The following input will simulate a 1:1 array of GRIN rods (see Figure 2): 1jo.d
]@l~z0^|[_
H(Mlf
Gcg`Knr
RDM;LEN 7qon:]b4
TIT 1:1 GRIN ARRAY ./kmI#gaV
NAO 0.1 M7yJ2u <Ty
TEL ! Telecentric GEA@AD=^f
DIM M ':[+UUC@
WL 633 v0X5`VV
YOB -5 5 0 -10 10 T1PWFw\GH
PRV ! GRIN material (SELFOC form) *-Lnsi^7v
PWL 633 gb@Rx
'SLSPRV' 1.5 8v1asFxs.
SEL 1 ! Grin step size cgYMo{R3
SEL C1 .076 ! First coeff. of SELFOC formula 0VoC|,$U
END ~FZLA}
So 0 10.222 [lS'GszA
RED -1 \#tr4g~u
S 0 0 1}S_CR4XBs
S 0.0 60.0 'SLSPRV' ! GRIN rod (array channels) s`C#=l4
STOP >~BU<#
CIR 1.25 ! Aperture of each channel SZG8@ !_}7
! (applies to entire length TuIeaH% x
! of GRIN rod) Yc:b:\0}F6
! Array definition QI=SR
t8GJ;
! ARR x_spacing y_spacing y_offset max_x max_y \Zoo9Wy
ARR 2.5 2.5 0 0 0 q,u>`]}
S 0 0 -rH4/Iby
EAR ! End array fhH* R*4
S 0 10.222 2:p2u1Q
O
PIM b${Kj3(
SI 0 0 b@1QE
LAY;SUR So..i;GO dUb(C1h
6ap,XFRMh
Z|8f7@k{|+
Figure 2. 1:1 GRIN array