切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9309阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, aT4I sPA?_  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, YsO3( HS  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? sU(<L0  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? hbdB67,  
    r2%Qk  
    FMX ^k  
    uc{s\_  
    E- jJ!>&K  
    function z = zernfun(n,m,r,theta,nflag) WA6reZ  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. `h%K8];<6f  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N |.z4VJi4  
    %   and angular frequency M, evaluated at positions (R,THETA) on the W7W(jMH  
    %   unit circle.  N is a vector of positive integers (including 0), and IG.!M@_  
    %   M is a vector with the same number of elements as N.  Each element hG~HV{6  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) _z=yt t9D  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ::p%R@?  
    %   and THETA is a vector of angles.  R and THETA must have the same ?o1QjDG  
    %   length.  The output Z is a matrix with one column for every (N,M) A vww @$  
    %   pair, and one row for every (R,THETA) pair. $D='NzE/  
    % p;qFMzyS9  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike q eDXG  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), @;G%7&ps  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral XXw>h4hl  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, j.!5&^;u4  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized \kZ@2.pN  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 99\lZ{f(  
    % z}Lf]w?  
    %   The Zernike functions are an orthogonal basis on the unit circle. nx(jYXVT  
    %   They are used in disciplines such as astronomy, optics, and \sAkKPI  
    %   optometry to describe functions on a circular domain. ]eUD3WUe>q  
    % ]z!Df\I  
    %   The following table lists the first 15 Zernike functions. Mp QsM-iW  
    % EQe$~}[  
    %       n    m    Zernike function           Normalization q[Tl#*P?y  
    %       -------------------------------------------------- )<%CI#s#  
    %       0    0    1                                 1 [!C!R$AMa  
    %       1    1    r * cos(theta)                    2 rB-R(2 CCN  
    %       1   -1    r * sin(theta)                    2 AC\y|X8-  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) Y <`X$  
    %       2    0    (2*r^2 - 1)                    sqrt(3) :%gM Xsb  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) #eF,* d  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ^M1jv(  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) n%;4Fm?  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) LSR0yCU  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) /2''EF';  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) Es- =0gpK  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ]XcWGQv~  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) GTi=VSGqF  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) f9OY> |a9  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) xU2i&il^!  
    %       -------------------------------------------------- Z`f?7/"B  
    % p' 6h9/  
    %   Example 1: yf[1?{iVo  
    % 7|"l/s9,  
    %       % Display the Zernike function Z(n=5,m=1) gL~3z'$  
    %       x = -1:0.01:1; \x<,Ma=D  
    %       [X,Y] = meshgrid(x,x); ^I9U<iNIL  
    %       [theta,r] = cart2pol(X,Y); &1Y7Ne  
    %       idx = r<=1; H ?eG5  
    %       z = nan(size(X)); @HTs.4  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); nI4oQE  
    %       figure :L6%57  
    %       pcolor(x,x,z), shading interp qfdL *D  
    %       axis square, colorbar GPizR|}h  
    %       title('Zernike function Z_5^1(r,\theta)') L8f_^ *,  
    % } @ [!%hE  
    %   Example 2: NiEz3ODSi  
    % y<*\D_J  
    %       % Display the first 10 Zernike functions n^rbc ;}  
    %       x = -1:0.01:1; ~c5 5LlO>  
    %       [X,Y] = meshgrid(x,x); #S] O|$&*  
    %       [theta,r] = cart2pol(X,Y); nVrV6w  
    %       idx = r<=1; 0$NzRPbH  
    %       z = nan(size(X)); Y O|hwhe_  
    %       n = [0  1  1  2  2  2  3  3  3  3]; ,gW$m~\  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; me F.  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; -tx%#(?wH  
    %       y = zernfun(n,m,r(idx),theta(idx)); 'SXLnoeTa  
    %       figure('Units','normalized') ^$mCF%e8H  
    %       for k = 1:10 q,_E HPc  
    %           z(idx) = y(:,k); tKeozV[V  
    %           subplot(4,7,Nplot(k)) lfG',hlI;  
    %           pcolor(x,x,z), shading interp z8r?C  
    %           set(gca,'XTick',[],'YTick',[]) xXnSo0`L F  
    %           axis square {MN6JGb|'  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) V)4?y9xZv  
    %       end Bio QV47B  
    % ~}/_QlX` K  
    %   See also ZERNPOL, ZERNFUN2. Hq~SRc~  
    J7`;l6+Gb  
    NG RXNh+  
    %   Paul Fricker 11/13/2006 8Ht=B,7T  
    1FG"Ak}D  
    APJFy@l}  
    z =\ENG|x#  
    tR 4+]K  
    % Check and prepare the inputs: xIV#}z0  
    % ----------------------------- |MN2v[y  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) [S-#}C?~  
        error('zernfun:NMvectors','N and M must be vectors.') + rM]RFi  
    end 3g56[;Up?  
    WRRR"Q$  
    RQu[FZT,  
    if length(n)~=length(m) N/b$S@  
        error('zernfun:NMlength','N and M must be the same length.') 6-\' *5r  
    end hD7vjg& Z  
    &h.?~Ri  
    /!.]Y8yEH  
    n = n(:);  ;5  
    m = m(:); 1bDAi2 H  
    if any(mod(n-m,2)) EMxMJ=  
        error('zernfun:NMmultiplesof2', ... I.>8p]X  
              'All N and M must differ by multiples of 2 (including 0).') 3[?;s}61  
    end YG5mzP<T  
    ooCfr?E  
    ~Y;Z5e=  
    if any(m>n) fN21[Jv3  
        error('zernfun:MlessthanN', ... Y4lNxvY  
              'Each M must be less than or equal to its corresponding N.') eht>4)  
    end 90-s@a3B-j  
    ]3 Ibl^J  
    jK%Lewq  
    if any( r>1 | r<0 ) meXwmO  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') sPl3JP&s  
    end >5TXLOYZ  
    YN7O Qqa  
    " YOl6n  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) U7e2NES  
        error('zernfun:RTHvector','R and THETA must be vectors.') 3qDbfO[  
    end )c 79&S  
    m( %PZ*s  
    V&/Cb&~Uw  
    r = r(:); b.8T<@a  
    theta = theta(:); (^_I Ny*  
    length_r = length(r); |Ho} D~  
    if length_r~=length(theta) (yeWArQ  
        error('zernfun:RTHlength', ... L)S V?FBx  
              'The number of R- and THETA-values must be equal.') aWP9i &  
    end 7{k?" NF  
    OB^j b8  
    gNkBHwv  
    % Check normalization: K$s{e0 79  
    % -------------------- >svx 8CT  
    if nargin==5 && ischar(nflag) Z^%HDB9^  
        isnorm = strcmpi(nflag,'norm'); TN08 ,:k  
        if ~isnorm "5Z5x%3I  
            error('zernfun:normalization','Unrecognized normalization flag.') 4af^SZ )l  
        end v`Ja Bn  
    else _Kh8 <$h  
        isnorm = false; v-"nyy-&Z  
    end /YvwQ  
    -zzT:C  
    9%0^fhrJ  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% V^>< =DNE  
    % Compute the Zernike Polynomials Q )8I(*  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% G c ,  
    u?>8`]r  
    ?+%bEZ`  
    % Determine the required powers of r: 5Q8s{WQ  
    % ----------------------------------- n;:C{5  
    m_abs = abs(m); =+[` 9  
    rpowers = []; ~at:\h4:  
    for j = 1:length(n) 0bSnD|#I  
        rpowers = [rpowers m_abs(j):2:n(j)]; v_pFI8Cz)  
    end I= cayR  
    rpowers = unique(rpowers); t8.3  
    8.7lc2aX  
    r029E-  
    % Pre-compute the values of r raised to the required powers, ZqjLZ9?q  
    % and compile them in a matrix: &]A0=h2{P*  
    % ----------------------------- 'TA !JB+  
    if rpowers(1)==0 <7gv<N6BQf  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); b?, =|H  
        rpowern = cat(2,rpowern{:}); R+=wSG]  
        rpowern = [ones(length_r,1) rpowern]; 9ESV[  
    else 5v=e(Ph +  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); `joyHKZI.  
        rpowern = cat(2,rpowern{:}); kP^=  
    end g'2; ///  
    N&|,!Cu  
    {M\n  
    % Compute the values of the polynomials: 9oG)\M.6w  
    % -------------------------------------- VtGZB3  
    y = zeros(length_r,length(n)); IABF_GwF  
    for j = 1:length(n) R D?52\  
        s = 0:(n(j)-m_abs(j))/2; O]j<$GG!  
        pows = n(j):-2:m_abs(j); [h8macx  
        for k = length(s):-1:1 9kbczL^Y  
            p = (1-2*mod(s(k),2))* ... +c__U Qx  
                       prod(2:(n(j)-s(k)))/              ... hf7[<I,jov  
                       prod(2:s(k))/                     ... x,fL656t  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... b&AeIU}&  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 9w=[}<E  
            idx = (pows(k)==rpowers); GLMpWD`Wo  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 10bv%ZX7  
        end o,@ (]e~  
         )#`&[9d-  
        if isnorm j[dgY1yE:  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); n8`WU3&  
        end Ry?f; s  
    end J6<O|ng::  
    % END: Compute the Zernike Polynomials &)_ z!  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #]Jg>  
    1jaK N*  
    [X>f;;h  
    % Compute the Zernike functions: H?V b   
    % ------------------------------ o%0To{MAF-  
    idx_pos = m>0; $\M];S=CY  
    idx_neg = m<0; aP"!}*  
    Wv ~&Qh}  
    8NTE`l=>/  
    z = y; 8xkLfN|N=  
    if any(idx_pos) ,lFp4 C  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); s#(%u t  
    end T8yMaC  
    if any(idx_neg) !fjB oK+  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 4=N(@mS  
    end yM,Y8^  
    jdx T662q  
    Iyb_5 UmpF  
    % EOF zernfun rZE+B25T~  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  <aDZ{T%  
    75lh07  
    DDE还是手动输入的呢? WmN( (  
    %yu =,J j  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究