下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, s"L&y <?)
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, !E70e$Th
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? $C16}^
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? <J%qzt}
1=VyD<dNG6
QE]@xLz
LUbhTc
3ML][|TR
function z = zernfun(n,m,r,theta,nflag) eSPS3|YYn
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. vrn4yHoZ
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N SA,~q&
% and angular frequency M, evaluated at positions (R,THETA) on the '2,~'Zk
% unit circle. N is a vector of positive integers (including 0), and /4{WT?j
% M is a vector with the same number of elements as N. Each element ]&'!0'3`
% k of M must be a positive integer, with possible values M(k) = -N(k) :@w~*eK ~
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, f5}afPk
% and THETA is a vector of angles. R and THETA must have the same z zG=!JR
% length. The output Z is a matrix with one column for every (N,M) YSjc=
% pair, and one row for every (R,THETA) pair. &9jJ\+:7
% wGHft`Z
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike o)Q4+njT@
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 2"0VXtv6
% with delta(m,0) the Kronecker delta, is chosen so that the integral 2OG/0cP
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 3=S|U,
% and theta=0 to theta=2*pi) is unity. For the non-normalized tpI/Ibq
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ]dycesc'
% N2h5@*1Y
% The Zernike functions are an orthogonal basis on the unit circle. qxRsq&_
% They are used in disciplines such as astronomy, optics, and hV3]1E21"
% optometry to describe functions on a circular domain. a )O"PA}2
% ]0i[=
% The following table lists the first 15 Zernike functions. + V=<vT
% ui]iOp
% n m Zernike function Normalization 5nPvEN/
% -------------------------------------------------- >N3X/8KL%
% 0 0 1 1 L5hF-Ek!
3
% 1 1 r * cos(theta) 2 /%YW[oY{V
% 1 -1 r * sin(theta) 2 l&& i`
% 2 -2 r^2 * cos(2*theta) sqrt(6) ^Ks1[xc* `
% 2 0 (2*r^2 - 1) sqrt(3) A-x^JC=
% 2 2 r^2 * sin(2*theta) sqrt(6) at>_EiS
% 3 -3 r^3 * cos(3*theta) sqrt(8) UG vIH m
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) r*HSi.'21
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) ,~L*N*ML
% 3 3 r^3 * sin(3*theta) sqrt(8) /fQcrd7h
% 4 -4 r^4 * cos(4*theta) sqrt(10) ~|u;z,\
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) wXNng(M7
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) a$W
O}g?
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) o*T?f)_[p
% 4 4 r^4 * sin(4*theta) sqrt(10) 6 `6I<OJ\
% -------------------------------------------------- PpRS4*nR
% :GvC#2p
% Example 1: '[
c-$X2Ak
% 2d[tcn$;h]
% % Display the Zernike function Z(n=5,m=1) ~XUUrg;
% x = -1:0.01:1; EXdX%T\
% [X,Y] = meshgrid(x,x); 1@Ba7>%'
% [theta,r] = cart2pol(X,Y); {[uhIJD3g6
% idx = r<=1; +kI}O*s
% z = nan(size(X)); su0K#*P&I
% z(idx) = zernfun(5,1,r(idx),theta(idx)); .)*&NY!nsl
% figure nS#F*)
% pcolor(x,x,z), shading interp CW`^fI9H
% axis square, colorbar `=Mk6$%Cs
% title('Zernike function Z_5^1(r,\theta)') cg )(L;
% Eu|/pH=:
% Example 2: HOD?i_
% ~'*23]j
% % Display the first 10 Zernike functions
,]wab6sY
% x = -1:0.01:1; Vc\g"1x
% [X,Y] = meshgrid(x,x); CfOyHhhKX
% [theta,r] = cart2pol(X,Y); d 6Y9D=O
% idx = r<=1; \]Y<d
% z = nan(size(X)); o.$48h(
% n = [0 1 1 2 2 2 3 3 3 3]; \m`IgP*
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; TT/=0^"
% Nplot = [4 10 12 16 18 20 22 24 26 28]; #h.N#{9
% y = zernfun(n,m,r(idx),theta(idx)); `&I6=,YLp
% figure('Units','normalized') 2NFk#_9e~
% for k = 1:10 b$w66q8
% z(idx) = y(:,k); 28JVW3&)
% subplot(4,7,Nplot(k)) *wAX&+);
% pcolor(x,x,z), shading interp +sJ{9# 6
% set(gca,'XTick',[],'YTick',[]) tE>FL
% axis square -raK
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) oD%n}
% end NO/$}vw
% hz bvR~rn
% See also ZERNPOL, ZERNFUN2. BTsvL>Wy
H28-;>'`
!/`AM<`o
% Paul Fricker 11/13/2006 VK4UhN2
i<&z'A6&]*
f$</BND
2SU'lh\E
n4?;!p<F
% Check and prepare the inputs: 5I* 1CIO
% ----------------------------- ko.%@Y(=
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) qV=O;
error('zernfun:NMvectors','N and M must be vectors.') e_Zs4\^ef
end y**L^uvr
DN8I[5O
[/ CB1//Y
if length(n)~=length(m) 2C0j.Ib
error('zernfun:NMlength','N and M must be the same length.') \>T1&JT
end r<]^.]3zj
SdufI_'B
9[t-W:3c7
n = n(:); Z$0mKw
m = m(:); .yzXw8~S
if any(mod(n-m,2)) (*26aMp
error('zernfun:NMmultiplesof2', ... I9TNUZq('
'All N and M must differ by multiples of 2 (including 0).') 7ey|~u2
end "%
i1zQo&
qoan<z7
IL Nghtm-
if any(m>n) KW0KXO06a
error('zernfun:MlessthanN', ... WbFCj0
'Each M must be less than or equal to its corresponding N.') v&sp;%I6=
end 4&]NC2I
)`=N+k]
>iJxq6!
if any( r>1 | r<0 ) 7DW-brd
error('zernfun:Rlessthan1','All R must be between 0 and 1.') 9<Zm}PE32
end M/[9ZgDc
nP=/XiCj
PC=s:`Y}R
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) s5b<KQ.
error('zernfun:RTHvector','R and THETA must be vectors.') acpc[^'
end B_r:da CS:
^[HX#JJ~
_qit$#wK;
r = r(:); X7aj/:fXe
theta = theta(:); Yk4ah$}%-^
length_r = length(r); gi
A(VUwI>
if length_r~=length(theta) Xp^>SSt:4
error('zernfun:RTHlength', ... )sEAPIka
'The number of R- and THETA-values must be equal.') (ds*$]
end XF4NRs
7")&njQ/x
i;)r|L`V?
% Check normalization: Qe<c@i"
% -------------------- F fzY3r+
if nargin==5 && ischar(nflag) {-IRX)m*
isnorm = strcmpi(nflag,'norm'); R[lA@q:
if ~isnorm m<9W#
error('zernfun:normalization','Unrecognized normalization flag.') zHj_q%A
end $L"-JNS
else v2#qs*sW8
isnorm = false; Z*5]qh2r8
end (i'wa6[E8
4p&SlJ
RG_)<U/B
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% K)oN^
% Compute the Zernike Polynomials H%c{ }F
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0xutG/-&N
5a l44[
xeHqC9Ou
% Determine the required powers of r: VM
ny>g&3
% ----------------------------------- `=foB-(zt
m_abs = abs(m); "_&HM4%!
rpowers = []; Sytx9`G 5
for j = 1:length(n) j@s,5:;[
rpowers = [rpowers m_abs(j):2:n(j)]; T\HP5&
end Xp3cYS*u
rpowers = unique(rpowers); #^/&fdK~A
[26([H
KWV{wW=-
% Pre-compute the values of r raised to the required powers, q}R"
% and compile them in a matrix: 65A>p:OO
% ----------------------------- [+y/qx79
if rpowers(1)==0 u"n~9!G
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 3?(||h{
rpowern = cat(2,rpowern{:}); D&)gcO`\
rpowern = [ones(length_r,1) rpowern]; Ol@
YSk d
else ]+S.#x`#
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); hE/y"SP3
rpowern = cat(2,rpowern{:}); I1(,J
end Ts:pk
g'b)] Q
\oGZM0j
% Compute the values of the polynomials: 'W j Q
% -------------------------------------- ,Gd8 <