切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9197阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, <Dm6CH  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 8@h zw~>  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? #0`"gR#+  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? dt`L}Yi  
    )sV# b  
    R1Pnj  
    W$'pUhq\H  
    yFpHRfF}  
    function z = zernfun(n,m,r,theta,nflag) On'3K+(_  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. Z;>~<#!4  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ,x Tbt4J  
    %   and angular frequency M, evaluated at positions (R,THETA) on the $--PA$H27  
    %   unit circle.  N is a vector of positive integers (including 0), and \^#1~Kx  
    %   M is a vector with the same number of elements as N.  Each element rM?D7a{q  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) fwq|8^S@  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, nZ bg  
    %   and THETA is a vector of angles.  R and THETA must have the same `%ENGB|  
    %   length.  The output Z is a matrix with one column for every (N,M) eGTK^p  
    %   pair, and one row for every (R,THETA) pair. ~zm/n,Epb  
    % )K?GAj]Pq  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike > T-O3/KN  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), D{loX6  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral W^Rb~b^?  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, l?R_wu,Q  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized I"!gzI`Sd  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ; zvnDox  
    % H9>&"=".  
    %   The Zernike functions are an orthogonal basis on the unit circle. Bjo&  
    %   They are used in disciplines such as astronomy, optics, and p|FX_4RjX  
    %   optometry to describe functions on a circular domain. <Z__Q  
    % &*y ve}su  
    %   The following table lists the first 15 Zernike functions. ('lnQD.Hd  
    % GawO>7w8  
    %       n    m    Zernike function           Normalization }O>Zu[8a  
    %       -------------------------------------------------- 1(?J>{-lw  
    %       0    0    1                                 1 #NE^f2  
    %       1    1    r * cos(theta)                    2 @TprS d  
    %       1   -1    r * sin(theta)                    2 4bBxZY  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) g.]'0)DMW  
    %       2    0    (2*r^2 - 1)                    sqrt(3) *nc4X9  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) >YfOR%mS4  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) :L[6a>"neE  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) D1n2Z :9  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) L C7LO  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) )q^vitkjup  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) #K l2K4  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) xS}H483h6W  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) %_[-[t3  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) uJ`&hX  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) $"8k|^Z3  
    %       -------------------------------------------------- BQU5[8l  
    % vxeT[/6i  
    %   Example 1: gJ&!w8v.  
    % #$w#"Nr9k  
    %       % Display the Zernike function Z(n=5,m=1) ay_D.gxz  
    %       x = -1:0.01:1; 95Qz1*TR  
    %       [X,Y] = meshgrid(x,x); PNKT\yd  
    %       [theta,r] = cart2pol(X,Y); +V@=G &Ou0  
    %       idx = r<=1; $5b|@  
    %       z = nan(size(X));  YBD{l  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); HD{`w1vcN  
    %       figure tTGK25&  
    %       pcolor(x,x,z), shading interp \.c )^QQ  
    %       axis square, colorbar H/k W :k  
    %       title('Zernike function Z_5^1(r,\theta)') |y% ].y)  
    % pK9^W T@  
    %   Example 2: *Zi%Q[0Me  
    % ~(j'a!#Vvk  
    %       % Display the first 10 Zernike functions ;a&:r7]=  
    %       x = -1:0.01:1; EQ7n'Wqq  
    %       [X,Y] = meshgrid(x,x); q|X4[E|{Q  
    %       [theta,r] = cart2pol(X,Y); <j\;>3Q  
    %       idx = r<=1; 66<\i ltUQ  
    %       z = nan(size(X)); <aaDW  
    %       n = [0  1  1  2  2  2  3  3  3  3]; .w_`d'}  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; I#X2 UQzP  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; G}#/`]o!K  
    %       y = zernfun(n,m,r(idx),theta(idx)); /iy*3P,`  
    %       figure('Units','normalized') 2 dD<]  
    %       for k = 1:10 ZQ9oZHUm  
    %           z(idx) = y(:,k); :6$4K"^1  
    %           subplot(4,7,Nplot(k)) 0BB @E(*  
    %           pcolor(x,x,z), shading interp ; Uqx&5P}  
    %           set(gca,'XTick',[],'YTick',[]) cNo4UZvr  
    %           axis square p/1}>F|i  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) kbYg4t]FH  
    %       end y)/$ge _U  
    % pOVghllO  
    %   See also ZERNPOL, ZERNFUN2. Bdq"6SK>  
    [du>ff  
    r\n h.}s  
    %   Paul Fricker 11/13/2006 2v9s@k/k)6  
    6G<Hi"I  
    i9\\evJs  
    :@>br+S  
    {#*?S>DA  
    % Check and prepare the inputs: 2b4pOM7W  
    % ----------------------------- ]EM)_:tRf  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) -hVv  
        error('zernfun:NMvectors','N and M must be vectors.') F%.9f Uo  
    end {{]=zt|69  
    loC5o|Wh  
    K_&c5(-(_  
    if length(n)~=length(m) t$y&=v  
        error('zernfun:NMlength','N and M must be the same length.') g2aT`=&Z  
    end W\>^[c/  
    Vgqvvq<S  
    g8+4$2`ny  
    n = n(:); Tw}?(\ya  
    m = m(:); Lov.E3S6;  
    if any(mod(n-m,2)) {V%%^Zhwy  
        error('zernfun:NMmultiplesof2', ... V/(`Ek-  
              'All N and M must differ by multiples of 2 (including 0).') #0?"J)  
    end +(z_"[l"  
    rysP)e  
    4T==A#Z  
    if any(m>n) -[zdX}x.:  
        error('zernfun:MlessthanN', ... 5w,lw  
              'Each M must be less than or equal to its corresponding N.') :$M9XZ~\  
    end vz;7} Zj]  
    <OR.q  
    Vq3]7l  
    if any( r>1 | r<0 ) #MhNdH#  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') u[V4OU}%  
    end 2 ?Pt Z  
    <[Tq7cO0  
    <CZI7]PM7  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) LN@E\wRw{r  
        error('zernfun:RTHvector','R and THETA must be vectors.') ,] ~u:Y}  
    end !dfS|BA]  
    8%;}LK  
    Ci]'G>F@"  
    r = r(:); pT("2:)x  
    theta = theta(:); cm@jt\D  
    length_r = length(r); Zg)_cRR   
    if length_r~=length(theta) 'ox0o:  
        error('zernfun:RTHlength', ... OD  
              'The number of R- and THETA-values must be equal.') 0n4g $JK7  
    end ^~ Ekg:`  
    ~ A^E  
    wVx,JL5Jr  
    % Check normalization: w+t#Yb\7  
    % -------------------- AI&qU/}  
    if nargin==5 && ischar(nflag) *-?Wcz  
        isnorm = strcmpi(nflag,'norm'); Gx.P ]O3  
        if ~isnorm @)o0GHNP  
            error('zernfun:normalization','Unrecognized normalization flag.') YSqv86  
        end |:./hdcad  
    else (V$Zc0  
        isnorm = false; qOW#Q:T  
    end rVUUH!  
    J5O.*&  
    `-4'/~G  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 8QT<M]N%  
    % Compute the Zernike Polynomials F;#zN  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \,2gTi,=  
    yB.G=90  
    +fM&su=wl  
    % Determine the required powers of r: xZX`%f-  
    % ----------------------------------- #>=8w9]  
    m_abs = abs(m); auRY|j  
    rpowers = []; _l<mu?"  
    for j = 1:length(n) jO=*:{#x  
        rpowers = [rpowers m_abs(j):2:n(j)]; %MN.O-Lc  
    end .l \r9I(  
    rpowers = unique(rpowers); IhE9snJ[  
    UgR :qjI  
    '@bJlJB9>  
    % Pre-compute the values of r raised to the required powers, L=RGL+f1 _  
    % and compile them in a matrix: 'G8 ?'u_)  
    % ----------------------------- sm   
    if rpowers(1)==0 h$pk<<  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false);  it)ZP H  
        rpowern = cat(2,rpowern{:}); 'd/*BjNp)  
        rpowern = [ones(length_r,1) rpowern]; =2%VZE7Vm  
    else } Gr&w-v  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 3rNc1\a;  
        rpowern = cat(2,rpowern{:}); o\4CoeG  
    end (~&w-w3  
    &tj0M.-  
    2bLI%gg3  
    % Compute the values of the polynomials: `*aBRwvK~  
    % -------------------------------------- =u=Kw R  
    y = zeros(length_r,length(n)); 59 <hV?  
    for j = 1:length(n) $0oO &)*  
        s = 0:(n(j)-m_abs(j))/2; x&Vm!,%:1  
        pows = n(j):-2:m_abs(j); JCcZuwu[  
        for k = length(s):-1:1 =h6 sPJ  
            p = (1-2*mod(s(k),2))* ... 6Tw#^;q-  
                       prod(2:(n(j)-s(k)))/              ... nMfFH[I4  
                       prod(2:s(k))/                     ... anw}w !@U  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... aJL^AG  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 9Etz:?)b  
            idx = (pows(k)==rpowers); a {}|Bf<  
            y(:,j) = y(:,j) + p*rpowern(:,idx); {Sl57!U5  
        end (iJ1 ;x  
         do-ahl,  
        if isnorm o*x*jn:hm  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); %<?0apO  
        end u~ ~R9.  
    end tkQH\5  
    % END: Compute the Zernike Polynomials &mj6rIz  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% & gJV{V5Ay  
    +')f6P;t>=  
    L%v^s4@  
    % Compute the Zernike functions: uPYmHA} _/  
    % ------------------------------ B/5=]R  
    idx_pos = m>0; pME{jD  
    idx_neg = m<0; ] sz3]"2  
    I/VxZ8T  
    ,*4p?|A  
    z = y; )eUW5 tS  
    if any(idx_pos) @prG%vb"  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); {QBB^px  
    end y@j,a  
    if any(idx_neg) "dR |[a<#g  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); B!gGK|8  
    end 2^t#6XBk/  
    < B_Vc:Q  
    r1ws1 rr=  
    % EOF zernfun w ;daC(:  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  ^[TV;9I*  
    oFg5aey4  
    DDE还是手动输入的呢? lQPqcZd  
    #nyv+x;  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究