下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, r0)X]l7
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, n`krK"Ii
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? wh@;$s"B
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? 4c*?9r@
q}#4bB9
gzthM8A
L}1|R*b
~P85Or
function z = zernfun(n,m,r,theta,nflag) X
rVF
%
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 6WQT,@?
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N kw>W5tNpf:
% and angular frequency M, evaluated at positions (R,THETA) on the #?Z>o16,u
% unit circle. N is a vector of positive integers (including 0), and O$
7R<V
% M is a vector with the same number of elements as N. Each element YULI
y-W
% k of M must be a positive integer, with possible values M(k) = -N(k) ?6F\cl0.
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, W0&NX`m
% and THETA is a vector of angles. R and THETA must have the same 8(euWS
% length. The output Z is a matrix with one column for every (N,M) WCc,RI0
% pair, and one row for every (R,THETA) pair. Uv~r]P)
% =Vv"\p8
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike YzqUOMAt"V
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ao]Dm#HiO
% with delta(m,0) the Kronecker delta, is chosen so that the integral m?]XNgT
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, dMw0Aw,2]8
% and theta=0 to theta=2*pi) is unity. For the non-normalized .mzy?!w0q
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. "|yuP1;L
% k[0Gz
% The Zernike functions are an orthogonal basis on the unit circle. [;`B
% They are used in disciplines such as astronomy, optics, and *E0dCY$
% optometry to describe functions on a circular domain. 6px(]QU
% ;N4A9/)
% The following table lists the first 15 Zernike functions. 60B6~@]P
% 2 HNKq<
% n m Zernike function Normalization nCZ&FNi{O~
% -------------------------------------------------- A{Jp>15AVg
% 0 0 1 1 )aov]Ns
% 1 1 r * cos(theta) 2 Nr?Z[6O|
% 1 -1 r * sin(theta) 2 ,iKL
68
% 2 -2 r^2 * cos(2*theta) sqrt(6) rz%8Vigb
% 2 0 (2*r^2 - 1) sqrt(3) 4NaL#3
% 2 2 r^2 * sin(2*theta) sqrt(6) #1-,s.)
% 3 -3 r^3 * cos(3*theta) sqrt(8) Ib(q9!L
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) /a}F;^
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) uIOnP
% 3 3 r^3 * sin(3*theta) sqrt(8) }w{6Ua
% 4 -4 r^4 * cos(4*theta) sqrt(10) P;7JK=~k
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) A}Q6DHh26
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) z']TRjDbT
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Id6H~;
% 4 4 r^4 * sin(4*theta) sqrt(10) =P}ob eY
% -------------------------------------------------- i^SuVca
% iI|mFc|V
% Example 1: [Yr}:B
<
% kjVUG >e>
% % Display the Zernike function Z(n=5,m=1) EDQKb TaPt
% x = -1:0.01:1; dux.Z9X?
% [X,Y] = meshgrid(x,x); km@V|"ac
_
% [theta,r] = cart2pol(X,Y); or~2r8
% idx = r<=1; 1>I4=mj
% z = nan(size(X)); BG>fLp
% z(idx) = zernfun(5,1,r(idx),theta(idx)); h$p]M^Z7
% figure B 2p/
% pcolor(x,x,z), shading interp :w|ef;
% axis square, colorbar >Q5et1c
% title('Zernike function Z_5^1(r,\theta)') g=)B+SY'
% HSXv_
% Example 2: 05o)Q &`
% N|JML
% % Display the first 10 Zernike functions MI^@p`s
% x = -1:0.01:1; -;NGS
)RM
% [X,Y] = meshgrid(x,x); /V-uo(n< .
% [theta,r] = cart2pol(X,Y); O+iNR9O
% idx = r<=1; t zn1|
% z = nan(size(X)); b#~K>
% n = [0 1 1 2 2 2 3 3 3 3]; ``X1xiB
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; ;Gc,-BDFw
% Nplot = [4 10 12 16 18 20 22 24 26 28]; #`Af
% y = zernfun(n,m,r(idx),theta(idx)); J,iS<lV_
% figure('Units','normalized') =VC"X ?N
% for k = 1:10 i}u,_
}
% z(idx) = y(:,k); ~Up5 +7k@
% subplot(4,7,Nplot(k)) %y96]e1
% pcolor(x,x,z), shading interp /thFs4
% set(gca,'XTick',[],'YTick',[]) Z hqGUb
% axis square `O+}$wP
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) #VM+.75o1
% end eELLnU{"
% :.DZ~I
% See also ZERNPOL, ZERNFUN2. ~F [V
^(+ X|t
-!@]z2uU
% Paul Fricker 11/13/2006 6!39t
^LI\W'K
7)RDu,fx
=EJ8J;y_f
@\*`rl]
% Check and prepare the inputs: wH?]kV8Q
% ----------------------------- .-Z=Aa>
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 8SZZ_tS3r
error('zernfun:NMvectors','N and M must be vectors.') 'zJBp 9a%
end %I^schE*
/1y\EEc
"]SA4Ud^
if length(n)~=length(m) "xI70c{
error('zernfun:NMlength','N and M must be the same length.') q1^bH6*fl
end tZXq<k9
YD9|2S!G
q!10G
n = n(:); c9ye[81
m = m(:); dz6&TdEl
if any(mod(n-m,2)) *KV^X(/
error('zernfun:NMmultiplesof2', ... xcQD]"
'All N and M must differ by multiples of 2 (including 0).') a
S;z
YD
end
S4S}go*G[
qdPmTaak
%!\iII
if any(m>n) \? n<UsI
error('zernfun:MlessthanN', ... A3Xfu$[u
'Each M must be less than or equal to its corresponding N.') %zKTrsMZ
end :Z[|B(U
t5aX9WIW
]\1H=g%Ou
if any( r>1 | r<0 ) YB+My~fw{l
error('zernfun:Rlessthan1','All R must be between 0 and 1.') *ZkOZ
end 6vfut$)[{
/B
53Z[yL
Pk3b#$+E
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) wzj:PS
error('zernfun:RTHvector','R and THETA must be vectors.') Q<Q?#v7NX
end 'WNq/z"X
\zJb}NbnT
{zI>"%$u
r = r(:); N0pA ,&
theta = theta(:); %oOSmt
length_r = length(r); 84_Y+_9
if length_r~=length(theta) W5uC5C*,l
error('zernfun:RTHlength', ... _<6E>"*m
'The number of R- and THETA-values must be equal.') |;(>q
end }U^iVq*
Bdcs}Ga
\;+TZ1i_
% Check normalization: ?>1wZ
% -------------------- Y1;jRIOA
if nargin==5 && ischar(nflag) P\y ZcL
isnorm = strcmpi(nflag,'norm'); v'Pbx
if ~isnorm q:1n=iEi
error('zernfun:normalization','Unrecognized normalization flag.') 65vsQ|Zw
end ,`8:@<e
else U
UhlKV|5
isnorm = false; ?X+PNw|pf
end @8Cja.H
98maQQWD
cpm *m"Nk
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% q8)wAl
% Compute the Zernike Polynomials Jsa;pG=3&
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% OYfRtfE
K}DrJ/s
b%h.>ij?
% Determine the required powers of r: ;*{Ls#
% ----------------------------------- OD~yIV
m_abs = abs(m); 9aYVbq""
rpowers = []; F;MACu;x
for j = 1:length(n) 3U!
l8N2
rpowers = [rpowers m_abs(j):2:n(j)]; BxiR0snf0q
end YB_fy8Tfx
rpowers = unique(rpowers); O<J<)_W)
XaaR>HljJ
v=daafO
% Pre-compute the values of r raised to the required powers, wkY$J\J
% and compile them in a matrix: DB0?H+8t
% ----------------------------- s)+] pxV0-
if rpowers(1)==0 tlYB'8bJY
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); bduHYs+rq
rpowern = cat(2,rpowern{:}); ";upu
rpowern = [ones(length_r,1) rpowern]; |+Xh ^E
else y"iK)SH
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); D|2lBU
rpowern = cat(2,rpowern{:}); 7HJH9@8V
end s~A:*2 \
x=N0H
Ev T"+;9/p
% Compute the values of the polynomials: \1eWI
% -------------------------------------- QS@eqN
y = zeros(length_r,length(n)); 0S\HO<~k
for j = 1:length(n)
\okvL2:!
s = 0:(n(j)-m_abs(j))/2; Z^ .qX\<M
pows = n(j):-2:m_abs(j); /PpZ6ne~[
for k = length(s):-1:1 EiS2-Uh*TT
p = (1-2*mod(s(k),2))* ... H {uR+&<
prod(2:(n(j)-s(k)))/ ... bRJ]avR
prod(2:s(k))/ ... wS [k}
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... .PCbGPbk
prod(2:((n(j)+m_abs(j))/2-s(k))); lr[&*v?h
idx = (pows(k)==rpowers); A{wk$`vH
y(:,j) = y(:,j) + p*rpowern(:,idx); ?{~. }Vn
end qxHsmGV
C9j5Pd5q1L
if isnorm \,G19o}`Es
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); P u}PE-b
end } 7i}dyQv}
end ^AT#A<{1(
% END: Compute the Zernike Polynomials @9g!5dcT
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0C717
7 .xejz
T'7x,8&2|
% Compute the Zernike functions: CWkAc5
% ------------------------------ q X]ej2
idx_pos = m>0; S/6I9zOP
idx_neg = m<0; ^3nB2G.ax
{/XU[rn
%sS7o3RW\
z = y; % %QAC4
if any(idx_pos) o2^?D`Jr
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); t`0(5v
end aIE\B4w
if any(idx_neg) {ZgycMS
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); NmV][0(BS
end `(L<Q%
L/: u
cWa>rUsF
% EOF zernfun (z'!'?v;