下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, 'goKYl#1Q
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, N3$1f$`
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? \me5"ZU
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? 7:B/?E
)W= O~g
OPN\{<`*d
M|c_P)7ym
A6[FH\f
function z = zernfun(n,m,r,theta,nflag) pO *[~yq5
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. aX1b(h2
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N
MWme3u)D
% and angular frequency M, evaluated at positions (R,THETA) on the WowT!0$
% unit circle. N is a vector of positive integers (including 0), and #czTX%+9(e
% M is a vector with the same number of elements as N. Each element D\G.p |9=
% k of M must be a positive integer, with possible values M(k) = -N(k) _<RTes
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, tAq0Z)
% and THETA is a vector of angles. R and THETA must have the same j4,y+9U
% length. The output Z is a matrix with one column for every (N,M) 0g30nr)
% pair, and one row for every (R,THETA) pair. :%&
E58
% qkKl;Z?Y:
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike /-v ;
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi),
g*a+$'
% with delta(m,0) the Kronecker delta, is chosen so that the integral -$"$r ~ad
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, z'l
HL
% and theta=0 to theta=2*pi) is unity. For the non-normalized wH8J?j"5>
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. c #TY3Z|
% uGz)Vz&3
% The Zernike functions are an orthogonal basis on the unit circle. )Zr\W3yWX
% They are used in disciplines such as astronomy, optics, and I#xdksY
% optometry to describe functions on a circular domain. !`%j#bv
% Y_Fn)(
% The following table lists the first 15 Zernike functions. MO$yst?fK
% z=KDkpV
% n m Zernike function Normalization #I?Z,;DI=
% --------------------------------------------------
.mfLH N%:
% 0 0 1 1 27 XM&ZrZ
% 1 1 r * cos(theta) 2 fD@d.8nXd
% 1 -1 r * sin(theta) 2 K@*+;6y@
% 2 -2 r^2 * cos(2*theta) sqrt(6) 8!|vp7/
% 2 0 (2*r^2 - 1) sqrt(3) IQU1 JVkZ
% 2 2 r^2 * sin(2*theta) sqrt(6) .O"a: ^i
% 3 -3 r^3 * cos(3*theta) sqrt(8) r'Wf4p^Xd
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) ke8g tbm
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) ewd
eC
% 3 3 r^3 * sin(3*theta) sqrt(8) kr+p&|.
% 4 -4 r^4 * cos(4*theta) sqrt(10) Dx1(}D
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Awa| (]
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) lS9S7`
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) .iy>N/u
% 4 4 r^4 * sin(4*theta) sqrt(10) \_O#M
% -------------------------------------------------- tkZUjQIX
% D&F{0
% Example 1: R/x3+_.f
% Xgd-^
% % Display the Zernike function Z(n=5,m=1) }?,YE5~
% x = -1:0.01:1; w r"0+J7
% [X,Y] = meshgrid(x,x); @Pk<3.S0
% [theta,r] = cart2pol(X,Y); :se$<d%
% idx = r<=1; m6[}KkW
% z = nan(size(X)); Ic4#Tk20i
% z(idx) = zernfun(5,1,r(idx),theta(idx)); />mK.FT
% figure f~wON>$K
% pcolor(x,x,z), shading interp X PyDZk/m
% axis square, colorbar mP\V.^
% title('Zernike function Z_5^1(r,\theta)') by'KJxl[
% J@:Q(
% Example 2: pk9Ics;y
% Q&.uL}R
% % Display the first 10 Zernike functions g>h/|bw4
% x = -1:0.01:1; &*>.u8:r
% [X,Y] = meshgrid(x,x); BL 1KM2]
% [theta,r] = cart2pol(X,Y); *Z"`g
%,;
% idx = r<=1; FA*$ dwp
% z = nan(size(X)); #dae^UjM
% n = [0 1 1 2 2 2 3 3 3 3]; #?w07/~L
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 9no<;1+j,
% Nplot = [4 10 12 16 18 20 22 24 26 28]; .f J8
% y = zernfun(n,m,r(idx),theta(idx)); zQulPU
% figure('Units','normalized') f2x!cL|Kx?
% for k = 1:10 3bWGWI
% z(idx) = y(:,k); OU UV8K
% subplot(4,7,Nplot(k)) J{b#X"i
% pcolor(x,x,z), shading interp PolJo?HZ
% set(gca,'XTick',[],'YTick',[]) W"Y)a|rG%
% axis square IWu=z!mO
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 53{\H&q
% end N\*oL*[j
% I`{*QU
% See also ZERNPOL, ZERNFUN2. :41Y
w@^J.7h^
+]cf/_8+s
% Paul Fricker 11/13/2006 \ji\r ]k
pFS@yHs
7*uN[g#p
)nO ^Ay
;Va(l$zD
% Check and prepare the inputs: pFY*Y>6ar
% ----------------------------- ]0* aE
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) C
zJ-tEO
error('zernfun:NMvectors','N and M must be vectors.') 4,LS08&gh
end _jG|kjFTc
AB/${RGf+
AuQ|CXG-\
if length(n)~=length(m) -c&=3O!
error('zernfun:NMlength','N and M must be the same length.') %TQ4ZFD3
end [@lK[7 u
]]:K
l
ij0I!ilG4
n = n(:); v_5qE
m = m(:); sPi
if any(mod(n-m,2)) UUDUda
error('zernfun:NMmultiplesof2', ... +8zACs{p
'All N and M must differ by multiples of 2 (including 0).') P}8hK
end >hNSEWMY`
.)[E`a
UCcr>
if any(m>n) c
qCNk
error('zernfun:MlessthanN', ... !6=s{V&r1
'Each M must be less than or equal to its corresponding N.') s 1M-(d Q
end "L]v:lg3
!6-t_S
;GM`=M4
if any( r>1 | r<0 ) E~}H,*)
error('zernfun:Rlessthan1','All R must be between 0 and 1.') Y9X,2L7V
end n~6$CQ5dF(
DGGySO6=$e
2x<BU3
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) XA#qBxp/h
error('zernfun:RTHvector','R and THETA must be vectors.') Wd7*7']
end
Culv/
Z~Q5<A9Jz
k_}$d{X
r = r(:); &6CDIxH{
theta = theta(:); acS~%^"<_
length_r = length(r); ?MFC(Wsh
if length_r~=length(theta) #d % v=.1
error('zernfun:RTHlength', ... B bmw[Qf\
'The number of R- and THETA-values must be equal.') &'12,'8
end F'[Y.tA ,#
9ad)=3A&L
T%%EWa<a
% Check normalization: Ewz cB\m
% -------------------- i}8OaX3x
if nargin==5 && ischar(nflag) >oq\`E
isnorm = strcmpi(nflag,'norm'); ]zj#X\
if ~isnorm n>u_>2Ikkj
error('zernfun:normalization','Unrecognized normalization flag.') l tNI+G
end )8^E{w^D}
else bJMsB|r
isnorm = false; HR?T
end Z#u{th
Ec<33i]h*p
vGsAM*vw6
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | t:UpP
% Compute the Zernike Polynomials l\L71|3" g
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Caj H;K\
[@qjy*5p
0Md.3kY
% Determine the required powers of r: u^SInanw
% ----------------------------------- [gUD +
m_abs = abs(m); Sm {Sq
rpowers = []; DC).p'0VL
for j = 1:length(n) O\Y*s
rpowers = [rpowers m_abs(j):2:n(j)]; <[ dt2)%L>
end '['%b
rpowers = unique(rpowers); ih)\P0wed
jl}9R]Y_2
c86?-u')
% Pre-compute the values of r raised to the required powers, 1:<n(?5JI
% and compile them in a matrix: d1.@v;
% ----------------------------- 56YqYu.
if rpowers(1)==0 j9c:SP5
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Y*9vR~#H
rpowern = cat(2,rpowern{:}); nt_Cb*K<
rpowern = [ones(length_r,1) rpowern]; sQ\HIU%]
else =W')jKe0
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); }#.OJub
rpowern = cat(2,rpowern{:}); KU"+i8"
end XC<'m{^(m
;C =d(
pY
8)iI=,T*
% Compute the values of the polynomials: ._p2"<
% -------------------------------------- >P(.yQ8&kL
y = zeros(length_r,length(n)); s w>B
for j = 1:length(n) LR.]&(kyd
s = 0:(n(j)-m_abs(j))/2; jXmY8||w
pows = n(j):-2:m_abs(j); 8[@Y`j8
for k = length(s):-1:1 OSuQ7V
p = (1-2*mod(s(k),2))* ... g3'dkS!
prod(2:(n(j)-s(k)))/ ... tol-PJS}
prod(2:s(k))/ ... CEkf0%YJ
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Q& d;UVp
prod(2:((n(j)+m_abs(j))/2-s(k))); }t(5n $go6
idx = (pows(k)==rpowers); !b0A%1W;
y(:,j) = y(:,j) + p*rpowern(:,idx); 8@;R2]Q
end |Z>}#R!,P
WllQM,h
if isnorm |2TH[J_a
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); "}0QxogYE
end cfBlHeYE
end 4+>~Ui_#
% END: Compute the Zernike Polynomials 6&i])iH
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% zO9WqP_`iR
TG?>;It&
$pPc}M[h
% Compute the Zernike functions: iX2exJto
% ------------------------------ e
GAto
idx_pos = m>0; ?Nt m5(R
idx_neg = m<0; DV?c%z`YO
lM#/F\
w"kBAi&
z = y; Zl#';~9W
if any(idx_pos)
`|nJAW3
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); g]MgT-C|
end j/wQ2"@a
if any(idx_neg) ou)0tX3j
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); FS)C<T]t
end C.u)2[(
UaXIrBc
,{ 0&NX
% EOF zernfun R-iWbLD