下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, Hm8EYPrJ
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, +i q+
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? 4/mj"PBKL
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? q)z1</B-
v0H>iKh7
=E6i1x%j
+^]PBMM1w
+gD)Yd
function z = zernfun(n,m,r,theta,nflag) -V<=`e
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. zYgK$u^H
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N *fuGVA
% and angular frequency M, evaluated at positions (R,THETA) on the 46.q anh
% unit circle. N is a vector of positive integers (including 0), and 8en#PH }
% M is a vector with the same number of elements as N. Each element !z4Hj{A_
% k of M must be a positive integer, with possible values M(k) = -N(k) 0F;(_2V-
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, 40l#'< y;
% and THETA is a vector of angles. R and THETA must have the same MR l*rK
% length. The output Z is a matrix with one column for every (N,M) Jz:W-o
% pair, and one row for every (R,THETA) pair. "#eNFCo7k
% Jj^<:t5{rN
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 5sV/N] !
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), _
/28Cw
% with delta(m,0) the Kronecker delta, is chosen so that the integral ~:RDw<PWp
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ~1wdAq`'a
% and theta=0 to theta=2*pi) is unity. For the non-normalized 2dV\=vd
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. \SH D
% n9-q5X^e>
% The Zernike functions are an orthogonal basis on the unit circle. w]+BBGYQKb
% They are used in disciplines such as astronomy, optics, and ;6&=]I
% optometry to describe functions on a circular domain. OD@@O9
% iR}i42Cu
% The following table lists the first 15 Zernike functions. ,ex(pmZ;
% E*!zJ,@8
% n m Zernike function Normalization h+'eFAZ
% -------------------------------------------------- ?D$b%G{
% 0 0 1 1 XtH_+W+O
% 1 1 r * cos(theta) 2 ?\p%Mx?
% 1 -1 r * sin(theta) 2 0.+Z;j
% 2 -2 r^2 * cos(2*theta) sqrt(6) K&a]pL6D
% 2 0 (2*r^2 - 1) sqrt(3) RxDxLU2kt
% 2 2 r^2 * sin(2*theta) sqrt(6) (Ss77~W7
% 3 -3 r^3 * cos(3*theta) sqrt(8) .]P;fCQmM
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) %RD7=Z-z
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) H|Fqc=qp
% 3 3 r^3 * sin(3*theta) sqrt(8) YvP"W/5
% 4 -4 r^4 * cos(4*theta) sqrt(10) ]zR;%p
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) {HJ`%xN|
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) [{!j9E?(
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Er+3S@sfq,
% 4 4 r^4 * sin(4*theta) sqrt(10) ThqfZl=V
% -------------------------------------------------- *$Wx*Jo
% q!h*3mNm
% Example 1: (LvOsr~
% 'hHX"\|RA
% % Display the Zernike function Z(n=5,m=1) ",
Rw%_
% x = -1:0.01:1; ujHzG}2z
% [X,Y] = meshgrid(x,x); Z$=$oJzB
% [theta,r] = cart2pol(X,Y); UeiJhH,u
% idx = r<=1; $=g.-F%*=
% z = nan(size(X)); 2,QApW_Y
% z(idx) = zernfun(5,1,r(idx),theta(idx)); &/#Tk>:
% figure hw.demD
% pcolor(x,x,z), shading interp %m\G'hY2
% axis square, colorbar xbH!:R;
% title('Zernike function Z_5^1(r,\theta)') f!kdcr=/"
% 2d J)4
% Example 2: Pv$"DEXA2
% RknSWuFKt
% % Display the first 10 Zernike functions &l}xBQAL
% x = -1:0.01:1; WMz|FFKVY
% [X,Y] = meshgrid(x,x); zSvHv s
% [theta,r] = cart2pol(X,Y); yD
id`ym
% idx = r<=1; `YU:kj<6
% z = nan(size(X)); O09g b[
% n = [0 1 1 2 2 2 3 3 3 3]; *z:lq2"G
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; i@?<]n
% Nplot = [4 10 12 16 18 20 22 24 26 28]; n)7$xYuH
% y = zernfun(n,m,r(idx),theta(idx)); R\=\6( "
% figure('Units','normalized') z8[|LF-dx
% for k = 1:10 6!PX!
UkF
% z(idx) = y(:,k); ^>}[[:( 6/
% subplot(4,7,Nplot(k)) FHPZQC8
% pcolor(x,x,z), shading interp *E q7r>[
% set(gca,'XTick',[],'YTick',[]) ;? QAPTz
% axis square <yaw9k+P
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) b0CaoSWo
% end [B;Ek\ 5W
% vh.tk^&
% See also ZERNPOL, ZERNFUN2. ?BZ`mrH^
FrM~6A_
c] 9CN
% Paul Fricker 11/13/2006 *1]k&#s
3\~fe/z'I
eeR@p$4i
wbKBwI5w
"JGig!9
% Check and prepare the inputs: HSFf&|qqx
% ----------------------------- _;RD-kv
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) '"p*FN
error('zernfun:NMvectors','N and M must be vectors.') d33Nx)No
end Q"_T040B
Y-k~ 7{7
f;dU72]q+
if length(n)~=length(m) gx
R|S
error('zernfun:NMlength','N and M must be the same length.') d(tf: @
end WC; a
zC;lfy{f=
m8A1^ R
n = n(:); <G =@Gl
m = m(:); ^moIMFl
if any(mod(n-m,2)) RLX^'g+P
error('zernfun:NMmultiplesof2', ... UoT}m^ G
'All N and M must differ by multiples of 2 (including 0).') l+qtA~V&2
end Pu*UZcXY
VQ}3r)ch
md
LJ,w?{
if any(m>n) f=Y9a$.:M
error('zernfun:MlessthanN', ... }r<^]Q*&p
'Each M must be less than or equal to its corresponding N.') [`dipLkr
end q9]L!V9Rv
m3e49 bP
Tz~ftf
if any( r>1 | r<0 ) l~c>jm8.
error('zernfun:Rlessthan1','All R must be between 0 and 1.') V2skr_1
end X}^gmu<Vla
;itg>\p3
HKw4}FC*
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) BVeNK=7m%
error('zernfun:RTHvector','R and THETA must be vectors.') xGk4KcxKs
end h(up1(x
DMW:%h{
GQWTQIl]
r = r(:); a}hM}U!
theta = theta(:); b;ZAz
length_r = length(r); =_3qUcOP
if length_r~=length(theta) ~[6|VpGc:
error('zernfun:RTHlength', ... cNvcpv
'The number of R- and THETA-values must be equal.') _@76eZd
end c17==S
6%1o<{(%f
bd}SB -D
% Check normalization: IbwRb
% -------------------- KK|Jach
if nargin==5 && ischar(nflag) 54%}JA][
isnorm = strcmpi(nflag,'norm'); }Cf[nGh|B
if ~isnorm x*V<afLY[
error('zernfun:normalization','Unrecognized normalization flag.') 8
\Oiv$r
end ^q2zqC
else +2O_LPV$,
isnorm = false; (DAJ(r~
end !~v>&bCG>9
Bk<P~-I
gu&oCT
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 5!*a,$S
% Compute the Zernike Polynomials ^123.Ru|t
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% L\DaZ(Y
1A`";E&
e vuP4-[y
% Determine the required powers of r: KYN{iaj
% ----------------------------------- M+:wa@Kl
m_abs = abs(m); g.s oNqt=
rpowers = []; Df^S77&c!
for j = 1:length(n) IrC=9%pd$R
rpowers = [rpowers m_abs(j):2:n(j)]; ~G:7*:[b
end Pq%cuT%
rpowers = unique(rpowers); Z]d]RL&r
'"^JNb^I
;wrgpP3
% Pre-compute the values of r raised to the required powers, ]+P&Y:
% and compile them in a matrix: Zlo,#q
% ----------------------------- eH{ 9w8~
if rpowers(1)==0 @( l`_Wx
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); t;3.;
rpowern = cat(2,rpowern{:}); F)Lbr>H?I
rpowern = [ones(length_r,1) rpowern]; ba13^;fm#
else ^EOjq
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); !)34tu2
rpowern = cat(2,rpowern{:}); %\0 Y1!Hw
end w3D_ c~
3LREue7Gr
Y{=@^4|]
% Compute the values of the polynomials: oDa{HP\O]W
% -------------------------------------- Km7
y = zeros(length_r,length(n)); {J$aA6t:"T
for j = 1:length(n) u7d]%<~'$F
s = 0:(n(j)-m_abs(j))/2; .EO1{2=
pows = n(j):-2:m_abs(j); 9K!='u`
for k = length(s):-1:1 KJ_R@,v\
p = (1-2*mod(s(k),2))* ... nCU4a1rZ
prod(2:(n(j)-s(k)))/ ... 6tguy
prod(2:s(k))/ ... @Rm/g#!h"
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... pyKag;ZtP
prod(2:((n(j)+m_abs(j))/2-s(k))); )w-?|2-w5
idx = (pows(k)==rpowers); a2TC,
y(:,j) = y(:,j) + p*rpowern(:,idx); 5mU_S\)4:z
end Q1z04m1_y[
S J5kA`
if isnorm S6]':
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); {Y Ymt!Ic
end 8*wI^*Q
end e=2D^G#qE
% END: Compute the Zernike Polynomials bd4q/w4q
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% eORt
qX8*
3nO|A: t
k&b>-QP6
% Compute the Zernike functions: ~6tY\6$9f
% ------------------------------
<T).+
M/
idx_pos = m>0; P*>V6SK>b
idx_neg = m<0; 7
<xxOY>y
U{EW +>
hlRE\YO&8R
z = y; ;QYK {3R?
if any(idx_pos)
cO:x{~
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); jJ|;Nwm<[
end 4rm/+Zes
if any(idx_neg) iwbjjQPr
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); c,@6MeKHq
end :R)IaJ6)
.
fIodk
&+v&Dd&
% EOF zernfun x+pFu5,