下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, 4H'9y3dk
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, /2c?+04+
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? JSM{|HJxh
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? _+GCd8d
qVf~\H@
#8'%CUF*<8
D,2,4h!ka
{YkW5zC(L
function z = zernfun(n,m,r,theta,nflag) tw;`H( UZ^
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. qYE -z(i
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N (t <Um
Vd
% and angular frequency M, evaluated at positions (R,THETA) on the 1:-$mt_*
% unit circle. N is a vector of positive integers (including 0), and f@yST z;u
% M is a vector with the same number of elements as N. Each element "*UHit;"+{
% k of M must be a positive integer, with possible values M(k) = -N(k) :U~[%]
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, VB Ce=<
% and THETA is a vector of angles. R and THETA must have the same J &c}z4
% length. The output Z is a matrix with one column for every (N,M) r8mE
% pair, and one row for every (R,THETA) pair. Es?~Dd
% PS>k67sI
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike !=ZbBUJF
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), aFLm,
% with delta(m,0) the Kronecker delta, is chosen so that the integral ~q<UE\H
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, IE3GM^7\
% and theta=0 to theta=2*pi) is unity. For the non-normalized il*bsnwpZv
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. c1c0b|B!U
% `jP6;i
% The Zernike functions are an orthogonal basis on the unit circle. P", 53R+"
% They are used in disciplines such as astronomy, optics, and rXA7<_V g
% optometry to describe functions on a circular domain. ]R0^
}sI
% R!:1{1
% The following table lists the first 15 Zernike functions. gbF.Q7?$u
% )=~1m85+5B
% n m Zernike function Normalization 8G9V8hS1#B
% -------------------------------------------------- =_,w<
% 0 0 1 1 $"sf%{~
% 1 1 r * cos(theta) 2 <#:"vnm$j
% 1 -1 r * sin(theta) 2 /QTGZb
% 2 -2 r^2 * cos(2*theta) sqrt(6) qUCiB}
% 2 0 (2*r^2 - 1) sqrt(3) <MY_{o8d
% 2 2 r^2 * sin(2*theta) sqrt(6) 4rv3D@E
% 3 -3 r^3 * cos(3*theta) sqrt(8) .a$][Jny
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) t0/fF'GZD
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) .x}ImI
% 3 3 r^3 * sin(3*theta) sqrt(8) ^}9Aq $R
% 4 -4 r^4 * cos(4*theta) sqrt(10) !IP[C?(nB
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 9v^MZ^Y{
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) NX$$4<A1
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ;gf^;%FK
% 4 4 r^4 * sin(4*theta) sqrt(10) #qHo+M$"
% -------------------------------------------------- UAa2oY&
% i4AmNRs
% Example 1: lv,<[Hw1
% &AC-?R|Dp
% % Display the Zernike function Z(n=5,m=1) an.)2*u
% x = -1:0.01:1; "#(]{MY
% [X,Y] = meshgrid(x,x); U1dz:OG>
% [theta,r] = cart2pol(X,Y); Z|E( !"zE9
% idx = r<=1; )'92{-A0
% z = nan(size(X)); j&ddpS(s
% z(idx) = zernfun(5,1,r(idx),theta(idx)); haS`V
% figure /8lGP!z
% pcolor(x,x,z), shading interp \#
% axis square, colorbar r'-)@|
% title('Zernike function Z_5^1(r,\theta)') t[%9z6t
% ^BW V6
% Example 2: ]e 81O#t3
% Bx2E9/S3
% % Display the first 10 Zernike functions }wz )"
% x = -1:0.01:1; u.R:/H<>~
% [X,Y] = meshgrid(x,x); J=5G<
% [theta,r] = cart2pol(X,Y); J %URg=r
% idx = r<=1; $}N'm
% z = nan(size(X)); %=%jy
% n = [0 1 1 2 2 2 3 3 3 3]; `
Y"Rh[C
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; p<tj6O
% Nplot = [4 10 12 16 18 20 22 24 26 28]; '3aDvV0
% y = zernfun(n,m,r(idx),theta(idx)); uG~%/7Qt{
% figure('Units','normalized') IYb@@Jzo
% for k = 1:10 XV]`?
% z(idx) = y(:,k); i e%ZX
% subplot(4,7,Nplot(k)) d2Bn`VI
% pcolor(x,x,z), shading interp 0~Z2$`(
% set(gca,'XTick',[],'YTick',[]) 5,k&^CK}
% axis square b2duC
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 9-I;'
% end 3@_je)s
% "EDn;l-Q
% See also ZERNPOL, ZERNFUN2. {C[<7ruF
JmtU>2z\
}r9f}yX9Q
% Paul Fricker 11/13/2006 JEGcZeq)
%BC*h}KGH
ySL 31%
RV.*_FG
-%NT)o
% Check and prepare the inputs: xLP yV&j-
% ----------------------------- ;q59Cr 75
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Ay22-/C|@
error('zernfun:NMvectors','N and M must be vectors.') W1i Kn
end $*{PUj
/)e&4.6
~W_m<#K(
if length(n)~=length(m) Q9]7.^l
error('zernfun:NMlength','N and M must be the same length.') 2(Vm0E
end ; P&Ka
y/'2WO[
0,{Dw9W:
n = n(:); HFB2ep7N
m = m(:); Zm4IN3FGLv
if any(mod(n-m,2)) ?S36)oZzg
error('zernfun:NMmultiplesof2', ... gQCkoQi:j
'All N and M must differ by multiples of 2 (including 0).') i\XOk!
end uL1e?
3W5|Y@0
pdngM8n
if any(m>n) b(&2/|hd
error('zernfun:MlessthanN', ... j_H{_Ug
'Each M must be less than or equal to its corresponding N.') k^:$ETW2
D
end *}$T:kTH
<}L`d(E@f
s0~a5Ti3
if any( r>1 | r<0 ) kVCSFF*
error('zernfun:Rlessthan1','All R must be between 0 and 1.') uI}S9
end EgFV
I QS|
f
nX!wN
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) DvKM[z3j
error('zernfun:RTHvector','R and THETA must be vectors.') ;oH17
end HpC|dtro
U"v(9m@
T2AyQ~5~
r = r(:); }5z6b>EI9a
theta = theta(:);
FVPhk 2
length_r = length(r); C7dy{:y`
if length_r~=length(theta) $6Lgaz
error('zernfun:RTHlength', ... h
\hQ
'The number of R- and THETA-values must be equal.') >JkQU e
end rUvqAfE&+
1Thr74M
(wdE@/V
% Check normalization: nU- .a5
% -------------------- Qx1ZxJz #
if nargin==5 && ischar(nflag) W/<]mm~95
isnorm = strcmpi(nflag,'norm'); Jx9S@L`
if ~isnorm Og4 X3QG
error('zernfun:normalization','Unrecognized normalization flag.') KdHR.;*
end "WdGY*r
else R] tHd=kf
isnorm = false; _r0oOp E
end 4_TxFulX.
E3<jH
22"M#:r$
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ,A[40SZA
% Compute the Zernike Polynomials 1mm/Ssw:C
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0(VH8@h`O
`C%,Nj
%<6oKE
% Determine the required powers of r: 8xJdK'
% ----------------------------------- ^3B{|cqf
m_abs = abs(m); FbO-K-
rpowers = []; d8`^;T
;}d
for j = 1:length(n) BG_m}3j
rpowers = [rpowers m_abs(j):2:n(j)]; z6#N f,
end uc<XdFcu
rpowers = unique(rpowers); 6Xb\a^q
]:(>r&'
FY)v rM*yh
% Pre-compute the values of r raised to the required powers, Q:&,8h[
% and compile them in a matrix: D|/Azy.[
% ----------------------------- <mjH#aSy
if rpowers(1)==0 \:mx Ri
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); VI,z7
\
rpowern = cat(2,rpowern{:}); yw^t6E
rpowern = [ones(length_r,1) rpowern]; %Qgo0
else 4-^|e
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); kbJ/7
rpowern = cat(2,rpowern{:}); C(Ujx=G+3
end @+h2R
QDYS}{A:V
QMea2q|3$
% Compute the values of the polynomials: g6o-/A!Q3
% -------------------------------------- O6LZ<}oUR
y = zeros(length_r,length(n)); [X0Wfb}{
for j = 1:length(n) ]`0(^)U&
s = 0:(n(j)-m_abs(j))/2; rVowHP
pows = n(j):-2:m_abs(j);
(C*G)Aj7
for k = length(s):-1:1 BoYWx^VHx^
p = (1-2*mod(s(k),2))* ... V|zzj[c
prod(2:(n(j)-s(k)))/ ... +Gqh
prod(2:s(k))/ ... H$au02dpU
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... rQg7r>%Q
prod(2:((n(j)+m_abs(j))/2-s(k))); O9wZx%<
idx = (pows(k)==rpowers); ?6+GE_VZ
y(:,j) = y(:,j) + p*rpowern(:,idx); Rcs7 'q5
end +6@".<
8fFURk
if isnorm Ay;=1g)8+f
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); u6IEBYG ((
end 9-[g/qrF
end ]^$&Ejpe#
% END: Compute the Zernike Polynomials A1e| Y
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% H>AQlO+ J
>e
:&k p
c) Zid1
% Compute the Zernike functions: oNY;z-QK
% ------------------------------ }C!N$8d,
idx_pos = m>0; | V Ps5
idx_neg = m<0; g#ubxC7t<
z #c)Q
9:"%j
z = y; Zm& X $U
if any(idx_pos) ^]o]'
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); b<};"H0a
end (.4mX
t
if any(idx_neg) +Rn]6}5m\
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ; S7
%
end fQRGz\r*k
^d Fdw\
!:t}8
% EOF zernfun fC+<n{"C