下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, #v<+G=r*O
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 4j{ }{
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? Hs` '](
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? e76)z;'
bL%)k61G_v
1x)%9u}
_!D$Aj
t~M_NEPxV
function z = zernfun(n,m,r,theta,nflag) HB^azHr
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. u,q#-d0g;
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N T@XiG:b7
% and angular frequency M, evaluated at positions (R,THETA) on the .?TVBbc%5
% unit circle. N is a vector of positive integers (including 0), and cR} =3|t
% M is a vector with the same number of elements as N. Each element x@ )u:0
% k of M must be a positive integer, with possible values M(k) = -N(k) fE iEy%o
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, S7*:eo
% and THETA is a vector of angles. R and THETA must have the same vYkoh/(/u
% length. The output Z is a matrix with one column for every (N,M) a{=~#u8
% pair, and one row for every (R,THETA) pair. #wfR$Cd
% zrM|8Cu
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike J)_42Z
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), NgKNT}JDv
% with delta(m,0) the Kronecker delta, is chosen so that the integral dX*PR3I-3
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, sj~'.Zs%
% and theta=0 to theta=2*pi) is unity. For the non-normalized M9nYt~vHX
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 'u~use"
% .u&g2Y
% The Zernike functions are an orthogonal basis on the unit circle. g=wnly
% They are used in disciplines such as astronomy, optics, and +X%yF{^m(
% optometry to describe functions on a circular domain. D]REZuHOI
% .*{LPfD|
% The following table lists the first 15 Zernike functions. M'sJ5;^5
% z#b6 aP
% n m Zernike function Normalization H^~!t{\
% -------------------------------------------------- xb\lbS{ f
% 0 0 1 1 n&^Rs)%v
% 1 1 r * cos(theta) 2 L`BLkDm
% 1 -1 r * sin(theta) 2 VPuzu|
% 2 -2 r^2 * cos(2*theta) sqrt(6) $=
gv
% 2 0 (2*r^2 - 1) sqrt(3) {^F_b% a4z
% 2 2 r^2 * sin(2*theta) sqrt(6) Cb<\
% 3 -3 r^3 * cos(3*theta) sqrt(8) }j
x{Cw
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) ]v#Q\Q8>
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 8in8_/x
% 3 3 r^3 * sin(3*theta) sqrt(8) 4I$#R
% 4 -4 r^4 * cos(4*theta) sqrt(10) H4U;~)i
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) >*&[bW'}?
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) w$_ooQ(_;Q
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) MWB?V?qPSC
% 4 4 r^4 * sin(4*theta) sqrt(10) ugz1R+f_4{
% -------------------------------------------------- d{Z
% H3JWf
MlW
% Example 1: iPao54Z
% lxbZM9A2
% % Display the Zernike function Z(n=5,m=1) TA*49Qp
% x = -1:0.01:1; };|'8'5
% [X,Y] = meshgrid(x,x); D*b>
l_
% [theta,r] = cart2pol(X,Y); .[7m4iJf
% idx = r<=1; `y4+OXZ^
% z = nan(size(X)); {az8*MR=X
% z(idx) = zernfun(5,1,r(idx),theta(idx)); `#~@f!';
% figure !HFwQGP.Y
% pcolor(x,x,z), shading interp 4&tY5m>
% axis square, colorbar ]0o78(/w2
% title('Zernike function Z_5^1(r,\theta)') [e (-
% gxF3gM
% Example 2: a83o(9
% @E1N9 S?>
% % Display the first 10 Zernike functions R]dc(D
% x = -1:0.01:1; ]>!]X*\9
% [X,Y] = meshgrid(x,x); k5^'b#v
% [theta,r] = cart2pol(X,Y); F$.M2*9
% idx = r<=1; 7l?-2I'c
% z = nan(size(X)); W /IyF){
% n = [0 1 1 2 2 2 3 3 3 3]; "p<f#s}
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 3N?uY2
% Nplot = [4 10 12 16 18 20 22 24 26 28]; mIOx)`$
% y = zernfun(n,m,r(idx),theta(idx)); K}6}Opr,Tt
% figure('Units','normalized') p0b&CrALx
% for k = 1:10 qk+:p]2
% z(idx) = y(:,k); ?P}7AF
A(W
% subplot(4,7,Nplot(k)) UJO+7h'
% pcolor(x,x,z), shading interp ?=6zgb"9-
% set(gca,'XTick',[],'YTick',[]) Oa{M9d,l
% axis square XBBsdldZ
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) @D%VV=N~[
% end o|*,<5t
% )x]/b=m
% See also ZERNPOL, ZERNFUN2. o)w'w34FCT
=*t)@bn
g=b'T-
% Paul Fricker 11/13/2006 VF;%Z
ee6Zm+.B
5<9}{X+@o
ugOcK Gf
By%aTuV$
% Check and prepare the inputs: N"T+.
r
% ----------------------------- ^,,|ED\M{m
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) *PD7H9m
error('zernfun:NMvectors','N and M must be vectors.') Xq9%{'9
end hX8;G!/
.7{,u1N'
~|riFp=J
if length(n)~=length(m) a&9+<
error('zernfun:NMlength','N and M must be the same length.') *r=6bpi
end )%P!<|s:5
b16\2%Ea1
K-sJnQ23'
n = n(:); ?z p$Wz;k
m = m(:); T=9+
if any(mod(n-m,2)) (FP-
K
error('zernfun:NMmultiplesof2', ... L -<!,CASW
'All N and M must differ by multiples of 2 (including 0).') rqSeh/<iD
end K%)u zP
1ih|b8)Dn
[/\}:#MLe
if any(m>n) ("ql//SL
error('zernfun:MlessthanN', ... KftZ^mk+p
'Each M must be less than or equal to its corresponding N.') rMUn ~
end #Mrof9
(6!W8x7
B/AS|i] sM
if any( r>1 | r<0 ) `|+!H.3
error('zernfun:Rlessthan1','All R must be between 0 and 1.') sBt,y_LW
end [Q6PFdQ_JT
v:|_!+g:
22(7rUkI
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) \9jEpE^Ju(
error('zernfun:RTHvector','R and THETA must be vectors.') 7
wH9w
end "`s{fy~mV
w`x4i fZ0q
BRyrdt*_e
r = r(:); V 9bn
theta = theta(:); D.su^m_1
length_r = length(r); nF`_3U8e
if length_r~=length(theta) ,Y ./9F
error('zernfun:RTHlength', ... @T)kqT
'The number of R- and THETA-values must be equal.') ~x4]^XS
end C/_Z9LL?F
8Q4yllv4
a'r8J~:jy
% Check normalization: 4c0 =\v
% -------------------- ,%6!8vX
if nargin==5 && ischar(nflag) $MhfGMk!'
isnorm = strcmpi(nflag,'norm'); N3"O#C
if ~isnorm ?g+uJf
error('zernfun:normalization','Unrecognized normalization flag.') > &tmdE
end '(fQtQ%
else )jm!bR`
isnorm = false; *5m4j=-
end Pg4go10|
|q!O~<H@
OXDEU.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ;#)sV2F\&
% Compute the Zernike Polynomials V96:+r
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% q|h#J}\
Tg/?v3M88
I' [gGK4F
% Determine the required powers of r: M$,4B
% ----------------------------------- >W>3w
m_abs = abs(m); `"Lk@
rpowers = []; Z@(m.&ZRx
for j = 1:length(n) zpgRK4p,I"
rpowers = [rpowers m_abs(j):2:n(j)]; efN5(9*9R
end uidoz
f2}
rpowers = unique(rpowers); wjy<{I
vb.}SG>
f0M5^
% Pre-compute the values of r raised to the required powers, BMi5F?Q'G
% and compile them in a matrix: !KC4[;Y
% ----------------------------- y?OK#,j
if rpowers(1)==0 T\v~"pMu*0
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ?LSwJ
@#
rpowern = cat(2,rpowern{:}); hik.c3
rpowern = [ones(length_r,1) rpowern]; zoibinm}Eg
else E\1e8Wyh
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Fe L !%z
rpowern = cat(2,rpowern{:}); ,eSII2,r4
end F81Kxcs
%_(X n
/JjSx/
% Compute the values of the polynomials: PjE%_M<
% -------------------------------------- )6b`1o!7
y = zeros(length_r,length(n)); ?+_Y!*J2b
for j = 1:length(n) thLx!t
s = 0:(n(j)-m_abs(j))/2; pN=>q<]L
pows = n(j):-2:m_abs(j); f D<0V
for k = length(s):-1:1 VV-%AS6;
p = (1-2*mod(s(k),2))* ... \ v2-}jU(
prod(2:(n(j)-s(k)))/ ... NjFlV(XT}
prod(2:s(k))/ ... blx"WVqo
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ?Gx-q+H
prod(2:((n(j)+m_abs(j))/2-s(k))); *JArR1J
idx = (pows(k)==rpowers); kF-7OX0)
y(:,j) = y(:,j) + p*rpowern(:,idx); ^V0I!&7lx
end sjy/[.4-
R+# g_"1@p
if isnorm ]u|5ZCv0
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); * `3+x
end @Zzg^1Ilpu
end +8}8b_bgH
% END: Compute the Zernike Polynomials bQ`2ll*(
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% &SMM<^P.
*#.Ku(C+
II]-mb
% Compute the Zernike functions: / _Fi4wZ
% ------------------------------ wBCBZs$H
idx_pos = m>0; <YAs0
idx_neg = m<0; 8;i'dF:)
af_bG;
PG{"GiZz=
z = y; QE6L_\l
if any(idx_pos) R[W'LRh~:1
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); :DJL kMP
end lm8<0*;,
if any(idx_neg) ts &sr
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); !DBaC%TGC
end wV q4DE
H<Zs2DP`
:M$8<03>F
% EOF zernfun R:y u