切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9148阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, iV5x-G`  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, )BR6?C3  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? >'4Bq*5>  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? |EuWzhNAO  
    ;0Yeo"-  
    .!T]sX_P  
    ;EZ$8|  
    Wpo:'?!(M^  
    function z = zernfun(n,m,r,theta,nflag) ,/n<Qg"`  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. "G\OKt'Z  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 8<}f:9/  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ;h> s=D,r  
    %   unit circle.  N is a vector of positive integers (including 0), and 5a1)`2V2M  
    %   M is a vector with the same number of elements as N.  Each element KD9Y  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) +$Q33@F5l  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ^;0.P)yGA  
    %   and THETA is a vector of angles.  R and THETA must have the same Xk[;MZ[  
    %   length.  The output Z is a matrix with one column for every (N,M) WyH2` xxX  
    %   pair, and one row for every (R,THETA) pair. "71@WLlN  
    % juPW!u  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 2x-67_BHY=  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), j8*fa  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral x{IxS?.j+  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, #Jt9U1WbF  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ]r;-Lx{F  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. O-r,&W  
    % 5/<?Y&x  
    %   The Zernike functions are an orthogonal basis on the unit circle. %jKbRiz1u  
    %   They are used in disciplines such as astronomy, optics, and f8um.Xnp6  
    %   optometry to describe functions on a circular domain. d4h1#MK  
    % k 9 Xi|Yj  
    %   The following table lists the first 15 Zernike functions. J1kG'cH05  
    % 4:Adn?"  
    %       n    m    Zernike function           Normalization Iuk!A?XV  
    %       -------------------------------------------------- ?5d7J,"<h  
    %       0    0    1                                 1 <%fcs"Mb  
    %       1    1    r * cos(theta)                    2 ..RCR_DIp  
    %       1   -1    r * sin(theta)                    2 T/Q#V)Tp  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) $OK}jSH*v)  
    %       2    0    (2*r^2 - 1)                    sqrt(3) ~Aul 7[IH  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) y'ULhDgq^B  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) J{"<Hgb  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 1PLxc)LsG  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) {Muw4DV  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) d6ZJh xJ  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) :e1BQj`R  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Y@'ug N|[C  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) i,jPULzyjk  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 9l9h*P gt  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) m{itMZ@  
    %       -------------------------------------------------- T\\Q!pY  
    % ni$7)YcF  
    %   Example 1: ,&$w*D%  
    % S'"(zc3 =  
    %       % Display the Zernike function Z(n=5,m=1) 7XLz Ewa  
    %       x = -1:0.01:1; 5yO %|)  
    %       [X,Y] = meshgrid(x,x); e >W}3H5w0  
    %       [theta,r] = cart2pol(X,Y); W#1t%hT$  
    %       idx = r<=1; NWCJ|  
    %       z = nan(size(X)); wIT0A-Por4  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 9 z_9yT  
    %       figure i}mvKV?!|1  
    %       pcolor(x,x,z), shading interp TqURYnNd  
    %       axis square, colorbar Bd8,~8  
    %       title('Zernike function Z_5^1(r,\theta)') z?V'1L1gM  
    % .0$$H"t  
    %   Example 2: 48 DC  
    % :G?6Hl)~)  
    %       % Display the first 10 Zernike functions GY9CU=-  
    %       x = -1:0.01:1; 'Dl31w%:  
    %       [X,Y] = meshgrid(x,x); 67zCil  
    %       [theta,r] = cart2pol(X,Y);  w+<`>  
    %       idx = r<=1; G5~ Jp#uA  
    %       z = nan(size(X)); `8$gaA*  
    %       n = [0  1  1  2  2  2  3  3  3  3];  =lIG#{`Q  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; Gb]t%\  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 1muB* O  
    %       y = zernfun(n,m,r(idx),theta(idx)); G?\\k[#,&  
    %       figure('Units','normalized') F)x^AJi e  
    %       for k = 1:10 bL>J0LWQ  
    %           z(idx) = y(:,k); =1' / ?  
    %           subplot(4,7,Nplot(k)) 8t3,}}TJ  
    %           pcolor(x,x,z), shading interp [43:E*\$  
    %           set(gca,'XTick',[],'YTick',[]) >q{E9.~b  
    %           axis square Q)}_S@v|%  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 9Yg=4>#$  
    %       end <4!SQgL  
    % e)I-|Q4^%  
    %   See also ZERNPOL, ZERNFUN2. ]mEY/)~7  
    Vo*38c2  
    Na8%TT>  
    %   Paul Fricker 11/13/2006 V@6,\1#`|  
    WZkAlg7Z  
    w-9FF%@<  
    0Q]@T@F.  
    "p<B|  
    % Check and prepare the inputs: "PO>@tY  
    % ----------------------------- :]&O  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 6 Fz?'Xf  
        error('zernfun:NMvectors','N and M must be vectors.') te e  
    end 8sm8L\-  
    ;[ UGEi  
    1+\ZLy!5:  
    if length(n)~=length(m) 5.st!Lp1  
        error('zernfun:NMlength','N and M must be the same length.') i@7b  
    end rSGp]W|  
    o/uA_19  
    <[9{Lg*D  
    n = n(:); 35 /)S@  
    m = m(:); C^sHj5\(  
    if any(mod(n-m,2)) *$uj)*5,  
        error('zernfun:NMmultiplesof2', ... Er; @nOyD  
              'All N and M must differ by multiples of 2 (including 0).') R7xKVS_MP  
    end }*4K{<02  
    +S!gS|8P  
    ESdjDg$[u  
    if any(m>n) \nQV{J  
        error('zernfun:MlessthanN', ... /Yk4%ZJ{  
              'Each M must be less than or equal to its corresponding N.') E .2b@  
    end laVqI|0q  
    *_Y{wNF *  
    `Mj>t(  
    if any( r>1 | r<0 ) ? OrRTRW  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') kjW Y{7b!  
    end j. 1@{H  
    bB01aiUw@l  
    /b3b0VfF  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) nW1Obu8x|  
        error('zernfun:RTHvector','R and THETA must be vectors.') k+8K[ ?K-  
    end GabY xYK  
    !/pE6)a  
    #=~n>qn]  
    r = r(:); !RX7TYf  
    theta = theta(:); yht|0mZV  
    length_r = length(r); yb)!jLnH  
    if length_r~=length(theta) oqu; D'8  
        error('zernfun:RTHlength', ... 3@'3U?Hin  
              'The number of R- and THETA-values must be equal.') fQZ,kl  
    end y7)s0g>%H  
    Qrr8i:Y^  
    6y;R1z b  
    % Check normalization: ZaxBr  
    % -------------------- Yvky=RM  
    if nargin==5 && ischar(nflag) Jzqv6A3G  
        isnorm = strcmpi(nflag,'norm'); RweK<Flo'S  
        if ~isnorm %`rZ]^H  
            error('zernfun:normalization','Unrecognized normalization flag.') FT0HU<." 1  
        end F(j vdq  
    else e;QPn(  
        isnorm = false; +k@$C,A  
    end D]NfA2B7  
    >]DnEF&  
    & ,KxE(C  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +Usy  
    % Compute the Zernike Polynomials dEz7 @T  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% zR)9]pJ-  
    a>1_|QB.  
    KHK|Zu#k '  
    % Determine the required powers of r: Mp8BilH-T  
    % ----------------------------------- Aw]W-fx  
    m_abs = abs(m); h/T^+U?-<  
    rpowers = []; @qC](5|TQ  
    for j = 1:length(n) )~((6?k4e  
        rpowers = [rpowers m_abs(j):2:n(j)]; K,pQ11J  
    end  Fu@2gd  
    rpowers = unique(rpowers); &<Gs@UX~w  
    8Ja't8  
    6rBXC <Z  
    % Pre-compute the values of r raised to the required powers, |&O7F;/_  
    % and compile them in a matrix: Ygwej2  
    % ----------------------------- q-3,p.  
    if rpowers(1)==0 pf_(?\oz>  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); s\7]"3:wD  
        rpowern = cat(2,rpowern{:}); -kFPmM;  
        rpowern = [ones(length_r,1) rpowern]; %hEhZW{:  
    else JqX+vRY;dd  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); =!@5!  
        rpowern = cat(2,rpowern{:}); !F@9xG  
    end KW1 7CJ@  
    (]wd8M  
    c:%ll&Xtn  
    % Compute the values of the polynomials: 6Dx^$=Sa$  
    % -------------------------------------- o;d><  
    y = zeros(length_r,length(n)); pA ,xDs@37  
    for j = 1:length(n) b+Ly%&  
        s = 0:(n(j)-m_abs(j))/2; Het5{Yb.  
        pows = n(j):-2:m_abs(j); 7hg)R @OC  
        for k = length(s):-1:1 *G]zN"Y  
            p = (1-2*mod(s(k),2))* ... ;ALkeUR[  
                       prod(2:(n(j)-s(k)))/              ... h5vvizruy  
                       prod(2:s(k))/                     ... ]z^*1^u^ig  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ukZ>_ke`+  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); U{^~X_?  
            idx = (pows(k)==rpowers); x)+3SdH  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 6*!R'  
        end UK{6Rh ;  
         dZS v=UY)  
        if isnorm R~=_,JUW  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); =TTk5(m  
        end 38I.1p9  
    end /FP;Hsw%  
    % END: Compute the Zernike Polynomials Qxw?D4/Y  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Q Pel n)  
    &mG1V  
    {$dq7m(  
    % Compute the Zernike functions: Kbdjd p  
    % ------------------------------ =.*+c\  
    idx_pos = m>0; 6 /A#P$G  
    idx_neg = m<0; BtPUUy.  
    gj\'1(Ju  
    &}YJ"o[I  
    z = y; ~E]ct F  
    if any(idx_pos) XN*?<s3  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Jp'XZ]o\  
    end \]@XY_21  
    if any(idx_neg) M/O4JZEqh  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); fj/sN HU  
    end ?1DA  
    Y,?!"  
    =V)88@W  
    % EOF zernfun `{1&*4!  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  M5SAlj  
    W6Os|z9&|  
    DDE还是手动输入的呢? 7R$]BY=  
    ?c vXuxCm  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究