下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, k9'`<82Y
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, C
`>1x`n
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? 3=)!9;uY
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? BnB]]<gO"
>7fNxQ
5*n3*rbU:
]W7e2:Hra
{e1akg.
function z = zernfun(n,m,r,theta,nflag) AwC"c '
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. {FrcpcrQa
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N DO^K8~]
% and angular frequency M, evaluated at positions (R,THETA) on the LRuB&4r8
% unit circle. N is a vector of positive integers (including 0), and y|e@z f
% M is a vector with the same number of elements as N. Each element {cW%i:
% k of M must be a positive integer, with possible values M(k) = -N(k) Kb/w+J
S
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, L
PDx3MS
% and THETA is a vector of angles. R and THETA must have the same zj+.MG04
% length. The output Z is a matrix with one column for every (N,M) 15 /lX
% pair, and one row for every (R,THETA) pair. c^?+"7oO0
% Zdm7As]
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ?Tr]zxtd
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 74c[m}'S
% with delta(m,0) the Kronecker delta, is chosen so that the integral S
6|#9C&
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, IGtpL[. ;/
% and theta=0 to theta=2*pi) is unity. For the non-normalized _@gd9Fi7J
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. B F,8[|%#
% 3T|xUY)G4
% The Zernike functions are an orthogonal basis on the unit circle. *Bse3%-v
% They are used in disciplines such as astronomy, optics, and "s!|8F6$
% optometry to describe functions on a circular domain. zo^34wW^
% 4|]0%H~n6
% The following table lists the first 15 Zernike functions. -!C9x?gNY
% k v>rv37u
% n m Zernike function Normalization KcK,%!>B
% -------------------------------------------------- Y]33:c_;Mo
% 0 0 1 1 X>$s>})Y
% 1 1 r * cos(theta) 2 >p[skN
% 1 -1 r * sin(theta) 2 z
:q9~
% 2 -2 r^2 * cos(2*theta) sqrt(6) +'@j~\>^yJ
% 2 0 (2*r^2 - 1) sqrt(3) k-zkb2
% 2 2 r^2 * sin(2*theta) sqrt(6) ]'[(MH"
% 3 -3 r^3 * cos(3*theta) sqrt(8) CH ojF+e
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 7SyysH<H
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) NhgzU+)+
% 3 3 r^3 * sin(3*theta) sqrt(8) :|V`QM
% 4 -4 r^4 * cos(4*theta) sqrt(10) t
5{Y'
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) hYI0S7{G
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) 0|^/ e-^
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) #3h~Z)+y
% 4 4 r^4 * sin(4*theta) sqrt(10) ?}tWI7KI
% -------------------------------------------------- eBs4:R_i
% a*g7uaoP
% Example 1: ^s;xLGl]
% e-`=?tct
% % Display the Zernike function Z(n=5,m=1) _>LI[yf{
% x = -1:0.01:1; 'WC>
_L
% [X,Y] = meshgrid(x,x); #j?SdQ
% [theta,r] = cart2pol(X,Y); ;GjZvo
% idx = r<=1; jMP!/t
:w
% z = nan(size(X)); =rB=! ;
% z(idx) = zernfun(5,1,r(idx),theta(idx)); Hx|<NS0}_
% figure 0?0$6F
% pcolor(x,x,z), shading interp q"uP%TN
% axis square, colorbar iem@K
% title('Zernike function Z_5^1(r,\theta)') nz}}m^-j
% ,e{|[k
% Example 2: `-J$7)d@
% )}[:.Zg,3/
% % Display the first 10 Zernike functions dZ"B6L!^(
% x = -1:0.01:1; 'cpO"d?{
% [X,Y] = meshgrid(x,x); "8%z,lHw
% [theta,r] = cart2pol(X,Y); I.qP$ j
% idx = r<=1; Z{".(?+}1
% z = nan(size(X)); e+? -#
% n = [0 1 1 2 2 2 3 3 3 3]; M#U #I:z%
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; l[cBDNlrC;
% Nplot = [4 10 12 16 18 20 22 24 26 28]; 2GB+st,
% y = zernfun(n,m,r(idx),theta(idx)); =/6rX"\P
% figure('Units','normalized') AvxP0@.`
% for k = 1:10
%dN',
% z(idx) = y(:,k); <8SRt-Cr
% subplot(4,7,Nplot(k)) EK
JPeeRY
% pcolor(x,x,z), shading interp f]*_]J/
% set(gca,'XTick',[],'YTick',[]) YM(`E9{h
% axis square K~MTbdg
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) #dKHU@+U"
% end Vjc*D]
% `Qrrnq
% See also ZERNPOL, ZERNFUN2. G=Qslrtg
-l ?J
`~.0PnHf
% Paul Fricker 11/13/2006 TX%W-J_
,O;+fhUJ(
mK);NvJ!
+=qazE<:0
;Bs^+R7
% Check and prepare the inputs: F:P&hK
% ----------------------------- I {o\d'/
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) HJh9<I
error('zernfun:NMvectors','N and M must be vectors.') Mb2rHUr
end R06zca
jl:dKL@
pH'1be{K
if length(n)~=length(m) 'h:[[D%H`
error('zernfun:NMlength','N and M must be the same length.') POouO/r$
end ju@5D
h
qDPpGI-Y2e
eL7rX"!
n = n(:); FQ72VY
m = m(:); bN',-[E
if any(mod(n-m,2)) qZ8V/
error('zernfun:NMmultiplesof2', ... Q.d Hg7+D
'All N and M must differ by multiples of 2 (including 0).') 5X'com?T
end DW,fh8 w
}&o*ZY-1
BWz7m9T
if any(m>n) -c1$>+
error('zernfun:MlessthanN', ... 3}}#'5D
'Each M must be less than or equal to its corresponding N.') x!<?/I)X
end 'za4c4b*u
7r_Y.
o#IQz_
if any( r>1 | r<0 ) A^a9,T
error('zernfun:Rlessthan1','All R must be between 0 and 1.') xzGs%01]
end HKr6h?Si^
hgz7dF
kp+\3z_
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) gXR1nnK
error('zernfun:RTHvector','R and THETA must be vectors.') @Lj28&4:<
end 9bpY>ze
+bj[.
&f\ng{
r = r(:); Xu1tN9:oE
theta = theta(:); xV
h-Mx+M
length_r = length(r); vk:m>?(
if length_r~=length(theta) O*<,lq 0K
error('zernfun:RTHlength', ... )eFq0+6*)
'The number of R- and THETA-values must be equal.') $X %w9le
end e:BKdZGW
n{~Ws^d
LZ@4,Uj
% Check normalization: @nJ#kd[
% -------------------- RyGce'
q
if nargin==5 && ischar(nflag) (>
v1)*r
isnorm = strcmpi(nflag,'norm'); >D';i\2j&
if ~isnorm #eqy!QdePf
error('zernfun:normalization','Unrecognized normalization flag.') @Y#{[@Hp%
end vM}oxhQ$n
else ?hu$
isnorm = false; YdgaZJs
end XK)qDg
[hf#$Dl|
2<aBUGA
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +yq Z\$ii
% Compute the Zernike Polynomials crJyk #_
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 6 ]@H .8+
Ny;(1N|&3
c%uX+\-$
% Determine the required powers of r: :VPZGzK4
% ----------------------------------- B6gSt3w.
m_abs = abs(m); r lalr+Rf
rpowers = []; 5o~;0K]
for j = 1:length(n) g`jO
rpowers = [rpowers m_abs(j):2:n(j)]; Ld[zOx
end 1)aB']K%
rpowers = unique(rpowers); mCFScT
+oY[uF
3|Q:tt'|#
% Pre-compute the values of r raised to the required powers, :N~1fvx
% and compile them in a matrix: p;dH[NW
% ----------------------------- fPs'A
if rpowers(1)==0 ZJ} V>Bu-
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Qa nE]
rpowern = cat(2,rpowern{:}); @<ba+z>"~4
rpowern = [ones(length_r,1) rpowern]; 4VjP:>*p
else t)n!];
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ]7C=.'Y
rpowern = cat(2,rpowern{:}); \:
H&.VQ"
end +'$=\d^
'AX/?Srd
Uhc2`r#q
% Compute the values of the polynomials: -{i;!XE$SR
% -------------------------------------- @N`) Z3P+
y = zeros(length_r,length(n)); n|vIo)
for j = 1:length(n) Si#b"ls'
s = 0:(n(j)-m_abs(j))/2; 1&~u:RUXe
pows = n(j):-2:m_abs(j); nV-A0"z_&
for k = length(s):-1:1 TOo0rcl
p = (1-2*mod(s(k),2))* ... /wB<1b"
prod(2:(n(j)-s(k)))/ ... 0/d+26lR
prod(2:s(k))/ ... DUc
-D==
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... EKsL0;FV
prod(2:((n(j)+m_abs(j))/2-s(k))); UdmYS3zs
idx = (pows(k)==rpowers); oagxTFh8~
y(:,j) = y(:,j) + p*rpowern(:,idx); /sf:.TpVh
end ?Gc9^bB I
12*'rU;*
if isnorm Gn+D%5)$I
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Gxu&o%x[
end MP\$_;&xB
end lBS!=/7
% END: Compute the Zernike Polynomials Ycypd\q/
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 1;<J] S$$
W is_N3M
$j*j {}K
% Compute the Zernike functions: @.f@N;z
% ------------------------------ wt4uzg8
idx_pos = m>0; UXVjRY`M.\
idx_neg = m<0; nS0K&MH6B
a;J{'PHu
PR=:3-#R
z = y; L-\-wXg%
if any(idx_pos) =.,]}
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); m5lMh14E
end ?y82S*sb#
if any(idx_neg) [6Y6{.%~
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); W-:gU!{*#
end oR>o/$z$)g
[Q&{#%M
|Ui1Mm
% EOF zernfun CZ*c["x2