下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, <^M`U>
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, :?&N/7
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? s`&8tP
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? 8K{
TRPy
KyDQ<Dq&
WPLAh_fe
m39 `f,M
}9jy)gF*e
function z = zernfun(n,m,r,theta,nflag) 'Exj|Y&
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 1S <V,9(
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N JhIgqW2
% and angular frequency M, evaluated at positions (R,THETA) on the F.K7w
% unit circle. N is a vector of positive integers (including 0), and kpcIU7|e
% M is a vector with the same number of elements as N. Each element N^B
YNqr
% k of M must be a positive integer, with possible values M(k) = -N(k) g6+}'MN:5
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, j$a,93P5
% and THETA is a vector of angles. R and THETA must have the same NFv9%$l-
% length. The output Z is a matrix with one column for every (N,M) k~h'`(
% pair, and one row for every (R,THETA) pair. x)h5W+$
% (@>X!]{$
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Y]Td+Zi
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), q3#07o_dV
% with delta(m,0) the Kronecker delta, is chosen so that the integral PSNfh7g
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, _py%L+&{
% and theta=0 to theta=2*pi) is unity. For the non-normalized " P c"{w
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. {=VauF
% :D`ghXj
% The Zernike functions are an orthogonal basis on the unit circle. a`|&rggN
% They are used in disciplines such as astronomy, optics, and =Wn11JGh
% optometry to describe functions on a circular domain. hlWTsi4N
% 3@f@4t@5V
% The following table lists the first 15 Zernike functions. RBd{1on
% 9
N[k ?kUZ
% n m Zernike function Normalization .gh3"
% -------------------------------------------------- I"eXoqh
% 0 0 1 1 WLqwntzk
% 1 1 r * cos(theta) 2 nSdta'6
% 1 -1 r * sin(theta) 2 ()i8 Qepo}
% 2 -2 r^2 * cos(2*theta) sqrt(6) 4RTuy+
M
% 2 0 (2*r^2 - 1) sqrt(3) G'T/I\tB
% 2 2 r^2 * sin(2*theta) sqrt(6) N,6(|,m
% 3 -3 r^3 * cos(3*theta) sqrt(8) {PZNJ 2~
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) KAH9?zI)M
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) ,R_ KLd
% 3 3 r^3 * sin(3*theta) sqrt(8) ! c,=%4Pb
% 4 -4 r^4 * cos(4*theta) sqrt(10) (lBgWz
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) g(){wCI
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) QhUv(]0
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) #/!fLU@
% 4 4 r^4 * sin(4*theta) sqrt(10) frV* +
% -------------------------------------------------- BBnW0vAZ*
% H=b54.J8&
% Example 1: ~u|k1
% +iKs)s_~
% % Display the Zernike function Z(n=5,m=1) {!h|(xqN+
% x = -1:0.01:1; 49.
@Uzo
% [X,Y] = meshgrid(x,x); <