切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9042阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, h6O'"  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, |,oLZC Na  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? =:w,wI.  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? (2> q  
    pKq[F*Lut  
    Xy K,  
    'V:MppQVZ.  
    Y %bb-|\W  
    function z = zernfun(n,m,r,theta,nflag) K`9~#Zx$  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. =gR/ t@Ld  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N hR7uAk_?  
    %   and angular frequency M, evaluated at positions (R,THETA) on the u1y>7,Z6W  
    %   unit circle.  N is a vector of positive integers (including 0), and {'M/wT)FeC  
    %   M is a vector with the same number of elements as N.  Each element ^c}3o|1m(  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) |J:r]);@K  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, t'At9<ib  
    %   and THETA is a vector of angles.  R and THETA must have the same Wj|W B*B  
    %   length.  The output Z is a matrix with one column for every (N,M) $3p48`.\  
    %   pair, and one row for every (R,THETA) pair. LkzA_|8:D  
    % 8+gp"!E  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ^VMCs/g6  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), u4xtlGt5  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral >}~[ew  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, wH@S$WT  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized Fs4shrt  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. M_%KhK  
    % d@{12 hq  
    %   The Zernike functions are an orthogonal basis on the unit circle. KyVzf(^  
    %   They are used in disciplines such as astronomy, optics, and `Rt w'Uz  
    %   optometry to describe functions on a circular domain. %RtL4"M2j  
    % ."BXA8c;A  
    %   The following table lists the first 15 Zernike functions. srN7  
    % +<p&V a#  
    %       n    m    Zernike function           Normalization +VW8{=$  
    %       -------------------------------------------------- O-UA2?N@j  
    %       0    0    1                                 1 zT&"rcT">  
    %       1    1    r * cos(theta)                    2 )=K8mt0qob  
    %       1   -1    r * sin(theta)                    2 1DAU *^-  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ETU-6qFtO  
    %       2    0    (2*r^2 - 1)                    sqrt(3) A. tGr(r  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) JS m7-p|E  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) >/4[OPB0R  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) \VOv&s;h  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) &53,8r  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) PZJn/A1  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) b~tu;:  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Y0lLO0'  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) C|Gk}  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) !^MwE]  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) mUP!jTF  
    %       -------------------------------------------------- RiR],Sj  
    % s Y1@~v  
    %   Example 1: L#a!fd  
    % P~!,"rY  
    %       % Display the Zernike function Z(n=5,m=1) l(Hz9  
    %       x = -1:0.01:1; !})Y9oZc8  
    %       [X,Y] = meshgrid(x,x); ]5a3e+  
    %       [theta,r] = cart2pol(X,Y); jGkDD8K [  
    %       idx = r<=1; sDg1nKw(  
    %       z = nan(size(X)); \ Qx%7 6  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); tpA-IL?KQw  
    %       figure + (:Qf+:  
    %       pcolor(x,x,z), shading interp -U$;\1--  
    %       axis square, colorbar &Lzd*}7  
    %       title('Zernike function Z_5^1(r,\theta)') -lfDoNRhQ  
    % j ]%XY+e  
    %   Example 2: ]CcRI|g}  
    % @IbZci)1  
    %       % Display the first 10 Zernike functions V73/q  
    %       x = -1:0.01:1; 2<8l&2}7]  
    %       [X,Y] = meshgrid(x,x); ^4]=D nd%  
    %       [theta,r] = cart2pol(X,Y); :!CnGKgt  
    %       idx = r<=1; b1'849i'y=  
    %       z = nan(size(X)); 5$:9nPAH  
    %       n = [0  1  1  2  2  2  3  3  3  3]; +Z_VF30pa  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; k_u!E3{~  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; f0^s<:*  
    %       y = zernfun(n,m,r(idx),theta(idx)); =IX-n$d`>  
    %       figure('Units','normalized') NM:$Q<n  
    %       for k = 1:10 W58?t6! =  
    %           z(idx) = y(:,k); Xe: ^<$z  
    %           subplot(4,7,Nplot(k)) &D-z|ZjgHi  
    %           pcolor(x,x,z), shading interp FhBV.,bU,m  
    %           set(gca,'XTick',[],'YTick',[]) ,:K{  
    %           axis square \X(*JNQ  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ^K J#dT  
    %       end sxuP"4  
    % A+H8\ew2,  
    %   See also ZERNPOL, ZERNFUN2. cg]Gt1SU  
    {=d}04i)E"  
    l9j= ;h  
    %   Paul Fricker 11/13/2006 ^%Y-~yB-  
    iE;F=Rb  
    862rol  
    4|cRYZj5  
    ` wj'  
    % Check and prepare the inputs: AH'3 5Kf)  
    % ----------------------------- K7{B !kX4k  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) QAo/d4  
        error('zernfun:NMvectors','N and M must be vectors.') 3]}RjOTU  
    end i-wWbZ-  
    %{V7 |Azt  
    4DL2 A;T  
    if length(n)~=length(m) 2PeMt^  
        error('zernfun:NMlength','N and M must be the same length.') bxO/FrwTj{  
    end 1VG]|6f  
    d+]=l+&  
    _~umE/tz  
    n = n(:); `?l /HUw  
    m = m(:); qW4\t  
    if any(mod(n-m,2)) sieC7raO  
        error('zernfun:NMmultiplesof2', ... >e-0A  
              'All N and M must differ by multiples of 2 (including 0).') (w"(RM~  
    end *+6iXMwe  
    OA}; pQ9QN  
    /7+b.h])^  
    if any(m>n) ~W4SFp  
        error('zernfun:MlessthanN', ... 6v%ePFul  
              'Each M must be less than or equal to its corresponding N.') Us# /#-hJ  
    end Jwj=a1I 53  
    mv,a>Cvs[  
    up8d3  
    if any( r>1 | r<0 ) pH3\X cn  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 74 )G.!  
    end a\,V>}e  
    jVoD9H F/  
    g$Vr9MH  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ;;CNr_  
        error('zernfun:RTHvector','R and THETA must be vectors.') D ZZRu8~  
    end @6R6.i5d  
    suWO:]FR  
    hz<TjWXv'  
    r = r(:); }$uwAevP{y  
    theta = theta(:); 1#AxFdm1  
    length_r = length(r); a ^juZ  
    if length_r~=length(theta) VhMVoW  
        error('zernfun:RTHlength', ... &dni6E4  
              'The number of R- and THETA-values must be equal.') -h ^MX  
    end :w|=o9J  
    &0G9v  
    z"7X.*]  
    % Check normalization: ?-9uf\2_  
    % -------------------- c\ ZnGI\|  
    if nargin==5 && ischar(nflag) R/E6n &R  
        isnorm = strcmpi(nflag,'norm'); d, ?GW  
        if ~isnorm }[@Q**j(  
            error('zernfun:normalization','Unrecognized normalization flag.') DaGny0|BB  
        end uz$p'Q  
    else TOa6sB!H  
        isnorm = false; KC(z TY  
    end ;GOu'34j  
    @y * TVy  
    L5|g \Y`  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% fshG ~L7S9  
    % Compute the Zernike Polynomials '<ZHzDW@  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 9Nv?j=*$  
    =h ~n5wQG  
    &?xmu204  
    % Determine the required powers of r: FQ47j)p;  
    % ----------------------------------- tW-[.Y -M,  
    m_abs = abs(m); Tj<B;f!u  
    rpowers = []; "VoufXM:  
    for j = 1:length(n) >O~V#1 H  
        rpowers = [rpowers m_abs(j):2:n(j)]; yFd94 2  
    end B~& }Mv  
    rpowers = unique(rpowers); >mEfd=p  
    MI:%Eq  
    i -@V  
    % Pre-compute the values of r raised to the required powers, +IjBeQ?  
    % and compile them in a matrix: I=P<RG7j)  
    % ----------------------------- Ux=B*m1@{  
    if rpowers(1)==0 oaILh  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); q.@% H}  
        rpowern = cat(2,rpowern{:}); %Kp^wf#o9  
        rpowern = [ones(length_r,1) rpowern]; Pq(LW(  
    else ^~bd AO81  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); $T7 qd  
        rpowern = cat(2,rpowern{:}); #&L7FBJ"*v  
    end N{@~(>ee^  
    @B(E&  
    Q%J,: J  
    % Compute the values of the polynomials: kr |k \  
    % -------------------------------------- t6\--lk_  
    y = zeros(length_r,length(n)); 9zCuVUcd$.  
    for j = 1:length(n) 5gC> j(  
        s = 0:(n(j)-m_abs(j))/2; Lz:FR*  
        pows = n(j):-2:m_abs(j); T:|p[Xbo  
        for k = length(s):-1:1 ryA+Lli.  
            p = (1-2*mod(s(k),2))* ... xpwy%uo  
                       prod(2:(n(j)-s(k)))/              ... e:.?T\  
                       prod(2:s(k))/                     ... .ns=jp  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... kDM?`(r  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); rw gj]  
            idx = (pows(k)==rpowers); )vVf- zU  
            y(:,j) = y(:,j) + p*rpowern(:,idx); +KNd%AJ  
        end JV'aqnb.8\  
         fM*?i"j;Y  
        if isnorm hJir_=  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); RQ^ \|+_  
        end U^U hZ!  
    end 8.I3%u  
    % END: Compute the Zernike Polynomials :h3n[%  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% T,vh=UF%]  
    |R!ozlL{}  
    87eH~&<1  
    % Compute the Zernike functions: k"/Rjd(;  
    % ------------------------------ <63TN`B  
    idx_pos = m>0; )/~o'M3  
    idx_neg = m<0; 5IFzbL#q#f  
    } _^ vvu  
    :$PrlE  
    z = y; Q1|zX@,  
    if any(idx_pos) "5sA&^_#_  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 5 ddfdIp  
    end gwXmoM5  
    if any(idx_neg) ~%f$}{  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); V d]7v  
    end ux| QGT2LY  
    83{P7PBQ;]  
    V7p hD3Y  
    % EOF zernfun %^nNt:N0  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  qCfEv4  
    Q[K$f%>  
    DDE还是手动输入的呢? Xy 4k;+  
    W,Q>3y*  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究