下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, S;$@?vF
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, A>6b
6
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? 9l+`O0.@
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? \?[#>L4
d\`A
^
^4Ra$<
:GC<U|p
8T'=lTJ
function z = zernfun(n,m,r,theta,nflag) N2_j[Pe
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. W[o~AbU
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N BRP9j
y
% and angular frequency M, evaluated at positions (R,THETA) on the 7?K?-Oj
% unit circle. N is a vector of positive integers (including 0), and e{/(NtKf
% M is a vector with the same number of elements as N. Each element ?;.j)
% k of M must be a positive integer, with possible values M(k) = -N(k) ?@9kVB*|
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, sXI_!)H
% and THETA is a vector of angles. R and THETA must have the same -
Z "w
% length. The output Z is a matrix with one column for every (N,M) ZVpMR0!
% pair, and one row for every (R,THETA) pair. >Dpz0v
% cA"',N8!5
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike W|@EK E.k
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 4-[L^1%S[
% with delta(m,0) the Kronecker delta, is chosen so that the integral KO(+%>^R
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, QP|Ou*Qm)
% and theta=0 to theta=2*pi) is unity. For the non-normalized chsjY]b
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. OiX>^_iDt
% RqW
ZhHI1M
% The Zernike functions are an orthogonal basis on the unit circle. [7?K9r\#
% They are used in disciplines such as astronomy, optics, and BQv+9(:fQB
% optometry to describe functions on a circular domain.
S\GC^
FK
% 5O&6 (Gaf
% The following table lists the first 15 Zernike functions. *
B,D#;6
% 9^J8V]X
% n m Zernike function Normalization ]{Vq;
% -------------------------------------------------- 4VPL
-":6
% 0 0 1 1 @L^2VVWk^
% 1 1 r * cos(theta) 2 >#B%gxff
% 1 -1 r * sin(theta) 2 D%umL/[]
% 2 -2 r^2 * cos(2*theta) sqrt(6) cTmoz.0
% 2 0 (2*r^2 - 1) sqrt(3) EA%(+tJ^0
% 2 2 r^2 * sin(2*theta) sqrt(6) eX9{ wb(
% 3 -3 r^3 * cos(3*theta) sqrt(8) -UkP{x)S
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 5n1;@Vr
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 7/NXb
% 3 3 r^3 * sin(3*theta) sqrt(8) aksyr$d0V<
% 4 -4 r^4 * cos(4*theta) sqrt(10) y]9
3z!#Z
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Z{`;Ys:zk
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) km'3[}8o&
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) =)m2u2c M
% 4 4 r^4 * sin(4*theta) sqrt(10) .pQH>;k]K
% -------------------------------------------------- ZA zn-n
% HDYr?t~V
% Example 1: 8 s!0Z1Roc
% |$#u~<r_
w
% % Display the Zernike function Z(n=5,m=1) zu<b#W v
% x = -1:0.01:1; 4)+MvKxjS
% [X,Y] = meshgrid(x,x); X>2_Gol!
% [theta,r] = cart2pol(X,Y); (E59)z -
% idx = r<=1; < i*v
% z = nan(size(X)); ex7zg!
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 7+JQaYO`"
% figure !7@IWz(,"
% pcolor(x,x,z), shading interp tYiK#N7
% axis square, colorbar 2V_C_5)1
% title('Zernike function Z_5^1(r,\theta)') ^ruS
% Bv
\ihUg/
% Example 2: p!>FPS
% mv%fX2.
% % Display the first 10 Zernike functions Qn(e[
C6\
% x = -1:0.01:1; ;rJR+wpNa
% [X,Y] = meshgrid(x,x); -EFtk\/
% [theta,r] = cart2pol(X,Y); \%=\_"^?
% idx = r<=1; x)l}d3
% z = nan(size(X)); Ek(.
["
% n = [0 1 1 2 2 2 3 3 3 3]; _KC)f'Cx
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; qI\qpWS\
% Nplot = [4 10 12 16 18 20 22 24 26 28]; Z+)R%Z'aL
% y = zernfun(n,m,r(idx),theta(idx)); Q.#@xaX'{`
% figure('Units','normalized') u _s
% for k = 1:10 w-};\]I
% z(idx) = y(:,k); y$7Fq'
% subplot(4,7,Nplot(k)) LGKkT?fcSC
% pcolor(x,x,z), shading interp X|t?{.p
% set(gca,'XTick',[],'YTick',[]) e~=fo#*2?@
% axis square /4+M0P l
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) !YSAQi ;I
% end ~F^=7oq
% -}@3,G
% See also ZERNPOL, ZERNFUN2. $-YS\R\9x
GrjL9+|x
L.>tJ.ID
% Paul Fricker 11/13/2006 pa Uh+"y>
Q*Per;%J
23@e?A=C
DtG><g}[]
=K .' x
% Check and prepare the inputs: Kf2*|ZHj
% ----------------------------- <Rob.x3
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) EC$wi|i
error('zernfun:NMvectors','N and M must be vectors.') cW;to Q!P
end Lw\ANku
j':Ybr>BR
UOSa`TZbZ
if length(n)~=length(m) Q7UFF
error('zernfun:NMlength','N and M must be the same length.') tiSN amvG1
end }"wWSPD
7g}4gX's
,Y=r]
fk
n = n(:); OJ\IdUZ
m = m(:); a{^[<
if any(mod(n-m,2)) 55MsF}p
error('zernfun:NMmultiplesof2', ... PF*<_p" j
'All N and M must differ by multiples of 2 (including 0).') k-xh-&
end 5_ -YF~
R<{bb'
BusD}9QqB
if any(m>n) VlRN
error('zernfun:MlessthanN', ... SdBv?`u|g
'Each M must be less than or equal to its corresponding N.') cOcF VPQ
end //]g78]=O
zm)
]cq
&Z/aM?
if any( r>1 | r<0 ) |8PUmax
error('zernfun:Rlessthan1','All R must be between 0 and 1.') A-1Wn^,>*
end %&5 !vK
\k / N/&;
f1(V~{N,+
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) W,5A|Q~
error('zernfun:RTHvector','R and THETA must be vectors.') F& .iY0Pt
end
<:0649ZB
)9MmL-7K
&$t BD@7
r = r(:); rlk0t159
theta = theta(:); ZQ9!k*
^
length_r = length(r); 3P~I'FQ
if length_r~=length(theta) *,5V;7OR
error('zernfun:RTHlength', ... n3t1'_/TU}
'The number of R- and THETA-values must be equal.') U*`7
end 0b+OB pqN
iM+K&\{_h
[>QV^2'Z
% Check normalization: h!ZEZ|{
% -------------------- #Mw|h^Wm
if nargin==5 && ischar(nflag) $,4;_4t
isnorm = strcmpi(nflag,'norm'); E</UmM+ R
if ~isnorm Vd~{SS2>
error('zernfun:normalization','Unrecognized normalization flag.') \?7)oFNz
end =)vmX0vL
else #-dfG.*
isnorm = false; F%@(
$f
end u[9i>7}9
Q1 ?O~ao
dOh'9kk3
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% l4?o0;:)
% Compute the Zernike Polynomials ?9xaBWf
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ,o7aIg&_H
EM!# FJh
(G $nN*rlu
% Determine the required powers of r: {Ak{
ct\t
% ----------------------------------- {I+
m_abs = abs(m); n_\VG[f
rpowers = []; R}njFQvS)
for j = 1:length(n) }VxbO8\b(
rpowers = [rpowers m_abs(j):2:n(j)]; Yn4c6K
end Ac;rMwXk#
rpowers = unique(rpowers); c9imfA+e
LWE[]1=
H6(kxpOI\
% Pre-compute the values of r raised to the required powers, ,g2|8>sJP
% and compile them in a matrix: B2t.;uz(,
% ----------------------------- ga&l.:lo
if rpowers(1)==0 :=vB|Ch:~
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); JF!?i6V
rpowern = cat(2,rpowern{:}); R2WEPMH%
rpowern = [ones(length_r,1) rpowern]; Ry>c]\a]
else P5/K?I~/So
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 48dIh\TH"
rpowern = cat(2,rpowern{:}); 6,
\i0y5n
end hV|pH)Nu{
e@' rY#:u
d2lOx|jt
% Compute the values of the polynomials: oR (hL4Dc
% -------------------------------------- {Ts@#V=:
y = zeros(length_r,length(n)); ._@Scd
for j = 1:length(n) BE. v+'c"
s = 0:(n(j)-m_abs(j))/2; 1];rW`Bw
pows = n(j):-2:m_abs(j); P\\4 w)C
for k = length(s):-1:1 4]9+
p = (1-2*mod(s(k),2))* ... c#sPM!!
prod(2:(n(j)-s(k)))/ ... 'U
',9
prod(2:s(k))/ ... amq]&.M
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... @w&VI6
prod(2:((n(j)+m_abs(j))/2-s(k))); hZ2!UW4'
idx = (pows(k)==rpowers); YBn"9w\#
y(:,j) = y(:,j) + p*rpowern(:,idx); `&$"oW{HW
end JwWW w1
?:l3O_U5
if isnorm ?95^&4Oh0
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); }Kc[pp|9<
end <>$`vuU
end W5,e;4/hL
% END: Compute the Zernike Polynomials DpjiE/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %7=B?c|
YW55iyM
]-"~?
% Compute the Zernike functions: W^; wr#
% ------------------------------ RM\it"g
idx_pos = m>0; 0,+RF"R
idx_neg = m<0; V5sH:A7GJ
h|OqM:J;
G)5w_^&%
z = y; z}\TS.
if any(idx_pos) q[p+OpA
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 5W"&$6vj
end K6<@DP+/
if any(idx_neg) i5wXT
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ,l`4)@{G
end 1A\Jh3;Q
(|%YyRaX
bM7y}P5`1
% EOF zernfun ~]X4ru5,4