切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9027阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, D:1@1Jr  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, <q'l7 S  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? s<s}6|Z  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? DiFYVR<@  
    -]Z7^  
    R~\R>\  
    [7Lr"  
    QqA=QTZ}  
    function z = zernfun(n,m,r,theta,nflag) (~GQncqa  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. uuC ["Z  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N .^Sgl o  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ubcB <=xb  
    %   unit circle.  N is a vector of positive integers (including 0), and -& 1(~7  
    %   M is a vector with the same number of elements as N.  Each element D'g,<-ahl  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) v675C#l(  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, .XJ'2yKof  
    %   and THETA is a vector of angles.  R and THETA must have the same H7zN|NdNw  
    %   length.  The output Z is a matrix with one column for every (N,M) {&=+lr_h?  
    %   pair, and one row for every (R,THETA) pair. V`Cy x^P  
    % Q^(CqQo!<  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 8xPt1Sotq[  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 4q}+8F`0F  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral =;rLv7(a  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, F]ao Ty  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized V}jGxt0  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Mog >W&U  
    % Q|'f3\  
    %   The Zernike functions are an orthogonal basis on the unit circle. 2q~ .,vpP  
    %   They are used in disciplines such as astronomy, optics, and u<-)C)z  
    %   optometry to describe functions on a circular domain. uvId],dQ5  
    % e\%,\ uV}  
    %   The following table lists the first 15 Zernike functions. K:,V>DL  
    % (` *BZ_  
    %       n    m    Zernike function           Normalization \|HEe{nA  
    %       -------------------------------------------------- #Rw!a#CX.  
    %       0    0    1                                 1 jI ol`WX  
    %       1    1    r * cos(theta)                    2 R#T-o,m  
    %       1   -1    r * sin(theta)                    2 ;b<w'A_1  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) TSB2]uH  
    %       2    0    (2*r^2 - 1)                    sqrt(3) &jE\D^>ko  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) F.[%0b E  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) Tagf7tw4  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) _@DOH2 lXJ  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) TnF~'RZYb  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) >8f~2dH2%  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) y )QLR<wf  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) nu0pzq\6  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) [:8\F#KW  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) z`{sD]  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) F Z"n6hWA  
    %       -------------------------------------------------- eZ'8JU]  
    % ,lZ19B?WP  
    %   Example 1: Z-iU7 O  
    % `Fd \dn  
    %       % Display the Zernike function Z(n=5,m=1) 8 v/H;65  
    %       x = -1:0.01:1; B)0/kY7c  
    %       [X,Y] = meshgrid(x,x); 'S`l[L:.8  
    %       [theta,r] = cart2pol(X,Y); ;uBGB h<  
    %       idx = r<=1; 6S`_L  
    %       z = nan(size(X)); tOIqX0dWd  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); x[0T$  
    %       figure htBA.eQ  
    %       pcolor(x,x,z), shading interp 7^gO>2~  
    %       axis square, colorbar JipNI8\r  
    %       title('Zernike function Z_5^1(r,\theta)') Z/Rp?Jz\j/  
    % IiPX`V>RC  
    %   Example 2: y ``\^F  
    % UqK.b}s  
    %       % Display the first 10 Zernike functions `<7\Zl  
    %       x = -1:0.01:1; S\GWMB!oF  
    %       [X,Y] = meshgrid(x,x); M':-f3aT%  
    %       [theta,r] = cart2pol(X,Y); E7X6RB b  
    %       idx = r<=1; cYSn   
    %       z = nan(size(X)); F2N"aQ&  
    %       n = [0  1  1  2  2  2  3  3  3  3]; 'O<b'}-A  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; MBWoPK  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; )D8op;Fn  
    %       y = zernfun(n,m,r(idx),theta(idx)); f_c\uN@f  
    %       figure('Units','normalized') h FU8iB`Q  
    %       for k = 1:10 l.}PxZ  
    %           z(idx) = y(:,k); +7.|1x;C  
    %           subplot(4,7,Nplot(k)) @Jd&[T27Lr  
    %           pcolor(x,x,z), shading interp &[G)Y D  
    %           set(gca,'XTick',[],'YTick',[]) ,r B(WKU  
    %           axis square iw)gNQ%z4  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 2S8;=x}/  
    %       end }B0[S_mw  
    % +XWTu!  
    %   See also ZERNPOL, ZERNFUN2. }&0LoW/  
    ChiIQWFE  
    fFJ7Y+^  
    %   Paul Fricker 11/13/2006 8m+~HSIR  
    d"|_NG`vr  
    xlv(PVdn  
    e$9a9twl  
    ,^9+G"H:I  
    % Check and prepare the inputs: qiz(k:\o  
    % ----------------------------- 8m0*89HEu  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Snkb^Kt  
        error('zernfun:NMvectors','N and M must be vectors.') Uu7]`Ul  
    end Xt$qjtVM  
    6ALjM-t=V  
    @b(@`yz.a  
    if length(n)~=length(m) ilL%  
        error('zernfun:NMlength','N and M must be the same length.') h0F=5| B  
    end gS FZ>v*6  
    o*K7(yUL4  
    ]!ai?z%cK#  
    n = n(:); 4Sh8w%s  
    m = m(:); 4)iP%%JH  
    if any(mod(n-m,2)) a en%  
        error('zernfun:NMmultiplesof2', ... H9WYt#  
              'All N and M must differ by multiples of 2 (including 0).') -mO#HZIq  
    end <zXG}JuL@T  
    kn:hxdZ  
    2TGND-(j  
    if any(m>n) &4OOW;,?<  
        error('zernfun:MlessthanN', ... R+!U.:-yz  
              'Each M must be less than or equal to its corresponding N.') P5my]4|x  
    end tav@a)  
    WN]k+0#  
    %U{6 `m  
    if any( r>1 | r<0 ) / =9Y(v  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') #?)6^uTW  
    end ;bwBd:Y  
    jm%P-C @  
    #`y[75<n  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) &0kr[Ik.  
        error('zernfun:RTHvector','R and THETA must be vectors.') k (AE%eA  
    end faOiNR7;h  
    WWSycH ?[  
    *Xnf}Ozx  
    r = r(:); ;MeY@* "{  
    theta = theta(:); @PM<pEve  
    length_r = length(r); = cRmaD  
    if length_r~=length(theta) cn}15JHdR  
        error('zernfun:RTHlength', ... A\?t^T  
              'The number of R- and THETA-values must be equal.') ?Tc|3U  
    end 4- QlIIf  
    J4eU6W+{  
    0d2RB^"i  
    % Check normalization: OcUj_Zd  
    % -------------------- E^J &?-  
    if nargin==5 && ischar(nflag) -aBhN~  
        isnorm = strcmpi(nflag,'norm'); z#G\D5yX[*  
        if ~isnorm xD*Zcw(vj~  
            error('zernfun:normalization','Unrecognized normalization flag.') qGq]E `O  
        end }Rz,}^B  
    else n ^9?(a4u  
        isnorm = false; MR|A_e^x  
    end i'<hT q4  
    @~vg=(ic(  
    v RtERFL  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% gZ&4b'XS,  
    % Compute the Zernike Polynomials e!0xh  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% oaha5aWH  
    m> +  
    Xc+YoA0Ez  
    % Determine the required powers of r: F4~ OsgZ'N  
    % ----------------------------------- Pz*BuL <  
    m_abs = abs(m); `'|6b5`2j  
    rpowers = []; 41/civX>V  
    for j = 1:length(n) sT=|"H?  
        rpowers = [rpowers m_abs(j):2:n(j)]; L [PqEN\i  
    end vE`;1UA}  
    rpowers = unique(rpowers); tX% C5k  
    6Z1O:Bou  
    ,X|FyO(p  
    % Pre-compute the values of r raised to the required powers, 8p829  
    % and compile them in a matrix: *CGHp8  
    % ----------------------------- #IGcQY  
    if rpowers(1)==0 o_\vudXK  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); R6X2d\l#  
        rpowern = cat(2,rpowern{:}); oeKl\cgFx  
        rpowern = [ones(length_r,1) rpowern]; IZdWEbN1  
    else D(Z#um8n  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); DNj<:Pdd)  
        rpowern = cat(2,rpowern{:}); CD`6R.  
    end g_ep 5#\D  
    N6kMl  
    d$ o m\@  
    % Compute the values of the polynomials: 3<.DiY  
    % -------------------------------------- Q(x=;wf5r  
    y = zeros(length_r,length(n)); qPi $kecx  
    for j = 1:length(n) f-^*p  
        s = 0:(n(j)-m_abs(j))/2; >9XG+f66E  
        pows = n(j):-2:m_abs(j); m.6uLaD"!}  
        for k = length(s):-1:1 $Vp&7OC]  
            p = (1-2*mod(s(k),2))* ... .z$UNB(!M  
                       prod(2:(n(j)-s(k)))/              ... i:N-Q)<Q*)  
                       prod(2:s(k))/                     ... ,h%n5R$:  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... !1S!)#  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); %iPIgma  
            idx = (pows(k)==rpowers); ~eTp( XG  
            y(:,j) = y(:,j) + p*rpowern(:,idx); aiX4;'$x!  
        end {|%^'lS  
         I_Z?'M  
        if isnorm 4]zn,g?&  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); B4*,]lS?  
        end 41B.ZE+*qd  
    end W|;`R{<I%  
    % END: Compute the Zernike Polynomials e7iQG@i7  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ;E{@)X..|  
    wBI:}N@.  
    IY~I=}  
    % Compute the Zernike functions: MC-Z6l2  
    % ------------------------------ ,: z]15fX  
    idx_pos = m>0; J#w=Z>oz<  
    idx_neg = m<0; j^Qk\(^#IV  
    <b4} B   
    \\Zsxya1  
    z = y; R))4J  
    if any(idx_pos) cWQ &zc  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); (.z0.0W  
    end a{;+_J3S  
    if any(idx_neg) jA@ uV,w  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); _MQh<,Z8  
    end .GYdC '  
    PHez5}T  
    o|n+;h  
    % EOF zernfun $+{o*  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  Kx,<-]4  
    OWHHN<  
    DDE还是手动输入的呢? ){i 9,u")  
    Qb1hk*$=  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究