切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9152阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, :W-"UW,  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, *|a_(bQ4@  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? K"#np!Y)  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? G8Ns?  
    F{B__Kf  
    ixE72bX  
    Ql3hq.E  
    bj ZcWYT  
    function z = zernfun(n,m,r,theta,nflag) aXhgzI5]  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. j#Bea ,  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N _Cj u C`7  
    %   and angular frequency M, evaluated at positions (R,THETA) on the V)f/umT%g  
    %   unit circle.  N is a vector of positive integers (including 0), and 4{[Df$'e>  
    %   M is a vector with the same number of elements as N.  Each element W`C2zbC  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) ((B7k{`  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ZG H2  
    %   and THETA is a vector of angles.  R and THETA must have the same al(t-3`<  
    %   length.  The output Z is a matrix with one column for every (N,M) A"2k,{d  
    %   pair, and one row for every (R,THETA) pair. o} YFDYi  
    % :,]V 03  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike uIiE,.Uu}  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), jDqe)uVvtV  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral Wg3y y8vIW  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1,  (/-2bO  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized J-au{eP^  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Y2"X;`<  
    % wFnIM2a,  
    %   The Zernike functions are an orthogonal basis on the unit circle. R%"wf   
    %   They are used in disciplines such as astronomy, optics, and 1I<D `H%  
    %   optometry to describe functions on a circular domain. p. SEW5  
    % TG=) KS  
    %   The following table lists the first 15 Zernike functions. F)z]QJOw  
    % %D)W~q-g  
    %       n    m    Zernike function           Normalization FI`][&]V  
    %       -------------------------------------------------- <=W;z=$!Bb  
    %       0    0    1                                 1 '+hiCX-_  
    %       1    1    r * cos(theta)                    2 *&Np;^~  
    %       1   -1    r * sin(theta)                    2 ogtKj"a  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 'j 'bhG  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 1(CpTaa  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) D'$ki[{,  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) :,h47'0A  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) /bjyV]N  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) w4\b^iJz  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 5A g 4o  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) NuRxkeEO  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) %AwR4"M  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 8$xd;+`y'  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) K?+iu|$ &  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) R^.E";/h  
    %       -------------------------------------------------- OlL FuVR  
    % Mj&q"G  
    %   Example 1: s2FJ^4  
    % \DI%/(?  
    %       % Display the Zernike function Z(n=5,m=1) bS=aFl#  
    %       x = -1:0.01:1; JS]6jUB<B  
    %       [X,Y] = meshgrid(x,x); ] ?w hx &+  
    %       [theta,r] = cart2pol(X,Y); C_mPw  
    %       idx = r<=1; oJE~dY$Q  
    %       z = nan(size(X)); 'H+H4(  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); /GCI`hx>"  
    %       figure NokAP|<y  
    %       pcolor(x,x,z), shading interp 4E/Q+^?  
    %       axis square, colorbar P~HzN C  
    %       title('Zernike function Z_5^1(r,\theta)') TPEg>[  
    % =~}\g;K1Q  
    %   Example 2: :Q@=;P2  
    % 3WZdP[o!  
    %       % Display the first 10 Zernike functions $$ma1.t"  
    %       x = -1:0.01:1; 8h  
    %       [X,Y] = meshgrid(x,x); mxt fKPb  
    %       [theta,r] = cart2pol(X,Y); 6c>cq\~E  
    %       idx = r<=1; p uEu v6F  
    %       z = nan(size(X)); \Ld/'Z;w  
    %       n = [0  1  1  2  2  2  3  3  3  3]; r%QTUuRXC3  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; JR>#PJ,N-  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; \0?^%CD+@  
    %       y = zernfun(n,m,r(idx),theta(idx)); <Yif-9  
    %       figure('Units','normalized') \ <b-I  
    %       for k = 1:10 X%w`:c&  
    %           z(idx) = y(:,k); ye !}hm=w  
    %           subplot(4,7,Nplot(k)) "|ZC2Zu<  
    %           pcolor(x,x,z), shading interp +0) s {?  
    %           set(gca,'XTick',[],'YTick',[]) @Cg%7AF  
    %           axis square N.R,[K  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) y;aZMT.YI  
    %       end mhU ?N  
    % *Y'nDv6_P  
    %   See also ZERNPOL, ZERNFUN2. W?is8r:  
    U-!+Cxjs  
    4JV/Ci5  
    %   Paul Fricker 11/13/2006 I.#V/{J  
    AT*J '37  
    z !2-U  
    ;n1< 1M>!  
    )%H@.;cD_r  
    % Check and prepare the inputs: r:.3P  
    % ----------------------------- 2wCTd:e:  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) )  @Tk5<B3  
        error('zernfun:NMvectors','N and M must be vectors.') l`"i'P   
    end 2UqLV^ZY  
    R <Mvwu  
    v w(X9xa  
    if length(n)~=length(m) D2<(V,h9  
        error('zernfun:NMlength','N and M must be the same length.') nM]Sb|1:  
    end +$_.${uwV  
    7tbM~+<0  
    g>].m8DZ'  
    n = n(:); 6jS:_[p  
    m = m(:); ;J<K/YdI  
    if any(mod(n-m,2)) oZVq }}R  
        error('zernfun:NMmultiplesof2', ... L>:YGM"sL  
              'All N and M must differ by multiples of 2 (including 0).') l} \q }7\)  
    end !Miw.UmPm  
    _4~'K?  
    H$G`e'`OZ  
    if any(m>n) vxN,oa{hf  
        error('zernfun:MlessthanN', ... x$p_mWC  
              'Each M must be less than or equal to its corresponding N.') Rb!V{jQ  
    end S: b-+w|*  
    V!^5#A<  
    1dsMmD[O  
    if any( r>1 | r<0 ) |t<Uh,Bt  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') oXW51ty  
    end j_w"HiNBA  
    [22>)1<(  
    4o|-v  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) OH+kN /Fd  
        error('zernfun:RTHvector','R and THETA must be vectors.') acG4u+[ ]  
    end CSu}_$wC#  
    Xo,}S\wcn  
    pGO=3=O  
    r = r(:); St`3Z/|h  
    theta = theta(:); .A6i?iROe  
    length_r = length(r); L_ &`  
    if length_r~=length(theta) 0 rge]w.X  
        error('zernfun:RTHlength', ... "~:AsZ"7  
              'The number of R- and THETA-values must be equal.') %t.L;G  
    end c}$C=s5 h}  
    Ej;BI#gx=  
    ;^yR,32F  
    % Check normalization: g+:Go9k!F  
    % -------------------- C~o\Q# *j  
    if nargin==5 && ischar(nflag) o$4xinK  
        isnorm = strcmpi(nflag,'norm'); u[Ij4h.  
        if ~isnorm j*7#1<T  
            error('zernfun:normalization','Unrecognized normalization flag.') z&R #j  
        end SO!|wag$  
    else o$Jop"To  
        isnorm = false; $27QY  
    end q eW{Cl~  
    Tl/!Dn  
    [p:mja.6y  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% V{D~e0i/v  
    % Compute the Zernike Polynomials f$2DV:wuC  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |``rSEXYs  
    igGg[I1?  
    m,3H]  
    % Determine the required powers of r: D# Gf.c  
    % ----------------------------------- z\F#td{r  
    m_abs = abs(m); tjId?}\  
    rpowers = []; X`s6lV%\  
    for j = 1:length(n) a7~%( L@r  
        rpowers = [rpowers m_abs(j):2:n(j)]; s%Y8;D,~+  
    end $URL7hrhU  
    rpowers = unique(rpowers); awC:{5R8v  
    c04;2gR  
    &;x*uG  
    % Pre-compute the values of r raised to the required powers, lL<LJ :L  
    % and compile them in a matrix: 8mh@C6U  
    % ----------------------------- q4xP<b^  
    if rpowers(1)==0 R?Ou=p .  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); zn3]vU!  
        rpowern = cat(2,rpowern{:}); azCod1aL{  
        rpowern = [ones(length_r,1) rpowern]; ,qz:(Nr  
    else .{8?eze[m  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ?LAiSg=eq  
        rpowern = cat(2,rpowern{:}); N"zg)MsX  
    end ~!iZn  
    lK2=[%,~  
    +qiI;C_P\  
    % Compute the values of the polynomials: Rk$  
    % -------------------------------------- s9\N{ar#  
    y = zeros(length_r,length(n)); />0 Bm`A  
    for j = 1:length(n) ;i>(r;ZM  
        s = 0:(n(j)-m_abs(j))/2; Pxy+W*t  
        pows = n(j):-2:m_abs(j); cAQ_/>  
        for k = length(s):-1:1 ={k_ (8]  
            p = (1-2*mod(s(k),2))* ... k>V~ iA  
                       prod(2:(n(j)-s(k)))/              ... \; FE@  
                       prod(2:s(k))/                     ... ny'wS  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 2E$K='H:,  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); :RG=3T[  
            idx = (pows(k)==rpowers); kBlk^=h<:w  
            y(:,j) = y(:,j) + p*rpowern(:,idx); t wr-+rm2  
        end p`=v$_]?(  
         9\S,$A{{*  
        if isnorm 2,^ U8/  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); i%3q*:A]2  
        end "IA :,j.#g  
    end % s),4  
    % END: Compute the Zernike Polynomials I*`;1+`  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %h9'kJzNk  
    DPM4v7 S  
    g><i tA?  
    % Compute the Zernike functions: *!c&[- g  
    % ------------------------------ u$Ty|NBjn  
    idx_pos = m>0; Lyy:G9OV  
    idx_neg = m<0; /$=<RUE  
    m+=L}[  
     Uip-qWI  
    z = y; 5STk"  
    if any(idx_pos) s)-O{5;U  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); :\cid]y3  
    end 4%"Df1 U  
    if any(idx_neg) pzFM#   
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Fu\!'\6  
    end tpj6AMO/`d  
    8k9q@FSln  
    i~i ?M)  
    % EOF zernfun pp1kcrE\M  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  Na{&aqdz  
    l4Qv$  
    DDE还是手动输入的呢? &C.m*^`^  
    aT}?-CUxx  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究