切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9327阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, ~g6`Cp`  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 2!7)7wlj0  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? Zs$Qo->F  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? W$I^Ej}>$  
    `[&) X  
    cg]\R1Gm  
    ^uDNArDmj5  
    s.zfiJ  
    function z = zernfun(n,m,r,theta,nflag) )37.H^7  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. <hS %I  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N -F-RWs{yS  
    %   and angular frequency M, evaluated at positions (R,THETA) on the =}$YZuzmU  
    %   unit circle.  N is a vector of positive integers (including 0), and G>>`j2:y  
    %   M is a vector with the same number of elements as N.  Each element |3a1hCxt  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 74h[YyVi  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, lU}y%J@  
    %   and THETA is a vector of angles.  R and THETA must have the same 4Z& i\#Q  
    %   length.  The output Z is a matrix with one column for every (N,M) 5Dhpcgq<<  
    %   pair, and one row for every (R,THETA) pair. !' D1aea5  
    % s%{8$> 8V.  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike e1EFZ,EcaO  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 4GiHp7Y&A  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral ;j#(%U]Vp  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, &7}\mnhB  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized P?zPb'UVqa  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. :skNEY].  
    % iPD5 KsAOA  
    %   The Zernike functions are an orthogonal basis on the unit circle. 9L"Z ~CUL  
    %   They are used in disciplines such as astronomy, optics, and sy ]k  
    %   optometry to describe functions on a circular domain. N`G* h^YQ  
    % L,m'/}$  
    %   The following table lists the first 15 Zernike functions. +5zLQ>]z  
    % XMR$I&;G8  
    %       n    m    Zernike function           Normalization `YK2hr  
    %       -------------------------------------------------- =&5^[:ksB  
    %       0    0    1                                 1 THQd`Lj  
    %       1    1    r * cos(theta)                    2 DR d|m<Z  
    %       1   -1    r * sin(theta)                    2 9i&(VzY[=  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) fku\O<1  
    %       2    0    (2*r^2 - 1)                    sqrt(3) j[^(<R8  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) /|kR= ~  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ="k9 y  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) ]YO &_#  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) gJ; *?Uq(  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) xb N)z  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) -w[j`}([P9  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) !mM`+XH  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 8RA]h?$$J  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) vxey $Ir  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) MHuQGc"e+4  
    %       -------------------------------------------------- a5)<roWQ  
    % B8f BX!u/  
    %   Example 1: 4*)a3jI?  
    % #:~MtV  
    %       % Display the Zernike function Z(n=5,m=1) :RxWHh3O  
    %       x = -1:0.01:1; jHU5>Gt-}  
    %       [X,Y] = meshgrid(x,x); E8Rk b}  
    %       [theta,r] = cart2pol(X,Y); GG9YAu  
    %       idx = r<=1; !XJvhsKXy  
    %       z = nan(size(X)); y1oQ4|KSI  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); C1x"q9| \`  
    %       figure &n}eF-  
    %       pcolor(x,x,z), shading interp 4 8}\  
    %       axis square, colorbar pX\Y:hCug  
    %       title('Zernike function Z_5^1(r,\theta)') DX*eN"z[  
    % &B3[:nS2  
    %   Example 2: 3pV^Oe^9  
    % cE|Z=}4I7  
    %       % Display the first 10 Zernike functions 75^U<Hz-3{  
    %       x = -1:0.01:1; !xIK<H{*  
    %       [X,Y] = meshgrid(x,x);  MeP,8,n'  
    %       [theta,r] = cart2pol(X,Y); + YjK#  
    %       idx = r<=1; RF#S=X6  
    %       z = nan(size(X)); fMRv:kNAt  
    %       n = [0  1  1  2  2  2  3  3  3  3]; qwERy{]Sp;  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; <$V!y dO  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; @`IMR$'  
    %       y = zernfun(n,m,r(idx),theta(idx)); #Yqj27&  
    %       figure('Units','normalized') oB$P6   
    %       for k = 1:10 |5;:3K+  
    %           z(idx) = y(:,k); &f;<[_QI=  
    %           subplot(4,7,Nplot(k)) d'x'hp%  
    %           pcolor(x,x,z), shading interp Xf"B\%,(`  
    %           set(gca,'XTick',[],'YTick',[]) bg =<)s  
    %           axis square ++m^z` D  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) w@jC#E\  
    %       end LGau!\  
    % pZ IDGy=~  
    %   See also ZERNPOL, ZERNFUN2. " iz'x-wy  
    ]ZbZ]  
    bW/^2B  
    %   Paul Fricker 11/13/2006 qubyZ8hx  
    g5\EVcHkz  
    (oUh:w.]Gw  
    %VSjMZ  
    ~+HZQv3Y  
    % Check and prepare the inputs: ) ]y^RrD  
    % ----------------------------- d:_3V rRZ  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Z ZMz0^V  
        error('zernfun:NMvectors','N and M must be vectors.') gdx2&~  
    end a%IJ8t+mn  
    (L2:|1P)  
    /`2t$71)  
    if length(n)~=length(m) ` 465 H  
        error('zernfun:NMlength','N and M must be the same length.') T2%{pcdV/  
    end vhEXtjL  
    hd'JXKMy  
    88}=VS  
    n = n(:); "Q[rM1R  
    m = m(:); v)!C Dpw  
    if any(mod(n-m,2)) ;;Y>7Kn!u  
        error('zernfun:NMmultiplesof2', ... z5UY0>+VdS  
              'All N and M must differ by multiples of 2 (including 0).') m,qMRcDF  
    end *=KX0%3  
    c:@lR/oe"  
    F.DR Gi.i  
    if any(m>n) E[nJ'h<h  
        error('zernfun:MlessthanN', ... "h84D&V  
              'Each M must be less than or equal to its corresponding N.') Ln4zy*v{  
    end "A>/m"c]*  
    L+]|-L`S  
    6z-&Zu7@  
    if any( r>1 | r<0 ) T 8. to  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') .Jvy0B} B  
    end 5TB==Fj ?  
    -!s?d5k")  
    /ll2lyS+  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) DEFh&n  
        error('zernfun:RTHvector','R and THETA must be vectors.') y?}R,5k  
    end Tg-HR8}X  
    )d^b\On  
    RPh8n4&("  
    r = r(:); W3h{5\d!  
    theta = theta(:); Z4ZR]eD  
    length_r = length(r); #n5D K{e  
    if length_r~=length(theta) sZ7RiH +I  
        error('zernfun:RTHlength', ... 4Up3x+bg  
              'The number of R- and THETA-values must be equal.') Wb7z&vj  
    end "+BNas^rF  
    +'!4kwTR  
    f:K3 P[|  
    % Check normalization: ;/- X;!a>  
    % -------------------- 8va&*J? 2  
    if nargin==5 && ischar(nflag) _ITA$ #  
        isnorm = strcmpi(nflag,'norm'); q_gsYb  
        if ~isnorm c9<&+  
            error('zernfun:normalization','Unrecognized normalization flag.') b- FJMY  
        end Zi4Ektj2  
    else |Ox !tvyr  
        isnorm = false; l4LowV7  
    end x#0B "{  
    ZBf9Upg  
    `B GU  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  M .J  
    % Compute the Zernike Polynomials km[ PbC  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Do\YPo_Mr  
    Cjn)`Q8  
    2TZ+R7B?  
    % Determine the required powers of r: 'aAay*1  
    % ----------------------------------- iJsa;|2/  
    m_abs = abs(m); noLb  
    rpowers = []; +'{@Xe}  
    for j = 1:length(n) y~jYGN  
        rpowers = [rpowers m_abs(j):2:n(j)]; s(3iGuT  
    end xn`<g|"#  
    rpowers = unique(rpowers); : ~R:[T2P  
    TXDb5ZCzM  
    9>1 $Jv3  
    % Pre-compute the values of r raised to the required powers, Z"u|-RoBV  
    % and compile them in a matrix: yS2[V,vS7  
    % ----------------------------- w*3DIVlxL  
    if rpowers(1)==0 1qgzb  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Dn9AOi!  
        rpowern = cat(2,rpowern{:}); ap% Y}  
        rpowern = [ones(length_r,1) rpowern]; 7lJs{$ P  
    else u}L;/1,B  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); _hy<11S;  
        rpowern = cat(2,rpowern{:}); 4t<l9Ilp  
    end (q|EC;   
    n!>#o 1Qr  
    ^HM9'*&KJ  
    % Compute the values of the polynomials: oO 8opS7F  
    % -------------------------------------- 4CdST3  
    y = zeros(length_r,length(n)); faJ>,^V#  
    for j = 1:length(n) _);;@T  
        s = 0:(n(j)-m_abs(j))/2;  #VA8a=t  
        pows = n(j):-2:m_abs(j); /cN. -lEo%  
        for k = length(s):-1:1 ~l=Jx*  
            p = (1-2*mod(s(k),2))* ... >FRJvZ6  
                       prod(2:(n(j)-s(k)))/              ... Z%uDz3I\Q"  
                       prod(2:s(k))/                     ... 8pQ:B/3=  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... UVIR P#  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); dAZh# i[  
            idx = (pows(k)==rpowers); xr<.r4  
            y(:,j) = y(:,j) + p*rpowern(:,idx); fsxZQ=-PW  
        end Fm3f/]>k#_  
         U $ bLt  
        if isnorm g^qbd$}  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); , 7kS#`P  
        end D]h~ \  
    end YV 5kzq  
    % END: Compute the Zernike Polynomials R>YDn|cWI  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% k\J 6WT  
    >[U.P)7;  
    V L&5TZtz  
    % Compute the Zernike functions: p 7YfOUo k  
    % ------------------------------ mAFVjSa2  
    idx_pos = m>0; h"-}BjL  
    idx_neg = m<0; ^z^ UFW  
    ]DaC??%w  
    tluyx  
    z = y; s=uWBh3J  
    if any(idx_pos) Zk4(  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ezOZHY>|#  
    end J3$Ce%<   
    if any(idx_neg) -5Km 9X8  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); +-|D$@8S  
    end Fk 5;  
    DsY$  
    %ys-y?r  
    % EOF zernfun #{t?[JUn  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  Ns-cT'1-  
    *f~X wy"  
    DDE还是手动输入的呢? @L%9NqE`O  
    _Cv({m&N  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究