下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, Z4e?zY
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, m ;KP
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? $`Ou *
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? JrQN-e!
s 2$R2,
7OZs~6(
w_-{$8|
9-@w(kMu
function z = zernfun(n,m,r,theta,nflag) dV5$L
e#y
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. !1l2KW<be
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N '5Y8 rv<
% and angular frequency M, evaluated at positions (R,THETA) on the z#\Z|OKU
% unit circle. N is a vector of positive integers (including 0), and z(]*'0)P
% M is a vector with the same number of elements as N. Each element !pN,,H6Y
% k of M must be a positive integer, with possible values M(k) = -N(k) e*g; +nz
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, Qh *|mW
% and THETA is a vector of angles. R and THETA must have the same |hpm|eZG"h
% length. The output Z is a matrix with one column for every (N,M) gC3{:MC-G
% pair, and one row for every (R,THETA) pair. YcGqT2oLP
% XJlun l)(K
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike %'>. R
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ?;*mSQA`J
% with delta(m,0) the Kronecker delta, is chosen so that the integral 55;xAsG
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, $v^F>*I1
% and theta=0 to theta=2*pi) is unity. For the non-normalized ,4\vi|
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. |%tR#!&[:g
% v-l):TL+=
% The Zernike functions are an orthogonal basis on the unit circle. Y,8M[UIK
% They are used in disciplines such as astronomy, optics, and F|PYDC
% optometry to describe functions on a circular domain. FCIT+8K
% >GjaA1,
% The following table lists the first 15 Zernike functions. 9+/<[w7
% N(
/PJJ~
% n m Zernike function Normalization S<>e(x3g]
% -------------------------------------------------- Sd)D-S
% 0 0 1 1 c_".+Fa
% 1 1 r * cos(theta) 2 % va/x]K
% 1 -1 r * sin(theta) 2 ~@-Az([H
% 2 -2 r^2 * cos(2*theta) sqrt(6) <1@_MYo
% 2 0 (2*r^2 - 1) sqrt(3) h?TE$&CL?
% 2 2 r^2 * sin(2*theta) sqrt(6) UA/3lH}
% 3 -3 r^3 * cos(3*theta) sqrt(8) jem$R/4"
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) "_(o% \"7
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) u54+oh|,M
% 3 3 r^3 * sin(3*theta) sqrt(8) 5!5P\o
% 4 -4 r^4 * cos(4*theta) sqrt(10) k_^d7yH
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) C[pAa 8
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) pa+y(!G
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) _2TIan}
% 4 4 r^4 * sin(4*theta) sqrt(10) a-Y K*
% -------------------------------------------------- +J^}"dG
% >i0FGmxH
% Example 1: Vb1@JC9b
% 2=#O4k.@
% % Display the Zernike function Z(n=5,m=1) NZD
X93
% x = -1:0.01:1; _h.[I8xgYG
% [X,Y] = meshgrid(x,x); S'A~9+
% [theta,r] = cart2pol(X,Y); r3KV.##u,
% idx = r<=1; N7jAPI@a\i
% z = nan(size(X)); Bg#NB
% z(idx) = zernfun(5,1,r(idx),theta(idx)); ,+q5e^P
% figure ufm#H#n)#X
% pcolor(x,x,z), shading interp 7lh%\
% axis square, colorbar Bz24U wcZ
% title('Zernike function Z_5^1(r,\theta)') 3)T5}_
% )ei+ewVZ
% Example 2: pY:xxnE
% i%z}8GIt'
% % Display the first 10 Zernike functions -m__I U
% x = -1:0.01:1; ?!
kup
% [X,Y] = meshgrid(x,x); 6L*y$e"Qc
% [theta,r] = cart2pol(X,Y); zZDr=6|r_
% idx = r<=1; Tn-H8;Hg
% z = nan(size(X)); gHm^@
% n = [0 1 1 2 2 2 3 3 3 3]; #4|?;C)u\
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; @@I2bHyvb
% Nplot = [4 10 12 16 18 20 22 24 26 28]; )JZfC&,
% y = zernfun(n,m,r(idx),theta(idx)); }b+=, Sc"
% figure('Units','normalized') Ru
sa
&#[
% for k = 1:10 B'=*92i>S
% z(idx) = y(:,k); kp0>8rkF
% subplot(4,7,Nplot(k)) u{\`*dNx
% pcolor(x,x,z), shading interp TM"i9a? ;
% set(gca,'XTick',[],'YTick',[]) EKDv3aFQZ#
% axis square xxedezNko
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) L=VuEF
% end 9t)t-t#P;
% $y`|zK|G-
% See also ZERNPOL, ZERNFUN2. ~fS#)X3 D
t=U[ ;?
2/h Mx-
% Paul Fricker 11/13/2006 '9b<r7\@
b^%4_[uRu
)"q2DjfX*
,;{mH]"s
gzuM>lf*{
% Check and prepare the inputs: \;g{qM 8
% ----------------------------- Ot/Y?=j~
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) uT=sDWD:
error('zernfun:NMvectors','N and M must be vectors.') lQ)8zI
end WLizgVM
MenI>gd?
rb9x||
if length(n)~=length(m) ZL@7Mr!e
error('zernfun:NMlength','N and M must be the same length.') B\4SB
end #%x4^A9 q
lv{Qn~\y&
xo?f90+(
n = n(:); mjH8q&szf
m = m(:); Kp!P/Q{
if any(mod(n-m,2)) 6g<JPc
error('zernfun:NMmultiplesof2', ... :yw0-]/DD
'All N and M must differ by multiples of 2 (including 0).') y/Nvts2!C
end ?Bk"3{hl
ogPxj KSI
9}5Q5OZ
if any(m>n) n /rQ*hr
error('zernfun:MlessthanN', ... #opFUX-
'Each M must be less than or equal to its corresponding N.') 8)sqj=
end g*8sh
CjIkRa@!x
Kw'A%7^e
if any( r>1 | r<0 ) WT!%FQ9
error('zernfun:Rlessthan1','All R must be between 0 and 1.') /(vT49(]
end r$*k-c9Bf
ydBoZ3 }
A87Tyk2Pi
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) VP|9Cm=Fg
error('zernfun:RTHvector','R and THETA must be vectors.') kigc+R
end =<FFFoF*C_
iT
IW;Cv
A4'vJk
r = r(:); jz/@Zg",
theta = theta(:); >)!"XFbb
length_r = length(r); 3~M8.{
U#V
if length_r~=length(theta) /eZAAH
error('zernfun:RTHlength', ... EjvxfqPv
'The number of R- and THETA-values must be equal.') hcM 0?=
end e}aD<EG
m3.d!~U\
vsLn@k3
% Check normalization: oA73\BFfP
% -------------------- ynDa4HB
if nargin==5 && ischar(nflag) 8a"aJYj
isnorm = strcmpi(nflag,'norm'); oXfLNe6>L
if ~isnorm v%B^\S3)
error('zernfun:normalization','Unrecognized normalization flag.') *bwLih!}H
end U<o,`y[Tn
else zYF'XB]4
isnorm = false; #&&^5r-b-
end KWU#Swa`
fz,8 <
Z+Z`J;
,
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ,7tN&R_
% Compute the Zernike Polynomials \@gs8K#
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 3"&6rdF\jB
UB?a-jGZK
i7*4hYY
% Determine the required powers of r: m<r.sq&;
% ----------------------------------- sL[,J[AN;
m_abs = abs(m); 1<pbO:r
rpowers = []; HOXqIZN85
for j = 1:length(n) Ujb||(W
rpowers = [rpowers m_abs(j):2:n(j)]; `P"-9Ue=
end v-&^G3
rpowers = unique(rpowers); |jc87(x<
G8eAj%88
)%WS(S>8
% Pre-compute the values of r raised to the required powers, v;{s@CM m
% and compile them in a matrix: ~M,nCG^4
% ----------------------------- R6CxNPRJ
if rpowers(1)==0 OfY>~d
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); :6Bk<
rpowern = cat(2,rpowern{:}); Xg#Dbf4
rpowern = [ones(length_r,1) rpowern]; T3!l{vG
\O
else 5qB>Song
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Uu8Z2M
rpowern = cat(2,rpowern{:}); ;k!bv|>n
end yD5T'np<4
ow%s_yV]R
"X"DTP1b
% Compute the values of the polynomials: 6BNOF66kH
% -------------------------------------- ,8EeSnI
y = zeros(length_r,length(n)); W<v?D6dFq
for j = 1:length(n) - C8h$P
s = 0:(n(j)-m_abs(j))/2; ; #e-pkV
pows = n(j):-2:m_abs(j); (9@6M8A
for k = length(s):-1:1 3fn6W)v?
p = (1-2*mod(s(k),2))* ... ^MDBJ0
I.
prod(2:(n(j)-s(k)))/ ... ogDyrY}]
prod(2:s(k))/ ... GfPe0&h
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... !f]F'h8
prod(2:((n(j)+m_abs(j))/2-s(k))); 44($a9oa2
idx = (pows(k)==rpowers); Vg&`f
y(:,j) = y(:,j) + p*rpowern(:,idx); l% K9Ke
end cfa#a!Y4
fHR1kuy
if isnorm BX2&tQSp
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); @N"h,(^
end +
ECV|mkk
end a'XCT@B
% END: Compute the Zernike Polynomials Y |n_Ro^~
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% x>p=1(L
J1P82=$,
:n{rVn}G
% Compute the Zernike functions: NNb17=q_v
% ------------------------------ +TA(crD
idx_pos = m>0; __'Z0?.4#
idx_neg = m<0; rh/3N8[6
OJQ7nChMm
A&)P_B1|
z = y; 1m|1eAGS{
if any(idx_pos) $A8eMJEpL
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); .V
9E@_(
end z35n3q
if any(idx_neg) }DY^a'wJ-
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); j+PW9>Uh
end 24>{T5E
~iydp
]oXd|[G
% EOF zernfun uA*Op45