下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, G{<wXxq%
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 8EQ;+V
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? DN+iS
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? 5|Uub,
W c nYD)
QJ
QQ-
iV%%VR8b
iJcl0)|
function z = zernfun(n,m,r,theta,nflag) Q{RHW@_/
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. m@ ~HHwj
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N }-!$KR]:s
% and angular frequency M, evaluated at positions (R,THETA) on the HO'
HkVA
% unit circle. N is a vector of positive integers (including 0), and z&eJ?wb
% M is a vector with the same number of elements as N. Each element j_Fr3BWS
% k of M must be a positive integer, with possible values M(k) = -N(k)
W*
YfyM
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, DZvpt%q
% and THETA is a vector of angles. R and THETA must have the same Jv5G:M5+~
% length. The output Z is a matrix with one column for every (N,M) t]V)3Ww
% pair, and one row for every (R,THETA) pair. 7Sokn?~i
% $>+-=XMVB
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike z-,'W`
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), &{8 "-
dw
% with delta(m,0) the Kronecker delta, is chosen so that the integral E:7vm@+
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ]HRE-g
% and theta=0 to theta=2*pi) is unity. For the non-normalized 0]T
;{
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. R,(^fM
% dK=BH=S2?X
% The Zernike functions are an orthogonal basis on the unit circle. Z|)~2[Roa
% They are used in disciplines such as astronomy, optics, and oY{*X6:6<
% optometry to describe functions on a circular domain. =%bc;ZUu
% ,y^By_1wS
% The following table lists the first 15 Zernike functions. {T$;BoR#O
% $.`(2
% n m Zernike function Normalization sQR;!-j
% -------------------------------------------------- bw@tA7Y
% 0 0 1 1 ?p`}6s Q}
% 1 1 r * cos(theta) 2 ?Hy++
% 1 -1 r * sin(theta) 2 d(k`Yk8
% 2 -2 r^2 * cos(2*theta) sqrt(6) :D(:(`A=
% 2 0 (2*r^2 - 1) sqrt(3) c$p1Sovw
% 2 2 r^2 * sin(2*theta) sqrt(6) OuX/BMG
% 3 -3 r^3 * cos(3*theta) sqrt(8) 0DN:{dJz
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) luV%_[F
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8)
-"<eq0
% 3 3 r^3 * sin(3*theta) sqrt(8) -WEiY
% 4 -4 r^4 * cos(4*theta) sqrt(10) <>-UPRwqI
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ,TL~];J'
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) K^Xg^9
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) U9Y'eP.2
% 4 4 r^4 * sin(4*theta) sqrt(10) 1cUC>_%?
% -------------------------------------------------- n6oVx5/
% p/@z4TCNX
% Example 1: O'(qeN<^w
% b\}`L"
% % Display the Zernike function Z(n=5,m=1) E#T'=f[r~
% x = -1:0.01:1; i`E]gJ$
% [X,Y] = meshgrid(x,x); 9)wjVk
% [theta,r] = cart2pol(X,Y); 3n
X7$$X
% idx = r<=1; a29mVmi >
% z = nan(size(X)); guBOR0x`
% z(idx) = zernfun(5,1,r(idx),theta(idx)); fE7Kv_N-%
% figure Yzd-1Jvk
% pcolor(x,x,z), shading interp zm"& 8/l
% axis square, colorbar N#|c2n+
% title('Zernike function Z_5^1(r,\theta)') IN_GL18^MV
% 1`b?nX
% Example 2: wp$SO^?-
% e;Q~P]x
% % Display the first 10 Zernike functions Rb#?c+&#
% x = -1:0.01:1; NmK%k jCx
% [X,Y] = meshgrid(x,x); N$p O] p
% [theta,r] = cart2pol(X,Y); 6Bs_"
P[
% idx = r<=1; WpRi+NC}ln
% z = nan(size(X)); KPKby?qQ^
% n = [0 1 1 2 2 2 3 3 3 3]; !iITX,'8
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; UGl}=hwKkG
% Nplot = [4 10 12 16 18 20 22 24 26 28];
c,x2
% y = zernfun(n,m,r(idx),theta(idx)); Jg^tr>I~
% figure('Units','normalized') 8iq~ha$]|
% for k = 1:10 r/8,4:rh
% z(idx) = y(:,k); OG0ro(|dI
% subplot(4,7,Nplot(k)) ^fH]Rlx
% pcolor(x,x,z), shading interp (gz|6N
% set(gca,'XTick',[],'YTick',[]) *_U
z**M
% axis square ,v(G2`Z
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) obUh+9K
% end fyT! /
% <PXA`]x~
% See also ZERNPOL, ZERNFUN2. N/]TZu~k z
y=-d*E
7M5HIK6_
% Paul Fricker 11/13/2006 c~@I1M
+STT(b Mn
8&H1w9NrX_
iQ~cG[6
G| ^tqI
% Check and prepare the inputs: ("wPkm^
% ----------------------------- 9NKZE?5P|D
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ]oZ$,2#;~
error('zernfun:NMvectors','N and M must be vectors.') 2qw~hWX
end 2L ~U^
;z!~-ByzL
n6
)
if length(n)~=length(m) HA"LU;5>2J
error('zernfun:NMlength','N and M must be the same length.') =v1s@5;~
end $O7>E!uVD
>L)Xyq
1,BtOzuRo
n = n(:); Z3"f7l6
m = m(:); [BmondOx
if any(mod(n-m,2)) w~Es,@
error('zernfun:NMmultiplesof2', ... }4\>q$8'
'All N and M must differ by multiples of 2 (including 0).') #>[+6y]U!
end h?fv:^vSi
H#G'q_uHH
?\.P
if any(m>n) 4LKOBiEM
error('zernfun:MlessthanN', ... znX2W0V
'Each M must be less than or equal to its corresponding N.') 4e1Zyi!
end %;9wToyK>
%q(n'^#Z.y
Qq^>7OU>Co
if any( r>1 | r<0 ) 866n{lyL
error('zernfun:Rlessthan1','All R must be between 0 and 1.') M {_`X
end :!J!l u
e>y"V;Mj
ZN',=&;n'
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) T<?JL.8 g_
error('zernfun:RTHvector','R and THETA must be vectors.') !dStl:B
end $UgM7V$
WZ;f3
"
Jc:*X4-'
r = r(:); VI[ikNpX
theta = theta(:); ?,TON5Fl-
length_r = length(r); Yc+/="&z
if length_r~=length(theta) _D[vMr[
error('zernfun:RTHlength', ... / IAK'/
'The number of R- and THETA-values must be equal.') eB^:+h#A_
end =AGsW
|'b=xeH.^<
f
\[Z`D
% Check normalization: s0qA8`Yu
% -------------------- Of SYOL7o
if nargin==5 && ischar(nflag) "PLZZL$+
isnorm = strcmpi(nflag,'norm'); p 8Ts5n
if ~isnorm $yI!YX&
error('zernfun:normalization','Unrecognized normalization flag.') E;9SsA
end qbFzA
i
else z9u"?vdA
isnorm = false; J'.U+XU
end zf4@:GM`
VLkK6W.u
e(,sFhR
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% owJPEx
% Compute the Zernike Polynomials *GTCVxu
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% aKhI|%5kA
X+
h|sy
DU|0#z=*t5
% Determine the required powers of r: iKs/8n
% ----------------------------------- 9^c\$"2B
m_abs = abs(m); VD<W
rpowers = []; N? ky2wG
for j = 1:length(n) G<Z|NT
rpowers = [rpowers m_abs(j):2:n(j)]; xmT(yv,
end w*f.Fu(su
rpowers = unique(rpowers); YJ_LD6PL9
:(!il?
5kofO
% Pre-compute the values of r raised to the required powers, e{>X2UNW
% and compile them in a matrix: qR--lvO
% ----------------------------- qWfG@hn
if rpowers(1)==0 ?sdVd
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); BI3Q~ADV
rpowern = cat(2,rpowern{:}); &zynfj#o
rpowern = [ones(length_r,1) rpowern]; gV91=Pj
else W]4Gs;
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); HUfH/x3zj]
rpowern = cat(2,rpowern{:}); CZS{^6Ye
end l+*^P'0u
!gWV4vC
w<lHY=z E
% Compute the values of the polynomials: [2a*TI
% -------------------------------------- @K7#}7,t
y = zeros(length_r,length(n)); q1;}~}W;z4
for j = 1:length(n) 0-oR
{
{
s = 0:(n(j)-m_abs(j))/2; I;S[Ft8d
pows = n(j):-2:m_abs(j); QyuSle
for k = length(s):-1:1 $21+6
p = (1-2*mod(s(k),2))* ... X@*$3z#Z
prod(2:(n(j)-s(k)))/ ... S ])Ap'E
prod(2:s(k))/ ... k^}8=,j}
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... pE[ul
prod(2:((n(j)+m_abs(j))/2-s(k))); b?hdWQSW7
idx = (pows(k)==rpowers); y<.0+YL-e+
y(:,j) = y(:,j) + p*rpowern(:,idx); zZ3,e L
end lUJ/ nG0l
6'3@/.
if isnorm G,FYj'<!7,
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); R+
lwOVX
end T@;z o8:
end Y 4sf 2w
% END: Compute the Zernike Polynomials h3$.`
>l
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% t|jX%s=
iov55jT~l@
r DX_$,3L
% Compute the Zernike functions: yQ?N*'}$
% ------------------------------ ,Drd s"H
idx_pos = m>0; 9[N+x2q
idx_neg = m<0; K'+GK S7.
}#Z Q\[
gk >-h,>"
z = y; Uc/MPCqZ
if any(idx_pos) lpQsmd#
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ^a4 y+!
end WBFG_])
if any(idx_neg) rR@ t5
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); sPYG?P(l
end (Hb
i+IHV
j(F&*aH78
aL$m
% EOF zernfun $`W.9