下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, O329Bkg
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, i)0*J?l=
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? t?v0ylN
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? '7W?VipU
w<awCp
,7pO-:*g
I ,AI$A
%t\`20-1<
function z = zernfun(n,m,r,theta,nflag) )*^PMf
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. SF;;4og
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N S[NV-)r=
% and angular frequency M, evaluated at positions (R,THETA) on the ZBJYpeGe
% unit circle. N is a vector of positive integers (including 0), and E<a~
`e
% M is a vector with the same number of elements as N. Each element CPGXwM=
% k of M must be a positive integer, with possible values M(k) = -N(k) 1H@GwQ|<=
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1,
c*_I1}l
% and THETA is a vector of angles. R and THETA must have the same HqU"iY>b
% length. The output Z is a matrix with one column for every (N,M) j*$GP'Df3
% pair, and one row for every (R,THETA) pair. X63DBF4A
% q]5"V>D \
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike F#iLMO&Q
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), >.#uoW4ZV
% with delta(m,0) the Kronecker delta, is chosen so that the integral RH. oo&
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, tGD$cBE
% and theta=0 to theta=2*pi) is unity. For the non-normalized /v;g v[
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. wLU w'Ai
% 5gV8=Ml"V
% The Zernike functions are an orthogonal basis on the unit circle. qrNW\ME
% They are used in disciplines such as astronomy, optics, and @}x)>tqD
% optometry to describe functions on a circular domain. DSy,#yA
% [8SW0wsk
% The following table lists the first 15 Zernike functions. :%A1k2
% s iv
KXd
% n m Zernike function Normalization .Kq>/6
% -------------------------------------------------- '8k\a{t_z
% 0 0 1 1 tB[(o%k
% 1 1 r * cos(theta) 2 bK("8T\?
% 1 -1 r * sin(theta) 2 r#]gAG4t\
% 2 -2 r^2 * cos(2*theta) sqrt(6) q`}Q[Li
% 2 0 (2*r^2 - 1) sqrt(3) A@_F ;4X
% 2 2 r^2 * sin(2*theta) sqrt(6) &6MGPh7T
% 3 -3 r^3 * cos(3*theta) sqrt(8) 3T Q#3h
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) rg_-gZl8&z
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) akBR"y:~:H
% 3 3 r^3 * sin(3*theta) sqrt(8) =}r&>|rrJ
% 4 -4 r^4 * cos(4*theta) sqrt(10) c.,:rX0S
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) p0$K.f|
^
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) f;pR8
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 0} liK
% 4 4 r^4 * sin(4*theta) sqrt(10) KL.{)bi
% -------------------------------------------------- ahS*YeS7
% J}`K&DtM9
% Example 1: .K}u`v T
% F^T7u?^)
% % Display the Zernike function Z(n=5,m=1) m2{z
% x = -1:0.01:1; Ps<)?q6(
% [X,Y] = meshgrid(x,x); Y: KB"H
% [theta,r] = cart2pol(X,Y); .(CzsupY_q
% idx = r<=1; zmf5!77
% z = nan(size(X)); ,`/!0Wmt
% z(idx) = zernfun(5,1,r(idx),theta(idx)); +5?hkQCX1^
% figure u/y`M]17
% pcolor(x,x,z), shading interp 5&2=;?EO
% axis square, colorbar 5:CC\!&QBV
% title('Zernike function Z_5^1(r,\theta)') Ej 'a
G
% A~nq4@uj
% Example 2: V[+ Pb]
% |m k $W$h
% % Display the first 10 Zernike functions lUCdnp;w'
% x = -1:0.01:1; N.xmHv Pk
% [X,Y] = meshgrid(x,x); kc|`VB8L
% [theta,r] = cart2pol(X,Y); xfO!v>
% idx = r<=1; fBD5K3
% z = nan(size(X)); gA2\c5F<
% n = [0 1 1 2 2 2 3 3 3 3]; A+Y>1-=JO
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; v]U[7 j
% Nplot = [4 10 12 16 18 20 22 24 26 28]; N;-+)=M,rf
% y = zernfun(n,m,r(idx),theta(idx)); %>xW_5;Z
% figure('Units','normalized') evg i\"
% for k = 1:10 #hR}7K+@
% z(idx) = y(:,k); ;c:vzF~Q
% subplot(4,7,Nplot(k)) #5G!lbH
% pcolor(x,x,z), shading interp X"iy.@7
% set(gca,'XTick',[],'YTick',[]) xE;fM\7pu
% axis square 79:x>i=
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) fRaVY`|wK
% end MV9{>xX
% w|?Nq?KA
% See also ZERNPOL, ZERNFUN2. U G^6I5
6n%^
U2H/-
0\o0(eHCQz
% Paul Fricker 11/13/2006 ((EN&X,v
W1r- uR
}4_izKS
i7e{REBXb
a4g=cs<9}
% Check and prepare the inputs: ttZ!P:H2
% ----------------------------- SRM[IU
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) C&<f YCwG
error('zernfun:NMvectors','N and M must be vectors.') z56W5g2
end KQ3)^J_Z
uZmfvMr3
x*BfRj
if length(n)~=length(m) JWMIZ{/M
error('zernfun:NMlength','N and M must be the same length.') 1/a*8vuGh
end <MvFAuAT
Qf>dfJ^q
! ~&X1,l1*
n = n(:); ]jY->NsA]
m = m(:); I|Z5*iXqCm
if any(mod(n-m,2)) qx0J}6+NlU
error('zernfun:NMmultiplesof2', ... v8 6ls[lzu
'All N and M must differ by multiples of 2 (including 0).') ']Y:f)i#
end .o|Gk
5)
1__p1
7OC,KgJ3
if any(m>n) {_^sR}%]F
error('zernfun:MlessthanN', ... <0R?#^XBZB
'Each M must be less than or equal to its corresponding N.') `Ph4!-6#
end [uAfE3
iKp4@6an
Sw'DS
if any( r>1 | r<0 ) 2!]':(8mR
error('zernfun:Rlessthan1','All R must be between 0 and 1.') F P
mLost
end VEb}KFyP
%@H;6
%I6iXq#
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Q
CfA3*
error('zernfun:RTHvector','R and THETA must be vectors.') %0:
(''
end &h4(lM
oh& PQ{
*e_ /D$SC
r = r(:); |!57Z4X
theta = theta(:); !R)v2Mk|
length_r = length(r); )JuD !
if length_r~=length(theta) ^BNg^V.
error('zernfun:RTHlength', ... ? 76jz>;b
'The number of R- and THETA-values must be equal.') ~(I\O?k>H
end LAMTf"a
6wnfAli.
RMLs(?e
% Check normalization: p_P'2mf
% -------------------- Rfa1v*(
if nargin==5 && ischar(nflag) YM1@B`yWE
isnorm = strcmpi(nflag,'norm'); "'6KQnpZ
if ~isnorm -I4@` V
error('zernfun:normalization','Unrecognized normalization flag.') EkOBI[`
end E8FS jLZ
else SwSBQq%h]M
isnorm = false; 8#7z5:_
end GbStqR~^#
h\D
y(\
#{ `(;83
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ||qsoF5B]
% Compute the Zernike Polynomials aQinR"o
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% QabF(}61
=$b^X?x
Pfi '+I`s
% Determine the required powers of r: 6I_W4`<VeZ
% ----------------------------------- LG&~#x
m_abs = abs(m); 8Jxo;Y
rpowers = []; ~poy`h'
for j = 1:length(n) Qy@chN{eP
rpowers = [rpowers m_abs(j):2:n(j)]; ";s?#c
end ">CjnF2>R
rpowers = unique(rpowers); L6 hTz'
:[\}Hn=
;uDH&3W
% Pre-compute the values of r raised to the required powers, .rN5A+By`
% and compile them in a matrix: ;t"#7\
% ----------------------------- MlS<txFPS
if rpowers(1)==0 |910xd`Z
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ^U:pv0Qz
rpowern = cat(2,rpowern{:}); tR0o6s@v/<
rpowern = [ones(length_r,1) rpowern]; g4I(uEJk
else rf]]I#C7
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ,}`II|.oB
rpowern = cat(2,rpowern{:}); 2hmV1gj
end qrm~=yU%
"'II~/9
O1rnF3Be
% Compute the values of the polynomials: 3x'BMAA+
% -------------------------------------- [<f\+g2ct
y = zeros(length_r,length(n)); 1 ,[T;pdDd
for j = 1:length(n) "E8-76n
s = 0:(n(j)-m_abs(j))/2; p# O%<S@?
pows = n(j):-2:m_abs(j); GG%j+Ed
for k = length(s):-1:1 A[=)Zw
"
p = (1-2*mod(s(k),2))* ... >9Ub=tZm
prod(2:(n(j)-s(k)))/ ... ",`fGu )
prod(2:s(k))/ ... J%3S3C2*m
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... {gK
i15t
prod(2:((n(j)+m_abs(j))/2-s(k))); 7P=1+2V
idx = (pows(k)==rpowers); R;'Pe>
y(:,j) = y(:,j) + p*rpowern(:,idx);
MCL5a@BX)
end |2{y'?,
p4HX83y{
if isnorm ]W-:-.prh
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); xr)kHJ:v
end RK"dPr
end KuE
2a,E4
% END: Compute the Zernike Polynomials GfL}f9
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 1&Nk
wgzjuTqwBF
L;E9"7Jo
% Compute the Zernike functions: lj'c0k8
% ------------------------------ /Q})%j1S0
idx_pos = m>0; i nF&Pv