切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9265阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, D-KQRe2@  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, ZvVrbj&  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? WAzn`xGxR"  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? Ex`!C]sQ  
    bf*VY&S- T  
    3*<?'O7I0  
    9V/:1I0?&0  
    +=o?&  
    function z = zernfun(n,m,r,theta,nflag) @!np 0#  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. @b]?Gg  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N }<7S% ?TY  
    %   and angular frequency M, evaluated at positions (R,THETA) on the dd> qy  
    %   unit circle.  N is a vector of positive integers (including 0), and BXj]]S2  
    %   M is a vector with the same number of elements as N.  Each element OA?pBA  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) @o/126(k  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, DnI31!+y  
    %   and THETA is a vector of angles.  R and THETA must have the same > 3SZD  
    %   length.  The output Z is a matrix with one column for every (N,M) r0'6\MS13  
    %   pair, and one row for every (R,THETA) pair. `{v!|.d<  
    % jMUN|(=Y  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Tj3xK%K_r3  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), G\4*6iw:  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral y7Sey;  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 'jr[ ?WQ  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized yd+.hg&J  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ")xd 'V  
    %  O86[`,  
    %   The Zernike functions are an orthogonal basis on the unit circle. s%OPoRE  
    %   They are used in disciplines such as astronomy, optics, and PN"s ^]4  
    %   optometry to describe functions on a circular domain. fC<pCdsg  
    % Smc=-M}  
    %   The following table lists the first 15 Zernike functions. IizPu4|  
    % Rv=rO|&]  
    %       n    m    Zernike function           Normalization q y\Z2k  
    %       -------------------------------------------------- @SX-=Nr  
    %       0    0    1                                 1 Xc H_Y  
    %       1    1    r * cos(theta)                    2 [!'fE #"a  
    %       1   -1    r * sin(theta)                    2 ,)beK*Iw  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) }\Ri:&?  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 6-6ha7]s  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) #*|Gp_l+%  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) G.l ~!;  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) l'm\ *=3  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) o-7,P RmKN  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 8nKb mjM  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 24b?6^8~k  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) aEvW<jHh  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) M:/)|fk  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ih\=mB  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) M9ACaf@  
    %       -------------------------------------------------- `"RT(` m  
    % mLb>*xt$b@  
    %   Example 1: U_.9H _G  
    % FA7q pc  
    %       % Display the Zernike function Z(n=5,m=1) 6(=>!+xpRr  
    %       x = -1:0.01:1; <Y"h2#M"  
    %       [X,Y] = meshgrid(x,x); `-)Hot)  
    %       [theta,r] = cart2pol(X,Y); Q*K31Ln  
    %       idx = r<=1; qC:QY6g$N  
    %       z = nan(size(X)); {1Hs5bg@  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 7B s:u  
    %       figure Ax{C ^u  
    %       pcolor(x,x,z), shading interp Uw5AHq).  
    %       axis square, colorbar LZ-&qh  
    %       title('Zernike function Z_5^1(r,\theta)') + rN&@}Jt.  
    % <4%cKW0  
    %   Example 2: "f N=Y$G  
    % t;/s^-}  
    %       % Display the first 10 Zernike functions tcD DX'S  
    %       x = -1:0.01:1; 8H@]v@Z2  
    %       [X,Y] = meshgrid(x,x); $ts1XIK%  
    %       [theta,r] = cart2pol(X,Y); W<tw],M-#  
    %       idx = r<=1; h*B7UzCg  
    %       z = nan(size(X)); 5e|yW0o  
    %       n = [0  1  1  2  2  2  3  3  3  3]; -.t/c}a#  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 8m"(T-wb6{  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; D4IP$pAD  
    %       y = zernfun(n,m,r(idx),theta(idx)); -POsbb>  
    %       figure('Units','normalized') Pk/3oF  
    %       for k = 1:10 Zp qb0ro  
    %           z(idx) = y(:,k); /^rJ`M[;  
    %           subplot(4,7,Nplot(k)) X')t6DQ(I  
    %           pcolor(x,x,z), shading interp GJj}|+|  
    %           set(gca,'XTick',[],'YTick',[]) 3;Y 9<  
    %           axis square  eo&^~OVT  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 5v_vv'~  
    %       end @wPyXl  
    % F9Co m}  
    %   See also ZERNPOL, ZERNFUN2. d3jzGJrU}  
    aNDpCpy  
    M'5PPBSR  
    %   Paul Fricker 11/13/2006 `NB6Of*/  
    Q$58 K9  
    tFvXVfml  
     `;HZO8  
    PFI^+';  
    % Check and prepare the inputs: H84Zg/ ^  
    % ----------------------------- b-?d(-  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) }F4%5go  
        error('zernfun:NMvectors','N and M must be vectors.') S(#v<C,hd  
    end vf0 fa46  
    Ev ]oPCeA  
    BG^)?_69  
    if length(n)~=length(m) 9r=yfc!cS  
        error('zernfun:NMlength','N and M must be the same length.') vB Vg/  
    end Zt ;u8O  
    z*e`2n#\  
    DDBf89$\  
    n = n(:); XE($t2x,M  
    m = m(:); vn1*D-?  
    if any(mod(n-m,2)) XDyFe'1I  
        error('zernfun:NMmultiplesof2', ... {xu~Dx  
              'All N and M must differ by multiples of 2 (including 0).') (q}{;  
    end zT+ "Z(oz,  
    s)~Wcp'+M:  
    AB=Wj*f r  
    if any(m>n) PX >>h}%  
        error('zernfun:MlessthanN', ... [vn"r^P  
              'Each M must be less than or equal to its corresponding N.') ~u-_DOA  
    end #3}!Q0   
    ~tZy-1  
    v9MliD'  
    if any( r>1 | r<0 ) YJB/*SV^  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') `N;O6 wZ  
    end 6QePrf  
    4vyJ<b  
    F5 7Kr5X  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) I/_,24[  
        error('zernfun:RTHvector','R and THETA must be vectors.') 2Q)pT$  
    end v(`5exWV  
    y\XWg`X y  
    WQBpU?O  
    r = r(:); ?o`fX wE  
    theta = theta(:); sNsH l  
    length_r = length(r); Sh(XFUJ  
    if length_r~=length(theta) 91|~KR)  
        error('zernfun:RTHlength', ... R_gON*9  
              'The number of R- and THETA-values must be equal.') n0b{Jg *  
    end :LLz$[c8  
    xV.UM8  
    EfqC_,J*3  
    % Check normalization: ^~W s4[Guo  
    % -------------------- Y@MFH>*  
    if nargin==5 && ischar(nflag) UQO?hZ!y/.  
        isnorm = strcmpi(nflag,'norm'); S4D~`"4 $/  
        if ~isnorm Xp~O?2:3l  
            error('zernfun:normalization','Unrecognized normalization flag.') V`xE&BI  
        end !yu-MpeG  
    else C A$R  
        isnorm = false; )TOKHN  
    end #K\;)z(?  
    -)[~%n#X+t  
    zv~b-Tp  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% (``|5;T\  
    % Compute the Zernike Polynomials Oee>d<  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ZG)6{WS  
    23'Ac,{  
    v<E_n;@9k  
    % Determine the required powers of r: vg\fBHzn  
    % ----------------------------------- W<M\ b#  
    m_abs = abs(m); &?M'(` ~  
    rpowers = []; Y*YV/E.  
    for j = 1:length(n) pXf5/u8&  
        rpowers = [rpowers m_abs(j):2:n(j)]; QA#Jx  
    end :s#&nY  
    rpowers = unique(rpowers); jN{+$ @cI  
    c:,K{ZR  
    J-W8wCq`  
    % Pre-compute the values of r raised to the required powers, =z9FjK  
    % and compile them in a matrix: 7vEZb.~4z  
    % ----------------------------- YiC_,8A~  
    if rpowers(1)==0 ~i=5NUE  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 2fG[q3`  
        rpowern = cat(2,rpowern{:}); j]   
        rpowern = [ones(length_r,1) rpowern]; +A<7:`sO  
    else 4n/CS AT1  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); XT\Q"=FD  
        rpowern = cat(2,rpowern{:}); ^vc#)tm5p  
    end GL3olKnL  
    l%v2O'h  
    nACKSsWqI  
    % Compute the values of the polynomials: A~#w gLGn  
    % -------------------------------------- 3/*<i  
    y = zeros(length_r,length(n)); @^^,VgW[  
    for j = 1:length(n) zN>tSdNkI-  
        s = 0:(n(j)-m_abs(j))/2; T@j@IEGH  
        pows = n(j):-2:m_abs(j); ]t;bCD6*  
        for k = length(s):-1:1 T4x[ \v5d  
            p = (1-2*mod(s(k),2))* ... O],]\M{GL  
                       prod(2:(n(j)-s(k)))/              ... 9FmX^t$T  
                       prod(2:s(k))/                     ... N>',[4pJ|  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... @mu=7_$U  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); ,{sCI/  
            idx = (pows(k)==rpowers); ;(;{~1~  
            y(:,j) = y(:,j) + p*rpowern(:,idx); YHI@Cj  
        end 8&++S> <  
         AHdh]pfH  
        if isnorm nHIW_+<Mf  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi);  ui1h M  
        end pR7D3Q:^7  
    end {WN??eys,  
    % END: Compute the Zernike Polynomials |v= */e  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% q|kkdK|N/Y  
    2qDVAq^@  
    I 2*\J)|f  
    % Compute the Zernike functions: 9Xeg &Z|!  
    % ------------------------------ o|c%uw  
    idx_pos = m>0; Ugv"A;l  
    idx_neg = m<0; L=<{tzTc  
    zn/b\X/  
    @M8vP H  
    z = y; dS~#Lzm  
    if any(idx_pos) zM++ Z*  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); U$AV"F&!&}  
    end Z)RV6@(  
    if any(idx_neg) k+y>xI,  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); d(;Qe}ok>  
    end o :_'R5  
    KU)~p"0[6]  
    *N3X"2X:  
    % EOF zernfun KcF#c_f   
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  bw& U[|A0%  
    aHdXlmL  
    DDE还是手动输入的呢? 6o4Bf| E]  
    Q"2J2211  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究