下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, 1 sCF
-r
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, }#@P+T:b
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? kKVq,41'
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? Py 8o8* H
di6A.N5A
Z2B59,I
(mHFyEG
2vKnxK+ 5
function z = zernfun(n,m,r,theta,nflag) T8YqCT"EA<
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. AX8;x1t^.
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Uc
e#v)
% and angular frequency M, evaluated at positions (R,THETA) on the 0-Xpq,0
% unit circle. N is a vector of positive integers (including 0), and avls[Bq
% M is a vector with the same number of elements as N. Each element <R~(6krJwZ
% k of M must be a positive integer, with possible values M(k) = -N(k) $Vp&Vc8
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, Ks09F}
% and THETA is a vector of angles. R and THETA must have the same zqYfgV
% length. The output Z is a matrix with one column for every (N,M) ?|^1-5l3
% pair, and one row for every (R,THETA) pair. xtU)3I=F%
% Bd m<<<
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike {U=za1Ga
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ?"AcK"v
% with delta(m,0) the Kronecker delta, is chosen so that the integral D8W:mAGEu
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 4BuS?
#_
% and theta=0 to theta=2*pi) is unity. For the non-normalized xPqpNs-,
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. =fBJQK2sk
% >FHTBh& Y
% The Zernike functions are an orthogonal basis on the unit circle. Fw:s3ON9}
% They are used in disciplines such as astronomy, optics, and Uy ;oJY
% optometry to describe functions on a circular domain. oTOe(5N8a
% `Pl=%DR
% The following table lists the first 15 Zernike functions. >C_! }~
% !0`ZK-nA6
% n m Zernike function Normalization I?-9%4 8iM
% -------------------------------------------------- wlKpHd*
% 0 0 1 1 Iu0K#.s_
% 1 1 r * cos(theta) 2 0e8)*2S
% 1 -1 r * sin(theta) 2 x#dJH9NR[
% 2 -2 r^2 * cos(2*theta) sqrt(6) hUGIy(
% 2 0 (2*r^2 - 1) sqrt(3) Jb $PlOQ
% 2 2 r^2 * sin(2*theta) sqrt(6) @c$mc
% 3 -3 r^3 * cos(3*theta) sqrt(8) zGZe|-
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) J+?xfg
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) e~rBV+f
% 3 3 r^3 * sin(3*theta) sqrt(8) scL7PxJ5
% 4 -4 r^4 * cos(4*theta) sqrt(10) N!RyncJ
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 40%p
lNPj
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) k1-?2kf"{
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 2%vwC]A
% 4 4 r^4 * sin(4*theta) sqrt(10) 9FV#@uA}D
% -------------------------------------------------- w/G5I )G
% pS%,wjb&P
% Example 1: 4KybN
% |hp_X>Uv'
% % Display the Zernike function Z(n=5,m=1) ;5y4v
% x = -1:0.01:1; -oF4mi8S
% [X,Y] = meshgrid(x,x); 0?,EteR
% [theta,r] = cart2pol(X,Y); `34[w=Zm
% idx = r<=1; =#%e'\)a
% z = nan(size(X)); _Zf1=&U#/
% z(idx) = zernfun(5,1,r(idx),theta(idx)); "P<~bw5
% figure o}WbW }&
% pcolor(x,x,z), shading interp ew?UHV
% axis square, colorbar k~=-o>}C
% title('Zernike function Z_5^1(r,\theta)') x6Z$lhZ
% ]iLfe&f
% Example 2: Vg[U4,
% {AIZ,
% % Display the first 10 Zernike functions (nda!^f_s
% x = -1:0.01:1; (2qo9j"j/Y
% [X,Y] = meshgrid(x,x);
mH?^3T
% [theta,r] = cart2pol(X,Y); o'Tqqrr
% idx = r<=1; 5+3Z?|b
% z = nan(size(X)); B u4N~0
% n = [0 1 1 2 2 2 3 3 3 3]; \UB<'~z6!
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 4TR:bQZs
% Nplot = [4 10 12 16 18 20 22 24 26 28]; }3[ [ONA
% y = zernfun(n,m,r(idx),theta(idx)); (Z `Y
% figure('Units','normalized') 3'&]v6|
% for k = 1:10 Ti' GSL
% z(idx) = y(:,k); O~aS&g/sf
% subplot(4,7,Nplot(k)) QG9 2^
% pcolor(x,x,z), shading interp $ /wr?
% set(gca,'XTick',[],'YTick',[]) dwx1EdJ{
% axis square 3U:0 ,-j"
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) R!$j_H
% end NpRC3^
% 3*arW|Xm
% See also ZERNPOL, ZERNFUN2. U}Hmzb
OH=Ffy F,
VJr?`
eY4
% Paul Fricker 11/13/2006 23+GX&Rp
.-Ao%A W
CB|z{(&N
_&w!JzpXT
(4c<0<"$
% Check and prepare the inputs: >/'WU79TYE
% ----------------------------- 'mmyzsQ\6
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) g?@(+\W
error('zernfun:NMvectors','N and M must be vectors.') <,cD EN7
end , H[o.r=
)(!vd!p5
jJ?3z,h
if length(n)~=length(m) VNytK_F0P
error('zernfun:NMlength','N and M must be the same length.') hUlFP
end /-4%ug tD$
&$+yXN
O9>/WmLe
n = n(:); 9CL&tpqv
f
m = m(:); Tp0Tce/
if any(mod(n-m,2)) kF\QO
[
error('zernfun:NMmultiplesof2', ... oEi+S)_
'All N and M must differ by multiples of 2 (including 0).') ]q?<fEG2<
end cCj}{=U
,e,fOL
8o4
vA,
if any(m>n) u(REEc~nj
error('zernfun:MlessthanN', ... MOOL=Um3
'Each M must be less than or equal to its corresponding N.') >)VrbPRuA
end mY%PG
Pp.X Du
v4S|&m
if any( r>1 | r<0 ) >eU;lru2Q
error('zernfun:Rlessthan1','All R must be between 0 and 1.') ex29rL3
end Ii,L6c
lR-4"/1|y
W~7q&||;C
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) e
j`lY
error('zernfun:RTHvector','R and THETA must be vectors.') Ig9$ PP+3
end k'u2a
b8`O7@ar
fd)}I23Q'
r = r(:); ;xj^*b
theta = theta(:); |:EUh
length_r = length(r); X#Hs{J~@p
if length_r~=length(theta) $%!]tNGS
error('zernfun:RTHlength', ... 2j_L
jY'7
'The number of R- and THETA-values must be equal.') z1YC%Y|R
end ZB%7Sr0
p_mP'
cZHlW|$R
% Check normalization: GadD*psD2
% -------------------- <K2 )v~
if nargin==5 && ischar(nflag) #%E~IA%
isnorm = strcmpi(nflag,'norm'); Q4Cw{2r
if ~isnorm *d)B4qG
error('zernfun:normalization','Unrecognized normalization flag.') WMYvE\"
end 3:76x
else DuCq16'0T
isnorm = false; 1o.]"~0:
end /)v X|qtIY
RJSNniYr7
JZai{0se
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |qZ4h7wL
% Compute the Zernike Polynomials <.:B .k
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% jg 2>=}
n.Ekpq\
&:Raf5G-E
% Determine the required powers of r: J/)Q{*`_
% -----------------------------------
1vQ*Br
m_abs = abs(m); ,.DU)Wi?}
rpowers = []; t*n!kXa
for j = 1:length(n) Wny{qj)=
rpowers = [rpowers m_abs(j):2:n(j)]; V<(cW'zA/
end Z(CzU{7c
rpowers = unique(rpowers); ?L7z\b"_~
Vbz$dpT
5J1,Usm
% Pre-compute the values of r raised to the required powers, esFBWJ
% and compile them in a matrix: "-\I?k
% ----------------------------- QL
if rpowers(1)==0 0urQA_JC
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); `43E-'g
rpowern = cat(2,rpowern{:}); z,$^|'pP
rpowern = [ones(length_r,1) rpowern]; $1/yc#w
u
else _PQQ&e)E
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 7)<&,BWc
rpowern = cat(2,rpowern{:}); !~PV\DQN
end [&"`2n
lP0'Zg(
dd_n|x1
% Compute the values of the polynomials: FzW7MW>\x
% -------------------------------------- bm`x
y = zeros(length_r,length(n)); )g+~"&Gcx
for j = 1:length(n) G4]T
s = 0:(n(j)-m_abs(j))/2; qK,rT*5=
pows = n(j):-2:m_abs(j); yP6^&'I+
for k = length(s):-1:1 CO-9-sQx
p = (1-2*mod(s(k),2))* ... #8rLB(
prod(2:(n(j)-s(k)))/ ... -I'#G D>
prod(2:s(k))/ ... UJ
n3sZ<}
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... J?LetyDNr]
prod(2:((n(j)+m_abs(j))/2-s(k))); p~BEz?e
idx = (pows(k)==rpowers); z'j4^Xz?%$
y(:,j) = y(:,j) + p*rpowern(:,idx); N-y[2]J90
end !CY:XQm
9J$N5
if isnorm sA#}0>`3S
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); <0T|RhbY
end =g
UOHH
end 0EKi?vP@y7
% END: Compute the Zernike Polynomials #8i DM5:EQ
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #;z;8q
$mgW|TBXCQ
GO2mccIB
% Compute the Zernike functions: xG/B$DLn
% ------------------------------ +<a-;e{
idx_pos = m>0; pE,2pT2>
idx_neg = m<0;
kc-=5l
#p*D.We
-U.>K,M
z = y; Qzt'ZK
if any(idx_pos) )[+82~F
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); L
4V,y>
end ?(0=+o(`
if any(idx_neg) S6Y2(qdP
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); aS=-9P;v
end [MhKR }a
\|&KD
Ra)wlIx
% EOF zernfun ^m~&2l\N=