下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, \Jj'60L^
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, =S?-=jPtg
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? zj$Z%|@$
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? EXM/>PG
oY#XWe8Om
w]}cB+C+l#
OG<]`!"
6`PGV+3j
function z = zernfun(n,m,r,theta,nflag) MrygEC 5
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. y`P7LC
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N F@*r%[S/
% and angular frequency M, evaluated at positions (R,THETA) on the cqU/Y_%l'
% unit circle. N is a vector of positive integers (including 0), and U=*q;$L#
% M is a vector with the same number of elements as N. Each element (G b{ckzs
% k of M must be a positive integer, with possible values M(k) = -N(k) ^O\1v
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, J,2v~Dq
% and THETA is a vector of angles. R and THETA must have the same cF>;f(X
% length. The output Z is a matrix with one column for every (N,M) p`V9+CA
% pair, and one row for every (R,THETA) pair. ok=E/77`
% *{n,4d\..
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike MyR\_)P?
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), t"@|;uPAu
% with delta(m,0) the Kronecker delta, is chosen so that the integral TbUkqABm
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, <8}9s9Nk
% and theta=0 to theta=2*pi) is unity. For the non-normalized Ra,on&OP`*
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ^ZZ@!Udy
% ="PywZ
% The Zernike functions are an orthogonal basis on the unit circle. gZuR4Ti
% They are used in disciplines such as astronomy, optics, and ~d1RD
% optometry to describe functions on a circular domain. !7Q.w/|=
% vf'jz`Z
% The following table lists the first 15 Zernike functions. 9<#R;eIsv
% ?Pf
,5=*B
% n m Zernike function Normalization )pj \b[
% -------------------------------------------------- \VzQ1B>k
% 0 0 1 1 Sf8Xj|u
% 1 1 r * cos(theta) 2 ,PtR^" Mf4
% 1 -1 r * sin(theta) 2 YH6K-}
% 2 -2 r^2 * cos(2*theta) sqrt(6) \fGYJ37
% 2 0 (2*r^2 - 1) sqrt(3) X!'Xx8
% 2 2 r^2 * sin(2*theta) sqrt(6) !{- 3:N7
% 3 -3 r^3 * cos(3*theta) sqrt(8) S)1:*>@
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) Vf2!0
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) ntUVhIE0
% 3 3 r^3 * sin(3*theta) sqrt(8) TuPxyB
% 4 -4 r^4 * cos(4*theta) sqrt(10) = ~R3*GN
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) O4+w2'.,
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) %JU23c*
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) %x)U8
% 4 4 r^4 * sin(4*theta) sqrt(10) ~wV98u-N
% -------------------------------------------------- 2+rao2
% (W6\%H2u
% Example 1: 1>*<K/\qg
% NQ{Z
% % Display the Zernike function Z(n=5,m=1) ojI"<Q~g
% x = -1:0.01:1; Y{B_OoTun
% [X,Y] = meshgrid(x,x); W5yu`Br
% [theta,r] = cart2pol(X,Y); y")>"8H
% idx = r<=1; ;:YjgZ:+Q]
% z = nan(size(X)); =|^W]2W$
% z(idx) = zernfun(5,1,r(idx),theta(idx)); `9)2nkJk'z
% figure Fgq*3t
% pcolor(x,x,z), shading interp w'j]Y%
% axis square, colorbar d:ajD
% title('Zernike function Z_5^1(r,\theta)') \YyU5f7';
% gI$`d?[0{
% Example 2: ZjID<5#
% PhL5EYn
% % Display the first 10 Zernike functions ;^SgV
% x = -1:0.01:1; '4S@:.D`
% [X,Y] = meshgrid(x,x); 0([jD25J!
% [theta,r] = cart2pol(X,Y); <GlV!y
% idx = r<=1; Z@Z`8M@Q,
% z = nan(size(X)); =I3U.^:
% n = [0 1 1 2 2 2 3 3 3 3]; P?-44m#
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; S;kc{?
% Nplot = [4 10 12 16 18 20 22 24 26 28]; 7q=xW6
% y = zernfun(n,m,r(idx),theta(idx)); (8/xSOZ[
% figure('Units','normalized') !KW)*
% for k = 1:10 Vi~+C@96
% z(idx) = y(:,k); tG&B D\
% subplot(4,7,Nplot(k)) -B! TA0=oJ
% pcolor(x,x,z), shading interp dXN&<Q,
% set(gca,'XTick',[],'YTick',[])
$VNn`0^gF
% axis square 'GT`%c k
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 2(x KE_|
% end IKj1{nZvDc
%
K~N[^pF
% See also ZERNPOL, ZERNFUN2. W u{nC
mjc:0hH
p
=O1aM
% Paul Fricker 11/13/2006 {[iQRYD0|
!7|9r$
b8Sl3F?-~
Sv",E@!f
uQ)]g
% Check and prepare the inputs: _JB3+0@
% ----------------------------- %8}w!2D S
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) =,9'O/br
error('zernfun:NMvectors','N and M must be vectors.') 3mpjSL
end $l0w {m!P
AX?6Q4Gq1
M6n.uho/
if length(n)~=length(m) ~0:c{v;4
error('zernfun:NMlength','N and M must be the same length.') cV,URUD
end VNfx>&`
ax }Xsk_
g_=ZcGC
n = n(:); an@Ue7
m = m(:); KO7cZME
if any(mod(n-m,2)) [Y+bW#'
error('zernfun:NMmultiplesof2', ... `UPmr50Wq
'All N and M must differ by multiples of 2 (including 0).') HX^
P9jXT
end 1k(*o.6
\`&fr+x
' JVvL
if any(m>n) b?,y%D)'
error('zernfun:MlessthanN', ... ~KvCb3~X
'Each M must be less than or equal to its corresponding N.') F*u;'K
end H|?`n
uiD
(d\bSo$]
l"Q8`
if any( r>1 | r<0 ) 6= D;K.!
error('zernfun:Rlessthan1','All R must be between 0 and 1.') A5\S0l$Q
end GW#Wy=(_
X+jSB,
'-_PO|}
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) -0Ek&"=Z^
error('zernfun:RTHvector','R and THETA must be vectors.') nXjUTSGa)
end ,\IZ/1
L|Iq#QX|
I_Qnq4Sk(
r = r(:); 7v_e"[s~
theta = theta(:); lw{|~m5`
length_r = length(r); 7y3; F7V
if length_r~=length(theta) z~al
h?H
error('zernfun:RTHlength', ... d29HEu
'The number of R- and THETA-values must be equal.') ,#6\:i
end 3&
$E
h9mR+ng*oD
gf@Dy6<
% Check normalization: ]Ea6Z
% -------------------- 5;*C0m2%i
if nargin==5 && ischar(nflag) "lt[)3*
isnorm = strcmpi(nflag,'norm'); r` @Dgo}
if ~isnorm 2I
error('zernfun:normalization','Unrecognized normalization flag.') {lA@I*_lj
end "Y+`U
else
ObUQ B+
isnorm = false; Q2o:wXvj
end B(5g&+{Lq~
jn'8F$GU
<|@9]>z
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% bhRpYP%x
% Compute the Zernike Polynomials SzDi=lY
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% e0P1FD<@
&2DW
U+z&jdnhDR
% Determine the required powers of r: nHX@
% ----------------------------------- >4c 1VEi
m_abs = abs(m); v3B
^d}+.
rpowers = []; _\6-]
for j = 1:length(n) 0;9LIL5
rpowers = [rpowers m_abs(j):2:n(j)]; AMr 9rB d
end GUxhCoxb
rpowers = unique(rpowers); R OS0Q9X
DbDpdC;
{!w]t?h
% Pre-compute the values of r raised to the required powers, Kt-@a%O0
% and compile them in a matrix: ;AaF ;zPV
% ----------------------------- R*U>T$
if rpowers(1)==0 31}6dg8?n
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); eP)RP6ON{
rpowern = cat(2,rpowern{:}); |7 argk+
rpowern = [ones(length_r,1) rpowern]; 0bor/FU-d
else rr*IIG&.5
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); eNNK;xXe#
rpowern = cat(2,rpowern{:}); lxeolDl
end GZ1>]HB>r^
TS;MGi0`}
`7LdF,OdE
% Compute the values of the polynomials: W<2-Q,>Y
% -------------------------------------- \<5xf<{
y = zeros(length_r,length(n)); 8L#sg^1V
for j = 1:length(n) SF6n06UZu
s = 0:(n(j)-m_abs(j))/2; ms?h/*E<H
pows = n(j):-2:m_abs(j); rO C~U85
for k = length(s):-1:1 5b&'gd^d
p = (1-2*mod(s(k),2))* ... TCVJ[LbJ
prod(2:(n(j)-s(k)))/ ... \oi=fu=}*
prod(2:s(k))/ ... yk=H@`~!
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 8WAg{lVs
prod(2:((n(j)+m_abs(j))/2-s(k))); h:|aQJG5
idx = (pows(k)==rpowers); $V[ob
y(:,j) = y(:,j) + p*rpowern(:,idx); A9"ho}<
end 6wGf47
*ce h
]v
if isnorm fE(rDQI
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); j9Lc2'
end de"*<+
end qZ4DO*%b3
% END: Compute the Zernike Polynomials TY?Fs-
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% P%1s6fjU
ZY83,:<
7&X^y+bMe6
% Compute the Zernike functions: /t816,i
% ------------------------------ )msqt!Ev
idx_pos = m>0; C&Rv)j
idx_neg = m<0; !nTq"d%(W
+;vfn>^!b
RsE+\)
z = y; V< J~:b1V
if any(idx_pos) wL:3RZB
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); !4|7U\;
end %zWtPxAf
if any(idx_neg) -gzk,ymp
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); P5[.2y_qM
end /
JlUqC
_KKG^
u<
NbSwn}e_
% EOF zernfun I&4|T<j