切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9424阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, NQX>Qh 2  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, Izn T|l^  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? LL(|$}yW  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? 7+nm31,<O  
    2.-o@im0  
    -\#lF?fzb  
    L0Y0&;y|R  
    mnjs(x<m  
    function z = zernfun(n,m,r,theta,nflag) sN~\+_  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. PcC/_+2  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Vr=OYI'A  
    %   and angular frequency M, evaluated at positions (R,THETA) on the J;}3t!  
    %   unit circle.  N is a vector of positive integers (including 0), and j*400  
    %   M is a vector with the same number of elements as N.  Each element Qz,|mo+  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 1%~[rnQ  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 4^*,jS-9g}  
    %   and THETA is a vector of angles.  R and THETA must have the same &!L:"]=+  
    %   length.  The output Z is a matrix with one column for every (N,M) j1*f]va  
    %   pair, and one row for every (R,THETA) pair. T95t"g?p  
    % lpgd#vr  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike G.\l qYrXU  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), bgF^(T35  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral +G*JrwJ&=  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, WsI>n  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized Ez+Z[*C  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. .Z\Q4x#!Z  
    % .cDOl_z<:G  
    %   The Zernike functions are an orthogonal basis on the unit circle. Xg7|JS!  
    %   They are used in disciplines such as astronomy, optics, and sOBu7!G%  
    %   optometry to describe functions on a circular domain. 5Bjgr  
    % ,.tfWN%t\  
    %   The following table lists the first 15 Zernike functions. CnISe^h  
    % i47j lyH  
    %       n    m    Zernike function           Normalization <a( }kk}  
    %       -------------------------------------------------- S($Su7g%_  
    %       0    0    1                                 1 J2VTo: In  
    %       1    1    r * cos(theta)                    2 n,$z>  
    %       1   -1    r * sin(theta)                    2 x Q4%e[/  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) #Sh <Ih  
    %       2    0    (2*r^2 - 1)                    sqrt(3) h-#1U3d  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) fv!?Ga(  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) o-C#|t3hH  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 7f{=w, U  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) \%0n}.A  
    %       3    3    r^3 * sin(3*theta)             sqrt(8)  _; Y`  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) ?6^|ZtB  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) CGbwmPx  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) c>:R3^\lwx  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Cbm\h/PXl  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) NZ0O,} m  
    %       -------------------------------------------------- qS| \JG  
    % ntVS:F  
    %   Example 1: P{Lf5V9# <  
    % Ztr Cv?  
    %       % Display the Zernike function Z(n=5,m=1) tDg}Ys=4K>  
    %       x = -1:0.01:1; u #w29Pm  
    %       [X,Y] = meshgrid(x,x); d5`3wd]]'v  
    %       [theta,r] = cart2pol(X,Y); f+_h !j  
    %       idx = r<=1; FRu]kZv2  
    %       z = nan(size(X)); r SkUSe6  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); kF"@Ngv.  
    %       figure _Q[$CcDEE  
    %       pcolor(x,x,z), shading interp Gh.[dF?  
    %       axis square, colorbar @.Ic z  
    %       title('Zernike function Z_5^1(r,\theta)') Ej ".axjT  
    % ZyrI R  
    %   Example 2: ~ `M\Ir  
    % *z*uEcitW  
    %       % Display the first 10 Zernike functions :a ->0 l  
    %       x = -1:0.01:1; ?iI4x%y  
    %       [X,Y] = meshgrid(x,x); !8NC# s  
    %       [theta,r] = cart2pol(X,Y); +Z M)bbB  
    %       idx = r<=1; o%9*B%HO/  
    %       z = nan(size(X)); L>y J  
    %       n = [0  1  1  2  2  2  3  3  3  3]; YG [;"QR  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; Q/>{f0  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; li~d?>  
    %       y = zernfun(n,m,r(idx),theta(idx)); ]vWKR."4  
    %       figure('Units','normalized') 2'EUy@0  
    %       for k = 1:10 nD5 gP  
    %           z(idx) = y(:,k); $6OkIP.  
    %           subplot(4,7,Nplot(k)) aT>'.*\]  
    %           pcolor(x,x,z), shading interp l&iq5}[n&  
    %           set(gca,'XTick',[],'YTick',[]) 6f')6X'x  
    %           axis square [W %$qZlP  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) P9g en6  
    %       end $hivlI-7Ko  
    % QUU;g2k  
    %   See also ZERNPOL, ZERNFUN2. 35E_W>n  
    h 3]wL.V  
     A) ;  
    %   Paul Fricker 11/13/2006 MrZh09y  
    A C>`'Gx  
    1 $/%m_t  
    uwz)($~bp  
    .pvi!NnL-  
    % Check and prepare the inputs: > ;/l)qk,  
    % ----------------------------- N"nd*?  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ,AxdCT  
        error('zernfun:NMvectors','N and M must be vectors.') ZI=%JU(  
    end 4"gM<z  
    GGnpjwXeH  
    'nXl>  
    if length(n)~=length(m) Z ?wU  
        error('zernfun:NMlength','N and M must be the same length.') H&:jcgV*P  
    end $2W%2rZ  
    *:ZDd  
    I 'V4D[H5  
    n = n(:); N5a*7EJv+  
    m = m(:); ;W>k@L  
    if any(mod(n-m,2)) -$\+' \  
        error('zernfun:NMmultiplesof2', ...  ,%uo6%  
              'All N and M must differ by multiples of 2 (including 0).') zuUW|r  
    end W[Ls|<Q  
    &YF^j2  
    Ney/[3 A  
    if any(m>n) j'A_'g'^  
        error('zernfun:MlessthanN', ... mV3cp rRqv  
              'Each M must be less than or equal to its corresponding N.') S:h{2{  
    end ILGMMA_2  
    ogyTO|V=  
    ;M)QwF1  
    if any( r>1 | r<0 ) ;7} VBkH  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') ,6-:VIHQ  
    end Tj:B!>>  
    0*f)=Q'  
    *MKO I'  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) "*In+!K  
        error('zernfun:RTHvector','R and THETA must be vectors.') &J+CSv,39  
    end < jJ  
    #ZB~ x6i6  
    kqFP)!37  
    r = r(:); wB.&}p9p  
    theta = theta(:); 9[<)WQe6M  
    length_r = length(r); }H^+A77v  
    if length_r~=length(theta) P)P*Xq r#:  
        error('zernfun:RTHlength', ... &litXIvT>  
              'The number of R- and THETA-values must be equal.') ?l9XAW t\  
    end ;U-jO &  
    <0Xf9a8>  
    ;lE%M  
    % Check normalization: ,J+}rPe"sf  
    % -------------------- Zy`m!]G]80  
    if nargin==5 && ischar(nflag) <3LbN FP  
        isnorm = strcmpi(nflag,'norm'); YtmrRDQs  
        if ~isnorm ]s<[D$ <,  
            error('zernfun:normalization','Unrecognized normalization flag.') [_k1jHr48N  
        end yDzc<p\`  
    else EV]1ml k$  
        isnorm = false; T;r2.Pupn  
    end k>;`FFQU>  
    F1*>y  
    ZOh`(})hy  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% EJMM9(DQ7  
    % Compute the Zernike Polynomials <M+|rD]oc  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% u_oaebOrpP  
    p{r}?a  
    >;e~WF>+K  
    % Determine the required powers of r: ]Sf]J4eQ  
    % ----------------------------------- KcWN,!G  
    m_abs = abs(m); Va"0>KX  
    rpowers = []; d; boIP`M;  
    for j = 1:length(n) TM%| '^)  
        rpowers = [rpowers m_abs(j):2:n(j)]; "\: `/k3  
    end =$'6(aDH  
    rpowers = unique(rpowers); ; ZA~p  
    e"{{ TcNk  
    p`olCp'  
    % Pre-compute the values of r raised to the required powers, 75T%g!c#  
    % and compile them in a matrix: gb[5&> (#  
    % ----------------------------- oH97=>  
    if rpowers(1)==0 {$0mwAOH "  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 11 Q1AN  
        rpowern = cat(2,rpowern{:}); A8muQuj]~~  
        rpowern = [ones(length_r,1) rpowern]; Sc]B#/~B  
    else <? q?Mn  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ~!B\(@GU  
        rpowern = cat(2,rpowern{:}); rBQ_iB_  
    end ,LHn90S  
    ?gA 8x  
    &* M!lxDN  
    % Compute the values of the polynomials: T<n  
    % -------------------------------------- u-QB.iQ+s  
    y = zeros(length_r,length(n)); ,0 M_ Bk"  
    for j = 1:length(n) '$i: 2mn,  
        s = 0:(n(j)-m_abs(j))/2; BtkOnbz8X  
        pows = n(j):-2:m_abs(j); Ua:}Vn&!  
        for k = length(s):-1:1 5TH~.^`Fi  
            p = (1-2*mod(s(k),2))* ... 0yk]o5a++  
                       prod(2:(n(j)-s(k)))/              ... ^pp\bVh2Q]  
                       prod(2:s(k))/                     ... Dj"F\j 1  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ;AG8C#_  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 01 }D,W`  
            idx = (pows(k)==rpowers); n1Yp1"2b[  
            y(:,j) = y(:,j) + p*rpowern(:,idx); %z=le7  
        end S|Q@:r"  
         5AFJC?   
        if isnorm "Wct({n  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); (~p< P+  
        end R$R *'l  
    end IPS4C[v  
    % END: Compute the Zernike Polynomials G<L;4nA)  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% {5Q!Y&N.%  
    ~n moz/L  
    x+\`gK5  
    % Compute the Zernike functions: ju8> :y8  
    % ------------------------------ XY5K%dMU  
    idx_pos = m>0; 0CHH)Bku  
    idx_neg = m<0; M[NV )q/)  
    jk;j2YNPw  
    d-oMQGOklb  
    z = y; \;,_S+Fz8  
    if any(idx_pos) bL0yuAwF2  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); z0 d.J1VW  
    end akmkyrz'&  
    if any(idx_neg) K%t*8 4j  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); D, k6$`  
    end bTI|F]^!  
    z}.e]|b^H  
    dn& s*  
    % EOF zernfun 6,pnw  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  CZwXTHe  
    K!%+0)A  
    DDE还是手动输入的呢? gx/,)> E.  
    QE+g j8  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究