下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, y(Gn+
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, ad: qOm
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? !l0]IX`
F
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? Lmte ~oBi
3@I0j/1#k1
60!%^O =
7?=^0?a
\~hrS/$[$
function z = zernfun(n,m,r,theta,nflag) N x&/p$d
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. OKMdyyO<l
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N gPKf8{#%e
% and angular frequency M, evaluated at positions (R,THETA) on the r&E gP
% unit circle. N is a vector of positive integers (including 0), and "V>}-G&
% M is a vector with the same number of elements as N. Each element #-;W|ib%z
% k of M must be a positive integer, with possible values M(k) = -N(k) 6]?%1HSi
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, eT".psRiC
% and THETA is a vector of angles. R and THETA must have the same fwz:k]vk
% length. The output Z is a matrix with one column for every (N,M) ,~d0R4)
% pair, and one row for every (R,THETA) pair. ?.VKVTX^
% y8~OkdlN#
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike g{yw&q[B=
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 4$KDf;m@
% with delta(m,0) the Kronecker delta, is chosen so that the integral ]#]Z]9w
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Dds-;9
% and theta=0 to theta=2*pi) is unity. For the non-normalized wN!\$i@E:
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. M
5sk&>
% Gw<D'b)!
% The Zernike functions are an orthogonal basis on the unit circle.
1c0'i
% They are used in disciplines such as astronomy, optics, and Zt!# KSF7%
% optometry to describe functions on a circular domain. x
7by|G(
% H[~ D]RG}'
% The following table lists the first 15 Zernike functions. h:8P9WhWF
% d-~V.
% n m Zernike function Normalization 6j|Ncv
% -------------------------------------------------- g{]6*`/Z
% 0 0 1 1 S $p>sItO
% 1 1 r * cos(theta) 2 U80=f2
% 1 -1 r * sin(theta) 2 ;_bRq:!j;
% 2 -2 r^2 * cos(2*theta) sqrt(6) 0~ho/ _
% 2 0 (2*r^2 - 1) sqrt(3) J 4gtm"2)
% 2 2 r^2 * sin(2*theta) sqrt(6) j?N<40z
% 3 -3 r^3 * cos(3*theta) sqrt(8) '."_TEIF
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) xfb .Z(
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) TGF$zvd
% 3 3 r^3 * sin(3*theta) sqrt(8) a yoC]rE
% 4 -4 r^4 * cos(4*theta) sqrt(10) B r#{
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) dun`/QKV
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) wG,"X'1
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) qf x*a88
% 4 4 r^4 * sin(4*theta) sqrt(10) 2#.s{ Bv
% -------------------------------------------------- QOXo(S
% KHAc!4lA
% Example 1: 1cK'B<5">]
% n2mO-ZXud
% % Display the Zernike function Z(n=5,m=1) aoey
5hts
% x = -1:0.01:1; n&:ohOH%
% [X,Y] = meshgrid(x,x); sjyr9AF
% [theta,r] = cart2pol(X,Y); EQ$k^Y8 "
% idx = r<=1; Ok_}d&A
% z = nan(size(X)); 3xy2ZYw
% z(idx) = zernfun(5,1,r(idx),theta(idx)); +F)-n2Bi
% figure |HmY`w6*z
% pcolor(x,x,z), shading interp VgNB^w
% axis square, colorbar Ar!0GwE+
% title('Zernike function Z_5^1(r,\theta)') c7XBZ%D
% RzqgN*]lY
% Example 2: i3w~&y-
% 9`*ST(0/
% % Display the first 10 Zernike functions v.(dOIrX
% x = -1:0.01:1; %aNm j)L
% [X,Y] = meshgrid(x,x); eNd&47lJ
% [theta,r] = cart2pol(X,Y); *tUOTA 3L
% idx = r<=1; f'=u`*(b7
% z = nan(size(X)); JVIFpN" `
% n = [0 1 1 2 2 2 3 3 3 3]; SZKYq8ZA)V
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; [Qnf]n\FJ
% Nplot = [4 10 12 16 18 20 22 24 26 28]; '[WL8,.Q
% y = zernfun(n,m,r(idx),theta(idx)); lOt7ij(,L
% figure('Units','normalized') Tgz=I4g
% for k = 1:10 g=t`3X#d
% z(idx) = y(:,k); INA3^p'w
% subplot(4,7,Nplot(k)) v[Q)L!J1
% pcolor(x,x,z), shading interp r?/Uu
&
% set(gca,'XTick',[],'YTick',[]) -P}A26qB
% axis square %M
iv8
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 1sHjM%
% end +*8su5:[&@
% ,>-j Ztm
% See also ZERNPOL, ZERNFUN2. ..JRtuM-v
I>;{BYPV
xh2r?K@k>
% Paul Fricker 11/13/2006 iN&oSpQ
D./{f8
!5 }}mf
"9_$7.q<y
S"&Gutu3o
% Check and prepare the inputs: KUJ Lx
% ----------------------------- 1b%Oi.;
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) EnWv9I<
error('zernfun:NMvectors','N and M must be vectors.') <