下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, C<XDQ>?
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, ^mQfXfuL
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? qw1J{xoHW
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? 2s%M,Nb
!*6z=:J
=:eE!
f*Js= hvO
Al}PJz\
function z = zernfun(n,m,r,theta,nflag) /|AuI qW
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. IIiN1
Lu,5
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N F-0PmO~3+W
% and angular frequency M, evaluated at positions (R,THETA) on the 5V!XD9P'
% unit circle. N is a vector of positive integers (including 0), and _xt(II
% M is a vector with the same number of elements as N. Each element x$DJ
% k of M must be a positive integer, with possible values M(k) = -N(k) Uiw7Y\Im|
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, MX,0gap
% and THETA is a vector of angles. R and THETA must have the same b%j:-^0V
% length. The output Z is a matrix with one column for every (N,M) BxYA[#fd}
% pair, and one row for every (R,THETA) pair. V}+;bbUc-
% krc!BK`V
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Ypj)6d
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), mC(t;{
% with delta(m,0) the Kronecker delta, is chosen so that the integral b0 `9wn
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, |Eu~=J7@
% and theta=0 to theta=2*pi) is unity. For the non-normalized 3
?~+5DU
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. _1Gut"!{\
% "\?G
% The Zernike functions are an orthogonal basis on the unit circle. *wcoDQ b;
% They are used in disciplines such as astronomy, optics, and ,>v9 Y#U
% optometry to describe functions on a circular domain. v*'\w#
% ,5*xE\9G
% The following table lists the first 15 Zernike functions. :exuTn
% E,yK` mPp^
% n m Zernike function Normalization (OQ
@!R&
% -------------------------------------------------- q.{/{9
% 0 0 1 1 #)}bUNc'
% 1 1 r * cos(theta) 2
m]q!y3
% 1 -1 r * sin(theta) 2 2tm-:CPG
% 2 -2 r^2 * cos(2*theta) sqrt(6) \zL7j4
% 2 0 (2*r^2 - 1) sqrt(3) I.1l
% 2 2 r^2 * sin(2*theta) sqrt(6) v=-3 ,C
% 3 -3 r^3 * cos(3*theta) sqrt(8) ,s&~U<Z
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) Uy|=A7Ad
c
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) -wMW@:M_
% 3 3 r^3 * sin(3*theta) sqrt(8) 2!?z%s-S
% 4 -4 r^4 * cos(4*theta) sqrt(10) #2ASzCe
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) [qMdOY%jx
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) ER1mA:8>E
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) [;YBX]t
% 4 4 r^4 * sin(4*theta) sqrt(10) BM~niW;k
% -------------------------------------------------- pu*u[n
% kA=~8N
% Example 1: E?U]w0g
% 0.+eF }'H
% % Display the Zernike function Z(n=5,m=1) fO!O"D5
% x = -1:0.01:1; ]GKx[F{)
% [X,Y] = meshgrid(x,x); q%Jy>IXt
% [theta,r] = cart2pol(X,Y); 4,ynt&
% idx = r<=1; Al=? j#J6p
% z = nan(size(X)); |ZlT>u
% z(idx) = zernfun(5,1,r(idx),theta(idx)); YKOO(?lv
% figure ?$4R <
% pcolor(x,x,z), shading interp .|`=mx
% axis square, colorbar (ul-J4E\O
% title('Zernike function Z_5^1(r,\theta)') qpqz. {\
% 9Ru%E>el-
% Example 2: 8'WMspX
% q)xl$*g
% % Display the first 10 Zernike functions ;Jn0e:x`E
% x = -1:0.01:1; ^|i\d\
% [X,Y] = meshgrid(x,x); mX.3R+t
% [theta,r] = cart2pol(X,Y); E816YS='
% idx = r<=1; yXo0z_ G
% z = nan(size(X)); G_N-}J>EP
% n = [0 1 1 2 2 2 3 3 3 3]; yx w27~
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; $"{3yLg
% Nplot = [4 10 12 16 18 20 22 24 26 28]; B~g05`s
% y = zernfun(n,m,r(idx),theta(idx)); #Y>%Dr&
% figure('Units','normalized') wW! r}I#
% for k = 1:10 &W<>^C2v
% z(idx) = y(:,k); j*~dFGl)
% subplot(4,7,Nplot(k)) 6aZt4Lw2\
% pcolor(x,x,z), shading interp n!eqzr{
% set(gca,'XTick',[],'YTick',[]) <*Kh=v
% axis square 'BdmFKy1
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) eGe[sv"k
% end M:UB>-`bW
% 2*q:
^
% See also ZERNPOL, ZERNFUN2. V*7Z,nA
G1;'nwf}
Xm=^\K3
% Paul Fricker 11/13/2006 nB@iQxcz
nHA`B.:B
j_'rhEdLP
h$7Fe +#I#
H"q`k5R
% Check and prepare the inputs: hp]ng!I{\u
% ----------------------------- { .3
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) =Q8H]F
error('zernfun:NMvectors','N and M must be vectors.') `\F%l?aY
end '0_j{ig
Op/79]$
f{^M.G@
if length(n)~=length(m) L_lDFF
error('zernfun:NMlength','N and M must be the same length.') <[y$D=n
end 0fPHh>u
/#qs(!
d
Rw/JPC"
n = n(:); _L4<^Etfm
m = m(:); jq("D,
if any(mod(n-m,2)) FSU%?PxO
error('zernfun:NMmultiplesof2', ... )}Rfa}MD
'All N and M must differ by multiples of 2 (including 0).') P7wqZ?
end wsJ%*
eYf
/y9J)lx
I)XOAf$6
if any(m>n) EAD0<I<>
error('zernfun:MlessthanN', ... .mT#%ex
'Each M must be less than or equal to its corresponding N.') G_^iR-
end 9o`7Kc/g
s!hI:$J.
]/o12pI
if any( r>1 | r<0 ) x!C8?K=|
error('zernfun:Rlessthan1','All R must be between 0 and 1.') 2B9i R
end RrO0uadmn
'6o`^u>
1qLl^DW
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) i+)}aA
error('zernfun:RTHvector','R and THETA must be vectors.') [*9YIjn
end !]rETP_
:>P4L,Da]
UR1JbyT
r = r(:); S$jV|xKB
theta = theta(:); r:c@17
length_r = length(r); *^@#X-NG
if length_r~=length(theta) 2JiAd*WK
error('zernfun:RTHlength', ... <'}b*wUB
'The number of R- and THETA-values must be equal.') n^iNo
end :Su #xI
<?LfOSdMs^
*2,e=tY>
% Check normalization: #+K
Kvk
% -------------------- &2io^AP
if nargin==5 && ischar(nflag) >bfYy=/
isnorm = strcmpi(nflag,'norm'); ([,vX"4
if ~isnorm OU,PO2xX9
error('zernfun:normalization','Unrecognized normalization flag.') n5Nan
end b^[W_y
else ~K~b`|1
isnorm = false; 'yPCZ`5H(
end m]FaEQVoE
N5 SLF4R1
E0"10Qbi
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% j+DE|Q&]I
% Compute the Zernike Polynomials cOSxg=~>u
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% RzA2*]%a
4M @oj
$!YKZ0)B'0
% Determine the required powers of r: -{X<*P4p
% ----------------------------------- \{c,,th
m_abs = abs(m); iNod</+"K
rpowers = []; nu&_gF,{
for j = 1:length(n) }P<Qz^sr_
rpowers = [rpowers m_abs(j):2:n(j)]; f._l105.
end RAIVdQ}.Z
rpowers = unique(rpowers); L`9TB"0R+
<y@,3DD3A9
]\CU9J|H8
% Pre-compute the values of r raised to the required powers, ,CJAzGBS
% and compile them in a matrix: YfE>Pn'r
% ----------------------------- -DTB6}kw
if rpowers(1)==0 XR*Q|4
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); tHrK~|
rpowern = cat(2,rpowern{:}); ic%?uWN
rpowern = [ones(length_r,1) rpowern]; d"#gO,H0
else Ua):y) A
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); j?EskT6
rpowern = cat(2,rpowern{:}); .z=U= _e
end 3gb|x?
U'tE^W
)O,wRd>5
% Compute the values of the polynomials: 3`8dii
% -------------------------------------- >qR7'Q wP
y = zeros(length_r,length(n)); 8g\wVKkTQp
for j = 1:length(n) OnZF6yfN=3
s = 0:(n(j)-m_abs(j))/2; nD7|8,'
pows = n(j):-2:m_abs(j); a%Uw;6|{
for k = length(s):-1:1 )|v^9
p = (1-2*mod(s(k),2))* ... &!ED# gs
prod(2:(n(j)-s(k)))/ ... HbcOTd)=5
prod(2:s(k))/ ... !7}IqSs
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... o4$Ott%Wm
prod(2:((n(j)+m_abs(j))/2-s(k))); \[:PykS
idx = (pows(k)==rpowers);
s[3e=N
y(:,j) = y(:,j) + p*rpowern(:,idx); led))qd@V-
end 2ck4C/ h
4|`Yz%'
if isnorm i=YXKe6fD
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Y RPm^kW
end MWiMUTZg3
end /D]Kkm)
% END: Compute the Zernike Polynomials / /'Tck
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% {9L 5Q
yQ9ZhdQS
rah,dVE]
% Compute the Zernike functions: :M06 ;:e
% ------------------------------ %m9CdWb=w
idx_pos = m>0; l71gf.4g
idx_neg = m<0; z"lqrSJ:
*l{yW"Su
Guh%eR'Wt
z = y; "< v\M85&
if any(idx_pos) 'Y.Vn P&H
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Mi ; glm
end b/t
if any(idx_neg) ({4]
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); !22yvT.;[
end
6xoq;=o
%JtbRs(~q
VU|;:
% EOF zernfun 4[TR0bM%