切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9459阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, y<gYf -E+  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, +~v3D^L15  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? 4s+J-l  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? 5eZg+ O  
    2%No>w}/2  
    n4 6PQm%p  
    (>@syF%PB  
    Z ysUz  
    function z = zernfun(n,m,r,theta,nflag) )LS+M_  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. :."n@sA@  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 5a/ A_..+I  
    %   and angular frequency M, evaluated at positions (R,THETA) on the uq1(yyWp(  
    %   unit circle.  N is a vector of positive integers (including 0), and ]oZ,{Q5~  
    %   M is a vector with the same number of elements as N.  Each element 8 ~L.6c5U  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) g he=mQ-  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, +^% &8<  
    %   and THETA is a vector of angles.  R and THETA must have the same gT\y&   
    %   length.  The output Z is a matrix with one column for every (N,M) E9+O\"e9  
    %   pair, and one row for every (R,THETA) pair. T>:g ME  
    % y0y;1N'KK  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 0 6v5/Xf  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), yl;$#aZB  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral )T~ +>+t  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, MxvxY,~{0  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized  ! 6i  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. '~x_  
    % TKs@?Q,J  
    %   The Zernike functions are an orthogonal basis on the unit circle. ^eT>R,aB  
    %   They are used in disciplines such as astronomy, optics, and m_O=X8uj"D  
    %   optometry to describe functions on a circular domain. 1*`JcUn,>  
    % ,IX4Zo"a  
    %   The following table lists the first 15 Zernike functions. t6>Q e  
    % RgzSaP;;  
    %       n    m    Zernike function           Normalization oDiv9 jm  
    %       -------------------------------------------------- Spw=+z<<Ub  
    %       0    0    1                                 1 VlXy&oZ  
    %       1    1    r * cos(theta)                    2 dCJR,},\f  
    %       1   -1    r * sin(theta)                    2 w5JC2   
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) Qmh(+-Mp(  
    %       2    0    (2*r^2 - 1)                    sqrt(3) vWfef~}~  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) lSsFI30  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 9(gOk  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 5T@'2)BI=  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) */h 9"B  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 'C4Ll2  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) thboHPml{  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) *[/Xhx"  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) H" g&  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 8Nq Iz  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) Am^O{`r41  
    %       -------------------------------------------------- H;8]GE2n  
    % OMC|.[  
    %   Example 1: K`83C`w.  
    % 1|$Rzt%ge  
    %       % Display the Zernike function Z(n=5,m=1) RloPP  
    %       x = -1:0.01:1; AS-t][m#  
    %       [X,Y] = meshgrid(x,x); tg`!svL!  
    %       [theta,r] = cart2pol(X,Y); %cif0Td  
    %       idx = r<=1; G:s:NXy^  
    %       z = nan(size(X)); ?'_7#0R_0  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); *LQY6=H  
    %       figure |>V>6%>vK6  
    %       pcolor(x,x,z), shading interp 4sgwQ$m)  
    %       axis square, colorbar w)>z3L m  
    %       title('Zernike function Z_5^1(r,\theta)') D`ge3f8Wi  
    % 2Ab#uPBn  
    %   Example 2: gMMd=  
    % !d@`r1t  
    %       % Display the first 10 Zernike functions 8$olP:d  
    %       x = -1:0.01:1; %*; 8m'  
    %       [X,Y] = meshgrid(x,x); 3@bjIX`=H  
    %       [theta,r] = cart2pol(X,Y); s+~Slgl  
    %       idx = r<=1; KPcuGJ  
    %       z = nan(size(X)); W{/z-&  
    %       n = [0  1  1  2  2  2  3  3  3  3]; cCCplL  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; r1?FH2Ns  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; ;5_S  
    %       y = zernfun(n,m,r(idx),theta(idx)); q%&7J<   
    %       figure('Units','normalized') K:Go%3~,  
    %       for k = 1:10 lfG's'U-z  
    %           z(idx) = y(:,k); #IwB  
    %           subplot(4,7,Nplot(k)) &;3z 1s/  
    %           pcolor(x,x,z), shading interp 6b)UoJxj  
    %           set(gca,'XTick',[],'YTick',[]) ZKL%rp_  
    %           axis square [\F,\  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) *<j@+Ch  
    %       end JNl+UH:.  
    % ;z=C]kI6M  
    %   See also ZERNPOL, ZERNFUN2. A^pp'{ !.  
    xT8"+}  
    J8Db AB4X  
    %   Paul Fricker 11/13/2006 Kn\(Xd.>  
    J>PV{N  
    ,99G2E v4c  
    m%\[1|N  
    1dO8[5uM7a  
    % Check and prepare the inputs: B K;w!]  
    % ----------------------------- ]}l!L;  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ?8m/]P/~  
        error('zernfun:NMvectors','N and M must be vectors.') _x{x#d;L3  
    end jG :R\D}0  
    m~B=C>r}t  
    =*U24B*U93  
    if length(n)~=length(m) cyE2=  
        error('zernfun:NMlength','N and M must be the same length.') __c_JU  
    end g_X7@Dt  
    r8.v0b"1  
    Bb `^,?m  
    n = n(:); DV" ri  
    m = m(:); ^)pY2t<^  
    if any(mod(n-m,2)) A 6L}5#7-  
        error('zernfun:NMmultiplesof2', ... (Mh\!rMg  
              'All N and M must differ by multiples of 2 (including 0).') #"JU39e  
    end ~MO C r  
    N8vl< Mq  
    ,oe{@ z{*@  
    if any(m>n) C%>7mz-v5  
        error('zernfun:MlessthanN', ... b4ivWb|`  
              'Each M must be less than or equal to its corresponding N.') ^*Fkt(ida  
    end dp+Y?ufr  
    mio'm  
    7:%K-LeaQu  
    if any( r>1 | r<0 ) Hd`RR3J  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') (?[cDw/{J:  
    end <H/H@xQ8G  
    Hyg?as>}u  
    -;*Z!|e9  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) !Ua#smZ  
        error('zernfun:RTHvector','R and THETA must be vectors.') F o6U "  
    end 78-:hk  
    0iHI "9z  
    {IvCe0`  
    r = r(:); Wg1WY}zG  
    theta = theta(:); opC11c/  
    length_r = length(r); NM Ajt>t  
    if length_r~=length(theta) 91XHz14  
        error('zernfun:RTHlength', ... 9Ba<'wk/>"  
              'The number of R- and THETA-values must be equal.') Z}wAh|N-  
    end !c7Od )]  
    mUbaR  
    bJD"&h5  
    % Check normalization: 5EUkp6Y  
    % -------------------- AF-.Nwp   
    if nargin==5 && ischar(nflag) [PT_y3'%  
        isnorm = strcmpi(nflag,'norm'); ijB,Q>TgO  
        if ~isnorm yw0uF  
            error('zernfun:normalization','Unrecognized normalization flag.') aRmS{X3  
        end =l+p nG  
    else @C2<AmY9q*  
        isnorm = false; W>y_q  
    end .y!Hw{cq  
    b4wJnmC8  
    iC]}M  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Su7?-vY  
    % Compute the Zernike Polynomials .8m)^ET  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% "$&F]0  
    T Bco  
    ^5+-7+-S  
    % Determine the required powers of r: T9^i#8-^  
    % ----------------------------------- ')+EW" e  
    m_abs = abs(m); ?8 F7BS4oQ  
    rpowers = []; mx yT==E  
    for j = 1:length(n) 1"k@O)?JP  
        rpowers = [rpowers m_abs(j):2:n(j)]; oCrn  
    end r4sR5p]|  
    rpowers = unique(rpowers); *)1,W+A5L  
    k <qQ+\X  
    ^:#%TCJ  
    % Pre-compute the values of r raised to the required powers, ol\IT9Zb~  
    % and compile them in a matrix: .H&;pOf  
    % ----------------------------- LtQy(F%8/  
    if rpowers(1)==0 O\w%E@9Fh  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); `@&qf}`  
        rpowern = cat(2,rpowern{:}); wK_}`6R/  
        rpowern = [ones(length_r,1) rpowern]; P<hqr;  
    else K02./ut-  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); /iK )tl|X  
        rpowern = cat(2,rpowern{:}); yBoZ@9Do  
    end ;,1i,?  
    +uA<g`4  
    pV!(#45~W  
    % Compute the values of the polynomials: 0[];c$r<  
    % -------------------------------------- BSz\9 eT  
    y = zeros(length_r,length(n)); +*dJddz   
    for j = 1:length(n) :97`IV%  
        s = 0:(n(j)-m_abs(j))/2; K6X1a7  
        pows = n(j):-2:m_abs(j); }?JO[Q +  
        for k = length(s):-1:1 -4]6tt'G  
            p = (1-2*mod(s(k),2))* ... tL~|/C)d R  
                       prod(2:(n(j)-s(k)))/              ... r\] WDX!`  
                       prod(2:s(k))/                     ... JTC&_6  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ihnM`TpMJ  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); BhKxI  
            idx = (pows(k)==rpowers); %>.v[d1c  
            y(:,j) = y(:,j) + p*rpowern(:,idx); s|%</fMt9  
        end "_`~9qDy  
         X[w9~t$\  
        if isnorm ZFzOW  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); QWoEo  
        end <L-L}\-I"  
    end P'K')]D=!  
    % END: Compute the Zernike Polynomials _,}Ye,(^=  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% nRGH58  
    $Z j.  
    s)V^_@Z 9  
    % Compute the Zernike functions: &ke4":7X  
    % ------------------------------ vV|egmw01  
    idx_pos = m>0; c"~TH.,d  
    idx_neg = m<0; *<@  
    J 4gIkZD  
    *+IUGR  
    z = y; ]?r8^LyZ4  
    if any(idx_pos) l|K8+5L  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ei5S<n  
    end Q6BW ax|  
    if any(idx_neg) >Cf`F{X' U  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); %%_90t  
    end arB$&s  
    SXT/9FteZ  
    2Zm*f2$xM  
    % EOF zernfun S `[8TZ  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  =Dz[|$dV  
    8%"e-chd  
    DDE还是手动输入的呢? w7C=R8^  
    v+OVZDf  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究