切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9362阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, za+)2/ `L  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, x4/{XRQ  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? vvG"rU  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? 61b*uoq0w?  
    QT5pn5+ z  
    UCXRF  
    ;l1.jQh  
    9]{va"pe7  
    function z = zernfun(n,m,r,theta,nflag) 4l{$dtKbI  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. ak-agH  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N B`t/21J  
    %   and angular frequency M, evaluated at positions (R,THETA) on the <W>A }}q  
    %   unit circle.  N is a vector of positive integers (including 0), and &4+|{Zx0  
    %   M is a vector with the same number of elements as N.  Each element [V>s]c<4`o  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) ;aj;(Z.p)  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, )t@9!V  
    %   and THETA is a vector of angles.  R and THETA must have the same *u:,@io7'G  
    %   length.  The output Z is a matrix with one column for every (N,M) G"m?2$^-A  
    %   pair, and one row for every (R,THETA) pair. OR*JWW[]  
    % g$jTP#%b  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike f,F1k9-1!  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), )0/*j]Kf  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral K a& 2>F  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ]jY^*o[  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized -EE'xh-zD  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. |d&C<O;f  
    % 8sU5MQ5  
    %   The Zernike functions are an orthogonal basis on the unit circle. jf-XVk5q  
    %   They are used in disciplines such as astronomy, optics, and o&&`_"18  
    %   optometry to describe functions on a circular domain. Yku6\/^  
    % [\#ANA"  
    %   The following table lists the first 15 Zernike functions. .d r Y  
    % w/O'&],x  
    %       n    m    Zernike function           Normalization %8 D>aS U  
    %       -------------------------------------------------- 39hep8+  
    %       0    0    1                                 1 h]L.6G|hEN  
    %       1    1    r * cos(theta)                    2 8nu!5 3  
    %       1   -1    r * sin(theta)                    2 ,(a~vqNQW3  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) [qW%H,_  
    %       2    0    (2*r^2 - 1)                    sqrt(3) vBOY[>=  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) J4"A6`O  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) Y,GlAr s4  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8)  ?ueL'4Mm  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ;l~a|KW0  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) z@,(^~C_  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) u:lBFVqk  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 6u#eLs  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) %qz-b.  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) T7 "QwA  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) dqJ 8lU?  
    %       -------------------------------------------------- i+qg*o$  
    % QNINn>2  
    %   Example 1: W4&8  
    % ;Z"MO@9:  
    %       % Display the Zernike function Z(n=5,m=1) Tx~w(A4:  
    %       x = -1:0.01:1; @'}2xw[eU  
    %       [X,Y] = meshgrid(x,x); =.;ib6M  
    %       [theta,r] = cart2pol(X,Y); C4$P#DZT^  
    %       idx = r<=1; xT_"` @  
    %       z = nan(size(X)); .:f ao'  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 6WQN !H8+^  
    %       figure =1,!EkG  
    %       pcolor(x,x,z), shading interp qbsod  
    %       axis square, colorbar yNXYS  
    %       title('Zernike function Z_5^1(r,\theta)') $.pCoS]i  
    % <uv `)Q9  
    %   Example 2: 2w3LK2`ZL  
    % s|H7;.3gp  
    %       % Display the first 10 Zernike functions "i(f+N,)  
    %       x = -1:0.01:1; gk6R#  
    %       [X,Y] = meshgrid(x,x); Zs79,*o+0M  
    %       [theta,r] = cart2pol(X,Y); XJPIAN~l  
    %       idx = r<=1; XWAIW= .  
    %       z = nan(size(X)); |Vqm1.1/Zv  
    %       n = [0  1  1  2  2  2  3  3  3  3]; uP%VL}% 0  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; @,e o*  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 2<5LQr  
    %       y = zernfun(n,m,r(idx),theta(idx)); ?_d>-NC  
    %       figure('Units','normalized') *X$qgSW  
    %       for k = 1:10 M j[+h|e  
    %           z(idx) = y(:,k); L!l?tM o  
    %           subplot(4,7,Nplot(k)) H @k }  
    %           pcolor(x,x,z), shading interp Z(tJd ,  
    %           set(gca,'XTick',[],'YTick',[]) Q2Ey RFT  
    %           axis square -s2)!Iko&  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) -XL? n/M  
    %       end (^FMm1@T  
    % ?m2FN< S  
    %   See also ZERNPOL, ZERNFUN2. d*Su c  
    [&*irk  
    d+v| &yN  
    %   Paul Fricker 11/13/2006 yN{**?b  
    *~6]IWN`  
    Qx E%C  
    SaF0JPm4z  
    u`Nrg<  
    % Check and prepare the inputs: 5)S;R,  
    % ----------------------------- Z{B[r;  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) *(q{k%/M  
        error('zernfun:NMvectors','N and M must be vectors.') uKXU.u*C  
    end 9NVtvBA  
    89D`!`Ah]  
    !gLJBp  
    if length(n)~=length(m) Q+K]:c  
        error('zernfun:NMlength','N and M must be the same length.') hlV(jz  
    end P;25 F  
    2i!R>`  
    i: UN  
    n = n(:); 1_LKqBgo  
    m = m(:); 7mi*#X}  
    if any(mod(n-m,2)) vFJ4`Gjw(  
        error('zernfun:NMmultiplesof2', ... Ja*,ht(5  
              'All N and M must differ by multiples of 2 (including 0).') mD +9/O!  
    end $aTo9{M^  
    8i`T?KB  
    XU}i<5  
    if any(m>n) wjX0r7^@  
        error('zernfun:MlessthanN', ... ._x"b5C  
              'Each M must be less than or equal to its corresponding N.') sOWP0x  Y  
    end :jTbzDqQ  
    qfFa" a  
    Lp$&eROFVs  
    if any( r>1 | r<0 ) E.:eO??g  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') MJe/ \  
    end Dy. |bUB!f  
    L67yL( d6a  
    X%*BiI  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) X J]+F  
        error('zernfun:RTHvector','R and THETA must be vectors.') :k.>H.8+~  
    end u8A,f}D 3  
    E]a,2{&8<  
    su\Lxv  
    r = r(:); O[1Q#  
    theta = theta(:); K~UT@,CS60  
    length_r = length(r); 7[kDc-  
    if length_r~=length(theta) UeB St.  
        error('zernfun:RTHlength', ... :Oj!J&A  
              'The number of R- and THETA-values must be equal.') cru&nH*O^  
    end !h1|B7N  
    P1TTaYu  
    A#~CZQY^$  
    % Check normalization: P6^\*xkMr  
    % -------------------- 9~f RYA*  
    if nargin==5 && ischar(nflag) V^G+_#@,,  
        isnorm = strcmpi(nflag,'norm'); u`+kH8#  
        if ~isnorm K)`l > o1  
            error('zernfun:normalization','Unrecognized normalization flag.') %tkL<e  
        end K^AIqL8  
    else S|RUc}(  
        isnorm = false; 3=L5Y/  
    end zBrqh9%8e  
    ~ebm,3?  
    = p2AK\  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% :NwFJc  
    % Compute the Zernike Polynomials y3'K+?4  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 4%jSqT@  
    Y-DHW/Z~  
    <m`Os2#  
    % Determine the required powers of r: pi*?fUg!W  
    % ----------------------------------- [ dVRVm0N  
    m_abs = abs(m); NTM.Vj -_h  
    rpowers = []; _B==S4^/yU  
    for j = 1:length(n) ",E$}= ,Z  
        rpowers = [rpowers m_abs(j):2:n(j)]; 5Obv/C  
    end :bp8S@  
    rpowers = unique(rpowers); olDzmy(=W*  
    MIAC'_<-e  
    h7\16j  
    % Pre-compute the values of r raised to the required powers, 6O'B:5~[2  
    % and compile them in a matrix: l(tMo7iPa  
    % ----------------------------- 7tT L,Nxe  
    if rpowers(1)==0 lS`VJA6l.  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); h4M>k{  
        rpowern = cat(2,rpowern{:}); R^4 j0L  
        rpowern = [ones(length_r,1) rpowern]; 9;pD0h|  
    else Mg^3Y'{o  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); -v WX L  
        rpowern = cat(2,rpowern{:}); pe`&zI_`?  
    end fJG!TQJ[Y  
    {f%x8t$  
    24_/JDz  
    % Compute the values of the polynomials: f'M7x6W  
    % -------------------------------------- O#D N3yu?  
    y = zeros(length_r,length(n)); +@C|u'  
    for j = 1:length(n)  A,|lDsvM  
        s = 0:(n(j)-m_abs(j))/2; $k3l[@;hE  
        pows = n(j):-2:m_abs(j); RZKczZGZg  
        for k = length(s):-1:1 ^pa -2Ao6  
            p = (1-2*mod(s(k),2))* ... ..ht)Gex  
                       prod(2:(n(j)-s(k)))/              ... `OyYo^+D|.  
                       prod(2:s(k))/                     ... AqP7UL  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... a s?)6  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); h)C `w'L  
            idx = (pows(k)==rpowers); %MUwd@,  
            y(:,j) = y(:,j) + p*rpowern(:,idx); Jro%zZle  
        end wn{DY v7B  
         \>XkK<ye  
        if isnorm z2A1h!Me  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); f9&po2Pzf  
        end {[.<BU-  
    end 7 S2QTRvH  
    % END: Compute the Zernike Polynomials GSu&Z/Jo  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Bso3Z ^X.  
    .Cf`D tK  
    {B lM<  
    % Compute the Zernike functions: a)Ca:p  
    % ------------------------------ 4m$Xjj`vE  
    idx_pos = m>0; 3DO ^vV  
    idx_neg = m<0; ZiOL7#QWX  
    zc#aQ.  
    o@0p  
    z = y; 6o/!H  
    if any(idx_pos) 2f$6}m'Ad  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); G+xdh  
    end o}K!p %5_  
    if any(idx_neg) [6Gb@jG  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); U#!f^@&AB  
    end ,] ,dOIOwn  
    'hi.$G_R  
    $>fMu   
    % EOF zernfun :Vf:_;  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  h2 2-v X  
    @;iW)a_M  
    DDE还是手动输入的呢? b]v.jgD  
    }|rnyYA  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究