下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, P-C_sj A7
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, DbDpdC;
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? &1&*(oi]X
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? b#F3,T__`Y
?s//a_nL*
|7 argk+
vc<8ApK3V
rr*IIG&.5
function z = zernfun(n,m,r,theta,nflag) eNNK;xXe#
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. lxeolDl
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N U*Q$:%72vO
% and angular frequency M, evaluated at positions (R,THETA) on the TS;MGi0`}
% unit circle. N is a vector of positive integers (including 0), and `7LdF,OdE
% M is a vector with the same number of elements as N. Each element W<2-Q,>Y
% k of M must be a positive integer, with possible values M(k) = -N(k) 5Z@Q^
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, 8L#sg^1V
% and THETA is a vector of angles. R and THETA must have the same SF6n06UZu
% length. The output Z is a matrix with one column for every (N,M) !`u)&.t7
% pair, and one row for every (R,THETA) pair. @M1U)JoQ
% Vrnx#j-U
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike (b(iL\B$D=
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), UwLa9Dn^
% with delta(m,0) the Kronecker delta, is chosen so that the integral S&a44i
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, xN5}y3
% and theta=0 to theta=2*pi) is unity. For the non-normalized i}!CY@sW
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. vm(% u!_P
% .e6 :/x~p*
% The Zernike functions are an orthogonal basis on the unit circle. (qaY,>je]D
% They are used in disciplines such as astronomy, optics, and \t}!Dr+yN
% optometry to describe functions on a circular domain. +iXA|L9=
% EprgLZ1B
% The following table lists the first 15 Zernike functions. $I_aHhKt
% Q$3%aR-2
% n m Zernike function Normalization P63f0F-G
% -------------------------------------------------- H]SnM'Y
% 0 0 1 1 {9z EnVfg
% 1 1 r * cos(theta) 2 6,!]x>B
% 1 -1 r * sin(theta) 2 hgm`6TQ
% 2 -2 r^2 * cos(2*theta) sqrt(6) \=.iM?T
% 2 0 (2*r^2 - 1) sqrt(3) !a
/
% 2 2 r^2 * sin(2*theta) sqrt(6) @Fo0uy\G
% 3 -3 r^3 * cos(3*theta) sqrt(8) XRZmg "
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) WKN\*N <
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) FsD}Nk=m~
% 3 3 r^3 * sin(3*theta) sqrt(8) pBHr{/\5
% 4 -4 r^4 * cos(4*theta) sqrt(10) YYhRdU/g
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) .6r&<*
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) (`T:b1
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) C,Ch6Ph
% 4 4 r^4 * sin(4*theta) sqrt(10) V97Eb>@
% -------------------------------------------------- !dZC-U~
% !fZxK CsQ
% Example 1: =l
{>-`:
% t/HE@xPxI5
% % Display the Zernike function Z(n=5,m=1) 'peFT[1>(
% x = -1:0.01:1; 8}4V$b`Z
% [X,Y] = meshgrid(x,x); aaLT%
% [theta,r] = cart2pol(X,Y); 3^8%/5$v
% idx = r<=1; Pj^6.f+
% z = nan(size(X)); Ur_~yX]Mo
% z(idx) = zernfun(5,1,r(idx),theta(idx)); ibEQ5 2
% figure g,\<fY+4
% pcolor(x,x,z), shading interp ?L'ijzP
% axis square, colorbar uA,K}sNRZ
% title('Zernike function Z_5^1(r,\theta)') 8USF;k
% h" j{B
% Example 2: 3HWI;
% B+,Z 3*
% % Display the first 10 Zernike functions ;|66AIwDe
% x = -1:0.01:1; JWC{ "6
% [X,Y] = meshgrid(x,x); iB{O"l@w
% [theta,r] = cart2pol(X,Y); XBCz\f
% idx = r<=1; ;l"z4>kt7
% z = nan(size(X)); CJ?Lv2Td
% n = [0 1 1 2 2 2 3 3 3 3]; f ~9ADb
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; {~ VgXkjsC
% Nplot = [4 10 12 16 18 20 22 24 26 28]; #VtlXr>G
% y = zernfun(n,m,r(idx),theta(idx)); "QA!z\0\
% figure('Units','normalized') T~_+\w
% for k = 1:10 0Bb amU
% z(idx) = y(:,k); s<tdn[d
% subplot(4,7,Nplot(k)) 4k}u`8 a
% pcolor(x,x,z), shading interp BoXQBcG]w
% set(gca,'XTick',[],'YTick',[]) VcA87*pel
% axis square ]QRhTz
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 6*Rz}RQ
% end os"o0?
% c1Xt$[_
% See also ZERNPOL, ZERNFUN2. .(`#q@73
&?v^xAr?B
Y ~xcJH
% Paul Fricker 11/13/2006 %\2
ll=p1
zN0^FXGD
/(5SJ(a
>}Za)
Jr|"` f%V
% Check and prepare the inputs: }qRYXjS
% ----------------------------- vA*!82
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) RKx"
}<#+
error('zernfun:NMvectors','N and M must be vectors.') {a\m0Bw/
end %TP0i#J
['Hl$2 j
m6bAvy]3<t
if length(n)~=length(m) [g`P(?
error('zernfun:NMlength','N and M must be the same length.') LY-fp+
end `a*[@a#
k7'_
mY+Jju1
n = n(:); g kT`C
m = m(:); 'D;v>r
if any(mod(n-m,2)) jA?A)YNQb
error('zernfun:NMmultiplesof2', ... c=0S]_
'All N and M must differ by multiples of 2 (including 0).') l q~^&\_#
end g:7S/L0]
eF823cH2x_
f![?og)I%
if any(m>n) g ]e^;
error('zernfun:MlessthanN', ... IVjH.BzH9
'Each M must be less than or equal to its corresponding N.') 40w,:$
end v[E*K@6f
d,tGW
GWsvN&nr
if any( r>1 | r<0 ) )v
!GiZ"7
error('zernfun:Rlessthan1','All R must be between 0 and 1.') 9w9[0BX#
end ph
qx<N@
'_N~PoV
JK))Cuh
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) o$)pJ#";F
error('zernfun:RTHvector','R and THETA must be vectors.') 9)9p<(b$
end {OtD+%
;x^WPYEj
CoO..
r = r(:); hd0d
gc
theta = theta(:); @ qy
n[C
length_r = length(r); ,@!io
if length_r~=length(theta) VRV*\*~$
error('zernfun:RTHlength', ... jM]B\cvN
'The number of R- and THETA-values must be equal.') TwJiYXHw?
end iI\bD
$a.fQ<,\X
,j E'd'$
% Check normalization: }tJRBb
% -------------------- (cAWT,
if nargin==5 && ischar(nflag)
RdaAS{>Sk
isnorm = strcmpi(nflag,'norm'); Hz~?"ts@;
if ~isnorm u5zL;C3O
error('zernfun:normalization','Unrecognized normalization flag.') Zq1ZrwPF
end @`t#Bi9
else HEh,Cf7`'
isnorm = false; @D1}).
end goBl~fqy0
r&!Ebe-
u-qwG/$E
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% iXLODuI
% Compute the Zernike Polynomials l Oxz&m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ~C M%WvS
Uao8#<CkvJ
E/+H~YzO
% Determine the required powers of r: B}S!l>.z
% ----------------------------------- ]+4QsoFNt
m_abs = abs(m); ^EtBo7^t
rpowers = []; $[(amj-;l
for j = 1:length(n) ?|,dHqh{nM
rpowers = [rpowers m_abs(j):2:n(j)]; W3Gg<!*Uo
end /Q]6"nY
rpowers = unique(rpowers); Hreu3N
t"# .I?S0
c+S<U*
% Pre-compute the values of r raised to the required powers, X;:qnnO
% and compile them in a matrix: j}s<Pn%4
% ----------------------------- hSkI]%
if rpowers(1)==0 ({&