下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, dp3>G2Yq
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 0'IV"eH2
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? ur,!-t(~t
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? vjcG
F'-
O"$uw
wsnR$FhQ`
3:Mq40]x
.S l{m[nV8
function z = zernfun(n,m,r,theta,nflag) WPmH4L>T
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 0Y_?r$M
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N .K=r.tf~
% and angular frequency M, evaluated at positions (R,THETA) on the fZqqU|tq
% unit circle. N is a vector of positive integers (including 0), and UbD1h_b
% M is a vector with the same number of elements as N. Each element X2?
^t]-N
% k of M must be a positive integer, with possible values M(k) = -N(k) kPm{ tc
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, F~`Yh6v
% and THETA is a vector of angles. R and THETA must have the same $?.0>0,<
% length. The output Z is a matrix with one column for every (N,M) i|]Kw9
% pair, and one row for every (R,THETA) pair. =ZE]jmD4P
% ?*36&Iq}
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike J|9kWjOf+i
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), KxZO.>,
% with delta(m,0) the Kronecker delta, is chosen so that the integral 4&}V3"lg
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Z r}5)ZR.
% and theta=0 to theta=2*pi) is unity. For the non-normalized J4yL"iMt
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. \>T+\?M
%
|a3v!va
% The Zernike functions are an orthogonal basis on the unit circle. E<j}"W$a
% They are used in disciplines such as astronomy, optics, and B}PT-S1l
% optometry to describe functions on a circular domain. .l| [e
% tl 0_Sd
% The following table lists the first 15 Zernike functions. ?s=O6D&
% cBZKt
% n m Zernike function Normalization l EcZ/
% -------------------------------------------------- [g bYIwL.
% 0 0 1 1 toq/G,N Q
% 1 1 r * cos(theta) 2 81gcM?
% 1 -1 r * sin(theta) 2 k`l={f8C
% 2 -2 r^2 * cos(2*theta) sqrt(6) ewo]-BQS
% 2 0 (2*r^2 - 1) sqrt(3) mv5=>Xc6
% 2 2 r^2 * sin(2*theta) sqrt(6) {:D8@jb[
% 3 -3 r^3 * cos(3*theta) sqrt(8) TzaR{0
1
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) XX85]49`%
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) q c(R
/[
% 3 3 r^3 * sin(3*theta) sqrt(8) z n,y'},
% 4 -4 r^4 * cos(4*theta) sqrt(10) #41xzN
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 9g7d:zG
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) b`%3>
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) m*Zq3j
% 4 4 r^4 * sin(4*theta) sqrt(10) $+ z3
% -------------------------------------------------- W'|NYw_B
% 4LEWOWF}
% Example 1: kLsp0%2
% <Km
^>9
% % Display the Zernike function Z(n=5,m=1) <>n-+Kr
% x = -1:0.01:1; 9H~2
iW,Q;
% [X,Y] = meshgrid(x,x); mH1T|UI
% [theta,r] = cart2pol(X,Y); <EhOIN7@*D
% idx = r<=1; -YDA,.Ic?
% z = nan(size(X)); ~XzT~WxW
% z(idx) = zernfun(5,1,r(idx),theta(idx)); \#
p@ef
% figure s+tPHftp
% pcolor(x,x,z), shading interp @U8}K#
% axis square, colorbar |/qwR~
% title('Zernike function Z_5^1(r,\theta)') 1@dB*Jt
% 9HsiAi*
% Example 2: q,i&%
% 8t1XZ
% % Display the first 10 Zernike functions SmpYH@
% x = -1:0.01:1;
#r=Jc8J_
% [X,Y] = meshgrid(x,x); TANv)&,|9
% [theta,r] = cart2pol(X,Y); AiP#wK;
% idx = r<=1; 6`PQP;
% z = nan(size(X)); Dias!$g
% n = [0 1 1 2 2 2 3 3 3 3]; W)_|jpd[
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; <y
S|\Z|
% Nplot = [4 10 12 16 18 20 22 24 26 28]; t@&U2JaL>W
% y = zernfun(n,m,r(idx),theta(idx)); R@X65o
% figure('Units','normalized') 8l1s]Kqr
% for k = 1:10 -> ^Ex`
% z(idx) = y(:,k); xU1_L*tu '
% subplot(4,7,Nplot(k)) Silh[8
% pcolor(x,x,z), shading interp ){nOM$W
% set(gca,'XTick',[],'YTick',[]) HzMr
% axis square Dhe*)
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) &<=?O
a
% end xekU2u}WE
% R_4eME2LB
% See also ZERNPOL, ZERNFUN2. khc1<BBsT
"1l$]=C*
2 rFjYx8D!
% Paul Fricker 11/13/2006 E/3i_R
`f[
( GW"iL#.
33=lR-N#
gTS}'w{
% Check and prepare the inputs: ? K ,d
% ----------------------------- f7SMO-3a
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) &-$27
error('zernfun:NMvectors','N and M must be vectors.') j|KjQ'9
end 1KUM!DUD
+SB>>
~.<QC<dN
if length(n)~=length(m) 8FIk|p|l^
error('zernfun:NMlength','N and M must be the same length.') xZ]QT3U+
end -O^R~Q_`w
/V{1Zw=
,Y4>$:#n/
n = n(:);
hm\UqIt
m = m(:); +8|9&v`
if any(mod(n-m,2)) E!9(6G4
error('zernfun:NMmultiplesof2', ... P;G]qV%
'All N and M must differ by multiples of 2 (including 0).') YNB7`:
end (e_z*o)\T
.iC!Ttr
3#0y.. F
if any(m>n) 6U0BP
error('zernfun:MlessthanN', ... Zsn@O2
'Each M must be less than or equal to its corresponding N.') nWes,K6T
end b/w5K2
noso* K7
wVq9t|V
if any( r>1 | r<0 ) TVM19)9
error('zernfun:Rlessthan1','All R must be between 0 and 1.') X<D fzd oI
end TILH[r&Jg
y9N6!M|'y
&P,uK+C4
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Yr*!T= z
error('zernfun:RTHvector','R and THETA must be vectors.') Hz"FGwd
end vqAEF^HYry
~:
fSD0
AHo }K\O?r
r = r(:); :}R,a=N
theta = theta(:); m5o$Dus+?'
length_r = length(r); >"+ho
if length_r~=length(theta) @uz(h'~
error('zernfun:RTHlength', ... UcKVLzKs
'The number of R- and THETA-values must be equal.') |)C
#
end P}^Y"zF2
.EReYZO
lbX
YWZ~7
% Check normalization: EOZ 6F-':
% -------------------- w~q ]&
if nargin==5 && ischar(nflag) >,QCKZH
isnorm = strcmpi(nflag,'norm'); ULhXyItL
if ~isnorm WD_{bd)
error('zernfun:normalization','Unrecognized normalization flag.') (<
>L fn
end rvU^W+d
else l^^Z}3^Rk
isnorm = false; #].qjOj
end :7i x`C2
Uq @].3nf
%{7*o5`
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% L/E7xLz
% Compute the Zernike Polynomials }.pqV
X{d
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% V c;g$Xr[
?6\N&MTF
$e2+O\.>
% Determine the required powers of r: 8f1M6GK?
% ----------------------------------- 3d]~e
m_abs = abs(m); "iGQ1#6|d
rpowers = []; omGzyuPF
for j = 1:length(n) =1k%T {>
rpowers = [rpowers m_abs(j):2:n(j)]; q7rb3d
end Hj(K*z
rpowers = unique(rpowers); g\?v 5
}30Sb&"
T*gG <8
% Pre-compute the values of r raised to the required powers, o>nw~_ H\
% and compile them in a matrix: ,(-V<>/*.|
% ----------------------------- ]l C2YD}
if rpowers(1)==0 7M
_
mR Vh
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); .zl[nx[9"D
rpowern = cat(2,rpowern{:}); nW*cqM%+
rpowern = [ones(length_r,1) rpowern]; "dG N0i
else '&hd^9]Lo
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); sVBr6
!v=
rpowern = cat(2,rpowern{:}); Dkb`_HI
end `d^Q!QxE
\<(EV,m2
0e+#{k
% Compute the values of the polynomials: 9-V'U\}L
% -------------------------------------- M 87CP=yc
y = zeros(length_r,length(n)); m?4hEwQxf
for j = 1:length(n) 6Q\|8a
s = 0:(n(j)-m_abs(j))/2; |O6/p7+.
pows = n(j):-2:m_abs(j); S[2?,C<2=
for k = length(s):-1:1 f^*Yqa
p = (1-2*mod(s(k),2))* ... *r[V[9+y-D
prod(2:(n(j)-s(k)))/ ... gKl9Nkd!R
prod(2:s(k))/ ... b9#(I~}
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... `A%WCd60Tc
prod(2:((n(j)+m_abs(j))/2-s(k))); P9qIq]M
idx = (pows(k)==rpowers); Tg"? TZO~
y(:,j) = y(:,j) + p*rpowern(:,idx); S5u$I
end NJE*/_S
{d*OJ/4
if isnorm mv #hy
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); |&{S ~^$
end j'U1lEZm2
end 6pSTw\/6
% END: Compute the Zernike Polynomials Y2XxfZj
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 2"?D aX
2C}Yvfm4
g)^s+Y
% Compute the Zernike functions: P`{$7ST'Hh
% ------------------------------ lct
idx_pos = m>0; ZLxa|R7
idx_neg = m<0; 7 s{vou
~tt\^:\3~S
` 6*]c n#(
z = y; (E)hEQ@8
if any(idx_pos) ~G@YA8}
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); /{`"X_.o
end _~;%zFX
if any(idx_neg) 2b"DkJj'
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); |u?VlRt
end G 3,v'D5
ssx#|InY
K$Vu[!l`
% EOF zernfun 2[Lv_<i|