下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, GQ_p-/p
R
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, $3,ryXp7
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? X w .p
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? ?X&6M;Zi
` gW<M
>{ me
|7KeR-
*H[Iq!@
function z = zernfun(n,m,r,theta,nflag) QKE9R-KTE
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. R<x'l=,D(
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N -TZ p
FT"
% and angular frequency M, evaluated at positions (R,THETA) on the 2Dd|~{%
% unit circle. N is a vector of positive integers (including 0), and *UW=Mdt
% M is a vector with the same number of elements as N. Each element Ix|~f1*%
% k of M must be a positive integer, with possible values M(k) = -N(k) 8J)xzp`*)
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, \Ofw8=N-2
% and THETA is a vector of angles. R and THETA must have the same @/&b;s73
% length. The output Z is a matrix with one column for every (N,M) % },Pe
% pair, and one row for every (R,THETA) pair. }CxvT`/
% ?RzD Qy D
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike M. td^l0
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 8_K60eXz
% with delta(m,0) the Kronecker delta, is chosen so that the integral B??J@+Nf
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ""svDfy$
% and theta=0 to theta=2*pi) is unity. For the non-normalized gGMWr.!
8
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Rte+(- iL
% 3gQPKBpc
% The Zernike functions are an orthogonal basis on the unit circle. @u._"/K
% They are used in disciplines such as astronomy, optics, and D=TL>T.bf
% optometry to describe functions on a circular domain. 8 ^B;1`#
% MCh#="L2
% The following table lists the first 15 Zernike functions. .qob_dRA
% vKoP|z=m
% n m Zernike function Normalization =e?$ M
% -------------------------------------------------- TEsnN i
1
% 0 0 1 1 dC}`IR
% 1 1 r * cos(theta) 2 !AJ]j|@VBd
% 1 -1 r * sin(theta) 2 $OVXk'cc
% 2 -2 r^2 * cos(2*theta) sqrt(6) UhmTr[&
% 2 0 (2*r^2 - 1) sqrt(3) wY"o`oZ
% 2 2 r^2 * sin(2*theta) sqrt(6) -=698h*
% 3 -3 r^3 * cos(3*theta) sqrt(8) bAr` E
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) YRlDX:oX~
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) UofTll)
% 3 3 r^3 * sin(3*theta) sqrt(8) Y\2|x*KwvF
% 4 -4 r^4 * cos(4*theta) sqrt(10) V^Rkt%JY
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 6D;^uM2N
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) s=Q(C[%I
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) @
\2#Dpr
% 4 4 r^4 * sin(4*theta) sqrt(10) irTv4ZE'+l
% -------------------------------------------------- *^ \FIUd
% uIMe
% Example 1: S'B6jJK2x
% >5T_g2pkv
% % Display the Zernike function Z(n=5,m=1) `:M^8SYrL
% x = -1:0.01:1; nU`Lhh8y
% [X,Y] = meshgrid(x,x); ji+{ :D
% [theta,r] = cart2pol(X,Y); Eaad,VBtU
% idx = r<=1; ngi<v6 i
% z = nan(size(X)); }%{MPqg
% z(idx) = zernfun(5,1,r(idx),theta(idx)); >u J/TQU
% figure ;1DdjE Tr
% pcolor(x,x,z), shading interp ;HOPABWz)
% axis square, colorbar H^1gy=kdj
% title('Zernike function Z_5^1(r,\theta)') *@V*~^V"J[
% OY"6J@[z
% Example 2: u}6v?!
% /vE]2Io
% % Display the first 10 Zernike functions 59Sw+iZj
% x = -1:0.01:1; OuIv e>8
% [X,Y] = meshgrid(x,x); 5|$a =UIR
% [theta,r] = cart2pol(X,Y); }g f}eH
% idx = r<=1; (foBp
% z = nan(size(X)); /&ygi H{^
% n = [0 1 1 2 2 2 3 3 3 3]; :46h+?
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; /48 =UK
% Nplot = [4 10 12 16 18 20 22 24 26 28]; #p
yim_
% y = zernfun(n,m,r(idx),theta(idx)); [6(Iwz?
% figure('Units','normalized') \|Dei);k
% for k = 1:10 &d`^E6#
% z(idx) = y(:,k); 6xgv:,
% subplot(4,7,Nplot(k)) +~2rW8
% pcolor(x,x,z), shading interp $M"0BZQ?y!
% set(gca,'XTick',[],'YTick',[]) r{+aeLu
% axis square L*?!Z^k
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) G5]1s
% end #I`ms$j%
% 8V4V3^_xs
% See also ZERNPOL, ZERNFUN2. VGH/X.NJ
F@YV]u>N
-.vDF?@G
% Paul Fricker 11/13/2006 M:ai<TZ]
B!aK
&:?e &
YT2'!R
1
VTe.M[:
% Check and prepare the inputs: _py2kjA6
% ----------------------------- heD,&OX
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 0|)19LR
error('zernfun:NMvectors','N and M must be vectors.') DOm-)zl{|x
end r!/0 j)
dU;upS_-
M/jb}*xDR
if length(n)~=length(m) L{ ^4DznI
error('zernfun:NMlength','N and M must be the same length.') ekzjF\!y
end VfSGCe
%]Cjhs"v
K%,$ V,#
n = n(:); [wcA.g* F
m = m(:); ~LE[,
I:q
if any(mod(n-m,2)) Z6=~1'<X
error('zernfun:NMmultiplesof2', ... _C+DB A
'All N and M must differ by multiples of 2 (including 0).') a20w,
end IbdM9qo7
T+TF-] J
Da,&+fZI!
if any(m>n) 0P 5BArJ?
error('zernfun:MlessthanN', ... S=R3"~p
'Each M must be less than or equal to its corresponding N.') -ID!pT vW
end dm^H5D/A
,hE/II`-d'
m<fA|9 F#
if any( r>1 | r<0 ) <NQyP{p
error('zernfun:Rlessthan1','All R must be between 0 and 1.') }V^e7d
end J@bW^>g*6u
/(%Ig,<"JC
44C+h
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) anx&Xj|=.F
error('zernfun:RTHvector','R and THETA must be vectors.') G\/IM
end d/B*
9.Ap~Ay.
DPPS?~Pq
r = r(:); %aLCH\e
theta = theta(:); <:cpz* G4
length_r = length(r); ;nf&c;D
if length_r~=length(theta) iB{xvyR
error('zernfun:RTHlength', ... ^('cbl
'The number of R- and THETA-values must be equal.') )<LI%dQ:'l
end =K6c;
2}`R"MeS
b{HhS6<K?
% Check normalization: y"R("j $
% -------------------- @W [{2d
if nargin==5 && ischar(nflag) PdM*5g4
isnorm = strcmpi(nflag,'norm'); aiR5/
ZD
if ~isnorm 4I.1D2 1jA
error('zernfun:normalization','Unrecognized normalization flag.') $eCGez<E
end Y2vj}9jK
else {h^c
isnorm = false; 5&|5 a} 8
end Riq|w+Q
xvO 3BU~2
{*__B} ,N
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% T/7vM 6u
% Compute the Zernike Polynomials 3jg'1^c
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Z3n~&!
7%op zdS#
SEU\}Ni{
% Determine the required powers of r: Xv*}1PZH
% ----------------------------------- w7ZG oh(
m_abs = abs(m); zkG>u,B}
rpowers = []; O99mic
for j = 1:length(n) 7AeP Gr
rpowers = [rpowers m_abs(j):2:n(j)]; |Pf(J;'[
end 2|s<[V3rP-
rpowers = unique(rpowers); zze z~bv7:
Ut':$l=
%6Rp,M9=
% Pre-compute the values of r raised to the required powers, iRouLd
% and compile them in a matrix: aYBTrOd z
% ----------------------------- skK*OO2-
if rpowers(1)==0 sr4jQo
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); yI:r7=KO
rpowern = cat(2,rpowern{:}); $Br>KJ%'g
rpowern = [ones(length_r,1) rpowern]; cLHF9B5
else Dx0O'uwR
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); p}f-c
rpowern = cat(2,rpowern{:}); qTS@D
end 5Fr;
Y@ObwKcG
m6eFXP1U
% Compute the values of the polynomials: "kU>~~y,
% -------------------------------------- -3\7vpcdN
y = zeros(length_r,length(n)); k~R{Y~W!!
for j = 1:length(n) (>mi!:
s = 0:(n(j)-m_abs(j))/2; ?'Oj=k"c7
pows = n(j):-2:m_abs(j); g?gqkoI
for k = length(s):-1:1 ,FY-d$3)
p = (1-2*mod(s(k),2))* ... yz8-&4YRNd
prod(2:(n(j)-s(k)))/ ... quY "
prod(2:s(k))/ ... O%prD}x
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ...
{&0mK"z_
prod(2:((n(j)+m_abs(j))/2-s(k))); [jy0@Q9
idx = (pows(k)==rpowers); =g >.X9lr
y(:,j) = y(:,j) + p*rpowern(:,idx); ]79~:m[C
end )7k&`?Mh
JxnuGkE0[#
if isnorm uFC?_q?4\
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); CJv>/#$/F
end IO*l vy
end Ma>:_0I5
% END: Compute the Zernike Polynomials B( 8mH
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 8.[&wyU
))p$vU3
i,([YsRuou
% Compute the Zernike functions: u]P03B
% ------------------------------ _yNT=#/
idx_pos = m>0; luibB&p1
idx_neg = m<0; zuk"
Ut]2` 8-
sRi?]9JIl
z = y; TF%3uH
if any(idx_pos) oPCrD.s
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); -%>8.#~G
end E2kW=6VO>|
if any(idx_neg) `bzr_fJ
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 9LH=3Qt
end Jc`Rs"2
i3D<`\;r
d3Y(SPO
% EOF zernfun sZ]'DH&_(