切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9451阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, m5/d=k0l  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, [)E.T,fjMQ  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? R&`; C<6}D  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? Xi~%,~  
    i G%h-  
    QSxR@hC  
    Xbp~cn  
    tDk!]  
    function z = zernfun(n,m,r,theta,nflag) }KZt7)  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. ,4&?`Q  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ][IEzeI_LN  
    %   and angular frequency M, evaluated at positions (R,THETA) on the d@?++z  
    %   unit circle.  N is a vector of positive integers (including 0), and [_pw|BGp  
    %   M is a vector with the same number of elements as N.  Each element Jiv%Opo/|  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) [m9Iz!E  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, qQ%RnD9  
    %   and THETA is a vector of angles.  R and THETA must have the same |\W9$V  
    %   length.  The output Z is a matrix with one column for every (N,M) x]=s/+Y  
    %   pair, and one row for every (R,THETA) pair. Pzl2X@{%  
    % qlJzXq{|`  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 7|/Ct;oO:  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), #S*`7MvM  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral ..5rW0lr  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, &Is}<Ew  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized >&z=ktB  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. _3'FX# xc  
    % kU {>hG4  
    %   The Zernike functions are an orthogonal basis on the unit circle. {Hu@|Q\ ~&  
    %   They are used in disciplines such as astronomy, optics, and `pfZJ+  
    %   optometry to describe functions on a circular domain. 'fGB#uBt  
    % "nzQ$E>?$  
    %   The following table lists the first 15 Zernike functions. oN\IQ7oI  
    % qZS]eQW.  
    %       n    m    Zernike function           Normalization  KDX1_r=Y  
    %       -------------------------------------------------- qz@k-Jqq d  
    %       0    0    1                                 1 ?E*;fDEC  
    %       1    1    r * cos(theta)                    2 0S%xm'|N  
    %       1   -1    r * sin(theta)                    2 Ddr.kXIpo  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) Us.")GiHE  
    %       2    0    (2*r^2 - 1)                    sqrt(3) w I7iE4\vz  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) QQPT=_P]  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) !pqfx93R*  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) D\ ;(BB  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) iaAj|:  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) L^{1dVGWNa  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) xRI7_8Jpyn  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ;Eer  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) Jx jP'8  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) =sYUzYm  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) ?DwI>< W  
    %       -------------------------------------------------- g"dq;H  
    % XB.xIApmy  
    %   Example 1: Hrk]6*  
    % zarxv| }$  
    %       % Display the Zernike function Z(n=5,m=1) ~v$1@DQ}  
    %       x = -1:0.01:1; 0{q>'dv  
    %       [X,Y] = meshgrid(x,x); )9]DJ!]&Q"  
    %       [theta,r] = cart2pol(X,Y); WCdl 25L#  
    %       idx = r<=1; VbG#)>"F  
    %       z = nan(size(X)); d5z=fH9  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); C+m%_6<  
    %       figure 5Qh$>R4!"  
    %       pcolor(x,x,z), shading interp 9*&c2jh  
    %       axis square, colorbar +I$,Y~&`>  
    %       title('Zernike function Z_5^1(r,\theta)') vh/&KTe?:  
    % e2><Y<  
    %   Example 2: 4m:D8&D_M  
    % ms]r1x"  
    %       % Display the first 10 Zernike functions b4R;#rm  
    %       x = -1:0.01:1; Mjon++>Z  
    %       [X,Y] = meshgrid(x,x); lA/.4"nN  
    %       [theta,r] = cart2pol(X,Y); JH|]B|3  
    %       idx = r<=1; %A$5mi^  
    %       z = nan(size(X)); @fc-[pv  
    %       n = [0  1  1  2  2  2  3  3  3  3]; E-`3}"{  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; V'q?+p] a  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 28! ke  
    %       y = zernfun(n,m,r(idx),theta(idx)); s?5vJ:M Xr  
    %       figure('Units','normalized') 1 O?bT,"b  
    %       for k = 1:10 E^`-:L(_  
    %           z(idx) = y(:,k); 4F`&W*x  
    %           subplot(4,7,Nplot(k)) $A;%p6PO)  
    %           pcolor(x,x,z), shading interp */6lyODf  
    %           set(gca,'XTick',[],'YTick',[]) \GD\N=?~  
    %           axis square # E{2 !Z  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) $VxKv7:  
    %       end [2P6XoI#  
    % Mp7X+o/  
    %   See also ZERNPOL, ZERNFUN2. r6Qsh CA"  
    _m.w5nJ  
    cFZcBiw  
    %   Paul Fricker 11/13/2006 c<a)Yqf"]  
    PNs*+/-S  
    jAcrXB*  
    ! }>CEE  
    0sA+5*mdM  
    % Check and prepare the inputs: S0' ACt`  
    % ----------------------------- rQD^O4j R  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) PWBcK_4i%  
        error('zernfun:NMvectors','N and M must be vectors.') S?[@/35)  
    end <5 }  
    .nzN5FB U  
    %#<MCiaK  
    if length(n)~=length(m) $3 =S\jyfK  
        error('zernfun:NMlength','N and M must be the same length.') &"?S0S>r!  
    end )kT.3 Q  
    l86gs6>  
    bs&>QsI?j  
    n = n(:); !+u K@z&G  
    m = m(:); 6]sP"  
    if any(mod(n-m,2)) .|e8v _2J  
        error('zernfun:NMmultiplesof2', ... =z!^O T6eb  
              'All N and M must differ by multiples of 2 (including 0).') !$hi:3{U ,  
    end 1{A K=H')  
    ri%j*Kn  
    lc$wjK[w[  
    if any(m>n) 2e9.U/9  
        error('zernfun:MlessthanN', ... +# 3e<+!F  
              'Each M must be less than or equal to its corresponding N.') PbnAY{J  
    end 7Fx0#cS"\  
    i IM\_<?  
    {e5DQ21.  
    if any( r>1 | r<0 ) 4a=QTq0p  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') E)`:sSd9  
    end 5P{[8PZxbV  
    #U(kK(uO  
    . 1+I8qj  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) FeZ*c~q  
        error('zernfun:RTHvector','R and THETA must be vectors.') p,.6sk  
    end );zLgNx,  
    j5wfqi  
    LS$zA>:  
    r = r(:); oOHY+'V  
    theta = theta(:); M-Ek(K3SRf  
    length_r = length(r); ?t5<S]'r$  
    if length_r~=length(theta) KM+[1Ze$  
        error('zernfun:RTHlength', ... fx-8mf3  
              'The number of R- and THETA-values must be equal.') S Rk%BJ? ~  
    end ? G`6}NP  
    K)9Rw2-AJ  
    UM/!dt}DnF  
    % Check normalization: 2EO x],(|  
    % -------------------- @,j,GE%  
    if nargin==5 && ischar(nflag) osl\j]U8  
        isnorm = strcmpi(nflag,'norm'); .1}1e;f-  
        if ~isnorm 3RanAT.nu:  
            error('zernfun:normalization','Unrecognized normalization flag.')  wX5q=I  
        end Z5 p [*LMO  
    else  T  5F)  
        isnorm = false; \,fa"^8  
    end 7 =D,D+f  
    jfiUf1Mj  
    *4e?y  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% L6ap |u  
    % Compute the Zernike Polynomials ah%Ws#&  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 8{i O#C  
    '#XT[\  
    q^:VF()d_z  
    % Determine the required powers of r: 1_b*j-j  
    % ----------------------------------- Mg2e0}{  
    m_abs = abs(m); rvlvk"  
    rpowers = []; 1Au+X3   
    for j = 1:length(n) R+U$;r8l  
        rpowers = [rpowers m_abs(j):2:n(j)]; g60k R7;\  
    end v$D U q+  
    rpowers = unique(rpowers); ' '(rC38  
    damG*-7Svx  
    }h=PW'M{  
    % Pre-compute the values of r raised to the required powers, T-#4hY`  
    % and compile them in a matrix: JEk'2Htx  
    % ----------------------------- -r_,#LR!l  
    if rpowers(1)==0 ^vPsp?  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 3%bhW9H%  
        rpowern = cat(2,rpowern{:}); ? 3OfiGX?  
        rpowern = [ones(length_r,1) rpowern]; zPx R=0|  
    else \+#EO%sN1%  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); b"Q8[k |d  
        rpowern = cat(2,rpowern{:}); tRpY+s~Fq  
    end n0!2-Q5U)h  
    3C<G8*4);/  
    ,~=]3qmbR  
    % Compute the values of the polynomials: aG83@ABx  
    % -------------------------------------- K2yu}F^}  
    y = zeros(length_r,length(n)); pY@QR?F\  
    for j = 1:length(n) k#zDY*kj  
        s = 0:(n(j)-m_abs(j))/2; p0WUF\"  
        pows = n(j):-2:m_abs(j); &92/qRh7  
        for k = length(s):-1:1 N[e,%heR  
            p = (1-2*mod(s(k),2))* ... D;NL*4zt  
                       prod(2:(n(j)-s(k)))/              ... e b} P/  
                       prod(2:s(k))/                     ... Y X^c}t}U  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... PMpq>$6b7  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); $L 8>Ha}  
            idx = (pows(k)==rpowers);  [#C6K '  
            y(:,j) = y(:,j) + p*rpowern(:,idx); tc0;Ake-&  
        end mf3,V|>[\  
         c )LG+K  
        if isnorm ^8;MY5Wbs  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 5h&sdzfG  
        end H7GI`3o  
    end ^S 3G%{"  
    % END: Compute the Zernike Polynomials Gk{ 'U  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% fj;ZGbg-O  
    ~t~[@2?WG  
    |67Jw2  
    % Compute the Zernike functions: NX,m6u  
    % ------------------------------ Q{|%kU"  
    idx_pos = m>0; Yu\$Y0 {]  
    idx_neg = m<0; )gEE7Ex?  
    dI ,A;.  
    Ai1"UYk\\Y  
    z = y;  ce9P-}d  
    if any(idx_pos) 1oej<67PdJ  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); U?sHh2*  
    end a8J AJkFB  
    if any(idx_neg) 8Y.q P"s  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Ik$$Tn&;  
    end eO <N/?t  
    lG\uJxV  
    V ml 6\X  
    % EOF zernfun ZK8)FmT_<O  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  |`LH|6/  
    sLr47 NC  
    DDE还是手动输入的呢? ^lHy)!&A  
    j9+4},>>CU  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究