切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9176阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, _X5@%/Vz  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, mGR}hsQpn  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? <8Y;9N|94!  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? &iCE/  
    /c/t_xB  
    ." 9t<<!  
    .1R:YNx{/  
    2K?~)q&t*  
    function z = zernfun(n,m,r,theta,nflag) 'ap<]mf2  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. wO:!B\e  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N <%WN<T{q|  
    %   and angular frequency M, evaluated at positions (R,THETA) on the \7M+0Ul1  
    %   unit circle.  N is a vector of positive integers (including 0), and -=_bXco}  
    %   M is a vector with the same number of elements as N.  Each element #Ezq}F8Y  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) v,z s dr"d  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, {*WJ"9ujp]  
    %   and THETA is a vector of angles.  R and THETA must have the same ZNb;2 4  
    %   length.  The output Z is a matrix with one column for every (N,M) wc z|Zy  
    %   pair, and one row for every (R,THETA) pair. LDDeZY"xd  
    % `tZu~ n  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike H}G=%j0  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), i oCoFj  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 7d&_5Tj:  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, :EOx>Pf_9)  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized TS0x8,'$q  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. )X*?M?~\  
    % zO#{qF+~;  
    %   The Zernike functions are an orthogonal basis on the unit circle. q;co53.+P)  
    %   They are used in disciplines such as astronomy, optics, and WXz'H),R  
    %   optometry to describe functions on a circular domain. Nu !(7  
    % eeI aH >  
    %   The following table lists the first 15 Zernike functions. ShXk\"  
    % :B(F ?9qK  
    %       n    m    Zernike function           Normalization I,4t;4;Zk  
    %       -------------------------------------------------- cBICG",TA  
    %       0    0    1                                 1 m8KJ~02l#  
    %       1    1    r * cos(theta)                    2 ::13$g=T9s  
    %       1   -1    r * sin(theta)                    2 HU[a b  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) &0B< iO<f  
    %       2    0    (2*r^2 - 1)                    sqrt(3) x1:#rb'  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) q-c9YOz_  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) aq-`Bar  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) #hinb[fQ  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) J6x#c`Y  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) fQ>=\*b9x^  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 5~(.:RX:q  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Cj~45)r  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) /18Z4TA  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) =+um:*a.  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) LxqK@Q<B  
    %       -------------------------------------------------- <~aQ_l  
    % qk}(E#.>F\  
    %   Example 1: kOfq6[JC  
    % HI}$Z =C  
    %       % Display the Zernike function Z(n=5,m=1) Qd~M;L O"i  
    %       x = -1:0.01:1; C;m7 ~R  
    %       [X,Y] = meshgrid(x,x); mHTZ:84  
    %       [theta,r] = cart2pol(X,Y); C)^FRnb  
    %       idx = r<=1; D&1*,`  
    %       z = nan(size(X)); 1rhsmcE  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); ml7nt 0{  
    %       figure !]bXHT&!R  
    %       pcolor(x,x,z), shading interp e&&;"^@-  
    %       axis square, colorbar jO'+r'2B9  
    %       title('Zernike function Z_5^1(r,\theta)') r()%s3$q  
    % e_C9VNP  
    %   Example 2: U3SF'r8  
    % -ya0!D  
    %       % Display the first 10 Zernike functions J &,N1B  
    %       x = -1:0.01:1; -VK 6Fq  
    %       [X,Y] = meshgrid(x,x); iG<rB-"  
    %       [theta,r] = cart2pol(X,Y); Dd+ f,$  
    %       idx = r<=1; s3m]rC  
    %       z = nan(size(X)); sA18f2  
    %       n = [0  1  1  2  2  2  3  3  3  3]; .E !p  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; |&IS ZFSv  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; y w"Tw  
    %       y = zernfun(n,m,r(idx),theta(idx)); n^QOGT.s6`  
    %       figure('Units','normalized') W#cr9"'Ta  
    %       for k = 1:10 @g|E b}t  
    %           z(idx) = y(:,k); XOl]s?6H$  
    %           subplot(4,7,Nplot(k)) bS 'a)  
    %           pcolor(x,x,z), shading interp N*t91 X  
    %           set(gca,'XTick',[],'YTick',[]) muLt/.EZ  
    %           axis square .y7&!a35  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) uA;3R\6?  
    %       end 4}{S8fGk%  
    % 3[Pa~]yS  
    %   See also ZERNPOL, ZERNFUN2. `!MyOI`qS  
    x}TDb0V  
    lD09(|`  
    %   Paul Fricker 11/13/2006 oOk.Fq  
    2A3;#v  
    <YbOO{  
    H) g:<  
    ^G63GYh]y  
    % Check and prepare the inputs: 9kPwUAw  
    % ----------------------------- Z<a6U 3  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ')#E,Y%Hq  
        error('zernfun:NMvectors','N and M must be vectors.') RL>Nl ow  
    end od>DSn3T  
    )Q 8T`Tly  
    ^RkHdA  
    if length(n)~=length(m) 4QWDuLu  
        error('zernfun:NMlength','N and M must be the same length.') R7us9qM4e  
    end Cna@3)_  
    _>HX Q6Hw  
    -B2>~#L  
    n = n(:); lo:]r.lX{  
    m = m(:); bo&!oY#  
    if any(mod(n-m,2)) = PldXw0  
        error('zernfun:NMmultiplesof2', ... g# ZR, q  
              'All N and M must differ by multiples of 2 (including 0).') Z,o*M#}  
    end e,Xvt5  
    ^SCZ  
    EWN$ILdD  
    if any(m>n) ,=l MtW  
        error('zernfun:MlessthanN', ... /_rAy  
              'Each M must be less than or equal to its corresponding N.') '#<?QE!d2  
    end  TyMR m  
    daBu<0\  
    rWbuoG+8  
    if any( r>1 | r<0 ) '{kNXCnZ  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') j'-akXo<  
    end @Z!leyam  
    E66e4?"  
    Y',s|M1})\  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) IoNZ'g?d  
        error('zernfun:RTHvector','R and THETA must be vectors.') io cr  
    end xc R  
    '6{q;Bxo  
    V_U$JKJ1=  
    r = r(:); EF0{o_  
    theta = theta(:); kgK7 T  
    length_r = length(r); uc%75TJ@  
    if length_r~=length(theta) W<;i~W  
        error('zernfun:RTHlength', ... -$;H_B+.  
              'The number of R- and THETA-values must be equal.') :<%K6?'@^  
    end %Ua*}C   
    3P/T`)V  
    }.gDaxj  
    % Check normalization: tjOfekU  
    % -------------------- ksY^w+>(!  
    if nargin==5 && ischar(nflag) {AIP\  
        isnorm = strcmpi(nflag,'norm'); ` e~/  
        if ~isnorm U*/  
            error('zernfun:normalization','Unrecognized normalization flag.') E?z 3&C  
        end [?W3XUJ,Y  
    else m&,d8Gss^  
        isnorm = false; I Jq$GR  
    end [x!T<jJ  
    U_!"&O5lr  
    KK]AX;  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 8NeP7.U<w  
    % Compute the Zernike Polynomials ci5ERv`  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% )QaJYC^+  
    j3`:;'L  
    A3&8@/6,  
    % Determine the required powers of r: #x#.@  
    % ----------------------------------- S=[K/Kf-  
    m_abs = abs(m); gbr|0h>  
    rpowers = []; x:;8U i"&B  
    for j = 1:length(n) S3hJL:3c  
        rpowers = [rpowers m_abs(j):2:n(j)]; t K{`?NS  
    end l/LRr.x  
    rpowers = unique(rpowers); 2K, 1wqf'  
    \EYhAx`2  
    xi;SKv;p  
    % Pre-compute the values of r raised to the required powers, ErB6fl  
    % and compile them in a matrix: aChY5R  
    % ----------------------------- ,0<|&D  
    if rpowers(1)==0 bLu6|YB  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); '4HwS$mW3  
        rpowern = cat(2,rpowern{:}); 4s`*o/it  
        rpowern = [ones(length_r,1) rpowern]; 0g]ABzTn  
    else HtY\!_Ea  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); "5XD+qi  
        rpowern = cat(2,rpowern{:}); !Si ZA"  
    end t]eB3)FX  
    a<!g*UVL0M  
    /CKkT.Le  
    % Compute the values of the polynomials: E'[pNU*"x-  
    % -------------------------------------- CN brXN  
    y = zeros(length_r,length(n)); ~DqNA%Mb  
    for j = 1:length(n) X~GZI*P  
        s = 0:(n(j)-m_abs(j))/2; yKZ~ ^  
        pows = n(j):-2:m_abs(j); O|7q,bEm^  
        for k = length(s):-1:1 ]N1$ioC#  
            p = (1-2*mod(s(k),2))* ... x"AYt:ewuc  
                       prod(2:(n(j)-s(k)))/              ... Fhxg^  
                       prod(2:s(k))/                     ... $6fHY\i#R  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... %PlPXoG=  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); .RJvu$U2j  
            idx = (pows(k)==rpowers); n0Ze9W+<  
            y(:,j) = y(:,j) + p*rpowern(:,idx); sS5#Q  
        end q#sMew\{  
         Gjy'30IF  
        if isnorm \iowAo$  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); =\X<UA}  
        end f=/S]o4/3  
    end s%4)}w;z  
    % END: Compute the Zernike Polynomials s)/i_Oe$\  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% :Oq!.uO  
    |r0j>F  
    zb9d{e   
    % Compute the Zernike functions: G-"#3{~2  
    % ------------------------------ ?0'bf y]  
    idx_pos = m>0; fM S-  
    idx_neg = m<0; Vx* =  
    3: mF!  
    \8Blq5n-O*  
    z = y; oVC~RKA*  
    if any(idx_pos) I|WBT  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); xu+wi>Y^  
    end u =rY  
    if any(idx_neg) Yl-09)7s  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ;'gzR C  
    end : ] Y=  
    p' /$)klt  
    |":^3  
    % EOF zernfun -pqShDar|  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  ~8|$KD4I  
    &|9?B!,`  
    DDE还是手动输入的呢? {OQ sGyR?  
    ];Z_S`JR  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究