下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, 6f<*1YR
F
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, d91I
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? f'8B[&@L
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? Z1E`I89<
HE8'N=0
2&3eAJC
WlF+unB!9
Djg1Qh
function z = zernfun(n,m,r,theta,nflag) ]=O{7#
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. r! cNc
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ";%e~
=
% and angular frequency M, evaluated at positions (R,THETA) on the >^2ZM
% unit circle. N is a vector of positive integers (including 0), and h'z+8X_t
% M is a vector with the same number of elements as N. Each element rcD.P?"
% k of M must be a positive integer, with possible values M(k) = -N(k) 5M/%%Ox
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, 1_p[*h
% and THETA is a vector of angles. R and THETA must have the same e)fJd*P
% length. The output Z is a matrix with one column for every (N,M) {m1t~ S
% pair, and one row for every (R,THETA) pair. UtHmM,*I
% $_%2D3-;D
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike eP-R""uPw
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), w yuJSB
% with delta(m,0) the Kronecker delta, is chosen so that the integral *RUd!]bh
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, \rB/83[;u
% and theta=0 to theta=2*pi) is unity. For the non-normalized U~JG1#z6
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 81%qM7v9H
% %tklup]LF8
% The Zernike functions are an orthogonal basis on the unit circle. *)}Ap4[
% They are used in disciplines such as astronomy, optics, and 8VBkI Ygb
% optometry to describe functions on a circular domain. ;@=@N9qK
% |TNiKy
% The following table lists the first 15 Zernike functions. QBN=l\m+
% *;V2_fWJ@
% n m Zernike function Normalization .j+2x[`l
% -------------------------------------------------- o{YW
% 0 0 1 1 {!:|.!-u
% 1 1 r * cos(theta) 2 ?[*@T2Ck
% 1 -1 r * sin(theta) 2 .$}Z:,aB
% 2 -2 r^2 * cos(2*theta) sqrt(6) ZIGbwL
% 2 0 (2*r^2 - 1) sqrt(3) X7imUy'.
% 2 2 r^2 * sin(2*theta) sqrt(6) VygXhh^7\
% 3 -3 r^3 * cos(3*theta) sqrt(8) ePu2t3E
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) |{}d5Z"5;}
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) gn4g 43
% 3 3 r^3 * sin(3*theta) sqrt(8) }SJLBy0
% 4 -4 r^4 * cos(4*theta) sqrt(10) s`$_
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) z!Pdivx
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) }AeE|RNc
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) i &SBW0)
% 4 4 r^4 * sin(4*theta) sqrt(10) F?+Uar|-a
% -------------------------------------------------- }y-AoG
% cE_Xo.:Y,
% Example 1: !@]h@MC$7
% t0AqGrn
% % Display the Zernike function Z(n=5,m=1) iX9[Q0g=oQ
% x = -1:0.01:1; =c5 /cpZ^
% [X,Y] = meshgrid(x,x); l,FG:"`Z@
% [theta,r] = cart2pol(X,Y); 9b=^"K
% idx = r<=1; QBBJ1U
% z = nan(size(X)); r)Mx.`d!
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 8zB+%mcF
% figure +'YSpJ
% pcolor(x,x,z), shading interp <}x|@u
% axis square, colorbar ,:Rq
% title('Zernike function Z_5^1(r,\theta)') H?zCIue3
% %lqG* dRx0
% Example 2: 4)>\rqF+v
% 7=M'n;!Mh
% % Display the first 10 Zernike functions RE*S7[ge
% x = -1:0.01:1; _`Yvfz3
% [X,Y] = meshgrid(x,x); 80l3.z,:
% [theta,r] = cart2pol(X,Y); H&>>]DD
% idx = r<=1; gWU(uBS
% z = nan(size(X)); 3
v,ae7$U&
% n = [0 1 1 2 2 2 3 3 3 3]; -fZShOBY`
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; nH3b<k;S
% Nplot = [4 10 12 16 18 20 22 24 26 28]; X:} 5L>'
% y = zernfun(n,m,r(idx),theta(idx)); R;,u >P "
% figure('Units','normalized') %onAlf<$:^
% for k = 1:10 6[Pr<4J
% z(idx) = y(:,k); 1wH/ #K
% subplot(4,7,Nplot(k)) _tauhwu
% pcolor(x,x,z), shading interp Wn9Mr2r!*,
% set(gca,'XTick',[],'YTick',[]) iRr&'k
% axis square PTV`=vtj
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ]\b1~ki!F
% end gQzJ2LU(
% T;pn -
% See also ZERNPOL, ZERNFUN2. G QB^
`5 v51TpH
]C:If h~
% Paul Fricker 11/13/2006 MAhPO!e5.
BKlc{=
2W-NCE%K)T
J$ih|nP
L5N{ie_
% Check and prepare the inputs: bJMcI8`
% ----------------------------- Q8/0Cb/
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) }T*xT>p^3
error('zernfun:NMvectors','N and M must be vectors.') Y
Z2VP
end o5G "J"vxe
?~y(--.t;T
w!9W Cl]9M
if length(n)~=length(m) )cmLo0`$
error('zernfun:NMlength','N and M must be the same length.') YV!V9
end kx#L<
aiX;D/t?
O?J:+L(
n = n(:); ,ce^"yG
m = m(:); s/&]gj"
if any(mod(n-m,2)) xwp?2,<
error('zernfun:NMmultiplesof2', ... YbBH6RZr
'All N and M must differ by multiples of 2 (including 0).') EYD{8Fw-
end 1kw4'#J8
U\GZ
%[CM;|?B4
if any(m>n) *t*&Q /W
error('zernfun:MlessthanN', ... < 3+&DV-<N
'Each M must be less than or equal to its corresponding N.') DT]p14@t9
end A
=#-u&l
h9smviU7u
Lj1 @yokB
if any( r>1 | r<0 ) 1E_Ui1 [
error('zernfun:Rlessthan1','All R must be between 0 and 1.') Qi]Z)v{^
end L;t~rW!1
A|OC?NZY
SpiC0
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) /<pQ!'/G
error('zernfun:RTHvector','R and THETA must be vectors.') zi[M{bm
end [)0 k}
ffd3QQ
s3!LR2qiF
r = r(:); mnaD KeA
theta = theta(:); D)Rf
length_r = length(r); myX0<j3G5
if length_r~=length(theta) G")EE#W$}
error('zernfun:RTHlength', ... U+M?<4J)"
'The number of R- and THETA-values must be equal.') V/%;:ul.
end g'7hc~=
ov>L-
1Sk6[h'CL
% Check normalization:
xTJ5VgG
% -------------------- L
umD.3<
if nargin==5 && ischar(nflag) {S(T1ua
isnorm = strcmpi(nflag,'norm'); <s3(
if ~isnorm Dx)XC?'xO
error('zernfun:normalization','Unrecognized normalization flag.') ,]qX_`qF
end {# _C
else *uM*)6O 3
isnorm = false; VjMuU"++@
end &J M;jSz
ebK
wCZwK*
;CBdp-BUj
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% =nZd"t'p|
% Compute the Zernike Polynomials =)5a=^
6
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 6u;(R0n
J :(\o=5 5
shZ<j7gqI
% Determine the required powers of r: @!O{>`
% ----------------------------------- N)Kr4GC
m_abs = abs(m); aC 0Jfo
rpowers = []; 2MeavTr
for j = 1:length(n) U#
B
rpowers = [rpowers m_abs(j):2:n(j)]; VbR.tz
end :!hH`l}p
rpowers = unique(rpowers); y@JYkp>I
EBLoRW=8ld
C;>Ll~f_
% Pre-compute the values of r raised to the required powers, 7?] p\`
% and compile them in a matrix: ~C
x2Q4E
% ----------------------------- qNL~m'
if rpowers(1)==0 !,"G/}'^;
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 5Vqvb|
rpowern = cat(2,rpowern{:}); s$6#3%h
rpowern = [ones(length_r,1) rpowern]; zy;w07-)
else v}D!
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); J< M;vB)
rpowern = cat(2,rpowern{:}); [G/X
end 0n=E.qZ9c
&N ;6G`3
#9Z-Hd<
% Compute the values of the polynomials: %L.+r!.
% -------------------------------------- *[n^6)
y = zeros(length_r,length(n)); i[#Tn52D
for j = 1:length(n) V|7CYkB8
s = 0:(n(j)-m_abs(j))/2; TKX# /
pows = n(j):-2:m_abs(j); Q2=~
for k = length(s):-1:1 lh5d6VUA
p = (1-2*mod(s(k),2))* ... cqp#1oM4M
prod(2:(n(j)-s(k)))/ ... >m!.l{*j>N
prod(2:s(k))/ ... v g]&T
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... +dv@N3GV
prod(2:((n(j)+m_abs(j))/2-s(k))); )I4t l/
idx = (pows(k)==rpowers); A?zW!'
y(:,j) = y(:,j) + p*rpowern(:,idx); }Jfo(j
end )`^:G3w
rg~CF<
if isnorm jFfki.H
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); *93 N0m4Rl
end 8 Hn{CJ~'
end Ui&$/%Z|
% END: Compute the Zernike Polynomials "Wp<^s sMo
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% HV(Kz
#v-!GK_<
,z3b2$
&A
% Compute the Zernike functions: gP@ni$n
% ------------------------------ kZNZ?A<D
idx_pos = m>0; =Wa\yBj_;m
idx_neg = m<0; L?fv5 S3
s-B\8&^C
Xk$lQMwZ
z = y; 9@06]EI_
if any(idx_pos) G
w[&P%
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); i_"I"5pBF
end n C^'2z
if any(idx_neg) xo$ZPnf(zv
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); "6i9 f$N
end TfPx
%`'VXR?`h=
&bRH(yF
% EOF zernfun %}[??R0