下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, BVKr 2v
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, ];-DqK'
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? $a.!X8sHB.
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? RG'Ft]l92N
RGeM.
23lLoyN
p)t1]<,Of
9 >t
function z = zernfun(n,m,r,theta,nflag) a?zn>tx
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. ;B 35E!QJ
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N q(i^sE[y
% and angular frequency M, evaluated at positions (R,THETA) on the &B^zu+J
% unit circle. N is a vector of positive integers (including 0), and p19[qy~.
% M is a vector with the same number of elements as N. Each element d},IQ,Az:Z
% k of M must be a positive integer, with possible values M(k) = -N(k) Vvth,
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, kWF/SsE
% and THETA is a vector of angles. R and THETA must have the same 0{ZYYB&"~J
% length. The output Z is a matrix with one column for every (N,M) A9*( O)
% pair, and one row for every (R,THETA) pair. FS3MR9
% c)d*[OI8
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike uCc.dluU
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), c+6/@y
% with delta(m,0) the Kronecker delta, is chosen so that the integral CQf<En|1
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Dq#/Uw#
% and theta=0 to theta=2*pi) is unity. For the non-normalized jWn!96NhlL
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Xq3n7d.
% dLtSa\2Hn
% The Zernike functions are an orthogonal basis on the unit circle. bIFKP
% They are used in disciplines such as astronomy, optics, and hX-([o
% optometry to describe functions on a circular domain. 4G:I VK9
% p2c4 <f-M
% The following table lists the first 15 Zernike functions. E8TJ*ZU
% +`EF0sux
% n m Zernike function Normalization `EV"
/&`
% -------------------------------------------------- yI&{8DCCw
% 0 0 1 1 o/EN3J
% 1 1 r * cos(theta) 2 i+/:^tc;
% 1 -1 r * sin(theta) 2 qf/1a CQiP
% 2 -2 r^2 * cos(2*theta) sqrt(6) zW`Zmt\T2
% 2 0 (2*r^2 - 1) sqrt(3) W\(u1>lj
% 2 2 r^2 * sin(2*theta) sqrt(6) 16iymiLz&
% 3 -3 r^3 * cos(3*theta) sqrt(8) ;j#$d@VG"
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) <b-BJ2],k
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) ~s}0z&v^te
% 3 3 r^3 * sin(3*theta) sqrt(8) 5ryzAB O\2
% 4 -4 r^4 * cos(4*theta) sqrt(10) i\P?Y(-{
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Fq{Z-yVp
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) [x{S ,?6
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Qfhhceb6#J
% 4 4 r^4 * sin(4*theta) sqrt(10) Gj[+{
% -------------------------------------------------- '%W'HqVcG1
% ;z6Gk&?
% Example 1: Wvhg:vup
% x+kP,v
% % Display the Zernike function Z(n=5,m=1) CYr2~0<g
% x = -1:0.01:1; y-UutI&
% [X,Y] = meshgrid(x,x); |{#=#3X
% [theta,r] = cart2pol(X,Y); G2FP|mf,
% idx = r<=1; / 38b:,
% z = nan(size(X)); |E\0Rv{H3
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 89I[Dg;"u
% figure Rp~#zt9:
% pcolor(x,x,z), shading interp /?POIn+0o
% axis square, colorbar (BtavE
% title('Zernike function Z_5^1(r,\theta)') bYr;~
^
% go, Hfb
% Example 2:
G P"(+5
% us&!%`
% % Display the first 10 Zernike functions jTNfGu0x
% x = -1:0.01:1; x\=2D<@az
% [X,Y] = meshgrid(x,x); 'xNPy =#
% [theta,r] = cart2pol(X,Y); ^wL
n
% idx = r<=1; e*O-LI2O
% z = nan(size(X)); r]x;JBy
% n = [0 1 1 2 2 2 3 3 3 3]; l@+WGh
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; ap;tggi(H
% Nplot = [4 10 12 16 18 20 22 24 26 28]; )I80Nq
% y = zernfun(n,m,r(idx),theta(idx)); %G%##wv:
% figure('Units','normalized') U @Il:\I
% for k = 1:10 ^ <Z^3c>/
% z(idx) = y(:,k); \V@Hf"=j
% subplot(4,7,Nplot(k)) RP]hW{:U
% pcolor(x,x,z), shading interp JPS7L} Kv
% set(gca,'XTick',[],'YTick',[]) \NYtxGV[Z
% axis square 1Aq*|JSk(
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) F+;{s(wx
% end #4(/#K 1j
% ={9G.%W
% See also ZERNPOL, ZERNFUN2. zy(i]6
:@PM+ [B|Q
`{g8A P3
% Paul Fricker 11/13/2006 9`J!]WQ1[
O_*(:Z
C;DNL^
CroI,=a&,
"ei*iUBN:
% Check and prepare the inputs: ;!<WL@C~
% ----------------------------- =RR225
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) S~1>q+<Q
error('zernfun:NMvectors','N and M must be vectors.') 2[&3$-]
end KlgPDV9mg
:uZfdu
7s%DM6li 6
if length(n)~=length(m) IAt;?4
error('zernfun:NMlength','N and M must be the same length.') sIuk
end Q]_3 #_'
lAsDdxB`
6KiI3%y?0
n = n(:); @Taj++ua
m = m(:); 7<Fp3N 3
if any(mod(n-m,2)) kJ6=T6s
error('zernfun:NMmultiplesof2', ... !FweXFl
'All N and M must differ by multiples of 2 (including 0).') e";r_J3w
end z`-?5-a]I
bS{7 *S
`d#l o
if any(m>n) Sf>R7.lpP
error('zernfun:MlessthanN', ... !dfc1 UjB
'Each M must be less than or equal to its corresponding N.') k%\_UYa
end DSY:aD!
[h 8j0Q@Q
Dm/# \y3
if any( r>1 | r<0 ) *F+t`<2
error('zernfun:Rlessthan1','All R must be between 0 and 1.') >_QC_UX>4i
end l-"c-2-!
YV*s1t/
D%v4B`4ua'
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ]=p@1
error('zernfun:RTHvector','R and THETA must be vectors.') R}F0_.
end ` bd
$ WA Fr
.$+]N[-=
r = r(:); OKfJ
theta = theta(:); Ec| Gom?
length_r = length(r); u-Pa:wm0-
if length_r~=length(theta) orn9;|8q
error('zernfun:RTHlength', ... b:.aZ7+4
'The number of R- and THETA-values must be equal.') A87JPX#R?
end n(.y_NEgV!
I0 a,mO;m
; >3q@9\D
% Check normalization: W
B)<B
% -------------------- M:|Z3p K
if nargin==5 && ischar(nflag) _aVrQ@9
isnorm = strcmpi(nflag,'norm'); I|lz;i}$
if ~isnorm >TUs~
error('zernfun:normalization','Unrecognized normalization flag.') V6"<lK8"
end i"%X[(U7
else Tl=cniy]
isnorm = false; Pg"
uisT#>
end S!qJqZ<Bv
t4pc2b
N2uxiXpQZ=
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% N+x0"~T}I
% Compute the Zernike Polynomials kf+]bV
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Pl<r*d)h
}^WQNdws56
G?!b00H
% Determine the required powers of r: naCPSsei
% ----------------------------------- ^'i(@{{o\
m_abs = abs(m); IbC(/i#%`
rpowers = []; Ed ,`1+
for j = 1:length(n) :G9+-z{Y&
rpowers = [rpowers m_abs(j):2:n(j)]; SCE5|3j
end Qj~m;F!
rpowers = unique(rpowers); Ar4E $\W
R%o:'-~
^Bn)a"Gd
% Pre-compute the values of r raised to the required powers, r
H;@N
% and compile them in a matrix: ?F20\D\V
% ----------------------------- C4],7"Sw
if rpowers(1)==0 EZaWEW
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); )ALPMmlRs
rpowern = cat(2,rpowern{:}); /%|JP{
rpowern = [ones(length_r,1) rpowern]; $u_0"sUV
else QlJ
cj+_h
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); E%OY7zf`%
rpowern = cat(2,rpowern{:}); 0F-X.Dq
end qLBXyQ;U
NR-d|`P;
y0cHs|8
% Compute the values of the polynomials: *JE%bQ2Q
% --------------------------------------
@#K19\dQ
y = zeros(length_r,length(n)); :@)UI,
for j = 1:length(n) ,80qwN,
s = 0:(n(j)-m_abs(j))/2; K[0.4+
pows = n(j):-2:m_abs(j); ;LE4U OK
for k = length(s):-1:1 T:q_1W?h]
p = (1-2*mod(s(k),2))* ... N&7=
hni
prod(2:(n(j)-s(k)))/ ... r=P)iE:
prod(2:s(k))/ ... ){`s&? M0
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... k\$))<3
prod(2:((n(j)+m_abs(j))/2-s(k))); ,/AwR?m
idx = (pows(k)==rpowers); $2qZds[
y(:,j) = y(:,j) + p*rpowern(:,idx); P:h;"
end m7wD#?lm
tFt56/4
if isnorm =r"8J5[f
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); )o)<5Iqh
end Bz<T{f
end B*btt+6
% END: Compute the Zernike Polynomials RY'f%c
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% >(mp$#+w
~$n4Yuu2[
E^w2IIw
% Compute the Zernike functions: 2^w3xL"
% ------------------------------ b"n8~Vd
idx_pos = m>0; K}"xZy Tm1
idx_neg = m<0; RUqN,C,m5I
,?k[<C
W_l/Jpv!W
z = y; G n"]<8yl~
if any(idx_pos) \MBbZB9@
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); bA}9He1
end )3# gpM
if any(idx_neg) Z-|.j^n
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); {T4F0fu[eR
end hw! l{yv
|{W4JFKJ
~_opU(;f
% EOF zernfun .GcIwP'aU-