切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9054阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, ndr)3tuYu  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, gc##V]OD  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? ba8 6 N  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? m d?b*  
    [cDbaq,T  
    'fIHUw|  
    cQX:%Ix=  
    :V-k'hm &  
    function z = zernfun(n,m,r,theta,nflag) W@^J6sH  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. S`=n&'  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ^00{Hd6  
    %   and angular frequency M, evaluated at positions (R,THETA) on the P'sfi>A  
    %   unit circle.  N is a vector of positive integers (including 0), and w#&z]O9r  
    %   M is a vector with the same number of elements as N.  Each element (_K_`5d;QI  
    %   k of M must be a positive integer, with possible values M(k) = -N(k)  r@k"4ce-  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, gY!N3 *:  
    %   and THETA is a vector of angles.  R and THETA must have the same 5X0QxnnV  
    %   length.  The output Z is a matrix with one column for every (N,M) UgC)7 K1  
    %   pair, and one row for every (R,THETA) pair. oE1M/*myS  
    % HMV)U{  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Rv<L#!; t  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), m<{"}4'  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral /YFa ;2 W  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, _42Z={pZZq  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized r!kLV)_  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. } ~F~hf>s  
    % 9*\g`fWc}{  
    %   The Zernike functions are an orthogonal basis on the unit circle. =2%VZE7Vm  
    %   They are used in disciplines such as astronomy, optics, and L6+C]t}>6  
    %   optometry to describe functions on a circular domain. lm$;:Roj*  
    % %G[/H.7s-  
    %   The following table lists the first 15 Zernike functions. 0Gsu  
    % "]#'QuR  
    %       n    m    Zernike function           Normalization SNab   
    %       -------------------------------------------------- (~&w-w3  
    %       0    0    1                                 1 26.)Ur<F  
    %       1    1    r * cos(theta)                    2 n(>C'<otj  
    %       1   -1    r * sin(theta)                    2 zb:kanb-  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) hm\\'_u  
    %       2    0    (2*r^2 - 1)                    sqrt(3) \0?$wIH?  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) 2JZdw  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) qnJ50 VVW  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) {q,?<zBzu  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) tuLH}tkNY  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) ^I`a;  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) T@P!L  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) J\=a gQ  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 3z3_7XI  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Y5Z!og  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) ;iU%Kt  
    %       -------------------------------------------------- ] 8Tzr  
    % }G'XkoI&  
    %   Example 1: m5*[t7@%  
    % SkHYXe"]  
    %       % Display the Zernike function Z(n=5,m=1) . I==-|  
    %       x = -1:0.01:1; aGK@)&h$  
    %       [X,Y] = meshgrid(x,x); -Sz_mr  
    %       [theta,r] = cart2pol(X,Y); Wp[9beI*M  
    %       idx = r<=1; o=_c2m   
    %       z = nan(size(X)); ()\jCNLT  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); G\=_e8(  
    %       figure H)>sTST(  
    %       pcolor(x,x,z), shading interp OJ1tV% E  
    %       axis square, colorbar W5SNI>|E  
    %       title('Zernike function Z_5^1(r,\theta)') dv!r.  
    % BzN@gQo  
    %   Example 2: >o/95xk2  
    % pRi<cO  
    %       % Display the first 10 Zernike functions BBnq_w"a  
    %       x = -1:0.01:1; ;:]\KJm}?  
    %       [X,Y] = meshgrid(x,x); Y#HI;Y^RP  
    %       [theta,r] = cart2pol(X,Y); HB iBv-=,  
    %       idx = r<=1; mgQIhXH5L  
    %       z = nan(size(X)); Ef@,hX  
    %       n = [0  1  1  2  2  2  3  3  3  3]; 5 1dSFr<#  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; ,_ .v_  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; vt1lR5  
    %       y = zernfun(n,m,r(idx),theta(idx)); O{]9hm(tN  
    %       figure('Units','normalized') x({C(Q'O  
    %       for k = 1:10 *Y6xvib9*  
    %           z(idx) = y(:,k); L/Vx~r`P  
    %           subplot(4,7,Nplot(k)) 2@khSWV  
    %           pcolor(x,x,z), shading interp ke%pZ 7{u  
    %           set(gca,'XTick',[],'YTick',[]) F)Oe9x\/  
    %           axis square 2k5/SV X  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) vmX"+sHz$]  
    %       end Y)|N"f;  
    % 27A!\pn  
    %   See also ZERNPOL, ZERNFUN2. %d;ezY'2  
    <1"+,}'x  
    2+Rv{%  
    %   Paul Fricker 11/13/2006 T .n4TmF  
    ;\{`Ci\  
    PaWr[ye  
    QHlU|dR)Ry  
    s'\$t  
    % Check and prepare the inputs: V diJ>d[  
    % ----------------------------- GTl xq%?b  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) dl~|Izm  
        error('zernfun:NMvectors','N and M must be vectors.') -e]7n*}H$  
    end e0HfP v_  
    iG<Som  
    ytAWOt}`  
    if length(n)~=length(m) 7cTk@Gq  
        error('zernfun:NMlength','N and M must be the same length.') H/fUM  
    end *rh,"Zo  
    $8~e}8dt|  
    O7G"sT1Dv  
    n = n(:); 5:.{oSy7n  
    m = m(:); >I"V],d!6  
    if any(mod(n-m,2)) u bW]-U=T  
        error('zernfun:NMmultiplesof2', ... p&b5% 4P  
              'All N and M must differ by multiples of 2 (including 0).') 9KuD(EJS  
    end tJ0NPI56yP  
    t^tmz PWA  
    yxWO [ Z  
    if any(m>n) r'7LR  
        error('zernfun:MlessthanN', ... &[[K"aM1  
              'Each M must be less than or equal to its corresponding N.') SPkn 3D6  
    end z@ 35NZn  
    (5Nv8H8|  
    Vu8,(A7D%O  
    if any( r>1 | r<0 ) #q\x$   
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') %;xOB^H^  
    end 5Wx~ZQZ  
    mN_Z7n;^eh  
    yYZxLJ='  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) )  |a^U]  
        error('zernfun:RTHvector','R and THETA must be vectors.') w n|]{Ww35  
    end @OpNHQat9  
    *# {z3{+  
    |I;$M;'r&  
    r = r(:); :mcYZPX#  
    theta = theta(:); Xd `vDgD  
    length_r = length(r); C#0Qd%  
    if length_r~=length(theta) s#9Ui#[=h  
        error('zernfun:RTHlength', ... #'baPqdO  
              'The number of R- and THETA-values must be equal.') 5s{j = .O  
    end (qM j-l  
    !D^c3d  
    Fg]?zEa  
    % Check normalization: b \7iY&.C|  
    % -------------------- pKG<Nvgz&  
    if nargin==5 && ischar(nflag) @C_KV0i  
        isnorm = strcmpi(nflag,'norm'); ,5 j"ruZ  
        if ~isnorm B=f,QU  
            error('zernfun:normalization','Unrecognized normalization flag.') -e GL)M  
        end q'[}9e`Q  
    else O*6n$dUj3  
        isnorm = false; K$ }a8rH  
    end "_UdBG  
    0pb '\lA  
    qy1F* kY  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +0wT!DZW\=  
    % Compute the Zernike Polynomials & WOiik  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% am1[9g8L  
    Y*oDO$6  
    DE$q+j0P  
    % Determine the required powers of r: n{0Ld - zH  
    % ----------------------------------- ZFm`UXS  
    m_abs = abs(m); +avMX&%  
    rpowers = []; ?4H#G)F  
    for j = 1:length(n) f_^1J  
        rpowers = [rpowers m_abs(j):2:n(j)]; `>(W"^  
    end eDI= nSo  
    rpowers = unique(rpowers); e>rRTN  
    EI~"L$?  
    `$LWmm#  
    % Pre-compute the values of r raised to the required powers, Rgy- OA  
    % and compile them in a matrix: BAj-akc f  
    % ----------------------------- T  VmH  
    if rpowers(1)==0 2zSG&",2D  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); M,5j5<7  
        rpowern = cat(2,rpowern{:}); S{]7C?4`  
        rpowern = [ones(length_r,1) rpowern]; +yob)%  
    else :#E*Y8-  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); <:>SGSE9  
        rpowern = cat(2,rpowern{:}); wFh8?Z3u_  
    end n%^ LPD  
    >Hb^P)3  
    o{b=9-V  
    % Compute the values of the polynomials: !rDdd%Z  
    % -------------------------------------- rPNb\Ri  
    y = zeros(length_r,length(n)); f*{ YFg?*&  
    for j = 1:length(n) vr^~yEr  
        s = 0:(n(j)-m_abs(j))/2; d,vNem-Z*L  
        pows = n(j):-2:m_abs(j); /^{BUo  
        for k = length(s):-1:1 D-Vai#Cd  
            p = (1-2*mod(s(k),2))* ... ]r! >{  
                       prod(2:(n(j)-s(k)))/              ... #o/ H~Iv  
                       prod(2:s(k))/                     ... SnlyUP~P  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 6Tw#^;q-  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 'TC/vnM  
            idx = (pows(k)==rpowers); GDhE[of  
            y(:,j) = y(:,j) + p*rpowern(:,idx); `(+o=HsD  
        end 1axQ)},o@p  
         &c(WE RW?-  
        if isnorm 7'-Lp@an  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); r)9Dy,  
        end B_U{ s\VY  
    end /){KOCBl;  
    % END: Compute the Zernike Polynomials UtB6V)YI  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% OdWou|Gz  
    (iJ1 ;x  
    /&& 2u7*  
    % Compute the Zernike functions: Z@8vL  
    % ------------------------------ R3)57OyV  
    idx_pos = m>0; e~ aqaY~}  
    idx_neg = m<0; XoL JL]+?  
    E5el?=,i  
    zl-2$}<a  
    z = y; a07@C  
    if any(idx_pos) )VCzn~uf  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); kg][qn|>J]  
    end N"/-0(9[  
    if any(idx_neg) G2LK]  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); I1X /Lj=  
    end ^J Z^>E~  
    , P'P^0qJ  
    L%v^s4@  
    % EOF zernfun  nVu&/  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  _Lw OOZj  
    s:00yQ  
    DDE还是手动输入的呢? Th`skK&U  
    x.1-)\  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究