切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9180阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, $PMD$c  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, QEP|%$:i  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? :M.]-+(  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? %-an\.a.  
    6%&DJBU!  
    x5k6"S"1,  
    5>-~!Mg1  
    7b(r'b@N  
    function z = zernfun(n,m,r,theta,nflag) >[<f\BN|  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. B %  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Z& bIjp  
    %   and angular frequency M, evaluated at positions (R,THETA) on the -ug -rdXV  
    %   unit circle.  N is a vector of positive integers (including 0), and jWK>=|)=c  
    %   M is a vector with the same number of elements as N.  Each element [6%y RQ_  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) X(Lz&fkd  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, Mr@{3do$  
    %   and THETA is a vector of angles.  R and THETA must have the same {"_V,HmEF+  
    %   length.  The output Z is a matrix with one column for every (N,M) G;]zX<2^3  
    %   pair, and one row for every (R,THETA) pair. -Zqw[2Q4  
    % w +HKvOs5c  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike BX2}ar  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ?}No'E1!I  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral (]$&.gE.F  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Zig3WiD&  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 3u'@anre  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ~/!jKH7`j  
    % [pz1f!Wn  
    %   The Zernike functions are an orthogonal basis on the unit circle. b7HT<$Wg  
    %   They are used in disciplines such as astronomy, optics, and 5Z[HlN|-!  
    %   optometry to describe functions on a circular domain. }sM_^&e4X  
    % \o5/, C  
    %   The following table lists the first 15 Zernike functions. >(W\Eh{J  
    % y7LM}dH#m  
    %       n    m    Zernike function           Normalization >viLvDng  
    %       -------------------------------------------------- `)M&^Z=D  
    %       0    0    1                                 1 DS7Pioa86  
    %       1    1    r * cos(theta)                    2 AZnFOS  
    %       1   -1    r * sin(theta)                    2 &zHY0fxX  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ,9W!cD+0  
    %       2    0    (2*r^2 - 1)                    sqrt(3) gh% Q9Ni-  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) D"P<;@ef  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ;MW=F9U*  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) Sv[+~co<l  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) QLZ%m$Z  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) -IL' (vx  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) =64Ju Wvo  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) VQbKrnX  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) @XH@i+ {B  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) _J0(GuG=~  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) *-s':('R  
    %       -------------------------------------------------- KXcE@q9  
    % i7`/"5I  
    %   Example 1: hho\e 8  
    % Pa/2])w  
    %       % Display the Zernike function Z(n=5,m=1) SKJ'6*6  
    %       x = -1:0.01:1; Fb^,%K:  
    %       [X,Y] = meshgrid(x,x); |q 0iX2W  
    %       [theta,r] = cart2pol(X,Y); dEfP272M  
    %       idx = r<=1; D`PA@t  
    %       z = nan(size(X)); ":L d}~>  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); OJs s  
    %       figure yXro6u?rC  
    %       pcolor(x,x,z), shading interp ,772$7x  
    %       axis square, colorbar A~8-{F 31  
    %       title('Zernike function Z_5^1(r,\theta)') #G("Oh  
    % j`-9.  
    %   Example 2: sDXQ{*6a  
    % .;37 e  
    %       % Display the first 10 Zernike functions +P=I4-?eX  
    %       x = -1:0.01:1; }nWW`:t kx  
    %       [X,Y] = meshgrid(x,x); ?DC;Hk<  
    %       [theta,r] = cart2pol(X,Y); cB7'>L  
    %       idx = r<=1; (E \lLlN  
    %       z = nan(size(X)); a7e.Z9k!  
    %       n = [0  1  1  2  2  2  3  3  3  3]; Ki%RSW(_`  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; YF13&E2`\  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; hJ(S]1B~G  
    %       y = zernfun(n,m,r(idx),theta(idx)); N)X51;+  
    %       figure('Units','normalized') z_87 ;y;=  
    %       for k = 1:10 ksQw|>K  
    %           z(idx) = y(:,k); XI5q>cd\Sz  
    %           subplot(4,7,Nplot(k)) yu=(m~KX   
    %           pcolor(x,x,z), shading interp Xl/2-'4  
    %           set(gca,'XTick',[],'YTick',[]) t ZA%^Y  
    %           axis square -nk0Q_7N  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}'])  -to3I  
    %       end }z_7?dn/  
    % kDWvjT  
    %   See also ZERNPOL, ZERNFUN2. :SVWi}:Co1  
    =T|m#*{.L  
    %~qY\>  
    %   Paul Fricker 11/13/2006 mA6Nmq%{ F  
    c 4L++ u#  
    MW)=l | G  
    "ax"k0  
    E=l^&[dIl  
    % Check and prepare the inputs: eed!SmP  
    % -----------------------------  ),f d,  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) qr?RU .W  
        error('zernfun:NMvectors','N and M must be vectors.') vkW]?::Cfd  
    end q#.+P1"U  
    E7|P\^}m(f  
    gv9z`[erS  
    if length(n)~=length(m) YMn_9s7<  
        error('zernfun:NMlength','N and M must be the same length.') \rmge4`4  
    end >w|2 ~oK  
    xu* dPG)v  
    Ml9  
    n = n(:); /7Ft1f  
    m = m(:); cy#N(S[ 1  
    if any(mod(n-m,2)) Z_[jah  
        error('zernfun:NMmultiplesof2', ... hB-<GGcO <  
              'All N and M must differ by multiples of 2 (including 0).') n}4Lq^$  
    end A{a`%FAV  
    @]B 7(j<'R  
    %ysf FE  
    if any(m>n) e"voXe  
        error('zernfun:MlessthanN', ... R?+:Js/  
              'Each M must be less than or equal to its corresponding N.') Dhp|%_>  
    end |=ljN7]!  
    ftbOvG/ I  
    xi"Ug41)  
    if any( r>1 | r<0 ) +U,>D +  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') Qb&gKQtt@  
    end #nJ&`woZt  
    is}Y+^j.  
    3dC ;B@  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) </Ry4x^A  
        error('zernfun:RTHvector','R and THETA must be vectors.') ?\![W5uuXG  
    end ]LZ,>v  
    XLsOn(U\&  
    o|7 h  
    r = r(:); kK$*,]iCp  
    theta = theta(:); pt- 1>Ui  
    length_r = length(r); nN!R!tJPa  
    if length_r~=length(theta) j-wz7B  
        error('zernfun:RTHlength', ... Af7&;8pM  
              'The number of R- and THETA-values must be equal.') '.d]n(/lZd  
    end /a:L"7z  
    K^+}__;]  
    8S7 YVsDz"  
    % Check normalization: .?p\=C@C+  
    % -------------------- ELQc: t -2  
    if nargin==5 && ischar(nflag) vP{;'R  
        isnorm = strcmpi(nflag,'norm'); hXz@ (cF  
        if ~isnorm oY0`igH  
            error('zernfun:normalization','Unrecognized normalization flag.') Blnc y  
        end d]w%zo,yr  
    else 'K|tgsvgme  
        isnorm = false; Hnc<)_DF  
    end j\.\ePmk]  
    lM-*{<B  
    wQ/Z:  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% L% ?3VW  
    % Compute the Zernike Polynomials D!CuE7}  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Jl(G4h V'\  
    3Mt Alc0xp  
    )NCkq~M  
    % Determine the required powers of r: q X>\*@  
    % ----------------------------------- \cRe,(?O  
    m_abs = abs(m); h`b[c.%  
    rpowers = []; y<A%&  
    for j = 1:length(n) ,7nA:0P  
        rpowers = [rpowers m_abs(j):2:n(j)]; ![a~y`<K,  
    end =Frbhh57  
    rpowers = unique(rpowers); o:"^@3  
    j: /cJt  
    !_SIq`5]@  
    % Pre-compute the values of r raised to the required powers, 58H%#3Fy  
    % and compile them in a matrix: +F3`?6UXz  
    % ----------------------------- kw.IVz<  
    if rpowers(1)==0 XT0:$0F  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); =FtJa3mHK  
        rpowern = cat(2,rpowern{:}); q^k]e{PD  
        rpowern = [ones(length_r,1) rpowern]; dT*8I0\+  
    else OGqsQ  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ~^R?HS  
        rpowern = cat(2,rpowern{:}); ,,KGcDBj  
    end =j{r95)|u  
    .a *^6TC.  
    lTn~VsoRZ  
    % Compute the values of the polynomials: T^~9'KDd  
    % -------------------------------------- ^HasT4M+x  
    y = zeros(length_r,length(n)); auS.q5 %  
    for j = 1:length(n) ]~A<Q{  
        s = 0:(n(j)-m_abs(j))/2;  p3YF  
        pows = n(j):-2:m_abs(j); r(::3TF%#q  
        for k = length(s):-1:1  {!9i8T  
            p = (1-2*mod(s(k),2))* ... 9x40  
                       prod(2:(n(j)-s(k)))/              ... Hz6yy*  
                       prod(2:s(k))/                     ... ~8 w(M  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Pqm)OZE?  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 3!V$fl0  
            idx = (pows(k)==rpowers); q"Z!}^{  
            y(:,j) = y(:,j) + p*rpowern(:,idx); OnKPD=<  
        end q4rDAQyPO  
         ']]&<B}mz  
        if isnorm &G"r>,HU  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); [Ifhh2  
        end f!"Y"g:@E  
    end Y4B< ]C4  
    % END: Compute the Zernike Polynomials -=A W. Z o  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ttK`*Ng  
    66+y@l1  
    >`@yh-'r  
    % Compute the Zernike functions: yw( E}   
    % ------------------------------ GqrOj++>  
    idx_pos = m>0; i!=2 8|_  
    idx_neg = m<0; BOQeP/>  
    #1C~i}J1  
    !tNJLOYf  
    z = y; pM i w9}  
    if any(idx_pos) F|DKp[<]8  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 6^ DsI  
    end Ph&fOj=pFb  
    if any(idx_neg) (BA2   
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Bw[jrK  
    end _x.D< n=X  
    p~sfd  
    :~2An-V  
    % EOF zernfun h!*++Y?&0  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    在线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  lIjHd#q-C  
    =cC]8Pz?  
    DDE还是手动输入的呢? {t/!a0\HS  
    jZ D\u%  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究