下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, :aS8%m
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, Ghs{B8
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? _DnZ=&=MA
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? ,_,Z<X/
U p=J&^.
dMK|l
rvgArFf}]
9tDo5
29
function z = zernfun(n,m,r,theta,nflag) \dO9nwa?
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. .bE+dA6:v
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N />=)=CGv;
% and angular frequency M, evaluated at positions (R,THETA) on the ebxpKtEC
% unit circle. N is a vector of positive integers (including 0), and zy"wQPEE
% M is a vector with the same number of elements as N. Each element :s`~m;Y9?
% k of M must be a positive integer, with possible values M(k) = -N(k) !ba /]A/
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, ~xZFm
% and THETA is a vector of angles. R and THETA must have the same `CP#S7W^
% length. The output Z is a matrix with one column for every (N,M) b+bgGLo
% pair, and one row for every (R,THETA) pair. t}n:!v"|+O
% }F=scbpXj
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 9#Gz2u $
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 9|R]Lz3PA
% with delta(m,0) the Kronecker delta, is chosen so that the integral $9k7A 8K
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, N/IDj2C4
% and theta=0 to theta=2*pi) is unity. For the non-normalized .-2i9Bh6
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. s
tvI
% b9b384Q1O
% The Zernike functions are an orthogonal basis on the unit circle. `"`/_al^
% They are used in disciplines such as astronomy, optics, and ^NwXvp>7-
% optometry to describe functions on a circular domain. \Jq$!foYx
% ~5g2~.&*
% The following table lists the first 15 Zernike functions. s$ZzS2d
% //T1e7)
% n m Zernike function Normalization E:'TZ4Z
% -------------------------------------------------- ]Y@Db5S$T
% 0 0 1 1 E_k<EQ%r
% 1 1 r * cos(theta) 2 mux_S2x9m\
% 1 -1 r * sin(theta) 2 M+4>l\
% 2 -2 r^2 * cos(2*theta) sqrt(6) 30cZz
% 2 0 (2*r^2 - 1) sqrt(3) ntK#7(U'
% 2 2 r^2 * sin(2*theta) sqrt(6) 8s^CE[TA
% 3 -3 r^3 * cos(3*theta) sqrt(8) - "`5r6
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) /<ODP6Yy;
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) G>"=Af(t?Y
% 3 3 r^3 * sin(3*theta) sqrt(8) QlT{8uw)
% 4 -4 r^4 * cos(4*theta) sqrt(10) 3<">1] /,
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) UolsF-U}'
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) 2wCTd:e:
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10)
@Tk5<B3
% 4 4 r^4 * sin(4*theta) sqrt(10) l`"i'P
% -------------------------------------------------- ?5@!r>i=<
% %A_h!3f&
% Example 1: 5A^$!q P
% mY!os91KoO
% % Display the Zernike function Z(n=5,m=1) 6_xPk`m
% x = -1:0.01:1; a;@G
% [X,Y] = meshgrid(x,x); ++{,1wY\
% [theta,r] = cart2pol(X,Y); KA^r,Iw
% idx = r<=1; C(/{53G(
% z = nan(size(X)); 2L?jp:$;X
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 4I&e_b< 30
% figure nKxu8YAJe
% pcolor(x,x,z), shading interp D3,9X#B=
% axis square, colorbar cPu<:<F[
% title('Zernike function Z_5^1(r,\theta)') 8['8ctX
% W:5,zFW
% Example 2: Yu1[`QbB
% x$p_mWC
% % Display the first 10 Zernike functions Rb!V{jQ
% x = -1:0.01:1; S:b-+w|*
% [X,Y] = meshgrid(x,x); V!^5#A<
% [theta,r] = cart2pol(X,Y); rt +a/:4+
% idx = r<=1; E+'P|~>oX
% z = nan(size(X)); -l)u`f^n|
% n = [0 1 1 2 2 2 3 3 3 3]; uB&um*DP
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; Tw`n 3y?
% Nplot = [4 10 12 16 18 20 22 24 26 28]; Cf&.hod
% y = zernfun(n,m,r(idx),theta(idx)); i"4&UJu1;
% figure('Units','normalized') ONr}{T%@/
% for k = 1:10 Z@i"/~B|4\
% z(idx) = y(:,k); Lt|'("($*
% subplot(4,7,Nplot(k)) ! J7ExfEA
% pcolor(x,x,z), shading interp Wra$
% set(gca,'XTick',[],'YTick',[]) Jw-?7O
% axis square VDnN2)Km*
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) jPu m2U_
% end nogdOGo
% ^/`W0kT
% See also ZERNPOL, ZERNFUN2. ()cqax4
w6cW7}ZD,
!t.*xT4W
% Paul Fricker 11/13/2006 APR"%(xD#
IXA3G7$)
eG&3E`[
tV'>9YVdG
}hoyjzv]L
% Check and prepare the inputs: lPBWpHX
% ----------------------------- _zuX6DO
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) K*"Wq:T;B
error('zernfun:NMvectors','N and M must be vectors.') WciL
zx/
end \7\7i-Vo
cT&!_g#g
f[wA]&
if length(n)~=length(m) bx XNv^
error('zernfun:NMlength','N and M must be the same length.') #?^%#"~4H
end 8*$HS.Db'
%k+G-oT5
&N+i3l6`
n = n(:); iCZuE:I1K,
m = m(:); $F#eD0|
if any(mod(n-m,2)) jeu|9{iTVu
error('zernfun:NMmultiplesof2', ... ,SZYZ 25
'All N and M must differ by multiples of 2 (including 0).') e]!`Cl-f80
end 6\BZyry3*
LA9'HC(5
3<"!h1x5
if any(m>n) (gQr?K
error('zernfun:MlessthanN', ... 1x'H#
'Each M must be less than or equal to its corresponding N.') vB<2f*U
end :4\=xGiY
mD"[z}r)
`|2p1Ei
if any( r>1 | r<0 ) N~)RR {$w
error('zernfun:Rlessthan1','All R must be between 0 and 1.') YLU.]UC
end 6Qx[W>I
!8@8
]fdxpqz
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ;JHR~ TV
error('zernfun:RTHvector','R and THETA must be vectors.') W>'KE:!sp
end Sdr,q9+__
j0.E!8Ae{
^U.t5jj
r = r(:); pl.x_E,HP
theta = theta(:); dm~Uj
length_r = length(r); \jCN ]A<
if length_r~=length(theta) ,T;T%/
S
error('zernfun:RTHlength', ... zPyN2|iFah
'The number of R- and THETA-values must be equal.') M/5+AsT
end \T:*tgU
z 0-[ RGg
MD+e!A# o
% Check normalization: OBEHUJ5
% -------------------- FE4P
EBXvu
if nargin==5 && ischar(nflag) ]q":ta!f
isnorm = strcmpi(nflag,'norm'); ph~d%/^jI
if ~isnorm *Me&>"N"
error('zernfun:normalization','Unrecognized normalization flag.') @;b @O
_
end LKsK!X
else +zINnX
isnorm = false; "*HVL
end ur|
vh5
H9Dw#.em
[;LP6n7v
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% QnH;+k
ln
% Compute the Zernike Polynomials "59"HVV
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% *Kmo1>^
Zk<Y+!
d]I3zSIC
% Determine the required powers of r: &S9O:>=*
% ----------------------------------- M}\p/r=
m_abs = abs(m); +8Q5[lh2]j
rpowers = []; r3mmi5
for j = 1:length(n) ]wHXrB8vx
rpowers = [rpowers m_abs(j):2:n(j)]; VxqoE]Dh
end xWxgv;Ah
rpowers = unique(rpowers); <o"2z~gv
X ApSKJ
eEZZ0NNe;
% Pre-compute the values of r raised to the required powers, G@8wv J
% and compile them in a matrix: 3,dIW*<**
% ----------------------------- g..&x]aS(
if rpowers(1)==0 #p7_\+&5s
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); L
4Sa,ZL
rpowern = cat(2,rpowern{:}); 9w}_CCj3
rpowern = [ones(length_r,1) rpowern]; eQ80Kf~
else +T8]R7b9
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); z"$huE>P6
rpowern = cat(2,rpowern{:}); ,c6c=di
end 30<3DA_P
z:W|GDD1
+BgUnu26
% Compute the values of the polynomials: C%q]o
% -------------------------------------- >goG\y
y = zeros(length_r,length(n)); txFcV
for j = 1:length(n) V1
{'d[E*
s = 0:(n(j)-m_abs(j))/2; CQh6;[\:
pows = n(j):-2:m_abs(j); TFYp=xK(
for k = length(s):-1:1 wak`Jte=}m
p = (1-2*mod(s(k),2))* ... / 0y5/
prod(2:(n(j)-s(k)))/ ... "VI2--%v3
prod(2:s(k))/ ... 4)].{Z4q
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... <qjolMO`
prod(2:((n(j)+m_abs(j))/2-s(k))); +x)x&;B)/
idx = (pows(k)==rpowers); ZeE(gtM
y(:,j) = y(:,j) + p*rpowern(:,idx); Ch7&9NW
end 9HG" }CGZP
v])R6-T-
if isnorm ?(E?oJ)(
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); M <ccfU!
end 6r }w
end QB6.
o6
% END: Compute the Zernike Polynomials 4mwLlYZ
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% C sx
EN4
y2:Bv2}
,%$Cfu
% Compute the Zernike functions: |v@ zyOq&b
% ------------------------------ =0_((eXwf
idx_pos = m>0; F0tx.]uS
idx_neg = m<0; o>MB8[r
NzC&ctPk
_GsHT\
z = y; uYMH5Om+i
if any(idx_pos) gjc[\"0a5h
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); F:'>zB]-}
end +{[E Ow
if any(idx_neg) n$E'+kox
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); T~)zgu%q_
end ]:Sb#=,!&!
0wZAsG"Bg
*ez7Q
% EOF zernfun ?Suv.!wfLl