切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8951阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, pU4k/v555;  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, Y![m'q}K  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? ]:Y@pZ  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? ktQMkEj#  
    k e$g[g  
    &fH;A X.  
    05_aL` &eb  
    c@p4,G  
    function z = zernfun(n,m,r,theta,nflag) QU0FeGtz  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. p9c`rl_N  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N M=vRy|TL  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ~zdHJ8tYp  
    %   unit circle.  N is a vector of positive integers (including 0), and 9='a9\((mH  
    %   M is a vector with the same number of elements as N.  Each element 3Yu1ZuIR  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) frB~ajXK  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 34k}7k~n  
    %   and THETA is a vector of angles.  R and THETA must have the same 4x8e~/  
    %   length.  The output Z is a matrix with one column for every (N,M) zMZP3 xir  
    %   pair, and one row for every (R,THETA) pair. \^=Wp'5R  
    % =*K~U# uoC  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike >kK!/#ZA  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 4dv5  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral =b\k$WQ_(  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, uL`6}0  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized sfLH[Q?  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 6$42 -a%b  
    % tG1,AkyZ  
    %   The Zernike functions are an orthogonal basis on the unit circle. y_aKW4L+  
    %   They are used in disciplines such as astronomy, optics, and kGaK(^w  
    %   optometry to describe functions on a circular domain. "'389*-  
    % aI8k:FK"  
    %   The following table lists the first 15 Zernike functions. Z' cQ< f  
    % {R`,iWV  
    %       n    m    Zernike function           Normalization Yc5{M*w  
    %       -------------------------------------------------- W*D]?hXU;  
    %       0    0    1                                 1 P(H,_7 4  
    %       1    1    r * cos(theta)                    2 pVuJ4+`  
    %       1   -1    r * sin(theta)                    2 CHeU`!:  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) vkFfHzR$  
    %       2    0    (2*r^2 - 1)                    sqrt(3) @|yRo8|  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) j Wa%vA  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) /]0-|Kg+R  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) "rnZ<A}  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) qx#k()E.U  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) >FrF"u:kM  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10)  ;'^5$q  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) WD"3W)!  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) <p_r{  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) G$hH~{Y$  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) r3OTU$t?  
    %       -------------------------------------------------- HiTn5XNf  
    % F%Te0l  
    %   Example 1: v=-8} S  
    % z:m`  
    %       % Display the Zernike function Z(n=5,m=1) .#py5&`%  
    %       x = -1:0.01:1; sIx8,3`&y  
    %       [X,Y] = meshgrid(x,x); e|ChCvk  
    %       [theta,r] = cart2pol(X,Y); QfLDyJv`e  
    %       idx = r<=1; L;wfTZa  
    %       z = nan(size(X)); -!X,M DO  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); ZS\ jbii8  
    %       figure 1J(` kQ)c  
    %       pcolor(x,x,z), shading interp &C_0JyT  
    %       axis square, colorbar ([Gb]0  
    %       title('Zernike function Z_5^1(r,\theta)') Gz>M Y4+G  
    % Tt,<@U[/}  
    %   Example 2: +9 Uo<6}  
    % 94 2(a  
    %       % Display the first 10 Zernike functions QG~4 <zy  
    %       x = -1:0.01:1; aT v  
    %       [X,Y] = meshgrid(x,x); YMlnC7?_ /  
    %       [theta,r] = cart2pol(X,Y); P[;<,U;'HO  
    %       idx = r<=1; I-@A{vvPK  
    %       z = nan(size(X)); Pfy2PpA  
    %       n = [0  1  1  2  2  2  3  3  3  3]; N>Dr z  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; UODbT&&  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; }sbh|#  
    %       y = zernfun(n,m,r(idx),theta(idx)); Idq &0<I  
    %       figure('Units','normalized') jacp':T  
    %       for k = 1:10 -pWnO9q  
    %           z(idx) = y(:,k); m@|0iDS  
    %           subplot(4,7,Nplot(k)) x1g0_&F  
    %           pcolor(x,x,z), shading interp )qg cz<p?W  
    %           set(gca,'XTick',[],'YTick',[]) sTn}:A6  
    %           axis square <=]wh|D  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) {'.[N79xP  
    %       end Ch3{q/-g  
    % ?CaMn b8  
    %   See also ZERNPOL, ZERNFUN2. ^/K]id7 2  
    .@#GNZe  
    Ro&s\T+d  
    %   Paul Fricker 11/13/2006 xJ/<G$LNJ0  
    r&^xg`i[z>  
    =}bDT2Nb  
    9Ai e$=  
    3LxhQVx2  
    % Check and prepare the inputs: X/=*o;":  
    % ----------------------------- yuTSzl25,/  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) M Y2=lT  
        error('zernfun:NMvectors','N and M must be vectors.') {FIr|R&  
    end K>!+5A$6i  
    F&ud|X=m  
    0^5*@vt  
    if length(n)~=length(m) av}Giz  
        error('zernfun:NMlength','N and M must be the same length.') q9cN2|:  
    end S;!l"1[;  
    v-(Ry<fT9  
    z0@{5e$#Y  
    n = n(:); /QA:`_</oh  
    m = m(:); t`b!3U>I  
    if any(mod(n-m,2)) 5Op|="W.  
        error('zernfun:NMmultiplesof2', ... :\]TAQd-  
              'All N and M must differ by multiples of 2 (including 0).') =jz*|e|V  
    end y:C=Ni&,"  
    gpIq4Q<  
    EWI2qaSnO  
    if any(m>n) NuL.l__W  
        error('zernfun:MlessthanN', ... 3RwDIk?>%  
              'Each M must be less than or equal to its corresponding N.') 2H h5gD|>  
    end 676r0`  
    RDX$Wy$@L  
    n54}WGo>9  
    if any( r>1 | r<0 ) _LVi}mM  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') Tz PG(f  
    end NCid`a$  
    dX720/R  
    @X$~{Vp__  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) xI'sprNa_1  
        error('zernfun:RTHvector','R and THETA must be vectors.') |%V-|\GJ~j  
    end n86=1G:%  
    _4Ciai2Ql  
    lQkCA-  
    r = r(:); r5k{mV+  
    theta = theta(:); fz9 ,p;b  
    length_r = length(r); &l&B[s6[  
    if length_r~=length(theta) <k41j=d  
        error('zernfun:RTHlength', ... t08E 2sI  
              'The number of R- and THETA-values must be equal.') p3Ey[kURp  
    end V|v KYEFry  
    +*'^T)sj/  
    s-S#qGZ  
    % Check normalization: 2r =8&~9z  
    % -------------------- AW6"1(D  
    if nargin==5 && ischar(nflag) 3Z taj^v  
        isnorm = strcmpi(nflag,'norm'); IP#?$X  
        if ~isnorm _? aI/D  
            error('zernfun:normalization','Unrecognized normalization flag.') p7Q}xx  
        end <i!:{'%  
    else $,s"c(pv[,  
        isnorm = false; p+ki1! Ed  
    end vrGx<0$  
    -45xa$vv  
    n'i~1pM,?  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 7uI~Xo ?N  
    % Compute the Zernike Polynomials :!cNkJa  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ^U5g7Emf  
    ?'jRUfl   
    Xy[*)<  
    % Determine the required powers of r: 4:50dj  
    % ----------------------------------- 3-%F)@n  
    m_abs = abs(m); Qf$3!O}G  
    rpowers = []; +~ZFao qf  
    for j = 1:length(n)  f^vz  
        rpowers = [rpowers m_abs(j):2:n(j)]; v}>5!*  
    end l ;fO]{  
    rpowers = unique(rpowers); Ok*aP+Wq  
    u A=x~-I  
    C7hJE -  
    % Pre-compute the values of r raised to the required powers, ;oT!\$Mu  
    % and compile them in a matrix: 5 `Mos  
    % ----------------------------- !#b8QER  
    if rpowers(1)==0 W["c3c  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); an<loL W  
        rpowern = cat(2,rpowern{:}); F?3zw4Vt~  
        rpowern = [ones(length_r,1) rpowern]; Ln3<r&&Jz  
    else sf(2~BMQI  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); N H$!<ffz  
        rpowern = cat(2,rpowern{:}); $z":E(oy  
    end `%5~>vPS  
    ww^!|VVa  
    {0?]weN*  
    % Compute the values of the polynomials: BQ /0z^A  
    % -------------------------------------- wq6.:8Or-]  
    y = zeros(length_r,length(n)); %s(Ri6R&  
    for j = 1:length(n) %1jlXa  
        s = 0:(n(j)-m_abs(j))/2; Q"Ur*/-U  
        pows = n(j):-2:m_abs(j); |GqKa  
        for k = length(s):-1:1 {CVn&|}J  
            p = (1-2*mod(s(k),2))* ...  Xb'UsQ  
                       prod(2:(n(j)-s(k)))/              ... tAxS1<T4  
                       prod(2:s(k))/                     ... 6.0/asN}  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... A2xfNY<  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 7c7:B2Lq  
            idx = (pows(k)==rpowers); V]fsjpvlmr  
            y(:,j) = y(:,j) + p*rpowern(:,idx); Ug=)_~  
        end &i8UPp%  
         c1CUG1i  
        if isnorm O>~ozW &  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); rT}k[  
        end CEMe2~  
    end 9-6E(D-ux  
    % END: Compute the Zernike Polynomials ZR"BxE0_k  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% JPt0k  
    HT@/0MF{J  
    0DIXd*oj&  
    % Compute the Zernike functions: "^3pP(8;~  
    % ------------------------------ 6t0-u~  
    idx_pos = m>0; + NpH k  
    idx_neg = m<0; q n2X._`  
    =w#sCy  
    c7[+gc5}  
    z = y; gb,X"ODq  
    if any(idx_pos) omEnIfQSO  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); F ~O}@e{  
    end ~ v21b?   
    if any(idx_neg) ,FP<# 0F*a  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); m-h+UKt  
    end { :~&#D  
    5[\LQtM  
    N%K%0o-  
    % EOF zernfun \A'tV/YAd  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  f.~-31  
    tsLi5;KA]  
    DDE还是手动输入的呢? Y~j )B\^{  
    0CTUcVM#9  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究