下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, 2kMBe%
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, N
zrHWVD
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? /zxLnT;
5
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? ab"6]%_
6zv-nMZc
PP/EZ ^]b
+9mE1$C
I
ACpUB
function z = zernfun(n,m,r,theta,nflag) 'dJ#NT25
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. !J#oN+AR
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N mL\_C9k,n
% and angular frequency M, evaluated at positions (R,THETA) on the 0zJT_H+
% unit circle. N is a vector of positive integers (including 0), and NQBa+N
% M is a vector with the same number of elements as N. Each element t~_j+k0K#
% k of M must be a positive integer, with possible values M(k) = -N(k) ;Q YUiR
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, dL{zU4iUR
% and THETA is a vector of angles. R and THETA must have the same \3nu &8d
% length. The output Z is a matrix with one column for every (N,M) J-iFAKN
% pair, and one row for every (R,THETA) pair. )v\zaz
% z}Y23W&sX
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 3JhT
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 3PRg/vD3
% with delta(m,0) the Kronecker delta, is chosen so that the integral YY{0WWua
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, tc-pVw:TV
% and theta=0 to theta=2*pi) is unity. For the non-normalized u7PtGN0r%
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. }5_[t9LX
% pF0sXvWGG
% The Zernike functions are an orthogonal basis on the unit circle. &8=wkG%
% They are used in disciplines such as astronomy, optics, and U(xN}Y?
% optometry to describe functions on a circular domain. g2?kC^=z=
% Ih Yso7g
% The following table lists the first 15 Zernike functions. =*paa
% p2m@0ou
% n m Zernike function Normalization C:r@)Mhq
% -------------------------------------------------- 5(9SIj^O
% 0 0 1 1 P:lmQHls+
% 1 1 r * cos(theta) 2 L@mNfLK
% 1 -1 r * sin(theta) 2 MH wjJ
% 2 -2 r^2 * cos(2*theta) sqrt(6) x}^:Bs+j
% 2 0 (2*r^2 - 1) sqrt(3) TRLz>m Q
% 2 2 r^2 * sin(2*theta) sqrt(6) 'gBGZ?^N!U
% 3 -3 r^3 * cos(3*theta) sqrt(8) e6G=Bq$
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) " a&|{bv
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) /#<R
% 3 3 r^3 * sin(3*theta) sqrt(8) F!k3/z
% 4 -4 r^4 * cos(4*theta) sqrt(10) Q:L^DZkGV
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) U-~6<\Mf
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) Uz4!O
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) a:q>7V|%$
% 4 4 r^4 * sin(4*theta) sqrt(10) MWGs:tpL4
% -------------------------------------------------- 3VI[*b
% !xE/
% Example 1: n'?AZ4&z
% i`nmA-Zj[
% % Display the Zernike function Z(n=5,m=1) E=*82Y=B
% x = -1:0.01:1; -RLY.@'d-M
% [X,Y] = meshgrid(x,x); V
yOuw9
% [theta,r] = cart2pol(X,Y); w}20l F
% idx = r<=1; `j#zwgUs
% z = nan(size(X)); biLNR"/E
% z(idx) = zernfun(5,1,r(idx),theta(idx)); l+ ,p=
% figure v[7iWBqJ
% pcolor(x,x,z), shading interp XBr-UjQ
% axis square, colorbar mM[KT}
A
% title('Zernike function Z_5^1(r,\theta)') :CeK
'A\
% (^{tu89ab
% Example 2: JJQS7,vG
% 4Eri]O Ri
% % Display the first 10 Zernike functions Za110oF
% x = -1:0.01:1; C{*' p+f
% [X,Y] = meshgrid(x,x); $q$G
% [theta,r] = cart2pol(X,Y); =8o$
% idx = r<=1; ^@V;`jsll
% z = nan(size(X)); "^froQ{"T
% n = [0 1 1 2 2 2 3 3 3 3]; aAbK{=/y_!
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 7^oO
N+=d
% Nplot = [4 10 12 16 18 20 22 24 26 28]; 74w Df
% y = zernfun(n,m,r(idx),theta(idx)); ShIJ6LZ
% figure('Units','normalized') n%S%a>IQj
% for k = 1:10 ,<CFjtelO
% z(idx) = y(:,k); _Xqa_6+/
% subplot(4,7,Nplot(k)) G (3wI}
% pcolor(x,x,z), shading interp "y9]>9:$-
% set(gca,'XTick',[],'YTick',[]) Vsj1!}X:
% axis square L*8U.{NY
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) i^SPNs=
% end o*t4zF&n
% ` ;}w!U
% See also ZERNPOL, ZERNFUN2. C>:,\=y%
Q M) ob
nb~592u
% Paul Fricker 11/13/2006 5r` x\
2JhE`EVH
+^ cjdH*
A"}Ib'
{y%|Io`P
% Check and prepare the inputs: %TeH#%[g>\
% ----------------------------- b|DiU}
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Q$*JkwPQ}
error('zernfun:NMvectors','N and M must be vectors.') iAr]Ed"9|
end xxQgX~'x
] :SbvsPm
3Fg{?C_l
if length(n)~=length(m) cakwGs_{
error('zernfun:NMlength','N and M must be the same length.') Qx_]oz]NY
end (
}RJW:
\v_R]0m\
]@6L,+W"
n = n(:); q&kG>
m = m(:); i*)BFV_-
if any(mod(n-m,2)) d6XdN
error('zernfun:NMmultiplesof2', ... YD,<]q%
'All N and M must differ by multiples of 2 (including 0).') `uof\D<']
end
<dKHZ4
]Om;bmwt
4[
*G
if any(m>n) 2w;Cw~<=d
error('zernfun:MlessthanN', ... Y_FQB K U
'Each M must be less than or equal to its corresponding N.') v[\Z^pccgj
end C({r1l4[D
.3CQFbHF
Sw.Kl
0M
if any( r>1 | r<0 ) GOUO
error('zernfun:Rlessthan1','All R must be between 0 and 1.') O&
1z-
end ~hb;kc3
.^wBv
'Y
r@c!M|m@
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) c{3P|O&.
error('zernfun:RTHvector','R and THETA must be vectors.') cz1 m05E
end #('GGzL6c
J6mUU3F9f
s[;1?+EI
r = r(:); p:ubj'(U05
theta = theta(:); %x8vvcO^t
length_r = length(r); q\/xx`L
if length_r~=length(theta) ]$!7;P
error('zernfun:RTHlength', ... [M2xF<r6t
'The number of R- and THETA-values must be equal.') G6bvV*TRi
end }\QXPU{UVd
6Z5$cR_vC7
sitgz)Ki^
% Check normalization: d~KTUgH'<
% -------------------- F8&L'@m9>
if nargin==5 && ischar(nflag) K_fJ{Vc>O
isnorm = strcmpi(nflag,'norm'); XPLm`Q|1#t
if ~isnorm : cPV08i
error('zernfun:normalization','Unrecognized normalization flag.') E %?>
%h
end BKK@_B"
else m A('MS2
isnorm = false;
&MBm1T|Y
end NNBT.k3)
ddY-F
}z~
g,B@*2Uj
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% *G[` T%g
% Compute the Zernike Polynomials xLP8*lvy
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% USJ4Z
X([@}ren
b?/Su<q
% Determine the required powers of r: S`& yVzv
% ----------------------------------- Ym#io]
m_abs = abs(m); ~FVbL-2
rpowers = []; P]7s1kgaS
for j = 1:length(n) m4^VlE,`Dh
rpowers = [rpowers m_abs(j):2:n(j)]; CoV@{Pi
end s>=$E~qq
rpowers = unique(rpowers); Pk5 %lu
;x&3tN/I
?4t~z 1.f
% Pre-compute the values of r raised to the required powers, GL^
j
|1
% and compile them in a matrix: @ev^e!B
% ----------------------------- $#_^uWN-M
if rpowers(1)==0 I*KJq?R
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); y2PxC. -
rpowern = cat(2,rpowern{:}); uN0'n}c;1.
rpowern = [ones(length_r,1) rpowern]; .UU)
else &{8[I3#@
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false);
GYonb)F
rpowern = cat(2,rpowern{:}); )O\l3h"
end iig&O(,
Q;@w\_OR
J?Rp
% Compute the values of the polynomials: fN
1:'d
% -------------------------------------- DvTbt?i[
y = zeros(length_r,length(n)); hDbZ62DDN
for j = 1:length(n) V3_qqz}`r
s = 0:(n(j)-m_abs(j))/2; =|d5V% mK
pows = n(j):-2:m_abs(j); <JZa
for k = length(s):-1:1 w$749jGx
p = (1-2*mod(s(k),2))* ... 7KtgR=-Lb
prod(2:(n(j)-s(k)))/ ... V{{UsEVO
prod(2:s(k))/ ... 7A
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... eXdH)|l,\
prod(2:((n(j)+m_abs(j))/2-s(k)));
K4^B ~0~
idx = (pows(k)==rpowers); Ds\f?\Em
y(:,j) = y(:,j) + p*rpowern(:,idx); mHc2v==X\-
end Kt_HJ!
)' 2vUt`_7
if isnorm ?#__#
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); $-)y59w"
end +@PZ3
[s
end !Tu.A@
% END: Compute the Zernike Polynomials vw` '9~
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -Q!?=JNtQ
/PkOF((
i{PX=
% Compute the Zernike functions: _xdttO^N
% ------------------------------ uMBb=
idx_pos = m>0; CzT_$v_
idx_neg = m<0; <pUc(
tPoz
m>b
i$Y
^9kdd[
z = y; <zu)=W'R]
if any(idx_pos) BimM)4g
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ||?wRMV
end <7X+-%yb;
if any(idx_neg) wSs78c=
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 2K'}Vm+
end T0}P 'q
=`%%*
,@2d4eg4
% EOF zernfun 5xG/>fn