下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, kW&TJP+5*
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, ]?[fsdAQW
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? Jg|XH
L)
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? ~R92cH>L
RrQJ/ts7}
!Q0w\j h
6,{$J
BR yl4
function z = zernfun(n,m,r,theta,nflag) `+Q%oj#FF
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. N//KPh
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N '1s0D]
% and angular frequency M, evaluated at positions (R,THETA) on the ZExlGC
% unit circle. N is a vector of positive integers (including 0), and B_m8{44zM
% M is a vector with the same number of elements as N. Each element OpYY{f
% k of M must be a positive integer, with possible values M(k) = -N(k) s,&Z=zt0R
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, pcWPH.
% and THETA is a vector of angles. R and THETA must have the same `RL"AH:+
% length. The output Z is a matrix with one column for every (N,M) WEi2=3dV
% pair, and one row for every (R,THETA) pair. }Kbb4]t|"
% q5)O%l !
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike G*P#]eO
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 7%eK37@u
% with delta(m,0) the Kronecker delta, is chosen so that the integral x+@rg];m
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ,1o FPa{?
% and theta=0 to theta=2*pi) is unity. For the non-normalized 5C5sgR C
% polynomials, max(Znm(r=1,theta))=1 for all [n,m].
]-/VHh
% ckE-",G
% The Zernike functions are an orthogonal basis on the unit circle. u5f9Jw}
% They are used in disciplines such as astronomy, optics, and bB3powy9
% optometry to describe functions on a circular domain. <B6H. P =
%
Qjv}$`M
% The following table lists the first 15 Zernike functions. l]l'4@1
% QE`bSI
% n m Zernike function Normalization .jWC$SVR
% -------------------------------------------------- n]o<S+z
% 0 0 1 1 L>4"(
% 1 1 r * cos(theta) 2 68WO~*
% 1 -1 r * sin(theta) 2 lp%pbx43s
% 2 -2 r^2 * cos(2*theta) sqrt(6) m`^q <sj
% 2 0 (2*r^2 - 1) sqrt(3) H%Q7D-
% 2 2 r^2 * sin(2*theta) sqrt(6) t=W}SH
% 3 -3 r^3 * cos(3*theta) sqrt(8) D7Q$R:6|
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) -fW*vE:
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) Q:d]imw!O
% 3 3 r^3 * sin(3*theta) sqrt(8) ?QdWrE_
% 4 -4 r^4 * cos(4*theta) sqrt(10) R|87%&6']
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) =R$u[~Xl2X
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) )W
_v:?A9
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Tqn@P
% 4 4 r^4 * sin(4*theta) sqrt(10) Ig0VW)@
% -------------------------------------------------- z/2//mM
% q ,]L$
% Example 1: ra
g Xn
% mLLDE;7|}
% % Display the Zernike function Z(n=5,m=1) j/c&xv7=
% x = -1:0.01:1; eF-."1
% [X,Y] = meshgrid(x,x); O:{~urV
% [theta,r] = cart2pol(X,Y); "CQa.%
% idx = r<=1; YHygo#4=8
% z = nan(size(X)); 4*cEag
% z(idx) = zernfun(5,1,r(idx),theta(idx)); a![{M<Y~
% figure j[J-f@F \Y
% pcolor(x,x,z), shading interp #r~# I}U
% axis square, colorbar (m(JK^
% title('Zernike function Z_5^1(r,\theta)') A&Usddcp
% kxIF#/8
% Example 2: yEoF4bt
% >rmqBDKaQ
% % Display the first 10 Zernike functions q01wbO3-"
% x = -1:0.01:1; w4{<n/"
% [X,Y] = meshgrid(x,x); x}I+Iggi
% [theta,r] = cart2pol(X,Y); ~1AgD-:Jz
% idx = r<=1; \aUC(K~o\;
% z = nan(size(X)); z3m85F%dR
% n = [0 1 1 2 2 2 3 3 3 3]; $AjHbU.I{
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; :g=qz~2Xk
% Nplot = [4 10 12 16 18 20 22 24 26 28]; 6@F9G4<Z
% y = zernfun(n,m,r(idx),theta(idx)); cO+qs[
BQ
% figure('Units','normalized') Y0dEH^I
% for k = 1:10 ' ;FnIZ
% z(idx) = y(:,k); W ]?G}Q;
% subplot(4,7,Nplot(k)) Eib5
% pcolor(x,x,z), shading interp a;qryUyG
% set(gca,'XTick',[],'YTick',[]) ~#[yJNYQ
% axis square i0kak`x0
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Q}K"24`=
% end m{cGK`/\
% CMG&7(MR
% See also ZERNPOL, ZERNFUN2. G+"t/?/
5o'FS{6U
:tB1D@Cb6
% Paul Fricker 11/13/2006 w3obIJm
qJa H,
kY|utoAP
mt+Oi70
m_?~OL S
% Check and prepare the inputs: %G/hD
% ----------------------------- e L^|v
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) oAJM]%g{
error('zernfun:NMvectors','N and M must be vectors.') s_OF( o
end BB!THj69a6
,,&*:<Q
.B]MpmpK
if length(n)~=length(m) vkx7paY_
error('zernfun:NMlength','N and M must be the same length.') $=8
NED5
end *K6g\f]b #
]7F=u!/`<C
HJLG=mU
n = n(:); ll<Xz((o
m = m(:); $%CF8\0
if any(mod(n-m,2)) $m%fwB
error('zernfun:NMmultiplesof2', ... r6MMCJ|G
'All N and M must differ by multiples of 2 (including 0).') P}y +G|
end 9~5uaP$S
RXpw!
Pg0x/X{t
if any(m>n) 9N%We|L,c
error('zernfun:MlessthanN', ... D9CaFu
'Each M must be less than or equal to its corresponding N.') Vod\a5c
end Pw7]r<Q
nQX:T;WL@
*8yAG]z
if any( r>1 | r<0 ) F3v!AvA|
error('zernfun:Rlessthan1','All R must be between 0 and 1.') [#<-ZC#T*
end 8>2.UrC
b8`)y<