切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9527阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, U~?VN!<x[  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, =h vPq@C%  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? a)pc+w#  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? 07:V[@'  
    #;ObugY,  
    aUEr& $  
    ?K7uy5Y  
    K0j%\]\Tp  
    function z = zernfun(n,m,r,theta,nflag) z8t;jw  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. JK< []>O  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N rHw#<oV  
    %   and angular frequency M, evaluated at positions (R,THETA) on the xtP:Q9!N  
    %   unit circle.  N is a vector of positive integers (including 0), and %P s.r{%{  
    %   M is a vector with the same number of elements as N.  Each element n46!H0mJ  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) uOzoE_i  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, xA7~"q&u  
    %   and THETA is a vector of angles.  R and THETA must have the same rIFW1`N}i  
    %   length.  The output Z is a matrix with one column for every (N,M) lH=|Qu  
    %   pair, and one row for every (R,THETA) pair. o FP8s[B  
    % *:xOenI  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Vu.=,G  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), YT+b{   
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral )TiM>{  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, XjL3Ar*  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized @!dIa1Q"  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. o-H?q!  
    % aBReIK o  
    %   The Zernike functions are an orthogonal basis on the unit circle. tE=09J%z  
    %   They are used in disciplines such as astronomy, optics, and q}L`8(a  
    %   optometry to describe functions on a circular domain. 37kFbR@x  
    % Jg=!GU/::  
    %   The following table lists the first 15 Zernike functions. b;jdk w|  
    % o 7kg.w|  
    %       n    m    Zernike function           Normalization W=^.s>7G  
    %       -------------------------------------------------- K\9CW%W  
    %       0    0    1                                 1 RN-gZ{AW  
    %       1    1    r * cos(theta)                    2 ``jNj1t{}  
    %       1   -1    r * sin(theta)                    2 [k%hl`}  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) HBe*wkPd  
    %       2    0    (2*r^2 - 1)                    sqrt(3) xSD*e 0  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) J$yq#LBbR@  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) f:+/= MW  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 8_4!Ar>2  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) .kFO@:  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) G!$~'o%/  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) bC:sd2s  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) sPZwA0%  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) ,o n]Fts  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) c|.te]!ds  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) ^,I2 @OS  
    %       -------------------------------------------------- @U=y}vi8  
    % W>a}g[Ad  
    %   Example 1: ~wuCa!!A  
    % \;N+PE  
    %       % Display the Zernike function Z(n=5,m=1) Vxap+<m  
    %       x = -1:0.01:1; &J2 UAmB  
    %       [X,Y] = meshgrid(x,x); WT,I~'r=S  
    %       [theta,r] = cart2pol(X,Y); })^eaLBR4  
    %       idx = r<=1; N2s"$Ttq  
    %       z = nan(size(X)); 7d>w]R,Z  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); _1E c54D  
    %       figure xP'0a  
    %       pcolor(x,x,z), shading interp 1ygEyC[1  
    %       axis square, colorbar 8%B_nVc  
    %       title('Zernike function Z_5^1(r,\theta)') ben-<3r  
    % 'qT;Eht5  
    %   Example 2: r2\%/9uO  
    % &2u |7U.  
    %       % Display the first 10 Zernike functions 2{=D)aC$f  
    %       x = -1:0.01:1; ?:9y !Q=  
    %       [X,Y] = meshgrid(x,x); G3TS?u8Q  
    %       [theta,r] = cart2pol(X,Y); u]NsCHKlT  
    %       idx = r<=1; I"czo9Yspd  
    %       z = nan(size(X)); .q MxShUU  
    %       n = [0  1  1  2  2  2  3  3  3  3]; kl:/PM^  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; G 0pq'7B  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 05ClPT\BCr  
    %       y = zernfun(n,m,r(idx),theta(idx)); n(Nu  
    %       figure('Units','normalized') |MGT8C&^!  
    %       for k = 1:10 ]2f-oz*hU  
    %           z(idx) = y(:,k); 3v_j*wy  
    %           subplot(4,7,Nplot(k)) ?P[:,0_  
    %           pcolor(x,x,z), shading interp Yf9E0po  
    %           set(gca,'XTick',[],'YTick',[]) Wo&22,EB  
    %           axis square h?dSn:Y\?  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) MV$E_@pg  
    %       end C2rG3X^~Jm  
    % j;}-x1R  
    %   See also ZERNPOL, ZERNFUN2. &q|vvF<G  
    ku m@cA  
    wwdmz;0S  
    %   Paul Fricker 11/13/2006 ib(|}7Je  
    OAq-(_H  
    S>x@9$( ym  
    Y<W9LF  
    #g$I>\O<  
    % Check and prepare the inputs: !b!An; ',  
    % ----------------------------- 16Ka>=G  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) TU_'1  
        error('zernfun:NMvectors','N and M must be vectors.') KB~[nZs7  
    end -'miM ~kG[  
    kXhd]7ru  
    Y_n/rD>  
    if length(n)~=length(m) cu}(\a  
        error('zernfun:NMlength','N and M must be the same length.') KtAEM;g  
    end _$T !><)y  
    0);5cbV7i  
    cG0)F%?X?  
    n = n(:); ^n~Kr1}nj  
    m = m(:); K3:z5j.X  
    if any(mod(n-m,2)) oO[eer_S-  
        error('zernfun:NMmultiplesof2', ... :K~@JlJd  
              'All N and M must differ by multiples of 2 (including 0).') *sp")h#Z  
    end ~H\P0G5GA  
    SPb`Q"  
    U*K4qJ6U  
    if any(m>n) M)K!!Jqh  
        error('zernfun:MlessthanN', ... c(Y~5A{TXO  
              'Each M must be less than or equal to its corresponding N.') )OQm,5F1  
    end f 1SKOq  
    _s#J\!F  
    5KB Z-,  
    if any( r>1 | r<0 ) %6lGRq{/?  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 'g<{l&u  
    end <k1muSe  
    bhRa?wuoY  
    {@Lun6\  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ]+ub R;  
        error('zernfun:RTHvector','R and THETA must be vectors.') Q3+%8zZI  
    end .mrv"k\<  
    $H@   
    @)Vb?|3  
    r = r(:); hH>a{7V   
    theta = theta(:); `>KNa"b%$  
    length_r = length(r); ]{i0?c  
    if length_r~=length(theta) R7:u 8-dU1  
        error('zernfun:RTHlength', ... 'U&]KSzxv  
              'The number of R- and THETA-values must be equal.') y /8iEs  
    end nO`[C=|  
    }duqX R  
    +-t&li%F  
    % Check normalization: .3+ 8Ip#z  
    % -------------------- o}waJN`yI  
    if nargin==5 && ischar(nflag) p79QEIbk=  
        isnorm = strcmpi(nflag,'norm'); a>#$&&oQ0  
        if ~isnorm 5<GeAW8ns]  
            error('zernfun:normalization','Unrecognized normalization flag.') G1X73qoHT<  
        end ZiKO|U@/  
    else hUi5~;Q5Fi  
        isnorm = false; Q!-"5P X  
    end e"EGqn&!  
    _{if"  
    -k>k<bDAI  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 4Z{R36 {  
    % Compute the Zernike Polynomials Pj56,qd>s  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -*&aE~Cs  
    NmpNme  
    @ajdO/?(Y  
    % Determine the required powers of r: FLsJ<C~/~  
    % ----------------------------------- 'YN:cr,V  
    m_abs = abs(m); KIuj;|!q  
    rpowers = []; k<fR)o  
    for j = 1:length(n) hms Aim9i  
        rpowers = [rpowers m_abs(j):2:n(j)]; PCDvEbpG  
    end !: vQg+S  
    rpowers = unique(rpowers); kMzDmgoxNg  
    ~P!=fU)  
    e=jtF"&  
    % Pre-compute the values of r raised to the required powers, b<r*EY  
    % and compile them in a matrix: U b\&k[F  
    % ----------------------------- # NK{]H$fd  
    if rpowers(1)==0 <#Fex'4  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); tg%<@U`7=  
        rpowern = cat(2,rpowern{:}); +N~{6*@uz,  
        rpowern = [ones(length_r,1) rpowern];  .;vd  
    else [;toumv  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); SzG %%CXH_  
        rpowern = cat(2,rpowern{:}); X2~KNw  
    end /'v!{m  
    JqN$B\J,  
    {c1wJ  
    % Compute the values of the polynomials: Z>NA 9:  
    % -------------------------------------- 6QPbmO]z  
    y = zeros(length_r,length(n)); @[/!e`]+  
    for j = 1:length(n) O9N%dir  
        s = 0:(n(j)-m_abs(j))/2; +~ S7]AZ  
        pows = n(j):-2:m_abs(j); N'5DB[:c:  
        for k = length(s):-1:1 "1P2`Ep;  
            p = (1-2*mod(s(k),2))* ... q{yzux  
                       prod(2:(n(j)-s(k)))/              ... =/xXB  
                       prod(2:s(k))/                     ... k]TJL9Q  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... OWN|W,  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); jNIz:_c-~  
            idx = (pows(k)==rpowers); O1]XoUH<  
            y(:,j) = y(:,j) + p*rpowern(:,idx); m1p% ,  
        end at3YL[,[Z  
         1-!|_<EW1  
        if isnorm dt>!=<|k  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); wDh&S{N  
        end 3fop.%(  
    end pAEJ=Te  
    % END: Compute the Zernike Polynomials lnxA/[`a  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% V/"41  
    b\t@vMJ  
    @[rlwwG,  
    % Compute the Zernike functions: 6~k qU4lL  
    % ------------------------------  q,'~=Y5  
    idx_pos = m>0; hn/SS  
    idx_neg = m<0; *EtC4sP  
    =4x-x nA  
    OL&VisJ{75  
    z = y; twTRw:.!f  
    if any(idx_pos) jm |zn  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 7nPm{=B G  
    end Lhgs|*M  
    if any(idx_neg) ;Y &2G'  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); y|.dM.9V  
    end %__.-;)o  
    Cmj `WSSa  
    klj.\wg/p{  
    % EOF zernfun lU3Xd_v O  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  3,B[%!3d  
    <cz~q=%v2&  
    DDE还是手动输入的呢? @*O(dw  
    %tzz3Y  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究