切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8941阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, 'goKYl#1Q  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, N3$1f$`  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? \me5"ZU  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? 7:B/ ?E  
    )W=O~g  
    OPN\{<`*d  
    M|c_P)7ym  
    A6[FH\f  
    function z = zernfun(n,m,r,theta,nflag) pO *[~yq5  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. a X1b(h2  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N MWme3u)D  
    %   and angular frequency M, evaluated at positions (R,THETA) on the WowT!0$  
    %   unit circle.  N is a vector of positive integers (including 0), and #czTX%+9(e  
    %   M is a vector with the same number of elements as N.  Each element D\G.p |9=  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) _<RTes  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, t Aq0Z)  
    %   and THETA is a vector of angles.  R and THETA must have the same j4,y+ 9U  
    %   length.  The output Z is a matrix with one column for every (N,M) 0g30nr)  
    %   pair, and one row for every (R,THETA) pair. : %& E58  
    % qkKl;Z?Y:  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike /-v ;  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi),  g*a+$'  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral -$"$r ~ad  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, z'l HL  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized wH8J?j"5>  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. c#TY3Z|  
    % uGz)Vz&3  
    %   The Zernike functions are an orthogonal basis on the unit circle. )Zr\W3yWX  
    %   They are used in disciplines such as astronomy, optics, and I#xdksY  
    %   optometry to describe functions on a circular domain. !`%j#bv  
    % Y_Fn)(  
    %   The following table lists the first 15 Zernike functions. MO$y st?fK  
    % z=KDkpV  
    %       n    m    Zernike function           Normalization #I?Z,;DI=  
    %       -------------------------------------------------- .mfLHN%:  
    %       0    0    1                                 1 27 XM&ZrZ  
    %       1    1    r * cos(theta)                    2 fD@d.8nXd  
    %       1   -1    r * sin(theta)                    2 K@*+;6y@  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 8!|vp7/  
    %       2    0    (2*r^2 - 1)                    sqrt(3) IQU1 JVk Z  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) .O"a:^i  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) r'Wf4p^Xd  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) ke8g tbm  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ewd eC  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) kr+p&|.  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) Dx1(}D  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Awa| (]  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) lS9S7`  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) .iy>N/u  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) \_O#M   
    %       -------------------------------------------------- tkZUjQIX  
    % D&F{0  
    %   Example 1: R/x3+_.f  
    % Xgd-^  
    %       % Display the Zernike function Z(n=5,m=1) }?,YE5~  
    %       x = -1:0.01:1; wr"0+J7  
    %       [X,Y] = meshgrid(x,x); @Pk<3.S0  
    %       [theta,r] = cart2pol(X,Y); :se$<d%  
    %       idx = r<=1; m6[}KkW  
    %       z = nan(size(X)); Ic4#Tk20i  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); />mK.FT  
    %       figure f~wON>$K  
    %       pcolor(x,x,z), shading interp X PyDZk/m  
    %       axis square, colorbar mP\V.^  
    %       title('Zernike function Z_5^1(r,\theta)') by'KJxl[  
    % J@:Q(  
    %   Example 2: pk9Ics;y  
    % Q&.uL}R  
    %       % Display the first 10 Zernike functions g>h/|b w4  
    %       x = -1:0.01:1; &*>.u8:r  
    %       [X,Y] = meshgrid(x,x); BL 1KM2]  
    %       [theta,r] = cart2pol(X,Y); *Z"`g %,;  
    %       idx = r<=1; FA*$ dwp  
    %       z = nan(size(X)); #dae^UjM  
    %       n = [0  1  1  2  2  2  3  3  3  3]; #?w07/~L  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 9no<;1+j,  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; .fJ8  
    %       y = zernfun(n,m,r(idx),theta(idx)); zQulPU  
    %       figure('Units','normalized') f2x!cL|Kx?  
    %       for k = 1:10 3bWGWI  
    %           z(idx) = y(:,k); OUUV8K  
    %           subplot(4,7,Nplot(k)) J{b#X"i  
    %           pcolor(x,x,z), shading interp PolJo?HZ  
    %           set(gca,'XTick',[],'YTick',[]) W"Y)a|rG%  
    %           axis square IWu=z!mO  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 53{\H&q  
    %       end N\*oL*[j  
    % I`{*QU  
    %   See also ZERNPOL, ZERNFUN2. :41Y  
    w@^J.7h^  
    +]cf/_8+s  
    %   Paul Fricker 11/13/2006 \ji\r]k  
    pFS@yHs  
    7*uN[g#p  
    ) n O ^Ay  
    ;Va(l$zD  
    % Check and prepare the inputs: pFY*Y>6ar  
    % ----------------------------- ]0*aE  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) C zJ-tEO  
        error('zernfun:NMvectors','N and M must be vectors.') 4,LS08&gh  
    end _jG|kjFTc  
    AB/${RGf+  
    AuQ|CXG-\  
    if length(n)~=length(m) -c&=3O!  
        error('zernfun:NMlength','N and M must be the same length.') %TQ4 ZFD3  
    end [@lK[7 u  
    ]]:K l  
    ij0I!ilG4  
    n = n(:); v_5qE  
    m = m(:); sPi  
    if any(mod(n-m,2)) UUDUd a  
        error('zernfun:NMmultiplesof2', ... +8zACs{p  
              'All N and M must differ by multiples of 2 (including 0).') P}8hK   
    end >hNSEWMY`  
    .)[E`a  
    UCcr>  
    if any(m>n) c qCNk  
        error('zernfun:MlessthanN', ... !6=s{V&r1  
              'Each M must be less than or equal to its corresponding N.') s 1M-(d Q  
    end "L]v:lg3  
    !6-t_S  
    ;GM`=M4  
    if any( r>1 | r<0 ) E~}H,*)  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') Y9X,2L7V  
    end n~6$CQ5dF(  
    DGGySO6=$e  
    2x<BU3  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) XA#qBxp/h  
        error('zernfun:RTHvector','R and THETA must be vectors.') Wd7*7']  
    end  Culv/  
    Z~Q5<A9Jz  
    k_}$d{X  
    r = r(:); &6CDIxH{  
    theta = theta(:); acS~%^"<_  
    length_r = length(r); ?MFC(Wsh  
    if length_r~=length(theta) #d %v=.1  
        error('zernfun:RTHlength', ... B bmw[Qf\  
              'The number of R- and THETA-values must be equal.') &'12,'8  
    end F'[Y.tA ,#  
    9ad)=3A&L  
    T%%EWa<a  
    % Check normalization: EwzcB\m  
    % -------------------- i}8OaX3x  
    if nargin==5 && ischar(nflag) >oq\`E  
        isnorm = strcmpi(nflag,'norm'); ]zj#X\  
        if ~isnorm n>u_>2Ikkj  
            error('zernfun:normalization','Unrecognized normalization flag.') ltNI+G  
        end )8^E{w^D}  
    else bJMsB|r  
        isnorm = false; HR?T  
    end Z#u{th  
    Ec<33i]h*p  
    vGsAM* vw6  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | t:UpP  
    % Compute the Zernike Polynomials l\L71|3"g  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Caj H;K\  
    [@qjy*5p  
    0Md.3kY  
    % Determine the required powers of r: u^SInanw  
    % ----------------------------------- [gUD +  
    m_abs = abs(m); Sm {Sq  
    rpowers = []; DC).p'0VL  
    for j = 1:length(n) O\Y*s  
        rpowers = [rpowers m_abs(j):2:n(j)]; <[ dt2)%L>  
    end '['%b  
    rpowers = unique(rpowers); ih)\P0wed  
    jl}9R]Y_2  
    c86?-u')  
    % Pre-compute the values of r raised to the required powers, 1:<n(?5JI  
    % and compile them in a matrix: d1.@v;  
    % ----------------------------- 56YqYu.  
    if rpowers(1)==0 j9c:SP5  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Y*9vR~#H  
        rpowern = cat(2,rpowern{:}); nt_Cb*K<  
        rpowern = [ones(length_r,1) rpowern]; sQ\HIU%]  
    else =W')jKe0  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); }#.OJub  
        rpowern = cat(2,rpowern{:}); KU "+i8"  
    end XC<'m{^(m  
    ;C=d( pY  
    8)iI=,T*  
    % Compute the values of the polynomials: ._p2"<  
    % -------------------------------------- >P(.yQ8&kL  
    y = zeros(length_r,length(n)); s w >B  
    for j = 1:length(n) LR.]&(kyd  
        s = 0:(n(j)-m_abs(j))/2; jXmY8||w  
        pows = n(j):-2:m_abs(j); 8[@Y`j8  
        for k = length(s):-1:1 OSuQ7V  
            p = (1-2*mod(s(k),2))* ... g3'dkS!  
                       prod(2:(n(j)-s(k)))/              ... tol-PJS}  
                       prod(2:s(k))/                     ... CEkf0%YJ  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Q& d;UVp  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); }t(5n$go6  
            idx = (pows(k)==rpowers); !b0A %1W;  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 8@;R2]Q  
        end |Z>}#R!,P  
         WllQM,h  
        if isnorm |2TH[J_a  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); "}0QxogYE  
        end cfBl HeYE  
    end 4+>~Ui_#  
    % END: Compute the Zernike Polynomials 6&i])iH  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% zO9WqP_`iR  
    TG?>;It&  
    $pPc}M[h  
    % Compute the Zernike functions: iX2exJto  
    % ------------------------------ e GAto  
    idx_pos = m>0; ?Nt m5(R  
    idx_neg = m<0; DV?c%z`YO  
    lM#/F\  
    w"kBAi&  
    z = y; Zl# ';~9W  
    if any(idx_pos) `|nJAW3  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); g]MgT-C|  
    end j/wQ2"@a  
    if any(idx_neg) ou)0tX3j  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); FS)C<T]t  
    end C.u) 2[(  
    UaXIrBc  
    ,{ 0&NX  
    % EOF zernfun R-iWbLD  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  A|0\ct  
    nTXM/  
    DDE还是手动输入的呢? (qy82F-|2  
    6[C>"s}Ol  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究