切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8809阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, u^&,~n@n7  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 7\JA8mm  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? R,[+9U|4V  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? e+P|PW  
    ({p @Ay  
    }J\KnaKo  
    C**kJ  
    8:4`q 9  
    function z = zernfun(n,m,r,theta,nflag) ^W<uc :L7  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. y{1|@?ii  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N K iG/XnS  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 1F }mlyS  
    %   unit circle.  N is a vector of positive integers (including 0), and  S]&7  
    %   M is a vector with the same number of elements as N.  Each element &|) (lX  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) `PvGfmYOl  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 7(bE;(4  
    %   and THETA is a vector of angles.  R and THETA must have the same sBD\;\I  
    %   length.  The output Z is a matrix with one column for every (N,M) K>fY9`Whm  
    %   pair, and one row for every (R,THETA) pair. OX/}j_8E^(  
    % D1<$]r,  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike [:\8Ug8  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ^)|1T#Tz  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral -YP>mwSN?  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, OQZ\/~o 5  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 5T;,wQ<  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. \m;"KyP+  
    % [!E~pW%|n  
    %   The Zernike functions are an orthogonal basis on the unit circle. wXxk+DV@  
    %   They are used in disciplines such as astronomy, optics, and 4>xv7  
    %   optometry to describe functions on a circular domain. [sH[bmLR  
    % Uw5`zl  
    %   The following table lists the first 15 Zernike functions. rnC u=n  
    % S vR? nN|  
    %       n    m    Zernike function           Normalization k,nRC~Irh  
    %       -------------------------------------------------- 5UHxB"`C  
    %       0    0    1                                 1 Nm]\0m0p-  
    %       1    1    r * cos(theta)                    2 _K"X  
    %       1   -1    r * sin(theta)                    2 jNA^ (|:  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) S\O6B1<:  
    %       2    0    (2*r^2 - 1)                    sqrt(3) ^04|tda  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) Skd,=r  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) mf)o1O&B  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) {|J'd+  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) L E>A|M$X  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) BnLWC  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) q^hL[:ms#  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) mME a*9P  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) K q0!.455  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) R83Me #&  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) D*R49hja{  
    %       -------------------------------------------------- X%._:st  
    % ^.9I[Umua  
    %   Example 1: Dj9).lgc  
    % vc_ 5!K%[  
    %       % Display the Zernike function Z(n=5,m=1) X4R+Frt8  
    %       x = -1:0.01:1; r%/*,lLO  
    %       [X,Y] = meshgrid(x,x); L4'FL?~I  
    %       [theta,r] = cart2pol(X,Y); IL]VY1'#  
    %       idx = r<=1; ^#4?v^QNh  
    %       z = nan(size(X)); -v(.]`Wo&;  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); B)M& FO  
    %       figure kt;| $  
    %       pcolor(x,x,z), shading interp 058+_xX  
    %       axis square, colorbar BEzF'<Z  
    %       title('Zernike function Z_5^1(r,\theta)') 6DG:imGl  
    % kG7q4jFwP  
    %   Example 2: !be6}  
    % hd2 X/"  
    %       % Display the first 10 Zernike functions ]' F{uDm[  
    %       x = -1:0.01:1; JL4\%  
    %       [X,Y] = meshgrid(x,x); +0Rr5^8u  
    %       [theta,r] = cart2pol(X,Y); L@|W&N;%a  
    %       idx = r<=1; ='0f#>0Q  
    %       z = nan(size(X)); < g<Lf[n$  
    %       n = [0  1  1  2  2  2  3  3  3  3]; siHS@S  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; t1)b26;  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; d4#Q<!r  
    %       y = zernfun(n,m,r(idx),theta(idx)); <z*SO a  
    %       figure('Units','normalized') MhNDf[W>  
    %       for k = 1:10 Uk02VuS  
    %           z(idx) = y(:,k); G w$sL&1m\  
    %           subplot(4,7,Nplot(k)) y4HOKJxI  
    %           pcolor(x,x,z), shading interp zOpl#%"  
    %           set(gca,'XTick',[],'YTick',[]) 2@ >04]  
    %           axis square *JX)q  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) {P_~_5o_  
    %       end nL+*-R!R  
    % y#AwuC K  
    %   See also ZERNPOL, ZERNFUN2. NW`.RGLI<  
    a<%WFix  
    U/2g N H  
    %   Paul Fricker 11/13/2006 }TZ5/zn.Dw  
    )K8k3]y&  
    4'W|'4'b  
    zv]-(<B  
    \*H/YByTb  
    % Check and prepare the inputs: %($qg-x  
    % ----------------------------- Y WSo:)LY  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) R$&|*0  
        error('zernfun:NMvectors','N and M must be vectors.') :>$)Snqo=n  
    end x-0IxWD%  
    /(w:XTO<  
    ^j?\_r'j  
    if length(n)~=length(m) #dDsI]E )  
        error('zernfun:NMlength','N and M must be the same length.') w0Fi~:b  
    end <R7* 00  
    :".:Wd  
    22\Buk}?  
    n = n(:); )EYsqj  
    m = m(:); J'4{+Q_pa  
    if any(mod(n-m,2)) ^lT$D8  
        error('zernfun:NMmultiplesof2', ... 2B_6un];W  
              'All N and M must differ by multiples of 2 (including 0).') x\XgQQ]-  
    end #D3e\(  
    ~ X8U@f  
    0\g;^Zpi  
    if any(m>n) "_ b Sy  
        error('zernfun:MlessthanN', ... p#O#M N*  
              'Each M must be less than or equal to its corresponding N.') hi>Ii2T  
    end /d5_-AB(v  
    ^>uzMR!q5  
    =YBwO. !%  
    if any( r>1 | r<0 ) $=$I^hV  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') * eL%[B  
    end bCk_ZA  
    g/so3F%v .  
    rd\mFz-SB  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) __c:$7B/4U  
        error('zernfun:RTHvector','R and THETA must be vectors.') mSAuS)YD  
    end a J[VX)"J  
    4x=rew>Ew  
    sMli!u  
    r = r(:); M|FwYF^  
    theta = theta(:); ]Ole#Lz}Q  
    length_r = length(r); :7IL|bA<  
    if length_r~=length(theta) C/e`O|G  
        error('zernfun:RTHlength', ... a=gTGG"9  
              'The number of R- and THETA-values must be equal.') ?]f+)tCMs  
    end -B$oq8)n*  
    'g#Ml`cm  
    TQ" [2cY  
    % Check normalization: + H_Jr'/  
    % -------------------- /^qCJp`  
    if nargin==5 && ischar(nflag) A$A7 F=x  
        isnorm = strcmpi(nflag,'norm'); @y->4`N  
        if ~isnorm BgD;"GD*W  
            error('zernfun:normalization','Unrecognized normalization flag.') TclZdk]%T  
        end <(?ahO5  
    else 5JDqSz{  
        isnorm = false; 2Y&z}4'j  
    end oScHmGFv  
    B+ GPTQSTb  
    sU4(ed\gI\  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% <!K2xb-d^  
    % Compute the Zernike Polynomials J @"wJEF  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% )rz4IfE  
    w@.E}%bwq  
    $2 Ox;+  
    % Determine the required powers of r: $WnK  
    % ----------------------------------- Tx0/3^\>8A  
    m_abs = abs(m); jN 5Hku[?  
    rpowers = []; q+dY&4&u  
    for j = 1:length(n) 6YrkS;_HS  
        rpowers = [rpowers m_abs(j):2:n(j)]; u7fae$:&  
    end I o7pp(  
    rpowers = unique(rpowers); [f.[C5f%"'  
    h(]O;a-  
    -a]oN:ERb  
    % Pre-compute the values of r raised to the required powers, "f~S3?^!2  
    % and compile them in a matrix: )#T(2A  
    % ----------------------------- h -+vM9j  
    if rpowers(1)==0 `BMg\2Ud*  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); C#p$YQf  
        rpowern = cat(2,rpowern{:}); HvK<>9  
        rpowern = [ones(length_r,1) rpowern]; c%Yvj  
    else mR[J Xh9s  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false);  o9#  
        rpowern = cat(2,rpowern{:}); 8~EDmg[  
    end odny{ePAf  
    G#)>D$Ck#  
    x<P$$G/  
    % Compute the values of the polynomials: J@H9nw+Q  
    % -------------------------------------- @;fdf3ian  
    y = zeros(length_r,length(n)); 9O?.0L  
    for j = 1:length(n) jbn{5af  
        s = 0:(n(j)-m_abs(j))/2; P00d#6hPJ  
        pows = n(j):-2:m_abs(j); pJVzT,poh  
        for k = length(s):-1:1 G#N h)ff  
            p = (1-2*mod(s(k),2))* ... p<`q^D  
                       prod(2:(n(j)-s(k)))/              ... ~ra2Xyl  
                       prod(2:s(k))/                     ... @&S4j]rq  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... T5-50nU,~  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); wP6~HiC  
            idx = (pows(k)==rpowers); [}9R9G>"  
            y(:,j) = y(:,j) + p*rpowern(:,idx); jWiB_8- 6  
        end J Q%e'  
         WA8Qt\Q  
        if isnorm 7cr+a4T33  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); "\vEi &C  
        end `{N0+n  
    end {LbcG^k  
    % END: Compute the Zernike Polynomials SBAq,F'  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% rV"<1y:g  
    `w@fxv   
    G! zV=p  
    % Compute the Zernike functions: "T<Q#^m  
    % ------------------------------ Dvo.yn|kB  
    idx_pos = m>0; bb$1RLyRL  
    idx_neg = m<0; 3 {\b/NL$  
    vE>J@g2#  
    8QE0J$d5  
    z = y; d\3L.5]X  
    if any(idx_pos) Aw;~b&.U{_  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); hc"+6xc  
    end x!{5.#  
    if any(idx_neg) -F/"W  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 6sRn_y  
    end z(:0@5  
    & *B@qQ  
    yj `b-^$?  
    % EOF zernfun DFwkd/3"  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    958
    光币
    1062
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  O68/Hf1W  
    /oKa?iT  
    DDE还是手动输入的呢? 8C7$8x] mM  
    {U?/u93~  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究