下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, ,_66U;T
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, hIj[#M&6
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? I5"ew=x#
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛?
c|N!ZYJI
iA~b[20&
Dm@wTt8N(
* &j)"hX
~&/|J)}
function z = zernfun(n,m,r,theta,nflag) 3:$hC8
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. _v=@MOI/J
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N w8t,?dY
% and angular frequency M, evaluated at positions (R,THETA) on the Z=O 2tR
% unit circle. N is a vector of positive integers (including 0), and ~P*t_cpZ
% M is a vector with the same number of elements as N. Each element VV(>e@Bc4
% k of M must be a positive integer, with possible values M(k) = -N(k) 2a;vLc4
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, DPfP)J:~
% and THETA is a vector of angles. R and THETA must have the same \?,'i/c-
% length. The output Z is a matrix with one column for every (N,M) UarU.~Uqi
% pair, and one row for every (R,THETA) pair. <v?9:}
% `Z{kJMS
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike @!\g+z_"
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), (/&IBd-
% with delta(m,0) the Kronecker delta, is chosen so that the integral >G2o
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, G"jKYW
% and theta=0 to theta=2*pi) is unity. For the non-normalized ^4LkKYMS
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ]JX0:'x^
% ?Z @FxW
% The Zernike functions are an orthogonal basis on the unit circle. {~yj]+Im
% They are used in disciplines such as astronomy, optics, and "C$z)
% optometry to describe functions on a circular domain. .>0e?A4,5?
% -ob_]CKtJ~
% The following table lists the first 15 Zernike functions. 7N^9D
H{`
% Vw*;xek?
% n m Zernike function Normalization lrjlkgSN
% -------------------------------------------------- %S8e:kc6
% 0 0 1 1 tb7Wr1$<
% 1 1 r * cos(theta) 2 d:0RDK-}s
% 1 -1 r * sin(theta) 2 ?lv{;4BC
% 2 -2 r^2 * cos(2*theta) sqrt(6) SGW2'
% 2 0 (2*r^2 - 1) sqrt(3) c'_-jdi`>_
% 2 2 r^2 * sin(2*theta) sqrt(6) lKs*KwG
% 3 -3 r^3 * cos(3*theta) sqrt(8) T0W B
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 4Vj|k\vE4
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) l=5(5\
% 3 3 r^3 * sin(3*theta) sqrt(8) w:Fi
2aJ
% 4 -4 r^4 * cos(4*theta) sqrt(10) tRYMK+
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) &0Zn21q
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) ]GYO`,
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) @oC8:
% 4 4 r^4 * sin(4*theta) sqrt(10) TH2D ;uv
% -------------------------------------------------- SoODss~X
% u~yJFIo
% Example 1: <ns[(
Q
% 4KE"r F
% % Display the Zernike function Z(n=5,m=1) 2 q J}5
% x = -1:0.01:1; Q7$ILW-S
% [X,Y] = meshgrid(x,x); buGW+TrWY
% [theta,r] = cart2pol(X,Y); F\+wM*:U
% idx = r<=1; hS&,Gm`^
% z = nan(size(X)); bD<[OerG
% z(idx) = zernfun(5,1,r(idx),theta(idx)); fGJPZe
% figure #NVtZs!V/
% pcolor(x,x,z), shading interp M#on-[
% axis square, colorbar @L^2VVWk^
% title('Zernike function Z_5^1(r,\theta)') >#B%gxff
% D%umL/[]
% Example 2: s
z/7cLo
% %y33evX/B
% % Display the first 10 Zernike functions &R/)#NAp
% x = -1:0.01:1; /hf}f=7kH
% [X,Y] = meshgrid(x,x); vpx8GiV
% [theta,r] = cart2pol(X,Y); OA2<jrGB!
% idx = r<=1; m8H|cQ@Uu
% z = nan(size(X)); p~I+ZYWF'
% n = [0 1 1 2 2 2 3 3 3 3]; m/n_e g
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; XF(I$Mxl6
% Nplot = [4 10 12 16 18 20 22 24 26 28]; ^8aj\xe(
% y = zernfun(n,m,r(idx),theta(idx)); tfj6#{M5
% figure('Units','normalized') 8qn1?Lb
% for k = 1:10 0\%/:2
% z(idx) = y(:,k); r_T\%
% subplot(4,7,Nplot(k)) xh[Mmq/R
% pcolor(x,x,z), shading interp ?"PUw3V3lB
% set(gca,'XTick',[],'YTick',[])
wly#|
% axis square E\#hcvP
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) j$^3
% end M(x5D;db/
% :kq J~
% See also ZERNPOL, ZERNFUN2. i 4
KW
g5R2a7
ex7zg!
% Paul Fricker 11/13/2006 M*BDrM
X>EwJ"q#
OBi9aFoQ
[wP;g'F
%TxFdF{A
% Check and prepare the inputs: =v=a:e
% ----------------------------- mJR vC%
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) xn1
error('zernfun:NMvectors','N and M must be vectors.') WM NcPHcj
end DCM,|FE
W$ #FM$U
-EFtk\/
if length(n)~=length(m) !Sfy'v.
error('zernfun:NMlength','N and M must be the same length.') x)l}d3
end Ek(.
["
:}TT1@
b gGd
n = n(:); Bvzl*
&?
m = m(:); KOGbC`TN<
if any(mod(n-m,2)) 4.7OX&L'G
error('zernfun:NMmultiplesof2', ... $q]((@i.
'All N and M must differ by multiples of 2 (including 0).') Ra<mdteZT
end FOgF'!K
h<\o[n7j
4%~$A`7
if any(m>n) [c]X)
@#S
error('zernfun:MlessthanN', ...
NqvL,~1G
'Each M must be less than or equal to its corresponding N.') ChF:N0w?
p
end S{{D G
v5i[jM8
_aL:XKM
if any( r>1 | r<0 ) F=yrqRS=
error('zernfun:Rlessthan1','All R must be between 0 and 1.') |Y|{9Osus
end *O,\/aQ+
y 562g`"U
Fh9`8
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 6tB-
error('zernfun:RTHvector','R and THETA must be vectors.') dQ@e+u5
end &e@2zfl7
bVSa}&*kM
1u75
r = r(:); +"6_rbeuO
theta = theta(:); 7lY&/-V
length_r = length(r); D{I^_~-\5
if length_r~=length(theta) ==`K$rM
error('zernfun:RTHlength', ... sh[Yu
'The number of R- and THETA-values must be equal.') _C~e(/=z
end U0t/(Jyg
P}N%**>`
RzQ1Wq
% Check normalization: YW9 [^
% -------------------- eG9tn{
if nargin==5 && ischar(nflag) Q]Q i
isnorm = strcmpi(nflag,'norm'); Y*;Z(W.V#
if ~isnorm y _M<\b
error('zernfun:normalization','Unrecognized normalization flag.') 01}az~&;35
end DhV($&*M
else ))cL+r
isnorm = false; ~V[pu
end $r *7)/
87c7p=/0`
$wH{snX
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% A#M#JI-Y
% Compute the Zernike Polynomials trnjOm
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% xOP%SF
xu(5U`K
R}c,ahd
% Determine the required powers of r: ^_#0\f
% ----------------------------------- :&}(?=<R}L
m_abs = abs(m); _O2},9L n
rpowers = []; !ccKbw)J#
for j = 1:length(n) {[hH:
\
rpowers = [rpowers m_abs(j):2:n(j)]; 5:/
zbt\C
end \{@s@VBx[
rpowers = unique(rpowers); (xpj?zlmM
6js94ko[
]3wg-p+
% Pre-compute the values of r raised to the required powers, /"+YE&>\
% and compile them in a matrix: f9u ^/QVS&
% ----------------------------- <uDEDb1|l
if rpowers(1)==0 h
1G`z
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); (g
xCP3
rpowern = cat(2,rpowern{:}); ~[dU%I>L^
rpowern = [ones(length_r,1) rpowern]; fu'iG7U M
else 9%WUh-|'p
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ."Wdpf`~
rpowern = cat(2,rpowern{:}); ]\w0u7}
end _"
W<>
Vd~{SS2>
CwZ+Pn0
% Compute the values of the polynomials: /KjRB_5~q}
% -------------------------------------- U1bhd}MoR
y = zeros(length_r,length(n)); azR<Y_tw
for j = 1:length(n) P1)f-:;
s = 0:(n(j)-m_abs(j))/2; [~9rp]<
pows = n(j):-2:m_abs(j); {i y[8eLg
for k = length(s):-1:1 pV{MW#e
p = (1-2*mod(s(k),2))* ... ,0%P3
prod(2:(n(j)-s(k)))/ ... S/G6NBnbS
prod(2:s(k))/ ... N|K,{
p^li
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... L9nv05B
prod(2:((n(j)+m_abs(j))/2-s(k))); OY7\*wc:
idx = (pows(k)==rpowers); 6*cG>I.Z
y(:,j) = y(:,j) + p*rpowern(:,idx); l{F^"_U
end R}njFQvS)
}VxbO8\b(
if isnorm J/S 47J~
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Ac;rMwXk#
end c9imfA+e
end l[lUmE
% END: Compute the Zernike Polynomials bg;NBoZd
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% lG12Su/
s''?:
+
//cj$}Rn!
% Compute the Zernike functions: .r[b!o^VR
% ------------------------------ e\x=4i
idx_pos = m>0; w6DK&@w`'/
idx_neg = m<0; fmZ5rmw!
wr{03mQHxp
d!kiWmw,
z = y; &}wrN(?w
if any(idx_pos) hV|pH)Nu{
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); #TZf\0\!
end nD6mLNi%a
if any(idx_neg) XzI c<81Z
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 0jCYOl
end oR (hL4Dc
'WK}T)o
OE)n4X
% EOF zernfun sPY*2B