下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, a;KdkykG
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, ;p~!('{P
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? kl~/tbf
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? jK/FzD0-
6W1+@
q
gloG_*W
u"oO._a(
kmTYRl
)j
function z = zernfun(n,m,r,theta,nflag) 1E||ft-1i*
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. !hfpa_5
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N &0[L2x}7
% and angular frequency M, evaluated at positions (R,THETA) on the (||qFu9a
% unit circle. N is a vector of positive integers (including 0), and ipMSMk7gx
% M is a vector with the same number of elements as N. Each element *XWu) >*o
% k of M must be a positive integer, with possible values M(k) = -N(k) PN9vg9'
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, re%XaL
% and THETA is a vector of angles. R and THETA must have the same 5Hj/7~ =
% length. The output Z is a matrix with one column for every (N,M) Xl2g Hh
% pair, and one row for every (R,THETA) pair. f^QC4hf0
% *re?V9
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike =$bF[3D
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), #E=8kbD7
% with delta(m,0) the Kronecker delta, is chosen so that the integral vf>d{F^rv
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, <G<5)$
S
% and theta=0 to theta=2*pi) is unity. For the non-normalized GK,{$SC+=
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ZRc^}5}WA
%
Z R=[@Oi
% The Zernike functions are an orthogonal basis on the unit circle. n7~3~i`D;
% They are used in disciplines such as astronomy, optics, and |Fze9kZO
% optometry to describe functions on a circular domain. _~CJitR3
% 9&zR
i
% The following table lists the first 15 Zernike functions. >*O5Ry:4
% `$JZJ!,A
% n m Zernike function Normalization r|ZB3L|7
% -------------------------------------------------- qHe
H/e%`V
% 0 0 1 1 xWa[qCr
% 1 1 r * cos(theta) 2 D5Sbs(
% 1 -1 r * sin(theta) 2 zb[kRo&a0W
% 2 -2 r^2 * cos(2*theta) sqrt(6) C_ d|2C6
% 2 0 (2*r^2 - 1) sqrt(3) H'k~;
% 2 2 r^2 * sin(2*theta) sqrt(6) oF+yh!~mM
% 3 -3 r^3 * cos(3*theta) sqrt(8) [cEGkz
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) "WGKwi=W
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) &@|? %
% 3 3 r^3 * sin(3*theta) sqrt(8) [ywF!#'){
% 4 -4 r^4 * cos(4*theta) sqrt(10) yp=sL' E
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) <W3p!
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) Glw|*{$
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) $4ZV(j]
% 4 4 r^4 * sin(4*theta) sqrt(10) 2<n18-|OQ
% -------------------------------------------------- }D)eS |B
% tGl|/
% Example 1: Zp_j\B
% {U3jJ#K
% % Display the Zernike function Z(n=5,m=1) 0^J%&1a Ic
% x = -1:0.01:1; 5 z3WRg
% [X,Y] = meshgrid(x,x); @##}zku
% [theta,r] = cart2pol(X,Y); nSSJl
% idx = r<=1; [{xY3WS
% z = nan(size(X)); 3K~^H1l
% z(idx) = zernfun(5,1,r(idx),theta(idx)); ?uTuO
% figure qR2cRepV
% pcolor(x,x,z), shading interp x%@M*4:&
% axis square, colorbar |8k^jq
% title('Zernike function Z_5^1(r,\theta)') 5Y`4%*$
%
}lPWA/
% Example 2: a}VR>!b
% 8,+T[S
% % Display the first 10 Zernike functions d@*dbECG
% x = -1:0.01:1; x2I|iA =
% [X,Y] = meshgrid(x,x); r/ATZAgHP
% [theta,r] = cart2pol(X,Y); 9dszn^]T
% idx = r<=1; m^ar:mK@
% z = nan(size(X)); #LR6wEk
% n = [0 1 1 2 2 2 3 3 3 3]; KdHkX+-R
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; hTby:$aCg
% Nplot = [4 10 12 16 18 20 22 24 26 28]; UBQtD|m\
% y = zernfun(n,m,r(idx),theta(idx)); !7#*Wdt+P
% figure('Units','normalized') 3bC-B!{;g
% for k = 1:10 uW[AnQ1w
% z(idx) = y(:,k); /#_[{lSr?
% subplot(4,7,Nplot(k)) zTG1 0
% pcolor(x,x,z), shading interp y<`:I|y
% set(gca,'XTick',[],'YTick',[]) j/T@-7^0
% axis square u|ihUE!h
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) *) \y52z
% end y}U'8*,
% $E:z*~?
% See also ZERNPOL, ZERNFUN2. loq2+(
at*DYZBjDB
v/]xdP^Z
% Paul Fricker 11/13/2006 n.5M6i/~a
Avljrds+7
BgCEv"G5
1T~`$zS7
J$jLGy& '
% Check and prepare the inputs: }\N ~%?6D
% ----------------------------- "Gqas bX
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) PDgZb
error('zernfun:NMvectors','N and M must be vectors.') 4T)`%Oo<}
end <Z]j89wzDZ
$'*{&/@
^eRbp?H*T
if length(n)~=length(m) z'>b)wY](
error('zernfun:NMlength','N and M must be the same length.') yg|yoL'g
end \Z~@/OVc
\!>qtFT
3v#F0s|
n = n(:); 5V0#_!QAN
m = m(:); gK *=T
if any(mod(n-m,2)) T`I4_x
error('zernfun:NMmultiplesof2', ... 11fV|b%
'All N and M must differ by multiples of 2 (including 0).') ct(euPU
end 0Y~5|OXJ
#.}&6ZP
.k!2{A
if any(m>n) +H?
XqSC
error('zernfun:MlessthanN', ... K7q R
'Each M must be less than or equal to its corresponding N.') JkLpoe81
end j{ri]?p
URr{J}5
FB~IO#E8W
if any( r>1 | r<0 ) AQ"rk9Z
error('zernfun:Rlessthan1','All R must be between 0 and 1.') FPE6H:'
end 5]3Mj*u\
v)zxQuH]^
Q? Xqf7y
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) J]NMqiq
error('zernfun:RTHvector','R and THETA must be vectors.') 2 XjH1
end gHWsKE
%
P!&yYR\
`,c~M
r = r(:); H,!yG5yF
theta = theta(:); 8*]dAft
length_r = length(r); ~>%% kQt
if length_r~=length(theta) xCu\ jc)2
error('zernfun:RTHlength', ... RS{E|
'The number of R- and THETA-values must be equal.') &_]bzTok
end /5f=a
@[ '?AsO
CT=5V@_u\
% Check normalization: "t>H
B6^
% -------------------- sg<c1
if nargin==5 && ischar(nflag) catJC3
isnorm = strcmpi(nflag,'norm'); #J$z0%P
if ~isnorm ae+*gkPv8
error('zernfun:normalization','Unrecognized normalization flag.') wFL7JwK:G
end $|19]3T@Z
else > mP([]
isnorm = false; ,YrPwdaTB
end GRgpy
llpgi,-=
.7Itbp6=R
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
G/_8xmsU
% Compute the Zernike Polynomials o<Rrr,
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% P`n"E8"ab<
1L_(n
OV7SLf
% Determine the required powers of r: 2$joM`j$
% ----------------------------------- n=h!V$X
m_abs = abs(m); g`H;~ w
rpowers = []; O]9PYv=^
for j = 1:length(n) 7I:<i$)V
rpowers = [rpowers m_abs(j):2:n(j)]; P#2#i]-
end iB{l:
rpowers = unique(rpowers); ,LDdL
HhUk9 >7
JZ"XrS0?
% Pre-compute the values of r raised to the required powers, 1KI5tf>>p
% and compile them in a matrix: arn7<w0
% ----------------------------- 3TT?GgQ
if rpowers(1)==0 ]Mgxv>zRbs
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); |
Fk9ME
rpowern = cat(2,rpowern{:}); !4+@b
s
rpowern = [ones(length_r,1) rpowern]; kNUNh[
else -lI6!a^
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); =K6{AmG$
rpowern = cat(2,rpowern{:}); N6/;p]|
end Y:5Gp8Vi
ju/#V}N
yxy~N\0
% Compute the values of the polynomials: lUM-~
% -------------------------------------- (=QiXX1r
y = zeros(length_r,length(n)); 24d{ol)
for j = 1:length(n) 2NWQiSz
s = 0:(n(j)-m_abs(j))/2; !4fT<V(
pows = n(j):-2:m_abs(j); +(o]E3
for k = length(s):-1:1 MZ<BCRB
p = (1-2*mod(s(k),2))* ... PWN$x`h g[
prod(2:(n(j)-s(k)))/ ... 2!6-+]tC
prod(2:s(k))/ ... 6w$pL(
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... @t,Y<)U
prod(2:((n(j)+m_abs(j))/2-s(k))); KA]5tVQA
idx = (pows(k)==rpowers); _n!W4zwi
y(:,j) = y(:,j) + p*rpowern(:,idx); C +S>;1
end :.F;LF&
jH]?vpP
if isnorm xayd_RB 9
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); oJor
]QY K
end A!aki}aT~
end aumM\rY
% END: Compute the Zernike Polynomials ~&Y%yN^
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %9`\7h7K
(p}N
cn.
xw~&OF&
% Compute the Zernike functions: C3e0d~C
% ------------------------------ #TG.weTC
idx_pos = m>0; [|oOP$u
idx_neg = m<0; ~#9(Q
C_V5.6T!
4j-%I7
z = y; (&-!l2
if any(idx_pos) eih~ SBSH
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); J I[9c,N
end CJ[^Fi?CH
if any(idx_neg) j<_)Y(x>
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); '645Fr[lg
end DzG$\%G2R}
_D~FwF&A
Uk= L?t
% EOF zernfun v
L!?4k