下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, INby0S
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, d!{,[8&
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? /0s1q
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? ^Jcs0c
@\
9w[7X"#n
B'"C?d<7
t/yGMR=
A-aukJg9
function z = zernfun(n,m,r,theta,nflag) .n[!3X|d
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. ,
?WTX
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N / *Z(;-
% and angular frequency M, evaluated at positions (R,THETA) on the K%P$#a
% unit circle. N is a vector of positive integers (including 0), and 1"RO)&
% M is a vector with the same number of elements as N. Each element \|BtgT *$b
% k of M must be a positive integer, with possible values M(k) = -N(k) eLJW
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, !R-M:|
% and THETA is a vector of angles. R and THETA must have the same lsU|xOB
% length. The output Z is a matrix with one column for every (N,M) ~b+4rYNxU_
% pair, and one row for every (R,THETA) pair. 4ZrX=e,
% <%#M&9d)E
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike {(U?)4@
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ~>3$Id:
% with delta(m,0) the Kronecker delta, is chosen so that the integral &s->,-,
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, *>h"}e41
% and theta=0 to theta=2*pi) is unity. For the non-normalized ogbLs)&+a
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. "
|[w.`
% c}kZx1
% The Zernike functions are an orthogonal basis on the unit circle. ^8Tq0>n?
% They are used in disciplines such as astronomy, optics, and L,*2tJcC<
% optometry to describe functions on a circular domain. ,-myR1}
% V%g$LrLVe
% The following table lists the first 15 Zernike functions. C=2
% $YSAD\a<
% n m Zernike function Normalization fdc
?`4
% -------------------------------------------------- UX}ZE.cV
% 0 0 1 1 P95U{
% 1 1 r * cos(theta) 2 "toyfZq@
% 1 -1 r * sin(theta) 2 <k-&Lh:o3
% 2 -2 r^2 * cos(2*theta) sqrt(6) 0%+S@_|
% 2 0 (2*r^2 - 1) sqrt(3) %W~Kx_
% 2 2 r^2 * sin(2*theta) sqrt(6) Ch%W
C,
% 3 -3 r^3 * cos(3*theta) sqrt(8) /.9j$iK#
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) X|^E+
`M4
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 7(rNJPrU~=
% 3 3 r^3 * sin(3*theta) sqrt(8) ~KHGh29
% 4 -4 r^4 * cos(4*theta) sqrt(10) _)
k=F=
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 0ubT/
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) e`
Z;}&
,
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) }u:@:}8K
% 4 4 r^4 * sin(4*theta) sqrt(10) _p <W
% -------------------------------------------------- ,V'+16xW
% hNgbHzW
% Example 1: )8VrGg?
% EtvZk9d6h*
% % Display the Zernike function Z(n=5,m=1) u&yAMWl
% x = -1:0.01:1; 3B!lE(r%J
% [X,Y] = meshgrid(x,x); DP ,owk
% [theta,r] = cart2pol(X,Y); Wjc1 EW!2x
% idx = r<=1; ~Mbo`:>(4v
% z = nan(size(X)); :@x24wN/
% z(idx) = zernfun(5,1,r(idx),theta(idx)); =Ryh@X&
% figure s\y+ xa:
% pcolor(x,x,z), shading interp T;K@3]FbX
% axis square, colorbar 4Xi
_[
Xf
% title('Zernike function Z_5^1(r,\theta)') ^
cpQ*Fz
% Wd#r-&!6j
% Example 2: (7^5jo[D
% mz$)80ly
% % Display the first 10 Zernike functions I4{uw ge
% x = -1:0.01:1; Aq674
% [X,Y] = meshgrid(x,x); nI7G"f[%r;
% [theta,r] = cart2pol(X,Y); R#gt~]x6k
% idx = r<=1; aNLRUdc.
% z = nan(size(X)); gEcRJ1Q;C
% n = [0 1 1 2 2 2 3 3 3 3]; r'0IAJ-;
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; C1&~Y.6m
% Nplot = [4 10 12 16 18 20 22 24 26 28]; qPqpRi
% y = zernfun(n,m,r(idx),theta(idx)); T9w;4XF
% figure('Units','normalized') 95LZG1]Rb
% for k = 1:10 T n.Cj5
% z(idx) = y(:,k); !iUFD*~r~
% subplot(4,7,Nplot(k)) *`$Y!uzG:\
% pcolor(x,x,z), shading interp 2yZ/'}Mw
% set(gca,'XTick',[],'YTick',[]) QY2/mtI
% axis square g}
\$9
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) VqGmZ|+8
% end 1AMxZ (e
% ln4gkm<]t
% See also ZERNPOL, ZERNFUN2. qd$Y"~Mco
iR}3 [
c6/+Ye =h
% Paul Fricker 11/13/2006 _~~:@fy
I~Y1DP)R
Wmri%
RW| LL@r
Sl,X*[HGd
% Check and prepare the inputs: M~%~y`D^
% ----------------------------- ~nYp*t C'
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) n^vL9n_N
error('zernfun:NMvectors','N and M must be vectors.') 'YQ^K`lV
end pFE&`T@ <
B-'oB>|
`;KU^dH
if length(n)~=length(m) F<FNZQ@<U
error('zernfun:NMlength','N and M must be the same length.') Mn$w_Z?
end ZqT8G
jw63sn
.quui\I3
n = n(:); DD 8uG`<
m = m(:); EJC{!06L'/
if any(mod(n-m,2)) .*N]SbU<8
error('zernfun:NMmultiplesof2', ... y[QQopy4:
'All N and M must differ by multiples of 2 (including 0).') st~
1[in
end q8&2M
2cv!85
X}"Ic@8
if any(m>n) aC$-riP,?'
error('zernfun:MlessthanN', ... RNa59b
'Each M must be less than or equal to its corresponding N.') >4I,9TO
end 4#<r}j12z
G@$Y6To[
/~sNx
if any( r>1 | r<0 ) %{M_\Ae#
error('zernfun:Rlessthan1','All R must be between 0 and 1.') x<&2`=
end VN3"$@-POK
kH;DAphk
t2bv
nh
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) _FpZc?=
error('zernfun:RTHvector','R and THETA must be vectors.') x?10^~R
end ]0[Gc
\h}
B=<>OYH
2pr#qh8
r = r(:); u.\FNa
theta = theta(:); LWH(bs9U
length_r = length(r); "gt-bo.,
if length_r~=length(theta) WG~|sLg
error('zernfun:RTHlength', ... C8^h`B9z&I
'The number of R- and THETA-values must be equal.') %E<.\\^%
end 1co;U
^Om0~)"q
6_UCRo5h%
% Check normalization: ojmF:hR"
% -------------------- mGZJ$ |
if nargin==5 && ischar(nflag) 31VDlcnE
isnorm = strcmpi(nflag,'norm'); rC !!X
if ~isnorm /#<R
error('zernfun:normalization','Unrecognized normalization flag.') X283 . ?
end :Xe,=M(l~
else 1w`]2
isnorm = false; $ ,:3I*}be
end 4*`AYx(
vJ
+sdG
%|"0p3
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% kdgU1T@y.
% Compute the Zernike Polynomials VL =1 9[
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ]VKM3[
7dm:L'0
XY_hTHJ
% Determine the required powers of r: Q>ZxJ!B<k
% ----------------------------------- |2L|Zp&
m_abs = abs(m); @Sr{6g*I
rpowers = []; ?&gqGU}
for j = 1:length(n) cVV @MC
rpowers = [rpowers m_abs(j):2:n(j)]; @p$Nw.{'
end o[
Je
rpowers = unique(rpowers); ?IN'Dc9&%-
h0cdRi
*\-$.w)k
% Pre-compute the values of r raised to the required powers, p&s~O,Bw$
% and compile them in a matrix: ]2_b_ok
% ----------------------------- _YK66cS3E/
if rpowers(1)==0 I>bO<T`
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ]NEr]sc-"F
rpowern = cat(2,rpowern{:}); h]+UK14m
rpowern = [ones(length_r,1) rpowern]; 7:M`k #oDP
else `i2:@?Kl9
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); W>E/LBpE4
rpowern = cat(2,rpowern{:}); H1t`fyri2
end 8mm]>u$
#NyfE|MKBC
**G5fS.^W
% Compute the values of the polynomials: M1mx {<]A
% -------------------------------------- OGR2Y
y = zeros(length_r,length(n)); G (3wI}
for j = 1:length(n) "y9]>9:$-
s = 0:(n(j)-m_abs(j))/2; 69"4/n7B?
pows = n(j):-2:m_abs(j); L*8U.{NY
for k = length(s):-1:1 i^SPNs=
p = (1-2*mod(s(k),2))* ... o*t4zF&n
prod(2:(n(j)-s(k)))/ ... ` ;}w!U
prod(2:s(k))/ ... c%+_~iBUN
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ymW? <\AD,
prod(2:((n(j)+m_abs(j))/2-s(k))); -u$U~?|`
idx = (pows(k)==rpowers); 5Ic'6AIz
y(:,j) = y(:,j) + p*rpowern(:,idx); yg^ 4<A
end kf:Nub+h t
L%`MoTpKq
if isnorm jhJ'fI
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); RxYC]R^78
end 2CF5qn}T
end Wt M1nnJp
% END: Compute the Zernike Polynomials KaIkO8Dq0
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% dFl8 'D
.
#FJM2Xk
8yC/:_ML
% Compute the Zernike functions: W9G1wU
% ------------------------------ h
J H
idx_pos = m>0; ujf]@L?
idx_neg = m<0; 1wg#4h43l
Ve ipM
8~}~d}wW
z = y; eyzXHS*s;L
if any(idx_pos) VZ]}9k
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); j0~dJ#
end 0JXXJ:d B
if any(idx_neg) ^4~?]5Y\
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); -y'tz,En.
end }3/|;0j$
9 >"}||))
s>I~%+V.?:
% EOF zernfun $YiG0GK<"