切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9250阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, T`GiM%R;g  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 3`Xzp  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? v^Rw9*w{  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? |<MSV KW  
    /. >%IcK  
    dfh 1^Go  
    ,}NTV ~  
    bL5u;iy)  
    function z = zernfun(n,m,r,theta,nflag) Q(x/&]7=V  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. '1~;^rU  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N F 1l8jB\  
    %   and angular frequency M, evaluated at positions (R,THETA) on the s@ 6Jz\<E  
    %   unit circle.  N is a vector of positive integers (including 0), and @gw8r[  
    %   M is a vector with the same number of elements as N.  Each element E;An':j  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) M(n@ytz  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, L-%'jR  
    %   and THETA is a vector of angles.  R and THETA must have the same NCgKWyRR  
    %   length.  The output Z is a matrix with one column for every (N,M) $oPc,zS-gL  
    %   pair, and one row for every (R,THETA) pair. r;+a%?P  
    % (O& HCT|  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 8is QL  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), R*2F)e\|  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral ex66GJQe1  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, lbC,*U^  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized !'B='].  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. R@U4Ae{+  
    % | /n  
    %   The Zernike functions are an orthogonal basis on the unit circle. g{f7 } gTG  
    %   They are used in disciplines such as astronomy, optics, and uQ7lC~  
    %   optometry to describe functions on a circular domain. pF(6M3>IN  
    % B>@l(e)b  
    %   The following table lists the first 15 Zernike functions.  GInw7  
    % 1MmEP  
    %       n    m    Zernike function           Normalization *]nk{jo2  
    %       -------------------------------------------------- 9!.S9[[N  
    %       0    0    1                                 1 ,H1K sN  
    %       1    1    r * cos(theta)                    2 k= &n>P  
    %       1   -1    r * sin(theta)                    2 whm| "}x)u  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) mA@!t>=oMq  
    %       2    0    (2*r^2 - 1)                    sqrt(3) E'NS$,h  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) \[]?9Z=n  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) c e; zn\  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) {WQ6=wGpS  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) (H\ `/%Bp  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) f .$*9Fkw  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) qW'L}x  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) f>|<5zm#<  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) #%w)w R3  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Z] x6np  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 8H`L8: CM  
    %       -------------------------------------------------- wvxsn!Ao&=  
    % ;--D?Gs]Qr  
    %   Example 1: y~su1wUp  
    % 9A/bA|$  
    %       % Display the Zernike function Z(n=5,m=1) Uv652DC  
    %       x = -1:0.01:1; `6;$Z)=.  
    %       [X,Y] = meshgrid(x,x); Kr;=4xg=  
    %       [theta,r] = cart2pol(X,Y); MSRk|0Mcr  
    %       idx = r<=1; [HL>Lp&A?  
    %       z = nan(size(X)); K\59vtga  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); _"*s x-  
    %       figure  1'F!C  
    %       pcolor(x,x,z), shading interp )dh`aQ%N "  
    %       axis square, colorbar :8HVq*itS  
    %       title('Zernike function Z_5^1(r,\theta)') Od:-fw  
    % lJdYR'/Wd  
    %   Example 2: yH>C7M7 t  
    % YBR)S_C$_  
    %       % Display the first 10 Zernike functions <]X 6%LX  
    %       x = -1:0.01:1; L u'<4 R  
    %       [X,Y] = meshgrid(x,x); 0s\ -iub=d  
    %       [theta,r] = cart2pol(X,Y); .!Kqcz% A  
    %       idx = r<=1; Uw!d;YQm  
    %       z = nan(size(X)); cG%X}ZV5  
    %       n = [0  1  1  2  2  2  3  3  3  3]; /Ov1eQBNG  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; M"bG(a(6:  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; q ]VB}nO  
    %       y = zernfun(n,m,r(idx),theta(idx)); #9F>21UU  
    %       figure('Units','normalized') =\oL'>q  
    %       for k = 1:10 .wyuB;:  
    %           z(idx) = y(:,k); ~sPXkLqK  
    %           subplot(4,7,Nplot(k)) M&<qGV$A  
    %           pcolor(x,x,z), shading interp EU04U  
    %           set(gca,'XTick',[],'YTick',[]) d>F.C>  
    %           axis square %g{)K)$,ui  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) jA[Ir3  
    %       end #S x  
    % 4nQ5zwiV  
    %   See also ZERNPOL, ZERNFUN2. (|rf>=B+H  
    . UH'U\M  
    DEt!/a{X  
    %   Paul Fricker 11/13/2006 ByO?qft>u  
    O&yAFiCd  
    &I(\:|`o  
    YbnXAi\y|  
    ts}OE  
    % Check and prepare the inputs: ewHs ]V+U  
    % ----------------------------- #fHnM+  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) $mE3 FJP>  
        error('zernfun:NMvectors','N and M must be vectors.') *Ms"{+C  
    end nc\2A>f`  
    G%AO%II  
    9I;~P &  
    if length(n)~=length(m) 4*Gv0#dga  
        error('zernfun:NMlength','N and M must be the same length.') ~G-W|>  
    end TA2ETvz^  
    q-ko)]  
    !c1M{klP  
    n = n(:); F&m9G >r  
    m = m(:); }.Z `   
    if any(mod(n-m,2)) t|h c`|  
        error('zernfun:NMmultiplesof2', ... 5E1`qof  
              'All N and M must differ by multiples of 2 (including 0).') *Uj;a.  
    end :#35mBe}k  
    %KkC1.yu<  
    G2?#MO  
    if any(m>n) `j9\]50Z>  
        error('zernfun:MlessthanN', ... }!R*Q`m  
              'Each M must be less than or equal to its corresponding N.') R! On  
    end Y:L[Iz95o  
     _cj=}!I  
    _DT,iF*6  
    if any( r>1 | r<0 ) DR:DXJc  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') G5K?Q+n   
    end &qWB\m  
    D,[Nn_N  
    ~ {yy{  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) LjTSu9I>  
        error('zernfun:RTHvector','R and THETA must be vectors.') *78c2`)[  
    end :vzIc3~c:`  
    &Tj7qlP\  
    B{D4.!a  
    r = r(:); Z]oGE@! n"  
    theta = theta(:); WFFQxd|Z  
    length_r = length(r); R@s7s%y=  
    if length_r~=length(theta) OKK Ko`RN  
        error('zernfun:RTHlength', ... s-+-?$K  
              'The number of R- and THETA-values must be equal.') doHE]gC2Uz  
    end sxph#E%  
    KK2YT/K$SG  
    unew XHA  
    % Check normalization: Z`M pH  
    % -------------------- 9d-'%Q>+  
    if nargin==5 && ischar(nflag) ( $2M"n  
        isnorm = strcmpi(nflag,'norm'); w0oTV;yh  
        if ~isnorm A%HIfSzQBS  
            error('zernfun:normalization','Unrecognized normalization flag.') f\_PNZCc  
        end EPH" 5$8  
    else l9="ccM  
        isnorm = false; #jG?{j3;?  
    end D&2NO/ R  
    adIrrK  
    T 4p}5ew'  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% X' 5R4j  
    % Compute the Zernike Polynomials n8=D zv0  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% jll:Rh(b  
    g3&nxZ  
    !#W>x49}  
    % Determine the required powers of r: f^lcw  
    % ----------------------------------- )UF'y{K}  
    m_abs = abs(m); 5X+`aB  
    rpowers = []; wv."  
    for j = 1:length(n) %_4#WI  
        rpowers = [rpowers m_abs(j):2:n(j)]; 9X=<uS  
    end ? ,s'UqR  
    rpowers = unique(rpowers); 0#eb] c   
    jS[=Zx`  
    fuv{2[N V  
    % Pre-compute the values of r raised to the required powers, Q2r[^Z  
    % and compile them in a matrix: > !s<JKhI  
    % ----------------------------- tzGQo5\  
    if rpowers(1)==0 KB|mtsi  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); La9}JvQoX  
        rpowern = cat(2,rpowern{:}); av|T|J/(  
        rpowern = [ones(length_r,1) rpowern]; D:bmq93PC  
    else J8r8#Zz  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); BA1uo0S `S  
        rpowern = cat(2,rpowern{:}); ox&? `DO  
    end 9?O8j1F  
    G"J nQ  
    em3+V  
    % Compute the values of the polynomials: JG'%HJ"D  
    % -------------------------------------- 7`t"fS  
    y = zeros(length_r,length(n)); yTg|L9  
    for j = 1:length(n) gMF6f%  
        s = 0:(n(j)-m_abs(j))/2; `14@dk  
        pows = n(j):-2:m_abs(j); I8)D   
        for k = length(s):-1:1 |TM n  
            p = (1-2*mod(s(k),2))* ... r|4D.O]  
                       prod(2:(n(j)-s(k)))/              ... 0{z8pNrc  
                       prod(2:s(k))/                     ... 3w"JzC@  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ='b)6R  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); O{~Xp!QQt  
            idx = (pows(k)==rpowers); |6bvUFr  
            y(:,j) = y(:,j) + p*rpowern(:,idx); >zX^*T#  
        end z=U+FHdh/-  
         ?rQ .nN  
        if isnorm ^U5N!"6R  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); v9* +@  
        end ~&T U  
    end G6a 2]  
    % END: Compute the Zernike Polynomials ZJZSt% r  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% upaP,ik}~  
    dLb$3!3  
    p:y\{k"  
    % Compute the Zernike functions: C/Z#NP~ *  
    % ------------------------------ l9Ol|Cb&  
    idx_pos = m>0;  2hF^U+I}  
    idx_neg = m<0; :FS5BT$=  
    t*H2;|zn_  
    g_c@Kyf  
    z = y; erUK; +2g  
    if any(idx_pos) i@?|vu  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)');  mih}?oi  
    end {c_bNYoE  
    if any(idx_neg) sGhw23  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); -+1O*L!  
    end 0~RD@>]  
    hDB(y4/  
    5Z; 5?\g  
    % EOF zernfun LJPJENtFIs  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  N}nE9z5  
    _/Ve~( "  
    DDE还是手动输入的呢? "__)RHH:8  
    vde!k_,wZ  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究