下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, bRAD_
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, -S$F\%
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? U5Hi9fe
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? CsZ~LQ=DB
<KMCNCU\+
T$;S
Q'OtXs 80
,`geOJn'
function z = zernfun(n,m,r,theta,nflag) %"WENa/t
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. IkCuw./
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N O= S[n
% and angular frequency M, evaluated at positions (R,THETA) on the Qs1p
% unit circle. N is a vector of positive integers (including 0), and ocGrB)7eD
% M is a vector with the same number of elements as N. Each element P$EiD+5#z
% k of M must be a positive integer, with possible values M(k) = -N(k) ?eS;Yc
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, b-u@?G|<
% and THETA is a vector of angles. R and THETA must have the same yqN`R\d
% length. The output Z is a matrix with one column for every (N,M) 9c@M(U@Yh
% pair, and one row for every (R,THETA) pair. gFR}WBl/
% pGs?Y81
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ciS +.%7
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), NLy4Z:&{
% with delta(m,0) the Kronecker delta, is chosen so that the integral M9iX_4
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, H^d?(Svh
% and theta=0 to theta=2*pi) is unity. For the non-normalized /.]u%;%r[
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. xfRp_;l+R
% Kd:l8%+
% The Zernike functions are an orthogonal basis on the unit circle. 3x~7N
% They are used in disciplines such as astronomy, optics, and
SkjG}
% optometry to describe functions on a circular domain. n0KpKH<&
% UarLxPQ
% The following table lists the first 15 Zernike functions. |Y3w6 !$
% *w0!C:mL&
% n m Zernike function Normalization orjtwF>^
% -------------------------------------------------- OAXA<
% 0 0 1 1 JSL&`
`
% 1 1 r * cos(theta) 2 '{
<RX
% 1 -1 r * sin(theta) 2 WARiw[
% 2 -2 r^2 * cos(2*theta) sqrt(6) /a\i
% 2 0 (2*r^2 - 1) sqrt(3) !)bZ.1o
% 2 2 r^2 * sin(2*theta) sqrt(6) ?UsCSJ1V
% 3 -3 r^3 * cos(3*theta) sqrt(8) 6kAAdy}ck
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) \Oq2{Sx\
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) Mt.Cj;h@^[
% 3 3 r^3 * sin(3*theta) sqrt(8) Y(UK:LZ'
% 4 -4 r^4 * cos(4*theta) sqrt(10) ZID- ~
6
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) u+8"W[ZULq
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) k8?._1t
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) k[f2`o=
% 4 4 r^4 * sin(4*theta) sqrt(10) .i*oZ'[X
% -------------------------------------------------- ]'5Xjcx
% ~vXbh(MX
% Example 1: f1vD{M;
% F\eQV<
% % Display the Zernike function Z(n=5,m=1) }u;K<<h:
% x = -1:0.01:1; jSjC43lh
% [X,Y] = meshgrid(x,x); 9J/[7TzSZ
% [theta,r] = cart2pol(X,Y); f2e;N[D
% idx = r<=1; d5^^h<'
% z = nan(size(X)); Y%;J/4dd
% z(idx) = zernfun(5,1,r(idx),theta(idx)); qur2t8gnxq
% figure |y^=(|eM
% pcolor(x,x,z), shading interp [xiqlb,8
% axis square, colorbar +zh\W9
% title('Zernike function Z_5^1(r,\theta)') )Fx]LeI;
% @ki|#ro
% Example 2: 35l%iaj]G5
% Krae^z9R
% % Display the first 10 Zernike functions ,lH
}Ba02F
% x = -1:0.01:1; sJL Oz>
% [X,Y] = meshgrid(x,x); 5Npxs&Ea
% [theta,r] = cart2pol(X,Y); 7"!`<5o^
% idx = r<=1; &|x7T<,)
% z = nan(size(X)); NVRzthg%c_
% n = [0 1 1 2 2 2 3 3 3 3]; #1-WiweO
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; wG49|!l6T
% Nplot = [4 10 12 16 18 20 22 24 26 28]; (RFH.iX
% y = zernfun(n,m,r(idx),theta(idx)); $
64up!
% figure('Units','normalized') p6%V f
% for k = 1:10 !=eNr<:V.
% z(idx) = y(:,k); 4'z)J1M
% subplot(4,7,Nplot(k)) u\Cf@}5(
% pcolor(x,x,z), shading interp - VJx)g
% set(gca,'XTick',[],'YTick',[]) jJIP $
% axis square D% j GK
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) L2>e@p\>
% end !JXiTI!
% (tYZq86`
% See also ZERNPOL, ZERNFUN2. u"&?u+1j
:(]fC~G~
n~UI47
% Paul Fricker 11/13/2006 ^i|R6oO_5
l:'#pZ4T
nG<oae6z"
*k7BE_&*0Z
X&WP.n)
% Check and prepare the inputs: bkd`7(r
% ----------------------------- <<!fA><W
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Xr
<H^X
error('zernfun:NMvectors','N and M must be vectors.') 2VRGTx
end !~|-CF0z=
wW\[#Ku
qHZDo[
if length(n)~=length(m) PcC@}3
error('zernfun:NMlength','N and M must be the same length.') O&<p
8
end 1dLc/,|
%[|^7
&IN%2c
n = n(:); j Mn,N9Mf
m = m(:); SAdT#0J
if any(mod(n-m,2)) zjA]Tr
error('zernfun:NMmultiplesof2', ... N" L&Z4Z
'All N and M must differ by multiples of 2 (including 0).') ~yJ 2@2I
end {A/^;X{N^
e ymv/
!hq2AY&H)
if any(m>n) }sH[_%)
error('zernfun:MlessthanN', ... Kkp dcc
'Each M must be less than or equal to its corresponding N.') T[$-])iK
end Ms|c"?se
p?f\/
_CHzwNU
if any( r>1 | r<0 ) 3q'AgiW
error('zernfun:Rlessthan1','All R must be between 0 and 1.') ;~<To9O
end [eD0L71[
fz^j3'!\
5;}W=x^$a
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) u0L-xC$L
error('zernfun:RTHvector','R and THETA must be vectors.') %]Z4b;W[Y
end gl+d0<Rzw
K\2{SjL:B
rD=D.1_
r = r(:); 14 & KE3`
theta = theta(:); f7a4E+}
length_r = length(r); Mq$K[]F
if length_r~=length(theta) E<\$3G-do
error('zernfun:RTHlength', ... qf(mJlU
'The number of R- and THETA-values must be equal.') 5(H%Ia
end Fs~(>w@
;+wB!/k,
_H]^7`;
% Check normalization: M?lh1Yu"
% -------------------- H<Sf0>OA
if nargin==5 && ischar(nflag) dO82T3T
isnorm = strcmpi(nflag,'norm'); Z8v 8@Y
if ~isnorm ) bFl-
error('zernfun:normalization','Unrecognized normalization flag.') R `tJ7MB
end 9;#RzelSp
else [@Ac#
isnorm = false; nW)+-Wxq
end uHI(-!O
G[mqLI{q
2Xl+}M.:Y
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% V#oz~GMB
% Compute the Zernike Polynomials c;kU|_
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |H
t5a.
kumV|$Y?kA
>T[/V3Z~K
% Determine the required powers of r: b11I$b
#
% ----------------------------------- zhw*Bed<
m_abs = abs(m); 2{h2]F
rpowers = []; 6o^>q&e}%
for j = 1:length(n) yq-~5ui
rpowers = [rpowers m_abs(j):2:n(j)]; {<ShUN
end WhW}ZS'r
rpowers = unique(rpowers); <uuumi-!%G
9F807G\4Qt
Lw\u{E@
% Pre-compute the values of r raised to the required powers, YcA. Bn|as
% and compile them in a matrix: ^i8,9T'=
% ----------------------------- G0 EXgq8
if rpowers(1)==0 "\@J0|ppb
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); U(f@zGV
rpowern = cat(2,rpowern{:}); {P6Bfh7CZ
rpowern = [ones(length_r,1) rpowern]; dT0W8oL
else r^
Dm|^f#
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); \$_02:#
rpowern = cat(2,rpowern{:}); zls^JTE
end U:*rlA@_.
!kSemDC
aA4RC0'
% Compute the values of the polynomials: eF%M2:&c;
% -------------------------------------- STwGp<8
y = zeros(length_r,length(n)); wG)e8,#
for j = 1:length(n) MQP9^+f)O?
s = 0:(n(j)-m_abs(j))/2; OH>.N"IG
pows = n(j):-2:m_abs(j); w<B
S
for k = length(s):-1:1 zh2<!MH
p = (1-2*mod(s(k),2))* ... N 8[rWJ#
prod(2:(n(j)-s(k)))/ ... x~5,v5R^]
prod(2:s(k))/ ... k\O<pG[U
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... M1eh4IVE?
prod(2:((n(j)+m_abs(j))/2-s(k))); ) 'xyK
idx = (pows(k)==rpowers); ?>+uO0*S
y(:,j) = y(:,j) + p*rpowern(:,idx); >IS4
end 1T#-1n%[k(
Ze%S<xT!O
if isnorm 2;sTSGDG
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); U1:m=!S;x
end o*204BGB
end rS>.!DiYr,
% END: Compute the Zernike Polynomials jP<6J(
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% p^Ey6,!8]D
diNSF-wi,,
P1OYS\
% Compute the Zernike functions: O h
e^{:
% ------------------------------ "S#$:92
idx_pos = m>0; ky|k g@n{
idx_neg = m<0; )vq}$W!:9
)$p36dWl
Ia%cc
L=
z = y; dXDyY
if any(idx_pos) }uMu8)Q
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ED8{
end %S^ke`MhF
if any(idx_neg) R7IFlQH%
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); (A2ga):Pk
end s>L-0vG
M+")*Opq
:Jyr^0`J
% EOF zernfun "d-vs t5