切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9460阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, m5G9 B-\?  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, q]-CTx$  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? Zewx*Y|  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? Y SvZ7G(m>  
    fY|Bc<,V9)  
    AF=9KWqf  
    LxM.z1  
    yN0!uzdW*  
    function z = zernfun(n,m,r,theta,nflag) hU}!:6G%[P  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. ;Jn"^zT  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N C/JeD-JG  
    %   and angular frequency M, evaluated at positions (R,THETA) on the H9x,C/r,  
    %   unit circle.  N is a vector of positive integers (including 0), and N34.Bt  
    %   M is a vector with the same number of elements as N.  Each element Y=%SK8]Q;  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) D*>EWlZ   
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, (|6Y1``  
    %   and THETA is a vector of angles.  R and THETA must have the same `Jvy~T  
    %   length.  The output Z is a matrix with one column for every (N,M) DA/l`Pn  
    %   pair, and one row for every (R,THETA) pair. /-#1ys#F=  
    % C)7T'[  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike t3#My2=  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), !T((d7;  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral "k8Yc<`u  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, V-y"@0%1  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized +@'{  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. U5 `h  
    % $a.!X8sHB.  
    %   The Zernike functions are an orthogonal basis on the unit circle. RG'Ft]l92N  
    %   They are used in disciplines such as astronomy, optics, and ad\?@>[ I  
    %   optometry to describe functions on a circular domain. ZfpV=DU  
    % Nh I&wl  
    %   The following table lists the first 15 Zernike functions. ,&DK*LT8U  
    % +h64idM{U  
    %       n    m    Zernike function           Normalization V)$y  
    %       -------------------------------------------------- _f~(g1sE  
    %       0    0    1                                 1 $`2rtF  
    %       1    1    r * cos(theta)                    2 +<G |Ru-  
    %       1   -1    r * sin(theta)                    2 -+'fn$  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 19Cs 3B\4  
    %       2    0    (2*r^2 - 1)                    sqrt(3) @R5jUPUVV  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) Bf72 .gx{0  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) pJ` M5pF  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 'IorjR@ 40  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) O8; `6r  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) yGNZw7^(  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) K3jPTAw=#  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Ub0hISA  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) /Hox]r]'e  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) y:U'3G-  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) (,5oqU9s@  
    %       -------------------------------------------------- r/X4Hy0!lT  
    % Ywj=6 +;  
    %   Example 1: b`NXe7A  
    % hX-([o  
    %       % Display the Zernike function Z(n=5,m=1) 4G:I VK9  
    %       x = -1:0.01:1; p2c4 <f-M  
    %       [X,Y] = meshgrid(x,x); E8TJ*ZU  
    %       [theta,r] = cart2pol(X,Y); +`EF0sux  
    %       idx = r<=1; `EV" /&`  
    %       z = nan(size(X)); yI&{8DCCw  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); |-WoR u  
    %       figure ]L'FYOfrpx  
    %       pcolor(x,x,z), shading interp dQoZh E  
    %       axis square, colorbar -S7PnR6  
    %       title('Zernike function Z_5^1(r,\theta)') -=W"  
    % 59?@55  
    %   Example 2: HT]v S}s  
    % f8ap+][  
    %       % Display the first 10 Zernike functions ;2o+|U@  
    %       x = -1:0.01:1; 2v!ucd}  
    %       [X,Y] = meshgrid(x,x); ?;{fqeJz  
    %       [theta,r] = cart2pol(X,Y); "[`.I*WNo  
    %       idx = r<=1; -hM nA)+  
    %       z = nan(size(X)); 81\$X  
    %       n = [0  1  1  2  2  2  3  3  3  3]; e ~X<+3<  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 64Ot`=A"  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 8q)wT0A~  
    %       y = zernfun(n,m,r(idx),theta(idx)); zeqP:goy  
    %       figure('Units','normalized') q<Zdf  
    %       for k = 1:10 '64&'.{#>r  
    %           z(idx) = y(:,k); Mo+ mO&B  
    %           subplot(4,7,Nplot(k)) KY)r kfo B  
    %           pcolor(x,x,z), shading interp b&LfL$  
    %           set(gca,'XTick',[],'YTick',[]) o8 A]vaa  
    %           axis square -qki^!Y?  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) }3tbqFiH  
    %       end ?/mkFDN  
    % ryz [A:^G  
    %   See also ZERNPOL, ZERNFUN2. O"otzla  
    DVu_KT[Hd  
    \z}/=Qgc  
    %   Paul Fricker 11/13/2006 m oQ><>/  
    ^y.e Fz  
    btq`[gAF\  
    wi#]*\N\9  
    o<`)cb }  
    % Check and prepare the inputs: l2DhFt$!=  
    % ----------------------------- U] 2fV|Hn  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) DRldRm/  
        error('zernfun:NMvectors','N and M must be vectors.') 8S&Kf>D  
    end -Yaw>$nJ  
    H'Mc]zw_,  
    zNE"5  
    if length(n)~=length(m) Ua.7_Em  
        error('zernfun:NMlength','N and M must be the same length.') 5xZ*U  
    end MC.,n$O}6  
    %21i#R`E  
    ` [ EzU+  
    n = n(:); 1vcI`8%S+u  
    m = m(:); MCamc  
    if any(mod(n-m,2)) X-oHQu5  
        error('zernfun:NMmultiplesof2', ... {(}Mu R  
              'All N and M must differ by multiples of 2 (including 0).') 1a#oJU  
    end {~*aXu 3  
    [\o+I:,}wi  
    1'5I]D ec  
    if any(m>n) {}?;|&_  
        error('zernfun:MlessthanN', ... o0-7#2  
              'Each M must be less than or equal to its corresponding N.')  \Vis  
    end )z0qKb \  
    myT z  
    W)"PYC4  
    if any( r>1 | r<0 ) X\SZ Q[gN  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') m`<Mzk.u<  
    end )!1; =   
    eSZS`(#!(  
    R5LzqT,/N:  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) _(J7^rN  
        error('zernfun:RTHvector','R and THETA must be vectors.') { 7y.0_Y  
    end 0_Hdj K  
    i2{xW`AcUh  
    wj>mk  
    r = r(:); $|v_ pjUu]  
    theta = theta(:); R9SJ;TsE  
    length_r = length(r); Ti/t\'6  
    if length_r~=length(theta) 9Vx2VjK2'  
        error('zernfun:RTHlength', ... b _fI1f|  
              'The number of R- and THETA-values must be equal.') 73/kyu-0%  
    end D_GIj$%N[  
    qvz2u]IOw  
    7%Zl^c>q  
    % Check normalization: q!#e2Dx  
    % -------------------- kBY54pl  
    if nargin==5 && ischar(nflag) ScrEtN  
        isnorm = strcmpi(nflag,'norm'); bWv4'Y!p  
        if ~isnorm iw<#V&([ J  
            error('zernfun:normalization','Unrecognized normalization flag.')  `"v5bk  
        end SCl$+9E  
    else v*%#Fp,g8  
        isnorm = false; %dTkw+J  
    end jsS xjf;O  
    3 $;6pY  
    CIh@H6|  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% o+W5xHe^1  
    % Compute the Zernike Polynomials >:M3!6H_~{  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% !RLg[_'  
    ;aBK4<-vl  
    bkkhx,Oi[G  
    % Determine the required powers of r: _Zya GDv  
    % ----------------------------------- vS-k0g;   
    m_abs = abs(m); d% ?+q0j  
    rpowers = []; =>Y b~r71  
    for j = 1:length(n) xwa5dtcng  
        rpowers = [rpowers m_abs(j):2:n(j)]; &eV& +j  
    end ryzz!0l  
    rpowers = unique(rpowers); ]gYnw;W$  
    v8"plx=3  
    5uMh#dm^  
    % Pre-compute the values of r raised to the required powers, X3#/|>  
    % and compile them in a matrix: FR9<$  
    % ----------------------------- F)/}Q[o8  
    if rpowers(1)==0 gK/mm\K@  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false);  ~dfc  
        rpowern = cat(2,rpowern{:}); [-!   
        rpowern = [ones(length_r,1) rpowern]; x[7jm"Pz  
    else <}-[9fW  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); T^u][I3*  
        rpowern = cat(2,rpowern{:}); *,hS-  
    end Ed9ynJ~)X  
    zCKZv|j6  
    z]ZhvH7-  
    % Compute the values of the polynomials: ([zt}uf  
    % -------------------------------------- pv&:N,p  
    y = zeros(length_r,length(n)); }^WQNdws56  
    for j = 1:length(n) G?!b00H  
        s = 0:(n(j)-m_abs(j))/2; naCPSsei  
        pows = n(j):-2:m_abs(j); ^'i(@{{o\  
        for k = length(s):-1:1 w#eD5y~'oo  
            p = (1-2*mod(s(k),2))* ... Q=J"#EFs  
                       prod(2:(n(j)-s(k)))/              ... Z8nj9X$   
                       prod(2:s(k))/                     ... 2<wuzP|  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... L+Yn}"gIs  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); !s#25}9zX5  
            idx = (pows(k)==rpowers); tWQ_.,ld  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 8RWfv}:X  
        end WS8m^~S@\  
         VO3&!uOd  
        if isnorm }\}pSqW  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); wXp A1,i  
        end <qN0Q7  
    end Xn-GSW3{  
    % END: Compute the Zernike Polynomials <y=VDb/  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% zu'Uau  
    |WH'aGG  
    4>nY't;0  
    % Compute the Zernike functions: L^} Z:I  
    % ------------------------------ &Yi)|TU3'R  
    idx_pos = m>0; w*<XPBi  
    idx_neg = m<0; KJ<7aZ  
    Hrq1{3~  
    $9<q'hf<w  
    z = y; B1T:c4:N  
    if any(idx_pos) p C l[DE  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 3^ ~M7=k  
    end km2('t7?  
    if any(idx_neg) D].!u{##  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); v.:aICB5  
    end ;]zV ?9  
    Nq1la8oQ3  
    G%w.Z< qy  
    % EOF zernfun HQ~`ha.  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  Oi#4|*b{W  
    758`lfz=_  
    DDE还是手动输入的呢? &O|!w&  
    %=p:\+`VI  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究