切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9485阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, >ul&x!?@  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, Dj6^|R$z&  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? vFeR)Ox's  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? 9E|QPT  
    L=P8;Gj)  
    nP|ah~ q  
    1[- `*Ph  
    ,wy;7T>ODd  
    function z = zernfun(n,m,r,theta,nflag) `, 4YPjk^  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 7Q,<h8N\5  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N L x iN9  
    %   and angular frequency M, evaluated at positions (R,THETA) on the Mgu9m8 `J  
    %   unit circle.  N is a vector of positive integers (including 0), and uLNOhgSUf  
    %   M is a vector with the same number of elements as N.  Each element \x5>H:\Y  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) &3)6WD?:U  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, =l6W O*  
    %   and THETA is a vector of angles.  R and THETA must have the same 1`l(H4  
    %   length.  The output Z is a matrix with one column for every (N,M) /q/^B> ]  
    %   pair, and one row for every (R,THETA) pair. ]/AU_&  
    % qoW$Iw*q)B  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ?}EWfsA  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), P]L%$!g  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral \Rha7O  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, J%fJF//U  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized -w'g0/fD  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. )*7{%Ilq  
    % SCfk!GBVD  
    %   The Zernike functions are an orthogonal basis on the unit circle. }g[Hi`  
    %   They are used in disciplines such as astronomy, optics, and ?DnQU"_$  
    %   optometry to describe functions on a circular domain. F)19cKx7  
    % Iv{iJoe;UH  
    %   The following table lists the first 15 Zernike functions. `wSoa#U"@  
    % 7 Rc/<,X  
    %       n    m    Zernike function           Normalization F>E_d<m  
    %       -------------------------------------------------- S'>KGdF  
    %       0    0    1                                 1 ZvK3Su)f1  
    %       1    1    r * cos(theta)                    2 ?*<1B  
    %       1   -1    r * sin(theta)                    2 %f(4jQ0I  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) dkg+_V!  
    %       2    0    (2*r^2 - 1)                    sqrt(3) /Wdrpv-%,1  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) h645;sb0  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ol`q7i.  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) .I>CL4_  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) `[ZA#8Ma  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) #}8VUbJ  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 7JY9#+?p>  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) "`'+@KlE  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) "'>fTk_  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) :73T9/  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) dLf ;g}W  
    %       -------------------------------------------------- e0#{'_C  
    % <YWu/\{KT  
    %   Example 1: ")fgQ3XZ  
    % a &`^M  
    %       % Display the Zernike function Z(n=5,m=1) SO~pe$c-  
    %       x = -1:0.01:1; m 7+=w>o  
    %       [X,Y] = meshgrid(x,x); TETfRnm  
    %       [theta,r] = cart2pol(X,Y); [yRqSB  
    %       idx = r<=1; Aiqb*v$  
    %       z = nan(size(X)); Q0xQx z  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); #!rH}A>n+  
    %       figure cc"<H}g>`  
    %       pcolor(x,x,z), shading interp 48!F!v,j)x  
    %       axis square, colorbar f_:>36{1^!  
    %       title('Zernike function Z_5^1(r,\theta)') "`w*-O  
    % A~L Ti  
    %   Example 2: E,4*a5Fi  
    % ZV07;`I  
    %       % Display the first 10 Zernike functions Zh?n;n}  
    %       x = -1:0.01:1; YT@H^=  
    %       [X,Y] = meshgrid(x,x); C{6m?6  
    %       [theta,r] = cart2pol(X,Y); gX* &RsF  
    %       idx = r<=1; W5&KmA  
    %       z = nan(size(X)); V{rQ@7SE  
    %       n = [0  1  1  2  2  2  3  3  3  3]; 5)w;0{X!P  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; :[Ie0[H/M  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28];  ~"h V-3U  
    %       y = zernfun(n,m,r(idx),theta(idx)); m# ^).+  
    %       figure('Units','normalized') zK*i:(>B  
    %       for k = 1:10 ~\c  j  
    %           z(idx) = y(:,k); EV~?]Kt~  
    %           subplot(4,7,Nplot(k)) Qb:.WMj[q+  
    %           pcolor(x,x,z), shading interp c>C!vAg  
    %           set(gca,'XTick',[],'YTick',[])  GU xhn  
    %           axis square *`tQX$F  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) \9} -5  
    %       end >SD?MW 1E  
    % EhN@;D+  
    %   See also ZERNPOL, ZERNFUN2. ?Y9VviC  
    R7x*/?  
    'qidorT>N  
    %   Paul Fricker 11/13/2006 %@;xbKj  
    TG.\C8;vFh  
    0LP>3"Sm  
    L_>LxF43  
    cP0(Q+i7  
    % Check and prepare the inputs: 6 %T_;"hb  
    % ----------------------------- <Oj'0NK-  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) jgw+c3^R_  
        error('zernfun:NMvectors','N and M must be vectors.') H]Gj$P=k  
    end 'EkjySZ]F{  
    a#3,qp!  
    G<t _=j/r  
    if length(n)~=length(m) "04:1J`  
        error('zernfun:NMlength','N and M must be the same length.') "K*^%{  
    end ' PmBNT  
    *0 ;|  
    ;S+"z;$m  
    n = n(:); "6iq_!#L  
    m = m(:); ;7!u(XzN  
    if any(mod(n-m,2)) U[!wu]HMF  
        error('zernfun:NMmultiplesof2', ... PMiG:bM  
              'All N and M must differ by multiples of 2 (including 0).') J5\2`U_FZ  
    end vu/P"?F  
    "o<&3c4  
    'ExQG$t  
    if any(m>n) R"QWap}  
        error('zernfun:MlessthanN', ... 1ka58_^  
              'Each M must be less than or equal to its corresponding N.') 6^nxw>-   
    end L4Si0 K  
    @z(s\T  
    NW?h~2  
    if any( r>1 | r<0 ) !p4FK]B/u  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') "J3n_3+  
    end UC"_#!3  
    /909ED+)>9  
    TfFH!1^+  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) PvS\  
        error('zernfun:RTHvector','R and THETA must be vectors.') Z`'&yG;U  
    end P.]O8r  
    ,SoqVboRl  
    (t-JGye>  
    r = r(:); J<7nOB}OD  
    theta = theta(:); 'FGf#l<  
    length_r = length(r); 5> =Ia@I   
    if length_r~=length(theta) x^6sjfAW  
        error('zernfun:RTHlength', ... #pp6 ycy  
              'The number of R- and THETA-values must be equal.') v iM6q<Ht  
    end iYzm<3n?  
    3 e<sNU?  
    tje   
    % Check normalization: >*[Bq;  
    % -------------------- =h}IyY@o  
    if nargin==5 && ischar(nflag) 8 @4)p.{5I  
        isnorm = strcmpi(nflag,'norm'); P 4jg]g  
        if ~isnorm /'>#1J|TlK  
            error('zernfun:normalization','Unrecognized normalization flag.') z8n]6FDiE  
        end ,W~a%8*  
    else NxQ+z^o\  
        isnorm = false; v8o{3wJ  
    end Y,C3E>}Dq  
    +"2IQme5  
    0%<x>O  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% [|\BuUT'  
    % Compute the Zernike Polynomials M }tr*L  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% iKuSk~  
    bcZ s+FOPd  
    BF>3CW7  
    % Determine the required powers of r: ^H UNq[sQ  
    % ----------------------------------- B*j AD2  
    m_abs = abs(m); l*C(FPw4  
    rpowers = []; m>@ *-*8k  
    for j = 1:length(n) or1D 6 *'  
        rpowers = [rpowers m_abs(j):2:n(j)]; c_^-`7g  
    end fo30f =^Gi  
    rpowers = unique(rpowers); hM @F|t3  
    4zM$I  
    .ahYj n  
    % Pre-compute the values of r raised to the required powers, :svRn9_8H  
    % and compile them in a matrix: X(ZouyD<  
    % ----------------------------- mOvwdRKn  
    if rpowers(1)==0 /`V:;  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); U[UjL)U  
        rpowern = cat(2,rpowern{:}); -I#1xJU  
        rpowern = [ones(length_r,1) rpowern]; S+EC!;@Xg  
    else J 4EG  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); RwC1C(ZP  
        rpowern = cat(2,rpowern{:}); o {bwWk7v6  
    end U`fxe`nVa  
    .oFkx*Ln  
    s'/ g:aJ  
    % Compute the values of the polynomials: > %U  
    % -------------------------------------- 0*KU"JcXd  
    y = zeros(length_r,length(n)); I?mU_^no  
    for j = 1:length(n) *?Sp9PixP  
        s = 0:(n(j)-m_abs(j))/2; f._FwD  
        pows = n(j):-2:m_abs(j); RRGCO+)*  
        for k = length(s):-1:1 ,U#$Qb 12  
            p = (1-2*mod(s(k),2))* ... h)qapC5z,  
                       prod(2:(n(j)-s(k)))/              ... E%vG#  
                       prod(2:s(k))/                     ... ^Pk-<b4}  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... kU5chltGF  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); CYZx/r<  
            idx = (pows(k)==rpowers); b4$-?f?V  
            y(:,j) = y(:,j) + p*rpowern(:,idx); H1FSN6'  
        end Gdd lB2L)x  
         dfBTx6/F  
        if isnorm ]#N~r&hmQ  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Jn_;  cN  
        end "=uphBZog  
    end [p+6HF  
    % END: Compute the Zernike Polynomials =sk]/64h``  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% k%?fy  
    0b0.xz\~U  
    5!T\L~tyt  
    % Compute the Zernike functions: )h0F'MzW  
    % ------------------------------ %hzl3>().  
    idx_pos = m>0; ]$'w8<D>t,  
    idx_neg = m<0; lth t'|  
    DV(^h$1_  
    sILkTzs w  
    z = y; BiQ7r=Dd.  
    if any(idx_pos) P7;=rSW  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); V3'QA1$  
    end ?th`5K30  
    if any(idx_neg) xA-O?s"CY  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); bojx:g  
    end $~<);dYu0  
    t7#C&B  
    FL+^r6DQ  
    % EOF zernfun |5 sI=?p&t  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  pj.}VF!d  
    1A;>@4iC0  
    DDE还是手动输入的呢? ydOJ^Yty  
    j_ dCy  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究