切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9292阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, e Z@Gu  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, Y H<$ +U  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? "C:rTIH  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? ^H5w41  
    /Y;+PAy  
    C+/Eqq^(  
    W$z#ssr  
    -!XrwQyk  
    function z = zernfun(n,m,r,theta,nflag) /J1S@-  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. Qy{NS.T  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N :FoO Q[Q  
    %   and angular frequency M, evaluated at positions (R,THETA) on the H<V+d^qX\w  
    %   unit circle.  N is a vector of positive integers (including 0), and %:" RzHN  
    %   M is a vector with the same number of elements as N.  Each element =:4 '  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) ,(j>)g2Ob  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, J*}VV9H  
    %   and THETA is a vector of angles.  R and THETA must have the same &e%{k@  
    %   length.  The output Z is a matrix with one column for every (N,M) b%3Q$wIJ6  
    %   pair, and one row for every (R,THETA) pair. ^D9 /  
    % Z -pyFK\  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike tegOT]|  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), @kwLBAK}@  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral bHO7* E  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, fkW3~b  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized OfD@\;L  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. *GCA6X  
    % #t=[w  
    %   The Zernike functions are an orthogonal basis on the unit circle. OF-E6bc  
    %   They are used in disciplines such as astronomy, optics, and ~@%(RMJm&  
    %   optometry to describe functions on a circular domain. sk#9x`Rw  
    % '/Cg*o/  
    %   The following table lists the first 15 Zernike functions. j'k8^*M6  
    % / pO{2[  
    %       n    m    Zernike function           Normalization ov1Wr#s  
    %       -------------------------------------------------- NV:>a  
    %       0    0    1                                 1 HvAE,0N  
    %       1    1    r * cos(theta)                    2 kVWGDI$~  
    %       1   -1    r * sin(theta)                    2 t G]N*%@  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) cE^kpnVq|<  
    %       2    0    (2*r^2 - 1)                    sqrt(3) ~af8p {  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) u06tDJ[  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) U%Dit  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) l<$rqz3D  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) DD2adu^  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) lrCm9Oy  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) \.5F](:  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) sjSi;S4  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) b([:,T7  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) T0g0jr{  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) ot^q}fRX  
    %       -------------------------------------------------- <BZ_ (H  
    % !syU]Yk  
    %   Example 1: 37#cx)p^f  
    % T]^?l  
    %       % Display the Zernike function Z(n=5,m=1) j(&GVy^;?  
    %       x = -1:0.01:1; P2O\!'aEh  
    %       [X,Y] = meshgrid(x,x); xne]Q(B>  
    %       [theta,r] = cart2pol(X,Y); _jW>dU^B  
    %       idx = r<=1; {&E?<D2_&  
    %       z = nan(size(X)); _0w1 kqW  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); z3clUtC+  
    %       figure WmNA5;<Q  
    %       pcolor(x,x,z), shading interp 8IeI0f"l)  
    %       axis square, colorbar S[Vtq^lU  
    %       title('Zernike function Z_5^1(r,\theta)') #?_#!T|  
    % 3]N q@t  
    %   Example 2: X) 8e4~(?  
    % Xj%,xm>}!u  
    %       % Display the first 10 Zernike functions cbfD B^_  
    %       x = -1:0.01:1; L"4]Tm>zq  
    %       [X,Y] = meshgrid(x,x); 5~QhX22  
    %       [theta,r] = cart2pol(X,Y); V5~fMsse  
    %       idx = r<=1; B`#*o<eb  
    %       z = nan(size(X)); H*GlWgfG  
    %       n = [0  1  1  2  2  2  3  3  3  3]; { yTpRQN~  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; xg?auje  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; { E^U6@  
    %       y = zernfun(n,m,r(idx),theta(idx)); 3+ e4e  
    %       figure('Units','normalized') ,'=hjIel  
    %       for k = 1:10 MBlBMUJk  
    %           z(idx) = y(:,k); |4 Qx=x>  
    %           subplot(4,7,Nplot(k)) fSbS(a  
    %           pcolor(x,x,z), shading interp ,'u*ZB;  
    %           set(gca,'XTick',[],'YTick',[]) v_.HGG S  
    %           axis square "3wv:BL  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Zd$JW=KR]l  
    %       end z4bN)W )p  
    % eIsT!V" 7  
    %   See also ZERNPOL, ZERNFUN2. Y|_O8[  
    X PA 0m  
    #,TELzUVE  
    %   Paul Fricker 11/13/2006 Vu%n&uF  
    qIz}$%!A  
    X{`1:c'x  
    7|Xe&o<n  
    C!5I?z&  
    % Check and prepare the inputs: 5?w.rcN[j  
    % ----------------------------- W+K.r?G<j  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 07FT)QTE  
        error('zernfun:NMvectors','N and M must be vectors.') ';Nu&D#Ph  
    end lY8`5Uz  
    nZxSMN0]  
    "T7>)fbu  
    if length(n)~=length(m) Cs#w72N  
        error('zernfun:NMlength','N and M must be the same length.') Q,~x#  
    end "b`7[;a  
    L:pUvcAc?  
    *,&S',S-  
    n = n(:); O5M2`6|As  
    m = m(:); F5U|9<  
    if any(mod(n-m,2)) FfG%C>E6~  
        error('zernfun:NMmultiplesof2', ... modC6d%  
              'All N and M must differ by multiples of 2 (including 0).') $it@>L8  
    end rI>LjHP  
    *7Xzht&f  
    xG1?F_]  
    if any(m>n) T)~!mifX  
        error('zernfun:MlessthanN', ... Y& 5.9 s@'  
              'Each M must be less than or equal to its corresponding N.') n[P\*S  
    end Im+ 7<3Z  
    XhN{S]Wn  
    7h`^N5H.q  
    if any( r>1 | r<0 ) ^KbL ,T  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') A? r^V2+j  
    end {[P!$ /  
    G|*G9nQ  
    qe%V#c  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) -?z\5 z  
        error('zernfun:RTHvector','R and THETA must be vectors.') nmg{%P  
    end |z*>ixK  
    >Nh`rkR2[  
    WqQU@sA  
    r = r(:); Ha)np  
    theta = theta(:); iD714+N(  
    length_r = length(r); G?ig1PB"#  
    if length_r~=length(theta) p/&HUQQk  
        error('zernfun:RTHlength', ... 96}eR,  
              'The number of R- and THETA-values must be equal.') uY]0dyI  
    end V^sc1ak1Q  
    i ?-Y  
    0>FE%  
    % Check normalization: 'Wp @b678  
    % -------------------- ;MPKJS68@  
    if nargin==5 && ischar(nflag) kP^*h O!%  
        isnorm = strcmpi(nflag,'norm'); \=fh-c(J,  
        if ~isnorm F>-}*o  
            error('zernfun:normalization','Unrecognized normalization flag.') $8g42LR'  
        end [0!{_E)<  
    else M4:s;@qZ.  
        isnorm = false; l9J*um-  
    end "V}qf3 qU  
    9!#EwPD$#  
    kceyuD$3G  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% s[X B#)H4  
    % Compute the Zernike Polynomials r6 }_H?j  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 6|#g+&[  
    U&W"Ea=R/  
    lDN?|YG  
    % Determine the required powers of r: zJC EA  
    % ----------------------------------- ^Xs]C|=W  
    m_abs = abs(m); 5v|EAjB6o  
    rpowers = []; [.-a$J[4+F  
    for j = 1:length(n) u"Y]P*[k  
        rpowers = [rpowers m_abs(j):2:n(j)]; [.&[<!,.  
    end "dtlME{Bx  
    rpowers = unique(rpowers); CXAVGO'xw  
    ArXl=s';s4  
    -Qb0:]sV#  
    % Pre-compute the values of r raised to the required powers, ^P$7A]!  
    % and compile them in a matrix: X<euD9?  
    % ----------------------------- YgimJsm  
    if rpowers(1)==0 :1_mfX  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); i}lRIXjdV  
        rpowern = cat(2,rpowern{:}); -;Uj|^  
        rpowern = [ones(length_r,1) rpowern]; >rf5)Y~f  
    else (p,}'I#i*  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 8 Z8Y[p  
        rpowern = cat(2,rpowern{:}); C6^j#rl  
    end .8H}Lf\  
    u"FjwF?  
    1<,/ -H  
    % Compute the values of the polynomials: m~>@BCn;  
    % -------------------------------------- S^j,f'2  
    y = zeros(length_r,length(n)); 4ZI_pf  
    for j = 1:length(n) nk/vGa4  
        s = 0:(n(j)-m_abs(j))/2; 0>@[o8  
        pows = n(j):-2:m_abs(j); G Y-M.|%  
        for k = length(s):-1:1 n9] ~  
            p = (1-2*mod(s(k),2))* ... (h,Ws-O  
                       prod(2:(n(j)-s(k)))/              ... DsQ/aG9c%  
                       prod(2:s(k))/                     ... BX3lP v  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 88o:NJ}_  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); $E.XOpl&I  
            idx = (pows(k)==rpowers); ~gddcTp  
            y(:,j) = y(:,j) + p*rpowern(:,idx); GV6mzD@ <  
        end 1X&B:_  
         ])N%^Qe$U  
        if isnorm I%xn,u  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); aR)?a;}H  
        end MZ~.(&  
    end o^GC=Aca`  
    % END: Compute the Zernike Polynomials .'lN4x  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Sk=N [hwU  
    KY+]RxX  
    j)L1H* S%  
    % Compute the Zernike functions: &yLc1#H  
    % ------------------------------ \]8i}E1  
    idx_pos = m>0; @a(oB.i  
    idx_neg = m<0; ym%o}( v-  
    D9o*8h2$  
    n(R_#,Hs  
    z = y; o](.368+4  
    if any(idx_pos) h=[-Er'B  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ~6d5zI4\  
    end :hP58 }Q$  
    if any(idx_neg) } yq  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); T2|:nC)@  
    end fl)zQcA  
    4_Y!elH)  
    v<&v]!nF  
    % EOF zernfun X9~p4ys9{  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    在线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  Wt"ww~h`(  
    bl`D+/V   
    DDE还是手动输入的呢? IqXBz.p  
    '(TmV#3  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究