@]~.-(IMh 简介:
FRED作为COM组件可以实现与Excel、VB、
Matlab等调用来完成庞大的计算任务或画图,本文的目的是通过运行一个案例来实现与Matlab的相互调用,在此我们需要借助脚本来完成,此脚本为视为通用型脚本。
DQ= { MNe/H\ 配置:在执行调用之前,我们需要在Matlab命令行窗口输入如下命令:
+ XBF,<P enableservice('AutomationServer', true)
R -ek O7z enableservice('AutomationServer')
Ucy=I$"
)_ !a: 结果输出为1,这种操作方式保证了当前的Matlab实体可以用于
通信。
cL4Go,)w sXPva@8_ 在winwrp界面,为增加和使用Matlab类型的目录库,我们需要如下步骤:
ol_\ " 1. 在FRED脚本编辑界面找到参考.
s1W n.OGR4 2. 找到Matlab Automation Server Type Library
8b7I\J` 3. 将名字改为MLAPP
.0U[nt6 z@19gD#8
R7z @y o 在Matlab里面有两种常用的数据发送选项PutWorkspaceData 及PutFullMatrix,PutWorkspaceData适用于存储一般的数据在工作区,并赋予其为变量,PutFullMatrix试用于复数数据。
1qn/*9W}= 图 编辑/参考
Lhg (Lz|o!> V[WZ#u-p 现在将脚本代码公布如下,此脚本执行如下几个步骤:
5WfZd 1. 创建Matlab服务器。
w0$+v/ 2. 移动探测面对于前一聚焦面的位置。
^5~x*=_ 3. 在探测面追迹
光线 PEjd 4. 在探测面计算
照度 gk8v{'0Er 5. 使用PutWorkspaceData发送照度数据到Matlab
k-^^Ao*@ 6. 使用PutFullMatrix发送标量场数据到Matlab中
4,QA {v 7. 用Matlab画出照度数据
V :5aq.o! 8. 在Matlab计算照度平均值
P;gd!Yl<- 9. 返回数据到FRED中
a[zVC)N0 4<1V 代码分享:
$d-yG553 {GT5 Option Explicit
#H Jlm1d ,s}&|+
'" Sub Main
Xu#?Lw h'G Dim ana As T_ANALYSIS
#H~$^L Dim move As T_OPERATION
yF|yZ{ Dim Matlab As MLApp.MLApp
p_n$}z Dim detNode As Long, detSurfNode As Long, anaSurfNode As Long
h1 "# Dim raysUsed As Long, nXpx As Long, nYpx As Long
HXdo:#xEO Dim irrad() As Double, imagData() As Double, reals() As Double, imags() As Double
^z qQ8{oV Dim z As Double, xMin As Double, xMax As Double, yMin As Double, yMax As Double
L5d
YTLY Dim meanVal As Variant
G;/>
N'# HtE^7i*_ Set Matlab = CreateObject("Matlab.Application")
a ge8I$*`@ &dw=jHt ClearOutputWindow
n?q+:P /:\27n 'Find the node numbers for the entities being used.
r_bG+iw7p detNode = FindFullName("Geometry.Screen")
dn=srbJ detSurfNode = FindFullName("Geometry.Screen.Surf 1")
Q9p2.!/C1 anaSurfNode = FindFullName("Analysis Surface(s).Analysis 1")
OOnj(%g 16z
WmJH 'Load the properties of the analysis surface being used.
T51oNO%^ LoadAnalysis anaSurfNode, ana
q]!FFi{w; 5mudww` 'Move the detector custom element to the desired z position.
_m
a;b<I/< z = 50
g?j^d: GetOperation detNode,1,move
w*@9:+ move.Type = "Shift"
%M^Q{`
:5 move.val3 = z
~% ]V,-4 SetOperation detNode,1,move
i6;rh-M?. Print "New screen position, z = " &z
v{1g`E MD4mh2 'Update the model and trace rays.
? )IH#kL EnableTextPrinting (False)
3|3ad' Update
nddCp~NX DeleteRays
wc}x
[cS TraceCreateDraw
v=uQ8_0~N EnableTextPrinting (True)
xTcY& ,gkWksl9 'Calculate the irradiance for rays on the detector surface.
">fRM=fl raysUsed = Irradiance( detSurfNode, -1, ana, irrad )
&
}"I! Print raysUsed & " rays were included in the irradiance calculation.
\
sz ](X l<"B[ 'When using real number data to send to MATLAB, it is simplest to use PutWorkspaceData.
xAn|OSe Matlab.PutWorkspaceData("irradiance_pwd","base",irrad)
C<^S$ &Dp& 'PutFullMatrix is more useful when actually having complex data such as with
[a^<2V!vMn 'scalar wavefield, for example. Note that the scalarfield array in MATLAB
3],(oQq^ 'is a complex valued array.
4h}\Kl raysUsed = ScalarField ( detSurfNode, -1, ana, reals, imags )
5rA>2<\pQ Matlab.PutFullMatrix("scalarfield","base", reals, imags )
>u
.u#d e Print raysUsed & " rays were included in the scalar field calculation."
VF7H0XR/k5 <`A!9+ 'Calculate plot characteristics from the T_ANALYSIS structure. This information is used
H3JDA^5 'to customize the plot figure.
TUp%Cx xMin = ana.posX+ana.AcellX*(ana.Amin-0.5)
e5ww~%, xMax = ana.posX+ana.AcellX*(ana.Amax+0.5)
"JYWsE yMin = ana.posY+ana.BcellY*(ana.Bmin-0.5)
to\$'2F"q yMax = ana.posY+ana.BcellY*(ana.Bmax+0.5)
RC/&dB nXpx = ana.Amax-ana.Amin+1
}4Gn$'e nYpx = ana.Bmax-ana.Bmin+1
yW"}%)
d ^#7&R" 'Plot the data in Matlab with some parameters calculated from the T_ANALYSIS
d _=44( - 'structure. Set the axes labels, title, colorbar and plot view.
PCKxo;bD Matlab.Execute( "figure; surf(linspace("&xMin &","&xMax &","&nXpx &"),linspace("& yMin &"," & yMax & "," & nYpx & "),irradiance_pwd, 'EdgeColor', 'None');" )
f+c{<fX Matlab.Execute( "xlabel('X Position (" & GetUnits() & ")')" ) : Matlab.Execute( "ylabel('Y Position (" & GetUnits() & ")')" ) : Matlab.Execute( "zLabel( 'Irradiance' )" )
t$Ua&w Matlab.Execute( "title('Detector Irradiance')" )
:3}K$ Matlab.Execute( "colorbar" )
<(~geN Matlab.Execute( "view(2)" )
_9/Af1X Print ""
CTX%~1_`O Print "Matlab figure plotted..."
<2+FE/3L V5I xZn% 'Have Matlab calculate and return the mean value.
x1#6~283 Matlab.Execute( "irrad = mean(mean(irradiance_pwd));" )
]RW*3X Matlab.GetWorkspaceData( "irrad", "base", meanVal )
rN {5^+w Print "The mean irradiance value calculated by Matlab is: " & meanVal
xz/G$7q7 ,=}+.ax 'Release resources
C[JPohm Set Matlab = Nothing
@d[)i,d:G "9H#pj - End Sub
dSzq}w4xY YdAC<,e&A 最后在Matlab画图如下:
IS!]!s'EI >P ygUY
d 并在工作区保存了数据:
bgmOX&`G
Cz4l 8 A #\V 并返回平均值:
w6k^|." /9C>{29x! 与FRED中计算的照度图对比:
pkA(\0E8 !=+hU/e 例:
b=Q%Jxz? `XbV*{7 此例
系统数据,可按照此数据建立
模型 EPeV1$ ns8I_H 系统数据
FBI^}^#_ *wz6 2p wQ9fPOm 光源数据:
]<E\J+5K Type: Laser Beam(Gaussian 00 mode)
t*!Q9GC_ Beam size: 5;
Gh{vExH@5( Grid size: 12;
cU=EXyP% Sample pts: 100;
,tOc+3Qz$ 相干光;
6q^.Pg-Y 波长0.5876微米,
QEq>zuz5; 距离原点沿着Z轴负方向25mm。
q VJC O-K| e p\a 对于执行代码,如果想保存图片,请在开始之前一定要执行如下代码:
:U#4H;kk~j enableservice('AutomationServer', true)
knu>{a} enableservice('AutomationServer')