下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, 5rmQ:8_5
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, l
dp$jrNLr
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? q$"?P
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? p,!IPWo
e X6o7a
pl$wy}W-
mq(-L
Cq'{%
function z = zernfun(n,m,r,theta,nflag) `g4N]<@z
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. o-JB,^TE
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Rt5pl,Nf
% and angular frequency M, evaluated at positions (R,THETA) on the eu":\ks
% unit circle. N is a vector of positive integers (including 0), and <":83RCS
% M is a vector with the same number of elements as N. Each element hT `&Xb
% k of M must be a positive integer, with possible values M(k) = -N(k) b"nkF\P@Fj
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, C](djkA$
% and THETA is a vector of angles. R and THETA must have the same wQ[!~>A
% length. The output Z is a matrix with one column for every (N,M) 9+/D\|"{
% pair, and one row for every (R,THETA) pair. \HG4i/V:h
% 1_l)$"
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike /a)^)
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), N(3Bzd)
% with delta(m,0) the Kronecker delta, is chosen so that the integral 'Gamb+[
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, PZO.$'L|7
% and theta=0 to theta=2*pi) is unity. For the non-normalized Cl3L)
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. t=|}?lN<
% Qvel#*-4
% The Zernike functions are an orthogonal basis on the unit circle. L\5:od[EP
% They are used in disciplines such as astronomy, optics, and h:sf?X[
% optometry to describe functions on a circular domain. QpRk5NeLe
% Q
laoa)d#
% The following table lists the first 15 Zernike functions. dBS_N/
% GG-b)64h`
% n m Zernike function Normalization Dy8H(_
% --------------------------------------------------
?P4y$P
% 0 0 1 1 f.bw A x
% 1 1 r * cos(theta) 2 2aX$7E?
% 1 -1 r * sin(theta) 2 D,|TQQ
% 2 -2 r^2 * cos(2*theta) sqrt(6) Q7{{r&|t&
% 2 0 (2*r^2 - 1) sqrt(3) C' {B
% 2 2 r^2 * sin(2*theta) sqrt(6) wXZ9@(^
% 3 -3 r^3 * cos(3*theta) sqrt(8) gm=C0Sp?
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) yeBfzKI{b
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) ZS=;)
% 3 3 r^3 * sin(3*theta) sqrt(8) ]6s/y
% 4 -4 r^4 * cos(4*theta) sqrt(10) ,4 q^(
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) hJ8%r_
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) NU+PG`Vb
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) )X:Sfk
% 4 4 r^4 * sin(4*theta) sqrt(10) T 1_B0H2
% -------------------------------------------------- hl] y):
% oiC@ /
% Example 1: /m,i,NX07
% GN=8;Kq%
% % Display the Zernike function Z(n=5,m=1) t0kZFU
% x = -1:0.01:1; !VsdKG)
% [X,Y] = meshgrid(x,x); >[wB|V5
% [theta,r] = cart2pol(X,Y); g0 ;;+z
% idx = r<=1; {P\Ob0)q
% z = nan(size(X)); {'B(S/Z7
% z(idx) = zernfun(5,1,r(idx),theta(idx)); Gpcordt/
% figure A f!`7l-
% pcolor(x,x,z), shading interp q?)5yukeF
% axis square, colorbar M?Q\
Hw
% title('Zernike function Z_5^1(r,\theta)') >{-rl@^H:
% !'IZr{Y>
% Example 2: Uovna:"
% b'`XFB#V
% % Display the first 10 Zernike functions y 4aT-^C'
% x = -1:0.01:1; (l9jczi
% [X,Y] = meshgrid(x,x); Pn4jI(
% [theta,r] = cart2pol(X,Y); o4@d,uIw^
% idx = r<=1; Y C<FKWc
% z = nan(size(X)); 2V$Jn8v,`{
% n = [0 1 1 2 2 2 3 3 3 3]; l-!"
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; wZbT*rU
% Nplot = [4 10 12 16 18 20 22 24 26 28]; g\?07@Zd|
% y = zernfun(n,m,r(idx),theta(idx)); rc7c$3# X
% figure('Units','normalized') Eza^Tbq%j?
% for k = 1:10 *~cNUyd
% z(idx) = y(:,k); Ov4 [gHy&
% subplot(4,7,Nplot(k)) %[ *+
% pcolor(x,x,z), shading interp Xc^(e?L4
% set(gca,'XTick',[],'YTick',[]) U3v~R4
% axis square "LW\osjen
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) zV;NRf)
9.
% end V$;`#J$\b
% w40*vBz
% See also ZERNPOL, ZERNFUN2. W<[7LdAB
Ol<LL#<j4
H4{7,n
% Paul Fricker 11/13/2006 (^sb('"
$Fy~xMA8O
pU,\ &3N
$P#+Y,r~\
3,{;wJ
Z
% Check and prepare the inputs: qoZAZ&|HI
% ----------------------------- K|6}g7&X
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) [nX{sM%
error('zernfun:NMvectors','N and M must be vectors.') SrOv*
D 3
end JHVndK4L
hp}rCy|01
#BS!J&a
if length(n)~=length(m) )cZ KB0*+
error('zernfun:NMlength','N and M must be the same length.') f`\J%9U _O
end mz;ExV16
Z/v )^VR
<5CQ#^cK
n = n(:); sk0/3X*Q%
m = m(:); gh"_,ZhZt
if any(mod(n-m,2)) m9jjKu]|
error('zernfun:NMmultiplesof2', ... %?qzP'
'All N and M must differ by multiples of 2 (including 0).') W=|'&UU Ul
end QV*la= j/
>SYOtzg%
@cm[]]f'l
if any(m>n) !VrBoU4<d
error('zernfun:MlessthanN', ... c\tw#;\9
'Each M must be less than or equal to its corresponding N.') ?6I`$ &OA
end rfZg
?9 `T_,
`$3P@SO"
if any( r>1 | r<0 ) \S~<C[P
error('zernfun:Rlessthan1','All R must be between 0 and 1.') CaoQPb*
end 5VfpeA`
o5Knot)Oy
(.{. "
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) "e29j'u!*
error('zernfun:RTHvector','R and THETA must be vectors.') m^)\P?M5|
end Th~pju
[!ZYtp?Hf
td#m>S
r = r(:); b~8&P_
theta = theta(:); =aehhs>
length_r = length(r); }ASBP:c"t
if length_r~=length(theta) K:pG<oV|}
error('zernfun:RTHlength', ... MUN:}S
'The number of R- and THETA-values must be equal.') >4#\ U!
end otP2qAI
)*o) iN 7l
5=4-IO6W[]
% Check normalization: [FWB
% -------------------- z:{R4#(Q
if nargin==5 && ischar(nflag) -**fT?n
isnorm = strcmpi(nflag,'norm'); 2Paw*"U
if ~isnorm [Kbna>`
error('zernfun:normalization','Unrecognized normalization flag.') SC2g5i`
end Ew9MWlk
else \nQEvcH
isnorm = false; )9!ZkZbv_m
end M49Hm[0(
i\MW'b
+.hJ[|F1&
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% D[Ld=e8t
% Compute the Zernike Polynomials `R$bx 64
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% wp-3U}P2(
6(HJYa
RWn#"~
% Determine the required powers of r: jqoU;u`
% ----------------------------------- HsK52<
m_abs = abs(m); "n<u(m8E
rpowers = []; a6op
for j = 1:length(n) 8EI&}I
rpowers = [rpowers m_abs(j):2:n(j)]; z&[[4[
end R"PO@v
rpowers = unique(rpowers); W8!8/IZbN
8@I.\u)0
6r,zOs-I]
% Pre-compute the values of r raised to the required powers, Szlww
% and compile them in a matrix: )v.\4Q4
% ----------------------------- /B
if rpowers(1)==0 It^_?oiK
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); rX&?Xi1JeV
rpowern = cat(2,rpowern{:}); Y+~>9-S
rpowern = [ones(length_r,1) rpowern]; ]}AyDy6C
else k${F7I(Tb
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); %M05& <
rpowern = cat(2,rpowern{:}); N{zou?+
end 0'*'%Iga
t]pJt
.ZH5^Sv$vp
% Compute the values of the polynomials: XecU&
% -------------------------------------- yAVt[+0
y = zeros(length_r,length(n)); DzCb'#
for j = 1:length(n) ~bJ*LM?wOP
s = 0:(n(j)-m_abs(j))/2; YA^g[,
pows = n(j):-2:m_abs(j); `#N7ym;s@
for k = length(s):-1:1 N&lKo}hk
p = (1-2*mod(s(k),2))* ... Ad`jV_z
prod(2:(n(j)-s(k)))/ ... z3-AYQ.H
prod(2:s(k))/ ... Z7R+'OC
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... '~'3x4Bo
prod(2:((n(j)+m_abs(j))/2-s(k))); j-etEWOTr
idx = (pows(k)==rpowers); h%@#jvh?4
y(:,j) = y(:,j) + p*rpowern(:,idx); b~FmX
end /d-7n|#E
,cFp5tV$
if isnorm K3t^y`z
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); rW3fd.;kss
end yh Ymbu
end LHP?!rO0
% END: Compute the Zernike Polynomials ]7{-HuQ8>}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% v|mZcAz
bga2{<VF
x;R9Gc[5
% Compute the Zernike functions: zHCz[jlrMq
% ------------------------------ -f:uNF]Ls
idx_pos = m>0; 3bPvL/\Lb
idx_neg = m<0; /c 1FFkq|K
I*K~GXWs#
!xK`:[B
z = y; =
8%+$vX
if any(idx_pos) VN8ao0^d;d
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 1{V* (=Tp
end "2bCq]I0
if any(idx_neg) I2'UC)
0
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); C,D~2G
end w~g)Dz2G
`#lNur\x
4<&`\<jZ
% EOF zernfun [e'Ts#($A