切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9274阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, fq1w <e  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, l[ko)%7V  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? -0uGzd+m*  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? Zn1((J7  
    l=" (Hp%b  
    =$}`B{(H  
    t<`wK8)  
    lC*xyO K  
    function z = zernfun(n,m,r,theta,nflag) }P=FMme{F(  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. D~qi6@Ga  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N .aL%}`8l?  
    %   and angular frequency M, evaluated at positions (R,THETA) on the =Q"thsR  
    %   unit circle.  N is a vector of positive integers (including 0), and q2k}bb +  
    %   M is a vector with the same number of elements as N.  Each element [/ CB1//Y  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 2C0j.Ib  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, [3irr0D7l  
    %   and THETA is a vector of angles.  R and THETA must have the same Pf8_6z_  
    %   length.  The output Z is a matrix with one column for every (N,M) i Q3wi  
    %   pair, and one row for every (R,THETA) pair. mj9|q8v{+  
    % HH*,Oe   
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike B'Nvl#  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ^`-Hg=d  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral _2k<MiqCD[  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 6o#J  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized )p!") :'fv  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. b%VBSNZ  
    % KW0KXO06a  
    %   The Zernike functions are an orthogonal basis on the unit circle. WbFCj0  
    %   They are used in disciplines such as astronomy, optics, and v&sp;%I6=  
    %   optometry to describe functions on a circular domain. 823y;  
    % }zo-%#  
    %   The following table lists the first 15 Zernike functions. Jx3a7CpX  
    % uPFbKSJj  
    %       n    m    Zernike function           Normalization 'o_ RC{k2"  
    %       -------------------------------------------------- ),<h6$  
    %       0    0    1                                 1 Q1h v2*/U  
    %       1    1    r * cos(theta)                    2 HDo=WqG  
    %       1   -1    r * sin(theta)                    2 F&/ }x15  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) {YzpYc1  
    %       2    0    (2*r^2 - 1)                    sqrt(3) Z\-Gr 2k  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) #.j:P#  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) $~EY:  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) I tn?''~;  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ht:L L#b*(  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) esTK4z]  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) F7p`zf@O]  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 8W.-Y|[5?  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) fQU_A  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) RvW>kATb_F  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) ^-}3 +YA  
    %       -------------------------------------------------- E;a9RV|  
    % 7 dG_E]&  
    %   Example 1: 5OFb9YX  
    % Z${@;lgP  
    %       % Display the Zernike function Z(n=5,m=1) KbRKPA`  
    %       x = -1:0.01:1; ht)KS9Xu  
    %       [X,Y] = meshgrid(x,x); Z}O0DfT;  
    %       [theta,r] = cart2pol(X,Y); Io;26F""  
    %       idx = r<=1; lce~6}  
    %       z = nan(size(X)); "%t !+E>nr  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); Bsz;GnD|r  
    %       figure Bq:: 5,v  
    %       pcolor(x,x,z), shading interp \AR3DDm  
    %       axis square, colorbar H% c{ }F  
    %       title('Zernike function Z_5^1(r,\theta)') 0xutG/-&N  
    % 5al44[  
    %   Example 2: an?g'8! r:  
    % gtP;Qw'  
    %       % Display the first 10 Zernike functions p4zV<qZ>e  
    %       x = -1:0.01:1; X?"Ro`S  
    %       [X,Y] = meshgrid(x,x); r(=3yd/G$  
    %       [theta,r] = cart2pol(X,Y); "Zicac@N  
    %       idx = r<=1; K[|d7e  
    %       z = nan(size(X)); v3jx2Z  
    %       n = [0  1  1  2  2  2  3  3  3  3]; t#J #DyY5  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; Y)4D$9:  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; (aH_K07  
    %       y = zernfun(n,m,r(idx),theta(idx)); )6zwprH!  
    %       figure('Units','normalized') ~Urj:l  
    %       for k = 1:10 jZY9Lx8o  
    %           z(idx) = y(:,k); P(r}<SM  
    %           subplot(4,7,Nplot(k)) Z.0^:rVp~  
    %           pcolor(x,x,z), shading interp My'6 yQL  
    %           set(gca,'XTick',[],'YTick',[]) ?3i-wpzMp  
    %           axis square hAZ"M:f  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ]pA}h. R#-  
    %       end Ec]cCLB  
    % hMx/}Tw wt  
    %   See also ZERNPOL, ZERNFUN2. <BN)>NqM  
    'W j Q  
    ,Gd8 <  
    %   Paul Fricker 11/13/2006 p>p=nLK  
    9X{aU)"omQ  
    = %7:[#n  
    Zt[1RMO  
    'x10\Q65[  
    % Check and prepare the inputs: 7"y"%+*/  
    % ----------------------------- s.I=H^ T  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) #6JCm!s  
        error('zernfun:NMvectors','N and M must be vectors.') akQtre`5sd  
    end ^Q_0Zq^H  
    IV:Knh+ ?  
    -OuMC&  
    if length(n)~=length(m) L*VGdZ  
        error('zernfun:NMlength','N and M must be the same length.') cj<j *(ZZ  
    end %P9Zx!i>  
    B)"WG7W E  
    |^@TA=_  
    n = n(:); VG\ER}s&P  
    m = m(:); ziy~~J  
    if any(mod(n-m,2)) 8DLMxG  
        error('zernfun:NMmultiplesof2', ... 66%kq [  
              'All N and M must differ by multiples of 2 (including 0).') BiHBu8<  
    end &e% y|{Y  
    TaB35glLY  
    BZx#@356N  
    if any(m>n) I)O-i_}L&K  
        error('zernfun:MlessthanN', ... *4[3?~_B#6  
              'Each M must be less than or equal to its corresponding N.') J74 nAC%J^  
    end ou-5iH?  
    QkzPzbF"  
    82V xk  
    if any( r>1 | r<0 ) Ybx4 Up@  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') _&JlE$ua7  
    end )mZ`j.  
    ^yu^Du  
    7IZ(3B<87t  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) jvm "7)h  
        error('zernfun:RTHvector','R and THETA must be vectors.') 4(YKwY2_L  
    end iygdX2  
    P5vMy'1X  
    ">voi$Kzey  
    r = r(:); 'J<KL#og  
    theta = theta(:); <<&:BK   
    length_r = length(r); "Rs^0iT7>  
    if length_r~=length(theta) M* QqiE  
        error('zernfun:RTHlength', ... Khw!+!(H  
              'The number of R- and THETA-values must be equal.') &2#x(v  
    end P/Sv^d5=e  
    G m<t2Csn  
    it>FG9hVo  
    % Check normalization: Jp5~iC2d  
    % -------------------- {q8V  
    if nargin==5 && ischar(nflag) ~Cj+6CrT  
        isnorm = strcmpi(nflag,'norm'); OjeM#s#N!  
        if ~isnorm UXa3>q>  
            error('zernfun:normalization','Unrecognized normalization flag.') K$' J:{yY  
        end 8 s:sMU:Q  
    else iAWPE`u4  
        isnorm = false; S]{K^Q),  
    end eVbHPu4  
    :fpYraBM  
    Te!q(;L`4  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% R0\E?9P  
    % Compute the Zernike Polynomials S <|e/![@  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ]rHdG^0uss  
    jr@<-.  
    pU`Q[HOs  
    % Determine the required powers of r: )BS./zD*[<  
    % ----------------------------------- m[ txKj.=_  
    m_abs = abs(m); ?exV:OKLb  
    rpowers = []; |3\ mH~Bw  
    for j = 1:length(n) (h|l$OL/  
        rpowers = [rpowers m_abs(j):2:n(j)]; ,n ~H]66 n  
    end vVZ@/D6w  
    rpowers = unique(rpowers); pt|u?T_+  
    xk.\IrB_  
     @;d(>_n  
    % Pre-compute the values of r raised to the required powers, H-0A&oG  
    % and compile them in a matrix: ,T jd  
    % ----------------------------- *wyaBV?*K  
    if rpowers(1)==0 Al' sY^B  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); G4MNcy  
        rpowern = cat(2,rpowern{:}); Ck(D: % ~s  
        rpowern = [ones(length_r,1) rpowern]; Gv6EJV1i  
    else ~N_\V  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); d^WVWk K  
        rpowern = cat(2,rpowern{:}); qeSxE`E"  
    end xQ7>u -^  
    pz@_%IUS  
    SAc}5.  
    % Compute the values of the polynomials: )5)S8~Oc  
    % -------------------------------------- &d9tR\}  
    y = zeros(length_r,length(n)); <+" Jh_N#  
    for j = 1:length(n) pvP|.sw5G  
        s = 0:(n(j)-m_abs(j))/2; x(5>f9bb  
        pows = n(j):-2:m_abs(j); W9{6?,]  
        for k = length(s):-1:1 ^ ,U9N  
            p = (1-2*mod(s(k),2))* ... 70a7}C\/o  
                       prod(2:(n(j)-s(k)))/              ... ?7/n s>}  
                       prod(2:s(k))/                     ... !YsL x[+  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... b 9F=}.4  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); D*DCMMp=0  
            idx = (pows(k)==rpowers); ;0P2nc:U~  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 4=>/x90y  
        end X9#Od9cNaC  
         @q],pD  
        if isnorm dBX%/  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); NHPpHY3^.  
        end W(1p0|WQ:  
    end  [9~Bau  
    % END: Compute the Zernike Polynomials +JB. EW/  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% IdUMoLL?  
    y 7|x<Z  
    ?o"wyF A*  
    % Compute the Zernike functions: |u<qbl  
    % ------------------------------ c*9RzD#Zj  
    idx_pos = m>0; ;Q:^|Fw!F  
    idx_neg = m<0; TfDx> F$  
    pZuYmMP  
    o2@8w[r  
    z = y; |/Am\tk#13  
    if any(idx_pos) |Xlc2?e  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Gyk>5Q}}  
    end n Uz 2~z  
    if any(idx_neg) O+@"l$;N  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); x4pl#~Su  
    end H"tS33  
    ,[D,G  
    6K5KZZG  
    % EOF zernfun s3W35S0Q3  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  Wxkk^J9F3  
    8Y3c,p/gS>  
    DDE还是手动输入的呢? =H.l/'/Z  
    ]|<PV5SY3.  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究