切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9431阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, a-UD_|!  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, |~=?vw< W  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? ]VHdE_7)  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? D/!eov4"  
    4/mj"PBKL  
    q)z1</B-  
    9^C!,A{u4  
    ~YT>:Np  
    function z = zernfun(n,m,r,theta,nflag) &a2V-|G',  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. ,pGCgOG#}c  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N )n3bi QL_  
    %   and angular frequency M, evaluated at positions (R,THETA) on the dTU.XgX)1^  
    %   unit circle.  N is a vector of positive integers (including 0), and Fm[?@Z&wP  
    %   M is a vector with the same number of elements as N.  Each element ek0;8Ds9  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) Jb)eC?6O  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, yW6[Fpw  
    %   and THETA is a vector of angles.  R and THETA must have the same Sj]T{3mi  
    %   length.  The output Z is a matrix with one column for every (N,M) ui#1+p3G  
    %   pair, and one row for every (R,THETA) pair. [jtj~]&mO  
    % 3Oig/KZ  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike NGb! 7Mu9  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), !tFU9Zt  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 1+PNy d  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, RZ,<D I  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized E6wST@ r  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. aBA#\eV  
    % W) Kpnb7  
    %   The Zernike functions are an orthogonal basis on the unit circle. \SHD  
    %   They are used in disciplines such as astronomy, optics, and n9-q5X^e>  
    %   optometry to describe functions on a circular domain. o"+ &^  
    % ZC\.};.  
    %   The following table lists the first 15 Zernike functions. dO4U9{+  
    % nD?M;XN  
    %       n    m    Zernike function           Normalization &0<R:K?>N  
    %       -------------------------------------------------- w\8r h\Mvh  
    %       0    0    1                                 1 K&gc5L  
    %       1    1    r * cos(theta)                    2 Ll E_{||h  
    %       1   -1    r * sin(theta)                    2 !^"!fuoNC  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 2" {]A;@  
    %       2    0    (2*r^2 - 1)                    sqrt(3) DGuUI}|)  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) F# 37Qv  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) m LxwJ  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) f!R^;'a  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) &fNE9peQFa  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) BQfAen]  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) u4*]jt;H  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) uL2 {v  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) XGup,7e9  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 3b[[2x_UU  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) $E@.G1T [  
    %       -------------------------------------------------- H/la'f#o%  
    % a!J ow?(  
    %   Example 1: Kd[`mkmS  
    % 02 c.;ka3  
    %       % Display the Zernike function Z(n=5,m=1) &+r ;>  
    %       x = -1:0.01:1; Px?At5  
    %       [X,Y] = meshgrid(x,x); AYQh=$)(  
    %       [theta,r] = cart2pol(X,Y); \S@=zII_  
    %       idx = r<=1; `::(jW.KO  
    %       z = nan(size(X)); =`.5b:e  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); t:j07 ,1~  
    %       figure ^)P5(fJ  
    %       pcolor(x,x,z), shading interp <IkD=X  
    %       axis square, colorbar D30Z9_^%:  
    %       title('Zernike function Z_5^1(r,\theta)') u9~V2>r\  
    % wT AEJ{p  
    %   Example 2: r L|BkN  
    % k49n9EX  
    %       % Display the first 10 Zernike functions SVEA  
    %       x = -1:0.01:1; lJQl$Wx^  
    %       [X,Y] = meshgrid(x,x); @_:?N(%(  
    %       [theta,r] = cart2pol(X,Y); hE`%1j2(  
    %       idx = r<=1; 8P y_Y>  
    %       z = nan(size(X)); y42T.oK8c  
    %       n = [0  1  1  2  2  2  3  3  3  3]; g:6}zHK  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; nsw8[pk  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; a ZCZ/  
    %       y = zernfun(n,m,r(idx),theta(idx)); (IQ L`3f%  
    %       figure('Units','normalized') ScmzbDu  
    %       for k = 1:10 ,?N_67  
    %           z(idx) = y(:,k); l{SPV8[i  
    %           subplot(4,7,Nplot(k)) -EIMh^  
    %           pcolor(x,x,z), shading interp w I 7  
    %           set(gca,'XTick',[],'YTick',[]) 2X |jq4  
    %           axis square -#z'A  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) P*=3$-`  
    %       end zSufU2  
    % <y/AEY1  
    %   See also ZERNPOL, ZERNFUN2. E0%Y%PQ**{  
    -hV KPIb  
    z{+; '9C  
    %   Paul Fricker 11/13/2006 $W]guG  
    k  5kX  
    Q 6<Uui w  
    4U1fPyt  
    JWjp<{Q; 1  
    % Check and prepare the inputs: fe`G^hV  
    % ----------------------------- bH]!~[  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) %SFR.U0}yK  
        error('zernfun:NMvectors','N and M must be vectors.') -.3k vL  
    end g 5N<B+?!i  
    /'^>-!8_1  
    *wyLX9{:  
    if length(n)~=length(m) `%:(IGxz  
        error('zernfun:NMlength','N and M must be the same length.') 5Jd {Ev  
    end Fd.d(  
    T}x%=4<E  
    &jd<rs5}  
    n = n(:); m8A1^ R  
    m = m(:); xJ5!` #=  
    if any(mod(n-m,2)) j@\/]oL^We  
        error('zernfun:NMmultiplesof2', ... dp W%LXM_  
              'All N and M must differ by multiples of 2 (including 0).') vy y\^nL  
    end 6u3(G j@  
    X.5LB!I)  
    -zkL)<7  
    if any(m>n) qnV9TeU)  
        error('zernfun:MlessthanN', ... nECf2>Yp v  
              'Each M must be less than or equal to its corresponding N.') wA&)y>n-  
    end BkqW>[\5xm  
    %+J*oFwQu  
    k}qiIMdI  
    if any( r>1 | r<0 ) Oj\mkg  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') @x ]^blq  
    end n:] 1^wX#  
    bncFrzp#o  
    4=cq76  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) nL~ b   
        error('zernfun:RTHvector','R and THETA must be vectors.') <OB~60h"  
    end Mc^7FWkw  
    aBLb i  
    ~]+  jn  
    r = r(:); fbkjK`_q  
    theta = theta(:); Vtk|WV?>P+  
    length_r = length(r); 1"PE@!]  
    if length_r~=length(theta) nP5fh_/  
        error('zernfun:RTHlength', ... 3o^M%  
              'The number of R- and THETA-values must be equal.') |/Z)?  
    end #E)]7!_XG  
    ,KaWP  
    S`.-D+.68  
    % Check normalization: LRs; >O  
    % -------------------- Jx?>1q=M  
    if nargin==5 && ischar(nflag) ,Yz+?SmSZ&  
        isnorm = strcmpi(nflag,'norm'); ``Rb-.Fq,  
        if ~isnorm >Sah\u`  
            error('zernfun:normalization','Unrecognized normalization flag.') !7?wd^C'f  
        end N Q=YTRU  
    else G"w Q(6J@  
        isnorm = false; `^{P,N>X  
    end zf u78  
    Gjr2]t;E  
    9B0"GEwrs  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% lNAHn<ht  
    % Compute the Zernike Polynomials Wno5B/V  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #IDCCD^1=  
    %Ski5q  
    4F!d V;"Z(  
    % Determine the required powers of r: Z Z7U^#RT  
    % ----------------------------------- ![%,pip2/&  
    m_abs = abs(m); ?>&Zm$5V  
    rpowers = []; DcHMiiVM  
    for j = 1:length(n) ry"zec B  
        rpowers = [rpowers m_abs(j):2:n(j)]; 1YL5 ![T  
    end F{tSfKy2  
    rpowers = unique(rpowers); n Lb 9$&  
    5Bo)j_Qo  
    v^'~-^s  
    % Pre-compute the values of r raised to the required powers, q#Vf2U55m  
    % and compile them in a matrix: <X*8Xzmv  
    % ----------------------------- T(F8z5s5  
    if rpowers(1)==0 gZv <_0N  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ;"z>p25=T  
        rpowern = cat(2,rpowern{:}); X3yr6J[ ^  
        rpowern = [ones(length_r,1) rpowern]; (=9&"UH  
    else B?Skw{&  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); (z7#KJ1+Aw  
        rpowern = cat(2,rpowern{:}); T:$_1I $  
    end +_Z/VQv  
    `m^OnH  
    qzz'v  
    % Compute the values of the polynomials: ri ~2t3gg  
    % -------------------------------------- g_U69 z  
    y = zeros(length_r,length(n)); 4^&vRD,  
    for j = 1:length(n) #C^m>o~R  
        s = 0:(n(j)-m_abs(j))/2; ig{5 ]wZ(  
        pows = n(j):-2:m_abs(j); U,BB C  
        for k = length(s):-1:1 )VC) }  
            p = (1-2*mod(s(k),2))* ... h;->i]  
                       prod(2:(n(j)-s(k)))/              ... 8n?.w:Y/  
                       prod(2:s(k))/                     ... cx}-tj"m-  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... F04Etf 2k  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); E3!twR*Aw  
            idx = (pows(k)==rpowers); ,e2va7}3  
            y(:,j) = y(:,j) + p*rpowern(:,idx); CCV~nf  
        end }|,y`ui\  
         ^>fs  
        if isnorm c3##:"wr  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); b3+PC$z2h  
        end j7&l&)5  
    end Fm "$W^H  
    % END: Compute the Zernike Polynomials +Sfv.6~v  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 'Nh^SbD+_|  
    32yNEP{  
    "|if<hx+  
    % Compute the Zernike functions: KXJHb{?  
    % ------------------------------ kN)ev?pQ[  
    idx_pos = m>0; (&(f`c@I  
    idx_neg = m<0; JFZ p^{  
    iweP3u##  
    0*)79Sz  
    z = y; fvD wg  
    if any(idx_pos) D6w0Y:A{.  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); `;;!>rm  
    end 9=|5-? ^  
    if any(idx_neg) \IKr+wlN8  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 7F.,Xvw&@  
    end :"4~VDu  
    Zu,f&smb  
    [C$ 0HW  
    % EOF zernfun }1V&(#H2  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  >y5~:L  
    [j) :2  
    DDE还是手动输入的呢? H d :2  
    kEi!q  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究