切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9410阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, b+#~N>|  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 3b/vyZF  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? 8J(zWV7 r  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? kk7: A0._  
    C5n=2luI_  
    ^Th"`Av5  
    ZCF-*nm  
    Dp |FyP_w  
    function z = zernfun(n,m,r,theta,nflag) o%JIJ7M  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. V$F.`O!hfi  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Ak-7}i  
    %   and angular frequency M, evaluated at positions (R,THETA) on the FoXQ]X7"  
    %   unit circle.  N is a vector of positive integers (including 0), and EF^=3  
    %   M is a vector with the same number of elements as N.  Each element 0*M}QXt  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) umn~hb5O  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, qO3BQ]UF  
    %   and THETA is a vector of angles.  R and THETA must have the same 1kw4'#J8  
    %   length.  The output Z is a matrix with one column for every (N,M) A-`J!xj#/  
    %   pair, and one row for every (R,THETA) pair. T-8nUo}i  
    % "^e?E:( 3  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike "}aM*(l+\  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), B]}V$*$ \?  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral imq(3?  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Q>c6ouuJ  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized !l~aRj-WZ  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 7?WBzo!!L  
    % kxf=%<l  
    %   The Zernike functions are an orthogonal basis on the unit circle. 6zZR:ej  
    %   They are used in disciplines such as astronomy, optics, and g-gBg\y{v  
    %   optometry to describe functions on a circular domain. %~(i[Ur;  
    % {hP&P  
    %   The following table lists the first 15 Zernike functions. =v=!x  
    % ]<z(Rmn`Q  
    %       n    m    Zernike function           Normalization +( (31l  
    %       -------------------------------------------------- =9@yJ9c-  
    %       0    0    1                                 1 "fJ|DE&@<i  
    %       1    1    r * cos(theta)                    2 ~"0X,APR5  
    %       1   -1    r * sin(theta)                    2 O9&:(2'f  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) G")EE#W$}  
    %       2    0    (2*r^2 - 1)                    sqrt(3) U+M?<4J) "  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) QNwAuH T  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) F@K;A%us)  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) sBI%lrO  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 5kNs@FP  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) RYaof W  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) eE_XwLE  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) wo9f99  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) -)+DVG.t  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) <&Xq`i/(  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) uL AXN  
    %       -------------------------------------------------- 3m7V6##+  
    % l;kZS  
    %   Example 1: -s "$I:v  
    % o_m.MMEU  
    %       % Display the Zernike function Z(n=5,m=1) -RDs{c`y%N  
    %       x = -1:0.01:1; 6+#cyKj  
    %       [X,Y] = meshgrid(x,x); k(+u"T  
    %       [theta,r] = cart2pol(X,Y); ?tQv|x  
    %       idx = r<=1; A6.'1OD  
    %       z = nan(size(X)); !\4FIs&Qv  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); ha~s< I  
    %       figure n9-[z2n  
    %       pcolor(x,x,z), shading interp N\&;R$[9:  
    %       axis square, colorbar 6\@, Lb  
    %       title('Zernike function Z_5^1(r,\theta)') r0bPaAKw  
    % @ xr   
    %   Example 2: PaJwM%s)L  
    % - Sgp,"a  
    %       % Display the first 10 Zernike functions X+@,vCC  
    %       x = -1:0.01:1; 1 R9/AP  
    %       [X,Y] = meshgrid(x,x); E=trJge  
    %       [theta,r] = cart2pol(X,Y); !2Iwur u  
    %       idx = r<=1; @'4D9A  
    %       z = nan(size(X)); 3s`3}DKK  
    %       n = [0  1  1  2  2  2  3  3  3  3]; *4y r7~S5  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; Jj:4@p:  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; j-|0&X1C  
    %       y = zernfun(n,m,r(idx),theta(idx));  '|T=  
    %       figure('Units','normalized') zxdO3I  
    %       for k = 1:10 ZW%`G@d"H-  
    %           z(idx) = y(:,k); 3zHiu*2/!  
    %           subplot(4,7,Nplot(k)) DL_\luh  
    %           pcolor(x,x,z), shading interp eO G%6C%a  
    %           set(gca,'XTick',[],'YTick',[]) CU_06A|}  
    %           axis square .x%SbG<k{  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ]Jq e)o  
    %       end a| cD{d  
    % TD7ONa-,  
    %   See also ZERNPOL, ZERNFUN2. &r%3)Z8Et  
    DBDfB b  
    4/|=0TC;  
    %   Paul Fricker 11/13/2006 g2q=&eI"  
    9Z 4R!Q  
    k>`X! "  
    sA.yb,Fw  
    Km-B=6*QY  
    % Check and prepare the inputs: 6B{Awm@v}X  
    % ----------------------------- p.|; k%c7  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) m Y0C7i  
        error('zernfun:NMvectors','N and M must be vectors.') UtrbkuT  
    end A>puk2s  
    .YRSd  
    C-Z,L#  
    if length(n)~=length(m) i$bBN$<b<  
        error('zernfun:NMlength','N and M must be the same length.') y[rLk  
    end _T$\$v$ {  
    +n dyR  
    %54![-@  
    n = n(:); rge/jE,^~Z  
    m = m(:); ,}0pK\Y>$  
    if any(mod(n-m,2)) M<Mr (z  
        error('zernfun:NMmultiplesof2', ... +|;IIwo  
              'All N and M must differ by multiples of 2 (including 0).') b&1@rE-  
    end Zpmy)W]1  
    !w Bmf&=  
    X c^~|%+  
    if any(m>n) k|5nu-B0v  
        error('zernfun:MlessthanN', ... ,R+u%bmn#  
              'Each M must be less than or equal to its corresponding N.') U9w*x/S wb  
    end 0"N %Vm  
    /rW{rf^  
    NL 37Y{b  
    if any( r>1 | r<0 ) 4SYN$?.Mp  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') MR}\fw$(.  
    end RAC-;~$WB  
    KJiwM(o  
    V|)>  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) d9(FwmE  
        error('zernfun:RTHvector','R and THETA must be vectors.') +,lD_{}_  
    end -)@.D>HsOt  
    rxARJ so  
    qJ@?[|2R  
    r = r(:); _,^sI%  
    theta = theta(:); H &JKja}`  
    length_r = length(r); DYS(ZY)4  
    if length_r~=length(theta) sAN#j {  
        error('zernfun:RTHlength', ... !NCT) #G`  
              'The number of R- and THETA-values must be equal.') HD ~9EK~  
    end qU}DOL|  
    ;Yj}9[p;T  
    7@FB^[H:y  
    % Check normalization: abND#t  
    % -------------------- AZa3!e/1  
    if nargin==5 && ischar(nflag) C N"c  
        isnorm = strcmpi(nflag,'norm'); >BX_Bou  
        if ~isnorm m"*:XfOL  
            error('zernfun:normalization','Unrecognized normalization flag.') Ij+zR>P8=\  
        end pqe**`z@y  
    else pGIeW}2'9  
        isnorm = false; fh~&&f}6  
    end Hpt)(Nz:  
    !4E:IM63  
    NQAnvX;  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% $spf=t"nh  
    % Compute the Zernike Polynomials Cv|:.y  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% (; "ICk&  
    )nY/ RO  
    <R2  
    % Determine the required powers of r: Xk2  75Y  
    % ----------------------------------- G 1$l%B  
    m_abs = abs(m); sqw _c{9  
    rpowers = []; ?]t8$^m,;  
    for j = 1:length(n) `&_qK~&/X  
        rpowers = [rpowers m_abs(j):2:n(j)]; (]1 %s?ud*  
    end 0pR04"`;  
    rpowers = unique(rpowers); _5zR!|\^  
    r (uM$R$o  
    ~K[rQ  
    % Pre-compute the values of r raised to the required powers, <n>< A+D  
    % and compile them in a matrix: ct  ZW7  
    % ----------------------------- ,'!&Z *  
    if rpowers(1)==0 $H#&.IjY  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); BXdT;b"J(  
        rpowern = cat(2,rpowern{:}); 1Jahu!c?  
        rpowern = [ones(length_r,1) rpowern]; ?d %_o@  
    else oVu>jO:.  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); &^<94l  
        rpowern = cat(2,rpowern{:}); |"mb 59X  
    end {b?)|@)is  
    uk1IT4+  
    ~_raI7,  
    % Compute the values of the polynomials: ,Xn%-OT  
    % -------------------------------------- j<!$ug9VA  
    y = zeros(length_r,length(n)); =y':VIVJC  
    for j = 1:length(n) VYF4q9  
        s = 0:(n(j)-m_abs(j))/2; +o/q@&v;Ax  
        pows = n(j):-2:m_abs(j); &(0iSS  
        for k = length(s):-1:1  &]euN~y  
            p = (1-2*mod(s(k),2))* ... ecHy. 7H  
                       prod(2:(n(j)-s(k)))/              ... Kz%wMyZ:g  
                       prod(2:s(k))/                     ... u&qdrKx  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... .,c8cq?  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); d1,azM  
            idx = (pows(k)==rpowers); G67BQG\av  
            y(:,j) = y(:,j) + p*rpowern(:,idx); BAxZR  
        end  *) wp  
         mz#(\p=T  
        if isnorm qb! vI3  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); GL/\uq  
        end zYep V  
    end ?FA:K0H?zl  
    % END: Compute the Zernike Polynomials $Ec;w~e  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% S&VN</p  
    FSM~Rl  
    t*DM^. @  
    % Compute the Zernike functions: q)P<lKi  
    % ------------------------------ #[A/zH|xvV  
    idx_pos = m>0; sST6_b  
    idx_neg = m<0; C }!$'C|  
    |6&"r&  
    tuv4~i<  
    z = y; <q!{<(:  
    if any(idx_pos) 2<y -cQ?>  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 3*FktXmI}  
    end 74KFsir@  
    if any(idx_neg) -F*j`  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); .z_^_@qdm  
    end  W6a2I  
    Kkd7D_bZ*  
    Oe5aNo  
    % EOF zernfun vv3dr_l:  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  D:){T>  
    #Xsby  
    DDE还是手动输入的呢? e _,_:|t  
    j^LnHVHk1  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究