下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, WTK )SKa,.
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 7XrXx:*a5
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? kbu.KU+
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? 6_}&
WjU'
<u`m4w
f_'#wc6
_!_%Afz
vf}.)
function z = zernfun(n,m,r,theta,nflag) `,~8(rIM
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. x`9IQQ
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N H+lBb$
% and angular frequency M, evaluated at positions (R,THETA) on the rW),xfo0
% unit circle. N is a vector of positive integers (including 0), and 1!/WC.0
% M is a vector with the same number of elements as N. Each element n;QMiz:yY
% k of M must be a positive integer, with possible values M(k) = -N(k) $1KvL8
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, -aSj-
% and THETA is a vector of angles. R and THETA must have the same ol#|
.a2O
% length. The output Z is a matrix with one column for every (N,M) /N=;3yWF
% pair, and one row for every (R,THETA) pair. 3FetyWl'
% ;fiH=_{us
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike *UxN~?N|
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), {zha jY7
% with delta(m,0) the Kronecker delta, is chosen so that the integral :9?y-X
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, "Zr+>a
% and theta=0 to theta=2*pi) is unity. For the non-normalized Lfr>y_i;F
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. s\/$`fuhx
% )b\89F
% The Zernike functions are an orthogonal basis on the unit circle. 4rDaJd>,
% They are used in disciplines such as astronomy, optics, and >tGl7Ov
% optometry to describe functions on a circular domain. KdN+$fe*g
% RZ+SOZs7H
% The following table lists the first 15 Zernike functions. _4^#VD#f
% ^p7g[E&
% n m Zernike function Normalization VelR8tjP
% -------------------------------------------------- V;@kWE>3
% 0 0 1 1 xQU$E|I
% 1 1 r * cos(theta) 2 lD+f{GR
% 1 -1 r * sin(theta) 2 lJ>OuSd
% 2 -2 r^2 * cos(2*theta) sqrt(6) <36z,[,kZ@
% 2 0 (2*r^2 - 1) sqrt(3)
iup "P
% 2 2 r^2 * sin(2*theta) sqrt(6) #]SiS2lM#
% 3 -3 r^3 * cos(3*theta) sqrt(8) LWX,u
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) mto=_|gn
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) <4Ev3z*;Z
% 3 3 r^3 * sin(3*theta) sqrt(8) t?l0L1;
% 4 -4 r^4 * cos(4*theta) sqrt(10) Lkf}+aY
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) o W<Z8s;p
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) )y#~eYn
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) zLt7jxx
% 4 4 r^4 * sin(4*theta) sqrt(10) xQKRUHDc
% -------------------------------------------------- `2I<V7SF$
% v$JhC'
% Example 1: {BI5lvx:
% 1ZZ}ojq
% % Display the Zernike function Z(n=5,m=1) + $Yld{i
% x = -1:0.01:1; ]:g;S,{
% [X,Y] = meshgrid(x,x); 'O:QS)
% [theta,r] = cart2pol(X,Y); ~[*\YN);
% idx = r<=1; P;' xa^Y
% z = nan(size(X)); Bk44 wz2X
% z(idx) = zernfun(5,1,r(idx),theta(idx)); .ey=gI!x0
% figure KB@F^&L {
% pcolor(x,x,z), shading interp u&-Zh@;Q7
% axis square, colorbar RX\l4H5;
% title('Zernike function Z_5^1(r,\theta)') +CaA%u
% XLq%nVBM8\
% Example 2: t^')ST
% 31-:xUIX
% % Display the first 10 Zernike functions D-KQRe2@
% x = -1:0.01:1; _$vAitUe4S
% [X,Y] = meshgrid(x,x); 'n$TJp|s
% [theta,r] = cart2pol(X,Y); Tm) (?y
% idx = r<=1; Ex`!C]sQ
% z = nan(size(X)); bf*VY&S-T
% n = [0 1 1 2 2 2 3 3 3 3]; Ho!dtEs
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; |%HTBF
% Nplot = [4 10 12 16 18 20 22 24 26 28]; _*1{fvv0{
% y = zernfun(n,m,r(idx),theta(idx)); )}|b6{{<
% figure('Units','normalized') r@)_>(
% for k = 1:10 V/,@hv`+
% z(idx) = y(:,k); +r<d z
% subplot(4,7,Nplot(k)) @w[2 BaDt
% pcolor(x,x,z), shading interp 9]]isE8r
% set(gca,'XTick',[],'YTick',[]) kKlcK_b;
% axis square u|eV'-R)s
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) [OU[i(,{
% end <n|ayxA)
% W3~xjS"h
% See also ZERNPOL, ZERNFUN2. A@81wv
gq|]t<'
jwQ(E
% Paul Fricker 11/13/2006 (fUpj^E)p
=F9!)r
!M*$pQi}
sngM4ikhs
.W*" C
% Check and prepare the inputs: y(92 Th$
% ----------------------------- 8x /]H(J
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) nP5T*-~
error('zernfun:NMvectors','N and M must be vectors.') I/vQP+w O
end c7R<5f
|08'd5
duT'$}2@>
if length(n)~=length(m) tX'2 $}
error('zernfun:NMlength','N and M must be the same length.') ='z4bU
end 0*{2^\
[5T{`&
)Bo]+\2
n = n(:); uJ@C-/BD!M
m = m(:); 8H7=vk+
if any(mod(n-m,2)) ~A-Y%P
error('zernfun:NMmultiplesof2', ... 6aq=h`Y
'All N and M must differ by multiples of 2 (including 0).') N:%
}KAc
end *k^'xL
_GF{Duxh
cy{ ado2
if any(m>n) P+2@,?9#
error('zernfun:MlessthanN', ... tsf)+`vt
'Each M must be less than or equal to its corresponding N.') tH^]`6"QUa
end 15dbM/Gj
k[<Uxh%
JC#M,j2
if any( r>1 | r<0 ) P g.j]
error('zernfun:Rlessthan1','All R must be between 0 and 1.') 4Uzx2
end 3-6Lbe9H
viXt]0
vp2s)W8W
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Uz$.sa
error('zernfun:RTHvector','R and THETA must be vectors.') /OtLIM+7~{
end efUa[XO
[#mRlL0yk
'fS&WVR?
r = r(:); +rN&@}Jt.
theta = theta(:); n~Qo@%Jr
length_r = length(r); {$P')>/
if length_r~=length(theta) /O{iL:`
error('zernfun:RTHlength', ... 2Sb68hJIE
'The number of R- and THETA-values must be equal.') /kH
7I
end 1ww#]p`1
J2avt
5!jU i9
% Check normalization: 0hv}*NYd
% -------------------- ,.,spoV
if nargin==5 && ischar(nflag) zkb[u"
isnorm = strcmpi(nflag,'norm'); Mv_-JE9#>o
if ~isnorm kT1 2
error('zernfun:normalization','Unrecognized normalization flag.') eFXQ~~gOj
end YQN@;
else ,qu7XFYrY
isnorm = false; e754g(|>b
end >j6"\1E+Dz
C.N#y`g
a%XF"*^v
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% N;mJHr3[F
% Compute the Zernike Polynomials G:4'')T
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 9YEE.=]T
hUP?r/B
3](At%ss
% Determine the required powers of r: ?)V|L~/
% ----------------------------------- ./i5VBP5
m_abs = abs(m); tYUg%2G
rpowers = []; q5#6PYIq
for j = 1:length(n) @Pb%dS
rpowers = [rpowers m_abs(j):2:n(j)]; opv<r*!
end hn[lhC
rpowers = unique(rpowers); 6R#.AD\
*|({(aZ
.
ytxe!O
% Pre-compute the values of r raised to the required powers, T o$D[-
% and compile them in a matrix: JsK_q9]$e
% ----------------------------- kHz?vVE/l
if rpowers(1)==0 5H}d\=z
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ,R[<+!RS
rpowern = cat(2,rpowern{:}); E>isl"
rpowern = [ones(length_r,1) rpowern]; ]Wg&r Y0
else #7Jvk_r9Y
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); .g>0FP
rpowern = cat(2,rpowern{:}); ,Fzuo:{uy
end 4L<;z'
7Sl"q=>
MHQM'
% Compute the values of the polynomials: h pKrP
% -------------------------------------- &6&$vF65c
y = zeros(length_r,length(n)); e !N%
for j = 1:length(n) ZKF
#(G
s = 0:(n(j)-m_abs(j))/2; 63HtZ=hO7
pows = n(j):-2:m_abs(j); BT|n+Y[
for k = length(s):-1:1 on.m
'-s
p = (1-2*mod(s(k),2))* ... 3eN(Sw@p
prod(2:(n(j)-s(k)))/ ... auHP^O>4L
prod(2:s(k))/ ... }iRRf_
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... \2[sUY<W
prod(2:((n(j)+m_abs(j))/2-s(k))); S
N;1F
idx = (pows(k)==rpowers); Nn{/_QG
y(:,j) = y(:,j) + p*rpowern(:,idx); q854k+C
end yC\!6pg
2Q)pT$
if isnorm UL0n>Wa5
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 1xj w=
end 1EQLsg`d^
end p+}eP|N
% END: Compute the Zernike Polynomials 6yK"g7
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% i?n#ge
ZN}U^9m=
{nH*Wu*^
% Compute the Zernike functions: jwO7r0?\`G
% ------------------------------ Lm7fz9F%
idx_pos = m>0; UUEbtZH;
idx_neg = m<0; qJK-HF:#
hx
hs>eY
C^ZDUj`
z = y; CGs5`a
if any(idx_pos) ;Swj`'7
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); [m6%_3zV
end 7-MyiCt
if any(idx_neg) VWW(=j
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); V PI_pK
end "#]V^Rzxh
(|sqN8SbA
J<-2dvq
% EOF zernfun q],/%W