切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9136阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, Cg 85  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 'dj}- Rs  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? #UU}lG  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? ^~MHxF5d  
    $y=sT({VVe  
    3uRnbO-  
    451C2 %y  
    +XWXHt  
    function z = zernfun(n,m,r,theta,nflag) Yl1@ gw7  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. u ` 9Eh;  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N R|t.wawCo  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 'ESy>wA{y<  
    %   unit circle.  N is a vector of positive integers (including 0), and n<yV]i$  
    %   M is a vector with the same number of elements as N.  Each element cJ:BEe  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) "DWw1{ 5/  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ]-{T-*h:  
    %   and THETA is a vector of angles.  R and THETA must have the same )2F:l0g  
    %   length.  The output Z is a matrix with one column for every (N,M) (B]Vw+/  
    %   pair, and one row for every (R,THETA) pair. )'%L#  
    % 1; L!g*!E  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike F>A-+]X3o  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), vWfC!k-)b  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 2~h)'n7Mw  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, "_'9KBd!  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized X?rJO~5  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 1t!Mg{&e[x  
    % %X GX(  
    %   The Zernike functions are an orthogonal basis on the unit circle. 2%vwC]A  
    %   They are used in disciplines such as astronomy, optics, and @uY%;%Pa8  
    %   optometry to describe functions on a circular domain. `-ENKr]  
    % R52q6y:<x  
    %   The following table lists the first 15 Zernike functions. "@` mPe/  
    % # FaR?L![Y  
    %       n    m    Zernike function           Normalization QS=n 50T,  
    %       -------------------------------------------------- `! m+g0  
    %       0    0    1                                 1 V^L;Nw5h  
    %       1    1    r * cos(theta)                    2 +$},Hu69j  
    %       1   -1    r * sin(theta)                    2 oL }FD !}  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) =K8`[iH  
    %       2    0    (2*r^2 - 1)                    sqrt(3) GUat~[lUrj  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) , {z$M  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 7\{<AM?*  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) N@)4H2_u \  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) SCxzT}#J  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) {2Gp+&  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) t4s}w$4  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) RSmxwx^  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) -ZihEyG?V  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ,PN>,hFL  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) o ]Vx6  
    %       -------------------------------------------------- Y,E:?  
    % [U3z*m>e;  
    %   Example 1: I8^z\ef&  
    % u> >t"w  
    %       % Display the Zernike function Z(n=5,m=1) \UB<'~z6!  
    %       x = -1:0.01:1; J_P2%b=C  
    %       [X,Y] = meshgrid(x,x); -QS_bQG%  
    %       [theta,r] = cart2pol(X,Y); 6oUT+^z#  
    %       idx = r<=1; bJ. ((1$  
    %       z = nan(size(X)); /.WD '*H  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); kf5921(P  
    %       figure  ITbl%q  
    %       pcolor(x,x,z), shading interp 5@ ZD'  
    %       axis square, colorbar 7^Onq0ym T  
    %       title('Zernike function Z_5^1(r,\theta)') TR)' I  
    % $/wr?  
    %   Example 2: wRie{Vk  
    % tO~H/0  
    %       % Display the first 10 Zernike functions P$4?-AZ  
    %       x = -1:0.01:1; n}MG  
    %       [X,Y] = meshgrid(x,x); SZwfYY!ft0  
    %       [theta,r] = cart2pol(X,Y); MF E%q  
    %       idx = r<=1; &x=<>~Ag3  
    %       z = nan(size(X)); r&ToUU 5  
    %       n = [0  1  1  2  2  2  3  3  3  3]; s_1]&0<  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; $<33E e:a  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; HmX (= Y  
    %       y = zernfun(n,m,r(idx),theta(idx)); .2Rh_ful  
    %       figure('Units','normalized') #),QWTl3  
    %       for k = 1:10 EKoCm)}d  
    %           z(idx) = y(:,k); 80+" x3r  
    %           subplot(4,7,Nplot(k)) PiH#9X B  
    %           pcolor(x,x,z), shading interp 3rR(>}:[V  
    %           set(gca,'XTick',[],'YTick',[]) *4(.=k  
    %           axis square =~HX/]zF  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) T_gW't>   
    %       end .)W8 U [  
    % n7{c0;)$  
    %   See also ZERNPOL, ZERNFUN2. F` ?pZ  
    d0N7aacY  
    /D~ ,X48+  
    %   Paul Fricker 11/13/2006 7CQ48LH]  
    TUk1h\.q  
    l{y~N  
    zxsnrn;|  
    o^AK@\e:^Z  
    % Check and prepare the inputs: 7z+NR&' M$  
    % ----------------------------- St(7@)gvY  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) e|kYu[^  
        error('zernfun:NMvectors','N and M must be vectors.') i.byHz?/  
    end WnIh( 0  
    ].1R~7b  
    cxmr|- ^  
    if length(n)~=length(m) %l5J  
        error('zernfun:NMlength','N and M must be the same length.') 52%.^/  
    end "kN5AeRg  
    %OzxR9  
    K): )bL(B  
    n = n(:); khEHMvVH  
    m = m(:); a{)"KAP  
    if any(mod(n-m,2)) ^Nc\D7( l  
        error('zernfun:NMmultiplesof2', ... 12rr:(#%s  
              'All N and M must differ by multiples of 2 (including 0).') Kk/qd)nk  
    end `#l_`j=r$  
    5$O@+W!?@  
    [(dAv7YbN  
    if any(m>n) q=6M3OnS>  
        error('zernfun:MlessthanN', ... B6ys 5eQ  
              'Each M must be less than or equal to its corresponding N.') m$$U%=r>@  
    end sa*hoL18  
    -$mzzYH  
    7qnw.7p  
    if any( r>1 | r<0 ) o!j? )0d  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') $aVcWz %  
    end rgOB0[  
    ^LnCxA&QH  
    Wk$%0xZ7  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) &{7%Vs TB  
        error('zernfun:RTHvector','R and THETA must be vectors.') y|1-,u.$  
    end Ejn19{  
    Lo !kv*  
    -lLq)  
    r = r(:); h],_1!0  
    theta = theta(:); aA\v  
    length_r = length(r); O*c +TiTb  
    if length_r~=length(theta) JZai{0se  
        error('zernfun:RTHlength', ... 7@06x+!  
              'The number of R- and THETA-values must be equal.') `XI1,&Wp7  
    end RX#:27:  
    '{ C=vW  
    R|5w:+=z  
    % Check normalization: "|&SC0*  
    % -------------------- /J5wwQ (:  
    if nargin==5 && ischar(nflag) HhIa=,VY  
        isnorm = strcmpi(nflag,'norm'); g9 g &]  
        if ~isnorm `@eQL[Z9x  
            error('zernfun:normalization','Unrecognized normalization flag.') mGoUF$9 k  
        end ?n[+0a:8E  
    else 6&h,eQ!  
        isnorm = false; ky[FNgQ3n  
    end hXZk$a'  
    >a]{q^0  
    <sn^>5Ds  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +jQW6k#  
    % Compute the Zernike Polynomials l? 7D0  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 9D-PmSnv  
    ALPZc:  
    ~kF^0-JZY  
    % Determine the required powers of r: j].XVn,  
    % ----------------------------------- Lw2EA 5  
    m_abs = abs(m); l8jm7@.E  
    rpowers = []; [&"`2n  
    for j = 1:length(n) lP0'Zg(  
        rpowers = [rpowers m_abs(j):2:n(j)]; >~2oQ[ n  
    end T&cf6soo  
    rpowers = unique(rpowers); $M#G;W5c  
    _@SC R%  
    s}X2*o`,  
    % Pre-compute the values of r raised to the required powers, Pe~[qETv  
    % and compile them in a matrix: T[q2quXgk  
    % ----------------------------- <D!"<&N  
    if rpowers(1)==0 _-^a8F>/19  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); -=@d2LY  
        rpowern = cat(2,rpowern{:}); =`99ez+y  
        rpowern = [ones(length_r,1) rpowern]; ;MR8E9  
    else 9K~X}]u  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); }~y i6!w'  
        rpowern = cat(2,rpowern{:}); !w{4FE74  
    end G[@RZ~o4  
    S sGb;  
    SwXVa/9a"  
    % Compute the values of the polynomials: V*}ft@GPD  
    % -------------------------------------- K>N\U@@8i  
    y = zeros(length_r,length(n)); /&_$+Iun  
    for j = 1:length(n) xo a1='  
        s = 0:(n(j)-m_abs(j))/2; U]ynnw4  
        pows = n(j):-2:m_abs(j); jH({Qc,97  
        for k = length(s):-1:1 WB K6Ug  
            p = (1-2*mod(s(k),2))* ... T]HeS(  
                       prod(2:(n(j)-s(k)))/              ... QVJq%P  
                       prod(2:s(k))/                     ... #p*D.We  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... -U.>K,M  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); Qzt'ZK  
            idx = (pows(k)==rpowers); ) [+82~F  
            y(:,j) = y(:,j) + p*rpowern(:,idx); L 4V,y>  
        end ?(0=+o(`  
         :m]H?vq] \  
        if isnorm aS=-9P;v  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); [MhKR }a  
        end \| &KD  
    end g[';1}/B4  
    % END: Compute the Zernike Polynomials {bHUZen  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \2)D  
    y)vK=,"  
    0Un?[O  
    % Compute the Zernike functions: ,cE yV74  
    % ------------------------------ FkE)~g  
    idx_pos = m>0; B>.x@(}V~  
    idx_neg = m<0; 0v+ -yEkw  
    N,W ?}  
    UE8j8U'L  
    z = y; R!f<6l8#W  
    if any(idx_pos) YLJ^R$pi  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 7zM9K+3L  
    end z_93j3 #  
    if any(idx_neg) %5RR<[_/;  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); e[ yN  
    end `6$|d,m5  
    V56WgOBxz  
    UodBK7y  
    % EOF zernfun p<1y$=zS  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  [={mCGU  
    v $Iw?y  
    DDE还是手动输入的呢? 0NXH449I=  
    J@s>Pe)  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究