下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, #+3I$ k
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, k1WyV_3
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? ,H su;I~
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? w?p8)Q6m
odq3@
ziO
(WS<6j[q
jM(!!AjpC
h1?.x
function z = zernfun(n,m,r,theta,nflag) '8Lc}-M4
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. pvd9wKz
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N IRDD
% and angular frequency M, evaluated at positions (R,THETA) on the nHF
% unit circle. N is a vector of positive integers (including 0), and V P4ToYc
% M is a vector with the same number of elements as N. Each element [k6,!e[/uG
% k of M must be a positive integer, with possible values M(k) = -N(k) s!BZrVM%I`
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, l'Z `%}R
% and THETA is a vector of angles. R and THETA must have the same X<$8'/p r
% length. The output Z is a matrix with one column for every (N,M) ~f%AbDye
% pair, and one row for every (R,THETA) pair. E;x~[MA
% \U'TL_Ql
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike kPZ1OSX
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), F30jr6F\
% with delta(m,0) the Kronecker delta, is chosen so that the integral i(>v~T,(
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, _N`pwxpsb
% and theta=0 to theta=2*pi) is unity. For the non-normalized =R\-mov$
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. qxW2q8QHo
% 6MRS0{
% The Zernike functions are an orthogonal basis on the unit circle. GB_m&t
% They are used in disciplines such as astronomy, optics, and s97L/iH
% optometry to describe functions on a circular domain. ed)!Snz
% KbV%8nx!!
% The following table lists the first 15 Zernike functions. C(*)7|
m
% IN9o$CZ:
% n m Zernike function Normalization S$I:rbc
% -------------------------------------------------- >taZw'
% 0 0 1 1 XUT\nN-N
% 1 1 r * cos(theta) 2 )Z 3fytY
% 1 -1 r * sin(theta) 2 ,/>~J]:\;
% 2 -2 r^2 * cos(2*theta) sqrt(6) 57b;{kl
% 2 0 (2*r^2 - 1) sqrt(3) t`mLZ
<X
% 2 2 r^2 * sin(2*theta) sqrt(6) $bKa"T*
% 3 -3 r^3 * cos(3*theta) sqrt(8) |"Oazll
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) ZvO:!u0+"
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) Kn9,N@bU_
% 3 3 r^3 * sin(3*theta) sqrt(8) a[8_O-
% 4 -4 r^4 * cos(4*theta) sqrt(10) Fk,3th
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ptuW}"F
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) @*O(dw
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) }a_: oR
% 4 4 r^4 * sin(4*theta) sqrt(10) =kLg)a |
% -------------------------------------------------- L3~E*\cV
% jr:LLn#}
% Example 1: 0\U28zbMJw
% QrPWS-3~!
% % Display the Zernike function Z(n=5,m=1) 7_/.a9$G
% x = -1:0.01:1; (Qq$ql27
% [X,Y] = meshgrid(x,x); #UJ@P Dwil
% [theta,r] = cart2pol(X,Y); 3-8Vw$u
% idx = r<=1; Yazpfw 7'd
% z = nan(size(X)); . yu
% z(idx) = zernfun(5,1,r(idx),theta(idx)); e"|9%AW@<
% figure %]Nz54!
% pcolor(x,x,z), shading interp Ahq^dx#o
% axis square, colorbar O'-lBf+<
% title('Zernike function Z_5^1(r,\theta)') 5J&n<M0G1
% X>|.BvY|
% Example 2: 1^Zx-p3J
% M=N`&m