切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9034阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, CCoT  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, ?e=3G4N  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? m\*;Fx  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? #h=pU/R  
    qmmQH S  
    ZkWX4?&OMt  
    $ljzw@k  
    _*iy *:(o  
    function z = zernfun(n,m,r,theta,nflag) ohEIr2  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. &#/UWv}f 0  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N %u=b_4K"j  
    %   and angular frequency M, evaluated at positions (R,THETA) on the vciO={M  
    %   unit circle.  N is a vector of positive integers (including 0), and m8}c(GwcP  
    %   M is a vector with the same number of elements as N.  Each element % 9 Jx|  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) .)(5F45Wg  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, hW<TP'Zm*  
    %   and THETA is a vector of angles.  R and THETA must have the same MS5X#B  
    %   length.  The output Z is a matrix with one column for every (N,M) ?uAq goCl  
    %   pair, and one row for every (R,THETA) pair. bi{G :xt  
    % 7a0T]  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 0*J},#ba$  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), k2-+3zx  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral . E8Gj'yO  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, fEJF3<UF&  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized =w!>/#U  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. eP(|]Rk  
    % iQd,xr  
    %   The Zernike functions are an orthogonal basis on the unit circle. q%S^3C&  
    %   They are used in disciplines such as astronomy, optics, and kR0/jEz C  
    %   optometry to describe functions on a circular domain. =|+%^)E  
    % ,vDSY N6  
    %   The following table lists the first 15 Zernike functions. S7B\m v  
    % Mq~g+` '  
    %       n    m    Zernike function           Normalization O[Yc-4  
    %       -------------------------------------------------- k,,Bf-?  
    %       0    0    1                                 1 \+Nn>wW.  
    %       1    1    r * cos(theta)                    2 Kcu*Z  
    %       1   -1    r * sin(theta)                    2 qV{iUtYt  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) fphi['X   
    %       2    0    (2*r^2 - 1)                    sqrt(3) S1I# qb  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) '"m-kor  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 4`Ib wg6"B  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) %\f<N1~*  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ]Uj7f4)k  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) `g+Kv&546  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) \yhj{QS.k  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) /1BqC3]tL  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) \x=j  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) pqF!1  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) MA,7 |s  
    %       -------------------------------------------------- ^ *1hz<  
    % *<ILSZ  
    %   Example 1: xLShMv}  
    % `E2RW{$A  
    %       % Display the Zernike function Z(n=5,m=1) P>nz8NRq  
    %       x = -1:0.01:1; DCP B9:u  
    %       [X,Y] = meshgrid(x,x); IY,n7x0d  
    %       [theta,r] = cart2pol(X,Y); Oil~QAd,  
    %       idx = r<=1; ^k2g60]  
    %       z = nan(size(X)); jPIOBEIG  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); !d Z:Ih.[{  
    %       figure ZH)thd9^b  
    %       pcolor(x,x,z), shading interp =#T3p9  
    %       axis square, colorbar >&[q`i{  
    %       title('Zernike function Z_5^1(r,\theta)') z1m-t# v:  
    % rM0Idc.$&&  
    %   Example 2: /?%1;s:'  
    % m)ENj6A>yP  
    %       % Display the first 10 Zernike functions 8&wN9tPYZ  
    %       x = -1:0.01:1; \AOHZ r  
    %       [X,Y] = meshgrid(x,x); G'T: l("l  
    %       [theta,r] = cart2pol(X,Y); Z,I0<ecaD  
    %       idx = r<=1; *&BS[0;  
    %       z = nan(size(X)); DQ.;2W  
    %       n = [0  1  1  2  2  2  3  3  3  3]; }X9G(`N(}  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; W`F?j-4  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; }B`T%(11=  
    %       y = zernfun(n,m,r(idx),theta(idx)); |>/m{L[  
    %       figure('Units','normalized') /_mU%fl  
    %       for k = 1:10 Utj4f-M  
    %           z(idx) = y(:,k); 19;Pjo8  
    %           subplot(4,7,Nplot(k)) 6KE?@3;Om  
    %           pcolor(x,x,z), shading interp -\&b&;_  
    %           set(gca,'XTick',[],'YTick',[]) z7!@^!r  
    %           axis square rqTsKrLe  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 5H2Ugk3  
    %       end 'M35L30  
    % J+ uz{  
    %   See also ZERNPOL, ZERNFUN2. l.uW>AoLh  
    2gJkpf9JN  
    -ZH6*7!  
    %   Paul Fricker 11/13/2006 +[":W?j  
    *?~&O.R"  
    LMaY}m>  
    L=&dJpyfT  
    ~\OZEEI  
    % Check and prepare the inputs: (5GjtFojY|  
    % ----------------------------- 3vj 1FbY  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ^WUG\@B  
        error('zernfun:NMvectors','N and M must be vectors.') .R _-$/ZP  
    end Q#PkfjXS  
    $D m|ol.Z  
    8Z>=sUMQ  
    if length(n)~=length(m) ;<H\{w@D  
        error('zernfun:NMlength','N and M must be the same length.') ;4<!vVf e  
    end %I#[k4,N  
    }K|40oO5  
    |3C5"R3ZGO  
    n = n(:); 'wjL7P I  
    m = m(:); fjLS_Q ;h  
    if any(mod(n-m,2)) C zxF  
        error('zernfun:NMmultiplesof2', ... {YIf rM  
              'All N and M must differ by multiples of 2 (including 0).') Lnc>O'<5P9  
    end 6Ao{Aej|  
    -d *je{c |  
    uF\ ;m.  
    if any(m>n) }{F1Cr   
        error('zernfun:MlessthanN', ... #;hYJ Y  
              'Each M must be less than or equal to its corresponding N.')  h@+(VQ  
    end Gg3< }(  
    wZb7 7  
    "bA8NQIP  
    if any( r>1 | r<0 ) ~IQw?a.E  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') lr9s`>9  
    end Rv|X\Wm  
    6tN!]  
    !h>aP4ofT  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) C%Fc%}[  
        error('zernfun:RTHvector','R and THETA must be vectors.') a H *5(E]  
    end aK]H(F2#  
    6XI$ o,{  
    I2)#."=Ew  
    r = r(:); I5#zo,9  
    theta = theta(:); :tT6V(-W  
    length_r = length(r); kZNVUhW6S  
    if length_r~=length(theta) ]::g-&%Um  
        error('zernfun:RTHlength', ... h`pXUnEZ  
              'The number of R- and THETA-values must be equal.') f vr|<3ojo  
    end d[y(u<Vl  
    F1NYpCR  
    2py [P  
    % Check normalization: p_qJI@u8  
    % -------------------- A;gU@8m  
    if nargin==5 && ischar(nflag) z<,-:=BC"  
        isnorm = strcmpi(nflag,'norm'); n0opb [?  
        if ~isnorm 1Ts$kdO  
            error('zernfun:normalization','Unrecognized normalization flag.') />dYkIv  
        end "w:?WS  
    else C]NL9Gq`  
        isnorm = false; ,m1F<Pdts  
    end .y>G/8_i  
    18o5Gs;yx  
    9_l WB6  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ':DLv{R  
    % Compute the Zernike Polynomials qORRpWyx&  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -HUlB|Q8r  
    |6!L\/}M%  
    8Lr&-w8J  
    % Determine the required powers of r: S(Q=2Y  
    % ----------------------------------- #L 9F\ <K  
    m_abs = abs(m); .{4U]a;[  
    rpowers = []; .a7!*I#g  
    for j = 1:length(n) fm$)?E_Rp  
        rpowers = [rpowers m_abs(j):2:n(j)]; HD153M,  
    end g @qrVQv  
    rpowers = unique(rpowers); /Bp5^(s  
    FwqaWEk  
    ?k+>~k{}a  
    % Pre-compute the values of r raised to the required powers, L<Q>:U.@\  
    % and compile them in a matrix: LyG&FOf?  
    % ----------------------------- rA[wC%%  
    if rpowers(1)==0 s|IC;C|  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); XY!0yAK(!  
        rpowern = cat(2,rpowern{:}); eWWfUNBSLX  
        rpowern = [ones(length_r,1) rpowern]; wOF";0EN  
    else )=%TIkeF  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); => X"  
        rpowern = cat(2,rpowern{:}); m.w.h^f$&  
    end Uq^-km#a  
    89\DS!\x9  
    :4/37R(~l8  
    % Compute the values of the polynomials: u:M)JG  
    % -------------------------------------- /<Yz;\:Jy  
    y = zeros(length_r,length(n)); Zk> #T:{h  
    for j = 1:length(n) ~ ^*;#[<  
        s = 0:(n(j)-m_abs(j))/2; +{au$v}  
        pows = n(j):-2:m_abs(j); #b94S?dq  
        for k = length(s):-1:1 J4#rOS  
            p = (1-2*mod(s(k),2))* ... fzjAP7 y  
                       prod(2:(n(j)-s(k)))/              ... _ls i,kg?  
                       prod(2:s(k))/                     ... !dGSZ|YZ  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... v`Yj)  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); % 9} ?*U  
            idx = (pows(k)==rpowers); _p;=]#+c&  
            y(:,j) = y(:,j) + p*rpowern(:,idx); D]+]Br8  
        end FgnPh%[u  
         )<[)7`  
        if isnorm A8T8+M:  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 4KB>O)YNg'  
        end +{L=cWA"  
    end 'J_`CS  
    % END: Compute the Zernike Polynomials bPVQ-  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 5F$~ZDu  
    >!W H%J  
    &n~v;M  
    % Compute the Zernike functions: ;}}k*< Z  
    % ------------------------------ :N64FR#  
    idx_pos = m>0; 8 DPn5E#M1  
    idx_neg = m<0; rmJ`^6V  
     i)= \-C  
    Q/`W[Et  
    z = y; `Jn2(+  
    if any(idx_pos) Dbw{E:pq  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); mOfTq] @B  
    end PnZY%+[I  
    if any(idx_neg) 7UsU03  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); %<{1 N|  
    end 0+Z?9$a1  
    M`p[ Zq  
    _B7+n"t\r  
    % EOF zernfun {ep.So6  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  |OIU)53A-  
    av~kF  
    DDE还是手动输入的呢? Q}#xfrprF  
    qfF2S  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究