切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9473阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, :aS8%m  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, Ghs{B8  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? _DnZ=&=MA  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? ,_,Z<X/  
    U p=J&^.  
    dMK| l   
    rvgArFf}]  
    9tDo5 29  
    function z = zernfun(n,m,r,theta,nflag) \dO9nwa?  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. .bE+dA6:v  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N />=)=CGv;  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ebxpKtEC  
    %   unit circle.  N is a vector of positive integers (including 0), and zy"wQPEE  
    %   M is a vector with the same number of elements as N.  Each element :s`~m;Y9?  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) !ba /] A/  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ~xZFm  
    %   and THETA is a vector of angles.  R and THETA must have the same `CP# S7W^  
    %   length.  The output Z is a matrix with one column for every (N,M) b+bgGLo  
    %   pair, and one row for every (R,THETA) pair. t}n:!v"|+O  
    % }F=scbpXj  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 9#Gz2u$  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 9|R]Lz3PA  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral $9k7A 8K  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, N/IDj2C4  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized .-2i9Bh6  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. s tvI  
    % b9b384Q1O  
    %   The Zernike functions are an orthogonal basis on the unit circle. `"`/_al^  
    %   They are used in disciplines such as astronomy, optics, and ^NwXvp>7-  
    %   optometry to describe functions on a circular domain. \Jq$!foYx  
    % ~5g2~.&*  
    %   The following table lists the first 15 Zernike functions. s$Z zS2d  
    % //T1e7)  
    %       n    m    Zernike function           Normalization E:'TZ4Z  
    %       -------------------------------------------------- ]Y@Db5S$T  
    %       0    0    1                                 1 E_k<EQ%r  
    %       1    1    r * cos(theta)                    2 mux_S2x9m\  
    %       1   -1    r * sin(theta)                    2 M+4>l\   
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 30cZz  
    %       2    0    (2*r^2 - 1)                    sqrt(3)  ntK#7(U'  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) 8s^CE[TA  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) - "`5r6  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) /<ODP6Yy;  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) G>"=Af(t?Y  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) QlT{8uw )  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 3<">1] /,  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) UolsF-U}'  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 2wCTd:e:  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10)  @Tk5<B3  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) l`"i'P   
    %       -------------------------------------------------- ?5@!r>i=<  
    % %A_h!3f&  
    %   Example 1: 5A^$!q P  
    % mY!os91KoO  
    %       % Display the Zernike function Z(n=5,m=1) 6_xPk`m  
    %       x = -1:0.01:1; a ;@G  
    %       [X,Y] = meshgrid(x,x); ++{,1wY\  
    %       [theta,r] = cart2pol(X,Y); KA^r,Iw  
    %       idx = r<=1; C(/{53G(  
    %       z = nan(size(X)); 2L?jp:$;X  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 4I&e_b< 30  
    %       figure nKxu8YAJe  
    %       pcolor(x,x,z), shading interp D3,9X#B=  
    %       axis square, colorbar cPu<:<F[  
    %       title('Zernike function Z_5^1(r,\theta)') 8['8ctX  
    % W:5,zFW  
    %   Example 2: Yu1[`QbB  
    % x$p_mWC  
    %       % Display the first 10 Zernike functions Rb!V{jQ  
    %       x = -1:0.01:1; S: b-+w|*  
    %       [X,Y] = meshgrid(x,x); V!^5#A<  
    %       [theta,r] = cart2pol(X,Y); rt +a/:4+  
    %       idx = r<=1; E+'P|~>oX  
    %       z = nan(size(X)); -l)u`f^n|  
    %       n = [0  1  1  2  2  2  3  3  3  3]; uB&um*DP  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; Tw`n3y?  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; Cf&.hod  
    %       y = zernfun(n,m,r(idx),theta(idx)); i"4&UJu1;  
    %       figure('Units','normalized') ON r}{T%@/  
    %       for k = 1:10 Z@i"/~B|4\  
    %           z(idx) = y(:,k); Lt|'("($*  
    %           subplot(4,7,Nplot(k)) ! J7ExfEA  
    %           pcolor(x,x,z), shading interp Wra$  
    %           set(gca,'XTick',[],'YTick',[]) Jw -?7O  
    %           axis square VDnN2)Km*  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) jPum2U_  
    %       end nogdOGo  
    % ^/`W0kT  
    %   See also ZERNPOL, ZERNFUN2. ()cqax4  
    w6cW7}ZD,  
    !t.*xT4W  
    %   Paul Fricker 11/13/2006 APR"%(xD#  
    IXA3G7$)  
    eG&3E`[  
    tV'>9YVdG  
    }hoyjzv]L  
    % Check and prepare the inputs: lPBWpHX  
    % ----------------------------- _zuX6DO  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) K*"Wq:T;B  
        error('zernfun:NMvectors','N and M must be vectors.') WciL zx/  
    end \7\7i-Vo  
    cT&!_g#g  
    f[wA ]&  
    if length(n)~=length(m) bxXNv^  
        error('zernfun:NMlength','N and M must be the same length.') #?^%#"~4H  
    end 8*$HS.Db'  
    %k+G-oT5  
    &N+i3l6`  
    n = n(:); iCZuE:I1K,  
    m = m(:); $F#eD 0|  
    if any(mod(n-m,2)) jeu|9{iTVu  
        error('zernfun:NMmultiplesof2', ... ,SZYZ 25  
              'All N and M must differ by multiples of 2 (including 0).') e]!`Cl-f80  
    end 6\BZyry3*  
    LA9'HC(5  
    3<"!h1x5  
    if any(m>n) (gQr?K  
        error('zernfun:MlessthanN', ... 1 x'H #  
              'Each M must be less than or equal to its corresponding N.') vB<2f*U  
    end :4\=xGiY  
    mD"[z}r)  
    `|2p1Ei  
    if any( r>1 | r<0 ) N~)RR {$w  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') YLU.]UC  
    end 6Qx[W>I  
    !8@8  
    ]fdxpqz  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ;JHR~ TV  
        error('zernfun:RTHvector','R and THETA must be vectors.') W>'KE:!sp  
    end Sdr,q9+__  
    j0.E!8Ae{  
    ^U.t5jj  
    r = r(:); pl.x_E,HP  
    theta = theta(:); dm~Uj  
    length_r = length(r); \jCN ]A<  
    if length_r~=length(theta) ,T;T %/ S  
        error('zernfun:RTHlength', ... zPyN2|iFah  
              'The number of R- and THETA-values must be equal.') M/5+AsT  
    end \T:*tgU  
    z0-[ RGg  
    MD+e!A#o  
    % Check normalization: OBEHUJ5  
    % -------------------- FE4P EBXvu  
    if nargin==5 && ischar(nflag) ]q":ta!f  
        isnorm = strcmpi(nflag,'norm'); ph~ d%/^jI  
        if ~isnorm *Me&> "N"  
            error('zernfun:normalization','Unrecognized normalization flag.') @;b @O _  
        end LKsK!X  
    else +zINnX  
        isnorm = false; "*HVL  
    end ur| vh5  
    H9Dw#.em  
    [ ;LP6n7v  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% QnH;+k ln  
    % Compute the Zernike Polynomials "59"HVV  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% *Kmo1>^  
    Zk<Y+!  
    d]I3zS IC  
    % Determine the required powers of r: &S9O:>=*  
    % ----------------------------------- M}\p/r=  
    m_abs = abs(m); +8Q5[lh2]j  
    rpowers = []; r3mmi5   
    for j = 1:length(n) ]wHXrB8vx  
        rpowers = [rpowers m_abs(j):2:n(j)]; VxqoE]Dh  
    end xWxgv;Ah  
    rpowers = unique(rpowers); <o"2z~gv  
    X ApSKJ  
    eEZZ0NNe;  
    % Pre-compute the values of r raised to the required powers, G @8wv J  
    % and compile them in a matrix: 3,dIW*<**  
    % ----------------------------- g..&x]aS(  
    if rpowers(1)==0 #p7_\+&5s  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); L 4Sa,ZL  
        rpowern = cat(2,rpowern{:}); 9w}_CCj3  
        rpowern = [ones(length_r,1) rpowern]; eQ80Kf~  
    else +T8]R7b9  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); z"$huE>P6  
        rpowern = cat(2,rpowern{:}); ,c6c=di  
    end 30<3DA_P  
    z:W|GDD1  
    +BgUnu26  
    % Compute the values of the polynomials: C%q]o  
    % -------------------------------------- >goG\y  
    y = zeros(length_r,length(n)); txFcV  
    for j = 1:length(n) V1 {'d[E*  
        s = 0:(n(j)-m_abs(j))/2; CQh6;[\:  
        pows = n(j):-2:m_abs(j); TFYp=xK(  
        for k = length(s):-1:1 wak`Jte=}m  
            p = (1-2*mod(s(k),2))* ... / 0y5/  
                       prod(2:(n(j)-s(k)))/              ... "VI2--%v3  
                       prod(2:s(k))/                     ... 4)].{Z4 q  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... <qjolMO`  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); +x)x&;B)/  
            idx = (pows(k)==rpowers); ZeE(gtM  
            y(:,j) = y(:,j) + p*rpowern(:,idx); Ch7&9NW  
        end 9HG"}CGZP  
         v])R6-T-  
        if isnorm ?(E?oJ)(  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); M <c cfU!  
        end 6r}w  
    end QB6. o6  
    % END: Compute the Zernike Polynomials 4mwLlYZ  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% C sx EN4  
    y2:Bv2}  
    , %$Cfu  
    % Compute the Zernike functions: |v@ zyOq&b  
    % ------------------------------ =0_((eXwf  
    idx_pos = m>0; F0tx.]uS  
    idx_neg = m<0; o>MB8[r  
    NzC&ctPk  
    _GsHT\  
    z = y; uYMH5Om+i  
    if any(idx_pos) gjc[\"0a5h  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); F:'>zB]-}  
    end +{[E Ow  
    if any(idx_neg) n$E'+kox  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); T~)zgu%q_  
    end ]:Sb#=,!&!  
    0wZAsG"Bg  
    *ez7Q   
    % EOF zernfun ?Suv.!wfLl  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  ,1g*0W^  
    7+^4v(s  
    DDE还是手动输入的呢? 5Pu F]5  
    2gbMUdpp  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究