切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9228阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, 2V@5:tf  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 9}6_B|  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? %k#+nad  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? q8$t4_pF  
    j~N*TXkC  
    Ve(<s  
    |1%% c %  
    `NQ  
    function z = zernfun(n,m,r,theta,nflag) i?/Q7D<P  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 9&* 7+!  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Sl8+A+  
    %   and angular frequency M, evaluated at positions (R,THETA) on the  ]ltCJq  
    %   unit circle.  N is a vector of positive integers (including 0), and :Vxt2@p{  
    %   M is a vector with the same number of elements as N.  Each element hA ){>B<;  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) )3CM9P'0  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, E.*hY+kGZ  
    %   and THETA is a vector of angles.  R and THETA must have the same SPV+ O{  
    %   length.  The output Z is a matrix with one column for every (N,M) edMCj  
    %   pair, and one row for every (R,THETA) pair. d7kE}{,  
    % QKP #wR  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ,?yjsJd.  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ;((t|  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral $}(Z]z}O;  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, {LiJ=Ebt  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 1#x5 o2n  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Hpix:To  
    % Wq3PN^  
    %   The Zernike functions are an orthogonal basis on the unit circle. _9=87u0  
    %   They are used in disciplines such as astronomy, optics, and (LK@w9)i;  
    %   optometry to describe functions on a circular domain. (/uN+   
    % J~K O#`  
    %   The following table lists the first 15 Zernike functions. OFr"RGW"  
    % 9C \}bT  
    %       n    m    Zernike function           Normalization $?F_Qsy{d  
    %       -------------------------------------------------- } `L;.9  
    %       0    0    1                                 1 C+/EPPi  
    %       1    1    r * cos(theta)                    2 Lz1KDXr`)+  
    %       1   -1    r * sin(theta)                    2 +}m`$B}mJ  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) V<WWtu;3  
    %       2    0    (2*r^2 - 1)                    sqrt(3) g R!hN.I  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) -F/)-s6#!'  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 'ij+MU 1  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) nN&dtjoF  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) p8 S~`fjV  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) # fF5O2E'3  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) Mc c%&j  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) dXDyY  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) #!_4ZX  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) f=91 Z_M  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) F7<M{h5s  
    %       -------------------------------------------------- )F hbN@3  
    % $z OV*O2  
    %   Example 1: pzRVX8  
    % NCg("n,jx  
    %       % Display the Zernike function Z(n=5,m=1) oTvg%bX  
    %       x = -1:0.01:1; /mJb$5=1  
    %       [X,Y] = meshgrid(x,x); IgJG,!>h  
    %       [theta,r] = cart2pol(X,Y); \GHj_r  
    %       idx = r<=1; n=b!c@f4  
    %       z = nan(size(X)); Pjq9BK9p  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); B[mZQ&Gz`a  
    %       figure 5q4wREh  
    %       pcolor(x,x,z), shading interp .Od@i$E>&  
    %       axis square, colorbar <>KQ8:  
    %       title('Zernike function Z_5^1(r,\theta)') u L v  
    % L"0dB.  
    %   Example 2: W/RB|TMT  
    % DBy%"/c  
    %       % Display the first 10 Zernike functions ih("`//nP  
    %       x = -1:0.01:1; !}|'1HIC  
    %       [X,Y] = meshgrid(x,x); NfQ QJ@*  
    %       [theta,r] = cart2pol(X,Y); vZQraY nJ  
    %       idx = r<=1; -^_^ByJe  
    %       z = nan(size(X)); R{H8@JLD  
    %       n = [0  1  1  2  2  2  3  3  3  3]; Y, Lpv|  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; .`KzA]&#  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; KD\%B5Jy  
    %       y = zernfun(n,m,r(idx),theta(idx)); &9gI?b8  
    %       figure('Units','normalized') d?5oJ'JU  
    %       for k = 1:10 = <A0;  
    %           z(idx) = y(:,k); v#9i|  
    %           subplot(4,7,Nplot(k)) l^tRy_T:-  
    %           pcolor(x,x,z), shading interp tHqa%  
    %           set(gca,'XTick',[],'YTick',[]) E}zGY2Xx  
    %           axis square NHU5JSlB  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ?!"pzDg  
    %       end j7Zv"Vq@  
    % BQ,749^S  
    %   See also ZERNPOL, ZERNFUN2. uCt?(E>  
    sOz {spA  
    q(EN]W],  
    %   Paul Fricker 11/13/2006 KWYjN h#*  
    /V/ )A\g  
    !F ?j'[s8]  
     ^0{t  
    ',Z]w;D!G  
    % Check and prepare the inputs: 6[FXgCb  
    % ----------------------------- 4QC_zyTE  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 3 %BI+1&T_  
        error('zernfun:NMvectors','N and M must be vectors.') $? Z}hU  
    end jU 3ceXV  
    \ %xku:  
    &D|+tu{  
    if length(n)~=length(m) "J&WH~8+N  
        error('zernfun:NMlength','N and M must be the same length.') T#e|{ZCbq  
    end !mVq+_7]  
    !gsrPM  
    YHgNL LZ?  
    n = n(:); ]2&RN@  
    m = m(:); f6( 1jx"  
    if any(mod(n-m,2)) <}xgp[O  
        error('zernfun:NMmultiplesof2', ... _/ 5  
              'All N and M must differ by multiples of 2 (including 0).') x!7!)]h  
    end x'G_z_<V  
    Y#P!<Q>}  
    D\-DsT.H  
    if any(m>n) lkp$rJ#6  
        error('zernfun:MlessthanN', ... >,Zn~8&Z  
              'Each M must be less than or equal to its corresponding N.') c<Ud[x.  
    end _9=cxwi<w  
    aU.!+e%_  
    C!1)3w|  
    if any( r>1 | r<0 ) WK0IagYw  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 44k8IYC*o  
    end :Ez*<;pF'  
    p? w^|V  
    vXM {)  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 3 l j^I  
        error('zernfun:RTHvector','R and THETA must be vectors.') ".pQM.T  
    end x*X{*?5@  
    ;Ob^@OM  
    1<Uv4S  
    r = r(:); W8-vF++R  
    theta = theta(:); 0=9$k  
    length_r = length(r); Ofb&W AD  
    if length_r~=length(theta) oZL# *Z(h  
        error('zernfun:RTHlength', ... fC}uIci  
              'The number of R- and THETA-values must be equal.') "2tKh!?Q  
    end D)[(  
    C0^r]^$Z  
    R9K~b^`  
    % Check normalization: n b*`GE  
    % -------------------- LOwd mj  
    if nargin==5 && ischar(nflag) ]Ee$ulJ02  
        isnorm = strcmpi(nflag,'norm'); pz{ ]O_px  
        if ~isnorm bq8h?Q  
            error('zernfun:normalization','Unrecognized normalization flag.') m,5?|J=  
        end ExFz@6@  
    else oe=1[9T"  
        isnorm = false; puh-\Q/P  
    end I,Jb_)H&t  
    EACI>  
    h >Z`&  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \nTV;@F  
    % Compute the Zernike Polynomials ^ME'D  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% *vqUOh  
    S`TQWWQo;  
    rzvKvGd#N  
    % Determine the required powers of r: _1YC9}  
    % ----------------------------------- \IqCC h  
    m_abs = abs(m); YB:}L b  
    rpowers = []; ?O]RQXsZ2  
    for j = 1:length(n) $:A80(#+  
        rpowers = [rpowers m_abs(j):2:n(j)]; R$Qhu xT|  
    end \W\*'C8q\  
    rpowers = unique(rpowers); 3m&  
    #\K"FE0PGz  
    N&$ ,uhmO  
    % Pre-compute the values of r raised to the required powers, +A$>F@u  
    % and compile them in a matrix: 8WKY 4nkj  
    % ----------------------------- lO0}  
    if rpowers(1)==0 E},zB*5TH  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); f)r6F JLU  
        rpowern = cat(2,rpowern{:}); L7.SH#m  
        rpowern = [ones(length_r,1) rpowern]; R. vVl+  
    else xm=$D6O:  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); f'M([gn^_  
        rpowern = cat(2,rpowern{:}); rP!GS _RG  
    end wAL}c(EHO  
    L gy^^.  
    zXbA$c  
    % Compute the values of the polynomials: U: )Gc  
    % -------------------------------------- bUYjmb2g)  
    y = zeros(length_r,length(n)); vWa\8yf  
    for j = 1:length(n) )ac!@slb^7  
        s = 0:(n(j)-m_abs(j))/2; M23r/eg]  
        pows = n(j):-2:m_abs(j); J`{  o`>  
        for k = length(s):-1:1 qmvQd8|XR  
            p = (1-2*mod(s(k),2))* ... >Ml5QO$*.q  
                       prod(2:(n(j)-s(k)))/              ... d..JW{  
                       prod(2:s(k))/                     ... (S?DKPnR  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... |WOc0M[U  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); =([4pG  
            idx = (pows(k)==rpowers); ' d?6 L  
            y(:,j) = y(:,j) + p*rpowern(:,idx); <num!@2D  
        end }WBHuVcZG  
         >6)|># Wi  
        if isnorm q[/pE7FL  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); | :id/  
        end <~:2~r  
    end $2-_j)+  
    % END: Compute the Zernike Polynomials V\l@_%D[(v  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% sc6NON#  
    l/\D0\x2  
    :)&vf<JL  
    % Compute the Zernike functions: g=,}j]tl  
    % ------------------------------ 9b@yDq3hQ  
    idx_pos = m>0; ;BKU _}k=  
    idx_neg = m<0; B<a` o&?  
    >[~7fxjK-  
    y O*   
    z = y; < $otBC/%  
    if any(idx_pos) k1s5cg=n(  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)');  nb6Y/`G  
    end ?ks.M'@  
    if any(idx_neg) n+i=Ff  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); & d$X:  
    end *JQ*$$5  
    $J&c1  
    ["4Tn0g ;  
    % EOF zernfun 7?y 7fwER  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    在线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  a*U[;(  
    ~$5XiY8A  
    DDE还是手动输入的呢? \GxqE8  
    ,.>9$(s  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究