下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, dDtFx2(R
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, fSA)G$b]
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? &ZJgQ-Pc(m
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? Q$ZHv_VLx
!gP0ndRJ=
Zb''mf\
z`$J_Cj Y
z.)p
P'CJo
function z = zernfun(n,m,r,theta,nflag) N[U9d}Zv
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. nWWM2v
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N D59T?B|BdD
% and angular frequency M, evaluated at positions (R,THETA) on the ^Jx$t/t
% unit circle. N is a vector of positive integers (including 0), and Ec]|p6a3
% M is a vector with the same number of elements as N. Each element onte&Ed\
% k of M must be a positive integer, with possible values M(k) = -N(k) D>sYPrf
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, hu5!ev2
% and THETA is a vector of angles. R and THETA must have the same orIQ~pF#
% length. The output Z is a matrix with one column for every (N,M) 1 W'F3
% pair, and one row for every (R,THETA) pair. v{;7LXy0
% `UzVS>]l[+
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike .T.5TMiOSq
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), NZXjE$<Vr
% with delta(m,0) the Kronecker delta, is chosen so that the integral GsV4ZZ
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, <@,$hso7:
% and theta=0 to theta=2*pi) is unity. For the non-normalized 7}B
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. E9 Y\X
% UAYd?r
% The Zernike functions are an orthogonal basis on the unit circle. c-CYdi@
% They are used in disciplines such as astronomy, optics, and ;D2E_!N
dt
% optometry to describe functions on a circular domain. WDx
Mo`zT
% '2^
Yw
% The following table lists the first 15 Zernike functions. Fu _@!K
% smU4jh9S
% n m Zernike function Normalization p25Fn`}H
% -------------------------------------------------- TbhH&kG)1
% 0 0 1 1 c^.l2Q!
% 1 1 r * cos(theta) 2 LSd*|3E}n
% 1 -1 r * sin(theta) 2 p1O6+hRio
% 2 -2 r^2 * cos(2*theta) sqrt(6) fA^Em)cs2
% 2 0 (2*r^2 - 1) sqrt(3) ~&VN_;j_
% 2 2 r^2 * sin(2*theta) sqrt(6) 6yIvaY$KR
% 3 -3 r^3 * cos(3*theta) sqrt(8) (36K3=Q a
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) Vk}49O<K/
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 3]LN;s]ac
% 3 3 r^3 * sin(3*theta) sqrt(8) ,Og4
?fS
% 4 -4 r^4 * cos(4*theta) sqrt(10) <$E6oZ
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ZX.TqvK/r
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) BWq/TG=>
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) FY#!N
L
% 4 4 r^4 * sin(4*theta) sqrt(10) )]Ti>R O7
% -------------------------------------------------- =Hu0v}i/
% R>)MiHcCg
% Example 1: Rp.W,)i
% f_6`tq m%
% % Display the Zernike function Z(n=5,m=1) ]]uHM}l
% x = -1:0.01:1; [ygF0-3ND
% [X,Y] = meshgrid(x,x); w2"]Pl
% [theta,r] = cart2pol(X,Y); x:z0EYL
% idx = r<=1; /iM$Tb5
% z = nan(size(X)); <8o(CA\
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 1]OSWCEm*[
% figure ;j}yB
% pcolor(x,x,z), shading interp \,xFg w4
% axis square, colorbar zCe/Kukvy
% title('Zernike function Z_5^1(r,\theta)') }E&NPp>
% ^Udv]Wh
% Example 2: +]!lS7nsW
% Ka-p& Uv1<
% % Display the first 10 Zernike functions Vb4;-?s_
% x = -1:0.01:1; )iLM]m
% [X,Y] = meshgrid(x,x); 4\2V9F{s
% [theta,r] = cart2pol(X,Y); dbF M,"^
% idx = r<=1; _
Jc2&(;
% z = nan(size(X)); vK$^y^
% n = [0 1 1 2 2 2 3 3 3 3]; wD9a#AgEd
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; \C|cp|A*&
% Nplot = [4 10 12 16 18 20 22 24 26 28]; #Ob]]!y
% y = zernfun(n,m,r(idx),theta(idx)); Wk7WK` >i
% figure('Units','normalized') (Wj2?k/]
% for k = 1:10 9K"JYJ
q2
% z(idx) = y(:,k); fC<m^%*zgA
% subplot(4,7,Nplot(k)) v.g"{us
% pcolor(x,x,z), shading interp X"*^l_9-v
% set(gca,'XTick',[],'YTick',[]) F]=B'ZI
% axis square z'MS#6|}
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) F:T GsV#
% end #@//7Bf%
% t&RruwN_;
% See also ZERNPOL, ZERNFUN2. $|<m9CW
k
onoI&kV|
.{so
% Paul Fricker 11/13/2006 +!O-kd
's%q
%'ZN`XftG
VXKT\9g3A
8A2z 5Aa
% Check and prepare the inputs: Ot9V< D6h
% ----------------------------- NGTe4Crx
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) AtHS@p
error('zernfun:NMvectors','N and M must be vectors.') 9){
end La,QB3K/
hnxc`VX>g
l5O=VqCj
if length(n)~=length(m) R}{GwbF_\
error('zernfun:NMlength','N and M must be the same length.') `a4 $lyZ
end +;gsRhWk
@.9I3E-=
^ddO&!U
n = n(:); TSto9$}*
m = m(:); lOerrP6f(
if any(mod(n-m,2)) Pl
error('zernfun:NMmultiplesof2', ... 8vD3=yK%^
'All N and M must differ by multiples of 2 (including 0).') ok0X<MR!I
end TQ'E5^
optBA3@e!
j\2[H^
if any(m>n) 32>x^>G=>
error('zernfun:MlessthanN', ... |E^|X!+9
'Each M must be less than or equal to its corresponding N.') 9([6d.`~
end P Jo
kC$I2[ t!
Ft-6m%
if any( r>1 | r<0 ) C0m\SNR
error('zernfun:Rlessthan1','All R must be between 0 and 1.') BQNp$]5s
end 77aX-e*=E
1f//wk|
3%
vis\~^
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) )%j"
error('zernfun:RTHvector','R and THETA must be vectors.') tOg=zXm
end YoSQN/Z
%z)EO9vtr
uMiyq<
r = r(:); a$}6:E
theta = theta(:); eyB_l.U7
length_r = length(r); nNR:cGfG
if length_r~=length(theta) )f*Iomp]@
error('zernfun:RTHlength', ... dY'Y5Th~
'The number of R- and THETA-values must be equal.') WU\m^!`w=F
end #7W.s!#}Dd
-9&g[
pVG>A&4
% Check normalization: p24.bLr
% -------------------- O
E|+R4M
if nargin==5 && ischar(nflag) O@,i1ha%
isnorm = strcmpi(nflag,'norm'); O),I[kb
if ~isnorm >q9{
error('zernfun:normalization','Unrecognized normalization flag.') JDhwN<0R
end Xb<)LHA~3
else ,nYZxYLf+
isnorm = false; [.3sE
end yq6LH
g:i*O^c@
^
f{qJ[,
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 2"M_sL
% Compute the Zernike Polynomials :,YLx9i>
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% r@|ZlM@O
d*9j77C ]
@:gl:mc
% Determine the required powers of r: 065A?KyD
% ----------------------------------- 9 z*(8d
m_abs = abs(m); <^sAY P|
rpowers = []; B;c=eMw
for j = 1:length(n) jt%WPkY:
rpowers = [rpowers m_abs(j):2:n(j)];
p
JX, n
end Xz* tbW#
rpowers = unique(rpowers); |"\lL9CT
8b~7~VCk
Y3M','H([
% Pre-compute the values of r raised to the required powers, 2'dG7lLu4
% and compile them in a matrix: mxhW|}_-j
% ----------------------------- AeQC:
if rpowers(1)==0 /cY[at|p
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Te}IMi:
rpowern = cat(2,rpowern{:}); MM*-i=
rpowern = [ones(length_r,1) rpowern]; gTD%4V
else YiNo#M91
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); vGyppm[0
rpowern = cat(2,rpowern{:}); Tvrc%L(]
end c}\
d5R_L
%w@ig~vD'
;]u1~
% Compute the values of the polynomials: L]NYYP-
% -------------------------------------- qL~Pjr>cF
y = zeros(length_r,length(n)); ?a8nz, zb
for j = 1:length(n) qKx59
s = 0:(n(j)-m_abs(j))/2; !g/_w
pows = n(j):-2:m_abs(j); !$XO
U'n
for k = length(s):-1:1 GiFf0c
9
p = (1-2*mod(s(k),2))* ... dr>]+H=3E
prod(2:(n(j)-s(k)))/ ... <H_LFrB$W
prod(2:s(k))/ ... EKJH_!%
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... C7T;;1P?
prod(2:((n(j)+m_abs(j))/2-s(k))); A1 b6Zt
idx = (pows(k)==rpowers); A7e_w
7?a
y(:,j) = y(:,j) + p*rpowern(:,idx); p+5#dbyr
end @OrXbG7&>#
BiI{8`M!$x
if isnorm &U854
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); -ca]Q|m 8
end k0=|10bi
end eb(m8vLR
% END: Compute the Zernike Polynomials ap{{(y&R
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% [)bz6\d[
bsD'\
s}<)BRZi
% Compute the Zernike functions: 0n7HkDo
% ------------------------------ c|3h|
idx_pos = m>0; 5auL<Pq
idx_neg = m<0; ?|gGsm+
$)Jc-V
6E
}.w#X
z = y; ^JiaR)#r
if any(idx_pos) EgCp:L{
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); mp muziH
end _TV2)
if any(idx_neg) pC55Ec<
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); m]
EDuW
end t>m8iS>
`W
D*Q-&n
deHY8x5uI
% EOF zernfun o&*1U"6D