切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9094阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, _C@<*L=Q  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, &_,.*tha  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? 5EL&?\e  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? ,soXX_Y>  
    o^Qy71Uj  
    i Jr(;Bq  
    M4E==  
    CIAKXYM  
    function z = zernfun(n,m,r,theta,nflag) lVgin54Q  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. I36ClOG  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N :b<<  
    %   and angular frequency M, evaluated at positions (R,THETA) on the P7*?E*   
    %   unit circle.  N is a vector of positive integers (including 0), and 8" (j_~;  
    %   M is a vector with the same number of elements as N.  Each element n\u3$nGL1`  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) B*n_ VBd  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, U[6 ~ad a  
    %   and THETA is a vector of angles.  R and THETA must have the same fnK H<  
    %   length.  The output Z is a matrix with one column for every (N,M) j){0>O.V  
    %   pair, and one row for every (R,THETA) pair. 9eEA80i7  
    % )npvy>C'(  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike |v:fP;zc  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), )zu m.6pT  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 51`*VR]`K  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, bM"d$tl$?'  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized U[NQ"  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. >[4CQK`U  
    % wPaMYxO/  
    %   The Zernike functions are an orthogonal basis on the unit circle. V@\A<q%jTs  
    %   They are used in disciplines such as astronomy, optics, and Pl&x6\zL  
    %   optometry to describe functions on a circular domain. vue=K  
    % VF g"AJf  
    %   The following table lists the first 15 Zernike functions. mw~$;64;a  
    % ?y,z  
    %       n    m    Zernike function           Normalization }ssL;q  
    %       -------------------------------------------------- a 9Kws[  
    %       0    0    1                                 1 T)MZ`dM  
    %       1    1    r * cos(theta)                    2 vGD D  
    %       1   -1    r * sin(theta)                    2 y(Tb=:  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) x, #?  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 3($tD*!o  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) AP0z~e  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) (4C_Ft*~j  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) HA~BXxa/  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) W.?EjEx  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) |yi#6!}^  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) M ~5Ja0N~  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) j0A9;AP;;C  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 3j/~XT  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) a4Y43n  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) B }  
    %       -------------------------------------------------- ~U1M -<IX  
    % t ]P^6jw'  
    %   Example 1: N==Y]Z$G  
    % 8-FW'bA  
    %       % Display the Zernike function Z(n=5,m=1) (gb vInZ  
    %       x = -1:0.01:1; .]ZMxDZ  
    %       [X,Y] = meshgrid(x,x); +}Qq#^:_\  
    %       [theta,r] = cart2pol(X,Y); WJii0+8e  
    %       idx = r<=1; ]".SW5b_  
    %       z = nan(size(X)); i=\`f& B  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); B=|m._OL]n  
    %       figure 5wa!pR\c  
    %       pcolor(x,x,z), shading interp Kk6i  
    %       axis square, colorbar YkI_i(  
    %       title('Zernike function Z_5^1(r,\theta)') jGtu>|Gj  
    % pZ&?uo67_  
    %   Example 2: Us4#O&  
    % (RI+4V1  
    %       % Display the first 10 Zernike functions #~`d ;MC  
    %       x = -1:0.01:1; }PxP J$o  
    %       [X,Y] = meshgrid(x,x); UI74RP  
    %       [theta,r] = cart2pol(X,Y); s@pIcNvx  
    %       idx = r<=1; ]I(<hDuRp  
    %       z = nan(size(X)); @hOT< Uo  
    %       n = [0  1  1  2  2  2  3  3  3  3]; Q =4~u z|  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; ONm-zRx|  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; U&u~i 3  
    %       y = zernfun(n,m,r(idx),theta(idx)); "1ov<  
    %       figure('Units','normalized') ^d!I{ y#  
    %       for k = 1:10 ; nYR~~  
    %           z(idx) = y(:,k); 3(=QY)  
    %           subplot(4,7,Nplot(k)) Mby V_A`r_  
    %           pcolor(x,x,z), shading interp x1`zD*{  
    %           set(gca,'XTick',[],'YTick',[]) `_ )5K u}  
    %           axis square zQx6r .  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) #EIcP=1m4  
    %       end zI.:1(,  
    % F3&:KZ!V&m  
    %   See also ZERNPOL, ZERNFUN2. &?3P5dy_  
    H<ZXe!q(nx  
    0"DS>:Ntk  
    %   Paul Fricker 11/13/2006 YAYwrKt  
    y{J7^o(_~  
    &-p!Lg&D  
    QHw{@*  
    $fQ'q3  
    % Check and prepare the inputs: M nDa ag  
    % ----------------------------- QA# 7T3|  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Dj x[3['  
        error('zernfun:NMvectors','N and M must be vectors.') x)-n[Fu  
    end NU.YL1  
    zd?uMq;w  
    -'RD%_  
    if length(n)~=length(m) *2r(!fJP=^  
        error('zernfun:NMlength','N and M must be the same length.') # &Z1d(!  
    end 2 D!$x+|  
    [A#>G4a<  
    `a]feAl  
    n = n(:); Tu-I".d+  
    m = m(:); fP;2qho  
    if any(mod(n-m,2)) 4\(|V fy  
        error('zernfun:NMmultiplesof2', ... 1'SpJL1u~  
              'All N and M must differ by multiples of 2 (including 0).') y.?Q  
    end 1-?TjR  
    !-s6B  
    . /~#  
    if any(m>n) rl XMrn  
        error('zernfun:MlessthanN', ... 8t1,_,2'  
              'Each M must be less than or equal to its corresponding N.') =xRxr @  
    end SOQR(UT  
    ^LAdN8Cbb  
    bC%}1wwh  
    if any( r>1 | r<0 ) jn#Ok@tZ  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 4L)Ox;6>  
    end *sq+ Vc(  
    5g4xhYl70n  
    +3k#M[Bn}  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) +*KDtqZjk  
        error('zernfun:RTHvector','R and THETA must be vectors.') Nj`Miv o  
    end <77v8=as5  
    }BLT2]y0  
    Oy~X@A  
    r = r(:); lBfG#\rdW~  
    theta = theta(:); b"&1l2\ A  
    length_r = length(r); uU#e54^  
    if length_r~=length(theta) ~+Ows  
        error('zernfun:RTHlength', ... CUa`#  
              'The number of R- and THETA-values must be equal.') %y R~dt'  
    end uqK[p^{  
    DK }1T  
    21.N+H'  
    % Check normalization: t$5)6zG  
    % -------------------- T.iVY5^<  
    if nargin==5 && ischar(nflag) G,A;`:/  
        isnorm = strcmpi(nflag,'norm'); M;1B}x@  
        if ~isnorm Ar1X mHq  
            error('zernfun:normalization','Unrecognized normalization flag.') ,v>| Ub,  
        end ~VaO,8&+L  
    else 6 +x>g  
        isnorm = false; {ZD'l5jU  
    end ,)P6fa/  
    eHH qm^1z  
    cO/.(KBF  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% XyytO;X M-  
    % Compute the Zernike Polynomials ]6TX)1  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 6sl2vHzA  
    \_PD@A9  
    _chX {_Hu-  
    % Determine the required powers of r: bB"q0{9G-  
    % ----------------------------------- p_l.a  
    m_abs = abs(m); +*P;Vb6D  
    rpowers = []; - ]Mp<Y  
    for j = 1:length(n) lv0}d  
        rpowers = [rpowers m_abs(j):2:n(j)]; D-4\AzIb  
    end ro*$OLc/  
    rpowers = unique(rpowers); <%Afa#  
    l?swW+ x\  
    a0[Mx 4  
    % Pre-compute the values of r raised to the required powers, [wR x)F"  
    % and compile them in a matrix: zwpgf  
    % ----------------------------- g;PZ$|%&s>  
    if rpowers(1)==0 Y"Y+U`Qt  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); T^n0=|  
        rpowern = cat(2,rpowern{:}); 34Z$a{ w  
        rpowern = [ones(length_r,1) rpowern]; QX&1BKqWn  
    else xlU:&=|  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 0I \l_St@  
        rpowern = cat(2,rpowern{:}); /J` ZO$  
    end k4Ub+F  
    lpHz*NZ0  
    =pR'XF%  
    % Compute the values of the polynomials: $Hbd:1%i {  
    % -------------------------------------- @8xa"Dc  
    y = zeros(length_r,length(n)); &Eqa y'  
    for j = 1:length(n) 0R[onPU_vZ  
        s = 0:(n(j)-m_abs(j))/2; sFWH*k dP?  
        pows = n(j):-2:m_abs(j);  {]=oOy1  
        for k = length(s):-1:1 b\H !\A  
            p = (1-2*mod(s(k),2))* ... ]^ "BLbDZ@  
                       prod(2:(n(j)-s(k)))/              ... qGPIKu  
                       prod(2:s(k))/                     ... R2!_)Rpf  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... A*_ |/o  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); j[y,Jc h  
            idx = (pows(k)==rpowers); q%xq\L.  
            y(:,j) = y(:,j) + p*rpowern(:,idx); { WW!P,w  
        end li Hz5<|  
         *{e?%!Q  
        if isnorm <>  |/U`  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); yQ M<(;\O  
        end #+]-}v3  
    end mbh;oX+  
    % END: Compute the Zernike Polynomials KOM]7%ys1H  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #X?#v7i",D  
    C~#ndl Ij  
    r%DaBx!x8  
    % Compute the Zernike functions: JK@" &  
    % ------------------------------ tfb_K4h6,  
    idx_pos = m>0; o(_~ st<  
    idx_neg = m<0; 7y2-8e L  
    4|[)D/N  
    FY6!)/P0I7  
    z = y; mfpL?N  
    if any(idx_pos) (fJ.o-LQ  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 9?~K"+-SI  
    end cw)'vAE  
    if any(idx_neg) 4RYvI!  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ~G ZpAPg*  
    end 'E#;`}&Ah  
    r=o\!sh[  
    P:8P>#L  
    % EOF zernfun Hg}@2n)/  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  {M5[gr%  
    #Zm%U_$<  
    DDE还是手动输入的呢? P7||d@VW,  
    1i.t^PY  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究