切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9515阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, E\=23[0  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 1ml{oqNj  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? Ru^j~Cj5  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? @D&}ZV=J  
    Ft$tL;  
    %N-f9o8  
    "( P-VX  
    hj-#pL-t  
    function z = zernfun(n,m,r,theta,nflag) U6R~aRJ;  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. b!-F!Lq/+0  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N w 7 j hS  
    %   and angular frequency M, evaluated at positions (R,THETA) on the srfM"Lb'  
    %   unit circle.  N is a vector of positive integers (including 0), and IgU65p  
    %   M is a vector with the same number of elements as N.  Each element 0hx EI  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 6(.]TEu0  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, M%Dv-D{  
    %   and THETA is a vector of angles.  R and THETA must have the same h; 8^vB y  
    %   length.  The output Z is a matrix with one column for every (N,M) C@[f Z  
    %   pair, and one row for every (R,THETA) pair. lCMU{)  
    % #i~2C@]  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ^ s@'nKc  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), C'jE'B5b  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral nd1%txIsr  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, a8!/V@a  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized H- aSLc  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. X$4 5<oz  
    % ]f"l4ay@M  
    %   The Zernike functions are an orthogonal basis on the unit circle. ,k5b,}tN  
    %   They are used in disciplines such as astronomy, optics, and %4rPkPAtrp  
    %   optometry to describe functions on a circular domain. }28,fb /  
    % 4TW>BA  
    %   The following table lists the first 15 Zernike functions. }vLK-V v  
    % QX j4cg  
    %       n    m    Zernike function           Normalization E _DSf  
    %       -------------------------------------------------- #RwqEZ  
    %       0    0    1                                 1 w;p!~o &  
    %       1    1    r * cos(theta)                    2 m!-,K8  
    %       1   -1    r * sin(theta)                    2 s&7,gWy}BE  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) Nn;p1n dN  
    %       2    0    (2*r^2 - 1)                    sqrt(3) T m0m$l  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) #YMU}4=:  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) iB,Nqs3 i*  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) [:!D.@h|  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) _,JdL'[d  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) ]M;aVw<!  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) ~ST7@-D0  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) y-iuOzq4  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) Iv5 agh%  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) elBmF#,j 7  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) iX{Lc+u3  
    %       -------------------------------------------------- ['SZe0  
    % phA^ kdW  
    %   Example 1: SH/KC  
    % loLN ~6  
    %       % Display the Zernike function Z(n=5,m=1) Q'~2,%3<  
    %       x = -1:0.01:1; 6(`Bl$M9  
    %       [X,Y] = meshgrid(x,x); )`ZTu -|  
    %       [theta,r] = cart2pol(X,Y); G3&l|@5  
    %       idx = r<=1; Z+< zKn}  
    %       z = nan(size(X)); )NwIEk>Tf  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); <d\Lvo[  
    %       figure 9aE!! (E  
    %       pcolor(x,x,z), shading interp ^=nJ,-(h_  
    %       axis square, colorbar 6-@ X  
    %       title('Zernike function Z_5^1(r,\theta)') ;{e;6Hq  
    % , LP |M:  
    %   Example 2: 5Y\wXqlY  
    % 9*+%Qt,{B  
    %       % Display the first 10 Zernike functions 5mD]uB9  
    %       x = -1:0.01:1; OI9V'W$  
    %       [X,Y] = meshgrid(x,x); hYS*J908  
    %       [theta,r] = cart2pol(X,Y); I3A@0'Vm;L  
    %       idx = r<=1; ^uu)|  
    %       z = nan(size(X)); Z[DiLXHL  
    %       n = [0  1  1  2  2  2  3  3  3  3]; Ed%8| M3  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; g $\Z-!(  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 75t\= 6#  
    %       y = zernfun(n,m,r(idx),theta(idx)); YJlpP0;++  
    %       figure('Units','normalized') ?=%Q$|]-  
    %       for k = 1:10 Q-X<zn  
    %           z(idx) = y(:,k); 4&Uq\,nx  
    %           subplot(4,7,Nplot(k)) z@nJ-*'U8  
    %           pcolor(x,x,z), shading interp fXPD^}?Ux4  
    %           set(gca,'XTick',[],'YTick',[]) ^&'&Y>  
    %           axis square N|v3a>;*l  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) abq$OI  
    %       end  p=Nord  
    % S?W!bkfn  
    %   See also ZERNPOL, ZERNFUN2. H}OOkzwrA  
    )19As8rL/o  
    cC.=,n  
    %   Paul Fricker 11/13/2006 mr+J#  
    K0#kW \4`  
    2l)J,z  
    Cz2OGM*mz?  
    !H`Q^Xf}  
    % Check and prepare the inputs: / -ebx~FX&  
    % ----------------------------- ?qeBgkL(B^  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) kMGK 8y  
        error('zernfun:NMvectors','N and M must be vectors.') l^s\^b=W  
    end ?NZKu6  
    :wJ=t/ho  
    { jnQoxN  
    if length(n)~=length(m) D{&0r.2F  
        error('zernfun:NMlength','N and M must be the same length.') fI2/v<[  
    end 5 } 9}4e  
    '2u(fLq3h  
    bqwQi>^Cw  
    n = n(:); (o/HLmr@Y  
    m = m(:); "5]Fl8c?  
    if any(mod(n-m,2)) I*/?*p/I  
        error('zernfun:NMmultiplesof2', ... Th&* d;  
              'All N and M must differ by multiples of 2 (including 0).') S4j`=<T,  
    end b_&;i4[  
    ?*}^xXI/  
    B5>1T[T'-  
    if any(m>n) 6~KtT{MYQ  
        error('zernfun:MlessthanN', ... B/S~Jn  
              'Each M must be less than or equal to its corresponding N.') N;XaK+_2F  
    end FhZ^/= As  
    ,?"cKdiZ  
    ~c>*3*  
    if any( r>1 | r<0 ) oT7=  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') H[ 6L!  
    end g">E it*[  
    )$#]h]ac  
    'iM;e K  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) <#U9ih 2  
        error('zernfun:RTHvector','R and THETA must be vectors.') ;-=Q6Ms8  
    end O2|[g8(_F  
    z~TG~_s  
    {*VCR  
    r = r(:); :` >|N|i  
    theta = theta(:); (9_~R^='y  
    length_r = length(r); j';V(ZY&BB  
    if length_r~=length(theta) mE3^5}[>  
        error('zernfun:RTHlength', ... 0n25{N  
              'The number of R- and THETA-values must be equal.') LRO'o{4$E  
    end MTZbRi6z  
    yUb$EMo \  
    xjHOrr OQ  
    % Check normalization: Byf5~OC  
    % -------------------- u<x2"0f  
    if nargin==5 && ischar(nflag) k}-@N;zq  
        isnorm = strcmpi(nflag,'norm'); S/}6AX#F4  
        if ~isnorm GE`:bC3  
            error('zernfun:normalization','Unrecognized normalization flag.') o8+ZgXct  
        end l MCoc'ae  
    else +.N3kH  
        isnorm = false; \%nFCK0  
    end [#y/`  
    Hl"qLrb4  
    (fmcWHs  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% tETT\y|'  
    % Compute the Zernike Polynomials 14TA( v]T  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% N zY}-:{  
    c}iVBN6~.<  
    2Yd0:$a  
    % Determine the required powers of r: % AqUVt9}  
    % ----------------------------------- D9H(kk  
    m_abs = abs(m);  lv_|ws  
    rpowers = []; Vv=/{31  
    for j = 1:length(n) #J. v[bOWQ  
        rpowers = [rpowers m_abs(j):2:n(j)]; Z% 3]  
    end Sa!r ,l  
    rpowers = unique(rpowers); ^,L vQW4  
    csg:# -gE  
    G}aw{Vbg_  
    % Pre-compute the values of r raised to the required powers, *vn^ W  
    % and compile them in a matrix: LG6VeYe|\X  
    % ----------------------------- NET?Ep  
    if rpowers(1)==0 ~b+TkPU   
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 8X=cGYC#  
        rpowern = cat(2,rpowern{:}); ,}15Cse  
        rpowern = [ones(length_r,1) rpowern]; 5'f4=J$Z)  
    else  laX(?{_  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); >$=-0?.  
        rpowern = cat(2,rpowern{:}); :'aT 4  
    end 1iq,Gd-G.  
    )X{x\ /N  
    Qmxe*@{`  
    % Compute the values of the polynomials: Jy)E!{#x  
    % -------------------------------------- 7;dTQ.%n  
    y = zeros(length_r,length(n)); n}9vAvC  
    for j = 1:length(n) C3kxw1*   
        s = 0:(n(j)-m_abs(j))/2; |;2Y|>=  
        pows = n(j):-2:m_abs(j); >jEn>H?  
        for k = length(s):-1:1 O)nLV~X  
            p = (1-2*mod(s(k),2))* ... VuqN)CE^Uq  
                       prod(2:(n(j)-s(k)))/              ... |FZ)5  
                       prod(2:s(k))/                     ... #:0dq D=  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... .'o<.\R8  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); y=i_:d0M  
            idx = (pows(k)==rpowers); g z!q  
            y(:,j) = y(:,j) + p*rpowern(:,idx); =[%ge{,t  
        end ":E^&yQ  
         OgJd^  
        if isnorm u"IYAyzL  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); %2Q:+6)  
        end UpL1C~&  
    end ;-p1z% u  
    % END: Compute the Zernike Polynomials 6@pP aq6  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% O9OD[VZk  
    <V?M~u[7f  
    0yW#).D^b  
    % Compute the Zernike functions: V4cCu~(3;~  
    % ------------------------------ {~.~ b+v  
    idx_pos = m>0; 68ce+|  
    idx_neg = m<0; V@gweci  
    :uhU<H<,f  
    Df;EemCh  
    z = y; L/Cp\|~ O  
    if any(idx_pos) 4Q2=\-KFj  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); "]M:+mH{]  
    end l`9<mL  
    if any(idx_neg) *,$cW ,LN  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 1iWo* +5  
    end )N[9r{3  
    6?y<F4  
    [{.e1s<EK  
    % EOF zernfun +We_[Re`<  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  }j+Af["W?  
    pm2-F]  
    DDE还是手动输入的呢? n*gr(S  
    "|N58%  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究