切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8932阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, "d/54PKWx  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, ^Vth;!o  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? -U> )B  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? v89tV9O)  
    MA tF,  
    kxe{HxM$Z  
    G :+D1J]  
    fATnza  
    function z = zernfun(n,m,r,theta,nflag) d^?e*USh  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. M"c=_5P  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N N *m;A6?  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 7h/Mkim$5  
    %   unit circle.  N is a vector of positive integers (including 0), and umPN=0u6  
    %   M is a vector with the same number of elements as N.  Each element HHyN\  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) a$uD oi  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 1| WDbk  
    %   and THETA is a vector of angles.  R and THETA must have the same T: '<:*pD  
    %   length.  The output Z is a matrix with one column for every (N,M) tWZ8(E$  
    %   pair, and one row for every (R,THETA) pair. ~]%re9jGW  
    % zwUZ*Se  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike BpFX e7  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Yc[vH=gV}  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral  w D  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, kazgI>"Q8  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized #?M[Q:  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. g>ke;SH%KY  
    % J|V*g]#kP  
    %   The Zernike functions are an orthogonal basis on the unit circle. IwXQbJ3v_  
    %   They are used in disciplines such as astronomy, optics, and  CU\r I  
    %   optometry to describe functions on a circular domain. {IB4%,qT  
    % NSRY(#3  
    %   The following table lists the first 15 Zernike functions. N^`S'FVA  
    % yYJ +vs  
    %       n    m    Zernike function           Normalization R,!a X"]|  
    %       -------------------------------------------------- A@.ruG$  
    %       0    0    1                                 1 $\oe}`#o  
    %       1    1    r * cos(theta)                    2 >0N$R|B&  
    %       1   -1    r * sin(theta)                    2 vO zUAi  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) =;8q`  
    %       2    0    (2*r^2 - 1)                    sqrt(3) LD|T1 .  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) bA"*^"^  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) :d<F7`k H  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) v{SYz<(  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) (ia+N/$u  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) -oju-gf K  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) )1 0aDTlr  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) yaC_r-%U&  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) I*+*Wf  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) }z-)!8vF  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) g{?{N  
    %       -------------------------------------------------- )Zyw^KN^  
    % B`%%,SLJ  
    %   Example 1: BYI13jMH+Y  
    % "8[Vb#=*e  
    %       % Display the Zernike function Z(n=5,m=1) A{hST~s  
    %       x = -1:0.01:1; .GDY J9vi  
    %       [X,Y] = meshgrid(x,x); vf<Tq  
    %       [theta,r] = cart2pol(X,Y); x5yZ+`Gc  
    %       idx = r<=1; hG/Z65`&  
    %       z = nan(size(X)); fJ-8$w\uL  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); FbPoyh  
    %       figure M)nf(jw#G  
    %       pcolor(x,x,z), shading interp ]\=M$:,RZ  
    %       axis square, colorbar V+y:!t`  
    %       title('Zernike function Z_5^1(r,\theta)') @rW%*?$7  
    % }PzYt~Z`@  
    %   Example 2: wdgC{W Gl  
    % _@]@&^K$E  
    %       % Display the first 10 Zernike functions P4"EvdV7  
    %       x = -1:0.01:1; ps]s Tw  
    %       [X,Y] = meshgrid(x,x); J$Ba*`~!!  
    %       [theta,r] = cart2pol(X,Y); s9YP =)I  
    %       idx = r<=1;  0c:j wtf  
    %       z = nan(size(X)); %$(*.o!+8  
    %       n = [0  1  1  2  2  2  3  3  3  3]; h,Tsb:Q"M  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 0>?78QL9<  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; Y4/ !b  
    %       y = zernfun(n,m,r(idx),theta(idx)); 7G8M+i3q/  
    %       figure('Units','normalized') <7~+ehu  
    %       for k = 1:10  N5GQ2V  
    %           z(idx) = y(:,k); dzc.s8T(0  
    %           subplot(4,7,Nplot(k)) CbRl/ 68HY  
    %           pcolor(x,x,z), shading interp h3L{zOff  
    %           set(gca,'XTick',[],'YTick',[]) D\G P+Ota  
    %           axis square Y]1b3 9O  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) A?OaP  
    %       end $zV[- d  
    % DadlCEZv  
    %   See also ZERNPOL, ZERNFUN2. #%tN2cFDN  
    (A8X|Y  
    }q@Jh*  
    %   Paul Fricker 11/13/2006 yn5yQ;  
    2f@gR9T  
    v.I>B3bEg  
    {wp"zaa  
    E%C02sI  
    % Check and prepare the inputs: E MKv)5MH  
    % ----------------------------- liq9P,(  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) s5ddGiZnBT  
        error('zernfun:NMvectors','N and M must be vectors.') (f|3(u'e?  
    end }<kpvd+ps=  
    0 /JusQ  
    +3n07d  
    if length(n)~=length(m) B?J #NFUb  
        error('zernfun:NMlength','N and M must be the same length.') 0dgp<  
    end u=h/l!lR  
    K%A:W  
    _/5mgn<GK  
    n = n(:); Y/_b~Ahn  
    m = m(:); d^WEfH  
    if any(mod(n-m,2)) miZ&9m  
        error('zernfun:NMmultiplesof2', ... 'Nv*ePz  
              'All N and M must differ by multiples of 2 (including 0).') %<w)#eV?  
    end $fA%_T_P'P  
    <M|kOi  
    r9uuVxBD  
    if any(m>n) H)5v X+9D  
        error('zernfun:MlessthanN', ... u%vq<|~-  
              'Each M must be less than or equal to its corresponding N.') Q<V?rPAcx  
    end ;'r} D!8w/  
    R1X{=ct  
    Yvu!Q  
    if any( r>1 | r<0 ) U_HOfix  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') P'6eK?  
    end Gt^Fj&^  
    0XBv8fg  
    w QX,a;Br  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) _fu?,  
        error('zernfun:RTHvector','R and THETA must be vectors.') wBUn*L  
    end /}\EMP  
    J ;=~QYn[  
    V!F# ek:  
    r = r(:); tTB,eR$  
    theta = theta(:); V3NQij(  
    length_r = length(r); }Zue?!KQ  
    if length_r~=length(theta) _Jc[`2Uv_c  
        error('zernfun:RTHlength', ... lV-b   
              'The number of R- and THETA-values must be equal.') [Az<E3H"  
    end XP"lqyAi  
    tB_GEt2M  
    EencMi7J  
    % Check normalization: P"LbWZ6Nj  
    % -------------------- Uv~r]P)  
    if nargin==5 && ischar(nflag) =Vv"\p8  
        isnorm = strcmpi(nflag,'norm'); YzqUOMAt"V  
        if ~isnorm fWKI~/eUY|  
            error('zernfun:normalization','Unrecognized normalization flag.') Ccld;c&+  
        end ua%$r[  
    else +pcpb)VL  
        isnorm = false; RjY(MSc  
    end @-9I<)Z/2  
    %- W3F5NK  
    r wtU@xsD  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% v&p|9C@  
    % Compute the Zernike Polynomials 3,2|8Q,((!  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% RCSG.*%%I  
    Wp" +\{@)  
    I'Dc9&2  
    % Determine the required powers of r: d7.}=E.L  
    % ----------------------------------- (*>%^C?  
    m_abs = abs(m); diF-`~  
    rpowers = []; cRm+?/  
    for j = 1:length(n) ]_6w(>A@3#  
        rpowers = [rpowers m_abs(j):2:n(j)]; M<R3JzT  
    end kQ5mIJ9(  
    rpowers = unique(rpowers); |'B-^?;  
    *w> dT  
    .tv'`  
    % Pre-compute the values of r raised to the required powers, K}e %E&|>  
    % and compile them in a matrix: 'O%itCy)  
    % ----------------------------- w\o?p.drp=  
    if rpowers(1)==0 a:*8SovI  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); >?/Pl"{b  
        rpowern = cat(2,rpowern{:}); lxIo P  
        rpowern = [ones(length_r,1) rpowern]; zq 1je2DB  
    else 0x&-/qce6W  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ,Jm2|WKH  
        rpowern = cat(2,rpowern{:}); \$.8iTr@  
    end OPVF)@"ptM  
    {t<E*5N]a  
    .ME>ICA  
    % Compute the values of the polynomials: } + ]A?'&  
    % -------------------------------------- F xek#  
    y = zeros(length_r,length(n)); e :(7$jo  
    for j = 1:length(n) pZo:\n5o  
        s = 0:(n(j)-m_abs(j))/2; 3q'["SS  
        pows = n(j):-2:m_abs(j); lyY\P6 X  
        for k = length(s):-1:1 77KB-l2  
            p = (1-2*mod(s(k),2))* ... 2a=3->D&  
                       prod(2:(n(j)-s(k)))/              ... (}Q(Ux@X  
                       prod(2:s(k))/                     ... '3BBTr%aZ  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... `1}WQS  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); T_\Nvzb}  
            idx = (pows(k)==rpowers); ='!E;  
            y(:,j) = y(:,j) + p*rpowern(:,idx); GM_~2Er]  
        end sIUhk7Cd8  
         -|K^!G  
        if isnorm ]Sj<1tx7f  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); HQtR;[1  
        end b 6kDkE  
    end t zn1|  
    % END: Compute the Zernike Polynomials k }amSsE  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /e/%mo  
    !3O8B0K)v  
    0R2KI,WI  
    % Compute the Zernike functions: pco:]3BF6  
    % ------------------------------ 6,wi81F,}  
    idx_pos = m>0; w)C/EHF  
    idx_neg = m<0; Dj?84y  
    onqifQ  
    b/[$bZD5o  
    z = y; s2Z'_r T  
    if any(idx_pos) bVLBqa=  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 1zNh& "  
    end Q y4eDv5  
    if any(idx_neg) `$PdI4~J  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ]A? (OA  
    end xUW\P$  
    %C[#:>'+  
    M `O=rH }  
    % EOF zernfun p!oO}gE  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  lot;d3}  
    b w!  
    DDE还是手动输入的呢? t~|`RMn"  
    Jsa;pG=3&  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究