切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9116阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, [2>yYr s_=  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 1}S S+>`  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? bw(a6qKK  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? &]V.S7LC #  
    "/yC@VC>  
    c>,KZ!  
    m&xW6!x  
    8Pfb~&X^Ws  
    function z = zernfun(n,m,r,theta,nflag) XND|h#i8  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. A8xvo/n$  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N B|Du@^$  
    %   and angular frequency M, evaluated at positions (R,THETA) on the E{`kaWmC&~  
    %   unit circle.  N is a vector of positive integers (including 0), and Ki4r<>\l{H  
    %   M is a vector with the same number of elements as N.  Each element Q`~jw>x  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) Amp#GR1CA  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, AmvEf  
    %   and THETA is a vector of angles.  R and THETA must have the same u6?Q3 bvI  
    %   length.  The output Z is a matrix with one column for every (N,M) |<HPn4 ,X  
    %   pair, and one row for every (R,THETA) pair. m];]7uB5=  
    % u&^b~# T  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike vhe>)h*B  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 2^Eg9y'  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral \<.+rqa!  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, V n7*JS  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 1=r#d-\tR  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ?TM ,Q  
    % H[{F'c[e  
    %   The Zernike functions are an orthogonal basis on the unit circle. @V(*65b2  
    %   They are used in disciplines such as astronomy, optics, and j-0z5|*KE  
    %   optometry to describe functions on a circular domain. A]<y:^2])C  
    % <W|3\p6  
    %   The following table lists the first 15 Zernike functions. Z"Zmo>cV4  
    % nx@=>E+a  
    %       n    m    Zernike function           Normalization l2`s! ,<>O  
    %       -------------------------------------------------- G(Lzf(  
    %       0    0    1                                 1 \O}E7 -  
    %       1    1    r * cos(theta)                    2 FI[A[*fi  
    %       1   -1    r * sin(theta)                    2 4 <9=5q]  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) b $'FvZbk  
    %       2    0    (2*r^2 - 1)                    sqrt(3) +GG9^:<yr  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) jDKO} bQ  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) yGI;ye'U  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) qJ;jfh!  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) vY4\59]P  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 7[w,:9& }  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) ?b*s. ^  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) B,<da1(a  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) E d"h16j?z  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Vdtry @Q  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) .GV;+8HzS  
    %       -------------------------------------------------- j:<n+:H C  
    % QU4h8}$  
    %   Example 1: 5}:-h>  
    % U}&2k  
    %       % Display the Zernike function Z(n=5,m=1) .)RzT9sg  
    %       x = -1:0.01:1; %+f>2U4I  
    %       [X,Y] = meshgrid(x,x); ]*v dSr-J  
    %       [theta,r] = cart2pol(X,Y); 34z"Pm  
    %       idx = r<=1; YHkn2]^#A  
    %       z = nan(size(X)); $RYa6"`  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); ~kQA7;`j$  
    %       figure Vc_'hz]Z  
    %       pcolor(x,x,z), shading interp ao%NK<Lt  
    %       axis square, colorbar 5pj22 s  
    %       title('Zernike function Z_5^1(r,\theta)') Hx#;Z  
    % 4\y/'`xm)6  
    %   Example 2: BZ:H`M`n  
    % ->sm+H-*  
    %       % Display the first 10 Zernike functions XDsx3Ws  
    %       x = -1:0.01:1; 2#P* ,  
    %       [X,Y] = meshgrid(x,x); 5XO;N s  
    %       [theta,r] = cart2pol(X,Y); lU @]@_<  
    %       idx = r<=1; qo p^;~  
    %       z = nan(size(X)); e]`[yf  
    %       n = [0  1  1  2  2  2  3  3  3  3]; d_CKP"TA  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; ?h.wK  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; h^?\xm|  
    %       y = zernfun(n,m,r(idx),theta(idx)); Gnf~u[T6  
    %       figure('Units','normalized') yGWxpzmRS  
    %       for k = 1:10 "*m_> IU  
    %           z(idx) = y(:,k); m4aB*6<lq  
    %           subplot(4,7,Nplot(k)) u2[ iMd  
    %           pcolor(x,x,z), shading interp Ge2q%  
    %           set(gca,'XTick',[],'YTick',[]) I`p+Qt  
    %           axis square O]lSWEe  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Ai:BEPKe  
    %       end Y'yH;M z  
    % qLw{?sH}J/  
    %   See also ZERNPOL, ZERNFUN2. L0* nm.1X  
    ^oVs+vC  
    0KYEb%44  
    %   Paul Fricker 11/13/2006 *i]=f6G  
    'd.EC#  
    -}=i 04^  
    3x5JFM  
    ?kWC}k{  
    % Check and prepare the inputs: y<HO:kZ8`  
    % ----------------------------- K&nE_.kbl  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) '>&^zgr  
        error('zernfun:NMvectors','N and M must be vectors.') %`OJ.:k  
    end ZYI{i?Te#  
    C 'v+f=  
    (5#nrF]  
    if length(n)~=length(m) VSrr`B  
        error('zernfun:NMlength','N and M must be the same length.') b vS(@  
    end ,a gc  
    |<#{"'/=  
    {. 2k6_1[  
    n = n(:); Y<mej][  
    m = m(:); =; ^%(%Y{m  
    if any(mod(n-m,2)) x97 j  
        error('zernfun:NMmultiplesof2', ... $>GgB`  
              'All N and M must differ by multiples of 2 (including 0).') %1H[Wh(U  
    end _z'u pb&  
    e<=cdze  
    S'A>2>  
    if any(m>n) ~Q?a|mV,  
        error('zernfun:MlessthanN', ... zhpx"{_  
              'Each M must be less than or equal to its corresponding N.') T^w36}a  
    end S/^"@?z,vE  
    >H'4{|  
    e?opkq\f  
    if any( r>1 | r<0 ) 'XZ) !1N  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') MOsl_^c  
    end BnCbon)  
    ])L A42|  
    9A} # 6  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) F">Qpgt  
        error('zernfun:RTHvector','R and THETA must be vectors.') "ul {d(K3  
    end 2ggdWg7z  
    IqC]!H0  
    29!q!g|  
    r = r(:); K@#(*."  
    theta = theta(:); odPL {XFj  
    length_r = length(r); Fb^:V4<T  
    if length_r~=length(theta) 6xWe=QGE  
        error('zernfun:RTHlength', ... Fe]B&n  
              'The number of R- and THETA-values must be equal.') Ys@}3\Mc  
    end pV20oSJNt  
    kBYNf =  
    %1O;fQL  
    % Check normalization: ?\$#L^;b}  
    % -------------------- > `n,S  
    if nargin==5 && ischar(nflag) <(-3_s6-  
        isnorm = strcmpi(nflag,'norm'); jJuW-(/4[  
        if ~isnorm g{8,Wx,,  
            error('zernfun:normalization','Unrecognized normalization flag.') D&}3$ 7>  
        end iTag+G4*  
    else QS{1CC9$  
        isnorm = false; r9 ui|>U"  
    end 0BH_'ZW  
    Z$0 uH*h  
    #bl6sa{E  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ?RK]FP"A  
    % Compute the Zernike Polynomials GFel(cx:K  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 4F{)i  
    Xb{ [c+.  
    ^1Zeb$Nw'  
    % Determine the required powers of r: 9T |IvQK8  
    % ----------------------------------- ]@uE #a:[  
    m_abs = abs(m); ZCB_  
    rpowers = []; J.ck~;3  
    for j = 1:length(n) GlbySD@  
        rpowers = [rpowers m_abs(j):2:n(j)]; Q\cjPc0y  
    end JMH8MH*  
    rpowers = unique(rpowers); oo=Qt(#  
    A8pIs  
    ow_djv:,  
    % Pre-compute the values of r raised to the required powers, q o\?o    
    % and compile them in a matrix: -C<zF`jO  
    % ----------------------------- QNA RkYY~|  
    if rpowers(1)==0 mnmP<<8C,  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); N 5i+3&  
        rpowern = cat(2,rpowern{:}); W Dg+J  
        rpowern = [ones(length_r,1) rpowern]; M#~Cc~oT  
    else NGOqy+Ty{f  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 2I&o69x?  
        rpowern = cat(2,rpowern{:}); SQqD:{#g"  
    end 1RK=,Wx  
    .h9l7 nZt  
    M-[ $L XR  
    % Compute the values of the polynomials: %,Ap7X3:QT  
    % -------------------------------------- J2j U4mR  
    y = zeros(length_r,length(n)); Q5FM8Q  
    for j = 1:length(n) JaK}|  
        s = 0:(n(j)-m_abs(j))/2; m < 3Ao^I+  
        pows = n(j):-2:m_abs(j); "g' jPwFG  
        for k = length(s):-1:1 7vABq(  
            p = (1-2*mod(s(k),2))* ... |7X:TfJ  
                       prod(2:(n(j)-s(k)))/              ... LE*h9((  
                       prod(2:s(k))/                     ... r=6v`)Qr  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... zxf"87se  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); ;$a@J&  
            idx = (pows(k)==rpowers); DqX{'jj  
            y(:,j) = y(:,j) + p*rpowern(:,idx); mExVYp h  
        end lWqrU1Sjl  
         I =1+h  
        if isnorm l'\pk<V  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 2Sh  
        end BM(]QUxRd  
    end :%sXO  
    % END: Compute the Zernike Polynomials 8Goh4T H  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% jLpc Zb,  
    $6CwkM:  
    2AtLyN'.  
    % Compute the Zernike functions: Oi:<~E[kz.  
    % ------------------------------ vq!_^F<  
    idx_pos = m>0; i} N8(B(  
    idx_neg = m<0; 1.gG^$Jd  
    ET[k pL  
    ei6AV1| p  
    z = y; $d,0=Ci  
    if any(idx_pos) $2u 'N:o  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 2^)1N>"g  
    end I(9R~q  
    if any(idx_neg) !>>f(t4  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Qu7T[ <  
    end ($L Ll;1  
    :OW ;?{ ~j  
    #'q<v"w  
    % EOF zernfun XXh6^@H=  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  6r"u$i` o  
    L&-hXGx=7  
    DDE还是手动输入的呢? ?4CNkk=v  
    "7d-z<^n  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究