下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, ^Pk-<b4}
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, ;nbUbRb
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? \)pT+QxZ
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? /M;A)z
SDTX3A1
W c"f
p Rn vd|
g6kVHxh-
function z = zernfun(n,m,r,theta,nflag) od\Q<Jm}
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. %usy`4
2
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ]_yk,}88d
% and angular frequency M, evaluated at positions (R,THETA) on the eVZ/3o
% unit circle. N is a vector of positive integers (including 0), and [C]u!\(IF
% M is a vector with the same number of elements as N. Each element &?=UP4[oif
% k of M must be a positive integer, with possible values M(k) = -N(k) b[3K:ot+
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, jMvWS71
% and THETA is a vector of angles. R and THETA must have the same b=!G3wVw<
% length. The output Z is a matrix with one column for every (N,M) 1}{bHj
% pair, and one row for every (R,THETA) pair. W`KRaL0^
% XO*62>Ed
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike S/?KC^JP
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ptXLWv`
% with delta(m,0) the Kronecker delta, is chosen so that the integral (dxkDS-G
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, h-Q3q:
% and theta=0 to theta=2*pi) is unity. For the non-normalized c:Tw.WA
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. RSLMO8
% q1Vh]d
% The Zernike functions are an orthogonal basis on the unit circle. %{*}KsS`p
% They are used in disciplines such as astronomy, optics, and 8lo /BGxS>
% optometry to describe functions on a circular domain. .FS`Fh;
% w6MEY"<L
% The following table lists the first 15 Zernike functions. YY(,H!
% h^h!OQK Q
% n m Zernike function Normalization 777N0,o(
% -------------------------------------------------- 6_a42#
% 0 0 1 1 E }aTH
% 1 1 r * cos(theta) 2 ceDe!Iu
% 1 -1 r * sin(theta) 2 ]:B|_|H
% 2 -2 r^2 * cos(2*theta) sqrt(6) -t, .A/?
% 2 0 (2*r^2 - 1) sqrt(3) ?3wEO>u
% 2 2 r^2 * sin(2*theta) sqrt(6) @3/.W +
% 3 -3 r^3 * cos(3*theta) sqrt(8) [.O3z*[9#
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) OchIEF"N
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) _
13M
% 3 3 r^3 * sin(3*theta) sqrt(8) E4^zW_|xE
% 4 -4 r^4 * cos(4*theta) sqrt(10) yp=(wcJ
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) v*+.;60_
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) lS.*/u*5
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ,4hQ#x
% 4 4 r^4 * sin(4*theta) sqrt(10) S.bB.<
% -------------------------------------------------- MXWCYi
% 9 |Cu2
% Example 1: b$kCyOg
% Tti]H9g_
% % Display the Zernike function Z(n=5,m=1) IG?044Y
% x = -1:0.01:1; Re3vW re
% [X,Y] = meshgrid(x,x); vDgf}
% [theta,r] = cart2pol(X,Y); -MrEJ
% idx = r<=1; P>/n!1c
% z = nan(size(X)); P%hi*0pwZ
% z(idx) = zernfun(5,1,r(idx),theta(idx)); +@wa?"
% figure ln#Jb&u
% pcolor(x,x,z), shading interp _@[M0t}g_
% axis square, colorbar ^zPa^lo-
% title('Zernike function Z_5^1(r,\theta)') d Ybb>rlu
% /
lh3.\|
% Example 2: PT7L65
% w,(e,8#:
% % Display the first 10 Zernike functions 0GW(?7ZC
% x = -1:0.01:1; a $pxt!6
% [X,Y] = meshgrid(x,x); L0?-W%$>
% [theta,r] = cart2pol(X,Y); :jB8Q$s
% idx = r<=1; |tC`rzo
% z = nan(size(X)); `<>Emc8Z
% n = [0 1 1 2 2 2 3 3 3 3]; ZzA4iT=KO
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 9/[3xhB4
% Nplot = [4 10 12 16 18 20 22 24 26 28]; HE911 lc:
% y = zernfun(n,m,r(idx),theta(idx)); mAkR<\?iTF
% figure('Units','normalized') f!;4-.p`
% for k = 1:10 RkVU^N"
% z(idx) = y(:,k); &D,gKT~
% subplot(4,7,Nplot(k)) "V!y"yQ
% pcolor(x,x,z), shading interp rWKc,A[
% set(gca,'XTick',[],'YTick',[]) zG|}| //}
% axis square ;W6P$@'zs
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 'ojI_%9<
% end 4R5+"h:
% 1?\ #hemL
% See also ZERNPOL, ZERNFUN2. 6 <JiHVP7
hC@oyC(4
y#HDJ=2
% Paul Fricker 11/13/2006 V3O<l}ak
sr!m
d&n&_>
G"3)\FEM
r'7>J:cy=
% Check and prepare the inputs: +qsNz*@p"
% ----------------------------- _idTsd:\
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) tZR%s
error('zernfun:NMvectors','N and M must be vectors.') Ie(vTP1Cj
end FVOR~z
.b*%c?e
n!5 :I#B
if length(n)~=length(m) F+r3~T%
error('zernfun:NMlength','N and M must be the same length.') Td%[ -
end 8 ;oU{
F.i%o2P3
:K{!@=o
n = n(:); Bi?+e~R
m = m(:); /7Z;/|oU
if any(mod(n-m,2)) .JIn(
error('zernfun:NMmultiplesof2', ... W|_^Oe<
'All N and M must differ by multiples of 2 (including 0).') ,TY&N-
end C<Q;3w`#1j
j}NGyS" =
Jwzkd"D
if any(m>n) FZTBvdUYp
error('zernfun:MlessthanN', ... SB
R=
'Each M must be less than or equal to its corresponding N.') S^;D\6(r
end S<"T:Y&
A<esMDX
Q%6Lc.i
if any( r>1 | r<0 ) s,UccA@
error('zernfun:Rlessthan1','All R must be between 0 and 1.') ^W-03
end [ix45xu7
M$j]VZ
ajFSbi)l
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) S~auwY ,<
error('zernfun:RTHvector','R and THETA must be vectors.') V$O{s~@ti
end 6@_Vg~=S
VHhW_ya1g{
zRDBl02v$T
r = r(:); n~xh
%r;
theta = theta(:); "NqB_?DT
length_r = length(r); {bB;TO<b`
if length_r~=length(theta) V<f76U)
error('zernfun:RTHlength', ... .s7Cr0^k,|
'The number of R- and THETA-values must be equal.') T^9k,J(rM
end xB=~3
/8 /2#`3R
M5DW!^
% Check normalization: :Z0m "
% -------------------- >W%tEc
if nargin==5 && ischar(nflag) ?ysC7((
isnorm = strcmpi(nflag,'norm'); S0+nQM%
if ~isnorm j_2-
error('zernfun:normalization','Unrecognized normalization flag.') Dk&@AjJga
end 8jyg1NN D
else qF!oP
isnorm = false; *G|w#-\.c
end e-vwve
z)$X/v
v{7Jzjd
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Cf#[E~2 4
% Compute the Zernike Polynomials `em}vdY
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% J)R;NYl
>gNVL
(
0. _)X
% Determine the required powers of r: sYlA{Z"
% ----------------------------------- % j4
m_abs = abs(m); 5e^t;
rpowers = []; U2 0@B`<
for j = 1:length(n) +c@s
rpowers = [rpowers m_abs(j):2:n(j)]; uH'n.d"WG
end f>d aK9$(
rpowers = unique(rpowers); 1^<R2x
~3YN;St-
Y0`=h"g
% Pre-compute the values of r raised to the required powers, R{zAs?j
% and compile them in a matrix: }F'B!8n
% ----------------------------- 5c*kgj:x
if rpowers(1)==0 'urn5[i
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); dD _(MbTt
rpowern = cat(2,rpowern{:}); uh`W} n
rpowern = [ones(length_r,1) rpowern]; \bJ,8J1C
else >U/m/H'
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); fh rS7f'Zd
rpowern = cat(2,rpowern{:}); /ekeU+j
end gWcl@|I;\
s&-m!|P
a#i;*J
% Compute the values of the polynomials: mx`C6G5
% -------------------------------------- HFV4S]U=
y = zeros(length_r,length(n)); V[&4Km9C
for j = 1:length(n) (7 i@@
s = 0:(n(j)-m_abs(j))/2; 1_}*aQ
pows = n(j):-2:m_abs(j); I"/p^@IX
for k = length(s):-1:1 yHS=8!
p = (1-2*mod(s(k),2))* ... U&W{;myt
prod(2:(n(j)-s(k)))/ ... _&0_@
prod(2:s(k))/ ... YcJZG|[
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... pF~[
prod(2:((n(j)+m_abs(j))/2-s(k))); 3K
Y-+ k
idx = (pows(k)==rpowers); r q2]u
y(:,j) = y(:,j) + p*rpowern(:,idx); [se J'Io
end 0<3)K[m~H
&%."$rC/0b
if isnorm 5&}~W)"9
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ^{L/) Xy5
end j*uc$hC"
end wvH=4TT=w"
% END: Compute the Zernike Polynomials EA@p]+P
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Jb.
V4
DIx!Sw7EC
JO\F-xO
% Compute the Zernike functions: ILsw'
% ------------------------------ q/I':a[1
idx_pos = m>0; =7&2-'(@
idx_neg = m<0; 1=fP68n
=pQ'wx|>|
~N{ 7
z = y; D[d+lq#p
if any(idx_pos) ]w2nVC3
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); //9M~qHa"
end <[7
bUB
if any(idx_neg) AcF6p)@_
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ivy+e-)
end ANuIPF4NxP
$LxfdSa
qo2/? ]
% EOF zernfun 07L
>@Gf