切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9529阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, A Ns.`S  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 4;<?ec(dc  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? lr=? &>MXj  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? ,5mK_iUw3  
    Qo4]_,kR  
    Q]S~H+eRy  
    blpX_N  
    FDbb/6ku  
    function z = zernfun(n,m,r,theta,nflag) IX$dDwY|O>  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. hxP%m4xF +  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 3%bCv_6B  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 0BMKwZg  
    %   unit circle.  N is a vector of positive integers (including 0), and V: fz  
    %   M is a vector with the same number of elements as N.  Each element ?T3zA2  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) "T=Z/@Vy  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, e=<knKc Q  
    %   and THETA is a vector of angles.  R and THETA must have the same ^HgQ"dD <  
    %   length.  The output Z is a matrix with one column for every (N,M) Q>8F&p?R  
    %   pair, and one row for every (R,THETA) pair. oM G8?p  
    % 3k.{gAZKh  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 4/;hA z  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), :.e`w#$7  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral x_pS(O(C  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 'W(+rTFf!  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized z#ab V1 Xi  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ^I4'7]n-  
    % ;R|i@[(J  
    %   The Zernike functions are an orthogonal basis on the unit circle. Bi;D d?.  
    %   They are used in disciplines such as astronomy, optics, and Y,w'Op  
    %   optometry to describe functions on a circular domain. t~U:Ea[gd  
    % ]-QY, k  
    %   The following table lists the first 15 Zernike functions. \3JZ =/  
    % b`){f\#t  
    %       n    m    Zernike function           Normalization #tg,%*.s  
    %       -------------------------------------------------- dw#K!,g  
    %       0    0    1                                 1 `% IzW2v6  
    %       1    1    r * cos(theta)                    2 H .*:+  
    %       1   -1    r * sin(theta)                    2 tS!Fn Qg4  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) m5m}RWZ#  
    %       2    0    (2*r^2 - 1)                    sqrt(3) Aslh}'$}-  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) %sxLxx_x!  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) sU!h^N$  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 8mjPa^A  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) Yv<' QC  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) @ 32~#0a  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) kW#,o9f\  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 5$f vI#NO<  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) zmH8^:-x  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 7=i8$v&GX  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) zx` %)r  
    %       -------------------------------------------------- 5.m&93P  
    % H'KCIqo  
    %   Example 1: ZByxC*Cz  
    % R=&9M4  
    %       % Display the Zernike function Z(n=5,m=1) URU,&gy=  
    %       x = -1:0.01:1;  lS@0 $  
    %       [X,Y] = meshgrid(x,x); \ #<.&`8B  
    %       [theta,r] = cart2pol(X,Y); <;Q1u,Mc  
    %       idx = r<=1; W>f q 9  
    %       z = nan(size(X)); !d nCrR  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); er@"4R0  
    %       figure tfB}U.  
    %       pcolor(x,x,z), shading interp X$*MxMNs  
    %       axis square, colorbar kw)( "SQ  
    %       title('Zernike function Z_5^1(r,\theta)') 0lpkG ="&r  
    % w>#{Nl7gz  
    %   Example 2: h?_Cv*0q  
    % #1Zqq([@  
    %       % Display the first 10 Zernike functions m=Mb'<  
    %       x = -1:0.01:1; L& =a(  
    %       [X,Y] = meshgrid(x,x); (~>uFH  
    %       [theta,r] = cart2pol(X,Y); ba5,?FVI~  
    %       idx = r<=1; (=A61]yB  
    %       z = nan(size(X)); .8o?`  
    %       n = [0  1  1  2  2  2  3  3  3  3]; A]0A,A0  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; l5h+:^#M5c  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; L`'#}#O l  
    %       y = zernfun(n,m,r(idx),theta(idx)); ,+w9_Gy2H  
    %       figure('Units','normalized') C@x\ZG5rA  
    %       for k = 1:10 )6+Z99w  
    %           z(idx) = y(:,k); f^JiaU4 [  
    %           subplot(4,7,Nplot(k)) PP*6nW8  
    %           pcolor(x,x,z), shading interp CzMCd ~*7R  
    %           set(gca,'XTick',[],'YTick',[]) 8y:/!rRN  
    %           axis square KA $jG{ yq  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 87!D@Xn  
    %       end ^bM\:z"M  
    % oW}nr<G{<  
    %   See also ZERNPOL, ZERNFUN2. m}UcF oaO  
    _+!@c6k)ra  
    ./ ]xn  
    %   Paul Fricker 11/13/2006 6ZO6 O=KD  
    1JQ5bB"  
    BiY-u/bH9a  
    'FNnFm  
    D\:dn  
    % Check and prepare the inputs: R$XHjb)  
    % ----------------------------- V0)bPcS/  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ,(u-q]8   
        error('zernfun:NMvectors','N and M must be vectors.') n~"qbtp}  
    end oACbZ#/@n  
    SFu]*II;{  
    xzi_u.iOP  
    if length(n)~=length(m) L< XAvg  
        error('zernfun:NMlength','N and M must be the same length.') /^]/ iTg  
    end _:N=  
    ,.kJF4s&  
    eA{ nwtN  
    n = n(:); mjQZ"h0  
    m = m(:); ) $`}~  
    if any(mod(n-m,2)) z*a-=w0  
        error('zernfun:NMmultiplesof2', ... vp32}ze D  
              'All N and M must differ by multiples of 2 (including 0).') 3"BSP3/ [l  
    end F9} zt 9  
    A"e4w?  
    h;+{0a  
    if any(m>n) p4F%FS:`  
        error('zernfun:MlessthanN', ... rp '^]Zx  
              'Each M must be less than or equal to its corresponding N.') /78zs-  
    end }qw->+nD  
    >'lvZt  
    uTdx`>M,O  
    if any( r>1 | r<0 ) `fuQ t4  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') _/czH<   
    end f,|g|&C  
    $>8O2p7W  
    J9*i`8kU.  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) qfkd Q/fP  
        error('zernfun:RTHvector','R and THETA must be vectors.') XU`ly3!  
    end 'fs tfk  
    Jc7}z:UB  
    O$nW  
    r = r(:); NXk~o!D  
    theta = theta(:); p[O\}MAd#  
    length_r = length(r); 85f:!p  
    if length_r~=length(theta) v8YF+N  
        error('zernfun:RTHlength', ... 6HguZ_jC  
              'The number of R- and THETA-values must be equal.') v.&c1hKHb  
    end  Y(  
    :GN++\ 1pw  
    MK-+[K  
    % Check normalization: xnC:?d  
    % -------------------- D^QL.Du,  
    if nargin==5 && ischar(nflag) r$1b=m,0d  
        isnorm = strcmpi(nflag,'norm'); V'tqsKQ!  
        if ~isnorm G|*&owJ  
            error('zernfun:normalization','Unrecognized normalization flag.') <O1os"w  
        end [_KV;qS%/  
    else $dxA7 `L  
        isnorm = false; ;PB_ @Zg  
    end -e_|^T"  
    Z l;TS%$  
    *8J 0yv  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% aNn4j_V(  
    % Compute the Zernike Polynomials =:Yrb2gP_\  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0~z`>#W,  
    K^6d_b&  
    ~F53{qxV  
    % Determine the required powers of r: {{Qbu }/@  
    % ----------------------------------- =it@U/  
    m_abs = abs(m); KYZ#.f@  
    rpowers = []; 0K6My4d{  
    for j = 1:length(n) JljCI@  
        rpowers = [rpowers m_abs(j):2:n(j)]; .hM t:BMf*  
    end k dWUz(  
    rpowers = unique(rpowers); !MrQ-B(  
    '7pzw>E=:  
    Y]_$+Si:NK  
    % Pre-compute the values of r raised to the required powers, v`c;1?=,q  
    % and compile them in a matrix: oB%_yy+  
    % ----------------------------- u(fZ^  
    if rpowers(1)==0 @( \R@`#  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 6yBd9=3K  
        rpowern = cat(2,rpowern{:}); Y]*&\Ex"\  
        rpowern = [ones(length_r,1) rpowern]; FW5v 1s=  
    else 'Hzc"<2Y\  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ^Vhl@  
        rpowern = cat(2,rpowern{:}); -$kIVh  
    end Q)y5'u qZ  
    #?k</~s6M`  
    J2 /19'QE  
    % Compute the values of the polynomials: h1"|$  
    % -------------------------------------- Vhh=GJ  
    y = zeros(length_r,length(n)); 9=j)g  
    for j = 1:length(n) :h |]j[2p  
        s = 0:(n(j)-m_abs(j))/2; S*>T%#F6Uo  
        pows = n(j):-2:m_abs(j); jV9oTH-  
        for k = length(s):-1:1 dC8}Ttc}  
            p = (1-2*mod(s(k),2))* ... /D1Lh_,2  
                       prod(2:(n(j)-s(k)))/              ... 1<fW .Q)  
                       prod(2:s(k))/                     ... *sZH3:  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... p!8phS#iP  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); K3<A<&W_-  
            idx = (pows(k)==rpowers); PqL. ^  
            y(:,j) = y(:,j) + p*rpowern(:,idx); u#rbc"  
        end >MKj~Ud  
         u]7wd3(  
        if isnorm (X Oz0.W  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); S6_:\Q  
        end _~MX~M3MB  
    end #qmsZHd}b  
    % END: Compute the Zernike Polynomials 83I 5n&)  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% t$~'$kM)<  
    TTFs|T6`q  
    5y 5Dn!`  
    % Compute the Zernike functions: 8!cHRtqK  
    % ------------------------------ UgK c2~  
    idx_pos = m>0; W1M322]>L  
    idx_neg = m<0; {l5fKVb\C  
    0M roHFh9`  
    @&E IH,c  
    z = y; xp'Q>%v  
    if any(idx_pos) m2"e ]I  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); @MB)B5  
    end +-(,'slov  
    if any(idx_neg) Z)$@1Q4P?1  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); $H[q5(_~  
    end >$9}"  
    OA=~ i/n~  
    $ ,]U~7S  
    % EOF zernfun Osm))Ua(  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    在线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  YJ6~P   
    hXjZ>n``  
    DDE还是手动输入的呢? Ie. on)  
    fYk>LW  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究