下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, %M&3VQ9w
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, \cQ .|S
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? 5)'P'kVi7.
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? 5+P@sD
:EZQ'3X
\Hwg) Uc{
\iU] s\{).
hazq#J!
function z = zernfun(n,m,r,theta,nflag) Z0ReWrl;`
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. ['[KR
BJL
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 8$vK5Dnn8
% and angular frequency M, evaluated at positions (R,THETA) on the o>c^aRZ{
% unit circle. N is a vector of positive integers (including 0), and dTGA5c
% M is a vector with the same number of elements as N. Each element (9$"#o
% k of M must be a positive integer, with possible values M(k) = -N(k) Ht[{ryTxu
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, Dag`>|my
% and THETA is a vector of angles. R and THETA must have the same ;GsQR+en
% length. The output Z is a matrix with one column for every (N,M) {8@\Ij
% pair, and one row for every (R,THETA) pair. }+RB=#~o
% #
|^^K!%
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 4tXSYHd3
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), lKKERO5+
% with delta(m,0) the Kronecker delta, is chosen so that the integral |}[nH>
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, EO)%UrWnC
% and theta=0 to theta=2*pi) is unity. For the non-normalized dDtFx2(R
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. R1ktj
% (~s|=Hxq|-
% The Zernike functions are an orthogonal basis on the unit circle. $h28(K%
% They are used in disciplines such as astronomy, optics, and 5j^NV&/_
% optometry to describe functions on a circular domain. 2~c~{ jl\
% S>Z|)I
% The following table lists the first 15 Zernike functions.
k0H#:c}
% c
~Fdx
% n m Zernike function Normalization -<N&0F4|*
% -------------------------------------------------- I*\^,ow
% 0 0 1 1 M>l^%`
% 1 1 r * cos(theta) 2 H?yE3w
% 1 -1 r * sin(theta) 2 2 x4=
% 2 -2 r^2 * cos(2*theta) sqrt(6) `v nJ4*
% 2 0 (2*r^2 - 1) sqrt(3) SKXD^OH
% 2 2 r^2 * sin(2*theta) sqrt(6) Vhg1/EgUr
% 3 -3 r^3 * cos(3*theta) sqrt(8) oRq!=eUu_
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) ohQAA h
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) xxa} YIe8
% 3 3 r^3 * sin(3*theta) sqrt(8) qv+R:YYOq
% 4 -4 r^4 * cos(4*theta) sqrt(10) .mxTfP=9
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) F#V q#|_)>
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) P7GRSjG
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10)
cd. brM
% 4 4 r^4 * sin(4*theta) sqrt(10) Qv#]81i(1
% -------------------------------------------------- =_pwA:z"A
% 68t}w^=
% Example 1: WZFH@I28
% 4]XI"-M^D
% % Display the Zernike function Z(n=5,m=1) 6)*xU|fU
% x = -1:0.01:1; >a>fb|r
% [X,Y] = meshgrid(x,x); j"7
JLe*
% [theta,r] = cart2pol(X,Y); 85 ]SC$
% idx = r<=1; G '#41>q+
% z = nan(size(X)); jO'|mGUM
% z(idx) = zernfun(5,1,r(idx),theta(idx));
K5"sj|d&
% figure G<qIY&D'
% pcolor(x,x,z), shading interp rPiNv
30L
% axis square, colorbar q<{NO/Mm
% title('Zernike function Z_5^1(r,\theta)') O\beKBT;
% z,f=}t[.Y
% Example 2: cT'w=
% P-Su5F
% % Display the first 10 Zernike functions E{Vo'!LY
% x = -1:0.01:1; SUdm 0y
% [X,Y] = meshgrid(x,x); RKkGITDk
% [theta,r] = cart2pol(X,Y); K|^wc$
% idx = r<=1; Ruaur]
% z = nan(size(X)); sbsu(Sz+
% n = [0 1 1 2 2 2 3 3 3 3]; f7<pEGb
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; "{BqtU*.
% Nplot = [4 10 12 16 18 20 22 24 26 28]; Ax<\jW<
% y = zernfun(n,m,r(idx),theta(idx)); mLwY]2T"
% figure('Units','normalized') sQ1jrkm
% for k = 1:10 eaZQ2
% z(idx) = y(:,k); Nhf~PO({&
% subplot(4,7,Nplot(k)) l";'6;g
% pcolor(x,x,z), shading interp +m$5a
YX
% set(gca,'XTick',[],'YTick',[]) 79Bg]~}Z
% axis square )pgrl
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) VcgBLkIF
% end :@. ;
%
'3,\@4
% See also ZERNPOL, ZERNFUN2. g`,AaWlF
oRY!\ADR
QGPw2Q
% Paul Fricker 11/13/2006 fEnQE EU~P
Tj`5L6N;8
Je7RrCz
vzR=>0#
Nw<P
bklz
% Check and prepare the inputs: gA^q^>7
% ----------------------------- f} K`Jm_}?
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 9'KonW
error('zernfun:NMvectors','N and M must be vectors.') I3y9:4
end tJD]
(F
h'5Cp(G
XB\zkf_}Xc
if length(n)~=length(m) ! -tz4vjw
error('zernfun:NMlength','N and M must be the same length.') yp]@^T N
end z@h~Vb&I
k*$3i
8<&EvOk
n = n(:); O6c\KFBSJ
m = m(:); ?b:_AO&
if any(mod(n-m,2)) PpOlt.yui
error('zernfun:NMmultiplesof2', ... @u9Mks|{
'All N and M must differ by multiples of 2 (including 0).') +"!aM?o
end CjZ2z%||=
l(kr'x
}C#3O{5
if any(m>n) H~fdbR
error('zernfun:MlessthanN', ... N}Vn;29
'Each M must be less than or equal to its corresponding N.') y\PxR708
end :L$4*8@`+
=!0I_L/
:`W|hE^
if any( r>1 | r<0 ) o$J6 ~dn
error('zernfun:Rlessthan1','All R must be between 0 and 1.') GESXc$E8
end f(Hu {c5yV
Fb_S&!
PZOKrW
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) v 81rfB5
error('zernfun:RTHvector','R and THETA must be vectors.') F[E?A95W
end ><Z'D
J=}F2C
?0vNEz[
r = r(:); Ijo(^v@
theta = theta(:); bLS&H[fK
length_r = length(r); v '9m7$
if length_r~=length(theta) 2{o10eL
error('zernfun:RTHlength', ... RU_L<Lpi
'The number of R- and THETA-values must be equal.') Mq\~`8V
end %a8&W
r6Nm!Bq7
s>[{}7ca
% Check normalization: C{m&}g`
% -------------------- la,
h
if nargin==5 && ischar(nflag) fI:H8
isnorm = strcmpi(nflag,'norm'); vrIV%l=
if ~isnorm %e=!nRc
error('zernfun:normalization','Unrecognized normalization flag.') |*\C{b
end ElR)Gd_ 8
else =ApY9`
isnorm = false; `,#!C`E 9
end +{-]P\oc
8wFn}lw&
XB/'u39
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% pj|X]4?wdI
% Compute the Zernike Polynomials ;z>p8N
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 8pe0$r`b
nQLs<]h1
p\D >z("
% Determine the required powers of r: 9k>uRV6
% ----------------------------------- -Ktwo_V*
m_abs = abs(m); =AkX4k
rpowers = []; u0]q`u/T
for j = 1:length(n) qgexb\x\4
rpowers = [rpowers m_abs(j):2:n(j)]; Eo=HNe
end 0XIxwc0Iw
rpowers = unique(rpowers); z8iENECwj
T$c+m\j6
pxplWP,
% Pre-compute the values of r raised to the required powers, -!R
l(if
% and compile them in a matrix: r8v:|Q1"
% ----------------------------- <\DUo0]J
if rpowers(1)==0 JDhwN<0R
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Xb<)LHA~3
rpowern = cat(2,rpowern{:}); ,nYZxYLf+
rpowern = [ones(length_r,1) rpowern]; T`Hw49
else (02g#A`
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); PqfVX8/q0
rpowern = cat(2,rpowern{:}); <}2A=~
_
end 9dYOH)f
\=g!$
}td6fj_{
% Compute the values of the polynomials: X_?%A54z?
% -------------------------------------- ?>?ZAr
y = zeros(length_r,length(n)); D_ ug-<QT
for j = 1:length(n) UK:M:9
s = 0:(n(j)-m_abs(j))/2; RKk"
pows = n(j):-2:m_abs(j); i'HST|!j
for k = length(s):-1:1 vnZ/tF
p = (1-2*mod(s(k),2))* ... "m>};.lj
prod(2:(n(j)-s(k)))/ ... Xz* tbW#
prod(2:s(k))/ ... |"\lL9CT
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 8b~7~VCk
prod(2:((n(j)+m_abs(j))/2-s(k))); Y3M','H([
idx = (pows(k)==rpowers); 2'dG7lLu4
y(:,j) = y(:,j) + p*rpowern(:,idx); mxhW|}_-j
end AeQC:
rgn|24x
if isnorm Te}IMi:
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); i*A$SJ:}
end f#c BQ~
end Cha?7F[xL
% END: Compute the Zernike Polynomials -faw:
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% [Ekgft&
LOt#1Qv
6\mC$: F
% Compute the Zernike functions: f>4+,@G
% ------------------------------ %Fm`Y.l
idx_pos = m>0; hhj
,rcsi
idx_neg = m<0; )SD_}BY%k
8fEAYRGd
W7]mfy^
z = y; dcR6KG 8
if any(idx_pos) 3]7ipwF2q
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 6(sfpK'
end (ai72#nFtb
if any(idx_neg) cnYYs d{
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); E =
^-Z
end "mG!L$
8ZzU^x
-KA4Inn]5
% EOF zernfun `F@f?*s: