切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9389阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, MBg[hu%  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, ecs 0iW-,  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? ISNL='%  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? T#-;>@a}  
    u|t l@_  
    =XR6rR8  
    A811VL^  
    ;9OhK71}  
    function z = zernfun(n,m,r,theta,nflag) /_l\7MeI  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. =J]WVA,GqA  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ]w6Q?%'9  
    %   and angular frequency M, evaluated at positions (R,THETA) on the .c-a$39  
    %   unit circle.  N is a vector of positive integers (including 0), and U)bv,{-q  
    %   M is a vector with the same number of elements as N.  Each element wUCxa>h'  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) \PE;R.v_:  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, IANSpWea?  
    %   and THETA is a vector of angles.  R and THETA must have the same T3P9  
    %   length.  The output Z is a matrix with one column for every (N,M)  viAAb  
    %   pair, and one row for every (R,THETA) pair. >E<ib[vK[  
    % 'M>m$cCMZ  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike FoK2h!_  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi),  .fl r  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 4`#Q  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 7v%c.  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized -n05Z@7  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 5&n{QE?Um  
    % D8Fi{?A#FV  
    %   The Zernike functions are an orthogonal basis on the unit circle. ^MvuFA ,C  
    %   They are used in disciplines such as astronomy, optics, and aL;!BlU8v  
    %   optometry to describe functions on a circular domain. Z71m(//*}  
    % Z#d#n!Lz  
    %   The following table lists the first 15 Zernike functions. n6% `  
    % <R$ 2x_  
    %       n    m    Zernike function           Normalization Kb?{^\FiU  
    %       -------------------------------------------------- @[3c1B6K  
    %       0    0    1                                 1 EhHxB fAQ  
    %       1    1    r * cos(theta)                    2 U0_^6zd_  
    %       1   -1    r * sin(theta)                    2 3 39q%j$  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ]X>yZec  
    %       2    0    (2*r^2 - 1)                    sqrt(3) Eu?z!  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) 0y9 b0G  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) [ /o'l:  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) xN-,gT'!  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 5^Qa8yA>7  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) rz"$zc.)  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 4 ThFC  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) :k/Xt$`  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) Ki;SONSV~|  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) p)IL(_X)  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) dDPQDIx  
    %       -------------------------------------------------- G>V6{g2Q  
    % {.:$F3T  
    %   Example 1: p u(mHB  
    % @z@%vr=vX  
    %       % Display the Zernike function Z(n=5,m=1) y+(\:;y$7  
    %       x = -1:0.01:1; n[ B~C  
    %       [X,Y] = meshgrid(x,x); sT\:**  
    %       [theta,r] = cart2pol(X,Y); [r/zBF-.  
    %       idx = r<=1; 5BhR4+1J  
    %       z = nan(size(X)); NHGTV$T`1  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); PE%$g\#?  
    %       figure V"4Z9Qg}  
    %       pcolor(x,x,z), shading interp Vx_33";S\  
    %       axis square, colorbar @[n#-!i  
    %       title('Zernike function Z_5^1(r,\theta)') UPh#YV 0/,  
    % K!-OUm5A  
    %   Example 2: <gp?}Lk  
    % TLdlPBnr8  
    %       % Display the first 10 Zernike functions 3"y 6|e/5  
    %       x = -1:0.01:1; bHwEd%f  
    %       [X,Y] = meshgrid(x,x); i5 rkP`)j  
    %       [theta,r] = cart2pol(X,Y); \/NF??k,jk  
    %       idx = r<=1; T D _@0Rd  
    %       z = nan(size(X)); Q7s@,c!m_  
    %       n = [0  1  1  2  2  2  3  3  3  3]; 5f-b>=02  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; ~ nsb  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; Gnkar[oa&  
    %       y = zernfun(n,m,r(idx),theta(idx)); Kw -SOFE  
    %       figure('Units','normalized') 5>x_G#W  
    %       for k = 1:10 k +-w%  
    %           z(idx) = y(:,k); `geHSx_  
    %           subplot(4,7,Nplot(k)) }E 'r?N  
    %           pcolor(x,x,z), shading interp ~G!JqdKJ0  
    %           set(gca,'XTick',[],'YTick',[]) >@YefNX6  
    %           axis square _;1{feR_  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ,;)ZF  
    %       end &|hK79D  
    % ^xZh@e5  
    %   See also ZERNPOL, ZERNFUN2. ;5Sdx5`_  
    ?{ir$M  
    ( ay AP  
    %   Paul Fricker 11/13/2006 jJ ,_-ui  
    f O*jCl  
    QZ a.c  
    '/W$9jm  
    PMzPj,  
    % Check and prepare the inputs: yayhL DL  
    % ----------------------------- c3vb~l)  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) %MHb  
        error('zernfun:NMvectors','N and M must be vectors.') -=ZL(r 1  
    end b9.M'P\  
    l:85 _E  
    F/>_PH57  
    if length(n)~=length(m) ^J'_CA  
        error('zernfun:NMlength','N and M must be the same length.') )Z}AhX  
    end ,lyW'<~gA  
    }#XFa#  
    .w2ID  
    n = n(:); 8Lo#{`  
    m = m(:); {0zn~+  
    if any(mod(n-m,2)) 4.RQ3SoDa  
        error('zernfun:NMmultiplesof2', ... f-b],YE  
              'All N and M must differ by multiples of 2 (including 0).') !gsvF\XDM  
    end &.?XntI9O  
    gAqK)@8-  
    8K 3dwoT  
    if any(m>n)  T{YZ`[  
        error('zernfun:MlessthanN', ... * QgKo$IF  
              'Each M must be less than or equal to its corresponding N.') Uzu6>yT  
    end bF'rK'',  
    %`Re {%1;  
    $XBK_ 5  
    if any( r>1 | r<0 ) JAPr[O&  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') yIMqQSt79z  
    end #/)t]&n  
    u;#]eUk9}  
    'D\Q$q  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) wQkM:=t5  
        error('zernfun:RTHvector','R and THETA must be vectors.') @-N` W9  
    end *b~6 BM$  
    GD W@/oQr  
    .KsR48g8  
    r = r(:); nwRltK  
    theta = theta(:); f:T?oR>2  
    length_r = length(r); sDY~jP[Oa  
    if length_r~=length(theta) gq?:n.;TY  
        error('zernfun:RTHlength', ... Tkbao D  
              'The number of R- and THETA-values must be equal.') PNU(;&2<  
    end Szus*YL7  
    APQq F/  
    5j%G7.S\  
    % Check normalization: ,$P,x  
    % -------------------- Jd2.j?P=  
    if nargin==5 && ischar(nflag) jG5HW*>k0  
        isnorm = strcmpi(nflag,'norm'); 4w4B\Na>l  
        if ~isnorm *7BfK(9T  
            error('zernfun:normalization','Unrecognized normalization flag.') [}RoZB&I  
        end jN=<d q ~  
    else 2z.ot'  
        isnorm = false; 2Xb, i  
    end ]S|FK>U[  
    ZykMri3bi  
    >tD=t8  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% zM0NRERi  
    % Compute the Zernike Polynomials }[*'  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% bp1AN9~  
    4ls:BO;k]  
    Ic& h8vSU  
    % Determine the required powers of r: i;[y!U  
    % ----------------------------------- p7?  
    m_abs = abs(m); G)3I+uxn  
    rpowers = []; M[uWX=  
    for j = 1:length(n) EeIDlm0o  
        rpowers = [rpowers m_abs(j):2:n(j)]; IRdt:B|@  
    end ~MpikBf  
    rpowers = unique(rpowers); J 3!~e+wn  
    *[Hrbln  
    98m|&7  
    % Pre-compute the values of r raised to the required powers, K %^n.  
    % and compile them in a matrix: (!j#u)O  
    % ----------------------------- xU *:a[g  
    if rpowers(1)==0 ngY%T5-  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); / )0hsQs  
        rpowern = cat(2,rpowern{:}); k[=qx{Osx%  
        rpowern = [ones(length_r,1) rpowern]; 8~=*\ @^  
    else c :R?da  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); XtF m5\U  
        rpowern = cat(2,rpowern{:}); lame/B&nc  
    end U"oNJ8&%|  
    |<%!9Z  
    8h )XULs2  
    % Compute the values of the polynomials: jDzQw>T X  
    % -------------------------------------- voWH.[n^_  
    y = zeros(length_r,length(n)); "kg`TJf=  
    for j = 1:length(n) #-hO\ QdC  
        s = 0:(n(j)-m_abs(j))/2; nHK(3Z4G  
        pows = n(j):-2:m_abs(j); Qm%F]nyy  
        for k = length(s):-1:1 yNu_>!Cp5  
            p = (1-2*mod(s(k),2))* ... *zfgO pK  
                       prod(2:(n(j)-s(k)))/              ... P rt} 01$  
                       prod(2:s(k))/                     ... .nV2 n@SR  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ZWs   
                       prod(2:((n(j)+m_abs(j))/2-s(k))); f^c+M~\JKj  
            idx = (pows(k)==rpowers); )U^=`* 7  
            y(:,j) = y(:,j) + p*rpowern(:,idx);  Et>#&Nw8  
        end 3? {AGJ1  
         -(VJ,)8t2  
        if isnorm .Po"qoGy  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi);  0^;2  
        end |diI(2w  
    end L"_X W no  
    % END: Compute the Zernike Polynomials =KRM`_QShg  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  7WJ \nK  
    bMH~vR  
    ZsGvv]P  
    % Compute the Zernike functions: @SQsEq+A?\  
    % ------------------------------ gLiJ&H  
    idx_pos = m>0; Dc9uq5l  
    idx_neg = m<0; \0$+*ejz  
    'H1~Zhv  
    "CJVtO  
    z = y; 0zt]DCdY  
    if any(idx_pos) ,GbmL8P7Y  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); OV>& `puL  
    end &(F c .3m  
    if any(idx_neg) 8f@}-  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); %Ymi,o>  
    end OvfluFu7  
    >7U/TVd&  
    G5ATR<0m  
    % EOF zernfun g?j)p y  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    在线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  V?XQjH1X  
    wFMH\a  
    DDE还是手动输入的呢? ; Y/nS  
    )KZMRAT-  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究