切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9441阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, ]IoS-)$Z/  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, ciXAyT cG  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? JY_' d,O  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? lc'Jn$O@  
    )@sz\yI%U  
    eH6#'M4+\  
    \@80Z5?n  
    WM"I r1  
    function z = zernfun(n,m,r,theta,nflag) !X,=RR `zT  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. ME7JU|@Z  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N =6%0pu]0  
    %   and angular frequency M, evaluated at positions (R,THETA) on the v8WoV*  
    %   unit circle.  N is a vector of positive integers (including 0), and TQ>1u  
    %   M is a vector with the same number of elements as N.  Each element @ 8SYV}0H  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) , R]7{7$  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, Karyipn}  
    %   and THETA is a vector of angles.  R and THETA must have the same IYrO;GQ  
    %   length.  The output Z is a matrix with one column for every (N,M) i .'f<z$<  
    %   pair, and one row for every (R,THETA) pair. {j(,Q qB;f  
    % "%sW/ph  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike $w65/  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), x JepDCUJ>  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 3L;)asF  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, rA_e3L@v#[  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ;,F}!R  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 7.]xcJmt>'  
    % !e%#Zb MIo  
    %   The Zernike functions are an orthogonal basis on the unit circle. \K>6-0r|  
    %   They are used in disciplines such as astronomy, optics, and /njN*rhx&Z  
    %   optometry to describe functions on a circular domain. vk$]$6l2  
    % W;o\}irep  
    %   The following table lists the first 15 Zernike functions. :,cSEST  
    % )! OEa]  
    %       n    m    Zernike function           Normalization ty "k  
    %       -------------------------------------------------- J \G8 g,@  
    %       0    0    1                                 1 z43H]  
    %       1    1    r * cos(theta)                    2 x2 tx{Z  
    %       1   -1    r * sin(theta)                    2 WJhI6lu  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 4sG^ bZ,  
    %       2    0    (2*r^2 - 1)                    sqrt(3) qf'uXH  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) O!;!amvz  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) +nZx{d,wt  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 2"2b\b}my  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 5Rc 5/m  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 9GCxF`OB  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) UW40Y3W0  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) /#.6IV(  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) j'v2m6/  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) E5Z,4B  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) eH75: `  
    %       -------------------------------------------------- Xd{"+'29  
    % r`mfLA]d  
    %   Example 1: k(V#{ YP  
    % yht_*7.lM  
    %       % Display the Zernike function Z(n=5,m=1) MQLa+I,S4  
    %       x = -1:0.01:1; w+[r$+z!k  
    %       [X,Y] = meshgrid(x,x); )x8Izn  
    %       [theta,r] = cart2pol(X,Y); nI dvff  
    %       idx = r<=1; o-49o5:1  
    %       z = nan(size(X)); 5a_1x|Fhi  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); <r_ldkZ  
    %       figure J6=*F;x6E  
    %       pcolor(x,x,z), shading interp E{1O<qO<  
    %       axis square, colorbar BQ &|=a6  
    %       title('Zernike function Z_5^1(r,\theta)') !,|yrB&`S  
    % 3~"G27,  
    %   Example 2: ;CFI*Wfp  
    % td%EbxJK]`  
    %       % Display the first 10 Zernike functions  #6@7XC  
    %       x = -1:0.01:1; s [@II]  
    %       [X,Y] = meshgrid(x,x); z[[|'02{  
    %       [theta,r] = cart2pol(X,Y); w {6kU   
    %       idx = r<=1; S9U`-\L0  
    %       z = nan(size(X)); j<e`8ex?  
    %       n = [0  1  1  2  2  2  3  3  3  3]; v2/@Pu!kg  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; qfx=   
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; l3rr2t  
    %       y = zernfun(n,m,r(idx),theta(idx)); a%V6RyT4qW  
    %       figure('Units','normalized') vm 1vX;  
    %       for k = 1:10 6f{Kj)  
    %           z(idx) = y(:,k); eG=Hyc  
    %           subplot(4,7,Nplot(k)) w%KU@$  
    %           pcolor(x,x,z), shading interp 4ZSc'9e9  
    %           set(gca,'XTick',[],'YTick',[]) k0Rd:DxO  
    %           axis square 5Ta<$t  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) (TgLCT[@T  
    %       end QS\H[?M$  
    % {f<2VeJ  
    %   See also ZERNPOL, ZERNFUN2. MZl6 J  
    ,_F@9Up  
    Hj2E-RwG  
    %   Paul Fricker 11/13/2006 |W:xbtPNy  
    ]>B>.s  
    :bNqK0[rS  
    ..)O/g.  
    !EB<e5}8wK  
    % Check and prepare the inputs: ViKN|W >T  
    % ----------------------------- 6Q"fRXM   
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ?:H4Xd7  
        error('zernfun:NMvectors','N and M must be vectors.') O3 x9S,1i  
    end 4"at~K` Q  
    j0_)DG  
    bwG$\Oe6  
    if length(n)~=length(m) w&8N6gA14  
        error('zernfun:NMlength','N and M must be the same length.') IT!u4iH[  
    end 1P;J%.{  
    ] -iMo4H  
    !Z]#1"A8  
    n = n(:); bvzNur_  
    m = m(:); Kg4\:A7Sa.  
    if any(mod(n-m,2)) d< j+a1&  
        error('zernfun:NMmultiplesof2', ... "MM)AY*b  
              'All N and M must differ by multiples of 2 (including 0).') g3B%}!|  
    end Rr A9@95+  
    w#0/&\ b=  
    |Y"nZK,  
    if any(m>n) 5 6w6=Is  
        error('zernfun:MlessthanN', ... w=JO$7  
              'Each M must be less than or equal to its corresponding N.') x *:v]6y  
    end z{$2bV  
    W2yNwB+{  
    )d(F]uV:y  
    if any( r>1 | r<0 ) ?gYQE&M !  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') Z{XF!pS%H  
    end BRSI g]  
    \D6 7J239E  
    5y^I~"_ i  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Z#uxa  
        error('zernfun:RTHvector','R and THETA must be vectors.') e\)r"!?H`  
    end 9 696EQ,I  
    =2XAQiUR\  
    AdU0 sZ+&c  
    r = r(:); 'wyS9^F  
    theta = theta(:); }jdMo83  
    length_r = length(r); W?TvdeBx  
    if length_r~=length(theta) 1#tFO  
        error('zernfun:RTHlength', ... 88uoA6Y8h  
              'The number of R- and THETA-values must be equal.') fbg:rH\_  
    end = q \TWz  
    uE &/:+  
    pf% yEz  
    % Check normalization: S/,)X  
    % -------------------- -sqd?L.p  
    if nargin==5 && ischar(nflag) #M ;j*IBl*  
        isnorm = strcmpi(nflag,'norm'); >p*7)  
        if ~isnorm 0q6xXNAX  
            error('zernfun:normalization','Unrecognized normalization flag.') {q!GTO  
        end \JLea$TM:  
    else z&wJ"[nOC  
        isnorm = false; utzf7?nIS  
    end Yj"{aFK#u@  
    ^vw[z2"  
    dkWV/DAm  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% awB+B8^s  
    % Compute the Zernike Polynomials Se}&2 R  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %p;;aZG  
    MX 7 Y1  
    l6T^e@*  
    % Determine the required powers of r: J.(mg D  
    % ----------------------------------- LK|1[y^h  
    m_abs = abs(m); Xk] uXx:TN  
    rpowers = []; H-iCaXT  
    for j = 1:length(n) ()^tw5e'^  
        rpowers = [rpowers m_abs(j):2:n(j)]; )tm%0z7R  
    end )">uI\bi  
    rpowers = unique(rpowers); sa?s[  
    @rP#ktz]  
    ,K15KN.'  
    % Pre-compute the values of r raised to the required powers, @6kkt~>:  
    % and compile them in a matrix: mrQT:B\8  
    % ----------------------------- M{t/B-'4  
    if rpowers(1)==0 fl8eNi E|  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); %bp'`B=  
        rpowern = cat(2,rpowern{:}); zDf96eK  
        rpowern = [ones(length_r,1) rpowern]; C1==a FD  
    else MX"M2>"pT  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); m1D,#=C,_  
        rpowern = cat(2,rpowern{:}); ThY\K>@]  
    end )YVs=0j  
    Q k2*=BVh  
    d(YAH@  
    % Compute the values of the polynomials: *X!+wK-+  
    % -------------------------------------- 6!@p$ pm)a  
    y = zeros(length_r,length(n)); ]+5Y\~I  
    for j = 1:length(n) G0u H6x?  
        s = 0:(n(j)-m_abs(j))/2; [(; .D  
        pows = n(j):-2:m_abs(j); q*!Vyk  
        for k = length(s):-1:1 0.wNa~_G|  
            p = (1-2*mod(s(k),2))* ... CG ,H  
                       prod(2:(n(j)-s(k)))/              ... W 'PW;.,  
                       prod(2:s(k))/                     ... [:/mjO K  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... qN'%q+n  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); TB_OFbI2  
            idx = (pows(k)==rpowers); )TcD-Jr  
            y(:,j) = y(:,j) + p*rpowern(:,idx); [dy0aR$>d  
        end ~zoZ{YqP  
         &8dj*!4H  
        if isnorm qFp]jbU  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 734H{,~  
        end s( :N>K5*  
    end =)f.Yf|A*  
    % END: Compute the Zernike Polynomials nTE\EZ+=2  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% v2ab84 C*  
    je74As[  
    ^YB3$:@$U  
    % Compute the Zernike functions: yPf,GB"  
    % ------------------------------ m0*_  
    idx_pos = m>0; O{Z bpa^  
    idx_neg = m<0; _=K\E0I.m  
    bwK1XlfD.s  
    :n OCs  
    z = y; C_ W%]8u  
    if any(idx_pos) +FC+nE}O  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 7WHq'R{@  
    end h$d`Jmaq  
    if any(idx_neg) @`nU=kY/  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); +;a\ gF^  
    end 7Q|v5@;pU  
    'DUY f5nF  
    ;It1i`!R  
    % EOF zernfun gb26Y!7%  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  c`h/x>fa  
    x?MSHOia`P  
    DDE还是手动输入的呢? *,d>(\&[f  
    OA3* "d*  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究