切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9233阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, N- H^lqD  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, a ] =  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? G)v #+4  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? ?`zXLY9q7  
    kVK/9dy-F  
    ^j#rZ;uc   
    r%:+$aIt  
    )WT>@  
    function z = zernfun(n,m,r,theta,nflag) W"^wnGa@a  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. D%6;^^WyUx  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N o*U]v   
    %   and angular frequency M, evaluated at positions (R,THETA) on the B(xN Gs  
    %   unit circle.  N is a vector of positive integers (including 0), and $`R6=\|  
    %   M is a vector with the same number of elements as N.  Each element J]f3CU,<N  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) ; bHV  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, {:@tQdM:i8  
    %   and THETA is a vector of angles.  R and THETA must have the same ^P151*=D  
    %   length.  The output Z is a matrix with one column for every (N,M) Z87_#5  
    %   pair, and one row for every (R,THETA) pair. *HEuorl  
    % #Zrlp.M4  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike E dZ\1'&/9  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), g~(E>6Y  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral oy<WsbnS  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ^&y$Wd]6  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 34\(7JO  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. }!IL]0 q  
    % ,^#yo6-  
    %   The Zernike functions are an orthogonal basis on the unit circle. pPd#N'\*  
    %   They are used in disciplines such as astronomy, optics, and 5j~$Mj`  
    %   optometry to describe functions on a circular domain. _6 ay-u  
    % a!O0,y  
    %   The following table lists the first 15 Zernike functions. >4t+:Ut:  
    % \=_{na_  
    %       n    m    Zernike function           Normalization AU2i%Q!  
    %       -------------------------------------------------- J9~ g|5  
    %       0    0    1                                 1 qucq,Yw  
    %       1    1    r * cos(theta)                    2 yj^+ G  
    %       1   -1    r * sin(theta)                    2 \hCH>*x<  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) [jmd  
    %       2    0    (2*r^2 - 1)                    sqrt(3) q$=#A7H>3)  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) 8#vc(04(  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) -[-wkC8a  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) L|p Z$HB  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) uu`G 2[t  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) g)-bW+]q  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) }iuWAFZbGS  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) iX)%Q  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) cTG|fdgMW  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) o}ZdTf=  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 1dK*y'rx  
    %       -------------------------------------------------- >y,-v:Vy  
    % ti#7(^j  
    %   Example 1: K5lmVF\$P  
    % Hw4%uS==V  
    %       % Display the Zernike function Z(n=5,m=1) z*-2.}&U<  
    %       x = -1:0.01:1; b9!FC$^J  
    %       [X,Y] = meshgrid(x,x); 6fw(T.Pe  
    %       [theta,r] = cart2pol(X,Y); 0\eIQp  
    %       idx = r<=1; lv04g} W  
    %       z = nan(size(X)); j:VbrR  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); !jTcsN%  
    %       figure ^jx7@LgS=  
    %       pcolor(x,x,z), shading interp jbAx;Xt'=M  
    %       axis square, colorbar .X;3,D[w  
    %       title('Zernike function Z_5^1(r,\theta)') 4T ~}  
    % 4M2j!Sw  
    %   Example 2: .hifsB~  
    % &wV]"&-  
    %       % Display the first 10 Zernike functions }9FSO9*&}  
    %       x = -1:0.01:1; `G}TG(  
    %       [X,Y] = meshgrid(x,x); f.9SB  
    %       [theta,r] = cart2pol(X,Y); 7Ve1]) u  
    %       idx = r<=1; sc}~8T  
    %       z = nan(size(X)); 0.@&_XTPl  
    %       n = [0  1  1  2  2  2  3  3  3  3]; V{!J-nO  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 5;YMqUkw  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; jWrj?DV,2N  
    %       y = zernfun(n,m,r(idx),theta(idx)); LA}S yt\F  
    %       figure('Units','normalized')  B\o Mn  
    %       for k = 1:10 T: =lz:}I  
    %           z(idx) = y(:,k); (^Y~/  
    %           subplot(4,7,Nplot(k))  A|<jX}  
    %           pcolor(x,x,z), shading interp s*-n^o-  
    %           set(gca,'XTick',[],'YTick',[]) ?k(7 LX0j  
    %           axis square {y_98N  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) vbyH<LPz5  
    %       end Tu).K.p:  
    % 5?]hd*8   
    %   See also ZERNPOL, ZERNFUN2. 24z< gO  
    75XJL;W #  
     ']2E {V  
    %   Paul Fricker 11/13/2006 2h5nMI]'  
    (pv+c,  
    H}hiT/+$  
    s T}. v*  
    xLK<W"%0  
    % Check and prepare the inputs: ww], y@da  
    % ----------------------------- ewctkI$,5  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) =A83W/4  
        error('zernfun:NMvectors','N and M must be vectors.') X:vghOt?  
    end z=q3Zo  
    nU7>uU  
    ^ hZ0IM  
    if length(n)~=length(m) [OC5l>  
        error('zernfun:NMlength','N and M must be the same length.') x|pg"v&[  
    end MkfBu W;)  
    /`wvxKX  
    %C| n9*  
    n = n(:); ;DFSzbF`  
    m = m(:); #h` V>;  
    if any(mod(n-m,2)) `p2+&&]S  
        error('zernfun:NMmultiplesof2', ... ;:\<gVi:  
              'All N and M must differ by multiples of 2 (including 0).') 8%A#`)fb  
    end /|C*  
    RI(DXWM|h  
    nn@-W]  
    if any(m>n) 0IBhb(X  
        error('zernfun:MlessthanN', ... D1zBsi94D  
              'Each M must be less than or equal to its corresponding N.') 5z7U1:  
    end C~2F9Pg  
    Enum/O5  
    Q(wx nm  
    if any( r>1 | r<0 ) }$SavB#SBP  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') mr*JJF0Z  
    end /Z'L^ L%R  
    42G)~lun-d  
    g jDh?I  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) JtYP E?  
        error('zernfun:RTHvector','R and THETA must be vectors.') s4A43i'g!h  
    end 5m\<U`  
    {< )1q ;  
     HN=V"a  
    r = r(:); ,(d) Qg  
    theta = theta(:); [uC ]*G]  
    length_r = length(r); &"f";  
    if length_r~=length(theta) TC!Yb_H}gN  
        error('zernfun:RTHlength', ... RYQ<Zr$!  
              'The number of R- and THETA-values must be equal.') Dz>^IMsY  
    end l?Udn0F  
    {o_X`rgrL  
    x$5) ^ud?  
    % Check normalization: Qu?R8+"KS  
    % -------------------- = RA /  
    if nargin==5 && ischar(nflag) LClNxm2X  
        isnorm = strcmpi(nflag,'norm'); ] o*#t  
        if ~isnorm 0m%|U'm|j  
            error('zernfun:normalization','Unrecognized normalization flag.') 5D\f8L  
        end i2E )P x  
    else Uzz'.K(Mv|  
        isnorm = false; *"?l]d  
    end |=Eo?Q_  
    XewVcRo  
    +T|JK7  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% CR8/Ke  
    % Compute the Zernike Polynomials RDW8]=uM  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /oR0+sH]  
    R.jIl@p   
    Zn&, t &z  
    % Determine the required powers of r: i6dHrx]:,  
    % ----------------------------------- GPkmf%FJ  
    m_abs = abs(m); |^:cG4e  
    rpowers = []; c`J.Tm[_u  
    for j = 1:length(n) QLXN*c  
        rpowers = [rpowers m_abs(j):2:n(j)]; t2/#&J]  
    end 7S '% E  
    rpowers = unique(rpowers); Wvbf"hq  
    *w^C"^*  
    =5J7Hw&K  
    % Pre-compute the values of r raised to the required powers, P\yDa*m  
    % and compile them in a matrix: *W.C7=  
    % ----------------------------- >zw.GwN|  
    if rpowers(1)==0 U{7w#>V .  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ]$ L|  
        rpowern = cat(2,rpowern{:}); _-q.Q^  
        rpowern = [ones(length_r,1) rpowern]; tjIl-IQ  
    else !nqUBa  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); /qMG=Z  
        rpowern = cat(2,rpowern{:}); .z]Wyx&/U  
    end g[1gF&  
    S|SV$_ (  
    %-)H^i~]%  
    % Compute the values of the polynomials: $;1#To  
    % -------------------------------------- pf1BN@ t  
    y = zeros(length_r,length(n)); wT;0w3.Z  
    for j = 1:length(n) wN@oYFoL  
        s = 0:(n(j)-m_abs(j))/2; 3kw,(-'1  
        pows = n(j):-2:m_abs(j); sF|5XjQ  
        for k = length(s):-1:1 0"kbrv2y  
            p = (1-2*mod(s(k),2))* ... kStnb?nk  
                       prod(2:(n(j)-s(k)))/              ... sx7eC  
                       prod(2:s(k))/                     ... o C<.=2]  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... fKeT,U`W  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); BzkooJ  
            idx = (pows(k)==rpowers); < vL,*.zd  
            y(:,j) = y(:,j) + p*rpowern(:,idx); `P@T$bC  
        end iIMd!Q.)@  
         n,jKmA  
        if isnorm p2ogn}`  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); T ? $:'XJ  
        end s %qF/70'  
    end tz5e"+Tz  
    % END: Compute the Zernike Polynomials fmQ_P.c  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% q1z"-~i )E  
    k jg~n9#T  
    OBMTgZHxv  
    % Compute the Zernike functions: @JtM5qB  
    % ------------------------------ u$>4F|=T  
    idx_pos = m>0; +1uF !G&l  
    idx_neg = m<0;  8cU}I4|  
    tmv&U;0Z  
    ?%O(mC]u&  
    z = y; C9~52+S  
    if any(idx_pos) :Pvzl1  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); \?Z{hmN  
    end 6hlc1?  
    if any(idx_neg) .LZwuJ^;  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 0O9Ni='Tn  
    end 9f2UgNqe9  
    4[.oPK=i  
    <D:.(AUeO  
    % EOF zernfun 1M}5>V{  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  m9.{[K"  
    n[G&ksQI  
    DDE还是手动输入的呢? @cFJeOC|  
    _3TY,l~  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究