切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9052阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, 3fJ GJW!zu  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 9(>]6|XS  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? ?{W@TY@S  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? @^8tk3$ Y  
    zKr\S |yE  
    .CI { g2  
     VP H  
    5[.Dlpa'7  
    function z = zernfun(n,m,r,theta,nflag) ;Wa4d`K  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. a?bSMt}  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N fZK&h.  
    %   and angular frequency M, evaluated at positions (R,THETA) on the lf4V; |!^  
    %   unit circle.  N is a vector of positive integers (including 0), and p._BG80  
    %   M is a vector with the same number of elements as N.  Each element w%jc' ;|  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) . :Q[Z  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, %|L+~=  
    %   and THETA is a vector of angles.  R and THETA must have the same x8I=I"Sp  
    %   length.  The output Z is a matrix with one column for every (N,M) bD_|n!3  
    %   pair, and one row for every (R,THETA) pair. T4,dhS|  
    % :_;9&[H9ha  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ^vXMX^*  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), /t=R~BJu  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral X~ n=U4s}O  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, N|[P%WM3  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized lub(chCE[  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. |7Fe~TC  
    % C$o#zu q -  
    %   The Zernike functions are an orthogonal basis on the unit circle. (uV ~1  
    %   They are used in disciplines such as astronomy, optics, and M{gtu'.  
    %   optometry to describe functions on a circular domain. 1&A@Zo5|  
    % ".jY3<bQg  
    %   The following table lists the first 15 Zernike functions. mM.-MIp  
    % x/*ndH  
    %       n    m    Zernike function           Normalization qdoJIP{  
    %       -------------------------------------------------- &z[39Q{~  
    %       0    0    1                                 1 @/i;/$\  
    %       1    1    r * cos(theta)                    2 IXYSZ)z  
    %       1   -1    r * sin(theta)                    2 %[(DFutJY+  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) #L[-WC]1y  
    %       2    0    (2*r^2 - 1)                    sqrt(3) ?0_Bs4O\  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) H\7#$ HB  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 1:]iV}OFqR  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) E)liuu! qI  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) RD_IGV   
    %       3    3    r^3 * sin(3*theta)             sqrt(8) |_Vi8Ly  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) x ;V7D5 q  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) a nK7j2  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) }HB)%C50.  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) V?U->0>Z4  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) gJn|G#!  
    %       -------------------------------------------------- U 2k^X=yl  
    % jEr/*kv  
    %   Example 1: R*~<?}Rr  
    % sM)qzO2wh  
    %       % Display the Zernike function Z(n=5,m=1) C'x?riJ/  
    %       x = -1:0.01:1; ~IvAnwQ'  
    %       [X,Y] = meshgrid(x,x); z(]14250  
    %       [theta,r] = cart2pol(X,Y); ,H!E :k  
    %       idx = r<=1; w'[lIEP 2$  
    %       z = nan(size(X)); TCAtb('D  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); T1TKwU8l  
    %       figure W =YFe<Q  
    %       pcolor(x,x,z), shading interp siveqz6h  
    %       axis square, colorbar PM3kI\:)m  
    %       title('Zernike function Z_5^1(r,\theta)') nbM[?=WS  
    % [gm[mwZ  
    %   Example 2: AF5.)Y@.  
    %  9?c0cwP?  
    %       % Display the first 10 Zernike functions m89-rR:Kc  
    %       x = -1:0.01:1; #$p&J1   
    %       [X,Y] = meshgrid(x,x); 7\*_/[B  
    %       [theta,r] = cart2pol(X,Y); iB#xUSkS  
    %       idx = r<=1; nO^aZmSu  
    %       z = nan(size(X)); g.-{=kZ   
    %       n = [0  1  1  2  2  2  3  3  3  3]; K3jKOV8   
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; a4HUP*  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; +92/0  
    %       y = zernfun(n,m,r(idx),theta(idx)); TJS/O~=  
    %       figure('Units','normalized') &Rw4ub3  
    %       for k = 1:10 39| W(,  
    %           z(idx) = y(:,k); l);M(<  
    %           subplot(4,7,Nplot(k)) *FoH '\=  
    %           pcolor(x,x,z), shading interp ta`}}I  
    %           set(gca,'XTick',[],'YTick',[]) p!5oz2RK  
    %           axis square h3rdqx1  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ^_FB .y%  
    %       end 2QwdDKMS_  
    % PCzC8~t  
    %   See also ZERNPOL, ZERNFUN2. 9\9:)q  
    dh r)ra]  
    >Micc   
    %   Paul Fricker 11/13/2006 'TWZ@8h~  
    EA.4 m3  
    e>`+Vk^Jc  
    y8"8QH  
    ut8v&i1?  
    % Check and prepare the inputs: &NbhQY`k  
    % ----------------------------- A$gP: 1&m  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) }F3}-5![  
        error('zernfun:NMvectors','N and M must be vectors.') 0 XV8 B  
    end rro92(y  
    5 [{l9  
    r;}%} /IX  
    if length(n)~=length(m) P|,@En 1!  
        error('zernfun:NMlength','N and M must be the same length.') $#R@x.=  
    end  + ]I7]  
    sPMCN's  
    gA 0:qEL\  
    n = n(:); e UMOV]h  
    m = m(:); F+yu[Dh:  
    if any(mod(n-m,2)) V$U#'G>m  
        error('zernfun:NMmultiplesof2', ... D@9adwQb  
              'All N and M must differ by multiples of 2 (including 0).') tkT:5O6  
    end mS)|i+5  
    s~N WJ*i  
    +T]/4"^M  
    if any(m>n) HCOv<k  
        error('zernfun:MlessthanN', ... $07;gpZt  
              'Each M must be less than or equal to its corresponding N.') DIrQ5C  
    end quXL'g  
    P)7:G?OTx  
    $oF0[}S  
    if any( r>1 | r<0 ) `M0m`Up  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') "u#,#z_  
    end WdQR^'b$   
    n*twuB/P 1  
    x-0O3IIE  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) fpd4 v|(  
        error('zernfun:RTHvector','R and THETA must be vectors.') N]yh8"7X  
    end yU ?TdM\  
    Er@'X0n  
     {yXpBS  
    r = r(:); L\)GPTo!x  
    theta = theta(:); IIj :\?r  
    length_r = length(r); ;UU`kk  
    if length_r~=length(theta) ,x (?7ZW>  
        error('zernfun:RTHlength', ... l1_hD ,4  
              'The number of R- and THETA-values must be equal.') bF_SD\/  
    end "{TVd>9_  
    @\ udaZc  
    JDbRv'F:(  
    % Check normalization: ~w Ekbq=  
    % -------------------- Epo/}y  
    if nargin==5 && ischar(nflag) = Ob-'Syg>  
        isnorm = strcmpi(nflag,'norm'); xWC*DKV  
        if ~isnorm yRd[ $p  
            error('zernfun:normalization','Unrecognized normalization flag.') MS7rD%(,'  
        end a!?JVhD&  
    else 2~ [  
        isnorm = false; VD.wO%9?)  
    end f2*e&+LjTP  
    Qs\m"yx  
    W}6OMAbsE;  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% qDlh6W?}k  
    % Compute the Zernike Polynomials $p(  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% G;jX@XqZ  
    7+'&(^c  
    $kAal26z  
    % Determine the required powers of r: SN#Cnu}  
    % ----------------------------------- !xD$U/%c  
    m_abs = abs(m); }0okyGg>q  
    rpowers = []; lE=&hba  
    for j = 1:length(n) c_~tCKAZ   
        rpowers = [rpowers m_abs(j):2:n(j)]; rS|nO_9f  
    end %fJ~ 3mu  
    rpowers = unique(rpowers); n{*A<-vL  
    3*8m!gq7s  
    lVptA3F  
    % Pre-compute the values of r raised to the required powers, ]H {g/C{j  
    % and compile them in a matrix: >;s!X(6 b  
    % ----------------------------- 9*Z!=Y#4,  
    if rpowers(1)==0 '&LH9r  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); c3aBPig\D  
        rpowern = cat(2,rpowern{:}); q1Sr#h|  
        rpowern = [ones(length_r,1) rpowern]; +,q#'wSQG  
    else 9z'(4U  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); '.gLqm}%  
        rpowern = cat(2,rpowern{:}); D~Rv"Hh  
    end FlyRcj  
    M&SY2\\TB  
    <^n@q f}  
    % Compute the values of the polynomials: r?%,#1|$$  
    % -------------------------------------- Nu,t,&B   
    y = zeros(length_r,length(n)); x'iBEm  
    for j = 1:length(n) cgV5{|P  
        s = 0:(n(j)-m_abs(j))/2; U-.A+#<IT9  
        pows = n(j):-2:m_abs(j); Q$^)z_jai  
        for k = length(s):-1:1 4p6\8eytq.  
            p = (1-2*mod(s(k),2))* ... P;bOtT --  
                       prod(2:(n(j)-s(k)))/              ... Yc`PK =!l  
                       prod(2:s(k))/                     ... oAt{ #v  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... tq.g4X ;_  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); &=[N{N?(  
            idx = (pows(k)==rpowers); |Duf 3u  
            y(:,j) = y(:,j) + p*rpowern(:,idx); fn3DoD+I  
        end JWsOze 8#  
         3kW%,d*_  
        if isnorm BJP^?FUd=,  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); undH{w=  
        end R<Uu(-O-  
    end CyKupJ.Fq  
    % END: Compute the Zernike Polynomials N"Cd{3  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% lPA:ho/`:  
    zbZN-j#  
    j&l2n2z  
    % Compute the Zernike functions: }>yQ!3/i  
    % ------------------------------ lEC91:Jyt  
    idx_pos = m>0; *@E&O^%cO  
    idx_neg = m<0; ,R*YI  
    4"et4Y7  
    F*_ytL  
    z = y; |>v8yS5  
    if any(idx_pos) l0BYv&tu  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); rrrn8b6  
    end }kF*I@:g  
    if any(idx_neg) !{S HlS  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); BDcA_= ^R&  
    end evE$$# 6R  
    !glGW[r/7  
    &\5%C\0Z<  
    % EOF zernfun Eemk2>iP?  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  iJem9XXb  
    X/-u$c  
    DDE还是手动输入的呢? n 2m!a0;  
    `Wy8g?d;bn  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究