下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, s@fTj$h
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 0q&'(-{s1
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? hTwA%
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛?
^ :F.
l&}y/t4%
R6=$u{D
}W
^: cp
Wq^qpN)5Y
function z = zernfun(n,m,r,theta,nflag) pC_O:f>vJ
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 'TAUE{{
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ?-Vjha@BO
% and angular frequency M, evaluated at positions (R,THETA) on the "]-Xmdk09
% unit circle. N is a vector of positive integers (including 0), and ~@kU3ZGJZ
% M is a vector with the same number of elements as N. Each element ~xoF6CF
% k of M must be a positive integer, with possible values M(k) = -N(k) wfjnA~1h
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, N:9>dpP}O
% and THETA is a vector of angles. R and THETA must have the same #0Tq=:AE>
% length. The output Z is a matrix with one column for every (N,M) ZNx$r]4nF
% pair, and one row for every (R,THETA) pair. ]~\sA
% 57 #6yXQ
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike F-*2LMe
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), WQHd[2Z#e
% with delta(m,0) the Kronecker delta, is chosen so that the integral Vrvic4
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, vp.ZK[/`
% and theta=0 to theta=2*pi) is unity. For the non-normalized wM|"I^[
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. /6_|]ijc
% 2W$cFC
% The Zernike functions are an orthogonal basis on the unit circle. Ka`=WeJ|
% They are used in disciplines such as astronomy, optics, and *@TZ+{t
% optometry to describe functions on a circular domain. Vi$-Bw$@
% v
36%Pj`
% The following table lists the first 15 Zernike functions. m RZ:ie
% }Nb8}(6
% n m Zernike function Normalization n>'Kp T9|
% -------------------------------------------------- @}:uu$OH
% 0 0 1 1 F0690v0mB[
% 1 1 r * cos(theta) 2 `g,8-
% 1 -1 r * sin(theta) 2 6eokCc"o
% 2 -2 r^2 * cos(2*theta) sqrt(6) uWrQ&}@
% 2 0 (2*r^2 - 1) sqrt(3) )7:J[0ZiQ
% 2 2 r^2 * sin(2*theta) sqrt(6) \);4F=h}f
% 3 -3 r^3 * cos(3*theta) sqrt(8) x=#VX\5k:
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) A7c/N=Cp^
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) XQ*eP?OS{
% 3 3 r^3 * sin(3*theta) sqrt(8) #A8@CA^d
% 4 -4 r^4 * cos(4*theta) sqrt(10) F9*g=
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 3T&6opaF
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) Xo*DvD
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) PpsIhMq@
% 4 4 r^4 * sin(4*theta) sqrt(10) qn,O40/]
% -------------------------------------------------- MJ=)v]a
% tBct
% Example 1: !*`-iQo&
% 7G)H.L)$m"
% % Display the Zernike function Z(n=5,m=1) AL5Vu$V~n}
% x = -1:0.01:1;
RDtU43
% [X,Y] = meshgrid(x,x); |A8/FU2{
% [theta,r] = cart2pol(X,Y); lHV[Ln`\x
% idx = r<=1; 21(p|`X
% z = nan(size(X)); 1[]&(Pa
% z(idx) = zernfun(5,1,r(idx),theta(idx)); #b7$TV
% figure +,2Jzl'-
% pcolor(x,x,z), shading interp +S))3 5N[
% axis square, colorbar 0KD]j8^
% title('Zernike function Z_5^1(r,\theta)') rcGb[=B f
% .]
`f,^v<c
% Example 2: BIj=!!
% }(<%`G6N
% % Display the first 10 Zernike functions 1EyL#;k
% x = -1:0.01:1; !p1qJ [
% [X,Y] = meshgrid(x,x); M4WiT<|]R
% [theta,r] = cart2pol(X,Y); ,hVvve,j}
% idx = r<=1; }za[E>z
% z = nan(size(X)); `
\A(9u*
% n = [0 1 1 2 2 2 3 3 3 3]; srV.)Ur
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; mYc.x
% Nplot = [4 10 12 16 18 20 22 24 26 28]; Gy[O)PEEh
% y = zernfun(n,m,r(idx),theta(idx)); oBUxKisW
% figure('Units','normalized') 2r%lA\,h$
% for k = 1:10 z]3 `*/B
% z(idx) = y(:,k); [TCP-bU
% subplot(4,7,Nplot(k)) Od?qz1
% pcolor(x,x,z), shading interp =YG _z^'
% set(gca,'XTick',[],'YTick',[]) 45&8weXO:'
% axis square M _LXg%
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) >q7BVF6V|
% end *6U&Qy-M
% {s3z"OV
% See also ZERNPOL, ZERNFUN2. *UW=Mdt
Z@gnsPN^r
Bb{!Yh].:A
% Paul Fricker 11/13/2006 L^^4=ao0
-VZRujl
*MI*Rz?4
Tg3!R q55
""svDfy$
% Check and prepare the inputs: M/z}p
% ----------------------------- 3gQPKBpc
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 2 3KyCV5
error('zernfun:NMvectors','N and M must be vectors.') umLb+GbI4
end xug)aE
#Dfo#]k(
gw _$
if length(n)~=length(m) Z X~
_g@
error('zernfun:NMlength','N and M must be the same length.') 0Aa`p3.)
end H.G!A6bd
wY"o`oZ
IaFr&
n = n(:); h8jD}9^
m = m(:); wNE$6
if any(mod(n-m,2)) A-CUv[pM
error('zernfun:NMmultiplesof2', ... z<]bv7V
'All N and M must differ by multiples of 2 (including 0).') 9SMiJad<
end mKq" 34F
4e9q`~sO
?*r!{3T ,u
if any(m>n) ;3C:%!CdA]
error('zernfun:MlessthanN', ... X5g[ :QKP7
'Each M must be less than or equal to its corresponding N.')
z&4~x!-_
end W4YE~
(Y(E%
dRvin[R8
if any( r>1 | r<0 ) r+<{S\ Q
error('zernfun:Rlessthan1','All R must be between 0 and 1.') rsa&Oo
D>
end #t!}K_
.]Mn^2#j
xn}BB}s{t
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ep(g`e
error('zernfun:RTHvector','R and THETA must be vectors.') VF0dE
end !NKmx=I]
pJ,@Y>
wHsB,2H
r = r(:); !PUp>(
theta = theta(:); rn.\tDeA
length_r = length(r); p
SN~DvR
if length_r~=length(theta) jJwkuh8R
error('zernfun:RTHlength', ... }1+%_|Y-E
'The number of R- and THETA-values must be equal.') ?TEK=mD#u
end @kD8^,( oH
9>,Qgp,w
'~-IV0v9
% Check normalization: %c^ m\E
% -------------------- xk~Nmb}
if nargin==5 && ischar(nflag) n<V1|X
isnorm = strcmpi(nflag,'norm'); FquFRx
if ~isnorm 6&2LWaWMo$
error('zernfun:normalization','Unrecognized normalization flag.') "PpjoM
~
end bdc\
else 8V4V3^_xs
isnorm = false; VGH/X.NJ
end <xS=#
-.vDF?@G
F}ukZ
DB
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% B!aK
% Compute the Zernike Polynomials &:?e &
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 'zgvQMu
m[2'd
I^Qx/uTKw
% Determine the required powers of r: heD,&OX
% ----------------------------------- 0|)19LR
m_abs = abs(m); DOm-)zl{|x
rpowers = []; r!/0 j)
for j = 1:length(n) >mIg@knE
rpowers = [rpowers m_abs(j):2:n(j)]; !eD+GDgE]
end Nh)[rx
rpowers = unique(rpowers); w;`m- 9<Y
O25mkX
! gp}U#Yv
% Pre-compute the values of r raised to the required powers, F>Y9o-o2
% and compile them in a matrix: J^H=i)A
% ----------------------------- kC^.4n
om
if rpowers(1)==0 QXk"?yT`E
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); .`L gYW
rpowern = cat(2,rpowern{:}); C*wdtEGq
rpowern = [ones(length_r,1) rpowern]; U|fTb0fB
else Ge}$rLu]0
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); .1ddv4Hk
rpowern = cat(2,rpowern{:}); B/YcSEY;
end W L~`u
DNth4z
dm^H5D/A
% Compute the values of the polynomials: ,hE/II`-d'
% -------------------------------------- m<fA|9 F#
y = zeros(length_r,length(n)); <NQyP{p
for j = 1:length(n) ?f2G?Y
s = 0:(n(j)-m_abs(j))/2; J@bW^>g*6u
pows = n(j):-2:m_abs(j); X!0kK8v
for k = length(s):-1:1 R#6H'TVE
p = (1-2*mod(s(k),2))* ... _.f@Y`4d
prod(2:(n(j)-s(k)))/ ... 41;)-(1
prod(2:s(k))/ ... |[w^eg
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 0^\/ERK
prod(2:((n(j)+m_abs(j))/2-s(k))); 1KJZWZy
idx = (pows(k)==rpowers); dF2@q@\.+
y(:,j) = y(:,j) + p*rpowern(:,idx); Y.
TYc;
end G)+Ff5e0L[
dIK{MA
if isnorm H'Iq~Ft1
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); $HRed|*.C
end |9]PtgQv7
end MuSaK %
% END: Compute the Zernike Polynomials <$C<Ba?;?
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% OWV/kz5'H
Qk7J[4
Q eK{MF
% Compute the Zernike functions: h3t$>vs2F"
% ------------------------------ B "n`|;r5
idx_pos = m>0; &l!$Sw-u;
idx_neg = m<0; t,?,F4j
,|x\MHd?t_
#J~Xv:LgD
z = y; QE6El'S
if any(idx_pos) ,Qo}J@e(
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); C"9"{
end {jG.=}/Dk
if any(idx_neg) ruHrv"29
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); iwkJ~(5z
end g =x"cs/[
SEU\}Ni{
Xv*}1PZH
% EOF zernfun w7ZG oh(