切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9220阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, ~YviXSW  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, cSG(kFQ  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? k][{4~z  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? ZGCp[2$  
    Zc&pJP+M'U  
    $ >].;y?$  
    EKsOj&ZiJ  
    By}ZHK94I  
    function z = zernfun(n,m,r,theta,nflag) JPj/+f  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. M;KeY[u  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N \X]I: 0^j  
    %   and angular frequency M, evaluated at positions (R,THETA) on the Pmr'W\aIR  
    %   unit circle.  N is a vector of positive integers (including 0), and q1r-xsjV=  
    %   M is a vector with the same number of elements as N.  Each element +x4*T  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) ,5 3`t  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ('d,Sh  
    %   and THETA is a vector of angles.  R and THETA must have the same ,MHF  
    %   length.  The output Z is a matrix with one column for every (N,M) /!/Pk'p=/  
    %   pair, and one row for every (R,THETA) pair. B/hQvA;(  
    % `7V1 F.\  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike d$?+>t/  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), A L |,\s  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 0 EA3> $;  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, G[OJ <px  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized "tpD ->  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. X;vU z  
    % Lc-Wf zT  
    %   The Zernike functions are an orthogonal basis on the unit circle. I_`NjJ;61  
    %   They are used in disciplines such as astronomy, optics, and jgkY^l  
    %   optometry to describe functions on a circular domain. X"HVK+  
    % { W5 _KX  
    %   The following table lists the first 15 Zernike functions. |&bucG=  
    % eU]I !pI<  
    %       n    m    Zernike function           Normalization mOLz(0  
    %       -------------------------------------------------- +#X+QG  
    %       0    0    1                                 1 7v.O Lp  
    %       1    1    r * cos(theta)                    2 x&EMg!  
    %       1   -1    r * sin(theta)                    2 b1."mT!p  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) o{mVXidE  
    %       2    0    (2*r^2 - 1)                    sqrt(3) k@[[vj|W  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) X?`mYoe  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) wp:Zur5Y  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) O\%0D.HEz  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) v`6vc)>8  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) OsYZ a`$,  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 2IkyC`  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) &{q'$oF  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) yaHkWkl =  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) '?X?'_3  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 8N<m V^|}  
    %       -------------------------------------------------- sdgI ,  
    % 4"^W/Zo  
    %   Example 1: 7.kH="@  
    % ?1eu9;q\*  
    %       % Display the Zernike function Z(n=5,m=1) Dx9k%G)!  
    %       x = -1:0.01:1; L,,*8  
    %       [X,Y] = meshgrid(x,x); 7WmY:g#s  
    %       [theta,r] = cart2pol(X,Y); plNw>rFa  
    %       idx = r<=1; +p]@b  
    %       z = nan(size(X)); !rG-[7K  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 'I2[} >mj2  
    %       figure v Et+^3=  
    %       pcolor(x,x,z), shading interp }C~9 ?Y  
    %       axis square, colorbar KT*"Sbh  
    %       title('Zernike function Z_5^1(r,\theta)') CT<z1)#@^  
    % lhBAT%U\  
    %   Example 2: iqsR]mab  
    % GQE7P()  
    %       % Display the first 10 Zernike functions ]RF(0;  
    %       x = -1:0.01:1; &oFgZ.  
    %       [X,Y] = meshgrid(x,x); 5T'v iG}%  
    %       [theta,r] = cart2pol(X,Y); 2 B_+5  
    %       idx = r<=1; 7Q&S [])  
    %       z = nan(size(X)); #!r>3W&  
    %       n = [0  1  1  2  2  2  3  3  3  3]; VZ9`Kbu  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 4#ifm#  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; N)KN!!  
    %       y = zernfun(n,m,r(idx),theta(idx)); )2:U]d%pk  
    %       figure('Units','normalized') :"Rx$;a  
    %       for k = 1:10 `vf]C'  
    %           z(idx) = y(:,k); V.ae 5@;  
    %           subplot(4,7,Nplot(k)) UyDq`@h  
    %           pcolor(x,x,z), shading interp U\[b qw  
    %           set(gca,'XTick',[],'YTick',[]) OY!WEP$F-C  
    %           axis square o$}$Z&LK  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ;iUO1t)^  
    %       end ykxAm\O  
    % $ ]^Io)}f@  
    %   See also ZERNPOL, ZERNFUN2. u|Ng>lU  
    e_1L J  
    :G5O_T$  
    %   Paul Fricker 11/13/2006 iU# "G" &  
    ^r{N^  
    aZo>3z;  
    i> {0h3Y  
    CUaL  
    % Check and prepare the inputs: JDO n`7!w  
    % ----------------------------- ?rdWhF]  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) R~RE21kAc  
        error('zernfun:NMvectors','N and M must be vectors.') F$O$Y[  
    end >#Bu [nD%  
    d"lk"R  
    +.xK`_[M  
    if length(n)~=length(m) =n8M'  
        error('zernfun:NMlength','N and M must be the same length.') : TqeVf  
    end nM99AW  
    +\>op,_9I  
    !H6X%hlk  
    n = n(:); _gl1Qtv@rf  
    m = m(:); ++=jh6  
    if any(mod(n-m,2)) =RofC9,  
        error('zernfun:NMmultiplesof2', ... U8<C4  
              'All N and M must differ by multiples of 2 (including 0).') Z55C4F5v  
    end ]Z*B17//  
    e&NJj:Ph*  
    /!*=*  
    if any(m>n) x,GLGGi}_x  
        error('zernfun:MlessthanN', ... z<9Llew^e  
              'Each M must be less than or equal to its corresponding N.') [?2,(X0yh1  
    end O5*3 qJp  
    g)IW9q2  
    .P ??N  
    if any( r>1 | r<0 ) <%=<9~e  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') U/h@Q\~U  
    end Z,8t!Y  
    #jPn7  
    BUyKiMW49  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) J.c yb  
        error('zernfun:RTHvector','R and THETA must be vectors.') +HG*T[%/  
    end }|Bs|$q  
    F|8;Swb5  
    n`T4P$pt  
    r = r(:); ?^`fPH=  
    theta = theta(:); -_Kw3x  
    length_r = length(r); S[N9/2  
    if length_r~=length(theta) Epm8S}6K  
        error('zernfun:RTHlength', ... v'r)d-T   
              'The number of R- and THETA-values must be equal.') (,cG+3r ]  
    end $\PU Y8  
    M6].V*k'2  
    q*cEosi'F?  
    % Check normalization: *<X*)A{C  
    % -------------------- #RHt;SFx  
    if nargin==5 && ischar(nflag) sFsf~|  
        isnorm = strcmpi(nflag,'norm'); 9q\_UbF  
        if ~isnorm 6.6?Rp".  
            error('zernfun:normalization','Unrecognized normalization flag.') 2)-4?uz~  
        end NnaO!QW%  
    else wNmC1HOh  
        isnorm = false; d;{k,rP6  
    end Bi>]s%zp  
    amWKykVS5  
    FwD q@Oj  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% uJ0Wb$%  
    % Compute the Zernike Polynomials g2A#BMe'.$  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Rgl cd  
    1X9J[5|ll  
    UKPr[  
    % Determine the required powers of r: t=fP^bJ  
    % ----------------------------------- @|e we. r  
    m_abs = abs(m); 3jHg9M23[^  
    rpowers = []; '~1Zr uO  
    for j = 1:length(n) 6E.[F\u  
        rpowers = [rpowers m_abs(j):2:n(j)]; (*AJ6BQWa  
    end lr@w1*  
    rpowers = unique(rpowers); `g0^ W/ j  
    "F4 3q8P  
    A8Km8"  
    % Pre-compute the values of r raised to the required powers, g1(5QWb  
    % and compile them in a matrix: >P//]nn  
    % ----------------------------- [6Sk>j  
    if rpowers(1)==0 kfZ(:3W$  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); <2~DI0pp(  
        rpowern = cat(2,rpowern{:}); *vq75k$7  
        rpowern = [ones(length_r,1) rpowern]; m!=5Q S3Z  
    else 1qBE|PwBp  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); q+cD  
        rpowern = cat(2,rpowern{:}); G\^<MR|  
    end WZh_z^rwn  
    eC L_c>3!  
    C &y 2I  
    % Compute the values of the polynomials: nq~fH(QY  
    % -------------------------------------- cvhwd\  
    y = zeros(length_r,length(n)); UT[{NltH  
    for j = 1:length(n) [(&aVHUj  
        s = 0:(n(j)-m_abs(j))/2; l}&2A*c.  
        pows = n(j):-2:m_abs(j); S\!vDtD@  
        for k = length(s):-1:1 VN'\c3;  
            p = (1-2*mod(s(k),2))* ... KVUub'k  
                       prod(2:(n(j)-s(k)))/              ... < RtyW  
                       prod(2:s(k))/                     ... 16 \)C/*  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 2 )3oX  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); kE|x'(x  
            idx = (pows(k)==rpowers); 7>0u N|  
            y(:,j) = y(:,j) + p*rpowern(:,idx); y O,Jgn  
        end 0Ng?U+6  
         |f!J-H)  
        if isnorm oK$Krrs0&  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); VT=gb/W6)a  
        end 5?([jAOf  
    end w.#z>4#3-  
    % END: Compute the Zernike Polynomials k 8%@PC$  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% _6'@#DN  
    c27(en(  
    .rnT'""i<5  
    % Compute the Zernike functions: UBk:B  
    % ------------------------------ OK YbEn#  
    idx_pos = m>0; jicH94#(]  
    idx_neg = m<0; \u))1zRd  
    3d4A~!Iz  
    T<NOL fk66  
    z = y;  |=![J?  
    if any(idx_pos) GlRjbNW?Q  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); b;#_?2c  
    end ?mSZQF:d@  
    if any(idx_neg) %[M0TE=J  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ^:}C,lIrG  
    end n&zEYCSI  
    S8v?H|rm  
    R.F l5B  
    % EOF zernfun 1i_%1Oip  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  Ry]9n.y  
    #G F.M,O/h  
    DDE还是手动输入的呢? ( B\ UZb  
    GWPBP-)0  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究