下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, Wkg*J3O
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, |{7e#ww]
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? Q\o$**+{
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? u>,lf\Fgz
g,n-s+
om".j
DOF?(:8Y
[j:}=:feQ
function z = zernfun(n,m,r,theta,nflag) VMxYZkMNd_
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. ){O1&|z-
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N i!SW?\
% and angular frequency M, evaluated at positions (R,THETA) on the FylWbQU9
% unit circle. N is a vector of positive integers (including 0), and I;kf
#nvao
% M is a vector with the same number of elements as N. Each element pAJ=f}",]E
% k of M must be a positive integer, with possible values M(k) = -N(k) M>?aa6@0
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, k_*XJ <S!Y
% and THETA is a vector of angles. R and THETA must have the same ~:/%/-^
% length. The output Z is a matrix with one column for every (N,M) ilDJwZg#
% pair, and one row for every (R,THETA) pair. ->&BcPLn
% Xzx[C_G
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Yl)eh(\&J
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), TnN^2:cU
% with delta(m,0) the Kronecker delta, is chosen so that the integral (j8GiJ]{L,
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Ud>`@2
% and theta=0 to theta=2*pi) is unity. For the non-normalized (MgL"8TS
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. tk`: CT
*
% F-$Z,Q]S
% The Zernike functions are an orthogonal basis on the unit circle. xZ^ywa_
% They are used in disciplines such as astronomy, optics, and ?vZWUWa
% optometry to describe functions on a circular domain. 7XUhJN3n
% V~'k1P4
% The following table lists the first 15 Zernike functions. -d|BO[4j
% ?-pxte8
% n m Zernike function Normalization 9"WRI Ht'c
% -------------------------------------------------- a);O3N/*I
% 0 0 1 1 "t5
+*
% 1 1 r * cos(theta) 2 ]{K5zSK
% 1 -1 r * sin(theta) 2 (g%JK3
% 2 -2 r^2 * cos(2*theta) sqrt(6) 8s QQK.N(
% 2 0 (2*r^2 - 1) sqrt(3) ltNuLZ
% 2 2 r^2 * sin(2*theta) sqrt(6) McT\ R{/
% 3 -3 r^3 * cos(3*theta) sqrt(8) Rz`@N`U
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) J*}VV9H
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) v$t{o{3
% 3 3 r^3 * sin(3*theta) sqrt(8) m3U+ du
% 4 -4 r^4 * cos(4*theta) sqrt(10) Xy[}G p
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ?D1x;i9<
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) `[X6#`<
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) c *.G]nRc
% 4 4 r^4 * sin(4*theta) sqrt(10) SW3wMPy&s
% -------------------------------------------------- &[NVP&9&U
% /t$rX3A
% Example 1: P-[fHCg~
% L&:M8xiA~$
% % Display the Zernike function Z(n=5,m=1) &|/vM.
% x = -1:0.01:1; !c\7
% [X,Y] = meshgrid(x,x); &@=u+)^-{
% [theta,r] = cart2pol(X,Y); PASuf.U$"
% idx = r<=1; ?O!]8k`1$
% z = nan(size(X)); W=~id"XtJ
% z(idx) = zernfun(5,1,r(idx),theta(idx)); L5R `w&Up
% figure K1;zMh
% pcolor(x,x,z), shading interp La\Q'0
% axis square, colorbar Mx^y>\X)v
% title('Zernike function Z_5^1(r,\theta)') vkd *ER^
% Er`TryN|}
% Example 2: XQK^$Iq]V
% $X`bm*
% % Display the first 10 Zernike functions _i-\mR_~
% x = -1:0.01:1; 1W*V2`0>
% [X,Y] = meshgrid(x,x); Z/xV\Ggx
% [theta,r] = cart2pol(X,Y); w-J"zC
% idx = r<=1; a4%`"
% z = nan(size(X)); 5RW@_%C
% n = [0 1 1 2 2 2 3 3 3 3]; ex.+'m<g
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; -y%QRO(
% Nplot = [4 10 12 16 18 20 22 24 26 28]; v,n);
% y = zernfun(n,m,r(idx),theta(idx)); }|AX_=a
% figure('Units','normalized') 6e*%\2UA
% for k = 1:10 %=y;L:S\p
% z(idx) = y(:,k); (viWY
% subplot(4,7,Nplot(k)) {!lNL[x
% pcolor(x,x,z), shading interp dFzYOG1
% set(gca,'XTick',[],'YTick',[]) !zU/Hq{wcK
% axis square HHZ`%
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) b~1iPaIh
% end %z30=?VL
% u',b1 3g(
% See also ZERNPOL, ZERNFUN2. %yeu"
\e_IFISC
@]*[c})/
% Paul Fricker 11/13/2006 1bd$XnU
kPW BDpzN
$Tfm/ =e
Qy/uB$q{A
L,#^&9bHa#
% Check and prepare the inputs: YDW|-HIF
% ----------------------------- NJk)z&M
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ;r3}g"D@
error('zernfun:NMvectors','N and M must be vectors.') (9E( Q*J5x
end lHcA j{6
>$Fp}?xX
f#1/}Hq/I
if length(n)~=length(m) [8.-(-/;
error('zernfun:NMlength','N and M must be the same length.') V- /YNRV
end XJc
,uj7
,}KwP*:Z
5lGQ#r
n = n(:); <Kg2$lu(_`
m = m(:); >}CEN
if any(mod(n-m,2)) >[EBpYi
error('zernfun:NMmultiplesof2', ... Cpe#[mE
'All N and M must differ by multiples of 2 (including 0).') W8y$Ve8m
end @'
d6iYk_
7H4L-J3
+^Fp&K+^
if any(m>n) 7N|
AA^I
error('zernfun:MlessthanN', ... &Bm&i.r
'Each M must be less than or equal to its corresponding N.') -;vT<G3
end YKY2Cw
mf$Sa58
Oo1ecbY
if any( r>1 | r<0 ) g>_OuQ|c
error('zernfun:Rlessthan1','All R must be between 0 and 1.') P<vo;96JT
end ;I+H>$%jZ
0iV;g`%
\X5 3|Y;=
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 3-iD.IAUm@
error('zernfun:RTHvector','R and THETA must be vectors.') !j0_
cA
end TU%bOAKF\
(vnoP< 0
#~S>K3(
r = r(:); =HS4I.@c_5
theta = theta(:); \ADLMj`F|
length_r = length(r); T{tn.sT
if length_r~=length(theta) Q(e{~
]*
error('zernfun:RTHlength', ... eIJ[0c b}
'The number of R- and THETA-values must be equal.') ioWo ]
end ^&NN]?
$it@>L8
^&MK42,\
% Check normalization: *7Xzht&f
% -------------------- xG1?F_]
if nargin==5 && ischar(nflag) o0l74
isnorm = strcmpi(nflag,'norm'); o<rsAe
if ~isnorm n[P\*S
error('zernfun:normalization','Unrecognized normalization flag.') Im+7<3Z
end j`9Qzi1
else 7h`^N5H.q
isnorm = false; P$OUi!"
end m]P/if7
eF5;[v
_C$X04bU3V
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /tZ0
|B(
% Compute the Zernike Polynomials 8#l+{`$z
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 7]Rk+q2:
N2Ssf$
'fn$'CeM(
% Determine the required powers of r: zSXA=
% ----------------------------------- iZ "y7s
m_abs = abs(m); }LQC.!
rpowers = []; Cfv]VQQE
for j = 1:length(n) |vz9Hs$@l
rpowers = [rpowers m_abs(j):2:n(j)]; AG>\aV"b
end X}W)3v
rpowers = unique(rpowers); O:YJ%;w
R5kH0{zM
)i-gs4[(QN
% Pre-compute the values of r raised to the required powers, (:7a&2/M
% and compile them in a matrix: :j,}{)5=
% ----------------------------- 9yL6W'B!
if rpowers(1)==0 >
c:Zx!
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); RG}}Oh="v
rpowern = cat(2,rpowern{:}); D5L{T+}Oi%
rpowern = [ones(length_r,1) rpowern]; b 4OnZ;FI
else N}mh}
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); esI'"hVJ
rpowern = cat(2,rpowern{:}); ,Xtj;@~-
end AY88h$a
cz(G]{N
6 64q~_@B1
% Compute the values of the polynomials: X~L!e}Rz
% -------------------------------------- ) EXJ
y = zeros(length_r,length(n)); `0@z"D5c
for j = 1:length(n) q3+8]-9|5
s = 0:(n(j)-m_abs(j))/2;
KGT3|)QN
pows = n(j):-2:m_abs(j); q.T:0|
for k = length(s):-1:1 th
2<o5
p = (1-2*mod(s(k),2))* ... x0<^<D &Q
prod(2:(n(j)-s(k)))/ ... X 8R1a?
prod(2:s(k))/ ... ;;Tq$#vd
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 1-o V-K
prod(2:((n(j)+m_abs(j))/2-s(k))); 0Oap39
idx = (pows(k)==rpowers); 1EsqQz*$u
y(:,j) = y(:,j) + p*rpowern(:,idx); n&d/?aJ7a\
end /b%Q[
Ck_
$[z<oN_Q
if isnorm YgimJsm
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); :1_mfX
end (Ilsk{aB;A
end vpLMhf`
% END: Compute the Zernike Polynomials doLNz4W
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% "DpKrVuG
nzuF]vo
#PFO]j!_b
% Compute the Zernike functions: MLS;SCl
% ------------------------------ AC4 l<:Yh
idx_pos = m>0; 0( //D;j
idx_neg = m<0; U^ ?=
0+
(U9a@1
3U;1D2"AE
z = y; e U;jP]FA
if any(idx_pos) Y/lN@
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); RxG^
end P%)b+H{$h
if any(idx_neg) <L&eh&4c
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); hW'
HT
end i0ybJOa4
c<jB6|.=2
SFpQ#
% EOF zernfun GV6mzD@<