切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9031阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, .N2nJ/   
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, ,H#qgnp  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? ?{ 8sT-Z-L  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? >#"jfjDuR  
    <3],C)Zwc  
    X:xC>4]gG'  
    9H !B)  
    D@sx`H(  
    function z = zernfun(n,m,r,theta,nflag) g%fJyk'  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. rw=UK`  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N %>I?'y^  
    %   and angular frequency M, evaluated at positions (R,THETA) on the \>aa8LOe  
    %   unit circle.  N is a vector of positive integers (including 0), and WIH4Aw  
    %   M is a vector with the same number of elements as N.  Each element Xn ZX *Y]"  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) a@S4IoBg%  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, )\I? EU8  
    %   and THETA is a vector of angles.  R and THETA must have the same }jyS\drJ  
    %   length.  The output Z is a matrix with one column for every (N,M) Z CQt1;  
    %   pair, and one row for every (R,THETA) pair. VFO&)E/-  
    % ]U^d1&k  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 1K*f4BnDr~  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), "M5ro$qZ}  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 6ljRV)  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, -UD~>s  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized cV=_G E  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ai;gca_P#  
    % wCC~tuTpr  
    %   The Zernike functions are an orthogonal basis on the unit circle. wE8a4.  
    %   They are used in disciplines such as astronomy, optics, and  z7.C\l  
    %   optometry to describe functions on a circular domain. ;SlS!6.W-  
    % ^b|Nw:  
    %   The following table lists the first 15 Zernike functions. {KpH|i  
    % .^N#|hp^  
    %       n    m    Zernike function           Normalization (61twutC  
    %       -------------------------------------------------- ]\9B?W(#  
    %       0    0    1                                 1 I$6 f.W  
    %       1    1    r * cos(theta)                    2 He71h(BHm  
    %       1   -1    r * sin(theta)                    2 x}8T[  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) f'i8Mm4IL  
    %       2    0    (2*r^2 - 1)                    sqrt(3) >y06s{[  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) {,  *Y  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) \,cKt_{ u  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 3W0E6H"  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) m|cWX"#g  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) */Ry6Yu  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) lTOM/^L  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) #+ lq7HJ1  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) J&U0y  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) [|;Zxb:  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) ?D^,K`wY=B  
    %       -------------------------------------------------- a^}P_hg}-  
    % /%q9hI   
    %   Example 1: qxcBj  
    % ]{6yS9_tuI  
    %       % Display the Zernike function Z(n=5,m=1) 53+rpU_  
    %       x = -1:0.01:1; (R*jt,x  
    %       [X,Y] = meshgrid(x,x); F?,&y)ri  
    %       [theta,r] = cart2pol(X,Y); ):\{n8~  
    %       idx = r<=1; dV=5_wXZ$  
    %       z = nan(size(X)); >8fz ?A  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); @G$<6CG\  
    %       figure M^JZ]W(  
    %       pcolor(x,x,z), shading interp Q]g4gj  
    %       axis square, colorbar A%w]~ chC9  
    %       title('Zernike function Z_5^1(r,\theta)') a*8.^SdzR  
    % aE cg_es  
    %   Example 2: '>mb@m  
    % 6.7 Kp  
    %       % Display the first 10 Zernike functions irw 7  
    %       x = -1:0.01:1; -hR\Y 2?  
    %       [X,Y] = meshgrid(x,x); l5OV!<7~X  
    %       [theta,r] = cart2pol(X,Y); = hX-jP  
    %       idx = r<=1; #!&R7/ KdD  
    %       z = nan(size(X)); v*fc5"3eO  
    %       n = [0  1  1  2  2  2  3  3  3  3]; -Fc#  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; %s :  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; ;AB,:*  
    %       y = zernfun(n,m,r(idx),theta(idx)); z==}~|5  
    %       figure('Units','normalized') FRQ("6(  
    %       for k = 1:10 lnSE+YJ>  
    %           z(idx) = y(:,k); `b`52b\6S  
    %           subplot(4,7,Nplot(k)) 78J .~v/  
    %           pcolor(x,x,z), shading interp |b~g^4  
    %           set(gca,'XTick',[],'YTick',[]) 4x?u5L 9o  
    %           axis square `/ReJj&~  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) V+~{a:8[pq  
    %       end Wy>\KrA1  
    % NWwtq&pz2  
    %   See also ZERNPOL, ZERNFUN2. !enz05VW6.  
    HF[%/Tu  
    78~V/L;@S2  
    %   Paul Fricker 11/13/2006 9,>Y  
    J7^T!7V.  
     /r@  
    PlRs- %d  
    `3P62M<  
    % Check and prepare the inputs: }M@Jrq+7  
    % ----------------------------- J$*["y`+  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) G*p.JsZP  
        error('zernfun:NMvectors','N and M must be vectors.') rB|:r\Z(jG  
    end ~0GX~{;r  
    d6 EJn/  
    R*eM 1  
    if length(n)~=length(m) Dohe(\C@  
        error('zernfun:NMlength','N and M must be the same length.') s(Bi& C\  
    end `z`;eR2oX  
    %-po6Vf  
    Qh%vh ;|^  
    n = n(:); >8t[EsW/  
    m = m(:); )?y"NVc*  
    if any(mod(n-m,2)) GhA~PjZS  
        error('zernfun:NMmultiplesof2', ... cty#@?"e  
              'All N and M must differ by multiples of 2 (including 0).') 7B"aFnK;[J  
    end 4>`w9   
    1 K',Vw_  
    Nx z ,/d  
    if any(m>n) PP|xIAc  
        error('zernfun:MlessthanN', ... SYLkC [0 k  
              'Each M must be less than or equal to its corresponding N.') o%Q2.  
    end v3#47F)  
    <WkLwP3^  
    :\We =oX  
    if any( r>1 | r<0 ) YP97D n  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') o:ob1G[p%  
    end Py<vN!  
    .AS,]*?Zn%  
    C,.{y`s'  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ]xs\,}I%  
        error('zernfun:RTHvector','R and THETA must be vectors.') 5OE?;PJ(  
    end H[U*' 2TJ  
    -ZJ:<  
    `r LMMYD=  
    r = r(:); {+}Lc$O#C  
    theta = theta(:); FiL JF!  
    length_r = length(r); 8yl /!O,v  
    if length_r~=length(theta) qpCi61lTDJ  
        error('zernfun:RTHlength', ... FA,CBn5%  
              'The number of R- and THETA-values must be equal.') vS<e/e+  
    end >48Y-w  
    r?*?iw2g  
    ;rbn/6  
    % Check normalization: X_2I4Jz]6  
    % -------------------- `dhK$jYD  
    if nargin==5 && ischar(nflag) <u\G&cd_tA  
        isnorm = strcmpi(nflag,'norm'); -B!pg7>'##  
        if ~isnorm >[U$n.  
            error('zernfun:normalization','Unrecognized normalization flag.') G#>X~qk()  
        end iV=#'yY  
    else - Zh+5;8g  
        isnorm = false; !)]3 @$#  
    end 3 -FNd~%  
    HN! l-z  
    1GxYuTZ{  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 2}A V_]]  
    % Compute the Zernike Polynomials zb(u?U  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /k,p]/e  
    60Z)AQs;+J  
    7E'C o|  
    % Determine the required powers of r: <LE>WfmC  
    % ----------------------------------- xXtDGP  
    m_abs = abs(m); n3w2&  
    rpowers = []; P\R3/g  
    for j = 1:length(n) ~zx-'sc?  
        rpowers = [rpowers m_abs(j):2:n(j)]; `i-&Z`  
    end &'R]oeag  
    rpowers = unique(rpowers); k&2I(2S  
    bCsQWsj^NW  
    P~&X$H%e  
    % Pre-compute the values of r raised to the required powers, Hd:ZE::Q'#  
    % and compile them in a matrix: cX2b:  
    % ----------------------------- BB-`=X~:m  
    if rpowers(1)==0  `@p*1  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); C5m*pGImG  
        rpowern = cat(2,rpowern{:}); n\QG-?%Pi  
        rpowern = [ones(length_r,1) rpowern]; h1"#DnK7  
    else OG.`\G|  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Wrlmo'31  
        rpowern = cat(2,rpowern{:}); Eb*DP_  
    end Z^sO`C  
    q>Y_I<;'g  
    ? in&/ZrB  
    % Compute the values of the polynomials: N%0Z> G  
    % -------------------------------------- `VHm,g2  
    y = zeros(length_r,length(n)); =U:iR  
    for j = 1:length(n) Yz,*Q<t  
        s = 0:(n(j)-m_abs(j))/2; pDu~84!])  
        pows = n(j):-2:m_abs(j); '?QZ7A  
        for k = length(s):-1:1 {#7t(:x  
            p = (1-2*mod(s(k),2))* ... <#c2Hg%jh  
                       prod(2:(n(j)-s(k)))/              ... /q]WV^H  
                       prod(2:s(k))/                     ... RE Hfk6YE  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... |/q*Fg[f  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); (A1!)c  
            idx = (pows(k)==rpowers); HzW ZQ6o  
            y(:,j) = y(:,j) + p*rpowern(:,idx); _ yU e2Gd  
        end ~!UxmYgO  
         m'%F,c)  
        if isnorm {D7!'Rq,  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); /H\ZCIu/7  
        end )]v vp{  
    end 7^S&g.A  
    % END: Compute the Zernike Polynomials 'I;pS)sb  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ]Dx5t&  
    %uQ^mK  
    u'}DG#@-  
    % Compute the Zernike functions: eGZId v1  
    % ------------------------------ j'~xe3j  
    idx_pos = m>0; a}MOhM6T  
    idx_neg = m<0; E-l>z%  
    lxV> rmD  
    }Vg &9HY  
    z = y; F7a\Luae  
    if any(idx_pos) nAg|m,gA  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); g(|p/%H  
    end @eR>?.:&  
    if any(idx_neg) z;1yZ4[G  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); vfmKYiLp  
    end r*y4Vx7  
    9CW .xX8  
    izOtt^#DZt  
    % EOF zernfun D L<r2h  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  {p#[.E8  
    :i'jQ<|wZN  
    DDE还是手动输入的呢? J*@(rb#G  
    0>PO4WFVJ  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究