切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9322阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, \_6OCVil  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, HfNDD| Zz  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? LJlZ^kh  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? ]2SI!Ai7  
    S::=85[>z  
    >h~IfZU1  
    &dB-r&4;+  
    .^(/n9|o-  
    function z = zernfun(n,m,r,theta,nflag) uRV<?y%  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. Pt,ebL~  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N y2L#:[8  
    %   and angular frequency M, evaluated at positions (R,THETA) on the %r{3wH# D@  
    %   unit circle.  N is a vector of positive integers (including 0), and )(M7lq.e7  
    %   M is a vector with the same number of elements as N.  Each element /u<nLj1  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) OW;tT=ql  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, gk0.zz([  
    %   and THETA is a vector of angles.  R and THETA must have the same $rB3m~c|  
    %   length.  The output Z is a matrix with one column for every (N,M) 9=l.T/?sf  
    %   pair, and one row for every (R,THETA) pair.  (t^n'V  
    % S^I,Iz+`S'  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike >H][.@LyR  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), jyS=!ydn+  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral )=pD%$iq  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, E$s/]wnr[  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized KxGX\   
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. . RVVWqW  
    % SuBeNA[&  
    %   The Zernike functions are an orthogonal basis on the unit circle. + xv!$gJEj  
    %   They are used in disciplines such as astronomy, optics, and w&h 2y4  
    %   optometry to describe functions on a circular domain. ;Y9=!.Ak0y  
    % Pn.bVV:  
    %   The following table lists the first 15 Zernike functions. 6c4&VW  
    % 6aO2:|:yP  
    %       n    m    Zernike function           Normalization '_s}o<  
    %       -------------------------------------------------- uLeRZSC  
    %       0    0    1                                 1 X?r48l??  
    %       1    1    r * cos(theta)                    2 gbBy/_b  
    %       1   -1    r * sin(theta)                    2 yY{kG2b,  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) {16<^  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 5X.ebd;PT  
    %       2    2    r^2 * sin(2*theta)             sqrt(6)  %V G/  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) Ji'(`9F&a  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) Y qdWctUY  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) F4#g?R ::U  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 6SM:x]`##,  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) B/f0P(7  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) fN%jJ-[d  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) >>Ar$  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) I`RBj`IF  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 3k$[r$+"  
    %       --------------------------------------------------  P\m7 -  
    % U'( sn  
    %   Example 1: _;9!  
    % nt1CTWKM8^  
    %       % Display the Zernike function Z(n=5,m=1) )+y G+  
    %       x = -1:0.01:1; gT+Bhr  
    %       [X,Y] = meshgrid(x,x); A?!I/|E^;  
    %       [theta,r] = cart2pol(X,Y); Wl"0m1G  
    %       idx = r<=1; 4Cb9%Q0  
    %       z = nan(size(X)); XE3aXK'R  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); k_|^kdWJ  
    %       figure  NW9n  
    %       pcolor(x,x,z), shading interp 7k%T<;V  
    %       axis square, colorbar [U =Uo*  
    %       title('Zernike function Z_5^1(r,\theta)') FyL_xu\e  
    % yqOuX>m1c  
    %   Example 2: j=+"Qz/hr_  
    % mg:!4O$K  
    %       % Display the first 10 Zernike functions Tpp&  
    %       x = -1:0.01:1; G* b2,9&F  
    %       [X,Y] = meshgrid(x,x); A~ (l{g  
    %       [theta,r] = cart2pol(X,Y); u`:hMFTID  
    %       idx = r<=1; =1;=  
    %       z = nan(size(X)); 9%)=`W  
    %       n = [0  1  1  2  2  2  3  3  3  3]; "VxWj}+]  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; !LM<:kf.|  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; :6kjEI  
    %       y = zernfun(n,m,r(idx),theta(idx)); 4\5uY  
    %       figure('Units','normalized') eL D?jTi'  
    %       for k = 1:10 .ae O}^  
    %           z(idx) = y(:,k); ( n{wg(R  
    %           subplot(4,7,Nplot(k)) *!e(A ]&  
    %           pcolor(x,x,z), shading interp q~K(]Ya/  
    %           set(gca,'XTick',[],'YTick',[]) 9 t n!t  
    %           axis square iX{G]< n  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ]<uQ.~  
    %       end AN:@fZ  
    % )QiQn=Ce  
    %   See also ZERNPOL, ZERNFUN2. K!AAGj`  
    JOn yrks  
    th5g\h%j*  
    %   Paul Fricker 11/13/2006 ^t "iX9  
    -|yb[~3  
    O{z}8&oR:  
    Ok-.}q>\Mv  
    &sVvWNO#2  
    % Check and prepare the inputs: N6oq90G  
    % ----------------------------- G28O%jD?  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 'WyTI^K9  
        error('zernfun:NMvectors','N and M must be vectors.') `Kl`VP=c  
    end h( QYxI,|  
    }1 vT)  
    ewsKH\#  
    if length(n)~=length(m) nx":"LFI  
        error('zernfun:NMlength','N and M must be the same length.') vm23U^VJ  
    end -]G(ms;}/Y  
    Z^KA  
    {1 J&xoV"  
    n = n(:); }*U[>Z-eO  
    m = m(:); eEc4bVQa  
    if any(mod(n-m,2)) u8zbYd3  
        error('zernfun:NMmultiplesof2', ... uUR~&8ERX  
              'All N and M must differ by multiples of 2 (including 0).') 7XrfuG*L$  
    end "R #k~R  
    Jc4L5*Xn/  
    Zc& &[g  
    if any(m>n) 1m<RwI3s  
        error('zernfun:MlessthanN', ... l?E a#  
              'Each M must be less than or equal to its corresponding N.') q!'rz  
    end c/W=$3  
    |Yi)"-  
    ]ekk }0  
    if any( r>1 | r<0 ) e59dVFug.U  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') Si}HX!s  
    end Mc sTe|X  
    8 }'|]JK  
    ri~<~oB 2:  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) r4_eTrC,  
        error('zernfun:RTHvector','R and THETA must be vectors.') g8;D/  
    end -#`c5y}P  
    ~!6K]hB4  
    3cl9wWlJ_E  
    r = r(:); ]bCq=6ZKR  
    theta = theta(:); o(A|)c4k  
    length_r = length(r); .?C%1a&_l  
    if length_r~=length(theta) G*[P <<je_  
        error('zernfun:RTHlength', ... }b3/b  
              'The number of R- and THETA-values must be equal.') lw%?z/HDf  
    end [}mA`5  
    PnT)LqEF  
    Z*{] ,  
    % Check normalization: beY=g7|  
    % -------------------- \@a$'   
    if nargin==5 && ischar(nflag) nHFrG =o,  
        isnorm = strcmpi(nflag,'norm'); RH)EB<PV  
        if ~isnorm VUU]Pu &  
            error('zernfun:normalization','Unrecognized normalization flag.') pI`?(5iK6|  
        end JD>d\z2QC  
    else `\>.h  
        isnorm = false; ,n,RFa  
    end `XTh1Z\  
    UQ Co}vM  
    T4e\0.If  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% B=L&bx  
    % Compute the Zernike Polynomials .uo.N   
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ]T! }XXK  
    KP;(Q+qTx  
    _gNz9$S  
    % Determine the required powers of r: ;|%dY{L-  
    % ----------------------------------- vEM(bT=H  
    m_abs = abs(m); wJb#g0  
    rpowers = []; ewNz%_2  
    for j = 1:length(n) bte~c  
        rpowers = [rpowers m_abs(j):2:n(j)]; .@ C{3$,VG  
    end l2%bF8]z  
    rpowers = unique(rpowers); qr\ !*\9  
    4o:hyh   
    FX <b:#  
    % Pre-compute the values of r raised to the required powers, _GQz!YA  
    % and compile them in a matrix: NMO-u3<6.  
    % ----------------------------- @\_x'!R  
    if rpowers(1)==0 _:n b&B  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); fBtm%f  
        rpowern = cat(2,rpowern{:}); - "*r  
        rpowern = [ones(length_r,1) rpowern]; !33#. @[  
    else hlZ@Dq%f  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); {Ee>n^1  
        rpowern = cat(2,rpowern{:}); [36,eK  
    end tqPx$s  
    b<I9 MR  
    &}mw'_ I  
    % Compute the values of the polynomials: 3 vP(S IF  
    % -------------------------------------- PALl sGlf  
    y = zeros(length_r,length(n)); eg"Gjp- 4=  
    for j = 1:length(n) y@bcYOh3  
        s = 0:(n(j)-m_abs(j))/2; _?7#MWe&  
        pows = n(j):-2:m_abs(j); g_*T?;!.U  
        for k = length(s):-1:1 ^ OJyN,A  
            p = (1-2*mod(s(k),2))* ... "bg'@:4F  
                       prod(2:(n(j)-s(k)))/              ... *MN HT`Y^o  
                       prod(2:s(k))/                     ... "i.r@<)S  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 1xNVdI   
                       prod(2:((n(j)+m_abs(j))/2-s(k))); BIaDY<j90  
            idx = (pows(k)==rpowers); %,@vWmn  
            y(:,j) = y(:,j) + p*rpowern(:,idx); D*5hrkV9  
        end fqz28aHh  
         ub0zJTFJ#  
        if isnorm Mkp/0|Q*  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 1RLY $M  
        end <O?y-$~  
    end sH,kW|D  
    % END: Compute the Zernike Polynomials ;wiao(t>4N  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 1PaUI#X"2F  
    ^da44Qqu  
    HC {XX>F^  
    % Compute the Zernike functions: mAgF73,3  
    % ------------------------------ O40+M)e]  
    idx_pos = m>0; wmNHT _  
    idx_neg = m<0; 4Ph0:^i_  
    +`mGK:>  
    zHWSE7!  
    z = y; 80}+MWdo  
    if any(idx_pos) 75!9FqMZ}  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 'PZ|:9FX!  
    end ] U@o0  
    if any(idx_neg) C<^YVeG  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)');  GJi~y  
    end vq*Q.0M+  
    r r`;W}3  
    C#rc@r,F  
    % EOF zernfun %OR|^M  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  5tQ1fJze  
    _X ~87  
    DDE还是手动输入的呢? - (#I3h;I  
    fQrhsuCrC  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究