下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, : ;nvqb d
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 'w8k*@cQ
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? QyGTm"9l
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? E26 zw9d
J\BTrN 7
02lI-xHe
9"=1 O
6 Ch
[!=p{
function z = zernfun(n,m,r,theta,nflag) .FarKW
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. FC:+[.fi
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N R3;,EL{H&
% and angular frequency M, evaluated at positions (R,THETA) on the ._uXK[c7P
% unit circle. N is a vector of positive integers (including 0), and W?n)IBj8
% M is a vector with the same number of elements as N. Each element b 6FC
% k of M must be a positive integer, with possible values M(k) = -N(k) 5ir[}I^z
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, {*Ag[HS0u
% and THETA is a vector of angles. R and THETA must have the same e-Xr^@M*Q
% length. The output Z is a matrix with one column for every (N,M) Lad8C
% pair, and one row for every (R,THETA) pair. &.zG?e.
% fq@r6\TI
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ,co~@a@9
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), UC!?.
% with delta(m,0) the Kronecker delta, is chosen so that the integral #^+C
kHX
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, a,GOS:?O5
% and theta=0 to theta=2*pi) is unity. For the non-normalized h& t/
L
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. R|jt mI?
% [O"9OW'2!B
% The Zernike functions are an orthogonal basis on the unit circle. Md4hd#z
% They are used in disciplines such as astronomy, optics, and d-zNvbU"
% optometry to describe functions on a circular domain. :6
, `M,
% ;
S(KJV
% The following table lists the first 15 Zernike functions. x:7"/H|
% jf`QoK
% n m Zernike function Normalization H%L oI)w
% -------------------------------------------------- "~1{|lj|)
% 0 0 1 1 AG3iKk??T
% 1 1 r * cos(theta) 2 MY8[)<q"
% 1 -1 r * sin(theta) 2 lo1<t<w`
% 2 -2 r^2 * cos(2*theta) sqrt(6) xppl6v(
% 2 0 (2*r^2 - 1) sqrt(3) X 5.%e&`
% 2 2 r^2 * sin(2*theta) sqrt(6) =RA8^wI
% 3 -3 r^3 * cos(3*theta) sqrt(8) *LaL('.>
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) fEdp^oVg
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) Lp|7s8?
% 3 3 r^3 * sin(3*theta) sqrt(8) X]Aobtz
% 4 -4 r^4 * cos(4*theta) sqrt(10) =bx;TV
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) #-]!;sY>
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) 3 #8bG(
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) `b11,lg
% 4 4 r^4 * sin(4*theta) sqrt(10) N;YAG#'9~_
% -------------------------------------------------- SBf8Ipe
% #~_ZG% u
% Example 1: GOKca%DT=
% `X["Bgk$!T
% % Display the Zernike function Z(n=5,m=1) I"=a:q
% x = -1:0.01:1; XF6ed
% [X,Y] = meshgrid(x,x); wM-I*<L>
% [theta,r] = cart2pol(X,Y); F}f/cG<X
% idx = r<=1; ii3{HJ*C
% z = nan(size(X)); agbG) t0
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 1}7Q2Ad w
% figure W~!uSrY
% pcolor(x,x,z), shading interp 0r=KY@D
% axis square, colorbar pie,^- _.g
% title('Zernike function Z_5^1(r,\theta)') CeZ+!-lG
% kH.W17D~
% Example 2: !`A]YcQ
% 0SHF 8kek
% % Display the first 10 Zernike functions w1Xe9'$Qb
% x = -1:0.01:1; ;kX:k~,]}>
% [X,Y] = meshgrid(x,x); 0b)q,]l]
% [theta,r] = cart2pol(X,Y); wN+3OPM
% idx = r<=1; nlq"OzcH04
% z = nan(size(X)); 5x2m]u
% n = [0 1 1 2 2 2 3 3 3 3]; ]8m_+:`=
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 3axbWf3[
% Nplot = [4 10 12 16 18 20 22 24 26 28]; nNEIwlj;
% y = zernfun(n,m,r(idx),theta(idx)); (lzZ=T
% figure('Units','normalized') [T6MaP?
% for k = 1:10 !4/s|b9K
% z(idx) = y(:,k); o^\L41x3
% subplot(4,7,Nplot(k)) $`wo8A|)
% pcolor(x,x,z), shading interp 4Odf6v,*@
% set(gca,'XTick',[],'YTick',[]) x1O]@Z{d\
% axis square Zv"qA
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) .H33C@
% end e8Y;~OAj[
% 3G.-JLhs
% See also ZERNPOL, ZERNFUN2. oIJ.Tv@N(
Mb1K:U
PCcI(b>?l
% Paul Fricker 11/13/2006 J ;|i6q q
ju8DmC5
j1sgvh]D
pR,eus;8
{ch+G~oS
% Check and prepare the inputs: H6vO}pq)r
% ----------------------------- 9R1S20O
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ?O| CY
error('zernfun:NMvectors','N and M must be vectors.') &$x1^
end S_|VlI
)Bb:?!EuEH
Q2 S!}A
if length(n)~=length(m) ^h5h kIx0
error('zernfun:NMlength','N and M must be the same length.') A4mnm6Tf
end o6@`aU
3m]8>1e1"
C}D\^(nLu.
n = n(:); T:G8xI1
P
m = m(:); )bkJ['9
if any(mod(n-m,2)) +ak<yV1=
error('zernfun:NMmultiplesof2', ... ]T<\d-!CZN
'All N and M must differ by multiples of 2 (including 0).') 7A6: *
end O~bJ<O=?
U~l.%mui
C
U 8s*
if any(m>n) ebTwU]Nb
error('zernfun:MlessthanN', ... !=B=1th4
'Each M must be less than or equal to its corresponding N.') 7FYq6wi
end ZR|n\.
G1?m}{D)
-n#fj;.2_
if any( r>1 | r<0 ) KM&bu='L^
error('zernfun:Rlessthan1','All R must be between 0 and 1.') hVLVMqd
end Pg%k>~i
}
>zl
|3K]>Lio
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) &