下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, |zq4* 5
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, ahA{B1M)n
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? |QVr`tE<
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? QBoFpxh=
<FUon
iU5P$7.p
}taLk@T
ocF>LR%P
function z = zernfun(n,m,r,theta,nflag) IU|kNBo
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. O~ 27/
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N G}VDEC
% and angular frequency M, evaluated at positions (R,THETA) on the `?|Rc
% unit circle. N is a vector of positive integers (including 0), and :\b|dvI<
% M is a vector with the same number of elements as N. Each element ~^&R#4J
% k of M must be a positive integer, with possible values M(k) = -N(k) $Jp~\_X
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, &~ *.CQa
% and THETA is a vector of angles. R and THETA must have the same .k@^KY
% length. The output Z is a matrix with one column for every (N,M) ~-_i
% pair, and one row for every (R,THETA) pair. =q+R
% BFWi(58q
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike wiJRCH
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Vr/Bu4V"
% with delta(m,0) the Kronecker delta, is chosen so that the integral _({@B`N}
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ZQAO"huk]
% and theta=0 to theta=2*pi) is unity. For the non-normalized
R_1qn
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. H_w%'v &
% <~{du ?4n
% The Zernike functions are an orthogonal basis on the unit circle. SO;N~D1Z6
% They are used in disciplines such as astronomy, optics, and #6=MKpR
% optometry to describe functions on a circular domain. NQX>Qh
2
% Kb&V!#o)
% The following table lists the first 15 Zernike functions. <sX VW
% j13DJ.xu
% n m Zernike function Normalization !`&\Lx_
% --------------------------------------------------
l{$[}<
% 0 0 1 1 f+x;:
% 1 1 r * cos(theta) 2 mnjs(x<m
% 1 -1 r * sin(theta) 2 sN~ \+_
% 2 -2 r^2 * cos(2*theta) sqrt(6) PcC/_+2
% 2 0 (2*r^2 - 1) sqrt(3) Vr=OYI'A
% 2 2 r^2 * sin(2*theta) sqrt(6) J;}3t!
% 3 -3 r^3 * cos(3*theta) sqrt(8) j*400
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) Qz,|mo+
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) m%QSapV
% 3 3 r^3 * sin(3*theta) sqrt(8) }D*yr3b
% 4 -4 r^4 * cos(4*theta) sqrt(10)
>&U@f
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) n2f6p<8A
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) gL3iw!7
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 9b"MQ[B4#a
% 4 4 r^4 * sin(4*theta) sqrt(10) pKT2^Q}-h
% -------------------------------------------------- w0w1PE-V=
% bgF^(T35
% Example 1: +G*JrwJ&=
% Ws I>n
% % Display the Zernike function Z(n=5,m=1) Ez+Z[*C
% x = -1:0.01:1; .Z\Q4x#!Z
% [X,Y] = meshgrid(x,x); .cDOl_z<:G
% [theta,r] = cart2pol(X,Y); Xg7|JS!
% idx = r<=1; 0uvzxmN
% z = nan(size(X)); +=BAslk
% z(idx) = zernfun(5,1,r(idx),theta(idx)); "OmD@
EMT
% figure $s-Y%gc
% pcolor(x,x,z), shading interp `~#<&w
% axis square, colorbar <a(}kk}
% title('Zernike function Z_5^1(r,\theta)') S($Su7g%_
% J2VTo: In
% Example 2: A+getdr
% F;q#&
% % Display the first 10 Zernike functions lg$zGa?
% x = -1:0.01:1; % 0T+t.
% [X,Y] = meshgrid(x,x); o!c]
(
% [theta,r] = cart2pol(X,Y); i-"
p)2d=#
% idx = r<=1; !w39FfU{
% z = nan(size(X)); YA:nOvd@O
% n = [0 1 1 2 2 2 3 3 3 3]; ~" i0x
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; r(h`XMsU
% Nplot = [4 10 12 16 18 20 22 24 26 28]; 9?<{_'
% y = zernfun(n,m,r(idx),theta(idx)); L|hx
arJ
% figure('Units','normalized') bBc[bc>R
% for k = 1:10 `aC){&AP(
% z(idx) = y(:,k); 5PT5#[
% subplot(4,7,Nplot(k)) T>`74B:
% pcolor(x,x,z), shading interp vBcq_sbo
% set(gca,'XTick',[],'YTick',[]) 2c5-)Dt)T
% axis square _hu")os
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) jszK7$]^
% end ?9{~> 4@
% @p 6<Lw_E
% See also ZERNPOL, ZERNFUN2. Z?5V4F:f
' o_:^'c
V[o`\|<
% Paul Fricker 11/13/2006 n+;6=1d7ZW
QX4ai3v
7&qy5y-Ap
/U&Opo
{aO
Uu 8,@W+
% Check and prepare the inputs: `-h8vj5uG
% ----------------------------- hrG M|_BE
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) c2t=_aAIPQ
error('zernfun:NMvectors','N and M must be vectors.') pi<TFe@eG
end q@t0NvNSu
H,nec<Jp
hCjR&ZA
if length(n)~=length(m) i.D3'l
error('zernfun:NMlength','N and M must be the same length.') nw>8GivO
end npJt3
Y_I
J &pO%Q=b
SCvVt
n = n(:); E;JsBH
m = m(:); }J">}j]/
if any(mod(n-m,2)) p2Zo
error('zernfun:NMmultiplesof2', ... n!p<A.O7@
'All N and M must differ by multiples of 2 (including 0).') VCXJwVb
end .Asv%p[W
S}p4iE"n
MjlP+; !
if any(m>n) #]nx!*JNZ
error('zernfun:MlessthanN', ... i;LXu%3\
'Each M must be less than or equal to its corresponding N.') OQW#a[=WQ
end 1N7Kv4,
1$M@]7e+!+
n2)q}_d
if any( r>1 | r<0 ) X.hm s?]
error('zernfun:Rlessthan1','All R must be between 0 and 1.') +s- lCz
end Tb3J9q+ya
kY*rb_2j
&?mD$Eo
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Zt.'K(]2h
error('zernfun:RTHvector','R and THETA must be vectors.') DxUKUE
end QUu}Xg:
"@??Fw!
{} 3${
r = r(:); =-IbS}3
theta = theta(:); C(00<~JC
length_r = length(r); e,t(q(L
if length_r~=length(theta) uc;8 K,[t
error('zernfun:RTHlength', ... +=O5YR!{
'The number of R- and THETA-values must be equal.') MyT q
end 87D*-Gw
bbrXgQ`s+w
0q&<bV:D
% Check normalization: b )B?
F
% -------------------- o4|M0
if nargin==5 && ischar(nflag) R8ZK]5{o
isnorm = strcmpi(nflag,'norm'); ;kY(<{ 2
if ~isnorm Ney/[3 A
error('zernfun:normalization','Unrecognized normalization flag.') j'A_'g'^
end mV3cp rRqv
else S:h{2{
isnorm = false; ILGMMA_2
end 9I&xfvD,
;M)QwF1
9I}-[|`u
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ,P;Pm68V
% Compute the Zernike Polynomials Tj:B!>>
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% D)L+7N0D~
U4d:] z
Qk:Y2mL
% Determine the required powers of r: XD.)Dl8
% ----------------------------------- e
9;~P}
m_abs = abs(m); gt@m?w(
rpowers = []; uG,5BV .M
for j = 1:length(n) f|\onHI)>
rpowers = [rpowers m_abs(j):2:n(j)]; f&Gt|
end KrQ1GepJ
rpowers = unique(rpowers); E=nIRG|g
bbE!qk;hEP
'@_d(N1jTw
% Pre-compute the values of r raised to the required powers, 4 o Fel.o
% and compile them in a matrix: aDU<wxnSvO
% ----------------------------- E|iQc8gr&
if rpowers(1)==0 qm/)ku0
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); N sXHO
rpowern = cat(2,rpowern{:}); Q+[n91ey**
rpowern = [ones(length_r,1) rpowern]; 4K\G16'$v
else ~E17L]ete
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); -XB/lnG
rpowern = cat(2,rpowern{:}); fdFo# P
end ]'&LGA`
;ub;lh 3
Z?h~{Mg
% Compute the values of the polynomials: Q'=x|K#xj
% -------------------------------------- b,7k)ND1F
y = zeros(length_r,length(n)); c2l@6<Ww
for j = 1:length(n) |fK1/<sz#
s = 0:(n(j)-m_abs(j))/2; ,Lr.9I.
pows = n(j):-2:m_abs(j); NPy&O