切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9030阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, ^Kb9@lz/  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 5c*p2:]  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? kbD*=d}3{  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? 2&suo!ig  
    |dW2dQ  
    [8xeQKp4  
    =%:JjgKc*t  
    {K<~ vj;  
    function z = zernfun(n,m,r,theta,nflag) X+/{%P!w  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. nomu$|I  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N yp( ?1  
    %   and angular frequency M, evaluated at positions (R,THETA) on the sj#{TTW  
    %   unit circle.  N is a vector of positive integers (including 0), and c1gz #,  
    %   M is a vector with the same number of elements as N.  Each element h4J{jh.  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) p)K9 ZI  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, {yGZc3e1j  
    %   and THETA is a vector of angles.  R and THETA must have the same ^A:!ni@3  
    %   length.  The output Z is a matrix with one column for every (N,M) Nck!z8  
    %   pair, and one row for every (R,THETA) pair. ,?P8m"  
    % L3-<Kop  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike e5]&1^+  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), _%AJmt}  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral hWl""66+5  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 6GvhEulYR  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ;5,`Jpca  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 2&zn^\%"  
    % ?6_"nT*}  
    %   The Zernike functions are an orthogonal basis on the unit circle. 6R3"L]J  
    %   They are used in disciplines such as astronomy, optics, and S7@ZtFf  
    %   optometry to describe functions on a circular domain. t;Fbt("]:  
    % O('i*o4!}  
    %   The following table lists the first 15 Zernike functions. IMl9\U  
    % 'vqj5YTj  
    %       n    m    Zernike function           Normalization zav*  
    %       -------------------------------------------------- f\U?:8 3  
    %       0    0    1                                 1 )Tyky%P+iI  
    %       1    1    r * cos(theta)                    2 G2U5[\  
    %       1   -1    r * sin(theta)                    2 8=ukS_?Vy  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) +?4*,8Tmmz  
    %       2    0    (2*r^2 - 1)                    sqrt(3) * K0j5dx  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) F^/~@^{P  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) E.5*Jr=J  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) R#[QoyJ  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) (ffOu#RQ3  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) uFA|r X  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) N3S,33 8s  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) , }xpYq_/  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) A>&>6O4  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) m!FM+kge  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) [[.&,6  
    %       -------------------------------------------------- ~T;a jvJ  
    % #*ZnA,  
    %   Example 1: b.w(x*a  
    % pw(U< )  
    %       % Display the Zernike function Z(n=5,m=1) Vsm%h^]d  
    %       x = -1:0.01:1; 5 b#" G"  
    %       [X,Y] = meshgrid(x,x); sqMNon`5  
    %       [theta,r] = cart2pol(X,Y); Gdc ~Lh  
    %       idx = r<=1; 8CN7+V  
    %       z = nan(size(X)); 7DC0W|Fe  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); K~fDv  i  
    %       figure p;c_<>ws-Y  
    %       pcolor(x,x,z), shading interp + !E{L  
    %       axis square, colorbar Uy_}@50"l  
    %       title('Zernike function Z_5^1(r,\theta)') 0k] ju  
    % )ZQ9a4%  
    %   Example 2: 5~kW-x  
    % /ut~jf`  
    %       % Display the first 10 Zernike functions %BKR}  
    %       x = -1:0.01:1; >? A `C!i  
    %       [X,Y] = meshgrid(x,x); f)ucC$1=  
    %       [theta,r] = cart2pol(X,Y); !4b; >y=m  
    %       idx = r<=1; I/ e2,  
    %       z = nan(size(X)); x1&b@u  
    %       n = [0  1  1  2  2  2  3  3  3  3]; {C,1w  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; E&T'U2  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; .SKNIct M  
    %       y = zernfun(n,m,r(idx),theta(idx)); ]y)R C-N  
    %       figure('Units','normalized') YiQeI|{oN  
    %       for k = 1:10 # ZYid t  
    %           z(idx) = y(:,k); @88z{  
    %           subplot(4,7,Nplot(k)) 4E>/*F!  
    %           pcolor(x,x,z), shading interp fjK]m.w  
    %           set(gca,'XTick',[],'YTick',[]) 9 FFfRIVY  
    %           axis square k1LtqV  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) J}Z_.:JO(w  
    %       end 6{Cu~G{]N  
    % 71n uTE%!  
    %   See also ZERNPOL, ZERNFUN2. >1)@n3.<O  
    u;'<- _  
    w'zO(6 `  
    %   Paul Fricker 11/13/2006 Dry;$C}P  
    Ivl^,{4  
    6GrMcI@hS  
     <*6y`X  
     >Wr   
    % Check and prepare the inputs: ja,L)b:  
    % ----------------------------- mSfkyw.  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) #&`WMLl+8  
        error('zernfun:NMvectors','N and M must be vectors.') AN:RY/ %Wo  
    end Q\/":ISq1  
    &L~31Ayj&  
    'i h  
    if length(n)~=length(m) >!v,`O1  
        error('zernfun:NMlength','N and M must be the same length.') @)juP- o%  
    end HTtGpTsF  
    S1^Mw;?P  
    L8-[:1  
    n = n(:); -z~ V   
    m = m(:);  =R24 h  
    if any(mod(n-m,2)) m 'H  
        error('zernfun:NMmultiplesof2', ... id[>!fQ=Y  
              'All N and M must differ by multiples of 2 (including 0).') @ vYN7  
    end p7=^m>Z6  
    B| 0s4E  
    $>rfAs!  
    if any(m>n) ka9v2tE\  
        error('zernfun:MlessthanN', ... ht74h  
              'Each M must be less than or equal to its corresponding N.') l<MCmKuYp  
    end U%PMV?L{  
    *,XJN_DKj  
    H1ui#5n2  
    if any( r>1 | r<0 ) o)' =D(  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') o? xR[N-J  
    end <~8f0+"  
    d8q$&(]<  
    Ckl]fy@D}  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) =smY/q^3  
        error('zernfun:RTHvector','R and THETA must be vectors.') uY%3X/^j  
    end ]O(HZD%  
    }d*sWSPu(  
    3SB7)8Id1  
    r = r(:); cZK?kz_Y  
    theta = theta(:); S0QU@e  
    length_r = length(r); T+{'W  
    if length_r~=length(theta) XxU}|jTO#  
        error('zernfun:RTHlength', ... P}u<NPy3Q  
              'The number of R- and THETA-values must be equal.') Ex&RR< 5  
    end 0c;"bA0>Sx  
    n\)f.}YD8d  
    2iINQK$  
    % Check normalization: ,`2xfVa-  
    % -------------------- 3eDx@8N }  
    if nargin==5 && ischar(nflag) -a^sX%|Bl  
        isnorm = strcmpi(nflag,'norm'); OZ]3OL,  
        if ~isnorm e5\1k#@  
            error('zernfun:normalization','Unrecognized normalization flag.') eDZ3SIZ  
        end #7:9XID /  
    else l:C0:m%  
        isnorm = false; g wjv&.T6^  
    end G,* uj0g  
    >t<R6f_Q0  
    %_LHD|<  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% J3JRWy@?P  
    % Compute the Zernike Polynomials ]vyF&`phb  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Oua/NF)  
    {7szo`U2  
    oDDH;Q"M(  
    % Determine the required powers of r: w [x+2  
    % ----------------------------------- NOr*+N\  
    m_abs = abs(m); IHMyP~{  
    rpowers = []; BTQC1;;N  
    for j = 1:length(n) WC&Ltw8  
        rpowers = [rpowers m_abs(j):2:n(j)]; c oz}VMp  
    end BPs &  
    rpowers = unique(rpowers); s-DL=MD  
    vPq\reKe  
    /9# jv]C:  
    % Pre-compute the values of r raised to the required powers, _C#( )#  
    % and compile them in a matrix: KT?s\w  
    % ----------------------------- QlXF:Gx"=  
    if rpowers(1)==0 m1Z8SM+  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); i58CA?  
        rpowern = cat(2,rpowern{:}); $1 \!Oe[i  
        rpowern = [ones(length_r,1) rpowern]; ! \Kh\  
    else j_<n~ri-  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 3&2q\]Y,  
        rpowern = cat(2,rpowern{:}); \ku{-^7  
    end Q9V4-MC9  
    6$.Xj\zl  
    WU@,1.F:  
    % Compute the values of the polynomials: ^>28>!"1  
    % -------------------------------------- ';V+~pi  
    y = zeros(length_r,length(n)); 6Ky"4\e  
    for j = 1:length(n) daNIP1Qn  
        s = 0:(n(j)-m_abs(j))/2; 2DQC)Pe+z  
        pows = n(j):-2:m_abs(j); a'~y'6  
        for k = length(s):-1:1 Jxp'.oo[  
            p = (1-2*mod(s(k),2))* ...  ]bSt[  
                       prod(2:(n(j)-s(k)))/              ... A84HaRlkF5  
                       prod(2:s(k))/                     ... _kLoDju%  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... aE$p;I  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); l.)!jWY  
            idx = (pows(k)==rpowers); #nhAW  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 9R3=h5Y  
        end Agf!6kh  
         GTe9@d  
        if isnorm b)@x@3"O  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); /_(Dq8^g@  
        end Zt=X %M|aw  
    end a{,t@G  
    % END: Compute the Zernike Polynomials &6EfybAt^_  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% u'> CU  
    sl 5wX  
    d(XWt;KK  
    % Compute the Zernike functions: giq`L1<  
    % ------------------------------ ?[">%^  
    idx_pos = m>0; 1vb0G ;a;|  
    idx_neg = m<0; D1k]  
    $!@f{9+  
    &YMj\KmlSg  
    z = y; jd*H$BU^  
    if any(idx_pos) \O~P !`  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); aQ. \!&U  
    end WI3!?>d  
    if any(idx_neg) 2S/7f:  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); H[Cn@XE  
    end w6 .HvH-@?  
    q[ZYlF,Ho  
    V5MbWXgR  
    % EOF zernfun V ZGhF!To  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  =y<Fz*aA  
    _ &T$0SZco  
    DDE还是手动输入的呢? 87-oR}/r  
    (wTg aV1  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究