切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9014阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, !>48`o ^  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, }U}zS@kI  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? Ed=/w6<  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? <B6md i'R  
    ;[y( 14g  
    rJiF2W  
    PQaTS*0SXJ  
    7y Cf3  
    function z = zernfun(n,m,r,theta,nflag) SeHrj&5U  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. +`d92Tz  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Oo|JIr7i  
    %   and angular frequency M, evaluated at positions (R,THETA) on the A$2 ;Bf  
    %   unit circle.  N is a vector of positive integers (including 0), and [4"(\r\f  
    %   M is a vector with the same number of elements as N.  Each element 5{=+S]  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) :<g0Ho?e  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ] (e ,J  
    %   and THETA is a vector of angles.  R and THETA must have the same 6wp1jN  
    %   length.  The output Z is a matrix with one column for every (N,M) B- @bU@H  
    %   pair, and one row for every (R,THETA) pair. wDvu2iC=  
    % bF _]j/  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike { j_-iF  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), )@! fLA T  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 0>Y3xNb  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, \GEz.Vb  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 2J=`"6c  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. %pVsafV  
    % AZ.QQ*GZ#y  
    %   The Zernike functions are an orthogonal basis on the unit circle. 0moAmfc  
    %   They are used in disciplines such as astronomy, optics, and jf)cDj2  
    %   optometry to describe functions on a circular domain. EjfQF C  
    % kn:hxdZ  
    %   The following table lists the first 15 Zernike functions. =-^A;AO(  
    % +3o vO$g  
    %       n    m    Zernike function           Normalization lw3H 8[  
    %       -------------------------------------------------- `,AOxJ:$  
    %       0    0    1                                 1 %oiF} >  
    %       1    1    r * cos(theta)                    2 3I 0pHP5  
    %       1   -1    r * sin(theta)                    2 b36{vcs~  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) Bw;isMx7  
    %       2    0    (2*r^2 - 1)                    sqrt(3) x<I[?GT=  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) G$,s.MSf  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) dOv\]  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) |47t+[b   
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) b@J"b(  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) '`^~Zy?c  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) g=mKTk   
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) /)[-5n{  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) i6yA>#^  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) < }K9 50  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) bIm4s  
    %       -------------------------------------------------- T;DKDg a  
    % eFsl  
    %   Example 1: h GA2.{  
    % 'jO2pH/%  
    %       % Display the Zernike function Z(n=5,m=1) 0j8fU7~6S  
    %       x = -1:0.01:1; EY]H*WJJ  
    %       [X,Y] = meshgrid(x,x); <Y6Vfee,&  
    %       [theta,r] = cart2pol(X,Y); E^J &?-  
    %       idx = r<=1; d>u^ 7:  
    %       z = nan(size(X)); y)KIz  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); o|>=< l  
    %       figure qGq]E `O  
    %       pcolor(x,x,z), shading interp }Rz,}^B  
    %       axis square, colorbar n ^9?(a4u  
    %       title('Zernike function Z_5^1(r,\theta)') MR|A_e^x  
    % i'<hT q4  
    %   Example 2: @~vg=(ic(  
    % v RtERFL  
    %       % Display the first 10 Zernike functions gZ&4b'XS,  
    %       x = -1:0.01:1; &'`C#-e@  
    %       [X,Y] = meshgrid(x,x); Mx w-f4j  
    %       [theta,r] = cart2pol(X,Y); R@grY:h  
    %       idx = r<=1; p p0356  
    %       z = nan(size(X)); Lea4-Gc  
    %       n = [0  1  1  2  2  2  3  3  3  3]; >!Gq[i0  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; <Z t]V`-  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; Tp@Yn  
    %       y = zernfun(n,m,r(idx),theta(idx)); X"3p/!W.4  
    %       figure('Units','normalized') )'jGf;du  
    %       for k = 1:10 cFie;k  
    %           z(idx) = y(:,k); ,eTdQI;   
    %           subplot(4,7,Nplot(k)) xY)eU;*  
    %           pcolor(x,x,z), shading interp H,<CR9@(5d  
    %           set(gca,'XTick',[],'YTick',[]) FS8l}t  
    %           axis square )0I -N)  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) #&uajo  
    %       end w*"Ii%iA<  
    % t ^>07#z  
    %   See also ZERNPOL, ZERNFUN2. `hY%HzV=  
    4 dHGU^#WZ  
    wx-&(f   
    %   Paul Fricker 11/13/2006 el<Gd.p.d  
    wL3BgCxqDL  
    B t3++ Mj  
    %@(+`CCA  
    #k<l5x`  
    % Check and prepare the inputs: Q(x=;wf5r  
    % ----------------------------- n[y=DdiKGS  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) aPe*@py3T  
        error('zernfun:NMvectors','N and M must be vectors.') p-"wY?q  
    end ~{g/  
    I;AS.y  
    (=rDt93J  
    if length(n)~=length(m) Z  OAg7  
        error('zernfun:NMlength','N and M must be the same length.') A"DGn  
    end rp @%0/[  
    =}%:4  
    !<h9XccN  
    n = n(:); IecD41%  
    m = m(:); }x{1{Bw>Y  
    if any(mod(n-m,2)) 2N-p97"g  
        error('zernfun:NMmultiplesof2', ... 3#""`]9H  
              'All N and M must differ by multiples of 2 (including 0).') rx]Q,;"  
    end q~18JB4WPJ  
    ,F!-17_vt  
    )2Q0NbDn  
    if any(m>n) H9_>a-> )~  
        error('zernfun:MlessthanN', ... ]ml'd  
              'Each M must be less than or equal to its corresponding N.') /QlzWson  
    end %/U'Wu{*  
    ~y Dl & S  
    i+Ne.h  
    if any( r>1 | r<0 ) `nII@ !  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') e?XGv0^qu  
    end tOF8v8Hd  
    l YdATM(h  
    oQ Vm)Bn'R  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) x5#Kk.  
        error('zernfun:RTHvector','R and THETA must be vectors.') ]LCL?zAzH!  
    end hYFi"ck  
    1*#hIuoj'  
    Vl(id_~_  
    r = r(:); S"+#=C  
    theta = theta(:); '&|%^9O/"  
    length_r = length(r); Rc@lGq9  
    if length_r~=length(theta) L`:V]p  
        error('zernfun:RTHlength', ... /a$Zzs&xs  
              'The number of R- and THETA-values must be equal.') ndB qXS  
    end ok-q9dM  
    _=[pW2p  
    0ly6  |:  
    % Check normalization: 2nFr?Y3g,  
    % -------------------- e=tM=i"  
    if nargin==5 && ischar(nflag) &"1_n]JO  
        isnorm = strcmpi(nflag,'norm'); X)TZ  S  
        if ~isnorm fA V.Mj-  
            error('zernfun:normalization','Unrecognized normalization flag.') +Z9ua%,3%  
        end T/%k1Hsa4H  
    else m,4'@jg0  
        isnorm = false; M.$=tuUL  
    end >FFp"%%  
    Nhjz~S<o  
    DM,;W`|6%  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  Cb|R  
    % Compute the Zernike Polynomials |jWA >S  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% :K \IS`  
    2C_I3S ~U  
    :W'.SRD  
    % Determine the required powers of r: s,laJf  
    % ----------------------------------- !cO<N~0*5x  
    m_abs = abs(m); ]VN1Y)  
    rpowers = []; $reQdN=~  
    for j = 1:length(n) b3=XWzK5  
        rpowers = [rpowers m_abs(j):2:n(j)]; N9H qFp  
    end t/]za4w/  
    rpowers = unique(rpowers); nrTCq~LO(  
    -zH-9N*c  
    Pj^Ccd'>=  
    % Pre-compute the values of r raised to the required powers, +jGUp\h%9;  
    % and compile them in a matrix: T< <N U"n  
    % ----------------------------- MLmk=&d  
    if rpowers(1)==0 H[/^&1P  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); h5; +5B}D  
        rpowern = cat(2,rpowern{:}); /5XdZu6k`h  
        rpowern = [ones(length_r,1) rpowern]; XOZ@ek)LY  
    else 8L))@SA+uJ  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ',Oc +jLR  
        rpowern = cat(2,rpowern{:}); 4Gh%PUV#  
    end )B^T7{  
    y=1(o3(  
    BQ~\p\  
    % Compute the values of the polynomials: Nu; 9  
    % -------------------------------------- cn ;2&  
    y = zeros(length_r,length(n)); PiX(Ase  
    for j = 1:length(n) M[Jy?b)  
        s = 0:(n(j)-m_abs(j))/2; `]2y=f<{X  
        pows = n(j):-2:m_abs(j); ({t6Cbw  
        for k = length(s):-1:1 `b5pa`\4  
            p = (1-2*mod(s(k),2))* ... C:}"?tri  
                       prod(2:(n(j)-s(k)))/              ... l'\m'Ioh  
                       prod(2:s(k))/                     ... CakB`q(8  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... kPp7;U2A  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); -fx$)d~  
            idx = (pows(k)==rpowers); ,xC@@>f  
            y(:,j) = y(:,j) + p*rpowern(:,idx); o l+*Oe  
        end i~*#z&4A+  
         DM !B@  
        if isnorm Nu%MXu+  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ,NU`aG-  
        end VSm{]Z!x  
    end (Mt-2+"+  
    % END: Compute the Zernike Polynomials :LR>U;2  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% `HM?Fc58  
    :AC(  \  
    lLL)S  
    % Compute the Zernike functions: <~.1>CI9D3  
    % ------------------------------ 0a's[>-'A  
    idx_pos = m>0; nA#dXckoc  
    idx_neg = m<0; @w[HXb  
    EYKV}`  
    y)+l U  
    z = y; <a%RKjQvT  
    if any(idx_pos) O>2i)M-h9x  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ,y*|f0&"~  
    end glRHn?p  
    if any(idx_neg) `CEHl &w  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); CF@j]I@{   
    end fUS1`  
    _2S( *  
    hW-?j&yJ?  
    % EOF zernfun w:[\G%yQ  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  IRyZ0$r:e\  
    wl7 (|\-  
    DDE还是手动输入的呢? 7!U^?0?/  
    MUn(ZnQy|  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究