下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, iF5'ygR-Z
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 8kE]_t
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? ulT8lw='
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? `J<*9dq%
`=+^|Y}
TlL^7f}
_!;Me
)C
k NqS8R|
function z = zernfun(n,m,r,theta,nflag) qs\2Z@;
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. J2q,7wI#
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N c5q9LQ/
% and angular frequency M, evaluated at positions (R,THETA) on the DBLk!~IF
% unit circle. N is a vector of positive integers (including 0), and #?MY&hdU9
% M is a vector with the same number of elements as N. Each element >FjR9B
% k of M must be a positive integer, with possible values M(k) = -N(k) (z7vl~D
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, 7*Qk`*Ii
% and THETA is a vector of angles. R and THETA must have the same X)SDG#&+bF
% length. The output Z is a matrix with one column for every (N,M) rD?L
% pair, and one row for every (R,THETA) pair. 682Z}"I0
% Wc3kO'J
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike a)Q!'$"'
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), <99M@ cF
% with delta(m,0) the Kronecker delta, is chosen so that the integral @WH@^u
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 7g=2Z[o
% and theta=0 to theta=2*pi) is unity. For the non-normalized iUMY!eqp
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 2Y}?P+:%>
% ZN"j%E{d
% The Zernike functions are an orthogonal basis on the unit circle. hc
(e$##
% They are used in disciplines such as astronomy, optics, and AIb2k
% optometry to describe functions on a circular domain. dca;'$
% CO-_ea U(
% The following table lists the first 15 Zernike functions. 4p%A8%/q
% "gd=J_Yw
% n m Zernike function Normalization WPZ?*Sx
% -------------------------------------------------- T@}|zDC#
% 0 0 1 1 UT~a&u
% 1 1 r * cos(theta) 2 R(.}C)q3
% 1 -1 r * sin(theta) 2 IcP)FB4
% 2 -2 r^2 * cos(2*theta) sqrt(6) G6VF>2
% 2 0 (2*r^2 - 1) sqrt(3) (%iRaw7hp
% 2 2 r^2 * sin(2*theta) sqrt(6) AE: Z+rM*
% 3 -3 r^3 * cos(3*theta) sqrt(8) ^@P1
JNe
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) XxHx:mi
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 2._X|~0a
% 3 3 r^3 * sin(3*theta) sqrt(8) Vz14j_
% 4 -4 r^4 * cos(4*theta) sqrt(10) RMO,ZVq
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 86@c't@
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) U$oduY#
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Z,BC*
% 4 4 r^4 * sin(4*theta) sqrt(10) B1]bRxwn?
% -------------------------------------------------- 80A.<=(=.
% Y|8vO
% Example 1: gTRF^knrY
% Z*G(5SqUh"
% % Display the Zernike function Z(n=5,m=1) imQURC
% x = -1:0.01:1; (E,T#uc{
% [X,Y] = meshgrid(x,x); R+gz<H.Q
% [theta,r] = cart2pol(X,Y); Q1V9PRZX
% idx = r<=1; sNun+xsf^
% z = nan(size(X)); XdH\OJ
% z(idx) = zernfun(5,1,r(idx),theta(idx)); rt
JtK6t
% figure +_-bJo2a
% pcolor(x,x,z), shading interp 4|A>b})H
% axis square, colorbar hdTzCfeZ5@
% title('Zernike function Z_5^1(r,\theta)') t|t#vcB
% aq7~QX_0G
% Example 2: !w
BJ,&E
% #plY\0E@
% % Display the first 10 Zernike functions $mF_,|
% x = -1:0.01:1; j}b\Z9)!
% [X,Y] = meshgrid(x,x); a >\vUv*
% [theta,r] = cart2pol(X,Y); 8* Jw0mSw
% idx = r<=1; E2)h?cs
% z = nan(size(X)); 8[6o (
% n = [0 1 1 2 2 2 3 3 3 3]; @p\}p Y$T
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; Dk48@`l2
% Nplot = [4 10 12 16 18 20 22 24 26 28]; \EseGgd21
% y = zernfun(n,m,r(idx),theta(idx)); Vh>Z,()>>@
% figure('Units','normalized') bLt.O(T}
% for k = 1:10 %`Z!4L
% z(idx) = y(:,k); P2Vg 4
% subplot(4,7,Nplot(k)) fNGZ o
% pcolor(x,x,z), shading interp `y+tf?QN
% set(gca,'XTick',[],'YTick',[])
Ov<NsNX]
% axis square 9@+5LZR
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Z|}G6]h
% end @k&qb!Qah
% |Ph3#^rM?
% See also ZERNPOL, ZERNFUN2. 'vN G(h#%d
}@.|?2b +
8QMPY[{
% Paul Fricker 11/13/2006 :1Sl"?xU
}1IpON
[9:9Ql_h
+}jJ&Z9)
},|M9I0
% Check and prepare the inputs: V59(Z
% ----------------------------- hlt[\LP=$
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) s(W|f|R
error('zernfun:NMvectors','N and M must be vectors.') =-p$jXVW%
end [z7bixN
ID/F
$ImrOf^qt
if length(n)~=length(m) \l~*PG2
error('zernfun:NMlength','N and M must be the same length.') 1^gl}^|B
end Bj7gQ%>H4
T
Q,?>6n
@IXsy
n = n(:); 7 [0L9\xm
m = m(:); %.Q
!oYehj
if any(mod(n-m,2)) !>:?rSg*
error('zernfun:NMmultiplesof2', ... 23gPbtq/
'All N and M must differ by multiples of 2 (including 0).') '(/7[tJ
end
O#I1V K
kZ"BBJ6w
kBN+4Dr/$
if any(m>n) 5eWwgA
error('zernfun:MlessthanN', ... <F04GO\
'Each M must be less than or equal to its corresponding N.') zP<pEI
end 08*v~(T
P9 Z}H(?C
}\C-}
Q
if any( r>1 | r<0 ) {5
sO
error('zernfun:Rlessthan1','All R must be between 0 and 1.') iQ"XLrpl
end Vx-7\NB
i&n'N8D@
a0Zv p>Ft
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) |ZQ@fmvL/p
error('zernfun:RTHvector','R and THETA must be vectors.') U,LTVYrO
end ?Q&yEGm(
#Skv(IL
!^ _"~
r = r(:); i7ly[6{^pr
theta = theta(:); N?.%?0l
length_r = length(r); A%^ILyU6c
if length_r~=length(theta) {^N[("`
error('zernfun:RTHlength', ... )RcL/n
'The number of R- and THETA-values must be equal.') &ot/nQQ
end LCQE_}Mh
9H%X2#:fH
a`0=AQ
% Check normalization: :Lz\yARpk
% -------------------- I"`M@ %
if nargin==5 && ischar(nflag) &