下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, A`KTm(
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, C-7.Sa
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? lF<(yF5
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? Q1rwTg\
11uqs
S2
?@#<>7V
sXUM,h8$!+
S=Zjdbd
function z = zernfun(n,m,r,theta,nflag) UkUdpZ.[il
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. PHoW|K_e
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 8LL);"$
% and angular frequency M, evaluated at positions (R,THETA) on the VybiuP
% unit circle. N is a vector of positive integers (including 0), and *KMCU
m
% M is a vector with the same number of elements as N. Each element zy.Ok 49
% k of M must be a positive integer, with possible values M(k) = -N(k) x>K em$z
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, [|3
%~s|Sv
% and THETA is a vector of angles. R and THETA must have the same @`3)?J[w
% length. The output Z is a matrix with one column for every (N,M) Y#G '[N>
% pair, and one row for every (R,THETA) pair. CA3.fu3(p
% q+z,{K
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike zr,jaR;
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ,J[sg7vcv
% with delta(m,0) the Kronecker delta, is chosen so that the integral QeK~A@|F&
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, X,p&S^
% and theta=0 to theta=2*pi) is unity. For the non-normalized Z7(hW,60
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 49CMRO,T
% r6A7}v
% The Zernike functions are an orthogonal basis on the unit circle. kys?%Y1
% They are used in disciplines such as astronomy, optics, and kn!J`"b
% optometry to describe functions on a circular domain. 9QpKB
c
% p7z#4 GW
% The following table lists the first 15 Zernike functions. ]fR
3f
% )2a!EEHz
% n m Zernike function Normalization DQ,Q yV
% -------------------------------------------------- P<bA~%<7"[
% 0 0 1 1 twJck~l~n
% 1 1 r * cos(theta) 2
9TeDLp
% 1 -1 r * sin(theta) 2 P)T:6K
% 2 -2 r^2 * cos(2*theta) sqrt(6) 5~qr+la
% 2 0 (2*r^2 - 1) sqrt(3) ]xuq2MU,l
% 2 2 r^2 * sin(2*theta) sqrt(6) CxO)d7c
% 3 -3 r^3 * cos(3*theta) sqrt(8) XOxm<3gXn
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) wc;5tb#
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) <4Ak$E%"
% 3 3 r^3 * sin(3*theta) sqrt(8) f6DPah#
% 4 -4 r^4 * cos(4*theta) sqrt(10) 3T_-_5[c
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) mCg 5-E~;
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) LnBkd:>}
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) f1JvP\I0Q
% 4 4 r^4 * sin(4*theta) sqrt(10) PoC24#vS
% -------------------------------------------------- }ts?ZR^V,
% Rq;R{a
% Example 1: p{.EFa>H
% %bddR;c
% % Display the Zernike function Z(n=5,m=1) #ujcT%1G
% x = -1:0.01:1; ,O2Uj3"
% [X,Y] = meshgrid(x,x); aFhsRE?YC=
% [theta,r] = cart2pol(X,Y); sO6+L
#!
% idx = r<=1; k%hif8y
% z = nan(size(X)); D@mDhhK_
% z(idx) = zernfun(5,1,r(idx),theta(idx)); O^LzS&I*
% figure keX0br7u_
% pcolor(x,x,z), shading interp ak<?Eu9rV
% axis square, colorbar 7^S &g.A
% title('Zernike function Z_5^1(r,\theta)') K~[/n<ks
% SMnbI.0
% Example 2: (!;4Y82#
% I 5
% % Display the first 10 Zernike functions x*(pr5k
% x = -1:0.01:1; #B54p@.}
% [X,Y] = meshgrid(x,x); 4/HyO\?z5
% [theta,r] = cart2pol(X,Y); 7n%QP
% idx = r<=1; (R.k.,z
% z = nan(size(X)); a
"8/y4Y
% n = [0 1 1 2 2 2 3 3 3 3]; GK:*|jV
% m = [0 -1 1 -2 0 2 -3 -1 1 3];
~B/|#o2
% Nplot = [4 10 12 16 18 20 22 24 26 28]; R9{6$djq\:
% y = zernfun(n,m,r(idx),theta(idx)); x_#yH3kJ
% figure('Units','normalized') 16xM?P
% for k = 1:10 >:8GU f*
% z(idx) = y(:,k); : wb\N'b
% subplot(4,7,Nplot(k)) az7L0pp
% pcolor(x,x,z), shading interp oU67<jq
% set(gca,'XTick',[],'YTick',[]) DLf6D |"
% axis square o:m:9dn
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) m/CA
% end .{~ygHQ`f
% =TU"B-*
% See also ZERNPOL, ZERNFUN2. _8t{4C
<.~j:GbsE
tXwnK[~x
% Paul Fricker 11/13/2006 }[?X%=
) 3Eax_?Z
."cC^og
g5_]^[upw
izOtt^#DZt
% Check and prepare the inputs: y1FS?hSD0
% ----------------------------- vA"yy"B+ V
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) (7&[!PS
error('zernfun:NMvectors','N and M must be vectors.') JoIffI?{(D
end iwrS>Sm
@>&UoH}2
Ig*!0(v5$
if length(n)~=length(m) [Nsv]Yz
error('zernfun:NMlength','N and M must be the same length.') #*XuU8q?
end ]#KZ
W)M
J!~?}Fq/z
sYgpK92
n = n(:); (hs[B4nV
m = m(:); K%Jy?7
U
if any(mod(n-m,2)) 9Iy>oV
error('zernfun:NMmultiplesof2', ... |'Z6M];8t
'All N and M must differ by multiples of 2 (including 0).') e\tcP
end 44]/rP_m
u 6$fF=
<Hig,(=`.
if any(m>n) WR%x4\,d#
error('zernfun:MlessthanN', ... rt^<=|Z
'Each M must be less than or equal to its corresponding N.') 9g|o17
end K9:I8E<
vrLI`3n]
<Pg4>
if any( r>1 | r<0 ) ":tQYo]d
error('zernfun:Rlessthan1','All R must be between 0 and 1.') T\NvN&h-
end $x)C_WZj?
s:~3|D][
now\-XrS
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) E0o=
error('zernfun:RTHvector','R and THETA must be vectors.') L?23Av0W
end Kp!sn,:
7?Q<kB=f
~L<q9B( @
r = r(:); ]Wa.k
theta = theta(:); OjcxD5"v9
length_r = length(r); pA&CBXio
if length_r~=length(theta) A|Up>`QH
error('zernfun:RTHlength', ... _
)b:F=4j
'The number of R- and THETA-values must be equal.') k}(C.`.
end oQ{(7.e7)
nB[Aw7^|A
8*k#T\
% Check normalization: "u@)
% -------------------- }uz*6Z(S
if nargin==5 && ischar(nflag) \=P+]9
isnorm = strcmpi(nflag,'norm'); oj/,vO:QT
if ~isnorm 7Y"CeU-S
error('zernfun:normalization','Unrecognized normalization flag.') URz$hcI8
end 4Z.G
else k z"F4?,
isnorm = false; Bb_R~1
l
end ]2`PS<a2
+]
s"* 'V$
iaPrkMhd
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% qv>?xKSm
% Compute the Zernike Polynomials |gxT-ZM
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @)owj^sA
|j3mI\ANF
7O84R^!|2
% Determine the required powers of r: v1*Lf/
% ----------------------------------- )u ) ]#z
m_abs = abs(m); bKRz=$P?
rpowers = []; }d?"i@[
for j = 1:length(n) !B cd\] q
rpowers = [rpowers m_abs(j):2:n(j)]; }D02*s
end 3\j{*f$J
rpowers = unique(rpowers); ^vw? 4O
+n_`*@SE
KjFNb;mM
% Pre-compute the values of r raised to the required powers, aZ"9)RJe
% and compile them in a matrix: )L fXb9}
% ----------------------------- ~?T*D*
if rpowers(1)==0 @62QDlt;
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); g).k+
rpowern = cat(2,rpowern{:}); X2^`Znq9
rpowern = [ones(length_r,1) rpowern]; XMzL\Edo
else DlIy'@ .
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); RRR'azT
rpowern = cat(2,rpowern{:}); 8#b>4Dx
end #!!Ea'3Iq
MDI[TNYG
)xwWig.
% Compute the values of the polynomials: I[E/)R{\
% -------------------------------------- Huzw>
y = zeros(length_r,length(n)); WB~
^R<g
for j = 1:length(n) 0].*eM
s = 0:(n(j)-m_abs(j))/2; s"G;rcS}#
pows = n(j):-2:m_abs(j); KFd !wZ@e
for k = length(s):-1:1 0`y;[qAG[
p = (1-2*mod(s(k),2))* ... :wtr{,9rZ
prod(2:(n(j)-s(k)))/ ... 'oNY4.[
prod(2:s(k))/ ... q):Ph&'r
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... X$z@ *3=
prod(2:((n(j)+m_abs(j))/2-s(k))); &aD]_+b
idx = (pows(k)==rpowers); U6SgV
8
y(:,j) = y(:,j) + p*rpowern(:,idx);
ETQ.A< v
end BfQRw>dZ"{
E07g^y"}i
if isnorm Id-?her>B
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); <~ E'% 60;
end &Xw{%Rg
end >:7W.QLRU
% END: Compute the Zernike Polynomials 96M?tTa
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ^3`CP4DT
U-+%e:v
}ti+tM*
% Compute the Zernike functions: DxX333vC
% ------------------------------ ;533;(d*o
idx_pos = m>0; ODE9@]a
idx_neg = m<0; k8]=5C?k
~xz3- a/
eq>E<X#<
z = y; ]u~6fknm
if any(idx_pos) %*4Gx +b
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); %) A-zzj
end /y2upu*!
if any(idx_neg) '&