下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, >ul&x!?@
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, Dj 6^|R$z&
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? vFeR)Ox's
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? 9E|QPT
L=P8; Gj)
nP|ah~
q
1[-`*Ph
,wy;7T>ODd
function z = zernfun(n,m,r,theta,nflag) `,4YPjk^
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 7Q,<h8N\5
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N LxiN9
% and angular frequency M, evaluated at positions (R,THETA) on the Mgu9m8
`J
% unit circle. N is a vector of positive integers (including 0), and uLNOhgSUf
% M is a vector with the same number of elements as N. Each element \x5>H:\Y
% k of M must be a positive integer, with possible values M(k) = -N(k) &3)6WD?:U
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1,
=l6WO*
% and THETA is a vector of angles. R and THETA must have the same 1`l(H4
% length. The output Z is a matrix with one column for every (N,M) /q/^B>]
% pair, and one row for every (R,THETA) pair. ]/AU_&
% qoW$Iw*q)B
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ?}EWfsA
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), P]L%$!g
% with delta(m,0) the Kronecker delta, is chosen so that the integral \Rha7O
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, J%fJF//U
% and theta=0 to theta=2*pi) is unity. For the non-normalized -w'g0/fD
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. )*7{%Ilq
% SCfk!GBVD
% The Zernike functions are an orthogonal basis on the unit circle. }g[Hi`
% They are used in disciplines such as astronomy, optics, and ?DnQU"_$
% optometry to describe functions on a circular domain. F)19cKx7
% Iv{iJoe;UH
% The following table lists the first 15 Zernike functions. `wSoa#U"@
% 7
Rc/<,X
% n m Zernike function Normalization F>E_d<m
% -------------------------------------------------- S'>KGdF
% 0 0 1 1 ZvK3Su)f1
% 1 1 r * cos(theta) 2 ?*<1B
% 1 -1 r * sin(theta) 2 %f(4jQ0I
% 2 -2 r^2 * cos(2*theta) sqrt(6) dkg+_V!
% 2 0 (2*r^2 - 1) sqrt(3) /Wdrpv-%,1
% 2 2 r^2 * sin(2*theta) sqrt(6) h645;sb0
% 3 -3 r^3 * cos(3*theta) sqrt(8) ol`q7i.
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) .I>CL4_
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) `[ZA#8Ma
% 3 3 r^3 * sin(3*theta) sqrt(8) #}8VUbJ
% 4 -4 r^4 * cos(4*theta) sqrt(10) 7JY9#+?p>
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) "`'+@KlE
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) "'>fTk_
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) :73T9/
% 4 4 r^4 * sin(4*theta) sqrt(10) dLf
;g}W
% -------------------------------------------------- e0#{'_C
% <YWu/\{KT
% Example 1: ")fgQ3XZ
% a&`^M
% % Display the Zernike function Z(n=5,m=1) SO~pe$c-
% x = -1:0.01:1; m
7+=w>o
% [X,Y] = meshgrid(x,x); TETfRnm
% [theta,r] = cart2pol(X,Y); [yRqSB
% idx = r<=1; Aiqb*v$
% z = nan(size(X)); Q0xQxz
% z(idx) = zernfun(5,1,r(idx),theta(idx)); #!rH}A>n+
% figure cc"<H}g>`
% pcolor(x,x,z), shading interp 48!F!v,j)x
% axis square, colorbar f_:>36{1^!
% title('Zernike function Z_5^1(r,\theta)') "`w*-O
% A~LTi
% Example 2: E,4*a5Fi
% ZV07;`I
% % Display the first 10 Zernike functions Zh?n;n}
% x = -1:0.01:1; YT@H^=
% [X,Y] = meshgrid(x,x); C{6m?6
% [theta,r] = cart2pol(X,Y); gX*
&RsF
% idx = r<=1; W5&KmA
% z = nan(size(X)); V{rQ@7SE
% n = [0 1 1 2 2 2 3 3 3 3]; 5)w;0{X!P
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; :[Ie0[H/M
% Nplot = [4 10 12 16 18 20 22 24 26 28]; ~"h V-3U
% y = zernfun(n,m,r(idx),theta(idx)); m# ^).+
% figure('Units','normalized') zK*i:(>B
% for k = 1:10 ~ \c
j
% z(idx) = y(:,k); EV~?]Kt~
% subplot(4,7,Nplot(k)) Qb:.WMj[q+
% pcolor(x,x,z), shading interp c>C!vAg
% set(gca,'XTick',[],'YTick',[]) GU xhn
% axis square *`tQX$F
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) \9}-5
% end >SD?MW1E
% EhN@;D+
% See also ZERNPOL, ZERNFUN2. ?Y9VviC
R7x*/?
'qidorT>N
% Paul Fricker 11/13/2006 %@;xbKj
TG.\C8;vFh
0LP>3"Sm
L_>LxF43
cP0(Q+i7
% Check and prepare the inputs: 6%T_;"hb
% ----------------------------- <Oj'0NK-
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) jgw+c3^R_
error('zernfun:NMvectors','N and M must be vectors.') H]Gj$P=k
end 'EkjySZ]F{
a#3,qp!
G<t_=j/r
if length(n)~=length(m) "04:1J`
error('zernfun:NMlength','N and M must be the same length.') "K*^%{
end ' PmBNT
*0 ;|
;S+"z;$m
n = n(:); "6iq_!#L
m = m(:); ;7!u(XzN
if any(mod(n-m,2)) U[!wu]HMF
error('zernfun:NMmultiplesof2', ... PMiG:bM
'All N and M must differ by multiples of 2 (including 0).') J5\2`U_FZ
end vu/P"?F
"o<&3c4
'ExQG$t
if any(m>n) R"QWap}
error('zernfun:MlessthanN', ... 1ka58_^
'Each M must be less than or equal to its corresponding N.') 6^nxw>-
end L4Si0 K
@z(s\T
NW?h~2
if any( r>1 | r<0 ) !p4FK]B/u
error('zernfun:Rlessthan1','All R must be between 0 and 1.') "J3n_3+
end UC"_#!3
/909ED+)>9
TfFH!1^+
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) P vS\
error('zernfun:RTHvector','R and THETA must be vectors.') Z`'&yG;U
end P.]O8r
,SoqVboRl
(t-JGye>
r = r(:); J<7nOB}OD
theta = theta(:); 'FGf#l<
length_r = length(r); 5> =Ia@I
if length_r~=length(theta) x^6sjfAW
error('zernfun:RTHlength', ... #pp6 ycy
'The number of R- and THETA-values must be equal.') v
iM6q<Ht
end iYzm<3n?
3 e<sNU?
tje
% Check normalization: >*[Bq;
% -------------------- =h}IyY@o
if nargin==5 && ischar(nflag) 8@4)p.{5I
isnorm = strcmpi(nflag,'norm'); P 4jg]g
if ~isnorm /'>#1J|TlK
error('zernfun:normalization','Unrecognized normalization flag.') z8n]6FDiE
end ,W~a%8*
else NxQ+z^o\
isnorm = false; v8o{3wJ
end Y,C3E>}Dq
+"2IQme5
0%<x>O
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% [|\BuUT'
% Compute the Zernike Polynomials M}tr*L
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% iKuSk~
bcZ s+FOPd
BF>3CW7
% Determine the required powers of r: ^H
UNq[sQ
% ----------------------------------- B*j
AD2
m_abs = abs(m); l*C(FPw4
rpowers = []; m>@ *-*8k
for j = 1:length(n) or1D
6*'
rpowers = [rpowers m_abs(j):2:n(j)]; c_^-`7g
end fo30f=^Gi
rpowers = unique(rpowers); hM @F|t3
4zM$I
.ahYjn
% Pre-compute the values of r raised to the required powers, :svRn9_8H
% and compile them in a matrix: X(ZouyD<
% ----------------------------- mOvwdRKn
if rpowers(1)==0 /`V:;
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); U[UjL)U
rpowern = cat(2,rpowern{:}); -I#1xJU
rpowern = [ones(length_r,1) rpowern]; S+EC!;@Xg
else J 4E G
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); RwC1C(ZP
rpowern = cat(2,rpowern{:}); o {bwWk7v6
end U`fxe`nVa
.oFkx*Ln
s'/ g:aJ
% Compute the values of the polynomials: >
%U
% -------------------------------------- 0*KU"JcXd
y = zeros(length_r,length(n)); I?mU _^no
for j = 1:length(n) *?Sp9PixP
s = 0:(n(j)-m_abs(j))/2; f._FwD
pows = n(j):-2:m_abs(j); RRGCO+ )*
for k = length(s):-1:1 ,U#$Qb 12
p = (1-2*mod(s(k),2))* ... h)qapC5z,
prod(2:(n(j)-s(k)))/ ... E%vG#
prod(2:s(k))/ ... ^Pk-<b4}
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... kU5chltGF
prod(2:((n(j)+m_abs(j))/2-s(k))); CYZx/r<
idx = (pows(k)==rpowers); b4$-?f?V
y(:,j) = y(:,j) + p*rpowern(:,idx); H1FSN6'
end Gdd lB2L)x
dfBTx6/F
if isnorm ]#N~r&hmQ
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Jn_; cN
end "=uphBZog
end [p+6HF
% END: Compute the Zernike Polynomials =sk]/64h``
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% k%?fy
0b0.xz\~U
5!T\L~tyt
% Compute the Zernike functions: )h0F'MzW
% ------------------------------ %hzl3>().
idx_pos = m>0; ]$'w8<D>t,
idx_neg = m<0; lth t'|
DV(^h$1_
sILkTzsw
z = y; BiQ7r=Dd.
if any(idx_pos) P7;=rSW
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); V3'QA1$
end ?th`5K30
if any(idx_neg) xA-O?s"CY
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); bojx:g
end $~<);dYu0
t7#C&B
FL+^r6DQ
% EOF zernfun |5
sI=?p&t