切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9367阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, 5U$0F$BBp  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, ?Z/V~,  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? xi}skA  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? /y}xX  
    Q p3_f8  
    >|UOz&  
    fuySN!s  
    }K|oicpUg  
    function z = zernfun(n,m,r,theta,nflag) 3f{3NzN  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. + cN8Y}V  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N )+DmOsH  
    %   and angular frequency M, evaluated at positions (R,THETA) on the M .mfw#*  
    %   unit circle.  N is a vector of positive integers (including 0), and vl:KF7:#m  
    %   M is a vector with the same number of elements as N.  Each element UP,c|  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) DB}eA N/  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, u'BaKWPS  
    %   and THETA is a vector of angles.  R and THETA must have the same _q-*7hCQ`  
    %   length.  The output Z is a matrix with one column for every (N,M) jNk%OrP]  
    %   pair, and one row for every (R,THETA) pair. i8]S:49  
    % SwMc pNo  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike  2JBR)P  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), S<Xf>-8w  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral &%J08l6  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ( a#BV}=  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized k{-Cwo  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. $=4QO  
    % ^ [@ ,  
    %   The Zernike functions are an orthogonal basis on the unit circle. zTU0HR3A  
    %   They are used in disciplines such as astronomy, optics, and }qD\0+`qi  
    %   optometry to describe functions on a circular domain. >z@0.pN]7  
    % ]h5tgi?_l  
    %   The following table lists the first 15 Zernike functions. oUlVI*~ND  
    % 5r ^(P  
    %       n    m    Zernike function           Normalization G"A#Q"  
    %       -------------------------------------------------- F:S}w   
    %       0    0    1                                 1 o`-msz  
    %       1    1    r * cos(theta)                    2 UkFC~17P  
    %       1   -1    r * sin(theta)                    2 LKDO2N  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) A.w.rVDD  
    %       2    0    (2*r^2 - 1)                    sqrt(3) Z *x'+X  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) 7@W>E;go  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ;aVZ"~a+\  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) l.M0`Cn-%  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 4o5t#qP5$S  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) CU!Dhm/U  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) El8,,E  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 1?l1:}^L  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 3ckclO\|>  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) KMax$  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) \s\?l(ooq"  
    %       -------------------------------------------------- ;!Fn1|)  
    % 5|)W.*Q  
    %   Example 1: =Dj#gV  
    % %8v\FS  
    %       % Display the Zernike function Z(n=5,m=1) 6_B]MN!(  
    %       x = -1:0.01:1; B%68\  
    %       [X,Y] = meshgrid(x,x); ]6j{@z?{  
    %       [theta,r] = cart2pol(X,Y); o)/ 0a  
    %       idx = r<=1; j1<Yg,_.p  
    %       z = nan(size(X)); )boE/4  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); J<lW<:!3]  
    %       figure cU  
    %       pcolor(x,x,z), shading interp {P-):  
    %       axis square, colorbar apn*,7ps65  
    %       title('Zernike function Z_5^1(r,\theta)') UPGtj"2v-  
    % |DwZ{(R"W  
    %   Example 2: +b 6v!7_  
    % Q,Eo mt  
    %       % Display the first 10 Zernike functions [nh>vqum  
    %       x = -1:0.01:1; /x *3}oI  
    %       [X,Y] = meshgrid(x,x); o4WDh@d5S  
    %       [theta,r] = cart2pol(X,Y); 8{ I|$*nB  
    %       idx = r<=1; @O~pV`_tD  
    %       z = nan(size(X)); dc'Y `e  
    %       n = [0  1  1  2  2  2  3  3  3  3]; qxc[M8s  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; # f\rt   
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; lEBLZ}}\  
    %       y = zernfun(n,m,r(idx),theta(idx)); NHE18_v5  
    %       figure('Units','normalized') G#$-1"!`  
    %       for k = 1:10 J .<F"r>  
    %           z(idx) = y(:,k); ~.|_RdN  
    %           subplot(4,7,Nplot(k)) vih9 KBT  
    %           pcolor(x,x,z), shading interp W%w~ah|/]  
    %           set(gca,'XTick',[],'YTick',[]) CvdN"k  
    %           axis square J .%IfN  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Ho]su?  
    %       end Zwx%7l;C  
    % B-mowmJ3dg  
    %   See also ZERNPOL, ZERNFUN2. (;,sc$H]  
    @(lh%@hO  
    .RL=xb|[  
    %   Paul Fricker 11/13/2006 G+m }MOQP7  
    hqdDm  
    nr3==21Om4  
    ~>XxGjxe  
    [N'h%1]\  
    % Check and prepare the inputs: O".=r}  
    % ----------------------------- qxj(p o  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) wgA_38To  
        error('zernfun:NMvectors','N and M must be vectors.') !`r$"}g  
    end GN>@ZdVG}#  
    ,fRq5"?  
    &e3.:[~_?  
    if length(n)~=length(m) Z30A{6}  
        error('zernfun:NMlength','N and M must be the same length.') *K; ~!P  
    end {c0`Um3&>  
    ss-D(K"  
    " Yy n/  
    n = n(:); 6w77YTJ  
    m = m(:); cc3 4e  
    if any(mod(n-m,2)) LH6 vLuf  
        error('zernfun:NMmultiplesof2', ... P93@;{c(  
              'All N and M must differ by multiples of 2 (including 0).') @o.I;}*N  
    end L: x-%m%w  
    3 gf1ownC  
    zW nR6*\  
    if any(m>n) BJ0?kX@  
        error('zernfun:MlessthanN', ... IR bfNq^:  
              'Each M must be less than or equal to its corresponding N.') ,z?':TZ  
    end bPMhfK2 %  
    hv+zGID7  
    ,+ ~W4<f  
    if any( r>1 | r<0 ) !!y a  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') ~)'k 9?0  
    end Xm&L B X  
    h `wD  
    -{A<.a3P}=  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) -$@h1Y  
        error('zernfun:RTHvector','R and THETA must be vectors.') L0]_X#s>#  
    end 9!tW.pK5  
    et+0FF ,  
    {XHh8_ ^&  
    r = r(:); ?%kV?eu'  
    theta = theta(:); A)~6Im  
    length_r = length(r); QCJM&  
    if length_r~=length(theta) H[|~/0?K  
        error('zernfun:RTHlength', ... -Qe Z#w|  
              'The number of R- and THETA-values must be equal.') y?!"6t7&  
    end -^wl>}#*T3  
    BORA(,  
     z$Qbj  
    % Check normalization: YoE3<[KD(  
    % -------------------- ~;]d"'  
    if nargin==5 && ischar(nflag) @|)Z"m7  
        isnorm = strcmpi(nflag,'norm'); H:\k}*w  
        if ~isnorm Ct|A:/z(  
            error('zernfun:normalization','Unrecognized normalization flag.') 4/)k)gLI  
        end J-4:H gx  
    else y!%CffF2  
        isnorm = false; 3mni>*q7d  
    end h1(4Ic  
    A(N4N  
    (9h`3#  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% )_NO4`ejs/  
    % Compute the Zernike Polynomials BPHW}F]X  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% E!AE4B1bd  
    -%dCw6aX+  
    u-C)v*#L  
    % Determine the required powers of r: xwty<?dRW1  
    % ----------------------------------- 4`R(?  
    m_abs = abs(m); W'.m'3#z  
    rpowers = []; l@:0e]8|o  
    for j = 1:length(n) KG5>]_GH  
        rpowers = [rpowers m_abs(j):2:n(j)]; ]:\dPw`A  
    end ?'je)F  
    rpowers = unique(rpowers); bu"!jHPB  
    &"q=5e2  
    -!9G0h&i|  
    % Pre-compute the values of r raised to the required powers, W}1 ;Z(.*  
    % and compile them in a matrix: fxIf|9Qi`  
    % ----------------------------- 8x{'@WCG%  
    if rpowers(1)==0 2Hv+W-6v  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 2:=  
        rpowern = cat(2,rpowern{:}); 9)=ctoZ'  
        rpowern = [ones(length_r,1) rpowern]; <Ok3FE.K  
    else y)gKxRaCS  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); cs'{5!i]  
        rpowern = cat(2,rpowern{:}); ?0,Ngrbe  
    end zv"Z DRW  
    n-OL0$Xu  
    Xs?o{]Fe  
    % Compute the values of the polynomials: YrKWA  
    % -------------------------------------- !Rt>xD  
    y = zeros(length_r,length(n)); :/Qq@]O>  
    for j = 1:length(n) I!?}jo3  
        s = 0:(n(j)-m_abs(j))/2; ]g&TKm  
        pows = n(j):-2:m_abs(j); ! v0LBe4  
        for k = length(s):-1:1 Wxe0IXq3Nn  
            p = (1-2*mod(s(k),2))* ... O7IJ%_A&  
                       prod(2:(n(j)-s(k)))/              ... w+{LAS  
                       prod(2:s(k))/                     ... vZoaT|3 G]  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... v}Fr@0%  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); m9Hit8f@Q  
            idx = (pows(k)==rpowers); L,@lp  
            y(:,j) = y(:,j) + p*rpowern(:,idx); bY0|N[ g  
        end @y&bw9\  
         DDH:)=;z  
        if isnorm #lW`{i  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); "FKOaQ%IH  
        end #YOA`m,'  
    end Z)aUt Srf  
    % END: Compute the Zernike Polynomials e)O 4^#i  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0_t`%l=  
    ^a1^\X.~  
    d<N:[Y\4l  
    % Compute the Zernike functions: xK\d4 "  
    % ------------------------------ j,dR,Nd  
    idx_pos = m>0; (*)hD(C5  
    idx_neg = m<0; ^]-6u:J!  
    ,nB5/Lx  
    NTI+  
    z = y; igR";OQk  
    if any(idx_pos) FG*r'tC~r  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); A$:U'ZG_  
    end >&5DsV.B  
    if any(idx_neg) 0=E]cQwh  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 1PV'?tXp(  
    end s}% M4  
    >s?S+W[L  
    `lt"[K<  
    % EOF zernfun 2V;PYI  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  >xYpNtEs  
    C>j@,G4  
    DDE还是手动输入的呢? a /l)qB#  
    i&66Fi1  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究