切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8997阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, OTFu4"]M  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, \%4+mgiD  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? zC>(!fJqq  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? [2j (\vC!  
    Kp=3\)&  
    U-]PWt?C{  
    / jL{JF>I  
    . =foXN  
    function z = zernfun(n,m,r,theta,nflag) HI?~t| [y  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. %Pvb>U(Xs  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N PS<tS_.  
    %   and angular frequency M, evaluated at positions (R,THETA) on the C2,cyhr  
    %   unit circle.  N is a vector of positive integers (including 0), and Mp @(/  
    %   M is a vector with the same number of elements as N.  Each element vM3|Ti>a'  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) Ynh4oWUp  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, (XIq?c1T  
    %   and THETA is a vector of angles.  R and THETA must have the same Sdu@!<?B  
    %   length.  The output Z is a matrix with one column for every (N,M) W2.1xNWO  
    %   pair, and one row for every (R,THETA) pair. ) ImIPSL  
    % AFhG{G'W  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike <n~g+ps  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 2'^OtM,  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral BRok 89  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, (lck6v?h  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized #&8pp8wd,}  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ]A<u eM  
    % _.8]7f`*Gc  
    %   The Zernike functions are an orthogonal basis on the unit circle. PH4bM  
    %   They are used in disciplines such as astronomy, optics, and ]3# @t:>  
    %   optometry to describe functions on a circular domain. Hr,gV2n  
    % 4y}a,  
    %   The following table lists the first 15 Zernike functions. \,#4+&4b  
    % nhxd  
    %       n    m    Zernike function           Normalization o?hw2-mH  
    %       -------------------------------------------------- |/Q."d  
    %       0    0    1                                 1 ~4X!8b_  
    %       1    1    r * cos(theta)                    2 J2k'Ke97o  
    %       1   -1    r * sin(theta)                    2 NeZYchR  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) }~,cCtg:o  
    %       2    0    (2*r^2 - 1)                    sqrt(3) $mg h.3z0  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) z)y(31K<1  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) \hD bv5  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) p~;z"Z  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) pC.P  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 2<./HH*f  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) /@}# K P=  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Us~wv"L=UX  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) zyn =Xv@p  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 6]A\8Ty  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) |B WK"G  
    %       -------------------------------------------------- ' g!_Flk  
    % LO*a>9LI  
    %   Example 1: T ]nR XW$  
    % =` >Nfa+,  
    %       % Display the Zernike function Z(n=5,m=1) bD[W~ku  
    %       x = -1:0.01:1; (=B7_jrl  
    %       [X,Y] = meshgrid(x,x); .{ Lm  
    %       [theta,r] = cart2pol(X,Y); c@{^3V##T  
    %       idx = r<=1; KFG^vmrn  
    %       z = nan(size(X)); 3>3ZfFC  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); TK?N^ly  
    %       figure `X03Q[:q"[  
    %       pcolor(x,x,z), shading interp *jSc&{s~  
    %       axis square, colorbar S5 vMP N  
    %       title('Zernike function Z_5^1(r,\theta)') 2>$L>2$  
    % (:k`wh&  
    %   Example 2: QN5N h s  
    % RwHXn]1  
    %       % Display the first 10 Zernike functions BrmFwXLP"  
    %       x = -1:0.01:1; ?^GsR[-x  
    %       [X,Y] = meshgrid(x,x); XE%6c3s  
    %       [theta,r] = cart2pol(X,Y); Z+Zh;Ms  
    %       idx = r<=1; rxA)&  
    %       z = nan(size(X)); >(J!8*7  
    %       n = [0  1  1  2  2  2  3  3  3  3]; #yxYL0CcA:  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; {%}6 d~Bg  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; I9&<:`  
    %       y = zernfun(n,m,r(idx),theta(idx)); 'B:De"_(N  
    %       figure('Units','normalized') KAEpFobYo  
    %       for k = 1:10 {]N?DmF  
    %           z(idx) = y(:,k); + a@SdWf  
    %           subplot(4,7,Nplot(k)) P?ol]MwaB  
    %           pcolor(x,x,z), shading interp *M5C*}dl  
    %           set(gca,'XTick',[],'YTick',[]) .b)(_*  
    %           axis square oK[,xqyA  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) o : DnZN  
    %       end AU\!5+RDB  
    % } /FM#Xh  
    %   See also ZERNPOL, ZERNFUN2. 0kEq|k9  
    O/@[VPf  
    @3D%i#2o&[  
    %   Paul Fricker 11/13/2006 88U  
    ]&BFV%kw  
    l8li@K  
    ~<R~Q:T  
    5< nK.i,  
    % Check and prepare the inputs: 5n#&Hjb*F0  
    % ----------------------------- 8\_,Y ji  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) "FD~XSRL  
        error('zernfun:NMvectors','N and M must be vectors.') Ps-d#~4U;  
    end y[eNM6p  
    YZD]<ptR  
    9LRY  
    if length(n)~=length(m) (#BA{9T,^  
        error('zernfun:NMlength','N and M must be the same length.') ,PAKPX9v_F  
    end >0$5H]1u  
    C*<LVW{P  
    '1*MiFxKq  
    n = n(:); GQ8P}McA  
    m = m(:); =]Bm>67"  
    if any(mod(n-m,2)) H[oi? {L  
        error('zernfun:NMmultiplesof2', ... t?Znil|o  
              'All N and M must differ by multiples of 2 (including 0).') evP`&23tP  
    end @UBp;pb}=h  
    / nRaxzf'  
    W`kgYGnFG  
    if any(m>n) Kep?=9r4+  
        error('zernfun:MlessthanN', ... o!d0  
              'Each M must be less than or equal to its corresponding N.') ea/6$f9^  
    end 0eIR)#j*  
    i[ lH@fJm_  
    =="SW"vNi  
    if any( r>1 | r<0 ) eSf:[^  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') PV Q%y  
    end W3kilhZ  
    8'62[e|=7[  
    ujBADDwOg)  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) iBt5aUt  
        error('zernfun:RTHvector','R and THETA must be vectors.') R/7l2*  
    end co|0s+%PBq  
    *QJ/DC$  
    )LUl?  
    r = r(:); &aU+6'+QXB  
    theta = theta(:); 7va%-&.&t  
    length_r = length(r); e V#H"fM  
    if length_r~=length(theta) 1OKJE(T  
        error('zernfun:RTHlength', ... 9`{cX  
              'The number of R- and THETA-values must be equal.') CJ>=odK[  
    end %8/$CR  
    9:WKG'E8a  
    zjS<e XLs[  
    % Check normalization: BDg /pDnwg  
    % -------------------- WJWrLu92\U  
    if nargin==5 && ischar(nflag) IG\\RYr  
        isnorm = strcmpi(nflag,'norm'); LGkKR{ep(  
        if ~isnorm }#1{GhsS  
            error('zernfun:normalization','Unrecognized normalization flag.') BN67o]*]<  
        end I&9B^fF6  
    else g}7B0 yo  
        isnorm = false; 'lF|F+8   
    end PC5FfX  
    mCo5 Gdt  
    +( d2hSIF  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% !~#31kL&  
    % Compute the Zernike Polynomials l%O-c}X  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ueOvBFgZ  
    n >^?BU  
    jdzV&  
    % Determine the required powers of r: !E8JpE|z#  
    % ----------------------------------- +y2*[  
    m_abs = abs(m); $n) w4p_  
    rpowers = []; _<8y^ymo  
    for j = 1:length(n) okW3V}/x/z  
        rpowers = [rpowers m_abs(j):2:n(j)]; -MZ Eli g  
    end bP[/  
    rpowers = unique(rpowers); ! ^W|;bq  
    f{J7a1 `_  
    )8_0d)  
    % Pre-compute the values of r raised to the required powers, ,DjZDw  
    % and compile them in a matrix: 0WFZx Ad"  
    % ----------------------------- n.)-aRu[  
    if rpowers(1)==0 hH\(> 4l  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); A, os rv  
        rpowern = cat(2,rpowern{:}); N=kACEo  
        rpowern = [ones(length_r,1) rpowern]; t%%I.zIV7  
    else 5D#*lMSP"'  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); >3JOQ;:d8  
        rpowern = cat(2,rpowern{:}); Q'N<jX[  
    end Mm5l>D'c  
    T"z!S0I  
    (?Yz#Yf  
    % Compute the values of the polynomials: +1Uw<~  
    % -------------------------------------- ] 3v  
    y = zeros(length_r,length(n)); JBqzQ^[n  
    for j = 1:length(n) $]vR,E  
        s = 0:(n(j)-m_abs(j))/2; a36<S0R  
        pows = n(j):-2:m_abs(j); &HE8O}<>  
        for k = length(s):-1:1 3ySnAAG  
            p = (1-2*mod(s(k),2))* ... v-kH7H"z  
                       prod(2:(n(j)-s(k)))/              ... 1yo@CaW[\  
                       prod(2:s(k))/                     ... `>V.}K^4  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... wNPZ[V:  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); ecb[m2z  
            idx = (pows(k)==rpowers); |^=`ln!  
            y(:,j) = y(:,j) + p*rpowern(:,idx); </fnbyGR  
        end !#r]f9QP  
         f?]cW h%  
        if isnorm $6_J` 7  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 3K'3Xp@A  
        end ZE :oK   
    end -{O2Nv-]]  
    % END: Compute the Zernike Polynomials dO=<3W  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 2XE4w# [j  
    \nLO.,  
    H=dj\Br`  
    % Compute the Zernike functions: Bg3^BOT  
    % ------------------------------ n4:WM+f4  
    idx_pos = m>0; [~J4:yDd=  
    idx_neg = m<0; WN0^hDc-  
    ZK;HW  
    k~?@~xm,R  
    z = y; (<f[$ |%  
    if any(idx_pos) )a.U|[:y[+  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); bZ389dSn  
    end 1*a2s2G '  
    if any(idx_neg) 5%Q!R%  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); y.>r>o"0  
    end 6S<pWR~  
    "];19]x6q  
    |OC6yN *P)  
    % EOF zernfun Gf"/fpeQx  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  CM|?;PBuv  
    cba ~  
    DDE还是手动输入的呢? ncjtv"2R  
    4At{(fw W  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究