切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9430阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, 0]&~ddL  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, &{99Owqg  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? .Gw;]s3  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? $5l8V  
    lCDXFy(E  
    \xwE4K  
    9 u{#S}c`  
    0Db#W6*^  
    function z = zernfun(n,m,r,theta,nflag) Iq MXd K|  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. Ji gc@@B.  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N iphe0QE[#}  
    %   and angular frequency M, evaluated at positions (R,THETA) on the r\Zz=~![<  
    %   unit circle.  N is a vector of positive integers (including 0), and >J+hu;I5  
    %   M is a vector with the same number of elements as N.  Each element pno]B ld'z  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 3DbS\jja  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, %R(1^lFI$  
    %   and THETA is a vector of angles.  R and THETA must have the same }sZme3*J[  
    %   length.  The output Z is a matrix with one column for every (N,M) __OD^?qa  
    %   pair, and one row for every (R,THETA) pair. 7*`cWT_X  
    % 7YrX3Hx 8  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike D3N\$D  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), gq!| 0  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral /aP4'U8ov  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, crG+BFi  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized Nw* >$v  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. B[}#m'Lv  
    % C[z5& x2  
    %   The Zernike functions are an orthogonal basis on the unit circle. ]25 xX  
    %   They are used in disciplines such as astronomy, optics, and U:"E:Bxz;m  
    %   optometry to describe functions on a circular domain. NLf6}  
    % >d%;+2  
    %   The following table lists the first 15 Zernike functions. ;b-Y$<  
    % 0x*L"HD  
    %       n    m    Zernike function           Normalization 0P_qtS  
    %       -------------------------------------------------- 3!ZndW SHV  
    %       0    0    1                                 1 l@Uo4b^4x  
    %       1    1    r * cos(theta)                    2 g)nsP  
    %       1   -1    r * sin(theta)                    2 S jgjGJw  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) CvS}U%   
    %       2    0    (2*r^2 - 1)                    sqrt(3) BxVo>r  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) ju~js  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) \$LrL  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) WW\t<O;z  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) >,wm-4&E  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 4Hc+F(  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) /{QR:8}-Q  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Z:j6AF3;  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) z)*7LI  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) b\& |030+  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) RsU!mYs:H  
    %       -------------------------------------------------- 9Kf# jZ  
    % 8K$q6V%#  
    %   Example 1: _\uyS',  
    % @ W[LA<  
    %       % Display the Zernike function Z(n=5,m=1) G;Jqby8d  
    %       x = -1:0.01:1; HY|=Z\l"  
    %       [X,Y] = meshgrid(x,x); aAJ'0xnj  
    %       [theta,r] = cart2pol(X,Y); SFP%UfM<  
    %       idx = r<=1; HuzHXn)  
    %       z = nan(size(X)); {kVhht]X  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); T$)N2]FE  
    %       figure \qk+cK;+  
    %       pcolor(x,x,z), shading interp x=]PE}<E  
    %       axis square, colorbar `_M*2(rt  
    %       title('Zernike function Z_5^1(r,\theta)') <O+T4.z  
    % ksb.]P d.  
    %   Example 2: w%Vw*i6o  
    % cG{>[Lf  
    %       % Display the first 10 Zernike functions ixJ%wnz  
    %       x = -1:0.01:1; t{A/Lq9AM  
    %       [X,Y] = meshgrid(x,x); R{N9'2l:  
    %       [theta,r] = cart2pol(X,Y); P4H%pm{-  
    %       idx = r<=1; kIR?r0_<G6  
    %       z = nan(size(X)); BTi:Bcv k  
    %       n = [0  1  1  2  2  2  3  3  3  3]; iY_E"$}P  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; zPWJ=T@N  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; k?[|8H~2C  
    %       y = zernfun(n,m,r(idx),theta(idx)); 1j4(/A  
    %       figure('Units','normalized') n_ORD@$]  
    %       for k = 1:10 _\mMgZu  
    %           z(idx) = y(:,k); ?7n(6kmj4Q  
    %           subplot(4,7,Nplot(k)) Wg\`!T  
    %           pcolor(x,x,z), shading interp yhwwF n\  
    %           set(gca,'XTick',[],'YTick',[]) x.J% c[Q8  
    %           axis square N i\*<:_  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) DSb/+8KT  
    %       end UTT7a"  
    % gpt98:w:  
    %   See also ZERNPOL, ZERNFUN2. 3JnBKh\n  
    >M1m(u84#  
    ^ hoz<Ns  
    %   Paul Fricker 11/13/2006 Dl/Jlsd@  
    .@7J8FS*  
    YTWlR]Tr6?  
    R> r@[$z+  
     +=Xgi$  
    % Check and prepare the inputs: ~D[5AXV`^  
    % ----------------------------- IG}`~% Z  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) _DlkTi5(w  
        error('zernfun:NMvectors','N and M must be vectors.') 4&TTPcSt;  
    end +aa( YGL  
    ~i3/Ec0\  
    MGoYL \  
    if length(n)~=length(m) 1#o>< ?  
        error('zernfun:NMlength','N and M must be the same length.') zzq7?]D  
    end $%*E)~  
    Ry5/O?Q L  
    7F=Xn@ _  
    n = n(:); JYQ.Y!X1O  
    m = m(:); ^7cZ9/3  
    if any(mod(n-m,2)) S w<V/t  
        error('zernfun:NMmultiplesof2', ... !%pY)69gv  
              'All N and M must differ by multiples of 2 (including 0).') kB`t_`7f  
    end ?hW?w$C  
    [;IW'cXNq  
    mn5"kYy?  
    if any(m>n) 2 d%j6D  
        error('zernfun:MlessthanN', ... v\LcZt`}  
              'Each M must be less than or equal to its corresponding N.') }PdHR00^  
    end BPFd'- O)  
    $m$tfa-  
    w>RBth^p  
    if any( r>1 | r<0 ) GQZLOjsop  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') d~ lB4  
    end b7X-mkF  
    ,}9G|$  
    W>ZL[BQ  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) IB!^dhD!Q  
        error('zernfun:RTHvector','R and THETA must be vectors.') vkQ81PEt  
    end <ZF,3~v?  
    b?h)~j5  
    ?zypF 5a  
    r = r(:); N S^(5g  
    theta = theta(:); }8+rrzMUB  
    length_r = length(r); MT`gCvoF4P  
    if length_r~=length(theta) I(i/|S&^  
        error('zernfun:RTHlength', ... hWzjn5w3  
              'The number of R- and THETA-values must be equal.') sk0N=5SB-  
    end ;=&D_jGf]  
    =N _7DT  
    vrS)VJg`  
    % Check normalization: QFg,pTj  
    % -------------------- 41pk )8~pt  
    if nargin==5 && ischar(nflag) 6CKWKc  
        isnorm = strcmpi(nflag,'norm'); xjm|ewo  
        if ~isnorm OHz>B!`  
            error('zernfun:normalization','Unrecognized normalization flag.') @ y{i.G  
        end lkj^<%N"r  
    else NT qtr="  
        isnorm = false; ^qs{Cf$  
    end Bl)znJ^  
    lnXb]tm;  
    OokBi 02b  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% y:FxX8S$'e  
    % Compute the Zernike Polynomials L&C<-BA/  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ,I(PDlvtM  
    9t`Z_HwdCb  
    M?61g(  
    % Determine the required powers of r: 2r3]DrpJ  
    % ----------------------------------- ;n-)4b]\  
    m_abs = abs(m); n@3(bl5{  
    rpowers = []; ?, dbrQ  
    for j = 1:length(n) Fv[. %tW  
        rpowers = [rpowers m_abs(j):2:n(j)]; >DHpD?Pm!  
    end f zu#!  
    rpowers = unique(rpowers); >e]46 K  
    Hk65c0  
    1QfOD-lv  
    % Pre-compute the values of r raised to the required powers, ? J;*  
    % and compile them in a matrix: (<u3<40[YN  
    % ----------------------------- Ihe/P {t]J  
    if rpowers(1)==0 9J"Y   
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); W*'gqwM&  
        rpowern = cat(2,rpowern{:});  R~jV  
        rpowern = [ones(length_r,1) rpowern]; Q?Au.q],  
    else x]({Po4  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ?[[K6v}q{  
        rpowern = cat(2,rpowern{:}); p1dqDgF*  
    end ^7l.!s#$b  
    0(owFNUBs  
    v> vU]6l  
    % Compute the values of the polynomials: ELx?ph-9  
    % -------------------------------------- 9!XW):  
    y = zeros(length_r,length(n)); NW}kvZ  
    for j = 1:length(n) 'O#,;n  
        s = 0:(n(j)-m_abs(j))/2; ?WD|a(  
        pows = n(j):-2:m_abs(j); Cm4$&?  
        for k = length(s):-1:1 ?K<m.+4b*y  
            p = (1-2*mod(s(k),2))* ... .x$!Rc}  
                       prod(2:(n(j)-s(k)))/              ... P,S$qD*4  
                       prod(2:s(k))/                     ... /]/3)@wT  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... !fFmQ\|)4S  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); +6vm4(3?  
            idx = (pows(k)==rpowers); @IaK:  
            y(:,j) = y(:,j) + p*rpowern(:,idx); {.W$<y (j7  
        end V24i8Qx  
         L{>XT  
        if isnorm u9AXiv+K  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Zi+>#kDV  
        end <{C oM  
    end Z%*_kk  
    % END: Compute the Zernike Polynomials dXKv"*7l  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% RvL-SI%E  
    %ZV a{Nc  
    1goK>=-^  
    % Compute the Zernike functions: 'ADaz75`*r  
    % ------------------------------ Qp{rAAC:  
    idx_pos = m>0; URW#nm?  
    idx_neg = m<0; w%,Iy, G@  
    k~ZwHx(%S  
    {5+t\~q$  
    z = y; xg~ Baun  
    if any(idx_pos) =1o_:VOG  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); jW6~^>S  
    end PI7M3\z  
    if any(idx_neg) {nH.  _  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Pnb?NVP!^9  
    end f-5vE9G3y7  
    dQ*3s>B[  
    Ez^U1KKOE7  
    % EOF zernfun aHKv*-z-  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  ]N}80*Rl  
    Az[Yvu'<  
    DDE还是手动输入的呢? %CJgJ,pk>  
    B25@6   
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究