切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9053阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, Hm8EYPr J  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, +i q+  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? 4/mj"PBKL  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? q)z1</B-  
    v0H>iKh7  
    =E6i1x%j  
    +^]PBMM1w  
    +gD)Yd  
    function z = zernfun(n,m,r,theta,nflag) -V<=`e  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. zYgK$u^H  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N *fuGVA  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 46.q a nh  
    %   unit circle.  N is a vector of positive integers (including 0), and 8en#PH }  
    %   M is a vector with the same number of elements as N.  Each element !z4Hj{A_  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 0F;(_2V-  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 40l#'< y;  
    %   and THETA is a vector of angles.  R and THETA must have the same MRl*r K  
    %   length.  The output Z is a matrix with one column for every (N,M) J z:W-o  
    %   pair, and one row for every (R,THETA) pair. "#eNFCo7k  
    % Jj^<:t5{rN  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 5sV/N] !  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), _ /2 8Cw  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral ~:RDw<PWp  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ~1wdAq`'a  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 2dV\=vd  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. \SHD  
    % n9-q5X^e>  
    %   The Zernike functions are an orthogonal basis on the unit circle. w]+BBGYQKb  
    %   They are used in disciplines such as astronomy, optics, and ;6 &=]I  
    %   optometry to describe functions on a circular domain. OD@@O9  
    % iR}i42Cu  
    %   The following table lists the first 15 Zernike functions. ,ex(pmZ;  
    % E*!zJ,@8  
    %       n    m    Zernike function           Normalization h+'eFAZ  
    %       -------------------------------------------------- ?D$b%G{  
    %       0    0    1                                 1 XtH_+W+O  
    %       1    1    r * cos(theta)                    2 ?\p%Mx?   
    %       1   -1    r * sin(theta)                    2 0.+Z;j  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) K&a]pL6D  
    %       2    0    (2*r^2 - 1)                    sqrt(3) RxDxLU2kt  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) (Ss77~W7  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) .]P;fCQmM  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) %RD7=Z-z  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) H|Fqc=qp  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) YvP"W/5  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) ]zR;%p  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) {HJ`%xN|  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) [{!j9E?(  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Er+3S@sfq,  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) ThqfZl=V  
    %       -------------------------------------------------- *$Wx*Jo  
    % q!h*3mNm  
    %   Example 1: (LvOsr~  
    % 'hHX"\|RA  
    %       % Display the Zernike function Z(n=5,m=1) ", Rw%_  
    %       x = -1:0.01:1; ujHzG}2z  
    %       [X,Y] = meshgrid(x,x); Z$=$oJzB  
    %       [theta,r] = cart2pol(X,Y); UeiJhH,u   
    %       idx = r<=1; $=g.-F% *=  
    %       z = nan(size(X)); 2,QApW_Y  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); &/#Tk>:  
    %       figure hw.demD  
    %       pcolor(x,x,z), shading interp %m\G'hY2  
    %       axis square, colorbar xbH!:R;  
    %       title('Zernike function Z_5^1(r,\theta)') f!kdcr=/"  
    % 2dJ)4  
    %   Example 2: Pv$"DEXA2  
    % RknSWuFKt  
    %       % Display the first 10 Zernike functions &l}xBQAL  
    %       x = -1:0.01:1; WMz|FFKVY  
    %       [X,Y] = meshgrid(x,x); zSvHvs  
    %       [theta,r] = cart2pol(X,Y); yD id` ym  
    %       idx = r<=1; `YU:kj<6  
    %       z = nan(size(X)); O09g b[  
    %       n = [0  1  1  2  2  2  3  3  3  3]; *z:lq2"G  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; i@?<]n  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; n)7$xYuH  
    %       y = zernfun(n,m,r(idx),theta(idx)); R\=\6("  
    %       figure('Units','normalized') z8[|LF-dx  
    %       for k = 1:10 6!PX! UkF  
    %           z(idx) = y(:,k); ^>}[[:(6/  
    %           subplot(4,7,Nplot(k)) FHPZQC8  
    %           pcolor(x,x,z), shading interp *E q7r>[  
    %           set(gca,'XTick',[],'YTick',[]) ;? QAPTz  
    %           axis square <yaw9k+P  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) b0CaoSWo  
    %       end [B;Ek \5W  
    % vh.tk^&  
    %   See also ZERNPOL, ZERNFUN2. ?BZ`mrH^  
    FrM~6A_  
    c] 9CN  
    %   Paul Fricker 11/13/2006 *1]k&#s  
    3\~fe/z'I  
    eeR@p$4i  
    wbKBwI5w  
    "JGig!9  
    % Check and prepare the inputs: HSFf&|qqx  
    % ----------------------------- _; RD-kv  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ' "p*FN  
        error('zernfun:NMvectors','N and M must be vectors.') d33Nx)No  
    end Q"_T040B  
    Y-k~ 7{7  
    f;dU72]q+  
    if length(n)~=length(m) gx R|S  
        error('zernfun:NMlength','N and M must be the same length.') d(tf: @  
    end WC;a  
    zC;lfy{f=  
    m8A1^ R  
    n = n(:); <G=@Gl  
    m = m(:); ^moIMFl  
    if any(mod(n-m,2)) RLX^'g+P  
        error('zernfun:NMmultiplesof2', ... UoT}m^ G  
              'All N and M must differ by multiples of 2 (including 0).') l+qtA~V&2  
    end Pu*UZcXY  
    VQ}3r)ch  
    md LJ,w?{  
    if any(m>n) f=Y9a$.:M  
        error('zernfun:MlessthanN', ... }r<^]Q*&p  
              'Each M must be less than or equal to its corresponding N.') [`dipLkr  
    end q9]L!V 9Rv  
    m3e49 bP  
    Tz~ ftf  
    if any( r>1 | r<0 ) l~c> jm8.  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') V2skr_1  
    end X}^gmu<Vla  
    ;itg>\ p3  
    HKw4}FC*  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) BVeNK=7m%  
        error('zernfun:RTHvector','R and THETA must be vectors.') xGk4KcxKs  
    end h(up1(x  
    DMW:%h{  
    GQWTQIl]  
    r = r(:); a}hM}U!  
    theta = theta(:); b;ZAz  
    length_r = length(r); =_3qUcOP  
    if length_r~=length(theta) ~[6|VpGc:  
        error('zernfun:RTHlength', ... cNv c pv  
              'The number of R- and THETA-values must be equal.') _ @76eZd  
    end c17==S  
    6%1o<{(%f  
    bd}SB-D  
    % Check normalization: IbwRb  
    % -------------------- KK|Jach  
    if nargin==5 && ischar(nflag) 54%}JA][  
        isnorm = strcmpi(nflag,'norm'); }Cf[nGh|B  
        if ~isnorm x*V<afLY[  
            error('zernfun:normalization','Unrecognized normalization flag.') 8 \Oiv$r  
        end ^q2zqC  
    else +2O_LPV$,  
        isnorm = false; (DAJ(r~  
    end !~v>&bCG>9  
    Bk <P~-I  
    gu&oCT  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 5!*a,$S  
    % Compute the Zernike Polynomials ^123.Ru|t  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% L\DaZ(Y  
    1A`";E&  
    e vuP4-[y  
    % Determine the required powers of r: KYN{iaj  
    % ----------------------------------- M+:wa@K l  
    m_abs = abs(m); g.s oN qt=  
    rpowers = []; Df^S77&c!  
    for j = 1:length(n) IrC=9%pd$R  
        rpowers = [rpowers m_abs(j):2:n(j)]; ~G:7*:[b  
    end  Pq%cuT%  
    rpowers = unique(rpowers); Z]d]RL&r  
    '"^JNb^I  
    ;wrgpP3  
    % Pre-compute the values of r raised to the required powers, ]+P &Y:   
    % and compile them in a matrix: Zlo,#q  
    % ----------------------------- eH{ 9w8~  
    if rpowers(1)==0 @( l`_Wx  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); t;3.;  
        rpowern = cat(2,rpowern{:}); F)Lbr>H?I  
        rpowern = [ones(length_r,1) rpowern]; ba13^;fm#  
    else ^ EOjq  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); !)34tu2  
        rpowern = cat(2,rpowern{:}); %\0 Y1!Hw  
    end w3D_ c~  
    3LR Eue7Gr  
    Y{=@^4|]  
    % Compute the values of the polynomials: oDa{HP\O]W  
    % --------------------------------------  Km7  
    y = zeros(length_r,length(n)); {J$aA6t:"T  
    for j = 1:length(n) u7d]%<~'$F  
        s = 0:(n(j)-m_abs(j))/2; .EO1{2=  
        pows = n(j):-2:m_abs(j); 9K!='u`  
        for k = length(s):-1:1 KJ_R@,v\  
            p = (1-2*mod(s(k),2))* ... nCU4a1rZ  
                       prod(2:(n(j)-s(k)))/              ... 6tguy  
                       prod(2:s(k))/                     ... @Rm/g#!h"  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... pyKag;ZtP  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); )w-?|2-w5  
            idx = (pows(k)==rpowers); a 2TC,   
            y(:,j) = y(:,j) + p*rpowern(:,idx); 5mU_S\)4:z  
        end Q1z04m1_y[  
         S J5kA`  
        if isnorm S6]':  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); {Y Ymt!Ic  
        end 8*wI^*Q  
    end e=2D^ G#qE  
    % END: Compute the Zernike Polynomials bd4q/w4q  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% eORt qX8*  
    3nO|A: t  
    k&b>-QP6  
    % Compute the Zernike functions: ~6tY\6$9f  
    % ------------------------------ <T).+ M/  
    idx_pos = m>0; P*>V6SK>b  
    idx_neg = m<0; 7 <xxOY>y  
    U{EW +>  
    hlRE\YO&8R  
    z = y; ;QYK {3R?  
    if any(idx_pos) cO:x{~  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); jJ|;Nwm<[  
    end 4rm/+Zes  
    if any(idx_neg) iwbjjQPr  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); c,@6MeKHq  
    end :R)IaJ6)  
    . fIodk  
    &+v&Dd&  
    % EOF zernfun x+pFu5,  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  {a(TT)d  
    {<V{0 s%  
    DDE还是手动输入的呢? o]@?QAu  
    BPW2WSm@<  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究