下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, d~lB4
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 8A|{jH74
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? ?52{s"N0>
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? X<6Ro
es2
Y+ZQN>
LdSBNg#3
%TO=]>q
ppwjr
+
function z = zernfun(n,m,r,theta,nflag) %]~XbO
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. ,d^ze =
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Cd>GY
% and angular frequency M, evaluated at positions (R,THETA) on the i{['18Q$F3
% unit circle. N is a vector of positive integers (including 0), and .kv/db
% M is a vector with the same number of elements as N. Each element D/T&0
% k of M must be a positive integer, with possible values M(k) = -N(k) X)-9u 8
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, ~j1.;WId[
% and THETA is a vector of angles. R and THETA must have the same bzI!;P1&
% length. The output Z is a matrix with one column for every (N,M) qN hV zx
% pair, and one row for every (R,THETA) pair. &) '5_#S
% jGM+
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike t>W^^'=E
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), XDtr{r6z
% with delta(m,0) the Kronecker delta, is chosen so that the integral lkj^<%N"r
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, NT qtr="
% and theta=0 to theta=2*pi) is unity. For the non-normalized 3$]SP1Mc(
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. M"q]jeaM
% rZ.,\ X_
% The Zernike functions are an orthogonal basis on the unit circle. fxW,S
% They are used in disciplines such as astronomy, optics, and h)O<bI8
% optometry to describe functions on a circular domain. 6usy0g
D
% ^uU'Qc4S=
% The following table lists the first 15 Zernike functions. /EJwO3MW
% _h@s)"
% n m Zernike function Normalization sd (I@
&y
% -------------------------------------------------- QuJ~h}k
% 0 0 1 1 e ]@Ex
% 1 1 r * cos(theta) 2 /F>\-
% 1 -1 r * sin(theta) 2 n?@3+wG
% 2 -2 r^2 * cos(2*theta) sqrt(6) )gO=5_^u*o
% 2 0 (2*r^2 - 1) sqrt(3) Z */*P4\
% 2 2 r^2 * sin(2*theta) sqrt(6) M<f=xY2$v
% 3 -3 r^3 * cos(3*theta) sqrt(8) r_sZw@lqJ
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) c1v,5c6d j
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) FTB@70
% 3 3 r^3 * sin(3*theta) sqrt(8) os\"(*dix
% 4 -4 r^4 * cos(4*theta) sqrt(10) uYh6q1@"~
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) f z)i9D@
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) _}_lrg}U
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ,zCrix
3
% 4 4 r^4 * sin(4*theta) sqrt(10) \ 2Jr(?U
% -------------------------------------------------- lX)RG*FlTC
% Tk9/1C{8
% Example 1: \u|8MEB
% 8QFn/&Ql$B
% % Display the Zernike function Z(n=5,m=1) 9fWr{fx
% x = -1:0.01:1; B{ i5UhxD
% [X,Y] = meshgrid(x,x); 5kwDmJy
% [theta,r] = cart2pol(X,Y); !&~8j7{
% idx = r<=1; >[4;K&$B
% z = nan(size(X)); 7l-`k
% z(idx) = zernfun(5,1,r(idx),theta(idx)); (#w8/@JxF
% figure ?}QHEk:H
% pcolor(x,x,z), shading interp o=!3=2@dh
% axis square, colorbar @ 2mJh^cj
% title('Zernike function Z_5^1(r,\theta)') /]/3)@wT
% !fFmQ\|)4S
% Example 2: +6vm4(3?
% :#M(,S"Qq
% % Display the first 10 Zernike functions R:*I>cRs
% x = -1:0.01:1; Ga4Ru
% [X,Y] = meshgrid(x,x); fo"dX4%}
% [theta,r] = cart2pol(X,Y); )^&,[Q=i
% idx = r<=1; )N{Qpbh
% z = nan(size(X)); l8n}&zX
% n = [0 1 1 2 2 2 3 3 3 3]; &Wj
%`T{
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; E6);\SJG}
% Nplot = [4 10 12 16 18 20 22 24 26 28]; $qN+BKd]3
% y = zernfun(n,m,r(idx),theta(idx)); nwd
02tu
% figure('Units','normalized') 8G?{S.%.
% for k = 1:10 *+p9u 1B5
% z(idx) = y(:,k); .Gq)@{o>
% subplot(4,7,Nplot(k)) U=<E,tM
% pcolor(x,x,z), shading interp ~lx5RTkp
% set(gca,'XTick',[],'YTick',[]) 5a9PM(
% axis square "%+C@>`(
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) aX=
% end 1=DUFl.
% &`7tX.iMlh
% See also ZERNPOL, ZERNFUN2. ~o:lh],~
0 T!_;IQ
Sr_]R<?
% Paul Fricker 11/13/2006 f1Ruaz-
5 ^}zysY`
f"h{se8C
>6XGF(G
+p =n-
% Check and prepare the inputs: A"S{W^iL
% ----------------------------- }U$Yiv
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) `0+zF-
error('zernfun:NMvectors','N and M must be vectors.') clz6;P
end 6:i(<7
6Lw34R
EEQW$W1@
if length(n)~=length(m) Pms"YhyZ7
error('zernfun:NMlength','N and M must be the same length.') H*_:IfI!
end wK@k}d
XW6>;:4k
4/S% eZB
n = n(:); clQN@1] M
m = m(:); 3_(fisvx
if any(mod(n-m,2)) EfY|S3Av
error('zernfun:NMmultiplesof2', ... 8W?/Sg`
'All N and M must differ by multiples of 2 (including 0).') h?2qX
end Q4Mp[
(3C6'Wt
8D
eRs#
if any(m>n) 2<Pi2s'
error('zernfun:MlessthanN', ... ))}w;w
'Each M must be less than or equal to its corresponding N.') f>nj9a5
end bit&H
|`9POl=
Ip]-OVg
if any( r>1 | r<0 ) pR2QS
error('zernfun:Rlessthan1','All R must be between 0 and 1.') ml7]sN(
end W?8 |h
G S-@drZp_
fU_itb(
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ^w4FqdGM
error('zernfun:RTHvector','R and THETA must be vectors.') Klh7&HzR
end xtL_,ug
XA}!
7g3vh%G.
r = r(:); A P><l@
theta = theta(:); !+&"y K@J
length_r = length(r); uWR\#D'
if length_r~=length(theta) P:&XtpP
error('zernfun:RTHlength', ... {:c*-+?
'The number of R- and THETA-values must be equal.') 6/B"H#rN
end 92+LY]jS
%qRbl4
F*rU=cu
% Check normalization: n=
yT%V.l
% -------------------- s"`uE$6N
if nargin==5 && ischar(nflag) \?&P|7N
isnorm = strcmpi(nflag,'norm'); !"B0z+O>
if ~isnorm j}Lt"r2F
error('zernfun:normalization','Unrecognized normalization flag.') p= jD "lq
end &;5QB
else ~p<o":k+Lv
isnorm = false; FQ>KbZh
end OOS(YP@b
x2+%.$'
ext`%$ U7
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% qsn6i%VH
% Compute the Zernike Polynomials )~;= 0O |X
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% a5C% OI<
fb[f >1|
c.m8~@O5+
% Determine the required powers of r: a+ZP]3@
7
% ----------------------------------- %CJgJ,pk>
m_abs = abs(m); B25@6
rpowers = []; ~{'.9
for j = 1:length(n) #p}I 84Q
rpowers = [rpowers m_abs(j):2:n(j)]; Ej>5PXp'2
end {tMpI\>S
rpowers = unique(rpowers); M~7 gUb|
5mdn77F_
+{N LziO
% Pre-compute the values of r raised to the required powers, "P`V|g
% and compile them in a matrix: azKbGS/X
% ----------------------------- Se+sgw_"
if rpowers(1)==0 wMNtN3
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); &yN@(P)
rpowern = cat(2,rpowern{:}); LL@VR#n"V
rpowern = [ones(length_r,1) rpowern]; tKgPKWP
else j#r|t+{"C
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); V|xKvH
rpowern = cat(2,rpowern{:}); UbKdB
end / 2>\Z (
1?sR1du,
AGkk|`
% Compute the values of the polynomials: ) D:M_T2
% -------------------------------------- KW|X\1H
y = zeros(length_r,length(n)); w?]k$
for j = 1:length(n) H5uWI
s = 0:(n(j)-m_abs(j))/2; n Bv|5$w:
pows = n(j):-2:m_abs(j); z( L\I
for k = length(s):-1:1 7sZVN
p = (1-2*mod(s(k),2))* ... 9{_D"h}}
prod(2:(n(j)-s(k)))/ ... 1wSJ w
prod(2:s(k))/ ... Rf2$k/lZ
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... nAv@^G2
prod(2:((n(j)+m_abs(j))/2-s(k))); v8p-<N)
idx = (pows(k)==rpowers); .q#2 op
y(:,j) = y(:,j) + p*rpowern(:,idx); YFgQ!\&59
end VXlTA>a }
e8O[xM
if isnorm VE1 B"s</
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); z%5i ^P
end i{TErJ{}e
end fM,U|
% END: Compute the Zernike Polynomials N)G.^9
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 3D70`u
7bOL ,S
S*~v9+
% Compute the Zernike functions: QWG?^T
fi
% ------------------------------ f@Mm{3&.
idx_pos = m>0; ,y@`=
idx_neg = m<0; 10xo<@l
?zp@HSa9
ciO^2X
z = y; SOQm>\U'i
if any(idx_pos) C*Avu
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); r!+-"hS!
end .OA_)J7
if any(idx_neg) !/O c)Yk
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Q| >
\{M
end L/9f"%kZ
LQ
pUyqR
|r_S2)zH9m
% EOF zernfun OO5k_J