下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, ph>7?3;t
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, &UCsBqIY
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? ml|W~-6l
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? |t
iUej
~ 9)"!
ps
.]N
#rO8K f
&!aAO(g
function z = zernfun(n,m,r,theta,nflag) {j5e9pg1L|
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. `U#55k9^5
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ##Q/I|
% and angular frequency M, evaluated at positions (R,THETA) on the 1i:|3PA~
% unit circle. N is a vector of positive integers (including 0), and 2&c9q5.b
% M is a vector with the same number of elements as N. Each element uXDq~`S
% k of M must be a positive integer, with possible values M(k) = -N(k) ]lw|pvtd
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, Z[\O=1E,
% and THETA is a vector of angles. R and THETA must have the same Hn>B!Bm*
% length. The output Z is a matrix with one column for every (N,M) kF;DBN
% pair, and one row for every (R,THETA) pair. "8^5>EJWv
% / N)W2
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike fFjgrK8
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), P`s
% with delta(m,0) the Kronecker delta, is chosen so that the integral \<}&&SuH
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Ev7J+TmXM
% and theta=0 to theta=2*pi) is unity. For the non-normalized -C(b,F%%
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. M?b6'd9f
% Le<wR
% The Zernike functions are an orthogonal basis on the unit circle. 6 3`{.yZ*z
% They are used in disciplines such as astronomy, optics, and o?1;<gs
% optometry to describe functions on a circular domain. .s+aZwTMT
% 2C{H$
A,pW
% The following table lists the first 15 Zernike functions. B+^(ktZp@
% 1+-_s
% n m Zernike function Normalization l]~n3IK"
% -------------------------------------------------- K=!Bh*
% 0 0 1 1 qd"_Wu6aF=
% 1 1 r * cos(theta) 2 dq[Mj5eC
% 1 -1 r * sin(theta) 2 =@k%&* Y?
% 2 -2 r^2 * cos(2*theta) sqrt(6) AU-n&uX
% 2 0 (2*r^2 - 1) sqrt(3) 2z\zh[(w
% 2 2 r^2 * sin(2*theta) sqrt(6) [mEql,x3
% 3 -3 r^3 * cos(3*theta) sqrt(8) kJWN.
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) x.8TRMk^
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) btdb%Q*
% 3 3 r^3 * sin(3*theta) sqrt(8) "#( T
% 4 -4 r^4 * cos(4*theta) sqrt(10) ;<G=M2
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) F(na{<g};
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) kP/M<X"
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 6s0_#wZC
% 4 4 r^4 * sin(4*theta) sqrt(10) 5M9 I,
% -------------------------------------------------- 0b4R
% 22f`LoM
% Example 1: [<'-yQ{l\
% 5@^ dgq
% % Display the Zernike function Z(n=5,m=1) [D*UT#FM
% x = -1:0.01:1; ~z" =G5|
% [X,Y] = meshgrid(x,x); 7 ^w >Rj
% [theta,r] = cart2pol(X,Y); JK.ZdY%
% idx = r<=1; p~*UpU8u
% z = nan(size(X)); ,t\* ZTt$
% z(idx) = zernfun(5,1,r(idx),theta(idx)); ('-JY
% figure hKzSgYxP=t
% pcolor(x,x,z), shading interp `7/Y@}n
% axis square, colorbar H\XP\4#u
% title('Zernike function Z_5^1(r,\theta)') 4)1s M=u
% &QhX1dT+
% Example 2: i hh/sPi
% sZW^!z
% % Display the first 10 Zernike functions $H+VA@_
% x = -1:0.01:1; 5uxBK"q
% [X,Y] = meshgrid(x,x); =0;^(/1Mc
% [theta,r] = cart2pol(X,Y); ?_I[,N?@41
% idx = r<=1; 765p/**
% z = nan(size(X)); 4.IU!.Uo
% n = [0 1 1 2 2 2 3 3 3 3]; #>j.$2G>
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 6;|n]m\Vd
% Nplot = [4 10 12 16 18 20 22 24 26 28]; MNSbtT*^
% y = zernfun(n,m,r(idx),theta(idx)); 2(/g}
% figure('Units','normalized') 8T(e.I
% for k = 1:10 LVJxn2x6
% z(idx) = y(:,k); /="~gq@
% subplot(4,7,Nplot(k)) E*jP8 7g
% pcolor(x,x,z), shading interp JwJ7=P=c
% set(gca,'XTick',[],'YTick',[]) To?W?s
% axis square 3> Y6)
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) V{<xff
% end ?(R]9.5S
% }<dRj
% See also ZERNPOL, ZERNFUN2. q7"7U=W0
=+AS/Jq
92^w8Z.
% Paul Fricker 11/13/2006 B, 9w0
ATR!7i\|
ij?
9;veuX#(
P3oI2\)*i
% Check and prepare the inputs: +"1NC\<*
% ----------------------------- 6oBfB8]:d
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) up'Tit
error('zernfun:NMvectors','N and M must be vectors.') %Q.&ZhB
end .jj$ Kh q]
[o?*"c
e[8LmuIZ
if length(n)~=length(m) gCxAG
error('zernfun:NMlength','N and M must be the same length.') /tUy3myJ
end ` \+@Fwfx
*V+j%^91}
Dq)j:f#QM
n = n(:); 7^g&)P
m = m(:); &B|D;|7H
if any(mod(n-m,2)) {c
(!;U
error('zernfun:NMmultiplesof2', ... A,`8#-AX
'All N and M must differ by multiples of 2 (including 0).') {uHU]6d3qy
end $#]]K
7PkJ-JBA
Mb]rY>B4
if any(m>n) qM.bF&&Go
error('zernfun:MlessthanN', ... lv]hTH 4T
'Each M must be less than or equal to its corresponding N.') :hM/f
end 0C>%LJ8r
&-mX ,
!tp1:'KG
if any( r>1 | r<0 ) 8KRba4[
error('zernfun:Rlessthan1','All R must be between 0 and 1.') 0lv%`,
end W16,Alf:
LU9A#
'z$Q rFW
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) HvVts\f
error('zernfun:RTHvector','R and THETA must be vectors.') 0A( +ZMd
end ;f"0~D2
$ >EYhLBa
X@f "-\
r = r(:); xl#LrvxI
theta = theta(:); D#o}cC.
length_r = length(r); 0q'w8]m
if length_r~=length(theta) SGe^ogO"v
error('zernfun:RTHlength', ... -UD\;D?$
'The number of R- and THETA-values must be equal.') YiPoYlD*n<
end 3.qTLga|}
[3!~PR]
4vwTs*eB`
% Check normalization: .<Zy|1
4
% -------------------- -*XCxU'
if nargin==5 && ischar(nflag) ]Ei0d8Uo
isnorm = strcmpi(nflag,'norm'); |Z*J/v'@p
if ~isnorm }|XtypbL
error('zernfun:normalization','Unrecognized normalization flag.') DrO2 y
end +mp@b942*
else 9F*+YG!
isnorm = false; )'4k|@8|
end Mv6-|O
TEaJG9RU>v
IzpZwx^3''
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 1Tm^
% Compute the Zernike Polynomials Lg+G; W
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% <NuUW9+
oDU ;E
B}&x