切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9353阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, y|&}.~U[  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, ^ 5VK>  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? 'evj,zFhW  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? ]{ BE r*  
    *tOG*hwdT  
    R8L_J6Kpa  
    n 26Y]7N  
    a9zw)A  
    function z = zernfun(n,m,r,theta,nflag) CSbI85F  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. X.K<4N0A9J  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ki0V8]HP  
    %   and angular frequency M, evaluated at positions (R,THETA) on the WD;Y~|  
    %   unit circle.  N is a vector of positive integers (including 0), and ._wkj  
    %   M is a vector with the same number of elements as N.  Each element c(co\A.]:6  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) Bx"7%[  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 5G0 $  
    %   and THETA is a vector of angles.  R and THETA must have the same JxLf?ad.  
    %   length.  The output Z is a matrix with one column for every (N,M) yq_LW>|Z  
    %   pair, and one row for every (R,THETA) pair. D47R  
    % "x941 }  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike N$Y" c*  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), .*$OQA  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral jEc|]E  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ,<<4*  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized hqk}akXt  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. { 74mf'IW  
    % )5%C3/Dl!  
    %   The Zernike functions are an orthogonal basis on the unit circle. [U#72+K  
    %   They are used in disciplines such as astronomy, optics, and M L7 \BT  
    %   optometry to describe functions on a circular domain. -16K7yk  
    % ~.PO[hC  
    %   The following table lists the first 15 Zernike functions. 2M)]!lYy  
    % #U=X NU}k  
    %       n    m    Zernike function           Normalization 9p 4"r^  
    %       -------------------------------------------------- H4OhIxK  
    %       0    0    1                                 1 I9o6k?$K  
    %       1    1    r * cos(theta)                    2 ~9F,%  
    %       1   -1    r * sin(theta)                    2 4> ^K:/y  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 'tN25$=V&W  
    %       2    0    (2*r^2 - 1)                    sqrt(3) Fg$3N5*  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) xX0-]Y h:  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) &Gm$:T'~  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) !$A37j6  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) {Z;jhR,  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) ^1:U'jIXO  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 6b8;}],|  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) %or,{mmiM:  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) H?}[r)|(3i  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) k^$+n_  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) uUE9g  
    %       -------------------------------------------------- Q@e[5RA +]  
    % at!Y3VywG  
    %   Example 1: pqvOJ#?Q}=  
    % 8$|8`;I(  
    %       % Display the Zernike function Z(n=5,m=1) *5sBhx  
    %       x = -1:0.01:1; Nf+b" &Zh`  
    %       [X,Y] = meshgrid(x,x); a/~aFmu6b  
    %       [theta,r] = cart2pol(X,Y); 2LCB])X  
    %       idx = r<=1; L?_7bX oD  
    %       z = nan(size(X)); G{aT2c  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); +u@aJ_^  
    %       figure ]DFXPV  
    %       pcolor(x,x,z), shading interp JJV0R}z?TV  
    %       axis square, colorbar :J}t&t  
    %       title('Zernike function Z_5^1(r,\theta)') 2)?(R;$,  
    % c~A4gtB=  
    %   Example 2: 8,?v?uE  
    % xy+QbD T  
    %       % Display the first 10 Zernike functions _FbC{yI8;  
    %       x = -1:0.01:1; PI A)d-Z  
    %       [X,Y] = meshgrid(x,x); F Kc;W  
    %       [theta,r] = cart2pol(X,Y); Dz!fpE'L  
    %       idx = r<=1; BE&B}LfvfO  
    %       z = nan(size(X)); *IlaM'[*  
    %       n = [0  1  1  2  2  2  3  3  3  3];  <VjJAu  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; n<Svw a}  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; u^I(Ny  
    %       y = zernfun(n,m,r(idx),theta(idx)); 6nDV1O5  
    %       figure('Units','normalized') "`}~~.q  
    %       for k = 1:10 m,3er*t{  
    %           z(idx) = y(:,k); d lH$yub  
    %           subplot(4,7,Nplot(k)) d {lP  
    %           pcolor(x,x,z), shading interp RVtQ20e";r  
    %           set(gca,'XTick',[],'YTick',[]) a\kb^D=T  
    %           axis square Ap&)6g   
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) IWVlrGyM  
    %       end LW#M@  
    % %v5R#14[n  
    %   See also ZERNPOL, ZERNFUN2. #L crI  
    JGiKBm;  
    y<W8Q<9  
    %   Paul Fricker 11/13/2006 hlvt$Jwq  
    F}Mhs17!|  
    ,p{`pma  
    p\wJD1s  
    zHB_{(o7  
    % Check and prepare the inputs: >Sk[vI0Y  
    % ----------------------------- ~Y= @$!Uq  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) O|kKwadC  
        error('zernfun:NMvectors','N and M must be vectors.') 9D@$i<D:  
    end ;N+$2w  
    TL= YQA  
    `U!y&Q$,  
    if length(n)~=length(m) P#kGX(G9!  
        error('zernfun:NMlength','N and M must be the same length.') BOlAm*tFt  
    end @mw "W{  
    ir> ]r<Zl  
    nR \'[~+  
    n = n(:); Mro4`GL  
    m = m(:); \`'KlF2  
    if any(mod(n-m,2)) NQTnhiM7$  
        error('zernfun:NMmultiplesof2', ... r'/;O  
              'All N and M must differ by multiples of 2 (including 0).') 7&}P{<}o^  
    end lYf+V8{  
    =<f-ob8,  
    PL0`d`TI  
    if any(m>n) &Y|Xd4:  
        error('zernfun:MlessthanN', ... #~:P}<h  
              'Each M must be less than or equal to its corresponding N.') wyc D>hc  
    end !KS F3sz  
    6@;ha=[+  
    = Je>`{J  
    if any( r>1 | r<0 ) (Ha@s^?.C  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') H(+<)qH  
    end T~4mQuYi  
    `&7RMa4=  
    W-2i+g)  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Zp`T  
        error('zernfun:RTHvector','R and THETA must be vectors.') :bM+&EP  
    end 'aJgLws*w  
    -H(vL=  
    Q}%tt=KD  
    r = r(:); tgFJZA  
    theta = theta(:); e&Y0}oY  
    length_r = length(r); jdRq6U^  
    if length_r~=length(theta) ,#u\l>&$  
        error('zernfun:RTHlength', ... O>r-]0DI[  
              'The number of R- and THETA-values must be equal.') a^nAZ  
    end \9c$`nn  
    g1m-+a  
    Bl.u=I:Y4  
    % Check normalization: U)jUq_LX  
    % -------------------- *3{J#Q6fk3  
    if nargin==5 && ischar(nflag) +`en{$%%  
        isnorm = strcmpi(nflag,'norm'); 0Vv9BL{  
        if ~isnorm ~2 }Pl)  
            error('zernfun:normalization','Unrecognized normalization flag.') N$aZ== $5  
        end R|,7d:k  
    else $`Nd?\$  
        isnorm = false; =Z0t :{  
    end <zB*'m  
    j\)H  
    Rc$h{0K8  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% _."E%|5  
    % Compute the Zernike Polynomials 8:;#,Urr  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ))#'4  
    QEJGnl676  
    4KpL>'Q=  
    % Determine the required powers of r: y0q#R.TOm  
    % ----------------------------------- QX0 Y>&$ )  
    m_abs = abs(m); W?,$!]0  
    rpowers = []; gp  
    for j = 1:length(n) -f>'RI95>  
        rpowers = [rpowers m_abs(j):2:n(j)]; 90:K#nW;  
    end ziL^M"~2  
    rpowers = unique(rpowers); D5A=,\uk  
    [B/0-(?  
    -WR}m6yMr  
    % Pre-compute the values of r raised to the required powers, hY8#b)l~lu  
    % and compile them in a matrix: 1 p\Ak  
    % ----------------------------- ,+L KJl  
    if rpowers(1)==0 h8}8Lp(/'  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); &sOM>^SAD  
        rpowern = cat(2,rpowern{:}); =I4.Gf"~f  
        rpowern = [ones(length_r,1) rpowern]; Z!\@%`0$  
    else : }?{@#Z  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); l8wF0|  
        rpowern = cat(2,rpowern{:}); w=J4zkWk  
    end i^|@"+  
    X , ZeD  
    tHI*,  
    % Compute the values of the polynomials: D s-`  
    % -------------------------------------- J/Q|uRpmqr  
    y = zeros(length_r,length(n)); {yq8<?  
    for j = 1:length(n) f'{>AKi=C  
        s = 0:(n(j)-m_abs(j))/2; K3ukYR  
        pows = n(j):-2:m_abs(j); #)74X% 4(  
        for k = length(s):-1:1 %g^" ]  
            p = (1-2*mod(s(k),2))* ... EF;,Gjh5p  
                       prod(2:(n(j)-s(k)))/              ... S<oQ}+4[~  
                       prod(2:s(k))/                     ... 'j79GC0  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... a-PGW2G  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); YFx=b!/ s  
            idx = (pows(k)==rpowers); njMLyT($  
            y(:,j) = y(:,j) + p*rpowern(:,idx); ,P@QxnQ   
        end rSyaZ6#  
         xH$%5@~  
        if isnorm S}gD,7@  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); dF,DiRD  
        end 2LhE]O(_"  
    end *Mi6  
    % END: Compute the Zernike Polynomials |R~;&x:  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 37>MJ  
    iQqbzOY  
    $FCw$+w  
    % Compute the Zernike functions: !#.vyBK#  
    % ------------------------------ T Nci.']  
    idx_pos = m>0; faVS2TN4  
    idx_neg = m<0; ZjD2u 8e  
    ^<9)"9)m_  
    >B~?dTm  
    z = y; 9p<:LZd~  
    if any(idx_pos) Mf7E72{D  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 6D^%'[4t  
    end -A@U0=o  
    if any(idx_neg) I"V3+2e  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); )dg UmN  
    end w4}(Ab<Y  
    R6Pz#`n  
    }}s) +d  
    % EOF zernfun V'yxqI?  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  noWRYS%  
    8kKRx   
    DDE还是手动输入的呢? 6uv'r;U]  
    <5C=i:6%  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究