切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9442阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, lfeWtzOf  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, B{(l 5B6  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? Y[?Wt/O;  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? iB`]Z@ZC  
    H).5xx[`  
    U(LR('-h  
    Qnx92   
    k 0Yixa  
    function z = zernfun(n,m,r,theta,nflag) ; 2-kQK9  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. ;-^9j)31+F  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N gdY/RDxn:  
    %   and angular frequency M, evaluated at positions (R,THETA) on the !Qa7-  
    %   unit circle.  N is a vector of positive integers (including 0), and \9zC?Cw  
    %   M is a vector with the same number of elements as N.  Each element E9-'!I!  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 3g:+p  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, e-=PT 1T`  
    %   and THETA is a vector of angles.  R and THETA must have the same ulo7d1OVkJ  
    %   length.  The output Z is a matrix with one column for every (N,M) 31Mc<4zI8  
    %   pair, and one row for every (R,THETA) pair. 6dp_R2zH~o  
    % CoXL;\  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike XQ;d ew+  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), K): sq{  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral l #z`4<  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, )!-'SH  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized `.WKU"To  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 1*b%C"C  
    % YKd?)$J  
    %   The Zernike functions are an orthogonal basis on the unit circle. Bd[Gsns  
    %   They are used in disciplines such as astronomy, optics, and %y+j~]^:  
    %   optometry to describe functions on a circular domain. $Ws2g*i  
    % (OJ9@_fgG[  
    %   The following table lists the first 15 Zernike functions. )E2Lf ]  
    % M'7x:Uw;  
    %       n    m    Zernike function           Normalization P~Owvs/=  
    %       -------------------------------------------------- boovCW  
    %       0    0    1                                 1 zZiVBUmE<  
    %       1    1    r * cos(theta)                    2 `2  
    %       1   -1    r * sin(theta)                    2 Av]N.HB$  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) x^BBK'  
    %       2    0    (2*r^2 - 1)                    sqrt(3) I!'(>VlP7  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) SX;IUvVE5  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) Ooy96M~_G  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) x%&V!L  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) -v@^6bQVp  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) j,jUg}b  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) n//a;m  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) O v6=|]cW  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) ~zRd||qv  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) SoIMftX  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) D40VJ3TUc  
    %       -------------------------------------------------- ;\.&FMi  
    % j<?4N*S  
    %   Example 1: hp}8 3.oA  
    %  sOmYQ{R  
    %       % Display the Zernike function Z(n=5,m=1) ep|u_|sB/r  
    %       x = -1:0.01:1; 7?s>u937  
    %       [X,Y] = meshgrid(x,x); XWV~6"  
    %       [theta,r] = cart2pol(X,Y); omP 7|  
    %       idx = r<=1; H5)WxsZ R  
    %       z = nan(size(X)); r; !us~  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 4R6 .GO  
    %       figure r$zXb9a|<  
    %       pcolor(x,x,z), shading interp ]A[~2]  
    %       axis square, colorbar +.St"f/1  
    %       title('Zernike function Z_5^1(r,\theta)') ,0xN#&?Ohh  
    % G>"[nXmcu  
    %   Example 2: u e~1144  
    % Jo]g{GX[  
    %       % Display the first 10 Zernike functions [$X(i|6  
    %       x = -1:0.01:1; F!8425oAw  
    %       [X,Y] = meshgrid(x,x); )DMbO"7  
    %       [theta,r] = cart2pol(X,Y); (aLnbJeJ  
    %       idx = r<=1; 2e &Zs%u  
    %       z = nan(size(X)); =6:Iv"<  
    %       n = [0  1  1  2  2  2  3  3  3  3]; d1N&J`R\1  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; _G`aI*rKsy  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; WxdYvmp6z[  
    %       y = zernfun(n,m,r(idx),theta(idx)); SZEr  
    %       figure('Units','normalized') 6 ?cV1:jh  
    %       for k = 1:10 S7R^%Wck/6  
    %           z(idx) = y(:,k); FS[CUoA  
    %           subplot(4,7,Nplot(k)) UF4QPPH4  
    %           pcolor(x,x,z), shading interp @VFg XN  
    %           set(gca,'XTick',[],'YTick',[]) N]~q@x;<)3  
    %           axis square xhv)rhu@  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) WD]dt!V%  
    %       end 6}0#({s:R  
    % h 9/68Gc?6  
    %   See also ZERNPOL, ZERNFUN2. 3? "GH1e  
    @M-bE=  
    JdnZY.{S0  
    %   Paul Fricker 11/13/2006 -.y3:^){^  
    4*]`s|fbu  
    LT!4pD:a  
    4 Q.70  
    3D3K:K!FK  
    % Check and prepare the inputs: XOoND  
    % ----------------------------- M II]sF  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) @: NrC76  
        error('zernfun:NMvectors','N and M must be vectors.') 7)YU ;  
    end ^H>vJT  
    g.'4uqU  
    3e"G.0vJ  
    if length(n)~=length(m) Ty5\zxC|  
        error('zernfun:NMlength','N and M must be the same length.') #t\Oq9}^  
    end zuOIos  
    rYT3oqpfT  
    }  ?  
    n = n(:); lVt gg?  
    m = m(:); L/shF}<  
    if any(mod(n-m,2)) /lUb9&yV  
        error('zernfun:NMmultiplesof2', ... [Gu]p&  
              'All N and M must differ by multiples of 2 (including 0).') 0&Qn7L  
    end ) ":~`Z*@  
    )g-*fSa  
    ky*-_  
    if any(m>n) 2>mDT  
        error('zernfun:MlessthanN', ... I".r`$XZ  
              'Each M must be less than or equal to its corresponding N.') 5p750`n  
    end @$aCUJ/mE  
    6SpkeXL  
    OLv(  
    if any( r>1 | r<0 ) tNtP+v-{  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') =|6IyL_N  
    end ?x:\RNB/  
    VF4F7'  
    TJCoID7a8  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 3Z`oI#-x  
        error('zernfun:RTHvector','R and THETA must be vectors.') 4aGHks8Z,\  
    end ~-,<`VY  
    1iz\8R:0  
    _3`{wzMA  
    r = r(:); h><;TAp  
    theta = theta(:); \KG{ 11  
    length_r = length(r); Qf"gH <vT  
    if length_r~=length(theta) R+5x:mpHy  
        error('zernfun:RTHlength', ... X(/W|RY{@  
              'The number of R- and THETA-values must be equal.') Hkpn/,D5  
    end %H:!/'45  
    X)Kd'6zg  
    ' e-FJ')|  
    % Check normalization: >Z/,DIn,I  
    % -------------------- M6?*\ 9E  
    if nargin==5 && ischar(nflag) XI pXP,Yy  
        isnorm = strcmpi(nflag,'norm'); (fq>P1-  
        if ~isnorm ~6R| a  
            error('zernfun:normalization','Unrecognized normalization flag.') $g*|h G/{  
        end Pb!kl #  
    else 8c#u"qF  
        isnorm = false; {>Zc#U'  
    end $U<xrN>O  
    9c<lFZb;  
    2@=JIMtc  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% op[5]tjL  
    % Compute the Zernike Polynomials 5gi`&t`  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% XjWoUnz  
    6kHAoERp  
    b{9q   
    % Determine the required powers of r: R5qC;_0cV  
    % ----------------------------------- +DksWb D  
    m_abs = abs(m);  ;A1pqHr  
    rpowers = []; TR]~r2z  
    for j = 1:length(n) eEXer>Rm   
        rpowers = [rpowers m_abs(j):2:n(j)]; p1CY?K  
    end nKch _Jb  
    rpowers = unique(rpowers); Q4C28-#  
     z>hA1*Ti  
    oC"c%e8  
    % Pre-compute the values of r raised to the required powers, (`xhh  
    % and compile them in a matrix: Ly lw('zZ  
    % ----------------------------- kpcIU7|e  
    if rpowers(1)==0 Rm{S,  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); N^B YNqr  
        rpowern = cat(2,rpowern{:}); Uk5jZ|  
        rpowern = [ones(length_r,1) rpowern]; UV$v:>K#  
    else $#1i@dI  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); h0L *8P`t  
        rpowern = cat(2,rpowern{:}); [P407Sa"  
    end 7$k[cL1  
    ]_@5LvI  
    $s$z"<  
    % Compute the values of the polynomials: * 3WK`9q  
    % -------------------------------------- >#<o7]  
    y = zeros(length_r,length(n)); #O* ytZ  
    for j = 1:length(n) L@XhgQ  
        s = 0:(n(j)-m_abs(j))/2; Jn-iIl  
        pows = n(j):-2:m_abs(j); hU@ 9vU<U  
        for k = length(s):-1:1 Z[s{   
            p = (1-2*mod(s(k),2))* ... Oe5=2~4O  
                       prod(2:(n(j)-s(k)))/              ... a=T_I1  
                       prod(2:s(k))/                     ... :VX?j 3qW  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... YD 1u  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); + v{<<  
            idx = (pows(k)==rpowers); aHvTbpJ  
            y(:,j) = y(:,j) + p*rpowern(:,idx); tgKmC I  
        end 43^%f-J 5  
         " P c"{w  
        if isnorm ^ 1}_VB)^  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); FE,&_J"  
        end ]^uO3!+  
    end l 2y_Nz-;  
    % END: Compute the Zernike Polynomials 1$]4g/":o  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 4Bsx[~ u&  
    3~iIo&NZ  
    sFqZ@t}~  
    % Compute the Zernike functions: -y;SR+  
    % ------------------------------ WgF Xv@Jjt  
    idx_pos = m>0; l1 fP@|  
    idx_neg = m<0; :)_Ap{9J  
    ~m2tWi@  
    0.Pd,L(  
    z = y; ?kMG!stgp}  
    if any(idx_pos) QK)"-y}"g  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); <nOK#;O)  
    end ~&8ag`  
    if any(idx_neg) RoFy2A=_  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); TL lR"L5  
    end r~N0P|Tq  
    hosw :%  
    &W)Lzpx8c  
    % EOF zernfun gpB3\  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  w D|p'N  
    :9`'R0=i^  
    DDE还是手动输入的呢? 8$Igo$U-  
    eteq Mg}M  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究