切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9107阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, }$'_%,  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, o5NmNOXm  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? Rqp#-04*W  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? )H{1 Xjh-  
    , f$P[c  
    NR1M W^R  
    Ez5t)l-  
    -OlrA{=c_  
    function z = zernfun(n,m,r,theta,nflag) H>+])~#  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. ,6X;YY  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N #X?[")R  
    %   and angular frequency M, evaluated at positions (R,THETA) on the h72/03!  
    %   unit circle.  N is a vector of positive integers (including 0), and 1BU97!  
    %   M is a vector with the same number of elements as N.  Each element xd ^Pkf  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) e&d$kUJrq  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, to</  
    %   and THETA is a vector of angles.  R and THETA must have the same dX@ic,?  
    %   length.  The output Z is a matrix with one column for every (N,M) #?>)5C\Hqy  
    %   pair, and one row for every (R,THETA) pair. dB0#EJaE  
    % %\HPYnIe  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ^Z?m)qxvB  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), d$3md<lIB  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral abR<( H12  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, m1Ya  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized w|s2f`!  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. : #CWiq("%  
    % Pg(Y}Tu  
    %   The Zernike functions are an orthogonal basis on the unit circle. $jE<n/8  
    %   They are used in disciplines such as astronomy, optics, and @ztT1?!e  
    %   optometry to describe functions on a circular domain. hQm=9gS  
    % vjx'yh|  
    %   The following table lists the first 15 Zernike functions. $Z#~wsw  
    % 8:V,>PH  
    %       n    m    Zernike function           Normalization VPYLDg.'  
    %       -------------------------------------------------- w a(Y[]V  
    %       0    0    1                                 1 `D~oY=  
    %       1    1    r * cos(theta)                    2 x-CjxU3  
    %       1   -1    r * sin(theta)                    2 >,]a>V  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) uhfK\.3  
    %       2    0    (2*r^2 - 1)                    sqrt(3) D5P-$1KPt  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) h$!YKfhq}  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) mnK<5KLg1  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) )LFbz#;Y  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 3Z9Yzv)A  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) C?gqX0[ q  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 9S@x  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) M1-tRF  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) DPxx9lN_rx  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 5.{=Op!  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) XKky-LeJ  
    %       -------------------------------------------------- }'eef"DJ9  
    % e&VC }%m  
    %   Example 1: $`3yImv+w  
    % O|8@cO  
    %       % Display the Zernike function Z(n=5,m=1) M> WWP3  
    %       x = -1:0.01:1; 5S!#^>_  
    %       [X,Y] = meshgrid(x,x); vkTu:3Qe  
    %       [theta,r] = cart2pol(X,Y); 94#,dA,M  
    %       idx = r<=1; > UZ-['H  
    %       z = nan(size(X)); -@(LN%7!C  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); F,~BhKkbV  
    %       figure {. 9BG&  
    %       pcolor(x,x,z), shading interp lOVcXAe}  
    %       axis square, colorbar qSr]d`7@  
    %       title('Zernike function Z_5^1(r,\theta)') @rbd`7$%  
    % NgyEy n \  
    %   Example 2: ;O`f+rG~  
    % ';FJs&=I  
    %       % Display the first 10 Zernike functions '=E;^'Rl  
    %       x = -1:0.01:1; j;`Q82V\  
    %       [X,Y] = meshgrid(x,x); q"2APvsvp  
    %       [theta,r] = cart2pol(X,Y); TS6xF?  
    %       idx = r<=1; m)p|NdTZc8  
    %       z = nan(size(X)); 2.%)OC!q&5  
    %       n = [0  1  1  2  2  2  3  3  3  3]; _{k*JT2  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; MQwxQ{  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; zb9G&'7  
    %       y = zernfun(n,m,r(idx),theta(idx)); RQ8d1US  
    %       figure('Units','normalized') vlkw Wm  
    %       for k = 1:10 xcW\U^1d  
    %           z(idx) = y(:,k); K{DC{yLu  
    %           subplot(4,7,Nplot(k)) {UP[iw$~  
    %           pcolor(x,x,z), shading interp d9S/_iCI  
    %           set(gca,'XTick',[],'YTick',[]) (7G4v  
    %           axis square A|f6H6UUx  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) )]C]KB  
    %       end "ZGP,=?y2  
    % Li5&^RAo|J  
    %   See also ZERNPOL, ZERNFUN2. WBWW7HK  
    n o<$=(11i  
    n5d8^c!2  
    %   Paul Fricker 11/13/2006 *xNc^ &.  
    t7-]OY7%w_  
    *G.vY#h  
    ulsU~WW7r  
    ?P0b/g  
    % Check and prepare the inputs: ~_EDJp1J  
    % ----------------------------- }X{rE|@  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Q")Xg:  
        error('zernfun:NMvectors','N and M must be vectors.') :%sBY0 yF  
    end AA=Ob$2$  
    A3/[9}(U  
    *`+zf7-f  
    if length(n)~=length(m) G"F O%3&|  
        error('zernfun:NMlength','N and M must be the same length.') %9>w|%+;U+  
    end ,A`|jF  
    95'+8*YCY  
    =8 @DYz'  
    n = n(:); 8HKv_vl  
    m = m(:); e& `"}^X;I  
    if any(mod(n-m,2)) j ^j"w(a  
        error('zernfun:NMmultiplesof2', ... N0S^{j,i  
              'All N and M must differ by multiples of 2 (including 0).') 4O-LLH  
    end 6{.U7="  
    qa^cJ1@  
    Uwkxc  
    if any(m>n) a 4ViVy  
        error('zernfun:MlessthanN', ... bSw^a{~)  
              'Each M must be less than or equal to its corresponding N.') "YI,  
    end  _ VuWo  
    `r SOt *<  
    f9K7^qwkiz  
    if any( r>1 | r<0 ) .@)vJtH)  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') ?:$ q~[LY  
    end o~XK*f=(  
    5{b;wLi$X2  
    j#p;XI  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) iKo2bC:.&  
        error('zernfun:RTHvector','R and THETA must be vectors.') 4E.9CjN1>  
    end U 2YY   
    [voZ=+/  
    ra'/~^9  
    r = r(:); 4\-11!'08  
    theta = theta(:); `]W9Fj<1j  
    length_r = length(r); 'zm5wqrkAd  
    if length_r~=length(theta) 6,YoP|@0  
        error('zernfun:RTHlength', ... >G|RVB  
              'The number of R- and THETA-values must be equal.') E$ \l57  
    end KE,.Evyu=  
    =.8n K y  
    f%EHzm/V  
    % Check normalization: %@C8EFl%3  
    % -------------------- I^A>YJW  
    if nargin==5 && ischar(nflag) .Qrpz^wdt  
        isnorm = strcmpi(nflag,'norm'); ]|!|3lQ  
        if ~isnorm TXi|  
            error('zernfun:normalization','Unrecognized normalization flag.') -& (iU#W  
        end %/I:r7UR{  
    else i FZGfar?  
        isnorm = false; H Y5R  
    end iHNQxLkk{:  
    +m./RlQ{  
    >s/_B//[  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ({rcH.:  
    % Compute the Zernike Polynomials j.]]VA  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% sPQj B[  
    !Np7mv\7  
    w? _8OJ  
    % Determine the required powers of r: L~PiDQr?r  
    % ----------------------------------- z` 6$p1U  
    m_abs = abs(m); IoOOS5a  
    rpowers = []; Brxnl,%\  
    for j = 1:length(n) @@*x/"GJG  
        rpowers = [rpowers m_abs(j):2:n(j)]; K@=u F 1?  
    end 82,^Pu  
    rpowers = unique(rpowers); >g !Z|ju  
    ~OX\R"aZBW  
    a%c <3'  
    % Pre-compute the values of r raised to the required powers, % WDTnEm  
    % and compile them in a matrix: ?n{m2.H  
    % ----------------------------- k -jFT3b$  
    if rpowers(1)==0 wA$?e}  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); @cIYS%iZ  
        rpowern = cat(2,rpowern{:}); kAp#6->(q  
        rpowern = [ones(length_r,1) rpowern]; .b_ppieNY  
    else Ry}4MEq]  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); :2xGfy??  
        rpowern = cat(2,rpowern{:}); =SmU ;t>t/  
    end S8AbLl9G@>  
    g5+m]3#t  
    Fq~Zr;A  
    % Compute the values of the polynomials: =KQIrS:  
    % -------------------------------------- %'WC7s  
    y = zeros(length_r,length(n)); mRAt5a#is  
    for j = 1:length(n) ?<.a>"!  
        s = 0:(n(j)-m_abs(j))/2; ^@/wXj:  
        pows = n(j):-2:m_abs(j); +)yoQRekX  
        for k = length(s):-1:1 EXeV @kg  
            p = (1-2*mod(s(k),2))* ... >dK0&+A  
                       prod(2:(n(j)-s(k)))/              ... xkFa  
                       prod(2:s(k))/                     ... yHE\Q  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 07>m*1G  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); +mBS&FK  
            idx = (pows(k)==rpowers); &i3SB[|  
            y(:,j) = y(:,j) + p*rpowern(:,idx); "gNi}dB<]  
        end OMk3\FV2Z  
         zf)*W#+  
        if isnorm q 1xSylE  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); }=f\WWJf0  
        end y(<{e~  
    end <;#gcF[7>  
    % END: Compute the Zernike Polynomials \3ydNgl  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% KsIHJr7-  
    $W}:,]hoj  
    0;LF>+fJ  
    % Compute the Zernike functions: 8aHE=x/TL  
    % ------------------------------ >!Y#2]@}o  
    idx_pos = m>0; W2-l_{  
    idx_neg = m<0; *>?N>f"  
    PdVY tK%  
    pvl];w  
    z = y; !L;_f'\)6  
    if any(idx_pos) VTR4uT-  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 'wFhfZB1!B  
    end mI<sf?.  
    if any(idx_neg) "4xo,JUf  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); XBX`L"0  
    end 4/{pz$  
    lE%KzX?&  
    Chl^LEN:  
    % EOF zernfun !W,LG$=/  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  @3b@]l5  
    K'E)?NW69  
    DDE还是手动输入的呢? nnu#rtvZp}  
    (<Cg|*s  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究