下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, cWG>w6FI
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, uCX+Lw+As
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? 8WT^ES~C
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? Ur^~fW1o
#Av6BGM|,
f+*wDH
VKzY6
$"VgNynq
function z = zernfun(n,m,r,theta,nflag) _," -25a
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. (;1rM}B;1
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N C?IvXPlV
% and angular frequency M, evaluated at positions (R,THETA) on the ~hYTs
% unit circle. N is a vector of positive integers (including 0), and P3[!-sv
% M is a vector with the same number of elements as N. Each element BK,h$z7#6
% k of M must be a positive integer, with possible values M(k) = -N(k) O0|**Km\+
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, -p|JJx?r
% and THETA is a vector of angles. R and THETA must have the same /`d|W$vN
% length. The output Z is a matrix with one column for every (N,M) kVu8/*Q
% pair, and one row for every (R,THETA) pair. rLt`=bl&&U
% -Fi{[%&u
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike y]1:IJL2;
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), :z=C
% with delta(m,0) the Kronecker delta, is chosen so that the integral w QV4[
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1,
aD5jy
% and theta=0 to theta=2*pi) is unity. For the non-normalized :` FL95
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. }o>6 y>=
% T(<
[k:`
% The Zernike functions are an orthogonal basis on the unit circle. qx#k()E.U
% They are used in disciplines such as astronomy, optics, and .uu[f2.N+
% optometry to describe functions on a circular domain. gu'Y k
% V1aWVLltj
% The following table lists the first 15 Zernike functions. \FVm_)
% Z_%9LxZlyj
% n m Zernike function Normalization +kh#Jq.
% -------------------------------------------------- Gp}:U>V)
% 0 0 1 1 xR9<I:^&
% 1 1 r * cos(theta) 2 \>8r)xC
% 1 -1 r * sin(theta) 2 #Y)Gos
% 2 -2 r^2 * cos(2*theta) sqrt(6) ym>>5 (bni
% 2 0 (2*r^2 - 1) sqrt(3) k]J!E-yI8
% 2 2 r^2 * sin(2*theta) sqrt(6) S4n ~wo
% 3 -3 r^3 * cos(3*theta) sqrt(8) *k&yD3br-V
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) H
l'za
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 0RaE!4)!;
% 3 3 r^3 * sin(3*theta) sqrt(8) ~
NO9s
% 4 -4 r^4 * cos(4*theta) sqrt(10) IU
f1N+-z
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) wi{qN___
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) A6?+$ Hr
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) B/P E{ /
% 4 4 r^4 * sin(4*theta) sqrt(10) FlWgTn>
% -------------------------------------------------- RbexsBq
% 5C03)Go3Z
% Example 1: :n1^Xw0q
% LyEM^d]
% % Display the Zernike function Z(n=5,m=1) @-uV6X8|
% x = -1:0.01:1; fgmu*\x<