下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, i+HHOT
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, Ho; bgva
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? MKN],l
N
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? <^(g<B`>
eDPmUlC+-
)2jBhT
{g(-C&
%VD>S
function z = zernfun(n,m,r,theta,nflag) oH|<(8efD
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. UI>?"b6
L
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N oj1,DU
% and angular frequency M, evaluated at positions (R,THETA) on the cc^ [u+
% unit circle. N is a vector of positive integers (including 0), and )W& $FU4JK
% M is a vector with the same number of elements as N. Each element z3:tSjF
% k of M must be a positive integer, with possible values M(k) = -N(k) 3r(i=ac0
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, b\O%gg\p%!
% and THETA is a vector of angles. R and THETA must have the same ~Z#jIG<?g
% length. The output Z is a matrix with one column for every (N,M) b0_Ih6
% pair, and one row for every (R,THETA) pair. .s!qf!{V`
% :"oQ _bLT
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike R~R ?0aq
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), hh<Es|v
% with delta(m,0) the Kronecker delta, is chosen so that the integral ]wQ#8}zO
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, eJ23$VM+9
% and theta=0 to theta=2*pi) is unity. For the non-normalized _v9P0W^.7
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. igD,|YSK`z
% XeT{y]lkd
% The Zernike functions are an orthogonal basis on the unit circle. Z/S7ei@56
% They are used in disciplines such as astronomy, optics, and \%FEQa0u
% optometry to describe functions on a circular domain. voHFU#Z$
%
jo_wBJKE
% The following table lists the first 15 Zernike functions. *=X$j~#X
% (haYY]W\
% n m Zernike function Normalization RvPC7,vh
% -------------------------------------------------- mw*BaDN@Q
% 0 0 1 1 =R
<X!@
% 1 1 r * cos(theta) 2 ^<}eONa
% 1 -1 r * sin(theta) 2 s@ ~Y!A
% 2 -2 r^2 * cos(2*theta) sqrt(6) O*ql!9}E{
% 2 0 (2*r^2 - 1) sqrt(3) _K?{DnTb
% 2 2 r^2 * sin(2*theta) sqrt(6) VkNg Vjg
% 3 -3 r^3 * cos(3*theta) sqrt(8) I,@f*o
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 1eZ759PoO
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) pUz;e#J|
% 3 3 r^3 * sin(3*theta) sqrt(8) c9eLNVM
% 4 -4 r^4 * cos(4*theta) sqrt(10) h!L/ZeRaV
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 9y~5@/32R
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) sr&hQ
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) BSGC.>$s
% 4 4 r^4 * sin(4*theta) sqrt(10) JAK+v
% -------------------------------------------------- tX$v)O|
% fgW>U*.ar
% Example 1: H.HXwN/x
% _U"9#<
% % Display the Zernike function Z(n=5,m=1) 2)A% 'Akf
% x = -1:0.01:1; 1$*ZN4
% [X,Y] = meshgrid(x,x); U '#Xwax
% [theta,r] = cart2pol(X,Y); GYX/G>-r
% idx = r<=1; V4PV@{G
% z = nan(size(X)); _^ 2rRz
% z(idx) = zernfun(5,1,r(idx),theta(idx)); !`rR;5&sT
% figure g.3a5#t
% pcolor(x,x,z), shading interp FSs<A@
% axis square, colorbar l1&NU'WW
% title('Zernike function Z_5^1(r,\theta)') R*l#[D5A
% J m5).
% Example 2: c?;YufH'j
% KZ"&c~[
% % Display the first 10 Zernike functions 0.9%m7.m
% x = -1:0.01:1; _7h:NLd
% [X,Y] = meshgrid(x,x); JfJLJ(}
% [theta,r] = cart2pol(X,Y); ^ *{:;F@
% idx = r<=1; ID-Y*
% z = nan(size(X)); !&$uq|-
% n = [0 1 1 2 2 2 3 3 3 3]; ,-11w7y\
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; ]Cfjs33H
% Nplot = [4 10 12 16 18 20 22 24 26 28]; BP& T|s
% y = zernfun(n,m,r(idx),theta(idx)); g9A8b(>F&@
% figure('Units','normalized') P;V$%r`yD
% for k = 1:10 Pp*:rA"N
% z(idx) = y(:,k); zPonG
d1
% subplot(4,7,Nplot(k)) m0I)_R#X[
% pcolor(x,x,z), shading interp g H+s)6
% set(gca,'XTick',[],'YTick',[]) o_.f7|U!
% axis square \i*QKV<
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 1%v!8$
% end WR a4g
% }=dUASL
% See also ZERNPOL, ZERNFUN2. +[JvpDv%
k$kOp *X
A&d67,&B
% Paul Fricker 11/13/2006 MY8[)<q"
B<99-7x3
y@#JzfY?Hr
b9F:X
7Rba@ cs9
% Check and prepare the inputs: K@JGGgrE`!
% ----------------------------- ma +iIt;
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Ix-bJE6+I,
error('zernfun:NMvectors','N and M must be vectors.') ?5N7,|K)
end N)kZ2|oD
>1}RiOd3
:>:F6Db"U
if length(n)~=length(m) St1Ny,$yU
error('zernfun:NMlength','N and M must be the same length.') !mjrI "_
end eK=W'cNu
9!``~]G2
~`xaBz0q
n = n(:); X
j>?P/=Z
m = m(:); S%^*h{9u"
if any(mod(n-m,2)) U<YP@?w
error('zernfun:NMmultiplesof2', ... wWVLwp4-
'All N and M must differ by multiples of 2 (including 0).') vKcZgIR
end M$ jU-;hRH
F*}.0SQ
$QNII+o
if any(m>n) b1*5#2rs.
error('zernfun:MlessthanN', ... dR9[K4`p/
'Each M must be less than or equal to its corresponding N.') m@Q%)sc)
end !OCb^y
8\N`2mPt
1edeV48{:
if any( r>1 | r<0 ) !kTI@103Wd
error('zernfun:Rlessthan1','All R must be between 0 and 1.') 6UK}?+r~
end TtWE:xE
6>X9|w
wN+3OPM
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) nlq"OzcH04
error('zernfun:RTHvector','R and THETA must be vectors.') 5x2m]u
end ]8m_+:`=
RT`jWWh*Lo
^$D2fS
r = r(:); h1(GzL%i_
theta = theta(:); )y .1}R2[
length_r = length(r); sTb@nrRxH
if length_r~=length(theta) * NB:"1x
error('zernfun:RTHlength', ... 1MPn{#Ff
'The number of R- and THETA-values must be equal.') z6Xn9
end q-3e^-S*
&gr)U3w
a(s%3"*Q
% Check normalization: %3@a|#g
% -------------------- s"xiGp9
if nargin==5 && ischar(nflag) f]*TIYicc
isnorm = strcmpi(nflag,'norm'); 8HaBil
if ~isnorm wn&5Ul9Elb
error('zernfun:normalization','Unrecognized normalization flag.') ?xT ^9
end a3Fe42G2c|
else 7rZE7+%]
isnorm = false; VGVb3@
end ar%!h~
:&'[#%h8
y.6Yl**l
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% w(EUe4 w{
% Compute the Zernike Polynomials UWPzRk#s"
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% !D!1%@
e
g{U?Y"
/hC'-6:]^
% Determine the required powers of r: ukAE7O(W&
% ----------------------------------- X%lk] &2
m_abs = abs(m); mR1|8H!f
rpowers = []; ^rX5C2}G\D
for j = 1:length(n) qQ/<\6Sl
rpowers = [rpowers m_abs(j):2:n(j)]; 6$y$ VeW
end b;~?a#Z}
rpowers = unique(rpowers); l.Yq4qW
lI&5.,2MP
U'Mxf'q
% Pre-compute the values of r raised to the required powers, @@QB,VS;{<
% and compile them in a matrix: upc-Qvk
% ----------------------------- Vgg'5o&.
if rpowers(1)==0 4*Y`Pn@
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); X[;-SXq
rpowern = cat(2,rpowern{:}); O,Sqh$6U
rpowern = [ones(length_r,1) rpowern]; w dpd`
else ~1g)4g~
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); :%2uZ/cG(
rpowern = cat(2,rpowern{:}); '0tNo.8K
end 1(4}rB3
}n;.E&<[
Y2&hf6BE
% Compute the values of the polynomials: p8bAz
% -------------------------------------- BHrNDpv
y = zeros(length_r,length(n)); }48o{\
for j = 1:length(n) ig}H7U2q@
s = 0:(n(j)-m_abs(j))/2; rIRkXO)
pows = n(j):-2:m_abs(j); g5>c-i
for k = length(s):-1:1 L8.u7(-#
p = (1-2*mod(s(k),2))* ... CeD(!1VG
prod(2:(n(j)-s(k)))/ ... #P/}'rdt
prod(2:s(k))/ ... $:!L38[7$
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... [`/d$V!e
prod(2:((n(j)+m_abs(j))/2-s(k))); {Hr
P;)
idx = (pows(k)==rpowers); Cu-z`.#}R
y(:,j) = y(:,j) + p*rpowern(:,idx); 0J5IO|1M
end Q?WgGE4>
^sb+|b
if isnorm - D^.I
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); UkzLUok]U
end Bm:N@wg
end =Dc9|WuHN
% END: Compute the Zernike Polynomials 227 Z6#CF!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /vrjg)fer
s&Lyg>>`
a$2WL g,
% Compute the Zernike functions: LP:U6 Z
% ------------------------------ 3uJ>:,~r
idx_pos = m>0; =CGB}qU l0
idx_neg = m<0; E
As1
=
I?#B_ R#
csCi0'u
z = y; ("T8 mt[w>
if any(idx_pos) +~l`rJ
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); s3+6Z~g'B
end ~9h/{$
if any(idx_neg) yIG*
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); =Xu(Js-
end -$@4e|e%a
GkYD:o=qx
Zzea
% EOF zernfun jdW#;
]7+y