下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, oKzLt
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, iEnDS@7
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? @'dtlY5;
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? ZMoN
,\ov$biL
RHeql*`
]x?`&f8i
NKh 8'=S
function z = zernfun(n,m,r,theta,nflag) gLU #\d]
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 3s"x{mtH
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N HPT$)NeNc
% and angular frequency M, evaluated at positions (R,THETA) on the V
D-,)f
% unit circle. N is a vector of positive integers (including 0), and -FdhV%5]
% M is a vector with the same number of elements as N. Each element 8eQ 4[wJY
% k of M must be a positive integer, with possible values M(k) = -N(k) Q/L:0ovR
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, F~4oPB K<
% and THETA is a vector of angles. R and THETA must have the same D&$%JT'3
% length. The output Z is a matrix with one column for every (N,M) |h4aJv
% pair, and one row for every (R,THETA) pair. bZz ,'
% ?X~Keb
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ^GHA,cSf
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), |cUTP!iy
% with delta(m,0) the Kronecker delta, is chosen so that the integral \$W>@w0
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, n](Q)h'nlo
% and theta=0 to theta=2*pi) is unity. For the non-normalized )BmK'H+l
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 1UT&kD!si
% .3M=|rE
% The Zernike functions are an orthogonal basis on the unit circle. G?v]p~6
% They are used in disciplines such as astronomy, optics, and }y;s(4
% optometry to describe functions on a circular domain. ^1nQDd*
% [AA'Ko
% The following table lists the first 15 Zernike functions. :*k
% XcD$xFDZ
% n m Zernike function Normalization 4'_PLOgnX
% -------------------------------------------------- x(ue
|UG
% 0 0 1 1 B=8],_
% 1 1 r * cos(theta) 2 D% v{[KY
% 1 -1 r * sin(theta) 2 W!MO}0s
% 2 -2 r^2 * cos(2*theta) sqrt(6) _vr>-:G
% 2 0 (2*r^2 - 1) sqrt(3) C5"=%v[gQv
% 2 2 r^2 * sin(2*theta) sqrt(6) $t}t'uJ
% 3 -3 r^3 * cos(3*theta) sqrt(8) 3\JEp,5
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) ~|QhWgq
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) AU0pJB'
% 3 3 r^3 * sin(3*theta) sqrt(8) ! ,WO]Ov
% 4 -4 r^4 * cos(4*theta) sqrt(10) 8&t3a+8l
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) > yk2
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) mO%F {'
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) .W>LEz'
% 4 4 r^4 * sin(4*theta) sqrt(10) %PW_v~sg
% -------------------------------------------------- x/7kcj!O
% :|%k*z
% Example 1: i-Er|u; W
% }g&A=u_2
% % Display the Zernike function Z(n=5,m=1) %s&l^&ux
% x = -1:0.01:1; :rR)rj'
% [X,Y] = meshgrid(x,x); 0&wbGbg(W
% [theta,r] = cart2pol(X,Y); vM5yiHI(jb
% idx = r<=1; Q#M@!&
% z = nan(size(X)); &![3{G"+>l
% z(idx) = zernfun(5,1,r(idx),theta(idx)); /zV&ebN]
% figure Ww\M3Q`h
% pcolor(x,x,z), shading interp ~*NG~Kn"s
% axis square, colorbar >JVdL\3
% title('Zernike function Z_5^1(r,\theta)') "=H(\V
% iX
(<ozH
% Example 2: e,V @t%
% cCa+UTxaJ
% % Display the first 10 Zernike functions EIdEXAC(
% x = -1:0.01:1; 'ip2| UG
% [X,Y] = meshgrid(x,x); rlMahY"C
% [theta,r] = cart2pol(X,Y); Q^trKw~XNy
% idx = r<=1; '/O >#1
% z = nan(size(X)); 1xBgb/+
% n = [0 1 1 2 2 2 3 3 3 3]; mQd
L"caA
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 7F$G.LhMw
% Nplot = [4 10 12 16 18 20 22 24 26 28]; p#;I4d G
% y = zernfun(n,m,r(idx),theta(idx)); !pTi.3
% figure('Units','normalized') k7ye,_&>
% for k = 1:10 g$S|CqRG
% z(idx) = y(:,k); rvEX;8TS
% subplot(4,7,Nplot(k)) "($"T v2
% pcolor(x,x,z), shading interp E!"N}v
% set(gca,'XTick',[],'YTick',[]) {f1iys'Om
% axis square T@H<Fm_
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) CqFk(Td9-D
% end %H/V
iC
% /Pv
dP#!
% See also ZERNPOL, ZERNFUN2. X^o0t^
2pQ29
KATu7)e&~^
% Paul Fricker 11/13/2006 'LX]/D
aWS_z6[t#6
,::f?
Gc7j
15J t
@{<r
0]k-0#JM
% Check and prepare the inputs: BZP{{
% ----------------------------- [x[nTIg
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) JfLoGl;pm
error('zernfun:NMvectors','N and M must be vectors.') z{m%^,Cs,
end Qo\+FkhYq
+d!"Zy2|B
_jWGwO
if length(n)~=length(m) [6cF#_)*
error('zernfun:NMlength','N and M must be the same length.') r7FFZNs!
end M!4}B
CpLLsp hy
2'U+QK@
n = n(:); 2%_UOEayU
m = m(:); FKWL{"y
if any(mod(n-m,2)) }'u0Q6Obj
error('zernfun:NMmultiplesof2', ... 1| XC$0
'All N and M must differ by multiples of 2 (including 0).') XMlcY;W
end #Y<QEGb(
B`w@Xk'D
lvp8{]I<
if any(m>n) ;&9wG`
error('zernfun:MlessthanN', ... @:w[(K[^b/
'Each M must be less than or equal to its corresponding N.') HDHC9E6
end irooFR[L9
\AY*x=PF
{Rtl<W0
if any( r>1 | r<0 ) HDQH7Bs
error('zernfun:Rlessthan1','All R must be between 0 and 1.') x5(B(V@b
end tlyDXB~+
@)x8<
M
_e^KF
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) D`
a bVf
error('zernfun:RTHvector','R and THETA must be vectors.') !SAR/sdXf
end
+`&-xq76
dQ-:]T (
5Y#~+Im=[@
r = r(:); ~{$5JIpCm
theta = theta(:); `nv82v
length_r = length(r); i p;
RlO
if length_r~=length(theta) el3lR((H
error('zernfun:RTHlength', ... t|]2\6acuc
'The number of R- and THETA-values must be equal.') D:#e;K
end VRA0p[
n-x%<j(Xf
a&C}'e"
% Check normalization: ,}23
% -------------------- #xNXCBl]O
if nargin==5 && ischar(nflag) \(;X3h
isnorm = strcmpi(nflag,'norm'); IRK(y*6
if ~isnorm &XZS}n
error('zernfun:normalization','Unrecognized normalization flag.') I%tJLdL
end ;t5e]
else 8dCa@r&tz
isnorm = false; RGz NZc
end JG* Lc@ Q
$;As7MI
=*=qleC3
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% gaVQ3NqF
% Compute the Zernike Polynomials \{{i:&] H
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% aP` V
CAtdx!
<?Y.w1
% Determine the required powers of r: ]vUTb9>{?
% ----------------------------------- vJfj1 f
m_abs = abs(m); 57rH`UFXH
rpowers = []; tish%Qnpd
for j = 1:length(n) DcX,o*ec!
rpowers = [rpowers m_abs(j):2:n(j)]; 'Ej&zh
end woyeKOr
rpowers = unique(rpowers); c5AEn -Q
3-U@==:T
X~>2iL
% Pre-compute the values of r raised to the required powers, yQdoy^d/4
% and compile them in a matrix: 0})mCVBY
% ----------------------------- #9u2LK
if rpowers(1)==0 3}V-'!
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Uv%?z0F<C
rpowern = cat(2,rpowern{:}); t`eUD>\
rpowern = [ones(length_r,1) rpowern]; eG\`SKx_
else b&xlT+GN
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); G !;<#|a
rpowern = cat(2,rpowern{:}); sFa5#w*>
end +/Qgl
xq\A TON
KV]8o'
% Compute the values of the polynomials: k \V6q9*
% -------------------------------------- IHStN,QD
y = zeros(length_r,length(n)); THf*<|
for j = 1:length(n) jblj]/
s = 0:(n(j)-m_abs(j))/2; @`H47@e
pows = n(j):-2:m_abs(j); '.1_anE]
for k = length(s):-1:1
s2;b-0
p = (1-2*mod(s(k),2))* ... (^;Fyf/
prod(2:(n(j)-s(k)))/ ... V7q-Pfh!y
prod(2:s(k))/ ... `AcT}.u
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... mIm.+U`a2
prod(2:((n(j)+m_abs(j))/2-s(k))); HZEDr}RN
idx = (pows(k)==rpowers); *Rj(~Q/t
y(:,j) = y(:,j) + p*rpowern(:,idx); _|}
GhdYE
end < (<IRCR
#azD&6`
if isnorm Kfk/pYMDq
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); fFNwmH-jv
end iES?}K/q
end iw?*Wp25
% END: Compute the Zernike Polynomials zD%@3NA41
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% F2Nb]f
cgF?[Z+x
o<\9OQ0
% Compute the Zernike functions: zcE[wM
% ------------------------------ Sz#dld Mz
idx_pos = m>0; *9I/h~I
idx_neg = m<0; 8nQjD<-
\aB>Q"pS
0OAHD '
z = y; K3On8
if any(idx_pos) rA6lyzJ
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); x9s1AzM{
end LJ+Qe%|
if any(idx_neg) W*/0[|n*
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); i_kKE+Q
end @ZTsl ?
~T'Ri=
QGM@m:O
% EOF zernfun QGpAG#M9?