下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, SSyARR+;c
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, ]0SqLe
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? M;NIcM
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? yq<W+b/
"q!*RO'a
ZR"qrCSw`
d0f(U k
o*"Q{Xh#Qd
function z = zernfun(n,m,r,theta,nflag) M _lLP8W}
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. !4<A|$mQ
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N cM4{ e^
% and angular frequency M, evaluated at positions (R,THETA) on the k7L4~W
% unit circle. N is a vector of positive integers (including 0), and ,H<nNBv3M
% M is a vector with the same number of elements as N. Each element 3`RI[%AN~
% k of M must be a positive integer, with possible values M(k) = -N(k) ~O!E &~
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, }RY Pr
% and THETA is a vector of angles. R and THETA must have the same Ts|;5ya5m
% length. The output Z is a matrix with one column for every (N,M) <OJqeUo+*\
% pair, and one row for every (R,THETA) pair. ^#K^W V
% )K`tnb.Pf
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike AxF$7J(
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), -w8?Ur1x:
% with delta(m,0) the Kronecker delta, is chosen so that the integral tA'5ufj*:
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Y=O-^fL
% and theta=0 to theta=2*pi) is unity. For the non-normalized }jU)s{>fb
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. h|ib*%P_
% 9C7HL;MF
% The Zernike functions are an orthogonal basis on the unit circle. ~V?\@R:g
% They are used in disciplines such as astronomy, optics, and w>}n1Nc$G
% optometry to describe functions on a circular domain. \OWxf[
% }w2Et
% The following table lists the first 15 Zernike functions. {ot6ssT=D
% $fT#Wva-\d
% n m Zernike function Normalization -/*VR$c
% -------------------------------------------------- tL1\q Qg
% 0 0 1 1 yX%> %#$
% 1 1 r * cos(theta) 2 sJl>evw
% 1 -1 r * sin(theta) 2 )7Qp9Fxo
% 2 -2 r^2 * cos(2*theta) sqrt(6) C7}iwklcsa
% 2 0 (2*r^2 - 1) sqrt(3) HCe/!2Y/%
% 2 2 r^2 * sin(2*theta) sqrt(6) BQeg-M
% 3 -3 r^3 * cos(3*theta) sqrt(8) ~Ga{=OM??
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) "?W8o[c+
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) x&m(h1h
% 3 3 r^3 * sin(3*theta) sqrt(8) Gl6:2
% 4 -4 r^4 * cos(4*theta) sqrt(10) 9>vB,8
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) U!RIeC
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) JE*?O*&|Q
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 7 n^1H[q
% 4 4 r^4 * sin(4*theta) sqrt(10) n!lE|if
% -------------------------------------------------- |
>yc|W
% cf*~Gx_l
% Example 1: 3/(eK%d4Xb
% k)y<iHR_o
% % Display the Zernike function Z(n=5,m=1) xgM\6e
% x = -1:0.01:1; X &G]ci
% [X,Y] = meshgrid(x,x); [D<(xr&N%
% [theta,r] = cart2pol(X,Y); D5].^*AbZ
% idx = r<=1; ymnK `/J!Q
% z = nan(size(X)); O`N,aYo
% z(idx) = zernfun(5,1,r(idx),theta(idx)); Y`6<:8[?
% figure :Dtm+EQ
% pcolor(x,x,z), shading interp "d
M-3o<
% axis square, colorbar p1&=D%/
% title('Zernike function Z_5^1(r,\theta)') eu$"GbqY
% 6@FxPi9|#
% Example 2: *#@{&Q(Qh
% Rt5Xqz\6i
% % Display the first 10 Zernike functions M9(lxu y1
% x = -1:0.01:1; AUfcf*
% [X,Y] = meshgrid(x,x); 4X}TG
% [theta,r] = cart2pol(X,Y); 1-.i^Hal
% idx = r<=1; l2wu>Ar7.
% z = nan(size(X)); 3hzz*9/n
% n = [0 1 1 2 2 2 3 3 3 3]; 9VIAOky-
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; qDfhR`1k
% Nplot = [4 10 12 16 18 20 22 24 26 28]; }>3jHWxLc
% y = zernfun(n,m,r(idx),theta(idx)); :3J`+V}9;
% figure('Units','normalized') ~(`MP<
% for k = 1:10 RmOkb~
% z(idx) = y(:,k); [[ Nn~7
% subplot(4,7,Nplot(k)) _6]CT0
% pcolor(x,x,z), shading interp rTJ;s
% set(gca,'XTick',[],'YTick',[]) /;u=#qu(E-
% axis square 4s"x}c">F
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) B2WPbox
% end UF}Ji#fqn
% <Skf
n`).
% See also ZERNPOL, ZERNFUN2. &0d5".|s
&b-&0rTqz
tZ*>S]qD
% Paul Fricker 11/13/2006 (#qQ;ch
vo~Qo;m
g"g3|$#Ej|
%/_E8GE
Tl?jq]
% Check and prepare the inputs: ldRq:M5z
% ----------------------------- V~Jt
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) t+,2 p|B
error('zernfun:NMvectors','N and M must be vectors.') )<e,- XujY
end GNW.n(a
%xp 69
F&lSRL+v
if length(n)~=length(m) |f$gQI!XW
error('zernfun:NMlength','N and M must be the same length.') \vpX6!T
end VmXXj6l&
SxkY ;^-U
Le,;)Nd
n = n(:); (ti E%nF+
m = m(:); M`)3(|4
if any(mod(n-m,2)) Oz"_KMz
error('zernfun:NMmultiplesof2', ... v9#F\ F/
'All N and M must differ by multiples of 2 (including 0).') !?K#f?x<?
end tvUC d}
I-Am9\
e Dpt1
if any(m>n) {rygIl{V
error('zernfun:MlessthanN', ... YjPj#57+
'Each M must be less than or equal to its corresponding N.') $j4/ohwTDY
end c68,,rJO]i
}1.'2.<Y
3]7j,1^
if any( r>1 | r<0 ) @jZ1WHS_a
error('zernfun:Rlessthan1','All R must be between 0 and 1.') A3J=,aRI_v
end UunZ/A$]m
.B!
Z0
-"x@ V7X
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) AyOy&]g
error('zernfun:RTHvector','R and THETA must be vectors.') jFI`CA6P
end D23 c/8K
SXNde@%
{
'<6DLtZl
r = r(:); on1B~?*D
theta = theta(:); I`x[1%y2 F
length_r = length(r); IUD@Kf]S
if length_r~=length(theta) Sj viH
error('zernfun:RTHlength', ... ^bLFY9hSC
'The number of R- and THETA-values must be equal.') |!CAxE0d$B
end Qn;,OBk
eEYzA
N7^sn!JB
% Check normalization: EQ>@K-R
% -------------------- g#G ]}8C
if nargin==5 && ischar(nflag) &@w0c>Y
isnorm = strcmpi(nflag,'norm'); yIWgC[
if ~isnorm 3MDs?qx>s
error('zernfun:normalization','Unrecognized normalization flag.') (N9g6V
end NC
sem
else l;B
isnorm = false; I2,AT+O<
end ~{pds
VDiW9]
O-3a U!L
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% O.jCDAP
% Compute the Zernike Polynomials [n3@*)q's
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /E:BEm!
VL|Z+3L
3`Xzp
% Determine the required powers of r: ryb81 .|
% ----------------------------------- ~_wSB[z
m_abs = abs(m); 7j88^59
rpowers = []; {+EnJ"
for j = 1:length(n) FbXur- et^
rpowers = [rpowers m_abs(j):2:n(j)]; s(r4m/
end {HFx+<JG
rpowers = unique(rpowers); 'LR|DS[Ne
>Sb3]$$
pm[+xM9PB
% Pre-compute the values of r raised to the required powers, \m=k~Cf:f
% and compile them in a matrix: vhDtjf/*
% ----------------------------- }]=@Y/p
if rpowers(1)==0 ` }B,w-,io
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); (k_9<Yb3
rpowern = cat(2,rpowern{:}); TIK'A<
rpowern = [ones(length_r,1) rpowern]; b.RFvq5Z
else yR"mRy1
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Kq(JHB+
rpowern = cat(2,rpowern{:}); B&<P >AZ
end DcE4r>8B
JEF ;Q
$#(j2sL1
% Compute the values of the polynomials: k *>"@
% -------------------------------------- D
,[yx='
y = zeros(length_r,length(n)); 9_ZGb"(Lj
for j = 1:length(n) pF(6M3>IN
s = 0:(n(j)-m_abs(j))/2; B>@l(e)b
pows = n(j):-2:m_abs(j); GInw7
for k = length(s):-1:1 1MmEP
p = (1-2*mod(s(k),2))* ... *]nk{jo2
prod(2:(n(j)-s(k)))/ ... ls~9qkAyLx
prod(2:s(k))/ ... 3eB)X2~
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... eHR]qy 0_X
prod(2:((n(j)+m_abs(j))/2-s(k))); dN7.W
idx = (pows(k)==rpowers); Wfy+9"-;s
y(:,j) = y(:,j) + p*rpowern(:,idx); ?Cx=!k.
end ae](=OQ
=|2F?
if isnorm fK2r6D9
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); A6 `a
end {WQ6=wGpS
end HJP~
lg
% END: Compute the Zernike Polynomials T\bpeky~
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% =^ \?{oV
JpxQS~VX
cDK)zD
% Compute the Zernike functions: #Tt*NU
% ------------------------------ 4Z5;y[k(
idx_pos = m>0; %F^,6y
idx_neg = m<0; mkrVeBp
lD-2 5~YV
.Lu3LVS
z = y; N
Hn#c3o
if any(idx_pos) {s@ 0<!
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); SpYmgL?wJ
end K}2G4*8S_G
if any(idx_neg) [HL>Lp&A?
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); K\59vtga
end _"*s x-
1'F!C
]Qa|9G,b
% EOF zernfun vVrM[0*c