切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9484阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, .gI9jRdKw  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, a[gN+DX%L  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? BCH I@a  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? hpticW|  
    fVBRP[,   
    T0}P 'q  
    ;}k_2mr~  
    "2@Ys* e  
    function z = zernfun(n,m,r,theta,nflag) CY9`HQ1  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 14\!FCe)!  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ?/s=E+  
    %   and angular frequency M, evaluated at positions (R,THETA) on the II_MY#0X  
    %   unit circle.  N is a vector of positive integers (including 0), and Q_a%$a.rV  
    %   M is a vector with the same number of elements as N.  Each element j8p'B-yS  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) jNseD  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, FkT % -I  
    %   and THETA is a vector of angles.  R and THETA must have the same +<I1@C  
    %   length.  The output Z is a matrix with one column for every (N,M) |m7`:~ow  
    %   pair, and one row for every (R,THETA) pair. *'(dcy9  
    % h-h}NCP  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike z'X_ s.9F  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), x]U (EX`t$  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral & ~[%N O  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, AuYi$?8|5  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized [G|2m_  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. h Tn^:%(  
    % }fs;yPl,  
    %   The Zernike functions are an orthogonal basis on the unit circle. Dy^4^ J5+  
    %   They are used in disciplines such as astronomy, optics, and UoxF00H@!  
    %   optometry to describe functions on a circular domain. I@q>ES!1H  
    % +e"}"]n  
    %   The following table lists the first 15 Zernike functions. Dl/_jM  
    % UwQ3q  
    %       n    m    Zernike function           Normalization Xl*-A|:j  
    %       -------------------------------------------------- vR~*r6hX8  
    %       0    0    1                                 1 fhn0^Qc"+  
    %       1    1    r * cos(theta)                    2 o6K BJx  
    %       1   -1    r * sin(theta)                    2 U>x2'B v  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) x{*!"a>  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 0QIocha  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) |/lIasI  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) p N]Hp"v  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) MgMLfgt"V  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) j)IK  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 7RD` *s  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) Q84KU8?d  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) A1ebXXD )  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) _ zmx  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) @7^#_772  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 8rp-Xi W  
    %       -------------------------------------------------- FVQWz[N  
    % -;`W"&`ss  
    %   Example 1: kdYl>M  
    % *E)Y?9u"  
    %       % Display the Zernike function Z(n=5,m=1) ^]R0d3?>\  
    %       x = -1:0.01:1; fF[g%?w  
    %       [X,Y] = meshgrid(x,x); \]ODpi 2  
    %       [theta,r] = cart2pol(X,Y); 8:xQPd?3  
    %       idx = r<=1; |b3/63Ri-0  
    %       z = nan(size(X)); VD#^Xy4% r  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 0~1P&Qs<  
    %       figure -% f DfjP  
    %       pcolor(x,x,z), shading interp 49zp@a  
    %       axis square, colorbar ;W*$<~_  
    %       title('Zernike function Z_5^1(r,\theta)') =W|Q0|U  
    % uATBt   
    %   Example 2: GKd>AP_  
    % `( a^=e5  
    %       % Display the first 10 Zernike functions F_Pd\Aq8  
    %       x = -1:0.01:1; Ul'G g  
    %       [X,Y] = meshgrid(x,x); 7z,M`14  
    %       [theta,r] = cart2pol(X,Y); J;kbY9e  
    %       idx = r<=1; +{w& ksk  
    %       z = nan(size(X)); aBC[(}Pb]  
    %       n = [0  1  1  2  2  2  3  3  3  3]; Q8~pIv  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; NR[mzJv  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 5k(#kyP  
    %       y = zernfun(n,m,r(idx),theta(idx)); zXCIn  
    %       figure('Units','normalized') ;hZ@C!S:  
    %       for k = 1:10 A{o{o++  
    %           z(idx) = y(:,k); I^|bQ3sor  
    %           subplot(4,7,Nplot(k)) "}EbA3  
    %           pcolor(x,x,z), shading interp U+i[r&{gb  
    %           set(gca,'XTick',[],'YTick',[]) X>6a@$MxP  
    %           axis square Vi|jkyC8  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) .eAC!R  
    %       end fytx({I .a  
    % ^>p [b  
    %   See also ZERNPOL, ZERNFUN2. )AoFd>  
     k WtUj  
    4dK@UN\  
    %   Paul Fricker 11/13/2006 ZD{srEa/a  
    i=a LC*@  
    <Gw<(M  
    >g2B5KY  
    M Sj0D2H  
    % Check and prepare the inputs: VfwD{+ 5  
    % ----------------------------- ;R!H\  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) p o`$^TB^+  
        error('zernfun:NMvectors','N and M must be vectors.') kt#W~n  
    end w3Ohm7N[  
    "p{ '984r<  
    t_rDXhM  
    if length(n)~=length(m) ;^*!<F%t9R  
        error('zernfun:NMlength','N and M must be the same length.') zOOX>3^  
    end ftPw6  
    YM|S<  
    &3f.78a  
    n = n(:); }(K6 YL  
    m = m(:); N96BWgT  
    if any(mod(n-m,2)) SA1/U  
        error('zernfun:NMmultiplesof2', ... d/>,U7eS[+  
              'All N and M must differ by multiples of 2 (including 0).') Fzs'@*  
    end 4g9b[y~U  
    }$1 ;<  
    2>k)=hl:  
    if any(m>n) SEIu4 l$E  
        error('zernfun:MlessthanN', ... af(JoX*U  
              'Each M must be less than or equal to its corresponding N.') jTr 4A-"  
    end yp^*TD/J  
    =.hDf<U  
    => =x0gsgj  
    if any( r>1 | r<0 ) uFWgq::\  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') %},G(>  
    end k#JG  
    }Xi#x*-D  
    jSYg\ Z5!  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ~N^vE;  
        error('zernfun:RTHvector','R and THETA must be vectors.') _%vqBr*  
    end qo- F9u1J  
    dt+  4$  
    Td1ba^J  
    r = r(:); &2=KQ\HO  
    theta = theta(:); PAU+C_P  
    length_r = length(r); |S:!+[  
    if length_r~=length(theta) M%s$F@  
        error('zernfun:RTHlength', ... WnzPPh3PJ  
              'The number of R- and THETA-values must be equal.') d J:x1j  
    end Bq]O &>\hX  
    ;Ph)BY<  
    /2Lo{v=0[  
    % Check normalization: :V~*vLvR  
    % -------------------- ,l .U^d6>  
    if nargin==5 && ischar(nflag) uyt-q|83=  
        isnorm = strcmpi(nflag,'norm'); N"RYM~c7  
        if ~isnorm LIC~Kehi  
            error('zernfun:normalization','Unrecognized normalization flag.') d5"EvT  
        end aiZo{j<6  
    else NJf(,Mr*|  
        isnorm = false; -5v.1y=!L  
    end L?27q  
    MlK`sH6  
    G+ v, Hi1  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% h+~df(S.  
    % Compute the Zernike Polynomials hdtnC29$  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% zk'K.! `^  
    NS4'IR=;E!  
    (}1v^~FXj  
    % Determine the required powers of r: p;=kH{uu  
    % ----------------------------------- g~c|~u(W  
    m_abs = abs(m); NJ)2+  
    rpowers = []; CQzjCRS d  
    for j = 1:length(n) 72ViPWW  
        rpowers = [rpowers m_abs(j):2:n(j)]; @" 0tW:  
    end 'gZbNg=&[  
    rpowers = unique(rpowers); 04guud }  
    XyM(@6,'  
    BU:Ecchbr  
    % Pre-compute the values of r raised to the required powers, r7"Au"  
    % and compile them in a matrix: `}~ )1'(#/  
    % ----------------------------- |@ZqwC=  
    if rpowers(1)==0 ^jha:d  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); g"]<J &  
        rpowern = cat(2,rpowern{:}); AuDR |;i  
        rpowern = [ones(length_r,1) rpowern]; .D,?u"fk|  
    else ]LBvYjMY  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); qE`:b0FT  
        rpowern = cat(2,rpowern{:}); |5~wwL@LW7  
    end nl'J.dJe  
    Q6.*"`  
    }or2 $\>m  
    % Compute the values of the polynomials: J[!x%8m  
    % -------------------------------------- 2#b<d?"  
    y = zeros(length_r,length(n)); `xX4!^0Hm  
    for j = 1:length(n) r'd:SaU+  
        s = 0:(n(j)-m_abs(j))/2; Q&upxE4-~  
        pows = n(j):-2:m_abs(j); VXkAFgO  
        for k = length(s):-1:1 7.$]f71z  
            p = (1-2*mod(s(k),2))* ... w`j*W$82  
                       prod(2:(n(j)-s(k)))/              ... *"ykTqa  
                       prod(2:s(k))/                     ... OgKWgvy  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... /1 US,  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); Q)G!Y (g\  
            idx = (pows(k)==rpowers); B9LSxB  
            y(:,j) = y(:,j) + p*rpowern(:,idx); K=tx5{V  
        end J&63Z  
         U+.PuC[3  
        if isnorm W1?!iE~tO  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ,TF<y#wed  
        end abICoP1zQ  
    end "J P{Q  
    % END: Compute the Zernike Polynomials 9 V=<| 2  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% L2CW'Hd  
    tg7C;rJ  
    -_2Dy1  
    % Compute the Zernike functions: m3xz=9Ve  
    % ------------------------------ YER:ICQ  
    idx_pos = m>0; Ii~; d3.  
    idx_neg = m<0; 3`&VRF8  
    ^91sl5c8yD  
    @[d#mz  
    z = y; >`hSye{  
    if any(idx_pos) e86Aqehle  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); *CeQY M  
    end s?^,iQ+tp  
    if any(idx_neg) 1Q&cVxA"\  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 0W~.WkD  
    end H\)gE>  
    <#xrrRhm}  
    ]`zjRRd  
    % EOF zernfun *>e~_{F  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  |IAW{_9)U  
    Gp,'kw"I  
    DDE还是手动输入的呢? 7g5@vYS+  
    YN/u9[=`  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究