切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9394阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, E.bi05l  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, siDh="{s  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? Y/ot3[  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? =WZqQq{  
    yL4 T  
     kzmQm  
    "Ml&[O ge  
    *u6Y8IL1  
    function z = zernfun(n,m,r,theta,nflag) T GB_~Bqe  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. D('2p8;2"7  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N mog[pu:!,  
    %   and angular frequency M, evaluated at positions (R,THETA) on the SlLw{Yb7\.  
    %   unit circle.  N is a vector of positive integers (including 0), and s) O[t  
    %   M is a vector with the same number of elements as N.  Each element lK'Rn~  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) owpWz6k7  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, Ty(@+M~-  
    %   and THETA is a vector of angles.  R and THETA must have the same D#A~Nbc  
    %   length.  The output Z is a matrix with one column for every (N,M) #:x4DvDkR  
    %   pair, and one row for every (R,THETA) pair. -5l6&Y   
    % f$HH:^#  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike qo6y %[  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), &hIRd,1#  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral S"mcUU}}  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, -D^A:}$  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 8e~|.wOL  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. qGmNz}4D5  
    % aA`/E  
    %   The Zernike functions are an orthogonal basis on the unit circle. qB]i6*  
    %   They are used in disciplines such as astronomy, optics, and =,!\~`^  
    %   optometry to describe functions on a circular domain. cXMhq<GkAA  
    % nR>r2wMk@  
    %   The following table lists the first 15 Zernike functions. b IW'c_ ,  
    % w9RS)l2FQ  
    %       n    m    Zernike function           Normalization E`H$YS3o  
    %       -------------------------------------------------- q@5K6yE  
    %       0    0    1                                 1 2f`nMW  
    %       1    1    r * cos(theta)                    2 DmVP  
    %       1   -1    r * sin(theta)                    2 }ov&.,vQ  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ]'~vI/p  
    %       2    0    (2*r^2 - 1)                    sqrt(3) KfCoe[Vv  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) &5{xXWJK  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) . v@>JZC  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) lOwS&4UT  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) S\6[EQ65  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) Nr<`Z  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) Si 9Z>MR  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) L(>=BK*  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) +|Hioq* ,t  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 'D1A}X  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) ;< )~Y-  
    %       -------------------------------------------------- gkBdR +  
    % w6dFb6~R  
    %   Example 1: [ =x s4=  
    % v4miU;|\  
    %       % Display the Zernike function Z(n=5,m=1) C${ S^v  
    %       x = -1:0.01:1; 9mc!bj^811  
    %       [X,Y] = meshgrid(x,x); >>Ts??  
    %       [theta,r] = cart2pol(X,Y); p,pR!qC>  
    %       idx = r<=1; )?M9|u  
    %       z = nan(size(X)); K ]OK:hY4  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); (KZHX5T=  
    %       figure /N>e&e[35\  
    %       pcolor(x,x,z), shading interp @;xMs8@  
    %       axis square, colorbar <WXzh5D2  
    %       title('Zernike function Z_5^1(r,\theta)') 1 Q-bYJG  
    % C'=k&#<-  
    %   Example 2: &0TVi  
    % +bK.NcS  
    %       % Display the first 10 Zernike functions GSoZx0  
    %       x = -1:0.01:1; ffXyc2o  
    %       [X,Y] = meshgrid(x,x); 8E&XbqP+  
    %       [theta,r] = cart2pol(X,Y); C.^Ven  
    %       idx = r<=1; .O*bILU  
    %       z = nan(size(X)); &Lt[WT$  
    %       n = [0  1  1  2  2  2  3  3  3  3]; gw`B"c|  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; m+{K^kr[  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; cWGDee(  
    %       y = zernfun(n,m,r(idx),theta(idx)); }),w1/#5u8  
    %       figure('Units','normalized') b96%")  
    %       for k = 1:10 <D&)OxEn\  
    %           z(idx) = y(:,k); iV FkYx%}  
    %           subplot(4,7,Nplot(k)) 3QSZ ZJ  
    %           pcolor(x,x,z), shading interp DcMJ^=r8O:  
    %           set(gca,'XTick',[],'YTick',[]) ]`g <w#  
    %           axis square 3Y)PU=  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) @cRZk`|1n  
    %       end xR"M*%{@0  
    % ]%uZ\Q;9p  
    %   See also ZERNPOL, ZERNFUN2. Uw-p758dD  
    +9O5KI?P  
    4ww]9J  
    %   Paul Fricker 11/13/2006 6OiSK@<Hk  
    M L7 \BT  
     `G1&Z]z  
    j7FN\ cz  
    ;o/>JHGj  
    % Check and prepare the inputs: S~qZr  
    % ----------------------------- b,P]9$Ut  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) }7{t^>;D  
        error('zernfun:NMvectors','N and M must be vectors.') Obw?_@X  
    end ky>wOaTmN6  
    bW#@OrsS  
    KtS)'jf  
    if length(n)~=length(m) ?Y:x[pOe  
        error('zernfun:NMlength','N and M must be the same length.') 5#3W5z  
    end C=uZ1xg*,  
    1tCQpf  
    Z'^U ad6  
    n = n(:); y5= `ap  
    m = m(:); 5_0(D;Q  
    if any(mod(n-m,2)) /$n ~lf  
        error('zernfun:NMmultiplesof2', ... ~zm 7?_"@]  
              'All N and M must differ by multiples of 2 (including 0).') dk QaM@  
    end _qvK*nE  
    A392=:N+Q  
    q0%  
    if any(m>n) S1n3(U:m  
        error('zernfun:MlessthanN', ... c4e_6=Iv  
              'Each M must be less than or equal to its corresponding N.') ^^i6|l1  
    end *O:r7_ Y0  
    1\RGM<q$f  
    9 7%0;a8  
    if any( r>1 | r<0 ) K.C> a:J  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') sUl6hX4  
    end ?#0snlah|  
    s#h8%['  
    oMcK`%ydm  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) YL jHt\  
        error('zernfun:RTHvector','R and THETA must be vectors.') QQk{\ PV  
    end w.Ezg j  
    UX`]k{Mz  
    * v8Ts  
    r = r(:); -71dN0hWh  
    theta = theta(:); qLncn}oNM  
    length_r = length(r); d{et8N  
    if length_r~=length(theta) ?%R w(E  
        error('zernfun:RTHlength', ... |{g+Y  
              'The number of R- and THETA-values must be equal.') 0,*%vG?Q  
    end ;TQf5|R\K  
    D+V7hpH-  
    >idBS  
    % Check normalization: ;vhyhP.oM  
    % -------------------- wI M{pK  
    if nargin==5 && ischar(nflag) [#" =yzR<3  
        isnorm = strcmpi(nflag,'norm'); O^LTD#}$a)  
        if ~isnorm DPe]daF  
            error('zernfun:normalization','Unrecognized normalization flag.') d "BW/%m|g  
        end iK;dU2h  
    else ?:^mBb) T  
        isnorm = false; -@^Zq}  
    end HQ!Xj .y  
    J MX6yV  
    t<uYM  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% SEQ%'E5-'  
    % Compute the Zernike Polynomials jD) {I  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% DG(7|`(aY  
    #Z=tJ  
    kI*(V [i  
    % Determine the required powers of r: >,C4rC+:XN  
    % ----------------------------------- G DSfT{kK\  
    m_abs = abs(m); .F&9.#>  
    rpowers = []; lM\LN^f5*  
    for j = 1:length(n) z;]CmR@Ki  
        rpowers = [rpowers m_abs(j):2:n(j)]; >Sk[vI0Y  
    end n9LGP2#!  
    rpowers = unique(rpowers); $ E1Tb{'  
    Ocg"M Gb  
    rgIrr5  
    % Pre-compute the values of r raised to the required powers, 2J;`m_oP  
    % and compile them in a matrix: \a "Ct'  
    % ----------------------------- { PlK@#UN  
    if rpowers(1)==0 (A k\Lm  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Qz<d~ N  
        rpowern = cat(2,rpowern{:}); U IJx*  
        rpowern = [ones(length_r,1) rpowern]; %/"Oxi^G  
    else FHy76^h>e  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Itm8b4e9;  
        rpowern = cat(2,rpowern{:}); )G^TW'9  
    end `znB7VQ0  
    *E>.)B i  
    ofc.zwH  
    % Compute the values of the polynomials: U3;aLQ*  
    % -------------------------------------- -P=g3Q i  
    y = zeros(length_r,length(n)); $X`y%*<<v  
    for j = 1:length(n) TmRx KrRs  
        s = 0:(n(j)-m_abs(j))/2; @}FAwv^f  
        pows = n(j):-2:m_abs(j); wn +FTqj  
        for k = length(s):-1:1 yT OyDm-  
            p = (1-2*mod(s(k),2))* ... 4FeEGySow  
                       prod(2:(n(j)-s(k)))/              ... >hMUr*j  
                       prod(2:s(k))/                     ... !&kL9A).  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 2H#N{>7  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); l1_X(Z._V  
            idx = (pows(k)==rpowers); \L!uHAE2a  
            y(:,j) = y(:,j) + p*rpowern(:,idx); qG8s;_G  
        end 4Wel[]  
         dLh6:Gh8_I  
        if isnorm `qpc*enf0  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ";3*?/uM  
        end UgHf*m  
    end 4|J[Jdj  
    % END: Compute the Zernike Polynomials hP?fMW$V  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% rp! LP#*  
    s}x>J8hK  
    bPD)D'Hs  
    % Compute the Zernike functions: Ry;$^.7%  
    % ------------------------------ hAR? t5c  
    idx_pos = m>0; ZwI 1* f  
    idx_neg = m<0; GrEs1M1]*  
    kka"C]!  
    :1fagaPg  
    z = y; =6nD0i 9+  
    if any(idx_pos) #mc!Wt 10  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); J07O:cjyu  
    end 'E]A.3-Mt  
    if any(idx_neg) ND]S(C"?  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); _uH9XGm  
    end 9V!-ZG  
    a_T,t'6  
    :Z`4j  
    % EOF zernfun iv%w!3#  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  vs*I7<  
    )/TVJAJ  
    DDE还是手动输入的呢? yS"0/Rm}  
    a}D&$yz2  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究