切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9252阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, O>SuZ>g+7  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 1#> &p%P!  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? "GwWu-GS  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? ;# R3k  
    MK-a $~<  
    Evr2|4|O~  
    #aitESbT  
    q,;".3VQ  
    function z = zernfun(n,m,r,theta,nflag) k1f3?l vlU  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. &\"Y/b]  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N [}A_uOGEP  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ){O1&|z-  
    %   unit circle.  N is a vector of positive integers (including 0), and i!SW?\  
    %   M is a vector with the same number of elements as N.  Each element ;OQ'B=uK  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) Jw:Fj {D  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, pAJ=f}",]E  
    %   and THETA is a vector of angles.  R and THETA must have the same M>?aa6@0  
    %   length.  The output Z is a matrix with one column for every (N,M) k_*XJ<S!Y  
    %   pair, and one row for every (R,THETA) pair. ~:/%/-^  
    % ilDJwZg#  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike  /,1SE(  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), }.fL$,7a  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral Yl)eh(\&J  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, TnN^2:cU  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized $kxu;I  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. )3]83:lD2  
    % lSn5=^]q  
    %   The Zernike functions are an orthogonal basis on the unit circle. kF(Ce{;z  
    %   They are used in disciplines such as astronomy, optics, and UfK4eZx*`  
    %   optometry to describe functions on a circular domain. O%YjWb  
    % QO5OnYh  
    %   The following table lists the first 15 Zernike functions. I;Al? &uw  
    % #joF{ M{  
    %       n    m    Zernike function           Normalization }': EJ~H  
    %       -------------------------------------------------- n\Z^K  
    %       0    0    1                                 1 n!UMU^  
    %       1    1    r * cos(theta)                    2 =gW"#ZjL){  
    %       1   -1    r * sin(theta)                    2 gf:vb*#Wa  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) s~'9Hv9  
    %       2    0    (2*r^2 - 1)                    sqrt(3) ?*CRa$_I|  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) (y=dR1p  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) _wm~}_Q  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) CCuxC9i7  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) !(W[!%  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) zo_k\K`{@  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) &e%{k@  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) b%3Q$wIJ6  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) ISpeV  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) qA UaF;{  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) - waX#U T=  
    %       -------------------------------------------------- .>k=A|3G  
    % $|Q".dD  
    %   Example 1: F`fGz)Mk  
    % 2#'rk'X,K  
    %       % Display the Zernike function Z(n=5,m=1) a;56k  
    %       x = -1:0.01:1; MP jr_yc]  
    %       [X,Y] = meshgrid(x,x); &\&'L|0F  
    %       [theta,r] = cart2pol(X,Y); &@=u+)^-{  
    %       idx = r<=1; PASuf.U$"  
    %       z = nan(size(X)); K{|w 43>D  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); (d54C(")  
    %       figure L5R `w&Up  
    %       pcolor(x,x,z), shading interp K1;z Mh  
    %       axis square, colorbar La\Q'0  
    %       title('Zernike function Z_5^1(r,\theta)') &K06}[J  
    % vkd *ER^  
    %   Example 2: Er`TryN|}  
    % W7%p^;ZQ$  
    %       % Display the first 10 Zernike functions :[ L{KFQU  
    %       x = -1:0.01:1; fG<Dhz@  
    %       [X,Y] = meshgrid(x,x); +<gg  
    %       [theta,r] = cart2pol(X,Y); ~GSpl24W<  
    %       idx = r<=1; w-J"zC  
    %       z = nan(size(X)); a4%`"  
    %       n = [0  1  1  2  2  2  3  3  3  3]; ,r@xPZPz:e  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; ex.+'m<g  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; dI!8S  
    %       y = zernfun(n,m,r(idx),theta(idx)); |drf"lX<{  
    %       figure('Units','normalized') }|AX_=a  
    %       for k = 1:10 6e*%\2UA  
    %           z(idx) = y(:,k); % =y;L:S\p  
    %           subplot(4,7,Nplot(k)) (viWY  
    %           pcolor(x,x,z), shading interp eUYZxe :6  
    %           set(gca,'XTick',[],'YTick',[])  dFzYOG1  
    %           axis square !zU/Hq{wcK  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) O97VdNT8  
    %       end Dq|GQdZ>o  
    % yGRR8F5>(  
    %   See also ZERNPOL, ZERNFUN2.  "";=DH  
    ^Fn%K].X  
    Hyf"iYv+  
    %   Paul Fricker 11/13/2006 -jFP7tEv  
    B<Ol+)@,}  
    2v4W6R  
    N5yJ'i~,M  
    X|,["Az 8  
    % Check and prepare the inputs: FzVZs# O  
    % ----------------------------- z23#G>I&  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) \Ps5H5Qk;  
        error('zernfun:NMvectors','N and M must be vectors.') tbg*_ZQO u  
    end ^ s=*J=k  
    2_ wv C  
    w:v=se"U  
    if length(n)~=length(m) ka/nQ~_#<  
        error('zernfun:NMlength','N and M must be the same length.') ?5`{7daot  
    end Zgy7!AF!  
    aFyh,  
    f`,-b  
    n = n(:); hv3;irK]&  
    m = m(:); grc:Y  
    if any(mod(n-m,2)) a%v>eXc  
        error('zernfun:NMmultiplesof2', ... v_.HGG S  
              'All N and M must differ by multiples of 2 (including 0).') "3wv:BL  
    end Zd$JW=KR]l  
    vf[&7n  
    zOL;"/R  
    if any(m>n) 9976H\{  
        error('zernfun:MlessthanN', ... o OQ'*7_  
              'Each M must be less than or equal to its corresponding N.') d @m\f  
    end BGN9, ii  
    ,%kmXh  
    5\xr?`VZ  
    if any( r>1 | r<0 ) P8<hvMF  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') %Uf'+!4l`  
    end i*'Z3Z)  
    |U EC  
    a_MFQf&KV  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) VtWT{y5Ec  
        error('zernfun:RTHvector','R and THETA must be vectors.') IytDvz*|  
    end [3kl^TE  
    "T7>)fbu  
    b4)k&*dfR  
    r = r(:); 6Kp}_^|z  
    theta = theta(:); [ZD[a6(94  
    length_r = length(r); F{\=PCZ>7  
    if length_r~=length(theta) Ik Qe~;Y  
        error('zernfun:RTHlength', ... }3J=DCtS  
              'The number of R- and THETA-values must be equal.') x}|+sS,g  
    end >L=;"+B0U&  
    Q ?^4\_  
    lov%V*tL  
    % Check normalization: >Mw'eQ0(y  
    % -------------------- z0 \N{rP&  
    if nargin==5 && ischar(nflag) I|T7+{5z  
        isnorm = strcmpi(nflag,'norm'); <aXoB*Y  
        if ~isnorm nE$ f  
            error('zernfun:normalization','Unrecognized normalization flag.') zqf[Z3  
        end !b63ik15O~  
    else |mOMRP#'  
        isnorm = false; 8SZK:VE@  
    end A? r^V2+j  
    {[P!$ /  
    G|*G9nQ  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% qe%V#c  
    % Compute the Zernike Polynomials uXpv*i {R  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ,56;4)cv  
    #kci=2q_  
    N&m_e)E5c  
    % Determine the required powers of r: Zi*%*nX  
    % ----------------------------------- B`1kGEx .  
    m_abs = abs(m); {OP~8e"  
    rpowers = []; QD4:W"i  
    for j = 1:length(n) jkt 6/H  
        rpowers = [rpowers m_abs(j):2:n(j)]; S/7l/DFb  
    end +GeWg` \=  
    rpowers = unique(rpowers); h/?6=D{  
    T,OS0;7O  
    jT-<IJh!o  
    % Pre-compute the values of r raised to the required powers, oj@g2H5P  
    % and compile them in a matrix: yb?|Eww_o  
    % ----------------------------- PIxjM>  
    if rpowers(1)==0 `HyF_m>\  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ,v7Q*3  
        rpowern = cat(2,rpowern{:}); bLlH//ZRH  
        rpowern = [ones(length_r,1) rpowern];  :,~K]G  
    else f3#X0.':  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); v2>Z^  
        rpowern = cat(2,rpowern{:}); M*`hDdS  
    end 8UM0vNk  
    #xp(B5  
    ~OCZz$qA  
    % Compute the values of the polynomials: ]0-<>  
    % -------------------------------------- YPEnNt+  
    y = zeros(length_r,length(n)); D/:3R ZF  
    for j = 1:length(n) x<F$aXOS  
        s = 0:(n(j)-m_abs(j))/2; H1&RI4XC  
        pows = n(j):-2:m_abs(j); + zp0" ,2B  
        for k = length(s):-1:1 +|&0fGv;d9  
            p = (1-2*mod(s(k),2))* ... GTAf   
                       prod(2:(n(j)-s(k)))/              ... g~)3WfC$[  
                       prod(2:s(k))/                     ... ArXl=s';s4  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... -Qb0:]sV#  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); ^P$7A]!  
            idx = (pows(k)==rpowers); zPE$  
            y(:,j) = y(:,j) + p*rpowern(:,idx); }-nU3{1  
        end $5A^'q  
         P }Te"Y  
        if isnorm g>n0z5&TNF  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); [h-norB((  
        end D#0O[F@l##  
    end i/$SN-5}1  
    % END: Compute the Zernike Polynomials #>[wD#XJV  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% G~!C =l  
    l$M +.GB<  
    AC4 l<:Yh  
    % Compute the Zernike functions: mi^hvks<  
    % ------------------------------ ]sL45k2W  
    idx_pos = m>0; uJ8{HB  
    idx_neg = m<0; h(N=V|0  
    +tU Q  
    S#2[%o  
    z = y; XU9'Rfp  
    if any(idx_pos) %VJW@S>j/  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); QO,+ps<  
    end %\I.DEYH  
    if any(idx_neg) +)gB9DoK  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); jBRPR R0  
    end ],&\%jd<  
    v3-?CQb(  
    !G+u j(  
    % EOF zernfun KyLp?!|>  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  f-&ATTx`J  
    4znH$M>bU  
    DDE还是手动输入的呢? PY\W  
    &t_A0z  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究