下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, ;lldxS
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, &q+ %OPV
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? )xU70:X
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? (1R,
&fWZ%C7|jC
WA+v&*]
*|cvx:GO
);C !:?
function z = zernfun(n,m,r,theta,nflag) MLJ8m
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 59LIK&w
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N #"jWPe,d
% and angular frequency M, evaluated at positions (R,THETA) on the Q"\[ICu!,
% unit circle. N is a vector of positive integers (including 0), and t}K?.To$
% M is a vector with the same number of elements as N. Each element SU1,+7"
% k of M must be a positive integer, with possible values M(k) = -N(k) HV>W f"1
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, MTQdyTDHl
% and THETA is a vector of angles. R and THETA must have the same /[mCK3_
% length. The output Z is a matrix with one column for every (N,M) \J6T:jeS,
% pair, and one row for every (R,THETA) pair. ky*-_
% dM)fr
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike H7WKnn@
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), RNPqW,B!0
% with delta(m,0) the Kronecker delta, is chosen so that the integral 5s0H4 ?S
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, n'&WIf3
% and theta=0 to theta=2*pi) is unity. For the non-normalized ?x:\RNB/
% polynomials, max(Znm(r=1,theta))=1 for all [n,m].
n1v%S"^
% 7XZ!UC;i
% The Zernike functions are an orthogonal basis on the unit circle. |_-FQ~Hf F
% They are used in disciplines such as astronomy, optics, and yjr!8L:m
% optometry to describe functions on a circular domain. >_R5Li
% !j- 7,
% The following table lists the first 15 Zernike functions. :R_(+EK1
% 0 {w?u %'
% n m Zernike function Normalization 1w35H9\g
% -------------------------------------------------- W}KtB1J
% 0 0 1 1 QkA79%;j
% 1 1 r * cos(theta) 2 D:f0Wv
% 1 -1 r * sin(theta) 2 K'y;j~`-
% 2 -2 r^2 * cos(2*theta) sqrt(6) )@Ly{cw
% 2 0 (2*r^2 - 1) sqrt(3) CFVe0!\
% 2 2 r^2 * sin(2*theta) sqrt(6) G|.>p<q
% 3 -3 r^3 * cos(3*theta) sqrt(8) $ U<xrN>O
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) z"R-Sme
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) I#m5Tl|#
% 3 3 r^3 * sin(3*theta) sqrt(8) =6/0=a[
% 4 -4 r^4 * cos(4*theta) sqrt(10) .aF+>#V=Q
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 8JGt|,
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) Cdc6<8
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Uq7 y4zJ
% 4 4 r^4 * sin(4*theta) sqrt(10) m"NZ; *d '
% -------------------------------------------------- ><dSwwu
% OLlNCb#t
% Example 1: <kt,aMw[*
% z6$W@-Vd
% % Display the Zernike function Z(n=5,m=1) :FB#,AOa_
% x = -1:0.01:1; ]7Tjt A.\q
% [X,Y] = meshgrid(x,x); ](:aDHa
% [theta,r] = cart2pol(X,Y); Uk5jZ|
% idx = r<=1; j$a,93P5
% z = nan(size(X)); 7$k[cL1
% z(idx) = zernfun(5,1,r(idx),theta(idx)); sd
xl@
% figure k?KKb
/&b
% pcolor(x,x,z), shading interp L@XhgQ
% axis square, colorbar Yu`b[]W
% title('Zernike function Z_5^1(r,\theta)') Rcfh*"k
% H"6Sj-<=
% Example 2: QD-#sU]
% XzIhFX6
% % Display the first 10 Zernike functions ggIz)</
% x = -1:0.01:1; );'8*e'
% [X,Y] = meshgrid(x,x); Tn8Z2iC
% [theta,r] = cart2pol(X,Y); )=8MO-{
% idx = r<=1; ]^uO3!+
% z = nan(size(X)); l
2y_Nz-;
% n = [0 1 1 2 2 2 3 3 3 3]; |MY6vRJ(
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; O|}97a^
% Nplot = [4 10 12 16 18 20 22 24 26 28]; k.NgE/;3
% y = zernfun(n,m,r(idx),theta(idx)); IDyf9Zra?
% figure('Units','normalized') "hdcB
0
% for k = 1:10 18jI6$DY
% z(idx) = y(:,k); >LRt,.hy6
% subplot(4,7,Nplot(k)) :''^a
% pcolor(x,x,z), shading interp m_wBRan
% set(gca,'XTick',[],'YTick',[]) n(\5Z&
% axis square E=+v1\t)]
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) <E[X-S%&
% end *"2TT})
% sg RY`U.C
% See also ZERNPOL, ZERNFUN2. b`)^Ao:
N&n2\Y
I@76ABu^
% Paul Fricker 11/13/2006 (sSMH6iCif
)/A IfH
t>:2F,0K9
C(qqGK{
~_OtbNj#
% Check and prepare the inputs: &_n~# Mex
% ----------------------------- <iDqt5)N
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 4RTuy+
M
error('zernfun:NMvectors','N and M must be vectors.') </(bwc~2
end of!Bz
cPZD#";f
v0&E!4q*'
if length(n)~=length(m) :f<3`x'
error('zernfun:NMlength','N and M must be the same length.') P]hS0,sE<(
end `],'fT|,S
8T6.Zhv
Op%}.9 ed
n = n(:); {fW(e?8)
m = m(:); E(N?.i-%$
if any(mod(n-m,2)) !l-^JPb
error('zernfun:NMmultiplesof2', ...
?UuJk
'All N and M must differ by multiples of 2 (including 0).') 2YI#J.6]H
end 8:E)GhX
b.V\EOk
jp?;8rS3
if any(m>n) T5(]/v,UT
error('zernfun:MlessthanN', ... R%B"Gtl)
'Each M must be less than or equal to its corresponding N.') %5.aC|^}
end XG2&_u&
Y?G\@6
B@XnHh5y
if any( r>1 | r<0 ) ,w&8 &wj
error('zernfun:Rlessthan1','All R must be between 0 and 1.') c@H:?s!0R
end
KKpO<TO
Ct2m l
) inhPd
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ODa+s>a`^
error('zernfun:RTHvector','R and THETA must be vectors.') wi]ya\(*yl
end 3{OY&
r;m_@*]
x|C[yu^c
r = r(:); qOOF]L9r%u
theta = theta(:); c4Q{
length_r = length(r); a![x^@nF
if length_r~=length(theta) (3PkTQlE
error('zernfun:RTHlength', ... "f/91gIzm'
'The number of R- and THETA-values must be equal.') 6~g`B<(?
end ?M?S+@(
$qOV#,@
'@OqWdaR
% Check normalization: 7u8HcHl
% -------------------- "o.V`Bj
if nargin==5 && ischar(nflag) 8/ lv, m#
isnorm = strcmpi(nflag,'norm'); 9gFb=&1k
if ~isnorm LS1r}cl
error('zernfun:normalization','Unrecognized normalization flag.') iEd%8 F h
end 2p'ujAK
else {c5%.<O
isnorm = false; #m 2Ss
end i"|="O0v5
|KSd@
R7axm<PR=
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Ut"~I)S{LT
% Compute the Zernike Polynomials $r0~&$T&
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% "XQj~L
dMkDNaH,
rzmd`)g
% Determine the required powers of r: a3}#lY):
% ----------------------------------- |M&i#g<A;
m_abs = abs(m); Vy*&po[
rpowers = []; 5:[<pY!s#
for j = 1:length(n) ki/xo^Y2<
rpowers = [rpowers m_abs(j):2:n(j)]; V/%tFd1
end 00s&<EM
rpowers = unique(rpowers); 2de[ yz
#'"zyidu
GJlkEWs
% Pre-compute the values of r raised to the required powers, }~gBnq_DDU
% and compile them in a matrix: L0ZgxG3:g
% ----------------------------- ~~J xw ]
if rpowers(1)==0 rKZ1
c,y
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); WSA;p=_
rpowern = cat(2,rpowern{:}); \)H}
rpowern = [ones(length_r,1) rpowern]; T(UdV]~]"
else z=ItKoM*<
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 9rhIDA(wc
rpowern = cat(2,rpowern{:}); c,WRgXL
end 3@u<Sa
{P'TtlEp
;^QG>OP$
% Compute the values of the polynomials: XL@Y!
% -------------------------------------- "YIrqk
y = zeros(length_r,length(n)); ?~G D^F
for j = 1:length(n) zk)9tm;i{
s = 0:(n(j)-m_abs(j))/2; dQhh,}
pows = n(j):-2:m_abs(j); hVvPI1[2
for k = length(s):-1:1 pz'l9Gp;@
p = (1-2*mod(s(k),2))* ... ;Dl< GW3<
prod(2:(n(j)-s(k)))/ ...
OC0dAxq
prod(2:s(k))/ ... FmU>q)
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... e_Cns&
prod(2:((n(j)+m_abs(j))/2-s(k))); Dx<">4
idx = (pows(k)==rpowers); VlGg?
y(:,j) = y(:,j) + p*rpowern(:,idx); hg8gB8Xq
end Z<j(ZVO
fC!]M hA"i
if isnorm <28L\pdG`
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); RI,Z&kXj2o
end JE~ci#|!
end OKDBzl
% END: Compute the Zernike Polynomials 3:q\]]]S
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% JryC L]
L%D:gy9o
5o2W[<