切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9294阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, !&pk^VFl+  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, L | #"Yn  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? Vn?|\3KY  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? pd.5  
    o_cAelI[!  
    !r4B1fX  
    T2 /u7<D-  
    ;$FMOMR  
    function z = zernfun(n,m,r,theta,nflag) i:7cdhz  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. %S<))G  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N =H?^G[y  
    %   and angular frequency M, evaluated at positions (R,THETA) on the X)S4vqf}  
    %   unit circle.  N is a vector of positive integers (including 0), and q0(-"}2l  
    %   M is a vector with the same number of elements as N.  Each element 0iVeM!bM  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) @-.Tgpe@a  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, /`g~lww2O  
    %   and THETA is a vector of angles.  R and THETA must have the same g&X X@I8+v  
    %   length.  The output Z is a matrix with one column for every (N,M) )5w#n1  
    %   pair, and one row for every (R,THETA) pair. oWBjPsQ  
    % t LM/STb6  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike )npvy>C'(  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), |v:fP;zc  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral )zu m.6pT  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, IY}{1[<N  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized bM"d$tl$?'  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. U[NQ"  
    % pPJE.[)V/  
    %   The Zernike functions are an orthogonal basis on the unit circle. p)s *Cw  
    %   They are used in disciplines such as astronomy, optics, and .cs4AWml<  
    %   optometry to describe functions on a circular domain. QPKY9.Rvv  
    % _7,4C?  
    %   The following table lists the first 15 Zernike functions. 6nW]Q^N}  
    % wSG!.Ejc7  
    %       n    m    Zernike function           Normalization 2cko GafG{  
    %       -------------------------------------------------- }a!c  
    %       0    0    1                                 1 ;2'/rEq4o  
    %       1    1    r * cos(theta)                    2 K'b #}N\  
    %       1   -1    r * sin(theta)                    2 J['i  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) T.q7~ba*  
    %       2    0    (2*r^2 - 1)                    sqrt(3) M^0^l9w  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) %APeQy"6#^  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 4']eJ==OH  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 'v%v*Ujf[  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) AP0z~e  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) (4C_Ft*~j  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) L+.-aB2!d  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) W.?EjEx  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) |yi#6!}^  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) M ~5Ja0N~  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) j0A9;AP;;C  
    %       -------------------------------------------------- 3j/~XT  
    % a4Y43n  
    %   Example 1: c='uyx  
    % Nj+g Sa9  
    %       % Display the Zernike function Z(n=5,m=1) t ]P^6jw'  
    %       x = -1:0.01:1; 1!A 'mkk8  
    %       [X,Y] = meshgrid(x,x); f# sDG  
    %       [theta,r] = cart2pol(X,Y); 0134mw%jk  
    %       idx = r<=1; /8LTM|(  
    %       z = nan(size(X)); 'J_6SD  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); #F ;@Qi3z  
    %       figure 1.z]/cx<y  
    %       pcolor(x,x,z), shading interp >44,Dp]  
    %       axis square, colorbar InB'Ag"  
    %       title('Zernike function Z_5^1(r,\theta)') b@9d@@/wx  
    % y hNy  
    %   Example 2: }/aqh;W  
    % (gF{S* `  
    %       % Display the first 10 Zernike functions {3K`yDF  
    %       x = -1:0.01:1; sEcg;LFp  
    %       [X,Y] = meshgrid(x,x); +H "j-:E@t  
    %       [theta,r] = cart2pol(X,Y); quiX "lV(  
    %       idx = r<=1; #BhcW"@  
    %       z = nan(size(X)); *iXaQuT  
    %       n = [0  1  1  2  2  2  3  3  3  3]; )KUEkslR:  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; )\QPUdOvx  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 7X/KQ97  
    %       y = zernfun(n,m,r(idx),theta(idx)); D9higsN  
    %       figure('Units','normalized') ~iU@ns|g\  
    %       for k = 1:10 aThvq%;  
    %           z(idx) = y(:,k); @K}Bll.E  
    %           subplot(4,7,Nplot(k)) Frum@n  
    %           pcolor(x,x,z), shading interp G(MLq"R6U  
    %           set(gca,'XTick',[],'YTick',[]) j&Y{ CFuZ  
    %           axis square Io]KlR@!T  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) mxmj  
    %       end g!!:o(k  
    % epxbTJfc  
    %   See also ZERNPOL, ZERNFUN2. YI+o:fGC5  
    %)P)Xb  
    ^d!I{ y#  
    %   Paul Fricker 11/13/2006 y:,m(P  
    F 8 gw3  
    l'kVi  
    :zsMkdU  
    ?5rM'O2  
    % Check and prepare the inputs: r<EwtO+x  
    % ----------------------------- d%Nx/DS)  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) xv 0y?#`z  
        error('zernfun:NMvectors','N and M must be vectors.') 4x?4[J~u[  
    end s1 (UOd7}  
    PQ(/1v   
    h?-M+Ac  
    if length(n)~=length(m) Z2&7HTz  
        error('zernfun:NMlength','N and M must be the same length.') Y>I9o)KR  
    end Nuc2CB)J  
    IS%e5  
    gCv[AIE_m  
    n = n(:); ?HP{>l0r  
    m = m(:); tW"s^r=95  
    if any(mod(n-m,2)) #hh7fE'9  
        error('zernfun:NMmultiplesof2', ... t9[%o=N~lD  
              'All N and M must differ by multiples of 2 (including 0).') 7!^Zsp^+  
    end ZBXn&Gm  
    X{;5jnpG  
    `k~w 14~w  
    if any(m>n) qWb8"  
        error('zernfun:MlessthanN', ... m";?B1%x  
              'Each M must be less than or equal to its corresponding N.') :}[ D;cx  
    end sm at6p[  
    2 D!$x+|  
    [A#>G4a<  
    if any( r>1 | r<0 ) /[>zFYaQ  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') Jb]22]  
    end fP;2qho  
    4\(|V fy  
    1'SpJL1u~  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) h#]LXs  
        error('zernfun:RTHvector','R and THETA must be vectors.') vz`r !xj)  
    end !-s6B  
     Y$nI9  
    z-;yDB:~t  
    r = r(:); RbJbVFz8C  
    theta = theta(:); Zie t-@}  
    length_r = length(r); MFs W  
    if length_r~=length(theta) a\Dw*h?b~  
        error('zernfun:RTHlength', ... {#H'K*j{  
              'The number of R- and THETA-values must be equal.') tnFhL&  
    end !E9A=u{  
    c$~J7e6$  
    Qd"u$~ qC  
    % Check normalization: zH1ChgF=}  
    % -------------------- P*9L3R*=N  
    if nargin==5 && ischar(nflag) Pc=:j(  
        isnorm = strcmpi(nflag,'norm'); l#;o^H i  
        if ~isnorm A?Gk8  
            error('zernfun:normalization','Unrecognized normalization flag.')  @po|07  
        end .:2=VLujU  
    else |n\(I$  
        isnorm = false; SAGECK[Ix  
    end &z%DX   
    Wj\< )cH]  
    *;<>@*  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% y<n<uZ;  
    % Compute the Zernike Polynomials @-Ln* 3n  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 5vjtF4}7!  
    yMBFw:/o  
    GM>Ms!Y  
    % Determine the required powers of r: c4xXsUBQk  
    % ----------------------------------- q?Av5TFf  
    m_abs = abs(m); #GA6vJ4^s  
    rpowers = []; >y^zagC*  
    for j = 1:length(n) L_ 2R3 w  
        rpowers = [rpowers m_abs(j):2:n(j)]; @BS7Gyw  
    end BZ>,Qh!J  
    rpowers = unique(rpowers); N1jJ(}{3  
    {^SHIL  
    #;Z+ X)  
    % Pre-compute the values of r raised to the required powers, r`!S*zK  
    % and compile them in a matrix: C}cYG  
    % -----------------------------  \%/zf  
    if rpowers(1)==0 =@ "'aCU/  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); rklK=W z  
        rpowern = cat(2,rpowern{:}); !UW{xHu  
        rpowern = [ones(length_r,1) rpowern]; EPL"H:o5%<  
    else Q^\f,E\S  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); S`Wau/7t  
        rpowern = cat(2,rpowern{:}); ~h6aTN  
    end !nyUAZ9 :  
    ]^?V8*zL]  
    N.qS;%*o{e  
    % Compute the values of the polynomials: %2`geN<  
    % -------------------------------------- ,?Nc\Q<:  
    y = zeros(length_r,length(n)); y|[YEY U)  
    for j = 1:length(n) O5?3 nYHa  
        s = 0:(n(j)-m_abs(j))/2; %!QY:[   
        pows = n(j):-2:m_abs(j); _#rE6./@q  
        for k = length(s):-1:1 Fg -4u&Ik  
            p = (1-2*mod(s(k),2))* ... )6,Pmq~)  
                       prod(2:(n(j)-s(k)))/              ... Pg/$ N5->  
                       prod(2:s(k))/                     ... &?j]L4%  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 5W~-|8m  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); coFQu ; i  
            idx = (pows(k)==rpowers); =}Xw}X+[WY  
            y(:,j) = y(:,j) + p*rpowern(:,idx); FV W&)-I  
        end /\|AHM  
         6qzyeli  
        if isnorm o"./  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); `#w`-  
        end ]0&ExD\4  
    end b~<Tgo_/jf  
    % END: Compute the Zernike Polynomials @I,:(<6  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% X6lUFko  
    Af{K#R8!  
    d ,!sZ&v  
    % Compute the Zernike functions: gg%9EJpP  
    % ------------------------------ r>gU*bs(  
    idx_pos = m>0; RFq&#3f$  
    idx_neg = m<0; l4`HuNR1  
    [n{c,U F  
    -McDNM  
    z = y; bP 8O&R  
    if any(idx_pos) \"W _\&X  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 3 h~U)mg  
    end %V3xO%  
    if any(idx_neg) 0?d}Oj  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); `L1lGlt  
    end ( [m[<  
    It8m]FN  
    !>Ru= $9  
    % EOF zernfun |<Gq^3 2  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    在线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  pxs#OP  
    -X6[qLq  
    DDE还是手动输入的呢? !PFc)J  
    6tBh`nYB=  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究