下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, j;+b0(53
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, hn7#
L
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? g-4M3of
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? S:#lH?<_
e9Wa<i8
)Yh+c=6
?
i(rL|d+'
Fj 8z
function z = zernfun(n,m,r,theta,nflag) xC?6v'
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. wv>^0\o
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ]NQfX[
% and angular frequency M, evaluated at positions (R,THETA) on the xjUT{iwS
% unit circle. N is a vector of positive integers (including 0), and g{]0sn#
% M is a vector with the same number of elements as N. Each element Y#ap*
% k of M must be a positive integer, with possible values M(k) = -N(k) 3V+] 9;
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, ]!W=^!
% and THETA is a vector of angles. R and THETA must have the same kf\PioD8
% length. The output Z is a matrix with one column for every (N,M) r Xt}6[S
% pair, and one row for every (R,THETA) pair. m^!Z_]A![
% W@M:a
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Pf")e,u$
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), j1Y~_
% with delta(m,0) the Kronecker delta, is chosen so that the integral P8OaoPj
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, U#7#aeI
% and theta=0 to theta=2*pi) is unity. For the non-normalized x xHY+(m
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 5zK4Fraf
% >mbHy<<
% The Zernike functions are an orthogonal basis on the unit circle. XAD- 'i
% They are used in disciplines such as astronomy, optics, and D%[mWc@1I
% optometry to describe functions on a circular domain. ih-#5M@
% CCs%%U/=
% The following table lists the first 15 Zernike functions. )J o:pkM
% <`8n^m*
% n m Zernike function Normalization o*+"|
% -------------------------------------------------- ]#iigPZ7
% 0 0 1 1 nmee 'oEw
% 1 1 r * cos(theta) 2 \Gef \
% 1 -1 r * sin(theta) 2 Ko| d+
% 2 -2 r^2 * cos(2*theta) sqrt(6) np|Sy;:
% 2 0 (2*r^2 - 1) sqrt(3) Ye%~I`@?
% 2 2 r^2 * sin(2*theta) sqrt(6) '0;l]/i.
% 3 -3 r^3 * cos(3*theta) sqrt(8) Y1w9y
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) rET\n(AJ
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) aL\PGdgO
% 3 3 r^3 * sin(3*theta) sqrt(8) &N$<e(K
% 4 -4 r^4 * cos(4*theta) sqrt(10) lf`{zc r:
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) MVpGWTH@F
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) w0 M>[ 4
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) xJpA0_xfG
% 4 4 r^4 * sin(4*theta) sqrt(10) B6+khuG(
% -------------------------------------------------- B B{$&Oh
% L?b~k=
% Example 1: 3oj' ytxN
% 4!{KWL`A
% % Display the Zernike function Z(n=5,m=1) J'6PmPzY|
% x = -1:0.01:1; tH@Erh|%
% [X,Y] = meshgrid(x,x); ^cC,.Fdw
% [theta,r] = cart2pol(X,Y); @-07F,'W,
% idx = r<=1; nQZx=JK
% z = nan(size(X)); 1/B>XkCJ
% z(idx) = zernfun(5,1,r(idx),theta(idx)); (Bb5?fw
% figure '`[&}R
% pcolor(x,x,z), shading interp vQG5*pR*w
% axis square, colorbar d UE,U=
% title('Zernike function Z_5^1(r,\theta)') [C 7^r3w
% 94`7a<&ZNL
% Example 2: )bL'[h
% R{`(c/%8
% % Display the first 10 Zernike functions *->W^1eGM
% x = -1:0.01:1; tPWLg),
% [X,Y] = meshgrid(x,x); FW;?s+Uyx
% [theta,r] = cart2pol(X,Y); T9|m7
% idx = r<=1; VOsRAn/N
% z = nan(size(X)); Wx%H%FeK
% n = [0 1 1 2 2 2 3 3 3 3]; ;3coP{
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; ;vR4XHl|
% Nplot = [4 10 12 16 18 20 22 24 26 28]; .&iawz
% y = zernfun(n,m,r(idx),theta(idx)); i$"F{|Z0
% figure('Units','normalized') (62"8iD6
% for k = 1:10 |)DGkOtd
% z(idx) = y(:,k); Mmj;-u
% subplot(4,7,Nplot(k)) yNJ B
oar
% pcolor(x,x,z), shading interp .[KrlfI
% set(gca,'XTick',[],'YTick',[]) se2!N:|R!G
% axis square tmYz R%i
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ;W
)Y
OT
% end np^N8$i:n
% QD&`^(X1p
% See also ZERNPOL, ZERNFUN2. ~8Fk(E_
)gUR@V>e2
:A_@,Q
% Paul Fricker 11/13/2006 =_*Zn(>t`
wh`"w7br
T@B/xAq5!
Zd%k*BC
K:[F%e
% Check and prepare the inputs: oG?Xk%7&\
% ----------------------------- &vMb_;~B
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Y;M|D'y+
error('zernfun:NMvectors','N and M must be vectors.') !;v|' I
end YQvD|x
B)g[3gQ
[=q1T3
if length(n)~=length(m) 3BJ0S.TF
error('zernfun:NMlength','N and M must be the same length.') M#6W(|V/
end qOtgve`jX
*I.f1lz%*
%3-y[f
n = n(:); zT]8KA
m = m(:); s?}e^/"v
if any(mod(n-m,2)) (k.[GfCbD
error('zernfun:NMmultiplesof2', ... hBUn \~z
'All N and M must differ by multiples of 2 (including 0).') ]y'>=a|T
end ql{OETn#
n0 {i&[I~+
3z?> j]
if any(m>n) :Yh+>c}N
error('zernfun:MlessthanN', ... L|xbR#v
'Each M must be less than or equal to its corresponding N.') g-bK|6?yz
end I3I/bofz
;bib/
DV-d(@`K
if any( r>1 | r<0 ) <{cQM$#
error('zernfun:Rlessthan1','All R must be between 0 and 1.') Om\vMd@!
end K=k"a
Ya"a`ozq
b5vC'B-!
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) k$R-#f;
error('zernfun:RTHvector','R and THETA must be vectors.') 4F'LBS]=0
end AjMh,@
1};Stai'
&
G4\2l9
r = r(:); JIOR4' 9
theta = theta(:); pJ"qu,w
length_r = length(r); ] 72`};
if length_r~=length(theta) [EXs
error('zernfun:RTHlength', ... Ckuh:bs
'The number of R- and THETA-values must be equal.') 6j]0R*B7`Q
end u cW-I;"
[!#L6&:a8
.jE{ 3^
% Check normalization: 9IfmW^0
% -------------------- 0gr/<v
if nargin==5 && ischar(nflag) 97C]+2R%^
isnorm = strcmpi(nflag,'norm'); { @{']Y
if ~isnorm MaQqs=
error('zernfun:normalization','Unrecognized normalization flag.') *H2r@)Y[~
end {qJ1ko)$
else ag[wdoj
isnorm = false; joAv{Tc
end Zt{[*~
,i`,Oy(BI
rcG"o\g@+
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% CXMLt
% Compute the Zernike Polynomials FHg
9OI67
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% {]@= ijjf
e 2oa($9
KBc1{adDx@
% Determine the required powers of r: >jLY"
% ----------------------------------- /%1ON9o>
m_abs = abs(m); `kXs;T6&
rpowers = []; PB*&aYLU
for j = 1:length(n) 21l;\W
rpowers = [rpowers m_abs(j):2:n(j)]; -zeG1gr3
end yq\K)g*=
rpowers = unique(rpowers); \V~eVf;~
AH7}/Rc
pO3SUOP
% Pre-compute the values of r raised to the required powers, 5e^ChK0Q
% and compile them in a matrix: 2eY_%Y0
% ----------------------------- jLm ;ty2;
if rpowers(1)==0 ;$wVu|&
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); N5
6g+,w%)
rpowern = cat(2,rpowern{:}); Fk7')?
rpowern = [ones(length_r,1) rpowern]; ?1
4{J]H4
else N<VJ(20y
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ?GR"FmB(
rpowern = cat(2,rpowern{:}); =X:Y,?
end xY(*.T9K
f46t9dxp$
+\
.Lp 5
% Compute the values of the polynomials: hnhd{$2Z
% -------------------------------------- uHzU-FZ|B
y = zeros(length_r,length(n)); 0 /U{p,r6`
for j = 1:length(n) \Uq(Zga4)
s = 0:(n(j)-m_abs(j))/2; 33B]RGq
pows = n(j):-2:m_abs(j); VjZ|$k
for k = length(s):-1:1 tg4pyW<
p = (1-2*mod(s(k),2))* ... m&&m,6``P
prod(2:(n(j)-s(k)))/ ... . 3T3EX|G
prod(2:s(k))/ ... hhc,uJ">!
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... VuZuS6~#J
prod(2:((n(j)+m_abs(j))/2-s(k))); `+:`_4
idx = (pows(k)==rpowers); lq;Pch
y(:,j) = y(:,j) + p*rpowern(:,idx); Hf2_0wA3
end yYA$I'Bm\
R!gEwTk
if isnorm >U27];}y
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); y _k
l:Ssa
end $DaNbLV
end cI OlhX@
% END: Compute the Zernike Polynomials 9EibIOD^/
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% sS'm!7*(3
GH$ pKB
!wh8'X*
% Compute the Zernike functions: ~U&AI1t+J
% ------------------------------ @<EO`L)Z
idx_pos = m>0; sWnLEw
idx_neg = m<0; x7<K<k;s
u <v7;dF|s
/!XVHkX[
z = y; mtcw#D
if any(idx_pos) Si;H0uP O
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 7n<::k\lb
end FP4P|kl/9'
if any(idx_neg) #BH*Z(
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); "'?>fe\qG
end T'Dv.h
-;WGS o
^WWQI+pk
% EOF zernfun uiR8,H9*M