下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, 02S Uyv(Mt
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, s&c^Wr
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? /
{A]('t
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? C5eol &
)Dv"seH.
!{SEm"J^
//WgK{Mt
jL2f74?1
function z = zernfun(n,m,r,theta,nflag) YGxdYwBwf
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. R
z[-
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 7C&`i}/t
% and angular frequency M, evaluated at positions (R,THETA) on the b?r0n]
% unit circle. N is a vector of positive integers (including 0), and s$RymM
% M is a vector with the same number of elements as N. Each element q6osRK*20
% k of M must be a positive integer, with possible values M(k) = -N(k) `pLp+#1
`R
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, {"@ Bf<J#
% and THETA is a vector of angles. R and THETA must have the same 0ai4%=d-
% length. The output Z is a matrix with one column for every (N,M) 9%)'QDVGLf
% pair, and one row for every (R,THETA) pair. F`Pu$>8C
% &*0!${B
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike X.JB&~/rO
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), bf}r8$,
% with delta(m,0) the Kronecker delta, is chosen so that the integral /0(4wZe~?
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, BL]^+KnP
% and theta=0 to theta=2*pi) is unity. For the non-normalized _Jx?m
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 0V1kZ.
% *A_
% The Zernike functions are an orthogonal basis on the unit circle. s
n?
% They are used in disciplines such as astronomy, optics, and 8^M5u>=t;
% optometry to describe functions on a circular domain. {VI%]n{M
% ;1"K79
% The following table lists the first 15 Zernike functions. 8fdOV&&D~i
% tl#hCy
% n m Zernike function Normalization J,IOp-
% -------------------------------------------------- ytJ |jgp'
% 0 0 1 1 jkfI,T
% 1 1 r * cos(theta) 2 >.B+xn=
% 1 -1 r * sin(theta) 2 z.{yVQE
% 2 -2 r^2 * cos(2*theta) sqrt(6) r"rEVx#1=
% 2 0 (2*r^2 - 1) sqrt(3) ph69u #Og
% 2 2 r^2 * sin(2*theta) sqrt(6) J@1 (2%)|Z
% 3 -3 r^3 * cos(3*theta) sqrt(8) {5*+
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) sX@e1*YE_
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) gzw[^d
% 3 3 r^3 * sin(3*theta) sqrt(8) o6{XT.z5qx
% 4 -4 r^4 * cos(4*theta) sqrt(10) B [y1RI|9
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) +K+
== mO&
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) ib&
|271gG
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) SqEO
]~
% 4 4 r^4 * sin(4*theta) sqrt(10) :?lSa6de
% -------------------------------------------------- 6Q\n<&,{
% hI/p9
`w
% Example 1: e_,_:|t
% j^LnHVHk1
% % Display the Zernike function Z(n=5,m=1) 6W3}6p
% x = -1:0.01:1; aHb,4 wY
% [X,Y] = meshgrid(x,x); Ws(BouJ
% [theta,r] = cart2pol(X,Y); }~\J7R'
% idx = r<=1; 0E+ +
% z = nan(size(X)); i++ F&r[
% z(idx) = zernfun(5,1,r(idx),theta(idx)); aIkxN&
% figure #
VR}6Jv
% pcolor(x,x,z), shading interp ^QXUiXzl
% axis square, colorbar cbS8~Xmj
% title('Zernike function Z_5^1(r,\theta)') vn|X,1o
% f *)t<1f
% Example 2: igz&7U8gg
% :%s9<g;-h_
% % Display the first 10 Zernike functions c?wFEADn
% x = -1:0.01:1; <$ '#@jW
% [X,Y] = meshgrid(x,x); bp5hS/A^1w
% [theta,r] = cart2pol(X,Y); .i`+} @iA
% idx = r<=1; t$s)S>
% z = nan(size(X)); x37r{$2
% n = [0 1 1 2 2 2 3 3 3 3]; J&h 3,
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 8B\,*JGY2
% Nplot = [4 10 12 16 18 20 22 24 26 28]; $k}+,tHtJO
% y = zernfun(n,m,r(idx),theta(idx)); R(x%<I
% figure('Units','normalized') r\L:JTZ$
% for k = 1:10 &
yw-y4 =
% z(idx) = y(:,k); #r0A<+t{T
% subplot(4,7,Nplot(k)) gSC8qip
% pcolor(x,x,z), shading interp M*@MkN*u&
% set(gca,'XTick',[],'YTick',[]) BXm{x6\
% axis square Ik~5j(^E-
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) qOkw6jfluh
% end c[ =9Z;|
% \$9S_z
% See also ZERNPOL, ZERNFUN2. ,{YC|uB
>>&~;PG[
<o
p !dS
% Paul Fricker 11/13/2006 7!Fu.Ps
>
|RHX2sso
7dxY07yu
RkC?(p
{T.$xiR
% Check and prepare the inputs: VSM%<-iQ
% ----------------------------- \5X34'7
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) I]TL#ywF
error('zernfun:NMvectors','N and M must be vectors.') E&]S No<
end %_}#IS1
?c(f6p?%
sE]eIN
if length(n)~=length(m) -3haLdRk6
error('zernfun:NMlength','N and M must be the same length.') b>;5#OQfn
end SyTcp?H
YW>|gE
vFy/
n = n(:); |0m h*+i
m = m(:); )V~<8/)
if any(mod(n-m,2)) 'g( R4deCX
error('zernfun:NMmultiplesof2', ... dqPJ 2j $\
'All N and M must differ by multiples of 2 (including 0).') us$~6
end Tf*X\{"
8={(Vf6
F;`es%8
if any(m>n) Sd}fse
error('zernfun:MlessthanN', ... -O. MfI+
'Each M must be less than or equal to its corresponding N.') hg=\L5R
end U{{RRK|
(#7pGGp*E
pcm|
if any( r>1 | r<0 ) %k1*&2"1#
error('zernfun:Rlessthan1','All R must be between 0 and 1.') YIt:_][*
end `d8}3D
+qjW;]yxP
Yb414 K
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) \fh.D/@
error('zernfun:RTHvector','R and THETA must be vectors.') a]$KI$)e
end cXtL3T+
2>?GD@GE
Hm%[d;Z7
r = r(:); r'w5i1C+
theta = theta(:); />)>~_-3
length_r = length(r); v"y
e\ZG
if length_r~=length(theta) ,T"(97"
error('zernfun:RTHlength', ... aD24)?db-
'The number of R- and THETA-values must be equal.') +=U`
end "fS9Nx3
CM8WI~
V|<qO-#.
% Check normalization: {n
#
% -------------------- j&[63XSe
if nargin==5 && ischar(nflag) vqv(KsD+::
isnorm = strcmpi(nflag,'norm'); P4Wd=Xoz6
if ~isnorm _/P"ulNb
error('zernfun:normalization','Unrecognized normalization flag.')
g`3g#h$
end l.fNkLC#
else <P$b$fh/
isnorm = false; 5#q
^lL
end Q
Gn4AW_
q>!T*BQ
9]7+fu
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% DlfXzKn;
% Compute the Zernike Polynomials &> }MoB
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% A7~)h}~
T|ZT&x$z
TJLz^%t
% Determine the required powers of r: *E+)mB"~
% ----------------------------------- 4$SW~BpQ
m_abs = abs(m); H*; J9{
rpowers = []; mS!/>.1[
for j = 1:length(n) ely&'y!
rpowers = [rpowers m_abs(j):2:n(j)]; w[:5uo(
end \1ys2BX
rpowers = unique(rpowers); ,Sghi&Ky
<$,iYx
oPm1`x
% Pre-compute the values of r raised to the required powers, >L[,.}(9
% and compile them in a matrix: :mL\KQ
% ----------------------------- 9Ni$nZN
if rpowers(1)==0 Y2<Z"D`
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); G'}%m;-mt
rpowern = cat(2,rpowern{:}); 3l5q?" $
rpowern = [ones(length_r,1) rpowern]; rbQA6_U 5A
else r$G;^
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); yd#4b`8U`
rpowern = cat(2,rpowern{:}); P8z++h
end x\I9J4Q
q\d'}:kfu
oV,>u5:B
% Compute the values of the polynomials: pd>EUdbrp&
% -------------------------------------- h#;fBQ]
y = zeros(length_r,length(n)); n3~xiQ'
for j = 1:length(n) ~A>3k2N/e
s = 0:(n(j)-m_abs(j))/2; Vu;tU.
pows = n(j):-2:m_abs(j); (O/hu3
for k = length(s):-1:1 |Z#)1K
p = (1-2*mod(s(k),2))* ... *kZJ
prod(2:(n(j)-s(k)))/ ... [4PG_k[uTJ
prod(2:s(k))/ ... B@.U\.
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... +% '0;
prod(2:((n(j)+m_abs(j))/2-s(k))); mZMLDs:
idx = (pows(k)==rpowers); qhL e[[>
y(:,j) = y(:,j) + p*rpowern(:,idx); EDL<J1%
end f<0-'fGJd
e,:@c3I
if isnorm +#'exgGU^[
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); <Pg.N
end \HTXl]
end GMB%A
% END: Compute the Zernike Polynomials "1h|1'S50?
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 3u+~!yz
|CStw"Fog
/$+ifiFT
% Compute the Zernike functions: W#-M|
% ------------------------------ 6D w[n
idx_pos = m>0; jc)D*Cf
idx_neg = m<0; _2U1$0xK
GJ{]}fl
7NoB
z = y; 4`!(M]u=
if any(idx_pos) WElB,a-RCp
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 0m51nw~B
end YI&^j2
if any(idx_neg) M6y:ze
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ~(4cnD)BO
end iMJ jWkk
'OkF.bs
Ed_A#@V
% EOF zernfun ,#D&*