切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9124阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, GuQRn  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, nS.G~c|  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? n2-0.Er  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? `^F: -  
    ?Hz2-Cn  
    UGKaOol.  
    ]?l{j  
    y.a]r7  
    function z = zernfun(n,m,r,theta,nflag) 5 9 2;W-y  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. x1[?5n6  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N #;r]/)>  
    %   and angular frequency M, evaluated at positions (R,THETA) on the kToOIx  
    %   unit circle.  N is a vector of positive integers (including 0), and 7} O;FX+x  
    %   M is a vector with the same number of elements as N.  Each element .(Y6$[#@  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) (|h:h(C  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, v"lf-c  
    %   and THETA is a vector of angles.  R and THETA must have the same 4jwu'7 Q  
    %   length.  The output Z is a matrix with one column for every (N,M) +&v\ /  
    %   pair, and one row for every (R,THETA) pair. 7k8n@39?  
    % )/t6" "  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike |"7Pv skT  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ,Qc.;4s-  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral Fz"ff4Bx [  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, kA?_%fi1  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized L:f)i,S"5q  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. UZxmh sv  
    % h[Tk; h  
    %   The Zernike functions are an orthogonal basis on the unit circle.  -;c  
    %   They are used in disciplines such as astronomy, optics, and C8b''9t.  
    %   optometry to describe functions on a circular domain. H#(<-)j0_  
    % w9&#~k]5  
    %   The following table lists the first 15 Zernike functions. _ n O.-  
    %  M[P^]J@  
    %       n    m    Zernike function           Normalization !$xu(D.  
    %       -------------------------------------------------- dk5|@?pe  
    %       0    0    1                                 1 1"E\C/c  
    %       1    1    r * cos(theta)                    2 KFhG(   
    %       1   -1    r * sin(theta)                    2 V|?WF&  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) kn  Hv?#  
    %       2    0    (2*r^2 - 1)                    sqrt(3) Z6s5M{mE  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) bKz{wm%  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) zQfkMa.  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) NB)t7/Us  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) O.\h'3C  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) A" !n1P  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) Go8F5a@j  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 78Y@OL_$  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) gY5l.&  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) %J P!{mqj  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) h}Ygb-uZ  
    %       -------------------------------------------------- oXal  
    % 9M2f!kJP$  
    %   Example 1: ^#SBpLw  
    % {*xBm#  
    %       % Display the Zernike function Z(n=5,m=1) 3 N%{B  
    %       x = -1:0.01:1; f_<Y\  
    %       [X,Y] = meshgrid(x,x); rK=6]j(K  
    %       [theta,r] = cart2pol(X,Y); IC~ljy]y_  
    %       idx = r<=1; 6Z c)0I'  
    %       z = nan(size(X)); Rt4di^v  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); X>3^a'2,E  
    %       figure j$P I,`  
    %       pcolor(x,x,z), shading interp Y3o Mh,  
    %       axis square, colorbar 7'.s7& '7  
    %       title('Zernike function Z_5^1(r,\theta)') Rc9<^g`  
    % AzjMv6N   
    %   Example 2: uWc:jP  
    % TA;,>f*  
    %       % Display the first 10 Zernike functions >>V&yJ_  
    %       x = -1:0.01:1; j#igu#MB*  
    %       [X,Y] = meshgrid(x,x); JMsHK,(  
    %       [theta,r] = cart2pol(X,Y); |5ONFd e"0  
    %       idx = r<=1; P|}\/}{`  
    %       z = nan(size(X)); I'A:J  
    %       n = [0  1  1  2  2  2  3  3  3  3]; g!^J,e=  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; <Cq"| A  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; M,..Kw/ }~  
    %       y = zernfun(n,m,r(idx),theta(idx)); *.8:'F  
    %       figure('Units','normalized') y4<+-  
    %       for k = 1:10 (,tHL  
    %           z(idx) = y(:,k); +Jq`$+%C  
    %           subplot(4,7,Nplot(k)) \(u@F<s-  
    %           pcolor(x,x,z), shading interp (j N]OE^  
    %           set(gca,'XTick',[],'YTick',[]) <%?uYCD  
    %           axis square Lz6*H1~   
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 4A  o{M  
    %       end aL)$b  
    % 6ZgNHARS  
    %   See also ZERNPOL, ZERNFUN2. s`vSt* ]K  
    U.Hdbmix  
    u}CG>^0C  
    %   Paul Fricker 11/13/2006 f\'G`4e  
    04\Ta  
    N cM3P G  
    ,.7vBt6 p  
    yA}nPXrd  
    % Check and prepare the inputs: |_I[1%&`N  
    % ----------------------------- }200g_^  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) BHclUwj  
        error('zernfun:NMvectors','N and M must be vectors.')  2}!R T  
    end L9J;8+ge  
    enPYj.*/0  
    k+txb?  
    if length(n)~=length(m) 3N3*`?5c<  
        error('zernfun:NMlength','N and M must be the same length.') ]ut?&&*  
    end hXnw..0"  
    !PI0oh  
    ?\d5;%YSr  
    n = n(:); B3 .X}ys#  
    m = m(:); I1v@\Rb  
    if any(mod(n-m,2)) 1:5P%$?b  
        error('zernfun:NMmultiplesof2', ... w3d\0ub  
              'All N and M must differ by multiples of 2 (including 0).') At|h t  
    end 0STk)> 3$-  
    <G}m#  
    d3(+ztmG!  
    if any(m>n) oFn4%S:  
        error('zernfun:MlessthanN', ... !|(Ao"]  
              'Each M must be less than or equal to its corresponding N.') C#T)@UxBZ  
    end . Nk6  
    30BR 0C  
    #4lHaFq  
    if any( r>1 | r<0 ) - BjEL;  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') /O_0=MLp  
    end kp.|gzA6  
    F*. /D~K  
    flPZlL  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 5@iy3olP  
        error('zernfun:RTHvector','R and THETA must be vectors.') NC;T( @  
    end du8!3I  
    uiuTv)pwF  
    ^X$ I=ro  
    r = r(:); TftOYY.hQ  
    theta = theta(:); i >J:W"W   
    length_r = length(r); jigbeHRy  
    if length_r~=length(theta) 69-$Wn43<  
        error('zernfun:RTHlength', ... 9M;I$_U`vj  
              'The number of R- and THETA-values must be equal.') @X|ok*v`  
    end Px$'(eMj^3  
    @_(nd57oSs  
    c.\:peDk  
    % Check normalization: HoMQt3C  
    % -------------------- \2(MpB\_6!  
    if nargin==5 && ischar(nflag) A?\h|u<  
        isnorm = strcmpi(nflag,'norm'); "3v7gtGG  
        if ~isnorm 0NVG"-Q  
            error('zernfun:normalization','Unrecognized normalization flag.') 7/ 4~>D&-b  
        end %odw+PhO  
    else e1oFnu2R  
        isnorm = false; QZWoKGd}+  
    end l;XUh9RF`A  
    Q4#\{" N!  
    rknzo]N,  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% BzN/6VEw  
    % Compute the Zernike Polynomials HH+TjX/b  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ws#hhW3qK  
    7eTA`@v5A  
    w"yK\OE  
    % Determine the required powers of r: Wnb)*pPP  
    % ----------------------------------- >Zi|$@7t-  
    m_abs = abs(m);  'Dnq+  
    rpowers = []; ='KPT1dW*  
    for j = 1:length(n) TeOFAIU  
        rpowers = [rpowers m_abs(j):2:n(j)]; UzXDi#Ky  
    end \%Pma8&d  
    rpowers = unique(rpowers); w6%l8+{R  
    gX/|aG$a!U  
    % cU-5\xF  
    % Pre-compute the values of r raised to the required powers, A[K:/tB  
    % and compile them in a matrix: &mCs%l  
    % ----------------------------- 5L/Yi  
    if rpowers(1)==0 |L*6x S[  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); c>M_?::)0  
        rpowern = cat(2,rpowern{:}); D-;J;m \  
        rpowern = [ones(length_r,1) rpowern]; =B1`R%t  
    else D 86 K$IT  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); y[TaM9<  
        rpowern = cat(2,rpowern{:}); A)=X?x  
    end <t% Ao,"  
    dP$y>%cB  
    tW'qO:y+  
    % Compute the values of the polynomials: '&rw=.cU  
    % -------------------------------------- B(HNB\3u  
    y = zeros(length_r,length(n)); = .fc"R|<K  
    for j = 1:length(n) F[Qsv54  
        s = 0:(n(j)-m_abs(j))/2; \mqhugy  
        pows = n(j):-2:m_abs(j); 6,sRavs  
        for k = length(s):-1:1 b#bO=T$e-  
            p = (1-2*mod(s(k),2))* ... #MmmwPB_  
                       prod(2:(n(j)-s(k)))/              ... MZgmv  
                       prod(2:s(k))/                     ... ={e#lC  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... FZ;Y vdX6  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); &e5^v  
            idx = (pows(k)==rpowers); K*hf(w9="%  
            y(:,j) = y(:,j) + p*rpowern(:,idx); H{p[Ghp  
        end vLVSZX  
         p]atH<^;K  
        if isnorm s2,`eV  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); #l8K8GLuf  
        end i[V,IP +  
    end lk5_s@V l  
    % END: Compute the Zernike Polynomials 0~LnnD N  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ^/4 {\3  
    YB(#]H|8S  
    >rQ)|W=i  
    % Compute the Zernike functions: R$~JhcX*l'  
    % ------------------------------ 74</6T]^  
    idx_pos = m>0; ]}*G[[ ^p  
    idx_neg = m<0; sZ\i(eIU  
    'Y6(4|w (  
    qCv}+d)  
    z = y; zXA= se0U  
    if any(idx_pos) * S+7BdP  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); lW@:q04Z$  
    end IWSEssP  
    if any(idx_neg) &AkzSgP  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); `0-m`>1>  
    end Xlgz.j7XR  
    HvL9;^!  
    K1qY10F:_  
    % EOF zernfun o F,R@f  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  g"AfI  
    UA u4x 7  
    DDE还是手动输入的呢? (6y3"cbe  
    zNTu j p  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究