切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9012阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, MLkL.1eGSb  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, Pmqx ;  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? _)HD4,`  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? zz7Y/653  
    <^H1)=tlF  
    Qx6,>'Qk'  
    J=f:\]@Oy  
    {^PO3I  
    function z = zernfun(n,m,r,theta,nflag) A^}i^  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 0A) Vtj$  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N &4w\6IR  
    %   and angular frequency M, evaluated at positions (R,THETA) on the Verbmeg&n  
    %   unit circle.  N is a vector of positive integers (including 0), and m;;0 Cl  
    %   M is a vector with the same number of elements as N.  Each element *F26}q  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) ` <l/GwtAJ  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ]7XkijNb  
    %   and THETA is a vector of angles.  R and THETA must have the same h|(Z XCH  
    %   length.  The output Z is a matrix with one column for every (N,M) M<SbVP|V "  
    %   pair, and one row for every (R,THETA) pair. 3s+<    
    % }}4 sh5z  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike rX|y/0)F  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), b0~H>cnA  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral zIAu3  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 3/A!_Uc(  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized wW6mYgPN%  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 7G<KrKal  
    % Y|GJp h  
    %   The Zernike functions are an orthogonal basis on the unit circle. a in#_H  
    %   They are used in disciplines such as astronomy, optics, and . Ce&9l  
    %   optometry to describe functions on a circular domain. J1gEjd   
    % E3FW*UNg[y  
    %   The following table lists the first 15 Zernike functions. 1_33;gP  
    % c&| '3i+  
    %       n    m    Zernike function           Normalization xN{"%>Mx  
    %       -------------------------------------------------- Tc'{i#%9j  
    %       0    0    1                                 1 t+W=2w&  
    %       1    1    r * cos(theta)                    2 t?du+:  
    %       1   -1    r * sin(theta)                    2 hX>VVeIZ  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) B"?+5A7  
    %       2    0    (2*r^2 - 1)                    sqrt(3) }rj C_q  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) \GbHS*\+  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8)  BdE`p{  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) %ojR?=ON  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) r {/ G\  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) }ZM*[j  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 'Ec:l(2Ec  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 7T|J[W O  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 0]h8)EW  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) </+%R"`  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) M3jv aI  
    %       -------------------------------------------------- YvxMA#  
    % ;mo\ yW1  
    %   Example 1: \CJx=[3(  
    %  23(E3:.  
    %       % Display the Zernike function Z(n=5,m=1) V. bH$@ej  
    %       x = -1:0.01:1; 7q2"b?|h  
    %       [X,Y] = meshgrid(x,x); H.l,%x&K  
    %       [theta,r] = cart2pol(X,Y); D_ Bx>G9  
    %       idx = r<=1; cAKoPU>U  
    %       z = nan(size(X)); TsFdy{/o*  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); :9!0 Rm  
    %       figure ^M"=A}h  
    %       pcolor(x,x,z), shading interp Ddm76LS  
    %       axis square, colorbar 4U! .UNi  
    %       title('Zernike function Z_5^1(r,\theta)') zV_-rf  
    % v]`A_)[  
    %   Example 2: |peMr#  
    % HgSmAziv  
    %       % Display the first 10 Zernike functions U>plv  
    %       x = -1:0.01:1; ;Xd\$)n  
    %       [X,Y] = meshgrid(x,x); fw:^Lyn9$  
    %       [theta,r] = cart2pol(X,Y); 5|~r{w)9  
    %       idx = r<=1; bE`*Uw4  
    %       z = nan(size(X)); _/sf@R  
    %       n = [0  1  1  2  2  2  3  3  3  3]; A9qO2kq7_  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 4MtqQq4%  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; rlO%%Qn`  
    %       y = zernfun(n,m,r(idx),theta(idx)); !6tC[W`  
    %       figure('Units','normalized') n?P 5pJ  
    %       for k = 1:10 ]|$$:e^U9  
    %           z(idx) = y(:,k); CI~;B  
    %           subplot(4,7,Nplot(k)) Fzld0p9=  
    %           pcolor(x,x,z), shading interp X%9xuc  
    %           set(gca,'XTick',[],'YTick',[]) DKVt8/vq  
    %           axis square ap'kxOf"1  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 9+is?Pj  
    %       end ?k:])^G5  
    % "! 6 B5Oz  
    %   See also ZERNPOL, ZERNFUN2. 'MdE}  
    }DUDA%U  
    ad$Qs3)6o  
    %   Paul Fricker 11/13/2006 *liPJ29C[  
    :UhFou_D4l  
    7f\^VG  
    Qqhb]<z  
     > ^v8N  
    % Check and prepare the inputs: f`9rT c  
    % ----------------------------- b%!`fn-;  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) N;ecT@U g  
        error('zernfun:NMvectors','N and M must be vectors.') QV H'06 "{  
    end mQA<t)1  
    ^n45N&916  
    kzVI:  
    if length(n)~=length(m) 9hs{uxwuEE  
        error('zernfun:NMlength','N and M must be the same length.') U)w|GrxX  
    end FTYLMQ i  
    X.AOp  
    SQKY;p  
    n = n(:); -L'K  
    m = m(:); qQ DFg`  
    if any(mod(n-m,2)) wCTR-pL^  
        error('zernfun:NMmultiplesof2', ... 7}1Kafs  
              'All N and M must differ by multiples of 2 (including 0).') 1707  
    end 9MzkG87J  
    CG>2 ,pP,  
    'lRHdD}s  
    if any(m>n) ^R'!\m|FR  
        error('zernfun:MlessthanN', ... q\HBAr y  
              'Each M must be less than or equal to its corresponding N.') L{0OMyUA  
    end T17LYHIT  
    8`~3MsE"  
    <[5${)  
    if any( r>1 | r<0 ) MJ"Mn^:/  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') }NBJ T4R  
    end !6/IKh`J  
    4"X>_Nt6  
    , sJfMY  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) =i5:*J  
        error('zernfun:RTHvector','R and THETA must be vectors.') |AfQ_iT6c  
    end ?{z$ { bD  
    z57papo  
    ^$,kTU'=  
    r = r(:); ^oB1 &G  
    theta = theta(:); x0;}b-f  
    length_r = length(r); pVa|o&,  
    if length_r~=length(theta) wG?kcfu  
        error('zernfun:RTHlength', ... XXwhs-:o  
              'The number of R- and THETA-values must be equal.') Mh.eAM8_  
    end U1|4vd9  
    gwz _b  
    xAz4ZXj=q  
    % Check normalization: FC(cXPX}  
    % -------------------- ZznWs+  
    if nargin==5 && ischar(nflag) _vLT!y  
        isnorm = strcmpi(nflag,'norm'); LXF%~^^@d  
        if ~isnorm 0S7Isk2W  
            error('zernfun:normalization','Unrecognized normalization flag.') coVT+we  
        end t RyGxqiG  
    else p33GKg0i+(  
        isnorm = false; j<P%Uy+  
    end n rB27  
    ?E_p,#9j)  
    }3_G|  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 5XUI7Q%  
    % Compute the Zernike Polynomials |#jm=rT0y  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% *-LU'yM6Yh  
    &8i{'k,l  
    RS02>$jo  
    % Determine the required powers of r: eRy'N|'  
    % ----------------------------------- <_q/ +x]8  
    m_abs = abs(m); Q4 :r$ &  
    rpowers = []; vm^# aoDB  
    for j = 1:length(n) h GXD u;{  
        rpowers = [rpowers m_abs(j):2:n(j)]; |M>k &p,B-  
    end knzED~ v@(  
    rpowers = unique(rpowers); OYp8r  
    _rJ SkZO  
    :{uUc  
    % Pre-compute the values of r raised to the required powers, ?8}jJw2H  
    % and compile them in a matrix: SW'KYzn  
    % ----------------------------- 3i}B\ {  
    if rpowers(1)==0 ~MQf($]  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); FN`kSTm*0!  
        rpowern = cat(2,rpowern{:}); esFL<T  
        rpowern = [ones(length_r,1) rpowern]; =F[,-B~  
    else 2`U&,,-Mf  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); eSBf;lr=  
        rpowern = cat(2,rpowern{:}); h5keYBA  
    end 7uNI  
    6yM dl~.  
    \bSHBTK  
    % Compute the values of the polynomials: w>Sz^_ h  
    % -------------------------------------- U7eQ-r  
    y = zeros(length_r,length(n)); {/!Gh\i  
    for j = 1:length(n) <ijmkNVS  
        s = 0:(n(j)-m_abs(j))/2; W3rvKqdw5  
        pows = n(j):-2:m_abs(j); ~At.V+  
        for k = length(s):-1:1 '+zsj0!A  
            p = (1-2*mod(s(k),2))* ... }PL  
                       prod(2:(n(j)-s(k)))/              ... o:\a  
                       prod(2:s(k))/                     ... P`"DepeD  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ]m>MB )9  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); d`7] reh  
            idx = (pows(k)==rpowers); hzo,.hS's  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 6Ymk8.PF  
        end g(H3arb&  
         OR8o%AxL7  
        if isnorm C8q-gP[  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); rNC3h"i\  
        end 4O^1gw  
    end 6 74X)hB  
    % END: Compute the Zernike Polynomials O_Q,!&*6  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% :|3 C-+[  
    Wh_c<E}&  
    }!Lr!eALr  
    % Compute the Zernike functions: >GUTno$J  
    % ------------------------------ Ft !~w#&-  
    idx_pos = m>0; y<(.,Nb8  
    idx_neg = m<0; e90z(EF?0  
    >E=a~ O  
    [rsAY&.  
    z = y; P[i/o#  
    if any(idx_pos) EtGr& \,  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); CNYchE,}  
    end T9?_ `h  
    if any(idx_neg) Y%@'a~  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); l}/UriZ0  
    end Z Uv_u6aD  
    gHshG;z*  
    )&-E@% \  
    % EOF zernfun mJ7kOQ-.$  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  .JqIAC~  
    &Lw| t_y  
    DDE还是手动输入的呢? }73H$ss:  
    JF7T1T  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究