下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, :W-"UW,
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, *|a_(bQ4@
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? K"#np!Y)
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? G8Ns?
F{ B__Kf
ixE72bX
Ql3hq.E
b jZcWYT
function z = zernfun(n,m,r,theta,nflag) aXhgzI5]
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. j#Bea ,
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N _Cj u C`7
% and angular frequency M, evaluated at positions (R,THETA) on the V)f/umT%g
% unit circle. N is a vector of positive integers (including 0), and 4{[Df$'e>
% M is a vector with the same number of elements as N. Each element W`C2zbC
% k of M must be a positive integer, with possible values M(k) = -N(k) ((B7k{`
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, ZGH2
% and THETA is a vector of angles. R and THETA must have the same al(t-3`<
% length. The output Z is a matrix with one column for every (N,M) A"2k,{d
% pair, and one row for every (R,THETA) pair. o}
YFDYi
% :,]V 03
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike uIiE,.Uu}
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), jDqe)uVvtV
% with delta(m,0) the Kronecker delta, is chosen so that the integral Wg3y
y8vIW
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1,
(/-2bO
% and theta=0 to theta=2*pi) is unity. For the non-normalized J-au{eP^
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Y2"X;`<
% wFnI M2a,
% The Zernike functions are an orthogonal basis on the unit circle.
R%"wf
% They are used in disciplines such as astronomy, optics, and 1I<D
`H%
% optometry to describe functions on a circular domain. p.SEW5
% TG=) KS
% The following table lists the first 15 Zernike functions. F)z]QJOw
% %D)W~q-g
% n m Zernike function Normalization FI`][&]V
% -------------------------------------------------- <=W;z=$!Bb
% 0 0 1 1 '+hiCX-_
% 1 1 r * cos(theta) 2 *&Np;^~
% 1 -1 r * sin(theta) 2 ogtKj"a
% 2 -2 r^2 * cos(2*theta) sqrt(6) 'j 'bhG
% 2 0 (2*r^2 - 1) sqrt(3) 1(CpTaa
% 2 2 r^2 * sin(2*theta) sqrt(6) D'$ki[{,
% 3 -3 r^3 * cos(3*theta) sqrt(8)
:,h47'0A
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) /bjyV]N
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) w4\b^iJz
% 3 3 r^3 * sin(3*theta) sqrt(8) 5A g4o
% 4 -4 r^4 * cos(4*theta) sqrt(10) NuRxk eEO
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) %AwR 4"M
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) 8$xd;+`y'
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) K?+iu|$&
% 4 4 r^4 * sin(4*theta) sqrt(10) R^.E";/h
% -------------------------------------------------- OlL
FuVR
% Mj&q"G
% Example 1: s2FJ^4
% \DI%/(?
% % Display the Zernike function Z(n=5,m=1) bS=aFl#
% x = -1:0.01:1; JS]6jUB<B
% [X,Y] = meshgrid(x,x); ]?whx&+
% [theta,r] = cart2pol(X,Y); C_mPw
% idx = r<=1; oJE~dY$Q
% z = nan(size(X)); 'H+H4(
% z(idx) = zernfun(5,1,r(idx),theta(idx)); /GCI`hx>"
% figure NokAP|<y
% pcolor(x,x,z), shading interp 4E/Q+^?
% axis square, colorbar P~HzNC
% title('Zernike function Z_5^1(r,\theta)') T PEg>[
% =~}\g;K1Q
% Example 2: :Q@=;P2
% 3WZdP[o!
% % Display the first 10 Zernike functions $$ma1.t"
% x = -1:0.01:1; 8 h
% [X,Y] = meshgrid(x,x); mxt fKPb
% [theta,r] = cart2pol(X,Y); 6c>cq\~E
% idx = r<=1; puEuv6F
% z = nan(size(X)); \Ld/'Z;w
% n = [0 1 1 2 2 2 3 3 3 3]; r%QTUuRXC3
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; JR>#PJ,N-
% Nplot = [4 10 12 16 18 20 22 24 26 28]; \0?^%CD+@
% y = zernfun(n,m,r(idx),theta(idx)); <Yif-9
% figure('Units','normalized') \ <b-I
% for k = 1:10 X%w` :c&
% z(idx) = y(:,k); ye!}hm=w
% subplot(4,7,Nplot(k)) " |ZC2Zu<
% pcolor(x,x,z), shading interp +0)s{?
% set(gca,'XTick',[],'YTick',[]) @Cg%7AF
% axis square N.R,[K
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) y;aZMT.YI
% end mhU ?N
% *Y'nDv6_P
% See also ZERNPOL, ZERNFUN2. W?is8r:
U-!+Cxjs
4JV/Ci5
% Paul Fricker 11/13/2006 I.#V/{J
AT*J '37
z !2-U
;n1<1M>!
)%H@.;cD_r
% Check and prepare the inputs: r:.3P
% ----------------------------- 2wCTd:e:
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) )
@Tk5<B3
error('zernfun:NMvectors','N and M must be vectors.') l`"i'P
end 2UqLV^ZY
R
<Mvwu
vw(X9xa
if length(n)~=length(m) D2<(V,h9
error('zernfun:NMlength','N and M must be the same length.') nM]Sb|1:
end +$_.${uwV
7tbM~+<0
g>].m8DZ'
n = n(:); 6jS:_[p
m = m(:); ;J<K/YdI
if any(mod(n-m,2)) oZVq}}R
error('zernfun:NMmultiplesof2', ... L>:YGM"sL
'All N and M must differ by multiples of 2 (including 0).') l}\q }7\)
end !Miw.UmPm
_4~'K?
H$G`e'`OZ
if any(m>n) vxN,oa{hf
error('zernfun:MlessthanN', ... x$p_mWC
'Each M must be less than or equal to its corresponding N.') Rb!V{jQ
end S:b-+w|*
V!^5#A<
1dsMmD[O
if any( r>1 | r<0 ) |t <Uh,Bt
error('zernfun:Rlessthan1','All R must be between 0 and 1.') oXW51ty
end j_w"HiNBA
[22>)1<(
4o|-v
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) OH+kN/Fd
error('zernfun:RTHvector','R and THETA must be vectors.') acG4u+[ ]
end CSu}_$wC#
Xo,}S\wcn
pGO=3=O
r = r(:); St`3Z/|h
theta = theta(:); .A6i?iROe
length_r = length(r); L_ &`
if length_r~=length(theta) 0 rge]w.X
error('zernfun:RTHlength', ... "~:AsZ"7
'The number of R- and THETA-values must be equal.') %t.L;G
end c}$C=s5 h}
Ej;BI#gx=
;^yR,32F
% Check normalization: g+:Go9k!F
% -------------------- C~o\Q#*j
if nargin==5 && ischar(nflag) o$4xinK
isnorm = strcmpi(nflag,'norm'); u[Ij4h.
if ~isnorm j*7#1<T
error('zernfun:normalization','Unrecognized normalization flag.') z&R
#j
end SO!|wag$
else o$Jop"To
isnorm = false; $27QY
end q
eW{Cl~
Tl/!Dn
[p:mja.6y
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% V{D~e0i/v
% Compute the Zernike Polynomials f$2DV:wuC
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |``rSEXYs
igGg[I1?
m,3H]
% Determine the required powers of r: D# Gf.c
% ----------------------------------- z\F#td{ r
m_abs = abs(m); tjId?}\
rpowers = []; X`s6lV%\
for j = 1:length(n) a7~%( L@r
rpowers = [rpowers m_abs(j):2:n(j)]; s%Y8;D,~+
end $URL7hrhU
rpowers = unique(rpowers); awC:{5R8v
c04;2gR
&;x*uG
% Pre-compute the values of r raised to the required powers, lL<LJ
:L
% and compile them in a matrix: 8mh@C6U
% ----------------------------- q4xP<b^
if rpowers(1)==0 R?Ou=p
.
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); zn3]vU!
rpowern = cat(2,rpowern{:}); azCod1aL{
rpowern = [ones(length_r,1) rpowern]; ,qz:( Nr
else .{8?eze[m
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ?LAiSg=eq
rpowern = cat(2,rpowern{:}); N"zg)MsX
end ~!iZn
lK2=[%,~
+qiI;C_P\
% Compute the values of the polynomials: Rk$
% -------------------------------------- s9\N{ar#
y = zeros(length_r,length(n)); />0
Bm`A
for j = 1:length(n) ;i>(r;ZM
s = 0:(n(j)-m_abs(j))/2;
Pxy+W*t
pows = n(j):-2:m_abs(j); cAQ_/>
for k = length(s):-1:1 ={k_
(8]
p = (1-2*mod(s(k),2))* ... k>V~iA
prod(2:(n(j)-s(k)))/ ... \;FE@
prod(2:s(k))/ ... ny'wS
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 2E$K='H:,
prod(2:((n(j)+m_abs(j))/2-s(k))); :RG=3T[
idx = (pows(k)==rpowers); kBlk^=h<:w
y(:,j) = y(:,j) + p*rpowern(:,idx); twr-+rm2
end p`=v$_]?(
9\S,$A{{*
if isnorm 2,^U8/
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); i%3q*:A]2
end "IA:,j.#g
end %s),4
% END: Compute the Zernike Polynomials I*`;1+`
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %h9'kJzNk
DPM4v7 S
g><itA?
% Compute the Zernike functions: *!c&[- g
% ------------------------------ u$Ty|NBjn
idx_pos = m>0; Lyy:G9OV
idx_neg = m<0; /$=<RUE
m+ =L}[
Uip-qWI
z = y; 5STk"
if any(idx_pos) s)-O{5;U
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); :\cid]y3
end 4%"Df1U
if any(idx_neg) pzFM#
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Fu\!'\6
end tpj6AMO/`d
8k9q@FSln
i~i
?M)
% EOF zernfun pp1kcrE\M