切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9422阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, ywkRH  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, {~j/sto-:  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? )n 1[#x^I  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? 1c429&-  
    \x\N?$`ANc  
    >M!LC  
    L, #|W  
    { o5^nd  
    function z = zernfun(n,m,r,theta,nflag) }@ktAt  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. Y)$%-'=b+  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N _uL[ Z  
    %   and angular frequency M, evaluated at positions (R,THETA) on the >Yk|(!v  
    %   unit circle.  N is a vector of positive integers (including 0), and "frioi`a2  
    %   M is a vector with the same number of elements as N.  Each element HRjbGc|[  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) I{WP:]"Yf  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, c0rU&+:Ry  
    %   and THETA is a vector of angles.  R and THETA must have the same } XhL`%  
    %   length.  The output Z is a matrix with one column for every (N,M) *h=>*t?I2  
    %   pair, and one row for every (R,THETA) pair. : ir3u  
    % }&v-<qC^  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike HC1<zW[  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), (xWsyo(4  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 5 r_Z3/%  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 9wGsHf8]  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized /DyeMCY-  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. FE^/us7r  
    % zS|4@t\__  
    %   The Zernike functions are an orthogonal basis on the unit circle. N-&ZaK  
    %   They are used in disciplines such as astronomy, optics, and D)DD6  
    %   optometry to describe functions on a circular domain. )"hd"  
    % TU2oQ1  
    %   The following table lists the first 15 Zernike functions. /Z!$bD  
    % CDXN%~0h  
    %       n    m    Zernike function           Normalization XksI.]tfj  
    %       -------------------------------------------------- jF j'6LT9/  
    %       0    0    1                                 1 DO~[VK%|  
    %       1    1    r * cos(theta)                    2 @ <2y+_e  
    %       1   -1    r * sin(theta)                    2 s3nt2$=:t  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) }!>\Ja<\  
    %       2    0    (2*r^2 - 1)                    sqrt(3) TQNdBq5I6  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) M*D_p n&  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) |2n*Ds'  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) MN5}}@  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) K@xMPB8in  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) *i#N50k*j'  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) zTfjuI|R  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) '[%Pdd]! E  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) do.>Y}d  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) +HRtuRv0T  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) }cGILH%  
    %       -------------------------------------------------- 77sG;8HE  
    % Vn:v{-i  
    %   Example 1: 7-n HPDp'  
    % dTCLE t.  
    %       % Display the Zernike function Z(n=5,m=1) =uNc\a(  
    %       x = -1:0.01:1; 8v8-5N  
    %       [X,Y] = meshgrid(x,x); n 3&h1-  
    %       [theta,r] = cart2pol(X,Y); hCF_pt+  
    %       idx = r<=1; T ,!CDm$=  
    %       z = nan(size(X)); *{k{  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); ss}-YnG  
    %       figure .|g@#XIwe#  
    %       pcolor(x,x,z), shading interp NB'G{),)Z  
    %       axis square, colorbar D]aQt%TL  
    %       title('Zernike function Z_5^1(r,\theta)') Gf9sexn]l  
    % d}Guj/cx,  
    %   Example 2: @&&} J  
    % *y7 Yf7  
    %       % Display the first 10 Zernike functions bV2a2#kj  
    %       x = -1:0.01:1; K0C"s 'q  
    %       [X,Y] = meshgrid(x,x); 3fpaTue|x  
    %       [theta,r] = cart2pol(X,Y); xg^%8Ls^  
    %       idx = r<=1; MZf?48"f  
    %       z = nan(size(X)); .E+O,@?<  
    %       n = [0  1  1  2  2  2  3  3  3  3]; pM+9K:^B  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; }a, ycFt  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; cr ]b #z  
    %       y = zernfun(n,m,r(idx),theta(idx)); A-3^~aEgx  
    %       figure('Units','normalized') :=+YZ|&j  
    %       for k = 1:10 .57F h)Y  
    %           z(idx) = y(:,k); ):Z #!O<  
    %           subplot(4,7,Nplot(k)) p^q/u  
    %           pcolor(x,x,z), shading interp lg2I|Z6DH  
    %           set(gca,'XTick',[],'YTick',[]) Yy]TU} PY  
    %           axis square 1,$"'lKwt  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) [_3&  
    %       end lfCr `[!E  
    % WjR2:kT  
    %   See also ZERNPOL, ZERNFUN2. *,:2O&P  
    <8? F\x@  
    jVOq/o  
    %   Paul Fricker 11/13/2006 )p;t '*]  
    uqI'e_&=&5  
    5bXpj86mY  
    LH+Bu%s  
    >?ar  
    % Check and prepare the inputs: L >"O[@  
    % ----------------------------- ??P\v0E  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) :*[mvF  
        error('zernfun:NMvectors','N and M must be vectors.') 5Uy *^C7M^  
    end .{?; #Cdn  
    "x$L 2>9  
    Qx|HvT2P  
    if length(n)~=length(m) *HHL a  
        error('zernfun:NMlength','N and M must be the same length.') pp1Kor  
    end BQ[R)o  
    _7';1 D  
    W+=j@JY}q9  
    n = n(:); *>zOWocxD  
    m = m(:); K8-1?-W  
    if any(mod(n-m,2)) eNi#% ?=WB  
        error('zernfun:NMmultiplesof2', ... Eul3 {+]  
              'All N and M must differ by multiples of 2 (including 0).') Y?0x/2<  
    end xW9R -J \W  
    2G5|J{4w  
    \8\T TkVSq  
    if any(m>n) \r{wNqyv  
        error('zernfun:MlessthanN', ... :(/1,]bF  
              'Each M must be less than or equal to its corresponding N.') c2 :,  
    end _dAn/rj   
    ~l] w=[ z  
    JgP%4)]LV  
    if any( r>1 | r<0 ) 4Wa$>vz  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 0LzS #J+  
    end lFIaC}  
    i,Z-UA|f=T  
    #hs&)6S f  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) G)b:UJa"  
        error('zernfun:RTHvector','R and THETA must be vectors.') hv>Xr=RE  
    end QqW N7y_9  
    5&L*'kV@  
    A0;{$/  
    r = r(:); &dj/Dq@  
    theta = theta(:); "d~<{(:N^  
    length_r = length(r); ^!k_"C)B  
    if length_r~=length(theta) ']c;$wP  
        error('zernfun:RTHlength', ... AA ~7"2e  
              'The number of R- and THETA-values must be equal.') sRcS-Yw[S  
    end [J eq ?X9  
    jw\4`NZ]  
    Rc D5X{qS#  
    % Check normalization: Q;=4']hYU  
    % -------------------- A~k: m0MX  
    if nargin==5 && ischar(nflag) #wvGS%  
        isnorm = strcmpi(nflag,'norm'); rP"Y.;s  
        if ~isnorm q%f90  
            error('zernfun:normalization','Unrecognized normalization flag.') rAW7Zp~KK  
        end R\5fl[  
    else <~v4BiQ3l^  
        isnorm = false; qQo*:3/];  
    end YbWz!.WPe  
    ~mah.8G  
    |na9I6  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 4 8 J{Y3F  
    % Compute the Zernike Polynomials .ty2! .  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% (8o;Cm  
    J?Q@f  
    sH1 ucZ>9Y  
    % Determine the required powers of r: 3&c'3y:b  
    % ----------------------------------- eDNY|}$}v  
    m_abs = abs(m); 3]'h(C  
    rpowers = []; 6wq%4RI0  
    for j = 1:length(n) vKdS1Dn1  
        rpowers = [rpowers m_abs(j):2:n(j)]; i^ILo,Q  
    end oHSDi  
    rpowers = unique(rpowers); P&Xy6@%[Z  
    !rqs!-cCQ  
    =Bh,>Kg  
    % Pre-compute the values of r raised to the required powers, v!<FeLW  
    % and compile them in a matrix: \fUVWXv  
    % ----------------------------- -\ew,y  
    if rpowers(1)==0 ;r]! qv:  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); +[S<"}ls7  
        rpowern = cat(2,rpowern{:}); l#+@!2z  
        rpowern = [ones(length_r,1) rpowern]; vt(n: Xk  
    else "8(8]GgYx  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); YCzH@94QeV  
        rpowern = cat(2,rpowern{:}); ~\u>jel  
    end ^$oEM0h  
    9 v ,y  
    E J6|y'  
    % Compute the values of the polynomials: 56NDU>j$  
    % -------------------------------------- * "?,.  
    y = zeros(length_r,length(n)); duCXCX^n T  
    for j = 1:length(n) { M[iYFg=  
        s = 0:(n(j)-m_abs(j))/2; ?&U~X)Q  
        pows = n(j):-2:m_abs(j); %JA^b5''  
        for k = length(s):-1:1 cauKG@:2F  
            p = (1-2*mod(s(k),2))* ... %/s+-j@s:  
                       prod(2:(n(j)-s(k)))/              ... pg<c vok  
                       prod(2:s(k))/                     ... EF 8rh  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ^fS_h `B  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); ~_-+Q=3  
            idx = (pows(k)==rpowers); < r b5'  
            y(:,j) = y(:,j) + p*rpowern(:,idx); >7W8_6sC<  
        end /B{c L`<  
         Ac +fL  
        if isnorm ~"R;p}5 "  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); O#vIn}  
        end /" &Jf}r  
    end `j.-hy>s  
    % END: Compute the Zernike Polynomials -b  )~  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Fj <a;oV  
    v:9Vp{)  
     {qH+S/  
    % Compute the Zernike functions: bD 1IY1  
    % ------------------------------ zj1_#=]  
    idx_pos = m>0; c+1<3)Q<  
    idx_neg = m<0; :pP l|"  
    = o1&.v2j  
    *zX^Sg-[  
    z = y; dFnu&u"  
    if any(idx_pos) ;,B $lgF  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); vFgnbWxG  
    end x$bCbg  
    if any(idx_neg) !T]bz+  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); M>jk"*hA|  
    end 7 /DDQ  
    xw1n;IO4  
    0INlo   
    % EOF zernfun :&O6Y-/B  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  q_ |YLs`  
    ] M#OS$_O@  
    DDE还是手动输入的呢? b )mU9   
     W .t`  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究