Speckle Phenomena in Optics: Theory and Applications oO}g~<fYG
u6iW1,#
Joseph W. Goodman Mf5j'n
1"
'3/MFQ8
Contents VQ=
1 Origins and Manifestations of Speckle 1 # :+Nr
1.1 General Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 5epI'D
1.2 Intuitive Explanation of the Cause of Speckle . . . . . . . . . . . . . . . . . . . . . . . . . 2 mh+T!v$[n)
1.3 Some Mathematical Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 ?0qVyK_1
2 Random Phasor Sums 7 @N'n>8Wn
2.1 First and Second Moments of the Real and Imaginary Parts of the Resultant Phasor . . . . . 8 _[:6.oNjIe
2.2 Random Walk with a Large Number of Independent Steps . . . . . . . . . . . . . . . . . . 9 *,u3Wm|7
2.3 Random Phasor Sum Plus a Known Phasor . . . . . . . . . . . . . . . . . . . . . . . . . . 12 $QbJT`,mr
2.4 Sums of Random Phasor Sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 `kKssU<
2.5 Random Phasor Sums with a Finite Number of Equal-Length Components . . . . . . . . . 16 LKN7Lkl
2.6 Random Phasor Sums with a Nonuniform Distribution of Phases . . . . . . . . . . . . . . . 17 `Fqth^RK?p
3 First-Order Statistical Properties of Optical Speckle 23 5(;Y&?k
3.1 Definition of Intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 D?Oe";"/
3.2 First-Order Statistics of the Intensity and Phase . . . . . . . . . . . . . . . . . . . . . . . . 24 .:_'l)-
3.2.1 Large Number of Random Phasors . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 pyEQb#
3.2.2 Constant Phasor plus a Random Phasor Sum . . . . . . . . . . . . . . . . . . . . . 27 EEe$A?a;
3.2.3 Finite Number of Equal-Length Phasors . . . . . . . . . . . . . . . . . . . . . . . . 31 Ae5A@4
3.3 Sums of Speckle Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 y6 (L=$+B
3.3.1 Sums on an Amplitude Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 KQ~y;{h?b
3.3.2 Sum of Two Independent Speckle Intensities . . . . . . . . . . . . . . . . . . . . . 34 ?<Qbp;WBo
3.3.3 Sum of N Independent Speckle Intensities . . . . . . . . . . . . . . . . . . . . . . 37 _{|a<Keq|
3.3.4 Sums of Correlated Speckle Intensities . . . . . . . . . . . . . . . . . . . . . . . . 40 ~M~DH-aX
3.4 Partially Polarized Speckle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 z']6C9m}
3.5 Partially Developed Speckle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 aZZ0eH
3.6 Speckled Speckle, or Compound Speckle Statistics . . . . . . . . . . . . . . . . . . . . . . 47 1UQ,V`y
3.6.1 Speckle Driven by a Negative Exponential Intensity Distribution . . . . . . . . . . . 48 /*C!]Z>.
3.6.2 Speckle Driven by a Gamma Intensity Distribution . . . . . . . . . . . . . . . . . . 50 ;@+|]I
3.6.3 Sums of Independent Speckle Patterns Driven by a Gamma Intensity Distribution . . 51 H3wJ5-q(
4 Higher-Order Statistical Properties of Optical Speckle 55 Q:kg
4.1 Multivariate Gaussian Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 )x-b+SC
4.2 Application to Speckle Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 \zd[A~!
4.3 Multidimensional Statistics of Speckle Amplitude, Phase and Intensity . . . . . . . . . . . . 58 g{&5a(W&`
4.3.1 Joint Density Function of the Amplitudes . . . . . . . . . . . . . . . . . . . . . . . 59 =By@%ioIGG
4.3.2 Joint Density Function of the Phases . . . . . . . . . . . . . . . . . . . . . . . . . . 60 M+"6VtZH
4.3.3 Joint Density Function of the Intensities . . . . . . . . . . . . . . . . . . . . . . . . 64 ;<