切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9132阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, 2-~a P  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, !/947Rn  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? ^"1TPd|  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? Wdo#?@m  
    $'^&\U~?  
    v51EXf  
    DR6]-j!FK  
    oAY_sg+  
    function z = zernfun(n,m,r,theta,nflag) 9SY(EL  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. i`+B4I8[  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Tj`yJ!0  
    %   and angular frequency M, evaluated at positions (R,THETA) on the gA_krK ,Z  
    %   unit circle.  N is a vector of positive integers (including 0), and s|Zx(.EP  
    %   M is a vector with the same number of elements as N.  Each element Uh.Sc:trA  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) u yFn}y62  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, sMH#BCC  
    %   and THETA is a vector of angles.  R and THETA must have the same @&5A&(  
    %   length.  The output Z is a matrix with one column for every (N,M) Ivsb<qzG  
    %   pair, and one row for every (R,THETA) pair. PRD_!VOW  
    % ;`kWpM;  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 2/@D7>F&g  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ;-Ss# &  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral l)Zs-V!M^\  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, J='W+=N  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized "x&3Z@q7  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. kg3ppt  
    % L~dC(J)@ZI  
    %   The Zernike functions are an orthogonal basis on the unit circle. |z~LzSJv  
    %   They are used in disciplines such as astronomy, optics, and kM!V .e[g  
    %   optometry to describe functions on a circular domain. k(vPg,X>m  
    % |) Pi6Y  
    %   The following table lists the first 15 Zernike functions. W/r^ugDV  
    % (S oo<.9~  
    %       n    m    Zernike function           Normalization /BpxKh2p  
    %       -------------------------------------------------- Zn&k[?;Al  
    %       0    0    1                                 1 m"4B!S&Fc(  
    %       1    1    r * cos(theta)                    2 }E;F)=E  
    %       1   -1    r * sin(theta)                    2 S$e Dnw~$  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) DZe}y^F  
    %       2    0    (2*r^2 - 1)                    sqrt(3) F}U5d^!2  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) A62<]R)n  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8)  ]>Si0%  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) ''S&e  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 5h8o4  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) Z)&D`RCf  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) g_w&"=.jBq  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) `tE^jqrke5  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) Fk1.iRVzi  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) >|3a 9S  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) SMoz:J*Q(  
    %       -------------------------------------------------- D|_V<'  
    % NP/>H9Q2%  
    %   Example 1: %6ub3PLw8  
    % 7 ({=*  
    %       % Display the Zernike function Z(n=5,m=1) ++8_fgM  
    %       x = -1:0.01:1; F98i*K`"  
    %       [X,Y] = meshgrid(x,x); Y)XvlfJ,h?  
    %       [theta,r] = cart2pol(X,Y); Pl+xH%U+?  
    %       idx = r<=1; j'G tgT  
    %       z = nan(size(X)); n.hElgkUOr  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); kIvvEh<L=  
    %       figure phP> 3f.T  
    %       pcolor(x,x,z), shading interp !QEL"iJ6M'  
    %       axis square, colorbar f: xWu-  
    %       title('Zernike function Z_5^1(r,\theta)') #Qbl=o4  
    % NQ9Ojj{#  
    %   Example 2: E'c%d[:H,  
    % -2i\G.,J  
    %       % Display the first 10 Zernike functions }+R B=#~o  
    %       x = -1:0.01:1; # |^^K!%  
    %       [X,Y] = meshgrid(x,x); b |7ja_  
    %       [theta,r] = cart2pol(X,Y); lIf(6nm@  
    %       idx = r<=1; ?4[H]BK  
    %       z = nan(size(X)); 4v dNMV~  
    %       n = [0  1  1  2  2  2  3  3  3  3]; dDtFx2(R  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; pCU*@c!  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; SwH2$:f  
    %       y = zernfun(n,m,r(idx),theta(idx)); #Hu~}zy  
    %       figure('Units','normalized') PlCc8Zy  
    %       for k = 1:10 :reTJQwr  
    %           z(idx) = y(:,k); vR>o}%`  
    %           subplot(4,7,Nplot(k)) v6uxxsI>Hm  
    %           pcolor(x,x,z), shading interp )1F<6R  
    %           set(gca,'XTick',[],'YTick',[]) ;sPzOS9  
    %           axis square *'R#4@wmP  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) #c Kqnk  
    %       end [!"XcFY:a  
    % J]pa4C`  
    %   See also ZERNPOL, ZERNFUN2. } /:\U p  
    S KXD^OH  
    Vhg1/EgUr  
    %   Paul Fricker 11/13/2006 oRq!=eUu_  
    ohQAA h  
    xxa} YIe8  
    qv+R:YYOq  
    .mxTfP=9  
    % Check and prepare the inputs: F#V q#|_)>  
    % ----------------------------- Cg!^S(U4  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Bw< rp-  
        error('zernfun:NMvectors','N and M must be vectors.') Qv#]81i(1  
    end >SCGK_Cr2  
    UAYd?r  
    c-CYdi@  
    if length(n)~=length(m) }zMf7<C  
        error('zernfun:NMlength','N and M must be the same length.') {'bip`U.  
    end >HTbegi  
    ?IYY'fS"  
    B 0)]s<<  
    n = n(:); g]$ 4~"|.  
    m = m(:); |)U|:F/{@  
    if any(mod(n-m,2)) 6*XM7'n  
        error('zernfun:NMmultiplesof2', ... Q9>U1]\  
              'All N and M must differ by multiples of 2 (including 0).') h##WA=1QZ  
    end py<_HyJ  
    k%Vv?{g  
    raB+,Oi$G  
    if any(m>n) 3$p#;a:=n  
        error('zernfun:MlessthanN', ... (ku5WWJ  
              'Each M must be less than or equal to its corresponding N.') ,x_Z JL  
    end ;b%{ilx:  
    XutF"9u  
    :FQ1[X1 xm  
    if any( r>1 | r<0 ) D`o<,Y  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') rT7^-B*  
    end |V&G81sM  
    3h=8"lRc  
    pyB~M9Bp/  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Cmd329AH  
        error('zernfun:RTHvector','R and THETA must be vectors.')  46,j9x  
    end KL3<Iz]  
    r%=[},JQ  
    Q~,YbZ-7  
    r = r(:);  <!'M} s  
    theta = theta(:); m J  
    length_r = length(r); <' m6^]:  
    if length_r~=length(theta) :nGMtF  
        error('zernfun:RTHlength', ... 2qj{n+  
              'The number of R- and THETA-values must be equal.') LtKB v 4  
    end x8N|($1  
    -l*g~7|j  
    TT}]wZ  
    % Check normalization: \M+L3*W  
    % -------------------- y{=NP  
    if nargin==5 && ischar(nflag) /oP^'""@je  
        isnorm = strcmpi(nflag,'norm'); |:q/Dt@  
        if ~isnorm !,&yyx.  
            error('zernfun:normalization','Unrecognized normalization flag.') y!Cc?$]_Y  
        end ~!:0iFE&H  
    else `rFAZcEj%  
        isnorm = false; hKe30#:v  
    end j F5Blc  
    xAdq+$><  
    &=q! Wdw~  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% k`YYZt]@  
    % Compute the Zernike Polynomials W)=%mdxW0  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% tJZc/]%`H  
    Dz&+PES_k  
    }KB[B  
    % Determine the required powers of r: s3QEi^~  
    % ----------------------------------- Z[L5 ;  
    m_abs = abs(m); 2[R$RpA_  
    rpowers = []; :,UN8L "  
    for j = 1:length(n) ?9KGnOVu  
        rpowers = [rpowers m_abs(j):2:n(j)]; Z!{UWegun  
    end n^9  ?~  
    rpowers = unique(rpowers); *"9<TSU%m  
     tFh|V pB  
    tk?UX7F  
    % Pre-compute the values of r raised to the required powers, hu@7?f_"L/  
    % and compile them in a matrix: M?@p N<|  
    % ----------------------------- ;=;JfNnbm  
    if rpowers(1)==0 b:MG@Hxc  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 7TWNB{ K_  
        rpowern = cat(2,rpowern{:}); <Oz66bTze  
        rpowern = [ones(length_r,1) rpowern]; 2@i;_3sv  
    else +x1/-J8_sg  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); =uV,bG5V1  
        rpowern = cat(2,rpowern{:}); i/qTFQst _  
    end w]!0<  
    ]((i?{jb(  
    $@uU@fLB  
    % Compute the values of the polynomials: ^R_e  
    % -------------------------------------- HnZPw&*  
    y = zeros(length_r,length(n)); );JJ2Jlkd  
    for j = 1:length(n) ")`S0n5e  
        s = 0:(n(j)-m_abs(j))/2; m_lr PY-  
        pows = n(j):-2:m_abs(j); +Ui_ O  
        for k = length(s):-1:1 Es8#]'Rk  
            p = (1-2*mod(s(k),2))* ... T9jw X:n  
                       prod(2:(n(j)-s(k)))/              ... '044Vm;/  
                       prod(2:s(k))/                     ... #Z9L_gDp  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 2$0)?ZC?=  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); Zf:]Gq1  
            idx = (pows(k)==rpowers); A,XfD}+:Z  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 7 .+al)hl  
        end xFb3O|TC  
         [.cq{6-  
        if isnorm &Ocu#Cb  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); >)c9|e=8  
        end bkv/I{C>?  
    end u{C)qb5Pu  
    % END: Compute the Zernike Polynomials ~@9zil41  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ->oz#  
    XB/'u39  
    U^$E'Q-VK  
    % Compute the Zernike functions: -!dQ)UEP  
    % ------------------------------ ,"G\f1  
    idx_pos = m>0; uMiyq<  
    idx_neg = m<0; BKb<2  
    f=_g8+}h  
    =vEkMJ Os  
    z = y; {;n0/   
    if any(idx_pos) >t #\&|9I  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); "$)yB  
    end ?qT(3C9p  
    if any(idx_neg) -c={+z "  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); A*0*sZ0  
    end  W"qL-KW  
    8/q*o>[?  
    U[fSQ`&D  
    % EOF zernfun VS`Z_Xn  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  UU-v;_oP  
    ( / G)"]  
    DDE还是手动输入的呢? Ho:}Bn g  
    YDdLDE  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究