切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8998阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, _Cnl|'  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, K#_x.: <J  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? U\~9YX8  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? PTZ/j g@71  
    wcW8"J'AH  
    <A+n[h  
    ;2\+O"}4H  
    BK;Gh0mp  
    function z = zernfun(n,m,r,theta,nflag) _ 0g\g~[  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. >A_:q yGk  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N _G0_<WH6  
    %   and angular frequency M, evaluated at positions (R,THETA) on the y Nc"E  
    %   unit circle.  N is a vector of positive integers (including 0), and IVdM}"+  
    %   M is a vector with the same number of elements as N.  Each element JDp{d c  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) sfKu7puc  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, "`q:  
    %   and THETA is a vector of angles.  R and THETA must have the same mMSQW6~j  
    %   length.  The output Z is a matrix with one column for every (N,M) vv0+F6 @  
    %   pair, and one row for every (R,THETA) pair. .0]\a~x  
    % H.=S08c3kA  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike |0N6]%r  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 8urX]#  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral oQ:.pq{T  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ]qpLaBD  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized lNRGlTD%  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 2*)2c[/0F  
    % Svqj@@_f  
    %   The Zernike functions are an orthogonal basis on the unit circle. qr<RMs  
    %   They are used in disciplines such as astronomy, optics, and 0+dc  
    %   optometry to describe functions on a circular domain. %pG^8Q()   
    % 0s'h2={iI  
    %   The following table lists the first 15 Zernike functions. `G0GWh)`x  
    % [Rxbb+,U  
    %       n    m    Zernike function           Normalization k3yA*Ec  
    %       -------------------------------------------------- 1O,:fTG<  
    %       0    0    1                                 1 cN 3 !wE  
    %       1    1    r * cos(theta)                    2 K6d2}!5  
    %       1   -1    r * sin(theta)                    2 W{W8\  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) dYxX%"J  
    %       2    0    (2*r^2 - 1)                    sqrt(3) z&KrG  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) }N,$4h9Dj  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ` G- V %  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) rHaj~s 4  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) XDQ5qfE|  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) RzOcz=A}  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) \@!"7._=  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) YM r2|VEU[  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) euiP<[|h=  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) KBOp}MEz  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) *YO^+]nmY  
    %       -------------------------------------------------- fK{m7?V  
    % $H8B%rT]  
    %   Example 1: Mj<T+Ohz  
    % GTuxMg`  
    %       % Display the Zernike function Z(n=5,m=1) PK).)5sW  
    %       x = -1:0.01:1; z;Jz^m-  
    %       [X,Y] = meshgrid(x,x); G$mAyK:  
    %       [theta,r] = cart2pol(X,Y); W\Df:P {<  
    %       idx = r<=1; L.?QZN%cN  
    %       z = nan(size(X)); ~J:]cy)Q  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); cNl NJ  
    %       figure Us2IeR  
    %       pcolor(x,x,z), shading interp %EH{p@nM&-  
    %       axis square, colorbar vdIert?p  
    %       title('Zernike function Z_5^1(r,\theta)') #1De#uZ  
    % Q].p/-[(  
    %   Example 2: V jLv{f<p  
    % bY UG4+rD  
    %       % Display the first 10 Zernike functions o]M1$)>b +  
    %       x = -1:0.01:1; c> 0R_  
    %       [X,Y] = meshgrid(x,x); ,n3e8qd  
    %       [theta,r] = cart2pol(X,Y); x/dyb.  
    %       idx = r<=1; ^).  
    %       z = nan(size(X)); Qg]+&8!*  
    %       n = [0  1  1  2  2  2  3  3  3  3]; p|+TgOYOc  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 6UKZ0~R  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; \,S4-~(:!  
    %       y = zernfun(n,m,r(idx),theta(idx)); ]{| wU.  
    %       figure('Units','normalized') f]48-X,^6  
    %       for k = 1:10 `?G&w.Vs  
    %           z(idx) = y(:,k); BUS4 T#D  
    %           subplot(4,7,Nplot(k)) U#Wg"W{  
    %           pcolor(x,x,z), shading interp 46##(4RF  
    %           set(gca,'XTick',[],'YTick',[]) FrC)2wX  
    %           axis square 5=&ME(fmV  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) N 9W,p 2  
    %       end i__f%j`!W  
    % t0_4jV t  
    %   See also ZERNPOL, ZERNFUN2. Ye S5%?Fk  
    7 !dj&?  
    R} X"di  
    %   Paul Fricker 11/13/2006 G=/^]E  
    )G),iy  
    0^vz /y1c  
    $5:I~ -mx  
    :s*t\09V7  
    % Check and prepare the inputs: !bs5w_@  
    % ----------------------------- 8]mRX~  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) hof>:Rk  
        error('zernfun:NMvectors','N and M must be vectors.') 5PsjGvm.%  
    end $0R5 ]]db)  
    {)(Mkm +d  
     SQ&}18Z~  
    if length(n)~=length(m) :T{VCw:*  
        error('zernfun:NMlength','N and M must be the same length.') I? ="Er[g}  
    end NvC @  
    sJ{r+wY  
    y+p"5s"  
    n = n(:); 0t[ 1#!=k  
    m = m(:); } m"':f  
    if any(mod(n-m,2)) CG;+Z-"X  
        error('zernfun:NMmultiplesof2', ... .W\JvPTC  
              'All N and M must differ by multiples of 2 (including 0).') 10Q!-K),p  
    end l9e=dV:pH  
    eA*We  
    +|Izjx]ZV  
    if any(m>n) Tm$8\c4V:*  
        error('zernfun:MlessthanN', ... [dFe-2u ,$  
              'Each M must be less than or equal to its corresponding N.') ]ddH>y&o  
    end Vqcw2  
    &kcmkRRG  
    'P*OzZ4>$  
    if any( r>1 | r<0 ) T% GR{mp  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') , `PYU[  
    end %}JSR y  
    1B gHkDW  
    -/ G#ls|?  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ?D|kCw69SE  
        error('zernfun:RTHvector','R and THETA must be vectors.') "!_vQ^y  
    end Kn1T2WSAg  
    T(,@]=d,DD  
    U{qwhz(  
    r = r(:); Qsw.429t  
    theta = theta(:); 4]FS jVO  
    length_r = length(r); D<:zw/IRE  
    if length_r~=length(theta) 1/,~0N9  
        error('zernfun:RTHlength', ... 1;PI%++  
              'The number of R- and THETA-values must be equal.') *2fJdY  
    end E62_k 0q  
    }u8g7Nj  
    q6b&b^r+H  
    % Check normalization: 4 L 5$=V  
    % -------------------- _Fn`G .r<  
    if nargin==5 && ischar(nflag) Z?d][zGw  
        isnorm = strcmpi(nflag,'norm'); sgnc$x"  
        if ~isnorm `4?|yp.|L  
            error('zernfun:normalization','Unrecognized normalization flag.') !x\\# 9  
        end =**Q\ Sl  
    else 'MW O3  
        isnorm = false; :Gzp (@<@e  
    end Jz*A!Li  
    _0ZU I^#  
    =Ot_P7'5gv  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% F(ZczwvR  
    % Compute the Zernike Polynomials  3bJ|L3G  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 'vYt_T  
    q: X^V$`  
    sCmN|Q  
    % Determine the required powers of r: \/C5L:|p_  
    % ----------------------------------- -r]L MQ  
    m_abs = abs(m); 7G7"Zule*j  
    rpowers = []; bR1Q77<G\  
    for j = 1:length(n) }: u-l3e  
        rpowers = [rpowers m_abs(j):2:n(j)]; Bj"fUI!dK  
    end <:&{c-f/  
    rpowers = unique(rpowers); lauq(aD_C  
    Ck>]+rl  
    ;.rY`<|  
    % Pre-compute the values of r raised to the required powers, ]>ndFE6kl  
    % and compile them in a matrix: :."6g)T  
    % ----------------------------- %mD{rG9  
    if rpowers(1)==0 5iI(A'R[7  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); "c?31$6  
        rpowern = cat(2,rpowern{:}); E$ &bl  
        rpowern = [ones(length_r,1) rpowern]; 7TU xdI  
    else /1D.Ud^  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); V#+F*w?&D  
        rpowern = cat(2,rpowern{:}); US"UkY-\  
    end \zwm:@lG  
    _y sakn  
    g$vOWSI +  
    % Compute the values of the polynomials: \rO!lvX  
    % -------------------------------------- 6#.9T;&  
    y = zeros(length_r,length(n)); ~=t9-AF-  
    for j = 1:length(n) a#x@ e?GvI  
        s = 0:(n(j)-m_abs(j))/2; Ab:ah 7!  
        pows = n(j):-2:m_abs(j); ;j[:tt\k  
        for k = length(s):-1:1 +EqL|  
            p = (1-2*mod(s(k),2))* ... gjFQDrz(  
                       prod(2:(n(j)-s(k)))/              ... JoZzX{eu"  
                       prod(2:s(k))/                     ... R=$}uDFmW  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... IS`ADDU[S  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); c/:k|x  
            idx = (pows(k)==rpowers); a;nYR5f  
            y(:,j) = y(:,j) + p*rpowern(:,idx); om=kA"&&Q  
        end q}0I`$MU  
         iel@"E 4  
        if isnorm !&`\MD>;~R  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ue4 {h  
        end +x/vZXtOK  
    end hN\sC9a1  
    % END: Compute the Zernike Polynomials Twr,O;*u=  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% yF_/.mI  
    -j:yEZ4Oy  
    )K`tnb.Pf  
    % Compute the Zernike functions: }_mMQg2>=  
    % ------------------------------ 6+"gk(  
    idx_pos = m>0; sIl&\g<b  
    idx_neg = m<0; ]{#Xcqx  
    ipt]qJFd  
     -)KNsW  
    z = y; B[ D s?:  
    if any(idx_pos) Snp(&TD<<  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); =UWW(^M#[:  
    end PlT_]p  
    if any(idx_neg) vQy<%[QO  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); eb6y-TwY  
    end Uyeo0B"  
    G `B=:s]  
    L|1~'Fz#w  
    % EOF zernfun <]|!quY<*  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  n S Vr,wU  
    G1 I<B  
    DDE还是手动输入的呢? 8\PI1U  
    tCu.Fc@  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究