下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, .^b;osAU
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, ?
w^-
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? GguFo+YeZ
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? `"%T=w
L/"0ws_
s3W@WH^.
eI@
q|"U
02Ia2e.f
function z = zernfun(n,m,r,theta,nflag) F{ELSKcp.
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. vVL@K,q
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N gzeQ|m2]
% and angular frequency M, evaluated at positions (R,THETA) on the _V\Bp=9W
% unit circle. N is a vector of positive integers (including 0), and C:G8c[
% M is a vector with the same number of elements as N. Each element .Lfo)?zG
% k of M must be a positive integer, with possible values M(k) = -N(k) Y"KE7>Jf
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, Xt#1Qs
% and THETA is a vector of angles. R and THETA must have the same x]z2Z*
% length. The output Z is a matrix with one column for every (N,M) w |l1'
% pair, and one row for every (R,THETA) pair. 8/K!SpM*d
% x"~~l
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike f
nI|
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), {W##^L~
% with delta(m,0) the Kronecker delta, is chosen so that the integral +*_5tWAc
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ApjOj/
% and theta=0 to theta=2*pi) is unity. For the non-normalized DS<}@
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. uPniLx\t:
% &7_Qd4=08w
% The Zernike functions are an orthogonal basis on the unit circle. T6~_Q}6
% They are used in disciplines such as astronomy, optics, and Kt(-@\)!
% optometry to describe functions on a circular domain. >"Q@bQ:e
% z~A]9|/61v
% The following table lists the first 15 Zernike functions. sdS^e`S
% [xKd7"d/n
% n m Zernike function Normalization pFJB'=c
% -------------------------------------------------- E_zIg+(+
% 0 0 1 1 san,|yrMn
% 1 1 r * cos(theta) 2 cm[c ze+*
% 1 -1 r * sin(theta) 2 kCXdGhb
% 2 -2 r^2 * cos(2*theta) sqrt(6) l9M0cZ,
% 2 0 (2*r^2 - 1) sqrt(3) aj}(E+
% 2 2 r^2 * sin(2*theta) sqrt(6) xz:J
% 3 -3 r^3 * cos(3*theta) sqrt(8) |`;54_f
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) l{D'uI[&
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) r:]1O*
% 3 3 r^3 * sin(3*theta) sqrt(8) 1nu^F,M
% 4 -4 r^4 * cos(4*theta) sqrt(10) 5 QO34t2
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) \Vl`YYjZ
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) M5x U9]B
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) [{X^c.8G)
% 4 4 r^4 * sin(4*theta) sqrt(10) S~Id5T:,
% -------------------------------------------------- yZ!T8"mz{
% YX*Qd$chZ
% Example 1: EKp@9\XBC
% ooV*I|wcI
% % Display the Zernike function Z(n=5,m=1) y7^{yS[,
% x = -1:0.01:1; sUYxT>R
% [X,Y] = meshgrid(x,x); 6eokCc"o
% [theta,r] = cart2pol(X,Y); uWrQ&}@
% idx = r<=1; )7:J[0ZiQ
% z = nan(size(X)); pn*3\
% z(idx) = zernfun(5,1,r(idx),theta(idx)); Y{*u&^0{
% figure i9=&;_z
% pcolor(x,x,z), shading interp XQ*eP?OS{
% axis square, colorbar #A8@CA^d
% title('Zernike function Z_5^1(r,\theta)') C
XHy.&Vt
% J6jwBo2m
% Example 2: pc?>cs8
% <?D\+khlq
% % Display the first 10 Zernike functions [ib P%xb
% x = -1:0.01:1; %4W$Lq}
% [X,Y] = meshgrid(x,x); CwX Z
% [theta,r] = cart2pol(X,Y); zuJtpMn
% idx = r<=1; !*`-iQo&
% z = nan(size(X)); b<]n%Q'n
% n = [0 1 1 2 2 2 3 3 3 3]; AL5Vu$V~n}
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 7w1wr)qSB
% Nplot = [4 10 12 16 18 20 22 24 26 28]; i{I~mrm/'\
% y = zernfun(n,m,r(idx),theta(idx)); 98.>e
% figure('Units','normalized') gqWupL
% for k = 1:10 `|Or{ih
% z(idx) = y(:,k); vp(;W,ba:|
% subplot(4,7,Nplot(k)) al20V
% pcolor(x,x,z), shading interp {6oE0;2o'
% set(gca,'XTick',[],'YTick',[]) BW,mwq
% axis square 4R5D88=C
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) &5L<i3BX
% end ^`<w&I@
% s#uJ
;G
% See also ZERNPOL, ZERNFUN2. _{|D
a5G/[[cwTV
_f6HAGDN
% Paul Fricker 11/13/2006 b$eXFi/
4H+Ked&Oq
*SO{\bu
X=C1/4wU
zB?
V_aT
% Check and prepare the inputs: sN("+ sZ.n
% ----------------------------- {Ha8]y
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) }za[E>z
error('zernfun:NMvectors','N and M must be vectors.') =tU{7i*+
end IuZ) [*W
.IJ_jt-^d
kg`.[{k
if length(n)~=length(m) @x/T&67k
error('zernfun:NMlength','N and M must be the same length.') S\CRG>
end ]x&u`$F
2r%lA\,h$
<94_@3
n = n(:); %?e(hnM
m = m(:); ,|88r=}
if any(mod(n-m,2)) vS;1/->WD
error('zernfun:NMmultiplesof2', ... r&Ca"dI
'All N and M must differ by multiples of 2 (including 0).')
.Gcy>Av
end pZyQY+O
eyp,y2Tz
oy<WUb9W
if any(m>n) KFZm`,+69
error('zernfun:MlessthanN', ... _
%%Z6x(
'Each M must be less than or equal to its corresponding N.') $v8l0JA *
end JH7Ad (:
8UkKU_Uso
[&*6_q"V
if any( r>1 | r<0 ) MZ+e}|!4,
error('zernfun:Rlessthan1','All R must be between 0 and 1.') dSCzx
.c
end 0 'Vg6E]/
A^2L~g[^Q
?m
c%.Bt
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) gDIBnH
error('zernfun:RTHvector','R and THETA must be vectors.') CB~Q%QLG
end 5b/ojr7
k0Ek:MjJr
}qjCTEs}
r = r(:); "S&%w8V
theta = theta(:); +PK6-c\r
length_r = length(r); 8z5# ]u;
if length_r~=length(theta) "g+z !4b#
error('zernfun:RTHlength', ... I\|N
'The number of R- and THETA-values must be equal.') W9oAjO NE
end +u'I0>)S
A>VX*xd
p
h[\)
% Check normalization: ] xd^% q*
% -------------------- bw&myzs
if nargin==5 && ischar(nflag) oRp:B&
isnorm = strcmpi(nflag,'norm'); 'lZ.j&
if ~isnorm T#Z%y!6
error('zernfun:normalization','Unrecognized normalization flag.') 3/JyUh?
end Iak0 [6Ey
else gK|R =J
isnorm = false; f f 7(
end [Vdz^_@Y
D5?phyC[Z
#0;HOeIiH
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% zhB ">j8j
% Compute the Zernike Polynomials /HZumV?
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% z<]bv7V
BGzI
]TstSF=
% Determine the required powers of r: mKq" 34F
% ----------------------------------- &W }<:WH~
m_abs = abs(m); 5.tvB
rpowers = []; <Q<+4Y{R
for j = 1:length(n) Ri>?KrQF%
rpowers = [rpowers m_abs(j):2:n(j)]; $\AEWFB
end A>.2OC+
rpowers = unique(rpowers); @tRMe64
d77r9
,)~E>[=+
% Pre-compute the values of r raised to the required powers, 6aOp[-Le
% and compile them in a matrix: N]5m(@h
% ----------------------------- o ojiJ~
if rpowers(1)==0 FbACTeB
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); =neL}Fav56
rpowern = cat(2,rpowern{:}); 8cHE[I
rpowern = [ones(length_r,1) rpowern]; u1K\@jlw
else AY_Q""v
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); *Dr5O 9Y
rpowern = cat(2,rpowern{:}); em2_pq9q
end Y|0ow_oH
*Zd84wRSj
> 7`&0?
% Compute the values of the polynomials: I_ "Z:v{
% -------------------------------------- b~7drf
y = zeros(length_r,length(n)); N<z`yV
for j = 1:length(n) @LLTB(@wR
s = 0:(n(j)-m_abs(j))/2; &S74mV
pows = n(j):-2:m_abs(j); 6-,m}Ce\
for k = length(s):-1:1 IPA*-I57
p = (1-2*mod(s(k),2))* ... h[XGC=%
prod(2:(n(j)-s(k)))/ ... TA}UY7v
prod(2:s(k))/ ... >Cd9fJ&0gP
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... nv5u%B^
prod(2:((n(j)+m_abs(j))/2-s(k))); #WE]`zd
idx = (pows(k)==rpowers); 6!EYrX}rI[
y(:,j) = y(:,j) + p*rpowern(:,idx); FuP/tTMU1a
end Zzd/K^gg
aw}+'(?8]
if isnorm kRIB<@{
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); #\If]w*j
end >HkhAJhW
end =;c_} VY
% END: Compute the Zernike Polynomials hhRaJ
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% evl-V>
E1>/R
F!KV\?eM$
% Compute the Zernike functions: w.kCBDL
% ------------------------------ OKwOugi0
idx_pos = m>0; XKLF8~y8A
idx_neg = m<0; ?p8k{N(1
I>w^2(y
iH)Nk^
z = y; 7$b?m6fmK
if any(idx_pos) W$\X ~Q'0
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); K^i"9D)A
end O25mkX
if any(idx_neg) ! gp}U#Yv
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); @Y'I,e
end m7 XjP2
= hX[
~mILA->F
% EOF zernfun L]zNf71RD