切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9366阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, |a /cw"  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, !Q%r4Nr  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? qPUACuF'  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? <&B] p  
    &`>dY /Y  
    ,If"4C!w  
    v$q\3#5|'  
    <; Td8O89_  
    function z = zernfun(n,m,r,theta,nflag) x 0vW9*&  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. {- MhhRa5  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N )[&j&AI  
    %   and angular frequency M, evaluated at positions (R,THETA) on the prIJjy-F  
    %   unit circle.  N is a vector of positive integers (including 0), and %wu,c e]*  
    %   M is a vector with the same number of elements as N.  Each element Aq(,  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) (U.VCSn  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, =KnHa.%  
    %   and THETA is a vector of angles.  R and THETA must have the same \MmB+'f&R  
    %   length.  The output Z is a matrix with one column for every (N,M) VzcW9'"#  
    %   pair, and one row for every (R,THETA) pair. eISHV.QV  
    % j *N^.2  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike M3GFKWQI,`  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), $SniQ  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral i !SN"SY  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ^;\6ju2  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized rXe+#`m2  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. d)$ seZB  
    % 5$$]ZMof  
    %   The Zernike functions are an orthogonal basis on the unit circle. Ur""&@  
    %   They are used in disciplines such as astronomy, optics, and F:0 E- z'  
    %   optometry to describe functions on a circular domain. b+CvA(*  
    % N a.e1A&?j  
    %   The following table lists the first 15 Zernike functions. )^E6VD&6  
    %  f|yq~3x)  
    %       n    m    Zernike function           Normalization REk^pZ3B  
    %       -------------------------------------------------- XFww|SG$  
    %       0    0    1                                 1 Fy_~~nI0  
    %       1    1    r * cos(theta)                    2 x^pHP|<3`  
    %       1   -1    r * sin(theta)                    2 5(Xq58nhxI  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) g^\>hjNX  
    %       2    0    (2*r^2 - 1)                    sqrt(3) f-}_  
    %       2    2    r^2 * sin(2*theta)             sqrt(6)  Zzr  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) gvP.\,U  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) n{c-3w.uD  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) Mt12 1Q&"  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) R_:-Z .  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) GMob&0l8_  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) T=pKen/  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) u)P)r,  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) oYeFO w`  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) z}7U>y6`  
    %       -------------------------------------------------- <<1_rRL]  
    % "fd'~e$S#  
    %   Example 1: m W4tW  
    % GIUyW  
    %       % Display the Zernike function Z(n=5,m=1) tZD^<Q7}\  
    %       x = -1:0.01:1; Z2k5qs7g  
    %       [X,Y] = meshgrid(x,x); B :1r;8{j  
    %       [theta,r] = cart2pol(X,Y); `{S4_'  
    %       idx = r<=1; @#5?tk0  
    %       z = nan(size(X)); U }}E E~W  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); ? ~_h3bHH  
    %       figure S'AS,'EnY  
    %       pcolor(x,x,z), shading interp I{u+=0^Y  
    %       axis square, colorbar hB]<li)"C  
    %       title('Zernike function Z_5^1(r,\theta)') ery{>|k  
    % X,+N/ nku  
    %   Example 2: ,aSK L1  
    % 0a v2w5>af  
    %       % Display the first 10 Zernike functions !f8]gTzN  
    %       x = -1:0.01:1; k=5v J72U  
    %       [X,Y] = meshgrid(x,x); mDIN%/S'  
    %       [theta,r] = cart2pol(X,Y); G\S_e7$ /  
    %       idx = r<=1; Dt+u f5o(  
    %       z = nan(size(X)); 1f5;^T I  
    %       n = [0  1  1  2  2  2  3  3  3  3]; 8d\/  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; ZL- ` 3x  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; GG`;c?d@  
    %       y = zernfun(n,m,r(idx),theta(idx)); L>2gx$f  
    %       figure('Units','normalized') &vS@-K  
    %       for k = 1:10 k.#[h@Pm  
    %           z(idx) = y(:,k); G%fNGQwT  
    %           subplot(4,7,Nplot(k)) (0bXsfe  
    %           pcolor(x,x,z), shading interp ]4-t*Em  
    %           set(gca,'XTick',[],'YTick',[]) _VAX~Y]  
    %           axis square 1VO>Bh.Wm  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) -gLU>I7wV  
    %       end zB)wY KwZ  
    % I~U;M+n*y  
    %   See also ZERNPOL, ZERNFUN2. 'xc=N  
    =:v5` :  
    C]%}L%,  
    %   Paul Fricker 11/13/2006 $PKUcT0N9  
    hc5iIJ]  
    j2,w1f}T  
    % KmhR2v  
    KH76Vts  
    % Check and prepare the inputs: BYsQu.N  
    % ----------------------------- WzO[-csy  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) -VRKQNT  
        error('zernfun:NMvectors','N and M must be vectors.') WEB enGQ  
    end "Bbd[ZI8  
    wg 6  
    tY $4k26  
    if length(n)~=length(m) G[[<-[C]5  
        error('zernfun:NMlength','N and M must be the same length.') ++M%PF [ {  
    end )u(Dqu\t  
    :jioF{,  
    I r;Z+}4>Y  
    n = n(:); q#!c6lG  
    m = m(:); _'DZoOH|VE  
    if any(mod(n-m,2)) @ Yzj  
        error('zernfun:NMmultiplesof2', ... Av^<_`L :  
              'All N and M must differ by multiples of 2 (including 0).') p3z%Y$!Tm  
    end 5iP{)  
     8&KqrA86  
    0w ] pDj  
    if any(m>n) \KPwh]0  
        error('zernfun:MlessthanN', ... 9jTm g%  
              'Each M must be less than or equal to its corresponding N.') dW>$C_`?  
    end 5X"WgR;  
    05Go*QvV  
    [}bPkD  
    if any( r>1 | r<0 ) >4eZ%</D5  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') nfzKUJY  
    end :\8&Th}Se  
    n aB`@  
    h O}nc$S  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 5Dlx]_  
        error('zernfun:RTHvector','R and THETA must be vectors.') Qp]-4%^Vz  
    end '2.11cM3  
    2 VGGSLr  
    (qXl=e8  
    r = r(:); gdfG3d$4  
    theta = theta(:); y1 53ax  
    length_r = length(r); VyL|d^'f_  
    if length_r~=length(theta) n^Sc*7  
        error('zernfun:RTHlength', ... ;Q} H'Wg,  
              'The number of R- and THETA-values must be equal.') j8"2K^h=  
    end j>t*k!db  
    t.E3Fh!o  
    o|0QstSCl  
    % Check normalization: K~JXP5`(  
    % -------------------- N`%f+eT(  
    if nargin==5 && ischar(nflag) 0al8%z9e@  
        isnorm = strcmpi(nflag,'norm'); [v$NxmRu  
        if ~isnorm +4%: q~C  
            error('zernfun:normalization','Unrecognized normalization flag.') M,b^W:('4  
        end %!e;sL~&  
    else Co#_Cyxg=9  
        isnorm = false; *X4$'LSx1  
    end z7P] g C$\  
    qEbzF#a-:  
    Vz,2_QJ  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% h8lI# Gs  
    % Compute the Zernike Polynomials edy6WzxBcm  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% CAD:ifV  
    qxe%RYdA'j  
    T{%'"mm;  
    % Determine the required powers of r: /4Lmu+G4  
    % ----------------------------------- E[RLBO[*n  
    m_abs = abs(m); %d\|a~p:  
    rpowers = []; gwepaW  
    for j = 1:length(n) d4#Ra%   
        rpowers = [rpowers m_abs(j):2:n(j)]; z.7'yJIP#  
    end _ooSMp|  
    rpowers = unique(rpowers); (\6R"2  
    JrdH6Zg  
    ?~5J!|r#  
    % Pre-compute the values of r raised to the required powers, YQ+Kl[ec  
    % and compile them in a matrix: SLze) ?.  
    % ----------------------------- Ag!#epi{0  
    if rpowers(1)==0 8/y~3~A{D  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); bu2'JIDR  
        rpowern = cat(2,rpowern{:}); E|A,NPf%I  
        rpowern = [ones(length_r,1) rpowern]; .{|AHW&0<  
    else hoQ?8}r:  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); MXxE)"G*a  
        rpowern = cat(2,rpowern{:}); Ay Obaa5  
    end F^]?'`7md  
    G Riu]   
    ymsqJ   
    % Compute the values of the polynomials: [,|Z<  
    % -------------------------------------- plY`lqm  
    y = zeros(length_r,length(n)); 2F[;Z*&  
    for j = 1:length(n) |UO1vA@  
        s = 0:(n(j)-m_abs(j))/2; FDAREE\j  
        pows = n(j):-2:m_abs(j); _ z!0ab  
        for k = length(s):-1:1 q$Ol"K@  
            p = (1-2*mod(s(k),2))* ... QJG]z'c+  
                       prod(2:(n(j)-s(k)))/              ... j{nkus2  
                       prod(2:s(k))/                     ... @Yq!  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... _5nQe !  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); d\ &jl`8*  
            idx = (pows(k)==rpowers); +"] 'h~W  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 3o'SY@'W  
        end ?ExfxR!~  
         n]B)\D+V^  
        if isnorm uxto:6),P<  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); '7F`qL\/#(  
        end Z6b3gV  
    end C%P"Ds=w0N  
    % END: Compute the Zernike Polynomials o4kNDXP#S  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -BV&u(  
    aNW&ib  
    R $cO`L*s  
    % Compute the Zernike functions: z^4\?R50yO  
    % ------------------------------ nDvny0^a  
    idx_pos = m>0; b)u9#%Q  
    idx_neg = m<0; oh;F]*k6  
    tE{7S/?h  
    UY **3MK  
    z = y; @T1 >%oi  
    if any(idx_pos) ?.A6HrAPB  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); IBVP4&}x$  
    end 0nAeeVz|  
    if any(idx_neg) tS2lex%  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); lb1(1 |#  
    end 4(JxZ49  
    r/Pg,si  
    yh5KN_W  
    % EOF zernfun U hCd,  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  P6?Q;-\q0  
    #nd,cn  
    DDE还是手动输入的呢? oc?VAF  
    lDA%M3(p  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究