下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, _X5@%/Vz
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, mGR}hsQpn
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? <8Y;9N|94!
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? &iCE/
/c/t_xB
."9t<<!
.1R:YNx{/
2K?~)q&t*
function z = zernfun(n,m,r,theta,nflag) 'ap<]mf2
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. wO:!B\e
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N <%WN<T{q|
% and angular frequency M, evaluated at positions (R,THETA) on the \7M+0Ul1
% unit circle. N is a vector of positive integers (including 0), and -=_bXco}
% M is a vector with the same number of elements as N. Each element #Ezq}F8Y
% k of M must be a positive integer, with possible values M(k) = -N(k) v,z s
dr"d
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, {*WJ"9ujp]
% and THETA is a vector of angles. R and THETA must have the same ZNb;24
% length. The output Z is a matrix with one column for every (N,M) wcz|Zy
% pair, and one row for every (R,THETA) pair. LDDeZY"xd
% `tZu~
n
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike H}G=%j0
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), i
oCoFj
% with delta(m,0) the Kronecker delta, is chosen so that the integral 7d&_5Tj:
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, :EOx>Pf_9)
% and theta=0 to theta=2*pi) is unity. For the non-normalized TS0x8,'$q
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. )X*?M?~\
% zO#{qF+~;
% The Zernike functions are an orthogonal basis on the unit circle. q;co53.+P)
% They are used in disciplines such as astronomy, optics, and WXz'H),R
% optometry to describe functions on a circular domain. Nu!(7
% eeIaH
>
% The following table lists the first 15 Zernike functions. ShXk\"
% :B(F?9qK
% n m Zernike function Normalization I,4t;4;Zk
% -------------------------------------------------- cBICG",TA
% 0 0 1 1 m8KJ~02l#
% 1 1 r * cos(theta) 2 ::13$g=T9s
% 1 -1 r * sin(theta) 2 HU[a b
% 2 -2 r^2 * cos(2*theta) sqrt(6) &0B<iO<f
% 2 0 (2*r^2 - 1) sqrt(3) x1:#rb'
% 2 2 r^2 * sin(2*theta) sqrt(6) q-c9YOz_
% 3 -3 r^3 * cos(3*theta) sqrt(8) aq-`Bar
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) #hinb[fQ
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) J6x#c`Y
% 3 3 r^3 * sin(3*theta) sqrt(8) fQ>=\*b9x^
% 4 -4 r^4 * cos(4*theta) sqrt(10) 5~(.:RX:q
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Cj~45)r
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) /18Z4TA
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) =+um:*a.
% 4 4 r^4 * sin(4*theta) sqrt(10) LxqK@Q<B
% -------------------------------------------------- <~aQ_l
% qk}(E#.>F\
% Example 1: kOfq6[JC
% HI}$Z=C
% % Display the Zernike function Z(n=5,m=1) Qd~M;L O"i
% x = -1:0.01:1; C;m 7~R
% [X,Y] = meshgrid(x,x); mHTZ:84
% [theta,r] = cart2pol(X,Y); C)^FRnb
% idx = r<=1; D&1*,`
% z = nan(size(X)); 1rhsmcE
% z(idx) = zernfun(5,1,r(idx),theta(idx)); ml7nt0{
% figure !]bXHT&!R
% pcolor(x,x,z), shading interp e&&;"^@-
% axis square, colorbar jO'+r'2B9
% title('Zernike function Z_5^1(r,\theta)') r()%s3$q
% e_C9VNP
% Example 2: U3SF'r8
% -ya0!D
% % Display the first 10 Zernike functions J&,N1B
% x = -1:0.01:1; -VK6Fq
% [X,Y] = meshgrid(x,x); iG<rB-"
% [theta,r] = cart2pol(X,Y); Dd+ f,$
% idx = r<=1; s3m]rC
% z = nan(size(X)); sA18f2
% n = [0 1 1 2 2 2 3 3 3 3]; .E!p
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; |&