切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9060阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, gBF2.{"^  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, $:{r#mM  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? jm|x=s3}h  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? b^SQCX+P  
    @P1#)  
    pS1f y]  
    6 WD(  
    7~gIOu  
    function z = zernfun(n,m,r,theta,nflag) xJ/<G$LNJ0  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. '}\#bMeObg  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Z *9Qeu-N:  
    %   and angular frequency M, evaluated at positions (R,THETA) on the "OIra2O  
    %   unit circle.  N is a vector of positive integers (including 0), and 3LxhQVx2  
    %   M is a vector with the same number of elements as N.  Each element X/=*o;":  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) yuTSzl25,/  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, M Y2=lT  
    %   and THETA is a vector of angles.  R and THETA must have the same k0%*{IVPN  
    %   length.  The output Z is a matrix with one column for every (N,M) `k^d)9  
    %   pair, and one row for every (R,THETA) pair. )# ^5$5  
    % qDMVZb-(#  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike )<fa1Gz#^  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), f!3$xu5  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 3WOm`<  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, \!+sL JP  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized sZ-A~X@g  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. [?dsS$Y3  
    % O{4G'CgN(  
    %   The Zernike functions are an orthogonal basis on the unit circle. L7\ rx w  
    %   They are used in disciplines such as astronomy, optics, and 3Pj#k|(f[0  
    %   optometry to describe functions on a circular domain. Ukf4Q\@w  
    % b7thu5  
    %   The following table lists the first 15 Zernike functions. w=dTa5  
    % I}?+>cf  
    %       n    m    Zernike function           Normalization ,'7 X|z/_>  
    %       -------------------------------------------------- \Zpg,KOT  
    %       0    0    1                                 1 B)q 5m y  
    %       1    1    r * cos(theta)                    2 z5V~m_RO  
    %       1   -1    r * sin(theta)                    2 Yqpe2II7  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 91|0{1  
    %       2    0    (2*r^2 - 1)                    sqrt(3) #@ quuiYq  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) B)5 QI  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) vz\^Aa #fv  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) hd~3I4D  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 5,i0QT"  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) &d!Q%  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) |a>W9Ym  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) )~u<u:N  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) qs9q{n-Aj  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) jcC "S qL  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) %%7~<=rk  
    %       -------------------------------------------------- _LYI#D  
    % E`M, n ,  
    %   Example 1: <k41j=d  
    % t08E 2sI  
    %       % Display the Zernike function Z(n=5,m=1) p3Ey[kURp  
    %       x = -1:0.01:1; h$[tEmD%  
    %       [X,Y] = meshgrid(x,x); aMLtZ7i>  
    %       [theta,r] = cart2pol(X,Y); vVA)x~^  
    %       idx = r<=1; /=+y[y3`  
    %       z = nan(size(X)); w &b?ze{  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 3 P)N,  
    %       figure =!?4$vW  
    %       pcolor(x,x,z), shading interp y3^>a5z!x  
    %       axis square, colorbar u{Rgk:bn  
    %       title('Zernike function Z_5^1(r,\theta)') qm!&(8NfK  
    % MBjo9P(  
    %   Example 2: :iKk"r,2P[  
    % K6..N\7  
    %       % Display the first 10 Zernike functions A9D vU)1  
    %       x = -1:0.01:1; lDK<gd  
    %       [X,Y] = meshgrid(x,x); 9i8 ~  
    %       [theta,r] = cart2pol(X,Y); *(w#*,lv  
    %       idx = r<=1; bvR0?xn q  
    %       z = nan(size(X)); Z(~v{c %<  
    %       n = [0  1  1  2  2  2  3  3  3  3]; [k<w'n*  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; q]^Q?r<g::  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; f@)GiLC'"  
    %       y = zernfun(n,m,r(idx),theta(idx)); ]:K[{3iM  
    %       figure('Units','normalized') +|iJQF  
    %       for k = 1:10 <$:Hf@tpMo  
    %           z(idx) = y(:,k); V1d{E 0lM  
    %           subplot(4,7,Nplot(k)) YXFUZ9a#e  
    %           pcolor(x,x,z), shading interp 5nQxVwY  
    %           set(gca,'XTick',[],'YTick',[]) Ok*aP+Wq  
    %           axis square u A=x~-I  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) HOY@<'  
    %       end vgyv~Px]AW  
    % :JI&ngWK  
    %   See also ZERNPOL, ZERNFUN2. MODi:jsl  
    }zE Qrfl  
    an<loL W  
    %   Paul Fricker 11/13/2006 F?3zw4Vt~  
    ~4}'R_  
    C8oAl3d+h  
    :wcv,YoSG  
    T`Jj$Lue{  
    % Check and prepare the inputs: `%5~>vPS  
    % ----------------------------- l`V^d   
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) eGEeWJ}[$  
        error('zernfun:NMvectors','N and M must be vectors.') BQ /0z^A  
    end wq6.:8Or-]  
    %s(Ri6R&  
    %1jlXa  
    if length(n)~=length(m) Q"Ur*/-U  
        error('zernfun:NMlength','N and M must be the same length.') J;mvD^`g  
    end ]y52%RAKI  
    2 yY.rs  
    G*].g['  
    n = n(:); 4w)aAXK  
    m = m(:); C3#mmiL-  
    if any(mod(n-m,2)) 1#OM~v6B  
        error('zernfun:NMmultiplesof2', ... !#' y#  
              'All N and M must differ by multiples of 2 (including 0).') )RZ:\:c  
    end :}[RDF?  
    'U %L\v,  
    +o*&JoC  
    if any(m>n) V+yyy- /  
        error('zernfun:MlessthanN', ... @x4IxGlUs  
              'Each M must be less than or equal to its corresponding N.') uLK4tQ  
    end -$0w-M8'  
    5j S8{d0  
    -sqoE*K[8  
    if any( r>1 | r<0 ) FsXqF&{  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 8`4Z%;1  
    end ~ 6`Ha@  
    A"PmoV?lAm  
    X61p xPa  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) F/(z3Kf  
        error('zernfun:RTHvector','R and THETA must be vectors.') `~S ; UG   
    end /#]4lFk:h  
    ^XbN&'^,HL  
    *H''.6  
    r = r(:); >qT4'1S*g  
    theta = theta(:); 9bVPMq7}i  
    length_r = length(r); v_s(  
    if length_r~=length(theta) Hb :@]!r>  
        error('zernfun:RTHlength', ... !U?Z<zh  
              'The number of R- and THETA-values must be equal.') <6(&w9WY  
    end hiM nU  
    N-Jp; D  
    D$OUy}[2`.  
    % Check normalization: rcx'`CIJ  
    % -------------------- 9}_ccq  
    if nargin==5 && ischar(nflag) tI-u@ g  
        isnorm = strcmpi(nflag,'norm'); < `/22S"  
        if ~isnorm e>a4v8  
            error('zernfun:normalization','Unrecognized normalization flag.') *>%tx k:)  
        end S.$/uDwo  
    else q8 _8rp-@  
        isnorm = false; qx+ .v2G  
    end S7fX1y[  
    >I^_kBa  
    (uk-c~T!u  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ow!NH,'Hy  
    % Compute the Zernike Polynomials x_K8Gr#Z0  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 6 $k"B/k  
    u#&ZD|  
    UW?(-_8  
    % Determine the required powers of r: BA 9c-Ay  
    % ----------------------------------- / ~\ I  
    m_abs = abs(m); ),u)#`.l G  
    rpowers = []; Munal=wL  
    for j = 1:length(n) F=qG +T  
        rpowers = [rpowers m_abs(j):2:n(j)]; 4sCzUvI~Y1  
    end /eI]!a  
    rpowers = unique(rpowers); m[t4XK  
    )^^Eh=Kbj  
    *Mg. * N  
    % Pre-compute the values of r raised to the required powers, Pgp`g.$<  
    % and compile them in a matrix: \F }s"#  
    % ----------------------------- |8:IH@K*  
    if rpowers(1)==0 sPod)w?e  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); GqT 0SP  
        rpowern = cat(2,rpowern{:}); #XaTUT  
        rpowern = [ones(length_r,1) rpowern]; MS~|F^g  
    else g=gWkN <  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); X-$\DXRIo  
        rpowern = cat(2,rpowern{:}); lNQ8$b  
    end N;A#K 7A[@  
    P t)Ni  
    y_F{C 9KE  
    % Compute the values of the polynomials: :qQpBr$  
    % -------------------------------------- NPFrn[M$  
    y = zeros(length_r,length(n)); f L}3I(VK  
    for j = 1:length(n) 1;Dug  
        s = 0:(n(j)-m_abs(j))/2; \~O}V~wE  
        pows = n(j):-2:m_abs(j); ,8vqzI  
        for k = length(s):-1:1 -x)zyq6  
            p = (1-2*mod(s(k),2))* ... ;<9dND  
                       prod(2:(n(j)-s(k)))/              ... =%\y E0#  
                       prod(2:s(k))/                     ...  >>nt3q  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... sr*3uI-)L  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); '0juZ~>}  
            idx = (pows(k)==rpowers); 4 )U,A~ !  
            y(:,j) = y(:,j) + p*rpowern(:,idx); rz  
        end !|1GraiS  
         k^vsQ'TD  
        if isnorm iLyJ7zby  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 1syI%I1  
        end QS*!3? %  
    end ]0+5@c  
    % END: Compute the Zernike Polynomials Y5Ub[o  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% fF\s5f#:  
    kp4(_T7R  
    \U0p?wdr:  
    % Compute the Zernike functions: (1|_Nr  
    % ------------------------------ b/I_iJ8t  
    idx_pos = m>0; 6]/LrM,23  
    idx_neg = m<0; 9AxeA2/X  
    /;[Zw8K7  
    te 0a6  
    z = y; ^zv,VD  
    if any(idx_pos) OjUZ-_J  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); n&`=.[+A  
    end S"/M+m+ ]  
    if any(idx_neg) is2OJ,  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ZE!dg^-L  
    end :+G1=TuXw~  
    :ziV3jRM  
    $Eo)i  
    % EOF zernfun 7LQLeQvB  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  G2  
    <~rf;2LZ  
    DDE还是手动输入的呢? zKnHo:SV  
    >+9f{FP 9  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究