切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9501阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, HUH=Y;  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, p)`JVq,H/B  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? G"]'`2.m  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? :|bPr_&U$  
    gU:jx  
    Onao'sjY  
    yd $y\pN=<  
    sHNt>5p  
    function z = zernfun(n,m,r,theta,nflag) xpae0vw  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. UWz<~Vy  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 09r.0Ks  
    %   and angular frequency M, evaluated at positions (R,THETA) on the nL9m{$Zv  
    %   unit circle.  N is a vector of positive integers (including 0), and #~"jo[  
    %   M is a vector with the same number of elements as N.  Each element CAk.2C/  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) kjH0u$n  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, C.eZcNJG  
    %   and THETA is a vector of angles.  R and THETA must have the same +]G;_/[2  
    %   length.  The output Z is a matrix with one column for every (N,M) c8h 9  
    %   pair, and one row for every (R,THETA) pair. V<b"jCXI  
    % 72aj4k]^  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike xGjEEBL  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), rc"yEI-``"  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral  5bk5EE`  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, :%R3( &  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized D9h\=[%e  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 6H@=O 1W  
    %  1r$q $\  
    %   The Zernike functions are an orthogonal basis on the unit circle. J}BS/Tr}=  
    %   They are used in disciplines such as astronomy, optics, and _|3n h;-m  
    %   optometry to describe functions on a circular domain. o`G@Je_}x  
    % xRb-m$B}L  
    %   The following table lists the first 15 Zernike functions. {C [7V{4(%  
    % > #SQDVFf  
    %       n    m    Zernike function           Normalization HA| YLj?|g  
    %       -------------------------------------------------- vNP,c]:%  
    %       0    0    1                                 1 )tB mSVprl  
    %       1    1    r * cos(theta)                    2 2|+**BxHD  
    %       1   -1    r * sin(theta)                    2 5E$)Ip  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) Lf3:' n  
    %       2    0    (2*r^2 - 1)                    sqrt(3) Gt'%:9r  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) ip~PF5  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) J?HYN%  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) vV8}>  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) MbYAK-l.h  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) m3,i{  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) -[Q%Vv!8  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) RV-7y^[]^  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) -3A#a_fu  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) B+ +:7!  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) |:C=j/f   
    %       -------------------------------------------------- ,u/GA<'#M  
    % El ,p}Bi.  
    %   Example 1: al1Uf]xh  
    % ]oj 2  
    %       % Display the Zernike function Z(n=5,m=1) [/xw5rO%  
    %       x = -1:0.01:1; r/SV.` k  
    %       [X,Y] = meshgrid(x,x); dx?4)lb  
    %       [theta,r] = cart2pol(X,Y); "YM)bc  
    %       idx = r<=1; R["_Mff  
    %       z = nan(size(X)); npZ=x-ce  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); b k 30d  
    %       figure ULj'DzlfH  
    %       pcolor(x,x,z), shading interp ex1bjM7  
    %       axis square, colorbar 1 %K^(J;  
    %       title('Zernike function Z_5^1(r,\theta)') [;%qxAB/_  
    % #)z_TM07P  
    %   Example 2: lUbQ@7a<'  
    % H1]G<N3  
    %       % Display the first 10 Zernike functions (=,p"3^  
    %       x = -1:0.01:1; VU9w2/cM  
    %       [X,Y] = meshgrid(x,x); s%GhjWZS  
    %       [theta,r] = cart2pol(X,Y); CNQ>J`4  
    %       idx = r<=1; 3+rud9T  
    %       z = nan(size(X)); 6"b =aPTi  
    %       n = [0  1  1  2  2  2  3  3  3  3]; 0& 54xP  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3];  1)U%p  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; @|sDb?J  
    %       y = zernfun(n,m,r(idx),theta(idx)); uDbz`VpK  
    %       figure('Units','normalized') N;Wm{~Zhb  
    %       for k = 1:10 /z9oPIJ=*  
    %           z(idx) = y(:,k); _gxI=EYi  
    %           subplot(4,7,Nplot(k)) sE{A~{a`  
    %           pcolor(x,x,z), shading interp bd_&=VLTC  
    %           set(gca,'XTick',[],'YTick',[]) x8+W9i0[1  
    %           axis square V*U{q%p(  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) eTw sh]  
    %       end kWZ?86!  
    % 0rP`BK|  
    %   See also ZERNPOL, ZERNFUN2. Sxa+"0d6  
    E]/` JI'%  
    k` cz$>  
    %   Paul Fricker 11/13/2006 nO.RB#I$F  
    q$7SJ.pF  
    l.NV]up +  
    b=(?\  
    >VIb|YA  
    % Check and prepare the inputs: ?VaWOwWI  
    % ----------------------------- qVjl8%)  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) {]ie|>'=C  
        error('zernfun:NMvectors','N and M must be vectors.') lC):$W  
    end MZ]#9/  
    6HeZ<.d&  
    %iMRJ}8(7  
    if length(n)~=length(m) 8$4@U;Vh;  
        error('zernfun:NMlength','N and M must be the same length.') tn>z%6;&Z  
    end f}qR'ognUu  
    {kVhht]X  
    9=D09@A%e  
    n = n(:); W(.q. Sx>  
    m = m(:); a$-:F$z  
    if any(mod(n-m,2)) KVQ|l,E, /  
        error('zernfun:NMmultiplesof2', ... AM?62  
              'All N and M must differ by multiples of 2 (including 0).') <Wqk5mR  
    end RHe'L36W  
    cG{>[Lf  
    fg}&=r  
    if any(m>n) ` 9iB`<  
        error('zernfun:MlessthanN', ... R{N9'2l:  
              'Each M must be less than or equal to its corresponding N.') P4H%pm{-  
    end kIR?r0_<G6  
    BTi:Bcv k  
    iY_E"$}P  
    if any( r>1 | r<0 ) zPWJ=T@N  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') k?[|8H~2C  
    end 1j4(/A  
    n_ORD@$]  
    _\mMgZu  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ?7n(6kmj4Q  
        error('zernfun:RTHvector','R and THETA must be vectors.') Wg\`!T  
    end yhwwF n\  
    x.J% c[Q8  
    N i\*<:_  
    r = r(:); {tqLH2cO  
    theta = theta(:); (rDB|kc^7  
    length_r = length(r); 6<E4?<O%  
    if length_r~=length(theta) 3JnBKh\n  
        error('zernfun:RTHlength', ... BM6 J  
              'The number of R- and THETA-values must be equal.') .~>Uh3S  
    end LY> -kz]  
    7NG^I6WP-  
    !w+A3Z>V  
    % Check normalization: r0 mXRZC  
    % -------------------- #A&(b}#:o  
    if nargin==5 && ischar(nflag) WcE{1&PXx  
        isnorm = strcmpi(nflag,'norm'); ctqXzM `  
        if ~isnorm ~QVN^8WPg  
            error('zernfun:normalization','Unrecognized normalization flag.') (+_i^SqK  
        end Nhq& Sn2  
    else "'M>%m u  
        isnorm = false; ze5Hg'f  
    end YbX3_N&  
    MJxTzQE  
    RfM uWo:  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% <[N"W82p  
    % Compute the Zernike Polynomials `F)Q=  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% EKwA1,Xz  
    7x,c)QES`  
    wTT_jyH)  
    % Determine the required powers of r: s*blZdP  
    % ----------------------------------- +s(JutC  
    m_abs = abs(m); N|G=n9p  
    rpowers = []; 7hQf T76h  
    for j = 1:length(n) <M//zXa  
        rpowers = [rpowers m_abs(j):2:n(j)]; O^tH43C  
    end Z33&FUU  
    rpowers = unique(rpowers); @I`X{oAA  
    OIT9.c0h  
    o\Ocu>:  
    % Pre-compute the values of r raised to the required powers, lP9XqQ(  
    % and compile them in a matrix: A(!nT=0o  
    % ----------------------------- {u/G!{N$  
    if rpowers(1)==0 =x8F!W}Bt<  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); YJioR4+q  
        rpowern = cat(2,rpowern{:}); *)PCPYB^  
        rpowern = [ones(length_r,1) rpowern]; %j '_I\  
    else co <ATx  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false);  p^=>N9  
        rpowern = cat(2,rpowern{:}); .iDxq8l  
    end %D::$,;<<  
    Y6_%HYI$  
    uU&,KEH  
    % Compute the values of the polynomials: ;H%&Jht  
    % -------------------------------------- ^>?E1J3u  
    y = zeros(length_r,length(n)); XET'XJWF%  
    for j = 1:length(n) _;8aiZt|u  
        s = 0:(n(j)-m_abs(j))/2; _.Ey_K_1  
        pows = n(j):-2:m_abs(j); dr25;L? B  
        for k = length(s):-1:1 }7`HJ>+m)H  
            p = (1-2*mod(s(k),2))* ... }Pu|%\  
                       prod(2:(n(j)-s(k)))/              ... *6Ojv- G|5  
                       prod(2:s(k))/                     ... 81O\BO.T  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... mPl2y3m%  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); f?-=&||f78  
            idx = (pows(k)==rpowers); H(eGqVAq,  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 5 IK -V)  
        end \ 2cI=Qf  
         Jd].e=]pN  
        if isnorm 3ug|H  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ^LA.Y)4C2%  
        end qb rf;`  
    end r6B\yH2  
    % END: Compute the Zernike Polynomials Iyo ey  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Lk%u(duU^  
    A5d(L4Q]a(  
    [1I>Bc&o*  
    % Compute the Zernike functions: /}_OCuJJ,  
    % ------------------------------ iSm5k:7  
    idx_pos = m>0; ) h*)_7  
    idx_neg = m<0; .zm'E<  
    <tT*.nM\  
    1P"akc  
    z = y; &VY(W{\eY  
    if any(idx_pos) .EOHkhn  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); =Mg/m'QI  
    end &4aY5y`8+f  
    if any(idx_neg) oD5VE  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); s_(%1/{  
    end /0w?"2-  
    ^bVY&iXNu  
    ##%R|P3  
    % EOF zernfun <Pg]V:=g'  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  *]%{ttR~  
    x$9UHEb kM  
    DDE还是手动输入的呢? xW*L^97 ;  
    '+BcPB?E  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究