下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, B>gC75
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, !G,Ru~j5:
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? 9Lv`3J^~
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? AM,@BnEcuT
)0!hw|0|
}KJ/WyYW
7(ZI]<
9].!mpR
function z = zernfun(n,m,r,theta,nflag) XVE(p3-
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. Gu9Ap<>!
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N |7%M:7Q
% and angular frequency M, evaluated at positions (R,THETA) on the ix,5-j
% unit circle. N is a vector of positive integers (including 0), and 9CW .xX8
% M is a vector with the same number of elements as N. Each element t hTY('m
% k of M must be a positive integer, with possible values M(k) = -N(k) R /iB
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, Q_]O[Kx
% and THETA is a vector of angles. R and THETA must have the same Zn&X
Uvdl
% length. The output Z is a matrix with one column for every (N,M) Bz]j&`
% pair, and one row for every (R,THETA) pair. WY #pzBA
% fk;39$[
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike BPtU]Bv-
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), vxY7/ _]
% with delta(m,0) the Kronecker delta, is chosen so that the integral HSq&'V
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, L~CwL
% and theta=0 to theta=2*pi) is unity. For the non-normalized r C$ckug
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. B!yAam#^
% ,,lrF.
% The Zernike functions are an orthogonal basis on the unit circle. V] <J^m8
% They are used in disciplines such as astronomy, optics, and LeXuTd
% optometry to describe functions on a circular domain. dKi+~m'w
%
AI/xOd!a
% The following table lists the first 15 Zernike functions. ?HAWw'QW
% "=N[g
% n m Zernike function Normalization mQ:lj$Gf
% -------------------------------------------------- H~Hh$-z
% 0 0 1 1 x)5#*Q
% 1 1 r * cos(theta) 2 Gd%KBb
% 1 -1 r * sin(theta) 2 ESL(Mf'
% 2 -2 r^2 * cos(2*theta) sqrt(6) 7P|GKN~
% 2 0 (2*r^2 - 1) sqrt(3) 3I@j=:(%Y
% 2 2 r^2 * sin(2*theta) sqrt(6) vSX71
% 3 -3 r^3 * cos(3*theta) sqrt(8) L1
O\PEeT
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) aU4v-9@U8
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) rq:R6e
% 3 3 r^3 * sin(3*theta) sqrt(8) d*4fl.
% 4 -4 r^4 * cos(4*theta) sqrt(10) o&-q.;MY
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) uR"(0_
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) ULkjY1&
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) R*VJe+5w
% 4 4 r^4 * sin(4*theta) sqrt(10) IJhJfr0)Oo
% -------------------------------------------------- /:~mRf^
% Kp!sn,:
% Example 1: 7?Q<kB=f
% ~L<q9B( @
% % Display the Zernike function Z(n=5,m=1) ^~E?7{BL
% x = -1:0.01:1; OjcxD5"v9
% [X,Y] = meshgrid(x,x); pA&CBXio
% [theta,r] = cart2pol(X,Y); 'x$>h)t]
% idx = r<=1; aq@/sMn
% z = nan(size(X)); PVC\&YF
% z(idx) = zernfun(5,1,r(idx),theta(idx)); Z^zUb
% figure * _)xlpy
% pcolor(x,x,z), shading interp ou0(C`
% axis square, colorbar >j%HVRW
% title('Zernike function Z_5^1(r,\theta)') KU|dw^Y k
% oj/,vO:QT
% Example 2: 1O"7%Pvw
% MdV-;uf
% % Display the first 10 Zernike functions &!x!j,nT
% x = -1:0.01:1; \#?n'qyj
% [X,Y] = meshgrid(x,x); 9TuE.
% [theta,r] = cart2pol(X,Y); p(g0+.?`~
% idx = r<=1; 87.b7 b.
% z = nan(size(X)); hN=YC\l
% n = [0 1 1 2 2 2 3 3 3 3]; wi-O}*O
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; wxYB-Wh<
% Nplot = [4 10 12 16 18 20 22 24 26 28]; cy%JJ)sf
% y = zernfun(n,m,r(idx),theta(idx)); @*`9!K%
% figure('Units','normalized') aY&