切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9024阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, )D82N`c2\i  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, aCLqk'  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? &q|K!5[k  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? qXjxNrK  
    QS]1daMIK<  
    nL.<[]r  
    !o[7wKrXb  
    3gj+%%!G\  
    function z = zernfun(n,m,r,theta,nflag) g^ i&gNDx  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. p`#R<K  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N h.s+)fl\  
    %   and angular frequency M, evaluated at positions (R,THETA) on the t\j*}# S  
    %   unit circle.  N is a vector of positive integers (including 0), and VD]zz ^  
    %   M is a vector with the same number of elements as N.  Each element 1s@+;QUib  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) Z@@K[$  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, Eue~Y+K*b  
    %   and THETA is a vector of angles.  R and THETA must have the same wtV#l4  
    %   length.  The output Z is a matrix with one column for every (N,M) 9 ea\vZ  
    %   pair, and one row for every (R,THETA) pair. x`IEU*z#  
    % 4^OY C  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike bl(RyA gA  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), U\<?z Dw  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral &7wd?)s  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 6ez<g Uf  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized <)-Sj,  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 5vZ^0yFQ  
    % :s6o"VkW  
    %   The Zernike functions are an orthogonal basis on the unit circle. U,-39mr  
    %   They are used in disciplines such as astronomy, optics, and WoRZW%  
    %   optometry to describe functions on a circular domain. z4]api(xZ  
    % Gvqxi|  
    %   The following table lists the first 15 Zernike functions. `&sH-d4v  
    % V0XvJ  
    %       n    m    Zernike function           Normalization )fSOi| |C  
    %       -------------------------------------------------- Nf"r4%M<6  
    %       0    0    1                                 1 {"QNJq#:  
    %       1    1    r * cos(theta)                    2 8j % Tf;  
    %       1   -1    r * sin(theta)                    2 ^ tg<K  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) '>ssqBnI  
    %       2    0    (2*r^2 - 1)                    sqrt(3) p\ZNy\N^  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) sAD}#Zw$  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 28J^DMOW  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) Y@ksQ_u  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 6U,O*WJ%e  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) NI [ pp`  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) bNNr]h8y-  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 4'A!; ]:  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 5VAK:eB  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) '>0fWBs  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) ],a5)kV  
    %       -------------------------------------------------- 1@1U/ss1  
    % MgrLSKLT  
    %   Example 1: d]6#m'U  
    % aV|hCN~  
    %       % Display the Zernike function Z(n=5,m=1) gPsi  
    %       x = -1:0.01:1; &wCg\j_c  
    %       [X,Y] = meshgrid(x,x); ?fjuh}Q5h  
    %       [theta,r] = cart2pol(X,Y); q $tUH)0  
    %       idx = r<=1; '*w00  
    %       z = nan(size(X)); 7Vo$(kj  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); ?D*/*Gk{  
    %       figure ~%=MpQ3  
    %       pcolor(x,x,z), shading interp v`zJb00DT  
    %       axis square, colorbar o`P %&  
    %       title('Zernike function Z_5^1(r,\theta)') K&70{r  
    % ^ ALly2  
    %   Example 2: \BZhf?9U  
    % Y>G@0r BG  
    %       % Display the first 10 Zernike functions \$e)*9)  
    %       x = -1:0.01:1; ,>-< (Qi  
    %       [X,Y] = meshgrid(x,x); _FVcx7l!u  
    %       [theta,r] = cart2pol(X,Y); ~r`9+b[9{  
    %       idx = r<=1; TQ*1L:X7M&  
    %       z = nan(size(X)); uPG4V2  
    %       n = [0  1  1  2  2  2  3  3  3  3]; DSk/q-'u  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; M .JoHH  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 5$&%re!{Z  
    %       y = zernfun(n,m,r(idx),theta(idx)); s1NKLt  
    %       figure('Units','normalized') 2h1C9n%j9  
    %       for k = 1:10 K]0:?h;%Ld  
    %           z(idx) = y(:,k); *HO}~A%Lx  
    %           subplot(4,7,Nplot(k)) ruzspS  
    %           pcolor(x,x,z), shading interp `t9?=h!  
    %           set(gca,'XTick',[],'YTick',[]) O_ DtvjI'  
    %           axis square TDNQu_E  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) pd7NF-KD  
    %       end J/GSceHF  
    % WP+oFkw>  
    %   See also ZERNPOL, ZERNFUN2. 5Z\#0":e  
    %i-c0|,T4  
    3`.7<f`  
    %   Paul Fricker 11/13/2006 ~ga`\% J  
    hKjt'N:~ZY  
     Q&g^c2  
    MLWM&cFG  
    #=f?0UTA  
    % Check and prepare the inputs: U($dx.`v#  
    % ----------------------------- X+}1  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Q=T&  
        error('zernfun:NMvectors','N and M must be vectors.') W"'iIh)z `  
    end I'iGt~4$  
    jvFTR'R)=  
    NchXt6$i9  
    if length(n)~=length(m) (+3Wgl+]/  
        error('zernfun:NMlength','N and M must be the same length.') A"D,Kg S  
    end .!,z:l$Kh  
    :Q_<Z@2Y{  
    [uls8 "^/j  
    n = n(:); Mo @C9Y0  
    m = m(:); *"n vX2iz  
    if any(mod(n-m,2)) "7V2lu  
        error('zernfun:NMmultiplesof2', ... BT"42#7_  
              'All N and M must differ by multiples of 2 (including 0).') [YT>*BH?  
    end 9Z'8!$LYg  
    ``e$AS  
    Pgus42f%  
    if any(m>n) qt 2d\f  
        error('zernfun:MlessthanN', ... [7S} g  
              'Each M must be less than or equal to its corresponding N.') 4NG?_D5&  
    end Ii_ojQP-z  
    Yvjc1  
    5<j%EQN|D  
    if any( r>1 | r<0 ) GF%314Xu  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') UHxE)]J  
    end e0@Y#7N62  
    HnCzbt@  
    :2-pjkhiwY  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) )Ocl=H|=  
        error('zernfun:RTHvector','R and THETA must be vectors.') /BV03B  
    end mAW, ?h  
    H0SQ"?  
    MxcFvo*LCp  
    r = r(:); Y +\%  
    theta = theta(:); '@CR\5 @  
    length_r = length(r); Gkv{~?95  
    if length_r~=length(theta) )V:]g\t  
        error('zernfun:RTHlength', ... 5-0{+R5v  
              'The number of R- and THETA-values must be equal.') [[Y0  
    end -!L"')  
    2hQ>:  
    nn9wdt@.]  
    % Check normalization: njnDW~Snb  
    % -------------------- 1=a>f "cyf  
    if nargin==5 && ischar(nflag) 0`A~HH}  
        isnorm = strcmpi(nflag,'norm'); ZwerDkd  
        if ~isnorm pzgSg[|  
            error('zernfun:normalization','Unrecognized normalization flag.') $aPfGZ<i  
        end ] 0m&(9  
    else "0k8IVwp  
        isnorm = false; {$^DMANDx  
    end Mz;[+p  
    ?9=9C"&s  
    2'<[7!  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ,SiY;(b=\  
    % Compute the Zernike Polynomials _fP&&}  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ]a3iEA2 (  
    mA@Me7m}  
    ?EK?b s  
    % Determine the required powers of r: ~/ilx#d  
    % ----------------------------------- f5==";eP  
    m_abs = abs(m); H'UR8%  
    rpowers = []; 'EfR|7m  
    for j = 1:length(n) t"YNgC ^  
        rpowers = [rpowers m_abs(j):2:n(j)]; d/e|'MPX  
    end b (I2m  
    rpowers = unique(rpowers); ? j 9|5*  
    e=QK}gzX  
    AkT<2H|4  
    % Pre-compute the values of r raised to the required powers, "AhTH.ZP  
    % and compile them in a matrix: !GQ\"Ufs>  
    % ----------------------------- l?)ZJ3]a  
    if rpowers(1)==0 n%\ /J  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); BiZ=${y  
        rpowern = cat(2,rpowern{:}); ^p/Ob'!  
        rpowern = [ones(length_r,1) rpowern]; ^@_m "^C  
    else /Y2/!mU</  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 3o|I[!2.  
        rpowern = cat(2,rpowern{:}); 'iY*6<xS<  
    end c$QX )V  
    !;!~n`  
    =?(~aV  
    % Compute the values of the polynomials: ?`Y\)'}   
    % -------------------------------------- }/,CbKi,+  
    y = zeros(length_r,length(n)); 02k4 N%  
    for j = 1:length(n) gxGrspqg  
        s = 0:(n(j)-m_abs(j))/2; Q!FLR>8  
        pows = n(j):-2:m_abs(j); UP{j5gR:_  
        for k = length(s):-1:1 M8b4NF_&  
            p = (1-2*mod(s(k),2))* ... WmQ 01v  
                       prod(2:(n(j)-s(k)))/              ... nD2, !71  
                       prod(2:s(k))/                     ... Px>va01n  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... pBC<u  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); h`}3h< 8  
            idx = (pows(k)==rpowers); LN_OD5gZ  
            y(:,j) = y(:,j) + p*rpowern(:,idx); iY bX  
        end @E53JKYhY  
         S-nlr@w8  
        if isnorm ='E$-_  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Sm2>'C  
        end Fequm+  
    end do ^RF<G  
    % END: Compute the Zernike Polynomials $,hwU3RVxc  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ? QDWuPhN  
    OlQ,Ce  
    #DkD!dW(l  
    % Compute the Zernike functions: ^SfS~G Q  
    % ------------------------------ BD#.-xWV  
    idx_pos = m>0; te4= S  
    idx_neg = m<0; '~wpP=<yyF  
    v}v 5  
    vG2b:[W  
    z = y; GW2')}g  
    if any(idx_pos) U~2`P  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); k,Zm GllQ]  
    end yO>V/5`  
    if any(idx_neg) dy>|c j  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); C+MSVc  
    end )DUL)S  
    i$-#dc2qY  
    [[)_BmS5r  
    % EOF zernfun 6b Z[Kt  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  #KJZR{  
    M,L@k  
    DDE还是手动输入的呢? hgj0tIi/  
    w)<4>(D  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究