切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9372阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, gEr4zae  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, a -xW8  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? 2qZa9^}  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? )p$\gwr=2  
    .O5LI35,  
    <91t`&aWW  
    `y\*m]:  
    tmO;:n<N  
    function z = zernfun(n,m,r,theta,nflag) kAZC"qM%i  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. $uEJn&n7}  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N v!NB~"LQ  
    %   and angular frequency M, evaluated at positions (R,THETA) on the "sF Xl  
    %   unit circle.  N is a vector of positive integers (including 0), and hq/J6 M  
    %   M is a vector with the same number of elements as N.  Each element c%|vUAq*  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) Dh2:2Rz=#7  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, gw_|C|!P  
    %   and THETA is a vector of angles.  R and THETA must have the same g3|BE2?  
    %   length.  The output Z is a matrix with one column for every (N,M) #*!+b  
    %   pair, and one row for every (R,THETA) pair. &EAk z  
    % v"z (JF  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike _9D|u<D  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), H4M{_2DO  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral }qc#lz  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, zuUT S[  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized a @6^8B?w;  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. X'cf&>h  
    % K!3{M!B   
    %   The Zernike functions are an orthogonal basis on the unit circle. m)s xotgXf  
    %   They are used in disciplines such as astronomy, optics, and No:^hY:F8  
    %   optometry to describe functions on a circular domain. )-=2w-ZX  
    %  X ?tj$  
    %   The following table lists the first 15 Zernike functions. B{s]juPG  
    % rmOQ{2}  
    %       n    m    Zernike function           Normalization H76E+AY  
    %       -------------------------------------------------- n vm^k  
    %       0    0    1                                 1 `vudS?  
    %       1    1    r * cos(theta)                    2 +0VG[ c\8  
    %       1   -1    r * sin(theta)                    2 t,RyeS/  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) Tdg6kkJ  
    %       2    0    (2*r^2 - 1)                    sqrt(3) @u,+F0Yd  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) I0!j<G  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) M]c7D`%s  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) Z.!g9fi8>  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) `)"tO&Fn  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 5v"Y\k+1  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) j5kA^MTG  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Vl<`|C>  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) hQXxG/yFm  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 9oEpPL5  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) aC`Li^  
    %       -------------------------------------------------- =M/qV  
    % gWkjUz )  
    %   Example 1: ji }#MBac  
    %  L#n}e7Y9  
    %       % Display the Zernike function Z(n=5,m=1) +4Q[N;[+*  
    %       x = -1:0.01:1; h%' N hV  
    %       [X,Y] = meshgrid(x,x); /mc*Hc 8R8  
    %       [theta,r] = cart2pol(X,Y); 0A.PD rM:  
    %       idx = r<=1; >;,gGH  
    %       z = nan(size(X)); pDGT@qJ  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); =nzFd-P  
    %       figure _74UdD{^o  
    %       pcolor(x,x,z), shading interp R;r|cep  
    %       axis square, colorbar KGu= ;  
    %       title('Zernike function Z_5^1(r,\theta)') >rKhlUD  
    % ?9p$XG  
    %   Example 2: Mq@}snp"S  
    % mmHJ h\2v  
    %       % Display the first 10 Zernike functions GA\2i0ow  
    %       x = -1:0.01:1; D i+4Eb  
    %       [X,Y] = meshgrid(x,x); Uj,g]e 8e  
    %       [theta,r] = cart2pol(X,Y); wazP,9W?  
    %       idx = r<=1; F99A;M8(  
    %       z = nan(size(X)); 8 }-7{  
    %       n = [0  1  1  2  2  2  3  3  3  3]; 8)pB_en3sO  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; VgA48qZ  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; k d+l k:  
    %       y = zernfun(n,m,r(idx),theta(idx)); >Fyu@u  
    %       figure('Units','normalized') _%%yV  
    %       for k = 1:10 _lP4}9p  
    %           z(idx) = y(:,k); )A"jVQjI%w  
    %           subplot(4,7,Nplot(k)) pw3 (t  
    %           pcolor(x,x,z), shading interp ;|!MI'Af  
    %           set(gca,'XTick',[],'YTick',[]) AF GwT%ZD  
    %           axis square zka?cOmYF[  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) bE d?^h  
    %       end 8b7;\C~$p  
    % 8"i/wMP]  
    %   See also ZERNPOL, ZERNFUN2. F$h'p4$T  
    088C|  
    dKm`14f]@G  
    %   Paul Fricker 11/13/2006 dQ<(lzS~  
    Ihg~Q4t  
    i:d`{kJ|[  
    kon5+g9q  
    t!{x<9  
    % Check and prepare the inputs: N<liS3>  
    % ----------------------------- lUHtjr  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) f*<ps o  
        error('zernfun:NMvectors','N and M must be vectors.') B'p5M.6d#:  
    end 9#Y2`p T  
    b+Vi3V  
    -L8Y J8J6  
    if length(n)~=length(m) c|lU(Tf  
        error('zernfun:NMlength','N and M must be the same length.') `VZZ^K9zR  
    end VhvTBo<cw  
    >)^N J2Fd  
    #h N.=~  
    n = n(:); (;UP%H>  
    m = m(:); skR,-:"8  
    if any(mod(n-m,2)) ]_u`EvEx6  
        error('zernfun:NMmultiplesof2', ... SKR;wu  
              'All N and M must differ by multiples of 2 (including 0).') g\&2s,  
    end ,d cg?48  
    X2^_~<I{,  
    Nd!c2`  
    if any(m>n) cy3M^_5B<  
        error('zernfun:MlessthanN', ... 1Nj=B_T  
              'Each M must be less than or equal to its corresponding N.') fa{@$ppx  
    end [))JX"a  
    R hio7C  
    O>AFF@=  
    if any( r>1 | r<0 ) H)5QqZ8  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') =/9<(Tt%m  
    end OQFi.  8  
    H&bh<KPMh  
    o/1JO_41  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ffk4mhH  
        error('zernfun:RTHvector','R and THETA must be vectors.') a#y{pT2 b  
    end s}(X]Gx1  
    ;SY.WfVA7  
    C[8KlD  
    r = r(:); {ma;G[!  
    theta = theta(:); t$ZkdF  
    length_r = length(r); J=*K"8Qr  
    if length_r~=length(theta) e$|VG* d  
        error('zernfun:RTHlength', ... ,I`_F,  
              'The number of R- and THETA-values must be equal.') .zS D`v@[  
    end |I^y0Q:K  
    a$m_D!b~_  
    _- %d9@x  
    % Check normalization: dy:d=Z  
    % -------------------- Y<Q\d[3^F  
    if nargin==5 && ischar(nflag) Ae49n4J  
        isnorm = strcmpi(nflag,'norm'); {/ &B!zvl  
        if ~isnorm |$e:*  
            error('zernfun:normalization','Unrecognized normalization flag.') 0S.?E.-&0  
        end 4seciz0?  
    else GN%(9N'W  
        isnorm = false; >^3zU   
    end FH*RU1Z  
    }bMWTT  
    Df@/cT  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% d(S}NH  
    % Compute the Zernike Polynomials #DUh(:E'`  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% V;93).-$  
    % {Q-8w!  
    <&U!N'CE  
    % Determine the required powers of r: C).2gQ G  
    % ----------------------------------- f1Zt?=  
    m_abs = abs(m); zZ,Yfd |W  
    rpowers = []; 7Fl-(Nv`  
    for j = 1:length(n) /s[DI;M$o  
        rpowers = [rpowers m_abs(j):2:n(j)]; -t4 [oB  
    end 0x5xLg;Q  
    rpowers = unique(rpowers); >IY,be6>P  
    Y=Hz;Ni  
    XDYosC:  
    % Pre-compute the values of r raised to the required powers, >Z\BfH  
    % and compile them in a matrix: DB@EVH  
    % ----------------------------- >}SRSqJu  
    if rpowers(1)==0 X/+OF'po  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ;fGx;D  
        rpowern = cat(2,rpowern{:}); 'm O2t~n  
        rpowern = [ones(length_r,1) rpowern]; 8#59iQl  
    else R0<< f]  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); yVS\Q,:J9  
        rpowern = cat(2,rpowern{:}); de YyaV  
    end s;{K!L@  
    zj%cQkZ  
    -3hCiKq  
    % Compute the values of the polynomials: 9#rt:&xo0  
    % -------------------------------------- H?U't 09  
    y = zeros(length_r,length(n)); m mw-a0  
    for j = 1:length(n) tt4+m>/T  
        s = 0:(n(j)-m_abs(j))/2; 7>-yaL{  
        pows = n(j):-2:m_abs(j); >n!ni(  
        for k = length(s):-1:1 SxMj,u%X/  
            p = (1-2*mod(s(k),2))* ... k/lFRi-i  
                       prod(2:(n(j)-s(k)))/              ... cwynd=^nC  
                       prod(2:s(k))/                     ...  Q2\  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... nY^Nbh0  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); Z nXejpj)D  
            idx = (pows(k)==rpowers); @2' %o<lF  
            y(:,j) = y(:,j) + p*rpowern(:,idx); ^ vbWRG~  
        end <k]qH-v4  
         F~_;o+e;X  
        if isnorm Z2p> n`D  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 3s(Ia^  
        end 8A{6j  
    end wUp)JI  
    % END: Compute the Zernike Polynomials _;e\:7<m  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ,7,;twKz  
    T[.[ g/`  
    `6Hf&u<  
    % Compute the Zernike functions: $']VQ4tZ  
    % ------------------------------ \6 sQJq  
    idx_pos = m>0; Eark)  
    idx_neg = m<0; 8/Rm!.8+~  
    JJf<*j^G  
    Lko`F$5X  
    z = y; 8tQ|-l *  
    if any(idx_pos) .3wY\W8Dr-  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Iql5T#K+  
    end 0BTLcEqgZ  
    if any(idx_neg) ^M Ey,  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 3"rkko?A  
    end Y}.Ystem  
    F?4Sz#  
    I/s.xk_i  
    % EOF zernfun $qm~c[x%  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  ;+/NjC1  
    CJA+v-  
    DDE还是手动输入的呢? .K7C-Xn=  
    O PiaG!3<  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究