切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9358阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, {z":hmt  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, |$$gj[+^  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? z&a%_ ]Q*  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? M\%LB}4M  
    jlhyn0  
    CYIp 3D'k  
    41\r7 BS  
    x6=Yt{  
    function z = zernfun(n,m,r,theta,nflag) K6vF}A|  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. Kk?]z7s-4  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Z0fl]3p  
    %   and angular frequency M, evaluated at positions (R,THETA) on the M$|r8%z1  
    %   unit circle.  N is a vector of positive integers (including 0), and ql Z()  
    %   M is a vector with the same number of elements as N.  Each element a' sa{>  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) n veHLHvC7  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, #2N']VP  
    %   and THETA is a vector of angles.  R and THETA must have the same mFL"h  
    %   length.  The output Z is a matrix with one column for every (N,M) ('SA9JG  
    %   pair, and one row for every (R,THETA) pair. f7y a0%N  
    % :o!bz>T  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike '|v??`o#  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), >Ln/)j  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral VBHDI{HzRv  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, B,`B!rU  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized g>])O  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. FlWgTn>  
    % RbexsBq  
    %   The Zernike functions are an orthogonal basis on the unit circle. 5C03)Go3Z  
    %   They are used in disciplines such as astronomy, optics, and :n1^Xw0q  
    %   optometry to describe functions on a circular domain. LyEM^d]  
    % q7itznQSKc  
    %   The following table lists the first 15 Zernike functions. zF+NS]XK  
    % ]p,sve vo  
    %       n    m    Zernike function           Normalization C26vH#C  
    %       -------------------------------------------------- <"Ox)XG3]W  
    %       0    0    1                                 1 } Mh@%2$  
    %       1    1    r * cos(theta)                    2 mM6g-)cV  
    %       1   -1    r * sin(theta)                    2 (}$pf6s  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) *2K/)(  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 7=$@bHEF#*  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) ~Ibq,9i  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) RyI(6TZl  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) s7x&x;-  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) hJuR,NP  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) i{#5=np H  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) u@( z(P  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) i_ha^mq3  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) =dVPx<l5  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 6 WD(  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 7~gIOu  
    %       -------------------------------------------------- zv1#PfO@)  
    % '}\#bMeObg  
    %   Example 1: Z *9Qeu-N:  
    % "OIra2O  
    %       % Display the Zernike function Z(n=5,m=1) yvPcD5s5  
    %       x = -1:0.01:1; ;oe j~  
    %       [X,Y] = meshgrid(x,x); h92'~X36  
    %       [theta,r] = cart2pol(X,Y); C\ ~!2cy  
    %       idx = r<=1; YQ\c0XG  
    %       z = nan(size(X)); v/W\k.?q/  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); L7~9u|7a#  
    %       figure [8-. T4  
    %       pcolor(x,x,z), shading interp ]Wc:9Zb  
    %       axis square, colorbar #FAy ]7/O  
    %       title('Zernike function Z_5^1(r,\theta)') x WZ87  
    % <Cbah%X  
    %   Example 2: Hr?_`:  
    % Dz<"eyB\  
    %       % Display the first 10 Zernike functions bO)voJ<  
    %       x = -1:0.01:1; K,ccM[hu|  
    %       [X,Y] = meshgrid(x,x); j_3X 1w)k  
    %       [theta,r] = cart2pol(X,Y); y:C=Ni&,"  
    %       idx = r<=1; {LwV&u(  
    %       z = nan(size(X)); l ~b  
    %       n = [0  1  1  2  2  2  3  3  3  3]; NuL.l__W  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 3RwDIk?>%  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; ,*y\b|<j  
    %       y = zernfun(n,m,r(idx),theta(idx)); 676r0`  
    %       figure('Units','normalized') RDX$Wy$@L  
    %       for k = 1:10 td}%reH  
    %           z(idx) = y(:,k); _LVi}mM  
    %           subplot(4,7,Nplot(k)) Tz PG(f  
    %           pcolor(x,x,z), shading interp NCid`a$  
    %           set(gca,'XTick',[],'YTick',[]) Ng1{ NI+S  
    %           axis square @X$~{Vp__  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) !foiGZ3g  
    %       end Hp#IOsP~  
    % +>w %j&B  
    %   See also ZERNPOL, ZERNFUN2. i4Ps#R_wx  
     T:~c{S4&  
    uR;m<wPH,f  
    %   Paul Fricker 11/13/2006 ji8)/  
    }K rQPg  
    Wu{cE;t  
    (IE\}QcK  
    xcVF0%wVC  
    % Check and prepare the inputs: ^]{)gk8P~2  
    % ----------------------------- sQIzcnKB  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) \& KfIh8  
        error('zernfun:NMvectors','N and M must be vectors.') bhqV2y*'  
    end \$Jz26 -n  
    2^V/>|W>w  
    pA~eGar_J  
    if length(n)~=length(m) B1u.aa$  
        error('zernfun:NMlength','N and M must be the same length.') SU8vz/\%y  
    end ?y1G,0,  
    T@{ }!  
    xE0'eC5n^  
    n = n(:); @xq jAcfg  
    m = m(:); `A\|qH5`W  
    if any(mod(n-m,2)) t XbMP  
        error('zernfun:NMmultiplesof2', ... 7uI~Xo ?N  
              'All N and M must differ by multiples of 2 (including 0).') gq:2`W&5  
    end ^U5g7Emf  
    dPVl\<L1  
    JSCZX:5  
    if any(m>n) V\2&?#GZ  
        error('zernfun:MlessthanN', ... 3|Vh[iAa\  
              'Each M must be less than or equal to its corresponding N.') }O7!>T  
    end P { 8d.  
    *# 7 1aZ  
    uhf% z G  
    if any( r>1 | r<0 ) ,cF $_7M  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') gf]k@-)  
    end Z~s"=kF,  
    ywCF{rRd  
    ZD`9Ez)5  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) m })EYs1  
        error('zernfun:RTHvector','R and THETA must be vectors.') 1dE |q{  
    end k~|5TO  
    p10i_<J]=  
    &% infPI'  
    r = r(:); 7hq$vI%0  
    theta = theta(:); iN]#XIQ%  
    length_r = length(r); $I$ B8  
    if length_r~=length(theta) '|jN!y^ 2p  
        error('zernfun:RTHlength', ... :'+- %xUM  
              'The number of R- and THETA-values must be equal.') =0" Zse,  
    end Y`tv"v2  
    t:N3k ;k  
    e5HHsR6  
    % Check normalization: XW2{I.:in>  
    % -------------------- ~d)2>A 2:  
    if nargin==5 && ischar(nflag) 9NPOdt:@  
        isnorm = strcmpi(nflag,'norm'); m0$~O5|4  
        if ~isnorm g"P!KPrf1p  
            error('zernfun:normalization','Unrecognized normalization flag.') V9SkB3-'  
        end zF-M9f$_PY  
    else F8T.}qI  
        isnorm = false; qz]g4hS  
    end e ab_"W   
    aplOo[  
    )=EJFQ*v  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ~4t7Q  
    % Compute the Zernike Polynomials Rv^ \o  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # 1#?k  
    9U=~t%qW$  
    6.>l  
    % Determine the required powers of r: A]WR-0Z7  
    % ----------------------------------- u&7c2|Q  
    m_abs = abs(m); KgCQ4w9  
    rpowers = []; {B d 0  
    for j = 1:length(n) PRpW*#"EI  
        rpowers = [rpowers m_abs(j):2:n(j)]; m~x O;_m  
    end ]u(EEsG/  
    rpowers = unique(rpowers); y G{;kJ P  
    /E|Ac&Qk  
    5N'Z"C0  
    % Pre-compute the values of r raised to the required powers, sm1(I7y  
    % and compile them in a matrix: J-3%.fX,  
    % ----------------------------- >kN%R8*Sx  
    if rpowers(1)==0 Qjl.O HO  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); _w\A=6=q|  
        rpowern = cat(2,rpowern{:}); k5X& |L/  
        rpowern = [ones(length_r,1) rpowern]; D) my@W0,  
    else { :~&#D  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 5[\LQtM  
        rpowern = cat(2,rpowern{:}); h,u?3}Knnb  
    end {:!CA/0Jx  
    nsM :\t+ p  
    lgL|[ik`  
    % Compute the values of the polynomials: Ki_8g  
    % -------------------------------------- 6k%Lc4W  
    y = zeros(length_r,length(n)); re-;s  
    for j = 1:length(n) pk&;5|cCD  
        s = 0:(n(j)-m_abs(j))/2; 1p%75VW  
        pows = n(j):-2:m_abs(j); &!=[.1H<  
        for k = length(s):-1:1 /GQN34RD  
            p = (1-2*mod(s(k),2))* ... &|8R4l C|  
                       prod(2:(n(j)-s(k)))/              ... 6_#:LFke  
                       prod(2:s(k))/                     ... pMy];9SvW  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... (uk-c~T!u  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); @|hn@!YK  
            idx = (pows(k)==rpowers); '9R.$,N  
            y(:,j) = y(:,j) + p*rpowern(:,idx); k9|8@3(h  
        end K:3u/C`  
         K>a+-QWK3  
        if isnorm 1[&V6=n  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); {*jo,<4ee  
        end 0qPbmLMK  
    end zP(UaSXz/  
    % END: Compute the Zernike Polynomials j4fv-{=$  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% w$2Z7S  
    [G=+f6 a  
    ; wpX  
    % Compute the Zernike functions: ys#V_ysb  
    % ------------------------------ rCTH 5"  
    idx_pos = m>0; &LD=Zp%  
    idx_neg = m<0; *sPG,6>  
     \W',g[Y:  
    #F~^m  
    z = y; u#c3T'E  
    if any(idx_pos) i4XE26B;e  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); \j$q';9p  
    end s?g`ufF.t  
    if any(idx_neg) )PNeJf|@  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); jZ5 mpYUO  
    end Q-qM"8I  
    BnL[C:|  
    NGYUZ\m  
    % EOF zernfun 2 u{"R  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  1Q&\y)@bT  
    doIcO,Q  
    DDE还是手动输入的呢? |KV|x ^fJ  
    d)_fI*:f  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究