下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, IUf&*'_
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, S!WG|75B
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? vz6No%8X
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? 2iM]t&^<+
]bxBo
YYNh|
2
!ZNirvk
# dA9v7
function z = zernfun(n,m,r,theta,nflag) {=K);z
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. Ey|{yUmU+
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N `vjn,2S}
% and angular frequency M, evaluated at positions (R,THETA) on the I+2#k\y
% unit circle. N is a vector of positive integers (including 0), and gy5 ^JL
% M is a vector with the same number of elements as N. Each element 1.24ZX
% k of M must be a positive integer, with possible values M(k) = -N(k) T*o!#E.
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, ~:FF"T>
% and THETA is a vector of angles. R and THETA must have the same t57MKDn
% length. The output Z is a matrix with one column for every (N,M) 0JT"Pv_
% pair, and one row for every (R,THETA) pair. {%wF*?gk
% uA-1VwW+N
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike u,RR|/@
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), tJBj9{
% with delta(m,0) the Kronecker delta, is chosen so that the integral Nk63F&J7e
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, OQ(w]G0LP
% and theta=0 to theta=2*pi) is unity. For the non-normalized { 9:vq|
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. =[JstiT?E
% ^4/
% The Zernike functions are an orthogonal basis on the unit circle. 0<i8
;2KD
% They are used in disciplines such as astronomy, optics, and |j}D2q=
% optometry to describe functions on a circular domain. F8H4R7
8>;
% r4 $<,~
% The following table lists the first 15 Zernike functions. IA%|OVAfF
% -7Bg5{FA
% n m Zernike function Normalization 1.0:
% -------------------------------------------------- joz0D!-"#
% 0 0 1 1 A"tE~m;"7
% 1 1 r * cos(theta) 2 VLPPEV-u
% 1 -1 r * sin(theta) 2 C5Vlqc;
% 2 -2 r^2 * cos(2*theta) sqrt(6) !zVjbYWY
% 2 0 (2*r^2 - 1) sqrt(3) 'XJqh|G
% 2 2 r^2 * sin(2*theta) sqrt(6) 0Q7|2{
% 3 -3 r^3 * cos(3*theta) sqrt(8) shgZru
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) *I:a\o~$[
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) lvAKL>qX
% 3 3 r^3 * sin(3*theta) sqrt(8) _u3%16,o
% 4 -4 r^4 * cos(4*theta) sqrt(10) "D,}|
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) e0<Wed
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) z0H+Or
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) )O],$\u
% 4 4 r^4 * sin(4*theta) sqrt(10) 23d*;ri5
% -------------------------------------------------- BT)PD9CN(
% IM$ d~C
% Example 1: s%QCdU ]
% |.z4 VJi4
% % Display the Zernike function Z(n=5,m=1) `pb=y}
% x = -1:0.01:1; cYgd1
% [X,Y] = meshgrid(x,x); kyi"U A82
% [theta,r] = cart2pol(X,Y); >*MGF=.QG
% idx = r<=1; ."Kp6s `k
% z = nan(size(X)); DHg)]FQ/
% z(idx) = zernfun(5,1,r(idx),theta(idx)); (gRTSd T?
% figure :}UjX|D
% pcolor(x,x,z), shading interp CwM1
_3cE
% axis square, colorbar x)jc
% title('Zernike function Z_5^1(r,\theta)') >*/:"!u
% `_()|; !y
% Example 2: XXw>h4hl
% EK.n
$
% % Display the first 10 Zernike functions 5g%D0_e5
% x = -1:0.01:1; URbHVPCPb
% [X,Y] = meshgrid(x,x); +[ng99p
% [theta,r] = cart2pol(X,Y); &^`[$LtYd
% idx = r<=1; H:nO\]
% z = nan(size(X)); H|S hi /
% n = [0 1 1 2 2 2 3 3 3 3]; !K-qoBqKM
% m = [0 -1 1 -2 0 2 -3 -1 1 3];
2g~W})e
% Nplot = [4 10 12 16 18 20 22 24 26 28]; Dz,|sHCmk
% y = zernfun(n,m,r(idx),theta(idx)); SdF+b+P]
% figure('Units','normalized') #<y/m*Ota
% for k = 1:10 0Bt>JbGs4
% z(idx) = y(:,k); n&!q9CR`
% subplot(4,7,Nplot(k)) Mtl`A'KQ/K
% pcolor(x,x,z), shading interp I<Cm$8O?
% set(gca,'XTick',[],'YTick',[]) 8=@f lK
% axis square :%gM
Xsb
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) PWeWz(]0Z4
% end O=vD6@QI
% d}aMdIF!e
% See also ZERNPOL, ZERNFUN2. {e$@i
*~~J1.ja>
I s|_
% Paul Fricker 11/13/2006 Ey.%:
O-Dv
Scug
wSB
X(O:y^sX}
a ]:xsJ~
_%3p&1ld
% Check and prepare the inputs: c'XSs
% ----------------------------- i%GiWanG
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 2%v6h
error('zernfun:NMvectors','N and M must be vectors.') guVuO
end fRxn,HyV
n2dOCntN>
<00nu'Ex1v
if length(n)~=length(m) g:.LCF
error('zernfun:NMlength','N and M must be the same length.') r:PYAb=g
end H?eG5
@HTs.4
m7`S@qG
n = n(:); Ga+Cb2$
m = m(:); /3.;sS]B
if any(mod(n-m,2)) A>,kmU5
error('zernfun:NMmultiplesof2', ... P'[ISGt
'All N and M must differ by multiples of 2 (including 0).') ^hsr/|
end
PZvc4
]N,'3`&::
LN)yQ-
if any(m>n) >sdF:(JV&
error('zernfun:MlessthanN', ... P8#_E{f
'Each M must be less than or equal to its corresponding N.') zJh!Q**
end Q,:h`%V
;pS+S0U
G({5Lj gW
if any( r>1 | r<0 ) m;nH
v
error('zernfun:Rlessthan1','All R must be between 0 and 1.') )y6
end 1;?w#/&t
~.6% %1?
mE=Tj%+x
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 4uH}
SG[
error('zernfun:RTHvector','R and THETA must be vectors.') 'K}2 m
end _dECAk
&b
z:N?T0b(
E:O/=cT
r = r(:); R6`mmJ+'
theta = theta(:); :?}>Q
length_r = length(r); Sj:c {jyJd
if length_r~=length(theta) t|9vb
error('zernfun:RTHlength', ... v9!]/]U^
'The number of R- and THETA-values must be equal.') ks69Z|D
end d|`8\fq
IF@vl
PN=5ICT
% Check normalization: )iVuac]E++
% -------------------- Q<DXDvL
if nargin==5 && ischar(nflag) OlptO60{ ]
isnorm = strcmpi(nflag,'norm'); mwn$ey&QE
if ~isnorm f
=A#:d
error('zernfun:normalization','Unrecognized normalization flag.') \F\xZ.r
end [w-#
!X2y
else >L8 &6aU
isnorm = false; z_#HJ}R=
end :o87<)
_F
D51s)?
R7;X
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 6JeAXj1g+
% Compute the Zernike Polynomials ]dV$H
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% I)9,
O;&5>
W,Z
#Uep|A
% Determine the required powers of r: +QOK]NJN
% ----------------------------------- n
4cos
m_abs = abs(m); Qs?p)3qp
rpowers = []; ({$rb-
for j = 1:length(n) sO!m,pK(
rpowers = [rpowers m_abs(j):2:n(j)]; +.rE|)BPy
end (dy:d^
rpowers = unique(rpowers); 7VdxQ T
!aJ6Uf%R
&T ^bv*P
% Pre-compute the values of r raised to the required powers, ;TK$?hrv*1
% and compile them in a matrix: ) 3V1aC
% ----------------------------- RE-y5.kE^
if rpowers(1)==0 kY9$ M8b
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); $Y\7E/T
rpowern = cat(2,rpowern{:}); &" 5Yt&{
rpowern = [ones(length_r,1) rpowern]; ?5^DQ|Hg ^
else I"QU{]|J
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); DeeV;?:
rpowern = cat(2,rpowern{:}); )T&r770
end 'geN
dx
_EP~PW#J
E8t{[N6d
% Compute the values of the polynomials: 5^CWF|
% -------------------------------------- fQ-IM/z
y = zeros(length_r,length(n)); b`Jsu!?{
for j = 1:length(n) NO/5pz}1
s = 0:(n(j)-m_abs(j))/2; kbbHa_;aqV
pows = n(j):-2:m_abs(j); 1=z\,~b
for k = length(s):-1:1 ux17q>G
p = (1-2*mod(s(k),2))* ... ?(}~[
prod(2:(n(j)-s(k)))/ ... i[z#5;x+<
prod(2:s(k))/ ... Bt1v7M
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... JW=q'ibR
prod(2:((n(j)+m_abs(j))/2-s(k))); +1\t0P24
idx = (pows(k)==rpowers); eOfVBF<C2
y(:,j) = y(:,j) + p*rpowern(:,idx); H|MAbx
7
end o{l]n*
8%a
^j\L
if isnorm NSR][h_
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 'z=d&K
end E}#&2n8Y
end ZsYY)<n
% END: Compute the Zernike Polynomials =.):tGDp
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %WX^']p
o,?h}@
}D3hP|.X
% Compute the Zernike functions: 9A|9:OdG1
% ------------------------------ K!2%8Ej,J
idx_pos = m>0; axK/YE7t
idx_neg = m<0; sv#b5,>9
*_HF %JYMZ
ZXIz.GFy+
z = y; TQ%F\@"
if any(idx_pos) uU-1;m#N?
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Bo'v!bI7
end ~0}d=d5g
if any(idx_neg) 6['o^>\}f
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); YOA)paq+
end fhC| =0XB
tDMNpl
lg{/5gQG
% EOF zernfun zH#urF6<