下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, rEjEz+wu
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, _+<AxE9\
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? EV_u8?va
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? X\5EF7:S
Er|j\(jM
>1q:-^
X3l6b+p
,<;.'r
function z = zernfun(n,m,r,theta,nflag) \cQ+9e)
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. {<Xl57w-Q
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N P%ZU+ET
% and angular frequency M, evaluated at positions (R,THETA) on the RggO|s+0;
% unit circle. N is a vector of positive integers (including 0), and Zig3WiD&
% M is a vector with the same number of elements as N. Each element /KhY,G'Z
% k of M must be a positive integer, with possible values M(k) = -N(k) v>5TTL~?
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, !X1
KOG
% and THETA is a vector of angles. R and THETA must have the same Lt{&v^y
% length. The output Z is a matrix with one column for every (N,M)
CL5t6D9Qi
% pair, and one row for every (R,THETA) pair. 5G=fJAG
% 9w-;d=(Q
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike c22L]Sxo
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), E :UJ"6
% with delta(m,0) the Kronecker delta, is chosen so that the integral LHs^Xo18
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, |^O3~!JP(>
% and theta=0 to theta=2*pi) is unity. For the non-normalized h YVy 65Ea
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. zI_pP?4;.q
% M aP -
% The Zernike functions are an orthogonal basis on the unit circle. 3#idXc
% They are used in disciplines such as astronomy, optics, and jtPHk*>^wu
% optometry to describe functions on a circular domain. rrl{3
?
% @Z89cTO
% The following table lists the first 15 Zernike functions. 9)'wgI#
% BWzo|isv
% n m Zernike function Normalization !
;R}=
% -------------------------------------------------- M2M&L,/O
% 0 0 1 1 6}:(m#+
% 1 1 r * cos(theta) 2 *!,k`=.([#
% 1 -1 r * sin(theta) 2 !~]'&9
% 2 -2 r^2 * cos(2*theta) sqrt(6) .FvIT]k-
% 2 0 (2*r^2 - 1) sqrt(3) Olr'n% }
% 2 2 r^2 * sin(2*theta) sqrt(6) 8zpTCae^=7
% 3 -3 r^3 * cos(3*theta) sqrt(8) Yz>8 Nn '_
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) $ ~/x;z:
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) Y~UWUF%aK
% 3 3 r^3 * sin(3*theta) sqrt(8) dbfI!4
% 4 -4 r^4 * cos(4*theta) sqrt(10) kj`h{Wc[)
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) FZfhiIf
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) vcSb:('
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) xgWVxX^)
% 4 4 r^4 * sin(4*theta) sqrt(10) LP}j0)n
% -------------------------------------------------- r,ep{
p
% _j]vR
% Example 1: =@.5J'!
% hD7Lgi-N)W
% % Display the Zernike function Z(n=5,m=1) J!iKW
% x = -1:0.01:1; V.w!]{xm
% [X,Y] = meshgrid(x,x); 5,du2
% [theta,r] = cart2pol(X,Y); lv&y<d;
% idx = r<=1; |k)Nf+(}W
% z = nan(size(X)); Lasi)e=$<
% z(idx) = zernfun(5,1,r(idx),theta(idx)); W 6CNMI]
% figure O_Z
% pcolor(x,x,z), shading interp q` @8
% axis square, colorbar ExSy/^4f
% title('Zernike function Z_5^1(r,\theta)') -7m7.>/M
% 2bTM0-
% Example 2: 7/FF}d
% &DWSu`z
% % Display the first 10 Zernike functions z_87;y;=
% x = -1:0.01:1; ksQw|>K
% [X,Y] = meshgrid(x,x); XI5q>cd\Sz
% [theta,r] = cart2pol(X,Y); yu=(m~KX
% idx = r<=1; I(+%`{Wv
% z = nan(size(X)); Ml+O -
3T
% n = [0 1 1 2 2 2 3 3 3 3]; bYy7Ul6]
% m = [0 -1 1 -2 0 2 -3 -1 1 3];
-to 3I
% Nplot = [4 10 12 16 18 20 22 24 26 28]; }z_7?dn/
% y = zernfun(n,m,r(idx),theta(idx)); @;{iCVW
% figure('Units','normalized') 3@mW/l>X
% for k = 1:10 4z,n:>oH
% z(idx) = y(:,k); nY_+V{F
% subplot(4,7,Nplot(k)) \_|r>vQ
% pcolor(x,x,z), shading interp [K `d?&
% set(gca,'XTick',[],'YTick',[]) }E\u2]
% axis square 01o,9_|FL
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) a`zw5
% end E^t}p[s
% ~tqDh(
% See also ZERNPOL, ZERNFUN2. $~:|Vj5iZ\
<O]B'Wc [
C8
"FTH'
% Paul Fricker 11/13/2006 X&.LX
41\V;yib
N"2P]Zr
,%,.c^-
7)y
+QU]
% Check and prepare the inputs: [2nPr^
% ----------------------------- ;Y`k-R:E6A
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) :tBZu%N/N
error('zernfun:NMvectors','N and M must be vectors.') /w:~!3Aj0+
end i
UW.$1l
JAI ;7
aTPmW]w6
if length(n)~=length(m) Iqb|.v LG
error('zernfun:NMlength','N and M must be the same length.') 3+iQct[
end rfhvd wwD
d# q8-
aKC3vR0
n = n(:); >A1;!kGE#
m = m(:); ^|=3sJ4[U
if any(mod(n-m,2)) S&;D
error('zernfun:NMmultiplesof2', ... l*n4d[0J
'All N and M must differ by multiples of 2 (including 0).') (Kaunp5_`
end W&Kjh|[1QZ
5gY9D!;:0D
VHTr;(]hk
if any(m>n) \k*h& :$
error('zernfun:MlessthanN', ... -gb'DN1BG
'Each M must be less than or equal to its corresponding N.') v6+<F;G3y>
end f`8mES'gc8
pn4~?Aua0/
gD/% l[
if any( r>1 | r<0 ) kS$m$
D
error('zernfun:Rlessthan1','All R must be between 0 and 1.') %Dm:|><V$b
end g=x1}nm
2~2j?\AEd.
L=5Fvm
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) V2_I=]p_
error('zernfun:RTHvector','R and THETA must be vectors.') -WK
end {-)*.l=
-K%~2M<
z+%74O"c
r = r(:); U Zc%XZ`"V
theta = theta(:); 2q*aq%
length_r = length(r); z7um9g
if length_r~=length(theta) vP{;'R
error('zernfun:RTHlength', ... \t@4)+s/)
'The number of R- and THETA-values must be equal.') hZNAI
end lF.yQ
:_"%o=
"N*i!h
% Check normalization: c %.vI
% -------------------- ?tFsSU
if nargin==5 && ischar(nflag) "4e{Cq
isnorm = strcmpi(nflag,'norm'); {>R'IjFc
if ~isnorm 5WG:m'$$
error('zernfun:normalization','Unrecognized normalization flag.') +2S#3m?1
end _=;lt O
else uV+.(sjH
isnorm = false; YN 31Lo
end k?'<f
N"rZK/@}
7__?1n~{
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #Ez+1
% Compute the Zernike Polynomials u#`FkuE\}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% zCdzxb_h"
ZP^7`q)6
2OQDG7#Kc
% Determine the required powers of r: Y]>Qu f.!
% ----------------------------------- zaoC
m_abs = abs(m); ?sm@lDZ\
rpowers = []; e3b|z.^ 8
for j = 1:length(n) W^AY:#eX~Q
rpowers = [rpowers m_abs(j):2:n(j)]; +qzCy/_gd
end FkJX)
rpowers = unique(rpowers); K7N.gT*4
8}(ul
K JX@?1"
% Pre-compute the values of r raised to the required powers, Z-B b,8
% and compile them in a matrix: y:3d`E4Xw
% ----------------------------- K?:wX(JYT
if rpowers(1)==0 aR~Od Ys
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Yab=p
9V;;
rpowern = cat(2,rpowern{:}); {-?8r>
rpowern = [ones(length_r,1) rpowern]; xRU ~hQ
else j1{\nP/
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); bxA1fA;
rpowern = cat(2,rpowern{:}); ,t=12R]>
end pRLs*/Bw
Jf{
M[ z
|U4t 8
% Compute the values of the polynomials: wu2C!gyBo
% -------------------------------------- bR;Zc
y = zeros(length_r,length(n)); Hz6yy*
for j = 1:length(n) ~8
w(M
s = 0:(n(j)-m_abs(j))/2; .6D9m.Q,
pows = n(j):-2:m_abs(j); , JUP
for k = length(s):-1:1 <7%4=
p = (1-2*mod(s(k),2))* ... tuiQk=[c
prod(2:(n(j)-s(k)))/ ... mC}!;`$8p
prod(2:s(k))/ ... N2x!RYW
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... =!cI@TI
prod(2:((n(j)+m_abs(j))/2-s(k))); +$x;FT&
idx = (pows(k)==rpowers); |rbl sL2?Z
y(:,j) = y(:,j) + p*rpowern(:,idx); %g<J"/
end L!]~J?)
2!4.L&Ki
if isnorm BLvI[b|3gn
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); X;?Z_3I:5
end fx783
end Mn=5yU
% END: Compute the Zernike Polynomials S"z cSkF
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% WZ<kk T
qJ|n73yn
P6E=*^^m(
% Compute the Zernike functions: 3oCw(Ff
% ------------------------------ QFfKEMN
idx_pos = m>0; M5Twulz/w
idx_neg = m<0; 6!3Jr
MK<VjpP0(
.u_k?.8|
z = y; >Lo!8Hen
if any(idx_pos) G{cTQH|
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); weOzs]uc
end z]YP
if any(idx_neg) Gkr^uXNg#
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Q l$t
end s\`Vr;R:|
4P>tGO&*x
u%7a&1c
% EOF zernfun 28j=q-9Z