切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9381阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, PRf2@0ZV  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, ^8We}bs-c  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? ukhI'alS,  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? i\,#Z!  
    N!HiQ  
    T#h`BtET[  
    Tw|=;m  
    5w{_WR6,  
    function z = zernfun(n,m,r,theta,nflag) i) :Q{[D  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 4xg%OH  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N j >P>MdZtk  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ~0ZP%1.B3  
    %   unit circle.  N is a vector of positive integers (including 0), and Vx?a&{3]-  
    %   M is a vector with the same number of elements as N.  Each element N<O^%!buR  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 7FfzMs[ \e  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, Q- j+#NGc  
    %   and THETA is a vector of angles.  R and THETA must have the same lZ E x0  
    %   length.  The output Z is a matrix with one column for every (N,M) Z\`uI+`  
    %   pair, and one row for every (R,THETA) pair. YHg4WW$  
    % H?^Poe(=(  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike }0c'hWMZ}  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), :8\z 0  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral )*$'e<?`  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 9?@M Zh  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized |)yO] pB:  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ob-z-iDz  
    % #L[Atx  
    %   The Zernike functions are an orthogonal basis on the unit circle. -=2tKH`Q  
    %   They are used in disciplines such as astronomy, optics, and l}K {=%U>7  
    %   optometry to describe functions on a circular domain. W 4~a`D7  
    % Ws.F=kS>h  
    %   The following table lists the first 15 Zernike functions. 8^^Xr  
    % - =QA{n  
    %       n    m    Zernike function           Normalization c9r, <TR9  
    %       -------------------------------------------------- op/|&H'  
    %       0    0    1                                 1 mGwB bY+5n  
    %       1    1    r * cos(theta)                    2 0x[v)k9"0  
    %       1   -1    r * sin(theta)                    2 4*G#fW-  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) wHAoO#`wn5  
    %       2    0    (2*r^2 - 1)                    sqrt(3) .Hc]?R ]  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) gb( a`  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) +t,JCY6  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) S:+SZq  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) nV@k}IJg:?  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) Mx4 <F "9  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) &r;-=ASYzV  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) :l'61$=  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) :Bz*vH  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) +pkX$yz  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) OB.TAoH:  
    %       -------------------------------------------------- ~C\R!DN,  
    % q5p!Ty"  
    %   Example 1: Mxc0=I'a  
    % -iLp3m<ai  
    %       % Display the Zernike function Z(n=5,m=1) kn:X^mDXC/  
    %       x = -1:0.01:1; :* 4b,P  
    %       [X,Y] = meshgrid(x,x); BGh1hyJ8d  
    %       [theta,r] = cart2pol(X,Y); ABuK`(f.  
    %       idx = r<=1; Bvk 8b  
    %       z = nan(size(X)); airg[dK  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); omisfu_~E  
    %       figure OuWG.Za  
    %       pcolor(x,x,z), shading interp ixm-wZI  
    %       axis square, colorbar Lq : !?)I  
    %       title('Zernike function Z_5^1(r,\theta)') D"UCe7  
    % + :4 F@R  
    %   Example 2: ' 5`w5swbc  
    % 4HG;v|Cp  
    %       % Display the first 10 Zernike functions |h}/#qhR  
    %       x = -1:0.01:1; fhp\of/@ R  
    %       [X,Y] = meshgrid(x,x); xvn@zi  
    %       [theta,r] = cart2pol(X,Y); 2%o@?Rp  
    %       idx = r<=1; _-mSK/Z  
    %       z = nan(size(X)); k;BXt:jDq  
    %       n = [0  1  1  2  2  2  3  3  3  3]; r Z)?uqa  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; %+gK5aVab  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; Y]MB/\gj  
    %       y = zernfun(n,m,r(idx),theta(idx)); ?D[9-K4Vn  
    %       figure('Units','normalized') 5A Fy6Ab  
    %       for k = 1:10 fib#)KE  
    %           z(idx) = y(:,k); < KB V  
    %           subplot(4,7,Nplot(k)) E^'f'\m  
    %           pcolor(x,x,z), shading interp 5 1&||.  
    %           set(gca,'XTick',[],'YTick',[]) $>if@}u  
    %           axis square =*2_B~`  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ~| CWy  
    %       end ZRCm'p3  
    % cl,\N\  
    %   See also ZERNPOL, ZERNFUN2. YL[n85l>1  
    k{Ad(S4J&  
    9Su4nt`i  
    %   Paul Fricker 11/13/2006 $tm%=g^  
    YmwUl>@{  
     Q{K '#  
    Z.QgL=  
    uT :Yh6  
    % Check and prepare the inputs: (g HCu  
    % ----------------------------- [uLwr$N<%L  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) C srxi'Pe  
        error('zernfun:NMvectors','N and M must be vectors.') iY[+BI:  
    end 'zo] f  
    =Ts5\1sc>  
    Q# Yba  
    if length(n)~=length(m) tg~@(IT}j  
        error('zernfun:NMlength','N and M must be the same length.') 4 AWL::FU5  
    end zhdS6Gk+  
    d!P3<:+R[  
    1fOH$33  
    n = n(:); 7{ JIHY+  
    m = m(:); RW4,j&)  
    if any(mod(n-m,2)) UURYK~$K:  
        error('zernfun:NMmultiplesof2', ... qG)M8xk  
              'All N and M must differ by multiples of 2 (including 0).') ASU.VY  
    end '#eY4d<i]n  
    )W,.xP  
    7cQFH@SC  
    if any(m>n) ks|c'XQb  
        error('zernfun:MlessthanN', ... tv 7"4$T  
              'Each M must be less than or equal to its corresponding N.') U_KCN09  
    end GoUsB|-\  
    Z#NEa.]  
    mMOjV_  
    if any( r>1 | r<0 ) ]8+ D  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') =kP|TR!o-  
    end vrq5 +K&||  
    $n= w  
    e.VQ!)>  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) S&J>15oWM`  
        error('zernfun:RTHvector','R and THETA must be vectors.') s1>d)2lX  
    end wTe 9OFv  
    1smKU9B2)  
    SVn $!t  
    r = r(:); &dky_H  
    theta = theta(:); 7h#*dj ef  
    length_r = length(r); qYP;`L}o#  
    if length_r~=length(theta) {\vcwMUzZ  
        error('zernfun:RTHlength', ... q:MSV{k  
              'The number of R- and THETA-values must be equal.') \C<'2KZR,  
    end +z|@K=d#|  
    (Xl+Zi>\{  
    -&EU#Wqh  
    % Check normalization: : "^/?Sd  
    % -------------------- h?Lp9VF  
    if nargin==5 && ischar(nflag) {X10,  
        isnorm = strcmpi(nflag,'norm'); Bn{i+8I  
        if ~isnorm *]:J@KGf  
            error('zernfun:normalization','Unrecognized normalization flag.')  ]&OI.p  
        end FQ"ED:lks  
    else ?vP6~$*B  
        isnorm = false; \h/)un5  
    end A|( !\J0  
    u7S C_3R  
    !u;gGgQF  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% EXsVZg"#  
    % Compute the Zernike Polynomials 26}fB  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% $DdC|gMK  
    M8R/a[ -A  
    OX7a72z  
    % Determine the required powers of r: i9|}-5ED  
    % ----------------------------------- `CRF E5  
    m_abs = abs(m); j\HZ5  
    rpowers = []; nRyx2\Py+  
    for j = 1:length(n) L}7 TM:%  
        rpowers = [rpowers m_abs(j):2:n(j)]; :31?Z(fQ  
    end A2!pbeG  
    rpowers = unique(rpowers); a ?\:,5=  
    N2 t`  
    kjDmwa+91T  
    % Pre-compute the values of r raised to the required powers, c axOxRo\  
    % and compile them in a matrix: Tb!FO"o  
    % ----------------------------- Jp c %i8  
    if rpowers(1)==0 !DUOi4I  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); T oT('  
        rpowern = cat(2,rpowern{:}); +-T|ov<  
        rpowern = [ones(length_r,1) rpowern]; sm{/S*3  
    else At'M? Q@v  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); b`JS&E  
        rpowern = cat(2,rpowern{:}); \}\# fg  
    end lbGPy'h<rt  
    fQ1Dp  
    3dJiu  
    % Compute the values of the polynomials: RN}joKV  
    % -------------------------------------- omznSL  
    y = zeros(length_r,length(n)); Z|fi$2k0!  
    for j = 1:length(n) 138v{Z  
        s = 0:(n(j)-m_abs(j))/2; [e_<UF@A*  
        pows = n(j):-2:m_abs(j); [mj=m?j  
        for k = length(s):-1:1  ^6b5}{>  
            p = (1-2*mod(s(k),2))* ... hL&7D @  
                       prod(2:(n(j)-s(k)))/              ... Y]^*mc0fE  
                       prod(2:s(k))/                     ... RCi8{~rIvS  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... vE1:;%Q  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 4>2\{0r  
            idx = (pows(k)==rpowers); &gW<v\6,  
            y(:,j) = y(:,j) + p*rpowern(:,idx); Hzc}NyJ  
        end feH&Ug4?G  
         =M9R~J!  
        if isnorm l>L?T#v!_  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 2Nx:Y+[  
        end >rSCf=  
    end  *M$mAy<  
    % END: Compute the Zernike Polynomials  DZ4gp  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% )2 q r^)  
    T XT<6(  
    ?"T!<L  
    % Compute the Zernike functions: [O}D^qp  
    % ------------------------------ Mn3j6a  
    idx_pos = m>0; he@Y1CY  
    idx_neg = m<0; MxUQF?@6  
    `:R9M+ OX  
    O*lIZ,!n  
    z = y; :7X{s4AU6  
    if any(idx_pos) qT:`F  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); x^i97dZS^"  
    end ~IPATG  
    if any(idx_neg) ;49sou  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ! ,{N>{I  
    end >WJQxL4  
    K6)IBV;  
    Xr4k]'Mg  
    % EOF zernfun A[`c+&  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  H>|*D~RdT  
    7DW HADr  
    DDE还是手动输入的呢?  *#sY-Gd  
    ~L=? F  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究