切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9089阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, kx{LY`pY  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, T3wQRn  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? $;iMo/  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? H2kib4^i  
    P K+rr.k]  
    a_Sp}s<J  
    /aTW X  
    Q HU|aC{r  
    function z = zernfun(n,m,r,theta,nflag) U1ZKJ<pv  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. I|n? 32F  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ~ECIL7,  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 8NnGN(a*D  
    %   unit circle.  N is a vector of positive integers (including 0), and O:E0htdWr  
    %   M is a vector with the same number of elements as N.  Each element {'8td^JEE  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) |E?PQ?P  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 3#A4A0  
    %   and THETA is a vector of angles.  R and THETA must have the same Iip%er%b  
    %   length.  The output Z is a matrix with one column for every (N,M) ]SC|%B_*  
    %   pair, and one row for every (R,THETA) pair. cs lZ;  
    % &2,3R}B/  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike O*7vmPy  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 6,;dU-A+  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral ~U r  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ~] &yHzp2  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized "hmLe(jo}  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ]-j.\+(*  
    % ]4ib^R~Z  
    %   The Zernike functions are an orthogonal basis on the unit circle. $-)T  
    %   They are used in disciplines such as astronomy, optics, and **V8a-@  
    %   optometry to describe functions on a circular domain. K'Y/0:"*  
    % <Hf3AB;#4  
    %   The following table lists the first 15 Zernike functions. aPdEEqc\l  
    % ))%f"=:wt  
    %       n    m    Zernike function           Normalization DaS~bweMw  
    %       -------------------------------------------------- u\{MQB{T  
    %       0    0    1                                 1 $l $p|  
    %       1    1    r * cos(theta)                    2 t zShds  
    %       1   -1    r * sin(theta)                    2 ;kI)j ?  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) b/{$#[oP`  
    %       2    0    (2*r^2 - 1)                    sqrt(3) x2,;ar\D  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) J!Q #xs  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 0u;a*#V@  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) #iKPp0`K*  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) })+iAxR  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) wz..  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 2qdc$I&$  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) .p =OAh<  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 2`^6``  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) bf=!\L$  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) v2IcDz`}7  
    %       -------------------------------------------------- ) &DsRA7v  
    % w`DcnQK'  
    %   Example 1: KPVu-{_Fi  
    % ~470LgpO1  
    %       % Display the Zernike function Z(n=5,m=1) Hu9nJ  
    %       x = -1:0.01:1; /lC,5y  
    %       [X,Y] = meshgrid(x,x); ?)ct@,Ek$  
    %       [theta,r] = cart2pol(X,Y); 2n+ud ?|l  
    %       idx = r<=1; 6j8\3H~  
    %       z = nan(size(X)); @SH[<c  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); R$ !]z(  
    %       figure u/<ZGW(&s(  
    %       pcolor(x,x,z), shading interp x<`^4|<  
    %       axis square, colorbar ?0'e_s  
    %       title('Zernike function Z_5^1(r,\theta)') l{*m-u5&;  
    % a ~YrQI-@  
    %   Example 2: -X_\3J  
    % T6b~uE  
    %       % Display the first 10 Zernike functions [,MaAB  
    %       x = -1:0.01:1; CIui9XNU  
    %       [X,Y] = meshgrid(x,x); |"PS e~ u  
    %       [theta,r] = cart2pol(X,Y); $EHF f$M  
    %       idx = r<=1; mzCd@<T,  
    %       z = nan(size(X)); ,Ne9x\F  
    %       n = [0  1  1  2  2  2  3  3  3  3]; x ;~;Ah.p  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; n=)LB& m  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; nrA 4N1  
    %       y = zernfun(n,m,r(idx),theta(idx)); +PnuWK$  
    %       figure('Units','normalized') e_-7,5Co  
    %       for k = 1:10 fK~8h  
    %           z(idx) = y(:,k); 2}7_Y6RS*  
    %           subplot(4,7,Nplot(k)) E2 FnC}#W  
    %           pcolor(x,x,z), shading interp '%ByFZ zi  
    %           set(gca,'XTick',[],'YTick',[]) <& 3[|Ca  
    %           axis square Y}xM&%  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) p Hx$  
    %       end M)ao}m>  
    % V FM!K$_  
    %   See also ZERNPOL, ZERNFUN2. DE7y\oO]  
    $tF\7.e@  
    {0lu>?<  
    %   Paul Fricker 11/13/2006 :ssj7wl :  
    $0x+b!_l@  
    w#hg_RK(Jr  
    R|^bZf^  
     }D+ b`,  
    % Check and prepare the inputs: vz#-uw,O:  
    % ----------------------------- 7x77s  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) VxS3lR=  
        error('zernfun:NMvectors','N and M must be vectors.') 5Ok3y|cEx  
    end Z"'*A\r2  
    r`"T{o\e   
    PjX V.gz  
    if length(n)~=length(m) j/Y]3RSMp  
        error('zernfun:NMlength','N and M must be the same length.') ?w!8;xS8  
    end E<}sGzMc  
    E24SD'|)  
    :/%Y"0  
    n = n(:); Kxa1F,dZ  
    m = m(:); l.]wBH#RS  
    if any(mod(n-m,2)) 3UmkFK<  
        error('zernfun:NMmultiplesof2', ... #AP;GoIf"j  
              'All N and M must differ by multiples of 2 (including 0).') 5!S#}=f=  
    end {chZ&8)f  
    mn=b&{')e  
    TDbSK&w :s  
    if any(m>n) q5S_B]|  
        error('zernfun:MlessthanN', ... <wb6)U.  
              'Each M must be less than or equal to its corresponding N.') 7.Z-  
    end %WKBd \O  
    w&T\8k=  
    2LR y/ah  
    if any( r>1 | r<0 ) I^( pZ9  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') !q,7@W3i  
    end &o7PB` (l  
    CbW[_\  
    1<Mb@t  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) IY8<^Q']  
        error('zernfun:RTHvector','R and THETA must be vectors.') KQb&7k .  
    end Y3~z#<  
    p-_9I7?  
    U^|T{g+O  
    r = r(:); 1ig*Xp[  
    theta = theta(:); ?>{u@tYL  
    length_r = length(r); #"~\/sb   
    if length_r~=length(theta) U?Dr0wD;[  
        error('zernfun:RTHlength', ... < `"  
              'The number of R- and THETA-values must be equal.') )eT>[['fm  
    end N%>h>HJ  
    0HU0p!yt&  
    />}zB![(K  
    % Check normalization: ||*F. p  
    % -------------------- 2A@oa9  
    if nargin==5 && ischar(nflag) sbX7VfAR`  
        isnorm = strcmpi(nflag,'norm'); IDJ2epW*;  
        if ~isnorm +ctU7 rVy  
            error('zernfun:normalization','Unrecognized normalization flag.') fCN+9!ljG`  
        end ub fh4  
    else 3u[8;1}7Q  
        isnorm = false; nyqX\m-  
    end $#+D:W)az  
    J^CAQfcx  
    ilVi  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% MZX)znO  
    % Compute the Zernike Polynomials 82ixv<B  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ?!jJxhK<h  
    eGg6wd  
    p`A2^FS)  
    % Determine the required powers of r: Rc{R^5B  
    % ----------------------------------- 2)}*'_E9  
    m_abs = abs(m); (0#$%US\  
    rpowers = []; %z1^  
    for j = 1:length(n) xRgdU+,Mj  
        rpowers = [rpowers m_abs(j):2:n(j)]; `pCy:J?d>l  
    end =bja\r{  
    rpowers = unique(rpowers); IAGY-+8e  
    2]9 2J  
    41d+z>a]  
    % Pre-compute the values of r raised to the required powers, <yX  u!  
    % and compile them in a matrix: 8@LWg d  
    % ----------------------------- 9O-~Ws ;  
    if rpowers(1)==0 C7vBa<a  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); EATVce]T  
        rpowern = cat(2,rpowern{:}); 0fBwy/:  
        rpowern = [ones(length_r,1) rpowern]; ~7KH/%Z-  
    else N9#xTX  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); RD)Vb$.B:  
        rpowern = cat(2,rpowern{:}); <'$>&^!^  
    end R= mT J'y  
    R31Z(vY  
    )P b$  
    % Compute the values of the polynomials: GVlT+Rs7  
    % -------------------------------------- YJHb\Cf.  
    y = zeros(length_r,length(n)); $ -<(geI  
    for j = 1:length(n) <_t]?XHB[  
        s = 0:(n(j)-m_abs(j))/2; "&f|<g5  
        pows = n(j):-2:m_abs(j); l#T %N@X  
        for k = length(s):-1:1 '6){~ee S  
            p = (1-2*mod(s(k),2))* ... b/m.VL  
                       prod(2:(n(j)-s(k)))/              ... xrBM`Bj0@  
                       prod(2:s(k))/                     ... bcy  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... SE'|||B  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); x+za6e_k"  
            idx = (pows(k)==rpowers); XI[n!)3  
            y(:,j) = y(:,j) + p*rpowern(:,idx); ReM]I<WuY  
        end }za pN v  
         `W@jo~ y<  
        if isnorm A'~mJO/   
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); >lqo73gM9  
        end \6/ Gy!0h-  
    end |y0k}ed  
    % END: Compute the Zernike Polynomials Ad-5Zn c5  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% T6\]*mlr  
    VK*`&D<P  
    i?M-~EKu  
    % Compute the Zernike functions: Tq )hAZ  
    % ------------------------------ W$,/hB& z  
    idx_pos = m>0; <XDnAv0t  
    idx_neg = m<0; " 62g!e}!c  
    hg0{x/Dgny  
    YuVlD/  
    z = y; :/5G Hfyj  
    if any(idx_pos) ic!% }S?  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); }AB_i'C0  
    end DBaZcO(U  
    if any(idx_neg) uK(]@H7~!c  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); (n>Gi;u(R  
    end `p* 43nV  
    J%r:"Jm[y1  
    AD`5:G  
    % EOF zernfun Uvc$&j^k  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    在线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  xqlnHf<G  
    e~># M $  
    DDE还是手动输入的呢? Ywt9^M|z;  
    doX`NbA  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究