切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9359阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, #K4wO!d  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, h,#AY[Q  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? 3ea6g5kX  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? |5FyfDaFBX  
    &j>`H:  
    0#yo\McZ  
    k*n5+[U^tP  
    a2g15;kM  
    function z = zernfun(n,m,r,theta,nflag) |~Z+Xl a  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. E8V,".!+E  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N RQh4RUm  
    %   and angular frequency M, evaluated at positions (R,THETA) on the _y8)jD"  
    %   unit circle.  N is a vector of positive integers (including 0), and VvPTL8Z  
    %   M is a vector with the same number of elements as N.  Each element IPY@9+]  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) /[us;=CM  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, IRcZyry  
    %   and THETA is a vector of angles.  R and THETA must have the same fo5!d@Nv  
    %   length.  The output Z is a matrix with one column for every (N,M) +:^tppg  
    %   pair, and one row for every (R,THETA) pair. !J+5l&  
    % jt;,7Ek  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike X"[c[YT!%[  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), un..UU4  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral eR;cl$  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, D+k5e=  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized G8<,\mg+  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. T"dEa-O  
    % gE:qMs;  
    %   The Zernike functions are an orthogonal basis on the unit circle. g8B@M*JA  
    %   They are used in disciplines such as astronomy, optics, and 3 UBG?%!$f  
    %   optometry to describe functions on a circular domain. ;up89a-,9  
    % 4wK!)Pwq  
    %   The following table lists the first 15 Zernike functions. e&wW lB![  
    % _STN^   
    %       n    m    Zernike function           Normalization n32BHOVE  
    %       -------------------------------------------------- n*'|7#;  
    %       0    0    1                                 1 ~xzRx$vU  
    %       1    1    r * cos(theta)                    2 ^S[Mg6J  
    %       1   -1    r * sin(theta)                    2 Pirc49c  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) nKV1F0-  
    %       2    0    (2*r^2 - 1)                    sqrt(3) F7L+bv   
    %       2    2    r^2 * sin(2*theta)             sqrt(6) WzZb-F  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 6R#f 8  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) sH#UM(N  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 7zy6`O P  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) hPH= .rX  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) ]JtK)9  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) -4"E]f  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) A-4\;[P\  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Joe k4t&0<  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) &s\w: 9In  
    %       -------------------------------------------------- }cMb0`oA  
    % _kgw+NA&-H  
    %   Example 1: XG*Luc-v  
    % 8g&uCv/Uk  
    %       % Display the Zernike function Z(n=5,m=1) .3!=]=  
    %       x = -1:0.01:1; @e+QGd;}  
    %       [X,Y] = meshgrid(x,x); K^w(WE;db  
    %       [theta,r] = cart2pol(X,Y); t|d9EC]c(  
    %       idx = r<=1;  s y#CR4X  
    %       z = nan(size(X)); `0Qzu\gRb  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); Oe*emUX7  
    %       figure MyAi)Mz~o  
    %       pcolor(x,x,z), shading interp "ifYy>d  
    %       axis square, colorbar  Wu9@Ecb  
    %       title('Zernike function Z_5^1(r,\theta)') }"%tlU!}  
    % =K}5 fe  
    %   Example 2: <<Ut@243\  
    % xR\$2(  
    %       % Display the first 10 Zernike functions i5q VQo  
    %       x = -1:0.01:1; fD]}&xc  
    %       [X,Y] = meshgrid(x,x); 8`kK)iCq  
    %       [theta,r] = cart2pol(X,Y); i\2~yXw\  
    %       idx = r<=1; DNC2]kS<  
    %       z = nan(size(X)); LZ}C{M{=5A  
    %       n = [0  1  1  2  2  2  3  3  3  3]; U"af3c^2  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; +A3@{ 2  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; K1]H~'  
    %       y = zernfun(n,m,r(idx),theta(idx)); &}Cm9V  
    %       figure('Units','normalized') DHd9yP9-  
    %       for k = 1:10 xP "7B9B  
    %           z(idx) = y(:,k); IXe[JL:  
    %           subplot(4,7,Nplot(k)) g,r'].Jg  
    %           pcolor(x,x,z), shading interp yk,o*g  
    %           set(gca,'XTick',[],'YTick',[]) U;Y{=07a@  
    %           axis square I!|_C~I`2  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) S{zi8Oc6  
    %       end aI{Ehbf=  
    % 6DD"Asi+  
    %   See also ZERNPOL, ZERNFUN2. }v"X.fa^  
    /Z94<}C6b  
    MOKg[ j  
    %   Paul Fricker 11/13/2006 s(o{SC'tt  
    'C)`j{CS  
    N p$pz  
    py6|uGN  
    #qtAFIm'  
    % Check and prepare the inputs: x$tx!%,)/S  
    % ----------------------------- xlZ"F  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) MuQyHEDF  
        error('zernfun:NMvectors','N and M must be vectors.') ^y]CHr  
    end @7e h/|Y,  
    !ZJ" lm  
    :GBWQXb G  
    if length(n)~=length(m) ;!v2kVuS]  
        error('zernfun:NMlength','N and M must be the same length.') vd6Y'Zk|F6  
    end uQ=p } w  
    ^$}9 Enj+Y  
    KuL2X@)}  
    n = n(:); u%3D{Dj  
    m = m(:); }1VxMx@  
    if any(mod(n-m,2)) CkKr@.dV  
        error('zernfun:NMmultiplesof2', ... ~ODm?k  
              'All N and M must differ by multiples of 2 (including 0).') *NHBwXg+  
    end $!)Sgb  
    c=p`5sN)  
    Soy!)c]  
    if any(m>n) B2w\  
        error('zernfun:MlessthanN', ... $T.we+u  
              'Each M must be less than or equal to its corresponding N.') yV,ki^^  
    end TPH`{  
    ?mU 3foa  
    O$%M.C'  
    if any( r>1 | r<0 ) ~8L*N>Y  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') $w4%JBZr  
    end bi;?)7p&ZY  
    :8\!;!  
    \ 'G%%%;4  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ~w_4 nE  
        error('zernfun:RTHvector','R and THETA must be vectors.') ,7&`V=C  
    end ?f<JwF<  
    +LuGjDn0  
    1RpTI7  
    r = r(:); rH Et]Xa  
    theta = theta(:); Dvbrpn!sk  
    length_r = length(r); G5a PjP  
    if length_r~=length(theta) 6;6a.iZ  
        error('zernfun:RTHlength', ...  AV{3f`  
              'The number of R- and THETA-values must be equal.') ARvT  
    end +aR.t@D+"Y  
    o!!";q%DX  
    3C'`K ,  
    % Check normalization: (7/fsfsF  
    % -------------------- VOr*YB&  
    if nargin==5 && ischar(nflag) G347&F)  
        isnorm = strcmpi(nflag,'norm'); Vz[E)(QX-`  
        if ~isnorm WJ":BK{NM  
            error('zernfun:normalization','Unrecognized normalization flag.') E^B*:w3  
        end  O_^O1  
    else 3 r4QB  
        isnorm = false; hiO:VA  
    end e&%m[:W:<  
    y"q7Gx*^j  
    /)fx(u#  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% FYq]-k{\  
    % Compute the Zernike Polynomials jR-DH]@y  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% *qdf?' R  
    AE0d0Y~9  
    <q|IP_  
    % Determine the required powers of r: 7xz~%xC.  
    % ----------------------------------- x}Qet4vV  
    m_abs = abs(m); 2ED^uc: 0S  
    rpowers = []; jCdKau&9  
    for j = 1:length(n) " a;z  
        rpowers = [rpowers m_abs(j):2:n(j)]; Yas!w'  
    end C {.{>M  
    rpowers = unique(rpowers); V"":_`1VW  
    [P#^nyOh(  
    s)Sa KE*d  
    % Pre-compute the values of r raised to the required powers, Yc;cf% c1  
    % and compile them in a matrix: pcw!e_"+  
    % ----------------------------- ;-84cpfu  
    if rpowers(1)==0 47I5Y5  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ONQp-$  
        rpowern = cat(2,rpowern{:}); XvBEC_xWZ  
        rpowern = [ones(length_r,1) rpowern]; A6w/X`([O  
    else !M:m(6E1  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); B@!a@0,,_  
        rpowern = cat(2,rpowern{:}); AMqu}G  
    end tV2SX7N  
    L'=e /&  
    7O5`&Z'-  
    % Compute the values of the polynomials: tm\ <w H  
    % -------------------------------------- Dz, Fu:)  
    y = zeros(length_r,length(n)); E:BEQ:(~L  
    for j = 1:length(n) !NuYx9L?L  
        s = 0:(n(j)-m_abs(j))/2; w7\:S>;(O"  
        pows = n(j):-2:m_abs(j); v8g3]MVj3  
        for k = length(s):-1:1 u:H@]z(x  
            p = (1-2*mod(s(k),2))* ... 6w{^S~rqo  
                       prod(2:(n(j)-s(k)))/              ... q|m8G  
                       prod(2:s(k))/                     ... wP3PI.g-g  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Zrfp4SlZZ  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); g3{)AX[Uy  
            idx = (pows(k)==rpowers); M52kau  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 2D-ogSIo  
        end N]cGJU>$  
         ]7kq@o/7  
        if isnorm lv9Ss-c4  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); }{/4sll  
        end aq3evm  
    end g#FqjE|mx  
    % END: Compute the Zernike Polynomials 6$wS7Cu  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% R =HN>(U  
    z.23i^Q  
    @%J?[PG  
    % Compute the Zernike functions: [:$j<}UmB  
    % ------------------------------ [ d<|Cde  
    idx_pos = m>0; , 6\i  
    idx_neg = m<0; FVLXq0<Cj  
    YlOYgr^  
    g92M\5 x9  
    z = y; M0o=bYI  
    if any(idx_pos) (omdmT%D  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Rf2/[  
    end |w[}\#2  
    if any(idx_neg) "Ks%!  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); (]j*)~=V  
    end y<PPO6u7  
    n);2b\&  
    s9'g'O5  
    % EOF zernfun fT._Os?i  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  }<Me%`x"  
    +M.|D,wg2  
    DDE还是手动输入的呢? 5cE[s<=  
    z.H`a+cl  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究