下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, ~@D%qbN
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, X6 ,9D[Nw
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? =!^iiHF
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? /wE_eK.
s%oAsQ_y
\z9?rvT:
(NdgF+'=
>!1 f`
function z = zernfun(n,m,r,theta,nflag) G)hH?_U#T
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. +c a296^
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N :dN35Y] a
% and angular frequency M, evaluated at positions (R,THETA) on the \&5@ yh
% unit circle. N is a vector of positive integers (including 0), and Wp}9%Mq~Jy
% M is a vector with the same number of elements as N. Each element >k}/$R+
% k of M must be a positive integer, with possible values M(k) = -N(k) UD2<!a'T
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, Wk?|BR]O
% and THETA is a vector of angles. R and THETA must have the same e:LZ s0
% length. The output Z is a matrix with one column for every (N,M) (QSWb>np
% pair, and one row for every (R,THETA) pair. fVUBCu
% VaSNFl1_M
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike AvE^
F1
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), i*R:WTw#
% with delta(m,0) the Kronecker delta, is chosen so that the integral &&1Y"dFs
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, H?j-=Zka
% and theta=0 to theta=2*pi) is unity. For the non-normalized 'c0'P%[5A
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. I~LQ1_
% _(`X .D
% The Zernike functions are an orthogonal basis on the unit circle. D?}m
h1#
% They are used in disciplines such as astronomy, optics, and s2?,' es
% optometry to describe functions on a circular domain. +){a[@S@x
% 9]@J*A}=l
% The following table lists the first 15 Zernike functions. ;"Y;l=9_
% K#UA M.
% n m Zernike function Normalization &]6K]sWJK{
% -------------------------------------------------- p@8krOo`
% 0 0 1 1 #IaBl?}r^
% 1 1 r * cos(theta) 2 N~5WA3xd
% 1 -1 r * sin(theta) 2 ./nYXREO|
% 2 -2 r^2 * cos(2*theta) sqrt(6) v?D
kDnta
% 2 0 (2*r^2 - 1) sqrt(3) qH%L"J
% 2 2 r^2 * sin(2*theta) sqrt(6) SKSAriS~
% 3 -3 r^3 * cos(3*theta) sqrt(8) `s83rhs`!
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) ;D"P9b]9$
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 4 uy @ {
% 3 3 r^3 * sin(3*theta) sqrt(8) 8U<.16+5Q
% 4 -4 r^4 * cos(4*theta) sqrt(10) _jrA?pY
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) <]Pix)
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) wGzXp5
dl
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) qa$[L@h>
% 4 4 r^4 * sin(4*theta) sqrt(10) vg:J#M:
% -------------------------------------------------- 3]`qnSYBv
% !qXq
y}?w
% Example 1: y:|.m@
j1
% 0Dm`Ek3A7x
% % Display the Zernike function Z(n=5,m=1) QE#-A@c
% x = -1:0.01:1; '5xuT _
% [X,Y] = meshgrid(x,x); W|H4i;u
% [theta,r] = cart2pol(X,Y); jO&f*rxN
% idx = r<=1; bOxjm`B<
% z = nan(size(X)); S?nNZW\6[
% z(idx) = zernfun(5,1,r(idx),theta(idx)); DtF![0w/
% figure <[3lV)~t
% pcolor(x,x,z), shading interp *M5$ h*;v
% axis square, colorbar RM^?&PM85
% title('Zernike function Z_5^1(r,\theta)') oj^5G
]_<
% +<!)k?
% Example 2: `!,\kc1
% N}+B:l]Qy
% % Display the first 10 Zernike functions SJ@8[n.x
% x = -1:0.01:1; F@_Egi
% [X,Y] = meshgrid(x,x); -Ty<9(~S
% [theta,r] = cart2pol(X,Y); 4('0f:9z+
% idx = r<=1; 9Nag%o{*S>
% z = nan(size(X)); J"D&q
% n = [0 1 1 2 2 2 3 3 3 3]; \}u7T[R=`
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 3d#9Wyxs
% Nplot = [4 10 12 16 18 20 22 24 26 28]; PK-}Ldj
% y = zernfun(n,m,r(idx),theta(idx));
KF:]4`$
% figure('Units','normalized') vbWJhjK0h
% for k = 1:10 'TK$ndy;7}
% z(idx) = y(:,k); t7*G91Hoq&
% subplot(4,7,Nplot(k)) 2w x[D
% pcolor(x,x,z), shading interp cy&
% set(gca,'XTick',[],'YTick',[]) <nOuyGIZ
% axis square zfP[1
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Lt;.Nw
% end _cxm}*}\#
% =0PNHO\gl
% See also ZERNPOL, ZERNFUN2. 2\nBqCxR
=#.8$oa^
f
gK2.;>
% Paul Fricker 11/13/2006 \]f5
Ersr\ZB
d739UhKC
qXP1Q3
w|
-0@
% Check and prepare the inputs: EaM"=g
% ----------------------------- k Z+ q
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 6:|!1Pg5
error('zernfun:NMvectors','N and M must be vectors.') FhY{;-W(T
end @sB}q 6>
Yn IM-
S|{Yvyp
if length(n)~=length(m) .*RB~c
t
error('zernfun:NMlength','N and M must be the same length.') 0^<Skm27"
end r%Q8)nEo
jpYw#]Q
R
(tiIo
n = n(:); r/N[7*i
m = m(:); :Bx+WW&P.i
if any(mod(n-m,2)) t5ny"k!
error('zernfun:NMmultiplesof2', ... +X* F<6mZ
'All N and M must differ by multiples of 2 (including 0).') E(aX4^]g
end ;e#>n!<u
xE G+%Uk{
YiIddQ
if any(m>n) lgCHGv2@
error('zernfun:MlessthanN', ... ]/aRc=Gn
'Each M must be less than or equal to its corresponding N.') VL_)]LR*)
end e/]O<, *
>~`Y
Eonq'Re$
if any( r>1 | r<0 ) Ht`<XbQ>
error('zernfun:Rlessthan1','All R must be between 0 and 1.') <_BqpZ^`
end l]a^"4L4`o
L<f-Ed9|
`YFkY^T
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Qag|nLoT
error('zernfun:RTHvector','R and THETA must be vectors.') D:YN_J"kV
end tIi!*u
)^jQkfL
5z9r S<
r = r(:); ~&wXXVK3
theta = theta(:); jGk7=}nw
length_r = length(r); +?URVp
if length_r~=length(theta) FX7Cjo#=R
error('zernfun:RTHlength', ... 'sm[CNzS
'The number of R- and THETA-values must be equal.') S`pF7[%rp
end ax-=n (
!pd7@FwC
9O),/SH;:
% Check normalization: 4 "pS
% -------------------- 6obQ9L c
if nargin==5 && ischar(nflag) L]c 8d
isnorm = strcmpi(nflag,'norm'); Kwy1SyU
if ~isnorm *)j@G:
error('zernfun:normalization','Unrecognized normalization flag.') 4u3 \xR?w6
end v
t^r1j
else ,3w I~j=
isnorm = false; $?H]S]#|}.
end JiKImz
z{_mEE49
QDIsC
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #[no~&E
% Compute the Zernike Polynomials X?KGb{
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 2B6^]pSk
21.YO]Et
Eem 2qKj
% Determine the required powers of r: 1k!D0f3qb
% ----------------------------------- rDpe_varA
m_abs = abs(m); UqD5
A~w
rpowers = []; cj$,ob&DX
for j = 1:length(n) ^OHZ767v
rpowers = [rpowers m_abs(j):2:n(j)]; LTg?5GwD\j
end "AT&!t[J
rpowers = unique(rpowers); Wl,%&H2S<
/DLr(
8&?^XcJ*x
% Pre-compute the values of r raised to the required powers, ,)Yao;Cvd
% and compile them in a matrix: 2;&mkcK'
% ----------------------------- c}YJqhk0J
if rpowers(1)==0
$`^H:Djr
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); \V._Z>]
rpowern = cat(2,rpowern{:}); -Bl/4p
rpowern = [ones(length_r,1) rpowern]; '*8
else jIKBgsiF/
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ^/G?QR
rpowern = cat(2,rpowern{:}); |c<XSX?ir
end G=vN;e_$_b
wG_4$kyj
w#W5}i&x
% Compute the values of the polynomials: l#b:^3
% -------------------------------------- ?A|zRj{
y = zeros(length_r,length(n)); H!p!sn
for j = 1:length(n) j6`6+W=S(
s = 0:(n(j)-m_abs(j))/2; #]"/{Z
pows = n(j):-2:m_abs(j); 7TP$
for k = length(s):-1:1 ;F|jG}M"
p = (1-2*mod(s(k),2))* ... $Xf~# uH
prod(2:(n(j)-s(k)))/ ... X )I/%{
prod(2:s(k))/ ... P<8LAc$T
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... QT_Srw@
prod(2:((n(j)+m_abs(j))/2-s(k))); wbBE@RU>!
idx = (pows(k)==rpowers); TV?
^c?{5
y(:,j) = y(:,j) + p*rpowern(:,idx); OE6#YT
end
1U
,Ie<'>hd
if isnorm 6s'[{Ov
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ~Hs=z$
end &.hoCPo$
end &/HoSj>HS
% END: Compute the Zernike Polynomials 'wa g |-
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% d"Bo8`_
<Uf|PFVj$
0xv\D0
% Compute the Zernike functions: .hxin[Y
% ------------------------------ NOV.Bs{
yL
idx_pos = m>0; "=FIFf
idx_neg = m<0; +5#x6[
}&mj.hGv
wI*Y{J
z = y; t`uc3ta"9
if any(idx_pos) iL+y(]
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); qv.n9 9?]
end +9TV:T
if any(idx_neg) g083J}08
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); OqtQA#uL
end (Bsw/wv
70{RDj6{
3zbXAR*
% EOF zernfun TWtC-wI;