切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9468阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, B>gC75  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, ! G,Ru~j5:  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? 9Lv`3J^~  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? AM,@BnEcuT  
    )0!hw|0|  
    }KJ/WyYW  
    7(ZI]<  
    9].!mpR  
    function z = zernfun(n,m,r,theta,nflag) XVE(p3-  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. Gu9Ap<>!  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N |7%M:7 Q  
    %   and angular frequency M, evaluated at positions (R,THETA) on the i x,5-j  
    %   unit circle.  N is a vector of positive integers (including 0), and 9CW .xX8  
    %   M is a vector with the same number of elements as N.  Each element t hTY('m  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) R /iB  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, Q_]O[Kx  
    %   and THETA is a vector of angles.  R and THETA must have the same Zn&X Uvdl  
    %   length.  The output Z is a matrix with one column for every (N,M) Bz]j&`  
    %   pair, and one row for every (R,THETA) pair. WY  #pzBA  
    % fk;39$[  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike BPtU]Bv-  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), vxY7/_]  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral HSq&'V  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, L~CwL  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized rC$ckug  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. B!yAam#^  
    % ,,lrF.  
    %   The Zernike functions are an orthogonal basis on the unit circle. V]<J^m8  
    %   They are used in disciplines such as astronomy, optics, and LeXu Td  
    %   optometry to describe functions on a circular domain. dKi+~m'w  
    % AI/xOd!a  
    %   The following table lists the first 15 Zernike functions. ?HAWw'QW  
    % "=N[g  
    %       n    m    Zernike function           Normalization mQ:lj$Gf  
    %       -------------------------------------------------- H~Hh $-z  
    %       0    0    1                                 1 x)5#*Q  
    %       1    1    r * cos(theta)                    2 Gd%KBb  
    %       1   -1    r * sin(theta)                    2 ESL(Mf'  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 7P|GKN~  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 3I@j=:(%Y  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) vSX71  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) L1 O\PEeT  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) aU4v-9@U8  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) rq:R6e  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) d*4fl.  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) o&-q.;MY  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) uR"(0_  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) ULkjY1&  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) R*VJe+5w  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) IJhJfr0)Oo  
    %       -------------------------------------------------- /:~mRf^  
    % Kp!sn,:  
    %   Example 1: 7?Q<kB=f  
    % ~L<q9B( @  
    %       % Display the Zernike function Z(n=5,m=1) ^~E?7{BL  
    %       x = -1:0.01:1; OjcxD5"v9  
    %       [X,Y] = meshgrid(x,x); pA&CBXio  
    %       [theta,r] = cart2pol(X,Y); 'x$>h)t]  
    %       idx = r<=1; aq@/sMn  
    %       z = nan(size(X)); PVC\&YF  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); Z ^zUb  
    %       figure * _)xlpy  
    %       pcolor(x,x,z), shading interp ou0(C `  
    %       axis square, colorbar >j%HVRW  
    %       title('Zernike function Z_5^1(r,\theta)') KU|dw^Yk  
    % oj/,vO:QT  
    %   Example 2: 1O"7%Pvw  
    % MdV-;uf  
    %       % Display the first 10 Zernike functions &!x!j ,nT  
    %       x = -1:0.01:1; \#?n'qyj  
    %       [X,Y] = meshgrid(x,x); 9TuE.  
    %       [theta,r] = cart2pol(X,Y); p(g0+.?`~  
    %       idx = r<=1; 87.b7 b.  
    %       z = nan(size(X)); hN=YC\l  
    %       n = [0  1  1  2  2  2  3  3  3  3]; wi-O}*O   
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; wxYB-Wh<  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; cy%JJ)sf  
    %       y = zernfun(n,m,r(idx),theta(idx)); @*`9!K%  
    %       figure('Units','normalized') aY&He~  
    %       for k = 1:10 Q ;V `  
    %           z(idx) = y(:,k); EZlcpCS  
    %           subplot(4,7,Nplot(k)) _BHR ?I[w  
    %           pcolor(x,x,z), shading interp Ou/JN+2A  
    %           set(gca,'XTick',[],'YTick',[]) ? BtWM4Id8  
    %           axis square J$JXY@mBSC  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) M@ t,P?  
    %       end o&g-0!"  
    % wDJbax?  
    %   See also ZERNPOL, ZERNFUN2. KV v0bE  
    *.nC'$-2r  
    Y??8P  
    %   Paul Fricker 11/13/2006 nK=-SQ  
    _1 TSt%L  
    $Hh3*reSg-  
    vu-QyPnS|w  
    >*rH Nf  
    % Check and prepare the inputs: >U?HXu/TJr  
    % ----------------------------- Hyx%FN=  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) RR R'azT  
        error('zernfun:NMvectors','N and M must be vectors.') 8#b>4 Dx  
    end #!!Ea'3Iq  
    MDI[TNYG  
    )xwWig.  
    if length(n)~=length(m) I[E/)R{\  
        error('zernfun:NMlength','N and M must be the same length.') Huzw>  
    end J}a 8N.S  
    \@6P A  
    I`"B<=zi  
    n = n(:); 2O}UVp>  
    m = m(:); rN* , U\q  
    if any(mod(n-m,2)) $#E?`At{I  
        error('zernfun:NMmultiplesof2', ... $!F_K  
              'All N and M must differ by multiples of 2 (including 0).') agdiJ-lyQ  
    end ,I# X[^/  
    |_7nvck  
    &aD ]_+b  
    if any(m>n) U6SgV 8  
        error('zernfun:MlessthanN', ... ETQ.A< v  
              'Each M must be less than or equal to its corresponding N.') l'h[wwEXm{  
    end :"BZK5{8  
    (5AgI7I,  
    U)mg]o-VE  
    if any( r>1 | r<0 ) cEzWIS?pp\  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') =pHWqGOD  
    end _c| aRRW  
    P5{|U"Y_  
    u`GzYG-L  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) haj\Dm  
        error('zernfun:RTHvector','R and THETA must be vectors.') @k.j6LKbc  
    end 57:Wh= x  
    j(JUOief  
    -?)` OHc^  
    r = r(:); h|z{ (v  
    theta = theta(:); ZLK@x.=  
    length_r = length(r); GS1Vcav<  
    if length_r~=length(theta) tTa" JXG  
        error('zernfun:RTHlength', ... &Uqm3z?v  
              'The number of R- and THETA-values must be equal.') hN% h.;s  
    end mG;Gt=4  
    ;Kb]v\C:  
    %\xwu(|kN  
    % Check normalization: 5|zISK%zHS  
    % --------------------  &gIDcZ  
    if nargin==5 && ischar(nflag) NUiNn 7C  
        isnorm = strcmpi(nflag,'norm'); iM'{,~8R5  
        if ~isnorm <cTusC<  
            error('zernfun:normalization','Unrecognized normalization flag.') =l&A9 >\  
        end 5tyr$P! N  
    else K]q9wR'q  
        isnorm = false; S(;3gQ77  
    end 5~WMb6/  
    ,XmTKO c  
    "+^d.13+]  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% G(piq4D  
    % Compute the Zernike Polynomials C`|'+  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +f)Nf) \q  
     %trtP  
    <&&xt ?I.  
    % Determine the required powers of r: vF45tw  
    % ----------------------------------- i Rwqt-WZ  
    m_abs = abs(m); ;jb+x5t  
    rpowers = []; +*OY%;dQ7@  
    for j = 1:length(n) XO |U4 #ya  
        rpowers = [rpowers m_abs(j):2:n(j)]; J(&a,w>p  
    end (^h47kY  
    rpowers = unique(rpowers); 2+G_Y>  
    @=jcdn!\M  
    VU>s{_|{  
    % Pre-compute the values of r raised to the required powers, 8e_ITqV%  
    % and compile them in a matrix: a8fLj  
    % ----------------------------- .F=15A  
    if rpowers(1)==0 hM*T{|y  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); #N-NI+qX  
        rpowern = cat(2,rpowern{:}); %;,D:Tv=&  
        rpowern = [ones(length_r,1) rpowern]; gd9ZlHo'Id  
    else V%~u8b  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); -B\`O*Q  
        rpowern = cat(2,rpowern{:}); h%kB>E~  
    end Ugmg,~U~k  
    7. y L>  
    )4[{+OJa  
    % Compute the values of the polynomials: H9)$ #r6i  
    % -------------------------------------- MI[=,0`D  
    y = zeros(length_r,length(n)); ~g2ColFhu  
    for j = 1:length(n) GiBq1U-Q  
        s = 0:(n(j)-m_abs(j))/2; o5+N_5OE}E  
        pows = n(j):-2:m_abs(j); htg+V-,  
        for k = length(s):-1:1 rnxO2   
            p = (1-2*mod(s(k),2))* ... l7 D/ ]&  
                       prod(2:(n(j)-s(k)))/              ... tYt/m6h  
                       prod(2:s(k))/                     ... tR#uDE\wR  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... VHsNz WI  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); YW"?Fy  
            idx = (pows(k)==rpowers); 1{+Ni{  
            y(:,j) = y(:,j) + p*rpowern(:,idx); >gDsjHQ6;  
        end d>F=|dakL  
         WU1 I>i  
        if isnorm dL"$YU9 z  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); uC G^,BQ  
        end n?@o:c5,r  
    end <_""4  
    % END: Compute the Zernike Polynomials B\bIMjXV  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /IVw}:G  
    *>.~f<V  
    0-Xpq,0  
    % Compute the Zernike functions: avls[Bq  
    % ------------------------------ <R~(6krJwZ  
    idx_pos = m>0; $Vp&Vc8  
    idx_neg = m<0; f9u["e  
    zqYfgV  
    ?|^1-5l3  
    z = y; xtU)3I=F%  
    if any(idx_pos) B dm<<<  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); u7`<m.\  
    end ?"AcK" v  
    if any(idx_neg) D8W:mAGEu  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 4BuS? #_  
    end xPqpNs-,  
    `(.ue8T  
    s@o"V >t  
    % EOF zernfun s4SR6hBO  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    在线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  @RaMO#  
    GB[W'QGiq  
    DDE还是手动输入的呢? UhEJznfi  
    PS=crU@"H  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究