下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, *wZV*)}
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, GQAg
ex)D
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? {_N(S]Z
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? ZjbG&oc
P*=3$-`
zSufU2
r\- k/ 0
Jy[8,X
function z = zernfun(n,m,r,theta,nflag) RpXG gw
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. lSv;wwEg
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N @9P9U`ZP
% and angular frequency M, evaluated at positions (R,THETA) on the (dnc7KrM
% unit circle. N is a vector of positive integers (including 0), and 'Bn_'w~j{
% M is a vector with the same number of elements as N. Each element ED_5V@
% k of M must be a positive integer, with possible values M(k) = -N(k) /faP]J)
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, MBrVh6z>
% and THETA is a vector of angles. R and THETA must have the same \B+SzW
% length. The output Z is a matrix with one column for every (N,M) ?PtRb:RHt
% pair, and one row for every (R,THETA) pair. exU=!3Ji
% (w
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike tl#s:
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), [4yQbqe;
% with delta(m,0) the Kronecker delta, is chosen so that the integral Yzx0 [_'u
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, hf5SpwxLiH
% and theta=0 to theta=2*pi) is unity. For the non-normalized PS;*N8
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. k"-#ox!
% }ZGpd9D
% The Zernike functions are an orthogonal basis on the unit circle. A{T@O5ucj
% They are used in disciplines such as astronomy, optics, and &!fcL Jd
% optometry to describe functions on a circular domain. Gl:T
% ;XuEMq,Di
% The following table lists the first 15 Zernike functions. ITPpT
% <T[ui
% n m Zernike function Normalization |W];v@b\y
% -------------------------------------------------- ``CADiM:S
% 0 0 1 1 >5W"a?(
% 1 1 r * cos(theta) 2 N2Hb19/k
% 1 -1 r * sin(theta) 2 RIx6& 7$
% 2 -2 r^2 * cos(2*theta) sqrt(6) 2{:
J1'pC
% 2 0 (2*r^2 - 1) sqrt(3) ?2>v5p
% 2 2 r^2 * sin(2*theta) sqrt(6) hvZR4|k>
% 3 -3 r^3 * cos(3*theta) sqrt(8) OEi9
)I
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) zhL,BTH
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) =x]dP.
% 3 3 r^3 * sin(3*theta) sqrt(8) ="E
V@H?U
% 4 -4 r^4 * cos(4*theta) sqrt(10) YIqfGXu8
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) m(]IxI
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) > PA,72e
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ?LM'5
% 4 4 r^4 * sin(4*theta) sqrt(10) L#bQ`t
% -------------------------------------------------- e:occT
% "b7C0NE
% Example 1: bUL9*{>G
% )C6 7qY[P
% % Display the Zernike function Z(n=5,m=1) _3>zi.J/
% x = -1:0.01:1; ^Z+D7Q
% [X,Y] = meshgrid(x,x); :N:8O^D^<
% [theta,r] = cart2pol(X,Y); 3&:fS|L~c
% idx = r<=1; EOC"a}Cq-
% z = nan(size(X)); 6[7k}9`alz
% z(idx) = zernfun(5,1,r(idx),theta(idx)); >*CK@"o
% figure #C}(7{Vt
% pcolor(x,x,z), shading interp =1Jo-!{{
% axis square, colorbar l]&)an
% title('Zernike function Z_5^1(r,\theta)') 4+bsG6i
% L<`g}iw
% Example 2: Dw,f~D$+ic
% O,#[m:Ejb
% % Display the first 10 Zernike functions 4/_|Qy
% x = -1:0.01:1; v21?
% [X,Y] = meshgrid(x,x); _gh7_P^H=d
% [theta,r] = cart2pol(X,Y); PCjY,O
% idx = r<=1; @kymL8"2w
% z = nan(size(X)); j]SkBZgik
% n = [0 1 1 2 2 2 3 3 3 3]; 7C^ nk
z
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; px@\b]/
% Nplot = [4 10 12 16 18 20 22 24 26 28]; B[50{;X
% y = zernfun(n,m,r(idx),theta(idx)); PD4E&k
% figure('Units','normalized') 49GCj`As
% for k = 1:10 :LG%8Z{R
% z(idx) = y(:,k); W -&5
v
% subplot(4,7,Nplot(k)) 4pv:u:Z
% pcolor(x,x,z), shading interp pXa? Q@6
% set(gca,'XTick',[],'YTick',[]) p60D{UzU
% axis square 7i/Cax
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) l[ k$O$jo
% end RGmpkQEp
% O!tD1^O!1}
% See also ZERNPOL, ZERNFUN2. :DJ@HY
3R {y68-S
C"<@EMU9
% Paul Fricker 11/13/2006 wt;aO_l
Ea?.HRxl
EM}z-@A>
RUKSGj_NJ
>Z%`&D~u
% Check and prepare the inputs: =@o}
% ----------------------------- Q2Rj0E`
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) b??1Up
error('zernfun:NMvectors','N and M must be vectors.') I"4B1g
end d.A0(*k,
-f=hL7NW
Lw`\J|%p
if length(n)~=length(m) 5>Q)8`@E
error('zernfun:NMlength','N and M must be the same length.') X $f%Ss
end iXFaQ
E12k1gC`
$'q(Z@
n = n(:); "Cb<~Dy
m = m(:); >.|gmo>b
if any(mod(n-m,2)) *bEsWeP
error('zernfun:NMmultiplesof2', ... :F&WlU$L
'All N and M must differ by multiples of 2 (including 0).') "f_Z.6WMY
end o*_ D
43XuQg4
CggEAi~
if any(m>n) #eYVZ=E
error('zernfun:MlessthanN', ... }^muAr
'Each M must be less than or equal to its corresponding N.') Sls>
OIc
end Pp2)P7
Npqb xb
VM[8w`
if any( r>1 | r<0 ) *rLs!/[Z_
error('zernfun:Rlessthan1','All R must be between 0 and 1.') pC6_
jIZ
end /7^~*
s><co]
&^.'g{\Y
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) zlfm})+G
error('zernfun:RTHvector','R and THETA must be vectors.') 3>+;G4
end
c'b,=SM
\!r^6'A
}wVrmDh \
r = r(:); -MjRFa
theta = theta(:); ArY'NE\Htt
length_r = length(r); %[J( ,rm
if length_r~=length(theta) y.zQ `
error('zernfun:RTHlength', ... Ty=}A MMyE
'The number of R- and THETA-values must be equal.') S4w/
kml3
end =R05H2hs
amRtFrc|
&+v&Dd&
% Check normalization: x+pFu5,
% -------------------- {F j`'0Xu;
if nargin==5 && ischar(nflag) k{~5pxd-t
isnorm = strcmpi(nflag,'norm'); O%r<I*T^r
if ~isnorm cnR>)9sX
error('zernfun:normalization','Unrecognized normalization flag.') -Q;
w4@
end >qE$:V"_5
else }49?Z 3
isnorm = false; pfT7
end EO5Vg
)l=j,4nn
DcOLK\
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% b}fH$.V@
% Compute the Zernike Polynomials X\;y;pmRH
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% xInWcQ
Oe$C5KA>LW
R`c5-0A
% Determine the required powers of r: }^H_|;e1p
% ----------------------------------- M-NR!? 9
m_abs = abs(m); f =Nm2(e
rpowers = []; 2,+H;Ypi!
for j = 1:length(n) (~jOtUyT
rpowers = [rpowers m_abs(j):2:n(j)]; Z1Wra-g
end 1n^xVk-G
rpowers = unique(rpowers); V|7 cdX#H
FW2} 9#R
y3x_B@}BY
% Pre-compute the values of r raised to the required powers, q45n.A6a
% and compile them in a matrix: -8]$a6`{_
% ----------------------------- |
!Knd ^}
if rpowers(1)==0 %\A~w3 E
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); i[B%:q:&
rpowern = cat(2,rpowern{:}); M-n +3E9
rpowern = [ones(length_r,1) rpowern]; D3]_AS&\
else 'G&w[8mqY
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); d$!ibL#o
rpowern = cat(2,rpowern{:}); YJ6Xq||_
end Cd4G&(=
(j(6%U
]]+"`t,-
% Compute the values of the polynomials: 2'D2>^os
% -------------------------------------- >">-4L17m
y = zeros(length_r,length(n)); .L}ar7
for j = 1:length(n) C`fQ` RL\
s = 0:(n(j)-m_abs(j))/2; /wQDcz
pows = n(j):-2:m_abs(j); q N>j2~
for k = length(s):-1:1
dwRJ0D]&
p = (1-2*mod(s(k),2))* ... ~!I
\{(
prod(2:(n(j)-s(k)))/ ... i9d.Ls
prod(2:s(k))/ ... 0VPa=AW
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 7z}NI,R}1
prod(2:((n(j)+m_abs(j))/2-s(k))); 8"+Kz
idx = (pows(k)==rpowers); \QVL%,.%M
y(:,j) = y(:,j) + p*rpowern(:,idx); :>|[ o&L
end a$ Z06j
Gd!y,n&s
if isnorm j
sm{|'
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); /0A}N$?>:
end OmsNo0OA
end 0y?bwxkc
% END: Compute the Zernike Polynomials YQ]W<0(
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \j4TDCs_[
&U:;jlST9
/)j:Y:5
% Compute the Zernike functions: LKhUqW
% ------------------------------ T{Av[>M
idx_pos = m>0; W_%Dg]l
idx_neg = m<0; gkDB8,C<j
_k&vW(O=:
WmeV[iI
z = y; +5voAx!
if any(idx_pos) HUZI7rC[=)
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); $%ps:ui~X
end )KG.:BO<
if any(idx_neg) vLq_l4l
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); @PutUYz
end s~3"*,3@
QN":Qk(,q
dW6sA65<Y
% EOF zernfun Hi#hf"V