切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9429阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, UKp^TW1^  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, >|g(/@IO  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? IQQ QB  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? "g&hsp+i"A  
     Jju^4  
    k83S.*9Mx  
    ;><m[l6  
    j},3@TFh  
    function z = zernfun(n,m,r,theta,nflag) ;]^% 6B n  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. IRT0   
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 2[g kDZ  
    %   and angular frequency M, evaluated at positions (R,THETA) on the o8u;2gZx  
    %   unit circle.  N is a vector of positive integers (including 0), and CX#d9 8\b  
    %   M is a vector with the same number of elements as N.  Each element $Ahe Vps@@  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) `{9bf)vP6  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, <,,X\>B  
    %   and THETA is a vector of angles.  R and THETA must have the same 40HhMTZ0-  
    %   length.  The output Z is a matrix with one column for every (N,M) (0^ZZe`# j  
    %   pair, and one row for every (R,THETA) pair. c]R27r E  
    % ##a.=gl  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike { _~vf  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), /-Z}=  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral @IV,sz e  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, >Xw0i\G  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized l;}3J3/qq]  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. t {H{xd  
    % ~9n30j%]s  
    %   The Zernike functions are an orthogonal basis on the unit circle. 8~ u/gM  
    %   They are used in disciplines such as astronomy, optics, and w/csLi.O  
    %   optometry to describe functions on a circular domain. i7%`}t  
    % +P%k@w#<Z  
    %   The following table lists the first 15 Zernike functions. kbZpi`w  
    % T}59m;I  
    %       n    m    Zernike function           Normalization 8~y&"  \  
    %       -------------------------------------------------- vL8Rg} Jh4  
    %       0    0    1                                 1 USZBk0$  
    %       1    1    r * cos(theta)                    2 >35W{ d  
    %       1   -1    r * sin(theta)                    2 BJKv9x1jK  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6)  Lr0:y o  
    %       2    0    (2*r^2 - 1)                    sqrt(3) vH/RP  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) afE)yu`  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) O~m Q\GlW  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) J;'H],w}f  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) \&[(PNl  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) ;.=]Ar}  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) k%V YAON  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) DhXV=Qw  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) f4$sH/ 2#v  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) r+;k(HMY}[  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) Y=t? "E  
    %       -------------------------------------------------- /  QT>"  
    % 7[I +1  
    %   Example 1: '3?-o|v@D  
    % T"1=/r$Ft  
    %       % Display the Zernike function Z(n=5,m=1) TG% w  
    %       x = -1:0.01:1; "RgP!  
    %       [X,Y] = meshgrid(x,x); N5zx#g  
    %       [theta,r] = cart2pol(X,Y); j8c5_&  
    %       idx = r<=1; 6Ta+f3V   
    %       z = nan(size(X)); ),Hr  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); '}IGV`c  
    %       figure u;+8Jg+xH/  
    %       pcolor(x,x,z), shading interp _r>kR7A\{  
    %       axis square, colorbar )!~,xl^j{}  
    %       title('Zernike function Z_5^1(r,\theta)') #x`K4f)  
    % 3)I]bui  
    %   Example 2: dh9@3. t  
    % QseV\;z  
    %       % Display the first 10 Zernike functions r dCs  
    %       x = -1:0.01:1; Xk\IO0GF  
    %       [X,Y] = meshgrid(x,x); o`G6!  
    %       [theta,r] = cart2pol(X,Y); -[}Aka,f!  
    %       idx = r<=1; ~'F.tB  
    %       z = nan(size(X)); Kg`P@  
    %       n = [0  1  1  2  2  2  3  3  3  3]; 5zh6l+S[  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; hV:++g  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; T}/|nOu 5  
    %       y = zernfun(n,m,r(idx),theta(idx)); q"EW*k+ )  
    %       figure('Units','normalized') bg|dV  
    %       for k = 1:10 4ETHaIiWp  
    %           z(idx) = y(:,k); Kwi+}B!  
    %           subplot(4,7,Nplot(k)) 'T$Cw\F&  
    %           pcolor(x,x,z), shading interp maeQ'Sv_&  
    %           set(gca,'XTick',[],'YTick',[]) $@O?  
    %           axis square Y% JE})  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) G|RBwl  
    %       end }Xfg~ %6  
    % MV2$0  
    %   See also ZERNPOL, ZERNFUN2. h?v8b+:0  
    oUO3,2bn  
    p3Ozfk  
    %   Paul Fricker 11/13/2006 y4l-o  
    Pm%5c\ef  
    qM+Ai*q  
    hnH<m7  
    P j,H]  
    % Check and prepare the inputs: RN|Bk  
    % ----------------------------- Ghc U ~  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) p(nO~I2E  
        error('zernfun:NMvectors','N and M must be vectors.')  + K`.ck  
    end v_Df+  
    5gV,^[E-z  
    zA}JVB  
    if length(n)~=length(m) M$Bb,s  
        error('zernfun:NMlength','N and M must be the same length.')  v\CBw"  
    end > ;#Y0  
    W -HOl!)  
    SP/b 4  
    n = n(:); g],]l'7H  
    m = m(:); V8nQ/9R;  
    if any(mod(n-m,2)) x;`G n_  
        error('zernfun:NMmultiplesof2', ... e$_gOwB  
              'All N and M must differ by multiples of 2 (including 0).') Ook\CK*nKe  
    end |&xaV-b9W  
    1L+hI=\O  
    jMCd`Q]K  
    if any(m>n) Ly3!0P.<  
        error('zernfun:MlessthanN', ... (n8?+GCa  
              'Each M must be less than or equal to its corresponding N.') \y%"tJ~N{  
    end DU8\1(  
    ]kx<aQ^  
    <bo^uw  
    if any( r>1 | r<0 ) *0Z6H-Do,  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 0Ze&GK'Hf  
    end _>]/.w2=  
    Y0kcxpK/  
    `xHpL8i$5  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) I4+1P1z  
        error('zernfun:RTHvector','R and THETA must be vectors.') gK;dfrU.8Y  
    end ("PZ!z1m1  
    |bSAn*6b  
    fa,:d8  
    r = r(:); a%BC{XX  
    theta = theta(:); w'A*EWO  
    length_r = length(r); |f$ws R`&  
    if length_r~=length(theta) 2bLc57j{`9  
        error('zernfun:RTHlength', ... J k`Jv;  
              'The number of R- and THETA-values must be equal.') llR5qq=t  
    end /Dd x[P5p=  
    /m;Bwu  
    ,r~^<m  
    % Check normalization: ?Fa$lE4  
    % -------------------- s.rQiD  
    if nargin==5 && ischar(nflag) TCzlu#w  
        isnorm = strcmpi(nflag,'norm'); f/Y7@y  
        if ~isnorm R[6R)#o  
            error('zernfun:normalization','Unrecognized normalization flag.') : UH*Wft1  
        end T+~&jC:{  
    else Z.Z31yF:f  
        isnorm = false; [h-NX  
    end 0PFC %x  
    Qi dI  
    17c`c.yP  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 8YE4ln  
    % Compute the Zernike Polynomials zVtTv-DU  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% k~:(.)Nr  
    v(JjvN21  
    B* 3_m _a  
    % Determine the required powers of r: ws,?ImA  
    % ----------------------------------- !BrZTo  
    m_abs = abs(m); +}( ]7du  
    rpowers = []; g'T L`=O  
    for j = 1:length(n) )BI%cD  
        rpowers = [rpowers m_abs(j):2:n(j)]; >7X5/z  
    end %La/E#  
    rpowers = unique(rpowers); Gdx %#@/  
    jqj}j2 9  
    >k@{NP2b  
    % Pre-compute the values of r raised to the required powers, ^/Yk*Ny  
    % and compile them in a matrix: _X<V` , p  
    % ----------------------------- S/y(1.wh  
    if rpowers(1)==0 WuF\{bUh  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); g(s}R ?  
        rpowern = cat(2,rpowern{:}); sA: /!9  
        rpowern = [ones(length_r,1) rpowern]; oa7 N6  
    else !=;Evf  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); o](ORS$~  
        rpowern = cat(2,rpowern{:}); S\sy^Kt~4:  
    end 5oYeUy>N  
    xOg|<Nnl  
    #z.\pd  
    % Compute the values of the polynomials: K^GvU0\  
    % -------------------------------------- V_v+i c^  
    y = zeros(length_r,length(n)); >dF #1  
    for j = 1:length(n) _f "I%QTL  
        s = 0:(n(j)-m_abs(j))/2; v [x 5@$  
        pows = n(j):-2:m_abs(j); !f/^1k}SR  
        for k = length(s):-1:1 P&5vVA6K7  
            p = (1-2*mod(s(k),2))* ... 5HL>2 e[  
                       prod(2:(n(j)-s(k)))/              ... 2y8FP#  
                       prod(2:s(k))/                     ... p((.(fx  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... WRAv>s9  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); ^dxy%*Z/  
            idx = (pows(k)==rpowers); T?u*ey~Tv  
            y(:,j) = y(:,j) + p*rpowern(:,idx); +U<Ae^V  
        end DX3jE p2  
         MfLus40;n  
        if isnorm aG@GJ@w  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); l`0JL7  
        end G~*R6x2g  
    end 436SIh  
    % END: Compute the Zernike Polynomials Pj8Vl)8~NV  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 5HvYy *B/  
    55>+%@$,a  
    Z$YG'p{S  
    % Compute the Zernike functions: ,(c'h:@M  
    % ------------------------------ ND 8;1+3  
    idx_pos = m>0; X/Fip 0i  
    idx_neg = m<0; P8CIKoKCV  
    ke +\Z>BWN  
    n1+J{EPH  
    z = y; -M[BC~!0;  
    if any(idx_pos) j=>WWlZ  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); `wLmGv+V  
    end ROfke.N\'  
    if any(idx_neg) 2PSv3?".  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); /h&>tYVio  
    end f%YD+Dt_V  
    AucX4J<  
    63i&e/pv  
    % EOF zernfun SS,'mv  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  52#@.Qa  
    Si]8*>}-B  
    DDE还是手动输入的呢? ;dYpdy  
    S\jN:o#b  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究