切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9331阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, _y .]3JNm  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 2q} ..  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? bzi|s5!'<  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? @U -$dw'4  
    nU`Lhh8y  
    BKU'`5`  
    d77r9  
    Ml>( tec  
    function z = zernfun(n,m,r,theta,nflag) e~v(eK_  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. g<\z=H  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N + E"[  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ;HOPABWz)  
    %   unit circle.  N is a vector of positive integers (including 0), and jw6Tj;c  
    %   M is a vector with the same number of elements as N.  Each element y|_Eu:  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) *@ED}Mj+  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 1@XgTL4  
    %   and THETA is a vector of angles.  R and THETA must have the same  +f4W"t  
    %   length.  The output Z is a matrix with one column for every (N,M) pJ, @Y>  
    %   pair, and one row for every (R,THETA) pair. \Btk;ivg  
    % 6Gn4asoA  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike V:bV ?lt  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), TOI4?D]  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral P"7ow-  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, gdj^df+2F  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized e<gx~N9l'  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 'PdmI<eXQ  
    % GO5~!g  
    %   The Zernike functions are an orthogonal basis on the unit circle. m(sXk}e;1  
    %   They are used in disciplines such as astronomy, optics, and BQ05`nkF  
    %   optometry to describe functions on a circular domain. ,yLw$-  
    % O2-M1sd$  
    %   The following table lists the first 15 Zernike functions. )WR_ ug  
    % EY>8O+  
    %       n    m    Zernike function           Normalization 9 -jO,l  
    %       -------------------------------------------------- 'b:Ne,<  
    %       0    0    1                                 1 igDyp0t  
    %       1    1    r * cos(theta)                    2 p*;Qz  
    %       1   -1    r * sin(theta)                    2 %6 =\5>  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) Gg0#H^s( (  
    %       2    0    (2*r^2 - 1)                    sqrt(3) `hB1b["(  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) >R,?hWT  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) YT2'!R 1  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) VTe.M[:  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) _py2kjA6  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) heD,& OX  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 0|)19LR  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) DOm-)zl{|x  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) r!/0 j)  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) WO%h"'iJ  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) !eD+GDgE]  
    %       -------------------------------------------------- Nh)[r x  
    % w;`m- 9<Y  
    %   Example 1: hH+bt!aH  
    % q/6UK =  
    %       % Display the Zernike function Z(n=5,m=1) @Y' I,e  
    %       x = -1:0.01:1; m7 XjP2   
    %       [X,Y] = meshgrid(x,x); =hX[  
    %       [theta,r] = cart2pol(X,Y); ~mILA->F  
    %       idx = r<=1; L]zNf71RD  
    %       z = nan(size(X)); oK-!(1A-  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); j|'R$|  
    %       figure q9}2  
    %       pcolor(x,x,z), shading interp -gKpL\  
    %       axis square, colorbar B7 "Fp  
    %       title('Zernike function Z_5^1(r,\theta)') \K`jCsT  
    % l`rC0kJ]  
    %   Example 2: 8&a_A:h  
    % *PB/iVH%6  
    %       % Display the first 10 Zernike functions =l|>.\-  
    %       x = -1:0.01:1; R+. Nn  
    %       [X,Y] = meshgrid(x,x); 5t'Fv<g  
    %       [theta,r] = cart2pol(X,Y); <%,'$^'DS  
    %       idx = r<=1; lYQtv=q  
    %       z = nan(size(X)); x1DVD!0~{  
    %       n = [0  1  1  2  2  2  3  3  3  3];  ~u/@rqF  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; H%.zXQ4}n  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; TU%"jb5  
    %       y = zernfun(n,m,r(idx),theta(idx)); @P70W<<  
    %       figure('Units','normalized') (UW6F4:$  
    %       for k = 1:10 U1^l+G^,~  
    %           z(idx) = y(:,k); w#{l 4{X|  
    %           subplot(4,7,Nplot(k)) :,C%01bH|l  
    %           pcolor(x,x,z), shading interp ze"~Ird  
    %           set(gca,'XTick',[],'YTick',[]) i]M"Cu*  
    %           axis square -lp"#^ ;  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 5^|"_Q#:  
    %       end U?6yke  
    % g3a/;wl  
    %   See also ZERNPOL, ZERNFUN2. !"(u_dFw  
    DNho%Xk  
    F^sw0 .b  
    %   Paul Fricker 11/13/2006 J8h7e}n?  
    $n*%v85  
    RO(iHR3cA  
    k.>6nho`TV  
    00,9azs  
    % Check and prepare the inputs: 5vGioO  
    % ----------------------------- =L16hDk o  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) foyB{6q8  
        error('zernfun:NMvectors','N and M must be vectors.') A5+5J_)*  
    end DrFur(=T  
    FAd``9kRT  
    Gy^FrF   
    if length(n)~=length(m) afy/K'~  
        error('zernfun:NMlength','N and M must be the same length.') E.#6;HHzN  
    end ^+a  
    /yt7#!tm+  
    u7(];  
    n = n(:); Okoo(dfM  
    m = m(:); tWRf'n[+]  
    if any(mod(n-m,2)) ioWJj.%  
        error('zernfun:NMmultiplesof2', ... #'g^Za  
              'All N and M must differ by multiples of 2 (including 0).') Z*h ;e;  
    end .S6ji~;r  
    y;,y"W  
    E4i@|jE~)  
    if any(m>n) aYBTrOdz  
        error('zernfun:MlessthanN', ... skK*OO 2-  
              'Each M must be less than or equal to its corresponding N.') NJ>,'s  
    end CnQg*+  
    $*i7?S@~-  
    cLHF9B5  
    if any( r>1 | r<0 ) Dx0O'uwR  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 9IOGc}  
    end =1Ri]b  
    km}MqBQl  
    2J&XNV^tJ  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) y,^";7U  
        error('zernfun:RTHvector','R and THETA must be vectors.')  /+N|X  
    end B MY>a  
    To">DOt  
    Vl4Z_viNH  
    r = r(:); pIvfmIm  
    theta = theta(:); {Wa~}1`Kl  
    length_r = length(r); L2d:.&5  
    if length_r~=length(theta) 6#O#T;f)  
        error('zernfun:RTHlength', ... )ib7K1GJ  
              'The number of R- and THETA-values must be equal.') O%prD}x  
    end {&0mK"z_  
    [jy0@Q9  
    =g >.X9lr  
    % Check normalization: 5^b i 7J  
    % -------------------- e& p_f<  
    if nargin==5 && ischar(nflag) CJm.K  
        isnorm = strcmpi(nflag,'norm'); / =-6:L  
        if ~isnorm w LpkUa  
            error('zernfun:normalization','Unrecognized normalization flag.') p %L1uwLG  
        end .<HC[ls  
    else #n=A)#'my  
        isnorm = false; pFEZDf}:  
    end YsZ{1W  
    bI#<Ee0nJ  
    ):^ '/e  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 3;y_qwA  
    % Compute the Zernike Polynomials TR~|c|B  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% z;[gEA+I  
    [7'#~[a~  
    pXve02b1B  
    % Determine the required powers of r: is9}ePC7Xu  
    % ----------------------------------- =l_rAj~I|  
    m_abs = abs(m); Z^{+,$H@  
    rpowers = []; IKGTsA;  
    for j = 1:length(n) "/Om}*VhD  
        rpowers = [rpowers m_abs(j):2:n(j)]; AfUZO^<  
    end & { DR 6  
    rpowers = unique(rpowers); \Bt =bu>Z  
    R!@|6=]iG  
    .N/GfR`0/<  
    % Pre-compute the values of r raised to the required powers, ax4*xxU  
    % and compile them in a matrix: s fyBw  
    % ----------------------------- 3R'.}^RN  
    if rpowers(1)==0 l6V%"Lo/)  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ] xb]8]  
        rpowern = cat(2,rpowern{:}); vc )9Re$  
        rpowern = [ones(length_r,1) rpowern]; &S<? 07Z  
    else qC\]"Z`m  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 2H[=l Y  
        rpowern = cat(2,rpowern{:}); +mivqR~{{  
    end ^eT@!N  
    'G<}U343=8  
     qe[  
    % Compute the values of the polynomials: r|l53I 5  
    % -------------------------------------- tp#Z@5=  
    y = zeros(length_r,length(n)); RV( w%g  
    for j = 1:length(n) ]Mn&76 fu  
        s = 0:(n(j)-m_abs(j))/2; y*}AX%8`e~  
        pows = n(j):-2:m_abs(j); cT_uJbP+  
        for k = length(s):-1:1 mr@_ %U  
            p = (1-2*mod(s(k),2))* ... {-o7w0d_  
                       prod(2:(n(j)-s(k)))/              ... TG4\%S$w  
                       prod(2:s(k))/                     ... >sn"   
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... #D= tX  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); hK:#+hg,  
            idx = (pows(k)==rpowers); +xn&K"]:3  
            y(:,j) = y(:,j) + p*rpowern(:,idx); Jz=;mrW  
        end Y=5!QLV4  
         BO8%:/37[4  
        if isnorm M_qP!+Y  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); =]!8:I?C<  
        end xR0~S 3caI  
    end }/_('q@s\  
    % END: Compute the Zernike Polynomials {'h)  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 6].yRNy"  
    %|# P&`  
    ny278tr Q7  
    % Compute the Zernike functions: PZKbnu  
    % ------------------------------ <dq,y>  
    idx_pos = m>0; WA<H  
    idx_neg = m<0; +A'}PXm*tu  
    YnKFcEJrT  
    bs:C1j\&  
    z = y; <FXQxM5"  
    if any(idx_pos) FI3sLA  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); }W- K  
    end Z|]l"W*w  
    if any(idx_neg) F;cI0kP=>  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Iu)L3_+  
    end (jp1; #P!  
    " 7l jc  
    p6<E=5RRd1  
    % EOF zernfun Hi9 G^Q  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  K{[Fa,]'  
    !O%f)v?  
    DDE还是手动输入的呢? TF ([yZO'  
    EC\rh](d 1  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究