下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, g77 :92
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, t^=S\1"R\
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? R1Fcd@DWD
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? NOFH
Q$5%9
N+vsQ!Qz
jw)c|%r>
SB:z[kfz|
function z = zernfun(n,m,r,theta,nflag) w3;T]R*
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. |9[)-C~N7
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N lpjby[S
% and angular frequency M, evaluated at positions (R,THETA) on the 94?/Rhs5
% unit circle. N is a vector of positive integers (including 0), and hP_{$c{4:g
% M is a vector with the same number of elements as N. Each element #@F
% k of M must be a positive integer, with possible values M(k) = -N(k) 9fYof
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, TpYdIt9#>
% and THETA is a vector of angles. R and THETA must have the same Pk6_ 1LV
% length. The output Z is a matrix with one column for every (N,M) %r@:7/
% pair, and one row for every (R,THETA) pair. 4 g8t
% +E+I.}sOB
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike U^Iq]L
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), `69xR[f
% with delta(m,0) the Kronecker delta, is chosen so that the integral {>3w"(f7o
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ItE)h[86
% and theta=0 to theta=2*pi) is unity. For the non-normalized ?[.g~DK,
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. of'H]IZ
% (hIe!"s*
% The Zernike functions are an orthogonal basis on the unit circle. M(:_(4~
% They are used in disciplines such as astronomy, optics, and {5SJ0'.B2g
% optometry to describe functions on a circular domain. (\4YBaGd
% ?{~. }Vn
% The following table lists the first 15 Zernike functions. -h 21
% 91ec^g
% n m Zernike function Normalization o}Zl/&(
% -------------------------------------------------- Hiih$O+
% 0 0 1 1 6-\C?w
A
% 1 1 r * cos(theta) 2 -AXMT3p=1
% 1 -1 r * sin(theta) 2 ?Hbi[YD
% 2 -2 r^2 * cos(2*theta) sqrt(6) w69G6G(
% 2 0 (2*r^2 - 1) sqrt(3) m@yx6[E#
% 2 2 r^2 * sin(2*theta) sqrt(6) .VkLF6
% 3 -3 r^3 * cos(3*theta) sqrt(8) ^ lG^.
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) YVO~0bX:
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) \r}*<CRr6
% 3 3 r^3 * sin(3*theta) sqrt(8) (Li)@Cn%
% 4 -4 r^4 * cos(4*theta) sqrt(10) KA."[dVa
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) RohD.`D
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) D[(T--LLT
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ROj=XM:+
% 4 4 r^4 * sin(4*theta) sqrt(10) nVk]Qe
% -------------------------------------------------- ; zfBe%Uf
% R[2h!.O8
% Example 1:
&_Z8:5e
% 4OdK@+-8U
% % Display the Zernike function Z(n=5,m=1) 9|hPl-.
.W
% x = -1:0.01:1; e{,[\7nF
% [X,Y] = meshgrid(x,x); e0<L^|S
% [theta,r] = cart2pol(X,Y); DO?
bJ01
% idx = r<=1; u_S>`I
% z = nan(size(X)); NAfu$7
% z(idx) = zernfun(5,1,r(idx),theta(idx));
(<#Ns W!z
% figure r<.*:]L
% pcolor(x,x,z), shading interp @3>nVa
% axis square, colorbar nb|"dK|
% title('Zernike function Z_5^1(r,\theta)') |)Sx"B)
% m} nA-*
% Example 2: }{e7wqS$&,
% 4JjO.H
% % Display the first 10 Zernike functions zyFbu=d|O:
% x = -1:0.01:1; ,lw<dB@7"5
% [X,Y] = meshgrid(x,x); ?T:$:IHw
% [theta,r] = cart2pol(X,Y); rVx?Yo1F'
% idx = r<=1; *!+?%e{;b
% z = nan(size(X)); d*<