切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9477阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, ,_66U;T  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, hIj[#M&6  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? I5"ew=x#  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛?  c|N!ZYJI  
    iA~b[20&  
    Dm@wTt8N(  
    *&j)"hX  
    ~&/|J)}  
    function z = zernfun(n,m,r,theta,nflag) 3:$hC8  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. _v=@MOI/J  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N w8t,?dY  
    %   and angular frequency M, evaluated at positions (R,THETA) on the Z=O2tR  
    %   unit circle.  N is a vector of positive integers (including 0), and ~P*t_cpZ  
    %   M is a vector with the same number of elements as N.  Each element VV(>e@Bc4  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 2a;vLc4  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, DPfP)J:~  
    %   and THETA is a vector of angles.  R and THETA must have the same \?,'i/c-  
    %   length.  The output Z is a matrix with one column for every (N,M) UarU.~Uqi  
    %   pair, and one row for every (R,THETA) pair. <v?9:}  
    % `Z{kJMS  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike @!\ g+z_"  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), (/&IBd-  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral >G2o  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, G"jKYW  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ^4LkKYMS  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ]JX0:'x^  
    % ?Z@FxW  
    %   The Zernike functions are an orthogonal basis on the unit circle. {~ yj]+Im  
    %   They are used in disciplines such as astronomy, optics, and "C$z)  
    %   optometry to describe functions on a circular domain. .>0e?A4,5?  
    % -ob_]CKtJ~  
    %   The following table lists the first 15 Zernike functions. 7N^9D H{`  
    % Vw*;xek?  
    %       n    m    Zernike function           Normalization lrjlkgSN  
    %       -------------------------------------------------- %S8e:kc6  
    %       0    0    1                                 1 tb7Wr1$<  
    %       1    1    r * cos(theta)                    2 d:0RDK-}s  
    %       1   -1    r * sin(theta)                    2 ?lv{;4BC  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) SGW2'  
    %       2    0    (2*r^2 - 1)                    sqrt(3) c'_-jdi`>_  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) lKs*KwG  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) T0WB  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 4Vj|k\vE4  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) l=5(5\  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) w:Fi 2aJ  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) tRYMK+  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) &0Zn21q  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) ]GYO`,  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) @oC8:  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) TH2D;uv  
    %       -------------------------------------------------- SoODss~X  
    % u~yJFIo  
    %   Example 1: <ns[( Q  
    % 4KE"r F  
    %       % Display the Zernike function Z(n=5,m=1) 2q J}5  
    %       x = -1:0.01:1; Q7$ILW-S  
    %       [X,Y] = meshgrid(x,x); buGW+TrWY  
    %       [theta,r] = cart2pol(X,Y); F\+wM*:U  
    %       idx = r<=1; hS&,Gm`^  
    %       z = nan(size(X)); bD<[OerG  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); fGJPZe  
    %       figure #NVtZs!V/  
    %       pcolor(x,x,z), shading interp M#on-[  
    %       axis square, colorbar @L^2VVWk^  
    %       title('Zernike function Z_5^1(r,\theta)') >#B%gxff  
    % D%umL/[]  
    %   Example 2: s z/7cLo  
    % %y33evX/B  
    %       % Display the first 10 Zernike functions &R/)#NAp  
    %       x = -1:0.01:1; /hf}f=7kH  
    %       [X,Y] = meshgrid(x,x); vpx8GiV  
    %       [theta,r] = cart2pol(X,Y); OA2<jrGB!  
    %       idx = r<=1; m8H|cQ@Uu  
    %       z = nan(size(X)); p~I+ZYWF'  
    %       n = [0  1  1  2  2  2  3  3  3  3]; m/n_e g  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; XF(I$Mxl6  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; ^8aj\xe(  
    %       y = zernfun(n,m,r(idx),theta(idx)); tfj6#{M5  
    %       figure('Units','normalized') 8qn1? Lb  
    %       for k = 1:10 0\%/:2   
    %           z(idx) = y(:,k); r_T\%  
    %           subplot(4,7,Nplot(k)) xh[Mmq/R  
    %           pcolor(x,x,z), shading interp ?"PUw3V3lB  
    %           set(gca,'XTick',[],'YTick',[]) wly#|  
    %           axis square E\#hcvP  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) j$^3  
    %       end M(x5D;db/  
    % :kqJ~  
    %   See also ZERNPOL, ZERNFUN2. i4 KW  
    g5R2a7  
    ex7zg!  
    %   Paul Fricker 11/13/2006 M *BDrM  
    X>EwJ"q#  
    OBi9aFoQ  
    [wP;g'F  
    %TxFdF{A  
    % Check and prepare the inputs: =v=a:e  
    % ----------------------------- mJRvC%  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) xn1  
        error('zernfun:NMvectors','N and M must be vectors.') WM NcPHcj  
    end DCM ,|FE  
    W$ #FM$U  
    -EFtk\/  
    if length(n)~=length(m) !Sfy'v.  
        error('zernfun:NMlength','N and M must be the same length.') x)l}d3   
    end  Ek(. ["  
    :}TT1@  
    bgGd  
    n = n(:); Bvzl* &?  
    m = m(:); KOGbC`TN<  
    if any(mod(n-m,2)) 4.7OX&L'G  
        error('zernfun:NMmultiplesof2', ... $q]((@i.  
              'All N and M must differ by multiples of 2 (including 0).') Ra<mdteZT  
    end FOgF'!K  
    h<\o[n7j  
    4%~$A`7  
    if any(m>n) [c]X) @#S  
        error('zernfun:MlessthanN', ... NqvL,~1G  
              'Each M must be less than or equal to its corresponding N.') ChF:N0w? p  
    end S{{D G  
    v5i[jM8  
    _aL:XKM  
    if any( r>1 | r<0 ) F=yrqRS=  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') |Y|{9Osus  
    end *O,\/aQ+  
    y562g`"U  
    Fh9`8  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 6tB-  
        error('zernfun:RTHvector','R and THETA must be vectors.') dQ@ e+u5  
    end &e@2zfl7  
    bVSa}&*kM  
    1u7 5  
    r = r(:); +"6_rbeuO  
    theta = theta(:); 7lY&/-V  
    length_r = length(r); D{I^_~-\5  
    if length_r~=length(theta) ==`K$rM  
        error('zernfun:RTHlength', ... sh[Yu  
              'The number of R- and THETA-values must be equal.') _C~e(/=z  
    end U0t/(Jyg  
    P}N%**>`  
    RzQ1Wq  
    % Check normalization: YW9 [^  
    % -------------------- eG9tn{  
    if nargin==5 && ischar(nflag) Q]Q i  
        isnorm = strcmpi(nflag,'norm'); Y*;Z(W.V#  
        if ~isnorm y_M<\b  
            error('zernfun:normalization','Unrecognized normalization flag.') 01}az~&;35  
        end DhV($&*M  
    else ))cL+ r  
        isnorm = false; ~V[pu  
    end $r*7)/  
    87c7p=/0`  
    $wH{snX  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% A#M#JI-Y  
    % Compute the Zernike Polynomials trnjOm  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% xOP%SF  
    xu(5U`K  
    R}c,ahd  
    % Determine the required powers of r: ^_#0\f  
    % ----------------------------------- :&}(?=<R}L  
    m_abs = abs(m); _O2},9L n  
    rpowers = []; !ccKbw)J#  
    for j = 1:length(n) {[hH: \  
        rpowers = [rpowers m_abs(j):2:n(j)]; 5:/ zbt\C  
    end \{@s@VBx[  
    rpowers = unique(rpowers); (xpj?zlmM  
    6js94ko[  
    ]3wg-p+  
    % Pre-compute the values of r raised to the required powers, /"+YE&>\  
    % and compile them in a matrix: f9u^/QVS&  
    % ----------------------------- <uDEDb1|l  
    if rpowers(1)==0 h 1G`z  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); (g xCP3  
        rpowern = cat(2,rpowern{:}); ~[d U%I>L^  
        rpowern = [ones(length_r,1) rpowern]; fu'iG7U M  
    else 9%WUh-|'p  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ."Wdpf`~  
        rpowern = cat(2,rpowern{:}); ]\w0u7}  
    end _" W<>  
    Vd~{SS 2>  
    CwZ+P n0  
    % Compute the values of the polynomials: /KjRB_5~q}  
    % -------------------------------------- U1bhd}MoR  
    y = zeros(length_r,length(n)); azR<Y_tw  
    for j = 1:length(n) P1)f-:;  
        s = 0:(n(j)-m_abs(j))/2; [~9rp]<  
        pows = n(j):-2:m_abs(j); {i y[8eLg  
        for k = length(s):-1:1 pV{MW#e  
            p = (1-2*mod(s(k),2))* ... ,0%P3  
                       prod(2:(n(j)-s(k)))/              ... S/G6NBnbS  
                       prod(2:s(k))/                     ... N|K,{ p^li  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... L9nv05B  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); OY7\*wc:  
            idx = (pows(k)==rpowers); 6*cG>I.Z  
            y(:,j) = y(:,j) + p*rpowern(:,idx); l{F^"_U  
        end R}njFQvS)  
         }VxbO8\b(  
        if isnorm J/S 47J~  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Ac;rMwXk#  
        end c9imfA+e  
    end l[lUmE  
    % END: Compute the Zernike Polynomials bg;N BoZd  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% l G12Su/  
    s'' ?: +  
    //cj$}Rn!  
    % Compute the Zernike functions: .r[b!o^VR  
    % ------------------------------ e\x=4i  
    idx_pos = m>0; w6DK&@w`'/  
    idx_neg = m<0; fmZ5rmw!  
    wr{03mQHxp  
    d!kiWmw,  
    z = y; &}wr N(?w  
    if any(idx_pos) hV|pH)Nu{  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); #TZf\0\!  
    end nD6mLNi%a  
    if any(idx_neg) XzI c<81Z  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 0jCYOl  
    end oR (hL4Dc  
    'WK}T)o  
    OE)n4X  
    % EOF zernfun sPY *2B  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    在线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  &w\E*$  
    ^8dd  
    DDE还是手动输入的呢? F-i`GMWC  
    g/H:`J  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究