下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, ?zsRs?rc0
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, kN<;*jHV
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? }3
~*/30V
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? WM$Z?CN%KB
Vd.XZ*}r*
5't9/8i
9nO&d(r g
wuCZz{c7
function z = zernfun(n,m,r,theta,nflag) OPq6)(Q
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. dEf5x_TGm
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ~
c~j
% and angular frequency M, evaluated at positions (R,THETA) on the Eos;7$u[
% unit circle. N is a vector of positive integers (including 0), and k|]l2zlT
% M is a vector with the same number of elements as N. Each element .d#Hh&jj
% k of M must be a positive integer, with possible values M(k) = -N(k) o2YHT
\P
n
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, $y<`Jy]+)~
% and THETA is a vector of angles. R and THETA must have the same ZS3T1
<z
% length. The output Z is a matrix with one column for every (N,M) ept:<!4
% pair, and one row for every (R,THETA) pair. S._h->5f
% %0815
5M
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ]=|iO~WN
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), `"~ X1;
% with delta(m,0) the Kronecker delta, is chosen so that the integral `yhc,5M
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, f~jdN~
% and theta=0 to theta=2*pi) is unity. For the non-normalized v+C D{Tc
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. BlqfST#6
% >9g^-~X;v
% The Zernike functions are an orthogonal basis on the unit circle. 4Im}!q5;:<
% They are used in disciplines such as astronomy, optics, and E}36
% optometry to describe functions on a circular domain. ;%>X+/.y0
% 0icB2Jm:D}
% The following table lists the first 15 Zernike functions. DAN"&&
% FNl^ lj`Y
% n m Zernike function Normalization "tK3h3/Xv
% -------------------------------------------------- u7p:6W
% 0 0 1 1 bx" .<q (
% 1 1 r * cos(theta) 2 Jju?v2y`
% 1 -1 r * sin(theta) 2 X5tV Xd
% 2 -2 r^2 * cos(2*theta) sqrt(6) zb9vUxN [
% 2 0 (2*r^2 - 1) sqrt(3) Gv(n2r
% 2 2 r^2 * sin(2*theta) sqrt(6) ~F~hgVS5
% 3 -3 r^3 * cos(3*theta) sqrt(8) ,=%c
e
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) I= z+`o8
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 9FT==>
% 3 3 r^3 * sin(3*theta) sqrt(8) ;ov}%t>UD
% 4 -4 r^4 * cos(4*theta) sqrt(10) x||b:2
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) QX-M'ur99
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) ,.gI'YPQC
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) sg]g;U
% 4 4 r^4 * sin(4*theta) sqrt(10) "bjbJC&T
% -------------------------------------------------- )4+uM'2%
% .e:+Ek+
% Example 1: O#U_mgfzJ
% f
K4M:_u
% % Display the Zernike function Z(n=5,m=1) LGCeYXic
% x = -1:0.01:1; y2C/DyuAY|
% [X,Y] = meshgrid(x,x); 0`WZ
% [theta,r] = cart2pol(X,Y); A kqGk5e
^
% idx = r<=1; tkix@Q!;\
% z = nan(size(X)); A<g5:\3
% z(idx) = zernfun(5,1,r(idx),theta(idx)); eR8>5:V_
% figure 6Qm .k$[
% pcolor(x,x,z), shading interp o\yqf:V8
% axis square, colorbar jmnrpXaAx
% title('Zernike function Z_5^1(r,\theta)') X`daaG_l
% [
**F
% Example 2: yj`xOncE}
% VzFzVeJ
% % Display the first 10 Zernike functions (pQ$<c
% x = -1:0.01:1; ~_SVQ7P
% [X,Y] = meshgrid(x,x); n~&e>_;(.
% [theta,r] = cart2pol(X,Y); *WXqN!:
% idx = r<=1; Yf^/YLLS
% z = nan(size(X)); =~QC)y_
% n = [0 1 1 2 2 2 3 3 3 3]; i>rsq[l
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 4>[tjz.?k
% Nplot = [4 10 12 16 18 20 22 24 26 28]; >qIZ
% y = zernfun(n,m,r(idx),theta(idx)); X1h*.reFAL
% figure('Units','normalized') fm,:8%
% for k = 1:10 Aq P\g k
% z(idx) = y(:,k); `?Xt ,
% subplot(4,7,Nplot(k)) 4=n%<U`Z/
% pcolor(x,x,z), shading interp |a[ :L
% set(gca,'XTick',[],'YTick',[]) o)6udRzBv
% axis square -
e"XEot~
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) <b;Oap3
% end 7llEB*dSA
% W.U|mNJ$
% See also ZERNPOL, ZERNFUN2. WN?meZ/N/
'Xzi$}E D
Sst`*PX:
% Paul Fricker 11/13/2006 i0~L[v9l<
+^.Q%b0Xx
('pxX+
gbRdng7(}
t]%!vXo
% Check and prepare the inputs: =Hs~fHa)
% ----------------------------- > 'KQL?!F
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) UwxrYouv~@
error('zernfun:NMvectors','N and M must be vectors.') V5ihplAk
end 3/hAxd
pV))g
e\
0CO6-&F9n
if length(n)~=length(m) |tS~\_O/
error('zernfun:NMlength','N and M must be the same length.') x5Ee'G(
end YPq`su7m9
;42D+q=s
~d?\rj3=
n = n(:); Mky8qVQ2
m = m(:); /C}fE]n{X
if any(mod(n-m,2)) 5Gsj;
error('zernfun:NMmultiplesof2', ... rJm%qSZz
'All N and M must differ by multiples of 2 (including 0).') jNNl5.
end s2ys>2k
YB} _zuZ4&
cBA2;5E
if any(m>n) way-Q7
error('zernfun:MlessthanN', ... 1P\_3.V{
'Each M must be less than or equal to its corresponding N.') DDhc ^(
end \:?H_^^d
]H[FZY
ARu^hz=
if any( r>1 | r<0 ) ;3_Q7;y
error('zernfun:Rlessthan1','All R must be between 0 and 1.') , 0rC_)&B
end l9.wMs*`X
'17u
Wq
b\\?aR
|
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) {:enoV"
error('zernfun:RTHvector','R and THETA must be vectors.') y!^RL,HIL
end ':w6{b
/qL&)24
<`9:hPp0
r = r(:); &,&oTd.
theta = theta(:); m%E7V{t
length_r = length(r); u;:N 4d=f'
if length_r~=length(theta) 6C/D&+4
error('zernfun:RTHlength', ... ()>\D
'The number of R- and THETA-values must be equal.') |R*fw(=W
end rd1&?X
9H3#8T] ;
Aq|LeH
% Check normalization: 5J&n<M0G1
% -------------------- ]@ [=FK^
if nargin==5 && ischar(nflag) ^J~}KOH
isnorm = strcmpi(nflag,'norm'); Qzh:*O
if ~isnorm 6<t\KMd
error('zernfun:normalization','Unrecognized normalization flag.') 1
)j%]zd2
end j`'=K_+nU
else W# y)ukRv
isnorm = false; D0k7)\puQ
end +TAm9eDNV
]@?3,N
($W9
?
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ak;Z;
% Compute the Zernike Polynomials xHr
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ]-fZeyY$
xG}eiUbM`
cdIy[
1
% Determine the required powers of r: !P92e1
% ----------------------------------- u%[*;@;9+
m_abs = abs(m); $~~=SOd0
rpowers = []; \K?./*
for j = 1:length(n) {Ue6DK%
rpowers = [rpowers m_abs(j):2:n(j)]; cW GU?cv}
end a5)[?ol
rpowers = unique(rpowers); >PGm} s_
S5Px9&N8(
@xkM|N?
% Pre-compute the values of r raised to the required powers, Ol%*3To
% and compile them in a matrix: n`:l`n>N$
% ----------------------------- uN\9cQ
if rpowers(1)==0 *,n7&
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); &gEu%s^wR
rpowern = cat(2,rpowern{:}); CWN=6(y
rpowern = [ones(length_r,1) rpowern]; *<