下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, gyIPG2d
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, f-PDgs
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? umciP
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? zT@vji%Y
LYT0 XB)A
V'8
(}(s/
Ty>`r n
/dIiFr"e}G
function z = zernfun(n,m,r,theta,nflag) YS9| J=!~
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 5}f$O
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N vjW S35i
% and angular frequency M, evaluated at positions (R,THETA) on the i^yQ;
2-
% unit circle. N is a vector of positive integers (including 0), and }wn GOr
% M is a vector with the same number of elements as N. Each element f_}55?i0
% k of M must be a positive integer, with possible values M(k) = -N(k) |b|p0Z%7{
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, ]C_6I\Z#=W
% and THETA is a vector of angles. R and THETA must have the same l#Iof)@#
% length. The output Z is a matrix with one column for every (N,M) M
C>{I3
% pair, and one row for every (R,THETA) pair. ~Oolm_+{}
% rkVZP!7!
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike tUzuel*
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), r]TeR$NJ
% with delta(m,0) the Kronecker delta, is chosen so that the integral 3=`UX
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 7p{lDQ
% and theta=0 to theta=2*pi) is unity. For the non-normalized [qc90)^Q,
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. >LLFe~9`g
% avdi9!J2
% The Zernike functions are an orthogonal basis on the unit circle. ?=6zgb"9-
% They are used in disciplines such as astronomy, optics, and *<J**FhcMu
% optometry to describe functions on a circular domain. nfd^'}$]
% o +&/ N-t
% The following table lists the first 15 Zernike functions. o|*,<5t
% )x]/b=m
% n m Zernike function Normalization o)w'w34FCT
% -------------------------------------------------- =*t)@bn
% 0 0 1 1 Dp>/lkk.
% 1 1 r * cos(theta) 2 VF;%Z
% 1 -1 r * sin(theta) 2 ee6Zm+.B
% 2 -2 r^2 * cos(2*theta) sqrt(6) nlh%O@,
% 2 0 (2*r^2 - 1) sqrt(3) Bp9
u6R
% 2 2 r^2 * sin(2*theta) sqrt(6) H`kfI"u8
% 3 -3 r^3 * cos(3*theta) sqrt(8) ="MG>4j3.F
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) PM,I?lJ ,
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) [(]uin+9Q
% 3 3 r^3 * sin(3*theta) sqrt(8) Yf|+p65g
% 4 -4 r^4 * cos(4*theta) sqrt(10) y/E%W/3
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) (.Sj"6+
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) Rzw}W7zg[
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) /:l>yKI+~
% 4 4 r^4 * sin(4*theta) sqrt(10) iielAj*b
% -------------------------------------------------- -GQ`n01
% %<P&"[F]v@
% Example 1: g+U6E6}1
% *&!&Y*Jzg
% % Display the Zernike function Z(n=5,m=1) _HGbR/
% x = -1:0.01:1;
K-#v5_*
% [X,Y] = meshgrid(x,x); CPAizS
% [theta,r] = cart2pol(X,Y); 90(JP-
% idx = r<=1; rqSeh/<iD
% z = nan(size(X)); / F9BbG{
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 1ih|b8)Dn
% figure [/\}:#MLe
% pcolor(x,x,z), shading interp <$R'y6U:
% axis square, colorbar |}=xA%)
% title('Zernike function Z_5^1(r,\theta)') ELPzqBI
% wm_xH_{F
% Example 2: kect)=T(
% !np-Jmi
% % Display the first 10 Zernike functions >,7-cm=.
% x = -1:0.01:1; \\xoOA.
% [X,Y] = meshgrid(x,x); ~}+F$&
% [theta,r] = cart2pol(X,Y); VI/77
% idx = r<=1; )$XcO]
% z = nan(size(X)); =HH}E/9z
% n = [0 1 1 2 2 2 3 3 3 3];
~p<w>C9
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; /c6:B5G
% Nplot = [4 10 12 16 18 20 22 24 26 28]; Onz@A"
% y = zernfun(n,m,r(idx),theta(idx)); _ 5nLrn,~
% figure('Units','normalized') E:(DidSE@
% for k = 1:10 K+p7yZJ
% z(idx) = y(:,k); I82GZL
% subplot(4,7,Nplot(k)) plN:QS$
% pcolor(x,x,z), shading interp }fU"s"
% set(gca,'XTick',[],'YTick',[]) e#BxlC
% axis square [3o^06V8j
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) m - ]E|
% end %OE
(?~dq
% Y?IvG&])
% See also ZERNPOL, ZERNFUN2. lsq\CavbM
Ku$:.
+`=rzL"0I7
% Paul Fricker 11/13/2006 4sMA'fG
*5m4j=-
Pg4go10|
|q!O~<H@
!-B$WAV
% Check and prepare the inputs: S+2we
% ----------------------------- 5d|hP4fEc
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) { 0?^ $R8j
error('zernfun:NMvectors','N and M must be vectors.') J@$KF GUs
end As"%
u
<Ukeq0
AO[/-Uij
if length(n)~=length(m) o 4P>t2'
error('zernfun:NMlength','N and M must be the same length.') C@b-)In
end <!;NJLe`
%^pm~ck!
mM(Z8PA9-
n = n(:); ;T hn C>U
m = m(:); vLI'Z)\
if any(mod(n-m,2)) Xnc?oT+
error('zernfun:NMmultiplesof2', ... f0M5^
'All N and M must differ by multiples of 2 (including 0).') BMi5F?Q'G
end !KC4[;Y
Y+)qb);
*jC Hv
if any(m>n) N||a0&&
error('zernfun:MlessthanN', ... jEMnre3/
'Each M must be less than or equal to its corresponding N.') 2,'~'
end OjWg>v\v
uxx(WS
z#HNJAQ#|
if any( r>1 | r<0 ) ,4mb05w;d
error('zernfun:Rlessthan1','All R must be between 0 and 1.') Kt3T~k
end #u"$\[ G
,Jrm85oG
xcE2hK/+
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) <I 0 EjV
error('zernfun:RTHvector','R and THETA must be vectors.') 3;?DKRIcX
end weH;,e*r
k5g vo
UX24*0`\~
r = r(:); 4OOI$J$Jh
theta = theta(:);
#sm@|'Q%
length_r = length(r);
y?'Z'
if length_r~=length(theta) 0d/
f4
error('zernfun:RTHlength', ... AGhr(\j
'The number of R- and THETA-values must be equal.') sW]>#e
end M#}k@
;L3
h^v+d*R
N
tS3!cO\
% Check normalization: eWOZC(I*z
% -------------------- L_5o7~`0
if nargin==5 && ischar(nflag) K!a7Hg
isnorm = strcmpi(nflag,'norm'); `3^%ft~l
if ~isnorm Z{^Pnit
error('zernfun:normalization','Unrecognized normalization flag.') o0kKf+[
end LS/ZZAN u
else Pd+Wb3
isnorm = false; 7V%b!R}
end a\m0X@Q
&[t} /+)
@NYlVk2
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% byHXRA)39
% Compute the Zernike Polynomials 8Xa{.y"
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% F%I*m^7d
I:UN2`*#
, }B{)
% Determine the required powers of r: PNpH)'C|
% ----------------------------------- ~p { fl?
m_abs = abs(m); !JQ'~#jKN
rpowers = []; 'XI-x[w
for j = 1:length(n) <z QUa
rpowers = [rpowers m_abs(j):2:n(j)]; .-:@+=(
end wKE}BO >
rpowers = unique(rpowers); b6^#{))"
Z8:'_#^@a[
;y.<I&
% Pre-compute the values of r raised to the required powers, 42Cc`a%U
% and compile them in a matrix: ,-V7~gM%}
% ----------------------------- Zr|\T7w 3
if rpowers(1)==0 es1'z.U J
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); m^;A]0h+
rpowern = cat(2,rpowern{:}); |?LUt@r;
rpowern = [ones(length_r,1) rpowern]; ]GiDfYs7%
else s;,ulME
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); "|GX%>/
rpowern = cat(2,rpowern{:}); Bg}(Sy
end `aM8L
w1)SuMFK_
b/UjKNf@
% Compute the values of the polynomials: Lu[xoQ~I
% --------------------------------------
w/wU~~
y = zeros(length_r,length(n)); $+n5l@W
for j = 1:length(n) +IM6 GeH
s = 0:(n(j)-m_abs(j))/2; $ItPUYi";
pows = n(j):-2:m_abs(j); q;<Q-jr&O
for k = length(s):-1:1 J1d|L|M
p = (1-2*mod(s(k),2))* ... ?j$*a7[w
prod(2:(n(j)-s(k)))/ ... 89fl\18%
prod(2:s(k))/ ... *cc|(EM
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... nE"0?VNW$
prod(2:((n(j)+m_abs(j))/2-s(k))); W C3b_ia
idx = (pows(k)==rpowers); |dqvv
y(:,j) = y(:,j) + p*rpowern(:,idx); &\Yd)#B/
end x=3+@'
^ =RSoR
if isnorm nEh^{6
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); :snn-e0l
end g&L $5
end "yPKdwP
% END: Compute the Zernike Polynomials 1#jvr_ ga
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% TmdRB8N
B=hJ*;:p
eo'C)j# U
% Compute the Zernike functions: f/e2td*A
% ------------------------------ J.pe&1
idx_pos = m>0; l&m'?.gf
idx_neg = m<0; ?r}!d2:dX
u^uo=/
o/p'eY:)
z = y; et :v4^*f
if any(idx_pos) ^g*/p[
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ;AE%f.Y
end
b6gD*w<
if any(idx_neg) U4,hEnJBT
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); TkV$h(#!f&
end bHH=MLZR:
>jBnNA@
# fl%~Y
% EOF zernfun s*W)BK|+?