下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, <9T,J"y
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 'I:_}q
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? )*Wz5x
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? J|@D @\?7
hegH^IN M
"xn,'`a
_;:_ !`
s,l*=<
function z = zernfun(n,m,r,theta,nflag) R<%{I)
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. KC%&or
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N "z=~7g
% and angular frequency M, evaluated at positions (R,THETA) on the RD;A
% unit circle. N is a vector of positive integers (including 0), and V#R; -C
% M is a vector with the same number of elements as N. Each element 4vND ~9d
% k of M must be a positive integer, with possible values M(k) = -N(k) "KSdC8MS
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, s6#e?5J
% and THETA is a vector of angles. R and THETA must have the same C5jt(!pi
% length. The output Z is a matrix with one column for every (N,M) e@S\7Ks
% pair, and one row for every (R,THETA) pair. xMa9o
% t:v>W8N53
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 9[lk=1.qN
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), DF'~ #G8
% with delta(m,0) the Kronecker delta, is chosen so that the integral 9e}%2,
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 3(gOF&Uf9
% and theta=0 to theta=2*pi) is unity. For the non-normalized 9l:[jsk<d
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. *P&lAyt6
% J3B+WD]
% The Zernike functions are an orthogonal basis on the unit circle. .ud&$-[a
% They are used in disciplines such as astronomy, optics, and N9M",(WTt}
% optometry to describe functions on a circular domain. rFUd
% zAev@+.ld
% The following table lists the first 15 Zernike functions. 4Lz[bI
% wF59g38[z$
% n m Zernike function Normalization =h+-1zp{M^
% -------------------------------------------------- oa[O~z{~
% 0 0 1 1 kV8qpw}K
% 1 1 r * cos(theta) 2 +ZFN8
% 1 -1 r * sin(theta) 2 KT AQ6k
% 2 -2 r^2 * cos(2*theta) sqrt(6) '(ZT}N
% 2 0 (2*r^2 - 1) sqrt(3) m9]Ge]
% 2 2 r^2 * sin(2*theta) sqrt(6) 2L51H(
% 3 -3 r^3 * cos(3*theta) sqrt(8) 4vkqe6
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) DJqJ6 z:'
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) QIJ/'72
% 3 3 r^3 * sin(3*theta) sqrt(8) L"0?g(<
5
% 4 -4 r^4 * cos(4*theta) sqrt(10) LlVbY=EX7
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Fq%NY8KNE
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) ;lt8~ea
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ]86*k%A
% 4 4 r^4 * sin(4*theta) sqrt(10) Vn\jUEC
% -------------------------------------------------- 563ExibH
% @hrIu" '!
% Example 1: fKtlfQG
% L|;sB=$'{
% % Display the Zernike function Z(n=5,m=1) `DM)tm3&m
% x = -1:0.01:1; Dd-a*6|x
% [X,Y] = meshgrid(x,x); H^vA}F`
% [theta,r] = cart2pol(X,Y); bQ&%6'ck
% idx = r<=1; )h{+pK
% z = nan(size(X)); s?4nR:ZC}
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 73SH[f[g
% figure @xBO[v
% pcolor(x,x,z), shading interp +oHbAPs8
% axis square, colorbar [$:L|V!{
% title('Zernike function Z_5^1(r,\theta)') o`
dQ
% ;>F1?5P{
% Example 2: -"^xg"
% 2uV5hSHYe
% % Display the first 10 Zernike functions {+3g*s/HI
% x = -1:0.01:1; | h+vdE8
% [X,Y] = meshgrid(x,x); 1TF S2R n
% [theta,r] = cart2pol(X,Y); a`?Vc}&
% idx = r<=1; 4X+I2CD
% z = nan(size(X)); BN&}g}N
% n = [0 1 1 2 2 2 3 3 3 3]; ;:>q;%
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; '$J M2 u
% Nplot = [4 10 12 16 18 20 22 24 26 28]; FJxb!-0&
% y = zernfun(n,m,r(idx),theta(idx)); nHp(,'R/
% figure('Units','normalized') t~44ub6GN`
% for k = 1:10 YD{N)v
% z(idx) = y(:,k); 8U4In[4
% subplot(4,7,Nplot(k)) H<P d&
% pcolor(x,x,z), shading interp yNU}1_oK
% set(gca,'XTick',[],'YTick',[]) S/RChg_L5
% axis square e~cg
(.
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) U6y`:G;.
% end Sq:J'%/z
% /E i e5p
% See also ZERNPOL, ZERNFUN2. 'C#[iRG4
N.ZuSkRM
}7P[%(T5
% Paul Fricker 11/13/2006 9wO2`e )
S1m5z,G
f/4DFs{
aygK$.wos
!$!%era`
% Check and prepare the inputs: ]<c\+9
% ----------------------------- ^\Q%VTM
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) <HIM
k
error('zernfun:NMvectors','N and M must be vectors.') "V`DhOG&
end i->G{_gH
?[Ma" l>
i&DUlmt)f
if length(n)~=length(m) rR#wbDr5
error('zernfun:NMlength','N and M must be the same length.') >J)4e~9EJ2
end eV}H
?du*ITim
|zd5P
n = n(:); XdOntP *a
m = m(:); P:3o}CB1I
if any(mod(n-m,2)) _sy]k A
error('zernfun:NMmultiplesof2', ... m|
7v76(
'All N and M must differ by multiples of 2 (including 0).') gFfKK`)}D'
end ~,xso0
, q{~lf-
)e6sg]#
if any(m>n) }m7$,'C%P
error('zernfun:MlessthanN', ... v$5D&Tv
'Each M must be less than or equal to its corresponding N.') jc#gn&4C
end =En1?3?
Ae"|a_>fMI
lIO#)>
if any( r>1 | r<0 ) NmF8BmIj
error('zernfun:Rlessthan1','All R must be between 0 and 1.') 3*(><<ZC
end t=s.w(3t
|+>U91!
s'IB{lJ9
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) /g!Xe]Ss
error('zernfun:RTHvector','R and THETA must be vectors.') sb?!U"v.'
end aH8]$e8_,\
t}OzF cyqN
=wD&hDn4
r = r(:); :_,3")-v
theta = theta(:); y|3("&)"S
length_r = length(r); kX:1=+{xg
if length_r~=length(theta) EVA&By6_k
error('zernfun:RTHlength', ... 5N bq9YY
'The number of R- and THETA-values must be equal.') 6VJS
l%X
end l7IF9b$c
HnsLYY\
U%;E: |
% Check normalization:
J6rWe
% -------------------- CteNJBm
if nargin==5 && ischar(nflag) [8oX[oP
isnorm = strcmpi(nflag,'norm'); r>CBp$
if ~isnorm soX^$l
error('zernfun:normalization','Unrecognized normalization flag.') %5@>
nC?`[
end ltNY8xrdGN
else :()K2<E
isnorm = false; |)*!&\Ch
end kV!1k<f
0(&RmR
s%6L94\t
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 7-\wr^ll3
% Compute the Zernike Polynomials `G:hC5B
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0~W6IGE~
Wvl'O'R
s;]"LD@
% Determine the required powers of r: F6:LH,~8
% ----------------------------------- MfKru,LSh
m_abs = abs(m); %e|UA-(
rpowers = []; &4l!2
for j = 1:length(n) JRAU|gr
rpowers = [rpowers m_abs(j):2:n(j)]; 1Oak8 \G
end 1(%6X*z
rpowers = unique(rpowers); ejbtdU8N<
r/HG{XH`
Q7/Jyx|
% Pre-compute the values of r raised to the required powers, R$+"'N6p
% and compile them in a matrix: :/RvtmW
% ----------------------------- e:_[0#
if rpowers(1)==0 N.SV*G
@
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); uigzf^6,
rpowern = cat(2,rpowern{:}); n,_9Eh#WD
rpowern = [ones(length_r,1) rpowern]; o? K>ji!
else .SSPJY(
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); <dz_7hR"
rpowern = cat(2,rpowern{:}); f2v~: u
end 54RexB o
O<dCvH
m2ph8KC
% Compute the values of the polynomials: #]^M/y
h
% -------------------------------------- 2^U?Ztth6
y = zeros(length_r,length(n)); %?8.UW\m
for j = 1:length(n) %+UTs'I
s = 0:(n(j)-m_abs(j))/2; z(>:LX"xz
pows = n(j):-2:m_abs(j); k RSY;V
for k = length(s):-1:1 gI@nE:(m
p = (1-2*mod(s(k),2))* ... t$R0UprK
prod(2:(n(j)-s(k)))/ ... /1= x8Sb
prod(2:s(k))/ ... v`:!$U*
H=
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... `q1-yH0~4
prod(2:((n(j)+m_abs(j))/2-s(k))); m93{K7O2e
idx = (pows(k)==rpowers); H$
:BJ$x@
y(:,j) = y(:,j) + p*rpowern(:,idx); ^?0?*
end %0 U@k!lP
H;Gs0Qi;
if isnorm $d&7q5[
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); *0r!eD
end k9VWyq__
end 2j1HN
% END: Compute the Zernike Polynomials ww'B!Ml>F
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% {`Mb ),G
VjZb\
d4
L%pAEoSG
% Compute the Zernike functions: sp0_f;bC
% ------------------------------ :cP u
idx_pos = m>0; Z1(!syg
idx_neg = m<0; K;TTGK
X[?E{[@Z
EFu>
z = y; Us>
if any(idx_pos) jX t5.9 t
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); `1FNs?j
end |;U3pq)
if any(idx_neg) +hH7|:JQ
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); V{}TG]
end RGY#0 .Z}
a"k,x-EL(
*_ajb:
% EOF zernfun ma`sv<f4-!