切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8958阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, s&S8P;K|  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, bK `'zi  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? HjTK/x'_'L  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? Y$3H$F.+  
    <wwcPe}  
    RYMOLX84  
    \XR%pC  
    ZOl =zn  
    function z = zernfun(n,m,r,theta,nflag) q_Td!?2?  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. =~YmM<L  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N E?|"?R,,,  
    %   and angular frequency M, evaluated at positions (R,THETA) on the |xaJv:96%  
    %   unit circle.  N is a vector of positive integers (including 0), and (;=:QjaoZ  
    %   M is a vector with the same number of elements as N.  Each element kzCD>m  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) u/FnA-L4  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, (80#{4kl  
    %   and THETA is a vector of angles.  R and THETA must have the same \(_FGa4j  
    %   length.  The output Z is a matrix with one column for every (N,M) jqHg'Fq  
    %   pair, and one row for every (R,THETA) pair. }'{39vc .  
    % _H|c _  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike H`4H(KWm  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), a pqzf  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral  "m3:HS  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 2U,O e9  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized \RZFq<6>  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. )5P*O5kQ -  
    % @L|X('i  
    %   The Zernike functions are an orthogonal basis on the unit circle. y wlN4=  
    %   They are used in disciplines such as astronomy, optics, and x#"|Z&Dw0  
    %   optometry to describe functions on a circular domain. yn<z!z%mz  
    % ug!DL=ZW  
    %   The following table lists the first 15 Zernike functions. .E|Hk,c9  
    % "|pNS)  
    %       n    m    Zernike function           Normalization -}k'a{sj=  
    %       -------------------------------------------------- D3yG@lIP3  
    %       0    0    1                                 1  G~T]m .  
    %       1    1    r * cos(theta)                    2 sqHv rI  
    %       1   -1    r * sin(theta)                    2 WlP#L`  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) y'4H8M2?  
    %       2    0    (2*r^2 - 1)                    sqrt(3) /=4P< &J  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) yv4ki5u`  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ABEC{3fWpu  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) th8f  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) .['@:}$1  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) w[PWJ! <  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) ay#cW.,  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) F?'=iY<h  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) ByeyUw  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) F.?`<7  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) sChMIbq!Av  
    %       -------------------------------------------------- /h%<e  
    % L1*P<Cb  
    %   Example 1: ,-A8;DW]^J  
    % }(O/y-  
    %       % Display the Zernike function Z(n=5,m=1) \/4ipU.  
    %       x = -1:0.01:1; %[4/UD=7  
    %       [X,Y] = meshgrid(x,x); 9Qp39(l:  
    %       [theta,r] = cart2pol(X,Y); yyh L]Uq"=  
    %       idx = r<=1; %a+X\\v2  
    %       z = nan(size(X)); UiS9uGj  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); L7mN&Xr  
    %       figure (utm+*V,  
    %       pcolor(x,x,z), shading interp boo,KhW'Y  
    %       axis square, colorbar !cw<C*  
    %       title('Zernike function Z_5^1(r,\theta)') _Jj/"?  
    % [8.ufpZ  
    %   Example 2: zvL&V .>  
    % =25q Y"Mf  
    %       % Display the first 10 Zernike functions vP&dvAUF  
    %       x = -1:0.01:1; @Fqh]1t  
    %       [X,Y] = meshgrid(x,x); H[V^wyi'z  
    %       [theta,r] = cart2pol(X,Y); 7P9n. [  
    %       idx = r<=1; 'P}"ZHW  
    %       z = nan(size(X)); T^N Y|Y/  
    %       n = [0  1  1  2  2  2  3  3  3  3]; d9|dHJf  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; XEV-D9n  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; B?-RzWB\3  
    %       y = zernfun(n,m,r(idx),theta(idx)); tx&>Eo  
    %       figure('Units','normalized') (w]w 2&Y D  
    %       for k = 1:10 MQE=8\  
    %           z(idx) = y(:,k); `LH!"M  
    %           subplot(4,7,Nplot(k)) /7*jH2  
    %           pcolor(x,x,z), shading interp %Rr!I:[ $  
    %           set(gca,'XTick',[],'YTick',[]) V4qHaG  
    %           axis square 0t5>'GYX  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) `3kE$h#  
    %       end Ri4_zb  
    % !^!<Xz;  
    %   See also ZERNPOL, ZERNFUN2. QL}5vSl  
    &d`Umm]  
    +,7dj:0S  
    %   Paul Fricker 11/13/2006 hSaS2RLF  
    2ko7t9y&  
    2*n2!7jZ*  
    C!XI0d  
     ?1r@r  
    % Check and prepare the inputs: yk#yrxM  
    % ----------------------------- +@]1!|@(  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) l7aGo1TcIh  
        error('zernfun:NMvectors','N and M must be vectors.') mW1Sd#0  
    end M ^ ZoBsZ  
    [ar:zl V8  
    *)ed(+b  
    if length(n)~=length(m) *]z.BZI:  
        error('zernfun:NMlength','N and M must be the same length.') J><O 51  
    end 0ang~_  
    ' F`*(\#  
    0NfO|l7P  
    n = n(:); &o^wgmS   
    m = m(:);  -6~*:zg,  
    if any(mod(n-m,2)) 0-0 )E&2  
        error('zernfun:NMmultiplesof2', ... yr&oJYM  
              'All N and M must differ by multiples of 2 (including 0).') GWjKZ1p  
    end IG`~^-}7lR  
    vIU+ZdBw  
    N$pwTyk  
    if any(m>n) s7I*=}{g0.  
        error('zernfun:MlessthanN', ... ^K@r!)We  
              'Each M must be less than or equal to its corresponding N.') rRcfZZ~` M  
    end u>& \@?(  
    - c<<A.X  
    *IGxa  
    if any( r>1 | r<0 ) Ou2H~3^PL  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') _I~TpH^1K  
    end sl6p/\_w  
    Lj*F KP\{  
    a[";K,  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) dr~MyQ  
        error('zernfun:RTHvector','R and THETA must be vectors.') 68FxM#xR  
    end Z<jRZH*L  
    ;zs*Zd7h M  
    P(X#w  
    r = r(:); \^Y#"zXo1  
    theta = theta(:); ZhxMA*fL  
    length_r = length(r); W{ eu_  
    if length_r~=length(theta) 8o-?Y.2  
        error('zernfun:RTHlength', ... JsnavI6  
              'The number of R- and THETA-values must be equal.') Z;%  
    end QIi*'21a+  
    ,Lv} Xku  
    (ZShhy8g  
    % Check normalization: =#BeAsFfO  
    % -------------------- y{u6t 3  
    if nargin==5 && ischar(nflag) + A0@# :B  
        isnorm = strcmpi(nflag,'norm'); $k'f)E  
        if ~isnorm 3;>(W  
            error('zernfun:normalization','Unrecognized normalization flag.') W3<O+S&  
        end GZZLX19s q  
    else r0\bi6;s/  
        isnorm = false; /4_}wi\  
    end ljiq+tT  
    <ya'L&  
    H5&>Eny  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 7[D0n7B@  
    % Compute the Zernike Polynomials S<Q1 &],  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% S BFhC  
    v~jN,f*  
    EAY9~b6~c  
    % Determine the required powers of r: N->;q^  
    % ----------------------------------- JYSw!!eC  
    m_abs = abs(m); ="A[*:h C"  
    rpowers = []; #jZ:Ex  
    for j = 1:length(n) 8OBvC\%  
        rpowers = [rpowers m_abs(j):2:n(j)]; *s%s|/  
    end (S2<6Nm8  
    rpowers = unique(rpowers); kk~{2   
    1c}'o*K_%  
    -g@pJ^>:  
    % Pre-compute the values of r raised to the required powers, V >['~|  
    % and compile them in a matrix: _eO]awsA  
    % ----------------------------- M  j5C0P(  
    if rpowers(1)==0 ED?s[K  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); |HG%o 3E]  
        rpowern = cat(2,rpowern{:}); "Q/3]hc.  
        rpowern = [ones(length_r,1) rpowern]; I?fE=2}9  
    else [;?^DAnK2  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Yt#($}p  
        rpowern = cat(2,rpowern{:}); \6lXsu;I.X  
    end Etl7V  
    &>s(f-\8  
    78.sf{I  
    % Compute the values of the polynomials: JfVay I=  
    % -------------------------------------- Ee|@l3)  
    y = zeros(length_r,length(n)); QqwX Fk  
    for j = 1:length(n) c^bA]l^a  
        s = 0:(n(j)-m_abs(j))/2; ALw uw^+  
        pows = n(j):-2:m_abs(j); ~'U;).C  
        for k = length(s):-1:1 G` 8j ^H,  
            p = (1-2*mod(s(k),2))* ... HAiUFO/R  
                       prod(2:(n(j)-s(k)))/              ... 9.@(&  
                       prod(2:s(k))/                     ... iM9563v  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... }Sh-4:-D  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); $?s^HKF~  
            idx = (pows(k)==rpowers); :J~j*_hZ  
            y(:,j) = y(:,j) + p*rpowern(:,idx); -?]ltn9!  
        end y H'\<bT  
         Q?tV:jogY  
        if isnorm =aekY;/  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); v]J# SlF  
        end [x)e6p)  
    end a(7ryl~c=  
    % END: Compute the Zernike Polynomials J)G3Kq5>:b  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% iWCV(!  
    ~h@tezF  
    5_`}$"<~  
    % Compute the Zernike functions: n>4S P_[E7  
    % ------------------------------ -hzza1DP  
    idx_pos = m>0; VZ,T`8"  
    idx_neg = m<0; n,F00Y R  
    moR]{2Cd{  
    G4}q*&:k  
    z = y; X2`>@GR/>  
    if any(idx_pos) M BT-L  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); /kz&9FM  
    end [z~Nw#  
    if any(idx_neg) E8i:ER $$7  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ) b10%n^  
    end Fjzk;o  
    @"!SU' *  
    :/NN =3e  
    % EOF zernfun `$H   
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  HM@}!6/s  
    AO}i@YJth  
    DDE还是手动输入的呢? YKe0:cWc  
    [pW1=tI  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究