切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9161阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, Z;> aW;Wt  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, Dqo:X`<bT  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? 0O 9 Lg}  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? AXv3jH,HF  
    ^`C*";8Q  
    ki/Lf4  
    N`mC_)  
    9$w)_RX9W  
    function z = zernfun(n,m,r,theta,nflag) -T="Ml &  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. xVmUmftD  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N '2B0D|r"a  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ZI:d&~1i1  
    %   unit circle.  N is a vector of positive integers (including 0), and ,2L,>?r6  
    %   M is a vector with the same number of elements as N.  Each element ri.|EmH2:D  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) T?$?5  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, %li{VDb  
    %   and THETA is a vector of angles.  R and THETA must have the same %4g4 C#  
    %   length.  The output Z is a matrix with one column for every (N,M) dodz|5o%  
    %   pair, and one row for every (R,THETA) pair. BqJrL/(  
    % ~#xs `@{s  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ZCq\Zk1O&  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), PyJblW  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral |H I A[.q  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 'aSORVq^e[  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized J+Y|# U  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. iO#xIl<  
    % lu(Omds+  
    %   The Zernike functions are an orthogonal basis on the unit circle. )9P  
    %   They are used in disciplines such as astronomy, optics, and 9#ay(g  
    %   optometry to describe functions on a circular domain. (Y?yGq/  
    % x-P_}}K 79  
    %   The following table lists the first 15 Zernike functions. @n y{.s+  
    % wZolg~dg  
    %       n    m    Zernike function           Normalization !Kn+*'#  
    %       -------------------------------------------------- u(Q(UuI  
    %       0    0    1                                 1 >?\ !k c  
    %       1    1    r * cos(theta)                    2 7VD7di=D  
    %       1   -1    r * sin(theta)                    2 k$m X81  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 8&AorYw[  
    %       2    0    (2*r^2 - 1)                    sqrt(3) kxiyF$ 9  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) +c2>j8e6  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) JC-yiORVr  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) Gf$>!zXr  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) S 2` ;7  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) V'#u_`x"D)  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) E&=?\KM  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) -x5bdC(d  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 'r3}=z4Y  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ZI*A0_;L  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) DD3yl\#,  
    %       -------------------------------------------------- MZ[g|o!)v  
    % , 0ja_  
    %   Example 1: }|,\ ?7,  
    % AZP>\Dq  
    %       % Display the Zernike function Z(n=5,m=1) w6Ny>(T/  
    %       x = -1:0.01:1; k0=y_7 =(5  
    %       [X,Y] = meshgrid(x,x); aj~@r3E ;  
    %       [theta,r] = cart2pol(X,Y); / S^m!{  
    %       idx = r<=1; xL#oP0d<e  
    %       z = nan(size(X)); LA3,e (e  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 0pG(+fN_9  
    %       figure 7E t(p'  
    %       pcolor(x,x,z), shading interp ~DS9{Y  
    %       axis square, colorbar lJ2/xE]  
    %       title('Zernike function Z_5^1(r,\theta)') 5q*~h4=r7  
    % I!@` _Q9N  
    %   Example 2: DEuW'.o>  
    % 1e%Xyqb  
    %       % Display the first 10 Zernike functions uZI:Kt#  
    %       x = -1:0.01:1; ? =Qg  
    %       [X,Y] = meshgrid(x,x); UYLI>XSd  
    %       [theta,r] = cart2pol(X,Y); %-1-J<<J q  
    %       idx = r<=1; WWz ns[$f  
    %       z = nan(size(X)); 2o}FB\4^i  
    %       n = [0  1  1  2  2  2  3  3  3  3]; ;\0RXirk  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; !0_Y@>2  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; &~i &~AJ  
    %       y = zernfun(n,m,r(idx),theta(idx)); cM Kh+r  
    %       figure('Units','normalized') 'v5gg2  
    %       for k = 1:10 61 |xv_/  
    %           z(idx) = y(:,k); LLN^^>5|l  
    %           subplot(4,7,Nplot(k)) N_}Im>;!  
    %           pcolor(x,x,z), shading interp 7t/SZm  
    %           set(gca,'XTick',[],'YTick',[]) ^DJ U99  
    %           axis square Ee| y[y,  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) SpQ6A]M gm  
    %       end x$4'a~E  
    % p8bTR!rvz  
    %   See also ZERNPOL, ZERNFUN2. S}yb~uc,  
    W{2y*yqY  
    ZmF32 Ir  
    %   Paul Fricker 11/13/2006 cE?J]5#^  
    fR{7780WZ  
    >@W#@W*I@  
    3"RZiOyv  
    ]C^*C|  
    % Check and prepare the inputs: #{PNdINoU  
    % ----------------------------- -hfY:W`Dz  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) $80/ub:R  
        error('zernfun:NMvectors','N and M must be vectors.') J>&GP#7}  
    end "=O)2}  
    3iwZUqyq  
    4Yk (ldR~  
    if length(n)~=length(m) j$Co-b1  
        error('zernfun:NMlength','N and M must be the same length.') M3;B]iRQD  
    end v.J#d>tvf  
    Dbd5d]]n3  
    K>~l6  
    n = n(:); YTA  &G  
    m = m(:); uLht;-`{n  
    if any(mod(n-m,2)) Nq3P?I(<  
        error('zernfun:NMmultiplesof2', ... \v_( *  
              'All N and M must differ by multiples of 2 (including 0).') ~CscctD{;  
    end chbs9y0  
    Fh;(1X75I  
    ;E_{Zji_e  
    if any(m>n) Mf"B!WU>]B  
        error('zernfun:MlessthanN', ... )i>KgX  
              'Each M must be less than or equal to its corresponding N.') ^~$ o-IX  
    end e)8iPu ..  
    YFY)Z7fK  
    W1z5|-T  
    if any( r>1 | r<0 ) 8 B5%IgA  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 7085&\9  
    end h !1c(UR  
    7BnP,Nd"W  
    N4 pA3~P  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) gsAO<Fy  
        error('zernfun:RTHvector','R and THETA must be vectors.') ~gD'up@$/  
    end AseY.0  
    cE[lB08  
    5;*C0m2%i  
    r = r(:); "lt[)3*  
    theta = theta(:); iD~s,  
    length_r = length(r); 2I  
    if length_r~=length(theta) {lA@I*_lj  
        error('zernfun:RTHlength', ... lHU$A;  
              'The number of R- and THETA-values must be equal.') `N0E;=g  
    end Q2o:wXvj  
    B(5g&+{Lq~  
    iGIaZ!j aW  
    % Check normalization: QK\z-'&n  
    % -------------------- KK}&4^q  
    if nargin==5 && ischar(nflag) l;ugrAo?  
        isnorm = strcmpi(nflag,'norm'); gQ[4{+DSf  
        if ~isnorm ,>Q,0bVhH0  
            error('zernfun:normalization','Unrecognized normalization flag.') *4bV8T>0Z  
        end l`k3!EZDS  
    else //(c 1/s  
        isnorm = false; D+U^ pl-  
    end ME.LS2'n  
    ?w+T_EH  
    R?(j#bk  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Z,z^[Jz  
    % Compute the Zernike Polynomials !Kis,e  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% W*0KAC`m  
    >_o_&;=`v  
    oUqNA|l T  
    % Determine the required powers of r: $FoNEr&q  
    % ----------------------------------- :MpCj<<[  
    m_abs = abs(m); 8dv1#F|  
    rpowers = []; 8[k-8h|  
    for j = 1:length(n) 86i =N _  
        rpowers = [rpowers m_abs(j):2:n(j)]; bFpwq#PDW>  
    end KLk37IY2\  
    rpowers = unique(rpowers); LakP'P6`E  
    cG<?AR?wDT  
    1DX=\BWp  
    % Pre-compute the values of r raised to the required powers, c09uCito  
    % and compile them in a matrix: q#Bdq8  
    % ----------------------------- xc!"?&\*  
    if rpowers(1)==0 ;tHF$1!J  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); *(rq AB0~  
        rpowern = cat(2,rpowern{:}); #pZ3xa3R  
        rpowern = [ones(length_r,1) rpowern]; /N $T[  
    else f-Sb:O!V  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); (efH>oY[  
        rpowern = cat(2,rpowern{:}); MKbW^:  
    end ;3w W)gL1  
    g {00i  
    j/sZ:Q  
    % Compute the values of the polynomials: )XD_Yq@E  
    % -------------------------------------- X/Ae-1!  
    y = zeros(length_r,length(n)); z:w7e0  
    for j = 1:length(n) O_E[F E:+  
        s = 0:(n(j)-m_abs(j))/2; (qaY,>je]D  
        pows = n(j):-2:m_abs(j); PKP( :3|  
        for k = length(s):-1:1 yEH30zSt  
            p = (1-2*mod(s(k),2))* ... 5yry$w$G)  
                       prod(2:(n(j)-s(k)))/              ... $+tkBM  
                       prod(2:s(k))/                     ... [P^ .=F  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... &ha39&I  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); rA9"CN  
            idx = (pows(k)==rpowers); Agl[Z>Q  
            y(:,j) = y(:,j) + p*rpowern(:,idx); rn(T Z}  
        end (*|hlD~  
         k?_Miqr  
        if isnorm "2 Kh2[K  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); O:1YG$uKa  
        end o/Z?/alt4  
    end smSUo /  
    % END: Compute the Zernike Polynomials wL:3RZB  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% P? >p+dM  
    (mv8_~F0  
    E0GpoG5C  
    % Compute the Zernike functions: P5[.2y_qM  
    % ------------------------------ / JlUqC  
    idx_pos = m>0; A;h~Fx6s  
    idx_neg = m<0; 291v R]  
    N/Z<v* i"  
    8NpQ"0X  
    z = y; !bQ5CB  
    if any(idx_pos) )jn xR${M  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Yk:\oM   
    end 9]l7 j\L  
    if any(idx_neg) IXg0g<JZ  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); CT/`Kg_  
    end a 6[bF  
    #\fAp RL  
    S/8xo@vct]  
    % EOF zernfun wL~ dZ! ,J  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  $WED]X@X!  
    ?);6]"k:3  
    DDE还是手动输入的呢? Z ]V^s8>  
    /zJDQ'k0  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究