下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, vpdPW %B
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, :9x]5;ma
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? M0)0~#?.D
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? hgDFhbHtd6
@8aV*zjB
h -091N
S5Pn6'w
7zU~X,
function z = zernfun(n,m,r,theta,nflag) d1t_o2
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. q&NXF(
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N E[zq<&P@
% and angular frequency M, evaluated at positions (R,THETA) on the kVt/Hhd9
% unit circle. N is a vector of positive integers (including 0), and QGGBI Ku
% M is a vector with the same number of elements as N. Each element dNqj | Vu
% k of M must be a positive integer, with possible values M(k) = -N(k) ZZ :*c"b:
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1,
Fe$o*r,
% and THETA is a vector of angles. R and THETA must have the same 0(Z:QqpU$
% length. The output Z is a matrix with one column for every (N,M) /P46k4M1U
% pair, and one row for every (R,THETA) pair. C8)s6
% `fJ;4$4
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike xdaq` ^Bbt
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), =JPY{'V O
% with delta(m,0) the Kronecker delta, is chosen so that the integral ]]}iSw'
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 'Ce?!UO
% and theta=0 to theta=2*pi) is unity. For the non-normalized \'('HFr,
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. R*k;4*1u
% $/(``8li_
% The Zernike functions are an orthogonal basis on the unit circle. Hv:~)h$
% They are used in disciplines such as astronomy, optics, and )Wt&*WMFXl
% optometry to describe functions on a circular domain. E(1G!uu<
% |DVFi2
% The following table lists the first 15 Zernike functions. Ic&YiATj
% U%#Vz-r
% n m Zernike function Normalization -y3[\zNe
% -------------------------------------------------- R6z *!W{
% 0 0 1 1 R `ob;>[Q
% 1 1 r * cos(theta) 2 cf"!U+x
% 1 -1 r * sin(theta) 2 3G^A^]h
% 2 -2 r^2 * cos(2*theta) sqrt(6) 8-kR {9r
% 2 0 (2*r^2 - 1) sqrt(3) e85E+S%
% 2 2 r^2 * sin(2*theta) sqrt(6) )7P>Hj
% 3 -3 r^3 * cos(3*theta) sqrt(8) < %<nh`D
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) q%]5/.J
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) #KHj.Vg
% 3 3 r^3 * sin(3*theta) sqrt(8) E0!0 uSg&
% 4 -4 r^4 * cos(4*theta) sqrt(10) _o+OkvhU
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) N6S@e\*
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) !Zc#E,
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) -sDl[
% 4 4 r^4 * sin(4*theta) sqrt(10) GH3RRzp r
% -------------------------------------------------- ka(3ONbG
% W&I:z-VH
% Example 1: ,LLx&jS
% #BH]`A J
% % Display the Zernike function Z(n=5,m=1) I?\P^f
% x = -1:0.01:1; AxO.adQE%
% [X,Y] = meshgrid(x,x); 2sEG#/Y=
% [theta,r] = cart2pol(X,Y); !g|[A7<|
% idx = r<=1; c3<H272\
% z = nan(size(X)); Y$|KY/)H)
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 3(*vZ
% figure m|]"e@SF2
% pcolor(x,x,z), shading interp dV*9bDkM/
% axis square, colorbar h*Mi/\
% title('Zernike function Z_5^1(r,\theta)') (58r9WhS
% 3fYfj
% Example 2: }h3[QUVf%
% mr]~(]B?r
% % Display the first 10 Zernike functions c@j3L23B
% x = -1:0.01:1; LJ z6)kz
% [X,Y] = meshgrid(x,x); !#
xi^I
% [theta,r] = cart2pol(X,Y); 91fZr
% idx = r<=1; R.GDCGAL
% z = nan(size(X)); E=,fdyj.
% n = [0 1 1 2 2 2 3 3 3 3]; *N6sxFs
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; *W 04$N
% Nplot = [4 10 12 16 18 20 22 24 26 28]; mWLi XKnb
% y = zernfun(n,m,r(idx),theta(idx)); g]?>6 %#rA
% figure('Units','normalized') k@>(sXs
% for k = 1:10 G%}k_vi&q
% z(idx) = y(:,k); +*eVi3
% subplot(4,7,Nplot(k)) &*Kk>
4
% pcolor(x,x,z), shading interp oXVx9dZ
% set(gca,'XTick',[],'YTick',[]) |gT8 QP
% axis square 9El{>&Fs4
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ]&='E.f
% end i0?/\@gd
% D7jbo[GgS
% See also ZERNPOL, ZERNFUN2. }p8iq
I}}>M#
Cw5B
p9
% Paul Fricker 11/13/2006 4:s,e<Tc4v
85A7YraL
7$R^u7DZ
,~Lx7 5{
/(%!txSNEt
% Check and prepare the inputs: UdpuQzV<4`
% ----------------------------- 'Awd:Aed5
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ? Z2`f6;W4
error('zernfun:NMvectors','N and M must be vectors.') lpbcpB
end a`U/|[JM
= ^%*: iT
-V'Y^Df
if length(n)~=length(m) vnlHUQLO
error('zernfun:NMlength','N and M must be the same length.') eK\i={va
end %T}*DC$&S
|vBy=:
YlZ&4
n = n(:); fK^;?4
m = m(:); =W gzj|Kr
if any(mod(n-m,2)) hSj@<#b>F
error('zernfun:NMmultiplesof2', ... S++jwP
'All N and M must differ by multiples of 2 (including 0).') owA.P-4
end $+U6c~^^
+h1X-K:I
-AB0uMot
if any(m>n) tU.~7f#+A
error('zernfun:MlessthanN', ... m:9|5W
'Each M must be less than or equal to its corresponding N.') Y7')~C`up^
end 4S* X=1
8 9maN
]r\!Z
<<(
if any( r>1 | r<0 ) 3/,}&SX
error('zernfun:Rlessthan1','All R must be between 0 and 1.') m mH
xPd
end $OzVo&P;
jK{qw
M>{*PHze0
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 4(`U]dNcs
error('zernfun:RTHvector','R and THETA must be vectors.') jq_ i&~S
end 2r@9|}La
M'pIAm1p
P<LmCYm
r = r(:); 59X XmVg
theta = theta(:); vm=d?*cR
length_r = length(r); wZ_"@j<
if length_r~=length(theta) LMLrH.
error('zernfun:RTHlength', ... UC.kI&A
'The number of R- and THETA-values must be equal.') JOwu_%
end D8WKy
qu;$I'Ul%
[|\#cVWs
% Check normalization: x+[ATZ([
% -------------------- >Udq{<]#r
if nargin==5 && ischar(nflag) PE?ICou
isnorm = strcmpi(nflag,'norm'); &