切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9083阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, j;+b0(53  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, hn7# L  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? g-4M3of  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? S:#lH?<_  
    e9Wa<i 8  
    )Yh+c=6 ?  
    i(rL|d+'  
    Fj8z  
    function z = zernfun(n,m,r,theta,nflag) xC?6v '  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. wv>^0\o  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ]NQfX[  
    %   and angular frequency M, evaluated at positions (R,THETA) on the xjUT{iwS  
    %   unit circle.  N is a vector of positive integers (including 0), and g{]0sn#  
    %   M is a vector with the same number of elements as N.  Each element Y #ap*  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 3V+] 9;  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ]!W=^!  
    %   and THETA is a vector of angles.  R and THETA must have the same kf\PioD8  
    %   length.  The output Z is a matrix with one column for every (N,M) r Xt}6[S  
    %   pair, and one row for every (R,THETA) pair. m^!Z_]A![  
    % W@M:a  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Pf")e,u$  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), j1Y~_  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral P8OaoPj  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, U#7#aeI  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized x xHY+(m  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 5zK4Fraf  
    % >mbHy<<  
    %   The Zernike functions are an orthogonal basis on the unit circle. XAD- 'i  
    %   They are used in disciplines such as astronomy, optics, and D%[mWc@1I  
    %   optometry to describe functions on a circular domain. ih-#5M@  
    % CCs%%U/=  
    %   The following table lists the first 15 Zernike functions. )J o: pkM  
    % <`8n^m*  
    %       n    m    Zernike function           Normalization o*+"|  
    %       -------------------------------------------------- ]#i igPZ7  
    %       0    0    1                                 1 nmee 'oEw  
    %       1    1    r * cos(theta)                    2 \Gef \   
    %       1   -1    r * sin(theta)                    2 Ko| d+  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) np|Sy;:  
    %       2    0    (2*r^2 - 1)                    sqrt(3) Ye%~I`@?  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) '0;l]/i.  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) Y1 w9y  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) rET\n(AJ  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) aL\PGdgO  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) &N$<e(K  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) lf`{zc r:  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) MVpGWTH@F  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) w0 M>[ 4  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) xJpA0_xfG  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) B6+khuG(  
    %       -------------------------------------------------- B B{$&Oh  
    % L?b~k=  
    %   Example 1: 3oj' ytxN  
    % 4!{KWL`A  
    %       % Display the Zernike function Z(n=5,m=1) J'6PmPzY|  
    %       x = -1:0.01:1; tH@Erh|%  
    %       [X,Y] = meshgrid(x,x); ^cC,.Fdw  
    %       [theta,r] = cart2pol(X,Y); @-07F,'W,  
    %       idx = r<=1; nQZx= JK  
    %       z = nan(size(X)); 1/B>XkCJ  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); (Bb5?fw  
    %       figure '`[&}R  
    %       pcolor(x,x,z), shading interp vQG5*pR*w  
    %       axis square, colorbar d UE,U=  
    %       title('Zernike function Z_5^1(r,\theta)') [C 7^r3w  
    % 94`7a<&ZNL  
    %   Example 2: )b L'[h  
    % R{`(c/%8  
    %       % Display the first 10 Zernike functions *->W^1eGM  
    %       x = -1:0.01:1; tPWLg),  
    %       [X,Y] = meshgrid(x,x); FW;?s+Uyx  
    %       [theta,r] = cart2pol(X,Y); T9|m7  
    %       idx = r<=1; VOsR An/N  
    %       z = nan(size(X)); Wx%H%FeK  
    %       n = [0  1  1  2  2  2  3  3  3  3]; ;3coP{  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; ;vR4XHl|  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; .&iawz  
    %       y = zernfun(n,m,r(idx),theta(idx)); i$"F{|Z0  
    %       figure('Units','normalized') (62"8iD6  
    %       for k = 1:10 |)DGkOtd  
    %           z(idx) = y(:,k);  M mj;-u  
    %           subplot(4,7,Nplot(k)) yNJ B oar  
    %           pcolor(x,x,z), shading interp .[KrlfI  
    %           set(gca,'XTick',[],'YTick',[]) se2!N:|R!G  
    %           axis square tmYz R%i  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ;W )Y OT  
    %       end np^N8$i:n  
    % QD&`^(X1p  
    %   See also ZERNPOL, ZERNFUN2. ~8Fk(E_  
    )gUR@V>e2  
     :A_@,Q  
    %   Paul Fricker 11/13/2006 =_*Zn(>t`  
    wh`"w7br  
    T@B/xAq5!  
    Zd%k*BC  
    K:[F%e  
    % Check and prepare the inputs: oG?Xk%7&\  
    % ----------------------------- &vMb_;~B  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Y;M|D'y+  
        error('zernfun:NMvectors','N and M must be vectors.') !;v|'I  
    end YQvD|x  
    B)g[3gQ  
    [=q1T3  
    if length(n)~=length(m) 3BJ0S.TF  
        error('zernfun:NMlength','N and M must be the same length.') M#6W(|V/  
    end qOtgve`jX  
    *I.f1lz%*  
    %3-y[f  
    n = n(:); zT]8KA   
    m = m(:); s?}e^/"v  
    if any(mod(n-m,2)) (k.[GfCbD  
        error('zernfun:NMmultiplesof2', ... hBUn \~z  
              'All N and M must differ by multiples of 2 (including 0).') ]y '>=a|T  
    end ql{ OETn#  
    n0 {i&[I~+  
    3z?> j]  
    if any(m>n) :Yh+>c}N  
        error('zernfun:MlessthanN', ... L|xbR#v  
              'Each M must be less than or equal to its corresponding N.') g-bK|6?yz  
    end I3I/bofz  
    ;bib/  
    DV-d(@`K  
    if any( r>1 | r<0 ) <{cQM$ #  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') Om\vMd@!  
    end K=k"a  
    Ya"a`ozq  
    b5vC'B-!  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) k$R-#f;  
        error('zernfun:RTHvector','R and THETA must be vectors.') 4F'LBS]=0  
    end AjMh,@  
    1};Stai'  
    & G4\2l9  
    r = r(:); JIOR4'9  
    theta = theta(:); pJ"qu,w  
    length_r = length(r); ]72`};  
    if length_r~=length(theta) [EXs  
        error('zernfun:RTHlength', ... Ckuh:bs  
              'The number of R- and THETA-values must be equal.') 6j]0R*B7`Q  
    end ucW-I;"  
    [!#L6&:a8  
    .jE{3^  
    % Check normalization: 9IfmW^0  
    % -------------------- 0gr/<v  
    if nargin==5 && ischar(nflag) 97C]+2R%^  
        isnorm = strcmpi(nflag,'norm'); {@{']Y  
        if ~isnorm MaQqs=  
            error('zernfun:normalization','Unrecognized normalization flag.') *H2r@)Y[~  
        end {qJ1ko)$  
    else ag[wdoj  
        isnorm = false; joAv{Tc  
    end Zt{[ *~  
    ,i`,Oy(BI  
    rcG"o\g@+  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% C XMLt  
    % Compute the Zernike Polynomials FHg 9OI67  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% {]@= ijjf  
    e2oa($9  
    KBc1{adDx@  
    % Determine the required powers of r: >jLY"  
    % ----------------------------------- /%1ON9o>  
    m_abs = abs(m); `kXs;T6&  
    rpowers = []; PB*&aYLU  
    for j = 1:length(n) 21l;\W  
        rpowers = [rpowers m_abs(j):2:n(j)]; -zeG1gr3  
    end yq\K)g*=  
    rpowers = unique(rpowers); \V~eVf;~  
    AH7}/Rc  
    pO3SUOP  
    % Pre-compute the values of r raised to the required powers, 5e^ChK0Q  
    % and compile them in a matrix: 2eY_%Y0  
    % ----------------------------- jLm ;ty2;  
    if rpowers(1)==0 ;$wVu|&  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); N5 6g+,w%)  
        rpowern = cat(2,rpowern{:}); Fk7')?  
        rpowern = [ones(length_r,1) rpowern]; ?1 4{J]H4  
    else N<VJ(20y  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ?GR"FmB(  
        rpowern = cat(2,rpowern{:}); =X:Y,?  
    end xY(*.T9K  
    f46t9dxp$  
    +\ .Lp 5  
    % Compute the values of the polynomials: hnhd{$2Z  
    % -------------------------------------- uHzU-FZ|B  
    y = zeros(length_r,length(n)); 0 /U{p,r6`  
    for j = 1:length(n) \Uq(Zga4)  
        s = 0:(n(j)-m_abs(j))/2; 33B]RGq  
        pows = n(j):-2:m_abs(j); VjZ|$k  
        for k = length(s):-1:1 tg4pyW <  
            p = (1-2*mod(s(k),2))* ... m&&m,6``P  
                       prod(2:(n(j)-s(k)))/              ... . 3T3E X|G  
                       prod(2:s(k))/                     ... hhc,uJ">!  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... VuZuS6~#J  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); `+:`_4  
            idx = (pows(k)==rpowers); lq;P ch  
            y(:,j) = y(:,j) + p*rpowern(:,idx); Hf2_0wA3  
        end yYA$I'Bm\  
         R!gEwTk  
        if isnorm >U27];}y  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); y _k l:Ssa  
        end $DaNbLV  
    end cIOlhX@  
    % END: Compute the Zernike Polynomials 9EibIOD^/  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% sS'm!7*(3  
    GH$pKB  
    !wh8'X*  
    % Compute the Zernike functions: ~U&AI1t+J  
    % ------------------------------ @<EO`L)Z  
    idx_pos = m>0; sWnLEw  
    idx_neg = m<0; x7<K<k;s  
    u <v7;dF|s  
    /!XVHkX[  
    z = y; mtcw#D  
    if any(idx_pos) Si;H0uPO  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 7n<::k\lb  
    end FP4P|kl/9'  
    if any(idx_neg) #BH*Z(  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); "'?>fe\qG  
    end T'Dv.h  
    -;WGS o  
    ^WWQI+pk  
    % EOF zernfun uiR8,H9*M  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  t"oeQ*d%  
    8KzkB;=n  
    DDE还是手动输入的呢? * r7rZFS  
    L ~N460  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究