下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, \LXNdE2B
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, obGSc)?j
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? [-a/]
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? `rLMMYD=
izA3 INT
Zwl?*t\D
<h0ptCB
roQIP%h!
function z = zernfun(n,m,r,theta,nflag) ]"_'o~
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. |[ofc!/
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N :6{HFMf"
% and angular frequency M, evaluated at positions (R,THETA) on the aS2
Y6
% unit circle. N is a vector of positive integers (including 0), and )BDi2 : u
% M is a vector with the same number of elements as N. Each element 7G2N&v>
% k of M must be a positive integer, with possible values M(k) = -N(k) _95tgJ y
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, GV/FK{v5
% and THETA is a vector of angles. R and THETA must have the same I`1=VC]^8
% length. The output Z is a matrix with one column for every (N,M) ](pD<FfS]'
% pair, and one row for every (R,THETA) pair. ~o$=(EC
% ['j,S<Bu~
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike y0^FTSQ|
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), I}x*AM 7+
% with delta(m,0) the Kronecker delta, is chosen so that the integral Ho|n\7$
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, "m5ZZG#R`
% and theta=0 to theta=2*pi) is unity. For the non-normalized ]T`qPIf;yJ
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. hG]20n2
% 4mg&H0 !
% The Zernike functions are an orthogonal basis on the unit circle. '@bA_F(
% They are used in disciplines such as astronomy, optics, and 2{\Y<%.
% optometry to describe functions on a circular domain. 2(|V1]6D?
% [g_@<?zg
% The following table lists the first 15 Zernike functions. g!UM8I-$
% c$;enAf@
% n m Zernike function Normalization -Zh+5;8g
% -------------------------------------------------- ap!<8N
% 0 0 1 1 d=XhOC$
% 1 1 r * cos(theta) 2 6dp~19T^
% 1 -1 r * sin(theta) 2 6(=:j"w0
% 2 -2 r^2 * cos(2*theta) sqrt(6) ~x+w@4)a>
% 2 0 (2*r^2 - 1) sqrt(3) `P~RG.HO
% 2 2 r^2 * sin(2*theta) sqrt(6) dewu@
% 3 -3 r^3 * cos(3*theta) sqrt(8) ]]4E)j8
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) B~IOM
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) fA^ O
% 3 3 r^3 * sin(3*theta) sqrt(8) R<)uvW_@
% 4 -4 r^4 * cos(4*theta) sqrt(10) `JCC-\9T_
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) }PJ:9<G
y
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) I/l]Yv!
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) t Ks0]8tc
% 4 4 r^4 * sin(4*theta) sqrt(10) S3m+(N" &
% -------------------------------------------------- $- L)>"
% K!X8KPo
% Example 1: KpL82
% 5+r#]^eQY-
% % Display the Zernike function Z(n=5,m=1) &nYmVwi?"Q
% x = -1:0.01:1; &wfM:a/c
% [X,Y] = meshgrid(x,x); STMcMm3
% [theta,r] = cart2pol(X,Y); {+MMqJCa
% idx = r<=1; :?TV6M
% z = nan(size(X)); ~zx-'sc?
% z(idx) = zernfun(5,1,r(idx),theta(idx)); o0q{:An_Z
% figure +qdK]RR}
% pcolor(x,x,z), shading interp ]pt @
% axis square, colorbar MX34qJ9k
% title('Zernike function Z_5^1(r,\theta)') 03xQ%"TU<
% Kh> ^;`h
% Example 2: %`~8j H@
% <8Ad\MU
% % Display the first 10 Zernike functions bm^ou#]|
% x = -1:0.01:1; "6ZatRUd
% [X,Y] = meshgrid(x,x); cX2b:
% [theta,r] = cart2pol(X,Y); 0Z\fK>yw
% idx = r<=1; f%af.cR*
% z = nan(size(X)); 3yQ(,k #
% n = [0 1 1 2 2 2 3 3 3 3]; ,SBL~JJ
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 0y(d|;':
% Nplot = [4 10 12 16 18 20 22 24 26 28]; G100L}d"N
% y = zernfun(n,m,r(idx),theta(idx)); !tVV +vT#
% figure('Units','normalized') ~ rRIWfhb
% for k = 1:10 z')'8155
% z(idx) = y(:,k); 22GtTENd1h
% subplot(4,7,Nplot(k)) ,J[sg7vcv
% pcolor(x,x,z), shading interp qdOS=7]W
% set(gca,'XTick',[],'YTick',[]) sU>*S$X8
% axis square yF*JzE 7,
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) tY7u\Y;^
% end vi'K|[!?
% ]}9EBf
% See also ZERNPOL, ZERNFUN2. ve$P=ZuM
? in&/ZrB
=I?p(MqW
% Paul Fricker 11/13/2006 6>l-jTM
]fR
3f
)2a!EEHz
DQ,Q yV
#xO`k1W.
% Check and prepare the inputs: (T@ov~@
% ----------------------------- YpiSH(70`
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) !nu#r$K(
error('zernfun:NMvectors','N and M must be vectors.') Dv$xP)./
end `/"z. ~8
@sVBG']p
h7g9:10
if length(n)~=length(m) <#c2Hg%jh
error('zernfun:NMlength','N and M must be the same length.') Z*JZUbo-Q
end o;"!#Z 1SJ
@x)z" )>
1@/+ c
n = n(:); >
vgqf>)kk
m = m(:); |/q *Fg[f
if any(mod(n-m,2)) qoEOM%dAqV
error('zernfun:NMmultiplesof2', ... !OiP<8 ,H
'All N and M must differ by multiples of 2 (including 0).') L,R9jMx?_
end e Q0bx&
0ya_[\
RVD=CX
if any(m>n)
62.{8Uj
error('zernfun:MlessthanN', ... *G=n${'
'Each M must be less than or equal to its corresponding N.') wTOB'
end eM8u
;i
pnf3YuB
WC`<N4g|
if any( r>1 | r<0 ) iK)w3S}k1y
error('zernfun:Rlessthan1','All R must be between 0 and 1.') F7mzBrz
end ?Hq`*I?b9
:kgwKuhL
JBuorc
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) y1P ?A]v
error('zernfun:RTHvector','R and THETA must be vectors.') B
[03,zVf
end ?vvjwys@
x*(pr5k
#B54p@.}
r = r(:); WWD\EDnS
theta = theta(:); eGZIdv1
length_r = length(r); w)hJ0k
if length_r~=length(theta) +-5CM0*&
error('zernfun:RTHlength', ... @UD6qA
'The number of R- and THETA-values must be equal.') yBeSvsm
end R\6#J0&Y-
9erTb?@S
#t9&X8:U
% Check normalization: +>{{91mN
% -------------------- {R&F_51)V
if nargin==5 && ischar(nflag) 1#XMUbFc
isnorm = strcmpi(nflag,'norm'); F)!B%4
if ~isnorm k4eV*e8
error('zernfun:normalization','Unrecognized normalization flag.') h}.0Ne
end b5KX` r
else ,>e)8
isnorm = false; S__+S7]Nr
end *|MPYxJ<
]l`?"X|^
J/=b1{d"n
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Gh|q[s*k
% Compute the Zernike Polynomials 9CW .xX8
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% I9TOBn|6
gy,B+~p
dfO84Z}
5
% Determine the required powers of r: %5$yz| :
% ----------------------------------- *=)%T(^
m_abs = abs(m); q>f1V3
rpowers = []; a'W-& j
for j = 1:length(n) enE8T3
rpowers = [rpowers m_abs(j):2:n(j)]; m8#+w0p)
end Lw1~$rZg
rpowers = unique(rpowers); bv-s}UP0
OV^)
N
O~Pbu[C
% Pre-compute the values of r raised to the required powers, xLX:>64'o>
% and compile them in a matrix: ~O&3OL:L
% ----------------------------- +Z#lf
if rpowers(1)==0 L-",.U*;
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); $D<LND=o=
rpowern = cat(2,rpowern{:}); %Gh!h4Pv
rpowern = [ones(length_r,1) rpowern]; (khjP,
else c2-NXSjsW
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ){ArZjG>
rpowern = cat(2,rpowern{:}); pd/{yX M
end U_B"B;ng+
fMP$o3;
[r<lAS{ .
% Compute the values of the polynomials: BbnY9"
% -------------------------------------- 2:Zb'Mj
y = zeros(length_r,length(n)); 5$`ihO?
for j = 1:length(n) xOp8[6Ga'
s = 0:(n(j)-m_abs(j))/2; BMgiXdv.B
pows = n(j):-2:m_abs(j); XN'x`%!*3#
for k = length(s):-1:1 ix [aS
p = (1-2*mod(s(k),2))* ... [2WJ>2r}6
prod(2:(n(j)-s(k)))/ ... IhhB^E|
prod(2:s(k))/ ... T&j_7Q\;vI
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... $i7iv
prod(2:((n(j)+m_abs(j))/2-s(k))); M\ B A+
idx = (pows(k)==rpowers); &>XIK8*
y(:,j) = y(:,j) + p*rpowern(:,idx); [yJcM
[p\
end i*_T\_=
f4@>7K]9TA
if isnorm /n"Ib)M
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); KD11<&4_x
end }YfM<
end -NGY+1
% END: Compute the Zernike Polynomials 3){ /u$iH.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /\q1,}M
]X ,f
{=pRU_-^
% Compute the Zernike functions: xxL D8?@e7
% ------------------------------ w)2X0ev"
idx_pos = m>0; (&npr96f
idx_neg = m<0; 2^'|[*$k1@
_l<e>zj
KP(RK4F
z = y; ROw9l!YF
if any(idx_pos) *G"L]Nq#
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); mI_ ?hl?Pv
end #T &z`
if any(idx_neg) 'Y Bz?l9
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); h&|q>M3
end j-e/nZR@
Z/n\Ak sE
r+r-[z D(
% EOF zernfun sN]O]qYXJ