下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, 0]&~ddL
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, &{99Owqg
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? .Gw;]s3
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? $5l 8V
lCDXFy(E
\xwE4K
9 u{#S}c`
0Db#W6*^
function z = zernfun(n,m,r,theta,nflag) Iq MXd K|
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. Ji gc@@B.
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N iphe0QE[#}
% and angular frequency M, evaluated at positions (R,THETA) on the r\Zz=~![<
% unit circle. N is a vector of positive integers (including 0), and >J+hu;I5
% M is a vector with the same number of elements as N. Each element pno]Bld'z
% k of M must be a positive integer, with possible values M(k) = -N(k) 3DbS\jja
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, %R(1^lFI$
% and THETA is a vector of angles. R and THETA must have the same }sZme3*J[
% length. The output Z is a matrix with one column for every (N,M) __OD^?qa
% pair, and one row for every (R,THETA) pair. 7*`cWT_X
% 7YrX3Hx8
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike D3N\$ D
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), gq!|0
% with delta(m,0) the Kronecker delta, is chosen so that the integral /aP4'U8ov
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, crG+BFi
% and theta=0 to theta=2*pi) is unity. For the non-normalized Nw*
>$v
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. B[}#m'Lv
% C[z5&
x2
% The Zernike functions are an orthogonal basis on the unit circle. ]25 x X
% They are used in disciplines such as astronomy, optics, and U:"E:Bxz;m
% optometry to describe functions on a circular domain. NLf6}
% >d%;+2
% The following table lists the first 15 Zernike functions. ;b-Y$<
% 0x*L"HD
% n m Zernike function Normalization 0P_qtS
% -------------------------------------------------- 3!ZndWSHV
% 0 0 1 1 l@Uo4b^4x
% 1 1 r * cos(theta) 2 g)nsP
% 1 -1 r * sin(theta) 2 SjgjGJw
% 2 -2 r^2 * cos(2*theta) sqrt(6) CvS}U%
% 2 0 (2*r^2 - 1) sqrt(3) BxVo>r
% 2 2 r^2 * sin(2*theta) sqrt(6) ju~js
% 3 -3 r^3 * cos(3*theta) sqrt(8) \$Lr L
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) WW\t<O;z
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) >,wm-4&E
% 3 3 r^3 * sin(3*theta) sqrt(8) 4Hc+F(
% 4 -4 r^4 * cos(4*theta) sqrt(10) /{QR:8}-Q
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Z:j6AF3;
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) z)*7LI
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) b\&|030+
% 4 4 r^4 * sin(4*theta) sqrt(10) RsU!mYs:H
% -------------------------------------------------- 9Kf# jZ
% 8K$q6V%#
% Example 1: _\uyS',
% @
W[LA<
% % Display the Zernike function Z(n=5,m=1) G;Jqby8d
% x = -1:0.01:1; HY|=Z\l"
% [X,Y] = meshgrid(x,x); aAJ'0xnj
% [theta,r] = cart2pol(X,Y); SFP%UfM<