下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, zZcnijWb
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, ;Gx)Noo/>
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? wNFz*|n
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? O,aS`u &
i%e7LJ@5AW
~Tbj=f
lif&@of
98=wnWX6$
function z = zernfun(n,m,r,theta,nflag) H~ZV*[A`
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. akw,P$i
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N .#02
ngh
% and angular frequency M, evaluated at positions (R,THETA) on the n
-(
% unit circle. N is a vector of positive integers (including 0), and )i+2X5B`S
% M is a vector with the same number of elements as N. Each element ljl^ GFo
% k of M must be a positive integer, with possible values M(k) = -N(k) 6T 8!xyi-+
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, W>-Et7&2
% and THETA is a vector of angles. R and THETA must have the same ,h"-
% length. The output Z is a matrix with one column for every (N,M) f&v9Q97=
% pair, and one row for every (R,THETA) pair. *5 w{8
% qC
F5~;7
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike }D+}DPL{^
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), CLvX!O(~
% with delta(m,0) the Kronecker delta, is chosen so that the integral 'y8]_K*
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, __mF?m
% and theta=0 to theta=2*pi) is unity. For the non-normalized *m?/O}R
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. {( r6e
% q6YX M
% The Zernike functions are an orthogonal basis on the unit circle. &0f5:M{P
% They are used in disciplines such as astronomy, optics, and ;WR,eI..
% optometry to describe functions on a circular domain. F:x [
% dOa%9[
% The following table lists the first 15 Zernike functions. :
]C~gc
% k)EX(T\
% n m Zernike function Normalization 2-Y<4'>
% -------------------------------------------------- J!5$,%v
% 0 0 1 1 ]_N|L|]M
% 1 1 r * cos(theta) 2 p]3?gK-
% 1 -1 r * sin(theta) 2 I`NjqyTW
% 2 -2 r^2 * cos(2*theta) sqrt(6) p/+a=Yo
% 2 0 (2*r^2 - 1) sqrt(3) ;!(<s,c#:
% 2 2 r^2 * sin(2*theta) sqrt(6) P.gb1$7<
% 3 -3 r^3 * cos(3*theta) sqrt(8) sQkhwMg
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) t!RiU ZAo
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) N7e"@Ic
% 3 3 r^3 * sin(3*theta) sqrt(8) 1GzAG;UUo6
% 4 -4 r^4 * cos(4*theta) sqrt(10) k:7(D_
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) -GxaV #{
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) -'6Dg
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 2}8v(%s p
% 4 4 r^4 * sin(4*theta) sqrt(10) XI^QF;,
% -------------------------------------------------- | Bi!
% S]+:{9d
% Example 1: O%bEB g
% gEjdN.
% % Display the Zernike function Z(n=5,m=1) d3xmtG {i
% x = -1:0.01:1; J{Q|mD=
% [X,Y] = meshgrid(x,x); 0Vx.nUQ
% [theta,r] = cart2pol(X,Y); F w?[lS
% idx = r<=1; rW$[DdFA5{
% z = nan(size(X)); 4<BjC[@~Z{
% z(idx) = zernfun(5,1,r(idx),theta(idx)); .SWlp2!M5
% figure <7~'; K
% pcolor(x,x,z), shading interp z4N*b"QF
% axis square, colorbar hIT+gnhh
% title('Zernike function Z_5^1(r,\theta)') 79;<_(Y
% $&=S#_HQS
% Example 2: X(NLtO
w
% \kZ?
% % Display the first 10 Zernike functions !z>6Uf!{
% x = -1:0.01:1; *WuID2cOI
% [X,Y] = meshgrid(x,x);
+U3DG$
% [theta,r] = cart2pol(X,Y); }~L.qG
% idx = r<=1; x7Yu I
% z = nan(size(X)); ,y#Kv|R
% n = [0 1 1 2 2 2 3 3 3 3]; 9iQq.$A .
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; uLV#SQ=bZN
% Nplot = [4 10 12 16 18 20 22 24 26 28]; u ,KD4{!
% y = zernfun(n,m,r(idx),theta(idx)); .6Pw|xu`Pw
% figure('Units','normalized') U>Slc08N
% for k = 1:10 F1yqxWHeo
% z(idx) = y(:,k); ,>%}B3O:Y=
% subplot(4,7,Nplot(k)) Vh4X%b$TV
% pcolor(x,x,z), shading interp ~nay" g:
% set(gca,'XTick',[],'YTick',[]) 'd9INz.
% axis square 8]9%*2"!
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) $|@
(
% end :/nj@X6
% "]}
bFO7C
% See also ZERNPOL, ZERNFUN2. ?Wlb3;
T{-CkHf9Q
bE !G JZ
% Paul Fricker 11/13/2006 ?82xdpg
VZKvaxIk6
``hf=`We
FOE4>zE
Hquc
o
% Check and prepare the inputs: [_EZhq
% ----------------------------- W:pIPDx1=!
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) (5-FV p
fb
error('zernfun:NMvectors','N and M must be vectors.') g,!L$,/F
end S4_YT@VD%
vg32y /l]S
X}Ai-D
if length(n)~=length(m) [M=7M}f;
error('zernfun:NMlength','N and M must be the same length.') {8W'%\!=
end n-tgX?1'
Jdj2~pTq
*nkoPVpC
n = n(:); i9,geQ7d
m = m(:); 4O^xY
6m
if any(mod(n-m,2)) !Wntd\w
error('zernfun:NMmultiplesof2', ... gCB |DY
'All N and M must differ by multiples of 2 (including 0).') I;wp':
end A P?R"%
8p 'L#Q.
286jI7 T
if any(m>n) 'c9]&B
error('zernfun:MlessthanN', ... r@H /kD
'Each M must be less than or equal to its corresponding N.') Ga^"1TZ x
end TNe l/
K0|FY=#2y
ymhtX6]
if any( r>1 | r<0 ) 2} /aFR
error('zernfun:Rlessthan1','All R must be between 0 and 1.') 0z6R'Kjy A
end V^bwXr4f
u}macKJmp\
7x|9n
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ZbW17@b
error('zernfun:RTHvector','R and THETA must be vectors.') 6]WAUK%h
end f@wquG'
B"1c
y.mda:$~=
r = r(:); [}E='m}u9+
theta = theta(:); 6H.0vN&
length_r = length(r); hF~n)oQ
if length_r~=length(theta) P~ >OS5^
error('zernfun:RTHlength', ... *v^Jb/E315
'The number of R- and THETA-values must be equal.') |"8b_Cq{
end o,\$ZxSlm
un mJbY;t
Qb-M6ihcc
% Check normalization: Hw}Xbp[y
% -------------------- M=@:ZQ^!
if nargin==5 && ischar(nflag) NX*Q F+
isnorm = strcmpi(nflag,'norm'); BU/"rv"(Fg
if ~isnorm uP)'FI
error('zernfun:normalization','Unrecognized normalization flag.') pZ.ecZe/
end >
PRFWO
else V1N3iI
isnorm = false; vxBgGl
end c<:-T
xX&+WR
_YhES-Ff
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% we//|fA<
% Compute the Zernike Polynomials ].w4$OJ?
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% y@S$^jk.
S%;O+eFYb
V(I8=rVH
% Determine the required powers of r: ,aZ[R27rpL
% ----------------------------------- {L{o]Ii?g
m_abs = abs(m); nV|EQs4(
rpowers = []; @1roe
G
for j = 1:length(n) x)DMPVB<
rpowers = [rpowers m_abs(j):2:n(j)]; nfbR
P t
end Tv,[DI +
rpowers = unique(rpowers); ,q`\\d
`,<BCu
UERLtSQ
% Pre-compute the values of r raised to the required powers, ~^:A{/
% and compile them in a matrix: gD@){Ip
% ----------------------------- 5{X<y#vAC0
if rpowers(1)==0 lfow1WRF
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); V+Y%v.F
rpowern = cat(2,rpowern{:}); g
wRZ%.Cn
rpowern = [ones(length_r,1) rpowern]; pI\]6U
else A:%`wX}
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Q->sV$^=T
rpowern = cat(2,rpowern{:}); 7;(`MIFXs
end /hR&8 `\\
>y7?-*0
k(nW#*N_
% Compute the values of the polynomials: q6luUx,@m
% -------------------------------------- D%pF;XY
y = zeros(length_r,length(n)); JG rWHIsNV
for j = 1:length(n) $bR~+C
s = 0:(n(j)-m_abs(j))/2; Dcgo%F-W
pows = n(j):-2:m_abs(j); Dw.J2>uj
for k = length(s):-1:1 }j)e6>K])
p = (1-2*mod(s(k),2))* ... 194)QeoFw
prod(2:(n(j)-s(k)))/ ... NH4#
prod(2:s(k))/ ... rglXs
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... .uZ3odMlx
prod(2:((n(j)+m_abs(j))/2-s(k))); }o(-=lF
idx = (pows(k)==rpowers); r#p9x[f<Y
y(:,j) = y(:,j) + p*rpowern(:,idx); QA`sx
end QZ
B~ GbF*j
if isnorm M5X&}cN6
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); |0b`fOS
end 013x8!i
end E{`fF8]K
% END: Compute the Zernike Polynomials XNkn|q2
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 6A-|[(NS
R
'zWYQ
KkbD W3-
% Compute the Zernike functions: r`d4e,(
% ------------------------------ \ Gvm9M
idx_pos = m>0; ;*Et[}3
idx_neg = m<0; |/{=ww8|
g8% &RG
{4Cmu;u
z = y; 8cIKvHx
if any(idx_pos) *.t7G
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); @RKryY)
end
(uE!+2C
if any(idx_neg) m-#2n?
z-
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); sDlO#
end Kw ]=
sUQ@7sTj
!_)[/q"
% EOF zernfun tT_\ i6My