切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8675阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, WU4vb  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, C,e$g  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? i!+3uHWu`)  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? kBQenMm  
    HZQ3Ht3Vh  
    u g$\&rM>  
    *t-A6)2  
    \oZUG  
    function z = zernfun(n,m,r,theta,nflag) u B%^2{uU  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. EvardUB)  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N QRG)~  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ]GPz>k  
    %   unit circle.  N is a vector of positive integers (including 0), and Ch&]<#E>`  
    %   M is a vector with the same number of elements as N.  Each element t=\[J+  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) :W<,iqSCm  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 0-; P&m!!  
    %   and THETA is a vector of angles.  R and THETA must have the same R~c vml  
    %   length.  The output Z is a matrix with one column for every (N,M) Y\9*e5?`I3  
    %   pair, and one row for every (R,THETA) pair. d`][1rZk  
    % c]v3dHE_h  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike NX #d}M^V  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), eeTaF!W  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral "?(Fb_}i  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Hh=::Bi  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized c5+lm}R?  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ^dKaa  
    % N}<U[nh'  
    %   The Zernike functions are an orthogonal basis on the unit circle. 6i=wAkn_J  
    %   They are used in disciplines such as astronomy, optics, and gJ~*rWBK:  
    %   optometry to describe functions on a circular domain. v7u}nx  
    % BU{ V,|10a  
    %   The following table lists the first 15 Zernike functions. 9s6lt#?b  
    % k3h53QTmC  
    %       n    m    Zernike function           Normalization /1 %0A  
    %       -------------------------------------------------- }ucg!i3C  
    %       0    0    1                                 1 w[[@&T\`  
    %       1    1    r * cos(theta)                    2 ghR]$SG  
    %       1   -1    r * sin(theta)                    2 d"a7{~l  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) qfe%\krN{i  
    %       2    0    (2*r^2 - 1)                    sqrt(3) [zd-=.:+M[  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) ~?+m=\  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) A0sW 9P6F  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) YAG3PWmD  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 3<E$m *  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) jM<Ihmh|  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) nQVBHL>  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 0t0:soZ x  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) \{mJO>x  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) {XW>:EU'N  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) tC~itU=V  
    %       -------------------------------------------------- dK$dQR#  
    % ;S j* {  
    %   Example 1: mmK_xu~f28  
    % 'FXZ`+r|  
    %       % Display the Zernike function Z(n=5,m=1) EZW?(%b>H  
    %       x = -1:0.01:1; N^at{I6C  
    %       [X,Y] = meshgrid(x,x); .r"?w  
    %       [theta,r] = cart2pol(X,Y); KrzM]x  
    %       idx = r<=1; oI/ThM`=q  
    %       z = nan(size(X)); |th )Q  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); U\6DEnII?!  
    %       figure [AwE  
    %       pcolor(x,x,z), shading interp >f/g:[  
    %       axis square, colorbar #O ]IXo(5z  
    %       title('Zernike function Z_5^1(r,\theta)') @ U|u _S@  
    % wUndNE   
    %   Example 2: rP_)*)  
    % z<*]h^ !3  
    %       % Display the first 10 Zernike functions (7 iMIY  
    %       x = -1:0.01:1; &[pw LYf7  
    %       [X,Y] = meshgrid(x,x); ?^p8]Va%  
    %       [theta,r] = cart2pol(X,Y); UkKpS L}Q2  
    %       idx = r<=1; w:v:znQrW  
    %       z = nan(size(X)); XPKcF I=  
    %       n = [0  1  1  2  2  2  3  3  3  3]; N"y4#W(Z@  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; +(0eOO'\M  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; EG6fC4rfC  
    %       y = zernfun(n,m,r(idx),theta(idx)); #n r1- sf|  
    %       figure('Units','normalized') 6 [E"  
    %       for k = 1:10 h08T Q=n  
    %           z(idx) = y(:,k); 5<poN)"  
    %           subplot(4,7,Nplot(k)) y 6< tV.  
    %           pcolor(x,x,z), shading interp k9]n/  
    %           set(gca,'XTick',[],'YTick',[]) KG@hjO  
    %           axis square (""&$BJQ|  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) eH6cBX#P.  
    %       end RqR  X  
    % C? S%fF  
    %   See also ZERNPOL, ZERNFUN2. ^<-SW]x  
    DK;-2K  
    u)-l+U.  
    %   Paul Fricker 11/13/2006 K~R{q+  
    6yqp<D0SP)  
    8qveKS]vZ  
    \)*qW[C$a  
    9"TPDU7"  
    % Check and prepare the inputs: }$jIvb,3?  
    % ----------------------------- (B5G?cB9  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) TzJN,]F!M  
        error('zernfun:NMvectors','N and M must be vectors.') wW~2]*n  
    end 4<|]k?@  
    *v&RGY[>  
    F2=97 =R  
    if length(n)~=length(m) zF7T5 Ge  
        error('zernfun:NMlength','N and M must be the same length.') = 1C9lKm  
    end gqd#rjtfz  
    T28#?Lp6]  
    RWYA`  
    n = n(:); &CgD smJo#  
    m = m(:); :M16ijkx  
    if any(mod(n-m,2)) b.(^CYYQ  
        error('zernfun:NMmultiplesof2', ... I6+5mv\  
              'All N and M must differ by multiples of 2 (including 0).') fqxMTTg@  
    end +FI]0r  
    lCXo+|$?s  
    ^Ue>T 8  
    if any(m>n) K9c:K/H  
        error('zernfun:MlessthanN', ... ja2LXM  
              'Each M must be less than or equal to its corresponding N.') MeC@+@C  
    end udMq>s;  
    TD<.:ul]  
    |yr}g-m  
    if any( r>1 | r<0 ) >K3Lww)Ln  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') =x> KA*O1  
    end kq+L63fZ  
    xQ4Q'9  
    6Y=)12T  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) o/&Q^^Xj^~  
        error('zernfun:RTHvector','R and THETA must be vectors.') Y&nY]VV  
    end WukD|BCC  
    c ;VW>&,B  
    q4{ 6@q  
    r = r(:); 6B=J*8 Hs  
    theta = theta(:); w5p+Yx=q  
    length_r = length(r); I?gbu@o  
    if length_r~=length(theta) z@2NAC  
        error('zernfun:RTHlength', ... 8WMC ~  
              'The number of R- and THETA-values must be equal.') s&4Y+dk93  
    end 5Jd,]~KAP  
    #-{4F?DA]y  
    D?$f[+  
    % Check normalization: RaR$lcG+iY  
    % -------------------- ral0@\T  
    if nargin==5 && ischar(nflag) -70Ut 4B  
        isnorm = strcmpi(nflag,'norm'); :EZTJu  
        if ~isnorm w;XXjT  
            error('zernfun:normalization','Unrecognized normalization flag.') LaRY#9  
        end ,Ao8QN  
    else @AJt/wPk  
        isnorm = false; >354O6  
    end K:mb$YJ&  
    {=TD^>?  
    <3'r&ks  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 8@ b83  
    % Compute the Zernike Polynomials /IODRso/!  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 6u7>S?  
    F[LBQI`zq  
    fU,sn5zZ  
    % Determine the required powers of r: s {!F@^a  
    % ----------------------------------- |VIBSty2d  
    m_abs = abs(m); EI'(  
    rpowers = []; f5AK@]4G  
    for j = 1:length(n) )]'?yS"  
        rpowers = [rpowers m_abs(j):2:n(j)]; (V*ggii@  
    end tR1 kn&w  
    rpowers = unique(rpowers); H13|bM<  
    Wcbb3N$+  
    fn)c&|aCt  
    % Pre-compute the values of r raised to the required powers, m8.sHw  
    % and compile them in a matrix: ^J?I-LG  
    % ----------------------------- M%Ov6u<I8  
    if rpowers(1)==0 c8A //  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); qm2  
        rpowern = cat(2,rpowern{:}); uk16  
        rpowern = [ones(length_r,1) rpowern]; VHJOj  
    else g9g^zd,  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ,JX/` 7y  
        rpowern = cat(2,rpowern{:}); VB\oK\F5z  
    end F4@``20|  
    XDU&Z2A  
    |nIm$p'  
    % Compute the values of the polynomials: s/8>(-H#  
    % -------------------------------------- y8VLFe;  
    y = zeros(length_r,length(n)); d n3sh<  
    for j = 1:length(n) L"9,K8  
        s = 0:(n(j)-m_abs(j))/2; IZ "d s=w  
        pows = n(j):-2:m_abs(j); Ry8@U9B6,t  
        for k = length(s):-1:1 |\J8:b> }  
            p = (1-2*mod(s(k),2))* ... WOiw 0  
                       prod(2:(n(j)-s(k)))/              ... "9aiin  
                       prod(2:s(k))/                     ... 'Tj9btM*cL  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 4 @ )|N'  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); (bY#!16C:  
            idx = (pows(k)==rpowers); I8rtta  
            y(:,j) = y(:,j) + p*rpowern(:,idx); wS9EC}s:Q  
        end $ba3dqbCW  
         B/7c`V  
        if isnorm %Sf%XNtu  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); A46Xei:Ow  
        end jw]~g+x#$  
    end u?r=;:N|y  
    % END: Compute the Zernike Polynomials |p}qK Fdi  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Z7lv |m&  
    D<78Tm x  
    2Ck'A0d  
    % Compute the Zernike functions: }j;*7x8(  
    % ------------------------------ zo4 IY`3  
    idx_pos = m>0; RX3P %xZ  
    idx_neg = m<0; gZ8n[zxf6  
    )OpB\k  
    $9)|cO  
    z = y; W{B)c?G]  
    if any(idx_pos) S2T~7-  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); *EY^t=  
    end )2~Iqzc4  
    if any(idx_neg) }}y~\TB~}  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); KF(N=?KO  
    end w,f1F;!q1  
    JI##l:,7r  
    w a7)  
    % EOF zernfun pCb3^# &o  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5476
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    957
    光币
    1067
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  QEUr+7[  
    GQZLOjsop  
    DDE还是手动输入的呢? |(mr&7O  
    y(I_ 6+B^  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究