下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, P,$|.pd'
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, B=>:w%<Ii
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? PRs[!EB6
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? v4?qI >/
q'07
kIm)Um
6' 9ITA
Mw0Kg9M
function z = zernfun(n,m,r,theta,nflag) B,@<60u
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. q8 j
W&_
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N .>5KwEK~
% and angular frequency M, evaluated at positions (R,THETA) on the 4K_ fN
% unit circle. N is a vector of positive integers (including 0), and %n^jho5
% M is a vector with the same number of elements as N. Each element #cN0ciCT'
% k of M must be a positive integer, with possible values M(k) = -N(k) F,t
,Ja
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1,
G_fP%ovh
% and THETA is a vector of angles. R and THETA must have the same \S[7-:Lu^
% length. The output Z is a matrix with one column for every (N,M) !+&Rn\e%7
% pair, and one row for every (R,THETA) pair. $VWeo#b
% SJYy,F],V"
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ZyJdz+L{@V
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), X*Ibk-PUM
% with delta(m,0) the Kronecker delta, is chosen so that the integral mkA1Sh{hX>
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, $6W o$c%
% and theta=0 to theta=2*pi) is unity. For the non-normalized E]^wsS>=
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. g4NxNjM;
% QAp+LSm
% The Zernike functions are an orthogonal basis on the unit circle. HFJna2B`
% They are used in disciplines such as astronomy, optics, and Y9b|lP7!
% optometry to describe functions on a circular domain. 3GH@|id
% "pb$[*_@$
% The following table lists the first 15 Zernike functions. Q(P'4XCm
% `Qf$]Eoft
% n m Zernike function Normalization uXs.7+f
% -------------------------------------------------- s0}OsHAj
% 0 0 1 1 dQ4VpR9|;
% 1 1 r * cos(theta) 2
F
%OA
% 1 -1 r * sin(theta) 2 J&64tQl*
% 2 -2 r^2 * cos(2*theta) sqrt(6) >s@*S9cj:
% 2 0 (2*r^2 - 1) sqrt(3) .hYrE5\-
% 2 2 r^2 * sin(2*theta) sqrt(6) h$#QRH
% 3 -3 r^3 * cos(3*theta) sqrt(8)
ohK_~
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 2v
^bd^]u:
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) &<!DNXQ
% 3 3 r^3 * sin(3*theta) sqrt(8) 2OXcP!\Y
% 4 -4 r^4 * cos(4*theta) sqrt(10) ZI'MfkEZ*
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) RUJkfi=$
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) Dc,h(2
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) gW{<:6}!*
% 4 4 r^4 * sin(4*theta) sqrt(10) EXlmIY4
% -------------------------------------------------- XIM!]
% G_GPnKdd
% Example 1: m5O;aj* i
% e:SBX/\j
% % Display the Zernike function Z(n=5,m=1) KeU|E<|!
% x = -1:0.01:1; SZO$#
% [X,Y] = meshgrid(x,x); L5%t.7B
% [theta,r] = cart2pol(X,Y); p0 @,-
% idx = r<=1; l+6y$2QR
% z = nan(size(X)); o:H^
L,<Tl
% z(idx) = zernfun(5,1,r(idx),theta(idx)); cC{eu[ XW
% figure ~F?vf@k
% pcolor(x,x,z), shading interp pwg$% lv
% axis square, colorbar nz72w_
% title('Zernike function Z_5^1(r,\theta)') #;9I3,@/Y
% uSZCJ#'G
% Example 2: p2]@yE7w
%
U 6((
% % Display the first 10 Zernike functions VR86ok
% x = -1:0.01:1; M2K{{pGJ[&
% [X,Y] = meshgrid(x,x); yN9k-IPI
% [theta,r] = cart2pol(X,Y); ;x 9_
% idx = r<=1; 6#Ag^A
% z = nan(size(X)); l)V!0eW
% n = [0 1 1 2 2 2 3 3 3 3]; l@ +lUx8
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; w! J|KM
% Nplot = [4 10 12 16 18 20 22 24 26 28]; mAycfa
% y = zernfun(n,m,r(idx),theta(idx)); g"k1O
% figure('Units','normalized') Y ^s_v_s
% for k = 1:10 A1b</2
% z(idx) = y(:,k); RrFq"
% subplot(4,7,Nplot(k)) W62 $ HI
% pcolor(x,x,z), shading interp \Wdl1 =`
% set(gca,'XTick',[],'YTick',[]) $uw[X
% axis square *&WkorByW
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}'])
]/l"
% end PUt\^ke
% c$Vu/dgx
% See also ZERNPOL, ZERNFUN2. 4*k>M+o/C4
O$Wi=5
;yfKYN[
% Paul Fricker 11/13/2006 bW"bkA80
bsfYz
8Ld`$_E
jZjWz1+
[i[*xf-B
% Check and prepare the inputs: {1 VHz])I
% ----------------------------- $8/=@E{51
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) nWfzwXP>_
error('zernfun:NMvectors','N and M must be vectors.') ] !7%)
end }ufzlHD
cyM9[X4rC
W''%{A/'
if length(n)~=length(m) 5yOIwzr&Uu
error('zernfun:NMlength','N and M must be the same length.') }BF!!*
end wM$N#K@
U2v;[ >=]
&zuPt5G|
n = n(:); VI xGD#m
m = m(:); <x QvS^|[
if any(mod(n-m,2))
H7`JqS
error('zernfun:NMmultiplesof2', ... 968<yO]
'All N and M must differ by multiples of 2 (including 0).') s9[?{}gd
end :n#8/'%1
AnF"+<
6?;U[eV
if any(m>n) :B^YK].
error('zernfun:MlessthanN', ... mu#IF'|b
'Each M must be less than or equal to its corresponding N.') 1 X8P v*,
end lu_kir~
OC?a[^hB^)
tTjadnX
if any( r>1 | r<0 ) 'E\/H17
error('zernfun:Rlessthan1','All R must be between 0 and 1.') _GhP{C$
end ~Q+E" "
0W_olnZ
PO*;V<^
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) d4ga6N3'
error('zernfun:RTHvector','R and THETA must be vectors.') 8v<802
end (DLk+N4UHA
JXx[e
g~7x+cu0
r = r(:); <?2g\+{s9
theta = theta(:); 8O[br@h:5
length_r = length(r); xK*G'3Ge
if length_r~=length(theta) MG}rvzn@
error('zernfun:RTHlength', ... e/7rr~"|
'The number of R- and THETA-values must be equal.') ugu|?z*dI
end 1"\^@qRv#
`4SwdW n
R|@?6<
% Check normalization: BvnNAi
% -------------------- WMw|lV r
if nargin==5 && ischar(nflag) (]@yDb4
isnorm = strcmpi(nflag,'norm'); _J,lF-,
if ~isnorm gzMp&J
error('zernfun:normalization','Unrecognized normalization flag.') MdC}!&W
end .OM^@V~T
else 4)Bk:K
isnorm = false; i5*BZv>e
end 7&hhKEA
im-XP@<
ykS-5E`
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ixvF`S9
% Compute the Zernike Polynomials gLss2i.r
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% B*@0l:
)MWbZAI
@oNYMQ@)d
% Determine the required powers of r: -=InGm\Y
% ----------------------------------- I3.cy i
m_abs = abs(m); Q)/oU\
rpowers = []; W9rmAQjn
for j = 1:length(n)
N Zu2D
rpowers = [rpowers m_abs(j):2:n(j)]; q/h, jM
end shZEE2Dr
rpowers = unique(rpowers); D_Zt:tzO
)p`zN=t
'QdDXw5o
% Pre-compute the values of r raised to the required powers, 1YtbV3
% and compile them in a matrix: ?APCDZ^
% ----------------------------- 01<Ti"
if rpowers(1)==0 0sP*ChY5S
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); "Ng%"Nz
rpowern = cat(2,rpowern{:}); grxlGS~Q
rpowern = [ones(length_r,1) rpowern]; D & Bdl5g
else 8U)*kmq
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); x+bC\,q
rpowern = cat(2,rpowern{:}); 8zO;=R A7%
end Tr.u'b(
O~OM.:al&
XY,!vLjL
% Compute the values of the polynomials: P_.zp5>
% -------------------------------------- B!x7oD9
y = zeros(length_r,length(n)); ^2`*1el
for j = 1:length(n) 7Tc^}Q
s = 0:(n(j)-m_abs(j))/2; !!<H*9]+W;
pows = n(j):-2:m_abs(j); [{q])P;
for k = length(s):-1:1 &a'mh
p = (1-2*mod(s(k),2))* ... q\G7T{t$.
prod(2:(n(j)-s(k)))/ ... Q"s]<MtdS
prod(2:s(k))/ ... cB6LJ}R
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Gm[XnUR7V
prod(2:((n(j)+m_abs(j))/2-s(k))); Q%QIr
idx = (pows(k)==rpowers); ':7gYP*v
y(:,j) = y(:,j) + p*rpowern(:,idx); ]64pb;w"$D
end Xd@ d$
QKI g5I-
if isnorm @Yw>s9X
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 6Zx)L|B
end =<X4LO)C
end f2?01PM,Q
% END: Compute the Zernike Polynomials !8I80:e_~
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% N (0%C?
W.c>("gC
9*S9~
% Compute the Zernike functions: 629ogJo8
% ------------------------------ .wPI%5D
idx_pos = m>0; ! JauMR
idx_neg = m<0; O$7r)B6Cs
Q"QZ^!zRl
X`A+/{ H
z = y; hz+c]K
if any(idx_pos) I&f!>y?,Z
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); !l$k6,WJi
end bR<XQHl
if any(idx_neg) g~XR#vl$
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); zym6b@+jN
end +ZR>ul-c
[ZL<Q
oml^f~pm
% EOF zernfun >J_(~{-sNG