切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9520阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, V&R_A~<T  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, $*;ke5Dm4  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? ,a\pdEPj  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? bkL5srH  
    cpQhg-LY|  
    4p]hY!7  
    aq$adPtu  
    Ombvp;  
    function z = zernfun(n,m,r,theta,nflag) 2KQpmNN  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. _j?/O)M c  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N aZL FsSY  
    %   and angular frequency M, evaluated at positions (R,THETA) on the c59l/qoz  
    %   unit circle.  N is a vector of positive integers (including 0), and ILT.yxV  
    %   M is a vector with the same number of elements as N.  Each element |r/4 ({n  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) ''wF%q  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, \"Aw ATQ  
    %   and THETA is a vector of angles.  R and THETA must have the same bEl)/z*gy/  
    %   length.  The output Z is a matrix with one column for every (N,M) ? q hme   
    %   pair, and one row for every (R,THETA) pair. (\ Gs7  
    % "kkZK=}Nv  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Q);^gV  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 22"/|S  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral so }Kb3n  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, [(/IV+  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized <m+$@:cO  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 2w67 >w\  
    % S<DS|qOo  
    %   The Zernike functions are an orthogonal basis on the unit circle. Cs8e("w  
    %   They are used in disciplines such as astronomy, optics, and |d=MX>i|G  
    %   optometry to describe functions on a circular domain. )Tj\ym-Vl  
    % 3&7$N#v  
    %   The following table lists the first 15 Zernike functions. P:2 0i*QU  
    % 2Ls  
    %       n    m    Zernike function           Normalization C]DvoJmBs  
    %       -------------------------------------------------- 2z[A&s_  
    %       0    0    1                                 1 Auf2JH~  
    %       1    1    r * cos(theta)                    2 s(M8 Y  
    %       1   -1    r * sin(theta)                    2 Qh@A7N/L  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) a%)-iL X8&  
    %       2    0    (2*r^2 - 1)                    sqrt(3) y1+~IjY  
    %       2    2    r^2 * sin(2*theta)             sqrt(6)  B!+`km5  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) l/@t>%  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) . [5{  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 9|RR;k[  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) Dl95Vo=1  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 3*$)9'  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) \hFIg3  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) Oa|'wh ug  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) gv,8Wo  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) BjIKs~CT  
    %       -------------------------------------------------- -%t2_g,  
    % K\`>'C2_V  
    %   Example 1: E0a &1j  
    % [_?dpaTt  
    %       % Display the Zernike function Z(n=5,m=1) -% Z?rn2  
    %       x = -1:0.01:1; '{xPdN  
    %       [X,Y] = meshgrid(x,x); q(I`g;MF  
    %       [theta,r] = cart2pol(X,Y); U#U nM,3%  
    %       idx = r<=1; ?\NWKp  
    %       z = nan(size(X)); ULIpb  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 6_h'0~3?`  
    %       figure [Oy5Td7[  
    %       pcolor(x,x,z), shading interp %wuD4PRK  
    %       axis square, colorbar uRfFPOYH  
    %       title('Zernike function Z_5^1(r,\theta)') G@Y!*ZH*f  
    % `@07n]KB  
    %   Example 2: e4/Y/:vFO  
    % P85@G 2  
    %       % Display the first 10 Zernike functions f]Q`8nU  
    %       x = -1:0.01:1; %\2w 1  
    %       [X,Y] = meshgrid(x,x); D<d4"*qo  
    %       [theta,r] = cart2pol(X,Y); *eonXJYD  
    %       idx = r<=1; .#[==  
    %       z = nan(size(X)); WVfwt.Y  
    %       n = [0  1  1  2  2  2  3  3  3  3]; }{.0mu9  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; ).b,KSi  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 5g(`U+ ,*(  
    %       y = zernfun(n,m,r(idx),theta(idx)); l4+Bs!i`  
    %       figure('Units','normalized') -*T<^G;rK  
    %       for k = 1:10 nD51,1>  
    %           z(idx) = y(:,k); Gn8'h TM  
    %           subplot(4,7,Nplot(k)) _#]/d3*Z}  
    %           pcolor(x,x,z), shading interp l mRd l>  
    %           set(gca,'XTick',[],'YTick',[]) 1SGLA"r  
    %           axis square oX #WT  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) chF@',9t  
    %       end |kXx9vGq@  
    % E'O[E=  
    %   See also ZERNPOL, ZERNFUN2. k6?;D_dm  
    R#x~f  
    .!pr0/9B  
    %   Paul Fricker 11/13/2006 $|V@3`0  
    86AZ)UP2D  
    d^sm;f  
    H ]x-s  
    OmR) W'  
    % Check and prepare the inputs: A3 |hFk  
    % ----------------------------- iir]M`A.-  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) T7bD t  
        error('zernfun:NMvectors','N and M must be vectors.') (6Tvu5*4U  
    end _sGmkJi]  
    +xc1cki_{  
    2`;&Uwt  
    if length(n)~=length(m) v?=y9lEH@%  
        error('zernfun:NMlength','N and M must be the same length.') k:qS'  
    end ;"K;D@xzh]  
    il5Qo  
    hE|W%~Jx  
    n = n(:); 3\B 28m  
    m = m(:); ,&5\`  
    if any(mod(n-m,2)) ;n~-z5)  
        error('zernfun:NMmultiplesof2', ... !|#W,9  
              'All N and M must differ by multiples of 2 (including 0).') !F|#TETrt  
    end zvgy$]y'\  
    0lm7'H*~  
    nde_%d$  
    if any(m>n) 7a_tT;f;  
        error('zernfun:MlessthanN', ... : [r/ Y  
              'Each M must be less than or equal to its corresponding N.') NrK.DY4  
    end EIrAq!CA  
    D02(6|  
    MoX~ZewWR  
    if any( r>1 | r<0 ) lPaTkZw  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') kR,ry:J-  
    end ^tTASK  
    w$##GM=Tq  
    ^P}jn`4  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) !K[UJQ s\  
        error('zernfun:RTHvector','R and THETA must be vectors.') ("r\3Mvs  
    end  J^V}%N".  
    {TL.2  
    o^ zrF  
    r = r(:); 2t,N9@u=UN  
    theta = theta(:); )4MM>Q  
    length_r = length(r); je`Ysben  
    if length_r~=length(theta) YstR T1  
        error('zernfun:RTHlength', ... 8=  kwc   
              'The number of R- and THETA-values must be equal.') ki6L t  
    end ~~\C.6c#  
    8 v}B-cS  
    -Lhq.Q*a  
    % Check normalization: mfqnRPZ  
    % -------------------- }] p9  
    if nargin==5 && ischar(nflag) 9,wD  
        isnorm = strcmpi(nflag,'norm'); hl]q6ZK!6  
        if ~isnorm 0H/)wy2ym  
            error('zernfun:normalization','Unrecognized normalization flag.') OAauD$Hh  
        end i$5<>\g  
    else n "bii7h  
        isnorm = false; J6I:UML  
    end FMi:2.E  
    ? Xl;>}zj  
    y '[VZ$^i  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% f OasX!=  
    % Compute the Zernike Polynomials S"4eS,5L|  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% dfP4SJqq  
    ;=p3L<~c`K  
    `FGYc  
    % Determine the required powers of r: hm*cGYV/  
    % ----------------------------------- 6Hp+?mmh  
    m_abs = abs(m); ; I;&O5Y  
    rpowers = []; L</k+a?H!  
    for j = 1:length(n) R*=88ds  
        rpowers = [rpowers m_abs(j):2:n(j)]; V,h}l"  
    end "g,`Ks ];  
    rpowers = unique(rpowers); Z%Fc -KVt  
    GEK7q<  
    'Qh1$X)R7a  
    % Pre-compute the values of r raised to the required powers, ;_=N YG.  
    % and compile them in a matrix: vSu dT  
    % ----------------------------- 2 EWXr+IU.  
    if rpowers(1)==0 )qRH?Hsb7  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 3=Q:{  
        rpowern = cat(2,rpowern{:}); Wc Gg  
        rpowern = [ones(length_r,1) rpowern]; dEZUK vo  
    else zM,r0Z  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); njc-=o  
        rpowern = cat(2,rpowern{:}); fX.1=BjXi  
    end *`q?`#1&&.  
    ]OtnekkK$  
    E<jW; trt_  
    % Compute the values of the polynomials:  W,|+Dl  
    % -------------------------------------- i!x>)E  
    y = zeros(length_r,length(n)); kH5D%`Kw  
    for j = 1:length(n) g#MLA5%=u  
        s = 0:(n(j)-m_abs(j))/2; ~Pj q3etk  
        pows = n(j):-2:m_abs(j); 35Yf,@VO  
        for k = length(s):-1:1 j4<K0-?  
            p = (1-2*mod(s(k),2))* ... 1<Sg@  
                       prod(2:(n(j)-s(k)))/              ... &7i&"TNptP  
                       prod(2:s(k))/                     ... Z5E; FGPb  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... P6&%`$  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 1uO2I&B  
            idx = (pows(k)==rpowers); g)5mr:\  
            y(:,j) = y(:,j) + p*rpowern(:,idx); !E_Zh*lgm  
        end _jc_(;KPF  
         au04F]-|j8  
        if isnorm e P,bFc  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); lm6hFvEZ  
        end xeL"FzF:V  
    end \{}dn,?Fv  
    % END: Compute the Zernike Polynomials Zwm/c]6`  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Cs_&BSs  
    ?!K6")SE  
    M.K^W`  
    % Compute the Zernike functions: 2E?!Q I\O  
    % ------------------------------ 4-t^?T: qF  
    idx_pos = m>0; !b"?l"C+u  
    idx_neg = m<0; D#G%WT/"  
    %@Z;;5L  
    1X[^^p~^  
    z = y; ,sIC=V +  
    if any(idx_pos) <sw@P":F  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ~ ;LzTL  
    end \"1>NJn&k)  
    if any(idx_neg) <^\rv42'(2  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); (c>g7d<>n  
    end qa-FLUkIk!  
    NNF"si\FE  
    [lg!*  
    % EOF zernfun *I)J%#  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  -TF},V~  
    <  o?ua}  
    DDE还是手动输入的呢? 8g0 #WV  
    "du(BZw  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究