切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9126阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, ^'"sFEV7RN  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, ("HT0 &#a  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? 7vBB <\  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? N[G<&f9  
    {UX[SAQ  
    'W0?XaEk-  
    tF> ?]  
    :{pJ  
    function z = zernfun(n,m,r,theta,nflag) _VIVZ2mU=  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. `9%Q2Al  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Q{9#Am^6w  
    %   and angular frequency M, evaluated at positions (R,THETA) on the NNUm=g^  
    %   unit circle.  N is a vector of positive integers (including 0), and JvFU7`4@  
    %   M is a vector with the same number of elements as N.  Each element UMe@[E=  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) {eR,a-D!7  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, N?j,'gy4  
    %   and THETA is a vector of angles.  R and THETA must have the same w`~j(G4N  
    %   length.  The output Z is a matrix with one column for every (N,M) )KvQaC  
    %   pair, and one row for every (R,THETA) pair. X2#;1 ku  
    % neC]\B[Xm  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 3e)3t`  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ,~@0IKIA Q  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral ,$ICv+7]  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 5x/q\p-{/  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized @C),-TM  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. n1Ag o3NM  
    % VU>s{_|{  
    %   The Zernike functions are an orthogonal basis on the unit circle. 8e_ITqV%  
    %   They are used in disciplines such as astronomy, optics, and a8fLj  
    %   optometry to describe functions on a circular domain. .F=15A  
    % hM*T{|y  
    %   The following table lists the first 15 Zernike functions. #N-NI+qX  
    % %;,D:Tv=&  
    %       n    m    Zernike function           Normalization gd9ZlHo'Id  
    %       -------------------------------------------------- G $u:1&   
    %       0    0    1                                 1 ,nO:Pxn|  
    %       1    1    r * cos(theta)                    2 22?9KZ`Z=  
    %       1   -1    r * sin(theta)                    2 dO Y+| P\  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) r1cB<-bJ#'  
    %       2    0    (2*r^2 - 1)                    sqrt(3) "yMr\jt~-  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) K%h83tm+  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) b2;Weu3WN  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) ~mUP!f  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) )i; y4S  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) i,/|H]Mzr  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) rn1FCJ<;H  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 7`3he8@ze  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) ;FYiXK%  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) qIQvix$8  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) o{\@7'G  
    %       -------------------------------------------------- %^RlE@l9  
    % 1 sCF -r  
    %   Example 1: UP:+1Sp9  
    % }#@P+T:b  
    %       % Display the Zernike function Z(n=5,m=1) Jrlc%,pZ  
    %       x = -1:0.01:1; 2S^xqvh  
    %       [X,Y] = meshgrid(x,x); n }lav  
    %       [theta,r] = cart2pol(X,Y); %j=E}J<H5*  
    %       idx = r<=1; 1N< )lZl)  
    %       z = nan(size(X)); 7I4G:-V:^  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); {: EQ  
    %       figure Yg%V  
    %       pcolor(x,x,z), shading interp #m9V) 1"wB  
    %       axis square, colorbar z x{\SU  
    %       title('Zernike function Z_5^1(r,\theta)') 6m21Y8N  
    % =Fea vyx  
    %   Example 2: Jg|3Wjq5  
    % nLkC-+$tM  
    %       % Display the first 10 Zernike functions C78d29  
    %       x = -1:0.01:1; e*vSGT$KgL  
    %       [X,Y] = meshgrid(x,x); Db yy H_  
    %       [theta,r] = cart2pol(X,Y); kYs2AzS{d  
    %       idx = r<=1; V]}/e!XK\  
    %       z = nan(size(X)); Z.m.Uyz{7  
    %       n = [0  1  1  2  2  2  3  3  3  3]; Jg k@ti.}Z  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; e,I-u'mLQs  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; O3*Vilx  
    %       y = zernfun(n,m,r(idx),theta(idx)); 13A11XTp  
    %       figure('Units','normalized') @N.W#<IG  
    %       for k = 1:10 B7t#H?  
    %           z(idx) = y(:,k); {NE;z<,*:  
    %           subplot(4,7,Nplot(k)) R|t.wawCo  
    %           pcolor(x,x,z), shading interp CT4R/wzY7  
    %           set(gca,'XTick',[],'YTick',[]) n<yV]i$  
    %           axis square cJ:BEe  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) "DWw1{ 5/  
    %       end : M0LAN  
    % z[qM2  
    %   See also ZERNPOL, ZERNFUN2.  [.z1  
    LEVNywk[  
    & A9psc(,&  
    %   Paul Fricker 11/13/2006 V6wYJ$]  
    IG +nrTY0  
    3SQ 5C' E  
    Q*$x!q  
    !l6B_[!@  
    % Check and prepare the inputs: O0b8wpF f  
    % ----------------------------- K r]!BI?z  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) jopC\Z  
        error('zernfun:NMvectors','N and M must be vectors.') P9`i6H'~  
    end RW>Z~Nj  
    !^q<)!9<EO  
    RWTv,pLK  
    if length(n)~=length(m) @uY%;%Pa8  
        error('zernfun:NMlength','N and M must be the same length.') `-ENKr]  
    end )Y?H f2']  
    f<|8NQ2y.  
    O";r\Z  
    n = n(:); =NJb9S&8A  
    m = m(:); $ Qg81mu  
    if any(mod(n-m,2)) C<w9f  
        error('zernfun:NMmultiplesof2', ... 7SAu">lIl  
              'All N and M must differ by multiples of 2 (including 0).') aKCCFHq t!  
    end 'zT/ x`V  
    y''?yr  
    [zf9UUc~  
    if any(m>n) aeUm,'Y$  
        error('zernfun:MlessthanN', ... NX)7g}S  
              'Each M must be less than or equal to its corresponding N.') 9M01}  
    end NqqLRgMOR'  
    V=(4 c  
    -]'Sy$,A  
    if any( r>1 | r<0 ) <\zb*e&vr  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') zKV {JUpG  
    end L4kYF~G:4  
    Y,E:?  
    [U3z*m>e;  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) I8^z\ef&  
        error('zernfun:RTHvector','R and THETA must be vectors.') u> >t"w  
    end $8i t&/JP,  
    fvNGGn!  
    } A# C  
    r = r(:); ~q|^z[7  
    theta = theta(:); 8CEy#%7]}  
    length_r = length(r); cW&OVNj  
    if length_r~=length(theta) 5&94VQ$d  
        error('zernfun:RTHlength', ... yx/:<^"-$  
              'The number of R- and THETA-values must be equal.') p3x(:=   
    end Pi*,&D>{7  
    &a:>P>\  
    @~gz-l^$  
    % Check normalization: |Z2_1( ku  
    % -------------------- 9,,v 0tE  
    if nargin==5 && ischar(nflag) [BV{=;iD  
        isnorm = strcmpi(nflag,'norm'); _TX.}167;-  
        if ~isnorm L7Skn-*tnA  
            error('zernfun:normalization','Unrecognized normalization flag.') aUA+%  
        end M>I}^Zp!  
    else OH=Ffy F,  
        isnorm = false; VJr?` eY4  
    end 23+GX&Rp  
    .-Ao%A W  
    CB|z{(&N  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% _&w!JzpXT  
    % Compute the Zernike Polynomials (4c<0<"$  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% _r,# l5~U  
     'Z&A5\~  
    )0d3sJ8  
    % Determine the required powers of r: ! B)Em  
    % ----------------------------------- BwBv 'p+n  
    m_abs = abs(m); H9jj**W ;$  
    rpowers = []; z1]RwbA?1  
    for j = 1:length(n) has5"Bb  
        rpowers = [rpowers m_abs(j):2:n(j)]; u-k*[!JU  
    end <w,aS;v6jp  
    rpowers = unique(rpowers); N$=<6eQm  
    /D~ ,X48+  
    p(x[zn+%Y  
    % Pre-compute the values of r raised to the required powers, pCg0xbc`  
    % and compile them in a matrix: l{y~N  
    % ----------------------------- zxsnrn;|  
    if rpowers(1)==0 o^AK@\e:^Z  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 7z+NR&' M$  
        rpowern = cat(2,rpowern{:}); St(7@)gvY  
        rpowern = [ones(length_r,1) rpowern]; e|kYu[^  
    else % mI q,  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); +*|E%pq  
        rpowern = cat(2,rpowern{:}); iezz[;t  
    end 2&Efqy8}DZ  
    a!>AhOk.  
    HWs?,AJNxB  
    % Compute the values of the polynomials: 4QDF%#~q^  
    % -------------------------------------- XVI+Y  
    y = zeros(length_r,length(n)); 0Z@u6{Z9R  
    for j = 1:length(n) e1'_]   
        s = 0:(n(j)-m_abs(j))/2; h"<rW7z  
        pows = n(j):-2:m_abs(j); %Y!lEzB5  
        for k = length(s):-1:1 "dkvk7zCP  
            p = (1-2*mod(s(k),2))* ... w\\    
                       prod(2:(n(j)-s(k)))/              ... #FeM.k6  
                       prod(2:s(k))/                     ... ]*v%(IGK  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ;xj^*b  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); |:EUh  
            idx = (pows(k)==rpowers); X#Hs{J~@p  
            y(:,j) = y(:,j) + p*rpowern(:,idx); $%!]tNGS  
        end 2j_L jY'7  
         z1YC%Y|R  
        if isnorm ZB%7Sr0  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); p_mP'  
        end cZHlW|$R  
    end 7W 4[1  
    % END: Compute the Zernike Polynomials ,>e<mphM  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% vmk c]DC  
    G2em>W_n  
    (s \Nm_j  
    % Compute the Zernike functions: xOEj+%M  
    % ------------------------------ %3~jg  
    idx_pos = m>0; s3t{freM  
    idx_neg = m<0; 'jfI1 ]q  
    -1U]@s  
    n!f @JHL  
    z = y; 9v/1>rziE  
    if any(idx_pos) Aw >DZ2  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ^#_@Kq%th  
    end 8vchLl#  
    if any(idx_neg) `qUmOFl  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); +VzR9ksJj  
    end 5 kQC  
    Thz&wH`W  
    O~igwFe  
    % EOF zernfun HQ4o^WC  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  h! =h0  
    VK286[[fv  
    DDE还是手动输入的呢? /o OZ>B%1s  
    ORuC("  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究