切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9214阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, q^Tis>*u6  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, Dx+ K+(  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? Bku' H  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? u}jrfKd E  
    "n?<2 wso  
    Q7Ij4  
    rY70 ^<z  
    2R@%Y/  
    function z = zernfun(n,m,r,theta,nflag) H^(L90  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. F>Jg~ FD*  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 1kFjas `g  
    %   and angular frequency M, evaluated at positions (R,THETA) on the YdOUv|tZC  
    %   unit circle.  N is a vector of positive integers (including 0), and W"sr$K2m|  
    %   M is a vector with the same number of elements as N.  Each element R{3CW^1  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) W cGXp$M  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, n6f3H\/P&  
    %   and THETA is a vector of angles.  R and THETA must have the same  4#rAm"H  
    %   length.  The output Z is a matrix with one column for every (N,M) :c4kBl%gJ  
    %   pair, and one row for every (R,THETA) pair. 'U)8rR  
    % K5flit4-  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 9YC&&0 C@  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), rihlae5Kz  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 1D1b"o  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, |~$7X  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized D Vw Cx^  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. \C/z%Hf7-  
    % f=ib9WbR#  
    %   The Zernike functions are an orthogonal basis on the unit circle. 'Z7P  
    %   They are used in disciplines such as astronomy, optics, and nFXAF!,jj  
    %   optometry to describe functions on a circular domain. 7%CIt?Z%  
    % zqGYOm$r  
    %   The following table lists the first 15 Zernike functions. oh&Y< d0  
    % L>nO:`>h  
    %       n    m    Zernike function           Normalization D@hmO]5c  
    %       -------------------------------------------------- JuJ5qIal  
    %       0    0    1                                 1 V\zsDP  
    %       1    1    r * cos(theta)                    2 N(R,8GF5G  
    %       1   -1    r * sin(theta)                    2  c!D> {N  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) WEC-<fN|Y\  
    %       2    0    (2*r^2 - 1)                    sqrt(3) s/ S+ ec3  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) %FS;>;i?  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) RndOm.TE  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 6Bdyf(t  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) :&$Xe1)i]  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) MVAc8dS  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 9p<:LZd~  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Mf7E72{D  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) >4'21,q  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) n\~yX<;X3  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) I"V3+2e  
    %       -------------------------------------------------- )dg UmN  
    % w4}(Ab<Y  
    %   Example 1: R6Pz#`n  
    % {G.{a d  
    %       % Display the Zernike function Z(n=5,m=1) N7B}O*;  
    %       x = -1:0.01:1; B}5XRgq  
    %       [X,Y] = meshgrid(x,x); *2:Yf7rvI+  
    %       [theta,r] = cart2pol(X,Y); ddMM74  
    %       idx = r<=1; ^V,@=QL3U  
    %       z = nan(size(X)); /O"0L/hc^  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); %0(>!SY  
    %       figure MZi8Fo'  
    %       pcolor(x,x,z), shading interp ]Hj`2\KD.d  
    %       axis square, colorbar 0C7"3l  
    %       title('Zernike function Z_5^1(r,\theta)') -AeHY'T  
    % A?V<l<EAm  
    %   Example 2: Z{16S=0  
    % %>]#vQ|  
    %       % Display the first 10 Zernike functions % NwoU%q  
    %       x = -1:0.01:1; sp,(&Y]US  
    %       [X,Y] = meshgrid(x,x); %w%zv2d  
    %       [theta,r] = cart2pol(X,Y); Es,0'\m&  
    %       idx = r<=1; rN'k4V"K  
    %       z = nan(size(X)); gU*I;s>  
    %       n = [0  1  1  2  2  2  3  3  3  3]; .=aMjrME  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 6!o/~I#  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; :if5z2PE/  
    %       y = zernfun(n,m,r(idx),theta(idx)); ^)'||Ly  
    %       figure('Units','normalized') _4S7wOq5  
    %       for k = 1:10 -*5yY#fw}  
    %           z(idx) = y(:,k); '4Y*-!9  
    %           subplot(4,7,Nplot(k)) th;]Vo  
    %           pcolor(x,x,z), shading interp )%1&/uN)  
    %           set(gca,'XTick',[],'YTick',[]) /iTH0@Kw;  
    %           axis square q .)^B@}_  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) j[BgP\&,  
    %       end D`5: JR-{  
    % C(ZcR_+r$,  
    %   See also ZERNPOL, ZERNFUN2. yl|R:/2V  
    ,7/\&X<`B  
    0c{Gr 0[>  
    %   Paul Fricker 11/13/2006 |oB]6VS`  
    gB'`I(q5.  
    ec,z6v^9  
    cbY3mSfn*  
    ;2 \<M 6  
    % Check and prepare the inputs: a:wJ/ p  
    % ----------------------------- I\)N\mov e  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 9 ?[4i'  
        error('zernfun:NMvectors','N and M must be vectors.') P/HHWiD`D  
    end r{c5dQ  
    + 4++Z  
    I%C]>ZZh  
    if length(n)~=length(m) LjX&' ,  
        error('zernfun:NMlength','N and M must be the same length.') J#_\+G i  
    end !G@V<'F  
    %Gnd"SGs  
    Ni/|C19Z  
    n = n(:); oTZo[T@zRx  
    m = m(:); \Gv-sA  
    if any(mod(n-m,2)) 4h[2C6 \+`  
        error('zernfun:NMmultiplesof2', ... k{!iDZr&f,  
              'All N and M must differ by multiples of 2 (including 0).') iFXUKGiV  
    end =2Pz$q*ub  
    75' Ua$  
    BNF++<s  
    if any(m>n)  ||bA  
        error('zernfun:MlessthanN', ... ](idf(j  
              'Each M must be less than or equal to its corresponding N.') _ +u sn.  
    end z0FR33-  
    +<vqkc  
    * <Nk%`  
    if any( r>1 | r<0 ) OD>u$tI9  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') g#pIMA#/  
    end sf=%l10Fk#  
    0EF,uRb  
    :C}KI)  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) U<#$w{d:  
        error('zernfun:RTHvector','R and THETA must be vectors.') -sruxF  
    end >& 4I.nA  
    _%C_uBLi  
    pb$ An<P  
    r = r(:); #w[q.+A  
    theta = theta(:); w0F:%:/  
    length_r = length(r); KR+aY.  
    if length_r~=length(theta) hvwnG>m\  
        error('zernfun:RTHlength', ... 23.y3t_?  
              'The number of R- and THETA-values must be equal.') 10a=YG  
    end 5G dY7t_1  
    x(T!I&i={  
    !ds"88:5^  
    % Check normalization: S0X.8Bq  
    % -------------------- Al;%u0]5  
    if nargin==5 && ischar(nflag) &eLQ;<qO*|  
        isnorm = strcmpi(nflag,'norm'); U[H+87zg  
        if ~isnorm wjw<@A9  
            error('zernfun:normalization','Unrecognized normalization flag.') ]-+.lR%vd9  
        end o>QFd x  
    else N23+1h  
        isnorm = false; ^+Y-=2u:  
    end rA>A=,  
     `i_L?C7  
    (PE8H~d  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% RLeSA\di  
    % Compute the Zernike Polynomials )SlUQ7f>  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% v\r7.l:hf  
    UH.}B3H   
    ~ L i%  
    % Determine the required powers of r: 6O[wVaC1u  
    % ----------------------------------- Y~\`0?ST  
    m_abs = abs(m); vb80J<4  
    rpowers = []; 2rE~V.)%  
    for j = 1:length(n) dcc%G7w  
        rpowers = [rpowers m_abs(j):2:n(j)]; v;NZ"1=_  
    end F"HI>t)>  
    rpowers = unique(rpowers); 0wa!pE"  
    (tz_D7c$F  
    WP#_qqO  
    % Pre-compute the values of r raised to the required powers, 0ga1Yr]  
    % and compile them in a matrix: 6=`m   
    % ----------------------------- p7ns(g@9  
    if rpowers(1)==0 3R$CxRc:  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); odn97,A  
        rpowern = cat(2,rpowern{:}); ~_^o?NE,  
        rpowern = [ones(length_r,1) rpowern];  h(N 9RJ}  
    else <^X'f  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); qyG636i  
        rpowern = cat(2,rpowern{:}); H--*[3".  
    end ;Kd{h  
    8BoT%kVeJv  
    #B.w7y5*  
    % Compute the values of the polynomials: ,oi`BOh  
    % -------------------------------------- Xxsnpb>  
    y = zeros(length_r,length(n)); E[htB><  
    for j = 1:length(n) DJ2]NA$Q*  
        s = 0:(n(j)-m_abs(j))/2; ^Hhw(@`qf  
        pows = n(j):-2:m_abs(j); %(7wZ0Z  
        for k = length(s):-1:1 Hr8$1I$=  
            p = (1-2*mod(s(k),2))* ... .8uwg@yD  
                       prod(2:(n(j)-s(k)))/              ... 5}l#zj  
                       prod(2:s(k))/                     ... BC0c c[x  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... E+m"yQp{  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 0)]C&;}_M  
            idx = (pows(k)==rpowers); re 1k]  
            y(:,j) = y(:,j) + p*rpowern(:,idx); hhgz=7Y  
        end GO GXM4I  
         cTIwA:)D  
        if isnorm A(@gv8e[H^  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); oJ;O>J@c  
        end kI[O{<kQ  
    end _=^hnv  
    % END: Compute the Zernike Polynomials 5`{;hFl  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% i,b7Ft:F&  
    ';CuJ XAj  
    )D-.7m.v]  
    % Compute the Zernike functions: 6Cv2>'{S  
    % ------------------------------ ZT6X4 Z  
    idx_pos = m>0; -O> mY)  
    idx_neg = m<0; @7Rt[2"e  
    9xS`@ "`  
    U.j\u>a  
    z = y; pZJQKTCG  
    if any(idx_pos) m ?"%&|  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); }ok nB  
    end iYQy#kO  
    if any(idx_neg) mW(_FS2%,  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ]Q_G /e  
    end [W|7r n,q  
    {$TB#=G  
    {F9Qy0.*u  
    % EOF zernfun A%8`zR  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  v]S8!wU  
    %,RU)}  
    DDE还是手动输入的呢? @6 `@.iZ  
    lI<8)42yq  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究