切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8808阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, S/;bU :  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, (8_\^jJ  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? tTd\|  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? RK w$-7O  
    n~VD uKn9  
    :[;hu}!&  
    \h8 <cTQ  
    E 7-@&=]v  
    function z = zernfun(n,m,r,theta,nflag) +iOKbc'  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. }i!J/tJ)b  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N z3?o|A}/W  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 9mZ  
    %   unit circle.  N is a vector of positive integers (including 0), and 4Qn$9D+?  
    %   M is a vector with the same number of elements as N.  Each element N&@}/wzZ  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 36US5ef  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, \d::l{VB  
    %   and THETA is a vector of angles.  R and THETA must have the same s&'QN=A  
    %   length.  The output Z is a matrix with one column for every (N,M) NHlk|Y#6b  
    %   pair, and one row for every (R,THETA) pair. e}1uz3Rh  
    % ! VjFW5'{  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike f 2l{^E#h  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), #m={yck *  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral +>JjvYx}\  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 37}D9:#5C  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized p,"g+ MwP  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. nT2)E&U6%  
    % ToYAW,U[d  
    %   The Zernike functions are an orthogonal basis on the unit circle. /*0K92NB  
    %   They are used in disciplines such as astronomy, optics, and qP<Lr)nUH  
    %   optometry to describe functions on a circular domain. Yw0[[N<SW  
    % @IXsy  
    %   The following table lists the first 15 Zernike functions. v$^Z6>vVI  
    % y!xE<S&Y  
    %       n    m    Zernike function           Normalization U(x]O/m  
    %       -------------------------------------------------- 4>J   
    %       0    0    1                                 1 ;| 1$Q!4  
    %       1    1    r * cos(theta)                    2 NVRLrJWpp  
    %       1   -1    r * sin(theta)                    2 "Wx]RN:  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 3do)Vg4  
    %       2    0    (2*r^2 - 1)                    sqrt(3) B5$kHM%p  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) Jec'`,Y  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) "yW:\   
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 4bgqg0z>  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) QE7V. >J_p  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) ^Ox3XC  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) qgrg CJ  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) W 5R\Q,x6  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) =JmT:enV  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) f7}*X|_Y  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) D+>1]ij  
    %       -------------------------------------------------- ZK)%l~J  
    % c%qv9   
    %   Example 1: Rn@# d}  
    % A<y nIs<  
    %       % Display the Zernike function Z(n=5,m=1) sq'Pyz[[  
    %       x = -1:0.01:1; ~zw]5|  
    %       [X,Y] = meshgrid(x,x); 0x!2ihf  
    %       [theta,r] = cart2pol(X,Y); 5scEc,JCi  
    %       idx = r<=1; 1x,tu}<u^  
    %       z = nan(size(X)); jq!tT%o*B  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); [ Fz`D/  
    %       figure LcE+GC  
    %       pcolor(x,x,z), shading interp e>AE8T  
    %       axis square, colorbar & GreN  
    %       title('Zernike function Z_5^1(r,\theta)') wm^J;<T[  
    % wiBVuj#  
    %   Example 2: nWHa.H#  
    % FLY Ca  
    %       % Display the first 10 Zernike functions 3*@5S]]  
    %       x = -1:0.01:1; b Ax?&$  
    %       [X,Y] = meshgrid(x,x); Y5j]Z^^v  
    %       [theta,r] = cart2pol(X,Y); v~Y^r2  
    %       idx = r<=1; !Xph_SQ!B=  
    %       z = nan(size(X)); & j+oJasI  
    %       n = [0  1  1  2  2  2  3  3  3  3]; 5+wAzVA  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 28=O03q  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; F_4n^@M  
    %       y = zernfun(n,m,r(idx),theta(idx)); {,L+1h  
    %       figure('Units','normalized') Kde9 $  
    %       for k = 1:10 wT{nu[=GH*  
    %           z(idx) = y(:,k); 5v6Ei i:  
    %           subplot(4,7,Nplot(k)) y.Z?LCd<  
    %           pcolor(x,x,z), shading interp n-@j5w+k4  
    %           set(gca,'XTick',[],'YTick',[]) q?ix$nKOv  
    %           axis square )sT> i  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) nt@aYXK4|  
    %       end 9tqF8pb7v  
    % Xp}Yw"7  
    %   See also ZERNPOL, ZERNFUN2. G}G#i`6o  
    mN19WQ(r  
    DX|# gUAm  
    %   Paul Fricker 11/13/2006 tmtT (  
    (zFi$  
    _ :VB}>  
    -bU oCF0  
    1&U>,;]*  
    % Check and prepare the inputs: s4uhsJL V$  
    % ----------------------------- >HS W]"k  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) j ku}QM^  
        error('zernfun:NMvectors','N and M must be vectors.') /n8B,-Z5s5  
    end PKzyV ;  
    *C:|X b<9  
    2Roc|)-47  
    if length(n)~=length(m) 9\DQ>V TQ  
        error('zernfun:NMlength','N and M must be the same length.') TU 1I} ,  
    end 'uxX5k/D@t  
    W!&vul5  
    O7$hYk  
    n = n(:); 5kz)5,KjM  
    m = m(:); Mwr"~?\\  
    if any(mod(n-m,2)) QD>"]ap,o  
        error('zernfun:NMmultiplesof2', ... VH1d$  
              'All N and M must differ by multiples of 2 (including 0).') ;/rXQe1  
    end r'*}TM'8  
    |a!fhl+  
    }x wu*Zx  
    if any(m>n) S9",d~EM  
        error('zernfun:MlessthanN', ... 5EebPXBzB  
              'Each M must be less than or equal to its corresponding N.') =Fr(9 (  
    end iS<I0\D  
    aWY gR  
    \9g+^vQg  
    if any( r>1 | r<0 ) jE/AA!DC#  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.')  pn5Q5xc  
    end wD]/{ jw  
    "UJ S5[7$  
    KSN Pkd6  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) )}?#  
        error('zernfun:RTHvector','R and THETA must be vectors.') /Dj=iBO  
    end Q{lpKe0  
    HI11Jl}{  
    `p;I}  
    r = r(:); m-*hygkcDu  
    theta = theta(:); UaB @  
    length_r = length(r); p ObX42  
    if length_r~=length(theta) O6G0  
        error('zernfun:RTHlength', ... sH[ROm  
              'The number of R- and THETA-values must be equal.') e F3,2DD C  
    end -u8NF_{c  
    ssN6M./6  
    @0u~?!g@  
    % Check normalization: SF<c0bR9  
    % -------------------- pj?f?.^  
    if nargin==5 && ischar(nflag) x}8yXE"  
        isnorm = strcmpi(nflag,'norm'); csW43&  
        if ~isnorm R'@9]99  
            error('zernfun:normalization','Unrecognized normalization flag.') 20nP/ e  
        end  N#a$t&  
    else N<-gI9_  
        isnorm = false; uW} s)j.  
    end 7M<'/s  
    ZU%[guf  
    -K3^BZ HI  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% *=I}Qh(1  
    % Compute the Zernike Polynomials |='z{WS  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% c5D)   
    @8pp EFw  
    W)f/0QX}W  
    % Determine the required powers of r: \S! e![L/  
    % ----------------------------------- ]X ?7ZI^  
    m_abs = abs(m); zIu E9l  
    rpowers = []; 2vWx)Drb6  
    for j = 1:length(n) `u teg=  
        rpowers = [rpowers m_abs(j):2:n(j)]; N%*5T[.  
    end ;CPr]avY  
    rpowers = unique(rpowers); %~E ?Z!_W  
    O%5 r[  
    ^Uf]Q$uCjE  
    % Pre-compute the values of r raised to the required powers, t? yz  
    % and compile them in a matrix: E(8* pI  
    % ----------------------------- L"4mL,  
    if rpowers(1)==0 [k;\SXDZo  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); + |#O@k  
        rpowern = cat(2,rpowern{:}); 9vGu0Um  
        rpowern = [ones(length_r,1) rpowern]; Ne[7gxpu  
    else G(G{RAk>  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); UVd7 JGR  
        rpowern = cat(2,rpowern{:}); Z:sg}  
    end :?g:~+hfO  
    \ b?" b  
    ?7.7`1m !v  
    % Compute the values of the polynomials: lE&&_INHQ  
    % -------------------------------------- rMLp-aR'  
    y = zeros(length_r,length(n)); \%f q  
    for j = 1:length(n) `OXpU,Z 6U  
        s = 0:(n(j)-m_abs(j))/2; 10q'Z}34  
        pows = n(j):-2:m_abs(j); '":lB]hS  
        for k = length(s):-1:1 4'a=pnE$  
            p = (1-2*mod(s(k),2))* ... y}My.c  
                       prod(2:(n(j)-s(k)))/              ... WSp  
                       prod(2:s(k))/                     ... ;U.hxh;+  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ;h*K}U  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); FrL]^59a  
            idx = (pows(k)==rpowers); Z\ja  
            y(:,j) = y(:,j) + p*rpowern(:,idx); X[&Wkr8x '  
        end ^h ~x)@=  
         v*SEb~[  
        if isnorm +wN^c#~7  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 8&?s#5zA  
        end  a1t4Dd  
    end #xQr<p$L6  
    % END: Compute the Zernike Polynomials ZjQ |Wx  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% AP7Yuv`  
    Rv$[)`&T  
    lyy W  
    % Compute the Zernike functions: AGQ#$fh>7=  
    % ------------------------------ ]yx$(6_U  
    idx_pos = m>0; Sjyoc<Uo  
    idx_neg = m<0; t\{'F7  
    :U3kW8;UMP  
    vd 0ljA  
    z = y; TgmnG/Z  
    if any(idx_pos)  PT=2@kH  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); +;N2p1ZBf  
    end E_])E`BJ  
    if any(idx_neg) j.w@(<=x  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Sa?ksD2IaB  
    end Li/O  
    _wkVwPr  
    :Q $K<)[  
    % EOF zernfun K]s[5  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    958
    光币
    1062
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  0Uo\wyd  
    AtdlZ  
    DDE还是手动输入的呢? 2.%.Z_k)  
    k\WR  ]  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究