切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9532阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, x/4lD}Pw]  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, a.Mp1W  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? iYnw?4Y  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? I{RktO;1  
    2'x_zMV  
    y k#:.5H  
    .<j8>1  
    TIvLY5 HG  
    function z = zernfun(n,m,r,theta,nflag) ZU:gNO0  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. $OUa3!U_!  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N +0=RC^   
    %   and angular frequency M, evaluated at positions (R,THETA) on the >"Hj=?  
    %   unit circle.  N is a vector of positive integers (including 0), and HSUr  
    %   M is a vector with the same number of elements as N.  Each element r1=Zoxc=w  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) Vl'=92t  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, HML6<U-eS  
    %   and THETA is a vector of angles.  R and THETA must have the same Tok"-$`N  
    %   length.  The output Z is a matrix with one column for every (N,M) a;h:o>Do5  
    %   pair, and one row for every (R,THETA) pair. )Z^( +  
    % /g8yc'{p  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike k(7! W  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ^L'K?o  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral ioviJ7N% O  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, $GPA6  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized IBuuZ.=j2h  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. T2Vj &EA@  
    % %r>vZ/>a  
    %   The Zernike functions are an orthogonal basis on the unit circle. p,4z;.s$  
    %   They are used in disciplines such as astronomy, optics, and D~%cf  
    %   optometry to describe functions on a circular domain. W5x]bl#  
    % (Q'XjN\#  
    %   The following table lists the first 15 Zernike functions. aI\VqOt]  
    % zO+nEsf^O  
    %       n    m    Zernike function           Normalization YJ"gm]Pm  
    %       -------------------------------------------------- JZc5U}i  
    %       0    0    1                                 1 V3m!dp]  
    %       1    1    r * cos(theta)                    2 ]ny(l#Hu:  
    %       1   -1    r * sin(theta)                    2 d3![b1  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) $]T7Iwk  
    %       2    0    (2*r^2 - 1)                    sqrt(3) ?Rwn1.Z  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) Tru`1/ 7I  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) m.$Oo Mu'  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) [lnN~#(Y  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) $:xUXEi{  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 6iTDk  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) % ,X(GwX  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) L3W ^ip4  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) Ft|a/e  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) dB/Ep c&   
    %       4    4    r^4 * sin(4*theta)             sqrt(10) ~bwFQYY=  
    %       -------------------------------------------------- e)iVX<qb  
    % >a0;|;hp  
    %   Example 1: Cr[#D$::`  
    % gr7W&2x7\  
    %       % Display the Zernike function Z(n=5,m=1) I#mT#xs6  
    %       x = -1:0.01:1; /!E /9[V  
    %       [X,Y] = meshgrid(x,x); Z2`e*c-[E  
    %       [theta,r] = cart2pol(X,Y); : ._O.O  
    %       idx = r<=1; -kJF@w6u  
    %       z = nan(size(X)); <iMkHch  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); `"bm Hs7  
    %       figure |[: `izW  
    %       pcolor(x,x,z), shading interp "2;UXX-H  
    %       axis square, colorbar J:Qp(s-N^:  
    %       title('Zernike function Z_5^1(r,\theta)') :wF(([&4p!  
    % '1mygplW  
    %   Example 2: i|=XW6J%  
    % ZWr\v!4  
    %       % Display the first 10 Zernike functions sn *s7v:  
    %       x = -1:0.01:1; %TR->F  
    %       [X,Y] = meshgrid(x,x); 7.=u:PK7kM  
    %       [theta,r] = cart2pol(X,Y); g\^(>Ouc  
    %       idx = r<=1; C :e 'wmA  
    %       z = nan(size(X)); 9~4Kbmr>q  
    %       n = [0  1  1  2  2  2  3  3  3  3]; z1L.  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; &,#VhT![  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; `P GWu1/  
    %       y = zernfun(n,m,r(idx),theta(idx)); \/,SH?>4x  
    %       figure('Units','normalized') P EbB0GL  
    %       for k = 1:10 'LX=yL]I  
    %           z(idx) = y(:,k); <n#JOjHV  
    %           subplot(4,7,Nplot(k)) |M0TG  
    %           pcolor(x,x,z), shading interp SGbo|Xe7:  
    %           set(gca,'XTick',[],'YTick',[]) 7N""w5  
    %           axis square [Y:HVr,  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 4RzG3CJdS  
    %       end foN;Q1?lS  
    % K@d`jb4T  
    %   See also ZERNPOL, ZERNFUN2. )pzXC  
    3NJ-.c@(p  
    (_W[~df4  
    %   Paul Fricker 11/13/2006 HPgMVp'  
    i?a]v 5  
    p@^2 .O+  
    u!X 2ju<  
    (* 2"dd  
    % Check and prepare the inputs: P]y5E9 k  
    % ----------------------------- ,= PDL  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 'fgDe  
        error('zernfun:NMvectors','N and M must be vectors.') QKF2_Acc   
    end N* z<VZ  
    -Pvt+I>  
    Q647a}  
    if length(n)~=length(m) F4PD3E_#  
        error('zernfun:NMlength','N and M must be the same length.') %tu{`PN<  
    end nU`;MW/^w  
    vi=yR  
    1k hwwoo  
    n = n(:); tC&y3!k2jR  
    m = m(:); X`vDhfh>N  
    if any(mod(n-m,2)) {UhZ\qe  
        error('zernfun:NMmultiplesof2', ... ?/u&U\P  
              'All N and M must differ by multiples of 2 (including 0).') gF:wdcO  
    end pu^1s#g8w  
    $)uQ%/DH>  
    x~mXtqg  
    if any(m>n) [F>zM  
        error('zernfun:MlessthanN', ... im?nR+t+X  
              'Each M must be less than or equal to its corresponding N.') )-sEm`(`I9  
    end qa Q  
    -~xd-9v?  
    .)o5o7H  
    if any( r>1 | r<0 ) SnXLjJe  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') !K@y B)9  
    end G(4k#jB  
    x0 #+yP  
    LD5'4,%-  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 7X.1QSuE  
        error('zernfun:RTHvector','R and THETA must be vectors.') LQS*/s0  
    end Ylf6-FbF  
    i<T`]g  
    Oe=,-\&_  
    r = r(:); &fTCY-W[  
    theta = theta(:); zZy>XHR H  
    length_r = length(r); FX'W%_f,  
    if length_r~=length(theta) Ky=&C8b<  
        error('zernfun:RTHlength', ... $X{& KLM[  
              'The number of R- and THETA-values must be equal.') ;J _d%  
    end (Hs frc  
    EuAa  
    7Jqp2\  
    % Check normalization: NT nn!k  
    % -------------------- gf!j|O;  
    if nargin==5 && ischar(nflag) !F%dE!  
        isnorm = strcmpi(nflag,'norm'); G%P]qi  
        if ~isnorm CUtk4;^y#  
            error('zernfun:normalization','Unrecognized normalization flag.') HgMDw/D(  
        end d,>l;l  
    else \GkcK$Y  
        isnorm = false; U9 If%0P  
    end dzcPSbbpt  
    $@<\$I2s  
    >!wwXhH(  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 1k7E[G~G|  
    % Compute the Zernike Polynomials abK/!m[q  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ePF9Vzq  
    -8TLnl~[  
    )oNomsn  
    % Determine the required powers of r: |ST&,a$(  
    % ----------------------------------- M5q7` }>G  
    m_abs = abs(m); MdPwuXI  
    rpowers = []; bySw#h_  
    for j = 1:length(n) Sz . _XY^  
        rpowers = [rpowers m_abs(j):2:n(j)]; 3sL#_@+yz  
    end ugL$W@   
    rpowers = unique(rpowers); d9^h YS{  
    O[m+5+  
    H<q:+  
    % Pre-compute the values of r raised to the required powers, R{WG>c  
    % and compile them in a matrix: I7}[%(~Sf/  
    % ----------------------------- r9QNE>UG  
    if rpowers(1)==0 D4S>Pkv  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); \;sUJr"$  
        rpowern = cat(2,rpowern{:}); xOt|j4  
        rpowern = [ones(length_r,1) rpowern]; m/{rmtA4  
    else |5W u0T  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); c~Ha68  
        rpowern = cat(2,rpowern{:}); Lkb?,j5  
    end `yf#(YP  
    *AJW8tIP  
    2yN~[, L  
    % Compute the values of the polynomials: 0)nU[CY  
    % -------------------------------------- ~+1t 17  
    y = zeros(length_r,length(n)); @-W)(9kZ|  
    for j = 1:length(n) m!PN1$9V  
        s = 0:(n(j)-m_abs(j))/2; EBn7waBS  
        pows = n(j):-2:m_abs(j); S4\T (  
        for k = length(s):-1:1 [#.QDe  
            p = (1-2*mod(s(k),2))* ... LsLsSV  
                       prod(2:(n(j)-s(k)))/              ... '91Ak,cWB  
                       prod(2:s(k))/                     ... HID;~Ne  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... uh GL1{  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); }6o` in>M  
            idx = (pows(k)==rpowers); sqkPC_;A  
            y(:,j) = y(:,j) + p*rpowern(:,idx); OW6i2>Or  
        end Va{`es)hky  
         5` Q#2  
        if isnorm -m-~  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); f-3lJ?6  
        end |i|>-|`!  
    end (llg!1  
    % END: Compute the Zernike Polynomials :lcoSJ  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% BK-{z).)  
    {>syZZ,h  
    /Jo*O=Lpo  
    % Compute the Zernike functions: `M|fwlAJQ  
    % ------------------------------ VkUMMq{  
    idx_pos = m>0; **oN/5  
    idx_neg = m<0; @Gl=1  
    n}YRE`>D  
    b2ZKhS8  
    z = y; p-;*K(#X  
    if any(idx_pos) g<tr |n  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ['{mW4i  
    end ZX'/[wAN)  
    if any(idx_neg) eM{+R^8  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); }2G'3msx  
    end l.FkX  
    9CxU: ;3  
    [X;yJ$  
    % EOF zernfun 'w&,3@Z  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  /o L& <e  
    #!?jxfsFa  
    DDE还是手动输入的呢? nQ*9E|Vx  
    2~`vV'K  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究