下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, uBp"YX9rx
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, Tov !X8p
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? x%HX0= (
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? >.^/Z/[.L
H<bYm]a%
kpFt
}: v&Nc
KneCMFy
function z = zernfun(n,m,r,theta,nflag) ;s
m )f
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. .=rS,Tpo
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N hJ[Z~PC\T0
% and angular frequency M, evaluated at positions (R,THETA) on the 6S*L[zBnA\
% unit circle. N is a vector of positive integers (including 0), and ;#a^M*e
% M is a vector with the same number of elements as N. Each element zi M~V'
% k of M must be a positive integer, with possible values M(k) = -N(k) 62{(i'K
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, 6Ap-J~4
% and THETA is a vector of angles. R and THETA must have the same 8{QN$Qkn
% length. The output Z is a matrix with one column for every (N,M) >S\D+1PV
% pair, and one row for every (R,THETA) pair. k$j4~C'$
% Z_^i2eJYT
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike iK&s_}i:
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), N,N9K
% with delta(m,0) the Kronecker delta, is chosen so that the integral -js:R+C528
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, RlJt+lnV
% and theta=0 to theta=2*pi) is unity. For the non-normalized h$3o]~t
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. f'501MJu
% };{V]f 0
% The Zernike functions are an orthogonal basis on the unit circle. Lh eOGM
% They are used in disciplines such as astronomy, optics, and wQ!C9Gp3e
% optometry to describe functions on a circular domain. <OF2\#Nh
% _`'VOY`o
% The following table lists the first 15 Zernike functions. |^: A,%>
% @ Gxnrh6
% n m Zernike function Normalization Q7u/k$qN
% -------------------------------------------------- 3.[ fTrzJ
% 0 0 1 1 tkQ#mipAj
% 1 1 r * cos(theta) 2 -qv*%O@
% 1 -1 r * sin(theta) 2 vRp#bScc
% 2 -2 r^2 * cos(2*theta) sqrt(6) OUo N
% 2 0 (2*r^2 - 1) sqrt(3) f,S,35`qa
% 2 2 r^2 * sin(2*theta) sqrt(6) U tb"6_
% 3 -3 r^3 * cos(3*theta) sqrt(8) UEkn@^&bg
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) K9\p=H^T7
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) |%p;4b
% 3 3 r^3 * sin(3*theta) sqrt(8) v D"4aw
% 4 -4 r^4 * cos(4*theta) sqrt(10) ~cC=DeX
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Ph{7S43
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) s
@AGU/v
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ANqWY&f
% 4 4 r^4 * sin(4*theta) sqrt(10) b@6hGiqx
% -------------------------------------------------- <]{$XcNm
% K+2sq+3q
% Example 1: #kho[`9
% k
:KN32%
% % Display the Zernike function Z(n=5,m=1) zVeQKN9^Z
% x = -1:0.01:1; :
T` Ni
% [X,Y] = meshgrid(x,x); G)<NzZo
% [theta,r] = cart2pol(X,Y); W8bh49
% idx = r<=1; ?%)G%2
% z = nan(size(X)); H rMH
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 8\V
% figure O$
p
% pcolor(x,x,z), shading interp \L6kCY
% axis square, colorbar ]'
ck!eG
% title('Zernike function Z_5^1(r,\theta)') \&[Jtv *
% #ZzFAt
% Example 2: } vx+/J
% hmijp1u
% % Display the first 10 Zernike functions q$#5>5&
% x = -1:0.01:1; }MW7,F
% [X,Y] = meshgrid(x,x); ->H4!FS
% [theta,r] = cart2pol(X,Y); `1O<UJX
% idx = r<=1; U"SH
fI:
% z = nan(size(X)); roiUVisq*
% n = [0 1 1 2 2 2 3 3 3 3]; ]x;*Z&
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; J #ukH`|-
% Nplot = [4 10 12 16 18 20 22 24 26 28]; r2t|,%%N7
% y = zernfun(n,m,r(idx),theta(idx)); __B`0t
% figure('Units','normalized') p'@|Oq&
% for k = 1:10 Bsr;MVD
% z(idx) = y(:,k); htgtgW9
^P
% subplot(4,7,Nplot(k)) /=y _#l
% pcolor(x,x,z), shading interp u*W6fg/"
% set(gca,'XTick',[],'YTick',[]) pgp@Zw)r)k
% axis square O6
:GE'S
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) QGC%, F"+
% end NZ{)&ObBRt
% V?yTJJ21X
% See also ZERNPOL, ZERNFUN2. &1ZqC;
XWuHH;~*L
E((U=P}+g
% Paul Fricker 11/13/2006 w#-J ?/m
gG?sLgL:
tAi
~i;?
+VE]
.*T
per$%;5E"
% Check and prepare the inputs: g`n5-D@3
% ----------------------------- cN?}s0
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) @Yu=65h
error('zernfun:NMvectors','N and M must be vectors.') fN|'aq*Pd
end neLQ>WT
L
^yl)c
\`
MS>QU@z7c
if length(n)~=length(m) OV.f+_LS
error('zernfun:NMlength','N and M must be the same length.') 1xf
Pe#
end _MmSi4]yd
)iU@P7W=
Z<Rhn
n = n(:); Ra!Br6
m = m(:); [$x&J6jF.
if any(mod(n-m,2)) GW;\3@o
error('zernfun:NMmultiplesof2', ... bE6:pGr
'All N and M must differ by multiples of 2 (including 0).') Y|3n^%I
end Q
1:7 9
mS]&
Szb#:C
if any(m>n) uXm_ pQpF
error('zernfun:MlessthanN', ... A0A]#=S
'Each M must be less than or equal to its corresponding N.') VfFXH,j
end S.! n35
O8mmS!
>Ohh)$
if any( r>1 | r<0 ) 5ltrr(MeD
error('zernfun:Rlessthan1','All R must be between 0 and 1.') |[3%^!f\
end p~evPTHnrX
x^959QO~
h1U8z)D#
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) @5,Xr`]
error('zernfun:RTHvector','R and THETA must be vectors.') 02F\1fXS
end 9sId2py]W
5
A2u|UU
d7U%Q8?wUR
r = r(:); 6!|/(~
theta = theta(:); i^Ip+J+[
length_r = length(r); 6");NHE
if length_r~=length(theta) >OotgJnhC
error('zernfun:RTHlength', ... 2zlBrjk;
'The number of R- and THETA-values must be equal.') sWGc1jC?.F
end A?;KfVq
6|@\\\l
B*AF8wX|
% Check normalization: +#LD@)G
% -------------------- MRb6O!$`C
if nargin==5 && ischar(nflag) "T~ce@
isnorm = strcmpi(nflag,'norm'); M\!z='Fi
if ~isnorm
IPDQ
error('zernfun:normalization','Unrecognized normalization flag.') $%"?0S
end L
Rn)
else 6%\&m|S
isnorm = false; VQ(l=k:}2
end 1R"?X'w
C4.g}q
o'*7I|7a
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% TJ`Jqnh
% Compute the Zernike Polynomials #k/NS
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% .ZVADVg\
D6NgdE7b
'g#EBy
% Determine the required powers of r: 6b7SA,
% ----------------------------------- 2)4oe
m_abs = abs(m); %1UdG6&J_
rpowers = []; +hL%8CVU M
for j = 1:length(n) P7|x=Ew;`
rpowers = [rpowers m_abs(j):2:n(j)]; 5m\T~[`%
end h3BDHz,
rpowers = unique(rpowers); /s|4aro
NzAMX+L
(-bLP
% Pre-compute the values of r raised to the required powers, UtzM+7r@
% and compile them in a matrix: @";zM&
% ----------------------------- aS)Gj?Odf
if rpowers(1)==0 -8pQI
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ;%V)lP "o
rpowern = cat(2,rpowern{:}); rL3 f%L
rpowern = [ones(length_r,1) rpowern]; ]`H8r y2
else \ Q E?.Fx
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); t{g7 :A
rpowern = cat(2,rpowern{:}); SMIr@*R
end k=``Avp?
L>>Cx`ASi
wu`P=-
% Compute the values of the polynomials: oJln"-M1nx
% -------------------------------------- -j"]1JLQ
y = zeros(length_r,length(n)); G Z~W#*|V
for j = 1:length(n) d7i 0'R
s = 0:(n(j)-m_abs(j))/2; 6ntduXeNVh
pows = n(j):-2:m_abs(j); rhQv,F9
for k = length(s):-1:1 IWs)n1D*]
p = (1-2*mod(s(k),2))* ... sUTfY|<7|
prod(2:(n(j)-s(k)))/ ... E(/M?>t-
prod(2:s(k))/ ... @p$$BUb
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Kq4b`cn{_
prod(2:((n(j)+m_abs(j))/2-s(k))); Api<q2@R
idx = (pows(k)==rpowers); rJws#^]
y(:,j) = y(:,j) + p*rpowern(:,idx); s!eB8lkcT
end \`N<0COP
R8n/QCeY{
if isnorm FAbl5VW'
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); PZE{-TM?W
end `p\@b~GM
end w\(;>e@
% END: Compute the Zernike Polynomials S*9qpes-m|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Kjfpq!NYE
ReZ&SNJ
V0)F/qY
% Compute the Zernike functions:
r]lPXj(`
% ------------------------------ WB(Gx_o3
idx_pos = m>0; 2/4,iu(T`c
idx_neg = m<0; #dEMjD
ML-?#jNa<
CF0i72ul5
z = y; +u|p<z
if any(idx_pos) =lG/A[66
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); c2fqueK|:W
end *Iir/6myM
if any(idx_neg) 6E0{(*
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ,bnrVa(I
end %K7wScz7
JVawWw0q
,'c?^ $J|z
% EOF zernfun ed:[^#Lj