下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, pU4k/v555;
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, Y![m'q}K
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? ]:Y@pZ
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? ktQMkEj#
k e$g[g
&fH;A X.
05_aL` &eb
c@p4,G
function z = zernfun(n,m,r,theta,nflag) QU0FeGtz
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. p9c`rl_N
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N M=vRy|TL
% and angular frequency M, evaluated at positions (R,THETA) on the ~zdHJ8tYp
% unit circle. N is a vector of positive integers (including 0), and 9='a9\((mH
% M is a vector with the same number of elements as N. Each element 3Yu1ZuIR
% k of M must be a positive integer, with possible values M(k) = -N(k) frB~ajXK
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, 34k}7k~n
% and THETA is a vector of angles. R and THETA must have the same 4x8e~/
% length. The output Z is a matrix with one column for every (N,M) zMZP3
xir
% pair, and one row for every (R,THETA) pair. \^=Wp'5R
% =*K~U# uoC
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike >kK!/#ZA
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 4dv5
% with delta(m,0) the Kronecker delta, is chosen so that the integral =b\k$WQ_(
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, uL`6}0
% and theta=0 to theta=2*pi) is unity. For the non-normalized sfLH[Q?
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 6$42-a%b
% tG1,AkyZ
% The Zernike functions are an orthogonal basis on the unit circle. y_aKW4L+
% They are used in disciplines such as astronomy, optics, and kGaK(^w
% optometry to describe functions on a circular domain. "'389*-
% aI8k:FK"
% The following table lists the first 15 Zernike functions. Z' cQ<
f
% {R`,iWV
% n m Zernike function Normalization Yc5{M*w
% -------------------------------------------------- W*D]?hXU;
% 0 0 1 1 P(H,_7 4
% 1 1 r * cos(theta) 2 pVuJ4+`
% 1 -1 r * sin(theta) 2 CHeU`!:
% 2 -2 r^2 * cos(2*theta) sqrt(6) vkFfHzR$
% 2 0 (2*r^2 - 1) sqrt(3) @|yRo8|
% 2 2 r^2 * sin(2*theta) sqrt(6) j Wa%vA
% 3 -3 r^3 * cos(3*theta) sqrt(8) /]0-|Kg+R
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8)
"rnZ<A}
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) qx#k()E.U
% 3 3 r^3 * sin(3*theta) sqrt(8) >FrF"u:kM
% 4 -4 r^4 * cos(4*theta) sqrt(10) ;'^5$q
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) WD"3W)!
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) <p_r{
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) G$hH~{Y$
% 4 4 r^4 * sin(4*theta) sqrt(10) r3 OTU$t?
% -------------------------------------------------- HiTn 5XNf
% F%Te0l
% Example 1: v=-8} S
% z:m`
% % Display the Zernike function Z(n=5,m=1) .#py5&`%
% x = -1:0.01:1; sIx8,3`&y
% [X,Y] = meshgrid(x,x); e|ChCvk
% [theta,r] = cart2pol(X,Y); QfLDyJv`e
% idx = r<=1; L;wfTZa
% z = nan(size(X)); -!X,MDO
% z(idx) = zernfun(5,1,r(idx),theta(idx)); ZS\jbii8
% figure 1J(` kQ)c
% pcolor(x,x,z), shading interp &C_0JyT
% axis square, colorbar ([Gb]0
% title('Zernike function Z_5^1(r,\theta)') Gz>M Y4+G
% Tt,<@U[/}
% Example 2: +9 Uo<6}
% 942(a
% % Display the first 10 Zernike functions QG~4<zy
% x = -1:0.01:1; aT v
% [X,Y] = meshgrid(x,x); YMlnC7?_/
% [theta,r] = cart2pol(X,Y); P[;<,U;'HO
% idx = r<=1; I-@A{vvPK
% z = nan(size(X)); Pfy2PpA
% n = [0 1 1 2 2 2 3 3 3 3]; N>Dr
z
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; UODbT&&
% Nplot = [4 10 12 16 18 20 22 24 26 28]; }sbh|#
% y = zernfun(n,m,r(idx),theta(idx)); Idq&0<I
% figure('Units','normalized') jacp':T
% for k = 1:10 -pWnO9q
% z(idx) = y(:,k); m@|0iDS
% subplot(4,7,Nplot(k)) x1g0_&F
% pcolor(x,x,z), shading interp )qgcz<p?W
% set(gca,'XTick',[],'YTick',[]) sTn}:A6
% axis square <=]wh|D
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) {'.[N79xP
% end Ch3{q/-g
% ?CaMn b8
% See also ZERNPOL, ZERNFUN2. ^/K]id7 2
.@#GNZe
Ro&s\T+d
% Paul Fricker 11/13/2006 xJ/<G$LNJ0
r&^xg`i[z>
=}bDT2Nb
9Ai e$=
3LxhQVx2
% Check and prepare the inputs: X/=*o;":
% ----------------------------- yuTSzl25,/
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) M
Y2=lT
error('zernfun:NMvectors','N and M must be vectors.') {F Ir|R&
end K>!+5A$6i
F&ud|X=m
0^5*@vt
if length(n)~=length(m) av}Giz
error('zernfun:NMlength','N and M must be the same length.') q 9cN2|:
end S;!l"1[;
v-(Ry<fT9
z0@{5e$#Y
n = n(:); /QA:`_</oh
m = m(:); t`b!3U>I
if any(mod(n-m,2)) 5Op|="W.
error('zernfun:NMmultiplesof2', ... :\]TAQd-
'All N and M must differ by multiples of 2 (including 0).') =jz*|e|V
end y:C=Ni&,"
gpIq4Q<
EWI2qaSnO
if any(m>n) NuL.l__W
error('zernfun:MlessthanN', ... 3RwDIk?>%
'Each M must be less than or equal to its corresponding N.') 2Hh5gD|>
end 676r0`
RDX$Wy$@L
n54}WGo>9
if any( r>1 | r<0 ) _LVi}mM
error('zernfun:Rlessthan1','All R must be between 0 and 1.') TzPG(f
end NCid`a$
dX720/R
@X$~{Vp__
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) xI'sprNa_1
error('zernfun:RTHvector','R and THETA must be vectors.') |%V-|\GJ~j
end n86=1G:%
_4Ciai2Ql
lQkCA-
r = r(:); r5 k{mV+
theta = theta(:); fz9
,p;b
length_r = length(r); &l&B[s6[
if length_r~=length(theta) <k41j=d
error('zernfun:RTHlength', ... t08E
2sI
'The number of R- and THETA-values must be equal.') p3Ey[kURp
end V|vKYEFry
+*'^T)sj/
s-S#qGZ
% Check normalization: 2r =8&~9z
% -------------------- AW6 "1(D
if nargin==5 && ischar(nflag) 3Z taj^v
isnorm = strcmpi(nflag,'norm'); IP#?$X
if ~isnorm _?aI/D
error('zernfun:normalization','Unrecognized normalization flag.') p7Q}xx
end <i!:{'%
else $,s"c(pv[,
isnorm = false; p+ki1!Ed
end vrGx<0$
-45xa$vv
n'i~1pM,?
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 7uI~Xo?N
% Compute the Zernike Polynomials :!cNkJa
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ^U5g7Emf
?'jRUf l
Xy[*)<
% Determine the required powers of r: 4:50dj
% ----------------------------------- 3-%F)@n
m_abs = abs(m); Qf$3!O}G
rpowers = []; +~ZFao qf
for j = 1:length(n) f ^vz
rpowers = [rpowers m_abs(j):2:n(j)]; v}>5!*
end
l
;fO]{
rpowers = unique(rpowers); Ok*aP+Wq
u A=x~-I
C7hJE-
% Pre-compute the values of r raised to the required powers, ;oT!\$Mu
% and compile them in a matrix: 5 `Mos
% ----------------------------- !#b8QER
if rpowers(1)==0 W["c3c
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); an<loLW
rpowern = cat(2,rpowern{:}); F?3zw4Vt~
rpowern = [ones(length_r,1) rpowern]; Ln3<r&&Jz
else sf(2~BMQI
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); NH$!<ffz
rpowern = cat(2,rpowern{:}); $z":E(oy
end `%5~>vPS
ww^!|VVa
{0?]weN*
% Compute the values of the polynomials: BQ
/0z^A
% -------------------------------------- wq6.:8Or-]
y = zeros(length_r,length(n)); %s(Ri6R&
for j = 1:length(n)
%1jlXa
s = 0:(n(j)-m_abs(j))/2; Q"Ur*/-U
pows = n(j):-2:m_abs(j); | GqKa
for k = length(s):-1:1 {CVn&|}J
p = (1-2*mod(s(k),2))* ... Xb'UsQ
prod(2:(n(j)-s(k)))/ ... tAxS1<T4
prod(2:s(k))/ ... 6.0/asN}
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... A2xfNY<
prod(2:((n(j)+m_abs(j))/2-s(k))); 7c7:B2Lq
idx = (pows(k)==rpowers); V]fsjpvlmr
y(:,j) = y(:,j) + p*rpowern(:,idx); Ug=)_~
end &i8UPp%
c1CUG1i
if isnorm O>~ozW&
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); rT}k[
end C EMe2~
end 9-6E(D-ux
% END: Compute the Zernike Polynomials ZR"BxE0_k
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% JPt0k
HT@/0MF{J
0DIXd*oj &
% Compute the Zernike functions: "^3pP(8;~
% ------------------------------ 6t0-u~
idx_pos = m>0; + NpHk
idx_neg = m<0; q n2X._`
=w#sCy
c7[+gc5}
z = y; gb,X"ODq
if any(idx_pos) omEnIfQSO
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); F~O}@e{
end ~ v21b?
if any(idx_neg) ,FP<#
0F*a
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); m-h+UKt
end { :~D
5[\LQtM
N %K%0o-
% EOF zernfun \A'tV/YAd