切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8624阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, hwmpiyu   
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, Ah2%LXdHA  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? &pZUe`3  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? RoXU>a:nS  
    xi6Fs, 2S  
    `nO!_3  
    (YjY=F  
    z/7H/~d  
    function z = zernfun(n,m,r,theta,nflag) iaR^]|7_  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle.  _"ysJ&  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N k!]Tg"]JAh  
    %   and angular frequency M, evaluated at positions (R,THETA) on the {)eV) 2a  
    %   unit circle.  N is a vector of positive integers (including 0), and XV2f|8d>  
    %   M is a vector with the same number of elements as N.  Each element vXnTPjbE  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) y?-wjJS>  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, #; I8 aMb  
    %   and THETA is a vector of angles.  R and THETA must have the same I3xx}^V  
    %   length.  The output Z is a matrix with one column for every (N,M) - v9V/LJ  
    %   pair, and one row for every (R,THETA) pair. $4V ~hI 4  
    % 9-+6Ed^2  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 46'EZ@#s  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), }6P]32d  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral q_8qowu"  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, _Y*: l7  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized GA6)O-^G  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. AM}-dKei|  
    % |WeLmy%9  
    %   The Zernike functions are an orthogonal basis on the unit circle. Gb%PBg}HH  
    %   They are used in disciplines such as astronomy, optics, and @:i>q$aF  
    %   optometry to describe functions on a circular domain. uU`zbh}]L.  
    % m=2TzLVv  
    %   The following table lists the first 15 Zernike functions. r+HJ_R,5A  
    % ushQWP)  
    %       n    m    Zernike function           Normalization R|{6JsjG10  
    %       -------------------------------------------------- r]'AdJFt  
    %       0    0    1                                 1 J$PE7*NU  
    %       1    1    r * cos(theta)                    2 o([+Pp  
    %       1   -1    r * sin(theta)                    2 kX {c+qHM  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 4EuZe:'X  
    %       2    0    (2*r^2 - 1)                    sqrt(3) $g#j,  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) G7C9FV bR  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) bTKzwNx  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) SDV} bN  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) bt#=p 7 W  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) J?5O 2n  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) W.o W =<  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) D?]aYCT  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) bn^^|i  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) xYRL4  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) G\TyXq_4  
    %       -------------------------------------------------- %@*diJ  
    % sl%B-;@I  
    %   Example 1: yq[C?N &N  
    % &nj@t>5Bs$  
    %       % Display the Zernike function Z(n=5,m=1) &cDnZ3Q;  
    %       x = -1:0.01:1; RKIqg4>E  
    %       [X,Y] = meshgrid(x,x); O" ['.b  
    %       [theta,r] = cart2pol(X,Y); oHu0] XA  
    %       idx = r<=1; vC\]7]mC  
    %       z = nan(size(X)); V )1SZt@x  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); SL:o.g(>4  
    %       figure m+DkO{8F  
    %       pcolor(x,x,z), shading interp 5nqj  
    %       axis square, colorbar &e_M \D  
    %       title('Zernike function Z_5^1(r,\theta)') BWL~)Hx  
    % Lc*i[J<s  
    %   Example 2: *BBP"_$  
    % L3X>v3CZ5  
    %       % Display the first 10 Zernike functions nb'],({:9  
    %       x = -1:0.01:1; u-j$4\'  
    %       [X,Y] = meshgrid(x,x); _V6;`{$WK  
    %       [theta,r] = cart2pol(X,Y); GC$Hp!H  
    %       idx = r<=1; @?*26}qp  
    %       z = nan(size(X)); (sO;etW  
    %       n = [0  1  1  2  2  2  3  3  3  3]; Y.F:1<FAtf  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3];  ;{BELv-4  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; `6 lc]r  
    %       y = zernfun(n,m,r(idx),theta(idx)); ]O7I7K  
    %       figure('Units','normalized') ^"l>;.w  
    %       for k = 1:10 T\8|Q @  
    %           z(idx) = y(:,k); hV'JTU]H  
    %           subplot(4,7,Nplot(k)) GR O[&;d`  
    %           pcolor(x,x,z), shading interp Gt\F),@  
    %           set(gca,'XTick',[],'YTick',[]) 04:^<n+{  
    %           axis square .0.Ha}{6b  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) z9&$Xao  
    %       end \|DcWH1  
    % gjL>FOe8u  
    %   See also ZERNPOL, ZERNFUN2. N$>g)Ml?  
    FB6`2E%o  
    <G\q/!@_  
    %   Paul Fricker 11/13/2006 '(&.[Pk:"  
    ph%/;?wY  
    /S\P=lcb  
    ?$pp%  
    q%Obrk  
    % Check and prepare the inputs: GvF~h0wMt  
    % ----------------------------- sh:sPzQ%Jv  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) >UZfi u  
        error('zernfun:NMvectors','N and M must be vectors.') z~L(kf4  
    end 5R/k -h^`  
    ArbfA~jXB  
    ISa2|v;M  
    if length(n)~=length(m) wC`])z}bT  
        error('zernfun:NMlength','N and M must be the same length.') a%7%N N*i  
    end + Q}Y?([  
    (.m0hN!~u  
    68+ 9^  
    n = n(:); 2^E.sf$f  
    m = m(:); a5:YP  
    if any(mod(n-m,2)) "qIO,\3T  
        error('zernfun:NMmultiplesof2', ... [- a2<E  
              'All N and M must differ by multiples of 2 (including 0).') 9`$fU)K[Pl  
    end op/HZa  
    8uchp  
    g"FG7E&  
    if any(m>n) ow>^(>^~  
        error('zernfun:MlessthanN', ... 0.~QA+BD:S  
              'Each M must be less than or equal to its corresponding N.') S c_*L<$  
    end (XX6M[M8  
    Ky8sLm@  
    q+>{@tP9  
    if any( r>1 | r<0 ) cuB~A8H#}  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') V; Yl:*  
    end 7(QRG\G#  
    ?nn`ud?f  
    %r=uS.+hrF  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) SWN i@  
        error('zernfun:RTHvector','R and THETA must be vectors.') {W)Kz_  
    end (/a2#iW  
    68[3 /  
    Q&opnvN  
    r = r(:); <%8j#@OdZ  
    theta = theta(:); _[<R<&jG  
    length_r = length(r); j#f+0  
    if length_r~=length(theta) w-C ~ Ik  
        error('zernfun:RTHlength', ... GLp2 ?fon  
              'The number of R- and THETA-values must be equal.') ryB^$Kh,,  
    end o8-BTq8  
    r/$+'~apTk  
    9TIyY`2!  
    % Check normalization: -icOg6%  
    % -------------------- *`mPPts}  
    if nargin==5 && ischar(nflag) 2E33m*C2  
        isnorm = strcmpi(nflag,'norm'); & Gp@,t  
        if ~isnorm Z3g6 ?2w6  
            error('zernfun:normalization','Unrecognized normalization flag.') *p`0dvXG2  
        end AjKP -[  
    else X/ gIH/  
        isnorm = false; DJ_,1F  
    end :!Wijdq  
    r Lg(J|^  
    K_{f6c<  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% w,bILv)  
    % Compute the Zernike Polynomials F[<EXLQ  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 6vbWe@#U/  
    w<3}(1  
    UCj4%y6t  
    % Determine the required powers of r: W$B&asO  
    % ----------------------------------- q#:,6HDd  
    m_abs = abs(m); ;2Db/"`t  
    rpowers = []; !rZO~a0  
    for j = 1:length(n) jJk M:iR  
        rpowers = [rpowers m_abs(j):2:n(j)]; lTY%,s  
    end dIQ7u  
    rpowers = unique(rpowers); `zGK$,[%  
    F1J Sf&8  
    (# Z2  
    % Pre-compute the values of r raised to the required powers, BIEc4k5(  
    % and compile them in a matrix: M>D 3NY[,  
    % ----------------------------- IT! a)d  
    if rpowers(1)==0 )z&0 g2Am  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); c9-$t d&  
        rpowern = cat(2,rpowern{:}); e4p:Zb:  
        rpowern = [ones(length_r,1) rpowern]; )8kcOBG^L  
    else ]:i :QiYD  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Rp4EB:*  
        rpowern = cat(2,rpowern{:}); )X@Obg  
    end MH[Zw$  
    ; Xrx>( n  
    3G9"La,b  
    % Compute the values of the polynomials: <h^'x7PkW5  
    % -------------------------------------- -}`ES]  
    y = zeros(length_r,length(n)); L&=j O0_  
    for j = 1:length(n) DeE-M"  
        s = 0:(n(j)-m_abs(j))/2; TC[_Ip&  
        pows = n(j):-2:m_abs(j); `2c>M\c4U  
        for k = length(s):-1:1 }hrLM[  
            p = (1-2*mod(s(k),2))* ... 1|bu0d\]  
                       prod(2:(n(j)-s(k)))/              ... 06"p ^#  
                       prod(2:s(k))/                     ... k@JDG]R<{  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... qg#TE-Y`  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); }M'h 5x  
            idx = (pows(k)==rpowers); 5W"nn  
            y(:,j) = y(:,j) + p*rpowern(:,idx); b }S}OW2  
        end .yE!,^j.gB  
         j2# nCU54Z  
        if isnorm [/hS5TG|7  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); u +q}9  
        end NsJt=~  
    end ]y3V ^W#  
    % END: Compute the Zernike Polynomials +N5#EpW  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% =A={ Dpv[>  
    N]R<EBq  
    EbSH)aR  
    % Compute the Zernike functions: $3S6{"  
    % ------------------------------ xy>wA  
    idx_pos = m>0; s|Ls  
    idx_neg = m<0; qp 4.XL  
    cE> K:3n  
    ]2(vO0~  
    z = y; S>O fUrt  
    if any(idx_pos) K]' 84!l  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); qb(#{Sw0  
    end }3:DJ(Y  
    if any(idx_neg) wLC!vX.S  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Os^sOOSY  
    end ]UKKy2r.  
    qH!}oPeU'  
    Qw4P{>|Y  
    % EOF zernfun fiOc;d8  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    8425
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    957
    光币
    1067
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  PN/2EmwtC  
    RyD2LAf)J  
    DDE还是手动输入的呢? *{W5QEa  
    S$W *i@x?  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究