下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, M;-PrJdyt
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, &r doMc;
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? Wv8?G~>
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? 2old})CLJ
PFu{OJg&
Ja"?Pb
)pbsvR_
f;x0Ho5C2
function z = zernfun(n,m,r,theta,nflag) mA@FJK_
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. #Ipi 3
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N `zwXfY,%
% and angular frequency M, evaluated at positions (R,THETA) on the `1{Y9JdQ
% unit circle. N is a vector of positive integers (including 0), and ~l+2Z4nV
% M is a vector with the same number of elements as N. Each element f; w\k7 #
% k of M must be a positive integer, with possible values M(k) = -N(k) m%]1~b}"
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, j4k\5~yzS
% and THETA is a vector of angles. R and THETA must have the same u%!/-&?wF
% length. The output Z is a matrix with one column for every (N,M) ;G.5.q[A
% pair, and one row for every (R,THETA) pair. |Bz1u|uc
% X6*4IE
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ~t^
Umx"Ew
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), JlR$"GU
% with delta(m,0) the Kronecker delta, is chosen so that the integral %D1 |0v8}
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, & %A&&XT9
% and theta=0 to theta=2*pi) is unity. For the non-normalized cD6S;PSg
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. /oOZ>B%1s
% l0 =[MXM4
% The Zernike functions are an orthogonal basis on the unit circle. }C4wED.
% They are used in disciplines such as astronomy, optics, and U}@xMt8@l
% optometry to describe functions on a circular domain. J?{@pA
% iR?}^|]
% The following table lists the first 15 Zernike functions. 5(>SFxz"t
% ~(nc<M[
% n m Zernike function Normalization VKV
:U60
% -------------------------------------------------- `6$|d,m5
% 0 0 1 1 <aztbq?
% 1 1 r * cos(theta) 2 ;3x*pjLG:Q
% 1 -1 r * sin(theta) 2 aD]!
eP/)
% 2 -2 r^2 * cos(2*theta) sqrt(6) ZtyDip'x
% 2 0 (2*r^2 - 1) sqrt(3) E75/EQ5p]p
% 2 2 r^2 * sin(2*theta) sqrt(6) 0vETg'r
% 3 -3 r^3 * cos(3*theta) sqrt(8) 3xg9D.A
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) n,U?]mr
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) ]
# VHx
% 3 3 r^3 * sin(3*theta) sqrt(8) DA1?M' N
% 4 -4 r^4 * cos(4*theta) sqrt(10) sYjhQN=Y*
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) w4(L@1
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) 2ah%,o
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) /~MH]Gh
% 4 4 r^4 * sin(4*theta) sqrt(10) jp_|pC'
% -------------------------------------------------- JIhEkY
% ]{oZn5F
% Example 1: (+c1 .h
% [\AOr`7
% % Display the Zernike function Z(n=5,m=1) 6<EGH*GQ$
% x = -1:0.01:1; AdVc1v&>
% [X,Y] = meshgrid(x,x); l+[:Cni
% [theta,r] = cart2pol(X,Y); ~wa6S?
% idx = r<=1; ,DZvBS
% z = nan(size(X)); 1W\E`)Z}]
% z(idx) = zernfun(5,1,r(idx),theta(idx)); /a'1W/^2
% figure J$Z=`=]t+
% pcolor(x,x,z), shading interp 3/>7b(
% axis square, colorbar #l ZK_N|1x
% title('Zernike function Z_5^1(r,\theta)') 4;fuS_(X
% B*N1)J\5
% Example 2: jMgXIK\
% Hs*["zFc
% % Display the first 10 Zernike functions 3V<@Vkf5
% x = -1:0.01:1; Keozn*fzI
% [X,Y] = meshgrid(x,x); L8 L1_
% [theta,r] = cart2pol(X,Y); =hkYQq`Q
% idx = r<=1; oQ 2$z8
% z = nan(size(X)); "|h%Uy?XY
% n = [0 1 1 2 2 2 3 3 3 3]; MfP)Pk5
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; ZUHRATT-
% Nplot = [4 10 12 16 18 20 22 24 26 28]; tO&ffZP8$
% y = zernfun(n,m,r(idx),theta(idx)); 1h&`mqY)L.
% figure('Units','normalized') e"ehH#i
% for k = 1:10
27EK+$
% z(idx) = y(:,k); N7?B"p/
% subplot(4,7,Nplot(k)) X_]rtG
% pcolor(x,x,z), shading interp VG);om7`PD
% set(gca,'XTick',[],'YTick',[]) GC{M"q|_
% axis square SVZocTt
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) /'+>/
% end dE7S[O
% q`VL i
% See also ZERNPOL, ZERNFUN2. c2y,zq|H
Ax;=Zh<DAv
l~6K}g?
% Paul Fricker 11/13/2006 c-sjYJXKM*
U[@y8yN6M
Y()"2CCV
1^!SuAA@
-QrC>3xZR
% Check and prepare the inputs: p49]{2GXb
% ----------------------------- QO2cTk
m
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Rff F:,b
error('zernfun:NMvectors','N and M must be vectors.') Z!)~?<gcq:
end rmiOeS`:
u^1#9bAW8
}yz>(Pq
if length(n)~=length(m) aQCu3T
error('zernfun:NMlength','N and M must be the same length.') DxJ;C09xNa
end Z0F~?
0zaK&]oY0
V!W.P
n = n(:); x HRSzYn$
m = m(:); E>!=~ 7.
if any(mod(n-m,2)) F5h/>
error('zernfun:NMmultiplesof2', ... 4:`D3
'All N and M must differ by multiples of 2 (including 0).') 54gr'qvr
end fw%`[(hK
]~({;;3o-
,NSf
if any(m>n) ZK5nN9`
error('zernfun:MlessthanN', ... @5Xo2}o-Q
'Each M must be less than or equal to its corresponding N.') \N,ox(f?gW
end l~c[} wv
C=:<[_m`
&X=7b@r
if any( r>1 | r<0 ) }LzBo\
error('zernfun:Rlessthan1','All R must be between 0 and 1.') 0j.K?]f)h
end (_T{Z>C/J
Yj%]|E-
jD:
N)((
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) #b/qR^2qW
error('zernfun:RTHvector','R and THETA must be vectors.') :xd;=;q5
end y&/IJst&aq
|#oS7oV(
d1b]+A G4
r = r(:); c{z$^)A/
theta = theta(:); ekM?
'9ez
length_r = length(r); Cp8=8N(Xb
if length_r~=length(theta) [q<'ty
error('zernfun:RTHlength', ... JU 9GJ"
'The number of R- and THETA-values must be equal.')
Dw-d`8*
end l/eF
P
+r:g }iR
}9~^}99}
% Check normalization: p_FM 2K7!
% -------------------- x9_mlZ
if nargin==5 && ischar(nflag) &m5zd$6
isnorm = strcmpi(nflag,'norm'); @:lM|2:
if ~isnorm |Splbsk
error('zernfun:normalization','Unrecognized normalization flag.') g3R(,IH
end S;|:ci<[=
else (3#PKfY+
isnorm = false; ^h(wi`i
end !l:GrT8J
e+
xQ\LH
$|K
d<wv
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% l$42MRi/
% Compute the Zernike Polynomials Dl,QCZeM
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %y1!'R:ZW
d*(aue=
K,b
M9>}
% Determine the required powers of r: YeH!v, >
% ----------------------------------- @u~S!(7.Wi
m_abs = abs(m); 2*#|t: (c
rpowers = []; @Nu2
:~JO
for j = 1:length(n) _z\/{
rpowers = [rpowers m_abs(j):2:n(j)]; m'4f'tbN
end PwY/VGT
rpowers = unique(rpowers); 9}573M
{SoI;o_>
$=aO*i
% Pre-compute the values of r raised to the required powers, Y\|#Lu>B
% and compile them in a matrix: BZR{}Aj4pa
% ----------------------------- @^{Hq6_`
if rpowers(1)==0 FG? Mc'r&
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); b 2gng}
rpowern = cat(2,rpowern{:}); . "Ms7=
rpowern = [ones(length_r,1) rpowern]; iD^,O)b
else _|k$[^ln^
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); RObnu*
rpowern = cat(2,rpowern{:}); .@1+}0
end \kADh?phV
TpjiKM
Z6!Up1
% Compute the values of the polynomials: Z!p\=M,%
% -------------------------------------- RLF&-[mr3
y = zeros(length_r,length(n)); "oP^2|${
for j = 1:length(n) tbrU>KCBD
s = 0:(n(j)-m_abs(j))/2; )SV.|
pows = n(j):-2:m_abs(j); bO~y=Pa\
for k = length(s):-1:1 -,bFGTvYQ
p = (1-2*mod(s(k),2))* ... [Nyt0l "z
prod(2:(n(j)-s(k)))/ ... ^-o{3Q(w
prod(2:s(k))/ ... aSR-.r
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Na\ZV|;*tu
prod(2:((n(j)+m_abs(j))/2-s(k))); b@CB +8$
idx = (pows(k)==rpowers); /dnwN7Gf
y(:,j) = y(:,j) + p*rpowern(:,idx); 9A.RD`fg
end SV7;B?e%Y
AtT7~cVe
if isnorm ]5%0EE64
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ^r}c&@
end STKL
end Zxk~X}K\P
% END: Compute the Zernike Polynomials 0<M-asI?
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @"w4R6l+*
`oRyw6Sko
ep>!jMhJa
% Compute the Zernike functions: "ra$x2|=}
% ------------------------------ 7h'
C"rH
idx_pos = m>0; ,H7X_KbFD4
idx_neg = m<0; C{)1#<`
?hoOSur+
[8V;Q
z = y; Cq5.gkS<
if any(idx_pos) ULx:2jz
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 'nmGHorp
end 0uy'Py@2<
if any(idx_neg) B|`?hw@g+
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); unDW2#GX
end "2%z;!U1
(leX` SN0u
%h.zkocM
% EOF zernfun so))J`ca)