下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, .03Rp5+v
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, -A@/cS%p
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? 1@i/N
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? 4'TssRot@h
9h/Hy aN
@,9YF}
h_]*|[g
Ww"]3
function z = zernfun(n,m,r,theta,nflag) uPxJwWXO
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. BS
]:w(}[
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N `Tei
% and angular frequency M, evaluated at positions (R,THETA) on the 3 .K #,
% unit circle. N is a vector of positive integers (including 0), and [N#4H3GM8
% M is a vector with the same number of elements as N. Each element n5z|@I`S_
% k of M must be a positive integer, with possible values M(k) = -N(k) e]5NA?2j
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, X` J86G )
% and THETA is a vector of angles. R and THETA must have the same 4)8e0L*[B?
% length. The output Z is a matrix with one column for every (N,M) upZtVdd
% pair, and one row for every (R,THETA) pair. %w?C)$Kn\
% 1 e]D=2y
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike :5BCW68le
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 56MY@
% with delta(m,0) the Kronecker delta, is chosen so that the integral Zl{9G?abCT
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, N.0g%0A.D
% and theta=0 to theta=2*pi) is unity. For the non-normalized !l]_c5
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. @AM11v\:
% ahQY-%>
% The Zernike functions are an orthogonal basis on the unit circle. O8cZl1C3
% They are used in disciplines such as astronomy, optics, and Ud7Z7?Ym
% optometry to describe functions on a circular domain. 3@:O1i
% &er,Wyc(
% The following table lists the first 15 Zernike functions. 8]oolA:^4s
% @biU@[D
% n m Zernike function Normalization 9aNOfs8(
% -------------------------------------------------- Ql%B=vgKL
% 0 0 1 1 {> <1K6t
% 1 1 r * cos(theta) 2 t2YB(6w+xg
% 1 -1 r * sin(theta) 2 ^tjw }sE
% 2 -2 r^2 * cos(2*theta) sqrt(6) 8&nb@l
% 2 0 (2*r^2 - 1) sqrt(3) z;y{QO
% 2 2 r^2 * sin(2*theta) sqrt(6) 9 )!}
% 3 -3 r^3 * cos(3*theta) sqrt(8) ~9xkiu5~
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) !XM<`H/
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) jD%|@ux
% 3 3 r^3 * sin(3*theta) sqrt(8) KCAV
% 4 -4 r^4 * cos(4*theta) sqrt(10) B:Ft(,
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) G0~Z|P
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) W#E(?M[r
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Gz BPI'C
% 4 4 r^4 * sin(4*theta) sqrt(10) K&RIF]0#G
% -------------------------------------------------- 3%Eu$|B
% CBF<53TshR
% Example 1: S;jD@j\t&
% F" M
% % Display the Zernike function Z(n=5,m=1) D9NQ3[R 9
% x = -1:0.01:1; \#WWJh"W
% [X,Y] = meshgrid(x,x); wGw~ F:z
% [theta,r] = cart2pol(X,Y); Dy>6L79G
% idx = r<=1; 5!cp^[rGL
% z = nan(size(X)); >3pT).wH|M
% z(idx) = zernfun(5,1,r(idx),theta(idx)); Tl'wA^~H
% figure '=%`;?j
% pcolor(x,x,z), shading interp /!^,+
% axis square, colorbar
D~BL Txq
% title('Zernike function Z_5^1(r,\theta)') S,ea[$_
% G;iH.rCH
% Example 2: 0[M2LF!m
% .@%L8_sMR
% % Display the first 10 Zernike functions Kh[l};/F
% x = -1:0.01:1; _)~1'tCs}h
% [X,Y] = meshgrid(x,x); UP$>,05z6
% [theta,r] = cart2pol(X,Y); l2:-).7xt
% idx = r<=1; U#]J5'i
% z = nan(size(X)); # ACT&J
% n = [0 1 1 2 2 2 3 3 3 3]; 'RhS%l
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; >j3':>\U
% Nplot = [4 10 12 16 18 20 22 24 26 28]; p5tb=Zg_
% y = zernfun(n,m,r(idx),theta(idx)); JqZt1um
% figure('Units','normalized') T/2k2r4PD
% for k = 1:10 |m6rF7Q
% z(idx) = y(:,k); <#4""FO*
% subplot(4,7,Nplot(k)) KvEv0L<ky
% pcolor(x,x,z), shading interp 71Za!3+
% set(gca,'XTick',[],'YTick',[]) '|Bk}pl7
% axis square L+p}%!g
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) gzn:]Y^
% end LU+SuVm
% ZSwuEX
% See also ZERNPOL, ZERNFUN2. =}kISh
U;4i&=.!
7<*0fy5n n
% Paul Fricker 11/13/2006 8a`3eM~?[
ZOcpF1y
yYYP;N?g4k
WeaT42*Q{
9#:fQ!3`
% Check and prepare the inputs: nW"O+s3
% ----------------------------- OylUuYy~j
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) )^AZmUYZ
error('zernfun:NMvectors','N and M must be vectors.') C?>d$G8
end d'ZB{'[8p
1.k=ji$D0
- _8-i1?
if length(n)~=length(m) UPr&
`kaJ
error('zernfun:NMlength','N and M must be the same length.') O8b#'f~
end #b;k+<n[X
utuWFAGn A
O/FI>RT\H
n = n(:); %&&)[
m = m(:); hnB`+!
if any(mod(n-m,2)) !-^oU"
error('zernfun:NMmultiplesof2', ... kP+,x H)1
'All N and M must differ by multiples of 2 (including 0).') ^67}&O^1 ,
end 9
@ <
@vyEN.K%mm
&V$cwB
if any(m>n) _s#]WyU1g
error('zernfun:MlessthanN', ... p+|8(w9A${
'Each M must be less than or equal to its corresponding N.') YVa,?&i=N
end ^h2+""
VgIk '.
jT$J~MpHh
if any( r>1 | r<0 ) /CO=!*7fz
error('zernfun:Rlessthan1','All R must be between 0 and 1.') JxwKTFU'3O
end ^.iRU'{
&
[@)Er=
e+-#/i*
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Pg:xC9w4
error('zernfun:RTHvector','R and THETA must be vectors.') Um\HX6
end &U?4e'N)T
B !,&{[D
dWiNe!oY2
r = r(:); w^
z ftm
theta = theta(:); H=,>-eVv*
length_r = length(r); &8l?$7S"_/
if length_r~=length(theta) <(@S;?ZEW
error('zernfun:RTHlength', ... TMY. z
'The number of R- and THETA-values must be equal.') yc?L
OW0
end N,rd= m+
]tT=jN&(
WwTl|wgvyI
% Check normalization: HQ9tvSc
% -------------------- EK=0oy[
if nargin==5 && ischar(nflag) '_4apyq|
isnorm = strcmpi(nflag,'norm'); F7O*%y.';
if ~isnorm 8)?&eE'
error('zernfun:normalization','Unrecognized normalization flag.') CF','gPnc
end G4:\6fu
else 3%(r,AD
isnorm = false; %n9ukc~$p
end \3^V-/SJf
i&lW&]
+@!\3a4!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% y7:f^4
% Compute the Zernike Polynomials L-E?1qhP>
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% f!yl&ulKU
467"pqT
R,78}7B
% Determine the required powers of r: kP[fhOpn
% ----------------------------------- %i3[x.M
m_abs = abs(m); H!7?#tRU
rpowers = []; *,CJ 3<>
for j = 1:length(n) #z&R9$
rpowers = [rpowers m_abs(j):2:n(j)]; ~<<32t'S:
end ?+7~E8
rpowers = unique(rpowers); v5\ALWy+p
oY0b8=[
$dKfUlO
% Pre-compute the values of r raised to the required powers, ]zyT_}&
% and compile them in a matrix: N".BC|r
% ----------------------------- "]G'^
if rpowers(1)==0 Io JI|lP
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); qGV(p}$O
rpowern = cat(2,rpowern{:}); Z7pX%nj_
rpowern = [ones(length_r,1) rpowern]; C}<e3BXc
else !2HF|x$
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ^&86VBP
rpowern = cat(2,rpowern{:}); h_P[B
end }]dzY(
k"gm;,`
BNE:,I*&
% Compute the values of the polynomials: =|Qxv`S1
% -------------------------------------- &F:.V$
y = zeros(length_r,length(n)); Hs8JJGXWB
for j = 1:length(n) Ih.)iTs~%
s = 0:(n(j)-m_abs(j))/2; ZDzG8E0Sq
pows = n(j):-2:m_abs(j); SC%HHu\l
for k = length(s):-1:1 A9@coP5
p = (1-2*mod(s(k),2))* ... "O9n|B
prod(2:(n(j)-s(k)))/ ... *2-b&PQR{
prod(2:s(k))/ ... $PRd'YdL/
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... HU/4K7e`
prod(2:((n(j)+m_abs(j))/2-s(k))); hG~.Sc:G
idx = (pows(k)==rpowers); J5jI/P
y(:,j) = y(:,j) + p*rpowern(:,idx); $Bc3| `K1v
end }z/%b<o_
=to.Oa RR
if isnorm {na>)qzKP
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); vv2[t
end $v2t6wS,"
end MtPdpm6\
% END: Compute the Zernike Polynomials X=f %!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% _ ~yd
|P&
\C8h
`5oXf
% Compute the Zernike functions: h {J io>
% ------------------------------ O86p]Lr
idx_pos = m>0; C:sgT6
idx_neg = m<0; OY81|N
j
qTbc?S46pt
tMP"9JE,
z = y; ztHx)
!
if any(idx_pos) |BhL.
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); r7V !M1
end p`\>GWuT!
if any(idx_neg) xH`
VX-X3
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); JQej$=*
end h,&{m*q&
<6;@@
?-2s}IJO
% EOF zernfun wE<r'