切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9188阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, Lg_y1Mu7o  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, Lm:O vVVB  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? r/:s2 oQ  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? cd*y{Wt  
    lb`P9mbr+  
    sVaWg?=qs'  
    (!DH'2I[  
     CG$S?  
    function z = zernfun(n,m,r,theta,nflag) v?n`kw  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. |PDuvv!.f  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N :a#]"z0  
    %   and angular frequency M, evaluated at positions (R,THETA) on the fZxZ):7i  
    %   unit circle.  N is a vector of positive integers (including 0), and *Rr,ii  
    %   M is a vector with the same number of elements as N.  Each element 7:{4'Wr@6|  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) }+i ZY\t  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, aSXoYG0\  
    %   and THETA is a vector of angles.  R and THETA must have the same q;tsA"l  
    %   length.  The output Z is a matrix with one column for every (N,M) /2Y Nu*v  
    %   pair, and one row for every (R,THETA) pair. N, ;'oL+  
    % "p2 $R*ie  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike k$k (g  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), )0fQ(3oOg  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral k[y{&f,  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, @Mt6O _V  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized zUIh8cAoE  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. J Y %B:  
    % 7b:oz3?PI  
    %   The Zernike functions are an orthogonal basis on the unit circle. /o+, =7hY  
    %   They are used in disciplines such as astronomy, optics, and pk: ruf`)  
    %   optometry to describe functions on a circular domain. >xJt&jW-  
    % a%*W^R9Ls  
    %   The following table lists the first 15 Zernike functions. @\u)k  
    % `H+ 7Hj  
    %       n    m    Zernike function           Normalization RyIr_:&-~  
    %       -------------------------------------------------- &Vvy`JE  
    %       0    0    1                                 1 ^X[Kr=:Jp  
    %       1    1    r * cos(theta)                    2 b (;"p-^  
    %       1   -1    r * sin(theta)                    2 m*CIbkDsZ  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 5}e-\:J >B  
    %       2    0    (2*r^2 - 1)                    sqrt(3) ~W%A8`9  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) Q:>;d-D|1  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 3f eI   
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) WI[6 l6  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) :4]&R9J>o  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) pc:K5 -Os  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) "MM7qV  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) %zb7M%dC6`  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) mZ ONxR6q$  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) nH NMoA  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) P]]9Sqo7  
    %       -------------------------------------------------- NAx( Qi3  
    % 2Z7smDJ  
    %   Example 1: (}gF{@sn  
    % o=q N+-N  
    %       % Display the Zernike function Z(n=5,m=1) @hQ+pG@s  
    %       x = -1:0.01:1; @UkcvhH  
    %       [X,Y] = meshgrid(x,x); scJ`oc: <J  
    %       [theta,r] = cart2pol(X,Y); >F Z6\  
    %       idx = r<=1; ]/JE#  
    %       z = nan(size(X)); f!xIMIl)+  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); H8P il H  
    %       figure HP*x?|4  
    %       pcolor(x,x,z), shading interp Fl(+c0|kT  
    %       axis square, colorbar 1nBE8 N  
    %       title('Zernike function Z_5^1(r,\theta)') D'|#5>G  
    % >pG]#Z g  
    %   Example 2: wf6ZzG:  
    % >fdS$,`A  
    %       % Display the first 10 Zernike functions j 7a;g7.  
    %       x = -1:0.01:1; Y\dK- M{$  
    %       [X,Y] = meshgrid(x,x); F! c%&Z  
    %       [theta,r] = cart2pol(X,Y); xO"5bj  
    %       idx = r<=1; IDdhBdQ  
    %       z = nan(size(X)); - Kj$A@~x  
    %       n = [0  1  1  2  2  2  3  3  3  3]; (aiE!c  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; eZI&d;i  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; <4rF3 aB-  
    %       y = zernfun(n,m,r(idx),theta(idx)); xg. d)n  
    %       figure('Units','normalized') F3,hx  
    %       for k = 1:10 0 (@8   
    %           z(idx) = y(:,k); rQj.W6w=  
    %           subplot(4,7,Nplot(k)) - FA#hUK$  
    %           pcolor(x,x,z), shading interp Il~ph9{JH  
    %           set(gca,'XTick',[],'YTick',[]) i\},  
    %           axis square +]`MdOu  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 6H.D `"cj  
    %       end i. `S0  
    % %mtW-drv>  
    %   See also ZERNPOL, ZERNFUN2. ^0~?3t5  
    UMx>n18;f9  
    p,]Hs{R  
    %   Paul Fricker 11/13/2006 [AE]0cO@  
    w/h?, L|  
    xI}]q%V  
    JgYaA*1X  
    hb_YdnG  
    % Check and prepare the inputs: 3AX/A+2  
    % ----------------------------- G?'L1g[lc  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ,Z&"@g  
        error('zernfun:NMvectors','N and M must be vectors.') PO<4rT+B  
    end JS!rZi  
    M2my>  
    5<,}^4wWZ  
    if length(n)~=length(m) @xSS`&b  
        error('zernfun:NMlength','N and M must be the same length.') pY ceMZ$  
    end /G G QO$'  
    @e$z Ej5  
    :HMnU37m W  
    n = n(:); 4SY]Q[  
    m = m(:); i^Ep[3  
    if any(mod(n-m,2)) Mm^o3vl  
        error('zernfun:NMmultiplesof2', ... RUYw D tC  
              'All N and M must differ by multiples of 2 (including 0).') K}&|lCsb  
    end ASR"<]  
    sW3-JA]  
    MFiX8zwhx+  
    if any(m>n) Vyu0OiGcR  
        error('zernfun:MlessthanN', ... $@}6P,mg  
              'Each M must be less than or equal to its corresponding N.') + [|2k(U  
    end Y.[^3  
     x)THeH@  
    My,ki:V?g6  
    if any( r>1 | r<0 ) d_1w 9 F A  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') w# ,:L)  
    end I/pavh  
    6b6}HO  
    7W5FHZd'  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) v&xk?F?WU,  
        error('zernfun:RTHvector','R and THETA must be vectors.') ,DXNq`24  
    end R`!x<J  
    &]16Hb~  
    %RdCSQ9~  
    r = r(:); UccnQZ7/I  
    theta = theta(:); 8`U5/!6fu  
    length_r = length(r);  #RbPNVs  
    if length_r~=length(theta) a^,6[  
        error('zernfun:RTHlength', ... jF_K*:gQ  
              'The number of R- and THETA-values must be equal.') h=EJNz>U  
    end 0p*(<8D}  
    7t0\}e  
    7K {/2k  
    % Check normalization: =5[}&W  
    % -------------------- )l\BZndf  
    if nargin==5 && ischar(nflag) !3kyPoq+  
        isnorm = strcmpi(nflag,'norm'); ]lXTIej`dy  
        if ~isnorm V[HHP_  
            error('zernfun:normalization','Unrecognized normalization flag.') ]+ XgH #I  
        end ~+q$TV  
    else TsfOod   
        isnorm = false; o'D{ql  
    end O-U_Zx0zd  
    \3O#H  
    \2L%%M  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% _^0yE_ili  
    % Compute the Zernike Polynomials zYbSv~)  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% !FA^~  
    I}kx;!*b  
    eeoIf4]  
    % Determine the required powers of r: %)i?\(/  
    % ----------------------------------- 0^? 3hK  
    m_abs = abs(m); BYqDC<Fq  
    rpowers = []; 13'tsM&  
    for j = 1:length(n) A@?2qX^4  
        rpowers = [rpowers m_abs(j):2:n(j)]; <q~&g &&+  
    end oi::/W|A+  
    rpowers = unique(rpowers); |GA4fFE=  
    7M<7^)9  
    5Q?7 xTQ  
    % Pre-compute the values of r raised to the required powers, n,wLk./`  
    % and compile them in a matrix: :05>~bn>pC  
    % ----------------------------- 2(\~z@g  
    if rpowers(1)==0 yLW iY~Fd  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); :\4?{,@_h  
        rpowern = cat(2,rpowern{:}); "o*F$7D!  
        rpowern = [ones(length_r,1) rpowern]; EZ8Ih,j9  
    else !BIq>pO%Ui  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); (fUXJ$  
        rpowern = cat(2,rpowern{:}); 7;dV]N  
    end ^; Nu\c  
    @-NdgM<  
    _W@q%L>  
    % Compute the values of the polynomials: S =U*is  
    % -------------------------------------- )U6T]1  
    y = zeros(length_r,length(n)); JcvWE $  
    for j = 1:length(n) [@eNb^ R  
        s = 0:(n(j)-m_abs(j))/2; </5uB' B ^  
        pows = n(j):-2:m_abs(j); :K#'?tH  
        for k = length(s):-1:1 -|~6Zf"  
            p = (1-2*mod(s(k),2))* ... <*i '  
                       prod(2:(n(j)-s(k)))/              ... u `1cXL['  
                       prod(2:s(k))/                     ... 5sao+dZ"|  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... od"Oq?~/t  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); pUZbZ U  
            idx = (pows(k)==rpowers); JpvE c!cli  
            y(:,j) = y(:,j) + p*rpowern(:,idx); w6F4o;<PR  
        end V)mRG`L  
         Hq?-e?Nc  
        if isnorm * 8CI'UX  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); s_N?Y)lS+(  
        end y[UTuFv~Q  
    end k#_B^J&d  
    % END: Compute the Zernike Polynomials bJ*jJl x  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% <{Wsh#7}.  
    AMp[f%X  
    JQP7>W  
    % Compute the Zernike functions: _8vq]|rC  
    % ------------------------------ 4GH?$p|LX  
    idx_pos = m>0; +?5nkhH  
    idx_neg = m<0; i(Cd#1<  
    Y,RBTH  
    ,]gYy00w0s  
    z = y; t4R=$ km  
    if any(idx_pos) y/Fv4<X  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)');  )`!i"  
    end K9\`Wu_qL  
    if any(idx_neg) h|$.`$  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 8_US.52V  
    end 3K c  
    8  ;y N  
    NRe{0U}nO  
    % EOF zernfun |QHDg(   
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  `x%( n@g  
    Z1u:OI@(  
    DDE还是手动输入的呢? yn&+ >{  
    0V:7pSC{P  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究