下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, ?#]K54?
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, AfvTStwr
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? ;aYPv8s~,:
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? sQW$P9s
c
6suB!XF;
N3^pFy`
'qLk"
z79L2lJn
function z = zernfun(n,m,r,theta,nflag) Avw"[~Xd
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. uE:#m.Q
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N +T[3wL~
% and angular frequency M, evaluated at positions (R,THETA) on the ><iE VrpN
% unit circle. N is a vector of positive integers (including 0), and G 8|[.n
% M is a vector with the same number of elements as N. Each element 8 g'9( )&
% k of M must be a positive integer, with possible values M(k) = -N(k) bj`cYL%
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, l/OG79qq
% and THETA is a vector of angles. R and THETA must have the same v}dt**l
% length. The output Z is a matrix with one column for every (N,M) L]0+u\(
% pair, and one row for every (R,THETA) pair. RLY Ae
% "d'xT/l
"
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike (omdmT%D
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 9\TvX!)h
% with delta(m,0) the Kronecker delta, is chosen so that the integral en7i})v\".
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, xt
+fuL
% and theta=0 to theta=2*pi) is unity. For the non-normalized "Ks%!
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. (]j*)~=V
% S6}_Z
% The Zernike functions are an orthogonal basis on the unit circle. 3hR7 ./
% They are used in disciplines such as astronomy, optics, and G/(oQA
% optometry to describe functions on a circular domain. )?'sw5C
% O60j C;{F
% The following table lists the first 15 Zernike functions. `ZN@L<I6
% u]E% R&
% n m Zernike function Normalization $Z10Zf=
% -------------------------------------------------- FVG|5'V^
% 0 0 1 1 a[s%2>e
% 1 1 r * cos(theta) 2 Cd#*Wp)s
% 1 -1 r * sin(theta) 2 |NtT-T)7
% 2 -2 r^2 * cos(2*theta) sqrt(6) #Vn=(U4}!_
% 2 0 (2*r^2 - 1) sqrt(3) 23+6u{
% 2 2 r^2 * sin(2*theta) sqrt(6) : ` F>B
% 3 -3 r^3 * cos(3*theta) sqrt(8) L3q)j\ls
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) e^~t52]
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 9 )B >|#\
% 3 3 r^3 * sin(3*theta) sqrt(8) BO[Q"g$Kon
% 4 -4 r^4 * cos(4*theta) sqrt(10) 2EE/xnwX
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ] >ipC,v
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) &:]_a?|*S
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) oZ6xHdPc4
% 4 4 r^4 * sin(4*theta) sqrt(10) =i%2/kdi0b
% -------------------------------------------------- Fh v)
% qCgP8U/jv
% Example 1: NL&g/4A[a
% R$,`}@VqZ3
% % Display the Zernike function Z(n=5,m=1) 2!68W
X
% x = -1:0.01:1; C==tJog[
% [X,Y] = meshgrid(x,x); 9[T#uh!DC
% [theta,r] = cart2pol(X,Y); 1b3Lan_2
% idx = r<=1; |nry^zb
% z = nan(size(X)); q*{"6"4(
% z(idx) = zernfun(5,1,r(idx),theta(idx)); Cy6[p
% figure 3{M IBMA
% pcolor(x,x,z), shading interp @T/C<- /:
% axis square, colorbar n^&QOII@>
% title('Zernike function Z_5^1(r,\theta)') -<z'f){gb
% gK)B3dH*&
% Example 2: qwFn(pK[
% NBMY1Xgj
% % Display the first 10 Zernike functions $<s@S;Ri
% x = -1:0.01:1; <S$y=>.9
% [X,Y] = meshgrid(x,x); aE{b65'Dt
% [theta,r] = cart2pol(X,Y); =j;o,
J:(
% idx = r<=1; y_$^Po
% z = nan(size(X)); * y(2BrL>
% n = [0 1 1 2 2 2 3 3 3 3]; 8-?n<h%8E
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; n+uq|sYVa
% Nplot = [4 10 12 16 18 20 22 24 26 28]; ) 0}o bPp
% y = zernfun(n,m,r(idx),theta(idx)); H8\{GGg
% figure('Units','normalized') mz\m^g3
% for k = 1:10 y
Fp1@*ef
% z(idx) = y(:,k); bjT0Fi0-
% subplot(4,7,Nplot(k)) 8#Z$}?W
% pcolor(x,x,z), shading interp +'#d*r91@
% set(gca,'XTick',[],'YTick',[]) ZN4&:9M
% axis square cQ+,F2
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Be]o2N;J
% end r1?LKoJOn
% K4RjGSaF
% See also ZERNPOL, ZERNFUN2. HYg_{
HKxrBQr78
:sA-$*&x
% Paul Fricker 11/13/2006 uwQ4RYz
fZ
%ZV
IB;y8e,
\pPq]k
O0$ijJa|
% Check and prepare the inputs: wy-!1wd
% ----------------------------- IS=)J( 0
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) )
?5GjH~
error('zernfun:NMvectors','N and M must be vectors.') 3K0J6/mc
end iTK1I0
qob!!A14p
Ahwu'mgnC
if length(n)~=length(m) jgMWjM6.
error('zernfun:NMlength','N and M must be the same length.') S7SPc
end x)Th2es\
U)l>#gf8
rU~"A
n = n(:); CNN?8/u!@
m = m(:);
?PQiVL
if any(mod(n-m,2)) EwOTG
Y{0p
error('zernfun:NMmultiplesof2', ... ;;`KkNysm
'All N and M must differ by multiples of 2 (including 0).') g,W#3b6>j
end d
z\b]H]
&a(w0<
~,guw7F
if any(m>n) 02+^rqIx5
error('zernfun:MlessthanN', ... mcR!P~"i
'Each M must be less than or equal to its corresponding N.') @v'<~9vG
end ]E3g8?L
?nn,RBS-
"l@~WE
if any( r>1 | r<0 ) (J;?eeP
error('zernfun:Rlessthan1','All R must be between 0 and 1.') =1JRu[&]8
end 6x7=0}'
h7w<.zwu
t
TDseWdA
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) .5z|g@
6
error('zernfun:RTHvector','R and THETA must be vectors.') tsa6: D
end u,]yd*
oy'+n-
xSUR<
r = r(:); ~iSW^mi
theta = theta(:); Af%?WZlOq
length_r = length(r); eyG.XAP
if length_r~=length(theta) [/kO>
error('zernfun:RTHlength', ... V:+bq`
'The number of R- and THETA-values must be equal.') S`^W#,rj
end iUKj:q:
(M=Br
2u:j6ic
% Check normalization: !(~>-;A8
% -------------------- h^c'L=dR
if nargin==5 && ischar(nflag) `sXx,sV?B
isnorm = strcmpi(nflag,'norm'); CG7LF
if ~isnorm f:SF&t*
error('zernfun:normalization','Unrecognized normalization flag.') u rOG Oa$
end @W,Y_8:
else r/v&tU
isnorm = false; ^/uGcz|.
end Y^G3<.B
g=(+oK?
oGqv,[$qN
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #+G2ZJxL|
% Compute the Zernike Polynomials n\YxRs7
hF
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% vB{b/xmah
aFym&n\
{Vm36/a
% Determine the required powers of r: MD)"r>k
% ----------------------------------- X3nhqQTZ
m_abs = abs(m); LA+MX0*
rpowers = []; 1`t?5|s>
for j = 1:length(n) Uu+C<j&-
rpowers = [rpowers m_abs(j):2:n(j)]; a3 x~B=E
end <7^~r(DP
rpowers = unique(rpowers); bij?q\
&^H
"T6
;cr6Xop#?
% Pre-compute the values of r raised to the required powers,
R'/wOE2
% and compile them in a matrix: fz3*oJ'
% ----------------------------- >C[1@-]G%7
if rpowers(1)==0 :c t+.#
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); DE ws+y-*
rpowern = cat(2,rpowern{:}); VZoOdR:d
rpowern = [ones(length_r,1) rpowern]; A&F4;>dms
else G#:!wI
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Oy&'zigJ
rpowern = cat(2,rpowern{:}); <^Tj}5)n
end ^Q>*f/.KN
F21[r!3
t]
wM_]+
% Compute the values of the polynomials: 6hK"k
% -------------------------------------- gpWS_Dw9
y = zeros(length_r,length(n)); @E2nF|N
for j = 1:length(n) %b;+/s2W
s = 0:(n(j)-m_abs(j))/2; =fG8YZ(
pows = n(j):-2:m_abs(j); LDeVNVM
for k = length(s):-1:1 E+zn\v
p = (1-2*mod(s(k),2))* ... .M2&ad :
prod(2:(n(j)-s(k)))/ ... SZ{cno1`
prod(2:s(k))/ ... GuWBl$|+b
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... XB-|gPk
prod(2:((n(j)+m_abs(j))/2-s(k))); E{s|#
idx = (pows(k)==rpowers); QtQ^"d65
y(:,j) = y(:,j) + p*rpowern(:,idx); =bWq 3aP)P
end QJWES%m`
|:+pPh!-
if isnorm o$VH,2 QF
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 3gy;$}Lq T
end *^6xt7
end +c`C9RXk
% END: Compute the Zernike Polynomials "NH+qQhs
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ~q(C j"7
R"gm]SQ/
tQ
JH'YV
% Compute the Zernike functions: ~#_$?_/(
% ------------------------------ HF+fk*_Q
idx_pos = m>0; gsWlTI
idx_neg = m<0; 3b@1Zahz
IQ=|Kj9h
',`4 U F
z = y; [KI`e
if any(idx_pos) y~c[sW
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 8;\tP29
end ;n{j,HB
if any(idx_neg) ysJhP .
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); X]MM7hMuR
end }|"*"kxi!
rqe_zyc&
5zw23!
% EOF zernfun Qfu*F}