下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, Lg_y1Mu7o
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, Lm:O
vVVB
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? r/:s2oQ
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? cd*y{Wt
lb`P9mbr+
sVaWg?=qs'
(!DH'2I[
CG$S?
function z = zernfun(n,m,r,theta,nflag) v?n`kw
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. |PDuvv!.f
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N :a#]"z0
% and angular frequency M, evaluated at positions (R,THETA) on the fZxZ):7i
% unit circle. N is a vector of positive integers (including 0), and *Rr,ii
% M is a vector with the same number of elements as N. Each element 7:{4'Wr@6|
% k of M must be a positive integer, with possible values M(k) = -N(k) } +i
ZY\t
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, aSXoYG0\
% and THETA is a vector of angles. R and THETA must have the same q;tsA"l
% length. The output Z is a matrix with one column for every (N,M) /2Y
Nu*v
% pair, and one row for every (R,THETA) pair. N, ;'oL+
% "p2 $R*ie
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike k$k(g
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), )0fQ(3oOg
% with delta(m,0) the Kronecker delta, is chosen so that the integral k[y{&f,
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, @Mt6O_V
% and theta=0 to theta=2*pi) is unity. For the non-normalized zUIh8cAoE
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. J
Y %B:
% 7b:oz3 ?PI
% The Zernike functions are an orthogonal basis on the unit circle. /o+,
=7hY
% They are used in disciplines such as astronomy, optics, and pk: ruf`)
% optometry to describe functions on a circular domain. >xJt&jW-
% a%*W^R9Ls
% The following table lists the first 15 Zernike functions. @\u)k
% `H+ 7Hj
% n m Zernike function Normalization RyIr_:&-~
% -------------------------------------------------- &