切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9469阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, .^b;osAU  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵,  ? w^-  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? GguFo+YeZ  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? `"%T=w  
    L/"0ws_  
    s3W@WH^.  
    eI@ q|"U  
    02Ia2e.f  
    function z = zernfun(n,m,r,theta,nflag) F{ELSKcp.  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. vVL@K,q  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N gzeQ|m2]  
    %   and angular frequency M, evaluated at positions (R,THETA) on the _V\Bp=9W  
    %   unit circle.  N is a vector of positive integers (including 0), and  C:G8c[  
    %   M is a vector with the same number of elements as N.  Each element .Lfo)?zG  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) Y"KE7>Jf  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, Xt#1Qs  
    %   and THETA is a vector of angles.  R and THETA must have the same  x]z2Z*  
    %   length.  The output Z is a matrix with one column for every (N,M) w |l1'   
    %   pair, and one row for every (R,THETA) pair. 8/K!SpM*d  
    % x"~~l  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike f  nI|  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), {W##^L~  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral +*_5tWAc  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ApjOj/  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized DS<  }@  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. uPniLx\t:  
    % &7_Qd4=08w  
    %   The Zernike functions are an orthogonal basis on the unit circle. T 6~_Q}6  
    %   They are used in disciplines such as astronomy, optics, and Kt(-@\)!  
    %   optometry to describe functions on a circular domain. >"Q@bQ:e  
    % z~A]9|/61v  
    %   The following table lists the first 15 Zernike functions. sdS^e`S  
    % [xKd7"d/n  
    %       n    m    Zernike function           Normalization pFJB'=c  
    %       -------------------------------------------------- E_zIg+(+  
    %       0    0    1                                 1 san,|yrMn  
    %       1    1    r * cos(theta)                    2 cm[c ze+*  
    %       1   -1    r * sin(theta)                    2 kCXdGhb  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) l9M0cZ,  
    %       2    0    (2*r^2 - 1)                    sqrt(3) aj}(E +  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) xz:J  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) |`;54_f  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) l{D'uI[&  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) r:]1 O*  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 1nu^F,M  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 5 QO34t2  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) \Vl`YYjZ  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) M5x U9]B  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) [{X^c.8G)  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) S~Id5T:,  
    %       -------------------------------------------------- yZ!T8"mz{  
    % YX*Qd$chZ  
    %   Example 1: EKp@9\XBC  
    % ooV*I|wcI  
    %       % Display the Zernike function Z(n=5,m=1) y7^{yS[,  
    %       x = -1:0.01:1; sUYxT>R  
    %       [X,Y] = meshgrid(x,x); 6eokCc"o  
    %       [theta,r] = cart2pol(X,Y); uWrQ&}@  
    %       idx = r<=1; )7:J[0ZiQ  
    %       z = nan(size(X)); pn*3\  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); Y{*u&^0{  
    %       figure i9=&;_z  
    %       pcolor(x,x,z), shading interp XQ*eP?OS{  
    %       axis square, colorbar #A8@CA^d  
    %       title('Zernike function Z_5^1(r,\theta)') C XHy.&Vt  
    % J6jwBo2m  
    %   Example 2: pc?>cs8  
    % <?D\+khlq  
    %       % Display the first 10 Zernike functions [ib P%xb  
    %       x = -1:0.01:1; %4W$Lq}  
    %       [X,Y] = meshgrid(x,x); CwX Z  
    %       [theta,r] = cart2pol(X,Y); zuJtpMn  
    %       idx = r<=1; !*`-iQo&  
    %       z = nan(size(X)); b<]n%Q'n  
    %       n = [0  1  1  2  2  2  3  3  3  3]; AL5Vu$V~n}  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 7w1wr)qSB  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; i{I~mrm/'\  
    %       y = zernfun(n,m,r(idx),theta(idx)); 98.>e  
    %       figure('Units','normalized') gqWupL  
    %       for k = 1:10 `|Or{ih  
    %           z(idx) = y(:,k); vp(;W,ba:|  
    %           subplot(4,7,Nplot(k)) al 20V  
    %           pcolor(x,x,z), shading interp {6oE0;2o'  
    %           set(gca,'XTick',[],'YTick',[]) BW,mwq  
    %           axis square 4R5D88= C  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) &5 L<i3BX  
    %       end ^`<w&I@  
    % s#uJ ;G  
    %   See also ZERNPOL, ZERNFUN2. _{|D  
    a5G/[[cwTV  
    _f6HAGDN  
    %   Paul Fricker 11/13/2006 b$eXFi/  
    4H+Ked&Oq  
    *SO{\bu  
    X=C1/4wU  
    zB? V_aT  
    % Check and prepare the inputs: sN("+ sZ.n  
    % -----------------------------  {Ha8]y  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) }za[E>z  
        error('zernfun:NMvectors','N and M must be vectors.') =tU{7i*+  
    end IuZ) [*W  
    .IJ_jt-^d  
    kg`.[{k  
    if length(n)~=length(m) @x/T&67k  
        error('zernfun:NMlength','N and M must be the same length.') S\CRG>  
    end ]x&u`$F  
    2r%lA\,h$  
    <94_@3  
    n = n(:); %?e(hnM  
    m = m(:); ,|88r=}  
    if any(mod(n-m,2)) vS;1/->WD  
        error('zernfun:NMmultiplesof2', ... r &Ca" dI  
              'All N and M must differ by multiples of 2 (including 0).') .Gcy> Av  
    end pZyQY+O  
    eyp,y2Tz  
    oy<WUb9W  
    if any(m>n) KFZm`,+69  
        error('zernfun:MlessthanN', ... _ %%Z6x(  
              'Each M must be less than or equal to its corresponding N.') $v8l0JA *  
    end JH7Ad (:  
    8UkKU_Uso  
    [&*6_q"V  
    if any( r>1 | r<0 ) MZ+e}|!4,  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') dSCzx .c  
    end 0 'Vg6E]/  
    A^2L~g[^Q  
    ?m c%.Bt  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) gDIBnH  
        error('zernfun:RTHvector','R and THETA must be vectors.') CB~Q%QLG  
    end 5b/ojr7  
    k0Ek:MjJr  
    }qjCTEs}  
    r = r(:); "S&%w8V  
    theta = theta(:); +PK6-c\r  
    length_r = length(r); 8z5# ]u;  
    if length_r~=length(theta) "g+z !4b#  
        error('zernfun:RTHlength', ... I\ | N  
              'The number of R- and THETA-values must be equal.') W9oAjO NE  
    end +u'I0>)S  
    A>VX*xd  
    p h[\)  
    % Check normalization: ]xd^%q*  
    % -------------------- bw&myzs  
    if nargin==5 && ischar(nflag) oR p:B &  
        isnorm = strcmpi(nflag,'norm'); 'lZ.j&  
        if ~isnorm T#Z%y!6  
            error('zernfun:normalization','Unrecognized normalization flag.') 3/JyUh?  
        end Iak0 [6Ey  
    else gK|R =J  
        isnorm = false; f f7(  
    end [Vdz^_@Y  
    D5?phyC[Z  
    #0;HOeIiH  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% zhB">j8j  
    % Compute the Zernike Polynomials /HZumV?  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% z<]bv7V  
     BGzI  
    ]TstSF=  
    % Determine the required powers of r: mKq"3 4F  
    % ----------------------------------- &W }<:WH~  
    m_abs = abs(m); 5.tvB  
    rpowers = []; <Q<+4Y{R  
    for j = 1:length(n) Ri>?KrQF%  
        rpowers = [rpowers m_abs(j):2:n(j)]; $\AEWFB  
    end A>.2OC+  
    rpowers = unique(rpowers); @tRMe6 4  
    d77r9  
    ,)~E>[=+  
    % Pre-compute the values of r raised to the required powers, 6aOp[-Le  
    % and compile them in a matrix: N]5m(@h  
    % ----------------------------- oojiJ~  
    if rpowers(1)==0 FbACTeB  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); =neL}Fav56  
        rpowern = cat(2,rpowern{:}); 8cHE[I  
        rpowern = [ones(length_r,1) rpowern]; u1K\@jlw  
    else AY_Q""v  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); *Dr5O9Y  
        rpowern = cat(2,rpowern{:}); em2_pq9q  
    end Y|0ow_oH  
    *Zd84wRSj  
    > 7`&0?  
    % Compute the values of the polynomials: I_ "Z:v{  
    % -------------------------------------- b~7drf  
    y = zeros(length_r,length(n)); N<z`yV  
    for j = 1:length(n) @LLTB(@wR  
        s = 0:(n(j)-m_abs(j))/2; &S74mV  
        pows = n(j):-2:m_abs(j); 6-,m}Ce\  
        for k = length(s):-1:1 IPA*-I57  
            p = (1-2*mod(s(k),2))* ... h[XGC =%  
                       prod(2:(n(j)-s(k)))/              ... TA}UY7v  
                       prod(2:s(k))/                     ... >Cd9fJ&0gP  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... nv5u%B^  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); #WE]`zd  
            idx = (pows(k)==rpowers); 6!EYrX}rI[  
            y(:,j) = y(:,j) + p*rpowern(:,idx); FuP/tTMU1a  
        end Zzd/K^gg  
         aw}+'(?8]  
        if isnorm kRIB<@{  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); #\If]w*j  
        end >HkhAJhW  
    end =;c_} VY  
    % END: Compute the Zernike Polynomials hhR aJ  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% evl -V>   
    E1>/R  
    F!KV\?eM$  
    % Compute the Zernike functions: w.kCBDL  
    % ------------------------------ OKwOugi0  
    idx_pos = m>0; XKLF8~y8A  
    idx_neg = m<0; ?p8k{N(1  
    I>w^2 (y  
    iH)Nk^   
    z = y; 7$b?m6fmK  
    if any(idx_pos) W$\X~Q'0  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); K^i"9D)A  
    end O25m k X  
    if any(idx_neg) ! gp}U#Yv  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); @Y' I,e  
    end m7 XjP2   
    =hX[  
    ~mILA->F  
    % EOF zernfun L]zNf71RD  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    在线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  QK'`=MU  
    V 1*Ad  
    DDE还是手动输入的呢? }!=gP.Zu^  
    j;G[%gi6{  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究