下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, 9=wt9` ?
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, !J@!P?0. C
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? !f^'-
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? pf'-(W+
t:?8I9d
bw\a\/Dw
},@1i<Bb
&!E+l<.RF
function z = zernfun(n,m,r,theta,nflag) =5QP'Qt{O
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. sMhUVc4
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N TDtS^(2A7K
% and angular frequency M, evaluated at positions (R,THETA) on the N-g=_86C"
% unit circle. N is a vector of positive integers (including 0), and q\f Z Q
% M is a vector with the same number of elements as N. Each element ;E{k+vkqy
% k of M must be a positive integer, with possible values M(k) = -N(k)
hb_J.Q
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, @! gJOy
% and THETA is a vector of angles. R and THETA must have the same ZI8*PX%2
% length. The output Z is a matrix with one column for every (N,M) r6#It$NU
% pair, and one row for every (R,THETA) pair. Q#}
0pq
% ,( ?q
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike QlmZ4fT[r
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), t|ih{0
% with delta(m,0) the Kronecker delta, is chosen so that the integral |_7AN!7j
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, H]XY
% and theta=0 to theta=2*pi) is unity. For the non-normalized :"pA0oB
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 9ne13qVm+
% O
DLRzk(
% The Zernike functions are an orthogonal basis on the unit circle. 3~mi
% They are used in disciplines such as astronomy, optics, and {d%% nK~
% optometry to describe functions on a circular domain. XYM 5'
% tf5h/:
% The following table lists the first 15 Zernike functions. )zR(e>VX
% 0F495'*A
% n m Zernike function Normalization *C*'J7
% -------------------------------------------------- rv\yS:2
% 0 0 1 1 2qF
?%
% 1 1 r * cos(theta) 2 S-$N! G~!
% 1 -1 r * sin(theta) 2 (pl|RmmDz
% 2 -2 r^2 * cos(2*theta) sqrt(6) /2n-q_
% 2 0 (2*r^2 - 1) sqrt(3) 0E5"}8
% 2 2 r^2 * sin(2*theta) sqrt(6) 5ZX P$.
% 3 -3 r^3 * cos(3*theta) sqrt(8) H:d@@/
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 8?>
#
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) v%=@_`Ht
% 3 3 r^3 * sin(3*theta) sqrt(8) IgsK7wn
% 4 -4 r^4 * cos(4*theta) sqrt(10) m@z.H ;
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) _=wu>h&7
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) Lcx)wof
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) w4m)lQM
% 4 4 r^4 * sin(4*theta) sqrt(10) "\x<Zg;
% -------------------------------------------------- E,/<;
% >+P5Zm(_
% Example 1: / X
#4
% FKX+
z
% % Display the Zernike function Z(n=5,m=1) nF Mc'm
% x = -1:0.01:1; ODbEL/
% [X,Y] = meshgrid(x,x); kTjx.
% [theta,r] = cart2pol(X,Y); 94>EA/+Ek
% idx = r<=1; gtV^6(Y
% z = nan(size(X)); w6RB|^
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 7j
]d{lD
% figure V?.')?'V
% pcolor(x,x,z), shading interp nkp,
% axis square, colorbar 6dCS Gb
% title('Zernike function Z_5^1(r,\theta)') #}8l9[Q|M
% )nK-39,G
% Example 2: -/y]'_a
% cL]vJ`?Ih
% % Display the first 10 Zernike functions Q||vU
% x = -1:0.01:1; j>{Dbl:#2
% [X,Y] = meshgrid(x,x); YPV@/n[N
% [theta,r] = cart2pol(X,Y); Em%0C@C
% idx = r<=1; &tAhRMa
% z = nan(size(X)); %z0;77[1 I
% n = [0 1 1 2 2 2 3 3 3 3]; [dQL6k";b
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; &^v5 x"
% Nplot = [4 10 12 16 18 20 22 24 26 28]; kkyi`_ZKn
% y = zernfun(n,m,r(idx),theta(idx)); \ r^#a
% figure('Units','normalized') #GJ{@C3H8Q
% for k = 1:10 *t)Y@=k3>
% z(idx) = y(:,k); +PlA#DZu
% subplot(4,7,Nplot(k)) j.?c~Fh
% pcolor(x,x,z), shading interp '@ $L}C#OI
% set(gca,'XTick',[],'YTick',[]) 1[;
7Ay
% axis square V>$A\AWw
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Ap:mc:
% end -kGwbV}
% MsaD@JY.y
% See also ZERNPOL, ZERNFUN2. 7z_EX8^
Skbd'j
va`/Dp)M
% Paul Fricker 11/13/2006 z!M8lpIM
A>?_\<Gp
7CK3t/3D
F&Bh\C)]
xF#'+Y
% Check and prepare the inputs: 4R(H@p%+r2
% ----------------------------- THVF(M4v
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) &}:]uC
error('zernfun:NMvectors','N and M must be vectors.') yGxAur=dE
end /S9(rI<'
T4M"s;::1
fj7\MTy
if length(n)~=length(m) =T?:b8yV
error('zernfun:NMlength','N and M must be the same length.') B2R^oL'}
end 5~pQ$-
]g3RVA%\l
>!U oS
n = n(:); nT;Rwz$3
m = m(:); KBe\)Vs
if any(mod(n-m,2)) N<$dbqoT|
error('zernfun:NMmultiplesof2', ... ,:E*Mw:
'All N and M must differ by multiples of 2 (including 0).') <Lt%[dn
end /O^aFIxk
uZg[PS=@!X
Q[wTV3d
if any(m>n) Fx3CY W
error('zernfun:MlessthanN', ... U5iyvU=UG
'Each M must be less than or equal to its corresponding N.') tF/)DZ.to
end ,Vc>'4E-
e}PJN6"5
]UMt
if any( r>1 | r<0 ) 6XFLWN-)
error('zernfun:Rlessthan1','All R must be between 0 and 1.') 9sgyg3fv>5
end M3 TsalF
R [[
#r5q
mRNA ,*
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) x}tg/`.=z
error('zernfun:RTHvector','R and THETA must be vectors.') Z]QpH<Z
end FJ/c(K
4X1!t
y37c&XYq
r = r(:); tQ@%3`
theta = theta(:); qDVt
length_r = length(r); P4VMGP
if length_r~=length(theta) B&M-em=
error('zernfun:RTHlength', ... r=J+
'The number of R- and THETA-values must be equal.') 5Y3L
end YAc~,N
,(@J Ntx
+wHrS}I#g
% Check normalization: WXj
iKW(
% -------------------- v|7=IJ
if nargin==5 && ischar(nflag) Od,P,t9
isnorm = strcmpi(nflag,'norm'); 5fT"`FL?
if ~isnorm %aB
RL6
error('zernfun:normalization','Unrecognized normalization flag.') 9*<=K
end YaT6vSz
else %0gcNk"=
isnorm = false; #$^vP/"$
end &Rp/y%9
dc+U#]tS
0DB8[#i%:
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \,ko'48@
% Compute the Zernike Polynomials Bs!F |x(
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% E5+-N
l2*o@&.
XZ&cTjNB&
% Determine the required powers of r: "8#EA<lsS
% ----------------------------------- H5)8TR3La
m_abs = abs(m); k0(_0o
rpowers = []; Pe,:FIp,
for j = 1:length(n) /)-OK7x
rpowers = [rpowers m_abs(j):2:n(j)]; wR%F>[6.{
end us7t>EMmB
rpowers = unique(rpowers); GpZ}xY'|w,
u= =`]\_@
49Q
tfk
% Pre-compute the values of r raised to the required powers, Oj,v88=
% and compile them in a matrix: ?heg_~P
% ----------------------------- Q|7$SS6$
if rpowers(1)==0 >oGs0mej
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); _Oc(K
"v
rpowern = cat(2,rpowern{:}); Pea2ENe3
rpowern = [ones(length_r,1) rpowern]; k
E},>+W+
else =H_vRd
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); m 5_
rpowern = cat(2,rpowern{:}); |\<L7|hb9
end 8 t5o&8v
8-&c%h
1
X? l5}
% Compute the values of the polynomials: Rh,a4n?W
% -------------------------------------- *Tum(wWZ
y = zeros(length_r,length(n)); AeR*79x
for j = 1:length(n) o FS2*u
s = 0:(n(j)-m_abs(j))/2; 2/>u8j
pows = n(j):-2:m_abs(j); &~KAZ}xu
for k = length(s):-1:1 : =f!>_r+
p = (1-2*mod(s(k),2))* ... eD,'M
prod(2:(n(j)-s(k)))/ ... _PPn
=kuMa
prod(2:s(k))/ ... V~
q
b2$
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... L6 IIk
prod(2:((n(j)+m_abs(j))/2-s(k))); WI6h
G
idx = (pows(k)==rpowers); cfC}"As
y(:,j) = y(:,j) + p*rpowern(:,idx); (&!RX.i
end x+8%4]u`
Mc9J Fzp
if isnorm <f9a%`d
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); .2{*>Dzi
end =oT4!OUf
end HJ+Q7)
% END: Compute the Zernike Polynomials WYm<_1
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \ OW.?1d
H{4_,2h=m
;Xl {m`E+
% Compute the Zernike functions: ,}:}"cl
% ------------------------------ JI[{n~bhGD
idx_pos = m>0; d<cqY<y VA
idx_neg = m<0; -A^o5s
odTa2$O
Tvl"KVGm
z = y; SajasjE!^1
if any(idx_pos) /d*[za'0
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); )8`i%2i=
end f7b6!R;z_
if any(idx_neg) 6&;h+;h
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); V<ii
end m Eg3.|
U'LPaf$O
jx#9
% EOF zernfun 69S*\'L