切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9522阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, 8{!d'Pks  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, GeTk/tU  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? A}SGw.3  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? YND}P9 h  
    )rK2%\Z  
    Os@b8V 8,A  
    6sSwSS  
    yl~_~<s6  
    function z = zernfun(n,m,r,theta,nflag) Mg.%&vH\  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. \]V:>=ry>  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N )pH+ibR  
    %   and angular frequency M, evaluated at positions (R,THETA) on the W~/d2_|/  
    %   unit circle.  N is a vector of positive integers (including 0), and @|SeabN^-  
    %   M is a vector with the same number of elements as N.  Each element l,7& z  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) b<00 %Z  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 3T)rJEN A  
    %   and THETA is a vector of angles.  R and THETA must have the same  f\<r1  
    %   length.  The output Z is a matrix with one column for every (N,M) P>C'? 'Q7  
    %   pair, and one row for every (R,THETA) pair. g0tnt)]  
    % !k)6r6  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike +:.Jl:fx4  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), aDK b78 1d  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 8|i'~BFHs  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, +-^>B%/&Z  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 1IA1;  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ^m w]u"5\  
    % dT|f<E/P  
    %   The Zernike functions are an orthogonal basis on the unit circle. /h0bBP  
    %   They are used in disciplines such as astronomy, optics, and ZwS:Te9-  
    %   optometry to describe functions on a circular domain. Tu#;Y."T  
    % iYStl  
    %   The following table lists the first 15 Zernike functions. -`~qmRpqY  
    % %xg+UW }  
    %       n    m    Zernike function           Normalization  2h   
    %       -------------------------------------------------- s1D<R,J|H  
    %       0    0    1                                 1 etr-\Cp  
    %       1    1    r * cos(theta)                    2 ,Z@#( =f  
    %       1   -1    r * sin(theta)                    2 @'R)$:I%L  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) .>B'oD  
    %       2    0    (2*r^2 - 1)                    sqrt(3) a{]=BY oL  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) !CGX\cvW  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) );gY8UL^  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) Tn}`VW~  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) $N=&D_Q  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) E 5&Z={  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) DXiA4ihr=  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 6{y7e L3!  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) |h]V9=  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) %#x4wi  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) gJ6`Kl985O  
    %       -------------------------------------------------- pLB2! +  
    % h<G4tjtk  
    %   Example 1: Ga7E}y%  
    % n%&L&G  
    %       % Display the Zernike function Z(n=5,m=1) _!03;zrO  
    %       x = -1:0.01:1; Sa= tiOv  
    %       [X,Y] = meshgrid(x,x); +~^S'6yB  
    %       [theta,r] = cart2pol(X,Y); :,l7e  
    %       idx = r<=1; >2s4BV[(  
    %       z = nan(size(X)); uY& 1[(Pb  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); iHD!v7d7  
    %       figure PJ.\ )oP  
    %       pcolor(x,x,z), shading interp -tg|y  
    %       axis square, colorbar Ei4^__g\'  
    %       title('Zernike function Z_5^1(r,\theta)') #rlgeHG!fs  
    % UBaXS_c\  
    %   Example 2: 2Vx4"fHP#N  
    % *G58t`]r  
    %       % Display the first 10 Zernike functions =w$&n%~  
    %       x = -1:0.01:1; u"v7shRp:  
    %       [X,Y] = meshgrid(x,x); YN8x|DLi?  
    %       [theta,r] = cart2pol(X,Y); )eyzHB,H  
    %       idx = r<=1; \OwF!~&  
    %       z = nan(size(X)); ]cpb;UfM  
    %       n = [0  1  1  2  2  2  3  3  3  3]; }'oU/@yG  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; Xh@K89`uX  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; %B%_[<B  
    %       y = zernfun(n,m,r(idx),theta(idx)); cJo%j -AM  
    %       figure('Units','normalized') ?@b6(f xX  
    %       for k = 1:10 ?:;;0kSk  
    %           z(idx) = y(:,k); V\L;EHtc$  
    %           subplot(4,7,Nplot(k)) tu -a`h_NJ  
    %           pcolor(x,x,z), shading interp ,h*gd^i  
    %           set(gca,'XTick',[],'YTick',[]) n7!T{+ge  
    %           axis square A,~3oQV  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) .|,LBc!  
    %       end mfr aw2H  
    % >]h{[kU %4  
    %   See also ZERNPOL, ZERNFUN2. )CFJ Xc:  
    *qpu!z2m||  
    )4g_S?l=  
    %   Paul Fricker 11/13/2006 6FB 0g8  
    FZ- Wgh 0z  
    qezWfR`  
    CD`a-]6qA  
    xs"i_se  
    % Check and prepare the inputs: ]es|%j 2  
    % ----------------------------- <XeDJ8 '  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) k1B ](@xt  
        error('zernfun:NMvectors','N and M must be vectors.') ~fXNj-'RW  
    end uKJ:)oyaCP  
    iuV4xyp  
    `c Gks  
    if length(n)~=length(m) jX7K- L  
        error('zernfun:NMlength','N and M must be the same length.') O/~T+T%  
    end =Vg~ VD   
    *l_a=[<[  
    l#0zHBc  
    n = n(:); eb_.@.a  
    m = m(:); 7U [C=NL  
    if any(mod(n-m,2)) (qA F2&  
        error('zernfun:NMmultiplesof2', ... ~>:JwTy  
              'All N and M must differ by multiples of 2 (including 0).') 0LQRQuh1  
    end 392V\qtS  
    ioi/`iQR  
    ,+i^]yF3j  
    if any(m>n) +Y?Tri  
        error('zernfun:MlessthanN', ...  4!!|P  
              'Each M must be less than or equal to its corresponding N.') fG2)r  
    end 0AnL]`"t.3  
    k=)U  
    :DH@zR  
    if any( r>1 | r<0 ) SzLlJUVX  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') !{ &r|6  
    end Q=Q+*oog  
    +wQ5m8E  
    N<JI^%HBgP  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) SqAz((  
        error('zernfun:RTHvector','R and THETA must be vectors.') dX?j /M-  
    end \%r#>8c8  
    6C$+D  
    h%j4(v}r{C  
    r = r(:); rVabkwYD  
    theta = theta(:); W 8<QgpV*  
    length_r = length(r); }cz58%  
    if length_r~=length(theta) br\3}  
        error('zernfun:RTHlength', ... m0G"Aj  
              'The number of R- and THETA-values must be equal.') IQBL;=.J.  
    end LsR<r1KDJ  
    2?,l r2  
    m]DP{-s4  
    % Check normalization: uz8eS'8  
    % -------------------- t_/qd9Jv  
    if nargin==5 && ischar(nflag) S%RxYJ(  
        isnorm = strcmpi(nflag,'norm'); a Mqt2{f+  
        if ~isnorm 9No6\{[M  
            error('zernfun:normalization','Unrecognized normalization flag.') c:${qY:!  
        end (0`rfYv5.R  
    else R/{h4/+vJ  
        isnorm = false; 9ERdjS  
    end 4H;g"nWqO  
    2`i &6iz  
    ;)rhx`"n  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -Ua5anzB  
    % Compute the Zernike Polynomials /8Lb_QH{  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0,0WdJAe  
    Xp;'Wa"@  
    :{w3l O  
    % Determine the required powers of r: 9Zx| L/\  
    % ----------------------------------- [?z;'O}y  
    m_abs = abs(m); ufR|V-BWx  
    rpowers = []; q4:zr   
    for j = 1:length(n) mcwd2)  
        rpowers = [rpowers m_abs(j):2:n(j)]; li3X}  
    end 41R~.?  
    rpowers = unique(rpowers); qLBQ!>lR  
    65B&>`H~  
    dhLd2WSyH  
    % Pre-compute the values of r raised to the required powers, covCa)kf  
    % and compile them in a matrix: E2hML  
    % ----------------------------- m<Gd 6V5  
    if rpowers(1)==0 |QrVGm@2  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); W&A^.% 2l  
        rpowern = cat(2,rpowern{:}); B{#Fm6  
        rpowern = [ones(length_r,1) rpowern]; kb-XEJ}L  
    else i{g~u<DH)Q  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); &*Z)[Bl  
        rpowern = cat(2,rpowern{:}); p7},ymQ|YQ  
    end Sn97DCdk  
    l2#~   
    KjA7x  
    % Compute the values of the polynomials: _576Qa'rm  
    % -------------------------------------- "<oR.f=0  
    y = zeros(length_r,length(n)); .:-*89c  
    for j = 1:length(n) af'ncZ@U  
        s = 0:(n(j)-m_abs(j))/2; a#0*#&?7@  
        pows = n(j):-2:m_abs(j); *<9M|H~  
        for k = length(s):-1:1 TbqtT_{  
            p = (1-2*mod(s(k),2))* ... D$hK  
                       prod(2:(n(j)-s(k)))/              ... .Sm 8t$  
                       prod(2:s(k))/                     ... rp ]H&5.*  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... <{V{2V#  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); .ErR-p=-  
            idx = (pows(k)==rpowers); Lxa<zy~b  
            y(:,j) = y(:,j) + p*rpowern(:,idx); V(G{_>>  
        end *{fZA;<R  
         ]<},[s  
        if isnorm jJ>I*'w  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 7vqE @;:dt  
        end 5"#xbvRS0H  
    end a/d8_(0  
    % END: Compute the Zernike Polynomials F0xm% ?  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% f]+. i-c=  
    UuJ gB)  
    ZB}zT9JaE  
    % Compute the Zernike functions: enMHKN g  
    % ------------------------------ ]:6IW:  
    idx_pos = m>0; i piS=  
    idx_neg = m<0; O|;|7fCB\  
    5t-(MY  
    `)jAdad-s  
    z = y; <l)I% 1T_c  
    if any(idx_pos) ;S2/n$Ju_  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); o<S(ODOfi  
    end Xp^71A?>  
    if any(idx_neg) Mc|UD*Z  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Jl) Q #  
    end e58tf3  
    h>NuQo*  
    -A8CW9|mk  
    % EOF zernfun h*NBSvn  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    在线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  VwrHD$  
    G :JQ_w  
    DDE还是手动输入的呢? Y<0R5rO  
    SV0h'd(b  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究