切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8888阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, [fV"tf;  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, kp*!  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? g?Nk-cg  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? 3S]Q IZ1  
    R=D}([pi  
    .5o~^  
    AWx@Z7\z"g  
    Xq03o#-p+  
    function z = zernfun(n,m,r,theta,nflag) K: $mEB[c<  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. oYTLC@98}  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N adIrrK  
    %   and angular frequency M, evaluated at positions (R,THETA) on the o:W*#dt  
    %   unit circle.  N is a vector of positive integers (including 0), and njg0MZBqA  
    %   M is a vector with the same number of elements as N.  Each element WysWg7,r  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) D"$Y, d  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, :q*w_*w  
    %   and THETA is a vector of angles.  R and THETA must have the same `PL}8ydZ  
    %   length.  The output Z is a matrix with one column for every (N,M) f_[dFKoX  
    %   pair, and one row for every (R,THETA) pair.  Fpn*]x  
    % 8 b~  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike %_4#WI  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 9X=<uS  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral ? ,s'UqR  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, G dNhEv  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized dVj2x-R)  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 8tQL$CbO  
    % WPNw")t!  
    %   The Zernike functions are an orthogonal basis on the unit circle. Fj~suZ`  
    %   They are used in disciplines such as astronomy, optics, and '@hUmrl  
    %   optometry to describe functions on a circular domain. k?&GL!?  
    %  c1s&  
    %   The following table lists the first 15 Zernike functions. -V}xvSVg  
    % OObAn^bt  
    %       n    m    Zernike function           Normalization xatq  
    %       -------------------------------------------------- X5VNj|IE  
    %       0    0    1                                 1 |C z7_Rn  
    %       1    1    r * cos(theta)                    2 EYj~Xj8_  
    %       1   -1    r * sin(theta)                    2 8P- ay<6  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) so$(-4(E O  
    %       2    0    (2*r^2 - 1)                    sqrt(3) rZ3ji(4HS  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) JN+7o h]u  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 0Atha>w^o~  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) SsW<,T  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) [1kQ-Ko`  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) |e2s\?nB0S  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) {m~)~/z?  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) R@jMFh;  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 'q$Y m0nL  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) QJ(%rvn3  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) S@u46X>  
    %       -------------------------------------------------- jIe /X]  
    % Sv/P:r _  
    %   Example 1: -i{_$G8W/c  
    % %E&oe $[B  
    %       % Display the Zernike function Z(n=5,m=1) T*%GeY [  
    %       x = -1:0.01:1;  "q M  
    %       [X,Y] = meshgrid(x,x); 2{~`q  
    %       [theta,r] = cart2pol(X,Y); 'vVWUK956  
    %       idx = r<=1; tyW}=xs  
    %       z = nan(size(X)); Y=G`~2Pr=  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); kOD=H-vSi  
    %       figure ydO+=R0M  
    %       pcolor(x,x,z), shading interp }#ta3 x  
    %       axis square, colorbar 06%-tAq:  
    %       title('Zernike function Z_5^1(r,\theta)') o [V8h @K)  
    % P8By~f32_  
    %   Example 2: 4sQm"XgE  
    % cb]X27uww  
    %       % Display the first 10 Zernike functions 7{O iV}]"  
    %       x = -1:0.01:1; c:.5@eq^  
    %       [X,Y] = meshgrid(x,x); d}:- Q?  
    %       [theta,r] = cart2pol(X,Y); *izCXfW7  
    %       idx = r<=1; TBPu&+3  
    %       z = nan(size(X)); mJ<`/p?:  
    %       n = [0  1  1  2  2  2  3  3  3  3]; Ly8=SIZ   
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; }M%3  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; !`?i>k?Q E  
    %       y = zernfun(n,m,r(idx),theta(idx)); iu8Q &Us0P  
    %       figure('Units','normalized') Mi|13[p{  
    %       for k = 1:10 gdTW ~b  
    %           z(idx) = y(:,k); uCB9;+ Hjw  
    %           subplot(4,7,Nplot(k)) E-C]<{`O  
    %           pcolor(x,x,z), shading interp a5t&{ajJ  
    %           set(gca,'XTick',[],'YTick',[]) qsoq1u,?  
    %           axis square =l/Dc=[  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) "A+7G5  
    %       end H%Vf$1/TF  
    % &nr{-][  
    %   See also ZERNPOL, ZERNFUN2. X\Zan$oi  
    ;-~E !_$  
    PVlC j  
    %   Paul Fricker 11/13/2006 `WL3aI":  
    DKfpap}8u  
    _xh)]R  
    JRz) A4P  
    B7'#8heDh  
    % Check and prepare the inputs: K% FK  
    % ----------------------------- '9WTz(0?  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) "}xIt)n%;  
        error('zernfun:NMvectors','N and M must be vectors.') q:)PfP+  
    end }hg=#*  
    #2U#h-vI  
    59 g//;35@  
    if length(n)~=length(m) S`5bcxI_  
        error('zernfun:NMlength','N and M must be the same length.') zW#5 /*@  
    end O DN_i  
    ;E 9o%f:o  
    AA^K /y  
    n = n(:); W3!-;l  
    m = m(:); zuN(~>YH  
    if any(mod(n-m,2)) WZ6{9/%:  
        error('zernfun:NMmultiplesof2', ... ,5W u  
              'All N and M must differ by multiples of 2 (including 0).') bR"4:b>K  
    end "1Hn?4nz5  
    H*k\C  
    "t^RZ45  
    if any(m>n) B/a`5&G]  
        error('zernfun:MlessthanN', ... wg0_J<y]  
              'Each M must be less than or equal to its corresponding N.') pJ8F+`*  
    end |g}r  
    meV Z_f/  
    HN367j2e  
    if any( r>1 | r<0 ) vS~tr sI  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') Tf5m YCk  
    end uVD^X*  
    bi}aVtG~z  
    / S' +  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Sw E7U~  
        error('zernfun:RTHvector','R and THETA must be vectors.') ,^e2ma|z  
    end W"@'}y  
    rWJ5C\R  
    =\2gnk~  
    r = r(:); F5:xrcyC  
    theta = theta(:); jRiMWolLv  
    length_r = length(r); Cx~;oWZ  
    if length_r~=length(theta) +$L}B-F  
        error('zernfun:RTHlength', ... [7 PC\  
              'The number of R- and THETA-values must be equal.') AlDp+"|  
    end g,iW^M  
    YJ ,"@n_  
    e?;c9]XO,o  
    % Check normalization: } x r0m+/  
    % -------------------- \36 G``e  
    if nargin==5 && ischar(nflag) O&/n BHu\  
        isnorm = strcmpi(nflag,'norm'); 7{M&9| aK  
        if ~isnorm 6e\?%,H  
            error('zernfun:normalization','Unrecognized normalization flag.') -?#iPvk6  
        end |)>+& xk  
    else 36co 'a4,  
        isnorm = false; tH0x|  
    end 8 0nu^ _  
    \(Nx)F  
    ]SAY\;,_  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Q{S{|.w-  
    % Compute the Zernike Polynomials 9C?SEbC  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% qY%|Uo  
    4=^Ha%l  
    k*2khh-  
    % Determine the required powers of r: $ s1/Rmw  
    % ----------------------------------- DFZ0~+rh  
    m_abs = abs(m); "@VYJ7.1  
    rpowers = []; 1O0)+9T82  
    for j = 1:length(n) yy/'B:g  
        rpowers = [rpowers m_abs(j):2:n(j)]; ^zT=qB l  
    end 7P2(q  
    rpowers = unique(rpowers); _oa*E2VN  
    |PYyhY  
    WPr:d  
    % Pre-compute the values of r raised to the required powers, #w5%^ HwO  
    % and compile them in a matrix: sbVEA  
    % ----------------------------- &Hf%Va[B  
    if rpowers(1)==0 ;TDvk ]:  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); l%Ke>9C  
        rpowern = cat(2,rpowern{:}); X4\T=Q?uLx  
        rpowern = [ones(length_r,1) rpowern]; aUa+]H[  
    else Qh8pOUD0l}  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); T[e+iv<8j  
        rpowern = cat(2,rpowern{:}); dEMv9"`*!  
    end ;s$4/b/~  
    I _Lm[  
    $$p +~X  
    % Compute the values of the polynomials: POl-S<QV  
    % -------------------------------------- J3oUtu  
    y = zeros(length_r,length(n)); {G3Ok++hc  
    for j = 1:length(n) pheu48/f  
        s = 0:(n(j)-m_abs(j))/2; l{3zlXk3z  
        pows = n(j):-2:m_abs(j); cr0/.Zv)  
        for k = length(s):-1:1 5FB3w48  
            p = (1-2*mod(s(k),2))* ... hJ%$Te  
                       prod(2:(n(j)-s(k)))/              ... gGCr~.5  
                       prod(2:s(k))/                     ... b(U5n"cdA  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... R(_WTs9x4  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); .#tA .%  
            idx = (pows(k)==rpowers); p;, V  
            y(:,j) = y(:,j) + p*rpowern(:,idx); YVF@v-v-,  
        end  = v?V  
         U3]/ NV*   
        if isnorm 0wqw5KC  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); s+ *LVfau  
        end 9_svtO]P  
    end Kn1u1@&Xd  
    % END: Compute the Zernike Polynomials 6&~Z3|<e  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% t6e6v=.Pg  
    IAb.Z+ig  
    &uaSp, L  
    % Compute the Zernike functions: leSBR,C  
    % ------------------------------ ,f ?B((l  
    idx_pos = m>0; KDP& I J  
    idx_neg = m<0; beYGP  
    D=D.s)ns*  
    N1y,~Z  
    z = y; 1=>b\"P#E  
    if any(idx_pos) I%[Tosud<  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); pox;NdX7  
    end 9.~ _swkv  
    if any(idx_neg) &,Rye Q  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); u@Ni *)p`  
    end &Nr+- $  
    * >NML]#0  
    =b)!l9TX  
    % EOF zernfun :SMf (E 5  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  xl@  
    *&F~<HC2+  
    DDE还是手动输入的呢? wH qbTA  
    8{-bG8L> 5  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究