下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, IB#iJ#,
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 94p:| 5@
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? *b6I%MZn
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? ~3'OiIw1@
!HdvCYB>
XYK1-m}2
,{uW8L
OZ>)sL
function z = zernfun(n,m,r,theta,nflag) u^aFj%}]L
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. %EJ\|@N:
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N wZo.ynXT
% and angular frequency M, evaluated at positions (R,THETA) on the )DGz`->
% unit circle. N is a vector of positive integers (including 0), and !sfXq"F
% M is a vector with the same number of elements as N. Each element $IxU6=ajn
% k of M must be a positive integer, with possible values M(k) = -N(k) L=
:d!UF
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, ~$&:NB1~q
% and THETA is a vector of angles. R and THETA must have the same \ifK~?
% length. The output Z is a matrix with one column for every (N,M) B0b[p*gIl
% pair, and one row for every (R,THETA) pair. "W &:j:o
% |b$>68:
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike WNn[L=f
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), *]}CSZ[>
% with delta(m,0) the Kronecker delta, is chosen so that the integral cQ3W;F8|n
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, +{")E)
% and theta=0 to theta=2*pi) is unity. For the non-normalized (xZr ]v ]U
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ,?xLT2>J_
% Ci7P%]9
% The Zernike functions are an orthogonal basis on the unit circle. O6m.t%*
% They are used in disciplines such as astronomy, optics, and {)
:%WnM9
% optometry to describe functions on a circular domain. %]a
@A8o0
% X$7Oo^1;
% The following table lists the first 15 Zernike functions.
N|!MO{sB
% v"P&`1=T
% n m Zernike function Normalization W_[|X}lWP
% -------------------------------------------------- X(Y#9N"
% 0 0 1 1 e2]4a3
% 1 1 r * cos(theta) 2 e/"yGQu
% 1 -1 r * sin(theta) 2 8)^B32
% 2 -2 r^2 * cos(2*theta) sqrt(6) V=j-Um;
% 2 0 (2*r^2 - 1) sqrt(3) ||-nmOy
% 2 2 r^2 * sin(2*theta) sqrt(6) S=0"f}Jo.
% 3 -3 r^3 * cos(3*theta) sqrt(8) mR{CVU
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) @4IW=V
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) YSR mt/
% 3 3 r^3 * sin(3*theta) sqrt(8) &8[ZN$Xe"
% 4 -4 r^4 * cos(4*theta) sqrt(10) G(U 9rJ9
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) v ! 7s
M
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) G'ij?^?
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) w)+wj[6
E
% 4 4 r^4 * sin(4*theta) sqrt(10) X+=-f^)&
% -------------------------------------------------- $&cz$jyY
% T>}0) s
% Example 1:
f~w>v
%
BdN8
^W
% % Display the Zernike function Z(n=5,m=1) 3lo;^KX !
% x = -1:0.01:1; si_W:mLF{a
% [X,Y] = meshgrid(x,x); $4Z+F#mx
% [theta,r] = cart2pol(X,Y); BjJ,"sT
% idx = r<=1; R/^@cA
% z = nan(size(X)); &4,WG
% z(idx) = zernfun(5,1,r(idx),theta(idx)); Fi mN?s
% figure 9n1ZVP.ag
% pcolor(x,x,z), shading interp ""co6qo#>
% axis square, colorbar ')B =|T)
% title('Zernike function Z_5^1(r,\theta)') 6iG(C.b
% 7;&(}
% Example 2: H2_/,n
% Zp?4uQ)[W
% % Display the first 10 Zernike functions F\a]n^
Y
% x = -1:0.01:1; 3Jk[/.h
% [X,Y] = meshgrid(x,x); k`Nyi)AGe
% [theta,r] = cart2pol(X,Y); Vy__b=ti?
% idx = r<=1; PU W[e%
% z = nan(size(X)); {Fbg]'FQ
% n = [0 1 1 2 2 2 3 3 3 3]; .*BA 1sjE
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; JIzY,%`\
% Nplot = [4 10 12 16 18 20 22 24 26 28]; bW53" `X
% y = zernfun(n,m,r(idx),theta(idx)); Kx~$Bor_!
% figure('Units','normalized') m6^ 5S
% for k = 1:10 j~bAbOX12
% z(idx) = y(:,k); Fh K&@@_
% subplot(4,7,Nplot(k)) axmsrjW#
% pcolor(x,x,z), shading interp -."kq.m*
% set(gca,'XTick',[],'YTick',[]) zDD4m`2
% axis square $B\ H
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) cFK @3a
% end GcT;e5D
% F/>*Ifs
% See also ZERNPOL, ZERNFUN2. lwc5S`"
J!{Al
ow$q7uf
% Paul Fricker 11/13/2006 \R(R9cry
*m9{V8Yi2
En(7(qP6}
g+xw$A ou
Us,)]W.S
% Check and prepare the inputs: `\bT'~P
% ----------------------------- \q "N/$5{f
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) RT^v:paNT2
error('zernfun:NMvectors','N and M must be vectors.') `5q
;ssu
end {T=52h=e
OR:[J5M)
v?%LQKO
if length(n)~=length(m) 3GF2eS$$P
error('zernfun:NMlength','N and M must be the same length.') /`[!_4i
end _%~$'Hy
D8%AV;-Y
W^Y#pn
n = n(:); "X04mQn15
m = m(:); WNs}sNSf
if any(mod(n-m,2)) i^)WPP>4Aw
error('zernfun:NMmultiplesof2', ... K B!5u 9
'All N and M must differ by multiples of 2 (including 0).') YuQ~AE'i
end 6.5wZN9<|
$d/&k`
ye%iDdf
if any(m>n) 9@K.cdRjQ
error('zernfun:MlessthanN', ... d--'Rn5
'Each M must be less than or equal to its corresponding N.') 1D F/6y
end d;7uFh|o
]E3<UR
Ow:1?Z{4
if any( r>1 | r<0 ) BQ/PGY>
error('zernfun:Rlessthan1','All R must be between 0 and 1.') 5|I55CTx
end A(8n
yHeEobvb
C3XmK}h
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) /6KIl
error('zernfun:RTHvector','R and THETA must be vectors.') @?kM'*mrZM
end sbj";h=E
rY0u|8.5Q
^B/9{0n'
r = r(:); hePPxKQ-
theta = theta(:); 5GQLd
length_r = length(r); En6H%^d2
if length_r~=length(theta) qQ0C ?
error('zernfun:RTHlength', ... T6#CK
'The number of R- and THETA-values must be equal.') c~=B0K-
end ?F7o!B
t<j^q`;@v
VZy4_v=
% Check normalization: e`K)_>^n#
% -------------------- (=4W-z7
if nargin==5 && ischar(nflag) Km#pX1]>e
isnorm = strcmpi(nflag,'norm'); $t~@xCi]S
if ~isnorm l[GOs&D1
error('zernfun:normalization','Unrecognized normalization flag.') 3;[DJ5
end l?8M
p$M
else 6KZf%)$
isnorm = false; /9pM>Cd*Z
end 4|?{VQ
*sw7niw
S4^N^lQ]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 23!;}zHp
% Compute the Zernike Polynomials X2|Y
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% nH|,T%
D*PYr{z'
qZv
=
% Determine the required powers of r: +rXF{@
l
% ----------------------------------- !7bw5H
m_abs = abs(m); p d[ncL
rpowers = []; V'Kgdj
for j = 1:length(n) )D&M2CUw"f
rpowers = [rpowers m_abs(j):2:n(j)]; V/d/L3p
end )E#2J$TD
rpowers = unique(rpowers); :O<bA&:d
wC_l@7t
nl aM
% Pre-compute the values of r raised to the required powers, H9)m^*
% and compile them in a matrix: M:KbD|
% ----------------------------- *l+OlQI0+
if rpowers(1)==0 B+d<F[|
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); *^\HU=&
rpowern = cat(2,rpowern{:}); *OJ/V O
rpowern = [ones(length_r,1) rpowern]; h%; e0Xz|
else GNf 482
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); l%ayI
rpowern = cat(2,rpowern{:}); OLGBt
end j(:I7%3&(*
^N}Wnk7ks'
"gtHTqheH
% Compute the values of the polynomials: IQ<MyB(
% -------------------------------------- {5r0v#;
y = zeros(length_r,length(n)); .d;Iht,[
for j = 1:length(n) 1"7Sy3
s = 0:(n(j)-m_abs(j))/2; g]c[O*NTL
pows = n(j):-2:m_abs(j); :F,O
for k = length(s):-1:1 <ljI;xE
p = (1-2*mod(s(k),2))* ... Wz4&7KYY
prod(2:(n(j)-s(k)))/ ... Zv11uH-C
prod(2:s(k))/ ... A1)wo^,
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... vK7\JZ>
prod(2:((n(j)+m_abs(j))/2-s(k))); ;8WZx
idx = (pows(k)==rpowers); XqRJr%JH
y(:,j) = y(:,j) + p*rpowern(:,idx); 7!,YNy%
end X"gCRn%tn
/+*#pDx/zW
if isnorm Z/x*Y#0@n
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); TD[EQ
end SK1!thQy
end Y2B&go
% END: Compute the Zernike Polynomials )VL96 did
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% JO=[YoTr
uw\2qU3gk
~DRmON5 M
% Compute the Zernike functions: gqXS~K9t
% ------------------------------ <FMq>d$\
idx_pos = m>0; ?
J}r
idx_neg = m<0; CQel3Jtt.
Fhv/[j^X
Mb3}7 @/[
z = y; /@AEJ][$
if any(idx_pos) }X
GEX:1K
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); oH0X<'
end M/x >51<
if any(idx_neg) h)~=Dm
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); j!7`]
end <YA&Dr3OD
N#lDW~e'
XwV'Ha
% EOF zernfun `V)Z)uN{0