切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9385阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, M('cG  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, %.R_[.W  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? -ijQT B  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? ]-aeoa#  
    $|YIr7?R  
    uOrvmb  
    bMD'teJ  
    5i$~1ZC  
    function z = zernfun(n,m,r,theta,nflag) g~@0p7]Y  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 5yQv(<~*G  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N SS;QPWRZ  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ?s5zTT0U>$  
    %   unit circle.  N is a vector of positive integers (including 0), and FZ/l T-"  
    %   M is a vector with the same number of elements as N.  Each element <nj[=C4v  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) Sn/~R|3XA7  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, $E4W{ad2jW  
    %   and THETA is a vector of angles.  R and THETA must have the same QW f)5S  
    %   length.  The output Z is a matrix with one column for every (N,M) 0\jOg  
    %   pair, and one row for every (R,THETA) pair. Tf"DpA!_  
    % L&'0d$Tg8  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 0 n,5"B  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ys;e2xekg  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral K0\a+6kh  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, %1]2+_6  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized O`dob&C  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Co19^g*  
    % N)h>Ie  
    %   The Zernike functions are an orthogonal basis on the unit circle. =3oz74O[  
    %   They are used in disciplines such as astronomy, optics, and C<fNIc~.  
    %   optometry to describe functions on a circular domain. K. R2)o`  
    % +c\s%Gzrh  
    %   The following table lists the first 15 Zernike functions. @U:T}5)wc  
    % lrh6lt)  
    %       n    m    Zernike function           Normalization 3_T'TzQ u  
    %       -------------------------------------------------- 4ij`   
    %       0    0    1                                 1 #Y}Hh7.<  
    %       1    1    r * cos(theta)                    2 [NvEX Td  
    %       1   -1    r * sin(theta)                    2 =O)JPo&iwY  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) {zUc*9  
    %       2    0    (2*r^2 - 1)                    sqrt(3) i&>,aiH@  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) #fGb M!3p  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ^l^_K)tw*  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) #G.3a]p}"  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) oJ8_hk<Va8  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) D-3/?"n  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) !Y]}& pUP  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) fsjA7)/  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) y=vH8D]%X  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) YC=BP5^  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) ;*W]]4fy  
    %       -------------------------------------------------- qW7"qw=   
    % 4&ea*w  
    %   Example 1: aG}9Z8D  
    % pN0c'COy^  
    %       % Display the Zernike function Z(n=5,m=1) &"tce6&  
    %       x = -1:0.01:1; a LmVOL{  
    %       [X,Y] = meshgrid(x,x); mZ;yk(  
    %       [theta,r] = cart2pol(X,Y); I9F[b#'Pn  
    %       idx = r<=1; G<jpJ  
    %       z = nan(size(X)); ,uKvE`H  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); N0vd>b  
    %       figure E;4Ns  
    %       pcolor(x,x,z), shading interp b7AuKY{L  
    %       axis square, colorbar U*&ZQw  
    %       title('Zernike function Z_5^1(r,\theta)') 50DPzn  
    % 4(aesZ8h  
    %   Example 2: K%=n \ Y  
    % lIFt/  
    %       % Display the first 10 Zernike functions Ab2g),;c  
    %       x = -1:0.01:1; uAvs  
    %       [X,Y] = meshgrid(x,x); =|U2 }U;  
    %       [theta,r] = cart2pol(X,Y); ZHC sv]l  
    %       idx = r<=1; k@8#Byl|  
    %       z = nan(size(X)); 3yKI2en"  
    %       n = [0  1  1  2  2  2  3  3  3  3]; 9uS7G*  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; ooZ-T>$  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; owMH  
    %       y = zernfun(n,m,r(idx),theta(idx)); <,E*,&0W  
    %       figure('Units','normalized') ,#wVqBEk  
    %       for k = 1:10 YQ]H3GA  
    %           z(idx) = y(:,k); s3+O=5  
    %           subplot(4,7,Nplot(k)) {-Y_8@&  
    %           pcolor(x,x,z), shading interp <;6])  
    %           set(gca,'XTick',[],'YTick',[]) L\Jl'r|  
    %           axis square r0 X2cc  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) QhGg^h%6  
    %       end HQ s)T  
    % *(vq-IE\$  
    %   See also ZERNPOL, ZERNFUN2. `>sqP aD  
    9#iDrZW  
    42wcpSp  
    %   Paul Fricker 11/13/2006 hL`zV  
    ]Qu12Wg}P  
    H*\[:tPa  
    oX}n"5o:  
    EORRSP,$2  
    % Check and prepare the inputs: aydal 9M  
    % ----------------------------- NdNfai  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) s{k\1 P(G}  
        error('zernfun:NMvectors','N and M must be vectors.') I)Lb"  
    end  wi9|  
    'QS"4EvdD  
    ? w?k-v  
    if length(n)~=length(m) [*vN`AfE  
        error('zernfun:NMlength','N and M must be the same length.') Pu^~]^W)  
    end *(`.h\+  
    iCK$ o_`?  
    &tgvE6/V  
    n = n(:); f oVD+\~Y  
    m = m(:); ^97ZH)Ww  
    if any(mod(n-m,2)) jkP70Is  
        error('zernfun:NMmultiplesof2', ... 3E ZwF  
              'All N and M must differ by multiples of 2 (including 0).') _B1uE2j9  
    end +wUhB\F *  
    Dy@ \!F  
    V`M,d~:Pr"  
    if any(m>n) Q#Y3%WF  
        error('zernfun:MlessthanN', ... ->hxHr`!%a  
              'Each M must be less than or equal to its corresponding N.') .cF$f4>2  
    end cx,A.Lc  
    Zd(d]M_x  
    S1zw'!O5  
    if any( r>1 | r<0 ) :'dc=C  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') M([H\^\:  
    end I.u,f:Fl'  
    YgiGI <U  
    lkZC?--H  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) oPy zk7{  
        error('zernfun:RTHvector','R and THETA must be vectors.') 8@aS9 th$  
    end 4) 3pa*  
    v,+l xY  
    48g^~{T4O  
    r = r(:); 7h]R{_  
    theta = theta(:); 'r n;|K  
    length_r = length(r); \r%Vgne-g  
    if length_r~=length(theta) <PN;D#2bh  
        error('zernfun:RTHlength', ... Ql@yN@V  
              'The number of R- and THETA-values must be equal.') LQ@|M.$ A  
    end aTh%oBrtP  
    _ <a)\UR  
    T+nC>}*jgJ  
    % Check normalization: N`Xnoehu  
    % -------------------- Kg`x9._2  
    if nargin==5 && ischar(nflag) CDYx/yO  
        isnorm = strcmpi(nflag,'norm'); W79A4l<  
        if ~isnorm /mwr1GU  
            error('zernfun:normalization','Unrecognized normalization flag.') {}o>ne nx\  
        end 1ysLZ;K  
    else \ui^ d  
        isnorm = false; /eRtj:9M  
    end  |~uzQU7  
    A]?O& m |  
    _ 1{5~  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% z83:a)U  
    % Compute the Zernike Polynomials M y"!j,Up  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% z#J/*712  
    f5b`gvCY,#  
    O 4Pd N?  
    % Determine the required powers of r: DVoV:pk  
    % ----------------------------------- `/JR}g{O  
    m_abs = abs(m); ; 9 &1JX  
    rpowers = []; 06@0r  
    for j = 1:length(n) T:S{3  
        rpowers = [rpowers m_abs(j):2:n(j)]; sR>;h /  
    end  .02(O  
    rpowers = unique(rpowers); g} ~<!VpX  
    dezL{:Ya  
    p@8^gc  
    % Pre-compute the values of r raised to the required powers, mYjiiql~  
    % and compile them in a matrix: WUWb5xA  
    % ----------------------------- q\b ?o!# _  
    if rpowers(1)==0 d)GkXll1D  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); e=]oh$]  
        rpowern = cat(2,rpowern{:}); jbhJ;c:  
        rpowern = [ones(length_r,1) rpowern]; Go+xL/f  
    else 3Ra\2(bR  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); G2+)R^FSC  
        rpowern = cat(2,rpowern{:}); 8P<UO  
    end YV3TxvXMR  
    d!QD vO  
    <#p|z`N  
    % Compute the values of the polynomials: .FbZVYc]  
    % -------------------------------------- [OoH5dD  
    y = zeros(length_r,length(n)); G E~(N N  
    for j = 1:length(n) @2~O^5[>  
        s = 0:(n(j)-m_abs(j))/2; aC8,Y$>?E`  
        pows = n(j):-2:m_abs(j); }M9DqZ;I  
        for k = length(s):-1:1 &^ 3~=$  
            p = (1-2*mod(s(k),2))* ... .f !]@"\  
                       prod(2:(n(j)-s(k)))/              ... @Wx`l) b  
                       prod(2:s(k))/                     ... /,!7jF:  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 3n84YX{  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); L >Ez-  
            idx = (pows(k)==rpowers); rGn5Q V  
            y(:,j) = y(:,j) + p*rpowern(:,idx); ngkeJ)M0$  
        end vBnKu  
         ]~ #+ b>  
        if isnorm a._^E/EV  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); W]!@Zlal  
        end zA'gb'MmW  
    end D#/%*|  
    % END: Compute the Zernike Polynomials f.$aFOn  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% c6Yf"~TD0  
    =8$0$d  
    Ql: b1C,  
    % Compute the Zernike functions: RlslF9f  
    % ------------------------------ {Ukc D+.Y  
    idx_pos = m>0; K?FX<PT  
    idx_neg = m<0; _8x'GK tU  
    A^4kYOe  
    Q/3tg  
    z = y; {+/ .5  
    if any(idx_pos) PV]k3&y  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ||'i\X|[  
    end lC /Hib  
    if any(idx_neg) BS-:dyBw  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); u>t|X}JH  
    end %<=w[*i  
    u8<&F`7j  
    PQU3s$  
    % EOF zernfun  9+'@  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    在线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  HH"$#T^-  
    Wm<z?.lS  
    DDE还是手动输入的呢? Uh>.v |P6  
    )8[ym/m  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究