下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, W U4vb
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, C,e$g
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? i!+3uHWu`)
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? kBQenMm
HZQ3Ht 3Vh
u g$\&rM>
*t-A6)2
\oZUG
function z = zernfun(n,m,r,theta,nflag) uB%^2{uU
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. EvardUB)
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N QRG)~
% and angular frequency M, evaluated at positions (R,THETA) on the ] GPz>k
% unit circle. N is a vector of positive integers (including 0), and Ch&]<#E>`
% M is a vector with the same number of elements as N. Each element t=\[J+
% k of M must be a positive integer, with possible values M(k) = -N(k) :W<,iqSCm
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, 0-; P&m!!
% and THETA is a vector of angles. R and THETA must have the same R~c vml
% length. The output Z is a matrix with one column for every (N,M) Y\9*e5?`I3
% pair, and one row for every (R,THETA) pair. d`][1rZk
% c]v3dHE_h
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike NX #d}M^V
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), eeTaF!W
% with delta(m,0) the Kronecker delta, is chosen so that the integral "?(Fb_}i
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Hh=::Bi
% and theta=0 to theta=2*pi) is unity. For the non-normalized c5+lm}R ?
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ^dKaa
% N}<U[nh'
% The Zernike functions are an orthogonal basis on the unit circle. 6i=wAkn_J
% They are used in disciplines such as astronomy, optics, and gJ~*rWBK:
% optometry to describe functions on a circular domain. v7u}nx
% BU{V,|10a
% The following table lists the first 15 Zernike functions. 9s6lt#?b
% k3h53QTmC
% n m Zernike function Normalization /1
%0A
% -------------------------------------------------- }ucg!i3C
% 0 0 1 1 w[[@&T\`
% 1 1 r * cos(theta) 2 ghR]$SG
% 1 -1 r * sin(theta) 2 d"a7{~l
% 2 -2 r^2 * cos(2*theta) sqrt(6) qfe%\krN{i
% 2 0 (2*r^2 - 1) sqrt(3) [zd-=.:+M[
% 2 2 r^2 * sin(2*theta) sqrt(6) ~?+m=\
% 3 -3 r^3 * cos(3*theta) sqrt(8) A0sW 9P6F
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) YAG3PWmD
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 3<E$m*
% 3 3 r^3 * sin(3*theta) sqrt(8) jM<Ihmh|
% 4 -4 r^4 * cos(4*theta) sqrt(10) nQVBHL>
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 0t0:soZx
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) \{mJO>x
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) {XW>:EU'N
% 4 4 r^4 * sin(4*theta) sqrt(10) tC~itU=V
% -------------------------------------------------- dK$dQR#
% ;S j* {
% Example 1: mmK_xu~f28
% 'FXZ`+r|
% % Display the Zernike function Z(n=5,m=1) EZW?(%b>H
% x = -1:0.01:1; N^at{I6C
% [X,Y] = meshgrid(x,x); . r"?w
% [theta,r] = cart2pol(X,Y); KrzM]x
% idx = r<=1; oI/ThM`=q
% z = nan(size(X)); |th )Q
% z(idx) = zernfun(5,1,r(idx),theta(idx)); U\6DEnII?!
% figure [AwE
% pcolor(x,x,z), shading interp >f/g:[
% axis square, colorbar #O
]IXo(5z
% title('Zernike function Z_5^1(r,\theta)') @ U|u _S@
% wUndNE
% Example 2: rP_)*)
% z<*]h^!3
% % Display the first 10 Zernike functions (7
iMIY
% x = -1:0.01:1; &[pwLYf7
% [X,Y] = meshgrid(x,x); ?^p8]Va%
% [theta,r] = cart2pol(X,Y); UkKpSL}Q2
% idx = r<=1; w:v:znQrW
% z = nan(size(X)); XPKcF I=
% n = [0 1 1 2 2 2 3 3 3 3]; N"y4#W(Z@
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; +(0eOO'\M
% Nplot = [4 10 12 16 18 20 22 24 26 28]; EG6fC4rfC
% y = zernfun(n,m,r(idx),theta(idx)); #n
r1- sf|
% figure('Units','normalized') 6 [E"
% for k = 1:10 h08T Q=n
% z(idx) = y(:,k); 5 <poN)"
% subplot(4,7,Nplot(k)) y
6<tV.
% pcolor(x,x,z), shading interp k9]n/
% set(gca,'XTick',[],'YTick',[]) KG@hjO
% axis square (""&$BJQ|
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) eH6cBX#P.
% end RqR X
% C? S %fF
% See also ZERNPOL, ZERNFUN2. ^<-SW]x
DK;-2K
u)-l+U.
% Paul Fricker 11/13/2006 K~R{q+
6yqp<D0SP)
8qveKS]vZ
\)*qW[C$a
9"TPDU7"
% Check and prepare the inputs: }$jIvb,3?
% ----------------------------- (B5G?cB9
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) TzJN,]F!M
error('zernfun:NMvectors','N and M must be vectors.') wW~2]*n
end 4<|]k?@
*v&RGY[>
F2=97=R
if length(n)~=length(m) zF7T5Ge
error('zernfun:NMlength','N and M must be the same length.') =1C9lKm
end gqd#rjtfz
T28#?Lp6]
RWYA`
n = n(:); &CgD smJo#
m = m(:); :M16ijkx
if any(mod(n-m,2)) b.(^CYYQ
error('zernfun:NMmultiplesof2', ... I6+5 mv\
'All N and M must differ by multiples of 2 (including 0).') fqxMTTg@
end +FI]0r
lCXo+|$?s
^Ue>T8
if any(m>n) K9c:K/H
error('zernfun:MlessthanN', ... ja2LXM
'Each M must be less than or equal to its corresponding N.') MeC@+@C
end udMq>s;
TD<. :ul]
|yr}g-m
if any( r>1 | r<0 ) >K3Lww)Ln
error('zernfun:Rlessthan1','All R must be between 0 and 1.') =x>KA*O1
end kq+L63fZ
xQ4Q '9
6Y=)12T
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) o/&Q^^Xj^~
error('zernfun:RTHvector','R and THETA must be vectors.') Y&nY]VV
end WukD|BCC
c;VW>&,B
q4{ 6@q
r = r(:); 6B=J*8
Hs
theta = theta(:); w5p+Yx=q
length_r = length(r); I?gbu@o
if length_r~=length(theta) z@ 2NAC
error('zernfun:RTHlength', ... 8WMC ~
'The number of R- and THETA-values must be equal.') s&4Y+dk93
end 5 Jd,]~KAP
#-{4F?DA]y
D?$f[+
% Check normalization: RaR$lcG+iY
% -------------------- ral0@\T
if nargin==5 && ischar(nflag) -70Ut
4B
isnorm = strcmpi(nflag,'norm'); :EZTJu
if ~isnorm w;XX jT
error('zernfun:normalization','Unrecognized normalization flag.') LaRY#9
end ,Ao8QN
else @AJt/wPk
isnorm = false; >354O6
end K:mb$YJ&
{=TD^>?
<3'r&ks
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 8@ b83
% Compute the Zernike Polynomials /IODRso/!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 6u7>S?
F[LBQI`zq
fU,sn5zZ
% Determine the required powers of r: s{!F@^a
% ----------------------------------- |VIBSty2d
m_abs = abs(m); EI'(
rpowers = []; f5AK@]4G
for j = 1:length(n) )]'?yS"
rpowers = [rpowers m_abs(j):2:n(j)]; (V*ggii@
end tR1
kn&w
rpowers = unique(rpowers); H13|bM<
Wcbb3N$+
fn)c&|aCt
% Pre-compute the values of r raised to the required powers, m8.sHw
% and compile them in a matrix: ^J?I-LG
% ----------------------------- M%Ov6u<I8
if rpowers(1)==0 c8A
//
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); qm2
rpowern = cat(2,rpowern{:}); uk16
rpowern = [ones(length_r,1) rpowern]; VHJOj
else g9g^zd,
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ,JX/`7y
rpowern = cat(2,rpowern{:}); VB\oK\F5z
end F4@``20|
XDU&Z2A
|nIm$ p'
% Compute the values of the polynomials: s/8>(-H#
% -------------------------------------- y8VLFe;
y = zeros(length_r,length(n)); d
n3sh<
for j = 1:length(n) L"9,K8
s = 0:(n(j)-m_abs(j))/2; IZ"d s=w
pows = n(j):-2:m_abs(j); Ry8@U9B6,t
for k = length(s):-1:1 |\J8:b>}
p = (1-2*mod(s(k),2))* ... WOiw 0
prod(2:(n(j)-s(k)))/ ... "9aiin
prod(2:s(k))/ ... 'Tj9btM*cL
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 4 @ )|N'
prod(2:((n(j)+m_abs(j))/2-s(k))); (bY#!16C:
idx = (pows(k)==rpowers); I8rtta
y(:,j) = y(:,j) + p*rpowern(:,idx); wS9EC}s:Q
end $ba3dqbCW
B/7c`V
if isnorm %Sf%XNtu
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); A46Xei:Ow
end jw]~g+x#$
end u?r=;:N|y
% END: Compute the Zernike Polynomials |p}qK
Fdi
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Z7lv|m&
D<78Tm
x
2Ck'A0d
% Compute the Zernike functions: }j;*7x8(
% ------------------------------ zo4 IY`3
idx_pos = m>0; RX3P%xZ
idx_neg = m<0; gZ8n[zxf6
)OpB\k
$9)| cO
z = y; W{B)c?G]
if any(idx_pos) S2T~7-
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); * EY^t=
end )2~Iqzc4
if any(idx_neg) }}y~\TB~}
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); KF(N=?KO
end w,f1F;!q1
JI##l:,7r
wa7)
% EOF zernfun pCb3^# &o