下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, h6O'"
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, |,oLZCNa
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? =:w,wI.
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? (2>q
pKq[F*Lut
Xy K,
'V:MppQVZ.
Y %bb-|\W
function z = zernfun(n,m,r,theta,nflag) K`9~#Zx$
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. =gR/ t@Ld
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N hR7uAk_?
% and angular frequency M, evaluated at positions (R,THETA) on the u1y>7,Z6W
% unit circle. N is a vector of positive integers (including 0), and {'M/wT)FeC
% M is a vector with the same number of elements as N. Each element ^c}3o|1m(
% k of M must be a positive integer, with possible values M(k) = -N(k) |J:r]);@K
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, t'At9<ib
% and THETA is a vector of angles. R and THETA must have the same Wj|W B*B
% length. The output Z is a matrix with one column for every (N,M) $3p 48`.\
% pair, and one row for every (R,THETA) pair. LkzA_|8:D
% 8+gp"!E
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ^VMCs/g6
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), u4xtlGt5
% with delta(m,0) the Kronecker delta, is chosen so that the integral >}~[ew
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, wH@S$WT
% and theta=0 to theta=2*pi) is unity. For the non-normalized Fs4shrt
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. M_%KhK
% d@{12hq
% The Zernike functions are an orthogonal basis on the unit circle. KyVzf(^
% They are used in disciplines such as astronomy, optics, and `Rt w'Uz
% optometry to describe functions on a circular domain. %RtL4"M2j
% ."BXA8c;A
% The following table lists the first 15 Zernike functions. srN7
% +<p&Va#
% n m Zernike function Normalization +VW8{=$
% -------------------------------------------------- O-UA2?N@j
% 0 0 1 1 zT&"rcT">
% 1 1 r * cos(theta) 2 )=K8mt0qob
% 1 -1 r * sin(theta) 2 1DAU*^-
% 2 -2 r^2 * cos(2*theta) sqrt(6) ETU-6qFtO
% 2 0 (2*r^2 - 1) sqrt(3) A. tGr(r
% 2 2 r^2 * sin(2*theta) sqrt(6) JS m7-p|E
% 3 -3 r^3 * cos(3*theta) sqrt(8) >/4[OPB0R
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) \VOv&s;h
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) &53,8r
% 3 3 r^3 * sin(3*theta) sqrt(8) PZJn/A1
% 4 -4 r^4 * cos(4*theta) sqrt(10) b~tu;:
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Y0lLO0'
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) C|Gk}
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) !^MwE]
% 4 4 r^4 * sin(4*theta) sqrt(10) mUP!jTF
% -------------------------------------------------- RiR],Sj
% s
Y1@~ v
% Example 1: L#a!fd
% P~!,"rY
% % Display the Zernike function Z(n=5,m=1) l(Hz9
% x = -1:0.01:1; ! })Y9oZc8
% [X,Y] = meshgrid(x,x); ]5a3e+
% [theta,r] = cart2pol(X,Y); jGkDD8K [
% idx = r<=1; sDg1nKw(
% z = nan(size(X)); \ Qx%76
% z(idx) = zernfun(5,1,r(idx),theta(idx)); tpA-IL?KQw
% figure +(:Qf+:
% pcolor(x,x,z), shading interp -U$;\1--
% axis square, colorbar &Lzd*}7
% title('Zernike function Z_5^1(r,\theta)') -lfDoNRhQ
% j]%XY+e
% Example 2: ]CcRI|g}
% @IbZci)1
% % Display the first 10 Zernike functions V73/q
% x = -1:0.01:1;
2<8l&2}7]
% [X,Y] = meshgrid(x,x); ^4]=D nd%
% [theta,r] = cart2pol(X,Y); :!CnGKgt
% idx = r<=1; b1'849i'y=
% z = nan(size(X)); 5$:9nPAH
% n = [0 1 1 2 2 2 3 3 3 3]; +Z_VF30pa
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; k_u!E3{~
% Nplot = [4 10 12 16 18 20 22 24 26 28]; f0^s<:*
% y = zernfun(n,m,r(idx),theta(idx)); =IX-n$d`>
% figure('Units','normalized') NM:$Q<n
% for k = 1:10 W58?t6!
=
% z(idx) = y(:,k); Xe:^<$z
% subplot(4,7,Nplot(k)) &D-z|ZjgHi
% pcolor(x,x,z), shading interp FhBV.,bU,m
% set(gca,'XTick',[],'YTick',[]) , :K{
% axis square \X(*JNQ
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ^K J#dT
% end sxuP"4
% A+H8\ew2,
% See also ZERNPOL, ZERNFUN2. cg]Gt1SU
{=d}04i)E"
l9j=;h
% Paul Fricker 11/13/2006 ^%Y-~yB-
i E;F=Rb
862rol
4|cRYZj5
`wj'
% Check and prepare the inputs: AH'3
5Kf)
% ----------------------------- K7{B!kX4k
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) QAo/d4
error('zernfun:NMvectors','N and M must be vectors.') 3]}RjOTU
end i-wWbZ-
%{V7|Azt
4DL2
A;T
if length(n)~=length(m) 2PeMt^
error('zernfun:NMlength','N and M must be the same length.') bxO/FrwTj{
end 1VG]|6f
d+]= l+&
_~umE/tz
n = n(:); `?l
/HUw
m = m(:); qW4\t
if any(mod(n-m,2)) sieC7raO
error('zernfun:NMmultiplesof2', ... >e-0A
'All N and M must differ by multiples of 2 (including 0).') (w"(RM~
end *+6iXMwe
OA}; pQ9QN
/7+b.h])^
if any(m>n) ~W4SFp
error('zernfun:MlessthanN', ... 6v%ePFul
'Each M must be less than or equal to its corresponding N.') Us#/#-hJ
end Jwj=a1I 53
mv,a>Cvs[
up8d3
if any( r>1 | r<0 ) pH3\X
cn
error('zernfun:Rlessthan1','All R must be between 0 and 1.') 74
)G.!
end a\,V>}e
jVoD9H
F/
g$Vr9MH
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ;;CNr_
error('zernfun:RTHvector','R and THETA must be vectors.') D ZZRu8~
end @6R6.i5d
suWO:]FR
hz<TjWXv'
r = r(:); }$uwAevP{y
theta = theta(:); 1#AxFdm1
length_r = length(r); a
^juZ
if length_r~=length(theta) VhMVoW
error('zernfun:RTHlength', ... &dni6E4
'The number of R- and THETA-values must be equal.') -h
^MX
end :w|=o9J
&0G9v
z"7X.*]
% Check normalization: ?-9uf\2_
% -------------------- c\ZnGI\|
if nargin==5 && ischar(nflag) R/E6n &R
isnorm = strcmpi(nflag,'norm'); d,
?GW
if ~isnorm }[@Q**j(
error('zernfun:normalization','Unrecognized normalization flag.') DaGny0|BB
end uz$p'Q
else TOa6sB!H
isnorm = false; KC(z TY
end ;GOu'34j
@y * TVy
L5|g\Y`
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% fshG ~L7S9
% Compute the Zernike Polynomials '<ZHzDW@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 9Nv?j=*$
=h
~n5wQG
&?xmu204
% Determine the required powers of r: FQ47j)p;
% ----------------------------------- tW-[.Y -M,
m_abs = abs(m); Tj<B;f!u
rpowers = []; "VoufXM:
for j = 1:length(n) >O~V#1 H
rpowers = [rpowers m_abs(j):2:n(j)]; yFd942
end B~&}Mv
rpowers = unique(rpowers); >mEfd=p
MI:%Eq
i-@V
% Pre-compute the values of r raised to the required powers, +IjBeQ?
% and compile them in a matrix: I=P<RG7j)
% ----------------------------- Ux= B*m1@{
if rpowers(1)==0 oaILh
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); q.@% H}
rpowern = cat(2,rpowern{:}); %Kp^wf#o9
rpowern = [ones(length_r,1) rpowern]; Pq(LW(
else ^~bdAO81
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); $T7 qd
rpowern = cat(2,rpowern{:}); #&L7FBJ"*v
end N{@~(>ee^
@B(E&
Q%J,:J
% Compute the values of the polynomials: kr
|k \
% -------------------------------------- t6\--lk_
y = zeros(length_r,length(n)); 9zCuVUcd$.
for j = 1:length(n) 5gC>j(
s = 0:(n(j)-m_abs(j))/2; Lz:FR*
pows = n(j):-2:m_abs(j); T:|p[Xbo
for k = length(s):-1:1 ryA+Lli.
p = (1-2*mod(s(k),2))* ... xpwy%uo
prod(2:(n(j)-s(k)))/ ... e:.?T\
prod(2:s(k))/ ... .ns=jp
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... kDM?`(r
prod(2:((n(j)+m_abs(j))/2-s(k))); rwgj]
idx = (pows(k)==rpowers); ) vVf- zU
y(:,j) = y(:,j) + p*rpowern(:,idx); +KNd%AJ
end JV'aqnb.8\
fM*?i"j;Y
if isnorm hJir_=
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); RQ^
\|+_
end U^U
hZ!
end 8.I3%u
% END: Compute the Zernike Polynomials :h3n[%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% T,vh=UF%]
|R!ozlL{}
87eH~&<1
% Compute the Zernike functions: k"/Rjd(;
% ------------------------------ <63TN`B
idx_pos = m>0; )/~o'M3
idx_neg = m<0; 5IFzbL#q#f
}_^ vvu
:$PrlE
z = y; Q1|zX@,
if any(idx_pos) "5sA&^_#_
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 5ddfdIp
end
gwXmoM5
if any(idx_neg) ~%f$}{
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); V
d]7v
end ux|
QGT2LY
83{P7PBQ;]
V7p
hD3Y
% EOF zernfun %^nNt:N0