切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9412阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, E4/Dr}4  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 3,qr-g|;jM  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? 8wFJ4v3  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? 2uW; xfeY  
    #h ]g?*}OJ  
    SO'vp z{  
    O m2d .7S  
    S|N_o   
    function z = zernfun(n,m,r,theta,nflag) X5$Iyis  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. ;dgp+  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N zHRplm+ i  
    %   and angular frequency M, evaluated at positions (R,THETA) on the >} i  E(  
    %   unit circle.  N is a vector of positive integers (including 0), and U!\.]jfS  
    %   M is a vector with the same number of elements as N.  Each element _)m]_eS._  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) {hrX'2:ClT  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, I1M%J@Cz  
    %   and THETA is a vector of angles.  R and THETA must have the same BW*rIn<?G  
    %   length.  The output Z is a matrix with one column for every (N,M) ~=l;=7 T  
    %   pair, and one row for every (R,THETA) pair. ?IT*: A] E  
    % yN(%-u"  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike A$0fKko  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), = m#?neop  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral y766; X:J  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ]Q)OL  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized =dYqS[kJW  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. c,+:i1IAy  
    % JP [K;/  
    %   The Zernike functions are an orthogonal basis on the unit circle. LFRlzz;  
    %   They are used in disciplines such as astronomy, optics, and -gX1-,dE  
    %   optometry to describe functions on a circular domain. <6 Uf.u`  
    % }00BllJ  
    %   The following table lists the first 15 Zernike functions. Txb#C[`  
    % _F|Ek;y%  
    %       n    m    Zernike function           Normalization wjB:5~n50k  
    %       -------------------------------------------------- /"Uqa,{  
    %       0    0    1                                 1 [5Mr@f4I  
    %       1    1    r * cos(theta)                    2 'e'cb>GnA  
    %       1   -1    r * sin(theta)                    2 B*Dz{a^.:  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ar+9\  
    %       2    0    (2*r^2 - 1)                    sqrt(3) z5*'{t)  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) K`fuf=  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) M&9+6e'-F  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) $}<e|3_  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) '!~)?C<  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) -k"/X8  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 5MJS ~(  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) z[qDkL  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) oV78Hq6  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) $c(nF01  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) wgGl[_)  
    %       -------------------------------------------------- G mA< g  
    % ^RIl  
    %   Example 1: &E5g3lf  
    % ,UF_`|  
    %       % Display the Zernike function Z(n=5,m=1) .V8Lauz8  
    %       x = -1:0.01:1; N6i Q8P -  
    %       [X,Y] = meshgrid(x,x); b,1ePS  
    %       [theta,r] = cart2pol(X,Y); {9.|2%a  
    %       idx = r<=1; lA8`l>I  
    %       z = nan(size(X)); UH"%N)[  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); CB}2j  
    %       figure [FR`Z=%  
    %       pcolor(x,x,z), shading interp `*1p0~cu  
    %       axis square, colorbar r$s Qf&=  
    %       title('Zernike function Z_5^1(r,\theta)') 4ID5q~  
    % ' %o#q6O  
    %   Example 2: HY:7? <r  
    % #Ki[$bS~6  
    %       % Display the first 10 Zernike functions L$M9w  
    %       x = -1:0.01:1; !%%6dB@%t  
    %       [X,Y] = meshgrid(x,x); m^;f(IK5  
    %       [theta,r] = cart2pol(X,Y); "oO%`:pb  
    %       idx = r<=1; 3AN/ H  
    %       z = nan(size(X)); WCixKYq  
    %       n = [0  1  1  2  2  2  3  3  3  3]; s`~IUNJ@P  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 'E""amIJ  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; ge8ZsaiU  
    %       y = zernfun(n,m,r(idx),theta(idx)); 3L}A3de'  
    %       figure('Units','normalized') &6nWzF  
    %       for k = 1:10 T1=fNF  
    %           z(idx) = y(:,k); s?L  
    %           subplot(4,7,Nplot(k)) Z"fJ`--  
    %           pcolor(x,x,z), shading interp VRB;$  
    %           set(gca,'XTick',[],'YTick',[]) dDLeSz$b  
    %           axis square WNrk}LFof  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) r3UUlR/Do  
    %       end /f;~X"!  
    % ]N F[>uiW  
    %   See also ZERNPOL, ZERNFUN2. sLxc(d'A  
    Q>i^s@0  
    ##"HF  
    %   Paul Fricker 11/13/2006 JDT`C2-Q  
    [MY|T<q  
    A6(/;+n  
    7J<5f)  
    RPRBmb940  
    % Check and prepare the inputs: iGB}Il)  
    % ----------------------------- $1`2 kM5  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) z-)O9PV  
        error('zernfun:NMvectors','N and M must be vectors.') SO0PF|{\r  
    end g]0_5?i  
    o&$A]ph8X  
    }-=|^  
    if length(n)~=length(m) xU`p|(SS-  
        error('zernfun:NMlength','N and M must be the same length.') #KZBsa@p  
    end )\$|X}uny&  
    #AQV(;r7@  
    v` 1lxX'*  
    n = n(:); U # qK.  
    m = m(:); E~"y$Fqe  
    if any(mod(n-m,2)) -(H0>Ap  
        error('zernfun:NMmultiplesof2', ... 1iF1GkLEq  
              'All N and M must differ by multiples of 2 (including 0).') 6T`i/".  
    end c{w2Gt!  
    h@ry y\9  
    Z(CkZll  
    if any(m>n) f ) L  
        error('zernfun:MlessthanN', ... $f7l34Sf3  
              'Each M must be less than or equal to its corresponding N.') },-H"Qs  
    end 92oFlEJ  
    :d'8x  
    }k.Z~1y  
    if any( r>1 | r<0 ) e+fN6v5pU  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 7B66]3v  
    end K]w'&Qm8W  
    /N.U/MPL_  
    QoT;WM Z  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) LZxNAua  
        error('zernfun:RTHvector','R and THETA must be vectors.') |P?*5xPB  
    end @cXMG6:{  
    KVa  
    { 2f-8Z&>  
    r = r(:); O?#7N[7  
    theta = theta(:); Wmv#:U  
    length_r = length(r); \ @2R9,9E  
    if length_r~=length(theta) Ab.(7GFK  
        error('zernfun:RTHlength', ... U|R_OLWAg  
              'The number of R- and THETA-values must be equal.') a0H+.W+]  
    end \:LW(&[!  
    BnF^u5kv%  
    /Lr.e%  
    % Check normalization: FGBbO\< /  
    % -------------------- H3-hcx54T  
    if nargin==5 && ischar(nflag) sc#qwQ#  
        isnorm = strcmpi(nflag,'norm'); 5*u+q2\F  
        if ~isnorm \1M4Dl5!  
            error('zernfun:normalization','Unrecognized normalization flag.') 'PW5ux@`<  
        end `C'H.g\>2Q  
    else U- k`s[dv  
        isnorm = false; +X 88;-  
    end &s>Jb?_5Mx  
    nKj7.,>;:<  
    2&J)dtqz  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% }3WxZv]I}  
    % Compute the Zernike Polynomials Ar#(psU  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +G>\-tjSD  
    @d1Q"9}B  
    KLk~Y0$:v  
    % Determine the required powers of r: +D*Z_Yh6  
    % ----------------------------------- 4Ftu  
    m_abs = abs(m); 42ge3>  
    rpowers = []; .O<obq~;C  
    for j = 1:length(n) AbW6x  
        rpowers = [rpowers m_abs(j):2:n(j)]; t4-[Z$ n5  
    end !C.4<?*|  
    rpowers = unique(rpowers); }"%N4(Kd  
    a(ZcmYzXU  
    )%fH(ns(  
    % Pre-compute the values of r raised to the required powers, X1_5KH  
    % and compile them in a matrix: :7;@ZEe  
    % ----------------------------- lr&a;aZp  
    if rpowers(1)==0 lPAQ3t!,  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); w_VP J  
        rpowern = cat(2,rpowern{:}); _7y[B&g[r  
        rpowern = [ones(length_r,1) rpowern]; %iqD5x$OA  
    else vW@=<aS Z  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); K wVbbC3  
        rpowern = cat(2,rpowern{:}); es0hm2HT3  
    end Ab;.5O$y  
    #,'kXj  
    }c:M^Ff  
    % Compute the values of the polynomials: @IZnFHN  
    % -------------------------------------- m.0*NW  
    y = zeros(length_r,length(n)); 3=V &K-  
    for j = 1:length(n) ql~J8G9  
        s = 0:(n(j)-m_abs(j))/2; +1!ia]  
        pows = n(j):-2:m_abs(j); o^wqFX(Y  
        for k = length(s):-1:1 2MK-5 Kg  
            p = (1-2*mod(s(k),2))* ... O^rDHFj,  
                       prod(2:(n(j)-s(k)))/              ... u)Whr@m  
                       prod(2:s(k))/                     ... WTiD[u  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... `kSZX:=};  
                       prod(2:((n(j)+m_abs(j))/2-s(k)));  4Wp=y  
            idx = (pows(k)==rpowers); hgE71H\s  
            y(:,j) = y(:,j) + p*rpowern(:,idx); ZYNsHcTY  
        end oxtay7fx  
         I5W~g.<6  
        if isnorm #T"4RrR  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); tX~w{|k  
        end EKN~H$.  
    end (^>J&[=  
    % END: Compute the Zernike Polynomials K:WDl;8 (d  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% sa8Vvzvo.  
    ue>D 7\8  
    :rP=t ,  
    % Compute the Zernike functions: \GU<43J2uo  
    % ------------------------------ UC$ppTCc?  
    idx_pos = m>0; $<OD31T  
    idx_neg = m<0; o{[qZc_%  
    D)}v@je"yP  
    ^=*;X;7  
    z = y; !p/goqT~dY  
    if any(idx_pos) -tU'yKhn  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); lk=<A"^S  
    end *yGGBqd  
    if any(idx_neg) lmhLM. 2  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); dgP3@`YS  
    end Ws12b $  
    >.D4co>  
     _','9|  
    % EOF zernfun [<TrS/,)>  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  XU7qd:|  
    BIL Lq8)  
    DDE还是手动输入的呢? ;sFF+^~L  
    P7/X|M z  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究