切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9494阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, 9Z|jxy  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, ]GMe \n  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? u7Y WnD  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? wVX[)E\J  
    8LyD7P 1\  
    ]q;Emy  
    HU1h8E$-  
    O(#)m>A  
    function z = zernfun(n,m,r,theta,nflag) #pT"BSz]  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. c' ^?/$H|  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N l>2E (Y|  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ({ 8-*  
    %   unit circle.  N is a vector of positive integers (including 0), and %<)2/|lCd  
    %   M is a vector with the same number of elements as N.  Each element Lco~,OE  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) @GPCwE1  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, spGb!Y`mR  
    %   and THETA is a vector of angles.  R and THETA must have the same 9`T)@Uj2n  
    %   length.  The output Z is a matrix with one column for every (N,M) XR8,Vt)=  
    %   pair, and one row for every (R,THETA) pair. ]jtK I4  
    % Y4OPEo5o  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike qt"G[9;  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 'OE&/ C [  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral  Hu^1[#  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, T%x}Y#U'`  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized zE336  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. %r<rcY  
    % ZEXc%-M  
    %   The Zernike functions are an orthogonal basis on the unit circle. Um }  
    %   They are used in disciplines such as astronomy, optics, and ob+b<HFv  
    %   optometry to describe functions on a circular domain. qPWP&k  
    % +s"hqm  
    %   The following table lists the first 15 Zernike functions. [8.c8-lZ^  
    % 6}Vf\j~  
    %       n    m    Zernike function           Normalization kj|6iG  
    %       -------------------------------------------------- rR$h*  
    %       0    0    1                                 1 *]. 7dec/  
    %       1    1    r * cos(theta)                    2 4ae`pAu  
    %       1   -1    r * sin(theta)                    2 ,oORW/0iS  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) Z_PNI#h*  
    %       2    0    (2*r^2 - 1)                    sqrt(3) :lX!\(E2  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) ~9?cn  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) Eou~P h*t  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) gMv.V{vD  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) efSM`!%j  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) ZWii)0'PV  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) w:??h4lt  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ' WMh8)  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) JHW "-b  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 4]rnY~  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 'UkxS b  
    %       -------------------------------------------------- zUDg&-J3  
    % Hh%I0#  
    %   Example 1: &d9{k5/+\  
    % Y}@&h!  
    %       % Display the Zernike function Z(n=5,m=1) R7]l{2V#^  
    %       x = -1:0.01:1; zqd@EF6/bz  
    %       [X,Y] = meshgrid(x,x); +QB"8-  
    %       [theta,r] = cart2pol(X,Y); +~St !QV%  
    %       idx = r<=1; 6T>mW#E&  
    %       z = nan(size(X)); B*qi_{Gp  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); pb^i^tA+A  
    %       figure ke{8 ^X~#  
    %       pcolor(x,x,z), shading interp ZjT,pOSyb  
    %       axis square, colorbar iz5CAxm  
    %       title('Zernike function Z_5^1(r,\theta)') 9*$t!r{B@  
    % 3NZK*!@ '  
    %   Example 2: M])ZK  
    % w;D+y*2  
    %       % Display the first 10 Zernike functions J%8(kWQ|  
    %       x = -1:0.01:1; ::o lN  
    %       [X,Y] = meshgrid(x,x); wWgWWXGT}  
    %       [theta,r] = cart2pol(X,Y); k2E0/ @f{k  
    %       idx = r<=1; "vA}FV%tRq  
    %       z = nan(size(X)); s.EI`*xylY  
    %       n = [0  1  1  2  2  2  3  3  3  3]; O[# 27_dH  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; M-\Y"]sW  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; nvca."5y  
    %       y = zernfun(n,m,r(idx),theta(idx)); yh^!'!I6u[  
    %       figure('Units','normalized') R[Ll59-  
    %       for k = 1:10 "X2Vrn'  
    %           z(idx) = y(:,k); YpQ7)_s ?  
    %           subplot(4,7,Nplot(k)) ,/[6e\0~  
    %           pcolor(x,x,z), shading interp h"lX 4  
    %           set(gca,'XTick',[],'YTick',[]) QpZ:gM_  
    %           axis square =5aDM\L$&  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) >O1[:%Z1  
    %       end + r!1<AAE$  
    % YZP(tn  
    %   See also ZERNPOL, ZERNFUN2. @HT% n  
    aGK?x1_  
    SH3|sXH<  
    %   Paul Fricker 11/13/2006 z MLK7+  
    ,_|]Ufr!a  
    lT4Hn;tnN  
    `/_o!(Z`  
    Gn&-X]Rrl  
    % Check and prepare the inputs: Z.d 7U~_  
    % ----------------------------- )i q-yjO6  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Z 1zVwHa_  
        error('zernfun:NMvectors','N and M must be vectors.') H|,Oswk~-  
    end 5>VY LI  
    %R1tJ(/  
    L93l0eEt  
    if length(n)~=length(m) u?>B)PW  
        error('zernfun:NMlength','N and M must be the same length.') Ny_lrfh)[  
    end l6(-I Tb  
    '[J<=2&  
    ##KBifU"  
    n = n(:); VQY&g;[d  
    m = m(:); Q=BZ N]g2  
    if any(mod(n-m,2)) (E/lIou  
        error('zernfun:NMmultiplesof2', ... ANvRi+ _  
              'All N and M must differ by multiples of 2 (including 0).') YRv&1!VLE  
    end ;g6M%;1-  
    &P.4(1sC  
    v4?x.I  
    if any(m>n) u4m,'XR  
        error('zernfun:MlessthanN', ... H1I{/g  
              'Each M must be less than or equal to its corresponding N.') fKp#\tCc y  
    end (*1v\Q  
    dp++%:j  
    6Ztq  
    if any( r>1 | r<0 ) : q ti  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') u583_k%  
    end 6``'%S'#  
    DvPlV q~  
    J\J?yo 6  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ".SJ~`S  
        error('zernfun:RTHvector','R and THETA must be vectors.') <F'X<Bau  
    end .P.z B}0=  
    {D!6%`HKV+  
    eFBeJZuE|  
    r = r(:); \(VTt|}By$  
    theta = theta(:); uMut=ja(U  
    length_r = length(r); 4VHqBQ4  
    if length_r~=length(theta) 76wc,+  
        error('zernfun:RTHlength', ... hj  
              'The number of R- and THETA-values must be equal.') /R~1Zj2&  
    end ( xXGSx  
    ?I/qE='*  
    Dw=gs{8D  
    % Check normalization: 6&DX] [G  
    % -------------------- $B kubWM  
    if nargin==5 && ischar(nflag) uA,>a>xYI  
        isnorm = strcmpi(nflag,'norm'); ; l&4V  
        if ~isnorm `Q+ (LBP  
            error('zernfun:normalization','Unrecognized normalization flag.') I#m-g-J  
        end MS>t_C(  
    else *5 |)-E  
        isnorm = false; fBgEnz/  
    end 8~90 30>Q  
    %YSpCI  
    ?6L&WB  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @Ys!DScY,  
    % Compute the Zernike Polynomials \%/#x V  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ]Pry>N3G5  
    {~h*2n  
    6An9S%:_  
    % Determine the required powers of r: UbEb&9}  
    % ----------------------------------- bV edFm  
    m_abs = abs(m); =8r 0 (c  
    rpowers = []; &FH2fMLQ  
    for j = 1:length(n) )x}l3\s  
        rpowers = [rpowers m_abs(j):2:n(j)]; Vw#_68EybM  
    end N2oRJ,:B  
    rpowers = unique(rpowers); $e\h}A6  
    YLwnhy>dD  
    D\@m6=L  
    % Pre-compute the values of r raised to the required powers, G2]4n T  
    % and compile them in a matrix: +Vo}F  
    % ----------------------------- : p{+G  
    if rpowers(1)==0 j. *VJazb;  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); c9kzOQ2n  
        rpowern = cat(2,rpowern{:}); QCH}-q)  
        rpowern = [ones(length_r,1) rpowern]; <&&SX;  
    else FP0G]=ME  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); R+nMy=I%8  
        rpowern = cat(2,rpowern{:}); MZTx:EN!  
    end R)M_|ca  
    )I^2k4Cg"  
    is1's[  
    % Compute the values of the polynomials: }j2Y5  
    % -------------------------------------- a-"k/P#  
    y = zeros(length_r,length(n)); N[<H7_/3  
    for j = 1:length(n) 6`0mta Q  
        s = 0:(n(j)-m_abs(j))/2; Nru7(ag1~  
        pows = n(j):-2:m_abs(j); B|C/ Rk6?  
        for k = length(s):-1:1 sp7*_&'J  
            p = (1-2*mod(s(k),2))* ... MZpK~c1`  
                       prod(2:(n(j)-s(k)))/              ... v1|Bf8  
                       prod(2:s(k))/                     ... ,h{A^[yl  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... N0K){  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); _bzqd" 31I  
            idx = (pows(k)==rpowers); Vs)--t  
            y(:,j) = y(:,j) + p*rpowern(:,idx); S@}1t4Ls:  
        end Iq#ZhAk  
         b{d4xU8'  
        if isnorm kaxvP v1  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); oT{@_U{*J  
        end 2+cNo9f  
    end 1VF    
    % END: Compute the Zernike Polynomials 5aBAr  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Tx 1 vL  
    -*~CV:2iq-  
    3)ma\+< 6  
    % Compute the Zernike functions: op"$E1+  
    % ------------------------------ hY*0aZ|(  
    idx_pos = m>0; zVi15P$  
    idx_neg = m<0; Z1ALq5  
    =\,uy8HX  
    'S<%Xm  
    z = y; j}BHj.YuP  
    if any(idx_pos) +&X%<S W  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ]Ni;w]KE  
    end Nrah;i+H\o  
    if any(idx_neg) !Oj)B1gc6&  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Z2Zq'3*  
    end _TUk(Qe  
    P_gYz!  
    aYn8 ^  
    % EOF zernfun 9'DtaTmGW  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  Jp;k+ "<q  
    &1)xoZ'\  
    DDE还是手动输入的呢? mVm4fHEYwU  
    J\W-dI  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究