切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9063阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, D#d8^U  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, nR o=J5tY  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? lj EB  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? chO'Q+pw  
    'je8k7`VA  
    ?..i4  
    eA1k)gjE  
    (L y%{ Y  
    function z = zernfun(n,m,r,theta,nflag) }0BL0N`_  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. L{2b0Zh'  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N C!7U<rI  
    %   and angular frequency M, evaluated at positions (R,THETA) on the VR4E 2^  
    %   unit circle.  N is a vector of positive integers (including 0), and KP=D! l&q  
    %   M is a vector with the same number of elements as N.  Each element Mu'^OX82  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) X:G& 5  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 7MO  
    %   and THETA is a vector of angles.  R and THETA must have the same U~{Sa+  
    %   length.  The output Z is a matrix with one column for every (N,M) .'5'0lR5  
    %   pair, and one row for every (R,THETA) pair. l5=u3r9WYC  
    % O1?B{F/ e  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike  n5bXQ  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), uX<+hG.n}  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral (|g").L  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, C~ZE95g  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized VLh%XoQx[  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. t7|MkX1  
    % 9m\)\/V  
    %   The Zernike functions are an orthogonal basis on the unit circle. |.b%rVu  
    %   They are used in disciplines such as astronomy, optics, and 0W~.WkD  
    %   optometry to describe functions on a circular domain. H\)gE>  
    % <#xrrRhm}  
    %   The following table lists the first 15 Zernike functions. w::r?.9  
    % =<[7J]%  
    %       n    m    Zernike function           Normalization YO@hE>  
    %       -------------------------------------------------- |x d@M-ln  
    %       0    0    1                                 1 v]WH8GI  
    %       1    1    r * cos(theta)                    2 nU} ~I)@V  
    %       1   -1    r * sin(theta)                    2 %<aImR]  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) AA))KBXq  
    %       2    0    (2*r^2 - 1)                    sqrt(3) kF+ZW%6N  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) 2;~KL-h0TK  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) $Q8P@L)[  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) '"` Lv/  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) D^,\cZbY  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) H9%l?r5  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) tgO+*q5B  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) cwu$TP A>  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) [zY!'cz?  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 6RH/V:YY  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) `0yb?Nk `:  
    %       -------------------------------------------------- R]CZw;zS_  
    % 8W-]t1O%!  
    %   Example 1: ?N4A9W9  
    % &bB6}H(  
    %       % Display the Zernike function Z(n=5,m=1) \4OK!6LkI  
    %       x = -1:0.01:1; n<{aPLQ  
    %       [X,Y] = meshgrid(x,x); 54=}GnZN  
    %       [theta,r] = cart2pol(X,Y); jZrY=f  
    %       idx = r<=1; z8b _ _%Br  
    %       z = nan(size(X)); "3@KRb4f  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); Ru)(dvk}S  
    %       figure ZR1+ O 8  
    %       pcolor(x,x,z), shading interp HKpD 2M  
    %       axis square, colorbar [FB&4>V/  
    %       title('Zernike function Z_5^1(r,\theta)') GSQfg  
    % c2/FHI0J;  
    %   Example 2: --Oprl  
    % 0[lS(K  
    %       % Display the first 10 Zernike functions bKYY{V55  
    %       x = -1:0.01:1; PM@XtL7J  
    %       [X,Y] = meshgrid(x,x); !{IC[g n  
    %       [theta,r] = cart2pol(X,Y); /[0F6  
    %       idx = r<=1; ?hKm&B;d  
    %       z = nan(size(X)); +q7qK*  
    %       n = [0  1  1  2  2  2  3  3  3  3]; iNt 4>  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; ;JYoW{2  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; ?3[tJreVj  
    %       y = zernfun(n,m,r(idx),theta(idx)); ?;Un#6b  
    %       figure('Units','normalized') \ZqK\=  
    %       for k = 1:10 # 2d,U\_  
    %           z(idx) = y(:,k); #`vVg GZ&  
    %           subplot(4,7,Nplot(k))  ?J<T  
    %           pcolor(x,x,z), shading interp mLJDxh'B  
    %           set(gca,'XTick',[],'YTick',[]) .XIr?>G  
    %           axis square 4*iHw+%mq  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) mIRAS"Q!m  
    %       end Ex 6o=D2  
    % 'X54dXS?l  
    %   See also ZERNPOL, ZERNFUN2. t{~@I  
    9MT3T?IS  
    &T7cH>E'K^  
    %   Paul Fricker 11/13/2006 R+s1[Z  
    WI6(#8^p  
    M=W 4:H,gx  
    Oohq9f#!  
    Uh*@BmDA  
    % Check and prepare the inputs: N^lAG"Jao[  
    % ----------------------------- u-kZW1wrQ  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) _1P`]+K\D$  
        error('zernfun:NMvectors','N and M must be vectors.') x=h0Fq ,T  
    end s*f1x N<  
    0#<WOns1   
    a/34WFC  
    if length(n)~=length(m) V(r`.75  
        error('zernfun:NMlength','N and M must be the same length.') b) Ux3PB  
    end %0lf  
    RYH)AS4w'  
    n6/fan;  
    n = n(:); Y_+ SA|s  
    m = m(:); kB V/rw  
    if any(mod(n-m,2)) [-Cu4mff  
        error('zernfun:NMmultiplesof2', ... $]1qbE+  
              'All N and M must differ by multiples of 2 (including 0).') T RDxT  
    end %uua_&#)  
    z#RuwB+  
    x df?nt  
    if any(m>n) >4~#%&  
        error('zernfun:MlessthanN', ... 3+%nn+m  
              'Each M must be less than or equal to its corresponding N.') dkpQ ZXi9%  
    end s@PLS5d"  
    'aZAS Pn[  
    lQWBCJ8y  
    if any( r>1 | r<0 ) <W2ZoqaV  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 8A!'I<S1  
    end wh*:\_!0\  
    :s]\k%"  
    12-EDg/1  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) @gEr+O1K(  
        error('zernfun:RTHvector','R and THETA must be vectors.') &1l~&,,  
    end >P<'L4;  
    T=>vh*J  
    m2Q$+p@  
    r = r(:); PV(4$I}  
    theta = theta(:); SwX@I6huM  
    length_r = length(r); :xtT)w  
    if length_r~=length(theta) =gs~\q  
        error('zernfun:RTHlength', ... KJX>DL 9\  
              'The number of R- and THETA-values must be equal.') K'V 2FTJI  
    end 3 1k  
    D?mDG|Z  
    onib x^Fcd  
    % Check normalization: [83>T ,  
    % -------------------- f7 wm w2  
    if nargin==5 && ischar(nflag)  HD H  
        isnorm = strcmpi(nflag,'norm'); !?b/-~o7S  
        if ~isnorm (2tH"I  
            error('zernfun:normalization','Unrecognized normalization flag.') \ FXp*FbQ  
        end ) P%4:P  
    else '-.wFB;  
        isnorm = false; {!r#f(?uT  
    end h;nQxmJ9  
    =|"= l1  
    C5MqwNX  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% q~M2:SN@X  
    % Compute the Zernike Polynomials F 3s?&T)[G  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% >: $"a  
    }jiK3?e  
    j_V/GnEQ  
    % Determine the required powers of r: &oEyixe  
    % ----------------------------------- TL'0T,Jo  
    m_abs = abs(m); }^ ,q#'  
    rpowers = []; 5NFRPGYX  
    for j = 1:length(n) WL:0R>0  
        rpowers = [rpowers m_abs(j):2:n(j)]; -yl;3K]l  
    end #D0 ~{H  
    rpowers = unique(rpowers); UKj`_a6  
    0qR$J  
    EZ{\D!_Y  
    % Pre-compute the values of r raised to the required powers, #a'r_K=ch)  
    % and compile them in a matrix: JnHNkCaU  
    % ----------------------------- x,uBJ  
    if rpowers(1)==0 N|<bVq%  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ^)<w*iqBD  
        rpowern = cat(2,rpowern{:}); $+jy/:]D  
        rpowern = [ones(length_r,1) rpowern]; GXYj+ qJ  
    else shzG Eb  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ju.OW`GM  
        rpowern = cat(2,rpowern{:}); ~bGC/I;W>  
    end )qd= {  
    5*1#jiq  
    7>&1nBh. f  
    % Compute the values of the polynomials: t R ;{.  
    % -------------------------------------- S(tEw Xy  
    y = zeros(length_r,length(n)); QTE:K?  
    for j = 1:length(n) Y/D -V  
        s = 0:(n(j)-m_abs(j))/2; Bq{ ]Eh0%  
        pows = n(j):-2:m_abs(j); ~ k<SbFp  
        for k = length(s):-1:1 73)Ll"(  
            p = (1-2*mod(s(k),2))* ... %"+4 D,'l  
                       prod(2:(n(j)-s(k)))/              ... &?r*p0MQC  
                       prod(2:s(k))/                     ... 1daL y  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Km"&mT $  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); *m&%vj.Kc  
            idx = (pows(k)==rpowers); \HD-vINV;  
            y(:,j) = y(:,j) + p*rpowern(:,idx); BV1u,<T"  
        end }<&d]N  
         0ERsMnU'  
        if isnorm 3Y(9\}E@`  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); X|Dpt2A=  
        end fp tIc#4  
    end s>r ^r%uK  
    % END: Compute the Zernike Polynomials 67?n-NP  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  Oq}ip  
    6Hl < ,(vn  
    Z/c_kf[  
    % Compute the Zernike functions: +(y>qd  
    % ------------------------------ ` yYvYc  
    idx_pos = m>0; #h{Nz/h+  
    idx_neg = m<0; xG w?'\  
    "qE {a>d  
    IX.sy  
    z = y; yf?W^{^|  
    if any(idx_pos) Z)5klg$c  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 3a9u"8lG  
    end %",ULtZ+  
    if any(idx_neg) Z'e\_C  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); F+3!uWUK  
    end *l {4lu  
    (V)9s\Le_  
    K-6p'|  
    % EOF zernfun zWtj|%ts  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  bwv/{3G,Ys  
    (8+.#1!*  
    DDE还是手动输入的呢? \nn56o@eN  
    "87O4 #$  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究