切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9210阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, A+69_?B TH  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, IO/2iSbW  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? 12~zS  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? x4pl#~Su  
    M4XnuFGB[w  
    %XMrS lSOp  
    ~*ZB2  
    Y<#WC#3=  
    function z = zernfun(n,m,r,theta,nflag) ]tanvJG}'  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. s{2BG9s  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 5tX|@Z: z  
    %   and angular frequency M, evaluated at positions (R,THETA) on the /RT3 r  
    %   unit circle.  N is a vector of positive integers (including 0), and iKu[j)F  
    %   M is a vector with the same number of elements as N.  Each element 68kxw1xY  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 5^t68 WOl  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, /Tv=BXL-  
    %   and THETA is a vector of angles.  R and THETA must have the same <=/v%VXPm  
    %   length.  The output Z is a matrix with one column for every (N,M) &$.Vi&{.  
    %   pair, and one row for every (R,THETA) pair. 3o%JJIn&  
    % jW}n6w5  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike p)(mF"\8=  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), KN'l/9.  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral `Yn^ -W  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, )Mx[;IwE  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized n6ETWjP  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. HIcx "y  
    % >&f .^p  
    %   The Zernike functions are an orthogonal basis on the unit circle. \O/EY&  
    %   They are used in disciplines such as astronomy, optics, and L~cswG'K  
    %   optometry to describe functions on a circular domain. pv~XZ(J.1  
    % NDm@\<MIzB  
    %   The following table lists the first 15 Zernike functions. SXSH9;j  
    % /tikLJ  
    %       n    m    Zernike function           Normalization OY*BVJ^  
    %       -------------------------------------------------- @] 1E~  
    %       0    0    1                                 1 Is` S  
    %       1    1    r * cos(theta)                    2 i,NN"  
    %       1   -1    r * sin(theta)                    2 %np b.C|+  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) jJg9M'@2!  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 0NK]u~T<  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) :c"J$wT/  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) c=<d99Cu!  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) J*F-tRuEw  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) m0t 5oO  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) yb1A(~  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) RXkE"H{  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) /7De .O~H  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) %;(+s7  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) F=kD/GCB  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) !!E_WDZ#9  
    %       -------------------------------------------------- f(=yC} si  
    % M@UkXA}  
    %   Example 1: ^QTl (L  
    % 'D#}ce)s#  
    %       % Display the Zernike function Z(n=5,m=1) 0I* ^VGZ  
    %       x = -1:0.01:1; #.?DsK_:@  
    %       [X,Y] = meshgrid(x,x); H6 ( ~6Bp5  
    %       [theta,r] = cart2pol(X,Y); '\H{Y[  
    %       idx = r<=1; ?u` ?_us  
    %       z = nan(size(X)); lb2mWsg"  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); ,G S8Gu  
    %       figure Ne,7[k  
    %       pcolor(x,x,z), shading interp _j-k*:  
    %       axis square, colorbar }UMg ph:2:  
    %       title('Zernike function Z_5^1(r,\theta)') J\b,rOIf  
    % 7qt<C LJ  
    %   Example 2:  %1<No/  
    % ?q1&(g]qO  
    %       % Display the first 10 Zernike functions HuBG?4Qd  
    %       x = -1:0.01:1; Na=9 ju  
    %       [X,Y] = meshgrid(x,x); L.$9ernVY  
    %       [theta,r] = cart2pol(X,Y); {g@Wd2-J}  
    %       idx = r<=1; 8Y3c,p/gS>  
    %       z = nan(size(X)); EC&t+"=R  
    %       n = [0  1  1  2  2  2  3  3  3  3]; fu}NH \{  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; a8rsF  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; Bs =V-0  
    %       y = zernfun(n,m,r(idx),theta(idx)); 1el?f>  
    %       figure('Units','normalized') LTG#nM0  
    %       for k = 1:10 GeWB"(t  
    %           z(idx) = y(:,k); >~_y\  
    %           subplot(4,7,Nplot(k)) 9E)*X  
    %           pcolor(x,x,z), shading interp N{46DS  
    %           set(gca,'XTick',[],'YTick',[]) }>b4s!k,  
    %           axis square d%Jl9!u  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ^LaI{UDw%h  
    %       end 'Sppm;?  
    % I: U/%cr,  
    %   See also ZERNPOL, ZERNFUN2. HAEgR  
    x=Qy{eIe  
    \)eHf 7H  
    %   Paul Fricker 11/13/2006 e'[T5HI  
    -Cd4yWkO  
    oF,XSd  
    EXH{3E54)`  
    &{9'ylv-B)  
    % Check and prepare the inputs: #HWz.Wb  
    % ----------------------------- W:O<9ZbQ_  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) QG?7L_I  
        error('zernfun:NMvectors','N and M must be vectors.') DalQ.   
    end Jy@cMq2  
    >/;\{IG Wn  
    5'@J}7h  
    if length(n)~=length(m) /|t vGC.#  
        error('zernfun:NMlength','N and M must be the same length.') >"jV8%!sM  
    end au9r)]p-  
    yT`[9u,  
    %eT4Q~}5"  
    n = n(:); 4A^hP![c#]  
    m = m(:); T~cq=i|O  
    if any(mod(n-m,2)) z@>z.d4  
        error('zernfun:NMmultiplesof2', ... 7J~6J .m  
              'All N and M must differ by multiples of 2 (including 0).') .{k(4_Q?I  
    end UBOCd[  
    }oYR.UH  
    s=(~/p#M  
    if any(m>n) %}%D8-d}G  
        error('zernfun:MlessthanN', ... 33J}AK^FE  
              'Each M must be less than or equal to its corresponding N.') Fe.Y4\xz  
    end >C+0LF`U  
    yiQke   
    K~<pD:s  
    if any( r>1 | r<0 ) Qc;`n ck  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') _DMj )enH"  
    end P{)H7B>  
    SW (7!`  
    7IBm(#  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ,r{*o6  
        error('zernfun:RTHvector','R and THETA must be vectors.') r=n|MT^O  
    end %2^C  
    K_{x y#H  
    E87/B%R  
    r = r(:); g,Kb9['  
    theta = theta(:); ?*u)T%S  
    length_r = length(r); EhEn|%S  
    if length_r~=length(theta) ~53E)ilB  
        error('zernfun:RTHlength', ... WEqHL,Uh]  
              'The number of R- and THETA-values must be equal.') #I%< 1c%XA  
    end (6u<w#u  
    G(JvAe]r  
    .!KlN%As  
    % Check normalization: }E]`ly<Z  
    % -------------------- $Bz|[=  
    if nargin==5 && ischar(nflag) nuw90=qj!]  
        isnorm = strcmpi(nflag,'norm'); (Ew o   
        if ~isnorm rr3NY$W  
            error('zernfun:normalization','Unrecognized normalization flag.') -}{\C]%  
        end \9Itu(<f  
    else -2v|d]3qG  
        isnorm = false; ijr*_=  
    end 4@5rR~DQq  
    wz.Il-sm  
    PdMx6 Ab  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% vMzR3@4e  
    % Compute the Zernike Polynomials fB1JU1  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% on*?O O'  
    TmKO/N@}  
    jt"p Js'  
    % Determine the required powers of r: dLD"Cx  
    % ----------------------------------- 4dMwJ"V  
    m_abs = abs(m); @MtF^y  
    rpowers = []; L]9!-E  
    for j = 1:length(n) 5Ag]1k{  
        rpowers = [rpowers m_abs(j):2:n(j)]; H4k`wWOk  
    end uP|AP  
    rpowers = unique(rpowers); VOG DD@  
    TT .EQv5  
    O~{Zs\u9  
    % Pre-compute the values of r raised to the required powers, )#ic"UtR  
    % and compile them in a matrix: G8QJM0VpS  
    % ----------------------------- L$ ]D&f8:  
    if rpowers(1)==0 /Ia=/Jj7N  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); @ )<uQ S  
        rpowern = cat(2,rpowern{:}); s]L`&fY]O  
        rpowern = [ones(length_r,1) rpowern]; 5tP0dQYd  
    else xw%?R=&L  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); rM[Ps=5  
        rpowern = cat(2,rpowern{:}); *2 MUG h  
    end \5s!lv*&  
    b44H2A .  
    o"Ef>5N  
    % Compute the values of the polynomials: Lrq+0dI 65  
    % -------------------------------------- 8k_,Hni  
    y = zeros(length_r,length(n)); 4DuZF -y  
    for j = 1:length(n) "kP.Kx!  
        s = 0:(n(j)-m_abs(j))/2; e6s L N  
        pows = n(j):-2:m_abs(j); YvBUx#\  
        for k = length(s):-1:1 Ma-^o<{  
            p = (1-2*mod(s(k),2))* ... 'G-VhvM v  
                       prod(2:(n(j)-s(k)))/              ... )KXLL;]  
                       prod(2:s(k))/                     ... Pl1:d{"d  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 1)u= &t,  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); {:6VJ0s\  
            idx = (pows(k)==rpowers); .4_ ~ku  
            y(:,j) = y(:,j) + p*rpowern(:,idx); VrF]X#\)  
        end jq.@<<j|$  
         ]d$)G4X 1  
        if isnorm YLPiK  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); $23="Jcl  
        end c0Q`S"o+  
    end ucoBeNsHx  
    % END: Compute the Zernike Polynomials C,tlp  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Aba6/  
    "ajZ&{Z  
    #\`6ZHW  
    % Compute the Zernike functions: Yv"uIj+']  
    % ------------------------------ Lb2Bu>  
    idx_pos = m>0; Z]9 )1&  
    idx_neg = m<0; v]VIUVd  
    }E?s*iP  
    (6 0,0|s  
    z = y; OEB_LI'  
    if any(idx_pos) %}j/G l5  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); i]Kq  
    end  sGdt)  
    if any(idx_neg) LgBs<2  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 3kKXzIh  
    end oWXvkDN   
    L0+@{GP?  
    {_k 6t  
    % EOF zernfun \BJnJk!%  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  ~":?})  
    L! Q&?xP  
    DDE还是手动输入的呢? (5'qEi ea  
    x{&Z|D_CM  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究