切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8963阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, 2kMBe%  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, N zrHWVD  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? /zxLnT; 5  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? ab"6]%_  
    6zv-nMZc  
    PP/EZ^]b  
    +9mE1$C  
    I ACpUB  
    function z = zernfun(n,m,r,theta,nflag) 'dJ#NT25  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. !J#oN+AR  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N mL\_C9k,n  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 0zJT _H+  
    %   unit circle.  N is a vector of positive integers (including 0), and NQB a+N  
    %   M is a vector with the same number of elements as N.  Each element t~_j+k0K#  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) ;QYUiR  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, dL{zU4iUR  
    %   and THETA is a vector of angles.  R and THETA must have the same \3nu &8d  
    %   length.  The output Z is a matrix with one column for every (N,M) J-iFA KN  
    %   pair, and one row for every (R,THETA) pair. )v\zaz  
    % z}Y23W&sX  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 3JhT  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 3PRg/vD3  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral YY{0WWua  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, tc-pVw:TV  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized u7PtGN0r%  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. }5_[t9LX  
    % pF0sXvWGG  
    %   The Zernike functions are an orthogonal basis on the unit circle. &8=wkG%  
    %   They are used in disciplines such as astronomy, optics, and U(xN}Y ?  
    %   optometry to describe functions on a circular domain. g2?kC^=z=  
    % Ih Yso7g  
    %   The following table lists the first 15 Zernike functions. =*paa  
    % p2m@0ou  
    %       n    m    Zernike function           Normalization C:r@)Mhq  
    %       -------------------------------------------------- 5(9SIj^O  
    %       0    0    1                                 1 P:lmQHls+  
    %       1    1    r * cos(theta)                    2 L@mNfLK  
    %       1   -1    r * sin(theta)                    2 MH wjJ  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) x}^ :Bs+j  
    %       2    0    (2*r^2 - 1)                    sqrt(3) TRLz>mQ  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) 'gBGZ?^N!U  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) e6G=Bq$  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) " a&|{bv  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) /#<R  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) F!k3/z  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) Q:L^DZkGV  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) U-~6<\Mf  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) Uz4!O  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) a:q>7V|%$  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) MWGs:tpL4  
    %       -------------------------------------------------- 3VI[*b  
    % !xE /  
    %   Example 1: n'?AZ4&z  
    % i`nmA-Zj[  
    %       % Display the Zernike function Z(n=5,m=1) E =*82Y=B  
    %       x = -1:0.01:1; -RLY.@'d-M  
    %       [X,Y] = meshgrid(x,x); V yOuw9  
    %       [theta,r] = cart2pol(X,Y); w}20l F  
    %       idx = r<=1; `j#zwgUs  
    %       z = nan(size(X)); biLNR"/E  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); l+ ,p=  
    %       figure v[7iWBqJ  
    %       pcolor(x,x,z), shading interp XBr-UjQ  
    %       axis square, colorbar mM[KT} A  
    %       title('Zernike function Z_5^1(r,\theta)') :CeK 'A\  
    % (^{tu89ab  
    %   Example 2: JJQS7,vG  
    % 4Eri]O Ri  
    %       % Display the first 10 Zernike functions Za110oF  
    %       x = -1:0.01:1; C {*' p+f  
    %       [X,Y] = meshgrid(x,x); $q$G  
    %       [theta,r] = cart2pol(X,Y);  =8o$  
    %       idx = r<=1; ^@V; `jsll  
    %       z = nan(size(X)); "^froQ{"T  
    %       n = [0  1  1  2  2  2  3  3  3  3]; aAbK{=/y_!  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 7^oO N+=d  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 74wDf  
    %       y = zernfun(n,m,r(idx),theta(idx)); ShIJ6LZ  
    %       figure('Units','normalized') n%S%a >IQj  
    %       for k = 1:10 ,<CFjtelO  
    %           z(idx) = y(:,k); _Xqa_6+/  
    %           subplot(4,7,Nplot(k)) G(3wI}  
    %           pcolor(x,x,z), shading interp "y9]>9:$-  
    %           set(gca,'XTick',[],'YTick',[]) Vsj1!}X:  
    %           axis square L*8U.{NY  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) i^SPNs=  
    %       end o*t4zF&n  
    % `;}w!U  
    %   See also ZERNPOL, ZERNFUN2. C>:,\=y%  
    QM) ob  
    nb~592u  
    %   Paul Fricker 11/13/2006 5r` x\  
    2JhE`EVH  
    +^cjdH*  
    A"}Ib'  
    {y%|Io`P  
    % Check and prepare the inputs: %TeH#%[g>\  
    % ----------------------------- b|DiU}  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Q$*JkwPQ}  
        error('zernfun:NMvectors','N and M must be vectors.') iAr]Ed"9|  
    end xxQgX~'x  
    ] :SbvsPm  
    3Fg{?C_l  
    if length(n)~=length(m) cakwGs_{  
        error('zernfun:NMlength','N and M must be the same length.') Qx_]oz]NY  
    end ( }RJW:  
    \v _R]0m\  
    ]@6L,+W"  
    n = n(:); q&kG>  
    m = m(:); i*)BFV_-  
    if any(mod(n-m,2)) d6XdN  
        error('zernfun:NMmultiplesof2', ... Y D,<]q%  
              'All N and M must differ by multiples of 2 (including 0).') `uof\D<']  
    end <dKHZ4  
    ]Om;bmwt  
    4[ *G  
    if any(m>n) 2w;Cw~<=d  
        error('zernfun:MlessthanN', ... Y_FQB K U  
              'Each M must be less than or equal to its corresponding N.') v[\Z^pccgj  
    end C({r1l4[D  
    .3CQFbHF  
    Sw.Kl 0M  
    if any( r>1 | r<0 ) GO UO  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') O& 1z-  
    end ~hb;kc3  
    .^wBv 'Y  
    r@c!M|m@  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) c{3P|O&.  
        error('zernfun:RTHvector','R and THETA must be vectors.') cz1 m05E  
    end #('GGzL6c  
    J6mUU3F9f  
    s[;1?+EI  
    r = r(:); p:ubj'(U05  
    theta = theta(:); %x8vvcO^t  
    length_r = length(r); q\/xx`L  
    if length_r~=length(theta) ]$!7;P  
        error('zernfun:RTHlength', ... [M2xF<r6t  
              'The number of R- and THETA-values must be equal.') G6bvV*TRi  
    end }\QXPU{UVd  
    6Z5$cR_vC7  
    sitgz)Ki^  
    % Check normalization: d~KTUgH'<  
    % -------------------- F8&L'@m9>  
    if nargin==5 && ischar(nflag) K_fJ{Vc>O  
        isnorm = strcmpi(nflag,'norm'); XPLm`Q|1#t  
        if ~isnorm : cPV08i  
            error('zernfun:normalization','Unrecognized normalization flag.') E%?> %h  
        end BKK@_B"  
    else m A('MS2  
        isnorm = false; &MBm1T|Y  
    end NNBT.k3)  
    ddY-F }z~  
    g,B@*2Uj  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% *G[` T%g  
    % Compute the Zernike Polynomials xLP8*lvy  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  USJ4Z  
    X([@}ren  
    b?/Su<q  
    % Determine the required powers of r: S`& yVzv  
    % ----------------------------------- Ym#io]  
    m_abs = abs(m); ~FVbL-2  
    rpowers = []; P]7s1kgaS  
    for j = 1:length(n) m4^VlE,`Dh  
        rpowers = [rpowers m_abs(j):2:n(j)]; CoV @{Pi  
    end s>=$E~qq  
    rpowers = unique(rpowers); Pk5 %lu  
    ;x&3tN/I  
    ?4t~z 1.f  
    % Pre-compute the values of r raised to the required powers, GL^ j |1  
    % and compile them in a matrix: @ev^e !B  
    % ----------------------------- $#_^uWN-M  
    if rpowers(1)==0 I*KJq?R  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); y2PxC. -  
        rpowern = cat(2,rpowern{:}); uN0'n}c;1.  
        rpowern = [ones(length_r,1) rpowern]; .UU)   
    else &{8[I3#@  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); GYonb) F  
        rpowern = cat(2,rpowern{:}); )O\l3h"  
    end iig&O(,  
    Q;@w\_ OR  
    J?Rp  
    % Compute the values of the polynomials: fN 1:'d  
    % -------------------------------------- DvTbt?i[  
    y = zeros(length_r,length(n)); hDbZ62DDN  
    for j = 1:length(n) V3_qqz}`r  
        s = 0:(n(j)-m_abs(j))/2; =|d5V%mK  
        pows = n(j):-2:m_abs(j);  <JZa  
        for k = length(s):-1:1 w$749jGx  
            p = (1-2*mod(s(k),2))* ... 7KtgR=-Lb  
                       prod(2:(n(j)-s(k)))/              ... V{{UsEVO  
                       prod(2:s(k))/                     ... 7A  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... e XdH)|l,\  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); K4^B~0~  
            idx = (pows(k)==rpowers); Ds\f?\Em  
            y(:,j) = y(:,j) + p*rpowern(:,idx); mHc2v==X\-  
        end Kt_HJ!  
         )' 2vUt`_7  
        if isnorm ?#__#  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); $-)y59w"  
        end +@PZ3 [s  
    end !Tu.A@  
    % END: Compute the Zernike Polynomials vw` '9~  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -Q!?=JNtQ  
    /PkOF ((  
    i{PX=  
    % Compute the Zernike functions: _xdttO^N  
    % ------------------------------  uMBb=   
    idx_pos = m>0; CzT_$v_  
    idx_neg = m<0; <pUc( tPoz  
    m>b i$Y  
     ^9kdd[  
    z = y; <zu)=W'R]  
    if any(idx_pos) BimM)4g  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ||?wRMV  
    end <7X+-%yb;  
    if any(idx_neg) wSs78c=  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 2K'}Vm+  
    end T0}P 'q  
    =`%%*  
    ,@2d4eg 4  
    % EOF zernfun 5xG/>f n  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  ^ KjqS\<  
    z0W+4meoH  
    DDE还是手动输入的呢? |B`tRq  
    %ej"ZeM  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究