切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9004阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, x$.^"l-vX  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, RVA (Q[ ;  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? ;dtA4:IRZ4  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? kY|utoAP  
    bL+_j}{:N  
    _~J {wM  
    S.94 edQ  
    }mYx_=+VX  
    function z = zernfun(n,m,r,theta,nflag) FQ7T'G![  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. SpLzm A  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N BB!THj69a6  
    %   and angular frequency M, evaluated at positions (R,THETA) on the z2_*%S@  
    %   unit circle.  N is a vector of positive integers (including 0), and =_ ./~  
    %   M is a vector with the same number of elements as N.  Each element HU8900k+  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) ~Z?TFg  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, Vl /+;6_  
    %   and THETA is a vector of angles.  R and THETA must have the same ]7F=u!/`<C  
    %   length.  The output Z is a matrix with one column for every (N,M) 2~1SQ.Q<RY  
    %   pair, and one row for every (R,THETA) pair. +_?hK{Ib"  
    % 0y" $MC v  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike FxtQXu-g  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), r6MMCJ|G  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral G%AbC"  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 9~5uaP$S  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized RXpw!  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Pg0x/X{t  
    % 9N%We|L,c  
    %   The Zernike functions are an orthogonal basis on the unit circle. D9 CaFu  
    %   They are used in disciplines such as astronomy, optics, and Vod\a 5c  
    %   optometry to describe functions on a circular domain. \FbvHr,  
    % .9on@S  
    %   The following table lists the first 15 Zernike functions. uk< 4+x,2)  
    % jk; clwyz/  
    %       n    m    Zernike function           Normalization x=hiQ>BIO0  
    %       -------------------------------------------------- @fZ,.2ar  
    %       0    0    1                                 1 (cAIvgI  
    %       1    1    r * cos(theta)                    2 HZzDVCU  
    %       1   -1    r * sin(theta)                    2 .779pT!,M  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) L%*!`TN  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 3nIU1e  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) eueH)Xkf  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) SIF/-{i(X  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) J{p1|+h%  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 7 S#J>*  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) *v jmy/3  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) )BZ.Sv  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 53;}Nt#R  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) |"X*@s\'  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) U3ADsdn  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) f}#~-.NGs  
    %       -------------------------------------------------- | C;=-|  
    % W+aP}rZm:  
    %   Example 1: G6q }o)[m)  
    % Zw 26  
    %       % Display the Zernike function Z(n=5,m=1) P_dCR  
    %       x = -1:0.01:1; 6@h/*WElG  
    %       [X,Y] = meshgrid(x,x); knu,"<  
    %       [theta,r] = cart2pol(X,Y); ~NrG` D}  
    %       idx = r<=1; RVnjNy;O`  
    %       z = nan(size(X)); 1y4|{7bb  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); x*/t yZg6  
    %       figure T6y\|  
    %       pcolor(x,x,z), shading interp !=*g@mgF  
    %       axis square, colorbar r_)' Ps  
    %       title('Zernike function Z_5^1(r,\theta)') xBThq?N?  
    % 0rQMLx  
    %   Example 2: :KSV4>X[%a  
    % APn|\  
    %       % Display the first 10 Zernike functions !1jBC.G1  
    %       x = -1:0.01:1; Q 04al=  
    %       [X,Y] = meshgrid(x,x); #px+;k 5  
    %       [theta,r] = cart2pol(X,Y); /wQy17g  
    %       idx = r<=1; 9Z@hPX3.  
    %       z = nan(size(X)); X[-xowE-  
    %       n = [0  1  1  2  2  2  3  3  3  3]; @ wGPqg  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; LiC*@W  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; |IeTqEu9  
    %       y = zernfun(n,m,r(idx),theta(idx)); Avge eJi  
    %       figure('Units','normalized') m4[;(1  
    %       for k = 1:10 OZb-:!m*  
    %           z(idx) = y(:,k); .wEd"A&j  
    %           subplot(4,7,Nplot(k)) uanhr)Ys  
    %           pcolor(x,x,z), shading interp (+w*[qHe  
    %           set(gca,'XTick',[],'YTick',[]) B?eCe}*f;B  
    %           axis square xeg/A}yE  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) px A?  
    %       end GL>O4S<`  
    % WA<v9#m  
    %   See also ZERNPOL, ZERNFUN2. %8RrRW  
    fbyd"(V 8r  
    \0^Kram>  
    %   Paul Fricker 11/13/2006 5c@,bIl *  
    /7(W?xOe  
    qJf?o.Pv  
    KaLzg5is  
    HDz5&7* .  
    % Check and prepare the inputs: {X!r8i  
    % ----------------------------- SpIv#?  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) |QF7 uV  
        error('zernfun:NMvectors','N and M must be vectors.') 7m47rJyW4  
    end I }a`0Y&{  
    pE3?"YO  
    o3XvRj  
    if length(n)~=length(m) *[Imn\hu  
        error('zernfun:NMlength','N and M must be the same length.') 7zl5yK N  
    end 2,y|EpG#  
    [CTnXb  
    eFB5=)ld  
    n = n(:); :;v~%e{k  
    m = m(:); ^7`BP%6  
    if any(mod(n-m,2)) 6lZ3tdyNo  
        error('zernfun:NMmultiplesof2', ... 1>.Ev,X+e  
              'All N and M must differ by multiples of 2 (including 0).') WSP I|#Xr%  
    end {Ea b j  
    Q8$}@iA[  
    "-M p_O]  
    if any(m>n) ;_XFo&@  
        error('zernfun:MlessthanN', ... ,Y@Gyx!4  
              'Each M must be less than or equal to its corresponding N.') L@rcK!s,lD  
    end av(6wht8  
    HRpte=`q  
    JB\UKZXw  
    if any( r>1 | r<0 ) +Z,;,5'5G  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') x o;QCOH  
    end 1wii8B6  
    9v#CE!  
    Mg+2. 8%  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) t"sBPLU\  
        error('zernfun:RTHvector','R and THETA must be vectors.') Q1lyj7c#x  
    end JT~4mT  
     X hR4ru`  
    TbMW|0 #w  
    r = r(:); 9FF0%*tGo  
    theta = theta(:); {aZ0;  
    length_r = length(r); xKbXt;l2  
    if length_r~=length(theta) v<k?Vu  
        error('zernfun:RTHlength', ... T%+ #xl  
              'The number of R- and THETA-values must be equal.') t <~h'U  
    end -$\y_?}  
    zxEL+P  
    pt?bWyKG  
    % Check normalization: 3s*mbk[J  
    % -------------------- fT|.@%"vc  
    if nargin==5 && ischar(nflag) z>xmRs   
        isnorm = strcmpi(nflag,'norm'); pR<`H'  
        if ~isnorm cF*TotU_m  
            error('zernfun:normalization','Unrecognized normalization flag.') `Uq#W+r,  
        end #{0HYg?(f  
    else n>z9K')  
        isnorm = false; eNh39er  
    end bt SRtf  
    'I|v[G$l  
    _r#Z}HK  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% .Cv6kgB@c  
    % Compute the Zernike Polynomials ?PLPf>e  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% `K"L /I9  
    _IMW {  
    &md`$a/  
    % Determine the required powers of r: Q)#B0NA;T  
    % ----------------------------------- kb%;=t2  
    m_abs = abs(m); q$L%36u~/  
    rpowers = []; 7jrt7[{  
    for j = 1:length(n) T}Tp$.gB  
        rpowers = [rpowers m_abs(j):2:n(j)]; 85= )lu  
    end |o"?gB}Dh  
    rpowers = unique(rpowers); VO5#Qgen  
    F-QzrquS  
    xh-o}8*n"  
    % Pre-compute the values of r raised to the required powers, ,O5NLg-  
    % and compile them in a matrix: thh. A  
    % ----------------------------- ;7*[Bcj.  
    if rpowers(1)==0 t3WiomNCc  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false);  ,i NXK  
        rpowern = cat(2,rpowern{:}); U)TUOwF  
        rpowern = [ones(length_r,1) rpowern]; `%bypHeSp  
    else 1NFsb-<u  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); e)IzQ7Zex  
        rpowern = cat(2,rpowern{:}); ux-/>enc  
    end =HK!(C  
    yZ7&b&2nLn  
    iO$8:mxm0?  
    % Compute the values of the polynomials: PN%zIkbo  
    % -------------------------------------- YpHg&|Fr  
    y = zeros(length_r,length(n)); D>r&}6<  
    for j = 1:length(n) Z3e| UAif  
        s = 0:(n(j)-m_abs(j))/2; Rr$-tYy6  
        pows = n(j):-2:m_abs(j); 0|qAxR-  
        for k = length(s):-1:1 u]wZQl#-  
            p = (1-2*mod(s(k),2))* ... H H)!_(SA  
                       prod(2:(n(j)-s(k)))/              ... OF>mF~  
                       prod(2:s(k))/                     ... CZe ]kXNv  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ;]puq  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); L&8~f]  
            idx = (pows(k)==rpowers); L- iy  
            y(:,j) = y(:,j) + p*rpowern(:,idx); QhFV xCA  
        end h8j.(  
         3Aip}<1  
        if isnorm 8,Z_{R#|  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); @ y.?:7I  
        end phkwN}6  
    end PNhe  
    % END: Compute the Zernike Polynomials M.D1XX 1/  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% dbLZc$vPj  
    fb7;|LF  
    &AMl:@p9  
    % Compute the Zernike functions: LP^$AAy  
    % ------------------------------  7Die FZ?  
    idx_pos = m>0; G't$Qx,IC  
    idx_neg = m<0;  ~NgA  
    5pG}Yk_(x  
    +480 l}  
    z = y; @IKYh{j4  
    if any(idx_pos) P8 c`fbkX2  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); #Pau\|e_  
    end FXCMR\BsQ  
    if any(idx_neg) YqD=>P[O  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 2W(s(-hD  
    end _ye |Y  
    /62!cp/F/D  
    w "F 9l  
    % EOF zernfun 5I;&mW`1,`  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  WH}y"W  
    I236 RIq  
    DDE还是手动输入的呢? 3 i0_hZ  
    +'a^f5  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究