切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9293阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, AG|:mQO  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, q! WiX|P  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? S& F;~  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? KB$Y8[  
    C_&ZQlgQ  
    QO %;%p*  
    \=H+m%  
    {[bB$~7Eu  
    function z = zernfun(n,m,r,theta,nflag) s14 ot80)  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. Q zY5S0  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N @v/ 8}n  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 2tS,q_-=  
    %   unit circle.  N is a vector of positive integers (including 0), and oGL2uQXX  
    %   M is a vector with the same number of elements as N.  Each element 9O\yIL  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) X.AE>fx*h  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 6%MM)Vj+u  
    %   and THETA is a vector of angles.  R and THETA must have the same |eksvO'~  
    %   length.  The output Z is a matrix with one column for every (N,M) 0U! _o2]  
    %   pair, and one row for every (R,THETA) pair. _pkmHj(  
    % Ue=1NnRDkA  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike =WK's8FB;8  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Sc:)H2k`$  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral mcWN.  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, !gi3J @  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized bQHJ}aCi  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. OG^#e+  
    % Kc`#~-`,(  
    %   The Zernike functions are an orthogonal basis on the unit circle. a``Q}.ST  
    %   They are used in disciplines such as astronomy, optics, and w}U'>fj  
    %   optometry to describe functions on a circular domain. A`V:r2hnb  
    % &H%z1Lp  
    %   The following table lists the first 15 Zernike functions. J"fv5{  
    % o[g]Va*8  
    %       n    m    Zernike function           Normalization Vg7BK%  
    %       -------------------------------------------------- ,D'bIk  
    %       0    0    1                                 1 HG3iK  
    %       1    1    r * cos(theta)                    2 #(-?i\i  
    %       1   -1    r * sin(theta)                    2 0QBK(_O`  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) G#3$sz  
    %       2    0    (2*r^2 - 1)                    sqrt(3) vkLyGb7r<  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) gH0Rd WX  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) Q@rlqWgU ~  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 5KW n>n  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ;pG5zRe  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) Ll`nO;h  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) bLO^5`6  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) R.rE+gxO1  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) =_[Ich,}  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) |&~);>Cq2  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) +XAM2uN5_.  
    %       -------------------------------------------------- F 7X ] h  
    % 7lAnGP.;  
    %   Example 1: v"dl6%D"  
    % UZo[]$"Q`  
    %       % Display the Zernike function Z(n=5,m=1) "F?p Y@4  
    %       x = -1:0.01:1; >~uKkQ_p  
    %       [X,Y] = meshgrid(x,x); *a` _,Q{x  
    %       [theta,r] = cart2pol(X,Y); *7C l1o  
    %       idx = r<=1; ~(eD 4"  
    %       z = nan(size(X)); )_K:A(V>  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); \n-.gG  
    %       figure ES5a`"H  
    %       pcolor(x,x,z), shading interp [k=LX+w@  
    %       axis square, colorbar <H|]^An!H  
    %       title('Zernike function Z_5^1(r,\theta)') >ajcfG .k(  
    % D;Y2yc[v  
    %   Example 2: Kp[5"N8  
    % Q S<)*  
    %       % Display the first 10 Zernike functions GX N:=  
    %       x = -1:0.01:1; G.qjw]Llf  
    %       [X,Y] = meshgrid(x,x); /?S,u,R  
    %       [theta,r] = cart2pol(X,Y); , 1il&  
    %       idx = r<=1; lht :%Ts$  
    %       z = nan(size(X)); on f7V  
    %       n = [0  1  1  2  2  2  3  3  3  3]; *-s':('R  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; :(i=> ~O  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; Zc=#Y  
    %       y = zernfun(n,m,r(idx),theta(idx)); hho\e 8  
    %       figure('Units','normalized') Pa/2])w  
    %       for k = 1:10 gO bP  
    %           z(idx) = y(:,k); Xnxb.{C  
    %           subplot(4,7,Nplot(k)) RY~m Q  
    %           pcolor(x,x,z), shading interp Kj+TP qXb  
    %           set(gca,'XTick',[],'YTick',[]) ||#+ ^p7G  
    %           axis square M"8?XD%  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) <^adt *m  
    %       end d4LH`@SUZ-  
    % B &)wJG  
    %   See also ZERNPOL, ZERNFUN2. tS[@?qP  
    `%=!_|  
    #G("Oh  
    %   Paul Fricker 11/13/2006 j`-9.  
    sDXQ{*6a  
    .;37 e  
    +P=I4-?eX  
    l6 T5]$  
    % Check and prepare the inputs: ,sn 9&E  
    % ----------------------------- m"vWu0/#  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) $WbfRyXi7'  
        error('zernfun:NMvectors','N and M must be vectors.') % &i Wc_"  
    end NJ(H$tB@  
    @*JS[w$1  
    DC=XPn/V  
    if length(n)~=length(m) 6"V86b0)h}  
        error('zernfun:NMlength','N and M must be the same length.') zl$z>z)  
    end } BnPNc[I  
    {Lvta4}7(  
    x-SYfvYY  
    n = n(:); BtKbX)R$J  
    m = m(:); S{JBV@@tC  
    if any(mod(n-m,2)) g #[,4o;  
        error('zernfun:NMmultiplesof2', ... j8ag}%  
              'All N and M must differ by multiples of 2 (including 0).') ''B}^yKEW  
    end U_5\ FM  
    FMAt6HfU  
    sT>l ?L  
    if any(m>n) uG4Q\,R  
        error('zernfun:MlessthanN', ... ./}W3  
              'Each M must be less than or equal to its corresponding N.') HeM-  
    end ?^ `EI}g  
    tN&X1  
    oY7 eVuz  
    if any( r>1 | r<0 ) {_X&{dZLX  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') G4)X~.Fy  
    end ]PZ\N~T  
    \Gy+y`   
    \>  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) pAc "Wo(Q  
        error('zernfun:RTHvector','R and THETA must be vectors.') $(;0;!t.  
    end L_}F.nbS5  
    (?~*.g!  
    KgEfhO$W  
    r = r(:); r<-@.$lf  
    theta = theta(:); %o#|zaK  
    length_r = length(r); Y>PC>  
    if length_r~=length(theta) cy#N(S[ 1  
        error('zernfun:RTHlength', ... Z_[jah  
              'The number of R- and THETA-values must be equal.') K?acRi  
    end n}4Lq^$  
    4$8\IJ7G  
    ,98`tB0  
    % Check normalization: 4GqE%n+ta~  
    % -------------------- IsP!ZcV;  
    if nargin==5 && ischar(nflag) D2Dk7//82Y  
        isnorm = strcmpi(nflag,'norm'); >y iE}  
        if ~isnorm *\F,?yU  
            error('zernfun:normalization','Unrecognized normalization flag.') ;.b^A  
        end $Z4IPs  
    else -LEpT$v|  
        isnorm = false; Qb&gKQtt@  
    end 3(>NS?lX  
    JbEQ35r  
    gqan]b_  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% f 7j9'k  
    % Compute the Zernike Polynomials '1Q [&  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #BX^"J{~  
    HDT-f9%}<4  
    g+M& _n  
    % Determine the required powers of r: F9 C3i  
    % ----------------------------------- ]$?\,`  
    m_abs = abs(m); "\1QJ  
    rpowers = []; hS +R /7  
    for j = 1:length(n) \x+"1  
        rpowers = [rpowers m_abs(j):2:n(j)]; m6M:l"u  
    end E>O1dPZcM  
    rpowers = unique(rpowers); -87]$ ax  
    y`.m'n7>P  
    $+@xwuY'+  
    % Pre-compute the values of r raised to the required powers, RT+_e  
    % and compile them in a matrix: rty&\u@}  
    % ----------------------------- Z|qUVD5Ic  
    if rpowers(1)==0 txXt<]N  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 4+15`  
        rpowern = cat(2,rpowern{:}); f3HleA&&  
        rpowern = [ones(length_r,1) rpowern]; LjMhPzCp  
    else L64cCP*  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 9!|+GIjn  
        rpowern = cat(2,rpowern{:}); ,7|Wf %X  
    end sn?YD'>k  
    2@#`x"0  
    088"7 s  
    % Compute the values of the polynomials: ##clReS  
    % -------------------------------------- 1rQKHC:|  
    y = zeros(length_r,length(n)); 6b9 &V`  
    for j = 1:length(n) /f) #CR0$  
        s = 0:(n(j)-m_abs(j))/2; C#4/~+  
        pows = n(j):-2:m_abs(j); 61{IXx_  
        for k = length(s):-1:1 5 ]v]^Y'?  
            p = (1-2*mod(s(k),2))* ... [p[C45d=<  
                       prod(2:(n(j)-s(k)))/              ... /yS/*ET8  
                       prod(2:s(k))/                     ... a #4 'X*  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 3Y+ bIz!  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 2OQDG7#Kc  
            idx = (pows(k)==rpowers); Y]>Qu f.!  
            y(:,j) = y(:,j) + p*rpowern(:,idx); za oC  
        end ?sm@lDZ\  
         auT'ATW7i  
        if isnorm .WT^L2l%  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ,3E9H&@j  
        end J=C63YB  
    end [.`%]Z(  
    % END: Compute the Zernike Polynomials sCE2 F_xjL  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% J,=: ] t  
    K{x FhdW  
    [Y=X^"PF  
    % Compute the Zernike functions: F_&bE@k  
    % ------------------------------ Oe[qfsdW  
    idx_pos = m>0; ~ GW8|tw  
    idx_neg = m<0; &9F(uk=X  
    4%L-3Ij  
    Om=*b#k  
    z = y; lYMNx|PF  
    if any(idx_pos) ,dO$R.h  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); X ?lF,p  
    end d$(>=gzBQ  
    if any(idx_neg) XTOZ]H*^  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); oK3aW6  
    end \<R.F  
    3Ta<7tEM  
    J$Qm:DC5  
    % EOF zernfun /K@{(=n  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    在线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  oQDOwM,  
    \i-jME(sN  
    DDE还是手动输入的呢? e>t9\vN#bx  
    04;y%~,}U/  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究