切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9151阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, N~kYT\$b#  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, [eN{Ft0x  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? )K6{_~Kc\  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? gc:>HX );)  
    J|q_&MX/  
    #lC{R^SL  
    j%h Y0   
    wz#n$W3mGf  
    function z = zernfun(n,m,r,theta,nflag) srkOa d  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle.  M:$nL  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ?C{N0?[P-  
    %   and angular frequency M, evaluated at positions (R,THETA) on the q'r3a+  
    %   unit circle.  N is a vector of positive integers (including 0), and q<8HG_  
    %   M is a vector with the same number of elements as N.  Each element TK>}$.c%+  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) zK92:+^C   
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, <coCu0  
    %   and THETA is a vector of angles.  R and THETA must have the same pp`U]Q5"gX  
    %   length.  The output Z is a matrix with one column for every (N,M) ;CZcY] ol  
    %   pair, and one row for every (R,THETA) pair. HXQ rtJ  
    % =R"tnjR  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike i5"q1dRQ  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), qsRh ihPX  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral QMY4%uyY!  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 8(;i~f:bCW  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized J#]y KgT  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. l:"*]m7o_  
    % _JDr?Kg  
    %   The Zernike functions are an orthogonal basis on the unit circle. T1&H!  
    %   They are used in disciplines such as astronomy, optics, and VLN3x.BY  
    %   optometry to describe functions on a circular domain. 9="sx 8?  
    % do,X{\  
    %   The following table lists the first 15 Zernike functions. nSiNSLv  
    % %R>S"  
    %       n    m    Zernike function           Normalization <hbbFL}|%  
    %       -------------------------------------------------- WXU6 J?tIm  
    %       0    0    1                                 1 k]iS3+nD  
    %       1    1    r * cos(theta)                    2 h)vTu%J:  
    %       1   -1    r * sin(theta)                    2 O2dgdtm  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) gEsR-A!m  
    %       2    0    (2*r^2 - 1)                    sqrt(3) A~V\r<N j  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) >6 #\1/RP  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) !y?hn$w0  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 88j ;7  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) Gf\_WNrSE+  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) du,-]fF  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) }0RFo96) v  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) &:*+p-!2<  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) f4_G[?9,  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) gj^]}6-P  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) auW]rwY  
    %       -------------------------------------------------- |/;5|  z  
    % 6DW|O<k^j  
    %   Example 1: C>dJ:.K%H  
    % ew$Z5N:  
    %       % Display the Zernike function Z(n=5,m=1) Dys"|,F  
    %       x = -1:0.01:1; X)OP316yx  
    %       [X,Y] = meshgrid(x,x); Uc0'XPo3I  
    %       [theta,r] = cart2pol(X,Y); #>B1$(@  
    %       idx = r<=1; #U D  
    %       z = nan(size(X)); ?/MXcI(  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); )d u{ZWr  
    %       figure );DIrA  
    %       pcolor(x,x,z), shading interp B31-<w  
    %       axis square, colorbar S(h*\we  
    %       title('Zernike function Z_5^1(r,\theta)') oZ:F3 GQ4Q  
    % >L`mF_WG  
    %   Example 2: pw yl,A  
    % .G~5F- 8'  
    %       % Display the first 10 Zernike functions @I6A9do  
    %       x = -1:0.01:1; p|V1Gh<  
    %       [X,Y] = meshgrid(x,x); {OrE1WHB  
    %       [theta,r] = cart2pol(X,Y); F|`B2Gr  
    %       idx = r<=1; \Pmk`^T  
    %       z = nan(size(X)); ^X%4@,AE  
    %       n = [0  1  1  2  2  2  3  3  3  3]; 'a?.X _t  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; >C&<dO#i  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; G3^]Wwu  
    %       y = zernfun(n,m,r(idx),theta(idx)); mm<iT59  
    %       figure('Units','normalized') u>6/_^iq  
    %       for k = 1:10 1>x@1Mo+K  
    %           z(idx) = y(:,k); -xIhN?r)  
    %           subplot(4,7,Nplot(k)) kQlcT"R  
    %           pcolor(x,x,z), shading interp _hL4@ C  
    %           set(gca,'XTick',[],'YTick',[]) ,nRwwFd.  
    %           axis square XPo'iI-  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) L)Ar{*xC  
    %       end v^_]W3K  
    % !>Y\&zA  
    %   See also ZERNPOL, ZERNFUN2. %]$p ^m  
    T)tHN#6I  
    Nw& }qSN  
    %   Paul Fricker 11/13/2006 FXEfD"  
    N/{Yi _n  
    i=H>D  
    &\` a5[  
    L9?/ -@M  
    % Check and prepare the inputs: SH$cn,3F8  
    % ----------------------------- ":^ NLBm>5  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) cBR8HkP~  
        error('zernfun:NMvectors','N and M must be vectors.') 02#Iip3t  
    end ,W8Iabi^  
    jTUf4&b-  
    "M0l;  
    if length(n)~=length(m) #L= eK8^e  
        error('zernfun:NMlength','N and M must be the same length.') KM(9& 1/  
    end )u)$ `a  
    }d\Tk(W  
    c1AG3Nb  
    n = n(:); ,3- -ERf  
    m = m(:); \ jXN*A  
    if any(mod(n-m,2)) ;(0$~O$3u  
        error('zernfun:NMmultiplesof2', ... 7O9hn2?e  
              'All N and M must differ by multiples of 2 (including 0).') #iU8hUbo  
    end bd P,Zqd  
    !5SQN5K  
    UK_aqB  
    if any(m>n) ^C)TM@+  
        error('zernfun:MlessthanN', ... =>z tBw\  
              'Each M must be less than or equal to its corresponding N.') >aC\_Mc  
    end !a&SB*%^I3  
    8u5 'g1M  
    xm,`4WdG  
    if any( r>1 | r<0 ) fDEu%fUYZ  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') BS,5W]ervE  
    end , 64t  
    /b:t;0G  
    M$4=q((0  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Ao,!z  
        error('zernfun:RTHvector','R and THETA must be vectors.') [aM'  
    end -S%q!%}u  
    $K_YC~  
    11y .z^  
    r = r(:); 6^IqSNn-  
    theta = theta(:); X})Imk7&E  
    length_r = length(r); MjXE|3&  
    if length_r~=length(theta) jy(+ 0F  
        error('zernfun:RTHlength', ... *zVLy^L_8  
              'The number of R- and THETA-values must be equal.') vuo'"^ =p0  
    end =e!l=d|/  
    H9san5{  
    =1 BNCKT<  
    % Check normalization: {pb9UUP2  
    % -------------------- #;"D)C  
    if nargin==5 && ischar(nflag) ~@4ZV  
        isnorm = strcmpi(nflag,'norm'); ;64mf`  
        if ~isnorm jWK@NXMH  
            error('zernfun:normalization','Unrecognized normalization flag.') Z 5)_B,E:X  
        end 'LbeL1ca  
    else A6NxM8ybn+  
        isnorm = false; Gkv~e?Kc~^  
    end Gl8&FrR  
    7{An@hNh  
    '-PMF~~S  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% .-KtB(t  
    % Compute the Zernike Polynomials I& M36f  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% phgexAq  
    `e $n$Bh  
    @ <OO  
    % Determine the required powers of r: /j' B\,  
    % ----------------------------------- IObx^N_K  
    m_abs = abs(m); MZ5Y\-nq\  
    rpowers = []; Cl6m$YUt  
    for j = 1:length(n) @1qdd~B}  
        rpowers = [rpowers m_abs(j):2:n(j)]; .5Knbc  
    end 7Y32p'  
    rpowers = unique(rpowers); (/SGT$#8  
    ^.D}k  
    {eEC:[  
    % Pre-compute the values of r raised to the required powers, %-# q O  
    % and compile them in a matrix: ZMoJ#p(  
    % ----------------------------- eB= v~I3  
    if rpowers(1)==0 os1?6 z~  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); WDE e$k4.  
        rpowern = cat(2,rpowern{:}); !6zyJc @01  
        rpowern = [ones(length_r,1) rpowern]; Il{^ j6  
    else L\}Pzxn  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); n1*&%d'7  
        rpowern = cat(2,rpowern{:}); Re*|$r#  
    end kG)2%  
    -=$% {  
    Mny'9hsl  
    % Compute the values of the polynomials: F&QTL-pQW  
    % -------------------------------------- $s-9|Lbs`  
    y = zeros(length_r,length(n)); <t{?7_ 8  
    for j = 1:length(n) PMgQxM*h  
        s = 0:(n(j)-m_abs(j))/2; =n-z;/NL  
        pows = n(j):-2:m_abs(j); Q !9HA[Ly  
        for k = length(s):-1:1 g .x=pt  
            p = (1-2*mod(s(k),2))* ...  9<|m4  
                       prod(2:(n(j)-s(k)))/              ... Ys-Keyg  
                       prod(2:s(k))/                     ... _+ twq i  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ch@x]@-;A3  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); PSTu/^  
            idx = (pows(k)==rpowers); d/XlV]#2x\  
            y(:,j) = y(:,j) + p*rpowern(:,idx); ~ww?Emrw  
        end ^ <qrM  
         [N)#/ 6j  
        if isnorm x*.Ye 5Jb  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 1GtOA3,~;-  
        end E: 9o;JU  
    end F =XF]  
    % END: Compute the Zernike Polynomials ,>;!%Ui/p  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 2B7h9P.NB  
    GR,J0LT   
    fNkuX-om  
    % Compute the Zernike functions: m CM|&u  
    % ------------------------------ Kb}MF9?:e  
    idx_pos = m>0; q0&Wk"X%rr  
    idx_neg = m<0; *B0V<mV  
    fr+@HUOxsl  
    : *ERRSL)  
    z = y; f1A_`$>  
    if any(idx_pos) nV'3sUvR#  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); -#Np7/  
    end <^xfcYx\  
    if any(idx_neg) _=ugxL #eB  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); wGPotPdE2  
    end ],n%Xp  
    M[~Jaxw%  
    W. ^Ei\w/t  
    % EOF zernfun Vo%Yf9C  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  UXH"si:  
    8uch i  
    DDE还是手动输入的呢? ~e">_;k6  
    d-B7["z,  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究