下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, ?F^O7\rw
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 58[.]f~0
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? lnWscb3t
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? u,`cmyZ
Xu%8Q?]
gxCl=\
v<:/u(i
;R*tT%Z,
function z = zernfun(n,m,r,theta,nflag) "7}e~*bM?`
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. |*y'H*
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N n0vhc; d
% and angular frequency M, evaluated at positions (R,THETA) on the fp2uk3Bm[
% unit circle. N is a vector of positive integers (including 0), and b0aV?A}th
% M is a vector with the same number of elements as N. Each element OR<%h/ \f
% k of M must be a positive integer, with possible values M(k) = -N(k) # 5b
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, .q5WK#^
% and THETA is a vector of angles. R and THETA must have the same +?ilTU
% length. The output Z is a matrix with one column for every (N,M) DgGG*OXY
% pair, and one row for every (R,THETA) pair. ij&T\):d
% a]t| /Mq
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike .*{0[
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), +qee8QH
% with delta(m,0) the Kronecker delta, is chosen so that the integral 8^5@J)R8
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, UO}Yr8Z;
% and theta=0 to theta=2*pi) is unity. For the non-normalized @%gth@8
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. u$
a7
% <]'1Y DA
% The Zernike functions are an orthogonal basis on the unit circle. !"bU|a
% They are used in disciplines such as astronomy, optics, and <>R\lPI2
% optometry to describe functions on a circular domain. ]^v*2!_(
% <4RP:2#
% The following table lists the first 15 Zernike functions. 9PWqoz2c
% +OfHa\Nz
% n m Zernike function Normalization Q)93+1]
% -------------------------------------------------- L%31>)8
% 0 0 1 1 O =\`q6l
% 1 1 r * cos(theta) 2 {"hyr/SK d
% 1 -1 r * sin(theta) 2 j7
\y1$w
% 2 -2 r^2 * cos(2*theta) sqrt(6) ?h3t"9
% 2 0 (2*r^2 - 1) sqrt(3) qV:TuR-|w
% 2 2 r^2 * sin(2*theta) sqrt(6) 2'7)D}p
% 3 -3 r^3 * cos(3*theta) sqrt(8) 2W6t0MgZ
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8)
)5Ofr-Y
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) !f)^z9QX8
% 3 3 r^3 * sin(3*theta) sqrt(8) [f#7~
% 4 -4 r^4 * cos(4*theta) sqrt(10) p.x!dt\1kC
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 1aS66TS3
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) %^}|HG*i??
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 7qEc9S@
% 4 4 r^4 * sin(4*theta) sqrt(10) Km!~zG7<
% -------------------------------------------------- Y%#r&de
% VZCCMh-
% Example 1: F~zrg+VDjL
% C>Cb
% % Display the Zernike function Z(n=5,m=1) DUWSY?^c
% x = -1:0.01:1; r9whW;"q
% [X,Y] = meshgrid(x,x); YV)h"u+@0
% [theta,r] = cart2pol(X,Y); OJXK]dZ
% idx = r<=1; ~zyD=jxP9
% z = nan(size(X)); v<V9Z
<ub
% z(idx) = zernfun(5,1,r(idx),theta(idx)); w?"s6L3
% figure QO <.l`F
% pcolor(x,x,z), shading interp }<mK79m
% axis square, colorbar {/q4W; D
% title('Zernike function Z_5^1(r,\theta)') IpKpj"eoLy
% *L=F2wW
% Example 2: C~8;2/F7
% OG{vap)
% % Display the first 10 Zernike functions nx|b9W<
% x = -1:0.01:1; J:G~9~V^
% [X,Y] = meshgrid(x,x); iU "{8K,
% [theta,r] = cart2pol(X,Y); YHfk; FI
% idx = r<=1; VTs
,Ln!,U
% z = nan(size(X)); OuwEO
% n = [0 1 1 2 2 2 3 3 3 3]; ["SD'
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; =6< Am
% Nplot = [4 10 12 16 18 20 22 24 26 28]; "Is0:au+?}
% y = zernfun(n,m,r(idx),theta(idx)); +~!\;71:f
% figure('Units','normalized') Ct0YwIR*
% for k = 1:10 TY]-L1$
% z(idx) = y(:,k); o 76QQ+hP
% subplot(4,7,Nplot(k)) } .'\IR
% pcolor(x,x,z), shading interp z-`-0@/A$
% set(gca,'XTick',[],'YTick',[]) w0YV87
% axis square mH5[(?
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) @Xl/<S&
% end B'~CFj0W%=
% JQk][3Rv
% See also ZERNPOL, ZERNFUN2. Ob
m%\h
z P=3B%$
2; ~jKR[~
% Paul Fricker 11/13/2006 2pV@CT
`;v>fTcy
q.Vcb!*$
lt{yo\
uJu#Vr:m
% Check and prepare the inputs: hWfC"0
% -----------------------------
:JfT&YYi"
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) $p~X"f?0
error('zernfun:NMvectors','N and M must be vectors.') V
jZx{1kCR
end {5J: ]{p
rLJjK$_x
P=PVOt@
b
if length(n)~=length(m) bYB:Fe=2
error('zernfun:NMlength','N and M must be the same length.') xI,7ld~
end Nc[[o>/Cb
,'^^OLez
oV=~Q#v
n = n(:); 8 rA'd
m = m(:); {>8u/
if any(mod(n-m,2)) hH*/[|z
error('zernfun:NMmultiplesof2', ... 4j VFzO%.
'All N and M must differ by multiples of 2 (including 0).') #SIIhpjA(
end :+$/B N:iO
>TB Rp,;r
cH{[\F"Eb
if any(m>n) X+;{&Efrl
error('zernfun:MlessthanN', ... 'c&S%Ra[3G
'Each M must be less than or equal to its corresponding N.') VMgO1-F
end ~Lf>/w
SVj4K\F
<6[P5>
if any( r>1 | r<0 ) 7@l.ZECJ1
error('zernfun:Rlessthan1','All R must be between 0 and 1.') \*.u(8~2o
end fd /?x^Z
o%V%@q H
ZZ@1l
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ]] Jg%}o
error('zernfun:RTHvector','R and THETA must be vectors.') 8>l#F<@5
end Y.}8lh
eH
HVkq{W|w
GjGt'
m*
r = r(:); mCQn '{)
theta = theta(:); 5"o)^8!>
length_r = length(r); 2nA/{W\ hC
if length_r~=length(theta) [r;hF
error('zernfun:RTHlength', ... ?VP07
dQTe
'The number of R- and THETA-values must be equal.') tG}cmK~%
end >+E
Q]"u?Q]
G@I/Dy
% Check normalization: ,~^BoH}
% -------------------- M@?,nzs
K
if nargin==5 && ischar(nflag) 04wO9L;
isnorm = strcmpi(nflag,'norm'); HDV$y=oHh
if ~isnorm vivU4:uH3
error('zernfun:normalization','Unrecognized normalization flag.') y`Km96Ui
end Hb|y`O k
else q>H f2R
isnorm = false; TOvpv@?-
end .GH#`j
-/z #?J\
_|qs-USA
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% jZLD^@AP
% Compute the Zernike Polynomials 4!^flKZQ
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% :jUu_s}
O~=|6#c
dxAP7v
% Determine the required powers of r: "? t@Y
% ----------------------------------- #mvOhu
m_abs = abs(m); bi 8Qbo4
rpowers = []; p:@JC sH=
for j = 1:length(n) \]gUX-
rpowers = [rpowers m_abs(j):2:n(j)]; P]wCC`qi
end p?qW;1
rpowers = unique(rpowers); XEvDtDR
Z{gJ m9
EXD Qr'"
% Pre-compute the values of r raised to the required powers, Y,;$RV@g
% and compile them in a matrix: ]f<H?
% ----------------------------- <sNkyQ
if rpowers(1)==0 g9K7_T #W
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); yYri.n
rpowern = cat(2,rpowern{:}); lIDGL05f'
rpowern = [ones(length_r,1) rpowern]; +M %zOX/
else !1<?ddH6
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ;S_\-
]m&g
rpowern = cat(2,rpowern{:}); ~D$?.,=l
end N5Rda2m
%A ^qm
M);@XcS
% Compute the values of the polynomials: f~{@(g&Gl
% -------------------------------------- z0Bw+&^]}
y = zeros(length_r,length(n)); <~}#Q,9
for j = 1:length(n) JZM:R
s = 0:(n(j)-m_abs(j))/2; G<f"_NT
pows = n(j):-2:m_abs(j); e6JT|>9A7
for k = length(s):-1:1 :2_8.+:
p = (1-2*mod(s(k),2))* ... Q $5U5hb
prod(2:(n(j)-s(k)))/ ... $&l}
ABn
prod(2:s(k))/ ... Dd:;8Xo
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... @cz\'v6E
prod(2:((n(j)+m_abs(j))/2-s(k))); tbr1mw'G
idx = (pows(k)==rpowers); 8LZmr|/F*
y(:,j) = y(:,j) + p*rpowern(:,idx); 0>KW94
end JE$aYs<(TF
q;{# ~<"+
if isnorm EX.`6,:+2
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); +o94w^'^$b
end 5\6S5JyIL
end O?I~XM'S
% END: Compute the Zernike Polynomials
4gRt^T-?
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Mc#w:UH[
/^F$cQX(
O^W.5SaR
% Compute the Zernike functions: {vL4:K
% ------------------------------ }VUrn2@-4
idx_pos = m>0; `*`@r o
idx_neg = m<0; q=H
dGv
=eNh))]
LQs>[3rK
z = y; xct{Tv[FO
if any(idx_pos) OB{d^e}
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ?z]hYsy
end k Up[b~
if any(idx_neg) rnV\O L
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ;[ag|YU$Y
end v|r=}`k=
wgeR%#DW
nM?mdb
% EOF zernfun }%;o#!<N(@