下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, Dn1aaN6
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, -pvF~P?8U
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? J4EQhuQ
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? +G)L8{FY(
i|2CZ
hV_bm@f/y
$DBJ"8n2
ei%L[>N
function z = zernfun(n,m,r,theta,nflag)
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. A%(t' z
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N /x\{cHAt8J
% and angular frequency M, evaluated at positions (R,THETA) on the KPTp91
% unit circle. N is a vector of positive integers (including 0), and CEzwI _
% M is a vector with the same number of elements as N. Each element 9}G.F r
% k of M must be a positive integer, with possible values M(k) = -N(k) A0JlQE&U
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, dz_~_|
% and THETA is a vector of angles. R and THETA must have the same u)J&3Ah%
% length. The output Z is a matrix with one column for every (N,M) W~b->F
% pair, and one row for every (R,THETA) pair. kbu.KU+
% VEFUj&t;xW
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike "h58I)O
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), s1~&PH^
% with delta(m,0) the Kronecker delta, is chosen so that the integral |}$ZOwc
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 7
G37V"''
% and theta=0 to theta=2*pi) is unity. For the non-normalized J?DJA2o
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. , !0-;H.Y
% ;l4epN
% The Zernike functions are an orthogonal basis on the unit circle. xQ~}9Kt\
% They are used in disciplines such as astronomy, optics, and )/Z%
HBn
% optometry to describe functions on a circular domain. pQ2'0u5w5
% D6z*J?3^#&
% The following table lists the first 15 Zernike functions. BeFCt;
% T3H\KRe6
% n m Zernike function Normalization V[#eeH)/
% -------------------------------------------------- B\*"rSP\
% 0 0 1 1 xWR<>Og.
% 1 1 r * cos(theta) 2 9IfeaoZZ4q
% 1 -1 r * sin(theta) 2 T*pcS'?'
% 2 -2 r^2 * cos(2*theta) sqrt(6) \+,%RN.
% 2 0 (2*r^2 - 1) sqrt(3) T'8d|$X
% 2 2 r^2 * sin(2*theta) sqrt(6) ZF@T,i9
% 3 -3 r^3 * cos(3*theta) sqrt(8) Ynxzkm S
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) JA!?vs
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) Ah#bj8}
% 3 3 r^3 * sin(3*theta) sqrt(8) ;cpQ[+$nKp
% 4 -4 r^4 * cos(4*theta) sqrt(10) 7:Cq[u fl
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ^VL",Nt
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) ip)gI&kN`z
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) J) I|Xot
% 4 4 r^4 * sin(4*theta) sqrt(10) L>@:Xo@
% -------------------------------------------------- o!$O+%4
% 7gxC
xfL$
% Example 1: /u&{=nU
% n=_jmR1
% % Display the Zernike function Z(n=5,m=1) yUY* l@v]
% x = -1:0.01:1; CQ;.}=j
,
% [X,Y] = meshgrid(x,x); x b6X8:
% [theta,r] = cart2pol(X,Y); HEBKRpt
% idx = r<=1; {VK
% z = nan(size(X)); `514HgR
% z(idx) = zernfun(5,1,r(idx),theta(idx)); :n0czO6E
% figure /k_?S?
% pcolor(x,x,z), shading interp zqJ0pDS
% axis square, colorbar ~[[(_C3
% title('Zernike function Z_5^1(r,\theta)') B QxU~s
% E!rgR5Bd
% Example 2: <<vT"2Q]
% P,RdYM06
% % Display the first 10 Zernike functions a Byetc88/
% x = -1:0.01:1; _]aA58,j
% [X,Y] = meshgrid(x,x); =wcqCW,]
% [theta,r] = cart2pol(X,Y); P&kjtl68Y
% idx = r<=1; N0mP
EF2
% z = nan(size(X)); wbImE;-Z
% n = [0 1 1 2 2 2 3 3 3 3]; ?yNg5z
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; $C.;GU EQ
% Nplot = [4 10 12 16 18 20 22 24 26 28]; qvH RP@
% y = zernfun(n,m,r(idx),theta(idx)); '.$va<
% figure('Units','normalized') T*3>LY+bb
% for k = 1:10 n-)Xs;`2
% z(idx) = y(:,k); ]
-}Zd\Rs
% subplot(4,7,Nplot(k)) ~tM+!
% pcolor(x,x,z), shading interp qZ=%ru
% set(gca,'XTick',[],'YTick',[]) Gm1[PAj
% axis square a9%^Jvm"
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) {];8jdg/?
% end aK+jpi4?
% 0x1#^dII
% See also ZERNPOL, ZERNFUN2. I&Dp~aEM]
-ufO,tJRLL
yRdME>_L
% Paul Fricker 11/13/2006 L`6 R
aMq|xHZ
"54t7
k.@OFkX.
7Z7e}|
\W
% Check and prepare the inputs: |XV@/ZGl~
% ----------------------------- z]d2
rzV(_
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) &ZR} Z7E*=
error('zernfun:NMvectors','N and M must be vectors.') Bsc
end ~k[mowz0
kKlcK_b;
u|eV'-R)s
if length(n)~=length(m) p*ic@n*G
error('zernfun:NMlength','N and M must be the same length.') E9]\ I>v
end 1;FtQnvH
fBw"<J{
8p0ZIrD%
n = n(:); kuI%0)iZn
m = m(:); {wq~+O
if any(mod(n-m,2)) B{6wf)[O
error('zernfun:NMmultiplesof2', ... WJA0 `<~
'All N and M must differ by multiples of 2 (including 0).') xZc].l6
end sCrOdJ6|
$!q(-+(
knb 9s`wR
if any(m>n) 1RM@~I$0
error('zernfun:MlessthanN', ... M[1!#Q><!
'Each M must be less than or equal to its corresponding N.') 9o<5Z=
end \#%1t
O*dtVX
kS)azV
if any( r>1 | r<0 ) 0*{2^\
error('zernfun:Rlessthan1','All R must be between 0 and 1.') j8[RDiJ
end 8?z7!k]
HCIS4}lQ
X:kqX[\>
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) +5xVgIk#
error('zernfun:RTHvector','R and THETA must be vectors.') *%p`Jk-U
end 1Ax{Y#<
\YMe&[C:o
d:&=|kKw
r = r(:); U5!~@XjG>
theta = theta(:); kh5VuXpe
length_r = length(r); wRsh@I<
if length_r~=length(theta) ra]lC7<H
error('zernfun:RTHlength', ... yc:y}"
'The number of R- and THETA-values must be equal.') (5\VOCT>4%
end }Y`D^z~
MIx,#]C&
P g.j]
% Check normalization: ~[ZRE @
% -------------------- .tQeOZW'
if nargin==5 && ischar(nflag) 4mM?RGWv
isnorm = strcmpi(nflag,'norm'); lFT`
WO
if ~isnorm H$44,8,m
error('zernfun:normalization','Unrecognized normalization flag.') W^8MsdM
end zNRR('B?
else /OtLIM+7~{
isnorm = false; efUa[XO
end [#mRlL0yk
'fS&WVR?
+rN&@}Jt.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% n~Qo@%Jr
% Compute the Zernike Polynomials {$P')>/
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% fMluVND
+DwE~l
kPvR ,
% Determine the required powers of r: /]>8V'e\
% ----------------------------------- ,C;%AS/
m_abs = abs(m); #C#*yE
rpowers = []; ?Jy/]j5fI
for j = 1:length(n) ,We'AR3X
rpowers = [rpowers m_abs(j):2:n(j)]; @CNe)&U
end 0/TP`3$X#"
rpowers = unique(rpowers); j[Z<|Da
`&w{-om\
`x:8m?q05
% Pre-compute the values of r raised to the required powers, Rn9e#_ Az
% and compile them in a matrix: :c}"a(|
% ----------------------------- Tg _#z
if rpowers(1)==0 155vY
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); UB2Ft=
rpowern = cat(2,rpowern{:}); pSKwXx
rpowern = [ones(length_r,1) rpowern]; -J]j=
else }-N4D"d4o
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); '4e,
e|r
rpowern = cat(2,rpowern{:}); H{U(Rt]K
end kkU#0p? 7
5KgAY;|
z{wZLqG
% Compute the values of the polynomials: q#_<J1)z
% -------------------------------------- uWDWf5@
y = zeros(length_r,length(n)); (U([T -H
for j = 1:length(n) # ~(lY}
s = 0:(n(j)-m_abs(j))/2; 8{DW$ZtR
pows = n(j):-2:m_abs(j); mPJ@hr%3
for k = length(s):-1:1 lEXI<b'2
p = (1-2*mod(s(k),2))* ... K)N'~jCG
prod(2:(n(j)-s(k)))/ ... B1 Y
prod(2:s(k))/ ... :zp9L/eh
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... rk8Cea
prod(2:((n(j)+m_abs(j))/2-s(k))); <pIel
idx = (pows(k)==rpowers); ZO8r8
[
y(:,j) = y(:,j) + p*rpowern(:,idx); ap wA
end `;)op3A'
)~be<G( a
if isnorm L2>
)HG
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 7RCVqc"
end qlm7eS"sy
end THy{r_dx
% END: Compute the Zernike Polynomials 0lLg uBW@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% N~vK8j@
'b:UafV
;MH_pE/m
% Compute the Zernike functions: ]FEsN6
% ------------------------------ fRK=y+gl@
idx_pos = m>0; KMP[Ledr
idx_neg = m<0; zn#lFPj12
*hlinQKs
9S/X ,|i
z = y; D!rD-e
if any(idx_pos) 1
&-%<o
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); kJ"}JRA<
end Z)!#+m83>-
if any(idx_neg) ODCv^4}9
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 3B5 `Y
end 0)Q*u
UL0n>Wa5
1xj w=
% EOF zernfun f{+X0Oj