下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, WnhH]WY
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, /w2NO9Q
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? uTrQ<|}#
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? ;ZTh(_7
vj"['6Xa
^_/gM[H.
= Q"(9[Az
at(gem
function z = zernfun(n,m,r,theta,nflag) P_(<?0l
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 5uU{!JuSa
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N F6"Qs FG
% and angular frequency M, evaluated at positions (R,THETA) on the G$s=P
% unit circle. N is a vector of positive integers (including 0), and tD])&0"(
% M is a vector with the same number of elements as N. Each element CJ [e^K{
% k of M must be a positive integer, with possible values M(k) = -N(k) hA+;eXy/
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, AjINO}b
% and THETA is a vector of angles. R and THETA must have the same d.k'\1o
% length. The output Z is a matrix with one column for every (N,M) aZ}z/.b]
% pair, and one row for every (R,THETA) pair. 1~vv<`-
% qot{#tk
d
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike xLw[
aYy4
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), -l{ wB"
% with delta(m,0) the Kronecker delta, is chosen so that the integral ZK8DziO
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, @}{Fw;,(7n
% and theta=0 to theta=2*pi) is unity. For the non-normalized 5D>cbzP@
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 0$|wj^?U
% i8.OM*[f
% The Zernike functions are an orthogonal basis on the unit circle. M] W5%3do
% They are used in disciplines such as astronomy, optics, and xI8v'[3
% optometry to describe functions on a circular domain. d4o_/[
% e)oi3d.wJf
% The following table lists the first 15 Zernike functions. uKo4nXVtp
% [yVcH3GcjI
% n m Zernike function Normalization E#n:d9WA:
% -------------------------------------------------- '>>@I~<\
% 0 0 1 1 F>at^6^
% 1 1 r * cos(theta) 2 kv`5"pa7M
% 1 -1 r * sin(theta) 2 vr$z6m ^
% 2 -2 r^2 * cos(2*theta) sqrt(6) |2&|#K4k^
% 2 0 (2*r^2 - 1) sqrt(3) dq3"L!0u
% 2 2 r^2 * sin(2*theta) sqrt(6) z_a7HCG2
% 3 -3 r^3 * cos(3*theta) sqrt(8) >2tosxH M
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) @@|H8mP}H
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) rm,h\
% 3 3 r^3 * sin(3*theta) sqrt(8) = %wBC;
% 4 -4 r^4 * cos(4*theta) sqrt(10) 6H:EBj54?
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) [bd?$qi
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) O9Yk5b;
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) }:+P{
% 4 4 r^4 * sin(4*theta) sqrt(10) QM'>)!8
% -------------------------------------------------- 0vM,2:kf*
% bc\?y2
3
% Example 1: ^7C,GaDsn
% v9Ez0 :)
% % Display the Zernike function Z(n=5,m=1) yj9Ad*.
% x = -1:0.01:1; 1JN/oq;
% [X,Y] = meshgrid(x,x); =4Wjb
% [theta,r] = cart2pol(X,Y); \>4x7mF!
% idx = r<=1; zxvowM
% z = nan(size(X)); iPrAB*
% z(idx) = zernfun(5,1,r(idx),theta(idx)); #^q@ra
% figure >{juw&Uu
% pcolor(x,x,z), shading interp ]j<&
:_
% axis square, colorbar \K(#
r=
% title('Zernike function Z_5^1(r,\theta)') 5va ;Ol4
% ]yA_N>k2K
% Example 2: &qZ:"k
% U&y?3
% % Display the first 10 Zernike functions =JB1 ]b{|
% x = -1:0.01:1; #NWc<Dd
% [X,Y] = meshgrid(x,x); ">S.~'ds
% [theta,r] = cart2pol(X,Y); vC5y]1QDd
% idx = r<=1; .gd'<l
% z = nan(size(X)); +IfU
5&5<
% n = [0 1 1 2 2 2 3 3 3 3]; )nUTux0K\
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; Zh.[f+ l]
% Nplot = [4 10 12 16 18 20 22 24 26 28]; 3/2G~$C
% y = zernfun(n,m,r(idx),theta(idx)); pw1&WP&?3
% figure('Units','normalized') T8a!"lPP7
% for k = 1:10 o<%s\n
% z(idx) = y(:,k); z=VL|Du1OT
% subplot(4,7,Nplot(k)) WhR'MkfL
% pcolor(x,x,z), shading interp <US!XMrCg
% set(gca,'XTick',[],'YTick',[]) X3rvM8
% axis square 6w^Fee`>]
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) T13Jn o
% end x)o`w"]al
% xGymQ|y84
% See also ZERNPOL, ZERNFUN2. JV9Ft,xk
A+F@JpV
8VZLwhj
% Paul Fricker 11/13/2006 6B>H75S+H
Tta+qjr
P[C03a!lXg
QOY M/1U
-pm^k-%v
% Check and prepare the inputs: 4f>
s2I&pQ
% ----------------------------- d/`Q,Vl
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) S`GM#( t@_
error('zernfun:NMvectors','N and M must be vectors.') w.\#!@kZ!
end 3L(vZ2&
XvspE}~y
.\+%Q)?h:
if length(n)~=length(m) &c1zEgl
error('zernfun:NMlength','N and M must be the same length.') ;?0r,0l2$
end w@ =U f7
tXnD>H YV
\ )n'Ywr
n = n(:); xBi``x2eY
m = m(:); Qcr-|?5L
if any(mod(n-m,2)) S?Z"){
error('zernfun:NMmultiplesof2', ... )s4a<Sc]
'All N and M must differ by multiples of 2 (including 0).') I<ta2<h
end iSxuor^;
2DTBL:?`
p/!P kKJ
if any(m>n) wsLfp82
error('zernfun:MlessthanN', ... YX:[],FP
'Each M must be less than or equal to its corresponding N.') LdM9k(
end w*"h#^1z
JgY#W1>
L@HWm;aN
if any( r>1 | r<0 )
@Iy&Qo
error('zernfun:Rlessthan1','All R must be between 0 and 1.') csay\Q{
end 11>K\"K}
h\i>4^]X.
N/&t)7
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) x#_0
6
error('zernfun:RTHvector','R and THETA must be vectors.') i'bUX=JK
end |SF5'\d'
q!P{a^Fnc
N^{+1u7
r = r(:); V,CVMbn/%N
theta = theta(:); R59'KR2?
length_r = length(r); |}>;wZ[7
if length_r~=length(theta) oCftI':@
error('zernfun:RTHlength', ... wO
{-qrN
'The number of R- and THETA-values must be equal.') V;#bcr=Z<J
end 7D%}(pX
1v^eXvY
u9}k^W)E
% Check normalization: Hs~u&c
% -------------------- #n8jn#
if nargin==5 && ischar(nflag) 3bW(VvgcL4
isnorm = strcmpi(nflag,'norm'); W;Ei>~E
if ~isnorm NJ{M-K%>
error('zernfun:normalization','Unrecognized normalization flag.') \.%GgTF
end B:Xmc,|,
else nmZJ%n
isnorm = false; psZAO,p
end It/IDPx4ga
x)<Hr,wd
w_hGWpm
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 8#MiM . f
% Compute the Zernike Polynomials 8XUm.nV
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% E{Ux|r~
_#8OHG.x
<8Zm}-U
% Determine the required powers of r: "me
a*-XB
% ----------------------------------- \)Bws `
m_abs = abs(m); j%qBNoT~
rpowers = []; #K3`$^0 s
for j = 1:length(n) ny]R,D0
rpowers = [rpowers m_abs(j):2:n(j)]; 1/H9(2{L
end xC,;IS k,
rpowers = unique(rpowers); :nHa-N3
nd[{DF?)/
EhOy<f[4W
% Pre-compute the values of r raised to the required powers, eaxp(VX?oy
% and compile them in a matrix: s@ ~Y!A
% ----------------------------- O*ql!9}E{
if rpowers(1)==0 _K?{DnTb
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); &7 YTz3aj
rpowern = cat(2,rpowern{:}); rIt#ps
rpowern = [ones(length_r,1) rpowern]; ^U`Bj*"2
else u,R;=DNl
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); c9eLNVM
rpowern = cat(2,rpowern{:}); h!L/ZeRaV
end 9y~5@/32R
sr&hQ
BSGC.>$s
% Compute the values of the polynomials: JAK+v
% -------------------------------------- tX$v)O|
y = zeros(length_r,length(n)); fgW>U*.ar
for j = 1:length(n) H.HXwN/x
s = 0:(n(j)-m_abs(j))/2; {Di()]/
pows = n(j):-2:m_abs(j); ;ss,x
for k = length(s):-1:1 :|\{mo1NB
p = (1-2*mod(s(k),2))* ... U '#Xwax
prod(2:(n(j)-s(k)))/ ... &C.{7ZNt
prod(2:s(k))/ ... />Z`?
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... z|o7k;raH
prod(2:((n(j)+m_abs(j))/2-s(k))); 5VU
5kiCt
idx = (pows(k)==rpowers); g.3a5#t
y(:,j) = y(:,j) + p*rpowern(:,idx); FSs<A@
end t@`w}o[#
DRn]>IFU
if isnorm MrW#~S|ED
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); NEpomE(>x
end ya<nD '%9
end %V +hm5Q
% END: Compute the Zernike Polynomials pE<@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% }W:Rg}v
=peodj^
O]>FNsh !
% Compute the Zernike functions: UkE fuH
% ------------------------------ w$X"E*~>8
idx_pos = m>0; 0~(K@U>#
idx_neg = m<0; eCDwY:t`
wN|;_~h2
yl>V'
z = y; +ld]P}
if any(idx_pos) , :I:F
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); F ka^0
end k//l~A9m
if any(idx_neg) E^)>9f7
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 'S_OOzpC
end +:a#+]g
\; 9log<Z
Y+,ii$Ce~
% EOF zernfun &%@b;)]J