切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9239阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, :$0yp`k  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, kc(m.k!|f\  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? &gKDw!al  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? xkv%4H>  
    )FNn  
    p=odyf1hK  
    V>/,&~0  
    05g %5vHF  
    function z = zernfun(n,m,r,theta,nflag) B oxtP<C"  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. +abb[  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 7Mk>`4D'c  
    %   and angular frequency M, evaluated at positions (R,THETA) on the &>&6OV]P'  
    %   unit circle.  N is a vector of positive integers (including 0), and x-]:g&5T  
    %   M is a vector with the same number of elements as N.  Each element VXW*LEk  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 8i5S }  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 6l[ v3l"t  
    %   and THETA is a vector of angles.  R and THETA must have the same '~ H`Ffd.  
    %   length.  The output Z is a matrix with one column for every (N,M) zw+RDo  
    %   pair, and one row for every (R,THETA) pair. XwFTAaZ  
    % Va?i#<a  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike C+g}+  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), %P D}VF/Y  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 4.^T~n G  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, dr c-5{M  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized c@Br_ -  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. H6{Bx2J1*  
    % K_~kL0=4  
    %   The Zernike functions are an orthogonal basis on the unit circle. OGIv".~s4  
    %   They are used in disciplines such as astronomy, optics, and {@F'BB\  
    %   optometry to describe functions on a circular domain. z~3GgR"1d  
    % /_})7I52  
    %   The following table lists the first 15 Zernike functions. :9av]Yv&  
    %  %S%IW  
    %       n    m    Zernike function           Normalization <b .p/uA  
    %       -------------------------------------------------- Hqs!L`oW)  
    %       0    0    1                                 1 i1XRB C9  
    %       1    1    r * cos(theta)                    2 tH4 q*\U  
    %       1   -1    r * sin(theta)                    2 w^Yo)"6  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) A]TEs)#*7)  
    %       2    0    (2*r^2 - 1)                    sqrt(3) wN58uV '  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) _cE_\Ay  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ti (Hx  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) f;Oh"Yt  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) `g3AM%3  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) tcT =a@  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) EQ ee5}  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) `FQ]ad Fz  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) a6j& po  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 1O< 6=oH  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) T[)!7@4r  
    %       -------------------------------------------------- *asv^aFpS  
    % Sc/l.]k+  
    %   Example 1: \ a,}1FS  
    % c8YbBdk'  
    %       % Display the Zernike function Z(n=5,m=1) '~Cn+xf4]  
    %       x = -1:0.01:1; p]EugLEmG  
    %       [X,Y] = meshgrid(x,x); Q"C*j'n   
    %       [theta,r] = cart2pol(X,Y); YI ?P@y  
    %       idx = r<=1; |Z94@uB  
    %       z = nan(size(X)); "gJ.mhHX  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); ~abyjM  
    %       figure `_)H aF>/  
    %       pcolor(x,x,z), shading interp Vy I\Jmr  
    %       axis square, colorbar Te L&6F$  
    %       title('Zernike function Z_5^1(r,\theta)') g i6s+2  
    % n"T ^  
    %   Example 2: Bh' fkW3  
    % 'E9{qPLk(  
    %       % Display the first 10 Zernike functions Q5T3  
    %       x = -1:0.01:1; n)"JMzjQ<  
    %       [X,Y] = meshgrid(x,x); ! #_2 ![  
    %       [theta,r] = cart2pol(X,Y); c0'ryS_Z9  
    %       idx = r<=1; ,AweHUEn  
    %       z = nan(size(X)); !IdVg$7  
    %       n = [0  1  1  2  2  2  3  3  3  3]; rAfz?  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; XQ9W y  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; xws{"m,NX~  
    %       y = zernfun(n,m,r(idx),theta(idx)); :\P@c(c{^C  
    %       figure('Units','normalized') ~Ym _ {  
    %       for k = 1:10 - [h[  
    %           z(idx) = y(:,k); i7-~"g  
    %           subplot(4,7,Nplot(k)) OU/}cu  
    %           pcolor(x,x,z), shading interp $ mE* =  
    %           set(gca,'XTick',[],'YTick',[]) G~8BND[."  
    %           axis square H^*AaA9-   
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) UjQz   
    %       end M%`CzCL u  
    % Z8ea)_ {#  
    %   See also ZERNPOL, ZERNFUN2. P?/JyiO }  
    `6)Qi*Z  
    3\@2!:>  
    %   Paul Fricker 11/13/2006 B6 (\1  
    p"p~Bx  
    (cOe*>L;  
    d<7b<f"~  
    wK-VA$;:  
    % Check and prepare the inputs: +FqD.=8  
    % ----------------------------- 'wk,t^)  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) I?}jf?!oM  
        error('zernfun:NMvectors','N and M must be vectors.') kZz'&xdv'.  
    end B4RrUA32  
    ]}! @'+=  
    G-T^1?  
    if length(n)~=length(m) &M}X$k I  
        error('zernfun:NMlength','N and M must be the same length.') +Pb:<WT}%  
    end W:]2T p  
    HK/WO jr  
    E+O{^C=  
    n = n(:); 'c7nh{F  
    m = m(:); aYaEy(m  
    if any(mod(n-m,2)) [[IMf-]  
        error('zernfun:NMmultiplesof2', ... uKP4ur@1  
              'All N and M must differ by multiples of 2 (including 0).') uL/wV~g  
    end 71R,R,  
    ce\d35x!  
    qX-ptsQ  
    if any(m>n) 4n1g4c-   
        error('zernfun:MlessthanN', ... d=xjLbsZ  
              'Each M must be less than or equal to its corresponding N.') 1z8"Gk6  
    end 4tZ*%!I'  
    adP  :{j  
    UA8hYWRP  
    if any( r>1 | r<0 ) Njg$~30  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') -{cmi,oy  
    end 7?=^0?a  
    gQ{ #C'  
    T"z<D+ pN  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) p3U)J&]c6  
        error('zernfun:RTHvector','R and THETA must be vectors.') {h+8^   
    end Pz2 b  
    MT&aH~YB  
    =tP9n;D  
    r = r(:); T ?[28|  
    theta = theta(:); rQimQ|+  
    length_r = length(r); fwz:k]vk  
    if length_r~=length(theta) ,~d0R4)  
        error('zernfun:RTHlength', ... 4]U=Y>\Sr  
              'The number of R- and THETA-values must be equal.') (&e!u{I  
    end SCcvU4`o  
    X vaIOt>A  
    tS2 &S 6u  
    % Check normalization: 3 ,>M-F  
    % -------------------- OZxJDg  
    if nargin==5 && ischar(nflag) ur}'Y^0iR  
        isnorm = strcmpi(nflag,'norm'); GGuU(sL*  
        if ~isnorm vdq=F|&  
            error('zernfun:normalization','Unrecognized normalization flag.')  8${n}}  
        end f#!+l1GV  
    else l/G +Xj4M  
        isnorm = false; S/`#6  
    end Qfn:5B]tI  
    f(|k0$EIu  
    .#QE*<T)]  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% dBXiLrEbs  
    % Compute the Zernike Polynomials @njNP^'Kx  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% s6|'s<x"j  
    2PlhnUQ7  
    AZ3T#f![L@  
    % Determine the required powers of r: Uqel UL}  
    % ----------------------------------- _aFe9+y  
    m_abs = abs(m); '. "_TEIF  
    rpowers = []; d~u=,@FK  
    for j = 1:length(n) Nnh\FaI  
        rpowers = [rpowers m_abs(j):2:n(j)]; [MpWvLP"x  
    end B r#{  
    rpowers = unique(rpowers); VP#KoX85  
    d0 )725Ia  
    |E1U$,s~u  
    % Pre-compute the values of r raised to the required powers, xT+_JT65  
    % and compile them in a matrix: 0&,D&y%  
    % ----------------------------- Lm4`O %  
    if rpowers(1)==0 fmuh 9Z  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); unFRfec{  
        rpowern = cat(2,rpowern{:}); ^N/d`IAjv  
        rpowern = [ones(length_r,1) rpowern]; ,&UKsrs_  
    else b  Ssg`  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 6MVu"0#  
        rpowern = cat(2,rpowern{:}); c*ueI5i  
    end zQyI4RHG[  
    v])ew|  
    =5\*Zh1  
    % Compute the values of the polynomials:  cHvm  
    % -------------------------------------- @ual+=L  
    y = zeros(length_r,length(n)); kGV:=h  
    for j = 1:length(n) ?62Im^1/  
        s = 0:(n(j)-m_abs(j))/2; !.6n=r8 d  
        pows = n(j):-2:m_abs(j); QJ XP -  
        for k = length(s):-1:1 j,j|'7J%  
            p = (1-2*mod(s(k),2))* ... a.V5fl0?I@  
                       prod(2:(n(j)-s(k)))/              ... ,\6Vb*G|E>  
                       prod(2:s(k))/                     ... t<UJR*R=L  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... M^Sa{S*?  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); p]mN)  
            idx = (pows(k)==rpowers); G(7%*@SX  
            y(:,j) = y(:,j) + p*rpowern(:,idx); lbAhP+B  
        end Z^|N]Ej  
         N9!L8BBaK  
        if isnorm g!XC5*}  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); \U$:/#1Oe  
        end XkA] 9,@  
    end kO\ O$J^S  
    % END: Compute the Zernike Polynomials 4Fft[S(  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Nm"P8/-09  
    01'>[h#_n  
    /JS_gr@DK  
    % Compute the Zernike functions: c& ;@i$X(  
    % ------------------------------ zr|DC] 3  
    idx_pos = m>0; Xfk DMh  
    idx_neg = m<0; ;eYG\uKC{  
    4k225~GQ:C  
    ^sf,mM~D  
    z = y; / dJz?0  
    if any(idx_pos) Or? )Nlg6x  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); *6?mZ*GYY  
    end N (4H}2  
    if any(idx_neg) 8._uwA<[  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Cx2# 0$  
    end -Rpra0o. C  
    b=5w>*  
    AIg4u(j  
    % EOF zernfun :(A&8<}-6  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  #A5X ,-4G  
    =Q<VU/  
    DDE还是手动输入的呢? LVg#E*J  
    k( Sda>-  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究