下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, u^&,~n@n7
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 7\JA8mm
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? R,[+9U|4V
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? e+P|PW
({p@Ay
}J\KnaKo
C**kJ
8:4`q9
function z = zernfun(n,m,r,theta,nflag) ^W<uc :L7
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. y{1|@?ii
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N KiG/XnS
% and angular frequency M, evaluated at positions (R,THETA) on the 1F }mlyS
% unit circle. N is a vector of positive integers (including 0), and S]&7
% M is a vector with the same number of elements as N. Each element &|)
(lX
% k of M must be a positive integer, with possible values M(k) = -N(k) `PvGfmYOl
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, 7(bE;(4
% and THETA is a vector of angles. R and THETA must have the same sBD\;\I
% length. The output Z is a matrix with one column for every (N,M) K>fY9`Whm
% pair, and one row for every (R,THETA) pair. OX/}j_8E^(
% D1<$]r,
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike [:\8Ug8
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ^)|1T#Tz
% with delta(m,0) the Kronecker delta, is chosen so that the integral -YP>mwSN?
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, OQZ\/~o 5
% and theta=0 to theta=2*pi) is unity. For the non-normalized 5T;,wQ<
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. \m;"KyP+
% [!E~pW%|n
% The Zernike functions are an orthogonal basis on the unit circle. wXxk+DV@
% They are used in disciplines such as astronomy, optics, and 4>xv7
% optometry to describe functions on a circular domain. [sH[bmLR
% Uw5`zl
% The following table lists the first 15 Zernike functions. rnCu=n
% SvR? nN|
% n m Zernike function Normalization k,nRC~Irh
% -------------------------------------------------- 5UHxB"`C
% 0 0 1 1 Nm]\0m0p-
% 1 1 r * cos(theta) 2 _K"X
% 1 -1 r * sin(theta) 2 jNA^
(|:
% 2 -2 r^2 * cos(2*theta) sqrt(6) S\O6B1<:
% 2 0 (2*r^2 - 1) sqrt(3) ^ 04|tda
% 2 2 r^2 * sin(2*theta) sqrt(6) Skd,=r
% 3 -3 r^3 * cos(3*theta) sqrt(8) mf)o1O&B
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) {|J'd+
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) L
E>A|M$X
% 3 3 r^3 * sin(3*theta) sqrt(8) BnLWC
% 4 -4 r^4 * cos(4*theta) sqrt(10) q^hL[:ms#
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) mMEa*9P
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) Kq0!.455
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) R83Me#&
% 4 4 r^4 * sin(4*theta) sqrt(10) D*R49hja{
% -------------------------------------------------- X%._:st
% ^.9I[Umua
% Example 1: Dj9).lgc
% vc_ 5!K%[
% % Display the Zernike function Z(n=5,m=1) X4R+Frt8
% x = -1:0.01:1; r%/*,lLO
% [X,Y] = meshgrid(x,x); L4'FL?~I
% [theta,r] = cart2pol(X,Y); IL]VY1'#
% idx = r<=1; ^#4?v^QNh
% z = nan(size(X)); -v(.]`Wo&;
% z(idx) = zernfun(5,1,r(idx),theta(idx));
B)M& FO
% figure kt; |
$
% pcolor(x,x,z), shading interp 058+_xX
% axis square, colorbar BEzF'<Z
% title('Zernike function Z_5^1(r,\theta)') 6DG:imGl
% kG7q4jFwP
% Example 2: !be6}
% hd2 X/"
% % Display the first 10 Zernike functions ]'F{uDm[
% x = -1:0.01:1; JL4\%
% [X,Y] = meshgrid(x,x); +0Rr5^8u
% [theta,r] = cart2pol(X,Y); L@|W&N;%a
% idx = r<=1; ='0f#>0Q
% z = nan(size(X)); < g<Lf[n$
% n = [0 1 1 2 2 2 3 3 3 3]; siHS@S
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; t1)b26;
% Nplot = [4 10 12 16 18 20 22 24 26 28]; d4#Q<!r
% y = zernfun(n,m,r(idx),theta(idx)); <z*SO
a
% figure('Units','normalized') MhNDf[W>
% for k = 1:10 Uk02VuS
% z(idx) = y(:,k); Gw$sL&1m\
% subplot(4,7,Nplot(k)) y4HOKJxI
% pcolor(x,x,z), shading interp zOpl#%"
% set(gca,'XTick',[],'YTick',[]) 2@
>04]
% axis square *JX)q
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) {P_~_5o_
% end nL+*-R!R
% y#AwuC K
% See also ZERNPOL, ZERNFUN2. NW`.RGLI<
a<%WFix
U/2g N
H
% Paul Fricker 11/13/2006 }TZ5/zn.Dw
)K8k3]y&
4'W| '4'b
zv]-(<B
\*H/YByTb
% Check and prepare the inputs: %($qg-x
% ----------------------------- YWSo:)LY
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) R$&|*0
error('zernfun:NMvectors','N and M must be vectors.') :>$)Snqo=n
end x-0IxWD%
/(w:XTO<
^j?\_r'j
if length(n)~=length(m) #dDsI]E)
error('zernfun:NMlength','N and M must be the same length.') w0Fi~:b
end <R7*00
:".:Wd
22\Buk}?
n = n(:); )EYsqj
m = m(:); J'4{+Q_pa
if any(mod(n-m,2)) ^lT$D8
error('zernfun:NMmultiplesof2', ... 2B_6un];W
'All N and M must differ by multiples of 2 (including 0).') x\XgQQ]-
end #D3e\(
~ X8U@f
0\g;^Zpi
if any(m>n) "_ b
Sy
error('zernfun:MlessthanN', ... p#O#MN*
'Each M must be less than or equal to its corresponding N.') hi>Ii2T
end /d5_-AB(v
^>uzMR!q5
=YBwO. !%
if any( r>1 | r<0 ) $=$I^hV
error('zernfun:Rlessthan1','All R must be between 0 and 1.') *eL%[B
end bCk_ZA
g/so3F%v
.
rd\mFz-SB
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) __c:$7B/4U
error('zernfun:RTHvector','R and THETA must be vectors.') mSAuS)YD
end a
J[VX)"J
4x=rew>Ew
sMli! u
r = r(:); M|FwYF^
theta = theta(:); ]Ole#Lz}Q
length_r = length(r); :7IL|bA<
if length_r~=length(theta) C/e`O|G
error('zernfun:RTHlength', ... a=gTGG"9
'The number of R- and THETA-values must be equal.') ?]f+)tCMs
end -B$oq8)n*
'g#Ml`cm
TQ" [2cY
% Check normalization: +H_Jr'/
% -------------------- /^qCJp`
if nargin==5 && ischar(nflag) A$A7F=x
isnorm = strcmpi(nflag,'norm'); @y->4`N
if ~isnorm BgD;"GD*W
error('zernfun:normalization','Unrecognized normalization flag.') TclZdk]%T
end <(?ahO5
else 5JDqSz{
isnorm = false; 2Y&z}4'j
end oScHmGFv
B+ GPTQSTb
sU4(ed\gI\
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% <!K2xb-d^
% Compute the Zernike Polynomials J @"wJEF
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% )rz4IfE
w@.E}%bwq
$2Ox;+
% Determine the required powers of r: $WnK
% ----------------------------------- Tx0/3^\>8A
m_abs = abs(m); jN 5Hku[?
rpowers = []; q+dY&4&u
for j = 1:length(n) 6YrkS;_HS
rpowers = [rpowers m_abs(j):2:n(j)]; u7fae$:&