切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8995阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, Y'v[2s  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, TdtV (  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? %opBJ   
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? }3pM,.  
    Q;M\fBQO}&  
    i "8mrWb  
     T]#V  
    :^;c(>u{  
    function z = zernfun(n,m,r,theta,nflag) }z3j7I  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. h^M_yz-f  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N !jCgTo y  
    %   and angular frequency M, evaluated at positions (R,THETA) on the x#rgFY,TY  
    %   unit circle.  N is a vector of positive integers (including 0), and O%b byR2  
    %   M is a vector with the same number of elements as N.  Each element K/Q"Z*  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) (O.%Xbx3  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, Cux(v8=n  
    %   and THETA is a vector of angles.  R and THETA must have the same P3M$&::D-  
    %   length.  The output Z is a matrix with one column for every (N,M) B9v>="F  
    %   pair, and one row for every (R,THETA) pair. |3H+b,M5  
    % 1+l8%G=hB  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Dk1& <} I  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), )^2eC<t  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral tFN >]`Z  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, n3^(y"q  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized Z8$}Rpo  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. g=*jKSZ  
    % &quY^j  
    %   The Zernike functions are an orthogonal basis on the unit circle. 'B@`gA  
    %   They are used in disciplines such as astronomy, optics, and LPk@t^[  
    %   optometry to describe functions on a circular domain. u9lZHh#V-  
    % b 2gng}  
    %   The following table lists the first 15 Zernike functions. ."Ms7=  
    % iD^,O)b  
    %       n    m    Zernike function           Normalization _|k$[^ln^  
    %       -------------------------------------------------- RObnu*  
    %       0    0    1                                 1 .@1+}0  
    %       1    1    r * cos(theta)                    2 \kADh?phV  
    %       1   -1    r * sin(theta)                    2 +pofN-*%  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) L/3A g* ]  
    %       2    0    (2*r^2 - 1)                    sqrt(3) |tXA$}"L8  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) wxN)d B  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) m|*B0GW  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) rhv~H"qzW  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) Di9RRHn&q  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) }gp@0ri%5  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) aDlp>p^E>  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) nt.LiM/L  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 8K%N7RL|  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) /l$x}  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) =BJLj0=N  
    %       -------------------------------------------------- i FI74COam  
    % XLh)$rZ  
    %   Example 1: 9A .RD`fg  
    % SV7;B?e%Y  
    %       % Display the Zernike function Z(n=5,m=1) AtT7~cVe  
    %       x = -1:0.01:1; Gnc`CyN:H  
    %       [X,Y] = meshgrid(x,x); ^r}c&@  
    %       [theta,r] = cart2pol(X,Y); STKL  
    %       idx = r<=1; uvys>]+  
    %       z = nan(size(X)); s%[F,hQRk  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); %6K7uvTq  
    %       figure ,'L>:pF3  
    %       pcolor(x,x,z), shading interp q0sf\|'<}  
    %       axis square, colorbar 8}/DD^M  
    %       title('Zernike function Z_5^1(r,\theta)') Vk5Z[w a  
    % #w$Y1bjn  
    %   Example 2: ;(Yb9Mr)z  
    % A40DbD\^ad  
    %       % Display the first 10 Zernike functions qGk+4 yC  
    %       x = -1:0.01:1; d^=BXC oC  
    %       [X,Y] = meshgrid(x,x); >P6"-x,["  
    %       [theta,r] = cart2pol(X,Y); ]8G 'R-8}  
    %       idx = r<=1; C6+ 5G-Z  
    %       z = nan(size(X)); P^Hgm  
    %       n = [0  1  1  2  2  2  3  3  3  3]; Q*M#e  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; T,38Pu@r  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; ,EqQU|  
    %       y = zernfun(n,m,r(idx),theta(idx)); JsaXI:%1  
    %       figure('Units','normalized') I8#2+$Be+@  
    %       for k = 1:10 GwWK'F'2  
    %           z(idx) = y(:,k); X><C#G  
    %           subplot(4,7,Nplot(k)) UmKE]1Yw4r  
    %           pcolor(x,x,z), shading interp L!f~Am:#  
    %           set(gca,'XTick',[],'YTick',[]) MT6p@b5  
    %           axis square "8za'@D"f  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) .1QGNW  
    %       end pn"!wqg  
    % q<Rj Ai  
    %   See also ZERNPOL, ZERNFUN2. Y,L`WeQY.  
    uWS]l[Ga  
    sG g458  
    %   Paul Fricker 11/13/2006 ;`AB-  
    >a3m!`lq  
    n,T &n  
    DYX{v`>f^  
    Sv=YI  
    % Check and prepare the inputs: m\teE]8x  
    % ----------------------------- U1\EwBK8*T  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) rFzNdiY  
        error('zernfun:NMvectors','N and M must be vectors.') ~DH 9iB  
    end @ f[-  
    <H64L*,5'7  
    R~<N*En~  
    if length(n)~=length(m) VH7t^fb  
        error('zernfun:NMlength','N and M must be the same length.') &YFe"C  
    end ]w*"KG!(  
    "LlpZtw  
    fECV\Z  
    n = n(:); Qt u;_  
    m = m(:); (l5p_x  
    if any(mod(n-m,2)) (Jp~=6&lKf  
        error('zernfun:NMmultiplesof2', ... FDo PW~+[  
              'All N and M must differ by multiples of 2 (including 0).') {lK2yi  
    end gUiO66#x  
    C-pR$WM:HN  
    ~[H8R|j "  
    if any(m>n) 7i5B=y7b  
        error('zernfun:MlessthanN', ... ?NE/ }?a  
              'Each M must be less than or equal to its corresponding N.') 4U2{1aN`  
    end k?=1q[RQH  
    UfW=/T  
    k(H&Af+  
    if any( r>1 | r<0 ) DG&'x;K"$  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') pq*e0uW  
    end Bzz|2/1y  
    Whd >  
    av'DyNW\  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) = gF035  
        error('zernfun:RTHvector','R and THETA must be vectors.') |JkfAnrN$I  
    end zw#n85=  
    qV=:2m10x  
    f@}> :x  
    r = r(:); 81nD:]7  
    theta = theta(:); Q{~g<G  
    length_r = length(r); <NZPLo F  
    if length_r~=length(theta) ?}`- ?JB1  
        error('zernfun:RTHlength', ... ^%!{qAp}Z  
              'The number of R- and THETA-values must be equal.') 8K4^05*S   
    end 7U7!'xU  
    5V 2ZAYV  
    zk<V0NJIL*  
    % Check normalization: cB&_':F  
    % -------------------- G]h_z|$K  
    if nargin==5 && ischar(nflag) ?I]AE&4'  
        isnorm = strcmpi(nflag,'norm'); kq| !{_  
        if ~isnorm cfmLErkp  
            error('zernfun:normalization','Unrecognized normalization flag.') KHx2$*E_  
        end {Q>OZm\+  
    else =!-}q  
        isnorm = false; #ss/mvc3  
    end n1%2 sV)>  
    eipg,EI  
    /mwUDf6x  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% k'r}@-X  
    % Compute the Zernike Polynomials { <Gyjq  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Mbc&))A  
    a~Dk@>+P>  
    G^B> C  
    % Determine the required powers of r: 9(t(sP_  
    % ----------------------------------- |ufL s  
    m_abs = abs(m); 89>}`:xS^  
    rpowers = []; Tdh(J",d  
    for j = 1:length(n) RP$u/x"b  
        rpowers = [rpowers m_abs(j):2:n(j)]; yF\yxdUX#  
    end \me5"ZU  
    rpowers = unique(rpowers); 7:B/ ?E  
    4Q!A w  
    NsI.mTc2  
    % Pre-compute the values of r raised to the required powers, =F|9 ac9X  
    % and compile them in a matrix: ~QSX 1w"  
    % ----------------------------- OxDq LX  
    if rpowers(1)==0 Z,"4f*2  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); \v&zsv\B@  
        rpowern = cat(2,rpowern{:}); X$KTsG*  
        rpowern = [ones(length_r,1) rpowern]; a0hBF4+6  
    else q\@_L.tc[  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); &|Wqzdo?#  
        rpowern = cat(2,rpowern{:}); %}(` ?  
    end $y6 <2w%b  
    hDi~{rbmc  
    n UmyPQ~  
    % Compute the values of the polynomials: PR5N:Bw  
    % -------------------------------------- T9R# .y,  
    y = zeros(length_r,length(n)); H.ZF~Yu w  
    for j = 1:length(n)  @_f^AQ  
        s = 0:(n(j)-m_abs(j))/2; .X%J}c$  
        pows = n(j):-2:m_abs(j); ;N#}3lpLqg  
        for k = length(s):-1:1 9h|6"6  
            p = (1-2*mod(s(k),2))* ... O*v&C Hd3  
                       prod(2:(n(j)-s(k)))/              ... 7;|"1H:cmw  
                       prod(2:s(k))/                     ... 9287&+,0r  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... _cvX$(Sg  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); Btxtu"]nJo  
            idx = (pows(k)==rpowers); +YZo-tE  
            y(:,j) = y(:,j) + p*rpowern(:,idx);  >SQzE  
        end WP*}X7IS  
         q{`1 [R  
        if isnorm 5IUdA?  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); "LTw;& y  
        end ef^GJTv&k  
    end ]7}!3m  
    % END: Compute the Zernike Polynomials UhqTn$=fb  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% sJx_X8  
    1q(Qr h  
    (1|wM+)"  
    % Compute the Zernike functions: ;U>nj],uv  
    % ------------------------------ V\m"Hl>VIU  
    idx_pos = m>0; /i8OyRpSyk  
    idx_neg = m<0; >=97~a+.  
    =q0V%h{  
    }xC2~  
    z = y; ^7 \kvW  
    if any(idx_pos) 1iY4|j;ahV  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Soq#cl'll-  
    end t3<8n;'y:  
    if any(idx_neg) FbroI>"e  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); \{`^Q+<  
    end 0e<>2AL   
    f|VCibI  
    _U&HXQ8X  
    % EOF zernfun ZeuL*c \  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  <8 <P,  
    )!27=R/  
    DDE还是手动输入的呢? Dst;sLr[,  
    :bct+J}l~  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究