切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8966阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, i;l0)q  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, xoe/I[P]U  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? r]3v.GZy  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? { POfT m}  
    FlyRcj  
    M&SY2\\TB  
    <^n@q f}  
    rnSrkn"j{  
    function z = zernfun(n,m,r,theta,nflag) ZCAg)/  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. GeFu_7u!|  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N w+][L||4c  
    %   and angular frequency M, evaluated at positions (R,THETA) on the "2_nN]%u-  
    %   unit circle.  N is a vector of positive integers (including 0), and P0c6?K6 j  
    %   M is a vector with the same number of elements as N.  Each element  ?QRoSQ6  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) a/Ik^:>m  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, bbG!Fg=qQ?  
    %   and THETA is a vector of angles.  R and THETA must have the same pY$DOr- r`  
    %   length.  The output Z is a matrix with one column for every (N,M) &=[N{N?(  
    %   pair, and one row for every (R,THETA) pair. |Duf 3u  
    % fn3DoD+I  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike gR 76g4|=;  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 3kW%,d*_  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral BJP^?FUd=,  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, undH{w=  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized R<Uu(-O-  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. CyKupJ.Fq  
    % =<.h.n  
    %   The Zernike functions are an orthogonal basis on the unit circle. SU7 erCHX  
    %   They are used in disciplines such as astronomy, optics, and g0M/Sv  
    %   optometry to describe functions on a circular domain. _edT+r>+  
    % Ih_=yk  
    %   The following table lists the first 15 Zernike functions. \= G8  
    % 7J|e L yj  
    %       n    m    Zernike function           Normalization 7e/K YS+!s  
    %       -------------------------------------------------- f^[u70c82  
    %       0    0    1                                 1 a=r^?q'/  
    %       1    1    r * cos(theta)                    2 |>dqZ_)v  
    %       1   -1    r * sin(theta)                    2 *?R<gWCF  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) Clmz}F  
    %       2    0    (2*r^2 - 1)                    sqrt(3) h,x'-]q  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) umI6# Vd`=  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) "vF7b|I  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) A)HV#T`N  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) bnxR)b~  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) IJ2>\bW_p  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) #vPf$y6jCI  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) u;/<uV3  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 4>Y\Y$3  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ^~DClZ  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) *3h!&.zm  
    %       -------------------------------------------------- wh#x`Nc  
    % Uq=!>C8  
    %   Example 1: a+e8<fM yT  
    % BE,H`G #h  
    %       % Display the Zernike function Z(n=5,m=1) K&;;{~md.  
    %       x = -1:0.01:1; 3.V-r59  
    %       [X,Y] = meshgrid(x,x); L=)Arj@q  
    %       [theta,r] = cart2pol(X,Y); tS sDW!!M  
    %       idx = r<=1; b\^9::oY  
    %       z = nan(size(X)); x`Ik747^v  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); lk%W2N5  
    %       figure :M\3.7q  
    %       pcolor(x,x,z), shading interp VN >X/  
    %       axis square, colorbar ]oE:p  
    %       title('Zernike function Z_5^1(r,\theta)') A>Xt 5vk+  
    % |YK4V(5x  
    %   Example 2: r1AG1Y  
    % (a@}J.lL  
    %       % Display the first 10 Zernike functions _-nIy*',=  
    %       x = -1:0.01:1; &BkdC,o  
    %       [X,Y] = meshgrid(x,x); `dm}|$X|  
    %       [theta,r] = cart2pol(X,Y); ky{-NrK  
    %       idx = r<=1; #RVN 7-x  
    %       z = nan(size(X)); DS>qth  
    %       n = [0  1  1  2  2  2  3  3  3  3]; Qh!h "]  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; "Rq)%o$Z  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; _?~)B\@~0  
    %       y = zernfun(n,m,r(idx),theta(idx)); rEY5,'?YHv  
    %       figure('Units','normalized') z|WDqB%/I  
    %       for k = 1:10 N-<m/RS  
    %           z(idx) = y(:,k); Z >F5rkJ  
    %           subplot(4,7,Nplot(k)) {aYCrk1  
    %           pcolor(x,x,z), shading interp &J}w_BFww  
    %           set(gca,'XTick',[],'YTick',[]) 50Y^##]&  
    %           axis square > @n?W"  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) )+v' @]r  
    %       end TptXH?  
    % FX:'38-fk  
    %   See also ZERNPOL, ZERNFUN2. WoX,F1o  
    (g#,AX  
    P'p5-l UK  
    %   Paul Fricker 11/13/2006 bT#re  
    RMO6kbfP  
    }q<%![%  
    k5TPzm=y{  
    M,/{53  
    % Check and prepare the inputs: 7) e#b  
    % ----------------------------- AZ& ]@Ao  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ?R\:6x<  
        error('zernfun:NMvectors','N and M must be vectors.') ey! {  
    end ~@N0$S  
    }5a$Ka-  
    Hsi<!g.  
    if length(n)~=length(m) # vBS7ba  
        error('zernfun:NMlength','N and M must be the same length.') KvfZj  
    end ,?ci+M)  
    7(1UXtT  
    " H; i Av  
    n = n(:); LSN%k5G7.  
    m = m(:); HE>sZ;  
    if any(mod(n-m,2)) !>gu#Q{\-  
        error('zernfun:NMmultiplesof2', ... _ ZC[h~9H  
              'All N and M must differ by multiples of 2 (including 0).') eE-c40Bae  
    end 4.}J'3 .  
    Lyj0$wbH`  
    &0QtHcXpR  
    if any(m>n) `1qM Sq  
        error('zernfun:MlessthanN', ... ~lB:xVzn  
              'Each M must be less than or equal to its corresponding N.') ( R0>0f@  
    end V=DT.u  
    K^fH:pV  
    k| Ye[GM*  
    if any( r>1 | r<0 )  t_Rpeav  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') a0=5G>G9c  
    end T{Rhn V1  
    2E d  
    2h^9lrQcQG  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) _aLml9f W  
        error('zernfun:RTHvector','R and THETA must be vectors.') v9 K{oB  
    end E ^<.;  
    FsyM{LT  
    'AjDB:Mt$  
    r = r(:); FZW:dsm  
    theta = theta(:); tW#=St0<.o  
    length_r = length(r); ?Pw(  
    if length_r~=length(theta) bcCCvV}6WZ  
        error('zernfun:RTHlength', ... Rr0@F`"R  
              'The number of R- and THETA-values must be equal.') =f*Wj\  
    end Z UCz-53  
    jQLiqi`  
    x&PVsXdt5m  
    % Check normalization: -F+dmI,1$  
    % -------------------- 39zwPoN>  
    if nargin==5 && ischar(nflag) :4, OA  
        isnorm = strcmpi(nflag,'norm'); /"*eMe!=  
        if ~isnorm [J71aH  
            error('zernfun:normalization','Unrecognized normalization flag.') @p}"B9h*^  
        end Z}*{4V`R  
    else %Yi^{ZrM  
        isnorm = false; }|Wn6X  
    end GDUOUl&  
    Z?}yPs Ob  
    6rD Oa~<B  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% nC> 'kgRt  
    % Compute the Zernike Polynomials O3>m,v  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -Bl !s^-'  
    @|c fFT W  
    39+6ZTqx  
    % Determine the required powers of r: _jr'A-M  
    % ----------------------------------- PF4"J^V  
    m_abs = abs(m); m2o)/:  
    rpowers = []; 2/]74d8  
    for j = 1:length(n) `43X? yQ  
        rpowers = [rpowers m_abs(j):2:n(j)]; #& 5}  
    end S`qa_yI)Ed  
    rpowers = unique(rpowers); jg7 WMH"`  
    NLLLt  
    E 3a^)S{  
    % Pre-compute the values of r raised to the required powers, X\a*q]"_  
    % and compile them in a matrix: 6HyndB^  
    % ----------------------------- N3`EJY_|V  
    if rpowers(1)==0 @Pt,N qj:  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); _poe{@h!  
        rpowern = cat(2,rpowern{:}); )GpH5N'EI  
        rpowern = [ones(length_r,1) rpowern]; h/t{= @ .5  
    else Zoi\r  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); j$z<wR7j0  
        rpowern = cat(2,rpowern{:}); X/D^?BKC  
    end .9Y,N&V<H  
    Y,%d_yR[  
    fZ*LxL  
    % Compute the values of the polynomials: [z^db0PU  
    % -------------------------------------- ;F;"Uw  
    y = zeros(length_r,length(n)); L =kc^dU  
    for j = 1:length(n) TL?(0]H fe  
        s = 0:(n(j)-m_abs(j))/2; GWU"zWli]z  
        pows = n(j):-2:m_abs(j); d,R  
        for k = length(s):-1:1 z+Cw*v\Y  
            p = (1-2*mod(s(k),2))* ... P})Iwk|Z  
                       prod(2:(n(j)-s(k)))/              ... V*bX>D/  
                       prod(2:s(k))/                     ... }95;qyQ$  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... {4@+ 2)l  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); keBf^NY  
            idx = (pows(k)==rpowers); H*Tc.Ie  
            y(:,j) = y(:,j) + p*rpowern(:,idx); p? dXs^ c  
        end YR{%p Zp  
         38[ko 3  
        if isnorm FccT@ ,.F  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); @vC7j>*4B  
        end Q^iE,_Zq  
    end p..O;_U  
    % END: Compute the Zernike Polynomials },d`<^~  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% l^@!,Z  
    )tRqt9Th*  
    c:R`]4o  
    % Compute the Zernike functions: pnvHh0ck_  
    % ------------------------------ 99\;jz7  
    idx_pos = m>0;  ;m;a"j5  
    idx_neg = m<0; BDeX5/`U#  
    } +@H&}u  
    mv,<#<-W  
    z = y; epWO}@ b a  
    if any(idx_pos) @-~ )M_  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); |7K[+aK  
    end D};zPf@!p  
    if any(idx_neg) <HLe,  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); #9{9T"ed  
    end vSt7&ec  
    lE8M.ho\  
    :`9hgd/9  
    % EOF zernfun fVU9?^0/)9  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  Zk#^H*jgx  
    / 38b:,  
    DDE还是手动输入的呢? Km~\^(a '  
    aR }|^ex  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究