切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9057阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, jWerX -$  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, Y%YPR=j~ &  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? R\>=}7  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? x#TWZ;  
    FW!1 0K?  
    YhJ*(oWL  
    M{M?#Q  
    5wGc"JHm  
    function z = zernfun(n,m,r,theta,nflag) Tp fC  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. ,?>:Cdz4  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N m/>z}d05h  
    %   and angular frequency M, evaluated at positions (R,THETA) on the * 57y.](w  
    %   unit circle.  N is a vector of positive integers (including 0), and *XSHzoT*  
    %   M is a vector with the same number of elements as N.  Each element 9lCZ i?  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 4XsKOv  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, h?2:'Vu]  
    %   and THETA is a vector of angles.  R and THETA must have the same ]WP[hF  
    %   length.  The output Z is a matrix with one column for every (N,M) S!wY6z  
    %   pair, and one row for every (R,THETA) pair. 4.0JgX  
    % c!}f\ ]D  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike (vqI@fB';u  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), f3Cjj]RFv  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral %b(non*  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, @Zd/>'  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized no lLeRE1  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. qOd*9AS'|M  
    % 3~Vo]wv  
    %   The Zernike functions are an orthogonal basis on the unit circle.  2t7Hu)V  
    %   They are used in disciplines such as astronomy, optics, and |UZhMF4/-L  
    %   optometry to describe functions on a circular domain. nkvkHh  
    % p 6FPdt)  
    %   The following table lists the first 15 Zernike functions. "vnWq=E 2  
    % }n91aE3v  
    %       n    m    Zernike function           Normalization @(_M\>!%M  
    %       --------------------------------------------------   S9Ka  
    %       0    0    1                                 1 235wl  
    %       1    1    r * cos(theta)                    2 9e:}q O5)  
    %       1   -1    r * sin(theta)                    2 L_WVTz?`  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) .^J7^ Ky,  
    %       2    0    (2*r^2 - 1)                    sqrt(3) ]C me)&hX  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) $5;RQNhXh  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) |p1 pa4%}  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) \x_fP;ma=_  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) D3+UV+&R/  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) &J~%Nt  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) M;i4ss,}!  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 0 G.y_<=  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) P_f>a?OL:  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) mVBF2F<4  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) _+\hDV>v  
    %       -------------------------------------------------- =5-|H;da  
    % '"=Mw;p  
    %   Example 1: 75pz' Cb  
    % ,^_aqH  
    %       % Display the Zernike function Z(n=5,m=1) +I+7@XiZ  
    %       x = -1:0.01:1; {,|J?>{  
    %       [X,Y] = meshgrid(x,x); 3 #zw Y  
    %       [theta,r] = cart2pol(X,Y); {|jG_  
    %       idx = r<=1; u$ZahN!  
    %       z = nan(size(X)); <A,G:&d~  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); #z\{BtK  
    %       figure r"MKkS EM  
    %       pcolor(x,x,z), shading interp VvO/  
    %       axis square, colorbar T F!Lp:  
    %       title('Zernike function Z_5^1(r,\theta)') `2Buf8|a,  
    % []{g9CO  
    %   Example 2: &&w7-  
    % Xj\SJ*  
    %       % Display the first 10 Zernike functions S:UtmS+K  
    %       x = -1:0.01:1; ~?pF'3q  
    %       [X,Y] = meshgrid(x,x); &S.zc@rN  
    %       [theta,r] = cart2pol(X,Y); hwmpiyu   
    %       idx = r<=1; od- 0wJN-m  
    %       z = nan(size(X)); Ah2%LXdHA  
    %       n = [0  1  1  2  2  2  3  3  3  3]; R,hX *yVq  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; NC; 4  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 9oteQN{9  
    %       y = zernfun(n,m,r(idx),theta(idx)); RN?z)9!  
    %       figure('Units','normalized') a; Ihv#q  
    %       for k = 1:10 &/7AW(?  
    %           z(idx) = y(:,k); urHQb5|T}  
    %           subplot(4,7,Nplot(k)) m6bI<C3^5  
    %           pcolor(x,x,z), shading interp W39R)sra  
    %           set(gca,'XTick',[],'YTick',[]) #]ii/Et#x  
    %           axis square I3xx}^V  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) K5Fzmo a  
    %       end &Jj^)GBU  
    % *xs8/?  
    %   See also ZERNPOL, ZERNFUN2. {Ex0mw)T  
    |52VHW8 c  
    K<b -|t9f  
    %   Paul Fricker 11/13/2006 0\AYUa?RM  
    3\FiQ/?  
    Vkex&?>v$  
    bwo"s[w  
    RIUJ20PfYQ  
    % Check and prepare the inputs: 5|:=#Ql*  
    % ----------------------------- ru)%0Cyx  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) -t % .I=|  
        error('zernfun:NMvectors','N and M must be vectors.') WK#lE&V3  
    end +MOUO$;fGt  
    {S\cpCI`  
    GZ@!jF>!u  
    if length(n)~=length(m) L[+65ce%*  
        error('zernfun:NMlength','N and M must be the same length.') yPm)r2Ck  
    end mxjY-Kq  
    A0S6 4(  
    lp?geav  
    n = n(:); W.o W =<  
    m = m(:); [HIg\N$I8C  
    if any(mod(n-m,2)) #(CI/7 -  
        error('zernfun:NMmultiplesof2', ... /NLpk7r[\q  
              'All N and M must differ by multiples of 2 (including 0).') yq[C?N &N  
    end U,Z.MP Q  
    RKIqg4>E  
    O" ['.b  
    if any(m>n) P 2;j>=W  
        error('zernfun:MlessthanN', ... ` M"Zq  
              'Each M must be less than or equal to its corresponding N.') .he%a3e  
    end Yk<?HNf  
    ImklM7A  
    s<z{(a  
    if any( r>1 | r<0 ) :!3CoC.X|c  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') nb'],({:9  
    end ]=q?= %H  
    Dw;L=4F |  
    62%. ddM4  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ~b8U#'KD  
        error('zernfun:RTHvector','R and THETA must be vectors.') <JYV G9s}  
    end lGjmw"/C  
    <8r%_ ']  
    tB}&-U|t[~  
    r = r(:); v8 ggPI  
    theta = theta(:); "z< =S  
    length_r = length(r); Lc+wS@  
    if length_r~=length(theta) A(Ugam~}  
        error('zernfun:RTHlength', ... F7#   
              'The number of R- and THETA-values must be equal.') ~2V|]Y;s  
    end lXW.G  
    }#'O b  
    f]%$HfF @  
    % Check normalization: M*8Ef^-U`t  
    % -------------------- <d$|~qS_  
    if nargin==5 && ischar(nflag) Po(9BRd7  
        isnorm = strcmpi(nflag,'norm'); noOG$P#  
        if ~isnorm E7oL{gU  
            error('zernfun:normalization','Unrecognized normalization flag.') >=6tfLQ  
        end "l n(EvW  
    else & 2>W=h  
        isnorm = false; z[}[:H8  
    end aJOhji<b#L  
    @lDoMm,m'  
    g"hm"m}i  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 536H*HdN  
    % Compute the Zernike Polynomials M7fw/i  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% M{3He)&  
    4}!riWR   
    +/-#yfn!TR  
    % Determine the required powers of r: 2u*o/L+  
    % ----------------------------------- /F4rbL^:  
    m_abs = abs(m); =UM30 P/  
    rpowers = []; 0}PW<lU-  
    for j = 1:length(n) >ys>Q)  
        rpowers = [rpowers m_abs(j):2:n(j)]; Ym8G=KA  
    end bezT\F/\  
    rpowers = unique(rpowers); gieTkZ  
    jY(' ?3  
    w\:-lXw  
    % Pre-compute the values of r raised to the required powers, UMma|9l(i  
    % and compile them in a matrix: 0;#%KC,  
    % ----------------------------- *[wy- fu  
    if rpowers(1)==0 %r=uS.+hrF  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); .a8N 5{`  
        rpowern = cat(2,rpowern{:}); <_dyUiT$J  
        rpowern = [ones(length_r,1) rpowern]; X2}\i5{  
    else N&]v\MjI62  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); lQ<2Vw#Yl  
        rpowern = cat(2,rpowern{:}); cuO(*%Is1  
    end \3-XXq  
    'nz;|6uC  
    rr>QG<i;G  
    % Compute the values of the polynomials: &na#ES $X,  
    % -------------------------------------- %g5TU 6WP  
    y = zeros(length_r,length(n)); j&6,%s-M`a  
    for j = 1:length(n) .{1G"(z  
        s = 0:(n(j)-m_abs(j))/2; 9%S{fd\#  
        pows = n(j):-2:m_abs(j); WS/^WxRY  
        for k = length(s):-1:1 5x(`z   
            p = (1-2*mod(s(k),2))* ... 9c1g,:8\  
                       prod(2:(n(j)-s(k)))/              ... OL4I}^*,  
                       prod(2:s(k))/                     ... r Lg(J|^  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... K_{f6c<  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); w17\ \[  
            idx = (pows(k)==rpowers); / *RDy!m  
            y(:,j) = y(:,j) + p*rpowern(:,idx); >6*"g{/  
        end MqGF~h|+  
         rbiNp6AdL  
        if isnorm }__g\?Yf  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); g]EDL<b  
        end guz{DBlK  
    end u/Fa+S  
    % END: Compute the Zernike Polynomials ~=h]r/b< U  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% gcqcY  
    %_0,z`f  
    M[}EVt~  
    % Compute the Zernike functions: #H{<nVvg^  
    % ------------------------------ ] e!CH <N  
    idx_pos = m>0; .=~beTS'Vo  
    idx_neg = m<0; r=Z#"68$  
    %Fig`qX  
    * t6 XU  
    z = y; |7,|-s[R^  
    if any(idx_pos) VgtW T`F.I  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); cTu7U=%  
    end #P.jlpZk  
    if any(idx_neg) -CfGWO#Gbx  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); F@Y)yi?z  
    end -fw0bL%0  
    gvvl3`S{  
    lE:X~RO"~  
    % EOF zernfun nv1'iSEeOl  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  'j#oMA{0  
    + EG.p  
    DDE还是手动输入的呢? RBr  
    =sRd5aMs  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究