切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9051阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, V0n8fez b  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, ),$^h7[n  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? (%G>TV  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? rS+ >oP}  
    X^i3(N  
    <SdOb#2  
    XW+-E^d  
    :*-O;Yw?S@  
    function z = zernfun(n,m,r,theta,nflag) c?6(mU\x  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. oG-Eac,  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N rddn"~lm1  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ?"kU+tCxg  
    %   unit circle.  N is a vector of positive integers (including 0), and Jg$ NYs.xZ  
    %   M is a vector with the same number of elements as N.  Each element D0L s~qr  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) [ C!m,4  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, y^D3}ds  
    %   and THETA is a vector of angles.  R and THETA must have the same CY"i|s  
    %   length.  The output Z is a matrix with one column for every (N,M) &E@mCQ1  
    %   pair, and one row for every (R,THETA) pair. IvI;Q0E-3  
    % `W7;-  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike #IeG/t(  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), !:~C/B{  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral )&-n-m@E  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, mS.!lkV  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized nO;ox*Bk+8  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. '=d y =  
    % `.wgRUhFH;  
    %   The Zernike functions are an orthogonal basis on the unit circle. 24f N3  
    %   They are used in disciplines such as astronomy, optics, and 8jiBLZkRf  
    %   optometry to describe functions on a circular domain. xscR Bx  
    % (1'sBm7F  
    %   The following table lists the first 15 Zernike functions.  h}}7_I9  
    % iphdJZ/f  
    %       n    m    Zernike function           Normalization @?</8;%3W  
    %       -------------------------------------------------- z; >O5a>z  
    %       0    0    1                                 1 3Q,p,  
    %       1    1    r * cos(theta)                    2 L l,nt  
    %       1   -1    r * sin(theta)                    2 ]ed7Q3lq  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) F |_mCwA  
    %       2    0    (2*r^2 - 1)                    sqrt(3) v4\ m9Pu4  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) y }h2  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) \;+b1  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) lg@q} ]1  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) YT@N$kOg_  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) u@zT~\ h*  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) MN>U jFA  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) j92+kq>Xd  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) vVo# nzeZ5  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Z eWst w7  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) }~#qDrK  
    %       -------------------------------------------------- (e<p^T J]  
    % t2qWB[r  
    %   Example 1: 2 xi@5;!  
    % eqpnh^0}d  
    %       % Display the Zernike function Z(n=5,m=1) 8 ;=?Lw?  
    %       x = -1:0.01:1; x o72JJ  
    %       [X,Y] = meshgrid(x,x); b+BX >$  
    %       [theta,r] = cart2pol(X,Y); U"Z %_[*  
    %       idx = r<=1; ]`}EOS-Q  
    %       z = nan(size(X)); |D8c=c%  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 4Q\~l(  
    %       figure ^{g+HFTA@  
    %       pcolor(x,x,z), shading interp Z3iX^  
    %       axis square, colorbar *yW9-(  
    %       title('Zernike function Z_5^1(r,\theta)') ?_/T$b ]  
    % fJY b)sN  
    %   Example 2: -AKbXkc~\  
    % @Tsdgx8  
    %       % Display the first 10 Zernike functions 6<UI%X  
    %       x = -1:0.01:1; <%oT}K\;  
    %       [X,Y] = meshgrid(x,x); M5S<N_+Pe  
    %       [theta,r] = cart2pol(X,Y); fXkemB^)_  
    %       idx = r<=1; %'dsb7n  
    %       z = nan(size(X)); AOCiIPw  
    %       n = [0  1  1  2  2  2  3  3  3  3]; Uq2Qh@B  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; J-Fqw-<aFJ  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; P"c7h7  
    %       y = zernfun(n,m,r(idx),theta(idx)); yMf["AvG  
    %       figure('Units','normalized') uC1v^!D  
    %       for k = 1:10 e#4 iue7U  
    %           z(idx) = y(:,k); `Y7&}/OM  
    %           subplot(4,7,Nplot(k)) 1;+(HB  
    %           pcolor(x,x,z), shading interp {>#4{D00  
    %           set(gca,'XTick',[],'YTick',[]) ;[-y>qU0  
    %           axis square !q*]_1  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) $h'>Zvf  
    %       end =+wkjTO  
    % }-M% $ ~`  
    %   See also ZERNPOL, ZERNFUN2. T<ekDhlr  
    +' ?axv6e  
    h}P""  
    %   Paul Fricker 11/13/2006 L|w}#|-  
    O.P:~  
    K 7d]p0d'  
    <' b%  
    Hd=!  
    % Check and prepare the inputs: !rgdOlTR^  
    % ----------------------------- `)eqTeW  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) O7T wM Yh  
        error('zernfun:NMvectors','N and M must be vectors.') -"3<Ll  
    end @Tf5YZ*  
    ^2um.`8  
    )`]} D[j  
    if length(n)~=length(m) !8>tT  
        error('zernfun:NMlength','N and M must be the same length.') `=~d^wKYJ3  
    end |70L h+  
    q P>Gre  
    uEkUK|  
    n = n(:); _}wy|T&7k&  
    m = m(:); }))JzrqAe  
    if any(mod(n-m,2)) 68jq1Y Pv  
        error('zernfun:NMmultiplesof2', ... tr\}lfK%  
              'All N and M must differ by multiples of 2 (including 0).') *HN0em  
    end Ot_xeg;7  
    g4*]R>f  
    B^uQv|m  
    if any(m>n) bi[gyl#  
        error('zernfun:MlessthanN', ... hSD uByoi  
              'Each M must be less than or equal to its corresponding N.') QK%6Ncv  
    end p,+$7f1S  
    geu8$^  
    bI~(<-S~K  
    if any( r>1 | r<0 ) ByPzA\;e  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') KBo/GBD]|  
    end h $}&N  
    C/Dc1sj  
    hE>i~:~R  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 2@S{e$YK`  
        error('zernfun:RTHvector','R and THETA must be vectors.') `P<m`*  
    end u%=M4|7  
    zy9# *gGq  
    !&D&Gs  
    r = r(:); t`X-jr)g  
    theta = theta(:); } .cP  
    length_r = length(r); YQ}bG{V  
    if length_r~=length(theta) OQON~&~  
        error('zernfun:RTHlength', ... wg[D*a  
              'The number of R- and THETA-values must be equal.') dF%sD|<)  
    end 4X2/n  
    3N,!y  
    agFWye  
    % Check normalization: yA+:\%y$  
    % -------------------- |:i``gFj  
    if nargin==5 && ischar(nflag) p}NIZ)]$  
        isnorm = strcmpi(nflag,'norm'); :8bz+3p  
        if ~isnorm .^S#h (A  
            error('zernfun:normalization','Unrecognized normalization flag.') b;O|-2AR  
        end cM;& $IjCt  
    else "[(I*  
        isnorm = false; t F<|Eja *  
    end .)>DFGb>H  
    'o2x7~C@  
    H`$s63  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% =kUN ^hb  
    % Compute the Zernike Polynomials t YmR<^  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 1wl8  
    .h2K$(/  
    :*"0o{ ie  
    % Determine the required powers of r: ozbu|9 +v  
    % ----------------------------------- gNO<`9q  
    m_abs = abs(m); UNJ]$x0  
    rpowers = []; fRe$}KX  
    for j = 1:length(n) 3Q`F x  
        rpowers = [rpowers m_abs(j):2:n(j)]; 6U k[_)1  
    end W,i SN}  
    rpowers = unique(rpowers); $*bd})y)I  
    1Ig@gdmz  
    [}|-% 4s  
    % Pre-compute the values of r raised to the required powers, z&o"K\y\  
    % and compile them in a matrix: ;9pOtr  
    % ----------------------------- ?3"bu$@8  
    if rpowers(1)==0 `<h}Ygo>k/  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); xoD5z<<  
        rpowern = cat(2,rpowern{:}); '~3a(1@8  
        rpowern = [ones(length_r,1) rpowern]; ki#O ^vl  
    else gd6We)&  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); m Kwhd} V  
        rpowern = cat(2,rpowern{:}); x)wIGo  
    end ) w.cCDL c  
    7CzZHkTg  
     ] }XK  
    % Compute the values of the polynomials: ;SF0}51  
    % -------------------------------------- Cyxt EzPp  
    y = zeros(length_r,length(n)); O&=?,zLO[  
    for j = 1:length(n) 'g8~539{&  
        s = 0:(n(j)-m_abs(j))/2; +.Kmpw4  
        pows = n(j):-2:m_abs(j); N0GID-W!/~  
        for k = length(s):-1:1 c xdhG"  
            p = (1-2*mod(s(k),2))* ... ysfR@ sH7  
                       prod(2:(n(j)-s(k)))/              ... `wI<LTzXS  
                       prod(2:s(k))/                     ... nn"!x|c  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 2Av3.u8%u  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); BYN<|=  
            idx = (pows(k)==rpowers); v6 DN:!&  
            y(:,j) = y(:,j) + p*rpowern(:,idx); h3D8eR.  
        end #F.;N<a  
         kDJ5x8Q#  
        if isnorm 4w^B&e%  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 3ryIXC\v  
        end v9Oyboh(y  
    end KP7bU9odJ  
    % END: Compute the Zernike Polynomials EVMhc"L  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% *plsZ*Q8  
    '8~7Ru\KyX  
    G8@({EY  
    % Compute the Zernike functions: iLn)Z0<\o  
    % ------------------------------ t<9oEjk["  
    idx_pos = m>0; M ]W'>g)G  
    idx_neg = m<0; I+w3It  
    _/ZIDIn  
    |Sy |E  
    z = y; ?@l9T)fF  
    if any(idx_pos) k/O|ia 6  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); _CP e  
    end D Y($  
    if any(idx_neg) l/`<iG%  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); a<FzHCw  
    end ZPn`.Qc  
    >fI<g8N D  
    db:b%1hk:  
    % EOF zernfun [kgT"?w=  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  'Xoif"  
    #wK {G)J  
    DDE还是手动输入的呢? f <fa +fB  
    aTuD|s  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究