切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9502阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, \Jj'60L^  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, =S?-=jPtg  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? zj$Z%|@$  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? EXM/>PG  
    oY#XWe8Om  
    w]}cB+C+l#  
     OG<]`!"  
    6`PGV+3j  
    function z = zernfun(n,m,r,theta,nflag) MrygEC 5  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. y`P7LC  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N F@*r%[S/  
    %   and angular frequency M, evaluated at positions (R,THETA) on the cqU/Y_%l'  
    %   unit circle.  N is a vector of positive integers (including 0), and U=*q;$L#  
    %   M is a vector with the same number of elements as N.  Each element (Gb{ckzs  
    %   k of M must be a positive integer, with possible values M(k) = -N(k)  ^O\1v  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, J,2v~Dq  
    %   and THETA is a vector of angles.  R and THETA must have the same cF>;f(X  
    %   length.  The output Z is a matrix with one column for every (N,M) p`V9+CA  
    %   pair, and one row for every (R,THETA) pair. ok=E/77`  
    % *{n,4d\..  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike MyR\_)P?  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), t"@|;uPAu  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral TbUkqABm  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, <8}9s9Nk  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized Ra,on&OP`*  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ^ZZ@!Udy  
    % ="PywZ  
    %   The Zernike functions are an orthogonal basis on the unit circle. gZuR4Ti  
    %   They are used in disciplines such as astronomy, optics, and ~d1RD  
    %   optometry to describe functions on a circular domain. !7Q.w/|=  
    % vf'jz`Z  
    %   The following table lists the first 15 Zernike functions. 9<#R;eIsv  
    % ?Pf ,5=*B  
    %       n    m    Zernike function           Normalization )pj \b[  
    %       -------------------------------------------------- \VzQ1B>k  
    %       0    0    1                                 1 Sf8Xj |u  
    %       1    1    r * cos(theta)                    2 ,PtR^" Mf4  
    %       1   -1    r * sin(theta)                    2 YH6 K-}  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) \fGYJ37  
    %       2    0    (2*r^2 - 1)                    sqrt(3) X!'Xx8  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) !{- 3:N7  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) S)1:*>@  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) Vf2! 0  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ntUVhIE0  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) TuPxyB  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) = ~R3*GN  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) O4+w2'.,  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) %JU23c*  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) %x)U8  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) ~wV98u-N  
    %       -------------------------------------------------- 2+rao2  
    % (W6\%H2u  
    %   Example 1: 1>*<K/\qg  
    % NQ{Z   
    %       % Display the Zernike function Z(n=5,m=1) ojI"<Q~g  
    %       x = -1:0.01:1; Y{B_OoTun  
    %       [X,Y] = meshgrid(x,x); W5yu`Br  
    %       [theta,r] = cart2pol(X,Y); y")>"8H  
    %       idx = r<=1; ;:YjgZ:+Q]  
    %       z = nan(size(X)); =|^W]2W$  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); `9)2nkJk'z  
    %       figure Fgq*3t  
    %       pcolor(x,x,z), shading interp w'j]Y%  
    %       axis square, colorbar d:ajD  
    %       title('Zernike function Z_5^1(r,\theta)') \YyU5f7';  
    % gI$`d?[0{  
    %   Example 2: ZjID<5#  
    % PhL5EYn  
    %       % Display the first 10 Zernike functions ;^SgV   
    %       x = -1:0.01:1; '4S@:.D`  
    %       [X,Y] = meshgrid(x,x); 0([jD25J!  
    %       [theta,r] = cart2pol(X,Y); <GlV!y  
    %       idx = r<=1; Z@Z`8M@Q,  
    %       z = nan(size(X)); =I3U.^ :  
    %       n = [0  1  1  2  2  2  3  3  3  3]; P?-44m#  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; S;kc{?   
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 7q=xW6  
    %       y = zernfun(n,m,r(idx),theta(idx)); (8/xSOZ[  
    %       figure('Units','normalized') !KW)*  
    %       for k = 1:10 Vi~+C@96  
    %           z(idx) = y(:,k); tG&B D\  
    %           subplot(4,7,Nplot(k)) -B! TA0=oJ  
    %           pcolor(x,x,z), shading interp dXN&<Q,  
    %           set(gca,'XTick',[],'YTick',[]) $VNn`0^gF  
    %           axis square 'GT`% ck  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 2(xKE_|  
    %       end IKj1{nZvDc  
    % K~N[^pF  
    %   See also ZERNPOL, ZERNFUN2. W u{nC  
    mjc:0hH  
    p =O1aM  
    %   Paul Fricker 11/13/2006 {[iQRYD0|  
    !7|9r$  
    b8Sl3F?-~  
    Sv",E@!f  
    uQ)]g  
    % Check and prepare the inputs: _JB3+0@  
    % ----------------------------- %8}w!2D S  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) =,9'O/br  
        error('zernfun:NMvectors','N and M must be vectors.') 3mpjSL  
    end $l0w{m!P  
    AX?6Q4Gq1  
    M6n.uho/  
    if length(n)~=length(m) ~0:c{v;4  
        error('zernfun:NMlength','N and M must be the same length.') cV,URUD  
    end VNfx>&`  
    ax}Xsk_  
    g_=ZcGC  
    n = n(:); an@Ue7  
    m = m(:); KO7cZME  
    if any(mod(n-m,2)) [Y+ bW#'  
        error('zernfun:NMmultiplesof2', ... `UPmr50Wq  
              'All N and M must differ by multiples of 2 (including 0).') HX^ P9jXT  
    end 1k(*o.6  
    \`&fr+x  
    'JVvL  
    if any(m>n) b?,y%D) '  
        error('zernfun:MlessthanN', ... ~KvCb3~X  
              'Each M must be less than or equal to its corresponding N.') F*u;'K   
    end H|?`n uiD  
    (d\bSo$]  
    l"Q8`  
    if any( r>1 | r<0 ) 6=D;K.!  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') A5\S0l$Q  
    end GW#Wy=(_  
    X+ jSB,  
    '-_PO|}  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) -0Ek&"=Z^  
        error('zernfun:RTHvector','R and THETA must be vectors.') nXjUTSGa)  
    end ,\IZ/1  
    L|Iq#QX|  
    I_Qnq4Sk(  
    r = r(:); 7v_e"[s~  
    theta = theta(:); lw{|~m5`  
    length_r = length(r); 7y3; F7V  
    if length_r~=length(theta) z~al h?H  
        error('zernfun:RTHlength', ... d29HEu  
              'The number of R- and THETA-values must be equal.') ,# 6\:i  
    end 3& $E  
    h9mR+ng*oD  
    gf@Dy6<  
    % Check normalization: ]Ea6Z  
    % -------------------- 5;*C0m2%i  
    if nargin==5 && ischar(nflag) "lt[)3*  
        isnorm = strcmpi(nflag,'norm'); r`@Dgo}  
        if ~isnorm 2I  
            error('zernfun:normalization','Unrecognized normalization flag.') {lA@I*_lj  
        end "Y+`U  
    else ObUQB+  
        isnorm = false; Q2o:wXvj  
    end B(5g&+{Lq~  
    jn'8F$GU  
    <|@9]>z  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% bhRpYP%x  
    % Compute the Zernike Polynomials SzDi= lY  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% e0P1FD<@  
    &2DW  
    U+z&jdnhDR  
    % Determine the required powers of r: nHX@  
    % ----------------------------------- >4c 1VEi  
    m_abs = abs(m); v3B ^d}+.  
    rpowers = []; _\6-]  
    for j = 1:length(n) 0;9 LIL5  
        rpowers = [rpowers m_abs(j):2:n(j)]; AMr9rBd  
    end GUxhCoxb  
    rpowers = unique(rpowers); ROS0Q9X  
    DbDpdC;  
    { !w]t?h  
    % Pre-compute the values of r raised to the required powers, Kt-@a%O0  
    % and compile them in a matrix: ;AaF;zPV  
    % ----------------------------- R *U>T$  
    if rpowers(1)==0 31}6dg8?n  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); eP)RP6ON{  
        rpowern = cat(2,rpowern{:}); |7argk+  
        rpowern = [ones(length_r,1) rpowern]; 0bor/FU-d  
    else rr*IIG&.5  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); eNNK;xXe#  
        rpowern = cat(2,rpowern{:}); lxeolDl  
    end GZ1>]HB>r^  
    TS;MGi0`}  
    `7LdF,OdE  
    % Compute the values of the polynomials: W<2-Q,>Y  
    % -------------------------------------- \<5xf<{  
    y = zeros(length_r,length(n)); 8L#sg^1V  
    for j = 1:length(n) SF6n06UZu  
        s = 0:(n(j)-m_abs(j))/2; ms?h/*E<H  
        pows = n(j):-2:m_abs(j); rO C~U85  
        for k = length(s):-1:1 5b&'gd^d  
            p = (1-2*mod(s(k),2))* ... TCVJ[LbJ  
                       prod(2:(n(j)-s(k)))/              ... \oi=fu=}*  
                       prod(2:s(k))/                     ... yk=H@`~!  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 8WAg{lVs  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); h:|aQJG5  
            idx = (pows(k)==rpowers); $V[ob   
            y(:,j) = y(:,j) + p*rpowern(:,idx); A9"ho}<  
        end 6wGf47  
         *ce h ]v  
        if isnorm fE(rDQI  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); j9Lc2'  
        end de"*<+  
    end qZ4DO*%b3  
    % END: Compute the Zernike Polynomials TY? Fs-  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% P%1s6fjU  
    ZY83, :<  
    7&X^y+bMe6  
    % Compute the Zernike functions: /t816,i  
    % ------------------------------ )msqt!Ev  
    idx_pos = m>0; C&Rv)j  
    idx_neg = m<0; !nTq"d%(W  
    +;vfn>^!b  
    RsE+\)  
    z = y; V< J~:b1V  
    if any(idx_pos) wL:3RZB  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); !4|7U\;  
    end %zWtPxAf  
    if any(idx_neg) -gzk,ymp  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); P5[.2y_qM  
    end / JlUqC  
    _KKG^ u<  
    NbSwn}e_  
    % EOF zernfun I&4|T<j  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  1.6yi];6  
    RQ;pAO  
    DDE还是手动输入的呢? <-D>^p9  
    *0^!%Y'/4  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究