切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9350阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, <L`"!~Q  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, :cGt#d6  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? gFHT G  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? 0#ClWynjRO  
    nWMmna.5  
    9nH?l{As   
    *,Za6.=  
    ik!..9aB  
    function z = zernfun(n,m,r,theta,nflag) 'JNElXqrv  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. >2]JXLq  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N %K>.lh@  
    %   and angular frequency M, evaluated at positions (R,THETA) on the x-?{E  
    %   unit circle.  N is a vector of positive integers (including 0), and cOPB2\,  
    %   M is a vector with the same number of elements as N.  Each element tUgEeh6  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) (y M^  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, aBNZdX]vzO  
    %   and THETA is a vector of angles.  R and THETA must have the same * 1Od-3  
    %   length.  The output Z is a matrix with one column for every (N,M) J,zO2572u  
    %   pair, and one row for every (R,THETA) pair. i:u1s"3~  
    % L3n_ 5|  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike z,VD=Hnz  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), qQ0cJIISb\  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral L~I hsiB  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ed:@C?  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized e'=MQ,EWd  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 5vw{b?  
    % TOoQZTI  
    %   The Zernike functions are an orthogonal basis on the unit circle. h;-yU.(w  
    %   They are used in disciplines such as astronomy, optics, and JB>b`W9   
    %   optometry to describe functions on a circular domain. CYKr\DA  
    % A0Zt8>w  
    %   The following table lists the first 15 Zernike functions. Le*.*\  
    % c7M%xGrP  
    %       n    m    Zernike function           Normalization ;\[(- )f!=  
    %       -------------------------------------------------- fm^@i;D  
    %       0    0    1                                 1 lRv eHB&V  
    %       1    1    r * cos(theta)                    2 6<'21  
    %       1   -1    r * sin(theta)                    2 2hee./F`  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) P(;?kg}0  
    %       2    0    (2*r^2 - 1)                    sqrt(3) Wy ZL9K{?  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) ZvUC I8  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ixV0|P8,c  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) JR@.R ,rII  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) QjC22lW-  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) <ERB.d!  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) +Y V|ij  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) JMVNmq&0  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) MSV2ip3  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) QMsHC%l3b  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) (%U@3._  
    %       -------------------------------------------------- .cR -V`  
    % ki{3IEOr}  
    %   Example 1: ;A'":vXmc  
    % fPR$kc h  
    %       % Display the Zernike function Z(n=5,m=1) MCT'Nw@A  
    %       x = -1:0.01:1; Uz7^1.-g4  
    %       [X,Y] = meshgrid(x,x); 4<x'ocKlD  
    %       [theta,r] = cart2pol(X,Y); .-JCwnP  
    %       idx = r<=1; m~>Y{F2  
    %       z = nan(size(X)); '*Almv{  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); /RyR>G!  
    %       figure N |1>ooU[  
    %       pcolor(x,x,z), shading interp g/&T[FOr  
    %       axis square, colorbar A"aV'~>  
    %       title('Zernike function Z_5^1(r,\theta)') >+mD$:L  
    % >OP+^^oZ<  
    %   Example 2: ;P;((2_X9  
    % 9m-)Xdoy  
    %       % Display the first 10 Zernike functions 9<vWcq*4  
    %       x = -1:0.01:1; TI !a)X  
    %       [X,Y] = meshgrid(x,x); *-12VIG'H  
    %       [theta,r] = cart2pol(X,Y); fl;s9:<  
    %       idx = r<=1; IQ!\w-  
    %       z = nan(size(X));  `juLQH  
    %       n = [0  1  1  2  2  2  3  3  3  3]; rS0DSGDq  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; x)UwV  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 4HAp{a1  
    %       y = zernfun(n,m,r(idx),theta(idx)); @w>zF/  
    %       figure('Units','normalized') qClHP)<  
    %       for k = 1:10 unJ R=~E  
    %           z(idx) = y(:,k); S2>c#BQ  
    %           subplot(4,7,Nplot(k)) @VN&t:/l  
    %           pcolor(x,x,z), shading interp #XnPsU<J  
    %           set(gca,'XTick',[],'YTick',[]) OgcHS?  
    %           axis square )XfzLF7  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) n9;;x%6.I  
    %       end v?c 0[+?  
    % ]?h`:,]  
    %   See also ZERNPOL, ZERNFUN2. [DHoGy,P  
    IG?'zppjd6  
    ;Efcw[<  
    %   Paul Fricker 11/13/2006 \]9.zlB  
    &3Zy|p4V<  
    lc6i KFyG  
    !WkIi^T  
    SI_iI71  
    % Check and prepare the inputs: i-U4RZE  
    % ----------------------------- + <c^=&7Lq  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Wy]^Ub gW  
        error('zernfun:NMvectors','N and M must be vectors.') f(D_FTTO  
    end pr,p=4m{\  
    CU:o*;jP  
    Ro=AADv@  
    if length(n)~=length(m) #tdf>?  
        error('zernfun:NMlength','N and M must be the same length.') D^U: ih  
    end #&8}<8V  
    0lM{l?  
    B$?qQ|0:=  
    n = n(:); mfny4R1_  
    m = m(:); ?8, %LIQ?  
    if any(mod(n-m,2)) \uG`|D n  
        error('zernfun:NMmultiplesof2', ... qpJ{2Q  
              'All N and M must differ by multiples of 2 (including 0).') pbHsR^  
    end xw<OLWW  
    }%TSGC4{  
    fWGOP~0  
    if any(m>n) S>q>K"j^!  
        error('zernfun:MlessthanN', ... c~ <1':  
              'Each M must be less than or equal to its corresponding N.') nsb4S {  
    end *FR$vLGn  
    MYe HS   
    z5Qs @dG  
    if any( r>1 | r<0 ) R)Mt(gFZT_  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') Oq(VvS/  
    end Wk4.%tpeO7  
    iP3Z  
    9^F2$+T[:  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) $!A:5jech  
        error('zernfun:RTHvector','R and THETA must be vectors.') uk`8X`'  
    end rAQF9O[  
    Gi^Ha=?J%  
    >i,iOx|E-  
    r = r(:); P ,eH5w"  
    theta = theta(:); !SHj$Jwa'  
    length_r = length(r); ']o od!  
    if length_r~=length(theta) qu6DQ@ ~YC  
        error('zernfun:RTHlength', ... vOI[Z0Lq9h  
              'The number of R- and THETA-values must be equal.') ! o, 5h|\  
    end pL1s@KR  
    tZWrz e^  
    ;%q39U}  
    % Check normalization: o[6y+<'o  
    % -------------------- ^b?2N/m@  
    if nargin==5 && ischar(nflag) BRG|Asg(  
        isnorm = strcmpi(nflag,'norm'); B`#h{)[  
        if ~isnorm dpN@#w  
            error('zernfun:normalization','Unrecognized normalization flag.') a?cn9i)#  
        end Y^ve:Z  
    else Vs 0 SXj  
        isnorm = false; X}4}&  
    end \6j^k Y=  
    ://U^sFL  
    iy5R5L 2  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @u4=e4eF`  
    % Compute the Zernike Polynomials 6DSH`-;  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 6a}r( yP  
    nX%AeDBAT  
    }3/~x  
    % Determine the required powers of r: P]<= ! F  
    % ----------------------------------- wod/&!)]A  
    m_abs = abs(m); s'a=_cN  
    rpowers = []; R 4EEelSZu  
    for j = 1:length(n) mU{4g`Iw  
        rpowers = [rpowers m_abs(j):2:n(j)]; :9d\Uj,  
    end dXu{p  
    rpowers = unique(rpowers); jPu5nwvUV>  
    :pKG\A  
    X1J;1hRUP  
    % Pre-compute the values of r raised to the required powers, m24v@?*  
    % and compile them in a matrix: +QqH}= M  
    % ----------------------------- !r&Bn6*  
    if rpowers(1)==0 Y\t_&px  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); r:.uBc&_  
        rpowern = cat(2,rpowern{:}); ?s{C//  
        rpowern = [ones(length_r,1) rpowern]; r:l96^xs  
    else pz}mF D&[  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ,a(O`##Bn  
        rpowern = cat(2,rpowern{:}); ?g  }kb  
    end xl!K;Y2<  
    ;lfWu U%R  
    Gi$gtLtN h  
    % Compute the values of the polynomials: J 3?Dj  
    % -------------------------------------- #Q6w+"  
    y = zeros(length_r,length(n)); L~0& Q  
    for j = 1:length(n) :k"rhI  
        s = 0:(n(j)-m_abs(j))/2; [ #]jC[  
        pows = n(j):-2:m_abs(j); %O) Z  
        for k = length(s):-1:1 _-a|VTM  
            p = (1-2*mod(s(k),2))* ... Yw"P)Zp  
                       prod(2:(n(j)-s(k)))/              ... ckwF|:e 7*  
                       prod(2:s(k))/                     ... ?n*fy  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Gp1EJ2d8  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); Zq?_dIX %  
            idx = (pows(k)==rpowers); .ewZV9P)t  
            y(:,j) = y(:,j) + p*rpowern(:,idx); VO9f~>`(  
        end R7aXR\ R  
         x0x $  9  
        if isnorm 0$Ff#8  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); K\sbt7~  
        end u6_jnZGB  
    end %Dyh:h   
    % END: Compute the Zernike Polynomials l P0k:  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% r{"uv=,`  
    9s $PrF  
    eY3=|RR  
    % Compute the Zernike functions: FGVb@=TO>  
    % ------------------------------ DT? m/*  
    idx_pos = m>0; UX}*X`{  
    idx_neg = m<0; !GNXt4D  
    5'9.np F)  
    Ao*FcrXN  
    z = y; \dNhzd#  
    if any(idx_pos) h ]}`@M"  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); q!2<=:f  
    end wb+<a  
    if any(idx_neg) 0^iJlR2  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); .;Z.F7{q  
    end $[Q cEk  
    2fBYT4*P;  
    <UK5eVQn  
    % EOF zernfun w{P6i<J  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    在线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  vi^z5n  
    f(^33k  
    DDE还是手动输入的呢? JN-D/s  
    ;g&7*1E  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究