切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9205阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, kV&9`c+  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, md bp8,O  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? p_2pU)%  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? Bv9kSu9'~  
    '#\1uXM1U?  
    1S:|3W  
    E D"!n-Hq  
    _yH`t[  
    function z = zernfun(n,m,r,theta,nflag) 'Ot,H_pE  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. }#`:Qb \U  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N }< 5F  
    %   and angular frequency M, evaluated at positions (R,THETA) on the K#mOSY;}  
    %   unit circle.  N is a vector of positive integers (including 0), and 8g~EL{'  
    %   M is a vector with the same number of elements as N.  Each element E JK0  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) Pbu{'y3J  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, V416g |lBO  
    %   and THETA is a vector of angles.  R and THETA must have the same FjFMR 63  
    %   length.  The output Z is a matrix with one column for every (N,M) )R2XU  
    %   pair, and one row for every (R,THETA) pair. 3Q By\1h.  
    % ;_?MX/w|&  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike #{J,kcxS  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), qu|i;WZE  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral DcD{*t?x  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 1zxq^BI  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized oG oK,  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. GqKsK r2%  
    % ExBUpDQc  
    %   The Zernike functions are an orthogonal basis on the unit circle. _D, ;MB&7  
    %   They are used in disciplines such as astronomy, optics, and ]wVk+%e  
    %   optometry to describe functions on a circular domain. ZWUP^V  
    % 9N8I ip]w  
    %   The following table lists the first 15 Zernike functions. #*%q'gyHT  
    % 4Xj4|Rw%  
    %       n    m    Zernike function           Normalization 0(TTw(;  
    %       -------------------------------------------------- nY%5cJ`"  
    %       0    0    1                                 1 UUe#{6Jx_  
    %       1    1    r * cos(theta)                    2 XGrue6 ya  
    %       1   -1    r * sin(theta)                    2 YDJ4c;37  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) &a0r%L()X  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 'tgKe!-@  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) 6IcNZ!j98  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) O[^%{'  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) A^\.Z4=d"  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) :mppv8bh  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) Jju#iwb  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) (N-RIk73/O  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) pKUP2m`MW  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) n/d`qS  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) g=L]S-e  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) SLL3v,P(7  
    %       -------------------------------------------------- -fI`3#  
    % ||7x;2e  
    %   Example 1: ;bzX% f?|G  
    % @$^bMIj@W  
    %       % Display the Zernike function Z(n=5,m=1) y&~w2{a  
    %       x = -1:0.01:1; \>. LW9  
    %       [X,Y] = meshgrid(x,x); 6fo3:P*O  
    %       [theta,r] = cart2pol(X,Y); `4?~nbz  
    %       idx = r<=1; =ac_,]z  
    %       z = nan(size(X)); 2&mGT&HAVA  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); /1=4"|q>h'  
    %       figure Q#I"_G&{  
    %       pcolor(x,x,z), shading interp IY'=DePd  
    %       axis square, colorbar 3rW|kkn  
    %       title('Zernike function Z_5^1(r,\theta)') \W5O&G-C  
    % 8`>h}Q$  
    %   Example 2: +d}E&=p_  
    % 96cJ8I8  
    %       % Display the first 10 Zernike functions PX: '/{V  
    %       x = -1:0.01:1; \uqjs+  
    %       [X,Y] = meshgrid(x,x); S_ MyoXV  
    %       [theta,r] = cart2pol(X,Y); g,t jm(  
    %       idx = r<=1; w27KI]%(  
    %       z = nan(size(X)); 6k{2 +P  
    %       n = [0  1  1  2  2  2  3  3  3  3]; mYN7kYR}<`  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; r`y ezbG  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 1d"Z>k:mn  
    %       y = zernfun(n,m,r(idx),theta(idx)); Ei}/iBG@  
    %       figure('Units','normalized') J?@DGp+t  
    %       for k = 1:10 ,j;m!V  
    %           z(idx) = y(:,k); c .3ZXqpI;  
    %           subplot(4,7,Nplot(k)) ZX!r1*c 6  
    %           pcolor(x,x,z), shading interp kE>0M9EdH  
    %           set(gca,'XTick',[],'YTick',[]) fqX"Lus `=  
    %           axis square 3`d}~v{  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 'FlJpA}  
    %       end s4Sd>D 7  
    % [Aj Q#;#Q  
    %   See also ZERNPOL, ZERNFUN2. WG*t ::NN  
    `g8E1-]l  
    k Iw`P[  
    %   Paul Fricker 11/13/2006 [${ QzO  
    ,g-EW jN  
    #/"8F O%~p  
    t"hYcnC  
    C*U'~qRK  
    % Check and prepare the inputs: 'E/*d2CDM(  
    % ----------------------------- 6:GTD$Uz.  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) UDhG :  
        error('zernfun:NMvectors','N and M must be vectors.') B]m@:|Q  
    end :q8b;*:  
    B\J^=W+`  
    yKYUsp  
    if length(n)~=length(m) ~<<nz9}o_  
        error('zernfun:NMlength','N and M must be the same length.') q)H1pwxD  
    end =U8a ?0  
    s]mo$ _na  
    Q9I j\HbA"  
    n = n(:); 3iw{SEY  
    m = m(:); }kw/W#)J  
    if any(mod(n-m,2)) Um1[sMc{au  
        error('zernfun:NMmultiplesof2', ... IG(?xf\C  
              'All N and M must differ by multiples of 2 (including 0).') mj|)nOd  
    end A7(hw~+@  
    :[ k4Z]t8  
    ,Jcm+ Wb  
    if any(m>n) m(], r})  
        error('zernfun:MlessthanN', ... `_b`kzJ  
              'Each M must be less than or equal to its corresponding N.') uwRr LF  
    end <0yE 5Mrf  
    y=In?QN{6*  
    .sQ=;w/ZA  
    if any( r>1 | r<0 ) xs\!$*R  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') OB[o2G<0  
    end USFD y  
    8ElKD{.BU8  
    '9c2Q/  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 2X:4CC%5  
        error('zernfun:RTHvector','R and THETA must be vectors.') R!l:O=[<  
    end *Zm^ ~Vo  
    !LkW zn3  
    ;<UWA.  
    r = r(:); d Le-nF  
    theta = theta(:); hp{OL<2M  
    length_r = length(r); gM [w1^lj  
    if length_r~=length(theta) F4<O2!V  
        error('zernfun:RTHlength', ... A AHt218  
              'The number of R- and THETA-values must be equal.') Ed9Z9  
    end h3T9"w[  
    +~xnXb1  
    aR\\<due  
    % Check normalization: 0afei4i~N  
    % --------------------  ]xguBh]  
    if nargin==5 && ischar(nflag) rP!#RzL  
        isnorm = strcmpi(nflag,'norm'); s7oT G!  
        if ~isnorm b T 2a40ul  
            error('zernfun:normalization','Unrecognized normalization flag.') upeU52@\  
        end 6U^\{<h_c  
    else zG e'*Qei  
        isnorm = false; >vuY+o;B  
    end ljK rj  
    ' B  
    *D'$"@w3  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% e^ lWR]v  
    % Compute the Zernike Polynomials ~+Z{Q25R  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 'ejvH;V3i  
    YC_1Ks  
    w '3#&k+  
    % Determine the required powers of r: RT>{*E<I  
    % ----------------------------------- V138d?Mm  
    m_abs = abs(m); Mwgu93?  
    rpowers = []; G;f/Tch  
    for j = 1:length(n) rp5(pV 7*  
        rpowers = [rpowers m_abs(j):2:n(j)]; F @Te@n  
    end "*,XL uv>  
    rpowers = unique(rpowers); %F kMv  
    L28*1]\Jh  
    t%530EB3  
    % Pre-compute the values of r raised to the required powers, M>M`baM1  
    % and compile them in a matrix: zD3mX<sw  
    % ----------------------------- &YDK (&>  
    if rpowers(1)==0 <(vCiH9~P  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); w,R[C\#J  
        rpowern = cat(2,rpowern{:}); \;rYo.+  
        rpowern = [ones(length_r,1) rpowern]; !~Q2|r  
    else H5D*|42  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ^<X@s1^#  
        rpowern = cat(2,rpowern{:}); .rPn5D Y  
    end nI0[;'Hn,  
    Py`N4y ~  
    pHoEa7:  
    % Compute the values of the polynomials: w,Ee>cV]a  
    % -------------------------------------- XT;u<aJs  
    y = zeros(length_r,length(n));  r[?1  
    for j = 1:length(n) b=3H  
        s = 0:(n(j)-m_abs(j))/2; C{2xHd/*  
        pows = n(j):-2:m_abs(j); M4xi1M#%  
        for k = length(s):-1:1 =!m}xdTP  
            p = (1-2*mod(s(k),2))* ... )Fb>8<%  
                       prod(2:(n(j)-s(k)))/              ... s|y:UgD  
                       prod(2:s(k))/                     ... 0zY(:;X  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... xnE|Umz  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); TNJG#8n%Y  
            idx = (pows(k)==rpowers); g R nOd  
            y(:,j) = y(:,j) + p*rpowern(:,idx); C ;(t/zh  
        end @(C1_  
         #Wu*3&a]yU  
        if isnorm YIR R=qpn  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); J~(Wf%jM~  
        end L],f3<  
    end Q]o C47(  
    % END: Compute the Zernike Polynomials XR!us/U`a  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ZIdA\_c  
    K R"M/#  
    ,.gQ^^+=  
    % Compute the Zernike functions: ; O<9|?  
    % ------------------------------ qF iLh9=D  
    idx_pos = m>0; xooY' El*#  
    idx_neg = m<0; OxGE%R,  
    =vT<EW}[  
    mXUYQ 82  
    z = y; q64k7<C,  
    if any(idx_pos) ?uMQP NYs  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); E\;ikX&1  
    end moVbw`T  
    if any(idx_neg) w{k)XY40sW  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); &F}"Z(B<wK  
    end .vG,fuf8  
    -uh(?])H  
    ]; %0qb  
    % EOF zernfun q$G,KRy/  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  v}J;ZIb  
    {mE! Vf  
    DDE还是手动输入的呢? ?(KvQK|d4  
    D}Ilyk_uUw  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究