切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9517阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, INby0S  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, d!{,[8&  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? /0s1q  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? ^Jcs0c @\  
    9w[7X"#n  
    B'"C?d<7  
    t/yGMR=  
    A-aukJg9  
    function z = zernfun(n,m,r,theta,nflag) .n[!3X|d  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. , ?WTX  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N / *Z( ;-  
    %   and angular frequency M, evaluated at positions (R,THETA) on the K%P$#a  
    %   unit circle.  N is a vector of positive integers (including 0), and 1"RO)&  
    %   M is a vector with the same number of elements as N.  Each element \|BtgT*$b  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) eL JW  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, !R-M:|  
    %   and THETA is a vector of angles.  R and THETA must have the same lsU|xOB  
    %   length.  The output Z is a matrix with one column for every (N,M) ~b+4rYNxU_  
    %   pair, and one row for every (R,THETA) pair. 4ZrX= e,  
    % <%#M&9d)E  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike {(U?)4@  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ~>3$Id:  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral &s->,-,  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, *>h"}e41  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ogbLs)&+a  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. " |[w.`  
    % c}kZ x1  
    %   The Zernike functions are an orthogonal basis on the unit circle. ^8Tq0>n?  
    %   They are used in disciplines such as astronomy, optics, and L,*2t JcC<  
    %   optometry to describe functions on a circular domain. ,-myR1}  
    % V%g$LrLVe  
    %   The following table lists the first 15 Zernike functions. C=2  
    % $YSAD\a<  
    %       n    m    Zernike function           Normalization fdc ?`4  
    %       -------------------------------------------------- UX}ZE.cV  
    %       0    0    1                                 1 P95U{   
    %       1    1    r * cos(theta)                    2 "toyfZq@  
    %       1   -1    r * sin(theta)                    2 <k-&Lh:o3  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 0%+S@_|  
    %       2    0    (2*r^2 - 1)                    sqrt(3) %W~Kx_  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) Ch%W C ,  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) /.9j$iK#  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) X|^E+ `M4  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 7(rNJPrU~=  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) ~KHGh29  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) _) k=F=  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 0ubT/  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) e` Z;}& ,  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) }u:@:}8K  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) _p<W  
    %       -------------------------------------------------- ,V'+16xW  
    % hNgbHzW  
    %   Example 1: )8VrGg?  
    % EtvZk9d6h*  
    %       % Display the Zernike function Z(n=5,m=1) u&yAMWl  
    %       x = -1:0.01:1; 3B!lE(r%J  
    %       [X,Y] = meshgrid(x,x); DP ,owk  
    %       [theta,r] = cart2pol(X,Y); Wjc1EW!2x  
    %       idx = r<=1; ~Mbo`:>(4v  
    %       z = nan(size(X)); :@x24wN/  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); = Ryh@X&  
    %       figure s\y+ xa:  
    %       pcolor(x,x,z), shading interp T;K@3]FbX  
    %       axis square, colorbar 4Xi _[ Xf  
    %       title('Zernike function Z_5^1(r,\theta)') ^ cpQ*Fz  
    % Wd#r-&!6j  
    %   Example 2: (7^5jo[D  
    % mz$)80ly  
    %       % Display the first 10 Zernike functions I4 {uw ge  
    %       x = -1:0.01:1;  Aq674   
    %       [X,Y] = meshgrid(x,x); nI7G"f[%r;  
    %       [theta,r] = cart2pol(X,Y); R#gt~]x6k  
    %       idx = r<=1; aNLRUdc.  
    %       z = nan(size(X)); gEcRJ1Q;C  
    %       n = [0  1  1  2  2  2  3  3  3  3]; r'0IAJ-;  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; C1&~Y.6m  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; qPqpRi  
    %       y = zernfun(n,m,r(idx),theta(idx)); T9w;4XF  
    %       figure('Units','normalized') 95LZG1]Rb  
    %       for k = 1:10 T n.Cj5  
    %           z(idx) = y(:,k); !iUFD*~r~  
    %           subplot(4,7,Nplot(k)) *`$Y!uzG:\  
    %           pcolor(x,x,z), shading interp 2yZ/'}Mw  
    %           set(gca,'XTick',[],'YTick',[]) QY2/mtI  
    %           axis square g} \$9  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) VqGmZ|+8  
    %       end 1AMxZ (e  
    % ln4gkm<]t  
    %   See also ZERNPOL, ZERNFUN2. qd$Y"~Mco  
    iR} 3 [  
    c6/+Ye =h  
    %   Paul Fricker 11/13/2006 _~~:@fy  
    I~Y1DP)R  
    Wm ri%  
    RW| LL@r  
    Sl,X*[HGd  
    % Check and prepare the inputs: M~% ~y`D^  
    % ----------------------------- ~nYp*t C'  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) n^vL9n_N  
        error('zernfun:NMvectors','N and M must be vectors.') 'YQ^K`lV  
    end pFE&`T@ <  
    B-'oB>|  
    `;KU^dH  
    if length(n)~=length(m) F<FNZQ@<U  
        error('zernfun:NMlength','N and M must be the same length.') Mn$w_Z?  
    end ZqT8G  
    jw63sn  
    .quui\I3  
    n = n(:); DD 8uG`<  
    m = m(:); EJC{!06L'/  
    if any(mod(n-m,2)) .*N]SbU<8  
        error('zernfun:NMmultiplesof2', ... y[QQopy4:  
              'All N and M must differ by multiples of 2 (including 0).') st~ 1[in  
    end q8&2M  
    2cv!85  
    X}"Ic@8  
    if any(m>n) aC$-riP,?'  
        error('zernfun:MlessthanN', ... RNa59b  
              'Each M must be less than or equal to its corresponding N.') >4I,9TO  
    end 4#<r}j12z  
    G@$Y6To[  
    /~sNx  
    if any( r>1 | r<0 ) %{M_\Ae#  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') x<&2`=  
    end VN3"$@-POK  
    kH;DAphk  
    t2bv nh  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) _FpZc ?=  
        error('zernfun:RTHvector','R and THETA must be vectors.') x? 10^~R  
    end ]0[Gc \h}  
    B=<>OYH  
    2pr#qh8  
    r = r(:); u.\FNa  
    theta = theta(:); LWH(b s9U  
    length_r = length(r); "gt-bo.,  
    if length_r~=length(theta) WG~|sLg  
        error('zernfun:RTHlength', ... C8^h`B9z&I  
              'The number of R- and THETA-values must be equal.') %E<.\\^%  
    end 1co;U  
    ^Om0~)"q  
    6_UCRo5h%  
    % Check normalization: ojmF:hR"  
    % -------------------- mGZJ$|  
    if nargin==5 && ischar(nflag) 31VDlcn E  
        isnorm = strcmpi(nflag,'norm'); rC !!X  
        if ~isnorm /#<R  
            error('zernfun:normalization','Unrecognized normalization flag.') X283.?  
        end : Xe,=M(l~  
    else 1w` ]2  
        isnorm = false; $ ,:3I*}be  
    end 4*`AYx(  
    vJ +sdG  
    %|"0p3  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% kdgU1T@y.  
    % Compute the Zernike Polynomials VL =19[  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ]VKM3[   
    7d m:L'0  
    XY_hTHJ  
    % Determine the required powers of r: Q>ZxJ!B<k  
    % ----------------------------------- |2L|Zp&  
    m_abs = abs(m); @Sr{6g*I  
    rpowers = []; ?&gqGU}  
    for j = 1:length(n) cVV@MC  
        rpowers = [rpowers m_abs(j):2:n(j)]; @p$Nw.{'  
    end o [ Je  
    rpowers = unique(rpowers); ?IN'Dc9&%-  
    h0cdRi  
    *\-$.w)k  
    % Pre-compute the values of r raised to the required powers, p&s~O,Bw$  
    % and compile them in a matrix: ]2_b_ok  
    % ----------------------------- _YK66cS3E/  
    if rpowers(1)==0 I>bO<T`  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ]NEr]sc-"F  
        rpowern = cat(2,rpowern{:}); h]+UK14m  
        rpowern = [ones(length_r,1) rpowern]; 7:M`k#oDP  
    else `i2:@?Kl9  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); W>E/LBpE4  
        rpowern = cat(2,rpowern{:}); H1t`fyri2  
    end 8mm]>u$  
    #NyfE|MKBC  
    **G5fS.^W  
    % Compute the values of the polynomials: M1mx{<]A  
    % -------------------------------------- OGR2Y  
    y = zeros(length_r,length(n)); G(3wI}  
    for j = 1:length(n) "y9]>9:$-  
        s = 0:(n(j)-m_abs(j))/2; 69"4/n7B?  
        pows = n(j):-2:m_abs(j); L*8U.{NY  
        for k = length(s):-1:1 i^SPNs=  
            p = (1-2*mod(s(k),2))* ... o*t4zF&n  
                       prod(2:(n(j)-s(k)))/              ... `;}w!U  
                       prod(2:s(k))/                     ... c%+_~iBUN  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ymW? <\AD,  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); -u$U~?|`  
            idx = (pows(k)==rpowers); 5Ic'6AIz  
            y(:,j) = y(:,j) + p*rpowern(:,idx); yg^ 4<A  
        end kf:Nub+h t  
         L%`MoTpK q  
        if isnorm jhJ'fI  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); RxYC]R^78  
        end 2CF5qn}T  
    end Wt M1nnJp  
    % END: Compute the Zernike Polynomials KaIkO8Dq0  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% dFl8'D  
    . #FJM2Xk  
    8yC/:_ML  
    % Compute the Zernike functions: W9G1wU  
    % ------------------------------ h J H  
    idx_pos = m>0; ujf]@L?  
    idx_neg = m<0; 1wg#4h43l  
    VeipM  
    8~}~ d}wW  
    z = y; eyzXHS*s;L  
    if any(idx_pos) VZ]}9k  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); j0~ dJ#  
    end 0JXXJ:dB  
    if any(idx_neg) ^4~?]5Y\  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); -y'tz,En.  
    end }3/|;0j$  
    9 >"}||))  
    s>I~%+V.?:  
    % EOF zernfun $YiG0GK<"  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  xzRC %  
    |[!0ry*N%  
    DDE还是手动输入的呢? lEpPi@2PK  
    FWo`oJeN  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究