切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9300阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, Mh/dpb\Z  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, DiwxXqY  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? >\=3:gb:  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? ~8P!XAU56%  
    UK O[r;  
    :LRYYw  
    mmEYup(l0;  
    7k9G(i[-+  
    function z = zernfun(n,m,r,theta,nflag) p#?7 w  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. v}O30wE  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N v|%Z+w  
    %   and angular frequency M, evaluated at positions (R,THETA) on the xLWw YK  
    %   unit circle.  N is a vector of positive integers (including 0), and _Wp{ [TH  
    %   M is a vector with the same number of elements as N.  Each element dDGgvi|[Mz  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) vAh6+K.e  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, p&bROuw<T  
    %   and THETA is a vector of angles.  R and THETA must have the same -vR5BMy=  
    %   length.  The output Z is a matrix with one column for every (N,M) > BY&,4r  
    %   pair, and one row for every (R,THETA) pair. b8"?VS5-"  
    % TKY*`?ct  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike uU <=d  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Yu[ t\/  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral w?wG(+X7  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, y7 3VFb  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ;q:zT\A  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. `V]5sE]G  
    % -tHU6s,  
    %   The Zernike functions are an orthogonal basis on the unit circle. Mg OR2,cR  
    %   They are used in disciplines such as astronomy, optics, and !^=*Jq>  
    %   optometry to describe functions on a circular domain. 9N<<{rQ,F  
    % M/ni6%x  
    %   The following table lists the first 15 Zernike functions. UAFwi%@!-q  
    % 5JCG2jqx0  
    %       n    m    Zernike function           Normalization CBOi`bEf  
    %       -------------------------------------------------- + SFVv_n  
    %       0    0    1                                 1 WDc+6/<  
    %       1    1    r * cos(theta)                    2 FsV'Cu@!U  
    %       1   -1    r * sin(theta)                    2 ;WM"cJo9  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) xtE_=5$~  
    %       2    0    (2*r^2 - 1)                    sqrt(3) Xg SxN!I  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) u7\J\r4,+  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) +!z{5:  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8)  fA<[f  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) *4xat:@{{  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) TRQF^P3o  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) ^G.Xc\^w:  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Q6AC(n@:FV  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) =aj/,Q]  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 8lb%eb]U  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) `m>*d!h=  
    %       -------------------------------------------------- 7_Z#m (  
    % Q`D~5ci  
    %   Example 1: %K` % *D  
    % LbG_z =A  
    %       % Display the Zernike function Z(n=5,m=1) Q/I! }C4  
    %       x = -1:0.01:1; Jd(,/q  
    %       [X,Y] = meshgrid(x,x); e~@ [18  
    %       [theta,r] = cart2pol(X,Y); fX.>9H[w@~  
    %       idx = r<=1; sqJSSNt  
    %       z = nan(size(X)); mc_ch$r!  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); lR[qqFR  
    %       figure YZ7|K<   
    %       pcolor(x,x,z), shading interp X4t s)>"d  
    %       axis square, colorbar W#BM(I  
    %       title('Zernike function Z_5^1(r,\theta)') @,u/w4  
    % /yF QeE  
    %   Example 2: H nUYqhZS  
    % ?) [EO(D  
    %       % Display the first 10 Zernike functions C;`XlQG `  
    %       x = -1:0.01:1; w{uuSe  
    %       [X,Y] = meshgrid(x,x); Jn3 An  
    %       [theta,r] = cart2pol(X,Y); %Gj8F4{  
    %       idx = r<=1; c`WHNky%j  
    %       z = nan(size(X)); &S]@Ot<z  
    %       n = [0  1  1  2  2  2  3  3  3  3]; no] z1D  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; _ozg_E  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; |- rI@2`  
    %       y = zernfun(n,m,r(idx),theta(idx)); D3^7y.u<)  
    %       figure('Units','normalized') XC "'Q+  
    %       for k = 1:10 i|}[A  
    %           z(idx) = y(:,k); vR=6pl$|~~  
    %           subplot(4,7,Nplot(k)) l)w Hl%p  
    %           pcolor(x,x,z), shading interp 2aB^WY'tC  
    %           set(gca,'XTick',[],'YTick',[]) d/|D<Sb[s  
    %           axis square ;3@YZM'wt  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) OhmQ,  
    %       end vRxM4O~"  
    % f<*Js)k  
    %   See also ZERNPOL, ZERNFUN2. P=+nB*hG  
    \uq/x^?yo  
    r"a5(Q;n  
    %   Paul Fricker 11/13/2006 ]f: v,a  
    J}@z_^|"mJ  
    ~$f;U  
    jfx8EbQ  
    =w5O&(  
    % Check and prepare the inputs: M$d%p6Cv  
    % ----------------------------- P<2 +L|X?}  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) <ggtjw S  
        error('zernfun:NMvectors','N and M must be vectors.') 6uKMCQ=h  
    end -0eq_+oQ  
    -0Tnh;&=  
    f\1A! Yp  
    if length(n)~=length(m) pge++Di  
        error('zernfun:NMlength','N and M must be the same length.') 7,MS '2nz  
    end lz0TK)kuC  
    A'K%WW*'U  
    rVa?JvDO=  
    n = n(:); CWG6;NT6m  
    m = m(:); ,\d6VBP&  
    if any(mod(n-m,2)) >'5_Y]h4m|  
        error('zernfun:NMmultiplesof2', ... _#s=h_ FD  
              'All N and M must differ by multiples of 2 (including 0).') L0]_hxE?  
    end eo!zW  
    TLf9>= OVh  
    R@yyur~'_(  
    if any(m>n) ror|R@;y  
        error('zernfun:MlessthanN', ... CGP3qHrXt  
              'Each M must be less than or equal to its corresponding N.') u!U"N*Y"  
    end 0T5=W U  
    Rek -`ki5F  
    H:JLAK  
    if any( r>1 | r<0 ) dg7=X{=9jv  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') $1zvgep  
    end <U9/InN0[  
    J3b4cxm  
    1b>C<\  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) o}'bv  
        error('zernfun:RTHvector','R and THETA must be vectors.') omf  Rs  
    end H{c?lT  
    lhYn5d)DV  
    !epgTN  
    r = r(:); o{kbc5_  
    theta = theta(:); l\!-2 T6Y  
    length_r = length(r); M4LktR-[  
    if length_r~=length(theta) +P`(Rf"luu  
        error('zernfun:RTHlength', ... 0l#)fJo  
              'The number of R- and THETA-values must be equal.') =AEz9d ciS  
    end rf9_eP  
    h2;z 4  
    & &<9p;E  
    % Check normalization: QIn/,Yd  
    % -------------------- 5;TuVU.8Q  
    if nargin==5 && ischar(nflag) geefnb  
        isnorm = strcmpi(nflag,'norm'); p(m1O70 C  
        if ~isnorm _0 snAt^iC  
            error('zernfun:normalization','Unrecognized normalization flag.') hc$@J}`  
        end >7U>Yh  
    else ]Lqt( c  
        isnorm = false; rn:!dV[  
    end jN+N(pIi.o  
    i~{ _eQV  
    5lJ )(|_  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% W;Jx<-#1  
    % Compute the Zernike Polynomials L1)@z8]   
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 8Chu"PM%-J  
    V5GkP1L  
    MY nH2w]  
    % Determine the required powers of r: 6vf\R*D|A  
    % ----------------------------------- g#K'6VK{  
    m_abs = abs(m); i(wgB\9i4  
    rpowers = []; 2#/p|$;Ec'  
    for j = 1:length(n) VzRx%j/i  
        rpowers = [rpowers m_abs(j):2:n(j)]; dj[apuiF  
    end VLg EX4  
    rpowers = unique(rpowers); L8vOBI7N  
    w3D]~&]  
    3rf#Q }"  
    % Pre-compute the values of r raised to the required powers, 9-bG<`v\E  
    % and compile them in a matrix: #G,XDW2"w  
    % ----------------------------- Hwe)Tsh e  
    if rpowers(1)==0 g>7Y~_}  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); re,.@${H  
        rpowern = cat(2,rpowern{:}); *R`MMm  
        rpowern = [ones(length_r,1) rpowern]; Yi rC*  
    else ; a/cty0Ch  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); X`\:_|  
        rpowern = cat(2,rpowern{:}); 4W\,y_Q o  
    end 8!h'j  
    MdhT!?  
    ^,2c-  
    % Compute the values of the polynomials: dNV v4{S  
    % -------------------------------------- 0%)5.=6  
    y = zeros(length_r,length(n)); !Zwf 397  
    for j = 1:length(n) 0v"&G<J  
        s = 0:(n(j)-m_abs(j))/2; D)&o8D`  
        pows = n(j):-2:m_abs(j); H^CilwD158  
        for k = length(s):-1:1 [7"}=9  
            p = (1-2*mod(s(k),2))* ... FyEDt@J  
                       prod(2:(n(j)-s(k)))/              ... <qiICb)~  
                       prod(2:s(k))/                     ... ]u&dJL  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... `h;}3r#R{  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); g^o_\ hp  
            idx = (pows(k)==rpowers); a|N0(C  
            y(:,j) = y(:,j) + p*rpowern(:,idx); A:Rw@ B$  
        end qZ G-Lh  
         2%]hYr;  
        if isnorm ix Ow=!@  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); wt7.oKbW  
        end +X!+'>  
    end }g,X5v?W  
    % END: Compute the Zernike Polynomials &?$\Y,{  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ~! Lw1]&  
    @&/\r 7 '  
    *=^[VV!  
    % Compute the Zernike functions: ,eELRzjl  
    % ------------------------------ cy:;)E>/  
    idx_pos = m>0; owMuT^x?  
    idx_neg = m<0; Rx. rj~  
    I>m;G `  
    KHJ=$5r)  
    z = y; ^~I @ spR4  
    if any(idx_pos) 1XnBK$`  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); M5+W$W  
    end  $o+&Y5:  
    if any(idx_neg) G(i\'#5+  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); [u\CDsX  
    end RUrymkHFB  
    CB@B.)E  
    Fi{mr*}  
    % EOF zernfun w:tGPort  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  Bl:{p>-q  
    @)S sKk|  
    DDE还是手动输入的呢? R'jUS7]Y  
    kwDjK"  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究