下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, 8{!d'Pks
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, GeTk/tU
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? A}SGw.3
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? YND }P9 h
)rK2%\Z
Os@b8V 8,A
6sSwSS
yl~_~<s6
function z = zernfun(n,m,r,theta,nflag) Mg.%&vH\
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. \]V:>=ry>
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N )pH+ibR
% and angular frequency M, evaluated at positions (R,THETA) on the W~/d2_|/
% unit circle. N is a vector of positive integers (including 0), and @|SeabN^-
% M is a vector with the same number of elements as N. Each element l,7&
z
% k of M must be a positive integer, with possible values M(k) = -N(k) b<00 %Z
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, 3T)rJEN A
% and THETA is a vector of angles. R and THETA must have the same f\<r1
% length. The output Z is a matrix with one column for every (N,M) P>C'?'Q7
% pair, and one row for every (R,THETA) pair. g0tnt)]
% !k)6r6
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike +:.Jl:fx4
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), aDKb78 1d
% with delta(m,0) the Kronecker delta, is chosen so that the integral 8|i'~BFHs
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, +-^>B%/&Z
% and theta=0 to theta=2*pi) is unity. For the non-normalized 1IA1;
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ^m w]u"5\
% dT|f<E/P
% The Zernike functions are an orthogonal basis on the unit circle. /h0bBP
% They are used in disciplines such as astronomy, optics, and ZwS:Te9-
% optometry to describe functions on a circular domain. Tu#;Y."T
% iYStl
% The following table lists the first 15 Zernike functions. -`~qmRpqY
% %xg+UW
}
% n m Zernike function Normalization 2h
% -------------------------------------------------- s1D<R,J|H
% 0 0 1 1 etr-\Cp
% 1 1 r * cos(theta) 2 ,Z@#( =f
% 1 -1 r * sin(theta) 2
@'R)$:I%L
% 2 -2 r^2 * cos(2*theta) sqrt(6) .>B'oD
% 2 0 (2*r^2 - 1) sqrt(3) a{]=BY oL
% 2 2 r^2 * sin(2*theta) sqrt(6) !CGX \cvW
% 3 -3 r^3 * cos(3*theta) sqrt(8) );gY8UL^
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) Tn}`VW~
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) $N=&D_Q
% 3 3 r^3 * sin(3*theta) sqrt(8) E5&Z={
% 4 -4 r^4 * cos(4*theta) sqrt(10) DXiA4ihr=
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 6{y7e L3!
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) |h]V9=
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) %#x4wi
% 4 4 r^4 * sin(4*theta) sqrt(10) gJ6`Kl985O
% -------------------------------------------------- pLB2! +
% h<G4tjtk
% Example 1: Ga7E}y%
% n%&L&G
% % Display the Zernike function Z(n=5,m=1) _!03;zrO
% x = -1:0.01:1; Sa= tiOv
% [X,Y] = meshgrid(x,x); +~^S'6yB
% [theta,r] = cart2pol(X,Y); : ,l7e
% idx = r<=1;
>2s4BV[(
% z = nan(size(X)); uY&1[(Pb
% z(idx) = zernfun(5,1,r(idx),theta(idx)); i HD!v7d7
% figure PJ.\)oP
% pcolor(x,x,z), shading interp
-tg|y
% axis square, colorbar Ei4^__g\'
% title('Zernike function Z_5^1(r,\theta)') #rlgeHG!fs
% UBaXS_c\
% Example 2: 2Vx4"fHP#N
% *G58t`]r
% % Display the first 10 Zernike functions =w$&n%~
% x = -1:0.01:1; u"v7shRp:
% [X,Y] = meshgrid(x,x); YN8x|DLi?
% [theta,r] = cart2pol(X,Y); )eyzHB,H
% idx = r<=1; \OwF!~&
% z = nan(size(X)); ]cp b;UfM
% n = [0 1 1 2 2 2 3 3 3 3]; }'oU/@yG
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; Xh@K89`uX
% Nplot = [4 10 12 16 18 20 22 24 26 28]; %B%_[<B
% y = zernfun(n,m,r(idx),theta(idx)); cJo%j -AM
% figure('Units','normalized') ?@b6(f
xX
% for k = 1:10 ?:;;0kSk
% z(idx) = y(:,k); V\L;EHtc$
% subplot(4,7,Nplot(k)) tu
-a`h_NJ
% pcolor(x,x,z), shading interp ,h*gd^i
% set(gca,'XTick',[],'YTick',[]) n7!T{+ge
% axis square A,~3oQV
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) .|,LBc!
% end mfraw2H
% >]h{[kU %4
% See also ZERNPOL, ZERNFUN2. )CFJXc:
*qpu!z2m||
)4g_S?l=
% Paul Fricker 11/13/2006 6FB0g8
FZ-Wgh
0z
qezWfR`
CD`a-]6qA
xs"i_se
% Check and prepare the inputs: ]es|%j 2
% ----------------------------- <XeDJ8
'
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) k1B
](@xt
error('zernfun:NMvectors','N and M must be vectors.') ~fXNj-'RW
end uKJ:)oyaCP
iuV4xyp
`cGks
if length(n)~=length(m) jX7K-L
error('zernfun:NMlength','N and M must be the same length.') O/~T+T%
end =Vg~ VD
*l_a=[<[
l#0zHBc
n = n(:); eb_.@.a
m = m(:); 7U [C=NL
if any(mod(n-m,2)) (qAF2&
error('zernfun:NMmultiplesof2', ... ~>:JwTy
'All N and M must differ by multiples of 2 (including 0).') 0LQRQuh1
end 392V\qtS
ioi/`iQR
,+i^]yF3j
if any(m>n) +Y?Tr i
error('zernfun:MlessthanN', ... 4!!|P
'Each M must be less than or equal to its corresponding N.') fG 2)r
end 0AnL]`"t.3
k=)U
:DH@zR
if any( r>1 | r<0 ) SzLlJUV X
error('zernfun:Rlessthan1','All R must be between 0 and 1.') !{&r|6
end Q=Q+*oog
+wQ5m8E
N<JI^%HBgP
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) SqAz((
error('zernfun:RTHvector','R and THETA must be vectors.') dX?j/M-
end \%r#>8c8
6C$+D
h%j4(v}r{C
r = r(:); rVabkwYD
theta = theta(:); W8<QgpV*
length_r = length(r); }cz58%
if length_r~=length(theta) br\3}
error('zernfun:RTHlength', ... m0G"Aj
'The number of R- and THETA-values must be equal.') IQBL;=.J.
end LsR<r1KDJ
2?,lr2
m]DP{-s4
% Check normalization: uz8eS'8
% -------------------- t_/qd9Jv
if nargin==5 && ischar(nflag) S%RxYJ(
isnorm = strcmpi(nflag,'norm'); aMqt2{f+
if ~isnorm 9No6\{[M
error('zernfun:normalization','Unrecognized normalization flag.') c:${qY:!
end (0`rfYv5.R
else R/{h4/+vJ
isnorm = false; 9ERdjS
end
4H;g"nWqO
2`i&6iz
;)rhx`"n
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -Ua5anzB
% Compute the Zernike Polynomials /8Lb_QH{
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0,0WdJAe
Xp;'Wa"@
:{w3l O
% Determine the required powers of r: 9Zx| L/\
% ----------------------------------- [?z;'O}y
m_abs = abs(m); ufR|V-BWx
rpowers = []; q4:zr
for j = 1:length(n) mcwd2)
rpowers = [rpowers m_abs(j):2:n(j)]; li3X}
end 41R~.?
rpowers = unique(rpowers); qLBQ!>lR
65B&>`H~
dhLd2WSyH
% Pre-compute the values of r raised to the required powers, covCa )kf
% and compile them in a matrix: E2hML
% ----------------------------- m<Gd 6V5
if rpowers(1)==0 |QrVGm@2
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); W&A^.% 2l
rpowern = cat(2,rpowern{:}); B{#Fm6
rpowern = [ones(length_r,1) rpowern]; kb-XEJ}L
else i{g~u<DH)Q
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); &*Z)[Bl
rpowern = cat(2,rpowern{:}); p7},ymQ|YQ
end Sn97DCdk
l2#~
KjA7x
% Compute the values of the polynomials: _576Qa'rm
% -------------------------------------- "<oR.f=0
y = zeros(length_r,length(n)); .:-*89c
for j = 1:length(n) af'ncZ@U
s = 0:(n(j)-m_abs(j))/2; a# 0*#&?7@
pows = n(j):-2:m_abs(j); *<9M|H~
for k = length(s):-1:1 TbqtT_{
p = (1-2*mod(s(k),2))* ... D$hK
prod(2:(n(j)-s(k)))/ ... .Sm 8t$
prod(2:s(k))/ ... rp]H&5.*
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... <{V{2V#
prod(2:((n(j)+m_abs(j))/2-s(k))); .ErR-p=-
idx = (pows(k)==rpowers); Lxa<zy~b
y(:,j) = y(:,j) + p*rpowern(:,idx); V(G{_>>
end *{fZA;<R
]<},[s
if isnorm jJ>I*'w
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 7vqE@;:dt
end 5"#xbvRS0H
end a/d8_(0
% END: Compute the Zernike Polynomials F0xm%?
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% f]+.
i-c=
UuJ gB)
ZB}zT9JaE
% Compute the Zernike functions: en MHKN g
% ------------------------------ ]:6IW:
idx_pos = m>0; ipiS=
idx_neg = m<0; O|;|7fCB\
5t-(MY
`)jAdad-s
z = y; <l)I%1T_c
if any(idx_pos) ;S2/n$Ju_
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); o<S(ODOfi
end Xp^71A?>
if any(idx_neg) Mc|UD*Z
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Jl)Q#
end e58tf3
h>NuQo*
-A8CW9|mk
% EOF zernfun h*NBSvn