下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, G+sB/l"
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, g3vbskY|
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? kz1Z K
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? PDc4ok`)
X`v6gv5qj
:-+][ [
gjK: a@{
HW_2!t_R
function z = zernfun(n,m,r,theta,nflag) -$%~EY}
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. yTbtS-
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N [Z'4YXS
% and angular frequency M, evaluated at positions (R,THETA) on the aB G*
% unit circle. N is a vector of positive integers (including 0), and 4E!Pxjl 3a
% M is a vector with the same number of elements as N. Each element 4
}_}3.
% k of M must be a positive integer, with possible values M(k) = -N(k) S=<
]u
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, k-*k'S_
% and THETA is a vector of angles. R and THETA must have the same >>R)?24,<
% length. The output Z is a matrix with one column for every (N,M) V^.Z&7+E`_
% pair, and one row for every (R,THETA) pair. Cu$`-b^y
% WH $*\IGJL
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike KVoi>?a
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), |%X_<Cpk
% with delta(m,0) the Kronecker delta, is chosen so that the integral u0+<[Ia'q
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, <;b
% and theta=0 to theta=2*pi) is unity. For the non-normalized gi@&Mr)fS
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. U!"RfRD.<
% },5LrX`L
% The Zernike functions are an orthogonal basis on the unit circle. @ohJ'
% They are used in disciplines such as astronomy, optics, and \n#l+R23
% optometry to describe functions on a circular domain. XxB%
% 8BS$6Pa
% The following table lists the first 15 Zernike functions. r 3T #Nv
% MS|1Q@S9
% n m Zernike function Normalization TxkvHiq2
% -------------------------------------------------- _cfAJ)8=
% 0 0 1 1 jP3 ~O
% 1 1 r * cos(theta) 2 aQ 6T2bQ
% 1 -1 r * sin(theta) 2 /oM&29 jy
% 2 -2 r^2 * cos(2*theta) sqrt(6) {;UBW7{
% 2 0 (2*r^2 - 1) sqrt(3) .d)H2X
% 2 2 r^2 * sin(2*theta) sqrt(6) WIwGw %_~
% 3 -3 r^3 * cos(3*theta) sqrt(8) aI\>=*HF
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) $U_1e'
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) jI}{0LW&F&
% 3 3 r^3 * sin(3*theta) sqrt(8) _{i-.;K
% 4 -4 r^4 * cos(4*theta) sqrt(10) 5FNf)F
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) q=BAYZ\`
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) q*J-ii
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) sD XJXJZ
% 4 4 r^4 * sin(4*theta) sqrt(10) <l9qhqHv&
% -------------------------------------------------- BxxqzN+
% v}z{OB
% Example 1: qp1rP#
% zgpvI~Ck
% % Display the Zernike function Z(n=5,m=1) ?v@q&
% x = -1:0.01:1; '&xRb*
% [X,Y] = meshgrid(x,x); M^A;tPw
% [theta,r] = cart2pol(X,Y); [;INVUwG^
% idx = r<=1; $J:~jY/J
% z = nan(size(X)); l>>,~
% z(idx) = zernfun(5,1,r(idx),theta(idx)); b WZX
% figure U
&W}c^#
% pcolor(x,x,z), shading interp z?_5fte`
% axis square, colorbar T^ah'WmNw
% title('Zernike function Z_5^1(r,\theta)') o|a]Q
% +@oo8io
% Example 2: [SLBA_d
% _UeIzdV9
% % Display the first 10 Zernike functions h@?BA<'S
% x = -1:0.01:1; )N&v.w
% [X,Y] = meshgrid(x,x); {I_I$x_
% [theta,r] = cart2pol(X,Y); 9=^4p=1J
% idx = r<=1; @)wNINvD
% z = nan(size(X)); Wr;?t!
% n = [0 1 1 2 2 2 3 3 3 3]; <wt9K2,
% m = [0 -1 1 -2 0 2 -3 -1 1 3];
}NJ? .Y
% Nplot = [4 10 12 16 18 20 22 24 26 28]; j]_"MMwk$<
% y = zernfun(n,m,r(idx),theta(idx)); _9zydtw
% figure('Units','normalized') BcTV5Wcr
% for k = 1:10 ViT$]Nv
% z(idx) = y(:,k); s*pgR=dZZ
% subplot(4,7,Nplot(k)) Z,Tv8;
% pcolor(x,x,z), shading interp $lrq*Nf9c
% set(gca,'XTick',[],'YTick',[]) 7_#i,|]58
% axis square q^w3n2
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 76*5/J-
% end PizPsJ|&
% 5zBsu lRt
% See also ZERNPOL, ZERNFUN2. rRZ ,X%
6|:]2S
@=[SsS
% Paul Fricker 11/13/2006 ]LhNP}c
I806I@ix
$.@)4Nu!_
q[SUYb;,
N^.!l_
% Check and prepare the inputs: xcYYo'U
% ----------------------------- =w!14@W
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) i;>Hy|
error('zernfun:NMvectors','N and M must be vectors.') P}QuGy[
end =' cr@[~i
#_bSWV4
Z*|qbu)
if length(n)~=length(m) ^dR5fAS
error('zernfun:NMlength','N and M must be the same length.') )#dP:
end 8BZDaiE"
LJMw-#61sj
xe6 2gaT
n = n(:); @GGPw9a
m = m(:); Q
pY: L
if any(mod(n-m,2)) WVf>>E^1
error('zernfun:NMmultiplesof2', ... 8Mq]
V
v
'All N and M must differ by multiples of 2 (including 0).') LPk85E
end i=<N4Vx
b='YCa
_6
~/`_(KP
if any(m>n) 89'XOXl&1
error('zernfun:MlessthanN', ... pr[[)[]/
'Each M must be less than or equal to its corresponding N.') Ui46p
end |!)3[<.
g<Sa{<0
,g$N
if any( r>1 | r<0 ) KPUc+`cN%
error('zernfun:Rlessthan1','All R must be between 0 and 1.') h2Z Gh
end 4PEJ}BW
KutR l$,
C/+8lA6NV
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) jv]:`$}G\
error('zernfun:RTHvector','R and THETA must be vectors.') mYN|)QVKy
end #{l+I(M
G~e`O,+
y@G5I>v
r = r(:); *"Ipu"G5?
theta = theta(:); ?zN v7Bj
length_r = length(r); HQ+:0"B
if length_r~=length(theta) w8(qiU
error('zernfun:RTHlength', ... ]v 6u
'The number of R- and THETA-values must be equal.') kG+CT
end h2u>CXD
lYeot8
mD)_quz.sk
% Check normalization: 0QDm3V0n
% -------------------- Eq.?Ga
if nargin==5 && ischar(nflag) %?C{0(Z{
isnorm = strcmpi(nflag,'norm'); %u43Pj
if ~isnorm UPPDs "
error('zernfun:normalization','Unrecognized normalization flag.') 5HioxHL
end HT5G HkT
else ;EE*#"IJ
isnorm = false; 5Y)!q?#H
end #T n~hnW
e4ajT
?PSm)
~Oa
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 'UT 4x9&z
% Compute the Zernike Polynomials Vr f` :%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% kN;l@>
/z,sM"d
j+J)S1
% Determine the required powers of r: Sz"J-3b^
% ----------------------------------- r 06}@ 7
m_abs = abs(m); 6lq7zi}'w
rpowers = []; ^&DHBx"J
for j = 1:length(n) NwuME/C7#
rpowers = [rpowers m_abs(j):2:n(j)]; Om{[ <tL
end Ps.O.2Z5ZB
rpowers = unique(rpowers); +?(2-RBd
q=}Lm;r
3U@p
% Pre-compute the values of r raised to the required powers, }O@S;[v
S
% and compile them in a matrix: M&y!w
% ----------------------------- |z|5j!Nfh
if rpowers(1)==0 JQE^ bcr
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ]{nFB3vtB
rpowern = cat(2,rpowern{:}); = M7FD
rpowern = [ones(length_r,1) rpowern]; #*
S0d1
else M{:gc7%
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); < 7zyRm@S
rpowern = cat(2,rpowern{:}); z(>{"t<C
end .F?yt5{5No
)"jG)c^1*
||}|=Sz
% Compute the values of the polynomials: J~DP*}~XK
% -------------------------------------- _$wWKJy9
y = zeros(length_r,length(n)); m^O:k"+ !
for j = 1:length(n) KcfW+>W3
s = 0:(n(j)-m_abs(j))/2; 23y7l=.b/
pows = n(j):-2:m_abs(j); ,u{d@U^)3@
for k = length(s):-1:1 iX.=8~3
p = (1-2*mod(s(k),2))* ... nV
McHN
prod(2:(n(j)-s(k)))/ ... [lQp4xgxi
prod(2:s(k))/ ... Cr4shdN34
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... =1^Ru*G
prod(2:((n(j)+m_abs(j))/2-s(k))); Fx0K.Q2Y0
idx = (pows(k)==rpowers); r1-?mMSU&
y(:,j) = y(:,j) + p*rpowern(:,idx); bI@+Or
end I4
Tc&b
TpZ) wC
if isnorm o]MQ)\r
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 7-w
+/fv
end }o=R7n%
end zScV 9,H1
% END: Compute the Zernike Polynomials wv
,F>5P
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% *AGC[w}/
gUL`)t\} *
gO4J[_
% Compute the Zernike functions: 23pHB|X
% ------------------------------ vp4!p~C{
idx_pos = m>0; *0l^/jqn:
idx_neg = m<0; W}WGg|ug
2[9hl@=%
?O\n!c
z = y; o&;+!Si@T
if any(idx_pos) y$*Tbzp
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); z.]t_`KuF9
end ]Vl*!,(i
if any(idx_neg) 0$}+tq+
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Kdx?s;i
end KTBsH; 6
4'Vuhqk
_9#4
% EOF zernfun z:RwCd1\