下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, ]ij:>O@{$
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, |+=ctpx9&
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? 3 >^B%qg6
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? ul"Z%
1]
Ge24Lp;Y6
s3~6[T?8
`2'*E\
:k~ p=ko
function z = zernfun(n,m,r,theta,nflag) W#^p%?8pR
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. l%`~aVGJ
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ">nFzg?Y
% and angular frequency M, evaluated at positions (R,THETA) on the 3>z+3!I z
% unit circle. N is a vector of positive integers (including 0), and 0%3T'N%
% M is a vector with the same number of elements as N. Each element H$&P=\8n
% k of M must be a positive integer, with possible values M(k) = -N(k) OW8TiM
mK
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, l_2YPon
% and THETA is a vector of angles. R and THETA must have the same ~SEIIq
% length. The output Z is a matrix with one column for every (N,M) |G)bnmi7
% pair, and one row for every (R,THETA) pair. [U{RDX
% 1EHNg<J(
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike B_%O6
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), o7g6*hJz
% with delta(m,0) the Kronecker delta, is chosen so that the integral tgu
fU
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, eBW]hwhKzM
% and theta=0 to theta=2*pi) is unity. For the non-normalized BFn}~\wzK
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. u?8e>a
% o5NrDDH
% The Zernike functions are an orthogonal basis on the unit circle. "C+Fl
/v
% They are used in disciplines such as astronomy, optics, and D&8*4>
% optometry to describe functions on a circular domain. \0l"9
B.
% ~I%JVX%
% The following table lists the first 15 Zernike functions. l,Ixz1S3e
% _\FA}d@N
% n m Zernike function Normalization oc&yz>%q
% -------------------------------------------------- 6EG`0h6
% 0 0 1 1 J_XbtCmt
% 1 1 r * cos(theta) 2 JZcW? Or
% 1 -1 r * sin(theta) 2 iS28p
% 2 -2 r^2 * cos(2*theta) sqrt(6) OH~I+=}.
% 2 0 (2*r^2 - 1) sqrt(3) Q__1QUu
% 2 2 r^2 * sin(2*theta) sqrt(6) wW^3/
% 3 -3 r^3 * cos(3*theta) sqrt(8) 65pC#$F<x
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) p5=VGKp
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) f@IL2DL}\
% 3 3 r^3 * sin(3*theta) sqrt(8) D5
^Wi Q<
% 4 -4 r^4 * cos(4*theta) sqrt(10) ]F,v#6qi
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) YZ+<+`Mz<
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) .{k^
tf4
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) h&?tF~h
% 4 4 r^4 * sin(4*theta) sqrt(10) HoKN<w
% -------------------------------------------------- -ID!kZx
% m2Q#ATLW
% Example 1: ]i:O+t/U
% Yy8%vDdJO
% % Display the Zernike function Z(n=5,m=1) A*hc
w
% x = -1:0.01:1; zDofe*
% [X,Y] = meshgrid(x,x); _6Fj&mw(u
% [theta,r] = cart2pol(X,Y); YQ<O.E
% idx = r<=1; ?gOZY\[ma
% z = nan(size(X)); 1)wzSEV@
% z(idx) = zernfun(5,1,r(idx),theta(idx)); D|!^8jHj
% figure 2qUC@d<K
% pcolor(x,x,z), shading interp K)t+lJ
% axis square, colorbar B(dq$+4
% title('Zernike function Z_5^1(r,\theta)') p[-buB]
% }c*6|B@f
% Example 2: 0sKY;(
% -|xyj2M
% % Display the first 10 Zernike functions nA^UF_rD-
% x = -1:0.01:1; Y vjRJ
% [X,Y] = meshgrid(x,x); nXqZkZE\
% [theta,r] = cart2pol(X,Y); &/A?*2
% idx = r<=1; 'y.'Xj:l
% z = nan(size(X)); O
hcPlr
% n = [0 1 1 2 2 2 3 3 3 3]; ^++ec>
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; co!#.
% Nplot = [4 10 12 16 18 20 22 24 26 28]; j:{d'OV
% y = zernfun(n,m,r(idx),theta(idx)); 9rsty{J8
% figure('Units','normalized') g&"__~dS-F
% for k = 1:10 NI136P
% z(idx) = y(:,k); 3YF*TxKx
% subplot(4,7,Nplot(k)) /xRPQ|
% pcolor(x,x,z), shading interp y2eeE CS]
% set(gca,'XTick',[],'YTick',[]) - ?W hJ.U
% axis square #b4Pn`[
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) nAJ<@a
% end JY tM1d
% fu 95-)M
% See also ZERNPOL, ZERNFUN2. e'uI~%$NJL
\f_YJit
X}v]iX
% Paul Fricker 11/13/2006 %Ot^G%34
~Xg@,?Zr
S:GX!6>
+;Jb)8
I)Dd"I
% Check and prepare the inputs: tc'`4O]c8
% ----------------------------- rSVU|O3m;
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) f|1GlUA{t
error('zernfun:NMvectors','N and M must be vectors.') W=Ru?sG=
end GJY7vS^#
J34lu{'if
\P_1@sH=
if length(n)~=length(m) ;$\d^i{N
error('zernfun:NMlength','N and M must be the same length.') T&=1IoOg
end FU|c[u|z
FXPw 5
n^;:V8k
n = n(:); W|@/<K$V
m = m(:); el*C8TWlw
if any(mod(n-m,2)) Q2)z1'Wv
error('zernfun:NMmultiplesof2', ... daIt `} s
'All N and M must differ by multiples of 2 (including 0).') 47xJ(yO
end ruLi
"d
^t=Hl
Oi=>Usd
if any(m>n) MeqW/!72$L
error('zernfun:MlessthanN', ... Kd _tjWS
'Each M must be less than or equal to its corresponding N.') s:UQ~p}"S
end !tT$}?Ano
(ROurq"
>uuP@j
if any( r>1 | r<0 ) "|S \J5-%
error('zernfun:Rlessthan1','All R must be between 0 and 1.') 0.-2FHc9L
end I%43rdoPe
VrA9}"1x~*
9Kw4K#IqQ
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) _W4i?Bde
error('zernfun:RTHvector','R and THETA must be vectors.') 8]Xwj].^C
end O1Gd_wDC/i
*BYSfcX6
~\c]!%)o
r = r(:); K4i#:7r'b
theta = theta(:); MX 2UYZ&
length_r = length(r); ANy=f-V
if length_r~=length(theta) UDHk@M
error('zernfun:RTHlength', ... g_}r)CgG|
'The number of R- and THETA-values must be equal.') CE>RAerY
end ~l%Dcp
!Re/W
ykY
3VbQDPG
% Check normalization: -Rhxib|<
% -------------------- \.A~>=:
if nargin==5 && ischar(nflag) g83!il\
isnorm = strcmpi(nflag,'norm'); (u-i{<
if ~isnorm e*e}X&|(g
error('zernfun:normalization','Unrecognized normalization flag.') MPMJkL$F^
end <L@0w8i`
else >A|6kzC
isnorm = false; 8@|_];9#.
end 9}Tf9>qP>M
4`G":nE?We
lcij}-z:%e
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% '+NmHu:q
% Compute the Zernike Polynomials +I#5?
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% e
=Vu;
G6xdGUM
J4h7]
qt
% Determine the required powers of r: ho2o/>Ef3
% -----------------------------------
&(\z
m_abs = abs(m); !'Xk=+
rpowers = []; dRyK'Xr
for j = 1:length(n) 9kzytx
rpowers = [rpowers m_abs(j):2:n(j)]; !SIGzj
end A"k6n\!n;
rpowers = unique(rpowers); q[Hxy
8zGe5Dn9
j|9;")
1
% Pre-compute the values of r raised to the required powers, }%[TJ@R;
% and compile them in a matrix: y@'8vOh`
% ----------------------------- za'Eom-<u
if rpowers(1)==0 "[(_C&Ot4
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); }-k<>~FA
rpowern = cat(2,rpowern{:}); ]v@#3,BV
rpowern = [ones(length_r,1) rpowern]; *I`, L/
else 4aGV1u+4
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 0]{h,W3]@[
rpowern = cat(2,rpowern{:}); 7am ._K
end F'W{\4
fQlR;4QX]
xA#B1qbw
% Compute the values of the polynomials: BV$lMLD{r
% -------------------------------------- m>$+sMZE
y = zeros(length_r,length(n)); KP[ax2!x
for j = 1:length(n) ~qLbyzHaB
s = 0:(n(j)-m_abs(j))/2; vL{~?vq6
pows = n(j):-2:m_abs(j); vY<(3[pp
for k = length(s):-1:1 V{@<Z8sW#
p = (1-2*mod(s(k),2))* ... R{5Qb?&wOp
prod(2:(n(j)-s(k)))/ ... U^?/nRZ
prod(2:s(k))/ ... mKtZ@r)u
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... AYd7qx:~
prod(2:((n(j)+m_abs(j))/2-s(k))); S&8gZ~B
idx = (pows(k)==rpowers); Q1IN@Db}y
y(:,j) = y(:,j) + p*rpowern(:,idx); B%Dy;zdWd/
end }]N7CWy
G6_Kid}"q
if isnorm 3/>McZ@OH
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 7 w_`<b6
end K!"[,=u_
end FJKt5}`8
% END: Compute the Zernike Polynomials c~b[_J)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ~d^+yR-
WZ'8{XY8
bKYLBu:
% Compute the Zernike functions: "X g@X5BG
% ------------------------------ NQ !t `
idx_pos = m>0;
FAJ\9
idx_neg = m<0; C;}~C:aJ
THWT\3~,
U_m<W$"HF
z = y; ~4'e)g.hG
if any(idx_pos) IrjKI.PR
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 7gfNe kr~W
end `MlQPLH
if any(idx_neg) 'ADt<m_$
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); &Hb6
end BJ<hP9#
` QXO+'j4
JGX E{FT
% EOF zernfun 2PE|4zG