切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9199阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, l 5f'R  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, !'>#!S~h3  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? j\.e6&5%SS  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? ~{6}SXp4U  
    *LvdrPxU=  
    9,}Z1 f\%  
    ^q<EnsY  
    y cWY.HD  
    function z = zernfun(n,m,r,theta,nflag) F<)f&<5E-  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. rPHM_fW(O@  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N swhtlc@@  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 4@-Wp]  
    %   unit circle.  N is a vector of positive integers (including 0), and (c[DQSj  
    %   M is a vector with the same number of elements as N.  Each element kioIyV\=  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) ikPr>  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, >.REg[P  
    %   and THETA is a vector of angles.  R and THETA must have the same Z,F1n/7  
    %   length.  The output Z is a matrix with one column for every (N,M) J!'IkC$>  
    %   pair, and one row for every (R,THETA) pair. FwQGxGZ  
    % ;47=x1j i  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike YIYuqtnSJ  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi),  mNX0BZ  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral n|PW^kOE/  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, *`tQX$F  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized \9} -5  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. [,|4%Y  
    % EhN@;D+  
    %   The Zernike functions are an orthogonal basis on the unit circle. ?Y9VviC  
    %   They are used in disciplines such as astronomy, optics, and vNU[K%U  
    %   optometry to describe functions on a circular domain. &2W`dEv]?  
    % h:vI:V[/X  
    %   The following table lists the first 15 Zernike functions. ulk yP  
    % _Aw-{HE'  
    %       n    m    Zernike function           Normalization  <XnxAA  
    %       -------------------------------------------------- JOki4N  
    %       0    0    1                                 1 QmsS,Zljo  
    %       1    1    r * cos(theta)                    2 'gk^NAG2^E  
    %       1   -1    r * sin(theta)                    2 e#?rK=C?9  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) "%=K_WJ?  
    %       2    0    (2*r^2 - 1)                    sqrt(3) "+BuFhSLf  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) hrbeTtqi  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ]Vf2Mn=]"  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 5eas^Rm  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) @Lm(bW  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) ]T>YYz  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) JWQ.Efe  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Zb~G&. 2g  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 8noo^QO  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) TI3@/SB>  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) t%Y}JKLR  
    %       -------------------------------------------------- Uql7s:!,U  
    % hQDl&A  
    %   Example 1: e\]CZ5hs3  
    % E~,Wpl}  
    %       % Display the Zernike function Z(n=5,m=1) jt&rOPL7  
    %       x = -1:0.01:1; o31pF  
    %       [X,Y] = meshgrid(x,x); 8#a2 kR<b  
    %       [theta,r] = cart2pol(X,Y); QWK\6  
    %       idx = r<=1; Vj_z"t7q  
    %       z = nan(size(X)); /909ED+)>9  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); ~ponYc.Y  
    %       figure @X#e  
    %       pcolor(x,x,z), shading interp lQer|?#  
    %       axis square, colorbar 6X GqZ!2  
    %       title('Zernike function Z_5^1(r,\theta)') {hKf 'd9E  
    % \H.1I=<  
    %   Example 2: i>@"&  
    % 2aW"t.[j  
    %       % Display the first 10 Zernike functions Qx[ nR/  
    %       x = -1:0.01:1; B_|jDH#RyJ  
    %       [X,Y] = meshgrid(x,x); WR4\dsgCU  
    %       [theta,r] = cart2pol(X,Y); |",/  
    %       idx = r<=1; 62J -)~_  
    %       z = nan(size(X)); 4031~A8  
    %       n = [0  1  1  2  2  2  3  3  3  3]; 1V2"sE  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; ;S^7Q5-  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; bA3pDt).p  
    %       y = zernfun(n,m,r(idx),theta(idx)); ~ny4Ay$#  
    %       figure('Units','normalized') o2NU~Ub  
    %       for k = 1:10 #5W-*?H  
    %           z(idx) = y(:,k); ] _P!+5]<  
    %           subplot(4,7,Nplot(k)) dK?vg@|'  
    %           pcolor(x,x,z), shading interp q|wwfPez7  
    %           set(gca,'XTick',[],'YTick',[]) m=%WA5c?  
    %           axis square u6u1>  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) {t<U:*n2  
    %       end 5oE!^bF?  
    % ]!04L}hy|P  
    %   See also ZERNPOL, ZERNFUN2. \^rAH@  
    CZ_ (IT7  
    bZ*J]1y(.  
    %   Paul Fricker 11/13/2006 A{b?ZT~2]  
    3 ~^}R  
    gdyP,zMD7  
    ^ G(GjW8  
    O&u[^s/^  
    % Check and prepare the inputs: dD0:K3@  
    % ----------------------------- Jri"Toz0  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Td>Lp=0rU  
        error('zernfun:NMvectors','N and M must be vectors.') 4zM$I  
    end .ahYj n  
    :svRn9_8H  
    N!&$fhY)  
    if length(n)~=length(m) C~dD'Tq]  
        error('zernfun:NMlength','N and M must be the same length.') }^ j"@{~  
    end @.Pe.\Z  
    8_@#5  
    Ou<Vg\Mu  
    n = n(:); J_^Ml)@iy  
    m = m(:); Fn~?YN  
    if any(mod(n-m,2)) Dpa PRA)x  
        error('zernfun:NMmultiplesof2', ... 71ctjU`U2  
              'All N and M must differ by multiples of 2 (including 0).') K)C9)J<  
    end 2|n~5\K|t  
    8}kY^"*&X  
    lC ^NhQi  
    if any(m>n) ,#P eK(  
        error('zernfun:MlessthanN', ... Vg)]F+E  
              'Each M must be less than or equal to its corresponding N.') JtrLTo  
    end YI*Av+Z)  
    hDJ84$eVZ  
    iCYo?>  
    if any( r>1 | r<0 ) mw1|>*X&R  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 45;{tS.z,B  
    end >}~Pu| _ S  
    \)pT+QxZ  
    /M;A)z  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) SDTX3A1  
        error('zernfun:RTHvector','R and THETA must be vectors.') x;cjl6Acm  
    end Ol9'ZB|R  
    MDCK@?\  
    QDg\GA8|  
    r = r(:); |3?qL  
    theta = theta(:); SqhG\qE{Qj  
    length_r = length(r); N!}r(Dd*  
    if length_r~=length(theta) \?_eQKiZ3  
        error('zernfun:RTHlength', ... :N<ZO`l?  
              'The number of R- and THETA-values must be equal.') )h0F'MzW  
    end %hzl3>().  
    ]$'w8<D>t,  
    lth t'|  
    % Check normalization: DV(^h$1_  
    % -------------------- A3C#w J  
    if nargin==5 && ischar(nflag) ZS@Cd9*  
        isnorm = strcmpi(nflag,'norm'); OE(Z)|LF  
        if ~isnorm MH+t`/E0]  
            error('zernfun:normalization','Unrecognized normalization flag.') ]R8}cbtU  
        end !'()QtvC<  
    else 5__8+R  
        isnorm = false; u:Q_XXT5  
    end =8?gx$r2  
    xe;1D'(   
    &n.7~C]R  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% _ FcfNF  
    % Compute the Zernike Polynomials G9.+N~GZ.  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0i2ZgOJ  
    !biq7f%6#  
    = X?jId{  
    % Determine the required powers of r: `Tx1?]  
    % ----------------------------------- ceDe!Iu  
    m_abs = abs(m); w1-/U+0o  
    rpowers = []; 2-9'zN0u  
    for j = 1:length(n) V/Q~NX N  
        rpowers = [rpowers m_abs(j):2:n(j)]; 8m0GxgS  
    end +SGM3tY  
    rpowers = unique(rpowers); 72qbxPY13h  
    URbu=U  
    Y3+GBqP  
    % Pre-compute the values of r raised to the required powers, )6# i>c-  
    % and compile them in a matrix: Tz H*?bpP  
    % ----------------------------- !xm87I  
    if rpowers(1)==0 5Uc!;Gd?b  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 2YD;Gb[8  
        rpowern = cat(2,rpowern{:}); ?d)I!x,;;  
        rpowern = [ones(length_r,1) rpowern]; d7+YCi?  
    else /F;b<kIy8  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Y]ML-smN  
        rpowern = cat(2,rpowern{:}); LEoL6ga  
    end __\Tv>Y  
    LHjGlBy  
    6mr5`5~w  
    % Compute the values of the polynomials: 1=x4m=wV  
    % -------------------------------------- /xmUu0H$R  
    y = zeros(length_r,length(n)); I4kN4*d!N,  
    for j = 1:length(n) t&+f:)n  
        s = 0:(n(j)-m_abs(j))/2; u%FG% j?C  
        pows = n(j):-2:m_abs(j); n22k<@y  
        for k = length(s):-1:1 {umdW x.*  
            p = (1-2*mod(s(k),2))* ... )J&1uMp{  
                       prod(2:(n(j)-s(k)))/              ... F0O"rN{  
                       prod(2:s(k))/                     ... %/17K2g  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... eqK6`gHa6  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); E 9_aNYD  
            idx = (pows(k)==rpowers); tL68 u[  
            y(:,j) = y(:,j) + p*rpowern(:,idx); u|l]8T9L  
        end [,s{/OM  
         qk pnXQ  
        if isnorm VU7x w  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); +@),Fk_  
        end LFHV~>d  
    end 8<}f:9/  
    % END: Compute the Zernike Polynomials rt r0 d  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% nd(O;XBI  
    v=15pW  
    :*V1jp+  
    % Compute the Zernike functions: 6 <JiHVP7  
    % ------------------------------ \(Uw.ri  
    idx_pos = m>0; SsiKuoxk  
    idx_neg = m<0; FCv3ZF?K  
    A+d&aE }3V  
    H~1&hF"d  
    z = y; qiQS:0|_  
    if any(idx_pos) (Hqy^EOZ  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); @RW=(&<1  
    end ydOJ^Yty  
    if any(idx_neg) ]YcM45xg  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 1*aw~nY0  
    end f8um.Xnp6  
    AyZL(  
    *C*n( the  
    % EOF zernfun b]s.h8+v;  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  EC *rd  
    o' U::  
    DDE还是手动输入的呢? ,'~8{,h5  
    I"/p^@IX  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究