切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9081阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, i 61k  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, /"u37f?[^  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? nM b@  B  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? hEsi AbTyF  
    ty pbwfM]  
    p:Lmf8EI  
    N8#j|yf  
    aVc{ aP  
    function z = zernfun(n,m,r,theta,nflag) L*A-&9.p3  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. Z f\~Cl  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N *`Vmncv3  
    %   and angular frequency M, evaluated at positions (R,THETA) on the A0k?$ko  
    %   unit circle.  N is a vector of positive integers (including 0), and b7Zo~ Z  
    %   M is a vector with the same number of elements as N.  Each element vI5lp5( -3  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) DmLx"%H3  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, zB`woI28  
    %   and THETA is a vector of angles.  R and THETA must have the same uXh:/KO  
    %   length.  The output Z is a matrix with one column for every (N,M) pxd=a!(  
    %   pair, and one row for every (R,THETA) pair. d,JDfG)  
    % )(-;H|]?  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ` K {k0_{  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), >5L_t   
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral [{BY$"b#:  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, SFDTHvXu#_  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized {o)pwM"@(  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Q^rR}Ws  
    % Y`bTf@EP>  
    %   The Zernike functions are an orthogonal basis on the unit circle. rHX^bcYK  
    %   They are used in disciplines such as astronomy, optics, and % |D)%|Z  
    %   optometry to describe functions on a circular domain. S\&3t}_  
    % %sr- xE  
    %   The following table lists the first 15 Zernike functions. IyyBW2  
    % yivu|q  
    %       n    m    Zernike function           Normalization L8PX SJ  
    %       -------------------------------------------------- tULGfvp  
    %       0    0    1                                 1 4#03x:/<\  
    %       1    1    r * cos(theta)                    2 y-1e(:GF  
    %       1   -1    r * sin(theta)                    2 o" ,8   
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) >dt*^}*  
    %       2    0    (2*r^2 - 1)                    sqrt(3) M[YFyM(  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) \{lv~I  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) J}X{8Ds9  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) HN{c)DIm]  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) _f^KP@^j  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) ?";SUku  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 4F~^RR"  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ob{'Z]-V  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) D'#Q`H  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) #lLUBJ#:  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) ([u|j  
    %       -------------------------------------------------- "[|b,fxR  
    % x [FLV8`b|  
    %   Example 1: 'Be'!9K*d  
    % n_e'n|T  
    %       % Display the Zernike function Z(n=5,m=1) UUJQc ~=  
    %       x = -1:0.01:1; L9 D`hefz  
    %       [X,Y] = meshgrid(x,x); kk3^m1  
    %       [theta,r] = cart2pol(X,Y); sV  
    %       idx = r<=1; MCT1ZZpPr  
    %       z = nan(size(X)); M`Er&nQs  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); |/*Pimk  
    %       figure XWp8[Cx s  
    %       pcolor(x,x,z), shading interp y~ =H`PAE  
    %       axis square, colorbar J/?Nf2L4  
    %       title('Zernike function Z_5^1(r,\theta)') ~ y!'\d>q<  
    % $>XeC}"x68  
    %   Example 2: i/ilG 3m>  
    % c~Ka) dF|  
    %       % Display the first 10 Zernike functions } p'ZMj&  
    %       x = -1:0.01:1; &[.`xZ(|  
    %       [X,Y] = meshgrid(x,x); !.] JiT'o  
    %       [theta,r] = cart2pol(X,Y); d!y*z  
    %       idx = r<=1; =^nb+}Nz(  
    %       z = nan(size(X)); +J X;T(T  
    %       n = [0  1  1  2  2  2  3  3  3  3]; M<fhQJ  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; H$(bSw$  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; \n) ',4mY  
    %       y = zernfun(n,m,r(idx),theta(idx)); 1PkCWRpR  
    %       figure('Units','normalized') u]J@65~'b  
    %       for k = 1:10 []>'Dw_r  
    %           z(idx) = y(:,k); '-;[8:y.  
    %           subplot(4,7,Nplot(k)) qos7u91z  
    %           pcolor(x,x,z), shading interp JbMTULA  
    %           set(gca,'XTick',[],'YTick',[]) e`D}[G#  
    %           axis square B[t^u\Fk  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) %iN>4;T8  
    %       end Dm>"c;2  
    % 5AYOM=O]t  
    %   See also ZERNPOL, ZERNFUN2. W(s4R,j  
    iQwQ5m!d &  
    OU[<\d  
    %   Paul Fricker 11/13/2006 {*ak>Wud  
    ?{{w[U6NE  
    :]^e-p!z  
    !_<6}:ZB  
    IHl q27O  
    % Check and prepare the inputs: c3A\~tHW  
    % -----------------------------  P#,u9EIJ  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) SUncQJJ0S*  
        error('zernfun:NMvectors','N and M must be vectors.') n|SV)92o1  
    end (yOkf-e2y  
    )O]T}eI  
    Hcq.Lq;2:  
    if length(n)~=length(m) 157_0  
        error('zernfun:NMlength','N and M must be the same length.') ~GaGDS\V  
    end ly[LF1t   
    4q$~3C[  
    /Rp]"S vt  
    n = n(:); l>?c AB[  
    m = m(:); |?`5~f  
    if any(mod(n-m,2)) [4Z 31v>  
        error('zernfun:NMmultiplesof2', ... "/#JC} ]  
              'All N and M must differ by multiples of 2 (including 0).') H"C'<(4*\  
    end u2V-V#jS  
    mP(3[a_Q  
    w2 )Ro:G  
    if any(m>n) qS!r<'F3dP  
        error('zernfun:MlessthanN', ... n/H OP  
              'Each M must be less than or equal to its corresponding N.') 5gszAvOO  
    end XH:*J+$O  
    Lpchla$  
    S2~cAhR|M  
    if any( r>1 | r<0 ) [|u^:&az  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') ]$ew 5%  
    end j]a$RC#  
    0&.CAHb}  
    #x%'U}sF  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) |D3u"Y!:^  
        error('zernfun:RTHvector','R and THETA must be vectors.') gt&|T j  
    end |.IH4 K  
    X|M!Nt0'  
    o_b[*  
    r = r(:); i%glQT  
    theta = theta(:); [&Xp]:M'D  
    length_r = length(r); TBhM^\z  
    if length_r~=length(theta) Tt[zSlIMx  
        error('zernfun:RTHlength', ... h$>F}n j  
              'The number of R- and THETA-values must be equal.') )^h6'h`  
    end ?HZp @ &  
    +>w]T\[1~  
    ZO}Og&%  
    % Check normalization: _`$LdqgE  
    % -------------------- q!c(~UVw  
    if nargin==5 && ischar(nflag) 0bNvmZ$  
        isnorm = strcmpi(nflag,'norm'); 6Z/`p~e  
        if ~isnorm ]`E+HLEQ'  
            error('zernfun:normalization','Unrecognized normalization flag.') Nz{dnV{&x;  
        end Ycm)PU["  
    else 4DXbeQs:  
        isnorm = false; FoefBo?g65  
    end bIKg>U'5d  
    JuRoeq.  
    0r]n 0?x  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% gjF5~ `  
    % Compute the Zernike Polynomials sE9FT#iE  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% XGlt^<`  
    eh# 37*-  
    N,ht<l\  
    % Determine the required powers of r: B.<SC  
    % ----------------------------------- @|!4X(2  
    m_abs = abs(m); BT{;^Hp  
    rpowers = []; ]5W$EvZ9)  
    for j = 1:length(n) E(qYCafC  
        rpowers = [rpowers m_abs(j):2:n(j)]; LyUn!zV$(  
    end myx/|-V"F  
    rpowers = unique(rpowers); q:{#kv8  
    1CtUf7 `/Q  
    p< R:[rz  
    % Pre-compute the values of r raised to the required powers, Hg+<GML  
    % and compile them in a matrix: Q&m85'r5X  
    % ----------------------------- Re%[t9 F&  
    if rpowers(1)==0 )W@u g,y  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); t2&kGf"  
        rpowern = cat(2,rpowern{:}); K/4@ 2vF  
        rpowern = [ones(length_r,1) rpowern]; vwR_2u  
    else >WLPE6E  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ?z ,!iK`  
        rpowern = cat(2,rpowern{:}); &|SWy 2 N  
    end uL'f8Pqg  
    |5@Ra@0  
    h!"2Ux3!x  
    % Compute the values of the polynomials: A`c22Ls]  
    % -------------------------------------- 3)OZf{D[  
    y = zeros(length_r,length(n)); 3F9V,zWtTi  
    for j = 1:length(n) D?|D)"?qb  
        s = 0:(n(j)-m_abs(j))/2; ~G@NWF?7  
        pows = n(j):-2:m_abs(j); pP\Cwo #,  
        for k = length(s):-1:1 {1GJ,['qL  
            p = (1-2*mod(s(k),2))* ... $Dg-;I  
                       prod(2:(n(j)-s(k)))/              ... r}U6LE?>  
                       prod(2:s(k))/                     ... %wD#[<BGn>  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... D(cD8fn,J  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); ?y>N&\pt2  
            idx = (pows(k)==rpowers); HKN|pO3v  
            y(:,j) = y(:,j) + p*rpowern(:,idx); IrwQ~z3I  
        end }"Y<<e<z:  
         _h%Jf{nu  
        if isnorm .X g.,kW  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); HC0juT OiO  
        end (qcFGM22U  
    end zI88IM7/  
    % END: Compute the Zernike Polynomials J_s`G  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% UG1<Xfu|  
    z*3b2nV  
    2w>%-_]u+  
    % Compute the Zernike functions: Khq\@`RaT  
    % ------------------------------ s|YH_1r  
    idx_pos = m>0; qLR;:$]Q&8  
    idx_neg = m<0;  ^`H'LD  
    wl=tN{R  
    ]aN9mT N  
    z = y; eAHY/Y!  
    if any(idx_pos) g 2Fg  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); $-_" SWG.  
    end )1<0c@g=  
    if any(idx_neg) )! [B(  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); goM;Pf "<  
    end B<W}:>3  
    =fSTncq  
    j/v>,MM  
    % EOF zernfun f/\!=sa:  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  '3XOU.  
    S|d /?}C|e  
    DDE还是手动输入的呢? "eoPG#]&  
    f$</BND  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究