切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9179阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, SSyARR+;c  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, ]0SqLe  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? M;NIcM  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? yq<W+b/  
    "q!*RO'a  
    ZR"qrCSw`  
    d0f(Uk  
    o*"Q{Xh#Qd  
    function z = zernfun(n,m,r,theta,nflag) M _lLP8W}  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. !4<A|$mQ  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N cM4{ e^  
    %   and angular frequency M, evaluated at positions (R,THETA) on the k7L4~W  
    %   unit circle.  N is a vector of positive integers (including 0), and ,H<nNBv 3M  
    %   M is a vector with the same number of elements as N.  Each element 3`RI[%AN~  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) ~O!E&~  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, }R YPr  
    %   and THETA is a vector of angles.  R and THETA must have the same Ts|;5ya5m  
    %   length.  The output Z is a matrix with one column for every (N,M) <OJqeUo+*\  
    %   pair, and one row for every (R,THETA) pair. ^#K^WV  
    % )K`tnb.Pf  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike AxF$7J(  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), -w8?Ur1x:  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral tA'5ufj*:  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Y=O-^fL  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized }jU)s{>fb  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. h|i b*%P_  
    % 9C7HL;MF  
    %   The Zernike functions are an orthogonal basis on the unit circle. ~V?\@R:g  
    %   They are used in disciplines such as astronomy, optics, and w>}n1Nc$G  
    %   optometry to describe functions on a circular domain. \OWxf[  
    % }w2Et  
    %   The following table lists the first 15 Zernike functions. {ot6ssT=D  
    % $fT#Wva-\d  
    %       n    m    Zernike function           Normalization -/*VR$c  
    %       -------------------------------------------------- tL1\q Qg  
    %       0    0    1                                 1 yX%> %#$  
    %       1    1    r * cos(theta)                    2 sJl>evw  
    %       1   -1    r * sin(theta)                    2 )7Qp9Fxo  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) C7}iwklcsa  
    %       2    0    (2*r^2 - 1)                    sqrt(3) HCe/!2Y/%  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) BQeg-M  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ~Ga{=OM??  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) "?W8 o[c+  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) x&m(h1h  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) Gl6:2  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 9>vB,8  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) U!RIeC  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) JE*?O*&|Q  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 7 n^1H[q  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) n!lE|if  
    %       -------------------------------------------------- |  >yc|W  
    % cf*~G x_l  
    %   Example 1: 3/(eK%d4Xb  
    % k)y<iHR_o  
    %       % Display the Zernike function Z(n=5,m=1) xgM\6e  
    %       x = -1:0.01:1; X &G]ci  
    %       [X,Y] = meshgrid(x,x); [D<(xr&N%  
    %       [theta,r] = cart2pol(X,Y); D5].^*AbZ  
    %       idx = r<=1; ymnK`/J!Q  
    %       z = nan(size(X)); O`N,aYo  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); Y`6<:8[?  
    %       figure :Dtm+EQ  
    %       pcolor(x,x,z), shading interp "d M-3o<  
    %       axis square, colorbar  p1&=D%/  
    %       title('Zernike function Z_5^1(r,\theta)') eu$"GbqY  
    % 6@FxPi9|#  
    %   Example 2: *#@{&Q(Qh  
    % Rt5Xqz\6i  
    %       % Display the first 10 Zernike functions M9(lxu y1  
    %       x = -1:0.01:1; AUfcf *  
    %       [X,Y] = meshgrid(x,x); 4X}TG  
    %       [theta,r] = cart2pol(X,Y); 1-.i^Hal  
    %       idx = r<=1; l2wu>Ar7.  
    %       z = nan(size(X)); 3hzz*9/n  
    %       n = [0  1  1  2  2  2  3  3  3  3]; 9VIAOky-  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; qDfhR`1k  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; }>3jHWxLc  
    %       y = zernfun(n,m,r(idx),theta(idx)); :3J`+V}9;  
    %       figure('Units','normalized') ~(`MP<  
    %       for k = 1:10 RmO kb~  
    %           z(idx) = y(:,k); [[Nn~7  
    %           subplot(4,7,Nplot(k)) _6]CT0  
    %           pcolor(x,x,z), shading interp rTJ;s  
    %           set(gca,'XTick',[],'YTick',[]) /;u=#qu(E-  
    %           axis square 4s"x}c">F  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) B2WPbox  
    %       end UF}Ji#fqn  
    % <Skf n`).  
    %   See also ZERNPOL, ZERNFUN2. &0d5".|s  
    &b-&0 rTqz  
    tZ*>S]qD  
    %   Paul Fricker 11/13/2006 (#qQ;ch  
    vo~Qo;m  
    g"g3|$#Ej|  
    %/_E8GE  
    Tl?jq]  
    % Check and prepare the inputs: ldRq:M5z  
    % ----------------------------- V~Jt  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) t+,2 p|B  
        error('zernfun:NMvectors','N and M must be vectors.') )<e,-XujY  
    end GNW.n(a  
    %xp 69  
    F& lSRL+v  
    if length(n)~=length(m) |f$gQI!XW  
        error('zernfun:NMlength','N and M must be the same length.') \vpX6!T  
    end VmXXj6l&  
    SxkY ;^-U  
    Le,;)Nd  
    n = n(:); (tiE%nF+  
    m = m(:); M`)3(|4  
    if any(mod(n-m,2)) Oz "_KMz  
        error('zernfun:NMmultiplesof2', ... v9#F\F/  
              'All N and M must differ by multiples of 2 (including 0).') !?K#f?x<?  
    end tvUCd}  
    I-Am9\   
    e Dpt1  
    if any(m>n) {rygIl{V  
        error('zernfun:MlessthanN', ... YjPj#57+  
              'Each M must be less than or equal to its corresponding N.') $j4/ohwTDY  
    end c68,,rJO]i  
    }1.'2.<Y  
    3]7j, 1^  
    if any( r>1 | r<0 ) @jZ1WHS_a  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') A3J=,aRI_v  
    end UunZ/A$]m  
    .B!  Z0  
    -"x@V7X  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) A yOy&]g  
        error('zernfun:RTHvector','R and THETA must be vectors.') jFI`CA6P  
    end D23 c/8K  
    SXNde@% {  
    '<6DLtZl  
    r = r(:); on1B~?*D  
    theta = theta(:); I`x[1%y2 F  
    length_r = length(r); IUD@Kf]S  
    if length_r~=length(theta) Sj v iH  
        error('zernfun:RTHlength', ... ^bLFY9hSC  
              'The number of R- and THETA-values must be equal.') |!CAxE0d$B  
    end Qn;,OB k  
    eEYz A  
    N7^sn!JB  
    % Check normalization: EQ>@K-R  
    % -------------------- g#G ]}8C  
    if nargin==5 && ischar(nflag) &@w0c>Y  
        isnorm = strcmpi(nflag,'norm'); yIWgC[  
        if ~isnorm 3MDs?qx>s  
            error('zernfun:normalization','Unrecognized normalization flag.') (N9g6V  
        end NC sem  
    else l;B  
        isnorm = false; I2,AT+O<  
    end ~{pds  
    VDiW9]  
    O-3aU!L  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% O .jCDAP  
    % Compute the Zernike Polynomials [n3@*)q's  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /E:BEm!  
    VL|Z+3L  
    3`Xzp  
    % Determine the required powers of r: ryb81.|  
    % ----------------------------------- ~_ wSB[z  
    m_abs = abs(m); 7j88^59  
    rpowers = []; {+EnJ"  
    for j = 1:length(n) FbXur-et^  
        rpowers = [rpowers m_abs(j):2:n(j)]; s(r4m/  
    end {HFx+<JG  
    rpowers = unique(rpowers); 'LR|DS[Ne  
    >Sb3]$$  
    pm[+xM9PB  
    % Pre-compute the values of r raised to the required powers, \m=k~Cf:f  
    % and compile them in a matrix: vhDtjf/*  
    % ----------------------------- }]=@Y/p  
    if rpowers(1)==0 ` }B,w-,io  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ( k_9<Yb3  
        rpowern = cat(2,rpowern{:}); TIK'A<  
        rpowern = [ones(length_r,1) rpowern]; b.RFvq5Z  
    else yR"mRy1  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Kq(JHB+  
        rpowern = cat(2,rpowern{:}); B&<P>AZ  
    end DcE4r>8B  
    JEF;Q  
    $#(j2sL1  
    % Compute the values of the polynomials: k *>"@  
    % -------------------------------------- D  ,[yx='  
    y = zeros(length_r,length(n)); 9_ZGb"(Lj  
    for j = 1:length(n) pF(6M3>IN  
        s = 0:(n(j)-m_abs(j))/2; B>@l(e)b  
        pows = n(j):-2:m_abs(j);  GInw7  
        for k = length(s):-1:1 1MmEP  
            p = (1-2*mod(s(k),2))* ... *]nk{jo2  
                       prod(2:(n(j)-s(k)))/              ... ls~9qkAyLx  
                       prod(2:s(k))/                     ... 3eB)X2~   
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... eHR]qy 0_X  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); dN7.W   
            idx = (pows(k)==rpowers); Wfy+9"-;s  
            y(:,j) = y(:,j) + p*rpowern(:,idx); ?Cx=!k.  
        end ae](=OQ  
         = |2F?  
        if isnorm fK2r6D9  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); A 6 `a  
        end {WQ6=wGpS  
    end HJP~ lg  
    % END: Compute the Zernike Polynomials T\bpeky~  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% =^\?{oV  
    JpxQS~VX  
    cDK)zD  
    % Compute the Zernike functions: #Tt*NU  
    % ------------------------------ 4Z5;y[k(  
    idx_pos = m>0; %F^,6y  
    idx_neg = m<0; mkrVeBp  
    lD-2 5~YV  
    .Lu3LVS  
    z = y; N Hn #c3o  
    if any(idx_pos) {s@ 0<!  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); SpYmgL?wJ  
    end K}2G4*8S_G  
    if any(idx_neg) [HL>Lp&A?  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); K\59vtga  
    end _"*s x-  
     1'F!C  
    ]Qa|9G,b  
    % EOF zernfun vVrM[0*c  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    在线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  9==4T$nM[  
    l U4 I*  
    DDE还是手动输入的呢? nqo1+OR  
    $I>]61l%  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究