下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, Pqw<nyC.
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, IGT9}24
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? =6O*AJ
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? {:#nrD"
<<E9MIn_
QxGcRlpLK
?FjnG_Uz`D
y22DBB8
function z = zernfun(n,m,r,theta,nflag) bk;uKV+<
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 5V\",PAW
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ?@;)2B|q
% and angular frequency M, evaluated at positions (R,THETA) on the l'aCpzf
% unit circle. N is a vector of positive integers (including 0), and P9f`<o
% M is a vector with the same number of elements as N. Each element ^G(Ee+PN@
% k of M must be a positive integer, with possible values M(k) = -N(k) OG$v"Yf~
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, u%+k\/Scp.
% and THETA is a vector of angles. R and THETA must have the same )7.DF|A
% length. The output Z is a matrix with one column for every (N,M) %D8.uGsh
% pair, and one row for every (R,THETA) pair. Ox&G
[
% i%i/>;DF
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike .|5$yGEF_+
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ed}#S~4q
% with delta(m,0) the Kronecker delta, is chosen so that the integral *B}O
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, .RJMtmp
% and theta=0 to theta=2*pi) is unity. For the non-normalized %lWOW2~R
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ..+#~3es#y
% _oCNrjt9
% The Zernike functions are an orthogonal basis on the unit circle. Qni`k)4
% They are used in disciplines such as astronomy, optics, and Up'#OkTx
% optometry to describe functions on a circular domain. k4dC
% S\<i`q
% The following table lists the first 15 Zernike functions. dt,Z^z+"E
% ^]D1':
% n m Zernike function Normalization QDV+(
% -------------------------------------------------- "t(_r@qU/
% 0 0 1 1 Iia.`"S
% 1 1 r * cos(theta) 2 rzn,NFI
% 1 -1 r * sin(theta) 2 i!e8-gVMP&
% 2 -2 r^2 * cos(2*theta) sqrt(6) 0.0-rd>
% 2 0 (2*r^2 - 1) sqrt(3) >h#w~@e::
% 2 2 r^2 * sin(2*theta) sqrt(6) {vCtp
% 3 -3 r^3 * cos(3*theta) sqrt(8) p^k0Rad
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) X(MS!R V
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) y32$b,%Xi,
% 3 3 r^3 * sin(3*theta) sqrt(8) 0]iaNR
%
% 4 -4 r^4 * cos(4*theta) sqrt(10) @v2ko5
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ktx| c19
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) <?5|(Q"@:
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) HOFxOBV
% 4 4 r^4 * sin(4*theta) sqrt(10) }UB@FRPF
% -------------------------------------------------- z|D*ymz*EY
% =urGs`\
% Example 1: wN4#j}C
% X_hDU~5{wC
% % Display the Zernike function Z(n=5,m=1) (BeJ,K7
% x = -1:0.01:1; `(0B09~7
% [X,Y] = meshgrid(x,x); ?zm]KxIC
% [theta,r] = cart2pol(X,Y); 2a48(~<_
% idx = r<=1; @;P ;iI
% z = nan(size(X)); l[ $bn!_e
% z(idx) = zernfun(5,1,r(idx),theta(idx)); -|uoxj>
% figure tMX$8W0
c
% pcolor(x,x,z), shading interp /}m*|cG/
% axis square, colorbar jd-]q2fQ|
% title('Zernike function Z_5^1(r,\theta)') M\5|
% 8Ejb/W_
% Example 2: [%N?D#;
% iP"sw0V8
% % Display the first 10 Zernike functions dM^Z,;u
% x = -1:0.01:1; DJ:'<"zH7
% [X,Y] = meshgrid(x,x); DI{*E
% [theta,r] = cart2pol(X,Y); Q'jw=w!|g
% idx = r<=1; t'Wv?,
% z = nan(size(X)); 3>@VPMi
% n = [0 1 1 2 2 2 3 3 3 3]; /z*Z+OT2
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; %NxQb'
% Nplot = [4 10 12 16 18 20 22 24 26 28]; 5P-t{<]tx
% y = zernfun(n,m,r(idx),theta(idx)); kt978qfk
% figure('Units','normalized') 3^+D,)#D^
% for k = 1:10 V&s|I oTR
% z(idx) = y(:,k); <4q H0<
% subplot(4,7,Nplot(k)) src+z#
% pcolor(x,x,z), shading interp Fds
11
/c7
% set(gca,'XTick',[],'YTick',[]) 6~x'~T
% axis square %ERcFI]G
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) \xCCJWek
% end ~E7IU<B
% XH$r(@Z\7
% See also ZERNPOL, ZERNFUN2. $3g{9)}
\}?X5X>
]2wxqglh)
% Paul Fricker 11/13/2006 Q7$o&N{
{4G/HW28
5?^L))
_V-K yK
1^}I?PbqV
% Check and prepare the inputs: Tn#Co$<
% ----------------------------- *(F`NJ 3
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) wwB3m&
error('zernfun:NMvectors','N and M must be vectors.') dWvVK("Wj
end gVOAB-nw
Nhjq.&
W8^m-B&
if length(n)~=length(m) "^n,(l*4x
error('zernfun:NMlength','N and M must be the same length.') E=p+z"Ui
end GBbnR:hM
a4__1N^Qj
PC#^L$cg}
n = n(:); IT_I.5*A2
m = m(:); Go)$LC0Mi
if any(mod(n-m,2)) 9qB0F_xl
error('zernfun:NMmultiplesof2', ... I4X9RYB6c
'All N and M must differ by multiples of 2 (including 0).') T$xBH
end l4oyF|oJTH
J, 9NVw$
No'?8 +i
if any(m>n) 6:7[>|okQ
error('zernfun:MlessthanN', ... Cku"vVw,
'Each M must be less than or equal to its corresponding N.') "d_wu#fO)
end _qxI9Q}<"
L=4+rshl!_
F~mIV;BP
if any( r>1 | r<0 ) W&?Qs=@
error('zernfun:Rlessthan1','All R must be between 0 and 1.') lT^su'+bk
end R-13DVK
*|fF;-#v
br[iRda@
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ;Y?MbD
error('zernfun:RTHvector','R and THETA must be vectors.')
}X&rJV
end U#` e~d t<
`t~jHe4!Y
;.A}c)b
r = r(:); s<9g3Gh
theta = theta(:); m+TAaK
length_r = length(r);
9r!8BjA
if length_r~=length(theta) k {*QU(
error('zernfun:RTHlength', ... $F2Uv\7=
'The number of R- and THETA-values must be equal.') =:-fK-d
end ci~#G[_$S
o|kykxcq
,@`?I6nKy
% Check normalization: }e?H(nZS7h
% -------------------- ;o_F<68QP
if nargin==5 && ischar(nflag) )/T[Cnx.Nc
isnorm = strcmpi(nflag,'norm'); :
uncOd.
if ~isnorm *GT=U(d
error('zernfun:normalization','Unrecognized normalization flag.') 513,k$7
end g4IF~\QRVi
else Zse&{
isnorm = false; `\kihNkJn3
end s^wm2/Yw
WAa45G
\i%'M%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% va6Fp2n<1*
% Compute the Zernike Polynomials !_S#8"
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% pHV^Kv#
YV
O$`W^N
v/+ <YU
% Determine the required powers of r: 2{-29bq
% ----------------------------------- ?b
(iWq
m_abs = abs(m); KGz Nj%
rpowers = []; u_(~zs.N]
for j = 1:length(n) =&}@GsXdo
rpowers = [rpowers m_abs(j):2:n(j)]; DXs an
end cb}"giXQTB
rpowers = unique(rpowers); "rv~I_zl
Eb8pM>'qM
|&; ^?M
% Pre-compute the values of r raised to the required powers, !}(B=-
% and compile them in a matrix: Ipp_}tl_
% ----------------------------- BI1M(d#1L"
if rpowers(1)==0 k^J8 p#`6
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); IPQRdBQ
rpowern = cat(2,rpowern{:}); *WwM"NFHDd
rpowern = [ones(length_r,1) rpowern]; mMAN*}`O
else ?:(y
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); <LHhs<M'
rpowern = cat(2,rpowern{:}); x/*lNG/
end )l3Uf&v^f
;J%:DD
3:)z+#Uk6
% Compute the values of the polynomials: )GD7rsC`<
% -------------------------------------- %~u]|q<{
y = zeros(length_r,length(n)); hFrMOc&
for j = 1:length(n) LP2~UVq
s = 0:(n(j)-m_abs(j))/2; #@R0$x
pows = n(j):-2:m_abs(j); F B]Y~;(
for k = length(s):-1:1 _D '(R
p = (1-2*mod(s(k),2))* ... Rs %`6et}\
prod(2:(n(j)-s(k)))/ ... YvR bM
prod(2:s(k))/ ... ARH~dN* C
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... V=O52?8
prod(2:((n(j)+m_abs(j))/2-s(k))); A;oHji#*
idx = (pows(k)==rpowers); >B BV/C'9
y(:,j) = y(:,j) + p*rpowern(:,idx); AGlBvRX7e
end F.9}jd{
SE'Im
if isnorm broLC5hbQU
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 8q2a8I9g
end x~5uc$
end As:O|!F
% END: Compute the Zernike Polynomials iq#{*:1
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% D6"=2XR4n
e4z`:%vy
>)>f~ >
% Compute the Zernike functions: ;Afz`Se1@
% ------------------------------ honh'j
idx_pos = m>0; +|A`~\@N
idx_neg = m<0; b1&