下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, 4>"cc@8&~
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, e=n{f*KG`
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? m~j\?mb{+
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? FH`'1iVH
o&XMgY~
Neo^C_[vN
r0g/ :lJi
bDFCZH-:'O
function z = zernfun(n,m,r,theta,nflag) PZ!dn%4jy
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. >xZhK63C/
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N aa0`y
% and angular frequency M, evaluated at positions (R,THETA) on the (XG[_
% unit circle. N is a vector of positive integers (including 0), and ueE?"Hk
% M is a vector with the same number of elements as N. Each element Y7:Y{7E7
% k of M must be a positive integer, with possible values M(k) = -N(k) +{C9uY)$vf
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, C>:/(O
% and THETA is a vector of angles. R and THETA must have the same }rY?=I
% length. The output Z is a matrix with one column for every (N,M) eb.cq"C
% pair, and one row for every (R,THETA) pair. 3?*M{Y|
% Y0X"Zw
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike =(|xU?OL
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), CmJ?_>
% with delta(m,0) the Kronecker delta, is chosen so that the integral ?lc[hH
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, N,/BudFo
% and theta=0 to theta=2*pi) is unity. For the non-normalized I>kiah*
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. EOBs}M;
% $['7vcB^
% The Zernike functions are an orthogonal basis on the unit circle. mP)3cc5T
% They are used in disciplines such as astronomy, optics, and KCJN<
% optometry to describe functions on a circular domain. ,\S pjE
% _Vo)<--+I
% The following table lists the first 15 Zernike functions. pVV}1RDa
% uK;K{
% n m Zernike function Normalization (!0j4'
% -------------------------------------------------- Tbi]oB#
% 0 0 1 1 >St.c
% 1 1 r * cos(theta) 2 )H;pGM:
% 1 -1 r * sin(theta) 2 XJ:>UNf5;
% 2 -2 r^2 * cos(2*theta) sqrt(6) Y3P.|
% 2 0 (2*r^2 - 1) sqrt(3) t":W.q<
% 2 2 r^2 * sin(2*theta) sqrt(6) T}n}.JwU
% 3 -3 r^3 * cos(3*theta) sqrt(8) zmB31' _
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 7>'uj7r]=
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) %qS]NC
% 3 3 r^3 * sin(3*theta) sqrt(8) ^zaKO'KcV
% 4 -4 r^4 * cos(4*theta) sqrt(10) ':!3jZP"m
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) A[^qq UL'
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) z29qARiX
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Sg. +`xww3
% 4 4 r^4 * sin(4*theta) sqrt(10) d1~_?V'r]
% -------------------------------------------------- VDByj "%
% |RR%bQ^{
% Example 1: *%T)\\H2
% T|o`a+?
% % Display the Zernike function Z(n=5,m=1) I!$jYY2
% x = -1:0.01:1; gf68iR.Gs
% [X,Y] = meshgrid(x,x); 0^GbpSW{
% [theta,r] = cart2pol(X,Y); :M22P`:
% idx = r<=1; J+)'-OFt0
% z = nan(size(X)); >
$w^%I
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 0T9@,scY
% figure a>wfhmr
% pcolor(x,x,z), shading interp %s$rP
% axis square, colorbar /OQK/
t63
% title('Zernike function Z_5^1(r,\theta)') \!+-4,CbZY
% vix&E`0yD
% Example 2: 5l41Q
% I#|ocz
% % Display the first 10 Zernike functions 4GG1E. z}
% x = -1:0.01:1; uQGz;F x
% [X,Y] = meshgrid(x,x); Q'Jv}'eK_
% [theta,r] = cart2pol(X,Y); La"o)L +m_
% idx = r<=1; V I6\
% z = nan(size(X)); <u/a`E?
% n = [0 1 1 2 2 2 3 3 3 3]; [_y9"MMwn
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; s<A*[
% Nplot = [4 10 12 16 18 20 22 24 26 28]; H-eEhI(;O
% y = zernfun(n,m,r(idx),theta(idx)); ! jbEm8bt
% figure('Units','normalized') uy/y wm/?=
% for k = 1:10 `%-4>jI9-
% z(idx) = y(:,k); m"lE&AM64p
% subplot(4,7,Nplot(k)) h [nH<m
% pcolor(x,x,z), shading interp Vh"MKJ'R^
% set(gca,'XTick',[],'YTick',[]) 79)A%@YHQQ
% axis square OSp?okV
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) cCM
j\H@
% end cu[!D}tVU
% NTqo`VWe
% See also ZERNPOL, ZERNFUN2. W8f`J2^"M
2HcsQ*H]G
^C!mCTL1N
% Paul Fricker 11/13/2006 \,>_c
<"*"1(wN
3c c1EQ9
{mNdL J
Q]< (bD.7
% Check and prepare the inputs: 12 idM*
% ----------------------------- C&=x3Cz
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ecn}iN
error('zernfun:NMvectors','N and M must be vectors.') O$a#2p&
end Xo2^N2I
bfFmTI$,
S8\+XJ
if length(n)~=length(m) |<sf:#YzY&
error('zernfun:NMlength','N and M must be the same length.') m"n.Dz/S
end [}z?1Gj;W(
e#tIk;9Xz
m7JPH7P@BM
n = n(:); *5e<\{!
m = m(:); f%c06Un=
if any(mod(n-m,2)) 3 h#s([uL
error('zernfun:NMmultiplesof2', ... F&