切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9234阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, {h7 vJ^  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, \X:e9~  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? p35=CX`T.  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛?  7;fC%Fq  
    G XVx/) H  
    78uImC*o  
    4SJ aAeIZ  
    QDg5B6>$  
    function z = zernfun(n,m,r,theta,nflag) P3&s<mh  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 6M*z`B{hV  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 6iyl8uL0J  
    %   and angular frequency M, evaluated at positions (R,THETA) on the i D IY|  
    %   unit circle.  N is a vector of positive integers (including 0), and 1@}F8&EZ  
    %   M is a vector with the same number of elements as N.  Each element M?eP1v:<+G  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) v'@gUgC  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, T+}|$/Tv  
    %   and THETA is a vector of angles.  R and THETA must have the same mvEhP{w  
    %   length.  The output Z is a matrix with one column for every (N,M) WMf / S"=  
    %   pair, and one row for every (R,THETA) pair. S} m=|3%y  
    % tb+gCs'D  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike @kFZN6  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), #:gd9os :  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral DWt|lO  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ltNC ti{Q  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized JX=rL6Y@:;  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. f=F:Af!  
    % .n]"vpWm[  
    %   The Zernike functions are an orthogonal basis on the unit circle. *OG<+#*\_?  
    %   They are used in disciplines such as astronomy, optics, and V/ G1C^'/  
    %   optometry to describe functions on a circular domain. ?%  24M\  
    % MeEa|.  
    %   The following table lists the first 15 Zernike functions. i< ^X z  
    % u?Ffqt9'  
    %       n    m    Zernike function           Normalization 6VGY4j}:(  
    %       -------------------------------------------------- cAW}a  
    %       0    0    1                                 1 h+Co:pr  
    %       1    1    r * cos(theta)                    2 2?t@<M]  
    %       1   -1    r * sin(theta)                    2 oe|#!SM(  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) >&PM'k  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 2LtDS?)@  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) _ nMd  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) \)~d,M}kK  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) PXMd=,}  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) =0g!Q   
    %       3    3    r^3 * sin(3*theta)             sqrt(8) |2j,  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) p3=Py7iz  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) gXdMGO>  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) Tz @=N]D  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) " ]S  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) @|b-X? `  
    %       -------------------------------------------------- W@T \i2r$z  
    % Jl~ *@0(  
    %   Example 1: 5qz,FKx5  
    % xnZnbgO+  
    %       % Display the Zernike function Z(n=5,m=1) *:n~j9V-  
    %       x = -1:0.01:1; [Yt{h9  
    %       [X,Y] = meshgrid(x,x); >O-KJZ'GV  
    %       [theta,r] = cart2pol(X,Y); u<edO+  
    %       idx = r<=1; V"YeF:I  
    %       z = nan(size(X)); [:y:_ECs6  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); #f2Ot<#-  
    %       figure !O_G%+>5W  
    %       pcolor(x,x,z), shading interp Ul}RT xJ  
    %       axis square, colorbar }=-0 DSLVj  
    %       title('Zernike function Z_5^1(r,\theta)') o}rG:rhIh  
    % ybBmg'198  
    %   Example 2: |.N[NY  
    % XGl2rX&  
    %       % Display the first 10 Zernike functions (P|[< Sd  
    %       x = -1:0.01:1; ?})A-$f ~  
    %       [X,Y] = meshgrid(x,x); r2=@1=?8  
    %       [theta,r] = cart2pol(X,Y); PQ&*(G  
    %       idx = r<=1; I&1Lm)W&  
    %       z = nan(size(X)); ix!xLm9\  
    %       n = [0  1  1  2  2  2  3  3  3  3]; Hl$W+e|tj  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; <V&0GAZ  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; AP&//b,^M  
    %       y = zernfun(n,m,r(idx),theta(idx)); #t ;`  
    %       figure('Units','normalized') d0(zB5'}  
    %       for k = 1:10 E5ce=$o  
    %           z(idx) = y(:,k); uM2@&)u  
    %           subplot(4,7,Nplot(k)) k =! Q  
    %           pcolor(x,x,z), shading interp 'ITq\1z  
    %           set(gca,'XTick',[],'YTick',[]) $mQ0w~:@  
    %           axis square =]7o+L4  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) t8^1wA@@V  
    %       end >d + }$dB  
    % w(oK   
    %   See also ZERNPOL, ZERNFUN2. 5XKTb  
    eAy,T<#  
    &QHJ%c  
    %   Paul Fricker 11/13/2006 ~5KcbGD~  
    'UlVc2%{  
     2v{WX  
    J,Sa7jv[  
    nfEbu4|  
    % Check and prepare the inputs: Q-<]'E#\(  
    % ----------------------------- l2 .S^S  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) T\l`Y-vu  
        error('zernfun:NMvectors','N and M must be vectors.') _uIS[%4g  
    end eEZgG=s  
    0AB a&'h  
    K\K& K~Z  
    if length(n)~=length(m) 8b/$Qp4d  
        error('zernfun:NMlength','N and M must be the same length.') @DysM~I  
    end xC`!uPk/pL  
    0 +=sBk (  
     +mocSx[  
    n = n(:); `ASDUgx Mq  
    m = m(:); ',EI[ ]+  
    if any(mod(n-m,2)) kdNo<x1o  
        error('zernfun:NMmultiplesof2', ... T[\1=h]  
              'All N and M must differ by multiples of 2 (including 0).') t13V>9to  
    end L`1 ITz  
    f?5>V   
     3 xyrWl  
    if any(m>n) 82LE9<4A  
        error('zernfun:MlessthanN', ... VF?H0}YSHb  
              'Each M must be less than or equal to its corresponding N.') b| L;*<KU  
    end $)M3fZ$#  
    C~En0G1  
    P $`1}  
    if any( r>1 | r<0 ) Q|_F P:  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') {$frR "K  
    end 2-4N)q  
    (| QJ[@?q  
    si0}b~t  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) tYjG8P#  
        error('zernfun:RTHvector','R and THETA must be vectors.') u&zY>'}zm  
    end !^arWH[od  
    Y% iqSY  
    ob7'''i  
    r = r(:); u zZ|0  
    theta = theta(:); X$kLBG_  
    length_r = length(r); a{8a[z  
    if length_r~=length(theta) Hx#YN*\.M  
        error('zernfun:RTHlength', ... -@N-i$!;J  
              'The number of R- and THETA-values must be equal.') <pX?x3-'  
    end 5%,3)H{;t  
    u]*7",R uU  
    yT^2;/Z  
    % Check normalization: un "I  
    % -------------------- ^+(5[z  
    if nargin==5 && ischar(nflag) Z ]A |"6<  
        isnorm = strcmpi(nflag,'norm'); 45yP {+/-Q  
        if ~isnorm rNN>tpZ}  
            error('zernfun:normalization','Unrecognized normalization flag.') iK}p#"si  
        end tD8fSV  
    else ifn=De3+  
        isnorm = false; Cv#aBH'N  
    end !u7KgB<=/F  
    {it.F4.  
    NpVL;6?7T  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 88?bUA3]  
    % Compute the Zernike Polynomials O,%UNjx9K  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% N#u'SGTG  
    i c{I  
    J^+w]2`S  
    % Determine the required powers of r: r5j$FwY  
    % ----------------------------------- \,;glY=M!  
    m_abs = abs(m); J jAxNviG  
    rpowers = []; 9^*RK6  
    for j = 1:length(n) 4?pb!@l  
        rpowers = [rpowers m_abs(j):2:n(j)]; 1H-Wk  
    end $yOB-  
    rpowers = unique(rpowers); &4%pPL\f  
    8^_:9&)i  
    p3P8@M  
    % Pre-compute the values of r raised to the required powers, Fyvo;1a  
    % and compile them in a matrix: D`XXR}8V  
    % ----------------------------- nlv,j&  
    if rpowers(1)==0 ;+75"=[YT  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); n@pwOHQn<|  
        rpowern = cat(2,rpowern{:}); _9BL7W $;  
        rpowern = [ones(length_r,1) rpowern]; y [McdlH m  
    else m=}h7&5p  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); EZ!! V~  
        rpowern = cat(2,rpowern{:}); k8 #8)d  
    end $:u*)&"t|  
    ykQb;ZP8jh  
    bd /A0i?C  
    % Compute the values of the polynomials: aR2N,<Cp5  
    % -------------------------------------- }8#olZ/(q  
    y = zeros(length_r,length(n)); x(c+~4:_M  
    for j = 1:length(n) (MXy\b<  
        s = 0:(n(j)-m_abs(j))/2; M7BpOmK'  
        pows = n(j):-2:m_abs(j); s_ZPo6p  
        for k = length(s):-1:1 f`4=Bl&"{  
            p = (1-2*mod(s(k),2))* ... nf pO  
                       prod(2:(n(j)-s(k)))/              ... yu_PZ"l  
                       prod(2:s(k))/                     ... HQ+{9Z8 ?5  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 7~2_'YX>:  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); % Z6Q/+#fn  
            idx = (pows(k)==rpowers); yl$Ko  
            y(:,j) = y(:,j) + p*rpowern(:,idx); bg~CV&]M  
        end X1w11Z7o  
         Q7x[08TI  
        if isnorm 1XiA  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 1e\cJ{B  
        end %Za}q]?  
    end .qE  
    % END: Compute the Zernike Polynomials :uYZ1O  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |ts0j/A]Pi  
    ltOS()[X  
    7"| Qmyb  
    % Compute the Zernike functions: =*fq5v  
    % ------------------------------ La6 9or   
    idx_pos = m>0; xR-;,=J  
    idx_neg = m<0; X !h>13fW  
    RrxbsG1HP  
    ]Q FI>  
    z = y; &/m^}x/_W  
    if any(idx_pos) j~_iv~[  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Fepsa;\sU  
    end 3^KR{N p  
    if any(idx_neg) XrUI [ryE  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); bR3Crz(9G  
    end +8<$vzB  
    .]E"w9~  
    cKYvNM  
    % EOF zernfun 8i$|j~M a  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  !M)] 1Y  
    Z;tWV%F5  
    DDE还是手动输入的呢? "1>w\21  
    Y~*aA&D  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究