切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9108阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, _6^vxlF  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, /o+, =7hY  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? ?ti7iBz?  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? /M v\~vg$1  
    m$pXe<  
    4xe:+sA.N  
    </:f-J%U/  
    >OZ+k(saL  
    function z = zernfun(n,m,r,theta,nflag) ,^:Zf|V  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. V4/P  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N G/2@ Mn-  
    %   and angular frequency M, evaluated at positions (R,THETA) on the P}DrUND  
    %   unit circle.  N is a vector of positive integers (including 0), and Uu>YE0/)  
    %   M is a vector with the same number of elements as N.  Each element !ny; YV  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) $-M1<?5  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, XuoI19V[  
    %   and THETA is a vector of angles.  R and THETA must have the same kh^AH6{2  
    %   length.  The output Z is a matrix with one column for every (N,M) 6(D K\58  
    %   pair, and one row for every (R,THETA) pair. s2b!Nib  
    % *z` {$hc  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike :}UWy?F  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 5(u7b  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral QbxjfW"/+  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ;9=9D{-4+  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized  ItC*[  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. P,CJy|[L  
    % 4kxy7] W  
    %   The Zernike functions are an orthogonal basis on the unit circle. f ,K1a9.  
    %   They are used in disciplines such as astronomy, optics, and Q%o   
    %   optometry to describe functions on a circular domain. IC92lPM }  
    % tojJQ6;J  
    %   The following table lists the first 15 Zernike functions. i ,4  
    % = fuF]yL%  
    %       n    m    Zernike function           Normalization +qD4`aI   
    %       -------------------------------------------------- gigDrf}  
    %       0    0    1                                 1 _o' jy^  
    %       1    1    r * cos(theta)                    2 B/i,QBPF]  
    %       1   -1    r * sin(theta)                    2 JEU?@J71O  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) e>uV8!u  
    %       2    0    (2*r^2 - 1)                    sqrt(3) [^1;8Tbk  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) cV&(L]k>`  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 7bQ#M )}  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) xqmJPbA  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) *ZKfyn$+~  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) , $78\B^  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) "aB]?4  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) =WJ*$j(  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) h9>~?1$lz  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) H]}Iw5Z  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) ULjW589 zb  
    %       -------------------------------------------------- W%Br%VQJ  
    % qNC.|R  
    %   Example 1: e9k}n\t3  
    % ,yAvLY5 P  
    %       % Display the Zernike function Z(n=5,m=1) L a0H  
    %       x = -1:0.01:1; /<zBcpVNV  
    %       [X,Y] = meshgrid(x,x);  vRn^n  
    %       [theta,r] = cart2pol(X,Y); WTY{sq\' o  
    %       idx = r<=1; Ocx=)WKdW  
    %       z = nan(size(X)); \hv*`ukF  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 7EQ |p  
    %       figure Lo7R^>  
    %       pcolor(x,x,z), shading interp `"A\8)6-  
    %       axis square, colorbar @6h=O`X>  
    %       title('Zernike function Z_5^1(r,\theta)') p,]Hs{R  
    % e,`+6qP{  
    %   Example 2: !_l W#feR  
    % <`H:Am`  
    %       % Display the first 10 Zernike functions JgYaA*1X  
    %       x = -1:0.01:1; hb_YdnG  
    %       [X,Y] = meshgrid(x,x); 3AX/A+2  
    %       [theta,r] = cart2pol(X,Y); @~QW~{y  
    %       idx = r<=1; ,Z&"@g  
    %       z = nan(size(X)); PO<4rT+B  
    %       n = [0  1  1  2  2  2  3  3  3  3]; JS!rZi  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; M2my>  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 5<,}^4wWZ  
    %       y = zernfun(n,m,r(idx),theta(idx)); .OXvv _?<  
    %       figure('Units','normalized') C1)TEkc"C  
    %       for k = 1:10 A;Xn#t ,(K  
    %           z(idx) = y(:,k); ;gK+AU  
    %           subplot(4,7,Nplot(k)) l4L&hY^  
    %           pcolor(x,x,z), shading interp l_>^LFOA  
    %           set(gca,'XTick',[],'YTick',[]) t}_qtO7>  
    %           axis square &" K74  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) (!W:-|[K\  
    %       end _4xX}Z;  
    % J@p[v3W  
    %   See also ZERNPOL, ZERNFUN2. iNd 8M V  
    :T5l0h-eC  
    [=S@lURzm@  
    %   Paul Fricker 11/13/2006 % 89f<F\V  
    x_2 [+Ol  
    )z2Tm4>iql  
    h1FM)n[E7  
    <M7@JgC &  
    % Check and prepare the inputs: h&NcN-["  
    % ----------------------------- FTtYzKX(bv  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) bkLm]n3  
        error('zernfun:NMvectors','N and M must be vectors.') F>96]71 2  
    end pWO,yxr:  
    T% Kj >-  
    ! Hdg $,  
    if length(n)~=length(m) HGh`O\f8  
        error('zernfun:NMlength','N and M must be the same length.') 2/E3~X7  
    end 6EGh8H f  
    W*}q;ub;  
    _\"7  
    n = n(:); ~BDVmQa  
    m = m(:); Nt$/JBB[$  
    if any(mod(n-m,2)) Beiz*2-}a  
        error('zernfun:NMmultiplesof2', ... z )a8 ^]`  
              'All N and M must differ by multiples of 2 (including 0).') %_KNAuM  
    end CmY'[rI  
    `:}GE@]  
    Ip4CC'  
    if any(m>n) f,)[f M4  
        error('zernfun:MlessthanN', ... x\*`i)su  
              'Each M must be less than or equal to its corresponding N.') LXJ"ct  
    end ^ :6v- Yx  
    VkRvmKYl  
    UF|v=|*{#  
    if any( r>1 | r<0 ) eH(8T  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') iVFHr<zk  
    end O5{ >k  
    b U-Cd  
    zX{ [Z  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) .B6$U>>NS^  
        error('zernfun:RTHvector','R and THETA must be vectors.') g(;t,Vy,I  
    end )DI/y1  
    #T99p+O  
    A+iQH1C0h  
    r = r(:); .%M=dL>  
    theta = theta(:); j_o6+R k  
    length_r = length(r); L/"u,~[  
    if length_r~=length(theta) n^UrHHOL  
        error('zernfun:RTHlength', ... D""d-oI[  
              'The number of R- and THETA-values must be equal.') n-#?6`>a  
    end Y6?d y\  
    Hh(_sewo  
    S5-}u)XnH  
    % Check normalization: A%"mySW  
    % -------------------- z%hB=V!~91  
    if nargin==5 && ischar(nflag) ]mn(lK  
        isnorm = strcmpi(nflag,'norm'); - 9UQs.Nv  
        if ~isnorm B=(m;A#G  
            error('zernfun:normalization','Unrecognized normalization flag.') s~6?p% 2]  
        end \(cu<{=rU  
    else ujXC#r&  
        isnorm = false; sG%Q?&-  
    end ']Nw{}eS`  
    ";J1$a  
    Y@c! \0e$  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% l=Jbuc  
    % Compute the Zernike Polynomials B;SYO>.W  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Ja4O*C<  
    '%. lY9D  
    zF>| 9JU  
    % Determine the required powers of r: &\F`M|c  
    % ----------------------------------- `jSxq66L p  
    m_abs = abs(m); CKNC"Y*X  
    rpowers = []; C o4QWyt:  
    for j = 1:length(n) $*Njvr7  
        rpowers = [rpowers m_abs(j):2:n(j)]; IR;lt 3  
    end #VgPg5k.<  
    rpowers = unique(rpowers); )Jz L  
    od"Oq?~/t  
    pUZbZ U  
    % Pre-compute the values of r raised to the required powers, JpvE c!cli  
    % and compile them in a matrix: w6F4o;<PR  
    % ----------------------------- ;_@u@$=~  
    if rpowers(1)==0 1[ ME/r  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); * 8CI'UX  
        rpowern = cat(2,rpowern{:}); s_N?Y)lS+(  
        rpowern = [ones(length_r,1) rpowern]; y[UTuFv~Q  
    else k#_B^J&d  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); C&^"]-t  
        rpowern = cat(2,rpowern{:}); XkHO=  
    end : P>Wd3m  
    *[]7l]XK.  
    T$U,rOB"  
    % Compute the values of the polynomials: G'^Qi}o  
    % -------------------------------------- > )YaWcI  
    y = zeros(length_r,length(n)); zqh.U @  
    for j = 1:length(n) B<SuNbR  
        s = 0:(n(j)-m_abs(j))/2; ycg5S rg  
        pows = n(j):-2:m_abs(j); G1K5J`"*  
        for k = length(s):-1:1 Ms ;:+JI  
            p = (1-2*mod(s(k),2))* ... {9q~bt  
                       prod(2:(n(j)-s(k)))/              ... y m<3  
                       prod(2:s(k))/                     ... )@Fuw*  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... AifnC4  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); y*0bHzJ  
            idx = (pows(k)==rpowers); ^31X-}t v  
            y(:,j) = y(:,j) + p*rpowern(:,idx); (, Il>cR4  
        end nsQx\Tnhx  
         eGwrSF#a)  
        if isnorm R=yn4>I  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); HP}d`C5<R  
        end MDGD*Qn~  
    end &k*sxW'  
    % END: Compute the Zernike Polynomials DF|(CQs9  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |_@ '_  
    bnt>j0E  
    N2[EdOJT_  
    % Compute the Zernike functions: n@<+D`[.V  
    % ------------------------------ ~1jSz-s  
    idx_pos = m>0; . Xn w@\k'  
    idx_neg = m<0; DUUQz:?{J  
    *Hx{eqC  
    4 8l!P(>?y  
    z = y; r)UtS4 7  
    if any(idx_pos) dY'/\dJ  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); P~/Gla k  
    end 2{:bv~*I0F  
    if any(idx_neg) pT\>kqmj  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ;WxE0Q:!~  
    end ` 1aEV#;  
    4+qoq$F</  
    oh c/{D2  
    % EOF zernfun = s^KZV  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  8HL$y-F  
    6Ja } N  
    DDE还是手动输入的呢? W ='c+3O6  
    2h Wtpus  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究