切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9011阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, 7HW:;2dL  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, ?<4pYEP  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? +PE-j| D  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? ggPGKY-b=  
    O$,  
    S}rEQGGR{  
    T P#Ncqh  
    g8E5"jpXx3  
    function z = zernfun(n,m,r,theta,nflag) pBe1:  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. NpGi3>5  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N qery|0W  
    %   and angular frequency M, evaluated at positions (R,THETA) on the k(RKAFjY  
    %   unit circle.  N is a vector of positive integers (including 0), and {wM<i  
    %   M is a vector with the same number of elements as N.  Each element 873 bg|^hs  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) v\bWQs1  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, }JtcAuQt  
    %   and THETA is a vector of angles.  R and THETA must have the same JJ1>)S}X-  
    %   length.  The output Z is a matrix with one column for every (N,M) 4I&(>9 @z<  
    %   pair, and one row for every (R,THETA) pair. 5yt=~  
    % 1.@{5f3T  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike G HQ~{  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), #tg\ bb  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral <EqS ,cO^  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, {i=V:$_#  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized bK}ZR*)  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 5D<Zbn.>q  
    % #xx.yn(7  
    %   The Zernike functions are an orthogonal basis on the unit circle. ~m<K5K6 V  
    %   They are used in disciplines such as astronomy, optics, and G0h&0e{w  
    %   optometry to describe functions on a circular domain. *PlKl_nP6  
    % r{?qvl!q  
    %   The following table lists the first 15 Zernike functions. BYdG K@ouk  
    % KW'nW  
    %       n    m    Zernike function           Normalization U*{0,Ue'  
    %       -------------------------------------------------- qGN> a[D  
    %       0    0    1                                 1 00IW9B-  
    %       1    1    r * cos(theta)                    2 - s'W^(  
    %       1   -1    r * sin(theta)                    2 6?5dGYAX<  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) .s"Og;g  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 6wpu[  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) ,#BD/dF  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) + R6X  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) :I"2 2EH  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) E3p$^['vx  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 1O,5bi>t7  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) bHm/ZZx  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) tc.|mIvw  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 9ec?L  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) >q?{'#i /  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) n&&C(#mBC  
    %       -------------------------------------------------- o1\N)%  
    % \nyqW4nTm  
    %   Example 1: 5h Sd,#:  
    % .nEMd/pX  
    %       % Display the Zernike function Z(n=5,m=1) @$kzes\  
    %       x = -1:0.01:1; S=kO9"RB]  
    %       [X,Y] = meshgrid(x,x); 2A|mXWG}~  
    %       [theta,r] = cart2pol(X,Y); :I /9j=@1  
    %       idx = r<=1; j0oto6z~b  
    %       z = nan(size(X)); +68age;dM  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); R f)|p;  
    %       figure ^PE|BCs  
    %       pcolor(x,x,z), shading interp c1i[1x%  
    %       axis square, colorbar ;2`t0#J$]  
    %       title('Zernike function Z_5^1(r,\theta)') ^-Arfm%dn  
    % <]z4;~/&  
    %   Example 2: 4gEw }WiP  
    % P()n=&XO6  
    %       % Display the first 10 Zernike functions .P T7  
    %       x = -1:0.01:1; ?Qd`Vlp7  
    %       [X,Y] = meshgrid(x,x); 7Q'u>o  
    %       [theta,r] = cart2pol(X,Y); pUmT?N!  
    %       idx = r<=1; /g%RIzgW  
    %       z = nan(size(X)); vMX\q  
    %       n = [0  1  1  2  2  2  3  3  3  3]; +B8oW3v# )  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; R)N^j'R~=  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; im+g |9@%  
    %       y = zernfun(n,m,r(idx),theta(idx)); gkTwGI+w  
    %       figure('Units','normalized') ;H8`^;  
    %       for k = 1:10 -/B*\X[  
    %           z(idx) = y(:,k); Nk%$;Si  
    %           subplot(4,7,Nplot(k)) w(S&X"~  
    %           pcolor(x,x,z), shading interp wZCboQ,  
    %           set(gca,'XTick',[],'YTick',[]) c3rj :QK6I  
    %           axis square HnFH|H<Uf  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) h7.jWJTo  
    %       end /_expSPHl  
    % ]C+P J:CC  
    %   See also ZERNPOL, ZERNFUN2. t]vv&vk>  
    @@R&OR  
    sm[zE /2b  
    %   Paul Fricker 11/13/2006 txMC^-J2l  
    =d~pr:.F  
    dKXzFyW  
    &'DR`e O)  
    :.BjJ2[S  
    % Check and prepare the inputs: WSU/Z[\`H  
    % ----------------------------- h<'tQGC  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) UWqX}T[^  
        error('zernfun:NMvectors','N and M must be vectors.') ~z41$~/  
    end e50xcf1u  
    `z/ p,. u  
    zcOm"-E-  
    if length(n)~=length(m) T8*;?j*@  
        error('zernfun:NMlength','N and M must be the same length.') (?7}\B\  
    end 9P#kV@%(0c  
    wUg=j nY   
    c":2<:D&  
    n = n(:); Kn?h  
    m = m(:); }43qpJe8U  
    if any(mod(n-m,2)) )VG>6x  
        error('zernfun:NMmultiplesof2', ... BlT)hG(M>  
              'All N and M must differ by multiples of 2 (including 0).') 9&kPcFX B  
    end XdlA)0S)  
    })PU`?f  
    hCX/k<}I  
    if any(m>n) 8OS^3JS3"  
        error('zernfun:MlessthanN', ... 2}.~ 6EU/  
              'Each M must be less than or equal to its corresponding N.') =kOo(  
    end !w!k0z]  
    FSkX95  
    OYa9f[$  
    if any( r>1 | r<0 ) \|]+sQWQ  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 7;6'=0(  
    end cV`NQt<W  
    @b5$WKPX  
    L"T :#>  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) c&<Ei1  
        error('zernfun:RTHvector','R and THETA must be vectors.') ^x( s !4d]  
    end 0x&L'&SpN  
    Kj?hcG l[  
    `6NcE-oJ  
    r = r(:); ]haQ#e}WH  
    theta = theta(:); W=HHTvK9Hh  
    length_r = length(r); ?d3<GhzlR3  
    if length_r~=length(theta) i}|jHlv  
        error('zernfun:RTHlength', ... pma=*  
              'The number of R- and THETA-values must be equal.') cnY}^_  
    end ='e_9b\K  
    ]-+l.gVFW  
    ka`}lR  
    % Check normalization: lEQj62zIQ  
    % -------------------- ( Y Z2&  
    if nargin==5 && ischar(nflag) t="nmjQs  
        isnorm = strcmpi(nflag,'norm'); X VKRT7U  
        if ~isnorm Vhn Ir#L+  
            error('zernfun:normalization','Unrecognized normalization flag.')  Lo)T  
        end :yw(Co]f  
    else (enOj0  
        isnorm = false; &g8Xjx&zj  
    end |@'K]$vZ*  
    NUtKT~V  
    Z#kB+.U  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% T$DFTr\\  
    % Compute the Zernike Polynomials ( p CU:'"  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% e!k4Ij-]  
    V72?E%d0  
    NXS$w{^  
    % Determine the required powers of r: tp\d:4~R  
    % ----------------------------------- G 40  
    m_abs = abs(m);  z' 5  
    rpowers = []; Psf{~ (Ii  
    for j = 1:length(n) i DsY 5l  
        rpowers = [rpowers m_abs(j):2:n(j)]; {"N:2  
    end @c>MROlrlF  
    rpowers = unique(rpowers); {uqP+Cs  
    %Go/\g   
    G}]'}FUp  
    % Pre-compute the values of r raised to the required powers, *iSE)[W  
    % and compile them in a matrix:  T#Z#YMk  
    % ----------------------------- }n,LvA@[0  
    if rpowers(1)==0 AZ\f6r{  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); W6u(+P]("  
        rpowern = cat(2,rpowern{:}); ,o3`O|PiK  
        rpowern = [ones(length_r,1) rpowern]; 0yb9R/3.  
    else A(+V{1 L'  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); [_C([o'\KY  
        rpowern = cat(2,rpowern{:}); wjKc!iB  
    end +.u HY`A  
    530Kk<%^}8  
    _Qb ].~  
    % Compute the values of the polynomials: (3j f_  
    % -------------------------------------- MTbCL53!-  
    y = zeros(length_r,length(n)); +Q:)zE  
    for j = 1:length(n) )L"J?wTe  
        s = 0:(n(j)-m_abs(j))/2; BGstf4v>A<  
        pows = n(j):-2:m_abs(j); gU@R   
        for k = length(s):-1:1 zUWWXC%R  
            p = (1-2*mod(s(k),2))* ... 1_@vxi~aW_  
                       prod(2:(n(j)-s(k)))/              ... ,GtN6?  
                       prod(2:s(k))/                     ... &o`LT|*m  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Ud#xgs'  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); AFsYP/g]  
            idx = (pows(k)==rpowers); ogdgLTi  
            y(:,j) = y(:,j) + p*rpowern(:,idx); m9ky?A,  
        end a,xy3 8T<  
         8&7zV:=  
        if isnorm +a+DiD>./  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); uPb.uG  
        end P qa;fiJ)  
    end dZC jg0cx  
    % END: Compute the Zernike Polynomials "(p&Oz  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% &sJ6k/l  
    b>& 3 XDz  
    FJsM3|{2=d  
    % Compute the Zernike functions: TO/SiOd  
    % ------------------------------ aL8Z|*  
    idx_pos = m>0; ;"NW= P&  
    idx_neg = m<0; tYhNr  
    tSTl#xy  
    ypTH=]y  
    z = y; <4"Bb_U  
    if any(idx_pos) h9&0"LHr  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); T^2o' _:  
    end @3?dI@i(  
    if any(idx_neg) `pd+as  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); suN}6C I  
    end yM?jiy  
    FMl_I26]  
    3AcDW6x|  
    % EOF zernfun *3y_FTh8ra  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    在线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  &LHS<Nv^:  
    e9rgJJ  
    DDE还是手动输入的呢? Dn+hI_"# _  
    Ko %e#q-  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究