下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, T`GiM%R;g
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 3`Xzp
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? v^Rw9*w{
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? |<MSV KW
/.>%IcK
dfh 1^Go
,}NTV~
bL5u;iy)
function z = zernfun(n,m,r,theta,nflag) Q(x/&]7=V
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. '1~;^rU
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N F
1l8jB\
% and angular frequency M, evaluated at positions (R,THETA) on the s@6Jz\<E
% unit circle. N is a vector of positive integers (including 0), and @gw8r[
% M is a vector with the same number of elements as N. Each element E;An':j
% k of M must be a positive integer, with possible values M(k) = -N(k) M(n@ytz
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, L-%'jR
% and THETA is a vector of angles. R and THETA must have the same NCgKWyRR
% length. The output Z is a matrix with one column for every (N,M) $oPc,zS-gL
% pair, and one row for every (R,THETA) pair. r;+a%?P
% (O&HCT|
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 8isQL
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), R*2F)e\|
% with delta(m,0) the Kronecker delta, is chosen so that the integral ex66GJQe1
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, lbC,*U^
% and theta=0 to theta=2*pi) is unity. For the non-normalized !'B='].
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. R@U4Ae{+
% |/n
% The Zernike functions are an orthogonal basis on the unit circle. g{f7} gTG
% They are used in disciplines such as astronomy, optics, and uQ7lC~
% optometry to describe functions on a circular domain. pF(6M3>IN
% B>@l(e)b
% The following table lists the first 15 Zernike functions. GInw7
% 1MmEP
% n m Zernike function Normalization *]nk{jo2
% -------------------------------------------------- 9!.S9[[N
% 0 0 1 1 ,H1K sN
% 1 1 r * cos(theta) 2 k=&n>P
% 1 -1 r * sin(theta) 2 whm|"}x)u
% 2 -2 r^2 * cos(2*theta) sqrt(6) mA@!t>=oMq
% 2 0 (2*r^2 - 1) sqrt(3) E'NS$,h
% 2 2 r^2 * sin(2*theta) sqrt(6) \[]?9Z=n
% 3 -3 r^3 * cos(3*theta) sqrt(8) ce; zn\
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) {WQ6=wGpS
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) (H\ `/%Bp
% 3 3 r^3 * sin(3*theta) sqrt(8) f.$*9Fkw
% 4 -4 r^4 * cos(4*theta) sqrt(10) qW'L}x
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) f>|<5zm#<
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) #%w)w R3
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Z]x6np
% 4 4 r^4 * sin(4*theta) sqrt(10) 8H`L8:
CM
% -------------------------------------------------- wvxsn!Ao&=
% ;--D?Gs]Qr
% Example 1: y~su1wUp
% 9A/bA|$
% % Display the Zernike function Z(n=5,m=1) Uv652DC
% x = -1:0.01:1; `6;$Z)=.
% [X,Y] = meshgrid(x,x); Kr;=4xg=
% [theta,r] = cart2pol(X,Y); MSRk|0Mcr
% idx = r<=1; [HL>Lp&A?
% z = nan(size(X)); K\59vtga
% z(idx) = zernfun(5,1,r(idx),theta(idx)); _"*s x-
% figure 1'F!C
% pcolor(x,x,z), shading interp )dh`aQ%N "
% axis square, colorbar :8HVq*itS
% title('Zernike function Z_5^1(r,\theta)') Od:-fw
% lJdYR'/Wd
% Example 2: yH>C7M7t
% YBR)S_C$_
% % Display the first 10 Zernike functions <]X6%LX
% x = -1:0.01:1; L
u'<4 R
% [X,Y] = meshgrid(x,x); 0s\ -iub=d
% [theta,r] = cart2pol(X,Y); .!Kqcz% A
% idx = r<=1; Uw!d;YQm
% z = nan(size(X)); cG%X}ZV5
% n = [0 1 1 2 2 2 3 3 3 3]; /Ov1eQBNG
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; M"bG(a(6:
% Nplot = [4 10 12 16 18 20 22 24 26 28]; q]VB}nO
% y = zernfun(n,m,r(idx),theta(idx)); #9F>21UU
% figure('Units','normalized') =\oL'>q
% for k = 1:10 .wyuB;:
% z(idx) = y(:,k); ~sPXkLqK
% subplot(4,7,Nplot(k))
M&<qGV$A
% pcolor(x,x,z), shading interp EU04U
% set(gca,'XTick',[],'YTick',[]) d>F. C>
% axis square %g{)K)$,ui
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) jA[Ir3
% end #Sx
% 4nQ5zwiV
% See also ZERNPOL, ZERNFUN2. (|rf>=B+H
. UH'U\M
DEt!/a{X
% Paul Fricker 11/13/2006 ByO?qft>u
O&yAFiCd
&I(\:|`o
YbnXAi\y|
ts}OE
% Check and prepare the inputs: ewHs ]V+U
% ----------------------------- #f HnM+
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) $mE3 FJP>
error('zernfun:NMvectors','N and M must be vectors.') *Ms"{+C
end nc\2A>f`
G%AO%II
9I;~P &
if length(n)~=length(m) 4*Gv0#dga
error('zernfun:NMlength','N and M must be the same length.') ~G-W|>
end TA2ETvz^
q-ko)]
!c1M{klP
n = n(:); F&m9G >r
m = m(:); } .Z`
if any(mod(n-m,2)) t|hc`|
error('zernfun:NMmultiplesof2', ... 5E1`qof
'All N and M must differ by multiples of 2 (including 0).') *Uj;a.
end :#35mBe}k
%KkC1.yu<
G2?#MO
if any(m>n) `j9\]50Z>
error('zernfun:MlessthanN', ... }!R*Q`m
'Each M must be less than or equal to its corresponding N.') R!
On
end Y:L[Iz95o
_cj=}!I
_ DT,iF*6
if any( r>1 | r<0 ) DR:DXJc
error('zernfun:Rlessthan1','All R must be between 0 and 1.') G5K?Q+n
end &qWB\m
D,[Nn_N
~ {yy{
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) L jTSu9I>
error('zernfun:RTHvector','R and THETA must be vectors.') *78c2`)[
end :vzIc3~c:`
&Tj7qlP\
B{D4.!a
r = r(:); Z]oGE@!
n"
theta = theta(:); WFFQxd|Z
length_r = length(r); R@s7s%y=
if length_r~=length(theta) OKK Ko`RN
error('zernfun:RTHlength', ... s-+-?$K
'The number of R- and THETA-values must be equal.') doHE]gC2Uz
end sxph#E%
KK2YT/K$SG
unew
XHA
% Check normalization: Z`MpH
% -------------------- 9d-'%Q>+
if nargin==5 && ischar(nflag) ( $2M"n
isnorm = strcmpi(nflag,'norm'); w0oTV;yh
if ~isnorm A%HIfSzQBS
error('zernfun:normalization','Unrecognized normalization flag.') f\_PNZCc
end EPH" 5$8
else l9="ccM
isnorm = false; #jG?{j3;?
end D&2NO/
R
adIrrK
T 4p}5ew'
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% X'
5R4j
% Compute the Zernike Polynomials n8=Dzv0
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% jll:Rh(b
g3&nxZ
!#W>x49}
% Determine the required powers of r: f^lcw
% ----------------------------------- )UF'y{K}
m_abs = abs(m); 5X+`aB
rpowers = []; wv."
for j = 1:length(n) %_4#WI
rpowers = [rpowers m_abs(j):2:n(j)]; 9X=<uS
end ?
,s'UqR
rpowers = unique(rpowers); 0#eb] c
jS[=Zx`
fuv{2[NV
% Pre-compute the values of r raised to the required powers, Q2r[^Z
% and compile them in a matrix: >!s<JKhI
% ----------------------------- tzGQo5\
if rpowers(1)==0 KB|mtsi
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); La9}JvQoX
rpowern = cat(2,rpowern{:}); av|T|J/(
rpowern = [ones(length_r,1) rpowern]; D:bmq93PC
else J8r8#Zz
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); BA1uo0S `S
rpowern = cat(2,rpowern{:}); ox&?`DO
end 9?O8j1F
G"J
nQ
em3+V
% Compute the values of the polynomials: JG'%HJ"D
% -------------------------------------- 7`t"fS
y = zeros(length_r,length(n)); yTg|L9
for j = 1:length(n) gMF6f%
s = 0:(n(j)-m_abs(j))/2; `14@dk
pows = n(j):-2:m_abs(j); I8)D
for k = length(s):-1:1 |TMn
p = (1-2*mod(s(k),2))* ... r|4D.O]
prod(2:(n(j)-s(k)))/ ... 0 {z8pNrc
prod(2:s(k))/ ... 3w"JzC@
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ='b)6R
prod(2:((n(j)+m_abs(j))/2-s(k))); O{~Xp!QQt
idx = (pows(k)==rpowers); |6bvUFr
y(:,j) = y(:,j) + p*rpowern(:,idx); >zX^*T#
end z=U+FHdh/-
?rQ .nN
if isnorm ^U5N!"6R
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); v9*+@
end ~&T U
end G6a 2]
% END: Compute the Zernike Polynomials ZJZSt% r
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% upaP,ik}~
dLb$3!3
p:y\{k"
% Compute the Zernike functions: C/Z#NP~ *
% ------------------------------ l9Ol|Cb&
idx_pos = m>0;
2hF^U+I}
idx_neg = m<0; :FS5BT$=
t*H2;|zn_
g_c@Kyf
z = y; erUK;+2g
if any(idx_pos) i@?|vu
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); mih}?oi
end {c_bNYoE
if any(idx_neg) sGhw23
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); -+1O*L!
end 0~RD@>]
hDB(y4/
5Z; 5?\g
% EOF zernfun LJPJENtFIs