切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9277阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, - :z5m+  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, G2{M#H  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? rtmt 3  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? m{dyVE  
    sxwW9_C  
    L^{;jgd&T9  
    P`I G9  
    ^WW|AS  
    function z = zernfun(n,m,r,theta,nflag) aX'g9E  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. |abst&yp  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ;=\5$J9  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 'qF3,Rw  
    %   unit circle.  N is a vector of positive integers (including 0), and 3]OP9!\6  
    %   M is a vector with the same number of elements as N.  Each element tDHHQ  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) }>X\"  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ^~<Rzq!  
    %   and THETA is a vector of angles.  R and THETA must have the same [^}>AC*im  
    %   length.  The output Z is a matrix with one column for every (N,M) Bx : So6:  
    %   pair, and one row for every (R,THETA) pair. pkN:D+g S  
    % u$=ogp =0  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike >{qK ]xj  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), lH@E%  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral _Z66[T+M  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, kbp( a+5  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized UQ.D!q  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. QJIItx4hE  
    % ;.Oh88|k  
    %   The Zernike functions are an orthogonal basis on the unit circle. Tb0;Mbr  
    %   They are used in disciplines such as astronomy, optics, and H(G^O&ppdB  
    %   optometry to describe functions on a circular domain. n &\'Hm  
    % +fP/|A8P  
    %   The following table lists the first 15 Zernike functions. @Gn?8Ur%  
    % 1'v!9  
    %       n    m    Zernike function           Normalization ZG/8Ds  
    %       -------------------------------------------------- [X">vaa  
    %       0    0    1                                 1 ')u5l  
    %       1    1    r * cos(theta)                    2 ]O7.ss/2  
    %       1   -1    r * sin(theta)                    2 AXh3LA  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) (4 /]dTb  
    %       2    0    (2*r^2 - 1)                    sqrt(3) yg+IkQDf4U  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) }EedHS  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) NB W%.z  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) =yTa,PY  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) X=p3KzzX  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) XHZ: mLf  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) a?,[w'7FU  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) yXTK(<'  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) S\3AW,c]w  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 4Ay`rG  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) ;]&~D +XH  
    %       -------------------------------------------------- u3*NO )O  
    % "0'*q<8  
    %   Example 1: eN]>l  
    % Hw?2XDv j  
    %       % Display the Zernike function Z(n=5,m=1) Cl t5  
    %       x = -1:0.01:1; Jny)uo8  
    %       [X,Y] = meshgrid(x,x);  M<Wn]}7!  
    %       [theta,r] = cart2pol(X,Y); 5w,Z7I8  
    %       idx = r<=1; #6N+5Yx_[  
    %       z = nan(size(X)); {C/L5cZ]J  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); i+)}aA  
    %       figure [*9YIjn  
    %       pcolor(x,x,z), shading interp !]rETP_  
    %       axis square, colorbar :>P4L,Da]  
    %       title('Zernike function Z_5^1(r,\theta)') U R1JbyT  
    % hg?j)jl|  
    %   Example 2: 9|N" @0<B  
    % fou_/Nrue  
    %       % Display the first 10 Zernike functions <Qcex3  
    %       x = -1:0.01:1; f2O*8^^Y{Q  
    %       [X,Y] = meshgrid(x,x); Y^f94s:2S  
    %       [theta,r] = cart2pol(X,Y); ePq13!FC/  
    %       idx = r<=1; -t@y\vZF,  
    %       z = nan(size(X)); 7b&JX'`Mb  
    %       n = [0  1  1  2  2  2  3  3  3  3]; <G~} N  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; +}7Ea:K   
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; %NT`C9][  
    %       y = zernfun(n,m,r(idx),theta(idx)); M&qh]v gC  
    %       figure('Units','normalized') n5Nan  
    %       for k = 1:10 8_a$kJJ2  
    %           z(idx) = y(:,k); sK`~Csb iB  
    %           subplot(4,7,Nplot(k)) 4<G?  
    %           pcolor(x,x,z), shading interp *xE"8pN/  
    %           set(gca,'XTick',[],'YTick',[]) <%d51~@={I  
    %           axis square O{k89{  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) -?< Ww{  
    %       end w4e%-Ln  
    % t&GA6ML#s  
    %   See also ZERNPOL, ZERNFUN2. 0?lp/|K  
    M.ZEqV+k  
    {OB-J\7Y  
    %   Paul Fricker 11/13/2006 Em e'Gk  
    jM5_8nS&d  
    4S,.R  
    r]A" Og_U  
    lLuID  
    % Check and prepare the inputs: uY^v"cw/F  
    % ----------------------------- xS6(K  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) \Fj5v$J-  
        error('zernfun:NMvectors','N and M must be vectors.') "?apgx 6  
    end 9=t#5J#O  
    <^lJr82  
    %55@3)V8Rf  
    if length(n)~=length(m) 9$7&URwSDI  
        error('zernfun:NMlength','N and M must be the same length.') `]*%:NZP@  
    end J=I:T2bV&s  
    uYFMv=>j  
    A <4_DVd@@  
    n = n(:); *#3*;dya]  
    m = m(:); C=fsJ=a5;  
    if any(mod(n-m,2)) 9 YP*f  
        error('zernfun:NMmultiplesof2', ... `J72+RA  
              'All N and M must differ by multiples of 2 (including 0).') ?h/xAl  
    end 8YNu<   
    >(hSW~i~  
    Ne3R.g9;Z  
    if any(m>n) <,\ `Psa)N  
        error('zernfun:MlessthanN', ... uxWFM $  
              'Each M must be less than or equal to its corresponding N.') OE_ QInb<  
    end tbtI1"$  
    1hl]W+9  
    24#bMt#^  
    if any( r>1 | r<0 ) |#{-.r6Y]  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') {jvOHu  
    end x&'o ]Y  
    /\na;GI$  
    k!5m@'f  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ^NXcLEaP*<  
        error('zernfun:RTHvector','R and THETA must be vectors.') ujU=JlJ7dl  
    end !RS9%ES_?  
    LH4>@YPGE#  
    {@?G 9UypA  
    r = r(:); N;uUx#z  
    theta = theta(:); KkEv#2n  
    length_r = length(r); :z]}ZZ  
    if length_r~=length(theta) CdY8 #+"  
        error('zernfun:RTHlength', ... Mtm/}I  
              'The number of R- and THETA-values must be equal.') }.p<wCPy6  
    end _2b9QP p  
    o/C(4q6d  
    P}0*{%jB  
    % Check normalization: iZaeoy  
    % -------------------- S=' wJ@?;  
    if nargin==5 && ischar(nflag) :- ?Ct  
        isnorm = strcmpi(nflag,'norm'); ] /+D^6  
        if ~isnorm u_PuqRcs  
            error('zernfun:normalization','Unrecognized normalization flag.') 2R]&v;A  
        end !YiuwFt  
    else f;gZ|a  
        isnorm = false; 6xoq;=o  
    end h35Hu_c&  
    @9Q2$  
    v!H:^!z  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% bLqy!QE  
    % Compute the Zernike Polynomials %a];  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% {XgnZ`*  
    *5e+@rD`  
    K$H <}e3  
    % Determine the required powers of r: YzAFC11,  
    % ----------------------------------- p~2UUm V  
    m_abs = abs(m); ;#TaZN  
    rpowers = []; @b2`R3}9R  
    for j = 1:length(n) q]\X~ 9#  
        rpowers = [rpowers m_abs(j):2:n(j)]; (DDyK[t+VX  
    end Q/ZkW  
    rpowers = unique(rpowers); =oX>Ph+ P  
    GMW,*if8p  
    |9Yi7.  
    % Pre-compute the values of r raised to the required powers,  QV qK  
    % and compile them in a matrix: (vc|7DX M  
    % ----------------------------- M\oTZ@  
    if rpowers(1)==0 09S6#;N&  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 1tB[_$s  
        rpowern = cat(2,rpowern{:}); aE|OTm+@9;  
        rpowern = [ones(length_r,1) rpowern]; vMla'5|l  
    else Ue*C>F   
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false);  )zq.4  
        rpowern = cat(2,rpowern{:}); K=?VDN  
    end ar.AL'  
    W2Luz;(U  
    |.P/:e9  
    % Compute the values of the polynomials: Jq ]:<TQ  
    % -------------------------------------- 9b;A1gu  
    y = zeros(length_r,length(n)); Xf d*D  
    for j = 1:length(n) ?":'O#E  
        s = 0:(n(j)-m_abs(j))/2; U7iuY~L  
        pows = n(j):-2:m_abs(j); ]XA4;7  
        for k = length(s):-1:1 % UZVb V  
            p = (1-2*mod(s(k),2))* ... ir16   
                       prod(2:(n(j)-s(k)))/              ... Y[Ltrk{  
                       prod(2:s(k))/                     ... ZH,4oF  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... &v!WVa?  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); FP^{=0  
            idx = (pows(k)==rpowers); Nt:9MG>1  
            y(:,j) = y(:,j) + p*rpowern(:,idx); nkDy!"K  
        end HKO739&n}  
         xJZ@DR,#  
        if isnorm 2; `=P5V  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); %7hB&[ 5  
        end 2Y!S_Hw8  
    end Bi3+)k>u7  
    % END: Compute the Zernike Polynomials aj\nrD1  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 2F`cv1M  
    i/So6jW  
    C\ZkGX  
    % Compute the Zernike functions: w}R~C   
    % ------------------------------ 5 BtX63  
    idx_pos = m>0; Jb["4X;h  
    idx_neg = m<0; SP]IUdE\  
    wJ<Oo@snm  
    vhuw &.\  
    z = y; zTbVp8\pI  
    if any(idx_pos) ,Gk}"w  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); C1EtoOv K  
    end HO)/dZNU  
    if any(idx_neg) Rli:x  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); qU6nJi+-I  
    end _c$9eAe  
    x35cW7R}T_  
    L I>(RMv  
    % EOF zernfun ;a{:%t  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  ^v.,y3  
    5@^ dgq  
    DDE还是手动输入的呢? yHxosxd<*  
    ]4;PR("aU  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究