切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8784阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, F4]=(T  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, MxDqp;  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? 0uu)0:  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? 1*f*}M  
    k&9[}a*  
    |Ae7wXOs  
    kgHZaQnD  
    4Opf[3]  
    function z = zernfun(n,m,r,theta,nflag) ]E $bK  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. *?pnTQs^  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N cD t|v~  
    %   and angular frequency M, evaluated at positions (R,THETA) on the k=4C"   
    %   unit circle.  N is a vector of positive integers (including 0), and t|m=X  
    %   M is a vector with the same number of elements as N.  Each element a+^,EY  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) xW|8-q  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, &$heW,  
    %   and THETA is a vector of angles.  R and THETA must have the same NG8 F'=<  
    %   length.  The output Z is a matrix with one column for every (N,M) <+UJgB A-  
    %   pair, and one row for every (R,THETA) pair. uD\rmO{  
    % =I0J1Ob  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike K'f^=bc I  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), w7c0jIf{  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral n_(f"U v  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, L[^.pO  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ZypK''&oc  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. I9e3-2THfj  
    % "R\D:Olb#  
    %   The Zernike functions are an orthogonal basis on the unit circle. OX7a72z  
    %   They are used in disciplines such as astronomy, optics, and Ept=&mJPu  
    %   optometry to describe functions on a circular domain. OF0v0Y/a  
    % ITy/h]0  
    %   The following table lists the first 15 Zernike functions. ^Y%<$IFG  
    % %~:@}C%A  
    %       n    m    Zernike function           Normalization \D1@UyE  
    %       -------------------------------------------------- =zTpDL  
    %       0    0    1                                 1 ,Jx.Kj.,  
    %       1    1    r * cos(theta)                    2 U|<>xe*|%  
    %       1   -1    r * sin(theta)                    2 7x]q>Y8T  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) u2OrH3E4E3  
    %       2    0    (2*r^2 - 1)                    sqrt(3) }USOWsLSt  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) YU XxQ|  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) KGGnypx`  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) Uz=o l.E  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) rk47 $36X  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) Nza@6nI"  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) c axOxRo\  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) {Iz"]Wh<f  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) _S,UpR~2W  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) _gEojuaN  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) $Wjx$fD  
    %       -------------------------------------------------- +R7pdi  
    % /Ny#+$cfk  
    %   Example 1: 3a&HW JBSx  
    % T oT('  
    %       % Display the Zernike function Z(n=5,m=1) T7-yZSw -m  
    %       x = -1:0.01:1; '#>Fe`[  
    %       [X,Y] = meshgrid(x,x); Yr\quinLL  
    %       [theta,r] = cart2pol(X,Y); d)0|Q  
    %       idx = r<=1; I%b5a`7  
    %       z = nan(size(X)); 2.^CIJc  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 96S$Y~G# &  
    %       figure ,g4T>7`&U%  
    %       pcolor(x,x,z), shading interp v(6[z)A0  
    %       axis square, colorbar lbGPy'h<rt  
    %       title('Zernike function Z_5^1(r,\theta)') =q>lP+  
    % "$P/ek  
    %   Example 2: E@6gTx*  
    % |)br-?2  
    %       % Display the first 10 Zernike functions F8#MI G   
    %       x = -1:0.01:1; 1]Cd fj6@  
    %       [X,Y] = meshgrid(x,x); D2J)qCK1)  
    %       [theta,r] = cart2pol(X,Y); 7H|0.  
    %       idx = r<=1; G`/4 n@  
    %       z = nan(size(X));  6@"E*-z$  
    %       n = [0  1  1  2  2  2  3  3  3  3]; 0~P]Fw^w  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; mwMu1#  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; s IBP$9  
    %       y = zernfun(n,m,r(idx),theta(idx)); a^\ F9^j  
    %       figure('Units','normalized') [mj=m?j  
    %       for k = 1:10 2jlz#Sk  
    %           z(idx) = y(:,k); H0jbG;  
    %           subplot(4,7,Nplot(k)) Sy]W4%  
    %           pcolor(x,x,z), shading interp I!}V+gu=  
    %           set(gca,'XTick',[],'YTick',[]) (XlvPcTi  
    %           axis square !? H:?  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) -8vGvI>  
    %       end @BPQ >  
    % K4o']{:U  
    %   See also ZERNPOL, ZERNFUN2. VbTX;?  
    .wUnN8crQ  
    qu!x#OY+  
    %   Paul Fricker 11/13/2006 /sn }Q-Zy2  
    "kC6G%  
    {=,G>p  
    n2:Uu>/  
    -[&Z{1A4x4  
    % Check and prepare the inputs: Qmb+%z  
    % ----------------------------- l>L?T#v!_  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) OH@gwC  
        error('zernfun:NMvectors','N and M must be vectors.') 4sX? O4p  
    end +Z-{6C  
    G(wstHT;/  
    :'xZF2  
    if length(n)~=length(m) Ui-Y `  
        error('zernfun:NMlength','N and M must be the same length.') 9Y2.ob!$}  
    end J`C 2}$ ~  
    s&+`>  
     Lsai8 B  
    n = n(:); VKfpk^rU  
    m = m(:); hN*v|LFf1  
    if any(mod(n-m,2)) PW iuM=E  
        error('zernfun:NMmultiplesof2', ... u~ VXe  
              'All N and M must differ by multiples of 2 (including 0).') *3OlWnZ?  
    end q2OF-.rE  
    c<~DYe;;  
    J_j4Zb% K  
    if any(m>n) SUIu.4Mz  
        error('zernfun:MlessthanN', ... ]Nw ]po+  
              'Each M must be less than or equal to its corresponding N.') #%8)'=1+4?  
    end MRZN4<}9  
    O2yD{i#l*#  
    XiV K4sD8  
    if any( r>1 | r<0 ) xls US'Eo  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 9i lJ  
    end ,\1Rf.  
    ttH Rc!  
    [Jjo H1E@  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) pHye8v4fvi  
        error('zernfun:RTHvector','R and THETA must be vectors.') 5\O&pz@D  
    end ;Jb% 2?+=!  
    k]P'D .  
    44t;#6p@%>  
    r = r(:); Oiqc]4TL  
    theta = theta(:); *b!.9pK  
    length_r = length(r); PR AP~P&^  
    if length_r~=length(theta) 7q 5 \]J[  
        error('zernfun:RTHlength', ... uZ@qlq8  
              'The number of R- and THETA-values must be equal.') 'vZy-qHrV  
    end EP<{3f y  
    A[`c+&  
    jsF5q~F  
    % Check normalization: 53.jx38xS  
    % -------------------- ftRdK>a D  
    if nargin==5 && ischar(nflag) \}<J>R@  
        isnorm = strcmpi(nflag,'norm'); ^y93h8\y  
        if ~isnorm R<hsG%BS(D  
            error('zernfun:normalization','Unrecognized normalization flag.') 7:=(yBG  
        end +afkpvj8  
    else }5z!FXB  
        isnorm = false; ACFEM9 [=  
    end #Aj#C>  
    a@9W'/?igk  
     BPKrRex  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% D vN0h(?  
    % Compute the Zernike Polynomials |%rRALIY  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 6/p9ag]  
    E@l@f  
    Zs;c0T ">  
    % Determine the required powers of r: +# !?+'A  
    % ----------------------------------- X4Uy3TV>  
    m_abs = abs(m); v}z^M_eFm  
    rpowers = []; X'%BS  
    for j = 1:length(n) >}C:EnECy  
        rpowers = [rpowers m_abs(j):2:n(j)]; muBl~6_mb2  
    end 1Mx2%  
    rpowers = unique(rpowers); hv#LKyp%  
    vS:=%@c>ta  
    qC=ZH#  
    % Pre-compute the values of r raised to the required powers, VG$%Vs  
    % and compile them in a matrix: P.=Dd"La  
    % ----------------------------- ?VTP|Z  
    if rpowers(1)==0 AT2D+Hi=E  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); LJ9#!r@H  
        rpowern = cat(2,rpowern{:}); &Ot9"Aq:  
        rpowern = [ones(length_r,1) rpowern]; ?i!d00X  
    else ]/%CTD(O  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); m1tc="j  
        rpowern = cat(2,rpowern{:}); D$D;'Kij  
    end ,wHlU-%  
    j.V7`x  
    Y9%zo~]-W'  
    % Compute the values of the polynomials: =NPo<^Lae  
    % -------------------------------------- i\4dd)p-  
    y = zeros(length_r,length(n)); B < HD  
    for j = 1:length(n) Y8fel2;  
        s = 0:(n(j)-m_abs(j))/2; p}K+4z   
        pows = n(j):-2:m_abs(j); 83'rQDo)G  
        for k = length(s):-1:1 1p SEr6  
            p = (1-2*mod(s(k),2))* ... q%1B4 mF'  
                       prod(2:(n(j)-s(k)))/              ... P8ns @VV  
                       prod(2:s(k))/                     ... z_y@4B6>}  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... q'Y)Y(d  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); ZKB27D_vg>  
            idx = (pows(k)==rpowers); nA=E|$1  
            y(:,j) = y(:,j) + p*rpowern(:,idx); bZ+H u~  
        end em ]0^otM  
         N]|)O]/[  
        if isnorm 8p/&_<mnW  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); \@^` G  
        end :/fT8KCwo  
    end cz$*6P<9J  
    % END: Compute the Zernike Polynomials q _:7uQ  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% _gCi@uXS3  
    e4.G9(  
    BG]|iHi  
    % Compute the Zernike functions: COH>B1W@  
    % ------------------------------ xR&Le/3+  
    idx_pos = m>0; !\\1#:*_W  
    idx_neg = m<0; RNcnE1=  
    ;M *G  
    "T>;wyGW  
    z = y; P Qi=  
    if any(idx_pos) i[vOpg]J  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); VlxHZ  
    end <sjz_::V8R  
    if any(idx_neg) T{F 'Y%  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 3nUC,T%  
    end N_VWA.JHt  
    8J2U UVA`1  
    y"w`yl{_  
    % EOF zernfun ovvg"/>L  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    958
    光币
    1062
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  B1(T-pr  
    .%x%(olf  
    DDE还是手动输入的呢? Yjh02wo  
    #A9rI;"XI  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究