切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9198阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, b RAD_  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, -S$F\%  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? U5Hi9fe  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? CsZ~LQ=DB  
    <KMCNCU\+  
    T$;S   
    Q'OtXs 80  
    ,`geOJn'  
    function z = zernfun(n,m,r,theta,nflag) %"WENa/t  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. IkCuw./  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N O= S[ n  
    %   and angular frequency M, evaluated at positions (R,THETA) on the Qs1p  
    %   unit circle.  N is a vector of positive integers (including 0), and ocGrB)7eD  
    %   M is a vector with the same number of elements as N.  Each element P$E iD+5#z  
    %   k of M must be a positive integer, with possible values M(k) = -N(k)  ?eS;Yc  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, b-u@?G|<  
    %   and THETA is a vector of angles.  R and THETA must have the same yqN`R\d  
    %   length.  The output Z is a matrix with one column for every (N,M) 9c@M(U@Yh  
    %   pair, and one row for every (R,THETA) pair. gFR}WBl/  
    % pGs?Y81  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ciS +.%7  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), NLy4Z:&{  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral M9iX_4  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, H^d?(Svh  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized /.]u%;%r[  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. xfRp_;l+R  
    % Kd:l8%+  
    %   The Zernike functions are an orthogonal basis on the unit circle. 3x~7N  
    %   They are used in disciplines such as astronomy, optics, and SkjG}  
    %   optometry to describe functions on a circular domain. n0KpKH<&  
    % UarLxPQ  
    %   The following table lists the first 15 Zernike functions. |Y3w6!$  
    % *w0!C:mL&  
    %       n    m    Zernike function           Normalization orjtwF>^  
    %       -------------------------------------------------- OAXA<  
    %       0    0    1                                 1 JSL&` `  
    %       1    1    r * cos(theta)                    2 '{ <RX  
    %       1   -1    r * sin(theta)                    2 WARiw[  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) /a\i  
    %       2    0    (2*r^2 - 1)                    sqrt(3) !)bZ.1o  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) ?UsCSJ1V  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 6kAAdy}ck  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) \Oq2{S x\  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) Mt.Cj;h@^[  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) Y(UK:LZ'  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) ZID-~ 6  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) u+8"W[ZULq  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) k8?._1t  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) k[f2`o=  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) .i*oZ'[X  
    %       -------------------------------------------------- ]'5Xjcx  
    % ~vXbh(MX  
    %   Example 1: f1vD{M ;  
    % F\eQV<  
    %       % Display the Zernike function Z(n=5,m=1) }u;K<<h:  
    %       x = -1:0.01:1; jSjC43lh  
    %       [X,Y] = meshgrid(x,x); 9J/[7TzSZ  
    %       [theta,r] = cart2pol(X,Y); f2e;N[D  
    %       idx = r<=1; d5^^h<'  
    %       z = nan(size(X)); Y%;J/4dd  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); qur2t8gnxq  
    %       figure |y^=(|eM  
    %       pcolor(x,x,z), shading interp iqlb,8  
    %       axis square, colorbar +zh\W9  
    %       title('Zernike function Z_5^1(r,\theta)') )Fx]LeI;  
    % @k i|# ro  
    %   Example 2: 35l%iaj]G5  
    % Krae^z9R  
    %       % Display the first 10 Zernike functions ,lH }Ba02F  
    %       x = -1:0.01:1; sJLOz>  
    %       [X,Y] = meshgrid(x,x); 5Npxs&Ea  
    %       [theta,r] = cart2pol(X,Y); 7"!`<5o^  
    %       idx = r<=1; &|x7T<,)  
    %       z = nan(size(X)); NVRzthg%c_  
    %       n = [0  1  1  2  2  2  3  3  3  3]; #1-WiweO  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; wG49|!l6T  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; (RFH.iX  
    %       y = zernfun(n,m,r(idx),theta(idx)); $ 64up!  
    %       figure('Units','normalized') p6%Vf  
    %       for k = 1:10 !=eNr<:V.  
    %           z(idx) = y(:,k); 4'z)J1M  
    %           subplot(4,7,Nplot(k)) u\Cf@}5(  
    %           pcolor(x,x,z), shading interp - VJx)g  
    %           set(gca,'XTick',[],'YTick',[]) jJIP $  
    %           axis square D% jGK  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) L2>e@p\>  
    %       end !JXiTI!  
    % (tYZq86`  
    %   See also ZERNPOL, ZERNFUN2. u"&?u+1j  
    :(]fC~G~  
    n~UI 47  
    %   Paul Fricker 11/13/2006 ^i|R6oO_5  
    l:'#pZ4T  
    nG<oae6z"  
    *k7BE_&*0Z  
    X&WP.n)  
    % Check and prepare the inputs: bkd`7(r  
    % ----------------------------- <<!fA ><W  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Xr  <H^X  
        error('zernfun:NMvectors','N and M must be vectors.') 2VRGTx  
    end !~|-CF0z=  
    w W\[#Ku  
    qHZDo[  
    if length(n)~=length(m) PcC@}3  
        error('zernfun:NMlength','N and M must be the same length.') O &<p 8  
    end 1dLc/, |  
    %[|^7  
    &IN%2c  
    n = n(:); jMn,N9Mf  
    m = m(:); SAdT#0J  
    if any(mod(n-m,2)) zjA]Tr  
        error('zernfun:NMmultiplesof2', ... N" L&Z4Z  
              'All N and M must differ by multiples of 2 (including 0).') ~yJ2@2I  
    end {A/^;X{N^  
    e ymv/  
    !hq2AY&H)  
    if any(m>n) }sH[_%)  
        error('zernfun:MlessthanN', ... Kkp dcc  
              'Each M must be less than or equal to its corresponding N.') T [$-])iK  
    end Ms|c" ?se  
     p?f\/  
    _CHzwNU  
    if any( r>1 | r<0 ) 3q'AgiW  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') ;~<To9O  
    end [eD0L7 1[  
    fz^j3'!\  
    5;}W=x^$a  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) u0L-xC$L  
        error('zernfun:RTHvector','R and THETA must be vectors.') %]Z4b;W[Y  
    end gl+d0<R zw  
    K\2{SjL:B  
    rD=D.1_   
    r = r(:); 14 & KE3`  
    theta = theta(:); f7a4E+}  
    length_r = length(r); Mq$K[]F  
    if length_r~=length(theta) E<\$3G-do  
        error('zernfun:RTHlength', ... qf(mJlU  
              'The number of R- and THETA-values must be equal.') 5(H%Ia  
    end Fs~(>w@  
    ;+wB!/k,  
    _H]^7`;  
    % Check normalization: M?lh1Yu"  
    % -------------------- H<Sf0>OA  
    if nargin==5 && ischar(nflag) dO8 2T3T  
        isnorm = strcmpi(nflag,'norm'); Z8 v8@Y  
        if ~isnorm  )bF l-  
            error('zernfun:normalization','Unrecognized normalization flag.') R `tJ7MB  
        end 9;#RzelSp  
    else [@Ac#  
        isnorm = false; nW)+-Wxq  
    end uHI(-!O  
    G[mqLI{q  
    2Xl+}M.:Y  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% V#oz~GMB  
    % Compute the Zernike Polynomials c;kU|_  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |H t5a.  
    kumV|$Y?kA  
    >T[/V3Z~K  
    % Determine the required powers of r: b11I$b #  
    % ----------------------------------- zhw*Bed<  
    m_abs = abs(m); 2{h2]F  
    rpowers = []; 6o^>q&e}%  
    for j = 1:length(n) yq-~5ui  
        rpowers = [rpowers m_abs(j):2:n(j)]; {<ShUN  
    end WhW}ZS'r  
    rpowers = unique(rpowers); <uuumi-!%G  
    9F807G\4Qt  
     Lw\u{E@  
    % Pre-compute the values of r raised to the required powers, YcA. Bn|as  
    % and compile them in a matrix: ^i8,9T'=  
    % ----------------------------- G0 EXgq8  
    if rpowers(1)==0 "\@J0 |ppb  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); U(f@zGV  
        rpowern = cat(2,rpowern{:}); {P6Bfh7CZ  
        rpowern = [ones(length_r,1) rpowern]; dT0W8oL  
    else r^ Dm|^f#  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); \$_02:#  
        rpowern = cat(2,rpowern{:}); zls^JTE  
    end U:*rlA@_.  
    !kSemDC  
    aA4RC0'  
    % Compute the values of the polynomials: eF%M2:&c;  
    % -------------------------------------- STwGp<8  
    y = zeros(length_r,length(n)); wG)e8,#  
    for j = 1:length(n) MQP9^+f)O?  
        s = 0:(n(j)-m_abs(j))/2; O H>.N"IG  
        pows = n(j):-2:m_abs(j); w<B S  
        for k = length(s):-1:1 zh2<!MH  
            p = (1-2*mod(s(k),2))* ... N 8[r WJ#  
                       prod(2:(n(j)-s(k)))/              ... x~5,v5R^]  
                       prod(2:s(k))/                     ... k\O<pG[U  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... M1eh4IVE?  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); ) ' xyK  
            idx = (pows(k)==rpowers); ?>+uO0*S  
            y(:,j) = y(:,j) + p*rpowern(:,idx); >IS4  
        end 1T#-1n%[k(  
         Ze%S<xT!O  
        if isnorm 2;sTSGDG  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); U1:m=!S;x  
        end o*204BGB  
    end rS>.!DiYr,  
    % END: Compute the Zernike Polynomials jP<6J(  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% p^Ey6,!8]D  
    diNSF-wi,,  
    P1OYS\  
    % Compute the Zernike functions: O h e^{:  
    % ------------------------------ "S#$:92  
    idx_pos = m>0; ky|kg@n{  
    idx_neg = m<0; )vq}$W!:9  
    )$p36dWl  
    Ia%cc L=  
    z = y; dXDyY  
    if any(idx_pos) }uMu8)Q  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ED8{  
    end %S^ke`MhF  
    if any(idx_neg) R7IFlQH%  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); (A2ga):Pk  
    end s>L-0vG  
    M+")*Opq  
    :Jyr^0`J  
    % EOF zernfun "d-vs t5  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  gLFSZ  
    [Ak 0kH >  
    DDE还是手动输入的呢? ,1t|QvO  
    b!/-9{  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究