切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8441阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, BVKr 2v  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, ];-DqK'  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? $a.!X8sHB.  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? RG'Ft]l92N  
    RGeM.  
    23lLoyN  
    p)t1] <,Of  
    9>t  
    function z = zernfun(n,m,r,theta,nflag) a?zn>tx  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. ;B35E!QJ  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N q(i^sE[y  
    %   and angular frequency M, evaluated at positions (R,THETA) on the &B^zu+J  
    %   unit circle.  N is a vector of positive integers (including 0), and p19[qy~.  
    %   M is a vector with the same number of elements as N.  Each element d},IQ,Az:Z  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) Vvth,  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, kWF/SsE  
    %   and THETA is a vector of angles.  R and THETA must have the same 0{ZYYB&"~J  
    %   length.  The output Z is a matrix with one column for every (N,M) A9*( O)  
    %   pair, and one row for every (R,THETA) pair. FS3MR9  
    % c)d*[OI8  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike uCc.dluU  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), c+6/@y  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral CQf<En|1  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Dq#/Uw#  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized jWn!96NhlL  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Xq3n7d.  
    % dLtSa\2Hn  
    %   The Zernike functions are an orthogonal basis on the unit circle. bIFKP  
    %   They are used in disciplines such as astronomy, optics, and hX-([o  
    %   optometry to describe functions on a circular domain. 4G:I VK9  
    % p2c4 <f-M  
    %   The following table lists the first 15 Zernike functions. E8TJ*ZU  
    % +`EF0sux  
    %       n    m    Zernike function           Normalization `EV" /&`  
    %       -------------------------------------------------- yI&{8DCCw  
    %       0    0    1                                 1 o/EN3J  
    %       1    1    r * cos(theta)                    2 i+/:^tc;  
    %       1   -1    r * sin(theta)                    2 qf/1a CQiP  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) zW`Zmt\T2  
    %       2    0    (2*r^2 - 1)                    sqrt(3) W\(u1>lj  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) 16iymiLz&  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ;j#$d@VG"  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) <b-BJ2],k  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ~s}0z&v^te  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 5ryzAB O\2  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) i\P?Y(-{  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Fq{Z-yVp  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) [x {S ,?6  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Qfhhceb6#J  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) Gj[+{  
    %       -------------------------------------------------- '%W'HqVcG1  
    % ;z6Gk&?  
    %   Example 1: Wvhg:vup  
    % x+kP,v  
    %       % Display the Zernike function Z(n=5,m=1) CYr2~0<g  
    %       x = -1:0.01:1; y-UutI&  
    %       [X,Y] = meshgrid(x,x); |{#=#3X  
    %       [theta,r] = cart2pol(X,Y); G2FP|mf,  
    %       idx = r<=1; / 38b:,  
    %       z = nan(size(X)); |E\0Rv{H3  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 89I[Dg;"u  
    %       figure Rp~#zt9:  
    %       pcolor(x,x,z), shading interp /?POIn+0o  
    %       axis square, colorbar (Bta vE  
    %       title('Zernike function Z_5^1(r,\theta)') bYr;~ ^  
    % go, Hfb  
    %   Example 2: GP"(+5  
    % us&!%`  
    %       % Display the first 10 Zernike functions jTNfGu0x  
    %       x = -1:0.01:1; x\=2D<@az  
    %       [X,Y] = meshgrid(x,x); 'xNPy =#  
    %       [theta,r] = cart2pol(X,Y); ^wL n  
    %       idx = r<=1; e*O-LI2O  
    %       z = nan(size(X)); r]x;JBy  
    %       n = [0  1  1  2  2  2  3  3  3  3]; l@+WGh  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; ap;tggi(H  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; )I80Nq  
    %       y = zernfun(n,m,r(idx),theta(idx)); %G%##wv:  
    %       figure('Units','normalized') U @Il:\I  
    %       for k = 1:10 ^ <Z^3c>/  
    %           z(idx) = y(:,k); \V@Hf"=j  
    %           subplot(4,7,Nplot(k)) RP]hW{:U  
    %           pcolor(x,x,z), shading interp JPS7L}Kv  
    %           set(gca,'XTick',[],'YTick',[]) \NYtxGV[Z  
    %           axis square 1Aq*|JSk(  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) F+;{s(wx  
    %       end #4(/#K 1j  
    % ={9G.%W  
    %   See also ZERNPOL, ZERNFUN2. zy(i]6  
    :@PM+[B|Q  
    `{g8A P3  
    %   Paul Fricker 11/13/2006 9`J!]WQ1[  
    O_*(:Z  
    C;DNL^  
    CroI,=a&,  
    "ei*iUBN:  
    % Check and prepare the inputs: ;!<WL@C~  
    % ----------------------------- =RR225  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) S~1>q+<Q  
        error('zernfun:NMvectors','N and M must be vectors.') 2[&3$-]  
    end KlgPDV9mg  
    :uZfdu  
    7s%DM6li 6  
    if length(n)~=length(m) I At;?4  
        error('zernfun:NMlength','N and M must be the same length.') sIuk  
    end Q]_3 #_'  
    lAsDdxB`  
    6KiI3%y?0  
    n = n(:); @Taj++ua  
    m = m(:); 7<Fp3N 3  
    if any(mod(n-m,2)) kJ6=T6s  
        error('zernfun:NMmultiplesof2', ... !FweXFl  
              'All N and M must differ by multiples of 2 (including 0).') e";r_J3w  
    end z`-?5-a]I  
    bS{7*S  
    `d#l o  
    if any(m>n) Sf>R7.lpP  
        error('zernfun:MlessthanN', ... !dfc1UjB  
              'Each M must be less than or equal to its corresponding N.') k%\_UYa  
    end DSY:aD!  
    [h8j0Q@Q  
    Dm/# \y3  
    if any( r>1 | r<0 ) *F+t`<2  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') >_QC_UX>4i  
    end l-"c-2-!  
    YV*s1 t/  
    D%v4B`4ua'  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ]=p@1  
        error('zernfun:RTHvector','R and THETA must be vectors.') R}F0_.  
    end ` bd  
    $ WAFr  
    .$+]N[-=  
    r = r(:); OKfJ  
    theta = theta(:); Ec| Gom?  
    length_r = length(r); u-Pa:wm0-  
    if length_r~=length(theta) orn9;|8q  
        error('zernfun:RTHlength', ... b:.aZ7+4  
              'The number of R- and THETA-values must be equal.') A87JPX#R?  
    end n(.y_NEgV!  
    I0 a,mO;m  
    ; >3q@9\D  
    % Check normalization: W B)<B  
    % -------------------- M:|Z3p K  
    if nargin==5 && ischar(nflag) _aVrQ@9  
        isnorm = strcmpi(nflag,'norm'); I|lz;i}$  
        if ~isnorm >TUs~  
            error('zernfun:normalization','Unrecognized normalization flag.') V6"<lK8"  
        end i"%X[(U7  
    else Tl=cniy]  
        isnorm = false; Pg" uisT#>  
    end S!qJqZ<Bv  
     t4pc2b  
    N2uxiXpQZ=  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% N+x0"~T}I  
    % Compute the Zernike Polynomials kf+]bV  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Pl<r*d)h  
    }^WQNdws56  
    G?!b00H  
    % Determine the required powers of r: naCPSsei  
    % ----------------------------------- ^'i(@{{o\  
    m_abs = abs(m); IbC(/i#%`  
    rpowers = []; Ed,`1+  
    for j = 1:length(n) :G9+-z{Y&  
        rpowers = [rpowers m_abs(j):2:n(j)]; SCE5|3j  
    end Qj~m;F!  
    rpowers = unique(rpowers); Ar4E $\W  
    R%o:'-~  
    ^Bn)a"Gd  
    % Pre-compute the values of r raised to the required powers, r  H;@N  
    % and compile them in a matrix: ?F20\D\V  
    % ----------------------------- C4],7"Sw  
    if rpowers(1)==0 EZaWEW  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); )ALPMmlRs  
        rpowern = cat(2,rpowern{:}); /%|JP{   
        rpowern = [ones(length_r,1) rpowern]; $u_0"sUV  
    else QlJ cj+_h  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); E%OY7zf`%  
        rpowern = cat(2,rpowern{:}); 0F-X.Dq  
    end qLBXyQ;U  
    NR-d|`P;  
    y0cHs|8  
    % Compute the values of the polynomials: *JE%bQ2Q  
    % -------------------------------------- @#K19\dQ  
    y = zeros(length_r,length(n)); :@)UI,  
    for j = 1:length(n) ,80qwN,  
        s = 0:(n(j)-m_abs(j))/2; K[0.4+  
        pows = n(j):-2:m_abs(j); ;LE4U OK  
        for k = length(s):-1:1 T:q_1W?h]  
            p = (1-2*mod(s(k),2))* ... N&7= hni  
                       prod(2:(n(j)-s(k)))/              ... r=P)iE:  
                       prod(2:s(k))/                     ... ){`s&?M0  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... k\$))<3  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); ,/AwR?m  
            idx = (pows(k)==rpowers); $2qZds[  
            y(:,j) = y(:,j) + p*rpowern(:,idx); P:h;"  
        end m7wD#?lm  
         tFt56/4  
        if isnorm =r"8J5[f  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); )o)<5Iqh  
        end Bz<T{f  
    end B*btt+6  
    % END: Compute the Zernike Polynomials RY'f%c  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% >(mp$#+w  
    ~$n4Yuu2[  
    E^w2IIw  
    % Compute the Zernike functions: 2^w3xL"   
    % ------------------------------ b"n8~Vd  
    idx_pos = m>0; K}"xZy Tm1  
    idx_neg = m<0; RUqN,C,m5I  
    ,?k[<C  
    W_l/Jpv!W  
    z = y; G n"]<8yl~  
    if any(idx_pos) \MBbZB9@  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); bA}9He1  
    end )3 #gpM  
    if any(idx_neg) Z- |.j^n  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); {T4F0fu[eR  
    end hw! l{yv  
    |{ W4JFKJ  
    ~_opU(;f  
    % EOF zernfun .GcIwP'aU-  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    8425
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    在线sansummer
    发帖
    956
    光币
    1054
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  +IS+!K0?)  
    oZM6%-@qi  
    DDE还是手动输入的呢? b5!\"v4c  
    hKkUsY=R  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究