下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, A Ns.`S
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 4;<?ec(dc
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? lr=? &>MXj
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? ,5mK_iUw3
Qo4]_,kR
Q]S~H+eRy
blpX_N
FDbb/6ku
function z = zernfun(n,m,r,theta,nflag) IX$dDwY|O>
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. hxP%m4xF +
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 3%bCv_6B
% and angular frequency M, evaluated at positions (R,THETA) on the 0BMKwZg
% unit circle. N is a vector of positive integers (including 0), and V:fz
% M is a vector with the same number of elements as N. Each element ?T3zA2
% k of M must be a positive integer, with possible values M(k) = -N(k) "T=Z/@Vy
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, e=<knKc
Q
% and THETA is a vector of angles. R and THETA must have the same ^HgQ"dD
<
% length. The output Z is a matrix with one column for every (N,M) Q>8F&p?R
% pair, and one row for every (R,THETA) pair. oM G8?p
% 3k.{gAZKh
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 4/;hA
z
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), :.e`w#$7
% with delta(m,0) the Kronecker delta, is chosen so that the integral x_pS(O(C
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 'W(+rTFf!
% and theta=0 to theta=2*pi) is unity. For the non-normalized z#ab
V1
Xi
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ^I4'7]n-
% ;R|i@[(J
% The Zernike functions are an orthogonal basis on the unit circle. Bi;D d?.
% They are used in disciplines such as astronomy, optics, and Y,w'Op
% optometry to describe functions on a circular domain. t~U:Ea[gd
% ]-QY,
k
% The following table lists the first 15 Zernike functions. \3JZ=/
% b`){f\#t
% n m Zernike function Normalization #tg,%*.s
% -------------------------------------------------- dw#K!,g
% 0 0 1 1 `%IzW2v6
% 1 1 r * cos(theta) 2 H.*:+
% 1 -1 r * sin(theta) 2 tS!FnQg4
% 2 -2 r^2 * cos(2*theta) sqrt(6) m5m}RWZ#
% 2 0 (2*r^2 - 1) sqrt(3) Aslh}'$}-
% 2 2 r^2 * sin(2*theta) sqrt(6) %sxLxx_x!
% 3 -3 r^3 * cos(3*theta) sqrt(8) sU! h^N$
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 8mj Pa^A
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) Yv<'QC
% 3 3 r^3 * sin(3*theta) sqrt(8) @32~#0a
% 4 -4 r^4 * cos(4*theta) sqrt(10) kW#,o 9f\
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 5$f
vI#NO<
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) zmH8^:-x
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 7=i8$v&GX
% 4 4 r^4 * sin(4*theta) sqrt(10) zx` %)r
% -------------------------------------------------- 5.m&93P
% H'KCIqo
% Example 1: ZByxC*Cz
% R=&9M4
% % Display the Zernike function Z(n=5,m=1) URU,&gy=
% x = -1:0.01:1; lS@0 $
% [X,Y] = meshgrid(x,x); \ #<.&`8B
% [theta,r] = cart2pol(X,Y); <;Q1u,Mc
% idx = r<=1; W>f q 9
% z = nan(size(X)); !dnCrR
% z(idx) = zernfun(5,1,r(idx),theta(idx)); er@"4R0
% figure tfB}U.
% pcolor(x,x,z), shading interp X$*MxMNs
% axis square, colorbar kw)("SQ
% title('Zernike function Z_5^1(r,\theta)') 0lpkG
="&r
% w>#{Nl7gz
% Example 2: h?_Cv*0q
% #1Zqq([@
% % Display the first 10 Zernike functions m=Mb'<
% x = -1:0.01:1; L& = a(
% [X,Y] = meshgrid(x,x); (~>uFH
% [theta,r] = cart2pol(X,Y); b a5,?FVI~
% idx = r<=1; (=A61]yB
% z = nan(size(X)); .8o?`
% n = [0 1 1 2 2 2 3 3 3 3]; A]0A,A0
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; l5h+:^#M5c
% Nplot = [4 10 12 16 18 20 22 24 26 28]; L`'#}#O l
% y = zernfun(n,m,r(idx),theta(idx)); ,+w9_Gy2H
% figure('Units','normalized') C@x\ZG5rA
% for k = 1:10 )6+Z9 9w
% z(idx) = y(:,k); f^JiaU4 [
% subplot(4,7,Nplot(k)) PP*6nW8
% pcolor(x,x,z), shading interp CzMCd
~*7R
% set(gca,'XTick',[],'YTick',[]) 8y:/!rRN
% axis square KA
$jG{yq
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 87!D@Xn
% end ^b M\:z"M
% oW}nr<G{<
% See also ZERNPOL, ZERNFUN2. m}UcF oaO
_+!@c6k)ra
./]xn
% Paul Fricker 11/13/2006 6ZO6O=KD
1JQ5bB"
BiY-u/bH9a
'FNnFm
D\:dn
% Check and prepare the inputs: R$XHjb)
% ----------------------------- V0)bPcS/
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ,(u-q]8
error('zernfun:NMvectors','N and M must be vectors.') n~"qbtp}
end oACbZ#/@n
SFu]*II;{
xzi_u.iOP
if length(n)~=length(m) L<XAvg
error('zernfun:NMlength','N and M must be the same length.') /^]/ iTg
end _:N=
,.kJF4s&
eA{nwtN
n = n(:); mjQZ"h0
m = m(:); ) $`}~
if any(mod(n-m,2)) z*a-=w0
error('zernfun:NMmultiplesof2', ... vp32}zeD
'All N and M must differ by multiples of 2 (including 0).') 3"BSP3/[l
end F9}
zt 9
A"e4w?
h;+{0a
if any(m>n) p4F%FS:`
error('zernfun:MlessthanN', ...
rp
'^]Zx
'Each M must be less than or equal to its corresponding N.') /7 8zs-
end }qw->+nD
>'lv Zt
uTdx`>M,O
if any( r>1 | r<0 ) `fuQt4
error('zernfun:Rlessthan1','All R must be between 0 and 1.') _/czH<
end f,|g|&C
$>8O2p7W
J9*i`8kU.
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) qfkdQ/fP
error('zernfun:RTHvector','R and THETA must be vectors.') XU`ly3!
end 'fs
tfk
Jc7}z:U B
O$n W
r = r(:); NXk~o!D
theta = theta(:); p[O\}MAd#
length_r = length(r); 85f:!p
if length_r~=length(theta) v8YF+N
error('zernfun:RTHlength', ... 6HguZ_jC
'The number of R- and THETA-values must be equal.') v.&c1hK