下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, MxqIB(5k
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 9vBW CCf
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? ZU;nXqjc
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? m$VCCDv
t;}`~B
5nXmaj
y\=^pla
eyy%2>b
function z = zernfun(n,m,r,theta,nflag) <=!FB8 .
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. Q[9W{l+
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N EUbyQL
% and angular frequency M, evaluated at positions (R,THETA) on the i.gagb
% unit circle. N is a vector of positive integers (including 0), and ZyV^d3F@$
% M is a vector with the same number of elements as N. Each element =vsvx{o?
% k of M must be a positive integer, with possible values M(k) = -N(k) _FCg5F2U
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, oK3PA
% and THETA is a vector of angles. R and THETA must have the same )O8w'4P5
% length. The output Z is a matrix with one column for every (N,M) ,M Ugww!.
% pair, and one row for every (R,THETA) pair. hX:yn:P~
% p:
u@?
k
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Oo/@A_JO@
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), P"|-)d
% with delta(m,0) the Kronecker delta, is chosen so that the integral H-3*},9
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, xmejoOF
% and theta=0 to theta=2*pi) is unity. For the non-normalized q!WiX|P
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. jP.dQj^j&
% _opB,,G
% The Zernike functions are an orthogonal basis on the unit circle. 7
b{y
% They are used in disciplines such as astronomy, optics, and s0'6r$xj
% optometry to describe functions on a circular domain. t\O#5mo
% *t`=1Ioj
% The following table lists the first 15 Zernike functions. e\}'i-
% 9O\yIL
% n m Zernike function Normalization *JO%.QNg
% -------------------------------------------------- G@U}4'V9
% 0 0 1 1 gRwRhA/
% 1 1 r * cos(theta) 2 ,7;euV5X
% 1 -1 r * sin(theta) 2 }^`5$HEi
% 2 -2 r^2 * cos(2*theta) sqrt(6) $PMD $c
% 2 0 (2*r^2 - 1) sqrt(3) W(EN01d \
% 2 2 r^2 * sin(2*theta) sqrt(6) =cI> {
% 3 -3 r^3 * cos(3*theta) sqrt(8) juMHc$d17
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) awSi0*d~
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) `82^!7 !
% 3 3 r^3 * sin(3*theta) sqrt(8) " ,]A.,
% 4 -4 r^4 * cos(4*theta) sqrt(10) A",R2d
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ue -a/a
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) {*X|)nr
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) GK{~n
% 4 4 r^4 * sin(4*theta) sqrt(10) #66u<FaG
% -------------------------------------------------- =/19 -Y:
% kQ|phtbI
% Example 1: ~I@ %ysR
% {"_V,HmEF+
% % Display the Zernike function Z(n=5,m=1) G;]zX<2^3
% x = -1:0.01:1; kZ=yb-~
% [X,Y] = meshgrid(x,x); w +HKvOs5c
% [theta,r] = cart2pol(X,Y); BX2}ar
% idx = r<=1; .]/k#Hv
% z = nan(size(X)); %V92q0XW
% z(idx) = zernfun(5,1,r(idx),theta(idx)); W 7w*VD|
% figure Fyc":{Jd
% pcolor(x,x,z), shading interp V5+|H1=
% axis square, colorbar k>#-NPU$
% title('Zernike function Z_5^1(r,\theta)') ~zFwSF
% =g)SZK
% Example 2: uf`/-jY
% "F?p Y@4
% % Display the first 10 Zernike functions ]T%wRd5&-
% x = -1:0.01:1; E :UJ"6
% [X,Y] = meshgrid(x,x); d V3R)
% [theta,r] = cart2pol(X,Y); o:@A% *jg
% idx = r<=1; ]E1|^[y
% z = nan(size(X)); Hm_&``='
% n = [0 1 1 2 2 2 3 3 3 3]; p e$WSS J
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; %Z yt;p2
% Nplot = [4 10 12 16 18 20 22 24 26 28]; .19_EQ>+
% y = zernfun(n,m,r(idx),theta(idx)); UM. Se(kS
% figure('Units','normalized') o'ZW
% for k = 1:10 D\ P-|}
% z(idx) = y(:,k); -_f-j
% subplot(4,7,Nplot(k)) fAD
{sg
% pcolor(x,x,z), shading interp XW*d\vDun
% set(gca,'XTick',[],'YTick',[]) aK8X,1g%)
% axis square r:,"k:C
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) P]4@|u;=6[
% end l(~NpT{=V
% LF!S`|FF
% See also ZERNPOL, ZERNFUN2. 8zpTCae^=7
Yz>8 Nn '_
$ ~/x;z:
% Paul Fricker 11/13/2006 Y~UWUF%aK
dbfI!4
#ihHAiy3
wfM|3GS+.
.WlZT-
% Check and prepare the inputs: {QIdeB[
% ----------------------------- &usum~@
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Ar`U/ %Cu
error('zernfun:NMvectors','N and M must be vectors.') Rc~63![O.
end V/J-zH&
df9$k0Fx
da$ErN'{
if length(n)~=length(m) }QJ6"s
error('zernfun:NMlength','N and M must be the same length.') /+f3jy:d
end 1P/4,D@
78E<_UgcB
U.J/ "}5`T
n = n(:); 8[u$CTl7a
m = m(:); P,7beHjf
if any(mod(n-m,2)) ^/7Y3n!|3
error('zernfun:NMmultiplesof2', ... j8?rMD~
'All N and M must differ by multiples of 2 (including 0).') l8d }g
end 5I0j>{U&
zC!Pb{IaH
}?Tz=hP
if any(m>n) zmU>
error('zernfun:MlessthanN', ... `YK#m4gc
'Each M must be less than or equal to its corresponding N.') s5oU
end ]dnB,
C oO0~q
{Pe+d3Eoo
if any( r>1 | r<0 ) 7niI65
error('zernfun:Rlessthan1','All R must be between 0 and 1.') h\*I*I8C
end 2%@<A
nPjN\Es6
#mc6;TRZO
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) X1GM\*BE
error('zernfun:RTHvector','R and THETA must be vectors.') uG4Q\,R
end ./}W3
RGLi#:0_.x
5}`e"X
r = r(:); iIU>:)i
theta = theta(:); s6_[H
length_r = length(r); {_X&{dZLX
if length_r~=length(theta) Q5tx\GE
error('zernfun:RTHlength', ... o*s3"Ib
'The number of R- and THETA-values must be equal.') \Gy+y`
end _E
xd:
pAc "Wo(Q
$(;0;!t.
% Check normalization: L_}F.nbS5
% -------------------- (?~*.g!
if nargin==5 && ischar(nflag) G!w?\-
isnorm = strcmpi(nflag,'norm'); r<-@.$lf
if ~isnorm 6q~*\KRk
error('zernfun:normalization','Unrecognized normalization flag.') Y> PC>
end oCuKmK8
else Z_[jah
isnorm = false; K?acRi
end XN~r d,MZ%
4$8\IJ7G
Z+C&?K
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 3H@29TrJ+
% Compute the Zernike Polynomials t}-rN5GO
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% TAZ+2S# #7
S&;D
C07 U.nzh
% Determine the required powers of r: FY <77i
% ----------------------------------- uzWz+atH
m_abs = abs(m); y`-5/4
rpowers = []; N1u2=puJY
for j = 1:length(n) p`{ | [<
rpowers = [rpowers m_abs(j):2:n(j)]; oH kjMqju
end %B-m- =gz
rpowers = unique(rpowers); Y(P<9m:
kIYV%O
$nW^Gqwj]1
% Pre-compute the values of r raised to the required powers, |iB
svI:
% and compile them in a matrix: c9R|0Yn^J
% ----------------------------- :*s+X$x,<
if rpowers(1)==0 $#d.@JWi
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); hS+R/7
rpowern = cat(2,rpowern{:}); \x+ "1
rpowern = [ones(length_r,1) rpowern]; m6M:l"u
else E>O1dPZcM
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); -87]$ ax
rpowern = cat(2,rpowern{:}); y`.m'n7>P
end $+@xwuY'+
dX5|A_Ex
.3,6Oo
% Compute the values of the polynomials: /V)4B4
% -------------------------------------- !x1ivP
y = zeros(length_r,length(n)); bdkxCt
for j = 1:length(n) 7.tEi}O&_g
s = 0:(n(j)-m_abs(j))/2; 2x dN0S
pows = n(j):-2:m_abs(j); '7TT4~F
for k = length(s):-1:1 bcC+af0L
p = (1-2*mod(s(k),2))* ... V-TWC@Y"
prod(2:(n(j)-s(k)))/ ... SjB#"A5
prod(2:s(k))/ ... eFdN"8EW
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... _=RK
prod(2:((n(j)+m_abs(j))/2-s(k))); u3@v
idx = (pows(k)==rpowers); TkSeDP
y(:,j) = y(:,j) + p*rpowern(:,idx); P V,AN
end ;gNoiAxW
A J"/T+g_
if isnorm B[nkE+s
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); %H'*7u2
end >@c~ M
end cWNWgdk,`V
% END: Compute the Zernike Polynomials ;f)o_:(JJ
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% rE&+fSBD
?^H1X-;
[W2GLd]
% Compute the Zernike functions: AV*eGzz`
% ------------------------------ wx%TQ!
idx_pos = m>0; p7kH"j{xD
idx_neg = m<0; WYNO6Xb#:
z^=e3~-J
Du."O]syD
z = y;
KL\]1YX
if any(idx_pos) ccu13Kr>E
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 7f\@3r
end &b7i> ()
if any(idx_neg) %:WM]dc
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); F_&bE@k
end Oe[qfsdW
~ GW8|tw
&\/b(|>
% EOF zernfun 4%L-3Ij