下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, 3l3'bw2
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, DNj"SF(J
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? !V,{_(LT
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? YBP:q2H
Ce")[<:
kJ-*fe'S
v0ES;
%B)6$!x
function z = zernfun(n,m,r,theta,nflag) sSQs#+&=[
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. E4W zU
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N SJ};TEA
% and angular frequency M, evaluated at positions (R,THETA) on the mK [0L
% unit circle. N is a vector of positive integers (including 0), and *L'>U[Pl7
% M is a vector with the same number of elements as N. Each element /M*a,o
% k of M must be a positive integer, with possible values M(k) = -N(k) j~e;DO
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, \;mH(-
% and THETA is a vector of angles. R and THETA must have the same Iz{R}#8CZ
% length. The output Z is a matrix with one column for every (N,M) (<Th=Fns?
% pair, and one row for every (R,THETA) pair. e4z1`YLsG
% Z t&6Ua[Y}
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike =pznu+,
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), eU N"w,@y
% with delta(m,0) the Kronecker delta, is chosen so that the integral l$jxLZ
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, FA}_(Hf.[
% and theta=0 to theta=2*pi) is unity. For the non-normalized ?x0pe4^If
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Z KOXI%~Mc
% 5n
^TRB
% The Zernike functions are an orthogonal basis on the unit circle. RNhJ'&SYs
% They are used in disciplines such as astronomy, optics, and E gDQ+(
-
% optometry to describe functions on a circular domain. ^+1#[E
% 9Y<#=C
% The following table lists the first 15 Zernike functions. &%_& 8DkG
% 'D%w|Pe?Q
% n m Zernike function Normalization _C+b]r/E
% -------------------------------------------------- kee|42E
% 0 0 1 1 -Z?Vd!H:
% 1 1 r * cos(theta) 2 d)"?mD:m/M
% 1 -1 r * sin(theta) 2 F|HJH"2*&q
% 2 -2 r^2 * cos(2*theta) sqrt(6) 4#'("#R
% 2 0 (2*r^2 - 1) sqrt(3) i]#+1Hf
% 2 2 r^2 * sin(2*theta) sqrt(6) `WOYoec
% 3 -3 r^3 * cos(3*theta) sqrt(8) 1<<kA:d
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 1 `7<2w
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) >R2SQA o
% 3 3 r^3 * sin(3*theta) sqrt(8) 4
8{vE3JY
% 4 -4 r^4 * cos(4*theta) sqrt(10) 2]c{P\
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) N*@aDM07
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) MCP "GZK6W
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) zP;cTF(C
% 4 4 r^4 * sin(4*theta) sqrt(10) 3J=Y9 }
% -------------------------------------------------- ,=
&B28Qe)
% ?9X&tK)E-
% Example 1: _zu?.I0^
% 7'-j%!#w
% % Display the Zernike function Z(n=5,m=1) N<L`c/
% x = -1:0.01:1; Jz! Z2c
% [X,Y] = meshgrid(x,x); cf7v[ZZ}
% [theta,r] = cart2pol(X,Y); DS-fjH\
% idx = r<=1; 3F#+~^2
% z = nan(size(X)); 4A3nO<oMF
% z(idx) = zernfun(5,1,r(idx),theta(idx)); )kJH5/
% figure 1H,g=Y4f%
% pcolor(x,x,z), shading interp q,2]5'
% axis square, colorbar oiH|uIsqR
% title('Zernike function Z_5^1(r,\theta)') 8V-\e?&^
% 2nFy`|aA%
% Example 2: fN
"tA
% lI/0:|l
% % Display the first 10 Zernike functions Z.wA@ ~e
% x = -1:0.01:1; &|<xqt
% [X,Y] = meshgrid(x,x); \Yoa:|%*y
% [theta,r] = cart2pol(X,Y); ]}UgS+g>$
% idx = r<=1; -[Qvg49jy
% z = nan(size(X)); XIWm>IQ[)
% n = [0 1 1 2 2 2 3 3 3 3]; <q,+ON\'
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 2 /y}a#s
% Nplot = [4 10 12 16 18 20 22 24 26 28]; 8:.nEo'
% y = zernfun(n,m,r(idx),theta(idx)); M-
0i7%
% figure('Units','normalized') a?R[J==
% for k = 1:10 m4[g6pNx~
% z(idx) = y(:,k); %o}(sShS
% subplot(4,7,Nplot(k)) t+nRw?Z
% pcolor(x,x,z), shading interp vSW
L$Y2
% set(gca,'XTick',[],'YTick',[]) z\/53Sy<
% axis square ba3-t;S
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) {$M;H+Foh
% end C#w]4 $/
% G]Jz"xH#
% See also ZERNPOL, ZERNFUN2. kHJ96G
M3zDtN
#'hLb
% Paul Fricker 11/13/2006 c
{I"R8
8#` 6M5
* \HRw +cL
2>\\@1
=raA?Bp3;(
% Check and prepare the inputs: Yn9j-`
% ----------------------------- \nqo%5XL
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) }xlKonk
error('zernfun:NMvectors','N and M must be vectors.') RH~3M0'0
end Z v0C@r
dZGbC 9
=w<v3 wWN4
if length(n)~=length(m) Zwe[_z!*D
error('zernfun:NMlength','N and M must be the same length.') k:#6^!b1
end s T3p>8n
(3*UPZv
'9J|=z9.
n = n(:); Pj7gGf6v
m = m(:); 0p fnV%
if any(mod(n-m,2)) eFTX6XB:i
error('zernfun:NMmultiplesof2', ... V)D-pV V
'All N and M must differ by multiples of 2 (including 0).') K%}}fw2RMN
end oJ78jGTnb
<E':[.zC
uv4 _:
if any(m>n) |)@N-f:E
error('zernfun:MlessthanN', ... i=v]:TOu
'Each M must be less than or equal to its corresponding N.') M+sj}
end 1h"_[`L'
uC~g#[I QM
v9}[$HWx
if any( r>1 | r<0 ) #B\=Aa`*
error('zernfun:Rlessthan1','All R must be between 0 and 1.') iilyw_$H
end =:h3w#_c
s0{
NsK>
DM3B]Yl
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) U
|F>W~%
error('zernfun:RTHvector','R and THETA must be vectors.') .#^0pv!
end LD+f'^>>Z
MB:n~>ga
Nm8w/Q5D`
r = r(:); NMjnL&P`
theta = theta(:); N"DY?6
length_r = length(r); 'o\;x"YJ
if length_r~=length(theta) $<e +r$1
error('zernfun:RTHlength', ... {e]NU<G ,
'The number of R- and THETA-values must be equal.') Sb^
b)q"
end F(CRq`
GYgWf1$8_D
K="I<bK
% Check normalization: $
u2Cd4
% -------------------- Sa]mm/G
if nargin==5 && ischar(nflag) PO
ko]@~!i
isnorm = strcmpi(nflag,'norm'); 5_G'68;OV
if ~isnorm a@|.;#FF
error('zernfun:normalization','Unrecognized normalization flag.') bNvAyKc-
end <q7s`,rG
else 0~xaUM`
isnorm = false; @
t@|q
end ;]h.m)~|
MOV =n75
+ x_wYv
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 3c 28!3p
% Compute the Zernike Polynomials R^9"N?Q7;`
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 6H;kJHn
T|f_~#?eV
tL8't]M,
% Determine the required powers of r: onzA7Gre
% ----------------------------------- dy_.(r5[L]
m_abs = abs(m); z\[(g
rpowers = []; hCLk#_
for j = 1:length(n) 5c~'!: 7
rpowers = [rpowers m_abs(j):2:n(j)]; n.;3X
end zXgkcq)
rpowers = unique(rpowers); |p'i,.(c_W
yGV{^?yoP
,#%SK;1<
% Pre-compute the values of r raised to the required powers, tG 7+7Z=
% and compile them in a matrix: t/Z!O
z6ZE
% ----------------------------- <t6d)mJ%
if rpowers(1)==0 3ExVZu$
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); }9Qf #&o
rpowern = cat(2,rpowern{:}); t/LgHb:)
rpowern = [ones(length_r,1) rpowern]; RQ5P}A
3H
else >'0lw+a
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 8g5.7{ky
rpowern = cat(2,rpowern{:}); IuWX*b`v
end X0x_+b?
_
Qy%xL9
3qcpf:
% Compute the values of the polynomials: 9R:(^8P8
% -------------------------------------- tD^a5qPh
y = zeros(length_r,length(n)); 2e\Kw+(>{
for j = 1:length(n) 6+#,=!hF{
s = 0:(n(j)-m_abs(j))/2; %9YA^ri
pows = n(j):-2:m_abs(j); &O{t^D)F
for k = length(s):-1:1 &`sR){R
p = (1-2*mod(s(k),2))* ... DD6 'M
U4
prod(2:(n(j)-s(k)))/ ... 7?]!Ecr"
prod(2:s(k))/ ... -~]^5aa5n
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... PE7t_iSV
prod(2:((n(j)+m_abs(j))/2-s(k))); `L">"V`$Bj
idx = (pows(k)==rpowers); }Y$VB%&Hy
y(:,j) = y(:,j) + p*rpowern(:,idx); HqDa2q4
end +ks$UvtY
+9}' s{
if isnorm o7QK8#
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); PJ6$);9}6
end R''Sfz>8
end :`j"Sj!t3
% END: Compute the Zernike Polynomials *U2Ck<"]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% X{|k<^:
1[#
=,
fX$6;Ae
% Compute the Zernike functions: kz|[*%10
% ------------------------------ 3V!W@[ }:
idx_pos = m>0; =/f74s
t
idx_neg = m<0; OT"lP(,
n_ OUWvs
@>Biyb
z = y; G)K9la<p
if any(idx_pos) 1(D1}fcul
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Q)9369<A
end E'fX&[
if any(idx_neg) r6<ArX$Yl
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 2@4MC`&