切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9049阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, .03Rp5+v  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, -A@/cS%p  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? 1 @i/N  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? 4'TssRot@h  
    9h/Hy aN  
    @,9YF }  
    h_]*|[g  
    Ww"]3  
    function z = zernfun(n,m,r,theta,nflag) uPxJwWXO  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. BS ]:w(}[  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N `Tei  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 3 . K #,  
    %   unit circle.  N is a vector of positive integers (including 0), and [N#4H3GM8  
    %   M is a vector with the same number of elements as N.  Each element n5z|@I`S_  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) e]5NA?2j  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, X`J86G)  
    %   and THETA is a vector of angles.  R and THETA must have the same 4)8e0L*[B?  
    %   length.  The output Z is a matrix with one column for every (N,M) upZ tVdd  
    %   pair, and one row for every (R,THETA) pair. %w?C)$Kn\  
    % 1 e]D=2y  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike :5BCW68le  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi),  56MY@  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral Zl{9G?abCT  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, N.0g%0A.D  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized !l]_c 5  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. @AM11v\:  
    % ahQY-%>  
    %   The Zernike functions are an orthogonal basis on the unit circle. O8cZl1C3  
    %   They are used in disciplines such as astronomy, optics, and Ud7Z7?Ym  
    %   optometry to describe functions on a circular domain. 3@:O1i  
    % &er,Wyc(  
    %   The following table lists the first 15 Zernike functions. 8]oolA:^4s  
    % @biU@[D  
    %       n    m    Zernike function           Normalization 9aNOfs8(  
    %       -------------------------------------------------- Ql%B=vgKL  
    %       0    0    1                                 1 {> <1K6t  
    %       1    1    r * cos(theta)                    2 t2YB(6w+xg  
    %       1   -1    r * sin(theta)                    2 ^tjw }sE  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 8&nb@l  
    %       2    0    (2*r^2 - 1)                    sqrt(3) z;y{QO  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) 9 )!}  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ~9xkiu5~  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) !XM<`H/  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) jD%|@ux  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) KCAV  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) B:Ft(,  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) G0~Z|P  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) W#E(?M[r  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) GzBPI'C  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) K&RIF]0#G  
    %       -------------------------------------------------- 3%Eu$|B  
    % CBF<53TshR  
    %   Example 1: S;jD@j\t&  
    % F" M  
    %       % Display the Zernike function Z(n=5,m=1) D9NQ3[R 9  
    %       x = -1:0.01:1; \#WWJh"W  
    %       [X,Y] = meshgrid(x,x); wGw~ F:z  
    %       [theta,r] = cart2pol(X,Y); Dy>6L79G  
    %       idx = r<=1; 5!cp^[rGL  
    %       z = nan(size(X)); >3pT).wH|M  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); Tl'wA^~H  
    %       figure '=%`;?j  
    %       pcolor(x,x,z), shading interp /!^,+  
    %       axis square, colorbar D~BL Txq  
    %       title('Zernike function Z_5^1(r,\theta)')  S,ea[$_  
    % G;iH.rCH  
    %   Example 2: 0[M2LF!m  
    % .@%L8_sMR  
    %       % Display the first 10 Zernike functions Kh[l};/F  
    %       x = -1:0.01:1; _)~1'tCs}h  
    %       [X,Y] = meshgrid(x,x); UP$>,05z6  
    %       [theta,r] = cart2pol(X,Y); l2:-).7xt  
    %       idx = r<=1; U#]J5'i  
    %       z = nan(size(X)); #ACT&J  
    %       n = [0  1  1  2  2  2  3  3  3  3]; 'RhS%l  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; >j3':>\U  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; p5tb=Zg_  
    %       y = zernfun(n,m,r(idx),theta(idx)); JqZt1um  
    %       figure('Units','normalized') T/2k2r4PD  
    %       for k = 1:10 |m6rF7Q  
    %           z(idx) = y(:,k); <#4""FO*  
    %           subplot(4,7,Nplot(k)) KvEv0L<ky  
    %           pcolor(x,x,z), shading interp 71Za!3+  
    %           set(gca,'XTick',[],'YTick',[]) '|Bk}pl7  
    %           axis square L+p}%!g  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) gzn:]Y^  
    %       end LU+SuVm  
    % ZS wuEX  
    %   See also ZERNPOL, ZERNFUN2. =}kISh  
    U;4i&=.!  
    7<*0fy5nn  
    %   Paul Fricker 11/13/2006 8a`3eM~?[  
    ZO cpF1y  
    yYYP;N?g4k  
    WeaT42*Q{  
    9#:fQ!3`  
    % Check and prepare the inputs: nW"O+s3  
    % ----------------------------- O ylUuYy~j  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) )^AZmUYZ  
        error('zernfun:NMvectors','N and M must be vectors.') C?>d$G8  
    end d'ZB{'[8p  
    1.k=ji$D0  
    - _ 8-i1?  
    if length(n)~=length(m) UPr& `kaJ  
        error('zernfun:NMlength','N and M must be the same length.') O8b#'f~  
    end #b;k+<n[X  
    utuWFAGn A  
    O/FI>RT\H  
    n = n(:); % &&)[  
    m = m(:); hnB`+!  
    if any(mod(n-m,2)) !-^oU"  
        error('zernfun:NMmultiplesof2', ... kP+,x H)1  
              'All N and M must differ by multiples of 2 (including 0).') ^67}&O^1 ,  
    end 9  @ <  
    @vyEN.K%mm  
    &V$cwB  
    if any(m>n) _s#]WyU1g  
        error('zernfun:MlessthanN', ... p+|8(w9A${  
              'Each M must be less than or equal to its corresponding N.') YVa,?&i=N  
    end ^h2+""  
    VgIk'.  
    jT$J~M pHh  
    if any( r>1 | r<0 ) /CO=!*7fz  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') JxwKTFU'3O  
    end ^.iRU'{  
    & [@)Er=  
    e+-#/i*  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Pg:xC9w4  
        error('zernfun:RTHvector','R and THETA must be vectors.') U m\HX6  
    end &U?4e'N)T  
    B!,&{[D  
    dWiNe!oY2  
    r = r(:); w^ z ftm  
    theta = theta(:); H=,>-eVv*  
    length_r = length(r); &8l?$7S"_/  
    if length_r~=length(theta) <(@S;?ZEW  
        error('zernfun:RTHlength', ... TMY. z  
              'The number of R- and THETA-values must be equal.') yc?L OW0  
    end N,rd= m+  
    ]tT=jN&(  
    WwTl|wgvyI  
    % Check normalization: HQ9tvSc  
    % -------------------- EK=0oy[  
    if nargin==5 && ischar(nflag) '_4apyq|  
        isnorm = strcmpi(nflag,'norm'); F7O*%y.';  
        if ~isnorm 8)?&eE'  
            error('zernfun:normalization','Unrecognized normalization flag.') C F','gPnc  
        end G4 :\6fu  
    else 3%(r,AD  
        isnorm = false; %n9ukc~$p  
    end \3^V-/SJf  
    i&lW&]  
    +@!\3a4!  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% y7:f^4  
    % Compute the Zernike Polynomials L-E?1qhP>  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% f!yl&ulKU  
    467"pqT  
    R,78}7B  
    % Determine the required powers of r: kP[fhOpn  
    % ----------------------------------- %i3[x.M  
    m_abs = abs(m); H!7?#tRU  
    rpowers = []; *,CJ 3< >  
    for j = 1:length(n) #z&R9$  
        rpowers = [rpowers m_abs(j):2:n(j)]; ~<<32t'S:  
    end ?+7~ E8  
    rpowers = unique(rpowers); v5\ALWy+p  
    oY0b8=[  
    $dKfUlO  
    % Pre-compute the values of r raised to the required powers, ]zyT_}&  
    % and compile them in a matrix: N".BC|r  
    % ----------------------------- " ]G'^  
    if rpowers(1)==0 IoJI|lP  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); qGV(p}$O  
        rpowern = cat(2,rpowern{:}); Z7pX%nj_  
        rpowern = [ones(length_r,1) rpowern]; C}<e3BXc  
    else !2HF|x$  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ^&86VBP  
        rpowern = cat(2,rpowern{:}); h_P  
    end }]dzY(   
    k"gm;,`  
    BNE:,I*&  
    % Compute the values of the polynomials: =|Qxv`S1  
    % -------------------------------------- &F :.V$  
    y = zeros(length_r,length(n)); Hs8JJGXWB  
    for j = 1:length(n) Ih.)iTs~%  
        s = 0:(n(j)-m_abs(j))/2; ZDzG8E0Sq  
        pows = n(j):-2:m_abs(j); SC%HHu\l  
        for k = length(s):-1:1 A9@coP5  
            p = (1-2*mod(s(k),2))* ...  "O9n|B  
                       prod(2:(n(j)-s(k)))/              ... *2-b&PQR{  
                       prod(2:s(k))/                     ... $PRd'YdL/  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... HU/4K7e`  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); hG~.Sc:G  
            idx = (pows(k)==rpowers); J5jI/P  
            y(:,j) = y(:,j) + p*rpowern(:,idx); $Bc3| `K1v  
        end }z/%b<o_  
         =to.Oa RR  
        if isnorm {na>)qzKP  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); vv2[t  
        end $v2t6wS,"  
    end MtPdpm6\  
    % END: Compute the Zernike Polynomials X=f%!  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% _~yd  
    |P& \C8h  
    `5oXf  
    % Compute the Zernike functions: h {Jio>  
    % ------------------------------ O86p]Lr  
    idx_pos = m>0; C :sgT6  
    idx_neg = m<0; OY81|N j  
    qTbc?S46pt  
    tMP"9JE,  
    z = y; ztHx) !  
    if any(idx_pos) |BhL.  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); r7V !M1  
    end p`\>GWuT!  
    if any(idx_neg) xH` VX-X3  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); JQej$=*  
    end h,&{m*q&  
    <6;@@  
    ?-2s}IJO  
    % EOF zernfun wE<r'  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  nIfAG^?|*  
    oCI\yp@a  
    DDE还是手动输入的呢? r[;d.3jtP  
    xJ. kd Tr  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究