切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9338阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, m)tu~ neM  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, MbRTOH  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? _Vr- bpAf  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? yJ $6vmQ  
    |UXSUP @s  
    [I *_0  
    WywS1viD  
    9eMle?pF  
    function z = zernfun(n,m,r,theta,nflag) %10ONe}  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. x6UXd~ L e  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N xuK"pS  
    %   and angular frequency M, evaluated at positions (R,THETA) on the GTdoUSUq  
    %   unit circle.  N is a vector of positive integers (including 0), and HOP*QX8C%  
    %   M is a vector with the same number of elements as N.  Each element )^ah, ;(  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) B)JMughq_  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 5kiW@{m  
    %   and THETA is a vector of angles.  R and THETA must have the same $tmdE )"&  
    %   length.  The output Z is a matrix with one column for every (N,M) vE:*{G;Y  
    %   pair, and one row for every (R,THETA) pair. uHgq"e  
    % 9J3fiA_  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike >yC=@Uq+  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), d_!Z /M,  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral W+ S~__K  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, G4cgY|71  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized i>Q!5  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ;'7(gAE  
    % ` B)@  
    %   The Zernike functions are an orthogonal basis on the unit circle. /$c87\  
    %   They are used in disciplines such as astronomy, optics, and YYe G9yR  
    %   optometry to describe functions on a circular domain. m/=nz.  
    % NrqJf-ldo  
    %   The following table lists the first 15 Zernike functions. +{:uPY#1  
    % 53i]Q;k[  
    %       n    m    Zernike function           Normalization }DhqzKl  
    %       -------------------------------------------------- Z1HH0{q-A  
    %       0    0    1                                 1 QLd*f[n  
    %       1    1    r * cos(theta)                    2 AF'<  
    %       1   -1    r * sin(theta)                    2 {MgRi 7  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) Q~,Mzt"}W  
    %       2    0    (2*r^2 - 1)                    sqrt(3) up5f]:!  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) p!UR;xHI\  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) (4YLUN&1O$  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) b$_81i  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) WNyW1?"  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) \,#$,dUXD  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) c{M ,K  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) (/]'e}  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) |}=eY?iXo  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) nR_Z rm  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) z< %P"   
    %       -------------------------------------------------- Ge q]wv8  
    % 9!( 8o  
    %   Example 1: Aw#<:6-  
    % 5u!\c(TJ+  
    %       % Display the Zernike function Z(n=5,m=1) p@tg pFt  
    %       x = -1:0.01:1; h(|T.  
    %       [X,Y] = meshgrid(x,x); ?N Mk|+  
    %       [theta,r] = cart2pol(X,Y); T fLqxioqZ  
    %       idx = r<=1; 4XpWDfa.}  
    %       z = nan(size(X)); c1f"z1Z  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); a-NTA  
    %       figure 2*Qv6 :qK  
    %       pcolor(x,x,z), shading interp zgb$@JC  
    %       axis square, colorbar 94tfR$W;-  
    %       title('Zernike function Z_5^1(r,\theta)') As,`($=  
    % Y1PR?c Q  
    %   Example 2: y'2|E+*V  
    % '`jGr+K,wU  
    %       % Display the first 10 Zernike functions \g}]u(zg%  
    %       x = -1:0.01:1; y7HFmGM  
    %       [X,Y] = meshgrid(x,x); f?5>V   
    %       [theta,r] = cart2pol(X,Y); (?4%Xtul1  
    %       idx = r<=1; 9?l a5  
    %       z = nan(size(X));  t`o"K  
    %       n = [0  1  1  2  2  2  3  3  3  3]; n>'(d*[e&  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 7]VR)VAM  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; @A,8 >0+  
    %       y = zernfun(n,m,r(idx),theta(idx)); :kgh~mx5LF  
    %       figure('Units','normalized') iH(7.?.r  
    %       for k = 1:10 {++ EX2  
    %           z(idx) = y(:,k); OUBGbld  
    %           subplot(4,7,Nplot(k)) &=@{`2&  
    %           pcolor(x,x,z), shading interp io#}z4"'qY  
    %           set(gca,'XTick',[],'YTick',[]) Ln>!4i+-B)  
    %           axis square D$ds[if$U,  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) C$w%! jE  
    %       end {nmG/dn {  
    % !ku}vTe  
    %   See also ZERNPOL, ZERNFUN2. ('&lAn  
    a#p+.)Wm  
    Fd9[Pe@?`  
    %   Paul Fricker 11/13/2006 Nv5^2^Sc=  
    D \ rns+  
    x{R440"  
    ]Uv,}W  
    i~u4v3r=  
    % Check and prepare the inputs: w.m8SvS&b  
    % ----------------------------- 0z=KnQx"4  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) v-8>@s jy8  
        error('zernfun:NMvectors','N and M must be vectors.') Z '5itN^  
    end ASXGM0t  
    %2 r ~  
    E*'YxI  
    if length(n)~=length(m) 3BM z{ny=  
        error('zernfun:NMlength','N and M must be the same length.') b**vUt\  
    end p(yv  
    \[G'cE  
    JH?ohA  
    n = n(:); LW1 4 'A}  
    m = m(:); s#$t!F??9  
    if any(mod(n-m,2)) /H'- }C  
        error('zernfun:NMmultiplesof2', ... gPMR,TU  
              'All N and M must differ by multiples of 2 (including 0).') IyO 0~Vx>  
    end vj?{={Y  
    T}Tv}~!f  
    PZ]tl  
    if any(m>n) }3z3GU8Q-  
        error('zernfun:MlessthanN', ... k0Vri$x  
              'Each M must be less than or equal to its corresponding N.') v`4w=!4  
    end fN2Sio:  
    N'b GL%  
    !S?Fz]  
    if any( r>1 | r<0 ) BK!Yl\I<  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') bm#5bhX\|  
    end !oz{XWE  
    J4qk^1m.  
    S*l/ Sa@  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Cmx<>7fN  
        error('zernfun:RTHvector','R and THETA must be vectors.') uEgR>X>  
    end $ #=d@Nw_  
    i#:To |\u  
    "leSQ  
    r = r(:); "~Fg-{jM%  
    theta = theta(:); \S h/<z  
    length_r = length(r); 19fa7E<  
    if length_r~=length(theta) >nkVZ;tL  
        error('zernfun:RTHlength', ... KS_+R@3Z  
              'The number of R- and THETA-values must be equal.') 8~U ^G[!  
    end $:s@nKgnD~  
    uyX % &r  
    3,i j@P  
    % Check normalization: +s#%\:Y M  
    % -------------------- ~W @dF~r  
    if nargin==5 && ischar(nflag) b`e_}^,c  
        isnorm = strcmpi(nflag,'norm'); J`g5Qn @S  
        if ~isnorm 21!X[) r  
            error('zernfun:normalization','Unrecognized normalization flag.') u(zgKoF9A  
        end :'DX M{  
    else 5 3pW:`  
        isnorm = false; hk !=ZE3  
    end APl]EV" l  
    T#*,ME7|m  
    S$b)X"h  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% :^(y~q?  
    % Compute the Zernike Polynomials 1(;{w +nM  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 8R)K$J$Hm  
    H:~bWd'iz  
    fDr$Wcd~  
    % Determine the required powers of r: YI0l&'7  
    % ----------------------------------- %Za}q]?  
    m_abs = abs(m); :s_o'8z7L  
    rpowers = []; =Ji[ ;wy@  
    for j = 1:length(n) ztU"CRa8  
        rpowers = [rpowers m_abs(j):2:n(j)]; ltOS()[X  
    end 7"| Qmyb  
    rpowers = unique(rpowers); 6zM:p/  
    EUSM4djL  
    j+3\I>  
    % Pre-compute the values of r raised to the required powers, F,vkk{Z>  
    % and compile them in a matrix: 7fq Q  
    % ----------------------------- [w}-)&c  
    if rpowers(1)==0 N:|``n>  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ^.J_w  
        rpowern = cat(2,rpowern{:}); Kjbk zc1  
        rpowern = [ones(length_r,1) rpowern]; [xGwqa03  
    else 4lPO*:/  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); w*{{bISw|  
        rpowern = cat(2,rpowern{:}); _V3z!aI  
    end Fepsa;\sU  
    Ep-bx&w+  
    p+g=Z<?`  
    % Compute the values of the polynomials: #j7&2L  
    % -------------------------------------- oY~q^Y  
    y = zeros(length_r,length(n)); TQb/lY9*  
    for j = 1:length(n) ";dS~(~  
        s = 0:(n(j)-m_abs(j))/2; F7' MoH  
        pows = n(j):-2:m_abs(j); $mK;{9Z  
        for k = length(s):-1:1 6}Y==GP t  
            p = (1-2*mod(s(k),2))* ... *& w/*h$!  
                       prod(2:(n(j)-s(k)))/              ... _'!qOt7D  
                       prod(2:s(k))/                     ... Lvt3S .l  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... .S:(O+#Gm  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); b B#QIXY/L  
            idx = (pows(k)==rpowers); 0J?443A Y  
            y(:,j) = y(:,j) + p*rpowern(:,idx); `[$>S  
        end <IIz-6*V  
         U _pPI$ =  
        if isnorm Lp%J:ogV`  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); p+Q9?9  
        end F u5zj\0J  
    end B _ J2Bf  
    % END: Compute the Zernike Polynomials m>Z3p7!N}  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 8'E7Uj  
    K!AA4!eUzM  
    ~_0XG0oA  
    % Compute the Zernike functions: N5W!(h)  
    % ------------------------------ u~,hT Y(%  
    idx_pos = m>0;  !'!\>x$  
    idx_neg = m<0; "KF]s.  
    F,as>X#  
    3\ ]j4*i!  
    z = y; 5(2 C  
    if any(idx_pos) >'#vC]@  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); .|CoueH  
    end 'uzHI@i  
    if any(idx_neg) HjzAFXRG  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); (mbm',%-(  
    end =,6X_m  
    i{9.bpp/  
    `_.:O,^n^  
    % EOF zernfun z(,j)".  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  MXDCOe~07  
    P1^|r}  
    DDE还是手动输入的呢? Wl+spWqW  
    )%kiM<})  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究