切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9509阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, Z4e?zY  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, m ;KP  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? $`Ou*  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? JrQN-e!  
    s2$R2,  
    7OZ s~6(  
    w_-{$8|  
    9-@w(kMu  
    function z = zernfun(n,m,r,theta,nflag) dV5 $L e#y  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. !1l2KW<be  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N '5Y8 rv<  
    %   and angular frequency M, evaluated at positions (R,THETA) on the z#\Z|OKU  
    %   unit circle.  N is a vector of positive integers (including 0), and z(]*'0)P  
    %   M is a vector with the same number of elements as N.  Each element !pN,,H6Y  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) e*g; +nz  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, Qh*|mW  
    %   and THETA is a vector of angles.  R and THETA must have the same |hpm|eZG"h  
    %   length.  The output Z is a matrix with one column for every (N,M) gC3{:MC-G  
    %   pair, and one row for every (R,THETA) pair. YcGqT2oLP  
    % XJlun l)(K  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike %'>. R  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ?;*mSQA`J  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 55;xAsG  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, $v^F>*I1  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ,4\vi|  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. |%tR#!&[:g  
    % v-l):TL+=  
    %   The Zernike functions are an orthogonal basis on the unit circle. Y,8M[UIK  
    %   They are used in disciplines such as astronomy, optics, and F|PYDC  
    %   optometry to describe functions on a circular domain. FCI T+ 8K  
    % >GjaA1,  
    %   The following table lists the first 15 Zernike functions. 9+/<[w7  
    % N( /PJJ~  
    %       n    m    Zernike function           Normalization S<>e(x3g]  
    %       -------------------------------------------------- Sd)D-S  
    %       0    0    1                                 1 c_" .+Fa  
    %       1    1    r * cos(theta)                    2 % va/x]K  
    %       1   -1    r * sin(theta)                    2 ~@-Az([H  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) <1@_MY o  
    %       2    0    (2*r^2 - 1)                    sqrt(3) h?TE$&CL?  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) UA/3lH}  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) jem$R/4"  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) "_(o% \"7  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) u54+oh|,M  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 5!5P\o  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) k_^d7yH  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) C[pAa8  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) pa+ y(!G  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) _2TIan}  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) a-YK*  
    %       -------------------------------------------------- +J^}"dG  
    % >i0FGmxH  
    %   Example 1: Vb1@JC9b  
    % 2=#O4k.@  
    %       % Display the Zernike function Z(n=5,m=1) NZD X93  
    %       x = -1:0.01:1; _h.[I8xgYG  
    %       [X,Y] = meshgrid(x,x); S'A~9+  
    %       [theta,r] = cart2pol(X,Y); r3KV.##u,  
    %       idx = r<=1; N7jAPI@a\i  
    %       z = nan(size(X)); Bg#NB  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); ,+q5e^P  
    %       figure ufm#H#n)#X  
    %       pcolor(x,x,z), shading interp 7lh%\  
    %       axis square, colorbar Bz24U wcZ  
    %       title('Zernike function Z_5^1(r,\theta)') 3)T5}_  
    % )ei+ewVZ  
    %   Example 2: pY:xxnE  
    % i %z}8GIt'  
    %       % Display the first 10 Zernike functions -m__I U  
    %       x = -1:0.01:1; ?! kup  
    %       [X,Y] = meshgrid(x,x); 6L*y$e"Qc  
    %       [theta,r] = cart2pol(X,Y); zZDr=6|r_  
    %       idx = r<=1; Tn-H8;Hg  
    %       z = nan(size(X)); gHm ^@  
    %       n = [0  1  1  2  2  2  3  3  3  3]; #4|?;C)u\  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; @@I2bHy vb  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; )JZfC&,  
    %       y = zernfun(n,m,r(idx),theta(idx)); }b+=,Sc"  
    %       figure('Units','normalized') Ru sa &#[  
    %       for k = 1:10 B'=*92i>S  
    %           z(idx) = y(:,k); kp0>8rkF  
    %           subplot(4,7,Nplot(k)) u{\`*dNx  
    %           pcolor(x,x,z), shading interp TM"i9a? ;  
    %           set(gca,'XTick',[],'YTick',[]) EKDv3aFQZ#  
    %           axis square xxedezNko  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) L=VuEF  
    %       end 9t)t-t#P;  
    % $y`|zK|G-  
    %   See also ZERNPOL, ZERNFUN2. ~fS#)X3 D  
    t=U[ ;?  
    2/h Mx-  
    %   Paul Fricker 11/13/2006 '9b<r7\@  
    b^%4_[uRu  
    )"q2DjfX*  
    ,;{mH]"s  
    gzuM>lf*{  
    % Check and prepare the inputs: \;g{qM 8  
    % ----------------------------- Ot/Y?=j~  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) uT=sDWD :  
        error('zernfun:NMvectors','N and M must be vectors.') lQ)8zI  
    end WLizgVM  
    MenI>gd?  
    rb9 x||  
    if length(n)~=length(m) ZL@7Mr!e  
        error('zernfun:NMlength','N and M must be the same length.') B\4SB  
    end #%x4^A9 q  
    lv{Qn~\y&  
    xo?f90+(  
    n = n(:); mjH8q&szf  
    m = m(:);  Kp!P/Q{  
    if any(mod(n-m,2)) 6g<JPc  
        error('zernfun:NMmultiplesof2', ... :yw0-]/DD  
              'All N and M must differ by multiples of 2 (including 0).') y/Nvts2!C  
    end ? Bk"3{hl  
    ogPxj KSI  
    9}5Q5OZ  
    if any(m>n) n /rQ*hr  
        error('zernfun:MlessthanN', ... #opFUX-  
              'Each M must be less than or equal to its corresponding N.') 8)sqj=  
    end g*8sh  
    CjIkRa@!x  
    Kw'A%7^e  
    if any( r>1 | r<0 ) WT!%FQ9  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') /(vT49(]  
    end r$*k-c9Bf  
    ydBoZ3}  
    A87Tyk2Pi  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) VP|9Cm=Fg  
        error('zernfun:RTHvector','R and THETA must be vectors.') kigc+R  
    end =<FFFoF*C_  
    iT I W;Cv  
    A4'v Jk  
    r = r(:); jz/@Zg",  
    theta = theta(:); >)!"XFbb  
    length_r = length(r); 3~M8.{ U#V  
    if length_r~=length(theta) /eZA AH  
        error('zernfun:RTHlength', ... EjvxfqPv  
              'The number of R- and THETA-values must be equal.') hcM 0?=  
    end e}aD <E G  
    m3.d!~U\  
    vsLn@k3  
    % Check normalization: oA73\BFfP  
    % -------------------- ynDa4HB  
    if nargin==5 && ischar(nflag) 8a"aJYj  
        isnorm = strcmpi(nflag,'norm'); oXfLNe6>L  
        if ~isnorm v%B^\S3)  
            error('zernfun:normalization','Unrecognized normalization flag.') *bwLi h!}H  
        end U<o,`y[Tn  
    else zYF'XB]4  
        isnorm = false; #&&^5r-b-  
    end KWU#Swa`  
    fz,8 <  
    Z+Z`J; ,  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ,7tN&R_  
    % Compute the Zernike Polynomials \@gs8K#  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 3"&6rdF\jB  
    UB?a-jGZ K  
    i7*4hYY  
    % Determine the required powers of r: m<r.sq&;  
    % ----------------------------------- sL[,J[AN;  
    m_abs = abs(m); 1<pbO:r  
    rpowers = []; HOXqIZN85  
    for j = 1:length(n) Ujb|| (W  
        rpowers = [rpowers m_abs(j):2:n(j)]; `P"-9Ue=  
    end v-&^G3  
    rpowers = unique(rpowers); |jc87(x <  
    G8eAj%88  
    )%WS(S>8  
    % Pre-compute the values of r raised to the required powers, v ;{s@CM m  
    % and compile them in a matrix: ~M,nCG^4  
    % ----------------------------- R6CxNPRJ  
    if rpowers(1)==0 Of Y>~d  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); :6Bk<  
        rpowern = cat(2,rpowern{:}); Xg#Dbf4  
        rpowern = [ones(length_r,1) rpowern]; T3!l{vG \O  
    else 5qB>Song  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Uu8Z2M  
        rpowern = cat(2,rpowern{:}); ;k!bv|>n  
    end yD5T'np<4  
    ow%s_yV]R  
    "X"DTP1b  
    % Compute the values of the polynomials: 6BNOF66kH  
    % -------------------------------------- ,8EeSnI  
    y = zeros(length_r,length(n)); W<v?D6dFq  
    for j = 1:length(n) - C8 h$P  
        s = 0:(n(j)-m_abs(j))/2; ; #e-pkV  
        pows = n(j):-2:m_abs(j); (9@6M 8A  
        for k = length(s):-1:1 3fn6W)v?  
            p = (1-2*mod(s(k),2))* ... ^MDBJ0 I.  
                       prod(2:(n(j)-s(k)))/              ... ogDyrY}]  
                       prod(2:s(k))/                     ... GfPe0&h  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... !f]F'h8  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 44($a9oa2  
            idx = (pows(k)==rpowers); Vg&` f  
            y(:,j) = y(:,j) + p*rpowern(:,idx); l% K9Ke  
        end cfa#a!Y4  
         fHR1ku y  
        if isnorm BX2&tQSp  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); @N"h,(^  
        end + ECV|mkk  
    end a'XCT@B  
    % END: Compute the Zernike Polynomials Y |n_Ro^~  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% x>p=1(L  
    J1P82=$,  
    :n{rVn}G  
    % Compute the Zernike functions: NNb17=q_v  
    % ------------------------------ +TA(crD  
    idx_pos = m>0; __'Z0?.4#  
    idx_neg = m<0; rh/3N8[6  
    OJQ7nChMm  
    A&)P_B1|  
    z = y; 1m|1eAGS{  
    if any(idx_pos) $A8eMJEpL  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); .V 9E@_(  
    end z35n3q  
    if any(idx_neg) }DY^a'wJ-  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); j+PW9>Uh  
    end 24>{T5E  
    ~iyd p  
    ]oXd|[ G  
    % EOF zernfun u A*Op45  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  1vx:`2 A4  
    v`*!Bhc-  
    DDE还是手动输入的呢? 6rq:jvlx$  
    H+;>>|+:~  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究