下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, y|&}.~U[
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, ^ 5VK>
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? 'evj,zFhW
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? ]{
BEr*
*tOG*hwdT
R8L_J6Kpa
n26Y]7N
a9zw)A
function z = zernfun(n,m,r,theta,nflag) CSbI8 5F
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. X.K<4N0A9J
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ki0V8]HP
% and angular frequency M, evaluated at positions (R,THETA) on the WD;Y~|
% unit circle. N is a vector of positive integers (including 0), and ._wkj
% M is a vector with the same number of elements as N. Each element c(co\A.]:6
% k of M must be a positive integer, with possible values M(k) = -N(k) Bx"7%[
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, 5G0$
% and THETA is a vector of angles. R and THETA must have the same JxLf?ad.
% length. The output Z is a matrix with one column for every (N,M) yq_LW>|Z
% pair, and one row for every (R,THETA) pair. D47R
% "x941}
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike N$Y " c*
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), .*$OQA
% with delta(m,0) the Kronecker delta, is chosen so that the integral jEc|]E
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ,<