Speckle Phenomena in Optics: Theory and Applications W%Rh2l
a4`@z:l
Joseph W. Goodman ZFW}Vnl
#4na>G|
Contents V]k!]
1 Origins and Manifestations of Speckle 1 tx5_e[
1.1 General Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 ).oqlA!
1.2 Intuitive Explanation of the Cause of Speckle . . . . . . . . . . . . . . . . . . . . . . . . . 2 Rdt8jY6F/
1.3 Some Mathematical Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Q(]-\L'
2 Random Phasor Sums 7 9d[0i#` :q
2.1 First and Second Moments of the Real and Imaginary Parts of the Resultant Phasor . . . . . 8 Q^MB%L;D
2.2 Random Walk with a Large Number of Independent Steps . . . . . . . . . . . . . . . . . . 9 Mh+'f 93
2.3 Random Phasor Sum Plus a Known Phasor . . . . . . . . . . . . . . . . . . . . . . . . . . 12 wmo'Pl
2.4 Sums of Random Phasor Sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 a
_
2.5 Random Phasor Sums with a Finite Number of Equal-Length Components . . . . . . . . . 16 j{U-=[$'
2.6 Random Phasor Sums with a Nonuniform Distribution of Phases . . . . . . . . . . . . . . . 17 ^Y'J0v2
3 First-Order Statistical Properties of Optical Speckle 23 zZ32K@
3.1 Definition of Intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 xo@N~
3.2 First-Order Statistics of the Intensity and Phase . . . . . . . . . . . . . . . . . . . . . . . . 24 Z7.)[
;
3.2.1 Large Number of Random Phasors . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 lmmyDg1R
3.2.2 Constant Phasor plus a Random Phasor Sum . . . . . . . . . . . . . . . . . . . . . 27 V'K$:9^x[8
3.2.3 Finite Number of Equal-Length Phasors . . . . . . . . . . . . . . . . . . . . . . . . 31 Jh466;
E
3.3 Sums of Speckle Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 !+hX$_RT
3.3.1 Sums on an Amplitude Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ['R=@.
3.3.2 Sum of Two Independent Speckle Intensities . . . . . . . . . . . . . . . . . . . . . 34 Plq[Ml9
3.3.3 Sum of N Independent Speckle Intensities . . . . . . . . . . . . . . . . . . . . . . 37 6J|f^W-fs
3.3.4 Sums of Correlated Speckle Intensities . . . . . . . . . . . . . . . . . . . . . . . . 40 uqQMS&;+,|
3.4 Partially Polarized Speckle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 er#we=h
3.5 Partially Developed Speckle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2WUBJ-qnuT
3.6 Speckled Speckle, or Compound Speckle Statistics . . . . . . . . . . . . . . . . . . . . . . 47 'E&K%/d
3.6.1 Speckle Driven by a Negative Exponential Intensity Distribution . . . . . . . . . . . 48 f2yv7t
T
3.6.2 Speckle Driven by a Gamma Intensity Distribution . . . . . . . . . . . . . . . . . . 50 zi-+@9T
3.6.3 Sums of Independent Speckle Patterns Driven by a Gamma Intensity Distribution . . 51 cF(9[8c{
4 Higher-Order Statistical Properties of Optical Speckle 55 v Q_ B2#U:
4.1 Multivariate Gaussian Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 .9^;? Ts
4.2 Application to Speckle Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 $s]@%6f
4.3 Multidimensional Statistics of Speckle Amplitude, Phase and Intensity . . . . . . . . . . . . 58 zfo.S[R@
4.3.1 Joint Density Function of the Amplitudes . . . . . . . . . . . . . . . . . . . . . . . 59 Y}?@Pm drz
4.3.2 Joint Density Function of the Phases . . . . . . . . . . . . . . . . . . . . . . . . . . 60 +z[!]^H]4
4.3.3 Joint Density Function of the Intensities . . . . . . . . . . . . . . . . . . . . . . . . 64 GzB%vsv95
4.4 Autocorrelation Function and Power Spectrum of Speckle . . . . . . . . . . . . . . . . . . . 66 =oh6;Ojt
4.4.1 Free-Space Propagation Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 _b5iR<f
4.4.2 Imaging Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 &9ZIf#R
4.4.3 Speckle Size in Depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 X4k/7EA
4.5 Dependence of Speckle on Scatterer Microstructure . . . . . . . . . . . . . . . . . . . . . . 77 F`-[h)e.
4.5.1 Surface vs. Volume Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 h{JVq72R
4.5.2 Effect of a Finite Correlation Area of the ScatteredWave . . . . . . . . . . . . . . . 78 ,3n}*"K
4.5.3 A Regime where Speckle Size Is Independent of Scattering Spot Size . . . . . . . . 81 f:UN~z'yr
4.5.4 Relation between the Correlation Areas of the ScatteredWave and the Surface Height -{7N]q)}
Fluctuations— Surface Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . 83 >{??/fBd-
4.5.5 Dependence of Speckle Contrast on Surface Roughness— Surface Scattering . . . . 88 <Ihn1?
4.5.6 Properties of Speckle Resulting from Volume Scattering . . . . . . . . . . . . . . . 92 o>*{5>#k'
4.6 Statistics of Integrated and Blurred Speckle . . . . . . . . . . . . . . . . . . . . . . . . . . 94 'PYl%2
4.6.1 Mean and Variance of Integrated Speckle . . . . . . . . . . . . . . . . . . . . . . . 95 eoL)gIM%
4.6.2 Approximate Result for the Probability Density Function of 8/F2V?iT
Integrated Intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5Y&@
:Y
4.6.3 “Exact” Result for the Probability Density Function of Integrated Intensity . . . . . 101 i,<-+L$z
4.6.4 Integration of Partially Polarized Speckle Patterns . . . . . . . . . . . . . . . . . . . 106 MnS"M[y3
4.7 Statistics of Derivatives of Speckle Intensity and Phase . . . . . . . . . . . . . . . . . . . . 108 =|#-Rm^YB
4.7.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 <n:?WP~U
4.7.2 Parameters for Various Scattering Spot Shapes . . . . . . . . . . . . . . . . . . . . 110 *AA1e}R{B
4.7.3 Derivatives of Speckle Phase: Ray Directions in a Speckle Pattern . . . . . . . . . . 111 p{,fWk
4.7.4 Derivatives of Speckle Intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 0jzA\ $oD
4.7.5 Level Crossings of Speckle Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . 116 e=R}
4`
4.8 Zeros of Speckle Patterns: Optical Vortices . . . . . . . . . . . . . . . . . . . . . . . . . . 118 :Aa^afjJw
4.8.1 Conditions Required for a Zero of Intensity to Occur . . . . . . . . . . . . . . . . . 119 6\Z^L1973
4.8.2 Properties of Speckle Phase in the Vicinity of a Zero of Intensity . . . . . . . . . . . 119 }dR*bG
4.8.3 The Density of Vortices in Fully Developed Speckle . . . . . . . . . . . . . . . . . 119 c"$_V[m
4.8.4 The Density of Vortices for Fully Developed Speckle Plus a Coherent Background . 123 ^\6UTnS.
5 OpticalMethods for Suppressing Speckle 125 Lf:Z
(Z>
5.1 Polarization Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 &p%c tg
5.2 Temporal Averaging with a Moving Diffuser . . . . . . . . . . . . . . . . . . . . . . . . . 127 >mV""?r]
5.2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 8`~]9ej
5.2.2 Smooth Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 [5 V
5.2.3 Rough Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 l^"G \ZVI
5.3 Wavelength and Angle Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 p4Y9$(X
5.3.1 Free-Space Propagation, Reflection Geometry . . . . . . . . . . . . . . . . . . . . 136 W!(Q_B
5.3.2 Free-Space Propagation, Transmission Geometry . . . . . . . . . . . . . . . . . . . 144 a&[n Vu+
5.3.3 Imaging Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 gi6_la+
5.4 Temporal and Spatial Coherence Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . 150 +vnaEy
5.4.1 Coherence Concepts in Optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 *,pqpD>
5.4.2 Moving Diffusers and Coherence Reduction . . . . . . . . . . . . . . . . . . . . . . 152 `2oi~^.
5.4.3 Speckle Suppression by Reduction of Temporal Coherence . . . . . . . . . . . . . . 154 ?l (hS\N,
5.4.4 Speckle Suppression by Reduction of Spatial Coherence . . . . . . . . . . . . . . . 157 7.t$#fzi
5.5 Use of Temporal Coherence to Destroy Spatial Coherence . . . . . . . . . . . . . . . . . . 163 ^v'Lu!\f
5.6 Compounding Speckle Suppression Techniques . . . . . . . . . . . . . . . . . . . . . . . . 163 ,rdM{ r
6 Speckle in Certain Imaging Modalities 165 OG+ $F
6.1 Speckle in the Eye . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 H:_`]X"
6.2 Speckle in Holography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 5 9vGLN!L
6.2.1 Principles of Holography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 S=2,jPX2r
6.2.2 Speckle Suppression in Holographic Images . . . . . . . . . . . . . . . . . . . . . . 170 +
ThKqC_
6.3 Speckle in Optical Coherence Tomography . . . . . . . . . . . . . . . . . . . . . . . . . . 171 !:8!\gE^P
6.3.1 Overview of the OCT Imaging Technique . . . . . . . . . . . . . . . . . . . . . . . 172 x9e
9$ww}
6.3.2 Analysis of OCT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 neBkwXF!
6.3.3 Speckle and Speckle Suppression in OCT . . . . . . . . . . . . . . . . . . . . . . . 176 h CiblM
6.4 Speckle in Optical Projection Displays . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 Txh;r.1e
6.4.1 Anatomies of Projection Displays . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 <b\urtoJ
6.4.2 Speckle Suppression in Projection Displays . . . . . . . . . . . . . . . . . . . . . . 182 9<a yQ*
6.4.3 Polarization Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 zyr6Tv61U
6.4.4 A Moving Screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 $3ILVT
6.4.5 Wavelength Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 ;gyE5n-{
6.4.6 Angle Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 fjFy$NX&>
6.4.7 Over-Design of the Projection Optics . . . . . . . . . . . . . . . . . . . . . . . . . 186 5-*]PAC
6.4.8 Changing Diffuser Projected onto the Screen . . . . . . . . . . . . . . . . . . . . . 188 "mf;k^sqS
6.4.9 Specially Designed Screens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 ;'p'8lts
6.5 Speckle in Projection Microlithography . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 7`}z7nk
6.5.1 Coherence Properties of Excimer Lasers . . . . . . . . . . . . . . . . . . . . . . . 200 k.ZfjX"
6.5.2 Temporal Speckle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 1 W u
6.5.3 From Exposure Fluctuations to Line Position Fluctuations . . . . . . . . . . . . . . 202 #L)rz u
7 Speckle in Certain Non-imagingModalities 205 Z7^}G=*
7.1 Speckle in Multimode Fibers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 1#(1Bs6X
7.1.1 Modal Noise in Fibers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 f-<6T
7.1.2 Statistics of Constrained Speckle . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 UU;:x"4
7.1.3 Frequency Dependence of Modal Noise . . . . . . . . . . . . . . . . . . . . . . . . 211 EHZSM5hu
7.2 Effects of Speckle on Optical Radar Performance . . . . . . . . . . . . . . . . . . . . . . . 216 %8Z,t+'
7.2.1 Spatial Correlation of the Speckle Returned from Distant Targets . . . . . . . . . . . 217 /HRaX!|E#
7.2.2 Speckle at Low Light Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 'gGB-=yvbO
7.2.3 Detection Statistics—Direct Detection . . . . . . . . . . . . . . . . . . . . . . . . 222 :m\KQ1sq
7.2.4 Detection Statistics— Heterodyne Detection . . . . . . . . . . . . . . . . . . . . . 227 1%,Z&@^j
7.2.5 Comparison of Direct Detection and Heterodyne Detection . . . . . . . . . . . . . . 234 f<wgZM
7.2.6 Reduction of the Effects of Speckle in Optical Radar Detection . . . . . . . . . . . . 235 |@BN+o;`Om
7.3 Speckle and Metrology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 q~n2VU4L*
8 Speckle in Imaging Through the Atmosphere 239 "ivqh{ ,
8.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 v,&2!Zv
8.1.1 Refractive Index Fluctuations in the Atmosphere . . . . . . . . . . . . . . . . . . . 239 8=~>B@'
8.2 Short-Exposure and Long-Exposure Point-Spread Functions . . . . . . . . . . . . . . . . . 240 !UTJ) &
8.3 Long-Exposure and Short-Exposure Average Optical Transfer Functions . . . . . . . . . . . 242 Ie"R,,c
8.4 Statistical Properties of the Short-Exposure OTF and MTF . . . . . . . . . . . . . . . . . . 243 zTLn*?
8.5 Astronomical Speckle Interferometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 +$t%L
8.5.1 Object Information that Is Retrievable . . . . . . . . . . . . . . . . . . . . . . . . . 248 ja/[PHq"
8.5.2 Results of a More Complete Analysis of the Form of the Speckle Transfer Function . 250 T8-$[
2
8.6 The Cross-Spectrum or Knox–Thompson Technique . . . . . . . . . . . . . . . . . . . . . 252 ~<aB-.d
8.6.1 The Cross-Spectrum Transfer Function . . . . . . . . . . . . . . . . . . . . . . . . 253 u$#7W>R
8.6.2 Recovering Full Object Information from the Cross-Spectrum . . . . . . . . . . . . 254 &iZYBa
8.7 The Bispectrum Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 1'
m
$_
8.7.1 The Bispectrum Transfer Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 I8?[@kg5b'
8.7.2 Recovering Full Object Information from the Bispectrum . . . . . . . . . . . . . . . 258 O 0#Jl8
8.8 Speckle Correlography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 Bv8C_-lV/
A Linear Transformations 263 ''uI+>Y
B Contrast of Partially Developed Speckle 267 m+vEs,W.
C Statistics of Derivatives of Speckle 271 h86={@Le
C.1 The Correlation Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 b U NYTF{
C.2 Joint Density Function of the Derivatives of Phase . . . . . . . . . . . . . . . . . . . . . . . 274 =]e^8;e9
C.3 Joint Density Function of the Derivatives of Intensity . . . . . . . . . . . . . . . . . . . . . 274
y6}):|
D Wavelength and Angle Dependence 277 lWvd"Vlt
D.1 Free-Space Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 gf?^yP ;V
D.2 Imaging Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280 s? k[_|)!
E Speckle Contrast when a Dynamic Diffuser is Projected onto a Random Screen 285 lIg2iun[n
E.1 Random Phase Diffusers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285 dU6LB+A
E.2 Diffuser that Just Fills the Projection Optics . . . . . . . . . . . . . . . . . . . . . . . . . . 287 @
WaYU
E.3 Diffuser Overfills the Projection Optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288 <q\)
o_tH
F Statistics of Constrained Speckle 289 )/"7$2Aoy
Bibliography 291 |`wsKr'
Index 299