切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9480阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, 02SUyv(Mt  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, s&c^Wr  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? / {A]('t  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? C5eol &  
    )Dv"seH.  
    !{SEm"J^  
    //WgK{Mt  
    jL 2f74?1  
    function z = zernfun(n,m,r,theta,nflag) YGxdYwBwf  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle.  R z[-  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 7C&`i}/t  
    %   and angular frequency M, evaluated at positions (R,THETA) on the b?r0n]  
    %   unit circle.  N is a vector of positive integers (including 0), and s$RymM  
    %   M is a vector with the same number of elements as N.  Each element q6osRK*20  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) `pLp+#1 `R  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, {"@Bf<J#  
    %   and THETA is a vector of angles.  R and THETA must have the same 0ai4%=d-  
    %   length.  The output Z is a matrix with one column for every (N,M) 9%)'QDVGLf  
    %   pair, and one row for every (R,THETA) pair. F`Pu$>8C  
    % &*0!${ B  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike X.JB&~/rO  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), bf}r8$,  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral /0(4wZe~?  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, BL]^+KnP  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized _Jx?m  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 0V1kZ.  
    %  *A_  
    %   The Zernike functions are an orthogonal basis on the unit circle. s  n?  
    %   They are used in disciplines such as astronomy, optics, and 8^M5u>=t;  
    %   optometry to describe functions on a circular domain. {VI%]n{M  
    % ;1"K79  
    %   The following table lists the first 15 Zernike functions. 8fdOV&&D~i  
    % tl#hCy  
    %       n    m    Zernike function           Normalization J,IOp-  
    %       -------------------------------------------------- ytJ |jgp'  
    %       0    0    1                                 1 jkfI,T  
    %       1    1    r * cos(theta)                    2 >.B+xn =  
    %       1   -1    r * sin(theta)                    2 z.{y VQE  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) r"rEVx#1=  
    %       2    0    (2*r^2 - 1)                    sqrt(3) ph69u #Og  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) J@1(2%)|Z  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) {5*+  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) sX@e1*YE_  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) gzw[^d  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) o6{XT.z5qx  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) B[y1RI|9  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) +K+ == mO&  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) ib& |271gG  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) SqEO ] ~  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) :?lSa6de  
    %       -------------------------------------------------- 6Q\n<&,{  
    % hI/p9 `w  
    %   Example 1: e _,_:|t  
    % j^LnHVHk1  
    %       % Display the Zernike function Z(n=5,m=1)  6W3}6p  
    %       x = -1:0.01:1; aHb,4 wY  
    %       [X,Y] = meshgrid(x,x); Ws(BouJ  
    %       [theta,r] = cart2pol(X,Y); }~\J7R'  
    %       idx = r<=1; 0E++  
    %       z = nan(size(X)); i++ F&r[  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); aIkxN&  
    %       figure # VR}6Jv  
    %       pcolor(x,x,z), shading interp ^QXUiXzl  
    %       axis square, colorbar cbS8~Xmj  
    %       title('Zernike function Z_5^1(r,\theta)') vn|X,1o  
    % f *)t<1f  
    %   Example 2: igz&7U8gg  
    % :%s9<g;-h_  
    %       % Display the first 10 Zernike functions c?wFEADn  
    %       x = -1:0.01:1; <$ '#@jW  
    %       [X,Y] = meshgrid(x,x); bp5hS/A^1w  
    %       [theta,r] = cart2pol(X,Y); .i`+}@iA  
    %       idx = r<=1; t$s)S>  
    %       z = nan(size(X)); x37r{$2  
    %       n = [0  1  1  2  2  2  3  3  3  3]; J&h 3,  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 8B\,*JGY2  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; $k}+,tHtJO  
    %       y = zernfun(n,m,r(idx),theta(idx)); R(x% <I  
    %       figure('Units','normalized') r\L:JTZ$  
    %       for k = 1:10 & yw-y4 =  
    %           z(idx) = y(:,k); #r0A<+t{T  
    %           subplot(4,7,Nplot(k)) gSC8qip  
    %           pcolor(x,x,z), shading interp M*@MkN*u&  
    %           set(gca,'XTick',[],'YTick',[]) BXm{x6\  
    %           axis square Ik~5j(^E-  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) qOkw6jfluh  
    %       end c[ =9Z;|  
    % \$9S_z  
    %   See also ZERNPOL, ZERNFUN2. ,{YC|uB  
    >>&~;PG[  
    <o p !dS  
    %   Paul Fricker 11/13/2006 7!Fu.Ps >  
    |RHX2sso  
    7dxY07 yu  
    RkC?(p  
    {T.$xiR  
    % Check and prepare the inputs: VSM%<-iQ  
    % ----------------------------- \5X34'7   
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) I]TL#ywF   
        error('zernfun:NMvectors','N and M must be vectors.') E&]S No<  
    end %_} #IS1  
    ?c(f6p?%  
    sE]eIN  
    if length(n)~=length(m) -3ha LdRk6  
        error('zernfun:NMlength','N and M must be the same length.') b>;5#OQfn  
    end SyTcp?H  
    YW>|gE  
    vFy /  
    n = n(:); |0mh*+i  
    m = m(:); )V~<8/)  
    if any(mod(n-m,2)) 'g( R4deCX  
        error('zernfun:NMmultiplesof2', ... dqPJ 2j $\  
              'All N and M must differ by multiples of 2 (including 0).') us$~6  
    end Tf*X\{"  
    8={(Vf6  
    F;`es%8  
    if any(m>n) Sd}fse  
        error('zernfun:MlessthanN', ... -O. MfI+  
              'Each M must be less than or equal to its corresponding N.') hg=\L5R  
    end U{{RRK|  
    (#7pGGp*E  
    pcm|  
    if any( r>1 | r<0 ) %k1*&2"1#  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') YIt:_][*  
    end &# `d8}3D  
    +qjW;]yxP  
    Yb414K  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) \fh.D/@  
        error('zernfun:RTHvector','R and THETA must be vectors.') a]$KI$)e  
    end cXtL3T+  
    2>?GD@GE  
    Hm%[d;Z7  
    r = r(:); r'w5i1C+  
    theta = theta(:); />)>~_-3  
    length_r = length(r); v" y e\ZG  
    if length_r~=length(theta) ,T"(97"  
        error('zernfun:RTHlength', ... aD 24)?db-  
              'The number of R- and THETA-values must be equal.') +=U`  
    end "fS9Nx3  
    CM8WI~  
    V|<qO-#.  
    % Check normalization: {n #  
    % -------------------- j&[63XSe  
    if nargin==5 && ischar(nflag) vqv(KsD+::  
        isnorm = strcmpi(nflag,'norm'); P4Wd=Xoz6  
        if ~isnorm _/ P"ulNb  
            error('zernfun:normalization','Unrecognized normalization flag.') g`3g#h$  
        end l.fNkLC#  
    else <P$b$fh/  
        isnorm = false; 5#q ^lL  
    end Q Gn4AW_  
    q>!T*BQ  
    9]7+fu  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% DlfXzKn;  
    % Compute the Zernike Polynomials &> }MoB  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% A7~)h}~   
    T|ZT&x$z  
    T JLz^%t  
    % Determine the required powers of r: *E+) mB"~  
    % ----------------------------------- 4$SW~BpQ  
    m_abs = abs(m); H*;J9{  
    rpowers = []; m S!/>.1[  
    for j = 1:length(n) ely&'y!  
        rpowers = [rpowers m_abs(j):2:n(j)]; w[:5uo(  
    end \ 1ys2BX  
    rpowers = unique(rpowers); ,Sghi&Ky  
    <$,i Yx   
    oPm1`x  
    % Pre-compute the values of r raised to the required powers, >L[,.}(9  
    % and compile them in a matrix: :mL\KQ  
    % ----------------------------- 9Ni$nZN  
    if rpowers(1)==0 Y2<Z"D`  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); G'}%m;-mt  
        rpowern = cat(2,rpowern{:}); 3l5q?"$  
        rpowern = [ones(length_r,1) rpowern]; rbQA6_U 5A  
    else r$G;^  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); yd#4b`8U`  
        rpowern = cat(2,rpowern{:}); P8z+ +h  
    end x\I9J4Q  
    q\d'}:kfu  
    oV,>u5:B  
    % Compute the values of the polynomials: pd>EUdbrp&  
    % -------------------------------------- h#;fBQ]   
    y = zeros(length_r,length(n)); n3~xiQ'  
    for j = 1:length(n) ~A>3k2 N/e  
        s = 0:(n(j)-m_abs(j))/2; V u;tU.  
        pows = n(j):-2:m_abs(j); (O /hu3  
        for k = length(s):-1:1 |Z#) 1K  
            p = (1-2*mod(s(k),2))* ... *kZJ  
                       prod(2:(n(j)-s(k)))/              ... [4PG_k[uTJ  
                       prod(2:s(k))/                     ... B@.U\.  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... +%'0;  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); mZMLDs:  
            idx = (pows(k)==rpowers); qhLe[[>  
            y(:,j) = y(:,j) + p*rpowern(:,idx); EDL<J1%  
        end f<0-'fGJd  
         e,:@c3I  
        if isnorm +#'exgGU^[  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); <P g.N  
        end \HTXl]  
    end GMB%A  
    % END: Compute the Zernike Polynomials "1h|1'S50?  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 3u+~!yz  
    |CStw"Fog  
    /$+ifiFT  
    % Compute the Zernike functions: W#-M|  
    % ------------------------------ 6Dw[n   
    idx_pos = m>0; jc)D*Cf  
    idx_neg = m<0; _2U1$0xK  
    GJ{]}fl  
    7NoB   
    z = y; 4`!(M]u=  
    if any(idx_pos) WElB,a-RCp  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 0m51nw~B  
    end YI&^j2  
    if any(idx_neg) M6y:ze  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ~(4cnD)BO  
    end iMJjWkk  
    'OkF.bs  
    Ed_A#@V  
    % EOF zernfun ,#D &*  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  K8ecSs}}J  
    'Oyz/P(p  
    DDE还是手动输入的呢? {%)bxk6  
    ~(~fuDT~O  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究