下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, i;l0)q
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, xoe/I[P]U
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? r]3v.GZy
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? { POfT
m}
FlyRcj
M&SY2\\TB
<^n@q f}
rnSrkn"j{
function z = zernfun(n,m,r,theta,nflag) ZCAg)/
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. GeFu_7u!|
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N w+][L||4c
% and angular frequency M, evaluated at positions (R,THETA) on the "2_nN]%u-
% unit circle. N is a vector of positive integers (including 0), and P0c6?K6 j
% M is a vector with the same number of elements as N. Each element ?QRoSQ6
% k of M must be a positive integer, with possible values M(k) = -N(k) a/Ik^:>m
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, bbG!Fg=qQ?
% and THETA is a vector of angles. R and THETA must have the same pY$DOr-r`
% length. The output Z is a matrix with one column for every (N,M) &=[N{N?(
% pair, and one row for every (R,THETA) pair. |Duf
3u
% fn3DoD+I
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike gR76g4|=;
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 3kW%,d*_
% with delta(m,0) the Kronecker delta, is chosen so that the integral BJP^?FUd=,
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, undH{w=
% and theta=0 to theta=2*pi) is unity. For the non-normalized R<Uu(-O-
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. CyKupJ.Fq
% =<.h.n
% The Zernike functions are an orthogonal basis on the unit circle. SU7 erCHX
% They are used in disciplines such as astronomy, optics, and g0M/Sv
% optometry to describe functions on a circular domain. _edT+r>+
% Ih_=yk
% The following table lists the first 15 Zernike functions. \=
G8
% 7J|eL
yj
% n m Zernike function Normalization 7e/K YS+!s
% -------------------------------------------------- f^[u70c82
% 0 0 1 1 a=r^?q'/
% 1 1 r * cos(theta) 2 |>dqZ_)v
% 1 -1 r * sin(theta) 2 *?R<gWCF
% 2 -2 r^2 * cos(2*theta) sqrt(6) Clmz}F
% 2 0 (2*r^2 - 1) sqrt(3) h,x'-]q
% 2 2 r^2 * sin(2*theta) sqrt(6) umI6# Vd`=
% 3 -3 r^3 * cos(3*theta) sqrt(8) "vF7b|I
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) A)HV#T`N
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) bnxR)b~
% 3 3 r^3 * sin(3*theta) sqrt(8) IJ2>\bW_p
% 4 -4 r^4 * cos(4*theta) sqrt(10) #vPf$y6jCI
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) u;/<uV3
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) 4>Y\Y$3
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ^~DClZ
% 4 4 r^4 * sin(4*theta) sqrt(10) *3h!&.zm
% -------------------------------------------------- wh#x`Nc
% Uq=!>C8
% Example 1: a+e8<fM yT
% BE,H`G #h
% % Display the Zernike function Z(n=5,m=1) K&;;{~md.
% x = -1:0.01:1; 3.V-r59
% [X,Y] = meshgrid(x,x); L=)Arj@q
% [theta,r] = cart2pol(X,Y); tS
sDW!!M
% idx = r<=1; b\^9::oY
% z = nan(size(X)); x`Ik747^v
% z(idx) = zernfun(5,1,r(idx),theta(idx)); lk%W2N5
% figure :M\3.7q
% pcolor(x,x,z), shading interp VN
>X/
% axis square, colorbar ]oE:p
% title('Zernike function Z_5^1(r,\theta)') A>Xt 5vk+
% |YK4V(5x
% Example 2: r1AG1Y
% (a@}J.lL
% % Display the first 10 Zernike functions _-nIy*', =
% x = -1:0.01:1; &BkdC,o
% [X,Y] = meshgrid(x,x); `dm}|$X|
% [theta,r] = cart2pol(X,Y); ky{-NrK
% idx = r<=1; #RVN7-x
% z = nan(size(X)); DS>qth
% n = [0 1 1 2 2 2 3 3 3 3]; Qh!h "]
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; "Rq)%o$Z
% Nplot = [4 10 12 16 18 20 22 24 26 28]; _?~)B\@~0
% y = zernfun(n,m,r(idx),theta(idx)); rEY5,'?YHv
% figure('Units','normalized') z|WDqB%/I
% for k = 1:10 N-<m/RS
% z(idx) = y(:,k); Z >F5rkJ
% subplot(4,7,Nplot(k)) {aYCrk1
% pcolor(x,x,z), shading interp &J}w_BFww
% set(gca,'XTick',[],'YTick',[]) 50Y^##]&
% axis square >
@n?W"
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) )+v'@]r
% end TptXH?
% FX:'38-fk
% See also ZERNPOL, ZERNFUN2. WoX,F1 o
(g#,AX
P'p5-l UK
% Paul Fricker 11/13/2006 bT#re
RMO6k bfP
}q<%![%
k5TPzm=y{
M,/{ 53
% Check and prepare the inputs: 7) e#b
% ----------------------------- A Z& ]@Ao
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ?R\:6x<
error('zernfun:NMvectors','N and M must be vectors.') ey! {
end ~@N0$S
}5a$Ka-
Hsi<!g.
if length(n)~=length(m) #vBS7ba
error('zernfun:NMlength','N and M must be the same length.') KvfZj
end ,?ci+M)
7(1UXtT
"
H;iAv
n = n(:); LSN%k5G7.
m = m(:); HE>sZ;
if any(mod(n-m,2)) !>gu#Q{\-
error('zernfun:NMmultiplesof2', ... _
ZC[h~9H
'All N and M must differ by multiples of 2 (including 0).') eE-c40Bae
end 4.}J'3 .
Lyj0$wbH`
&0QtHcXpR
if any(m>n) `1qM Sq
error('zernfun:MlessthanN', ... ~lB:xVzn
'Each M must be less than or equal to its corresponding N.') ( R0>0f@
end V=DT.u
K^fH:pV
k| Ye[GM*
if any( r>1 | r<0 ) t_Rpeav
error('zernfun:Rlessthan1','All R must be between 0 and 1.') a0=5G>G9c
end T{Rhn V1
2Ed
2h^9lrQcQG
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) _aLml9f
W
error('zernfun:RTHvector','R and THETA must be vectors.') v9K{oB
end E^<.;
FsyM{LT
'AjDB:Mt$
r = r(:); FZW:dsm
theta = theta(:); tW#=St0<.o
length_r = length(r); ?Pw(
if length_r~=length(theta) bcCCvV}6WZ
error('zernfun:RTHlength', ... Rr0@F`"R
'The number of R- and THETA-values must be equal.') =f*Wj\
end Z UCz-53
jQLiqi`
x&PVsXdt5m
% Check normalization: -F+dmI,1$
% -------------------- 39zwPoN>
if nargin==5 && ischar(nflag) :4,
OA
isnorm = strcmpi(nflag,'norm'); /"*eMe!=
if ~isnorm [J71aH
error('zernfun:normalization','Unrecognized normalization flag.') @p}"B9h*^
end Z}*{4V`R
else %Yi^{ZrM
isnorm = false; }|W n6X
end GDUOUl&
Z?}yPsOb
6rD
Oa~<