下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, IS&`O=7
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, YtW#MG$f
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? ]~WP;o
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? Z ;%
~pzaX8!
FAM`+QtNw
v^@L?{"}8
~lDLdUs
function z = zernfun(n,m,r,theta,nflag) X&wK<
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. !Q.c8GRUQ
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N NnHwk)'
% and angular frequency M, evaluated at positions (R,THETA) on the Td;e\s/]
% unit circle. N is a vector of positive integers (including 0), and ,9?'Q;20
% M is a vector with the same number of elements as N. Each element W**=X\"'
% k of M must be a positive integer, with possible values M(k) = -N(k) te6[^_k
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, !ox &`
% and THETA is a vector of angles. R and THETA must have the same #H!~:Xu
% length. The output Z is a matrix with one column for every (N,M) /2FX"I[0V%
% pair, and one row for every (R,THETA) pair. ykM#EyN
% K"}Dbr
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Q~xR'G[N
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 7y[B[$P
% with delta(m,0) the Kronecker delta, is chosen so that the integral 'Fonn
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, FblGFm"P
% and theta=0 to theta=2*pi) is unity. For the non-normalized bzJKoxU
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. uFok'3!g7%
% MO _9Yi
% The Zernike functions are an orthogonal basis on the unit circle. AP@xZ%;K
% They are used in disciplines such as astronomy, optics, and $hKgTf?
% optometry to describe functions on a circular domain. W!X#:UM)
% J&3;6I
&
% The following table lists the first 15 Zernike functions. PU'v o4
% z?
{#/
% n m Zernike function Normalization Ix(4<s
% -------------------------------------------------- 5Q%#Z
L/'
% 0 0 1 1 9&d BL0
% 1 1 r * cos(theta) 2 il#rdJ1@t
% 1 -1 r * sin(theta) 2 Q'8v!/"}p{
% 2 -2 r^2 * cos(2*theta) sqrt(6) (vI7qD_
% 2 0 (2*r^2 - 1) sqrt(3) qHKZ5w
% 2 2 r^2 * sin(2*theta) sqrt(6) rW`F|F%
% 3 -3 r^3 * cos(3*theta) sqrt(8) N$y4>g
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) RtIc:ym
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) ze4/XR
% 3 3 r^3 * sin(3*theta) sqrt(8) Fe= 4^.
% 4 -4 r^4 * cos(4*theta) sqrt(10) RU{}qPs?
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Xs!eV
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) Y4{`?UM&h
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 5=?&q 'i
% 4 4 r^4 * sin(4*theta) sqrt(10) O Z#?
% -------------------------------------------------- C$tSsw?A
% hV,3xrm?P
% Example 1: t
=*K?'ly
% FdSa Ood8
% % Display the Zernike function Z(n=5,m=1) p0tv@8C>
% x = -1:0.01:1; .H>Rqikj
% [X,Y] = meshgrid(x,x); K&X'^|en
% [theta,r] = cart2pol(X,Y); I}q-J~s
% idx = r<=1; Gt1Up~\s
% z = nan(size(X)); Kz<xu ulr
% z(idx) = zernfun(5,1,r(idx),theta(idx)); w1}[lq@
% figure .U1dcL6
% pcolor(x,x,z), shading interp .Gv~e!a8
% axis square, colorbar n -=\n6"P
% title('Zernike function Z_5^1(r,\theta)') +p[~hM6?
% ?k3b\E3
% Example 2: ,S5#Kka~a
%
1y@-
% % Display the first 10 Zernike functions e7qT;
% x = -1:0.01:1; B@=Yj_s
% [X,Y] = meshgrid(x,x); lvN{R{7>
% [theta,r] = cart2pol(X,Y); ryT8*}o
% idx = r<=1; 4ku /3/6
% z = nan(size(X)); e"2QV vB
% n = [0 1 1 2 2 2 3 3 3 3]; OP&[5X+Y
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 68!]q(!6F
% Nplot = [4 10 12 16 18 20 22 24 26 28]; N0piL6Js
% y = zernfun(n,m,r(idx),theta(idx)); +sI.GWQ_:
% figure('Units','normalized') Ax%BnkU
% for k = 1:10 ku{aOV%
% z(idx) = y(:,k); 0l##M06>
% subplot(4,7,Nplot(k)) L!p|RKz9X
% pcolor(x,x,z), shading interp "a
g_
% set(gca,'XTick',[],'YTick',[]) M'HOw)U
% axis square Y]lqtre*Y
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) em]K7B=
% end w*
I+~o-
% @Dy.HQ~
% See also ZERNPOL, ZERNFUN2. {#%xq]r_
3dbf!
gfYB|VyWo
% Paul Fricker 11/13/2006 _R<HC
]M2<I#hF.
!lF^~x
Dr1F|[
HZm
i?
% Check and prepare the inputs: A1q^E(}O
% ----------------------------- A!D:Kc3
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) e!yw"Cf*
error('zernfun:NMvectors','N and M must be vectors.') x.yL'J\)
end Kzb@JBIF
["F,|e{y$
W'jXIO
if length(n)~=length(m) E8i:ER $$7
error('zernfun:NMlength','N and M must be the same length.') Wa(S20yF
end CwvNxH#LVu
Fjzk;o
@r ?`:&m0
n = n(:); /)1-^ju
m = m(:); 5avO48;Vc
if any(mod(n-m,2)) bw\=F_>L
error('zernfun:NMmultiplesof2', ... ;N\?]{ L
'All N and M must differ by multiples of 2 (including 0).') PR?clg=z
end H1nQ.P]_
_);Kb/
G!8pF
if any(m>n) kKM%
error('zernfun:MlessthanN', ... bY~ v0kg
'Each M must be less than or equal to its corresponding N.') yxN!*~BvL
end %?hLo8
lc-|Q#$3$
:Y>]6
if any( r>1 | r<0 ) tTH%YtG
error('zernfun:Rlessthan1','All R must be between 0 and 1.') u`@f~QP0
end zfb _ )
S=p u
l*Ei7 |Z
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ^ kvH/ Y&
error('zernfun:RTHvector','R and THETA must be vectors.') 5$U>M
end %,et$1`g
fR4l4 GU?)
1fv~r@6s
r = r(:); ]?(F'&
theta = theta(:); 5Kj4!Ai
length_r = length(r); lzG;F]
if length_r~=length(theta) A.9'pi'[9Q
error('zernfun:RTHlength', ... %uVJLz
'The number of R- and THETA-values must be equal.') *t{c}Y&@
end =zeLs0s;
SRN9(LN
* g4Cy8$
% Check normalization: ;-pvc<_c<
% -------------------- PbUcbb17
if nargin==5 && ischar(nflag) \t# 9zn>
isnorm = strcmpi(nflag,'norm'); w"agn}CK
if ~isnorm Ln2C#Uf
error('zernfun:normalization','Unrecognized normalization flag.') i i@1!o
end v\(m"|4(i
else k(z<Bm
isnorm = false; Z,!Xxv;4
end 1 {x~iZa
8='21@wrN
t"/"Ge#a
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% )_*a7N!
% Compute the Zernike Polynomials M
|?p3%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% uuYH6bw*d
#oJbrh9J6
ClMtl59
% Determine the required powers of r: nP\V1pgA
% ----------------------------------- * \o$-6<
m_abs = abs(m); ~Oq,[,W
rpowers = []; $dTfvd
for j = 1:length(n) t 9n
rpowers = [rpowers m_abs(j):2:n(j)]; Cxk$"_
end !N8)C@=
rpowers = unique(rpowers); {IPn\Bka
&lPBqw
7s8<FyFsjd
% Pre-compute the values of r raised to the required powers, ;5Vk01R
% and compile them in a matrix: f:[d]J|
% ----------------------------- Dg>'5`&
if rpowers(1)==0 ^UvK~5tBV
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 6"Lsui??
rpowern = cat(2,rpowern{:}); AqbT{,3yW
rpowern = [ones(length_r,1) rpowern]; @SC-vc
else pO/SV6N
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); W]D`f8r9
rpowern = cat(2,rpowern{:}); m-'(27
end ?Tc)f_a
J`+`Kq1T
ECS<l*i57&
% Compute the values of the polynomials: 4/2RfDp
% -------------------------------------- F7Dc!JNa
y = zeros(length_r,length(n)); P10p<@?
for j = 1:length(n) Dl zmAN
s = 0:(n(j)-m_abs(j))/2; c[h'`KXJf-
pows = n(j):-2:m_abs(j); c. TB8Ol
for k = length(s):-1:1 !q-:rW?c
p = (1-2*mod(s(k),2))* ... ? gA=39[j
prod(2:(n(j)-s(k)))/ ... WE 5"A|
=
prod(2:s(k))/ ... u3M`'YCb
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ,"N3k(g
prod(2:((n(j)+m_abs(j))/2-s(k))); ) _9e@~,
idx = (pows(k)==rpowers); :!I)r$
y(:,j) = y(:,j) + p*rpowern(:,idx); hnsa)@
end s-GleX<
@cu}3>
if isnorm tB ,.
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); !$p2z_n$@.
end 7~kpRa@\P
end })zB".
% END: Compute the Zernike Polynomials _b!;(~@p
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% h/1nm U]
e7XsyL'|p
S2'`|uI
% Compute the Zernike functions: KH2F#[
!Lw
% ------------------------------ B:3+',i1
idx_pos = m>0; QN5yBa!Wz
idx_neg = m<0; x2j/8]'o
<+?
Y
%A)-m 69
z = y; FXOT+9bg
if any(idx_pos) 4f4 i1i:
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); I~p8#<4#b
end z-KrQx2
if any(idx_neg) jiA5oX^g
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); H
_Zo@y~J
end 9UeVvH
85r)>aCMn
zG-_!FIn
% EOF zernfun U^M@um M