下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, kx{LY`pY
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, T3wQ Rn
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? $;iMo/
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? H2kib4^i
P K+rr.k]
a_Sp}s<J
/aTW X
QHU|aC{r
function z = zernfun(n,m,r,theta,nflag) U1ZKJ<pv
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. I|n?32F
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ~ECIL7,
% and angular frequency M, evaluated at positions (R,THETA) on the 8NnGN(a*D
% unit circle. N is a vector of positive integers (including 0), and O:E0htdWr
% M is a vector with the same number of elements as N. Each element {'8td^JEE
% k of M must be a positive integer, with possible values M(k) = -N(k) |E?PQ?P
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, 3#A4A0
% and THETA is a vector of angles. R and THETA must have the same Iip%er%b
% length. The output Z is a matrix with one column for every (N,M) ]SC|%B_*
% pair, and one row for every (R,THETA) pair. cslZ;
% &2,3R}B/
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike O*7vmPy
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 6,;dU-A +
% with delta(m,0) the Kronecker delta, is chosen so that the integral ~U r
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ~] &yHzp2
% and theta=0 to theta=2*pi) is unity. For the non-normalized "hmLe(jo}
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ]-j.\+(*
% ]4ib^R~Z
% The Zernike functions are an orthogonal basis on the unit circle. $-)T
% They are used in disciplines such as astronomy, optics, and **V8a-@
% optometry to describe functions on a circular domain. K'Y/0:"*
% <Hf3AB;#4
% The following table lists the first 15 Zernike functions. aPdEEqc\l
% ))%f"=:wt
% n m Zernike function Normalization DaS~bweMw
% -------------------------------------------------- u\{MQB{T
% 0 0 1 1 $l $p|
% 1 1 r * cos(theta) 2 tzShds
% 1 -1 r * sin(theta) 2 ;kI)j
?
% 2 -2 r^2 * cos(2*theta) sqrt(6) b/{$#[oP`
% 2 0 (2*r^2 - 1) sqrt(3) x2,;ar\D
% 2 2 r^2 * sin(2*theta) sqrt(6) J!Q #xs
% 3 -3 r^3 * cos(3*theta) sqrt(8) 0u;a*#V @
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) #iKPp0`K*
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) })+iAxR
% 3 3 r^3 * sin(3*theta) sqrt(8) wz..
% 4 -4 r^4 * cos(4*theta) sqrt(10) 2qdc$I&$
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) .p=OAh<
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) 2`^6``
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) bf=!\L$
% 4 4 r^4 * sin(4*theta) sqrt(10) v2IcDz`}7
% -------------------------------------------------- )&DsRA7v
% w`DcnQK'
% Example 1: KPVu-{_Fi
% ~47 0LgpO1
% % Display the Zernike function Z(n=5,m=1) H u9nJ
% x = -1:0.01:1; /lC,5y
% [X,Y] = meshgrid(x,x); ?)ct@,Ek$
% [theta,r] = cart2pol(X,Y); 2n+ud ?|l
% idx = r<=1; 6j8\3H~
% z = nan(size(X)); @SH[<c
% z(idx) = zernfun(5,1,r(idx),theta(idx)); R$!]z(
% figure u/<ZGW(&s(
% pcolor(x,x,z), shading interp x<`^4|<
% axis square, colorbar ?0'e_s
% title('Zernike function Z_5^1(r,\theta)') l{*m-u 5&;
% a ~YrQI-@
% Example 2: -X_\3J
% T6b~uE
% % Display the first 10 Zernike functions [,MaAB
% x = -1:0.01:1; CIui9XNU
% [X,Y] = meshgrid(x,x); |"PS e~ u
% [theta,r] = cart2pol(X,Y); $EHFf$M
% idx = r<=1; mz Cd@<T,
% z = nan(size(X)); ,Ne9x\F
% n = [0 1 1 2 2 2 3 3 3 3]; x ;~;Ah.p
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; n=)LB&
m
% Nplot = [4 10 12 16 18 20 22 24 26 28]; nrA 4N1
% y = zernfun(n,m,r(idx),theta(idx)); +PnuWK$
% figure('Units','normalized') e_-7,5Co
% for k = 1:10 fK ~8h
% z(idx) = y(:,k); 2}7 _Y6RS*
% subplot(4,7,Nplot(k)) E2 FnC}#W
% pcolor(x,x,z), shading interp '%ByFZzi
% set(gca,'XTick',[],'YTick',[]) <& 3[|Ca
% axis square Y}xM&%
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) pHx$
% end M)ao}m>
% VFM!K$_
% See also ZERNPOL, ZERNFUN2. DE7y\oO]
$tF\7.e@
{0lu>?<
% Paul Fricker 11/13/2006 :ssj7wl :
$0x+b!_l@
w#hg_RK(Jr
R|^bZf^
}D+ b`,
% Check and prepare the inputs: vz#-uw,O:
% ----------------------------- 7x77s
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) VxS3lR=
error('zernfun:NMvectors','N and M must be vectors.') 5Ok3y|cEx
end Z"'*A\r2
r`"T{o\e
PjX V.gz
if length(n)~=length(m) j/Y]3RSMp
error('zernfun:NMlength','N and M must be the same length.') ?w!8;xS8
end E<}sGzMc
E24SD' |)
:/%Y"0
n = n(:); Kxa1F,dZ
m = m(:); l.]wBH#RS
if any(mod(n-m,2)) 3UmkFK<
error('zernfun:NMmultiplesof2', ... #AP;GoIf"j
'All N and M must differ by multiples of 2 (including 0).') 5!S#}=f=
end {chZ&8)f
mn=b&{')e
TDbSK&w :s
if any(m>n) q5S_B]|
error('zernfun:MlessthanN', ... <wb6)U.
'Each M must be less than or equal to its corresponding N.') 7.Z-
end %WKBd\O
w &T\8k=
2LR y/ah
if any( r>1 | r<0 ) I^( pZ9
error('zernfun:Rlessthan1','All R must be between 0 and 1.') !q,7@W3i
end &o7PB`(l
CbW[_\
1<Mb@t
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) IY8<^Q']
error('zernfun:RTHvector','R and THETA must be vectors.') KQb&7k.
end Y3~z#<
p-_9I7?
U^|T{g+O
r = r(:); 1ig*Xp[
theta = theta(:); ?>{u@tYL
length_r = length(r); #"~\/sb
if length_r~=length(theta) U?Dr0wD;[
error('zernfun:RTHlength', ... <`"
'The number of R- and THETA-values must be equal.') )eT>[['fm
end N%>h>HJ
0HU0p!yt&
/>}zB![(K
% Check normalization: ||*F.p
% -------------------- 2A@oa9
if nargin==5 && ischar(nflag) sbX7VfAR`
isnorm = strcmpi(nflag,'norm'); IDJ2epW*;
if ~isnorm +ctU7
rVy
error('zernfun:normalization','Unrecognized normalization flag.') fCN+9!ljG`
end ubfh4
else 3u[8;1}7Q
isnorm = false; nyqX\m-
end $#+D:W)az
J^CAQfcx
ilVi
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% MZX)znO
% Compute the Zernike Polynomials 82ixv<B
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ?!jJxhK<h
eGg6wd
p`A2^FS)
% Determine the required powers of r: Rc{R^5B
% ----------------------------------- 2)}*'_E9
m_abs = abs(m); (0#$%US\
rpowers = []; %z1^
for j = 1:length(n) xRgdU+,Mj
rpowers = [rpowers m_abs(j):2:n(j)]; `pCy:J?d>l
end =bja\r{
rpowers = unique(rpowers); IAGY-+8e
2]9
2J
41d+z>a]
% Pre-compute the values of r raised to the required powers, <yX u!
% and compile them in a matrix: 8@LWg d
% ----------------------------- 9O-~Ws ;
if rpowers(1)==0 C7vBa<a
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); EATVce]T
rpowern = cat(2,rpowern{:}); 0fBwy/:
rpowern = [ones(length_r,1) rpowern]; ~7KH/%Z-
else N9#xT X
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); RD)Vb$.B:
rpowern = cat(2,rpowern{:}); <'$>&^!^
end R= mTJ'y
R31Z(vY
)P
b$
% Compute the values of the polynomials: GVlT+Rs7
% -------------------------------------- YJHb\Cf.
y = zeros(length_r,length(n)); $
-<(geI
for j = 1:length(n) <_t]?XHB[
s = 0:(n(j)-m_abs(j))/2; "&f|<g5
pows = n(j):-2:m_abs(j); l#T%N@X
for k = length(s):-1:1 '6){~ee
S
p = (1-2*mod(s(k),2))* ... b/m.VL
prod(2:(n(j)-s(k)))/ ... xrBM`Bj0@
prod(2:s(k))/ ... bcy
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... SE' |||B
prod(2:((n(j)+m_abs(j))/2-s(k))); x+za6e_k"
idx = (pows(k)==rpowers); XI[n!)3
y(:,j) = y(:,j) + p*rpowern(:,idx); ReM]I<WuY
end }za pN
v
`W@jo~y<
if isnorm A'~mJO/
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); >lqo73gM9
end \6/Gy!0h-
end |y0k}ed
% END: Compute the Zernike Polynomials Ad-5Znc5
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% T6\]*mlr
VK*`&D<P
i ?M-~EKu
% Compute the Zernike functions: Tq)hAZ
% ------------------------------ W$,/hB& z
idx_pos = m>0; <XDnAv0t
idx_neg = m<0; "62g!e}!c
hg0{x/Dgny
YuVlD/
z = y; :/5GHfyj
if any(idx_pos) ic!% } S?
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); }AB_i'C0
end DBaZ cO(U
if any(idx_neg) uK(]@H7~!c
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); (n>Gi;u(R
end `p* 43nV
J%r:"Jm[y1
AD`5:G
% EOF zernfun Uvc$&j^k