切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9105阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, 8m% +O#  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, g'2'K  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? /5cFa  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? q@K8,=/.#  
    Ik[aiz  
    DmDsn  
    :)f/>-   
    ~ *:{U   
    function z = zernfun(n,m,r,theta,nflag) 7{<:g!  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 1Rrp#E}  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N /.PjHTM<  
    %   and angular frequency M, evaluated at positions (R,THETA) on the )P&>Tc?;z  
    %   unit circle.  N is a vector of positive integers (including 0), and A4 ;EtW+F  
    %   M is a vector with the same number of elements as N.  Each element `PML 4P[  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) },r30`)Q  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, :[icd2JCw]  
    %   and THETA is a vector of angles.  R and THETA must have the same +/!kL0[v  
    %   length.  The output Z is a matrix with one column for every (N,M) IQn|0$':Z  
    %   pair, and one row for every (R,THETA) pair. h SGI  
    % Bw5zh1ALC;  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike qg521o$*  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), vo48\w7[  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral &f12Q&jY7  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, B[XVTok  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized &T7|f!y  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. !~X[qT  
    % Djv0]Sm^!  
    %   The Zernike functions are an orthogonal basis on the unit circle. P-B3<~*i!  
    %   They are used in disciplines such as astronomy, optics, and 21(8/F ~{  
    %   optometry to describe functions on a circular domain. Po+I!TL'  
    % LOm*=MVex  
    %   The following table lists the first 15 Zernike functions. y"N7r1Pf  
    % )=,%iL -  
    %       n    m    Zernike function           Normalization TVaD',5_V%  
    %       -------------------------------------------------- Ql~9a [8T~  
    %       0    0    1                                 1 =E{e|(1+u  
    %       1    1    r * cos(theta)                    2 #jY\l&E  
    %       1   -1    r * sin(theta)                    2 +{b!,D3sa*  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) *g0}pD;r  
    %       2    0    (2*r^2 - 1)                    sqrt(3) AH*{Bi[vX  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) ~!PAs_O  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) vTrjhTa\  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) M5$YFGGR  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) Gk"o/]Sf  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) \*>r[6]*&5  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) R$[nYw  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) +TA 'P$j  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) DV={bcQ  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) x3./  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) U)v['5%  
    %       -------------------------------------------------- >Yr-aDV  
    % ;3\oU$'  
    %   Example 1: V L^.7U  
    % I+qg'mo  
    %       % Display the Zernike function Z(n=5,m=1) 608}-J=3#  
    %       x = -1:0.01:1; , `4chD  
    %       [X,Y] = meshgrid(x,x); .Vohd@s9l  
    %       [theta,r] = cart2pol(X,Y); Vjv~RNGF  
    %       idx = r<=1; 5m.{ayE  
    %       z = nan(size(X));  z]/;?  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); zWN/>~}U \  
    %       figure x2q6y  
    %       pcolor(x,x,z), shading interp ;m/h?Y~  
    %       axis square, colorbar 4CUoXs'  
    %       title('Zernike function Z_5^1(r,\theta)') yH\3*#+  
    % hDO\Q7  
    %   Example 2: &E{CQ#k  
    % uL\b*rI  
    %       % Display the first 10 Zernike functions Xv1 SRP#  
    %       x = -1:0.01:1; [r[IWy(}  
    %       [X,Y] = meshgrid(x,x); & XS2q0-x  
    %       [theta,r] = cart2pol(X,Y); =r w60B  
    %       idx = r<=1; Qs38VlR_m  
    %       z = nan(size(X)); h8nJt>h  
    %       n = [0  1  1  2  2  2  3  3  3  3]; JbV\eE#KrC  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; qh|t}#DrR  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; #hp 7@ Tu  
    %       y = zernfun(n,m,r(idx),theta(idx)); $)HD`E  
    %       figure('Units','normalized') `"7}'|  
    %       for k = 1:10 \&{a/e2:S  
    %           z(idx) = y(:,k); {;z{U;j  
    %           subplot(4,7,Nplot(k)) C:*=tD1  
    %           pcolor(x,x,z), shading interp Q9i&]V[`  
    %           set(gca,'XTick',[],'YTick',[]) k-:wM`C  
    %           axis square 3MmpB9l#H  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) _H,xnh#nZ  
    %       end S.<aCN<@  
    % )bd)noZi  
    %   See also ZERNPOL, ZERNFUN2. 3"*tP+H  
    w5C$39e\G  
    ?S*Cvr+=4  
    %   Paul Fricker 11/13/2006 O c[F  
    lx'^vK%F  
     wZ(H[be  
    j&(Yk"j+  
    .S5%Qa [uW  
    % Check and prepare the inputs: %9 q]  
    % ----------------------------- Io(*_3V)B  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 6UAn# d9  
        error('zernfun:NMvectors','N and M must be vectors.') gwA+%]  
    end EZ"n3#/  
    +jEtu[ ;  
    TR<M3,RG#%  
    if length(n)~=length(m) %Tv2op  
        error('zernfun:NMlength','N and M must be the same length.') J1s~w`,  
    end >U~{WM$"Y  
    5 O't-'  
    2l4*6rYa(  
    n = n(:); { R`"Nk  
    m = m(:); 483/ZgzT`  
    if any(mod(n-m,2)) 3)6TnY/u6{  
        error('zernfun:NMmultiplesof2', ... =O1py_m  
              'All N and M must differ by multiples of 2 (including 0).') y6hb-: #1  
    end F3?PlH:Y  
    H@'f=Y*D  
    I[l8@!0  
    if any(m>n) hZ[(Ik]*Zd  
        error('zernfun:MlessthanN', ... f?qp*  
              'Each M must be less than or equal to its corresponding N.') [ ,&O  
    end m8T< x>  
    8ofKj:W]  
    NT0im%  
    if any( r>1 | r<0 ) ^H(,^cVN  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') F"ua`ercI  
    end =pCO1<wR  
    pBxyq"z  
    Gp9:#L!  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) MQY}}a-oug  
        error('zernfun:RTHvector','R and THETA must be vectors.') jU9\BYUg  
    end F1q6 3  
    \-W|)H  
    tRCz[M&  
    r = r(:); Yo*.? Mq'  
    theta = theta(:); ~PtIq.BY  
    length_r = length(r); W7` fI*lc  
    if length_r~=length(theta) -z~;f<+I`  
        error('zernfun:RTHlength', ... k9_c<TSzu  
              'The number of R- and THETA-values must be equal.') -<{;.~nI.  
    end _)U.5f<   
    h]jy):9L  
    ?/1Eu47  
    % Check normalization: mUdj2vB$+'  
    % -------------------- >+FaPym  
    if nargin==5 && ischar(nflag) vveL|j  
        isnorm = strcmpi(nflag,'norm'); Rn_FYP  
        if ~isnorm >X_5o^s2s  
            error('zernfun:normalization','Unrecognized normalization flag.') d=DQS>Nz  
        end n)uck5  
    else ;i,3KJ[L  
        isnorm = false; %F}i2!\<L  
    end aCF=Og  
    l3:2f-H   
    EM7Z g 65  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% i@L_[d^|j`  
    % Compute the Zernike Polynomials -d4|EtN  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% })y B2Q0  
    !T"jvDYH  
    8)ykXx/f@  
    % Determine the required powers of r: x(+H1D\W   
    % ----------------------------------- IBz)3gj J  
    m_abs = abs(m); X.GK5Phd  
    rpowers = []; VCX^D)[-  
    for j = 1:length(n) E}g)q;0v|2  
        rpowers = [rpowers m_abs(j):2:n(j)]; JFu9_=%+  
    end A&S n^mw  
    rpowers = unique(rpowers); `kYcTFk  
    #SX-Y)> 1@  
    :pdl2#5H^  
    % Pre-compute the values of r raised to the required powers, U[{vA6  
    % and compile them in a matrix: m0p%R>:5  
    % ----------------------------- e0ULr!p  
    if rpowers(1)==0 ~7>D>!!  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ugzrG0=lx  
        rpowern = cat(2,rpowern{:}); hjq@ .5  
        rpowern = [ones(length_r,1) rpowern]; dwqR,|  
    else l.xKv$uOGR  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 2&zklXuo:  
        rpowern = cat(2,rpowern{:}); +-:o+S`q~  
    end UuCRQNH  
    oc"7|YG  
    J,*+Ak ~  
    % Compute the values of the polynomials: 8 .t3`FGH  
    % -------------------------------------- Ip |=NQL>  
    y = zeros(length_r,length(n)); U&W/Nj  
    for j = 1:length(n) j@R"AP}  
        s = 0:(n(j)-m_abs(j))/2; o8X? 1  
        pows = n(j):-2:m_abs(j); .q<5OE(f  
        for k = length(s):-1:1 & zv!cf  
            p = (1-2*mod(s(k),2))* ... p"0Dl9  
                       prod(2:(n(j)-s(k)))/              ... b(\Mi_J  
                       prod(2:s(k))/                     ... 8?1MnjhX10  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... /vI"v 4  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); |W*5<2Q9  
            idx = (pows(k)==rpowers); ^<3{0g-"AW  
            y(:,j) = y(:,j) + p*rpowern(:,idx); Q^8/"aV\  
        end 0),fY(D2T  
         $Lz!04  
        if isnorm mD%IHzbn H  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); eV"s5X[$  
        end z.^_;Vql_  
    end nrR2U`  
    % END: Compute the Zernike Polynomials V  n+a-v  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 29zMs9oKPP  
    Dq-[b+bm  
    vX_;Y#uD  
    % Compute the Zernike functions: M)~sL1)  
    % ------------------------------ kN6 jX  
    idx_pos = m>0; 4K ]*bF44  
    idx_neg = m<0; ]c M8TT  
    MDBqIL]Hc  
    h; 6G~D  
    z = y; ' e %>Ip  
    if any(idx_pos) y>cLG5v  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); vl~HV8MAv  
    end -EP(/CS!  
    if any(idx_neg) -qBdcbi|x)  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); EQQ@nW{;  
    end Zs8]A0$  
    sN K^.0  
    CF:L#r  
    % EOF zernfun R@#xPv4o%  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  )db:jPkwd  
    Q[aF"5h%  
    DDE还是手动输入的呢? %'=2Jy6h  
    ssS"X@VZ \  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究