切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9095阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, _5SA(0D#9  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 8jm\/?k|  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? ;sfk@ec  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? iVqa0Gl+}  
    TP?HxO_C  
    ,`;Dre  
    =~F.7wq*^  
    d}_%xkC  
    function z = zernfun(n,m,r,theta,nflag) ?j-;;NNf  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. G,JK$j>*l  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N z9IJ%= R  
    %   and angular frequency M, evaluated at positions (R,THETA) on the q+}Er*r  
    %   unit circle.  N is a vector of positive integers (including 0), and QP0[  
    %   M is a vector with the same number of elements as N.  Each element G2e0\}q  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) eK'ztqQ  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, v#o<. Ig  
    %   and THETA is a vector of angles.  R and THETA must have the same d@0&  
    %   length.  The output Z is a matrix with one column for every (N,M) Q2 @Ugt$  
    %   pair, and one row for every (R,THETA) pair. P1Chmg  
    % s2M|ni=  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike SM@RELA'Lb  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), kG70j{gf  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral Q ^z&;%q1  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, M~#% [?iU  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized CxW-lU3G`  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. O]N 8Q H  
    % ';OZP2  
    %   The Zernike functions are an orthogonal basis on the unit circle. ;^Y]nsd  
    %   They are used in disciplines such as astronomy, optics, and ! fSM6Vo  
    %   optometry to describe functions on a circular domain. a0=5G>G9c  
    % T{Rhn V1  
    %   The following table lists the first 15 Zernike functions. 2E d  
    % 2h^9lrQcQG  
    %       n    m    Zernike function           Normalization -L)b;0%  
    %       -------------------------------------------------- Nq=r404  
    %       0    0    1                                 1 A-XWG9nL  
    %       1    1    r * cos(theta)                    2 qH-':|h7  
    %       1   -1    r * sin(theta)                    2 Bk9? =  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) .<|.nK`6  
    %       2    0    (2*r^2 - 1)                    sqrt(3) S|HnmkV66  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) mFu0$N6]H  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) u"*Wo'3I|  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) aO]FQ#l2b  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) b3RCsIz  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) _]~= Kjp  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 4:S?m(ah/  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10)  }FoO  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) (aa}0r5  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) qqR8E&Y{  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) gkN )`/`*  
    %       -------------------------------------------------- _Bhm\|t  
    % j/+e5.EX/  
    %   Example 1: aur4Ky> :  
    % y8QJ=v* B  
    %       % Display the Zernike function Z(n=5,m=1) $pO gFA1'  
    %       x = -1:0.01:1; d:V6.7>,  
    %       [X,Y] = meshgrid(x,x); x!@P|c1nKC  
    %       [theta,r] = cart2pol(X,Y); -g;cg7O#(  
    %       idx = r<=1; "2~%-;c  
    %       z = nan(size(X)); WMw]W&  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); !04zWYHo  
    %       figure TUaW'  
    %       pcolor(x,x,z), shading interp L[s8`0  
    %       axis square, colorbar %oY=.Ok ]  
    %       title('Zernike function Z_5^1(r,\theta)') nD8CP[bRo  
    % _jr'A-M  
    %   Example 2: h72#AN  
    % ' 3MCb  
    %       % Display the first 10 Zernike functions D)*OQLHW  
    %       x = -1:0.01:1; >TqMb8e_  
    %       [X,Y] = meshgrid(x,x);  #mDeA>b  
    %       [theta,r] = cart2pol(X,Y); k-uwK-B}v+  
    %       idx = r<=1; lIlmXjL0  
    %       z = nan(size(X)); (,5,}  
    %       n = [0  1  1  2  2  2  3  3  3  3]; KNw{\Pz~w  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; dY'mY~Tv  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; RXF%A5FXh  
    %       y = zernfun(n,m,r(idx),theta(idx)); 609_ZW;)  
    %       figure('Units','normalized') UD@u hL  
    %       for k = 1:10 _CDl9pP36#  
    %           z(idx) = y(:,k); v>&sb3I  
    %           subplot(4,7,Nplot(k)) !PIpvx{aX  
    %           pcolor(x,x,z), shading interp =Q!)xEK  
    %           set(gca,'XTick',[],'YTick',[]) ?B!=DC@?H  
    %           axis square #r ;;d(  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ,py:e>+^t  
    %       end k]<E1 c/  
    % RTgR>qI&)  
    %   See also ZERNPOL, ZERNFUN2. }>|M6.n "  
    8.'[>VzBL  
    ! 9U  
    %   Paul Fricker 11/13/2006 RrPo89o  
    A"`^A brm  
    8a;I,DK=j  
    #`>46T  
    ^^-uq)A  
    % Check and prepare the inputs: W=9Zl(2C  
    % ----------------------------- 4R~f   
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ~baVS-v  
        error('zernfun:NMvectors','N and M must be vectors.') lOc!KZHUp  
    end \ M_}V[1+  
    79?%g=#=  
    )TmqE<[  
    if length(n)~=length(m) aNLkkkJg<;  
        error('zernfun:NMlength','N and M must be the same length.') I,:R~^qJ8v  
    end jv C.T]<B  
    EAgNu?L  
    .K n)sD1  
    n = n(:); EP|OKXRltA  
    m = m(:); DeAi'"&  
    if any(mod(n-m,2)) (|F} B  
        error('zernfun:NMmultiplesof2', ... FHu -';  
              'All N and M must differ by multiples of 2 (including 0).') Ev R6^n/  
    end l|O)B #  
    !2R<T/9~  
    <#hltPyh  
    if any(m>n) ^zMME*G  
        error('zernfun:MlessthanN', ... huu v`$~y  
              'Each M must be less than or equal to its corresponding N.') i09w(k?  
    end b~1]}9TJ  
    G9/5KW}-  
    q Z,7q  
    if any( r>1 | r<0 ) U8T"ABvFP  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') KVvzVQ1  
    end _msV3JBr  
    #DN5S#Ic  
    %SwN/rna  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ?3{R'Buv]  
        error('zernfun:RTHvector','R and THETA must be vectors.') 4TBK:Vm5  
    end wO&edZ]zb^  
    j#C1+Us  
    $ON4 nx  
    r = r(:); x}`]9XQ  
    theta = theta(:); .)7r /1o  
    length_r = length(r); fVU9?^0/)9  
    if length_r~=length(theta) yC]xYn)  
        error('zernfun:RTHlength', ... R3G+tE/Y  
              'The number of R- and THETA-values must be equal.') uA} w?;  
    end ]y4(WG;:  
    a^ vXwY  
    ],fu#pi=]  
    % Check normalization: =?*6lS}gy  
    % -------------------- PFqc_!Pm  
    if nargin==5 && ischar(nflag) gbf-3KSp^  
        isnorm = strcmpi(nflag,'norm'); 6O`s&T,t  
        if ~isnorm Y4\BHFq  
            error('zernfun:normalization','Unrecognized normalization flag.') 62R9 4  
        end eYER "E  
    else 8$|< `:~J  
        isnorm = false; Z$0+jpG_s  
    end 4>uy+"8PO  
    b.`<T "y  
    pzo9?/-  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% X}Ey6*D:  
    % Compute the Zernike Polynomials Y: ~A-_  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% o)X(;o  
    D^?jLfW8  
    hnQDm$k  
    % Determine the required powers of r: J3]W2m2Zw  
    % ----------------------------------- 6I$laHx?  
    m_abs = abs(m); 9@Iz:!oqb  
    rpowers = []; >q'xW=Y j\  
    for j = 1:length(n) YWV"I|Z  
        rpowers = [rpowers m_abs(j):2:n(j)]; $`2rtF  
    end +<G |Ru-  
    rpowers = unique(rpowers); ;g3z?Uz)  
    N2?o6)  
    m3apeIEi[  
    % Pre-compute the values of r raised to the required powers, KjrUTG0oA  
    % and compile them in a matrix: pJ` M5pF  
    % ----------------------------- 'IorjR@ 40  
    if rpowers(1)==0 O8; `6r  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); F:PaVr3q  
        rpowern = cat(2,rpowern{:}); Z~g I)  
        rpowern = [ones(length_r,1) rpowern]; Ub0hISA  
    else /Hox]r]'e  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); y:U'3G-  
        rpowern = cat(2,rpowern{:}); (,5oqU9s@  
    end r/X4Hy0!lT  
    Ywj=6 +;  
    b`NXe7A  
    % Compute the values of the polynomials: K[wOK  
    % -------------------------------------- DCJmk6p%0  
    y = zeros(length_r,length(n)); z (N3oBW  
    for j = 1:length(n) E8TJ*ZU  
        s = 0:(n(j)-m_abs(j))/2; hSxlj7Eo^T  
        pows = n(j):-2:m_abs(j); !]%M  
        for k = length(s):-1:1 IETdL{`~  
            p = (1-2*mod(s(k),2))* ... o/EN3J  
                       prod(2:(n(j)-s(k)))/              ... i+/:^tc;  
                       prod(2:s(k))/                     ... Kn9O=?Xh;  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... zW`Zmt\T2  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); W\(u1>lj  
            idx = (pows(k)==rpowers); jlmP1b9  
            y(:,j) = y(:,j) + p*rpowern(:,idx); ;j#$d@VG"  
        end BrW1:2w >\  
         ~s}0z&v^te  
        if isnorm 5ryzAB O\2  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); '}3m('u  
        end 'Zq$ W]i  
    end l!n<.tQW  
    % END: Compute the Zernike Polynomials sU {'  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% f@ &?K<  
    '%W'HqVcG1  
    ;z6Gk&?  
    % Compute the Zernike functions: Wvhg:vup  
    % ------------------------------ T&?0hSYt  
    idx_pos = m>0; >28.^\?H4  
    idx_neg = m<0; G1; .\i  
    sUaUZO2V  
    ?e? mg  
    z = y; < q6z$c)K  
    if any(idx_pos) <Tq&Va_w  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); OD,"8JF  
    end ?/mkFDN  
    if any(idx_neg) ryz [A:^G  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); O"otzla  
    end %5X}4k!p  
    ~R`Rj*Q2Y  
    dg%Orvuz  
    % EOF zernfun &&iZ?JteZ  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  O=}4?Xv  
    wZVY h  
    DDE还是手动输入的呢? l%*KBME  
    @cPb*  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究