切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9058阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, uBp"YX9rx  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, To v!X8p  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? x%HX0= (  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? >.^/Z/[.L  
    H<bYm]a%  
    kpFt  
    }: v&Nc  
    KneCMFy  
    function z = zernfun(n,m,r,theta,nflag) ;s m )f  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. .=rS,Tpo  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N hJ[Z~PC\T0  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 6S*L[zBnA\  
    %   unit circle.  N is a vector of positive integers (including 0), and ;#a^M*e  
    %   M is a vector with the same number of elements as N.  Each element zi M~V'  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 6 2{(i'K  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 6Ap-J~4  
    %   and THETA is a vector of angles.  R and THETA must have the same 8{QN$Qkn  
    %   length.  The output Z is a matrix with one column for every (N,M) >S\D+1PV  
    %   pair, and one row for every (R,THETA) pair. k$j4~C'$  
    % Z_^i2eJYT  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike iK&s_}i:  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), N,N9K  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral -js:R+C528  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, RlJt+lnV  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized h$3o]~t  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. f'501MJu  
    % };{V]f 0  
    %   The Zernike functions are an orthogonal basis on the unit circle. Lh eOGM  
    %   They are used in disciplines such as astronomy, optics, and w Q!C9Gp3e  
    %   optometry to describe functions on a circular domain. <OF2\#Nh  
    % _`'VOY`o  
    %   The following table lists the first 15 Zernike functions. |^: A,%>  
    % @ Gxnrh6  
    %       n    m    Zernike function           Normalization Q7u/k$qN  
    %       -------------------------------------------------- 3.[ fTrzJ  
    %       0    0    1                                 1 tkQ#mipAj  
    %       1    1    r * cos(theta)                    2 -qv*%O@  
    %       1   -1    r * sin(theta)                    2 vRp#bScc  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) OUoN  
    %       2    0    (2*r^2 - 1)                    sqrt(3) f,S,35`qa  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) U tb"6_   
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) UEkn@^&bg  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) K9\p=H^T7  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) |%p;4b  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) v D"4aw  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) ~cC =DeX  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Ph{7S43  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) s @AGU/v  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ANqWY &f  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) b@6hGiqx  
    %       -------------------------------------------------- <]{$XcNm  
    % K+2sq+ 3q  
    %   Example 1: #kho[`9  
    % k :KN32%  
    %       % Display the Zernike function Z(n=5,m=1) zVeQKN9^Z  
    %       x = -1:0.01:1; : T` Ni  
    %       [X,Y] = meshgrid(x,x); G)<NzZo  
    %       [theta,r] = cart2pol(X,Y); W8bh49   
    %       idx = r<=1; ?%)G%2  
    %       z = nan(size(X)); H rMH  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 8\V  
    %       figure O $ p  
    %       pcolor(x,x,z), shading interp \L6kCY  
    %       axis square, colorbar ]'  ck!eG  
    %       title('Zernike function Z_5^1(r,\theta)') \&tv *  
    % #ZzFAt  
    %   Example 2: }vx+/J  
    % h mijp1u  
    %       % Display the first 10 Zernike functions q$#5>5&  
    %       x = -1:0.01:1; }MW7,F  
    %       [X,Y] = meshgrid(x,x); ->H4!FS  
    %       [theta,r] = cart2pol(X,Y); `1O<UJX  
    %       idx = r<=1; U"SH fI:  
    %       z = nan(size(X)); roiUVisq*  
    %       n = [0  1  1  2  2  2  3  3  3  3]; ]x;*Z&  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; J #ukH`|-  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; r2t|,%%N7  
    %       y = zernfun(n,m,r(idx),theta(idx)); __B`0t  
    %       figure('Units','normalized') p'@| O q&  
    %       for k = 1:10 Bsr; MVD  
    %           z(idx) = y(:,k); htgtgW9 ^P  
    %           subplot(4,7,Nplot(k)) /=y _ #l  
    %           pcolor(x,x,z), shading interp u*W6fg/"  
    %           set(gca,'XTick',[],'YTick',[]) pgp@Zw)r)k  
    %           axis square O6 :GE'S  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) QGC%, F"+  
    %       end NZ{)&ObBRt  
    % V?yTJJ21X  
    %   See also ZERNPOL, ZERNFUN2. &1Zq C;  
    XWuHH;~*L  
    E((U=P}+g  
    %   Paul Fricker 11/13/2006 w#-J ?/m  
    gG?sLgL:  
    tAi ~i;?  
    +VE ] .*T  
    per$%;5E"  
    % Check and prepare the inputs: g`n5-D@3  
    % ----------------------------- cN?}s0  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) @Yu=65h  
        error('zernfun:NMvectors','N and M must be vectors.') fN|'aq*Pd  
    end neLQ>WT L  
    ^yl)c \`  
    MS>QU@z7c  
    if length(n)~=length(m) OV.f+_LS  
        error('zernfun:NMlength','N and M must be the same length.') 1xf Pe#  
    end _MmSi4]yd  
    )iU@P7W=  
    Z<Rhn  
    n = n(:); Ra!Br6  
    m = m(:); [$x&J6jF.  
    if any(mod(n-m,2)) GW;\ 3@o  
        error('zernfun:NMmultiplesof2', ... bE6:pGr  
              'All N and M must differ by multiples of 2 (including 0).') Y|3n^%I  
    end Q 1:7 9  
     mS]&  
    Szb#:C  
    if any(m>n) uXm_ pQpF  
        error('zernfun:MlessthanN', ... A0A]#=S  
              'Each M must be less than or equal to its corresponding N.') VfFXH,j  
    end S.! n35  
    O8mmS!  
    >Ohh) $  
    if any( r>1 | r<0 ) 5ltrr(MeD  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') |[3%^!f\  
    end p~evPTHnrX  
    x^959QO~  
    h1U8z)D#   
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) @5,Xr`]  
        error('zernfun:RTHvector','R and THETA must be vectors.') 02F\1fXS  
    end 9sId2py]W  
    5 A2u|UU  
    d7U%Q8?wUR  
    r = r(:); 6!|/(~  
    theta = theta(:); i^Ip+J+[  
    length_r = length(r); 6");NHE  
    if length_r~=length(theta) >OotgJnhC  
        error('zernfun:RTHlength', ... 2zlBrjk;  
              'The number of R- and THETA-values must be equal.') sWGc1jC?.F  
    end A?;KfVq  
    6|@\\\l  
    B*AF8wX|  
    % Check normalization: +#LD@)G  
    % -------------------- MRb6O!$`C  
    if nargin==5 && ischar(nflag) "T~ce@  
        isnorm = strcmpi(nflag,'norm'); M\!z='Fi  
        if ~isnorm  IPDQ  
            error('zernfun:normalization','Unrecognized normalization flag.') $%"?0S  
        end L Rn)  
    else 6%\&m|S  
        isnorm = false; VQ(l=k:}2  
    end 1R"?X'w  
     C4.g}q  
    o'*7I|7a  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% TJ`Jqnh  
    % Compute the Zernike Polynomials #k/NS  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% .ZVADVg\  
    D6NgdE7b  
    'g#EBy  
    % Determine the required powers of r: 6b7SA ,  
    % ----------------------------------- 2)4oe  
    m_abs = abs(m); %1UdG6&J_  
    rpowers = []; +hL%8CVU M  
    for j = 1:length(n) P7|x=Ew;`  
        rpowers = [rpowers m_abs(j):2:n(j)]; 5m\T~[`%  
    end h3BDHz,  
    rpowers = unique(rpowers); /s|4aro  
    NzAMX+L  
    (-bLP  
    % Pre-compute the values of r raised to the required powers, UtzM+7r@  
    % and compile them in a matrix: @";zM&  
    % ----------------------------- aS)Gj?Odf  
    if rpowers(1)==0 -8pQI  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ;%V)lP"o  
        rpowern = cat(2,rpowern{:}); rL3 f%L  
        rpowern = [ones(length_r,1) rpowern]; ]`H8r y2  
    else \ QE?.Fx  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); t{g7 :A  
        rpowern = cat(2,rpowern{:}); SMIr@*R  
    end k=``Avp?  
    L>>Cx`ASi  
    wu`P=-  
    % Compute the values of the polynomials: oJln"-M1nx  
    % -------------------------------------- -j"]1JLQ  
    y = zeros(length_r,length(n)); G Z~W#*|V  
    for j = 1:length(n) d7i 0'R  
        s = 0:(n(j)-m_abs(j))/2; 6ntduXeNVh  
        pows = n(j):-2:m_abs(j); rhQv,F9  
        for k = length(s):-1:1 IWs)n1D*]  
            p = (1-2*mod(s(k),2))* ... sUTfY|<7|  
                       prod(2:(n(j)-s(k)))/              ... E(/M?>t-  
                       prod(2:s(k))/                     ... @p$$BUb  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Kq4b`cn{_  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); Api<q2@R  
            idx = (pows(k)==rpowers); rJws#^ ]  
            y(:,j) = y(:,j) + p*rpowern(:,idx); s!eB8lkcT  
        end \`N<0COP  
         R8n/QCeY{  
        if isnorm FAbl5VW'  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); PZE{- TM?W  
        end `p\@b~GM  
    end w\(; >e@  
    % END: Compute the Zernike Polynomials S*9qpes-m|  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Kjfpq!NYE  
    ReZ&SNJ  
    V0)F/qY  
    % Compute the Zernike functions: r]lPXj(`  
    % ------------------------------ WB(Gx_o3  
    idx_pos = m>0; 2/4,iu(T`c  
    idx_neg = m<0; #dEMjD  
    ML-?#jNa<  
    CF0i72ul5  
    z = y; +u|p<z  
    if any(idx_pos) =lG/A[66  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); c2fqueK|:W  
    end *Iir/6myM  
    if any(idx_neg) 6E0{(*  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ,bnrVa(I  
    end %K7wScz7  
    JVawWw0q  
    ,'c?^ $J|z  
    % EOF zernfun ed:[^#Lj  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  bbe$6xwi  
    :XFr"aSt  
    DDE还是手动输入的呢? n> tru L  
    |^k&6QO5  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究