下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, a.AEF P4N
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, KhbbGdmfS$
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? u\UI6/
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? .O.fD
f<3r;F7
(8j@+J
hM`*-+Zb
);x[1*e
function z = zernfun(n,m,r,theta,nflag) .ZH5^Sv$vp
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. XecU&
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N mDU-;3OqF
% and angular frequency M, evaluated at positions (R,THETA) on the * (<3 oIRS
% unit circle. N is a vector of positive integers (including 0), and VnMiZAHR
% M is a vector with the same number of elements as N. Each element K+c>Cj}H
% k of M must be a positive integer, with possible values M(k) = -N(k) k+cHx799
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, <4Cy U
j
% and THETA is a vector of angles. R and THETA must have the same 2O9OEZdKB
% length. The output Z is a matrix with one column for every (N,M) Bk~M ^AK@~
% pair, and one row for every (R,THETA) pair. *|:]("i
% k\M">K0E
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike BRMR>
~k(
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 8f|+045E@
% with delta(m,0) the Kronecker delta, is chosen so that the integral Jz\'%O'
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, &,`P%a&k
% and theta=0 to theta=2*pi) is unity. For the non-normalized &Lgi
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. WR"p2=
% vweD{\b
% The Zernike functions are an orthogonal basis on the unit circle. aD3Q-a[
% They are used in disciplines such as astronomy, optics, and *CXVA&?
% optometry to describe functions on a circular domain. (tP^F)}e5
% r7p>`>_Q\
% The following table lists the first 15 Zernike functions.
/=7[Q
% gG=E2+=uy
% n m Zernike function Normalization meV
RdQ
% -------------------------------------------------- \>-%OcYlM
% 0 0 1 1 pF"IDC
% 1 1 r * cos(theta) 2 *,DBRJ_*7
% 1 -1 r * sin(theta) 2 $eBE pN
% 2 -2 r^2 * cos(2*theta) sqrt(6) sWnU*Q
% 2 0 (2*r^2 - 1) sqrt(3) b}r3x&)
% 2 2 r^2 * sin(2*theta) sqrt(6) /c 1FFkq|K
% 3 -3 r^3 * cos(3*theta) sqrt(8) %G s!oD
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) yS-owtVCGF
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) n_*k
e
% 3 3 r^3 * sin(3*theta) sqrt(8) =>6'{32W_
% 4 -4 r^4 * cos(4*theta) sqrt(10) #VEHyz 6P
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) }mC-SC)oSi
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) -gV'z5
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) P1ab2D
% 4 4 r^4 * sin(4*theta) sqrt(10) izi=`;=D^
% -------------------------------------------------- ),)]gw71QW
% oFV>b
% Example 1: u|D_"q~+6
% rB:W\5~7
% % Display the Zernike function Z(n=5,m=1) kSw.Q2ao
% x = -1:0.01:1; DFt1{qS8@u
% [X,Y] = meshgrid(x,x); lU.@! rGbw
% [theta,r] = cart2pol(X,Y); iB 5 Se
% idx = r<=1; I.\fhNxHY
% z = nan(size(X)); =6TD3k6(2
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 7=8e|$K_
% figure ]f q.r
% pcolor(x,x,z), shading interp .Eg>)
% axis square, colorbar LdAfY0
% title('Zernike function Z_5^1(r,\theta)') >%.6n:\rG
% S:Ne g!`
% Example 2: K/jC>4/c/
% GKwm %A
% % Display the first 10 Zernike functions |L4K#
% x = -1:0.01:1; i9oi}$;J
% [X,Y] = meshgrid(x,x); iVt6rX
% [theta,r] = cart2pol(X,Y); T0Q)}%L
% idx = r<=1; >_]j{}~\k
% z = nan(size(X)); gX34'<Z
% n = [0 1 1 2 2 2 3 3 3 3]; xS`>[8?3<T
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; :d-+Z%Y
% Nplot = [4 10 12 16 18 20 22 24 26 28]; s7<x~v+^
% y = zernfun(n,m,r(idx),theta(idx)); AjK'P<:/
% figure('Units','normalized')
`'5(4j
% for k = 1:10 ;X !sTs
% z(idx) = y(:,k); %@5f+5{i!z
% subplot(4,7,Nplot(k)) gfs?H #
% pcolor(x,x,z), shading interp #|34(ML
% set(gca,'XTick',[],'YTick',[]) ~fE@]~f>
% axis square <ok/2v
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) /4]M*ls
% end hof:+aW
% w Maib3Q
% See also ZERNPOL, ZERNFUN2. ]w(i,iJ
2hl'mRW
Uax- z
% Paul Fricker 11/13/2006 41WnKz9c
-1~bWRYq
iU\WV
9Bl_t}0
l-"$a8jn2
% Check and prepare the inputs: pUWj,&t
% ----------------------------- e/EfWwqt
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) VAF+\Cea=
error('zernfun:NMvectors','N and M must be vectors.') #m6 eG&a
end u~6`9'Ms
]C-hl}iq
"8aw=3A
if length(n)~=length(m) $cFanra
error('zernfun:NMlength','N and M must be the same length.') # &o3[.)9
end =usx' #rb
G@anY=D\EB
!12W(4S5
n = n(:); lN)U8
m = m(:); 69 R8#M
if any(mod(n-m,2)) o-B9r+N
error('zernfun:NMmultiplesof2', ... 67Z|=B!7
'All N and M must differ by multiples of 2 (including 0).') 16[>af0<g
end _* ] ~MQ=
%8tlJQvu
0x'>}5`5
if any(m>n)
(CS"s+y1
error('zernfun:MlessthanN', ... Y!v `0z
'Each M must be less than or equal to its corresponding N.') X~GnK>R
end 7M<Ae
D%
BCk$FM@
SEF/D0
if any( r>1 | r<0 ) MVK='
error('zernfun:Rlessthan1','All R must be between 0 and 1.') r>sk@[4h
end \aQBzEX
=9GL;z:R+
J
(Yfup
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) cOthq87:
error('zernfun:RTHvector','R and THETA must be vectors.') i=@.u=:
end B0NKav
T+zZOI
@kn0f`
r = r(:); %p)6m2Sb
theta = theta(:); ScYw3i
length_r = length(r); |AW[4Yn>
if length_r~=length(theta) V=
U=
error('zernfun:RTHlength', ... B@` 87
'The number of R- and THETA-values must be equal.') xWD=",0+
end `h/j3fmX?
mdR:XuRD"t
8E"Ik~
% Check normalization: f@T/^|`mh
% -------------------- =O1N*'e
if nargin==5 && ischar(nflag) Ey=(B'A~
isnorm = strcmpi(nflag,'norm'); \T'uFy9&a
if ~isnorm n;)!N
error('zernfun:normalization','Unrecognized normalization flag.') <ZxxlJS)6
end ;(fD R8
else 2Otd
isnorm = false; RyKsM.
end (p'yya{(
,5HQHo@
aG}ju;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% KlDW'R$
% Compute the Zernike Polynomials tbF>"?FY/
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% nellN}jYsM
o {Sc
1w/1k6`0
% Determine the required powers of r: N%%2!Z#
% ----------------------------------- oE[wOq+
m_abs = abs(m); FA<|V!a
rpowers = []; *P_(hG&c
for j = 1:length(n) xGCW-YR9
rpowers = [rpowers m_abs(j):2:n(j)]; I4:4)V?
end G1 z[v3T
rpowers = unique(rpowers); mufi>}
mk8xNpk B
O%;H#3kn&s
% Pre-compute the values of r raised to the required powers, OF&{mJH"g'
% and compile them in a matrix: B*p`e1
% ----------------------------- a,tzt
]>
if rpowers(1)==0 %bgjJ`
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); zD:"O4ZM^^
rpowern = cat(2,rpowern{:}); IL` X}=L_
rpowern = [ones(length_r,1) rpowern]; lxx)l(&
else Y
m=ihQ|
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); -U~]Bugvh
rpowern = cat(2,rpowern{:}); @H2c77%
end 6z=h0,Y}
AM cHR=/
iZ
%KHqG
% Compute the values of the polynomials:
?TA%P6Lw
% -------------------------------------- `&2~\o/
y = zeros(length_r,length(n)); 'g.9
goQ
for j = 1:length(n) U>?q|(u
s = 0:(n(j)-m_abs(j))/2; g*?)o!_*
pows = n(j):-2:m_abs(j); :so2 {.t-
for k = length(s):-1:1 )Kkw$aQI"d
p = (1-2*mod(s(k),2))* ... (? j $n?p
prod(2:(n(j)-s(k)))/ ... iq2)oC_
prod(2:s(k))/ ... <qjNX-|
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... XG FjqZr`
prod(2:((n(j)+m_abs(j))/2-s(k))); P1KXvc}JGe
idx = (pows(k)==rpowers); I[,tf!
y(:,j) = y(:,j) + p*rpowern(:,idx); &HBqweI
end )Be?axI
Xmr|k:z
if isnorm !=%0
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); &J(+XJM%
end XCr\Y`,Z@
end .XDY1~w0
% END: Compute the Zernike Polynomials 3SI:su
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% "zFv?ay
Cq\1t
8w1TX [b
% Compute the Zernike functions: p|fSPSz
% ------------------------------ /Iht,@%E
idx_pos = m>0; ZI.;7G@|
idx_neg = m<0; .>?h
o zg%-
!_EL{ /ko
z = y; Tj5G
/H>
if any(idx_pos) .x\fPjB
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); '](4g/%
end !Rp
if any(idx_neg) N6K%Wkz
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 4Uz1~AuNxb
end ;VM',40
Zx$q,Zo<
d'j8P
% EOF zernfun i
T* !3