下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, i+Ne.h
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, .2P3 !KCL
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? #mM9^LJ
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? ~yngH0S$[b
Ozulp(8*
a{;+_J3S
vGH]7jht
4ke.p<dG
function z = zernfun(n,m,r,theta,nflag) g
C8deC8
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. BVv-1$ U^
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N va(6?"9
% and angular frequency M, evaluated at positions (R,THETA) on the Rc@lGq9
% unit circle. N is a vector of positive integers (including 0), and L`:V]p
% M is a vector with the same number of elements as N. Each element o{2B^@+Vb
% k of M must be a positive integer, with possible values M(k) = -N(k) #RdcSrw)W!
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, HWL? doM
% and THETA is a vector of angles. R and THETA must have the same K^/.v<w
% length. The output Z is a matrix with one column for every (N,M) cy8r}wD
% pair, and one row for every (R,THETA) pair. 4;jAdWj3
% _+~jZ]o
N
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike E-9>lb
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ls "Z4v(L6
% with delta(m,0) the Kronecker delta, is chosen so that the integral 8BY`~TZO$q
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, FD8
% and theta=0 to theta=2*pi) is unity. For the non-normalized :E|+[}|
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. j9%vw.3b
% C3<_0eI
% The Zernike functions are an orthogonal basis on the unit circle. )>rYp
)
% They are used in disciplines such as astronomy, optics, and K(NP%:
% optometry to describe functions on a circular domain. |<8g 2A{X
% m KKa0"
% The following table lists the first 15 Zernike functions. ye
{y[$#3
% Qc
1mR\.5
% n m Zernike function Normalization s,laJf
% -------------------------------------------------- !cO<N~0*5x
% 0 0 1 1 1
!.PH
% 1 1 r * cos(theta) 2 /PBK:B
% 1 -1 r * sin(theta) 2 b3=XWzK5
% 2 -2 r^2 * cos(2*theta) sqrt(6) N9H qFp
% 2 0 (2*r^2 - 1) sqrt(3) t/]za4w/
% 2 2 r^2 * sin(2*theta) sqrt(6) Hc0V4NHCaL
% 3 -3 r^3 * cos(3*theta) sqrt(8) +b dnTV6
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) ~4 S6c=:
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 5B{Eg?
% 3 3 r^3 * sin(3*theta) sqrt(8) Nc(A5*
% 4 -4 r^4 * cos(4*theta) sqrt(10) .KYDYdoS'
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) gF M~M(
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) O4W2X@
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) H[/^&1P
% 4 4 r^4 * sin(4*theta) sqrt(10) 9\r5&#<(I
% -------------------------------------------------- 0M}Ql5+h,
% rN~V^k
% Example 1: ?zXlLud8
% aTLr%D:Ka
% % Display the Zernike function Z(n=5,m=1) $yZP"AsAR
% x = -1:0.01:1; - :x6X$=
% [X,Y] = meshgrid(x,x); J
B
!Q
% [theta,r] = cart2pol(X,Y); KXo[;Db)k
% idx = r<=1; Nm0|U.<
% z = nan(size(X)); m?)F@4]
% z(idx) = zernfun(5,1,r(idx),theta(idx)); "L)?dlb6T
% figure |y]8gL^
% pcolor(x,x,z), shading interp `7
J4h9K
% axis square, colorbar x1`Jlzrp,
% title('Zernike function Z_5^1(r,\theta)') V#PT.,Xa.
% aFy'6c}
% Example 2: .18MMzdN
% tH4+S?PI
% % Display the first 10 Zernike functions <*4r6UFR
% x = -1:0.01:1; 6)3pnhG9
% [X,Y] = meshgrid(x,x); qEPC]es|T
% [theta,r] = cart2pol(X,Y); `9VRT`e
% idx = r<=1; SM`n:{N(
% z = nan(size(X)); #|} EPD9$
% n = [0 1 1 2 2 2 3 3 3 3];
["Jt2
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 5lm>~J!/^
% Nplot = [4 10 12 16 18 20 22 24 26 28]; 0~nub
% y = zernfun(n,m,r(idx),theta(idx)); UZW)%
% figure('Units','normalized') X
gA(
D
% for k = 1:10 S?(/~Vb%
% z(idx) = y(:,k); H[iR8<rhQ
% subplot(4,7,Nplot(k)) )!D,;,aQ
% pcolor(x,x,z), shading interp ^pvnUODW[
% set(gca,'XTick',[],'YTick',[]) 4{=^J2z
% axis square ]A:G>K
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) }xy[&-dh
% end WS ^%<
h#
% Ivc/g,
% See also ZERNPOL, ZERNFUN2. !JwR[X\f
)m(?U
y$HV;%G{26
% Paul Fricker 11/13/2006 c0:`+>p2
k iY1
;ywUl`d
J?bx<$C@
)ocr.wU@
% Check and prepare the inputs: HY7#z2L
% ----------------------------- IdWFG?b3
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) q{+Pf/M5
error('zernfun:NMvectors','N and M must be vectors.') #uH%J<U
end 1ihdH1rg[
>iI-Cs7TD
-|&&lxrwh
if length(n)~=length(m) Zm/I &
error('zernfun:NMlength','N and M must be the same length.') ]9NA3U7F
end kTs.ps8ei
&^^V*O
V82N8-l
n = n(:); c`_[q{(^m
m = m(:); c\(CbC
if any(mod(n-m,2)) Meo.
V|1
error('zernfun:NMmultiplesof2', ... /X97dF)zt
'All N and M must differ by multiples of 2 (including 0).') 4oRDvn7f&
end ORo,.#<
uBfSS\SX|
_ "H&
if any(m>n) ~k'SP(6#C
error('zernfun:MlessthanN', ... jZ> x5 W
'Each M must be less than or equal to its corresponding N.') 1gDsL
end h7F5-~SpD
|#`qP^E
L~>~a1p!
if any( r>1 | r<0 ) #>dj!33
error('zernfun:Rlessthan1','All R must be between 0 and 1.') vAjvW&'g
end 8(""ui8
[,/~*L;7
bGe@yXId5
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) xv>]e <":
error('zernfun:RTHvector','R and THETA must be vectors.') N)^`
15w
end 'yR)z\)
Ud'/
9:P
)lrmP(C*.a
r = r(:); &'<e9
theta = theta(:); LF\HmKM,
length_r = length(r); 6$A>%Jtwe
if length_r~=length(theta) x /E<@?*:
error('zernfun:RTHlength', ... .*Ylj2nM
'The number of R- and THETA-values must be equal.') 8zzY;3^h;
end {>n\B~*,"C
IcP\#zhEv
aV`_@F-8
% Check normalization: bn6WvC3?
% -------------------- EN;s
8sC!
if nargin==5 && ischar(nflag) EohvP[i
isnorm = strcmpi(nflag,'norm'); Dg
o-Os@
if ~isnorm {Etvu
error('zernfun:normalization','Unrecognized normalization flag.')
$u
P'>
end .6[7D
else )uu1AbT+e
isnorm = false; :.aMhyh#*
end LeaJ).Maw
YML]pNB
JK'FJ}Z4
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% _ UGR+0'Q\
% Compute the Zernike Polynomials iqr/MB,W
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% u.dYDi
pq$-s7#
}ej>uZVe<
% Determine the required powers of r: t4v@d
% ----------------------------------- ~EtwX YkRZ
m_abs = abs(m); jIi:tO9G^,
rpowers = []; 2xK v;
for j = 1:length(n) y,s`[=CT
rpowers = [rpowers m_abs(j):2:n(j)]; zv0bE?W9
end D1R$s*{
rpowers = unique(rpowers); h5<eU;Rw+
Gy)2
`i<omZ[aT
% Pre-compute the values of r raised to the required powers, z}w7X6&e
% and compile them in a matrix: YJu~iQ`i
% ----------------------------- ACOn}yH
if rpowers(1)==0 )k.}>0K |
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ez<V
rpowern = cat(2,rpowern{:}); Dl@Jj?zc
rpowern = [ones(length_r,1) rpowern]; D9h
else 5.d[C/pRw
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); %y_{?|+
rpowern = cat(2,rpowern{:}); 7z q@T]
end OXJ'-EZH
T:Nc^QP|tm
qWM+!f
% Compute the values of the polynomials: f0&%
% -------------------------------------- F.),|t$\
y = zeros(length_r,length(n)); rXP~k]tC
for j = 1:length(n) }Xvm(
;
s = 0:(n(j)-m_abs(j))/2; gCq'#G\Z
pows = n(j):-2:m_abs(j); D$N;Qb
for k = length(s):-1:1 =;"=o5g_
p = (1-2*mod(s(k),2))* ... V]NCFG
prod(2:(n(j)-s(k)))/ ... QQJf;p7
prod(2:s(k))/ ... $C{,`{=
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... < 1[K1'7h
prod(2:((n(j)+m_abs(j))/2-s(k))); TJCE6QG
idx = (pows(k)==rpowers); jn(%v]
y(:,j) = y(:,j) + p*rpowern(:,idx); >L')0<!&
end "+E\os72|
_"*}8{|
if isnorm *:"@
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); +z4E:v
end Wdi`ZE
end u}b%-:-
% END: Compute the Zernike Polynomials #a9O3C/MP
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Al=ByX @
$,P:B%]
XBoq/kbw!
% Compute the Zernike functions: MU%7'J :_
% ------------------------------ 2+_a<5l~
idx_pos = m>0; HuJc*op-6
idx_neg = m<0; $<yhEvv
P0pBR_:o
"([/G?QAG
z = y; |nE4tN#J<
if any(idx_pos) @fb"G4o`:
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); xHMFYt+0$G
end M*f]d`B
if any(idx_neg) YS_3Cq
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); )2_[Ww|.
end .G#li(NWH
L&