切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9377阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, (wIzat  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 9EDfd NN  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? 00v&lQBW  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? X[ q+619  
    0sN.H=   
    %~L>1ShtU  
    eAv4FA4g  
    MYJg8 '[j  
    function z = zernfun(n,m,r,theta,nflag) 'o|30LzYgQ  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. L^2FQti>  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N r.3/F[.  
    %   and angular frequency M, evaluated at positions (R,THETA) on the S5~VD?O,  
    %   unit circle.  N is a vector of positive integers (including 0), and f` =CpO*  
    %   M is a vector with the same number of elements as N.  Each element Gj"7s8(/K|  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) (?_S6H E  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, VE+IKj!VG0  
    %   and THETA is a vector of angles.  R and THETA must have the same mxb(<9O  
    %   length.  The output Z is a matrix with one column for every (N,M) H 0+dV3  
    %   pair, and one row for every (R,THETA) pair. R\o<7g-|  
    % ee%fqVQ8P  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 0/S_e)U  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), R|O8RlH  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral C<KrMRWh^  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, (WJ${OW  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized JkW9D)6  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Ee`1F#c  
    % WVVJ  
    %   The Zernike functions are an orthogonal basis on the unit circle. t]7&\ihZi~  
    %   They are used in disciplines such as astronomy, optics, and X[f=h=|  
    %   optometry to describe functions on a circular domain. !r# ?C9Sq  
    % LP MU8Er  
    %   The following table lists the first 15 Zernike functions. \ [a%('}  
    % oc8:r  
    %       n    m    Zernike function           Normalization N<QXmgqx  
    %       -------------------------------------------------- O_Oj|'bBC  
    %       0    0    1                                 1 [9 Ss# ~  
    %       1    1    r * cos(theta)                    2 &u#&@J  
    %       1   -1    r * sin(theta)                    2 LpR3BP@At  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) PO 6&bIr  
    %       2    0    (2*r^2 - 1)                    sqrt(3) xg)v0y~  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) Eb=}FuV  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) LX^u_Iu   
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) ]`Oo%$Ue  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 2WU@*%sk"  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 5 ~TdD6}  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) jBegh9KHq  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) R {-5Etv  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) ],P;WPU  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ,3@#F/c3i~  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) e^.Fa59  
    %       -------------------------------------------------- =i~}84>  
    % Ei2'[PK  
    %   Example 1: K)J(./  
    % =$]uoA  
    %       % Display the Zernike function Z(n=5,m=1) E9;|'Vy<E  
    %       x = -1:0.01:1; \Gc+WpS(  
    %       [X,Y] = meshgrid(x,x); !Q#{o^{Y~  
    %       [theta,r] = cart2pol(X,Y); 9<KAXr#  
    %       idx = r<=1; rF]h$Z8o  
    %       z = nan(size(X)); -wjN"g<  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); *4V=z#  
    %       figure F7Zwh5W  
    %       pcolor(x,x,z), shading interp -|E!e.^7:  
    %       axis square, colorbar aG^4BpIP  
    %       title('Zernike function Z_5^1(r,\theta)') ;<leKcvhQ&  
    % St e=&^  
    %   Example 2: 9/nn)soC3  
    % \EVBwE,  
    %       % Display the first 10 Zernike functions =Q.^c.sw  
    %       x = -1:0.01:1; V,$0p1?J  
    %       [X,Y] = meshgrid(x,x); je!-J8{  
    %       [theta,r] = cart2pol(X,Y); v8y1b%  
    %       idx = r<=1;  ]C) 4  
    %       z = nan(size(X)); {7)st W  
    %       n = [0  1  1  2  2  2  3  3  3  3]; M@5?ZZ4L  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; p\bDY  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; |`cKD >  
    %       y = zernfun(n,m,r(idx),theta(idx)); ^k9kJ+x^S2  
    %       figure('Units','normalized') }K&7%N4LZ  
    %       for k = 1:10 3g >B"t  
    %           z(idx) = y(:,k); &}A[x1x06)  
    %           subplot(4,7,Nplot(k)) [D!jv "  
    %           pcolor(x,x,z), shading interp Rj4|Q:XG  
    %           set(gca,'XTick',[],'YTick',[]) 1;{Rhu7* k  
    %           axis square hRCed4qA  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) zzyHoZJP  
    %       end RO.k]x6  
    % ll C#1  
    %   See also ZERNPOL, ZERNFUN2. >"C,@cN}B  
    Ry'= ke  
    #W|'1 OX4  
    %   Paul Fricker 11/13/2006 m&?#;J|B$  
    $g sxO!G  
    8|" XSN  
    f`[R7Q5  
    DK$s&zf  
    % Check and prepare the inputs: tQjLOv+?=  
    % ----------------------------- k3uit+ge }  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) `|/<\  
        error('zernfun:NMvectors','N and M must be vectors.') 'nwx9]q  
    end O)jWZOVp >  
    Y 1t\iU  
    w'UVKpG+  
    if length(n)~=length(m) /bi}'H+#  
        error('zernfun:NMlength','N and M must be the same length.') }yz (xH  
    end `I3r3WyA  
    L>3x9  
    3J5!oF{H  
    n = n(:); fP. 6HF_p_  
    m = m(:); (Kv#m 3~  
    if any(mod(n-m,2)) k<" oiCE  
        error('zernfun:NMmultiplesof2', ... [Lzw#XE  
              'All N and M must differ by multiples of 2 (including 0).') *#C+iAF|)'  
    end ~FN9 [aJF+  
    fc |GArL#}  
    yI"6Da6|y  
    if any(m>n) wf:OK[r9  
        error('zernfun:MlessthanN', ... dzDqZQY$  
              'Each M must be less than or equal to its corresponding N.') 1 =M ?GDc  
    end nuw70*ell  
     {PVWD7  
    }3OKC2K~  
    if any( r>1 | r<0 ) f>N!wgo[  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 3yB!M  
    end `nZ)>  
    d%o&+l#  
    5.MGaU^Z$  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) zc;|fHW~O  
        error('zernfun:RTHvector','R and THETA must be vectors.') )s%[T-uKi  
    end TL}++e 7+  
    iT%} $Lu~  
    p{j.KI s7  
    r = r(:); c1E'$- K@  
    theta = theta(:); PEc=\?  
    length_r = length(r); j'HZ\_  
    if length_r~=length(theta) -}KC=,]vh  
        error('zernfun:RTHlength', ... FW21 U<  
              'The number of R- and THETA-values must be equal.') [rSR:V?"a  
    end .p e(lP  
    `0Oh_8"  
    7eV di*  
    % Check normalization: pP*a  
    % -------------------- ;,?KI$K  
    if nargin==5 && ischar(nflag) ;{U@qQD7  
        isnorm = strcmpi(nflag,'norm'); :gep:4&u  
        if ~isnorm 2(#7[mgPI  
            error('zernfun:normalization','Unrecognized normalization flag.') %3ICI  
        end f PM8f  
    else *q-['"f  
        isnorm = false; TztAZ2C  
    end @n{JM7ctJ  
    k\NMy#]Zt  
    i:OK8Q{VI  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% AMyIAZnYq)  
    % Compute the Zernike Polynomials w%JTTru  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% (A~/'0/  
    d~1 gMz+)  
    ^h"`}[+  
    % Determine the required powers of r: F*3j.lI  
    % ----------------------------------- K>DR Jz  
    m_abs = abs(m); !BOY@$Y  
    rpowers = []; c+hQSm|bf)  
    for j = 1:length(n) O8j_0  
        rpowers = [rpowers m_abs(j):2:n(j)]; qa0 yg8,<  
    end 8[E!E)4M  
    rpowers = unique(rpowers); &C "L  
    JNJ=e,O,  
    k[:bQ)H  
    % Pre-compute the values of r raised to the required powers, 6{^E{go  
    % and compile them in a matrix: *fn*h[pV&  
    % ----------------------------- 9*{[buZX  
    if rpowers(1)==0 9 mmCp&~Z  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); X ><?F|#7T  
        rpowern = cat(2,rpowern{:}); rjp-Fw~1w  
        rpowern = [ones(length_r,1) rpowern]; d;>#Sxf  
    else `CgaS#  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); rU2%dkTa  
        rpowern = cat(2,rpowern{:}); :[hgxJu+  
    end {6_|/KE9_  
    NqDHCI  
    ?C&z]f3(:  
    % Compute the values of the polynomials: oaoU _V  
    % -------------------------------------- gT#&"aP5S  
    y = zeros(length_r,length(n)); w[I E  
    for j = 1:length(n) S&b*rA02zp  
        s = 0:(n(j)-m_abs(j))/2; #nK>Z[  
        pows = n(j):-2:m_abs(j); %\H|B0  
        for k = length(s):-1:1 ](wvu(y\E  
            p = (1-2*mod(s(k),2))* ... /#VhkC _  
                       prod(2:(n(j)-s(k)))/              ... ^7 &5 z&o  
                       prod(2:s(k))/                     ... t ]_VG  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 32/MkuY^u  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 2E)wpgUc?e  
            idx = (pows(k)==rpowers); JAQb{KefdO  
            y(:,j) = y(:,j) + p*rpowern(:,idx); S/ODq L|  
        end %Ntcvp)  
         O"c;|zCc>  
        if isnorm O]1y0BOQ  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); C0}IE,]  
        end v,4pp@8rv  
    end  f-E( "o  
    % END: Compute the Zernike Polynomials &'}RrW-s  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% s1h/}  
    =W BTm  
    [ji#U s:h  
    % Compute the Zernike functions: NT+?  #0I  
    % ------------------------------ @]-jl}:]  
    idx_pos = m>0; 8$;=Uf,x  
    idx_neg = m<0; \0vr>C  
    O2f-5Y$@  
    Z3& _  
    z = y; cxr=k%~}J  
    if any(idx_pos) +E.GLn2 /  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); qpE&go=k'  
    end V&\[)D'c  
    if any(idx_neg) ;bL EL"x%  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); !`M|C?b  
    end ?l^1 *Q,  
    "vyNxZE  
    .[JYj(p  
    % EOF zernfun =yyp?WmC8  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  T:IW%?M  
    ^H2-RBE#  
    DDE还是手动输入的呢? \yd s5g!:  
    f"9q^  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究