切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9029阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, Vl/fkd,Z  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, C;0VR  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? e/b | sl  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? Zx Ak  
    ]jSRO30H3<  
    G * =>  
    3}5Ya\x  
    *r)dtI*  
    function z = zernfun(n,m,r,theta,nflag) ,wZq ~; 2  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 0@wXE\s  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N .^8rO ,H[  
    %   and angular frequency M, evaluated at positions (R,THETA) on the #'4Psz  
    %   unit circle.  N is a vector of positive integers (including 0), and sspGB>h8l  
    %   M is a vector with the same number of elements as N.  Each element a7sX*5t{R  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) Ys]cJ]  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, n(#[[k9&Ic  
    %   and THETA is a vector of angles.  R and THETA must have the same %gu|  
    %   length.  The output Z is a matrix with one column for every (N,M) B&AF(e (  
    %   pair, and one row for every (R,THETA) pair. J"K(nKXO_?  
    % QYps5zcn  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 3QCCX$,  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), _wUg+Xs]  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral ?Xj@Sx  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, X7txAp.  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 3LZvlcLb  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. X*M2 O%g`L  
    % U#`2~Qv/1  
    %   The Zernike functions are an orthogonal basis on the unit circle. d%:J-UtG"  
    %   They are used in disciplines such as astronomy, optics, and 5DJ!:QY!  
    %   optometry to describe functions on a circular domain. tA^CuJR  
    % T0N6k acl  
    %   The following table lists the first 15 Zernike functions. KG GJ\r6  
    % :xk+`` T  
    %       n    m    Zernike function           Normalization 3Xm> 3  
    %       -------------------------------------------------- 1[!7xA0j  
    %       0    0    1                                 1 Ec&_&  
    %       1    1    r * cos(theta)                    2 :qj7i(  
    %       1   -1    r * sin(theta)                    2 5| Oj\L{  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) '4}8WYKQ  
    %       2    0    (2*r^2 - 1)                    sqrt(3) [WI'oy  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) Bm;: cmB0e  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 8?ip,Q\  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) HGF&'@dn  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 3|%058bF  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) I~4!8W-Y  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) >z7 3uKA(  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ^ywDa^;-  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) zm3$)*p1  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) {s{+MbD  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) izu_1X  
    %       -------------------------------------------------- bX 6uGu 7  
    % 'EN80+xYX  
    %   Example 1: tT+W>oA/M  
    % rONz*ly|i  
    %       % Display the Zernike function Z(n=5,m=1) '7g]@Q7  
    %       x = -1:0.01:1; $,0EV9+af  
    %       [X,Y] = meshgrid(x,x); @|{8/s Oq  
    %       [theta,r] = cart2pol(X,Y); hV&"  
    %       idx = r<=1; Z29LtKr  
    %       z = nan(size(X)); 7>h(M+ /  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); [=cYsW%WG  
    %       figure IaK J W?  
    %       pcolor(x,x,z), shading interp *BvdL:t  
    %       axis square, colorbar ibLx'<  
    %       title('Zernike function Z_5^1(r,\theta)') bXA%|7*  
    % RK p9[^/?  
    %   Example 2: 5n1`$T.WG  
    % = ?BhtW  
    %       % Display the first 10 Zernike functions AR{$P6u!%|  
    %       x = -1:0.01:1; 8#[2]1X^8  
    %       [X,Y] = meshgrid(x,x); o#WECs>  
    %       [theta,r] = cart2pol(X,Y); ]x(6^:D5  
    %       idx = r<=1; 5Pf)&iG  
    %       z = nan(size(X)); egH,7f(yP  
    %       n = [0  1  1  2  2  2  3  3  3  3]; lbPn<  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; }z,9!{~`  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; )l.AsfW%  
    %       y = zernfun(n,m,r(idx),theta(idx)); ,L4zhhl!_  
    %       figure('Units','normalized') '6\ZgOO9  
    %       for k = 1:10 H?,Dv>.#*  
    %           z(idx) = y(:,k);  FjMKb  
    %           subplot(4,7,Nplot(k)) 3!%-O:!  
    %           pcolor(x,x,z), shading interp KpDb%j  
    %           set(gca,'XTick',[],'YTick',[]) 85$ WH  
    %           axis square +hX =  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 2vhP'?;K  
    %       end qJ2Z5  
    % gYbcBb%z  
    %   See also ZERNPOL, ZERNFUN2. brG!TJ   
    #m;o)KkH$r  
    CH q5KB98+  
    %   Paul Fricker 11/13/2006 [XubzZ9  
    aX*9T8H/  
    .jiJgUa7  
    f'*/IG  
    w`fbUh6/  
    % Check and prepare the inputs: Xk1uCVUe5  
    % ----------------------------- ya[f? 0b0  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) k7j[tB#  
        error('zernfun:NMvectors','N and M must be vectors.') l]j;0i  
    end 7SNdC8GZ~  
    UZ "!lpg  
    |'I>Ojm  
    if length(n)~=length(m) IZ iS3  
        error('zernfun:NMlength','N and M must be the same length.') /t! 5||G  
    end qM6hE.J   
    [lVfhXc&  
    Xfbr;Jt"<  
    n = n(:); ^Wn+G8n  
    m = m(:); !aKu9SR^e  
    if any(mod(n-m,2)) IP@3R(DS%  
        error('zernfun:NMmultiplesof2', ... sKJr34  
              'All N and M must differ by multiples of 2 (including 0).') &5XEjY>@  
    end >P:U9 b  
    (h= ]Ox  
    oI'& &Bt  
    if any(m>n) o!U(=:*b  
        error('zernfun:MlessthanN', ... wwQ2\2w>Hm  
              'Each M must be less than or equal to its corresponding N.') /y|ZAN  
    end !^s -~`'\~  
    +6$ -"lf  
    gs=ok8w  
    if any( r>1 | r<0 ) b)M- q{  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') "6U@e0ht  
    end <mj/P|P@  
    ~j(vGO3JB  
    #I*{_|}=  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) vLBuE  
        error('zernfun:RTHvector','R and THETA must be vectors.') KUK.;gG*Z  
    end 4:^MSgra  
    t;/uRN*.  
    0 f$96sl  
    r = r(:); K=E+QvSG  
    theta = theta(:); ~WORC\kCW  
    length_r = length(r); >)G[ww[  
    if length_r~=length(theta) 43-Bx`6\  
        error('zernfun:RTHlength', ... H V-;? 5  
              'The number of R- and THETA-values must be equal.') /#SfgcDt  
    end UNwjx7usD  
    1]5k l J  
    %<+uJ'pj  
    % Check normalization: '+ZJf&Ox  
    % -------------------- g|->W]q@;  
    if nargin==5 && ischar(nflag) @"A 5yD5  
        isnorm = strcmpi(nflag,'norm'); ^Ifm1$X}  
        if ~isnorm a5saN5)H  
            error('zernfun:normalization','Unrecognized normalization flag.') <DPRQhNW]  
        end tm1&OY  
    else e`H>}O/ai  
        isnorm = false; r_T"b  
    end _9H]:]1QH  
    o|vL:| 8Q  
    FG+pR8aA$  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ,c$tKj5ulQ  
    % Compute the Zernike Polynomials ?e4H{Y/M  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ::'Y07  
    @ S[As~9X  
    rQGInzYp  
    % Determine the required powers of r: <#57q%  
    % ----------------------------------- kksffzG  
    m_abs = abs(m); je2"D7D  
    rpowers = []; Eu~1t& 4  
    for j = 1:length(n) bZ:+q1 D  
        rpowers = [rpowers m_abs(j):2:n(j)]; cYe2 a "  
    end 'J-a2oiM(  
    rpowers = unique(rpowers); l0URJRK{*  
    "S6";G^I  
    :_:)S  
    % Pre-compute the values of r raised to the required powers, MUv#8{+F'/  
    % and compile them in a matrix: tP*GYWI48  
    % ----------------------------- VF";p^  
    if rpowers(1)==0 z^.dYb7<  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); FXn98UFY  
        rpowern = cat(2,rpowern{:}); _yR_u+5  
        rpowern = [ones(length_r,1) rpowern]; (n: A` ]  
    else e1E_$oJP  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); kZ)}tA7j  
        rpowern = cat(2,rpowern{:}); vqQ)Pu?T  
    end X$1YvYsID  
    xP9h$!  
    ,ayJgAD  
    % Compute the values of the polynomials: M  |h B[  
    % -------------------------------------- |[mmEYc  
    y = zeros(length_r,length(n)); dI%ho<zm]  
    for j = 1:length(n) _F`JFMS  
        s = 0:(n(j)-m_abs(j))/2; H lM7^3(&  
        pows = n(j):-2:m_abs(j); E@xrn+L>-  
        for k = length(s):-1:1 ezY^T  
            p = (1-2*mod(s(k),2))* ... 3@Fa  
                       prod(2:(n(j)-s(k)))/              ... eD2eDxN2  
                       prod(2:s(k))/                     ... yvzH}$!]  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... t2OBVzK  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); bHx@   
            idx = (pows(k)==rpowers); |39,n~"o&  
            y(:,j) = y(:,j) + p*rpowern(:,idx); #}@8(>T  
        end 4lc|~Fj++  
         irq{ 21  
        if isnorm k+?gWZ \  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 9_jiUZFje  
        end l4r >#n\yj  
    end N[\J#x!U  
    % END: Compute the Zernike Polynomials [)jNy_4  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 3(t,x  
    lN:;~;z_  
    w|S b`eR  
    % Compute the Zernike functions: ZYY2pY 1  
    % ------------------------------ kqj)&0|X  
    idx_pos = m>0; Pp8G2|bz  
    idx_neg = m<0; Q4LPi;{\  
    tN\I2wm  
    KN657 |f  
    z = y; 0x5Ax=ut  
    if any(idx_pos) l=l$9H,  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); =. \hCgq  
    end : -#w  
    if any(idx_neg) LS9,:!$  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); f -F}~S  
    end 0(f+a_2^Q  
    /t7f5mA  
    *w _o8!3-  
    % EOF zernfun zT6nC5E  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  `0U\|I#  
    L58H)V3Pn  
    DDE还是手动输入的呢? 7\g#'#K  
    %?+Lkj&  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究