切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9526阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, Yn#8uaU  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, XMdc n,  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? a2 SQ:d  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? .( J /*H  
    Ax%BnkU  
    ku{aOV%  
    0l##M06>  
    *Q>:|F[vM  
    function z = zernfun(n,m,r,theta,nflag) LBE".+  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. $"i690  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N BNy"YK$  
    %   and angular frequency M, evaluated at positions (R,THETA) on the saT9%?4-  
    %   unit circle.  N is a vector of positive integers (including 0), and  n=&c5!  
    %   M is a vector with the same number of elements as N.  Each element r#Mx~Zg~  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) . $k"+E  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, l+6\U6_)B  
    %   and THETA is a vector of angles.  R and THETA must have the same ]/bE${W*]  
    %   length.  The output Z is a matrix with one column for every (N,M) 'l:2R,cP  
    %   pair, and one row for every (R,THETA) pair. y#0w\/<  
    % g@2.A;N0  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike #SYWAcTkO}  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), lP e$AI  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral -1:Z^&e/  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, HFr3(gNj@  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized [z~Nw#  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. V\"5<>+O  
    % !.9vW&t  
    %   The Zernike functions are an orthogonal basis on the unit circle. FNuu',:  
    %   They are used in disciplines such as astronomy, optics, and w b[(_@eZ  
    %   optometry to describe functions on a circular domain. mc'p-orAf  
    % _Pkh`}W:  
    %   The following table lists the first 15 Zernike functions. TJpv"V  
    % u\xm8}A  
    %       n    m    Zernike function           Normalization s]c$]&IGG  
    %       -------------------------------------------------- @"8QG^q8de  
    %       0    0    1                                 1 50&F#v%YB  
    %       1    1    r * cos(theta)                    2 {9".o,  
    %       1   -1    r * sin(theta)                    2 )0mDN.  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) _w;+Jh  
    %       2    0    (2*r^2 - 1)                    sqrt(3) %B*dj9n^q  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) kDq%Y[6Z  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) Aa>gN  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) K]8wW;N4  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) !h!9SE  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 3.X0!M;x  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) =on!&M  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Jt6J'MOq  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) LFyceFbm  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ~ fEs!hl  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) h&bV!M  
    %       -------------------------------------------------- V^I /nuy  
    % t3$gwO$  
    %   Example 1: n-3j$x1Ne  
    % ATM:As:<@  
    %       % Display the Zernike function Z(n=5,m=1) k_<{j0z.  
    %       x = -1:0.01:1; [IFRwQ^%_O  
    %       [X,Y] = meshgrid(x,x); HFuaoS+b*  
    %       [theta,r] = cart2pol(X,Y); b',bi.FH  
    %       idx = r<=1; vQ mackY  
    %       z = nan(size(X)); @z)tC@  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); Tki/ d\!+  
    %       figure 1lyOp   
    %       pcolor(x,x,z), shading interp :ZS 8Zm"  
    %       axis square, colorbar 7&V^BW  
    %       title('Zernike function Z_5^1(r,\theta)') ^:DhHqvK  
    % DhNo +"!z  
    %   Example 2: arS'th:j  
    % C'/M/|=Q#  
    %       % Display the first 10 Zernike functions xg,]M/J  
    %       x = -1:0.01:1; 6BU0hV  
    %       [X,Y] = meshgrid(x,x); @:+n6  
    %       [theta,r] = cart2pol(X,Y); 8UT%:DlxQ  
    %       idx = r<=1; Xm:=jQn  
    %       z = nan(size(X)); |sqo+E  
    %       n = [0  1  1  2  2  2  3  3  3  3]; c48J!,jCd'  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; _$\5ZVe  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 8V|jL?a~  
    %       y = zernfun(n,m,r(idx),theta(idx)); BX(d"z b<  
    %       figure('Units','normalized') 8o7]XZE=)  
    %       for k = 1:10 e=o{Zo?H=  
    %           z(idx) = y(:,k); >'-w %H/  
    %           subplot(4,7,Nplot(k)) >Ug?O~-  
    %           pcolor(x,x,z), shading interp j%Z{.>mJ  
    %           set(gca,'XTick',[],'YTick',[]) _8b]o~[Z+  
    %           axis square XDdcq]*|  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) PR@4' r|a  
    %       end x)VIA]  
    % `)=A !x y  
    %   See also ZERNPOL, ZERNFUN2. ?3, 64[  
    i\Pr3 7 "  
    2Cd --W+=  
    %   Paul Fricker 11/13/2006 r` `i C5Ii  
    ?[ S >&Vq  
    nN=:#4 >Y  
    u1) TG "+0  
    x1:Pj  
    % Check and prepare the inputs: `}9 1S  
    % ----------------------------- >[XOMKgQ](  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) B}q  
        error('zernfun:NMvectors','N and M must be vectors.') +# RlX3P  
    end N=Uc=I7C  
    -':"6\W  
    X4 }`>  
    if length(n)~=length(m) Jn<e"  
        error('zernfun:NMlength','N and M must be the same length.') Lk`k>Nn)  
    end ! [|vx!p  
    iijd $Tv  
    ~*mOt 7G  
    n = n(:); ,dZ#,<  
    m = m(:); nI*(a:  
    if any(mod(n-m,2)) n=G>y7b  
        error('zernfun:NMmultiplesof2', ... RUS7Z~5  
              'All N and M must differ by multiples of 2 (including 0).') 9xK4!~5V  
    end mI7rx`4H  
    Fp5NRM*-!  
    iM/*&O}  
    if any(m>n) ayH%  qp  
        error('zernfun:MlessthanN', ... mo|PrLV  
              'Each M must be less than or equal to its corresponding N.') EtR@sJ<  
    end xxLgC;>[  
    KkdG.c'  
    MdVCD^B  
    if any( r>1 | r<0 ) ?GUz?'d  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') }RA3$%3  
    end Bbl)3$`,  
    Y( 1L>4  
    Et}C`vZ+Ve  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) HzD>-f  
        error('zernfun:RTHvector','R and THETA must be vectors.') `R=a@DQ  
    end 23}BW_m  
    28T\@zi  
    b`h%W"|2L  
    r = r(:); z"6ZDC6  
    theta = theta(:); {t844La"  
    length_r = length(r); RwAbIXG{0  
    if length_r~=length(theta) aCU7w5  
        error('zernfun:RTHlength', ... P Pwxk;  
              'The number of R- and THETA-values must be equal.') y wW-p.  
    end 3 x"@**(Q  
    di3 B=A>3  
    r@*=|0(OrK  
    % Check normalization: c&7Do}  
    % -------------------- `a9k!3_L  
    if nargin==5 && ischar(nflag) _`bS[%CJ  
        isnorm = strcmpi(nflag,'norm'); 1DEO3p  
        if ~isnorm `e'G.@  
            error('zernfun:normalization','Unrecognized normalization flag.') .sd B3x  
        end zW"~YaO%C  
    else I@3Q=14k%  
        isnorm = false; $ZQl IJZ  
    end OW+e_im}  
    ./"mn3U  
    l `fW{lh  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% TK; \_yN  
    % Compute the Zernike Polynomials `pP9z;/Xq  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% _MM   
    r?64!VS;  
    Eyr5jXt%;  
    % Determine the required powers of r: d^KBIz8$5l  
    % ----------------------------------- !( kX~S  
    m_abs = abs(m); zc6H o  
    rpowers = []; =ud `6{R  
    for j = 1:length(n) jA4PDHf+  
        rpowers = [rpowers m_abs(j):2:n(j)]; 7<h.KZPc  
    end u$W Bc\ j  
    rpowers = unique(rpowers); r#LnDseW  
    e{,!|LhpQ  
    x Z|&/Ci  
    % Pre-compute the values of r raised to the required powers, @4;HC=~  
    % and compile them in a matrix: 'n~fR]h}  
    % ----------------------------- |.1qy,|!X  
    if rpowers(1)==0 E9^(0\Z I  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); e Wc_N  
        rpowern = cat(2,rpowern{:}); E;9Z\?P  
        rpowern = [ones(length_r,1) rpowern]; jMK3T  
    else Hab!qWK`  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); hZ!oRWIU%G  
        rpowern = cat(2,rpowern{:}); ?sV[MsOsC  
    end S*4f%!  
    q#;BhPc  
    a*V9_Px$&  
    % Compute the values of the polynomials: BRe{1i 6  
    % -------------------------------------- GA.BI"l  
    y = zeros(length_r,length(n)); T'hml   
    for j = 1:length(n) 5!<o-{J[(=  
        s = 0:(n(j)-m_abs(j))/2; ir]Mn.(Y  
        pows = n(j):-2:m_abs(j); O'fk&&l  
        for k = length(s):-1:1 ;U |NmC+  
            p = (1-2*mod(s(k),2))* ... rxQ<4  
                       prod(2:(n(j)-s(k)))/              ... ; vMn/  
                       prod(2:s(k))/                     ... 8GY.){d!l  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Ru:n~77{  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); (/'h4KS@  
            idx = (pows(k)==rpowers); :JR<SFjm  
            y(:,j) = y(:,j) + p*rpowern(:,idx); ~u! gUJ:  
        end &(g|="T  
         jM*AL X  
        if isnorm 7k `_#  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 3 :UA<&=s  
        end UIn^_}jF`  
    end d^tVD`Fm  
    % END: Compute the Zernike Polynomials VQ2Fnb4  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% oB4#J*   
    2sUbiDe-  
    q?yMa9ZZky  
    % Compute the Zernike functions: _D-5}a"  
    % ------------------------------ D%A@lMru  
    idx_pos = m>0; d4J<,  
    idx_neg = m<0; zHV|-R  
    >=Jsv  
    85} ii{S  
    z = y; E[UO5X  
    if any(idx_pos) mk\i}U>`  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); l2(.>-#  
    end _e*c  
    if any(idx_neg) *E}Oh  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 2hy NVG&$  
    end Yc d3QRB  
     qtzFg#  
    FRgLlp8x  
    % EOF zernfun Mm.Ql  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  |RhM| i  
    f=`33m5  
    DDE还是手动输入的呢? o| D^`Z  
    4:1)~z  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究