切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8878阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, l&yR-FJ7KY  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, ] x Kmz  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? yA_d${n  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? p 2i5/Ly  
    [WK_Vh{  
    V:+}]"yJ,  
    -OHG1"/  
    J'7Oxjlg  
    function z = zernfun(n,m,r,theta,nflag) +`4|,K7'  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. V&>7i9lEz  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N C&SYmYj^c  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 6SmSu\lgV  
    %   unit circle.  N is a vector of positive integers (including 0), and *?8Q:@:  
    %   M is a vector with the same number of elements as N.  Each element V?gQ`( ,  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 8sIGJ|ku   
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, X}Csl~W8in  
    %   and THETA is a vector of angles.  R and THETA must have the same J2R<'(  
    %   length.  The output Z is a matrix with one column for every (N,M) UFl*^j_)]  
    %   pair, and one row for every (R,THETA) pair. "K@os<  
    % q@\D5F% >  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike U8c0C/  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), QO k%Q$^G  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral Jk~T.p?tF  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, h%O`,iD2  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized SAoqq  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. j4l7Tx  
    % }Bb(wP^B.  
    %   The Zernike functions are an orthogonal basis on the unit circle. MHbRG_zW  
    %   They are used in disciplines such as astronomy, optics, and 4*54"[9Hr#  
    %   optometry to describe functions on a circular domain. ,aN/``j=  
    % _S[H:b$?  
    %   The following table lists the first 15 Zernike functions. /yOd]N;$  
    % 'Hg(N?1"  
    %       n    m    Zernike function           Normalization <wuP*vI "h  
    %       -------------------------------------------------- kSJWQ  
    %       0    0    1                                 1 $""[( d?0  
    %       1    1    r * cos(theta)                    2 %mq]M  
    %       1   -1    r * sin(theta)                    2 o0/03O  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) Sb`>IlT\#  
    %       2    0    (2*r^2 - 1)                    sqrt(3) '[HFIJ0K!  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) X=JSqO6V9  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) R_*\?^k|A  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) wF%XM_M  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) e"b F"L  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) ?T^$,1 -  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) Mz06cw&  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) }Orc;_)r  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) Gzs x0%`)  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) HU'd/5fun  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) _#L IG2d  
    %       -------------------------------------------------- *L^{p.K4  
    % I8[G!u71)_  
    %   Example 1: H"-p^liw  
    % W w8[d  
    %       % Display the Zernike function Z(n=5,m=1) >Z3}WMgBN  
    %       x = -1:0.01:1; uM\~*@   
    %       [X,Y] = meshgrid(x,x); w3& F e=c  
    %       [theta,r] = cart2pol(X,Y); `@ `CZg  
    %       idx = r<=1; Mpj3<vj   
    %       z = nan(size(X)); ['c:n?  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); |e9}G,1  
    %       figure Yd,*LYd2EL  
    %       pcolor(x,x,z), shading interp ML R3 A s  
    %       axis square, colorbar nc31X  
    %       title('Zernike function Z_5^1(r,\theta)') ,mRN;|N  
    % P2oR C3~  
    %   Example 2: /yI~(8bO  
    % *</;:?  
    %       % Display the first 10 Zernike functions W=|B3}C?  
    %       x = -1:0.01:1; >g F  
    %       [X,Y] = meshgrid(x,x); 4];NX  
    %       [theta,r] = cart2pol(X,Y); :n>h[{ o%  
    %       idx = r<=1; <oR Nd3d  
    %       z = nan(size(X)); vI+PL(T@  
    %       n = [0  1  1  2  2  2  3  3  3  3]; 7?A}q mv  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; l&C%oW  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; v5*SoUOF  
    %       y = zernfun(n,m,r(idx),theta(idx)); *mBEF"  
    %       figure('Units','normalized') <:ZN  
    %       for k = 1:10 B0YY7od  
    %           z(idx) = y(:,k); H_$"]iQ  
    %           subplot(4,7,Nplot(k)) ^&,{  
    %           pcolor(x,x,z), shading interp KDY~9?}TM  
    %           set(gca,'XTick',[],'YTick',[]) 7?kvrIuY&  
    %           axis square  @P~ u k  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 9(H8MUF0{  
    %       end x &\~4,TN  
    % rL%xl,cn<  
    %   See also ZERNPOL, ZERNFUN2. ]`|bf2*eA  
    x^SE>dy ?z  
    zZDr=6|r_  
    %   Paul Fricker 11/13/2006 Tn-H8;Hg  
    gHm ^@  
    -nU_eDy  
    l,d8% \  
    b|xz`wUH0$  
    % Check and prepare the inputs: on(W^ocnD  
    % ----------------------------- W58 \V  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 3kJAaI8   
        error('zernfun:NMvectors','N and M must be vectors.') +C+3DwN  
    end 9J1&g(?>-  
    {)Gh~~57_W  
    _o`'b80;  
    if length(n)~=length(m) "PlM{ZI\  
        error('zernfun:NMlength','N and M must be the same length.') W`;E-28Dg  
    end a#mdD:,cF  
    GHoPv-#  
    K{ 0mb  
    n = n(:); @5kN L~2  
    m = m(:); .*y{[."!  
    if any(mod(n-m,2)) 6bU/IVP  
        error('zernfun:NMmultiplesof2', ... 'QkL%z0  
              'All N and M must differ by multiples of 2 (including 0).') >w V$az  
    end L6',s4  
    45_zO#  
    !IT']kA  
    if any(m>n) jCy2bE  
        error('zernfun:MlessthanN', ... #$#{QEh0}  
              'Each M must be less than or equal to its corresponding N.') MenI>gd?  
    end jIEK[vJ`  
    /.}&yRR  
    fXL$CgXG\x  
    if any( r>1 | r<0 ) =JEnK_@?K\  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') } #$Y^ +UN  
    end id*UTY Tg  
    n RXf\*"3  
    ,.E:mm  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) {)`5*sd  
        error('zernfun:RTHvector','R and THETA must be vectors.') zf^!Zqn[8z  
    end AU)Qk$c  
    Vg2s~ce{  
    *BSL=8G{  
    r = r(:); 9}5Q5OZ  
    theta = theta(:); ;;UvK v  
    length_r = length(r); B_:K.]DK`  
    if length_r~=length(theta) \24neD4cM@  
        error('zernfun:RTHlength', ... :JPI#zZun  
              'The number of R- and THETA-values must be equal.') S6K aw  
    end D?9 =q  
    `oq 3G }  
    A 8&%G8d  
    % Check normalization: l%;)0gT  
    % -------------------- :vc[ iZ  
    if nargin==5 && ischar(nflag) Z\NC+{7k]  
        isnorm = strcmpi(nflag,'norm'); G;, 2cu K  
        if ~isnorm 0;V2>!  
            error('zernfun:normalization','Unrecognized normalization flag.') G*Qk9bk9  
        end yzXwxi1#  
    else .-nA#/2-  
        isnorm = false; >6(nW:I0y  
    end RN!oflb  
    ` R^[s56wp  
    CK.Z-_M  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% b7HS 3NYk  
    % Compute the Zernike Polynomials 2W|j K  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% lOYwYMi  
    _:=w6jCk  
    [7L1y) I(  
    % Determine the required powers of r: BYwG\2?~  
    % ----------------------------------- 7CNEP2}:R  
    m_abs = abs(m); NjL,0Bp  
    rpowers = []; /&dC?bY  
    for j = 1:length(n) |L0s  
        rpowers = [rpowers m_abs(j):2:n(j)]; ~D 5'O^  
    end b8T'DY;~  
    rpowers = unique(rpowers); ,]Hn*\@p[c  
    AnIENJ  
    U9kt7#@FDK  
    % Pre-compute the values of r raised to the required powers, 5Ss=z  
    % and compile them in a matrix: `}Q+:  
    % ----------------------------- ~"{Kjr#R  
    if rpowers(1)==0 4l[f}Z  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 0Ac]&N d`  
        rpowern = cat(2,rpowern{:}); 5Sk87o1E(d  
        rpowern = [ones(length_r,1) rpowern]; b Kv9F@  
    else @;Yb6&I;  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 2I6c7H s  
        rpowern = cat(2,rpowern{:}); AVHn7olG  
    end Ge|caiH1I  
    9 /q4]%`  
    A*E$_N  
    % Compute the values of the polynomials: Jg |/*Or  
    % -------------------------------------- q'{E $V)E  
    y = zeros(length_r,length(n)); RIb< 7  
    for j = 1:length(n) ;nSaZ$`5  
        s = 0:(n(j)-m_abs(j))/2; .(nq"&u-*  
        pows = n(j):-2:m_abs(j); v5 $"v?PT  
        for k = length(s):-1:1 L}x"U9'C  
            p = (1-2*mod(s(k),2))* ... 8V^gOUF.  
                       prod(2:(n(j)-s(k)))/              ... ef Ra|7!HK  
                       prod(2:s(k))/                     ... naM4X@jl  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... sj Yg  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); A5B 5pJ  
            idx = (pows(k)==rpowers); ~ia#=|1}  
            y(:,j) = y(:,j) + p*rpowern(:,idx); <86upS6  
        end b8Y1.y"#  
         lbTz  
        if isnorm !dSY?1>U<  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); vpTS>!i  
        end ]D%D:>9|/  
    end ;./Tv84I^  
    % END: Compute the Zernike Polynomials xOPSw|!w  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0t6s20*q  
    $Omc Ed  
    0.bmVN<  
    % Compute the Zernike functions: cM.q^{d`  
    % ------------------------------ W!V06.  
    idx_pos = m>0; NuW9.6$Jrf  
    idx_neg = m<0; \Qz>us=G  
    NTls64AS.  
    qEX59v  
    z = y; _sJp"4?  
    if any(idx_pos) DJT)7l{  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); jHTaG%oh  
    end 9akCvY#Q  
    if any(idx_neg) `L7 cS  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); bG;vl; C  
    end ,Ix7Yg[  
    F2OU[Z,-]  
    ,k+jx53XV  
    % EOF zernfun =}u;>[3  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  3' mQ=tKa  
    87r#;ND  
    DDE还是手动输入的呢? OiJ1&Fz(  
    lJ:B9n3OzT  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究