切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9301阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, ?F^O7\rw  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 58[.]f~0  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? lnWs cb3t  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? u,`cmyZ  
    Xu%8Q?]  
    gxCl=\  
    v<:/u(i  
    ;R*tT%Z,  
    function z = zernfun(n,m,r,theta,nflag) "7}e~*bM?`  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. |*y'H*  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N n0vhc;d  
    %   and angular frequency M, evaluated at positions (R,THETA) on the fp2uk3Bm[  
    %   unit circle.  N is a vector of positive integers (including 0), and b0aV?A}th  
    %   M is a vector with the same number of elements as N.  Each element OR<%h/ \f  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) # 5b   
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, .q5WK#^  
    %   and THETA is a vector of angles.  R and THETA must have the same +?ilTU  
    %   length.  The output Z is a matrix with one column for every (N,M) DgGG*OXY  
    %   pair, and one row for every (R,THETA) pair. ij&T \):d  
    % a]t| /Mq  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike .*{0[  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), +qee8QH  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 8^5@J) R8  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, UO}Yr8Z;  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized @%gth@8  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. u$ a7  
    % <]'1YDA  
    %   The Zernike functions are an orthogonal basis on the unit circle. !"bU|a  
    %   They are used in disciplines such as astronomy, optics, and <>R\lPI2  
    %   optometry to describe functions on a circular domain. ]^v*2!_(  
    % <4RP:2#  
    %   The following table lists the first 15 Zernike functions. 9PWqoz2c  
    % +OfHa\Nz  
    %       n    m    Zernike function           Normalization Q)93 +1]  
    %       -------------------------------------------------- L%31>)8  
    %       0    0    1                                 1 O=\`q6l  
    %       1    1    r * cos(theta)                    2 {"hyr/SKd  
    %       1   -1    r * sin(theta)                    2 j7 \y1$w  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6)  ?h3t"9  
    %       2    0    (2*r^2 - 1)                    sqrt(3) qV:TuR-|w  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) 2'7)D}p  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 2W6t0MgZ  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) )5Ofr-Y  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) !f)^z9QX8  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) [f#7~  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) p.x!dt\1kC  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 1aS66TS3  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) %^}|HG*i??  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 7qEc9S@  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) Km!~zG7<  
    %       -------------------------------------------------- Y%#r&de  
    % VZCCMh-  
    %   Example 1: F~zrg+VDjL  
    % C>Cb  
    %       % Display the Zernike function Z(n=5,m=1) DUWSY?^c  
    %       x = -1:0.01:1; r 9whW;"q  
    %       [X,Y] = meshgrid(x,x); YV)h"u+@0  
    %       [theta,r] = cart2pol(X,Y); OJXK]dZ  
    %       idx = r<=1; ~zyD=jx P9  
    %       z = nan(size(X)); v<V9Z <ub  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); w ?"s6L3  
    %       figure QO <.l`F  
    %       pcolor(x,x,z), shading interp }<mK79m  
    %       axis square, colorbar {/q4W; D  
    %       title('Zernike function Z_5^1(r,\theta)') IpKpj"eoLy  
    % *L=F2wW  
    %   Example 2: C~8;2/F7  
    % OG{vap)  
    %       % Display the first 10 Zernike functions nx|b9W<  
    %       x = -1:0.01:1; J:G~9~V^  
    %       [X,Y] = meshgrid(x,x); iU"{8K,  
    %       [theta,r] = cart2pol(X,Y); YHfk; FI  
    %       idx = r<=1; VTs ,Ln!,U  
    %       z = nan(size(X)); Ou wEO   
    %       n = [0  1  1  2  2  2  3  3  3  3]; ["SD'  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; =6< Am  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; "Is0:au+?}  
    %       y = zernfun(n,m,r(idx),theta(idx)); +~!\;71:f  
    %       figure('Units','normalized') Ct0YwIR*  
    %       for k = 1:10 TY]-L1$  
    %           z(idx) = y(:,k); o 76QQ+hP  
    %           subplot(4,7,Nplot(k)) } .'\IR  
    %           pcolor(x,x,z), shading interp z-`-0@/A$  
    %           set(gca,'XTick',[],'YTick',[]) w0Y V87  
    %           axis square mH5[(?   
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) @Xl/<S&  
    %       end B'~CFj0W%=  
    % JQk][3Rv  
    %   See also ZERNPOL, ZERNFUN2. Ob m%\h  
    z P=3B%$  
    2; ~jKR[~  
    %   Paul Fricker 11/13/2006 2pV@CT  
    `;v>fTcy  
    q.Vcb!*$  
    l t{yo\  
    uJu#Vr:m  
    % Check and prepare the inputs: hWfC"0  
    % ----------------------------- :JfT&YYi"  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) $p~X"f?0  
        error('zernfun:NMvectors','N and M must be vectors.') V jZx{1kCR  
    end {5J: ]{p  
    rLJjK$_x  
    P=PVOt@ b  
    if length(n)~=length(m) bYB:Fe=2  
        error('zernfun:NMlength','N and M must be the same length.') xI,7ld~  
    end Nc[[o>/Cb  
    ,'^^OLez  
    oV=~ Q#v  
    n = n(:); 8 rA'd  
    m = m(:); {>8u/  
    if any(mod(n-m,2)) hH*/[|z  
        error('zernfun:NMmultiplesof2', ... 4j VFzO%.  
              'All N and M must differ by multiples of 2 (including 0).') #SIIhpjA(  
    end :+$/B N:iO  
    >TB Rp,;r  
    cH{[\F"Eb  
    if any(m>n) X+;{&Efrl  
        error('zernfun:MlessthanN', ... 'c&S%Ra[3G  
              'Each M must be less than or equal to its corresponding N.') VMgO1-F  
    end ~Lf>/w  
    SVj4K \F  
     <6[P5>  
    if any( r>1 | r<0 ) 7@l.ZECJ1  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') \*.u (8~2o  
    end fd/?x^Z  
    o%V%@q H  
    ZZ@1l  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ]] Jg%}o  
        error('zernfun:RTHvector','R and THETA must be vectors.') 8>l#F<@5  
    end Y.}8lh eH  
    HVkq{W|w  
    GjGt' m*  
    r = r(:); mCQn '{)  
    theta = theta(:); 5"o)^8!>  
    length_r = length(r); 2nA/{W\hC  
    if length_r~=length(theta) [ r;hF  
        error('zernfun:RTHlength', ... ?VP07 dQTe  
              'The number of R- and THETA-values must be equal.') tG}cmK~%  
    end >+ E  
    Q]"u?Q]  
    G@I/Dy  
    % Check normalization: ,~^BoH}  
    % -------------------- M@?,nzs K  
    if nargin==5 && ischar(nflag) 04wO9L;  
        isnorm = strcmpi(nflag,'norm'); HDV$y=oHh  
        if ~isnorm vivU4:uH3  
            error('zernfun:normalization','Unrecognized normalization flag.') y`Km96 Ui  
        end Hb|y`Ok  
    else q>H f2R  
        isnorm = false; TOvpv@?-  
    end .GH#`j  
    -/z#?J\  
    _|qs-USA  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% jZLD^@AP  
    % Compute the Zernike Polynomials 4!^flKZQ  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% :jU u_s}  
    O~=|6#c  
    dxAP7v  
    % Determine the required powers of r: "? t@Y  
    % ----------------------------------- #mvOhu  
    m_abs = abs(m); b i 8Qbo4  
    rpowers = []; p:@JCsH=  
    for j = 1:length(n) \]gUX-  
        rpowers = [rpowers m_abs(j):2:n(j)]; P]wCC`qi  
    end p?qW;1  
    rpowers = unique(rpowers); XEvDtDR  
    Z{gJm9  
    EXD Qr'"  
    % Pre-compute the values of r raised to the required powers, Y,;$RV@g  
    % and compile them in a matrix: ]f< H?  
    % ----------------------------- <sNk yQ  
    if rpowers(1)==0 g9K7_T #W  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); yYri.n  
        rpowern = cat(2,rpowern{:}); lIDGL05f'  
        rpowern = [ones(length_r,1) rpowern]; +M %zOX/  
    else !1<?ddH6  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ;S_\- ]m&g  
        rpowern = cat(2,rpowern{:}); ~D$?.,=l  
    end N5Rda2m  
    %A ^qm  
    M);@XcS  
    % Compute the values of the polynomials: f~{@(g&Gl  
    % -------------------------------------- z0Bw+&^]}  
    y = zeros(length_r,length(n)); <~}# Q,9  
    for j = 1:length(n) JZM:R  
        s = 0:(n(j)-m_abs(j))/2; G<f"_NT  
        pows = n(j):-2:m_abs(j); e6JT|>9A7  
        for k = length(s):-1:1 :2_8.+:  
            p = (1-2*mod(s(k),2))* ... Q $5U5hb  
                       prod(2:(n(j)-s(k)))/              ... $&l} ABn  
                       prod(2:s(k))/                     ... Dd:;8Xo  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... @cz\'v6E  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); tbr1mw'G  
            idx = (pows(k)==rpowers); 8LZmr|/F*  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 0>KW94  
        end JE$aYs<(TF  
         q;{# ~<"+  
        if isnorm EX.`6,:+2  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); +o94w^'^$b  
        end 5\6S5JyIL  
    end O?I~XM'S  
    % END: Compute the Zernike Polynomials 4gRt^T-?  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Mc #w:UH[  
    /^F$cQX(  
    O^W.5SaR  
    % Compute the Zernike functions: {vL4:K  
    % ------------------------------ }VUrn2@-4  
    idx_pos = m>0; `*`@ro  
    idx_neg = m<0; q=H dGv  
    =eNh))]  
    LQs>[3rK  
    z = y; xct{Tv[FO  
    if any(idx_pos) OB{d^e}  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ?z]h Ysy  
    end kUp[b~  
    if any(idx_neg) rnV\O L  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ;[ag|YU$Y  
    end v|r=}`k=  
    wgeR%#DW  
    n M?mdb  
    % EOF zernfun }%;o#!<N(@  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  O3YD jas  
    }f~:>N#  
    DDE还是手动输入的呢? e2~$=f-  
    K-a~Kr  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究