下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, !>48`o^
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, }U}zS@kI
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? Ed=/w6<
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? <B6md
i'R
;[y( 14g
rJiF2 W
PQaTS*0SXJ
7y
Cf3
function z = zernfun(n,m,r,theta,nflag) SeHrj&5U
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. +`d92T z
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Oo|JIr7i
% and angular frequency M, evaluated at positions (R,THETA) on the A$2
;Bf
% unit circle. N is a vector of positive integers (including 0), and [4"(\r\f
% M is a vector with the same number of elements as N. Each element 5{=+S]
% k of M must be a positive integer, with possible values M(k) = -N(k) :<g0Ho?e
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, ]
(e ,J
% and THETA is a vector of angles. R and THETA must have the same 6wp1jN
% length. The output Z is a matrix with one column for every (N,M) B-
@bU@H
% pair, and one row for every (R,THETA) pair. wDvu2iC=
% bF _]j/
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike {
j_-iF
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), )@!fLAT
% with delta(m,0) the Kronecker delta, is chosen so that the integral 0>Y3xNb
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, \GEz.Vb
% and theta=0 to theta=2*pi) is unity. For the non-normalized 2J=`"6c
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. %pVsafV
% AZ.QQ*GZ#y
% The Zernike functions are an orthogonal basis on the unit circle. 0moA mfc
% They are used in disciplines such as astronomy, optics, and jf)cDj2
% optometry to describe functions on a circular domain. EjfQF C
% kn:hxdZ
% The following table lists the first 15 Zernike functions. =-^A;AO(
% +3o
vO$g
% n m Zernike function Normalization lw3H
8[
% -------------------------------------------------- `,AOxJ:$
% 0 0 1 1 %oiF} >
% 1 1 r * cos(theta) 2 3I 0pHP5
% 1 -1 r * sin(theta) 2 b36{vcs~
% 2 -2 r^2 * cos(2*theta) sqrt(6) Bw;isMx7
% 2 0 (2*r^2 - 1) sqrt(3) x<I[?GT=
% 2 2 r^2 * sin(2*theta) sqrt(6) G$,s.MSf
% 3 -3 r^3 * cos(3*theta) sqrt(8) dOv\]
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) |47t+[b
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) b@J "b(
% 3 3 r^3 * sin(3*theta) sqrt(8) '`^~Zy?c
% 4 -4 r^4 * cos(4*theta) sqrt(10) g=mKTk
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) /)[-5n{
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) i6yA>#^
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) < }K9 50
% 4 4 r^4 * sin(4*theta) sqrt(10) bIm4s
% -------------------------------------------------- T;DKDga
% eFsl
% Example 1: h GA2.{
% 'jO2pH/%
% % Display the Zernike function Z(n=5,m=1) 0j8fU7~6S
% x = -1:0.01:1; EY]H*WJJ
% [X,Y] = meshgrid(x,x); <Y6Vfee,&
% [theta,r] = cart2pol(X,Y); E^J &?-
% idx = r<=1; d>u^7:
% z = nan(size(X)); y)K Iz
% z(idx) = zernfun(5,1,r(idx),theta(idx)); o|>=<l
% figure qGq]E`O
% pcolor(x,x,z), shading interp }Rz,}^B
% axis square, colorbar n
^9?(a4u
% title('Zernike function Z_5^1(r,\theta)') MR|A_e^x
% i'<hT
q4
% Example 2: @~vg=(ic(
% vRtERFL
% % Display the first 10 Zernike functions gZ&4b'XS,
% x = -1:0.01:1; &'`C#-e@
% [X,Y] = meshgrid(x,x); Mxw-f4j
% [theta,r] = cart2pol(X,Y); R@grY:h
% idx = r<=1; p p0356
% z = nan(size(X)); Lea4-Gc
% n = [0 1 1 2 2 2 3 3 3 3]; >!Gq[i0
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; <Z t ]V`-
% Nplot = [4 10 12 16 18 20 22 24 26 28]; Tp@Yn
% y = zernfun(n,m,r(idx),theta(idx)); X"3p/!W.4
% figure('Units','normalized') )'jGf;du
% for k = 1:10 cFie;k
% z(idx) = y(:,k); ,eTdQI;
% subplot(4,7,Nplot(k)) xY)eU;*
% pcolor(x,x,z), shading interp H,<CR9@(5d
% set(gca,'XTick',[],'YTick',[]) FS8l}t
% axis square )0I-N)
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) #&uajo
% end w*"Ii%iA<
% t ^>07#z
% See also ZERNPOL, ZERNFUN2. `hY%HzV=
4 dHGU^#WZ
wx-&(f
% Paul Fricker 11/13/2006 el<Gd.p.d
wL3BgCxqDL
B t3++ Mj
%@(+`CCA
#k<l5x`
% Check and prepare the inputs: Q(x=;wf5r
% ----------------------------- n[y=DdiKGS
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) aPe*@py3T
error('zernfun:NMvectors','N and M must be vectors.') p-"wY?q
end ~{g/
I;AS.y
(=rDt93J
if length(n)~=length(m) Z
OAg7
error('zernfun:NMlength','N and M must be the same length.') A"DGn
end rp
@%0/[
=}%:4
!<h9XccN
n = n(:); IecD41%
m = m(:); }x{1{Bw>Y
if any(mod(n-m,2)) 2N-p97"g
error('zernfun:NMmultiplesof2', ... 3#""`]9H
'All N and M must differ by multiples of 2 (including 0).') rx]Q,;"
end q~18JB4WPJ
,F!-17_vt
)2Q0NbDn
if any(m>n) H9_>a->
)~
error('zernfun:MlessthanN', ... ]ml 'd
'Each M must be less than or equal to its corresponding N.') /QlzWson
end %/U'Wu{*
~y Dl& S
i+Ne.h
if any( r>1 | r<0 ) `nII@ !
error('zernfun:Rlessthan1','All R must be between 0 and 1.') e?XGv0^qu
end tOF8v8Hd
l YdATM(h
oQVm)Bn'R
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) x5#Kk.
error('zernfun:RTHvector','R and THETA must be vectors.') ]LCL?zAzH!
end hYFi"ck
1*#hIuoj'
Vl(id_~ _
r = r(:); S"+#=C
theta = theta(:); '&|%^9O/"
length_r = length(r); Rc@lGq9
if length_r~=length(theta) L`:V]p
error('zernfun:RTHlength', ... /a$Zzs&xs
'The number of R- and THETA-values must be equal.') ndBqXS
end ok-q9dM
_=[pW2p
0ly6 |:
% Check normalization: 2nFr?Y3g,
% -------------------- e=tM=i"
if nargin==5 && ischar(nflag) &"1 _n]JO
isnorm = strcmpi(nflag,'norm'); X)TZ S
if ~isnorm fA V.Mj-
error('zernfun:normalization','Unrecognized normalization flag.') +Z9ua%,3%
end T/%k1Hsa4H
else m,4'@jg0
isnorm = false; M.$=tuUL
end >FFp"%%
Nhjz~S<o
DM,;W`|6%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Cb|R
% Compute the Zernike Polynomials |jWA >S
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% :K \IS `
2C_I3S~U
:W'.SRD
% Determine the required powers of r: s,laJf
% ----------------------------------- !cO<N~0*5x
m_abs = abs(m); ]VN1Y)
rpowers = []; $reQdN=~
for j = 1:length(n) b3=XWzK5
rpowers = [rpowers m_abs(j):2:n(j)]; N9H qFp
end t/]za4w/
rpowers = unique(rpowers); nrTCq~LO(
-zH-9N*c
Pj^Ccd'>=
% Pre-compute the values of r raised to the required powers, +jGUp\h%9;
% and compile them in a matrix: T< <N U"n
% ----------------------------- MLmk=&d
if rpowers(1)==0 H[/^&1P
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); h5; +5B}D
rpowern = cat(2,rpowern{:}); /5XdZu6k`h
rpowern = [ones(length_r,1) rpowern]; XOZ@ek)LY
else 8L))@SA+uJ
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ',Oc+jLR
rpowern = cat(2,rpowern{:}); 4Gh%PUV#
end )B^T7{
y= 1(o3(
BQ~\ p\
% Compute the values of the polynomials: Nu; 9
% -------------------------------------- cn
;2&
y = zeros(length_r,length(n)); PiX(Ase
for j = 1:length(n) M[Jy?b)
s = 0:(n(j)-m_abs(j))/2; `]2y=f<{X
pows = n(j):-2:m_abs(j);
({t6Cbw
for k = length(s):-1:1 `b5pa `\4
p = (1-2*mod(s(k),2))* ... C:}"?tri
prod(2:(n(j)-s(k)))/ ... l'\m'Ioh
prod(2:s(k))/ ... CakB`q(8
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... kPp7;U2A
prod(2:((n(j)+m_abs(j))/2-s(k))); -fx$)d~
idx = (pows(k)==rpowers); ,xC@@>f
y(:,j) = y(:,j) + p*rpowern(:,idx); o l+*Oe
end i~*#z&4A+
DM !B@
if isnorm Nu%MXu+
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ,NU`aG-
end VSm{]Z!x
end (M t-2+"+
% END: Compute the Zernike Polynomials :LR>U;2
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% `HM?Fc58
:AC( \
lLL) S
% Compute the Zernike functions: <~.1>CI9D3
% ------------------------------ 0a's[>-'A
idx_pos = m>0; nA#dXckoc
idx_neg = m<0; @w[HXb
EYKV}`
y)+lU
z = y; <a%RKjQvT
if any(idx_pos) O>2i)M-h9x
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ,y*|f0&"~
end glRHn?p
if any(idx_neg) `CEHl &w
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); CF@j]I@{
end fUS1`
_2S(
*
hW-?j&yJ?
% EOF zernfun w:[\G%yQ