下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, ;$nK
^
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, n^'{{@&(v
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? i;)88
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? luV%_[F
-"<eq0
@NO&3m]
<>-UPRwqI
,TL~];J'
function z = zernfun(n,m,r,theta,nflag) X!&=S!}
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. ImgKqp0Z
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N CnAh Ef)b
% and angular frequency M, evaluated at positions (R,THETA) on the rq$%
% unit circle. N is a vector of positive integers (including 0), and u{J:wb
% M is a vector with the same number of elements as N. Each element $WdZAv\_S
% k of M must be a positive integer, with possible values M(k) = -N(k) e7<~[>g)
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, ')_jK',1
% and THETA is a vector of angles. R and THETA must have the same 9)wjVk
% length. The output Z is a matrix with one column for every (N,M) 2PRGwK/
% pair, and one row for every (R,THETA) pair. Z$2mVRS`c
% guBOR0x`
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike fE7Kv_N-%
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 2 !{P<
% with delta(m,0) the Kronecker delta, is chosen so that the integral zm"& 8/l
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, <&:3|2p
% and theta=0 to theta=2*pi) is unity. For the non-normalized %R(j|a9z
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. >GqIpfn
% d
;ry!X
% The Zernike functions are an orthogonal basis on the unit circle. s*rtm
% They are used in disciplines such as astronomy, optics, and y![h
% optometry to describe functions on a circular domain. =PXNg!B}D*
% w
W-GBY3
% The following table lists the first 15 Zernike functions. !5x"d7
% eQzTb91
% n m Zernike function Normalization N+h|Ffnp
% -------------------------------------------------- Ie` `Wb=
% 0 0 1 1 bvZmozbD
% 1 1 r * cos(theta) 2 t,+p!"MRY
% 1 -1 r * sin(theta) 2 u{8Wu;
% 2 -2 r^2 * cos(2*theta) sqrt(6) 3&_(D)+
% 2 0 (2*r^2 - 1) sqrt(3) nLYyS#
% 2 2 r^2 * sin(2*theta) sqrt(6) B,}%1+*
% 3 -3 r^3 * cos(3*theta) sqrt(8) D7 A{*Tm
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) P%.9 g
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) AlGD .K
% 3 3 r^3 * sin(3*theta) sqrt(8) )07M8o!^l
% 4 -4 r^4 * cos(4*theta) sqrt(10) #uKHw2N
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) vrh}X[JEw'
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) ==Ju2D?%
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Q TM+WD
% 4 4 r^4 * sin(4*theta) sqrt(10) dDAdZxd
% -------------------------------------------------- %J3#4gG^v
% ,1QU
% Example 1: H~&9xtuHN
% bMf+/n
% % Display the Zernike function Z(n=5,m=1) >(*jL
% x = -1:0.01:1; h(jg7R
% [X,Y] = meshgrid(x,x); Q-BciBh$
% [theta,r] = cart2pol(X,Y); foaNB=,
% idx = r<=1; $
5
% z = nan(size(X)); o"K{^ L~u
% z(idx) = zernfun(5,1,r(idx),theta(idx)); Kq{9:G
% figure cYW F)WAog
% pcolor(x,x,z), shading interp C'kd>LAGu
% axis square, colorbar aZ#c_Q#gZ
% title('Zernike function Z_5^1(r,\theta)') 0p:n'P
% 2=u5N[*
% Example 2: hNSV}~h
% mLKwk6I
% % Display the first 10 Zernike functions qky{]qNW
% x = -1:0.01:1; n(-XI&Kn
% [X,Y] = meshgrid(x,x);
,!PNfJA2
% [theta,r] = cart2pol(X,Y); mbSJ}3c"
% idx = r<=1; :@ 19,.L
% z = nan(size(X)); O" n /.`
% n = [0 1 1 2 2 2 3 3 3 3]; ?5"~V^L3
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; AgO:"'c
% Nplot = [4 10 12 16 18 20 22 24 26 28]; ]`]m41+w
% y = zernfun(n,m,r(idx),theta(idx)); m3K8hL/
% figure('Units','normalized') .,UpI|b
% for k = 1:10 hZ5h(CQ?"#
% z(idx) = y(:,k); f GY. +W_
% subplot(4,7,Nplot(k)) &nTB^MF
% pcolor(x,x,z), shading interp FtT+Q$q=
% set(gca,'XTick',[],'YTick',[]) v6TH-
% axis square .,<-lMC+
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) VI[ikNpX
% end ?,TON5Fl-
% Yc+/="&z
% See also ZERNPOL, ZERNFUN2. #Z(8 vA^@
zr2%|YF
GYyP+7K4l[
% Paul Fricker 11/13/2006 "~N#Jqzr:
|'b=xeH.^<
[uW{Ap ~2
hyVuZ\9B
)$ i7b
% Check and prepare the inputs: i{
eDV
% ----------------------------- ?RA^Y N*9
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ,d@.@a]
`
error('zernfun:NMvectors','N and M must be vectors.') Hq< Vk.Nk
end 2Cj?k.Zk
b:WlB[5
00n6v;X
if length(n)~=length(m) %)?$82=2
error('zernfun:NMlength','N and M must be the same length.') 83Bp_K2\
end ;HgV(d#X
r[JgCj+$&
5<Xq7|Jt
n = n(:); ie=tM'fb
m = m(:); b_z;^y~
if any(mod(n-m,2)) >jq~5HN
error('zernfun:NMmultiplesof2', ... Nq"/:3@4
'All N and M must differ by multiples of 2 (including 0).') P<km?\Xp(
end wBA[L}
Ck/4hZ
=;i@,{
~
if any(m>n) )CSb\
error('zernfun:MlessthanN', ... I.euuzBgA
'Each M must be less than or equal to its corresponding N.') #xNLr
end Tmg~ZI:MW
K#}DXq
"P~0 7
if any( r>1 | r<0 ) 0' @^PzX
error('zernfun:Rlessthan1','All R must be between 0 and 1.') uF+if`?
end ]o6Or,ml
ezY
_7
+q|2j>k@
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 9pb4!=g*
error('zernfun:RTHvector','R and THETA must be vectors.') 3;u* _ ]N_
end a.y_o50#T
1aS[e%9Mg
A_muuOIcI
r = r(:); {r#2X1
theta = theta(:); FQ*4?D,A
length_r = length(r); /0uZ(F|>I
if length_r~=length(theta) 7xb z)FI
error('zernfun:RTHlength', ... !=V>DgmW
'The number of R- and THETA-values must be equal.') %}MZWf{
end [u[F6Wst
Ayadvi(@P
l(-6pP5`
% Check normalization: xVao3+r
% -------------------- \`-/\N
if nargin==5 && ischar(nflag) 4/e-E^
isnorm = strcmpi(nflag,'norm'); OQ;DqV
if ~isnorm %`t;5kmR
error('zernfun:normalization','Unrecognized normalization flag.') wyzj[PDS
end G,FYj'<!7,
else R+
lwOVX
isnorm = false; ;\DXRKR
end co r?#
h3$.`
>l
t|jX%s=
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% iov55jT~l@
% Compute the Zernike Polynomials r DX_$,3L
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% yQ?N*'}$
,Drd s"H
9[N+x2q
% Determine the required powers of r: a;|C51GH
% ----------------------------------- qPK3"fzH
m_abs = abs(m); u.YPb@
rpowers = []; Uc/MPCqZ
for j = 1:length(n) lpQsmd#
rpowers = [rpowers m_abs(j):2:n(j)]; ^a4 y+!
end WBFG_])
rpowers = unique(rpowers); T]l_B2.
*A':^vgk
>:!TfuU^R
% Pre-compute the values of r raised to the required powers, W'hE,
% and compile them in a matrix: /-TJtR4>
% ----------------------------- $`W.9
if rpowers(1)==0 <i``#"/
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); @C{IgV
rpowern = cat(2,rpowern{:}); X3vTyIsn
rpowern = [ones(length_r,1) rpowern]; dVmI.A'nbp
else 7^P!@o$v!
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false);
a1R2ocC
rpowern = cat(2,rpowern{:}); D$
zKkPYI
end T%A45BE
V
2siUpmX
D_ybgX?0:
% Compute the values of the polynomials: ^o}!=aMr
% -------------------------------------- ?}\aG3_4
y = zeros(length_r,length(n)); h~)oiT2v
for j = 1:length(n) NTS
tk{s,
s = 0:(n(j)-m_abs(j))/2; u1s^AW8 y
pows = n(j):-2:m_abs(j); ) E.KB6
for k = length(s):-1:1 n0 q5|ES
p = (1-2*mod(s(k),2))* ... J;,6ydf8!
prod(2:(n(j)-s(k)))/ ... 'L4@|c~x
prod(2:s(k))/ ... uUu]JDdz
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ...
s.&ewf\
prod(2:((n(j)+m_abs(j))/2-s(k))); Z[<rz6%cB
idx = (pows(k)==rpowers); jE|Ju:}&
y(:,j) = y(:,j) + p*rpowern(:,idx); R
h zf.kp
end !7"-9n
H6X]D"Y,
if isnorm ]S4 TX
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 0Po",\^
end KSU?Tg&JR
end -fIX6
% END: Compute the Zernike Polynomials QNj hA '[T
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ":E
7#9
?3~]H
NPc]/n?vDj
% Compute the Zernike functions: *ci,;-*C
% ------------------------------ XF(0>-
idx_pos = m>0; _Bm/v^(
idx_neg = m<0; Se7NF@>9_
(1p[K-J)r
$BKGPGmh
z = y; v1%rlP
if any(idx_pos) )/kkvI()l
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); i lk\&J~I
end &^$dHr6v
if any(idx_neg) vJ9Uw
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ~&B{"d
end T;K,.a8bU
+X6xCE
M7!>-P
% EOF zernfun pi7Fd\A