下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, 0B1*N_.L@
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, S 8h/AW6l
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? <;SMczR
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? xdp{y=,[
gwR ^Z{
`h :&H,N
(!{_O_&
1 dI
function z = zernfun(n,m,r,theta,nflag) wdoA>a?q
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. pk(<],0]X
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N A^%z;( 0p
% and angular frequency M, evaluated at positions (R,THETA) on the OsvAm'B
% unit circle. N is a vector of positive integers (including 0), and D
OPOzh
% M is a vector with the same number of elements as N. Each element >0:h(,?V
% k of M must be a positive integer, with possible values M(k) = -N(k) BI,K?D&W-
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, (/Z~0hA[Q
% and THETA is a vector of angles. R and THETA must have the same az0( 54M
% length. The output Z is a matrix with one column for every (N,M) ~F>oNbJIv
% pair, and one row for every (R,THETA) pair. B>#zrCD
% 8uS1HE\%
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike #C4
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), VLu_SXlo*
% with delta(m,0) the Kronecker delta, is chosen so that the integral M)Tv(7
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, D-A#{e _
% and theta=0 to theta=2*pi) is unity. For the non-normalized m7^a4
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Lm:O
vVVB
% GAtK1%nPD
% The Zernike functions are an orthogonal basis on the unit circle. u\&oiwSIP
% They are used in disciplines such as astronomy, optics, and $*8c0.{U
% optometry to describe functions on a circular domain. lb`P9mbr+
% sVaWg?=qs'
% The following table lists the first 15 Zernike functions. JB''Ujyi
% ^fXNeBj
% n m Zernike function Normalization ~ $!eB/6ty
% -------------------------------------------------- SU2(XP]5
% 0 0 1 1 1:q55!b
% 1 1 r * cos(theta) 2 RAXqRP,iw
% 1 -1 r * sin(theta) 2 -!(3fO:
% 2 -2 r^2 * cos(2*theta) sqrt(6) B;hc|v{(
% 2 0 (2*r^2 - 1) sqrt(3) zO9|s}J8q
% 2 2 r^2 * sin(2*theta) sqrt(6) f1hi\p0q
% 3 -3 r^3 * cos(3*theta) sqrt(8) +J_A*B
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 1\kOjF)l
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) zZki9P
% 3 3 r^3 * sin(3*theta) sqrt(8) u%VO'}Gz
% 4 -4 r^4 * cos(4*theta) sqrt(10) 0MrtJNF]_O
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ?VS {,"X
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) wToz{!n
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) _6^ vxlF
% 4 4 r^4 * sin(4*theta) sqrt(10) dGP*bMCT
% -------------------------------------------------- 4UC/pGZY
% \qV5mD]"M
% Example 1: /$&~0pk
% T*-*U/
% % Display the Zernike function Z(n=5,m=1) 4x e:+sA.N
% x = -1:0.01:1; </:f-J%U/
% [X,Y] = meshgrid(x,x); /=,^fCCN
% [theta,r] = cart2pol(X,Y); 9SC#N5V
% idx = r<=1; @ g~kp
% z = nan(size(X)); G/2@Mn-
% z(idx) = zernfun(5,1,r(idx),theta(idx)); P}DrUND
% figure Uu>YE0/)
% pcolor(x,x,z), shading interp !ny;YV
% axis square, colorbar $-M1<?5
% title('Zernike function Z_5^1(r,\theta)') XuoI19V[
% kh^AH6{2
% Example 2: 6(DK\58
% s2b!Nib
% % Display the first 10 Zernike functions *z` {$hc
% x = -1:0.01:1; :}UWy?F
% [X,Y] = meshgrid(x,x); 5(u7b
% [theta,r] = cart2pol(X,Y); QbxjfW"/+
% idx = r<=1; ;9=9D{-4+
% z = nan(size(X)); c^A3|tCi
% n = [0 1 1 2 2 2 3 3 3 3]; IOvYvFUUJ
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; *G'zES0x
% Nplot = [4 10 12 16 18 20 22 24 26 28]; <kPU*P,
% y = zernfun(n,m,r(idx),theta(idx)); )1~4Tl,S
% figure('Units','normalized')
zRsT6u
% for k = 1:10 scJ`oc:<J
% z(idx) = y(:,k); E
I)Pfx"0
% subplot(4,7,Nplot(k)) 2=(=Wjk.
% pcolor(x,x,z), shading interp ehOF@IA_
% set(gca,'XTick',[],'YTick',[]) }I#;~|v~<
% axis square HP*x?|4
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 0*B_$E06
% end [-s0'z
% e`<=&w
% See also ZERNPOL, ZERNFUN2. s:jr/ j!
T7Lk4cU
.fUqsq
% Paul Fricker 11/13/2006 K )KE0/n
s/`4]B;2U
Uc<B)7{'
',*I=JW;
i*9eU*i|H
% Check and prepare the inputs: a!Z,~ V8
% ----------------------------- $T1
D
?X
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 7:mM`0g!
error('zernfun:NMvectors','N and M must be vectors.') 04WKAP'c
N
end PX\}lTJ
Rj^bZ%t
M\e%GJ0
if length(n)~=length(m) 9i,QCA
error('zernfun:NMlength','N and M must be the same length.') ]1abz:
end r,[vXxMy(;
6LNm>O
7 82NiVed
n = n(:); 9.#\GI ;
m = m(:); Lo7R^>
if any(mod(n-m,2)) `"A\8)6-
error('zernfun:NMmultiplesof2', ... @6h=O`X>
'All N and M must differ by multiples of 2 (including 0).') y9Yh%M(
end Uu
}ai."iB
S>*i^If
jW?.>(
if any(m>n) .~ZNlI {K
error('zernfun:MlessthanN', ... -[0)n{AVvU
'Each M must be less than or equal to its corresponding N.') ldI;DoE#U1
end 4K[U*-\"
Ct$e`H!;
Ks8S^77
if any( r>1 | r<0 ) {hZ_f3o
error('zernfun:Rlessthan1','All R must be between 0 and 1.') QmT]~4PqS
end -UUPhGC
}"Hf/{E$_"
N}>`Xm5'
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) )Qp?N<&'
error('zernfun:RTHvector','R and THETA must be vectors.') \qNj?;B
end Y;xVB"
(
{xr4CDP
#RlI([f|&
r = r(:); v)okVyv
theta = theta(:); 3MNo&0M9
length_r = length(r); .OX.z~":y
if length_r~=length(theta)
\AoM'+
error('zernfun:RTHlength', ... xh_6@}D2J
'The number of R- and THETA-values must be equal.') +\\,FO_
end |v[{k>7f
h+t{z"Ic=
|a3)U%rUEQ
% Check normalization: nFX8:fZ$>
% -------------------- ~O
65=8
if nargin==5 && ischar(nflag) EAj2uV
isnorm = strcmpi(nflag,'norm'); `fY~Lv{4d_
if ~isnorm iW.8+?Xq&
error('zernfun:normalization','Unrecognized normalization flag.') [fxAj]
end qZ6P(5X
else o*'J8El\y^
isnorm = false; @m1v B!
end H2E!A2\m
|XLx6E2F
5?kF'yksR
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% zw7=:<z=
% Compute the Zernike Polynomials V78QV3
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% C8-4 m68"
t?QR27cs$
$X9-0-
% Determine the required powers of r: xzz[!yJjG
% ----------------------------------- ]y2(ZTNTs
m_abs = abs(m); ;ZFn~!V
rpowers = []; RUlM""@b
for j = 1:length(n) |A8xy#
rpowers = [rpowers m_abs(j):2:n(j)]; hg]\~#&-
end l{\~I
rpowers = unique(rpowers); d Am(uJ
`.#e4 FBW
^z"90-V^
% Pre-compute the values of r raised to the required powers, 8ooj)
% and compile them in a matrix: XB50>??NE
% ----------------------------- P%ev8]2
if rpowers(1)==0 kzbgy)PK3
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); bJx{mq
rpowern = cat(2,rpowern{:}); M})2y+
rpowern = [ones(length_r,1) rpowern]; WG1UvPK
else 5owUQg,W
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); K0g<11}(Yg
rpowern = cat(2,rpowern{:}); y4C_G?
end oz(<e
,xn+T)2I
*h-_
% Compute the values of the polynomials: zq8z#FN
% -------------------------------------- 4IG'Tm
y = zeros(length_r,length(n)); y9=/kFPRm
for j = 1:length(n) B&0-~o3WP
s = 0:(n(j)-m_abs(j))/2; BBnj}XP*4
pows = n(j):-2:m_abs(j); ZgcA[P
for k = length(s):-1:1 Yih^ZTf]O?
p = (1-2*mod(s(k),2))* ... z%hB=V!~91
prod(2:(n(j)-s(k)))/ ... ]mn(lK
prod(2:s(k))/ ... Fm#4;'x5E
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... pV=X
prod(2:((n(j)+m_abs(j))/2-s(k))); vAy`8Q
idx = (pows(k)==rpowers); #?@k=e\
y(:,j) = y(:,j) + p*rpowern(:,idx); ujXC#r&
end L@_IGH
bO>Mvf
if isnorm =SRp
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); S"!nM]2L
end ([qw#!;w;
end #6 e
% END: Compute the Zernike Polynomials Ja4O*C<
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% '%. lY9D
zF>|
9JU
&\F`M|c
% Compute the Zernike functions: XTG*56IzL
% ------------------------------ h:Q*T*py
idx_pos = m>0; :K#'?tH
idx_neg = m<0; $*Njvr7
nBgksB*A
^.&