切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9503阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, IUf&*'_  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, S!WG|75B  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? v z6No%8X  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? 2iM]t&^<+  
    ]bxBo  
    YYNh| 2  
    !ZNirvk  
    #dA9v7  
    function z = zernfun(n,m,r,theta,nflag) {=K);z  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. Ey|{yUmU+  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N `vjn,2S}  
    %   and angular frequency M, evaluated at positions (R,THETA) on the I+2#k\y  
    %   unit circle.  N is a vector of positive integers (including 0), and g y5^JL  
    %   M is a vector with the same number of elements as N.  Each element 1.24ZX  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) T*o!#E.  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ~:FF"T>  
    %   and THETA is a vector of angles.  R and THETA must have the same t 57MKDn  
    %   length.  The output Z is a matrix with one column for every (N,M) 0JT"Pv_  
    %   pair, and one row for every (R,THETA) pair. {%wF*?gk  
    % uA-1VwW+N  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike u ,R R|/@  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), tJ Bj9{  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral Nk63F&J7e  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, OQ(w]G0LP  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized { 9:vq|  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. =[JstiT?E  
    % ^4/   
    %   The Zernike functions are an orthogonal basis on the unit circle. 0<i8 ;2KD  
    %   They are used in disciplines such as astronomy, optics, and |j}D2q=  
    %   optometry to describe functions on a circular domain. F8H4R7 8>;  
    % r 4 $<,~  
    %   The following table lists the first 15 Zernike functions. IA%|OVAfF  
    % -7Bg5{FA  
    %       n    m    Zernike function           Normalization 1.0:  
    %       -------------------------------------------------- joz0D!-"#  
    %       0    0    1                                 1 A"tE~m;"7  
    %       1    1    r * cos(theta)                    2 VLPPEV-u  
    %       1   -1    r * sin(theta)                    2 C5Vlqc;  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) !zVjbYWY  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 'XJqh|G  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) 0Q7|2{  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) shgZru  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) *I:a \o~$[  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) lvAKL>qX  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) _u3%16,o  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) "D,}|  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) e0<Wed  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) z0H+Or  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) )O],$\u  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 23d*;ri5  
    %       -------------------------------------------------- BT)PD9CN(  
    % IM$ d~C  
    %   Example 1: s%QCdU ]  
    % |.z4VJi4  
    %       % Display the Zernike function Z(n=5,m=1) `pb=y}  
    %       x = -1:0.01:1; cYgd1  
    %       [X,Y] = meshgrid(x,x); kyi"U A82  
    %       [theta,r] = cart2pol(X,Y); >*MGF=.QG  
    %       idx = r<=1; ."Kp6s`k  
    %       z = nan(size(X)); DHg)]FQ/  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); (gRTSd T ?  
    %       figure :}U jX|D  
    %       pcolor(x,x,z), shading interp CwM 1 _3cE  
    %       axis square, colorbar x) jc  
    %       title('Zernike function Z_5^1(r,\theta)') >*/:"!u  
    % `_()|;!y  
    %   Example 2: XXw>h4hl  
    % EK.n $  
    %       % Display the first 10 Zernike functions 5g%D0_e5  
    %       x = -1:0.01:1; URbHVPCPb  
    %       [X,Y] = meshgrid(x,x); +[ng99p  
    %       [theta,r] = cart2pol(X,Y); &^`[$LtYd  
    %       idx = r<=1; H: nO\]  
    %       z = nan(size(X)); H|S hi/  
    %       n = [0  1  1  2  2  2  3  3  3  3]; !K-qoBqKM  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 2 g~W})e  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; Dz,|sHCmk  
    %       y = zernfun(n,m,r(idx),theta(idx)); Sd F+b+P]  
    %       figure('Units','normalized') #<y/m*Ota  
    %       for k = 1:10 0Bt>JbGs4  
    %           z(idx) = y(:,k); n&!q9CR`  
    %           subplot(4,7,Nplot(k)) Mtl`A'KQ/K  
    %           pcolor(x,x,z), shading interp I<Cm$8O?  
    %           set(gca,'XTick',[],'YTick',[]) 8=@f lK  
    %           axis square :%gM Xsb  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) PWeWz(]0Z4  
    %       end O=vD6@QI  
    % d}aMdIF!e  
    %   See also ZERNPOL, ZERNFUN2. {e$ @i  
    *~~J1.ja>  
    I s|_  
    %   Paul Fricker 11/13/2006 Ey.%: O-Dv  
    Scug wSB  
    X(O:y^sX}  
    a ]:xsJ~  
    _%3p&1ld  
    % Check and prepare the inputs: c'XSs  
    % ----------------------------- i%GiWanG  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 2%v6h  
        error('zernfun:NMvectors','N and M must be vectors.') guVuO  
    end fRxn,HyV  
    n2dOCntN>  
    <00nu'Ex1v  
    if length(n)~=length(m) g:.LCF  
        error('zernfun:NMlength','N and M must be the same length.') r:PYAb=g  
    end H ?eG5  
    @HTs.4  
    m7`S@qG  
    n = n(:); Ga+Cb2$  
    m = m(:); /3.;sS]B  
    if any(mod(n-m,2)) A>,kmU5  
        error('zernfun:NMmultiplesof2', ... P'SGt  
              'All N and M must differ by multiples of 2 (including 0).') ^hsr/|  
    end PZvc4  
    ]N,'3`&::  
    LN) yQ-  
    if any(m>n) >sdF:(JV&  
        error('zernfun:MlessthanN', ... P8#_E{f  
              'Each M must be less than or equal to its corresponding N.') zJh!Q**  
    end Q,:h`%V  
    ;pS+S0U   
    G({5LjgW  
    if any( r>1 | r<0 ) m;nH v  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.')  )y6  
    end 1;?w#/&t  
    ~.6% %1?  
    mE=Tj%+ x  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 4uH} SG[  
        error('zernfun:RTHvector','R and THETA must be vectors.') 'K}2m  
    end _dECAk &b  
    z:N?T0b(  
    E:O/=cT  
    r = r(:); R6`mmJ+'  
    theta = theta(:); :?}> Q  
    length_r = length(r); Sj:c {jyJd  
    if length_r~=length(theta) t|9vb  
        error('zernfun:RTHlength', ... v9!] /]U^  
              'The number of R- and THETA-values must be equal.') ks69Z|D  
    end d|`8\fq  
    IF@vl  
    PN= 5ICT  
    % Check normalization: )iVuac]E++  
    % -------------------- Q<DXDvL  
    if nargin==5 && ischar(nflag) OlptO60{ ]  
        isnorm = strcmpi(nflag,'norm'); mwn$ey&QE  
        if ~isnorm f =A#:d  
            error('zernfun:normalization','Unrecognized normalization flag.') \F\xZ.r  
        end [w-# !X2y  
    else >L8 & 6aU  
        isnorm = false; z_#HJ}R=  
    end :o87<) _F  
    D51s)?  
     R7;X  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 6JeAXj1g+  
    % Compute the Zernike Polynomials ]dV $H  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% I)9 ,  
    O;&5> W,Z  
    #Uep|A  
    % Determine the required powers of r: +QOK]NJN  
    % ----------------------------------- n 4co s  
    m_abs = abs(m); Qs?p)3qp  
    rpowers = []; ({$rb-  
    for j = 1:length(n) sO!m,pK(  
        rpowers = [rpowers m_abs(j):2:n(j)]; +.rE|)BPy  
    end (dy:d^  
    rpowers = unique(rpowers); 7VdxQ T  
    !aJ6Uf%R  
    &T ^bv*P  
    % Pre-compute the values of r raised to the required powers, ;TK$?hrv*1  
    % and compile them in a matrix: )3V1aC  
    % ----------------------------- RE-y5.kE^  
    if rpowers(1)==0 kY9$ M8b  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); $Y\7E/T  
        rpowern = cat(2,rpowern{:}); &" 5Yt&{  
        rpowern = [ones(length_r,1) rpowern]; ?5^DQ|Hg ^  
    else I"Q U{]|J  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); DeeV;?:  
        rpowern = cat(2,rpowern{:}); )T&r770  
    end 'geN  dx  
    _EP~PW#J  
    E8t{[N6d  
    % Compute the values of the polynomials: 5^CWF|  
    % -------------------------------------- fQ -IM/z  
    y = zeros(length_r,length(n)); b`Jsu!?{  
    for j = 1:length(n) NO/5pz}1  
        s = 0:(n(j)-m_abs(j))/2; kbbHa_;aqV  
        pows = n(j):-2:m_abs(j); 1=z\,~ b  
        for k = length(s):-1:1 ux 17q>G  
            p = (1-2*mod(s(k),2))* ... ?(}~[  
                       prod(2:(n(j)-s(k)))/              ... i[z#5;x+<  
                       prod(2:s(k))/                     ... Bt1v7M  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... JW=q'ibR  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); +1\t 0P24  
            idx = (pows(k)==rpowers); eOfVBF<C2  
            y(:,j) = y(:,j) + p*rpowern(:,idx); H|MAbx 7  
        end o{l]n*  
         8%a ^j\L  
        if isnorm NSR][h_  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 'z=d&K  
        end E}#&2n8Y  
    end ZsYY)<n  
    % END: Compute the Zernike Polynomials =.) :tGDp  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %WX^']p  
    o,?h}@  
    }D3hP|.X  
    % Compute the Zernike functions: 9A|9:OdG1  
    % ------------------------------ K!2%8Ej,J  
    idx_pos = m>0; axK/YE7t  
    idx_neg = m<0; sv#b5,>9  
    *_HF%JYMZ  
    ZXIz.GFy+  
    z = y; TQ%F\@"  
    if any(idx_pos) uU-1;m#N?  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Bo'v!bI7  
    end ~0}d=d5g  
    if any(idx_neg) 6['o^>\}f  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); YOA)paq+  
    end fhC|=0XB  
    tDMNpl  
    lg{/5gQG  
    % EOF zernfun zH#urF6<  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  R'" c  
    8 VhU)fY  
    DDE还是手动输入的呢? cv7:5P  
    I0!]J{  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究