切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8742阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, ;$nK ^  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, n^'{{@&(v  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? i;)88  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? luV%_[F  
     -"<eq0  
    @NO&3m]  
    <>-UPRw qI  
    ,TL~];J'  
    function z = zernfun(n,m,r,theta,nflag) X!&=S!}  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. ImgKqp0Z  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N CnAhEf)b  
    %   and angular frequency M, evaluated at positions (R,THETA) on the rq$%  
    %   unit circle.  N is a vector of positive integers (including 0), and u{J:wb  
    %   M is a vector with the same number of elements as N.  Each element $WdZAv\_S  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) e7<~[>g)  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ')_jK',1  
    %   and THETA is a vector of angles.  R and THETA must have the same 9) wjVk  
    %   length.  The output Z is a matrix with one column for every (N,M) 2PRGwK/  
    %   pair, and one row for every (R,THETA) pair. Z$2mVRS`c  
    % guBOR 0x`  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike fE7Kv_N-%  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 2 !{P<   
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral zm"&8/l  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, <&:3|2p  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized %R(j|a9z  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. >GqIpfn  
    % d ;ry!X  
    %   The Zernike functions are an orthogonal basis on the unit circle. s*rtm  
    %   They are used in disciplines such as astronomy, optics, and y![h  
    %   optometry to describe functions on a circular domain. =PXNg!B}D*  
    % w W-GBY3  
    %   The following table lists the first 15 Zernike functions. !5x"d7  
    % eQzTb91  
    %       n    m    Zernike function           Normalization N+h|Ffnp  
    %       -------------------------------------------------- Ie``W b=  
    %       0    0    1                                 1 bvZmo zbD  
    %       1    1    r * cos(theta)                    2 t,+p!"MRY  
    %       1   -1    r * sin(theta)                    2 u{8Wu;  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 3&_(D)+  
    %       2    0    (2*r^2 - 1)                    sqrt(3) nLYyS#  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) B,}%1+*  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) D7 A{*Tm  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) P%.9g  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) AlGD .K  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) )07M8o !^l  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) #uKHw2N  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) vrh}X[JEw'  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) ==Ju2D?%  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) QTM+ WD  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) dDAdZxd  
    %       -------------------------------------------------- %J3#4gG^v  
    % ,1QU  
    %   Example 1: H~&9xtuHN  
    % bMf +/n  
    %       % Display the Zernike function Z(n=5,m=1) >(*jL  
    %       x = -1:0.01:1; h (jg7R  
    %       [X,Y] = meshgrid(x,x); Q-Bci Bh$  
    %       [theta,r] = cart2pol(X,Y); foaNB=,  
    %       idx = r<=1; $  5  
    %       z = nan(size(X)); o"K{^ L~u  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); Kq{9 :G  
    %       figure cYW F)WAog  
    %       pcolor(x,x,z), shading interp C'kd>LAGu  
    %       axis square, colorbar aZ#c_Q#gZ  
    %       title('Zernike function Z_5^1(r,\theta)') 0p:n'P  
    % 2= u5N[*  
    %   Example 2: hNSV}~h  
    % mLKwk6I  
    %       % Display the first 10 Zernike functions qky{]qNW  
    %       x = -1:0.01:1; n(-XI&Kn  
    %       [X,Y] = meshgrid(x,x); ,!PNfJA2  
    %       [theta,r] = cart2pol(X,Y); mbSJ}3c"  
    %       idx = r<=1; :@19,.L  
    %       z = nan(size(X)); O" n/.`  
    %       n = [0  1  1  2  2  2  3  3  3  3]; ?5"~V^L3  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; AgO:"'c  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; ]`]m41+w  
    %       y = zernfun(n,m,r(idx),theta(idx)); m3K8hL/  
    %       figure('Units','normalized') .,UpI|b  
    %       for k = 1:10 hZ5h(CQ?"#  
    %           z(idx) = y(:,k); fGY. +W_  
    %           subplot(4,7,Nplot(k)) &nTB^MF  
    %           pcolor(x,x,z), shading interp FtT+Q$q=  
    %           set(gca,'XTick',[],'YTick',[]) v6TH-  
    %           axis square .,<-lMC+  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) VI[ikNpX  
    %       end ?,TON5Fl-  
    % Yc+ /="&z  
    %   See also ZERNPOL, ZERNFUN2. #Z(8 vA^@  
    zr2%|YF  
    GYyP+7K4l[  
    %   Paul Fricker 11/13/2006 "~N#Jqzr:  
    |'b=xeH.^<  
    [uW{Ap~2  
    hyVuZ\9B  
    )$i7b  
    % Check and prepare the inputs: i{ eDV  
    % ----------------------------- ?RA^Y N*9  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ,d@.@a] `  
        error('zernfun:NMvectors','N and M must be vectors.') Hq< Vk.Nk  
    end 2Cj?k.Zk  
    b:Wl B[5  
    00n6v;X  
    if length(n)~=length(m) % )?$82=2  
        error('zernfun:NMlength','N and M must be the same length.') 83Bp_K2\  
    end ;HgV(d#X  
    r[JgCj+$&  
    5<Xq7|Jt  
    n = n(:); ie=tM'fb  
    m = m(:); b_z;^y~  
    if any(mod(n-m,2)) >jq~5HN  
        error('zernfun:NMmultiplesof2', ... Nq"/:3@4  
              'All N and M must differ by multiples of 2 (including 0).') P<km?\Xp(  
    end wBA[L}  
    Ck/4h Z  
    =;i@,{ ~  
    if any(m>n) )CSb\  
        error('zernfun:MlessthanN', ... I.euuzBgA  
              'Each M must be less than or equal to its corresponding N.') #xNLr   
    end Tmg~ZI:MW  
    K #}DXq  
    "P~0 7  
    if any( r>1 | r<0 ) 0' @^PzX  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') uF+if`?  
    end ]o6Or,ml  
    ezY _7  
    +q|2j>k@  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 9pb4!=g*  
        error('zernfun:RTHvector','R and THETA must be vectors.') 3;u*_ ]N_  
    end a.y_o50#T  
    1aS[e%9Mg  
    A_muuOIcI  
    r = r(:); {r#2X1  
    theta = theta(:); FQ*4?D,A  
    length_r = length(r); /0uZ(F|>I  
    if length_r~=length(theta) 7xb z)FI  
        error('zernfun:RTHlength', ... !=V>DgmW  
              'The number of R- and THETA-values must be equal.') %}MZWf{  
    end [u[F6Wst  
    Ayadvi(@P  
    l(-6pP5`  
    % Check normalization: xVao3+r  
    % -------------------- \`-/\N  
    if nargin==5 && ischar(nflag) 4/e-E^  
        isnorm = strcmpi(nflag,'norm'); OQ;DqV  
        if ~isnorm %`t;5kmR  
            error('zernfun:normalization','Unrecognized normalization flag.') wyzj[PDS  
        end G,FYj'<!7,  
    else R+ lwOVX  
        isnorm = false; ;\DXRKR  
    end cor?#  
    h3$.` >l  
    t|jX%s=  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% iov55jT~l@  
    % Compute the Zernike Polynomials rDX_$,3L  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% yQ?N*'}$  
    ,Drd s"H  
    9[N+x2q  
    % Determine the required powers of r: a;|C51GH  
    % ----------------------------------- qPK3"fzH  
    m_abs = abs(m); u.YPb@  
    rpowers = []; Uc/MPCqZ  
    for j = 1:length(n) lpQsmd#  
        rpowers = [rpowers m_abs(j):2:n(j)]; ^a4y+!  
    end WBFG_])  
    rpowers = unique(rpowers); T]l_B2.  
    *A':^vgk  
    >:!TfuU^R  
    % Pre-compute the values of r raised to the required powers, W'hE,  
    % and compile them in a matrix: /-TJtR4>  
    % ----------------------------- $`W .9  
    if rpowers(1)==0 <i``#" /  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); @C{IgV  
        rpowern = cat(2,rpowern{:}); X3vTyIsn  
        rpowern = [ones(length_r,1) rpowern]; dVmI.A'nbp  
    else 7^P!@o$v!  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); a1R2ocC  
        rpowern = cat(2,rpowern{:}); D$ zKkP YI  
    end T%A45BE V  
    2siUpmX  
    D_ybgX?0:  
    % Compute the values of the polynomials: ^o}!=aMr  
    % -------------------------------------- ?}\aG3_4  
    y = zeros(length_r,length(n)); h~)oiT2v  
    for j = 1:length(n) NTS tk{s,  
        s = 0:(n(j)-m_abs(j))/2; u1s^AW8 y  
        pows = n(j):-2:m_abs(j); ) E.KB6  
        for k = length(s):-1:1 n0q5|ES  
            p = (1-2*mod(s(k),2))* ... J;,6ydf8!  
                       prod(2:(n(j)-s(k)))/              ... 'L4@|c~x  
                       prod(2:s(k))/                     ... uUu]JDdz  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ...  s.&ewf\  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); Z[<rz6%cB  
            idx = (pows(k)==rpowers); jE|Ju:}&  
            y(:,j) = y(:,j) + p*rpowern(:,idx); R h zf.kp  
        end !7 "-9n  
         H6X]D"Y,  
        if isnorm ]S4TX  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 0 Po",\^  
        end KSU?Tg&JR  
    end -f IX6  
    % END: Compute the Zernike Polynomials QNj hA'[T  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ":E 7#9  
    ?3~]H   
    NPc]/n?vDj  
    % Compute the Zernike functions: *ci,;-*C  
    % ------------------------------ XF(0>-  
    idx_pos = m>0; _Bm/v^(  
    idx_neg = m<0; Se7NF@>9_  
    (1p[K-J)r  
    $BKGPGmh  
    z = y; v1%rlP  
    if any(idx_pos) )/kkvI()l  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); i lk\&J~I  
    end &^$dHr6v  
    if any(idx_neg) v J9Uw  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ~&B{"d  
    end T;K,.a8bU  
    +X6x CE  
    M7!>-P  
    % EOF zernfun pi7Fd\A  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5477
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    957
    光币
    1067
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  kb"g  
    b4TZnO  
    DDE还是手动输入的呢? c6 O1Z\M@\  
    IE/F =Wr  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究