下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, 3S%/>)k
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, Ksk[sf?J&
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? R[QBFL<
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? =t|,6Vp
P#rS.CIh
vJX0c\e
w.+G+r=
SI=7$8T5=5
function z = zernfun(n,m,r,theta,nflag) '+*'sQvH[
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. ]L3MIaO2T
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N &,\my-4c>
% and angular frequency M, evaluated at positions (R,THETA) on the {qs>yQ6a:-
% unit circle. N is a vector of positive integers (including 0), and L;6{0b58$
% M is a vector with the same number of elements as N. Each element /38XaKc{6
% k of M must be a positive integer, with possible values M(k) = -N(k) UunZ/A$]m
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, .B!
Z0
% and THETA is a vector of angles. R and THETA must have the same -"x@ V7X
% length. The output Z is a matrix with one column for every (N,M) AyOy&]g
% pair, and one row for every (R,THETA) pair. 8}Q2!,9Q
% meGLT/
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike :8]y*j
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), '<6DLtZl
% with delta(m,0) the Kronecker delta, is chosen so that the integral on1B~?*D
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, I`x[1%y2 F
% and theta=0 to theta=2*pi) is unity. For the non-normalized IUD@Kf]S
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. `1lGAKv
% sdN1BV2
% The Zernike functions are an orthogonal basis on the unit circle. n-OQCz9Xl
% They are used in disciplines such as astronomy, optics, and ,Z8)DC=
% optometry to describe functions on a circular domain. ROO@EQ#`Z
% TrQUhmS/!
% The following table lists the first 15 Zernike functions. T5dnj&N ]
% M5N#xgR
% n m Zernike function Normalization ^3QJv{)Q
% -------------------------------------------------- t"vkd
% 0 0 1 1 ,hp8b$
% 1 1 r * cos(theta) 2 u7},+E)+B
% 1 -1 r * sin(theta) 2 S.?DR3XLc
% 2 -2 r^2 * cos(2*theta) sqrt(6) <driD'=F
% 2 0 (2*r^2 - 1) sqrt(3) B'b OK`p
% 2 2 r^2 * sin(2*theta) sqrt(6) [*
|+ it+!
% 3 -3 r^3 * cos(3*theta) sqrt(8) "kjSg7m*:
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) p@oz[017/J
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) @]Ac >&
% 3 3 r^3 * sin(3*theta) sqrt(8) z:&/O&?
% 4 -4 r^4 * cos(4*theta) sqrt(10) :BB=E'293
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) g|tclBx
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) 2G_]Y8
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) )^
P Wr^
% 4 4 r^4 * sin(4*theta) sqrt(10) HumL(S'm
% -------------------------------------------------- d)d0,fi?-
% h-DHIk3/
% Example 1: ,E"n 7*6mr
% *JZlG%z
% % Display the Zernike function Z(n=5,m=1) bHQ) :W
% x = -1:0.01:1; Xv+,Z<>iQ
% [X,Y] = meshgrid(x,x); _ER. AKY
% [theta,r] = cart2pol(X,Y); \mWH8Z
}Z
% idx = r<=1; FuG;$';H75
% z = nan(size(X)); 7R5+Q\W
% z(idx) = zernfun(5,1,r(idx),theta(idx)); oc#hAjB.
% figure (O&HCT|
% pcolor(x,x,z), shading interp 8isQL
% axis square, colorbar R*2F)e\|
% title('Zernike function Z_5^1(r,\theta)') ex66GJQe1
% lbC,*U^
% Example 2: !'B='].
% Eqh*"hE7
% % Display the first 10 Zernike functions KN>h*eze
% x = -1:0.01:1; IR8yE`(h
% [X,Y] = meshgrid(x,x); 45OAJ?N
% [theta,r] = cart2pol(X,Y); ? 51i0~O=
% idx = r<=1; 6h0}ZM
% z = nan(size(X)); v:n[H]K|
% n = [0 1 1 2 2 2 3 3 3 3]; 5Vai0Qfcu:
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; _(I)C`8m
% Nplot = [4 10 12 16 18 20 22 24 26 28]; ls~9qkAyLx
% y = zernfun(n,m,r(idx),theta(idx)); 3eB)X2~
% figure('Units','normalized') eHR]qy 0_X
% for k = 1:10 dN7.W
% z(idx) = y(:,k); Wfy+9"-;s
% subplot(4,7,Nplot(k)) rinTB|5
% pcolor(x,x,z), shading interp Ejnk\ 8:
% set(gca,'XTick',[],'YTick',[]) |*Oi:)qt
% axis square X,{[R |
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) y>)c?9X
% end W Bb*2
% qh6rMqq
% See also ZERNPOL, ZERNFUN2. nzbAQ3v
2'-84
%jHe_8=o
% Paul Fricker 11/13/2006 GRaU]Z]ck
?Iq{6O>D.
) TRUx
5"X@<;H%
h@o6=d=4
% Check and prepare the inputs: {'z$5<|
% ----------------------------- 7|GSs=
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) )PW|RW
error('zernfun:NMvectors','N and M must be vectors.') CxSh.$l
end A;dD'Kgl
X4Pm&ol
N;k )>
if length(n)~=length(m) $PAAmaigi
error('zernfun:NMlength','N and M must be the same length.') '+3C2!
end /Gn0|]KI
PB!XApTb
M|zTs\1I
n = n(:); L&~' SC
m = m(:); D@:'*Z(
if any(mod(n-m,2)) o\; hF3
error('zernfun:NMmultiplesof2', ... 29m$S7[
'All N and M must differ by multiples of 2 (including 0).') Bf6i{`!G
end ;tF&r1
Nwe-7/Q
ZKq#PB/.
if any(m>n) M'F<1(
error('zernfun:MlessthanN', ... )[|_q,
'Each M must be less than or equal to its corresponding N.') B2a#:E,6
end VR\}*@pNp
7[UD;&\k
sFnR;
if any( r>1 | r<0 ) g"(@+\XZH"
error('zernfun:Rlessthan1','All R must be between 0 and 1.') Tj{3#?]Ho
end |lZp5MOc
uG +ZR:
_
&fl RrJ
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) d>F. C>
error('zernfun:RTHvector','R and THETA must be vectors.') %g{)K)$,ui
end jA[Ir3
t`R{N1
M_>kefr
r = r(:); Wq"-T.i
theta = theta(:); `@v;QLD"d<
length_r = length(r); hUuKkUR+Ir
if length_r~=length(theta) xR|^{y9n
error('zernfun:RTHlength', ... c!'\k,ma<9
'The number of R- and THETA-values must be equal.') fOME&$=O
end T,rRE7
r4DHALu#)
VJFFH\!`
% Check normalization: -A=3W3:C
% -------------------- 8 H3u"
if nargin==5 && ischar(nflag) '$EyVu!
isnorm = strcmpi(nflag,'norm'); /&_q"y9
if ~isnorm zSU,le
error('zernfun:normalization','Unrecognized normalization flag.') R/*"N'nH-%
end ';My"/
Z-
else j"aY\cLr t
isnorm = false; BV
}CmU&DA
end E_DQ.!U!o
c:&8B/
&q9=0So4\
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% nk7>iK!i
% Compute the Zernike Polynomials t|hc`|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 5E1`qof
*Uj;a.
:#35mBe}k
% Determine the required powers of r: %KkC1.yu<
% ----------------------------------- G2?#MO
m_abs = abs(m); `j9\]50Z>
rpowers = []; }!R*Q`m
for j = 1:length(n) R!
On
rpowers = [rpowers m_abs(j):2:n(j)]; Y:L[Iz95o
end _cj=}!I
rpowers = unique(rpowers); _ DT,iF*6
DR:DXJc
G5K?Q+n
% Pre-compute the values of r raised to the required powers, &qWB\m
% and compile them in a matrix: D,[Nn_N
% ----------------------------- II| ;_j
if rpowers(1)==0 @ =~k[o
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); NN1}P'6Ha
rpowern = cat(2,rpowern{:}); J:gC1g^
rpowern = [ones(length_r,1) rpowern]; _SOwiz
else #+V4<o
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 9H/R@i[E
rpowern = cat(2,rpowern{:}); |iX>hJSl
end dcD#!v\0
Q"nw.FjUG
dE_"|,:
% Compute the values of the polynomials: b1jDbiH&
% -------------------------------------- .%e>>U>F
y = zeros(length_r,length(n)); q5= ,\S3=
for j = 1:length(n) (a8iCci:
s = 0:(n(j)-m_abs(j))/2; r|DIf28MIq
pows = n(j):-2:m_abs(j); SA&(%f1d
for k = length(s):-1:1 !ehjLFS? _
p = (1-2*mod(s(k),2))* ... R=D}([pi
prod(2:(n(j)-s(k)))/ ... .5o~^
prod(2:s(k))/ ... W;2J~V!c
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... F[yofRN
prod(2:((n(j)+m_abs(j))/2-s(k))); nKS*y*
idx = (pows(k)==rpowers); 6Aq]I$
y(:,j) = y(:,j) + p*rpowern(:,idx); D&2NO/
R
end adIrrK
Qg~w 3~
if isnorm `[(XZhN
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); &Tuj`DL
end g3&nxZ
end n7K%lj-.P
% END: Compute the Zernike Polynomials 9T5 F0?qd
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ^>Z_3{s:$
zPqJeYK
fW+"Kuw
% Compute the Zernike functions: yq k8)\p
% ------------------------------ ,52 IR[I<T
idx_pos = m>0; ~mXzQbe
p
idx_neg = m<0; 8a)Brl}u
fxoEK}TM
T1.U (::
z = y; 3~Fag1Hp
if any(idx_pos) d7[^pN
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); #&?ER]|3
end oxN5:)
if any(idx_neg) P(b[|QF
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); -V}xvSVg
end dhLR#m30T
uGb+ *tD
O!f37n-TB
% EOF zernfun UCfouQ Cj