下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, l&yR-FJ7KY
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, ]x Kmz
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? yA_d${n
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? p
2i5/Ly
[WK_Vh{
V:+}]"yJ,
-OHG1"/
J'7Oxjlg
function z = zernfun(n,m,r,theta,nflag) +`4|,K7'
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. V&>7i9lEz
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N C&SYmYj^c
% and angular frequency M, evaluated at positions (R,THETA) on the 6SmSu\lgV
% unit circle. N is a vector of positive integers (including 0), and *?8Q:@:
% M is a vector with the same number of elements as N. Each element V?gQ`( ,
% k of M must be a positive integer, with possible values M(k) = -N(k) 8sIGJ|ku
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, X}Csl~W8in
% and THETA is a vector of angles. R and THETA must have the same J2R<'(
% length. The output Z is a matrix with one column for every (N,M) UFl*^j_)]
% pair, and one row for every (R,THETA) pair. "K@os<
% q@\D5F%
>
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike U8c0C/
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), QO
k%Q$^G
% with delta(m,0) the Kronecker delta, is chosen so that the integral Jk~T.p?tF
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, h%O`,iD2
% and theta=0 to theta=2*pi) is unity. For the non-normalized SAoqq
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. j4l7Tx
% }Bb(wP^B.
% The Zernike functions are an orthogonal basis on the unit circle. MHbRG_zW
% They are used in disciplines such as astronomy, optics, and 4*54"[9Hr#
% optometry to describe functions on a circular domain. ,aN/``j=
% _S[H:b$?
% The following table lists the first 15 Zernike functions. /yOd]N;$
% 'Hg(N?1"
% n m Zernike function Normalization <wuP*vI"h
% -------------------------------------------------- kSJWQ
% 0 0 1 1 $""[(
d?0
% 1 1 r * cos(theta) 2 %mq]M
% 1 -1 r * sin(theta) 2 o0/03O
% 2 -2 r^2 * cos(2*theta) sqrt(6) Sb`>IlT\#
% 2 0 (2*r^2 - 1) sqrt(3) '[HFIJ0K!
% 2 2 r^2 * sin(2*theta) sqrt(6) X=JSqO6V9
% 3 -3 r^3 * cos(3*theta) sqrt(8) R_*\?^k|A
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) wF%XM_M
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) e"bF"L
% 3 3 r^3 * sin(3*theta) sqrt(8) ?T^$,1-
% 4 -4 r^4 * cos(4*theta) sqrt(10) Mz06cw&
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) }Orc;_)r
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) Gzs x0%`)
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) HU'd/5fun
% 4 4 r^4 * sin(4*theta) sqrt(10) _#L
IG2d
% -------------------------------------------------- *L^{p.K4
% I8[G!u71)_
% Example 1: H"-p^liw
% W w8[d
% % Display the Zernike function Z(n=5,m=1) >Z3}WMgBN
% x = -1:0.01:1; uM\~*@
% [X,Y] = meshgrid(x,x); w3& F e=c
% [theta,r] = cart2pol(X,Y); `@`CZg
% idx = r<=1; Mpj3<vj
% z = nan(size(X)); ['c:n?
% z(idx) = zernfun(5,1,r(idx),theta(idx)); |e9}G,1
% figure Yd,*LYd2EL
% pcolor(x,x,z), shading interp MLR3A
s
% axis square, colorbar nc3 1X
% title('Zernike function Z_5^1(r,\theta)') ,mRN;|N
% P2oRC3~
% Example 2: /yI~(8bO
% *</;:?
% % Display the first 10 Zernike functions W=|B3}C?
% x = -1:0.01:1; >g F
% [X,Y] = meshgrid(x,x); 4];NX
% [theta,r] = cart2pol(X,Y); :n>h[{o%
% idx = r<=1; <oR Nd3d
% z = nan(size(X)); vI+PL(T@
% n = [0 1 1 2 2 2 3 3 3 3]; 7?A}qmv
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; l&C%oW
% Nplot = [4 10 12 16 18 20 22 24 26 28]; v5*SoUOF
% y = zernfun(n,m,r(idx),theta(idx)); *mBEF"
% figure('Units','normalized') <:ZN
% for k = 1:10 B0YY7od
% z(idx) = y(:,k); H_$"]iQ
% subplot(4,7,Nplot(k)) ^&,{
% pcolor(x,x,z), shading interp KDY~9?}TM
% set(gca,'XTick',[],'YTick',[]) 7?kvrIuY&
% axis square
@P~u k
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 9(H8MUF0{
% end x
&\~4,TN
% rL%xl,cn<
% See also ZERNPOL, ZERNFUN2. ]`|bf2*eA
x^SE>dy ?z
zZDr=6|r_
% Paul Fricker 11/13/2006 Tn-H8;Hg
gHm^@
-nU_eDy
l,d8%\
b|xz`wUH0$
% Check and prepare the inputs: on(W^ocnD
% ----------------------------- W58\V
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 3kJAaI8
error('zernfun:NMvectors','N and M must be vectors.') +C+3DwN
end 9J1&g(?>-
{)Gh~~57_W
_o`'b80;
if length(n)~=length(m) "PlM{ZI\
error('zernfun:NMlength','N and M must be the same length.') W`;E-28Dg
end a#mdD:,cF
GHoPv-#
K{0mb
n = n(:); @5kN
L~2
m = m(:); .*y{[."!
if any(mod(n-m,2)) 6bU/IVP
error('zernfun:NMmultiplesof2', ... 'QkL%z0
'All N and M must differ by multiples of 2 (including 0).') >w
V$az
end L6',s4
45_zO#
!IT']kA
if any(m>n) jCy2bE
error('zernfun:MlessthanN', ... #$#{QEh0}
'Each M must be less than or equal to its corresponding N.') MenI>gd?
end jIEK[vJ`
/.}&yRR
fXL$CgXG\x
if any( r>1 | r<0 ) =JEnK_@?K\
error('zernfun:Rlessthan1','All R must be between 0 and 1.') } #$Y^ +UN
end id*UTY
Tg
n RXf \*"3
,. E:mm
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) {)`5*sd
error('zernfun:RTHvector','R and THETA must be vectors.') zf^!Zqn[8z
end AU)Qk$c
Vg2s~ce{
*BSL=8G{
r = r(:); 9}5Q5OZ
theta = theta(:); ;;UvK
v
length_r = length(r); B_:K.]DK`
if length_r~=length(theta) \24neD4cM@
error('zernfun:RTHlength', ... :JPI#zZun
'The number of R- and THETA-values must be equal.') S6Kaw
end D?9=q
`oq
3G }
A 8&%G8d
% Check normalization: l%;)0gT
% -------------------- :vc[ iZ
if nargin==5 && ischar(nflag) Z\NC+{7k]
isnorm = strcmpi(nflag,'norm'); G;,2cu
K
if ~isnorm 0;V2>!
error('zernfun:normalization','Unrecognized normalization flag.') G*Qk9bk9
end yzXwxi1#
else .-nA#/2-
isnorm = false; >6(nW:I0y
end RN!oflb
`
R^[s56wp
CK.Z-_M
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% b7HS3NYk
% Compute the Zernike Polynomials 2W|j
K
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% lOYwYMi
_:=w6jCk
[7L1y) I(
% Determine the required powers of r: BYwG\2?~
% ----------------------------------- 7CNEP2}:R
m_abs = abs(m); NjL,0Bp
rpowers = []; /&dC? bY
for j = 1:length(n) |L0 s
rpowers = [rpowers m_abs(j):2:n(j)]; ~D
5'O^
end b8T'DY;~
rpowers = unique(rpowers); ,]Hn*\@p[c
AnI ENJ
U9kt7#@FDK
% Pre-compute the values of r raised to the required powers, 5Ss=z
% and compile them in a matrix: `} Q+:
% ----------------------------- ~"{Kjr#R
if rpowers(1)==0 4l[f}Z
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 0Ac]&N d`
rpowern = cat(2,rpowern{:}); 5Sk87o1E(d
rpowern = [ones(length_r,1) rpowern]; b Kv9F@
else @;Yb6&I;
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 2I6 c7H s
rpowern = cat(2,rpowern{:}); AVHn7olG
end Ge|caiH1I
9/q4]%`
A*E$_N
% Compute the values of the polynomials: Jg|/*Or
% -------------------------------------- q'{E $V)E
y = zeros(length_r,length(n)); RIb<
7
for j = 1:length(n) ;nSaZ$`5
s = 0:(n(j)-m_abs(j))/2; .(nq"&u-*
pows = n(j):-2:m_abs(j); v5 $"v?PT
for k = length(s):-1:1 L}x"U9'C
p = (1-2*mod(s(k),2))* ... 8V^gOUF.
prod(2:(n(j)-s(k)))/ ... efRa|7!HK
prod(2:s(k))/ ... naM4X@jl
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... sj
Yg
prod(2:((n(j)+m_abs(j))/2-s(k))); A5B 5pJ
idx = (pows(k)==rpowers); ~ia#=|1}
y(:,j) = y(:,j) + p*rpowern(:,idx); <86upS6
end b8Y1 .y"#
lbTz
if isnorm !dSY?1>U<
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); vpTS>!i
end ]D%D:>9|/
end ;. /Tv84I^
% END: Compute the Zernike Polynomials xOPSw|!w
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0t6s20*q
$OmcEd
0.bmVN<
% Compute the Zernike functions: cM.q^{d`
% ------------------------------ W!V06.
idx_pos = m>0; NuW9.6$Jrf
idx_neg = m<0; \Qz>us=G
NTls64AS.
qEX59v
z = y; _sJp"4?
if any(idx_pos) DJT)7l {
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); jHTaG%oh
end 9akCvY#Q
if any(idx_neg) `L7 cS
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); bG;vl;C
end ,Ix7Yg[
F2OU[Z,-]
,k+jx53XV
% EOF zernfun =}u;>[3