下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, MLkL.1eGSb
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, Pmqx ;
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? _)HD4,`
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? zz7Y/653
<^H1)=tlF
Qx6,>'Qk'
J=f:\]@Oy
{^PO3I
function z = zernfun(n,m,r,theta,nflag) A^}i^
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 0A)
Vtj$
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N &4w\6IR
% and angular frequency M, evaluated at positions (R,THETA) on the Verbmeg&n
% unit circle. N is a vector of positive integers (including 0), and m;;0 Cl
% M is a vector with the same number of elements as N. Each element *F26}q
% k of M must be a positive integer, with possible values M(k) = -N(k) `<l/GwtAJ
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, ]7XkijNb
% and THETA is a vector of angles. R and THETA must have the same h|(ZXCH
% length. The output Z is a matrix with one column for every (N,M) M<SbVP|V"
% pair, and one row for every (R,THETA) pair. 3s+<
% }}4sh5z
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike rX|y/0)F
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), b0~H>cnA
% with delta(m,0) the Kronecker delta, is chosen so that the integral zIAu3
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 3/A!_Uc(
% and theta=0 to theta=2*pi) is unity. For the non-normalized wW6mYgPN%
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 7G<KrKal
% Y|GJph
% The Zernike functions are an orthogonal basis on the unit circle. ain#_H
% They are used in disciplines such as astronomy, optics, and . Ce&9l
% optometry to describe functions on a circular domain. J1gEjd
% E3FW*UNg[y
% The following table lists the first 15 Zernike functions. 1_33;gP
% c&| '3i+
% n m Zernike function Normalization xN{"%>Mx
% -------------------------------------------------- Tc'{i#%9j
% 0 0 1 1 t+W=2w&
% 1 1 r * cos(theta) 2 t?du+:
% 1 -1 r * sin(theta) 2 h X>VVeIZ
% 2 -2 r^2 * cos(2*theta) sqrt(6) B"?+5A7
% 2 0 (2*r^2 - 1) sqrt(3) }rj C_q
% 2 2 r^2 * sin(2*theta) sqrt(6) \GbHS*\+
% 3 -3 r^3 * cos(3*theta) sqrt(8)
BdE`p{
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) %ojR?=ON
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) r{/ G\
% 3 3 r^3 * sin(3*theta) sqrt(8) }ZM*[j
% 4 -4 r^4 * cos(4*theta) sqrt(10) 'Ec:l(2Ec
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 7T|J[WO
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) 0]h8)EW
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) </+%R"`
% 4 4 r^4 * sin(4*theta) sqrt(10) M3jv aI
% -------------------------------------------------- YvxMA#
% ; mo\ yW1
% Example 1: \CJx=[3(
% 23(E3:.
% % Display the Zernike function Z(n=5,m=1) V.
bH$@ej
% x = -1:0.01:1; 7q2"b?|h
% [X,Y] = meshgrid(x,x); H.l,%x&K
% [theta,r] = cart2pol(X,Y); D_
Bx>G9
% idx = r<=1; cAKoPU>U
% z = nan(size(X)); TsFdy{/o*
% z(idx) = zernfun(5,1,r(idx),theta(idx)); :9!0Rm
% figure ^M"=A}h
% pcolor(x,x,z), shading interp Ddm76LS
% axis square, colorbar 4U! .UNi
% title('Zernike function Z_5^1(r,\theta)') zV_-rf
% v]`A_)[
% Example 2: |peMr#
% HgSmAziv
% % Display the first 10 Zernike functions U>plv
% x = -1:0.01:1; ;Xd\$)n
% [X,Y] = meshgrid(x,x); fw:^Lyn9$
% [theta,r] = cart2pol(X,Y); 5|~r{w)9
% idx = r<=1; bE`*Uw4
% z = nan(size(X)); _/sf@R
% n = [0 1 1 2 2 2 3 3 3 3]; A9qO2kq7_
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 4MtqQq4%
% Nplot = [4 10 12 16 18 20 22 24 26 28]; rlO%%Qn`
% y = zernfun(n,m,r(idx),theta(idx)); !6tC[W`
% figure('Units','normalized') n?P 5pJ
% for k = 1:10 ]|$$:e^U9
% z(idx) = y(:,k); CI~;B
% subplot(4,7,Nplot(k)) Fzld0p9=
% pcolor(x,x,z), shading interp X%9xuc
% set(gca,'XTick',[],'YTick',[]) DKVt8/vq
% axis square ap'kxOf"1
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 9+is?Pj
% end ?k:])^G5
% "!6 B5Oz
% See also ZERNPOL, ZERNFUN2. 'MdE}
}DUDA%U
ad$Qs3)6o
% Paul Fricker 11/13/2006 *liPJ29C[
:UhFou_D4l
7f\^VG
Qqhb]<z
> ^v8N
% Check and prepare the inputs: f`9rTc
% ----------------------------- b%!`fn-;
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) N;ecT@Ug
error('zernfun:NMvectors','N and M must be vectors.') QV
H'06"{
end mQA<t)1
^n45N&916
kz VI:
if length(n)~=length(m) 9hs{uxwuEE
error('zernfun:NMlength','N and M must be the same length.') U)w|GrxX
end FTYLMQ
i
X.AOp
SQKY;p
n = n(:); -L 'K
m = m(:); qQ
DFg`
if any(mod(n-m,2)) wCTR-pL^
error('zernfun:NMmultiplesof2', ... 7}1Kafs
'All N and M must differ by multiples of 2 (including 0).')
1707
end 9MzkG87J
CG>2,pP,
'lRHdD}s
if any(m>n) ^R'!\m|FR
error('zernfun:MlessthanN', ... q\HBAry
'Each M must be less than or equal to its corresponding N.') L{0OMyUA
end T17LYHIT
8`~3MsE"
<[5$ {)
if any( r>1 | r<0 ) MJ"Mn^:/
error('zernfun:Rlessthan1','All R must be between 0 and 1.') }NBJ T4R
end !6/IKh`J
4"X>_Nt6
,sJfMY
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) =i5:*J
error('zernfun:RTHvector','R and THETA must be vectors.') |AfQ_iT6c
end ?{z${ bD
z57papo
^$,kTU'=
r = r(:); ^oB1 &G
theta = theta(:); x0;}b-f
length_r = length(r); pVa|o&,
if length_r~=length(theta) wG?kcfu
error('zernfun:RTHlength', ... XXwhs-:o
'The number of R- and THETA-values must be equal.') Mh.eAM8 _
end U1|4vd9
gwz _b
xAz4ZXj=q
% Check normalization: FC(cXPX}
% -------------------- ZznWs+
if nargin==5 && ischar(nflag) _vLT!y
isnorm = strcmpi(nflag,'norm'); LXF%~^^@d
if ~isnorm 0S7Isk2W
error('zernfun:normalization','Unrecognized normalization flag.') coVT+we
end t RyGxqiG
else p33GKg0i+(
isnorm = false; j<P%Uy+
end n rB27
?E_p ,#9j)
}3_G|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 5XUI7Q%
% Compute the Zernike Polynomials |#jm=rT0y
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% *-LU'yM6Yh
&