Speckle Phenomena in Optics: Theory and Applications 2tK~]0x
esSj
3E
Joseph W. Goodman BPkMw'a:
(Yj6|`
Contents i%133in
1 Origins and Manifestations of Speckle 1 ^iEf"r
1.1 General Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 ! =21K0~t#
1.2 Intuitive Explanation of the Cause of Speckle . . . . . . . . . . . . . . . . . . . . . . . . . 2 +iN!$zF5]
1.3 Some Mathematical Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 )q'dX+4=eL
2 Random Phasor Sums 7 {@KLN<
2.1 First and Second Moments of the Real and Imaginary Parts of the Resultant Phasor . . . . . 8 eM$a~4!d
2.2 Random Walk with a Large Number of Independent Steps . . . . . . . . . . . . . . . . . . 9 [UkcG9
2.3 Random Phasor Sum Plus a Known Phasor . . . . . . . . . . . . . . . . . . . . . . . . . . 12 ~W>{Dd(J_
2.4 Sums of Random Phasor Sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 0i[t[_sce
2.5 Random Phasor Sums with a Finite Number of Equal-Length Components . . . . . . . . . 16 \&vXp"-@
2.6 Random Phasor Sums with a Nonuniform Distribution of Phases . . . . . . . . . . . . . . . 17 %GjG.11V,_
3 First-Order Statistical Properties of Optical Speckle 23 fAStM:
3.1 Definition of Intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 iOa<=
3.2 First-Order Statistics of the Intensity and Phase . . . . . . . . . . . . . . . . . . . . . . . . 24 }%w;@[@L
3.2.1 Large Number of Random Phasors . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 \KJTR0EB:>
3.2.2 Constant Phasor plus a Random Phasor Sum . . . . . . . . . . . . . . . . . . . . . 27 X{xkXg8h
3.2.3 Finite Number of Equal-Length Phasors . . . . . . . . . . . . . . . . . . . . . . . . 31 27gHgz}}
3.3 Sums of Speckle Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 /w dvm4
3.3.1 Sums on an Amplitude Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Z=-#{{bv
3.3.2 Sum of Two Independent Speckle Intensities . . . . . . . . . . . . . . . . . . . . . 34 N''xdz3Z
3.3.3 Sum of N Independent Speckle Intensities . . . . . . . . . . . . . . . . . . . . . . 37 1<x5{/CZ
3.3.4 Sums of Correlated Speckle Intensities . . . . . . . . . . . . . . . . . . . . . . . . 40 kN 2mPD/
3.4 Partially Polarized Speckle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 {C`M<2W]
3.5 Partially Developed Speckle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
}kAE
3.6 Speckled Speckle, or Compound Speckle Statistics . . . . . . . . . . . . . . . . . . . . . . 47 ?z)2\D
3.6.1 Speckle Driven by a Negative Exponential Intensity Distribution . . . . . . . . . . . 48 ,?U(PEO\f
3.6.2 Speckle Driven by a Gamma Intensity Distribution . . . . . . . . . . . . . . . . . . 50 r|Uz?
3.6.3 Sums of Independent Speckle Patterns Driven by a Gamma Intensity Distribution . . 51 @ ~{TL
4 Higher-Order Statistical Properties of Optical Speckle 55 7y&