下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, m+L:\mvA
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, ,Vogo5~X
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? QRRZMdEGs[
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? ka (xU#;
\(u P{,ML
h0GXN\xI
f~53:;L/
KS%,N _F<
function z = zernfun(n,m,r,theta,nflag) Uc/%4Gx
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. |i|O9^*%
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N __a9}m4i7x
% and angular frequency M, evaluated at positions (R,THETA) on the @?t) UE
% unit circle. N is a vector of positive integers (including 0), and =[P ||
% M is a vector with the same number of elements as N. Each element Q5Wb)
% k of M must be a positive integer, with possible values M(k) = -N(k) G#csN&|,
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, g,.iM8
% and THETA is a vector of angles. R and THETA must have the same AojX)_"z
% length. The output Z is a matrix with one column for every (N,M) p4/D%*G^`
% pair, and one row for every (R,THETA) pair. /rquI y^
% J[^-k!9M
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike CkOd>Kn
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), \X(.%5xC
% with delta(m,0) the Kronecker delta, is chosen so that the integral m$U2|5un&
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, p}h)WjC
% and theta=0 to theta=2*pi) is unity. For the non-normalized RSp=If+4
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. GhX>YzD7
% *@D.=i>
% The Zernike functions are an orthogonal basis on the unit circle. 5-MI7I@l
% They are used in disciplines such as astronomy, optics, and G-Y8<mEh
% optometry to describe functions on a circular domain. FvRog<3X
% 1vX97n<}
% The following table lists the first 15 Zernike functions. lK{h%2A\b
% NL1Ajms`
% n m Zernike function Normalization d!>PqPo
% -------------------------------------------------- 1>n@`M8}
% 0 0 1 1 7r:!HmRl
% 1 1 r * cos(theta) 2 w'}b 8m(L
% 1 -1 r * sin(theta) 2 `CRW2^g
% 2 -2 r^2 * cos(2*theta) sqrt(6) SlmgFk!r!
% 2 0 (2*r^2 - 1) sqrt(3) |TkO'QN
% 2 2 r^2 * sin(2*theta) sqrt(6) ;0 ,-ywK
% 3 -3 r^3 * cos(3*theta) sqrt(8) 9Y0w
SOSW
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) qg|SBQ?6
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) BeBa4s
% 3 3 r^3 * sin(3*theta) sqrt(8) T$SGf.-
% 4 -4 r^4 * cos(4*theta) sqrt(10) &)1+WrU
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) W<\KRF$S;
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) [/'W#x
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) \\6/"
% 4 4 r^4 * sin(4*theta) sqrt(10) gd2cwnP
% -------------------------------------------------- U4Il1|
M&
% ,|D<De\v&
% Example 1: L_Z>*s&
% 3b~k)t4R
% % Display the Zernike function Z(n=5,m=1) y4+Km*am,W
% x = -1:0.01:1; L~>pSP^a
% [X,Y] = meshgrid(x,x); l1nrJm8
% [theta,r] = cart2pol(X,Y); x:G uqE
% idx = r<=1; 4/cUd=>Z
% z = nan(size(X)); b0t/~]9G
% z(idx) = zernfun(5,1,r(idx),theta(idx)); =5J}CPKbZI
% figure +hGr2%*0f
% pcolor(x,x,z), shading interp `C$.
% axis square, colorbar 'V/+v#V+>
% title('Zernike function Z_5^1(r,\theta)') )ui]vS:>
% `-IX"rf
% Example 2: (*F/^4p!$
% mSr(PIH{\
% % Display the first 10 Zernike functions "|`euxYV
% x = -1:0.01:1; ogtl
UCUD
% [X,Y] = meshgrid(x,x); 'Y`or14E
% [theta,r] = cart2pol(X,Y); /d*d'3{c
% idx = r<=1; ,Tjc\;~%
% z = nan(size(X)); OF-$*
% n = [0 1 1 2 2 2 3 3 3 3]; "=@X>jUc
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; VB o=*gn,$
% Nplot = [4 10 12 16 18 20 22 24 26 28]; d[=~-[
% y = zernfun(n,m,r(idx),theta(idx)); "dQ02y
% figure('Units','normalized') @p"m{
% for k = 1:10 ^\KZE|^3@
% z(idx) = y(:,k); WS6'R
% subplot(4,7,Nplot(k)) j"1#n? 0
% pcolor(x,x,z), shading interp <*oTVl4fS
% set(gca,'XTick',[],'YTick',[]) QY|Rz(;m
% axis square ir!/{IQx
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) b@`h]]~:
% end [7_1GSS1
% JS$ojL^
% See also ZERNPOL, ZERNFUN2. v[57LB
"n'kv!?\
}LeizbU
% Paul Fricker 11/13/2006 a]\l:r
OXp(rJ*bK
KDxqz$14-
%W`
}
n`
M!K:Pq
% Check and prepare the inputs: $raq,SP
% ----------------------------- ~xCv_u^=
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) <x-7MU&
error('zernfun:NMvectors','N and M must be vectors.') 4 ))Z Bq?
end eI%9.Cx#I
?sD4S
2fN2!OT
if length(n)~=length(m) #|8Ia:=s
error('zernfun:NMlength','N and M must be the same length.') LT[g
+zGB
end l]R=I2t
[] cF*en
h(C@IIO^;G
n = n(:); V$0mcwH
m = m(:); P_}wjz}9ZX
if any(mod(n-m,2)) *{DpNV8"
error('zernfun:NMmultiplesof2', ... aGBUFCCa
'All N and M must differ by multiples of 2 (including 0).') z;wOtKl5r
end nEHmiG
QlE]OAdB42
=aB c.PJ^
if any(m>n) ?mwa6]
error('zernfun:MlessthanN', ... 1Be/(pSc
'Each M must be less than or equal to its corresponding N.') fb+_]{7g
end Ua%;hI)j$
q{Ao
j
9$f%
if any( r>1 | r<0 ) ij5|P4Eka
error('zernfun:Rlessthan1','All R must be between 0 and 1.') 4ibOVBG:*,
end CFXr=.yz
swKqsN.
mRO@ZY;5
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) d0V*[{
error('zernfun:RTHvector','R and THETA must be vectors.') +?)R}\\
end .no<#l
:lW8f~!
O\F$~YQ
r = r(:); u.ej<Lo
theta = theta(:); r17"i.n
length_r = length(r); v`hn9O
if length_r~=length(theta) R =kXf/y
error('zernfun:RTHlength', ... \AeM=K6q+D
'The number of R- and THETA-values must be equal.') Z H2
end p(>D5uN_}5
s+t[{i4|
TXT!Ae
% Check normalization: qC6@
% -------------------- lk*wM?Z
if nargin==5 && ischar(nflag) s~06%QEG
isnorm = strcmpi(nflag,'norm'); m*|G2
if ~isnorm !&},h=
error('zernfun:normalization','Unrecognized normalization flag.') b$q~(Z}
end &'k:?@J[
else <&kl:|
isnorm = false; >-,$
end h0] bIT{
[gGo^^aW#
(QTQxZ
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% GXi)3I%
% Compute the Zernike Polynomials ~p?D[]h
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 3/y"kl:<-
!Qq~lAJO;
;#L]7ZY9:-
% Determine the required powers of r: =6a=`3r!I
% ----------------------------------- T9FGuit9
m_abs = abs(m); .oM;D~(=9
rpowers = []; e(I;[G +%,
for j = 1:length(n) iUbcvF3aP
rpowers = [rpowers m_abs(j):2:n(j)];
VIaj])m
end Z.`0
rpowers = unique(rpowers); ;OC{B}.vH
E~c>j<'-"<
P~84#5R1
% Pre-compute the values of r raised to the required powers, G\R6=K:f7
% and compile them in a matrix: =om<* \vsO
% ----------------------------- 9a#Y
D;-p
if rpowers(1)==0 @=OX7zq\h-
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); :Wihb#TO)
rpowern = cat(2,rpowern{:}); v6H!.0
rpowern = [ones(length_r,1) rpowern]; tkQrxa|
else cv;2zq=T
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); _hgGF9
rpowern = cat(2,rpowern{:}); 'U,\5jj'Y
end 7)RRCsn
O>>/2V9
FE1'MUT_
% Compute the values of the polynomials: =QIu3%&
% -------------------------------------- I+QM":2
y = zeros(length_r,length(n)); <sn,X0W
for j = 1:length(n) #\ECQF
s = 0:(n(j)-m_abs(j))/2; c_t7<
pows = n(j):-2:m_abs(j); Tv `&
for k = length(s):-1:1 1)5/a5
p = (1-2*mod(s(k),2))* ... k(xB%>ns
prod(2:(n(j)-s(k)))/ ... ZFtJoGaR
prod(2:s(k))/ ... WD5jO9Oai
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ..x2
prod(2:((n(j)+m_abs(j))/2-s(k))); RBHU5]5
idx = (pows(k)==rpowers); kkJ8xyO
y(:,j) = y(:,j) + p*rpowern(:,idx); 21my9Ui]
end %!DTq`F
0$i\/W+
if isnorm Tkn8Wj
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); g][n1$%
end Jpy~5kS
end q;#bFPh
% END: Compute the Zernike Polynomials >`|Wg@_
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% t qUBl?i
d6ifJ
E2tUL#
% Compute the Zernike functions: {b-SK5%]L
% ------------------------------ i6S["\h>
idx_pos = m>0; N!Xn)J
idx_neg = m<0; F$'po#
l3y}nh+ 8
>|0I\{C
z = y; *\_>=sS x;
if any(idx_pos) G
*<g%"
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); >QPCYo<E
end BjHp3-A'
if any(idx_neg) A"0Yn(awWu
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 3T>6Q#W5eO
end ^F-2tc
(,|eE)+
e(FT4KD~
% EOF zernfun DHbS=Iih