下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, vL~j6'
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, *","u;&
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? @po|07
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? &1ss
@-
|n\(I$
SAGECK[Ix
&z%DX
Wj\<
)cH]
function z = zernfun(n,m,r,theta,nflag) * ;<>@*
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. xI^nA2g
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N L+TM3*a*
% and angular frequency M, evaluated at positions (R,THETA) on the E]%&)3O[
% unit circle. N is a vector of positive integers (including 0), and k"J=CDP\
% M is a vector with the same number of elements as N. Each element 19;F+%no#
% k of M must be a positive integer, with possible values M(k) = -N(k) MI*@^{G
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, @4%x7%+[c
% and THETA is a vector of angles. R and THETA must have the same F+::UWKA
% length. The output Z is a matrix with one column for every (N,M) H"%SzU
% pair, and one row for every (R,THETA) pair. If%**o
% :y(HOUB
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike O
-N>
X
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Ol1P
% with delta(m,0) the Kronecker delta, is chosen so that the integral vm`\0VGSW
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, YOY{f:ew
% and theta=0 to theta=2*pi) is unity. For the non-normalized _:.'\d(
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. cS#m\O
% MU5#ph
% The Zernike functions are an orthogonal basis on the unit circle. G~`nLC^Y
% They are used in disciplines such as astronomy, optics, and * 2s(TW
% optometry to describe functions on a circular domain. ^%2S,3*0
% _,5)
% The following table lists the first 15 Zernike functions. (X}Q'm$n\h
% Pqb])-M9p
% n m Zernike function Normalization 50^T\u
% -------------------------------------------------- lO dwH"
% 0 0 1 1 /d]{ #,k
% 1 1 r * cos(theta) 2 t/0h)mL}
% 1 -1 r * sin(theta) 2 .T }q"
% 2 -2 r^2 * cos(2*theta) sqrt(6) <%Afa#
% 2 0 (2*r^2 - 1) sqrt(3) ~4[4"Pi>|
% 2 2 r^2 * sin(2*theta) sqrt(6) DJ<F8-sb2r
% 3 -3 r^3 * cos(3*theta) sqrt(8) CHNIL^B
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) _4MT,kN
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) =9'px3:'WR
% 3 3 r^3 * sin(3*theta) sqrt(8) M>"J5yqR
% 4 -4 r^4 * cos(4*theta) sqrt(10) T^n0 =|
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 34Z$a{
w
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) QX&1BKqWn
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) xlU:&=|
% 4 4 r^4 * sin(4*theta) sqrt(10) 0I
\l_St@
% -------------------------------------------------- /J` ZO$
% k4Ub+F
% Example 1: lpHz*NZ0
% u[2B0a
% % Display the Zernike function Z(n=5,m=1) k&8&