下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, v3t<rv
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, DcM/p8da
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? \dE{[^.5
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? kjdIk9 Y
Fn4yx~0
T3"'`Sd9;
45<gO1
P0OMu/
function z = zernfun(n,m,r,theta,nflag) sMUpkU-
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. L ed{#+
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N T;{:a-8
% and angular frequency M, evaluated at positions (R,THETA) on the n6Uf>5
% unit circle. N is a vector of positive integers (including 0), and [P ;fv
% M is a vector with the same number of elements as N. Each element }0@@_Y]CC
% k of M must be a positive integer, with possible values M(k) = -N(k) u(f;4`
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, QXL .4r%
% and THETA is a vector of angles. R and THETA must have the same i`];xNR'
% length. The output Z is a matrix with one column for every (N,M) ZPq.|6&
% pair, and one row for every (R,THETA) pair. S>*i\OnI'
% ?@FqlWz ,
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Lr6C@pI
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), !^0vi3I
% with delta(m,0) the Kronecker delta, is chosen so that the integral r%X
M`;bQX
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, S<'_{u z
% and theta=0 to theta=2*pi) is unity. For the non-normalized /iQh'rp
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. _!Tjb^
% ~EXCYUp4v
% The Zernike functions are an orthogonal basis on the unit circle. QV\af
% They are used in disciplines such as astronomy, optics, and ~ QohP`_
% optometry to describe functions on a circular domain. P2C>IS
% S+wT}_BQ
% The following table lists the first 15 Zernike functions. _JTK$\
% E.ji;5
% n m Zernike function Normalization +c
C.
ZOS
% -------------------------------------------------- WwtVuc|
% 0 0 1 1 ;PU'"MeB "
% 1 1 r * cos(theta) 2 1-PlRQs.1
% 1 -1 r * sin(theta) 2 #G`K<%{?f
% 2 -2 r^2 * cos(2*theta) sqrt(6) >#l:]T
% 2 0 (2*r^2 - 1) sqrt(3) `"yxmo*0
% 2 2 r^2 * sin(2*theta) sqrt(6) W+U0Y,N6
% 3 -3 r^3 * cos(3*theta) sqrt(8) pYr+n9)^
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) PE/uB,Wl
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) d8+@K&z|
% 3 3 r^3 * sin(3*theta) sqrt(8) J=: \b
% 4 -4 r^4 * cos(4*theta) sqrt(10) ~OvbMWu
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 0rI/$
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) fR {_P
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) UQ7]hX9
% 4 4 r^4 * sin(4*theta) sqrt(10) U/cj_}uX
% -------------------------------------------------- }BL7P-km
% >b=."i
% Example 1: g"kI1^[nj
% 3tJfh=r=1
% % Display the Zernike function Z(n=5,m=1) oJ3(7Sz
% x = -1:0.01:1; e?B}^Dk0i
% [X,Y] = meshgrid(x,x); =2=rPZw9
% [theta,r] = cart2pol(X,Y); 3"v>y]$U
% idx = r<=1; >qr/1mW
% z = nan(size(X)); w{k ^O7~
% z(idx) = zernfun(5,1,r(idx),theta(idx)); y06**f)
% figure qz3
Z'
% pcolor(x,x,z), shading interp TecMQ0
KD
% axis square, colorbar $ xHtI]T
% title('Zernike function Z_5^1(r,\theta)') { gs$pBu
% qq<T~^
% Example 2: Ml{
]{n
% oaPWeM+
% % Display the first 10 Zernike functions 4KR`
% x = -1:0.01:1; $0 vT_
% [X,Y] = meshgrid(x,x); oD\t4]?E
% [theta,r] = cart2pol(X,Y); w $-q&
% idx = r<=1; U$+,|\9
% z = nan(size(X)); {I$iD
% n = [0 1 1 2 2 2 3 3 3 3]; ]d7A|)q
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; }
S]!W\a
% Nplot = [4 10 12 16 18 20 22 24 26 28]; sP2Uj
% y = zernfun(n,m,r(idx),theta(idx)); ){'<67dK
% figure('Units','normalized') e`LkCy[_
% for k = 1:10 o 7tUv"Rs
% z(idx) = y(:,k); zaLPPm&f
% subplot(4,7,Nplot(k)) YVgH[-`,
% pcolor(x,x,z), shading interp BN%cX2j
% set(gca,'XTick',[],'YTick',[]) ~TS!5Wiv
% axis square Qox /abC
h
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) [TUs^%2@
% end y?O-h1"3,
% vazA@|^8
% See also ZERNPOL, ZERNFUN2. ISFNP&&K
c^pQitPv
"a~r'+'<
% Paul Fricker 11/13/2006 $%"hhju
ob2_=hQnC
uYg Q?*Z
{J,"iJKop
(GpP=lSSeY
% Check and prepare the inputs: 0#8, (6
% ----------------------------- a)=|{QR>W
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) m;{HlDez
error('zernfun:NMvectors','N and M must be vectors.') rXMc0SPk
end se2Y:v
hE`d@
KU
oAxA
if length(n)~=length(m) PI`Y%! P
error('zernfun:NMlength','N and M must be the same length.') '/6f2[%Y"
end .xmB8 R
U\qbr.<
$|J+
n = n(:); AA=rjB9
m = m(:); u pUJF`3
if any(mod(n-m,2)) 0uW)&>W
error('zernfun:NMmultiplesof2', ... '/ Hoq
'All N and M must differ by multiples of 2 (including 0).') Fv
%@k{
end =>3,]hnep
I(7iD. ^:
wXqwb|2
if any(m>n) <X4f2z{T{@
error('zernfun:MlessthanN', ... xZ`vcS(
'Each M must be less than or equal to its corresponding N.') ip}%Y6Wj
end &-Wt!X 3
O|=?!|`o
j?]+~
if any( r>1 | r<0 ) 0n`Temb/
error('zernfun:Rlessthan1','All R must be between 0 and 1.') Q$]1juqg
end <D)@;A
85[
7lO)[
;^0ok'P\~9
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) &K9RV4M5
error('zernfun:RTHvector','R and THETA must be vectors.') kv2o.q
end !]A/ID0K
V(0Y
CPcUB4a%#
r = r(:); L/WRVc6
theta = theta(:); BxlhCu
length_r = length(r); \_R<Q?D+
if length_r~=length(theta) NopfL
error('zernfun:RTHlength', ... $yj*n;
'The number of R- and THETA-values must be equal.') AI{0;0
end
2~g-k3
:R:@V#Y
is^R8a
% Check normalization: l$c/!V[3
% -------------------- UukY9n];]
if nargin==5 && ischar(nflag) t5K#nRd Z:
isnorm = strcmpi(nflag,'norm'); +`Nu0y!rj
if ~isnorm Z"w}`&TC$^
error('zernfun:normalization','Unrecognized normalization flag.') (,+#H]L
end |P|2E~[r
else t!J>853
isnorm = false; Fec4 #}|
end <_eEpG}9
}{:}K<
[kr-gV
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @zi0:3`#0\
% Compute the Zernike Polynomials W
wj+\
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 1'TS!/ll];
b 1Wz
UCj+V@{
% Determine the required powers of r:
u0oTqD?
% ----------------------------------- `}sFT:1&
m_abs = abs(m); b.[9Adi >
rpowers = []; _]Ob)RUVH
for j = 1:length(n) G@jx&#v
rpowers = [rpowers m_abs(j):2:n(j)]; 06.8m;{N
end OT|0_d?bD
rpowers = unique(rpowers); )*uo tV
$/#[,1
+=|%9%
% Pre-compute the values of r raised to the required powers, AOcUr)
% and compile them in a matrix: Lp|n)29+du
% ----------------------------- oVbs^sbRH
if rpowers(1)==0 &1yErGXC
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ..'"kX:5
rpowern = cat(2,rpowern{:}); T5T[$%]6
rpowern = [ones(length_r,1) rpowern]; :ntAU2)H
else Ow5VBw(
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Rh
]XJM
rpowern = cat(2,rpowern{:}); ".#h$
end !m'Rp~t
?LU>2!jN
UM21Cfqex
% Compute the values of the polynomials: OQ<;w
% -------------------------------------- KXcRm)
y = zeros(length_r,length(n)); bi@'m?XwJ
for j = 1:length(n) ObreDv^,
s = 0:(n(j)-m_abs(j))/2; yn(bW\
pows = n(j):-2:m_abs(j); +`B^D
for k = length(s):-1:1 ]uh/ !\
p = (1-2*mod(s(k),2))* ... TEj"G7]1$A
prod(2:(n(j)-s(k)))/ ... pTTM(Hrx
prod(2:s(k))/ ... mO]dP;,
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... K~3Y8ca
prod(2:((n(j)+m_abs(j))/2-s(k))); >MRuoJ
idx = (pows(k)==rpowers); H)dZ0n4T
y(:,j) = y(:,j) + p*rpowern(:,idx); (47la$CR
end }jWg&<5+z
uXUuA/O5-
if isnorm ,->5 sJ{U
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); w&VDe(:~
end >X"\+7bw
end .~rg#*]^
% END: Compute the Zernike Polynomials [fvjvN`
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #RSUChe7w
H`q[!5~8
JlRNJ#h>
% Compute the Zernike functions: ~P~q'
% ------------------------------ H%Lln#
idx_pos = m>0; '`W6U]7>
idx_neg = m<0; c_.Fe'E
Clap3E|a
2 1+[9
z = y; W* v3B.
if any(idx_pos) V
joVC$ZX
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); WW^+X~Y
end 7xG~4N<)]
if any(idx_neg) 9GTp};Kg
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); hK{<&T
end mZM7 4!4X
,i;#e
yO7#n0q
% EOF zernfun 4)'U!jSb