切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9470阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, P-C_sj A7  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, DbDpdC;  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? &1&*(oi]X  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? b#F3,T__`Y  
    ?s//a_nL*  
    |7argk+  
    vc<8ApK3V  
    rr*IIG&.5  
    function z = zernfun(n,m,r,theta,nflag) eNNK;xXe#  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. lxeolDl  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N U*Q$:%72vO  
    %   and angular frequency M, evaluated at positions (R,THETA) on the TS;MGi0`}  
    %   unit circle.  N is a vector of positive integers (including 0), and `7LdF,OdE  
    %   M is a vector with the same number of elements as N.  Each element W<2-Q,>Y  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 5 Z@Q ^  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 8L#sg^1V  
    %   and THETA is a vector of angles.  R and THETA must have the same SF6n06UZu  
    %   length.  The output Z is a matrix with one column for every (N,M) !`u)&.t7  
    %   pair, and one row for every (R,THETA) pair. @M1U)JoQ  
    % Vrnx# j-U  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike (b(iL\B$D=  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), UwLa9Dn^  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral S&a 44i  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, xN5}y3  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized i}!CY@sW  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. vm(% u!_P  
    % .e6:/x~p*  
    %   The Zernike functions are an orthogonal basis on the unit circle. (qaY,>je]D  
    %   They are used in disciplines such as astronomy, optics, and \t}!Dr+yN  
    %   optometry to describe functions on a circular domain. +iXA|L9=  
    % EprgLZ1B  
    %   The following table lists the first 15 Zernike functions. $I_aHhKt  
    % Q$3%aR-2  
    %       n    m    Zernike function           Normalization P63f0 F-G  
    %       -------------------------------------------------- H]SnM'Y  
    %       0    0    1                                 1 {9z EnVfg  
    %       1    1    r * cos(theta)                    2 6 ,!]x>B  
    %       1   -1    r * sin(theta)                    2 hgm`6TQ  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) \=.iM?T  
    %       2    0    (2*r^2 - 1)                    sqrt(3) !a  /  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) @Fo0uy\ G  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) XRZmg "  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) WKN\* N<  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) FsD}N k=m~  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) pBHr{/\5  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) YYhRdU/g  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) .6r&<*  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) (`T:b1  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) C,Ch6Ph  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) V97Eb>@  
    %       -------------------------------------------------- !dZC-U~  
    % !fZxK CsQ  
    %   Example 1: =l {>-`:  
    % t/HE@xPxI5  
    %       % Display the Zernike function Z(n=5,m=1) 'peFT[1> (  
    %       x = -1:0.01:1; 8}4V$b`Z  
    %       [X,Y] = meshgrid(x,x); aaLT%  
    %       [theta,r] = cart2pol(X,Y); 3^8%/5$v  
    %       idx = r<=1; Pj^6.f+  
    %       z = nan(size(X)); Ur_~yX]Mo  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); ibEQ52  
    %       figure g,\<fY+ 4  
    %       pcolor(x,x,z), shading interp ?L'ijzP  
    %       axis square, colorbar uA,K}sNRZ  
    %       title('Zernike function Z_5^1(r,\theta)') 8USF;k  
    % h"j{B  
    %   Example 2: 3HWI;  
    % B+,Z 3*  
    %       % Display the first 10 Zernike functions ;|66AIwDe  
    %       x = -1:0.01:1; JWC{"6  
    %       [X,Y] = meshgrid(x,x); iB{O"l@w  
    %       [theta,r] = cart2pol(X,Y); XBCz\f  
    %       idx = r<=1; ;l"z4>kt7  
    %       z = nan(size(X)); CJ?Lv2Td  
    %       n = [0  1  1  2  2  2  3  3  3  3]; f~9ADb  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; {~VgXkjsC  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; #VtlXr>G  
    %       y = zernfun(n,m,r(idx),theta(idx)); "QA!z\0\  
    %       figure('Units','normalized') T~_+\w  
    %       for k = 1:10 0Bb amU  
    %           z(idx) = y(:,k); s<tdn[d  
    %           subplot(4,7,Nplot(k)) 4k}u`8 a  
    %           pcolor(x,x,z), shading interp BoXQBcG]w  
    %           set(gca,'XTick',[],'YTick',[]) VcA87*pel  
    %           axis square ]QRhTz  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 6*Rz}RQ  
    %       end os"o0?  
    % c1Xt$[_  
    %   See also ZERNPOL, ZERNFUN2. .(`#q@73  
    &?v^xAr?B  
    Y ~xcJH  
    %   Paul Fricker 11/13/2006 %\2 ll=p1  
    zN0^FXGD  
    /(5 SJ(a  
    >}Za)  
    Jr|"`f%V  
    % Check and prepare the inputs: }qRYXjS  
    % ----------------------------- vA*!82  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) RKx" }<#+  
        error('zernfun:NMvectors','N and M must be vectors.') {a\m0Bw/  
    end %TP0i#J  
    ['Hl$2 j  
    m6bAvy]3<t  
    if length(n)~=length(m) [g`P(?  
        error('zernfun:NMlength','N and M must be the same length.') LY-fp+  
    end `a*[@a#  
    k7'_  
    mY+J ju1  
    n = n(:); g kT`C  
    m = m(:); 'D;v>r  
    if any(mod(n-m,2)) jA?A)YNQb  
        error('zernfun:NMmultiplesof2', ... c=0S]_  
              'All N and M must differ by multiples of 2 (including 0).') l q~^&\_#  
    end g:7S/L0]  
    eF823cH2x_  
    f![?og)I%  
    if any(m>n) g ]e^;  
        error('zernfun:MlessthanN', ... IVjH.BzH9  
              'Each M must be less than or equal to its corresponding N.') 40w,:$  
    end v[E*K@6f  
    d,tGW  
    GWsvN&nr  
    if any( r>1 | r<0 ) )v !GiZ" 7  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 9w9[0BX#  
    end ph qx<N@  
    '_N~PoV  
    JK) )Cuh  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) o$)pJ#";F  
        error('zernfun:RTHvector','R and THETA must be vectors.') 9)9p<(b $  
    end {OtD+%  
    ;x^WPY Ej  
    CoO..  
    r = r(:); hd0d gc  
    theta = theta(:); @ qy n[C  
    length_r = length(r); ,@!io  
    if length_r~=length(theta) VRV*\*~$  
        error('zernfun:RTHlength', ... jM]B\cvN  
              'The number of R- and THETA-values must be equal.') TwJiYXHw?  
    end iI\ bD  
    $a.fQ<,\X  
    ,j E'd'$  
    % Check normalization: }tJR Bb  
    % -------------------- (c AWT,  
    if nargin==5 && ischar(nflag) RdaAS{>Sk  
        isnorm = strcmpi(nflag,'norm'); Hz~?"ts@;  
        if ~isnorm u5zL;C3O  
            error('zernfun:normalization','Unrecognized normalization flag.') Zq1Z rwPF  
        end @`t#Bi9  
    else HEh,Cf7`'  
        isnorm = false; @D1}).  
    end goBl~fqy0  
    r&!Ebe-  
    u-qwG/$E  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% iXLODuI  
    % Compute the Zernike Polynomials l Oxz&m  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ~C M%WvS  
    Uao8#<CkvJ  
    E/+H~YzO  
    % Determine the required powers of r: B}S!l>.z  
    % ----------------------------------- ]+4QsoFNt  
    m_abs = abs(m); ^EtBo7^t  
    rpowers = []; $[(amj-;l  
    for j = 1:length(n) ?|,dHqh{nM  
        rpowers = [rpowers m_abs(j):2:n(j)]; W3Gg<!*Uo  
    end /Q]6"nY  
    rpowers = unique(rpowers); Hreu3N  
    t"# .I?S0  
    c+S<U*  
    % Pre-compute the values of r raised to the required powers, X;:qnnO  
    % and compile them in a matrix: j}s<Pn%4  
    % ----------------------------- hSkI]%  
    if rpowers(1)==0 ({&\~"  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ~V34j:  
        rpowern = cat(2,rpowern{:}); 0nOkQVMk>  
        rpowern = [ones(length_r,1) rpowern]; X 8/9x-E_  
    else y-#{v.|L  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Dfhu  
        rpowern = cat(2,rpowern{:}); g}@W9'!  
    end mH`K~8pRg  
    [p Y1\$,  
    srL|Y&8p  
    % Compute the values of the polynomials: 4e`GMtp  
    % -------------------------------------- r< MW8  
    y = zeros(length_r,length(n)); 9N[(f-`  
    for j = 1:length(n) WR|n>i@m  
        s = 0:(n(j)-m_abs(j))/2; 7=3'PfS  
        pows = n(j):-2:m_abs(j); };{Qx  
        for k = length(s):-1:1 +4 W6{`  
            p = (1-2*mod(s(k),2))* ... <ztcCRov  
                       prod(2:(n(j)-s(k)))/              ... sOVbz2 \yb  
                       prod(2:s(k))/                     ... wn1` 9  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... simD<&p  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); dgEH]9j&  
            idx = (pows(k)==rpowers); y,/Arl}yc  
            y(:,j) = y(:,j) + p*rpowern(:,idx); C(Cuk4K  
        end u=QG%O#B  
         Qr.SPNUFK  
        if isnorm MA`.&MA.  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); @LyCP4   
        end #jqcUno  
    end !+EE*-c1c  
    % END: Compute the Zernike Polynomials |YnT;q  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0PP5qeqN2n  
    Dve+ #H6N  
    $-w&<U$E  
    % Compute the Zernike functions: GbB :K2  
    % ------------------------------ XM#xxf* Y  
    idx_pos = m>0; alp}p  
    idx_neg = m<0; b'O>qQ  
    b[/uSwvi  
    bC h  
    z = y; -dyN Ah?=  
    if any(idx_pos) fbrCl!%P  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 3;%dn \ D  
    end w7E7r?)Wl|  
    if any(idx_neg) b+#A=Z+Pr  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); KD=W(\  
    end 4\Q pS  
    # ? _8 *?  
    ^[g7B"`K5  
    % EOF zernfun U(6=;+q  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  !2F X l;  
    A/!"+Yfw  
    DDE还是手动输入的呢? ^v5<*uf%m  
    IXv9mr?H}  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究