切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9246阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, zZcnijWb  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, ;Gx)Noo/>  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? wNFz*|n  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? O,aS`u &  
    i%e7LJ@5AW  
    ~Tbj=f  
    lif&@o f  
    98=wnWX 6$  
    function z = zernfun(n,m,r,theta,nflag) H~ZV *[A`  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. akw,P$i  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N .#02 ngh  
    %   and angular frequency M, evaluated at positions (R,THETA) on the n  -(  
    %   unit circle.  N is a vector of positive integers (including 0), and )i+2X5B`S  
    %   M is a vector with the same number of elements as N.  Each element ljl^ GFo  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 6T 8!xyi-+  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, W>-Et7&2  
    %   and THETA is a vector of angles.  R and THETA must have the same ,h"-  
    %   length.  The output Z is a matrix with one column for every (N,M) f&v9Q97=  
    %   pair, and one row for every (R,THETA) pair. *5w{8  
    % qC F5~;7  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike }D+}DPL{^  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), CLvX!O(~  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 'y8]_K*  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, __mF ?m  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized *m?/O} R  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. {(r6e  
    % q6YXM  
    %   The Zernike functions are an orthogonal basis on the unit circle. &0f5:M{P  
    %   They are used in disciplines such as astronomy, optics, and ;WR,eI..  
    %   optometry to describe functions on a circular domain. F:x [  
    % dOa%9[  
    %   The following table lists the first 15 Zernike functions.  : ]C~gc  
    % k)EX(T\  
    %       n    m    Zernike function           Normalization 2-Y<4'>  
    %       -------------------------------------------------- J!5$,%v  
    %       0    0    1                                 1 ]_N|L|]M  
    %       1    1    r * cos(theta)                    2 p]3?gK-  
    %       1   -1    r * sin(theta)                    2 I`NjqyTW  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) p/+a=Yo  
    %       2    0    (2*r^2 - 1)                    sqrt(3) ;!(<s,c#:  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) P.gb 1$7<  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) sQkhwMg  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) t!RiUZAo  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) N7e"@Ic  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 1GzAG;UUo6  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) k:7(D_  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) -GxaV #{  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) -'6Dg  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 2}8v(%s p  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) XI^QF;,  
    %       -------------------------------------------------- | Bi!  
    % S]+ :{9d  
    %   Example 1: O%bEB g  
    % gEjdN.  
    %       % Display the Zernike function Z(n=5,m=1) d3xmtG {i  
    %       x = -1:0.01:1; J{Q|mD=  
    %       [X,Y] = meshgrid(x,x); 0Vx.nUQ  
    %       [theta,r] = cart2pol(X,Y); F w?[lS  
    %       idx = r<=1; rW$[DdFA5{  
    %       z = nan(size(X)); 4<BjC[@~Z{  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); .SWlp2!M5  
    %       figure <7~'; K  
    %       pcolor(x,x,z), shading interp z4N*b"QF  
    %       axis square, colorbar hIT+gnhh  
    %       title('Zernike function Z_5^1(r,\theta)') 79;<_(Y  
    % $&=S#_HQS  
    %   Example 2: X(NLtO w  
    % \kZ?  
    %       % Display the first 10 Zernike functions !z>6 Uf!{  
    %       x = -1:0.01:1; *WuID2cOI  
    %       [X,Y] = meshgrid(x,x); +U3DG$  
    %       [theta,r] = cart2pol(X,Y); }~L.qG  
    %       idx = r<=1; x7Yu I  
    %       z = nan(size(X)); ,y#Kv|R  
    %       n = [0  1  1  2  2  2  3  3  3  3]; 9iQq.$A.  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; uLV#SQ=bZN  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; u ,KD4{!  
    %       y = zernfun(n,m,r(idx),theta(idx)); .6Pw|xu`Pw  
    %       figure('Units','normalized') U>Slc08N  
    %       for k = 1:10 F1yqxWHeo  
    %           z(idx) = y(:,k); ,>%}B3O:Y=  
    %           subplot(4,7,Nplot(k)) Vh4X%b$TV  
    %           pcolor(x,x,z), shading interp ~nay"g:  
    %           set(gca,'XTick',[],'YTick',[]) 'd9INz.  
    %           axis square 8]9%*2"!  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) $| @ (  
    %       end :/nj@X6  
    % "]} bFO7C  
    %   See also ZERNPOL, ZERNFUN2. ?Wlb3;  
    T{-CkHf9Q  
    bE !GJZ  
    %   Paul Fricker 11/13/2006 ?82xdp g  
    VZKvaxIk6  
    ``hf=`We  
    FOE4>zE  
    Hquc o  
    % Check and prepare the inputs: [_EZhq  
    % ----------------------------- W:pIPDx1=!  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) (5-FVp fb  
        error('zernfun:NMvectors','N and M must be vectors.') g,!L$,/F  
    end S4_YT@VD%  
    vg32y /l]S  
    X}Ai -D  
    if length(n)~=length(m) [M=7M}f;  
        error('zernfun:NMlength','N and M must be the same length.') {8W'%\!=  
    end n-tgX?1'  
    Jdj2~pTq  
    *nkoPVpC  
    n = n(:); i9,ge Q7d  
    m = m(:); 4O^xY 6m  
    if any(mod(n-m,2)) !Wntd\w  
        error('zernfun:NMmultiplesof2', ... gCB |DY  
              'All N and M must differ by multiples of 2 (including 0).') I;wp':  
    end A P?R"%  
    8p 'L#Q.  
    286jI7T  
    if any(m>n) 'c9]&B  
        error('zernfun:MlessthanN', ... r@H /kD  
              'Each M must be less than or equal to its corresponding N.') Ga^"1TZ x  
    end TNe l/   
    K0|FY=#2y  
    ymhtX6]  
    if any( r>1 | r<0 ) 2} /aFR  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 0z6R'Kjy A  
    end V^bwXr4f  
    u}macKJmp\  
    7x|9n  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ZbW17@b  
        error('zernfun:RTHvector','R and THETA must be vectors.') 6]WAUK%h  
    end f@wquG'  
    B" 1c  
    y.mda:$~=  
    r = r(:); [}E='m}u9+  
    theta = theta(:); 6H.0vN&  
    length_r = length(r); hF~n)oQ  
    if length_r~=length(theta) P~>O S5^  
        error('zernfun:RTHlength', ... *v^Jb/E315  
              'The number of R- and THETA-values must be equal.') |"8b_Cq{  
    end o,\$ZxSlm  
    un mJbY;t  
    Qb-M6ihcc  
    % Check normalization: Hw}Xbp[y  
    % -------------------- M=@:ZQ^!  
    if nargin==5 && ischar(nflag) NX*Q F+  
        isnorm = strcmpi(nflag,'norm'); BU/"rv"(Fg  
        if ~isnorm uP)'FI  
            error('zernfun:normalization','Unrecognized normalization flag.') pZ.ecZe/  
        end > PRFWO  
    else V1N3iI  
        isnorm = false; vxBgGl  
    end c<:-T  
    xX&+WR  
    _YhES-Ff  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% w e//|fA<  
    % Compute the Zernike Polynomials ].w4$OJ?  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% y@S$^jk.  
    S%;O+eFYb  
    V(I8=rVH  
    % Determine the required powers of r: ,aZ[R27rpL  
    % ----------------------------------- {L{o]Ii?g  
    m_abs = abs(m); nV|EQs4(  
    rpowers = []; @1roe G  
    for j = 1:length(n) x)DMPVB<  
        rpowers = [rpowers m_abs(j):2:n(j)]; nfbR P t  
    end Tv,[DI +  
    rpowers = unique(rpowers); ,q`\\d  
    `,<BCu  
    UERLtSQ  
    % Pre-compute the values of r raised to the required powers,  ~^:A{/  
    % and compile them in a matrix: gD @){Ip  
    % ----------------------------- 5{X<y#vAC0  
    if rpowers(1)==0 lfow1WRF  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); V+Y%v.F  
        rpowern = cat(2,rpowern{:}); g wRZ%.Cn  
        rpowern = [ones(length_r,1) rpowern]; pI\]6U  
    else A:%`wX}  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Q->sV$^=T  
        rpowern = cat(2,rpowern{:}); 7;(`MIFXs  
    end /hR&8 `\\  
    >y7?-*0  
    k(nW#*N_  
    % Compute the values of the polynomials: q6luUx,@m  
    % -------------------------------------- D%pF;XY  
    y = zeros(length_r,length(n)); JGrWHIsNV  
    for j = 1:length(n) $ bR~+C  
        s = 0:(n(j)-m_abs(j))/2; Dcgo%F-W  
        pows = n(j):-2:m_abs(j); Dw.J2>uj  
        for k = length(s):-1:1 }j)e6>K])  
            p = (1-2*mod(s(k),2))* ... 194)QeoFw  
                       prod(2:(n(j)-s(k)))/              ... NH4#  
                       prod(2:s(k))/                     ... rglXs  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... .uZ3odMlx  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); }o(-=lF  
            idx = (pows(k)==rpowers); r#p9x[f<Y  
            y(:,j) = y(:,j) + p*rpowern(:,idx); QA`sx  
        end Q Z  
         B~ GbF*j  
        if isnorm M5X&}cN6  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); |0b`fOS  
        end 013x8!i  
    end E{`fF8]K  
    % END: Compute the Zernike Polynomials XNkn|q2  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 6A-|[(NS  
    R 'zWYQ  
    KkbDW3-  
    % Compute the Zernike functions: r`d4e,(  
    % ------------------------------ \Gvm9M  
    idx_pos = m>0; ;*Et[}3  
    idx_neg = m<0; |/{=ww8|  
    g8% &RG  
    {4Cmu;u  
    z = y; 8cIKvHx  
    if any(idx_pos) *.t 7G  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); @RKryY)  
    end (uE!+2C  
    if any(idx_neg) m-#2n? z-  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); sDlO#  
    end K w ]=  
    sUQ@7sTj  
    !_)[/q"  
    % EOF zernfun tT_\i6My  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  !VzC&>'v^9  
    0"SU_j Qzv  
    DDE还是手动输入的呢? fV~[;e;U.  
    6L~n.5B~o  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究