切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9518阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, gyIPG2d  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, f-PDgs   
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? umciP  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? zT@vji%Y  
    LYT0 XB)A  
    V'8 (}(s/  
    Ty>`r n  
    /dIiFr"e}G  
    function z = zernfun(n,m,r,theta,nflag) YS9|J=!~  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 5}f$O  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N vjWS35i  
    %   and angular frequency M, evaluated at positions (R,THETA) on the i^yQ; 2 -  
    %   unit circle.  N is a vector of positive integers (including 0), and }wn GOr  
    %   M is a vector with the same number of elements as N.  Each element f_}55?i0  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) |b|p0Z%7{  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ]C_6I\Z#=W  
    %   and THETA is a vector of angles.  R and THETA must have the same l#Iof)@#  
    %   length.  The output Z is a matrix with one column for every (N,M) M C>{I3  
    %   pair, and one row for every (R,THETA) pair. ~Oolm_+{}  
    % rkV ZP!7!  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike tUzuel*  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), r]TeR$NJ  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 3=` UX  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1,  7p{lDQ  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized [qc90)^Q,  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. >LLFe~9`g  
    % avdi9!J2  
    %   The Zernike functions are an orthogonal basis on the unit circle. ?=6zgb"9-  
    %   They are used in disciplines such as astronomy, optics, and *<J**FhcMu  
    %   optometry to describe functions on a circular domain. nfd^'}$]  
    % o+&/ N-t  
    %   The following table lists the first 15 Zernike functions. o|*,<5t  
    % )x]/b=m  
    %       n    m    Zernike function           Normalization o)w'w34FCT  
    %       -------------------------------------------------- =*t)@bn  
    %       0    0    1                                 1 Dp>/lkk.  
    %       1    1    r * cos(theta)                    2 VF;%Z  
    %       1   -1    r * sin(theta)                    2 ee6Zm+.B  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) nlh%O@,  
    %       2    0    (2*r^2 - 1)                    sqrt(3) Bp9 u6R  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) H`kfI"u8  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ="MG>4j3.F  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) PM ,I?lJ,  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) [(]uin+9Q  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) Yf|+p65g  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) y/E%W/3  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) (.Sj"6+  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) Rzw}W7zg[  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) /:l>yKI+~  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) iielAj*b  
    %       -------------------------------------------------- -GQ`n01  
    % %<P&"[F]v@  
    %   Example 1: g+U6E6}1  
    % *&!&Y*Jzg  
    %       % Display the Zernike function Z(n=5,m=1) _HGbR/  
    %       x = -1:0.01:1; K-#v5_*  
    %       [X,Y] = meshgrid(x,x); CPAizS  
    %       [theta,r] = cart2pol(X,Y); 90 (JP-  
    %       idx = r<=1; rqSeh/<iD  
    %       z = nan(size(X)); / F9BbG{  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 1ih|b8)Dn  
    %       figure [/\}:#MLe  
    %       pcolor(x,x,z), shading interp <$R'y6U :  
    %       axis square, colorbar |}=xA%)  
    %       title('Zernike function Z_5^1(r,\theta)') ELPzqBI  
    % wm_xH_{F  
    %   Example 2: kect)=T(  
    % !np-Jmi  
    %       % Display the first 10 Zernike functions >,7 -cm=.  
    %       x = -1:0.01:1; \\xoOA.  
    %       [X,Y] = meshgrid(x,x); ~}+F$&  
    %       [theta,r] = cart2pol(X,Y); VI/77  
    %       idx = r<=1; )$XcO]  
    %       z = nan(size(X)); =HH}E/9z  
    %       n = [0  1  1  2  2  2  3  3  3  3];  ~p<w>C9  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; /c6:B5G  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; Onz@A"  
    %       y = zernfun(n,m,r(idx),theta(idx)); _ 5n Lrn,~  
    %       figure('Units','normalized') E:(DidSE@  
    %       for k = 1:10 K+p7yZJ  
    %           z(idx) = y(:,k); I82GZL  
    %           subplot(4,7,Nplot(k)) plN:QS$  
    %           pcolor(x,x,z), shading interp }fU"s"  
    %           set(gca,'XTick',[],'YTick',[]) e#BxlC  
    %           axis square [3o^06V8j  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) m -]E|  
    %       end %OE (?~dq  
    % Y?IvG&])  
    %   See also ZERNPOL, ZERNFUN2. lsq\CavbM  
    Ku$:.  
    +`=rzL"0I7  
    %   Paul Fricker 11/13/2006 4sMA'fG  
    *5m4 j=-  
    Pg4go10|  
    |q!O~<H@  
    !-B$WAV  
    % Check and prepare the inputs: S+2we  
    % ----------------------------- 5d|hP4fEc  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) {0?^$R8j  
        error('zernfun:NMvectors','N and M must be vectors.') J@$KF GUs  
    end A s"% u  
    <Ukeq0  
    AO[/-Uij  
    if length(n)~=length(m) o4P>t2'  
        error('zernfun:NMlength','N and M must be the same length.') C@b-)In  
    end <!;NJLe`  
    %^pm~ck!  
    mM(Z8PA 9-  
    n = n(:); ;T hn C>U  
    m = m(:); vLI'Z)\  
    if any(mod(n-m,2)) Xnc?oT+  
        error('zernfun:NMmultiplesof2', ... f0M5^  
              'All N and M must differ by multiples of 2 (including 0).') BMi5F?Q'G  
    end !KC4[;Y  
    Y+)qb);  
    *jCHv  
    if any(m>n) N||a0&&  
        error('zernfun:MlessthanN', ... jEMnre3/  
              'Each M must be less than or equal to its corresponding N.') 2,'~'  
    end OjWg>v\ v  
    uxx(WS  
    z#HNJAQ#|  
    if any( r>1 | r<0 ) ,4mb05w;d  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') Kt3T~k  
    end #u"$\[G  
    ,Jrm85 oG  
    xcE2hK/+  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) <I 0EjV  
        error('zernfun:RTHvector','R and THETA must be vectors.') 3;?DKRIcX  
    end weH;,e*r  
    k 5gvo  
    UX24*0`\~  
    r = r(:); 4OOI$J$Jh  
    theta = theta(:); #sm@|'Q%  
    length_r = length(r); y?'Z'  
    if length_r~=length(theta) 0d/ f4  
        error('zernfun:RTHlength', ... AGhr(\j  
              'The number of R- and THETA-values must be equal.') sW]>#e  
    end M#}k@ ;L3  
    h^v+d*R N  
    tS3!cO\  
    % Check normalization: eWOZC(I*z  
    % -------------------- L_5o7~`0  
    if nargin==5 && ischar(nflag) K!a7Hg  
        isnorm = strcmpi(nflag,'norm'); `3^%ft~l  
        if ~isnorm Z{^Pnit  
            error('zernfun:normalization','Unrecognized normalization flag.') o0kKf+[  
        end LS/ZZAN u  
    else Pd+Wb3  
        isnorm = false; 7V%b!R}  
    end a\m0X@Q  
    &[t} /+)  
    @NYlVk2  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% byHXRA)39  
    % Compute the Zernike Polynomials 8Xa{.y"  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% F%I*m^7d  
    I:UN2`*#  
    , }B{)  
    % Determine the required powers of r: PNpH)'C|  
    % ----------------------------------- ~p{ fl?  
    m_abs = abs(m); !JQ'~#jKN  
    rpowers = []; 'XI-x[w  
    for j = 1:length(n) <z QUa  
        rpowers = [rpowers m_abs(j):2:n(j)]; .-:@+=(  
    end wKE}BO >  
    rpowers = unique(rpowers); b6^#{))"  
    Z8:'_#^@a[  
    ;y.<I&  
    % Pre-compute the values of r raised to the required powers, 42Cc`a%U  
    % and compile them in a matrix: ,-V7~gM%}  
    % ----------------------------- Zr|\T7w 3  
    if rpowers(1)==0 es1'z.UJ  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); m^;A]0h+  
        rpowern = cat(2,rpowern{:}); |?LUt@r;  
        rpowern = [ones(length_r,1) rpowern]; ]GiDfYs7%  
    else s;,ulME  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); "|GX%> /  
        rpowern = cat(2,rpowern{:}); Bg}(Sy  
    end `aM8L  
    w1)SuMFK_  
    b/UjKNf@  
    % Compute the values of the polynomials: Lu[xoQ~I  
    % -------------------------------------- w/wU~~  
    y = zeros(length_r,length(n)); $+n5l@W  
    for j = 1:length(n) +IM6 GeH  
        s = 0:(n(j)-m_abs(j))/2; $ItPUYi";  
        pows = n(j):-2:m_abs(j); q;<Q-jr&O  
        for k = length(s):-1:1 J1d|L|M  
            p = (1-2*mod(s(k),2))* ... ?j$*a7[w  
                       prod(2:(n(j)-s(k)))/              ... 89fl\18%  
                       prod(2:s(k))/                     ... *cc|(EM  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... nE"0?VNW$  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); W C3b_ia  
            idx = (pows(k)==rpowers); |dqvv  
            y(:,j) = y(:,j) + p*rpowern(:,idx); &\Yd)#B/  
        end x=3+@'  
         ^ =RSoR  
        if isnorm nEh^{6  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); :snn-e0l  
        end g&L $5  
    end "yPKdwP  
    % END: Compute the Zernike Polynomials 1#jvr_ ga  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% TmdR B8N  
    B=hJ*;:p  
    eo'C)j# U  
    % Compute the Zernike functions: f/e2td*A  
    % ------------------------------ J.pe&1  
    idx_pos = m>0; l&m'?. g f  
    idx_neg = m<0; ?r}!d2:dX  
    u^uo=/  
    o/p'eY:)  
    z = y; et :v4^*f  
    if any(idx_pos) ^g*/p[  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ;AE%f.Y  
    end b6gD*w <  
    if any(idx_neg) U4,hEnJBT  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); TkV$h(#!f&  
    end bHH=MLZR:  
    >jBnNA@  
    # fl%~Y  
    % EOF zernfun s*W)BK|+?  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  m4Wn$Z  
    SC2C%.%l`  
    DDE还是手动输入的呢? N`Bt|#R  
    UWn}0:6t  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究