切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9581阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, QnP?;  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, se n{f^U  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? ~g4rGz  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? oVEr{K)  
    %\{?(baOA  
    !iitx U  
    U70@}5!  
    rCSG@D.  
    function z = zernfun(n,m,r,theta,nflag) <0Egkz3s  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. ,Y\4xg*`  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 6B;_uIq5  
    %   and angular frequency M, evaluated at positions (R,THETA) on the j=jrzG+`  
    %   unit circle.  N is a vector of positive integers (including 0), and 1M~:]}*<  
    %   M is a vector with the same number of elements as N.  Each element b1,T!xL  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) }PIGj}F/  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, :AE;x&  
    %   and THETA is a vector of angles.  R and THETA must have the same ?9r,Y;,H  
    %   length.  The output Z is a matrix with one column for every (N,M) 3~3(G[w  
    %   pair, and one row for every (R,THETA) pair. &v9PT!R~  
    % m/F(h-?  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Fx88 R !  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), SiuO99'nV  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 8apKp?~yW  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, U9p.Dh~)vG  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 1-]x  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. = a.n`3`Q  
    % fddbXs0Sn  
    %   The Zernike functions are an orthogonal basis on the unit circle. l6DIsR  
    %   They are used in disciplines such as astronomy, optics, and =|5bhwU]  
    %   optometry to describe functions on a circular domain. &CeF^   
    % K9N0kBJ0<  
    %   The following table lists the first 15 Zernike functions. MoR-8vnJ  
    % AGJ=de.  
    %       n    m    Zernike function           Normalization HAUTCX  
    %       -------------------------------------------------- m2< *  
    %       0    0    1                                 1 9@z|2z2\G  
    %       1    1    r * cos(theta)                    2 gS<{ekN  
    %       1   -1    r * sin(theta)                    2 R EH&kcn  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) L z>{FOR  
    %       2    0    (2*r^2 - 1)                    sqrt(3) `~+a=Q  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) .6Lhy3x  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ttq< )4  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) #z^1)7  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) JX@6Sg<  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 'S D|ObBY  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) A&lgiR*ObT  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 09;'z  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 4k2c mM$  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) K#C56k q&  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) iN/!k.ybW}  
    %       -------------------------------------------------- HYYx*CJ)  
    % @?cXa: tX  
    %   Example 1: ~Ow23N  
    % AFB 7s z  
    %       % Display the Zernike function Z(n=5,m=1) *0@; kD=  
    %       x = -1:0.01:1; A8Z?[,Mq!  
    %       [X,Y] = meshgrid(x,x); E?h2e~ ,]  
    %       [theta,r] = cart2pol(X,Y); ,, #rv-*  
    %       idx = r<=1; !2M[  
    %       z = nan(size(X)); GKx,6E#JM  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); y~ 4nF  
    %       figure ecI 2]aKi  
    %       pcolor(x,x,z), shading interp ,Yprk%JT  
    %       axis square, colorbar otH[?c?BT  
    %       title('Zernike function Z_5^1(r,\theta)') M*@ aA XM  
    % u{nWjqrM*5  
    %   Example 2: XoQk'7"f  
    % Vh9s.=*P@  
    %       % Display the first 10 Zernike functions /?-p^6U  
    %       x = -1:0.01:1; hRZS6" #  
    %       [X,Y] = meshgrid(x,x); kt0{-\ p  
    %       [theta,r] = cart2pol(X,Y); o-<_X&"a|5  
    %       idx = r<=1; M"l rwun^  
    %       z = nan(size(X)); R^kv!x;h  
    %       n = [0  1  1  2  2  2  3  3  3  3]; IoHkcP[H  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; Rf0\CEc  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; #5:A?aj  
    %       y = zernfun(n,m,r(idx),theta(idx)); lJY=*KB(6  
    %       figure('Units','normalized') =RE_Urt:  
    %       for k = 1:10 R$&&kmJ  
    %           z(idx) = y(:,k); #|1QA3KzO  
    %           subplot(4,7,Nplot(k)) XaS_3d  
    %           pcolor(x,x,z), shading interp 7^TXlW n^G  
    %           set(gca,'XTick',[],'YTick',[]) 3[i !2iL.  
    %           axis square A;`U{7IST  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) WHLKf  
    %       end Y[]+C8"O  
    % .%b_3s".  
    %   See also ZERNPOL, ZERNFUN2. ~#km0<r?  
    i[^lJ)[>N  
    U5$DJ5>8  
    %   Paul Fricker 11/13/2006 GJ_)Cl+5E  
    EA E\Xv  
    }w^ T9OC  
    j/mp.'P1k  
    207oE O]  
    % Check and prepare the inputs: J6Nw-qF  
    % ----------------------------- e+ w  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) :k/U7 2  
        error('zernfun:NMvectors','N and M must be vectors.') "g1;TT:1~  
    end !!O{ ppM  
    `'.x*MNF  
    \'=}kk`  
    if length(n)~=length(m) 3C[4!>|  
        error('zernfun:NMlength','N and M must be the same length.') w$:)wyR-  
    end d;:&3r|X  
    i*w-Q=  
    QLU; .&  
    n = n(:); NG!Q< !Y  
    m = m(:); Vzm+Ew _  
    if any(mod(n-m,2)) 2Wf qgR[3  
        error('zernfun:NMmultiplesof2', ... G-?9;w'@  
              'All N and M must differ by multiples of 2 (including 0).') Y8{1?LO  
    end VCRv(Ek  
    FtDA k?  
    LK/V]YG  
    if any(m>n) )stWr r&  
        error('zernfun:MlessthanN', ... 8'Bl=C|0X  
              'Each M must be less than or equal to its corresponding N.') lj*913aFh  
    end :I(gz~u6  
    Nb^:_0&H@  
    dk`!UtNNRa  
    if any( r>1 | r<0 ) 8%f! X51  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') eaP$/U D?  
    end <X&:tZ #/  
    Fe< t@W  
    =,G(1#  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 0-f-  
        error('zernfun:RTHvector','R and THETA must be vectors.') (gB=!1/|G  
    end # h|< >  
    K"$ky,tU  
    .3&OFM  
    r = r(:); >*xzSd? \  
    theta = theta(:); U%\2drM&]  
    length_r = length(r); x99 Oq!  
    if length_r~=length(theta) Y!$ z7K  
        error('zernfun:RTHlength', ... l%~zj,ew  
              'The number of R- and THETA-values must be equal.') TFPq(i  
    end gdNp2b  
    XPTB,1g+f  
    rqJj!{<B  
    % Check normalization: jk}PucV  
    % -------------------- <qt%MM [Y  
    if nargin==5 && ischar(nflag) .]c:Zt}P  
        isnorm = strcmpi(nflag,'norm'); P"@^'yR5WK  
        if ~isnorm *3Z#r  
            error('zernfun:normalization','Unrecognized normalization flag.') bA,D]  
        end \>7-<7+I6  
    else N6%q%7F.:  
        isnorm = false; *OcptmY<  
    end l= S_#  
    ?7a[| -  
    kcUt!PL  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% S @($c'  
    % Compute the Zernike Polynomials JdEb_c3S  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 2F7R,rr  
    @$G K<jl  
    0k<%l6Bq  
    % Determine the required powers of r: &H{>7q#r  
    % ----------------------------------- kA`qExw%  
    m_abs = abs(m); HX*U2<^  
    rpowers = []; [' 1?'*  
    for j = 1:length(n) vdzC2T  
        rpowers = [rpowers m_abs(j):2:n(j)]; %*=FLtBjo  
    end a9-;8`fCR  
    rpowers = unique(rpowers); WfZ#:G9  
    J?$uNlI  
    +?tNly`  
    % Pre-compute the values of r raised to the required powers, MWf%Lh;R  
    % and compile them in a matrix: /VkJ+%}+j  
    % ----------------------------- iJeT+}  
    if rpowers(1)==0 Kn|dnq|G  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); WLH2B1_):  
        rpowern = cat(2,rpowern{:}); 7?s>u937  
        rpowern = [ones(length_r,1) rpowern]; Qz;" b!  
    else W>Kn *Dy8~  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); cG6+'=]3<  
        rpowern = cat(2,rpowern{:}); ;ecF~-oku  
    end "&F/'';0}E  
    ']x]X ,  
    -tZb\4kh  
    % Compute the values of the polynomials: t-/^O  
    % -------------------------------------- 6m&I_icM  
    y = zeros(length_r,length(n)); ,3u19>2  
    for j = 1:length(n) P6rL;_~e  
        s = 0:(n(j)-m_abs(j))/2; tnntHQ&b  
        pows = n(j):-2:m_abs(j); }e)ltp|  
        for k = length(s):-1:1 u"ow?[E  
            p = (1-2*mod(s(k),2))* ... Dl6zl6q?  
                       prod(2:(n(j)-s(k)))/              ... 9'M({/7y  
                       prod(2:s(k))/                     ... 3:S"!F  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... [ ]NAV  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); "`zw(  
            idx = (pows(k)==rpowers); $MHc4FE[  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 1'U-n{fD  
        end 0)#I5tEre  
         u#QQCgrs  
        if isnorm ^m\n[<x^  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); WObfHAp.  
        end kJ >B)  
    end );vU=p"@  
    % END: Compute the Zernike Polynomials i7_BnJJX{B  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% zi'?FM[f)  
    0vEa]ljS  
    j*nCIxF  
    % Compute the Zernike functions: }Na*jr0y9{  
    % ------------------------------ 3:RZ@~u=  
    idx_pos = m>0; E#OKeMK  
    idx_neg = m<0; 5k@ k  
    z^]nP 87  
    ^`$KN0PY  
    z = y; a<Ta*:R$0  
    if any(idx_pos) [@)|j=:i:  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); BScysoeD  
    end Z|.. hZG  
    if any(idx_neg) V.}U p+WL  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); TG($l2  
    end <K~#@.^`  
    8G=4{,(A  
    @eul~%B{X  
    % EOF zernfun e_e|t>nQ  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  EI]NOG 0  
    JhIgq W2  
    DDE还是手动输入的呢? oC"c%e8  
    (`xhh  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究