切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9046阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, k9'`<82Y  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, C `>1x`n  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? 3=)!9;uY  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? BnB]]<gO"  
    >7fNxQ  
    5*n3*rbU:  
    ]W7e2:Hra  
    {e1akg.  
    function z = zernfun(n,m,r,theta,nflag) AwC"c '  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. {FrcpcrQa  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N DO^K8~]  
    %   and angular frequency M, evaluated at positions (R,THETA) on the LRuB&4r8  
    %   unit circle.  N is a vector of positive integers (including 0), and y|e@zf  
    %   M is a vector with the same number of elements as N.  Each element {cW%i:  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) Kb/w+J S  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, L PDx3MS  
    %   and THETA is a vector of angles.  R and THETA must have the same zj+.MG04  
    %   length.  The output Z is a matrix with one column for every (N,M) 15 /lX  
    %   pair, and one row for every (R,THETA) pair. c^?+"7oO0  
    % Zdm7As]  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ?Tr]zxtd  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 74c[m}'S  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral S 6|#9C&  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, IGtpL[.;/  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized _@gd9Fi7J  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. B F,8[|%#  
    % 3T|xUY)G4  
    %   The Zernike functions are an orthogonal basis on the unit circle. *Bse3%-v  
    %   They are used in disciplines such as astronomy, optics, and "s!|8F6$  
    %   optometry to describe functions on a circular domain. zo^34wW^  
    % 4|]0%H~n6  
    %   The following table lists the first 15 Zernike functions. -!C9x?gNY  
    % k v>rv37u  
    %       n    m    Zernike function           Normalization KcK,%!>B  
    %       -------------------------------------------------- Y]33:c_;Mo  
    %       0    0    1                                 1 X>$s>})Y  
    %       1    1    r * cos(theta)                    2 >p[skN   
    %       1   -1    r * sin(theta)                    2 z :q9~  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) +'@j~\>^yJ  
    %       2    0    (2*r^2 - 1)                    sqrt(3) k-zkb2  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) ]'[(MH"  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) CHojF+e  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 7SyysH<H  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) NhgzU+)+  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) :|V`QM  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) t 5{Y'  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) hYI0S7{G  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 0|^/e -^  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) #3h~Z)+y  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) ?}tWI7KI  
    %       -------------------------------------------------- eBs4:R_i  
    % a*g7uaoP  
    %   Example 1: ^s;xLGl]  
    % e-`=?tct  
    %       % Display the Zernike function Z(n=5,m=1) _>LI[yf{  
    %       x = -1:0.01:1; 'WC> _ L  
    %       [X,Y] = meshgrid(x,x); #j?SdQ  
    %       [theta,r] = cart2pol(X,Y); ;GjZvo  
    %       idx = r<=1; jMP!/t :w  
    %       z = nan(size(X)); =rB=! ;  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); Hx|<NS0}_  
    %       figure 0?0$6F  
    %       pcolor(x,x,z), shading interp q"uP%TN  
    %       axis square, colorbar iem@ K  
    %       title('Zernike function Z_5^1(r,\theta)') nz}} m^-j  
    % ,e{|[k  
    %   Example 2: `-J$7)d@  
    % )}[:.Zg,3/  
    %       % Display the first 10 Zernike functions dZ"B6L!^(  
    %       x = -1:0.01:1; 'cpO"d?{  
    %       [X,Y] = meshgrid(x,x); "8%z,lHw  
    %       [theta,r] = cart2pol(X,Y); I.qP$j  
    %       idx = r<=1; Z{".(?+}1  
    %       z = nan(size(X)); e+? -#  
    %       n = [0  1  1  2  2  2  3  3  3  3]; M#U#I :z%  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; l[cBDNlrC;  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 2GB+st,  
    %       y = zernfun(n,m,r(idx),theta(idx)); =/6rX"\P  
    %       figure('Units','normalized') AvxP0@.`  
    %       for k = 1:10 %dN',  
    %           z(idx) = y(:,k); <8SRt-Cr  
    %           subplot(4,7,Nplot(k)) EK JPeeRY  
    %           pcolor(x,x,z), shading interp f]*_]J/  
    %           set(gca,'XTick',[],'YTick',[]) YM(` E9{h  
    %           axis square K~MTbdg  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) #dKHU@+U"  
    %       end Vjc*D]  
    % `Qrrnq  
    %   See also ZERNPOL, ZERNFUN2. G=Qslrtg  
     -l ?J  
    `~.0PnHf  
    %   Paul Fricker 11/13/2006 TX%W-J _  
    ,O;+fhUJ(  
    m K);NvJ!  
    +=qazE<:0  
    ;Bs^+R7  
    % Check and prepare the inputs: F:P&hK  
    % ----------------------------- I {o\d'/  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) HJh9 <I  
        error('zernfun:NMvectors','N and M must be vectors.') Mb2rHUr  
    end R06zca  
    jl:dKL@  
    pH'1be{K  
    if length(n)~=length(m) 'h:[[D%H`  
        error('zernfun:NMlength','N and M must be the same length.') POouO/r$  
    end ju@5D h  
    qDPpGI-Y2e  
    eL7rX"!  
    n = n(:); FQ72VY  
    m = m(:); bN',-[E  
    if any(mod(n-m,2)) qZ8 V/  
        error('zernfun:NMmultiplesof2', ... Q.dHg7+D  
              'All N and M must differ by multiples of 2 (including 0).') 5X'com?T  
    end DW,fh8w  
    }&o*ZY-1  
    BWz7m9 T  
    if any(m>n) -c1$>+  
        error('zernfun:MlessthanN', ... 3}}#'5D  
              'Each M must be less than or equal to its corresponding N.') x!<?/I)X  
    end 'za4c4b*u  
    7r_Y.  
    o#IQz_  
    if any( r>1 | r<0 ) A^a9,T  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') xzGs%01]  
    end HKr6h?Si^  
    hgz7dF  
    kp+\3z_  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) gXR1nnK  
        error('zernfun:RTHvector','R and THETA must be vectors.') @Lj28&4:<  
    end 9bpY>ze  
    +bj[.  
    &f\ng{  
    r = r(:); Xu1tN9:oE  
    theta = theta(:); xV h-Mx+M  
    length_r = length(r); vk:m >?(  
    if length_r~=length(theta) O*<,lq 0K  
        error('zernfun:RTHlength', ... )eFq0+6*)  
              'The number of R- and THETA-values must be equal.') $X%w9l e  
    end e:BKdZGW  
    n{~W s^d  
    LZ@4,Uj  
    % Check normalization: @nJ#kd[  
    % -------------------- RyGce' q  
    if nargin==5 && ischar(nflag) (> v1)*r  
        isnorm = strcmpi(nflag,'norm'); >D';i\2j&  
        if ~isnorm #eqy!QdePf  
            error('zernfun:normalization','Unrecognized normalization flag.') @Y#{[@Hp%  
        end vM}oxhQ$n  
    else ?hu$  
        isnorm = false; Y dgaZJs  
    end XK)qDg  
    [hf#$Dl |  
    2<aBUGA  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +yq Z\$ii  
    % Compute the Zernike Polynomials crJyk#_  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 6 ]@H.8+  
    Ny;(1N|&3  
    c%uX+\-$  
    % Determine the required powers of r: :VPZGzK4  
    % ----------------------------------- B6gSt3w.  
    m_abs = abs(m); r lalr+Rf  
    rpowers = []; 5o~;0K]  
    for j = 1:length(n) g`jO  
        rpowers = [rpowers m_abs(j):2:n(j)]; Ld[zOx  
    end 1 )aB']K%  
    rpowers = unique(rpowers); m CFScT  
    +oY[uF  
    3|Q:tt'|#  
    % Pre-compute the values of r raised to the required powers, :N~1fvx  
    % and compile them in a matrix: p;dH[NW  
    % ----------------------------- fPs' A  
    if rpowers(1)==0 ZJ} V>Bu-  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Qa nE]  
        rpowern = cat(2,rpowern{:}); @<ba+z>"~4  
        rpowern = [ones(length_r,1) rpowern]; 4VjP:>*p  
    else t)n!];  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ]7C=.'Y  
        rpowern = cat(2,rpowern{:}); \: H&.VQ"  
    end +'$=\d^  
    'AX/?Srd  
    Uhc2`r#q  
    % Compute the values of the polynomials: -{i;!XE$SR  
    % -------------------------------------- @N`) Z3P+  
    y = zeros(length_r,length(n)); n|vIo)  
    for j = 1:length(n) Si#b"ls'  
        s = 0:(n(j)-m_abs(j))/2; 1&~u:RUXe  
        pows = n(j):-2:m_abs(j); nV-A0"z_&  
        for k = length(s):-1:1 TOo0rcl  
            p = (1-2*mod(s(k),2))* ... /wB<1b"  
                       prod(2:(n(j)-s(k)))/              ... 0/d+26lR  
                       prod(2:s(k))/                     ... DUc - D==  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... EKsL0;FV  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); UdmYS3zs  
            idx = (pows(k)==rpowers); oagxTFh8~  
            y(:,j) = y(:,j) + p*rpowern(:,idx); /sf:.TpVh  
        end ?Gc9^b B I  
         12*'rU;*  
        if isnorm Gn+D%5)$I  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Gxu&o%x [  
        end MP\$_;&xB  
    end l BS!=/7  
    % END: Compute the Zernike Polynomials Ycypd\q/  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 1;<J] S$$  
    W is_N3M  
     $j*j {}K  
    % Compute the Zernike functions: @.f@N;z  
    % ------------------------------ wt4uzg8  
    idx_pos = m>0; UXVjRY`M.\  
    idx_neg = m<0; nS0K&MH6B  
    a;J{'PHu  
    PR=:3-#R  
    z = y; L-\-wXg%  
    if any(idx_pos) =.,]}  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); m5lMh14E  
    end ?y82S*sb#  
    if any(idx_neg) [6Y6{.%~  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); W-:gU!{*#  
    end oR>o/$z$)g  
    [Q &{#%M  
    |Ui1Mm  
    % EOF zernfun CZ*c["x2  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  m` ^o<V&  
    _$%.F| :  
    DDE还是手动输入的呢? umZy=KHj  
    DXu915  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究