下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, <Dm6CH
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 8@hzw~>
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? #0`"gR#+
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? dt`L}Yi
)sV#
b
R1Pnj
W$'pUhq\H
yFpHRfF}
function z = zernfun(n,m,r,theta,nflag) On'3K+(_
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. Z;>~<#!4
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ,xTbt4J
% and angular frequency M, evaluated at positions (R,THETA) on the $--PA$H27
% unit circle. N is a vector of positive integers (including 0), and \^#1~Kx
% M is a vector with the same number of elements as N. Each element rM?D7a{q
% k of M must be a positive integer, with possible values M(k) = -N(k) fwq|8^S@
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, nZ bg
% and THETA is a vector of angles. R and THETA must have the same `% ENGB|
% length. The output Z is a matrix with one column for every (N,M) eGTK^p
% pair, and one row for every (R,THETA) pair. ~zm/n,Epb
% )K?GAj]Pq
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike > T-O3/KN
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), D{loX6
% with delta(m,0) the Kronecker delta, is chosen so that the integral W^Rb~b^?
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, l?R_wu,Q
% and theta=0 to theta=2*pi) is unity. For the non-normalized I"!gzI`Sd
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ;
zv nDo x
% H9>&"=".
% The Zernike functions are an orthogonal basis on the unit circle. Bjo&
% They are used in disciplines such as astronomy, optics, and p|FX_4RjX
% optometry to describe functions on a circular domain. <Z__Q
% &*yve}su
% The following table lists the first 15 Zernike functions. ('lnQD.Hd
% GawO>7w8
% n m Zernike function Normalization }O>Zu[8a
% -------------------------------------------------- 1(?J>{-lw
% 0 0 1 1 #NE^f2
% 1 1 r * cos(theta) 2 @TprSd
% 1 -1 r * sin(theta) 2 4bBxZY
% 2 -2 r^2 * cos(2*theta) sqrt(6) g.]'0)DMW
% 2 0 (2*r^2 - 1) sqrt(3) *nc4X9
% 2 2 r^2 * sin(2*theta) sqrt(6) >YfOR%mS4
% 3 -3 r^3 * cos(3*theta) sqrt(8) :L[6a>"neE
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) D1n2Z:9
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) LC7LO
% 3 3 r^3 * sin(3*theta) sqrt(8) )q^vitkjup
% 4 -4 r^4 * cos(4*theta) sqrt(10) #Kl2K4
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) xS}H483h6W
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) %_[-[t3
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) u J`&hX
% 4 4 r^4 * sin(4*theta) sqrt(10) $"8k|^Z3
% -------------------------------------------------- BQU5[8l
% vxeT[/6i
% Example 1: gJ&!w8v.
% #$w#"Nr9k
% % Display the Zernike function Z(n=5,m=1) ay_D.gxz
% x = -1:0.01:1; 95Qz1*TR
% [X,Y] = meshgrid(x,x); PNKT \yd
% [theta,r] = cart2pol(X,Y); +V@=G &Ou0
% idx = r<=1; $5b|@
% z = nan(size(X));
YBD {l
% z(idx) = zernfun(5,1,r(idx),theta(idx)); HD{`w1vcN
% figure tTGK25&