切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9236阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, IB#iJ# ,  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 94p:|5@  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? *b6I%MZn  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? ~3'OiIw1@  
    !HdvCYB>  
    XYK1-m}2  
    ,{uW8L  
    OZ>)sL  
    function z = zernfun(n,m,r,theta,nflag) u^aFj%}]L  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. %EJ\|@N:  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N wZo.ynXT  
    %   and angular frequency M, evaluated at positions (R,THETA) on the )D Gz`->  
    %   unit circle.  N is a vector of positive integers (including 0), and !sfXq"F  
    %   M is a vector with the same number of elements as N.  Each element $IxU6=ajn  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) L= :d!UF  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ~$&:NB1~q  
    %   and THETA is a vector of angles.  R and THETA must have the same \ifK~?  
    %   length.  The output Z is a matrix with one column for every (N,M) B0b[p*g Il  
    %   pair, and one row for every (R,THETA) pair. "W &:j:o  
    % |b$>68:  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike WNn[L=f  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), *]}CSZ[>  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral cQ3W;F8|n  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, +{")E)  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized (xZr ]v ]U  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ,?xLT2>J_  
    % Ci7P%]9  
    %   The Zernike functions are an orthogonal basis on the unit circle. O6m.t%*  
    %   They are used in disciplines such as astronomy, optics, and {) :%Wn M9  
    %   optometry to describe functions on a circular domain. %]a @A8o0  
    % X$7Oo^1;  
    %   The following table lists the first 15 Zernike functions. N|!MO{sB  
    % v"P&` 1=T  
    %       n    m    Zernike function           Normalization W_[|X}lWP  
    %       -------------------------------------------------- X(Y#9N"  
    %       0    0    1                                 1 e2]4a3  
    %       1    1    r * cos(theta)                    2 e/"yGQu  
    %       1   -1    r * sin(theta)                    2 8)^B32  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) V=j-Um;  
    %       2    0    (2*r^2 - 1)                    sqrt(3) ||-nmOy  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) S=0"f}Jo.  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) mR{CVU  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) @4IW=V  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) YSR mt/  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) &8[ZN$Xe"  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) G(U9rJ9  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) v! 7s M  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) G'ij?^?  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) w)+wj[6 E  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) X+=-f^)&  
    %       -------------------------------------------------- $& cz$jyY  
    % T>}0) s  
    %   Example 1:  f~w>v  
    % BdN8 ^W  
    %       % Display the Zernike function Z(n=5,m=1) 3lo;^KX !  
    %       x = -1:0.01:1; si_W:mLF{a  
    %       [X,Y] = meshgrid(x,x); $4Z+F#mx  
    %       [theta,r] = cart2pol(X,Y); BjJ,"sT  
    %       idx = r<=1; R/^@cA  
    %       z = nan(size(X)); &4,WG  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); Fi mN?s  
    %       figure 9n1ZVP.ag  
    %       pcolor(x,x,z), shading interp ""co6qo#>  
    %       axis square, colorbar ')B =|T)  
    %       title('Zernike function Z_5^1(r,\theta)') 6iG(C.b  
    % 7;&(}  
    %   Example 2: H2_/,n  
    % Zp?4uQ)[W  
    %       % Display the first 10 Zernike functions F\a]n^ Y  
    %       x = -1:0.01:1; 3Jk[/ .h  
    %       [X,Y] = meshgrid(x,x); k`Nyi )AGe  
    %       [theta,r] = cart2pol(X,Y); Vy__b=ti?  
    %       idx = r<=1; PU W[e%  
    %       z = nan(size(X)); {Fbg]'FQ  
    %       n = [0  1  1  2  2  2  3  3  3  3]; .*BA 1sjE  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; JIzY,%`\  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; bW53" `X  
    %       y = zernfun(n,m,r(idx),theta(idx)); Kx~$Bor_!  
    %       figure('Units','normalized') m6^ 5S  
    %       for k = 1:10 j~bAbOX12  
    %           z(idx) = y(:,k); Fh K&@@_  
    %           subplot(4,7,Nplot(k)) axmsrj W#  
    %           pcolor(x,x,z), shading interp -."kq.m*  
    %           set(gca,'XTick',[],'YTick',[]) zDD4m`2  
    %           axis square $B\ H  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) cFK @3a  
    %       end GcT;e5D  
    % F/>*If s  
    %   See also ZERNPOL, ZERNFUN2. lwc5S `"  
    J! {Al  
    ow$q7uf  
    %   Paul Fricker 11/13/2006 \R(R9cry  
    *m9{V8Yi2  
    En(7(qP6}  
    g+xw$A ou  
    Us,)]W.S  
    % Check and prepare the inputs: `\bT'~P  
    % ----------------------------- \q "N/$5{f  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) RT^v:paNT2  
        error('zernfun:NMvectors','N and M must be vectors.') `5q ;ssu  
    end {T=52h=e  
    OR:[J5M)  
    v?%LQKO  
    if length(n)~=length(m) 3GF2eS$$P  
        error('zernfun:NMlength','N and M must be the same length.') /`[!_4i  
    end _%~$'Hy  
    D8%AV; -Y  
     W^Y#pn  
    n = n(:); "X04mQn15  
    m = m(:); WNs}sNSf  
    if any(mod(n-m,2)) i^)WPP>4Aw  
        error('zernfun:NMmultiplesof2', ... KB!5u9  
              'All N and M must differ by multiples of 2 (including 0).') YuQ~AE'i  
    end 6.5wZN9<|  
    $d/&k`  
    ye%iDdf  
    if any(m>n) 9@K.cdRjQ  
        error('zernfun:MlessthanN', ... d--'Rn5  
              'Each M must be less than or equal to its corresponding N.') 1D F/6y  
    end d;7 uFh|o  
    ]E3<UR  
     Ow:1?Z{4  
    if any( r>1 | r<0 ) BQ/PGY>  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 5|I55CTx  
    end A(8n  
    yHeEobvb  
    C3XmK}h  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) /6K Il  
        error('zernfun:RTHvector','R and THETA must be vectors.') @?kM'*mrZM  
    end sbj";h=E  
    rY0u|8.5Q  
    ^ B/9{0n'  
    r = r(:); hePPxKQ-  
    theta = theta(:); 5GQLd  
    length_r = length(r);  En6H%^d2  
    if length_r~=length(theta) qQ0C?  
        error('zernfun:RTHlength', ... T6#CK  
              'The number of R- and THETA-values must be equal.') c~=B0K-  
    end ?F7o!B  
    t<j^q`;@v  
    V Z y4_v=  
    % Check normalization: e`K)_>^n#  
    % -------------------- (=4W -z7  
    if nargin==5 && ischar(nflag) Km#pX1]>e  
        isnorm = strcmpi(nflag,'norm'); $t~@xCi]S  
        if ~isnorm l [GOs&D1  
            error('zernfun:normalization','Unrecognized normalization flag.') 3;[DJ5  
        end l?8M p$M  
    else 6KZf%)$  
        isnorm = false; /9pM>Cd*Z  
    end 4|?{VQ  
    *sw7niw  
    S4^N^lQ]  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 23!;}zHp  
    % Compute the Zernike Polynomials X2|Y  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% nH|,T%  
    D*PYr{z'  
    qZv =  
    % Determine the required powers of r: +rXF{@ l  
    % ----------------------------------- !7bw5H  
    m_abs = abs(m); pd[ncL  
    rpowers = []; V'Kgdj  
    for j = 1:length(n) )D&M2CUw"f  
        rpowers = [rpowers m_abs(j):2:n(j)]; V/d/L3p  
    end )E#2J$TD  
    rpowers = unique(rpowers); :O<bA& :d  
    wC_l@7 t  
    nl aM  
    % Pre-compute the values of r raised to the required powers, H9)m^ *  
    % and compile them in a matrix: M:KbD|  
    % ----------------------------- *l+OlQI0+  
    if rpowers(1)==0 B+d<F[ |  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); *^\HU=&  
        rpowern = cat(2,rpowern{:}); *OJ/V O  
        rpowern = [ones(length_r,1) rpowern]; h%; e0Xz|  
    else GNf482  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); l%ayI  
        rpowern = cat(2,rpowern{:}); OLGBt  
    end j(:I7%3&(*  
    ^N}Wnk7ks'  
    "gtHTqheH  
    % Compute the values of the polynomials: IQ< MyB(  
    % -------------------------------------- {5r0v#;  
    y = zeros(length_r,length(n)); .d;Iht,[  
    for j = 1:length(n) 1"7Sy3  
        s = 0:(n(j)-m_abs(j))/2; g]c[O*NTL  
        pows = n(j):-2:m_abs(j); :F,O  
        for k = length(s):-1:1 <ljI;xE  
            p = (1-2*mod(s(k),2))* ... Wz4&7KYY  
                       prod(2:(n(j)-s(k)))/              ... Zv11uH-C  
                       prod(2:s(k))/                     ... A1)wo^,  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... vK7\JZ>  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); ;8WZx  
            idx = (pows(k)==rpowers); XqRJr%JH  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 7!,YNy%  
        end X"gCR n%tn  
         /+*#pDx/zW  
        if isnorm Z/x*Y#0@n  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); TD[EQ  
        end SK1!thQy  
    end Y2B &go  
    % END: Compute the Zernike Polynomials )VL96did  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% JO=[YoTr  
    uw\2qU3gk  
    ~DRmON5 M  
    % Compute the Zernike functions: gqXS~K9t  
    % ------------------------------ <FMq>d$\  
    idx_pos = m>0; ? J} r  
    idx_neg = m<0; CQel3Jtt.  
    Fhv/[j^X  
    Mb3}7@/[  
    z = y; /@AEJ][$  
    if any(idx_pos) }X GEX:1K  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); oH0X<'  
    end M/x>51<  
    if any(idx_neg) h)~=Dm  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); j!7`]  
    end <YA&Dr3OD  
    N#lDW~e'  
    XwV'Ha  
    % EOF zernfun `V)Z)uN{0  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  x`6<m!d`  
    D-N8<:cA  
    DDE还是手动输入的呢? U4G`ZK v(!  
    TwgrRtj'  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究