下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, h Xb%;GL
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, _DrJVC~6@
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? ,jC3Fcly
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? (YY~{W$w(
`;YU.*
uZZU{U9h
4QIE8f
Y
>Bs#Xb_B]
function z = zernfun(n,m,r,theta,nflag) \o\nr!=k
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. V97,1`
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N CiR%Ujf
% and angular frequency M, evaluated at positions (R,THETA) on the h?-#9<A
% unit circle. N is a vector of positive integers (including 0), and A<\JQ
% M is a vector with the same number of elements as N. Each element Hg9CZMko
% k of M must be a positive integer, with possible values M(k) = -N(k) JT9N!CGZ
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, ?=VOD #)
% and THETA is a vector of angles. R and THETA must have the same EwS!]h?
% length. The output Z is a matrix with one column for every (N,M) x+]!m/
% pair, and one row for every (R,THETA) pair. ork=`};
% |oub!fG4
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike c*`>9mv
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), []0mX70N
% with delta(m,0) the Kronecker delta, is chosen so that the integral Fb/XC:AD
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ZhNdB
% and theta=0 to theta=2*pi) is unity. For the non-normalized 7 ~ztwL
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ~2d:Q6
% ?:|-Dq,
% The Zernike functions are an orthogonal basis on the unit circle. }n7th
% They are used in disciplines such as astronomy, optics, and m%"uPv\
% optometry to describe functions on a circular domain. p'sc0@}_O
% }pa9%BQI
% The following table lists the first 15 Zernike functions. -dv%H{
% w'X]M#Q><
% n m Zernike function Normalization _5MNMVLwW
% -------------------------------------------------- w#N?l!5
% 0 0 1 1 $
n,Z
% 1 1 r * cos(theta) 2 ~^^ NHq
% 1 -1 r * sin(theta) 2 c9j*n;Q
% 2 -2 r^2 * cos(2*theta) sqrt(6) uY<
H#k
% 2 0 (2*r^2 - 1) sqrt(3) jKZt~I
% 2 2 r^2 * sin(2*theta) sqrt(6) !GW,\y
% 3 -3 r^3 * cos(3*theta) sqrt(8) >xA),^ YT
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) Z?J:$of*
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) {B*W\[ns
% 3 3 r^3 * sin(3*theta) sqrt(8) ^v9|%^ug
% 4 -4 r^4 * cos(4*theta) sqrt(10) ]O{u tm
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) zq1mmFIO
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) e4I^!5)N
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) r}u%#G+K,
% 4 4 r^4 * sin(4*theta) sqrt(10) qn"D#K'&(
% -------------------------------------------------- hF3&i=;.
% Jdy<w&S
% Example 1: 0)9"M.AIvo
% ;eigOU]
% % Display the Zernike function Z(n=5,m=1) _ nP;Fx
% x = -1:0.01:1; M+wt__vHf
% [X,Y] = meshgrid(x,x); >QHo@Zqj(
% [theta,r] = cart2pol(X,Y); m-T~fJ
% idx = r<=1; Fg/dS6=n`?
% z = nan(size(X)); DWt*jX *
% z(idx) = zernfun(5,1,r(idx),theta(idx)); ED$DSz)x
% figure 44\>gI<
% pcolor(x,x,z), shading interp .[DthEF
% axis square, colorbar i`)!X:j
% title('Zernike function Z_5^1(r,\theta)') aFY_:.o2k`
% dSIH9D
% Example 2: K?#]("De6
% XE}H 3/2
% % Display the first 10 Zernike functions b'ml=a#i0
% x = -1:0.01:1; 8*g ^o\M
% [X,Y] = meshgrid(x,x); SbsouGD,{
% [theta,r] = cart2pol(X,Y); ]%RNA:(F'
% idx = r<=1; rZbEvS
% z = nan(size(X)); Bn]K+h\E
% n = [0 1 1 2 2 2 3 3 3 3]; %HtuR2#ca
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; |m,VTViv;i
% Nplot = [4 10 12 16 18 20 22 24 26 28]; ^TXf sQs
% y = zernfun(n,m,r(idx),theta(idx)); R*1kR|*_)
% figure('Units','normalized') j1Yq5`ia
% for k = 1:10 ,]Zp+>{
% z(idx) = y(:,k); Aox3s?
% subplot(4,7,Nplot(k)) y?30_#[dN
% pcolor(x,x,z), shading interp ,/&Zw01dGN
% set(gca,'XTick',[],'YTick',[]) A1cb"N^
% axis square ly4Qg\l
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) *i$ePVU
% end OySy6IN]q
% S"snB/
% See also ZERNPOL, ZERNFUN2. cJn HW
++[5q+b
xPmN},i'R$
% Paul Fricker 11/13/2006 h3u1K>R)
eukA[nO7G
`GQ{*_-
OQlG+|
PfW|77
% Check and prepare the inputs: ]!YtH]}
% ----------------------------- 1M%S
gV-#
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) KSs 1CF'i
error('zernfun:NMvectors','N and M must be vectors.') 8{&["?
end H5wb_yBQ+
`?s.\Dh
CfT/R/L
if length(n)~=length(m) i6no;}j
error('zernfun:NMlength','N and M must be the same length.') "c`xH@D
end +1{fzb>9_
9\O(n>
G`]w?Di4
n = n(:); _Sj}~H
m = m(:); ~o15#Pfn/
if any(mod(n-m,2)) B0mLI%B
error('zernfun:NMmultiplesof2', ... OOy}]uYF`
'All N and M must differ by multiples of 2 (including 0).') =_=*OEgO]
end Ya4?{2h@+
eG]a zt
p6 xPheD
if any(m>n) 8<PKKDgbfd
error('zernfun:MlessthanN', ... Z>A{i?#m
'Each M must be less than or equal to its corresponding N.') setLdEi
end ~a+NJ6e1
y8s=\`~PR
LPE)
if any( r>1 | r<0 ) FRyPeZR
error('zernfun:Rlessthan1','All R must be between 0 and 1.') oNRG25
end a5wDm
-Wjh* *
sk X]8
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) )+~E8yK
error('zernfun:RTHvector','R and THETA must be vectors.') ,ECAan/@
end i2F(GH?p[
T)\NkM&
INNAYQ
r = r(:); &IQ%\W#aY
theta = theta(:); "n- pl
length_r = length(r); 8$~3r a
if length_r~=length(theta) @FX{M..
error('zernfun:RTHlength', ... |>utWT]S
'The number of R- and THETA-values must be equal.') J|j;g!fK
end .hz2&9Ow
/7p>7q9g
O~'FR[J
% Check normalization: %Y',|+Arx
% -------------------- z\Ui8jo:;
if nargin==5 && ischar(nflag) c f*zejbw
isnorm = strcmpi(nflag,'norm'); dB)[O9K)
if ~isnorm sc xLB;
error('zernfun:normalization','Unrecognized normalization flag.') ^5)_wUf
end x;U|3{Io
else jH0Bo;
isnorm = false; 1X:&*a"5
end ?`. XK}
fOBN=y6x
BED@?:U# h
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% VK4/82@5
% Compute the Zernike Polynomials pG28M]\
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% "?H+
u/8$
(Jpm
K O
~07RFR
% Determine the required powers of r: 8A/>JD3^
% ----------------------------------- oFyeH )!
m_abs = abs(m); qy9i9$8
rpowers = []; -A;w$j6*
for j = 1:length(n) gb_X?j%p7
rpowers = [rpowers m_abs(j):2:n(j)]; JN^bo(kb
end cHEz{'1m
rpowers = unique(rpowers); Z3`2-r_=
\3j)>u,r
#~e9h9
% Pre-compute the values of r raised to the required powers, {G.jB/
% and compile them in a matrix: |Mlh;
% ----------------------------- \\s?B K
if rpowers(1)==0 {rfte'4;=
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); A;t
zRe
rpowern = cat(2,rpowern{:}); ,RN|d0dE
rpowern = [ones(length_r,1) rpowern]; T/Q==Q{W:
else L]>4Nd
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 3{q[q#"
rpowern = cat(2,rpowern{:}); <?4cWp|i
end AA.Ys89V
L5C2ng>
MLeX;He
% Compute the values of the polynomials: g-eq
% -------------------------------------- WVkG2
y = zeros(length_r,length(n)); &%:*\_2s
for j = 1:length(n) -fQX4'3R
s = 0:(n(j)-m_abs(j))/2; 3.~h6r5-
pows = n(j):-2:m_abs(j); x
Ty7lfSe
for k = length(s):-1:1 N1s.3`
p = (1-2*mod(s(k),2))* ... #'iPDRYy
prod(2:(n(j)-s(k)))/ ... c.-cpFk^L&
prod(2:s(k))/ ... oB}K[3uB:t
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... '2xcce#
prod(2:((n(j)+m_abs(j))/2-s(k))); 4JSZ0:O
idx = (pows(k)==rpowers); &/DOO ^
y(:,j) = y(:,j) + p*rpowern(:,idx); ooDdV
>
end 8.-S$^hj~6
&58 {
if isnorm rFO_fIJno
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ;x16shH
end K+-z Y[3
end {70Ou}*
% END: Compute the Zernike Polynomials 9PCa*,
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% u YabJqV
*{Yi}d@h(
+/(|?7i@
% Compute the Zernike functions: i.F8
% ------------------------------ i<Q&
D\Pv
idx_pos = m>0; iA&oLu[y3
idx_neg = m<0; !^]q0x
/t$*W\PL@
q$|0)}
z = y; >^;(c4C
if any(idx_pos) (<
:mM
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); "B~WcC
end yW{mK
if any(idx_neg) NQg'|Pt(%
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); &b!vWX1N
end U-1VnX9m
f@h2;An$w
QYH."7X
>
% EOF zernfun u*U_7Uw$