下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, x/4lD}Pw]
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, a.Mp1W
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? iYnw?4Y
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? I{RktO;1
2'x_zMV
yk#:.5H
.<j8>1
TIvLY5 HG
function z = zernfun(n,m,r,theta,nflag) ZU:gNO0
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. $OUa3!U_!
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N +0=RC^
% and angular frequency M, evaluated at positions (R,THETA) on the >"Hj=?
% unit circle. N is a vector of positive integers (including 0), and HSUr
% M is a vector with the same number of elements as N. Each element r1=Zoxc=w
% k of M must be a positive integer, with possible values M(k) = -N(k) Vl'=92t
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, HML6<U-eS
% and THETA is a vector of angles. R and THETA must have the same Tok"-$`N
% length. The output Z is a matrix with one column for every (N,M) a;h:o>Do5
% pair, and one row for every (R,THETA) pair. ) Z^(+
% /g8yc'{p
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike k(7!W
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ^L'K?o
% with delta(m,0) the Kronecker delta, is chosen so that the integral ioviJ7N%
O
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, $GPA6
% and theta=0 to theta=2*pi) is unity. For the non-normalized IBuuZ.=j2h
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. T2Vj&EA@
% %r>vZ/>a
% The Zernike functions are an orthogonal basis on the unit circle. p,4z;.s$
% They are used in disciplines such as astronomy, optics, and D~%cf
% optometry to describe functions on a circular domain. W5x]bl#
% (Q'XjN\#
% The following table lists the first 15 Zernike functions. aI\VqOt]
% zO+nEsf^O
% n m Zernike function Normalization YJ"gm]Pm
% -------------------------------------------------- JZ c5U}i
% 0 0 1 1 V3m!dp]
% 1 1 r * cos(theta) 2 ]ny(l#Hu:
% 1 -1 r * sin(theta) 2 d3![b 1
% 2 -2 r^2 * cos(2*theta) sqrt(6) $]T7Iwk
% 2 0 (2*r^2 - 1) sqrt(3) ?Rwn1.Z
% 2 2 r^2 * sin(2*theta) sqrt(6) Tru`1/ 7I
% 3 -3 r^3 * cos(3*theta) sqrt(8) m.$Oo
Mu'
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) [lnN~#(Y
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) $:xUXEi{
% 3 3 r^3 * sin(3*theta) sqrt(8) 6iTDk
% 4 -4 r^4 * cos(4*theta) sqrt(10) %
,X(GwX
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) L3W
^ip4
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) Ft|a/e
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) dB/Epc&
% 4 4 r^4 * sin(4*theta) sqrt(10) ~bwFQYY=
% -------------------------------------------------- e)iVX<qb
% >a0;|;hp
% Example 1: Cr[#D$::`
% gr7W&2x7\
% % Display the Zernike function Z(n=5,m=1) I#mT#xs6
% x = -1:0.01:1; /!E /9[V
% [X,Y] = meshgrid(x,x); Z2`e*c-[E
% [theta,r] = cart2pol(X,Y); :._O.O
% idx = r<=1; -kJF@w6u
% z = nan(size(X)); <iMkHch
% z(idx) = zernfun(5,1,r(idx),theta(idx)); `"bm Hs7
% figure |[: `izW
% pcolor(x,x,z), shading interp "2;UXX-H
% axis square, colorbar J:Qp(s-N^:
% title('Zernike function Z_5^1(r,\theta)') :wF(([&4p!
% ' 1mygplW
% Example 2: i|=XW6J%
% ZWr\v!4
% % Display the first 10 Zernike functions sn*s7v:
% x = -1:0.01:1; %TR->F
% [X,Y] = meshgrid(x,x); 7.=u:PK7kM
% [theta,r] = cart2pol(X,Y); g\^(>Ouc
% idx = r<=1; C
:e 'wmA
% z = nan(size(X)); 9~4Kbmr>q
% n = [0 1 1 2 2 2 3 3 3 3]; z1L.
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; &,#VhT![
% Nplot = [4 10 12 16 18 20 22 24 26 28]; `P GWu1/
% y = zernfun(n,m,r(idx),theta(idx)); \/,SH?>4x
% figure('Units','normalized') P EbB0GL
% for k = 1:10 'LX=yL]I
% z(idx) = y(:,k); <n#JOjHV
% subplot(4,7,Nplot(k)) |M0TG
% pcolor(x,x,z), shading interp SGbo|Xe7:
% set(gca,'XTick',[],'YTick',[]) 7N""w5
% axis square [Y:HVr,
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 4RzG3CJdS
% end foN;Q1?lS
% K@d`jb4T
% See also ZERNPOL, ZERNFUN2. )pzXC
3NJ-.c@(p
(_W[~df4
% Paul Fricker 11/13/2006 HPgMVp'
i? a]v 5
p@^2.O+
u!X2ju<
(*2"dd
% Check and prepare the inputs: P]y5E9 k
% ----------------------------- ,= PDL
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 'fgDe
error('zernfun:NMvectors','N and M must be vectors.') QKF2_Acc
end N*z<VZ
-Pvt+I>
Q647a}
if length(n)~=length(m) F4PD3E_#
error('zernfun:NMlength','N and M must be the same length.') %tu{`PN<
end nU`;MW/^w
vi=yR
1k hwwoo
n = n(:); tC&y3!k2jR
m = m(:); X `vDhfh>N
if any(mod(n-m,2)) {UhZ\qe
error('zernfun:NMmultiplesof2', ... ?/u&U\P
'All N and M must differ by multiples of 2 (including 0).') gF:wdcO
end pu^1s#g8w
$)uQ%/DH>
x~mXtqg
if any(m>n) [F>zM
error('zernfun:MlessthanN', ... im?nR+t+X
'Each M must be less than or equal to its corresponding N.') )-sEm`(`I9
end qaQ
-~xd-9v?
.)o5o7H
if any( r>1 | r<0 ) SnXLjJe
error('zernfun:Rlessthan1','All R must be between 0 and 1.') !K@yB)9
end G(4k#jB
x0#+yP
LD5'4,%-
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 7X.1QSuE
error('zernfun:RTHvector','R and THETA must be vectors.') LQS*/s0
end Ylf 6-FbF
i<T`]g
Oe=,-\&_
r = r(:); &fTCY-W[
theta = theta(:); zZy>XHR
H
length_r = length(r); FX'W%_f,
if length_r~=length(theta) Ky=&C8b<
error('zernfun:RTHlength', ... $X{& KLM[
'The number of R- and THETA-values must be equal.') ;J_d%
end (Hsfrc
EuAa
7Jqp2\
% Check normalization: NT nn!k
% -------------------- gf!j|O ;
if nargin==5 && ischar(nflag) !F%dE!
isnorm = strcmpi(nflag,'norm'); G%P]qi
if ~isnorm CUtk4;^y#
error('zernfun:normalization','Unrecognized normalization flag.') HgMDw/D(
end d,>l;l
else \GkcK$Y
isnorm = false; U9If%0P
end dzcPSbbpt
$@<