切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8674阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, dp3>G2Yq  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 0'IV"eH2  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? ur,!-t(~t  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? vjcG F'-  
    O"$uw  
    wsnR$FhQ`  
    3:Mq4 0]x  
    .S l{m[nV8  
    function z = zernfun(n,m,r,theta,nflag) WPmH4L>T  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 0Y_?r$M  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N .K=r.tf~  
    %   and angular frequency M, evaluated at positions (R,THETA) on the fZqqU|tq  
    %   unit circle.  N is a vector of positive integers (including 0), and UbD1h_b  
    %   M is a vector with the same number of elements as N.  Each element X2? ^t]-N  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) kPm{tc  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, F~`Yh6v  
    %   and THETA is a vector of angles.  R and THETA must have the same $?.0>0 ,<  
    %   length.  The output Z is a matrix with one column for every (N,M) i|]Kw9  
    %   pair, and one row for every (R,THETA) pair. =ZE]jmD4P  
    % ?*36&Iq}  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike J|9kWjOf+i  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), KxZO.>,  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 4&}V3"lg  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Z r}5)ZR.  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized J4yL"iMt  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. \>T+\?M  
    % |a3v!va  
    %   The Zernike functions are an orthogonal basis on the unit circle. E<j}"W$a  
    %   They are used in disciplines such as astronomy, optics, and B}PT-S1l  
    %   optometry to describe functions on a circular domain. .l| [e  
    % tl 0_Sd  
    %   The following table lists the first 15 Zernike functions. ?s=O6D&   
    % cBZK t  
    %       n    m    Zernike function           Normalization lEcZ/  
    %       -------------------------------------------------- [g bYIwL.  
    %       0    0    1                                 1 toq/G,N Q  
    %       1    1    r * cos(theta)                    2 81gcM?  
    %       1   -1    r * sin(theta)                    2 k`l={f8C  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ewo]-BQS  
    %       2    0    (2*r^2 - 1)                    sqrt(3) mv5=>Xc6  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) {:D8@jb[  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) TzaR{0 1  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) XX85]49`%  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) qc(R /[  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) zn,y'},  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) #41xzN  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 9g7d:zG  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) b`%3>  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) m* Zq3j  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) $+ z 3  
    %       -------------------------------------------------- W'|NYw_B  
    % 4LEWOWF}  
    %   Example 1: kLsp0% 2  
    % <Km ^>9  
    %       % Display the Zernike function Z(n=5,m=1) <>n-+Kr  
    %       x = -1:0.01:1; 9H~2 iW,Q;  
    %       [X,Y] = meshgrid(x,x); mH1T|UI  
    %       [theta,r] = cart2pol(X,Y); <EhOIN7@*D  
    %       idx = r<=1; -YDA,.Ic?  
    %       z = nan(size(X)); ~XzT~WxW  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); \# p@ef  
    %       figure s+tPHftp  
    %       pcolor(x,x,z), shading interp @U8}K#  
    %       axis square, colorbar |/qwR~  
    %       title('Zernike function Z_5^1(r,\theta)') 1@dB*Jt  
    % 9HsiAi*  
    %   Example 2: q,i&%  
    % 8t1XZ  
    %       % Display the first 10 Zernike functions SmpYH@  
    %       x = -1:0.01:1; #r=Jc8J_  
    %       [X,Y] = meshgrid(x,x); TANv)&,|9  
    %       [theta,r] = cart2pol(X,Y); AiP#wK;  
    %       idx = r<=1; 6`PQP;   
    %       z = nan(size(X)); Dias!$g  
    %       n = [0  1  1  2  2  2  3  3  3  3]; W)_|jpd[  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; <y S|\Z|  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; t@&U2JaL>W  
    %       y = zernfun(n,m,r(idx),theta(idx)); R@X65o  
    %       figure('Units','normalized') 8l1s]K qr  
    %       for k = 1:10 -> ^Ex`  
    %           z(idx) = y(:,k); xU1_L*tu '  
    %           subplot(4,7,Nplot(k)) Silh[8  
    %           pcolor(x,x,z), shading interp ){nOM$W  
    %           set(gca,'XTick',[],'YTick',[]) H zMr  
    %           axis square Dhe*)  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) &<=?O a  
    %       end xekU2u}WE  
    % R_4eME2LB  
    %   See also ZERNPOL, ZERNFUN2. khc1<BBsT  
    "1l$]= C*  
    2 rFjYx8D!  
    %   Paul Fricker 11/13/2006 E/3i _R  
    `f[  
    (GW"iL#.  
    33=lR-N#  
    gTS} 'w{  
    % Check and prepare the inputs: ? K,d  
    % ----------------------------- f7SMO-3a  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) &-$27  
        error('zernfun:NMvectors','N and M must be vectors.') j|KjQ'9  
    end 1K UM!DUD  
    +SB>>  
    ~.<QC<dN  
    if length(n)~=length(m) 8FIk|p|l^  
        error('zernfun:NMlength','N and M must be the same length.') xZ]QT3U+  
    end -O^R~Q_`w  
    /V {1Zw=  
    ,Y4>$:#n/  
    n = n(:); hm\UqIt  
    m = m(:); +8|9&v`  
    if any(mod(n-m,2)) E !9(6G4  
        error('zernfun:NMmultiplesof2', ... P;G]qV%  
              'All N and M must differ by multiples of 2 (including 0).') YNB7`:  
    end (e_z*o)\T  
    .iC!Ttr  
    3#0y.. F  
    if any(m>n) 6U0BP  
        error('zernfun:MlessthanN', ...  Zsn@O2  
              'Each M must be less than or equal to its corresponding N.') nWes,K6T  
    end b/w5K2  
    noso* K7  
    wVq9t|V  
    if any( r>1 | r<0 ) TVM19)9  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') X<D fzd oI  
    end TILH[r&Jg  
    y9N6!M|'y  
    &P,uK+C4  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Yr*!T= z  
        error('zernfun:RTHvector','R and THETA must be vectors.') Hz"FGwd  
    end vqAEF^HYry  
    ~: fSD0  
    AHo}K\O?r  
    r = r(:); :}R,a=N  
    theta = theta(:); m5o$Dus+?'  
    length_r = length(r); >"+ ho  
    if length_r~=length(theta) @uz(h'~  
        error('zernfun:RTHlength', ... UcKVL zKs  
              'The number of R- and THETA-values must be equal.') |)C #  
    end P }^Y"zF2  
    .EReYZO  
    lbX YWZ~7  
    % Check normalization: EOZ 6F-':  
    % -------------------- w~q ]&  
    if nargin==5 && ischar(nflag) >,QCKZH  
        isnorm = strcmpi(nflag,'norm'); ULhXyItL  
        if ~isnorm WD_{bd)  
            error('zernfun:normalization','Unrecognized normalization flag.') (< >Lfn  
        end rvU^W+d  
    else l^^Z}3^Rk  
        isnorm = false; #].q jOj  
    end :7i x`C2  
    Uq @].3nf  
    %{7*o5`  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% L/E7xLz  
    % Compute the Zernike Polynomials }.pqV X{ d  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Vc;g$Xr[  
    ?6\N&MTF  
    $e2+O\.>  
    % Determine the required powers of r: 8f1M6GK?  
    % ----------------------------------- 3d]~e  
    m_abs = abs(m); "iGQ1#6|d  
    rpowers = []; omGzyuPF  
    for j = 1:length(n) =1k%T{>  
        rpowers = [rpowers m_abs(j):2:n(j)]; q7r b3d  
    end Hj(K*z  
    rpowers = unique(rpowers); g\?v 5  
    }30Sb &"  
    T*gG <8  
    % Pre-compute the values of r raised to the required powers, o>nw~_ H\  
    % and compile them in a matrix: ,(-V<>/*.|  
    % ----------------------------- ]l C2YD}  
    if rpowers(1)==0 7M _ mR Vh  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); .zl[nx[9"D  
        rpowern = cat(2,rpowern{:}); nW*cqM%+  
        rpowern = [ones(length_r,1) rpowern]; " dGN0i  
    else '&hd^9]Lo  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); sVBr6 !v=  
        rpowern = cat(2,rpowern{:}); Dkb`_HI  
    end `d^Q!QxE  
    \<(EV,m2  
    0e+#{k  
    % Compute the values of the polynomials: 9-V'U\}L  
    % -------------------------------------- M 87CP=yc  
    y = zeros(length_r,length(n)); m?4hEwQxf  
    for j = 1:length(n) 6Q\|8a  
        s = 0:(n(j)-m_abs(j))/2; |O6/p7+.  
        pows = n(j):-2:m_abs(j); S[2?,C<2=  
        for k = length(s):-1:1 f^*Yqa  
            p = (1-2*mod(s(k),2))* ... *r[V[9+y-D  
                       prod(2:(n(j)-s(k)))/              ... gKl9Nkd!R  
                       prod(2:s(k))/                     ... b9#(I~}  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... `A%WCd60Tc  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); P9qIq]M  
            idx = (pows(k)==rpowers); Tg"? TZO~  
            y(:,j) = y(:,j) + p*rpowern(:,idx); S5u$I  
        end NJE*/_S  
         {d*OJ/4  
        if isnorm mv#hy  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); |&{S ~^$  
        end j'U1lEZm2  
    end 6pSTw\/6  
    % END: Compute the Zernike Polynomials Y2XxfZ j  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 2"?DaX  
    2C}Yvfm4  
    g)^s+Y  
    % Compute the Zernike functions: P`{$7ST'Hh  
    % ------------------------------ lct  
    idx_pos = m>0; ZLxa|R7  
    idx_neg = m<0; 7 s{vou  
    ~tt\^:\3~S  
    ` 6*]cn#(  
    z = y; (E)hEQ@8  
    if any(idx_pos) ~G@YA8}  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); /{`"X_.o  
    end _~;%zFX  
    if any(idx_neg) 2b"DkJj'  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); |u?VlRt  
    end G 3,v'D5  
    ssx#|InY  
    K$Vu[!l`  
    % EOF zernfun 2[Lv_<i|  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5476
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    957
    光币
    1067
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  9b+jT{Tg  
    t_3j_`  
    DDE还是手动输入的呢? .*zS2 z  
    ,@ 8+%KqG  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究