切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9088阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, @W}cM  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, O+x"c3@Z)D  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? X3e&c  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? p 4_j>JPv5  
    Ipro6 I  
    %O6r  
    ?M!Mb-C[  
    ^POHQQ  
    function z = zernfun(n,m,r,theta,nflag) GsIVx!  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. #1*#3p9UL  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 4> k"$l/:  
    %   and angular frequency M, evaluated at positions (R,THETA) on the yq.<,b=87  
    %   unit circle.  N is a vector of positive integers (including 0), and U\*]cw  
    %   M is a vector with the same number of elements as N.  Each element `eZzYe(N  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) ! Gob `# r  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, DW( /[jo\  
    %   and THETA is a vector of angles.  R and THETA must have the same Gyx4}pV  
    %   length.  The output Z is a matrix with one column for every (N,M) ( jACLo  
    %   pair, and one row for every (R,THETA) pair. WC0z'N({W  
    % 1lo. X_  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike X*cDn.(I  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), F m?j-'  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral Z(j"\d!y  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Hg&.U;n  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ^'9.VVyz  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. '9{`Czc(Gb  
    % +3uPHpMB-  
    %   The Zernike functions are an orthogonal basis on the unit circle. WwsH7X)  
    %   They are used in disciplines such as astronomy, optics, and m)7Ql!l  
    %   optometry to describe functions on a circular domain. Q XSS  
    % FKZ'6KM&A  
    %   The following table lists the first 15 Zernike functions. {W+IUvn  
    % g(_xo\  
    %       n    m    Zernike function           Normalization J':X$>E|  
    %       -------------------------------------------------- JBhM*-t(M1  
    %       0    0    1                                 1 vA3wn><  
    %       1    1    r * cos(theta)                    2 rJZR8bo  
    %       1   -1    r * sin(theta)                    2 44NM of8N  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) HQvJ*U4++  
    %       2    0    (2*r^2 - 1)                    sqrt(3) /4*Y#IpZ  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) }u9#S  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) "(r%`.l=I  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) d-3.7nJ:  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) HYg! <y  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) T;G<62`.h  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) beaSvhPU  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) }?\^^v h7  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) #M%K82"  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) .TMLg(2hgv  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) ,ZghV1z  
    %       -------------------------------------------------- qnCjNN  
    % ~NZL~p  
    %   Example 1: ?3lA ogB  
    % !&xci})7a  
    %       % Display the Zernike function Z(n=5,m=1) Ngj&1Ta&[  
    %       x = -1:0.01:1; +h@.P B^`~  
    %       [X,Y] = meshgrid(x,x); tr5j<O  
    %       [theta,r] = cart2pol(X,Y); Jd^Lnp6?  
    %       idx = r<=1; c/Fgx/hr  
    %       z = nan(size(X)); c]h@<wnv  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); |Fz ^(US  
    %       figure u^G Y7gah  
    %       pcolor(x,x,z), shading interp (\D E1q  
    %       axis square, colorbar +OqEe[Wk#  
    %       title('Zernike function Z_5^1(r,\theta)') g<@Q)p*ow  
    % (dZ]j){  
    %   Example 2: 42~.N =2  
    % I_5/e> 9  
    %       % Display the first 10 Zernike functions /oW]? 9  
    %       x = -1:0.01:1; G^N@ r:RS  
    %       [X,Y] = meshgrid(x,x); {,i-V57-h  
    %       [theta,r] = cart2pol(X,Y); tKS[  
    %       idx = r<=1; IU<lF)PF$  
    %       z = nan(size(X)); dQ:F5|p  
    %       n = [0  1  1  2  2  2  3  3  3  3]; ufCpX>lNF  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; J/fnSy  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; GGnlkp& E  
    %       y = zernfun(n,m,r(idx),theta(idx)); 81"` B2  
    %       figure('Units','normalized') @R}3f6@67  
    %       for k = 1:10 5F+G8  
    %           z(idx) = y(:,k); d)S`.Q  
    %           subplot(4,7,Nplot(k)) &8w# 4*W  
    %           pcolor(x,x,z), shading interp Y0.'u{J*  
    %           set(gca,'XTick',[],'YTick',[]) QyxUK}6mr  
    %           axis square 5RvE ),  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) zz[fkH3  
    %       end N2k<W?wQ  
    % &e6UEG  
    %   See also ZERNPOL, ZERNFUN2. UOsK(mB  
    DI8<0.L  
    q8&l%-d`  
    %   Paul Fricker 11/13/2006 d|oO2yzWv  
    4w~%MZA^  
    A+!,{G  
    R|}N"J_  
    Pw| h`[h  
    % Check and prepare the inputs: L-}J=n\  
    % ----------------------------- J,:&U wkv  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Bcarx<P-p  
        error('zernfun:NMvectors','N and M must be vectors.') ^P^%Q)QXl  
    end @J&korU  
    C+uW]]~I)  
    t))MZw&@  
    if length(n)~=length(m) m0 As t<u  
        error('zernfun:NMlength','N and M must be the same length.') EwX&Cj".  
    end ! ig& 8:  
    n8F~!|lQ0  
    );':aX j  
    n = n(:); tH)j EY9  
    m = m(:); h Fik>B#!  
    if any(mod(n-m,2)) GkX Se)#p  
        error('zernfun:NMmultiplesof2', ... C&>*~  
              'All N and M must differ by multiples of 2 (including 0).') Bp_R"DS7A  
    end  k`Ifl)  
    ')!X1A{  
    C=V2Y_j  
    if any(m>n) YO.+-(   
        error('zernfun:MlessthanN', ... fCx (  
              'Each M must be less than or equal to its corresponding N.') Ac|\~w[\  
    end J6n>{iE  
    hK{H7Ey*  
    } 1e4u{  
    if any( r>1 | r<0 ) Z.Yq)\it  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') q6)fP4MQ]  
    end <M@-|K"Eb  
    GM0Q@`d  
    xy[#LX)RW  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) /3,Lp-kp  
        error('zernfun:RTHvector','R and THETA must be vectors.') NDP" @  
    end /O}<e TR  
    8rH6L:]S  
    H #_Zv]  
    r = r(:); 0mujf  
    theta = theta(:); d(o=)!p  
    length_r = length(r); lP3|h*  
    if length_r~=length(theta) ~_vSMX  
        error('zernfun:RTHlength', ... \jtA8o%n  
              'The number of R- and THETA-values must be equal.') A,9JbX  
    end x{SlJ%V  
    2Qp}f^  
    h9)fXW  
    % Check normalization:  ~2"hh$  
    % -------------------- +T$Olz  
    if nargin==5 && ischar(nflag) & "&s,  
        isnorm = strcmpi(nflag,'norm'); gHLI>ew*QR  
        if ~isnorm <ToBVG X  
            error('zernfun:normalization','Unrecognized normalization flag.') Zk%@GOu\  
        end Z 5>~l  
    else 4u 6 FvN  
        isnorm = false; &.,K@OFE}  
    end w'2FYe{wj  
    P>C'? 'Q7  
    !k)6r6  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% l~rj7f;  
    % Compute the Zernike Polynomials >#|%'Us  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% cRVL1ne  
    TwPQ8}pj?  
    TU0-L35P1  
    % Determine the required powers of r: js<d"m*  
    % ----------------------------------- [i`  
    m_abs = abs(m); AU$~Ap*rsa  
    rpowers = []; TlS? S+  
    for j = 1:length(n) tk%f_"}  
        rpowers = [rpowers m_abs(j):2:n(j)]; PC_!  
    end F3}MM dX  
    rpowers = unique(rpowers); '`P%;/z  
    %+(AKZu:  
    [Cl0Kw.LD  
    % Pre-compute the values of r raised to the required powers, etr-\Cp  
    % and compile them in a matrix: ep"[; $Eb  
    % ----------------------------- _J l(:r\%  
    if rpowers(1)==0 0SIC=p=J  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); a{]=BY oL  
        rpowern = cat(2,rpowern{:}); \)6glAtN  
        rpowern = [ones(length_r,1) rpowern]; ?bB>}:~j)  
    else VI2lw E3  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); /I`TN5~  
        rpowern = cat(2,rpowern{:}); $N=&D_Q  
    end E 5&Z={  
    DXiA4ihr=  
    6{y7e L3!  
    % Compute the values of the polynomials: |h]V9=  
    % -------------------------------------- d. wGO]"  
    y = zeros(length_r,length(n)); gJ6`Kl985O  
    for j = 1:length(n) pLB2! +  
        s = 0:(n(j)-m_abs(j))/2; d05xn7%!{  
        pows = n(j):-2:m_abs(j); .11l(M  
        for k = length(s):-1:1 OIrm9D #  
            p = (1-2*mod(s(k),2))* ... $D^\[^S  
                       prod(2:(n(j)-s(k)))/              ... 0^ODJ7  
                       prod(2:s(k))/                     ... rwF$aR>9  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ,9P-<P  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); SyvoN, ;Q  
            idx = (pows(k)==rpowers); Bu{Kjv  
            y(:,j) = y(:,j) + p*rpowern(:,idx); {@InOo!4w]  
        end ]@&X*~c^Z  
         9F/I",EA  
        if isnorm "\b>JV5  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); %Rk|B`ST  
        end BsQ;`2  
    end GE/!$3  
    % END: Compute the Zernike Polynomials Pd91<L  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% g3tE.!a5-  
    24jf`1XFW  
    {D4FYr J  
    % Compute the Zernike functions: 8rsc@]W  
    % ------------------------------  Unk/uk  
    idx_pos = m>0; X0.H(p#s  
    idx_neg = m<0; '}Fe&%  
    KL&/Yt   
    tdm7MPM  
    z = y; {iD/0q  
    if any(idx_pos) V?{d<Ng~J  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); -b-a21,m>  
    end ?v2_7x&  
    if any(idx_neg) [b++bCH3  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); yYCS-rF>  
    end V!Wy[u  
     FOiwA.:0  
    )CFJ Xc:  
    % EOF zernfun ._}}@V_/  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    在线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  IiKU =^~w  
     !5 S#  
    DDE还是手动输入的呢? jzi%[c<G  
    [?z;'O}y  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究