下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, pP|LSrY!
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, &@U)
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? O'.sK pXe
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? nBg
tK
)<K3Fz
Bs
Of gmJ(%
^| r6>b
:k/Z|
function z = zernfun(n,m,r,theta,nflag) sZh| <2
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. Fi8#r)G.
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N GNX`~%3KYc
% and angular frequency M, evaluated at positions (R,THETA) on the /RBIZ_
% unit circle. N is a vector of positive integers (including 0), and ;!:@3c
% M is a vector with the same number of elements as N. Each element 0
zn }l6OS
% k of M must be a positive integer, with possible values M(k) = -N(k) qBDhCE
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, jccSjGX@w
% and THETA is a vector of angles. R and THETA must have the same =N^j:t
% length. The output Z is a matrix with one column for every (N,M) :pw6#yi8`
% pair, and one row for every (R,THETA) pair. Xaw&41K
% ., =\/ C<
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike g^)8a;/c
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), kP[LS1}*
% with delta(m,0) the Kronecker delta, is chosen so that the integral S4C4_*~Vd
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, o`~%}3
% and theta=0 to theta=2*pi) is unity. For the non-normalized 4j}uVGi{e
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. +dJLT}I8M
% |\J! x|xy
% The Zernike functions are an orthogonal basis on the unit circle. fe+2U|y
% They are used in disciplines such as astronomy, optics, and 1Gh3o}z
% optometry to describe functions on a circular domain. t+2,;G
% dobqYd4`
% The following table lists the first 15 Zernike functions. u8Oo@xf0Fr
% ghDOz
3
% n m Zernike function Normalization w/Y6m.i1
% -------------------------------------------------- +JPHQx'W
% 0 0 1 1 |>jlmaV
% 1 1 r * cos(theta) 2 2PG= T/
% 1 -1 r * sin(theta) 2 T56%3i
% 2 -2 r^2 * cos(2*theta) sqrt(6) xL}~R7
% 2 0 (2*r^2 - 1) sqrt(3) ?/FCq6o
% 2 2 r^2 * sin(2*theta) sqrt(6) #({ 9M
% 3 -3 r^3 * cos(3*theta) sqrt(8) ]n^TN
r7
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) ,n/^;. _1
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) Jpr`E&%I6
% 3 3 r^3 * sin(3*theta) sqrt(8) YZQF*fj
% 4 -4 r^4 * cos(4*theta) sqrt(10) >SaT?k1E
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ;}QM#5Xdt
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) GcCMCR3
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) B|.8+Q
% 4 4 r^4 * sin(4*theta) sqrt(10) W~2T/~M
% -------------------------------------------------- [@`Ki
% ~#nbD-*#
% Example 1: -|YDKcL
% ;ep@
)Y
% % Display the Zernike function Z(n=5,m=1) y)0wM~E;2
% x = -1:0.01:1; VZEDBZ x*
% [X,Y] = meshgrid(x,x); {5J: ]{p
% [theta,r] = cart2pol(X,Y); }8)iFP&"
% idx = r<=1; jb0LMl}/A
% z = nan(size(X)); JmJNq$2#c
% z(idx) = zernfun(5,1,r(idx),theta(idx)); RZ GD5`n
% figure z<z\)
% pcolor(x,x,z), shading interp dBM> ;S;v
% axis square, colorbar oV=~Q#v
% title('Zernike function Z_5^1(r,\theta)') 8 rA'd
% {>8u/
% Example 2: 1zlBkK
% jgd^{!
% % Display the first 10 Zernike functions Yo a|.2f
% x = -1:0.01:1; U7le> d;L
% [X,Y] = meshgrid(x,x); 0="U'|J_
% [theta,r] = cart2pol(X,Y); eO?@K$I
% idx = r<=1; 1-:{&!
% z = nan(size(X)); $R_RKyXzo
% n = [0 1 1 2 2 2 3 3 3 3]; BY!M(X
jrZ
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 4}MZB*);0
% Nplot = [4 10 12 16 18 20 22 24 26 28]; Dvz}sQZ
% y = zernfun(n,m,r(idx),theta(idx)); ^y p`<=
% figure('Units','normalized') e!.r- v9
% for k = 1:10 8*m=U@5]
% z(idx) = y(:,k); {*Tnl-m~
% subplot(4,7,Nplot(k)) |8s45g>
% pcolor(x,x,z), shading interp &HIG776
% set(gca,'XTick',[],'YTick',[]) jO+#$=C
% axis square q:X&)f
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) V/CZcMY_
% end #oQDt'
% n1
kh8,
% See also ZERNPOL, ZERNFUN2. siK:?A@4D
ac< hz0
H;=++Dh
% Paul Fricker 11/13/2006 aH+n]J]
=)
`6B jNV
``9`Xq
/%9CR'%*c
?K/N{GK%{
% Check and prepare the inputs: >cM}M =4s
% ----------------------------- }"o,j>IP
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) (cLcY%$
error('zernfun:NMvectors','N and M must be vectors.') DP<[Uz&
end
MTUJsH\
^,WXvOy
NP< {WL#
if length(n)~=length(m) :HTV 8;yc
error('zernfun:NMlength','N and M must be the same length.') !
:XMP*g
end T3#KuiwU9
+PGtO9}B
3D*vNVI
n = n(:); c"x-_Uk
m = m(:); %}x$YDO
if any(mod(n-m,2)) .X)TRD#MW
error('zernfun:NMmultiplesof2', ... - BE.a<
'All N and M must differ by multiples of 2 (including 0).') Rd^X.
end F3
z:|sTqc
p?qW;1
XEvDtDR
if any(m>n) 2\, h "W(
error('zernfun:MlessthanN', ... EXD Qr'"
'Each M must be less than or equal to its corresponding N.') Y,;$RV@g
end ]f<H?
)Fw{|7@N
R;2q=%
if any( r>1 | r<0 ) hfQx$cv6
error('zernfun:Rlessthan1','All R must be between 0 and 1.') >t Ll|O+
end oGa8#>
->29Tns
?!d\c(5Gt
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) xHo
iu$i6
error('zernfun:RTHvector','R and THETA must be vectors.') o6LZ05Z-&
end :SD^?.W\iT
e+ckn
U6M3,"?
r = r(:); y%4G[Dz
theta = theta(:); NL76 jF
length_r = length(r); dX8N7{"[
if length_r~=length(theta) r"uOf;m
error('zernfun:RTHlength', ... c2iPm9"eh
'The number of R- and THETA-values must be equal.') 4EtP|
end d|?'yX
C%)Xz
lmjoSINy
% Check normalization: map#4\
% -------------------- 5^W},:3R
if nargin==5 && ischar(nflag) JDA :)[;
isnorm = strcmpi(nflag,'norm'); JE$aYs<(TF
if ~isnorm L
dyTB@
error('zernfun:normalization','Unrecognized normalization flag.') %/r}_V(UN
end +o94w^'^$b
else 5\6S5JyIL
isnorm = false; v2tKk^6`(i
end )1!jv!
h;(#^+LH
D3BNA]P\2@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 6IyD7PQ
% Compute the Zernike Polynomials ~c*$w O\
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Np?%pB!Q
B- `,h pp
a?]"|tQ'
% Determine the required powers of r: OB{d^e}
% ----------------------------------- ?9)-?tZ^Q
m_abs = abs(m); (E.,kcAJ
rpowers = []; cJ>
#jl&
for j = 1:length(n) v|r=}`k=
rpowers = [rpowers m_abs(j):2:n(j)]; nM?mdb
end |_7AN!7j
rpowers = unique(rpowers); (6*CORE
ygA~d9"
9ne13qVm+
% Pre-compute the values of r raised to the required powers, O
DLRzk(
% and compile them in a matrix: 3~mi
% ----------------------------- {d%% nK~
if rpowers(1)==0 :s}6 a23
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); e[(XR_EY
rpowern = cat(2,rpowern{:}); FYs-vW {
rpowern = [ones(length_r,1) rpowern]; 0F495'*A
else jBO/1h=
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); A=z+@b6
rpowern = cat(2,rpowern{:}); `~hB-Z5dI
end N`JkEd7TT
>4.K>U?0FC
~_ 8X%uty
% Compute the values of the polynomials: ?C[W~m P
% -------------------------------------- #9a\Ab
y = zeros(length_r,length(n)); H:d@@/
for j = 1:length(n) 8?>
#
s = 0:(n(j)-m_abs(j))/2; v%=@_`Ht
pows = n(j):-2:m_abs(j); b85r=tm
for k = length(s):-1:1 m@z.H ;
p = (1-2*mod(s(k),2))* ... _=wu>h&7
prod(2:(n(j)-s(k)))/ ... Lcx)wof
prod(2:s(k))/ ... w4m)lQM
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... "\x<Zg;
prod(2:((n(j)+m_abs(j))/2-s(k))); E,/<;
idx = (pows(k)==rpowers); DhVF^=x$
y(:,j) = y(:,j) + p*rpowern(:,idx); / X
#4
end FKX+
z
o<Esh;;*nm
if isnorm ODbEL/
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); kTjx.
end 94>EA/+Ek
end xejQ!MAB
% END: Compute the Zernike Polynomials &RzkM4"
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 7j
]d{lD
V?.')?'V
/oWn0
% Compute the Zernike functions: g p2S
% ------------------------------ wc%Wy|d
idx_pos = m>0; ~`uEZ
idx_neg = m<0; S^Lu RF]F
'\MYC8"
Q=,6W:j
z = y;
xe~lV
if any(idx_pos) _XO3ml\x@
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); e6
R<V]g
end /f5*KRM
if any(idx_neg) &$1ifG
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); qPn}$1+~
end <?Z [X{
Z8 X=Md8=
Aa.eu=@I
% EOF zernfun 8zMt&5jD