切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9388阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, 8h3=b[  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, bfB\h*XO  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? /,!qFt  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? ,fK3ZC  
    lzw3=H  
    'O5'i\uz  
    Y2xL>F  
    .Ha'p.  
    function z = zernfun(n,m,r,theta,nflag) 0TfS=scT  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 7g R@$(1Z  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ,yd MU\so(  
    %   and angular frequency M, evaluated at positions (R,THETA) on the mNmLyU=d  
    %   unit circle.  N is a vector of positive integers (including 0), and u` oq(?|  
    %   M is a vector with the same number of elements as N.  Each element +k dT(7  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) "UEv&mQ  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, D9`0Dr}/2  
    %   and THETA is a vector of angles.  R and THETA must have the same x~.:64  
    %   length.  The output Z is a matrix with one column for every (N,M) F+E|r6'i  
    %   pair, and one row for every (R,THETA) pair. KIR'$ 6pn~  
    % T+N|R  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike xs\!$*R  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), OB[o2G<0  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral | 8qBm  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Q{k At%  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized GUF"<k  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 4w#``UY)'  
    % J=pztASt  
    %   The Zernike functions are an orthogonal basis on the unit circle. !61Pl/uQ  
    %   They are used in disciplines such as astronomy, optics, and Pnd `=%w%]  
    %   optometry to describe functions on a circular domain. AuR$g7z  
    % D;UV&.$'v  
    %   The following table lists the first 15 Zernike functions. dt~YW  
    % nXjP x@  
    %       n    m    Zernike function           Normalization kId n6 Wx,  
    %       -------------------------------------------------- 5K|"\  
    %       0    0    1                                 1 -P&6L\V  
    %       1    1    r * cos(theta)                    2 mhW-J6u*  
    %       1   -1    r * sin(theta)                    2 ##Z_QB(;  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 5,)Q w  
    %       2    0    (2*r^2 - 1)                    sqrt(3) ,f1q)Qf  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) ^(* n]  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) qc#)!   
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) `DT3x{}_S  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) +7t6k7]c  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) bzdb|I6Z  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) >J|]moSVA  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 54rkC/B>  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) v)2M1  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) %cE 2s`  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) C&++VRnm  
    %       -------------------------------------------------- -=.V '  
    % 6sa"O89   
    %   Example 1: N)&4Hy  
    % 0\2\*I}?  
    %       % Display the Zernike function Z(n=5,m=1) : Sq?a0!S  
    %       x = -1:0.01:1; E~LT b) !  
    %       [X,Y] = meshgrid(x,x); U%h);!<  
    %       [theta,r] = cart2pol(X,Y); ?|:BuHkT  
    %       idx = r<=1; lo'W1p  
    %       z = nan(size(X)); ' oF xR003  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 191&_*Xb  
    %       figure Q[+ac*F=Y  
    %       pcolor(x,x,z), shading interp ?BhMjsy.  
    %       axis square, colorbar ;/j= Ny{9  
    %       title('Zernike function Z_5^1(r,\theta)') y>*xVK{D  
    % p$ bnK]  
    %   Example 2:  :ujCr.  
    % UX]L;kI  
    %       % Display the first 10 Zernike functions 3pmWDG6L  
    %       x = -1:0.01:1; )"+(butI&  
    %       [X,Y] = meshgrid(x,x); 1Z{ZV.!  
    %       [theta,r] = cart2pol(X,Y); V5U?F6  
    %       idx = r<=1; H5D*|42  
    %       z = nan(size(X)); CR2_;x:0  
    %       n = [0  1  1  2  2  2  3  3  3  3]; .(Qx{r$  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 6i0A9SN  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; KRjV}\}  
    %       y = zernfun(n,m,r(idx),theta(idx)); >AJSqgHQ,  
    %       figure('Units','normalized') 8( b tZt  
    %       for k = 1:10 7z~_/mAI  
    %           z(idx) = y(:,k); s&GJW@ |  
    %           subplot(4,7,Nplot(k)) Gn;@{x6  
    %           pcolor(x,x,z), shading interp Ew3ibXD  
    %           set(gca,'XTick',[],'YTick',[]) *'"^NSJ  
    %           axis square w1;hy"zPsj  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) :UJa&$)  
    %       end uIU5.\"s  
    % jF[ 1za  
    %   See also ZERNPOL, ZERNFUN2. 7mm1P9Z  
    |a{Q0:  
    1,5E `J  
    %   Paul Fricker 11/13/2006 )*c> |7G  
    R-^96fFBy  
    1He{v#  
    U?.9D  
    vd6l7"0/  
    % Check and prepare the inputs: Hi]cxD*`  
    % ----------------------------- :6q]F<oK  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) .CSS}4  
        error('zernfun:NMvectors','N and M must be vectors.') 2c?qV  
    end ;l$ \6T  
    _4cvX  
     JMdPwI  
    if length(n)~=length(m) Ma| qHg  
        error('zernfun:NMlength','N and M must be the same length.') >hH0Q5aL  
    end Y?534l)j  
    e *j.  
    ly WwGR  
    n = n(:); fqu}Le  
    m = m(:); /k"`7`!  
    if any(mod(n-m,2)) :R.&`4=X  
        error('zernfun:NMmultiplesof2', ... sdCvG R e  
              'All N and M must differ by multiples of 2 (including 0).') ,YhdY 6  
    end ttXjn  
    s}j1"@  
    .@-$5Jw  
    if any(m>n) -)vEWn$3<  
        error('zernfun:MlessthanN', ... jgS%1/&  
              'Each M must be less than or equal to its corresponding N.') 0P>OJYFr'  
    end $Ci0I+5w  
    hXGwP4  
    RI2f`p8k  
    if any( r>1 | r<0 ) *._|-L  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 8>/Q1(q0  
    end _Jv 9F8v  
    s_.]4bl.8  
    8.bKb<y  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) +h_ !0dG  
        error('zernfun:RTHvector','R and THETA must be vectors.') m5G\}8|  
    end wM[~2C=vx  
    a}SdW  
    XYoIFv?'  
    r = r(:); -CH`>  
    theta = theta(:); !A1)|/ a@  
    length_r = length(r);  Xtq{%  
    if length_r~=length(theta) I]!^;))  
        error('zernfun:RTHlength', ... ?OdJqw0,G  
              'The number of R- and THETA-values must be equal.') 09o~9z0  
    end VOsqJJ3  
    F_uY{bg  
    ?[x49Ux,P  
    % Check normalization: ;@h0qRXW:h  
    % -------------------- -G,^1AL>  
    if nargin==5 && ischar(nflag) 6mH/ m&  
        isnorm = strcmpi(nflag,'norm'); fA48(0p  
        if ~isnorm oPc\<$  
            error('zernfun:normalization','Unrecognized normalization flag.') )rLMIk  
        end BK,sc'b  
    else ":3 VJ(eY  
        isnorm = false; D\ /xu-&  
    end ZtVAEIZ)  
    W(fr<<hL  
    J/);"bg_O  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% QCPID:  
    % Compute the Zernike Polynomials >ds%].$-\  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% A~nf#(!^]  
    Z['\61  
    -)!> M>=s  
    % Determine the required powers of r: gqib:q ;r  
    % ----------------------------------- \RQ='/H*  
    m_abs = abs(m); eK/?%t  
    rpowers = []; aj,)P3DJu  
    for j = 1:length(n) ]<DNo&fw  
        rpowers = [rpowers m_abs(j):2:n(j)]; 9s +z B  
    end 6B$q,"%S@  
    rpowers = unique(rpowers); vhr+g 'tf  
    mYB`)M*Y  
    f^e6<5gdf  
    % Pre-compute the values of r raised to the required powers, t"j|nz{m  
    % and compile them in a matrix: N^VD=<#T  
    % ----------------------------- *s}|Hy  
    if rpowers(1)==0 ea=83 Zj  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); CLKov\U\  
        rpowern = cat(2,rpowern{:}); 04!(okubyp  
        rpowern = [ones(length_r,1) rpowern]; ihT~xt  
    else nA>sHy  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); \F,DA"K_  
        rpowern = cat(2,rpowern{:}); vtJV"h?e"3  
    end iNCX:Y  
    8|twV35  
    uQLlA&I"  
    % Compute the values of the polynomials: ^C&+ ~+  
    % -------------------------------------- ?(KvQK|d4  
    y = zeros(length_r,length(n)); (\puf+  
    for j = 1:length(n) RaSz>-3d  
        s = 0:(n(j)-m_abs(j))/2; #iSFf  
        pows = n(j):-2:m_abs(j); jn9 ShF  
        for k = length(s):-1:1 XM Vq-8B0  
            p = (1-2*mod(s(k),2))* ... P4 ul[zZ  
                       prod(2:(n(j)-s(k)))/              ... DJh&#b  
                       prod(2:s(k))/                     ... FqA3  {  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... [_y@M ]  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); &ntBU]< q  
            idx = (pows(k)==rpowers); M/V(5IoP (  
            y(:,j) = y(:,j) + p*rpowern(:,idx); c(- Mc6  
        end MWuXI1  
         NnxM3*  
        if isnorm UkR3}{i  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); D1,O:+[;.  
        end aI#4H+/  
    end ^c9ThV.v  
    % END: Compute the Zernike Polynomials Mj0Cat=  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ?SY<~i<K-  
    }\v^+scD  
    }wt%1v-10U  
    % Compute the Zernike functions: ZofHi c  
    % ------------------------------ v@ONo?)  
    idx_pos = m>0; o 6j"OZcv  
    idx_neg = m<0; FyD.>ot7M  
    & %}/AoU  
    <z#BsnjW{  
    z = y; 5{ >0eFzG  
    if any(idx_pos) zCXqBuvu1  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ]S8LY.Az5  
    end '\p;y7N  
    if any(idx_neg) }$&WC:Lg  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); YaFcz$GE_  
    end .+#Lx;})  
    {K aN,td9  
    9rj('F & 1  
    % EOF zernfun }(i(Ar-  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    在线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  Xr2 Wa  
    %Y 2G  
    DDE还是手动输入的呢? YR8QO-7 .)  
    43F^J%G  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究