下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, 7HW:;2dL
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, ?<4pYEP
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? +PE-j| D
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? ggPGKY-b=
O$,
S}rEQGGR{
TP#Ncqh
g8E5"jpXx3
function z = zernfun(n,m,r,theta,nflag) pBe1:
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. NpGi3>5
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N qery|0W
% and angular frequency M, evaluated at positions (R,THETA) on the k(RKAFjY
% unit circle. N is a vector of positive integers (including 0), and {wM<i
% M is a vector with the same number of elements as N. Each element 873 bg|^hs
% k of M must be a positive integer, with possible values M(k) = -N(k) v\bWQs1
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, }JtcAuQt
% and THETA is a vector of angles. R and THETA must have the same JJ1>)S}X-
% length. The output Z is a matrix with one column for every (N,M) 4I&(>9 @z<
% pair, and one row for every (R,THETA) pair. 5yt= ~
% 1 .@{5f3T
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike G HQ~{
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), #tg\
bb
% with delta(m,0) the Kronecker delta, is chosen so that the integral <EqS
,cO^
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, {i=V:$_#
% and theta=0 to theta=2*pi) is unity. For the non-normalized bK }ZR*)
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 5D<Zbn.>q
% #xx.yn(7
% The Zernike functions are an orthogonal basis on the unit circle. ~m<K5K6 V
% They are used in disciplines such as astronomy, optics, and G0h&0e{w
% optometry to describe functions on a circular domain. *PlKl_nP6
% r{?qvl!q
% The following table lists the first 15 Zernike functions. BYdGK@ouk
% KW'nW
% n m Zernike function Normalization U*{0, Ue'
% -------------------------------------------------- qGN>a[D
% 0 0 1 1 00IW9B-
% 1 1 r * cos(theta) 2 - s'W^(
% 1 -1 r * sin(theta) 2 6?5dGYAX<
% 2 -2 r^2 * cos(2*theta) sqrt(6) .s"Og;g
% 2 0 (2*r^2 - 1) sqrt(3) 6wpu[
% 2 2 r^2 * sin(2*theta) sqrt(6) ,#BD/dF
% 3 -3 r^3 * cos(3*theta) sqrt(8) + R6X
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) :I"22EH
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) E3p$^['vx
% 3 3 r^3 * sin(3*theta) sqrt(8) 1O,5bi>t7
% 4 -4 r^4 * cos(4*theta) sqrt(10) bHm/Z Zx
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) tc.|mIvw
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) 9ec?L
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) >q?{'#i
/
% 4 4 r^4 * sin(4*theta) sqrt(10) n&&C(#mBC
% -------------------------------------------------- o1\N)%
% \nyqW4nTm
% Example 1: 5h Sd,#:
% .nEMd/pX
% % Display the Zernike function Z(n=5,m=1) @$kzes\
% x = -1:0.01:1; S=kO9"RB]
% [X,Y] = meshgrid(x,x); 2A|mXWG}~
% [theta,r] = cart2pol(X,Y); :I/9j=@1
% idx = r<=1; j0oto6z~b
% z = nan(size(X)); +68age;dM
% z(idx) = zernfun(5,1,r(idx),theta(idx)); Rf)|p;
% figure ^PE|BCs
% pcolor(x,x,z), shading interp c1i[1x%
% axis square, colorbar ;2`t0#J$]
% title('Zernike function Z_5^1(r,\theta)') ^-Arfm%dn
% <]z4;~/&
% Example 2: 4gEw}WiP
% P()n=&XO6
% % Display the first 10 Zernike functions .PT7
% x = -1:0.01:1; ?Qd`Vlp7
% [X,Y] = meshgrid(x,x); 7Q'u>o
% [theta,r] = cart2pol(X,Y); pUmT?N!
% idx = r<=1; /g%RIzgW
% z = nan(size(X)); vMX\q
% n = [0 1 1 2 2 2 3 3 3 3]; +B8oW3v# )
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; R)N^j'R~=
% Nplot = [4 10 12 16 18 20 22 24 26 28]; im+g|9@%
% y = zernfun(n,m,r(idx),theta(idx)); gkTwGI+w
% figure('Units','normalized') ;H8`^;
% for k = 1:10 -/B*\X[
% z(idx) = y(:,k); Nk%$;Si
% subplot(4,7,Nplot(k)) w(S&X"~
% pcolor(x,x,z), shading interp wZCboQ,
% set(gca,'XTick',[],'YTick',[]) c3rj
:QK6I
% axis square HnFH|H<Uf
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) h7.jWJTo
% end /_expSPHl
% ]C+PJ:CC
% See also ZERNPOL, ZERNFUN2. t]vv&vk>
@@R&OR
sm[zE/2b
% Paul Fricker 11/13/2006 txMC^-J2l
=d~pr:.F
dKXzFyW
&'DR`e O)
:.BjJ2[S
% Check and prepare the inputs: WSU/Z[\`H
% ----------------------------- h<'tQGC
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) UWqX}T[^
error('zernfun:NMvectors','N and M must be vectors.') ~z41$~/
end e50xcf1u
`z/p,. u
zcOm"-E-
if length(n)~=length(m) T8*;?j*@
error('zernfun:NMlength','N and M must be the same length.') (?7}\B\
end 9P#kV@%(0c
wUg=jnY
c":2<:D&
n = n(:); Kn?h
m = m(:); }43qpJe8U
if any(mod(n-m,2)) )VG>6x
error('zernfun:NMmultiplesof2', ...
BlT)hG(M>
'All N and M must differ by multiples of 2 (including 0).') 9&kPcFX B
end XdlA)0S)
})PU`?f
hCX/k<}I
if any(m>n) 8OS^3JS3"
error('zernfun:MlessthanN', ... 2}.~
6EU/
'Each M must be less than or equal to its corresponding N.') =kOo(
end !w!k0z]
FSkX95
OYa9f[ $
if any( r>1 | r<0 ) \|]+sQ WQ
error('zernfun:Rlessthan1','All R must be between 0 and 1.') 7;6'=0(
end cV`NQt <W
@b5$WKPX
L"T :#>
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) c&<Ei1
error('zernfun:RTHvector','R and THETA must be vectors.') ^x(s!4d]
end 0x&L'&SpN
Kj?hcGl[
`6NcE-oJ
r = r(:); ]haQ#e}WH
theta = theta(:); W=HHTvK9Hh
length_r = length(r); ?d3<GhzlR3
if length_r~=length(theta) i}|jHlv
error('zernfun:RTHlength', ... pma=*
'The number of R- and THETA-values must be equal.') cnY}^_
end = 'e_9b\K
]-+l.gVFW
ka`}lR
% Check normalization: lEQj62zIQ
% -------------------- (
YZ2&
if nargin==5 && ischar(nflag) t="nmjQs
isnorm = strcmpi(nflag,'norm'); XVKRT7U
if ~isnorm VhnIr#L+
error('zernfun:normalization','Unrecognized normalization flag.') Lo)T
end :yw(Co]f
else (enOj0
isnorm = false; &g8