切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9045阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, i+HHOT  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, H o;bgva  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? MKN],l N  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? <^(g<B`>  
    eDPmUlC+-  
    )2jBhT  
    {g(-C&  
    %VD>S  
    function z = zernfun(n,m,r,theta,nflag) oH|<(8efD  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. UI>?"b6 L  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N oj1,DU  
    %   and angular frequency M, evaluated at positions (R,THETA) on the cc^[ u+  
    %   unit circle.  N is a vector of positive integers (including 0), and )W& $FU4JK  
    %   M is a vector with the same number of elements as N.  Each element z3:tSjF  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 3r (i=ac0  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, b\O%gg\p%!  
    %   and THETA is a vector of angles.  R and THETA must have the same ~Z#jIG<?g  
    %   length.  The output Z is a matrix with one column for every (N,M) b0_Ih6  
    %   pair, and one row for every (R,THETA) pair. .s !qf!{V`  
    % :"oQ _bLT  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike R~R?0aq  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), hh<Es|v  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral ]wQ#8}zO  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, eJ23$VM+9  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized _v9P0W^.7  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. igD,|YSK`z  
    % XeT{y]lkd  
    %   The Zernike functions are an orthogonal basis on the unit circle. Z/S7ei@56  
    %   They are used in disciplines such as astronomy, optics, and \%FEQa0u  
    %   optometry to describe functions on a circular domain. voHFU#Z$  
    % jo_wBJKE  
    %   The following table lists the first 15 Zernike functions. *=X$j~#X  
    % (haYY]W\  
    %       n    m    Zernike function           Normalization RvPC7,vh  
    %       -------------------------------------------------- mw*BaDN@Q  
    %       0    0    1                                 1 =R  <X!@  
    %       1    1    r * cos(theta)                    2 ^<}eONa  
    %       1   -1    r * sin(theta)                    2 s@ ~Y!A  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) O*ql!9}E{  
    %       2    0    (2*r^2 - 1)                    sqrt(3) _K?{DnTb  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) VkNg Vjg  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) I,@f*o  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 1eZ759PoO  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) pUz;e#J|  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) c9eLNVM  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) h!L/ZeRaV  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 9y~5@/3 2R  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) sr&hQ  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) BSGC.>$s  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) J AK+v  
    %       -------------------------------------------------- tX$ v)O|  
    % fgW>U*.ar  
    %   Example 1: H.HXwN/x  
    % _U"9#<  
    %       % Display the Zernike function Z(n=5,m=1) 2)A% 'Akf  
    %       x = -1:0.01:1; 1$*ZN4  
    %       [X,Y] = meshgrid(x,x); U '#Xwax  
    %       [theta,r] = cart2pol(X,Y); GYX/G>-r  
    %       idx = r<=1; V4PV@{G  
    %       z = nan(size(X)); _^2rRz  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); !`rR;5&sT  
    %       figure g.3a5#t  
    %       pcolor(x,x,z), shading interp FSs<A@  
    %       axis square, colorbar l1&NU'WW  
    %       title('Zernike function Z_5^1(r,\theta)') R*l#[D5A  
    % J m5).  
    %   Example 2: c?;YufH'j  
    % KZ"&c~[  
    %       % Display the first 10 Zernike functions 0.9%m7.m  
    %       x = -1:0.01:1; _7h:NLd  
    %       [X,Y] = meshgrid(x,x); JfJLJ(}  
    %       [theta,r] = cart2pol(X,Y); ^*{:;F@  
    %       idx = r<=1; ID-Y*  
    %       z = nan(size(X)); !&$uq|-  
    %       n = [0  1  1  2  2  2  3  3  3  3]; ,-11w7y\  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; ]Cfjs33H  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; BP&T|s  
    %       y = zernfun(n,m,r(idx),theta(idx)); g9A8b(>F&@  
    %       figure('Units','normalized') P;V$%r`yD  
    %       for k = 1:10 Pp*:rA"N  
    %           z(idx) = y(:,k); zPonG d1  
    %           subplot(4,7,Nplot(k)) m0I)_R#X[  
    %           pcolor(x,x,z), shading interp gH+s)6  
    %           set(gca,'XTick',[],'YTick',[]) o_.f7|U!  
    %           axis square \i*QKV<  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 1%v!8$  
    %       end WRa4g  
    % }=dUASL  
    %   See also ZERNPOL, ZERNFUN2. + [JvpDv%  
    k$kOp *X  
    A &d67,&B  
    %   Paul Fricker 11/13/2006 MY8[)<q"  
    B<99-7x3  
    y@#JzfY?Hr  
    b9 F:X  
    7Rba@ cs9  
    % Check and prepare the inputs: K@JGGgrE`!  
    % ----------------------------- ma +iIt;  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Ix-bJE6+I,  
        error('zernfun:NMvectors','N and M must be vectors.') ?5N7,|K)  
    end N)kZ2|oD  
    >1}RiOd3  
    :>:F6Db"U  
    if length(n)~=length(m) St1Ny,$yU  
        error('zernfun:NMlength','N and M must be the same length.') !mjrI "_  
    end eK=W'cNu  
    9!``~]G2  
    ~ `xaBz0q  
    n = n(:); X j>?P/=Z  
    m = m(:); S%^*h{9u"  
    if any(mod(n-m,2)) U<YP@?w  
        error('zernfun:NMmultiplesof2', ... wWVLwp4-  
              'All N and M must differ by multiples of 2 (including 0).') vKcZgIR  
    end M$jU-;hRH  
    F*}.0SQ  
    $QNII+o  
    if any(m>n) b1*5#2rs.  
        error('zernfun:MlessthanN', ... dR9[K4`p/  
              'Each M must be less than or equal to its corresponding N.') m@Q%)sc)  
    end !OCb^y  
    8\N`2mPt  
    1edeV48{:  
    if any( r>1 | r<0 ) !kTI@103Wd  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 6UK}?+r~  
    end TtWE:xE  
    6>X9|w  
    wN+3OPM  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) nlq"OzcH04  
        error('zernfun:RTHvector','R and THETA must be vectors.') 5x2m ]u  
    end ]8m_+:`=  
    RT`jWWh*Lo  
    ^$D2fS  
    r = r(:); h1(GzL%i_  
    theta = theta(:); )y .1}R2[  
    length_r = length(r); sTb@nrRxH  
    if length_r~=length(theta) * NB:"1x  
        error('zernfun:RTHlength', ... 1MPn{#Ff  
              'The number of R- and THETA-values must be equal.') z6Xn9  
    end q-3e^-S*  
    &gr)U3w  
    a(s% 3"*Q  
    % Check normalization: %3@a|#g  
    % -------------------- s"xiGp9  
    if nargin==5 && ischar(nflag) f]*TIYicc  
        isnorm = strcmpi(nflag,'norm'); 8HaBil  
        if ~isnorm wn&5Ul9Elb  
            error('zernfun:normalization','Unrecognized normalization flag.') ?xT ^9  
        end a3Fe42G2c|  
    else 7rZE7+%]  
        isnorm = false; VGVb3@  
    end ar%!h~  
    :&'[#%h8  
    y.6Yl**l  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% w(EUe4 w{  
    % Compute the Zernike Polynomials UWPzRk#s"  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% !D!1%@ e  
    g{U?Y"  
    /hC'-6:]^  
    % Determine the required powers of r: ukAE7O(W&  
    % ----------------------------------- X%lk] &2  
    m_abs = abs(m); mR1|8H!f  
    rpowers = []; ^rX5C2}G\D  
    for j = 1:length(n) q Q/<\6Sl  
        rpowers = [rpowers m_abs(j):2:n(j)]; 6$y$ VeW  
    end b;~?a#Z}  
    rpowers = unique(rpowers); l.Yq4qW  
    lI&5.,2MP  
    U'Mxf'q  
    % Pre-compute the values of r raised to the required powers, @@QB,VS;{<  
    % and compile them in a matrix: upc-Qvk  
    % ----------------------------- Vgg' 5o&.  
    if rpowers(1)==0 4*Y`Pn@  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); X[;-SXq  
        rpowern = cat(2,rpowern{:}); O ,Sqh$6U  
        rpowern = [ones(length_r,1) rpowern]; w dpd`  
    else ~1g)4g~  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); :%2uZ/cG(  
        rpowern = cat(2,rpowern{:}); '0tNo.8K  
    end 1(4}rB3  
    }n;.E&<[  
    Y2&hf6BE  
    % Compute the values of the polynomials: p8bAz  
    % -------------------------------------- BHrNDpv  
    y = zeros(length_r,length(n)); }48 o{\  
    for j = 1:length(n) ig}H7U2q@  
        s = 0:(n(j)-m_abs(j))/2; rIRkXO)  
        pows = n(j):-2:m_abs(j); g5>c-i  
        for k = length(s):-1:1 L8.u7(-#  
            p = (1-2*mod(s(k),2))* ... CeD(!1V G  
                       prod(2:(n(j)-s(k)))/              ... #P/}'rdt  
                       prod(2:s(k))/                     ... $:!L38[7$  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... [`/d$V!e  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); {Hr P;)  
            idx = (pows(k)==rpowers); Cu-z`.#}R  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 0J5IO|1M  
        end Q?WgGE4>  
         ^sb+|b  
        if isnorm -D^.I  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); UkzLUok]U  
        end Bm:N@wg  
    end =Dc9|WuHN  
    % END: Compute the Zernike Polynomials 227 Z6#CF!  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /vrjg)fer  
    s& Lyg>>`  
    a$2 WL g,  
    % Compute the Zernike functions: LP:U6 Z  
    % ------------------------------ 3uJ>:,~r  
    idx_pos = m>0; =CGB}qU l0  
    idx_neg = m<0; E As1 =  
    I?#B_R#  
    csCi0'u  
    z = y; ("T8mt[w>  
    if any(idx_pos) +~l`rJ  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); s3+6Z~g'B  
    end ~9h/{$  
    if any(idx_neg) yIG*  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); =Xu(Js-  
    end -$@4e|e%a  
    GkYD:o=qx  
     Zzea  
    % EOF zernfun jdW#; ]7+y  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  }FTyRHD|  
    ^dzg'6M  
    DDE还是手动输入的呢? e Ert_@}  
    -H%806NAX7  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究