下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, EZ{\D!_Y
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, QF&6?e06p0
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? x,uBJ
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? abSq2*5K
$
9 =8@
5k~\or 5_
#Cx%OIi[f
GV>&g
function z = zernfun(n,m,r,theta,nflag) }lO
}x
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. ZB0+GG\
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N b5S7{"<V
% and angular frequency M, evaluated at positions (R,THETA) on the I=odMw7Hj
% unit circle. N is a vector of positive integers (including 0), and P5P<"
% M is a vector with the same number of elements as N. Each element cm,4&x6
% k of M must be a positive integer, with possible values M(k) = -N(k) bl$j%gI%,
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, dm& /K
4c
% and THETA is a vector of angles. R and THETA must have the same O8y9dX-2
% length. The output Z is a matrix with one column for every (N,M) .)t(:)*b
% pair, and one row for every (R,THETA) pair. u>}zm_
% HzEGq,.
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Z/h|\SyJ
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), qRl/Sl#F
% with delta(m,0) the Kronecker delta, is chosen so that the integral j%WY ,2P
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, }DHUTP2;yz
% and theta=0 to theta=2*pi) is unity. For the non-normalized Y;g% e3nu
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. GMe0;StT
% $P;UoqG<&
% The Zernike functions are an orthogonal basis on the unit circle. }<&d]N
% They are used in disciplines such as astronomy, optics, and H:{?3gk.P3
% optometry to describe functions on a circular domain. C5;wf3
% 5zVQ;;9
% The following table lists the first 15 Zernike functions. #fj[kq)&S
% qy&\Xgn;GA
% n m Zernike function Normalization z{/LX
\
% -------------------------------------------------- 2qXo{C3
% 0 0 1 1 [Xq<EEb
% 1 1 r * cos(theta) 2 OEI3eizgH
% 1 -1 r * sin(theta) 2 -%i#j>
% 2 -2 r^2 * cos(2*theta) sqrt(6) 1lsLG+Rpxi
% 2 0 (2*r^2 - 1) sqrt(3) 3C#RjA-2[
% 2 2 r^2 * sin(2*theta) sqrt(6) r@Nl2
% 3 -3 r^3 * cos(3*theta) sqrt(8) &+]x;K
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 3(o7co-f
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 1OP"5f
% 3 3 r^3 * sin(3*theta) sqrt(8) dk8y>uLr_
% 4 -4 r^4 * cos(4*theta) sqrt(10) 1w17L]4
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) .jaZ|nN8`
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) + ~~ Z0.[
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ]zcV]Qj$~
% 4 4 r^4 * sin(4*theta) sqrt(10) cyBW0wV1
% -------------------------------------------------- kfRJ\"`
% p+)C$2YK
% Example 1: #'8)u)!
% P#v^"}.Wd
% % Display the Zernike function Z(n=5,m=1) SM$\;)L
% x = -1:0.01:1; 0Nt%YP
% [X,Y] = meshgrid(x,x); B>@D,)/bT5
% [theta,r] = cart2pol(X,Y); BvQUn@ XE
% idx = r<=1; _0m}z%rI
% z = nan(size(X)); gW}} 5Xq
% z(idx) = zernfun(5,1,r(idx),theta(idx)); +[_gyLN<5b
% figure &1~Re.*B
% pcolor(x,x,z), shading interp v4D!7t&v"
% axis square, colorbar AoIc9ElEX
% title('Zernike function Z_5^1(r,\theta)') 0JyqCbl
% pagC(F
% Example 2: $YPQC
% ,8~dz
% % Display the first 10 Zernike functions [NjajA~z>F
% x = -1:0.01:1; "h$D7 mL
% [X,Y] = meshgrid(x,x); sSV^5
% [theta,r] = cart2pol(X,Y); H6{Rd+\Z
% idx = r<=1; Z@u ;Z[@
% z = nan(size(X)); `BpCRKTG
% n = [0 1 1 2 2 2 3 3 3 3]; s<,"Hsh^CR
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; [?|5oaK
% Nplot = [4 10 12 16 18 20 22 24 26 28]; c[Yq5Bu{y
% y = zernfun(n,m,r(idx),theta(idx)); PK8V2Ttv
% figure('Units','normalized') eWw y28t
% for k = 1:10 f@L\E>t
% z(idx) = y(:,k); LPMb0F}"5
% subplot(4,7,Nplot(k)) `!_? uT
% pcolor(x,x,z), shading interp 1&} G+y
% set(gca,'XTick',[],'YTick',[]) pRmE ryR(U
% axis square |\/~
8qP
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) #|q;t
% end ijg,'a~3E
% IN>TsTo
% See also ZERNPOL, ZERNFUN2. =O;eY ?
4">84,-N
P^ by'b+zI
% Paul Fricker 11/13/2006 _4O[[~
Of!|,2`(
gl Li
D8W(CE^}
=w t-YM
% Check and prepare the inputs: /1U,+g^O>
% ----------------------------- ^g\h]RD}
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 3EO#EYAHiM
error('zernfun:NMvectors','N and M must be vectors.') b\H/-7<
end =GLYDV
[]!tT-Gzy
- f+CyhR"*
if length(n)~=length(m) 2zwuvgiZ
error('zernfun:NMlength','N and M must be the same length.') v#w4{.8)
end N
c9<X
!P+~c0DF
(Jm(}X]sh[
n = n(:); zC[i <'h!T
m = m(:); +HYN$>
if any(mod(n-m,2)) S`iM.;|`O
error('zernfun:NMmultiplesof2', ... Z5 w`-#
'All N and M must differ by multiples of 2 (including 0).') 65 NWX8f}
end ;H`=):U
u)wu=z8
!Mm+bWn=mB
if any(m>n) tPQ2kEW
error('zernfun:MlessthanN', ... N.kuE=X
'Each M must be less than or equal to its corresponding N.') w}fqs/)w
end %9fa98>
@?(nwj~ s`
6f<*1YR
F
if any( r>1 | r<0 ) g4?Q.'dZr
error('zernfun:Rlessthan1','All R must be between 0 and 1.') )WzGy~p8K
end /2=_B4E2
qFB9,cUqh
aU,0gvI(}
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) }mkA Hmu4
error('zernfun:RTHvector','R and THETA must be vectors.') qQ3]E][/
end !]n{l_5r
N^)<)?
{b\Y?t^>f
r = r(:); bgkbwE
theta = theta(:); 30wYc &H
length_r = length(r); hlYS=cgY=
if length_r~=length(theta) 77Q4gw~2U
error('zernfun:RTHlength', ... 1)nM#@%](h
'The number of R- and THETA-values must be equal.') T9&,v<f
end TPV6$a <
:..E:HdYO
[J[ysW})W
% Check normalization: >"2\D|-/
% -------------------- TPN:cA6[c
if nargin==5 && ischar(nflag) [M,27
isnorm = strcmpi(nflag,'norm'); eHfG;NsV/
if ~isnorm *+4>iL*:
error('zernfun:normalization','Unrecognized normalization flag.') RBMMXJj
end
oi%5t)VsS
else mH7CgI
isnorm = false; 3M`hn4)K
end j};pv 2
:~qtvs;{
8 RzF].)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |TNiKy
% Compute the Zernike Polynomials U>3%!83kF
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 59"Nn\}3gE
.j+2x[`l
o{YW
% Determine the required powers of r: ,& \&::R
% ----------------------------------- q_%w
l5\F
m_abs = abs(m); W? 6
rpowers = []; :c+a-Py
$E
for j = 1:length(n) A1=$kzw{UH
rpowers = [rpowers m_abs(j):2:n(j)]; tOlzOBzR
end w2M
IY_N?
rpowers = unique(rpowers); ps{&WT3a
?$`1%Y9
8O;rp(N.n
% Pre-compute the values of r raised to the required powers, lL(}dbT~N
% and compile them in a matrix: ,i$(yx?
% ----------------------------- !pFKC)
if rpowers(1)==0 s\3Z?zm8
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); T{ v<