下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, cc3+Wx_
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, cn
;2&
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? jdD`C`w|,
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? T,4REbm^
]"vpCL
Js,.$t
][T>052v
; JHf0
function z = zernfun(n,m,r,theta,nflag) pmDFmES
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 04E#d.o'
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N O FlY"OS[
% and angular frequency M, evaluated at positions (R,THETA) on the p:4oA<V
% unit circle. N is a vector of positive integers (including 0), and SM`n:{N(
% M is a vector with the same number of elements as N. Each element PkdL] !:
% k of M must be a positive integer, with possible values M(k) = -N(k) ^<e(3S:
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, (M t-2+"+
% and THETA is a vector of angles. R and THETA must have the same ]*AQT7PH
% length. The output Z is a matrix with one column for every (N,M) :AC( \
% pair, and one row for every (R,THETA) pair. vj<JjGP
% I6 Q{ Axy
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike nA#dXckoc
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), $C&E3 'O
% with delta(m,0) the Kronecker delta, is chosen so that the integral h Qbz}x
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ?xCWg.#l4V
% and theta=0 to theta=2*pi) is unity. For the non-normalized <a%RKjQvT
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. O>2i)M-h9x
% ,y*|f0&"~
% The Zernike functions are an orthogonal basis on the unit circle. Ne2eBmY}(
% They are used in disciplines such as astronomy, optics, and -xU4s
% optometry to describe functions on a circular domain. BP0*`TY
% fUS1`
% The following table lists the first 15 Zernike functions. UJQGwTA W
% n ]P,5
% n m Zernike function Normalization IdWFG?b3
% -------------------------------------------------- q{+Pf/M5
% 0 0 1 1 #uH%J<U
% 1 1 r * cos(theta) 2 a.s5>:Ct
% 1 -1 r * sin(theta) 2 7 +kU 8}
% 2 -2 r^2 * cos(2*theta) sqrt(6) yK:b$S
% 2 0 (2*r^2 - 1) sqrt(3) ABnJ{$=n#
% 2 2 r^2 * sin(2*theta) sqrt(6) &BJ"T
% 3 -3 r^3 * cos(3*theta) sqrt(8) =$Sd2UD
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) R"qxT.P(
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) /gq
VXDY+`
% 3 3 r^3 * sin(3*theta) sqrt(8) J0x)NnWJ
% 4 -4 r^4 * cos(4*theta) sqrt(10) 3g5
n>8-
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) O3["5
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5)
i}r|Zo
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) @ZGD'+zd?
% 4 4 r^4 * sin(4*theta) sqrt(10) o",J{
% -------------------------------------------------- rE$=~s
% o)
,1R:
% Example 1: c R6:AGr
% NN@'79x
% % Display the Zernike function Z(n=5,m=1) @PyZ u7'
% x = -1:0.01:1; F'9#dR?
% [X,Y] = meshgrid(x,x); ,LVZ
% [theta,r] = cart2pol(X,Y); :c`Gh< u
% idx = r<=1; RD0=\!w *5
% z = nan(size(X)); =2.q=a|'
% z(idx) = zernfun(5,1,r(idx),theta(idx)); q!\4|KF~
% figure MPD<MaW$
% pcolor(x,x,z), shading interp ,\=,,1_
% axis square, colorbar K+@R [
% title('Zernike function Z_5^1(r,\theta)') BDz7$k]
% `ehcj
G1nY
% Example 2: wOs t).
% YGf<!
% % Display the first 10 Zernike functions bOS; 1~~
% x = -1:0.01:1; "TP^:Ln
% [X,Y] = meshgrid(x,x); %{;1i
% [theta,r] = cart2pol(X,Y); )@[##F2
% idx = r<=1; `(o:;<&3
% z = nan(size(X)); _%:$sAj
% n = [0 1 1 2 2 2 3 3 3 3]; ^n&_JQIXb
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 5v,_ Hgh
% Nplot = [4 10 12 16 18 20 22 24 26 28]; sA!$}W
% y = zernfun(n,m,r(idx),theta(idx)); ~"nF$DB
% figure('Units','normalized') K:(E"d;
% for k = 1:10 OV,t|
% z(idx) = y(:,k); )4e?-?bK!
% subplot(4,7,Nplot(k)) <S68UN(Ke
% pcolor(x,x,z), shading interp jWqjGX`
% set(gca,'XTick',[],'YTick',[]) kqQT^6S
% axis square 6,a:s:$>}R
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}'])
aK33bn'j
% end z^^)n
% Z]qbLxJV
% See also ZERNPOL, ZERNFUN2. G[$g-NU+
:kQydCuK
f O ,5
u;
% Paul Fricker 11/13/2006 N`et]'_A}
;9$71E
Xli$4 uL
zy(NJ
&OsO _F
% Check and prepare the inputs: WJj5dqatV
% ----------------------------- \45F;f_r6
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) i8->3uB
error('zernfun:NMvectors','N and M must be vectors.') dTZ$92<
end 6W[~@~D=
2mEvoWnJ
G4]( !f!Kv
if length(n)~=length(m) B-UsMO
error('zernfun:NMlength','N and M must be the same length.') }\0ei(%H
end *WaqNMD[%
qs Wy
<yL+
LY;FjbyU
n = n(:); ->L> `<7(
m = m(:); e2qSU[
if any(mod(n-m,2)) 'S%H"W\
error('zernfun:NMmultiplesof2', ... sm"s2Ci=}
'All N and M must differ by multiples of 2 (including 0).') je85G`{DC
end L Iz<fB
|p.|zH
&&g02>gE
if any(m>n) hjD%=Ri0Z
error('zernfun:MlessthanN', ... uH]oHh!}j
'Each M must be less than or equal to its corresponding N.') +}R#mco5K
end KX
J7\}
Xz`0nU
\{v e6`7Rn
if any( r>1 | r<0 ) lHAWZyO
error('zernfun:Rlessthan1','All R must be between 0 and 1.') 8qL.L(=\/
end iD*L<9
VwOcWKD
h:RP/0E
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) R,ZG?/#uM9
error('zernfun:RTHvector','R and THETA must be vectors.')
T~L&c
end 6n^@Ps
9y&bKB2,
GZ^Qt*5 {
r = r(:); ?N^1v&Q
theta = theta(:); X|-[i hp;
length_r = length(r); :V1j*)
if length_r~=length(theta) ~7anj.
error('zernfun:RTHlength', ... *3)kr=x
'The number of R- and THETA-values must be equal.') Al=ByX @
end $,P:B%]
XBoq/kbw!
MU%7'J :_
% Check normalization: #q4uS~
% -------------------- HuJc*op-6
if nargin==5 && ischar(nflag) $<yhEvv
isnorm = strcmpi(nflag,'norm'); P0pBR_:o
if ~isnorm WdH/^QvTP
error('zernfun:normalization','Unrecognized normalization flag.') `Qjs{H
end stUUez>
else @{W"mc+
isnorm = false; |Ve,Y
end oKb"Ky@s
cPv(VjS1;
tva=DS
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% f7y.##W G
% Compute the Zernike Polynomials qV6WT&)T
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% `nKN|6o#x
,J8n}7aI
=3 Vug2*wd
% Determine the required powers of r: AgZ?Ry
% ----------------------------------- 9z..LD(
m_abs = abs(m); e[16
7uU
rpowers = []; <Se9aD
for j = 1:length(n) z$WLx
rpowers = [rpowers m_abs(j):2:n(j)]; {`Gd
end J>5 rkR@/
rpowers = unique(rpowers); !|up"T I
a|"Uw
`pX+
5dB62dqN
% Pre-compute the values of r raised to the required powers, 7[w<v(Rc
% and compile them in a matrix: s8)`wH?
% ----------------------------- s M*ay,v;
if rpowers(1)==0 mf)+ 5On
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 1I{8 |
rpowern = cat(2,rpowern{:}); a eeor
rpowern = [ones(length_r,1) rpowern]; !1fZ7a
else 9 @xl{S-
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Q2D!Agq=D
rpowern = cat(2,rpowern{:}); HC/z3b;
end |/vJ+aKq
fum.G{}
T4HJy|
% Compute the values of the polynomials: a5GLbanF
% -------------------------------------- EG;E !0
y = zeros(length_r,length(n)); BqY_N8l&E
for j = 1:length(n) )+hV+rM jp
s = 0:(n(j)-m_abs(j))/2; P/girce0
pows = n(j):-2:m_abs(j); ZGDT
6,
for k = length(s):-1:1 Rh?bBAn8
p = (1-2*mod(s(k),2))* ... Ff%V1BH[
prod(2:(n(j)-s(k)))/ ... EgU#r@7I
prod(2:s(k))/ ... u;gO+)wqv
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... i*Ldec^
prod(2:((n(j)+m_abs(j))/2-s(k))); 4]uj+J
idx = (pows(k)==rpowers); uTxa5j
y(:,j) = y(:,j) + p*rpowern(:,idx); /rnI"ze`
end kB> ~Tb0
{VE
h@yn
if isnorm Cq"KKuf
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ^w.hI5ua)
end -g]Rs!w'
end <ZF|2
% END: Compute the Zernike Polynomials #uw&u6*\q
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 7l=;I %
LWN{
wOl?(w=|
% Compute the Zernike functions: a/,>fv9;$
% ------------------------------ `;E/\eG"
idx_pos = m>0; hd(FOKOP
idx_neg = m<0; .mt%8GM
2t-w0~O
);\c{QF
z = y; |4Q*4s
if any(idx_pos) B6Vlc{c5SO
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); M
9t7y
end _XV%}Xb'
if any(idx_neg) [d6!
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); #Ub_m@@4
end t>I.1AS
o@Oz
a
DPTk5o[
% EOF zernfun _`|1B$@x