切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9248阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, 9TIyY`2!  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, .{1G"(z  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? 1XSA3;ZEc  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? 9z$]hl  
    IEfzu L<v  
    CC0@RU  
    `MA ee8u'  
    w},' 1  
    function z = zernfun(n,m,r,theta,nflag) g{.>nE^Sc5  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. K kP}z  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N u_;*Ay  
    %   and angular frequency M, evaluated at positions (R,THETA) on the +FfT)8@W  
    %   unit circle.  N is a vector of positive integers (including 0), and nm'sub  
    %   M is a vector with the same number of elements as N.  Each element o@>{kzCx  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) ;5:g%Dt  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 0#pjfc `:  
    %   and THETA is a vector of angles.  R and THETA must have the same }zY)H9J~  
    %   length.  The output Z is a matrix with one column for every (N,M) |5 _bFB+&  
    %   pair, and one row for every (R,THETA) pair. ;2Db/"`t  
    % R7;SZo  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike nd3=\.(P  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), uSLO"\zysX  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral )xX(Et6+`  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, >J_{mU  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 5cO}Jp%PA  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ^m;dEe&@F  
    % J]UlCg  
    %   The Zernike functions are an orthogonal basis on the unit circle. d)1)/Emyj  
    %   They are used in disciplines such as astronomy, optics, and >!s =f  
    %   optometry to describe functions on a circular domain. WMnR+?q  
    % \HLI y  
    %   The following table lists the first 15 Zernike functions. F's($n  
    % SweaE Rl  
    %       n    m    Zernike function           Normalization ?BT\)@ h  
    %       -------------------------------------------------- ^.5 L\  
    %       0    0    1                                 1 /+l3 BeL  
    %       1    1    r * cos(theta)                    2 pJrc\`D  
    %       1   -1    r * sin(theta)                    2 _QbLg"O  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ; Xrx>( n  
    %       2    0    (2*r^2 - 1)                    sqrt(3) !8yw!hA  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) |:$D[=  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) vpcHJ^19  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) %;yDiQ!+  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) #DApdD9M  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) #t:]a<3Y2  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) Pk9s~}X  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ePdM9%  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) ZKzXSI4  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) iwWy]V m7  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) jY EB`&  
    %       -------------------------------------------------- Xt~`EN  
    % zvf:*Na")  
    %   Example 1: @P#uH5U  
    % qIcQPJn!}  
    %       % Display the Zernike function Z(n=5,m=1) eZWN9#p2  
    %       x = -1:0.01:1; V#.;OtF]  
    %       [X,Y] = meshgrid(x,x); sUN>uroi !  
    %       [theta,r] = cart2pol(X,Y); ^8$CpAK]M  
    %       idx = r<=1; Y^m2ealC  
    %       z = nan(size(X)); jXvGL  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); Y$b4Ga9j  
    %       figure 6NH.!}"G9  
    %       pcolor(x,x,z), shading interp lS]<~  
    %       axis square, colorbar <8Ek-aNNt  
    %       title('Zernike function Z_5^1(r,\theta)') 1{4d)z UB  
    % kKVd4B[#*  
    %   Example 2: =Xh^@ OR  
    % _/bFt6  
    %       % Display the first 10 Zernike functions F+,X%$A#?  
    %       x = -1:0.01:1; ljVtFm<  
    %       [X,Y] = meshgrid(x,x); []:;8fY  
    %       [theta,r] = cart2pol(X,Y); !|_b}/  
    %       idx = r<=1; .w/#S-at  
    %       z = nan(size(X)); fL.;-  
    %       n = [0  1  1  2  2  2  3  3  3  3]; r?Jxl<  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 9)0AwLlv  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; s^ rO I~  
    %       y = zernfun(n,m,r(idx),theta(idx)); <$wh@$PK  
    %       figure('Units','normalized') ,Q4U<`ds!  
    %       for k = 1:10 | qtdmm  
    %           z(idx) = y(:,k); "}Kvx{L8  
    %           subplot(4,7,Nplot(k)) A`<#}~A  
    %           pcolor(x,x,z), shading interp ;8/w'oe *j  
    %           set(gca,'XTick',[],'YTick',[]) #P*%FgROl  
    %           axis square *@o@>  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 26JP<&%L  
    %       end /]"&E"X"  
    % VTk6.5!8  
    %   See also ZERNPOL, ZERNFUN2. H+vONg  
    BT;hW7){9  
    ozH7c_ <  
    %   Paul Fricker 11/13/2006 _Z+tb]  
    rB;` &)-  
    r|4jR6%<'m  
    6~zR(HzV{  
    Z l.}=  
    % Check and prepare the inputs: ;tTM3W-h  
    % ----------------------------- EJ{Z0R{{  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) IK5FSN]s/  
        error('zernfun:NMvectors','N and M must be vectors.') UgDai?b1  
    end &[,g `S0  
    IF~i*  
    L;/#D>U(  
    if length(n)~=length(m) 6cz%>@  
        error('zernfun:NMlength','N and M must be the same length.') ;KJJK#j  
    end c nvxTI<  
    bcL>S$B  
    rt$z&#M  
    n = n(:); n4\6\0jq6  
    m = m(:); W7.O(s,32  
    if any(mod(n-m,2)) mE)65@3%  
        error('zernfun:NMmultiplesof2', ... 2uFaAAT  
              'All N and M must differ by multiples of 2 (including 0).')  v'i"Q  
    end h Vz%{R"  
    =o;QvOS;  
    X<@ytHBv  
    if any(m>n) ,Hh7' `  
        error('zernfun:MlessthanN', ... nL!h hseH  
              'Each M must be less than or equal to its corresponding N.') nR4L4tdS  
    end XSt5s06TM  
    cw.Uy(ks|$  
    A[J9v{bD  
    if any( r>1 | r<0 ) '7o'u]  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') hu~02v5  
    end FQNhn+A  
    1<A+.W  
    t+}@J}b  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) zk5sAHQ  
        error('zernfun:RTHvector','R and THETA must be vectors.') Ug^C}".&  
    end W> .O"Ri  
    2n+j.  
    .vNfbYH(  
    r = r(:); {YZ)IaqZ  
    theta = theta(:); Q>7#</i\.  
    length_r = length(r); ,e+.Q#r*Y  
    if length_r~=length(theta) 1  6;l,@  
        error('zernfun:RTHlength', ... :Q2\3  
              'The number of R- and THETA-values must be equal.') Z)'jn8?P  
    end _Ptf^+  
    +JZ<9,4  
    ]_I<-}?;  
    % Check normalization: /b6Y~YbgU  
    % -------------------- L`FsK64@  
    if nargin==5 && ischar(nflag) Hf+A52lrf  
        isnorm = strcmpi(nflag,'norm');  /Z! ,1  
        if ~isnorm gXI_S9 z  
            error('zernfun:normalization','Unrecognized normalization flag.') Djx9TBZ5  
        end /eDah3%d  
    else @dX0gHU[c  
        isnorm = false; asP>(Li  
    end RyD2LAf)J  
    *{W5QEa  
    S$W *i@x?  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 7}Z.g9<  
    % Compute the Zernike Polynomials C yC<{D+  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% mmY~V:,Kd  
    ~cSC-|$^&  
    pW8pp?  
    % Determine the required powers of r: !? ?Cxs'  
    % ----------------------------------- Zm%}AzM  
    m_abs = abs(m); 1mOZ\L!m*  
    rpowers = []; OTtSMO  
    for j = 1:length(n) c}Jy'F7&f  
        rpowers = [rpowers m_abs(j):2:n(j)]; dDW],d}B;  
    end hw_7N)}  
    rpowers = unique(rpowers); 0LoA-c<Ay  
    Mp75L5  
    Wr`=P,  
    % Pre-compute the values of r raised to the required powers, l,h#RTfry  
    % and compile them in a matrix: Bp^>R`,  
    % ----------------------------- d(, -13  
    if rpowers(1)==0 Q9K Gf;  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 8 /b_4!5c  
        rpowern = cat(2,rpowern{:}); 9L%&4V}BIS  
        rpowern = [ones(length_r,1) rpowern]; }n=Tw92g  
    else \ :})R{  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); kSU*d/}*u  
        rpowern = cat(2,rpowern{:}); %P_\7YBC>  
    end =%U t&6}sQ  
    M(Jf&h4b  
    PZLWyp  
    % Compute the values of the polynomials: AEPgQ9#E  
    % -------------------------------------- 4}580mBc  
    y = zeros(length_r,length(n)); 7`X"B*`~b  
    for j = 1:length(n) )t&|oQ3sVG  
        s = 0:(n(j)-m_abs(j))/2; cWFvYF  
        pows = n(j):-2:m_abs(j); ;oh88,*'  
        for k = length(s):-1:1 QI=SR  
            p = (1-2*mod(s(k),2))* ... GD[~4G  
                       prod(2:(n(j)-s(k)))/              ... CvQ LF9|  
                       prod(2:s(k))/                     ... z&<Rx[  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... m>:%[vm  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); i=o>Bl@f  
            idx = (pows(k)==rpowers); 2_r}4)z  
            y(:,j) = y(:,j) + p*rpowern(:,idx); b% $S6.  
        end 6J%SkuxR  
         b@1QE  
        if isnorm dUb(C1h  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 6ap,XFRMh  
        end Z|8f7@k{|+  
    end \vQ_:-A  
    % END: Compute the Zernike Polynomials Q2 rZMK  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% = 1}-]ctVn  
    /f%u_ 8pV%  
    `R:<(:  
    % Compute the Zernike functions: &~E=T3  
    % ------------------------------ ~d{E>J77j  
    idx_pos = m>0; /cI]Z^&  
    idx_neg = m<0; !+>yCy$~_  
    KL5rF,DME  
    r`<e vwIe  
    z = y; y]?$zbB  
    if any(idx_pos) 9s*Lzi[}  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); /E]4N=T  
    end tD4IwX  
    if any(idx_neg) cK-!Evv  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ,{oP`4\Lm  
    end (O`=$e  
    u'32nf?  
    nosEo? {  
    % EOF zernfun l}O`cC  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  nSow$6T_  
    xh6x B|Z  
    DDE还是手动输入的呢?  bSR<d  
    |)4$\<d  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究