下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, %%uvia=e
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, m$XMq
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? _!qi`A
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? 9E`Laf
qcVmt1"
E\/J& .
Ms>CO7Nvy
;T-`~
function z = zernfun(n,m,r,theta,nflag) NeI#gJ1A
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. :{8,O-
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N h^ o@=%b
% and angular frequency M, evaluated at positions (R,THETA) on the =lb5 #
% unit circle. N is a vector of positive integers (including 0), and 9-ei#|Vnt[
% M is a vector with the same number of elements as N. Each element @zs.M-F
% k of M must be a positive integer, with possible values M(k) = -N(k) 4:zyZu3fm
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, ]a=n(`l?
% and THETA is a vector of angles. R and THETA must have the same O su 75@3
% length. The output Z is a matrix with one column for every (N,M) jjJvyZi~J
% pair, and one row for every (R,THETA) pair. c^F@9{I
% P7`RAz
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike &x"hM
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 0bz':M#k &
% with delta(m,0) the Kronecker delta, is chosen so that the integral c3aBPig\D
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, q1Sr#h|
% and theta=0 to theta=2*pi) is unity. For the non-normalized :|&S7&l]
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. )B$Uo,1
% tO}Y=kZa{
% The Zernike functions are an orthogonal basis on the unit circle. )x&4 Q=
% They are used in disciplines such as astronomy, optics, and r-e-2y7
% optometry to describe functions on a circular domain. '/U% -/@
% 16-1&WuY@
% The following table lists the first 15 Zernike functions. n_9Wrx328
% rds4eUxe
% n m Zernike function Normalization ]K-B#D{P
% -------------------------------------------------- cgV5{|P
% 0 0 1 1 n!?^:5=s
% 1 1 r * cos(theta) 2 N"[r_!
% 1 -1 r * sin(theta) 2 TQL_K8k@_
% 2 -2 r^2 * cos(2*theta) sqrt(6) ?{]"UnyVE*
% 2 0 (2*r^2 - 1) sqrt(3) a/Ik^:>m
% 2 2 r^2 * sin(2*theta) sqrt(6) bbG!Fg=qQ?
% 3 -3 r^3 * cos(3*theta) sqrt(8) 2J &J
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) Yu+;vjbK-
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) c~)H" n
% 3 3 r^3 * sin(3*theta) sqrt(8) M<K}H8?
% 4 -4 r^4 * cos(4*theta) sqrt(10) SYYg
2I
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) &BOG&ot
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) 0f;`Zj0l8
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) R<Uu(-O-
% 4 4 r^4 * sin(4*theta) sqrt(10) k vF[d{l
% -------------------------------------------------- N"Cd{3
% lPA:ho/`:
% Example 1: zbZN-j#
% 0?w4
% % Display the Zernike function Z(n=5,m=1) rd ]dDG
% x = -1:0.01:1; lEC91:Jyt
% [X,Y] = meshgrid(x,x); 1Q!^%{Y;
% [theta,r] = cart2pol(X,Y); ,R*YI
% idx = r<=1; 4"et4Y7
% z = nan(size(X)); F* _ytL
% z(idx) = zernfun(5,1,r(idx),theta(idx)); |>v8yS5
% figure l0BYv&tu
% pcolor(x,x,z), shading interp rrrn8b6
% axis square, colorbar }kF*I@:g
% title('Zernike function Z_5^1(r,\theta)') !{S HlS
% BDcA_=^R&
% Example 2: evE$$# 6R
% !glGW[r/7
% % Display the first 10 Zernike functions &\5%C\0Z<
% x = -1:0.01:1; l~#%j( Yo
% [X,Y] = meshgrid(x,x); 1z-Q~m@@
% [theta,r] = cart2pol(X,Y); iX6'3\Q3A
% idx = r<=1; qwvch^?>FQ
% z = nan(size(X)); t@+z r3
% n = [0 1 1 2 2 2 3 3 3 3]; zuYz"-(L
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; ~PA6e+gmL
% Nplot = [4 10 12 16 18 20 22 24 26 28]; :rnj>U6<>
% y = zernfun(n,m,r(idx),theta(idx)); MuP&m{
% figure('Units','normalized') JU!vVA_
% for k = 1:10 mApl}I
% z(idx) = y(:,k); ^2eH0O!
% subplot(4,7,Nplot(k)) WoDQg64
% pcolor(x,x,z), shading interp _<7e5VR
% set(gca,'XTick',[],'YTick',[]) HyJ&;4rf
% axis square Y/`*t(/5
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) R zn%!d^$>
% end _Bq [c
% m:C |R-IL
% See also ZERNPOL, ZERNFUN2. 2|}KBny
1J[|Ow
ct@i]}"`
% Paul Fricker 11/13/2006 ,H:{twc
h%!N!\
y R_x:,|g
OO-b*\QW
x>MY_?a
% Check and prepare the inputs: q|xic>.
% ----------------------------- k-|b{QZ8!;
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) =Y<RG"]a&J
error('zernfun:NMvectors','N and M must be vectors.') *S\/l-D
end ?vocI
~,O}wT6q
Z)dE#A_X
if length(n)~=length(m) (7?jjH^4
error('zernfun:NMlength','N and M must be the same length.') hG
qZB
end [a\>"I\[
+Hf Zs"x
yUlYf#`H
n = n(:); gs9VCaIa
m = m(:); ;eiqzdP
if any(mod(n-m,2)) Qhsk09K_=4
error('zernfun:NMmultiplesof2', ... +EP=uV9t
'All N and M must differ by multiples of 2 (including 0).') Cl'3I%$8K
end sI#r3:?i
kz?m `~1
[B" CNnA
if any(m>n) v@;!fBUt
error('zernfun:MlessthanN', ...
;(~H(]D
'Each M must be less than or equal to its corresponding N.') ~4C:2
end e2*Fe9:
JN<IMH
@g==U{k;t
if any( r>1 | r<0 ) M$+2f.(>k)
error('zernfun:Rlessthan1','All R must be between 0 and 1.') "%fvA;
end E@D}Sqt
.80L>0
D_-<V,3t
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) H/BU2s a
error('zernfun:RTHvector','R and THETA must be vectors.') 4Q5c'
end HzD=F3\r|
iTg7@%
*u?N{LkqS
r = r(:); )1 =|\
theta = theta(:); >2@ a\
length_r = length(r); pi?[jU[Tn
if length_r~=length(theta) {Wh7>*p{3
error('zernfun:RTHlength', ... kK il]L
'The number of R- and THETA-values must be equal.') G2e0\}q
end bsgr g
P},d`4Ty@
+oe%bk|A
% Check normalization: { 0vHgi
% -------------------- ? bnhx
if nargin==5 && ischar(nflag) 7l|D!`BS
isnorm = strcmpi(nflag,'norm'); >5+]~[S
if ~isnorm U2)y fhI
error('zernfun:normalization','Unrecognized normalization flag.') Y~ ( <H e?
end FQGh+.U
else R6/vhze4L2
isnorm = false; sPUn"7
end )3RbD#?
-+w^"RBV
hY-;Vh0J
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /pOK4"
% Compute the Zernike Polynomials 5Sfz0
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% o6~9.~_e
X__>r ?oJ
H&3i[D!p
% Determine the required powers of r: k6PHyt`3'
% ----------------------------------- ~[d |:]
m_abs = abs(m); t:<dirw,o
rpowers = []; /vG)n9Rc
for j = 1:length(n) UM QsYD)
rpowers = [rpowers m_abs(j):2:n(j)]; Lp}>WCams
end j/Rm~!q
rpowers = unique(rpowers); -yH8bm'0"
H^\2,x Z
r:*0)UZlD
% Pre-compute the values of r raised to the required powers, WPzq?yK
% and compile them in a matrix: HLml:B[F(
% ----------------------------- (hv>vfY@
if rpowers(1)==0 gNoQ[xFx32
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); pHkhs{/X
rpowern = cat(2,rpowern{:}); g0
NSy3t
rpowern = [ones(length_r,1) rpowern]; %juR6zB%8
else @3@oaa/v
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); {f
kP|d
rpowern = cat(2,rpowern{:}); K=`;D
end si|DxDx
<R>%DD=v^
2UGnRZ8:1Y
% Compute the values of the polynomials: lImg+r T{
% -------------------------------------- 6rD
Oa~<