切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9224阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, 2aw&YZ&Xo  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, u%/fx~t$  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? g]c[O*NTL  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? le+R16Z  
    5!YA o\S  
    n<sd!xmqFx  
    {rfF'@[  
    2kAx>R  
    function z = zernfun(n,m,r,theta,nflag) YJg,B\z}  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. GZS1zTwBL  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N h&.wo !  
    %   and angular frequency M, evaluated at positions (R,THETA) on the &AVpLf:?  
    %   unit circle.  N is a vector of positive integers (including 0), and  T9)nQ[  
    %   M is a vector with the same number of elements as N.  Each element 'i;|c  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) )#|<w9uec  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, <!-sZ_qq  
    %   and THETA is a vector of angles.  R and THETA must have the same KrVcwAcq|1  
    %   length.  The output Z is a matrix with one column for every (N,M) ih,%i4<}6m  
    %   pair, and one row for every (R,THETA) pair. ~R$~&x(b  
    % SG}V[Glk  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike G22NQ~w8  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), iovfo2!hD  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 0]QRsVz+  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, %75xr9yOP  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized b2 _Yu^  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. alh >"9~!  
    % aQ^umrj@?9  
    %   The Zernike functions are an orthogonal basis on the unit circle. CQel3Jtt.  
    %   They are used in disciplines such as astronomy, optics, and Fhv/[j^X  
    %   optometry to describe functions on a circular domain. Mb3}7@/[  
    % /@AEJ][$  
    %   The following table lists the first 15 Zernike functions. xtPLR/Z  
    % oH0X<'  
    %       n    m    Zernike function           Normalization M/x>51<  
    %       -------------------------------------------------- JN^ &S  
    %       0    0    1                                 1 j!7`]  
    %       1    1    r * cos(theta)                    2 Hf'G8vW  
    %       1   -1    r * sin(theta)                    2 ,+`61J3W  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) .@ xF6UZ  
    %       2    0    (2*r^2 - 1)                    sqrt(3) G?f\>QSZ  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) Kvsh  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) s9dO,FMs0t  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) J=.`wZQkS  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) dz~co Z9  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) b jAnaya  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) GgaTn!mJt  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ,-x!$VqS  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) tm7u^9]  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 1&fc1uYB4  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) y_xnai  
    %       -------------------------------------------------- u%'\UmE w  
    % SIBoCs5  
    %   Example 1: JS}{%(B  
    % ~|wbP6</:-  
    %       % Display the Zernike function Z(n=5,m=1) ?"?6,;F(4  
    %       x = -1:0.01:1; s@MYc@k  
    %       [X,Y] = meshgrid(x,x); zP6.xp3  
    %       [theta,r] = cart2pol(X,Y); V\(:@0"  
    %       idx = r<=1; @EE."T9  
    %       z = nan(size(X)); eIl]oC7*  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 0%!rx{f#\  
    %       figure -v6M<  
    %       pcolor(x,x,z), shading interp P0 `Mdk371  
    %       axis square, colorbar ;3_l@dP"  
    %       title('Zernike function Z_5^1(r,\theta)') (98Nzgxgx}  
    % eY{+~|KZ  
    %   Example 2: > iE!m  
    % P{Q=mEQ  
    %       % Display the first 10 Zernike functions 9&RFO$WH  
    %       x = -1:0.01:1; FI"`DMb}  
    %       [X,Y] = meshgrid(x,x); ~ %B<  
    %       [theta,r] = cart2pol(X,Y); r\nx=  
    %       idx = r<=1; mS k5u7  
    %       z = nan(size(X)); 5k|9gICyd*  
    %       n = [0  1  1  2  2  2  3  3  3  3]; #+$Q+Z|6k  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; y4+ ;z2' >  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; k+1|I)z  
    %       y = zernfun(n,m,r(idx),theta(idx)); e8'wG{3A  
    %       figure('Units','normalized') KR7@[  
    %       for k = 1:10 A.UUW  
    %           z(idx) = y(:,k); ;-UmY}MU  
    %           subplot(4,7,Nplot(k)) \QU^>2 3  
    %           pcolor(x,x,z), shading interp ko5V9Drc  
    %           set(gca,'XTick',[],'YTick',[]) 2w)-\/j}  
    %           axis square };'\~g,1  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) vM_:&j_?``  
    %       end lsN~*q?~]  
    % u.rY#cS,-R  
    %   See also ZERNPOL, ZERNFUN2. <3,<\ub  
    =)|-?\[w  
    1>L(ul(qGF  
    %   Paul Fricker 11/13/2006 2Pc%fuC  
    xeGb?DPu  
     @3kKJ  
    }MUn/ [x  
    H(Eh c  
    % Check and prepare the inputs: ^k<o T'89  
    % ----------------------------- %,ngRYxT#  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) -GLMmZJt  
        error('zernfun:NMvectors','N and M must be vectors.') Ali9pvE  
    end 7t.!lh5G%  
    /PsnD_s]5  
    ^] kF{ o?  
    if length(n)~=length(m) ytNO*XoR  
        error('zernfun:NMlength','N and M must be the same length.') =_0UD{"_0  
    end ]r_;dYa  
    }`+B=h-dW  
    D-N8<:cA  
    n = n(:); U4G`ZK v(!  
    m = m(:); .KdyJ6o  
    if any(mod(n-m,2)) %\i9p]=  
        error('zernfun:NMmultiplesof2', ... 10H)^p%3+  
              'All N and M must differ by multiples of 2 (including 0).') H:"ma S\I  
    end "O(9m.CZ  
    d:yqj:  
    Y3O#Q)-j$  
    if any(m>n) 'fPdpnJ<  
        error('zernfun:MlessthanN', ... qoAj] ")  
              'Each M must be less than or equal to its corresponding N.') '}Ri`  
    end w|Nz_3tI  
    |hr]>P1  
    r;m)nRu  
    if any( r>1 | r<0 ) n9s iX  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') VsA'de!V4[  
    end V%Sy"IG  
    ^%` wJ.c  
    hdVdcnM  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) -1J[n0O.  
        error('zernfun:RTHvector','R and THETA must be vectors.') fNrgdfo  
    end H8"@iE,  
     }K3x  
    ~/*MY  
    r = r(:); GaSPJt   
    theta = theta(:); ~,*b }O  
    length_r = length(r); <mAhr  
    if length_r~=length(theta) L QjsOo  
        error('zernfun:RTHlength', ... MR}Agu#LG  
              'The number of R- and THETA-values must be equal.') FHV-BuH5  
    end P 3'O/!  
    l<N}!lG|  
    nMJ#<'v^!2  
    % Check normalization: DY^;EZ!hb  
    % -------------------- xNbPsoK  
    if nargin==5 && ischar(nflag) A,4fEmWM  
        isnorm = strcmpi(nflag,'norm'); ~s5SZK*  
        if ~isnorm 2p " WTd  
            error('zernfun:normalization','Unrecognized normalization flag.') :>=\.\  
        end *BR^U$,e  
    else [Jv@J\  
        isnorm = false; ,N0#!<}4  
    end &?(?vDFfZ  
    q`r**N+zn  
    /E\%>wv  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Jkek-m  
    % Compute the Zernike Polynomials pa# IJ  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Hhh0T>gi  
    z[;z>8|c  
    f`Fi#EKT  
    % Determine the required powers of r: w`5xrqt@  
    % ----------------------------------- (P$H<FtH  
    m_abs = abs(m); $ , u+4h  
    rpowers = []; ,S!azN=  
    for j = 1:length(n) eow'K 821A  
        rpowers = [rpowers m_abs(j):2:n(j)]; y`=]T>X&x  
    end \P6$mh\T  
    rpowers = unique(rpowers); L+q/){Dd(  
    :eCU/BC4  
    &c,kQo+pA  
    % Pre-compute the values of r raised to the required powers, sQ\8>[]   
    % and compile them in a matrix: is-7 j7;  
    % ----------------------------- =y!$/(H  
    if rpowers(1)==0 }1upi=+ aE  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); {yExQbN  
        rpowern = cat(2,rpowern{:}); hzvd t  
        rpowern = [ones(length_r,1) rpowern]; <Sr  
    else f=9|b  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); SBS3?hw  
        rpowern = cat(2,rpowern{:}); \7'+h5a  
    end aYSCw 3C<  
    Dbz3;t  
    S@/IQR  
    % Compute the values of the polynomials: tw9f%p  
    % -------------------------------------- sjV!5Z  
    y = zeros(length_r,length(n)); HKUn`ng  
    for j = 1:length(n) sdo [D  
        s = 0:(n(j)-m_abs(j))/2; ;N?]eM}yf  
        pows = n(j):-2:m_abs(j); $F5 b  
        for k = length(s):-1:1 #%h-[/  
            p = (1-2*mod(s(k),2))* ... K>@+m  
                       prod(2:(n(j)-s(k)))/              ... Bn &Ws  
                       prod(2:s(k))/                     ... &eX!#nQ_.  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... s|y "WDyx5  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); |0f>aZ  
            idx = (pows(k)==rpowers); V6,H}k   
            y(:,j) = y(:,j) + p*rpowern(:,idx); Ev}C<zk*  
        end "L&#lfOKG  
         L bmawi^  
        if isnorm  ^0 \  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); j=r P:#  
        end /x p|  
    end XLrwxj0  
    % END: Compute the Zernike Polynomials /$p6'1P8  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% [UWd W  
    %#xaA'? [  
    (bH`x]h#  
    % Compute the Zernike functions: #ZrHsf P  
    % ------------------------------ lUMS;H(  
    idx_pos = m>0; 7\s"o&G  
    idx_neg = m<0;  KJaXg;,H  
    4p,EBn9(  
    =E#%'/ A;c  
    z = y; J`].:IOh  
    if any(idx_pos) 8&qZ0GLaT  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ;"~ fZ2$U  
    end eEv@}1~  
    if any(idx_neg) HOJs[mqB%  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); /n{omx  
    end EWkLXU6t  
    _8F`cuyW  
    Ssou  
    % EOF zernfun '9 [vDG~  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  @| M|+k3  
    \\PjKAsh  
    DDE还是手动输入的呢? 1n >X[! 8x  
    3GaQk-  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究