切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9398阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, ;):8yBMk  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, z[WC7hvU  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? "sFW~Y  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? Oamv9RyDvC  
    VYL@RL'  
    _L$)2sl1R  
    x7vq?fP0n  
    Lf5%M|o.)  
    function z = zernfun(n,m,r,theta,nflag) 1Z\(:ab13  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. +n@f'a">  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N x^zdTMNhw  
    %   and angular frequency M, evaluated at positions (R,THETA) on the Bs_S.JP<`  
    %   unit circle.  N is a vector of positive integers (including 0), and %GM>u2baw  
    %   M is a vector with the same number of elements as N.  Each element n"(7dl?  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) A;odVaH7  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, &J\B\`  
    %   and THETA is a vector of angles.  R and THETA must have the same bBA$}bv  
    %   length.  The output Z is a matrix with one column for every (N,M) =Nw2;TkB[  
    %   pair, and one row for every (R,THETA) pair. `2>XH:+7F  
    % 0LS -i%0  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike $kD7y5  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), f_oq1W)9  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral ||R0U@F,  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, @/9>=#4c  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized U$A/bEhw  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. I|H,)!Z  
    % D0f*eSXE{  
    %   The Zernike functions are an orthogonal basis on the unit circle. ,o BlJvm  
    %   They are used in disciplines such as astronomy, optics, and OWqrD@  
    %   optometry to describe functions on a circular domain. B,4q>KQA  
    % JRD8Lz]Q3  
    %   The following table lists the first 15 Zernike functions. z9^c]U U)E  
    % $+7ci~gs  
    %       n    m    Zernike function           Normalization D`en%Lf!m  
    %       -------------------------------------------------- f(!E!\&n^  
    %       0    0    1                                 1 p Z"o@';!  
    %       1    1    r * cos(theta)                    2 xtOx|FkYcl  
    %       1   -1    r * sin(theta)                    2 BlL|s=dlQV  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) :=y0'f V(@  
    %       2    0    (2*r^2 - 1)                    sqrt(3) -RGPt D@  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) 'c#IMlv  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) pG(Fz0b{  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) it~Z|$  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) expxp#S  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) = PV/`I_h  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) A1Ka(3"  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) *vb^N0P  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) K|US~Hgv  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) JfbKf~g  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) %Mh Q  
    %       -------------------------------------------------- U{"f.Z:Ydo  
    % FW_G\W.  
    %   Example 1: MvBD@`&7  
    % Mxo6fn6-46  
    %       % Display the Zernike function Z(n=5,m=1) 7 %3<~'v[  
    %       x = -1:0.01:1; bQ<b[  
    %       [X,Y] = meshgrid(x,x); l^ARW E  
    %       [theta,r] = cart2pol(X,Y); l nfm0  
    %       idx = r<=1; s1{[{L3  
    %       z = nan(size(X)); +GYS26  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); A])OPqP{  
    %       figure kymn)Ea  
    %       pcolor(x,x,z), shading interp \2j|=S6  
    %       axis square, colorbar %Z7%jma  
    %       title('Zernike function Z_5^1(r,\theta)') `os8;`G  
    % BY$[g13  
    %   Example 2: 5Q|sta!  
    % _PV*lK=  
    %       % Display the first 10 Zernike functions G)8ChnJa!m  
    %       x = -1:0.01:1; +>4^mE" \  
    %       [X,Y] = meshgrid(x,x); D;jK/2  
    %       [theta,r] = cart2pol(X,Y); sXiv,  
    %       idx = r<=1; l0Y?v 4  
    %       z = nan(size(X)); f|#8qiUS  
    %       n = [0  1  1  2  2  2  3  3  3  3]; Rjq a_hxrS  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; ./7v",#*.'  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; p-,Iio+  
    %       y = zernfun(n,m,r(idx),theta(idx)); ;T>+,  
    %       figure('Units','normalized') qi&D+~Gv!  
    %       for k = 1:10 ZjS(ad*.2  
    %           z(idx) = y(:,k); srK53vKMHW  
    %           subplot(4,7,Nplot(k)) IM=+3W;ak  
    %           pcolor(x,x,z), shading interp x#mtS-sw2Q  
    %           set(gca,'XTick',[],'YTick',[]) +;dXDZ2  
    %           axis square };r|}v !~_  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) @(>XOj?+  
    %       end &wjB{%  
    % DT\ym9  
    %   See also ZERNPOL, ZERNFUN2. /&(1JqzlB  
     &{ZSE^  
    ) |MJnx9  
    %   Paul Fricker 11/13/2006 DvYwCgLR  
    {fU?idY)c  
    ybE[B}pOeZ  
    jgq{pZ#E  
    _=EZ `!%  
    % Check and prepare the inputs: ^)0 9OV+hF  
    % ----------------------------- 5)`h0TK  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) /c#l9&,  
        error('zernfun:NMvectors','N and M must be vectors.') .,M;huRg  
    end Y@%`ZPJ  
    ;& |qSa'  
    a+Ab]m8`  
    if length(n)~=length(m) *ik/p  
        error('zernfun:NMlength','N and M must be the same length.') ,{8v4b-  
    end Kam]Mn'  
    mxp Y&Y  
    |dk[cX>  
    n = n(:); )Gb,^NGr  
    m = m(:); xA #H0?a]  
    if any(mod(n-m,2)) M{E{NK  
        error('zernfun:NMmultiplesof2', ... 2h q>T&8  
              'All N and M must differ by multiples of 2 (including 0).') k>5O`Y:  
    end uPLErO9Es[  
    mU@xc N  
    bX2"89{  
    if any(m>n) Fw"$A0  
        error('zernfun:MlessthanN', ... 6P*O&1hv  
              'Each M must be less than or equal to its corresponding N.') 9i%9   
    end 'N6 S}w7  
    S4bBafj[I  
    z"UPyW1?  
    if any( r>1 | r<0 ) B+"g2Y  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') HnU Et/  
    end e&1 \'Zq?>  
    AVFjBybu9  
    !h:  Q  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) m@\ZHbq  
        error('zernfun:RTHvector','R and THETA must be vectors.') ,S!w'0k|n  
    end Gx'TkU=  
    l r~gG3   
    @;Y~frT  
    r = r(:); o`6|ba  
    theta = theta(:); cj g.lzY H  
    length_r = length(r); Vz"u>BP3~  
    if length_r~=length(theta) /;oqf4MF  
        error('zernfun:RTHlength', ... 8\Hr5FqB(  
              'The number of R- and THETA-values must be equal.') T)SbHp Y  
    end JE;+T[I  
    zOB=aG?/  
    &HDP!SLS  
    % Check normalization: :2y"3azxk  
    % -------------------- v}[dnG  
    if nargin==5 && ischar(nflag) 6+` tn  
        isnorm = strcmpi(nflag,'norm'); +iA=y=;blH  
        if ~isnorm z-,VnhLx  
            error('zernfun:normalization','Unrecognized normalization flag.') L`[z[p {?  
        end 1%`7.;!i  
    else GwLFL.Ke  
        isnorm = false; }V`mp  
    end ]'h; {;ug  
    VKW|kU7Cs$  
    TH?9< C-C  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% !')y&7a~  
    % Compute the Zernike Polynomials '\~^TFi  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% qf8[!5GM  
    {{!Y]\2S  
    L?RF;jf  
    % Determine the required powers of r: SEd5)0X^  
    % ----------------------------------- =6T 4>rP  
    m_abs = abs(m); q_t4OrLr=  
    rpowers = []; P Sx304  
    for j = 1:length(n) \Fb| {6+  
        rpowers = [rpowers m_abs(j):2:n(j)]; R_kQPP  
    end i8PuC^]  
    rpowers = unique(rpowers); =Ho"N`Qy  
    -<f;l _(  
    %XTA;lrz  
    % Pre-compute the values of r raised to the required powers, } !s!;BOx  
    % and compile them in a matrix: OB^Tq~i  
    % ----------------------------- nH[+n `{o  
    if rpowers(1)==0 g,kzQ}_  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); )^O-X.1  
        rpowern = cat(2,rpowern{:}); %f ju G  
        rpowern = [ones(length_r,1) rpowern]; q/gB<p9  
    else N "Wqy  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); `-UJ /{  
        rpowern = cat(2,rpowern{:}); hOk00az  
    end |$+5@+Zz  
    xWX*tJ4  
    |m G7XL,  
    % Compute the values of the polynomials: P0GeZ02]  
    % -------------------------------------- :Vuf6,  
    y = zeros(length_r,length(n)); Q^_/By@  
    for j = 1:length(n) KL?)akk  
        s = 0:(n(j)-m_abs(j))/2; o>lms t%<  
        pows = n(j):-2:m_abs(j); F%/ h*  
        for k = length(s):-1:1 xN0*8  
            p = (1-2*mod(s(k),2))* ... l!~ mxUb  
                       prod(2:(n(j)-s(k)))/              ... Bl;KOR  
                       prod(2:s(k))/                     ... z2yJ#  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 0$vj!-Mb^j  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 0pgY1i7  
            idx = (pows(k)==rpowers); 'mMjjG9  
            y(:,j) = y(:,j) + p*rpowern(:,idx); (ywo a  
        end 6][1 <}8  
         x"4%(xBu  
        if isnorm 5#JJ?  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); y 'M#z_.z  
        end >cR)?P/o  
    end ,?-\ x6  
    % END: Compute the Zernike Polynomials |M~ON=  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 2#5,MP~r  
    xytr2V ]aV  
    =y]$0nh  
    % Compute the Zernike functions: ?.bnIwQe  
    % ------------------------------ [`_io>*g  
    idx_pos = m>0; F[`ZqW  
    idx_neg = m<0; eC`pnE  
    M8;lLcgu.  
    F # YPOH  
    z = y; ]B4}eBt5)@  
    if any(idx_pos) oQ2KW..q  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ,^s  
    end edC 4BHE  
    if any(idx_neg) 4&X*pL2;  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); c6AWn>H  
    end 5,KWprb  
    vK'?:}~  
    +Ov2`O8?  
    % EOF zernfun 0 t.p1  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  h5%|meZQb  
    P.WYTst=  
    DDE还是手动输入的呢? 9|r* pK[  
    Ps[$.h  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究