下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, E\=23[0
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 1ml{oqNj
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? Ru^j~Cj5
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? @D&}ZV=J
Ft$tL;
%N-f9o8
"( P-VX
hj-#pL-t
function z = zernfun(n,m,r,theta,nflag) U6R~aRJ;
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. b!-F!Lq/+0
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N w 7 j
hS
% and angular frequency M, evaluated at positions (R,THETA) on the srfM"Lb'
% unit circle. N is a vector of positive integers (including 0), and IgU65p
% M is a vector with the same number of elements as N. Each element 0hx EI
% k of M must be a positive integer, with possible values M(k) = -N(k) 6(.]TEu0
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, M%Dv-D{
% and THETA is a vector of angles. R and THETA must have the same h;8^vB y
% length. The output Z is a matrix with one column for every (N,M) C@[f Z
% pair, and one row for every (R,THETA) pair. lCMU{)
% #i~2C@]
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ^ s@'nKc
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), C'jE'B5b
% with delta(m,0) the Kronecker delta, is chosen so that the integral nd1%txIsr
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, a8!/V@a
% and theta=0 to theta=2*pi) is unity. For the non-normalized H-aSLc
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. X$4 5<oz
% ]f"l4ay@M
% The Zernike functions are an orthogonal basis on the unit circle. ,k5b,}tN
% They are used in disciplines such as astronomy, optics, and %4rPkPAtrp
% optometry to describe functions on a circular domain. }28,fb
/
% 4TW>BA
% The following table lists the first 15 Zernike functions. }vLK-Vv
% QX j4cg
% n m Zernike function Normalization E
_DSf
% -------------------------------------------------- #RwqEZ
% 0 0 1 1 w;p!~o &
% 1 1 r * cos(theta) 2 m!-,K8
% 1 -1 r * sin(theta) 2 s&7,gWy}BE
% 2 -2 r^2 * cos(2*theta) sqrt(6) Nn;p1n
dN
% 2 0 (2*r^2 - 1) sqrt(3) T m0m$l
% 2 2 r^2 * sin(2*theta) sqrt(6) #YMU}4=:
% 3 -3 r^3 * cos(3*theta) sqrt(8) iB,Nqs3i*
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) [:!D.@h|
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) _,JdL'[d
% 3 3 r^3 * sin(3*theta) sqrt(8) ]M;aVw<!
% 4 -4 r^4 * cos(4*theta) sqrt(10) ~ST7@-D0
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) y-iuOzq4
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) Iv5agh%
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) elBmF#,j7
% 4 4 r^4 * sin(4*theta) sqrt(10) iX{Lc+u3
% -------------------------------------------------- ['SZe0
% phA^ kdW
% Example 1: SH/KC
% loLN
~6
% % Display the Zernike function Z(n=5,m=1) Q'~2,%3<
% x = -1:0.01:1; 6(`Bl$M9
% [X,Y] = meshgrid(x,x); )`ZTu -|
% [theta,r] = cart2pol(X,Y); G3&l|@5
% idx = r<=1; Z+< zKn}
% z = nan(size(X)); )NwIEk>Tf
% z(idx) = zernfun(5,1,r(idx),theta(idx)); <d\Lvo[
% figure 9aE!!
(E
% pcolor(x,x,z), shading interp ^=nJ,-(h_
% axis square, colorbar 6-@
X
% title('Zernike function Z_5^1(r,\theta)') ;{e ;6Hq
% ,
LP |M:
% Example 2:
5Y\wXqlY
% 9*+%Qt,{B
% % Display the first 10 Zernike functions 5mD]uB9
% x = -1:0.01:1; OI9V'W$
% [X,Y] = meshgrid(x,x); hYS*J908
% [theta,r] = cart2pol(X,Y); I3A@0'Vm;L
% idx = r<=1; ^uu)|
% z = nan(size(X)); Z[DiLXHL
% n = [0 1 1 2 2 2 3 3 3 3]; Ed%8| M3
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; g$\Z-!(
% Nplot = [4 10 12 16 18 20 22 24 26 28]; 75t\= 6#
% y = zernfun(n,m,r(idx),theta(idx)); YJlpP0;++
% figure('Units','normalized') ?=%Q$|]-
% for k = 1:10 Q-X<zn
% z(idx) = y(:,k); 4&Uq\,nx
% subplot(4,7,Nplot(k)) z@nJ-*'U8
% pcolor(x,x,z), shading interp fXPD^}?Ux4
% set(gca,'XTick',[],'YTick',[]) ^&'&Y>
% axis square N|v3a>;*l
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) abq$OI
% end p=Nord
% S?W!bkfn
% See also ZERNPOL, ZERNFUN2. H}OOkzwrA
)19As8rL/o
cC.=,n
% Paul Fricker 11/13/2006 mr+J#
K0#kW \4`
2l)J,z
Cz2OGM*mz?
!H`Q^Xf}
% Check and prepare the inputs: /-ebx~FX&
% ----------------------------- ?qeBgkL(B^
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) kMGK8y
error('zernfun:NMvectors','N and M must be vectors.') l^s\^b=W
end ?NZKu6
:wJ=t/ho
{
jnQoxN
if length(n)~=length(m) D{&0r.2F
error('zernfun:NMlength','N and M must be the same length.') fI2/v<[
end 5} 9}4e
'2u(fLq3h
bqwQi>^Cw
n = n(:); (o/HLmr@Y
m = m(:); "5]Fl8c?
if any(mod(n-m,2)) I*/?*p/I
error('zernfun:NMmultiplesof2', ... Th&*
d;
'All N and M must differ by multiples of 2 (including 0).') S4j` =<T,
end b_&;i4[
?*}^xXI/
B5>1T[T'-
if any(m>n) 6~KtT{MYQ
error('zernfun:MlessthanN', ... B/S~Jn
'Each M must be less than or equal to its corresponding N.') N;XaK+_2F
end FhZ^/= As
,?"cKdiZ
~c>* 3*
if any( r>1 | r<0 ) oT7=
error('zernfun:Rlessthan1','All R must be between 0 and 1.') H[ 6L!
end g">E it*[
)$#]h]ac
'iM;e K
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) <#U9ih
2
error('zernfun:RTHvector','R and THETA must be vectors.') ;-=Q6Ms8
end O2|[g8(_F
z~TG~_s
{*VCR
r = r(:); :` >|N|i
theta = theta(:); (9_~R^='y
length_r = length(r); j';V(ZY&BB
if length_r~=length(theta) mE3^5}[>
error('zernfun:RTHlength', ... 0n25{N
'The number of R- and THETA-values must be equal.') LRO'o{4$E
end MTZbRi6z
yUb$EMo\
xjHOrr
OQ
% Check normalization: Byf5~OC
% -------------------- u<x2"0f
if nargin==5 && ischar(nflag) k}-@N;zq
isnorm = strcmpi(nflag,'norm'); S/}6AX#F4
if ~isnorm GE`:bC3
error('zernfun:normalization','Unrecognized normalization flag.') o8+ZgXct
end l MCoc 'ae
else +.N3kH
isnorm = false; \%nFCK0
end [#y/`
Hl"qLrb4
(fmcWHs
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% tETT\y|'
% Compute the Zernike Polynomials 14TA( v]T
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% N zY}-:{
c}iVBN6~.<
2Yd0:$a
% Determine the required powers of r: % AqUVt9}
% ----------------------------------- D9H(kk
m_abs = abs(m); lv_|ws
rpowers = []; Vv=/{31
for j = 1:length(n) #J.v[bOWQ
rpowers = [rpowers m_abs(j):2:n(j)]; Z%3]
end Sa!r ,l
rpowers = unique(rpowers); ^,L vQW4
csg:#-gE
G}aw{Vbg_
% Pre-compute the values of r raised to the required powers, *vn^
W
% and compile them in a matrix: LG6VeYe|\X
% ----------------------------- NET?Ep
if rpowers(1)==0 ~b+TkPU
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 8X=cGYC#
rpowern = cat(2,rpowern{:}); ,}15Cse
rpowern = [ones(length_r,1) rpowern]; 5'f4=J$Z)
else
laX(?{_
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); >$=-0?.
rpowern = cat(2,rpowern{:}); :'aT4
end 1iq,Gd-G.
)X{ x\
/N
Qmxe*@{`
% Compute the values of the polynomials: Jy)E!{#x
% --------------------------------------
7;dTQ.%n
y = zeros(length_r,length(n)); n}9vAvC
for j = 1:length(n) C3kxw1*
s = 0:(n(j)-m_abs(j))/2; |;2Y|>=
pows = n(j):-2:m_abs(j); >jEn>H?
for k = length(s):-1:1 O)n LV~X
p = (1-2*mod(s(k),2))* ... VuqN)CE^Uq
prod(2:(n(j)-s(k)))/ ... |FZ)5
prod(2:s(k))/ ...
#:0dqD=
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... .'o<.\R8
prod(2:((n(j)+m_abs(j))/2-s(k))); y=i_:d0M
idx = (pows(k)==rpowers); g z!q
y(:,j) = y(:,j) + p*rpowern(:,idx); =[%ge{ ,t
end ":E^&yQ
OgJd^
if isnorm u"IYAyzL
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); %2Q:+6)
end UpL1C~&
end ;-p1z%
u
% END: Compute the Zernike Polynomials 6@pPaq6
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% O9OD[VZk
<V?M~u[7f
0yW#).D^b
% Compute the Zernike functions: V4cCu~(3;~
% ------------------------------ {~.~ b+v
idx_pos = m>0; 68ce+|
idx_neg = m<0; V@gweci
:uhU<H<,f
Df;EemCh
z = y; L/Cp\|~ O
if any(idx_pos) 4Q2=\-KFj
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); "]M:+mH{]
end l` 9<mL
if any(idx_neg) *,$cW,LN
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 1iWo*+5
end )N[9r{3
6?y<F4
[{.e1s<EK
% EOF zernfun +We_[Re`<