Speckle Phenomena in Optics: Theory and Applications $Okmurnn
#<[&Lw
Joseph W. Goodman /jJD
{
kE<CuO
Contents FhY#3-jH
1 Origins and Manifestations of Speckle 1 oH6zlmqG"
1.1 General Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 7mYcO3{5{
1.2 Intuitive Explanation of the Cause of Speckle . . . . . . . . . . . . . . . . . . . . . . . . . 2 KJQ8Yhq
1.3 Some Mathematical Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 N,qo/At}R[
2 Random Phasor Sums 7 9#U]?^DJ@
2.1 First and Second Moments of the Real and Imaginary Parts of the Resultant Phasor . . . . . 8 nu+K
N,3R"
2.2 Random Walk with a Large Number of Independent Steps . . . . . . . . . . . . . . . . . . 9 `.pEI q^
2.3 Random Phasor Sum Plus a Known Phasor . . . . . . . . . . . . . . . . . . . . . . . . . . 12 aXj
UDu7
2.4 Sums of Random Phasor Sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 wJ2cAX;"
2.5 Random Phasor Sums with a Finite Number of Equal-Length Components . . . . . . . . . 16 &v .S_Ym
2.6 Random Phasor Sums with a Nonuniform Distribution of Phases . . . . . . . . . . . . . . . 17 K'
`qR
3 First-Order Statistical Properties of Optical Speckle 23 bdstxjJ`
3.1 Definition of Intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 jw{N#QDh
3.2 First-Order Statistics of the Intensity and Phase . . . . . . . . . . . . . . . . . . . . . . . . 24 QD!NV*
3.2.1 Large Number of Random Phasors . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 M}[Q2v\
3.2.2 Constant Phasor plus a Random Phasor Sum . . . . . . . . . . . . . . . . . . . . . 27 }nPt[77U_7
3.2.3 Finite Number of Equal-Length Phasors . . . . . . . . . . . . . . . . . . . . . . . . 31 d)-ZL*o
3.3 Sums of Speckle Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 k@lJ8(i^qU
3.3.1 Sums on an Amplitude Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 D%o(HS\E
3.3.2 Sum of Two Independent Speckle Intensities . . . . . . . . . . . . . . . . . . . . . 34 G3TS?u8Q
3.3.3 Sum of N Independent Speckle Intensities . . . . . . . . . . . . . . . . . . . . . . 37 u]NsCHKlT
3.3.4 Sums of Correlated Speckle Intensities . . . . . . . . . . . . . . . . . . . . . . . . 40 I"czo9Yspd
3.4 Partially Polarized Speckle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 0=HB!{@
3.5 Partially Developed Speckle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 kl:/PM^
3.6 Speckled Speckle, or Compound Speckle Statistics . . . . . . . . . . . . . . . . . . . . . . 47 G 0pq'7B
3.6.1 Speckle Driven by a Negative Exponential Intensity Distribution . . . . . . . . . . . 48 ]dGH
i \
3.6.2 Speckle Driven by a Gamma Intensity Distribution . . . . . . . . . . . . . . . . . . 50 [ ?7QmZK
3.6.3 Sums of Independent Speckle Patterns Driven by a Gamma Intensity Distribution . . 51 |MGT8C&^!
4 Higher-Order Statistical Properties of Optical Speckle 55 uQdH():
4.1 Multivariate Gaussian Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 QEqYqAGzu|
4.2 Application to Speckle Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 ?P[:,0_
4.3 Multidimensional Statistics of Speckle Amplitude, Phase and Intensity . . . . . . . . . . . . 58 3LfF{ED@
4.3.1 Joint Density Function of the Amplitudes . . . . . . . . . . . . . . . . . . . . . . . 59 r~T!$Tb
4.3.2 Joint Density Function of the Phases . . . . . . . . . . . . . . . . . . . . . . . . . . 60 1(Vv-bq$
4.3.3 Joint Density Function of the Intensities . . . . . . . . . . . . . . . . . . . . . . . . 64 xwsl$Rj
4.4 Autocorrelation Function and Power Spectrum of Speckle . . . . . . . . . . . . . . . . . . . 66 gBV4IQ
4.4.1 Free-Space Propagation Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 @Ik5BT
4.4.2 Imaging Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 wT!?.Y)aj
4.4.3 Speckle Size in Depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 3HtM<su*h
4.5 Dependence of Speckle on Scatterer Microstructure . . . . . . . . . . . . . . . . . . . . . . 77 &_Cc
4.5.1 Surface vs. Volume Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 ."dT6u E
4.5.2 Effect of a Finite Correlation Area of the ScatteredWave . . . . . . . . . . . . . . . 78 gWU#NRRc
4.5.3 A Regime where Speckle Size Is Independent of Scattering Spot Size . . . . . . . . 81 p]S'pzh
4.5.4 Relation between the Correlation Areas of the ScatteredWave and the Surface Height F>{bVPh
VA
Fluctuations— Surface Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Qc*p+N+$
4.5.5 Dependence of Speckle Contrast on Surface Roughness— Surface Scattering . . . . 88 &cyB}Gv
4.5.6 Properties of Speckle Resulting from Volume Scattering . . . . . . . . . . . . . . . 92 DDmC3
4.6 Statistics of Integrated and Blurred Speckle . . . . . . . . . . . . . . . . . . . . . . . . . . 94 I(VqtC:K.
4.6.1 Mean and Variance of Integrated Speckle . . . . . . . . . . . . . . . . . . . . . . . 95 !%R):^R8
4.6.2 Approximate Result for the Probability Density Function of vT{(7m!Ra
Integrated Intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 >(H:eRKq
4.6.3 “Exact” Result for the Probability Density Function of Integrated Intensity . . . . . 101 <$?#P#A
4.6.4 Integration of Partially Polarized Speckle Patterns . . . . . . . . . . . . . . . . . . . 106 Cu%BU}(
4.7 Statistics of Derivatives of Speckle Intensity and Phase . . . . . . . . . . . . . . . . . . . . 108 4`l$0m@>
4.7.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 _Ml?cT/J.O
4.7.2 Parameters for Various Scattering Spot Shapes . . . . . . . . . . . . . . . . . . . . 110 cG0)F%?X?
4.7.3 Derivatives of Speckle Phase: Ray Directions in a Speckle Pattern . . . . . . . . . . 111 ^n~Kr1}nj
4.7.4 Derivatives of Speckle Intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 YvG$2F |_)
4.7.5 Level Crossings of Speckle Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . 116 -n"f>c_{>
4.8 Zeros of Speckle Patterns: Optical Vortices . . . . . . . . . . . . . . . . . . . . . . . . . . 118 ~N9k8eT
4.8.1 Conditions Required for a Zero of Intensity to Occur . . . . . . . . . . . . . . . . . 119 YkF LNCg4}
4.8.2 Properties of Speckle Phase in the Vicinity of a Zero of Intensity . . . . . . . . . . . 119 R-pON4D"*
4.8.3 The Density of Vortices in Fully Developed Speckle . . . . . . . . . . . . . . . . . 119 yj_/:eX
4.8.4 The Density of Vortices for Fully Developed Speckle Plus a Coherent Background . 123 KF
*F
5 OpticalMethods for Suppressing Speckle 125 )( 3)^/Xz
5.1 Polarization Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 Ma?uB8o+~
5.2 Temporal Averaging with a Moving Diffuser . . . . . . . . . . . . . . . . . . . . . . . . . 127 bl!pKOY
5.2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 2UYtEJ(?`{
5.2.2 Smooth Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 hO> q|+mC
5.2.3 Rough Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 ^-?^iWQG
5.3 Wavelength and Angle Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 z<t2yh(DF
5.3.1 Free-Space Propagation, Reflection Geometry . . . . . . . . . . . . . . . . . . . . 136 'g<{l&u
5.3.2 Free-Space Propagation, Transmission Geometry . . . . . . . . . . . . . . . . . . . 144 <k1muSe
5.3.3 Imaging Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 uu]C;wl
5.4 Temporal and Spatial Coherence Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . 150 nl2Lqu1
5.4.1 Coherence Concepts in Optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 !Usmm8!K
5.4.2 Moving Diffusers and Coherence Reduction . . . . . . . . . . . . . . . . . . . . . . 152 (&*Bl\YoX
5.4.3 Speckle Suppression by Reduction of Temporal Coherence . . . . . . . . . . . . . . 154 IW nG@!
5.4.4 Speckle Suppression by Reduction of Spatial Coherence . . . . . . . . . . . . . . . 157 tpzWi
W/
5.5 Use of Temporal Coherence to Destroy Spatial Coherence . . . . . . . . . . . . . . . . . . 163 )2E vZn
5.6 Compounding Speckle Suppression Techniques . . . . . . . . . . . . . . . . . . . . . . . . 163 4
w*m]D{
6 Speckle in Certain Imaging Modalities 165 S`[(y?OF?
6.1 Speckle in the Eye . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 B7C<;`5TiD
6.2 Speckle in Holography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 Se[=$W
6.2.1 Principles of Holography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 H{E(=S
6.2.2 Speckle Suppression in Holographic Images . . . . . . . . . . . . . . . . . . . . . . 170 ^0_ >
6.3 Speckle in Optical Coherence Tomography . . . . . . . . . . . . . . . . . . . . . . . . . . 171 !4^Lv{1QZ
6.3.1 Overview of the OCT Imaging Technique . . . . . . . . . . . . . . . . . . . . . . . 172 =1>G*
,
6.3.2 Analysis of OCT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 R+0fs$su
6.3.3 Speckle and Speckle Suppression in OCT . . . . . . . . . . . . . . . . . . . . . . . 176 8}[<3K%*g
6.4 Speckle in Optical Projection Displays . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 ,>(X}Q
6.4.1 Anatomies of Projection Displays . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 6&