下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, aM|^t:
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 8/dx)*JCq
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? h|j$Jy
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? yk|<P\
kKqb:
>ps=z$4j*
U6@Hgi>
hf~'EdU
function z = zernfun(n,m,r,theta,nflag) V>&WZY
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. t$lO~~atr
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ub/9T-#l
% and angular frequency M, evaluated at positions (R,THETA) on the 09S LQVo
% unit circle. N is a vector of positive integers (including 0), and @Js^=G2
% M is a vector with the same number of elements as N. Each element r#%z1u
% k of M must be a positive integer, with possible values M(k) = -N(k) KK%R3{
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, O+^l>+ZGj?
% and THETA is a vector of angles. R and THETA must have the same E9IU,P6a
% length. The output Z is a matrix with one column for every (N,M) Nf<mgOAT1
% pair, and one row for every (R,THETA) pair. %cl=n!T
% M_wj>NXZ
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike (93+b%^[
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 0//?,'.
% with delta(m,0) the Kronecker delta, is chosen so that the integral l$~3_3+
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, O:Ixy?b;Z
% and theta=0 to theta=2*pi) is unity. For the non-normalized pp#xN/V#a
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. uwcm%N;I"
% #Jo#[-r
% The Zernike functions are an orthogonal basis on the unit circle. N%k6*FBp~
% They are used in disciplines such as astronomy, optics, and #ONad0T;
% optometry to describe functions on a circular domain. <n)J~B^
% [%alnY
% The following table lists the first 15 Zernike functions. ,X05&'@Z
% U$fh ~w<[
% n m Zernike function Normalization Ip0~
% -------------------------------------------------- s?8vs%(l
% 0 0 1 1 +$-@8,F>
% 1 1 r * cos(theta) 2 =skw@c^
% 1 -1 r * sin(theta) 2 *t JgQ[
% 2 -2 r^2 * cos(2*theta) sqrt(6) d@a FW
% 2 0 (2*r^2 - 1) sqrt(3) 9BJP|L%q
% 2 2 r^2 * sin(2*theta) sqrt(6) Be=J*D!E=>
% 3 -3 r^3 * cos(3*theta) sqrt(8) G>/Gw90E
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 0GtL6M@pP
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) R; wq
% 3 3 r^3 * sin(3*theta) sqrt(8) p=7{
% 4 -4 r^4 * cos(4*theta) sqrt(10) 4'ym vR
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) .>Gnb2
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) }Ss]/_t
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) *f[nge&.
% 4 4 r^4 * sin(4*theta) sqrt(10) QxSJLi7t
% -------------------------------------------------- mUmU_L u8
% hGPo{>xR
% Example 1: \DG
6
% @%7IZg;P6
% % Display the Zernike function Z(n=5,m=1) QUPZe~G>L
% x = -1:0.01:1; v-k~Q$7~
% [X,Y] = meshgrid(x,x); g ni=S~u
% [theta,r] = cart2pol(X,Y); G234UjN%
% idx = r<=1; INi9`M.h
% z = nan(size(X)); eF[CiO8F2
% z(idx) = zernfun(5,1,r(idx),theta(idx)); Aj854 L(!
% figure A{[joo
% pcolor(x,x,z), shading interp 3C,G~)=
x
% axis square, colorbar ~6HpI0i
% title('Zernike function Z_5^1(r,\theta)') hV(>}hb
% Rqi=AQ
% Example 2: t<)Cbple\
% ,N[N;Uoj
% % Display the first 10 Zernike functions Wchu-]
% x = -1:0.01:1; 'MM%Sm,
% [X,Y] = meshgrid(x,x); {t.5cX"[
% [theta,r] = cart2pol(X,Y); [Eeanl&x>
% idx = r<=1; vD=>AAvG
% z = nan(size(X)); O%g
Q
% n = [0 1 1 2 2 2 3 3 3 3]; L}E~CiL0n
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; #Tz$ona
% Nplot = [4 10 12 16 18 20 22 24 26 28]; 0rt@4"~~w
% y = zernfun(n,m,r(idx),theta(idx)); _JVFn=
% figure('Units','normalized') n{d0}N=
% for k = 1:10 {X85
% z(idx) = y(:,k); R&>G6jZ?8
% subplot(4,7,Nplot(k)) KASuSg+
% pcolor(x,x,z), shading interp {|KFgQ'\
% set(gca,'XTick',[],'YTick',[])
~ 4v
% axis square e-!6m#0
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) YXJr eM5
% end
Z~g6C0
% <G};`}$a
% See also ZERNPOL, ZERNFUN2. TY."?` [FK
3 291"0
wzXIEWJ
% Paul Fricker 11/13/2006 P3Wnso
ans(^Up$
XniPNU
v qt#JdPp9
7U9*-9
% Check and prepare the inputs: k? <.yr1
% ----------------------------- yQT
cO^E
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) `fnU p-
error('zernfun:NMvectors','N and M must be vectors.') ;u+k!wn
end ~.Wlv;
J!{t/_aw
|rU?
if length(n)~=length(m) )j/2Z-Ev:W
error('zernfun:NMlength','N and M must be the same length.') 3WVH8S b
end Bi.,@7|>
IP LKOT~
WE{fu{x
n = n(:); - w{`/
m = m(:); 0N|l1Sn
if any(mod(n-m,2)) b<\2j5
error('zernfun:NMmultiplesof2', ... Udi
'All N and M must differ by multiples of 2 (including 0).') 4.=jKj9j
end -JEiwi ,
t3qPocYQ
g<