切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8981阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, /GD4GWv :  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, ELZCrh6*  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? ^2rNty,nH  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? S!j=hj@qW  
    ]d=SkOq  
    4C\>JGZvq  
    7O^ySy"l  
    SV0E7qX  
    function z = zernfun(n,m,r,theta,nflag) x DD3Y{ K  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. a ;WRTV  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N }OZp[V  
    %   and angular frequency M, evaluated at positions (R,THETA) on the -!f)P=S  
    %   unit circle.  N is a vector of positive integers (including 0), and FAkjFgUJp  
    %   M is a vector with the same number of elements as N.  Each element >RZ]t[)y  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) ViIt 'WX  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ]r8t^bqe  
    %   and THETA is a vector of angles.  R and THETA must have the same (LbAP9Zj#f  
    %   length.  The output Z is a matrix with one column for every (N,M) kscZ zXv  
    %   pair, and one row for every (R,THETA) pair. kclClB:PS  
    % Ab ,n^  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike =NMT H[  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), #9M6 q  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral bw\fKZ  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ZG:#r\a  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized %xF j;U?  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ?^t"tY  
    % /`McKYIP  
    %   The Zernike functions are an orthogonal basis on the unit circle. >{?~cNO&  
    %   They are used in disciplines such as astronomy, optics, and 4=!SG4~o  
    %   optometry to describe functions on a circular domain. =@q 9,H  
    % mN Hd  
    %   The following table lists the first 15 Zernike functions. " uf*?m3  
    % bL soKe  
    %       n    m    Zernike function           Normalization <+I^K 7   
    %       -------------------------------------------------- d$Y3 a^O|  
    %       0    0    1                                 1 o8Vtxnkg  
    %       1    1    r * cos(theta)                    2 `B'*ln'r5  
    %       1   -1    r * sin(theta)                    2 |U)m'W-(q  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) })RT2zw}  
    %       2    0    (2*r^2 - 1)                    sqrt(3) |W4 \  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) G8b/eWtP  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) )[_A{#&  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) #2l6'gWE0  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 6$c,#%Jt*  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) )NAC9:8!  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) kzU;24"K  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) `7_=2C  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 9 f$S4O5  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) jR-DH]@y  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 3yg22y &l  
    %       -------------------------------------------------- AE0d0Y~9  
    % <q|IP_  
    %   Example 1: 7xz~%xC.  
    % 1&N|k;#QS  
    %       % Display the Zernike function Z(n=5,m=1) 2ED^uc: 0S  
    %       x = -1:0.01:1; D lz||==  
    %       [X,Y] = meshgrid(x,x); oz $T.  
    %       [theta,r] = cart2pol(X,Y); hDa I@_86  
    %       idx = r<=1; $Gt1T[:QUX  
    %       z = nan(size(X)); tTrUVuZ  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); cfI5KLG~#  
    %       figure pgT XyAP{  
    %       pcolor(x,x,z), shading interp N'hj  
    %       axis square, colorbar 3S='/^l  
    %       title('Zernike function Z_5^1(r,\theta)') u=^0n2ez  
    % Fq3[/'M^  
    %   Example 2: kB_uU !G  
    % s!S,;H  
    %       % Display the first 10 Zernike functions Ch-56   
    %       x = -1:0.01:1; c*MSd  
    %       [X,Y] = meshgrid(x,x); *4}l V8  
    %       [theta,r] = cart2pol(X,Y); L-ans2?  
    %       idx = r<=1; C {.{>M  
    %       z = nan(size(X)); V"":_`1VW  
    %       n = [0  1  1  2  2  2  3  3  3  3]; q@ !p  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; qT]Bl+h2  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; fq-$u;~h  
    %       y = zernfun(n,m,r(idx),theta(idx)); G#n99X@-  
    %       figure('Units','normalized') N}{CL(xi  
    %       for k = 1:10 [?TQ!l}8A  
    %           z(idx) = y(:,k); &We1i &w  
    %           subplot(4,7,Nplot(k)) Q]X0 O10  
    %           pcolor(x,x,z), shading interp x" 21 Jh  
    %           set(gca,'XTick',[],'YTick',[]) f:iK5g  
    %           axis square -f?Rr:#  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) %-"?  
    %       end ,Yhy7w  
    % bqY}t. Y&"  
    %   See also ZERNPOL, ZERNFUN2. INwc@XB  
    t6 :;0[j  
    /Z<"6g?  
    %   Paul Fricker 11/13/2006 :H[E W3Q  
    EFeGxM  
    i[FcY2  
    4/D ~H+k  
    y$@d%U*rW^  
    % Check and prepare the inputs: .XM3oIaW  
    % ----------------------------- g;en_~g3j  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) }%k,PYe/  
        error('zernfun:NMvectors','N and M must be vectors.') <LM<,  
    end 3}O.B r|  
    i gzISYC_  
    Y{y #us1  
    if length(n)~=length(m) o:C:obiQbu  
        error('zernfun:NMlength','N and M must be the same length.')  01I5,Dm  
    end A?Jm59{w  
    L;.6j*E*  
    D[{p~x^  
    n = n(:); |E @Gsw  
    m = m(:); 6 .DJR Y  
    if any(mod(n-m,2)) 2YK4 SL  
        error('zernfun:NMmultiplesof2', ... M%4o0k]E,s  
              'All N and M must differ by multiples of 2 (including 0).') /1++ 8=  
    end (\FjbY9&  
    dtjaQsJM^  
    [ d<|Cde  
    if any(m>n) :j$K.3n  
        error('zernfun:MlessthanN', ... !7J;h{3Uw  
              'Each M must be less than or equal to its corresponding N.') :7Mo0,Bw,  
    end g92M\5 x9  
    M0o=bYI  
    (omdmT%D  
    if any( r>1 | r<0 ) Rf2/[  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 'ntb.S)  
    end q ,d]i/T  
    rBs7,h  
    Tp~yn  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) (]j*)~=V  
        error('zernfun:RTHvector','R and THETA must be vectors.') y<PPO6u7  
    end n);2b\&  
    s9'g'O5  
    fT._Os?i  
    r = r(:); EH3jzE3N  
    theta = theta(:); (d993~|h  
    length_r = length(r); 3@$h/xMJ  
    if length_r~=length(theta) ` 2|~Z H  
        error('zernfun:RTHlength', ... 6 6x} |7  
              'The number of R- and THETA-values must be equal.') uW;Uq=UN  
    end /@FB;`'  
    O|,+@qtH  
    wd*T"V3  
    % Check normalization: 'DsfKR^ s  
    % -------------------- s5|LD'o!  
    if nargin==5 && ischar(nflag) [gzU / :  
        isnorm = strcmpi(nflag,'norm'); f]$ g9H  
        if ~isnorm ?-<t-3%hyV  
            error('zernfun:normalization','Unrecognized normalization flag.') psRm*,*O  
        end K *vNv 4  
    else oiO3]P]P  
        isnorm = false; S,AZrgh,"X  
    end U'-MMwE]  
    e_]1e 7t  
    !dhZs?/UI  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% =i%2/kdi0b  
    % Compute the Zernike Polynomials * V W \  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% .j88=t0  
    spO?5#  
     +KFK..  
    % Determine the required powers of r: uNXh"?  
    % ----------------------------------- M#S8x@U  
    m_abs = abs(m); w])~m1yW  
    rpowers = []; }J`{g/  
    for j = 1:length(n) ~R)w 9uq  
        rpowers = [rpowers m_abs(j):2:n(j)]; .[cT3l/t  
    end '4Z%{.;  
    rpowers = unique(rpowers); G&C)`};  
    *B:{g>0  
    qx0o,oZN!  
    % Pre-compute the values of r raised to the required powers, N0 ?O*a  
    % and compile them in a matrix: I]SR.Yp%  
    % ----------------------------- fY%Sw7ql<  
    if rpowers(1)==0 ]v_xEH}T  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 0 SKt8pL`  
        rpowern = cat(2,rpowern{:}); T>f-b3dk  
        rpowern = [ones(length_r,1) rpowern]; l'16B^  
    else iT^lk'?{O  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 6\0GVM\  
        rpowern = cat(2,rpowern{:}); K&|zWpb  
    end eA4*Be;9e  
    '3hvR4P  
    bMSF-lQ  
    % Compute the values of the polynomials: M!X@-t#  
    % -------------------------------------- $ @1&G~x  
    y = zeros(length_r,length(n)); y Fp1@*ef  
    for j = 1:length(n) v?LJ_>hw*T  
        s = 0:(n(j)-m_abs(j))/2; 3J,/bgL5  
        pows = n(j):-2:m_abs(j); #UWQ (+F  
        for k = length(s):-1:1 |um)vlN;9  
            p = (1-2*mod(s(k),2))* ... C i*TX  
                       prod(2:(n(j)-s(k)))/              ... '.kbXw0}  
                       prod(2:s(k))/                     ...  %;W8;  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... $^ >n@Q@&L  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); xD1wHp!+  
            idx = (pows(k)==rpowers); um8ZhXq  
            y(:,j) = y(:,j) + p*rpowern(:,idx); nQ~q -=,L  
        end H`io|~Q  
         5<a<!]|C  
        if isnorm / TJTu_#  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); &P+cTN9)  
        end `7 B [<  
    end KPO((G0&  
    % END: Compute the Zernike Polynomials m",bfZ  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 3QR-8  
    Ppp&3h[dW)  
    \Fj4Gy?MW  
    % Compute the Zernike functions: F H%yyT  
    % ------------------------------ A|a\pL`@  
    idx_pos = m>0; Tf[ ]vqa`G  
    idx_neg = m<0; s~63JDy"E  
    n&V(c&C  
    1Gqtd^*;  
    z = y; QB@*/Le   
    if any(idx_pos) \Fe5<G'v  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); B"B  
    end 1b D c ct  
    if any(idx_neg) hOC,Eo  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ?<}qx`+%Q  
    end qzmZ/z96  
    #F6ak,9S4  
    \Q)~'P3  
    % EOF zernfun iH$N HfH  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  \BaN5+ B6  
    Uv`v|S:+2  
    DDE还是手动输入的呢? 1r& ?J.z25  
    [e@OHQM  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究