切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9133阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, #~]zhHI  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, VD*6g%p  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? "S[450%  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? u,ho7ht3(  
    h,:m~0gmj  
    iQ67l\{R  
    e+7"/icK  
    P}}* Q7P  
    function z = zernfun(n,m,r,theta,nflag) (XTG8W sN  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. >Er|Jxy  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N XSB"{H>&  
    %   and angular frequency M, evaluated at positions (R,THETA) on the dlh)gp;  
    %   unit circle.  N is a vector of positive integers (including 0), and 5Pc;5 o0C  
    %   M is a vector with the same number of elements as N.  Each element XT%nbh&y  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) Z?q] bSIT  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, :LQYo'@yB  
    %   and THETA is a vector of angles.  R and THETA must have the same QT5TE: D  
    %   length.  The output Z is a matrix with one column for every (N,M) #lo6c;*m5  
    %   pair, and one row for every (R,THETA) pair. dES"@?!^  
    % e(&v"}Ef`  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike QO:!p5^:  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), |*xA 8&/  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral t.y2ff<[U  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, *8A  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized tKuwpT1Qc  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. DCO\c9  
    % !?jrf] A@  
    %   The Zernike functions are an orthogonal basis on the unit circle. Dj?> <@  
    %   They are used in disciplines such as astronomy, optics, and }-{H  Y  
    %   optometry to describe functions on a circular domain. 3*XNV  
    % D/gw .XYL  
    %   The following table lists the first 15 Zernike functions. m])y.T  
    % net@j#}j-  
    %       n    m    Zernike function           Normalization xIW3={b3  
    %       -------------------------------------------------- Z clQ  
    %       0    0    1                                 1 P`+{@@  
    %       1    1    r * cos(theta)                    2 p`dU2gV  
    %       1   -1    r * sin(theta)                    2 SHxNr(wJ<Q  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) Mj3A5;#  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 1-uxC^u?|#  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) %wg -=;d4  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) K7B/s9/xs  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) :RTC!spy  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) \:'/'^=#|  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) Q8tL[>Xt  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) U}[d_f  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) H2\;%K 2  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) |A~jsz6pI  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) nHAS(  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) &{hL&BLr  
    %       -------------------------------------------------- mDABH@ R  
    % 2]jn '4  
    %   Example 1: /Iy]DU8  
    % 8 ^2oWC#U(  
    %       % Display the Zernike function Z(n=5,m=1) n)-$e4u2  
    %       x = -1:0.01:1; ek\ xx  
    %       [X,Y] = meshgrid(x,x); 4[r0G+  
    %       [theta,r] = cart2pol(X,Y); 'F3f+YD  
    %       idx = r<=1; 2;`1h[,-^  
    %       z = nan(size(X)); =:Fc;n>c<K  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 7IH@oMvE  
    %       figure 6<SAa#@ey  
    %       pcolor(x,x,z), shading interp xh,qNnGGi  
    %       axis square, colorbar [PM 2\#K  
    %       title('Zernike function Z_5^1(r,\theta)') }OR@~V{Gj  
    % )[6U^j4  
    %   Example 2: J?1 uKR  
    % ^ogt+6c  
    %       % Display the first 10 Zernike functions 286;=rN]*  
    %       x = -1:0.01:1; zT.7  
    %       [X,Y] = meshgrid(x,x); Yui3+}Ms  
    %       [theta,r] = cart2pol(X,Y); hbDXo:  
    %       idx = r<=1; iL&fgF"'  
    %       z = nan(size(X)); O, wJR  
    %       n = [0  1  1  2  2  2  3  3  3  3]; -#[a7',Z;  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; TDKki(o=~  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; l`{\"#4  
    %       y = zernfun(n,m,r(idx),theta(idx)); &j`}vg  
    %       figure('Units','normalized') PI)+Jr%L  
    %       for k = 1:10 d#Y^>"|$.  
    %           z(idx) = y(:,k); OA1uY83"  
    %           subplot(4,7,Nplot(k)) u;"TTN  
    %           pcolor(x,x,z), shading interp Lc,Pom  
    %           set(gca,'XTick',[],'YTick',[]) KnQ*vM*VM  
    %           axis square 3?9IJ5p  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) RDi]2  
    %       end &MQmu,4  
    % ,/%=sux  
    %   See also ZERNPOL, ZERNFUN2. Xm}/0g&7  
    ;>yxNGV`  
    y/{fX(aV  
    %   Paul Fricker 11/13/2006 HxV=F66"  
    =E4LRKn  
    g" DG]/ev  
    W=><)miQ@  
    ay ;S4c/_  
    % Check and prepare the inputs: gMmaK0uhS  
    % ----------------------------- ? 7n`A >T  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 61>.vT8P  
        error('zernfun:NMvectors','N and M must be vectors.') @Z %ivR:  
    end Xll}x+'uZK  
    C.yQ=\U2  
    IGQaDFr  
    if length(n)~=length(m) T{.pM4Hd  
        error('zernfun:NMlength','N and M must be the same length.') f!uwzHA`?  
    end 3g,`.I_  
    u(>^3PJ+  
    ]"hFC<w  
    n = n(:); 2d #1=+V  
    m = m(:); <I\/n<*  
    if any(mod(n-m,2)) kR-SE5`Jk  
        error('zernfun:NMmultiplesof2', ... 5|j<`()H :  
              'All N and M must differ by multiples of 2 (including 0).') ^R7lom.  
    end EF[@$j   
    5y [Oj^  
    ^e_hLX\SW  
    if any(m>n) ThajHK|U  
        error('zernfun:MlessthanN', ... t7Iv?5]N  
              'Each M must be less than or equal to its corresponding N.') IqaT?+O\?r  
    end v!6  c0a  
    w !-gJmX>  
    5oW!YJg  
    if any( r>1 | r<0 ) \5:i;AE  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') xw,IJ/E$1  
    end $aDVG})  
    WUe{vV#S'0  
    -hGk?_Nqa/  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 3tIVXtUCUk  
        error('zernfun:RTHvector','R and THETA must be vectors.') x;P_1J%Q  
    end \^J%sf${  
    TOB-aAO  
    x:NY\._  
    r = r(:); f P 1[[3i  
    theta = theta(:); A5I)^B<(  
    length_r = length(r); QC OM_$y  
    if length_r~=length(theta) X1x#6 oi  
        error('zernfun:RTHlength', ... 2>xF){`  
              'The number of R- and THETA-values must be equal.') ArI2wM/v  
    end +s,=lL  
    jUYWrYJ  
    'j8:vq^d  
    % Check normalization: w7.V6S$Ga  
    % -------------------- C\Wmq [  
    if nargin==5 && ischar(nflag) {0Yf]FQb-a  
        isnorm = strcmpi(nflag,'norm'); p J! mw\:  
        if ~isnorm !21FR*  
            error('zernfun:normalization','Unrecognized normalization flag.') vAF "n  
        end Q^9_' t}X  
    else n`B:;2X,  
        isnorm = false; sk<3`x+  
    end ^B.5GK)!  
    by1<[$8r  
    shy-Gu&  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% qdJ=lhHM}  
    % Compute the Zernike Polynomials .LnGL]/  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% F3[T.sf  
    T\6dm/5  
    |/|5UiX7  
    % Determine the required powers of r: 5,lEx1{_  
    % ----------------------------------- X Swl Tg  
    m_abs = abs(m); 6EoMt@7g  
    rpowers = []; T9E+\D  
    for j = 1:length(n) z [}v{  
        rpowers = [rpowers m_abs(j):2:n(j)]; x/I%2F  
    end ~OYiq}g  
    rpowers = unique(rpowers); m/@wh a  
    #>("CAB02T  
    b;B%q$sntC  
    % Pre-compute the values of r raised to the required powers, iJI }TVep#  
    % and compile them in a matrix: lV3x*4O=  
    % ----------------------------- \g&,@'uh  
    if rpowers(1)==0 \j}ZB<.>  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); d=$Mim  
        rpowern = cat(2,rpowern{:}); ^qvZXb  
        rpowern = [ones(length_r,1) rpowern]; $lfn(b,  
    else $D~0~gn~  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); >W=,j)MA  
        rpowern = cat(2,rpowern{:}); w_"E*9  
    end 13$%,q)  
    hE'-is@7  
    [: n'k  
    % Compute the values of the polynomials: t9GR69v:?  
    % -------------------------------------- xA2YG|RU=b  
    y = zeros(length_r,length(n)); K-^\" W8  
    for j = 1:length(n) htO +z7  
        s = 0:(n(j)-m_abs(j))/2; .ljnDL/  
        pows = n(j):-2:m_abs(j); *2>&"B09`  
        for k = length(s):-1:1 8rAg \H3E  
            p = (1-2*mod(s(k),2))* ... zJKv'>?  
                       prod(2:(n(j)-s(k)))/              ... 8?B!2  
                       prod(2:s(k))/                     ... ihhDOmUto  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Hp|kQJ[LE  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); g>E LGG |Q  
            idx = (pows(k)==rpowers); xk9%F?)  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 5 Aw"B  
        end <6%?OJhp  
         L Tm2G4+]  
        if isnorm :;%2BSgFU  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); p}}R-D&K  
        end )W,aN)1)  
    end nK1Slg#U  
    % END: Compute the Zernike Polynomials D=A&+6B@-  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% F/,NDZN  
    V@.Ior}w  
    zH72'"w  
    % Compute the Zernike functions: 7y'RFD9@{  
    % ------------------------------ l5Uiw2  
    idx_pos = m>0; &@X<zWg  
    idx_neg = m<0; Y Vt% 0  
    rK 8lBy:<  
    3,_aAgeE  
    z = y; \Gef \   
    if any(idx_pos) r8t}TU>C  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ]6k\)#%2  
    end E<rp7~#  
    if any(idx_neg) nUaJzPl  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); .r=4pQ@#  
    end >>4qJ%bL  
    6$hQ35  
    L8@f-Kk  
    % EOF zernfun ^x]r`b  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  ,/I.t DH  
    =z69e%.  
    DDE还是手动输入的呢? n0 {i&[I~+  
    3z?> j]  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究