下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, , +J)`+pJx
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 0$c(<+D
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? gBhX=2%
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? yP# Y:s
)Jk$j
F"k`PF*b
9v`sSTlSd
YcX"Z~O6j=
function z = zernfun(n,m,r,theta,nflag) \ui'~n_t]
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. O2ktqAWx@
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N m4oj1h_4
% and angular frequency M, evaluated at positions (R,THETA) on the
-*KKrte
% unit circle. N is a vector of positive integers (including 0), and 1}Q9y`65
% M is a vector with the same number of elements as N. Each element =|aZNHqH
% k of M must be a positive integer, with possible values M(k) = -N(k) ()Kaxcs?+
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, VFZ?<m
% and THETA is a vector of angles. R and THETA must have the same ,LxZbo!
% length. The output Z is a matrix with one column for every (N,M) g$#A'Du
% pair, and one row for every (R,THETA) pair. LH_H
yP_
% Cy uRj[;B
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike O.X;w<F/V
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), )uOtQ0
% with delta(m,0) the Kronecker delta, is chosen so that the integral >Rt:8uurAG
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, dR.?Kv(,E
% and theta=0 to theta=2*pi) is unity. For the non-normalized Mz(?_7
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. )'f=!'X
% ejyx[CF
% The Zernike functions are an orthogonal basis on the unit circle. Hy\q{
% They are used in disciplines such as astronomy, optics, and (nq""kO6'
% optometry to describe functions on a circular domain. s<# BxN
% G\MeJSt*
% The following table lists the first 15 Zernike functions. tjRwbnT"
% ElpZzGj+
% n m Zernike function Normalization %La7);SeY
% -------------------------------------------------- %G2g
@2
% 0 0 1 1 $t^Td<
% 1 1 r * cos(theta) 2 TA/hj>rV
% 1 -1 r * sin(theta) 2 H
$Az,-P
% 2 -2 r^2 * cos(2*theta) sqrt(6) v{|y,h&]a
% 2 0 (2*r^2 - 1) sqrt(3) e#k rr
% 2 2 r^2 * sin(2*theta) sqrt(6) 2HBey
% 3 -3 r^3 * cos(3*theta) sqrt(8) z(Uz<*h8
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) @]#[TbNo
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) !y~nsy:&7x
% 3 3 r^3 * sin(3*theta) sqrt(8) `3ha~+Goo!
% 4 -4 r^4 * cos(4*theta) sqrt(10) U4-RI]Cpf
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) KG(FA
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) ;`pIq-=
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) YHom9&A
% 4 4 r^4 * sin(4*theta) sqrt(10) p<'pqf
% -------------------------------------------------- 7K.],eo0
% 7J5jf231
% Example 1: klAlS%
% qonStIP
% % Display the Zernike function Z(n=5,m=1) o:ow"cOEf
% x = -1:0.01:1; FIfLDT+ Wh
% [X,Y] = meshgrid(x,x); LlgFQfu8
% [theta,r] = cart2pol(X,Y); W&cs&>F#
% idx = r<=1; ZG1TRF "
% z = nan(size(X)); !m~r0M7
% z(idx) = zernfun(5,1,r(idx),theta(idx)); (_FeX22+
% figure $PRd'YdL/
% pcolor(x,x,z), shading interp HU/4K7e`
% axis square, colorbar hG~.Sc:G
% title('Zernike function Z_5^1(r,\theta)') J5jI/P
% $Bc3| `K1v
% Example 2: }z/%b<o_
% =to.Oa RR
% % Display the first 10 Zernike functions @>$qb|j
% x = -1:0.01:1; zmD7]?|
% [X,Y] = meshgrid(x,x); q'y<UyT6
% [theta,r] = cart2pol(X,Y); ucz~y!4L{
% idx = r<=1; NQuqM`LSQ
% z = nan(size(X)); 4noy!h
% n = [0 1 1 2 2 2 3 3 3 3]; >h~ik/|*
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; i9qIaG/
% Nplot = [4 10 12 16 18 20 22 24 26 28]; l?_Fy_fBt
% y = zernfun(n,m,r(idx),theta(idx)); /%7&De6Xg
% figure('Units','normalized') VuTTWBx
% for k = 1:10 98
NFJ
% z(idx) = y(:,k); ]G8"\J4 &
% subplot(4,7,Nplot(k)) jHE^d<=O^
% pcolor(x,x,z), shading interp AZik:C"Q
% set(gca,'XTick',[],'YTick',[]) ~&<vAgy,
% axis square Zw{?^6;cS
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 3rHn?
% end 0Ba]Zo Z
% N8kNi4$mp=
% See also ZERNPOL, ZERNFUN2. iyR"O1]
A\9LJ#E
=~W=}
% Paul Fricker 11/13/2006 JJg;X :p
Ylu\]pr9|C
nTtEv~a_n
Ja&S_'P[
`s+kYWg'Z
% Check and prepare the inputs: a
@3s71
% ----------------------------- sz/^Ie-~
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Q1yXdw
error('zernfun:NMvectors','N and M must be vectors.') .)WEg|D0Ku
end mqsAYzG
$'eY-U8q
%#&njP
if length(n)~=length(m) -(lP8Y~gFY
error('zernfun:NMlength','N and M must be the same length.') x3U>5F@
end +03/A`PKrB
=w`uZ;l$Q
7 p!ROl^
n = n(:); 0,@^<G8?
m = m(:); #l- 0$
if any(mod(n-m,2)) YjL'GmL<
error('zernfun:NMmultiplesof2', ... 2,g4yXws5
'All N and M must differ by multiples of 2 (including 0).') h* 1T3U$
end W)T'?b'.
/uR/,R++
H =~7g3
if any(m>n) eGpKoq7a
error('zernfun:MlessthanN', ... \Z42EnJ
'Each M must be less than or equal to its corresponding N.') )'RaMo` 4
end [ "3s
IqepR
>5t
#XqCz>Z
if any( r>1 | r<0 ) :IJ<Mmb
error('zernfun:Rlessthan1','All R must be between 0 and 1.') U~?mW,iRL
end +zLw%WD[l
=)g}$r
&<
#%E^cGfY
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Q}<QE:-&E
error('zernfun:RTHvector','R and THETA must be vectors.') ?ILjt? X8
end 3pW4Ul@e
]&D=*:c
b.?;I7r
r = r(:); jgPUR#)
theta = theta(:); r7?nHF
length_r = length(r); {29aNm
if length_r~=length(theta) |xg#Q`O
error('zernfun:RTHlength', ... !=*8*?@
'The number of R- and THETA-values must be equal.') H%rNQxA2 +
end .b<W*4{j0H
_&s pMf
:WQlpLn
% Check normalization: _
gYj@
%
% -------------------- xHaz*w1|
if nargin==5 && ischar(nflag) L1g0Dd\Ox
isnorm = strcmpi(nflag,'norm'); cbm;45 L|
if ~isnorm ao .vB']T
error('zernfun:normalization','Unrecognized normalization flag.') P3=#<Q.
end 'yA/sZ
else _$D!"z7i
isnorm = false; 3)?WSOsL:
end -gba&B+D"
]sVWQj
(/]#G8
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% h2Th)&Fb>
% Compute the Zernike Polynomials <`; {gX1
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %
C2Vga#
nIfAG^?|*
#wRhR>6
% Determine the required powers of r: x@bqPZ t
% ----------------------------------- _JNYvngm
m_abs = abs(m); #Cu$y8~as
rpowers = []; g:y4C6b
for j = 1:length(n) U\j g X
rpowers = [rpowers m_abs(j):2:n(j)]; )b2O!p
end m$v >r\*X
rpowers = unique(rpowers); 4`: POu&
2?Jw0Wq5D
aL+>XN
% Pre-compute the values of r raised to the required powers, x
lqP%
% and compile them in a matrix: w4TQ4
Y
% ----------------------------- t[X^4bZd
if rpowers(1)==0 ty[p5%L1
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); &$_!S!Sa/
rpowern = cat(2,rpowern{:}); uSQ#Y^V_
rpowern = [ones(length_r,1) rpowern]; 7'i{JPm
else 2;
,8 u
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); BQg3+w:>
rpowern = cat(2,rpowern{:}); 6XU p$Pd(
end o}/|"(K
x`@`y7(
h| wdx(4
% Compute the values of the polynomials: Kn@#5MC
rU
% -------------------------------------- I{[Z
y = zeros(length_r,length(n)); ^5TVm>F@3
for j = 1:length(n) dz+Dk6"R
s = 0:(n(j)-m_abs(j))/2; w"dKOdY
pows = n(j):-2:m_abs(j); 'plUs<A
for k = length(s):-1:1 URbB2
Bi
p = (1-2*mod(s(k),2))* ... Q{950$)L
prod(2:(n(j)-s(k)))/ ... $^{#hYq)o
prod(2:s(k))/ ... K#X/j'$^
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Q/0gd? U?
prod(2:((n(j)+m_abs(j))/2-s(k))); c};%VB
idx = (pows(k)==rpowers); mS![J69(
y(:,j) = y(:,j) + p*rpowern(:,idx); 7/QK"0
end OM\1TD/-
AL3iNkEa
if isnorm FibZT1-k
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); _[Imwu}
end HSROgBNI:
end pl1CPxSdO
% END: Compute the Zernike Polynomials ; xp-MK
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% W~D_+[P|_
YkB@fTTS
_\tv ${
% Compute the Zernike functions: w@cW`PlF
% ------------------------------ t4v'X}7q]
idx_pos = m>0; oU\7%gQ
idx_neg = m<0; $;q
}jvo
!f52JQyh
w 0=
z = y; ycc G>%>r
if any(idx_pos) ^ `Ozw^~
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 6Nn+7z<*&z
end j+ -r(lZ
if any(idx_neg) X`Q+,tx$
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); `}=R
end 2m yxwA5
4^2>KC_
9ABU^ig
% EOF zernfun o|z@h][(l(