切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8561阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, MxqIB(5k  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 9vBW CCf  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? ZU;nXqjc  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? m$VCCDv  
    t;}`~B  
    5nXmaj  
    y\=^pla  
    eyy%2> b  
    function z = zernfun(n,m,r,theta,nflag) < =!FB8 .  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. Q[9W{l+  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N EUby QL  
    %   and angular frequency M, evaluated at positions (R,THETA) on the i.gagb  
    %   unit circle.  N is a vector of positive integers (including 0), and ZyV^d3F@$  
    %   M is a vector with the same number of elements as N.  Each element =vsvx{o?  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) _FCg5F2U  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, oK3PA  
    %   and THETA is a vector of angles.  R and THETA must have the same )O8w'4P5  
    %   length.  The output Z is a matrix with one column for every (N,M) ,MUgww!.  
    %   pair, and one row for every (R,THETA) pair. hX:yn:P~  
    % p: u@? k  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Oo/@A_JO@  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), P"|-)d  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral H-3*},9  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, xmejoOF  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized q! WiX|P  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. jP.dQj^j&  
    % _opB,,G  
    %   The Zernike functions are an orthogonal basis on the unit circle. 7 b{y  
    %   They are used in disciplines such as astronomy, optics, and s0'6r$xj  
    %   optometry to describe functions on a circular domain. t\O#5mo  
    % *t`=1Ioj  
    %   The following table lists the first 15 Zernike functions. e\ }'i-  
    % 9O\yIL  
    %       n    m    Zernike function           Normalization *JO%.QNg  
    %       -------------------------------------------------- G@U}4' V9  
    %       0    0    1                                 1 gR wRhA/  
    %       1    1    r * cos(theta)                    2 ,7;euV5X  
    %       1   -1    r * sin(theta)                    2 }^`5$HEi  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) $PMD$c  
    %       2    0    (2*r^2 - 1)                    sqrt(3) W(EN01d\  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) = cI> {  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) juMHc$d17  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) awSi0*d~  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) `82^!7!  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) ",]A.,  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) A",R2d  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ue -a/a  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) {*X|)nr  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) GK{~n  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) #66u<FaG  
    %       -------------------------------------------------- =/ 19 -Y:  
    % kQ|phtbI  
    %   Example 1: ~I@ % ysR  
    % {"_V,HmEF+  
    %       % Display the Zernike function Z(n=5,m=1) G;]zX<2^3  
    %       x = -1:0.01:1;  kZ=yb-~  
    %       [X,Y] = meshgrid(x,x); w +HKvOs5c  
    %       [theta,r] = cart2pol(X,Y); BX2}ar  
    %       idx = r<=1; .]/k#Hv  
    %       z = nan(size(X)); %V92q0XW  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); W7w*VD|  
    %       figure Fyc":{Jd  
    %       pcolor(x,x,z), shading interp V5+|H1=  
    %       axis square, colorbar k>#-NPU$  
    %       title('Zernike function Z_5^1(r,\theta)') ~zFwSF  
    % =g)SZK  
    %   Example 2: uf`/-jY  
    % "F?p Y@4  
    %       % Display the first 10 Zernike functions ]T%wRd5&-  
    %       x = -1:0.01:1; E :UJ"6  
    %       [X,Y] = meshgrid(x,x); d V3R)  
    %       [theta,r] = cart2pol(X,Y); o:@A%*jg  
    %       idx = r<=1; ]E1|^[y  
    %       z = nan(size(X)); Hm_&``='  
    %       n = [0  1  1  2  2  2  3  3  3  3]; p e$WSS J  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; %Z yt;p2  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; .19_EQ>+  
    %       y = zernfun(n,m,r(idx),theta(idx)); UM. Se(kS  
    %       figure('Units','normalized') o 'Z W  
    %       for k = 1:10 D\  P-|}  
    %           z(idx) = y(:,k); -_f-j  
    %           subplot(4,7,Nplot(k)) fAD {sg  
    %           pcolor(x,x,z), shading interp XW*d\vDun  
    %           set(gca,'XTick',[],'YTick',[]) aK8X,1g%)  
    %           axis square r: ,"k:C  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) P]4@|u;=6[  
    %       end l(~NpT{=V  
    % L F!S`|FF  
    %   See also ZERNPOL, ZERNFUN2. 8zpTCae^=7  
    Yz>8 Nn'_  
    $~/x;z:  
    %   Paul Fricker 11/13/2006 Y~U WUF%aK  
    dbfI!4  
    #ihHAiy3  
    wfM|3GS+.  
    .WlZT-  
    % Check and prepare the inputs: {QIdeB[  
    % ----------------------------- &usum~@  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Ar`U / %Cu  
        error('zernfun:NMvectors','N and M must be vectors.') Rc~63![O.  
    end V/J-zH&  
    df9$k0Fx  
    da$ErN '{  
    if length(n)~=length(m) }QJ6"s  
        error('zernfun:NMlength','N and M must be the same length.') /+f3jy:d  
    end 1P/4,D@  
    78E<_UgcB  
    U.J/ "}5`T  
    n = n(:); 8[u$CTl7a  
    m = m(:); P,7beHjf  
    if any(mod(n-m,2)) ^/7Y3n!|3  
        error('zernfun:NMmultiplesof2', ... j8?rMD~  
              'All N and M must differ by multiples of 2 (including 0).') l8d }g  
    end 5I0j>{U&  
    zC!Pb{IaH  
    }?Tz=hP  
    if any(m>n) zmU>  
        error('zernfun:MlessthanN', ... `YK#m4gc  
              'Each M must be less than or equal to its corresponding N.') s5oU  
    end ]dnB ,  
    C oO0~q  
    {Pe+d3Eoo  
    if any( r>1 | r<0 ) 7niI65  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') h\*I*I8C  
    end 2%@<A  
    nPjN\Es6  
    #mc6;TRZO  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) X1GM\*BE  
        error('zernfun:RTHvector','R and THETA must be vectors.') uG4Q\,R  
    end ./}W3  
    RGLi#:0_.x  
    5}`e"X  
    r = r(:); iIU>:)i  
    theta = theta(:); s6_[H  
    length_r = length(r); {_X&{dZLX  
    if length_r~=length(theta) Q5tx\GE  
        error('zernfun:RTHlength', ... o*s3"Ib  
              'The number of R- and THETA-values must be equal.') \Gy+y`   
    end _E xd:  
    pAc "Wo(Q  
    $(;0;!t.  
    % Check normalization: L_}F.nbS5  
    % -------------------- (?~*.g!  
    if nargin==5 && ischar(nflag) G!w?\-  
        isnorm = strcmpi(nflag,'norm'); r<-@.$lf  
        if ~isnorm 6q~*\KRk  
            error('zernfun:normalization','Unrecognized normalization flag.') Y>PC>  
        end oCuKmK8  
    else Z_[jah  
        isnorm = false; K?acRi  
    end XN~r d,MZ%  
    4$8\IJ7G  
    Z+C&?K  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 3H@29TrJ+  
    % Compute the Zernike Polynomials t}-rN5GO  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% TAZ+2S##7  
    S&;D  
    C07U.nzh  
    % Determine the required powers of r: FY<77i  
    % ----------------------------------- uzWz+atH  
    m_abs = abs(m); y`-5/4  
    rpowers = []; N1u2=puJY  
    for j = 1:length(n) p`{| [<  
        rpowers = [rpowers m_abs(j):2:n(j)]; oHkjMqju  
    end %B-m- =gz  
    rpowers = unique(rpowers); Y(P <9 m:  
    kIYV%O   
    $nW^Gqwj]1  
    % Pre-compute the values of r raised to the required powers, |iB svI:  
    % and compile them in a matrix: c9R|0Yn^J  
    % ----------------------------- :*s+X$x,<  
    if rpowers(1)==0 $#d.@JWi  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); hS +R /7  
        rpowern = cat(2,rpowern{:}); \x+"1  
        rpowern = [ones(length_r,1) rpowern]; m6M:l"u  
    else E>O1dPZcM  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); -87]$ ax  
        rpowern = cat(2,rpowern{:}); y`.m'n7>P  
    end $+@xwuY'+  
    dX5|A_Ex  
    .3,6Oo  
    % Compute the values of the polynomials: /V)4B4  
    % -------------------------------------- !x1ivP  
    y = zeros(length_r,length(n)); bdkxCt  
    for j = 1:length(n) 7.tEi}O&_g  
        s = 0:(n(j)-m_abs(j))/2; 2x dN0S  
        pows = n(j):-2:m_abs(j); '7TT4~F  
        for k = length(s):-1:1 bcC+af0L  
            p = (1-2*mod(s(k),2))* ... V-TWC@Y"  
                       prod(2:(n(j)-s(k)))/              ... SjB#"A5  
                       prod(2:s(k))/                     ... eFdN"8EW  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... _=RK  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); u3@v  
            idx = (pows(k)==rpowers); TkSeDP  
            y(:,j) = y(:,j) + p*rpowern(:,idx); PV,AN   
        end ;gNoiAxW  
         A J"/T+g_  
        if isnorm B[nkE+s  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); %H'*7u2  
        end >@c~M  
    end cWNWgdk,`V  
    % END: Compute the Zernike Polynomials ;f)o_:(JJ  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% rE&+fSBD  
    ?^H1X-;  
    [W2GLd]  
    % Compute the Zernike functions: AV*eGzz`  
    % ------------------------------ wx%TQ!  
    idx_pos = m>0; p7kH"j{xD  
    idx_neg = m<0; WYNO6Xb#:  
    z^=e3~-J  
    Du."O]syD  
    z = y; KL\]1YX  
    if any(idx_pos) ccu13Kr>E  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 7f\@3r  
    end &b7i> ()  
    if any(idx_neg) %:WM]dc  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); F_&bE@k  
    end Oe[qfsdW  
    ~ GW8|tw  
    &\/b(|>  
    % EOF zernfun 4%L-3Ij  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    8425
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    956
    光币
    1054
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  lxK_+fj q  
    6QRfju'  
    DDE还是手动输入的呢? '3o0J\cz  
    t.pg;#  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究