下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, +#IsRiH%>
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 13v#
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? VM [U&g<8n
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? 7UzbS,$x
1O{x9a5Z?O
*'&mcEpg
j9XRC9
z/&2Se:
function z = zernfun(n,m,r,theta,nflag) Nt^9N
#+N
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. FPBO=?H.
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 1s@%q
<
% and angular frequency M, evaluated at positions (R,THETA) on the alB[/.1
% unit circle. N is a vector of positive integers (including 0), and AO"pm
% M is a vector with the same number of elements as N. Each element $Z8=QlG>
% k of M must be a positive integer, with possible values M(k) = -N(k) _Uxt9 X
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, Ous_269cM
% and THETA is a vector of angles. R and THETA must have the same h;(#^+LH
% length. The output Z is a matrix with one column for every (N,M) D3BNA]P\2@
% pair, and one row for every (R,THETA) pair. Ka$YKY,
% ~c*$w O\
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike MsL*\)*s
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 9Nkr=/I"P
% with delta(m,0) the Kronecker delta, is chosen so that the integral 3TS(il9A
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, .2V`sg.!
% and theta=0 to theta=2*pi) is unity. For the non-normalized :UrS@W^B
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ?z]hYsy
% k Up[b~
% The Zernike functions are an orthogonal basis on the unit circle. rnV\O L
% They are used in disciplines such as astronomy, optics, and GVaIZh<
% optometry to describe functions on a circular domain. ~VqDh*0
% I2R"
Y<
% The following table lists the first 15 Zernike functions. r?l7_aBv3
% snW=9b)m
% n m Zernike function Normalization ;>z.wol
% -------------------------------------------------- ~)k OOoH
% 0 0 1 1 WHM|kt
% 1 1 r * cos(theta) 2 /I>o6 CI
% 1 -1 r * sin(theta) 2 }{(dG7G+
% 2 -2 r^2 * cos(2*theta) sqrt(6) -/O_wqm#
% 2 0 (2*r^2 - 1) sqrt(3) DnZkZ;E/
% 2 2 r^2 * sin(2*theta) sqrt(6) )zR(e>VX
% 3 -3 r^3 * cos(3*theta) sqrt(8) 0F495'*A
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) S3G9/
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) yG`J3++
S
% 3 3 r^3 * sin(3*theta) sqrt(8) 2qF
?%
% 4 -4 r^4 * cos(4*theta) sqrt(10) TI9]v(
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 88GS Bg:YH
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) ~_ 8X%uty
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ?C[W~m P
% 4 4 r^4 * sin(4*theta) sqrt(10) A=(<g";m
% -------------------------------------------------- zP8a=Iv
% ~KW|<n4m
% Example 1: ]hPu
% ka^sOC+Y
% % Display the Zernike function Z(n=5,m=1) TBGN',,
% x = -1:0.01:1; ey~5DY7
% [X,Y] = meshgrid(x,x); $@[`v0y*
% [theta,r] = cart2pol(X,Y); {7%W/C#A
% idx = r<=1; a%"27
n(M
% z = nan(size(X)); Cmsg'KqqT
% z(idx) = zernfun(5,1,r(idx),theta(idx)); R@+%~"Z
% figure l.
9
i `
% pcolor(x,x,z), shading interp yFYFFv\?
% axis square, colorbar -Dx_:k|k
% title('Zernike function Z_5^1(r,\theta)') m=hlim;P,
% @&AUbxoj
% Example 2: i1OF@~?
% ?51Y&gOEZ
% % Display the first 10 Zernike functions /.{q2]
% x = -1:0.01:1; O)$rC
% [X,Y] = meshgrid(x,x); TspuZR@2
% [theta,r] = cart2pol(X,Y); q$|Wxnz
% idx = r<=1; ~^{jfHTlv
% z = nan(size(X)); oV(|51(f
% n = [0 1 1 2 2 2 3 3 3 3]; h2b,(
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; %a_ rYrL
% Nplot = [4 10 12 16 18 20 22 24 26 28]; 8%@![$q<g
% y = zernfun(n,m,r(idx),theta(idx)); j>{Dbl:#2
% figure('Units','normalized') YPV@/n[N
% for k = 1:10 Em%0C@C
% z(idx) = y(:,k); &tAhRMa
% subplot(4,7,Nplot(k)) Mx3MNX/
% pcolor(x,x,z), shading interp iB]xYfQ&@V
% set(gca,'XTick',[],'YTick',[]) LkUYh3
% axis square TQ/EH~Sz
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ","O8'$OC
% end m ll-cp
% `Mh3v@K:
% See also ZERNPOL, ZERNFUN2. {Tps3{|wt
IpJMq^Z
$j+RUelFY
% Paul Fricker 11/13/2006 ji|+E`Nii
6ka,
FjJ\
r~q(m>Ct6
]tjQy1M
n0ZrgTVJ
% Check and prepare the inputs: z frEM
% ----------------------------- 9_h
V1:
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) K~C6dy
error('zernfun:NMvectors','N and M must be vectors.') StuQ}
end a7]wPXKq
,esryFRG
>{v,HOxl
if length(n)~=length(m) ""; Bq*Y#
error('zernfun:NMlength','N and M must be the same length.') d7f{2
end rT&rv^>f
+;T `uOF}
;*H@E(g
n = n(:); (R9{wGV [
m = m(:); ;ewqGDe'3
if any(mod(n-m,2)) fLtN-w6t
error('zernfun:NMmultiplesof2', ... vhEqHjR:
'All N and M must differ by multiples of 2 (including 0).') 3.t
j%+
end }MCh$
1 +0-VRl
5 $vUdDTg
if any(m>n) `GBa3
error('zernfun:MlessthanN', ... O<RLw)nzg
'Each M must be less than or equal to its corresponding N.') )$>
pu{o
end FQ3{~05T
)F$<-0pT
yx@%x?B
if any( r>1 | r<0 ) 2`[iTBZ=^
error('zernfun:Rlessthan1','All R must be between 0 and 1.') 9 W7 ljUg
end g5YDRL!Wh
Qf>$'C(7!a
7xhBdi[ dQ
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 5Al1u|;HB
error('zernfun:RTHvector','R and THETA must be vectors.') X0}+X'3
end ^%qe&Pe2
|#Gug('
0E<