切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9457阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, kX8C'D4 gX  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, S f?;j{?G  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? /2p*uv }IP  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? zj7ta[<tr  
    h%/BZC^L]|  
    !1l~UB_  
    i(4<MB1a  
    &J 3QO%  
    function z = zernfun(n,m,r,theta,nflag) %jL^sA2;c+  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. ,ua1sTgQ  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N D, ")n75  
    %   and angular frequency M, evaluated at positions (R,THETA) on the n\+ c3  
    %   unit circle.  N is a vector of positive integers (including 0), and 5f*_K6,v  
    %   M is a vector with the same number of elements as N.  Each element R /=rNUe  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) gH//@`6  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, iVFOOsJ@  
    %   and THETA is a vector of angles.  R and THETA must have the same >ai,6!  
    %   length.  The output Z is a matrix with one column for every (N,M) {;{U@Z  
    %   pair, and one row for every (R,THETA) pair. VM$n|[C~  
    % t'U=K>7  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike kyHli~Nr"  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ji?Hw  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral qHk{5O3  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, <Z^by;d|z  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized PK+sGV  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Uj5-x%~  
    % ^.A*mMQ  
    %   The Zernike functions are an orthogonal basis on the unit circle. 3X gJZ  
    %   They are used in disciplines such as astronomy, optics, and x0# Bc7y  
    %   optometry to describe functions on a circular domain. 19$A!kH\  
    % Xl4}S"a  
    %   The following table lists the first 15 Zernike functions. rg^\gE6_  
    % c!\Gj|  
    %       n    m    Zernike function           Normalization ]?}>D?5  
    %       -------------------------------------------------- @_do<'a  
    %       0    0    1                                 1 c5^HGIe1  
    %       1    1    r * cos(theta)                    2 Jj=qC{]  
    %       1   -1    r * sin(theta)                    2 6 - 3?&+  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) f ./K/  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 8"&!3_  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) m}l);P^  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) Wep^He\:  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 'ma X  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ~uhW~bT  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) ]W3_]N 3  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) %M96 m   
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) pB:XNkxL  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) $9YQ aN%  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 9Jwd*gevV  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 7Yg1z%%U  
    %       -------------------------------------------------- Bc8&-eZ ,  
    % 7n5gXiI"  
    %   Example 1: cM%?Ot,mK"  
    % /5sn*,  
    %       % Display the Zernike function Z(n=5,m=1) $UzSPhv[  
    %       x = -1:0.01:1; Gi)Vr\Q.  
    %       [X,Y] = meshgrid(x,x); We y*\@  
    %       [theta,r] = cart2pol(X,Y); as@8L|i*  
    %       idx = r<=1; 1WtE] D  
    %       z = nan(size(X)); Q^ W,)%  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); <,:{Q75  
    %       figure +QN4hJK  
    %       pcolor(x,x,z), shading interp [l-o*@  
    %       axis square, colorbar :aOR@])>o  
    %       title('Zernike function Z_5^1(r,\theta)') >*EZZ\eU!  
    % DQ8/]Z{H  
    %   Example 2: d}O\:\}y  
    % b|_e):V|  
    %       % Display the first 10 Zernike functions uUjjAGZ  
    %       x = -1:0.01:1; `dm*vd  
    %       [X,Y] = meshgrid(x,x); i`+w.zJOH8  
    %       [theta,r] = cart2pol(X,Y); J=-z~\f56  
    %       idx = r<=1; x{;{fMN1  
    %       z = nan(size(X)); 2{j$1EdI@-  
    %       n = [0  1  1  2  2  2  3  3  3  3]; ir6aV|ea!  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; W/UA%We3+L  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; R([zlw~B5  
    %       y = zernfun(n,m,r(idx),theta(idx)); bkdXBCBx?  
    %       figure('Units','normalized') "" UyfC[  
    %       for k = 1:10 rfonM~3?'  
    %           z(idx) = y(:,k); )M<+?R$];  
    %           subplot(4,7,Nplot(k)) \~8W0q.4M  
    %           pcolor(x,x,z), shading interp W_@ b. 1  
    %           set(gca,'XTick',[],'YTick',[]) /rpr_Xw}  
    %           axis square ,6]ID1o:y  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) #;8)UNc)}  
    %       end ,Mw93Kp Va  
    % VKPEoy8H  
    %   See also ZERNPOL, ZERNFUN2. 9"^ib9M  
    ,esEh5=Ir  
    79 4UY  
    %   Paul Fricker 11/13/2006 0y|1@CS  
    M IIa8 ;  
    fDDpR=  
    %1TKgNf  
    j)/Vtf  
    % Check and prepare the inputs: rd&d~R6  
    % ----------------------------- ;>2-  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) K\ Wzh;  
        error('zernfun:NMvectors','N and M must be vectors.') 5 Y&`ZJ  
    end N?m)u,6-l  
    IiniaVuQ  
    l1]N&jN{  
    if length(n)~=length(m) %( OP  [  
        error('zernfun:NMlength','N and M must be the same length.') #jBmWaP.  
    end s YTJ^Kd  
    K3vZ42n  
    @MibKj>o  
    n = n(:); D,=~7/g  
    m = m(:); 9wCgJ$te  
    if any(mod(n-m,2))  p[&J l  
        error('zernfun:NMmultiplesof2', ... =ttD5 p  
              'All N and M must differ by multiples of 2 (including 0).') t8Pf~v  
    end s:'>G;p  
    ]a.e;c-  
    PI L)(%X  
    if any(m>n) Oa:C'M b  
        error('zernfun:MlessthanN', ... &wU"6E  
              'Each M must be less than or equal to its corresponding N.') nZ=[6?  
    end 28v^j*=* \  
    "3jTU  
    kj2qX9 Ms  
    if any( r>1 | r<0 ) "{@[06|1  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') rbOJ;CK  
    end 4w|t|?  
    W2h*t"5W  
    fahQ^#&d`  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 9q0s  
        error('zernfun:RTHvector','R and THETA must be vectors.') |}^u<S8X  
    end YCP D+  
    bX[ZVE(L  
    7>im2"zm  
    r = r(:); i<m) s$u  
    theta = theta(:); q;R&valn  
    length_r = length(r); w)J-e gc  
    if length_r~=length(theta) RCa1S^.  
        error('zernfun:RTHlength', ... gWjYS#D  
              'The number of R- and THETA-values must be equal.') fqbWD)L]  
    end W`LG.`JW  
    |{|B70v3Co  
    512p\x@  
    % Check normalization: "&XhMw4  
    % -------------------- 7]So=% q  
    if nargin==5 && ischar(nflag) z z]~IxQ  
        isnorm = strcmpi(nflag,'norm'); 8=bn TJf  
        if ~isnorm ?$)a[UnqX  
            error('zernfun:normalization','Unrecognized normalization flag.') cb'Y a_  
        end q9x@Pc29d  
    else :?EZ\WM7  
        isnorm = false; ~:,}?9  
    end ga KZ4#  
    $C=XSuPNK  
    <x$nw'H9  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 8MW-JZ  
    % Compute the Zernike Polynomials 4D 5Wse  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% GYy8kp84  
    QDJ#zMxFD  
    (Of`VT3ZOA  
    % Determine the required powers of r: :xmj42w>^  
    % ----------------------------------- m{>"  
    m_abs = abs(m); x]Nx,tt  
    rpowers = []; g_PP 9S_?  
    for j = 1:length(n) .mwW`D  
        rpowers = [rpowers m_abs(j):2:n(j)]; (MqQ3ys  
    end |j/Y#.k;{0  
    rpowers = unique(rpowers); $EIKi'!8  
    73 1RqUR  
    i.K!;E>  
    % Pre-compute the values of r raised to the required powers, [+5g 9tBJ  
    % and compile them in a matrix: X:f5t`;  
    % ----------------------------- ' rXf  
    if rpowers(1)==0 w&}<b%l  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); \ eba9i^  
        rpowern = cat(2,rpowern{:}); 5`}za-  
        rpowern = [ones(length_r,1) rpowern]; DdISJWc'`5  
    else ADxje%!1O  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); e7n0=U0  
        rpowern = cat(2,rpowern{:}); FW2x  
    end ]) v61B  
    4uE )*1  
    <7T}b95  
    % Compute the values of the polynomials: L B.B w  
    % -------------------------------------- k!z.6di  
    y = zeros(length_r,length(n)); 2_bEo  
    for j = 1:length(n) @ZYJY  
        s = 0:(n(j)-m_abs(j))/2; 1W.oRD&8j/  
        pows = n(j):-2:m_abs(j); >sAaLR4  
        for k = length(s):-1:1 8t< X  
            p = (1-2*mod(s(k),2))* ... M4;M.zxJv  
                       prod(2:(n(j)-s(k)))/              ... (,mV6U%  
                       prod(2:s(k))/                     ... qb=%W  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... s7jNRY V  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); iVVR$uzhH  
            idx = (pows(k)==rpowers); ?|NsaW  
            y(:,j) = y(:,j) + p*rpowern(:,idx); LH`$<p2''r  
        end ETX>wZ  
         O\oRM2^u}  
        if isnorm $zhvI*0  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); jpXbFWgN  
        end ; X+.Ag  
    end ME)='~E  
    % END: Compute the Zernike Polynomials 4S+E% b|)  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | "b|Q  
    !z :j-gT3  
     MkdC*|  
    % Compute the Zernike functions: B1I{@\z0G  
    % ------------------------------ PxWH)4  
    idx_pos = m>0; k ^KpQ&n  
    idx_neg = m<0; p.MLKp-'  
    #PC*l\ )  
    EKw)\T1  
    z = y; kE+fdr\ T  
    if any(idx_pos) qv2J0'd'.  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); {w ,^Z[<  
    end 9J_vvq`%`  
    if any(idx_neg) S<*1b 6%D  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); V'za,.d-  
    end a~!7A ZT-O  
    <Vh5`-J  
    SEu:31k{o  
    % EOF zernfun C=K{;.  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    在线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  v;" pc)i  
    fydQaxCND  
    DDE还是手动输入的呢? MV?sr[V-oP  
    N)YoWA>#bF  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究