下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, "d/54PKWx
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, ^Vth;!o
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? -U>)B
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? v89tV9O)
MA tF,
kxe{HxM$Z
G:+D1J]
fATnza
function z = zernfun(n,m,r,theta,nflag) d^?e*USh
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. M"c=_5P
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N N*m;A6?
% and angular frequency M, evaluated at positions (R,THETA) on the 7h/Mkim$5
% unit circle. N is a vector of positive integers (including 0), and um PN=0u6
% M is a vector with the same number of elements as N. Each element HHyN\
% k of M must be a positive integer, with possible values M(k) = -N(k) a$uDoi
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, 1|
WDbk
% and THETA is a vector of angles. R and THETA must have the same T:'<:*pD
% length. The output Z is a matrix with one column for every (N,M) tWZ8(E$
% pair, and one row for every (R,THETA) pair. ~]%re9jGW
% zwUZ*Se
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike BpFXe7
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Yc[vH=gV}
% with delta(m,0) the Kronecker delta, is chosen so that the integral wD
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, kazgI>"Q8
% and theta=0 to theta=2*pi) is unity. For the non-normalized #?M[Q:
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. g>ke;SH%KY
% J|V*g]#kP
% The Zernike functions are an orthogonal basis on the unit circle. IwXQbJ3v_
% They are used in disciplines such as astronomy, optics, and
CU\r
I
% optometry to describe functions on a circular domain. {IB4%,qT
% NSRY(#3
% The following table lists the first 15 Zernike functions. N^`S'FVA
% yYJ +vs
% n m Zernike function Normalization R,!aX"]|
% -------------------------------------------------- A@.ruG$
% 0 0 1 1 $\oe}`#o
% 1 1 r * cos(theta) 2 >0N$R|B&
% 1 -1 r * sin(theta) 2 vO zUAi
% 2 -2 r^2 * cos(2*theta) sqrt(6) =;8q`
% 2 0 (2*r^2 - 1) sqrt(3) LD|T1.
% 2 2 r^2 * sin(2*theta) sqrt(6) bA"*^"^
% 3 -3 r^3 * cos(3*theta) sqrt(8) :d<F7`k
H
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) v{SYz<(
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) (ia+N/$u
% 3 3 r^3 * sin(3*theta) sqrt(8) -oju-gf K
% 4 -4 r^4 * cos(4*theta) sqrt(10) )1 0aDTlr
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) yaC_r-%U&
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) I*+*Wf
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) }z-)!8vF
% 4 4 r^4 * sin(4*theta) sqrt(10) g{?{N
% -------------------------------------------------- )Zyw^KN^
% B`%%,SLJ
% Example 1: BYI13jMH+Y
% "8[Vb#=*e
% % Display the Zernike function Z(n=5,m=1) A{hST~s
% x = -1:0.01:1; .GDY
J9vi
% [X,Y] = meshgrid(x,x); vf<Tq
% [theta,r] = cart2pol(X,Y); x5yZ+`Gc
% idx = r<=1; hG/Z65`&
% z = nan(size(X)); fJ-8$w\uL
% z(idx) = zernfun(5,1,r(idx),theta(idx)); FbPoyh
% figure M)nf(jw#G
% pcolor(x,x,z), shading interp ]\=M$:,RZ
% axis square, colorbar V+y:!t`
% title('Zernike function Z_5^1(r,\theta)') @rW%*?$7
% }PzYt~Z`@
% Example 2: wdgC{WGl
% _@]@&^K$E
% % Display the first 10 Zernike functions P4"EvdV7
% x = -1:0.01:1; ps]s
Tw
% [X,Y] = meshgrid(x,x); J$Ba*`~!!
% [theta,r] = cart2pol(X,Y); s9YP
=)I
% idx = r<=1;
0c:jwtf
% z = nan(size(X)); %$(*.o!+8
% n = [0 1 1 2 2 2 3 3 3 3]; h,Tsb:Q"M
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 0>?78QL9<
% Nplot = [4 10 12 16 18 20 22 24 26 28]; Y4/ !b
% y = zernfun(n,m,r(idx),theta(idx)); 7G8M+i3q/
% figure('Units','normalized') <7~+ehu
% for k = 1:10 N5GQ2V
% z(idx) = y(:,k); dzc.s8T(0
% subplot(4,7,Nplot(k)) CbRl/ 68HY
% pcolor(x,x,z), shading interp h3L{zOff
% set(gca,'XTick',[],'YTick',[]) D\GP+Ota
% axis square Y]1b39O
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) A?OaP
% end $zV[-d
% DadlCEZv
% See also ZERNPOL, ZERNFUN2. #%tN2cFDN
(A8X|Y
}q@Jh*
% Paul Fricker 11/13/2006 yn5yQ;
2f@gR9T
v.I>B3bEg
{wp"zaa
E%C02sI
% Check and prepare the inputs: E MKv)5MH
% -----------------------------
liq9P,(
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) s5ddGiZnBT
error('zernfun:NMvectors','N and M must be vectors.') (f|3(u'e?
end }<kpvd+ps=
0/JusQ
+3n07d
if length(n)~=length(m) B?J#NFUb
error('zernfun:NMlength','N and M must be the same length.') 0dgp<
end u=h/l!lR
K%A:W
_/5mgn<GK
n = n(:); Y/_b~Ahn
m = m(:); d^WEfH
if any(mod(n-m,2)) miZ&9m
error('zernfun:NMmultiplesof2', ... 'Nv*ePz
'All N and M must differ by multiples of 2 (including 0).') %<w)#eV?
end $fA%_T_P'P
<M|kOi
r9uuVxBD
if any(m>n) H)5v X+9D
error('zernfun:MlessthanN', ... u%vq<|~-
'Each M must be less than or equal to its corresponding N.') Q<V?rPAcx
end ;'r} D!8w/
R1X{=ct
Yvu!Q
if any( r>1 | r<0 ) U_HOfix
error('zernfun:Rlessthan1','All R must be between 0 and 1.') P'6eK?
end Gt^Fj&^
0XBv8fg
wQX,a;Br
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) _f u?,
error('zernfun:RTHvector','R and THETA must be vectors.')
wBUn*L
end /}\EMP
J
;=~QYn[
V!F#
e k:
r = r(:); tTB,eR$
theta = theta(:); V3NQij(
length_r = length(r); }Zue?!KQ
if length_r~=length(theta) _Jc[`2Uv_c
error('zernfun:RTHlength', ... lV-b
'The number of R- and THETA-values must be equal.') [Az<E3H"
end XP"lqyAi
tB_GEt2M
EencMi7J
% Check normalization: P"LbWZ6Nj
% -------------------- Uv~r]P)
if nargin==5 && ischar(nflag) =Vv"\p8
isnorm = strcmpi(nflag,'norm'); YzqUOMAt"V
if ~isnorm fWKI~/eUY|
error('zernfun:normalization','Unrecognized normalization flag.') Ccld;c&+
end ua%$r[
else +pcpb)VL
isnorm = false; RjY(MSc
end @-9I<)Z/2
%- W3F5NK
r
wtU@xsD
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% v&p|9C@
% Compute the Zernike Polynomials 3,2|8Q,((!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% RCSG.*% %I
Wp"+\{@)
I'Dc9&2
% Determine the required powers of r: d7.}=E.L
% ----------------------------------- (*>%^ C?
m_abs = abs(m); diF-`~
rpowers = []; cRm+?/
for j = 1:length(n) ]_6w(>A@3#
rpowers = [rpowers m_abs(j):2:n(j)]; M<R3Jz T
end kQ5mIJ9(
rpowers = unique(rpowers); |'B-^? ;
*w>dT
.tv'`
% Pre-compute the values of r raised to the required powers, K}e%E&|>
% and compile them in a matrix: 'O%itCy)
% ----------------------------- w\o?p.drp=
if rpowers(1)==0 a:*8SovI
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); >?/Pl"{b
rpowern = cat(2,rpowern{:}); lxIoP
rpowern = [ones(length_r,1) rpowern]; zq1je2DB
else 0x&-/qce6W
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ,Jm2|WKH
rpowern = cat(2,rpowern{:}); \$.8iTr@
end OPVF)@"ptM
{t<E*5N]a
.ME>ICA
% Compute the values of the polynomials: }
+
]A?'&
% -------------------------------------- F xek#
y = zeros(length_r,length(n)); e
:(7$jo
for j = 1:length(n) pZo:\n5o
s = 0:(n(j)-m_abs(j))/2; 3q'["SS
pows = n(j):-2:m_abs(j); lyY\P6
X
for k = length(s):-1:1 77KB-l2
p = (1-2*mod(s(k),2))* ... 2a=3->D&
prod(2:(n(j)-s(k)))/ ... (}Q(Ux@X
prod(2:s(k))/ ... '3BBTr%aZ
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... `1}WQS
prod(2:((n(j)+m_abs(j))/2-s(k))); T_\Nvzb}
idx = (pows(k)==rpowers); ='!E;
y(:,j) = y(:,j) + p*rpowern(:,idx); GM_~2Er]
end sIUhk7Cd8
-|K^!G
if isnorm ]Sj<1tx7f
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); HQtR;[1
end b 6kDkE
end t zn1|
% END: Compute the Zernike Polynomials k }amSsE
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /e/%mo
!3O8B0K)v
0R2KI,WI
% Compute the Zernike functions: pco:]3BF6
% ------------------------------ 6,wi81F,}
idx_pos = m>0; w)C/EHF
idx_neg = m<0; Dj?84y
onqifQ
b/[$bZD5o
z = y; s2Z'_rT
if any(idx_pos) bVLBqa=
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 1zNh&
"
end Qy4eDv5
if any(idx_neg) `$PdI4~J
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ]A?(OA
end xUW\P$
%C[#:>'+
M `O=rH
}
% EOF zernfun p!oO}gE