下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, 5sj$XA?5
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, _3NH"o
d
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? [@B!N+P5;
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? `Q/\w1-Q
.JJ50p
[0]J
2
Vg :''!4t2
kY6_n4
function z = zernfun(n,m,r,theta,nflag) Zz]/4 4t
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. G:wO1f6
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N
=zDvZ(5
% and angular frequency M, evaluated at positions (R,THETA) on the ?A24h!7
% unit circle. N is a vector of positive integers (including 0), and "q!*RO'a
% M is a vector with the same number of elements as N. Each element ZR"qrCSw`
% k of M must be a positive integer, with possible values M(k) = -N(k) sY?wQ:
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, (d*||"
% and THETA is a vector of angles. R and THETA must have the same Sfp-ns32%A
% length. The output Z is a matrix with one column for every (N,M) 5*Qzw[[=
% pair, and one row for every (R,THETA) pair. ts("(zI1E
% (ip3{d{CT]
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ,U+>Q!$`\^
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), U!K#g_}
% with delta(m,0) the Kronecker delta, is chosen so that the integral z]LVq k
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, g!r)yzK
% and theta=0 to theta=2*pi) is unity. For the non-normalized `*`ZgTV
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. N3a ]!4Y\
% \3%3=:
% The Zernike functions are an orthogonal basis on the unit circle. 4x?I,cAN
% They are used in disciplines such as astronomy, optics, and :S7[<SwL
% optometry to describe functions on a circular domain. I)0_0JXs
% Tj\hAcD
% The following table lists the first 15 Zernike functions. h?}S|>9
% l Ft&cy2
% n m Zernike function Normalization +
Okw+v
% -------------------------------------------------- TDWD8??e
% 0 0 1 1 ,^ dpn
% 1 1 r * cos(theta) 2 :f7vGO"t
% 1 -1 r * sin(theta) 2 Ke]'RfO\
% 2 -2 r^2 * cos(2*theta) sqrt(6) {yEL$8MC
% 2 0 (2*r^2 - 1) sqrt(3) %M`zkA2]J
% 2 2 r^2 * sin(2*theta) sqrt(6) 0ia-D`^me
% 3 -3 r^3 * cos(3*theta) sqrt(8) V?`|Ha}
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) \%%M >4c
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) tK'9%yA\
% 3 3 r^3 * sin(3*theta) sqrt(8) :Z_abKt
% 4 -4 r^4 * cos(4*theta) sqrt(10) *,*XOd:3TL
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 5Z"N2D)."
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5)
klY, @
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Jw^my4
% 4 4 r^4 * sin(4*theta) sqrt(10) ,JTyOBB<I
% -------------------------------------------------- FL&Y/5
% 8]O#L}"
% Example 1: #e[r0f?U
% aSJD'u4w.a
% % Display the Zernike function Z(n=5,m=1) 78<fbN5}r
% x = -1:0.01:1; 5lM 3In@
% [X,Y] = meshgrid(x,x); jHA(mU)b
% [theta,r] = cart2pol(X,Y); O'.{6H;t
% idx = r<=1; H`Zg-j`
% z = nan(size(X)); PlgpH'z4$
% z(idx) = zernfun(5,1,r(idx),theta(idx)); c?GV
% figure TC@F*B;
% pcolor(x,x,z), shading interp N+H[Y4c?F&
% axis square, colorbar 6Bexwf<u
% title('Zernike function Z_5^1(r,\theta)') De>,i%`Q,D
% ]=/?Ooh
% Example 2: IlI5xkJ(
% 'P4V_VMK
% % Display the first 10 Zernike functions /oGaA@#+
% x = -1:0.01:1; hw)z]
% [X,Y] = meshgrid(x,x); g?Rq .py]!
% [theta,r] = cart2pol(X,Y); jYBiC DD
% idx = r<=1; LcNI$g;}Yf
% z = nan(size(X)); EQM[!g^a
% n = [0 1 1 2 2 2 3 3 3 3]; rg
0u#-
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; YfseX;VX
% Nplot = [4 10 12 16 18 20 22 24 26 28]; 1:./f|m
% y = zernfun(n,m,r(idx),theta(idx)); |%3>i"Y@AK
% figure('Units','normalized') l <Z7bo
% for k = 1:10 !ZCxi
% z(idx) = y(:,k); |S]fs9
% subplot(4,7,Nplot(k)) /#L4ec-'
% pcolor(x,x,z), shading interp J*ZcZ FbWN
% set(gca,'XTick',[],'YTick',[]) o"A?Aq
% axis square <A`SC;k\u
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) <$#^)]Ts
% end *7#5pT~
% f3h]t0M
% See also ZERNPOL, ZERNFUN2. Y;dqrA>@
uBC#4cX`D*
tn(6T^u
% Paul Fricker 11/13/2006 -&)
"av G#rsH
E5*pD*#
1,we:rwX
fl4'dv
% Check and prepare the inputs: e<~bDFH
% ----------------------------- 1:u~T@;" `
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) gh `_{l
error('zernfun:NMvectors','N and M must be vectors.') ,Hp7`I>/
end hVJ}EF0
^(BE_<~
r $ YEq5
if length(n)~=length(m) ?f!&M
error('zernfun:NMlength','N and M must be the same length.') >{Xyl):
end H6KBXMYO
fN9uSnu
^.*zBrFx
n = n(:); "1p,
r&}
m = m(:); OL@$RTh
if any(mod(n-m,2)) 9tmnx')_
error('zernfun:NMmultiplesof2', ... 4ZYywD wn
'All N and M must differ by multiples of 2 (including 0).') ZK<c(,oZ^
end 8zjJshE/
L/5th}m
bcAk$tA2
if any(m>n) -f?,%6(1
error('zernfun:MlessthanN', ... 7$*x&We
'Each M must be less than or equal to its corresponding N.') rV*Ri~Vx
end 6.|[;>Km
EQ"+G[j~x
R[QBFL<
if any( r>1 | r<0 ) =t|,6Vp
error('zernfun:Rlessthan1','All R must be between 0 and 1.') P#rS.CIh
end vJX0c\e
w.+G+r=
SI=7$8T5=5
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) '+*'sQvH[
error('zernfun:RTHvector','R and THETA must be vectors.') ]L3MIaO2T
end &,\my-4c>
{qs>yQ6a:-
xlc2,L;i
r = r(:); ws$kwSHq
theta = theta(:); fOP3`G^\
length_r = length(r); y3P4]sq
if length_r~=length(theta) w,0OO
f
error('zernfun:RTHlength', ... {CX06BP
'The number of R- and THETA-values must be equal.') \J-D@b;
end _Y)Wi[
bH%d*
E0u&hBd3_
% Check normalization: I(z16wQ
% -------------------- #f_.
if nargin==5 && ischar(nflag) 3A.lS+P1
isnorm = strcmpi(nflag,'norm'); \9}DAM_
if ~isnorm [&lH[:Y#
error('zernfun:normalization','Unrecognized normalization flag.') uu/2C \n}
end AH:0h X6+
else m<J:6^H@
isnorm = false; \]3[Xw-$
end E+$D$a
~CHVU3
0u
+_D8G
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% &@w0c>Y
% Compute the Zernike Polynomials s'BlFB n
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% RxVZn""
tCv}+7)
hzA+,
% Determine the required powers of r: RP k'1nD
% ----------------------------------- I2,AT+O<
m_abs = abs(m); ~{pds
rpowers = []; VDiW9]
for j = 1:length(n) O-3a U!L
rpowers = [rpowers m_abs(j):2:n(j)]; 3KtJT&RuL
end 1I40N[PE)
rpowers = unique(rpowers); U&#`5u6'j
{TDZDH
Zb:Z,O(vn
% Pre-compute the values of r raised to the required powers, ryb81 .|
% and compile them in a matrix: |<MSV KW
% ----------------------------- /.>%IcK
if rpowers(1)==0 {+EnJ"
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ?}(B8^
rpowern = cat(2,rpowern{:}); RNt9Qdr4y
rpowern = [ones(length_r,1) rpowern]; {HFx+<JG
else SF da?>
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 8d&%H,
rpowern = cat(2,rpowern{:}); D&qJ@PR
end \m=k~Cf:f
vhDtjf/*
}]=@Y/p
% Compute the values of the polynomials: N*)O_Ki
% -------------------------------------- OP\L
y = zeros(length_r,length(n)); wVX2.D'n<
for j = 1:length(n) }T}xVd0
s = 0:(n(j)-m_abs(j))/2; AS'+p %(
pows = n(j):-2:m_abs(j); ?%n"{k?#
for k = length(s):-1:1 Fh/sD?
p = (1-2*mod(s(k),2))* ... yD@1H(yM
prod(2:(n(j)-s(k)))/ ... *Rxn3tR7
prod(2:s(k))/ ... Mh{>#Gs
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... X8wtdd]64
prod(2:((n(j)+m_abs(j))/2-s(k))); ` $q0fTz
idx = (pows(k)==rpowers); tq51;L
y(:,j) = y(:,j) + p*rpowern(:,idx); I+31:#d
end s'bTP(wl9
p1W6 s0L
if isnorm Y~?Z'uR
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); $EzWUt
end PKQ.gPu6*@
end <(H<*Xf9
% END: Compute the Zernike Polynomials <~S]jtL.j:
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /U`p|M;
hD4>mpk
n~ 0MhE0H
% Compute the Zernike functions: KLG29G
% ------------------------------ d]MpE9@'v
idx_pos = m>0; C>SOd]
idx_neg = m<0; P'DcNMdw
wuM'M<J@
{|B[[W\TN
z = y; l]gW_wUQd
if any(idx_pos) Xz9[0;Q
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); &9"Y:),
end :Gew8G
if any(idx_neg) >]o>iOz;]
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); B#cN'1c
end @4]{ZUV
d24_,o\_
iio-RT?!
% EOF zernfun ?7J::}R