下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, paMw88*u
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, X*FK6,Y|(
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? ]G|@F
:
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? n,xK7icYNQ
iW |]-Ba\
LJI&j \
5HOhk"
TXrC5AJx
function z = zernfun(n,m,r,theta,nflag) *sL'6"#Cre
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. :%!SzI?
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N uOougSBV,
% and angular frequency M, evaluated at positions (R,THETA) on the M_*w)<
% unit circle. N is a vector of positive integers (including 0), and u6 B (f;
% M is a vector with the same number of elements as N. Each element ",~3&wx
% k of M must be a positive integer, with possible values M(k) = -N(k) aIqNNR
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, m=y6E,
_
% and THETA is a vector of angles. R and THETA must have the same o8Bo%OjE
% length. The output Z is a matrix with one column for every (N,M) YK}(VF?&
% pair, and one row for every (R,THETA) pair. {P = {)
% L;BYPZR
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike P *%bG 4
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), QjQJ "
% with delta(m,0) the Kronecker delta, is chosen so that the integral E]ZM`bex&
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, =U,;/f
% and theta=0 to theta=2*pi) is unity. For the non-normalized OgOu$.
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. }8r+&e
% {J99F
% The Zernike functions are an orthogonal basis on the unit circle. z<AQ;b
% They are used in disciplines such as astronomy, optics, and ^[id8
% optometry to describe functions on a circular domain. 5_`.9@eh.
% _IgG8)k;
% The following table lists the first 15 Zernike functions. k+s<;{
% FE_n+^|k<
% n m Zernike function Normalization jj.yB#T
% -------------------------------------------------- w$&10
% 0 0 1 1 { !FrI@
% 1 1 r * cos(theta) 2 y:W$~<E`p
% 1 -1 r * sin(theta) 2 g5Hs= c5=\
% 2 -2 r^2 * cos(2*theta) sqrt(6) .t~I[J\<
% 2 0 (2*r^2 - 1) sqrt(3) J@R+t6$3O
% 2 2 r^2 * sin(2*theta) sqrt(6) G=b`w;oL:
% 3 -3 r^3 * cos(3*theta) sqrt(8) YJ:CqTy
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8)
-6
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) O ^e
!<bBd
% 3 3 r^3 * sin(3*theta) sqrt(8) Fa>Y]Y0r
% 4 -4 r^4 * cos(4*theta) sqrt(10) QU417EV'
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) b%v1]a[
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) ls/:/x(5d
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 3J[P(G>Q
% 4 4 r^4 * sin(4*theta) sqrt(10) bJe^x;J9
% -------------------------------------------------- `T~M:\^D
% %K/rPhU
% Example 1: D6v0n6w
% @NV$!FB<
% % Display the Zernike function Z(n=5,m=1) qWP1i7]=/
% x = -1:0.01:1; 4>,
<b1Y
% [X,Y] = meshgrid(x,x); r]8B6iV
% [theta,r] = cart2pol(X,Y); K` U\+AE
% idx = r<=1; ;
/EH@V|
% z = nan(size(X)); tfdP#1E
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 8LiRZ"
% figure X|8Yz3:o
% pcolor(x,x,z), shading interp /#Ew{RvW'
% axis square, colorbar M/B_-8B_D
% title('Zernike function Z_5^1(r,\theta)') Que)kjp
%
W_kJb
% Example 2: VQLo
vt"
% W]rXt,{&
% % Display the first 10 Zernike functions s7&%_!4
% x = -1:0.01:1; /V3*[
% [X,Y] = meshgrid(x,x); qQVqS7 t
% [theta,r] = cart2pol(X,Y); lW7kBCsz#
% idx = r<=1; 2Ie50U
% z = nan(size(X)); Hm4lR{A
% n = [0 1 1 2 2 2 3 3 3 3]; q9!5J2P
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; EB>laZy>
% Nplot = [4 10 12 16 18 20 22 24 26 28]; ,`H=%#
% y = zernfun(n,m,r(idx),theta(idx)); )zr/9aV
% figure('Units','normalized') ( 6r9y3'
% for k = 1:10 @ZT25CD
% z(idx) = y(:,k); J }JT%SW
% subplot(4,7,Nplot(k)) M0_K%Z(zaR
% pcolor(x,x,z), shading interp YB)1dzU
% set(gca,'XTick',[],'YTick',[]) I ][8[UZ
% axis square [0_Kz"|
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ;'cv?3Y
% end E%+V\ W%
% rLP4l~V
% See also ZERNPOL, ZERNFUN2. U:8^>_
J!S3pS5j
0Z9jlwcQ
% Paul Fricker 11/13/2006 pz-`Tp w
l`,`N+FG
!%5{jO1
}V9146
d9sgk3K
% Check and prepare the inputs: ztb2Ign<
% ----------------------------- iiRK3m
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) YM#XV*P0 q
error('zernfun:NMvectors','N and M must be vectors.') g]jtVQH']
end cL=P((<K?
\
fwf\&
$aGK8%.O
if length(n)~=length(m) |5g*pXu{
error('zernfun:NMlength','N and M must be the same length.') .,EZ-&6{
end 4N#0w]_,>Y
{4:En;
j*+r`CX
n = n(:); ydlH6 >
m = m(:); z<@$$Z=0UF
if any(mod(n-m,2)) uw]e$,x?
error('zernfun:NMmultiplesof2', ... u5idH),<
'All N and M must differ by multiples of 2 (including 0).') rhL<JTS
end tkJ/h<
v~@Y_`l
b^A&K@[W#,
if any(m>n) iY(hGlV
error('zernfun:MlessthanN', ... Y*"%;e$tg
'Each M must be less than or equal to its corresponding N.') +mxs jcq0
end 0A}'.LI
%DRDe
2c+q~8Jv
if any( r>1 | r<0 ) dQ^k-
error('zernfun:Rlessthan1','All R must be between 0 and 1.') J-X5n 3I&
end OFUN hbg
',O@0L]L
Mzb_o2^(
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ZJw92Sb
error('zernfun:RTHvector','R and THETA must be vectors.') <{cPa\
end 8YYY *>
.h*&$c/l
Xi0/Wb h\
r = r(:); X\$M _b>O
theta = theta(:); 6tnAE':
length_r = length(r); 8zpK;+
if length_r~=length(theta) "@ox=
error('zernfun:RTHlength', ... ^?juY}rZ=|
'The number of R- and THETA-values must be equal.') k$+&
end }1$8)zH
2y<d@z:K
s)To#
% Check normalization: Rx'7tff%I
% -------------------- VK|!aqA{b
if nargin==5 && ischar(nflag) AJmS1 B
isnorm = strcmpi(nflag,'norm'); ^_<pc|1
if ~isnorm NS&~n^*k<
error('zernfun:normalization','Unrecognized normalization flag.') se)I2T{J
end P-vA.7
else cBm3|@7
isnorm = false; m:"2I&0)WM
end !C/`"JeYL
{8"W
esLY1c%"/
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% DPe`C%Oc1
% Compute the Zernike Polynomials _l/6Qpf
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -D
V;{8U4
C8n1j2G\
x3WY26e
% Determine the required powers of r: rre;HJGEL
% ----------------------------------- *tP,Ol
m_abs = abs(m); 1r.q]^Pq~
rpowers = []; +SP5+"y@
for j = 1:length(n) !BQ!]u
rpowers = [rpowers m_abs(j):2:n(j)]; T]i~GkD\
end XRNL;X%}7
rpowers = unique(rpowers); :m+:%keK
(m,O!935f
$MsM$]~
% Pre-compute the values of r raised to the required powers, s%/0WW0y^
% and compile them in a matrix: z&-`<uV~
% ----------------------------- tdt6*
if rpowers(1)==0 ~#j`+
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); "\V:W%23W{
rpowern = cat(2,rpowern{:}); +oiPj3
rpowern = [ones(length_r,1) rpowern]; _wqFKj
else wicg8[T=B
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); x'
rpowern = cat(2,rpowern{:}); ry
U0x
end pYa<u,>pN
979L] H#
\zoJr)
% Compute the values of the polynomials: |0Zj/1<$
% -------------------------------------- o@>5[2b4
y = zeros(length_r,length(n)); %R_8`4IQ
for j = 1:length(n) <LLSUk/
s = 0:(n(j)-m_abs(j))/2; JE?XZp@V
pows = n(j):-2:m_abs(j); %ZZ}TUI W
for k = length(s):-1:1 .}0Cg2W
p = (1-2*mod(s(k),2))* ... )
.]Z}g&
prod(2:(n(j)-s(k)))/ ... #p[=iP
prod(2:s(k))/ ... w}2yi#E[
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... &MKv_
prod(2:((n(j)+m_abs(j))/2-s(k))); , n
EeI&
idx = (pows(k)==rpowers); {fS/ZG"5<t
y(:,j) = y(:,j) + p*rpowern(:,idx); >&$V"*]
end >4ALF[oH1J
Z2LG/R
if isnorm R2;-WxnN]
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); >
h:~*g
end j5RMS V
end *vj5J"Y(;t
% END: Compute the Zernike Polynomials :{Y,Nsa
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Cf10 ud
|epe;/
= F:d#j>F
% Compute the Zernike functions: g"#+U7O
% ------------------------------ I015)vFc
idx_pos = m>0; W*_ifZ0s.
idx_neg = m<0; ]IoS-)$Z/
MW&;{m?2(
(*M(gM{;
z = y; IYj-cm
if any(idx_pos) swJwy~
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); u4Xrvfb,
end k r/[|.bq
if any(idx_neg) F4:ssy^
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); +-{HT+W
end DLz~$TF^
0_j! t
g;*~xo
% EOF zernfun c5]1aFKz