下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, yToT7 X7F7
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, vN0L(B
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? g~Nij~/
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? cu479VzPx:
0K$WSGB?6j
^;)SFmjg%
(Y'UvZlM%P
3)C6OF>7
function z = zernfun(n,m,r,theta,nflag) K{=r.W
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. {m+S{dWp
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N lrmt)BLoh
% and angular frequency M, evaluated at positions (R,THETA) on the []=FZ`4
% unit circle. N is a vector of positive integers (including 0), and )WP]{ W)r
% M is a vector with the same number of elements as N. Each element %qNj{<&
% k of M must be a positive integer, with possible values M(k) = -N(k) F;?TR[4!k
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, 1&8j3"
% and THETA is a vector of angles. R and THETA must have the same 2[8fFo>
% length. The output Z is a matrix with one column for every (N,M) ,<;l"v(
% pair, and one row for every (R,THETA) pair. %;=IMMK
% 9{9#AI.G
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike (:&&;]sI
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), u-%r~ }
% with delta(m,0) the Kronecker delta, is chosen so that the integral bG5^h
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, q#Yg0w~
% and theta=0 to theta=2*pi) is unity. For the non-normalized I5TQ>WJbf
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. r|\5'ZMx
% 7E!";HT
% The Zernike functions are an orthogonal basis on the unit circle. ;Xfd1
% They are used in disciplines such as astronomy, optics, and 0,1L e$)6
% optometry to describe functions on a circular domain. fXF=F,!t
% _ bXVg3oDt
% The following table lists the first 15 Zernike functions. ONr?.MJ6j
% nxn[ ~~
% n m Zernike function Normalization 1kvPiV=X>
% -------------------------------------------------- 3P+4S|@q(4
% 0 0 1 1 Ks49$w<
% 1 1 r * cos(theta) 2 jpYw#]Q
% 1 -1 r * sin(theta) 2 DU/9/ I?~
% 2 -2 r^2 * cos(2*theta) sqrt(6) tAb;/tM3I
% 2 0 (2*r^2 - 1) sqrt(3) z`86-Ov
% 2 2 r^2 * sin(2*theta) sqrt(6) IKMsY5i
% 3 -3 r^3 * cos(3*theta) sqrt(8) 9D{u,Q V
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) LT,iS)dY+
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) vWqyZ-p,q
% 3 3 r^3 * sin(3*theta) sqrt(8) r!=]Q}`F
% 4 -4 r^4 * cos(4*theta) sqrt(10) 8Z9MD<RLw
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) v{mv*`~nA\
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) Q-!
i$#-
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ;_?zB NW
% 4 4 r^4 * sin(4*theta) sqrt(10) 4cXAT9
% -------------------------------------------------- D_l/Gxdpr
% .iOw0z
% Example 1: /gqqKUx
% AI^AK0.L
% % Display the Zernike function Z(n=5,m=1) q;~R:}?@
% x = -1:0.01:1; 8F O1`%8Oe
% [X,Y] = meshgrid(x,x); T8,k77
% [theta,r] = cart2pol(X,Y); ]6a/0rg:t
% idx = r<=1; 6T^N!3p_
% z = nan(size(X)); t/v@vJ`vSH
% z(idx) = zernfun(5,1,r(idx),theta(idx)); \&eY)^vw
% figure 7%:??*"~
% pcolor(x,x,z), shading interp ) >>u|#@z
% axis square, colorbar fap|SMGt
% title('Zernike function Z_5^1(r,\theta)') 4&FNU)tt
% %-h7Z3YcN
% Example 2: %-@'CNP
% #W>x\
% % Display the first 10 Zernike functions &_Cxv8
% x = -1:0.01:1; +L`V[;
% [X,Y] = meshgrid(x,x); SjZd0H0
% [theta,r] = cart2pol(X,Y); kN'|,eKH4
% idx = r<=1; B]'e$uyL7
% z = nan(size(X)); M,b<B_$
% n = [0 1 1 2 2 2 3 3 3 3]; E0sbU<11
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; K%Usjezv&
% Nplot = [4 10 12 16 18 20 22 24 26 28]; Mq+viU&
% y = zernfun(n,m,r(idx),theta(idx)); tpv?`(DDU
% figure('Units','normalized') ox(*
% for k = 1:10 pu\b`3C(
% z(idx) = y(:,k); $se !8s"
% subplot(4,7,Nplot(k)) 3mpP|b"
% pcolor(x,x,z), shading interp ?,WUJH?^
% set(gca,'XTick',[],'YTick',[]) N+*(Y5TU
% axis square Z7`5x
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) +<)tql*
% end TZ^{pvBy
% 1P5*wNF
% See also ZERNPOL, ZERNFUN2. i
FC"!23f
5T!&r
mcvDxjk,h
% Paul Fricker 11/13/2006 NY~ dM\
Y Eg
.
dj?G.-
*Zc9yZl2
/DLr(
% Check and prepare the inputs: 8&?^XcJ*x
% ----------------------------- qv.[k<~a>
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 2;&mkcK'
error('zernfun:NMvectors','N and M must be vectors.') c}YJqhk0J
end
$`^H:Djr
0v;ve
=fY lzZh
if length(n)~=length(m) uEBQoP2
error('zernfun:NMlength','N and M must be the same length.') cYsR0#
end G"}qV%"6"
_Mlhumt
5r'=O2AZX
n = n(:); w#W5}i&x
m = m(:); RwUW;hU
if any(mod(n-m,2)) Y3D3.T6Q
error('zernfun:NMmultiplesof2', ... HTxB=Q|
'All N and M must differ by multiples of 2 (including 0).') #X4LLS]VV
end oz Vpfs
7}gA0fP9
55LgBD
if any(m>n) [`q.A`Fd
error('zernfun:MlessthanN', ... t9ER;.e
'Each M must be less than or equal to its corresponding N.') O ,l\e3;
end 3 Q@9S
cvxIp#FbW
] OUD5T
if any( r>1 | r<0 ) TV<Aj"xw
error('zernfun:Rlessthan1','All R must be between 0 and 1.') C2NzP & FD
end 4 uShM0qa
,KT<4
:g&>D#{
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) eDuX"/kHA
error('zernfun:RTHvector','R and THETA must be vectors.') O)l%OOv
end 9 _eS`,'
Lg8]dBXu
KvGbDG
r = r(:); %@>YNPD`E
theta = theta(:); DQcWq'yY^
length_r = length(r); /\~l1.6`
if length_r~=length(theta) @sN^BX`z
error('zernfun:RTHlength', ... S=4R5igrC
'The number of R- and THETA-values must be equal.') ?b5H
2W
end FWIih5 3`
/=bSt
rYbCOazr
% Check normalization: #0(fOHPQ
% -------------------- V):`&@
if nargin==5 && ischar(nflag) Kf|0*c
isnorm = strcmpi(nflag,'norm'); `nKJR'QC
if ~isnorm $kv@tzO
error('zernfun:normalization','Unrecognized normalization flag.') _'&k#Q
end 0Qt~K#mr/
else y`({ .L
isnorm = false; f]c<9Q>*
end 9g96 d-
l4zw]AYk+X
5|5=Y/
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% r-*l1([eW
% Compute the Zernike Polynomials |"_ )zQ
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% )x)gHY8;
@Zj&`/
CNq[4T'~A
% Determine the required powers of r: KA?v.s
% ----------------------------------- !h?=Wv
==]
m_abs = abs(m); Q~8y4=|#CY
rpowers = []; TKd6MZhT
for j = 1:length(n) v3~FR,Kl
rpowers = [rpowers m_abs(j):2:n(j)]; Y^yG/F
end
C[R`Ml
rpowers = unique(rpowers); {|Bd?U;
0Lx3]"v
% oR>Uo
% Pre-compute the values of r raised to the required powers, h+5@I%WX
% and compile them in a matrix: }Iip+URG
% ----------------------------- j|k@MfA
if rpowers(1)==0 ^zHRSO
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); y>)MAzz~\
rpowern = cat(2,rpowern{:}); 4aA9\\hfGY
rpowern = [ones(length_r,1) rpowern]; Jb9F=s+
else \x(.d.l/
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); K|Om5
p
rpowern = cat(2,rpowern{:}); qZ&