下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, Cg
85
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 'dj}- Rs
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? #UU}lG
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? ^~MHxF5d
$y=sT({VVe
3uRnbO-
451C2 %y
+XWXHt
function z = zernfun(n,m,r,theta,nflag) Yl1@gw7
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. u
` 9Eh;
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N R|t.wawCo
% and angular frequency M, evaluated at positions (R,THETA) on the 'ESy>wA{y<
% unit circle. N is a vector of positive integers (including 0), and n<yV]i$
% M is a vector with the same number of elements as N. Each element cJ:BEe
% k of M must be a positive integer, with possible values M(k) = -N(k) "DWw1{ 5/
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, ]-{T-*h:
% and THETA is a vector of angles. R and THETA must have the same )2F:l0g
% length. The output Z is a matrix with one column for every (N,M) (B]Vw+/
% pair, and one row for every (R,THETA) pair. )'%L#
% 1;L!g*!E
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike F>A-+]X3o
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), vWfC!k-)b
% with delta(m,0) the Kronecker delta, is chosen so that the integral 2~h)'n7Mw
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, "_'9KBd!
% and theta=0 to theta=2*pi) is unity. For the non-normalized X?rJO~5
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 1t!Mg{&e[x
% %XG X(
% The Zernike functions are an orthogonal basis on the unit circle. 2%vwC]A
% They are used in disciplines such as astronomy, optics, and @uY%;%Pa8
% optometry to describe functions on a circular domain. `-ENKr]
% R52q6y:<x
% The following table lists the first 15 Zernike functions. "@`mPe/
% #FaR?L![Y
% n m Zernike function Normalization QS=n
50T,
% -------------------------------------------------- `!m+g0
% 0 0 1 1 V^L;Nw5h
% 1 1 r * cos(theta) 2 +$},Hu69j
% 1 -1 r * sin(theta) 2 oL}FD !}
% 2 -2 r^2 * cos(2*theta) sqrt(6) =K8`[iH
% 2 0 (2*r^2 - 1) sqrt(3) GUat~[lUrj
% 2 2 r^2 * sin(2*theta) sqrt(6) ,{z$M
% 3 -3 r^3 * cos(3*theta) sqrt(8) 7\{<AM?*
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) N@)4H2_u \
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) SCxzT}#J
% 3 3 r^3 * sin(3*theta) sqrt(8) {2Gp+&
% 4 -4 r^4 * cos(4*theta) sqrt(10) t4s}w$4
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) RSmxwx^
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) -ZihEyG?V
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ,PN>,hFL
% 4 4 r^4 * sin(4*theta) sqrt(10) o]Vx6
% -------------------------------------------------- Y,E:?
% [U3z*m>e;
% Example 1: I8^z\ef&
% u> >t"w
% % Display the Zernike function Z(n=5,m=1) \UB<'~z6!
% x = -1:0.01:1; J_P2% b=C
% [X,Y] = meshgrid(x,x); -QS_bQG%
% [theta,r] = cart2pol(X,Y); 6oUT+^z#
% idx = r<=1; bJ. ((1$
% z = nan(size(X)); /.WD'*H
% z(idx) = zernfun(5,1,r(idx),theta(idx)); kf5921(P
% figure ITbl%q
% pcolor(x,x,z), shading interp 5@ZD'
% axis square, colorbar 7^Onq0ym T
% title('Zernike function Z_5^1(r,\theta)') TR)'I
% $ /wr?
% Example 2: wRie{Vk
% tO~H/0
% % Display the first 10 Zernike functions
P$4?-AZ
% x = -1:0.01:1; n }MG
% [X,Y] = meshgrid(x,x); SZwfYY!ft0
% [theta,r] = cart2pol(X,Y); MF E%q
% idx = r<=1; &x=<>~Ag3
% z = nan(size(X)); r&ToUU 5
% n = [0 1 1 2 2 2 3 3 3 3]; s_1]&0<
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; $<33E e:a
% Nplot = [4 10 12 16 18 20 22 24 26 28]; HmX(=Y
% y = zernfun(n,m,r(idx),theta(idx)); .2Rh_ful
% figure('Units','normalized') #),QWTl3
% for k = 1:10 EKoCm)}d
% z(idx) = y(:,k); 80+"
x3r
% subplot(4,7,Nplot(k)) PiH#9XB
% pcolor(x,x,z), shading interp 3rR(>}:[V
% set(gca,'XTick',[],'YTick',[]) *4(.=k
% axis square =~HX/]zF
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) T_gW't>
% end .)W8
U [
% n7{c0;)$
% See also ZERNPOL, ZERNFUN2. F`?pZ
d0N7aacY
/D~
,X48+
% Paul Fricker 11/13/2006 7CQ48LH]
TUk1h\.q
l{y~N
zxsnrn;|
o^AK@\e:^Z
% Check and prepare the inputs: 7z+NR&'M$
% ----------------------------- St(7@)gvY
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) e| kYu[^
error('zernfun:NMvectors','N and M must be vectors.') i.byHz?/
end WnIh (
0
].1R~7b
cxmr|-^
if length(n)~=length(m) % l5J
error('zernfun:NMlength','N and M must be the same length.') 52%.^/
end "kN5AeRg
%OzxR9
K):)bL(B
n = n(:); khEHMvVH
m = m(:); a{)"KA P
if any(mod(n-m,2)) ^Nc\D7( l
error('zernfun:NMmultiplesof2', ... 12rr:(#%s
'All N and M must differ by multiples of 2 (including 0).') Kk/qd)nk
end `#l_`j=r$
5$O@+W!?@
[(dAv7YbN
if any(m>n) q=6M3OnS>
error('zernfun:MlessthanN', ... B6ys5eQ
'Each M must be less than or equal to its corresponding N.') m$$U%=r>@
end sa*hoL18
-$mzzYH
7qnw.7p
if any( r>1 | r<0 ) o!j? )0d
error('zernfun:Rlessthan1','All R must be between 0 and 1.') $aVcWz%
end rgOB0[
^LnCxA&QH
Wk$%0xZ7
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) &{7%VsTB
error('zernfun:RTHvector','R and THETA must be vectors.') y|1-,u.$
end Ejn19{
Lo !kv*
-lLq)
r = r(:); h],_1!0
theta = theta(:); aA\v
length_r = length(r); O*c+TiTb
if length_r~=length(theta) JZai{0se
error('zernfun:RTHlength', ... 7@06x+!
'The number of R- and THETA-values must be equal.') `XI1,&Wp7
end RX#:27:
'{C=vW
R|5w :+=z
% Check normalization: "|&SC0*
% -------------------- /J5wwQ
(:
if nargin==5 && ischar(nflag) HhIa=,VY
isnorm = strcmpi(nflag,'norm'); g9
g
&]
if ~isnorm `@eQL[Z9x
error('zernfun:normalization','Unrecognized normalization flag.') mGoUF$9 k
end ?n[+0a:8E
else 6&h,eQ!
isnorm = false; ky[FNgQ3n
end hXZk$a'
>a]{q^0
<sn^>5Ds
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +jQW 6k#
% Compute the Zernike Polynomials l? 7D0
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 9D-PmSnv
ALPZc:
~kF^0-JZY
% Determine the required powers of r: j].XVn,
% ----------------------------------- Lw2EA 5
m_abs = abs(m); l8jm7@.E
rpowers = []; [&"`2n
for j = 1:length(n) lP0'Zg(
rpowers = [rpowers m_abs(j):2:n(j)]; >~2oQ[n
end T&cf6soo
rpowers = unique(rpowers); $M#G;W5c
_@SC R%
s}X2*o`,
% Pre-compute the values of r raised to the required powers, Pe~[qETv
% and compile them in a matrix: T[q2quXgk
% ----------------------------- <D!"<&N