下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, b:Kw_Q
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, _a$DY,;
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? *"FLkC4
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛?
IB{ZE/
v8bl-9DQ
$af}+:'
|7zP8
Treh{s
function z = zernfun(n,m,r,theta,nflag) 'S7@+kJ
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. ^r*%BUU9]%
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 6^O?p2xpo
% and angular frequency M, evaluated at positions (R,THETA) on the h5rP]dbhXU
% unit circle. N is a vector of positive integers (including 0), and QX.6~*m1
% M is a vector with the same number of elements as N. Each element qMES<UL>
% k of M must be a positive integer, with possible values M(k) = -N(k) NcBe|qxQ
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, ?vn 0%e868
% and THETA is a vector of angles. R and THETA must have the same =8p+-8M[d
% length. The output Z is a matrix with one column for every (N,M) t"/"Ge#a
% pair, and one row for every (R,THETA) pair. b+].Uc
% hYc{9$
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike .xkV#ol
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), BrH;(*H)8
% with delta(m,0) the Kronecker delta, is chosen so that the integral I"32[?0
(;
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, xPMyG);
% and theta=0 to theta=2*pi) is unity. For the non-normalized P!+nZXo
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. !Vr45l
% )^f9[5ee
% The Zernike functions are an orthogonal basis on the unit circle. 9LO.8Jy
% They are used in disciplines such as astronomy, optics, and %C`'>,t>
% optometry to describe functions on a circular domain. `3y!XET
% cbCE
$
% The following table lists the first 15 Zernike functions. M=[q+A
% `x$}~rP&)!
% n m Zernike function Normalization e*2&s5 #RT
% -------------------------------------------------- .\~P -{Hd
% 0 0 1 1 8#]7`o
% 1 1 r * cos(theta) 2 NnLhJPh
% 1 -1 r * sin(theta) 2 X!rQ@F3
% 2 -2 r^2 * cos(2*theta) sqrt(6) 6+$d
% 2 0 (2*r^2 - 1) sqrt(3) %rDmW?T
% 2 2 r^2 * sin(2*theta) sqrt(6) frmqBC VJ:
% 3 -3 r^3 * cos(3*theta) sqrt(8) 0^y@p&;/.
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) A2|o=mOH
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) ok3
% 3 3 r^3 * sin(3*theta) sqrt(8) ()C^ta_]
% 4 -4 r^4 * cos(4*theta) sqrt(10) <a+eF}*2
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) < [S1_2b.t
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) N=Uc=I7C
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) -':"6\W
% 4 4 r^4 * sin(4*theta) sqrt(10) X4} `>
% -------------------------------------------------- Ztyv@z'/Z
% Lk`k>Nn)
% Example 1: !
[|vx!p
% iijd$Tv
% % Display the Zernike function Z(n=5,m=1) ~*mOt7G
% x = -1:0.01:1; ,dZ#,<
% [X,Y] = meshgrid(x,x);
HTUYvU*-
% [theta,r] = cart2pol(X,Y); zY+t ,2z
% idx = r<=1; i|c`M/) h:
% z = nan(size(X)); TDl!qp @
% z(idx) = zernfun(5,1,r(idx),theta(idx)); HTDyuqs
% figure y'_V/w s
% pcolor(x,x,z), shading interp Q.9Ph
~
% axis square, colorbar kj{rk^x
% title('Zernike function Z_5^1(r,\theta)') //X e*0
% uXQ7eXX
% Example 2: yZ;k@t_WRD
% kJurUDo
% % Display the first 10 Zernike functions JA?,0S
% x = -1:0.01:1; y\)G7
(
% [X,Y] = meshgrid(x,x); |D;"D
% [theta,r] = cart2pol(X,Y); S2'`|uI
% idx = r<=1; +EST58
% z = nan(size(X)); B:3+',i1
% n = [0 1 1 2 2 2 3 3 3 3]; ^A *]&%(h
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; t,=@hs
hN
% Nplot = [4 10 12 16 18 20 22 24 26 28]; 4-]Do?
% y = zernfun(n,m,r(idx),theta(idx)); *R_'$+
% figure('Units','normalized') *Z]5!$UpC
% for k = 1:10 ?AV&@EX2C
% z(idx) = y(:,k); CJMaltPp&
% subplot(4,7,Nplot(k)) I~p8#<4#b
% pcolor(x,x,z), shading interp z-KrQx2
% set(gca,'XTick',[],'YTick',[]) jiA5oX^g
% axis square H
_Zo@y~J
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 9UeVvH
% end r@*=|0(OrK
% ).0V%}>
% See also ZERNPOL, ZERNFUN2. tC2 )j7@
!j!Z%]7
;[{:'^n
% Paul Fricker 11/13/2006 g.[+yzuE6
Y<p zy8z
Z?~gQ
$
N?qIpv/a.
O`wYMng)
% Check and prepare the inputs: jIAW-hc]
% ----------------------------- >AR Tr'B
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) fKL'/?LD]
error('zernfun:NMvectors','N and M must be vectors.') tA`mD >[
end c;c:Ea5
Bii6Z@kS
tWpl`HH
if length(n)~=length(m) `pP9z;/Xq
error('zernfun:NMlength','N and M must be the same length.') -W|*fKN`3
end r?64!VS;
`t{D7I7
'R^iKNPs
n = n(:); wzD\8_;6N
m = m(:); O24Jj\"
if any(mod(n-m,2)) -M"IVyy@
error('zernfun:NMmultiplesof2', ... E4Y"X
'All N and M must differ by multiples of 2 (including 0).') w) =eMdj\o
end E^b
pckP
o;ik Z*+*
+VSZhg,Np8
if any(m>n) ?Wwh
_TO
error('zernfun:MlessthanN', ... rs[?v*R74
'Each M must be less than or equal to its corresponding N.') ^F>4~68d
end NNwc!x)*
~k9O5S{
F|ETug
n
if any( r>1 | r<0 ) CfQf7-
error('zernfun:Rlessthan1','All R must be between 0 and 1.') }C=Quy%Z<
end jMK3T
Hab!qWK`
hZ!oRWIU%G
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ?sV[MsOsC
error('zernfun:RTHvector','R and THETA must be vectors.') S*4f%!
end q#;BhPc
a*V9_Px$&
BRe{1i 6
r = r(:); GA.BI"l
theta = theta(:); T'hml
length_r = length(r); doLkrEm&
if length_r~=length(theta) >Cvjs
error('zernfun:RTHlength', ... d{W}p~UbH
'The number of R- and THETA-values must be equal.') [u[ U_g*
end Z,3 CC \
y
$:yz;
*]5z^>
q;7
% Check normalization: !&W|myN^
% -------------------- A
6 :Q<
if nargin==5 && ischar(nflag) USprsaj
isnorm = strcmpi(nflag,'norm'); 4 &|C}
if ~isnorm 5Yl6?
error('zernfun:normalization','Unrecognized normalization flag.') +i+tp8T+7
end -)X{n?i
else q&Q/?g>f
isnorm = false; U M@naU
end Yr+d1(
V7P6zAJy
PQ,+hq
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% !#. \QU|
% Compute the Zernike Polynomials "MTWjW*6
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% yOc|*O=]U
}?J~P%HpF
L%f;J/
% Determine the required powers of r: b7!UZu]IEv
% ----------------------------------- m*gj|1k
m_abs = abs(m); C,.-Q"juH
rpowers = []; ms7SoYbSu
for j = 1:length(n) ?s%v 3T
rpowers = [rpowers m_abs(j):2:n(j)]; ' X}7]y
end AQe!Sqg'
rpowers = unique(rpowers); XoJgs$3B
K}Na3}m
U%q:^S%#eG
% Pre-compute the values of r raised to the required powers, ~Zmi(Ra
% and compile them in a matrix: [%jxf\9jJ_
% ----------------------------- E`tQe5K
if rpowers(1)==0 N#UXP5C(
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); rCE;'? Y
rpowern = cat(2,rpowern{:}); dnwdFsf
rpowern = [ones(length_r,1) rpowern]; qC..\{z
else ".E5t@ }?m
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ?gN9kd)
rpowern = cat(2,rpowern{:}); l
DnMjK\M
end y^G>{?Tha
#d% vT!Bz~
.uKx>YB}
% Compute the values of the polynomials: SW#BZ3L
% -------------------------------------- H UkerV
y = zeros(length_r,length(n)); q`[K3p
for j = 1:length(n) .gq(C9<B[
s = 0:(n(j)-m_abs(j))/2; ESIzGaM
pows = n(j):-2:m_abs(j); jN6b*-2
for k = length(s):-1:1 \yG`Sfu2
p = (1-2*mod(s(k),2))* ... (f~gEKcB2u
prod(2:(n(j)-s(k)))/ ...
,gmH2.
prod(2:s(k))/ ... q &
b5g !
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... \vVSh
prod(2:((n(j)+m_abs(j))/2-s(k))); (Xo SG
idx = (pows(k)==rpowers); d=y0yq{L
y(:,j) = y(:,j) + p*rpowern(:,idx); sP y2/7Wqd
end GRIa8>
^dfx~C
if isnorm 1ef'7a7e8
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 7 2,"Cj
end q@kOTkHv)
end _q)!B,y-/N
% END: Compute the Zernike Polynomials AK *N
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 4\6:\
9 mPIykAj8
~{M@?8wi
% Compute the Zernike functions: j o_
sAb
% ------------------------------ )* TF"
idx_pos = m>0; QrC/ssf}
idx_neg = m<0; VNj@5s
8;#AO8+U7)
-72j:nk
z = y; 9tk" :ld
if any(idx_pos) IqUp4}
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); J>%t<xYf4
end LeHiT>aX!
if any(idx_neg) FVgMmYU
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); V7C1FV2
end rl?7W];
@o#+5P
Uo6(|mm
% EOF zernfun w^{!U