切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9101阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, V7[6jW gH  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, :hJHjh  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? Y,w'Op  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? IppzQ0'=y1  
    }TY}sr  
    L.ScC  
    ~b}a|K  
    hiq7e*Nsb  
    function z = zernfun(n,m,r,theta,nflag) dw#K!,g  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. `% IzW2v6  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 4[m})X2(  
    %   and angular frequency M, evaluated at positions (R,THETA) on the tS!Fn Qg4  
    %   unit circle.  N is a vector of positive integers (including 0), and m5m}RWZ#  
    %   M is a vector with the same number of elements as N.  Each element Aslh}'$}-  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) %sxLxx_x!  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, sU!h^N$  
    %   and THETA is a vector of angles.  R and THETA must have the same }(k#,&Fv`  
    %   length.  The output Z is a matrix with one column for every (N,M) "O{j}QwY  
    %   pair, and one row for every (R,THETA) pair. ^0)Mc"&{  
    % =r"-Pm{  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ,cZhkXd  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), C))5,aX  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral  ,5!&}  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, cq lA"Eof  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized K.)ionb  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. f++MH]I;  
    % /kV3[Rw+  
    %   The Zernike functions are an orthogonal basis on the unit circle. x\PZ.o  
    %   They are used in disciplines such as astronomy, optics, and JjA3G`m=  
    %   optometry to describe functions on a circular domain. R=&9M4  
    % |osu4=s|  
    %   The following table lists the first 15 Zernike functions. wpgO09  
    % MDV<[${   
    %       n    m    Zernike function           Normalization EQe!&;   
    %       -------------------------------------------------- 9{[I|  
    %       0    0    1                                 1 \9"   
    %       1    1    r * cos(theta)                    2 9 5bi W  
    %       1   -1    r * sin(theta)                    2 ?*DM|hzOi  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) paKur%2u  
    %       2    0    (2*r^2 - 1)                    sqrt(3) x }\x3U  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) f>*T0"\c  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 7egE."  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) w`BY>Xft0  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) SeuC7!q{  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) xgDd5`W  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) +85#`{ D  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) (~>uFH  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 44Dytpvg  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) YcQ$nZAU  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 6/-]  
    %       -------------------------------------------------- A]0A,A0  
    % 9NF2a)&~  
    %   Example 1: F/pq9  
    % ')R+Z/hG.  
    %       % Display the Zernike function Z(n=5,m=1) C@x\ZG5rA  
    %       x = -1:0.01:1; )6+Z99w  
    %       [X,Y] = meshgrid(x,x); f^JiaU4 [  
    %       [theta,r] = cart2pol(X,Y); PP*6nW8  
    %       idx = r<=1; CzMCd ~*7R  
    %       z = nan(size(X)); 8y:/!rRN  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); B":9C'tip  
    %       figure 5D]3I=kj  
    %       pcolor(x,x,z), shading interp 1G}f83yR  
    %       axis square, colorbar 1`hmD1d  
    %       title('Zernike function Z_5^1(r,\theta)') } 6 ,m2u  
    % IRhi1{K$"  
    %   Example 2: @},|i*H/  
    % Q};n%&n&  
    %       % Display the first 10 Zernike functions #ovausK[7  
    %       x = -1:0.01:1; kM6i{{Q  
    %       [X,Y] = meshgrid(x,x); dU}Cb?]7s  
    %       [theta,r] = cart2pol(X,Y); p9>{X\eT:  
    %       idx = r<=1; ^VC /tJ  
    %       z = nan(size(X)); _0cCTQE  
    %       n = [0  1  1  2  2  2  3  3  3  3]; C/$bgK[ev  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 18^#:=Z  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; - -fRhN>  
    %       y = zernfun(n,m,r(idx),theta(idx)); SND@#?hiO  
    %       figure('Units','normalized') D`|8Og  
    %       for k = 1:10 ^ps6\>=0cW  
    %           z(idx) = y(:,k); kzE<Y  
    %           subplot(4,7,Nplot(k)) M)F_$ ICE-  
    %           pcolor(x,x,z), shading interp %p48=|+  
    %           set(gca,'XTick',[],'YTick',[]) >jU25"XI[  
    %           axis square Y/x>wNW  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) @T"-%L8PL  
    %       end m?< ^b_a}  
    % `uKsFX M  
    %   See also ZERNPOL, ZERNFUN2.  /!#A'#Z  
    Ypx5:gm|J  
    ZZ>"LH  
    %   Paul Fricker 11/13/2006 YpOcLxFL  
    4wMZNa<Sx  
    <4LW.q  
    M7[GwA[Z +  
    KuRJo]  
    % Check and prepare the inputs: ,i jB3J  
    % ----------------------------- &SG5 f[  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) xfF;u9$;  
        error('zernfun:NMvectors','N and M must be vectors.') 2tb+3K1  
    end T@Bu Fr`]<  
    )3 I~6ar  
    1> v(&;K  
    if length(n)~=length(m) i]#"@xQ  
        error('zernfun:NMlength','N and M must be the same length.') Dm@h'*  
    end zfD@/kU  
    6b7c9n Z  
    PNo9.-@G  
    n = n(:);  bUsX~R-  
    m = m(:); ECyG$j0  
    if any(mod(n-m,2)) Pn,>eD*g  
        error('zernfun:NMmultiplesof2', ... )Q 5 x%  
              'All N and M must differ by multiples of 2 (including 0).') ~<.{z]*O  
    end J-|&[-Z  
    3(Ns1/;?,  
    SiYH@Wma  
    if any(m>n) ?I8r2M]  
        error('zernfun:MlessthanN', ... cL<,]%SkE  
              'Each M must be less than or equal to its corresponding N.') bv;. 6C(T<  
    end nC%<BatQ  
    VKtlAfXy~  
    .kU}x3m  
    if any( r>1 | r<0 ) =r)LG,w212  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') ? 'qyI^m@  
    end W}y)vrL  
    No8-Hm  
    .VR ~[aD  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) a/v]E]=qI  
        error('zernfun:RTHvector','R and THETA must be vectors.') +I\54PBws  
    end ]h#QA;   
    <-mhz`^  
    |ZM>UJ  
    r = r(:); !PA><F  
    theta = theta(:); !>"fDz<w`  
    length_r = length(r); k*u6'IKi.4  
    if length_r~=length(theta) o[1#)&  
        error('zernfun:RTHlength', ... Q5hOVD%  
              'The number of R- and THETA-values must be equal.') =it@U/  
    end GKbbwT0T|  
    fLpWTkr0  
    h56Kmxxk  
    % Check normalization: 5A$,'%d  
    % -------------------- mr2Mu  
    if nargin==5 && ischar(nflag) !MrQ-B(  
        isnorm = strcmpi(nflag,'norm'); lX-i<0`  
        if ~isnorm RH:vd|q+  
            error('zernfun:normalization','Unrecognized normalization flag.') 1{5t.  
        end eh%{BXW[p  
    else &qK:LHhj  
        isnorm = false; jU kxA7 }}  
    end ::+;PRy_E  
    Z ^}[CQ&Am  
    A|,qjiEJCc  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% W"*2,R[}%  
    % Compute the Zernike Polynomials $hHV Ie]+  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% >gs_Bzy]  
    b\KbF/ T  
    mo3A*|U  
    % Determine the required powers of r: |d z2Drc  
    % ----------------------------------- BG8/  
    m_abs = abs(m); 98)C 7N'  
    rpowers = []; 2X[oge0@  
    for j = 1:length(n) L,.AY?)+7  
        rpowers = [rpowers m_abs(j):2:n(j)]; |V4<eF-0S  
    end &XdTY +  
    rpowers = unique(rpowers); Kj"X!-  
    >_xuXEslUz  
    TpwN2 =  
    % Pre-compute the values of r raised to the required powers, 9R2"(.U  
    % and compile them in a matrix: *Wvk~  
    % ----------------------------- dA (n,@{  
    if rpowers(1)==0 ?;_>BX|Zjl  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); K3<A<&W_-  
        rpowern = cat(2,rpowern{:}); t,dm3+R  
        rpowern = [ones(length_r,1) rpowern]; u#rbc"  
    else >MKj~Ud  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); w3"L5;oH  
        rpowern = cat(2,rpowern{:}); \ {]y(GT  
    end }3_b%{  
    1og+(m`BL  
    #qmsZHd}b  
    % Compute the values of the polynomials: 83I 5n&)  
    % -------------------------------------- t$~'$kM)<  
    y = zeros(length_r,length(n)); TTFs|T6`q  
    for j = 1:length(n) 5y 5Dn!`  
        s = 0:(n(j)-m_abs(j))/2; 8!cHRtqK  
        pows = n(j):-2:m_abs(j); UgK c2~  
        for k = length(s):-1:1 iF MfBg  
            p = (1-2*mod(s(k),2))* ...  T&MhSJf#  
                       prod(2:(n(j)-s(k)))/              ... 0M roHFh9`  
                       prod(2:s(k))/                     ... @&E IH,c  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... xp'Q>%v  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); m2"e ]I  
            idx = (pows(k)==rpowers); @MB)B5  
            y(:,j) = y(:,j) + p*rpowern(:,idx); +-(,'slov  
        end Z)$@1Q4P?1  
         H<n"[u^@E  
        if isnorm cV0CI&  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); OA=~ i/n~  
        end :UP8nq  
    end r8eJ&-Yi{Z  
    % END: Compute the Zernike Polynomials s2NBYDi$?  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %7}j|eS)G  
    PZJ9f8 V  
    YI;iG[T,&  
    % Compute the Zernike functions: TEY~E*=}$  
    % ------------------------------ _K!.TM+9  
    idx_pos = m>0; ~gW^9nWYU  
    idx_neg = m<0; kyvl>I0q@  
    fglfnx0{  
    LtX53c  
    z = y; xQDQgvwa  
    if any(idx_pos) \.O&-oi  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); jq*`| m;Q  
    end ;s{' cN[.  
    if any(idx_neg) dd<l;4(  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Y 0Fq -H  
    end w-# f^#  
    @-L]mLY  
    eh<mJL%T  
    % EOF zernfun ^}p##7t [  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)   9Bt GzI\  
    8{G!OBxc\.  
    DDE还是手动输入的呢? cRnDAn#42  
    A{zqr^/h  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究