下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, O_=2{k~s0
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, (j<FS>##
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? Ub[SUeBGH
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? <46>v<
K|^PHe
j'L/eps?S
U'4j+vUc
1,Ams
function z = zernfun(n,m,r,theta,nflag) a
]~Rp
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. >-S? rXO
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N jGm`Qg{<
% and angular frequency M, evaluated at positions (R,THETA) on the QjT$.pUd
% unit circle. N is a vector of positive integers (including 0), and P}"=67$
% M is a vector with the same number of elements as N. Each element zEM c)
% k of M must be a positive integer, with possible values M(k) = -N(k) d `MTc
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, |h^[/
% and THETA is a vector of angles. R and THETA must have the same D;?cf+6$
% length. The output Z is a matrix with one column for every (N,M) '%Fg+cZN\
% pair, and one row for every (R,THETA) pair. \NZ(Xk
% # <?igtUO
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike OdKfU^
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), :zA/~/Wo
% with delta(m,0) the Kronecker delta, is chosen so that the integral L
i g7Ac,
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 5r2A^<)
% and theta=0 to theta=2*pi) is unity. For the non-normalized y
J|/^qs
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. L<D<3g|4
%
pVm]<jO
% The Zernike functions are an orthogonal basis on the unit circle. `GDWy^-Q+!
% They are used in disciplines such as astronomy, optics, and srbES6
% optometry to describe functions on a circular domain. z:Y
Z]
% w]@H]>sHd
% The following table lists the first 15 Zernike functions. ^Uq%-a
% I3I1<}>]Z
% n m Zernike function Normalization gDN7ly]6M
% -------------------------------------------------- #}xw
*)3
% 0 0 1 1 o:wI{?%-3
% 1 1 r * cos(theta) 2 QG1+*J76b@
% 1 -1 r * sin(theta) 2 gPE`mE
% 2 -2 r^2 * cos(2*theta) sqrt(6) 6y+_ x'
% 2 0 (2*r^2 - 1) sqrt(3) {<}9r6k;f
% 2 2 r^2 * sin(2*theta) sqrt(6) !V^wq]D2
% 3 -3 r^3 * cos(3*theta) sqrt(8) 42oW]b%P{;
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) XJZ\ss
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) M&[bb $00j
% 3 3 r^3 * sin(3*theta) sqrt(8) !{1;wC(b
% 4 -4 r^4 * cos(4*theta) sqrt(10) #}p@+rkg2
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) | V:9 ][\
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) v:F_!Q
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) W5*Kq^6Pd
% 4 4 r^4 * sin(4*theta) sqrt(10) 1agNwFd~
% -------------------------------------------------- 11^.oa+`
% 8P?p
% Example 1: oBS m>V
% ]qd$rX
% % Display the Zernike function Z(n=5,m=1) A+=K<e
% x = -1:0.01:1; ?S<`*O
+
% [X,Y] = meshgrid(x,x); h}y]Pt?
% [theta,r] = cart2pol(X,Y); Q]{ `m
% idx = r<=1; wi/qI(O!
% z = nan(size(X)); 3<x1s2U
% z(idx) = zernfun(5,1,r(idx),theta(idx)); ;7>k[?'e
% figure x%'5rnm|
% pcolor(x,x,z), shading interp |1pDn7
% axis square, colorbar `nCVO;B
% title('Zernike function Z_5^1(r,\theta)') f6,?Yex8B
% =OeLF
% Example 2: gs"w
0[$
% p:NIRs
% % Display the first 10 Zernike functions OQ&'3hv{
% x = -1:0.01:1; "h5.^5E6
% [X,Y] = meshgrid(x,x); e?7Oom
% [theta,r] = cart2pol(X,Y); ^)E#
c
% idx = r<=1; 60R]Q
% z = nan(size(X)); %a:>3!
+
% n = [0 1 1 2 2 2 3 3 3 3]; X \BxRgl},
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; *e25!#o1
% Nplot = [4 10 12 16 18 20 22 24 26 28]; 8|{d1dy
% y = zernfun(n,m,r(idx),theta(idx)); vlq L
% figure('Units','normalized') l3xI\{jn
% for k = 1:10 :+_
% z(idx) = y(:,k); ~f:"Q(f+
% subplot(4,7,Nplot(k)) y 2C Jk~
% pcolor(x,x,z), shading interp hLr\;Swyp
% set(gca,'XTick',[],'YTick',[]) udOdXz6K?
% axis square FEO/RMh
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) /E-sg,
k
% end ?J@P0(M#
% f+lPQIB
% See also ZERNPOL, ZERNFUN2. cN:dy#
u[HamGxx$u
w|1O-k`
% Paul Fricker 11/13/2006 mpNS}n6
*zwo="WA\t
W1&"dT@
6~-,.{Y
#}lWM%9Dy
% Check and prepare the inputs: h0?w V5H
% ----------------------------- 4"pU\g
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) {TZV^gT4
error('zernfun:NMvectors','N and M must be vectors.') jp7cPpk:LG
end s6QD^[
>qVSepK3
=gB8(1g8
if length(n)~=length(m) ffMk.SqI
error('zernfun:NMlength','N and M must be the same length.') vSy[lB|)24
end mqtYny'
?=im~
w6h*dh$w
n = n(:); SZUo RWx
m = m(:); ZfXgVTJ`
if any(mod(n-m,2)) V KxuK0{
error('zernfun:NMmultiplesof2', ... q8!]x-5$6j
'All N and M must differ by multiples of 2 (including 0).') Ae%AG@L
end [1mEdtqf*
[tR b{JsUd
ME66BWg{
if any(m>n) $*:g~#bh
error('zernfun:MlessthanN', ... q+} \(|
'Each M must be less than or equal to its corresponding N.') !X9^ L^v}
end n]6-`fpD
4peRbm
qLPuKIF
if any( r>1 | r<0 ) 6OB3%R'p
error('zernfun:Rlessthan1','All R must be between 0 and 1.') dQz#&&s-
end IL1iTRH
lD{*Z spz
_'4S1
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) K
$WMrp
error('zernfun:RTHvector','R and THETA must be vectors.') G^';9 UK
end OIIA^QyV
<'QI_mP*
:cf#Tpq"
r = r(:); !L@<?0xLW
theta = theta(:); W4bN']?
length_r = length(r); "lrQC`?
if length_r~=length(theta) 0cDP:EzR;
error('zernfun:RTHlength', ... dai+"
'The number of R- and THETA-values must be equal.') NTEN
end 7xFZJ#
Cg|\UKfy$
S>)[n]f
% Check normalization: +&dkJ 4g[
% -------------------- ddN G:
if nargin==5 && ischar(nflag) do*aE
isnorm = strcmpi(nflag,'norm'); :[CEHRc7x
if ~isnorm h#c7v!g
error('zernfun:normalization','Unrecognized normalization flag.') Uu52uR
end 'tDUPm38
else f7 |Tp m
isnorm = false; .
:>e"D
end &po!X )
Pf/8tXs}
1w,34*- }
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% IT)3Et@Y
% Compute the Zernike Polynomials 1J72*`4OK
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% I~6 o<HO
!{ {gL=_@
6`vW4]zu
% Determine the required powers of r: pp@B]We
% ----------------------------------- yn"4qC#Z
m_abs = abs(m); AWE ab
rpowers = []; ;4(}e{
for j = 1:length(n) b dLi_k
rpowers = [rpowers m_abs(j):2:n(j)]; L`e19I$
end d S'J @e=#
rpowers = unique(rpowers); NuOxEyC
U82mO+}
)0]U"Nf ho
% Pre-compute the values of r raised to the required powers, #vhN$H :&q
% and compile them in a matrix: N'-[>w7vK2
% ----------------------------- znPh7{|<