切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9144阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, l*nS gUg  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, ~e%*hZNo  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? %NeKDE  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? Hd;>k$B  
    zc/S  
    ^4s#nf:}  
    ReSP)%oW  
    50_%Tl[  
    function z = zernfun(n,m,r,theta,nflag) q#OLb"bTr  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. /^4)V8D_S  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N !o*oT}6n  
    %   and angular frequency M, evaluated at positions (R,THETA) on the mT!~;] RrF  
    %   unit circle.  N is a vector of positive integers (including 0), and _;'}P2&Q  
    %   M is a vector with the same number of elements as N.  Each element 1ed#nB %  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) c (\-7*En  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, o"[qPZd>  
    %   and THETA is a vector of angles.  R and THETA must have the same b?w4Nx#  
    %   length.  The output Z is a matrix with one column for every (N,M) : FxZdE  
    %   pair, and one row for every (R,THETA) pair. B"+Ygvxb  
    % rTmcP23]  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike .@B \&U7  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), y99G3t  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral _ e`b^_  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, @&,r|-  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized {Ziq~{W_  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. c?IIaj !  
    % RCxqqUS\C  
    %   The Zernike functions are an orthogonal basis on the unit circle. Oh8;YE-%  
    %   They are used in disciplines such as astronomy, optics, and  #lJF$  
    %   optometry to describe functions on a circular domain. g1&GX(4[  
    % \;P Bx &  
    %   The following table lists the first 15 Zernike functions. apw8wL2  
    % k)S7SbQ  
    %       n    m    Zernike function           Normalization 1%1-j  
    %       -------------------------------------------------- F'SOl*v(s5  
    %       0    0    1                                 1 eQ C`e#%  
    %       1    1    r * cos(theta)                    2 i ;X'1TN(y  
    %       1   -1    r * sin(theta)                    2 4AP<mo  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) }]g>PY  
    %       2    0    (2*r^2 - 1)                    sqrt(3) Kx<bVK4"  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) \UNw43EL  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) (F_#LeJ|  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) *a$z!Ma3h  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 2RM0ca _F  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) Mb$&~!  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) hV=)T^Q  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 66z1_ lA  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) @Vb-BC,  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) "G4{;!0C  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) #>>-:?X  
    %       -------------------------------------------------- a nIdCOh  
    % C:P,q6  
    %   Example 1: 1lMU('r%  
    % IClnh1=  
    %       % Display the Zernike function Z(n=5,m=1) D$ `yxc  
    %       x = -1:0.01:1; a&y%|Gs^f  
    %       [X,Y] = meshgrid(x,x); RJd55+h  
    %       [theta,r] = cart2pol(X,Y); F;MFw2G  
    %       idx = r<=1; JsiJ=zo<  
    %       z = nan(size(X)); FQ O6w'  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); tWc!!Hf2j  
    %       figure F!SmCE(0x  
    %       pcolor(x,x,z), shading interp 5ue{&z @T  
    %       axis square, colorbar uFECfh  
    %       title('Zernike function Z_5^1(r,\theta)') {){i ONd  
    % eOLS  
    %   Example 2: }0f[x ?V  
    % &|gn%<^  
    %       % Display the first 10 Zernike functions >eJk)qM  
    %       x = -1:0.01:1; Zkxt>%20~  
    %       [X,Y] = meshgrid(x,x); 0! !pNK%(  
    %       [theta,r] = cart2pol(X,Y); iyj&O"  
    %       idx = r<=1; .s, hl(w,  
    %       z = nan(size(X)); w3yI;P  
    %       n = [0  1  1  2  2  2  3  3  3  3]; <4(rY9   
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; bh_i*DJ]  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; oYqlN6n,=6  
    %       y = zernfun(n,m,r(idx),theta(idx)); 5N ' QG<jE  
    %       figure('Units','normalized') odj|" ZK  
    %       for k = 1:10 zFv>'1$  
    %           z(idx) = y(:,k); ?b2%\p`"  
    %           subplot(4,7,Nplot(k)) rF 7EO%,  
    %           pcolor(x,x,z), shading interp }HXNhv-K  
    %           set(gca,'XTick',[],'YTick',[]) L!/USh:IP  
    %           axis square Y+WOU._46I  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Vh'H5v^  
    %       end HM--`RJ  
    % YMJjO0  
    %   See also ZERNPOL, ZERNFUN2. ,=z8aiUu  
    i}M&1E  
    3QGg;  
    %   Paul Fricker 11/13/2006 3pq&TYQU  
    n;!t?jnf.  
    Ku&0bXP  
    AA yzT*^  
    | F: ?  
    % Check and prepare the inputs: Xt9?7J#\T  
    % ----------------------------- rX fQ_  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) | \Qr cf  
        error('zernfun:NMvectors','N and M must be vectors.') G|X1c}zAL  
    end ly6?jVJ  
    uKtrG,/ p  
    dkRJ^~  
    if length(n)~=length(m) xOD;pRZQ  
        error('zernfun:NMlength','N and M must be the same length.') 8[}MXMRdb  
    end KqaeRs.u  
    `EV[uj&1S  
    7uxy<#Ar  
    n = n(:); GQ)hZt0  
    m = m(:); {P-KU RQ  
    if any(mod(n-m,2)) -zMXc"'C^k  
        error('zernfun:NMmultiplesof2', ... H}JH339  
              'All N and M must differ by multiples of 2 (including 0).') /koNcpJ  
    end /1Rm^s)2z  
    y]M/oH  
    N.BD]_C  
    if any(m>n) >l 'QX(  
        error('zernfun:MlessthanN', ... m5f/vb4l  
              'Each M must be less than or equal to its corresponding N.') j}S  
    end C6O1ype  
     3]<$;[Q  
    .ay K+6I  
    if any( r>1 | r<0 ) H9nZ%n  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') jlzqa7  
    end =^=9z'u"=  
    u`K+0^)T`  
    ;c<:"ad(  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 3(6i6 vV  
        error('zernfun:RTHvector','R and THETA must be vectors.') WB $Z<m :  
    end 0Q%'vBX\`  
    Yq<D(F#qx  
    :NS;y-{^^y  
    r = r(:); xzIs,i}U  
    theta = theta(:); yq\)8Fe  
    length_r = length(r); g#5g0UP)V  
    if length_r~=length(theta) NfS0yQPx  
        error('zernfun:RTHlength', ... f{WJM>$:  
              'The number of R- and THETA-values must be equal.') '-gk))u>)  
    end BJ~Q\Si6  
    d*8 c,x  
    1wqCoDgkp  
    % Check normalization: u ldea)  
    % -------------------- d<(1^Rto  
    if nargin==5 && ischar(nflag) S #&HB  
        isnorm = strcmpi(nflag,'norm'); D@5&xd_@4  
        if ~isnorm ~>xn9vb=  
            error('zernfun:normalization','Unrecognized normalization flag.') Zdj~B1  
        end ?i)-K?4Sb  
    else IS]03_uQ  
        isnorm = false; 4D9l Za}  
    end :h*20iP  
    1H-R-NNJ:  
    {Kd9}CDAZ  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% kH1l -mxz  
    % Compute the Zernike Polynomials c*MjBAq  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% }B^s!y&b  
    &g.w~KWa  
    E=sBcb/v  
    % Determine the required powers of r: DV*8Mkzg  
    % ----------------------------------- 6SlE>b9tA  
    m_abs = abs(m); VXR.2C  
    rpowers = [];  U7tT  
    for j = 1:length(n) X& O o1y  
        rpowers = [rpowers m_abs(j):2:n(j)]; Z]uN9c  
    end xgsD<3  
    rpowers = unique(rpowers); J0mY=vX  
    d q"b_pr;  
    Qf7]t-Kp  
    % Pre-compute the values of r raised to the required powers, \*!g0C 8 o  
    % and compile them in a matrix: dSk\J[D  
    % ----------------------------- .'5yFBS  
    if rpowers(1)==0 o9q%=/@,  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Wq F(  
        rpowern = cat(2,rpowern{:}); Q3wD6!'&m  
        rpowern = [ones(length_r,1) rpowern]; yTkYPx  
    else }9<aX Y,  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); u)R>ozER  
        rpowern = cat(2,rpowern{:}); NVeb,Pf  
    end I)_072^O  
    vlp]!7v  
    &Vvy`JE  
    % Compute the values of the polynomials: Xdq2.:\  
    % -------------------------------------- v?fB:[dG  
    y = zeros(length_r,length(n)); L>xcgV7  
    for j = 1:length(n) \C/`?"4w  
        s = 0:(n(j)-m_abs(j))/2;  f==o  
        pows = n(j):-2:m_abs(j); A}OV>yM  
        for k = length(s):-1:1 nU)}!` E  
            p = (1-2*mod(s(k),2))* ... D#W{:_f  
                       prod(2:(n(j)-s(k)))/              ... V\ !FD5%  
                       prod(2:s(k))/                     ... DY~~pi~  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ?n\~&n'C  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); .Z'CqBr[:  
            idx = (pows(k)==rpowers); tvf"w`H  
            y(:,j) = y(:,j) + p*rpowern(:,idx); `: i|y  
        end 3vQ?vS|2  
         Crm](Z?  
        if isnorm SO]x^+[  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); b;9v.MZ4>g  
        end 6jPaS!E  
    end k[A=:H1"  
    % END: Compute the Zernike Polynomials K34ca-~  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% im*QaO%a4  
    TLPy/,  
    Rk2ZdNc\  
    % Compute the Zernike functions: jEit^5^5|  
    % ------------------------------ K ,f1c}  
    idx_pos = m>0; Y]&H U) u  
    idx_neg = m<0; l \xIGs  
    E)#3*Wlu$  
    &tLg}7?iB  
    z = y; kxTh tjgv  
    if any(idx_pos) qI:}3b;T  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); #9#N+  
    end %}+j4n  
    if any(idx_neg) isQ{Xt~K  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ^^3 >R`  
    end yr[iAi"  
    HPVT$EJ  
    `(W V pP?  
    % EOF zernfun kS/Zb3  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  4WzB=C(f  
    CmY'[rI  
    DDE还是手动输入的呢? VbKky1a@  
    t /EB y"N#  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究