下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, %a%x`S3
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, c , a+u
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? t_HS0rxG
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? nN!/
<}S1ZEZcQ
LB}y,-vX>
s[h& Uv"G
9U1cH qV
function z = zernfun(n,m,r,theta,nflag) <Z%iP{
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. ZS51QB
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N C2RR(n=N^
% and angular frequency M, evaluated at positions (R,THETA) on the 2_@vSwC
% unit circle. N is a vector of positive integers (including 0), and pp{Za@j
% M is a vector with the same number of elements as N. Each element ~e,k71
% k of M must be a positive integer, with possible values M(k) = -N(k) )SG+9!AbMZ
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, 'V";"Ei
% and THETA is a vector of angles. R and THETA must have the same #~J)?JL
% length. The output Z is a matrix with one column for every (N,M) :A%|'HxH3
% pair, and one row for every (R,THETA) pair. Vy-N3L
% /Po't(-x
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike rbl EyCR
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), A<ca9g3
% with delta(m,0) the Kronecker delta, is chosen so that the integral f,GF3vu"
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, _^cDB1I?
% and theta=0 to theta=2*pi) is unity. For the non-normalized 8z&7wO
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ~nk{\ rWO
% bQG2tDvu[
% The Zernike functions are an orthogonal basis on the unit circle. t,#9i#q#
% They are used in disciplines such as astronomy, optics, and ycAQHY~n
% optometry to describe functions on a circular domain. wYnsd7@I
% 69{^Vfd;Y
% The following table lists the first 15 Zernike functions. 3=w$1.B d
% [<m1xr4"k
% n m Zernike function Normalization .6Jo1$+
% -------------------------------------------------- ,f0|eu>
% 0 0 1 1 g{K*EL<
% 1 1 r * cos(theta) 2 (jYHaTL6Y'
% 1 -1 r * sin(theta) 2
}C1&}hZ
% 2 -2 r^2 * cos(2*theta) sqrt(6) 6XyhOs%/
% 2 0 (2*r^2 - 1) sqrt(3) II$B"-
% 2 2 r^2 * sin(2*theta) sqrt(6) _:oB#-0
% 3 -3 r^3 * cos(3*theta) sqrt(8) Ara D_D
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 8>" vAEf
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 7UQFAt_r
% 3 3 r^3 * sin(3*theta) sqrt(8) ~"eos~AuW
% 4 -4 r^4 * cos(4*theta) sqrt(10) 0M^7#),
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) c@d[HstBJ
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) TR:V7d
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) [@"~'fu0
% 4 4 r^4 * sin(4*theta) sqrt(10) UH=pQm^W
% -------------------------------------------------- u0M[B7Q
% * SH5p
% Example 1: ">='l9
% 5Vo8z8]t`
% % Display the Zernike function Z(n=5,m=1) qN h:;`
% x = -1:0.01:1; YTH3t]
&
% [X,Y] = meshgrid(x,x); :o$k(X7a
% [theta,r] = cart2pol(X,Y); !{'C.sb?~
% idx = r<=1; |F)BKo D
% z = nan(size(X)); Rlc$2y@pU
% z(idx) = zernfun(5,1,r(idx),theta(idx)); $10"lM[
% figure 5 [{l9
% pcolor(x,x,z), shading interp LIfQh
% axis square, colorbar jWHv9XtW
% title('Zernike function Z_5^1(r,\theta)') Pf`HF|NI
% )C^ZzmB
% Example 2: ]PWK^-4P
% F+yu[Dh:
% % Display the first 10 Zernike functions bgD4;)?5b
% x = -1:0.01:1; %j3XoRex><
% [X,Y] = meshgrid(x,x); tkT:5O6
% [theta,r] = cart2pol(X,Y); mS)|i+5
% idx = r<=1; s~N WJ*i
% z = nan(size(X)); +T]/4"^M
% n = [0 1 1 2 2 2 3 3 3 3]; HCOv<k
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 1/b5i8I2v
% Nplot = [4 10 12 16 18 20 22 24 26 28]; DIrQ5C
% y = zernfun(n,m,r(idx),theta(idx)); IM-O<T6r[N
% figure('Units','normalized') "+SnHpNx
% for k = 1:10 $tKz|H)
% z(idx) = y(:,k); (jj=CLe
% subplot(4,7,Nplot(k)) "u#,#z_
% pcolor(x,x,z), shading interp WdQR^'b$
% set(gca,'XTick',[],'YTick',[]) n*twuB/P 1
% axis square x-0O3IIE
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) fpd4 v|(
% end N]yh8"7X
% yU ?TdM\
% See also ZERNPOL, ZERNFUN2. Er@'X0n
{yXpBS
b+b].,
% Paul Fricker 11/13/2006 =i'APeNaQ
-^C^3pms
Cp!bsasj
V)|]w[(Y
"{TVd>9_
% Check and prepare the inputs: @\ udaZc
% ----------------------------- JDbRv'F:(
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ~w
Ekbq=
error('zernfun:NMvectors','N and M must be vectors.') Epo/}y
end = Ob-'Syg>
pNt,RRoR
l~",<bTc
if length(n)~=length(m) MS7rD%(,'
error('zernfun:NMlength','N and M must be the same length.') a!?JVhD&
end 2~ [
VD.wO%9?)
TR7j`?
n = n(:); 0j\} @
m = m(:); W}6OMAbsE;
if any(mod(n-m,2)) qDlh6W?}k
error('zernfun:NMmultiplesof2', ... t%S2D
'All N and M must differ by multiples of 2 (including 0).') G;jX@XqZ
end 7+'&(^c
$kAal26 z
SN#Cnu}
if any(m>n) !xD$U/%c
error('zernfun:MlessthanN', ... }0okyGg>q
'Each M must be less than or equal to its corresponding N.') rt8"U<~
end zWO!z=
~DJI Lc
_P}wO8
if any( r>1 | r<0 ) {JGXdp:SB
error('zernfun:Rlessthan1','All R must be between 0 and 1.') _&SST)Y|
end ^55q~DP}>
'&LH9r
rbw~Ml0
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) .ri?p:a}w
error('zernfun:RTHvector','R and THETA must be vectors.') tO}Y=kZa{
end ']C" 'b
P*!~Z*"
^ }k qAmr
r = r(:); VX6M4<8
theta = theta(:); *L{^em#b
length_r = length(r); j=kz^o~mH
if length_r~=length(theta) !Bu=?gf
error('zernfun:RTHlength', ... k*u4N
'The number of R- and THETA-values must be equal.') f^]^IXzXw.
end w+][L||4c
werTwe2Q
WF_24Mw
% Check normalization: wl Nl|+ K
% -------------------- INNTp[
if nargin==5 && ischar(nflag) {>h,@
isnorm = strcmpi(nflag,'norm'); ]|8*l]oc
if ~isnorm FT;I|+H*P
error('zernfun:normalization','Unrecognized normalization flag.') !*!i&0QC~R
end *|B5,Ey
else j
V'~>
isnorm = false; 2{A/Fbk
end dF+R
q|n{
GLiD,QX<
u`gY/]y!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% M?v`C>j
% Compute the Zernike Polynomials zbZN-j#
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% j&l2n2z
}>yQ!3/i
;mauA#vd
% Determine the required powers of r: 7Um3myXU
% ----------------------------------- ;\54(x}|K
m_abs = abs(m); S{S.H?{F
rpowers = []; k/m-jm_h
for j = 1:length(n) S]<%^W'
rpowers = [rpowers m_abs(j):2:n(j)]; rPx:o}&<
end |bX{MF
rpowers = unique(rpowers); eMOnzW|h
K!O7q~s[D
C<E;f]d
% Pre-compute the values of r raised to the required powers, ^$;5ZkQy
% and compile them in a matrix: {SwvUWOf"
% ----------------------------- JL=s=9N;3
if rpowers(1)==0 +GlG.6
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); J%1 2Ey@6
rpowern = cat(2,rpowern{:}); iu+rg(*%
rpowern = [ones(length_r,1) rpowern]; _xdFQ
else W~?mr!`
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); m%.7l8vT
rpowern = cat(2,rpowern{:}); 9;L50q>s
end osPrr QoH
%&&;06GU}
~+anI
% Compute the values of the polynomials: MB"<^ZX
% -------------------------------------- te
b/
y = zeros(length_r,length(n)); F2C v,&'
for j = 1:length(n) KFf6um
s = 0:(n(j)-m_abs(j))/2; &-(p~[|
pows = n(j):-2:m_abs(j); e)kVS}e?
for k = length(s):-1:1 q:3HU<
p = (1-2*mod(s(k),2))* ... o0FVVS l
prod(2:(n(j)-s(k)))/ ... (E<QA
prod(2:s(k))/ ... 89l{h8R
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... .WpvDDUK3
prod(2:((n(j)+m_abs(j))/2-s(k))); r=:o$e
idx = (pows(k)==rpowers); }Oe9Zq
y(:,j) = y(:,j) + p*rpowern(:,idx); 5u^;71
end 1'YksuYx6f
$LJCup,1"
if isnorm KO&oT#S
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); w<G'gi]
end
A9C
end ">'`{mXew
% END: Compute the Zernike Polynomials H<C+rAIb
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% PP!}w
PXDwTuyc
lPOcX'3\
% Compute the Zernike functions: @>Ul0&Mf?
% ------------------------------ p WLFJH}N
idx_pos = m>0; I;3Uzv
idx_neg = m<0; D",~?
+EP=uV9t
Cl'3I%$8K
z = y; sI#r3:?i
if any(idx_pos) ;&U! g&
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 93fClF|@
end $S{]` +
if any(idx_neg) V0a)9\x(\
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); $ZfoJR]%
end '(&,i/O
XdGA8%^cY
F<|x_6a\
% EOF zernfun =d`/BDD