下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, eaC%&k
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, .P
<3+
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? Fw S>V2R
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? Sv_Nb >
9=mc3m:Tb(
_U_O0@xi
vc :%
YF)]B |I
function z = zernfun(n,m,r,theta,nflag) _i_P@I<M|~
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. pM^Z C
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N RfOJUz
% and angular frequency M, evaluated at positions (R,THETA) on the 6w=`0r3hy
% unit circle. N is a vector of positive integers (including 0), and UE{$hLI?g
% M is a vector with the same number of elements as N. Each element r'`7}@H*
% k of M must be a positive integer, with possible values M(k) = -N(k) PY;tu#W!%
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, En:>c
% and THETA is a vector of angles. R and THETA must have the same ^v`naA(
% length. The output Z is a matrix with one column for every (N,M) CLTkyS)C
% pair, and one row for every (R,THETA) pair. f S[-K?K
% a'-u(Bw
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 9O- 2
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), m):*>o55
% with delta(m,0) the Kronecker delta, is chosen so that the integral X$;&Mdo.
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ~o>Gm>5!HH
% and theta=0 to theta=2*pi) is unity. For the non-normalized /)T~(o|i
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ?G5,}%
% {#:31)P
% The Zernike functions are an orthogonal basis on the unit circle. z&WtPSyGj
% They are used in disciplines such as astronomy, optics, and 9vz\R-un
% optometry to describe functions on a circular domain. 8PzGUn;\
% a}uYv:
% The following table lists the first 15 Zernike functions. {#ynN`tLyF
% @)BO`;*$fF
% n m Zernike function Normalization 4EHrd;|
% -------------------------------------------------- Kxch.$hc,
% 0 0 1 1 ^$50[
% 1 1 r * cos(theta) 2 "(3u)o9
% 1 -1 r * sin(theta) 2 P`ou:M{8
% 2 -2 r^2 * cos(2*theta) sqrt(6) 8Z0x*Ssk
% 2 0 (2*r^2 - 1) sqrt(3) hbOXR.0z
% 2 2 r^2 * sin(2*theta) sqrt(6) f4fBUZ^ A
% 3 -3 r^3 * cos(3*theta) sqrt(8) Lo~;pvv
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) fz\Q>u'T
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 'S1u@p,q
% 3 3 r^3 * sin(3*theta) sqrt(8) :{2~s
% 4 -4 r^4 * cos(4*theta) sqrt(10) IH;sVT$M
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Km;}xke6
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) +rJ6DZ
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) <(q(5jG
% 4 4 r^4 * sin(4*theta) sqrt(10) #D4
% -------------------------------------------------- ]
\M+j u
% UWF
\Vx*)b
% Example 1: !uQT4<g
% X+C*+k,z
% % Display the Zernike function Z(n=5,m=1) Y@`uBB[
% x = -1:0.01:1; |82q|@e
% [X,Y] = meshgrid(x,x); VD~5]TQ
% [theta,r] = cart2pol(X,Y); 2}A)5P*K
% idx = r<=1; ;U|(rM;
% z = nan(size(X)); bDM },(
% z(idx) = zernfun(5,1,r(idx),theta(idx)); ts!tv6@
% figure V6X )L>!xx
% pcolor(x,x,z), shading interp RbX9PF"|+
% axis square, colorbar 1>OlBp
% title('Zernike function Z_5^1(r,\theta)') !1G
KpL
% *qwN9b/!
% Example 2: >I|8yqbfm
% ?1D!%jfi
% % Display the first 10 Zernike functions u<Kowt<ci
% x = -1:0.01:1; r*+~(83k
% [X,Y] = meshgrid(x,x); >`\.i,X.D
% [theta,r] = cart2pol(X,Y); tL$,]I$1+
% idx = r<=1; I&{T 4.B:U
% z = nan(size(X)); ==OUd6e}
% n = [0 1 1 2 2 2 3 3 3 3]; *O
:JECKU
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; w6i2>nu_O
% Nplot = [4 10 12 16 18 20 22 24 26 28]; UDh\%?j
% y = zernfun(n,m,r(idx),theta(idx)); =mO5~~"W+v
% figure('Units','normalized') E{<#h9=>
% for k = 1:10 Hw o _;fV
% z(idx) = y(:,k); az F!V
% subplot(4,7,Nplot(k)) r8s>s6vm
% pcolor(x,x,z), shading interp -N*[f9EJB
% set(gca,'XTick',[],'YTick',[]) { c#US
% axis square rx2)uUbR
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 1zPS#K/3
% end z2iMpZ
% ?$|tT\SFV
% See also ZERNPOL, ZERNFUN2. 2y
-
QH
J'}+0mln
~.:{
Ik]
% Paul Fricker 11/13/2006 _y~6b{T
s<zN`&t
?6CLUu|7n
pi?/]}:
LDr?'M!D
% Check and prepare the inputs: ^%$IdDx
% ----------------------------- k|/VNV( =0
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Rn~'S2`u
error('zernfun:NMvectors','N and M must be vectors.') mD'nF1o
Ly
end pAOKy
w a_{\v=
9^XZ|`
if length(n)~=length(m) ,`bW(V
error('zernfun:NMlength','N and M must be the same length.') f'oTN!5WF
end MJ JC6:
~6f/jCluR%
_d]{[&
p4t
n = n(:); -TF},V~
m = m(:); ESCN/ocV
if any(mod(n-m,2)) gy}3ZA*F
error('zernfun:NMmultiplesof2', ... juR>4SH
'All N and M must differ by multiples of 2 (including 0).') 6TW<,SM
end V
*@q< rQ
CtCReH03
$5i\D
rs
if any(m>n) Gd
4S7JE
error('zernfun:MlessthanN', ... cg8/v:B
'Each M must be less than or equal to its corresponding N.') Ak?9a_f
end OkciL]
epsRv&LfC
=FzmifTc
if any( r>1 | r<0 ) Z?+ )ox
error('zernfun:Rlessthan1','All R must be between 0 and 1.') T \/^4N`
end FEk9a^Xyx
Yh1</C
!V.]mI
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) -dM~3'
error('zernfun:RTHvector','R and THETA must be vectors.') ;5/Se"Nd
end :zU4K=kR
6|EOB~|
nOPB*{r|
r = r(:); I0F[Z\U
theta = theta(:); MGF!ZZ\
length_r = length(r); &}u_e`A
if length_r~=length(theta) 4BMu0["6|s
error('zernfun:RTHlength', ... &u:U"j
'The number of R- and THETA-values must be equal.') K}cZK
end :$G^TD/n
}@bp v
&b@_ah+f
% Check normalization: < dE7+w
% -------------------- N6[Z*5efR
if nargin==5 && ischar(nflag) .uA
O.<
isnorm = strcmpi(nflag,'norm'); #X)DFAtb
if ~isnorm | d*<4-:
error('zernfun:normalization','Unrecognized normalization flag.') @g[ijs\
end XIMh<
else UT@Qo}:
isnorm = false; #bd=G(o~6
end .Yk}iHcW.
Ue9d0#9
OkRb3}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% QHv]7&^rlj
% Compute the Zernike Polynomials I]HYqI
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Ls2,+yo]>
Zdrniae
ah
!IJ
YaQ6z
% Determine the required powers of r: b|87=1^m[
% ----------------------------------- D Z~036
m_abs = abs(m); s3Bo'hGxG
rpowers = []; eF;Jj>\R+i
for j = 1:length(n) F~v0CBcAL
rpowers = [rpowers m_abs(j):2:n(j)]; pp|$y\ZzB
end =>S[Dh
rpowers = unique(rpowers); sB0]lj-[Un
R Q8"vF#
VKPsg
% Pre-compute the values of r raised to the required powers, ;-i)}<
% and compile them in a matrix: {U9{*e$=
% ----------------------------- `$"{-
if rpowers(1)==0 ,M]W_\N~E
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ^E,
#}cW
rpowern = cat(2,rpowern{:}); r6D3u(kMb
rpowern = [ones(length_r,1) rpowern]; +v%+E{F$+
else `_D A!
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); <OiH%:G/1
rpowern = cat(2,rpowern{:}); Zc";R!At
end t^bh2$J
rhF2U
&|IO+'_
% Compute the values of the polynomials: E\2f"s
% -------------------------------------- F`;q9<NYRW
y = zeros(length_r,length(n)); b 2\J<Nw
for j = 1:length(n) ^!m%:r7Dr
s = 0:(n(j)-m_abs(j))/2; UnDX .W*2
pows = n(j):-2:m_abs(j); dM"5obEb
for k = length(s):-1:1 B8wGWZ@
p = (1-2*mod(s(k),2))* ... ?5G;=#I
prod(2:(n(j)-s(k)))/ ... #- L <
prod(2:s(k))/ ...
ndyIsR
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 9QD+
prod(2:((n(j)+m_abs(j))/2-s(k))); #m{F*(%
idx = (pows(k)==rpowers); [$6YPM>Ee
y(:,j) = y(:,j) + p*rpowern(:,idx); fG?a"6~
end KsTE)@F:
/`qQWB5b
if isnorm 7#HSe#0J
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); n1x3q/~
end i1{)\/f3
end MTR+|I3V
% END: Compute the Zernike Polynomials P(\x. d:
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% v)vogtAQa
CTqhXk[
&G-dxET]
% Compute the Zernike functions: eiA$) rzy
% ------------------------------
%U[H`E
idx_pos = m>0; )eX{a/Be
idx_neg = m<0; fHuWBC_YO
2Z9ck|L>
PTQN.[bBh
z = y; !(S.7#-r
if any(idx_pos) `/G9*tIR8g
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); xNJ*TA[+
end )*}?EI4.
if any(idx_neg) y2B'0l
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); "-HWw?rx/
end T7Y+ WfYh
do l8O
>qMzQw2
% EOF zernfun 1Si$Q