下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, WAd5,RZ?
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, )9oF?l^q
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? C2l=7+X#W
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? . 5cL+G1k#
p }p@])}8
[;/4'
he/WqCZg
D9hV`fA
function z = zernfun(n,m,r,theta,nflag) Bf)}g4nYn
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. *wvd[q h
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ] 2Vu+AP
% and angular frequency M, evaluated at positions (R,THETA) on the &oU) ,H
% unit circle. N is a vector of positive integers (including 0), and RB,`I#z1f
% M is a vector with the same number of elements as N. Each element //x^[fkNq)
% k of M must be a positive integer, with possible values M(k) = -N(k) eUY/H1
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, %S'gDCwq
% and THETA is a vector of angles. R and THETA must have the same qdss(LZ
% length. The output Z is a matrix with one column for every (N,M) v--Qbu
% pair, and one row for every (R,THETA) pair. ,sa%u Fm
% Wqy\yS [
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike PG51+#
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), }fS`jq;
% with delta(m,0) the Kronecker delta, is chosen so that the integral 4@qHS0$
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, e1Ne{zg~
% and theta=0 to theta=2*pi) is unity. For the non-normalized :!'!V>#g
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. [WfigqY`b*
% 9 a$\l2
% The Zernike functions are an orthogonal basis on the unit circle. ?QJS6i'k
% They are used in disciplines such as astronomy, optics, and ` FJ2
?
% optometry to describe functions on a circular domain. uPbGQ :%}
% 6h?v/\
% The following table lists the first 15 Zernike functions. >e'Hz (~'/
% y Tb OBl
% n m Zernike function Normalization NZ|(#` X
% -------------------------------------------------- t)p . $
% 0 0 1 1 o(gEyK
% 1 1 r * cos(theta) 2 qcmf*Yl:v
% 1 -1 r * sin(theta) 2 x>ZnQ6x~m]
% 2 -2 r^2 * cos(2*theta) sqrt(6) (=jztIZC
% 2 0 (2*r^2 - 1) sqrt(3) 4\#b@1]}
% 2 2 r^2 * sin(2*theta) sqrt(6) # $N)
% 3 -3 r^3 * cos(3*theta) sqrt(8) )R+26wZ|n*
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) GR%h3HO2&
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8)
*v}3So
% 3 3 r^3 * sin(3*theta) sqrt(8) ],W/IDv
% 4 -4 r^4 * cos(4*theta) sqrt(10) 0gIJ&h6*f
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ]Yw/}GKB
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) :j<ij]rsI
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ]%Db %A
% 4 4 r^4 * sin(4*theta) sqrt(10) KUE}^/%z
% -------------------------------------------------- iXgy/>qgT
% \nzaF4+$
% Example 1: i&di}x
% MEI.wJZ
% % Display the Zernike function Z(n=5,m=1) aioN)V
% x = -1:0.01:1; Vm"{m/K0
% [X,Y] = meshgrid(x,x); =O.%)|
% [theta,r] = cart2pol(X,Y); K(:
_52rt
% idx = r<=1; xY=%+o.?*
% z = nan(size(X)); -W\1n#J
% z(idx) = zernfun(5,1,r(idx),theta(idx)); vl"{ovoC
% figure N!Q~?/!d
% pcolor(x,x,z), shading interp 4nz$Ja)
% axis square, colorbar Vlf =gP
% title('Zernike function Z_5^1(r,\theta)')
_!K@(dl
% *a[iq`499
% Example 2: @p\te7(P%
% Rf4}4ixkj
% % Display the first 10 Zernike functions &OXWD]5$6
% x = -1:0.01:1; c]x'}Kc
% [X,Y] = meshgrid(x,x); Kqn{q4L
% [theta,r] = cart2pol(X,Y); 3
{OZdl|
% idx = r<=1; z0F'zN3J
% z = nan(size(X)); tsWzM9Yf
% n = [0 1 1 2 2 2 3 3 3 3]; !xRboPg
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; jTh^#Q
% Nplot = [4 10 12 16 18 20 22 24 26 28]; T1_qAz+
% y = zernfun(n,m,r(idx),theta(idx)); +gh*n,:|
% figure('Units','normalized') -]-?>gkN5
% for k = 1:10 R)Y*<Na
% z(idx) = y(:,k); ?3t]9z
% subplot(4,7,Nplot(k)) kKHGcm^r
% pcolor(x,x,z), shading interp |%tI!RN):
% set(gca,'XTick',[],'YTick',[]) g-NfZj?
% axis square Y2oN.{IH
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) |EpL~G_
% end RHj<t");
% ([Da*Tk*
% See also ZERNPOL, ZERNFUN2. OGGuV Y
CW .
O"_
hAvX{]
% Paul Fricker 11/13/2006 k0>]7t$L
wQR0R~|M
)2Dm{T
{{+woL'C
T/YvCbo
% Check and prepare the inputs: (q+EP(Q
% ----------------------------- UPr8Q^wm
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) PpWn+''M
error('zernfun:NMvectors','N and M must be vectors.') +}Q@{@5w
end vbMt}bM(GD
cq,8^o&
e<E]8GAF
if length(n)~=length(m) sR*.i?lN
error('zernfun:NMlength','N and M must be the same length.') l6y*SW5+
end ,nnVHBN
r)/nx@x
4)OM58e}
n = n(:); ]*\m@lWu
m = m(:); 9i`sSi8
if any(mod(n-m,2)) lE 09 Y
error('zernfun:NMmultiplesof2', ... C0#"U f
'All N and M must differ by multiples of 2 (including 0).') j{ :>"6
end 5.o{A#/NTl
kM o7mkV
r_EuLFM A
if any(m>n) TQiDbgFo
error('zernfun:MlessthanN', ... |h{#r7H0
'Each M must be less than or equal to its corresponding N.') fd&=\~1_$
end ADW>
+^tw@b
^Ss4<
if any( r>1 | r<0 )
#->#mshd4
error('zernfun:Rlessthan1','All R must be between 0 and 1.') -'F? |
end E2xcd#ZD
=0gfGwD{
`GQ'yv
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) k2t#O%_f
error('zernfun:RTHvector','R and THETA must be vectors.') Kulh:d:w
end =j$!N# L
DAHQ7#qfQC
-'wFaW0%I
r = r(:); B(l8&
theta = theta(:); %yJ
$R2%*y
length_r = length(r); <-%OXEG
if length_r~=length(theta) #nS[]UbwZ
error('zernfun:RTHlength', ... xZpGSlA
'The number of R- and THETA-values must be equal.') I6B4S"Q5<
end p#6V|5~8
*LZ^0c: r
mok%TK
% Check normalization: ;+W9EbY2
% -------------------- @ApX43U(
if nargin==5 && ischar(nflag) {%cm;o[7o
isnorm = strcmpi(nflag,'norm'); JAA{5@ST
if ~isnorm Qk_`IlSd
error('zernfun:normalization','Unrecognized normalization flag.') @w]z"UCwV@
end w\f>.N
else @*}?4wU^k
isnorm = false; ^+)q@{\8Y
end Zv8I`/4?
3.vQ~Fvl
`E4OgO
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% jh3XG
% Compute the Zernike Polynomials UC{Tm f
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% sM0o,l(5
QTKN6P
$GcVI;a
% Determine the required powers of r: 0*-nVC1
% ----------------------------------- 7Rix=*
m_abs = abs(m); 1E'/! |
rpowers = []; w\PCBY=
for j = 1:length(n) u>U4w68
rpowers = [rpowers m_abs(j):2:n(j)]; |DZ3=eWZ
end
.gS
x`|!
rpowers = unique(rpowers); gY=Ry=w9
Er]lObfQo
X8Ld\vZYn
% Pre-compute the values of r raised to the required powers, (K>=!&tlp=
% and compile them in a matrix: S7_^E
% ----------------------------- vxrRkOU1
if rpowers(1)==0 FJj #
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); LtDQgel"
rpowern = cat(2,rpowern{:}); Edi`x5"l
rpowern = [ones(length_r,1) rpowern]; >*"6zR2 o
else :>t^B+
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); *w[\(d'T
rpowern = cat(2,rpowern{:}); zLa3Q\T
end XA%a7Xtni
y?1<7>L5~
y_Tc$g~
% Compute the values of the polynomials: aTx*6;-PH
% -------------------------------------- qauZ-Qoc9
y = zeros(length_r,length(n)); +#|):aF
for j = 1:length(n) :y!%GJW
s = 0:(n(j)-m_abs(j))/2; AvNU\$B4aG
pows = n(j):-2:m_abs(j); ZJ7<!?6
for k = length(s):-1:1 %}*0l8y
p = (1-2*mod(s(k),2))* ... G L> u3K
prod(2:(n(j)-s(k)))/ ... xWa96U[
prod(2:s(k))/ ... hDf|9}/UQd
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... l`}Ag8Q
prod(2:((n(j)+m_abs(j))/2-s(k))); cIIt ;q[
idx = (pows(k)==rpowers); k;?Oi?]
y(:,j) = y(:,j) + p*rpowern(:,idx); dT9ekNQB
end 0B;cQSH!q
H"g$qSx
if isnorm q:9#Vcw
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); clwJ+kku@
end YsHZFF
end i(k]}Di:
% END: Compute the Zernike Polynomials c T!L+zg
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% RRBokj)]
vFL\O
i{$h]D_fD
% Compute the Zernike functions: Po:)b
% ------------------------------ JvZNr?_w%
idx_pos = m>0; rkW2_UTZE
idx_neg = m<0; qPc"A!-i
4&+;n[ D
aB(6yBBoxj
z = y; >WsRCBA
if any(idx_pos) E|aPkq]
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); /<Doe SDJ|
end 8>}^W
if any(idx_neg) ;BR`}~m
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); N~%F/`Z<+
end gDmwJr
Z!qH L$
t1I` n(]n
% EOF zernfun ET&Q}UO E