下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, TR|;,A[%v#
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, x1:vUHwC
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? -D$3!ccX
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? dY 6B%V
H.)fOctbO
a'm!M:w
i~(#S8U4d
UVnrDhd!0
function z = zernfun(n,m,r,theta,nflag) G@;Nz i89
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. # e$\~c Pd
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N |@OJ~5H/{
% and angular frequency M, evaluated at positions (R,THETA) on the _y|[Z;
% unit circle. N is a vector of positive integers (including 0), and M2a}x+5'
% M is a vector with the same number of elements as N. Each element -.^@9
a>
% k of M must be a positive integer, with possible values M(k) = -N(k) O5c_\yv=
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, '/n\Tg+
% and THETA is a vector of angles. R and THETA must have the same ZyZl\\8U
% length. The output Z is a matrix with one column for every (N,M) o&WRta>VP
% pair, and one row for every (R,THETA) pair. 'o7R/`4KR
% X"laZd947>
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike jg7d7{{SB
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), g2!0vB>
% with delta(m,0) the Kronecker delta, is chosen so that the integral NEZH<#
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 32TP Mk
% and theta=0 to theta=2*pi) is unity. For the non-normalized
Cl%V^xTb
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. `6dy
U_f
% U<1}I.hDJ
% The Zernike functions are an orthogonal basis on the unit circle. >9<_s
^_
% They are used in disciplines such as astronomy, optics, and axHxqhO7zp
% optometry to describe functions on a circular domain. iJ5e1R8tN
% 1VRqz5
% The following table lists the first 15 Zernike functions. N+ak[axN
% 2K5}3<KD/
% n m Zernike function Normalization p!. /
% -------------------------------------------------- mxtlr)
% 0 0 1 1 ,P;8 }yQ
% 1 1 r * cos(theta) 2 GZ;Z
% 1 -1 r * sin(theta) 2 &3!i@2d;3f
% 2 -2 r^2 * cos(2*theta) sqrt(6) c-?
Ygr
% 2 0 (2*r^2 - 1) sqrt(3) kO
/~i
% 2 2 r^2 * sin(2*theta) sqrt(6) ?+5"
%4o
% 3 -3 r^3 * cos(3*theta) sqrt(8) bEBZ!ghU
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) `[w}hFl~q
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 0V{>)w!Fo
% 3 3 r^3 * sin(3*theta) sqrt(8) 6nM
rO$i0k
% 4 -4 r^4 * cos(4*theta) sqrt(10) d@_'P`%-
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) *Cc$eR]-
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) :YkDn~@
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ?z*W8b]'
% 4 4 r^4 * sin(4*theta) sqrt(10) (, ;MC/l
% -------------------------------------------------- sE(X:[Am
% <FMuWHY
% Example 1: }xpe
% @B}&62T
% % Display the Zernike function Z(n=5,m=1) |:`?A3^m#
% x = -1:0.01:1; PX+"" #
% [X,Y] = meshgrid(x,x); #JX|S'\x
% [theta,r] = cart2pol(X,Y); D3,t6\m
% idx = r<=1; q>Dr)x)
% z = nan(size(X)); XRX7qo(0g
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 7lnM|nD
% figure [ni-UNTv
% pcolor(x,x,z), shading interp C.B8 J"T-
% axis square, colorbar B8P@D"u
% title('Zernike function Z_5^1(r,\theta)') $~;6 hnrm
% {EiG23!qV
% Example 2: *,Aa9wa{
% si+5h6I.}
% % Display the first 10 Zernike functions ^MF=,U'8
% x = -1:0.01:1; gu~-}
% [X,Y] = meshgrid(x,x); dja9XWOg
% [theta,r] = cart2pol(X,Y); % B7?l
% idx = r<=1; 7~Xu71^3s
% z = nan(size(X)); hfP(N_""S
% n = [0 1 1 2 2 2 3 3 3 3]; b*$o[wO9
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; ]lG_rGw
% Nplot = [4 10 12 16 18 20 22 24 26 28]; Au\=ypK
% y = zernfun(n,m,r(idx),theta(idx)); exa}dh/uC
% figure('Units','normalized') 0|f_C3
% for k = 1:10 jHUz`.8B
% z(idx) = y(:,k); A=@V LU4%
% subplot(4,7,Nplot(k)) w|3fioLs
% pcolor(x,x,z), shading interp GtGyY0
% set(gca,'XTick',[],'YTick',[]) \dQ2[Ek
% axis square `zV-1)=
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) u8$~N$L
% end k-t,y|N
% $[L)f|
l
% See also ZERNPOL, ZERNFUN2. N-_| %C-.
9h)P8B.>M
yD=)&->Ra
% Paul Fricker 11/13/2006 )G F
Xl
'\krz
jw6 ng>9
+eVpMD(
l
YpbdScz
% Check and prepare the inputs: ygu?w7
% ----------------------------- +O%a:d%
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) q0xE&[C[M
error('zernfun:NMvectors','N and M must be vectors.') xf3/<x!B
end |7 W6I$Xl
xDAA`G
2{Lc^6i(t
if length(n)~=length(m) o2t@-dNi
error('zernfun:NMlength','N and M must be the same length.') *?
orK o
end S7\jR%pb
<=LsloI
Yc( )'6
n = n(:); B3i=pcef
m = m(:); ;L/T}!Dx
if any(mod(n-m,2)) |Z +E(F
error('zernfun:NMmultiplesof2', ... S@rsQ@PA
'All N and M must differ by multiples of 2 (including 0).') Ij,?G*
end 5w-G]b
EJiF_
:X'U`jE
if any(m>n) [&k& $04_
error('zernfun:MlessthanN', ... \c`r9H^v{
'Each M must be less than or equal to its corresponding N.') OAQ O J'
end & m ";D
5&7?0h+I
(]#
JpQ
if any( r>1 | r<0 ) 0yEyt7
~@
error('zernfun:Rlessthan1','All R must be between 0 and 1.') SGT-B.
end 2QQYXJ^
kv FOk
OEq e^``!
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) (/UMi,Ho
error('zernfun:RTHvector','R and THETA must be vectors.') >ww1:Sn
end LZ<(:S
>w2WyYJYH
x'PjP1
r = r(:); N4JL.(m){I
theta = theta(:); za 4B+&JJ
length_r = length(r); [/`Hz]R
if length_r~=length(theta) ?p\II7
error('zernfun:RTHlength', ... /[|md0,
'The number of R- and THETA-values must be equal.') DT~y^h
end <EE+
S#z
2ZFKjj
p[+me o
% Check normalization: N`^W*>XB
% -------------------- ?z36mj"`o
if nargin==5 && ischar(nflag) 6je%LHhL
isnorm = strcmpi(nflag,'norm'); Bd]DhPhJ
if ~isnorm ~k_zMU-1
error('zernfun:normalization','Unrecognized normalization flag.') L,ey3i7a\
end rnrx%Q
else #1lS\!
isnorm = false; ~5?n&pF
end vnOF$6n
SNV+.xN
%3B>1h9N
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% I&@@v\$*
% Compute the Zernike Polynomials n`2"(7Wj
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% oN}j <6s
xa axj
{Q3#]Vu
% Determine the required powers of r: dK`O,[}
% ----------------------------------- "f$A0RL
m_abs = abs(m); ?ew]i'9(
rpowers = []; hA19:H=7R0
for j = 1:length(n) WmBnc#>gK
rpowers = [rpowers m_abs(j):2:n(j)]; Sgk{NM7|k
end h |
rpowers = unique(rpowers); S~9kp?kR$
g5HqU2
KFrmH
% Pre-compute the values of r raised to the required powers, !a&F:Fbm
% and compile them in a matrix: { J%$.D(/
% ----------------------------- B{u.Yc:
if rpowers(1)==0 Sk%|-T(d$
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); zL{@LHP
rpowern = cat(2,rpowern{:}); `Wt~6D
e
rpowern = [ones(length_r,1) rpowern]; /]>{"sS(
else cLF>Jvs*J
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); _Dt TG<E
rpowern = cat(2,rpowern{:}); 30-wTcG
end r>eXw5Pr7
Bd[}A9O[
4vJIO{m
% Compute the values of the polynomials: LKG|S<s
% -------------------------------------- FCAu%lvZT
y = zeros(length_r,length(n)); PQ|x?98
for j = 1:length(n) yXmp]9$
s = 0:(n(j)-m_abs(j))/2; 1T`"/*!
pows = n(j):-2:m_abs(j); aDEP_b;
for k = length(s):-1:1 ?':'zT
p = (1-2*mod(s(k),2))* ... D1/$pA+B
prod(2:(n(j)-s(k)))/ ... &^>r<~]
prod(2:s(k))/ ... >QPS0Vx[
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... gQGiph |
prod(2:((n(j)+m_abs(j))/2-s(k))); Darkj>$\
idx = (pows(k)==rpowers); K 6Ua~N^
y(:,j) = y(:,j) + p*rpowern(:,idx); ,g.=vQm:?
end @~HD<K
(]dZ+"O{
if isnorm c *no H[
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 9(]j
e4Cn
end 7 4UE-H)
end JC3)G/m(03
% END: Compute the Zernike Polynomials ] lTfi0}g_
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% zvg&o)/[
a#$%xw
Qgi:q
% Compute the Zernike functions: 9|DC<Zn&B#
% ------------------------------ >{8H==P
idx_pos = m>0; Grv|Wuli
idx_neg = m<0; n&JP/P3Y
=jh:0Q<43+
["9$HL
z = y; i>}z$'X
if any(idx_pos) W1(ziP'6
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); vZsVxx99
end Rl8-a8j$f.
if any(idx_neg) ,|/$|$'
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); %m`QnRX?D
end W=:+f)D
C]cw@:o%
GC2<K
% EOF zernfun > kT~X ,o