下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, ,{PN6B
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, gw)4P tb!
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? <=NnrZOF
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? klUV&O+=%
\6|y~5Hw{r
0`x>p6.)G
K,g6y#1"
}_nBegv
function z = zernfun(n,m,r,theta,nflag)
"du(BZw
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. z\m$>C|
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N cb^IJA9}
% and angular frequency M, evaluated at positions (R,THETA) on the kH eD(Ea
% unit circle. N is a vector of positive integers (including 0), and ?{ )'O+s
% M is a vector with the same number of elements as N. Each element n+8YTjd
% k of M must be a positive integer, with possible values M(k) = -N(k) M2Nh3ijr
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, %unn{92)
% and THETA is a vector of angles. R and THETA must have the same KNeVSZT
% length. The output Z is a matrix with one column for every (N,M) 8xLQ"
l+"
% pair, and one row for every (R,THETA) pair. E{T3Xwg
% zIF1A*UH
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Xex7Lr&
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 6]1RxrAV
% with delta(m,0) the Kronecker delta, is chosen so that the integral ~ EBaVl ({
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, +S~ u ,=
% and theta=0 to theta=2*pi) is unity. For the non-normalized <.ZIhDiEl
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. SD^::bH
% k9
r49lb
% The Zernike functions are an orthogonal basis on the unit circle. >V^8<^?G
% They are used in disciplines such as astronomy, optics, and q]="ek&_
% optometry to describe functions on a circular domain. E<yQB39
% a?y ucA
% The following table lists the first 15 Zernike functions. w~+*Vd~U
% 5$U 49j
% n m Zernike function Normalization (csk
% -------------------------------------------------- 1|p\rHGd
% 0 0 1 1 ;-1KPDIp`
% 1 1 r * cos(theta) 2 aG7Lm2{c"
% 1 -1 r * sin(theta) 2 DNmC
% 2 -2 r^2 * cos(2*theta) sqrt(6) rPB Ju0D"
% 2 0 (2*r^2 - 1) sqrt(3) I;XM4a
% 2 2 r^2 * sin(2*theta) sqrt(6) Kh3i.gm7g
% 3 -3 r^3 * cos(3*theta) sqrt(8) s>DFAu!
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) z"<S$sDh
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) YMw,C:a4
% 3 3 r^3 * sin(3*theta) sqrt(8) \l=A2i7TQ
% 4 -4 r^4 * cos(4*theta) sqrt(10) iYLg[J"
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) t 9(,JC0
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) bmHj)^v5]
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) j/Kul}Ml\*
% 4 4 r^4 * sin(4*theta) sqrt(10) gkK(7=r%
% -------------------------------------------------- qg j;E=7
% Oyb9
ql^
% Example 1: Idu'+O4
% w8+phN(-M
% % Display the Zernike function Z(n=5,m=1) r`ftflNh(
% x = -1:0.01:1; 9+(b7L
% [X,Y] = meshgrid(x,x); (Tq)!h35B
% [theta,r] = cart2pol(X,Y); hzAuj0-A
% idx = r<=1; # 9bw'm
% z = nan(size(X)); JXuks`:Q
% z(idx) = zernfun(5,1,r(idx),theta(idx)); */{y%
% figure @[D5{v)S
% pcolor(x,x,z), shading interp ."Pn[$'.
% axis square, colorbar VnN(lJ
% title('Zernike function Z_5^1(r,\theta)') E7$ aT^
% <YCjo[(~
% Example 2: ~p+
`pwjY1
% fm#7}Y
% % Display the first 10 Zernike functions fhk(<KZvJ
% x = -1:0.01:1; E.C=VfBW
% [X,Y] = meshgrid(x,x); <OiH%:G/1
% [theta,r] = cart2pol(X,Y); )l*3^kwL{U
% idx = r<=1; )[99SM
% z = nan(size(X)); 5bZ0}^FYF
% n = [0 1 1 2 2 2 3 3 3 3]; 7yG%E
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 3Q&@l49q
% Nplot = [4 10 12 16 18 20 22 24 26 28]; #x;d+Q@
% y = zernfun(n,m,r(idx),theta(idx)); C^?/9\
% figure('Units','normalized') -Nr*na^H9#
% for k = 1:10 7LaRFL.,kO
% z(idx) = y(:,k); P{RGW.Ci@
% subplot(4,7,Nplot(k)) pw))9~XU
% pcolor(x,x,z), shading interp shLMj)7!
% set(gca,'XTick',[],'YTick',[]) p>U= Jg
% axis square {DVMs|5;^
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) V%*91t _
% end C\[:{d
% asW
W@E
% See also ZERNPOL, ZERNFUN2. }w=|"a|,
U8aNL
sw
iQ;lvOja
% Paul Fricker 11/13/2006 RSeav
Gp_flGdGQ
x[&)\[t
9G1ZW=83
6R2F,b(_
% Check and prepare the inputs: A{3nz DLI
% ----------------------------- }L`Z<h*H
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) uC]c`Ue
error('zernfun:NMvectors','N and M must be vectors.') *>GRU8_}
end 'K23oQwDB
,=pn}\R
B0g?!.#23
if length(n)~=length(m) 5rtE/{A
error('zernfun:NMlength','N and M must be the same length.') \^cXmyQ <%
end iYW<qgz
+Lr`-</VF
(s+}l?
n = n(:); ),,0T/69+9
m = m(:); Dz$dJF1
8
if any(mod(n-m,2)) G[d]t$f=
error('zernfun:NMmultiplesof2', ... Cpn!}!Gnf
'All N and M must differ by multiples of 2 (including 0).') 1Fsa}UK
end 1yS:`
i:&$I=
g/!tp;e
if any(m>n) do.XMdit
error('zernfun:MlessthanN', ... Q{
g{
'Each M must be less than or equal to its corresponding N.') F$s:\N
end 5o^\jTEl^
##"
Hui
;b|=osyT\
if any( r>1 | r<0 ) 2/))Y\~
error('zernfun:Rlessthan1','All R must be between 0 and 1.') r0<zy_d'
end xjYH[PgfX
M3fTUCR
=QwT)KRB%
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) WQ{^+C9g'1
error('zernfun:RTHvector','R and THETA must be vectors.')
msq2/sS~
end Lu71Qdu09
nx!+:P ,
LmKY$~5P
r = r(:); ACEVd! q
theta = theta(:); U]M5&R=?
length_r = length(r); wO]H+t
if length_r~=length(theta) HSACaTVK
error('zernfun:RTHlength', ... [t?:CgI)E
'The number of R- and THETA-values must be equal.') 'kJyE9*xU.
end ~'Korxa
OP``+z>
c&g*nDuDj
% Check normalization: C)cuy7<
% -------------------- rj29$d?Y9
if nargin==5 && ischar(nflag) 2\"T&
isnorm = strcmpi(nflag,'norm'); ] `;Fc8$
if ~isnorm YCG$GD
error('zernfun:normalization','Unrecognized normalization flag.') G1SOvdq
end 5hDm[*83
else `nd$6i^#W
isnorm = false; Nm#[ A4
end .sZ"|j9m
m&--$sr
q^}iXE~
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 5_rx$avm
% Compute the Zernike Polynomials !3ji]q;uF
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% h\|T(597.
2t3)$\ylQp
Dyj>dh-
% Determine the required powers of r: <,t6A?YoMP
% ----------------------------------- ,/eAns`ZU
m_abs = abs(m); F{eI[A
rpowers = []; %/r:iD
for j = 1:length(n) b}ODc]3
rpowers = [rpowers m_abs(j):2:n(j)]; &3 x
[0DV
end :>3?|Z"Aj
rpowers = unique(rpowers); }n k[WW
> q8)~
}4q1"iMlO
% Pre-compute the values of r raised to the required powers, l(Uwci
% and compile them in a matrix: 3oPyh $*
% ----------------------------- nR,QqIFFw
if rpowers(1)==0 fy>~GFk(
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); N LSJ
D
rpowern = cat(2,rpowern{:}); j^m pkv<P
rpowern = [ones(length_r,1) rpowern]; nx5I
else 5>fAO =u!Q
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); #?DoP]1Y
rpowern = cat(2,rpowern{:}); B#o6UO\
end Lr*\LP6jx3
ugs9>`fF&
4mm>6w8NT
% Compute the values of the polynomials: iE^=Vf;
% -------------------------------------- $v1_M1
y = zeros(length_r,length(n)); ,HK-mAH
for j = 1:length(n) [`!%u3
s = 0:(n(j)-m_abs(j))/2; xC 4L`\
pows = n(j):-2:m_abs(j); |+Tq[5&R
for k = length(s):-1:1 V=H :`n3k
p = (1-2*mod(s(k),2))* ... 5wC,:c[H7
prod(2:(n(j)-s(k)))/ ...
=tc!"{
prod(2:s(k))/ ... Fzy5k?R
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... yg82a7D
prod(2:((n(j)+m_abs(j))/2-s(k))); z6 .^a-sU5
idx = (pows(k)==rpowers); MAL;XcRR
y(:,j) = y(:,j) + p*rpowern(:,idx); HnKXO
end /1b7f'
yKC1h`2
if isnorm G
BM8:IG \
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); bv}e[yH
end vU9:`@beu
end "-Wb[*U;
% END: Compute the Zernike Polynomials C40o_1g
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% pz]!T'
6K^O.VoV^J
/z: mi
% Compute the Zernike functions: YRU95K[
% ------------------------------ aAgQ^LY
idx_pos = m>0; _P*QX
idx_neg = m<0; yV*4|EkvW
KY\=D 2m
N t\ZM
z = y;
es<
if any(idx_pos) b8glZb*$
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 9A *gW j
end @]Lu"h#u=
if any(idx_neg) xL"O~jTS
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 6 !wk5#
end >+):eBL
]AX3ov6z9;
5t-,5
% EOF zernfun |mcc?*%t8