下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, !&pk^VFl+
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, L
|
#"Yn
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? Vn?|\3KY
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? pd.5
o_cAelI[!
!r4B1fX
T2 /u7<D-
;$FMOMR
function z = zernfun(n,m,r,theta,nflag) i: 7cdhz
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. %S<))G
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N =H?^G[ y
% and angular frequency M, evaluated at positions (R,THETA) on the X)S4vqf}
% unit circle. N is a vector of positive integers (including 0), and q0(-"}2l
% M is a vector with the same number of elements as N. Each element 0iVeM!bM
% k of M must be a positive integer, with possible values M(k) = -N(k) @-.Tgpe@a
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, /`g~lww2O
% and THETA is a vector of angles. R and THETA must have the same g&X
X@I8+v
% length. The output Z is a matrix with one column for every (N,M) )5w# n1
% pair, and one row for every (R,THETA) pair. oWBjPsQ
% tLM/STb6
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike )npvy>C'(
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), | v:fP;zc
% with delta(m,0) the Kronecker delta, is chosen so that the integral )zu m.6pT
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, IY}{1[<N
% and theta=0 to theta=2*pi) is unity. For the non-normalized bM"d$tl$?'
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. U[NQ"
% pPJE.[)V/
% The Zernike functions are an orthogonal basis on the unit circle. p)s*Cw
% They are used in disciplines such as astronomy, optics, and .cs4AWml<
% optometry to describe functions on a circular domain. QPKY9.Rvv
% _7,4C?
% The following table lists the first 15 Zernike functions. 6nW]Q^N}
% wSG!.Ejc7
% n m Zernike function Normalization 2cko
GafG{
% -------------------------------------------------- }a!c
% 0 0 1 1 ;2'/rEq4o
% 1 1 r * cos(theta) 2 K'b #}N\
% 1 -1 r * sin(theta) 2 J['i
% 2 -2 r^2 * cos(2*theta) sqrt(6) T.q7~ba*
% 2 0 (2*r^2 - 1) sqrt(3) M^0^l9w
% 2 2 r^2 * sin(2*theta) sqrt(6) %APeQy"6#^
% 3 -3 r^3 * cos(3*theta) sqrt(8) 4']eJ==OH
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 'v%v*Ujf[
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) AP0z~e
% 3 3 r^3 * sin(3*theta) sqrt(8) (4C_Ft*~j
% 4 -4 r^4 * cos(4*theta) sqrt(10) L+.-aB2!d
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) W.?EjEx
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) |yi#6!}^
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) M~5Ja0N~
% 4 4 r^4 * sin(4*theta) sqrt(10) j0A9;AP;;C
% -------------------------------------------------- 3j/~XT
% a4Y43 n
% Example 1: c='uyx
% Nj+gSa9
% % Display the Zernike function Z(n=5,m=1) t ]P^6jw'
% x = -1:0.01:1; 1!A'mkk8
% [X,Y] = meshgrid(x,x); f#
sDG
% [theta,r] = cart2pol(X,Y); 0134mw%jk
% idx = r<=1; /8LTM|(
% z = nan(size(X)); 'J_6SD
% z(idx) = zernfun(5,1,r(idx),theta(idx)); #F ;@Qi3z
% figure 1.z]/cx<y
% pcolor(x,x,z), shading interp >44,Dp]
% axis square, colorbar InB'Ag"
% title('Zernike function Z_5^1(r,\theta)') b@9d@@/wx
% y
hNy
% Example 2: } /aqh ;W
% (gF{S*`
% % Display the first 10 Zernike functions {3K`yDF
% x = -1:0.01:1; sEcg;LFp
% [X,Y] = meshgrid(x,x); +H
"j-:E@t
% [theta,r] = cart2pol(X,Y); q uiX"lV(
% idx = r<=1; #BhcW"@
% z = nan(size(X)); *iXaQu T
% n = [0 1 1 2 2 2 3 3 3 3]; )KUEkslR:
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; )\QPUdOvx
% Nplot = [4 10 12 16 18 20 22 24 26 28]; 7X/KQ97
% y = zernfun(n,m,r(idx),theta(idx)); D9higsN
% figure('Units','normalized') ~iU@ns|g\
% for k = 1:10 aThvq%;
% z(idx) = y(:,k); @K}Bll.E
% subplot(4,7,Nplot(k)) Frum@n
% pcolor(x,x,z), shading interp G(MLq"R6U
% set(gca,'XTick',[],'YTick',[]) j&Y{
CFuZ
% axis square Io]KlR@!T
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) mxmj
% end g!!:o(k
% epxbTJfc
% See also ZERNPOL, ZERNFUN2. YI+o:fGC5
%)P)Xb
^d!I{ y#
% Paul Fricker 11/13/2006 y:,m(P
F 8 gw3
l'kVi
:zsMkdU
?5rM'O2
% Check and prepare the inputs: r<EwtO+x
% ----------------------------- d% Nx/DS)
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) xv0y?#`z
error('zernfun:NMvectors','N and M must be vectors.') 4x?4[J~u[
end s1
(UOd7}
PQ(/1v
h?-M+Ac
if length(n)~=length(m) Z2&7HTz
error('zernfun:NMlength','N and M must be the same length.') Y>I9o)KR
end Nuc2CB)J
IS%e5
gCv[AIE_m
n = n(:); ?HP{>l0r
m = m(:); tW"s^r=95
if any(mod(n-m,2)) #hh7fE'9
error('zernfun:NMmultiplesof2', ... t9[%o=N~lD
'All N and M must differ by multiples of 2 (including 0).')
7!^Zsp^+
end ZBXn&Gm
X{;5jnpG
`k~w
14~w
if any(m>n) qWb 8"
error('zernfun:MlessthanN', ... m";?B1%x
'Each M must be less than or equal to its corresponding N.') :}[D;cx
end smat6p[
2 D!$x+|
[A#>G4a<
if any( r>1 | r<0 ) /[>zFYaQ
error('zernfun:Rlessthan1','All R must be between 0 and 1.') Jb]22]
end fP;2qho
4\(|V
fy
1'SpJL1u~
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) h#]LXs
error('zernfun:RTHvector','R and THETA must be vectors.') vz`r
!xj)
end !-s 6B
Y$nI9
z-;yDB:~t
r = r(:); RbJbVFz8C
theta = theta(:); Zie t-@}
length_r = length(r); MFsW
if length_r~=length(theta) a\Dw*h?b~
error('zernfun:RTHlength', ... {#H'K*j{
'The number of R- and THETA-values must be equal.') tnFhL&
end !E9A=u{
c$~J7e6$
Qd"u$~ qC
% Check normalization: zH1ChgF=}
% -------------------- P*9L3R*=N
if nargin==5 && ischar(nflag) Pc=:j(
isnorm = strcmpi(nflag,'norm'); l#;o^H i
if ~isnorm A?Gk8
error('zernfun:normalization','Unrecognized normalization flag.') @po|07
end .:2=VLuj U
else |n\(I$
isnorm = false; SAGECK[Ix
end &z%DX
Wj\<
)cH]
* ;<>@*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% y<n<uZ;
% Compute the Zernike Polynomials @-Ln* 3n
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 5vj tF4}7!
yMBFw:/o
GM>Ms!Y
% Determine the required powers of r: c4xXsUBQk
% ----------------------------------- q?Av5TFf
m_abs = abs(m); #GA6vJ4^s
rpowers = []; >y^zagC*
for j = 1:length(n) L_ 2R3w
rpowers = [rpowers m_abs(j):2:n(j)]; @BS7Gyw
end BZ>,Qh!J
rpowers = unique(rpowers); N1jJ(}{3
{^SHIL
#;Z+X)
% Pre-compute the values of r raised to the required powers, r`!S*zK
% and compile them in a matrix: C}cYG
% ----------------------------- \%/zf
if rpowers(1)==0 =@ "'aCU/
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); rklK=W z
rpowern = cat(2,rpowern{:}); !UW{xHu
rpowern = [ones(length_r,1) rpowern]; EPL"H:o5%<
else Q^\f,E\S
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); S`Wau/7t
rpowern = cat(2,rpowern{:}); ~h6aTN
end !nyUAZ9 :
]^?V8*zL]
N.qS;%*o{e
% Compute the values of the polynomials: %2`geN<
% -------------------------------------- ,?Nc\Q<:
y = zeros(length_r,length(n)); y|[YEY U)
for j = 1:length(n) O5 ?3nYHa
s = 0:(n(j)-m_abs(j))/2; %!QY:[
pows = n(j):-2:m_abs(j); _#rE6./@q
for k = length(s):-1:1 Fg-4u&Ik
p = (1-2*mod(s(k),2))* ... )6,Pmq~)
prod(2:(n(j)-s(k)))/ ... Pg/$N5->
prod(2:s(k))/ ... &?j]L4%
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 5W~-|8m
prod(2:((n(j)+m_abs(j))/2-s(k))); coFQu ;i
idx = (pows(k)==rpowers); =}Xw}X+[WY
y(:,j) = y(:,j) + p*rpowern(:,idx); FV W&)-I
end /\|AHM
6qzy eli
if isnorm o" ./
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); `#w`-
end ]0&ExD\4
end b~<Tgo_/jf
% END: Compute the Zernike Polynomials @I,:(<6
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% X6lUFko
Af{K#R8!
d
,!sZ&v
% Compute the Zernike functions: gg%9EJpP
% ------------------------------ r>gU*bs(
idx_pos = m>0; RFqf$
idx_neg = m<0; l4`HuNR1
[n{c, U
F
-McDNM
z = y; bP8O&