下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, _
T ;+*
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, xaiA2
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? 0RmQfD>
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? yv1Z*wTpO
^PHWUb+``
Bs7/<$9K/
t<~$?tuZ
Fv_rDTo
function z = zernfun(n,m,r,theta,nflag) X633.]+
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. t*X
k'(v
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 7S+_eL^
% and angular frequency M, evaluated at positions (R,THETA) on the B"sQ\gb%Q
% unit circle. N is a vector of positive integers (including 0), and L9L!V"So1k
% M is a vector with the same number of elements as N. Each element }s i{
% k of M must be a positive integer, with possible values M(k) = -N(k) ^0"W/
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, ';<gc5EK
% and THETA is a vector of angles. R and THETA must have the same ipy1tXc
% length. The output Z is a matrix with one column for every (N,M) \Eqxmo
% pair, and one row for every (R,THETA) pair. yKSvg5lLy
% +JQ/DNv
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ]!l]^/.
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 0Bbno9Yp
% with delta(m,0) the Kronecker delta, is chosen so that the integral kC~\D?8E=
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, :f1Q0klwP
% and theta=0 to theta=2*pi) is unity. For the non-normalized QAs$fi}f]s
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. g?Jx99c;
% II(7U3
% The Zernike functions are an orthogonal basis on the unit circle. u!wR
% They are used in disciplines such as astronomy, optics, and MBlhlMyI
% optometry to describe functions on a circular domain. }\+7*|
% GI:J9TS
% The following table lists the first 15 Zernike functions. E"8cB]`|8
% "zpc)'$L=
% n m Zernike function Normalization M3>c?,O)J
% -------------------------------------------------- K7o!,['W
% 0 0 1 1 ^Yu<fFn
% 1 1 r * cos(theta) 2 A}K2"lQ#>,
% 1 -1 r * sin(theta) 2 =Yd{PZ*fR
% 2 -2 r^2 * cos(2*theta) sqrt(6) +-8S,Rg@
% 2 0 (2*r^2 - 1) sqrt(3) zT_
% 2 2 r^2 * sin(2*theta) sqrt(6) OB-gH3:
% 3 -3 r^3 * cos(3*theta) sqrt(8) CVo2?ZQ
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) (- ]A1WQ?
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) c& &^Do
% 3 3 r^3 * sin(3*theta) sqrt(8) 4rpx
% 4 -4 r^4 * cos(4*theta) sqrt(10) o{C7V*
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Rn] `_[)*~
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) UvR F\x%
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) x+1Cs$E;
% 4 4 r^4 * sin(4*theta) sqrt(10) TV^m1uC
% -------------------------------------------------- 0[ (Z48
% kH&KE5
% Example 1: |ATz<"q>
% }ZPO^4H;-
% % Display the Zernike function Z(n=5,m=1) '!$g<= @
% x = -1:0.01:1; @(k}q3b<
% [X,Y] = meshgrid(x,x); ?_hKhn%K9
% [theta,r] = cart2pol(X,Y); Q7<_>)e^
% idx = r<=1; Io8h 8N-
% z = nan(size(X)); _tl
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 8 K7.; t1
% figure vUlGE
% pcolor(x,x,z), shading interp v$H=~m
% axis square, colorbar k)'y;{IN
% title('Zernike function Z_5^1(r,\theta)') }@+3QHwYU
% R8Kj3wp
% Example 2: >a6{y
% ^T^l3B[
% % Display the first 10 Zernike functions +`y{r^xD
% x = -1:0.01:1; U^AywE]
% [X,Y] = meshgrid(x,x); 0Yh Mwg?
% [theta,r] = cart2pol(X,Y); ao+lLCr
% idx = r<=1; 701mf1a
% z = nan(size(X)); WAd5,RZ?
% n = [0 1 1 2 2 2 3 3 3 3]; i .O670D
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; ?vnO@Bb/a
% Nplot = [4 10 12 16 18 20 22 24 26 28]; MM+x}g.?
% y = zernfun(n,m,r(idx),theta(idx)); . 5cL+G1k#
% figure('Units','normalized') p }p@])}8
% for k = 1:10 mgODJ
% z(idx) = y(:,k);
>M2~BDZ
% subplot(4,7,Nplot(k)) 2 %`~DVo
% pcolor(x,x,z), shading interp ^(w%m#
% set(gca,'XTick',[],'YTick',[]) 3I}(as{Rp
% axis square 8[PD`*w
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) F!N D
% end TnuNoMD.
% C'Gj\
% See also ZERNPOL, ZERNFUN2. #8cpZ]#
{c(@u6l28
8ztVv
% Paul Fricker 11/13/2006 (pDu
&3@{?K
n8FmIoZ&`
9A7LDHst7
Za"m;+H<E
% Check and prepare the inputs: E}YJGFB7"
% ----------------------------- ~g#$'dS
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) E~4d6~s
error('zernfun:NMvectors','N and M must be vectors.') 4lVvs(W?
end H}ie D"T_
'<$!?="
h?8I`Z)h
if length(n)~=length(m) Lm!/iseGv
error('zernfun:NMlength','N and M must be the same length.') x>C_O\
end `rWT^E@p5m
iJ-z&=dOe
ekR/X
n = n(:); M/d6I$~7z
m = m(:); Ro2Ab^rQ|
if any(mod(n-m,2)) .!oYIF*0zC
error('zernfun:NMmultiplesof2', ... SV?^i `
'All N and M must differ by multiples of 2 (including 0).') 8LPvb#9=
end ep ,"@,,
_l ,_NV&T
t7P[^f15[
if any(m>n) }ldOxJSB?
error('zernfun:MlessthanN', ... I:l/U-b7h
'Each M must be less than or equal to its corresponding N.') VfV|fuW
end U8>M`e"D
1ZrJ7a7=
><HHO
(74X
if any( r>1 | r<0 ) WDF;`o*3
error('zernfun:Rlessthan1','All R must be between 0 and 1.') ?D\6@G:,#@
end \>G :mMk/
!gyEw1Re7
C"gH>G
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) f"Z2,!Z;
error('zernfun:RTHvector','R and THETA must be vectors.') *LZB.84
end Dt ~3Qd0
B-.QGf8K.
m4m,-}KNi
r = r(:); b}-/~l-:
theta = theta(:); xQ]^wT.Q
length_r = length(r); SK]"JSY`
if length_r~=length(theta) p]]*H2UD
error('zernfun:RTHlength', ... 5bZjW~d
'The number of R- and THETA-values must be equal.') 5ns.||%k
end {0~xv@ U
Cqra\
\'>8 (i~
% Check normalization: (c\i .z
% -------------------- wBJP8wES=
if nargin==5 && ischar(nflag) U4.-{.
isnorm = strcmpi(nflag,'norm'); A`I ;m0<
if ~isnorm V."qxKsz
error('zernfun:normalization','Unrecognized normalization flag.') |PaVb4j
end l`b%imX
else |bM?Q$>~
isnorm = false; *[ww;
end ]nQC
qrLE1b 1$
c`M
,KXott
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% k3-7Vyg
% Compute the Zernike Polynomials d^:(-2l-
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% M>xjs?{%k
66Tx>c"H
4f-I,)qCBk
% Determine the required powers of r: W*!u_]K>
% ----------------------------------- F<Y>
m_abs = abs(m); %gbvX^E?
rpowers = []; 9C"d7--
for j = 1:length(n) na0-v-
rpowers = [rpowers m_abs(j):2:n(j)]; L>X39R~
end 0,M1Q~u%.
rpowers = unique(rpowers); 6<`tb)_2~
Z&MfE0F/B
?,AWXiif
% Pre-compute the values of r raised to the required powers, Pf?zszvs
% and compile them in a matrix: >VE!3' /'
% ----------------------------- `U6bI`l
if rpowers(1)==0 g-O}e4
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); QP={b+8
rpowern = cat(2,rpowern{:}); i4g99Kvl
rpowern = [ones(length_r,1) rpowern]; ,Srj38p
else JZom#A.
dt
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Rct=vDU
rpowern = cat(2,rpowern{:}); v0uA]6:
end bKb}VP
.KX LWH
%.mHV7c)%
% Compute the values of the polynomials: ecqL;_{o
% -------------------------------------- enw7?| (
y = zeros(length_r,length(n)); #$*l#j"#A
for j = 1:length(n) JQdeI+
s = 0:(n(j)-m_abs(j))/2; YgCSzW&(
pows = n(j):-2:m_abs(j); lr-:o@q{
for k = length(s):-1:1 8r-'m%l
p = (1-2*mod(s(k),2))* ... meM61ue_2
prod(2:(n(j)-s(k)))/ ... \NTNB9>CO
prod(2:s(k))/ ... 4.o[:5'
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... \4FKZ>1+R
prod(2:((n(j)+m_abs(j))/2-s(k))); YjTA+1}
idx = (pows(k)==rpowers); =3R5m>6!/
y(:,j) = y(:,j) + p*rpowern(:,idx); q#|,4(Z
end Xb/^n.>
n>##,o|Vr#
if isnorm \Bg?QhA_D
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 0f]LOg
end se, 0Rvkt
end vb1Gz]~)>
% END: Compute the Zernike Polynomials \}9GK`oR
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% q7-.-k<dQ
ET:B"
mO~A}/je
% Compute the Zernike functions: 25-5X3(>j=
% ------------------------------ LI/;`Y=
idx_pos = m>0; Ej7>ywlW
idx_neg = m<0; dLnu\bSF
b :J$
_WeN\F~^
z = y; " +n\0j;
if any(idx_pos) !5escR!\D
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); *]]C.t-cd
end /N?vVp
if any(idx_neg) q(YFt*(;w
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); @c{rqa
v
end wNt-mgir-Q
yccF#zU
DTi\ 4&41
% EOF zernfun m=.}}DcSs