切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9311阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, e_g7E+6  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, + ?*,J=/  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? 2<fG= I8  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? %l,p />r  
    Jnb>u*7,  
    p[hA?dXn  
    H ~J#!3  
    "^zxq5u  
    function z = zernfun(n,m,r,theta,nflag) n:`> QY  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. `DC)U1  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N e}(ws~.  
    %   and angular frequency M, evaluated at positions (R,THETA) on the TaG'?  
    %   unit circle.  N is a vector of positive integers (including 0), and 3VB{Qj  
    %   M is a vector with the same number of elements as N.  Each element )]n:y M  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) DWHl,w;[z`  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, zYYc#N/  
    %   and THETA is a vector of angles.  R and THETA must have the same ^&h|HO-5  
    %   length.  The output Z is a matrix with one column for every (N,M) |0B h  
    %   pair, and one row for every (R,THETA) pair. wCkhE,#-_  
    % }7X85@jC  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike kE UfQLbn  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), p/cVQ  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral C \H%4p1r  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, E{_p&FF  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 2y,NT|jp  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 7zgU>$i  
    % '?v.O}  
    %   The Zernike functions are an orthogonal basis on the unit circle. hR[Qdu6r  
    %   They are used in disciplines such as astronomy, optics, and 9-Qu b+0o  
    %   optometry to describe functions on a circular domain. W _yVVr  
    % + 3aAL&  
    %   The following table lists the first 15 Zernike functions. 1 BAnf9  
    % Sl   
    %       n    m    Zernike function           Normalization S3P;@Rm  
    %       -------------------------------------------------- "So+  
    %       0    0    1                                 1 A>xFNem  
    %       1    1    r * cos(theta)                    2 x a7x 2]~-  
    %       1   -1    r * sin(theta)                    2 iU~oPp[e  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) +smPR  
    %       2    0    (2*r^2 - 1)                    sqrt(3) g&\A1H  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) -wW%+wH  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) n>+M4Zb  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) )<UNiC   
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) hJkIFyQ{j  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) P,j)m\|  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) /$%apci8  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) <Ktx*(D  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 'eLO#1Ipf  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Z '/:  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) |*fGG?}  
    %       -------------------------------------------------- WDP$w( M  
    % wZ0$ylEX  
    %   Example 1: 54-sb~]  
    % y7u"a)T  
    %       % Display the Zernike function Z(n=5,m=1) f}Mc2PQ-  
    %       x = -1:0.01:1; (VI4kRj  
    %       [X,Y] = meshgrid(x,x); Zyu4!  
    %       [theta,r] = cart2pol(X,Y); 38 tRb"3zP  
    %       idx = r<=1; bsmZR(EnU  
    %       z = nan(size(X)); G9 ;X=c  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); E"b+Q  
    %       figure l7ZqkGG]  
    %       pcolor(x,x,z), shading interp 'hf#Q9W5  
    %       axis square, colorbar gH,^XZe  
    %       title('Zernike function Z_5^1(r,\theta)') f2`[skNj  
    % ?.LS _e_0  
    %   Example 2: JpcG5gX^B  
    % Ty}'A(U  
    %       % Display the first 10 Zernike functions [GyW1-p33w  
    %       x = -1:0.01:1; >KNiMW^V  
    %       [X,Y] = meshgrid(x,x); /3Zo8.  
    %       [theta,r] = cart2pol(X,Y); T[`o$j6  
    %       idx = r<=1; QaH32(iH  
    %       z = nan(size(X)); @dvlSqm)  
    %       n = [0  1  1  2  2  2  3  3  3  3]; {dH87 nt  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; [1F.   
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; %d c=Q SL  
    %       y = zernfun(n,m,r(idx),theta(idx)); etMQy6E\  
    %       figure('Units','normalized') B36_ OH  
    %       for k = 1:10 l:-$ulAx  
    %           z(idx) = y(:,k); Q_$aiE  
    %           subplot(4,7,Nplot(k)) F/tGk9v  
    %           pcolor(x,x,z), shading interp 5V':3o;D__  
    %           set(gca,'XTick',[],'YTick',[]) C*a>B,H  
    %           axis square tda#9i[pkH  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 9{RCh 9  
    %       end DI{VJ&n66  
    % $nUhM|It  
    %   See also ZERNPOL, ZERNFUN2. p[2`H$A  
    S1p 4.qJ  
    s!:'3[7+  
    %   Paul Fricker 11/13/2006  l+HmG< P  
    7hQXGY,q  
    2Nrb}LH  
    P(a!I{A(  
    h6Ovl  
    % Check and prepare the inputs: 0/5 a3-3{  
    % ----------------------------- 2w_[c.  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) B5{ wSr  
        error('zernfun:NMvectors','N and M must be vectors.') "Rr)1x7  
    end -N $4\yp  
    {e~#6.$:  
    C jISU$O  
    if length(n)~=length(m) mhVdsa  
        error('zernfun:NMlength','N and M must be the same length.') &OQ37(<_  
    end 'i+j;.  
    S3 12#X(%  
    *eL&fC  
    n = n(:); #J~   
    m = m(:); !k@ (}CN_*  
    if any(mod(n-m,2)) v+Mi"ZAd  
        error('zernfun:NMmultiplesof2', ... _zt)c!  
              'All N and M must differ by multiples of 2 (including 0).') iga.B  
    end "'U+T:S  
    (SGX|,5X7  
    i ]x_W@h  
    if any(m>n) 3N c#6VI  
        error('zernfun:MlessthanN', ... Gf71udaa  
              'Each M must be less than or equal to its corresponding N.') ^%ZbjJ7|j  
    end #0$fZ  
    *ThP->&:(  
    /M!b3bmA  
    if any( r>1 | r<0 ) XX&4OV,^%D  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') eFKF9m  
    end 8! eYax   
    RGEgYOO  
    F3nYMf  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) MTXh-9DA  
        error('zernfun:RTHvector','R and THETA must be vectors.') 8k +^jj  
    end !aQb Kp  
    Rax]svc  
    >|zMN$:  
    r = r(:); (;VlK#rnC  
    theta = theta(:); sbv2*fno5  
    length_r = length(r); | KtI:n4d  
    if length_r~=length(theta) XM1; >#kz  
        error('zernfun:RTHlength', ... %9vl  
              'The number of R- and THETA-values must be equal.') Jlp nR#@  
    end E<RPMd @a  
    VO JA}$  
    ;n,xu0/  
    % Check normalization: w1Txz4JqB  
    % -------------------- iq^F?$gFk  
    if nargin==5 && ischar(nflag) Ef @  
        isnorm = strcmpi(nflag,'norm'); QjOO^6Fh  
        if ~isnorm )DB\du   
            error('zernfun:normalization','Unrecognized normalization flag.') H^ 'As;R  
        end d! {]CZ"@  
    else )_n=it$  
        isnorm = false; hKnAWKb0  
    end Znw3P|>B  
    [s4|+  
    bT7+$^NHf  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% U7#C.Z  
    % Compute the Zernike Polynomials f+!k:}K  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -wa"&Q  
    W{m_yEOf  
    XEegUTs  
    % Determine the required powers of r: mUj_V#v  
    % ----------------------------------- -*A1[Z ?  
    m_abs = abs(m); }1 ,\ *)5  
    rpowers = []; J6 J">  
    for j = 1:length(n) ZJe^MnE (G  
        rpowers = [rpowers m_abs(j):2:n(j)]; A^ofs*"Y  
    end %rlMjF'tG  
    rpowers = unique(rpowers); O!!N@Q2g  
    'Zs3b4n8  
    xv"v='  
    % Pre-compute the values of r raised to the required powers, j(A>M_f;  
    % and compile them in a matrix: ?;VsA>PV  
    % ----------------------------- GQ(*k)'a  
    if rpowers(1)==0 H +' 6*akV  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Yt[LIn-v:  
        rpowern = cat(2,rpowern{:}); cgnMoBIc  
        rpowern = [ones(length_r,1) rpowern]; nW)?cQ I  
    else ZIN1y;dJ  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); /!?b&N/d)  
        rpowern = cat(2,rpowern{:}); EXMW,  
    end kXV;J$1  
    ~R&rQJJeJ  
    7Kf  
    % Compute the values of the polynomials: L{&>,ww  
    % -------------------------------------- Y'{}L@"t  
    y = zeros(length_r,length(n)); I cASzSjYX  
    for j = 1:length(n) :i4AkBNK  
        s = 0:(n(j)-m_abs(j))/2; fMIRr5  
        pows = n(j):-2:m_abs(j); D]o=I1O?  
        for k = length(s):-1:1 9a[1s|>w-  
            p = (1-2*mod(s(k),2))* ... _\=x A6!  
                       prod(2:(n(j)-s(k)))/              ... r+8)<Xt+p  
                       prod(2:s(k))/                     ... -4[eZ>$A|  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 3[j,d]\|  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); ~!S/{Un   
            idx = (pows(k)==rpowers); DKJ_g.]X  
            y(:,j) = y(:,j) + p*rpowern(:,idx); T+^Sa J  
        end wFF,rUV  
         #W6 6`{>  
        if isnorm JH| D  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); -oUGmV_  
        end ul3~!9F5F  
    end !E&l=* lM.  
    % END: Compute the Zernike Polynomials t>Ye*eR*`U  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Fv7]1EO.  
    [[HCP8Wk   
    9N `WT=  
    % Compute the Zernike functions: F!3p )?  
    % ------------------------------ ~5&B#Sm[G  
    idx_pos = m>0; oP`:NCj\9  
    idx_neg = m<0; L[ZS17 ;*  
    T$`m!mQ4  
    `*cqT  
    z = y; ;O1jf4y  
    if any(idx_pos) Ypl;jkHP  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 8nn g^  
    end /lbj!\~  
    if any(idx_neg) e`co:HO`#  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 8o[gzW:Q)U  
    end V@]SKbK}wN  
    )u+O~Y95&i  
    "f8,9@  
    % EOF zernfun KTt+}-vP^  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  g18zo~LZ  
    g~,iWoY  
    DDE还是手动输入的呢? }@jJv||  
    J E5qR2VA  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究