下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, TE3*ktB{N
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, EPc!p>
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? UM<@t%|>
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? #nKRTb+{
X]qCS0GD'
5N\+@grp
Ba<ngG
!
d!o.ASL{
function z = zernfun(n,m,r,theta,nflag) sp|q((z{
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. &]w#z=5SXi
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 1Yud~[c
% and angular frequency M, evaluated at positions (R,THETA) on the M~-h-tG
% unit circle. N is a vector of positive integers (including 0), and SaCx)8ul0
% M is a vector with the same number of elements as N. Each element d7E7f
% k of M must be a positive integer, with possible values M(k) = -N(k) hHpx?9O+!
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, &`\ ep9
% and THETA is a vector of angles. R and THETA must have the same [q'eENG
% length. The output Z is a matrix with one column for every (N,M) @8|Gh]\P
% pair, and one row for every (R,THETA) pair. bZ/
hgqS
% ei@3,{~5
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Rfht\{N 7
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), f3!n$lj
% with delta(m,0) the Kronecker delta, is chosen so that the integral TM0b-W (H
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, `4LJ;KC(
% and theta=0 to theta=2*pi) is unity. For the non-normalized P@C
c]Z
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ,(P %z.P@
% N r<9u$d9=
% The Zernike functions are an orthogonal basis on the unit circle. o5P&JBX<
% They are used in disciplines such as astronomy, optics, and (v!mR+\x
% optometry to describe functions on a circular domain. ZPlPN;J^1
% [UoqIU
% The following table lists the first 15 Zernike functions. 0pD[7~ ^o
% okz]Qc>G
% n m Zernike function Normalization pajy#0 U
% -------------------------------------------------- mbyih+amCr
% 0 0 1 1 y1iX!m~)
% 1 1 r * cos(theta) 2 *<r%aeG$em
% 1 -1 r * sin(theta) 2 usy,V"{
% 2 -2 r^2 * cos(2*theta) sqrt(6) bo1I&I