下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, mm[SBiFO\
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, ^#e~g/
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? C3VLV&wF
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? Z$'IBv
z`$J_Cj Y
;(6P6@+o
|n6Eg9
/_\W+^fE
function z = zernfun(n,m,r,theta,nflag) N/~N7MwJj
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. ^Jx$t/t
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Ec]|p6a3
% and angular frequency M, evaluated at positions (R,THETA) on the onte&Ed\
% unit circle. N is a vector of positive integers (including 0), and D>sYPrf
% M is a vector with the same number of elements as N. Each element RuAlB*
% k of M must be a positive integer, with possible values M(k) = -N(k) ijUzC>O+q
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, RT*5d;l0
% and THETA is a vector of angles. R and THETA must have the same !.Zt[ g}
% length. The output Z is a matrix with one column for every (N,M) w'ybbv{c
% pair, and one row for every (R,THETA) pair. UUtbD&\
% ii4B?E
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike IA*KaX2S<
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ZR3nK0
% with delta(m,0) the Kronecker delta, is chosen so that the integral d^V$Z6*
]
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ?tYpc_p#
% and theta=0 to theta=2*pi) is unity. For the non-normalized gPEqjj
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ;-@=
% &35|16z%@
% The Zernike functions are an orthogonal basis on the unit circle. 8_we:
9A
% They are used in disciplines such as astronomy, optics, and {0yu
% optometry to describe functions on a circular domain. \4bWWy
% :tGYs8UK
% The following table lists the first 15 Zernike functions. g9mG`f
% ]tt} #
% n m Zernike function Normalization t})$lM
% -------------------------------------------------- 30F!kP*E
% 0 0 1 1 5EeDHsvV9
% 1 1 r * cos(theta) 2 +=3CL2{An
% 1 -1 r * sin(theta) 2 n:#TOU1ix<
% 2 -2 r^2 * cos(2*theta) sqrt(6) jqcz\n d
% 2 0 (2*r^2 - 1) sqrt(3) cFZCf8:zB
% 2 2 r^2 * sin(2*theta) sqrt(6) E{Vo'!LY
% 3 -3 r^3 * cos(3*theta) sqrt(8) SUdm 0y
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) J|QiH<
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) faJM^ u
% 3 3 r^3 * sin(3*theta) sqrt(8) {aj/HFLNY
% 4 -4 r^4 * cos(4*theta) sqrt(10) z&+
zl6
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) =@r--E
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) s#-eN)1R
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) TI9X.E?
% 4 4 r^4 * sin(4*theta) sqrt(10) S GcBmjP
% -------------------------------------------------- Rp.W,)i
% }ot"Sx\.
% Example 1: y?z\L
% _p}xZD\?,
% % Display the Zernike function Z(n=5,m=1) hR)2xz
% x = -1:0.01:1;
6rDfQ`f\p
% [X,Y] = meshgrid(x,x); 2WCLS{@'
% [theta,r] = cart2pol(X,Y); e<=;i" |
% idx = r<=1; cCdX0@hY
% z = nan(size(X)); 4zc<GL3[
% z(idx) = zernfun(5,1,r(idx),theta(idx)); a/:XXy |
% figure ~1(j&&kXet
% pcolor(x,x,z), shading interp OkH\^
% axis square, colorbar <Gb
%uny
% title('Zernike function Z_5^1(r,\theta)') Omyt2`q
% r|R7-HI
% Example 2: |:q/Dt@
% !,&yyx.
% % Display the first 10 Zernike functions y!Cc?$]_Y
% x = -1:0.01:1; ~!:0iFE&H
% [X,Y] = meshgrid(x,x); `rFAZcEj%
% [theta,r] = cart2pol(X,Y); hU {-a`
% idx = r<=1; 8 %Sb+w07
% z = nan(size(X)); xAdq+$><
% n = [0 1 1 2 2 2 3 3 3 3]; mN}7H:,
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; B@K[3
% Nplot = [4 10 12 16 18 20 22 24 26 28]; k3hkk:W
% y = zernfun(n,m,r(idx),theta(idx)); SS3-+<z
% figure('Units','normalized') jPJAWXB4a
% for k = 1:10 .b>TK
% z(idx) = y(:,k); "^rNr_
% subplot(4,7,Nplot(k)) H5xzD9K;/C
% pcolor(x,x,z), shading interp b-<HXn_Fd
% set(gca,'XTick',[],'YTick',[]) isK;mU?<
% axis square P%>?[9!Nt
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ]H[8Z|i""
% end *Xr$/N
% rY}B-6qJn
% See also ZERNPOL, ZERNFUN2. P:!)9/.2
oyeG$mpg
W|UtY`1
% Paul Fricker 11/13/2006 0D[@u3W
AXW!]=?X
Q:o7G|C
t1i(;|8|
o$J6 ~dn
% Check and prepare the inputs: GESXc$E8
% ----------------------------- f(Hu {c5yV
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Fb_S&!
error('zernfun:NMvectors','N and M must be vectors.') PZOKrW
end v 81rfB5
WH$HI/%*m
^Kq|ID
AP
if length(n)~=length(m) ;e{5)@h$
error('zernfun:NMlength','N and M must be the same length.') ef]B9J~h
end fE25(wCz7
K0fv( !r{
;u!?QSvb
n = n(:); ])T/sO#'
m = m(:); |4>:M\h
if any(mod(n-m,2)) 8T5k-HwE
error('zernfun:NMmultiplesof2', ... e!0OW7kV
'All N and M must differ by multiples of 2 (including 0).') z+VV}:Q
end n["
9|
_l&ucA
/1.rz{wpb
if any(m>n) OyVm(%Z
error('zernfun:MlessthanN', ... ZKdh%8C
'Each M must be less than or equal to its corresponding N.') ; B$*)X9
end &3DK^|Lq
2C/%gcN >
>BoSw&T$Q
if any( r>1 | r<0 ) .Q\\dESn"
error('zernfun:Rlessthan1','All R must be between 0 and 1.') '2v f|CX
end 3H8Al
e}"wL g]
!nw[
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) <GZhH:
error('zernfun:RTHvector','R and THETA must be vectors.') (F&YdWe:
end m|4LbWz
A3yi?y{[*
|uUuFm
r = r(:); {LB`)Kuu
theta = theta(:); Zu#<
length_r = length(r); r+\/G{+=}
if length_r~=length(theta) a%J/0'(d
error('zernfun:RTHlength', ... nCaLdj?
'The number of R- and THETA-values must be equal.') }$aNOf%:
end 7),*3c ')
c@OP5L>{
pxplWP,
% Check normalization: -!R
l(if
% -------------------- r8v:|Q1"
if nargin==5 && ischar(nflag) e,Zv]Cym
isnorm = strcmpi(nflag,'norm'); MSY N1
if ~isnorm S0xIvzS
error('zernfun:normalization','Unrecognized normalization flag.') 0yQe5i}
end !5.v'K'
else - L`7+
isnorm = false; ^5x4 q
end JQT4N[rEE
>hb-5xC
@ ;J|xkJ
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% wE2x:Ge:
% Compute the Zernike Polynomials -$R5
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% o*_g$
+]L) >$6
(xUFl@I!
% Determine the required powers of r: 0O;
Z
% ----------------------------------- hht+bpHl
m_abs = abs(m); (`mOB6j
rpowers = []; Sf/W9Jw
for j = 1:length(n) c Vg$dt
rpowers = [rpowers m_abs(j):2:n(j)]; W-XN4:,qI
end *1v_6<;2i<
rpowers = unique(rpowers); 8Mb$+^zU
R `Q?J[e
yu_gNro L
% Pre-compute the values of r raised to the required powers, Eq7gcDQ
% and compile them in a matrix: h@Dw'w
% ----------------------------- 1gAc,s2
if rpowers(1)==0 ._(z~3s
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); YiNo#M91
rpowern = cat(2,rpowern{:}); vGyppm[0
rpowern = [ones(length_r,1) rpowern]; Tvrc%L(]
else c}\
d5R_L
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); %w@ig~vD'
rpowern = cat(2,rpowern{:}); 2dyxKK!\a
end %Fm`Y.l
hhj
,rcsi
)SD_}BY%k
% Compute the values of the polynomials: 8fEAYRGd
% -------------------------------------- W7]mfy^
y = zeros(length_r,length(n)); qIk
)'!Vk
for j = 1:length(n) GiFf0c
9
s = 0:(n(j)-m_abs(j))/2; h%|9]5(=
pows = n(j):-2:m_abs(j); (ai72#nFtb
for k = length(s):-1:1 cnYYs d{
p = (1-2*mod(s(k),2))* ... K1
6s)S'
prod(2:(n(j)-s(k)))/ ... rl41#6
prod(2:s(k))/ ... ls]Elo8h1f
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ;pCG9
prod(2:((n(j)+m_abs(j))/2-s(k))); 9XY|V<}
idx = (pows(k)==rpowers); [L)V(o)v
y(:,j) = y(:,j) + p*rpowern(:,idx); GZ.?MnG
end U(8I+xZ
"SDsISWd
if isnorm @]<DR*<
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 1=- X<M75
end LsUFz_
end 2/UI>@By
% END: Compute the Zernike Polynomials vLD:(qTi
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Hv+:fr"
!zF4 G,W
r)(i{:@r`
% Compute the Zernike functions: B0NN>)h
% ------------------------------ fCs\Q
idx_pos = m>0; [v~Uy$d\
idx_neg = m<0; ^JiaR)#r
EgCp:L{
mp muziH
z = y; +}`p"<'u
if any(idx_pos) ~rQ4n9G
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); i:AjWC@]
end nqUH6(
if any(idx_neg) 'aLPTVM^
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); k-;.0!D^
end AW]("pt
0<6rU
t=A E7
% EOF zernfun k?z
[hZg0