切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9325阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, WAv@F[  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, ?R282l  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? hg4J2m  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? u]0!|Jd0  
    ^Eu_NUFe  
    $YPQC  
    J+i X,X  
    ~ur)f AuF2  
    function z = zernfun(n,m,r,theta,nflag) %]!?{U\*k  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. H(?e&Qkg  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N %; qY  '+  
    %   and angular frequency M, evaluated at positions (R,THETA) on the soDfi-2o3  
    %   unit circle.  N is a vector of positive integers (including 0), and kR_E6Fl  
    %   M is a vector with the same number of elements as N.  Each element &*jixqzvn  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 6# R;HbkO  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, v|>BDN@,6  
    %   and THETA is a vector of angles.  R and THETA must have the same f@L \E>t  
    %   length.  The output Z is a matrix with one column for every (N,M) L PMb0F}"5  
    %   pair, and one row for every (R,THETA) pair. `!_?uT  
    % eiOi3q  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike \wTW?>o Z  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), yG4MUf6  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral WFXx70n  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, q4 $sc_0i  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized I'P!,Y/>  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. |NXFla  
    % m8p4U-*j  
    %   The Zernike functions are an orthogonal basis on the unit circle. 4@gl4&<h  
    %   They are used in disciplines such as astronomy, optics, and CO7CNN  
    %   optometry to describe functions on a circular domain. uQ-WTz|*  
    % X=\x&Wt  
    %   The following table lists the first 15 Zernike functions. oUCVd}wH  
    % } cRi A  
    %       n    m    Zernike function           Normalization ga,A'Z  
    %       -------------------------------------------------- L-SdQTx_  
    %       0    0    1                                 1 E|\3f(aF  
    %       1    1    r * cos(theta)                    2 WGluZhRuT3  
    %       1   -1    r * sin(theta)                    2 Xp.|.)Od  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) []!tT-Gzy  
    %       2    0    (2*r^2 - 1)                    sqrt(3) gZ=) qT]Pj  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) 2zwuvgiZ  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) v#w4{.8)  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) ?! !;XW  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) MV7}  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 0GF%~6  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 3KbUHSx  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) N IO;  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) UqY J#&MqY  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) P"U>tsHK:  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) A5`#Ot*3  
    %       -------------------------------------------------- Gt?!E6^ !  
    % _$~ex ~v  
    %   Example 1: 1V#B]x:  
    % X*(gT1"t  
    %       % Display the Zernike function Z(n=5,m=1) 'Wd3`4V$  
    %       x = -1:0.01:1; 9(V=Ubj  
    %       [X,Y] = meshgrid(x,x); }Z<D^Z~w  
    %       [theta,r] = cart2pol(X,Y); (8+.#1!*  
    %       idx = r<=1; 'cWlY3%t  
    %       z = nan(size(X)); 8s\8`2=  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); PL9zNCr-[  
    %       figure 9N`+ O  
    %       pcolor(x,x,z), shading interp Fa Qu$q  
    %       axis square, colorbar _gis+f/8h  
    %       title('Zernike function Z_5^1(r,\theta)') Z:W')Nd(  
    % g9RzzE!  
    %   Example 2: sqgD?:@J  
    % 9CgXc5  
    %       % Display the first 10 Zernike functions =P@M&Yy'  
    %       x = -1:0.01:1; ayB=|*Q"  
    %       [X,Y] = meshgrid(x,x);  dfYYyE  
    %       [theta,r] = cart2pol(X,Y);  WMt&8W5  
    %       idx = r<=1; ]0at2  
    %       z = nan(size(X)); &6=TtTp"9  
    %       n = [0  1  1  2  2  2  3  3  3  3]; XY&]T'A  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; (Q*2dd>  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; yHV^a0e7EH  
    %       y = zernfun(n,m,r(idx),theta(idx)); /1s9;'I  
    %       figure('Units','normalized') $_%2D3-;D  
    %       for k = 1:10 eP-R""uPw  
    %           z(idx) = y(:,k); |:J*>"sq  
    %           subplot(4,7,Nplot(k)) ~)oWSo5ll  
    %           pcolor(x,x,z), shading interp b7F3]W<`&  
    %           set(gca,'XTick',[],'YTick',[]) ;@h'Mb  
    %           axis square 8Iqk%n~(  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) _"FbjQ"  
    %       end n]kQtjJ  
    % q329z>  
    %   See also ZERNPOL, ZERNFUN2. tIgCF?  
    |1\dCE03}  
    &Nj:XX;X  
    %   Paul Fricker 11/13/2006 $A5B{2  
    -Ihn<<uE?  
    ^Y*`D_-G  
    !/=9VD{U!  
    d6Q :{!Sd"  
    % Check and prepare the inputs: \6nQ-S_  
    % ----------------------------- "OlI-^y  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) &D&5UdN x  
        error('zernfun:NMvectors','N and M must be vectors.') sk%:Sp  
    end umHs" d  
    &})4?5  
    ~]i]kU   
    if length(n)~=length(m) }(vOaD|k=  
        error('zernfun:NMlength','N and M must be the same length.') ` i^`Q  
    end sbq44L)  
    R+@sHsZ@  
    s\3Z?zm8  
    n = n(:); T{v<  
    m = m(:); D{Jc+Q$  
    if any(mod(n-m,2)) o#KPrW`XJ/  
        error('zernfun:NMmultiplesof2', ... Kr+Bt y  
              'All N and M must differ by multiples of 2 (including 0).') Xbsj:Ko]]U  
    end \e5,`  
    gw}7%U`T9  
    TnZc.  
    if any(m>n) ^QHMN 7r/  
        error('zernfun:MlessthanN', ... [ XY:MU e  
              'Each M must be less than or equal to its corresponding N.') j_YZ(: =  
    end L{o >D"  
    DlQ[}5STF  
    )4o=t.O\K  
    if any( r>1 | r<0 ) /i]=ndAk  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') e4NX\tCpw  
    end j{Qbzczy,  
    -$!Pf$l@  
    %]= 'Uv^x  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 3vvFF]D5k  
        error('zernfun:RTHvector','R and THETA must be vectors.') +XaO?F[c  
    end q5K/+N^2?  
    s'fcAh,c6  
    `- uZv  
    r = r(:); :8GxcqvCWq  
    theta = theta(:); E)Zd{9A5)  
    length_r = length(r); e^l+ #^fR  
    if length_r~=length(theta) YQ[&h  
        error('zernfun:RTHlength', ... bU g2Bm!y  
              'The number of R- and THETA-values must be equal.') :N'[d e  
    end 6[Pr<4J  
    1wH/#K  
    _tauhwu  
    % Check normalization: Wn9Mr2r!*,  
    % -------------------- iRr& 'k  
    if nargin==5 && ischar(nflag) {TN@KB  
        isnorm = strcmpi(nflag,'norm'); .qU%SmQ^  
        if ~isnorm pa> 2JF*  
            error('zernfun:normalization','Unrecognized normalization flag.') 4>ce,*B1  
        end !E.l yz  
    else fB ,!|u  
        isnorm = false; #L*@~M^]  
    end |(8Hk@\CT>  
    6s"bstc{  
    B[m{2XzGH  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 4sD:J-c  
    % Compute the Zernike Polynomials t;~`Lm@hY  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% / )u,Oa  
    v(nQd6;T  
    7J_f/st  
    % Determine the required powers of r: LyPBFo[?  
    % ----------------------------------- #di_V"  
    m_abs = abs(m); ~X(xa  
    rpowers = []; kAF}*&Kzd~  
    for j = 1:length(n) ke6cZV5w  
        rpowers = [rpowers m_abs(j):2:n(j)]; l$~bkVNL  
    end Q1&dB{L  
    rpowers = unique(rpowers); L}S4Zz18  
    U&\{/l  
    e ~,'|~ C5  
    % Pre-compute the values of r raised to the required powers, g4qdm{BL  
    % and compile them in a matrix: u#k6v\/  
    % ----------------------------- GpQF * x  
    if rpowers(1)==0 9TN5|x  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); CH+&  
        rpowern = cat(2,rpowern{:}); 7wEG<,D  
        rpowern = [ones(length_r,1) rpowern]; V4i%|vV  
    else T-8nUo}i  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); I\6<)2j/L  
        rpowern = cat(2,rpowern{:}); G+^$JN=  
    end KIl.?_61O  
    Z!l!3(<G.f  
    4W-+k  
    % Compute the values of the polynomials: T[=cKYp8\  
    % -------------------------------------- cTx/Y&\9  
    y = zeros(length_r,length(n)); o[W3/  
    for j = 1:length(n) +\$|L+@Z  
        s = 0:(n(j)-m_abs(j))/2; l%5%oN`4  
        pows = n(j):-2:m_abs(j); ]@}BdMlHp  
        for k = length(s):-1:1 ?v~3zHK  
            p = (1-2*mod(s(k),2))* ... q;~>h  
                       prod(2:(n(j)-s(k)))/              ... R'HA>?D  
                       prod(2:s(k))/                     ... 0BD((oNg  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ;<R_j%*  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); O}!@28|3"  
            idx = (pows(k)==rpowers); To? bp4  
            y(:,j) = y(:,j) + p*rpowern(:,idx); j;'Wf[V  
        end 5&Kn #  
         :Rx"WY  
        if isnorm O +}EE^*a  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ryLNMh  
        end &V{,D))6[  
    end ZTC1t_  
    % END: Compute the Zernike Polynomials RteTz_ z{  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% B;je|M!d  
    jc`',o'[+  
    2![W N*N>O  
    % Compute the Zernike functions: ,w>?N\w!}  
    % ------------------------------ Dx)XC?'xO  
    idx_pos = m>0; ,]qX_`qF  
    idx_neg = m<0; {# _C  
    %-|q3 ^s  
    VjM uU"++@  
    z = y; &JM;jS z  
    if any(idx_pos) o^6j(~  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ,lM2BXz%  
    end =nZd"t'p|  
    if any(idx_neg) =)5a=^ 6  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 6u;(R0n  
    end J :(\o=5 5  
    shZ<j7gqI  
    @!O{>`  
    % EOF zernfun .LHe*JC  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  u#\3T>o%@  
    dQ[lXV[}v  
    DDE还是手动输入的呢? VA0TY/{ ]  
    DKZ69^  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究