切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8988阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, UrgvG, Lt  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, Ts^IA67&<  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? ,Ti#g8j  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? y- g5`@  
    7Y_S%B:F  
    4ed( DSN  
    <K)^MLgN  
    9nB:=`T9  
    function z = zernfun(n,m,r,theta,nflag) % Dya-  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 6$IAm#  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N WL>"hkx  
    %   and angular frequency M, evaluated at positions (R,THETA) on the -~jM=f$  
    %   unit circle.  N is a vector of positive integers (including 0), and J^u8d?>r  
    %   M is a vector with the same number of elements as N.  Each element [IMa0qs'  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) sb;81?|  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, DBOz<|  
    %   and THETA is a vector of angles.  R and THETA must have the same |d8/ZD  
    %   length.  The output Z is a matrix with one column for every (N,M) !Y5O3^I=u  
    %   pair, and one row for every (R,THETA) pair. ,]>Eg6B,u  
    % G|.>p<q   
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike &B[$l`1  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Z$T1nm%lo:  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral Mk7#qiPo  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 8K{ TRPy  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized JGJQ5zt  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ^oj)#(3C  
    % S&9{kt|BI  
    %   The Zernike functions are an orthogonal basis on the unit circle. 9Y~A2C  
    %   They are used in disciplines such as astronomy, optics, and N[czraFBD}  
    %   optometry to describe functions on a circular domain. 8J Gt|,  
    % +DksWb D  
    %   The following table lists the first 15 Zernike functions.  ;A1pqHr  
    % TR]~r2z  
    %       n    m    Zernike function           Normalization eEXer>Rm   
    %       -------------------------------------------------- p1CY?K  
    %       0    0    1                                 1 \DpXs[1  
    %       1    1    r * cos(theta)                    2 ~c+0SuJ  
    %       1   -1    r * sin(theta)                    2 w R1M_&-s  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) *l^h;RSx  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 1)vdM(y3j  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) GYZzWN}U  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ,qyH B2v  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) N^B YNqr  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) Uk5jZ|  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) UV$v:>K#  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 8I3"68c_a  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 36e !je  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) V`=#j[gX)=  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ZEp UHdin  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) ?u"MsnCXYn  
    %       -------------------------------------------------- k~h'`(  
    % s7#w5fe  
    %   Example 1: R6*:Us0\FJ  
    % 4l560Fb'U  
    %       % Display the Zernike function Z(n=5,m=1) '3 5w(  
    %       x = -1:0.01:1; r1]shb%J?  
    %       [X,Y] = meshgrid(x,x); =EgiV<6vcH  
    %       [theta,r] = cart2pol(X,Y); tUH#%  
    %       idx = r<=1; Q3*@m  
    %       z = nan(size(X)); H"6Sj-<=  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); :VX?j 3qW  
    %       figure YD 1u  
    %       pcolor(x,x,z), shading interp + v{<<  
    %       axis square, colorbar aHvTbpJ  
    %       title('Zernike function Z_5^1(r,\theta)') tgKmC I  
    % 43^%f-J 5  
    %   Example 2: F_$eu-y  
    % -=I*{dzly  
    %       % Display the first 10 Zernike functions {=VauF  
    %       x = -1:0.01:1; <:fjWy  
    %       [X,Y] = meshgrid(x,x); =rFgOdj  
    %       [theta,r] = cart2pol(X,Y); "z8L}IC!e5  
    %       idx = r<=1; q4C$-W%rj  
    %       z = nan(size(X)); J.N%=-8  
    %       n = [0  1  1  2  2  2  3  3  3  3]; =0cyGo  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; be}^}w=  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 8&\<p7}=h  
    %       y = zernfun(n,m,r(idx),theta(idx)); >LRt,.hy6  
    %       figure('Units','normalized') :''^a  
    %       for k = 1:10 m_wBRan  
    %           z(idx) = y(:,k); n(\5Z&  
    %           subplot(4,7,Nplot(k)) E=+v1\t)]  
    %           pcolor(x,x,z), shading interp ]#z^G  
    %           set(gca,'XTick',[],'YTick',[]) s>~ h<B  
    %           axis square .gh3"  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) I4.^I/c(  
    %       end #8H  
    % icLf; @  
    %   See also ZERNPOL, ZERNFUN2. ,#@B3~giC  
    sN.h>bd  
    )o-rg  
    %   Paul Fricker 11/13/2006 I'%vN^e^  
     Gqvj  
    481J=8H  
    t&MJSFkiA  
    |}P4Gr}6  
    % Check and prepare the inputs: `uo'w:Q  
    % ----------------------------- Lwm2:_\_b  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ?]+{2&&$  
        error('zernfun:NMvectors','N and M must be vectors.') H48`z'o  
    end LT']3w  
    {P ZN J 2~  
    ="hh=x.5J  
    if length(n)~=length(m) xcz[w}{eEq  
        error('zernfun:NMlength','N and M must be the same length.') 3eX;T +|o  
    end aVcQ  
    xFvDKW)_X7  
    ('BFy>@  
    n = n(:); cD5c&+,&I  
    m = m(:); r*CI6yP  
    if any(mod(n-m,2)) ]NgK(I U  
        error('zernfun:NMmultiplesof2', ... 7/%{7q3G>  
              'All N and M must differ by multiples of 2 (including 0).') *<Yn  
    end 'i#m%D`dt  
    IMjz#|c  
    #/!fLU@  
    if any(m>n) hqOy*!8'@  
        error('zernfun:MlessthanN', ... rjqQWfShY  
              'Each M must be less than or equal to its corresponding N.') (:v|(Gn/  
    end jSNUU.lur  
    S3EM6`q'  
    t-7^deG'/n  
    if any( r>1 | r<0 ) WxwSb`U|  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') %6rMS}  
    end IO3`/R-  
    FaS}$-0  
    [^sv.  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) v%N/mL+5L  
        error('zernfun:RTHvector','R and THETA must be vectors.') `D)ay  
    end it V@U  
    CZaUrr  
    (s`oJLW>  
    r = r(:); Teq1VK3Hr  
    theta = theta(:); 5MUM{(C  
    length_r = length(r); 3>LyEXOW  
    if length_r~=length(theta) d67Q@ ')00  
        error('zernfun:RTHlength', ... k+Ew+j1_  
              'The number of R- and THETA-values must be equal.') P5 f p!YF  
    end v[4A_WjT  
    Zq wxi1  
    FgA'X<  
    % Check normalization: m]LR4V6k|  
    % -------------------- TTB1}j+V6  
    if nargin==5 && ischar(nflag) IO/%X;Y_  
        isnorm = strcmpi(nflag,'norm'); . !gkJ  
        if ~isnorm f44b=,Lry5  
            error('zernfun:normalization','Unrecognized normalization flag.') Fl)p^uUtl  
        end !J<}=G5  
    else t [gz#'  
        isnorm = false; ' *hy!f]  
    end LvP{"K;   
    *6uZ"4rb.  
    =fA* b  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% w D|p'N  
    % Compute the Zernike Polynomials  cTpmklq  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 'nH/Z 84  
    +bC-_xGuh  
    Tc{r;:'G<  
    % Determine the required powers of r: =apcMW(zn  
    % ----------------------------------- g-B~" tp  
    m_abs = abs(m); % H"A%  
    rpowers = []; rHhn)m  
    for j = 1:length(n) b(@[Y(_R  
        rpowers = [rpowers m_abs(j):2:n(j)]; Ml &Cr  
    end (S ~|hk^  
    rpowers = unique(rpowers); y k=o  
    ~3p :jEM.[  
    ]WLQ q4q  
    % Pre-compute the values of r raised to the required powers, }9Yd[`  
    % and compile them in a matrix: eK]g FXk  
    % ----------------------------- 4 yLC  
    if rpowers(1)==0 GL4-v[]6I  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); m e\S:  
        rpowern = cat(2,rpowern{:}); `dB!Ia|  
        rpowern = [ones(length_r,1) rpowern]; z=ItKoM*<  
    else yO@KjCv"  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); w]n ,`r^  
        rpowern = cat(2,rpowern{:}); 9OIX5$,S;  
    end $@ /K/"  
    V=#L@ws  
    {\tHS+]  
    % Compute the values of the polynomials: HK~uu5j  
    % -------------------------------------- Bvbv~7g (  
    y = zeros(length_r,length(n)); R <kh3T  
    for j = 1:length(n) \W^Mo>l  
        s = 0:(n(j)-m_abs(j))/2; .}KY*y  
        pows = n(j):-2:m_abs(j); ce/Z[B+d  
        for k = length(s):-1:1 Koh`|]N  
            p = (1-2*mod(s(k),2))* ... jVh I`F{n  
                       prod(2:(n(j)-s(k)))/              ... AGwFD  
                       prod(2:s(k))/                     ... 1.+w&Y5   
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... iTb k]$  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); ` oBlv  
            idx = (pows(k)==rpowers); S<RJ46  
            y(:,j) = y(:,j) + p*rpowern(:,idx); IfyyA  
        end z$'_ =9yZ  
         ^G5BD_  
        if isnorm 6.]x@=Wm  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); XhF7%KR  
        end 1UR ;}  
    end qEd!g,Sx  
    % END: Compute the Zernike Polynomials C[cNwvz  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% [" '0vQ  
    hY5G=nbO*  
    XS!mtd<q  
    % Compute the Zernike functions: WU}?8\?U%  
    % ------------------------------ OG\TrW-ug  
    idx_pos = m>0; k M/cD`  
    idx_neg = m<0; _)4YxmK%  
    P%Fkd3e+  
    {? -@`FR-  
    z = y; ] i;xeo,  
    if any(idx_pos) d1=kHU4_9  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); E1,Sr?'  
    end &p\fdR4e  
    if any(idx_neg) +-=o16*{ !  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); idL6*%M  
    end [K2\e N~g  
    ]6wo]nV[P  
    }m6zu'CV  
    % EOF zernfun aL63=y  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  <1[WNj2[  
    %zE_Q  
    DDE还是手动输入的呢? lyiBRMiP|  
    zmkqqiDp_  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究