下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, {Q}F.0Q
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, =C2KHNc
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? P8(hHuO
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? 31~nay15
Gp{,v
(3"N~\9m
$nb.[si\
o_1N "o%
function z = zernfun(n,m,r,theta,nflag) Mj{w/'
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. W=#AfPi$&
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ?-zuy US
% and angular frequency M, evaluated at positions (R,THETA) on the $J^fp XO
% unit circle. N is a vector of positive integers (including 0), and 9Ta0Li
% M is a vector with the same number of elements as N. Each element DXo]O}VF
% k of M must be a positive integer, with possible values M(k) = -N(k) ^)wKS]BQ..
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, `BQv;NtP
% and THETA is a vector of angles. R and THETA must have the same <PVwf`W.
% length. The output Z is a matrix with one column for every (N,M) ae2Q^yLA
% pair, and one row for every (R,THETA) pair. $~S~pvT
% kU+|QBA@
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ?=ffv]v|
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ?G5,}%
% with delta(m,0) the Kronecker delta, is chosen so that the integral {#:31)P
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, {zWR)o .=
% and theta=0 to theta=2*pi) is unity. For the non-normalized vQ
L$.A3>
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 8PzGUn;\
% a}uYv:
% The Zernike functions are an orthogonal basis on the unit circle. 0$]iRE;O]
% They are used in disciplines such as astronomy, optics, and r\d(*q3B
% optometry to describe functions on a circular domain. m`l9d4p
w?
% *5 +GJWKN
% The following table lists the first 15 Zernike functions. A#6zINK#B
% {vGJ}q?Sd"
% n m Zernike function Normalization {9yf0n
% -------------------------------------------------- ~_-]>
SI
% 0 0 1 1 (c>g7d<>n
% 1 1 r * cos(theta) 2 qa-FLUkIk!
% 1 -1 r * sin(theta) 2 R0}1:1}$Sn
% 2 -2 r^2 * cos(2*theta) sqrt(6) K Ax=C}9
% 2 0 (2*r^2 - 1) sqrt(3) ni&|;"Nt-
% 2 2 r^2 * sin(2*theta) sqrt(6) 0|RofL&o
% 3 -3 r^3 * cos(3*theta) sqrt(8) d)emTXB(
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) ~\mh\a&
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) ."H;bfcL_
% 3 3 r^3 * sin(3*theta) sqrt(8) ]'`E
% 4 -4 r^4 * cos(4*theta) sqrt(10) {BmqUoZrC
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) `XhH{*Q"X
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) [Q0V 5P~Q'
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ^3TNj
% 4 4 r^4 * sin(4*theta) sqrt(10) a8f#q]TyQ
% -------------------------------------------------- U
fyhd
% 1!KROes4
% Example 1: \4L ur
% HMCLJ/
% % Display the Zernike function Z(n=5,m=1) X58U>4a
% x = -1:0.01:1; ? Bpnnwx
% [X,Y] = meshgrid(x,x); Vw1>d+<~-)
% [theta,r] = cart2pol(X,Y); n&njSj/
% idx = r<=1; )Cl>% 9
% z = nan(size(X)); O|V0WiY<
% z(idx) = zernfun(5,1,r(idx),theta(idx)); _Xt/U>N
% figure `UTPX'Vz
% pcolor(x,x,z), shading interp mUa#sTm
% axis square, colorbar &h0LWPl
% title('Zernike function Z_5^1(r,\theta)') T@tsM|pI
% 4AS%^&ah
% Example 2: l!f_ +lv
% +Yc^w5 !(
% % Display the first 10 Zernike functions B;r_[^
% x = -1:0.01:1; J5G<Y*q
% [X,Y] = meshgrid(x,x); 68XJ`/d
% [theta,r] = cart2pol(X,Y); :$$~$P
% idx = r<=1; x
;|HT
% z = nan(size(X)); `Pvi+:6\Y
% n = [0 1 1 2 2 2 3 3 3 3]; &KjMw:l
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; -K 'UXoU1
% Nplot = [4 10 12 16 18 20 22 24 26 28]; %dzt'uz
% y = zernfun(n,m,r(idx),theta(idx)); [UA*We 1
% figure('Units','normalized') P |tyyjO
% for k = 1:10 )2Ei<
% z(idx) = y(:,k); 509T?\r
% subplot(4,7,Nplot(k)) ?$|tT\SFV
% pcolor(x,x,z), shading interp 2y
-
QH
% set(gca,'XTick',[],'YTick',[]) )Ka-vX)D@
% axis square 1.du#w
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) )8A.Wg4S;c
% end ga;nM#/
% 9;+&}:IVS
% See also ZERNPOL, ZERNFUN2. ZAr6RRv ^
Ddr.6`VJ
zR<{z
% Paul Fricker 11/13/2006 .dU91> ~Ov
~JT`q:l-q
#yochxF_
Cw,a)XB
<D.E.^Y
% Check and prepare the inputs: ^3dc#5]Xf
% ----------------------------- 1eD#-tzV
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) AkQ(V
error('zernfun:NMvectors','N and M must be vectors.') M{J>yN
end rRRh-%.RU
m^QoB
U4"^NLAq
if length(n)~=length(m) G`!,>n 3
error('zernfun:NMlength','N and M must be the same length.') VZi1b0k1.
end ;0dH@b
';3>rv_
tg\Nm7I
n = n(:); uVqc:Q"
m = m(:); Fqeqn[,
if any(mod(n-m,2)) t{]
6GlW
error('zernfun:NMmultiplesof2', ... -s0SQe{!_
'All N and M must differ by multiples of 2 (including 0).') z:-{Y2F
end g=\(%zfsxr
dHY@V>D'-
6>WkisxG
if any(m>n) B&_:20^y~
error('zernfun:MlessthanN', ... mfj{_fR3
'Each M must be less than or equal to its corresponding N.') ~!({Unt+'
end BbX$R`f
uU)t_W&-J
t\/H. Hb
if any( r>1 | r<0 ) ? X8`+`nh
error('zernfun:Rlessthan1','All R must be between 0 and 1.') >&.N_,*
end "q?(rx;
`:iMGqZN
j
EbmW*
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) %`bs<ZWT
error('zernfun:RTHvector','R and THETA must be vectors.') |B(,53
end NuO@Nr
12
)
=#2%[kG q
r = r(:); tV=Qt[|@
theta = theta(:); >J9Qr#=H2
length_r = length(r); ,O:4[M !$w
if length_r~=length(theta) a0ms9%Y;Q[
error('zernfun:RTHlength', ... ]4t1dVD
'The number of R- and THETA-values must be equal.') >7WT4l)7!b
end L[zTT\a
OFohyy(
!S<p"
% Check normalization: )P7oL.)
% -------------------- QO$18MBcc
if nargin==5 && ischar(nflag) .B^tEBGVD
isnorm = strcmpi(nflag,'norm'); mg*iW55g
if ~isnorm /[Nkk)8-
error('zernfun:normalization','Unrecognized normalization flag.') |~76dxU
end s1OSuSL>
else N n_b
isnorm = false; w%wVB/(
end 3x(Y+
ymP
VN-0hw/A
f:8!@,I
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% c*owP
% Compute the Zernike Polynomials R UCUEo63
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% lGet)/w;c
"U9e)a0v
G$)q% b;Lz
% Determine the required powers of r: 5#z7Hj&w
% ----------------------------------- ,M]W_\N~E
m_abs = abs(m); ^E,
#}cW
rpowers = []; fm#7}Y
for j = 1:length(n) fhk(<KZvJ
rpowers = [rpowers m_abs(j):2:n(j)]; `_&vvJPn@!
end s|WcJV
rpowers = unique(rpowers); )l*3^kwL{U
)[99SM
5bZ0}^FYF
% Pre-compute the values of r raised to the required powers, 7yG%E
% and compile them in a matrix: B|syb!g
% ----------------------------- #x;d+Q@
if rpowers(1)==0 C^?/9\
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); -Nr*na^H9#
rpowern = cat(2,rpowern{:}); 2n"-~'3\
rpowern = [ones(length_r,1) rpowern]; nF-l4 =
else <&+0[9x
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); dR s\e(H'
rpowern = cat(2,rpowern{:}); af[dkuv
end v?d`fd
"SuG6!k3
ga'G)d3oS
% Compute the values of the polynomials: bz1`f >%l
% -------------------------------------- ,A#gF_8
y = zeros(length_r,length(n)); 0{!-h
for j = 1:length(n) L{ej<0 yr
s = 0:(n(j)-m_abs(j))/2; Yl1l$[A$
pows = n(j):-2:m_abs(j); ~Y1nU-
for k = length(s):-1:1 4U$M0 =
p = (1-2*mod(s(k),2))* ... 4<EC50@.
prod(2:(n(j)-s(k)))/ ... zl, Vj%d
prod(2:s(k))/ ... 0W
1bZPM
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ]:#W$9,WL
prod(2:((n(j)+m_abs(j))/2-s(k))); X&Ospl@H
idx = (pows(k)==rpowers); aYtW!+#
y(:,j) = y(:,j) + p*rpowern(:,idx);
%U[H`E
end )eX{a/Be
2L.6!THG
if isnorm uxX 3wY;M
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); PTQN.[bBh
end !(S.7#-r
end `/G9*tIR8g
% END: Compute the Zernike Polynomials xNJ*TA[+
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% tI0D{Xrc
dF&@q,
"-HWw?rx/
% Compute the Zernike functions: T7Y+ WfYh
% ------------------------------ oB<!U%BN
idx_pos = m>0; H.Z<T{y;
idx_neg = m<0; X2 <fS~m
l?X)]1
)|]*"yf:E
z = y; |*~SR.[`
if any(idx_pos) eS%8WmCV9<
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); HbCcROl(
end M"Y,kA|+
if any(idx_neg) h5n@SE>G
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); n"I{aJ]K
end MHCwjo"
^C2SLLgeJ
y?iW^>|?L=
% EOF zernfun f?QP(+M5.