下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, h\|T(597.
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, Upc_"mkI.
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? $F@ ,,*
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? AZ.
j>+0xx
{afIr1j/m
Dd:48sN:Jq
K{iC'^wP
gS!zaD7Nr
function z = zernfun(n,m,r,theta,nflag) xE6hE'rh.O
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. rDLgQ{Sea
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N riSgb=7q9
% and angular frequency M, evaluated at positions (R,THETA) on the N3\vd_D(
% unit circle. N is a vector of positive integers (including 0), and 5C5OLAl v
% M is a vector with the same number of elements as N. Each element C!|Yz=e
% k of M must be a positive integer, with possible values M(k) = -N(k) g7v(g?
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, gq.l=xS
% and THETA is a vector of angles. R and THETA must have the same kq>I?wg
% length. The output Z is a matrix with one column for every (N,M) \|
'Yuh
% pair, and one row for every (R,THETA) pair. *dxE
( dP
% Z1U@xQj
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike To,*H OP
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), R-Gg= l5
% with delta(m,0) the Kronecker delta, is chosen so that the integral YN7JJJ/~T
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ~Vf
A
% and theta=0 to theta=2*pi) is unity. For the non-normalized |0VZ1{=*
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. $AdBX}{
% d*LW32B@
% The Zernike functions are an orthogonal basis on the unit circle. !{b4+!@p
% They are used in disciplines such as astronomy, optics, and ;esOe\zjE
% optometry to describe functions on a circular domain. (J.k\d
% Pk`3sfz
% The following table lists the first 15 Zernike functions. 6P02=
% B|r'
% n m Zernike function Normalization #1p\\Av
% -------------------------------------------------- xks Me
% 0 0 1 1 3 ]pHc)p!.
% 1 1 r * cos(theta) 2 D/Py?<n-B
% 1 -1 r * sin(theta) 2 5Rae?*XH
% 2 -2 r^2 * cos(2*theta) sqrt(6) JD]uDuE
% 2 0 (2*r^2 - 1) sqrt(3) ,k}(]{ -
% 2 2 r^2 * sin(2*theta) sqrt(6) aqv'c
j>
% 3 -3 r^3 * cos(3*theta) sqrt(8) 9<5S!?JL
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) V}Ce3wgvA
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) _>4)q=
% 3 3 r^3 * sin(3*theta) sqrt(8) I
MG^L
% 4 -4 r^4 * cos(4*theta) sqrt(10) 8Y/1+-
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) YVPLHwh/5
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) &BN#"- J
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) -]Q\G
% 4 4 r^4 * sin(4*theta) sqrt(10) dQy K4T
% -------------------------------------------------- JgBC:t^\pV
% -[[(Zx
% Example 1: ~re~Ys
% $t0JfDd6Ky
% % Display the Zernike function Z(n=5,m=1) k&17 (Tv$
% x = -1:0.01:1; sEi9<$~R@0
% [X,Y] = meshgrid(x,x); QSOG(}w
% [theta,r] = cart2pol(X,Y); H^M>(kT#&
% idx = r<=1; jW>K#vj
% z = nan(size(X)); #Sg"/Cc
% z(idx) = zernfun(5,1,r(idx),theta(idx)); bbT$$b-
% figure iWIq~t*,H]
% pcolor(x,x,z), shading interp kq@~QI?9
% axis square, colorbar Pk;YM}
% title('Zernike function Z_5^1(r,\theta)') pk0{*Z?@
% PJ^qE|X
% Example 2: @4n>I+6*&
% WWATG=
% % Display the first 10 Zernike functions pj7v{H +
% x = -1:0.01:1; J M`[|"R%
% [X,Y] = meshgrid(x,x); ^,aI2vC
% [theta,r] = cart2pol(X,Y); )W&{OMr
% idx = r<=1; "<LWz&e^^
% z = nan(size(X)); ri6KD
% n = [0 1 1 2 2 2 3 3 3 3]; jwP5pu
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; %*#+(A"V
% Nplot = [4 10 12 16 18 20 22 24 26 28]; >T-4!ZvS\j
% y = zernfun(n,m,r(idx),theta(idx)); nkf7Fq}
% figure('Units','normalized') ?hViOh$.
% for k = 1:10 |#'n VN.;
% z(idx) = y(:,k); mv^X{T
% subplot(4,7,Nplot(k)) Eihn%Esa
% pcolor(x,x,z), shading interp }_5 R9w]"
% set(gca,'XTick',[],'YTick',[]) n]i#&[*A(
% axis square D}Sww5ZmP
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) h}kJ,n
% end mhB2l/
% QWtDZ>
% See also ZERNPOL, ZERNFUN2. ^b.#4i(v
aemi;61T\
ck\W'Y*Q7
% Paul Fricker 11/13/2006 `evF?t11X
m.<u!MI
Xj~%kPe
A0:rn\$l3
:Qhrh(i
% Check and prepare the inputs: hCS}
% ----------------------------- qG ? :Q
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) !#=3>\np+X
error('zernfun:NMvectors','N and M must be vectors.') *"OUwEl a
end !F.h+&^D;
#'0Yzh]qc
n4y]h
if length(n)~=length(m) `.J17mQe"
error('zernfun:NMlength','N and M must be the same length.') ,Vw>3|C
end ~9E_L?TW*
YV!hlYOBi
@\o"zU
n = n(:); =1@LMIi5x
m = m(:); C511hbF
if any(mod(n-m,2)) s^K2,D]P
error('zernfun:NMmultiplesof2', ... ^39lUKL
'All N and M must differ by multiples of 2 (including 0).') cvG*p||
end H2+b3y-1a]
cqSXX++CS,
4QTHBT+2`
if any(m>n) gKQV99
error('zernfun:MlessthanN', ... {M5t)-
'Each M must be less than or equal to its corresponding N.') b?c/J{me
end qR_>41JU"
*3rs+0
O1S7t)ag
if any( r>1 | r<0 ) ts9wSx~[+
error('zernfun:Rlessthan1','All R must be between 0 and 1.') lo(C3o'
end oeB'{bG
S_/S2(V"
_DH^ K9,9
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) R TpNxr{[
error('zernfun:RTHvector','R and THETA must be vectors.') U3Z=X TB
end QS5t~rb
XbB(<\0+
=$fz</S=J
r = r(:); \~"Ub"~I
theta = theta(:); &9fQW?Czs
length_r = length(r); zX4RqI
if length_r~=length(theta) e6Y>Bk
error('zernfun:RTHlength', ... 5af0- hj
'The number of R- and THETA-values must be equal.') ,(pp+hNq
end \yC /OLXq
&i(Ip'r
YrB-n
% Check normalization: | @$I<
% -------------------- V`1{*PrI@L
if nargin==5 && ischar(nflag) j~G(7t
isnorm = strcmpi(nflag,'norm'); )38%E;T{X
if ~isnorm e-`.Ht
error('zernfun:normalization','Unrecognized normalization flag.') {;u,04OVK
end UZ2_FP
else W>C?a=r~
isnorm = false; jr? /wtw
end X<$Tn60,
@$ Zh^+x!
$_E.D>5^%7
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 8c+V$rH_
% Compute the Zernike Polynomials nOvR, 6
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% } &B6
rB$~,q&.V
1o%#kf
% Determine the required powers of r: G
rp{
.
% ----------------------------------- jDpA>{O[
m_abs = abs(m); 9hfg/3t('
rpowers = []; 8 O9^g4?
for j = 1:length(n) 3NLn}
rpowers = [rpowers m_abs(j):2:n(j)]; Z%]K,9K
end -smN}*3[
rpowers = unique(rpowers); )>:~XA|?
jRU:un4
`\62 iUN
% Pre-compute the values of r raised to the required powers, W~;Jsd=f
% and compile them in a matrix: !SW0iq[7j
% ----------------------------- 1vj@qw3
if rpowers(1)==0 -je} PwT
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); XNWtX-[^@
rpowern = cat(2,rpowern{:}); OW4j!W
rpowern = [ones(length_r,1) rpowern]; $G9LaD#;M
else /DHgwpJ
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); {MUiK5:
rpowern = cat(2,rpowern{:}); CF{b Yf^%
end @)6b
k77 3h`;
kg]6q T;Y
% Compute the values of the polynomials: ly17FLJ].
% -------------------------------------- +9b{Y^^~T
y = zeros(length_r,length(n)); I]v2-rB&-
for j = 1:length(n) z/1$G"
s = 0:(n(j)-m_abs(j))/2; :}zyd;Rc
pows = n(j):-2:m_abs(j); >,{sFc
for k = length(s):-1:1 hi1Ial\Y
p = (1-2*mod(s(k),2))* ... U]sAYp^$
prod(2:(n(j)-s(k)))/ ... QPDh!A3T
prod(2:s(k))/ ... hLLSmW(
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... f[k#Znr
prod(2:((n(j)+m_abs(j))/2-s(k))); =#V^t$
idx = (pows(k)==rpowers); uGMzU&+
y(:,j) = y(:,j) + p*rpowern(:,idx); .P)lQk\
end -<s Gu9
1n8[fgz
if isnorm Kd5'2"DI
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); >o?v[:u*
end 4|`>}Nu
end <u!cdYo@
% END: Compute the Zernike Polynomials 1y'Y+1.<
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Z
v@nK%#J
:snO*Zg
(SBhU:^h
% Compute the Zernike functions: aV'bI
% ------------------------------ *H
Qc I-
idx_pos = m>0; q*&R&K;q
idx_neg = m<0; ]$@a.#}
Food<(!.>
\;X7DK2
z = y; JI5o~;}m
if any(idx_pos) bqcCA91
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); k XSX<b <%
end .T'@P7Hdx
if any(idx_neg) }<04\t?
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ODxZO3
end 'k,2*.A
rm[C{Pn
Z>9@)wo
% EOF zernfun 'o-4'