切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9227阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, 1'.SHY|  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, CPJ8G}4  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? 5%H(AaG*q  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? <2b&AF{En  
    sb8%!> C  
    Q;9-aZ.H  
    X`/3X}<$7  
    -Ky<P<@ezm  
    function z = zernfun(n,m,r,theta,nflag) [k1N-';;;  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. #cHH<09 rl  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N CC{*'p6  
    %   and angular frequency M, evaluated at positions (R,THETA) on the kV >[$6  
    %   unit circle.  N is a vector of positive integers (including 0), and b&q!uFP  
    %   M is a vector with the same number of elements as N.  Each element m+66x {M2c  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) UZcsMMKH  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, e6?iQ0  
    %   and THETA is a vector of angles.  R and THETA must have the same ^\<nOzU?  
    %   length.  The output Z is a matrix with one column for every (N,M)  :P,g,  
    %   pair, and one row for every (R,THETA) pair. z{wW6sgPr  
    % Vq8G( <77  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike }~W:3A{7;  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), :/rl \woA>  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral zN3[W`q+m  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, eBlWwUy*6f  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized dO?zLc0f  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. /l.:GH36f  
    % '3%JhG)#  
    %   The Zernike functions are an orthogonal basis on the unit circle. ;_$Q~X  
    %   They are used in disciplines such as astronomy, optics, and 5OHg% ^  
    %   optometry to describe functions on a circular domain. *}F>c3x]  
    % @`Fv}RY{  
    %   The following table lists the first 15 Zernike functions. b#uNdq3  
    % #%Hk-a=>)#  
    %       n    m    Zernike function           Normalization -|z ]Ir  
    %       -------------------------------------------------- ;$a+ >  
    %       0    0    1                                 1 KjWF;VN*[3  
    %       1    1    r * cos(theta)                    2 fyt ODsb>  
    %       1   -1    r * sin(theta)                    2 C8{bqmlm@  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) <x!q! ;  
    %       2    0    (2*r^2 - 1)                    sqrt(3) % w\   
    %       2    2    r^2 * sin(2*theta)             sqrt(6) 8 x=J&d  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) _sp, ,gz  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) vl`Qz"Xy  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) }na0  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) h.Y&_=Gc  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) $ol]G`+  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ~^{>!wU+  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) $&25hvK,  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) [c^!;YBp)  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) XC(:O(jdA2  
    %       -------------------------------------------------- .2Q4EbM2  
    % t]3> X  
    %   Example 1: <wH"{G3?  
    % hQeGr 2gMq  
    %       % Display the Zernike function Z(n=5,m=1) &nV/XLpG  
    %       x = -1:0.01:1; 1;*4y J2  
    %       [X,Y] = meshgrid(x,x); &6feR#~A  
    %       [theta,r] = cart2pol(X,Y); 3# g"Z7/  
    %       idx = r<=1; IZ/PZ"n_(  
    %       z = nan(size(X)); PFKl6_(  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); DX2_} |$!  
    %       figure ]Cc3}+(s  
    %       pcolor(x,x,z), shading interp m&P B5s\=  
    %       axis square, colorbar bmOK 8  
    %       title('Zernike function Z_5^1(r,\theta)') /IxoS  
    % cv{icz,%w  
    %   Example 2: bcR";cE  
    % t!8(IR  
    %       % Display the first 10 Zernike functions ; Sd== *  
    %       x = -1:0.01:1; Aaw]=8 OI  
    %       [X,Y] = meshgrid(x,x); @3w6 !Sgh  
    %       [theta,r] = cart2pol(X,Y); N&uRL_X .  
    %       idx = r<=1; H9\,;kM)  
    %       z = nan(size(X)); a1>Tz  
    %       n = [0  1  1  2  2  2  3  3  3  3]; !V'~<&  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; h]Y,gya[yk  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; q90 ~)n?  
    %       y = zernfun(n,m,r(idx),theta(idx)); Bq5-L}z  
    %       figure('Units','normalized') WaPuJ 5;e  
    %       for k = 1:10 FUP0X2P   
    %           z(idx) = y(:,k); D03QisH=  
    %           subplot(4,7,Nplot(k)) B:>>D/O  
    %           pcolor(x,x,z), shading interp zv-9z  
    %           set(gca,'XTick',[],'YTick',[]) d[\$a4G+  
    %           axis square !b"2]Qv  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) yMz dM&a!*  
    %       end 4wkmgS  
    % * lJkk  
    %   See also ZERNPOL, ZERNFUN2. /HE{8b7n3F  
    u}">b+{!  
    8 7z]qE  
    %   Paul Fricker 11/13/2006 ;=UkTn}N?l  
    e#AmtheZR  
    +h)1NX;o1  
    .MS41 E!  
    ]IclA6  
    % Check and prepare the inputs: H -K%F_#  
    % ----------------------------- Kr'Yz!  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Hmx Y{KB  
        error('zernfun:NMvectors','N and M must be vectors.') JLbmh1'  
    end NY GWA4L  
    ]Pl Ly:(  
    nK)hv95i_  
    if length(n)~=length(m) V}MRdt7  
        error('zernfun:NMlength','N and M must be the same length.') ;d .gVR_V  
    end IvX+yU  
    nh]HEG0CZJ  
    vd [?73:C  
    n = n(:); )zydD=,bu  
    m = m(:); l[6lXR&|  
    if any(mod(n-m,2)) Sc?q}tt^C  
        error('zernfun:NMmultiplesof2', ... &u4;A[- R  
              'All N and M must differ by multiples of 2 (including 0).') >rYkVlv  
    end ;LC?3.  
    ]-sgzM]q  
    :CsrcT=  
    if any(m>n) [;Jq=G8&t  
        error('zernfun:MlessthanN', ... _l+8[\v  
              'Each M must be less than or equal to its corresponding N.') 4$y P_3  
    end #l 6QE=:  
    [a!)w@I:  
    3=("vR`!  
    if any( r>1 | r<0 ) hs*n?vxp3  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') ,FwJ0V  
    end L%<DLe^P`l  
    t 2,?+q$x  
    ;YZ'd"0v  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) iEx4va-j  
        error('zernfun:RTHvector','R and THETA must be vectors.') FEi@MJJ\e  
    end $>zqCi2tB<  
    LMNmG]#!  
    mgTzwE_\  
    r = r(:); )S`=y-L$  
    theta = theta(:); txiX1o!/L  
    length_r = length(r); #fDM{f0]R  
    if length_r~=length(theta) \ cdns;  
        error('zernfun:RTHlength', ... RgVnx]IF  
              'The number of R- and THETA-values must be equal.') !tSh9L;<O  
    end )XDbg>  
    9TZ6c  
    4N5\sdi  
    % Check normalization: j XYr&F  
    % -------------------- hlfdmh? /  
    if nargin==5 && ischar(nflag) " H]R\xp  
        isnorm = strcmpi(nflag,'norm'); D,()e^o  
        if ~isnorm "TVmxE%(  
            error('zernfun:normalization','Unrecognized normalization flag.') 8v)iOPmDC  
        end :m<#\!?  
    else ,Fn-SrB:  
        isnorm = false; 7M~/[f7Z{  
    end #itZ~tol  
    }nptmc  
    -56gg^Pnr  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% C%|m[,Gx  
    % Compute the Zernike Polynomials m%b# B>J,n  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% !gcea?I  
    ZcN#jnb0/  
    Q\}Ck+d` a  
    % Determine the required powers of r:  7gx?LI_e  
    % ----------------------------------- a+j"8tHu$  
    m_abs = abs(m); dl(!{tZ#  
    rpowers = []; 0]zMb^wo  
    for j = 1:length(n) lx7]rkWo|a  
        rpowers = [rpowers m_abs(j):2:n(j)]; 4HpKKhv"  
    end et/v/Hvw1  
    rpowers = unique(rpowers); yG;@S8zC  
    !;Ke#E_d  
    A1*\ \[  
    % Pre-compute the values of r raised to the required powers, r^ {Bw1+  
    % and compile them in a matrix: h@TP=  
    % ----------------------------- Yy;BJ_  
    if rpowers(1)==0 #|T2`uYotf  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); P26"z))~d  
        rpowern = cat(2,rpowern{:}); 211V'|a_ >  
        rpowern = [ones(length_r,1) rpowern]; 5}b) W>3@`  
    else xz~Y %Y|Z  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); u'^kpr`y  
        rpowern = cat(2,rpowern{:}); j<k-w  
    end DG}s`'  
    y8Rq2jI;(e  
    c& K`t  
    % Compute the values of the polynomials: *m2?fP\  
    % -------------------------------------- T^A[m0mk  
    y = zeros(length_r,length(n)); bn7g!2  
    for j = 1:length(n) M@Ti$=  
        s = 0:(n(j)-m_abs(j))/2; Xpt9$=d  
        pows = n(j):-2:m_abs(j); Mcq!QaO}&  
        for k = length(s):-1:1 [NV/*>"j&  
            p = (1-2*mod(s(k),2))* ... //RD$e?h~  
                       prod(2:(n(j)-s(k)))/              ... *U$%mZS]1  
                       prod(2:s(k))/                     ... 8c>xgFWp9  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Vt,P.CfdC  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); Xkk 8#Y":  
            idx = (pows(k)==rpowers); ;%k C?Vzi  
            y(:,j) = y(:,j) + p*rpowern(:,idx); D]5j?X'  
        end YI`BA`BQ8  
         xo2j fz  
        if isnorm 5tk7H2K^<  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); <8YvsJ  
        end h lSav?V_  
    end saDu'SmYV  
    % END: Compute the Zernike Polynomials LIKQQ  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% R}IuMMx  
    ^Pah\p4bj  
    `Y^l.%AZZ  
    % Compute the Zernike functions: +(W7hK4ip  
    % ------------------------------ 3`)ej`  
    idx_pos = m>0; c`/=)IO4%  
    idx_neg = m<0; oS}fr?  
    9 Q*:II  
    i52JY&N  
    z = y; >UV}^OO  
    if any(idx_pos) ZAn9A>5_  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); `sg W0Uf  
    end |>1#)cONW  
    if any(idx_neg) ,`YIcrya:  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); @sW!g;\T  
    end )3<>H!yG}  
    s%8,'3&  
    &aa3BgxyE  
    % EOF zernfun i29a1nD4Hm  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    在线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  L/I ] NA!U  
    KaH e(  
    DDE还是手动输入的呢? Ap;^ \5  
    SBf=d<j 1)  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究