下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, 'Ct+0X:D
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, lVqvS/_k$
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? 7c+u+Yet
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? "xh]>_;&'
Tj.;\a|d
r`"
? K]rI
yXDf;`J
$
@^n3ZQ4
function z = zernfun(n,m,r,theta,nflag) 3i7n"8\$
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. nOOA5Gz
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Qd@`jwjS
% and angular frequency M, evaluated at positions (R,THETA) on the s,0,w--=
% unit circle. N is a vector of positive integers (including 0), and w7O(I"
% M is a vector with the same number of elements as N. Each element LaLA}1!
% k of M must be a positive integer, with possible values M(k) = -N(k) =6? 3c\
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, IH{g-#U
% and THETA is a vector of angles. R and THETA must have the same ]e+S ~me
% length. The output Z is a matrix with one column for every (N,M) {4#'`Eejj
% pair, and one row for every (R,THETA) pair. 4).q+{#k
% B&tl6?7h
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Yh4e\]ql~N
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), -FJ5N}R
% with delta(m,0) the Kronecker delta, is chosen so that the integral &!~q#w1W-5
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, e\/Lcng
% and theta=0 to theta=2*pi) is unity. For the non-normalized y*P[*/g
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. TVKuvKH8U
% N2C^'dFj
% The Zernike functions are an orthogonal basis on the unit circle. w2Pkw'a{
% They are used in disciplines such as astronomy, optics, and (zUERw\aX
% optometry to describe functions on a circular domain. \p.ku%{
% `57ffQR9
% The following table lists the first 15 Zernike functions. GCc@
:*4[
% QarA.Ne~
% n m Zernike function Normalization "Sl";.
% -------------------------------------------------- 3q<\
\8Y*
% 0 0 1 1 L7 qim.J
% 1 1 r * cos(theta) 2 _t3n<
% 1 -1 r * sin(theta) 2 >?I[dYzut
% 2 -2 r^2 * cos(2*theta) sqrt(6) =`g+3
O;<
% 2 0 (2*r^2 - 1) sqrt(3) y\ Zx{A[
% 2 2 r^2 * sin(2*theta) sqrt(6) {ImZ><xe/
% 3 -3 r^3 * cos(3*theta) sqrt(8) DN!:Rm uc
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) I lvjS^j
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) g3j@o/Y
% 3 3 r^3 * sin(3*theta) sqrt(8) J,k9?nkY /
% 4 -4 r^4 * cos(4*theta) sqrt(10) a&|aK+^8;
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 8{@#N:SY
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) p.&FK'&[0
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) :rwF5
% 4 4 r^4 * sin(4*theta) sqrt(10) ]{Iy<
% -------------------------------------------------- f5^[`b3H
% l3-;z)SgH
% Example 1: {B uh5U,
% Fn$EP:>
% % Display the Zernike function Z(n=5,m=1) TDA+ rl
% x = -1:0.01:1; ,+%$vV
.g\
% [X,Y] = meshgrid(x,x); @ScH"I];uA
% [theta,r] = cart2pol(X,Y); zR">'bM:
% idx = r<=1; rs'~' Y
% z = nan(size(X)); DTPYCG&%
% z(idx) = zernfun(5,1,r(idx),theta(idx)); vY:A7yGW
% figure wF[^?K '
% pcolor(x,x,z), shading interp 79=w]y
% axis square, colorbar V#=o<
% title('Zernike function Z_5^1(r,\theta)') (+(YO\ng6
%
Q]A;VNx
% Example 2: u:NSPAD)
% M+9G^o)u
% % Display the first 10 Zernike functions ^. M*pe
% x = -1:0.01:1; vEOoG>'Zq
% [X,Y] = meshgrid(x,x); >kd&>)9v
% [theta,r] = cart2pol(X,Y); &Nt4dp`qj
% idx = r<=1; *h$Z:p-g
% z = nan(size(X)); +QqYf1@F
% n = [0 1 1 2 2 2 3 3 3 3]; }LN +V~
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; s=#3f3
% Nplot = [4 10 12 16 18 20 22 24 26 28]; Zw`Xg@;xP
% y = zernfun(n,m,r(idx),theta(idx)); E_MGejm@
% figure('Units','normalized') Y }aa6
% for k = 1:10 <9B\('
% z(idx) = y(:,k); ZV$qv=X
% subplot(4,7,Nplot(k)) c 7E=1*C<
% pcolor(x,x,z), shading interp D<]z.33
% set(gca,'XTick',[],'YTick',[]) a$l
% axis square Rku9? zf^
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Yu>VW\Fb
% end +x\b- '
% 8.ll]3))
% See also ZERNPOL, ZERNFUN2. C2<!.l
0jF~cV
_jQ"_Ff
% Paul Fricker 11/13/2006 M8oI8\6[
eR4%4gW)
Gcna:w>6d
t-)C0<
h S/oOeG<Y
% Check and prepare the inputs: TW8E^k7
% ----------------------------- GNlP]9wX
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 3.Oc8(N^}
error('zernfun:NMvectors','N and M must be vectors.') $*tq$DZ4&
end @2yi%_]h
JBo/<W#|
mp:%k\cF|
if length(n)~=length(m) u_[s+J/
error('zernfun:NMlength','N and M must be the same length.') 8%nb1CA
end -^`]tF`M
_@3@_GE
u[$ \
az7
n = n(:); yCy4t6`e
m = m(:); q$ (@
if any(mod(n-m,2)) e
"5S;
error('zernfun:NMmultiplesof2', ... {7LO|E}7
'All N and M must differ by multiples of 2 (including 0).') eZ#nZB
end AL74q[>
z|;7;TwA
`j{q$Y=AG
if any(m>n) q{gt2OWqX
error('zernfun:MlessthanN', ... &=oW=g 2
'Each M must be less than or equal to its corresponding N.') S-&[Tp+N
end [4KW64%l
g.ty#Z=:
-
|n\
if any( r>1 | r<0 ) "E =\Vz
error('zernfun:Rlessthan1','All R must be between 0 and 1.') Bvj-LT=)
end r<,W{Va
2iYf)MC
TO7%TW{L
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) B:Ec(USe
error('zernfun:RTHvector','R and THETA must be vectors.') ~0aWjMc(>
end f<bc8Lp
:oh(M|;/2
6m"_=.k%
r = r(:); =X6WK7^0
theta = theta(:); t2d_XQOK
length_r = length(r); {KYbsD
if length_r~=length(theta) GP6-5Y"8
error('zernfun:RTHlength', ... a<9cj@h
'The number of R- and THETA-values must be equal.') ^_BHgbS%;
end O)NEt
P[6@1
{Bk9]:'$5
% Check normalization: '~Uo+<v$w
% -------------------- lX$6U|!
if nargin==5 && ischar(nflag) ICwhqH&
isnorm = strcmpi(nflag,'norm'); `oQ)qa_
if ~isnorm q|,cMPS3
error('zernfun:normalization','Unrecognized normalization flag.') SA@MJ>Z
end Ej\EuX
else 1~/?W^ir
isnorm = false; ,b!!h]t
end 'wB6-
d1$3~Xl]
7DaMuh~<
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% PI@/jh
% Compute the Zernike Polynomials A??(}F L
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% h&d%#6mB
foY=?mbL
gn"Y?IZ?
% Determine the required powers of r: 8 Yfg@"Tn
% ----------------------------------- z'N_9=
m_abs = abs(m); ?0k(wiF
rpowers = []; [C 1o9c!
for j = 1:length(n) uJ;7]
rpowers = [rpowers m_abs(j):2:n(j)]; ue8C pn^M
end Z'sAu#C
rpowers = unique(rpowers); dm;H0v+Y'
.XD7};g
*((wp4b
% Pre-compute the values of r raised to the required powers, q2v:lSFY
% and compile them in a matrix: PR rf$& u
% ----------------------------- {.c(Sw}Eo
if rpowers(1)==0 U(#)[S,
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ;4XvlcGo
rpowern = cat(2,rpowern{:}); :.5l9Ci4
rpowern = [ones(length_r,1) rpowern]; tj:3R$a
else 5c50F{
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 34S|[PXd
rpowern = cat(2,rpowern{:}); *xm(K+j
end u;1/.`NPB
#D8Z~U,-
TS0x8,'$q
% Compute the values of the polynomials: )X*?M?~\
% -------------------------------------- zO#{qF+~;
y = zeros(length_r,length(n)); q;co53.+P)
for j = 1:length(n) =2&/Cn4
s = 0:(n(j)-m_abs(j))/2; yU*upQ
pows = n(j):-2:m_abs(j); |GPR3%9
for k = length(s):-1:1 QP/6N9/
p = (1-2*mod(s(k),2))* ... ="E^9!
prod(2:(n(j)-s(k)))/ ... ;{1J{-EA
prod(2:s(k))/ ... u6&<Bv
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 8\,|T2w,X
prod(2:((n(j)+m_abs(j))/2-s(k))); !<9sOvka{
idx = (pows(k)==rpowers); w`Q"m x*
y(:,j) = y(:,j) + p*rpowern(:,idx); CNwYQe-i
end ,Qvclu8r
-dX{ R_*
if isnorm scmn-4j'{
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); /Mk85C79
end HSq.0vYl6
end 8#% Sq=/+M
% END: Compute the Zernike Polynomials >~O36q^w
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% VayU
97"dOi!Wh
LW?Zd=
% Compute the Zernike functions: 2+KOUd&jS
% ------------------------------ u`E24~
idx_pos = m>0; $*)??uU
idx_neg = m<0; ^/;W;C{4
cd8ZZ8L
]RYk Y7>`
z = y; 5#jna9Xc
if any(idx_pos) om 3$=
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); (hywT)#+
end p^^Ai
if any(idx_neg) s|3@\9\
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); YG2rJY+*
end 7%rSo^t,L
f.f5f%lO~
$lkd9r1
% EOF zernfun [~&C6pR