切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9209阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, Cq;t;qN,nQ  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, "2(lgxhj  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? #ebT$hf30  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? KB <n-'  
    Fh9`8  
    6tB-  
    dQ@ e+u5  
    >/nS<y>  
    function z = zernfun(n,m,r,theta,nflag) p}_bu@;.Z  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. /=>z|?z3  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N "12.Bi.O"[  
    %   and angular frequency M, evaluated at positions (R,THETA) on the S*Un$ngAh  
    %   unit circle.  N is a vector of positive integers (including 0), and t Krr5SRb  
    %   M is a vector with the same number of elements as N.  Each element ,,S5 8\x  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) K2>(C$Z  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, B5*{85p(u  
    %   and THETA is a vector of angles.  R and THETA must have the same FYR%>Em  
    %   length.  The output Z is a matrix with one column for every (N,M) KG6ki_  
    %   pair, and one row for every (R,THETA) pair. B2:6=8<  
    % X+;Ivx  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 8:0QIkqk  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ~b/lr  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 3&_O\nD  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Mz# &"WjF  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized A U9Y0<  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 5t#+UR  
    % ))cL+ r  
    %   The Zernike functions are an orthogonal basis on the unit circle. ~V[pu  
    %   They are used in disciplines such as astronomy, optics, and $r*7)/  
    %   optometry to describe functions on a circular domain. FFb`4.  
    % YpoO:  
    %   The following table lists the first 15 Zernike functions. 6 /gh_'&  
    % eWS[|' dl  
    %       n    m    Zernike function           Normalization gN1b?_g  
    %       -------------------------------------------------- )a.Y$![  
    %       0    0    1                                 1 _Sy-&}c+ +  
    %       1    1    r * cos(theta)                    2 Z0g3> iItM  
    %       1   -1    r * sin(theta)                    2 W_9-JM(r  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) \~d|MP}"F:  
    %       2    0    (2*r^2 - 1)                    sqrt(3) v~e@:7d i  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) 5:/ zbt\C  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) s$css{(ek  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) r-v ;A  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) I-oI,c%+  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) rlk0t159  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) Wk"4mq  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 2s>dlz  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) -;&aU;k  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) }GJIM|7^  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) Ls)y.u  
    %       -------------------------------------------------- Q( .d!CQ>  
    % .^j #gE&B  
    %   Example 1: *gfx'$  
    % <DP_`[+C  
    %       % Display the Zernike function Z(n=5,m=1) kmPK |R  
    %       x = -1:0.01:1; >B/ jTn5=  
    %       [X,Y] = meshgrid(x,x); }UJS*mR  
    %       [theta,r] = cart2pol(X,Y); /uS(Z-@  
    %       idx = r<=1; \.y|=Ql_u  
    %       z = nan(size(X)); 2%U)y;$m2  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); )QEvV:\  
    %       figure F%@( $f  
    %       pcolor(x,x,z), shading interp  hX?L/yf  
    %       axis square, colorbar Q1 ?O~ao  
    %       title('Zernike function Z_5^1(r,\theta)') y}*rRm.:  
    % S453oG"  
    %   Example 2: l:mC'aR  
    % x*& OvI/o  
    %       % Display the first 10 Zernike functions =8O057y  
    %       x = -1:0.01:1; &54fFyJF  
    %       [X,Y] = meshgrid(x,x); lMz5))Rr  
    %       [theta,r] = cart2pol(X,Y); i*B@#;;F  
    %       idx = r<=1; 5_Yl!=  
    %       z = nan(size(X)); __r]@hY   
    %       n = [0  1  1  2  2  2  3  3  3  3]; H((! BRl  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; [` ~YPUR*  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; rStfluPL  
    %       y = zernfun(n,m,r(idx),theta(idx)); zM{'GB+en  
    %       figure('Units','normalized') 3&'ll51t  
    %       for k = 1:10 ss63/   
    %           z(idx) = y(:,k); V{@ xhW0  
    %           subplot(4,7,Nplot(k)) $~vy,^  
    %           pcolor(x,x,z), shading interp Ug02G  
    %           set(gca,'XTick',[],'YTick',[]) c=]qUhnH  
    %           axis square uqwB`<>KJ  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ',j'Hf  
    %       end =<w6yeko  
    % $s<,xY 9  
    %   See also ZERNPOL, ZERNFUN2. ;ZZ%(P=-  
    <ABN/nH  
    9XWHr/-_@  
    %   Paul Fricker 11/13/2006 CY;ML6c@  
    l<5O\?Vo]  
    N|hNh$J[  
    v(D{_  
    Qb}7lm{r  
    % Check and prepare the inputs: OrP-+eg  
    % ----------------------------- n ^P=a'+  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) BE. v+'c"  
        error('zernfun:NMvectors','N and M must be vectors.') )R$+dPu>  
    end %^s;{aN*!  
    csE 9Ns  
    "+3p??h%Rq  
    if length(n)~=length(m) 'U ',9  
        error('zernfun:NMlength','N and M must be the same length.') nM:e<`r  
    end YSwAu,$jf  
    A5-y+   
    fy04/_,q  
    n = n(:); xcdy/J&  
    m = m(:); =g4^tIYq  
    if any(mod(n-m,2)) RG/M-  
        error('zernfun:NMmultiplesof2', ... d%_v eVIe  
              'All N and M must differ by multiples of 2 (including 0).') 2|]$hjs  
    end *KNj5>6=  
    gX<"-,5jc  
    Sx)b~*  
    if any(m>n) =H6"\`W  
        error('zernfun:MlessthanN', ... jqq96hP,  
              'Each M must be less than or equal to its corresponding N.') z-fP #.  
    end )\!_`ob  
    'Lu7cb^  
    c:etJ  
    if any( r>1 | r<0 )  jL8[;*^G  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') Dyv 6K_,  
    end ?dMyhU}  
    :l>&5w;  
    N*z_rZE  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Jydz2 zt!  
        error('zernfun:RTHvector','R and THETA must be vectors.') 7=C$*)x  
    end 2RXU75VY  
    E!<w t  
    x95[*[  
    r = r(:); (|%YyRaX  
    theta = theta(:); 3YT>3f!\  
    length_r = length(r); 0S8v41i6  
    if length_r~=length(theta) _mVq9nBEf  
        error('zernfun:RTHlength', ... =9$hZ c  
              'The number of R- and THETA-values must be equal.') $g&,$7}O_  
    end S <~"\<ED  
    2g shiY8_  
    ,'[L6=#  
    % Check normalization: {n9]ej^  
    % -------------------- &}}c>]m  
    if nargin==5 && ischar(nflag) sYnf #'  
        isnorm = strcmpi(nflag,'norm'); \| qr&(PG  
        if ~isnorm 8a{S*  
            error('zernfun:normalization','Unrecognized normalization flag.') ?K, xxH  
        end &K2J$(.t  
    else :m*r( i3  
        isnorm = false; USF&;M3  
    end %oVoE2T{@  
    bOR1V\Jr$q  
    gP=(2EVE  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% <=WSX{_D  
    % Compute the Zernike Polynomials eytd@-7uX  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% {p J{UJKv?  
    y4* }E  
    sOzmw^7   
    % Determine the required powers of r: 1.\|,$  
    % ----------------------------------- =xwA'D9]  
    m_abs = abs(m); ;/gH6Z?  
    rpowers = []; 9W{`$30  
    for j = 1:length(n) I4]|r k9  
        rpowers = [rpowers m_abs(j):2:n(j)]; H}m%=?y@  
    end I| j Gu9G  
    rpowers = unique(rpowers); hAx#5@*5  
    t(3<w)r2  
    /)I:C z/f  
    % Pre-compute the values of r raised to the required powers, E?%SOU<  
    % and compile them in a matrix: ygt7;};!  
    % ----------------------------- [@ExR*  
    if rpowers(1)==0 -*q:B[d  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false);  N7%iz+  
        rpowern = cat(2,rpowern{:}); E ]eVoC  
        rpowern = [ones(length_r,1) rpowern]; MbY?4i00%h  
    else E`vCYhf{  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); vLQ!kB^\W  
        rpowern = cat(2,rpowern{:}); ho*44=j  
    end Glz)-hjJ:n  
    [I/f(GK  
    s7j#Yg  
    % Compute the values of the polynomials: OsS5WY0H  
    % -------------------------------------- !uaV6K  
    y = zeros(length_r,length(n)); T\;7'  
    for j = 1:length(n) _86pbr9  
        s = 0:(n(j)-m_abs(j))/2; 9qyA{ |3  
        pows = n(j):-2:m_abs(j); r$3{1HXc  
        for k = length(s):-1:1 o$dnp`E  
            p = (1-2*mod(s(k),2))* ... CX](^yU_  
                       prod(2:(n(j)-s(k)))/              ... z"4UObVs  
                       prod(2:s(k))/                     ... W)WL1@!Z  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... s)_Xj`Q#  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 32DT]{-N!  
            idx = (pows(k)==rpowers); 29:1crzx~  
            y(:,j) = y(:,j) + p*rpowern(:,idx); _`6fGu& W  
        end /?<tjK' "H  
          ByP  
        if isnorm X\X* -.]{  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); S $wx>715  
        end 5sbMp;ZM  
    end #$!(8>YJ  
    % END: Compute the Zernike Polynomials B8Ob~?  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ]Z/<H P$#  
    wc #+ Yh6  
    #vk-zx*v7=  
    % Compute the Zernike functions: B>kx$_~  
    % ------------------------------ eWjLP{W  
    idx_pos = m>0; /S}0u}jID?  
    idx_neg = m<0; CiE  
    Jw%0t'0Zi  
    \@yx;}bdI  
    z = y; sT| $@$bN  
    if any(idx_pos) INca  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); #=)(t${7'  
    end t*<@>]k  
    if any(idx_neg) ,TrrqCw>  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); o *5<Cxg  
    end *E"QFirk0  
    c^^[~YW j  
    yKJKQ9  
    % EOF zernfun j$%KKl8j  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  tz #Fy?pe  
    2H7b2%  
    DDE还是手动输入的呢? Ke0j8|  
    |tl4I2AV  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究