切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9033阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, oKzLt  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, iEnDS@7  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? @'dtlY5;  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? ZMoN  
    ,\ov$biL  
    RHeql*`  
    ]x?`&f8i  
    NKh8'=S  
    function z = zernfun(n,m,r,theta,nflag) gLU #\d]  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 3s"x{mtH  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N HPT$)NeNc  
    %   and angular frequency M, evaluated at positions (R,THETA) on the V D-,)f  
    %   unit circle.  N is a vector of positive integers (including 0), and -FdhV%5]  
    %   M is a vector with the same number of elements as N.  Each element 8eQ 4[wJY  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) Q/L:0ovR  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, F~4oPB K<  
    %   and THETA is a vector of angles.  R and THETA must have the same D&$%JT'3  
    %   length.  The output Z is a matrix with one column for every (N,M) |h4aJv  
    %   pair, and one row for every (R,THETA) pair. bZz ,'  
    % ?X~Keb  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ^GHA,cSf  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), |cUTP!iy  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral \$W>@w0  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, n](Q)h'nlo  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized )BmK'H+l  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 1UT&kD!si  
    % .3M=|rE   
    %   The Zernike functions are an orthogonal basis on the unit circle. G?v]p~6  
    %   They are used in disciplines such as astronomy, optics, and }y;s(4  
    %   optometry to describe functions on a circular domain. ^1nQDd*  
    % [AA'Ko  
    %   The following table lists the first 15 Zernike functions. :  *k   
    % XcD$xFDZ  
    %       n    m    Zernike function           Normalization 4'_PLOgnX  
    %       -------------------------------------------------- x(ue |UG  
    %       0    0    1                                 1 B=8],_  
    %       1    1    r * cos(theta)                    2 D% v{[ KY  
    %       1   -1    r * sin(theta)                    2 W!MO }0s  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) _vr> -:G  
    %       2    0    (2*r^2 - 1)                    sqrt(3) C5"=%v[gQv  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) $t}t'uJ  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 3\JEp,5  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) ~|QhWgq  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) AU0pJB'  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) !,WO]O v  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 8&t3a+8l  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) > yk2  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) mO%F {'  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) .W>LEz'  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) %PW_v~sg  
    %       -------------------------------------------------- x/7kcj!O  
    % :|%k*z  
    %   Example 1: i-Er|u; W  
    % }g&A=u_2  
    %       % Display the Zernike function Z(n=5,m=1) % s&l^&ux  
    %       x = -1:0.01:1; :rR)rj'  
    %       [X,Y] = meshgrid(x,x); 0&wbGbg(W  
    %       [theta,r] = cart2pol(X,Y); vM5yiHI(jb  
    %       idx = r<=1; Q#M@!&  
    %       z = nan(size(X)); &![3{G"+>l  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); /zV&ebN]  
    %       figure W w\M3Q`h  
    %       pcolor(x,x,z), shading interp ~*NG~Kn"s  
    %       axis square, colorbar >JVdL\3  
    %       title('Zernike function Z_5^1(r,\theta)') "=H(\ V  
    % iX (<ozH  
    %   Example 2: e,V @t%  
    % cCa+UTxaJ  
    %       % Display the first 10 Zernike functions EIdEXAC(  
    %       x = -1:0.01:1; 'ip2|UG  
    %       [X,Y] = meshgrid(x,x); rlMahY"C  
    %       [theta,r] = cart2pol(X,Y); Q^trKw~XNy  
    %       idx = r<=1; '/O >#1  
    %       z = nan(size(X)); 1xBgb/+  
    %       n = [0  1  1  2  2  2  3  3  3  3]; mQd L"caA  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 7F$G.LhMw  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; p#;I4d G  
    %       y = zernfun(n,m,r(idx),theta(idx)); !pT i.3  
    %       figure('Units','normalized') k7ye,_&>  
    %       for k = 1:10 g$S|CqRG  
    %           z(idx) = y(:,k); rvEX ;8TS  
    %           subplot(4,7,Nplot(k)) "($"T v2  
    %           pcolor(x,x,z), shading interp E! "N}v  
    %           set(gca,'XTick',[],'YTick',[]) {f1iys'Om  
    %           axis square T@H<Fm_  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) CqFk(Td9-D  
    %       end % H/V iC  
    % /Pv dP#!  
    %   See also ZERNPOL, ZERNFUN2. X^o0t^  
    2pQ29  
    KATu7)e&~^  
    %   Paul Fricker 11/13/2006 'LX]/ D  
    aWS_z6[t#6  
    ,::f? Gc7j  
    15J t @{<r  
    0]k-0#JM  
    % Check and prepare the inputs: BZP{{  
    % ----------------------------- [x[ nTIg  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) JfLoGl;p m  
        error('zernfun:NMvectors','N and M must be vectors.') z{m%^,Cs,  
    end Qo\+FkhYq  
    +d!"Zy2|B  
    _jWGwO  
    if length(n)~=length(m) [6cF#_)*  
        error('zernfun:NMlength','N and M must be the same length.') r7FFZNs!  
    end M!4}B  
    CpLLsphy  
    2'U+QK@  
    n = n(:); 2%_UOEayU  
    m = m(:); FKWL{"y  
    if any(mod(n-m,2)) }'u0Q6Obj  
        error('zernfun:NMmultiplesof2', ... 1|XC$0  
              'All N and M must differ by multiples of 2 (including 0).') XMlcY;W  
    end #Y<QEGb(  
    B`w@Xk'D  
    lvp8{]I<  
    if any(m>n) ;&9wG`  
        error('zernfun:MlessthanN', ... @:w[(K[^b/  
              'Each M must be less than or equal to its corresponding N.') HDHC9E6  
    end irooFR[L9  
    \AY*x=PF  
    {Rtl<W0  
    if any( r>1 | r<0 ) HDQH7Bs  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') x5(B(V@b  
    end tlyDXB~+  
    @)x8<  
    M _e^KF  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) D` abVf  
        error('zernfun:RTHvector','R and THETA must be vectors.') !SAR/sdXf  
    end +`&-xq76  
    dQ-:]T (  
    5Y#~+Im=[@  
    r = r(:); ~{$5JIpCm  
    theta = theta(:); `nv82v  
    length_r = length(r); i p; RlO  
    if length_r~=length(theta) el3lR((H  
        error('zernfun:RTHlength', ... t|]2\6acuc  
              'The number of R- and THETA-values must be equal.') D:#e;K  
    end VRA0p[  
    n-x%<j(Xf  
    a&C}' e"  
    % Check normalization: ,}23  
    % -------------------- #xNXCBl]O  
    if nargin==5 && ischar(nflag) \(;X3h  
        isnorm = strcmpi(nflag,'norm'); IRK(y*6  
        if ~isnorm &XZS}n  
            error('zernfun:normalization','Unrecognized normalization flag.') I%tJLdL  
        end ;t5e]  
    else 8dCa@r&tz  
        isnorm = false; RGz NZc  
    end JG*Lc@Q  
    $;As7MI  
    =*=qleC3  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% gaVQ3NqF  
    % Compute the Zernike Polynomials \{{i:&] H  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% aP`V  
    CAtdx!  
    <?Y.w1  
    % Determine the required powers of r: ]vUTb9>{?  
    % ----------------------------------- vJfj1 f  
    m_abs = abs(m); 57rH`UFXH  
    rpowers = []; tish%Qnpd  
    for j = 1:length(n) DcX,o*ec!  
        rpowers = [rpowers m_abs(j):2:n(j)]; 'Ej&zh  
    end woyeKOr  
    rpowers = unique(rpowers); c5AEn -Q  
    3-U@==:T  
    X~> 2iL  
    % Pre-compute the values of r raised to the required powers, yQdoy^d/4  
    % and compile them in a matrix: 0})mCVBY  
    % ----------------------------- #9 u2LK  
    if rpowers(1)==0 3}V -'!  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Uv%?z0F<C  
        rpowern = cat(2,rpowern{:}); t`eUD>\  
        rpowern = [ones(length_r,1) rpowern]; eG\`SKx_  
    else b&xlT+GN  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); G !;<#|a  
        rpowern = cat(2,rpowern{:}); sFa5#w*>  
    end +/Qgl  
    xq\A TON  
    KV]8o'  
    % Compute the values of the polynomials: k \V6 q9*  
    % -------------------------------------- IHStN,QD  
    y = zeros(length_r,length(n)); THf*<|  
    for j = 1:length(n) jb lj]/  
        s = 0:(n(j)-m_abs(j))/2; @`H47@e  
        pows = n(j):-2:m_abs(j); '.1_anE]  
        for k = length(s):-1:1 s2;b-0  
            p = (1-2*mod(s(k),2))* ... (^ ;Fyf/  
                       prod(2:(n(j)-s(k)))/              ... V7q-Pfh!y  
                       prod(2:s(k))/                     ... `AcT}. u  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... mIm.+U`a2  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); HZEDr}RN  
            idx = (pows(k)==rpowers); *Rj(~Q/t  
            y(:,j) = y(:,j) + p*rpowern(:,idx); _|} GhdYE  
        end < (<IRCR  
         #azD& 6`  
        if isnorm Kfk/pYMDq  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); fFNwmH-jv  
        end iES?}K/q  
    end iw?*Wp25  
    % END: Compute the Zernike Polynomials zD%@3NA41  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% F2Nb]f  
    cgF?[Z+x  
    o<\9OQ0  
    % Compute the Zernike functions: zcE[wM  
    % ------------------------------ Sz#dld Mz  
    idx_pos = m>0; *9I/h~I  
    idx_neg = m<0; 8nQjD<-  
    \aB>Q"pS  
    0OAHD'  
    z = y; K3On8  
    if any(idx_pos) rA6lyzJ  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); x9s1AzM{  
    end LJ+Qe%|  
    if any(idx_neg) W*/0[|n*  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); i_kKE+Q  
    end @ZTsl ?  
    ~T'Ri=  
    QGM@m:O  
    % EOF zernfun QGpAG#M9?  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  N R0"yJV>  
    gL(_!mcwu  
    DDE还是手动输入的呢? 49?wEm#  
    {IgL H`@  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究