切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9267阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, )fXxkOd  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, nUY)Ln I  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? H94_ae  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? C&F% j.<  
    Q3r]T.].h  
    4Zjd g`  
    "-fyX!  
    [p\xk{7Y  
    function z = zernfun(n,m,r,theta,nflag) Jv(E '"H  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. [:,|g;=Y}  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N K[SzE{5=P  
    %   and angular frequency M, evaluated at positions (R,THETA) on the d+Mogku2  
    %   unit circle.  N is a vector of positive integers (including 0), and &WCVdZK:  
    %   M is a vector with the same number of elements as N.  Each element B'Nvl#  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) ^`-Hg=d  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, _2k<MiqCD[  
    %   and THETA is a vector of angles.  R and THETA must have the same b5p;)#  
    %   length.  The output Z is a matrix with one column for every (N,M) [)Ia Xa  
    %   pair, and one row for every (R,THETA) pair. ;J?fK69%  
    % +vFqHfmP  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike NgGpLdaC2v  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), kPEU}Kv  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral cLp9|y0r  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, GNG.N)q#C  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized Q2|6WE  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ?h7[^sxJ  
    % )W@  
    %   The Zernike functions are an orthogonal basis on the unit circle. ),<h6$  
    %   They are used in disciplines such as astronomy, optics, and Q1h v2*/U  
    %   optometry to describe functions on a circular domain. HDo=WqG  
    % F&/ }x15  
    %   The following table lists the first 15 Zernike functions. {YzpYc1  
    % }k1[Fc|  
    %       n    m    Zernike function           Normalization 7|m{hSc  
    %       -------------------------------------------------- EY1L5 Ba.  
    %       0    0    1                                 1 6{Bvl[mhI  
    %       1    1    r * cos(theta)                    2 Y5>'(A>  
    %       1   -1    r * sin(theta)                    2 6yaWxpW  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) oxCfSA  
    %       2    0    (2*r^2 - 1)                    sqrt(3) X bV?=  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) z ISy\uka  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) a.<!>o<t:  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) I7ySm12}  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) lZ+ 1 A0e  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) WsM/-P1Y  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) :Ea ]baM"  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Dx3Sf}G `  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) "MT{t><  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) (w'k\y  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) .Vq_O u  
    %       -------------------------------------------------- is- {U? -  
    % M+Y^A7  
    %   Example 1: iL IKrU+`  
    % /3vj`#jD  
    %       % Display the Zernike function Z(n=5,m=1) j%0 g *YI  
    %       x = -1:0.01:1; 9e 1KH'  
    %       [X,Y] = meshgrid(x,x); B415{  
    %       [theta,r] = cart2pol(X,Y); ,wra f#UdP  
    %       idx = r<=1; 2wh{[Q2f  
    %       z = nan(size(X)); y /?;s]>b  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); an?g'8! r:  
    %       figure gtP;Qw'  
    %       pcolor(x,x,z), shading interp p4zV<qZ>e  
    %       axis square, colorbar X?"Ro`S  
    %       title('Zernike function Z_5^1(r,\theta)') r(=3yd/G$  
    % I."4u~[  
    %   Example 2: M#>f:_`<  
    % UUql"$q  
    %       % Display the first 10 Zernike functions +%RXV ~  
    %       x = -1:0.01:1; hta$ k%2  
    %       [X,Y] = meshgrid(x,x); ?9H.JR2s%  
    %       [theta,r] = cart2pol(X,Y); z[, `  
    %       idx = r<=1; =mk7'A>l  
    %       z = nan(size(X)); Y-,1&$&  
    %       n = [0  1  1  2  2  2  3  3  3  3]; :!EOg4%i  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; kjW`k?'s  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; ZGOI8M]@  
    %       y = zernfun(n,m,r(idx),theta(idx)); mk~Lkwl  
    %       figure('Units','normalized') Ec]cCLB  
    %       for k = 1:10 @{n2R3)k B  
    %           z(idx) = y(:,k); xF{<-b  
    %           subplot(4,7,Nplot(k)) xH8nn3U  
    %           pcolor(x,x,z), shading interp : XZ  
    %           set(gca,'XTick',[],'YTick',[]) m; LeaD}0  
    %           axis square LNU9M>  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) BO ^T :  
    %       end o'  DXd[y  
    % P8s'e_t  
    %   See also ZERNPOL, ZERNFUN2. \h"QgHzp  
    yz2NB?)  
    p.1|bXY`  
    %   Paul Fricker 11/13/2006 :FdV$E]]<  
    yHoj:f$$x  
    ^Q_0Zq^H  
    [OsW   
    *Mqg_} 0Y  
    % Check and prepare the inputs: ODM<$Yo:d  
    % ----------------------------- DI!l.w5P_  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 'u.`!w '|L  
        error('zernfun:NMvectors','N and M must be vectors.') mv xg|<  
    end : C;=<$  
     o*QhoDjc  
    $y >J=  
    if length(n)~=length(m) R16" lG  
        error('zernfun:NMlength','N and M must be the same length.') ?z60b=f8  
    end 4 ITSDx  
    Fk 1M5Dm  
    *-Y|qS%  
    n = n(:); 4oOe  
    m = m(:); hD l+  
    if any(mod(n-m,2)) $0K9OF9$  
        error('zernfun:NMmultiplesof2', ... :h3 Gk;u  
              'All N and M must differ by multiples of 2 (including 0).') Md[nlz  
    end d8 ve$X  
    TZZ qV8  
    Xf9VW}`*8  
    if any(m>n) 9!FV. yp%F  
        error('zernfun:MlessthanN', ... yZ+o7?(2p  
              'Each M must be less than or equal to its corresponding N.') A0WQZt!FEN  
    end f=J#mmH w$  
    q^dI!93n|  
    ipKkz  
    if any( r>1 | r<0 ) DjL(-7'p  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') K#";!  
    end Ar=pzQ<Z{  
    8N8B${X  
    $K8ZxH1z@  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) #ZGWU_l}  
        error('zernfun:RTHvector','R and THETA must be vectors.') ;Fuxj!gF  
    end sbNCviKP  
    FAU^(]-5m  
    6576RT  
    r = r(:); g[@]OsX   
    theta = theta(:); F=^vu7rf  
    length_r = length(r); Jp5~iC2d  
    if length_r~=length(theta) {q8V  
        error('zernfun:RTHlength', ... ~Cj+6CrT  
              'The number of R- and THETA-values must be equal.') <6n(a)L1  
    end } "y{d@  
    s bW`  
    iQin|$F_O  
    % Check normalization: )Hlr 09t=]  
    % -------------------- 0R*  
    if nargin==5 && ischar(nflag) ~"}-cl,  
        isnorm = strcmpi(nflag,'norm'); jPA?0h  
        if ~isnorm eB!0:nHN  
            error('zernfun:normalization','Unrecognized normalization flag.') AytHnp\H  
        end I#S6k%-'  
    else p#J}@a  
        isnorm = false; xp>r a2A  
    end t91v%L   
    "vjz $.  
     i)8,u  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ZZFa<AK4  
    % Compute the Zernike Polynomials cy/;qd+!M  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% `<Zp!Hl(j  
    Ge[N5N>  
    m]Z& .,bA  
    % Determine the required powers of r: MWsBZJRr  
    % ----------------------------------- vVZ@/D6w  
    m_abs = abs(m); pt|u?T_+  
    rpowers = []; xk.\IrB_  
    for j = 1:length(n)  @;d(>_n  
        rpowers = [rpowers m_abs(j):2:n(j)]; H-0A&oG  
    end ;9 XM s)  
    rpowers = unique(rpowers); Y R#_<o  
    $xlI"-(  
    qV^,muyoG  
    % Pre-compute the values of r raised to the required powers, NBE)DL  
    % and compile them in a matrix: cq % =DZ  
    % ----------------------------- "i4@'`r  
    if rpowers(1)==0 2Wq)y1R<T  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); <q%buyQna  
        rpowern = cat(2,rpowern{:}); 0D:J d6\  
        rpowern = [ones(length_r,1) rpowern]; 8KT|ixs  
    else Sep}{`u  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); HDA!;&NRS  
        rpowern = cat(2,rpowern{:}); ~0t] `<y=  
    end Nm:nSqc  
    pvP|.sw5G  
    x(5>f9bb  
    % Compute the values of the polynomials: W9{6?,]  
    % -------------------------------------- ^ ,U9N  
    y = zeros(length_r,length(n)); )DfmO  
    for j = 1:length(n) a` 95eL}  
        s = 0:(n(j)-m_abs(j))/2; EM;]dLh  
        pows = n(j):-2:m_abs(j); =?0o5|u]  
        for k = length(s):-1:1 -`FTWH  
            p = (1-2*mod(s(k),2))* ... I%b, H`  
                       prod(2:(n(j)-s(k)))/              ... ZVVK:d Dgt  
                       prod(2:s(k))/                     ... GmPNzHDb  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 'X"@C;q  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 9]Uvy|  
            idx = (pows(k)==rpowers); w,;CrW T2t  
            y(:,j) = y(:,j) + p*rpowern(:,idx); *pyi;  
        end 2zh?]if  
         QrHI}r  
        if isnorm W$v5o9\Px  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); <<@$0RW  
        end 'h.{fKG]ME  
    end {(Drw~/@  
    % END: Compute the Zernike Polynomials | ?~-k[|  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% / \!hW-+]W  
    TfDx> F$  
    <hkg~4EKc  
    % Compute the Zernike functions: IFH%R>={  
    % ------------------------------ tb/bEy^  
    idx_pos = m>0; A+69_?B TH  
    idx_neg = m<0; /J<?2T9G  
    ~}i &gd|(  
    ;mu9;ixZ  
    z = y; *Ny^XQ_X  
    if any(idx_pos) w t? 8-_  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ,[D,G  
    end U z>5!_  
    if any(idx_neg) fF;Oz"I{\  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); -z-58FLlO  
    end LL7a 20  
    ~Wm`SIV  
    Xl.h&x0? 8  
    % EOF zernfun hT>h  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  LN ]ks)  
    ag]b]K  
    DDE还是手动输入的呢? !p >a,8w  
    \O/" F;  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究