切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9324阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, />;1 }  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, Y 3r m')c  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? Eq^k @  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? 2<wuzP|  
    H];|<G  
    y0>asl  
    tWQ_.,ld  
    8RWfv}:X  
    function z = zernfun(n,m,r,theta,nflag) WS8m^~S@\  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. VO3&!uOd  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N }\}pSqW  
    %   and angular frequency M, evaluated at positions (R,THETA) on the wXp A1,i  
    %   unit circle.  N is a vector of positive integers (including 0), and <qN0Q7  
    %   M is a vector with the same number of elements as N.  Each element Xn-GSW3{  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) <y=VDb/  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 9K~2!<  
    %   and THETA is a vector of angles.  R and THETA must have the same HXhz|s0  
    %   length.  The output Z is a matrix with one column for every (N,M) 02:]  
    %   pair, and one row for every (R,THETA) pair. :S}!i?n  
    % *"` dO9Yf_  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike $,q~q^0  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), !TY9\8JzV  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral G\G TS}u[  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, i`/_^Fndyu  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized / pzdX%7  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 5=tvB,Ux4  
    % `rsPIOu  
    %   The Zernike functions are an orthogonal basis on the unit circle. x@I*(I  
    %   They are used in disciplines such as astronomy, optics, and w~a^r]lPW  
    %   optometry to describe functions on a circular domain. tGnBx)J|  
    % aAZS^S4v  
    %   The following table lists the first 15 Zernike functions. BDSZ'  
    % CI"7* z_  
    %       n    m    Zernike function           Normalization \O5`R-  
    %       -------------------------------------------------- XL@i/5C[  
    %       0    0    1                                 1 Vy0s%k  
    %       1    1    r * cos(theta)                    2 #j -bT4!  
    %       1   -1    r * sin(theta)                    2 $X8(OS5d'  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) p3ox%4  
    %       2    0    (2*r^2 - 1)                    sqrt(3) r(xh5{^x  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) ZC 7R f  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 1oD,E!+^d  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) MTo<COp($  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) s.I%[kada  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) ntbl0Sk  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) xF: O6KL  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) "*W:  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) |D+"+w/  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) I|69|^  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) u~n*P``{  
    %       -------------------------------------------------- W1'F)5(?7  
    % a5=8zO#%g  
    %   Example 1: <WFA3  
    % ,Oa-AF/p  
    %       % Display the Zernike function Z(n=5,m=1) )[RLCZ  
    %       x = -1:0.01:1; n% zW6}  
    %       [X,Y] = meshgrid(x,x); +\g/KbV7  
    %       [theta,r] = cart2pol(X,Y); 0JzH dz  
    %       idx = r<=1; %@ UH,Ew  
    %       z = nan(size(X)); Q^X  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); ap=m5h27  
    %       figure `i5U&K. 7  
    %       pcolor(x,x,z), shading interp WLl_;BgN  
    %       axis square, colorbar FsQeyh>  
    %       title('Zernike function Z_5^1(r,\theta)') .j?`U[V%a  
    % 873$EiyXR  
    %   Example 2: O ]o7  
    % p=%Vo@*]  
    %       % Display the first 10 Zernike functions S :)Aj6>6  
    %       x = -1:0.01:1; Py*( %  
    %       [X,Y] = meshgrid(x,x); HT&CbEa4'  
    %       [theta,r] = cart2pol(X,Y); ~hK7(K  
    %       idx = r<=1;  m(CW3:|  
    %       z = nan(size(X)); .nN=M>#/  
    %       n = [0  1  1  2  2  2  3  3  3  3]; pF kA,  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; HV O mM17  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; },58B  
    %       y = zernfun(n,m,r(idx),theta(idx)); sd4eJ  
    %       figure('Units','normalized') I\ e?v`e  
    %       for k = 1:10 {!!df.h  
    %           z(idx) = y(:,k); D4,kGU@  
    %           subplot(4,7,Nplot(k)) |vW(;j6  
    %           pcolor(x,x,z), shading interp gc(Gc vdB\  
    %           set(gca,'XTick',[],'YTick',[]) LXYpP- E  
    %           axis square c%1k'Q  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) mGx!{v~i&  
    %       end HYVSi3[  
    % j"(o>b v7  
    %   See also ZERNPOL, ZERNFUN2. +&hhj~I.  
    $VEG1]/svp  
    ^(z7?T  
    %   Paul Fricker 11/13/2006 1Q_  C  
    1ocd$)B|}  
    fH#yJd2?f  
    =KQQS6  
    @z $,KUH  
    % Check and prepare the inputs: TljN!nv]  
    % ----------------------------- t^ _0w[  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) S1jI8 #z}_  
        error('zernfun:NMvectors','N and M must be vectors.') cr GFU?8  
    end )Ve-)rZ  
    |-Rg].  
    3V=(P.ATm  
    if length(n)~=length(m) OAigq6[,  
        error('zernfun:NMlength','N and M must be the same length.') 6Gt~tlt:L  
    end $ti*I;)h4  
    N:R6 b5 =}  
    L1J \ C  
    n = n(:); 5cc;8i  
    m = m(:); Pjz_KO/  
    if any(mod(n-m,2)) D5]AL5=Xt2  
        error('zernfun:NMmultiplesof2', ... qHwHP 1  
              'All N and M must differ by multiples of 2 (including 0).') GMk\ l  
    end w+A:]SU  
    pypW  
    k+-IuO  
    if any(m>n) 2MT_5j5[N  
        error('zernfun:MlessthanN', ... FHztF$Z  
              'Each M must be less than or equal to its corresponding N.') ` =ocr8c  
    end sk'< K5~  
    #h,7dz.d  
    WP(+jL^-  
    if any( r>1 | r<0 ) #Z;6f{yWf  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') W&M=%  
    end XKp$v']u  
    JA]TO (x  
    Q1ox<-  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) oZM6%-@qi  
        error('zernfun:RTHvector','R and THETA must be vectors.') $qz(9M(m#  
    end yH`4 sd  
    /"~ D(bw0=  
    {;:QY 1Q T  
    r = r(:); \R"}=7  
    theta = theta(:); X?6E0/r&9  
    length_r = length(r); XOOWrK7O  
    if length_r~=length(theta) mT]+wi&  
        error('zernfun:RTHlength', ... j[E8C$lW  
              'The number of R- and THETA-values must be equal.') c L+-- $L  
    end v %?y5w  
    CMQlxX?  
    tKr.{#)  
    % Check normalization: A%Ov.~&\G  
    % -------------------- }Iyr u3M][  
    if nargin==5 && ischar(nflag) t1LIZ5JY  
        isnorm = strcmpi(nflag,'norm'); 3o).8b_3g  
        if ~isnorm ioIOyj  
            error('zernfun:normalization','Unrecognized normalization flag.') M<Gr~RKmAn  
        end b*;zdGX.A9  
    else Fe:M'.  
        isnorm = false; _'eG   
    end  {J aulg  
    I JPpF`  
    iCz0T,  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Ark+Df/  
    % Compute the Zernike Polynomials KOQiX?'  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% jCJbmEfo9@  
    %_kXC~hH_  
    ^A&i$RRO  
    % Determine the required powers of r: g&79?h4UXQ  
    % ----------------------------------- trl:\m  
    m_abs = abs(m); s=[Tm}[  
    rpowers = []; fPW|)e"  
    for j = 1:length(n) Y 6NoNc]h  
        rpowers = [rpowers m_abs(j):2:n(j)]; Nu/D$m'PY  
    end fG *1A\t]  
    rpowers = unique(rpowers); tEU}?k+:j)  
    \hlQu{q.  
    Gky e  
    % Pre-compute the values of r raised to the required powers, 3CKd[=-Z  
    % and compile them in a matrix: Ffv v8x  
    % ----------------------------- ?MW *`U  
    if rpowers(1)==0 "7]YvZYu0  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false);  <>|&%gmz  
        rpowern = cat(2,rpowern{:}); {2A| F{7>  
        rpowern = [ones(length_r,1) rpowern]; S1Z~-i*w  
    else gY],U4_:p  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ]"ZL<?3g  
        rpowern = cat(2,rpowern{:}); |JUb 1|gi  
    end uTWij4)a  
    n]G_# ;  
    9s#Q[\B!  
    % Compute the values of the polynomials: iRbTH}4i  
    % -------------------------------------- U<pG P  
    y = zeros(length_r,length(n)); [lU0TDq  
    for j = 1:length(n)  |UudP?E  
        s = 0:(n(j)-m_abs(j))/2; U-U^N7  
        pows = n(j):-2:m_abs(j); T[ ~8u9/  
        for k = length(s):-1:1 gI~4A,  
            p = (1-2*mod(s(k),2))* ... @Cnn8Y&'  
                       prod(2:(n(j)-s(k)))/              ... 8!R +wy  
                       prod(2:s(k))/                     ... {r.KY  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... nV[0O8p2Md  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 34D7qR  
            idx = (pows(k)==rpowers); #5Q?Q~E@  
            y(:,j) = y(:,j) + p*rpowern(:,idx); >5O#_?  
        end TO,XN\{y  
         bOB<m4  
        if isnorm "k;j@  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); IIZu&iZo\  
        end *mvDh9v  
    end ~o <+tL  
    % END: Compute the Zernike Polynomials /LH# 3  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% mY)Y47iL  
    {vp|f~}zTw  
    7Gos-_s  
    % Compute the Zernike functions: E43Gk!/|(  
    % ------------------------------ 5qe6/E@  
    idx_pos = m>0; A"Prgf eT  
    idx_neg = m<0; u|.c?fW'3  
    o+w G6 9  
    O<*l"fw3  
    z = y; <FkoWN  
    if any(idx_pos) 2\b 2W_  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); u|G&CV#r  
    end nfldj33*  
    if any(idx_neg) >~%EB?8  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); rfz\DvV d  
    end wU"0@^k]<  
    |}FK;@'I6  
    oP"X-I  
    % EOF zernfun brdfj E8  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  u;/5@ADW  
    NE1n9  
    DDE还是手动输入的呢? Xk]:]pl4W  
    {)5tov1  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究