下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, Y3Oz'%B
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, d
~`V7B2Y
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? </[: 9Cl
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? hH>``gK
HC*?DJ,
C&<~f#lB
)d`mvZBn1
!<<AzLVL
function z = zernfun(n,m,r,theta,nflag) #_JYh?
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. r.yK,
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N @Jn!0Y1_3
% and angular frequency M, evaluated at positions (R,THETA) on the F #`=oM$5
% unit circle. N is a vector of positive integers (including 0), and <RXw M6G2
% M is a vector with the same number of elements as N. Each element &7>zURv
% k of M must be a positive integer, with possible values M(k) = -N(k) 91Z'
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, [k<1`z3
% and THETA is a vector of angles. R and THETA must have the same 2C=Q8ayvX
% length. The output Z is a matrix with one column for every (N,M) 8sOQ9
% pair, and one row for every (R,THETA) pair. *O~e
T
% =9wy/c$
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 6'vbT~S!
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), |~0UM$OB^3
% with delta(m,0) the Kronecker delta, is chosen so that the integral F3Maqr y
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, j;0vAf
% and theta=0 to theta=2*pi) is unity. For the non-normalized EGVM)ur
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. A8r^)QJP{
% H t(n%;<
% The Zernike functions are an orthogonal basis on the unit circle. 3Q^fVn$tk
% They are used in disciplines such as astronomy, optics, and GVGlVAo|@
% optometry to describe functions on a circular domain. N2C7[z+l`
% ino:N5&;;
% The following table lists the first 15 Zernike functions. QzvHm1,@
% 8\.b4FNJ
% n m Zernike function Normalization S\i@s_
% -------------------------------------------------- soRv1) el
% 0 0 1 1 \ 0W!4D
% 1 1 r * cos(theta) 2 Smw QET<H
% 1 -1 r * sin(theta) 2 > L2HET
% 2 -2 r^2 * cos(2*theta) sqrt(6) Q\ppfc{,
% 2 0 (2*r^2 - 1) sqrt(3) /] ^#b
% 2 2 r^2 * sin(2*theta) sqrt(6) L{-LX=G^
% 3 -3 r^3 * cos(3*theta) sqrt(8) saf&dd
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) KLW n?`
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) PNs~[
% 3 3 r^3 * sin(3*theta) sqrt(8) W-Hoyn>?2
% 4 -4 r^4 * cos(4*theta) sqrt(10) j=RRfFg)
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) NoE*/!Sr
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) kYzKU2T\W
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) :rMM4
% 4 4 r^4 * sin(4*theta) sqrt(10) FzQTDu9
% -------------------------------------------------- W,5Hx1z R
% 8,P-
7^
% Example 1: l7H
qo)
% b?X.U}62_
% % Display the Zernike function Z(n=5,m=1) HBS\<}
% x = -1:0.01:1; }@ Z56
% [X,Y] = meshgrid(x,x); t_^X$pL
% [theta,r] = cart2pol(X,Y); aT!'}GjL
% idx = r<=1; OJ|r6
% z = nan(size(X)); 1RcSTg
% z(idx) = zernfun(5,1,r(idx),theta(idx)); H %JaZ?(
% figure ^&@w$
% pcolor(x,x,z), shading interp ?'86d_8
% axis square, colorbar K_)eWf0a
% title('Zernike function Z_5^1(r,\theta)') Q/uwQo/
% e}/Lk5q!
% Example 2: TxjYrzC
% a7zcIwk
'{
% % Display the first 10 Zernike functions )c n+1R
% x = -1:0.01:1; 7w,FX.=;cv
% [X,Y] = meshgrid(x,x); 3s\.cG?`r
% [theta,r] = cart2pol(X,Y); 9{k97D/
% idx = r<=1; ]^':Bmq
% z = nan(size(X)); * _a@z1
% n = [0 1 1 2 2 2 3 3 3 3]; N{
Z
H
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; $vC1 K5sLk
% Nplot = [4 10 12 16 18 20 22 24 26 28]; wO ?+Nh
% y = zernfun(n,m,r(idx),theta(idx)); _vSn`
% figure('Units','normalized') k.("3R6v:
% for k = 1:10 \%PaceH
% z(idx) = y(:,k); NI#X@
% subplot(4,7,Nplot(k)) p&+;w
% pcolor(x,x,z), shading interp }bY;q-
% set(gca,'XTick',[],'YTick',[]) pyLRgD0
g
% axis square (py]LBZ
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) &%})wZ+Dj
% end mxb(<9O
% H
0+dV3
% See also ZERNPOL, ZERNFUN2. $o$
maA0
j83p)ido
=mA: ctu~v
% Paul Fricker 11/13/2006 z<H~ItX,n
)*4fzo
/}Jj
*K> l*l(f]
a=M\MZK>
% Check and prepare the inputs: 'F>'(XWWQ
% ----------------------------- XGP6L 0j
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) q _-7i
error('zernfun:NMvectors','N and M must be vectors.') _g1b{$
end TXe$<4"
3nZo{p:E
J7r|atSk
if length(n)~=length(m) !9Aaj<yxm
error('zernfun:NMlength','N and M must be the same length.') ^Z~;4il_F
end 9Xx's%U
!\&