下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, PRf2@0ZV
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, ^8We}bs-c
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? ukhI'alS,
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? i\,#Z!
N !H iQ
T#h`BtET[
Tw|=;m
5w{_WR6,
function z = zernfun(n,m,r,theta,nflag) i)
:Q{[D
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 4xg%OH
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N j>P>MdZtk
% and angular frequency M, evaluated at positions (R,THETA) on the ~0ZP%1.B3
% unit circle. N is a vector of positive integers (including 0), and Vx?a&{3]-
% M is a vector with the same number of elements as N. Each element N<O^%!bu R
% k of M must be a positive integer, with possible values M(k) = -N(k) 7FfzMs[\e
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, Q- j+#NGc
% and THETA is a vector of angles. R and THETA must have the same lZE x0
% length. The output Z is a matrix with one column for every (N,M) Z\`uI+`
% pair, and one row for every (R,THETA) pair. YHg4WW$
% H?^Poe(=(
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike }0c'hWMZ}
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), :8\z 0
% with delta(m,0) the Kronecker delta, is chosen so that the integral )*$'e<?`
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 9?@M Zh
% and theta=0 to theta=2*pi) is unity. For the non-normalized |)yO]pB:
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ob-z-iDz
% #L[Atx
% The Zernike functions are an orthogonal basis on the unit circle. -=2tKH`Q
% They are used in disciplines such as astronomy, optics, and l}K{=%U>7
% optometry to describe functions on a circular domain. W
4~a`D7
% Ws.F=kS>h
% The following table lists the first 15 Zernike functions. 8^^Xr
% -=QA{n
% n m Zernike function Normalization c9r, <TR9
% -------------------------------------------------- op/|&H'
% 0 0 1 1 mGwBbY+5n
% 1 1 r * cos(theta) 2 0x[v)k9"0
% 1 -1 r * sin(theta) 2 4*G#fW-
% 2 -2 r^2 * cos(2*theta) sqrt(6) wHAoO#`wn5
% 2 0 (2*r^2 - 1) sqrt(3) .Hc]?R]
% 2 2 r^2 * sin(2*theta) sqrt(6) gb(a`
% 3 -3 r^3 * cos(3*theta) sqrt(8) +t,JCY6
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) S:+SZq
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) nV@k}IJg:?
% 3 3 r^3 * sin(3*theta) sqrt(8) Mx4
<F "9
% 4 -4 r^4 * cos(4*theta) sqrt(10) &r;-=ASYzV
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) :l'61$=
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) :Bz*vH
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) +pkX$yz
% 4 4 r^4 * sin(4*theta) sqrt(10) OB.TAoH:
% -------------------------------------------------- ~C\R!DN,
% q5p!Ty"
% Example 1: Mxc0=I'a
% -iLp3m<ai
% % Display the Zernike function Z(n=5,m=1) kn:X^mDXC/
% x = -1:0.01:1; :*4b,P
% [X,Y] = meshgrid(x,x); BGh1hyJ8d
% [theta,r] = cart2pol(X,Y); ABuK`(f.
% idx = r<=1; Bvk 8b
% z = nan(size(X)); airg[dK
% z(idx) = zernfun(5,1,r(idx),theta(idx)); omisfu_~E
% figure OuWG.Za
% pcolor(x,x,z), shading interp ixm-wZI
% axis square, colorbar Lq:
!?)I
% title('Zernike function Z_5^1(r,\theta)') D"UCe7
% + :4
F@R
% Example 2: '
5`w5swbc
% 4HG;v|Cp
% % Display the first 10 Zernike functions |h}/#qhR
% x = -1:0.01:1; fhp\of/@
R
% [X,Y] = meshgrid(x,x); xvn@zi
% [theta,r] = cart2pol(X,Y); 2%o@ ?Rp
% idx = r<=1; _-mSK/Z
% z = nan(size(X)); k;BXt:jDq
% n = [0 1 1 2 2 2 3 3 3 3]; r Z)?uqa
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; %+gK5aVab
% Nplot = [4 10 12 16 18 20 22 24 26 28]; Y]MB/\gj
% y = zernfun(n,m,r(idx),theta(idx)); ?D[9-K4Vn
% figure('Units','normalized') 5AFy6Ab
% for k = 1:10 fib#)KE
% z(idx) = y(:,k); <KB V
% subplot(4,7,Nplot(k)) E^'f'\m
% pcolor(x,x,z), shading interp 5 1&||.
% set(gca,'XTick',[],'YTick',[]) $>if@}u
% axis square =*2_B~`
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ~|CWy
% end ZRCm'p3
% cl,\N\
% See also ZERNPOL, ZERNFUN2. YL[n85l>1
k{Ad(S4J&
9Su4nt`i
% Paul Fricker 11/13/2006 $tm%=g^
YmwUl> @{
Q{K'#
Z.QgL=
uT :Yh6
% Check and prepare the inputs: (g HCu
% ----------------------------- [uLwr$N<%L
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) C
srxi'Pe
error('zernfun:NMvectors','N and M must be vectors.') iY[+BI:
end 'zo]
f
=Ts5\1sc>
Q# Yba
if length(n)~=length(m) tg~@(IT}j
error('zernfun:NMlength','N and M must be the same length.') 4AWL::FU5
end zhdS6Gk+
d!P3<:+R[
1fOH$33
n = n(:); 7{JIHY+
m = m(:); RW4,j&)
if any(mod(n-m,2)) UURYK~$K:
error('zernfun:NMmultiplesof2', ... qG)M8xk
'All N and M must differ by multiples of 2 (including 0).') ASU.VY
end '#eY4d<i]n
)W,.xP
7cQFH@SC
if any(m>n) ks|c'XQb
error('zernfun:MlessthanN', ... tv 7"4$T
'Each M must be less than or equal to its corresponding N.') U_KCN09
end GoUsB|-\
Z#NEa.]
mMOjV_
if any( r>1 | r<0 ) ]8+ D
error('zernfun:Rlessthan1','All R must be between 0 and 1.') =kP|TR!o-
end vrq5 +K&||
$n=w
e.VQ!)>
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) S&J>15oWM`
error('zernfun:RTHvector','R and THETA must be vectors.') s1>d)2lX
end wTe 9OFv
1smKU9B2)
SVn $!t
r = r(:); &dky_H
theta = theta(:); 7h#*djef
length_r = length(r); qYP;`L}o#
if length_r~=length(theta) {\vcwMUzZ
error('zernfun:RTHlength', ... q:MSV{k
'The number of R- and THETA-values must be equal.') \C<'2KZR,
end +z|@K=d#|
(Xl+Zi>\{
-&E