下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, x$.^"l-vX
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, RVA(Q[ ;
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? ;dtA4:IRZ4
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? kY|utoAP
bL+_j}{:N
_~J
{wM
S.94edQ
}mYx_=+VX
function z = zernfun(n,m,r,theta,nflag) F Q7T'G![
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. SpLzm A
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N BB!THj69a6
% and angular frequency M, evaluated at positions (R,THETA) on the z2_*%S@
% unit circle. N is a vector of positive integers (including 0), and =_ ./~
% M is a vector with the same number of elements as N. Each element HU8900k+
% k of M must be a positive integer, with possible values M(k) = -N(k) ~Z?TFg
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, Vl/+;6_
% and THETA is a vector of angles. R and THETA must have the same ]7F=u!/`<C
% length. The output Z is a matrix with one column for every (N,M) 2~1SQ.Q<RY
% pair, and one row for every (R,THETA) pair. +_?hK{Ib"
% 0y" $MC v
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike FxtQXu-g
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), r6MMCJ|G
% with delta(m,0) the Kronecker delta, is chosen so that the integral G%AbC"
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 9~5uaP$S
% and theta=0 to theta=2*pi) is unity. For the non-normalized RXpw!
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Pg0x/X{t
% 9N%We|L,c
% The Zernike functions are an orthogonal basis on the unit circle. D9CaFu
% They are used in disciplines such as astronomy, optics, and Vod\a5c
% optometry to describe functions on a circular domain. \FbvHr,
% .9 on@S
% The following table lists the first 15 Zernike functions. uk<4+x,2)
% jk; clwyz/
% n m Zernike function Normalization x=hiQ>BIO0
% -------------------------------------------------- @fZ,.2ar
% 0 0 1 1 (cAIvgI
% 1 1 r * cos(theta) 2 HZzD VCU
% 1 -1 r * sin(theta) 2 .779pT!,M
% 2 -2 r^2 * cos(2*theta) sqrt(6) L%*!`TN
% 2 0 (2*r^2 - 1) sqrt(3) 3nIU1e
% 2 2 r^2 * sin(2*theta) sqrt(6) eueH)Xkf
% 3 -3 r^3 * cos(3*theta) sqrt(8) SIF/-{i(X
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) J{p1|+h%
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 7 S#J>*
% 3 3 r^3 * sin(3*theta) sqrt(8) *v
jmy/3
% 4 -4 r^4 * cos(4*theta) sqrt(10) )BZ.Sv
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 53;}Nt#R
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) |"X*@s\'
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) U3ADsdn
% 4 4 r^4 * sin(4*theta) sqrt(10) f}#~-.NGs
% -------------------------------------------------- |C;=-|
% W+aP}rZm:
% Example 1: G6q
}o)[m)
% Zw
26
% % Display the Zernike function Z(n=5,m=1) P_dCR
% x = -1:0.01:1; 6@h/*WElG
% [X,Y] = meshgrid(x,x); knu,"<
% [theta,r] = cart2pol(X,Y); ~NrG`
D}
% idx = r<=1; RVnjNy;O`
% z = nan(size(X)); 1y4|{7bb
% z(idx) = zernfun(5,1,r(idx),theta(idx)); x*/tyZg6
% figure T6y\|
% pcolor(x,x,z), shading interp !=*g@mgF
% axis square, colorbar r_)' Ps
% title('Zernike function Z_5^1(r,\theta)') xBThq?N?
% 0rQMLx
% Example 2: :KSV4>X[%a
% AP n| \
% % Display the first 10 Zernike functions !1jBC.G1
% x = -1:0.01:1; Q04al=
% [X,Y] = meshgrid(x,x); #px+;k5
% [theta,r] = cart2pol(X,Y); /wQy17g
% idx = r<=1; 9Z@hPX3.
% z = nan(size(X)); X[-xowE-
% n = [0 1 1 2 2 2 3 3 3 3]; @wGPqg
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; LiC*@W
% Nplot = [4 10 12 16 18 20 22 24 26 28]; |IeTqEu9
% y = zernfun(n,m,r(idx),theta(idx)); Avge eJi
% figure('Units','normalized') m4[ ;(1
% for k = 1:10 OZb-:!m*
% z(idx) = y(:,k); .wEd"A&j
% subplot(4,7,Nplot(k)) uanhr)Ys
% pcolor(x,x,z), shading interp (+w*[qHe
% set(gca,'XTick',[],'YTick',[]) B?eCe}*f;B
% axis square xeg/A}yE
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) pxA?
% end GL>O4S<`
% WA<v9#m
% See also ZERNPOL, ZERNFUN2. %8RrRW
fbyd"(V8r
\0^Kram>
% Paul Fricker 11/13/2006 5c@,bIl *
/7(W?xOe
qJf?o.Pv
KaLzg5is
HDz5&