切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9397阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, cqXP}5  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, m}`!FaB #  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? D6z*J?3^#&  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? *{TB<^ *  
    dK.k,7R  
    }*Z *wC  
    z"D'rHxy  
    s&.VU|=VQ@  
    function z = zernfun(n,m,r,theta,nflag) !I)wI~XF)5  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. %OT} r  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N u]`ur#_  
    %   and angular frequency M, evaluated at positions (R,THETA) on the *M^(A}+O  
    %   unit circle.  N is a vector of positive integers (including 0), and L JW0UF|  
    %   M is a vector with the same number of elements as N.  Each element C[c^zn  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) O> .gcLA  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, >/J!:Htk+K  
    %   and THETA is a vector of angles.  R and THETA must have the same hsCts@R  
    %   length.  The output Z is a matrix with one column for every (N,M) _98 %?0  
    %   pair, and one row for every (R,THETA) pair. MVDEVq0  
    % 5-[bdI  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike aI^Z0[P+  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), U]Pl` =SL  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral o!$O+%4  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 7gxC xfL$  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 9lU"m_ QT4  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. $-4 Zi  
    % <36z,[,kZ@  
    %   The Zernike functions are an orthogonal basis on the unit circle. w%'8bH!  
    %   They are used in disciplines such as astronomy, optics, and 6O@/Y;5i  
    %   optometry to describe functions on a circular domain. "Qci+Qq  
    % lX)ZQY:=:  
    %   The following table lists the first 15 Zernike functions. ZkA05wPZ#  
    % nGoQwKIW  
    %       n    m    Zernike function           Normalization md S`nhb  
    %       -------------------------------------------------- Thc"QIk&4  
    %       0    0    1                                 1 )\3 RR.p  
    %       1    1    r * cos(theta)                    2 .=`r?#0  
    %       1   -1    r * sin(theta)                    2 f?Am)  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) qi51'@  
    %       2    0    (2*r^2 - 1)                    sqrt(3) dsrKHi  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) _]aA58,j  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) =wcqCW,]  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) P&kjtl68 Y  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) N0mP EF2  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) *h9S\Pv>j  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 9$Dsm@tX  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 42B_8SK  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) rfH'&k  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) g#}a?kTM@  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) kklM"Av  
    %       -------------------------------------------------- q'9}Hz  
    % N"k IQe*}1  
    %   Example 1: V7}3H2]^  
    % XLq%nVBM8\  
    %       % Display the Zernike function Z(n=5,m=1) t^')ST  
    %       x = -1:0.01:1; 99/`23YL  
    %       [X,Y] = meshgrid(x,x); rY:A LA  
    %       [theta,r] = cart2pol(X,Y); ,GVD.whUl  
    %       idx = r<=1; n 97pxD_74  
    %       z = nan(size(X)); %4#Q3YlyD  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 5JvrQGvL  
    %       figure &i{>Li  
    %       pcolor(x,x,z), shading interp |,)=-21&;  
    %       axis square, colorbar =" Sb>_  
    %       title('Zernike function Z_5^1(r,\theta)') |G(9mnZ1  
    % I[g;p8jr  
    %   Example 2: vw5f|Q92  
    % NW%u#MZ[h  
    %       % Display the first 10 Zernike functions Nk ~"f5q7  
    %       x = -1:0.01:1; V'Z Z4og  
    %       [X,Y] = meshgrid(x,x); _VM()n;  
    %       [theta,r] = cart2pol(X,Y); bd & /B&a  
    %       idx = r<=1; L0QF(:F5  
    %       z = nan(size(X));  G9qN1q~  
    %       n = [0  1  1  2  2  2  3  3  3  3]; <n|ayxA)  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; W3~xjS"h  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; ;D>*Pzj  
    %       y = zernfun(n,m,r(idx),theta(idx)); TDY2 M  
    %       figure('Units','normalized') G\4*6iw:  
    %       for k = 1:10 y7Sey;  
    %           z(idx) = y(:,k); :d{-"RAG"  
    %           subplot(4,7,Nplot(k)) lXnzomU  
    %           pcolor(x,x,z), shading interp m2esVvP  
    %           set(gca,'XTick',[],'YTick',[]) c8<qn+=%?  
    %           axis square xa&5o`>1G  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 7}%Z>  
    %       end 1RM@~I$0  
    % M[1!#Q><!  
    %   See also ZERNPOL, ZERNFUN2. Hsl0|jy(/  
    H5J1j*P<d  
    =Ul{#R z  
    %   Paul Fricker 11/13/2006 lk/[xQ/  
    tA{B~>  
    eWw# T^  
    MUjfqxTT  
    HCIS4}lQ  
    % Check and prepare the inputs: Nfo`Q0\[P  
    % ----------------------------- yR'%UpaE  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) [,?5}'we  
        error('zernfun:NMvectors','N and M must be vectors.') Spm7kw  
    end E#A%aLp0E  
    ?#]wx H,  
    U9/6F8D1Y1  
    if length(n)~=length(m) 7AouiL 2-W  
        error('zernfun:NMlength','N and M must be the same length.') NG\g_^.M  
    end c80!Ub@  
    o >Faq+@  
    F!*tE&Se+  
    n = n(:); l1#F1q`^t  
    m = m(:); K Ml>~r  
    if any(mod(n-m,2)) Bh0hUE  
        error('zernfun:NMmultiplesof2', ... 3<A$lG  
              'All N and M must differ by multiples of 2 (including 0).') &cuDGo.  
    end 5!V%0EQqw  
    FofeQ  
    nd3n'b  
    if any(m>n) Uz$.sa  
        error('zernfun:MlessthanN', ... /OtLIM+7~{  
              'Each M must be less than or equal to its corresponding N.') efUa[XO  
    end K}a3Bj,  
    LAjreC<W  
    l)K8.(2  
    if any( r>1 | r<0 ) Z#znA4;)  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') Zog&:]P'F  
    end K|V<e[X[V  
    `E:&a]ul  
    J *nWCL  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) {[:]}m(c  
        error('zernfun:RTHvector','R and THETA must be vectors.') Sece#K2J|  
    end dW#T1mB  
    %k =c9ll@:  
    W\1V`\gF  
    r = r(:); ^=@`U_(,G  
    theta = theta(:); 1a@b-V2 d&  
    length_r = length(r); oUNuM%g9Dy  
    if length_r~=length(theta) <; P40jDL  
        error('zernfun:RTHlength', ... ]}z"H@k  
              'The number of R- and THETA-values must be equal.') ,qu7XFYrY  
    end e754g(|>b  
    &OXm^f)K  
    F!qt=)V@w  
    % Check normalization: ^SvGSx i  
    % -------------------- g|=1U  
    if nargin==5 && ischar(nflag) IlfH  
        isnorm = strcmpi(nflag,'norm'); h,@tfd U^  
        if ~isnorm \ Dccf_(Pb  
            error('zernfun:normalization','Unrecognized normalization flag.') a1 v%G  
        end 5Ei4$T  
    else @O9wit.  
        isnorm = false; }/J<#}t  
    end YS0^ !7u  
    PUbfQg  
    {'NXJ!I;t  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% )uRR!<"~  
    % Compute the Zernike Polynomials mPJ@hr%3  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% lEXI<b'2  
    K)N'~jCG  
    B1 Y   
    % Determine the required powers of r: Ev ]oPCeA  
    % ----------------------------------- BG^)?_69  
    m_abs = abs(m); /C6$B)w_*{  
    rpowers = []; 6(8zt"E  
    for j = 1:length(n) {&uN q^Ch  
        rpowers = [rpowers m_abs(j):2:n(j)]; D $&6 8  
    end p>h}k_s  
    rpowers = unique(rpowers); r8,'LZIz  
    7Sl"q=>  
    z`:tl7  
    % Pre-compute the values of r raised to the required powers, 5gKXe4}\/|  
    % and compile them in a matrix: 3DOc,}nI~@  
    % ----------------------------- * 3#RS  
    if rpowers(1)==0 uFnq3m^u  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); bPA1>p7  
        rpowern = cat(2,rpowern{:}); @pN6uDD}R  
        rpowern = [ones(length_r,1) rpowern]; WXFC e@  
    else :V~ AjV  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); yi:1cLq2  
        rpowern = cat(2,rpowern{:}); t*wV<b  
    end OLE@35"v]  
    ge|Cv v  
    CF]#0*MI  
    % Compute the values of the polynomials: vl>_;} W7  
    % -------------------------------------- Fd/Ra]@\Y  
    y = zeros(length_r,length(n)); lS |:4U.  
    for j = 1:length(n) iD) P6"  
        s = 0:(n(j)-m_abs(j))/2; qk=OodEMK  
        pows = n(j):-2:m_abs(j); TXbnK"XQ  
        for k = length(s):-1:1 6F; |x  
            p = (1-2*mod(s(k),2))* ... aC#{@t  
                       prod(2:(n(j)-s(k)))/              ... 9E2OCLWrE  
                       prod(2:s(k))/                     ... i?n#ge  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ZN}U^9m=  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); paZcTC  
            idx = (pows(k)==rpowers); !laOiH  
            y(:,j) = y(:,j) + p*rpowern(:,idx); ?6_U>d{  
        end FF~VV<a  
         ,+!|~1  
        if isnorm I>:.fHvUC  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); :Fdk`aC  
        end  rqEP!S^  
    end 4?Qc&e{5  
    % END: Compute the Zernike Polynomials S4D~`"4 $/  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ;"]?&ri  
    kk ZMoK  
    !yu-MpeG  
    % Compute the Zernike functions: C A$R  
    % ------------------------------ )TOKHN  
    idx_pos = m>0; \9k{h08s  
    idx_neg = m<0; uO4R5F|tL  
    ~' q&rvk`  
    k(dNHT  
    z = y; @] 3`S  
    if any(idx_pos) lB(P+yY,/'  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ^3ysY24Q  
    end `! _mIh}  
    if any(idx_neg) A?H.EZ  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); r?}L^bK  
    end wj9 Hh  
    UQ~gjnb[c  
    $O,IXA  
    % EOF zernfun seA=7c5E  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  ;8> TD&]{  
    ,-_\Y hY>  
    DDE还是手动输入的呢? h-=lZ~W~  
    I9E]zoj8  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究