切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8982阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, HJt '@t=Ak  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 5-UrHbpCZ#  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? (W?t'J^#  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? l YpoS  
    A[m<xtm5K  
    s01=C3  
    sW76RKX8  
    Hp[i8PJ  
    function z = zernfun(n,m,r,theta,nflag) ,JfP$HJ  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. Q+s2S>U{v  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N +3Z+#nGtk  
    %   and angular frequency M, evaluated at positions (R,THETA) on the nK#%Od{GF  
    %   unit circle.  N is a vector of positive integers (including 0), and <MoyL1=  
    %   M is a vector with the same number of elements as N.  Each element mSGpxZ,IE  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 8Z3:jSgk  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, M"6J"s  
    %   and THETA is a vector of angles.  R and THETA must have the same g!^mewtd  
    %   length.  The output Z is a matrix with one column for every (N,M) p5l|qs  
    %   pair, and one row for every (R,THETA) pair. *'@ sm*  
    % $@84nR{>  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 4K*st8+bl-  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Nw1Bn~yx<R  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral `> +:38  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ,\N4tG1\  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized \{v-Xe&d^  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. =]1cVnPI  
    % 6W:FT Pt44  
    %   The Zernike functions are an orthogonal basis on the unit circle. i`=%X{9  
    %   They are used in disciplines such as astronomy, optics, and -Ua&/Yd/}  
    %   optometry to describe functions on a circular domain. =MwR)CI#  
    % W j`f^^\HJ  
    %   The following table lists the first 15 Zernike functions. $i1:--~2\  
    % stiYC#bI:  
    %       n    m    Zernike function           Normalization z L9:e7o  
    %       -------------------------------------------------- M>xT\  
    %       0    0    1                                 1 ^tIYr <I  
    %       1    1    r * cos(theta)                    2 Dw$RHogb~y  
    %       1   -1    r * sin(theta)                    2 NMUF)ksjN  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) Q{CRy-ha  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 15OzO.Ud  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) _7~q|  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) _-2n tO<E  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 7spZe"  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) @!^Y_q  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) + WT?p]  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) u=Xpu,q  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ZrB(!L~7  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) wN^^_  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) I'[;E.KU  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) i)$ySlEh  
    %       -------------------------------------------------- HE>V\+ AL  
    % (G(M"S SC  
    %   Example 1: ^m AxV7k  
    % HMDuP2Y  
    %       % Display the Zernike function Z(n=5,m=1) | GN/{KH]  
    %       x = -1:0.01:1; h6n!"z8H  
    %       [X,Y] = meshgrid(x,x); zGy+jeH:.  
    %       [theta,r] = cart2pol(X,Y); .`(YCn?\  
    %       idx = r<=1; q_98=fyE6  
    %       z = nan(size(X)); Q<KF<K'0hg  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); f4&;l|R0a  
    %       figure ?FwHqyFVlQ  
    %       pcolor(x,x,z), shading interp GVfRy@7n  
    %       axis square, colorbar <$d2m6J  
    %       title('Zernike function Z_5^1(r,\theta)') 7|jy:F,w%  
    % e)m6xiZ  
    %   Example 2: reM~q-M~o@  
    % c *<m.  
    %       % Display the first 10 Zernike functions /a)^)  
    %       x = -1:0.01:1; kDxI7$]E  
    %       [X,Y] = meshgrid(x,x); %oquHkX%OJ  
    %       [theta,r] = cart2pol(X,Y); e/#6qCE  
    %       idx = r<=1; RCoDdtMo  
    %       z = nan(size(X)); g^7zDU&'  
    %       n = [0  1  1  2  2  2  3  3  3  3]; *ae)<l3v  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; u J]uz%  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; [:q J1^UU  
    %       y = zernfun(n,m,r(idx),theta(idx)); UZmo?&y  
    %       figure('Units','normalized') #p]V?  
    %       for k = 1:10 `Q#)N0  
    %           z(idx) = y(:,k); J<4_<.o(a  
    %           subplot(4,7,Nplot(k)) L3'isaz&^  
    %           pcolor(x,x,z), shading interp hwQ|'^(@O  
    %           set(gca,'XTick',[],'YTick',[]) d$xvM  
    %           axis square 3<N2ehi?  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) F!Cn'*  
    %       end uI& 0/  
    % ,-8Xb+!8I  
    %   See also ZERNPOL, ZERNFUN2. G N=8;Kq%  
    )s4: &!  
    ~ 4Mz:h^  
    %   Paul Fricker 11/13/2006 ld):Am}/o  
    Cbl>eKw  
    uFhPNR2l  
    (w\|yPBB  
    .Cs'@[Ciy  
    % Check and prepare the inputs: ZX.,<vumSy  
    % ----------------------------- }NRt:JC  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 49O_A[(d  
        error('zernfun:NMvectors','N and M must be vectors.') \2#K {  
    end kmo#jITa`  
    w7Mh8'P54  
    \ bWy5/+  
    if length(n)~=length(m) g\?07@Zd|  
        error('zernfun:NMlength','N and M must be the same length.') i_+e&Bjd4j  
    end 5dG+>7Iy}  
    m^0 I3;  
    wV{j CQ  
    n = n(:); Dq9f Fe  
    m = m(:); r2PN[cLu|  
    if any(mod(n-m,2)) H4{7,n  
        error('zernfun:NMmultiplesof2', ... ~k?t  
              'All N and M must differ by multiples of 2 (including 0).') dS \n 2Qb  
    end \IzZJGi  
    '%:E4oI  
    I$)9T^Ra  
    if any(m>n) fIatp  
        error('zernfun:MlessthanN', ... &hi][Pt  
              'Each M must be less than or equal to its corresponding N.') 6z/&j} (  
    end 3/& |Z<f  
    k<f0moxs'  
    vp d!|/  
    if any( r>1 | r<0 ) Z3ODZfu>  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') QV*la=j/  
    end '=Jz}F <  
    20`XklV  
    >SYOtzg%  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 7ruWmy;j  
        error('zernfun:RTHvector','R and THETA must be vectors.') c\tw#;\9  
    end /8hjs{(;  
    !4t%\N6Ib  
    [`KQ \4u  
    r = r(:); @ e7_&EGR?  
    theta = theta(:); ZC^?ng  
    length_r = length(r); v{\~>1J{  
    if length_r~=length(theta) gK dNgU  
        error('zernfun:RTHlength', ... : B1 "=ly  
              'The number of R- and THETA-values must be equal.') [!ZYtp?Hf  
    end +yHzp   
    AJzm/,H  
    ?:zMrlX  
    % Check normalization: % %2~%FVb  
    % -------------------- ~$Z_#,|i?  
    if nargin==5 && ischar(nflag) _tO2PI L@Z  
        isnorm = strcmpi(nflag,'norm'); ^4saB+qm  
        if ~isnorm 91#n Aj%  
            error('zernfun:normalization','Unrecognized normalization flag.') dsb z\w3:  
        end Mq6_Q07  
    else 8mX:*$qm:  
        isnorm = false; ^$lsmF]^  
    end #P1 ;*m  
    y|wR)\  
    L+)mZb&  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% [@s5v  
    % Compute the Zernike Polynomials vF@.B M>  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% =E8Kacu%  
    yhyh\.  
    W8!8/ IZbN  
    % Determine the required powers of r: Q $>SYvW  
    % ----------------------------------- ?Ye%k  
    m_abs = abs(m); /bqJ6$  
    rpowers = []; ]g9n#$|.  
    for j = 1:length(n) v8A{ q  
        rpowers = [rpowers m_abs(j):2:n(j)]; 0 f"M-x  
    end \G1(r=fU  
    rpowers = unique(rpowers); DRi/<  
    XpOQBXbt  
    RjX#pb  
    % Pre-compute the values of r raised to the required powers, #.\X% !  
    % and compile them in a matrix: ;4]l P  
    % ----------------------------- gJBk&SDgtP  
    if rpowers(1)==0 Bk~M^AK@~  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); {eo?vA8SE  
        rpowern = cat(2,rpowern{:}); Ad`jV_z  
        rpowern = [ones(length_r,1) rpowern];  '+C%]p  
    else YyR~pT#ffT  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); OAz -w  
        rpowern = cat(2,rpowern{:}); )F35WP~  
    end KHXnB  
    u@zBE? g  
    cj/FqU"  
    % Compute the values of the polynomials: "A9 c]  
    % -------------------------------------- gs77")K&  
    y = zeros(length_r,length(n)); x; *KRO  
    for j = 1:length(n) mCx6$jz  
        s = 0:(n(j)-m_abs(j))/2; PK* $  
        pows = n(j):-2:m_abs(j); D<cHa |  
        for k = length(s):-1:1 I^6zUVH  
            p = (1-2*mod(s(k),2))* ... (wIpq<%  
                       prod(2:(n(j)-s(k)))/              ... th*E"@  
                       prod(2:s(k))/                     ... CR$5'#11)  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ?5 d3k%  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); /fc@=CO  
            idx = (pows(k)==rpowers); +P<LoI  
            y(:,j) = y(:,j) + p*rpowern(:,idx); D*j\gI  
        end re/l5v,|3  
         ]Z\.Vx  
        if isnorm F 'U G p  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); %/&?t`%H  
        end #`4ma:Pj  
    end <[7.+{qfW  
    % END: Compute the Zernike Polynomials H;$OCDRC  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 6]^}GyM!  
    O(PG"c  
    .r?-O{2t  
    % Compute the Zernike functions: y8un&LP  
    % ------------------------------ ^1S(6'a#  
    idx_pos = m>0; JQ8wL _C>  
    idx_neg = m<0; v7/qJ9l  
    eg-,;X#  
    Bn/ {J  
    z = y; D[)g-_3f6<  
    if any(idx_pos) i9oi}$;J  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); x,z+l-y  
    end |,Y(YSg.  
    if any(idx_neg) >T4.mB7+>  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); u%S&EuX  
    end Q': }'CI  
    AjK'P<:/  
    *O|Z[>  
    % EOF zernfun y!Q&;xO+!  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  }$s#H{T!  
    N^pTj<M<g  
    DDE还是手动输入的呢? E8zga )  
    H%> E6rVB  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究