切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9332阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, 3Iua*#<m,  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 5*E]ETo@R  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? M V<^!W  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? 5G::wuxk  
    YT8vP~  
    FFV `P  
    4F)-"ck  
    ZNJ@F<  
    function z = zernfun(n,m,r,theta,nflag) 'r4/e-`pK  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 3) 8QS  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N vBRQp&YwX  
    %   and angular frequency M, evaluated at positions (R,THETA) on the R,gR;Aarw  
    %   unit circle.  N is a vector of positive integers (including 0), and K:!"+q  
    %   M is a vector with the same number of elements as N.  Each element } uO);k5H  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 4S5,w(6N  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, *$yR*}A  
    %   and THETA is a vector of angles.  R and THETA must have the same 1s%#$ 7  
    %   length.  The output Z is a matrix with one column for every (N,M) V}bjK8$$  
    %   pair, and one row for every (R,THETA) pair. w0ht  
    % wr5AG<%(  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ?a8^1:  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), @AG n{q  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral r) HHwh{9  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, i8`Vv7LF  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized lU @]@_<  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. qo p^;~  
    % e]`[yf  
    %   The Zernike functions are an orthogonal basis on the unit circle. d_CKP"TA  
    %   They are used in disciplines such as astronomy, optics, and ?h.wK  
    %   optometry to describe functions on a circular domain. Y -pzy']4  
    % >XK PTC5H  
    %   The following table lists the first 15 Zernike functions.  ;hY S6  
    % Rd2qe /  
    %       n    m    Zernike function           Normalization `Zf^E >)  
    %       -------------------------------------------------- |y&*MTfV4L  
    %       0    0    1                                 1 6""G,"B  
    %       1    1    r * cos(theta)                    2 aIJt0;  
    %       1   -1    r * sin(theta)                    2 hHN'w73z  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) i'4B3  
    %       2    0    (2*r^2 - 1)                    sqrt(3) (}a8"]Z  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) {wO3<9  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) g,}_G3[j0m  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) HIQ _%L4]  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) Qc gRAo+u  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) F5?m6`g?  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) }'""(,2  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) b6}H$Sx~  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) FB  _pw!z  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ' qWALu  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) uZc`jNc\  
    %       -------------------------------------------------- .P;*Dws  
    % v 0 }@  
    %   Example 1: H18Tn!RDS  
    % } E0,z  
    %       % Display the Zernike function Z(n=5,m=1) 74H)|Dkx  
    %       x = -1:0.01:1; "{tg8-a4)  
    %       [X,Y] = meshgrid(x,x); 0*rQ3Z  
    %       [theta,r] = cart2pol(X,Y); [<-  
    %       idx = r<=1; L$9 . 8W  
    %       z = nan(size(X)); qDv93  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); AB F"~=aL  
    %       figure :E_g"_  
    %       pcolor(x,x,z), shading interp s>0't  
    %       axis square, colorbar l ;JA8o\x  
    %       title('Zernike function Z_5^1(r,\theta)') x$IX5:E#e  
    % d{XO/YQw  
    %   Example 2: _9JhL:cY  
    % &{>cZh}\  
    %       % Display the first 10 Zernike functions /e7O$L)   
    %       x = -1:0.01:1; lp<g \  
    %       [X,Y] = meshgrid(x,x); +s,Qmmb7)  
    %       [theta,r] = cart2pol(X,Y); nN*w~f"  
    %       idx = r<=1; ;u;#g  
    %       z = nan(size(X)); f#?fxUH~  
    %       n = [0  1  1  2  2  2  3  3  3  3]; e?opkq\f  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 'XZ) !1N  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; MOsl_^c  
    %       y = zernfun(n,m,r(idx),theta(idx)); BnCbon)  
    %       figure('Units','normalized') ])L A42|  
    %       for k = 1:10 9A} # 6  
    %           z(idx) = y(:,k); F">Qpgt  
    %           subplot(4,7,Nplot(k)) "ul {d(K3  
    %           pcolor(x,x,z), shading interp 2ggdWg7z  
    %           set(gca,'XTick',[],'YTick',[]) IqC]!H0  
    %           axis square 29!q!g|  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) K@#(*."  
    %       end odPL {XFj  
    % Fb^:V4<T  
    %   See also ZERNPOL, ZERNFUN2. 6xWe=QGE  
    Fe]B&n  
    c%&: 6QniZ  
    %   Paul Fricker 11/13/2006 LM}Ib.  
    sA'6ty  
    )+}]+xRWGj  
    T(e!_VY|m  
    c}y [[EX  
    % Check and prepare the inputs: I3,= 0z  
    % ----------------------------- c:-!'l$ !  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) |_`E1Y}}  
        error('zernfun:NMvectors','N and M must be vectors.') i|T)p_y(!a  
    end ]T;EdK-  
    31rx-D8o  
    DTa N"{  
    if length(n)~=length(m) LXEfPLS  
        error('zernfun:NMlength','N and M must be the same length.') 3 |hHR  
    end /[Z,MG  
    3=Cc.a/3  
    Ttxqf:OMf  
    n = n(:); fRtUvC-#H  
    m = m(:); O9EKRt  
    if any(mod(n-m,2)) JcbwDlUb  
        error('zernfun:NMmultiplesof2', ... >S'17D  
              'All N and M must differ by multiples of 2 (including 0).') 5]HS^II"  
    end blTo5NLX  
    \RvvHty-V  
    J.ck~;3  
    if any(m>n) GlbySD@  
        error('zernfun:MlessthanN', ... Q\cjPc0y  
              'Each M must be less than or equal to its corresponding N.') \|E^v6E%0  
    end 4$*%gL;f^  
    $% 1vW=d  
     ))&;}2{  
    if any( r>1 | r<0 ) Hm$=h>rY9[  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') A j2OkD  
    end Xlb0/T<g!  
    xZ4~Oo@@_'  
    &_"]5/"(  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) WHjUR0NZ  
        error('zernfun:RTHvector','R and THETA must be vectors.') M@?xa/E64  
    end \/1<E?Q f  
    }; f#^gz'  
    XLL/4)  
    r = r(:); b@S Cn9  
    theta = theta(:); 3'^k$;^  
    length_r = length(r); \ gLHi~  
    if length_r~=length(theta) -5T=:2M  
        error('zernfun:RTHlength', ... 2Z3('?\z~  
              'The number of R- and THETA-values must be equal.') tI7:5Cm  
    end emdoA:w+   
    P#fM:z@[  
    rMUT_^  
    % Check normalization: co9 .wB@  
    % -------------------- Kt"BE j  
    if nargin==5 && ischar(nflag) GKoK7qH\J  
        isnorm = strcmpi(nflag,'norm'); E;1Jh(58)b  
        if ~isnorm /)dFK~  
            error('zernfun:normalization','Unrecognized normalization flag.') f-5:wM&  
        end mZx&Xez_G  
    else u$-U*r  
        isnorm = false; s 1e:v+B]  
    end %-<'QYYP  
    Clh!gpB c  
    Sr%;fq  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ds&e|VSH;  
    % Compute the Zernike Polynomials '3<fsK=  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Pv<24:ao  
    Ay !G1;  
    cCa|YW^j  
    % Determine the required powers of r: 7^Ns&Q  
    % ----------------------------------- (ZY@$''  
    m_abs = abs(m); ^D<r  
    rpowers = []; 4E+hRKuo,  
    for j = 1:length(n) }J7zTj~{  
        rpowers = [rpowers m_abs(j):2:n(j)]; m+#iR}*1L  
    end zkO<-w  
    rpowers = unique(rpowers); xCYE B}o9r  
    i:Zm*+Gi  
    F35#dIs`&  
    % Pre-compute the values of r raised to the required powers, (sQr X{~  
    % and compile them in a matrix: 'sxNDnGg  
    % ----------------------------- .VkbYK  
    if rpowers(1)==0 >P/][MT  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); jaa"~5TO8  
        rpowern = cat(2,rpowern{:}); Bf$_XG3  
        rpowern = [ones(length_r,1) rpowern]; v*9<c{a  
    else KX}Rr7a  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); P9S2?Q  
        rpowern = cat(2,rpowern{:});  :<Fe  
    end 4WE6fJ2X  
    -CRra EXf8  
    "3<da*D1  
    % Compute the values of the polynomials: &`fhEN  
    % -------------------------------------- i,|0@Vy  
    y = zeros(length_r,length(n)); ~j-cS J3  
    for j = 1:length(n) cetvQAGXY  
        s = 0:(n(j)-m_abs(j))/2; on8WQf'A#  
        pows = n(j):-2:m_abs(j); h(F<h_  
        for k = length(s):-1:1 8@PX7!9  
            p = (1-2*mod(s(k),2))* ... gd0Vp Xf'  
                       prod(2:(n(j)-s(k)))/              ... Q7g>4GZC  
                       prod(2:s(k))/                     ... .S%0   
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ;/0 Q1-  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); ) /v6l  
            idx = (pows(k)==rpowers); }=v)Js  
            y(:,j) = y(:,j) + p*rpowern(:,idx); [2dn\z28  
        end e{KByFl  
         4&HXkRs:  
        if isnorm W,K%c=  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ?]rPRV  
        end l9Q(xuhv  
    end E7Ulnvd  
    % END: Compute the Zernike Polynomials !=y]Sv~h  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% *A~ G_0B  
    0x9x@gF  
    4pln5v=  
    % Compute the Zernike functions: i@][rdhT  
    % ------------------------------ k2xHH$+{#=  
    idx_pos = m>0; jM&r{^(  
    idx_neg = m<0; 2>\v*adG  
    dV Q-k  
    gZEi]/8_  
    z = y; 4Td{;Y="yF  
    if any(idx_pos) ^0#; YOk  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); $46{<4.  
    end ]7Fs$y.  
    if any(idx_neg) !J =sk4T  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); oxj3[</'k  
    end zvvP81$W  
    >I<r)w]  
    up2+ s#  
    % EOF zernfun r|*&GHo L  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  |f2A89  
    Q}2[hB  
    DDE还是手动输入的呢? JbQZ!+  
    mjnUs-`W|  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究