切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9006阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, g77:92  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, t^=S\1"R\  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? R1Fcd@DWD  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? NOFH  
    Q$5%9  
    N+vsQ!Qz  
    jw)c|%r>  
    SB:z[kfz|  
    function z = zernfun(n,m,r,theta,nflag) w3;T]R*  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. |9[)-C~N7  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N lpjby[S  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 94?/Rhs5  
    %   unit circle.  N is a vector of positive integers (including 0), and hP_{$c{4:g  
    %   M is a vector with the same number of elements as N.  Each element #@ F   
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 9fYof  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, TpYdIt9#>  
    %   and THETA is a vector of angles.  R and THETA must have the same Pk6_1LV  
    %   length.  The output Z is a matrix with one column for every (N,M) %r@:7/  
    %   pair, and one row for every (R,THETA) pair. 4 g8t  
    % +E+I.}sOB  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike U^Iq]L  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), `69xR[f  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral {>3w"(f7o  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ItE)h[86  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ?[.g~DK,  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. of'H]IZ  
    % (hIe!"s *  
    %   The Zernike functions are an orthogonal basis on the unit circle. M (:_(4~  
    %   They are used in disciplines such as astronomy, optics, and {5SJ0'.B2g  
    %   optometry to describe functions on a circular domain. (\4YBaGd  
    % ?{~. }Vn  
    %   The following table lists the first 15 Zernike functions. -h2 1  
    % 9 1ec^g  
    %       n    m    Zernike function           Normalization o}Zl/&(  
    %       -------------------------------------------------- Hiih$O+  
    %       0    0    1                                 1 6-\C?w A  
    %       1    1    r * cos(theta)                    2 -AXMT3p=1  
    %       1   -1    r * sin(theta)                    2 ?Hbi[YD  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) w69G6G(  
    %       2    0    (2*r^2 - 1)                    sqrt(3) m@yx6[E#  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) .VkLF6  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ^ lG^.  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) YVO~0bX:  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) \r}*<CRr6  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) (Li)@Cn%  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) KA."[dVa  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) RohD.`D  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) D[(T--LLT  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ROj=XM:+  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) nVk]Qe  
    %       -------------------------------------------------- ; zfBe%Uf  
    % R[2h!.O8  
    %   Example 1: &_Z8:5e  
    % 4OdK@+-8U  
    %       % Display the Zernike function Z(n=5,m=1) 9|hPl-. .W  
    %       x = -1:0.01:1; e{,[\7nF  
    %       [X,Y] = meshgrid(x,x); e0<L^|S  
    %       [theta,r] = cart2pol(X,Y); DO? bJ01  
    %       idx = r<=1; u_S>`I  
    %       z = nan(size(X)); NAfu$7  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); (<#Ns W!z  
    %       figure r<.*:]L  
    %       pcolor(x,x,z), shading interp @3>nVa  
    %       axis square, colorbar nb|"dK|  
    %       title('Zernike function Z_5^1(r,\theta)') |)Sx"B)  
    % m}nA- *  
    %   Example 2: }{e7wqS$&,  
    % 4Jj O.H  
    %       % Display the first 10 Zernike functions zyFbu=d|O:  
    %       x = -1:0.01:1; ,lw<dB@7"5  
    %       [X,Y] = meshgrid(x,x); ?T:$:IHw  
    %       [theta,r] = cart2pol(X,Y); rVx?Yo1F'  
    %       idx = r<=1; *!+?%e{;b  
    %       z = nan(size(X)); d*<goBd  
    %       n = [0  1  1  2  2  2  3  3  3  3]; kx3]A"]>'  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; (?zZvW8  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; vM2\tL@"  
    %       y = zernfun(n,m,r(idx),theta(idx)); oNBYJ]t  
    %       figure('Units','normalized') ( j~trpe,  
    %       for k = 1:10 atWAhN  
    %           z(idx) = y(:,k); rDWqJ<8  
    %           subplot(4,7,Nplot(k)) 4S#q06=Xe  
    %           pcolor(x,x,z), shading interp Ic&Jhw;]z  
    %           set(gca,'XTick',[],'YTick',[]) [+v}V ,jb  
    %           axis square %+Khj@aX  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) pxs`g&3yd  
    %       end `=f1rXhI+1  
    % )*3sE1  
    %   See also ZERNPOL, ZERNFUN2. D*#r V P  
    a"0'cgB}  
    [8.w2\<?  
    %   Paul Fricker 11/13/2006 zbL6TP@=  
    :j0r~*z-  
    ceqYyVy  
    % z:;t  
    UBxQ4)%  
    % Check and prepare the inputs: ssC5YtF7X  
    % ----------------------------- />9?/&N6"  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) g:nU&-x#R  
        error('zernfun:NMvectors','N and M must be vectors.') (eAh8^)  
    end *QpKeI  
    qjp<_aw  
    f<0nj?  
    if length(n)~=length(m) xN#. Pm~  
        error('zernfun:NMlength','N and M must be the same length.') Wc)f:]7  
    end 8o;9=.<<~u  
    nf MQ3K P  
    .v:K`y;f\(  
    n = n(:);  =j1rw  
    m = m(:); {?9s~{Dl  
    if any(mod(n-m,2)) pJE317 p'  
        error('zernfun:NMmultiplesof2', ... \WVrn>%xu  
              'All N and M must differ by multiples of 2 (including 0).') GlVD!0  
    end <ctn_"p Z  
    \'40u|f  
    It@ak6u?  
    if any(m>n) Mb(aI!;A  
        error('zernfun:MlessthanN', ... V/G'{ q  
              'Each M must be less than or equal to its corresponding N.') lS(?x|dO  
    end }9xEA[@;  
    @E$PjdB5M  
    :d<;h:^_  
    if any( r>1 | r<0 ) `MtPua\_  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') }X3SjNd q  
    end ToN$x^M w  
    4yH=dl4=44  
    =,~h]_\_  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) j9za)G-J  
        error('zernfun:RTHvector','R and THETA must be vectors.') ;?i(WV}ee  
    end )vK %LmP  
    rnVh ]xJ  
    \@4_l?M  
    r = r(:); 8JUUK(&Z  
    theta = theta(:); Nd~?kZZu  
    length_r = length(r);  (Ia}]q  
    if length_r~=length(theta) & ;+u.X  
        error('zernfun:RTHlength', ... j#b?P=|l  
              'The number of R- and THETA-values must be equal.') mlY0G w_e  
    end 5xi f0h-`  
    +?~'K&@  
    ]cnLJ^2  
    % Check normalization: d"|XN{  
    % -------------------- s45Y8!c  
    if nargin==5 && ischar(nflag) P.RlozF5;  
        isnorm = strcmpi(nflag,'norm'); }xHoitOD  
        if ~isnorm _{o=I?+]  
            error('zernfun:normalization','Unrecognized normalization flag.') 31y=Ar""  
        end *Ri?mEv hF  
    else .Mw'P\GtM  
        isnorm = false; ho_;;y  
    end 9LGJ-gL  
    k|,pj^  
    O edL?4  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% DA@YjebP'  
    % Compute the Zernike Polynomials 85l 1  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 4?X#d)L(  
    AyKaazm]9  
    B3'qmi<  
    % Determine the required powers of r: |*7uF<ink6  
    % ----------------------------------- 3C8'0DB  
    m_abs = abs(m); 5DfAL;o!  
    rpowers = []; X|H%jdta  
    for j = 1:length(n) gO?+:}!  
        rpowers = [rpowers m_abs(j):2:n(j)]; `/<KDd:_t  
    end })Rmu."\  
    rpowers = unique(rpowers); hNXPm~OK\  
    uRKCvsisX  
    bv>;%TF  
    % Pre-compute the values of r raised to the required powers, UHz*Tfjb  
    % and compile them in a matrix: {>G\3|^D  
    % ----------------------------- O9]j$,i  
    if rpowers(1)==0 0,(U_+ n  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 0%}$@H5i  
        rpowern = cat(2,rpowern{:}); fM_aDSRa!H  
        rpowern = [ones(length_r,1) rpowern]; I~MBR2$9  
    else 8<k0j&~J  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); n6[bF "v  
        rpowern = cat(2,rpowern{:}); (^Xp\dyZL  
    end f 5_n2  
    mUzNrkG(G  
    0X-u'=Bs  
    % Compute the values of the polynomials: <FMW%4   
    % -------------------------------------- [b J/$A  
    y = zeros(length_r,length(n)); *8U+2zgfC  
    for j = 1:length(n) +M (\R?@gr  
        s = 0:(n(j)-m_abs(j))/2; LS4c|Dv  
        pows = n(j):-2:m_abs(j); bc5+}&W  
        for k = length(s):-1:1 ,v$gQU2  
            p = (1-2*mod(s(k),2))* ... \*!?\Ko`W  
                       prod(2:(n(j)-s(k)))/              ... yEtSyb~GK  
                       prod(2:s(k))/                     ... JTpKF_Za<  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... KSuP'.l  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); ,m!j2H}8  
            idx = (pows(k)==rpowers); G!oq ;<  
            y(:,j) = y(:,j) + p*rpowern(:,idx); D*`|MzlQ  
        end c}Y(Myd  
         Q}W6?XDu  
        if isnorm /+P 4cHv]F  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Uq~{=hMX  
        end Q0!gTV  
    end 4*l ShkL  
    % END: Compute the Zernike Polynomials xg'z_W  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% BkJV{>?_+  
    ]}8<h5h)  
    jio1 #&  
    % Compute the Zernike functions: C!B2 .:ja  
    % ------------------------------ b'O>&V`  
    idx_pos = m>0; 4<70mUnt  
    idx_neg = m<0; xqO'FQO%  
    6/T hbD-C  
    85m[^WGyh  
    z = y; Q4TI '/  
    if any(idx_pos) B=7bQli}  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); i15uHl  
    end cG,B;kMjo  
    if any(idx_neg) OTL=(k  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); oU$Niw9f  
    end X(?.*m@+TB  
    rv&(yA  
    &iR>:=ks N  
    % EOF zernfun "dXRUg"  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  NdGIH/Y;M  
    ZQXv-"  
    DDE还是手动输入的呢? t ~ruP',~\  
    {STOWuY  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究