切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9219阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, GkFNLM5'  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, {r)M@@[  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? [f}1wZ*  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? JnDR(s4(E  
    .O^|MhBJu  
    D=Y HJ>-wB  
    H<"j3qt  
    a\MJbBXv  
    function z = zernfun(n,m,r,theta,nflag) hlZjk0ez  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. IYPLitT  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N psVRdluS   
    %   and angular frequency M, evaluated at positions (R,THETA) on the ;21JM2JI8  
    %   unit circle.  N is a vector of positive integers (including 0), and }f}&|Vap  
    %   M is a vector with the same number of elements as N.  Each element T9A5L"-6T  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) (x@"Dp=MZW  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, </QSMs  
    %   and THETA is a vector of angles.  R and THETA must have the same x&d<IU)5  
    %   length.  The output Z is a matrix with one column for every (N,M) _G|6xlO  
    %   pair, and one row for every (R,THETA) pair. p pq#5t^[)  
    % C#R9Hlb  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike bOdD:=f  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), .B*)A.   
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral @[Th{HTc.G  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, mfvQ]tz_+  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized AXCJFqk;  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Z"jo xZ  
    % )j]RFt  
    %   The Zernike functions are an orthogonal basis on the unit circle. uu>g(q?4II  
    %   They are used in disciplines such as astronomy, optics, and `*a,8M%  
    %   optometry to describe functions on a circular domain. 7vFqO;  
    % 8 _J:Yg  
    %   The following table lists the first 15 Zernike functions. 21qhlkdc  
    % oS4ag  
    %       n    m    Zernike function           Normalization u(R`}C?P'  
    %       -------------------------------------------------- 1tDN$rM5  
    %       0    0    1                                 1 I(.XK ucU  
    %       1    1    r * cos(theta)                    2 JpDkf$kM  
    %       1   -1    r * sin(theta)                    2 '};Xb|msU  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) -vyC,A  
    %       2    0    (2*r^2 - 1)                    sqrt(3) n!p&.Mt  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) R~i<*  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) Z& %61jGK  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) +vP1DXtj(  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) epnDvz\   
    %       3    3    r^3 * sin(3*theta)             sqrt(8) b+3pu\w `  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) G4i&:0  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 6T-(GHzfHJ  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5)  tua+R_"  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10)  7;XdTx  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) jHd~yCq  
    %       -------------------------------------------------- AXyuXB  
    % QMIXz[9w  
    %   Example 1: 2eNm2;  
    % *M="k 1P1  
    %       % Display the Zernike function Z(n=5,m=1) ,MLPVDN*D  
    %       x = -1:0.01:1; 6V)#Yf  
    %       [X,Y] = meshgrid(x,x); v1} $FmHL"  
    %       [theta,r] = cart2pol(X,Y); ,=mn*  
    %       idx = r<=1; {E9Y)Z9  
    %       z = nan(size(X)); Zy'bX* s|  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 7(jt:V6V  
    %       figure 1G\ugLm  
    %       pcolor(x,x,z), shading interp =Ru i  
    %       axis square, colorbar 6ul34\;  
    %       title('Zernike function Z_5^1(r,\theta)') AOTI&v  
    % y]Y)?])  
    %   Example 2: f.,-KIiF  
    % W>"i0p  
    %       % Display the first 10 Zernike functions B *:6U+I  
    %       x = -1:0.01:1; mJT7e  
    %       [X,Y] = meshgrid(x,x); MW p^.  
    %       [theta,r] = cart2pol(X,Y); .G^ .kg ,  
    %       idx = r<=1; $tb$gO  
    %       z = nan(size(X)); _+UD>u{  
    %       n = [0  1  1  2  2  2  3  3  3  3]; s?=J#WV1y  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; _-EHG  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; sl)_HA7G  
    %       y = zernfun(n,m,r(idx),theta(idx));  @]A4{  
    %       figure('Units','normalized') 2qN6{+]  
    %       for k = 1:10 ^UJO(   
    %           z(idx) = y(:,k); JK_sl>v.7  
    %           subplot(4,7,Nplot(k)) GwpJxiFgk  
    %           pcolor(x,x,z), shading interp vXyaOZ  
    %           set(gca,'XTick',[],'YTick',[]) ><$hFrR!  
    %           axis square J L]6o8x  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Xh){W~ -  
    %       end "5vFa7y  
    % z7J#1q~:yY  
    %   See also ZERNPOL, ZERNFUN2. )'nGuL-w!i  
    e`Yx]3;u(  
    iA=9Lel  
    %   Paul Fricker 11/13/2006 +f|u5c  
    -[ F<u  
    _pW\F(+8  
    GCc@ :*4[  
    eRD s?n3F  
    % Check and prepare the inputs: X1$0'u sS  
    % ----------------------------- M7En%sBp  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) g,9o'fs`x  
        error('zernfun:NMvectors','N and M must be vectors.') c^I_~OwaE  
    end !x|Ok'izDL  
    DaaLRMQ=  
    v2dCna\  
    if length(n)~=length(m) )j!22tlL  
        error('zernfun:NMlength','N and M must be the same length.') |odl~juU  
    end ->:G+<  
    4mUQVzV  
    l[.RnM[v  
    n = n(:); P)ZGNtO9fG  
    m = m(:); 8D)2/$NsY}  
    if any(mod(n-m,2)) \,lgv  
        error('zernfun:NMmultiplesof2', ... Kp8!^os  
              'All N and M must differ by multiples of 2 (including 0).') BY72fy#e  
    end X5'foFE'  
    ma vc$!y  
    Tw);`&Ulo  
    if any(m>n) h )fi9  
        error('zernfun:MlessthanN', ... m^%[  
              'Each M must be less than or equal to its corresponding N.') -# |J  
    end O\=3{  
    +m]$P,yMt  
    l+Uy  
    if any( r>1 | r<0 ) O#uTwnW  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 6m|j " m  
    end 0sLR5A  
    Y FL9Q<  
    1nye.i~  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) $RfM}!7?  
        error('zernfun:RTHvector','R and THETA must be vectors.') 49E<`f0  
    end '!I^Lfz-Z  
    .'saUcVg:  
    oDXUa5x  
    r = r(:); +'Ec)7m  
    theta = theta(:); `B}( Ln  
    length_r = length(r); s+8 v7ZJ  
    if length_r~=length(theta) za `  
        error('zernfun:RTHlength', ... JBo/<W#|  
              'The number of R- and THETA-values must be equal.') \cP\I5IW:s  
    end -^`]tF`M  
    K3Zc>QL{  
    DG}} S 5  
    % Check normalization: XbsEO>_Z'A  
    % -------------------- T0J"Wr>WY  
    if nargin==5 && ischar(nflag) ;I1}g]  
        isnorm = strcmpi(nflag,'norm'); EbZRU65J}O  
        if ~isnorm Dm?>U1{   
            error('zernfun:normalization','Unrecognized normalization flag.') K+5S7wFDZ  
        end =\GuIH2  
    else NHG+l)y:  
        isnorm = false; uDJi2,|n  
    end tt2`N3Eu\  
    9tvLj5~  
    ua# sW  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% &^KmfT5C  
    % Compute the Zernike Polynomials O:cta/M  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% St}j^i  
    tkx1iBW=  
    z;yb;),  
    % Determine the required powers of r: ~0aWjMc(>  
    % ----------------------------------- Hg\+:}k&9  
    m_abs = abs(m); xs_l+/cZ  
    rpowers = []; ;O5p>o  
    for j = 1:length(n) ">PpC]Y1  
        rpowers = [rpowers m_abs(j):2:n(j)]; Nn5z   
    end JDrh-6Zgj  
    rpowers = unique(rpowers); qfE>N?/  
    }JyWy_Y  
    WD c2Qt  
    % Pre-compute the values of r raised to the required powers, JfS:K'  
    % and compile them in a matrix: VDq4n;p1  
    % ----------------------------- 6UOV,`:m+  
    if rpowers(1)==0 H-$)@  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 3)ac  
        rpowern = cat(2,rpowern{:}); G66A]FIg  
        rpowern = [ones(length_r,1) rpowern]; jsL\{I^>  
    else i j&_>   
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); !m)P*Lw  
        rpowern = cat(2,rpowern{:}); eV$pza  
    end eq +t%  
    T 7`9[  
    "X4L+]"$g  
    % Compute the values of the polynomials: ZS[(r-)$F  
    % -------------------------------------- Blv!%es  
    y = zeros(length_r,length(n)); \-3\lZ3qj  
    for j = 1:length(n) ma@3BiM  
        s = 0:(n(j)-m_abs(j))/2; 2]W"sT[  
        pows = n(j):-2:m_abs(j); c^0Yu Bps[  
        for k = length(s):-1:1 ip6$Z3[)  
            p = (1-2*mod(s(k),2))* ... `|@#~  
                       prod(2:(n(j)-s(k)))/              ... o;bK 7D  
                       prod(2:s(k))/                     ... n46A  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... )QS4Z{)U  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); k{_ Op/k}V  
            idx = (pows(k)==rpowers); %%J)@k^vH  
            y(:,j) = y(:,j) + p*rpowern(:,idx); ? ->:,I=<~  
        end J!r,ktO^U?  
         ~xI1@^ r  
        if isnorm OL+dx`Y  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 3J t_=!qlo  
        end |^&n\vXv  
    end pm$ZKM  
    % END: Compute the Zernike Polynomials I L dRN  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% i oCoFj  
    Fl{:aq"3  
    P2J{ Ml#  
    % Compute the Zernike functions: Cw`8[)=}o  
    % ------------------------------ g$C-G5/bjD  
    idx_pos = m>0; WmU5YZ(mAq  
    idx_neg = m<0; yU* upQ  
    Da_8Q(XFe  
    0ox 8_l  
    z = y; ke.{wh\0  
    if any(idx_pos) "-aak )7w  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 6{h+(|.(  
    end ]L0GIVIE  
    if any(idx_neg) Z9cg,#(D  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Hg)5c!F7  
    end G dZ_  
    `J*~B  
    >7@kwj-f)  
    % EOF zernfun LxqK@Q<B  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  zsI0Q47\  
    kgK7 T  
    DDE还是手动输入的呢? ]M{SM`Ya  
    3a#637%  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究