切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9170阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, E^. =^bR  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, yf6&'Y{  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? l=JK+uZ  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? 'H,l\i@"  
    [VP ~~*b  
    {z}OZHJN  
    th*E"@  
    BK]q^.7+:  
    function z = zernfun(n,m,r,theta,nflag) /P|jHK|{  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. !P0Oq)q  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N SLc'1{  
    %   and angular frequency M, evaluated at positions (R,THETA) on the {GiR-q{t  
    %   unit circle.  N is a vector of positive integers (including 0), and -.E<~(fad  
    %   M is a vector with the same number of elements as N.  Each element r yO\$m  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) ^T|~L<A3  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, qcfLA~y  
    %   and THETA is a vector of angles.  R and THETA must have the same Io&F0~Z;;(  
    %   length.  The output Z is a matrix with one column for every (N,M) r 6STc,%5  
    %   pair, and one row for every (R,THETA) pair. <&rvv4*H  
    % /P0%4aWu=  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike DFt1{qS8@u  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), uIvE~<  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral R@r"a&{/  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, `=Hh5;ep  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized O=St}B\!m  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. #\$R^u]!  
    % xGeRoW(X  
    %   The Zernike functions are an orthogonal basis on the unit circle. pemb2HQ'4j  
    %   They are used in disciplines such as astronomy, optics, and  P-QZ=dm  
    %   optometry to describe functions on a circular domain. {e?D6`#x  
    % b#^UP  
    %   The following table lists the first 15 Zernike functions. pRj1b^F5y  
    % fNx3\<~V=  
    %       n    m    Zernike function           Normalization v >71 ?te  
    %       -------------------------------------------------- o84!$2P+w  
    %       0    0    1                                 1 <gKT7ONtg  
    %       1    1    r * cos(theta)                    2 fG5U' Vw  
    %       1   -1    r * sin(theta)                    2 q8.K-"f(Q  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) A@ EeX4N  
    %       2    0    (2*r^2 - 1)                    sqrt(3) l M5Xw  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) .4~n|d>z  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) V Z;ASA?;  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) ^l6q  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) +)FB[/pXk  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) Cv|ya$}a  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) kQ~*iY  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) `Q*L!/K+  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) ".eD&oX{  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 2mbZ6'p {  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) ?*a:f"vQ  
    %       -------------------------------------------------- %uyRpG3,  
    % 40oRO0p  
    %   Example 1: ajW[}/)  
    % vO"Sy{)Z>  
    %       % Display the Zernike function Z(n=5,m=1) 2*5Z| 3aX  
    %       x = -1:0.01:1; _rK}~y=0  
    %       [X,Y] = meshgrid(x,x); \&J7>vu^y  
    %       [theta,r] = cart2pol(X,Y); [C)-=.Xx)j  
    %       idx = r<=1; C9U~lcIS  
    %       z = nan(size(X)); <5A(rDij  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); keEyE;O}u  
    %       figure !h{qO&ZH=  
    %       pcolor(x,x,z), shading interp |Gb"%5YD  
    %       axis square, colorbar B]q &?~  
    %       title('Zernike function Z_5^1(r,\theta)') J A ]s  
    % S\ ~Wpf  
    %   Example 2: _YY:}'+  
    % UfSWdR)  
    %       % Display the first 10 Zernike functions ^Pf FW  
    %       x = -1:0.01:1; ` a5$VV%J  
    %       [X,Y] = meshgrid(x,x); ]n0kO&  
    %       [theta,r] = cart2pol(X,Y); rE-Xv. |  
    %       idx = r<=1; 1y l2i|m+  
    %       z = nan(size(X)); Tz1St{s\  
    %       n = [0  1  1  2  2  2  3  3  3  3]; h&||Ql1  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; %< JjftNQ  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 67Z|=B !7  
    %       y = zernfun(n,m,r(idx),theta(idx)); 16[>af0<g  
    %       figure('Units','normalized') _* ]~MQ=  
    %       for k = 1:10 %8tlJQvu  
    %           z(idx) = y(:,k); 0x'>}5`5  
    %           subplot(4,7,Nplot(k)) (CS"s+y1  
    %           pcolor(x,x,z), shading interp Y!v `0z  
    %           set(gca,'XTick',[],'YTick',[]) X~GnK>R  
    %           axis square  cpp0Y^  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) BDyOX6  
    %       end )R+@vh#Q<$  
    % J_OIU#-B  
    %   See also ZERNPOL, ZERNFUN2. r>sk@[4h  
    l=[<gPE  
    #[C |%uq  
    %   Paul Fricker 11/13/2006 |_8- 3  
    EX7cjQsml  
    s (J,TS#I]  
    I2(5]85&]s  
    4r`u@  
    % Check and prepare the inputs: .HF+JHIUu  
    % ----------------------------- mF [w-<:.d  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) _`|Hk2O  
        error('zernfun:NMvectors','N and M must be vectors.') 3Ln~"HwP  
    end &F*s.gL  
    5b R;R{:x  
    )V%xbDdS  
    if length(n)~=length(m) IL?3>$,  
        error('zernfun:NMlength','N and M must be the same length.') 0F6^[osqtl  
    end 7^#f<m;Ar!  
    ~cVFCM  
    *r$Yv&c,  
    n = n(:); wIz<Y{HA=  
    m = m(:); Z!60n{T79c  
    if any(mod(n-m,2)) (EGsw o  
        error('zernfun:NMmultiplesof2', ... y!;rY1  
              'All N and M must differ by multiples of 2 (including 0).')  ;?1H&  
    end \@vR*E  
    }:7'C. ."  
    r.0IC*Y  
    if any(m>n) *g]q~\b/;  
        error('zernfun:MlessthanN', ... +^YXqOXU  
              'Each M must be less than or equal to its corresponding N.') t&^9o $  
    end s\,F 6c  
    `Lb^!6`)  
    *x2+sgSf_0  
    if any( r>1 | r<0 ) 6 uW?xB9  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') LCx{7bN1ro  
    end @*e|{;X]hy  
    j1%o+#df  
    A&rk5y;  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) j|TcmZGO  
        error('zernfun:RTHvector','R and THETA must be vectors.') b26#0;i  
    end wd2GKq!  
    S(eCG2gR  
    %>Z^BM<e  
    r = r(:); AHc:6v^  
    theta = theta(:); bO>q`%&  
    length_r = length(r); :2iNw>z1  
    if length_r~=length(theta) NypM+y  
        error('zernfun:RTHlength', ... >Lx,<sE  
              'The number of R- and THETA-values must be equal.') G=/a>{  
    end 3 HOJCgit  
    R7}=k)U?d@  
    |9T3" _MmJ  
    % Check normalization: b}< T<  
    % -------------------- 5A oKlJrY  
    if nargin==5 && ischar(nflag) O*xC}$OOn  
        isnorm = strcmpi(nflag,'norm'); >=BH$4Ce  
        if ~isnorm =/Pmi_  
            error('zernfun:normalization','Unrecognized normalization flag.') \fIGMoy!  
        end U>?q|(u  
    else q&OF?z7H  
        isnorm = false; u :AKp<'  
    end NC'+-P'y  
    /|V!2dQs"  
    6x|"1 G{  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  al/Mgo  
    % Compute the Zernike Polynomials XG FjqZr`  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% P1KXvc}JGe  
    I[,tf!  
    t&}Z~Zp  
    % Determine the required powers of r: S`g:z b_  
    % ----------------------------------- 5Z"IM8?  
    m_abs = abs(m); I,;@\  
    rpowers = []; )@+lfIE(l  
    for j = 1:length(n) vFKX@wV S  
        rpowers = [rpowers m_abs(j):2:n(j)]; /{@^h#4M1  
    end QP/%+[E.  
    rpowers = unique(rpowers); 7R9.g6j  
    " !43,!<  
    8w1TX [b  
    % Pre-compute the values of r raised to the required powers, p|fSPSz  
    % and compile them in a matrix: 8>^(-ca_  
    % ----------------------------- i4;`dCT|A  
    if rpowers(1)==0 I3sH8/*  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); {p3VHd#  
        rpowern = cat(2,rpowern{:}); xuBXOr4"P  
        rpowern = [ones(length_r,1) rpowern]; 4Ufx,]  
    else GVS-_KP\  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); + / s2;G  
        rpowern = cat(2,rpowern{:}); N6K%Wkz  
    end 74f3a|vx/  
    b^ wWg  
    /I Ql  
    % Compute the values of the polynomials: 8/q6vk><  
    % -------------------------------------- oVi_X98R  
    y = zeros(length_r,length(n)); 0zH^yx:ma  
    for j = 1:length(n) j{}-zQ]n  
        s = 0:(n(j)-m_abs(j))/2; x~1.;dBF  
        pows = n(j):-2:m_abs(j); *;^!FBT  
        for k = length(s):-1:1 fDe4 [QQ8  
            p = (1-2*mod(s(k),2))* ... 5W hR |  
                       prod(2:(n(j)-s(k)))/              ... ~9#x/EG/  
                       prod(2:s(k))/                     ... _D{zB1d\0  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 9J>b6   
                       prod(2:((n(j)+m_abs(j))/2-s(k))); [t)omPy<c  
            idx = (pows(k)==rpowers); 2hB';Dv  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 85;hs  
        end $BIQ# T>qK  
         \1` L-lz  
        if isnorm Y)D~@|D,  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 4a'O#;h o  
        end ?Q$LIoR  
    end do3 BI4Q  
    % END: Compute the Zernike Polynomials ;=rMIi  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% mX@Un9k  
    NpmPm1Ix .  
    - 0t  
    % Compute the Zernike functions: fwR3=:5~  
    % ------------------------------ _-NS-E  
    idx_pos = m>0; r 5$(  
    idx_neg = m<0; `b(y 5Z  
    :V)W?~Z7B  
    #3uBq(-Z  
    z = y; w1zI"G~4/Q  
    if any(idx_pos) {?a9>g-BW  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); p(2j7W-/  
    end fVR:m`'Iq_  
    if any(idx_neg) GPqF>   
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); F~Kd5-I@  
    end &&1q@m,cP  
    apW0(&\  
    vBUl6EmWu  
    % EOF zernfun 1[k~*QS  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  0nie>  
    d c&Qi_W  
    DDE还是手动输入的呢? +G/~v`Bv  
    Tjs-+$P+  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究