切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9023阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, #[ f]-c(!  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, ) >;7"v  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? nQGl]2  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? Cj%n?-  
    e!W U  
    cWtuI(.  
    [Ef6@  
    mR|L'[l  
    function z = zernfun(n,m,r,theta,nflag) I(<9e"1O  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. |L/EH~| O  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N [)+wke9  
    %   and angular frequency M, evaluated at positions (R,THETA) on the e ,kxg^  
    %   unit circle.  N is a vector of positive integers (including 0), and :FTx#cZ  
    %   M is a vector with the same number of elements as N.  Each element (+yH   
    %   k of M must be a positive integer, with possible values M(k) = -N(k) ziDvDu=  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, b5Q|$E   
    %   and THETA is a vector of angles.  R and THETA must have the same @C-03`JWuK  
    %   length.  The output Z is a matrix with one column for every (N,M) NSawD.9mV  
    %   pair, and one row for every (R,THETA) pair. xX f,j#`"  
    % azz=,^U#  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike J>l?HK  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 3 daI_Nx>  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral lArKfs/   
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, dI%?uk  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 1=Z!ZY}}e  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. z$gtGrU  
    % t4iD<{4  
    %   The Zernike functions are an orthogonal basis on the unit circle. cX!C/`ew>  
    %   They are used in disciplines such as astronomy, optics, and qk~m\U8r  
    %   optometry to describe functions on a circular domain.  nU4to  
    % V&*|%,q   
    %   The following table lists the first 15 Zernike functions. {J1iheuS}  
    % W#)X@TlE  
    %       n    m    Zernike function           Normalization gw!d[{#  
    %       -------------------------------------------------- cJMi`PQ;  
    %       0    0    1                                 1 hK,a8%KnFA  
    %       1    1    r * cos(theta)                    2 :8K}e]!c1  
    %       1   -1    r * sin(theta)                    2 y8_$YA/g  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) t"zi'9$t  
    %       2    0    (2*r^2 - 1)                    sqrt(3) {d XTj7  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) AsD$M*It  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) U9ZuD40\  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) M8V c5  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 6Df*wi!jI  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) k".kbwcaF  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) @@j:z;^|  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Xp] jF^5  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) nY7gST  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) QChncIqc  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) Esu {c9,  
    %       -------------------------------------------------- ^U5Qb"hz  
    % 9: .m]QN  
    %   Example 1: ? cXW\A(  
    % /ej[oR  
    %       % Display the Zernike function Z(n=5,m=1) j+fib} 8}  
    %       x = -1:0.01:1; W]oa7VAq  
    %       [X,Y] = meshgrid(x,x); ^2H;  
    %       [theta,r] = cart2pol(X,Y); |h }4J  
    %       idx = r<=1; ZNne 8  
    %       z = nan(size(X)); (H5#r2h%Y  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 8v z h5,U  
    %       figure `m#-J;la  
    %       pcolor(x,x,z), shading interp %ufh  
    %       axis square, colorbar !zvjgDlZv  
    %       title('Zernike function Z_5^1(r,\theta)') 8\"Gs z  
    % 81"` B2  
    %   Example 2: jQxhR  
    % |_ +#&x  
    %       % Display the first 10 Zernike functions T60pw  
    %       x = -1:0.01:1; RyP MzxV  
    %       [X,Y] = meshgrid(x,x); PW|=IPS  
    %       [theta,r] = cart2pol(X,Y); S2DG=hi`GK  
    %       idx = r<=1; mogmr  
    %       z = nan(size(X)); 5RvE ),  
    %       n = [0  1  1  2  2  2  3  3  3  3]; WQ 2{`'z  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; aW*k,\:e  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; ~;?<OOt|wG  
    %       y = zernfun(n,m,r(idx),theta(idx)); xL1Li]fM!'  
    %       figure('Units','normalized') }NoP(&ebz*  
    %       for k = 1:10 VP>*J`'H  
    %           z(idx) = y(:,k); {g#4E0.A!  
    %           subplot(4,7,Nplot(k)) 2,dWD<h  
    %           pcolor(x,x,z), shading interp (:qc[,m  
    %           set(gca,'XTick',[],'YTick',[]) =w}JAEE|(i  
    %           axis square Pw| h`[h  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) L-}J=n\  
    %       end J,:&U wkv  
    % Bcarx<P-p  
    %   See also ZERNPOL, ZERNFUN2. ^P^%Q)QXl  
    @J&korU  
    C+uW]]~I)  
    %   Paul Fricker 11/13/2006 t))MZw&@  
    m0 As t<u  
    EwX&Cj".  
    w8>h6x "  
    5e$1KN`  
    % Check and prepare the inputs: \7i_2|w  
    % ----------------------------- tH)j EY9  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) "5Y6.$Cuf!  
        error('zernfun:NMvectors','N and M must be vectors.') RSe4 lw  
    end E0R6qS:'  
    #kASy 2t  
    6IG?t  
    if length(n)~=length(m) 6_4 B!  
        error('zernfun:NMlength','N and M must be the same length.') Fu_I0z  
    end w+>+hq  
    RzjUrt  
    ?T2>juf]5~  
    n = n(:); E#!!tH`lgg  
    m = m(:); 5\MC5us3  
    if any(mod(n-m,2)) UPU$SZAIx  
        error('zernfun:NMmultiplesof2', ... z,G_&5|f%  
              'All N and M must differ by multiples of 2 (including 0).') kFwFPK%B  
    end ey=KAt  
    H:]cBk^[,  
    P2a5<#_|  
    if any(m>n) [K.1 X=O}  
        error('zernfun:MlessthanN', ... >4jE[$p]"  
              'Each M must be less than or equal to its corresponding N.') # G 77q$  
    end X)[tb]U/Wx  
    HKXC=^}x'  
    WA8<:#{e  
    if any( r>1 | r<0 ) /7 Tm2Vj8  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') IgG[Pr'D  
    end )rK2%\Z  
    :R,M Y"(  
    iCF},W+  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 7Hr_ZwO/^  
        error('zernfun:RTHvector','R and THETA must be vectors.') ZrTB%  
    end )&c#?wx'w  
    m+hI3@j  
    GYfOwV!zB  
    r = r(:); ]alc%(=  
    theta = theta(:); b$ 7 ]cE  
    length_r = length(r); gHLI>ew*QR  
    if length_r~=length(theta) <ToBVG X  
        error('zernfun:RTHlength', ... mkn1LzE|F  
              'The number of R- and THETA-values must be equal.') Z 5>~l  
    end 4u 6 FvN  
    &.,K@OFE}  
    w'2FYe{wj  
    % Check normalization: P>C'? 'Q7  
    % -------------------- g0tnt)]  
    if nargin==5 && ischar(nflag) !k)6r6  
        isnorm = strcmpi(nflag,'norm'); +:.Jl:fx4  
        if ~isnorm aDK b78 1d  
            error('zernfun:normalization','Unrecognized normalization flag.') p H  y  
        end K:a8}w>Up  
    else q++r\d^{  
        isnorm = false; WFOJg&  
    end Hw]E#S  
    AU$~Ap*rsa  
    TlS? S+  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% tk%f_"}  
    % Compute the Zernike Polynomials PC_!  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% F3}MM dX  
    B`B =bn+4  
    z%YNZ ^d  
    % Determine the required powers of r: [Cl0Kw.LD  
    % ----------------------------------- etr-\Cp  
    m_abs = abs(m); ,Z@#( =f  
    rpowers = []; _J l(:r\%  
    for j = 1:length(n) 0SIC=p=J  
        rpowers = [rpowers m_abs(j):2:n(j)]; a{]=BY oL  
    end \)6glAtN  
    rpowers = unique(rpowers); ?bB>}:~j)  
    VI2lw E3  
    /I`TN5~  
    % Pre-compute the values of r raised to the required powers, R |c=I }@F  
    % and compile them in a matrix: r)iEtT!p*  
    % ----------------------------- <k:I2LF_  
    if rpowers(1)==0 + Q-b}  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ;5j|B|v  
        rpowern = cat(2,rpowern{:}); $Z@*!B^  
        rpowern = [ones(length_r,1) rpowern]; hC<ROD  
    else _uQ]I^'D  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Hb=#`  
        rpowern = cat(2,rpowern{:}); #d-({blo<  
    end y&NqVR=   
    nje7?Vz  
    ~Ru\Z-q1  
    % Compute the values of the polynomials: 4XN \p  
    % --------------------------------------  )d2Z g  
    y = zeros(length_r,length(n)); $o[-xNn1  
    for j = 1:length(n) +/ukS6>gr  
        s = 0:(n(j)-m_abs(j))/2; =0)|psCsM  
        pows = n(j):-2:m_abs(j); P1eSx#3bR  
        for k = length(s):-1:1 (9]Uuvfp6"  
            p = (1-2*mod(s(k),2))* ... <7^|@L 6  
                       prod(2:(n(j)-s(k)))/              ... +:FXtO>n"  
                       prod(2:s(k))/                     ... :; +!ID_  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... NIV}hf YF  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 4D?h}U /  
            idx = (pows(k)==rpowers); !mNst$-H4  
            y(:,j) = y(:,j) + p*rpowern(:,idx); C*Vm}|)  
        end 3V k8'  
         VE )D4RL  
        if isnorm 3(BL  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 'c35%? ]  
        end T2e-RR  
    end (T%F^s5D  
    % END: Compute the Zernike Polynomials #A/OGi  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% s@\3|e5g  
    v)5;~.+%  
    vzIo2 ,/7  
    % Compute the Zernike functions: C`.YOkpj  
    % ------------------------------ -b-a21,m>  
    idx_pos = m>0; ?v2_7x&  
    idx_neg = m<0; AFAg3/  
    $J7V]c*-b  
    ,!:c6F+  
    z = y; C]L)nCOBX  
    if any(idx_pos) r[L.TX3Ah=  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); c!Hz'W  
    end ReaZg ?:h  
    if any(idx_neg) K.  ;ev  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 4S_f2P2J  
    end o*KAS@&  
    G+ /Q!ic  
    Z<vz%7w  
    % EOF zernfun t ed:]  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  ]`-o\,lq  
    *r>Y]VG;S  
    DDE还是手动输入的呢? ['(qeS@5O  
    d Np%=gIj  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究