切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9127阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, _Sj}~ H  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, B0mLI%B  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? (fk5'  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? >w'$1tc?+F  
    ?{J!#`tfV  
    EO"C8z'al  
    z[!x:# q8`  
    )3E,D~1e%  
    function z = zernfun(n,m,r,theta,nflag) zQuM !.  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. !G=>ve  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N #n})X,ip2  
    %   and angular frequency M, evaluated at positions (R,THETA) on the \SYvD y]  
    %   unit circle.  N is a vector of positive integers (including 0), and -wr(vE,  
    %   M is a vector with the same number of elements as N.  Each element Px4/O~bLk  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) - @bp4Z=  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, RtF8A5ys  
    %   and THETA is a vector of angles.  R and THETA must have the same CB}BQd  
    %   length.  The output Z is a matrix with one column for every (N,M) T |"`8mG  
    %   pair, and one row for every (R,THETA) pair. 13f<0wg  
    % x*8O*!ZZ  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike CvTwBJy1  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), .|]IwyD &  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral Lar r}o=  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 12gw#J/)9h  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized $p6N|p  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 5:gj&jt;)7  
    % PW[6/7  
    %   The Zernike functions are an orthogonal basis on the unit circle. YF[$Q=7.  
    %   They are used in disciplines such as astronomy, optics, and !$kR ;Q"/  
    %   optometry to describe functions on a circular domain. .hz2&9Ow  
    % dtW0\^ .L  
    %   The following table lists the first 15 Zernike functions. ToU.mM?f^  
    % o~~9!\  
    %       n    m    Zernike function           Normalization @ ^. *$E5  
    %       -------------------------------------------------- sd!sus|( R  
    %       0    0    1                                 1 5+L8\V9;  
    %       1    1    r * cos(theta)                    2 ~mA7pOHj  
    %       1   -1    r * sin(theta)                    2 :WX0,-Gn  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) s-6:N9-  
    %       2    0    (2*r^2 - 1)                    sqrt(3) rWr/p^~  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) ,f<B}O  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) !J# .!}3  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) `p|[rS>  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) #]zhZW4  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) #O|lfl>}  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) >l2w::l%  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) |cu`f{E2]  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) (Jpm KO  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ~07RFR  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 8A/>JD3^  
    %       -------------------------------------------------- 0M\NS$u(Y  
    % qy9i9$8  
    %   Example 1: -A;w$j6*  
    % gb_X?j%p7  
    %       % Display the Zernike function Z(n=5,m=1) 4<Kgmy  
    %       x = -1:0.01:1; E\! n49  
    %       [X,Y] = meshgrid(x,x); kH2oK:lN  
    %       [theta,r] = cart2pol(X,Y); t?.\|2  
    %       idx = r<=1; pzSqbgfrQ  
    %       z = nan(size(X)); nP u`;no  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 0BXs&i-TP5  
    %       figure )k~1,  
    %       pcolor(x,x,z), shading interp vzy!3Hiw  
    %       axis square, colorbar Y-~;E3(  
    %       title('Zernike function Z_5^1(r,\theta)') uQ1jwYK`7  
    % ^H'kHl'F  
    %   Example 2: "G kI5!  
    % xN "wF-s4?  
    %       % Display the first 10 Zernike functions J";=d4Sd  
    %       x = -1:0.01:1; O\JD,w  
    %       [X,Y] = meshgrid(x,x); m+7`\|`jQ  
    %       [theta,r] = cart2pol(X,Y); T^NJ4L4#  
    %       idx = r<=1; :p$EiR  
    %       z = nan(size(X)); TK %< a/  
    %       n = [0  1  1  2  2  2  3  3  3  3]; id4]|jb  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; -fQX4'3R  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 3.~h6r5-  
    %       y = zernfun(n,m,r(idx),theta(idx)); x Ty7lfSe  
    %       figure('Units','normalized') N1s.3`  
    %       for k = 1:10 G{O\)gf  
    %           z(idx) = y(:,k); khS/'b  
    %           subplot(4,7,Nplot(k)) `$f2eB&   
    %           pcolor(x,x,z), shading interp j88=f#<  
    %           set(gca,'XTick',[],'YTick',[]) PS/W h  
    %           axis square S|) J{~QH  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) )O -cw7 >  
    %       end |Z!@'YB  
    % \Nyr=<c  
    %   See also ZERNPOL, ZERNFUN2. .xo_}Vw  
    -[<vYxX:h:  
    pMDH  
    %   Paul Fricker 11/13/2006 G V=OKf#  
    b_ZNI0Hp@  
    a>?p.!BM  
    ]'6'<S  
    R @OSqEnr  
    % Check and prepare the inputs: A{M+vsL  
    % ----------------------------- gu!](yEgl  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) OMi02tSm  
        error('zernfun:NMvectors','N and M must be vectors.') qz87iJp&  
    end +#9xA6,AE  
    e6o/q)9#  
    ' #KA+?@  
    if length(n)~=length(m) {9Db9K^  
        error('zernfun:NMlength','N and M must be the same length.') |;~nI'0O])  
    end |FjBKj  
    m}rh|x/?  
    Vv2{^ !aZ  
    n = n(:); *^ey]),f54  
    m = m(:); ),M U+*`  
    if any(mod(n-m,2)) {dZ!I  
        error('zernfun:NMmultiplesof2', ... Q|Nzbmwh  
              'All N and M must differ by multiples of 2 (including 0).') JR!Q,7S2!N  
    end R/ Tj^lM  
    :|zp8|  
    "wC0eDf  
    if any(m>n) uvR0TIF4  
        error('zernfun:MlessthanN', ... Imke/ =h  
              'Each M must be less than or equal to its corresponding N.') XNKtL]U}$  
    end *&h6*zP?  
    L!?v BL  
    48H5_9>:  
    if any( r>1 | r<0 ) ]&' jP  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') ^4RO  
    end =obt"K%n  
    ?ISI[hoc  
    ;,mBT[_ZO  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) H]VsOr  
        error('zernfun:RTHvector','R and THETA must be vectors.') 8?A@/  
    end ^dheJ]n=k  
    SgyqmYTvZw  
    cO8`J&EK  
    r = r(:); }!eF  
    theta = theta(:); o*?[_{x W  
    length_r = length(r); '_k>*trV  
    if length_r~=length(theta) QjehDwt|  
        error('zernfun:RTHlength', ... &qNP?>C!=  
              'The number of R- and THETA-values must be equal.') \)uy"+ Z`  
    end A>4l/  
    ,:c :6Y^  
    h_AJI\{"  
    % Check normalization: *Ro8W-+  
    % -------------------- Z@<q/2).|  
    if nargin==5 && ischar(nflag) @gs26jX~2}  
        isnorm = strcmpi(nflag,'norm'); N-]\oMc2  
        if ~isnorm O\LjtMF  
            error('zernfun:normalization','Unrecognized normalization flag.') JqL<$mSep  
        end 'Na|#tPYI  
    else 5JO[+>  
        isnorm = false; %j~9O~-  
    end I/u'bDq  
    ~l;yr @  
    We[<BJ o4  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0Ei\VVK>  
    % Compute the Zernike Polynomials #&;m<%  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% iSnIBs9\  
    ^nG1/}  
    QWU5-p9e8  
    % Determine the required powers of r: hdo+Qezu:  
    % ----------------------------------- pA*D/P-  
    m_abs = abs(m); ?y+\v'3v  
    rpowers = []; oc!biE`u  
    for j = 1:length(n) {KF7j63  
        rpowers = [rpowers m_abs(j):2:n(j)]; _bN))9 3  
    end ~5-~q0Ge  
    rpowers = unique(rpowers); SIKk|I)  
    "r5'lQI  
    4U}.Skzq  
    % Pre-compute the values of r raised to the required powers, % <8K^|w  
    % and compile them in a matrix: m~Lf^gbG?  
    % ----------------------------- {LR#(q$1  
    if rpowers(1)==0 c@0l-R{q  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); :6\-9m8JM  
        rpowern = cat(2,rpowern{:}); [V!^\g\6  
        rpowern = [ones(length_r,1) rpowern]; ?AqrlR]5  
    else f]@[4<Ny  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 'DaNR`9  
        rpowern = cat(2,rpowern{:}); ?7rmwy\  
    end O[i2A (  
    `D&#U'wB   
    Ri^sQ<~(  
    % Compute the values of the polynomials: , V0iMq  
    % -------------------------------------- }'@tA")-)  
    y = zeros(length_r,length(n)); 5Ws:Ei{R  
    for j = 1:length(n) &4ug3  
        s = 0:(n(j)-m_abs(j))/2; lW{I`r\]  
        pows = n(j):-2:m_abs(j); f~n' Ki+'  
        for k = length(s):-1:1 Y/?DSo4G  
            p = (1-2*mod(s(k),2))* ... Y{x[N}h  
                       prod(2:(n(j)-s(k)))/              ... \t&n jMWpZ  
                       prod(2:s(k))/                     ... :Su5  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... `Gy>tD.#V-  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); mvW^P`nB  
            idx = (pows(k)==rpowers); DYy@t^sC  
            y(:,j) = y(:,j) + p*rpowern(:,idx); V^/h;/! ^  
        end z9OMC$,V  
         B=o#LL  
        if isnorm T1g:gfw@  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); fzPgX  
        end ijR-?nrR  
    end QrrZF.  
    % END: Compute the Zernike Polynomials 8ESkG  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% =6"hj,[Q  
    ~@a) E+LsF  
    ;I0yQlx|U  
    % Compute the Zernike functions: g*"J10hyP  
    % ------------------------------ AR[M8RA  
    idx_pos = m>0;  ^qSf  
    idx_neg = m<0; .q'FSEkMJ  
    &L[8Mju6  
    v]d?6g  
    z = y; B<|q{D$N/  
    if any(idx_pos) IAt+S-q0  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); j3V"d3)  
    end u:{. Hn`  
    if any(idx_neg) NZi'eZ{^`  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 5BGv^Qb_2  
    end HeAc(_=C  
    +wPvQKVfI  
    ej??j<]  
    % EOF zernfun U 8 .0L  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  CMB$RLf  
    ]0nC;|]@Lx  
    DDE还是手动输入的呢? i_9/!D  
    3xR#,22:}  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究