切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9211阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, /@@?0xjX  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, CmdPa!4)  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? %S<))G  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? =H?^G[y  
    Nzl`mx16  
    TmEh$M  
    -* W\$ P  
    -+kTw06_C  
    function z = zernfun(n,m,r,theta,nflag) 1HUe8m[#3  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. W/u_<\  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ;TboS-Y  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 6<No_x |_  
    %   unit circle.  N is a vector of positive integers (including 0), and Za7!n{? 0  
    %   M is a vector with the same number of elements as N.  Each element  !qTP  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) fDwqu.K  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, RM#.-gW   
    %   and THETA is a vector of angles.  R and THETA must have the same '3TfW61]  
    %   length.  The output Z is a matrix with one column for every (N,M) +HoCG;C{  
    %   pair, and one row for every (R,THETA) pair. GP_%. fO\M  
    % @[~j|YH}  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike >z k6{kC  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), % E 8s>D  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral eNr2-R  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 0">9n9  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 3#Xv))w1  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. _cd=PZhI  
    % h&x;#.SYK  
    %   The Zernike functions are an orthogonal basis on the unit circle. jk1mP6'P|  
    %   They are used in disciplines such as astronomy, optics, and "` kSI&2  
    %   optometry to describe functions on a circular domain. )V9wU1.  
    % (*Q8!"D^6  
    %   The following table lists the first 15 Zernike functions. [y(<1]i-a  
    % F\-oZ#g  
    %       n    m    Zernike function           Normalization r(I&`kF<  
    %       -------------------------------------------------- AhQsv.t   
    %       0    0    1                                 1 dI~{0)s  
    %       1    1    r * cos(theta)                    2 T 5>'q;jM  
    %       1   -1    r * sin(theta)                    2 =Iy khrS  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ^-%O  
    %       2    0    (2*r^2 - 1)                    sqrt(3) ij02J`w:Ra  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) !~te&ccPE  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) {r_x\VC=p  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) ||'A9  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) j~#v*qmDU  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) Wn5xX5H C  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 6gB;m$:fV  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) #=czqZw  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) sH :_sOV*  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) )uy2,`z  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 0t -=*7w%  
    %       -------------------------------------------------- R'h.lX  
    % BZk0B ?  
    %   Example 1: &cT@MV5  
    % :F pt>g  
    %       % Display the Zernike function Z(n=5,m=1) j:[ #eC  
    %       x = -1:0.01:1; Jf@~/!m}'  
    %       [X,Y] = meshgrid(x,x); i=\`f& B  
    %       [theta,r] = cart2pol(X,Y); k<k@Tlo  
    %       idx = r<=1; Bu7aeBP  
    %       z = nan(size(X)); 5wa!pR\c  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); Kk6i  
    %       figure }!jn%@_y@  
    %       pcolor(x,x,z), shading interp jGtu>|Gj  
    %       axis square, colorbar pZ&?uo67_  
    %       title('Zernike function Z_5^1(r,\theta)') Us4#O&  
    % @@#(<[S\B  
    %   Example 2: z;PF% F  
    % dd!Q[]$ }  
    %       % Display the first 10 Zernike functions LmjGU[L,@  
    %       x = -1:0.01:1; f|&, SI?  
    %       [X,Y] = meshgrid(x,x); ZW`wA2R0   
    %       [theta,r] = cart2pol(X,Y);  Z6_fI  
    %       idx = r<=1; M+Eg{^ q`  
    %       z = nan(size(X)); H*h4D+Kxv  
    %       n = [0  1  1  2  2  2  3  3  3  3]; mZ#h p}\.  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; O.$OLK;v  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; I0}G, q  
    %       y = zernfun(n,m,r(idx),theta(idx)); f<*-;  
    %       figure('Units','normalized') kB]*2o9-3  
    %       for k = 1:10 !]=S A &  
    %           z(idx) = y(:,k); g!!:o(k  
    %           subplot(4,7,Nplot(k)) epxbTJfc  
    %           pcolor(x,x,z), shading interp YI+o:fGC5  
    %           set(gca,'XTick',[],'YTick',[]) %)P)Xb  
    %           axis square 1NQU96  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ; nYR~~  
    %       end    
    % (?#"S67  
    %   See also ZERNPOL, ZERNFUN2. x1`zD*{  
    `_ )5K u}  
    tJ Mm  
    %   Paul Fricker 11/13/2006 dS;Ui]/J  
    8eD/9PD=F  
    c!J|vRA5  
    @%rj1Gn  
    -[ xbGSj{  
    % Check and prepare the inputs: TJz} 8-#t  
    % ----------------------------- _!^2A3c<  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) `2@f=$B  
        error('zernfun:NMvectors','N and M must be vectors.') aHBM9%gV  
    end 5 IFc"  
    &f<Ltdw  
    osI0m7ws:  
    if length(n)~=length(m) X oh@(%  
        error('zernfun:NMlength','N and M must be the same length.') \Vl)q>K _h  
    end ![/ QW  
    {/K!cPp9  
    SI:Iv:>  
    n = n(:); >o! 5)\F  
    m = m(:); u~\ NL{  
    if any(mod(n-m,2)) =[IKwmCX  
        error('zernfun:NMmultiplesof2', ... `{'h+v`  
              'All N and M must differ by multiples of 2 (including 0).') |#x]/AXa0/  
    end 9[Xe|5?c  
    #gRtCoew  
    RgLkAHA  
    if any(m>n) gutf[Ksu  
        error('zernfun:MlessthanN', ... Ct386j><  
              'Each M must be less than or equal to its corresponding N.') R6qC0@*  
    end 9DaoM OPEI  
    -ei+r#  
    ANXN.V  
    if any( r>1 | r<0 ) okLhe F  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') uAv'%/  
    end !sav~dB)  
    ?tf<AZ=+^L  
    `&g1`vg  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) a'B 5m]%  
        error('zernfun:RTHvector','R and THETA must be vectors.') \zV'YeG  
    end );L+)UV  
    7hfa?Mcz  
    ^1`T_+#[s  
    r = r(:); jQY^[A  
    theta = theta(:); A:,R.P>`C  
    length_r = length(r); |5me }!C  
    if length_r~=length(theta) WZ^u%Z  
        error('zernfun:RTHlength', ... KhPDkD-  
              'The number of R- and THETA-values must be equal.') k~pbXA*u  
    end 4Q^i"jT  
    0j2M< W#  
    :hUt7/3c  
    % Check normalization: JbW!V Y  
    % -------------------- psB9~EU&Q  
    if nargin==5 && ischar(nflag) f<P>IE  
        isnorm = strcmpi(nflag,'norm'); Tg/r V5@ka  
        if ~isnorm W0KSLxM  
            error('zernfun:normalization','Unrecognized normalization flag.') y<n<uZ;  
        end uqK[p^{  
    else DK }1T  
        isnorm = false; 21.N+H'  
    end 7G9o%!D5  
    % !p/r`  
    I)}T4OOc/  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% E/uKzzD9  
    % Compute the Zernike Polynomials 8ubb~B;  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% }ygxmb^@Z  
    H&=3rkX  
    ?\Lf=[  
    % Determine the required powers of r: 'EsdYx5C  
    % ----------------------------------- iM{UB=C  
    m_abs = abs(m); K 6HH_T  
    rpowers = []; (vr v-4  
    for j = 1:length(n) ,P$Crs[  
        rpowers = [rpowers m_abs(j):2:n(j)]; $_b^p=  
    end ~Is-^k)y  
    rpowers = unique(rpowers); ulxy 4] h  
    /_CSRi&  
    OQa;EBO  
    % Pre-compute the values of r raised to the required powers, e?eX9yA7F  
    % and compile them in a matrix: .GNl31f0  
    % ----------------------------- Gt5'-Hyo  
    if rpowers(1)==0 ICXz(?a  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); :gacP?  
        rpowern = cat(2,rpowern{:}); 7P7d[KP<  
        rpowern = [ones(length_r,1) rpowern]; g'{hp:  
    else D}7G|gX1  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Hp?uYih0  
        rpowern = cat(2,rpowern{:}); L'$;;eM4  
    end fDIKR[B  
     *"K7<S[  
    d@,3P)?  
    % Compute the values of the polynomials: ?&GV~DYxA  
    % -------------------------------------- + q@g  
    y = zeros(length_r,length(n)); LFV',1+  
    for j = 1:length(n) ?^W`7HF%0  
        s = 0:(n(j)-m_abs(j))/2; fN{JLp  
        pows = n(j):-2:m_abs(j); !ie'}|c  
        for k = length(s):-1:1 jbK<"T5  
            p = (1-2*mod(s(k),2))* ... g7nqe~`{  
                       prod(2:(n(j)-s(k)))/              ... Zi~-m]9U  
                       prod(2:s(k))/                     ... @8s:,Y_  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... k&8&D  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 3 tIno!|  
            idx = (pows(k)==rpowers); [d/uy>z,  
            y(:,j) = y(:,j) + p*rpowern(:,idx); C'Z6l^{>  
        end ,zU7UL^I  
         @E@5/N6M  
        if isnorm |FrZ,(\  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); t+`>zux5(T  
        end GMRFZw_M  
    end +_E 96`P  
    % END: Compute the Zernike Polynomials 64h$sC0z/e  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% A~7q=-  
    >Lr ud{  
    !K319 eE  
    % Compute the Zernike functions: p{k^)5CR/  
    % ------------------------------ yM-3nwk  
    idx_pos = m>0; _/ Uer }  
    idx_neg = m<0; U6Ws#e  
    S((\KL,  
    _ZU.;0  
    z = y; T)"LuC#C  
    if any(idx_pos) 1#2B1&  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); |g}~7*+i  
    end I3$/ #  
    if any(idx_neg) :ncR7:Z  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); cf ~TVa)M  
    end <.qhW^>X  
    GVl TW?5  
    )zoO#tX  
    % EOF zernfun L-v-KO6  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  H#LlxD)q  
    N>'T"^S/  
    DDE还是手动输入的呢? 1gZW~6a}  
    TZ]D6.mD  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究