切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9131阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, \(R(S!xr_  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, \SkCsE#H  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? 8sOM%y9M  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? ]d&6 ?7 !>  
    cxFfAk\,en  
    />S=Y"a/7  
    ~Y<x-)R  
    U< |kA(5  
    function z = zernfun(n,m,r,theta,nflag) B8NOPbT  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. yk5-@qo  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Xhe25  
    %   and angular frequency M, evaluated at positions (R,THETA) on the UxzZr%>s  
    %   unit circle.  N is a vector of positive integers (including 0), and 7z9gsi  
    %   M is a vector with the same number of elements as N.  Each element ^EdY:6NJ=A  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) -8X* (7  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, { aqce g  
    %   and THETA is a vector of angles.  R and THETA must have the same o /AEp)8  
    %   length.  The output Z is a matrix with one column for every (N,M) 44B)=p7  
    %   pair, and one row for every (R,THETA) pair. V7.xKmB  
    % / Li?;H  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike }A'QXtI/G  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Y-hGHnh]'  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral '9>z4G*Td  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, f7mP4[+dS  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized sNZ{OD+  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. @5K/z<p%  
    % js/N qf2>  
    %   The Zernike functions are an orthogonal basis on the unit circle. W2J"W=:z  
    %   They are used in disciplines such as astronomy, optics, and BY.' 0,H=k  
    %   optometry to describe functions on a circular domain. yeqZPz n  
    % rIR~YMv!  
    %   The following table lists the first 15 Zernike functions. 7 [N1Vr(1  
    % \74+ cN  
    %       n    m    Zernike function           Normalization /\"=egB9  
    %       -------------------------------------------------- _"6{Rb53v=  
    %       0    0    1                                 1 6":=p:PT.  
    %       1    1    r * cos(theta)                    2 );$_|]#  
    %       1   -1    r * sin(theta)                    2 SsiAyQ|Ma  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) BFc=GiPnQ  
    %       2    0    (2*r^2 - 1)                    sqrt(3) c7.%Bn,  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) _ #288`bU  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) D'2&'7-sm\  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) Rm`_0}5  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) WDNuR #J?  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) `6koQZm  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) %:yJ/&-Q,Z  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ZNNgi@6>  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) /MKcS%/H/  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) avrf]raM|  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) QL%&b\K  
    %       -------------------------------------------------- 3Z;`n,g  
    % 7'uuc]\5>  
    %   Example 1: yPL1(i;  
    % |fkz=*rn  
    %       % Display the Zernike function Z(n=5,m=1) ?(UeWLC#  
    %       x = -1:0.01:1; eD5.*O  
    %       [X,Y] = meshgrid(x,x); me"}1REa  
    %       [theta,r] = cart2pol(X,Y); Z_Ffiw(p  
    %       idx = r<=1; Sa7bl~p\  
    %       z = nan(size(X)); YYwFjA@  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); T!u&r  
    %       figure :^]rjy/|+  
    %       pcolor(x,x,z), shading interp ~fbFA?g3  
    %       axis square, colorbar Xg E\q  
    %       title('Zernike function Z_5^1(r,\theta)') {3cT\u  
    % YMx]i,u'+  
    %   Example 2: ~{lSc/SP|  
    % IIcG+zwx  
    %       % Display the first 10 Zernike functions :23w[vt=  
    %       x = -1:0.01:1; -,+zA.{+W  
    %       [X,Y] = meshgrid(x,x); sw A^oU  
    %       [theta,r] = cart2pol(X,Y); #m [R1G#  
    %       idx = r<=1; yXyL,R  
    %       z = nan(size(X)); NN\>( =  
    %       n = [0  1  1  2  2  2  3  3  3  3]; g93-2k,  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 1'ts>6b  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 3BHPD;U  
    %       y = zernfun(n,m,r(idx),theta(idx)); OOJg%y*H  
    %       figure('Units','normalized') y}Ji( q~  
    %       for k = 1:10 8>Az<EF^=#  
    %           z(idx) = y(:,k); "@uKe8r|y  
    %           subplot(4,7,Nplot(k)) KG7 ~)g  
    %           pcolor(x,x,z), shading interp ObJgJr  
    %           set(gca,'XTick',[],'YTick',[]) r$<-2lW  
    %           axis square &p|+K XIf  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) L[;U Z)V@  
    %       end gD`|N@W$5  
    % OI:G~Wg  
    %   See also ZERNPOL, ZERNFUN2. #pDWwnP[rt  
    IL*Ghq{/  
    HoE@t-S  
    %   Paul Fricker 11/13/2006 2:b3+{\f  
    ;$=kfj9 :7  
    lsJl+%&8  
    Z',Z7QW7  
    /Wos{ }Z 0  
    % Check and prepare the inputs: dQW=k^X 'U  
    % ----------------------------- C{Y0}ZrmlF  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) E<6Fjy  
        error('zernfun:NMvectors','N and M must be vectors.') v0psth?qV  
    end ktE~)G  
    FO[x c;  
    rLP:kP'b  
    if length(n)~=length(m) YO&=f d*  
        error('zernfun:NMlength','N and M must be the same length.') l;F\s&^  
    end Fl8*dXG&  
    CYkU-  
    xLX2F   
    n = n(:); jd>ug=~x  
    m = m(:); ,v<GSiO  
    if any(mod(n-m,2)) ,_+Gb  
        error('zernfun:NMmultiplesof2', ... ~O|g~H5;  
              'All N and M must differ by multiples of 2 (including 0).') jTSN`R9@  
    end P_7QZ0k/  
    $qndG,([F  
    M{(g"ha  
    if any(m>n) 'c]Fhe fb  
        error('zernfun:MlessthanN', ... 4\?z^^  
              'Each M must be less than or equal to its corresponding N.') !UPKy$  
    end >]/RlW[  
    8/i];/,v*M  
    ERka l7+  
    if any( r>1 | r<0 )  Z|t`}lK  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') @la/sd4`  
    end ,1|Qm8O  
    ORCG(N  
    $%:=;1Jl  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ab-z 7g  
        error('zernfun:RTHvector','R and THETA must be vectors.') %?sPKOh3N}  
    end ;*J_V/&?  
    3P, ul*e  
    :ebu8H9f%  
    r = r(:); !4Oj^yy%  
    theta = theta(:); r(qw zUI  
    length_r = length(r); qpt},yn)C  
    if length_r~=length(theta) ;#)vw;XR  
        error('zernfun:RTHlength', ... ":I@>t{H*  
              'The number of R- and THETA-values must be equal.') s@$SM,tnn  
    end %tK^&rw%  
    FN+x<VXo(  
    uge~*S  
    % Check normalization: )(/Bw&$  
    % -------------------- /s~(? =qYH  
    if nargin==5 && ischar(nflag) +<})`(8  
        isnorm = strcmpi(nflag,'norm'); ._X|Ye9/  
        if ~isnorm !_P-?u  
            error('zernfun:normalization','Unrecognized normalization flag.') >?L)+*^  
        end 7QX p\<7  
    else Zws[C  
        isnorm = false; IE*5p6IM~  
    end l_lK,=cLj+  
    ,5XDH6L1  
    fD* ?JzVY  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Y2!P!u+Q  
    % Compute the Zernike Polynomials \D5_g8m:  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% `Q1;Y  
    %E\pd@  
    O>c2*9PM  
    % Determine the required powers of r: j>I.d+   
    % ----------------------------------- p|`[8uY?  
    m_abs = abs(m); Io*mFa?  
    rpowers = []; =XhxD<kI  
    for j = 1:length(n) S-7ryHH*0  
        rpowers = [rpowers m_abs(j):2:n(j)]; ETQL,t9m  
    end .L=C7w1  
    rpowers = unique(rpowers); {P7 I<^,  
    Z,QSbw@,7  
    CBu$8]9=  
    % Pre-compute the values of r raised to the required powers, CubBD+h l*  
    % and compile them in a matrix: .a_xQ]eQ  
    % ----------------------------- p5V.O20  
    if rpowers(1)==0 6DxT(VU}  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); I AFj_VWC0  
        rpowern = cat(2,rpowern{:}); +01bjM6F_1  
        rpowern = [ones(length_r,1) rpowern]; 2tMa4L%@C  
    else W5U;{5  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); f1wwx|b%.  
        rpowern = cat(2,rpowern{:}); V }wh  
    end @"vTz8oY@  
    m^%Xl@V:c-  
    R-]i BL  
    % Compute the values of the polynomials:  q +*>T=k  
    % -------------------------------------- rXF=/  
    y = zeros(length_r,length(n)); cS;O]>/5  
    for j = 1:length(n) Dy|DQ>?}  
        s = 0:(n(j)-m_abs(j))/2; ZK?:w^Z  
        pows = n(j):-2:m_abs(j); <=gf|(  
        for k = length(s):-1:1 ]%<0V,G q  
            p = (1-2*mod(s(k),2))* ... FX&)~)  
                       prod(2:(n(j)-s(k)))/              ... E[8i$  
                       prod(2:s(k))/                     ... qYbPF|Y=Z  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... &?0hj@kd~  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); c]3^2Ag,  
            idx = (pows(k)==rpowers); f' &  
            y(:,j) = y(:,j) + p*rpowern(:,idx);  rT!9{uK  
        end 8 huB<^  
         0$I!\y\  
        if isnorm D]zpG  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); W<OO:B.ty  
        end c 6$n:  
    end tRzo}_+N  
    % END: Compute the Zernike Polynomials 5imqZw  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% a4D4*=!G0  
    ^#,cWG}z  
    :}[[G2|9  
    % Compute the Zernike functions: ~\~XD+jy"  
    % ------------------------------ %q5iy0~P  
    idx_pos = m>0; S$%Y{  
    idx_neg = m<0; 5:x .<  
    t.]c44RY  
    90]{4]y;  
    z = y; 7).zed^  
    if any(idx_pos)  !#Hca  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); R:FyCT_,  
    end n$YCIW )0  
    if any(idx_neg) J6*B=PX=(  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); _.ELN/$-  
    end ]J6+nA6)  
    ~zA{=|I2  
    aFrVP  
    % EOF zernfun C@q&0\HN  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  hP,1;`[1  
    ?k_=?m  
    DDE还是手动输入的呢? XR\ iQ  
    [-$&pB>w8'  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究