切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8786阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, IS&`O= 7  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, YtW#MG$f  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? ]~WP;o  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? Z;%  
    ~pzaX8!  
    FAM`+QtNw  
    v^@L?{" }8  
    ~lDLdUs  
    function z = zernfun(n,m,r,theta,nflag) X&wK<  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. !Q.c8GRUQ  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N NnHwk)'  
    %   and angular frequency M, evaluated at positions (R,THETA) on the T d;e\s/]  
    %   unit circle.  N is a vector of positive integers (including 0), and ,9?'Q;20  
    %   M is a vector with the same number of elements as N.  Each element W**=X\"'  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) te6[^_k  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, !ox&`  
    %   and THETA is a vector of angles.  R and THETA must have the same #H!~:Xu   
    %   length.  The output Z is a matrix with one column for every (N,M) /2FX"I[0V%  
    %   pair, and one row for every (R,THETA) pair. ykM#EyN  
    % K"}Dbr  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Q~xR'G[N  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 7y[B[$P  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 'Fonn  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, FblGFm"P  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized bzJKoxU  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. uFok'3!g7%  
    % MO _9Yi  
    %   The Zernike functions are an orthogonal basis on the unit circle. AP@xZ%;K  
    %   They are used in disciplines such as astronomy, optics, and $hKgTf?  
    %   optometry to describe functions on a circular domain. W!X#:UM)  
    % J&3;6I &  
    %   The following table lists the first 15 Zernike functions. PU'v o4  
    % z?  {#/  
    %       n    m    Zernike function           Normalization Ix(4<s  
    %       -------------------------------------------------- 5Q%#Z L/'  
    %       0    0    1                                 1 9&d BL0  
    %       1    1    r * cos(theta)                    2 il#rdJ1@t  
    %       1   -1    r * sin(theta)                    2 Q'8v!/"}p{  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) (vI7qD_  
    %       2    0    (2*r^2 - 1)                    sqrt(3) qHKZ5w  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) rW`F|F%  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) N$y4>g  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) RtIc:ym  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ze 4/XR  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) Fe=4^.  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) RU{}qPs?  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Xs!eV  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) Y4{`?UM&h  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 5=?&q 'i  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) O Z#?  
    %       -------------------------------------------------- C$tSsw?A  
    % hV,3xrm?P  
    %   Example 1: t =*K?'ly  
    % FdSaOod8  
    %       % Display the Zernike function Z(n=5,m=1) p0tv@8C>  
    %       x = -1:0.01:1; .H>Rqikj  
    %       [X,Y] = meshgrid(x,x); K&X'^|en  
    %       [theta,r] = cart2pol(X,Y); I}q-J~s  
    %       idx = r<=1; Gt1Up~\s  
    %       z = nan(size(X)); Kz<xuulr  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); w1}[lq@  
    %       figure .U1dcL6  
    %       pcolor(x,x,z), shading interp .Gv~e!a8  
    %       axis square, colorbar n-=\n6"P  
    %       title('Zernike function Z_5^1(r,\theta)') +p[~hM6?  
    % ?k3b\E3  
    %   Example 2: ,S5#Kka~a  
    % 1y@-  
    %       % Display the first 10 Zernike functions e7qT;  
    %       x = -1:0.01:1; B@=Yj_s  
    %       [X,Y] = meshgrid(x,x); lvN{R{7 >  
    %       [theta,r] = cart2pol(X,Y); ry T8*}o  
    %       idx = r<=1; 4ku/3/ 6  
    %       z = nan(size(X)); e"2QV vB  
    %       n = [0  1  1  2  2  2  3  3  3  3]; OP&[5X+Y  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 68!]q(!6F  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; N0piL6Js  
    %       y = zernfun(n,m,r(idx),theta(idx)); +sI.GWQ_:  
    %       figure('Units','normalized') Ax%BnkU  
    %       for k = 1:10 ku{aOV%  
    %           z(idx) = y(:,k); 0l##M06>  
    %           subplot(4,7,Nplot(k)) L!p|RKz9X  
    %           pcolor(x,x,z), shading interp "a g_   
    %           set(gca,'XTick',[],'YTick',[]) M'HOw)U  
    %           axis square Y]lqtre*Y  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) em]K7B=  
    %       end w* I+~o-  
    % @Dy.HQ~  
    %   See also ZERNPOL, ZERNFUN2. {#%xq]r_  
    3dbf!   
    gfYB|VyWo  
    %   Paul Fricker 11/13/2006 _R<HC  
    ]M2<I#hF.  
    ! lF^~x  
    Dr 1F|[  
    HZm i ?  
    % Check and prepare the inputs: A1q^E(}O  
    % ----------------------------- A!D:Kc3  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) e !yw"Cf*  
        error('zernfun:NMvectors','N and M must be vectors.') x.yL'J\)  
    end Kzb@JBIF  
    ["F,|e{y$  
    W'jXIO  
    if length(n)~=length(m) E8i:ER $$7  
        error('zernfun:NMlength','N and M must be the same length.') Wa(S20y F  
    end CwvNxH#LVu  
    Fjzk;o  
    @r?`:&m0  
    n = n(:); /)1-^ju  
    m = m(:); 5avO48;Vc  
    if any(mod(n-m,2)) bw\=F_>L  
        error('zernfun:NMmultiplesof2', ... ;N\?]{ L  
              'All N and M must differ by multiples of 2 (including 0).') PR?clg=z  
    end H1nQ.P]_  
    _);Kb/  
    G!8pF  
    if any(m>n) kKM%    
        error('zernfun:MlessthanN', ... bY~v0kg  
              'Each M must be less than or equal to its corresponding N.') yxN!*~BvL  
    end %?hLo8  
    lc-|Q#$3$  
    :Y>] 6  
    if any( r>1 | r<0 ) tTH%YtG  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') u`@f ~QP0  
    end zfb _ )  
    S=p u  
    l*Ei7 |Z  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ^kvH/Y&  
        error('zernfun:RTHvector','R and THETA must be vectors.') 5$U>M  
    end %, et$1`g  
    fR4l4 GU?)  
    1fv~r@6s  
    r = r(:); ]?(F'&  
    theta = theta(:); 5Kj4!Ai  
    length_r = length(r); lzG;F]  
    if length_r~=length(theta) A.9'pi'[9Q  
        error('zernfun:RTHlength', ... %uVJL z  
              'The number of R- and THETA-values must be equal.') *t{c}Y&@  
    end =zeLs0s;  
    SRN9(LN  
    *g4Cy 8$  
    % Check normalization: ;-pvc<_c<  
    % -------------------- PbUcbb17  
    if nargin==5 && ischar(nflag)  \t# 9zn>  
        isnorm = strcmpi(nflag,'norm'); w"agn}CK  
        if ~isnorm Ln2C#Uf  
            error('zernfun:normalization','Unrecognized normalization flag.') i i@1!o  
        end v\(m"|4(i  
    else k(z<Bm  
        isnorm = false; Z,!Xxv;4  
    end 1{x~iZa  
    8='21@wrN  
    t"/"Ge#a  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% )_*a7N!  
    % Compute the Zernike Polynomials M |?p3%  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% uuYH6bw*d  
    #oJbrh9J6  
    ClMtl59  
    % Determine the required powers of r: nP\V1pgA  
    % ----------------------------------- * \o$-6<  
    m_abs = abs(m); ~Oq,[,W  
    rpowers = []; $dTfvd  
    for j = 1:length(n) t9n   
        rpowers = [rpowers m_abs(j):2:n(j)]; Cxk$"_  
    end !N8)C@=  
    rpowers = unique(rpowers); {IPn\Bka  
    &lPBqw  
    7s8<FyFsjd  
    % Pre-compute the values of r raised to the required powers, ;5Vk01R  
    % and compile them in a matrix: f:[d]J|  
    % ----------------------------- Dg>'5`&  
    if rpowers(1)==0 ^UvK~5tBV  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 6"Lsui??  
        rpowern = cat(2,rpowern{:}); AqbT{,3yW  
        rpowern = [ones(length_r,1) rpowern]; @SC-vc  
    else  pO/SV6N  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); W]D`f8r9  
        rpowern = cat(2,rpowern{:});  m-'(27  
    end ?Tc)f_a  
    J`+`Kq1T  
    ECS<l*i57&  
    % Compute the values of the polynomials: 4/2RfDp  
    % -------------------------------------- F7Dc!JNa  
    y = zeros(length_r,length(n)); P10p<@?  
    for j = 1:length(n) Dl zmAN  
        s = 0:(n(j)-m_abs(j))/2; c[h'`KXJf-  
        pows = n(j):-2:m_abs(j); c. TB8Ol  
        for k = length(s):-1:1 !q-:rW? c  
            p = (1-2*mod(s(k),2))* ... ? gA=39[j  
                       prod(2:(n(j)-s(k)))/              ... WE5"A| =  
                       prod(2:s(k))/                     ... u3M` 'YCb  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ,"N3k(g  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); )_9e@ ~,  
            idx = (pows(k)==rpowers); :!I)r$  
            y(:,j) = y(:,j) + p*rpowern(:,idx); h nsa)@  
        end s-GleX<  
         @cu}3>  
        if isnorm tB,.  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); !$p2z_n$@.  
        end 7~kpRa@\P  
    end })zB".  
    % END: Compute the Zernike Polynomials _b!;(~ @p  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% h/1nm U]  
    e7XsyL'|p  
    S2'`|uI  
    % Compute the Zernike functions: KH2F#[ !Lw  
    % ------------------------------ B:3+',i1  
    idx_pos = m>0; QN5yBa!Wz  
    idx_neg = m<0; x2j /8]'o  
    <+? Y   
    %A)-m 69  
    z = y; FXOT+9bg  
    if any(idx_pos) 4f4 i1i:  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); I~p8#<4#b  
    end z-KrQx2  
    if any(idx_neg) jiA5oX^g  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); H _Zo@y~J  
    end 9UeVvH  
    85r)>aCMn  
    zG-_!FIn  
    % EOF zernfun U^M@um M  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    958
    光币
    1062
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  d]MGN^%o  
    NS Np  
    DDE还是手动输入的呢? e[}],W  
    IdF$Ml#[h  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究