下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, P/WGB~NH
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, ??.aLeF&
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? $n!5JS@40
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? ^`SEmYb;
SYsO>`/ )
Hq<4G:#
DOFW"Sp E
gSwHPm%zn
function z = zernfun(n,m,r,theta,nflag) a;IOL
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. FMF mn|
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N lo6upirZX
% and angular frequency M, evaluated at positions (R,THETA) on the Rsq EAdZw[
% unit circle. N is a vector of positive integers (including 0), and LQ%QFfC
% M is a vector with the same number of elements as N. Each element 9__Q-J
% k of M must be a positive integer, with possible values M(k) = -N(k) IOC$jab@
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, [!3cWJCt
% and THETA is a vector of angles. R and THETA must have the same <=6F=u3PtU
% length. The output Z is a matrix with one column for every (N,M) $iy!:Did
% pair, and one row for every (R,THETA) pair. -^`s#0( y^
% )l
m7ly8a|
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 8mdVh\i!Kf
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), C}3a^j
% with delta(m,0) the Kronecker delta, is chosen so that the integral VCnf`wZB"
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, -Q<OSa='
% and theta=0 to theta=2*pi) is unity. For the non-normalized os;94yd)
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. qj:[NPwaM
% [hot,\+f
% The Zernike functions are an orthogonal basis on the unit circle. >}NnzZ
% They are used in disciplines such as astronomy, optics, and >+;}"J
% optometry to describe functions on a circular domain. ,/V~T<FI
% Uea2WJpX
% The following table lists the first 15 Zernike functions. . bUmT !
% lg
)xQV
% n m Zernike function Normalization ~(tt.l#
% -------------------------------------------------- dZ*&3.#D5
% 0 0 1 1 ARnq~E@1
% 1 1 r * cos(theta) 2 ,+h<qBsV@
% 1 -1 r * sin(theta) 2 S[y_Ewzq
% 2 -2 r^2 * cos(2*theta) sqrt(6) Lh-Y5(c
o
% 2 0 (2*r^2 - 1) sqrt(3) reYIF*
% 2 2 r^2 * sin(2*theta) sqrt(6) @C[p? ak
% 3 -3 r^3 * cos(3*theta) sqrt(8) daSx^/$R
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 'ta&qp
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 1TfFWlf[B
% 3 3 r^3 * sin(3*theta) sqrt(8) ~~"U[G1
% 4 -4 r^4 * cos(4*theta) sqrt(10) |=VWE>g
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) :iE`=( o
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) y,jpd#Y
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) @QnKaZ8jW
% 4 4 r^4 * sin(4*theta) sqrt(10) 1\/vS$bi(
% -------------------------------------------------- `\ IaeMvo
% 7tJ#0to
% Example 1: qSD`S1'2;
% "mU2^4q
% % Display the Zernike function Z(n=5,m=1) +G!#
/u1
% x = -1:0.01:1; zd$iDi($
% [X,Y] = meshgrid(x,x); k[<i+C";
% [theta,r] = cart2pol(X,Y); m8b-\^eP7
% idx = r<=1; mrG#ox4$
% z = nan(size(X)); H0lW gJmi|
% z(idx) = zernfun(5,1,r(idx),theta(idx)); YB)I%5d;{
% figure kDRxu!/
% pcolor(x,x,z), shading interp :~s*yznf
% axis square, colorbar As^eL/m2L
% title('Zernike function Z_5^1(r,\theta)') #ifjQ7(:
% [;-;{
*{G
% Example 2: '@.Lg0`
% I`g&>
% % Display the first 10 Zernike functions ~SA>$
% x = -1:0.01:1; V5
9Vf[i|
% [X,Y] = meshgrid(x,x); g.8^ )u
% [theta,r] = cart2pol(X,Y); \7$"i5
% idx = r<=1; "9*MSsU
% z = nan(size(X)); mdmJne.
% n = [0 1 1 2 2 2 3 3 3 3]; OQg}E@LZ
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; +yk 0ez
% Nplot = [4 10 12 16 18 20 22 24 26 28]; ?TW? 2+
% y = zernfun(n,m,r(idx),theta(idx)); &K=)YpT
% figure('Units','normalized') `@6y Wb:X
% for k = 1:10 QGErQ
+l
% z(idx) = y(:,k); 5OFB[
% subplot(4,7,Nplot(k)) ^
rO}'~(
% pcolor(x,x,z), shading interp w9gfva$&
% set(gca,'XTick',[],'YTick',[]) ] ONmWo77o
% axis square [{`&a#Q
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) O_
$ zK
% end _]3#C[1L
% W5Jb5
% See also ZERNPOL, ZERNFUN2. 9&B#@cw
hS%oQ)zvE
`!ja0Sq]U
% Paul Fricker 11/13/2006 2*n~r
6*|EB|%n
mv$gL
/6 x[C
{=3'H?$
% Check and prepare the inputs: L0%W;m
% ----------------------------- %(\et%[]
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 'XYjo&w
error('zernfun:NMvectors','N and M must be vectors.') Fs=E8' b
end l
u{6
?4W6TSW-'
2G:KaQ)
if length(n)~=length(m) c,G[R k
error('zernfun:NMlength','N and M must be the same length.') Z)u_2e
end ^8?px&B y:
NVf_#p"h
$c+:dO|Fb
n = n(:); '8@4FXK
m = m(:); Mt~2&$>
if any(mod(n-m,2)) LTb#1JC
error('zernfun:NMmultiplesof2', ... mD?={*7%
'All N and M must differ by multiples of 2 (including 0).') >pq=5Ha&
end x IL]Y7HWM
$TAsb>W!(
8ux
if any(m>n) @'J[T: e
error('zernfun:MlessthanN', ... /Hq#!2)
'Each M must be less than or equal to its corresponding N.') %~lTQCPE
end +ul.P)1J6
)fke;Y0
O;(n[k
if any( r>1 | r<0 ) |Ur$H!oe?'
error('zernfun:Rlessthan1','All R must be between 0 and 1.') Q$yQ^ mG
end {Sc*AE&Y
dA(+02U/.
I]91{dq
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) +KP&D.wIo
error('zernfun:RTHvector','R and THETA must be vectors.') S09Xe_q
end gm: xtN
O%} hNTS"
xu'b@G}12
r = r(:); {]7lh#M
theta = theta(:); 3#`Sk`z<
length_r = length(r); IfCa6g<&(
if length_r~=length(theta) ;T>.
error('zernfun:RTHlength', ... J$yJ2G
'The number of R- and THETA-values must be equal.') 5J6~]J
end T&E'MB
r!p:73L8
d}^hZ8k|
% Check normalization: vC^n_
% -------------------- XpT~]q}
if nargin==5 && ischar(nflag) Yjx4H
isnorm = strcmpi(nflag,'norm'); [O3)s] |
if ~isnorm ^8g<>,$
error('zernfun:normalization','Unrecognized normalization flag.') *!}bU`
end [](] "r
else OI^qX;#Kd
isnorm = false; zhI"++
end i6:O9Km
]_! .xx>
ev5m(wR
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% RJD(c#r$
% Compute the Zernike Polynomials ,Q+.kAh !G
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 9u_D@A"aC`
}FkF1?C
*UdP1?Y
% Determine the required powers of r: !z+'mF?V+X
% ----------------------------------- QM=Y}
m_abs = abs(m); [85tZr]
rpowers = []; R& HkWe
for j = 1:length(n) ,mE}#cyY
rpowers = [rpowers m_abs(j):2:n(j)]; U1=\ `)u;
end /t _QA
rpowers = unique(rpowers); L\t?^u
9f3rMPVh(
Rw`64 L_
% Pre-compute the values of r raised to the required powers, j<d,7
% and compile them in a matrix: )H*BTfmt
% ----------------------------- ]/?$DNjCc
if rpowers(1)==0 B[7Fq[.mh
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); F%:o6mT
rpowern = cat(2,rpowern{:}); mFuHZ)iQG
rpowern = [ones(length_r,1) rpowern]; ?;
tz
else ,+'VQa"]
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); -N1X=4/fg
rpowern = cat(2,rpowern{:}); ,y[w`Q\
end O
_^Y*!
eOUEhpE
qfgw^2aUa
% Compute the values of the polynomials: |h2=9\:]
% -------------------------------------- L&Pj0K-HT3
y = zeros(length_r,length(n)); i [2bz+Z?
for j = 1:length(n) d{c06(#_
s = 0:(n(j)-m_abs(j))/2; TA!6|)BUW
pows = n(j):-2:m_abs(j); 7_ 5-gtD
for k = length(s):-1:1 idY
Xv)R
p = (1-2*mod(s(k),2))* ... m=D9V-P
prod(2:(n(j)-s(k)))/ ... VJ-To}
prod(2:s(k))/ ... iY3TB|tMt
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... XGDJC N
prod(2:((n(j)+m_abs(j))/2-s(k))); "V<7X%LIX
idx = (pows(k)==rpowers);
y7.oy"
y(:,j) = y(:,j) + p*rpowern(:,idx); dwUs[v
end Y]+KsiOL
?q}:ojrs1
if isnorm K5(:0Q.5y
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Qa,$_,E
end ;b0;66C8|
end #}C6}};
% END: Compute the Zernike Polynomials (Cbm*VL
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% X"Q\MLy
ePiZHqIsv/
#8a k=lL
% Compute the Zernike functions: .-.b:gdO(
% ------------------------------ _*u$U
idx_pos = m>0; XOPiwrg%p
idx_neg = m<0; kFQx7m
ic?(`6N8
!'kr:r}gg
z = y; -}"nb-RR\
if any(idx_pos) 6:`4bo
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); q$jwH]
.
end *4[P$k$7
if any(idx_neg) D]+@pKb
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); X ="]q|Z
end QzV%m0
Q`z2SYz>
~f?brQ?
% EOF zernfun <l$ vnq