切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9091阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, 'Ct+0X:D  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, lVqvS/_k$  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? 7c+u+Yet  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? "xh]>_;&'  
    Tj.;\a|d  
    r`" ?K]rI  
     yXDf;`J  
    $ @^n3ZQ4  
    function z = zernfun(n,m,r,theta,nflag) 3i7n"8\$  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. nOOA5Gz   
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Qd@`jwjS  
    %   and angular frequency M, evaluated at positions (R,THETA) on the s,0,w--=  
    %   unit circle.  N is a vector of positive integers (including 0), and w7O(I"  
    %   M is a vector with the same number of elements as N.  Each element LaLA }1!  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) =6? 3c\  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, IH{g-#U  
    %   and THETA is a vector of angles.  R and THETA must have the same ]e+S~me  
    %   length.  The output Z is a matrix with one column for every (N,M) {4#'`Eejj  
    %   pair, and one row for every (R,THETA) pair. 4).q+{#k  
    % B&tl6?7h  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Yh4e\]ql~N  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), -FJ 5N}R  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral &!~q#w1W-5  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, e\/Lcng  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized y*P[* /g  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. TVKuvKH8U  
    % N2C^'dFj  
    %   The Zernike functions are an orthogonal basis on the unit circle. w2Pkw'a{  
    %   They are used in disciplines such as astronomy, optics, and (zUERw\a X  
    %   optometry to describe functions on a circular domain. \p.ku%{  
    % `57ffQR9  
    %   The following table lists the first 15 Zernike functions. GCc@ :*4[  
    % QarA.Ne~  
    %       n    m    Zernike function           Normalization "Sl";.   
    %       -------------------------------------------------- 3q<\ \8Y*  
    %       0    0    1                                 1 L7 qim.J  
    %       1    1    r * cos(theta)                    2 _t3n<  
    %       1   -1    r * sin(theta)                    2 >?I[dYzut  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) =`g+3 O;<  
    %       2    0    (2*r^2 - 1)                    sqrt(3) y\Zx {A[  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) {ImZ><xe/  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) DN!:Rm uc  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) I lvjS^j  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) g3j@o/Y  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) J,k9?nkY /  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) a&|aK+^8;  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 8{@#N:SY  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) p.&FK'&[0  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) :rwF5  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) ]{Iy<  
    %       -------------------------------------------------- f5^[`b3H  
    % l3-;z)SgH  
    %   Example 1: {B uh5U,  
    % Fn$EP:>  
    %       % Display the Zernike function Z(n=5,m=1) TDA+ rl  
    %       x = -1:0.01:1; ,+%$vV .g\  
    %       [X,Y] = meshgrid(x,x); @ScH"I];uA  
    %       [theta,r] = cart2pol(X,Y); zR">'bM:  
    %       idx = r<=1; rs'~' Y  
    %       z = nan(size(X)); DTPYCG&%  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); vY:A7yGW  
    %       figure wF[^?K '  
    %       pcolor(x,x,z), shading interp 79=w]y  
    %       axis square, colorbar V#=o<  
    %       title('Zernike function Z_5^1(r,\theta)') (+(YO\ng6  
    % Q]A;VNx  
    %   Example 2: u:NSPAD)  
    % M+9G^o)u  
    %       % Display the first 10 Zernike functions ^.M*pe  
    %       x = -1:0.01:1; vEOoG>'Zq  
    %       [X,Y] = meshgrid(x,x); >kd&>)9v  
    %       [theta,r] = cart2pol(X,Y); &Nt4dp`qj  
    %       idx = r<=1; *h$Z:p-g  
    %       z = nan(size(X)); +QqYf1@F  
    %       n = [0  1  1  2  2  2  3  3  3  3]; }LN +V~  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; s=#3f3  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; Zw` Xg@;xP  
    %       y = zernfun(n,m,r(idx),theta(idx)); E_MGejm@  
    %       figure('Units','normalized') Y }aa6  
    %       for k = 1:10 <9B\('  
    %           z(idx) = y(:,k); ZV$qv=X  
    %           subplot(4,7,Nplot(k)) c7E=1*C<  
    %           pcolor(x,x,z), shading interp D<]z.33  
    %           set(gca,'XTick',[],'YTick',[]) a$l  
    %           axis square Rku9? zf^  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Yu>VW\Fb  
    %       end +x\b- '  
    % 8.ll]3))  
    %   See also ZERNPOL, ZERNFUN2. C2<!.l  
    0j F~cV  
    _jQ"_Ff  
    %   Paul Fricker 11/13/2006 M8oI8\6[  
    eR4%4gW)  
    Gcna:w>6d  
    t-)C0<  
    hS/oOeG<Y  
    % Check and prepare the inputs: TW8E^k7  
    % ----------------------------- GNlP]9wX  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 3.Oc8(N^}  
        error('zernfun:NMvectors','N and M must be vectors.') $*tq$DZ4&  
    end @2yi%_ ]h  
    JBo/<W#|  
    mp:%k\cF|  
    if length(n)~=length(m) u_[s+ J/  
        error('zernfun:NMlength','N and M must be the same length.') 8%nb1CA  
    end -^`]tF`M  
    _@3@_GE  
    u[$ \ az7  
    n = n(:); yCy4t6`e  
    m = m(:); q$(@  
    if any(mod(n-m,2)) e "5S ;  
        error('zernfun:NMmultiplesof2', ... {7LO|E}7  
              'All N and M must differ by multiples of 2 (including 0).') eZ#nZB  
    end AL74q[>  
    z|; 7;TwA  
    `j{q$Y=AG  
    if any(m>n) q{gt2OWqX  
        error('zernfun:MlessthanN', ... &=oW=g2  
              'Each M must be less than or equal to its corresponding N.') S-&[Tp+N  
    end [4KW64%l  
    g .ty#Z=:  
    - |n\  
    if any( r>1 | r<0 ) "E =\Vz  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') Bvj-LT=)  
    end r<,W{Va  
    2iYf)MC  
    TO7%TW{L  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) B:Ec(USe  
        error('zernfun:RTHvector','R and THETA must be vectors.') ~0aWjMc(>  
    end f<bc8Lp  
    :oh(M|;/2  
    6m"_=.k%  
    r = r(:); =X6WK7^0  
    theta = theta(:); t2d _XQOK  
    length_r = length(r); {KYbsD  
    if length_r~=length(theta) GP6-5Y"8  
        error('zernfun:RTHlength', ... a<9cj@h  
              'The number of R- and THETA-values must be equal.') ^_BHgbS%;  
    end O) NEt  
    P[6@1  
    {Bk9]:'$5  
    % Check normalization: '~Uo+<v$w  
    % -------------------- lX$6U| !  
    if nargin==5 && ischar(nflag) ICwhqH&  
        isnorm = strcmpi(nflag,'norm'); `oQ)qa_  
        if ~isnorm q|,cMPS3  
            error('zernfun:normalization','Unrecognized normalization flag.') SA@MJ>Z  
        end Ej\EuX  
    else 1~/?W^ir  
        isnorm = false; ,b!!h]t  
    end 'wB6-  
    d1$3~Xl]  
    7DaMuh~<  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% PI@/jh  
    % Compute the Zernike Polynomials A??(}F L  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% h&d%#6mB  
    foY=?mbL  
    gn"Y?IZ?  
    % Determine the required powers of r: 8Yfg@"Tn  
    % ----------------------------------- z'N_9=  
    m_abs = abs(m); ?0k(wiF  
    rpowers = []; [C 1o9c!  
    for j = 1:length(n) uJ ;7]  
        rpowers = [rpowers m_abs(j):2:n(j)]; ue8Cpn^M  
    end Z'sAu#C  
    rpowers = unique(rpowers); dm;H0v+Y'  
    .XD7};g  
    *((wp4b  
    % Pre-compute the values of r raised to the required powers, q2v:lSFY  
    % and compile them in a matrix: PR rf$& u  
    % ----------------------------- {.c(Sw}Eo  
    if rpowers(1)==0 U(#)[S,  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ;4XvlcGo  
        rpowern = cat(2,rpowern{:}); :.5l9Ci4  
        rpowern = [ones(length_r,1) rpowern]; tj:3R$a  
    else 5c50F{  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 34S|[PX d  
        rpowern = cat(2,rpowern{:}); *xm(K +j  
    end u;1/.`NPB  
    # D8Z~U,-  
    TS0x8,'$q  
    % Compute the values of the polynomials: )X*?M?~\  
    % -------------------------------------- zO#{qF+~;  
    y = zeros(length_r,length(n)); q;co53.+P)  
    for j = 1:length(n) =2&/Cn4  
        s = 0:(n(j)-m_abs(j))/2; yU* upQ  
        pows = n(j):-2:m_abs(j); |GPR3%9  
        for k = length(s):-1:1 QP/6N9/  
            p = (1-2*mod(s(k),2))* ... ="E^9!  
                       prod(2:(n(j)-s(k)))/              ... ;{1J{-EA  
                       prod(2:s(k))/                     ... u 6&<Bv  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 8\,|T2w,X  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); !<9sOvka{  
            idx = (pows(k)==rpowers); w`Q"mx*  
            y(:,j) = y(:,j) + p*rpowern(:,idx); CNwYQe-i  
        end ,Qvclu8r  
         -dX{ R_*  
        if isnorm scmn-4j'{  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); /Mk85C79  
        end HSq.0vYl6  
    end 8#%Sq=/+M  
    % END: Compute the Zernike Polynomials >~O36q^w  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% VayU   
    97"dOi!Wh  
     LW?Zd=  
    % Compute the Zernike functions: 2+KOUd&jS  
    % ------------------------------ u`E24~  
    idx_pos = m>0; $*)??uU  
    idx_neg = m<0; ^/;W;C{4  
    cd8ZZ 8L  
    ]RYk Y7>`  
    z = y; 5#jna9Xc  
    if any(idx_pos) om3$=  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); (hywT)#+  
    end p^^Ai  
    if any(idx_neg) s|3@\9\  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); YG2rJY+*  
    end 7%rSo^t,L  
    f.f5f%lO~  
    $lkd9r1   
    % EOF zernfun [~&C6pR  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    在线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  cl2@p@av  
    O:q}<ljp  
    DDE还是手动输入的呢? ,KkENp_  
    xXZ$#z\ Z,  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究