下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, BUtXHD
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, kWgxswl7H
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? nF)|oA
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? q|S }5
NJ|8##Z>
s)}C&T$Y.
k'm!|
6JJ%`Uojh
function z = zernfun(n,m,r,theta,nflag) @6\8&(|
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. c(o8uWn
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N C\1Dy5
% and angular frequency M, evaluated at positions (R,THETA) on the . uhP(
% unit circle. N is a vector of positive integers (including 0), and [z?<'Tj
% M is a vector with the same number of elements as N. Each element I(C_}I>Wb
% k of M must be a positive integer, with possible values M(k) = -N(k) *dGW=aM#C
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, <jxTI%'f59
% and THETA is a vector of angles. R and THETA must have the same g4Tc (k#
% length. The output Z is a matrix with one column for every (N,M) ~}uTC36C\
% pair, and one row for every (R,THETA) pair. %KqXtc`O
% ,<%],-Lt[
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike q
K]Wk+
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), t;
"o,T
% with delta(m,0) the Kronecker delta, is chosen so that the integral PQ1\b-I
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 5=l Ava#
% and theta=0 to theta=2*pi) is unity. For the non-normalized cBU>/
zIp
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. q")}vN
% n:HF&j4C,
% The Zernike functions are an orthogonal basis on the unit circle. kYx|`-PA<r
% They are used in disciplines such as astronomy, optics, and dqcfs/XhP
% optometry to describe functions on a circular domain. @zE_fL
% pVLfZ?78
% The following table lists the first 15 Zernike functions. 9"&HxyOfX
% |XPT2eQ{
% n m Zernike function Normalization k{uc%6s
% -------------------------------------------------- kZfO`BVL
% 0 0 1 1 \!`*F:7]-
% 1 1 r * cos(theta) 2 +[:}<^p?cG
% 1 -1 r * sin(theta) 2 nXXyX[c4e
% 2 -2 r^2 * cos(2*theta) sqrt(6) iGM-#{5
% 2 0 (2*r^2 - 1) sqrt(3) Y8(g8RN
% 2 2 r^2 * sin(2*theta) sqrt(6) p,U.5bX
% 3 -3 r^3 * cos(3*theta) sqrt(8) !RAyUfS
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) aabnlOVw
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) j$BM$q/c
% 3 3 r^3 * sin(3*theta) sqrt(8) )0YMi!&j`
% 4 -4 r^4 * cos(4*theta) sqrt(10) AS~O*(po
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) yo3'\I
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) m;k' j@:
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) |K7JU^"OQ
% 4 4 r^4 * sin(4*theta) sqrt(10) Q@nxGm
% -------------------------------------------------- g?)9zJ9
% v:eVK!O
% Example 1: c)+IX;q-C
% y1B3F5
% % Display the Zernike function Z(n=5,m=1) t\S}eoc
% x = -1:0.01:1; M{1't
% [X,Y] = meshgrid(x,x); u<:RSg
% [theta,r] = cart2pol(X,Y); M{Wla7
% idx = r<=1; NbSkauF~b
% z = nan(size(X)); ',v
-&1R
% z(idx) = zernfun(5,1,r(idx),theta(idx)); Kb#py6
% figure ]&jXD=a"
% pcolor(x,x,z), shading interp uveTx
% axis square, colorbar 5e6 f)[}
% title('Zernike function Z_5^1(r,\theta)') ZU5hHah.t
% 7&qunK'
% Example 2: <T,vIXwu+
% C5$1K'X@
% % Display the first 10 Zernike functions = ;4cDmZh
% x = -1:0.01:1; ]`b/_LJN$F
% [X,Y] = meshgrid(x,x); 9m/v^
% [theta,r] = cart2pol(X,Y); +' QX`
% idx = r<=1; aTxss:7]
% z = nan(size(X)); TkM8GK-3
% n = [0 1 1 2 2 2 3 3 3 3]; 'D;v>r
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; jA?A)YNQb
% Nplot = [4 10 12 16 18 20 22 24 26 28]; 4 bw8^
% y = zernfun(n,m,r(idx),theta(idx)); @Xts}(L
% figure('Units','normalized') 7LbBS:@3z_
% for k = 1:10 oYG9i=lZ
% z(idx) = y(:,k); kFg@|#0v9
% subplot(4,7,Nplot(k)) N`h, 2!(j
% pcolor(x,x,z), shading interp %4*-BCP
% set(gca,'XTick',[],'YTick',[]) |7LhE+E
% axis square |#^wYZO1U
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) `A_CLVE
% end Kc$j<MRtv
% ^~'tQ}]!"
% See also ZERNPOL, ZERNFUN2. R?Vs8?
e$u=>=jV]
&Op_!]8`U
% Paul Fricker 11/13/2006 B4Ko,=pg
JR] /\(
G:7HL5u
5|z>_f.^pS
QpxRYv
% Check and prepare the inputs: Uus%1hC%a
% ----------------------------- ">_<L.,I
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) @ qy
n[C
error('zernfun:NMvectors','N and M must be vectors.') NCR4n_
end aDceOhfx
+L03.rf
`K5Lp>=R
if length(n)~=length(m) E%8Op{zv_
error('zernfun:NMlength','N and M must be the same length.') b&BkT%aA(G
end t.Q}V5t{g
#;~`+[y?\
HqC
1Dkw
n = n(:); Aj#bhv
m = m(:); ;n]GHqzY_
if any(mod(n-m,2)) Yz7H@Y2i
error('zernfun:NMmultiplesof2', ... {BPNb{dBKr
'All N and M must differ by multiples of 2 (including 0).') B?n
6o|8
end &.^(,pt
Se~<Vpo
goBl~fqy0
if any(m>n) r&!Ebe-
error('zernfun:MlessthanN', ... \vwsRT 1
'Each M must be less than or equal to its corresponding N.') iXLODuI
end b* (~8JxZ
J,q6
R. :~e
if any( r>1 | r<0 ) NN>E1d=
error('zernfun:Rlessthan1','All R must be between 0 and 1.') @ByD=
end 3lr9nBR
}\
kLh(
0APh=Alq
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 5>CmWMQ
error('zernfun:RTHvector','R and THETA must be vectors.') [l#
8}dy
end b^s978qn#
WX~:Y,l+u
V Ioqn$
r = r(:); <9f;\+zA
theta = theta(:); J)o.@+Q}
length_r = length(r); <e&88{jJ
if length_r~=length(theta) hSkI]%
error('zernfun:RTHlength', ... ({&