切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8972阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, aM|^t:  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 8/dx)*JCq  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? h|j $Jy  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? yk| < P\  
    kKqb:  
    >ps=z$4j*  
    U6@Hgi>  
    hf~'EdU  
    function z = zernfun(n,m,r,theta,nflag) V>&WZY  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. t$lO~~atr  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ub/9T-#l  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 09SLQVo  
    %   unit circle.  N is a vector of positive integers (including 0), and @Js^=G2  
    %   M is a vector with the same number of elements as N.  Each element r#%z1u  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) KK%R3{  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, O+^l>+ZGj?  
    %   and THETA is a vector of angles.  R and THETA must have the same E9IU,P6a  
    %   length.  The output Z is a matrix with one column for every (N,M) Nf<mgOAT1  
    %   pair, and one row for every (R,THETA) pair. %cl=n!T  
    % M_wj>NXZ  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike (93+b%^[  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 0//?,'.  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral l$~3_3+  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, O:Ixy?b;Z  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized pp#xN/V#a  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. uwcm%N;I"  
    % #Jo#[-r  
    %   The Zernike functions are an orthogonal basis on the unit circle. N%k6*FBp~  
    %   They are used in disciplines such as astronomy, optics, and #ONad0T;  
    %   optometry to describe functions on a circular domain. <n)J~B^  
    % [%alnY  
    %   The following table lists the first 15 Zernike functions. ,X05&'@Z  
    % U$fh ~w<[  
    %       n    m    Zernike function           Normalization  Ip0~  
    %       -------------------------------------------------- s?8vs%(l  
    %       0    0    1                                 1 +$-@8,F>  
    %       1    1    r * cos(theta)                    2 =skw@c ^  
    %       1   -1    r * sin(theta)                    2 *t JgQ[  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) d@a FW  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 9BJP|L%q  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) Be=J*D!E=>  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) G>/Gw90E  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 0GtL6M@pP  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) R;wq  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) p=7{  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 4' ym vR  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) .>Gnb2  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) }Ss]/ _t  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) *f[nge&.  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) QxSJLi7t  
    %       -------------------------------------------------- mUmU_L u8  
    % hGPo{>xR  
    %   Example 1: \DG 6  
    % @%7IZg;P6  
    %       % Display the Zernike function Z(n=5,m=1) QUPZe~G>L  
    %       x = -1:0.01:1; v-k~Q$7~  
    %       [X,Y] = meshgrid(x,x); g ni=S~u  
    %       [theta,r] = cart2pol(X,Y); G234UjN%  
    %       idx = r<=1; INi9`M.h  
    %       z = nan(size(X)); eF[CiO8F2  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); Aj854 L(!  
    %       figure A{[joo  
    %       pcolor(x,x,z), shading interp 3C,G~)= x  
    %       axis square, colorbar ~6HpI0i  
    %       title('Zernike function Z_5^1(r,\theta)') hV(>}hb  
    % Rqi= AQ  
    %   Example 2: t<)Cbple\  
    % ,N[N;Uoj  
    %       % Display the first 10 Zernike functions Wchu-]  
    %       x = -1:0.01:1; 'MM%Sm,  
    %       [X,Y] = meshgrid(x,x); {t.5cX"[  
    %       [theta,r] = cart2pol(X,Y); [Eeanl&x>  
    %       idx = r<=1; vD=>AAvG  
    %       z = nan(size(X)); O%g Q  
    %       n = [0  1  1  2  2  2  3  3  3  3]; L}E~CiL0n  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; #Tz$ona  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 0rt@4"~~w  
    %       y = zernfun(n,m,r(idx),theta(idx)); _JVFn=  
    %       figure('Units','normalized') n{d0}N =  
    %       for k = 1:10 {X85  
    %           z(idx) = y(:,k); R&>G6jZ?8  
    %           subplot(4,7,Nplot(k)) KASuSg+  
    %           pcolor(x,x,z), shading interp {|KFgQ'\  
    %           set(gca,'XTick',[],'YTick',[]) ~  4v  
    %           axis square e -!6m #0  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) YXJreM5  
    %       end Z~g6C0  
    % <G};`}$a  
    %   See also ZERNPOL, ZERNFUN2. TY."?` [FK  
    3 291"0  
    wzXIEWJ  
    %   Paul Fricker 11/13/2006 P3 Wnso  
    ans(^Up$  
    XniPNU  
    v qt#JdPp9  
    7U9*-9  
    % Check and prepare the inputs: k? <.yr1  
    % ----------------------------- yQT cO^E  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) `fnU p-  
        error('zernfun:NMvectors','N and M must be vectors.') ;u+k! wn  
    end ~.Wlv;  
    J!{t/_aw  
    |r U?  
    if length(n)~=length(m) )j/2Z-Ev:W  
        error('zernfun:NMlength','N and M must be the same length.') 3WVH8Sb  
    end Bi.,@7|>  
    IP LKOT~  
    WE{fu{x  
    n = n(:); - w{`/  
    m = m(:); 0N|l1Sn  
    if any(mod(n-m,2)) b<\2j5  
        error('zernfun:NMmultiplesof2', ... Udi  
              'All N and M must differ by multiples of 2 (including 0).') 4. =jKj9j  
    end -JEiwi,  
    t3qPocYQ  
    g<E[IR  
    if any(m>n) %,1xOl4l  
        error('zernfun:MlessthanN', ... vGCvJ*4!  
              'Each M must be less than or equal to its corresponding N.') !*?|*\B^I  
    end |erG cKk  
    u ?-|sv*  
    HBdZE7.x)3  
    if any( r>1 | r<0 ) &KYPi'C9!z  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') %eE0a4^".  
    end 1dhuLN%Ce  
    gW5yLb_Vz$  
    t/wo G9N  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) S8j!?$`  
        error('zernfun:RTHvector','R and THETA must be vectors.') :>|dE%/e$  
    end ~n"?*I`  
    Ka_g3  
    |AQU\BUj  
    r = r(:); ,M.phRJ-`  
    theta = theta(:); 03/mB2|TF(  
    length_r = length(r); O#do\:(b  
    if length_r~=length(theta) 8\X-]Gh\^  
        error('zernfun:RTHlength', ... M!/!*,~  
              'The number of R- and THETA-values must be equal.') 0H +!v  
    end EY`]""~8v  
    = yFOH~_  
    0clq}  
    % Check normalization: hm\UqIt  
    % -------------------- FN w0x6,~R  
    if nargin==5 && ischar(nflag) H%bc.c  
        isnorm = strcmpi(nflag,'norm'); P;G]qV%  
        if ~isnorm YNB7`:  
            error('zernfun:normalization','Unrecognized normalization flag.') !(F?Np Am  
        end .6LlkM6[g  
    else k%TBpG:T  
        isnorm = false; aXyFpGdb9  
    end ~>#?.f  
    <}p]0iA  
    1I awi?73  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% p9E/#U8A_  
    % Compute the Zernike Polynomials L)n_  Q  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% =.qX u+  
    bt};Pn{3  
    A"O\u=!  
    % Determine the required powers of r: rEMe=>^   
    % ----------------------------------- P6I<M}p  
    m_abs = abs(m); VRZqY7j}g  
    rpowers = []; HUChg{[  
    for j = 1:length(n) z1^3~U$}  
        rpowers = [rpowers m_abs(j):2:n(j)]; tVe =c  
    end BM{*5Lf  
    rpowers = unique(rpowers); t#VX#dJ  
    g%V#Z`*|  
    ?t/G@  
    % Pre-compute the values of r raised to the required powers, b BiTAP  
    % and compile them in a matrix: -<ome~|  
    % ----------------------------- |)C #  
    if rpowers(1)==0 ^`[<%.  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); !rF1Remw  
        rpowern = cat(2,rpowern{:}); lbX YWZ~7  
        rpowern = [ones(length_r,1) rpowern]; ucJ}KMz  
    else w~q ]&  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); >,QCKZH  
        rpowern = cat(2,rpowern{:}); 0CvGpM,  
    end WD_{bd)  
    (< >Lfn  
    k 1a?yH)=  
    % Compute the values of the polynomials: l^^Z}3^Rk  
    % -------------------------------------- #].q jOj  
    y = zeros(length_r,length(n)); >& 4):  
    for j = 1:length(n)  LJ;&02w@  
        s = 0:(n(j)-m_abs(j))/2; *fs[]q'Q  
        pows = n(j):-2:m_abs(j); X`3_ yeQc  
        for k = length(s):-1:1 +_{cq@c  
            p = (1-2*mod(s(k),2))* ... gj iFpW4  
                       prod(2:(n(j)-s(k)))/              ... ,zuS)?  
                       prod(2:s(k))/                     ... lQiw8qD  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... (?g+.]Dt,  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); +p`BoF9~  
            idx = (pows(k)==rpowers); 5 1N/XEk  
            y(:,j) = y(:,j) + p*rpowern(:,idx); vS"h`pL  
        end k ~Q 5Cs  
         P*B @it  
        if isnorm }]#z0'Aqsu  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Cn{v\Q~.4  
        end ?PS?_+E\L  
    end a0+q^*\d\R  
    % END: Compute the Zernike Polynomials eEfGH  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Sa%%3_&  
    XjCx`bX^<  
    'sXrtl7{^  
    % Compute the Zernike functions: 5Po:$(  
    % ------------------------------ )-o jm$  
    idx_pos = m>0; 5|~nX8>  
    idx_neg = m<0; EADN   
    xJAQ'ANr  
    XI |k,Ko<  
    z = y; 8V}|(b#  
    if any(idx_pos) Yi,`uJKh  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); S~ Z<-@S  
    end /t`,7y 3T  
    if any(idx_neg) ?hGE[.(eh]  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 9l "=]7~%  
    end UGd\`*Cj  
    Qu,R6G  
    pW@W-k:u  
    % EOF zernfun FNuE-_  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    在线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  ALTOi?  
    F,p0OL.  
    DDE还是手动输入的呢? f(m, !  
    ^-~JkW'z  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究