下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, =}0>S3a.7
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, Pvkr$ou
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? ='eQh\T)
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? 9ys[xOh
WM
UG}"OBg/
1?p:66WmR
v%c--cO(S4
W7V#G(cpU
function z = zernfun(n,m,r,theta,nflag) R^I4_ZA
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. P)=$0kR3
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N IU}g[OCu
% and angular frequency M, evaluated at positions (R,THETA) on the "\afIYS I
% unit circle. N is a vector of positive integers (including 0), and G\f:H%[5[
% M is a vector with the same number of elements as N. Each element S^e e<%-
% k of M must be a positive integer, with possible values M(k) = -N(k) .0y .0=l
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, :Ot5W
% and THETA is a vector of angles. R and THETA must have the same H0lAu]~R_W
% length. The output Z is a matrix with one column for every (N,M) N':d
T
% pair, and one row for every (R,THETA) pair. ?y* yl
% &eg@ZnPn
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike jvE&%|Ngw
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), .a]av
% with delta(m,0) the Kronecker delta, is chosen so that the integral 8`b_,(\ N
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ;ahI}}
% and theta=0 to theta=2*pi) is unity. For the non-normalized $>l65)(E\
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ve/|"RB
% &ujq6~#
% The Zernike functions are an orthogonal basis on the unit circle. 60p*4>^v
% They are used in disciplines such as astronomy, optics, and 98l-
% optometry to describe functions on a circular domain. LCpS}L;
% XlxB%
% The following table lists the first 15 Zernike functions. r$d'[ZcX
% RjR
% n m Zernike function Normalization ;&RHc#1F
% -------------------------------------------------- |Tl2r,(+R
% 0 0 1 1 _vE[TFy
% 1 1 r * cos(theta) 2 %i9*2{e#~
% 1 -1 r * sin(theta) 2 1,G f;mcQ
% 2 -2 r^2 * cos(2*theta) sqrt(6) UbwD2>
% 2 0 (2*r^2 - 1) sqrt(3) oJ}$ /_
% 2 2 r^2 * sin(2*theta) sqrt(6) /{X2:g {
% 3 -3 r^3 * cos(3*theta) sqrt(8) r?n3v[B
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) uchz<z1
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) ? m.Ry
% 3 3 r^3 * sin(3*theta) sqrt(8) ,#=;V"~9
% 4 -4 r^4 * cos(4*theta) sqrt(10) -f[95Z3}
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) #>\8m+h 9
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) bcprhb
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) |S VL%agZ
% 4 4 r^4 * sin(4*theta) sqrt(10) :j#Fq
d[DF
% -------------------------------------------------- <NX6m|DD
% e~BUAz
% Example 1: %MUwd@,
% ji|tc9#6
% % Display the Zernike function Z(n=5,m=1) 3HmJixy
% x = -1:0.01:1; }#f~"-O
% [X,Y] = meshgrid(x,x); .3T#:Hl
% [theta,r] = cart2pol(X,Y); GCA?sFwo>
% idx = r<=1; j%s:d(H`
% z = nan(size(X)); };;6706a
% z(idx) = zernfun(5,1,r(idx),theta(idx)); A@ lY{e
% figure ?qjlWCV|e
% pcolor(x,x,z), shading interp W[tX%B
% axis square, colorbar l+8G6?@]>
% title('Zernike function Z_5^1(r,\theta)') , 8F(R%v
% `~3y[j]kO
% Example 2: 7~Md6.FtM
% >NN&j#;x~
% % Display the first 10 Zernike functions |nj,]pA
% x = -1:0.01:1; )[hQK_e]
% [X,Y] = meshgrid(x,x); R~DZY{u+/$
% [theta,r] = cart2pol(X,Y); VM[Vhk[
% idx = r<=1; w[wrZ:[
% z = nan(size(X)); n$y)F} .-
% n = [0 1 1 2 2 2 3 3 3 3]; =XT}&D6
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; ueazAsk3g
% Nplot = [4 10 12 16 18 20 22 24 26 28]; <jvSV5%
% y = zernfun(n,m,r(idx),theta(idx)); 07L1 "
% figure('Units','normalized') >w"k:O17
% for k = 1:10 9nPc>O$
% z(idx) = y(:,k); 2oFHP_HVfu
% subplot(4,7,Nplot(k)) /?j
vv&
% pcolor(x,x,z), shading interp =9JKg4I6
% set(gca,'XTick',[],'YTick',[]) <);Nc1
% axis square UjU*`}k3
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Pb^Mc <j
% end #2023Zo]
% 9n${M:F
% See also ZERNPOL, ZERNFUN2. xui.63/
)tyhf(p6
ESl</"<J
% Paul Fricker 11/13/2006 )!&7X L[
tb-:9*2j-
Yw\PmRL"p
}vbs6u
_# /zH~V%
% Check and prepare the inputs: @dzO{)
% ----------------------------- ZsPT!l,
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 4j'cXxo
error('zernfun:NMvectors','N and M must be vectors.') MZX-<p+
end Z'vGX,:
_8CE|<Cn
F#w=z/
if length(n)~=length(m) |h; _r&
error('zernfun:NMlength','N and M must be the same length.') Ol~jq;75
end OA_Bz"
CN$wlhs
*L3>:],7
n = n(:); n~g,qEI;<x
m = m(:); l25E!E-'b
if any(mod(n-m,2)) Qf|=xV,F
error('zernfun:NMmultiplesof2', ... ;9r `P_r
'All N and M must differ by multiples of 2 (including 0).') 7aJLC!
end W~J>Srt
<4{,u1!t
L)cy&"L|
if any(m>n) xi.L?"^/!
error('zernfun:MlessthanN', ... MW^,l=kqW)
'Each M must be less than or equal to its corresponding N.') SG{> t*E
end #mNM5(o
,[lS)`G
(CRY$+d
if any( r>1 | r<0 ) Q}a 1P8?S
error('zernfun:Rlessthan1','All R must be between 0 and 1.') n\#RI9#\
end yu'2
Jbud_.h9
?X1vU0c
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) @"9^U_Qf1z
error('zernfun:RTHvector','R and THETA must be vectors.') 9nFPGIz+
end xbFoXYqgP
][|)qQ%V
Cw<bu|?
r = r(:); SEn-8ZF
theta = theta(:); CF`tNA3fxm
length_r = length(r); /Ot=GhN]
if length_r~=length(theta) I-E}D"F;p[
error('zernfun:RTHlength', ... }vRs n-E@
'The number of R- and THETA-values must be equal.') _y q"F#,*
end ?-
5{XrNm
sD,[,6(
Ng?n}$g*
% Check normalization: E-NuCP%|c
% -------------------- ;O*y$|+PA
if nargin==5 && ischar(nflag) %t&5o>1C
isnorm = strcmpi(nflag,'norm'); 7u"t4Or
if ~isnorm uFM]4v3
error('zernfun:normalization','Unrecognized normalization flag.') :*aBiX"
end OTA @4~{C
else KJ]:0'T
isnorm = false; bJJB*$jW=
end
&D
"$N"
[-)N}rL>
Ctpr.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Ux~rBv''
% Compute the Zernike Polynomials c7mIwMhl~
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 2f8fA'|O
}yup`R
zPp?D_t
% Determine the required powers of r: ?lJm}0>
% ----------------------------------- #/NZ0IbHk
m_abs = abs(m); lE~5 b
rpowers = []; w /$4
Rv+S
for j = 1:length(n) \$Xo5f<
rpowers = [rpowers m_abs(j):2:n(j)]; cD&53FPXC
end 'u }|~u?m
rpowers = unique(rpowers); >=|Dir
G992{B
\IL/?J
5d
% Pre-compute the values of r raised to the required powers, xEN""*Q
% and compile them in a matrix: qJ=4HlLno
% ----------------------------- _T6l*D
if rpowers(1)==0 C%ibIcm y
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); A)/
8FYc
rpowern = cat(2,rpowern{:}); CeD O:J=,
rpowern = [ones(length_r,1) rpowern]; ,E{z+:Es
else '!*,JG5_
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); =B9Ama
rpowern = cat(2,rpowern{:}); 0?} ),8v>
end V @A+d[
T/DKT1P-
rPoPs@CBD
% Compute the values of the polynomials: l+BJh1^
% -------------------------------------- iUl5yq
y = zeros(length_r,length(n)); 8RJXY:%
for j = 1:length(n) 0|g|k7c{rF
s = 0:(n(j)-m_abs(j))/2; -1Acprr
pows = n(j):-2:m_abs(j); w%jc' ;|
for k = length(s):-1:1 @= f2\hU
p = (1-2*mod(s(k),2))* ... t#tAvwFM8
prod(2:(n(j)-s(k)))/ ... M>+FIb(
prod(2:s(k))/ ... Az.(tJ X"
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... (|DmYn!
prod(2:((n(j)+m_abs(j))/2-s(k))); 0e1W&
idx = (pows(k)==rpowers); .LDK+c
y(:,j) = y(:,j) + p*rpowern(:,idx); ]J;pUH+u
end ">vxYi
0|<ER3xkx
if isnorm p=m) lR9
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); w5 nzS)B:u
end gBQK
end %~ uMa
% END: Compute the Zernike Polynomials XXsN)2
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +]^6&MqO
KI~BjP\e
T =r7FU
% Compute the Zernike functions: %a%x`S3
% ------------------------------ UxI0Of&:
idx_pos = m>0; fZU#%b6G
idx_neg = m<0; l:v:f@M&
t(69gF\"
%[(DFutJY+
z = y; #L[-WC]1y
if any(idx_pos) ?0_Bs4O\
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 7'pCFeA>=T
end N1rBpt
if any(idx_neg) Fy!uxT-\
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); qMT7g LB'1
end tFLdBv!=:^
7Io]2)V
16"eyt>
% EOF zernfun / sI0{