切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8872阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, F9]j{'#  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, _Tyj4t0ElV  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? Y3jb 'S4(  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? F7^d@hSV  
    OL*EY:]  
    "(ehf|%>%  
    -\yaP8V  
    b w5|gmO  
    function z = zernfun(n,m,r,theta,nflag) ^I9x@t  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. +vfk+6  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N VA_\Z  
    %   and angular frequency M, evaluated at positions (R,THETA) on the m*h d%1D  
    %   unit circle.  N is a vector of positive integers (including 0), and z%t>z9hU  
    %   M is a vector with the same number of elements as N.  Each element pLL ^R  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) G8"L #[~  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ymybj  
    %   and THETA is a vector of angles.  R and THETA must have the same d; \x 'h2  
    %   length.  The output Z is a matrix with one column for every (N,M) o<locZ  
    %   pair, and one row for every (R,THETA) pair. +\9Y;N y  
    % T$13"?sr=  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike )` S,vF~  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), nK Rx_D$d  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral iUqL /  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, waXA%u50  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized (`gqLPx[  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. S'vi +_  
    % YD$fN"}-  
    %   The Zernike functions are an orthogonal basis on the unit circle. h,<%cvU=  
    %   They are used in disciplines such as astronomy, optics, and vWI9ocl`W  
    %   optometry to describe functions on a circular domain. 9 8bmia&H  
    % yef@V2Z+  
    %   The following table lists the first 15 Zernike functions. mKynp  
    % H-?SlVsf  
    %       n    m    Zernike function           Normalization oUR'gc :  
    %       -------------------------------------------------- 6Km@A M]  
    %       0    0    1                                 1 u!mUUFl  
    %       1    1    r * cos(theta)                    2 $zq`hI!1  
    %       1   -1    r * sin(theta)                    2 Z<z(;)?c  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) o6K\z+.{  
    %       2    0    (2*r^2 - 1)                    sqrt(3) C/ow{MxA  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) %1a\"F![  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) CD%wi:C%|  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) QNzI  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ~j",ePl  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) s$J0^8Q~i  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) P-[6xu+]  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) TIlcdpwXf  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) f$9V_j-K+  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) K[PIw}V$?:  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 828E^Q"<  
    %       -------------------------------------------------- ;OTD1=  
    % %O>ehIerD  
    %   Example 1: _!H{\kU  
    % \kZxys!4  
    %       % Display the Zernike function Z(n=5,m=1) [GZ%K`wx  
    %       x = -1:0.01:1; vL{sk|2&  
    %       [X,Y] = meshgrid(x,x); (}vi"mCeW  
    %       [theta,r] = cart2pol(X,Y); M?x/C2|  
    %       idx = r<=1; "zL<:TQ"  
    %       z = nan(size(X)); 5`*S'W}\>  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); ([iMOE[D3  
    %       figure mu04TPj  
    %       pcolor(x,x,z), shading interp q5YgKz?IC  
    %       axis square, colorbar g:`V:kbY$  
    %       title('Zernike function Z_5^1(r,\theta)') R @b[o7/  
    % >7B6iR6N  
    %   Example 2: NMM0'tY~  
    % i]a0 "  
    %       % Display the first 10 Zernike functions ?@6N EfQf  
    %       x = -1:0.01:1; xq- R5(k  
    %       [X,Y] = meshgrid(x,x); |"?0H#  
    %       [theta,r] = cart2pol(X,Y); +rfw)c'  
    %       idx = r<=1; #GT/Q3{C  
    %       z = nan(size(X)); IM|VGT0  
    %       n = [0  1  1  2  2  2  3  3  3  3]; w4<1*u@${  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; fB|rW~!v  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; {<o_6 z`$  
    %       y = zernfun(n,m,r(idx),theta(idx)); 3|8\,fO?  
    %       figure('Units','normalized') ^C^FxIA&  
    %       for k = 1:10 T?{"T/  
    %           z(idx) = y(:,k); R}>xpU1  
    %           subplot(4,7,Nplot(k)) X zgJ@  
    %           pcolor(x,x,z), shading interp s"?Z jV)`  
    %           set(gca,'XTick',[],'YTick',[]) iyAeR!`  
    %           axis square K[PH#dF5,x  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) q asbK:}  
    %       end thIuK V{CO  
    % W~2`o*\l  
    %   See also ZERNPOL, ZERNFUN2. D/^yAfI  
    .z4 fJx  
    s'qd%JxD  
    %   Paul Fricker 11/13/2006 ?%dsY\  
    {Y6U%HG{{r  
    IWERn v!  
    ~CCRs7V/L  
    w4P?2-kB  
    % Check and prepare the inputs: \]dx;,T  
    % ----------------------------- 5P-7"g ca  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) X*hY?'Rp  
        error('zernfun:NMvectors','N and M must be vectors.') o8;>E>;  
    end ~VYZu=p  
    $ OB2ZS"  
    dc.9:u*w  
    if length(n)~=length(m) s9+Rq*Qd  
        error('zernfun:NMlength','N and M must be the same length.') /#lhRNX  
    end 0F> ils  
    8Y?zxmwn]  
    8'[g?  
    n = n(:); 8 9o&KF]  
    m = m(:); _b|mSo,{Y  
    if any(mod(n-m,2)) hAX@|G.  
        error('zernfun:NMmultiplesof2', ... ,r^zDlS<q  
              'All N and M must differ by multiples of 2 (including 0).') A?V}$PTlx  
    end wd*8w$\  
    w#mnab@  
    k8IhQ{@  
    if any(m>n) F3+ ;2GG2  
        error('zernfun:MlessthanN', ... m_YXTwwx  
              'Each M must be less than or equal to its corresponding N.') '0q.zzv|_  
    end "g27|e?y  
    n'*4zxAA  
    n Mm4fns  
    if any( r>1 | r<0 ) P t< JF  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') Cge@A'2  
    end Rr#Zcs!G  
    m#6RJbEz  
    "i>?Tg^  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) S;@nPzhc  
        error('zernfun:RTHvector','R and THETA must be vectors.') X.}i9a 6  
    end ^f6p w!  
    1.Kun !w  
    =D-u".{  
    r = r(:); wT\JA4  
    theta = theta(:); 3 UUOB.  
    length_r = length(r); NzS(, F  
    if length_r~=length(theta) ]M3V]m  
        error('zernfun:RTHlength', ... D!7-(3R  
              'The number of R- and THETA-values must be equal.') ? nx3# <  
    end Gbj^oo  
    0b=1Ce+0q  
    (|O9L s7N  
    % Check normalization: ($QQuM=  
    % -------------------- RvQa&r5l  
    if nargin==5 && ischar(nflag) vq?Lej  
        isnorm = strcmpi(nflag,'norm'); [}>!$::Y  
        if ~isnorm phCItN;  
            error('zernfun:normalization','Unrecognized normalization flag.') )?`G"( y  
        end /=5:@  
    else ^mwS6WH6  
        isnorm = false; :/A7Z<u,  
    end W*2d!/;7>  
    B^;"<2b*  
    _:+hB9n s  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% {$>Pg/  
    % Compute the Zernike Polynomials I<+EXH%1,  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% L2\<iJA}c  
    i,V,0{$  
    J2 ZV\8t  
    % Determine the required powers of r: 76oJCNY  
    % ----------------------------------- G0%},Q/  
    m_abs = abs(m); 7q%xF#mK=  
    rpowers = []; WUBI( g\  
    for j = 1:length(n) gOy;6\/  
        rpowers = [rpowers m_abs(j):2:n(j)]; X+2uM+  
    end OsT|MX  
    rpowers = unique(rpowers); c-VIpA1  
    g1kYL$o4  
    G!T_X*^q2U  
    % Pre-compute the values of r raised to the required powers, 0Sj B&J  
    % and compile them in a matrix: }3O 0nab  
    % ----------------------------- m?O~(6k@C  
    if rpowers(1)==0 a^o'KN{  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); C'7DG\pr  
        rpowern = cat(2,rpowern{:}); Y_zMj`HE  
        rpowern = [ones(length_r,1) rpowern]; XCyU)[wY  
    else xlcL;e&^P  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); &+5ij;AD  
        rpowern = cat(2,rpowern{:}); Sx8RH),k  
    end nEt{ltsS0  
    S=<OS2W7+r  
    1*GL;W~ix*  
    % Compute the values of the polynomials: E1j3c :2  
    % -------------------------------------- [H[L};%=j  
    y = zeros(length_r,length(n)); [XE\2Qa8e  
    for j = 1:length(n) $35C1"  
        s = 0:(n(j)-m_abs(j))/2; r;^%D(  
        pows = n(j):-2:m_abs(j); Y&<]:)  
        for k = length(s):-1:1 a]/KJn /B(  
            p = (1-2*mod(s(k),2))* ... s0O]vDTR,H  
                       prod(2:(n(j)-s(k)))/              ... Jmuyd\?,b  
                       prod(2:s(k))/                     ... A.vf)hO  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... BCfmnE4%  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); n:[@#xs-  
            idx = (pows(k)==rpowers); lc8g$Xw3  
            y(:,j) = y(:,j) + p*rpowern(:,idx); _\.4ofK(  
        end s:k ?-u@  
         jF-:e;-  
        if isnorm <Umr2Vw-  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Q=6 1.lP6  
        end ]Cs=EZr  
    end %VGW]!QR  
    % END: Compute the Zernike Polynomials z/]]u.UP  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% )@ofczl6  
    {O:{F?  
    eEBo:Rc9  
    % Compute the Zernike functions: "F =NDF  
    % ------------------------------ +[R^ ?~VK  
    idx_pos = m>0; eBH:_Ls_-^  
    idx_neg = m<0; 's.e"F#  
    %JHv2[r^P  
    O/U?Wq  
    z = y; tI@aRF=p]2  
    if any(idx_pos)  )m#Y^  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 1>uAVPa  
    end J'ZC5Xr  
    if any(idx_neg) 3%+!qm  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); GM8Q#vc  
    end !?>QN'p.b  
    8_E(.]U  
    EDz;6Z*4N  
    % EOF zernfun }h sNsQ   
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  salC4z3  
    EW*sTI3  
    DDE还是手动输入的呢? *rmC3'}s  
    $KbZ4bB[Bo  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究