Cross-Spectrum . . . . . . . . . . . . 254 i'ap8Dr
8.7 The Bispectrum Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 /!5Wd(:
8.7.1 The Bispectrum Transfer Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 )?rq8VO
8.7.2 Recovering Full Object Information from the Bispectrum . . . . . . . . . . . . . . . 258 h^3gYL7O6
8.8 Speckle Correlography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 82LE9<4A
A Linear Transformations 263 F^%w%E\
B Contrast of Partially Developed Speckle 267 '/>Mr!H#
C Statistics of Derivatives of Speckle 271 s#X/
F
C.1 The Correlation Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 )iN;1>
C.2 Joint Density Function of the Derivatives of Phase . . . . . . . . . . . . . . . . . . . . . . . 274 3aqH!?rVU
C.3 Joint Density Function of the Derivatives of Intensity . . . . . . . . . . . . . . . . . . . . . 274 \YvG+7a
D Wavelength and Angle Dependence 277 hr
vTFJ
D.1 Free-Space Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 '@{:FrG*U
D.2 Imaging Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280 Bu:%trlgV
E Speckle Contrast when a Dynamic Diffuser is Projected onto a Random Screen 285 gFaZ ._
E.1 Random Phase Diffusers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285 &da=hc,>%
E.2 Diffuser that Just Fills the Projection Optics . . . . . . . . . . . . . . . . . . . . . . . . . . 287 "to!&@I|
4
E.3 Diffuser Overfills the Projection Optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
x=*Y|
F Statistics of Constrained Speckle 289 rS1 gFGrj
Bibliography 291 <6Q^o[L
Index 299