切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9122阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, '3o0J\cz  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, Xl6)&   
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? &,Q{l$`X  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? 2t { Cpw  
    {K'SOh H4?  
    81_3{OrE<  
    N,ik&NIWy  
    S'-<p<;D\B  
    function z = zernfun(n,m,r,theta,nflag) uz4mHyS6  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. ?E2k]y6<  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N LM'` U-/e$  
    %   and angular frequency M, evaluated at positions (R,THETA) on the }bznx[4?I  
    %   unit circle.  N is a vector of positive integers (including 0), and ; _i0@@J  
    %   M is a vector with the same number of elements as N.  Each element s/[i>`g/9  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) ^@L[0Z`  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, <nsl`C~6g0  
    %   and THETA is a vector of angles.  R and THETA must have the same 5?kA)!|UB  
    %   length.  The output Z is a matrix with one column for every (N,M) gE=~.P[ZX  
    %   pair, and one row for every (R,THETA) pair. )C2d)(baEJ  
    % `Ik}Xw  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike savz>E &  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 7IJb$af:;  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral M{kPEl&Z  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, |/fbU_d  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized (&MSP  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. GIVs)~/Eq  
    % ,P"R.A  
    %   The Zernike functions are an orthogonal basis on the unit circle. r-YQsu&  
    %   They are used in disciplines such as astronomy, optics, and 24N,Bo 3  
    %   optometry to describe functions on a circular domain. 3R#<9O  
    % !P Gow  
    %   The following table lists the first 15 Zernike functions. $fKwJFr  
    % \S7OC   
    %       n    m    Zernike function           Normalization -N\{QX1Yd  
    %       -------------------------------------------------- |>3a9]  
    %       0    0    1                                 1 G0s:Dum  
    %       1    1    r * cos(theta)                    2 Bh' vr3|  
    %       1   -1    r * sin(theta)                    2 ^/n[5@6H  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) gy =`cMS@  
    %       2    0    (2*r^2 - 1)                    sqrt(3) .;KupQ;*  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) b"FsT  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8)  ,O~2 R  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) peqFa._W  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) Ic=V:  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) W=EO=}l#  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 8&C(0H]1  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) +~fu-%,k  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) (Z"Xp{u  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) VvF&E>f C  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 93WYZNpX  
    %       -------------------------------------------------- d}o1 j  
    % zRJy3/>  
    %   Example 1: hE6tu'  
    % |(P;2q4>  
    %       % Display the Zernike function Z(n=5,m=1) Ro1' L1:  
    %       x = -1:0.01:1; I(<G;ft<}  
    %       [X,Y] = meshgrid(x,x); 8&UuwZ6i-  
    %       [theta,r] = cart2pol(X,Y); ,xh9,EpBk  
    %       idx = r<=1; /3TorB~Y  
    %       z = nan(size(X)); m~U{ V9;*  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); f<;9q?0VF  
    %       figure `2fuV]FW  
    %       pcolor(x,x,z), shading interp blN1Q%m6  
    %       axis square, colorbar ppnj.tLz;r  
    %       title('Zernike function Z_5^1(r,\theta)') %@&)t?/=  
    % O(~Vvoq  
    %   Example 2: _(z"l"l=$  
    % O^xt  
    %       % Display the first 10 Zernike functions aXJe"IT.u  
    %       x = -1:0.01:1; 7}x-({bqy  
    %       [X,Y] = meshgrid(x,x); V]O :;(W_  
    %       [theta,r] = cart2pol(X,Y); h@DJ/&;u@  
    %       idx = r<=1; 2>!ykUw^O  
    %       z = nan(size(X)); _[ phs06A  
    %       n = [0  1  1  2  2  2  3  3  3  3]; ;Pa(nUE@  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; Td  F<  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 8 KkpXaz  
    %       y = zernfun(n,m,r(idx),theta(idx)); "QF083$  
    %       figure('Units','normalized') }6bLukv  
    %       for k = 1:10 YiCDV(prT  
    %           z(idx) = y(:,k); 1wgu%$|d  
    %           subplot(4,7,Nplot(k)) tQ~B!j]  
    %           pcolor(x,x,z), shading interp -&EmEXs%  
    %           set(gca,'XTick',[],'YTick',[]) %pp+V1FH  
    %           axis square ( 7?%Hg  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) op-#Ig$#  
    %       end o/zCXZnw#  
    % 0hkuBQb\  
    %   See also ZERNPOL, ZERNFUN2. u .2sB6}  
    =e;wEf%`  
    $;CC lzw  
    %   Paul Fricker 11/13/2006 CN=&Je%I  
    H+;wnI>@  
    LbR-uc?x  
    +Y~+o-_  
    m#nxw  
    % Check and prepare the inputs: >&&xJ5  
    % ----------------------------- =eqI]rVj^  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) }SV3PdE  
        error('zernfun:NMvectors','N and M must be vectors.') AVr!e   
    end rxK0<pWJhx  
    K8J2eV\  
    88>Uu!M=f  
    if length(n)~=length(m) gHx-m2N  
        error('zernfun:NMlength','N and M must be the same length.') QVW6SY  
    end j1 F+,   
    D H !Br  
    +_eb*Z`5o  
    n = n(:); ?Qig$  
    m = m(:); pD#"8h  
    if any(mod(n-m,2)) :xPvEK[B7  
        error('zernfun:NMmultiplesof2', ... 6 b}feEh$!  
              'All N and M must differ by multiples of 2 (including 0).') (g m^o{  
    end 4c=kT@=jX  
    WQpJd7  
    uC(S`Q[Bg  
    if any(m>n) g8+,wSE  
        error('zernfun:MlessthanN', ... U_- K6:tr  
              'Each M must be less than or equal to its corresponding N.') pYVy(]1I(3  
    end H040-Q;S'  
    ? ~Zrd  
    Yd;r8rN  
    if any( r>1 | r<0 ) ^qx\e$R  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') Z]TVH8%|k  
    end l _ O~v?  
    rhTk}2@h  
    +&,\ J9'B  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 6wB>-/'Y  
        error('zernfun:RTHvector','R and THETA must be vectors.') *'YNRM\}  
    end f#kevf9zc  
    ?0NSjK5ma  
    kA<r:/  
    r = r(:); K=x1m M+RK  
    theta = theta(:); +)JqEwCrq  
    length_r = length(r); rp#*uV9;  
    if length_r~=length(theta) +~Lzsh"  
        error('zernfun:RTHlength', ... `_U0>Bfg;  
              'The number of R- and THETA-values must be equal.') '1'1T5x~  
    end $pfe2(8  
    +Nbk\%  
    GFdJFQio  
    % Check normalization: 6r=)V$K <  
    % -------------------- j' KobyX<  
    if nargin==5 && ischar(nflag) k^5R f  
        isnorm = strcmpi(nflag,'norm'); ~|{)h^]@  
        if ~isnorm q;../h]Ne  
            error('zernfun:normalization','Unrecognized normalization flag.') SE )j}go  
        end l;}7A,u  
    else [y[v]'  
        isnorm = false; (l8r>V  
    end [RFK-E  
    G\N"rG=  
    _@pf1d$  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% $;i$k2n:  
    % Compute the Zernike Polynomials }t D!xI;  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Z*(! `,.bB  
    FP9<E93br  
    OO\biYh o  
    % Determine the required powers of r: e1^{  
    % ----------------------------------- *DC Nu{6  
    m_abs = abs(m); O;BMwg_7  
    rpowers = []; !BQ ELB$0  
    for j = 1:length(n) 0S:!Gv +  
        rpowers = [rpowers m_abs(j):2:n(j)]; mz$Wo *FB  
    end a^\- }4yR  
    rpowers = unique(rpowers); *_/eAi/WG  
    iC|6roO!jk  
    Ky9No"o  
    % Pre-compute the values of r raised to the required powers, , HI%Xn  
    % and compile them in a matrix: HvgK_'  
    % ----------------------------- JeTrMa2  
    if rpowers(1)==0 _l!U[{l*d  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); aU.0dsq  
        rpowern = cat(2,rpowern{:}); tct 5*.|  
        rpowern = [ones(length_r,1) rpowern]; D*T$ v   
    else F `pyhc>1;  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); BRU9LS  
        rpowern = cat(2,rpowern{:}); b8{h[YJL2  
    end ?^48Zq6wM  
    .)^3t ~  
    G<u.+V  
    % Compute the values of the polynomials: O{ %A&Ui  
    % -------------------------------------- F {*9[jY  
    y = zeros(length_r,length(n)); OU.9 #|qU  
    for j = 1:length(n) r6`^>c  
        s = 0:(n(j)-m_abs(j))/2; "E ok;io  
        pows = n(j):-2:m_abs(j); H&yFSz}6a  
        for k = length(s):-1:1 =Mu'+,dT  
            p = (1-2*mod(s(k),2))* ... U8QR*"GmT  
                       prod(2:(n(j)-s(k)))/              ... 1_j<%1{sZ  
                       prod(2:s(k))/                     ... -4y)qGb*?  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Sp`fh7d.(  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); <7FP"YU  
            idx = (pows(k)==rpowers); }OP%p/eY  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 0'%+X|  
        end g"Q}h  
         ,LW(mdIe(  
        if isnorm 76IALJ00V  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); *`g-gk  
        end *<.WL"Qhl  
    end )kL` &+#>  
    % END: Compute the Zernike Polynomials Mdltzy=)L  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% }W@#S_-e8  
    gB{]yA"('  
    ~E3SC@KL  
    % Compute the Zernike functions: EN-8uY.  
    % ------------------------------ ~aqT~TL_  
    idx_pos = m>0; 36^C0uNdX  
    idx_neg = m<0; mHI4wS>()+  
    #.MIW*==  
    VeD+U~ d  
    z = y; nv_m!JG7  
    if any(idx_pos) zO).<xIq+  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); FU]8.)`G  
    end 6cQeL$,SQ  
    if any(idx_neg) GLaZN4`  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ~.4W,QLuD  
    end \'It,PN  
    Y @XkqvX  
    'XP>} m  
    % EOF zernfun 75\RG+kQ  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  Kg4QT/0VA  
    hNH.G(l0  
    DDE还是手动输入的呢? LiiK3!^i  
    @''&nRC1  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究