切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9159阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, vvJ{fi  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, [@!.(Hp  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? -WDU~VSU  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? Y\7>>?  
    <h(KI Y9T  
    m/,.3v  
    l+6y$2QR  
    4)L(41h  
    function z = zernfun(n,m,r,theta,nflag) <qG4[W,[  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. +T*=JHOD  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Fai_v{&?  
    %   and angular frequency M, evaluated at positions (R,THETA) on the VO _! +  
    %   unit circle.  N is a vector of positive integers (including 0), and (w31W[V'#  
    %   M is a vector with the same number of elements as N.  Each element dP>~ExYtm  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) gyqM&5b  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, .Dn.|A  
    %   and THETA is a vector of angles.  R and THETA must have the same :%[=v (G[  
    %   length.  The output Z is a matrix with one column for every (N,M) P5u Y1(  
    %   pair, and one row for every (R,THETA) pair. \8Mn[G9TL  
    % mR3)$!  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike R+'$V$g\X  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi),  %+\ PN  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral hu?Q,[+o  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, d~i WV6Va  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ,EkzBVgo  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. P}So>P~2  
    % y v6V1gK  
    %   The Zernike functions are an orthogonal basis on the unit circle. G,tJ\xMw8  
    %   They are used in disciplines such as astronomy, optics, and \Wdl1 =`  
    %   optometry to describe functions on a circular domain. !VaKq_W  
    % 1&zvf4  
    %   The following table lists the first 15 Zernike functions. C,*3a`/2M^  
    % qOA+ao  
    %       n    m    Zernike function           Normalization <evvNSE  
    %       -------------------------------------------------- RJpH1XQ j  
    %       0    0    1                                 1 _?j66-( Q  
    %       1    1    r * cos(theta)                    2 ]} D^?g^  
    %       1   -1    r * sin(theta)                    2 j7(sYo@x7  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) } tq  
    %       2    0    (2*r^2 - 1)                    sqrt(3) MQs!+Z"m>  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) w %4SNR  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) $8/=@E{51  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) =>? ;Iv'Z  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) K|i:tHF]@  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) UQ0Sf u  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) fL0dy[Ch@  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) t>hoXn^-  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) Ck:RlF[6C  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 6Zr_W#SE  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) Nk.m$  
    %       -------------------------------------------------- j,DF' h  
    % ldd8'2  
    %   Example 1: 2C6o?*RjyY  
    % q=I8W}Z i  
    %       % Display the Zernike function Z(n=5,m=1) \9HpbCHr  
    %       x = -1:0.01:1; \ a#{Y/j3  
    %       [X,Y] = meshgrid(x,x); l*r8.qp  
    %       [theta,r] = cart2pol(X,Y); s ;3k#-w  
    %       idx = r<=1; lN(|EI  
    %       z = nan(size(X)); M =/+q  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); Tu!2lHK;  
    %       figure ;mT|0&o>#  
    %       pcolor(x,x,z), shading interp \d'>Ky;GD  
    %       axis square, colorbar Mh =yIx</  
    %       title('Zernike function Z_5^1(r,\theta)') CP]nk0  
    % 0oNNEC  
    %   Example 2: '99rXw  
    % Kw%to9 eh)  
    %       % Display the first 10 Zernike functions *F<Ar\f5  
    %       x = -1:0.01:1; F"-u8in`  
    %       [X,Y] = meshgrid(x,x); :P2{^0$  
    %       [theta,r] = cart2pol(X,Y); 5T*Uq>x0  
    %       idx = r<=1; ftb .CPWI  
    %       z = nan(size(X)); CXQ+h  
    %       n = [0  1  1  2  2  2  3  3  3  3]; 1>c^-"#e^  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; Vn=K5nm  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; o+],L_Ab  
    %       y = zernfun(n,m,r(idx),theta(idx)); jv ;8Mm  
    %       figure('Units','normalized') {6I)6}w!k  
    %       for k = 1:10 q1a*6*YB  
    %           z(idx) = y(:,k); ?&`PN<~2z  
    %           subplot(4,7,Nplot(k)) /` ;rlH*  
    %           pcolor(x,x,z), shading interp z|M+ FHl$  
    %           set(gca,'XTick',[],'YTick',[]) (]@yDb4  
    %           axis square _J,lF-,  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) =(==aP  
    %       end nF5\iV  
    % :5'8MU  
    %   See also ZERNPOL, ZERNFUN2. +L\Dh.Ir  
    Qi=pP/Y  
    i5*BZv>e  
    %   Paul Fricker 11/13/2006 7&hhKEA  
     * Cj<Vy  
    ykS-5E`  
    h@2YQgw`  
    iW?z2%#  
    % Check and prepare the inputs: ;hV-*;>  
    % ----------------------------- 0Yk$f1g  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Nx;Oz  
        error('zernfun:NMvectors','N and M must be vectors.') {3* Ne /  
    end I&J>   
    S'_2o?fs  
     &*Z"r*  
    if length(n)~=length(m) \Dx;AKs  
        error('zernfun:NMlength','N and M must be the same length.') Z[G[.\0  
    end A4tb>O M  
    D[ v2#2  
    PL|ea~/  
    n = n(:); B9: i.rQ  
    m = m(:); 0{'m":D9  
    if any(mod(n-m,2)) pwg\b  
        error('zernfun:NMmultiplesof2', ... V r7L9%/wg  
              'All N and M must differ by multiples of 2 (including 0).') xFScj0Y  
    end Aa`R40yl  
    wBlo2WY  
    rqWD#FB=z  
    if any(m>n) gSk0#Jt  
        error('zernfun:MlessthanN', ... X/f?=U  
              'Each M must be less than or equal to its corresponding N.')  6hO]eS  
    end Rn$TYCO  
    szs.B|3X@*  
    ZA7b;{o [  
    if any( r>1 | r<0 ) ^2`*1el  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 7Tc^}Q  
    end !!<H*9]+W;  
    n[gc`#7|{e  
    IMSLHwZ  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) PVi0|  
        error('zernfun:RTHvector','R and THETA must be vectors.') a_ \t(U  
    end EX/{W$ &K  
    >aAsUL5W  
    A~ @x8  
    r = r(:); G.:QA}FE'  
    theta = theta(:); aeE~[m  
    length_r = length(r); ew&"n2r  
    if length_r~=length(theta) 7n[0)XR>  
        error('zernfun:RTHlength', ... ,: Ij@u>)  
              'The number of R- and THETA-values must be equal.') V X.9mt  
    end 4C }#lW9  
    sdBB(  
    T2_b5j3i  
    % Check normalization: owzcc-g  
    % -------------------- iBk1QRdn  
    if nargin==5 && ischar(nflag) H}cq|hodn  
        isnorm = strcmpi(nflag,'norm'); IOY<'t+  
        if ~isnorm (z:qj/|  
            error('zernfun:normalization','Unrecognized normalization flag.') GE*%I1?]  
        end M%bD7naBq  
    else b/d 1(B@  
        isnorm = false; :{ Lihe~\  
    end S|O#KE  
    'F^1)Ga$  
    r8>Qs RnU%  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% fwi -   
    % Compute the Zernike Polynomials |qf ef &  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% g'NR\<6A  
    o|APsQE  
    g f<vQb|  
    % Determine the required powers of r: ~Kt2g\BSok  
    % ----------------------------------- Z3f}'vr  
    m_abs = abs(m); ZU;nXqjc  
    rpowers = []; [$@EQ]tt/  
    for j = 1:length(n) L=gG23U&  
        rpowers = [rpowers m_abs(j):2:n(j)]; jt0f*e YE8  
    end )  D5JA`  
    rpowers = unique(rpowers); V6&6I  
    z,RjQTd  
    '>GPk5Nq77  
    % Pre-compute the values of r raised to the required powers, JvF0s}#4  
    % and compile them in a matrix: T~ P<Gq} ,  
    % ----------------------------- E-deXY  
    if rpowers(1)==0 'u9y\vUy  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ]] T,;|B  
        rpowern = cat(2,rpowern{:}); X2`n&JE  
        rpowern = [ones(length_r,1) rpowern]; M63t4; 0A  
    else hVNT  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); >]x%+@{|  
        rpowern = cat(2,rpowern{:}); ^sF(IV[>  
    end Nv=&gOy=  
    & kQj)  
    Qx8O&C?Ti  
    % Compute the values of the polynomials: juQ?k xOB  
    % -------------------------------------- !1#=j;N`  
    y = zeros(length_r,length(n)); sY* qf=  
    for j = 1:length(n) ,WE2MAjhT  
        s = 0:(n(j)-m_abs(j))/2; 5Vr#>W  
        pows = n(j):-2:m_abs(j); esd9N'.Q*  
        for k = length(s):-1:1 bUe6f,8,  
            p = (1-2*mod(s(k),2))* ... ^*F'[!. p  
                       prod(2:(n(j)-s(k)))/              ... 6M[OEI5  
                       prod(2:s(k))/                     ... QtLd(& !v  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... p3qKtMs0!  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); YoSBS   
            idx = (pows(k)==rpowers); QwLSL<.  
            y(:,j) = y(:,j) + p*rpowern(:,idx); xu@+b~C\  
        end %?J-0  
         2+yti,s+/  
        if isnorm x??H%'rP  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); \q"vC1,9  
        end +*G<xW :M  
    end TVK*l*  
    % END: Compute the Zernike Polynomials A27!I+M  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% cHJ4[x=  
    Wf =hFc1_@  
    d~y]7h|  
    % Compute the Zernike functions: P}vk5o'  
    % ------------------------------ M&KJZ  
    idx_pos = m>0; I.p"8I;  
    idx_neg = m<0; o4,9jk$  
    a``Q}.ST  
    ;".]W;I*O  
    z = y; A`V:r2hnb  
    if any(idx_pos) &H%z1Lp  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 4+Y9":<  
    end $ Zj3#l:rK  
    if any(idx_neg) ^ R3g7 DG  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); C\* 0621  
    end 1~S'' [  
    1_> w|6;e  
    54Vb[;`Kkb  
    % EOF zernfun ?+L7Bd(EF%  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  - s0QEQ  
    &MGM9 zm-]  
    DDE还是手动输入的呢? 3@mW/l>X  
    qZX\riR  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究