下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, #[f]-c(!
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, )
>;7"v
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? nQGl]2
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? Cj%n?-
e!W U
cWtuI(.
[Ef6@
mR|L'[l
function z = zernfun(n,m,r,theta,nflag) I(<9e"1O
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. |L/EH~| O
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N [)+wke9
% and angular frequency M, evaluated at positions (R,THETA) on the e,kxg^
% unit circle. N is a vector of positive integers (including 0), and :FT x#cZ
% M is a vector with the same number of elements as N. Each element (+yH
% k of M must be a positive integer, with possible values M(k) = -N(k) ziDvDu=
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, b5Q|$E
% and THETA is a vector of angles. R and THETA must have the same @C-03`JWuK
% length. The output Z is a matrix with one column for every (N,M) NSawD.9mV
% pair, and one row for every (R,THETA) pair. xXf,j#`"
% azz=,^U#
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike J>l?HK
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 3daI_Nx>
% with delta(m,0) the Kronecker delta, is chosen so that the integral lArKfs/
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, dI%?uk
% and theta=0 to theta=2*pi) is unity. For the non-normalized 1=Z!ZY}}e
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. z$gtGrU
% t4iD<{4
% The Zernike functions are an orthogonal basis on the unit circle. cX!C/`ew>
% They are used in disciplines such as astronomy, optics, and qk~m\U8r
% optometry to describe functions on a circular domain. nU4to
% V&*|%,q
% The following table lists the first 15 Zernike functions. {J1iheuS}
% W#)X@TlE
% n m Zernike function Normalization gw!d[{#
% -------------------------------------------------- cJMi`PQ;
% 0 0 1 1 hK,a8%KnFA
% 1 1 r * cos(theta) 2 :8K}e]!c1
% 1 -1 r * sin(theta) 2 y8_$YA/g
% 2 -2 r^2 * cos(2*theta) sqrt(6) t"zi'9$t
% 2 0 (2*r^2 - 1) sqrt(3) {dXTj 7
% 2 2 r^2 * sin(2*theta) sqrt(6) AsD$M*It
% 3 -3 r^3 * cos(3*theta) sqrt(8) U9ZuD40\
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) M8Vc5
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 6Df*wi!jI
% 3 3 r^3 * sin(3*theta) sqrt(8) k".kbwcaF
% 4 -4 r^4 * cos(4*theta) sqrt(10) @@j:z;^|
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Xp] jF^5
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) nY7gST
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) QChncIqc
% 4 4 r^4 * sin(4*theta) sqrt(10) Esu{c9,
% -------------------------------------------------- ^U5Qb"hz
% 9: .m]QN
% Example 1: ? cXW\A(
% /ej[oR
% % Display the Zernike function Z(n=5,m=1) j+fib} 8}
% x = -1:0.01:1; W]oa7VAq
% [X,Y] = meshgrid(x,x); ^2H;
% [theta,r] = cart2pol(X,Y); |h}4J
% idx = r<=1; ZNne 8
% z = nan(size(X)); (H5#r2h%Y
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 8v z h5,U
% figure `m#-J;la
% pcolor(x,x,z), shading interp %ufh
% axis square, colorbar !zvjgDlZv
% title('Zernike function Z_5^1(r,\theta)') 8\"Gs z
% 81"` B2
% Example 2: jQxhR
% |_+#&x
% % Display the first 10 Zernike functions T60pw
% x = -1:0.01:1; RyP MzxV
% [X,Y] = meshgrid(x,x); PW|=IPS
% [theta,r] = cart2pol(X,Y); S2DG=hi`GK
% idx = r<=1; mogmr
% z = nan(size(X)); 5RvE ),
% n = [0 1 1 2 2 2 3 3 3 3]; WQ 2{`'z
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; aW*k,\:e
% Nplot = [4 10 12 16 18 20 22 24 26 28]; ~;?<OOt|wG
% y = zernfun(n,m,r(idx),theta(idx)); xL1Li]fM!'
% figure('Units','normalized') }NoP(&ebz*
% for k = 1:10 VP>*J`'H
% z(idx) = y(:,k); {g#4E0.A!
% subplot(4,7,Nplot(k)) 2,dWD<h
% pcolor(x,x,z), shading interp (:qc[,m
% set(gca,'XTick',[],'YTick',[]) =w}JAEE|(i
% axis square Pw| h`[h
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) L-}J=n\
% end J,:&U
wkv
% Bcarx<P-p
% See also ZERNPOL, ZERNFUN2. ^P^%Q)QXl
@J&korU
C+uW]]~I)
% Paul Fricker 11/13/2006 t))MZw&@
m0As t<u
EwX&Cj".
w8>h6x"
5e$1KN`
% Check and prepare the inputs: \7i_2|w
% ----------------------------- tH)jEY9
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) "5Y6.$Cuf!
error('zernfun:NMvectors','N and M must be vectors.') RSe4lw
end E0R6qS:'
#kASy 2t
6IG?t
if length(n)~=length(m) 6_4B!
error('zernfun:NMlength','N and M must be the same length.') Fu_I0z
end w+>+hq
RzjUrt
?T2>juf]5~
n = n(:); E#!!tH`lgg
m = m(:); 5\MC5us3
if any(mod(n-m,2)) UPU$SZAIx
error('zernfun:NMmultiplesof2', ... z,G_&5|f%
'All N and M must differ by multiples of 2 (including 0).') kFwFPK%B
end ey=KA t
H:]cBk^[,
P2a5<#_|
if any(m>n) [K.1 X=O}
error('zernfun:MlessthanN', ... >4jE[$p]"
'Each M must be less than or equal to its corresponding N.') #G77q$
end X)[tb]U/Wx
HKXC=^}x'
WA8<:#{e
if any( r>1 | r<0 ) /7 Tm2Vj8
error('zernfun:Rlessthan1','All R must be between 0 and 1.') IgG[Pr'D
end )rK2%\Z
:R,M Y"(
iCF},W+
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 7Hr_ZwO/^
error('zernfun:RTHvector','R and THETA must be vectors.') ZrTB%
end )&c#?wx'w
m+hI3@j
GYfOwV!zB
r = r(:); ]alc%(=
theta = theta(:); b$7]cE
length_r = length(r); gHLI>ew*QR
if length_r~=length(theta) <ToBVGX
error('zernfun:RTHlength', ... mkn1LzE|F
'The number of R- and THETA-values must be equal.') Z5>~l
end 4u6 FvN
&.,K@OFE}
w'2FYe{wj
% Check normalization: P>C'?'Q7
% -------------------- g0tnt)]
if nargin==5 && ischar(nflag) !k)6r6
isnorm = strcmpi(nflag,'norm'); +:.Jl:fx4
if ~isnorm aDKb78 1d
error('zernfun:normalization','Unrecognized normalization flag.') p H y
end K:a8}w>Up
else q++r\d^{
isnorm = false; WFOJg&
end Hw]E#S
AU$~Ap*rsa
TlS? S+
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% tk%f_"}
% Compute the Zernike Polynomials P C_!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% F3}MM
dX
B`B=bn+4
z%YNZ^d
% Determine the required powers of r: [Cl0Kw.LD
% ----------------------------------- etr-\Cp
m_abs = abs(m); ,Z@#( =f
rpowers = []; _J
l(:r\%
for j = 1:length(n) 0SIC=p=J
rpowers = [rpowers m_abs(j):2:n(j)]; a{]=BY oL
end \)6glAtN
rpowers = unique(rpowers); ?bB>}:~j)
VI2lwE3
/ I`TN5~
% Pre-compute the values of r raised to the required powers, R |c=I}@F
% and compile them in a matrix: r)iEtT!p*
% ----------------------------- <k:I2LF_
if rpowers(1)==0 +
Q-b}
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ;5 j|B|v
rpowern = cat(2,rpowern{:}); $Z@*!B^
rpowern = [ones(length_r,1) rpowern]; hC<ROD
else _uQ]I^ 'D
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Hb=#`
rpowern = cat(2,rpowern{:}); #d-({blo<
end y&NqVR=
nje7?Vz
~Ru\Z-q1
% Compute the values of the polynomials: 4XN
\p
% -------------------------------------- )d2Z g
y = zeros(length_r,length(n)); $o[-xNn1
for j = 1:length(n) +/ukS6>gr
s = 0:(n(j)-m_abs(j))/2; =0)|psCsM
pows = n(j):-2:m_abs(j); P1eSx#3bR
for k = length(s):-1:1 (9]Uuvfp6"
p = (1-2*mod(s(k),2))* ... <7^|@L
6
prod(2:(n(j)-s(k)))/ ... +:FXtO>n"
prod(2:s(k))/ ... :;+!ID_
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... NI V}hf YF
prod(2:((n(j)+m_abs(j))/2-s(k))); 4D?h}U /
idx = (pows(k)==rpowers); !mNst$-H4
y(:,j) = y(:,j) + p*rpowern(:,idx); C*Vm}|)
end 3V k8'
VE )D4RL
if isnorm 3( BL
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 'c35%?]
end T2e-RR
end (T%F^s5D
% END: Compute the Zernike Polynomials #A/OGi
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% s@\3|e5g
v)5;~.+%
vzIo2,/7
% Compute the Zernike functions: C`.YOkpj
% ------------------------------ -b-a21,m>
idx_pos = m>0; ?v2_7x&
idx_neg = m<0; AFAg3/
$J7V]c*-b
,!:c6F+
z = y; C]L)nCOBX
if any(idx_pos) r[L.TX3Ah=
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); c!Hz'W
end ReaZg ?:h
if any(idx_neg) K.
;ev
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 4S_f2P2J
end o*KAS@&
G+
/Q!ic
Z<vz%7w
% EOF zernfun
t ed:]