切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9109阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, WnhH]WY  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, /w2NO9Q  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? uTrQ<|}#  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? ;ZTh(_7  
    vj"['6Xa  
    ^_/gM[H.  
    = Q"(9[Az  
    at(gem  
    function z = zernfun(n,m,r,theta,nflag) P_(< ?0l  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 5uU{!JuSa  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N F6" QsFG  
    %   and angular frequency M, evaluated at positions (R,THETA) on the G$s=P  
    %   unit circle.  N is a vector of positive integers (including 0), and tD])&0"(  
    %   M is a vector with the same number of elements as N.  Each element CJ[e^K{  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) hA+;eXy/  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, AjINO}b  
    %   and THETA is a vector of angles.  R and THETA must have the same d.k'\1o  
    %   length.  The output Z is a matrix with one column for every (N,M) aZ}z/.b]  
    %   pair, and one row for every (R,THETA) pair. 1~vv<`-  
    % qot {#tk d  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike xLw[ aYy4  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), -l{ wB"  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral ZK8DziO  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, @}{Fw;,(7n  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 5D>cbzP@  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 0$|wj^?U  
    % i8.OM*[f  
    %   The Zernike functions are an orthogonal basis on the unit circle. M] W5 %3do  
    %   They are used in disciplines such as astronomy, optics, and xI8v'[3  
    %   optometry to describe functions on a circular domain. d4o_/[  
    % e)oi3d.wJf  
    %   The following table lists the first 15 Zernike functions. uKo4nXVtp  
    % [yVcH3GcjI  
    %       n    m    Zernike function           Normalization E#n: d9WA:  
    %       -------------------------------------------------- '>>@I~<\  
    %       0    0    1                                 1 F>at^6^  
    %       1    1    r * cos(theta)                    2 kv`5"pa7M  
    %       1   -1    r * sin(theta)                    2 vr$z6m ^  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) |2&|#K4k^  
    %       2    0    (2*r^2 - 1)                    sqrt(3) dq3"L!0u  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) z_a7HCG2  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) >2tosxH M  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) @@|H8mP}H  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) rm,h\  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) =%wBC;  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 6H:EBj54?  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) [bd?$q i  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) O9Yk5b;  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) }:+P{  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) QM'>)!8  
    %       -------------------------------------------------- 0vM,2:kf*  
    % bc\?y2 3  
    %   Example 1: ^7C,GaDsn  
    % v9Ez0 :)  
    %       % Display the Zernike function Z(n=5,m=1) yj9 Ad*.  
    %       x = -1:0.01:1; 1JN/oq;  
    %       [X,Y] = meshgrid(x,x); =4 W jb  
    %       [theta,r] = cart2pol(X,Y); \>4x7mF!  
    %       idx = r<=1; zxvowM  
    %       z = nan(size(X)); iPrAB*  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); #^q@ra  
    %       figure >{juw&Uu  
    %       pcolor(x,x,z), shading interp ]j< & :_  
    %       axis square, colorbar \K(# r=  
    %       title('Zernike function Z_5^1(r,\theta)') 5va ;Ol4  
    % ]yA_N>k2K  
    %   Example 2: &qZ:"k  
    % U &y?3  
    %       % Display the first 10 Zernike functions =JB1]b{|  
    %       x = -1:0.01:1; #NWc<Dd  
    %       [X,Y] = meshgrid(x,x); ">S.~'ds  
    %       [theta,r] = cart2pol(X,Y); vC5y]1QDd  
    %       idx = r<=1; .gd'<l  
    %       z = nan(size(X)); +IfU 5&5<  
    %       n = [0  1  1  2  2  2  3  3  3  3]; )nUTux0K\  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; Zh.[f+l]  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 3/2G~$C  
    %       y = zernfun(n,m,r(idx),theta(idx)); pw1&WP&?3  
    %       figure('Units','normalized') T8a!"lPP7  
    %       for k = 1:10 o<%s\n  
    %           z(idx) = y(:,k); z=VL|Du1OT  
    %           subplot(4,7,Nplot(k)) WhR'MkfL  
    %           pcolor(x,x,z), shading interp <US!XMrCg  
    %           set(gca,'XTick',[],'YTick',[]) X3rvM8  
    %           axis square 6w^Fee`>]  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) T13Jno  
    %       end x)o`w"]al  
    % xGymQ|y84  
    %   See also ZERNPOL, ZERNFUN2. JV9Ft,xk  
    A+F@JpV  
    8VZLwhj  
    %   Paul Fricker 11/13/2006 6B>H75S+H  
    Tta+qjr  
    P[C03a!lXg  
    QOY M/1U  
    -pm^k-%v  
    % Check and prepare the inputs: 4f> s2I&pQ  
    % ----------------------------- d/`Q,Vl  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) S`GM#(t@_  
        error('zernfun:NMvectors','N and M must be vectors.') w.\#!@kZ!  
    end 3L(vZ2&  
    XvspE}~y  
    .\+%Q)?h:  
    if length(n)~=length(m) &c1zEgl  
        error('zernfun:NMlength','N and M must be the same length.') ;?0r,0l2$  
    end w@ =Uf7  
    tXnD>H YV  
    \)n'Ywr  
    n = n(:); xBi``x2eY  
    m = m(:); Qcr-|?5L  
    if any(mod(n-m,2)) S?Z"){  
        error('zernfun:NMmultiplesof2', ... )s4a<S c]  
              'All N and M must differ by multiples of 2 (including 0).') I<ta2<h  
    end iSxuor ^;  
    2DTBL:?`  
    p/!P kKJ  
    if any(m>n) wsLfp82  
        error('zernfun:MlessthanN', ... YX:[],FP  
              'Each M must be less than or equal to its corresponding N.') LdM9k(  
    end w*"h#^1z  
    JgY#W1>  
    L@HWm;aN  
    if any( r>1 | r<0 )  @Iy&Qo  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') csay\Q{  
    end 11 >K\"K}  
    h\i>4^]X.  
    N/&t) 7  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) x#_0 6  
        error('zernfun:RTHvector','R and THETA must be vectors.') i'bUX=JK  
    end |SF5'\d'  
    q!P{a^Fnc  
    N^{+1u7  
    r = r(:); V,CVMbn/%N  
    theta = theta(:); R59'KR2?  
    length_r = length(r); |}>;wZ[7  
    if length_r~=length(theta) oCftI':@  
        error('zernfun:RTHlength', ... wO {-qrN  
              'The number of R- and THETA-values must be equal.') V;#bcr=Z<J  
    end 7D%}( pX  
    1v^eXvY  
    u9}k^W)E  
    % Check normalization: Hs~u&c  
    % -------------------- #n8jn#  
    if nargin==5 && ischar(nflag) 3bW(VvgcL4  
        isnorm = strcmpi(nflag,'norm'); W;Ei>~E  
        if ~isnorm NJ{M-K%>  
            error('zernfun:normalization','Unrecognized normalization flag.') \.%GgTF  
        end B:Xmc,|,  
    else nmZJ%n  
        isnorm = false; psZAO,p  
    end It/IDPx4ga  
    x)<Hr,wd  
    w_hGWpm  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 8#MiM . f  
    % Compute the Zernike Polynomials 8XU m.nV  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% E{Ux|r~  
    _#8OHG.x  
    <8Zm}-U  
    % Determine the required powers of r: "me a*-XB  
    % ----------------------------------- \)Bws `  
    m_abs = abs(m); j%qBNoT~  
    rpowers = []; #K3`$^0 s  
    for j = 1:length(n) ny]R,D0  
        rpowers = [rpowers m_abs(j):2:n(j)]; 1/H9(2{L  
    end xC,;IS k,  
    rpowers = unique(rpowers);  :nHa-N3  
    nd[{DF?)/  
    EhOy<f[4W  
    % Pre-compute the values of r raised to the required powers, eaxp(VX?oy  
    % and compile them in a matrix: s@ ~Y!A  
    % ----------------------------- O*ql!9}E{  
    if rpowers(1)==0 _K?{DnTb  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); &7YTz3aj  
        rpowern = cat(2,rpowern{:}); rIt#ps  
        rpowern = [ones(length_r,1) rpowern]; ^U`Bj*"2  
    else u,R;=DNl  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); c9eLNVM  
        rpowern = cat(2,rpowern{:}); h!L/ZeRaV  
    end 9y~5@/3 2R  
    sr&hQ  
    BSGC.>$s  
    % Compute the values of the polynomials: J AK+v  
    % -------------------------------------- tX$ v)O|  
    y = zeros(length_r,length(n)); fgW>U*.ar  
    for j = 1:length(n) H.HXwN/x  
        s = 0:(n(j)-m_abs(j))/2; {Di()]/  
        pows = n(j):-2:m_abs(j); ;ss,x  
        for k = length(s):-1:1 :|\{mo1NB  
            p = (1-2*mod(s(k),2))* ... U '#Xwax  
                       prod(2:(n(j)-s(k)))/              ... &C.{7ZNt  
                       prod(2:s(k))/                     ...  / >Z`?  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... z|o7k;raH  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 5VU 5kiCt  
            idx = (pows(k)==rpowers); g.3a5#t  
            y(:,j) = y(:,j) + p*rpowern(:,idx); FSs<A@  
        end t@`w}o[#  
         DRn]>IFU  
        if isnorm MrW#~S|ED  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); NEpomE(>x  
        end ya<nD'%9  
    end %V+hm5Q  
    % END: Compute the Zernike Polynomials   pE<@  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% }W:Rg}v  
    =peodj^  
    O]>FNsh!  
    % Compute the Zernike functions: UkE  fuH  
    % ------------------------------ w$X"E*~>8  
    idx_pos = m>0; 0~(K@U>#  
    idx_neg = m<0; eCDwY:t`  
    wN|;_~h2  
    yl>V '  
    z = y; +ld]P}  
    if any(idx_pos) , : I:F  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); F ka^0  
    end k//l~A9m  
    if any(idx_neg) E^)>9f7  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 'S_OOzpC  
    end +:a#+]g  
    \; 9log<Z  
    Y+,ii$Ce~  
    % EOF zernfun &%@b;)]J  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  ar%!h~  
    !</Snsi  
    DDE还是手动输入的呢? @((Y[<  
    p(8[n^~,i  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究