下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, _C nl|'
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, K#_x.:<J
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? U\~9YX8
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? PTZ/jg@71
wcW8"J'AH
<A+n[h
;2\+O"}4H
BK;Gh0mp
function z = zernfun(n,m,r,theta,nflag)
_ 0g\g~[
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. >A_:qyGk
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N _G0_<WH6
% and angular frequency M, evaluated at positions (R,THETA) on the yNc"E
% unit circle. N is a vector of positive integers (including 0), and IVdM}"+
% M is a vector with the same number of elements as N. Each element JDp{d c
% k of M must be a positive integer, with possible values M(k) = -N(k) sfKu7p uc
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, "`q:
% and THETA is a vector of angles. R and THETA must have the same mMSQW6~j
% length. The output Z is a matrix with one column for every (N,M)
vv0+F6 @
% pair, and one row for every (R,THETA) pair. .0]\a~x
% H.=S08c3kA
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike |0N6]%r
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 8urX]#
% with delta(m,0) the Kronecker delta, is chosen so that the integral oQ:.pq{T
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ]q pLaBD
% and theta=0 to theta=2*pi) is unity. For the non-normalized lNRGlTD%
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 2*)2c[/0F
% Svqj@@_f
% The Zernike functions are an orthogonal basis on the unit circle. qr<RMs
% They are used in disciplines such as astronomy, optics, and 0+dc
% optometry to describe functions on a circular domain. %pG^8Q()
% 0s'h2={iI
% The following table lists the first 15 Zernike functions. `G0GWh)`x
% [Rxbb+,U
% n m Zernike function Normalization k3yA*Ec
% -------------------------------------------------- 1O,:fTG<
% 0 0 1 1 cN3!wE
% 1 1 r * cos(theta) 2 K6d2}!5
% 1 -1 r * sin(theta) 2 W{W8\
% 2 -2 r^2 * cos(2*theta) sqrt(6) dYxX%"J
% 2 0 (2*r^2 - 1) sqrt(3) z&KrG
% 2 2 r^2 * sin(2*theta) sqrt(6) }N,$4h9Dj
% 3 -3 r^3 * cos(3*theta) sqrt(8) ` G-V
%
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) rHaj~s 4
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) XDQ5qfE|
% 3 3 r^3 * sin(3*theta) sqrt(8) RzOcz=A}
% 4 -4 r^4 * cos(4*theta) sqrt(10) \@!"7._=
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) YMr2|VEU[
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) euiP<[|h=
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) KBOp}MEz
% 4 4 r^4 * sin(4*theta) sqrt(10) *YO^+]nmY
% -------------------------------------------------- fK{m7?V
% $H8B%rT]
% Example 1: Mj<T+Ohz
% GTuxMg`
% % Display the Zernike function Z(n=5,m=1) PK).)5sW
% x = -1:0.01:1; z; Jz^m-
% [X,Y] = meshgrid(x,x); G$mAyK:
% [theta,r] = cart2pol(X,Y); W\Df:P {<
% idx = r<=1; L.?QZN%cN
% z = nan(size(X)); ~J:]cy)Q
% z(idx) = zernfun(5,1,r(idx),theta(idx)); cNl NJ
% figure Us2IeR
% pcolor(x,x,z), shading interp %EH{p@nM&-
% axis square, colorbar vdIert?p
% title('Zernike function Z_5^1(r,\theta)') #1De#uZ
% Q].p/-[(
% Example 2: VjLv{f<p
% bYUG4+rD
% % Display the first 10 Zernike functions o]M1$)>b+
% x = -1:0.01:1; c> 0R_
% [X,Y] = meshgrid(x,x); ,n3e8qd
% [theta,r] = cart2pol(X,Y); x/dyb.
% idx = r<=1; ^).
% z = nan(size(X)); Qg]+&8!*
% n = [0 1 1 2 2 2 3 3 3 3]; p|+TgOYOc
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 6UKZ0~R
% Nplot = [4 10 12 16 18 20 22 24 26 28]; \,S4-~(:!
% y = zernfun(n,m,r(idx),theta(idx)); ]{|
wU.
% figure('Units','normalized') f]48-X,^6
% for k = 1:10 `?G&w.Vs
% z(idx) = y(:,k); BUS4 T#D
% subplot(4,7,Nplot(k)) U#Wg"W{
% pcolor(x,x,z), shading interp 46##(4RF
% set(gca,'XTick',[],'YTick',[]) FrC)2wX
% axis square 5=&ME(fmV
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) N 9W,p2
% end i__f%j`!W
% t0_4jVt
% See also ZERNPOL, ZERNFUN2. YeS5%?Fk
7!dj&?
R} X"di
% Paul Fricker 11/13/2006 G=/^]E
)G),iy
0^vz /y1c
$5:I~-mx
:s*t\09V7
% Check and prepare the inputs: !bs5w_@
% ----------------------------- 8]mRX~
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) hof>:Rk
error('zernfun:NMvectors','N and M must be vectors.') 5PsjGvm.%
end $0R5 ]]db)
{)(Mkm+d
SQ&}18Z~
if length(n)~=length(m) : T{VCw:*
error('zernfun:NMlength','N and M must be the same length.') I?
="Er[g}
end NvC @
sJ{r+wY
y+p"5s"
n = n(:); 0t[ 1#!=k
m = m(:); }
m"':f
if any(mod(n-m,2)) CG;+Z-"X
error('zernfun:NMmultiplesof2', ... .W\JvPTC
'All N and M must differ by multiples of 2 (including 0).') 10Q!-K),p
end l9e=dV:pH
eA*We
+|Izjx]ZV
if any(m>n) Tm$8\c4V:*
error('zernfun:MlessthanN', ... [dFe-2u ,$
'Each M must be less than or equal to its corresponding N.') ]ddH>y&o
end V qcw2
&kcmkRRG
'P*OzZ4>$
if any( r>1 | r<0 ) T% GR{mp
error('zernfun:Rlessthan1','All R must be between 0 and 1.') ,`PYU[
end %}JSR y
1BgHkDW
-/
G#ls|?
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ?D|kCw69SE
error('zernfun:RTHvector','R and THETA must be vectors.') "!_vQ^y
end Kn1T2WSAg
T(,@]=d,DD
U{qwhz(
r = r(:); Qsw.429t
theta = theta(:); 4]FS
jVO
length_r = length(r); D<:zw/IRE
if length_r~=length(theta)
1/,~0N9
error('zernfun:RTHlength', ... 1;PI%++
'The number of R- and THETA-values must be equal.') *2fJdY
end E62_k
0q
}u8g7Nj
q6b&b^r+H
% Check normalization: 4 L
5$=V
% -------------------- _Fn`G.r<
if nargin==5 && ischar(nflag) Z?d][zGw
isnorm = strcmpi(nflag,'norm'); sgnc$x"
if ~isnorm `4?|yp.|L
error('zernfun:normalization','Unrecognized normalization flag.') !x\\# 9
end =**Q\Sl
else 'MW O3
isnorm = false; :Gzp
(@<@e
end Jz*A!Li
_0ZU I^#
=Ot_P7'5gv
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% F(ZczwvR
% Compute the Zernike Polynomials
3bJ|L3G
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 'vYt_T
q: X^V$`
sCmN|Q
% Determine the required powers of r: \/C5L:|p_
% ----------------------------------- -r]L MQ
m_abs = abs(m); 7G7"Zule*j
rpowers = []; bR1Q77<G\
for j = 1:length(n) }:u-l3e
rpowers = [rpowers m_abs(j):2:n(j)]; Bj"fUI!dK
end <:&{ c-f/
rpowers = unique(rpowers); lauq(aD_C
Ck>]+rl
;.rY`<|
% Pre-compute the values of r raised to the required powers, ]>ndFE6kl
% and compile them in a matrix: :."6 g)T
% ----------------------------- %mD{rG9
if rpowers(1)==0 5iI(A'R[7
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); "c?31$6
rpowern = cat(2,rpowern{:}); E$&bl
rpowern = [ones(length_r,1) rpowern]; 7TU xdI
else /1D.Ud^
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); V#+F*w?&D
rpowern = cat(2,rpowern{:}); US"UkY-\
end \zwm:@lG
_ysakn
g$vOWSI+
% Compute the values of the polynomials: \rO!lvX
% -------------------------------------- 6#.9T;&
y = zeros(length_r,length(n)); ~=t9-AF-
for j = 1:length(n) a#x@e?GvI
s = 0:(n(j)-m_abs(j))/2; Ab:ah7!
pows = n(j):-2:m_abs(j); ;j[:tt\k
for k = length(s):-1:1 +EqL|
p = (1-2*mod(s(k),2))* ... gjFQDrz(
prod(2:(n(j)-s(k)))/ ... JoZzX{eu"
prod(2:s(k))/ ... R=$}uDFmW
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... IS`ADDU[S
prod(2:((n(j)+m_abs(j))/2-s(k))); c/:k|x
idx = (pows(k)==rpowers); a;nYR5f
y(:,j) = y(:,j) + p*rpowern(:,idx); om=kA"&&Q
end q}0I`$MU
i el@"E 4
if isnorm !&`\MD>;~R
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ue4{h
end +x/vZXtOK
end hN\sC9a1
% END: Compute the Zernike Polynomials Twr,O;*u=
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% yF_/.m I
-j:yE Z4Oy
)K`tnb.Pf
% Compute the Zernike functions: }_mMQg2>=
% ------------------------------ 6+"gk(
idx_pos = m>0; sIl&\g<b
idx_neg = m<0; ]{#Xcqx
ipt]qJFd
-)KNsW
z = y; B[
D
s?:
if any(idx_pos) Snp(&TD<<
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); =UWW(^M#[:
end PlT_]p
if any(idx_neg) vQy<%[QO
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); eb6y-TwY
end Uyeo0B"
G `B=:s]
L|1~'Fz#w
% EOF zernfun <]|!quY<*