下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, yU7I;]YP
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 62kb2C
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? j[XYj6*d
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? >vujZw_0>
qS.)UaA
n3ZAF'
RtC'v";6
<MdGe1n
function z = zernfun(n,m,r,theta,nflag) `f)(Y1%.
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. ArzDI{1
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N h/<=u9J
% and angular frequency M, evaluated at positions (R,THETA) on the os$nL'sq
% unit circle. N is a vector of positive integers (including 0), and Nfw YDY
% M is a vector with the same number of elements as N. Each element \H4U8)l
% k of M must be a positive integer, with possible values M(k) = -N(k) 4 x,hj
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, q4ipumy*
% and THETA is a vector of angles. R and THETA must have the same XoItV
% length. The output Z is a matrix with one column for every (N,M) 9?EVQ
% pair, and one row for every (R,THETA) pair. |nY~ZVTt/
% mp\%M
1<
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike )~
z Z'^
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), V=}1[^
% with delta(m,0) the Kronecker delta, is chosen so that the integral >F3.c%VU]w
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, A#DR9Eq
% and theta=0 to theta=2*pi) is unity. For the non-normalized |RhM| i
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. r,xmEj0E
% 6GINmkA
% The Zernike functions are an orthogonal basis on the unit circle. vM4<d>
% They are used in disciplines such as astronomy, optics, and Bo
r7] #
% optometry to describe functions on a circular domain. {/}^D-
% r{[OJc!
% The following table lists the first 15 Zernike functions. oT&m4I
% ,2`~ NPb
% n m Zernike function Normalization (C S8(C4[
% -------------------------------------------------- SDBt @=Nl
% 0 0 1 1 #w>~u2W
% 1 1 r * cos(theta) 2 )q3"t2-
% 1 -1 r * sin(theta) 2 u7=T(4a
% 2 -2 r^2 * cos(2*theta) sqrt(6) &5Y_>{,
% 2 0 (2*r^2 - 1) sqrt(3) - k`.j
% 2 2 r^2 * sin(2*theta) sqrt(6) it1/3y
=]
% 3 -3 r^3 * cos(3*theta) sqrt(8) s@!$='|
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) YG[w@u
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) &[j]Bp?
% 3 3 r^3 * sin(3*theta) sqrt(8) ?CY1]d
% 4 -4 r^4 * cos(4*theta) sqrt(10) 8eyl,W=dn
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) [ee30ELn
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) NK/4OAt%
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) WY>Knp=
% 4 4 r^4 * sin(4*theta) sqrt(10) FtIa*j^G
% -------------------------------------------------- fKkjn4&W
% /1fwl5\
% Example 1: R^8{bP
% y=H@6$2EQ
% % Display the Zernike function Z(n=5,m=1) U<bYFuS"
% x = -1:0.01:1; l[%lE
% [X,Y] = meshgrid(x,x); /fwgqFVk
% [theta,r] = cart2pol(X,Y); =+oZtP-+o
% idx = r<=1; gx;O6S{
% z = nan(size(X)); tZho)[1
% z(idx) = zernfun(5,1,r(idx),theta(idx)); %Q4i%:Qi
% figure {THqz$KN
% pcolor(x,x,z), shading interp &s
VadOBQ
% axis square, colorbar G]*|H0j
% title('Zernike function Z_5^1(r,\theta)') 6 bO;&
% U5+vN[ K
% Example 2: 4JO@BV >t
% |_zO_F rtp
% % Display the first 10 Zernike functions ;BBpN`T
% x = -1:0.01:1; @8gEH+r
% [X,Y] = meshgrid(x,x); ^:cRp9l"7
% [theta,r] = cart2pol(X,Y); }5b M1h#z
% idx = r<=1; |~e?,[-2`r
% z = nan(size(X)); w~+ aW(2
% n = [0 1 1 2 2 2 3 3 3 3]; {#hVD4$b
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; t9u|iTY
f!
% Nplot = [4 10 12 16 18 20 22 24 26 28]; 8MF2K6
% y = zernfun(n,m,r(idx),theta(idx)); -s"0/)HD
% figure('Units','normalized') ?<~WO?
% for k = 1:10 b^Cfhy^RTq
% z(idx) = y(:,k); n1J]p#nCa.
% subplot(4,7,Nplot(k)) 2`Gv5}LfyR
% pcolor(x,x,z), shading interp NFyMY#\]
% set(gca,'XTick',[],'YTick',[]) ! OE*z $\
% axis square V4K'R2t
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) $>w/Cy
% end &/WAZs$2n
% (tCib 4
% See also ZERNPOL, ZERNFUN2. f/ahwz
ijW7c+yd
4hAJ!7[A.
% Paul Fricker 11/13/2006 S; /. %
oXgdLtsu
OJ3UE(,I=
Eipp~GD
qd6fU^)i
% Check and prepare the inputs: =m tY
% ----------------------------- n-afDV
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) +^ yq;z
error('zernfun:NMvectors','N and M must be vectors.') id,NONb\
end )K0i@hM(n
wCb(>pL0
=G${[V\
if length(n)~=length(m) hIU(P Dl4
error('zernfun:NMlength','N and M must be the same length.') Yl({)qK{
end ;YH[G;aJ
qqOFr!)g
Z4q~@|+%
n = n(:); HW 6.O|3
m = m(:); j1U 5~%^
if any(mod(n-m,2)) r"wtZ]69
error('zernfun:NMmultiplesof2', ... mP^SS
Je
'All N and M must differ by multiples of 2 (including 0).') p3]Q^KFS
end ]<trA$ 0
T|) {<
I.V:q!4*
if any(m>n) h @/;`E[
error('zernfun:MlessthanN', ... V3s L;
'Each M must be less than or equal to its corresponding N.') i[nF.I5*f
end WES#ZYtT
6mPm=I[oh
S~yR5cb
if any( r>1 | r<0 ) ejePDgi_[
error('zernfun:Rlessthan1','All R must be between 0 and 1.')
}31ZX
end r4{<Z3*N
2F+gF~znQ
9
[Y-M
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) N4{nG,Mo]
error('zernfun:RTHvector','R and THETA must be vectors.') P3o@g kXP
end (q;bg1\UK
-Zc![cAlO
Op}ZB:
r = r(:); !xK=#pa
theta = theta(:); PuCc2'#
length_r = length(r); m&Y i!7@(
if length_r~=length(theta) x]4Kkpqm
error('zernfun:RTHlength', ... +t!S'|C
'The number of R- and THETA-values must be equal.') %s=Dj2+
end 8OFj0S1r`
`jsEN ;<
(Tvcq
% Check normalization: o( G"k
% -------------------- M\oVA=d\0
if nargin==5 && ischar(nflag) l54
m22pfv
isnorm = strcmpi(nflag,'norm'); dl|gG9u4Q
if ~isnorm W`)<vGn=Y
error('zernfun:normalization','Unrecognized normalization flag.') Le#spvV3J|
end ( [E]_Q
else /iQ(3F
isnorm = false; ^twivNB
end hv)8K'u
l|"6yB |
"Ij I'c
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% :8f[|XR4\N
% Compute the Zernike Polynomials %,V
YiW0
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% K~6e5D7.
b>=_*nw9
[c&