切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8985阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, hh!4DHv   
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, zb3,2D+P  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? O@HL%ha  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? m`BE{%  
    uA4x xY  
    qr4.s$VGs*  
    (T!#7  
    !LM9  
    function z = zernfun(n,m,r,theta,nflag) p(>D5uN_}5  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. w?V;ItcL  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N lk*w M?Z  
    %   and angular frequency M, evaluated at positions (R,THETA) on the `*WzHDv5p  
    %   unit circle.  N is a vector of positive integers (including 0), and ]TVc 'G;  
    %   M is a vector with the same number of elements as N.  Each element #+&"m7 s  
    %   k of M must be a positive integer, with possible values M(k) = -N(k)  oP~%7Jt  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, m yy*rt  
    %   and THETA is a vector of angles.  R and THETA must have the same v, |jmv+:  
    %   length.  The output Z is a matrix with one column for every (N,M) \1sWmN6  
    %   pair, and one row for every (R,THETA) pair. XTJA"y  
    % _Un*x5u2O  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Y0yu,   
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), VpX*l3  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral )>tT ""yEl  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Ax6zx  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized RK/>5  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. `-MCI)Fq_R  
    % 5(t hDZ!  
    %   The Zernike functions are an orthogonal basis on the unit circle. [>LO'}%  
    %   They are used in disciplines such as astronomy, optics, and JFdMYb  
    %   optometry to describe functions on a circular domain. .P#t"oW}  
    % ]?T,J+S  
    %   The following table lists the first 15 Zernike functions. tn;Uaw  
    % 5 qMP u|A  
    %       n    m    Zernike function           Normalization v}\Fbe  
    %       -------------------------------------------------- Ap~6Vu  
    %       0    0    1                                 1 XVF!l>nE  
    %       1    1    r * cos(theta)                    2 g_@b- :$Yq  
    %       1   -1    r * sin(theta)                    2 0ybMI+*  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) +7{8T{  
    %       2    0    (2*r^2 - 1)                    sqrt(3) cv;2zq=T  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) _hgGF9  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) tr58J% Mu  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 7)RRCsn  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) O>>/2V9  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) {Y3:Y+2X3*  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) /.(~=6o5  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) uqVarRi$  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) Gzp*Vr  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) dXPTW;w  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) ^ U);MH8  
    %       -------------------------------------------------- /]?e^akA  
    % cfPp>EK  
    %   Example 1: y7,t "XV  
    % 411z -aS  
    %       % Display the Zernike function Z(n=5,m=1) vXZ )  
    %       x = -1:0.01:1; %jJIR88  
    %       [X,Y] = meshgrid(x,x);  /i   
    %       [theta,r] = cart2pol(X,Y); oBs5xH7@-  
    %       idx = r<=1; \~r_S  
    %       z = nan(size(X)); MwX8FYF D  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); e0]#vqdO  
    %       figure xf?"Q#  
    %       pcolor(x,x,z), shading interp .$1S-+(kV  
    %       axis square, colorbar qC-4X"y+  
    %       title('Zernike function Z_5^1(r,\theta)') pq%inSY  
    % -v:3#9uX)  
    %   Example 2: <?:h(IZe[  
    % KpIY>k  
    %       % Display the first 10 Zernike functions |"[;0)dw^  
    %       x = -1:0.01:1; (w`_{%T  
    %       [X,Y] = meshgrid(x,x); R2Lq??XA=  
    %       [theta,r] = cart2pol(X,Y); 1d$wP$  
    %       idx = r<=1; P`S'F_IN  
    %       z = nan(size(X)); L3\( <[  
    %       n = [0  1  1  2  2  2  3  3  3  3]; B`w8d[cL7  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; &XW ~l>!+  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; }rnu:7  
    %       y = zernfun(n,m,r(idx),theta(idx)); iVo-z#  
    %       figure('Units','normalized') nm)/BK  
    %       for k = 1:10 $oJjgAxcZ  
    %           z(idx) = y(:,k); q^uCZnkb=  
    %           subplot(4,7,Nplot(k)) O|+$ 9#,  
    %           pcolor(x,x,z), shading interp 7#N ?{3i  
    %           set(gca,'XTick',[],'YTick',[]) >;#rK@*&  
    %           axis square UR(i_T&w  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) :2+z_+k}<  
    %       end p<&>1}j=  
    % JxKd  
    %   See also ZERNPOL, ZERNFUN2.  ~fs} J  
    PP/#Z~.M  
    qxcTY|&  
    %   Paul Fricker 11/13/2006 9?^0pR p  
    |,({$TrF  
    1/syzHjbY  
    (4IP&^j:\  
    fF2] 7:  
    % Check and prepare the inputs: 3lKs>HE0  
    % ----------------------------- oTr,zRL  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) `=Rxnl,<U  
        error('zernfun:NMvectors','N and M must be vectors.') Fu% n8  
    end j3S!uA?  
    @i#=1)Ze  
    xgtx5tg  
    if length(n)~=length(m) sn Ou  
        error('zernfun:NMlength','N and M must be the same length.') Hd TB[(  
    end 1;!dTh  
    uc\G)BN  
    A<(Fn_ &W  
    n = n(:); sQ&<cBs2  
    m = m(:); y5?kv-"c  
    if any(mod(n-m,2)) fo <nk|i  
        error('zernfun:NMmultiplesof2', ... |oQhtk8.  
              'All N and M must differ by multiples of 2 (including 0).') 9JeT1\VvHY  
    end m63>P4h?  
    VMS3Q)Ul  
    di ]CYLf  
    if any(m>n) l\2"u M#7  
        error('zernfun:MlessthanN', ... <e wcWr  
              'Each M must be less than or equal to its corresponding N.') _`Y%Y6O1/  
    end 7#*`7 K'P!  
    O7od2fV(i7  
    uLfk>&hc  
    if any( r>1 | r<0 ) &V%faa1  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') #MviO!@  
    end z~i>GN_  
    #miG"2ea..  
    \Hq=_}]F  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) vrh2}biCR  
        error('zernfun:RTHvector','R and THETA must be vectors.') ~wcp&D  
    end kX*.BZI}C  
    )EcfEym.>  
    _s:5)  
    r = r(:); ]; eJ'#  
    theta = theta(:); ;Y`8Ee4vH  
    length_r = length(r); y>cT{)E$  
    if length_r~=length(theta) !, sQB_09C  
        error('zernfun:RTHlength', ... @Y ?p-&  
              'The number of R- and THETA-values must be equal.') kLXa1^Lq  
    end g3!<A*<  
    DD6K[\  
    /N")uuv  
    % Check normalization: \_)mWK,h  
    % -------------------- @lqI,Ce5  
    if nargin==5 && ischar(nflag) H1 i+j;RN  
        isnorm = strcmpi(nflag,'norm'); ^e80S^  
        if ~isnorm *8/cd0  
            error('zernfun:normalization','Unrecognized normalization flag.') <d[GGkY]=  
        end K]^Jl0  
    else II\}84U2 .  
        isnorm = false; :>jzL8  
    end [t*-s1cq  
    G*-7}7OAs  
    fAR 6  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% `2j"Z.=  
    % Compute the Zernike Polynomials &$h#9  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 7p {2&YhB  
    ,0?3k  
    \.F|c  
    % Determine the required powers of r: g}BS:#$  
    % ----------------------------------- {axRq'=  
    m_abs = abs(m); iE]^ 6i  
    rpowers = []; N*KM6j  
    for j = 1:length(n) vJQ_mz  
        rpowers = [rpowers m_abs(j):2:n(j)]; ir_X65l/2  
    end Xa$tW%)  
    rpowers = unique(rpowers); &}0#(Fa`  
    D6'-c#  
    +('=Ryo T  
    % Pre-compute the values of r raised to the required powers, g&/r =U  
    % and compile them in a matrix: .G/RQn]x}  
    % ----------------------------- ;F/s!bupCM  
    if rpowers(1)==0 .|y{1?f_  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); & 5'cN  
        rpowern = cat(2,rpowern{:}); I=k`VId:  
        rpowern = [ones(length_r,1) rpowern]; cdg &)  
    else zB6&),[,v  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ^>s{o5H&  
        rpowern = cat(2,rpowern{:}); :x!'Eer n  
    end .0dx@Sbv  
    i>=y3x"  
    yq`  ,)  
    % Compute the values of the polynomials: )2F%^<gZ#  
    % -------------------------------------- |+1k7S  ,  
    y = zeros(length_r,length(n)); :eSwXDy&  
    for j = 1:length(n) f%%'M.is  
        s = 0:(n(j)-m_abs(j))/2; %,udZyO3uR  
        pows = n(j):-2:m_abs(j); py\/m]  
        for k = length(s):-1:1 `yM9XjEl>  
            p = (1-2*mod(s(k),2))* ... djDE0-QxcR  
                       prod(2:(n(j)-s(k)))/              ... W"s)s  
                       prod(2:s(k))/                     ... ? Lr:>  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... $o*p#LU  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); UJ&gm_M+kL  
            idx = (pows(k)==rpowers); fBP J8VY  
            y(:,j) = y(:,j) + p*rpowern(:,idx); ?9z1'6  
        end ho6,&Bp8  
         '~pZj"uy  
        if isnorm /$UWTq/C7  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ~0L:c&V  
        end ;!<@Fm9W  
    end C+-sf  
    % END: Compute the Zernike Polynomials ]iaQD _'\  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ;{"uG>#R  
    LhKUZX,P8  
    4Gsq)i17j  
    % Compute the Zernike functions: ?WrL<?r)}U  
    % ------------------------------ [Ib17#74  
    idx_pos = m>0; sV`XJ9e|  
    idx_neg = m<0; 1 <wolTf  
    ^bXCYkx  
    o q cu<]  
    z = y; > V@,K z1  
    if any(idx_pos) .u;'eVH)a}  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 6`)Ss5jzk  
    end PjU.4aZ  
    if any(idx_neg)  w1t0X{  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); lDG.\u  
    end BWsD~Ft  
    5K|s]Y;  
    &fifOF#[ e  
    % EOF zernfun g)iw.M2  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  {XNu4d9w(  
    3It'!R8$  
    DDE还是手动输入的呢? \l leO|m  
    c!%:f^7g  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究