切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9241阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, GDYFhH7H  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, Q!{,^Qb  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? YI?tmqzt  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? `\yQn7 Oq  
    RMlx[nsq  
    .*&F  
    |O{kv}Y Z  
    3|BB#;  
    function z = zernfun(n,m,r,theta,nflag) (BGflb  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. *g"X hk  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N MH/bJtNq  
    %   and angular frequency M, evaluated at positions (R,THETA) on the $l_\9J913  
    %   unit circle.  N is a vector of positive integers (including 0), and BG/RNem  
    %   M is a vector with the same number of elements as N.  Each element %R  P\,|  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) L[tq@[(IJ  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, up2wkc8  
    %   and THETA is a vector of angles.  R and THETA must have the same !+ (H(,gI  
    %   length.  The output Z is a matrix with one column for every (N,M) g\pLQH  
    %   pair, and one row for every (R,THETA) pair. gwDVWhq  
    % {R?VB!dR  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike *iJ>@ vew  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 6*:U1{Gl)  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral vF9fXY=  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, NUh+ &M  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized WmuYHEU  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. y>0Gmr  
    % VjJ}q*/3e  
    %   The Zernike functions are an orthogonal basis on the unit circle. >cH}sNHy  
    %   They are used in disciplines such as astronomy, optics, and )!Zm*(  
    %   optometry to describe functions on a circular domain. -'T^gEd) c  
    % Z6#(83G4  
    %   The following table lists the first 15 Zernike functions. D~)bAPAD  
    % 8aTo TA7JA  
    %       n    m    Zernike function           Normalization "Ug+# ;}p$  
    %       -------------------------------------------------- ,6aF~p;wI|  
    %       0    0    1                                 1 mXI'=Vo!S  
    %       1    1    r * cos(theta)                    2 x{S2   
    %       1   -1    r * sin(theta)                    2 9yp'-RKjw  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) JZ/T:Hsh4  
    %       2    0    (2*r^2 - 1)                    sqrt(3) d(C5i8d  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) $V;0z~&!'  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) q^6l`JJ  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) V`}u:t7r  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) w[#*f?at~  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) gw<u dhk  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 1cD  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ] -%B4lT  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 6Oy6r  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 36}&{A  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) c9Q_Qr0'  
    %       -------------------------------------------------- Y?:" nhN  
    % T>w;M?`9K  
    %   Example 1: d'[q2y?6N  
    % lS?#(}a1)  
    %       % Display the Zernike function Z(n=5,m=1) P?Kg7m W  
    %       x = -1:0.01:1; E+J+fi  
    %       [X,Y] = meshgrid(x,x); Wm/0Pi  
    %       [theta,r] = cart2pol(X,Y); 3g5D[>J'  
    %       idx = r<=1; h]&o)%{4  
    %       z = nan(size(X)); =oTj3+7  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); o_&Qb^W  
    %       figure WTu!/J<\  
    %       pcolor(x,x,z), shading interp L&&AK`Ur3l  
    %       axis square, colorbar 1V-sibE  
    %       title('Zernike function Z_5^1(r,\theta)') s3=sl WY=  
    % }j{Z &(K  
    %   Example 2: '`j MNKn\  
    % zZP&`#TAy  
    %       % Display the first 10 Zernike functions XW:%YTv  
    %       x = -1:0.01:1; BzTzIo5  
    %       [X,Y] = meshgrid(x,x); p tlag&Z  
    %       [theta,r] = cart2pol(X,Y); B^/(wHBp  
    %       idx = r<=1; S2EV[K8#  
    %       z = nan(size(X)); y 7z)lBy\  
    %       n = [0  1  1  2  2  2  3  3  3  3]; [Xww`OUsh  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; zEDN^K '  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; t:n$9WB)  
    %       y = zernfun(n,m,r(idx),theta(idx)); p,14'HS%@  
    %       figure('Units','normalized') NG: f>R  
    %       for k = 1:10 ~|{_Go{ Q  
    %           z(idx) = y(:,k); h$p}/A  
    %           subplot(4,7,Nplot(k)) AI-ZZ6lzR  
    %           pcolor(x,x,z), shading interp %- Ga  ^[  
    %           set(gca,'XTick',[],'YTick',[]) =.qPjp_Qd  
    %           axis square O$X^Ea7~  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) *vT Abk$   
    %       end Uurpho_~  
    % ,r;E[k@  
    %   See also ZERNPOL, ZERNFUN2. K4b2)8  
    l@`n4U.Gwl  
    S~M/!Xb  
    %   Paul Fricker 11/13/2006 kArF Gb2c  
    2Hk21y\  
    =69sWcC8  
    ?(M]'ia{  
    $?On,U  
    % Check and prepare the inputs: lU.aDmy<  
    % ----------------------------- /sSM<r]5j  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) .Dy2O*`  
        error('zernfun:NMvectors','N and M must be vectors.') <g64N  
    end %!R\-Vej  
    V!s#xXD}  
    Y6 a9S`o  
    if length(n)~=length(m) k=X)ax t1  
        error('zernfun:NMlength','N and M must be the same length.') +NoVe#  
    end &D&U!3~(  
    pL: r\Y:R  
    TJ|do`fw>  
    n = n(:); $|VdGRZ1  
    m = m(:); gp+@+i>b+[  
    if any(mod(n-m,2)) 10_>EY`  
        error('zernfun:NMmultiplesof2', ... pv^:G;  
              'All N and M must differ by multiples of 2 (including 0).') p{&o{+c  
    end 2#Qw  
    L }R-|  
    DHuUEv<  
    if any(m>n) =[0| qGzg  
        error('zernfun:MlessthanN', ... @B!gxW\C  
              'Each M must be less than or equal to its corresponding N.') VRg y  
    end cDz^jC   
    Ob]J!.  
    E9]*!^=/  
    if any( r>1 | r<0 ) \ *A!@T  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') oVd7ucnK  
    end M2nUY`%#v  
    -X-sykDm  
    '@1C$0tx  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) )GOio+{H  
        error('zernfun:RTHvector','R and THETA must be vectors.') I(j$^DA.  
    end "O_)~u  
    f,Am;:\ |  
    !1l~'/r  
    r = r(:); v3wq-  
    theta = theta(:); [@@EE> y  
    length_r = length(r); ]$U A5/a  
    if length_r~=length(theta) W9S6 SO^\  
        error('zernfun:RTHlength', ... H% FP!03  
              'The number of R- and THETA-values must be equal.') (^58$IW71  
    end P!lfk:M^;  
    <&tdyAT?&  
    TV/EC#48  
    % Check normalization: NMzq10M=6  
    % -------------------- 27MwZz  
    if nargin==5 && ischar(nflag) Xm<|m#  
        isnorm = strcmpi(nflag,'norm'); r-a0XNS*  
        if ~isnorm T&j:gg  
            error('zernfun:normalization','Unrecognized normalization flag.') UYzNaw4/x  
        end BCX2C  
    else BadnL<cj]  
        isnorm = false; p[}~Z|(  
    end >[Tt'.S!?  
    3Te&w9K  
    R`,|08E  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % zO>]f&  
    % Compute the Zernike Polynomials tD,I7%|@  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% uvi&! )x  
    5yjG\ ~  
    #X0Xc2}{f  
    % Determine the required powers of r: 0 qW"b`9R  
    % ----------------------------------- arvKJmD  
    m_abs = abs(m); dV /Es  
    rpowers = []; V;hO1xfR3&  
    for j = 1:length(n) N$u: !  
        rpowers = [rpowers m_abs(j):2:n(j)]; 2s}G6'xE]P  
    end _>_ "cKS  
    rpowers = unique(rpowers); t_+owiF)M  
    9U3.=J  
    f/"IC;<~t>  
    % Pre-compute the values of r raised to the required powers, -?-yeJP2  
    % and compile them in a matrix: iu2O/l# r  
    % ----------------------------- t ;fJ`.  
    if rpowers(1)==0 COj^pdE3  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); h-U]?De5\  
        rpowern = cat(2,rpowern{:}); E&)o.l<h|  
        rpowern = [ones(length_r,1) rpowern]; PJ,G_+b!  
    else ^2i$AM1t  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); x@D> JG  
        rpowern = cat(2,rpowern{:}); 3,J{!  
    end 2'Raj'2S4  
    n*caP9B  
    WkV0,_(P  
    % Compute the values of the polynomials: P G zwS  
    % -------------------------------------- 4}Lui9  
    y = zeros(length_r,length(n)); X.ZG-TC  
    for j = 1:length(n) n6 wx/:  
        s = 0:(n(j)-m_abs(j))/2; -h=wLYl@0i  
        pows = n(j):-2:m_abs(j); /JIVp_-p  
        for k = length(s):-1:1 !E,|EdIr  
            p = (1-2*mod(s(k),2))* ... tH:?aP*2  
                       prod(2:(n(j)-s(k)))/              ... \\C!{}+  
                       prod(2:s(k))/                     ... F2Gg_u@7M  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... B]  Koi1B  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); SJE!14|e  
            idx = (pows(k)==rpowers); )JU`Z @?8  
            y(:,j) = y(:,j) + p*rpowern(:,idx); V7vojm4 O  
        end }N:QB}7'_  
         |)mUO:*  
        if isnorm 5@n|uJA  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); U !%IC7@  
        end w^:@g~  
    end .(s@{=  
    % END: Compute the Zernike Polynomials <3Rq!w/  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Z{2QDjAI;  
    /=QsZ,~xo  
    HUbXJsSP  
    % Compute the Zernike functions: 3wQ\L=  
    % ------------------------------ s !I I}'Je  
    idx_pos = m>0; M&e=LV  
    idx_neg = m<0; 0*j\i@  
    q?8#D  
    lq?N>~PG  
    z = y; BF"eVKA  
    if any(idx_pos) ob/HO (h3  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ;KG}Yr72  
    end d <zD@ z  
    if any(idx_neg) '1zC|:,  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); zLPCWP.u  
    end |BO5<`&I  
    }S%}%1pG7  
    $?9u;+jIR  
    % EOF zernfun MfA%Xep  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  |Oe$)(`|h  
    MbC&u:@ "v  
    DDE还是手动输入的呢? mg4: N  
    a~[]Ye@H  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究