切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9120阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, w$ jq2?l  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, #=#bv`  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? 0iVeM!bM  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? c!]yT0v&s  
    [9\Mf4lh#  
    C5=m~  
    RSIhZYA  
    Su*Pd;  
    function z = zernfun(n,m,r,theta,nflag) wc?YzXP+  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle.  !qTP  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N D'Uv7Mis  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ;upYam"  
    %   unit circle.  N is a vector of positive integers (including 0), and q m"AatA  
    %   M is a vector with the same number of elements as N.  Each element I|_U|H!`  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) spTIhZ  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, GSVLZF'+  
    %   and THETA is a vector of angles.  R and THETA must have the same q1Ehl S  
    %   length.  The output Z is a matrix with one column for every (N,M) Y/qs\c+  
    %   pair, and one row for every (R,THETA) pair. rvPmd%nk-  
    % QPKY9.Rvv  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike #ib?6=sPC  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), wSG!.Ejc7  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral bP7_QYQ6  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 2bxW`.fa  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 9''x'E=|  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. nS]Ih0( K  
    % a 9Kws[  
    %   The Zernike functions are an orthogonal basis on the unit circle. T)MZ`dM  
    %   They are used in disciplines such as astronomy, optics, and `}~NZ  
    %   optometry to describe functions on a circular domain. q=;U(,Y  
    % Em/? 4&  
    %   The following table lists the first 15 Zernike functions. 7&1 dr  
    % ,AyQCUz{*?  
    %       n    m    Zernike function           Normalization -8z@FLUK-  
    %       -------------------------------------------------- 7:n OAN}%  
    %       0    0    1                                 1 E*VOyH 2[  
    %       1    1    r * cos(theta)                    2 $pj;CoPm  
    %       1   -1    r * sin(theta)                    2 OVEQ^\Q5D  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) wPr!.:MF  
    %       2    0    (2*r^2 - 1)                    sqrt(3) L^??*XEUJ  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) '(SqHP|8&g  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) -x+K#T0Z  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) yX CJ?  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 2(25IYMS8  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) g.COKA  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) BZk0B ?  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) &cT@MV5  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) no7Q%O9  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) C@rIyBj1g  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) \)2~o N  
    %       -------------------------------------------------- sYd)r%%AU  
    % @c;:D`\p1C  
    %   Example 1: B=|m._OL]n  
    % oe{,-<yck  
    %       % Display the Zernike function Z(n=5,m=1) 077 wk  
    %       x = -1:0.01:1; %dq |)r  
    %       [X,Y] = meshgrid(x,x); :-e[$6}S  
    %       [theta,r] = cart2pol(X,Y); 73kI%nNB  
    %       idx = r<=1; x k&# fW^r  
    %       z = nan(size(X)); >"pHk@AWK  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); \  6 : 7  
    %       figure u*8x.UE8C0  
    %       pcolor(x,x,z), shading interp h&<>nK   
    %       axis square, colorbar yu$xQ~ o  
    %       title('Zernike function Z_5^1(r,\theta)') \Z$MH`_nu  
    % TH? wXd\  
    %   Example 2: d5qGTT ~a  
    % XWBTBL  
    %       % Display the first 10 Zernike functions o*:D/"gb  
    %       x = -1:0.01:1; s@pIcNvx  
    %       [X,Y] = meshgrid(x,x); "]x#kM  
    %       [theta,r] = cart2pol(X,Y); 2\9OT>  
    %       idx = r<=1; b^WF R   
    %       z = nan(size(X)); qw}. QwPT  
    %       n = [0  1  1  2  2  2  3  3  3  3]; 52'0l>  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; |^ J5YwCf  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; bs?&;R.5  
    %       y = zernfun(n,m,r(idx),theta(idx)); J6g:.jsK!  
    %       figure('Units','normalized') <L:}u!  
    %       for k = 1:10 #oxP,LR  
    %           z(idx) = y(:,k); K# BZ Jcb  
    %           subplot(4,7,Nplot(k)) h:{^&d a  
    %           pcolor(x,x,z), shading interp N.q0D5 :  
    %           set(gca,'XTick',[],'YTick',[]) =|_k a8{?  
    %           axis square I4MZ JAYk  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) /e]R0NI  
    %       end i} ?\K>BWq  
    % P7 R}oO_n:  
    %   See also ZERNPOL, ZERNFUN2. <& iLMb:%  
    $im6v  
    3'6by!N,d  
    %   Paul Fricker 11/13/2006 VMJK9|JC[  
    8W}rS v+  
    2R~[B]2"r  
    o3a%u(   
    M`QK{$1p  
    % Check and prepare the inputs: jYnP)xX;  
    % ----------------------------- |]tsf /SA  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ![/ QW  
        error('zernfun:NMvectors','N and M must be vectors.') ZBXn&Gm  
    end RKwuvVI  
    i?|b:lcV  
    Y!3i3D  
    if length(n)~=length(m) LqoH]AcN  
        error('zernfun:NMlength','N and M must be the same length.') ]h}O&K/  
    end Pv Vn}i   
    ?<D1] Xv  
    zN7Ou .  
    n = n(:); 1owe'7\J  
    m = m(:); E rnGX#@v  
    if any(mod(n-m,2)) [G7S  
        error('zernfun:NMmultiplesof2', ... '2v$xOh!y  
              'All N and M must differ by multiples of 2 (including 0).') AqjEz+TVt  
    end 7*g'4p-  
    -59;Zn/  
    vKTCS  
    if any(m>n) GFgh{'|  
        error('zernfun:MlessthanN', ... [_zoJ  
              'Each M must be less than or equal to its corresponding N.') js)I%Z  
    end !E_RD,_  
    iS}~e{TP/  
    j$=MJN0  
    if any( r>1 | r<0 ) }!@X(S!do  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') ;#S4$wISw`  
    end `bcCj~j  
    7:X@lmBz=  
    4nGr?%>  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) },vVc/  
        error('zernfun:RTHvector','R and THETA must be vectors.') XMm (D!6  
    end w"A%@<V3Ec  
    5c-'m? k  
    BnIZ+fg=  
    r = r(:); `&>CK`%Xu  
    theta = theta(:); m'5rzZP  
    length_r = length(r); J3AS"+]  
    if length_r~=length(theta) 2jH&@g$cl;  
        error('zernfun:RTHlength', ... $jL+15^N0+  
              'The number of R- and THETA-values must be equal.') 0A.9<&Lod  
    end e(Ub7L#  
    {y==8fCJ  
    _43 :1!os  
    % Check normalization: $d%NFc&  
    % -------------------- &-4SA j  
    if nargin==5 && ischar(nflag) JsbH'l  
        isnorm = strcmpi(nflag,'norm'); D8wZC'7  
        if ~isnorm 1iIag}?p  
            error('zernfun:normalization','Unrecognized normalization flag.') LJ mRa  
        end Ub<^;Du5  
    else ~6Df~uN  
        isnorm = false; mKhlYV n  
    end J7s\  
    =-8y =  
    hwdZP=X  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Xsv^GmP+  
    % Compute the Zernike Polynomials * AjJf)o  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% (S k+nD  
    7;H P_oAu  
    -'Y@yIb  
    % Determine the required powers of r: h,)UB1  
    % ----------------------------------- 1[H1l;  
    m_abs = abs(m); A_<1}8{L  
    rpowers = []; HLp'^  
    for j = 1:length(n) \z)` pno  
        rpowers = [rpowers m_abs(j):2:n(j)]; 7="I;  
    end iXFN|ml  
    rpowers = unique(rpowers); g'{hp:  
    wNhtw'E8  
    u4;#~##  
    % Pre-compute the values of r raised to the required powers, %[7<GcWl  
    % and compile them in a matrix: R|O."&CAB  
    % ----------------------------- hNGD `"U  
    if rpowers(1)==0 X1; ljX  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Z*Jp?[##  
        rpowern = cat(2,rpowern{:}); I85bzzZB  
        rpowern = [ones(length_r,1) rpowern]; {\zB'SNq  
    else x\2N @*I:  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); aO>Nev  
        rpowern = cat(2,rpowern{:}); osW"b"_f  
    end xyc`p[n &  
    S#l6=zI7^R  
    e x`mu E  
    % Compute the values of the polynomials: 6I,4 6 XZ-  
    % -------------------------------------- /6a617?9J  
    y = zeros(length_r,length(n)); @F%_{6h  
    for j = 1:length(n) /E0/)@pDq  
        s = 0:(n(j)-m_abs(j))/2; [^GXHE=  
        pows = n(j):-2:m_abs(j); &Eqa y'  
        for k = length(s):-1:1 0R[onPU_vZ  
            p = (1-2*mod(s(k),2))* ... sFWH*k dP?  
                       prod(2:(n(j)-s(k)))/              ... v^QUYsar  
                       prod(2:s(k))/                     ... Zfub+A  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ]^ "BLbDZ@  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); v05B7^1@_  
            idx = (pows(k)==rpowers); %K|+4ZY3  
            y(:,j) = y(:,j) + p*rpowern(:,idx); ?v$kq}Rg  
        end VUE6M\&z>  
         HtbN7V/  
        if isnorm CH3bpZv  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 3D/<R|p  
        end p^ojhrr  
    end Zo(p6rku  
    % END: Compute the Zernike Polynomials  ]6 ]Nr  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% &*3O+$L  
    Fi!XaO  
    xfJ&11fG2  
    % Compute the Zernike functions: skR I \  
    % ------------------------------ >[|Y$$  
    idx_pos = m>0; TB  
    idx_neg = m<0; YoEL|r|  
    x9{&rl dC  
    R" '=^  
    z = y; ui#K`.dn  
    if any(idx_pos) 3om4q2R  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); a'm\6AW2)  
    end o#ajBOJ  
    if any(idx_neg) AD/7k3:  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); +rA:/!b)Y  
    end K!a4>Du{  
    8rwXbYx x  
    L=9w 3VXS  
    % EOF zernfun 2%F!aeX  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  8u401ddg  
    qOV6Kh)  
    DDE还是手动输入的呢? {bSi3oI  
    6uU2+I  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究