下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, Vl/fkd,Z
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, C;0VR
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? e/b
|
sl
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? ZxAk
]jSRO30H3<
G *
=>
3}5Ya\x
*r)dtI*
function z = zernfun(n,m,r,theta,nflag) ,wZq~;2
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 0@wXE\s
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N .^8rO,H[
% and angular frequency M, evaluated at positions (R,THETA) on the #'4Psz
% unit circle. N is a vector of positive integers (including 0), and sspGB>h8l
% M is a vector with the same number of elements as N. Each element a7sX*5t{R
% k of M must be a positive integer, with possible values M(k) = -N(k) Ys]cJ]
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, n(#[[k9&Ic
% and THETA is a vector of angles. R and THETA must have the same %gu |
% length. The output Z is a matrix with one column for every (N,M) B&AF(e (
% pair, and one row for every (R,THETA) pair. J"K(nKXO_?
% QYps5zcn
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 3QCCX$,
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), _wUg+Xs]
% with delta(m,0) the Kronecker delta, is chosen so that the integral ?Xj@Sx
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, X7txAp.
% and theta=0 to theta=2*pi) is unity. For the non-normalized 3LZvlcLb
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. X*M2 O%g`L
% U#`2~Qv/1
% The Zernike functions are an orthogonal basis on the unit circle. d%:J-UtG"
% They are used in disciplines such as astronomy, optics, and 5DJ!:QY!
% optometry to describe functions on a circular domain. tA^CuJR
% T0N6k acl
% The following table lists the first 15 Zernike functions. KGGJ\r6
% :xk+`` T
% n m Zernike function Normalization 3Xm>
3
% -------------------------------------------------- 1[!7xA0 j
% 0 0 1 1 Ec&_&
% 1 1 r * cos(theta) 2 :qj7i(
% 1 -1 r * sin(theta) 2 5|Oj\L{
% 2 -2 r^2 * cos(2*theta) sqrt(6) '4}8WYKQ
% 2 0 (2*r^2 - 1) sqrt(3) [WI'oy
% 2 2 r^2 * sin(2*theta) sqrt(6) Bm;:
cmB0e
% 3 -3 r^3 * cos(3*theta) sqrt(8) 8?ip,Q\
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) HGF&'@dn
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 3|%058bF
% 3 3 r^3 * sin(3*theta) sqrt(8) I~4!8W-Y
% 4 -4 r^4 * cos(4*theta) sqrt(10) >z73uKA(
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ^ywDa^;-
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) zm3$)*p1
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) {s{+MbD
% 4 4 r^4 * sin(4*theta) sqrt(10) izu_1X
% -------------------------------------------------- bX
6uGu
7
% 'EN80+xYX
% Example 1: tT+W>oA/M
% rONz*ly|i
% % Display the Zernike function Z(n=5,m=1) '7g]@Q7
% x = -1:0.01:1; $,0EV9+af
% [X,Y] = meshgrid(x,x); @|{8/sOq
% [theta,r] = cart2pol(X,Y); hV&