切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8986阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, %%uvia=e  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵,  m$XMq  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? _!qi`A  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? 9E`Laf  
    qcVmt1"  
    E\/J& .  
    Ms>CO7Nvy  
    ;T-`~  
    function z = zernfun(n,m,r,theta,nflag) NeI#gJ1A  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. :{ 8,O-  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N h^ o@=%b  
    %   and angular frequency M, evaluated at positions (R,THETA) on the =lb5 #  
    %   unit circle.  N is a vector of positive integers (including 0), and 9-ei#|Vnt[  
    %   M is a vector with the same number of elements as N.  Each element @ zs.M-F  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 4:zyZu3fm  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ]a=n(`l?  
    %   and THETA is a vector of angles.  R and THETA must have the same O su 75@3  
    %   length.  The output Z is a matrix with one column for every (N,M) jjJvyZi~J  
    %   pair, and one row for every (R,THETA) pair. c^F@9{I  
    % P 7`RAz  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike &x"hM  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 0bz':M#k &  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral c3aBPig\D  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, q1Sr#h|  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized :|&S7 &l]  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. )B$Uo,1  
    % tO}Y=kZa{  
    %   The Zernike functions are an orthogonal basis on the unit circle. )x& 4 Q=  
    %   They are used in disciplines such as astronomy, optics, and r-e-2y7  
    %   optometry to describe functions on a circular domain. '/U%-/@  
    % 16-1&WuY@  
    %   The following table lists the first 15 Zernike functions. n_9Wrx328  
    % rds 4eUxe  
    %       n    m    Zernike function           Normalization ]K-B#D{P  
    %       -------------------------------------------------- cgV5{|P  
    %       0    0    1                                 1 n!?^:5=s  
    %       1    1    r * cos(theta)                    2 N"[r_!  
    %       1   -1    r * sin(theta)                    2 TQL_K8k@_  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ?{]"UnyVE*  
    %       2    0    (2*r^2 - 1)                    sqrt(3) a/Ik^:>m  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) bbG!Fg=qQ?  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 2J&J  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) Yu+;vjbK-  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) c~)H" n  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) M <K}H8?  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) SYYg 2I  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) &BOG&ot  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 0f;`Zj0l8  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) R<Uu(-O-  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) k vF[d{l  
    %       -------------------------------------------------- N"Cd{3  
    % lPA:ho/`:  
    %   Example 1: zbZN-j#  
    % 0?w4  
    %       % Display the Zernike function Z(n=5,m=1) rd ]dD G  
    %       x = -1:0.01:1; lEC91:Jyt  
    %       [X,Y] = meshgrid(x,x); 1Q!^%{Y;  
    %       [theta,r] = cart2pol(X,Y); ,R*YI  
    %       idx = r<=1; 4"et4Y7  
    %       z = nan(size(X)); F*_ytL  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); |>v8yS5  
    %       figure l0BYv&tu  
    %       pcolor(x,x,z), shading interp rrrn8b6  
    %       axis square, colorbar }kF*I@:g  
    %       title('Zernike function Z_5^1(r,\theta)') !{S HlS  
    % BDcA_= ^R&  
    %   Example 2: evE$$# 6R  
    % !glGW[r/7  
    %       % Display the first 10 Zernike functions &\5%C\0Z<  
    %       x = -1:0.01:1; l~#%j( Yo  
    %       [X,Y] = meshgrid(x,x); 1z-Q~m@@  
    %       [theta,r] = cart2pol(X,Y); iX6'3\Q3A  
    %       idx = r<=1; qwvch^?>FQ  
    %       z = nan(size(X));  t@+z r3  
    %       n = [0  1  1  2  2  2  3  3  3  3]; zuYz"-(L  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; ~PA6e+gmL  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; :rnj>U6<>  
    %       y = zernfun(n,m,r(idx),theta(idx));  MuP&m{  
    %       figure('Units','normalized') JU!vVA_  
    %       for k = 1:10 mApl}I  
    %           z(idx) = y(:,k); ^2eH0O!  
    %           subplot(4,7,Nplot(k)) WoD Qg64  
    %           pcolor(x,x,z), shading interp _<7e5VR  
    %           set(gca,'XTick',[],'YTick',[]) HyJ&;4rf  
    %           axis square Y/`*t(/5  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) R zn%!d^$>  
    %       end _Bq[c  
    % m:C|R-IL  
    %   See also ZERNPOL, ZERNFUN2. 2|}KBny  
    1J[|Ow  
    ct@i]}"`  
    %   Paul Fricker 11/13/2006 ,H:{twc   
    h%!N!\  
    y R_x:,|g  
    OO-b*\QW  
    x>MY_?a  
    % Check and prepare the inputs: q|xic>.  
    % ----------------------------- k-|b{QZ8!;  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) =Y<RG"]a&J  
        error('zernfun:NMvectors','N and M must be vectors.') *S\/l-D  
    end ?vocI  
    ~,O}wT6q  
    Z)dE#A_X  
    if length(n)~=length(m) (7?jjH^4  
        error('zernfun:NMlength','N and M must be the same length.') hG qZB  
    end [a\>"I\[  
    +HfZs"x  
    yUlYf#`H  
    n = n(:); gs9VCaIa  
    m = m(:); ;eiqzdP  
    if any(mod(n-m,2)) Qhsk09K_=4  
        error('zernfun:NMmultiplesof2', ... +EP=uV9t  
              'All N and M must differ by multiples of 2 (including 0).') Cl'3I%$8K  
    end sI#r3:?i  
    kz?m `~1  
    [B"CNnA  
    if any(m>n) v@;!fBUt  
        error('zernfun:MlessthanN', ... ;(~H(]D  
              'Each M must be less than or equal to its corresponding N.') ~4C:2  
    end e2*Fe9:  
    JN<IMH  
    @g==U{k;t  
    if any( r>1 | r<0 ) M$+2f.(>k)  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') "%fvA;  
    end E@D}Sqt  
    .80L>0  
    D_-<V,3t  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) H/BU2sa  
        error('zernfun:RTHvector','R and THETA must be vectors.') 4Q5 c'  
    end HzD=F3\r|  
    iTg7@%  
    *u?N{LkqS  
    r = r(:); )1 =|\  
    theta = theta(:); >2@ a\  
    length_r = length(r); pi?[jU[Tn  
    if length_r~=length(theta) {Wh7>*p{3  
        error('zernfun:RTHlength', ... kKil] L  
              'The number of R- and THETA-values must be equal.') G2e0\}q  
    end bsgrg  
    P},d`4Ty@  
    +oe%bk|A  
    % Check normalization: { 0 vHgi  
    % -------------------- ? bnhx  
    if nargin==5 && ischar(nflag) 7l|D!`BS  
        isnorm = strcmpi(nflag,'norm'); >5+]~[S  
        if ~isnorm U2)y fhI  
            error('zernfun:normalization','Unrecognized normalization flag.') Y~ ( <H e?  
        end FQGh+.U  
    else R6/vhze4L2  
        isnorm = false; sPUn"7  
    end )3RbD#?  
    -+w^"RBV  
    hY-;Vh0J  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /pOK4"  
    % Compute the Zernike Polynomials 5Sfz0  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% o6~9.~_e  
    X__>r ?oJ  
    H&3i[D!p  
    % Determine the required powers of r: k6PHyt`3'  
    % ----------------------------------- ~[d|:]  
    m_abs = abs(m); t:<dirw,o  
    rpowers = []; /vG)n9Rc  
    for j = 1:length(n) UM QsYD)  
        rpowers = [rpowers m_abs(j):2:n(j)]; Lp}>WCams  
    end j/Rm~!q  
    rpowers = unique(rpowers); -yH8bm'0"  
    H^\2,x Z  
    r:*0)UZlD  
    % Pre-compute the values of r raised to the required powers, WPzq?yK  
    % and compile them in a matrix: HLml:B[F(  
    % ----------------------------- (hv>vfY@  
    if rpowers(1)==0 gNoQ[xFx32  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); pHkhs{/X  
        rpowern = cat(2,rpowern{:}); g0 NSy3t  
        rpowern = [ones(length_r,1) rpowern]; %juR6zB%8  
    else @3@oaa/v  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); {f kP|d  
        rpowern = cat(2,rpowern{:}); K=`;D  
    end si|DxDx  
    <R>%DD=v^  
    2UGnRZ8:1Y  
    % Compute the values of the polynomials: lImg+r T{  
    % -------------------------------------- 6rD Oa~<B  
    y = zeros(length_r,length(n)); nC> 'kgRt  
    for j = 1:length(n) K@UQ O  
        s = 0:(n(j)-m_abs(j))/2; -Bl !s^-'  
        pows = n(j):-2:m_abs(j); @|c fFT W  
        for k = length(s):-1:1 C0bOPn  
            p = (1-2*mod(s(k),2))* ... "\l O1D  
                       prod(2:(n(j)-s(k)))/              ... *He%%pk  
                       prod(2:s(k))/                     ... %Qc5_of  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... [V-OYjPAx  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); *>,CG:`D  
            idx = (pows(k)==rpowers);  T.{sO`  
            y(:,j) = y(:,j) + p*rpowern(:,idx); ZC\&n4~7  
        end &bO5+[  
         ~&?{hd.  
        if isnorm Xob,jo}a  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); !u;r<:g!  
        end DfJHH)Ry}  
    end H ^<LnYZ  
    % END: Compute the Zernike Polynomials KS6H`Mm}/  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #~Z55 D_  
    Bh\>2]~@a  
    =gjq@N]lAW  
    % Compute the Zernike functions: m.K@g1G  
    % ------------------------------ =vaC?d3   
    idx_pos = m>0; >){"x(4`  
    idx_neg = m<0; Zoi\r  
    j$z<wR7j0  
    O0Vtvbj  
    z = y; uuA q\YZy/  
    if any(idx_pos) ;HOOo>%_K  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); x/pM.NZF1  
    end [z^db0PU  
    if any(idx_neg) ;F;"Uw  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); +TQMA >@g<  
    end EGKj1_ml  
    %SX)Z i=O  
    {B_pjs  
    % EOF zernfun y ;$8C  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    在线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  }Htnhom0n  
    n21Pfig  
    DDE还是手动输入的呢? "[PxLq5  
    m15MA.R>  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究