下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, mmf}6ABYT
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, #YEOY#
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? 0vi)my;!
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? ~a5-xWEZ
KMU2PoqD
T?!D?YV
0\/cTNN
y,YK Mc
function z = zernfun(n,m,r,theta,nflag) bOvMXj/HV=
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. ?H30
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N -JMlk:~
% and angular frequency M, evaluated at positions (R,THETA) on the EKr#i}(x<
% unit circle. N is a vector of positive integers (including 0), and I4Y;9Gg
% M is a vector with the same number of elements as N. Each element y?r:`n
% k of M must be a positive integer, with possible values M(k) = -N(k) CLn}BxgD
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, K4.GAGd
% and THETA is a vector of angles. R and THETA must have the same 5:T)hoF@
% length. The output Z is a matrix with one column for every (N,M) 7UV hyrl
% pair, and one row for every (R,THETA) pair. AJ%x"
% "{1SDbwmMo
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike D
on8xk
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), +DpiX&^h
% with delta(m,0) the Kronecker delta, is chosen so that the integral s\Zp/-Q
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, M~o\K'
% and theta=0 to theta=2*pi) is unity. For the non-normalized vwc)d{ND
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ){_D
% I7Uj<a=(q
% The Zernike functions are an orthogonal basis on the unit circle. "&@v[O)!xu
% They are used in disciplines such as astronomy, optics, and _7^4sR8=
% optometry to describe functions on a circular domain. 0/g 0=dW=
% 5VLJ:I?0O
% The following table lists the first 15 Zernike functions. KcW]"K>p!
% Uiz#QGt
% n m Zernike function Normalization O=A(x m#
% -------------------------------------------------- `H#G/zOr
% 0 0 1 1 HHZGu8tzt
% 1 1 r * cos(theta) 2 #&oL iz=hZ
% 1 -1 r * sin(theta) 2 P p]Ygt'u
% 2 -2 r^2 * cos(2*theta) sqrt(6) !.^%*6f
% 2 0 (2*r^2 - 1) sqrt(3) PrZs@ Y
% 2 2 r^2 * sin(2*theta) sqrt(6) L'KgB=5K&i
% 3 -3 r^3 * cos(3*theta) sqrt(8) QnJ(C]cW
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) Fh3>y2`/
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) /1!Wet}f
% 3 3 r^3 * sin(3*theta) sqrt(8) LY? `+/
% 4 -4 r^4 * cos(4*theta) sqrt(10) |V>_l'
/
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) B(z?IW&
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) LYV\|a{Y
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) <O]TM-h
% 4 4 r^4 * sin(4*theta) sqrt(10) >
]()#z
% -------------------------------------------------- >h>
% dh;
L!
% Example 1: Js'#=
% u*:;O\6l
% % Display the Zernike function Z(n=5,m=1) {dk%j~w8
% x = -1:0.01:1; Px$4.b[{_Y
% [X,Y] = meshgrid(x,x); r^2>60q'
% [theta,r] = cart2pol(X,Y); p^yuz (
% idx = r<=1; TSPFi0PP
% z = nan(size(X)); ~|>q)4is6a
% z(idx) = zernfun(5,1,r(idx),theta(idx)); `1Cg)\&[e0
% figure =;!$Qw4
% pcolor(x,x,z), shading interp {)c2#h
% axis square, colorbar iFi6,V*PRt
% title('Zernike function Z_5^1(r,\theta)') %~$P.Zh
% %`F&,!d
% Example 2: o;#9$j7QP!
% B>!OW2q0D
% % Display the first 10 Zernike functions *$4 EXwt'
% x = -1:0.01:1; H`XE5Hk)P%
% [X,Y] = meshgrid(x,x); -76l*=|
% [theta,r] = cart2pol(X,Y); p3N/"t&>
% idx = r<=1; bV~z}V&
% z = nan(size(X)); :hA=(iz
% n = [0 1 1 2 2 2 3 3 3 3]; b_p/ 1W:
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; gFx2\QV
% Nplot = [4 10 12 16 18 20 22 24 26 28]; R54wNm@
% y = zernfun(n,m,r(idx),theta(idx)); C@7<0w
% figure('Units','normalized') ,$xV&w8f\"
% for k = 1:10 -#e3aXe
% z(idx) = y(:,k); Z^'i16
% subplot(4,7,Nplot(k)) 82z\^a
% pcolor(x,x,z), shading interp \TF='@u.
% set(gca,'XTick',[],'YTick',[]) d8o<Q 9
% axis square 2yt)"DnFk
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 8pEiU/V
% end Pm
Zb!|
% s_j ?L
% See also ZERNPOL, ZERNFUN2. ^/H9`z;
8^8fUN4<=
Ac'0
% Paul Fricker 11/13/2006 Z/p>>SCak
}\s\fNSQ/
cKb jW
>*v
P*H:P
&ml7368@
% Check and prepare the inputs: l4:5(1
% ----------------------------- 2^\67@9
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ZYi."^l
error('zernfun:NMvectors','N and M must be vectors.') tE~OWjL
end R'#1|eWCa
p#yq 'kY
q3CcXYY
if length(n)~=length(m) 'DDlX3W-
error('zernfun:NMlength','N and M must be the same length.') #2XX [d%
end &Ti:IC%M
WFYbmfmV
lhN2xg5x
n = n(:); ^E)*i#."4
m = m(:); \9Z1'W
if any(mod(n-m,2)) V5ySOgzw,
error('zernfun:NMmultiplesof2', ... 19r4J(pV
'All N and M must differ by multiples of 2 (including 0).') mw[T[
end ~g6`Cp`
&"h 9Awn2
O>h,u[0
if any(m>n) X*Qtbm,
error('zernfun:MlessthanN', ... 0pC}+
+
'Each M must be less than or equal to its corresponding N.') s"7$SxMT
end ixf~3Y8
cg]\R1Gm
7;wx,7CUq
if any( r>1 | r<0 ) +J`HI1
error('zernfun:Rlessthan1','All R must be between 0 and 1.') MPtn$@
end ['*{f(AI
,"@Tm01os
8BHtN
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) hJ>Kfm
error('zernfun:RTHvector','R and THETA must be vectors.')
[b=l'e/
end ;`{PA
!>
I|`/#BYbW
nQ$4W
r = r(:); ]z%X%wL
theta = theta(:); Zs(I]^w;d
length_r = length(r); }^}fx [
if length_r~=length(theta) h0=Q .Yz6
error('zernfun:RTHlength', ... `ZC{<eVJ}=
'The number of R- and THETA-values must be equal.') 4GiHp7Y&A
end CSA.6uIT
o`]o(OP
BJ
c'4>
% Check normalization: E!,+#%O>
% -------------------- e13{G@
if nargin==5 && ischar(nflag) &?#,rEw<x
isnorm = strcmpi(nflag,'norm'); #)qn$&.H
if ~isnorm o9j*Yz
error('zernfun:normalization','Unrecognized normalization flag.') 2i~ tzo
end %X--`91|u
else {N \ri{|
isnorm = false; R.Plfm06Ue
end ;T9u$4<
=u*\P!$
$RFy9(>
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ae&i]K;
% Compute the Zernike Polynomials Y`O"+Jr
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 3!&PI
yR`X3.:*]
d>RoH]K4
% Determine the required powers of r: ="k9
y
% ----------------------------------- (O$PJLI
m_abs = abs(m); P
,%IZ.
rpowers = []; 3y[uH'
for j = 1:length(n) zQ&k$l9
rpowers = [rpowers m_abs(j):2:n(j)]; P
-O& X
end ?$ft3p}
rpowers = unique(rpowers); 0`LR!X
8RA]h?$$J
8|Q=9mmWOh
% Pre-compute the values of r raised to the required powers, n!Ic.T3PA
% and compile them in a matrix: yFD3:;}
% ----------------------------- 5-=&4R\k
if rpowers(1)==0 4TPAD)C
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); rx$B(z(c
rpowern = cat(2,rpowern{:}); JGJy_.C
rpowern = [ones(length_r,1) rpowern]; WN5`zD$
else ![>j`i
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); fP:n=A{
rpowern = cat(2,rpowern{:}); lBYc(cr
end 'e/= !"T
d*Wg>8|
&D/@H1fBe
% Compute the values of the polynomials: 2j*+^&M/
% -------------------------------------- L"_l(<g
y = zeros(length_r,length(n)); _#jR6g TY
for j = 1:length(n) DCv=*=6w
s = 0:(n(j)-m_abs(j))/2; c2tf7fkH
pows = n(j):-2:m_abs(j); 9{A[n}
for k = length(s):-1:1 U= Gw(
p = (1-2*mod(s(k),2))* ... ']x`d
prod(2:(n(j)-s(k)))/ ... ]]EOCGZ"
prod(2:s(k))/ ... hxXl0egI
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... =SY`Xkj[
prod(2:((n(j)+m_abs(j))/2-s(k))); Wubvvm8U
idx = (pows(k)==rpowers); }.L\O]~{
y(:,j) = y(:,j) + p*rpowern(:,idx); %u)niY-g
end ; qQ* p
VbwB<nQl
if isnorm Fm| h3.`V
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); eB]R<a60
end T>!Y-e.q
end _#SCjFz
% END: Compute the Zernike Polynomials +s`HTf
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% :c_>(~
fFSQLtm?E
h&k*i
% Compute the Zernike functions: (59u<F
% ------------------------------ n/&}|998?
idx_pos = m>0; vg.K-"yQW
idx_neg = m<0; mBQp#-1\
?}n\&|+
5LkpfmR
z = y; .#4;em%7
if any(idx_pos) odm!}stus
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 5C G
,l
end JM&:dzyIP
if any(idx_neg) >k)zd-
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); I?z*.yA*
end /}ADV2sF
]46-TuH
>$g+Gx\v4
% EOF zernfun /Cl=;^)