下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, U~?VN!<x[
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, =hvPq@C%
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? a)pc+w#
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? 07:V[@'
#;ObugY,
aUEr& $
?K7uy5Y
K0j%\]\Tp
function z = zernfun(n,m,r,theta,nflag) z8t;jw
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. JK<[]>O
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N rHw#<oV
% and angular frequency M, evaluated at positions (R,THETA) on the xtP:Q9!N
% unit circle. N is a vector of positive integers (including 0), and %P s.r{%{
% M is a vector with the same number of elements as N. Each element n46!H0mJ
% k of M must be a positive integer, with possible values M(k) = -N(k) uOzoE_i
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, xA7~"q&u
% and THETA is a vector of angles. R and THETA must have the same rIFW1`N}i
% length. The output Z is a matrix with one column for every (N,M) lH=|Qu
% pair, and one row for every (R,THETA) pair. oFP8s[B
% *:xOenI
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Vu.=,G
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), YT+b{
% with delta(m,0) the Kronecker delta, is chosen so that the integral )TiM>{
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, XjL3Ar*
% and theta=0 to theta=2*pi) is unity. For the non-normalized @!dIa1Q"
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. o-H?q!
% aBReIK o
% The Zernike functions are an orthogonal basis on the unit circle. tE=09J%z
% They are used in disciplines such as astronomy, optics, and q}L`8(a
% optometry to describe functions on a circular domain. 37kFbR@x
% Jg=!GU/::
% The following table lists the first 15 Zernike functions. b;jdk w|
% o 7kg.w|
% n m Zernike function Normalization W=^.s>7G
% -------------------------------------------------- K\9CW%W
% 0 0 1 1 RN-gZ{AW
% 1 1 r * cos(theta) 2 ``jNj1t{}
% 1 -1 r * sin(theta) 2 [k%hl`}
% 2 -2 r^2 * cos(2*theta) sqrt(6) HBe*wk Pd
% 2 0 (2*r^2 - 1) sqrt(3) xSD*e 0
% 2 2 r^2 * sin(2*theta) sqrt(6) J$yq#LBbR@
% 3 -3 r^3 * cos(3*theta) sqrt(8) f:+/=MW
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 8_4!Ar>2
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) .kFO@:
% 3 3 r^3 * sin(3*theta) sqrt(8) G!$~'o%/
% 4 -4 r^4 * cos(4*theta) sqrt(10) bC:sd2s
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) sPZwA0%
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) ,on]Fts
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) c|.te]!ds
% 4 4 r^4 * sin(4*theta) sqrt(10) ^,I2@OS
% -------------------------------------------------- @ U=y}vi8
% W>a}g[Ad
% Example 1: ~wuCa!!A
% \;N+PE
% % Display the Zernike function Z(n=5,m=1) Vxap+<m
% x = -1:0.01:1; &J2UAmB
% [X,Y] = meshgrid(x,x); WT,I~'r=S
% [theta,r] = cart2pol(X,Y); })^eaLBR4
% idx = r<=1; N2s"$Ttq
% z = nan(size(X)); 7d>w]R,Z
% z(idx) = zernfun(5,1,r(idx),theta(idx)); _1E c54D
% figure xP'0a
% pcolor(x,x,z), shading interp 1ygEyC[1
% axis square, colorbar 8%B_nVc
% title('Zernike function Z_5^1(r,\theta)') ben-<3r
% 'qT;Eht5
% Example 2: r2\%/9uO
% &2u
|7U.
% % Display the first 10 Zernike functions 2{=D)aC$f
% x = -1:0.01:1; ?:9y
!Q=
% [X,Y] = meshgrid(x,x); G3TS?u8Q
% [theta,r] = cart2pol(X,Y); u]NsCHKlT
% idx = r<=1; I"czo9Yspd
% z = nan(size(X)); .q
MxShUU
% n = [0 1 1 2 2 2 3 3 3 3]; kl:/PM^
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; G 0pq'7B
% Nplot = [4 10 12 16 18 20 22 24 26 28]; 05ClPT\BCr
% y = zernfun(n,m,r(idx),theta(idx));
n(Nu
% figure('Units','normalized') |MGT8C&^!
% for k = 1:10 ]2f-oz*hU
% z(idx) = y(:,k); 3v_j*wy
% subplot(4,7,Nplot(k)) ?P[:,0_
% pcolor(x,x,z), shading interp Yf9E0po
% set(gca,'XTick',[],'YTick',[]) Wo&22,EB
% axis square h?dSn:Y\?
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) MV$E_@pg
% end C2rG3X^~Jm
% j;}-x1R
% See also ZERNPOL, ZERNFUN2. &q|vvF<G
kum@cA
wwdmz;0S
% Paul Fricker 11/13/2006 ib(|}7Je
OAq-(_H
S>x@9$( ym
Y<W9LF
#g$I>\O<
% Check and prepare the inputs: !b!An; ',
% ----------------------------- 16Ka>=G
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) T U_'1
error('zernfun:NMvectors','N and M must be vectors.') KB~[nZs7
end -'miM ~kG[
kXhd]7ru
Y_n/rD>
if length(n)~=length(m) cu}(\a
error('zernfun:NMlength','N and M must be the same length.') KtAEM;g
end _$T
!><)y
0);5cbV7i
cG0)F%?X?
n = n(:); ^n~Kr1}nj
m = m(:); K3:z5j.X
if any(mod(n-m,2)) oO[eer_S-
error('zernfun:NMmultiplesof2', ... :K~@JlJd
'All N and M must differ by multiples of 2 (including 0).') *sp")h#Z
end ~H \P0G5GA
SPb`Q"
U*K4qJ6U
if any(m>n) M)K!!Jqh
error('zernfun:MlessthanN', ... c(Y~5A{TXO
'Each M must be less than or equal to its corresponding N.') )OQm,5F1
end f1SKOq
_s#J\!F
5KB Z-,
if any( r>1 | r<0 ) %6lGRq{/?
error('zernfun:Rlessthan1','All R must be between 0 and 1.') 'g<{l&u
end <k1muSe
bhRa?wuoY
{@Lun6\
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ]+ub
R;
error('zernfun:RTHvector','R and THETA must be vectors.') Q3+%8zZI
end .mrv"k\<
$ H@
@)Vb?|3
r = r(:); hH>a{7V
theta = theta(:); `>KNa"b%$
length_r = length(r); ]{i0?c
if length_r~=length(theta) R7:u 8-dU1
error('zernfun:RTHlength', ... 'U&]KSzxv
'The number of R- and THETA-values must be equal.') y /8iEs
end nO`[C=|
}duqX R
+-t&li%F
% Check normalization: .3+8Ip#z
% -------------------- o}waJN`yI
if nargin==5 && ischar(nflag) p79QEIbk=
isnorm = strcmpi(nflag,'norm'); a>#$&&oQ0
if ~isnorm 5<GeAW8ns]
error('zernfun:normalization','Unrecognized normalization flag.') G1X73qoHT<
end ZiKO|U@/
else hUi5~;Q5Fi
isnorm = false; Q!-"5PX
end e"EGqn&!
_{if"
-k>k<bDAI
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 4Z{R36 {
% Compute the Zernike Polynomials Pj56,qd>s
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -*&aE~Cs
NmpNme
@ajdO/?(Y
% Determine the required powers of r: FLsJ<C~/~
% ----------------------------------- 'YN:cr,V
m_abs = abs(m); KIuj;|!q
rpowers = []; k<fR)o
for j = 1:length(n) hms Aim9i
rpowers = [rpowers m_abs(j):2:n(j)]; PCDvEbpG
end !:vQg+S
rpowers = unique(rpowers); kMzDmgoxNg
~P!=fU)
e=jtF"&
% Pre-compute the values of r raised to the required powers, b<r*EY
% and compile them in a matrix: Ub\&k[F
% ----------------------------- # NK{]H$fd
if rpowers(1)==0 <#Fex'4
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); tg%<@U`7=
rpowern = cat(2,rpowern{:}); +N~{6*@uz,
rpowern = [ones(length_r,1) rpowern]; .;vd
else [;toumv
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); SzG
%%CXH_
rpowern = cat(2,rpowern{:}); X2~KNw
end /'v!{m
JqN$B\J,
{c1wJ
% Compute the values of the polynomials: Z>NA 9:
% -------------------------------------- 6QPbmO]z
y = zeros(length_r,length(n)); @[/!e`]+
for j = 1:length(n) O9N%dir
s = 0:(n(j)-m_abs(j))/2; +~
S7]AZ
pows = n(j):-2:m_abs(j); N'5DB[:c:
for k = length(s):-1:1 "1P2`Ep;
p = (1-2*mod(s(k),2))* ... q{yzux
prod(2:(n(j)-s(k)))/ ... =/xXB
prod(2:s(k))/ ... k]TJL9Q
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... OWN|W,
prod(2:((n(j)+m_abs(j))/2-s(k))); jNIz:_c-~
idx = (pows(k)==rpowers); O1]XoUH<
y(:,j) = y(:,j) + p*rpowern(:,idx); m1 p%,
end at3YL[,[Z
1-! |_<EW1
if isnorm dt>!=<|k
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); wDh&S{N
end 3fop.%(
end pAEJ=Te
% END: Compute the Zernike Polynomials lnxA/[`a
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% V/"41
b\t@vMJ
@[rlwwG,
% Compute the Zernike functions: 6~k qU4lL
% ------------------------------
q,'~=Y5
idx_pos = m>0; hn/SS
idx_neg = m<0; *EtC4sP
=4x-x nA
OL&VisJ{75
z = y; twTRw:.!f
if any(idx_pos) jm|zn
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 7nPm{=BG
end Lhgs|*M
if any(idx_neg) ;Y &2G'
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); y|.dM.9V
end %__.-;)o
Cmj `WSSa
klj.\wg/p{
% EOF zernfun lU3Xd_v
O