切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9326阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, GQ_p-/p R  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, $3,ryXp7  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? X w.p  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? ?X&6M;Zi  
    ` gW<M  
    >{ me  
    |7KeR-  
    *H[Iq!@  
    function z = zernfun(n,m,r,theta,nflag) QKE9R-K TE  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. R<x'l=,D(  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N -TZ p FT"  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 2Dd|~{%  
    %   unit circle.  N is a vector of positive integers (including 0), and *UW=Mdt  
    %   M is a vector with the same number of elements as N.  Each element Ix|~f1*%  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 8J)xzp`*)  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, \Ofw8=N-2  
    %   and THETA is a vector of angles.  R and THETA must have the same @/&b;s73  
    %   length.  The output Z is a matrix with one column for every (N,M) % },Pe  
    %   pair, and one row for every (R,THETA) pair. }CxvT`/  
    % ?RzDQy D  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike M.td^l0  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 8_K6 0eXz  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral B??J@+Nf  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ""svDfy$  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized gGMWr.! 8  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Rte+(- iL  
    % 3gQPKBpc  
    %   The Zernike functions are an orthogonal basis on the unit circle. @u._"/K  
    %   They are used in disciplines such as astronomy, optics, and D=TL>T.b f  
    %   optometry to describe functions on a circular domain. 8^B;1`#  
    % MCh#="L2  
    %   The following table lists the first 15 Zernike functions. .qob_dRA  
    % vKoP|z=m  
    %       n    m    Zernike function           Normalization =e?$M  
    %       -------------------------------------------------- TEsnNi 1  
    %       0    0    1                                 1 dC}`IR  
    %       1    1    r * cos(theta)                    2 !AJ]j|@VBd  
    %       1   -1    r * sin(theta)                    2 $ OVXk'cc  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) UhmTr[&  
    %       2    0    (2*r^2 - 1)                    sqrt(3) wY"o`o Z  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) -=698h*  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) bAr` E  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) YRlDX:oX~  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) UofTll)  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) Y\2|x*KwvF  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) V^Rkt%JY  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 6D;^uM2N  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) s=Q(C[%I  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) @ \2#Dpr  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) irTv4ZE'+l  
    %       -------------------------------------------------- *^ \FIUd  
    %  uIMe  
    %   Example 1: S'B6jJK2x  
    % >5T_g2pkv  
    %       % Display the Zernike function Z(n=5,m=1) `:M^8SYrL  
    %       x = -1:0.01:1; nU`Lhh8y  
    %       [X,Y] = meshgrid(x,x); ji+{ :D  
    %       [theta,r] = cart2pol(X,Y); Eaad,VBtU  
    %       idx = r<=1; ngi<v6i  
    %       z = nan(size(X)); }%{MPqg  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); >uJ/TQU  
    %       figure ;1DdjETr  
    %       pcolor(x,x,z), shading interp ;HOPABWz)  
    %       axis square, colorbar H^1gy=kdj  
    %       title('Zernike function Z_5^1(r,\theta)') *@V*~^V"J[  
    % OY"6J@[z  
    %   Example 2: u}6v?!  
    % /vE]2Io  
    %       % Display the first 10 Zernike functions 59Sw+iZj  
    %       x = -1:0.01:1; OuIv e>8  
    %       [X,Y] = meshgrid(x,x); 5|$a =UIR  
    %       [theta,r] = cart2pol(X,Y); }gf}eH  
    %       idx = r<=1; (fo Bp  
    %       z = nan(size(X)); /&ygiH{^  
    %       n = [0  1  1  2  2  2  3  3  3  3]; :46h+?   
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; /48 =UK  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; #p yim_  
    %       y = zernfun(n,m,r(idx),theta(idx)); [6(Iwz?  
    %       figure('Units','normalized') \|Dei);k  
    %       for k = 1:10 &d`^ E6#  
    %           z(idx) = y(:,k); 6xgv:,  
    %           subplot(4,7,Nplot(k)) +~2rW8  
    %           pcolor(x,x,z), shading interp $M"0BZQ?y!  
    %           set(gca,'XTick',[],'YTick',[]) r{+aeLu  
    %           axis square L*?!Z^k  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) G5]1s  
    %       end #I`ms$j%  
    % 8V4V3^_xs  
    %   See also ZERNPOL, ZERNFUN2. VGH/X.NJ  
    F@YV]u>N  
    -.vDF?@G  
    %   Paul Fricker 11/13/2006 M:ai<TZ]  
    B!aK  
    &:?e&  
    YT2'!R 1  
    VTe.M[:  
    % Check and prepare the inputs: _py2kjA6  
    % ----------------------------- heD,& OX  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 0|)19LR  
        error('zernfun:NMvectors','N and M must be vectors.') DOm-)zl{|x  
    end r!/0 j)  
    dU;upS_-  
    M/jb}*xDR  
    if length(n)~=length(m) L{ ^4DznI  
        error('zernfun:NMlength','N and M must be the same length.') ekzjF\!y  
    end VfSGCe  
    %]Cjhs"v  
    K%,$ V,#  
    n = n(:); [wcA.g*F  
    m = m(:); ~LE[, I:q  
    if any(mod(n-m,2)) Z6=~1'<X  
        error('zernfun:NMmultiplesof2', ... _C+DBA  
              'All N and M must differ by multiples of 2 (including 0).') a20w,  
    end IbdM9qo7  
    T+TF-] J  
    Da,&+fZI!  
    if any(m>n) 0P 5BArJ?  
        error('zernfun:MlessthanN', ... S=R 3"~p  
              'Each M must be less than or equal to its corresponding N.') -ID!pTvW  
    end dm^H5D/A  
    ,hE/II`-d'  
    m<fA|9 F#  
    if any( r>1 | r<0 ) <NQyP{p  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') }V^e7d  
    end J@bW^>g*6u  
    /(%Ig,<"JC  
    44C+h    
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) anx&Xj|=.F  
        error('zernfun:RTHvector','R and THETA must be vectors.') G\/IM  
    end d/B*  
    9.Ap~Ay.  
    DPPS?~Pq  
    r = r(:); %aLCH\e  
    theta = theta(:); <:cpz* G4  
    length_r = length(r); ;nf&c;D  
    if length_r~=length(theta) iB{xvyR  
        error('zernfun:RTHlength', ... ^('cbl  
              'The number of R- and THETA-values must be equal.') )<LI%dQ:'l  
    end =K6c;  
    2}`R"MeS  
    b{HhS6<K?  
    % Check normalization: y"R("j $  
    % -------------------- @W [{2d  
    if nargin==5 && ischar(nflag) PdM*5g4  
        isnorm = strcmpi(nflag,'norm'); aiR5/ ZD  
        if ~isnorm 4I.1D2 1jA  
            error('zernfun:normalization','Unrecognized normalization flag.') $eCGez<E  
        end Y2vj}9jK  
    else {h^c  
        isnorm = false; 5&|5 a} 8  
    end Riq|w+Q  
    xvO 3BU~2  
    {*__B} ,N  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% T/7vM6u  
    % Compute the Zernike Polynomials 3jg'1^c  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Z3 n~&!  
    7%opzdS#  
    SEU\}Ni{  
    % Determine the required powers of r: Xv*}1PZH  
    % ----------------------------------- w7ZG oh(  
    m_abs = abs(m); zkG>u,B}  
    rpowers = []; O99mic  
    for j = 1:length(n) 7AeP Gr  
        rpowers = [rpowers m_abs(j):2:n(j)]; |Pf(J;'[  
    end 2|s<[V3rP-  
    rpowers = unique(rpowers); zze z~bv7:  
    Ut':$l=  
    %6Rp,M9=  
    % Pre-compute the values of r raised to the required powers, iRouLd  
    % and compile them in a matrix: aYBTrOdz  
    % ----------------------------- skK*OO 2-  
    if rpowers(1)==0 sr4jQo  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); yI:r7=KO  
        rpowern = cat(2,rpowern{:}); $Br>KJ%'g  
        rpowern = [ones(length_r,1) rpowern]; cLHF9B5  
    else Dx0O'uwR  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); p}f-c  
        rpowern = cat(2,rpowern{:}); qTS @D  
    end 5Fr;  
    Y@ObwKcG  
    m6eFXP1U  
    % Compute the values of the polynomials: "kU>~~y,  
    % -------------------------------------- -3\7vpcdN  
    y = zeros(length_r,length(n)); k~R{Y~W!!  
    for j = 1:length(n) (>mi!:  
        s = 0:(n(j)-m_abs(j))/2; ?'Oj=k"c7  
        pows = n(j):-2:m_abs(j); g?gqkoI  
        for k = length(s):-1:1 ,FY-d$3)  
            p = (1-2*mod(s(k),2))* ... yz8-&4YRNd  
                       prod(2:(n(j)-s(k)))/              ... quY "  
                       prod(2:s(k))/                     ... O%prD}x  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... {&0mK"z_  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); [jy0@Q9  
            idx = (pows(k)==rpowers); =g >.X9lr  
            y(:,j) = y(:,j) + p*rpowern(:,idx); ]79~:m[C  
        end )7k&`?Mh  
         JxnuGkE0[#  
        if isnorm uFC?_q?4\  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); CJv> /#$/F  
        end IO*l vy  
    end Ma>:_0I5  
    % END: Compute the Zernike Polynomials B(8mH  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 8.[&wy U  
    ))p$vU3  
    i,([YsRuou  
    % Compute the Zernike functions: u]P03B  
    % ------------------------------ _yNT=#/  
    idx_pos = m>0; luibB&p1  
    idx_neg = m<0; zuk"  
    Ut]2`8-  
    sRi?]9JIl  
    z = y; TF%3uH  
    if any(idx_pos) oPCrD.s  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); -% >8.#~G  
    end E2kW=6VO>|  
    if any(idx_neg) `bzr_fJ  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 9LH=3Qt  
    end Jc`Rs"2  
    i3D<`\;r  
    d3Y(SPO  
    % EOF zernfun sZ]'DH&_(  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  i;E9Za W  
    OU0xZ=G  
    DDE还是手动输入的呢? /V#MLPA  
    ^% ~Et>C  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究