切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9426阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, a;KdkykG  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, ;p~!('{P  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? kl~/tbf  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? jK/F zD0-  
    6W1+@ q  
    glo G_*W  
    u"oO._a(  
    kmTYRl )j  
    function z = zernfun(n,m,r,theta,nflag) 1E||ft-1i*  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. !hfpa_5  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N &0[ L2x}7  
    %   and angular frequency M, evaluated at positions (R,THETA) on the (||qFu9a  
    %   unit circle.  N is a vector of positive integers (including 0), and ipMSMk7gx  
    %   M is a vector with the same number of elements as N.  Each element *XWu)>*o  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) PN9vg9'  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, re%XaL  
    %   and THETA is a vector of angles.  R and THETA must have the same 5Hj/7~ =  
    %   length.  The output Z is a matrix with one column for every (N,M) Xl2g Hh  
    %   pair, and one row for every (R,THETA) pair. f^QC4hf0  
    % *re?V9  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike =$bF[3D  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), #E=8kbD7  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral vf>d{F^rv  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, <G<5)$ S  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized GK,{$SC+=  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ZRc^}5}WA  
    % Z R=[@Oi  
    %   The Zernike functions are an orthogonal basis on the unit circle. n7~3~i` D;  
    %   They are used in disciplines such as astronomy, optics, and |Fze9kZO  
    %   optometry to describe functions on a circular domain. _~CJitR3  
    % 9&zR i  
    %   The following table lists the first 15 Zernike functions. >*O5Ry:4  
    % `$JZJ!,A  
    %       n    m    Zernike function           Normalization r|ZB3L|7  
    %       -------------------------------------------------- qHe H/e%`V  
    %       0    0    1                                 1 xWa[qCr  
    %       1    1    r * cos(theta)                    2 D5Sbs(  
    %       1   -1    r * sin(theta)                    2 zb[kRo&a0W  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) C_ d|2C6  
    %       2    0    (2*r^2 - 1)                    sqrt(3) H'k~;  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) oF+yh!~mM  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) [cEGkz  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) "WGKwi=W  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) &@|? %  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) [ywF!#'){  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) yp=sL' E  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) <W3p!  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) Gl w|*{$  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) $4ZV(j]  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 2<n 18-|OQ  
    %       -------------------------------------------------- }D)eS |B  
    % tGl|/  
    %   Example 1: Zp_j\B  
    % {U3jJ#K  
    %       % Display the Zernike function Z(n=5,m=1) 0^J%&1aIc  
    %       x = -1:0.01:1; 5z3WRg  
    %       [X,Y] = meshgrid(x,x); @##}zku  
    %       [theta,r] = cart2pol(X,Y); nSSJl  
    %       idx = r<=1; [{xY3WS  
    %       z = nan(size(X)); 3K~^H1l  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); ?uTuO  
    %       figure qR2cRepV  
    %       pcolor(x,x,z), shading interp x%@M*4:&  
    %       axis square, colorbar |8k^jq  
    %       title('Zernike function Z_5^1(r,\theta)') 5Y`4%*$  
    % }lPWA/  
    %   Example 2: a}VR>!b  
    % 8,+T[S  
    %       % Display the first 10 Zernike functions d@*dbECG  
    %       x = -1:0.01:1; x2I|iA=  
    %       [X,Y] = meshgrid(x,x); r/ATZAgHP  
    %       [theta,r] = cart2pol(X,Y); 9dszn^]T  
    %       idx = r<=1; m^ar:mK@  
    %       z = nan(size(X)); #LR6wEk  
    %       n = [0  1  1  2  2  2  3  3  3  3]; KdHkX+-R  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; hTby:$aCg  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; UBQtD|m\  
    %       y = zernfun(n,m,r(idx),theta(idx)); !7#*Wdt+P  
    %       figure('Units','normalized') 3bC-B!{;g  
    %       for k = 1:10 uW[AnQ1w  
    %           z(idx) = y(:,k); /#_[{lSr?  
    %           subplot(4,7,Nplot(k)) zTG1 0  
    %           pcolor(x,x,z), shading interp y<`:I|y  
    %           set(gca,'XTick',[],'YTick',[]) j/T@-7^0  
    %           axis square u|ihUE!h  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) *)\y52z  
    %       end y}U'8*,  
    % $E:z*~ ?  
    %   See also ZERNPOL, ZERNFUN2. loq2+(  
    at*DYZBjDB  
    v/]xdP^Z  
    %   Paul Fricker 11/13/2006 n.5M6i/~a  
    Avljrds+7  
    BgCEv"G5  
    1T~`$zS7  
    J$jLGy&'  
    % Check and prepare the inputs: }\N ~%?6D  
    % ----------------------------- "GqasbX  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) PDgZb  
        error('zernfun:NMvectors','N and M must be vectors.') 4T)`%Oo<}  
    end <Z]j89wzDZ  
    $'*{&/@  
    ^eRbp?H*T  
    if length(n)~=length(m) z'>b)wY](  
        error('zernfun:NMlength','N and M must be the same length.') yg|yoL'g  
    end \Z~@/OVc  
    \!>qtFT  
    3v#F0s|  
    n = n(:); 5V0#_!QAN  
    m = m(:); gK *=T  
    if any(mod(n-m,2)) T`I4_x  
        error('zernfun:NMmultiplesof2', ... 11fV|b%  
              'All N and M must differ by multiples of 2 (including 0).') ct(euPU  
    end 0Y~5|OXJ  
    #.}&6ZP  
    .k!2{A  
    if any(m>n) +H? XqSC  
        error('zernfun:MlessthanN', ... K7qR  
              'Each M must be less than or equal to its corresponding N.') JkLpoe81  
    end j{ri]?p  
    URr{J}5  
    FB~IO#E8W  
    if any( r>1 | r<0 ) AQ"rk9Z  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') FPE6H:'  
    end 5]3Mj*u\  
    v)zxQuH]^  
    Q?Xqf7y  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) J]NMqi q  
        error('zernfun:RTHvector','R and THETA must be vectors.') 2XjH1  
    end gHWsKE  %  
    P!&yYR\  
    `,c~M  
    r = r(:); H,!yG5yF  
    theta = theta(:); 8*]dA ft  
    length_r = length(r); ~>%% kQt  
    if length_r~=length(theta) xCu\jc)2  
        error('zernfun:RTHlength', ... RS{E|  
              'The number of R- and THETA-values must be equal.') &_]bzTok  
    end /5f=a  
    @[ '?AsO  
    CT=5V@_u\  
    % Check normalization: "t>H B6^  
    % -------------------- sg<c1  
    if nargin==5 && ischar(nflag) catJC3  
        isnorm = strcmpi(nflag,'norm'); #J$z0%P  
        if ~isnorm ae+*gkPv8  
            error('zernfun:normalization','Unrecognized normalization flag.') wFL7JwK:G  
        end $|19]3T@Z  
    else > mP([]  
        isnorm = false; ,YrPwdaTB  
    end GRgpy  
    llpgi,-=  
    .7Itbp6=R  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% G/_8xmsU  
    % Compute the Zernike Polynomials o<Rrr,  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% P`n"E8"ab<  
    1L _(n  
    OV7SLf  
    % Determine the required powers of r: 2$joM`j$  
    % ----------------------------------- n=h!V$X   
    m_abs = abs(m); g`H;~ w  
    rpowers = []; O]9PYv=^  
    for j = 1:length(n) 7I:<i$)V  
        rpowers = [rpowers m_abs(j):2:n(j)]; P#2#i]-  
    end iB{l:  
    rpowers = unique(rpowers); ,LDdL  
    HhUk9 >7  
    JZ"XrS0?  
    % Pre-compute the values of r raised to the required powers, 1KI5tf>>p  
    % and compile them in a matrix: arn7<w0  
    % ----------------------------- 3TT?GgQ  
    if rpowers(1)==0 ]Mgxv>zRbs  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); | Fk9ME  
        rpowern = cat(2,rpowern{:}); !4+@b s  
        rpowern = [ones(length_r,1) rpowern]; k NUNh[  
    else -lI6!a^  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); =K6{AmG$  
        rpowern = cat(2,rpowern{:}); N6/;p]|  
    end Y:5Gp8Vi  
    ju/#V}N  
    yxy~N\ 0  
    % Compute the values of the polynomials: lUM-~  
    % -------------------------------------- (=QiXX1r  
    y = zeros(length_r,length(n)); 24d{ol)  
    for j = 1:length(n) 2NWQiSz  
        s = 0:(n(j)-m_abs(j))/2; !4fT<V (  
        pows = n(j):-2:m_abs(j); +(o]E3  
        for k = length(s):-1:1 MZ <BCRB  
            p = (1-2*mod(s(k),2))* ... PWN$x`h g[  
                       prod(2:(n(j)-s(k)))/              ... 2!6-+]tC  
                       prod(2:s(k))/                     ... 6w $pL(  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... @t,Y< )U  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); KA]5tVQA  
            idx = (pows(k)==rpowers); _n!W4zwi  
            y(:,j) = y(:,j) + p*rpowern(:,idx); C +S>;1  
        end :.F;LF&  
         jH]?vpP  
        if isnorm xayd_RB9  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); oJor ]QYK  
        end A!ak i}aT~  
    end aumM\rY  
    % END: Compute the Zernike Polynomials  ~&Y%yN^  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %9`\ 7h7K  
    (p}N cn.  
    xw~&OF&  
    % Compute the Zernike functions: C3e0d~C  
    % ------------------------------ #TG.weTC  
    idx_pos = m>0; [|oOP$u  
    idx_neg = m<0; ~#9(Q  
    C_V5.6T!  
    4j-%I7  
    z = y; (&-!l2  
    if any(idx_pos) eih~ SBSH  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); JI[9c,N  
    end CJ[^Fi?CH  
    if any(idx_neg) j<_)Y(x>  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); '645Fr[lg  
    end DzG$\%G2R}  
    _D~FwF&A  
    Uk= L?t  
    % EOF zernfun v L!?4k  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  3 2MdDa  
    vq&u19iP  
    DDE还是手动输入的呢? [TFd|ywn  
    4Cl41a  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究