切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8879阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, PC/!9s 0W  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 'Q|c@t  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? 2 ZG@!Y|  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? %Fft R1"  
    i_l+:/+G+  
    E%3TP_B3  
    $H*/;`,\[  
    xPC"c*  
    function z = zernfun(n,m,r,theta,nflag) UI?=]"  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. QK <\kVZ8  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N U^_D|$6  
    %   and angular frequency M, evaluated at positions (R,THETA) on the DW2>&|  
    %   unit circle.  N is a vector of positive integers (including 0), and 5D' bJ6PO  
    %   M is a vector with the same number of elements as N.  Each element X")|Uw8Kl/  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) $>w/Cy  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, Y &f\VNlT  
    %   and THETA is a vector of angles.  R and THETA must have the same (tCib 4  
    %   length.  The output Z is a matrix with one column for every (N,M) f/ahwz  
    %   pair, and one row for every (R,THETA) pair. [Z<Z;=t  
    % PK:2xN:=  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ^v :Zo  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), IeTdN_8  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral I=rwsL  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, jP=Hf=:$  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized nhH;?D3  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 9&  
    % I%;Jpe  
    %   The Zernike functions are an orthogonal basis on the unit circle. K&_Uk548  
    %   They are used in disciplines such as astronomy, optics, and Q5n`F5   
    %   optometry to describe functions on a circular domain. p/olCmHD)  
    % 8<dOMp;}r  
    %   The following table lists the first 15 Zernike functions. 4Z5#F]OA7  
    % .6.^G  
    %       n    m    Zernike function           Normalization ;=~Xr"(/z  
    %       -------------------------------------------------- A lwtmDa  
    %       0    0    1                                 1 ~5OL6Bi-q  
    %       1    1    r * cos(theta)                    2 -x]`DQUg  
    %       1   -1    r * sin(theta)                    2 pn%#w*'  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) HW[L [&/  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 1FERmf? ?d  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) Pe ~c  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ]?<n#=eW  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) Vxdp|  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) M+Uyb7  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) h @/;`E[  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) V3sL;  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ;JTt2qQKo  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) <$i4?)f(  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ^[q /Mw  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) :T@r*7hNT  
    %       -------------------------------------------------- ;L"!I3dM)  
    % cxP&^,~  
    %   Example 1: p EusTP  
    % #h'@5 l  
    %       % Display the Zernike function Z(n=5,m=1) p*qPcuAA  
    %       x = -1:0.01:1; b{cU<;G)y.  
    %       [X,Y] = meshgrid(x,x); ~~qWI>. 4  
    %       [theta,r] = cart2pol(X,Y); Sycw %k  
    %       idx = r<=1; <+U|dX  
    %       z = nan(size(X)); !a-b6Aa  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); /@YCA}|/  
    %       figure wEEn?  
    %       pcolor(x,x,z), shading interp jai|/"HSXw  
    %       axis square, colorbar Gi?_ujZR  
    %       title('Zernike function Z_5^1(r,\theta)') S2^>6/[xM  
    % wWjG JvJ  
    %   Example 2: 3S~(:#|  
    % (Tvcq  
    %       % Display the first 10 Zernike functions o(G"k  
    %       x = -1:0.01:1; gK1g]Tc@G  
    %       [X,Y] = meshgrid(x,x); Gt-UJ-RR y  
    %       [theta,r] = cart2pol(X,Y); SreYJT%  
    %       idx = r<=1; VLvS$0(}Z  
    %       z = nan(size(X)); Zq"7,z7  
    %       n = [0  1  1  2  2  2  3  3  3  3]; /iQ(3F  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; ^twivNB  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; $P {K2"Oc  
    %       y = zernfun(n,m,r(idx),theta(idx)); ${r[!0|   
    %       figure('Units','normalized') 7&%^>PU7  
    %       for k = 1:10 c:4P%({  
    %           z(idx) = y(:,k); 9Sg<K)Mc  
    %           subplot(4,7,Nplot(k)) lxb zHlX  
    %           pcolor(x,x,z), shading interp 4_=Ja2v8;`  
    %           set(gca,'XTick',[],'YTick',[]) Paf%rv2  
    %           axis square W<,F28jI3v  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) w=_Jc8/.  
    %       end "VUYh$=[  
    % OSDy'@   
    %   See also ZERNPOL, ZERNFUN2. W6/ @W  
    5>_5]t {  
    J7$_VP  
    %   Paul Fricker 11/13/2006 4[2_,9}  
    c z'5iK  
    a \5FAkI  
    Ao.\  
    ZCui Fm  
    % Check and prepare the inputs: &X>7n~@0  
    % ----------------------------- qRB7Ec_  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 6^F '|Wh  
        error('zernfun:NMvectors','N and M must be vectors.') 5Jk<xWKj  
    end t;q7t!sC]  
    ot%.M*h-  
    %&blJ6b  
    if length(n)~=length(m) iz^qR={bW  
        error('zernfun:NMlength','N and M must be the same length.') HIc a nk  
    end J./d!an  
    [3>GGX[Ic  
    kBWrqZ6  
    n = n(:); 1T|$BK@)  
    m = m(:); S;\R!%t_  
    if any(mod(n-m,2)) {3\R|tZh,`  
        error('zernfun:NMmultiplesof2', ... hlbvt-C?}"  
              'All N and M must differ by multiples of 2 (including 0).') J5p8nmb  
    end i775:j~zx0  
    DocbxB={I  
    #;VA5<M8  
    if any(m>n) /YKMKtE  
        error('zernfun:MlessthanN', ... MN8H;0g-  
              'Each M must be less than or equal to its corresponding N.') &Z("D7.G  
    end 8/%6@Y"Y*  
    1} m3 ;  
    _=f=fcl  
    if any( r>1 | r<0 ) z}4L=KR\v  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 8 ;gXg  
    end +b$S~0n   
    Gpj* V|J  
    @E9" Zv-$  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) mqtg[~dNc  
        error('zernfun:RTHvector','R and THETA must be vectors.') 0HeD{TH\  
    end 0"WDH)7hJ  
    ]wn/BG)  
    (GK pA}~R  
    r = r(:); :%r S =f  
    theta = theta(:); p^)B0[P9  
    length_r = length(r); ub:ly0;t  
    if length_r~=length(theta) /%rq hHs  
        error('zernfun:RTHlength', ... #& .]" d  
              'The number of R- and THETA-values must be equal.') a>mMvc"  
    end s<QkDERMX  
    +=$  
    uBnoQ~Qd[z  
    % Check normalization: fRZ KEIyk  
    % -------------------- #E7AmmqD%  
    if nargin==5 && ischar(nflag) MHj,<|8Q  
        isnorm = strcmpi(nflag,'norm'); n`7f"'/:  
        if ~isnorm `8_z!)  
            error('zernfun:normalization','Unrecognized normalization flag.') .10y0F L4  
        end Q+q,!w8  
    else []kN16F  
        isnorm = false; |AhF7Mj*  
    end /1w2ehE<  
    j+4H}XyE  
    El2e~l9  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% T? ,P*l  
    % Compute the Zernike Polynomials {r85l\u)Q\  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% bJ /5|E?  
    AvJ,SQt  
    H1:be.^YP  
    % Determine the required powers of r:  UL@9W6  
    % ----------------------------------- <W)u{KS#TY  
    m_abs = abs(m); Q%S9fq,q  
    rpowers = []; wBk@F5\<  
    for j = 1:length(n) bO5k6i  
        rpowers = [rpowers m_abs(j):2:n(j)]; ]bdFr/!'S+  
    end ~ Hy,7  
    rpowers = unique(rpowers); 5sO@OV\ y  
    XMN:]!1J  
    d(`AXyw  
    % Pre-compute the values of r raised to the required powers, 9O*_L:4o  
    % and compile them in a matrix: *LC+ PZV@  
    % ----------------------------- (@0O   
    if rpowers(1)==0 SGc8^%-`  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); RJeDEYXeg  
        rpowern = cat(2,rpowern{:}); 6.1)IQkO  
        rpowern = [ones(length_r,1) rpowern]; E.bi05l  
    else t(!r8!c u}  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); _6@hTen`  
        rpowern = cat(2,rpowern{:}); `lDut1J5n  
    end ti5HrKIw  
    _jU5O;  
    QnouBrhO  
    % Compute the values of the polynomials: eW'2AT?2H%  
    % -------------------------------------- *u6Y8IL1  
    y = zeros(length_r,length(n)); T GB_~Bqe  
    for j = 1:length(n) d%@~mcH>  
        s = 0:(n(j)-m_abs(j))/2; vl E z9/H  
        pows = n(j):-2:m_abs(j); P,S G.EFK  
        for k = length(s):-1:1 ]q5`YB%_  
            p = (1-2*mod(s(k),2))* ... 6R;3%-D  
                       prod(2:(n(j)-s(k)))/              ... \VMD$zZx  
                       prod(2:s(k))/                     ... e?0q9W  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... y&[y=0!  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); ikBYd }5  
            idx = (pows(k)==rpowers);  =SOe}!  
            y(:,j) = y(:,j) + p*rpowern(:,idx); Scm36sT{  
        end NG&_?|OmV  
         0H_!Kg  
        if isnorm W/ay.I  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); r\6"5cQ=  
        end s MN*RKer  
    end :K82sCy%5  
    % END: Compute the Zernike Polynomials aA`/E  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% qB]i6*  
    <N,)G |&  
    X@)z80  
    % Compute the Zernike functions: jVgFZ,  
    % ------------------------------ DciwQcG  
    idx_pos = m>0; 5qUTMT['T  
    idx_neg = m<0; )+")Sz3zx  
    ?Ucu#UO  
    iTh:N2/-vc  
    z = y; %%ae^*[!n  
    if any(idx_pos) 4F3x@H'  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); B\*@krI@  
    end |tzg :T;  
    if any(idx_neg) . v@>JZC  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); )\;Z4x;]U  
    end BElJB&I  
    >gKh  
    { x0t  
    % EOF zernfun ]{~NO{0@Y  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  + SZYg[  
    6b8;}],|  
    DDE还是手动输入的呢? C ]Si|D  
    k~%<Ir1V]  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究