切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8999阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, EZ{\D!_Y  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, QF&6?e06p0  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? x,uBJ  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? abSq2*5K  
    $ 9=8@  
    5k~\or 5_  
    #C x%OIi[f  
    GV>&g  
    function z = zernfun(n,m,r,theta,nflag) }lO }x  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. ZB0+GG\  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N b5S7{"<V  
    %   and angular frequency M, evaluated at positions (R,THETA) on the I=odMw7Hj  
    %   unit circle.  N is a vector of positive integers (including 0), and P5P< "  
    %   M is a vector with the same number of elements as N.  Each element cm,4&x6  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) bl$j%gI%,  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, dm& /K 4c  
    %   and THETA is a vector of angles.  R and THETA must have the same O8y9dX-2  
    %   length.  The output Z is a matrix with one column for every (N,M) .)t (:)*b  
    %   pair, and one row for every (R,THETA) pair. u>}zm_  
    % HzEGq,.  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Z /h|\SyJ  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), qRl/Sl#F  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral j%WY ,2P  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, }DHUTP2;yz  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized Y;g% e3nu  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. GMe0;StT  
    % $P;UoqG<&  
    %   The Zernike functions are an orthogonal basis on the unit circle. }<&d]N  
    %   They are used in disciplines such as astronomy, optics, and H:{?3gk.P3  
    %   optometry to describe functions on a circular domain. C5;wf3  
    % 5zVQ;;9  
    %   The following table lists the first 15 Zernike functions. #fj[kq)&S  
    % qy&\Xgn;GA  
    %       n    m    Zernike function           Normalization z{/LX \  
    %       -------------------------------------------------- 2qXo{C3  
    %       0    0    1                                 1 q<EEb  
    %       1    1    r * cos(theta)                    2 OEI3eizgH  
    %       1   -1    r * sin(theta)                    2 -%i#j>  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 1lsLG+Rpxi  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 3C#RjA-2[  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) r@Nl 2  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) & +]x;K  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 3(o7co-f  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 1OP" 5f  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) dk8y>uLr_  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 1 w17L]4  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) .jaZ|nN8`  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) + ~~ Z0.[  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ]zcV]Qj$~  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) cyBW0wV1  
    %       -------------------------------------------------- kfRJ\"`   
    % p+)C$2YK  
    %   Example 1: #'8)u)!  
    % P#v^"}.Wd  
    %       % Display the Zernike function Z(n=5,m=1) SM$\;)L  
    %       x = -1:0.01:1; 0Nt%YP  
    %       [X,Y] = meshgrid(x,x); B>@D,)/bT5  
    %       [theta,r] = cart2pol(X,Y); BvQUn@ XE  
    %       idx = r<=1; _0m}z%rI  
    %       z = nan(size(X)); gW}}5Xq  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); +[_gyLN<5b  
    %       figure &1~Re.* B  
    %       pcolor(x,x,z), shading interp v4D!7 t&v"  
    %       axis square, colorbar AoIc9E lEX  
    %       title('Zernike function Z_5^1(r,\theta)') 0JyqCb l  
    % pagC(F  
    %   Example 2: $YPQC  
    % ,8~dz  
    %       % Display the first 10 Zernike functions [NjajA~z>F  
    %       x = -1:0.01:1; "h$D7 mL  
    %       [X,Y] = meshgrid(x,x); sSV^5  
    %       [theta,r] = cart2pol(X,Y); H6{Rd+\Z  
    %       idx = r<=1; Z@u ;Z[@  
    %       z = nan(size(X)); `BpCRKTG  
    %       n = [0  1  1  2  2  2  3  3  3  3]; s<,"Hsh^CR  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; [?|5 oaK  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; c[Yq5Bu{y  
    %       y = zernfun(n,m,r(idx),theta(idx)); PK8V2Ttv  
    %       figure('Units','normalized') eWw y28t  
    %       for k = 1:10 f@L \E>t  
    %           z(idx) = y(:,k); L PMb0F}"5  
    %           subplot(4,7,Nplot(k)) `!_?uT  
    %           pcolor(x,x,z), shading interp 1&}G+y  
    %           set(gca,'XTick',[],'YTick',[]) pRmEryR(U  
    %           axis square |\/~ 8qP  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) #|q;t   
    %       end ijg,'a~3E  
    % IN>TsTo  
    %   See also ZERNPOL, ZERNFUN2. =O;eY?  
    4">84,-N  
    P^ by'b+zI  
    %   Paul Fricker 11/13/2006 _4O[[~  
    Of!|,2`(  
    gl Li  
    D8W(CE^}  
    =w t-YM  
    % Check and prepare the inputs: /1U,+g^O>  
    % ----------------------------- ^g\h]RD}  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 3EO#EYAHiM  
        error('zernfun:NMvectors','N and M must be vectors.') b\H/-7<  
    end =GLYDV  
    []!tT-Gzy  
    - f+CyhR"*  
    if length(n)~=length(m) 2zwuvgiZ  
        error('zernfun:NMlength','N and M must be the same length.') v#w4{.8)  
    end N c9<X  
    !P+~ c0DF  
    (Jm(}X]sh[  
    n = n(:); zC[i <'h!T  
    m = m(:); +HYN$>  
    if any(mod(n-m,2)) S`iM.;|`O  
        error('zernfun:NMmultiplesof2', ... Z5 w`-#  
              'All N and M must differ by multiples of 2 (including 0).') 65 NWX8f}  
    end ;H`=):U  
    u)wu=z8  
    !Mm+bWn=mB  
    if any(m>n) tPQ2kEW  
        error('zernfun:MlessthanN', ... N.kuE=X  
              'Each M must be less than or equal to its corresponding N.') w}fqs/)w  
    end %9fa98>  
    @?(nwj~ s`  
    6f<*1YR F  
    if any( r>1 | r<0 ) g4?Q.'dZr  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') )WzGy~p8K  
    end /2=_B4E2  
    qFB9,cUqh  
    aU,0gvI(}  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) }mkA Hmu4  
        error('zernfun:RTHvector','R and THETA must be vectors.') qQ3 ]E][/  
    end !]n{l_5r  
    N^)<)?  
    {b\Y?t^>f  
    r = r(:); bgkbwE  
    theta = theta(:); 30wYc &H  
    length_r = length(r); hlY S=cgY=  
    if length_r~=length(theta) 77Q4gw~2U  
        error('zernfun:RTHlength', ... 1)nM#@%](h  
              'The number of R- and THETA-values must be equal.') T9&,v<f  
    end TPV6$a<  
    :..E:HdYO  
    [J[ysW})W  
    % Check normalization: >"2\D|-/  
    % -------------------- TPN:cA6[c  
    if nargin==5 && ischar(nflag) [M,27  
        isnorm = strcmpi(nflag,'norm'); eHfG;NsV /  
        if ~isnorm *+4>iL*:  
            error('zernfun:normalization','Unrecognized normalization flag.') RBMMXJj  
        end oi%5t)VsS  
    else mH7CgI  
        isnorm = false; 3M`hn4)K  
    end j};pv2  
    :~qtvs;{  
    8 RzF].)  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |TNiKy  
    % Compute the Zernike Polynomials U>3%!83kF  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 59"Nn\}3gE  
    .j+2x[`l  
    o{ YW  
    % Determine the required powers of r: ,& \&::R  
    % ----------------------------------- q_%w l5\F  
    m_abs = abs(m); W? 6  
    rpowers = []; :c+a-Py $E  
    for j = 1:length(n) A1=$kzw{UH  
        rpowers = [rpowers m_abs(j):2:n(j)]; tOlzOBzR  
    end w2M IY_N?  
    rpowers = unique(rpowers); ps{&WT3a  
    ?$`1%Y9  
    8O;rp(N.n  
    % Pre-compute the values of r raised to the required powers, lL(}dbT~N  
    % and compile them in a matrix: ,i$(yx?  
    % ----------------------------- !pF KC)  
    if rpowers(1)==0 s\3Z?zm8  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); T{v<  
        rpowern = cat(2,rpowern{:}); D{Jc+Q$  
        rpowern = [ones(length_r,1) rpowern]; o#KPrW`XJ/  
    else Kr+Bt y  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Xbsj:Ko]]U  
        rpowern = cat(2,rpowern{:}); }X W#?l  
    end I _Mqh4];  
    Nsy9 h}+A  
    F~uA-g  
    % Compute the values of the polynomials: L;(3u'  
    % -------------------------------------- QBBJ1U  
    y = zeros(length_r,length(n)); r)Mx.`d!  
    for j = 1:length(n) 8zB+%mcF  
        s = 0:(n(j)-m_abs(j))/2; >> 8KL`l  
        pows = n(j):-2:m_abs(j); C>(M+qXL+  
        for k = length(s):-1:1 ,:Rq  
            p = (1-2*mod(s(k),2))* ... H?zCIue3  
                       prod(2:(n(j)-s(k)))/              ... %lqG*dRx0  
                       prod(2:s(k))/                     ... Z:o' +oh  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... zWR*g/i  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); U mx  
            idx = (pows(k)==rpowers); "351s3ff  
            y(:,j) = y(:,j) + p*rpowern(:,idx); XH Zu>[  
        end A?{aUQB~|  
         fAA@ziKg  
        if isnorm 3\U,Kg  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); f^yLwRUD  
        end fU){]YP  
    end *MyS7<  
    % END: Compute the Zernike Polynomials &V,-W0T_  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% BOl$UJ|K  
    vG Lb2Q  
    ~ @"Qm;} "  
    % Compute the Zernike functions: b\uB  
    % ------------------------------ URzE+8m^  
    idx_pos = m>0; GT`<jzAiQ  
    idx_neg = m<0; 7_d#XKz@  
    Pt)}HF|u  
    1_E3DXe  
    z = y; b<8J;u<  
    if any(idx_pos) [8J}da}  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 9QM"JEu@  
    end 0R!}}*Ee>q  
    if any(idx_neg) $R#L@iL-  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); :@4>}k*  
    end x`|tT%q@l  
    gS o(PW)  
    >~bj7M6t  
    % EOF zernfun (j8,n<o  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  ENjD~S  
    +N_%|!F-c  
    DDE还是手动输入的呢? - Sgp,"a  
    X+@,vCC  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究