切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9048阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, @*6_Rp"@  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, u0?TMy.%  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? SV95g@  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? kMEXgzl  
    ^ -~=U^2tC  
    Ha ZV7  
    q:jv9eL.O  
    !](Mt?e  
    function z = zernfun(n,m,r,theta,nflag) D"fjk1  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. dYwEVu6q  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N l)DcwkIG  
    %   and angular frequency M, evaluated at positions (R,THETA) on the n@C#,v#^0  
    %   unit circle.  N is a vector of positive integers (including 0), and fD_3lbiL(  
    %   M is a vector with the same number of elements as N.  Each element u0[O /G  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) /K+;HAUTn  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 4>Q] \\Lc  
    %   and THETA is a vector of angles.  R and THETA must have the same  ]5ibg"{S  
    %   length.  The output Z is a matrix with one column for every (N,M) ~<Wa$~oY  
    %   pair, and one row for every (R,THETA) pair. @\-*aS_8>  
    % Rdd9JJsVd  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike -biw{  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi),  _ qQ  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 8) `  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, {JKG-0)z?  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized <X1[j9Qtv0  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. \ sz](X  
    % I;$tBgOWq  
    %   The Zernike functions are an orthogonal basis on the unit circle. !HXsxNe  
    %   They are used in disciplines such as astronomy, optics, and !([v=O#  
    %   optometry to describe functions on a circular domain. QqeF   
    % )J[Ady^5  
    %   The following table lists the first 15 Zernike functions. K_N`My  
    % OWYY2&.h  
    %       n    m    Zernike function           Normalization b4ke'gx  
    %       -------------------------------------------------- ecp0 hG`%  
    %       0    0    1                                 1 h=NXU9n%'  
    %       1    1    r * cos(theta)                    2 -/7@ A  
    %       1   -1    r * sin(theta)                    2 $'a]lR  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) `"iPJw14  
    %       2    0    (2*r^2 - 1)                    sqrt(3) j_zy"8Y{  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) QYBLU7  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) D2:ShyYAS  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 0R&7vn  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) OXoEA a  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 4 T/ ~erc  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) R3BK\kf&  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) D9r;Ys%  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) r9-)+R J  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) $7Lcn9 ?G  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) T?-K}PUcQ  
    %       -------------------------------------------------- qNkX:|j  
    % L{c\7  
    %   Example 1: N,cj[6;T%  
    % MF::At[4   
    %       % Display the Zernike function Z(n=5,m=1) 1<M~ #  
    %       x = -1:0.01:1; ;/^O7KM-  
    %       [X,Y] = meshgrid(x,x); + k   
    %       [theta,r] = cart2pol(X,Y); f5nAD  
    %       idx = r<=1; qMBEJ<o  
    %       z = nan(size(X)); 6<n+p'+n  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); i}5+\t[Q  
    %       figure .Ag)/Xm(?  
    %       pcolor(x,x,z), shading interp Yd~Tzh  
    %       axis square, colorbar 8O*O 5   
    %       title('Zernike function Z_5^1(r,\theta)') \FyHIs  
    % CT{ X$N  
    %   Example 2: OadGwa\:s  
    % C2 !F   
    %       % Display the first 10 Zernike functions mgEZiAV?  
    %       x = -1:0.01:1; Bq85g5Dc  
    %       [X,Y] = meshgrid(x,x); 16N`xw+{  
    %       [theta,r] = cart2pol(X,Y); OgyHX>}bH  
    %       idx = r<=1; ! AL?bW  
    %       z = nan(size(X)); dC">AW  
    %       n = [0  1  1  2  2  2  3  3  3  3]; gHU0Pr9'  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; LoS%  FI  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; G9> 0w)r  
    %       y = zernfun(n,m,r(idx),theta(idx)); E>}3MfL  
    %       figure('Units','normalized') }/.b@`Dh;  
    %       for k = 1:10 IAbH_+7O  
    %           z(idx) = y(:,k); gO! :WD  
    %           subplot(4,7,Nplot(k)) d!q)FRzi  
    %           pcolor(x,x,z), shading interp Z9PG7h  
    %           set(gca,'XTick',[],'YTick',[]) 5CM]-qbf@  
    %           axis square Ml,87fo  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) bd.t|A  
    %       end 3ry0.  
    % zeHs5P8}r  
    %   See also ZERNPOL, ZERNFUN2. |Iq\ZX%q  
    zDA;FKZPp  
    WAh{*$Rpl  
    %   Paul Fricker 11/13/2006 ljj}X JQ  
    locf6%2g~  
    p4wXsOQ}  
     0GiL(e|  
    @X0$X+]E*8  
    % Check and prepare the inputs: <UO'&?G  
    % ----------------------------- I!,FxOM|$  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Ha/-v?E  
        error('zernfun:NMvectors','N and M must be vectors.') T$9tO{  
    end q\\52 :\  
    25`6V>\  
    09rbu\h  
    if length(n)~=length(m) &r !*Y&  
        error('zernfun:NMlength','N and M must be the same length.') u+vUv~4A6  
    end l8ZzKb-  
    S4(lC%$|  
    1C\[n(9  
    n = n(:); 5i1Xumh 4  
    m = m(:); ukRbSJ5a5  
    if any(mod(n-m,2)) #a"gW,/K  
        error('zernfun:NMmultiplesof2', ... *H%Jgz,  
              'All N and M must differ by multiples of 2 (including 0).') th(<S  
    end *b]$lj  
    {%3sj"suB  
    [CJr8Qn  
    if any(m>n) M2e_)f:  
        error('zernfun:MlessthanN', ... _kT$/k  
              'Each M must be less than or equal to its corresponding N.') |\/Y<_)JD  
    end  h48 jKL(  
    1-60gI1)  
    G4eY}3F7,4  
    if any( r>1 | r<0 ) }*I:0"WH  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') .#y.:Pb|e  
    end %B'*eBj~fw  
    I= 'S).  
    ohe0}~)V  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 9.qjEe  
        error('zernfun:RTHvector','R and THETA must be vectors.') +\n8##oAI  
    end E)w^odwMU  
    H$i4OQ2  
    VdV18-ea  
    r = r(:); =tE7XC3X_  
    theta = theta(:); yb:Xjg7   
    length_r = length(r); B'Ll\<mq@  
    if length_r~=length(theta) 2-*zevPiG=  
        error('zernfun:RTHlength', ... )a%kAUNj  
              'The number of R- and THETA-values must be equal.') 8Yq_6  
    end w8df-]r  
    k-&fPEjG  
    %;|^*?!J0  
    % Check normalization: {m/h3hjFa  
    % -------------------- co$I htOv  
    if nargin==5 && ischar(nflag) 5&\%  
        isnorm = strcmpi(nflag,'norm'); b-rgiR$cg  
        if ~isnorm o%E^41M7E  
            error('zernfun:normalization','Unrecognized normalization flag.') HG/`5$L +}  
        end 3;6Criq}  
    else D> |R.{  
        isnorm = false; -~-BQ!!(  
    end \.tnzP D  
    5[_|+  
    vf+GC*f  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% VnB"0 "%w  
    % Compute the Zernike Polynomials `}YCUm[SI  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 8e9ZgC|  
    &nk[gb o\  
    }x^q?;7xW  
    % Determine the required powers of r: ;LM,<QJ  
    % ----------------------------------- VYb6#sl  
    m_abs = abs(m); 6ZCSCBW  
    rpowers = []; V~> x \  
    for j = 1:length(n) :eIu<_,}  
        rpowers = [rpowers m_abs(j):2:n(j)]; k%5 o5Hx  
    end V9tG2m Lf>  
    rpowers = unique(rpowers); J~3+j6?%  
    D.hj9  
    4#oLf1  
    % Pre-compute the values of r raised to the required powers, gxS*rzCG  
    % and compile them in a matrix: 7n,*3;I  
    % ----------------------------- O|opNr  
    if rpowers(1)==0 [nO\Q3c|@$  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); *-gd k9  
        rpowern = cat(2,rpowern{:}); `J%iFm/5*  
        rpowern = [ones(length_r,1) rpowern]; &"(xd@V)]A  
    else tp-PE?  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Uk=-A @q  
        rpowern = cat(2,rpowern{:}); -^i[   
    end Ps@a@d"83  
    )zzK\I6/EQ  
    u dhj$:t  
    % Compute the values of the polynomials: N<lO!x1[H*  
    % -------------------------------------- dy^Zlu` f  
    y = zeros(length_r,length(n)); DeTx7i0  
    for j = 1:length(n) p_x@FA(  
        s = 0:(n(j)-m_abs(j))/2; Cx.GEY|0  
        pows = n(j):-2:m_abs(j); /T53"+7:0  
        for k = length(s):-1:1  Hy _ (  
            p = (1-2*mod(s(k),2))* ... `@$qy&AJ  
                       prod(2:(n(j)-s(k)))/              ... Flrpk`4  
                       prod(2:s(k))/                     ... 7$8YBcZ6  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Cy'0O>v5  
                       prod(2:((n(j)+m_abs(j))/2-s(k)));  \^$g%a  
            idx = (pows(k)==rpowers); afVl)2h  
            y(:,j) = y(:,j) + p*rpowern(:,idx); s}NE[Tw  
        end &R? \q*  
         }IM*Vsk  
        if isnorm g]sc)4  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 1$&(ei]*:  
        end [YbnpI  
    end owz6j:  
    % END: Compute the Zernike Polynomials Ifgh yh<d  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ~(( '1+  
    jA&ZO>4  
    q97Z .o  
    % Compute the Zernike functions: R!mFMw"  
    % ------------------------------ 2$)xpET  
    idx_pos = m>0; Z2HH&3HA  
    idx_neg = m<0; k E^%w?C  
    D"x;/I  
    bqmb|mD  
    z = y; o5NV4=  
    if any(idx_pos) Y8 c#"vm(  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); rHzwSR@}1  
    end f,Z* o  
    if any(idx_neg) : MfY8P)  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 8zDLX,M-  
    end ~N<zv( {lG  
    ,4O|{Iu#n  
    _$g2;X >  
    % EOF zernfun 6:Fb>|]*PY  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  Qq|c%FZ  
    Ux!q(9<_  
    DDE还是手动输入的呢?  >7$h  
    "n, %Hh  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究