切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9421阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, P/WGB~NH  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, ??.aLeF&  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? $n!5JS@40  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? ^`SEmYb;  
    SYsO>`/ )  
    Hq<4G:#  
    DOFW"SpE  
    gSwHPm%zn  
    function z = zernfun(n,m,r,theta,nflag) a;IOL  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. FMF  mn|  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N lo6upir ZX  
    %   and angular frequency M, evaluated at positions (R,THETA) on the Rsq EAdZw[  
    %   unit circle.  N is a vector of positive integers (including 0), and LQ%QFfC  
    %   M is a vector with the same number of elements as N.  Each element 9__Q-J  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) IOC$jab@  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, [!3cWJCt  
    %   and THETA is a vector of angles.  R and THETA must have the same <=6F=u3PtU  
    %   length.  The output Z is a matrix with one column for every (N,M) $iy!:Did  
    %   pair, and one row for every (R,THETA) pair. -^`s#0( y^  
    % )l m7ly8a|  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 8mdVh\i!Kf  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), C}3a  ^j  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral VCnf`wZB"  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, -Q<OSa='  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized os;9 4yd )  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. qj:[NPwaM  
    % [hot,\+f  
    %   The Zernike functions are an orthogonal basis on the unit circle. >}NnzZ  
    %   They are used in disciplines such as astronomy, optics, and >+;} "J  
    %   optometry to describe functions on a circular domain. ,/V~T<FI  
    % Uea2WJpX  
    %   The following table lists the first 15 Zernike functions. . bUmT!  
    % lg )xQV  
    %       n    m    Zernike function           Normalization ~(tt.l#  
    %       -------------------------------------------------- dZ* &3.#D5  
    %       0    0    1                                 1 ARnq~E@1  
    %       1    1    r * cos(theta)                    2 ,+h<qBsV@  
    %       1   -1    r * sin(theta)                    2 S[y_Ew zq  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) Lh-Y5(c o  
    %       2    0    (2*r^2 - 1)                    sqrt(3) reYIF*  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) @C[p?ak  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) daSx^/$R  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 'ta&qp  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 1TfFWlf[B  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) ~~"U[G1  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) |=VWE>g  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) :iE`=( o  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) y,jpd#Y  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) @Q nKaZ8jW  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 1\/vS$bi(  
    %       -------------------------------------------------- `\ IaeMvo  
    % 7tJ#0to  
    %   Example 1: qSD`S1'2;  
    % "mU2^4q  
    %       % Display the Zernike function Z(n=5,m=1) +G!# /u1  
    %       x = -1:0.01:1; zd$iD i($  
    %       [X,Y] = meshgrid(x,x); k[<i+C";  
    %       [theta,r] = cart2pol(X,Y); m8b-\^eP7  
    %       idx = r<=1; mrG#ox4$  
    %       z = nan(size(X)); H0lW gJmi|  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); YB)I%5d;{  
    %       figure kDRxu!/  
    %       pcolor(x,x,z), shading interp :~s*yznf  
    %       axis square, colorbar As^eL/m2L  
    %       title('Zernike function Z_5^1(r,\theta)') #ifjQ7(:  
    % [;-;{ *{G  
    %   Example 2:  '@.Lg0`  
    % I`g&>  
    %       % Display the first 10 Zernike functions ~SA>$  
    %       x = -1:0.01:1; V5 9Vf[i|  
    %       [X,Y] = meshgrid(x,x); g.8^ )u  
    %       [theta,r] = cart2pol(X,Y); \7$"i5  
    %       idx = r<=1; "9*MSsU  
    %       z = nan(size(X)); mdmJne.  
    %       n = [0  1  1  2  2  2  3  3  3  3]; OQg}E@LZ  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; +yk0ez  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; ?TW?2+  
    %       y = zernfun(n,m,r(idx),theta(idx)); &K=) YpT  
    %       figure('Units','normalized') `@6y Wb:X  
    %       for k = 1:10 QGErQ +l  
    %           z(idx) = y(:,k); 5OFB[  
    %           subplot(4,7,Nplot(k)) ^ rO}'~(  
    %           pcolor(x,x,z), shading interp w9gfva$&  
    %           set(gca,'XTick',[],'YTick',[]) ] ONmWo77o  
    %           axis square [{`&a#Q  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) O_ $zK  
    %       end _]3#C[1L  
    % W5Jb5  
    %   See also ZERNPOL, ZERNFUN2. 9&B #@cw  
    hS%oQ)zvE  
    `!ja0Sq]U  
    %   Paul Fricker 11/13/2006 2*n~r  
    6*|EB|%n  
    mv$gL  
    /6 x[C  
    {=3'H?$  
    % Check and prepare the inputs: L0%W;m  
    % ----------------------------- %(\et%[]  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 'XYjo&w  
        error('zernfun:NMvectors','N and M must be vectors.') Fs=E8' b  
    end l u{6  
    ?4W6TSW-'  
    2G:KaQ)  
    if length(n)~=length(m) c,G[Rk  
        error('zernfun:NMlength','N and M must be the same length.') Z)u_2e  
    end ^8?px&B y:  
    NVf_#p"h  
    $c+:dO|Fb  
    n = n(:); '8@4FXK  
    m = m(:); Mt~2&$>  
    if any(mod(n-m,2)) LTb#1JC  
        error('zernfun:NMmultiplesof2', ... mD?={*7%  
              'All N and M must differ by multiples of 2 (including 0).') >pq=5Ha&  
    end x IL]Y7HWM  
    $TAsb>W!(  
    8ux  
    if any(m>n) @'J[T:e  
        error('zernfun:MlessthanN', ... /Hq#!2)  
              'Each M must be less than or equal to its corresponding N.') %~lTQCPE  
    end +ul.P)1J6  
    )fke;Y0  
    O;(n[k  
    if any( r>1 | r<0 ) |Ur$H!oe?'  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') Q$yQ^ mG  
    end {Sc*AE&Y  
    dA(+02U/.  
    I]91{dq  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) +KP&D.wIo  
        error('zernfun:RTHvector','R and THETA must be vectors.') S09Xe_q  
    end gm: xtN  
    O%} hNTS"  
    xu'b@G}12  
    r = r(:); {]7lh#M  
    theta = theta(:); 3#`Sk`z<  
    length_r = length(r); IfCa6g<&(  
    if length_r~=length(theta) ;T>.  
        error('zernfun:RTHlength', ... J$yJ2G  
              'The number of R- and THETA-values must be equal.') 5J6~]J  
    end T&E'MB  
    r!p:73L8  
    d}^hZ8k|  
    % Check normalization: vC^n_  
    % -------------------- XpT~]q}  
    if nargin==5 && ischar(nflag) Yjx4H  
        isnorm = strcmpi(nflag,'norm'); [O3)s]|  
        if ~isnorm ^8g<>, $  
            error('zernfun:normalization','Unrecognized normalization flag.') *!}bU`  
        end [](] "r  
    else OI^qX;#Kd  
        isnorm = false; zhI"++  
    end i6:O9Km  
    ]_! . xx>  
    ev5m(wR  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% RJD(c#r$  
    % Compute the Zernike Polynomials ,Q+.kAh !G  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 9u_D@A"aC`  
    }FkF1?C  
    *Ud P1?Y  
    % Determine the required powers of r: !z+'mF?V+X  
    % ----------------------------------- QM=Y}   
    m_abs = abs(m); [85tZr]  
    rpowers = []; R& HkWe  
    for j = 1:length(n) ,mE}#cyY  
        rpowers = [rpowers m_abs(j):2:n(j)]; U1=\ `)u;  
    end /t _QA  
    rpowers = unique(rpowers); L\t?^u  
    9f3rMPVh(  
    Rw`64L_  
    % Pre-compute the values of r raised to the required powers, j<d,7  
    % and compile them in a matrix: )H*BTfmt  
    % ----------------------------- ]/?$DNjCc  
    if rpowers(1)==0 B[7Fq[.mh  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); F%:o6mT  
        rpowern = cat(2,rpowern{:}); mFuHZ)iQG  
        rpowern = [ones(length_r,1) rpowern]; ?; tz  
    else ,+'VQa"]  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); -N1X=4/fg  
        rpowern = cat(2,rpowern{:}); ,y[w`Q\  
    end O _^Y*!  
    eOUEhpE  
    qfgw^2aUa  
    % Compute the values of the polynomials: |h2=9\:]  
    % -------------------------------------- L&Pj0K-HT3  
    y = zeros(length_r,length(n)); i [2bz+Z?  
    for j = 1:length(n) d{c06(#_  
        s = 0:(n(j)-m_abs(j))/2; TA!6|)BUW  
        pows = n(j):-2:m_abs(j); 7_5-gtD  
        for k = length(s):-1:1 i dY Xv)R  
            p = (1-2*mod(s(k),2))* ... m=D9V-P  
                       prod(2:(n(j)-s(k)))/              ... VJ-To}  
                       prod(2:s(k))/                     ... iY3TB|tMt  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... X GDJCN  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); "V<7X%LIX  
            idx = (pows(k)==rpowers);  y7.oy"  
            y(:,j) = y(:,j) + p*rpowern(:,idx); dwUs[v   
        end Y]+KsiOL  
         ?q}:ojrs1  
        if isnorm K5(:0Q.5y  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Qa,$_ ,E  
        end ;b0;66C8|  
    end #}C6}};  
    % END: Compute the Zernike Polynomials (Cbm*VL  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% X "Q\MLy  
    ePiZHqIsv/  
    #8a k=lL  
    % Compute the Zernike functions: .-.b:gdO(  
    % ------------------------------ _*u$U  
    idx_pos = m>0; XOPiwrg%p  
    idx_neg = m<0; kFQx7m  
    ic?(`6N8  
    !'kr:r}gg  
    z = y; -}"nb-RR\  
    if any(idx_pos) 6:`4bo  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); q$jwH] .  
    end *4[P$k$7  
    if any(idx_neg) D]+@pK b  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); X="]q|Z  
    end QzV%m0  
    Q `z2SYz>  
    ~f?brQ?  
    % EOF zernfun <l$ vnq  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  VBe&of+  
    kj'  
    DDE还是手动输入的呢? !6`&0eY  
    @<44wMp  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究