The following input will simulate a 1:1 array of GRIN rods (see Figure 2): Pe ~c
82:Wvp6
K-Mc6
&M[f&_"8Q
RDM;LEN < bUe/m
TIT 1:1 GRIN ARRAY @;^Y7po6u
NAO 0.1 p
EusTP
TEL ! Telecentric @,OT/egF4:
DIM M s] au/T6b
WL 633 Sycw %k
YOB -5 5 0 -10 10 {aOkV::
PRV ! GRIN material (SELFOC form) `8g7q 5
PWL 633 jai|/"HSXw
'SLSPRV' 1.5 eN>0wd5{L
SEL 1 ! Grin step size ,/2LY4` 5
SEL C1 .076 ! First coeff. of SELFOC formula (Tvcq
END vmZ"o9-{#X
So 0 10.222
dt,3"J
RED -1 VLvS$0(}Z
S 0 0 Zq"7,z7
S 0.0 60.0 'SLSPRV' ! GRIN rod (array channels) 93Yn`Av;
STOP 0Y+FRB]u
CIR 1.25 ! Aperture of each channel 7 &%^>PU7
! (applies to entire length %w}gzxN^
! of GRIN rod) xBM>u,0.F
! Array definition Paf%rv2
'\7G@g?UZ
! ARR x_spacing y_spacing y_offset max_x max_y 6d|q+]x_n
ARR 2.5 2.5 0 0 0 S\x=&R z
S 0 0 [
!%R#+o=F
EAR ! End array X@wm1{!
S 0 10.222 b$JBL_U5Ch
PIM $95~5]-nh
SI 0 0 qRB7Ec_
LAY;SUR So..i;GO kdrod [S
0D&> Gyc*0
vT{ kL
Figure 2. 1:1 GRIN array