切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8969阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, au0)yg*V1  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, F9-xp7 T  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? LT# *nr  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? <:>a51HBX  
    DkQy.  
    sh E>gTe  
    e9N"{kDs6  
    \BUr2]  
    function z = zernfun(n,m,r,theta,nflag) vY }/CBmg  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. ~ hYG%  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N /R 2:Js  
    %   and angular frequency M, evaluated at positions (R,THETA) on the VT;$:>! +  
    %   unit circle.  N is a vector of positive integers (including 0), and om;jXf}A  
    %   M is a vector with the same number of elements as N.  Each element hPD2/M  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) RzFv``g  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, co@Q   
    %   and THETA is a vector of angles.  R and THETA must have the same z.P) :Er  
    %   length.  The output Z is a matrix with one column for every (N,M) I:bi8D6  
    %   pair, and one row for every (R,THETA) pair. ~Ci|G3BW  
    % iHWl%]7sN  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike D{ @x  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), k+&LOb7  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral tE=P9 \4  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ZIkXy*<(  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized | u7vY/  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. h6 8sQd  
    % /&cb`^"U^  
    %   The Zernike functions are an orthogonal basis on the unit circle. b":cj:mxL  
    %   They are used in disciplines such as astronomy, optics, and LIirOf~e;!  
    %   optometry to describe functions on a circular domain. 5Y_)%u  
    % :hCp@{  
    %   The following table lists the first 15 Zernike functions. cZ%weQa#N)  
    %  ()=  
    %       n    m    Zernike function           Normalization UR:cBr  
    %       -------------------------------------------------- I[@}+p0  
    %       0    0    1                                 1 !1w=_  
    %       1    1    r * cos(theta)                    2 |SQ5Sb  
    %       1   -1    r * sin(theta)                    2 .E"hsGH9h  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) Ql3hq.E  
    %       2    0    (2*r^2 - 1)                    sqrt(3) Y!Wz7 C  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) j<Lj1 P3  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 9ZeTS~i  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 7M=`Z{=9  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ]'EtLFv)  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) W;eHDQ|  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) Jf YO|,  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) T&fqn!i  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) XGbtmmQG  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10)  Fp'k{  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) ?8)_,  
    %       -------------------------------------------------- xQ-]Iw5  
    % NYm2fFPc  
    %   Example 1: E,>/6AU  
    % @K3<K (  
    %       % Display the Zernike function Z(n=5,m=1) (kK6=Mrf  
    %       x = -1:0.01:1; (6L[eWuTn  
    %       [X,Y] = meshgrid(x,x); 9~SfZ,(  
    %       [theta,r] = cart2pol(X,Y); GxuFO5wz  
    %       idx = r<=1; wtu WzHrF  
    %       z = nan(size(X)); cX 9 !a,  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 4S`2")V  
    %       figure 7D@O:yO  
    %       pcolor(x,x,z), shading interp V<ziJ7H/  
    %       axis square, colorbar ^%VMp>s  
    %       title('Zernike function Z_5^1(r,\theta)') `p|{(g'  
    % 2bPrND\P=  
    %   Example 2: :-fCyF)EI  
    % W`*S?QGzl@  
    %       % Display the first 10 Zernike functions Q"h/o"-h  
    %       x = -1:0.01:1; 3<88j&9  
    %       [X,Y] = meshgrid(x,x);  {F+7> X  
    %       [theta,r] = cart2pol(X,Y); Jlj=FA`  
    %       idx = r<=1; MN}@EQvW==  
    %       z = nan(size(X)); C4 H M  
    %       n = [0  1  1  2  2  2  3  3  3  3]; EC<g7_0F  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; sk5h_[tK  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 7q&Ru|T33  
    %       y = zernfun(n,m,r(idx),theta(idx)); jeFX?]Q  
    %       figure('Units','normalized') rwWs\~.H  
    %       for k = 1:10 U3}r.9/  
    %           z(idx) = y(:,k); Y6~/H  
    %           subplot(4,7,Nplot(k)) w+)MrB-}  
    %           pcolor(x,x,z), shading interp Rq-BsMX!A  
    %           set(gca,'XTick',[],'YTick',[]) j7IX"O%f\  
    %           axis square z@R:~  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) %5?qS`/c(  
    %       end ] lE6:^V  
    % /o Q^j'v  
    %   See also ZERNPOL, ZERNFUN2. 8=Xy19<;t  
    d~M;@<eD  
    pTT7#b(t  
    %   Paul Fricker 11/13/2006 A>8"8=C  
    ;7Cb!v1  
    kTZ`RW&0  
    aKkL0 D  
    DgQw`D)+  
    % Check and prepare the inputs: }pxMO? h$  
    % ----------------------------- xdGmiHN  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) FR"yGx#$  
        error('zernfun:NMvectors','N and M must be vectors.') ];P$w.0  
    end Nj4=  
    M S$^m2  
    }SpjB  
    if length(n)~=length(m) z UN&L7D  
        error('zernfun:NMlength','N and M must be the same length.') P(D0ru  
    end CT(VV6I\  
    In<L?U?([D  
    \X1?,gV_  
    n = n(:); |)`<D  
    m = m(:); E_ #MQ;n  
    if any(mod(n-m,2)) }i0(^"SoXZ  
        error('zernfun:NMmultiplesof2', ... lM oi5q  
              'All N and M must differ by multiples of 2 (including 0).') lJ1_Zs `  
    end |+K3\b  
    \ t4:(Jp 3  
    Z7>pz:,  
    if any(m>n) ?"-%>y@w  
        error('zernfun:MlessthanN', ... ,kS3Ioj  
              'Each M must be less than or equal to its corresponding N.') U\dq Mp#Wy  
    end YL*yiZ9  
    /o%J / |  
    Zt;3HY=y  
    if any( r>1 | r<0 ) r$7fw}'I  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') /<ODP6Yy;  
    end G>"=Af(t?Y  
    >#~!03  
    >.'rN>B+  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) )  |e49F  
        error('zernfun:RTHvector','R and THETA must be vectors.') qbcaiU`-^"  
    end vU= +  
    t6m&+N  
    ;>%@  
    r = r(:); 36MqEUjyB  
    theta = theta(:); 3Ov? kWFO  
    length_r = length(r); u~[=5r  
    if length_r~=length(theta) Lso4Z Z;  
        error('zernfun:RTHlength', ... qI (<5Wxl  
              'The number of R- and THETA-values must be equal.') W\f u0^  
    end ,n )f=q*%  
    BCUn[4Gp  
    E&js`24 &  
    % Check normalization:  M18<d1*  
    % -------------------- k/'>,WE  
    if nargin==5 && ischar(nflag) (|Zah1k&]  
        isnorm = strcmpi(nflag,'norm'); o!bIaeEaU  
        if ~isnorm i|M^QKvF  
            error('zernfun:normalization','Unrecognized normalization flag.') vq(ElXTO  
        end r5#8V zr  
    else vSyR% j  
        isnorm = false; /O@TqH  
    end h zv4+1Wd[  
    VSf<(udGr  
    8nKZ   
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Lmp_8q-Ej  
    % Compute the Zernike Polynomials *SP@`)\D  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Q:rQ;/b0/  
    b9 Gq';o  
    O4Z_v%2M  
    % Determine the required powers of r: LHJ}I5zv  
    % ----------------------------------- '#Yqs/V  
    m_abs = abs(m); 8Qm%T7]UFb  
    rpowers = [];  AW[_k%  
    for j = 1:length(n) :U>[*zE4&  
        rpowers = [rpowers m_abs(j):2:n(j)]; I;u1mywd  
    end "CH3\O\  
    rpowers = unique(rpowers); Ng=_#<  
    wgETL|3-  
    YoU|)6Of   
    % Pre-compute the values of r raised to the required powers, j*XhBWE?  
    % and compile them in a matrix: VgBZ@*z(x  
    % ----------------------------- ?^f=7e8]  
    if rpowers(1)==0 0-VC$)S  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ]; CTr0  
        rpowern = cat(2,rpowern{:}); n\/ JNzd3  
        rpowern = [ones(length_r,1) rpowern]; B:?MMXB  
    else v%|S)^c?:  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false);  F0i`HO{  
        rpowern = cat(2,rpowern{:}); }={TVs^  
    end #.KVT#%~{  
    =eHoJq  
    V DN@=/  
    % Compute the values of the polynomials: k/lU]~PE  
    % -------------------------------------- 8? U!PW  
    y = zeros(length_r,length(n)); j o+-  
    for j = 1:length(n) vGIe"$hNh  
        s = 0:(n(j)-m_abs(j))/2; s+omCr|H;A  
        pows = n(j):-2:m_abs(j); ].(l^W  
        for k = length(s):-1:1 gL/D| =  
            p = (1-2*mod(s(k),2))* ... W08rGY  
                       prod(2:(n(j)-s(k)))/              ... eI#b%h  
                       prod(2:s(k))/                     ... "kdmqvTHK0  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... #uc9eh}CWO  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 8c%Sd'+Pt  
            idx = (pows(k)==rpowers); O3*}L2 j@  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 9P 7^*f:E  
        end l(~i>iQ 4  
         $eSSW+8q"  
        if isnorm 1+Z@4;fk  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 9-`P\/  
        end (p?7-~6|:  
    end 8hZY Z /T  
    % END: Compute the Zernike Polynomials exP:lO_0n  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% gXb * zt2  
    zKllwIf i  
    ~'.SmXZs  
    % Compute the Zernike functions: Tu[I84  
    % ------------------------------ P/ XO5`  
    idx_pos = m>0; ?cvV~&$gc  
    idx_neg = m<0; {^ jRV@  
    l'Kx#y$  
    Hl*V i3bQU  
    z = y; H'_v  
    if any(idx_pos) s9\N{ar#  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); />0 Bm`A  
    end ;i>(r;ZM  
    if any(idx_neg) q L-Ni  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); }fqy vI  
    end 04E S>'@  
    O,_k.EH  
    \; FE@  
    % EOF zernfun ny'wS  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  8ps1Q2|  
    <hB~|a<#  
    DDE还是手动输入的呢? Np>0c -S  
    ]~kgsI[E  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究