切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9443阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, :"I E  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, IuRmEL_Q_  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? FWHNj.r  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? HAJ7m!P  
    HO}Hh[{V9  
    I{*<4a7q  
    i2&ed_h<?  
    \,7}mdQSv  
    function z = zernfun(n,m,r,theta,nflag) iIq)~e/ Z  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. qQsku;C?i  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N lAJxr8 .  
    %   and angular frequency M, evaluated at positions (R,THETA) on the `/ q|@B7  
    %   unit circle.  N is a vector of positive integers (including 0), and ;F~LqC$  
    %   M is a vector with the same number of elements as N.  Each element cvfr)K[0  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) YA +E\  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, !/3B3cG  
    %   and THETA is a vector of angles.  R and THETA must have the same KFvQ  
    %   length.  The output Z is a matrix with one column for every (N,M) NZ-\h  
    %   pair, and one row for every (R,THETA) pair. B&.FO O  
    % w`il=ZAC  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike nx^]>w  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Ie`13 L2  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral )Ib<F 7v  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, yLdVd P  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized JA'h4AXk  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 0;:.B j  
    % V8HnUuz  
    %   The Zernike functions are an orthogonal basis on the unit circle. NNE<L;u  
    %   They are used in disciplines such as astronomy, optics, and Tp-l^?O-p  
    %   optometry to describe functions on a circular domain. 3`ELKq  
    % j  S?xk  
    %   The following table lists the first 15 Zernike functions. &xY^OCt  
    % D[mSmpjE6&  
    %       n    m    Zernike function           Normalization ~YRDyQ:%T  
    %       -------------------------------------------------- wm$}Pch  
    %       0    0    1                                 1 !2'jrJGc  
    %       1    1    r * cos(theta)                    2 x-AZ %)N9  
    %       1   -1    r * sin(theta)                    2 8&3V#sn'  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 3`B6w$z>(  
    %       2    0    (2*r^2 - 1)                    sqrt(3) *IY*yR6  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) 4)"n RjGg  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) "E8zh|m o  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) a(9L,v#?  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) _`_%Y(Xat  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) ALNc'MW!  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) A Q+]|XYo_  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) M5*{  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 5K<5kHpvJ{  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) q|v(Edt|_[  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) @1 U&UH  
    %       -------------------------------------------------- NyVnA  
    % m"fNK$_d  
    %   Example 1: -t2+|J*  
    % :w<V  
    %       % Display the Zernike function Z(n=5,m=1) @H7Wb}  
    %       x = -1:0.01:1; ZP;j9 T!  
    %       [X,Y] = meshgrid(x,x); p"FW&Q=PN  
    %       [theta,r] = cart2pol(X,Y); |kvC H<F'  
    %       idx = r<=1; 3v mjCm  
    %       z = nan(size(X)); {e[c  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); $P(v{W)  
    %       figure (q4),y<:[  
    %       pcolor(x,x,z), shading interp `S2[5i  
    %       axis square, colorbar P4F3Dc  
    %       title('Zernike function Z_5^1(r,\theta)') 8 XICF  
    % Xy@7y[s]  
    %   Example 2: 9$Xu,y  
    % cu%C"  
    %       % Display the first 10 Zernike functions o4%y>d)  
    %       x = -1:0.01:1; F6K4#t+9  
    %       [X,Y] = meshgrid(x,x); d8m6B6 CW  
    %       [theta,r] = cart2pol(X,Y); =Uj-^qcE  
    %       idx = r<=1; "bm  
    %       z = nan(size(X)); X83 w@-$}  
    %       n = [0  1  1  2  2  2  3  3  3  3]; g q}I[N  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; >j'ZPwj^  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; LNa$ X5`  
    %       y = zernfun(n,m,r(idx),theta(idx)); ;}1xn3THCn  
    %       figure('Units','normalized') *_KFW@bC:  
    %       for k = 1:10 h-m \%|D  
    %           z(idx) = y(:,k); :^fcC[$K  
    %           subplot(4,7,Nplot(k)) @E-\ J7 yh  
    %           pcolor(x,x,z), shading interp 7\9>a  
    %           set(gca,'XTick',[],'YTick',[]) ObE,$_ k  
    %           axis square -W<vyNSr  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) X*,%&6O*  
    %       end :LQ5 u[g$\  
    % .'rW.'Ft  
    %   See also ZERNPOL, ZERNFUN2. x)JOClLr  
    >A<bBK#  
    u_ '!_T L  
    %   Paul Fricker 11/13/2006 :OkT? (i  
    <]T`3W9  
    7yz4'L  
    Cz W:L&t  
    wo3wtx  
    % Check and prepare the inputs: >^Yq|~[  
    % ----------------------------- X5`AGyX  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 8?i7U<CB  
        error('zernfun:NMvectors','N and M must be vectors.') Ga^Zb^y  
    end n f.wCtf].  
    v9D22,K-  
    3 HIz9F(  
    if length(n)~=length(m) fnNYX]_bk  
        error('zernfun:NMlength','N and M must be the same length.') IZm(`b;t^  
    end jC3Vbm&ZZ  
    ~\cO"(y5:O  
    2PeR   
    n = n(:); :gB[O>'<m  
    m = m(:); <N`J`J-[  
    if any(mod(n-m,2)) E!Zx#XP1  
        error('zernfun:NMmultiplesof2', ... GV^i`r^"  
              'All N and M must differ by multiples of 2 (including 0).') 3"kd jOB  
    end x+h~gckLb  
    r 3M1e+'fc  
    sz9G3artK&  
    if any(m>n) A 5+rd{k/  
        error('zernfun:MlessthanN', ... h8Xg`C\  
              'Each M must be less than or equal to its corresponding N.') +R\vgE68  
    end >rP#ukr5  
    [F*4EGB  
    UDe |Sb  
    if any( r>1 | r<0 ) L3p`  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 90# ;?#  
    end {w8 NN-n  
    'Vr$MaO  
    d7&eLLx  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) GCttXAto  
        error('zernfun:RTHvector','R and THETA must be vectors.') "ywh9cp  
    end +hRmO  
    tdEnk.O  
    &I({T`=  
    r = r(:); x%<  
    theta = theta(:); 2iU7 0(H  
    length_r = length(r); e } *0ghKI  
    if length_r~=length(theta) Lqp8yVO  
        error('zernfun:RTHlength', ... M^7MU}5w  
              'The number of R- and THETA-values must be equal.') +@Ad1fJi  
    end `Bw9O%]-S  
    k78Vh$AA6%  
    :qvI%1cP=  
    % Check normalization: )%X;^(zKM  
    % -------------------- 0vGyI>  
    if nargin==5 && ischar(nflag) s3 ;DG  
        isnorm = strcmpi(nflag,'norm'); KZbR3mi,  
        if ~isnorm -L3|&O_  
            error('zernfun:normalization','Unrecognized normalization flag.') XG@`ZJhU6  
        end "0EA;S8$8  
    else {&[9iIf  
        isnorm = false; !~ZP{IXyo  
    end ~RBrSu)  
    r{sebE\ ;  
    1 Vy,&[c~"  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% }6-ZE9H-v  
    % Compute the Zernike Polynomials Dw2Q 'E  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% !'f3>W\   
    e/8z+H^H  
    OI0B:()  
    % Determine the required powers of r: 7$k8%lI;>  
    % ----------------------------------- !$g+F(:(c  
    m_abs = abs(m); }Z`(aDH  
    rpowers = []; B(DrY1ztj  
    for j = 1:length(n) s-W[ .r|  
        rpowers = [rpowers m_abs(j):2:n(j)]; D\~e&0*  
    end `aqrSH5^h  
    rpowers = unique(rpowers); f&hwi:t  
    _0pO8o-x  
    dp5f7>]:(  
    % Pre-compute the values of r raised to the required powers, zTD@  
    % and compile them in a matrix: )2Hff.  
    % ----------------------------- `*\{.;,]#  
    if rpowers(1)==0 6e25V4e?I  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); >J=<bhR  
        rpowern = cat(2,rpowern{:}); (X6sSO  
        rpowern = [ones(length_r,1) rpowern]; p{=QGrxB*  
    else quo^fqS&a  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); . -"E^f  
        rpowern = cat(2,rpowern{:}); O}#yijU3e  
    end -@IL"U6  
    3P <'F2o  
    \;]kYO}  
    % Compute the values of the polynomials: CiL94Nkd9  
    % -------------------------------------- ^*^/]vM  
    y = zeros(length_r,length(n)); df=z F.5  
    for j = 1:length(n) 0+b 0<  
        s = 0:(n(j)-m_abs(j))/2; PK&2h,Cu+  
        pows = n(j):-2:m_abs(j); Hh kN^S,  
        for k = length(s):-1:1 3^.8.q(6  
            p = (1-2*mod(s(k),2))* ... }~o ikN:  
                       prod(2:(n(j)-s(k)))/              ... \h3e-)  
                       prod(2:s(k))/                     ...  yu ,h\  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ~]8p_;\  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); Sd:.KRTu.  
            idx = (pows(k)==rpowers); c[0oh.  
            y(:,j) = y(:,j) + p*rpowern(:,idx); t]^_ l$  
        end s6=YV0w(  
         4?/7 bc  
        if isnorm %HSl)zEo>C  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 3D)b*fPc  
        end .}9FEn 8  
    end }r2[!gGd%|  
    % END: Compute the Zernike Polynomials S;A)C`X&  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% gvnj&h.GV  
    bj"z8kP  
    zH'2s-.bi  
    % Compute the Zernike functions: y67uH4&Vm  
    % ------------------------------ `W[+%b  
    idx_pos = m>0; 4VIg>EL*  
    idx_neg = m<0; =J@`0H"  
    7CrpUh  
    RI@*O6\/I  
    z = y; 3:|-#F*k{  
    if any(idx_pos) * Zd_ HJi  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 7nz!0I^   
    end Sue 6+p  
    if any(idx_neg) 2z98 3^  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); F$*3@Y  
    end viuiqs5[Bi  
    Q[s 2}Z!N;  
    *=vlqpG  
    % EOF zernfun WL\^F#:  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  )X~#n  
    fPOEVmj<  
    DDE还是手动输入的呢? TMNfJz   
    s><IykIi  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究