下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, F4]=(T
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, Mx Dqp;
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? 0uu)0:
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? 1*f*}M
k&9[}a*
|Ae7wXOs
kgHZaQnD
4Opf[3]
function z = zernfun(n,m,r,theta,nflag) ]E$bK
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. *?pnTQs^
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N cD t|v~
% and angular frequency M, evaluated at positions (R,THETA) on the k=4C"
% unit circle. N is a vector of positive integers (including 0), and t|m=X
% M is a vector with the same number of elements as N. Each element a+^,EY
% k of M must be a positive integer, with possible values M(k) = -N(k) xW|8-q
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, &$heW,
% and THETA is a vector of angles. R and THETA must have the same NG8F'=<
% length. The output Z is a matrix with one column for every (N,M) <+UJgB
A-
% pair, and one row for every (R,THETA) pair. uD\rmO{
% =I0J1Ob
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike K'f^=bcI
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), w7c0jIf{
% with delta(m,0) the Kronecker delta, is chosen so that the integral n_(f"Uv
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, L[^.pO
% and theta=0 to theta=2*pi) is unity. For the non-normalized ZypK''&oc
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. I9e3-2THfj
% "R\D:Olb#
% The Zernike functions are an orthogonal basis on the unit circle. OX7a72z
% They are used in disciplines such as astronomy, optics, and Ept=&mJPu
% optometry to describe functions on a circular domain. OF0v0Y/a
% ITy/h]0
% The following table lists the first 15 Zernike functions. ^Y%<$IFG
% %~:@}C%A
% n m Zernike function Normalization \D1@UyE
% -------------------------------------------------- =zTpDL
% 0 0 1 1 ,Jx.Kj.,
% 1 1 r * cos(theta) 2 U|<>xe*|%
% 1 -1 r * sin(theta) 2 7x]q>Y8T
% 2 -2 r^2 * cos(2*theta) sqrt(6) u2OrH3E4E3
% 2 0 (2*r^2 - 1) sqrt(3) }USOWsLSt
% 2 2 r^2 * sin(2*theta) sqrt(6) YU XxQ|
% 3 -3 r^3 * cos(3*theta) sqrt(8) KGGnypx`
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) Uz=ol.E
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) rk47$36X
% 3 3 r^3 * sin(3*theta) sqrt(8) Nza@6nI"
% 4 -4 r^4 * cos(4*theta) sqrt(10) caxOxRo\
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) {Iz"]Wh<f
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) _S,UpR~2W
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) _gEojuaN
% 4 4 r^4 * sin(4*theta) sqrt(10) $Wjx$fD
% -------------------------------------------------- +R7pdi
% /Ny#+$cfk
% Example 1: 3a&HW
JBSx
% T
oT('
% % Display the Zernike function Z(n=5,m=1) T7-yZSw-m
% x = -1:0.01:1; '#>Fe`[
% [X,Y] = meshgrid(x,x); Yr\quinLL
% [theta,r] = cart2pol(X,Y); d)0|Q
% idx = r<=1; I%b5a`7
% z = nan(size(X)); 2.^CIJc
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 96S$Y~G#&
% figure ,g4T>7`&U%
% pcolor(x,x,z), shading interp v(6[z)A0
% axis square, colorbar lbGPy'h<rt
% title('Zernike function Z_5^1(r,\theta)') =q>lP+
% "$P/ek
% Example 2: E@6gTx*
% | )br-?2
% % Display the first 10 Zernike functions F8#MI
G
% x = -1:0.01:1; 1]Cdfj6@
% [X,Y] = meshgrid(x,x); D2J)qCK1)
% [theta,r] = cart2pol(X,Y); 7H|0.
% idx = r<=1; G`/4n@
% z = nan(size(X)); 6@"E*-z$
% n = [0 1 1 2 2 2 3 3 3 3]; 0~P]Fw^w
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; mwMu1#
% Nplot = [4 10 12 16 18 20 22 24 26 28]; s IBP$9
% y = zernfun(n,m,r(idx),theta(idx)); a^\F9^j
% figure('Units','normalized') [mj=m?j
% for k = 1:10 2jlz#Sk
% z(idx) = y(:,k); H0jbG;
% subplot(4,7,Nplot(k)) Sy]W4%
% pcolor(x,x,z), shading interp I!}V+gu=
% set(gca,'XTick',[],'YTick',[]) (XlvPcTi
% axis square !? H:?
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) -8vGvI>
% end @BPQ >
% K4o']{:U
% See also ZERNPOL, ZERNFUN2. VbTX;?
.wUnN8crQ
qu!x#OY+
% Paul Fricker 11/13/2006 /sn
}Q-Zy2
"kC6G%
{=,G>p
n2:Uu>/
-[&Z{1A4x4
% Check and prepare the inputs: Qmb+%z
% ----------------------------- l>L?T#v!_
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) OH@gwC
error('zernfun:NMvectors','N and M must be vectors.') 4sX?O4p
end +Z-{6C
G(wstHT;/
:'xZF2
if length(n)~=length(m) Ui-Y`
error('zernfun:NMlength','N and M must be the same length.') 9Y2.ob!$}
end J`C 2}$
~
s&+`>
Lsai8 B
n = n(:); VKfpk^rU
m = m(:); hN*v|LFf1
if any(mod(n-m,2)) PW iuM=E
error('zernfun:NMmultiplesof2', ... u~VXe
'All N and M must differ by multiples of 2 (including 0).') *3OlWnZ?
end q2OF-.rE
c<~DYe;;
J_j4Zb% K
if any(m>n) SUIu.4Mz
error('zernfun:MlessthanN', ... ]Nw]po+
'Each M must be less than or equal to its corresponding N.') #%8)'=1+4?
end MRZN4<}9
O2yD{i#l*#
XiV
K4sD8
if any( r>1 | r<0 ) xls
US'Eo
error('zernfun:Rlessthan1','All R must be between 0 and 1.') 9i
lJ
end ,\1Rf.
ttHRc!
[Jjo H1E@
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) pHye8v4fvi
error('zernfun:RTHvector','R and THETA must be vectors.') 5\O&pz@D
end ;Jb%2?+=!
k]P'D
.
44t;#6p@%>
r = r(:); Oiqc]4TL
theta = theta(:); *b!.9p K
length_r = length(r); PR AP~P&^
if length_r~=length(theta) 7q 5 \]J[
error('zernfun:RTHlength', ... uZ@qlq8
'The number of R- and THETA-values must be equal.') 'vZy-qHrV
end EP<{3fy
A[`c+&
jsF5q~F
% Check normalization: 53.jx38xS
% -------------------- ftRdK>a
D
if nargin==5 && ischar(nflag) \}<J>R@
isnorm = strcmpi(nflag,'norm'); ^y93h8\y
if ~isnorm R<hsG%BS(D
error('zernfun:normalization','Unrecognized normalization flag.') 7:=(yBG
end +afkpvj8
else }5z!FXB
isnorm = false; ACFEM9 [=
end #Aj#C>
a@9W'/?igk
BPKrRex
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% D vN0h(?
% Compute the Zernike Polynomials |%rRALIY
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 6/p9ag]
E@l@f
Zs;c0T">
% Determine the required powers of r: +# !?+'A
% ----------------------------------- X4Uy3 TV>
m_abs = abs(m); v}z^M_eFm
rpowers = []; X'%BS
for j = 1:length(n) >}C:EnECy
rpowers = [rpowers m_abs(j):2:n(j)]; muBl~6_mb2
end 1Mx2%
rpowers = unique(rpowers); hv#LKyp%
vS:=%@c>ta
qC=ZH#
% Pre-compute the values of r raised to the required powers, VG$%Vs
% and compile them in a matrix: P.=Dd"La
% ----------------------------- ?VTP|Z
if rpowers(1)==0 AT2D+Hi=E
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); LJ 9#!r@H
rpowern = cat(2,rpowern{:}); &Ot9"Aq:
rpowern = [ones(length_r,1) rpowern];
?i!d00X
else ]/%CTD(O
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); m1tc="j
rpowern = cat(2,rpowern{:}); D$D;'Kij
end ,wHlU-%
j.V7`x
Y9%zo~]-W'
% Compute the values of the polynomials: =NPo<^Lae
% -------------------------------------- i\4d d)p-
y = zeros(length_r,length(n)); B <HD
for j = 1:length(n)
Y8fel2;
s = 0:(n(j)-m_abs(j))/2; p}K+4z
pows = n(j):-2:m_abs(j); 83'rQDo)G
for k = length(s):-1:1 1p SEr6
p = (1-2*mod(s(k),2))* ... q%1B4 mF'
prod(2:(n(j)-s(k)))/ ... P8ns @VV
prod(2:s(k))/ ... z_y@4B6>}
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... q'Y)Y(d
prod(2:((n(j)+m_abs(j))/2-s(k))); ZKB27D_vg>
idx = (pows(k)==rpowers); nA=E|$1
y(:,j) = y(:,j) + p*rpowern(:,idx); bZ+Hu~
end em ]0^otM
N]|)O]/[
if isnorm 8p/&_<mnW
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); \@^`
G
end :/fT8KCwo
end cz$*6P<9J
% END: Compute the Zernike Polynomials q _:7uQ
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% _gCi@uXS3
e4.G9(
BG]|iHi
% Compute the Zernike functions: COH>B1W@
% ------------------------------ xR&Le/3+
idx_pos = m>0; !\\1#:*_W
idx_neg = m<0; RNcnE1=
;M*G
"T>;wyGW
z = y; P Qi=
if any(idx_pos) i[vOpg]J
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); VlxHZ
end <sjz_::V8R
if any(idx_neg) T{F
' Y%
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 3nUC,T%
end N_VWA.JHt
8J2UUVA`1
y"w`yl{_
% EOF zernfun ovvg"/>L