下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, S/I /-Bp~
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, HX{`VahE
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? ,i@:5X/t
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? C{XmVc.
-7(@1@1
EUgs6[w 4
6B
?twh)
9RI-Lq`
function z = zernfun(n,m,r,theta,nflag) o7LuKRl
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. @jlw_ob2g
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N c\V7i#u[d;
% and angular frequency M, evaluated at positions (R,THETA) on the gOOPe5+ J
% unit circle. N is a vector of positive integers (including 0), and 5lT*hF
% M is a vector with the same number of elements as N. Each element D{~fDRR
% k of M must be a positive integer, with possible values M(k) = -N(k) 19KQlMO.G
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, AZ}Xj>=
% and THETA is a vector of angles. R and THETA must have the same % -e 82J1
% length. The output Z is a matrix with one column for every (N,M) ")HFYqP>9
% pair, and one row for every (R,THETA) pair. E1U",CMU
% aCLq k'
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ;l-!)0U
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), QZ%`/\(!8_
% with delta(m,0) the Kronecker delta, is chosen so that the integral D+7Rz_=
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 'anG:=
% and theta=0 to theta=2*pi) is unity. For the non-normalized Sa`Xf\
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ?#YE`]
% 5j-YM
% The Zernike functions are an orthogonal basis on the unit circle. e,XYVWY%
% They are used in disciplines such as astronomy, optics, and +V^;.P</
% optometry to describe functions on a circular domain. M_w<m
% *%t^;&x?
% The following table lists the first 15 Zernike functions. 3K/MvNI>
% B i<Q=x'Z;
% n m Zernike function Normalization B[?CbU
% -------------------------------------------------- y[_Q-
% 0 0 1 1 '1)$'
% 1 1 r * cos(theta) 2 Y0K[Sm>
% 1 -1 r * sin(theta) 2 ye? 'Ze
% 2 -2 r^2 * cos(2*theta) sqrt(6)
)sp4Ie
% 2 0 (2*r^2 - 1) sqrt(3) fku<,SV$O4
% 2 2 r^2 * sin(2*theta) sqrt(6) X=8{$:
% 3 -3 r^3 * cos(3*theta) sqrt(8) x6ARzH\
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) JNUt$h
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) xZF}D/S?Ov
% 3 3 r^3 * sin(3*theta) sqrt(8) =;&yd';k
% 4 -4 r^4 * cos(4*theta) sqrt(10) M$8^91%4B
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 6,9>g0y'NG
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) ^7KH _t8
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) X~,aNRy
% 4 4 r^4 * sin(4*theta) sqrt(10) h"lv7;B$
% -------------------------------------------------- y(pks$
% 58J}{Req
% Example 1: #!KE\OI;@5
% Jh[UtYb5
% % Display the Zernike function Z(n=5,m=1) t9:0TBt-[
% x = -1:0.01:1; t#pS{.I
% [X,Y] = meshgrid(x,x); f|lU6EkU
% [theta,r] = cart2pol(X,Y); `eCo~(Fy
% idx = r<=1; j578)!aJ
% z = nan(size(X)); >!1.
% z(idx) = zernfun(5,1,r(idx),theta(idx)); p\ZNy\N^
% figure z(^]J`+\
% pcolor(x,x,z), shading interp o,8TDg
% axis square, colorbar ,lA s
% title('Zernike function Z_5^1(r,\theta)') w{@ o^rs
% zZ323pq
% Example 2: 6WJ)by
% Z>W g*sZy)
% % Display the first 10 Zernike functions #"\gLr_:m
% x = -1:0.01:1; ~C`^6UQr/?
% [X,Y] = meshgrid(x,x); $LFYoovX
% [theta,r] = cart2pol(X,Y); DOJ N2{IP
% idx = r<=1; \(Y\|zC'0$
% z = nan(size(X)); $!yW_HTx
% n = [0 1 1 2 2 2 3 3 3 3]; jesGV<`?l
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; B1C-J/J
% Nplot = [4 10 12 16 18 20 22 24 26 28]; usCt#eZK
% y = zernfun(n,m,r(idx),theta(idx)); <\ :Yk
% figure('Units','normalized') [t@Mn
% for k = 1:10 m(#LhlX
% z(idx) = y(:,k); H'HA+q
% subplot(4,7,Nplot(k)) F!Q@u
% pcolor(x,x,z), shading interp /}
WDU
% set(gca,'XTick',[],'YTick',[]) kep/+J-u
% axis square /qGf 1MHD
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) =mpVYA
% end uIZ -#q
% 78# v
% See also ZERNPOL, ZERNFUN2. $79=lEn,
z'\_jaj^
#32"=MfQn
% Paul Fricker 11/13/2006 giIWGa.a+
7KL v6]b
kZZh"#W: L
_p&]|~a
2Yn <2U/^R
% Check and prepare the inputs: X4E%2-m@'
% ----------------------------- IS
2^g>T#1
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) -~30)J=e`
error('zernfun:NMvectors','N and M must be vectors.') `A^"%@j
end r)~ T@'y
)V6Hl@v
;1.,Sn+zO
if length(n)~=length(m) }O^zl#
error('zernfun:NMlength','N and M must be the same length.') G) 7;;
end /ZPyN<@
3#&7-o
}\#Rot>Y
n = n(:); 4VCOKx
m = m(:); (Cd\G=PK
if any(mod(n-m,2))
4/1d&Sg
error('zernfun:NMmultiplesof2', ... xScLVt<\e
'All N and M must differ by multiples of 2 (including 0).') a]/>ra5{
end ]<pjXVRt"
0F|AA"mMT
2.zsCu4lj.
if any(m>n) TXk?#G\o
error('zernfun:MlessthanN', ... 4 G-wd
'Each M must be less than or equal to its corresponding N.') d%,eZXg'
end ;\Y&ce
>wBJy4:
H_ox_
u}
if any( r>1 | r<0 ) "4H
+!r}
error('zernfun:Rlessthan1','All R must be between 0 and 1.') j|%HIF25
end <$~mE9a6
5nO% Ke=
M:3h e
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) xJZ>uTN
error('zernfun:RTHvector','R and THETA must be vectors.') ;)e2@'Agl
end .0rh y2
Upd3-2kr&J
h!ZV8yMc
r = r(:); d'$T4yA
theta = theta(:); xA$nsZ]
length_r = length(r); /)(#{i*
if length_r~=length(theta) Jesjtcy<*
error('zernfun:RTHlength', ... fCtPu08{Z
'The number of R- and THETA-values must be equal.') R Yl>
end Qj6/[mUr~
$8[r9L!
<5jzl
% Check normalization: OYmR<x5y/
% -------------------- F>[,zN
if nargin==5 && ischar(nflag) ^? ]%sdT q
isnorm = strcmpi(nflag,'norm'); .0O2Qqdg
if ~isnorm F[[TWf/
error('zernfun:normalization','Unrecognized normalization flag.') yz*6W
z D
end Y=n4K<
else /&{$ pM|?
isnorm = false; aj,T)oDbt6
end k]HEhY
p4i]7o@
ez!C?
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Bw64
% Compute the Zernike Polynomials z0*_^MH
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% e=;AfK
]Ww?QhJ
=xJKIu
% Determine the required powers of r: OP|8S k6
r
% ----------------------------------- ~Oq +IA~9
m_abs = abs(m); pd8Nke
rpowers = [];
9*=W- v
for j = 1:length(n) -s$F&\5by
rpowers = [rpowers m_abs(j):2:n(j)]; /<8N\_wh
end z7Eg5rm|QZ
rpowers = unique(rpowers); Bv.`R0e&
pBP.x#|
D<X.\})Md
% Pre-compute the values of r raised to the required powers, Xy &uZ
% and compile them in a matrix:
pzgSg[|
% ----------------------------- n`
TSu$
if rpowers(1)==0 ]
0m&(9
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); "0k8IVwp
rpowern = cat(2,rpowern{:}); d)R352
rpowern = [ones(length_r,1) rpowern]; j>/ ,$H
else `TPOCxM Mo
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ;h" P{fF
rpowern = cat(2,rpowern{:}); ee#):
-p
end JiU9CeD3
{ F}; n?'
^~HQC*
% Compute the values of the polynomials: C2w2252T
% -------------------------------------- &0 BdUU+:<
y = zeros(length_r,length(n)); .eO?Z^
for j = 1:length(n) wL^%w9q-
s = 0:(n(j)-m_abs(j))/2; NwR}yb6
pows = n(j):-2:m_abs(j); $4T2z-
for k = length(s):-1:1 W|,V50K
p = (1-2*mod(s(k),2))* ... &"mzwQX
prod(2:(n(j)-s(k)))/ ... JQ-gn^tsy
prod(2:s(k))/ ... TSsKfexQ
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... @b3#X@e}
prod(2:((n(j)+m_abs(j))/2-s(k))); U"4?9.
k
idx = (pows(k)==rpowers); wgRsZ
y(:,j) = y(:,j) + p*rpowern(:,idx); @(i!YL
end FG!X"<he
\S)2
if isnorm I;?X f
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); )
(Tom9^
end {gaai
end 3u\;j; Td!
% END: Compute the Zernike Polynomials k%op>
&
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ;eZ#b jw-d
ZB[Qs
+EM_TTf4
% Compute the Zernike functions: nPgeLG"00
% ------------------------------ :g\rQazxO
idx_pos = m>0; ,xT?mt}P
idx_neg = m<0; |J~eLh[d
^v@4|E$
T4;T6 9j;,
z = y; ez9k4IO
if any(idx_pos) a3>zoN
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); >u(>aV|A
end eb8w~
if any(idx_neg) *+b6B_u]
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); M-uMZQe
end ;!T{%-tP
[!VOw@uz
n!E2_
% EOF zernfun Fv)7c4