下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, l~!fQ$~
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, b\j&!_
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? ;=\5$J9
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? VSpt&19
UAXF64w{
PeUd
Yj7= T%5
|iUfM3
function z = zernfun(n,m,r,theta,nflag) [^}>AC*im
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. Bx : So6:
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N pkN:D+gS
% and angular frequency M, evaluated at positions (R,THETA) on the u$=ogp=0
% unit circle. N is a vector of positive integers (including 0), and Y!1^@;)^
% M is a vector with the same number of elements as N. Each element UtBlP+bE?y
% k of M must be a positive integer, with possible values M(k) = -N(k) OG^WZ.YU
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, /\a]S:V-j
% and THETA is a vector of angles. R and THETA must have the same ENx@Ex
% length. The output Z is a matrix with one column for every (N,M) %X,B-h^
% pair, and one row for every (R,THETA) pair. ^&';\O@)
% :e<`U~8m
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike h$7Fe +#I#
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), H"q`k5R
% with delta(m,0) the Kronecker delta, is chosen so that the integral hp]ng!I{\u
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, { .3
% and theta=0 to theta=2*pi) is unity. For the non-normalized =Q8H]F
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. <\d|=>;
% xV>iL(?
% The Zernike functions are an orthogonal basis on the unit circle. j
#I:6yA3
% They are used in disciplines such as astronomy, optics, and ?%xhe
% optometry to describe functions on a circular domain. NBqV0>vR
% x
!:9c<
% The following table lists the first 15 Zernike functions. 0gOrW=
% Ng'ZAG;O
% n m Zernike function Normalization lKV\1(`
% -------------------------------------------------- `zzKD2y
% 0 0 1 1 h/X5w4
% 1 1 r * cos(theta) 2 U.hERe~X
% 1 -1 r * sin(theta) 2 =2nn "YVP
% 2 -2 r^2 * cos(2*theta) sqrt(6) v :+8U[x
% 2 0 (2*r^2 - 1) sqrt(3) s@ 20#D
% 2 2 r^2 * sin(2*theta) sqrt(6) [UJEU~XC
% 3 -3 r^3 * cos(3*theta) sqrt(8) P"bknXL
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) gVnwsE
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) A`x
-L
% 3 3 r^3 * sin(3*theta) sqrt(8) &vFqe,Z
% 4 -4 r^4 * cos(4*theta) sqrt(10) (3N"oE.b]
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 'Uko^R)(
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) O@r.>
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) XYb^Cs;
% 4 4 r^4 * sin(4*theta) sqrt(10) 'ybth
% -------------------------------------------------- 7 7xq/c[)
% CP]S-o}yd
% Example 1: z#{0;t
% 0eqi1;$b]
% % Display the Zernike function Z(n=5,m=1) . Z*j!{@c
% x = -1:0.01:1; f8LrDR
% [X,Y] = meshgrid(x,x); Z&dr0w8
% [theta,r] = cart2pol(X,Y); a/QtJwIV
% idx = r<=1; so!w !O@@
% z = nan(size(X)); 5@+4
% z(idx) = zernfun(5,1,r(idx),theta(idx)); {K45~ha9!m
% figure JQ"`9RNb
% pcolor(x,x,z), shading interp ?E+:]j_
% axis square, colorbar .# 6n
% title('Zernike function Z_5^1(r,\theta)') MegE--h
% WxVn&c\
% Example 2: .:{h{@a
% |*tWF!
D6`
% % Display the first 10 Zernike functions j\`EUC
% x = -1:0.01:1; 1p7cv~#95
% [X,Y] = meshgrid(x,x); =My}{n[
% [theta,r] = cart2pol(X,Y); :DdBn.
% idx = r<=1; +mfe*'AU
% z = nan(size(X)); *L%6qxl`V
% n = [0 1 1 2 2 2 3 3 3 3]; L$+d.=]
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; }W:*aU
% Nplot = [4 10 12 16 18 20 22 24 26 28]; [j)\v^m
% y = zernfun(n,m,r(idx),theta(idx)); {W5ydHXy
% figure('Units','normalized') I 1 b
% for k = 1:10 1B)Y;hg6&
% z(idx) = y(:,k); H96BqNoO
% subplot(4,7,Nplot(k)) YgE]d?_h
% pcolor(x,x,z), shading interp M}Nb|V09
% set(gca,'XTick',[],'YTick',[]) <w0NPrS]
% axis square 2;r]gT~
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 1Pk mg%+
% end 4S,. R
% r]A"Og_U
% See also ZERNPOL, ZERNFUN2. lLuID
uY^v"cw/F
=n@F$/h
% Paul Fricker 11/13/2006 R K"&l!o
$%7I:
dB@Wn!Y
)W&o?VRfO
$[Tt#CJw
% Check and prepare the inputs: r<;l{7lY_
% ----------------------------- QS3U)ZO$@
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) }.0Bl&\UK
error('zernfun:NMvectors','N and M must be vectors.') ;mDM5.iF
end p"Ot5!F>
P^ptsZ%
iO!27y
if length(n)~=length(m) -O'{:s~
error('zernfun:NMlength','N and M must be the same length.') 5]jx5!N
end 16"#i
kTnOmAw
$o]r]#B+
n = n(:); Dc08D4
m = m(:); i 3m3zXt
if any(mod(n-m,2)) P
@zz"~f7
error('zernfun:NMmultiplesof2', ... QL2Nz@|k
'All N and M must differ by multiples of 2 (including 0).') ;W]D ~X&
end 4L8z>9D
Lp_$?MCD.
Ls&+XlrX8
if any(m>n) G+0><,S
error('zernfun:MlessthanN', ... ,eR8~(`=
'Each M must be less than or equal to its corresponding N.') b9!.-^<8y
end 94\t1fE
&~RR&MdZ2
BR+nL6sU
if any( r>1 | r<0 ) z9[[C^C
error('zernfun:Rlessthan1','All R must be between 0 and 1.') U4Z[!s$
end pD"YNlB^
X*i/A<Y`=
W+_ R hJ
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) WzjL-a(
error('zernfun:RTHvector','R and THETA must be vectors.') >*I N
end ~
|6dH
W4(v6>5l
>1A*MP4
r = r(:); 7KU~(?|:h
theta = theta(:); P''X_1oMC
length_r = length(r); 'l~6ErBSg
if length_r~=length(theta) r!7 Y'|
error('zernfun:RTHlength', ... cB#nsu>
'The number of R- and THETA-values must be equal.') \#CM
<%
end -T7%dLHY
;6ky5}z
J{`eLmTu
% Check normalization: 98fu>>*G{
% -------------------- ` @8`qXg
if nargin==5 && ischar(nflag) 'n0 .#E_
isnorm = strcmpi(nflag,'norm'); 1"}cdq.
if ~isnorm 'B_\TU0
O
error('zernfun:normalization','Unrecognized normalization flag.') 7{f_fkbs
end
B$^7h!
else .-0%6]
cFD
isnorm = false; k@V#HC{t
end } VEq:^o.
ZsZcQj6G,
r[s!F=^
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% V
>Hf9sZ
% Compute the Zernike Polynomials NBjeHtT
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% AVG>_$<
k6!4Zz_8
*:_P8G;
% Determine the required powers of r: B<7/,d'
% ----------------------------------- EATu KLP\
m_abs = abs(m); y:d{jG^
rpowers = []; @m~RtC-Q
for j = 1:length(n) B6]<G-
rpowers = [rpowers m_abs(j):2:n(j)]; o%[U
end |%1?3Mpn
rpowers = unique(rpowers); /RT%0!
1f#mHt:(
[I l~K
% Pre-compute the values of r raised to the required powers, WZZ4]cC
% and compile them in a matrix: wvMW|
% ----------------------------- ]JE TeZ^/
if rpowers(1)==0 at|g%$%
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); S[,8TErz
rpowern = cat(2,rpowern{:}); {f/ ]5x(_
rpowern = [ones(length_r,1) rpowern]; LZ U$
else W0XF~
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); YE}s
rpowern = cat(2,rpowern{:}); 9 [jTs3l:
end PXzT6)
T[?6[,.
_q?<at}y
% Compute the values of the polynomials: 0)!Ll*L!p
% -------------------------------------- 1mH%H*#
y = zeros(length_r,length(n)); ^YvB9XN
for j = 1:length(n) X"q!Y#)
s = 0:(n(j)-m_abs(j))/2; [zkikZy
pows = n(j):-2:m_abs(j); FP^{=0
for k = length(s):-1:1 Nt:9 MG>1
p = (1-2*mod(s(k),2))* ... nkDy!"K
prod(2:(n(j)-s(k)))/ ... AoaN22
prod(2:s(k))/ ... xJZ@DR,#
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 2;`=P5V
prod(2:((n(j)+m_abs(j))/2-s(k))); %7hB&[ 5
idx = (pows(k)==rpowers); 2Y!S_Hw8
y(:,j) = y(:,j) + p*rpowern(:,idx); Bi3+)k>u7
end LN2D
Oco YV J
if isnorm =Gk/k}1
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); J#2!ZQE
3
end C'A]i5
end ,`A?!.K$
% END: Compute the Zernike Polynomials KvPX=/&Zu
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% a`(a)9i
p4K.NdUH
h*B|fy4K9U
% Compute the Zernike functions: ULH0'@BJ
% ------------------------------ C0*@0~8$9
idx_pos = m>0; mTNVU@TY=
idx_neg = m<0; (Y%Q|u
Q&'}BeUbm
p&-'|'![l
z = y; A@*:<Hs%
if any(idx_pos) U-kVNBs
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 5kNzv~4B,;
end LPYbHo3fq
if any(idx_neg) )~6zYJ2
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)');
Ez~'^s@
end 6$fYt&1
41a.#o
gb=/#G0R
% EOF zernfun `(6r3f~XJ