下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, }klE0<W|5\
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, cAYa=}~<
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? /j`i/Ha1
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? E {I)LdAqK
7YoofI
d&O'r[S
qn5yD!1
s@/B*r9
function z = zernfun(n,m,r,theta,nflag) ,w,ENU0~f
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. &8pCHGmV)
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N l~`txe
% and angular frequency M, evaluated at positions (R,THETA) on the BERn _5gb
% unit circle. N is a vector of positive integers (including 0), and H(
% M is a vector with the same number of elements as N. Each element w:~nw;.T
% k of M must be a positive integer, with possible values M(k) = -N(k) n ;Ql=4
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, ORUWslMt
% and THETA is a vector of angles. R and THETA must have the same =>gyc;{2K<
% length. The output Z is a matrix with one column for every (N,M) EGp~Vo-
% pair, and one row for every (R,THETA) pair. Fr1;)WV
%
{JCSR2BB
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike )pkhir06t
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), )->-~E}p9
% with delta(m,0) the Kronecker delta, is chosen so that the integral Km|9Too
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, s:-8 Z\,
% and theta=0 to theta=2*pi) is unity. For the non-normalized 2hjre3"?
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. jx^|2
% /vFxVBX
% The Zernike functions are an orthogonal basis on the unit circle. QO1A976o
% They are used in disciplines such as astronomy, optics, and Dme(Knly
% optometry to describe functions on a circular domain. 4d{"S02h
% L8,H9T#e
% The following table lists the first 15 Zernike functions. GC5#1+fQ
% eXskwV+7
% n m Zernike function Normalization +G3nn!gl4
% -------------------------------------------------- TFiuz;*|
% 0 0 1 1 w>H%[\Qs
% 1 1 r * cos(theta) 2 =)"NE>
% 1 -1 r * sin(theta) 2 |r)>bY7
% 2 -2 r^2 * cos(2*theta) sqrt(6) pIU#c&%<9
% 2 0 (2*r^2 - 1) sqrt(3) sRo<4U0M;l
% 2 2 r^2 * sin(2*theta) sqrt(6) rw}5nv
% 3 -3 r^3 * cos(3*theta) sqrt(8) =]5DYRhX]
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) !`O_VV`/@
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) ihpz}g
% 3 3 r^3 * sin(3*theta) sqrt(8) .N-'; %8
% 4 -4 r^4 * cos(4*theta) sqrt(10) #cSw"A
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) <3],C)Zwc
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) ?<>,XyY
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) S*2L4Uj`|
% 4 4 r^4 * sin(4*theta) sqrt(10) 7gZVg@
% -------------------------------------------------- _D7HQ
% SoXX}<~E4
% Example 1: `JY>v io
% Mc#O+'](f
% % Display the Zernike function Z(n=5,m=1) tF;& x
g
% x = -1:0.01:1; @4 Os?_gJ\
% [X,Y] = meshgrid(x,x); "tg\yem
% [theta,r] = cart2pol(X,Y); 82Z[eo
% idx = r<=1; Y*5@|Q
% z = nan(size(X)); R%]9y]HQ
% z(idx) = zernfun(5,1,r(idx),theta(idx)); %z!d4J75
% figure ^w&5@3d
% pcolor(x,x,z), shading interp PJSDY1T
% axis square, colorbar e GqvnNv
% title('Zernike function Z_5^1(r,\theta)') #(26t _a
% )\I? EU8
% Example 2: @gu77^='
% XEgx#F ;F
% % Display the first 10 Zernike functions dc\u$'F@S
% x = -1:0.01:1; =Nv=Q mO
% [X,Y] = meshgrid(x,x); >H=Q$gI
% [theta,r] = cart2pol(X,Y); "t%1@b*u
% idx = r<=1; 5b{yA~ty
% z = nan(size(X)); =?`y(k4a
% n = [0 1 1 2 2 2 3 3 3 3]; c9ov;Bw6S
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 5u
u2 _B_L
% Nplot = [4 10 12 16 18 20 22 24 26 28]; yG4LQE
% y = zernfun(n,m,r(idx),theta(idx)); !e#I4,f n
% figure('Units','normalized') P98X[0&
% for k = 1:10 D<D
k1
% z(idx) = y(:,k); $@:>7Y"
% subplot(4,7,Nplot(k)) 0,L$x*Nj5
% pcolor(x,x,z), shading interp WV!kA_
% set(gca,'XTick',[],'YTick',[]) J?n)FgxS
% axis square \{+nXn
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 5>4A}hSe
% end . ;ea]_Z
% BhE~k?$9
% See also ZERNPOL, ZERNFUN2. J.1ln
=Y
~D`oP/6
b0z{"
% Paul Fricker 11/13/2006 e2Kpx8kWj
Z9
q{r s
$E9daUt8"J
utm+\/
0@mX4.!
% Check and prepare the inputs: 0P%|)Ae
% ----------------------------- G4iLCcjY
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) q:~`7I
error('zernfun:NMvectors','N and M must be vectors.') 5S-o
2a
end ]RrP !|^
:9rhv{6Wp
/Y\E68_Fh
if length(n)~=length(m) {GH`V}Ob
error('zernfun:NMlength','N and M must be the same length.') Zm8
u:
end jO3u]5}.6
&"j).Ogm4
B,m$ur#$
n = n(:); @<w9fzi
m = m(:); EBL,E:_)
if any(mod(n-m,2)) <{z3p:\
error('zernfun:NMmultiplesof2', ... D'sboOY
'All N and M must differ by multiples of 2 (including 0).') 4pTuP /
end 1~xn[acy
m|cWX"#g
.jGsO0
if any(m>n) hZ\W ?r
error('zernfun:MlessthanN', ... L};;o+5uJD
'Each M must be less than or equal to its corresponding N.') .L(j@I t
end #+ lq7HJ1
<11Tqb
fe9& V2Uu
if any( r>1 | r<0 ) v`ZusHJ1d
error('zernfun:Rlessthan1','All R must be between 0 and 1.') |`t!aG8
end W!4V:(T
/&!d
+_XbHjhN/
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Sp$x%p0
error('zernfun:RTHvector','R and THETA must be vectors.') m[Ac'la
end :mtw}H 'F8
% x*Ec[l
DEwtP
r = r(:); vyx\N{
theta = theta(:); 53+rpU_
length_r = length(r); ]E8<;t)#
if length_r~=length(theta) $E_vCB_
error('zernfun:RTHlength', ... lbuW*)
'The number of R- and THETA-values must be equal.') IweK!,:>dN
end ):\{n8~
_kY[8e5
=&b$W/l)0
% Check normalization: z9kX`M+
% -------------------- Gx* 0$4xJ3
if nargin==5 && ischar(nflag) 8W<)c
isnorm = strcmpi(nflag,'norm'); 2=,Sz1`t
if ~isnorm M^JZ]W(
error('zernfun:normalization','Unrecognized normalization flag.') 2"Uk}Yz|
end 7 KdM>1!
else [dF=1E>W_J
isnorm = false; NUnc"@
end Z
a1|fB
#`L}.
_NqT8C4C
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 5eSTT#[+R
% Compute the Zernike Polynomials ._8cJf.ae
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ;pyJ O_R[
Oi[9b
@[kM1:G-F{
% Determine the required powers of r: ]j$p _s>
% ----------------------------------- aC
}1]7
m_abs = abs(m);
DfzUGX
rpowers = []; -GWzMBS S
for j = 1:length(n) `FB?cPR
rpowers = [rpowers m_abs(j):2:n(j)]; MH8%-UV
end HN~4-6[q
rpowers = unique(rpowers); )"Br,uIv:/
8EEQV} 4
3jeV4|
% Pre-compute the values of r raised to the required powers, g2>u]3&W
% and compile them in a matrix: o3=S<|V
% ----------------------------- n@,eZ!
if rpowers(1)==0 <07W&`Dw
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); =yhfL2`aw
rpowern = cat(2,rpowern{:}); V>uW|6
rpowern = [ones(length_r,1) rpowern]; 4-rI4A<
else K}/`YDu
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); +Y]*>afG
rpowern = cat(2,rpowern{:}); V;]VwsZ"
end e27CbA{_w
uvv-lAbjw
C^=gZ
6m
% Compute the values of the polynomials: $5CY<,f
% -------------------------------------- %c/"A8{ eb
y = zeros(length_r,length(n)); y*Q-4_%,
for j = 1:length(n) 9.#R?YP$
s = 0:(n(j)-m_abs(j))/2; R/cq00g
pows = n(j):-2:m_abs(j); (0m$W<
for k = length(s):-1:1 zYF&Dv/u/
p = (1-2*mod(s(k),2))* ... m9w
;a
prod(2:(n(j)-s(k)))/ ... SA n=9MG
prod(2:s(k))/ ... |A/_Qe|s2
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... [#6Esy8|
prod(2:((n(j)+m_abs(j))/2-s(k))); xWb?i6)z&
idx = (pows(k)==rpowers); UZ3Aq12U}a
y(:,j) = y(:,j) + p*rpowern(:,idx); RW[<e
end 78~V/L;@S2
pz}hh^]t
if isnorm f>[;|r@K
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ZLX`[
end xQ
3u
end mf[79:90^
% END: Compute the Zernike Polynomials ~EkGG
.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% uOqDJM'RM
pcTXTy 28
7tKft
% Compute the Zernike functions: <G?85*Nv_
% ------------------------------ aMg f6veM
idx_pos = m>0; G6mM6(Sr
idx_neg = m<0; >,vW
@@mW+16
?ML<o>OKg
z = y; ~cj:AIF
if any(idx_pos) MJpTr5Vs
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); |RXC;zt9s
end ]!o,S{a&
if any(idx_neg) UI|@5:J
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); p:
end Cy'W!qH
@$}\S
MtTHKp
% EOF zernfun `9{C/qB