切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9504阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, Lpchla$  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, "n-'?W!  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? ^rkKE dd  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? L+%"e w  
    TOYK'|lwM  
    ]Z JoC!u  
    P:qmg"i@3  
     6 K $mW  
    function z = zernfun(n,m,r,theta,nflag) YdY-Jg Xm  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. wucdXj{%  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N bQAznd0  
    %   and angular frequency M, evaluated at positions (R,THETA) on the mYBEjZ B  
    %   unit circle.  N is a vector of positive integers (including 0), and g;IlS*Ld  
    %   M is a vector with the same number of elements as N.  Each element 30Yis_l2h  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) )M*w\'M  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, s:`i~hjq  
    %   and THETA is a vector of angles.  R and THETA must have the same bQll;U^A  
    %   length.  The output Z is a matrix with one column for every (N,M) GN.O a$  
    %   pair, and one row for every (R,THETA) pair. A]1Nm3@  
    % $ |4C]Me (  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike zd?@xno  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ZS Med(//b  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral bm588UQ  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ;`9f<d#\  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ,!ZuH?Z  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. jXcJ/g(X3  
    % bRC243]g*A  
    %   The Zernike functions are an orthogonal basis on the unit circle. CU$kh z"  
    %   They are used in disciplines such as astronomy, optics, and OfsP5*d  
    %   optometry to describe functions on a circular domain. K,f:X g!:  
    % mgxIxusR  
    %   The following table lists the first 15 Zernike functions. w7nt $L5  
    % `h}eP[jA  
    %       n    m    Zernike function           Normalization ? @V R%z  
    %       -------------------------------------------------- $o6/dEKQ  
    %       0    0    1                                 1 Iw1Y?Qia  
    %       1    1    r * cos(theta)                    2 @WJ;T= L  
    %       1   -1    r * sin(theta)                    2 I8F+Z  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) NGra/s,9 |  
    %       2    0    (2*r^2 - 1)                    sqrt(3) TyxIlI4"  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) gmTBT#{6yH  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) }ze+ tf  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) U%{GLO   
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) \?bV\/GBR  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) (Guzj*12  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 2FcL-?  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) p< R:[rz  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) Hg+<GML  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Q&m85'r5X  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) Re%[t9 F&  
    %       -------------------------------------------------- vr!J3H f  
    % [f6uwp  
    %   Example 1: <+8'H:wz  
    % ,OZ  
    %       % Display the Zernike function Z(n=5,m=1) &K[*vyD  
    %       x = -1:0.01:1; :I"CQ C[Z  
    %       [X,Y] = meshgrid(x,x); ROO*/OOd  
    %       [theta,r] = cart2pol(X,Y); dQut8>0&  
    %       idx = r<=1; *0WVrM06?  
    %       z = nan(size(X)); Z:b?^u4.  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); OhF55,[  
    %       figure 3CUQQ_  
    %       pcolor(x,x,z), shading interp Z[vx0[av&  
    %       axis square, colorbar M,Gy.ivz  
    %       title('Zernike function Z_5^1(r,\theta)') 7KT*p&xm  
    % /i+z#q5'  
    %   Example 2: {sTf4S\S  
    % ,CE/o7.FG  
    %       % Display the first 10 Zernike functions =4y gbk  
    %       x = -1:0.01:1; LPs%^*8(2  
    %       [X,Y] = meshgrid(x,x); ?2<QoS  
    %       [theta,r] = cart2pol(X,Y); HKN|pO3v  
    %       idx = r<=1; _S!^=9bJ  
    %       z = nan(size(X)); }"Y<<e<z:  
    %       n = [0  1  1  2  2  2  3  3  3  3]; Bz+oM N#XJ  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; .X g.,kW  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; HC0juT OiO  
    %       y = zernfun(n,m,r(idx),theta(idx)); (qcFGM22U  
    %       figure('Units','normalized') zI88IM7/  
    %       for k = 1:10 J_s`G  
    %           z(idx) = y(:,k); o<g?*"TRh  
    %           subplot(4,7,Nplot(k)) D#jwI,n}x  
    %           pcolor(x,x,z), shading interp b3N IFKw  
    %           set(gca,'XTick',[],'YTick',[]) 1nVQYqT_  
    %           axis square ]l7W5$26 @  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) "tEp8m  
    %       end lH fZw})d  
    % +Z#=z,.^  
    %   See also ZERNPOL, ZERNFUN2. FlO?E3d  
    SX3'|'-  
    EPo)7<|>  
    %   Paul Fricker 11/13/2006 ~Nh6po{  
     D2e-b  
    Y A.&ap  
    {uDW<u_!  
    +h) "m/mE  
    % Check and prepare the inputs: b,~'wm8:A  
    % ----------------------------- ,@Csa#  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) !G%!zNA S  
        error('zernfun:NMvectors','N and M must be vectors.') iGW(2.Z  
    end ra^</o/  
    \e a*  
    _KRnx-  
    if length(n)~=length(m) +U fw  
        error('zernfun:NMlength','N and M must be the same length.') 6:_~-xG  
    end +|?a7qM  
    Vjs2Yenx  
    k|fM9E  
    n = n(:); u5CSx'h]  
    m = m(:); F6{g{ B  
    if any(mod(n-m,2)) ;NP-tA)  
        error('zernfun:NMmultiplesof2', ... <I,4Kc!  
              'All N and M must differ by multiples of 2 (including 0).') K#FD$,c~  
    end LP3#f{U  
    W3i<Unq  
    288mP]a(v_  
    if any(m>n) &Vj @){  
        error('zernfun:MlessthanN', ... CKw-HgXG  
              'Each M must be less than or equal to its corresponding N.') 97c0bgI!+  
    end ``xm##K  
    lyL6w1  
    @Y~gdK  
    if any( r>1 | r<0 ) +:A `e+\  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') &0 QUObK  
    end t%@iF U;}  
    pbzt8 P[  
    Y58H.P  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) )  ;LS.  
        error('zernfun:RTHvector','R and THETA must be vectors.') WO>A55Xya  
    end w+m7jn!$  
    `JIp$  
    33` bKKO}  
    r = r(:); c((3B  
    theta = theta(:); su0K#*P&I  
    length_r = length(r); $GoS?\G  
    if length_r~=length(theta) c coi  
        error('zernfun:RTHlength', ... CW`^fI9H  
              'The number of R- and THETA-values must be equal.') `=Mk6$%Cs  
    end #jbC@A9Pe  
    IO7z}![V;  
    e {6wFN  
    % Check normalization: D(z#)oDr  
    % -------------------- :7@[=n  
    if nargin==5 && ischar(nflag) WjBml'^RY  
        isnorm = strcmpi(nflag,'norm'); erI&XI  
        if ~isnorm y^r'4zN'  
            error('zernfun:normalization','Unrecognized normalization flag.') j'*.=cwsp  
        end fD%/]`y  
    else ImQ -kz?b  
        isnorm = false; QXI~Toddj  
    end [KUkv  
    7$7|~k  
    gvVy0nJI~  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% {9J|\Zz3  
    % Compute the Zernike Polynomials K-YxZAf  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \Vv)(/q{  
    hl[<o<`Q  
    czw:xG!&  
    % Determine the required powers of r: I'D3~UI f  
    % ----------------------------------- )g=mv*9>  
    m_abs = abs(m); 6cg,L:j#  
    rpowers = []; x~'_;>]r_  
    for j = 1:length(n) Ob%iZ.D|3<  
        rpowers = [rpowers m_abs(j):2:n(j)]; )^UqB0C6^  
    end B^19![v3T  
    rpowers = unique(rpowers);  H#F"n"~$  
    qY&(O`?m&  
    H!NGY]z*  
    % Pre-compute the values of r raised to the required powers, E.yFCaL  
    % and compile them in a matrix: tL&_@PD)3  
    % ----------------------------- U>Is mF>m  
    if rpowers(1)==0 #WA7}tHb  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 0gyvRM@ x[  
        rpowern = cat(2,rpowern{:}); ,!SbH  
        rpowern = [ones(length_r,1) rpowern]; kFJ]F |^7  
    else };2Lrz9<  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); va~:Ivl-)  
        rpowern = cat(2,rpowern{:}); e?\Od}Hbw  
    end DvN_}h^nX  
    jHMP"(]  
    AsS~TLG9p  
    % Compute the values of the polynomials: :z?T /9,C  
    % -------------------------------------- 0$XrtnM  
    y = zeros(length_r,length(n)); Ev#, }l+  
    for j = 1:length(n) * *A JFc  
        s = 0:(n(j)-m_abs(j))/2; n n[idw  
        pows = n(j):-2:m_abs(j); (3 ,7  
        for k = length(s):-1:1 $sL+k 'dY  
            p = (1-2*mod(s(k),2))* ... `U?S 9m  
                       prod(2:(n(j)-s(k)))/              ... aorL,l  
                       prod(2:s(k))/                     ... c5CxR#O  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... <q MX,h2  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); a Sm</@tO&  
            idx = (pows(k)==rpowers); i(u zb<  
            y(:,j) = y(:,j) + p*rpowern(:,idx); Vg (p_k45`  
        end Q#*qPg s  
         HVC|0}  
        if isnorm I%?M9y.u6  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 5W{|? l{  
        end /|Gz<nSc  
    end Q<osYO{l  
    % END: Compute the Zernike Polynomials 11J:>A5zt  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 7|m{hSc  
    9Up> e  
    .Gno K?  
    % Compute the Zernike functions: e mq%" ;.  
    % ------------------------------ =0@o(#gM  
    idx_pos = m>0; }Ny~.EV5^  
    idx_neg = m<0; IxP$ lx  
    (_q&QI0{  
    QK~>KgVi  
    z = y; @S012} xH  
    if any(idx_pos) Erl@] P4  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); .b%mr:nEt7  
    end bF@iO316H  
    if any(idx_neg) {-IRX)m*  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); B@3>_};Ct  
    end 6Hpj&Qm  
    <RkJ 7Z^  
    `O=LQ m`  
    % EOF zernfun 9/\=6v C|  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  `^afbW  
    $X-,6*  
    DDE还是手动输入的呢? P*(lc:  
    B69NL  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究