下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, UrgvG, Lt
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, Ts^IA67&<
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? ,Ti#g8j
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? y- g5`@
7Y_S%B:F
4ed(
DSN
<K)^MLgN
9nB:=`T9
function z = zernfun(n,m,r,theta,nflag) %Dy a-
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 6$IAm#
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N WL>"hkx
% and angular frequency M, evaluated at positions (R,THETA) on the -~jM=f$
% unit circle. N is a vector of positive integers (including 0), and J^u8d?>r
% M is a vector with the same number of elements as N. Each element [IMa0qs'
% k of M must be a positive integer, with possible values M(k) = -N(k) sb;81?|
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, DBOz<|
% and THETA is a vector of angles. R and THETA must have the same |d8/ZD
% length. The output Z is a matrix with one column for every (N,M) !Y5O3^I=u
% pair, and one row for every (R,THETA) pair. ,]>Eg6B,u
% G|.>p<q
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike &B[$l`1
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Z$T1nm%lo:
% with delta(m,0) the Kronecker delta, is chosen so that the integral Mk7#qiPo
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 8K{
TRPy
% and theta=0 to theta=2*pi) is unity. For the non-normalized JGJQ5zt
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ^oj)#(3C
% S&9{kt|BI
% The Zernike functions are an orthogonal basis on the unit circle. 9Y~A2C
% They are used in disciplines such as astronomy, optics, and N[czraFBD}
% optometry to describe functions on a circular domain. 8JGt|,
% +DksWbD
% The following table lists the first 15 Zernike functions. ;A1pqHr
% TR]~r2z
% n m Zernike function Normalization eEXer>Rm
% -------------------------------------------------- p1CY?K
% 0 0 1 1 \DpXs[1
% 1 1 r * cos(theta) 2 ~c+0SuJ
% 1 -1 r * sin(theta) 2 wR1M_&-s
% 2 -2 r^2 * cos(2*theta) sqrt(6) *l^h;RSx
% 2 0 (2*r^2 - 1) sqrt(3) 1)vdM(y3j
% 2 2 r^2 * sin(2*theta) sqrt(6) GYZzWN}U
% 3 -3 r^3 * cos(3*theta) sqrt(8) ,qyH B2v
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) N^B
YNqr
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) Uk5jZ|
% 3 3 r^3 * sin(3*theta) sqrt(8) UV$v:>K#
% 4 -4 r^4 * cos(4*theta) sqrt(10) 8I3"68c_a
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 36e!je
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) V`=#j[gX)=
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ZEp UHdin
% 4 4 r^4 * sin(4*theta) sqrt(10) ?u"MsnCXYn
% -------------------------------------------------- k~h'`(
% s7#w5fe
% Example 1: R6*:Us0\FJ
% 4l560Fb'U
% % Display the Zernike function Z(n=5,m=1) '3
5w(
% x = -1:0.01:1; r1]shb%J?
% [X,Y] = meshgrid(x,x); =EgiV<6vcH
% [theta,r] = cart2pol(X,Y); tUH#%
% idx = r<=1; Q3*@m
% z = nan(size(X)); H"6Sj-<=
% z(idx) = zernfun(5,1,r(idx),theta(idx)); :VX?j3qW
% figure YD 1u
% pcolor(x,x,z), shading interp +v{<<
% axis square, colorbar aHvTbpJ
% title('Zernike function Z_5^1(r,\theta)') tgKmCI
% 43^%f-J5
% Example 2: F_$eu-y
% -=I*{dzly
% % Display the first 10 Zernike functions {=VauF
% x = -1:0.01:1; <: f jWy
% [X,Y] = meshgrid(x,x); =rFgOdj
% [theta,r] = cart2pol(X,Y); "z8L}IC!e5
% idx = r<=1; q4C$-W%rj
% z = nan(size(X)); J.N%=-8
% n = [0 1 1 2 2 2 3 3 3 3]; =0c yGo
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; be}^}w=
% Nplot = [4 10 12 16 18 20 22 24 26 28]; 8&\<p7}=h
% y = zernfun(n,m,r(idx),theta(idx)); >LRt,.hy6
% figure('Units','normalized') :''^a
% for k = 1:10 m_wBRan
% z(idx) = y(:,k); n(\5Z&
% subplot(4,7,Nplot(k)) E=+v1\t)]
% pcolor(x,x,z), shading interp ]#z^[XG
% set(gca,'XTick',[],'YTick',[])
s>~ h<B
% axis square .gh3"
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}'])
I4.^I/c(
% end #8H
% icLf;@
% See also ZERNPOL, ZERNFUN2. ,#@B3~giC
sN.h>bd
)o-rg
% Paul Fricker 11/13/2006 I'%vN^e^
Gqvj
481J=8H
t&MJSFkiA
|}P4Gr}6
% Check and prepare the inputs: `uo'w:Q
% ----------------------------- Lwm2:_\_b
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ?]+{2&&$
error('zernfun:NMvectors','N and M must be vectors.') H48`z'o
end LT']3w
{PZNJ 2~
="hh=x.5J
if length(n)~=length(m) xcz[w}{eEq
error('zernfun:NMlength','N and M must be the same length.') 3eX;T +|o
end aVcQ
xFvDKW)_X7
('BFy>@
n = n(:); cD5c&+,&I
m = m(:); r*CI6yP
if any(mod(n-m,2)) ]Ng K(IU
error('zernfun:NMmultiplesof2', ... 7/%{7q3G>
'All N and M must differ by multiples of 2 (including 0).') *<Yn
end 'i#m%D`dt
IMjz#|c
#/!fLU@
if any(m>n) hqOy*!8'@
error('zernfun:MlessthanN', ... rjqQWfShY
'Each M must be less than or equal to its corresponding N.') (:v|(Gn/
end jSNUU.lur
S3EM6 `q'
t-7^deG'/n
if any( r>1 | r<0 ) WxwSb`U|
error('zernfun:Rlessthan1','All R must be between 0 and 1.') %6r MS}
end IO3`/R-
FaS}$-0
[^sv.
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) v%N/mL+5L
error('zernfun:RTHvector','R and THETA must be vectors.') `D)ay
end itV@U
CZaUrr
(s`oJLW>
r = r(:); Teq1VK3Hr
theta = theta(:); 5MUM{(C
length_r = length(r); 3>LyEXOW
if length_r~=length(theta) d67Q@')00
error('zernfun:RTHlength', ... k+Ew+j1_
'The number of R- and THETA-values must be equal.') P5
fp!YF
end v[4A_WjT
Zqwxi1
FgA'X<
% Check normalization: m]LR4V6k|
% -------------------- TTB1}j+V6
if nargin==5 && ischar(nflag) IO/%X;Y_
isnorm = strcmpi(nflag,'norm'); .
!gkJ
if ~isnorm f44b=,Lry5
error('zernfun:normalization','Unrecognized normalization flag.') Fl)p^uUtl
end !J<}=G5
else t[gz#'
isnorm = false; ' *h y!f]
end LvP{"K;
*6uZ"4rb.
=fA*b
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% w
D|p'N
% Compute the Zernike Polynomials cTpmklq
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 'nH/Z 84
+bC-_xGuh
Tc{r;:'G<
% Determine the required powers of r: =apcMW(zn
% ----------------------------------- g-B~"tp
m_abs = abs(m); % H"A%
rpowers = []; rHhn)m
for j = 1:length(n) b(@[Y(_R
rpowers = [rpowers m_abs(j):2:n(j)]; Ml &Cr
end (S~|hk^
rpowers = unique(rpowers); y k=o
~3p
:jEM.[
]WLQ q4q
% Pre-compute the values of r raised to the required powers, }9Yd[`
% and compile them in a matrix: eK]g FXk
% ----------------------------- 4yLC
if rpowers(1)==0 GL4-v[]6I
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); m e\S:
rpowern = cat(2,rpowern{:}); `dB!Ia|
rpowern = [ones(length_r,1) rpowern]; z=ItKoM*<
else yO@KjCv"
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); w]n ,`r^
rpowern = cat(2,rpowern{:}); 9OIX5$,S;
end $@
/K/"
V=#L@ws
{\tHS+]
% Compute the values of the polynomials: HK~uu5j
% -------------------------------------- Bvbv~7g(
y = zeros(length_r,length(n)); R <kh3T
for j = 1:length(n) \W^Mo>l
s = 0:(n(j)-m_abs(j))/2; .}KY*y
pows = n(j):-2:m_abs(j); ce/Z[B+d
for k = length(s):-1:1 Koh`|]N
p = (1-2*mod(s(k),2))* ... jVh I`F{n
prod(2:(n(j)-s(k)))/ ... AGwFD
prod(2:s(k))/ ... 1.+w&Y5
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... iTb k]$
prod(2:((n(j)+m_abs(j))/2-s(k))); ` oBlv
idx = (pows(k)==rpowers); S<RJ46
y(:,j) = y(:,j) + p*rpowern(:,idx); IfyyA
end z$'_ =9yZ
^G5BD_
if isnorm 6.]x@=Wm
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); XhF7%KR
end 1UR;}
end qEd!g,Sx
% END: Compute the Zernike Polynomials C[cNwvz
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ["'0vQ
hY5G=nbO*
XS!mtd<q
% Compute the Zernike functions: WU}?8\?U%
% ------------------------------ OG\TrW-ug
idx_pos = m>0; k M/cD`
idx_neg = m<0; _)4YxmK%
P%Fkd3e+
{?-@`FR-
z = y; ]
i;xeo,
if any(idx_pos) d1=kHU4_9
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); E1,Sr?'
end &p\fdR4e
if any(idx_neg) +-=o16*{ !
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); idL6 *%M
end [K2\e N~g
]6wo]nV[P
}m6zu'CV
% EOF zernfun aL63=y