切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9084阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, TR|;,A[%v#  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, x1:vUHwC  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? -D$3!ccX  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? dY 6B%V  
    H.)fO ctbO  
    a'm!M:w  
    i~(#S8U4d  
    UVnrDhd!0  
    function z = zernfun(n,m,r,theta,nflag) G@;Nz i89  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. # e$\~cPd  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N |@OJ~5H/{  
    %   and angular frequency M, evaluated at positions (R,THETA) on the _y|[Z;  
    %   unit circle.  N is a vector of positive integers (including 0), and M2a}x+5'  
    %   M is a vector with the same number of elements as N.  Each element -.^@9 a>  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) O5c_\yv=  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, '/n\Tg+  
    %   and THETA is a vector of angles.  R and THETA must have the same ZyZl\\8U  
    %   length.  The output Z is a matrix with one column for every (N,M) o&WRta>VP  
    %   pair, and one row for every (R,THETA) pair. 'o7R/`4KR  
    % X"laZd947>  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike jg7d7{{SB  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), g2!0vB>  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral NEZH<#  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 32TP Mk  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized Cl%V^xTb  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. `6dy U_f  
    % U<1}I.hDJ  
    %   The Zernike functions are an orthogonal basis on the unit circle. >9<_s ^_  
    %   They are used in disciplines such as astronomy, optics, and axHxqhO7zp  
    %   optometry to describe functions on a circular domain. iJ5e1R8tN  
    % 1VRqz5  
    %   The following table lists the first 15 Zernike functions. N+ak[axN  
    % 2K5}3<KD/  
    %       n    m    Zernike function           Normalization p!.  /  
    %       -------------------------------------------------- mxtlr)  
    %       0    0    1                                 1 ,P;8 }yQ  
    %       1    1    r * cos(theta)                    2 GZ; Z  
    %       1   -1    r * sin(theta)                    2 &3!i@2d;3f  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) c-? Ygr  
    %       2    0    (2*r^2 - 1)                    sqrt(3) kO /~i  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) ? +5" %4o  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) bEBZ!ghU  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) `[w}hFl~q  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 0V{>)w!Fo  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 6nM rO$i0k  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) d@_'P`%-  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) *Cc$eR]-  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) :YkDn~@  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ?z*W8b]'  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) (, ;MC/l  
    %       -------------------------------------------------- sE(X:[Am  
    % <FMuWHY  
    %   Example 1: }xpe  
    % @B}&62T  
    %       % Display the Zernike function Z(n=5,m=1) |:`?A3^m#  
    %       x = -1:0.01:1; PX+"" #  
    %       [X,Y] = meshgrid(x,x); #JX|S'\x  
    %       [theta,r] = cart2pol(X,Y); D3,t6\m  
    %       idx = r<=1; q>Dr)x)  
    %       z = nan(size(X)); XRX7qo(0g  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 7lnM|nD  
    %       figure [ni-UNTv  
    %       pcolor(x,x,z), shading interp C.B8 J"T-  
    %       axis square, colorbar B8P@D"u  
    %       title('Zernike function Z_5^1(r,\theta)') $~;6hnr m  
    % {EiG23!qV  
    %   Example 2: *,Aa9wa{  
    % si+5h6I.}  
    %       % Display the first 10 Zernike functions ^MF=,U'8  
    %       x = -1:0.01:1; gu~-}  
    %       [X,Y] = meshgrid(x,x); dja9XWOg  
    %       [theta,r] = cart2pol(X,Y); % B7?l  
    %       idx = r<=1; 7~Xu71^3s  
    %       z = nan(size(X)); hfP(N_""S  
    %       n = [0  1  1  2  2  2  3  3  3  3]; b*$o[wO9  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; ]lG_rGw  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; Au\ =ypK  
    %       y = zernfun(n,m,r(idx),theta(idx)); exa}dh/uC  
    %       figure('Units','normalized') 0|f_C3  
    %       for k = 1:10 jHUz`.8B  
    %           z(idx) = y(:,k); A=@V LU4%  
    %           subplot(4,7,Nplot(k)) w|3fioLs  
    %           pcolor(x,x,z), shading interp GtGyY0  
    %           set(gca,'XTick',[],'YTick',[]) \dQ2[Ek  
    %           axis square `zV-1)=  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) u8$~N$L  
    %       end k -t,y|N  
    % $[L)f| l  
    %   See also ZERNPOL, ZERNFUN2. N-_| %C-.  
    9h)P8B.>M  
    y D=)&->Ra  
    %   Paul Fricker 11/13/2006 )GF  
    Xl '\krz  
    jw6ng>9  
    +eVpMD( l  
    YpbdScz  
    % Check and prepare the inputs: ygu?w7  
    % ----------------------------- +O%a:d%  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) q0xE&[C[M  
        error('zernfun:NMvectors','N and M must be vectors.') xf3/<x!B  
    end |7 W6I$Xl  
    xDAA`G  
    2{Lc^6i(t  
    if length(n)~=length(m) o2t@-dNi  
        error('zernfun:NMlength','N and M must be the same length.') *? orK o  
    end S7\jR%p b  
    <=LsloI  
    Yc( )'6  
    n = n(:); B3i=pcef  
    m = m(:); ;L/T}!Dx  
    if any(mod(n-m,2)) |Z +E(F  
        error('zernfun:NMmultiplesof2', ... S@rsQ@PA  
              'All N and M must differ by multiples of 2 (including 0).') Ij,?G*  
    end 5w-G]b  
    EJiF_  
    :X'U`jE  
    if any(m>n) [&k& $04_  
        error('zernfun:MlessthanN', ... \c`r9H^v{  
              'Each M must be less than or equal to its corresponding N.') OAQ O J'  
    end & m ";D  
    5&7?0h+I  
    (]# JpQ  
    if any( r>1 | r<0 ) 0yEyt7 ~@  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') SGT-B.  
    end 2QQYXJ^  
    kv FOk  
    OEqe^``!  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) (/UMi,Ho  
        error('zernfun:RTHvector','R and THETA must be vectors.') >ww1:Sn  
    end LZ<( :S  
    >w2WyYJYH  
    x'PjP1  
    r = r(:); N4JL.(m){I  
    theta = theta(:); za 4B+&JJ  
    length_r = length(r); [/`Hz]R  
    if length_r~=length(theta) ?p\II7   
        error('zernfun:RTHlength', ... /[|md0,  
              'The number of R- and THETA-values must be equal.') DT~y^h  
    end < EE+ S#z  
    2ZFK jj  
    p[+me o  
    % Check normalization: N`^W*>XB  
    % -------------------- ?z36mj"`o  
    if nargin==5 && ischar(nflag) 6je%LHhL  
        isnorm = strcmpi(nflag,'norm'); Bd]DhPhJ  
        if ~isnorm ~k_zMU-1  
            error('zernfun:normalization','Unrecognized normalization flag.') L,ey3i7a\  
        end rnrx%Q  
    else #1lS\!  
        isnorm = false; ~5?n&pF  
    end vnOF$6n  
    SNV+.xN  
    %3B>1h9N  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% I&@@v\$*  
    % Compute the Zernike Polynomials n`2"(7Wj  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% oN}j<6s  
    xaaxj  
    {Q3#]Vu  
    % Determine the required powers of r: dK`O,[}  
    % ----------------------------------- "f$A0RL  
    m_abs = abs(m); ?ew]i'9(  
    rpowers = []; hA19:H=7R0  
    for j = 1:length(n) WmBnc#>gK  
        rpowers = [rpowers m_abs(j):2:n(j)]; Sgk{NM7|k  
    end h |  
    rpowers = unique(rpowers); S~9kp?kR$  
    g5HqU2  
    KFrmH  
    % Pre-compute the values of r raised to the required powers, !a&F:Fbm  
    % and compile them in a matrix: { J%$.D(/  
    % ----------------------------- B{u.Yc:  
    if rpowers(1)==0 Sk%|-T(d$  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); zL{@LHP  
        rpowern = cat(2,rpowern{:}); `Wt~6D e  
        rpowern = [ones(length_r,1) rpowern]; /]>{"sS(  
    else cLF>Jvs*J  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); _Dt TG<E  
        rpowern = cat(2,rpowern{:}); 30-w TcG  
    end r>eXw5Pr7  
    Bd[}A9O[  
    4v JIO{m  
    % Compute the values of the polynomials: LKG|S<s  
    % -------------------------------------- FCAu%lvZT  
    y = zeros(length_r,length(n)); PQ|x?98  
    for j = 1:length(n) yXmp]9$  
        s = 0:(n(j)-m_abs(j))/2; 1T`"/*!  
        pows = n(j):-2:m_abs(j); aDEP_b;  
        for k = length(s):-1:1 ?':'zT  
            p = (1-2*mod(s(k),2))* ... D1/$pA+B  
                       prod(2:(n(j)-s(k)))/              ... &^>r<~]  
                       prod(2:s(k))/                     ... >QPS0Vx[  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... gQG iph |  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); Darkj>$\  
            idx = (pows(k)==rpowers); K6Ua~N^  
            y(:,j) = y(:,j) + p*rpowern(:,idx); ,g.=vQm:?  
        end @~HD<K  
         (]dZ+"O{  
        if isnorm c *noH[  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 9(]j e4Cn  
        end 7 4UE-H)  
    end JC3)G/m(03  
    % END: Compute the Zernike Polynomials ] lTfi0}g_  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% zvg&o)/[  
    a#$%xw  
    Qgi:q  
    % Compute the Zernike functions: 9|DC<Zn&B#  
    % ------------------------------ >{8H==P  
    idx_pos = m>0; Grv|Wuli  
    idx_neg = m<0; n&JP/P3Y  
    =jh:0Q<43+  
    ["9$HL  
    z = y; i>}z$'X  
    if any(idx_pos) W1(zi P'6  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); vZsVxx99  
    end Rl8-a8j$f.  
    if any(idx_neg) ,|/$|$'  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); %m`QnRX?D  
    end W=:+f)D  
    C]cw@:o%  
    GC2<K  
    % EOF zernfun >kT~X ,o  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  `'~|DG}a  
    fgNEq  
    DDE还是手动输入的呢? }Vt5].TA  
    {_ocW@@  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究