下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, vvJ{fi
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, [@!.( Hp
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? -WDU~VSU
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? Y\7>>?
<h(KIY9T
m/,.3v
l+6y$2QR
4)L(41h
function z = zernfun(n,m,r,theta,nflag) <qG4[W,[
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. +T*=JHOD
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Fai_v{&?
% and angular frequency M, evaluated at positions (R,THETA) on the VO_! +
% unit circle. N is a vector of positive integers (including 0), and (w31W[V'#
% M is a vector with the same number of elements as N. Each element dP>~ExYtm
% k of M must be a positive integer, with possible values M(k) = -N(k) gyqM&5b
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, .Dn.|A
% and THETA is a vector of angles. R and THETA must have the same :%[=v(G[
% length. The output Z is a matrix with one column for every (N,M) P5u
Y1(
% pair, and one row for every (R,THETA) pair. \8Mn[G9TL
% mR3)$!
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike R+'$V$g\X
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), %+\ PN
% with delta(m,0) the Kronecker delta, is chosen so that the integral hu?Q,[+o
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, d~i WV6Va
% and theta=0 to theta=2*pi) is unity. For the non-normalized ,EkzBVgo
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. P}So>P~2
% y v6V1gK
% The Zernike functions are an orthogonal basis on the unit circle. G,tJ\xMw8
% They are used in disciplines such as astronomy, optics, and \Wdl1 =`
% optometry to describe functions on a circular domain. !VaKq_W
% 1&zvf4
% The following table lists the first 15 Zernike functions. C,*3a`/2M^
% qOA+ao
% n m Zernike function Normalization <evvNSE
% -------------------------------------------------- RJpH1XQ
j
% 0 0 1 1 _?j66-(
Q
% 1 1 r * cos(theta) 2 ]} D^?g^
% 1 -1 r * sin(theta) 2 j7(sYo@x7
% 2 -2 r^2 * cos(2*theta) sqrt(6) }tq
% 2 0 (2*r^2 - 1) sqrt(3) MQs!+Z"m>
% 2 2 r^2 * sin(2*theta) sqrt(6) w %4SNR
% 3 -3 r^3 * cos(3*theta) sqrt(8) $8/=@E{51
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) =>?;Iv'Z
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) K|i:tHF]@
% 3 3 r^3 * sin(3*theta) sqrt(8) UQ0Sfu
% 4 -4 r^4 * cos(4*theta) sqrt(10) fL0dy[Ch@
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) t>hoXn^-
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) Ck:RlF[6C
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 6Zr_W#SE
% 4 4 r^4 * sin(4*theta) sqrt(10)
Nk.m$
% --------------------------------------------------
j,DF' h
% l dd8'2
% Example 1: 2C6o?*RjyY
% q=I8W}Zi
% % Display the Zernike function Z(n=5,m=1) \9HpbCHr
% x = -1:0.01:1; \a#{Y/j3
% [X,Y] = meshgrid(x,x); l*r8.qp
% [theta,r] = cart2pol(X,Y); s ;3k#-w
% idx = r<=1; lN(|EI
% z = nan(size(X)); M =/+q
% z(idx) = zernfun(5,1,r(idx),theta(idx)); Tu!2lHK;
% figure ;mT|0&o>#
% pcolor(x,x,z), shading interp \d'>Ky;GD
% axis square, colorbar Mh=yIx</
% title('Zernike function Z_5^1(r,\theta)') CP]nk0
% 0oNNEC
% Example 2: '99rXw
% Kw%to9eh)
% % Display the first 10 Zernike functions *F<Ar\f5
% x = -1:0.01:1; F"-u8in`
% [X,Y] = meshgrid(x,x); :P2{^0$
% [theta,r] = cart2pol(X,Y); 5T*Uq>x0
% idx = r<=1; ftb .CPWI
% z = nan(size(X)); CXQ +h
% n = [0 1 1 2 2 2 3 3 3 3]; 1>c^-"#e^
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; Vn=K5nm
% Nplot = [4 10 12 16 18 20 22 24 26 28]; o+],L_Ab
% y = zernfun(n,m,r(idx),theta(idx)); jv;8Mm
% figure('Units','normalized') {6I)6}w!k
% for k = 1:10 q1a*6*YB
% z(idx) = y(:,k); ?&`PN<~2z
% subplot(4,7,Nplot(k)) /` ;rlH*
% pcolor(x,x,z), shading interp z|M+
FHl$
% set(gca,'XTick',[],'YTick',[]) (]@yDb4
% axis square _J,lF-,
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) =(==aP
% end nF5\iV
% :5'8MU
% See also ZERNPOL, ZERNFUN2. + L\Dh.Ir
Qi= pP/Y
i5*BZv>e
% Paul Fricker 11/13/2006 7&hhKEA
*Cj<Vy
ykS-5E`
h@2YQgw`
iW?z2%#
% Check and prepare the inputs: ;hV-*;>
% ----------------------------- 0Yk$f1g
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Nx;Oz
error('zernfun:NMvectors','N and M must be vectors.') {3* Ne /
end I&J>
S'_2o?fs
&*Z"r*
if length(n)~=length(m) \Dx;AK s
error('zernfun:NMlength','N and M must be the same length.') Z[G[.\0
end A4tb>OM
D[
v2#2
PL|ea~/
n = n(:); B9:
i.rQ
m = m(:); 0{'m":D9
if any(mod(n-m,2)) pwg\b
error('zernfun:NMmultiplesof2', ... Vr7L9%/wg
'All N and M must differ by multiples of 2 (including 0).') xFScj0Y
end Aa`R40 yl
wBlo2WY
rqWD#FB=z
if any(m>n) gSk0#Jt
error('zernfun:MlessthanN', ... X/f?=U
'Each M must be less than or equal to its corresponding N.') 6hO]eS
end Rn $TYCO
szs.B|3X@*
ZA7b;{o [
if any( r>1 | r<0 ) ^2`*1el
error('zernfun:Rlessthan1','All R must be between 0 and 1.') 7Tc^}Q
end !!<H*9]+W;
n[gc`#7|{e
IMSLHwZ
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) PVi0|
error('zernfun:RTHvector','R and THETA must be vectors.') a_\t(U
end EX/{W$
&K
>aAsUL5W
A~@x8
r = r(:); G.:QA}FE'
theta = theta(:); aeE~[m
length_r = length(r); ew&"n2r
if length_r~=length(theta) 7n[0)XR>
error('zernfun:RTHlength', ... ,: Ij@u>)
'The number of R- and THETA-values must be equal.') V
X.9mt
end 4C }#lW9
sdBB(
T2_b5j3i
% Check normalization: owzcc-g
% -------------------- iBk1QRdn
if nargin==5 && ischar(nflag) H}cq|hodn
isnorm = strcmpi(nflag,'norm'); IOY<'t+
if ~isnorm (z:qj/|
error('zernfun:normalization','Unrecognized normalization flag.') GE*%I1?]
end M%bD7naBq
else b/d1(B@
isnorm = false; :{ Lihe~\
end S|O#KE
'F^1)Ga$
r8>Qs RnU%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% fwi
-
% Compute the Zernike Polynomials |qf ef&
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% g'NR\<6A
o|APsQE
g f<vQb|
% Determine the required powers of r: ~Kt2g\BSok
% ----------------------------------- Z3f}'vr
m_abs = abs(m); ZU;nXqjc
rpowers = []; [$@EQ]tt/
for j = 1:length(n) L=gG23U&
rpowers = [rpowers m_abs(j):2:n(j)]; jt0f*eYE8
end )
D5JA`
rpowers = unique(rpowers); V6&6I
z,RjQTd
'>GPk5Nq77
% Pre-compute the values of r raised to the required powers, JvF0s}#4
% and compile them in a matrix: T~
P<Gq},
% -----------------------------
E-deXY
if rpowers(1)==0 'u9y\vUy
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ]]T,;|B
rpowern = cat(2,rpowern{:}); X2`n&JE
rpowern = [ones(length_r,1) rpowern]; M63t4; 0A
else hV NT
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); >]x%+@{|
rpowern = cat(2,rpowern{:}); ^sF(IV[>
end Nv=&gOy=
&kQj)
Qx8O&C?Ti
% Compute the values of the polynomials: juQ?k xOB
% -------------------------------------- !1#=j;N`
y = zeros(length_r,length(n)); sY* qf=
for j = 1:length(n) ,WE2MAjhT
s = 0:(n(j)-m_abs(j))/2; 5Vr#>W
pows = n(j):-2:m_abs(j); esd9N'.Q*
for k = length(s):-1:1 bUe6f,8,
p = (1-2*mod(s(k),2))* ... ^*F'[!. p
prod(2:(n(j)-s(k)))/ ... 6M[OEI5
prod(2:s(k))/ ... QtLd(&
!v
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... p3qKtMs0!
prod(2:((n(j)+m_abs(j))/2-s(k))); YoSBS
idx = (pows(k)==rpowers); QwLSL<.
y(:,j) = y(:,j) + p*rpowern(:,idx); xu@+b~C\
end %?J-0
2+yti,s+/
if isnorm x??H%'rP
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); \q"vC1,9
end +*G<xW :M
end TVK*l*
% END: Compute the Zernike Polynomials A27!I+M
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% cHJ4[x=
Wf=hFc1_@
d~y]7h |
% Compute the Zernike functions: P}vk5o'
% ------------------------------ M&KJZ
idx_pos = m>0; I.p"8I;
idx_neg = m<0; o4,9jk$
a``Q}.ST
;".]W;I*O
z = y; A`V:r2hnb
if any(idx_pos) &H%z1Lp
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 4+Y9":<
end $Zj3#l:rK
if any(idx_neg) ^ R3g7 DG
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); C\*0621
end 1~S''[
1_>w|6;e
54Vb[;`Kkb
% EOF zernfun ?+L7Bd(EF%