切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9017阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, eaC%& k  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, .P <3+  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? Fw S>V2R  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? Sv_Nb>  
    9=mc3m:Tb(  
    _U_O0@xi  
    vc :%  
    YF)]B|I  
    function z = zernfun(n,m,r,theta,nflag) _i_P@I<M|~  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. pM^ZC  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N RfOJUz  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 6w=`0r3hy  
    %   unit circle.  N is a vector of positive integers (including 0), and UE{$hLI?g  
    %   M is a vector with the same number of elements as N.  Each element r'`7}@H*  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) PY;tu#W!%  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, En:>c  
    %   and THETA is a vector of angles.  R and THETA must have the same ^v `naA(  
    %   length.  The output Z is a matrix with one column for every (N,M) CLTkyS)C  
    %   pair, and one row for every (R,THETA) pair. f S[-K?K  
    % a'-u(Bw  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 9O -2  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), m):*>o55  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral X$;&Mdo.  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ~o>Gm>5!HH  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized /)T~(o|i  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ?G5,}%  
    % {#:31)P  
    %   The Zernike functions are an orthogonal basis on the unit circle. z&WtPSyGj  
    %   They are used in disciplines such as astronomy, optics, and 9vz\R-un  
    %   optometry to describe functions on a circular domain. 8PzGUn;\  
    % a}uYv:  
    %   The following table lists the first 15 Zernike functions. {#ynN`tLyF  
    % @)BO`;*$fF  
    %       n    m    Zernike function           Normalization 4EHrd;|   
    %       -------------------------------------------------- Kxch.$hc,  
    %       0    0    1                                 1 ^$5 0[  
    %       1    1    r * cos(theta)                    2 "(3u)o9  
    %       1   -1    r * sin(theta)                    2 P`ou:M{8  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 8Z0x*Ssk  
    %       2    0    (2*r^2 - 1)                    sqrt(3) hbOXR.0z  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) f4fBUZ^ A  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) Lo~ ;pvv  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) fz\Q>u'T  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 'S1u@p,q  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) :{2~s  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) IH;sVT $M  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Km;}xke6  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) +rJ6DZ  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) <(q(5jG  
    %       4    4    r^4 * sin(4*theta)             sqrt(10)  #D4  
    %       -------------------------------------------------- ] \M+ju  
    % UWF \Vx*)b  
    %   Example 1: !uQT4< g  
    % X+C*+k,z  
    %       % Display the Zernike function Z(n=5,m=1) Y@`uBB[  
    %       x = -1:0.01:1; |82q|@e  
    %       [X,Y] = meshgrid(x,x); V D~5]TQ  
    %       [theta,r] = cart2pol(X,Y); 2}A)5P*K  
    %       idx = r<=1; ;U|(rM;  
    %       z = nan(size(X)); bDM},(  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); ts!tv6@  
    %       figure V6X )L>!xx  
    %       pcolor(x,x,z), shading interp RbX9PF"|+  
    %       axis square, colorbar 1>OlBp  
    %       title('Zernike function Z_5^1(r,\theta)') !1G KpL  
    % *qwN9b/!  
    %   Example 2: >I|8yqbfm  
    % ?1D!%jfi  
    %       % Display the first 10 Zernike functions u<Kowt<ci  
    %       x = -1:0.01:1; r*+~(83k  
    %       [X,Y] = meshgrid(x,x); >`\.i,X .D  
    %       [theta,r] = cart2pol(X,Y); tL$,]I$1+  
    %       idx = r<=1; I&{T 4.B:U  
    %       z = nan(size(X)); ==OUd6e}  
    %       n = [0  1  1  2  2  2  3  3  3  3]; *O :JECKU  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; w6i2>nu_O  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; UDh \%?j  
    %       y = zernfun(n,m,r(idx),theta(idx)); =mO5~~"W+v  
    %       figure('Units','normalized') E{<#h9=>  
    %       for k = 1:10 Hw o _;fV  
    %           z(idx) = y(:,k); az F!V  
    %           subplot(4,7,Nplot(k)) r8s>s6vm  
    %           pcolor(x,x,z), shading interp -N*[f9EJB  
    %           set(gca,'XTick',[],'YTick',[]) {  c#US  
    %           axis square rx2)uUbR  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 1z PS#K/3  
    %       end z2iMpZ  
    % ?$|tT\SFV  
    %   See also ZERNPOL, ZERNFUN2. 2y - QH  
    J'}+0mln  
    ~.: { Ik]  
    %   Paul Fricker 11/13/2006 _y~6b{T  
    s<zN`&t  
    ?6CLUu|7n  
    pi?/]}:  
    LDr?'M!D  
    % Check and prepare the inputs: ^%$IdDx  
    % ----------------------------- k|/VNV( =0  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Rn~'S2`u  
        error('zernfun:NMvectors','N and M must be vectors.') mD'nF1o Ly  
    end p AOKy  
    w a_{\v=  
    9^XZ|`  
    if length(n)~=length(m) ,`bW (V  
        error('zernfun:NMlength','N and M must be the same length.') f'oTN!5WF  
    end MJ JC6:  
    ~6f/jCluR%  
    _d]{[& p4t  
    n = n(:); -TF},V~  
    m = m(:); ESCN/ocV  
    if any(mod(n-m,2)) gy}3ZA*F  
        error('zernfun:NMmultiplesof2', ... juR>4SH  
              'All N and M must differ by multiples of 2 (including 0).') 6TW<,SM  
    end V *@q< rQ  
    CtCReH03  
    $5i\D rs  
    if any(m>n) Gd 4S7JE  
        error('zernfun:MlessthanN', ... cg8/v:B  
              'Each M must be less than or equal to its corresponding N.') Ak?9a_f  
    end OkciL]  
    epsRv&LfC  
    =Fz mifTc  
    if any( r>1 | r<0 ) Z?+ )ox  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') T \/^4N`  
    end FEk9a^Xyx  
    Yh1</C  
    ! V.]mI  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) -dM~3'  
        error('zernfun:RTHvector','R and THETA must be vectors.') ;5/Se"Nd  
    end :zU4K=kR  
    6|EOB~|  
    nOPB*{r|  
    r = r(:); I0F [Z\U  
    theta = theta(:); MGF !ZZ\  
    length_r = length(r); &}u_e`A  
    if length_r~=length(theta) 4BMu0["6|s  
        error('zernfun:RTHlength', ... &u:U"j  
              'The number of R- and THETA-values must be equal.') K}cZK  
    end :$G^TD/n  
    }@bp v  
    &b@_ah+f  
    % Check normalization: < dE7+w  
    % -------------------- N6[Z*5efR  
    if nargin==5 && ischar(nflag) .u A O.<  
        isnorm = strcmpi(nflag,'norm'); #X)DFAtb  
        if ~isnorm | d*<4-:  
            error('zernfun:normalization','Unrecognized normalization flag.') @g[ijs\  
        end XI Mh<  
    else UT@Qo}:  
        isnorm = false; #b d=G(o~6  
    end .Yk}iHcW.  
    Ue9d0#9  
    OkRb3}  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% QHv]7&^rlj  
    % Compute the Zernike Polynomials I]HYqI  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Ls2,+yo]>  
    Zdrniae ah  
    !IJ YaQ6z  
    % Determine the required powers of r: b|87=1^m[  
    % ----------------------------------- D Z~036  
    m_abs = abs(m); s3Bo'hGxG  
    rpowers = []; eF;Jj>\R+i  
    for j = 1:length(n) F~v0CBcAL  
        rpowers = [rpowers m_abs(j):2:n(j)]; pp|$y\ZzB  
    end =>S[Dh  
    rpowers = unique(rpowers); sB0]lj-[Un  
    R Q 8"vF#  
    VKPsg  
    % Pre-compute the values of r raised to the required powers, ;- i)}<  
    % and compile them in a matrix: {U9{*e$=  
    % ----------------------------- `$"{-  
    if rpowers(1)==0 ,M]W_\N~E  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ^E, #}cW  
        rpowern = cat(2,rpowern{:}); r6D3u(kMb  
        rpowern = [ones(length_r,1) rpowern]; +v%+E{F$+  
    else `_DA!  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); <OiH%:G/1  
        rpowern = cat(2,rpowern{:}); Zc";R!At  
    end t^bh2 $J  
    rhF2U  
    &|IO+'_  
    % Compute the values of the polynomials: E\2f"s  
    % -------------------------------------- F`;q9<NYRW  
    y = zeros(length_r,length(n)); b 2\J<Nw  
    for j = 1:length(n) ^!m%:r7Dr  
        s = 0:(n(j)-m_abs(j))/2; UnDX .W*2  
        pows = n(j):-2:m_abs(j); dM"5obEb  
        for k = length(s):-1:1 B8wGWZ@  
            p = (1-2*mod(s(k),2))* ... ?5G; =#I  
                       prod(2:(n(j)-s(k)))/              ... # - L<  
                       prod(2:s(k))/                     ... ndyI sR  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 9QD+  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); #m{F*(%  
            idx = (pows(k)==rpowers); [$6YPM>Ee  
            y(:,j) = y(:,j) + p*rpowern(:,idx); fG?a"6~  
        end KsTE)@ F:  
         /`qQWB5b  
        if isnorm 7#HSe#0J  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); n1x3q/~  
        end i1{)\/f3  
    end MTR+|I3V  
    % END: Compute the Zernike Polynomials P(\x. d:  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% v)vogtAQa  
    CTqhXk[  
    &G-dxET]  
    % Compute the Zernike functions: eiA$) rzy  
    % ------------------------------ %U[H`E  
    idx_pos = m>0; )eX{a/Be  
    idx_neg = m<0; fHuWBC_YO  
    2Z9ck|L>  
    PTQN.[bBh  
    z = y; !(S.7#-r  
    if any(idx_pos) `/G9*tIR8g  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); xNJ*TA[+  
    end )*}?EI4.  
    if any(idx_neg) y2B'0l  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); "-HWw?rx/  
    end T7Y+ WfYh  
    do l8O  
    >qMzQw2  
    % EOF zernfun 1Si$Q  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  ZtX CPA!  
    ^(Wu$\SA  
    DDE还是手动输入的呢? V=H:`n3k  
    ka*#O"}L8  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究