切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8840阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, cWG>w6FI  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, uCX+Lw+As  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? 8WT^ES~C  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? Ur^~fW1 o  
    #Av6BGM|,  
    f+*wDH  
    VKzY6  
    $"V gN ynq  
    function z = zernfun(n,m,r,theta,nflag) _ ," -25a  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. (;1rM}B;1  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N C?I vXPlV  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ~hYTs  
    %   unit circle.  N is a vector of positive integers (including 0), and P3[!-sv  
    %   M is a vector with the same number of elements as N.  Each element BK,h$z7#6  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) O0|**Km\+  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, -p|JJx?r  
    %   and THETA is a vector of angles.  R and THETA must have the same /`d|W$vN  
    %   length.  The output Z is a matrix with one column for every (N,M) kVu8/*Q  
    %   pair, and one row for every (R,THETA) pair. rLt`=bl&&U  
    % -Fi{[%&u  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike y]1:IJL2;  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), : z=C   
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral w QV4[  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, aD5jy  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized :`FL95  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. }o>6 y>=  
    % T(< [k:`  
    %   The Zernike functions are an orthogonal basis on the unit circle. qx#k()E.U  
    %   They are used in disciplines such as astronomy, optics, and .uu[f2.N+  
    %   optometry to describe functions on a circular domain. gu'Yk  
    % V1aWVLltj  
    %   The following table lists the first 15 Zernike functions. \FVm_)  
    % Z_%9LxZlyj  
    %       n    m    Zernike function           Normalization +kh#Jq.  
    %       -------------------------------------------------- Gp}:U>V)  
    %       0    0    1                                 1 xR9<I:^&  
    %       1    1    r * cos(theta)                    2 \>8r)xC  
    %       1   -1    r * sin(theta)                    2 #Y)Gos  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ym>>5(bni  
    %       2    0    (2*r^2 - 1)                    sqrt(3) k]J!E-yI8  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) S4n ~wo  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) *k&yD3br-V  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) H l'za  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 0RaE!4)!;  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) ~ NO9s  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) IU f1N+-z  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) wi{qN___  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) A6?+$ Hr  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) B/P E{ /  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) FlWgTn>  
    %       -------------------------------------------------- RbexsBq  
    % 5C03)Go3Z  
    %   Example 1: :n1^Xw0q  
    % LyEM^d]  
    %       % Display the Zernike function Z(n=5,m=1) @-uV6X8|  
    %       x = -1:0.01:1; fgmu*\x<  
    %       [X,Y] = meshgrid(x,x); HM'P<<  
    %       [theta,r] = cart2pol(X,Y); fSe$w#*I  
    %       idx = r<=1; M MyVm"w  
    %       z = nan(size(X)); Eb9 eEa<W  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); &&(^;+  
    %       figure W u4` 3  
    %       pcolor(x,x,z), shading interp cc LTA  
    %       axis square, colorbar ;<aT| 4  
    %       title('Zernike function Z_5^1(r,\theta)') Im7t8XCG  
    % ~Y- !PZ  
    %   Example 2: \S]"nHX  
    % J>H$4t#HX  
    %       % Display the first 10 Zernike functions .X D.'S  
    %       x = -1:0.01:1; HnDz4eD  
    %       [X,Y] = meshgrid(x,x); xY3 KKje  
    %       [theta,r] = cart2pol(X,Y); ZGstD2 N$  
    %       idx = r<=1; -k$*@Hq  
    %       z = nan(size(X)); L4fM?{Ic:s  
    %       n = [0  1  1  2  2  2  3  3  3  3]; ;7Hse^Oc  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 4G:?U6  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; RW4}n< 88  
    %       y = zernfun(n,m,r(idx),theta(idx)); Bz&6kRPv  
    %       figure('Units','normalized') R)p+#F(s  
    %       for k = 1:10 })I_@\q  
    %           z(idx) = y(:,k); ,BUDo9h  
    %           subplot(4,7,Nplot(k)) ?Ek 3<7d  
    %           pcolor(x,x,z), shading interp O WJv<3  
    %           set(gca,'XTick',[],'YTick',[]) D)XV{Wit  
    %           axis square h($XR+!#  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) PrA?e{B5m  
    %       end (qf%,F,_L  
    % ]Wc:9Zb  
    %   See also ZERNPOL, ZERNFUN2. #FAy ]7/O  
    Dy_ayxm  
    {P/5cw  
    %   Paul Fricker 11/13/2006 Hr?_`:  
    Dz<"eyB\  
    Gr1WBYK  
    mz|#K7:  
    Ia> 07av  
    % Check and prepare the inputs: V30Om3C  
    % ----------------------------- %OI4}!z@l  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) *%[L @WF  
        error('zernfun:NMvectors','N and M must be vectors.') S< TUZ /;  
    end *wSz2o),  
    <BUKTRq  
    Cb`2"mpWS  
    if length(n)~=length(m) N ,8^AUJ3&  
        error('zernfun:NMlength','N and M must be the same length.') K\bA[5+N  
    end ws^ 7J/8  
    6RA4@bIG  
    *OX;ZQg0  
    n = n(:); JO|%Vpco  
    m = m(:); IB'gY0*  
    if any(mod(n-m,2)) E41ay:duAl  
        error('zernfun:NMmultiplesof2', ... iSiez'  
              'All N and M must differ by multiples of 2 (including 0).') _m;H$N~I#  
    end nIckI!U#D  
    K!L0|W H%!  
    | Ns-l (l  
    if any(m>n) ,aA%,C.0U  
        error('zernfun:MlessthanN', ... :1O49g3R  
              'Each M must be less than or equal to its corresponding N.') n7CwGN%  
    end ><l|&&e-  
    X:0-FCT;\  
    dKG2f  
    if any( r>1 | r<0 ) 8p91ni'  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') HVG:q#=C  
    end x{o&nhuk[S  
    R6xJw2;_  
    @4ccZ&`  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) AW\#)Em  
        error('zernfun:RTHvector','R and THETA must be vectors.') v` G[6Z  
    end rV5QKz6'  
    eu^B  
    Xb/W[rcs  
    r = r(:); eG\|E3Cb9  
    theta = theta(:); -45xa$vv  
    length_r = length(r); t XbMP  
    if length_r~=length(theta) 7uI~Xo ?N  
        error('zernfun:RTHlength', ... gq:2`W&5  
              'The number of R- and THETA-values must be equal.') ^U5g7Emf  
    end  x%$as;  
    @hz~9AII9  
    [f8mh88 r  
    % Check normalization: ]:K[{3iM  
    % -------------------- $-J=UT2m  
    if nargin==5 && ischar(nflag) K:<0!C!  
        isnorm = strcmpi(nflag,'norm'); #rps2nf.j  
        if ~isnorm S.E'fc1  
            error('zernfun:normalization','Unrecognized normalization flag.') d i;Fj  
        end ]"T1clZKd(  
    else 'Cq)/}0  
        isnorm = false; xGBp+j1H  
    end P c'0.4  
    ZD`9Ez)5  
    sX,."@[  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% *~b}]M700  
    % Compute the Zernike Polynomials k~|5TO  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% p10i_<J]=  
    q_G O;-b{  
    LOPw0@  
    % Determine the required powers of r: B=,j$uH  
    % ----------------------------------- C5ia9LpRX  
    m_abs = abs(m); Ra~|;( %d  
    rpowers = []; /W @k:  
    for j = 1:length(n) )LRso>iOO  
        rpowers = [rpowers m_abs(j):2:n(j)]; :tTP3 t5  
    end  FTk`Mq  
    rpowers = unique(rpowers); '(.vB~m7*+  
    Dau'VtzN  
    @qaK5  
    % Pre-compute the values of r raised to the required powers, ^5,B6  
    % and compile them in a matrix: q'zV9  
    % ----------------------------- y(2FaTjM  
    if rpowers(1)==0 6.0/asN}  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); A2xfNY<  
        rpowern = cat(2,rpowern{:}); >oOZDuj   
        rpowern = [ones(length_r,1) rpowern]; K[G=J  
    else iAd3w6  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); "6} #65  
        rpowern = cat(2,rpowern{:}); Ic,V ,#my  
    end $Lf-Gi  
    fd CN?p[_  
    u,f$cR  
    % Compute the values of the polynomials: 5Y}=,v*h}  
    % -------------------------------------- u&7c2|Q  
    y = zeros(length_r,length(n)); KgCQ4w9  
    for j = 1:length(n) {B d 0  
        s = 0:(n(j)-m_abs(j))/2; PRpW*#"EI  
        pows = n(j):-2:m_abs(j); hOTqbd}  
        for k = length(s):-1:1 {rE]y C^  
            p = (1-2*mod(s(k),2))* ... E5EAk6  
                       prod(2:(n(j)-s(k)))/              ... fg8"fbG`:  
                       prod(2:s(k))/                     ... g~Hmka_fD1  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... `& rt>Bk /  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); no`>r}C  
            idx = (pows(k)==rpowers); x 8v2mnk  
            y(:,j) = y(:,j) + p*rpowern(:,idx); >qT4'1S*g  
        end 9bVPMq7}i  
         y"o@?bny  
        if isnorm '*XX|\.  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); D3MRRv#  
        end MPxe|Wws  
    end J<'7z%2w  
    % END: Compute the Zernike Polynomials \A'tV/YAd  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% kd3vlp  
    z:+fiJB_  
    q=+AN</  
    % Compute the Zernike functions: x+V@f~2F  
    % ------------------------------ G&?,L:^t  
    idx_pos = m>0; fSL'+l3  
    idx_neg = m<0; Vr1yj  
    m0(]%Kdw  
    _,C>+dv)  
    z = y; d4]9oi{}  
    if any(idx_pos) 74u_YA<"  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); QT\=>,Fz _  
    end cIJqF.k  
    if any(idx_neg) o7A+O%dX  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); '9R.$,N  
    end k9|8@3(h  
    K:3u/C`  
    K>a+-QWK3  
    % EOF zernfun ;I5u"MDHGI  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1063
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  ^Ia:e ?)W  
    ;~2RWj=-  
    DDE还是手动输入的呢? rhLm2q  
    @-7h}2P Q  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究