下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, .gI9jRdKw
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, a[gN+DX%L
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? BCHI@a
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? hpticW|
fVBRP[,
T0}P 'q
;}k_2mr~
" 2@Ys*e
function z = zernfun(n,m,r,theta,nflag) CY9`HQ1
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 14\!FCe)!
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ?/ s=E+
% and angular frequency M, evaluated at positions (R,THETA) on the II_MY#0X
% unit circle. N is a vector of positive integers (including 0), and Q_a%$a.rV
% M is a vector with the same number of elements as N. Each element j8p'B-yS
% k of M must be a positive integer, with possible values M(k) = -N(k) j Ns eD
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, FkT% -I
% and THETA is a vector of angles. R and THETA must have the same +<I1@C
% length. The output Z is a matrix with one column for every (N,M) |m7`:~ow
% pair, and one row for every (R,THETA) pair. *'(dcy9
% h-h}NCP
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike z'X_s.9F
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), x]U (EX`t$
% with delta(m,0) the Kronecker delta, is chosen so that the integral & ~[%N
O
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, AuYi$?8|5
% and theta=0 to theta=2*pi) is unity. For the non-normalized [G|2m_
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. h Tn^:%(
% }fs;yPl,
% The Zernike functions are an orthogonal basis on the unit circle. Dy^4^ J5+
% They are used in disciplines such as astronomy, optics, and UoxF00H@!
% optometry to describe functions on a circular domain. I@q>ES!1H
% +e"}"]n
% The following table lists the first 15 Zernike functions. Dl/_jM
% UwQ3q
% n m Zernike function Normalization Xl*-A|:j
% -------------------------------------------------- vR~*r6hX8
% 0 0 1 1 fhn0^Qc"+
% 1 1 r * cos(theta) 2 o6KBJx
% 1 -1 r * sin(theta) 2 U>x2'B v
% 2 -2 r^2 * cos(2*theta) sqrt(6) x{*!"a>
% 2 0 (2*r^2 - 1) sqrt(3) 0QIocha
% 2 2 r^2 * sin(2*theta) sqrt(6) |/lIasI
% 3 -3 r^3 * cos(3*theta) sqrt(8) pN]Hp"v
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) MgMLfgt"V
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) j)IK
% 3 3 r^3 * sin(3*theta) sqrt(8) 7RD` *s
% 4 -4 r^4 * cos(4*theta) sqrt(10) Q84KU8?d
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) A1ebXXD)
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) _zmx
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) @7^#_772
% 4 4 r^4 * sin(4*theta) sqrt(10) 8rp-XiW
% -------------------------------------------------- FVQWz[N
% -;`W"&`ss
% Example 1: kdYl>M
% *E)Y?9u"
% % Display the Zernike function Z(n=5,m=1) ^]R0d3?>\
% x = -1:0.01:1; fF[ g%?w
% [X,Y] = meshgrid(x,x); \]OD pi
2
% [theta,r] = cart2pol(X,Y); 8:xQPd?3
% idx = r<=1; |b3/63Ri-0
% z = nan(size(X)); VD#^Xy4% r
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 0~1P&Qs<
% figure -% fDfjP
% pcolor(x,x,z), shading interp 49zp@a
% axis square, colorbar ;W*$<~_
% title('Zernike function Z_5^1(r,\theta)') =W|Q0|U
% uATBt
% Example 2: GKd>AP_
% `(a^=e5
% % Display the first 10 Zernike functions F_Pd\Aq8
% x = -1:0.01:1; Ul'G
g
% [X,Y] = meshgrid(x,x); 7z,M`14
% [theta,r] = cart2pol(X,Y); J;kbY9e
% idx = r<=1; +{w&ksk
% z = nan(size(X)); aBC[(}Pb]
% n = [0 1 1 2 2 2 3 3 3 3]; Q8~pIv
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; NR[mzJv
% Nplot = [4 10 12 16 18 20 22 24 26 28]; 5k(#kyP
% y = zernfun(n,m,r(idx),theta(idx)); zXC In
% figure('Units','normalized') ;hZ@C!S:
% for k = 1:10 A{o{o++
% z(idx) = y(:,k); I^|bQ3sor
% subplot(4,7,Nplot(k)) "}EbA3
% pcolor(x,x,z), shading interp U+i[r&{gb
% set(gca,'XTick',[],'YTick',[]) X>6a@$Mx P
% axis square Vi|jkyC8
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) .e AC!R
% end fytx({I
.a
% ^>p [b
% See also ZERNPOL, ZERNFUN2. )AoFd>
k
WtUj
4dK@UN\
% Paul Fricker 11/13/2006 ZD{srEa/a
i=a LC*@
<Gw<