下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, cqXP} 5
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, m}`!FaB #
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? D6z*J?3^#&
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? *{TB<^ *
d K.k,7R
}*Z *wC
z"D'rHxy
s&.VU|=VQ@
function z = zernfun(n,m,r,theta,nflag) !I)wI~XF)5
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. %OT} r
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N u]`ur#_
% and angular frequency M, evaluated at positions (R,THETA) on the *M^(A}+O
% unit circle. N is a vector of positive integers (including 0), and L JW0UF|
% M is a vector with the same number of elements as N. Each element C[c^zn
% k of M must be a positive integer, with possible values M(k) = -N(k) O>
.gcLA
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, >/J!:Htk+K
% and THETA is a vector of angles. R and THETA must have the same hsCts@R
% length. The output Z is a matrix with one column for every (N,M) _98
%?0
% pair, and one row for every (R,THETA) pair. MVDEVq0
% 5-[bd I
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike a I^Z0[P+
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), U]Pl` =SL
% with delta(m,0) the Kronecker delta, is chosen so that the integral o!$O+%4
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 7gxC
xfL$
% and theta=0 to theta=2*pi) is unity. For the non-normalized 9lU"m_
QT4
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. $- 4 Zi
% <36z,[,kZ@
% The Zernike functions are an orthogonal basis on the unit circle. w%' 8bH!
% They are used in disciplines such as astronomy, optics, and 6O@/Y;5i
% optometry to describe functions on a circular domain. "Qci+Qq
% lX)ZQY:= :
% The following table lists the first 15 Zernike functions. ZkA05wPZ#
% nGoQwKIW
% n m Zernike function Normalization md
S`nhb
% -------------------------------------------------- Thc"QIk&4
% 0 0 1 1 )\3
RR.p
% 1 1 r * cos(theta) 2 .=`r?#0
% 1 -1 r * sin(theta) 2 f?Am)
% 2 -2 r^2 * cos(2*theta) sqrt(6) qi51'@
% 2 0 (2*r^2 - 1) sqrt(3) dsrKHi
% 2 2 r^2 * sin(2*theta) sqrt(6) _]aA58,j
% 3 -3 r^3 * cos(3*theta) sqrt(8) =wcqCW,]
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) P&kjtl68Y
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) N0mP
EF2
% 3 3 r^3 * sin(3*theta) sqrt(8) *h9S\Pv>j
% 4 -4 r^4 * cos(4*theta) sqrt(10) 9$Dsm@tX
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 42B_8SK
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) rfH'&k
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) g#}a?kTM@
% 4 4 r^4 * sin(4*theta) sqrt(10) kklM"Av
% -------------------------------------------------- q'9}Hz
% N"k
IQe*}1
% Example 1: V7}3H2]^
% XLq%nVBM8\
% % Display the Zernike function Z(n=5,m=1) t^')ST
% x = -1:0.01:1; 99/`23YL
% [X,Y] = meshgrid(x,x); rY:A LA
% [theta,r] = cart2pol(X,Y); ,GVD.whUl
% idx = r<=1; n97pxD_74
% z = nan(size(X)); %4#Q3YlyD
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 5J vrQGvL
% figure &i{>Li
% pcolor(x,x,z), shading interp |,)=-21&;
% axis square, colorbar =" Sb>_
% title('Zernike function Z_5^1(r,\theta)') |G(9mnZ1
% I[g;p8jr
% Example 2: vw5f|Q92
% NW%u#MZ[h
% % Display the first 10 Zernike functions Nk
~"f5q7
% x = -1:0.01:1; V'Z Z4og
% [X,Y] = meshgrid(x,x); _VM()n;
% [theta,r] = cart2pol(X,Y); bd&
/B&a
% idx = r<=1; L0QF(:F5
% z = nan(size(X)); G9qN1q~
% n = [0 1 1 2 2 2 3 3 3 3]; <n|ayxA)
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; W3~xjS"h
% Nplot = [4 10 12 16 18 20 22 24 26 28]; ;D>*Pzj
% y = zernfun(n,m,r(idx),theta(idx)); TDY2
M
% figure('Units','normalized') G\4*6iw:
% for k = 1:10 y7Sey;
% z(idx) = y(:,k); :d{-"RAG"
% subplot(4,7,Nplot(k)) lXnzomU
% pcolor(x,x,z), shading interp m2esVvP
% set(gca,'XTick',[],'YTick',[]) c8<qn+=%?
% axis square xa&5o`>1G
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 7}%Z>
% end 1RM@~I$0
% M[1!#Q><!
% See also ZERNPOL, ZERNFUN2. Hsl0|jy(/
H5J1j*P<d
=Ul{#R
z
% Paul Fricker 11/13/2006 lk/[xQ/
tA{B~>
eWw#
T^
MUjfqxTT
HCIS4}lQ
% Check and prepare the inputs: Nfo`Q0\[P
% ----------------------------- yR'%UpaE
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) [,?5}'we
error('zernfun:NMvectors','N and M must be vectors.') Spm7kw
end E#A%aLp0E
?#]wxH,
U9/6F8D1Y1
if length(n)~=length(m) 7AouiL 2-W
error('zernfun:NMlength','N and M must be the same length.') NG\g_^.M
end c80!Ub@
o>Faq+@
F!*tE&Se+
n = n(:); l1#F1q`^t
m = m(:); K
Ml>~r
if any(mod(n-m,2)) Bh0hUE
error('zernfun:NMmultiplesof2', ... 3<A$lG
'All N and M must differ by multiples of 2 (including 0).') &cuDGo.
end 5!V%0EQqw
FofeQ
nd3n 'b
if any(m>n) Uz$.sa
error('zernfun:MlessthanN', ... /OtLIM+7~{
'Each M must be less than or equal to its corresponding N.') efUa[XO
end K}a3Bj,
LAjreC<W
l)K8.(2
if any( r>1 | r<0 ) Z#znA4;)
error('zernfun:Rlessthan1','All R must be between 0 and 1.') Zog&:]P'F
end K|V<e[X[V
`E:&a]ul
J*nWCL
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) {[:]}m(c
error('zernfun:RTHvector','R and THETA must be vectors.') Sece#K2J|
end dW#T1mB
%k=c9ll@:
W\1V`\gF
r = r(:); ^=@`U_(,G
theta = theta(:); 1a@b-V2
d&
length_r = length(r); oUNuM%g9Dy
if length_r~=length(theta) <;P40jDL
error('zernfun:RTHlength', ... ]}z"H@k
'The number of R- and THETA-values must be equal.') ,qu7XFYrY
end e754g(|>b
&OXm^f)K
F!qt=)V@w
% Check normalization: ^SvGSxi
% -------------------- g|=1U
if nargin==5 && ischar(nflag) IlfH
isnorm = strcmpi(nflag,'norm'); h,@tfd U^
if ~isnorm \ Dccf_(Pb
error('zernfun:normalization','Unrecognized normalization flag.') a1
v%G
end 5Ei4$T
else @O9wit.
isnorm = false; }/J<#}t
end YS0^!7u
PUbfQg
{'NXJ!I;t
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% )uRR!<"~
% Compute the Zernike Polynomials mPJ@hr%3
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% lEXI<b'2
K)N'~jCG
B1 Y
% Determine the required powers of r: Ev]oPCeA
% ----------------------------------- BG^)?_69
m_abs = abs(m); /C6$B)w_*{
rpowers = []; 6(8zt"E
for j = 1:length(n) {&uN q^Ch
rpowers = [rpowers m_abs(j):2:n(j)]; D $&6 8
end p>h}k_s
rpowers = unique(rpowers); r8,'LZI z
7Sl"q=>
z`:tl7
% Pre-compute the values of r raised to the required powers, 5gKXe4}\/|
% and compile them in a matrix: 3DOc,}nI~@
% ----------------------------- *3# RS
if rpowers(1)==0 uFnq 3m^u
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); bPA1>p7
rpowern = cat(2,rpowern{:}); @pN6uDD}R
rpowern = [ones(length_r,1) rpowern]; WXFCe@
else :V~
AjV
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); yi:1cLq2
rpowern = cat(2,rpowern{:}); t*wV<b
end OLE@35"v]
ge|Cvv
CF]#0*MI
% Compute the values of the polynomials: vl>_;}W7
% -------------------------------------- Fd/Ra]@\Y
y = zeros(length_r,length(n)); lS |:4U.
for j = 1:length(n) iD)P6"
s = 0:(n(j)-m_abs(j))/2; qk=OodEMK
pows = n(j):-2:m_abs(j); TXbnK"XQ
for k = length(s):-1:1 6F; |x
p = (1-2*mod(s(k),2))* ... aC#{@t
prod(2:(n(j)-s(k)))/ ... 9 E2OCLWrE
prod(2:s(k))/ ... i?n#ge
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ZN}U^9m=
prod(2:((n(j)+m_abs(j))/2-s(k))); paZcTC
idx = (pows(k)==rpowers); !laOiH
y(:,j) = y(:,j) + p*rpowern(:,idx); ?6 _U>d{
end FF~VV<