切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8760阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, <^M`U>   
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, :?&N/ 7  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? s`&8tP  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? 8K{ TRPy  
    KyDQ<Dq&  
    WPLAh_fe  
    m39 `f,M  
    }9jy)gF*e  
    function z = zernfun(n,m,r,theta,nflag) 'Exj|Y&  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 1S<V,9(  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N JhIgq W2  
    %   and angular frequency M, evaluated at positions (R,THETA) on the F.K7w  
    %   unit circle.  N is a vector of positive integers (including 0), and kpcIU7|e  
    %   M is a vector with the same number of elements as N.  Each element N^B YNqr  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) g6+}'MN:5  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, j $a,93P5  
    %   and THETA is a vector of angles.  R and THETA must have the same NFv9%$l-  
    %   length.  The output Z is a matrix with one column for every (N,M) k~h'`(  
    %   pair, and one row for every (R,THETA) pair. x)h5W+$  
    % (@>X!]{$  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Y]Td+ Zi  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), q3#07o_dV  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral PSNfh7g  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, _py%L+&{  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized " P c"{w  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. {=VauF  
    % :D`ghXj  
    %   The Zernike functions are an orthogonal basis on the unit circle. a`|&rggN  
    %   They are used in disciplines such as astronomy, optics, and =Wn11JGh  
    %   optometry to describe functions on a circular domain. hlWTsi4N  
    % 3@f@4t@5V  
    %   The following table lists the first 15 Zernike functions. RBd{1on  
    % 9 N[k ?kUZ  
    %       n    m    Zernike function           Normalization .gh3"  
    %       -------------------------------------------------- I"eXoqh  
    %       0    0    1                                 1 WLqwntzk  
    %       1    1    r * cos(theta)                    2 nSdta'6  
    %       1   -1    r * sin(theta)                    2 ()i8 Qepo}  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 4RTuy+ M  
    %       2    0    (2*r^2 - 1)                    sqrt(3) G'T/I\tB  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) N,6(|,m  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) {P ZN J 2~  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) KAH9?zI)M  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ,R_ KLd  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) !c,=%4Pb  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) (lBgW z  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) g(){wCI  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) QhUv(]0   
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) #/!fLU@  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) frV *+  
    %       -------------------------------------------------- BBnW0vAZ*  
    % H=b54.J8&  
    %   Example 1: ~u| k1  
    % +iKs)s_~  
    %       % Display the Zernike function Z(n=5,m=1) {!h|(xqN+  
    %       x = -1:0.01:1; 49. @Uzo  
    %       [X,Y] = meshgrid(x,x); <Th) &  
    %       [theta,r] = cart2pol(X,Y); {KkP"j'7h  
    %       idx = r<=1; ~a@O1MB  
    %       z = nan(size(X)); K6"#&0  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); rw> X JE  
    %       figure f`Km ctI  
    %       pcolor(x,x,z), shading interp  Z|zyO-  
    %       axis square, colorbar i$MYR @  
    %       title('Zernike function Z_5^1(r,\theta)') L%4[,Rsw  
    % 0a<:.}  
    %   Example 2: Lbb{z  
    % rzmd`)g  
    %       % Display the first 10 Zernike functions QUa_gYp0v  
    %       x = -1:0.01:1; Q.SLiI  
    %       [X,Y] = meshgrid(x,x); }*vUOQQp*  
    %       [theta,r] = cart2pol(X,Y); A4!IbJD,0  
    %       idx = r<=1; :5kgJu  
    %       z = nan(size(X)); E+XpgR5  
    %       n = [0  1  1  2  2  2  3  3  3  3]; w.s-T.5.j  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; G)qNu}  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; I_vPGafMx  
    %       y = zernfun(n,m,r(idx),theta(idx)); Yt^<^l77D  
    %       figure('Units','normalized') jpND"`Q  
    %       for k = 1:10 IYtM'!u  
    %           z(idx) = y(:,k); \;"$Z 9W  
    %           subplot(4,7,Nplot(k)) R <kh3T  
    %           pcolor(x,x,z), shading interp DK2m(9/`3  
    %           set(gca,'XTick',[],'YTick',[]) f-at@C1L%L  
    %           axis square {/f\lS.5g  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) r >%reS  
    %       end f? sW^ d;  
    % QBi&Q%piy  
    %   See also ZERNPOL, ZERNFUN2. 1UR ;}  
    Z1V%pg>]*  
    -8- BVU  
    %   Paul Fricker 11/13/2006 Q4YIKNN|7  
    tx-HY<  
    _ZgIm3p0A  
    4AI\'M"d  
    ]?<j]u0J  
    % Check and prepare the inputs: NL})_.Og  
    % ----------------------------- k0;ND  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 'BE &lW  
        error('zernfun:NMvectors','N and M must be vectors.') oH/6  
    end 2i+'?.P  
    x"kc:F  
    zh2gU@"  
    if length(n)~=length(m) ?A|8J5E V  
        error('zernfun:NMlength','N and M must be the same length.') ]lj,GD)c  
    end uus}NZ:*l  
    i#I+   
    LqnN5l@ _B  
    n = n(:); :[#g_*G@p  
    m = m(:); ,o(7z^1Pe;  
    if any(mod(n-m,2)) LM:|Kydp3  
        error('zernfun:NMmultiplesof2', ... t7|uZHKK  
              'All N and M must differ by multiples of 2 (including 0).') [zp v3Uw  
    end >t2E034_  
    19od# d3+  
    bH}6N>Fp  
    if any(m>n) b&.j>=  
        error('zernfun:MlessthanN', ... %1Gat6V<'  
              'Each M must be less than or equal to its corresponding N.') rK%<2i  
    end j?Ki<MD1  
    ra \Moy  
    Q+/:5Z C  
    if any( r>1 | r<0 ) $Xf1|!W%a%  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') srfFJX7*  
    end ND[u$N+5x"  
    4`@]jm  
    %=x|.e@J  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) mIVnc`3s  
        error('zernfun:RTHvector','R and THETA must be vectors.') 7sECbbJT  
    end  (A 2x  
    6zK8-V?9F  
    /G$8j$  
    r = r(:); I}/o`oc  
    theta = theta(:); )@.bkzW  
    length_r = length(r); QjETu  
    if length_r~=length(theta) 2SU G/-P#  
        error('zernfun:RTHlength', ... p D!IB`cA4  
              'The number of R- and THETA-values must be equal.') o Xwoi!  
    end DX.u"&Mm  
    {= Dtajz  
    QC0^G,9.  
    % Check normalization: TkhbnO g6  
    % -------------------- 8[(eV.  
    if nargin==5 && ischar(nflag) "!<Kmh5  
        isnorm = strcmpi(nflag,'norm'); :P`sK&b_  
        if ~isnorm _F xq  
            error('zernfun:normalization','Unrecognized normalization flag.') &n|! '/H  
        end B&A4-w v  
    else #(3w6 l2  
        isnorm = false; i_ws*7B<  
    end eKn&`\j6  
    $K^"a  
    N kp>yVj  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% s$6zA j!  
    % Compute the Zernike Polynomials ,GXwi|Y  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @B5@3zYs  
     CJg &  
    Nkn0G _  
    % Determine the required powers of r: Gm^@lWzG  
    % ----------------------------------- DbJ:KQ!*  
    m_abs = abs(m); Xtbuy/8"1  
    rpowers = []; ;YNN)P%"  
    for j = 1:length(n) LtbL[z>]  
        rpowers = [rpowers m_abs(j):2:n(j)]; & S_gNa  
    end f!ehq\K1k  
    rpowers = unique(rpowers); <(`dU&&%"}  
    +mhYr]Z  
    QE84l  
    % Pre-compute the values of r raised to the required powers, (~xFd^W9o  
    % and compile them in a matrix: W+BM|'%}|  
    % ----------------------------- 9=@j]g|  
    if rpowers(1)==0 " jn@S-  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ~6.AE/ow  
        rpowern = cat(2,rpowern{:}); pA3j@w  
        rpowern = [ones(length_r,1) rpowern]; N~l(ng9'U  
    else bB3Mpaw@  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); }cgEC-  
        rpowern = cat(2,rpowern{:}); MHVqRYz  
    end 'P32G?1C&p  
    VF!?B>  
    E}c(4RY  
    % Compute the values of the polynomials: 6g8{;6x  
    % -------------------------------------- |4YDvDEJi  
    y = zeros(length_r,length(n)); @YdS_W  
    for j = 1:length(n) LkMhS0?(T  
        s = 0:(n(j)-m_abs(j))/2; !EF~I8d\]  
        pows = n(j):-2:m_abs(j); %*e6@Hm  
        for k = length(s):-1:1 o;{  
            p = (1-2*mod(s(k),2))* ... Y4 ){{bEp  
                       prod(2:(n(j)-s(k)))/              ... i&-g 0  
                       prod(2:s(k))/                     ... Y"D'|i  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... +Qt=N6>  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); apF!@O^}y  
            idx = (pows(k)==rpowers); ;i^p6b j  
            y(:,j) = y(:,j) + p*rpowern(:,idx); jiYYDGs77  
        end enj Ti5X  
         skR/Wf9DH  
        if isnorm 1}tZ,w>  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 2JYp.CJv  
        end |]RV[S3v  
    end .S`Ue,H  
    % END: Compute the Zernike Polynomials bENfEOf,  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% v$K`C;  
    PYkcGtVa_  
    +)^F9LPl  
    % Compute the Zernike functions: ;y%lOYm  
    % ------------------------------ sT[)r]`T  
    idx_pos = m>0; ?t'ZX~k  
    idx_neg = m<0; XrYMv WT  
    LU_@8i:  
    ' jZ2^  
    z = y; 9qIUBHe  
    if any(idx_pos) [z]@ <99/  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); U u(ysN4`  
    end &32qv` V_  
    if any(idx_neg) mn{8"@Z  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); +uM1#-+h  
    end 1.o-2:]E  
    +Q_X,gZ  
    c,Zs. kC  
    % EOF zernfun yUq,9.6Ig  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5477
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    在线sansummer
    发帖
    958
    光币
    1062
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  HeSnj-mtr}  
    ,LcMNPr  
    DDE还是手动输入的呢? E+E5`-V  
    ~\ie/}zYj  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究