切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8562阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, 1 sCF -r  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, }#@P+T:b  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? kKVq,41'  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? Py 8o8*H  
    di6A.N5A  
    Z2 B59,I  
    (mHFyEG  
    2vKnxK+ 5  
    function z = zernfun(n,m,r,theta,nflag) T8YqCT"EA<  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. AX8;x1t^.  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Uc e#v)  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 0-Xpq,0  
    %   unit circle.  N is a vector of positive integers (including 0), and avls[Bq  
    %   M is a vector with the same number of elements as N.  Each element <R~(6krJwZ  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) $Vp&Vc8  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, Ks09F}  
    %   and THETA is a vector of angles.  R and THETA must have the same zqYfgV  
    %   length.  The output Z is a matrix with one column for every (N,M) ?|^1-5l3  
    %   pair, and one row for every (R,THETA) pair. xtU)3I=F%  
    % B dm<<<  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike {U=za1Ga  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ?"AcK" v  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral D8W:mAGEu  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 4BuS? #_  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized xPqpNs-,  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. =fBJQK2sk  
    % >FHTBh& Y  
    %   The Zernike functions are an orthogonal basis on the unit circle. Fw:s3ON9}  
    %   They are used in disciplines such as astronomy, optics, and Uy ;oJY  
    %   optometry to describe functions on a circular domain. oTOe(5N8a  
    % `Pl=%DR  
    %   The following table lists the first 15 Zernike functions. >C_! }~  
    % !0`ZK-nA6  
    %       n    m    Zernike function           Normalization I?-9%4 8iM  
    %       -------------------------------------------------- wlKpHd*  
    %       0    0    1                                 1 Iu0K#.s_  
    %       1    1    r * cos(theta)                    2 0e8)*2S  
    %       1   -1    r * sin(theta)                    2 x#dJH9NR[  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) hU G Iy(  
    %       2    0    (2*r^2 - 1)                    sqrt(3) Jb$PlOQ  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) @c$mc  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) zGZe|-  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) J+?xfg  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) e~rBV+f  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) scL7PxJ5  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) N!RyncJ  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 40%p lNPj  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) k1-?2kf"{  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 2%vwC]A  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 9FV#@uA}D  
    %       -------------------------------------------------- w/G5I )G  
    % pS%,wjb&P  
    %   Example 1: 4KybN  
    % |hp_X>Uv'  
    %       % Display the Zernike function Z(n=5,m=1) ;5y4v  
    %       x = -1:0.01:1; -oF4mi8S  
    %       [X,Y] = meshgrid(x,x); 0?,EteR  
    %       [theta,r] = cart2pol(X,Y); `34[w=Zm  
    %       idx = r<=1; =#%e'\)a  
    %       z = nan(size(X)); _Zf1=& U#/  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); "P<~bw5   
    %       figure o}WbW }&  
    %       pcolor(x,x,z), shading interp ew?UHV  
    %       axis square, colorbar k~=-o>}C  
    %       title('Zernike function Z_5^1(r,\theta)') x6Z$lhZ  
    % ]iLfe&f  
    %   Example 2: Vg[U4,  
    % {AIZ,  
    %       % Display the first 10 Zernike functions (nda!^f_s  
    %       x = -1:0.01:1; (2qo9j"j/Y  
    %       [X,Y] = meshgrid(x,x);  mH?^3T  
    %       [theta,r] = cart2pol(X,Y); o'Tqqrr  
    %       idx = r<=1; 5+3Z?|b  
    %       z = nan(size(X)); B u4N~0  
    %       n = [0  1  1  2  2  2  3  3  3  3]; \UB<'~z6!  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 4TR:bQZs  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; }3[ [ONA  
    %       y = zernfun(n,m,r(idx),theta(idx)); (Z`Y   
    %       figure('Units','normalized') 3'&]v6|  
    %       for k = 1:10 Ti' GSL  
    %           z(idx) = y(:,k); O~aS&g/sf  
    %           subplot(4,7,Nplot(k)) QG9 2^  
    %           pcolor(x,x,z), shading interp $/wr?  
    %           set(gca,'XTick',[],'YTick',[]) dwx1 EdJ{  
    %           axis square 3U:0,-j"  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) R!$j_H  
    %       end N pRC3^  
    % 3*arW|Xm  
    %   See also ZERNPOL, ZERNFUN2. U}Hmzb  
    OH=Ffy F,  
    VJr?` eY4  
    %   Paul Fricker 11/13/2006 23+GX&Rp  
    .-Ao%A W  
    CB|z{(&N  
    _&w!JzpXT  
    (4c<0<"$  
    % Check and prepare the inputs: >/'WU79TYE  
    % ----------------------------- 'mmyzsQ \6  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) g?@(+\W  
        error('zernfun:NMvectors','N and M must be vectors.') <,cDEN7  
    end , H[o.r=  
    )(!vd!p5  
    jJ?3z ,h  
    if length(n)~=length(m) VNytK_F0P  
        error('zernfun:NMlength','N and M must be the same length.') hUl FP  
    end /-4%ug tD$  
     &$+yXN  
    O9>/ WmLe  
    n = n(:); 9CL&tpqv f  
    m = m(:); Tp0Tce/  
    if any(mod(n-m,2)) kF\ QO [  
        error('zernfun:NMmultiplesof2', ... oEi +S)_  
              'All N and M must differ by multiples of 2 (including 0).') ]q?<fEG2<  
    end cCj}{=U  
    ,e,fOL  
    8o4 vA,  
    if any(m>n) u(REEc~nj  
        error('zernfun:MlessthanN', ... MOOL=Um3  
              'Each M must be less than or equal to its corresponding N.') >)VrbPRuA  
    end m Y%PG  
    Pp.X Du  
    v4S|&m  
    if any( r>1 | r<0 ) >eU;lru2Q  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') ex29rL3  
    end Ii,L6c  
    lR-4"/1|y  
    W~7q&||;C  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) e j`lY  
        error('zernfun:RTHvector','R and THETA must be vectors.') Ig9$ PP+3  
    end k'u2a  
    b8`O7@ar  
    fd)}I23Q'  
    r = r(:); ;xj^*b  
    theta = theta(:); |:EUh  
    length_r = length(r); X#Hs{J~@p  
    if length_r~=length(theta) $%!]tNGS  
        error('zernfun:RTHlength', ... 2j_L jY'7  
              'The number of R- and THETA-values must be equal.') z1YC%Y|R  
    end ZB%7Sr0  
    p_mP'  
    cZHlW|$R  
    % Check normalization: GadD*psD2  
    % -------------------- <K2 )v~  
    if nargin==5 && ischar(nflag) #%E~I A%  
        isnorm = strcmpi(nflag,'norm'); Q4Cw{2r  
        if ~isnorm *d)B4qG  
            error('zernfun:normalization','Unrecognized normalization flag.') WMYvE\"  
        end 3:76x  
    else DuCq16'0T  
        isnorm = false; 1o.]"~0:  
    end /)v X|qtIY  
    RJSNniYr7  
    JZai{0se  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |qZ4h7wL  
    % Compute the Zernike Polynomials <.:B .k  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% jg2>=}  
    n.Ekpq\  
    &:Raf5G-E  
    % Determine the required powers of r: J/)Q{*`_  
    % ----------------------------------- 1vQ*Br  
    m_abs = abs(m); ,.DU)Wi?}  
    rpowers = []; t*n!kXa  
    for j = 1:length(n) Wny{qj)=  
        rpowers = [rpowers m_abs(j):2:n(j)]; V<(cW'zA/  
    end Z(CzU{7c  
    rpowers = unique(rpowers); ?L7z\b"_~  
    Vbz$dpT  
    5J1,Usm  
    % Pre-compute the values of r raised to the required powers, esFBWJ  
    % and compile them in a matrix: "-\I?k  
    % -----------------------------  Q L  
    if rpowers(1)==0 0urQA_JC  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); `43E-'g  
        rpowern = cat(2,rpowern{:}); z,$^|'pP  
        rpowern = [ones(length_r,1) rpowern]; $1/yc#w u  
    else _PQQ&e)E  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 7)<&,BWc  
        rpowern = cat(2,rpowern{:}); !~PV\DQN  
    end [&"`2n  
    lP0'Zg(  
    dd_n|x1  
    % Compute the values of the polynomials: FzW7MW>\x  
    % -------------------------------------- b m`x  
    y = zeros(length_r,length(n)); )g+~"&Gcx  
    for j = 1:length(n) G4]T  
        s = 0:(n(j)-m_abs(j))/2; qK,rT*5=  
        pows = n(j):-2:m_abs(j); yP6^& 'I+  
        for k = length(s):-1:1 CO-9-sQx  
            p = (1-2*mod(s(k),2))* ... #8rLB(  
                       prod(2:(n(j)-s(k)))/              ... -I '#G D>  
                       prod(2:s(k))/                     ... UJ n3sZ<}  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... J?LetyDNr]  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); p~BEz?e  
            idx = (pows(k)==rpowers); z'j4^Xz?%$  
            y(:,j) = y(:,j) + p*rpowern(:,idx); N-y[2]J90  
        end !CY: XQm  
         9J$N5  
        if isnorm sA#}0>`3S  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); <0T|RhbY   
        end =g UOHH  
    end 0EKi?vP@y7  
    % END: Compute the Zernike Polynomials #8i DM5:EQ  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #;z;8q  
    $mgW|TBXCQ  
    GO2mccIB  
    % Compute the Zernike functions: xG/B$DLn  
    % ------------------------------ +<a-;e{  
    idx_pos = m>0; pE,2pT2>  
    idx_neg = m<0; kc-=5l  
    #p*D.We  
    -U.>K,M  
    z = y; Qzt'ZK  
    if any(idx_pos) ) [+82~F  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); L 4V,y>  
    end ?(0=+o(`  
    if any(idx_neg) S6Y2(qdP  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); aS=-9P;v  
    end [MhKR }a  
    \| &KD  
    Ra) wlI x  
    % EOF zernfun ^m~&2l\N=  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    8425
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    956
    光币
    1054
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  p&h?p\IF  
    f<NR6],}  
    DDE还是手动输入的呢? H/c (m|KK  
    H5T_i$W  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究