切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9191阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, y{=>$C[  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, *y]+dK&-  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? [po "To  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? 1@qgF  
    {x@|VuL=  
    $NG++N  
    +ts0^;QO2{  
    |.U)ll(c  
    function z = zernfun(n,m,r,theta,nflag) h"W8N+e\  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. i$uN4tVKT  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N \?lz&<  
    %   and angular frequency M, evaluated at positions (R,THETA) on the rx!=q8=0R  
    %   unit circle.  N is a vector of positive integers (including 0), and VR0=SE  
    %   M is a vector with the same number of elements as N.  Each element a`c:`v2o  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) ^}$O|t  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, {C3Y7<  
    %   and THETA is a vector of angles.  R and THETA must have the same bF-"tm  
    %   length.  The output Z is a matrix with one column for every (N,M) "![L#)"s  
    %   pair, and one row for every (R,THETA) pair. l=={pb  
    % j6YiE~  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike m%r/O&g  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), bGmx7qt#  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 9pD 7 f`  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, z5 m>H;P  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized l#qv 5f  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 7Y( 5]A9=  
    % 7E7dSq  
    %   The Zernike functions are an orthogonal basis on the unit circle. Lx[ ,Z,kD  
    %   They are used in disciplines such as astronomy, optics, and k%81f'H  
    %   optometry to describe functions on a circular domain. (< c7<_-H  
    % ,kM)7!]N  
    %   The following table lists the first 15 Zernike functions. B80aw>M  
    % 0C$vS`s&  
    %       n    m    Zernike function           Normalization ~)]} 91p  
    %       -------------------------------------------------- rf K8q'@  
    %       0    0    1                                 1 .*/Fucr  
    %       1    1    r * cos(theta)                    2 n1v5Q2xw  
    %       1   -1    r * sin(theta)                    2 SNpi=K!yn  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) T)iW`vZg8  
    %       2    0    (2*r^2 - 1)                    sqrt(3) }}{Yw  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) h2q/mi5{  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) gP}+wbk  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) gAbD7SE  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 5Fw - d  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 2N [=  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) #f,y&\Xmf  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) c-4STPNQi  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 4=<*Vd`p  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) HIvZQQW|  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) W;_E4  
    %       -------------------------------------------------- YwDt.6(+,  
    %  #ToK$8  
    %   Example 1: &#{dWObh  
    % L"(4R^]  
    %       % Display the Zernike function Z(n=5,m=1) R^&q-M=O[  
    %       x = -1:0.01:1; \?fIt?  
    %       [X,Y] = meshgrid(x,x); y/_XgPfWU  
    %       [theta,r] = cart2pol(X,Y); C(?blv-vM0  
    %       idx = r<=1; g_.^O$}  
    %       z = nan(size(X)); t*S." q  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); FY3IUG  
    %       figure Sv[5NZn0&  
    %       pcolor(x,x,z), shading interp ]+ Ixi o  
    %       axis square, colorbar 2f:^S/.A  
    %       title('Zernike function Z_5^1(r,\theta)') $.E6S<(h  
    % R{hf9R,  
    %   Example 2: S~OhtHwK  
    % Vm1-C<V9  
    %       % Display the first 10 Zernike functions cntco@  
    %       x = -1:0.01:1; Li{~=S@N*  
    %       [X,Y] = meshgrid(x,x); 2 @j";+  
    %       [theta,r] = cart2pol(X,Y); }FqA ppr  
    %       idx = r<=1; oYM3Rgxf9Q  
    %       z = nan(size(X)); 5jcte< 5I_  
    %       n = [0  1  1  2  2  2  3  3  3  3]; v $({C  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 9WG{p[  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; [\z/Lbn ,.  
    %       y = zernfun(n,m,r(idx),theta(idx)); B 9dt=j3j2  
    %       figure('Units','normalized') ( )T[$.(  
    %       for k = 1:10 a:STQk V  
    %           z(idx) = y(:,k); BRRj$)u  
    %           subplot(4,7,Nplot(k)) j Ch=@<9  
    %           pcolor(x,x,z), shading interp  Ukz;0q  
    %           set(gca,'XTick',[],'YTick',[]) vw>jJ  
    %           axis square YUWn;#  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ~p1EF;4#  
    %       end aBuoHdg;  
    % [#^#+ |{\  
    %   See also ZERNPOL, ZERNFUN2. G@ \Pi#1  
    "f.Z}AbP  
    kma?v B  
    %   Paul Fricker 11/13/2006 YPDf Y<?v  
    Av J4\  
    r),PtI0X  
    uq3{h B#  
    mB'3N;~  
    % Check and prepare the inputs: %:v`EjRD0  
    % ----------------------------- *~XA'Vw!  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) o89( h!  
        error('zernfun:NMvectors','N and M must be vectors.') tA.`k;LT  
    end :*514N  
    I<oL}f  
    6=_~ 0PcY  
    if length(n)~=length(m) [IZM.r`Z  
        error('zernfun:NMlength','N and M must be the same length.') eU+ {*YJg  
    end U\@A _ B  
    Y,S\2or$  
    h!@,8y[B  
    n = n(:); )Q;978:  
    m = m(:); {2d_"lHBt  
    if any(mod(n-m,2)) 1Nn@L2b 2  
        error('zernfun:NMmultiplesof2', ... a dfR!&J  
              'All N and M must differ by multiples of 2 (including 0).') l~:v (R5  
    end R6;Phdh<>  
    E\7m< 'R  
    UKd'+R]  
    if any(m>n) nwI3|&  
        error('zernfun:MlessthanN', ... $"JpFT  
              'Each M must be less than or equal to its corresponding N.') q Dd~2"er  
    end Nil}js27  
    *hhmTc#  
    |`k .y]9  
    if any( r>1 | r<0 ) 66&EBX}  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') -[7O7'  
    end gApoX0nrv  
    Y&bM CI6U  
    F'8T;J7  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) e9pOisZ;8  
        error('zernfun:RTHvector','R and THETA must be vectors.') rt7<Q47QE  
    end 5E\#%K[  
    od<b!4k~s  
    MZv]s  
    r = r(:); @ T ;L$x  
    theta = theta(:); BbOu/i|  
    length_r = length(r); 0*%&>  
    if length_r~=length(theta) z$lF)r:Bc  
        error('zernfun:RTHlength', ... >Q E{O.Z  
              'The number of R- and THETA-values must be equal.') n^(A=G  
    end CJknJn3m&  
    f'(l&/4z{  
    K<sC F[  
    % Check normalization: 9<E g}Ic  
    % -------------------- qem(s</:  
    if nargin==5 && ischar(nflag) 4R%*Z ~  
        isnorm = strcmpi(nflag,'norm'); $o?@ 0  
        if ~isnorm [] W;t\h  
            error('zernfun:normalization','Unrecognized normalization flag.') <lxD}DH=  
        end [U =Uo*  
    else 0'Z\O   
        isnorm = false; imL_lw^?  
    end 7^TV~E#  
    5`[n8mU  
    5~ 'Ie<Y_  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /?-7Fg+,  
    % Compute the Zernike Polynomials \,UZX&ip  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% zdun,`6  
    (P|~>k  
    K ?$#nt p  
    % Determine the required powers of r: ,1{Ep`  
    % ----------------------------------- h&@R| N  
    m_abs = abs(m); ]uL +&(cr  
    rpowers = []; uwIc963  
    for j = 1:length(n) gIEl.  
        rpowers = [rpowers m_abs(j):2:n(j)]; ~}ml*<z@  
    end S&jesG-F  
    rpowers = unique(rpowers); \kam cA  
    &<'n^n  
    qk(P>q8[  
    % Pre-compute the values of r raised to the required powers, ?NNn:tiD  
    % and compile them in a matrix: ~:Uw g+]j  
    % ----------------------------- 8[%Ao/m  
    if rpowers(1)==0 ;!@EixN-YH  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 0o&MB Dp  
        rpowern = cat(2,rpowern{:}); 7sNw  
        rpowern = [ones(length_r,1) rpowern]; >k7q g$  
    else N)8HR9[!  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); %WFu<^jm  
        rpowern = cat(2,rpowern{:}); ,38Eq`5&W  
    end @R~5-m  
    Rs& @4_D  
    F9q8SA#"  
    % Compute the values of the polynomials: p\v Mc\  
    % -------------------------------------- /nx'Z0&+X  
    y = zeros(length_r,length(n)); -_VG;$,jE  
    for j = 1:length(n) 9~IQw#<  
        s = 0:(n(j)-m_abs(j))/2; =dP{Gh  
        pows = n(j):-2:m_abs(j); )wXuwdc[  
        for k = length(s):-1:1 f2)XP$:  
            p = (1-2*mod(s(k),2))* ... oSb, :^Wl  
                       prod(2:(n(j)-s(k)))/              ... L?&'xzt B  
                       prod(2:s(k))/                     ... Ma-\^S=  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... _#$9 y1bd  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); {[Q0qi =  
            idx = (pows(k)==rpowers); u<ySd?  
            y(:,j) = y(:,j) + p*rpowern(:,idx); \6|/RFT  
        end ^ ?hA@{T/1  
         CE NVp"C/`  
        if isnorm v]:=K-1n  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); {y kYW%3s  
        end o@>? *=  
    end %5Kq^]q;Y  
    % END: Compute the Zernike Polynomials SJ' % ^  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Z@D*1\TG=  
    RWq{Ff}Hk  
    #:fQ.WWO  
    % Compute the Zernike functions: Vsq8H}K  
    % ------------------------------ }w-wSkl1  
    idx_pos = m>0; G)=HB7u[a  
    idx_neg = m<0; -7>)i  
    3. WF}8  
    1r[@(c0  
    z = y; (3vHY`9  
    if any(idx_pos) )YW<" $s  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); "7%:sty  
    end JeH;v0  
    if any(idx_neg) vy@rQC %9  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); v"u^M-_  
    end "HMP$)d  
    [jx0-3s:X  
    "T/>d%O1b  
    % EOF zernfun Tq<2`*Qs  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  Y-piL8Xc  
    5/[H+O1;  
    DDE还是手动输入的呢? >M%\T}5  
    V=I"-k}RL  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究