下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, UKp^TW1^
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, >|g(/@IO
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? IQQ QB
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? "g&hsp+i"A
Jju^4
k83S.*9Mx
;><m[ l6
j},3@TFh
function z = zernfun(n,m,r,theta,nflag) ;]^% 6B n
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. IRT0
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 2[g kDZ
% and angular frequency M, evaluated at positions (R,THETA) on the o8u;2gZx
% unit circle. N is a vector of positive integers (including 0), and CX#d9
8\b
% M is a vector with the same number of elements as N. Each element $Ahe Vps@@
% k of M must be a positive integer, with possible values M(k) = -N(k) `{9bf)vP6
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, <,,X\>B
% and THETA is a vector of angles. R and THETA must have the same 40HhMTZ0-
% length. The output Z is a matrix with one column for every (N,M) (0^ZZe`#j
% pair, and one row for every (R,THETA) pair. c]R27r E
% ##a.=gl
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike {_~vf
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), /-Z}=
% with delta(m,0) the Kronecker delta, is chosen so that the integral @IV,sze
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, >Xw0i\G
% and theta=0 to theta=2*pi) is unity. For the non-normalized l;}3J3/qq]
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. t
{H{xd
% ~9n30j%]s
% The Zernike functions are an orthogonal basis on the unit circle. 8~ u/gM
% They are used in disciplines such as astronomy, optics, and w/csLi.O
% optometry to describe functions on a circular domain. i7%`}t
% +P%k@w#<Z
% The following table lists the first 15 Zernike functions. kbZpi`w
% T}59m;I
% n m Zernike function Normalization 8~y&" \
% -------------------------------------------------- vL8Rg} Jh4
% 0 0 1 1 USZBk0$
% 1 1 r * cos(theta) 2 >35W{d
% 1 -1 r * sin(theta) 2 BJKv9x1jK
% 2 -2 r^2 * cos(2*theta) sqrt(6) Lr0:yo
% 2 0 (2*r^2 - 1) sqrt(3) vH/RP
% 2 2 r^2 * sin(2*theta) sqrt(6) afE)yu`
% 3 -3 r^3 * cos(3*theta) sqrt(8) O~mQ\GlW
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) J;'H],w}f
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) \&[(PNl
% 3 3 r^3 * sin(3*theta) sqrt(8) ;.=]Ar}
% 4 -4 r^4 * cos(4*theta) sqrt(10) k%VYAON
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) DhXV=Qw
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) f4$sH/ 2#v
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) r+;k(HMY}[
% 4 4 r^4 * sin(4*theta) sqrt(10) Y=t?"E
% -------------------------------------------------- /QT>"
% 7[I +1
% Example 1: '3?-o|v@D
% T"1=/r$Ft
% % Display the Zernike function Z(n=5,m=1) TG%w
% x = -1:0.01:1; "RgP!
% [X,Y] = meshgrid(x,x); N5zx# g
% [theta,r] = cart2pol(X,Y); j8c5_&
% idx = r<=1; 6Ta+f3V
% z = nan(size(X)); ),Hr
% z(idx) = zernfun(5,1,r(idx),theta(idx)); '}IGV`c
% figure u;+8Jg+xH/
% pcolor(x,x,z), shading interp _r>kR7A\{
% axis square, colorbar )!~,xl^j{}
% title('Zernike function Z_5^1(r,\theta)') #x`K4f)
% 3)I]bui
% Example 2: dh9@3. t
% QseV\; z
% % Display the first 10 Zernike functions rdCs
% x = -1:0.01:1; Xk\IO0GF
% [X,Y] = meshgrid(x,x); o`G6!
% [theta,r] = cart2pol(X,Y); -[}Aka,f!
% idx = r<=1; ~'F.tB
% z = nan(size(X)); Kg`P@
% n = [0 1 1 2 2 2 3 3 3 3]; 5zh6l+S[
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; hV:++g
% Nplot = [4 10 12 16 18 20 22 24 26 28]; T}/|nOu
5
% y = zernfun(n,m,r(idx),theta(idx)); q" EW*k+
)
% figure('Units','normalized') bg|dV
% for k = 1:10 4ETHaIiWp
% z(idx) = y(:,k); Kwi+}B!
% subplot(4,7,Nplot(k)) 'T$Cw\F&
% pcolor(x,x,z), shading interp maeQ'Sv_&
% set(gca,'XTick',[],'YTick',[]) $@O?
% axis square Y% JE})
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) G|RBwl
% end }Xfg~%6
% MV2$0
% See also ZERNPOL, ZERNFUN2. h?v8b+:0
oUO3,2bn
p3Ozfk
% Paul Fricker 11/13/2006 y4l-o
Pm%5c\ef
qM+Ai*q
hnH<m7
P j,H]
% Check and prepare the inputs: RN|Bk
% ----------------------------- Ghc
U~
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) p(nO~I2E
error('zernfun:NMvectors','N and M must be vectors.')
+ K`.ck
end v_Df+
5gV,^[E-z
zA}JVB
if length(n)~=length(m) M$Bb,s
error('zernfun:NMlength','N and M must be the same length.') v\CBw"
end > ;#Y0
W -HOl!)
SP/b4
n = n(:); g],]l'7H
m = m(:); V8nQ/9R;
if any(mod(n-m,2)) x;`Gn_
error('zernfun:NMmultiplesof2', ... e$_gOwB
'All N and M must differ by multiples of 2 (including 0).') Ook\CK*nKe
end |&xaV-b9W
1L+hI=\O
jMCd`Q]K
if any(m>n) Ly3!0P.<
error('zernfun:MlessthanN', ... (n8?+GCa
'Each M must be less than or equal to its corresponding N.') \y%"tJ~N{
end DU8\1(
]kx<aQ^
<bo^u w
if any( r>1 | r<0 ) *0Z6H-Do,
error('zernfun:Rlessthan1','All R must be between 0 and 1.') 0Ze&GK'Hf
end _>]/. w2=
Y0kcxpK/
`xHpL8i$5
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) I4+1P1z
error('zernfun:RTHvector','R and THETA must be vectors.') gK;dfrU.8Y
end ("PZ!z1m1
|bSAn*6b
fa,:d8
r = r(:); a%BC{XX
theta = theta(:); w'A *EWO
length_r = length(r); |f$ws R`&
if length_r~=length(theta) 2bLc57j{`9
error('zernfun:RTHlength', ... Jk`Jv;
'The number of R- and THETA-values must be equal.') llR5qq=t
end /Dd x[P5p=
/m;Bwu
,r~^<m
% Check normalization: ?Fa$lE4
% -------------------- s.rQiD
if nargin==5 && ischar(nflag) TCzlu#w
isnorm = strcmpi(nflag,'norm'); f/Y7@y
if ~isnorm R[6R)#o
error('zernfun:normalization','Unrecognized normalization flag.') :UH*Wft1
end T+~&jC:{
else Z.Z31yF:f
isnorm = false; [h-NX
end 0PFC%x
Qi dI
17c`c.yP
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 8YE4ln
% Compute the Zernike Polynomials zVtTv-DU
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% k~:(.)Nr
v(JjvN21
B*3_m
_a
% Determine the required powers of r: ws,?ImA
% ----------------------------------- !BrZTo
m_abs = abs(m); +}(]7du
rpowers = []; g'T L`=O
for j = 1:length(n) )BI%cD
rpowers = [rpowers m_abs(j):2:n(j)]; >7X5/z
end %La/E#
rpowers = unique(rpowers); Gdx%#@/
jqj}j2
9
>k@{NP2b
% Pre-compute the values of r raised to the required powers, ^/Yk*Ny
% and compile them in a matrix: _X<V`,
p
% ----------------------------- S/y(1.wh
if rpowers(1)==0 WuF\{bUh
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); g(s}R ?
rpowern = cat(2,rpowern{:}); sA: /!9
rpowern = [ones(length_r,1) rpowern]; oa7 N6
else !=;Evf
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); o](ORS$~
rpowern = cat(2,rpowern{:}); S\sy^Kt~4:
end 5oYeUy>N
xOg|<Nnl
#z.\pd
% Compute the values of the polynomials: K^GvU 0\
% -------------------------------------- V_v+i c^
y = zeros(length_r,length(n)); >dF #1
for j = 1:length(n) _f "I%QTL
s = 0:(n(j)-m_abs(j))/2; v[x 5@$
pows = n(j):-2:m_abs(j); !f/^1k}SR
for k = length(s):-1:1 P&5vVA6K7
p = (1-2*mod(s(k),2))* ... 5HL>2
e[
prod(2:(n(j)-s(k)))/ ... 2y8FP#
prod(2:s(k))/ ... p((. (fx
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... WRAv>s9
prod(2:((n(j)+m_abs(j))/2-s(k))); ^dxy%*Z/
idx = (pows(k)==rpowers); T?u*ey~Tv
y(:,j) = y(:,j) + p*rpowern(:,idx); +U<Ae^V
end DX3jE p2
MfLus40;n
if isnorm aG@GJ@w
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); l`0JL7
end G~*R6x2g
end 436SIh
% END: Compute the Zernike Polynomials Pj8Vl)8~NV
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 5HvYy
*B/
55>+%@$,a
Z$YG'p{S
% Compute the Zernike functions: ,(c'h:@M
% ------------------------------ ND 8;1+3
idx_pos = m>0; X/Fip0i
idx_neg = m<0; P8CIKoKCV
ke +\Z>BWN
n1+J{EPH
z = y; -M[BC~!0;
if any(idx_pos) j=>WWlZ
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); `wLmGv+V
end ROfke.N\'
if any(idx_neg) 2PSv3?".
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); /h&>tYVio
end f%YD+Dt_V
AucX4J<
63i&e/pv
% EOF zernfun SS,'mv