切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9039阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, S/I/-Bp~  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, HX{`Vah E  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? ,i@:5X/t  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? C{XmVc.  
    -7(@1@1  
    EUgs6[w 4  
    6B ?twh)  
    9RI-Lq`  
    function z = zernfun(n,m,r,theta,nflag) o7LuKRl   
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. @jlw_ob2g  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N c\V7i#u[d;  
    %   and angular frequency M, evaluated at positions (R,THETA) on the gOOPe5+ J  
    %   unit circle.  N is a vector of positive integers (including 0), and 5lT*hF  
    %   M is a vector with the same number of elements as N.  Each element D{~fDRR  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 19KQlMO.G  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, AZ}Xj>=  
    %   and THETA is a vector of angles.  R and THETA must have the same %-e 82J1  
    %   length.  The output Z is a matrix with one column for every (N,M) ")HFYqP>9  
    %   pair, and one row for every (R,THETA) pair. E1U",CMU  
    % aCLqk'  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ;l-!)0 U  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), QZ%`/\(!8_  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral D+7Rz_=  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 'anG:=  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized Sa`Xf\  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ?#YE`]  
    % 5j-YM  
    %   The Zernike functions are an orthogonal basis on the unit circle. e,XYVWY%  
    %   They are used in disciplines such as astronomy, optics, and +V^;.P</  
    %   optometry to describe functions on a circular domain. M_w<m  
    % *%t^;&x?  
    %   The following table lists the first 15 Zernike functions. 3K/MvNI>  
    % B i<Q=x'Z;  
    %       n    m    Zernike function           Normalization B[?CbU  
    %       -------------------------------------------------- y[_Q-   
    %       0    0    1                                 1 '1)$'   
    %       1    1    r * cos(theta)                    2 Y0K[Sm>  
    %       1   -1    r * sin(theta)                    2 y e? 'Ze  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) )sp4Ie  
    %       2    0    (2*r^2 - 1)                    sqrt(3) fku<,SV$O4  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) X=8{$:  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) x6ARzH\  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) JNUt$h  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) xZF}D/S?Ov  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) =;&yd';k  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) M$8^91%4B  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 6,9>g0y'NG  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) ^7KH _t8  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) X~,aNRy  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) h"lv7;B$  
    %       -------------------------------------------------- y (pks$  
    % 58J}{Req  
    %   Example 1: #!KE\OI;@5  
    % Jh[UtYb5  
    %       % Display the Zernike function Z(n=5,m=1) t9:0TBt-[  
    %       x = -1:0.01:1; t#pS{.I  
    %       [X,Y] = meshgrid(x,x); f|lU6EkU  
    %       [theta,r] = cart2pol(X,Y); `eCo~(F y  
    %       idx = r<=1; j578)!aJ  
    %       z = nan(size(X)); >!1.  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); p\ZNy\N^  
    %       figure z(^]J`+\  
    %       pcolor(x,x,z), shading interp o,8TDg  
    %       axis square, colorbar ,lA  s  
    %       title('Zernike function Z_5^1(r,\theta)') w{@o^rs  
    % zZ323pq  
    %   Example 2: 6WJ)by  
    % Z>Wg*sZy)  
    %       % Display the first 10 Zernike functions #"\gLr_:m  
    %       x = -1:0.01:1; ~C`^6UQr/?  
    %       [X,Y] = meshgrid(x,x); $LFYoovX  
    %       [theta,r] = cart2pol(X,Y); DOJN2{IP  
    %       idx = r<=1; \(Y\|zC'0$  
    %       z = nan(size(X)); $!yW_HTx  
    %       n = [0  1  1  2  2  2  3  3  3  3]; jesGV<`?l  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; B1C-J/J  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; usCt#eZK  
    %       y = zernfun(n,m,r(idx),theta(idx)); <\ :Yk  
    %       figure('Units','normalized') [t@Mn  
    %       for k = 1:10 m(#LhlX  
    %           z(idx) = y(:,k); H'HA+q  
    %           subplot(4,7,Nplot(k)) F!Q@ u  
    %           pcolor(x,x,z), shading interp /}  WDU  
    %           set(gca,'XTick',[],'YTick',[]) kep/+J-u  
    %           axis square /qGf 1MHD  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) =mpV YA  
    %       end uIZ-#q  
    % 78# v  
    %   See also ZERNPOL, ZERNFUN2. $79=lEn,  
    z'\_jaj^  
    #32"=MfQn  
    %   Paul Fricker 11/13/2006 giIWGa.a+  
    7KL v6]b  
    kZZh"#W: L  
    _p&]|~a  
    2Yn <2U/^R  
    % Check and prepare the inputs: X4E%2-m@'  
    % ----------------------------- IS 2^g>T#1  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) -~30)J=e`  
        error('zernfun:NMvectors','N and M must be vectors.') `A^"% @j  
    end r )~ T@'y  
    )V6Hl@v  
    ;1.,Sn+zO  
    if length(n)~=length(m) }O^zl#  
        error('zernfun:NMlength','N and M must be the same length.') G) 7;;  
    end /ZPyN<@  
    3#&7-o  
    }\#Rot>Y  
    n = n(:); 4V COKx  
    m = m(:); (Cd\G=PK  
    if any(mod(n-m,2))  4/1d&Sg  
        error('zernfun:NMmultiplesof2', ... xScLVt<\e  
              'All N and M must differ by multiples of 2 (including 0).') a]/>ra5{  
    end ]<pjXVRt"  
    0F|AA"mMT  
    2.zsCu4lj.  
    if any(m>n) TXk?#G\o  
        error('zernfun:MlessthanN', ... 4 G-wd  
              'Each M must be less than or equal to its corresponding N.') d%,eZXg'  
    end ;\Y& ce  
    >wBJy4:  
    H_ox_ u}  
    if any( r>1 | r<0 ) "4H +!r}  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') j|%HIF25  
    end <$~mE9a6  
    5nO% Ke=  
    M:3h e  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) xJZ>uTN  
        error('zernfun:RTHvector','R and THETA must be vectors.') ;)e2 @'Agl  
    end .0rh y2  
    Upd3-2kr&J  
    h!ZV8yMc  
    r = r(:); d'$T4yA  
    theta = theta(:); xA$nsZ]  
    length_r = length(r); /)(#{i*  
    if length_r~=length(theta) Jesjtcy<*  
        error('zernfun:RTHlength', ... fCtPu08{Z  
              'The number of R- and THETA-values must be equal.') RYl>  
    end Qj6/[mUr~  
    $8[r9L!  
    <5jzl  
    % Check normalization: OYmR<x5y/  
    % -------------------- F>[,zN  
    if nargin==5 && ischar(nflag) ^?]%sdT q  
        isnorm = strcmpi(nflag,'norm'); .0O2Qqdg  
        if ~isnorm F[[TWf/  
            error('zernfun:normalization','Unrecognized normalization flag.') yz*6W zD  
        end Y=n4K<  
    else /&{$ pM|?  
        isnorm = false; aj,T)oDbt6  
    end k]HEhY  
    p4i]7o@  
    ez!C?  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Bw64  
    % Compute the Zernike Polynomials z0*_^MH  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% e=;AfK  
    ] Ww?QhJ  
    =xJKIu  
    % Determine the required powers of r: OP|8Sk6 r  
    % ----------------------------------- ~Oq +IA~9  
    m_abs = abs(m); pd8Nke  
    rpowers = []; 9*=W-v  
    for j = 1:length(n) -s$F&\5by  
        rpowers = [rpowers m_abs(j):2:n(j)]; /<8N\_wh  
    end z7Eg5rm|QZ  
    rpowers = unique(rpowers); Bv. `R0e&  
    pBP.x#|  
    D<X.\})Md  
    % Pre-compute the values of r raised to the required powers, Xy &uZ  
    % and compile them in a matrix: pzgSg[|  
    % ----------------------------- n` TSu$  
    if rpowers(1)==0 ] 0m&(9  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); "0k8IVwp  
        rpowern = cat(2,rpowern{:}); d)R352  
        rpowern = [ones(length_r,1) rpowern]; j>/ ,$H  
    else `TPOCxM Mo  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ;h" P{fF   
        rpowern = cat(2,rpowern{:}); ee#): -p  
    end JiU9CeD3  
    { F};n?'  
    ^~HQC*  
    % Compute the values of the polynomials: C 2w2252T  
    % -------------------------------------- &0BdUU+:<  
    y = zeros(length_r,length(n)); .eO?Z^  
    for j = 1:length(n) w L^%w9q-  
        s = 0:(n(j)-m_abs(j))/2; NwR}yb6  
        pows = n(j):-2:m_abs(j); $4T2z-  
        for k = length(s):-1:1 W|,V50K  
            p = (1-2*mod(s(k),2))* ... &"mzwQX  
                       prod(2:(n(j)-s(k)))/              ... JQ-gn^tsy  
                       prod(2:s(k))/                     ... TSsKfexQ  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... @b3#X@e}  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); U"4?9. k  
            idx = (pows(k)==rpowers); wgRs Z  
            y(:,j) = y(:,j) + p*rpowern(:,idx); @ (i!Y L  
        end FG!X"<he  
         \S)2  
        if isnorm I;?X f  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ) (Tom9 ^  
        end {gaai  
    end 3u\;j; Td!  
    % END: Compute the Zernike Polynomials k%op> &  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ;eZ#bjw-d  
    ZB[Qs   
    + EM_TTf4  
    % Compute the Zernike functions: nPgeLG"00  
    % ------------------------------ :g\rQazxO  
    idx_pos = m>0; ,xT?mt}P  
    idx_neg = m<0; |J~eLh[d  
    ^v@4|E$  
    T4;T6 9j;,  
    z = y; ez9k4IO  
    if any(idx_pos) a3 >zoN  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); >u(>aV|A  
    end eb8w~   
    if any(idx_neg) *+b6B_u]  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); M-uMZQ e  
    end ;!T{%-tP  
    [!VOw@uz  
    n!E2_  
    % EOF zernfun Fv)7c4  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  3B,QJ&  
    0MpS4tW0=  
    DDE还是手动输入的呢? w6EI{  
    X7e/:._SAH  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究