切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9405阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, %dq |)r  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, %B04|Q  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? Df=Xbf>jt9  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? o=Ia{@   
    !Er)|YP  
    @'JA3V}  
    C ,#D4  
    EsjZ;D, c(  
    function z = zernfun(n,m,r,theta,nflag) n*A"}i`ix  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. ?pkGejcQ  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N H*h4D+Kxv  
    %   and angular frequency M, evaluated at positions (R,THETA) on the '%KaAi$  
    %   unit circle.  N is a vector of positive integers (including 0), and @P6*4W  
    %   M is a vector with the same number of elements as N.  Each element I0}G, q  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) j&Y{ CFuZ  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, Io]KlR@!T  
    %   and THETA is a vector of angles.  R and THETA must have the same mxmj  
    %   length.  The output Z is a matrix with one column for every (N,M) [ Ru ( H  
    %   pair, and one row for every (R,THETA) pair. NJPp6RZ%  
    % >JT^[i8[  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike "1ov<  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), eOs4c`  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral v6O5n(5,,  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, l#rr--];  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized `W'S'?$  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. _TjRvILC  
    % T!QAcO  
    %   The Zernike functions are an orthogonal basis on the unit circle. ,*g.?q@W2  
    %   They are used in disciplines such as astronomy, optics, and 0EBHR Y_F  
    %   optometry to describe functions on a circular domain. :;N2hnHoG  
    % j&"GE':Y  
    %   The following table lists the first 15 Zernike functions. Q=F^Y f  
    % f- ~]  
    %       n    m    Zernike function           Normalization .*nr3dY  
    %       -------------------------------------------------- "hLm wz|a  
    %       0    0    1                                 1 UaM&/K9  
    %       1    1    r * cos(theta)                    2 RW^e#z>m"E  
    %       1   -1    r * sin(theta)                    2 |!*abc\`(`  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) R|R3Ob.e  
    %       2    0    (2*r^2 - 1)                    sqrt(3) IZ9* '0Z  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) `l+9g"q  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) bipA{VU  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) =7Sw29u<  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ew*;mQd  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) u^+ (5|  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10)  #-K,,"  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 8QN/D\uq  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) o;'-^ LJ  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) )KcY<K  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) V*1-wg5>  
    %       -------------------------------------------------- tS6r4d%~=  
    % A5%cgr% 6  
    %   Example 1: Vl0Y'@{  
    % 7WEoyd  
    %       % Display the Zernike function Z(n=5,m=1) CAbT9W z&  
    %       x = -1:0.01:1; Wo<kKkx2  
    %       [X,Y] = meshgrid(x,x); ms/Q-  
    %       [theta,r] = cart2pol(X,Y); ,Zb_Pu   
    %       idx = r<=1; )C%S`d<%,  
    %       z = nan(size(X)); \\$wg   
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); @S?D}myD  
    %       figure Z]=9=S| .4  
    %       pcolor(x,x,z), shading interp .oz(,$CS"  
    %       axis square, colorbar 1L<X+,]@  
    %       title('Zernike function Z_5^1(r,\theta)') q]OgT4ly  
    %  4B'-tV  
    %   Example 2: }Fb966 $  
    % I_On0@%T5b  
    %       % Display the first 10 Zernike functions !l~3K(&4  
    %       x = -1:0.01:1; T*zy^we  
    %       [X,Y] = meshgrid(x,x); J|N>}di  
    %       [theta,r] = cart2pol(X,Y); -|`E'b81  
    %       idx = r<=1; *sq+ Vc(  
    %       z = nan(size(X)); P*9L3R*=N  
    %       n = [0  1  1  2  2  2  3  3  3  3]; Pc=:j(  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; l#;o^H i  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; A?Gk8  
    %       y = zernfun(n,m,r(idx),theta(idx));  @po|07  
    %       figure('Units','normalized') &1ss @-  
    %       for k = 1:10 Gkz~x Qy1T  
    %           z(idx) = y(:,k); A3zO&4f ]  
    %           subplot(4,7,Nplot(k)) U$T (R2@  
    %           pcolor(x,x,z), shading interp D]WU,a[$Bc  
    %           set(gca,'XTick',[],'YTick',[]) eLyaTOZadu  
    %           axis square o Np4> 7Lk  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ^li(q]g1!  
    %       end [C(>e0r  
    % 02~GT_)$^  
    %   See also ZERNPOL, ZERNFUN2. za [;d4<}k  
    o]m56  
    z)&GF$*  
    %   Paul Fricker 11/13/2006 i0*6o3h  
    F=8gtk|U  
    ;Ak 6*Sr  
    vAo|o *  
    ]|)M /U *  
    % Check and prepare the inputs: C_ (s  
    % ----------------------------- ) GF>]|CG  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) L Olj8T8Z  
        error('zernfun:NMvectors','N and M must be vectors.') eVujur$P  
    end ,: 4+hJ<q  
    %XK<[BF  
    `~{ 0  
    if length(n)~=length(m) il >XV>  
        error('zernfun:NMlength','N and M must be the same length.') #;9n_)  
    end _3 3YgO  
    A_<1}8{L  
    HLp'^  
    n = n(:); tCirdwmg  
    m = m(:); rc)vVv  
    if any(mod(n-m,2)) vV 7L :>  
        error('zernfun:NMmultiplesof2', ... "xY]&  
              'All N and M must differ by multiples of 2 (including 0).') D-4\AzIb  
    end ro*$OLc/  
    p_Y U!j_VE  
    qW'5Zk  
    if any(m>n) ?ZlN$h^  
        error('zernfun:MlessthanN', ... 7T-}oNaJA\  
              'Each M must be less than or equal to its corresponding N.') )Qx&m}  
    end :h60  
    `]\:%+-  
    8nOent0a  
    if any( r>1 | r<0 ) ctWH?b/ua  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 5W~-|8m  
    end coFQu ; i  
    =}Xw}X+[WY  
    ejI nJ  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) o5 |P5h  
        error('zernfun:RTHvector','R and THETA must be vectors.') 3QO*1P@q  
    end i>n)T  
    r-k,4Yz  
    3# r` e  
    r = r(:); Uv"O'Z  
    theta = theta(:); r2;)VS  
    length_r = length(r); VN!+r7w'  
    if length_r~=length(theta) T|FF&|Pk  
        error('zernfun:RTHlength', ... !$|h[ct  
              'The number of R- and THETA-values must be equal.') [_,Gk]F=  
    end 'Xw> ?[BB  
    (jB_uMuS  
    qGPIKu  
    % Check normalization: R2!_)Rpf  
    % -------------------- A*_ |/o  
    if nargin==5 && ischar(nflag) 3a\.s9A "  
        isnorm = strcmpi(nflag,'norm'); li~#6$  
        if ~isnorm Q]oCzSi  
            error('zernfun:normalization','Unrecognized normalization flag.') `SGI Qrb  
        end ww(.   
    else gm}[`GMU  
        isnorm = false; /~B \1  
    end 2or!v^^u  
    xfJ&11fG2  
    skR I \  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% >[|Y$$  
    % Compute the Zernike Polynomials TB  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% YoEL|r|  
    x9{&rl dC  
    R" '=^  
    % Determine the required powers of r: C].w)B  
    % ----------------------------------- ,Xt!dT-  
    m_abs = abs(m); k%S;N{Qh@  
    rpowers = []; ZyQ+}rO  
    for j = 1:length(n) mrvPzoF,]  
        rpowers = [rpowers m_abs(j):2:n(j)]; KJ&~z? X  
    end jWL;ElM'  
    rpowers = unique(rpowers); uEPdL':}2  
    DeTD.)pS  
    4RXF.kJ3=  
    % Pre-compute the values of r raised to the required powers, v)AadtZ0d  
    % and compile them in a matrix: t9yjfyk9W  
    % ----------------------------- >u)DuZXj  
    if rpowers(1)==0 -<GSHckD  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); onOvE Y|R  
        rpowern = cat(2,rpowern{:}); Skn2-8;10  
        rpowern = [ones(length_r,1) rpowern]; !WD~zZ|  
    else CF?TW  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); jLLZZPBK  
        rpowern = cat(2,rpowern{:}); kbF+aS  
    end 3S_H hvB  
    5QoU&Hv  
    _g#v*7o2@  
    % Compute the values of the polynomials: qIIl,!&}A  
    % -------------------------------------- hz8Z)xjJ V  
    y = zeros(length_r,length(n)); lh?TEQ  
    for j = 1:length(n) oA1d8*i^E  
        s = 0:(n(j)-m_abs(j))/2; 9/nS?>11  
        pows = n(j):-2:m_abs(j); DKGZm<G>  
        for k = length(s):-1:1 7<ZCeM2x  
            p = (1-2*mod(s(k),2))* ... $sX X6K),  
                       prod(2:(n(j)-s(k)))/              ... ;:)?@IuSy  
                       prod(2:s(k))/                     ... )(&WhZc Z  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... "uthFE  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 0,x<@.pW  
            idx = (pows(k)==rpowers); )K+ Tvx3(m  
            y(:,j) = y(:,j) + p*rpowern(:,idx); EhBYmc" &  
        end d^Jf(NE0Yo  
         AX= 4{b'  
        if isnorm `vijd(a?v  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); w[V71Iej  
        end TnvX&Y'  
    end ~YX!49XfHh  
    % END: Compute the Zernike Polynomials lN-[2vT<  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 8eVQnp*  
    ]ZjydQjo )  
    c!{]Z_d\  
    % Compute the Zernike functions: =H\ig%%E@  
    % ------------------------------ u9 yXHf  
    idx_pos = m>0; 34$qV{Y%y  
    idx_neg = m<0; X!w&ib-  
    z^q ~|7  
    [MkXQwY  
    z = y; # [0>wEq  
    if any(idx_pos) o|v_+<zD!  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); mJ3|UClPS  
    end {{\ d5CkX  
    if any(idx_neg) v_zVhE tY  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Cy~Pfty  
    end F5#P{ zk|  
    eI 6G  
    t*&O*T+fgy  
    % EOF zernfun *:*Kdt`'G  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  OPp>z0p%6X  
    =?U"#a  
    DDE还是手动输入的呢? O.n pi: a  
    o}XbFL n  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究