切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8774阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, BUtXHD  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, kWgxswl7H  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? nF)|oA   
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? q|S }5  
    NJ|8##Z>  
    s)}C&T$Y.  
    k'm!|  
    6JJ%`Uojh  
    function z = zernfun(n,m,r,theta,nflag) @6\8&(|  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. c(o8uWn  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N C\1Dy5  
    %   and angular frequency M, evaluated at positions (R,THETA) on the .uhP (  
    %   unit circle.  N is a vector of positive integers (including 0), and [ z?<'Tj  
    %   M is a vector with the same number of elements as N.  Each element I(C_}I>Wb  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) *dGW=aM#C  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, <jxTI%'f59  
    %   and THETA is a vector of angles.  R and THETA must have the same g4Tc (k#  
    %   length.  The output Z is a matrix with one column for every (N,M) ~}uTC36C\  
    %   pair, and one row for every (R,THETA) pair. %KqXtc`O  
    % ,<%],-Lt[  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike q K]Wk+  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), t; "o,T  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral PQ1\b-I  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 5=l Ava#  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized cBU>/ zIp  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. q")}vN  
    % n:HF&j4C,  
    %   The Zernike functions are an orthogonal basis on the unit circle. kYx|`-PA<r  
    %   They are used in disciplines such as astronomy, optics, and dqcfs/XhP  
    %   optometry to describe functions on a circular domain. @zE_fL  
    % p VLfZ?78  
    %   The following table lists the first 15 Zernike functions. 9"&HxyOfX  
    % |XPT2eQ{  
    %       n    m    Zernike function           Normalization k{uc%6s  
    %       -------------------------------------------------- kZfO`BVL  
    %       0    0    1                                 1 \!`*F :7]-  
    %       1    1    r * cos(theta)                    2 +[:}<^p?cG  
    %       1   -1    r * sin(theta)                    2 nXXyX[c4e  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) iGM-#{5  
    %       2    0    (2*r^2 - 1)                    sqrt(3) Y8(g8RN  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) p,U.5bX  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) !RAyUfS  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) aabnlOVw  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) j$BM$q/c  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) )0YMi!&j`  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) AS~O*(po  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) yo3'\I  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) m;k' j@:  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) |K7JU^"OQ  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) Q@nxGm  
    %       -------------------------------------------------- g?)9zJ9  
    % v:eVK!O  
    %   Example 1: c)+IX;q-C  
    % y1B3F5  
    %       % Display the Zernike function Z(n=5,m=1) t\S}eoc  
    %       x = -1:0.01:1; M{1't  
    %       [X,Y] = meshgrid(x,x); u<:R Sg  
    %       [theta,r] = cart2pol(X,Y); M{Wla 7  
    %       idx = r<=1; NbSkauF~b  
    %       z = nan(size(X)); ',v -&1R  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); Kb#py6  
    %       figure ]& jXD=a"  
    %       pcolor(x,x,z), shading interp uv eTx  
    %       axis square, colorbar 5e6f)[}  
    %       title('Zernike function Z_5^1(r,\theta)') ZU5hHah.t  
    % 7&qunK'  
    %   Example 2: <T,vIXwu+  
    % C5$1K'X@  
    %       % Display the first 10 Zernike functions =;4cDmZh  
    %       x = -1:0.01:1; ]`b/_LJN$F  
    %       [X,Y] = meshgrid(x,x); 9m/v^  
    %       [theta,r] = cart2pol(X,Y); +' QX`  
    %       idx = r<=1; aTxss:7]  
    %       z = nan(size(X)); TkM8GK-3  
    %       n = [0  1  1  2  2  2  3  3  3  3]; 'D;v>r  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; jA?A)YNQb  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 4 bw8^  
    %       y = zernfun(n,m,r(idx),theta(idx)); @Xts}(L  
    %       figure('Units','normalized') 7LbBS:@3z_  
    %       for k = 1:10 oYG9i=lZ  
    %           z(idx) = y(:,k); kFg@|#0v9  
    %           subplot(4,7,Nplot(k)) N`h,2!(j  
    %           pcolor(x,x,z), shading interp %4*-BCP  
    %           set(gca,'XTick',[],'YTick',[]) |7LhE+E  
    %           axis square |#^wYZO1U  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) `A_CLVE  
    %       end Kc$j<MRtv  
    % ^~'tQ}]!"  
    %   See also ZERNPOL, ZERNFUN2. R?V s8?  
    e$u=>=jV]  
    &Op_!]8`U  
    %   Paul Fricker 11/13/2006 B4Ko,=pg  
    JR] /\(  
    G:7HL5u  
    5|z>_f.^pS  
    QpxRYv  
    % Check and prepare the inputs: Uus%1hC%a  
    % ----------------------------- ">_<L.,I  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) @ qy n[C  
        error('zernfun:NMvectors','N and M must be vectors.') NCR 4n_  
    end aDce Ohfx  
    +L03. rf  
    `K5Lp>=R  
    if length(n)~=length(m) E%8Op{zv_  
        error('zernfun:NMlength','N and M must be the same length.') b&BkT%aA(G  
    end t.Q}V5t{g  
    #; ~`+[y?\  
    HqC 1Dkw  
    n = n(:); Aj#bhv  
    m = m(:); ;n]GHqzY_  
    if any(mod(n-m,2)) Yz7H@Y2i  
        error('zernfun:NMmultiplesof2', ... {BPNb{dBKr  
              'All N and M must differ by multiples of 2 (including 0).') B?n 6o|8  
    end &.^(, pt  
    Se~< Vpo  
    goBl~fqy0  
    if any(m>n) r&!Ebe-  
        error('zernfun:MlessthanN', ... \vwsRT 1  
              'Each M must be less than or equal to its corresponding N.') iXLODuI  
    end b* (~8JxZ  
    J,q6  
    R. :~e  
    if any( r>1 | r<0 ) NN> E1d=  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') @ByD=  
    end 3lr9nBR  
    }\ kLh(  
    0APh=Alq  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 5>CmWMQ  
        error('zernfun:RTHvector','R and THETA must be vectors.') [l# 8}dy  
    end b^s978qn#  
    WX~: Y,l+u  
    V Ioqn$  
    r = r(:); <9f;\+zA  
    theta = theta(:); J)o.@+Q}  
    length_r = length(r); <e&88{jJ  
    if length_r~=length(theta) hSkI]%  
        error('zernfun:RTHlength', ... ({&\~"  
              'The number of R- and THETA-values must be equal.') lB)%s~P:s  
    end )WWqi,T}  
    +|0f7RB+R  
    @kh:o\  
    % Check normalization: ~t=73 fwB  
    % -------------------- =:fN  
    if nargin==5 && ischar(nflag) dlv1liSXL5  
        isnorm = strcmpi(nflag,'norm'); 9f=L'{  
        if ~isnorm 9!XXuMWU<  
            error('zernfun:normalization','Unrecognized normalization flag.') Y9<N#h#  
        end 1Jm'9iy3  
    else etw.l~y   
        isnorm = false; O~P1d&:L  
    end LI~ofCp  
    3[{RH*nHD  
    WNnB s  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% qQN|\u+co  
    % Compute the Zernike Polynomials Z-U-n/6I  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |(eRv?Qy@  
    t/$:g9V%FA  
    ^WF/gup\hS  
    % Determine the required powers of r: Z:(Zy  
    % ----------------------------------- Qxb%P<`u  
    m_abs = abs(m); tRZA`&  
    rpowers = []; Ot<vn34mt:  
    for j = 1:length(n) 1ze\ U>  
        rpowers = [rpowers m_abs(j):2:n(j)]; rbt/b0ET  
    end L$zB^lSM  
    rpowers = unique(rpowers); &"gQrBa  
    *`]#ntz9  
    ITssBB9  
    % Pre-compute the values of r raised to the required powers, H@uDP  
    % and compile them in a matrix: ?y/LMja  
    % ----------------------------- [ !<  
    if rpowers(1)==0 ;z1\n3,  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); fW3 awR{  
        rpowern = cat(2,rpowern{:}); P:OI]x4  
        rpowern = [ones(length_r,1) rpowern]; \cx==[&(  
    else xg.o7-^M  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ']&rPv kL  
        rpowern = cat(2,rpowern{:}); FW@(MIH  
    end VN/v]  
    Y=5}u&\   
    Ze.\<^-t  
    % Compute the values of the polynomials: KD=W(\  
    % -------------------------------------- dCn'IM1  
    y = zeros(length_r,length(n)); A. 5`+  
    for j = 1:length(n) ISDeLUihY  
        s = 0:(n(j)-m_abs(j))/2; Jfs_9g5  
        pows = n(j):-2:m_abs(j); B:]%Iu|  
        for k = length(s):-1:1 0!tw)HR%  
            p = (1-2*mod(s(k),2))* ... hk.vBbhs  
                       prod(2:(n(j)-s(k)))/              ... `#3FvP@&  
                       prod(2:s(k))/                     ... pNNvg,hS8  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... o6ag{Yp  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); $6DA<v^=z  
            idx = (pows(k)==rpowers); "8l& m6`U-  
            y(:,j) = y(:,j) + p*rpowern(:,idx); /H'F4->  
        end cii! WCu  
         efrVF5,y?  
        if isnorm zDoh p 5,  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); T$IwrTF@?  
        end e. '6q ($3  
    end ;) XB'  
    % END: Compute the Zernike Polynomials J/xbMMb   
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ),rd7GB>  
    n6C]JWG\/U  
    61pJVOe  
    % Compute the Zernike functions: /v-:ca)7mI  
    % ------------------------------ 5H79-QLd  
    idx_pos = m>0; =im7RgIBo  
    idx_neg = m<0; 6F:< c  
    lO/?e!$  
    (iJ9ekB  
    z = y; htu(R$GSM  
    if any(idx_pos)   !XQq*  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); rE?Fp  
    end *-`-P  
    if any(idx_neg) !m:rtPD'  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); y*<x@i+h  
    end ^_ST#fFS  
    UfSqiu  
    @<ILF69b  
    % EOF zernfun ?2nF1>1  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    958
    光币
    1062
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  01~ nC@;  
    '+\t,>nRkl  
    DDE还是手动输入的呢? )=VAEQhL-  
    hp`ZmLq/[  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究