切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9002阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, _ T ;+*  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, x aiA2  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? 0RmQfD>  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? yv1Z*wTpO  
    ^PHWUb+``  
    Bs7/<$9K/  
    t<~$?tuZ  
    Fv_rDTo  
    function z = zernfun(n,m,r,theta,nflag) X 633.]+  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. t*X k'(v  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 7S+_eL^  
    %   and angular frequency M, evaluated at positions (R,THETA) on the B"sQ\gb%Q  
    %   unit circle.  N is a vector of positive integers (including 0), and L9L!V"So1k  
    %   M is a vector with the same number of elements as N.  Each element }s i{  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) ^0" W/  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ';<gc5EK  
    %   and THETA is a vector of angles.  R and THETA must have the same ipy1tXc  
    %   length.  The output Z is a matrix with one column for every (N,M) \Eqxmo  
    %   pair, and one row for every (R,THETA) pair. yKSvg5lLy  
    % +JQ/DNv  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ]!l]^/ .  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi),  0Bbno9Yp  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral kC~\D?8E=  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, :f1Q0klwP  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized QAs$fi}f]s  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. g?Jx99c;  
    % II(7U3  
    %   The Zernike functions are an orthogonal basis on the unit circle. u!wR  
    %   They are used in disciplines such as astronomy, optics, and MBlh lMyI  
    %   optometry to describe functions on a circular domain. }\+7*|  
    % GI:J9TS  
    %   The following table lists the first 15 Zernike functions. E"8cB]`|8  
    % "zpc)'$ L=  
    %       n    m    Zernike function           Normalization M3>c?,O)J  
    %       -------------------------------------------------- K7o!,['W  
    %       0    0    1                                 1 ^Yu<fFn  
    %       1    1    r * cos(theta)                    2 A}K2"lQ#>,  
    %       1   -1    r * sin(theta)                    2 =Yd{PZ*fR  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) +-8S,Rg@   
    %       2    0    (2*r^2 - 1)                    sqrt(3) zT _  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) OB-gH3:  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) CVo2?ZQ  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) (- ]A1WQ?  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) c& &^D o  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 4rpx  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) o{C7V *  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Rn] `_[)*~  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) UvR F\x%  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) x+1Cs$E;  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) TV^m1uC  
    %       -------------------------------------------------- 0[ (Z48  
    % kH&KE5  
    %   Example 1: |ATz<"q>  
    % }ZPO^4H;-  
    %       % Display the Zernike function Z(n=5,m=1) '!$g<= @  
    %       x = -1:0.01:1; @(k}q3b<  
    %       [X,Y] = meshgrid(x,x); ?_hKhn%K9  
    %       [theta,r] = cart2pol(X,Y); Q7<_> )e^  
    %       idx = r<=1; Io8h 8N-  
    %       z = nan(size(X));  _tl  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 8 K7.; t1  
    %       figure vUlGE  
    %       pcolor(x,x,z), shading interp v$H=~m  
    %       axis square, colorbar k)'y;{IN  
    %       title('Zernike function Z_5^1(r,\theta)') }@+3QHwYU  
    % R8Kj3wp  
    %   Example 2: >a6{y   
    % ^T^l3B[  
    %       % Display the first 10 Zernike functions +`y{r^xD  
    %       x = -1:0.01:1; U^AywE]  
    %       [X,Y] = meshgrid(x,x); 0Yh Mwg?  
    %       [theta,r] = cart2pol(X,Y); ao+lLCr  
    %       idx = r<=1; 701mf1a  
    %       z = nan(size(X)); WAd5,RZ?  
    %       n = [0  1  1  2  2  2  3  3  3  3]; i. O670D  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; ?vnO@Bb/a  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; MM+x}g.?  
    %       y = zernfun(n,m,r(idx),theta(idx)); . 5cL+G1k#  
    %       figure('Units','normalized') p }p@])}8  
    %       for k = 1:10 mgO D J  
    %           z(idx) = y(:,k); >M2~BDZ  
    %           subplot(4,7,Nplot(k)) 2 %`~DVo  
    %           pcolor(x,x,z), shading interp ^( w%m#  
    %           set(gca,'XTick',[],'YTick',[]) 3I}(as{Rp  
    %           axis square 8[PD`*w  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) F!N D  
    %       end TnuNoMD.  
    % C'Gj\  
    %   See also ZERNPOL, ZERNFUN2. #8cpZ]#  
    {c(@u6l28  
    8 ztVv   
    %   Paul Fricker 11/13/2006 ( pDu  
    &3@ {?K  
    n8FmIoZ&`  
    9A7LDHst7  
    Za"m;+H<E  
    % Check and prepare the inputs: E}YJGFB7"  
    % ----------------------------- ~g#$'dS  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) E~4d6~s  
        error('zernfun:NMvectors','N and M must be vectors.') 4lVvs(W?  
    end H}ie D"T_  
    '<$!?="  
    h?8I`Z)h  
    if length(n)~=length(m) Lm!/ iseGv  
        error('zernfun:NMlength','N and M must be the same length.') x>C_O\  
    end `rWT^E@p5m  
    iJ-z&=dOe  
    ekR/X  
    n = n(:); M/d6I$~7z  
    m = m(:); Ro2Ab^rQ|  
    if any(mod(n-m,2)) .!oYIF*0zC  
        error('zernfun:NMmultiplesof2', ... SV?^i`  
              'All N and M must differ by multiples of 2 (including 0).') 8LPvb#9=  
    end ep,"@,,  
    _l,_NV&T  
    t7P[^f15[  
    if any(m>n) }ldOxJSB?  
        error('zernfun:MlessthanN', ... I:l/U-b7h  
              'Each M must be less than or equal to its corresponding N.') Vf V|fuW  
    end U8>M`e"D  
    1Zr J7a7=  
    ><HHO (74X  
    if any( r>1 | r<0 ) WDF;`o*3  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') ?D\6@G:,#@  
    end \>G:mMk/  
    !gyEw1Re7  
    C"gH>G  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) f"Z2,!Z;  
        error('zernfun:RTHvector','R and THETA must be vectors.') *LZB.84  
    end Dt ~3Qd0  
    B-.QGf8K.  
    m4m,-}KNi  
    r = r(:); b}-/~l-:  
    theta = theta(:); xQ]^wT.Q  
    length_r = length(r); SK]"JSY`  
    if length_r~=length(theta) p]]*H2UD  
        error('zernfun:RTHlength', ... 5bZjW~d  
              'The number of R- and THETA-values must be equal.') 5ns.||%k  
    end {0~xv@ U  
    Cqra\  
    \'>8 (i~  
    % Check normalization: (c\i.z  
    % -------------------- wBJP8wES=  
    if nargin==5 && ischar(nflag) U4.- {.  
        isnorm = strcmpi(nflag,'norm'); A`I;m0<  
        if ~isnorm V."qxKsz  
            error('zernfun:normalization','Unrecognized normalization flag.') |PaVb4j  
        end l`b%imX  
    else |bM?Q$>~  
        isnorm = false; *[ww;  
    end ]nQC  
    qrLE1b 1$  
    c`M ,KXott  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% k3- 7Vyg  
    % Compute the Zernike Polynomials d^:(-2l-  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% M>xjs?{%k  
    66Tx>c"H  
    4f-I,)qCBk  
    % Determine the required powers of r: W*!u_]K>  
    % -----------------------------------  F<Y>  
    m_abs = abs(m); %gbvX^E?  
    rpowers = []; 9C"d7--  
    for j = 1:length(n) na0-v-  
        rpowers = [rpowers m_abs(j):2:n(j)]; L>X39R~  
    end 0,M1Q~u%.  
    rpowers = unique(rpowers); 6<`tb)_2~  
    Z&M fE0F/B  
    ?,AWXiif  
    % Pre-compute the values of r raised to the required powers, Pf?zszvs  
    % and compile them in a matrix: >VE!3'/'  
    % ----------------------------- `U6bI`l  
    if rpowers(1)==0 g-O}e4  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); QP={b+8  
        rpowern = cat(2,rpowern{:}); i4g99Kvl  
        rpowern = [ones(length_r,1) rpowern]; ,Srj38p  
    else JZom#A. dt  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Rct=v DU  
        rpowern = cat(2,rpowern{:}); v0 uA]6:  
    end bKb}VP  
    .KX LWH  
    %.mHV7c)%  
    % Compute the values of the polynomials: ecqL;_{o  
    % -------------------------------------- e nw7?|(  
    y = zeros(length_r,length(n)); #$*l#j"#A  
    for j = 1:length(n) JQde I+  
        s = 0:(n(j)-m_abs(j))/2; YgCSzW&(  
        pows = n(j):-2:m_abs(j); lr-:o@q{  
        for k = length(s):-1:1 8r-'m%l  
            p = (1-2*mod(s(k),2))* ... meM61ue_2  
                       prod(2:(n(j)-s(k)))/              ... \NTNB9>CO  
                       prod(2:s(k))/                     ... 4.o[:5'  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... \4FKZ>1+R  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); YjTA+1}  
            idx = (pows(k)==rpowers); =3R5m>6!/  
            y(:,j) = y(:,j) + p*rpowern(:,idx); q#|,4( Z  
        end Xb/^n .>  
         n>##,o|Vr#  
        if isnorm \Bg?QhA_D  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 0f]LOg  
        end se,0Rvkt  
    end vb1Gz]~)>  
    % END: Compute the Zernike Polynomials \}9GK`oR  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% q7-.-k<dQ  
     ET:B"  
    mO~A}/je  
    % Compute the Zernike functions: 25-5X3(>j=  
    % ------------------------------ LI/;`Y=  
    idx_pos = m>0; Ej7>ywlW  
    idx_neg = m<0; dLnu\bSF  
     b :J$  
    _WeN\F~^  
    z = y; " +n\0j;  
    if any(idx_pos) !5escR!\D  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); *]]C.t-cd  
    end /N?vVp  
    if any(idx_neg) q(YFt*(;w  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); @c{rqa v  
    end wNt-mgir-Q  
    yccF#zU  
    DTi\ 4&41  
    % EOF zernfun m=.}}DcSs  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  MwlhL?  
    v .ftfL!  
    DDE还是手动输入的呢? [uh$\s7  
    4ZZ/R?AiK  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究