下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, 5o5y3ibQ
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, F+_4Q
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? (KHTgZ6
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? h@T}WZv
A}sb2P
iZQwo3"8r
Te~"\`omJ3
{hX.R
function z = zernfun(n,m,r,theta,nflag) 3C8'0DB
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 5DfAL;o!
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N X|H%jdta
% and angular frequency M, evaluated at positions (R,THETA) on the gO?+:}!
% unit circle. N is a vector of positive integers (including 0), and pK#Ze/!
% M is a vector with the same number of elements as N. Each element oq=D9
% k of M must be a positive integer, with possible values M(k) = -N(k) O k_I}X
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, [SgP1>M
% and THETA is a vector of angles. R and THETA must have the same 8f% @
% length. The output Z is a matrix with one column for every (N,M) SHPaSq'&N
% pair, and one row for every (R,THETA) pair. 'z2}qJJ)
% _tL*sA>[~)
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike )]!Ps` ,u
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), PEoOs
% with delta(m,0) the Kronecker delta, is chosen so that the integral
= Ow}MX
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, yE-&TW_q:>
% and theta=0 to theta=2*pi) is unity. For the non-normalized J1Mm,LTO
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. YcGSZ0vQ
% pK4I?=A'
% The Zernike functions are an orthogonal basis on the unit circle. 5B
.+>u"e
% They are used in disciplines such as astronomy, optics, and cn=~}T@~Z
% optometry to describe functions on a circular domain. \w^iSK-
% Xd66"k\b+
% The following table lists the first 15 Zernike functions. -[v:1\Vv
% y%=\E
% n m Zernike function Normalization ^v3ytS
% -------------------------------------------------- 7(eWBJfTo
% 0 0 1 1 }
O9q$-8!
% 1 1 r * cos(theta) 2 1&Rz'JQ+
% 1 -1 r * sin(theta) 2 M'W@K
% 2 -2 r^2 * cos(2*theta) sqrt(6) 3`J?as@^8
% 2 0 (2*r^2 - 1) sqrt(3) U}6'_ PRQ
% 2 2 r^2 * sin(2*theta) sqrt(6) t
qbS!r
% 3 -3 r^3 * cos(3*theta) sqrt(8) FgNO# %
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) R*E/E
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 4>{q("r,
% 3 3 r^3 * sin(3*theta) sqrt(8) ;or(:Yoc-
% 4 -4 r^4 * cos(4*theta) sqrt(10) {LY$
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ?
8S0
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) N6$pOQ
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) z}s0D]$+x
% 4 4 r^4 * sin(4*theta) sqrt(10) 8=T;R&U^M
% -------------------------------------------------- vAq`*]W+
% V{$(#r
% Example 1: 0X`Qt[
% Mvrc[s+o
% % Display the Zernike function Z(n=5,m=1) S3:Pjz}t
% x = -1:0.01:1; RqXcL,,9
% [X,Y] = meshgrid(x,x); LCRreIIgZ
% [theta,r] = cart2pol(X,Y); f$iv+7<B^
% idx = r<=1; U{RW=sYB~9
% z = nan(size(X)); ;)5d
wq
% z(idx) = zernfun(5,1,r(idx),theta(idx)); Yp./3b VO
% figure VCcLS3
% pcolor(x,x,z), shading interp :+/V
% axis square, colorbar NUEy0pLw
% title('Zernike function Z_5^1(r,\theta)') 8Cs)_bj#!
% lOPCM1Se
% Example 2: N/TUcG|m\
% $=4T# W=m
% % Display the first 10 Zernike functions utQE$0F
% x = -1:0.01:1; wZh&w<l'
% [X,Y] = meshgrid(x,x); <O?iJ=$
% [theta,r] = cart2pol(X,Y); bAeC=?U
% idx = r<=1; Va\dMv-b
% z = nan(size(X)); J8J~$DU\Gv
% n = [0 1 1 2 2 2 3 3 3 3]; V?
w;YTg
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; _,=A\C_b@
% Nplot = [4 10 12 16 18 20 22 24 26 28]; >,y291p2
% y = zernfun(n,m,r(idx),theta(idx)); nyi}~sB
% figure('Units','normalized') )(9>r/bq
% for k = 1:10 4Ucg<Z&%
% z(idx) = y(:,k); `ndesP
% subplot(4,7,Nplot(k)) IwKhun
% pcolor(x,x,z), shading interp PSI5$Vna4p
% set(gca,'XTick',[],'YTick',[]) y!6B Gz
% axis square H`njKKdR
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 7!#x-KR~5
% end {xW?v;
% 36*"oD=@
% See also ZERNPOL, ZERNFUN2. @R_a'v-
Q'~kWmLf
&vLz{
% Paul Fricker 11/13/2006 (#BkL:dg
Y
_m4:9p
_~&6Kb^*
A)kx,,[
8E&}+DR?
% Check and prepare the inputs: $/Gvz)M
% ----------------------------- @ JZ I
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) cNtGjLpx;
error('zernfun:NMvectors','N and M must be vectors.') zu5'Ex`gQa
end A`TVV
UZi^ &
C~ t?<
if length(n)~=length(m) L)a8W
error('zernfun:NMlength','N and M must be the same length.') bTHKMaGWC
end {^i7 3}@O
yMq&9R9F
gD3s,<>o
n = n(:); =MEv{9_
m = m(:); dFS>uIT7X
if any(mod(n-m,2)) 5B#q/d1/a
error('zernfun:NMmultiplesof2', ... i6?,2\K
'All N and M must differ by multiples of 2 (including 0).') l)[\TD
end <{bQl
L
swYlp
;n%SjQ'%
if any(m>n) ];Z)=y,vM
error('zernfun:MlessthanN', ... :'91qA%Wr
'Each M must be less than or equal to its corresponding N.') :6S!1roi
end !Y>lAx d
<k<K"{
.+MJ' bW
if any( r>1 | r<0 ) |!E>I
error('zernfun:Rlessthan1','All R must be between 0 and 1.') CL.JalR`b
end &PaqqU.
ns[v.YDL
eqU2>bIf
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) SeN4gr*
error('zernfun:RTHvector','R and THETA must be vectors.') (9%
ki$=}+
end M$~3`n*^
f uQbDb&
3('=+d[}Vw
r = r(:); Ni#!C:q
theta = theta(:); Aayh'xQ
length_r = length(r); <nlZ?~%}
if length_r~=length(theta) 11[[H kX@
error('zernfun:RTHlength', ... ZQXv-"
'The number of R- and THETA-values must be equal.') oW(lQ'"
end {STOWuY
0]4kR8R3[
?%%
'GX
% Check normalization: d9>*a$x;/
% -------------------- o(w!x!["
if nargin==5 && ischar(nflag) 5LdVcXf
isnorm = strcmpi(nflag,'norm'); (|)`~z
if ~isnorm |z\5Ik!fF]
error('zernfun:normalization','Unrecognized normalization flag.') w
F6ywr
end ;*1bTdB5a
else G6(kwv4
isnorm = false; [ -"o5!0<
end d0Xb?-
}3M
=F'p#N0_2
yI/2 e [
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /_<`#?5T(
% Compute the Zernike Polynomials fZ1v|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% oNQ;9&Z,^2
W&CQ87b
,Tc3koi
% Determine the required powers of r: oJa6)+b(3
% ----------------------------------- bwo-9B
m_abs = abs(m); x2x)y08
rpowers = []; w}No ^.I*4
for j = 1:length(n) cpvN
}G
rpowers = [rpowers m_abs(j):2:n(j)]; J@D5C4>i
end mkgGX|k;
rpowers = unique(rpowers); Mx<z34(T
pYZ6-s
y_EkW
f
% Pre-compute the values of r raised to the required powers, rE0?R(_
% and compile them in a matrix: aEU[k>&
% ----------------------------- BCsz8U!
if rpowers(1)==0 ,<?iL~> %
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); .{sKEVK
rpowern = cat(2,rpowern{:}); R}Pw#*B
rpowern = [ones(length_r,1) rpowern]; w}+#w8hu
else S^q)DuF5!
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); >dKK [E/[d
rpowern = cat(2,rpowern{:}); j1_ E^
end 7pMl:\
r@N 0%JZZ
n][/c_]q
% Compute the values of the polynomials: !Ic;;<
% -------------------------------------- xg=}MoX
y = zeros(length_r,length(n)); ].F7.
zi
for j = 1:length(n) J-*&&
s = 0:(n(j)-m_abs(j))/2; vSty.:bY\p
pows = n(j):-2:m_abs(j); }s)MDq9
for k = length(s):-1:1 b`"E(S /
p = (1-2*mod(s(k),2))* ... Q#C;4)e
prod(2:(n(j)-s(k)))/ ... 272j$T
prod(2:s(k))/ ... L9tjHC]
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ,M2u (9
prod(2:((n(j)+m_abs(j))/2-s(k))); XMhDx
idx = (pows(k)==rpowers); @X`~r8&
y(:,j) = y(:,j) + p*rpowern(:,idx);
K&FGTS,
end GMmz`O
XN
VBc[(8o
if isnorm LhM{LUi
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); v|5:;,I
end D|-^}I4
end f[,9WkC
% END: Compute the Zernike Polynomials ?^Sk17G
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% !iKR~&UpAL
y,qP$5xiq
5dffFe
% Compute the Zernike functions: rM<lPMr1*
% ------------------------------ 1I({2@C
idx_pos = m>0; }e3M5LI1L
idx_neg = m<0; ~wnTl[:
W{E22J}
Pn@k)g
z = y; p7(Pymkd
if any(idx_pos) /dTy%hZC}
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ^NJ]~h{n$
end Xx{ho4qq
if any(idx_neg) ""Ul6hRgv
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); dz/'
m7
end vW4~\]
`@GqD
!_GY\@}
% EOF zernfun )6|7L)Dk