切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9255阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, 2r[Q$GPM<  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, \JN<"/  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? ~?[@KK  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? e2/&X;2  
    ::adT=  
    -+ $u  
    wIi(p5*  
    (lEWnf=2h  
    function z = zernfun(n,m,r,theta,nflag) <\Y>y+$3  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. cWh Aj>?_Q  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N eFZ`0V0  
    %   and angular frequency M, evaluated at positions (R,THETA) on the PO |p53  
    %   unit circle.  N is a vector of positive integers (including 0), and oPre$YT}h  
    %   M is a vector with the same number of elements as N.  Each element Ep?a1&b  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 0~n= |3*P  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, y>Nlj%XH  
    %   and THETA is a vector of angles.  R and THETA must have the same ;~/  
    %   length.  The output Z is a matrix with one column for every (N,M) ^$rt|]  
    %   pair, and one row for every (R,THETA) pair. \ m 2[  
    % #T !YFMh;  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 7jEAhi!Cq(  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), I uhyBo  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral HykJ}ezX4  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, jY$|_o.4  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized S}*#$naK  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. nLo:\I(  
    % KX`MX5?x  
    %   The Zernike functions are an orthogonal basis on the unit circle. 63F0Za}h  
    %   They are used in disciplines such as astronomy, optics, and 2R|2yAh  
    %   optometry to describe functions on a circular domain. bumS>:  
    % FC vR  
    %   The following table lists the first 15 Zernike functions. MZ% P(5  
    % uXK$5"  
    %       n    m    Zernike function           Normalization KOw Ew~  
    %       -------------------------------------------------- dd98v Vj  
    %       0    0    1                                 1 E%/E%9-7\  
    %       1    1    r * cos(theta)                    2 !f_Kq$.{  
    %       1   -1    r * sin(theta)                    2 ) c+ ZQq  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) J*$ !^\s  
    %       2    0    (2*r^2 - 1)                    sqrt(3) >Q"eaJxE!l  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) F+c*v#T  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) /R F#B#9  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) Yckl,g_  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) V{c n1Af  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 7!L"ef62o  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) shP,-Vs #  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) [&)9|EV  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) ZTHr jW1  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 'nW:2(J  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) Pu}r` E_  
    %       -------------------------------------------------- l|5ss{llR  
    % W)j/[  
    %   Example 1: LTFA2X&E=  
    % ^\Jg {9a  
    %       % Display the Zernike function Z(n=5,m=1) b\6w[52m  
    %       x = -1:0.01:1; 3osAWSCEL  
    %       [X,Y] = meshgrid(x,x); /UM9g+Bb  
    %       [theta,r] = cart2pol(X,Y); E-Cj^#OY|N  
    %       idx = r<=1; &hqGGfVsd  
    %       z = nan(size(X)); wGb{O  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); |)GE7y0Q  
    %       figure <R_3; 5J%  
    %       pcolor(x,x,z), shading interp Etn]e;z4  
    %       axis square, colorbar RwY) O5  
    %       title('Zernike function Z_5^1(r,\theta)') [+ 1([#  
    % W\FKA vS  
    %   Example 2: #WfJz}P,!  
    % `Mp]iD {  
    %       % Display the first 10 Zernike functions vmW4a3  
    %       x = -1:0.01:1; $6ITa}o  
    %       [X,Y] = meshgrid(x,x); qdO^)uJJ  
    %       [theta,r] = cart2pol(X,Y); BKVvu}V(o  
    %       idx = r<=1; WYI? M  
    %       z = nan(size(X)); ZLo3 0*  
    %       n = [0  1  1  2  2  2  3  3  3  3]; _mFb+8C  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; .6  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; D~8f6Ko"m  
    %       y = zernfun(n,m,r(idx),theta(idx)); N b(se*Y#  
    %       figure('Units','normalized') aD0w82s]J  
    %       for k = 1:10 M.H4ud  
    %           z(idx) = y(:,k); 6n;ewl}  
    %           subplot(4,7,Nplot(k)) ou96 P<B  
    %           pcolor(x,x,z), shading interp 7r*>?]y+  
    %           set(gca,'XTick',[],'YTick',[]) sm\/wlbE  
    %           axis square + ZGOv,l  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) z?FZu,h}  
    %       end Awe\KJ^`  
    % CbK7="48  
    %   See also ZERNPOL, ZERNFUN2. ]Jv Z:'g}  
    @{XN}tWDOp  
    x"_f$,:!  
    %   Paul Fricker 11/13/2006 gY;N>Yq,C  
    %xWmzdn  
    zKgW9j<(  
    I8`.e qV  
    ZL~}B.nqS  
    % Check and prepare the inputs: vJXd{iQE@C  
    % ----------------------------- 1gH5#_ ?  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) WV?iYX!  
        error('zernfun:NMvectors','N and M must be vectors.') :tR%y"  
    end H$\?D+xlf  
     Zp]Bs  
    vad" N  
    if length(n)~=length(m) t1IC0'o-  
        error('zernfun:NMlength','N and M must be the same length.') l m-ubzJN  
    end y$\K@B4  
    f{^n<\Jh  
    WDgp(Av!  
    n = n(:); ChGwG.-%L  
    m = m(:); 'KyT]OObS  
    if any(mod(n-m,2)) &t p5y}=n  
        error('zernfun:NMmultiplesof2', ... 1&wZJP=  
              'All N and M must differ by multiples of 2 (including 0).') nc@ul')  
    end 8v(Xr}q,r  
    GpxGDN3?  
    TvM{ QGN  
    if any(m>n) ;|9VPv/  
        error('zernfun:MlessthanN', ... EA?:GtH  
              'Each M must be less than or equal to its corresponding N.') r]8tl  
    end <*4=sX@  
    y~U+MtSf#  
    o&I 0*~ sN  
    if any( r>1 | r<0 ) 5Ko "-  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') EKwS~G.b!  
    end s?OGB}  
    Uf_w o  
    &QCqaJ-  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) SHz& o[u  
        error('zernfun:RTHvector','R and THETA must be vectors.') Z(U&0GH`  
    end qxd{c8  
    TpMfk7-  
    Z<ke!H  
    r = r(:); I0)iC[s8;  
    theta = theta(:); yu}4L'e  
    length_r = length(r); y0A2{'w  
    if length_r~=length(theta) B[b'OtH  
        error('zernfun:RTHlength', ... ( B50~it  
              'The number of R- and THETA-values must be equal.') @,zBZNX y  
    end j-yD;N  
    }yB@?  
    zU1rjhv+  
    % Check normalization: <-FZ-asem  
    % -------------------- Eb{TKz?  
    if nargin==5 && ischar(nflag) R<JI  
        isnorm = strcmpi(nflag,'norm'); |#!25qAT  
        if ~isnorm ~{+J~5!;<H  
            error('zernfun:normalization','Unrecognized normalization flag.') P=u)Q _  
        end VFG)|Z  
    else T 0^U ]C  
        isnorm = false; x-%nnC6e  
    end RZ?>>Ll6  
    ;&:UxmTf  
    }8x[  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% EHo"y.ODg  
    % Compute the Zernike Polynomials o"'VI4  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% sU+~#K$ b  
    eZ  ]6 Q  
    i<=@ 7W  
    % Determine the required powers of r: fI"`[cA"]  
    % ----------------------------------- V|b?H6Q  
    m_abs = abs(m);  hA/FK  
    rpowers = []; ~(hmiNa;  
    for j = 1:length(n) {/B) YR  
        rpowers = [rpowers m_abs(j):2:n(j)]; hoU&'P8  
    end Snh\Fgdz  
    rpowers = unique(rpowers); Of:e6N  
    ](8XC_-U'  
    +cj NA2@  
    % Pre-compute the values of r raised to the required powers, A.z~wu%(  
    % and compile them in a matrix: BB>7%~3f  
    % ----------------------------- %J+$p\c  
    if rpowers(1)==0 3zh'5qQ  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Zz/w>kAG*{  
        rpowern = cat(2,rpowern{:}); %\5y6  
        rpowern = [ones(length_r,1) rpowern]; `o:)PTQNg  
    else z|pH>R?:  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ]=]'*Z%  
        rpowern = cat(2,rpowern{:}); BDB-OJ  
    end Uhg[#TUK  
    3&2,[G04  
    @ ?e;Jp9  
    % Compute the values of the polynomials: hXM C!~Th  
    % -------------------------------------- SkPv.H0Id  
    y = zeros(length_r,length(n)); QP\vN|r  
    for j = 1:length(n) !)LR41>?  
        s = 0:(n(j)-m_abs(j))/2; {P = {)  
        pows = n(j):-2:m_abs(j); <v5toyA  
        for k = length(s):-1:1 J'B;  
            p = (1-2*mod(s(k),2))* ... 2<B+ID3qv  
                       prod(2:(n(j)-s(k)))/              ... C*c=@VAa  
                       prod(2:s(k))/                     ... M{nz~W80  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... `5!7Il  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); lg!1q8  
            idx = (pows(k)==rpowers); A;Zg:  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 4["}U1sG  
        end Ylo@  
         OgOu$.  
        if isnorm nS4~1a  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 3QXGbu}:h!  
        end ;M'R/JlUN  
    end kWoy%?|RRa  
    % END: Compute the Zernike Polynomials tX)]ZuEi$  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% xRaYm  
    4|XE f,  
    @aj"1 2  
    % Compute the Zernike functions: _$fxoD9  
    % ------------------------------ x80~j(uVf  
    idx_pos = m>0; ]k,fEn(  
    idx_neg = m<0; q<;9!2py  
    Mq*Sp UR  
    FE_n+^|k<  
    z = y; `ZNjA},.  
    if any(idx_pos) ;dB=/U>3U  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); BJ&>'rc  
    end 67n1s  
    if any(idx_neg) if `/LJsa  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Hq%`DWus\  
    end .Qi`5C:U  
    s"sX# l[J  
    u\Xi]pZ@X]  
    % EOF zernfun }. ,xhF[  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  E9 q8tE}  
    ~1}NQa(  
    DDE还是手动输入的呢? Tm` QZh3  
    VEz&TPu  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究