切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9141阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, CJh,-w{wJ"  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, T`pDjT  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? $m~&| s  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? *5 9|  
    `1n^~  
    Z m%,L$F*L  
    gvc/Z <Y  
    9BpxbU+L;  
    function z = zernfun(n,m,r,theta,nflag) mA$86 X_  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. l53Q"ajG  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 94et ]u%7  
    %   and angular frequency M, evaluated at positions (R,THETA) on the \2=I//YF  
    %   unit circle.  N is a vector of positive integers (including 0), and  DAiS|x  
    %   M is a vector with the same number of elements as N.  Each element sV-P R]  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) ?% 8%1d  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, M9o/6  
    %   and THETA is a vector of angles.  R and THETA must have the same ]cv|dc=  
    %   length.  The output Z is a matrix with one column for every (N,M) F-b]>3r  
    %   pair, and one row for every (R,THETA) pair. nS h~ mP  
    % 9_d# F'#F  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike _68vSYr  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), lyFlJmi,r  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral :!Dm,PP%  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, L C##em=Y  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ,52Lm=n  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. U}DE9e{/!  
    % &zB>  
    %   The Zernike functions are an orthogonal basis on the unit circle. ]LZ#[xnM7  
    %   They are used in disciplines such as astronomy, optics, and Wu<;QY($5  
    %   optometry to describe functions on a circular domain. J=78p#XUg  
    % JNXzZ4U  
    %   The following table lists the first 15 Zernike functions. t:V._@  
    % 4h_YVG]ur  
    %       n    m    Zernike function           Normalization 9B;WjXSe  
    %       -------------------------------------------------- [zm@hxym  
    %       0    0    1                                 1 /n(0w`   
    %       1    1    r * cos(theta)                    2 wu eDedz\  
    %       1   -1    r * sin(theta)                    2 *k_<|{>j(  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 4i{Xs5zk  
    %       2    0    (2*r^2 - 1)                    sqrt(3) )`{m |\b  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) Q W,:'\G  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) |a"]@W$>  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) Jnd_cJ]a  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) pZeO dh  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) -`{W~yz  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) uq-`1m }  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) &y1iLk h^  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) spm)X-[1  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ?!jJxhK<h  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 6{^\7`  
    %       -------------------------------------------------- T?f{.a)  
    % &+@`Si=  
    %   Example 1: zj] g^c;  
    % Q:Pp'[ RK  
    %       % Display the Zernike function Z(n=5,m=1) %z1^  
    %       x = -1:0.01:1; xRgdU+,Mj  
    %       [X,Y] = meshgrid(x,x); `pCy:J?d>l  
    %       [theta,r] = cart2pol(X,Y); \b $pH  
    %       idx = r<=1; IAGY-+8e  
    %       z = nan(size(X)); 2]9 2J  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); ~+0IFJ`}  
    %       figure G1e_pszD{o  
    %       pcolor(x,x,z), shading interp 8@LWg d  
    %       axis square, colorbar 9O-~Ws ;  
    %       title('Zernike function Z_5^1(r,\theta)') C7vBa<a  
    % =^rp= Az  
    %   Example 2: #k)z5vZ$h  
    % R_g(6l"3R^  
    %       % Display the first 10 Zernike functions  )sdHJ  
    %       x = -1:0.01:1; Z}0xK6  
    %       [X,Y] = meshgrid(x,x); ezL1,GT  
    %       [theta,r] = cart2pol(X,Y); '"\n,3h  
    %       idx = r<=1; ;A@DE@^5w  
    %       z = nan(size(X)); XC~"T6F  
    %       n = [0  1  1  2  2  2  3  3  3  3]; -N^Ah_9ek  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; *A8*FX>\F  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; Spx%`O<  
    %       y = zernfun(n,m,r(idx),theta(idx)); ]g;+7  
    %       figure('Units','normalized') \/j,  
    %       for k = 1:10 c CDT27 @  
    %           z(idx) = y(:,k); !',%kvJI  
    %           subplot(4,7,Nplot(k)) "u4x#7n|  
    %           pcolor(x,x,z), shading interp #[x*0K-h  
    %           set(gca,'XTick',[],'YTick',[]) /D;ugc*3  
    %           axis square CC"a2Hu/  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) DMsqTB`  
    %       end Rrry;Hr  
    % gt.F[q3  
    %   See also ZERNPOL, ZERNFUN2. ?t6wozib2  
    T}msF  
    X\H P{$fY_  
    %   Paul Fricker 11/13/2006 8]vut{  
    [kN_b<Pc,  
    |y0k}ed  
    U _A'/p^D  
    xSM1b5=Pu  
    % Check and prepare the inputs: ge?or]T1S  
    % ----------------------------- w0j'>4  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) h x5M)8#+  
        error('zernfun:NMvectors','N and M must be vectors.') nt()UC`5  
    end V[*>}XQER  
    bfncO[Q,?  
    gfIS  
    if length(n)~=length(m) c u";rnj  
        error('zernfun:NMlength','N and M must be the same length.') Da8gOZ  
    end .xT{Rz  
    B/@LE{qUn  
    r_Ou\|jU  
    n = n(:); J!~kqNI  
    m = m(:); 1QD49)  
    if any(mod(n-m,2)) =X5w=(&  
        error('zernfun:NMmultiplesof2', ... LVdR,'lS  
              'All N and M must differ by multiples of 2 (including 0).') 2p;I<C:Eo  
    end Uvc$&j^k  
    g| 3bM  
     *BM#fe  
    if any(m>n) `<v$+mG  
        error('zernfun:MlessthanN', ... g)$KN,gGuO  
              'Each M must be less than or equal to its corresponding N.') k\SqDmv  
    end rA?< \*  
    x;bA\b  
    pT~3< ,  
    if any( r>1 | r<0 ) =$y J66e  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') O"o|8 l}M/  
    end #*y.C[^5{  
    uZ3do|um  
    @VIY=qh  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) M1NdlAAf  
        error('zernfun:RTHvector','R and THETA must be vectors.') m6K7D([f  
    end EHhc2^e  
    rloxM~7!,)  
    Srmr`[i  
    r = r(:); . IY@Q  
    theta = theta(:); ,66(*\xT  
    length_r = length(r); p&<n_b  
    if length_r~=length(theta) d(RMD  
        error('zernfun:RTHlength', ... C:^ :^y  
              'The number of R- and THETA-values must be equal.') C|IHRw`[  
    end u]O}Ub`  
    E24}?t^|  
    >m!Z$m([J  
    % Check normalization: n=~!x  
    % -------------------- .L%pWRxA[  
    if nargin==5 && ischar(nflag) VrfEa d  
        isnorm = strcmpi(nflag,'norm'); &3"ODAp'  
        if ~isnorm ZWS:-]P.  
            error('zernfun:normalization','Unrecognized normalization flag.') +IbV  
        end b5]<!~Fv:`  
    else <Dgf'Gr J  
        isnorm = false; }dMX1e1h8  
    end jP}Ry=V/  
    <zTz/Hk`  
     HRbv%  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% toD!RE  
    % Compute the Zernike Polynomials ~}ifwm'7 a  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% PcZ<JJ16F$  
    bw/mF5AsW  
    \/SOpC  
    % Determine the required powers of r: Yuf+d-%  
    % ----------------------------------- 6+ptL-Zt<  
    m_abs = abs(m); 1~E4]Ef:W  
    rpowers = []; %1#|>^  
    for j = 1:length(n) vyWx{ @  
        rpowers = [rpowers m_abs(j):2:n(j)]; bxL'k/Y$  
    end <v_Wh@m  
    rpowers = unique(rpowers); .L1[Rv3  
    xfX|AC  
    d { P$}b  
    % Pre-compute the values of r raised to the required powers, WnOYU9 ;%  
    % and compile them in a matrix: d^tY?*n  
    % ----------------------------- W]bytsl  
    if rpowers(1)==0 7 u Q +]d  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); GJE+sqMX1  
        rpowern = cat(2,rpowern{:}); FGc#_4SiL  
        rpowern = [ones(length_r,1) rpowern]; m*)jnd XY  
    else 3@O/#CP+  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 1lA? 5:  
        rpowern = cat(2,rpowern{:}); L_:~{jV  
    end /GJL&RMx  
    uuh._H}-  
    n|Y}M]u,  
    % Compute the values of the polynomials: dikX_ Q>D  
    % -------------------------------------- KX!/n`2u  
    y = zeros(length_r,length(n)); n[i:$! ,  
    for j = 1:length(n) 7iv g3*  
        s = 0:(n(j)-m_abs(j))/2; w&es N$2  
        pows = n(j):-2:m_abs(j); x+%> 2qgj"  
        for k = length(s):-1:1 KC9VQeSc  
            p = (1-2*mod(s(k),2))* ... o,J8n;"l  
                       prod(2:(n(j)-s(k)))/              ... 5oB#{h  
                       prod(2:s(k))/                     ... fo>_*6i74  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... IvQuxs&a  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); :~s*yznf  
            idx = (pows(k)==rpowers); As^eL/m2L  
            y(:,j) = y(:,j) + p*rpowern(:,idx); #ifjQ7(:  
        end ih75 C"  
         bYhG`1,$-a  
        if isnorm n ^qwE  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); e iH&<AH  
        end Abmi=]\bx  
    end ^aJ]|*m  
    % END: Compute the Zernike Polynomials vGJw/ij'X  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +m~3InWq  
    e_rEu'[av  
    { Ngut  
    % Compute the Zernike functions: 4 s9^%K\8{  
    % ------------------------------ e&[~}f?  
    idx_pos = m>0; |L}tAS`8  
    idx_neg = m<0; |VyN>&r~6  
    CSWA/#&8>  
    wJgGw5  
    z = y; A+\rGVNH'S  
    if any(idx_pos) ,ag* /  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); M[iWWCX  
    end T|(w-)mv  
    if any(idx_neg) D=5%lL  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Y|/,*,u+  
    end j#p3<V S4  
    s{Y-Vdx  
    pA@R,O>zr  
    % EOF zernfun ,CqGO %DY  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  Gmmh&Uj  
    [85tZr]  
    DDE还是手动输入的呢? >\s+A2P  
    *HQ>tvUh  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究