下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, F9]j{'#
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, _Tyj4t0ElV
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? Y3jb'S4(
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? F7^d@hSV
OL*EY:]
"(ehf|%>%
-\yaP8V
b
w5|gmO
function z = zernfun(n,m,r,theta,nflag) ^I9x@t
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. +vfk+6
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N VA_\Z
% and angular frequency M, evaluated at positions (R,THETA) on the m*h
d%1D
% unit circle. N is a vector of positive integers (including 0), and z%t>z9hU
% M is a vector with the same number of elements as N. Each element pLL
^R
% k of M must be a positive integer, with possible values M(k) = -N(k) G8"L#[~
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, ymybj
% and THETA is a vector of angles. R and THETA must have the same d;\x 'h2
% length. The output Z is a matrix with one column for every (N,M) o<loc Z
% pair, and one row for every (R,THETA) pair. +\9Y;Ny
% T$13"?sr=
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike )` S,vF~
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), nK Rx_D$d
% with delta(m,0) the Kronecker delta, is chosen so that the integral iUqL /
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, waXA%u50
% and theta=0 to theta=2*pi) is unity. For the non-normalized
(`gqLPx[
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. S'vi +_
% YD$fN"}-
% The Zernike functions are an orthogonal basis on the unit circle. h,<%cvU=
% They are used in disciplines such as astronomy, optics, and vWI9ocl`W
% optometry to describe functions on a circular domain. 98bmia&H
% yef@V2Z+
% The following table lists the first 15 Zernike functions. mKynp
% H-?SlVsf
% n m Zernike function Normalization oUR'gc :
% -------------------------------------------------- 6Km@A M]
% 0 0 1 1 u!mUUFl
% 1 1 r * cos(theta) 2 $zq`hI!1
% 1 -1 r * sin(theta) 2 Z<z(;)?c
% 2 -2 r^2 * cos(2*theta) sqrt(6) o6K\z+.{
% 2 0 (2*r^2 - 1) sqrt(3) C/ow{MxA
% 2 2 r^2 * sin(2*theta) sqrt(6) %1a\"F![
% 3 -3 r^3 * cos(3*theta) sqrt(8) CD%wi:C%|
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) QNzI
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) ~j",ePl
% 3 3 r^3 * sin(3*theta) sqrt(8) s$J0^8Q~i
% 4 -4 r^4 * cos(4*theta) sqrt(10) P-[6xu+]
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) TIlcdpwXf
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) f$9V_j-K+
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) K[PIw}V$?:
% 4 4 r^4 * sin(4*theta) sqrt(10) 828E^Q"<
% -------------------------------------------------- ;OTD1=
% %O>ehIerD
% Example 1: _!H{\kU
% \kZxys!4
% % Display the Zernike function Z(n=5,m=1) [GZ%K`wx
% x = -1:0.01:1; vL{sk|2&
% [X,Y] = meshgrid(x,x); (}vi"mCeW
% [theta,r] = cart2pol(X,Y); M?x/C2|
% idx = r<=1; "zL<:TQ"
% z = nan(size(X)); 5`*S'W}\>
% z(idx) = zernfun(5,1,r(idx),theta(idx)); ([iMOE[D3
% figure mu04TPj
% pcolor(x,x,z), shading interp q5YgKz?IC
% axis square, colorbar g:`V:kbY$
% title('Zernike function Z_5^1(r,\theta)') R
@b[o7/
% >7B6iR6N
% Example 2: NMM0'tY~
% i]a0
"
% % Display the first 10 Zernike functions ?@6N EfQf
% x = -1:0.01:1; xq-R5(k
% [X,Y] = meshgrid(x,x); |"?0H#
% [theta,r] = cart2pol(X,Y); +rfw)c'
% idx = r<=1; #GT/Q3{C
% z = nan(size(X));
IM|VGT0
% n = [0 1 1 2 2 2 3 3 3 3]; w4<1*u@${
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; fB|rW~!v
% Nplot = [4 10 12 16 18 20 22 24 26 28]; {<o_6 z`$
% y = zernfun(n,m,r(idx),theta(idx)); 3|8\,fO?
% figure('Units','normalized') ^C^FxIA&
% for k = 1:10 T?{"T/
% z(idx) = y(:,k); R}>xpU1
% subplot(4,7,Nplot(k)) XzgJ@
% pcolor(x,x,z), shading interp s"?Z jV)`
% set(gca,'XTick',[],'YTick',[]) iyAeR!`
% axis square K[PH#dF5,x
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) qasbK:}
% end thIuK V{CO
% W~2`o*\l
% See also ZERNPOL, ZERNFUN2. D/^yAfI
.z4
fJx
s'qd%JxD
% Paul Fricker 11/13/2006 ?%dsY\
{Y6U%HG{{r
IWERn
v!
~CCRs7V/L
w4P?2-kB
% Check and prepare the inputs: \]dx;,T
% ----------------------------- 5P-7"g ca
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) X*hY?'Rp
error('zernfun:NMvectors','N and M must be vectors.') o8;>E>;
end ~VYZu=p
$OB 2ZS"
dc.9:u*w
if length(n)~=length(m) s9+Rq*Qd
error('zernfun:NMlength','N and M must be the same length.') /#lhRNX
end 0F> ils
8Y?zxmwn]
8'[g?
n = n(:); 89o&KF]
m = m(:); _b|mSo,{Y
if any(mod(n-m,2)) hAX@|G.
error('zernfun:NMmultiplesof2', ... ,r^zDlS<q
'All N and M must differ by multiples of 2 (including 0).') A?V}$PTlx
end wd*8w$\
w#mna b@
k8IhQ{@
if any(m>n) F3+
;2GG2
error('zernfun:MlessthanN', ... m_YXTwwx
'Each M must be less than or equal to its corresponding N.') '0q.zzv|_
end "g27|e?y
n'*4zxAA
nMm4fns
if any( r>1 | r<0 ) Pt< JF
error('zernfun:Rlessthan1','All R must be between 0 and 1.') Cge@A'2
end Rr#Zcs!G
m#6RJbEz
"i>?Tg^
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) S;@nPzhc
error('zernfun:RTHvector','R and THETA must be vectors.') X.}i9a
6
end ^f6pw!
1.Kun !w
=D-u".{
r = r(:); wT\JA4
theta = theta(:); 3
UUOB.
length_r = length(r); NzS(,F
if length_r~=length(theta) ]M3V]m
error('zernfun:RTHlength', ... D!7-(3R
'The number of R- and THETA-values must be equal.') ?
nx3#<
end Gbj^o o
0b=1Ce+0q
(|O9L s7N
% Check normalization: ($QQuM=
% -------------------- RvQa&r5l
if nargin==5 && ischar(nflag) vq?Le j
isnorm = strcmpi(nflag,'norm'); [}>!$::Y
if ~isnorm phCItN;
error('zernfun:normalization','Unrecognized normalization flag.') )?`G"(y
end /=5:@
else ^mwS6WH6
isnorm = false; :/A7Z<u,
end W*2d!/;7>
B^;"<2b*
_:+hB9n s
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% {$>Pg/
% Compute the Zernike Polynomials I<+EXH%1,
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% L2\<iJA}c
i,V,0{$
J2ZV\8t
% Determine the required powers of r: 76oJCNY
% ----------------------------------- G0%},Q/
m_abs = abs(m); 7q%xF#mK=
rpowers = []; WUBI(g\
for j = 1:length(n) gOy;6\/
rpowers = [rpowers m_abs(j):2:n(j)]; X+2uM+
end OsT|MX
rpowers = unique(rpowers); c-VIp A1
g1kYL$ o4
G!T_X*^q2U
% Pre-compute the values of r raised to the required powers, 0SjB&J
% and compile them in a matrix: }3O 0nab
% ----------------------------- m?O~(6k@C
if rpowers(1)==0 a^o'KN{
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); C'7DG\pr
rpowern = cat(2,rpowern{:}); Y_zMj`HE
rpowern = [ones(length_r,1) rpowern]; XCyU)[wY
else xlcL;e&^P
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); &+5ij;AD
rpowern = cat(2,rpowern{:}); Sx8RH),k
end nEt{ltsS0
S=<OS2W7+r
1*GL;W~ix*
% Compute the values of the polynomials: E1j3c
:2
% -------------------------------------- [H[L};%=j
y = zeros(length_r,length(n)); [XE\2Qa8e
for j = 1:length(n) $35C1"
s = 0:(n(j)-m_abs(j))/2; r;^%D(
pows = n(j):-2:m_abs(j); Y&<]:)
for k = length(s):-1:1 a]/KJn/B(
p = (1-2*mod(s(k),2))* ... s0O]vDTR,H
prod(2:(n(j)-s(k)))/ ... Jmuyd\?,b
prod(2:s(k))/ ... A.vf)hO
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... BCfmnE4%
prod(2:((n(j)+m_abs(j))/2-s(k))); n:[@#xs-
idx = (pows(k)==rpowers); lc8g$Xw3
y(:,j) = y(:,j) + p*rpowern(:,idx); _\.4ofK(
end s:k?-u@
jF-:e;-
if isnorm <Umr2Vw-
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Q=61.lP6
end ]Cs=EZr
end %VGW]!QR
% END: Compute the Zernike Polynomials z/]]u.UP
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% )@ofczl6
{O:{F?
eEBo:Rc9
% Compute the Zernike functions: "F =NDF
% ------------------------------ +[R^ ?~VK
idx_pos = m>0; eBH:_Ls_-^
idx_neg = m<0; 's.e"F#
%JHv2[r^P
O/U? Wq
z = y; tI@aRF=p]2
if any(idx_pos) )m#Y^
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 1>uAVPa
end J'ZC5Xr
if any(idx_neg) 3%+!qm
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); GM8Q#vc
end !?>QN'p.b
8_E(.]U
EDz;6Z*4N
% EOF zernfun }hsNsQ