下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, R]L|&{
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, Ju4={^#
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢?
K6d9[;F
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? F$T@OT6
$)t ]av
Uax[Zh[Cg
Au(zvgP
dP}=cZ~
function z = zernfun(n,m,r,theta,nflag) \q(DlqTqs
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. bq{":[a
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N _7Z|=)
% and angular frequency M, evaluated at positions (R,THETA) on the /2Q@M>
% unit circle. N is a vector of positive integers (including 0), and ! c,=%4Pb
% M is a vector with the same number of elements as N. Each element d#6'dKV$
% k of M must be a positive integer, with possible values M(k) = -N(k) {U/a h2*
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, ?$T!=e"
% and THETA is a vector of angles. R and THETA must have the same 6fV%[.RR
% length. The output Z is a matrix with one column for every (N,M) |d =1|C%,
% pair, and one row for every (R,THETA) pair. qP@d)XRQ
% Q[+&n*
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike w],+l N;
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), B@XnHh5y
% with delta(m,0) the Kronecker delta, is chosen so that the integral "e4;xU-
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, wn2+4> |~p
% and theta=0 to theta=2*pi) is unity. For the non-normalized M5DQ{d<r
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. R+,eX jz"
% p!5=1$
% The Zernike functions are an orthogonal basis on the unit circle. 5=]q+&y\H
% They are used in disciplines such as astronomy, optics, and lYEMrr!KQw
% optometry to describe functions on a circular domain. k/[*Wz$W
% $=?1>zvF
% The following table lists the first 15 Zernike functions. qOOF]L9r%u
% I!'PvIyO
% n m Zernike function Normalization w;@DcX$]
% -------------------------------------------------- T4MB~5,i
% 0 0 1 1 g%z'#E97
% 1 1 r * cos(theta) 2 ]r++YIg!j
% 1 -1 r * sin(theta) 2 hwgLJY?
% 2 -2 r^2 * cos(2*theta) sqrt(6) sDNV_}
h
% 2 0 (2*r^2 - 1) sqrt(3) IRy!8A=X
% 2 2 r^2 * sin(2*theta) sqrt(6) L,G{ t^j
% 3 -3 r^3 * cos(3*theta) sqrt(8) \z'A6@
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 44;ZX$HL
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) xe ng`!
% 3 3 r^3 * sin(3*theta) sqrt(8) zzmZ`Ya
% 4 -4 r^4 * cos(4*theta) sqrt(10) 'wh2787
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10)
Z|zyO-
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) pe(31%(h
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Mle@.IIT
% 4 4 r^4 * sin(4*theta) sqrt(10) Fh t$7V
% -------------------------------------------------- =fA*b
% -)
% Example 1: *]uo/g
% K5X,J/n
% % Display the Zernike function Z(n=5,m=1) NR3]MGBKv
% x = -1:0.01:1; S<),
,(
% [X,Y] = meshgrid(x,x); $gKMVgD"
% [theta,r] = cart2pol(X,Y); #H]b Xr
% idx = r<=1; dV+%x"[:
% z = nan(size(X)); 1O" Mo
% z(idx) = zernfun(5,1,r(idx),theta(idx)); #XSs.i{
% figure s-^B)0T!
% pcolor(x,x,z), shading interp HzADz%~
% axis square, colorbar 7PE3>cD
% title('Zernike function Z_5^1(r,\theta)') q:Lw!'Zh
% :5kgJu
% Example 2: ;uw`6 KJ
% o)w8 ]H/
% % Display the first 10 Zernike functions > Y7nq\
% x = -1:0.01:1; 8S;]]*cD~
% [X,Y] = meshgrid(x,x); &=bWXNU.
% [theta,r] = cart2pol(X,Y); f n]rMH4>
% idx = r<=1; Z.9?u;
% z = nan(size(X)); t{)Z$)'
% n = [0 1 1 2 2 2 3 3 3 3]; w7n6@"q
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; j9)WInYc:
% Nplot = [4 10 12 16 18 20 22 24 26 28]; %3v:c|r
% y = zernfun(n,m,r(idx),theta(idx)); $|0_[~0-n
% figure('Units','normalized') G01 J1Ll}
% for k = 1:10 Vp3r
% z(idx) = y(:,k); f"^G\
% subplot(4,7,Nplot(k)) i={ :6K?^
% pcolor(x,x,z), shading interp .}KY*y
% set(gca,'XTick',[],'YTick',[]) -w8c;5X
% axis square uc6;%=%+
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) RRYm.dMIw
% end 8<z]rLQw?%
% REd"}zDI
% See also ZERNPOL, ZERNFUN2. q2qbbQ6H
4 [@`j{
fC!]M hA"i
% Paul Fricker 11/13/2006 <28L\pdG`
o+U]=q*|)$
u_0&`zq
yc|j]?
mDn*v(
f
% Check and prepare the inputs: ts2;?`~
% ----------------------------- BIx Z4Ft
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) $@8$_g|Wz
error('zernfun:NMvectors','N and M must be vectors.') FScE3~R
end YHoj^=/b
lYZ5FacqC
,^dyS]!d$
if length(n)~=length(m) x)'4u6;d
error('zernfun:NMlength','N and M must be the same length.') 6mH0|:CsY
end \k6Ho?PL
D@[Mk"f
n}8J-/(|+
n = n(:); y 1DP`Ro
m = m(:); {~=Edf
if any(mod(n-m,2)) 3U#z {%
error('zernfun:NMmultiplesof2', ... D;@*
'All N and M must differ by multiples of 2 (including 0).')
K]mR9$/
end :*GLLjS;
J\iyc,M<M
3?Ckk{)&
if any(m>n) ~T<yp
error('zernfun:MlessthanN', ... 'qRK6}"T
'Each M must be less than or equal to its corresponding N.') bv&A)h"S
end EYc, "'
OLAwRha
AF5$U8jf
if any( r>1 | r<0 ) ZVo%ssVt
error('zernfun:Rlessthan1','All R must be between 0 and 1.') zo*YPDEm"
end JX_hLy@`
P19nF[A
p"9a`/
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 1( V>8}zn
error('zernfun:RTHvector','R and THETA must be vectors.') esCm`?qCP
end L%,tc~)A
LQVa,'
I>k>^
r = r(:); 4@6!E^
theta = theta(:); U1?*vwfKZ
length_r = length(r); 'I|A*rO
if length_r~=length(theta) l#P)9$%
error('zernfun:RTHlength', ... R:+2}kS5e{
'The number of R- and THETA-values must be equal.') 2mVcT3
end 74*1|S<
Vl;GQe
[zp v3Uw
% Check normalization: vJ*IUy
% -------------------- +QNFu){G
if nargin==5 && ischar(nflag) .k5
TQt
isnorm = strcmpi(nflag,'norm'); ns_5|*'
if ~isnorm Jd_w:H.
error('zernfun:normalization','Unrecognized normalization flag.') >Lo 0,b$
end /s.O3x._'
else ..yuEA
isnorm = false; *@'4 A :A
end S4]}/Imn)
@DgJxY|
J{$+\
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% X+;F5b9z
% Compute the Zernike Polynomials nenYP0
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% b#h?O}
FoM4QO
'0_Z:\ laU
% Determine the required powers of r: uG1
1~uAt
% ----------------------------------- Sfc0 ~1
m_abs = abs(m); aaq{9Y#
rpowers = []; .uzg2Kd_
for j = 1:length(n) D8P<mIu}Y
rpowers = [rpowers m_abs(j):2:n(j)]; &0*l=!:G^
end '0g1v7Gx
rpowers = unique(rpowers); %V-\ |cw
[Af&K22M(X
q0Fq7rWP
% Pre-compute the values of r raised to the required powers, ]@OGp:Hz
% and compile them in a matrix: O[Xl*9P
% ----------------------------- usiv`.
if rpowers(1)==0 0;z-I"N
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); BcaMeb-Z
rpowern = cat(2,rpowern{:}); uG2(NwOL
rpowern = [ones(length_r,1) rpowern]; $ wGDk
else Xv3u}nPMq
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ?Dro)fH1
rpowern = cat(2,rpowern{:}); %&KJtKe
end z'a#lA.$}
}B2H)dG^K
4fBgmL
% Compute the values of the polynomials: v(^{P
% -------------------------------------- QjETu
y = zeros(length_r,length(n)); w)-@?jN
for j = 1:length(n) X1U7$/t
s = 0:(n(j)-m_abs(j))/2; 6GCwc1g
pows = n(j):-2:m_abs(j); BQVpp,]
for k = length(s):-1:1 }OO(uC2
p = (1-2*mod(s(k),2))* ...
&T?>Kx
prod(2:(n(j)-s(k)))/ ... ]T\K-;i
prod(2:s(k))/ ... \a+F/I$hwa
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... LLv~yS O
prod(2:((n(j)+m_abs(j))/2-s(k))); <mlQn?u
idx = (pows(k)==rpowers); |M|'S~z
y(:,j) = y(:,j) + p*rpowern(:,idx); MfUG@
end N#{d_v^H?d
/km^IH
if isnorm TkhbnO g6
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); BMU}NZA
end \7Hzj0hSi
end E>Ukxi1
% END: Compute the Zernike Polynomials 21GjRPs\
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% quc?]rb
[0CoQ5:d?&
KquHc-fzqr
% Compute the Zernike functions: uy\<t
% ------------------------------ 8r / ]Q
idx_pos = m>0; L>$yslH;b
idx_neg = m<0; =zXpeo&|m
FT73P0!8.
+U&aK dQs
z = y; uRG0}>]|U
if any(idx_pos) (:E_m|00;
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); e:{v.C0ez
end Vnuz!
6.
if any(idx_neg) Py\xN
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); STu!v5XY}-
end ,(Fo%.j
a`(6hL3IT
@& #df
% EOF zernfun $s.:wc^