下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, PC/!9s0W
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 'Q|c@t
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? 2 ZG@!Y|
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? %Fft
R1"
i_l+:/+G+
E%3TP_B3
$H*/;`,\[
xPC"c*
function z = zernfun(n,m,r,theta,nflag) UI?=]"
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. QK <\kVZ8
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N U^_D|$6
% and angular frequency M, evaluated at positions (R,THETA) on the DW2>&|
% unit circle. N is a vector of positive integers (including 0), and 5D' bJ6PO
% M is a vector with the same number of elements as N. Each element X")|Uw8Kl/
% k of M must be a positive integer, with possible values M(k) = -N(k) $>w/Cy
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, Y&f\VNlT
% and THETA is a vector of angles. R and THETA must have the same (tCib 4
% length. The output Z is a matrix with one column for every (N,M) f/ahwz
% pair, and one row for every (R,THETA) pair. [Z<Z;=t
% PK:2xN:=
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ^v:Z o
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), IeTdN_8
% with delta(m,0) the Kronecker delta, is chosen so that the integral I=rwsL
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, jP=Hf=:$
% and theta=0 to theta=2*pi) is unity. For the non-normalized nhH;?D3
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 9&
% I%;Jpe
% The Zernike functions are an orthogonal basis on the unit circle. K&_Uk548
% They are used in disciplines such as astronomy, optics, and Q5n`F5
% optometry to describe functions on a circular domain. p/olCmHD)
% 8<dOMp;}r
% The following table lists the first 15 Zernike functions. 4Z5#F]OA7
% .6.^G
% n m Zernike function Normalization ;=~Xr"(/z
% -------------------------------------------------- A lwtmDa
% 0 0 1 1 ~5OL6Bi-q
% 1 1 r * cos(theta) 2 -x]`DQUg
% 1 -1 r * sin(theta) 2 pn%#w*'
% 2 -2 r^2 * cos(2*theta) sqrt(6) HW[L[&/
% 2 0 (2*r^2 - 1) sqrt(3) 1FERmf? ?d
% 2 2 r^2 * sin(2*theta) sqrt(6) Pe ~c
% 3 -3 r^3 * cos(3*theta) sqrt(8) ]?<n#=eW
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) Vxdp|
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) M+Uyb7
% 3 3 r^3 * sin(3*theta) sqrt(8) h @/;`E[
% 4 -4 r^4 * cos(4*theta) sqrt(10) V3s L;
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ;JTt2qQKo
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) <$i4?)f(
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ^[q /Mw
% 4 4 r^4 * sin(4*theta) sqrt(10) :T@r*7hNT
% -------------------------------------------------- ;L"!I3dM)
% cxP&^,~
% Example 1: p
EusTP
% #h'@5 l
% % Display the Zernike function Z(n=5,m=1) p*qPcuAA
% x = -1:0.01:1; b{cU<;G)y.
% [X,Y] = meshgrid(x,x); ~~qWI>.4
% [theta,r] = cart2pol(X,Y); Sycw %k
% idx = r<=1; <+U|dX
% z = nan(size(X)); !a-b6Aa
% z(idx) = zernfun(5,1,r(idx),theta(idx)); /@Y CA}|/
% figure wEEn?
% pcolor(x,x,z), shading interp jai|/"HSXw
% axis square, colorbar Gi?_ujZR
% title('Zernike function Z_5^1(r,\theta)') S2^>6/[xM
% wWjG
JvJ
% Example 2: 3S~(:#|
% (Tvcq
% % Display the first 10 Zernike functions o( G"k
% x = -1:0.01:1; gK1g]Tc @G
% [X,Y] = meshgrid(x,x); Gt-UJ-RR y
% [theta,r] = cart2pol(X,Y); SreYJT%
% idx = r<=1; VLvS$0(}Z
% z = nan(size(X)); Zq"7,z7
% n = [0 1 1 2 2 2 3 3 3 3]; /iQ(3F
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; ^twivNB
% Nplot = [4 10 12 16 18 20 22 24 26 28]; $P {K2"Oc
% y = zernfun(n,m,r(idx),theta(idx)); ${r[!0|
% figure('Units','normalized') 7 &%^>PU7
% for k = 1:10 c:4P%({
% z(idx) = y(:,k); 9Sg<K)Mc
% subplot(4,7,Nplot(k)) lxb zHlX
% pcolor(x,x,z), shading interp 4_=Ja2v8;`
% set(gca,'XTick',[],'YTick',[]) Paf%rv2
% axis square W<,F28jI3v
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) w=_Jc8/.
% end "VUYh$=[
% OSDy'@
% See also ZERNPOL, ZERNFUN2. W6/ @W
5>_5]t
{
J7$_VP
% Paul Fricker 11/13/2006 4[2_,9}
c z'5iK
a\5FAkI
Ao.\
ZCui Fm
% Check and prepare the inputs: &X>7n~@0
% ----------------------------- qRB7Ec_
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 6^F'|Wh
error('zernfun:NMvectors','N and M must be vectors.') 5Jk<xWKj
end t;q7t!sC]
ot%.M*h-
%&blJ6b
if length(n)~=length(m) iz^qR={bW
error('zernfun:NMlength','N and M must be the same length.') HIc a nk
end J./d!an
[3>GGX[Ic
kBWrqZ6
n = n(:); 1T|$BK@)
m = m(:); S;\R!%t_
if any(mod(n-m,2)) {3\R|tZh,`
error('zernfun:NMmultiplesof2', ... hlbvt-C?}"
'All N and M must differ by multiples of 2 (including 0).') J5p8nmb
end i775:j~zx0
DocbxB={I
#;VA5<M8
if any(m>n) /YKMKtE
error('zernfun:MlessthanN', ... MN8H;0g-
'Each M must be less than or equal to its corresponding N.') &Z("D7.G
end 8/%6@Y"Y*
1}m3;
_=f=f cl
if any( r>1 | r<0 ) z}4L=KR\v
error('zernfun:Rlessthan1','All R must be between 0 and 1.') 8;gXg
end +b$S~0n
Gpj* V|J
@E9" Zv-$
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) mqtg[~dNc
error('zernfun:RTHvector','R and THETA must be vectors.') 0HeD{TH\
end 0"WDH)7hJ
]wn/BG)
(GKpA}~R
r = r(:); :%rS
=f
theta = theta(:); p^)B0[P9
length_r = length(r); ub:ly0;t
if length_r~=length(theta) /%rq
hHs
error('zernfun:RTHlength', ... #&.]"
d
'The number of R- and THETA-values must be equal.') a>mMvc"
end s<QkDERMX
+ =$
uBnoQ~Qd[z
% Check normalization: fRZ KEIyk
% -------------------- #E7AmmqD%
if nargin==5 && ischar(nflag) MHj,<|8Q
isnorm = strcmpi(nflag,'norm'); n`7f"'/:
if ~isnorm `8_z!)
error('zernfun:normalization','Unrecognized normalization flag.') .10y0FL4
end Q+q,!w8
else []kN16F
isnorm = false; |AhF7Mj*
end /1w2ehE<
j+4H}XyE
El2e~l9
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% T?
,P*l
% Compute the Zernike Polynomials {r85l\u)Q\
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% bJ /5|E?
AvJ,SQt
H1:be.^YP
% Determine the required powers of r: UL@9W6
% ----------------------------------- <W)u{KS#TY
m_abs = abs(m); Q%S9fq,q
rpowers = []; wBk@F5\<
for j = 1:length(n) bO5k6i
rpowers = [rpowers m_abs(j):2:n(j)]; ]bdFr/!'S+
end ~ Hy,7
rpowers = unique(rpowers); 5sO@OV\
y
XMN:]!1J
d(`AXyw
% Pre-compute the values of r raised to the required powers, 9O*_L:4o
% and compile them in a matrix: *LC+ PZV@
% ----------------------------- (@0O
if rpowers(1)==0 SGc8^%-`
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); RJeDEYXeg
rpowern = cat(2,rpowern{:}); 6.1)IQkO
rpowern = [ones(length_r,1) rpowern]; E.bi05l
else t(!r8!c
u}
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); _6@hTen`
rpowern = cat(2,rpowern{:}); `lDut1J5n
end ti5HrKIw
_jU5O;
QnouBrhO
% Compute the values of the polynomials: eW'2AT?2H%
% -------------------------------------- *u6Y8IL1
y = zeros(length_r,length(n)); T GB_~Bqe
for j = 1:length(n) d%@~mcH>
s = 0:(n(j)-m_abs(j))/2; vl Ez9/H
pows = n(j):-2:m_abs(j); P,S
G.EFK
for k = length(s):-1:1 ]q5`YB%_
p = (1-2*mod(s(k),2))* ... 6R;3%-D
prod(2:(n(j)-s(k)))/ ... \VMD$zZx
prod(2:s(k))/ ... e?0q9W
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... y&[y=0!
prod(2:((n(j)+m_abs(j))/2-s(k))); ikB Yd
}5
idx = (pows(k)==rpowers); =SOe}!
y(:,j) = y(:,j) + p*rpowern(:,idx); Scm36sT{
end NG&_?|OmV
0H_!Kg
if isnorm W/ay.I
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); r\6"5cQ=
end s
MN*RKer
end :K82sCy%5
% END: Compute the Zernike Polynomials aA`/E
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% qB]i6*
<N,)G
|&
X@)z80
% Compute the Zernike functions: j VgFZ,
% ------------------------------ DciwQcG
idx_pos = m>0; 5qUTMT['T
idx_neg = m<0; )+")Sz3zx
?Ucu#UO
iTh:N2/-vc
z = y; %%ae^*[!n
if any(idx_pos) 4F3x@H'
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); B\*@krI@
end |tzg:T;
if any(idx_neg) . v@>JZC
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); )\;Z4x;]U
end BElJB&I
>gKh
{ x0 t
% EOF zernfun ]{~NO{0@Y