下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, m5G9
B-\?
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, q]-CTx$
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? Zewx*Y|
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? YSvZ7G(m>
fY|Bc<,V9)
AF=9KWqf
LxM.z1
yN0!uzdW*
function z = zernfun(n,m,r,theta,nflag) hU}!:6G%[P
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. ;Jn"^zT
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N C/JeD-JG
% and angular frequency M, evaluated at positions (R,THETA) on the H9x,C/r,
% unit circle. N is a vector of positive integers (including 0), and N34.Bt
% M is a vector with the same number of elements as N. Each element Y=%SK8]Q;
% k of M must be a positive integer, with possible values M(k) = -N(k) D*>EWlZ
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, (|6Y1``
% and THETA is a vector of angles. R and THETA must have the same `Jvy~T
% length. The output Z is a matrix with one column for every (N,M) DA/l`Pn
% pair, and one row for every (R,THETA) pair. /-#1ys#F=
% C)7T'[
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike t3#My2 =
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), !T((d7;
% with delta(m,0) the Kronecker delta, is chosen so that the integral "k8Yc<`u
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, V-y"@0%1
% and theta=0 to theta=2*pi) is unity. For the non-normalized +@'{
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. U5 `h
% $a.!X8sHB.
% The Zernike functions are an orthogonal basis on the unit circle. RG'Ft]l92N
% They are used in disciplines such as astronomy, optics, and ad\?@>[I
% optometry to describe functions on a circular domain. ZfpV=DU
% NhI&wl
% The following table lists the first 15 Zernike functions. ,&DK*LT8U
% +h64idM{U
% n m Zernike function Normalization V)$y
% -------------------------------------------------- _f~(g1sE
% 0 0 1 1 $`2rtF
% 1 1 r * cos(theta) 2 +<G |Ru-
% 1 -1 r * sin(theta) 2 -+'fn$
% 2 -2 r^2 * cos(2*theta) sqrt(6) 19Cs
3B \4
% 2 0 (2*r^2 - 1) sqrt(3) @R5jUPUVV
% 2 2 r^2 * sin(2*theta) sqrt(6) Bf72 .gx{0
% 3 -3 r^3 * cos(3*theta) sqrt(8) pJ` M5pF
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 'IorjR@40
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) O8;`6r
% 3 3 r^3 * sin(3*theta) sqrt(8) yGNZw7^(
% 4 -4 r^4 * cos(4*theta) sqrt(10) K3jPTAw=#
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Ub0hISA
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) /Hox]r]'e
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) y:U'3G-
% 4 4 r^4 * sin(4*theta) sqrt(10) (,5oqU9s@
% -------------------------------------------------- r/X4Hy0!lT
% Ywj=6 +;
% Example 1: b`NXe7A
% hX-([o
% % Display the Zernike function Z(n=5,m=1) 4G:I VK9
% x = -1:0.01:1; p2c4 <f-M
% [X,Y] = meshgrid(x,x); E8TJ*ZU
% [theta,r] = cart2pol(X,Y); +`EF0sux
% idx = r<=1; `EV"
/&`
% z = nan(size(X)); yI&{8DCCw
% z(idx) = zernfun(5,1,r(idx),theta(idx)); |-WoR u
% figure ]L'FYOfrpx
% pcolor(x,x,z), shading interp dQoZhE
% axis square, colorbar -S7PnR6
% title('Zernike function Z_5^1(r,\theta)')
-= W"
% 59?@55
% Example 2: HT]v S}s
% f8ap+][
% % Display the first 10 Zernike functions ;2o+|U@
% x = -1:0.01:1; 2v!ucd}
% [X,Y] = meshgrid(x,x); ?;{fqeJz
% [theta,r] = cart2pol(X,Y); "[` .I*WNo
% idx = r<=1; -hM
nA)+
% z = nan(size(X)); 81\$X
% n = [0 1 1 2 2 2 3 3 3 3]; e
~X<+3<
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 64Ot`=A"
% Nplot = [4 10 12 16 18 20 22 24 26 28]; 8q)wT0A~
% y = zernfun(n,m,r(idx),theta(idx)); zeqP:goy
% figure('Units','normalized') q<Zdf
% for k = 1:10 '64&'.{#>r
% z(idx) = y(:,k); Mo+mO&B
% subplot(4,7,Nplot(k)) KY)rkfo B
% pcolor(x,x,z), shading interp b&LfL$
% set(gca,'XTick',[],'YTick',[]) o8 A]vaa
% axis square -qki^!Y?
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) }3t bqFiH
% end ?/mk FDN
% ryz
[A:^G
% See also ZERNPOL, ZERNFUN2. O"otzla
DVu_KT[H d
\z}/=Qgc
% Paul Fricker 11/13/2006 moQ><>/
^y.e
Fz
btq`[gAF\
wi#]*\N\9
o<`)cb }
% Check and prepare the inputs: l2DhFt$!=
% ----------------------------- U] 2fV|Hn
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) DRldRm/
error('zernfun:NMvectors','N and M must be vectors.') 8S&Kf>D
end -Yaw>$nJ
H'Mc]zw_,
zNE"5
if length(n)~=length(m) Ua.7_Em
error('zernfun:NMlength','N and M must be the same length.') 5xZ *U
end MC.,n$O}6
%21i#R`E
` [ EzU+
n = n(:); 1vcI`8%S+u
m = m(:); M Cam c
if any(mod(n-m,2)) X-oHQu5
error('zernfun:NMmultiplesof2', ... {(}Mu R
'All N and M must differ by multiples of 2 (including 0).') 1a#oJU
end {~*aXu3
[\o+I:,}wi
1'5I]D
ec
if any(m>n) {}?;|&_
error('zernfun:MlessthanN', ... o0- 7# 2
'Each M must be less than or equal to its corresponding N.') \Vis
end )z0qKb\
myT z
W)"PYC4
if any( r>1 | r<0 ) X\SZ Q[gN
error('zernfun:Rlessthan1','All R must be between 0 and 1.') m`<Mzk.u<
end )!1; =
eSZS`(#!(
R5LzqT,/N:
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) _(J 7^rN
error('zernfun:RTHvector','R and THETA must be vectors.') { 7y.0_Y
end 0_HdjK
i2{xW`AcUh
wj>mk
r = r(:); $|v_ pjUu]
theta = theta(:); R9SJ;TsE
length_r = length(r); Ti/t\'6
if length_r~=length(theta) 9Vx2VjK2'
error('zernfun:RTHlength', ... b _fI1f|
'The number of R- and THETA-values must be equal.') 73/kyu-0%
end D_GIj$%N[
qvz2u]IOw
7%Zl^c>q
% Check normalization: q!#e2Dx
% -------------------- kBY54pl
if nargin==5 && ischar(nflag) ScrE tN
isnorm = strcmpi(nflag,'norm'); bWv4'Y!p
if ~isnorm iw<#V&([J
error('zernfun:normalization','Unrecognized normalization flag.') `"v5bk
end SCl$+9E
else v*%#Fp,g8
isnorm = false; %dTkw+J
end jsSxjf;O
3 $;6pY
C Ih@H6|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% o+W5xHe^1
% Compute the Zernike Polynomials >:M3!6H_~{
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% !RLg[_'
;aBK4<-vl
bkkhx,Oi[G
% Determine the required powers of r: _Zya GDv
% ----------------------------------- vS-k0g;
m_abs = abs(m); d%?+q0j
rpowers = []; =>Y b~r71
for j = 1:length(n) xwa5dtcng
rpowers = [rpowers m_abs(j):2:n(j)]; &eV& +j
end ryzz!0l
rpowers = unique(rpowers); ]gYnw;W$
v8"plx=3
5uMh#dm^
% Pre-compute the values of r raised to the required powers, X3#/|>
% and compile them in a matrix: FR9<$
% ----------------------------- F)/}Q[o8
if rpowers(1)==0 gK/mm\K@
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ~dfc
rpowern = cat(2,rpowern{:}); [-!
rpowern = [ones(length_r,1) rpowern]; x[7jm"Pz
else <}-[9fW
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); T^u ][I3*
rpowern = cat(2,rpowern{:}); *,hS-
end Ed9ynJ~)X
zCKZv|j6
z]ZhvH7-
% Compute the values of the polynomials: ([zt}uf
% -------------------------------------- pv&:N,p
y = zeros(length_r,length(n)); }^WQNdws56
for j = 1:length(n) G?!b00H
s = 0:(n(j)-m_abs(j))/2; naCPSsei
pows = n(j):-2:m_abs(j); ^'i(@{{o\
for k = length(s):-1:1 w#eD5y~'oo
p = (1-2*mod(s(k),2))* ... Q=J"#EFs
prod(2:(n(j)-s(k)))/ ... Z8nj9X$
prod(2:s(k))/ ... 2<wuzP|
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... L+Yn}"gIs
prod(2:((n(j)+m_abs(j))/2-s(k))); !s#25}9zX5
idx = (pows(k)==rpowers); tWQ_.,ld
y(:,j) = y(:,j) + p*rpowern(:,idx); 8R Wfv}:X
end WS8m^~S@\
VO3&