下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, dw
v(8
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 9w=GB?/
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? ?T(>!m
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? ]$>O--
-K_p?
l
z|V5/"
~Zc=FP:1
y2U^7VrO
function z = zernfun(n,m,r,theta,nflag) 2y&m8_s-p
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. KnC;j-j
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N a JC,
% and angular frequency M, evaluated at positions (R,THETA) on the WmRx_d_
% unit circle. N is a vector of positive integers (including 0), and m"<Sb,"x!
% M is a vector with the same number of elements as N. Each element b$f@.L
% k of M must be a positive integer, with possible values M(k) = -N(k) hZ0CnY8 '
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, 0
7CufoI
% and THETA is a vector of angles. R and THETA must have the same @k!J}O
K
% length. The output Z is a matrix with one column for every (N,M) fq.ui3lP)
% pair, and one row for every (R,THETA) pair. >h0iq
% Z. ))=w6G
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Y?(kE` R
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), c7[<X<yk
% with delta(m,0) the Kronecker delta, is chosen so that the integral ) /kf
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, W -Yv0n3
% and theta=0 to theta=2*pi) is unity. For the non-normalized (hB&OP5Fne
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. mZ^z%+Ca|
% +ou
]|
% The Zernike functions are an orthogonal basis on the unit circle. w(QU '4~
% They are used in disciplines such as astronomy, optics, and >[=fbL@N<@
% optometry to describe functions on a circular domain. Lbka*@
% B>3joe}
% The following table lists the first 15 Zernike functions. tSVN}~1\
% eC^UL5>%
% n m Zernike function Normalization hE41$9?TJ
% -------------------------------------------------- ze<Lc/ ;X~
% 0 0 1 1 JC~L!)f
% 1 1 r * cos(theta) 2 (c X;a/BR
% 1 -1 r * sin(theta) 2 fb7Gy
% 2 -2 r^2 * cos(2*theta) sqrt(6) gAA2S5th
% 2 0 (2*r^2 - 1) sqrt(3) v2e*mNK5
% 2 2 r^2 * sin(2*theta) sqrt(6) {8)Pke
% 3 -3 r^3 * cos(3*theta) sqrt(8) X|}yp|
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) "lcNjyU\O
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) Jhclg0q
% 3 3 r^3 * sin(3*theta) sqrt(8) Fb&Xy{kt1
% 4 -4 r^4 * cos(4*theta) sqrt(10) u%J04vG"D
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) la7VeFT
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) @ 5!Mr5;
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) G x;U 3iV
% 4 4 r^4 * sin(4*theta) sqrt(10) O,`#h*{N
% -------------------------------------------------- 'u6T^Y S
% >hkmL](^
% Example 1: b'9\j.By
% '?Mt*%J@=$
% % Display the Zernike function Z(n=5,m=1) }Ut*Y*
% x = -1:0.01:1; CdCo+U5z{
% [X,Y] = meshgrid(x,x); Yj/aa0Ka4
% [theta,r] = cart2pol(X,Y); p5 |.E
% idx = r<=1; rBd}u+:*
% z = nan(size(X)); :.863_/
% z(idx) = zernfun(5,1,r(idx),theta(idx)); yrp5\k*{y
% figure AJ_''%$I3:
% pcolor(x,x,z), shading interp ke'aSD
% axis square, colorbar -nVQB146^
% title('Zernike function Z_5^1(r,\theta)') zn| S3c
% s}8(__|
% Example 2: qPEtMvL
#
% J#h2~Hz!
% % Display the first 10 Zernike functions Aofk< O!M
% x = -1:0.01:1; j_::#?o!/
% [X,Y] = meshgrid(x,x); f)`_su
U
% [theta,r] = cart2pol(X,Y); toDv~v
% idx = r<=1; {}r#s>
% z = nan(size(X)); 5K_KZL-
% n = [0 1 1 2 2 2 3 3 3 3]; ^P4q6BW
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; zX{O"w
% Nplot = [4 10 12 16 18 20 22 24 26 28]; Wpgp YcPS
% y = zernfun(n,m,r(idx),theta(idx)); 0(!j]w"r3
% figure('Units','normalized') b-Q*!Ut
% for k = 1:10 Akar@ wh
% z(idx) = y(:,k); BE`{? -G
% subplot(4,7,Nplot(k)) ]mDsd* 1
% pcolor(x,x,z), shading interp c/:d$o-
% set(gca,'XTick',[],'YTick',[]) C`qo
% axis square :@mBSE/
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ;WydXQ}Q^
% end Lp!4X1/|\
% )qDCh
% See also ZERNPOL, ZERNFUN2. %sd1`1In
(OA-Mgyc
m=g\@&N
% Paul Fricker 11/13/2006 up(6/-/.7
4RPc&%
?8ZOiY(
\<cs:C\h7
'CF?pxNQ l
% Check and prepare the inputs: R,]J~TfPK
% ----------------------------- Y[_{tS#u
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) <+7]EwVcn^
error('zernfun:NMvectors','N and M must be vectors.') T;7=05k<_
end DC9\Sp?
|p4D!M+$7
vy:-a G
if length(n)~=length(m) ]2:w?+T
error('zernfun:NMlength','N and M must be the same length.') ??\1eo2gB
end ;Jh=7wx
*$%ch=
xIOYwVC
n = n(:); q mJ#cmN
m = m(:); cSbyVC[r
if any(mod(n-m,2)) = aO1uC|6C
error('zernfun:NMmultiplesof2', ... uPe&i5YR
'All N and M must differ by multiples of 2 (including 0).') E#?Bn5-uBs
end O4)'78ATp
N>zpxU {
2p^Jqp`$
if any(m>n) @2yoy&IO
error('zernfun:MlessthanN', ... )JNUfauyT
'Each M must be less than or equal to its corresponding N.') ,@\$PyJ
end /$z(BX/
=nVEdRU
B//2R)HS
if any( r>1 | r<0 ) `_MRf[Z}
error('zernfun:Rlessthan1','All R must be between 0 and 1.') [9<c;&$LU
end "b~-`ni
VnjhEEM!
jDO"?@+
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) (h8RthQt
error('zernfun:RTHvector','R and THETA must be vectors.') 8QJ^@|7
end =&_Y=>rA]0
sYfiC`9SO
0uZL*4A+C
r = r(:); GbXa=*
<-<
theta = theta(:); a)o-6
length_r = length(r); =<BPoGs5
if length_r~=length(theta) E;o
"^[we
error('zernfun:RTHlength', ... zfsGf'U
'The number of R- and THETA-values must be equal.') w\K(kNd(
end
Qhc>,v)
4MFdhJoN
|8{c|Qz
% Check normalization: =q\Ghqj1
% -------------------- 9} *Pb6
if nargin==5 && ischar(nflag) \kR:GZ`{UV
isnorm = strcmpi(nflag,'norm'); +A;AX.mr
if ~isnorm 7hzd.
error('zernfun:normalization','Unrecognized normalization flag.') y/.I<5+Bu
end dED&-e#
else VYo2m
isnorm = false; r|ID]}w
end .UGbo.e
ML!>tCT
r%uka5@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% _{C
=d3
% Compute the Zernike Polynomials Tlar@lC|u
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 2(i@\dZCb<
,hVDGif
(i.7\$4
% Determine the required powers of r: w(N$$
% ----------------------------------- ]aZ3_<b
m_abs = abs(m); |?gO@?KDZ
rpowers = []; k .#I ;7
for j = 1:length(n) Dk^T_7{
rpowers = [rpowers m_abs(j):2:n(j)]; l+r3|b
end xbNL <3"a
rpowers = unique(rpowers); y5/LH~&Ov
J=?P`\h
s#p\ r
% Pre-compute the values of r raised to the required powers, 5OM*NT t
% and compile them in a matrix: WbwS!F<au
% ----------------------------- TN=!;SvQU
if rpowers(1)==0 <hBd
#J
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); bjr()NM1
rpowern = cat(2,rpowern{:}); #zed8I:w
rpowern = [ones(length_r,1) rpowern]; &~&oB;uR
else x:E:~h[.^
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 6
=H]p1p~O
rpowern = cat(2,rpowern{:}); ..fbRt
end hQ80R B
,Zva^5
?m\?
#
% Compute the values of the polynomials: )qeed-{
% -------------------------------------- Yl`)%6'5|
y = zeros(length_r,length(n)); 0x2[*pJ|IW
for j = 1:length(n) @=6*]:p2.
s = 0:(n(j)-m_abs(j))/2; O gtrp)x9
pows = n(j):-2:m_abs(j); =`OnFdI
for k = length(s):-1:1 hkDew0k
p = (1-2*mod(s(k),2))* ... ?BnX<dbi&
prod(2:(n(j)-s(k)))/ ... oC~+K@S
prod(2:s(k))/ ... m:)sUC0
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... v
8B4%1NE
prod(2:((n(j)+m_abs(j))/2-s(k))); aXgngwq
idx = (pows(k)==rpowers); Zv5vYe9Ow
y(:,j) = y(:,j) + p*rpowern(:,idx); uWkn}P
end {:TOm0eK
U.pGp]\Q)G
if isnorm q+U&lw|"w
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); :zQNnq:|
end X!|K 4Z!k
end f/vsf&^O
% END: Compute the Zernike Polynomials Y<;KKD5P'j
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /wPW2<|"X.
6^sH3=#
,FK.8c 6g
% Compute the Zernike functions: Y(;u)uN_
% ------------------------------ 6$&%z Eh
idx_pos = m>0; Zq{TY)PI]
idx_neg = m<0; 4Cp)!Bq?/
FnCMr_
NArr2o2
z = y; u+m9DNPF
if any(idx_pos) jk{m8YP)E
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); P*/ig0_fM
end 9cQ;h37J>
if any(idx_neg) jGEmf<q&u
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); M~g{}_0Z
end jP\5bg-}
nk"nSXm3SR
]92=PA>75
% EOF zernfun 9dFo_a*?