下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, (H=7 (
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, gN"Abc
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? ^uZ!e+
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? &dA{ <.
?[Gj?D.Wc
8Ter]0M&
/eFudMl
<hG] f%
function z = zernfun(n,m,r,theta,nflag) ?r< F/$/
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. ~Ey)9phZK
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N gZ{q85C.>
% and angular frequency M, evaluated at positions (R,THETA) on the a+wc"RQ
|
% unit circle. N is a vector of positive integers (including 0), and fK-tvP0}*
% M is a vector with the same number of elements as N. Each element LojEJ
% k of M must be a positive integer, with possible values M(k) = -N(k) =lyP &u
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, {~cG'S Y%
% and THETA is a vector of angles. R and THETA must have the same #
MpW\yX
% length. The output Z is a matrix with one column for every (N,M) 'j6)5WL$
% pair, and one row for every (R,THETA) pair. ">$.>sn{
% zpPzXQv]/
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike I,rs&m?/m
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Glz yFj
% with delta(m,0) the Kronecker delta, is chosen so that the integral ^Ob#B!=
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, a04I.5!
% and theta=0 to theta=2*pi) is unity. For the non-normalized 8Xo`S<8VS
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. .)eJL
% 6x6xv:\
% The Zernike functions are an orthogonal basis on the unit circle. ]m ED3#
% They are used in disciplines such as astronomy, optics, and 52RFB!Z[
% optometry to describe functions on a circular domain. =aL=SC+
% DM*GvBdR
% The following table lists the first 15 Zernike functions. kTCWyc
% C3m](%?
% n m Zernike function Normalization kaKV{;UM
% -------------------------------------------------- \W^+aNbv=8
% 0 0 1 1 d5b \kR r
% 1 1 r * cos(theta) 2 (YOp
% 1 -1 r * sin(theta) 2 jg,oGtRz
% 2 -2 r^2 * cos(2*theta) sqrt(6) ,7wxVR%Ys
% 2 0 (2*r^2 - 1) sqrt(3) $ U~3$*R
% 2 2 r^2 * sin(2*theta) sqrt(6) O(P
,!
% 3 -3 r^3 * cos(3*theta) sqrt(8) ^N{Lau
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) gWqO5C~h
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) x+mfQcSD&
% 3 3 r^3 * sin(3*theta) sqrt(8) ZD)pdNX
% 4 -4 r^4 * cos(4*theta) sqrt(10) oM ')NIW@
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) |G!P G6%1
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) {{3n">s}:
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) rXortK#\%
% 4 4 r^4 * sin(4*theta) sqrt(10) 83^|a5
% -------------------------------------------------- muD7+rn?&
% K5oVB,z)
% Example 1: dcK7Dd->
% GpW5)a
% % Display the Zernike function Z(n=5,m=1) Obd};&6Q
% x = -1:0.01:1; U}r^M(
s!
% [X,Y] = meshgrid(x,x); AX
{~A:B
% [theta,r] = cart2pol(X,Y); uTSTBI4t
% idx = r<=1; C>1fL6ct
% z = nan(size(X)); @A-*XJNS":
% z(idx) = zernfun(5,1,r(idx),theta(idx)); d;Uzl1;
% figure =Wb!j18]
% pcolor(x,x,z), shading interp LTSoo.dE
% axis square, colorbar
]+ \]2`?
% title('Zernike function Z_5^1(r,\theta)') .:<-E%
% <Z8I#IPl
% Example 2: ;k<n}shD
% 9`3%o9V9Y
% % Display the first 10 Zernike functions Cfz020u`g
% x = -1:0.01:1; 319 &:
% [X,Y] = meshgrid(x,x); K1vm
[Ne
% [theta,r] = cart2pol(X,Y); d=q&UCC
% idx = r<=1; <