下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, eZ@Gu
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, YH<$ +U
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? "C:rTIH
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? ^H5w41
/Y;+PAy
C+/Eqq^(
W$z#ssr
-!XrwQyk
function z = zernfun(n,m,r,theta,nflag) /J1S@-
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. Qy{NS.T
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N :FoOQ[Q
% and angular frequency M, evaluated at positions (R,THETA) on the H<V+d^qX\w
% unit circle. N is a vector of positive integers (including 0), and %:"
RzHN
% M is a vector with the same number of elements as N. Each element =:4'
% k of M must be a positive integer, with possible values M(k) = -N(k) ,(j>)g2Ob
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, J*}VV9H
% and THETA is a vector of angles. R and THETA must have the same &e%{k@
% length. The output Z is a matrix with one column for every (N,M) b%3Q$wIJ6
% pair, and one row for every (R,THETA) pair. ^D9
/
% Z -pyFK\
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike tegOT]|
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), @kwLBAK}@
% with delta(m,0) the Kronecker delta, is chosen so that the integral bHO7*E
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1,
fkW3~b
% and theta=0 to theta=2*pi) is unity. For the non-normalized OfD@\;L
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. *GCA6X
% #t=[w
% The Zernike functions are an orthogonal basis on the unit circle. OF-E6b c
% They are used in disciplines such as astronomy, optics, and ~@%(RMJm&
% optometry to describe functions on a circular domain. sk#9x`Rw
% '/Cg*o/
% The following table lists the first 15 Zernike functions. j'k8^*M6
% /pO{2[
% n m Zernike function Normalization ov1Wr#s
% -------------------------------------------------- NV:>a
% 0 0 1 1 HvAE,0N
% 1 1 r * cos(theta) 2 kVWGDI$~
% 1 -1 r * sin(theta) 2 t G]N*%@
% 2 -2 r^2 * cos(2*theta) sqrt(6) cE^kpnVq|<
% 2 0 (2*r^2 - 1) sqrt(3) ~ af8p {
% 2 2 r^2 * sin(2*theta) sqrt(6) u06tDJ[
% 3 -3 r^3 * cos(3*theta) sqrt(8) U%Dit
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) l<$rqz3D
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) DD2adu^
% 3 3 r^3 * sin(3*theta) sqrt(8) lrCm9Oy
% 4 -4 r^4 * cos(4*theta) sqrt(10) \.5F](:
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) s jSi;S4
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) b([:,T7
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) T0g0jr{
% 4 4 r^4 * sin(4*theta) sqrt(10) ot^q}fRX
% -------------------------------------------------- <BZ_ (H
% !syU]Yk
% Example 1: 37#cx)p^f
% T]^?l
% % Display the Zernike function Z(n=5,m=1) j(&GVy^;?
% x = -1:0.01:1; P2O\!'aEh
% [X,Y] = meshgrid(x,x); xne]Q(B>
% [theta,r] = cart2pol(X,Y); _jW>dU^B
% idx = r<=1; {&E?<D2_&
% z = nan(size(X)); _0w1kqW
% z(idx) = zernfun(5,1,r(idx),theta(idx)); z3clUtC+
% figure WmNA5;<Q
% pcolor(x,x,z), shading interp 8IeI0f"l)
% axis square, colorbar S[Vtq^lU
% title('Zernike function Z_5^1(r,\theta)') # ?_#!T|
% 3] N q@t
% Example 2: X)8e4~(?
% Xj%,xm>}!u
% % Display the first 10 Zernike functions cbfDB^_
% x = -1:0.01:1; L"4]Tm>zq
% [X,Y] = meshgrid(x,x); 5~QhX22
% [theta,r] = cart2pol(X,Y); V5~fMsse
% idx = r<=1; B`#*o<eb
% z = nan(size(X)); H*GlWgfG
% n = [0 1 1 2 2 2 3 3 3 3]; {yTpRQN~
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; xg?auje
% Nplot = [4 10 12 16 18 20 22 24 26 28]; { E^U6@
% y = zernfun(n,m,r(idx),theta(idx)); 3+e4e
% figure('Units','normalized') ,'=hjIel
% for k = 1:10 MBlBMUJk
% z(idx) = y(:,k); |4Qx=x>
% subplot(4,7,Nplot(k)) fSbS(a
% pcolor(x,x,z), shading interp ,'u *ZB;
% set(gca,'XTick',[],'YTick',[]) v_.HGGS
% axis square
"3wv:BL
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Zd$JW=KR]l
% end z4bN)W )p
% eIsT!V"7
% See also ZERNPOL, ZERNFUN2. Y|_O8[
X
PA0m
#,TELzUVE
% Paul Fricker 11/13/2006 Vu%n&uF
qIz}$%!A
X{`1:c'x
7|Xe&o<n
C!5I?z&
% Check and prepare the inputs: 5?w.rcN[j
% ----------------------------- W+K.r?G<j
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 07FT)QTE
error('zernfun:NMvectors','N and M must be vectors.') ';Nu&D#Ph
end lY8`5Uz
nZxSMN0]
"T7>)fbu
if length(n)~=length(m) C s#w72N
error('zernfun:NMlength','N and M must be the same length.') Q,~x#
end "b`7[ ;a
L:pUvcAc?
*,&S' ,S-
n = n(:); O5M2`6|As
m = m(:); F 5U|9<
if any(mod(n-m,2)) FfG%C>E6~
error('zernfun:NMmultiplesof2', ... modC6d%
'All N and M must differ by multiples of 2 (including 0).') $it@>L8
end rI>LjHP
*7Xzht&f
xG1?F_]
if any(m>n) T)~!mifX
error('zernfun:MlessthanN', ... Y&5.9 s@'
'Each M must be less than or equal to its corresponding N.') n[P\*S
end Im+7<3Z
XhN{S]Wn
7h`^N5H.q
if any( r>1 | r<0 ) ^KbL
,T
error('zernfun:Rlessthan1','All R must be between 0 and 1.') A?r^V2+j
end {[P!$
/
G|*G9nQ
qe%V#c
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) -?z\5z
error('zernfun:RTHvector','R and THETA must be vectors.') nmg{%P
end |z*>ixK
>Nh`rkR2[
WqQU@sA
r = r(:); Ha)np
theta = theta(:); iD714+N(
length_r = length(r); G?ig1PB"#
if length_r~=length(theta) p/&HUQQk
error('zernfun:RTHlength', ... 96}eR,
'The number of R- and THETA-values must be equal.') uY]0dyI
end V^sc1ak1Q
i?-Y
0>FE%
% Check normalization: 'Wp@b678
% -------------------- ;MPKJS68@
if nargin==5 && ischar(nflag) kP^*hO!%
isnorm = strcmpi(nflag,'norm'); \=fh-c(J,
if ~isnorm F>-}*o
error('zernfun:normalization','Unrecognized normalization flag.') $8g42LR'
end [0!{_E)<
else M4:s;@qZ.
isnorm = false; l9J*um-
end "V}qf3qU
9!#EwPD$#
kceyuD$3G
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% s[X
B#)H4
% Compute the Zernike Polynomials r6
}_H?j
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 6|#g+&[
U&W"Ea=R/
lDN?|YG
% Determine the required powers of r: zJCEA
% ----------------------------------- ^Xs]C|=W
m_abs = abs(m); 5v|EAjB6o
rpowers = []; [.-a$J[4+F
for j = 1:length(n) u"Y]P*[k
rpowers = [rpowers m_abs(j):2:n(j)]; [.&[<!,.
end "dtlME{Bx
rpowers = unique(rpowers); CXAVGO'xw
ArXl=s';s4
-Qb0:]sV#
% Pre-compute the values of r raised to the required powers, ^P$7A]!
% and compile them in a matrix: X<euD9?
% ----------------------------- YgimJsm
if rpowers(1)==0 :1_mfX
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); i}lRIXjdV
rpowern = cat(2,rpowern{:}); -;Uj|^
rpowern = [ones(length_r,1) rpowern]; >rf5)Y~f
else (p,}'I#i*
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 8Z8Y[p
rpowern = cat(2,rpowern{:}); C6^j#rl
end .8H}Lf\
u"Fjw F?
1<,/
-H
% Compute the values of the polynomials: m~>@BCn;
% -------------------------------------- S^j,f'2
y = zeros(length_r,length(n)); 4ZI_pf
for j = 1:length(n) nk/vGa4
s = 0:(n(j)-m_abs(j))/2; 0>@[o8
pows = n(j):-2:m_abs(j); GY-M.|%
for k = length(s):-1:1 n9]
~
p = (1-2*mod(s(k),2))* ... (h,Ws-O
prod(2:(n(j)-s(k)))/ ... DsQ/aG9c%
prod(2:s(k))/ ... BX3lPv
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 88o:NJ}_
prod(2:((n(j)+m_abs(j))/2-s(k))); $E.XOpl&I
idx = (pows(k)==rpowers); ~gdd cTp
y(:,j) = y(:,j) + p*rpowern(:,idx); GV6mzD@<
end 1X&B:_
])N%^Qe$U
if isnorm I%xn,u
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); aR)?a;}H
end
MZ~.(&
end o^GC=Aca`
% END: Compute the Zernike Polynomials .'lN4x
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Sk=N [hwU
KY+]RxX
j)L1H*
S%
% Compute the Zernike functions: &yLc1#H
% ------------------------------ \]8i}E1
idx_pos = m>0; @a(oB.i
idx_neg = m<0; ym%o}(v-
D9o*8h2$
n(R_#,Hs
z = y; o](.368+4
if any(idx_pos) h=[-Er'B
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)');
~6d5zI4\
end :hP58 }Q$
if any(idx_neg) } yq
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); T 2|:nC)@
end fl)zQcA
4_Y!el H)
v<&v]!nF
% EOF zernfun X9~p4ys9{