切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8876阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, P,$|.p d'  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, B=>:w%<Ii  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? PRs[! EB6  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? v4?qI >/  
    q'07  
    kIm)Um  
    6' 9ITA  
    Mw0Kg9M  
    function z = zernfun(n,m,r,theta,nflag) B,@<60u  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. q8j W&_  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N .>5KwEK~  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 4K_fN  
    %   unit circle.  N is a vector of positive integers (including 0), and %n^jho5  
    %   M is a vector with the same number of elements as N.  Each element #cN0ciCT'  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) F,t ,Ja  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, G_fP%ovh  
    %   and THETA is a vector of angles.  R and THETA must have the same \S[7-:Lu^  
    %   length.  The output Z is a matrix with one column for every (N,M) !+& Rn\e%7  
    %   pair, and one row for every (R,THETA) pair. $VWeo#b  
    % SJYy,F],V"  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ZyJdz+L{@V  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), X*Ibk-PUM  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral mkA1Sh{hX>  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, $6W o$c%  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized E]^wsS>=  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. g4NxNjM;  
    % QAp+LSm  
    %   The Zernike functions are an orthogonal basis on the unit circle. HFJna2B`  
    %   They are used in disciplines such as astronomy, optics, and Y9b|lP7!  
    %   optometry to describe functions on a circular domain. 3GH@|id  
    % "pb$[*_@$  
    %   The following table lists the first 15 Zernike functions. Q(P'4XCm  
    % `Qf$]Eoft  
    %       n    m    Zernike function           Normalization uXs.7+f  
    %       -------------------------------------------------- s 0}OsHAj  
    %       0    0    1                                 1 dQ4VpR9|;  
    %       1    1    r * cos(theta)                    2 F %OA  
    %       1   -1    r * sin(theta)                    2 J&64tQl*  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) >s@*S9cj:  
    %       2    0    (2*r^2 - 1)                    sqrt(3) .hYrE5\-  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) h$#QRH  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ohK_~  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 2v ^bd^]u:  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) &<!DNXQ  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 2OXcP!\Y  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) ZI'MfkEZ*  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) RUJkfi=$  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) Dc,h( 2  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) gW{<:6}!*  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) EXlmIY4  
    %       -------------------------------------------------- XIM!]  
    % G_GPnKdd  
    %   Example 1: m5O;aj* i  
    % e:SBX/\j  
    %       % Display the Zernike function Z(n=5,m=1) KeU|E<|!  
    %       x = -1:0.01:1; SZO$#  
    %       [X,Y] = meshgrid(x,x); L5%t.7B  
    %       [theta,r] = cart2pol(X,Y); p0 @ ,-  
    %       idx = r<=1; l+6y$2QR  
    %       z = nan(size(X)); o:H^ L,<Tl  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); cC{eu[ XW  
    %       figure  ~F?vf@k  
    %       pcolor(x,x,z), shading interp pwg$% lv  
    %       axis square, colorbar nz72w_  
    %       title('Zernike function Z_5^1(r,\theta)') #;9I3,@/Y  
    % uSZCJ#'G  
    %   Example 2: p2]@yE7w  
    %  U 6((  
    %       % Display the first 10 Zernike functions VR86ok  
    %       x = -1:0.01:1; M2K{{pGJ[&  
    %       [X,Y] = meshgrid(x,x);  yN9k-IPI  
    %       [theta,r] = cart2pol(X,Y); ;x 9_  
    %       idx = r<=1; 6#A g^A  
    %       z = nan(size(X)); l)V!0eW  
    %       n = [0  1  1  2  2  2  3  3  3  3]; l@ +lUx8  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; w! J|KM  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; mAycfa  
    %       y = zernfun(n,m,r(idx),theta(idx)); g"k1O  
    %       figure('Units','normalized') Y ^s_v_s  
    %       for k = 1:10 A 1b</2  
    %           z(idx) = y(:,k); RrFq"  
    %           subplot(4,7,Nplot(k)) W62 $ HI  
    %           pcolor(x,x,z), shading interp \Wdl1 =`  
    %           set(gca,'XTick',[],'YTick',[]) $uw[X  
    %           axis square *&WkorByW  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}'])  ]/l"  
    %       end PUt\^ke  
    % c$Vu/dgx  
    %   See also ZERNPOL, ZERNFUN2. 4*k>M+o/C4  
    O$Wi=5  
    ;yfKYN[  
    %   Paul Fricker 11/13/2006 bW"bkA80  
    bsfYz  
    8Ld`$_E  
    jZjWz1+  
    [i[*xf-B  
    % Check and prepare the inputs: {1 VHz])I  
    % ----------------------------- $8/=@E{51  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) nWfzwXP>_  
        error('zernfun:NMvectors','N and M must be vectors.') ]!7 %)  
    end }ufzlHD  
    cyM9[X4rC  
    W''%{A/'  
    if length(n)~=length(m) 5yOIwzr&Uu  
        error('zernfun:NMlength','N and M must be the same length.') }BF!!*  
    end wM$N#K@  
    U2v;[>=]  
    &zuPt5G|  
    n = n(:); VI xGD#m  
    m = m(:); <x QvS^|[  
    if any(mod(n-m,2))  H7`JqS  
        error('zernfun:NMmultiplesof2', ... 968<yO]  
              'All N and M must differ by multiples of 2 (including 0).') s9[?{}gd  
    end :n#8/'%1  
    AnF"+<  
    6?;U[eV  
    if any(m>n) :B^YK].  
        error('zernfun:MlessthanN', ... mu#I F'|b  
              'Each M must be less than or equal to its corresponding N.') 1X8P v*,  
    end  lu_kir~  
    OC?a[^hB^)  
    tTjadnX  
    if any( r>1 | r<0 ) 'E\/H17  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') _GhP{ C$  
    end ~Q+E""  
    0W_olnZ  
    P O*;V<^  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) d4ga6N3'  
        error('zernfun:RTHvector','R and THETA must be vectors.') 8v<802  
    end (DLk+N4UHA  
    JXx[e  
    g~7x+cu0  
    r = r(:); <?2g\+{s9  
    theta = theta(:); 8O[br@h:5  
    length_r = length(r); xK*G'3Ge  
    if length_r~=length(theta) MG}rvzn@  
        error('zernfun:RTHlength', ... e/7rr~"|  
              'The number of R- and THETA-values must be equal.') ugu|?z*dI  
    end 1"\^@qRv#  
    `4SwdW n  
    R|@?6<  
    % Check normalization: BvnNAi  
    % -------------------- WMw|lV r  
    if nargin==5 && ischar(nflag) (]@yDb4  
        isnorm = strcmpi(nflag,'norm'); _J,lF-,  
        if ~isnorm gzMp&J  
            error('zernfun:normalization','Unrecognized normalization flag.') MdC}!&W  
        end .OM^@V~T  
    else 4)Bk:K  
        isnorm = false; i5*BZv>e  
    end 7&hhKEA  
    im-XP@<  
    ykS-5E`  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ixvF `S9  
    % Compute the Zernike Polynomials gLss2i.r  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% B*@0l:  
    )MWbZAI  
    @oNYMQ@)d  
    % Determine the required powers of r: -=InGm\Y  
    % ----------------------------------- I3.cy i  
    m_abs = abs(m); Q)/oU\  
    rpowers = []; W9rmAQjn  
    for j = 1:length(n)  NZu2D  
        rpowers = [rpowers m_abs(j):2:n(j)]; q/h , jM  
    end shZEE2Dr  
    rpowers = unique(rpowers); D_Zt:tzO  
    )p`zN=t  
    'Q dDXw5o  
    % Pre-compute the values of r raised to the required powers, 1YtbV3  
    % and compile them in a matrix: ?APCDZ^  
    % ----------------------------- 01 <Ti"  
    if rpowers(1)==0 0sP*ChY5S  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); " Ng%"Nz  
        rpowern = cat(2,rpowern{:}); grxlGS~Q  
        rpowern = [ones(length_r,1) rpowern]; D &Bdl5g  
    else 8U)*kmq  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); x+bC\,q  
        rpowern = cat(2,rpowern{:}); 8zO;=R A7%  
    end Tr.u'b(  
    O~OM.:al&  
    XY,!vLjL  
    % Compute the values of the polynomials: P_.zp5>  
    % -------------------------------------- B!x7oD9  
    y = zeros(length_r,length(n)); ^2`*1el  
    for j = 1:length(n) 7Tc^}Q  
        s = 0:(n(j)-m_abs(j))/2; !!<H*9]+W;  
        pows = n(j):-2:m_abs(j); [{q])P;  
        for k = length(s):-1:1 &a'mh  
            p = (1-2*mod(s(k),2))* ... q\G7T{t$.  
                       prod(2:(n(j)-s(k)))/              ... Q"s]<MtdS  
                       prod(2:s(k))/                     ... cB6LJ}R  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Gm[XnUR7V  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); Q%QIr  
            idx = (pows(k)==rpowers); ':7gYP*v  
            y(:,j) = y(:,j) + p*rpowern(:,idx); ]64pb;w"$D  
        end Xd@ d$  
         QKIg5I-  
        if isnorm @Yw>s9X  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 6Zx)L|B  
        end =<X4LO)C  
    end f2 ?01PM,Q  
    % END: Compute the Zernike Polynomials !8I80 :e_~  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% N (0%C?  
    W.c>("gC  
    9*S9~  
    % Compute the Zernike functions: 629ogJo8  
    % ------------------------------ .wPI%5D  
    idx_pos = m>0; ! JauMR  
    idx_neg = m<0; O$7r)B6Cs  
    Q"QZ^!zRl  
    X`A+/{ H  
    z = y; hz+c]K  
    if any(idx_pos) I&f!>y?,Z  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); !l$k6,WJi  
    end bR<XQHl  
    if any(idx_neg) g~XR#vl$  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); zym6b@+jN  
    end +ZR>ul-c  
    [ZL<Q  
    oml^f~pm  
    % EOF zernfun >J_(~{-sNG  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  iThf\  
    3u'@anre  
    DDE还是手动输入的呢? n M `pnR_  
    `rpmh7*WV  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究