切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8606阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, pP|LSr Y!  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, &@U)  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? O'.sK pXe  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? nBg  tK  
    )<K3Fz Bs  
    Of gmJ(%  
    ^| r6>b  
    :k/Z|  
    function z = zernfun(n,m,r,theta,nflag) sZh| <2  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. Fi8#r)G.  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N GNX`~%3KYc  
    %   and angular frequency M, evaluated at positions (R,THETA) on the /RBIZ_  
    %   unit circle.  N is a vector of positive integers (including 0), and ;!:@3c  
    %   M is a vector with the same number of elements as N.  Each element 0 zn }l6OS  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) qBDhCE  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, jccSjGX@w  
    %   and THETA is a vector of angles.  R and THETA must have the same =N^j:t  
    %   length.  The output Z is a matrix with one column for every (N,M) :pw6#yi8`  
    %   pair, and one row for every (R,THETA) pair. Xaw&41K  
    % ., =\/ C<  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike g^)8a;/c  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), kP[LS1}*  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral S4C4_*~Vd  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, o`~ %}3  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 4j}uVGi{e  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. +d JLT}I8M  
    % |\J! x|xy  
    %   The Zernike functions are an orthogonal basis on the unit circle. fe+2U|y  
    %   They are used in disciplines such as astronomy, optics, and 1Gh3o}z  
    %   optometry to describe functions on a circular domain. t+2,;G  
    % dobqYd4`  
    %   The following table lists the first 15 Zernike functions. u8Oo@xf0Fr  
    % ghDOz 3  
    %       n    m    Zernike function           Normalization w/Y6m.i1  
    %       -------------------------------------------------- +JPHQx'W  
    %       0    0    1                                 1 |>jlmaV  
    %       1    1    r * cos(theta)                    2 2PG= T/  
    %       1   -1    r * sin(theta)                    2 T56%3i  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) xL} ~R7  
    %       2    0    (2*r^2 - 1)                    sqrt(3) ?/FCq6o  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) #({ 9M  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ]n^TN r7  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) ,n/^;. _1  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) Jpr`E&%I6  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) YZQF*fj  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) >SaT?k1E  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ;}QM#5Xdt  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) GcCMCR3  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) B| .8+Q  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) W~2T/~M  
    %       -------------------------------------------------- [ @`Ki  
    % ~#nbD-*#  
    %   Example 1: -| YDKcL  
    % ;ep@ )Y  
    %       % Display the Zernike function Z(n=5,m=1) y)0wM~E;2  
    %       x = -1:0.01:1; VZEDBZ x*  
    %       [X,Y] = meshgrid(x,x); {5J: ]{p  
    %       [theta,r] = cart2pol(X,Y); }8)iFP&"  
    %       idx = r<=1; jb0LMl}/A  
    %       z = nan(size(X)); JmJNq$2#c  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); RZ GD5`n  
    %       figure z<z\)  
    %       pcolor(x,x,z), shading interp dBM> ;S;v  
    %       axis square, colorbar oV=~ Q#v  
    %       title('Zernike function Z_5^1(r,\theta)') 8 rA'd  
    % {>8u/  
    %   Example 2: 1zlBkK   
    %  jgd^{!  
    %       % Display the first 10 Zernike functions Yo a|.2f  
    %       x = -1:0.01:1; U7le> d;L  
    %       [X,Y] = meshgrid(x,x); 0="U'|J_  
    %       [theta,r] = cart2pol(X,Y); eO?@K$I  
    %       idx = r<=1; 1 -:{&!  
    %       z = nan(size(X)); $R_RKyXzo  
    %       n = [0  1  1  2  2  2  3  3  3  3]; BY!M(X jrZ  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 4}MZB*);0  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; Dvz}sQZ  
    %       y = zernfun(n,m,r(idx),theta(idx)); ^yp`<=  
    %       figure('Units','normalized') e!.r- v9  
    %       for k = 1:10 8*m=U@5]  
    %           z(idx) = y(:,k); {*Tnl-m~  
    %           subplot(4,7,Nplot(k)) |8s45g>  
    %           pcolor(x,x,z), shading interp &HIG776  
    %           set(gca,'XTick',[],'YTick',[]) jO+#$=C  
    %           axis square q:X&)f  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) V/CZcMY_  
    %       end #oQDt'  
    % n1 kh8,  
    %   See also ZERNPOL, ZERNFUN2. siK:?A@4D  
    ac< hz0   
    H;=++Dh  
    %   Paul Fricker 11/13/2006 aH+n]J] =)  
    `6BjNV  
    ``9`Xq  
    /%9CR'%*c  
    ?K/N{GK%{  
    % Check and prepare the inputs: > cM}M=4s  
    % ----------------------------- }"o,j>IP  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) (cLcY%$  
        error('zernfun:NMvectors','N and M must be vectors.') DP<[Uz&  
    end MTUJsH\  
    ^,WXvOy  
    NP< {WL#  
    if length(n)~=length(m) :HTV8;yc  
        error('zernfun:NMlength','N and M must be the same length.') ! :XMP*g  
    end T3#KuiwU9  
    +PGtO9}B  
    3D*vNVI  
    n = n(:); c"x-_Uk  
    m = m(:); %}x$YD O  
    if any(mod(n-m,2)) .X)TRD#MW  
        error('zernfun:NMmultiplesof2', ... - BE.a<  
              'All N and M must differ by multiples of 2 (including 0).') Rd^X.  
    end F3 z:|sTqc  
    p?qW;1  
    XEvDtDR  
    if any(m>n) 2\, h "W(  
        error('zernfun:MlessthanN', ... EXD Qr'"  
              'Each M must be less than or equal to its corresponding N.') Y,;$RV@g  
    end ]f< H?  
    )Fw{|7@N  
    R;2q=%  
    if any( r>1 | r<0 ) hfQx$cv6  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') >t Ll|O+  
    end oGa8#>  
    ->29Tns  
    ?!d\c(5Gt  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) xHo iu$i6  
        error('zernfun:RTHvector','R and THETA must be vectors.') o6LZ05Z-&  
    end :SD^?.W\iT  
    e+ckn   
    U6M3,"?  
    r = r(:); y %4G[Dz  
    theta = theta(:); NL76 jF  
    length_r = length(r); dX8N7{"[  
    if length_r~=length(theta) r"uOf;m  
        error('zernfun:RTHlength', ... c2iPm9"eh  
              'The number of R- and THETA-values must be equal.') 4EtP|  
    end d|?'yX  
    C% )Xz  
    lmjoSINy  
    % Check normalization: map#4\  
    % -------------------- 5^W},:3R  
    if nargin==5 && ischar(nflag) JDA:)[;  
        isnorm = strcmpi(nflag,'norm'); JE$aYs<(TF  
        if ~isnorm L dyTB@  
            error('zernfun:normalization','Unrecognized normalization flag.') %/r}_V(UN  
        end +o94w^'^$b  
    else 5\6S5JyIL  
        isnorm = false; v2tKk^6`(i  
    end )1!jv!  
    h;(#^+LH  
    D3BNA]P\2@  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 6I yD7PQ  
    % Compute the Zernike Polynomials ~c*$w O\  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Np?%pB!Q  
    B-`,h pp  
    a?]"|tQ'  
    % Determine the required powers of r: OB{d^e}  
    % ----------------------------------- ?9)-?tZ^Q  
    m_abs = abs(m); (E.,kcAJ  
    rpowers = []; cJ> #jl&  
    for j = 1:length(n) v|r=}`k=  
        rpowers = [rpowers m_abs(j):2:n(j)]; n M?mdb  
    end |_7AN!7j  
    rpowers = unique(rpowers); (6*CORE   
    ygA~d9"  
    9ne13 qVm+  
    % Pre-compute the values of r raised to the required powers, O DLRzk(  
    % and compile them in a matrix:  3~mi  
    % ----------------------------- {d%% nK~  
    if rpowers(1)==0 :s}6a23  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); e[(XR_EY  
        rpowern = cat(2,rpowern{:}); FYs-vW{  
        rpowern = [ones(length_r,1) rpowern]; 0F495'*A  
    else jBO/1h=  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); A=z+@b6  
        rpowern = cat(2,rpowern{:}); `~hB-Z5dI  
    end N`JkEd7TT  
    >4.K>U?0FC  
    ~_ 8X%ut y  
    % Compute the values of the polynomials: ?C[W~m P  
    % -------------------------------------- #9a\Ab  
    y = zeros(length_r,length(n)); H:d@@/  
    for j = 1:length(n) 8?> #  
        s = 0:(n(j)-m_abs(j))/2; v%=@_`Ht  
        pows = n(j):-2:m_abs(j); b85r=tm   
        for k = length(s):-1:1 m@z.H;  
            p = (1-2*mod(s(k),2))* ... _=wu>h&7  
                       prod(2:(n(j)-s(k)))/              ... Lcx)wof  
                       prod(2:s(k))/                     ... w4m)lQM  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... "\x<Zg;  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); E,/<;  
            idx = (pows(k)==rpowers); DhVF^=x$  
            y(:,j) = y(:,j) + p*rpowern(:,idx); / X #4  
        end FKX+ z  
         o<Esh;;*nm  
        if isnorm ODbEL/  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); kT jx.  
        end 94>EA/+Ek  
    end xejQ!MAB  
    % END: Compute the Zernike Polynomials &RzkM4"  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 7j ]d{lD  
    V?.')?'V  
    /oWn0  
    % Compute the Zernike functions: g p2S   
    % ------------------------------ wc%Wy|d  
    idx_pos = m>0; ~`uEZ  
    idx_neg = m<0; S^Lu RF]F  
    '\ MYC8"  
    Q=,6W:j  
    z = y; x e~lV  
    if any(idx_pos) _XO3ml\x@  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); e6 R<V]g  
    end /f5*KRM  
    if any(idx_neg) &$1ifG   
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); qPn }$1+~  
    end <? Z[X{  
    Z8X=Md8=  
    Aa.eu=@I  
    % EOF zernfun 8zMt&5jD  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    8425
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    957
    光币
    1067
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  c{,VU.5/  
    [gybdI5wur  
    DDE还是手动输入的呢? l2*o@&.  
    }|j \QjH  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究