下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, ^'"sFEV7RN
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, ("HT0a
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? 7vBB <\
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? N[G<&f9
{UX[SAQ
'W0?XaEk-
tF> ?]
:{pJ
function z = zernfun(n,m,r,theta,nflag) _VIVZ2mU=
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. `9%Q2Al
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Q{9#Am^6w
% and angular frequency M, evaluated at positions (R,THETA) on the NNUm=g^
% unit circle. N is a vector of positive integers (including 0), and JvFU7`4@
% M is a vector with the same number of elements as N. Each element UMe@[E=
% k of M must be a positive integer, with possible values M(k) = -N(k) {eR,a-D!7
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, N?j,'gy4
% and THETA is a vector of angles. R and THETA must have the same w`~j(G4N
% length. The output Z is a matrix with one column for every (N,M) )KvQaC
% pair, and one row for every (R,THETA) pair. X2#;1 ku
% neC]\B[Xm
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 3e)3t `
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ,~@0IKIA
Q
% with delta(m,0) the Kronecker delta, is chosen so that the integral ,$ICv+7]
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 5x/q\p-{/
% and theta=0 to theta=2*pi) is unity. For the non-normalized @C),-TM
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. n1Ag o3NM
% VU>s{_|{
% The Zernike functions are an orthogonal basis on the unit circle. 8e_ITqV%
% They are used in disciplines such as astronomy, optics, and a8fLj
% optometry to describe functions on a circular domain. .F=15A
% hM*T{|y
% The following table lists the first 15 Zernike functions. #N-NI+qX
% %;,D:Tv=&
% n m Zernike function Normalization gd9ZlHo'Id
% --------------------------------------------------
G
$u:1&
% 0 0 1 1 ,nO:Pxn|
% 1 1 r * cos(theta) 2 22?9KZ`Z=
% 1 -1 r * sin(theta) 2 d OY+| P\
% 2 -2 r^2 * cos(2*theta) sqrt(6) r1cB<-bJ#'
% 2 0 (2*r^2 - 1) sqrt(3) "yMr\jt~-
% 2 2 r^2 * sin(2*theta) sqrt(6) K%h83tm+
% 3 -3 r^3 * cos(3*theta) sqrt(8) b2;Weu3WN
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) ~mUP!f
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) )i; y4S
% 3 3 r^3 * sin(3*theta) sqrt(8) i,/|H]Mzr
% 4 -4 r^4 * cos(4*theta) sqrt(10) rn1FCJ<;H
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 7`3he8@ze
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) ;FYiXK%
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) qIQvix$8
% 4 4 r^4 * sin(4*theta) sqrt(10) o{\@7'G
% -------------------------------------------------- %^RlE@l9
% 1 sCF
-r
% Example 1: UP:+1Sp9
% }#@P+T:b
% % Display the Zernike function Z(n=5,m=1) Jrlc%,pZ
% x = -1:0.01:1; 2S^xqvh
% [X,Y] = meshgrid(x,x); n
}lav
% [theta,r] = cart2pol(X,Y); %j=E}J<H5*
% idx = r<=1; 1N<)lZl)
% z = nan(size(X)); 7I4G:-V:^
% z(idx) = zernfun(5,1,r(idx),theta(idx)); {:
EQ
% figure Yg%V
% pcolor(x,x,z), shading interp #m9V)1"wB
% axis square, colorbar zx{\SU
% title('Zernike function Z_5^1(r,\theta)') 6m21Y8N
% =Feavyx
% Example 2: Jg|3Wjq5
% nLkC-+$tM
% % Display the first 10 Zernike functions C78d29
% x = -1:0.01:1; e*vSGT$KgL
% [X,Y] = meshgrid(x,x); Dbyy H_
% [theta,r] = cart2pol(X,Y); kYs2AzS{d
% idx = r<=1; V]}/e!XK\
% z = nan(size(X)); Z.m.Uyz{7
% n = [0 1 1 2 2 2 3 3 3 3]; Jg
k@ti.}Z
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; e,I-u'mLQs
% Nplot = [4 10 12 16 18 20 22 24 26 28]; O3*Vilx
% y = zernfun(n,m,r(idx),theta(idx)); 13A11XTp
% figure('Units','normalized') @N.W#<IG
% for k = 1:10 B7t#H?
% z(idx) = y(:,k); {NE;z<,*:
% subplot(4,7,Nplot(k)) R|t.wawCo
% pcolor(x,x,z), shading interp CT4R/wzY7
% set(gca,'XTick',[],'YTick',[]) n<yV]i$
% axis square cJ:BEe
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) "DWw1{ 5/
% end : M0LAN
% z[qM2
% See also ZERNPOL, ZERNFUN2. [.z1
LEVNywk[
& A9psc(,&
% Paul Fricker 11/13/2006 V6wYJ$]
IG +nrTY0
3SQ
5C'E
Q*$x!q
!l6B_[!@
% Check and prepare the inputs: O0b8wpFf
% ----------------------------- Kr]!BI?z
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) jopC\Z
error('zernfun:NMvectors','N and M must be vectors.') P9`i6H'~
end RW>Z~Nj
!^q<)!9<EO
RWTv,pLK
if length(n)~=length(m) @uY%;%Pa8
error('zernfun:NMlength','N and M must be the same length.') `-ENKr]
end )Y?Hf2']
f<|8NQ2y.
O";r\Z
n = n(:); =NJb9S&8A
m = m(:); $
Qg81mu
if any(mod(n-m,2)) C<w9f
error('zernfun:NMmultiplesof2', ... 7SAu">lIl
'All N and M must differ by multiples of 2 (including 0).') aKCCFHq t!
end 'zT/x`V
y''? yr
[zf9UUc~
if any(m>n) aeUm,'Y$
error('zernfun:MlessthanN', ... NX)7g}S
'Each M must be less than or equal to its corresponding N.') 9M01}
end NqqLRgMOR'
V=(4
c
-]'Sy$,A
if any( r>1 | r<0 ) <\zb*e&vr
error('zernfun:Rlessthan1','All R must be between 0 and 1.') zKV{JUpG
end L4kYF~G:4
Y,E:?
[U3z*m>e;
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) I8^z\ef&
error('zernfun:RTHvector','R and THETA must be vectors.') u> >t"w
end $8it&/JP,
fvNGGn!
}
A#C
r = r(:); ~q|^z[7
theta = theta(:);
8CEy#%7]}
length_r = length(r); cW&OVNj
if length_r~=length(theta) 5&