下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, *0eU_*A^zO
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, Fr
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? 7dACbqba
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? (?JdiY/
*`Vm ncv3
/9I/^i~
}(ORh2Ri
)hj:Xpj9#
function z = zernfun(n,m,r,theta,nflag) )rG4Nga5}
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. Cgh84
2%
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 1nskf*Z
% and angular frequency M, evaluated at positions (R,THETA) on the Y-YuY
% unit circle. N is a vector of positive integers (including 0), and ja';NIO-
% M is a vector with the same number of elements as N. Each element ` K{k0_{
% k of M must be a positive integer, with possible values M(k) = -N(k) x6s|al
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, IY#:v%U
% and THETA is a vector of angles. R and THETA must have the same 'D
?o^
% length. The output Z is a matrix with one column for every (N,M) FC,=g`Q!
% pair, and one row for every (R,THETA) pair. ZDR@VYi+~
% Hy[: _E
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike sAL
]N][Y
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), W_Y8)KxG:L
% with delta(m,0) the Kronecker delta, is chosen so that the integral BrwC9:
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, x}?<9(nE c
% and theta=0 to theta=2*pi) is unity. For the non-normalized 5j1d=h
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. AO|9H`6U6F
% 6xJffl
% The Zernike functions are an orthogonal basis on the unit circle. &EQhk9j
% They are used in disciplines such as astronomy, optics, and X(nyTR8
% optometry to describe functions on a circular domain. F1L[3D^-
% 4#0 3x:/<\
% The following table lists the first 15 Zernike functions. y-1e(:GF
% o"
,8
% n m Zernike function Normalization >dt*^}*
% -------------------------------------------------- M[YFyM(
% 0 0 1 1 \{lv~I
% 1 1 r * cos(theta) 2 !V37ePFje
% 1 -1 r * sin(theta) 2 ?s^3o{!<W
% 2 -2 r^2 * cos(2*theta) sqrt(6) [c
8=b,EI
% 2 0 (2*r^2 - 1) sqrt(3) &S*~EM.l8
% 2 2 r^2 * sin(2*theta) sqrt(6) 1w^wa_qx
% 3 -3 r^3 * cos(3*theta) sqrt(8) =W.}&
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) V >'
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) lZcNio
% 3 3 r^3 * sin(3*theta) sqrt(8) ZLv/otf:|"
% 4 -4 r^4 * cos(4*theta) sqrt(10) &P|[YP37_
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) E
s5:S#
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) ==5F[UX
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) A>yU0\A
% 4 4 r^4 * sin(4*theta) sqrt(10) \@:,A]
% -------------------------------------------------- cj8cV|8@
% 1jl!VU6
% Example 1: p%"dYH%]&0
% U4pIRa)S
% % Display the Zernike function Z(n=5,m=1) .z`70ot?
% x = -1:0.01:1; @%R<3!3v
% [X,Y] = meshgrid(x,x); ;[sW\Ou
% [theta,r] = cart2pol(X,Y); /8h=6"
% idx = r<=1; ^hC'\09=c
% z = nan(size(X)); LSJ?;Zg(=z
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 6@J=n@J$p
% figure c0@8KW[,
% pcolor(x,x,z), shading interp ~.m<`~u
% axis square, colorbar #dA$k+3
% title('Zernike function Z_5^1(r,\theta)') vjGQ! xF
% )#}>,,S
% Example 2: %X{EupiFA
% ' [
4;QYw
% % Display the first 10 Zernike functions DYD<?._I
% x = -1:0.01:1; V0\[|E;F
% [X,Y] = meshgrid(x,x); Iry$z^
% [theta,r] = cart2pol(X,Y); :o'XE|N
% idx = r<=1; 6Dq4Q|C
% z = nan(size(X)); \2i7\U
% n = [0 1 1 2 2 2 3 3 3 3]; e<L@QNX
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; u*l|MIi6J
% Nplot = [4 10 12 16 18 20 22 24 26 28]; $1an#~
% y = zernfun(n,m,r(idx),theta(idx)); /~[Lr
% figure('Units','normalized') TC\+>LXiZ
% for k = 1:10 Z4j6z>q E
% z(idx) = y(:,k); t;&XIG~
% subplot(4,7,Nplot(k)) SiratkP9n7
% pcolor(x,x,z), shading interp yw3"jdcl
% set(gca,'XTick',[],'YTick',[]) g{65 QP
% axis square ,fVD`RR(W?
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 11[lc2
% end :S+K\
% #<im?
% See also ZERNPOL, ZERNFUN2. %BqaVOKJ"f
:HkBP90o
7RAB"T;?Q
% Paul Fricker 11/13/2006 5'~_d@M
0lfK}
a
f!Q\M1t)
n|SV)92o1
*T|B'80
% Check and prepare the inputs: )O]T}eI
% ----------------------------- Hcq.Lq;2:
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) nM
)C^$3<t
error('zernfun:NMvectors','N and M must be vectors.') xt{'Be&Ya+
end Ccf/hA#mb
tli.g
bLgH3[{
if length(n)~=length(m) rz?Cn
X.t
error('zernfun:NMlength','N and M must be the same length.') kI\m0];KnQ
end nV;'UpQw
&|>+LP@8
{f!/:bM
n = n(:); *sho/[~_
m = m(:); `BPTcL<W
if any(mod(n-m,2)) a^|DD#5
error('zernfun:NMmultiplesof2', ... <AHpk5Sn{
'All N and M must differ by multiples of 2 (including 0).') -EjXVn! vQ
end \{,TpK.
Ac7^JXh%
]rmBM
if any(m>n) 1gEH~Jmj
error('zernfun:MlessthanN', ... Y Y:BwW:
'Each M must be less than or equal to its corresponding N.') c8qr-x1HG
end (
?V`|[+u
L+%"ew
THA9OXP
if any( r>1 | r<0 ) !QUY (
error('zernfun:Rlessthan1','All R must be between 0 and 1.') v0^9"V:y
end &J[a.:..
#Ondhy%h[
E_HB[9
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) E*_^+ %
error('zernfun:RTHvector','R and THETA must be vectors.') DT1gy:?L
end "cH RGJG#
]|;+2@kDR
) "#'
r = r(:); TQ
Vk;&A
theta = theta(:); 85{m+1O~
length_r = length(r); ?Cq7_rq
if length_r~=length(theta) |Lq8cA)|y
error('zernfun:RTHlength', ... prBLNZp
'The number of R- and THETA-values must be equal.') l{3B}_,
end j)1y v.
6 Z/`p~e
q!K:N?
% Check normalization: rCyb3,W
% -------------------- R+sT
&d
if nargin==5 && ischar(nflag) r;cDYg
isnorm = strcmpi(nflag,'norm'); 5:Qz
if ~isnorm ."K>h3(&V
error('zernfun:normalization','Unrecognized normalization flag.') X@nBj;
end _Fb}zPU!
else _MBa&XEM
isnorm = false; <J[le=
end C
\ Cc[v
F c[KIG3@
-H1=N
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% E3L?6Qfx>
% Compute the Zernike Polynomials a(Y'C`x
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |J`EM7qMK
J=V
lwnO
% Determine the required powers of r: iP/v"g"g
% ----------------------------------- BEZ~<E&0H
m_abs = abs(m); !Jg;%%E3:i
rpowers = []; )!y>2$20 r
for j = 1:length(n) ^({)t
rpowers = [rpowers m_abs(j):2:n(j)]; a"~o'W7
end T.q2tC[bR
rpowers = unique(rpowers); ?}||?2=P
eK8H5YE
B|(g?
% Pre-compute the values of r raised to the required powers, ^df wWP
% and compile them in a matrix: PN}+LOD<t
% ----------------------------- ,OZ
if rpowers(1)==0 &K[*vyD
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); :I"CQ
C[Z
rpowern = cat(2,rpowern{:}); ROO*/OOd
rpowern = [ones(length_r,1) rpowern]; dQut8>0&
else *0WVrM06?
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Z:b?^u4.
rpowern = cat(2,rpowern{:}); OhF55,[
end 3CUQQ_
Z[vx0[av&
M,Gy.ivz
% Compute the values of the polynomials: gv!8' DKn
% -------------------------------------- !}*N';
y = zeros(length_r,length(n)); 6fwNlC/9
for j = 1:length(n) yUoR6w
s = 0:(n(j)-m_abs(j))/2; 0'q4=!l
pows = n(j):-2:m_abs(j); , 5'o>Y
for k = length(s):-1:1 Y#U.9>h
p = (1-2*mod(s(k),2))* ... Q
G)s
prod(2:(n(j)-s(k)))/ ... N#w5}It
prod(2:s(k))/ ... G
hM
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... jKS j );
prod(2:((n(j)+m_abs(j))/2-s(k))); d[9,J?'OQ
idx = (pows(k)==rpowers); MVatV[G
y(:,j) = y(:,j) + p*rpowern(:,idx); QE<Z@/V*a
end mY|c7}>V;
a[{qb
if isnorm UhB+c
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); KbJ6U75|f
end rcnH ^P
end PZ[-a-p40
% END: Compute the Zernike Polynomials ZvY"yl?e
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% U#<d",I
fif;n[<
+]l?JKV
% Compute the Zernike functions: YOxgpQ:i
% ------------------------------ q|5WHB
idx_pos = m>0; SH*'<
idx_neg = m<0; 7:`XE&Z
;H$Cq'
I
O{ :{P5
z = y; j
}~?&yB
if any(idx_pos) =dm9+ff
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); G/x6zdk
end |N,^*xP(6
if any(idx_neg) UrniJB]
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); bGh&@&dHr
end g
pciv
2BY|Cp4R
zD_5TGM=
% EOF zernfun 3Vu}D(PJ