下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, 3fJGJW!zu
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 9(>]6|XS
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? ?{W@TY@S
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? @^8tk3$Y
zKr\S|yE
.CI {g2
VP
H
5[.Dlpa'7
function z = zernfun(n,m,r,theta,nflag) ;Wa4d`K
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. a?bSMt}
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N fZK&h.
% and angular frequency M, evaluated at positions (R,THETA) on the lf4V;|!^
% unit circle. N is a vector of positive integers (including 0), and p._BG80
% M is a vector with the same number of elements as N. Each element w%jc' ;|
% k of M must be a positive integer, with possible values M(k) = -N(k) .
:Q[Z
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, %|L+~ =
% and THETA is a vector of angles. R and THETA must have the same x8I=I"Sp
% length. The output Z is a matrix with one column for every (N,M) bD_|n!3
% pair, and one row for every (R,THETA) pair. T4,dhS|
% :_;9&[H9ha
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ^vXMX^*
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), /t=R~BJu
% with delta(m,0) the Kronecker delta, is chosen so that the integral X~ n=U4s}O
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, N|[P%WM3
% and theta=0 to theta=2*pi) is unity. For the non-normalized lub(chCE[
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. |7Fe~TC
% C$o#zu q-
% The Zernike functions are an orthogonal basis on the unit circle. (uV~1
% They are used in disciplines such as astronomy, optics, and M{gtu'.
% optometry to describe functions on a circular domain. 1&A@Zo5|
% ". jY3<bQg
% The following table lists the first 15 Zernike functions. mM.-MIp
% x/*ndH
% n m Zernike function Normalization qdoJIP{
% -------------------------------------------------- &z[39Q{~
% 0 0 1 1 @/i;/$\
% 1 1 r * cos(theta) 2 IXYSZ)z
% 1 -1 r * sin(theta) 2 %[(DFutJY+
% 2 -2 r^2 * cos(2*theta) sqrt(6) #L[-WC]1y
% 2 0 (2*r^2 - 1) sqrt(3) ?0_Bs4O\
% 2 2 r^2 * sin(2*theta) sqrt(6) H\7#$ HB
% 3 -3 r^3 * cos(3*theta) sqrt(8) 1:]iV}OFqR
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) E)liuu!qI
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) RD_IGV
% 3 3 r^3 * sin(3*theta) sqrt(8) |_V i8Ly
% 4 -4 r^4 * cos(4*theta) sqrt(10) x
;V7D5 q
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) a nK7j2
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) }HB)%C50.
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) V?U->0>Z4
% 4 4 r^4 * sin(4*theta) sqrt(10) gJn|G#!
% -------------------------------------------------- U 2k^X=yl
% jEr/*kv
% Example 1: R*~<?}Rr
% sM)qzO2wh
% % Display the Zernike function Z(n=5,m=1) C' x?riJ/
% x = -1:0.01:1; ~IvAnwQ'
% [X,Y] = meshgrid(x,x); z(]14250
% [theta,r] = cart2pol(X,Y); ,H!E :k
% idx = r<=1; w'[lIEP 2$
% z = nan(size(X)); TCAtb('D
% z(idx) = zernfun(5,1,r(idx),theta(idx)); T1TKwU8l
% figure W=YFe<Q
% pcolor(x,x,z), shading interp siveqz6h
% axis square, colorbar PM3kI\:)m
% title('Zernike function Z_5^1(r,\theta)') nbM[?=WS
% [gm[mwZ
% Example 2: AF5.)Y@.
%
9?c0cwP?
% % Display the first 10 Zernike functions m89-rR:Kc
% x = -1:0.01:1; #$p&J1
% [X,Y] = meshgrid(x,x); 7\*_/[B
% [theta,r] = cart2pol(X,Y); iB#xUSkS
% idx = r<=1; nO^aZmSu
% z = nan(size(X)); g.-{=kZ
% n = [0 1 1 2 2 2 3 3 3 3]; K3jKOV8
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; a4HUP*
% Nplot = [4 10 12 16 18 20 22 24 26 28]; +92/0
% y = zernfun(n,m,r(idx),theta(idx)); TJS/ O~=
% figure('Units','normalized') &Rw4ub3
% for k = 1:10 39| W(,
% z(idx) = y(:,k);
l);M(<
% subplot(4,7,Nplot(k)) *FoH'\=
% pcolor(x,x,z), shading interp ta`}}I
% set(gca,'XTick',[],'YTick',[]) p!5oz2RK
% axis square h3rdqx1
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ^_FB .y%
% end 2QwdDKMS_
% PCzC8~t
% See also ZERNPOL, ZERNFUN2. 9\9:)q
dh r)ra]
>Micc
% Paul Fricker 11/13/2006 'TWZ@8h~
EA.4m3
e>`+Vk^Jc
y8"8QH
ut8v&i1?
% Check and prepare the inputs: &NbhQY`k
% ----------------------------- A$gP: 1&m
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) }F3}-5![
error('zernfun:NMvectors','N and M must be vectors.') 0XV8B
end rro92(y
5 [{l9
r;}%} /IX
if length(n)~=length(m) P|,@En 1!
error('zernfun:NMlength','N and M must be the same length.') $#R@x.=
end +]I7]
sPMCN's
gA0:qEL\
n = n(:); eUMOV]h
m = m(:); F+yu[Dh:
if any(mod(n-m,2)) V$U#'G>m
error('zernfun:NMmultiplesof2', ... D@9adwQb
'All N and M must differ by multiples of 2 (including 0).') tkT:5O6
end mS)|i+5
s~N WJ*i
+T]/4"^M
if any(m>n) HCOv<k
error('zernfun:MlessthanN', ... $07;gpZt
'Each M must be less than or equal to its corresponding N.') DIrQ5C
end quXL'g
P)7:G?OTx
$oF0[ }S
if any( r>1 | r<0 ) `M0m`Up
error('zernfun:Rlessthan1','All R must be between 0 and 1.') "u#,#z_
end WdQR^'b$
n*twuB/P 1
x-0O3IIE
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) fpd4 v|(
error('zernfun:RTHvector','R and THETA must be vectors.') N]yh8"7X
end yU ?TdM\
Er@'X0n
{yXpBS
r = r(:); L\)GPTo!x
theta = theta(:); IIj
:\?r
length_r = length(r); ;UU`kk
if length_r~=length(theta) ,x (?7ZW>
error('zernfun:RTHlength', ... l1_hD,4
'The number of R- and THETA-values must be equal.') bF_SD\/
end "{TVd>9_
@\ udaZc
JDbRv'F:(
% Check normalization: ~w
Ekbq=
% -------------------- Epo/}y
if nargin==5 && ischar(nflag) = Ob-'Syg>
isnorm = strcmpi(nflag,'norm');
xWC*DKV
if ~isnorm yRd [$p
error('zernfun:normalization','Unrecognized normalization flag.') MS7rD%(,'
end a!?JVhD&
else 2~ [
isnorm = false; VD.wO%9?)
end f2*e&+LjTP
Qs\m"yx
W}6OMAbsE;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% qDlh6W?}k
% Compute the Zernike Polynomials $p(
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% G;jX@XqZ
7+'&(^c
$kAal26 z
% Determine the required powers of r: SN#Cnu}
% ----------------------------------- !xD$U/%c
m_abs = abs(m); }0okyGg>q
rpowers = []; lE=&hba
for j = 1:length(n) c_~tCKAZ
rpowers = [rpowers m_abs(j):2:n(j)]; rS|nO_9 f
end %fJ~3mu
rpowers = unique(rpowers); n{*A<-vL
3*8m!gq7s
lVptA3F
% Pre-compute the values of r raised to the required powers, ]H {g/C{j
% and compile them in a matrix: >;s!X(6b
% ----------------------------- 9*Z!=Y#4,
if rpowers(1)==0 '&LH9r
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); c3aBPig\D
rpowern = cat(2,rpowern{:}); q1Sr#h|
rpowern = [ones(length_r,1) rpowern]; +,q#'wSQG
else 9z'(4U
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); '.gLqm}%
rpowern = cat(2,rpowern{:}); D~Rv"Hh
end FlyRcj
M&SY2\\TB
<^n@q f}
% Compute the values of the polynomials: r?%,#1|$$
% -------------------------------------- Nu,t,&B
y = zeros(length_r,length(n)); x'iBEm
for j = 1:length(n) cgV5{|P
s = 0:(n(j)-m_abs(j))/2; U-.A+#<IT9
pows = n(j):-2:m_abs(j); Q $^)z_jai
for k = length(s):-1:1 4p6\8eytq.
p = (1-2*mod(s(k),2))* ... P;bOtT --
prod(2:(n(j)-s(k)))/ ... Yc`PK =!l
prod(2:s(k))/ ... oAt{#v
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... tq.g4X ;_
prod(2:((n(j)+m_abs(j))/2-s(k))); &=[N{N?(
idx = (pows(k)==rpowers); |Duf
3u
y(:,j) = y(:,j) + p*rpowern(:,idx); fn3DoD+I
end JWsOze8#
3kW%,d*_
if isnorm BJP^?FUd=,
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); undH{w=
end R<Uu(-O-
end CyKupJ.Fq
% END: Compute the Zernike Polynomials N"Cd{3
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% lPA:ho/`:
zbZN-j#
j&l2n2z
% Compute the Zernike functions: }>yQ!3/i
% ------------------------------ lEC91:Jyt
idx_pos = m>0; *@E&O^%cO
idx_neg = m<0; ,R*YI
4"et4Y7
F* _ytL
z = y; |>v8yS5
if any(idx_pos) l0BYv&tu
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); rrrn8b6
end }kF*I@:g
if any(idx_neg) !{S HlS
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); BDcA_=^R&
end evE$$# 6R
!glGW[r/7
&\5%C\0Z<
% EOF zernfun Eemk2>iP?