切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9092阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, <$Xn:B<H  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, zkw0jX~  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? >0[qi1  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? GIJV;7~  
    %@)U/G6s}  
    p=je"{  
    (2&K (1.Y  
    .f[\G*   
    function z = zernfun(n,m,r,theta,nflag) #nt<j2}m  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. \["1N-q b  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N B]CS2LEqh  
    %   and angular frequency M, evaluated at positions (R,THETA) on the % DHP  
    %   unit circle.  N is a vector of positive integers (including 0), and hwG||;&/H  
    %   M is a vector with the same number of elements as N.  Each element #<^/yoH7C6  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) LK oM\g(  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, Xb8:*Y1'  
    %   and THETA is a vector of angles.  R and THETA must have the same C:TuC5Sr  
    %   length.  The output Z is a matrix with one column for every (N,M) ZnxOa  
    %   pair, and one row for every (R,THETA) pair. sP=2NqU3Q  
    % ,(5dQ`hA0  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike D z]}@Z*jK  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), $]`'Mi  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral `RL(N4H  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, JRcuw'8+q  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized %u<&^8EL+#  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. UwzE'#Q-  
    % 1L(Nfkh  
    %   The Zernike functions are an orthogonal basis on the unit circle. ;FIMCJS  
    %   They are used in disciplines such as astronomy, optics, and 1yY'hb,0  
    %   optometry to describe functions on a circular domain. ~Y}Z4" o  
    % ~gcst;  
    %   The following table lists the first 15 Zernike functions. S(YHwH":  
    % 2t~7eI%d  
    %       n    m    Zernike function           Normalization "J0Oa?  
    %       -------------------------------------------------- C'xU=OnA8  
    %       0    0    1                                 1 cfQh  
    %       1    1    r * cos(theta)                    2 z;Gbqr?{{  
    %       1   -1    r * sin(theta)                    2 '+GVozc6c"  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) N1B$G  
    %       2    0    (2*r^2 - 1)                    sqrt(3) .LhbhUEfn  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) D q_{O  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) *RqO3=  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) B "s8i{Vm  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ADJ5ZD<Q  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) EZa{C}NQ$2  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) faKrSmE!  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 2e D\_IW  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) a#~Z5>{  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) :)3$&QdHT  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) [b\lcQ8O  
    %       -------------------------------------------------- vY TPZ@RL  
    % .\hib. n3  
    %   Example 1: .w*{=x0k  
    % ;zxlwdfcr'  
    %       % Display the Zernike function Z(n=5,m=1) >?uH#%C5  
    %       x = -1:0.01:1; iTtAj~dfZ  
    %       [X,Y] = meshgrid(x,x); XiZ Zo  
    %       [theta,r] = cart2pol(X,Y); qS[p|*BL  
    %       idx = r<=1; cq+M *1;  
    %       z = nan(size(X)); th>yi)m  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); >t6'8g"T  
    %       figure \Lh<E5@]  
    %       pcolor(x,x,z), shading interp 1rzq$,O  
    %       axis square, colorbar K]=>F  
    %       title('Zernike function Z_5^1(r,\theta)') |jCE9Ve#  
    % ]mGsNQ ].H  
    %   Example 2: =Q8^@i4[&D  
    %   } k%\  
    %       % Display the first 10 Zernike functions N#6A>  
    %       x = -1:0.01:1; :J)l C =  
    %       [X,Y] = meshgrid(x,x); yK2*~T,6@  
    %       [theta,r] = cart2pol(X,Y); E'kQ  
    %       idx = r<=1; 3B_} :  
    %       z = nan(size(X)); Y.hH fSp  
    %       n = [0  1  1  2  2  2  3  3  3  3]; F|ML$  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 1Mhc1MU  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; MZ+IorZl  
    %       y = zernfun(n,m,r(idx),theta(idx)); g)G7 kB/<p  
    %       figure('Units','normalized') NbK?Dg8WJG  
    %       for k = 1:10 m^s2kB4A[  
    %           z(idx) = y(:,k); V{^fH6;[  
    %           subplot(4,7,Nplot(k)) $vicHuX!  
    %           pcolor(x,x,z), shading interp mWFZg.#?  
    %           set(gca,'XTick',[],'YTick',[]) i:Ct6[  
    %           axis square ~!+h"%'t  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) oG_'<5Bv>  
    %       end 6+d"3-R.  
    % igbb=@QBJ  
    %   See also ZERNPOL, ZERNFUN2. !JQ~r@j  
    TD=/C|  
    .g`*cDW^=  
    %   Paul Fricker 11/13/2006 YQ`#C #Wb  
    n^(yW  
    +(k)1kCMn  
    <{).x 6  
    zinl.8Uk  
    % Check and prepare the inputs: <rI$"=7  
    % ----------------------------- ?g*T3S"  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Da[X HUk  
        error('zernfun:NMvectors','N and M must be vectors.') (uxQBy  
    end |JQP7z6j]  
    <"Cwy0V kp  
    3jdB8a]T_  
    if length(n)~=length(m) ?GfA;O  
        error('zernfun:NMlength','N and M must be the same length.') JfINAaboi  
    end $0C/S5b  
    *A9{H>Vq  
    3#ZKuGg=  
    n = n(:); n&78~@H  
    m = m(:); _89G2)U=C  
    if any(mod(n-m,2)) )Is*- W  
        error('zernfun:NMmultiplesof2', ... Wn#JY p  
              'All N and M must differ by multiples of 2 (including 0).') >2{HH\  
    end RV*Zi\-X  
    K?m:.ZM  
    TS8E9#1a  
    if any(m>n) `.-k%2?/  
        error('zernfun:MlessthanN', ... =F-^RnO%\  
              'Each M must be less than or equal to its corresponding N.') !Jp.3,\?~  
    end cMk%]qfVo8  
    ~u& O  
    {O oNhN9  
    if any( r>1 | r<0 ) Sqt"G6<  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') f?^xh  
    end ~:b~f]lO  
    utS M x(  
    sO-R+G/^7  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) uvM8 8#  
        error('zernfun:RTHvector','R and THETA must be vectors.') rbS= Ewk  
    end IL"#TKKv  
     o%4+I>  
    +!Ag n)  
    r = r(:); R~(.uV`#j  
    theta = theta(:); k<hO9;#qpL  
    length_r = length(r); _[tBLGXD  
    if length_r~=length(theta) @Odu.F1e  
        error('zernfun:RTHlength', ... s'=]a-l~  
              'The number of R- and THETA-values must be equal.') >c>ar>4xF  
    end Q>*K/%KD  
    ,$[lOFs  
    7+-}8&s yu  
    % Check normalization: ebVfny$D  
    % -------------------- _)" 5 gv  
    if nargin==5 && ischar(nflag) iW$i%`>  
        isnorm = strcmpi(nflag,'norm'); ^Wz{su2  
        if ~isnorm ZSb+92g{L$  
            error('zernfun:normalization','Unrecognized normalization flag.') 41D[[Gh  
        end  )U`kU`+'  
    else NU*6iLIq|F  
        isnorm = false; (_<n0  
    end 4rdrl  
    @h8~xs~DG  
    4Lb<#e13R?  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 3Ab$  
    % Compute the Zernike Polynomials ;<rJ,X#  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Wm_-T]#_  
    (o=iX,@'2  
    3=I Q  
    % Determine the required powers of r: P=z':4,M}  
    % ----------------------------------- [0@i,7{ZqE  
    m_abs = abs(m); YI+|6s[  
    rpowers = []; ~epkRO="  
    for j = 1:length(n) @L7rE)AU.  
        rpowers = [rpowers m_abs(j):2:n(j)]; @gk[sQ\O  
    end ^jA^~h3(W  
    rpowers = unique(rpowers); $OuA<-  
    /n=/WGl  
    Z)0R$j`2  
    % Pre-compute the values of r raised to the required powers, q[g^[~WM#  
    % and compile them in a matrix: YJ`>&AJ  
    % ----------------------------- |.yRo_  
    if rpowers(1)==0 kXRD_B5&  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); $]86w8?-N  
        rpowern = cat(2,rpowern{:}); s5@^g8(+C  
        rpowern = [ones(length_r,1) rpowern]; #+ =afJ  
    else =!aV?kNS8  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); wEyh;ID3#  
        rpowern = cat(2,rpowern{:}); .kV/ 0!q?  
    end J)f?x T*  
    p! 1zhD  
    SM?<woY=*  
    % Compute the values of the polynomials: sj2+|>  
    % -------------------------------------- >ZWm0nTr  
    y = zeros(length_r,length(n)); ps [rYy  
    for j = 1:length(n) |ESe=G  
        s = 0:(n(j)-m_abs(j))/2; QG ia(  
        pows = n(j):-2:m_abs(j); [;+YO)  
        for k = length(s):-1:1 wu3ZSLY  
            p = (1-2*mod(s(k),2))* ... &nn":  
                       prod(2:(n(j)-s(k)))/              ... eP8wTStC  
                       prod(2:s(k))/                     ... T%F'4_~No  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Wit1WI;18  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); PT=%]o]  
            idx = (pows(k)==rpowers); kQtl&{;k?  
            y(:,j) = y(:,j) + p*rpowern(:,idx); J<D =\  
        end UlR7_   
         (;0]V+-  
        if isnorm NaIVKo  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); +=v|kd  
        end ?/D#ql7  
    end O4{&B@!  
    % END: Compute the Zernike Polynomials $onliW|  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% <KCgtO  
    |tkmO:  
    [iz  
    % Compute the Zernike functions: D!CGbP(  
    % ------------------------------ BL7%MvDQ  
    idx_pos = m>0; dBkB9nz  
    idx_neg = m<0; 1Y_fX  
    !G37K8 &&*  
    . x$` i  
    z = y; gxiJ`. D=  
    if any(idx_pos) i?]!8Ji  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 1'iRx,  
    end IdM ;N  
    if any(idx_neg) Wl{Vz  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Wp ]u0w  
    end vv3?ewr y  
    QLn5:&  
    UqH7ec  
    % EOF zernfun Pj$a$C`Z  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    在线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  U; ev3  
    1`b?nX  
    DDE还是手动输入的呢? }P^{\SDX  
    IWTD>c).  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究