下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, Wg2 0H23XW
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, J 5xMA-
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? h1l%\ 3ZH
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? J57; X=M
nLCaik_,m
<@Vf:`a!P>
nxNHf3
=3!o_
function z = zernfun(n,m,r,theta,nflag) .h\Py[h<^
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. D$@2H>.-
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N %k~ezn
% and angular frequency M, evaluated at positions (R,THETA) on the xP/q[7>#Q
% unit circle. N is a vector of positive integers (including 0), and hRMya#%-
% M is a vector with the same number of elements as N. Each element aNA]hl
% k of M must be a positive integer, with possible values M(k) = -N(k) e\O-5hp7
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, XMdCQ=
% and THETA is a vector of angles. R and THETA must have the same _GrifGU\
% length. The output Z is a matrix with one column for every (N,M) bwj{5-FU
% pair, and one row for every (R,THETA) pair. #Ge_3^'
% FBbaLqgVF{
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike crN*eFeW
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 1z4_QZZ.NG
% with delta(m,0) the Kronecker delta, is chosen so that the integral 1vxQ`) a
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, j=Izwt>
% and theta=0 to theta=2*pi) is unity. For the non-normalized @$'pMg
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. &FuL{YL
% >239SyC-,
% The Zernike functions are an orthogonal basis on the unit circle. n1PBpM9!
% They are used in disciplines such as astronomy, optics, and A=IpP}7J
% optometry to describe functions on a circular domain. v$w}UC%uf
% /sj*@HF=
% The following table lists the first 15 Zernike functions. 5-y*]:g(
% +I3O/=)
% n m Zernike function Normalization ?c+$9
% -------------------------------------------------- =,h'}(z_
% 0 0 1 1 4 Yv:\c
% 1 1 r * cos(theta) 2 w%8y5v5
% 1 -1 r * sin(theta) 2 @0]WMI9B"B
% 2 -2 r^2 * cos(2*theta) sqrt(6) ~KYzEqy
% 2 0 (2*r^2 - 1) sqrt(3) W]bgWKd
% 2 2 r^2 * sin(2*theta) sqrt(6) fGqX
dlP
% 3 -3 r^3 * cos(3*theta) sqrt(8) "j8)l4}
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) nj1o!+9>$
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) <oV[[wl
% 3 3 r^3 * sin(3*theta) sqrt(8) ^+v1[U@
% 4 -4 r^4 * cos(4*theta) sqrt(10) P/.<sr=2
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) t$wbwP
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) `-OzjbM
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ^L)TfI_n
% 4 4 r^4 * sin(4*theta) sqrt(10) GBT|1c'i
% -------------------------------------------------- `GdH ,:S>
% FO%pdLs,
% Example 1: 'Grii,
% |R _rfJh
% % Display the Zernike function Z(n=5,m=1) K@{0]6
% x = -1:0.01:1; *OznZIn
% [X,Y] = meshgrid(x,x); J?yasjjgP
% [theta,r] = cart2pol(X,Y); Sk/@w[
% idx = r<=1; 1[8^JVC>6
% z = nan(size(X)); )#cZ&
O
% z(idx) = zernfun(5,1,r(idx),theta(idx)); W/hzo*o'g
% figure u}|v;:|j
% pcolor(x,x,z), shading interp [DH4iG5
% axis square, colorbar ;?tH8jf>
% title('Zernike function Z_5^1(r,\theta)') 1*2ycfa
% <kPNe>-f
% Example 2: U|V,&RlbR
% Tx!t3;Yz[
% % Display the first 10 Zernike functions Mms|jFoQ
% x = -1:0.01:1; Wc2&3p9 c
% [X,Y] = meshgrid(x,x); c:u*-lYmK%
% [theta,r] = cart2pol(X,Y); 6V%}2YE?X
% idx = r<=1; 7Q9Hk(Z9
% z = nan(size(X)); E+qLj|IU
% n = [0 1 1 2 2 2 3 3 3 3]; \<*F#3U1
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; l<GN<[/.+
% Nplot = [4 10 12 16 18 20 22 24 26 28]; n]`]gLF\i
% y = zernfun(n,m,r(idx),theta(idx)); G}g;<,g~
% figure('Units','normalized') 'ia-h7QWS
% for k = 1:10 GEF's#YWK
% z(idx) = y(:,k); Eu'E;*-f
% subplot(4,7,Nplot(k)) 3*~`z9-z
% pcolor(x,x,z), shading interp #e-K It
% set(gca,'XTick',[],'YTick',[]) O-
QT+]
% axis square ?'+]d;UO&
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) R/Bjc}J'
% end 4KtD
k
% )'T].kWW
% See also ZERNPOL, ZERNFUN2. 2Ax"X12{6
8sG?|u
?Y3i-jY
% Paul Fricker 11/13/2006 $q:l \
hmo4H3g!N
i/+^C($'f
:?\29j#*V
py:L-5
% Check and prepare the inputs: .1RQ}Ro,<
% ----------------------------- (m:Q'4Ep
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) jmwN 1Se>
error('zernfun:NMvectors','N and M must be vectors.') SoM,o]s#y
end O}zHkcL
j0}wv~\
i@nRZ$ K
if length(n)~=length(m) UTh2?Rh/
error('zernfun:NMlength','N and M must be the same length.') x5uz$g
end #%k_V+o3
2=fM\G
DdI%TU K,
n = n(:); f&4+-w.:V|
m = m(:); DSqA}r
if any(mod(n-m,2)) >^Wpc
error('zernfun:NMmultiplesof2', ... 'Xwv,
'All N and M must differ by multiples of 2 (including 0).') 0.x+ H9z
end Z,2?TT|p
pJ}U'*Z2
H!]&"V77
if any(m>n) lwX9:[Z
error('zernfun:MlessthanN', ... V'=;M[&