切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9085阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, a.AEF P4N  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, KhbbGdmfS$  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? u\UI6/  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? .O.fD  
    f<3r;F7  
    (8j@+J   
    hM`*- +Zb  
    );x[1*e  
    function z = zernfun(n,m,r,theta,nflag) .ZH5^Sv$vp  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. Xec U&  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N mDU-;3OqF  
    %   and angular frequency M, evaluated at positions (R,THETA) on the *(<3 oIRS  
    %   unit circle.  N is a vector of positive integers (including 0), and VnMiZAHR  
    %   M is a vector with the same number of elements as N.  Each element K+c>Cj}H  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) k+cHx799  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, <4Cy U j  
    %   and THETA is a vector of angles.  R and THETA must have the same 2O9OEZdKB  
    %   length.  The output Z is a matrix with one column for every (N,M) Bk~M^AK@~  
    %   pair, and one row for every (R,THETA) pair. *|:]("i  
    % k\M">K0E  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike BRMR> ~k(  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 8f|+045E@  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral Jz\'%O'  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, &,`P%a&k  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized &Lgi  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m].  WR"p2=  
    % vweD{\b  
    %   The Zernike functions are an orthogonal basis on the unit circle. aD3Q-a[  
    %   They are used in disciplines such as astronomy, optics, and *CXVA&?  
    %   optometry to describe functions on a circular domain. (tP^F)}e5  
    % r7p>`>_Q\  
    %   The following table lists the first 15 Zernike functions.  /=7[Q  
    % gG=E2+=uy  
    %       n    m    Zernike function           Normalization meV RdQ  
    %       -------------------------------------------------- \>-%OcYlM  
    %       0    0    1                                 1 pF"IDC  
    %       1    1    r * cos(theta)                    2 *,DBRJ_*7  
    %       1   -1    r * sin(theta)                    2 $eBE pN  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) sWnU*Q  
    %       2    0    (2*r^2 - 1)                    sqrt(3) b}r3x&)  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) /c1FFkq|K  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) %Gs!oD  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) yS-owtVCGF  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) n _*k e  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) =>6'{32W_  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) #VEHyz6P  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) }mC-SC)oSi  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) -gV'z5  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) P1ab2D  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) izi=`;=D^  
    %       -------------------------------------------------- ),)]gw71QW  
    % oFV >b  
    %   Example 1: u|D_"q~+6  
    % rB:W\5~7  
    %       % Display the Zernike function Z(n=5,m=1) kSw.Q2ao  
    %       x = -1:0.01:1; DFt1{qS8@u  
    %       [X,Y] = meshgrid(x,x); lU.@! rGbw  
    %       [theta,r] = cart2pol(X,Y); iB5Se  
    %       idx = r<=1; I.\fhNxHY  
    %       z = nan(size(X)); =6TD3k6(2  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 7=8e|$K_  
    %       figure ]f q.r  
    %       pcolor(x,x,z), shading interp .Eg>)  
    %       axis square, colorbar LdAfY0  
    %       title('Zernike function Z_5^1(r,\theta)') >%.6n:\rG  
    % S:Ne g!`  
    %   Example 2: K/jC>4/c/  
    % GKwm %A  
    %       % Display the first 10 Zernike functions |L4K#  
    %       x = -1:0.01:1; i9oi}$;J  
    %       [X,Y] = meshgrid(x,x); iVt6rX  
    %       [theta,r] = cart2pol(X,Y); T0Q)}%L  
    %       idx = r<=1; >_]j{}~\k  
    %       z = nan(size(X)); gX34'<Z  
    %       n = [0  1  1  2  2  2  3  3  3  3]; xS`>[8?3<T  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; :d-+Z%Y  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; s7<x~v+^  
    %       y = zernfun(n,m,r(idx),theta(idx)); AjK'P<:/  
    %       figure('Units','normalized')  `' 5(4j  
    %       for k = 1:10 ;X! sTs  
    %           z(idx) = y(:,k); %@5f+5{i!z  
    %           subplot(4,7,Nplot(k)) gfs?H#  
    %           pcolor(x,x,z), shading interp #|34(ML  
    %           set(gca,'XTick',[],'YTick',[]) ~fE@]~f>  
    %           axis square <ok/2v  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) /4]M*ls  
    %       end hof:+aW  
    % w Maib3Q  
    %   See also ZERNPOL, ZERNFUN2. ]w(i,iJ  
    2hl'mRW  
    Uax- z  
    %   Paul Fricker 11/13/2006 41WnKz9c  
    -1~bWRYq  
    iU\WV  
    9Bl_t}0  
    l-"$a8jn2  
    % Check and prepare the inputs: p UWj,&t  
    % ----------------------------- e/E fWwqt  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) VAF+\Cea=  
        error('zernfun:NMvectors','N and M must be vectors.') #m6 eG&a  
    end u~6`9'Ms  
    ]C-hl}iq  
    "8aw=3A  
    if length(n)~=length(m) $cFanra  
        error('zernfun:NMlength','N and M must be the same length.') # &o3[.)9  
    end =usx' #rb  
    G@anY=D\EB  
    !12W(4S5  
    n = n(:); lN)U8  
    m = m(:); 69 R8#M  
    if any(mod(n-m,2)) o-B9r+N  
        error('zernfun:NMmultiplesof2', ... 67Z|=B !7  
              'All N and M must differ by multiples of 2 (including 0).') 16[>af0<g  
    end _* ]~MQ=  
    %8tlJQvu  
    0x'>}5`5  
    if any(m>n) (CS"s+y1  
        error('zernfun:MlessthanN', ... Y!v `0z  
              'Each M must be less than or equal to its corresponding N.') X~GnK>R  
    end 7M<Ae D%  
    BCk$FM@  
    SEF/ D0  
    if any( r>1 | r<0 ) MVK='  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') r>sk@[4h  
    end \ aQBzEX  
    =9GL;z:R+  
    J (Yfup  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) cOth q87:  
        error('zernfun:RTHvector','R and THETA must be vectors.') i=@.u=:  
    end B0NKav  
    T+zZOI  
    @kn0f`  
    r = r(:); %p)6m 2Sb  
    theta = theta(:); ScYw3i  
    length_r = length(r); |AW[4Yn>  
    if length_r~=length(theta) V= U=  
        error('zernfun:RTHlength', ... B@` 87  
              'The number of R- and THETA-values must be equal.') xWD=",0+  
    end `h/j3fmX?  
    mdR:XuRD"t  
    8E"Ik ~  
    % Check normalization: f@T/^|`mh  
    % -------------------- =O1N*'e  
    if nargin==5 && ischar(nflag) Ey=(B'A~  
        isnorm = strcmpi(nflag,'norm'); \T'uFy9&a  
        if ~isnorm n;)!N  
            error('zernfun:normalization','Unrecognized normalization flag.') <ZxxlJS)6  
        end ;(fDR8  
    else 2Otd  
        isnorm = false; RyKsM.   
    end (p'yya{(  
    ,5HQHo@  
    aG}ju;  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% KlDW'R $  
    % Compute the Zernike Polynomials tbF>"?FY/  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% nellN}jYsM  
    o {Sc  
    1w/1k6`0  
    % Determine the required powers of r: N%%2!Z#  
    % ----------------------------------- oE[wOq +  
    m_abs = abs(m); FA<|V!a  
    rpowers = []; *P_(hG&c  
    for j = 1:length(n) xGCW-YR9  
        rpowers = [rpowers m_abs(j):2:n(j)]; I4:4)V?  
    end G1z[v3T  
    rpowers = unique(rpowers); mufi>}  
    mk8xNpk B  
    O%;H#3kn&s  
    % Pre-compute the values of r raised to the required powers, OF&{mJH"g'  
    % and compile them in a matrix: B *p`e1  
    % ----------------------------- a,tzt ]>  
    if rpowers(1)==0 %bgjJ`  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); zD:"O4ZM^^  
        rpowern = cat(2,rpowern{:}); IL`X}=L_  
        rpowern = [ones(length_r,1) rpowern]; lxx)l(&  
    else Y m=ihQ|  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); -U~]Bugvh  
        rpowern = cat(2,rpowern{:}); @H2c77%  
    end 6z=h0,Y}  
    AM  cHR=/  
    iZ % KHqG  
    % Compute the values of the polynomials: ?TA%P6Lw  
    % -------------------------------------- `&2~\o/  
    y = zeros(length_r,length(n)); 'g.9 goQ  
    for j = 1:length(n) U>?q|(u  
        s = 0:(n(j)-m_abs(j))/2; g*?)o!_*  
        pows = n(j):-2:m_abs(j); :so2 {.t-  
        for k = length(s):-1:1 )Kkw$aQI"d  
            p = (1-2*mod(s(k),2))* ... (? j $n?p  
                       prod(2:(n(j)-s(k)))/              ... iq2)oC_  
                       prod(2:s(k))/                     ... <qjNX-|  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... XG FjqZr`  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); P1KXvc}JGe  
            idx = (pows(k)==rpowers); I[,tf!  
            y(:,j) = y(:,j) + p*rpowern(:,idx); &HBqweI  
        end )Be?axI  
         Xmr|k:z  
        if isnorm !=%0  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); &J(+XJM%  
        end XCr\Y`,Z@  
    end .XDY1~w0  
    % END: Compute the Zernike Polynomials 3SI:su  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% "zFv? ay  
    Cq\1t  
    8w1TX [b  
    % Compute the Zernike functions: p|fSPSz  
    % ------------------------------ /Iht,@%E  
    idx_pos = m>0; ZI.;7G@|  
    idx_neg = m<0;  .>?h  
    o zg%-  
    !_EL{/ko  
    z = y; Tj5G /H>   
    if any(idx_pos) .x\fPjB   
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); '](4g/%  
    end !R p  
    if any(idx_neg) N6K%Wkz  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 4Uz1~AuNxb  
    end ;VM',40  
    Zx$q,Zo<  
    d'j8P  
    % EOF zernfun i T* !3  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  =J8)Z'Jr  
    syh0E= If_  
    DDE还是手动输入的呢? #SY8Zv  
    ^_<>o[qE  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究