切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9111阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, kmT5g gy  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 8(ej]9RObU  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? ce:p*  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? @jY=b<  
     x>$e*  
    wGg_ vAn  
    Cd2A&RB  
    y7~y@2  
    function z = zernfun(n,m,r,theta,nflag) 7]H<ou  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 'M!M$<j  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N T7~H|%  
    %   and angular frequency M, evaluated at positions (R,THETA) on the Mqv[7.|  
    %   unit circle.  N is a vector of positive integers (including 0), and B-UsMO  
    %   M is a vector with the same number of elements as N.  Each element }\0ei(%H  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) *WaqNMD[%  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, qsWy <yL+  
    %   and THETA is a vector of angles.  R and THETA must have the same YpI|=mv  
    %   length.  The output Z is a matrix with one column for every (N,M) zd|n!3;  
    %   pair, and one row for every (R,THETA) pair. 0TWd.+  
    % `br$kB  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike yQ0:M/r;0  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), sOVU>tb\'  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral TyhO+;  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Kv9Z.DY  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 0p]v#z}  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. z3I |jy1  
    % %X|u({(zb  
    %   The Zernike functions are an orthogonal basis on the unit circle. !|Wf mU  
    %   They are used in disciplines such as astronomy, optics, and rld8hFj  
    %   optometry to describe functions on a circular domain. )M><09  
    % 8PR\a!"  
    %   The following table lists the first 15 Zernike functions. nvQTJ4,,  
    % # /Bg5:  
    %       n    m    Zernike function           Normalization EKus0"|  
    %       --------------------------------------------------  :g~_  
    %       0    0    1                                 1 Vh{(*p  
    %       1    1    r * cos(theta)                    2 LU/;` In  
    %       1   -1    r * sin(theta)                    2 BU#3fPl  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) !_P&SmK3  
    %       2    0    (2*r^2 - 1)                    sqrt(3) N "}N>xe2  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) A `{hKS  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) -Xx4:S  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 0X3yfrim  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) RqX^$C8M  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) T+e*'<!O  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) "hi03k  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) z]7/Gc,j  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) [ ou$*  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ?lML+  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 6?'7`p  
    %       -------------------------------------------------- <RKT |  
    % Ec2;?pvd%J  
    %   Example 1: DD2K>1A1  
    % pH3<QNq5  
    %       % Display the Zernike function Z(n=5,m=1) o7 t{?|  
    %       x = -1:0.01:1; T*nP-b  
    %       [X,Y] = meshgrid(x,x); K)U[xS;<  
    %       [theta,r] = cart2pol(X,Y); &r\8VEZq"  
    %       idx = r<=1; 4jt(tZS  
    %       z = nan(size(X)); AmC?qoEWQ7  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); G[1\5dK*uR  
    %       figure c]zFZJ6M  
    %       pcolor(x,x,z), shading interp 3~VV2O  
    %       axis square, colorbar C~R ?iZ.&U  
    %       title('Zernike function Z_5^1(r,\theta)') J#t-." f6^  
    % w@<II-9L)<  
    %   Example 2:  +IO>%  
    % L$BV`JWPw  
    %       % Display the first 10 Zernike functions K_@?Q@#YhR  
    %       x = -1:0.01:1; }B a_epM  
    %       [X,Y] = meshgrid(x,x); Qe{w)e0}`  
    %       [theta,r] = cart2pol(X,Y); Q;J( 5;  
    %       idx = r<=1; M~N/er  
    %       z = nan(size(X)); 5'c#pm\Q  
    %       n = [0  1  1  2  2  2  3  3  3  3]; 2;u i'B  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; $ dF3@(p  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; :eSsqt9]9  
    %       y = zernfun(n,m,r(idx),theta(idx)); 2j}DI"|h  
    %       figure('Units','normalized') R3;%eyu  
    %       for k = 1:10 3H`{ A/r  
    %           z(idx) = y(:,k); mf)+ 5On  
    %           subplot(4,7,Nplot(k)) 1I{8 |  
    %           pcolor(x,x,z), shading interp a eeor  
    %           set(gca,'XTick',[],'YTick',[]) !1fZ7a  
    %           axis square 9 @xl{S-  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) !nCq8~#  
    %       end N@L{9ak1  
    % ( *Xn"o  
    %   See also ZERNPOL, ZERNFUN2. E^zfI9R  
    naW!b&:  
    y?3.W  
    %   Paul Fricker 11/13/2006 //_H _ue$  
    31@Lr[!  
    U!`iKy-  
    Pal=I)  
    Be=rBrI>  
    % Check and prepare the inputs: |PlNVd2  
    % ----------------------------- kJp~'\b  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) O|~C qb  
        error('zernfun:NMvectors','N and M must be vectors.') c%J6!\  
    end qS2Nk.e]o  
    d.^g#&h  
    hg(<>_~  
    if length(n)~=length(m) Vh;zV Y  
        error('zernfun:NMlength','N and M must be the same length.') weSq |f  
    end {VL@U$'oI  
    > 'hM"4f  
    Pp s-,*m  
    n = n(:); R2gV(L(!!  
    m = m(:); 1XMR7liE  
    if any(mod(n-m,2)) m&Mupl  
        error('zernfun:NMmultiplesof2', ... dy&UF,l6  
              'All N and M must differ by multiples of 2 (including 0).') $KO2+^%y  
    end w_xca(  
    odsFgh  
    :Ko6.|  
    if any(m>n) q.VYPkEib  
        error('zernfun:MlessthanN', ... u] };QR  
              'Each M must be less than or equal to its corresponding N.') AO$AT_s  
    end a+E&{p V  
    &~ y)b`r  
    kkF)Tro\  
    if any( r>1 | r<0 ) >s f g`4  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') {P]C>  
    end 6 :] N%  
    X,7y|tb  
    &)%+DUV|  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) S{rltT-  
        error('zernfun:RTHvector','R and THETA must be vectors.') `za,sRFR  
    end CwA_jOp  
    2gPqB*H  
    [|DKBJ  
    r = r(:); $(aq;DR  
    theta = theta(:); //U1mDFT  
    length_r = length(r); aa`(2%(:  
    if length_r~=length(theta) U]iI8c  
        error('zernfun:RTHlength', ... hm`=wceK  
              'The number of R- and THETA-values must be equal.') kI^* '=:  
    end 5^u$zfR  
     uZS:  
    ^dHQ<L3.*  
    % Check normalization: gBm'9|?  
    % -------------------- PgWWa*Ew  
    if nargin==5 && ischar(nflag) NXU:b"G S  
        isnorm = strcmpi(nflag,'norm'); :8A+2ra&  
        if ~isnorm <W80AJ  
            error('zernfun:normalization','Unrecognized normalization flag.') QF#w $%7  
        end Nr~$i%[  
    else <(L@@.87R  
        isnorm = false; {LO Pm1K8Y  
    end ?Z7`TnG$uf  
    Tlsh[@Q  
    3 !"N;Q"  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% m+kP"]v  
    % Compute the Zernike Polynomials *qd:f!Q3  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Gk,Bx1y  
    %ou,|Dww  
    XA>W >|  
    % Determine the required powers of r: K4c:k; V  
    % ----------------------------------- 'o >)E>  
    m_abs = abs(m); >cu%Cs=m  
    rpowers = []; #z*,CU#S9d  
    for j = 1:length(n) _ E;T"SC  
        rpowers = [rpowers m_abs(j):2:n(j)];  +$dJA  
    end J D\tt-  
    rpowers = unique(rpowers); RP4/:sO  
    yn4T!r "  
    wVs?E  
    % Pre-compute the values of r raised to the required powers, eU yF<j  
    % and compile them in a matrix: Ot t6y  
    % ----------------------------- -8TJ:#|N  
    if rpowers(1)==0 :!`"GaTy  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); d7OygDb<  
        rpowern = cat(2,rpowern{:}); hi7_jl6  
        rpowern = [ones(length_r,1) rpowern]; `ONjEl  
    else m&.LJ*uM\K  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); -aoYoJ '  
        rpowern = cat(2,rpowern{:}); rf.pT+g.P  
    end N9e'jM>Oos  
    w?Te%/s.  
    h)KHc/S  
    % Compute the values of the polynomials: diq}\'f  
    % -------------------------------------- f98,2I(>`+  
    y = zeros(length_r,length(n)); TlqHj  
    for j = 1:length(n) SK<Rk  
        s = 0:(n(j)-m_abs(j))/2; b$G{^  
        pows = n(j):-2:m_abs(j); }u Y2-l  
        for k = length(s):-1:1 /k#-OXP~  
            p = (1-2*mod(s(k),2))* ... $^Fl*:6  
                       prod(2:(n(j)-s(k)))/              ... {keZ_2  
                       prod(2:s(k))/                     ... .Ro/ioq  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... :cT)M(o  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); $@g]?*L:  
            idx = (pows(k)==rpowers); D -}>28  
            y(:,j) = y(:,j) + p*rpowern(:,idx); S$6|K Y u  
        end D!<F^mtl  
         Kl1v^3\{  
        if isnorm 3<0b_b  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); JzyCeM =  
        end kB7vc>@1  
    end [GwAm>k  
    % END: Compute the Zernike Polynomials TBj2(Z  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% vB:\ZX4  
    FXQWT9Kk~_  
    IkrB}  
    % Compute the Zernike functions: eV;r /4  
    % ------------------------------ \Z-th,t  
    idx_pos = m>0; Kkvc Zs'4m  
    idx_neg = m<0; BZq#OA p  
    -^_m(@A<~  
    om3 %\  
    z = y; 3]Z1kB  
    if any(idx_pos) YagfCi ?  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); a)_3r]sv^  
    end 'o AmA=  
    if any(idx_neg) ^&zCPUH  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); BI'>\hX/V  
    end b?H"/Mu.  
    tpfgUZ{  
    v88vr  
    % EOF zernfun #mxOwvJ  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  'a(y]QG  
    m2SJ\1 J=  
    DDE还是手动输入的呢? 9>{fsy  
    'IU3Xu[-.  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究