切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9069阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, q\U4n[Zk  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, b=_{/F*b?  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? lO_c/o$  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? xDLMPo&  
    !^1[ s@1  
    ,$BgR2^  
    #~1wv^  
    w~{| S7/  
    function z = zernfun(n,m,r,theta,nflag) s@ z{dmL  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. YJc%h@_=]  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N v\'r Xy  
    %   and angular frequency M, evaluated at positions (R,THETA) on the Y.9~Bo<<r  
    %   unit circle.  N is a vector of positive integers (including 0), and yP%o0n/"x  
    %   M is a vector with the same number of elements as N.  Each element 9iK&f\#5H  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) Lb^(E-  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, mw Z'=H  
    %   and THETA is a vector of angles.  R and THETA must have the same [NZ-WU&&LP  
    %   length.  The output Z is a matrix with one column for every (N,M) a! ?.F_T9A  
    %   pair, and one row for every (R,THETA) pair.  Db,= 2e  
    % ]DU61Z"v?b  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike t5n2eOy~T  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), PC[cHgSYU  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral +/w(K,  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, <g*.p@o  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized Fj,(_^  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Liij{ahm  
    % n3*UgNg%fK  
    %   The Zernike functions are an orthogonal basis on the unit circle. ) (+)Q'*  
    %   They are used in disciplines such as astronomy, optics, and ;*.(.  
    %   optometry to describe functions on a circular domain. >"O1`xdG  
    % ZX h~ 79  
    %   The following table lists the first 15 Zernike functions. l3BD <PB2S  
    % |@+8]dy:l  
    %       n    m    Zernike function           Normalization 0FTRm2(  
    %       -------------------------------------------------- Y=3X9%v9g  
    %       0    0    1                                 1 0Ux<16#  
    %       1    1    r * cos(theta)                    2 _ r~+p  
    %       1   -1    r * sin(theta)                    2 % <^[j^j}o  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) Tt`L(oF  
    %       2    0    (2*r^2 - 1)                    sqrt(3) v&e-`.xR  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) L)1C'8 ).  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) =zz+<!!  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) K q/~T7Ru  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) O1|B3M[P  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) I'xC+nL@  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) xJ N|w\&  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) L>0!B8X2  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) y{YXf! AS  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) #>@<n3rq  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) I Jqv w  
    %       -------------------------------------------------- gH5CB%)  
    % Xm%iPrl D  
    %   Example 1: B'<!k7Ewy  
    % )\D2\1e(c  
    %       % Display the Zernike function Z(n=5,m=1) O<4Q$|=&?  
    %       x = -1:0.01:1; yLjV[ qP  
    %       [X,Y] = meshgrid(x,x); Y+!Ouc!$  
    %       [theta,r] = cart2pol(X,Y); 4}+xeGA$  
    %       idx = r<=1; `i=JjgG@  
    %       z = nan(size(X)); Z+r%_|kZ  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); bd,Uz% o_  
    %       figure +:fqL  
    %       pcolor(x,x,z), shading interp <"hb#Tn  
    %       axis square, colorbar YW'{|9KnI  
    %       title('Zernike function Z_5^1(r,\theta)') 4[2=L9MIo~  
    % ?]s%(R,B5  
    %   Example 2: eVZa6la"  
    % 3%_ 4+zd  
    %       % Display the first 10 Zernike functions uE"5cq'B/  
    %       x = -1:0.01:1; Po'-z<}wS  
    %       [X,Y] = meshgrid(x,x); Sjw2 j#Q  
    %       [theta,r] = cart2pol(X,Y); 8mk}nex  
    %       idx = r<=1; j?Cr31  
    %       z = nan(size(X)); d&NCFx  
    %       n = [0  1  1  2  2  2  3  3  3  3]; AGl|>f)  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; ;,<r|.6U  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; I/mvQxp  
    %       y = zernfun(n,m,r(idx),theta(idx)); j#7wyi5q  
    %       figure('Units','normalized') m$7x#8gF  
    %       for k = 1:10 kuWK/6l4  
    %           z(idx) = y(:,k); c:3@[nF~  
    %           subplot(4,7,Nplot(k)) wy,Jw3  
    %           pcolor(x,x,z), shading interp K~`n}_:  
    %           set(gca,'XTick',[],'YTick',[]) l.XknF  
    %           axis square \R6;Fef  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) _Wm(/ +G_|  
    %       end p.@0=)  
    % n33JTqX  
    %   See also ZERNPOL, ZERNFUN2. 8FB\0LA!g  
    kyy0&L  
    [SCw<<l<  
    %   Paul Fricker 11/13/2006 _7rqXkp%  
    6W)xj6<@  
    &sI,8X2a2  
    4}.WhE|h  
    q :TZ=bs^  
    % Check and prepare the inputs: X*TuQ\T  
    % ----------------------------- QN)/,=#  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) J!=](s5|  
        error('zernfun:NMvectors','N and M must be vectors.') ` (7N^@  
    end (iHf9*i CV  
    (! xg$Kz@  
    [>b  '}4  
    if length(n)~=length(m) jf$JaY  
        error('zernfun:NMlength','N and M must be the same length.') P3+)pOE-SI  
    end <{$ ev&bQ  
    )p^m}N 6M]  
    e*Uz# w:  
    n = n(:); RnMBGxa  
    m = m(:); a/`c ef  
    if any(mod(n-m,2)) 6Y;Y}E  
        error('zernfun:NMmultiplesof2', ... 4a(g<5wfI  
              'All N and M must differ by multiples of 2 (including 0).') Vpug"aR&_  
    end F3k C"H  
    UI|v/(_^F  
    2uvQf&,  
    if any(m>n) z1Bj_u{  
        error('zernfun:MlessthanN', ... Gl?P.BCW.&  
              'Each M must be less than or equal to its corresponding N.') X@6zI-Y %  
    end {toyQ)C7  
    el <<D  
    /2g)Z!&+L  
    if any( r>1 | r<0 ) Ft3N#!ubl  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') tb-OKZq  
    end Q3B'-BZe  
    '_q: vjX  
    zznPD%#Sc  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 5?V?  
        error('zernfun:RTHvector','R and THETA must be vectors.') Nb^zkg  
    end c[wQJc  
    #,f}lV,&  
    o9U0kI=W  
    r = r(:); 7,V!Iv^X  
    theta = theta(:); &[?u1qQ%o  
    length_r = length(r); L Q I: ]d  
    if length_r~=length(theta) eh({K;>  
        error('zernfun:RTHlength', ... Z$OF|ZZQ  
              'The number of R- and THETA-values must be equal.') q|47;bK'  
    end Gt\K Ln  
    &=s|  
    E1Ru)k{B  
    % Check normalization: XE f&Yd  
    % -------------------- 4b3F9  
    if nargin==5 && ischar(nflag) s T :tFK\  
        isnorm = strcmpi(nflag,'norm'); :$SRG^7md  
        if ~isnorm %nDPM? aO  
            error('zernfun:normalization','Unrecognized normalization flag.') H6%!v1 u  
        end F:*[  
    else RE`J"&  
        isnorm = false; j61BP8E  
    end }5o~R~H  
    j=xtnIq  
    lRF_ k  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -!C Y,'3  
    % Compute the Zernike Polynomials GvZac  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% [6,]9|~  
    :f?,]|]+-  
    1K? & J2  
    % Determine the required powers of r: C0t+Q  
    % ----------------------------------- ? BHWzo!  
    m_abs = abs(m); 1c<CEq:?e%  
    rpowers = []; bMqu5G_q  
    for j = 1:length(n) h30QCk  
        rpowers = [rpowers m_abs(j):2:n(j)]; 4i[v ew  
    end O]Ry3j  
    rpowers = unique(rpowers); F(KH-  
    [x$eF~Kp  
    RAg|V:/M  
    % Pre-compute the values of r raised to the required powers, [}9XHhY1O=  
    % and compile them in a matrix: YmO"EWb  
    % ----------------------------- 6yu*a_  
    if rpowers(1)==0 P xP?hk  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); DSDl[;3O{s  
        rpowern = cat(2,rpowern{:}); UALg!M#  
        rpowern = [ones(length_r,1) rpowern]; fncwe ';?  
    else d}wa[WRv   
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); [/+dHW|  
        rpowern = cat(2,rpowern{:}); X>6 ~{3  
    end sO{0hZkc  
    v' 9(et  
    }GoOE=rhY  
    % Compute the values of the polynomials: h87L8qh9  
    % -------------------------------------- aV?}+Y{#  
    y = zeros(length_r,length(n)); 2#n$x*CY  
    for j = 1:length(n) q5I4'6NF  
        s = 0:(n(j)-m_abs(j))/2; ~/|unV  
        pows = n(j):-2:m_abs(j); `G ;Lz^  
        for k = length(s):-1:1 w}U5dM`  
            p = (1-2*mod(s(k),2))* ... o%4&1^ Vg  
                       prod(2:(n(j)-s(k)))/              ... ohc/.5Kl  
                       prod(2:s(k))/                     ... wCq)w=,  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... TN |{P  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); YA;8uMqh;  
            idx = (pows(k)==rpowers); WnJLX ^;  
            y(:,j) = y(:,j) + p*rpowern(:,idx); $@u^Jt, ?  
        end j quSR=  
         zNsL^;uT  
        if isnorm DX%8. @  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Ghq'k:K,  
        end +3o)L?:g  
    end St3(1mApl  
    % END: Compute the Zernike Polynomials *(\;}JF-  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% . ~A"Wyu\  
    *nsnX/e(-  
    2LxVt@_R!%  
    % Compute the Zernike functions: ~kj(s>xP  
    % ------------------------------ %8} ksl07  
    idx_pos = m>0; LG&Q>pt.  
    idx_neg = m<0; , R.+-X  
    Z '>eT)  
    5cNzG4z  
    z = y; K&D}!.~/  
    if any(idx_pos) [BZ(p  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); l6`d48U  
    end -4^@)~Y  
    if any(idx_neg) C>\!'^u1  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); p=`x  
    end vZ nO  
    uDE91.pUkr  
    [^(R1K  
    % EOF zernfun vn%U;}  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    在线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  ^5 =E`q".  
    QZa#i L  
    DDE还是手动输入的呢? Y {|~A  
    [W;dguh  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究