切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8987阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, <y S|\Z|  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, Wbq0K6X  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? z#[PTqD-_  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? w)rd--9f  
    <2n5|.:>  
    U<YcUmX  
    rD\)ndPv  
    >1}@Q(n/}{  
    function z = zernfun(n,m,r,theta,nflag) +]3kcm7B  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. r|_@S[hZg  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N o=nF.y  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ;u8a%h!  
    %   unit circle.  N is a vector of positive integers (including 0), and ( < e q[(  
    %   M is a vector with the same number of elements as N.  Each element Sx0/Dm  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) =*5< w  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1,  0"F|)  
    %   and THETA is a vector of angles.  R and THETA must have the same Ke;eI+P[  
    %   length.  The output Z is a matrix with one column for every (N,M) gkM Q=;Nn  
    %   pair, and one row for every (R,THETA) pair. 2il`'X  
    % K1+4W=|  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 6!`GUU  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), A_\`Gj!s%  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral )n&6= Li  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, sTxgU !_  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized g8SVuG<DI\  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. -U{CWn3G  
    % !X[P)/?b0+  
    %   The Zernike functions are an orthogonal basis on the unit circle. S}b^_+UbP  
    %   They are used in disciplines such as astronomy, optics, and '5m4kDs  
    %   optometry to describe functions on a circular domain. &z]x\4#,  
    % kz*6%Cg*~  
    %   The following table lists the first 15 Zernike functions. 5SMV3~*P  
    % 2<T/N  
    %       n    m    Zernike function           Normalization h"y~!NWn  
    %       -------------------------------------------------- iG ,z3/~v  
    %       0    0    1                                 1 ]$,3vYBf  
    %       1    1    r * cos(theta)                    2 #`ZBA>FLaQ  
    %       1   -1    r * sin(theta)                    2 WM;5/;bB  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) '~9w<dSB!r  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 8RI'Fk{  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) <N:)Xf9`  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) @#p6C  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) I 6'!b/  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ?Dl;DE1  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) MtVvi6T  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) R.\]JvqO  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) QHr'r/0  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) ;X N Ahg7  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Ou4 `#7FR  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) ' <?=!&\D  
    %       -------------------------------------------------- >"+ ho  
    % X`(fJ',  
    %   Example 1: Qr_0 L  
    % T/.UMw  
    %       % Display the Zernike function Z(n=5,m=1) lbX YWZ~7  
    %       x = -1:0.01:1; )}7X4g6X   
    %       [X,Y] = meshgrid(x,x); WH"'Ju5}  
    %       [theta,r] = cart2pol(X,Y); {;|pcx\L6~  
    %       idx = r<=1; {b'  
    %       z = nan(size(X)); =CW> ;h]  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); n2~WUK  
    %       figure dC;&X g`  
    %       pcolor(x,x,z), shading interp /:^nG+  
    %       axis square, colorbar +\*b?x  
    %       title('Zernike function Z_5^1(r,\theta)') }Q*J!OH  
    % U)M&AYb  
    %   Example 2: A.mFa1lH  
    % &8pGq./lr=  
    %       % Display the first 10 Zernike functions 6oq5CDoq  
    %       x = -1:0.01:1; l=t/"M=  
    %       [X,Y] = meshgrid(x,x); cs7^#/3<  
    %       [theta,r] = cart2pol(X,Y); C=(Q0-+L|  
    %       idx = r<=1; xkRS?Q g  
    %       z = nan(size(X)); B9Mp3[   
    %       n = [0  1  1  2  2  2  3  3  3  3]; +_kA&Q(t  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; +!W:gA  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; A|4om=MO  
    %       y = zernfun(n,m,r(idx),theta(idx)); E=CAWj\  
    %       figure('Units','normalized') ?0M$p  
    %       for k = 1:10 Lq$ig8V:O7  
    %           z(idx) = y(:,k); Uf|uFGb  
    %           subplot(4,7,Nplot(k)) }& W=  
    %           pcolor(x,x,z), shading interp 7_P33l8y  
    %           set(gca,'XTick',[],'YTick',[]) # S/n3  
    %           axis square R?;mu^B  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) $)$ r  
    %       end cWG%>.`5r  
    % d"IZt;s/,  
    %   See also ZERNPOL, ZERNFUN2. Mtv{37k~  
    kYWnaY ^F  
    Dn@ZS_f  
    %   Paul Fricker 11/13/2006 4F9!3[}qF  
    G3`9'-2q@c  
    /t`,7y 3T  
    ?hGE[.(eh]  
    I]i( B+D  
    % Check and prepare the inputs: F\&{>&  
    % ----------------------------- M)!"R [V  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ~Kt1%&3{a?  
        error('zernfun:NMvectors','N and M must be vectors.') >e& L"  
    end kW2DKr-[  
    tc/  
    I*^t!+q$  
    if length(n)~=length(m) @MVul_@6  
        error('zernfun:NMlength','N and M must be the same length.') kS &>g  
    end 6WT3-@d  
    _Y ;tD  
    Z1I.f"XY  
    n = n(:); M49l2x=]9  
    m = m(:); K:jn^JN$  
    if any(mod(n-m,2)) ^\Z+Xq1~/  
        error('zernfun:NMmultiplesof2', ... ~-6_-Y|  
              'All N and M must differ by multiples of 2 (including 0).') SepwMB4@  
    end n[gE[kw  
    EpNN!s=Q  
    W90!*1  
    if any(m>n) "^6Fh"]  
        error('zernfun:MlessthanN', ... KUYwc@si\  
              'Each M must be less than or equal to its corresponding N.') d4BzFGsW  
    end 5 ,-8oEUL  
    RqGX(Iuv  
    MTCfs~}m  
    if any( r>1 | r<0 ) !L9OJ1F  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') ^Z#G_%\Y:  
    end .l_Nf9=  
    xl`AiO `K  
    bY.VNA  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) wpYk`L r  
        error('zernfun:RTHvector','R and THETA must be vectors.') +pme]V|<  
    end Ad>81=Z  
    n<j+KD#a  
    w-e{_R  
    r = r(:); &l7E|.JE  
    theta = theta(:); KS93v9|  
    length_r = length(r); yD7}  
    if length_r~=length(theta) ap )B%9  
        error('zernfun:RTHlength', ... "lw|EpQk`  
              'The number of R- and THETA-values must be equal.') 5Y^"&h[/  
    end F/BR#J1  
    O# ZZ PJ"  
    X>=`l)ZR  
    % Check normalization: lTqlQ<`V  
    % -------------------- Y2QX<  
    if nargin==5 && ischar(nflag) 5[SwF& zZ  
        isnorm = strcmpi(nflag,'norm'); \alV #>J5  
        if ~isnorm $~.YB\3  
            error('zernfun:normalization','Unrecognized normalization flag.') NT*r7_e  
        end 9;U?_   
    else ;\2Z?Kq  
        isnorm = false; ap}p?r  
    end 3r kcIVO  
    !`I@Rk]`c  
    4($"4>BA  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 9%T"W  
    % Compute the Zernike Polynomials ( ~5 M{Xh  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% xt5/`C  
    rnj$u-8  
    A,DBq9Z+4R  
    % Determine the required powers of r: )ciP6WzzbI  
    % ----------------------------------- 1]2]l*&3  
    m_abs = abs(m); 4kM/`g6?,q  
    rpowers = []; "g"a-{8  
    for j = 1:length(n) E@ U]k$M  
        rpowers = [rpowers m_abs(j):2:n(j)]; 0wv#AT  
    end Z*co\ pW  
    rpowers = unique(rpowers); [UzD3VPg  
    VjM3M<!g>M  
    . |T=T0^  
    % Pre-compute the values of r raised to the required powers, l}z<q  
    % and compile them in a matrix: ( *+'k1Ea  
    % ----------------------------- ^b+>r  
    if rpowers(1)==0 nL:&G'd  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ZiJF.(JS  
        rpowern = cat(2,rpowern{:}); Kt_oo[ey{  
        rpowern = [ones(length_r,1) rpowern]; mgjJNzclL  
    else `sYFQ+D#O  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); sh$-}1 ;  
        rpowern = cat(2,rpowern{:}); `3rwqcxA  
    end w'H'o!*/  
    SO0\d0?u  
    luf5-XT  
    % Compute the values of the polynomials: 46A sD  
    % -------------------------------------- R#d~a;j  
    y = zeros(length_r,length(n)); C:J;'[,S  
    for j = 1:length(n) +H2Jhgi  
        s = 0:(n(j)-m_abs(j))/2; ~ 1h#  
        pows = n(j):-2:m_abs(j); .c"nDCFVR  
        for k = length(s):-1:1 :]-oo*xP  
            p = (1-2*mod(s(k),2))* ... crM5&L9zF  
                       prod(2:(n(j)-s(k)))/              ... 1(?4*v@B  
                       prod(2:s(k))/                     ... 2^WJ1: A  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... k5S;G"i J  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 8 c8`"i  
            idx = (pows(k)==rpowers); YO7U}6wBt  
            y(:,j) = y(:,j) + p*rpowern(:,idx); jfxNV2[  
        end &F&`y  
         p`Pa;=L  
        if isnorm 6$k#B ~~  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ebk>e*  
        end IK2da@V  
    end gpV4qDXV  
    % END: Compute the Zernike Polynomials [A-_?#cZ  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% r[L%ap\{  
    uks75W!}U  
    D|LO!,=b  
    % Compute the Zernike functions: b' o]Y  
    % ------------------------------ %v0M~J}+  
    idx_pos = m>0; 2Xt4Rqk$  
    idx_neg = m<0; )O1]|r7v  
    A5XMA|2_  
    ?,vLRq.  
    z = y; k)p` x"To  
    if any(idx_pos) ]" 'yf;g  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); *d 1Bp R%  
    end ;'"'|} xn  
    if any(idx_neg) }@r23g%   
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ) O0Cz n  
    end tDK@?PfKz  
    v ccH(T  
    hLO)-ueb  
    % EOF zernfun &`D$w?beg  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    在线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  UP#@gxF  
    ?>7\L'n=5I  
    DDE还是手动输入的呢? V lZ+x)E  
    bU gg2iFS  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究