The following input will simulate a 1:1 array of GRIN rods (see Figure 2): |@'/F #T
zq]I"0Bi.
b(^/WCykH
C\"nlNKw
RDM;LEN iF]G$@rbU
TIT 1:1 GRIN ARRAY ToMvP B);
NAO 0.1 .*FBr7rE\
TEL ! Telecentric @bs
YJ4-V
DIM M t~vOm
WL 633 XC44]o4jx
YOB -5 5 0 -10 10 |2RoDW
PRV ! GRIN material (SELFOC form) \dvzL(,
PWL 633 u|]{|Ya'%
'SLSPRV' 1.5 K"Vo'9R[_
SEL 1 ! Grin step size D{'>G@nLQ
SEL C1 .076 ! First coeff. of SELFOC formula a,eR'L<"*-
END ^a+W!
So 0 10.222 gbvM2
RED -1 KX8$j$yW
S 0 0 =VA5!-6<Uq
S 0.0 60.0 'SLSPRV' ! GRIN rod (array channels) vh+ '
W
STOP { #?$p i[
CIR 1.25 ! Aperture of each channel J)R2O{ z
! (applies to entire length R<\5q%@G
! of GRIN rod) }ACWSk WK
! Array definition ;MSdTHN"
^YVd^<cE
! ARR x_spacing y_spacing y_offset max_x max_y sA^_I6>M"
ARR 2.5 2.5 0 0 0 GFA D
S 0 0 cf\PG&S
EAR ! End array ".0~@W0
S 0 10.222 UXs=7H".
PIM 96a2G,c>V
SI 0 0 (29h{=P'
LAY;SUR So..i;GO k@}?!V*l
|:qaF
5a8[0&hA 2
Figure 2. 1:1 GRIN array