切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9016阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, KGYbPty}  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, |gA@WV-%  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? F#gA2VCm  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? 3uocAmY  
    ,7LfvZj4[  
    [zx|3wWAX-  
    >jX "  
    W;Y^(f  
    function z = zernfun(n,m,r,theta,nflag) pM?~AYWb  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. &{V|%u}v  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N hBjU(}\3  
    %   and angular frequency M, evaluated at positions (R,THETA) on the t,?, T~#9  
    %   unit circle.  N is a vector of positive integers (including 0), and LUbj^iQ9  
    %   M is a vector with the same number of elements as N.  Each element `qc"JB  
    %   k of M must be a positive integer, with possible values M(k) = -N(k)  u]Ku96!  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, He(65ciT<O  
    %   and THETA is a vector of angles.  R and THETA must have the same )&@YRT\c?8  
    %   length.  The output Z is a matrix with one column for every (N,M) Y"H`+UV  
    %   pair, and one row for every (R,THETA) pair. +@QrGY  
    % C2}y#AI  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike +})QTFV  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 1'qXT{f/~  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral :)~l3:O  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 1.du#w  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized >qo!#vJc a  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. h mRmU{(Y  
    % &DWSf`:Hx  
    %   The Zernike functions are an orthogonal basis on the unit circle. QPVi& *8_  
    %   They are used in disciplines such as astronomy, optics, and Uj7YTB  
    %   optometry to describe functions on a circular domain. 0]4X/u#N  
    % CP J21^  
    %   The following table lists the first 15 Zernike functions. H~Uf2A)C  
    % 2Mt$Dah  
    %       n    m    Zernike function           Normalization ~#E&E%sJ  
    %       -------------------------------------------------- ',r` )9o  
    %       0    0    1                                 1 tnJ7m8JmC  
    %       1    1    r * cos(theta)                    2 98Vv K?  
    %       1   -1    r * sin(theta)                    2 p< 7rF_?W0  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) <[k3x8H'  
    %       2    0    (2*r^2 - 1)                    sqrt(3) I _KHQ&Z*  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) ` IVQ  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) q`1tUd4G  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) K=N&kda   
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) @D;K&:~|N  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) ] `$6=) _X  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 9i\RdJv.  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) $`|h F[tv  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) ~^2w)-N  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) f6Y?),`  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) @rYZ0`E9  
    %       -------------------------------------------------- M2Nh3ijr  
    % PEI$1,z  
    %   Example 1: 8xLQ" l+"  
    % |KhpF1/(  
    %       % Display the Zernike function Z(n=5,m=1) bo=H-d|  
    %       x = -1:0.01:1; p6- //0qb  
    %       [X,Y] = meshgrid(x,x); MLV]+H[mt  
    %       [theta,r] = cart2pol(X,Y); +ywz@0nx  
    %       idx = r<=1; b$'%)\('g  
    %       z = nan(size(X)); aH"d~Y^  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); @ym:@<D  
    %       figure  vc: kY  
    %       pcolor(x,x,z), shading interp 8XH;<z<oJ  
    %       axis square, colorbar 2E-Kz?,:[  
    %       title('Zernike function Z_5^1(r,\theta)') f! +d*9  
    % &`m.]RV  
    %   Example 2: (]q ([e  
    % dEDhdF#f  
    %       % Display the first 10 Zernike functions $*{,Z<|2  
    %       x = -1:0.01:1; %Ik5|\ob?  
    %       [X,Y] = meshgrid(x,x); 791v>h    
    %       [theta,r] = cart2pol(X,Y); )j8'6tk)Z  
    %       idx = r<=1; %1{S{FB  
    %       z = nan(size(X)); lz`\Q6rZ  
    %       n = [0  1  1  2  2  2  3  3  3  3]; ?*~ ~Ok  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; E/H9#  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; ()|e xWW  
    %       y = zernfun(n,m,r(idx),theta(idx)); pss')YP.  
    %       figure('Units','normalized') i|h{<X7[  
    %       for k = 1:10 y;ey(  
    %           z(idx) = y(:,k); S_sHwObFu|  
    %           subplot(4,7,Nplot(k)) '{,JuX"n  
    %           pcolor(x,x,z), shading interp |}77'w :  
    %           set(gca,'XTick',[],'YTick',[]) 2po8n _  
    %           axis square W _[9  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 3SY1>}(Y  
    %       end ~[!Tpq5  
    % -d?<t}a  
    %   See also ZERNPOL, ZERNFUN2. @u+LF]MY  
    HHx5 VI  
    _&HFKpHQ  
    %   Paul Fricker 11/13/2006 x<t ?Yc9  
    "A[. 7w  
    p_xJ KQS  
    T7qp ({v?Q  
    &4wSX{c/P  
    % Check and prepare the inputs: iw.F8[})  
    % ----------------------------- :2 \NG}  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) #: EhGlq8  
        error('zernfun:NMvectors','N and M must be vectors.') \ $TM=Ykj  
    end xz`0V}dPl  
     =glG |  
    $m)eO8S+  
    if length(n)~=length(m) ~&,S xQT  
        error('zernfun:NMlength','N and M must be the same length.') uaD+G:{ [  
    end c @lF*"4  
    nVpDjUpN  
    5aVZ"h"  
    n = n(:); hXH+C-%{  
    m = m(:); FS7D  
    if any(mod(n-m,2)) rxx VLW  
        error('zernfun:NMmultiplesof2', ... hB 'rkjt  
              'All N and M must differ by multiples of 2 (including 0).') /?>W\bP<  
    end ht\_YiDg3  
    5> 81Vhc,  
    )1R[~]y  
    if any(m>n) fda2dY;  
        error('zernfun:MlessthanN', ... pw))9~XU  
              'Each M must be less than or equal to its corresponding N.') k-4z2qB  
    end ./ tZ*sP:  
    r{* Qsaw  
    #.FhN x  
    if any( r>1 | r<0 ) {#t7lV'4  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') uKY1AC__  
    end 3W[||V[r]<  
    s_Z5M2o  
    n1x3q/~  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ;<MHl[jJD  
        error('zernfun:RTHvector','R and THETA must be vectors.') OZKZv,  
    end 8VpmcGvc3  
    v)vogtAQa  
    CTqhXk[  
    r = r(:); &G-dxET]  
    theta = theta(:); 75h]# k9\  
    length_r = length(r); D=f$-rn  
    if length_r~=length(theta) k/U rz*O  
        error('zernfun:RTHlength', ... fHuWBC_YO  
              'The number of R- and THETA-values must be equal.') TCgW^iu  
    end XB[EJGaX  
    zGL.+@  
    juWbd|ad"  
    % Check normalization: Eg4&D4TG p  
    % -------------------- tI0D{Xrc  
    if nargin==5 && ischar(nflag) dF&@q,  
        isnorm = strcmpi(nflag,'norm'); ZlMS=<hgFx  
        if ~isnorm P-Gp^JX8  
            error('zernfun:normalization','Unrecognized normalization flag.') oB<!U%BN  
        end l >oJ^J  
    else '^Q$:P{G?  
        isnorm = false; e=!sMWx6  
    end -23sm~`  
    ihct~y-9W  
    Tj2pEOu  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ND3|wQ`M0  
    % Compute the Zernike Polynomials =Q# (2  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ;e2D}  
    X4k|k>  
    R<r,&X?m  
    % Determine the required powers of r: uesIkJ^Q[  
    % ----------------------------------- a0k/R<4  
    m_abs = abs(m); d|sf2   
    rpowers = []; Nc^:v/(P  
    for j = 1:length(n) #A~7rH%hi  
        rpowers = [rpowers m_abs(j):2:n(j)]; Wq25,M'  
    end e\ZV^h}TQ  
    rpowers = unique(rpowers); GG4FS  
    `Gg,oCQg  
    (s51GRC  
    % Pre-compute the values of r raised to the required powers, Eh *u6K)Z  
    % and compile them in a matrix: F:Yp1Wrb<  
    % ----------------------------- 5^{2 g^jH6  
    if rpowers(1)==0 j^/^PUR  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); B?d+^sz]  
        rpowern = cat(2,rpowern{:}); y=}o|/5"  
        rpowern = [ones(length_r,1) rpowern]; , 9buI='  
    else EO/TuKt  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); +~xzgaL  
        rpowern = cat(2,rpowern{:}); 5',&8  
    end ] $F%  
    AI$\wp#aw  
    7#P Q1UWl  
    % Compute the values of the polynomials: h\6 t\_^\  
    % -------------------------------------- bW GMgC  
    y = zeros(length_r,length(n)); =>e> r~cW  
    for j = 1:length(n) Jn\>S z(96  
        s = 0:(n(j)-m_abs(j))/2; "!#KQ''R  
        pows = n(j):-2:m_abs(j); 0J .]`kR  
        for k = length(s):-1:1 EiPOY'  
            p = (1-2*mod(s(k),2))* ... .p78 \T  
                       prod(2:(n(j)-s(k)))/              ... dp }zG+  
                       prod(2:s(k))/                     ... }(#;{_  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... O}z-g&e.U  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 7! /+[G  
            idx = (pows(k)==rpowers); w*7wSP  
            y(:,j) = y(:,j) + p*rpowern(:,idx); dlDO?T  
        end v|rBOv  
         R E9 `T  
        if isnorm !!)NER-dv  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); X(;W Y^i!  
        end =GC,1WVEqV  
    end 4=l$wg~;  
    % END: Compute the Zernike Polynomials vSo,,~ F  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% gAK"ShOhG=  
    5?>ES*  
    nCLEAe$W\=  
    % Compute the Zernike functions: WS\Ir-B  
    % ------------------------------ I$ ?.9&.&  
    idx_pos = m>0; D0X!j,Kc  
    idx_neg = m<0; l-8rCaq& J  
    rotu#?B  
    ]4,eCT  
    z = y; 9bUFxSH  
    if any(idx_pos) }k @S mO8  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); w u0q.]  
    end +-Z `v  
    if any(idx_neg) =A_fL{ SM  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); zCmx1Djz  
    end ^K:-r !v^  
    ,3Aiz|v-  
    /PEL[Os  
    % EOF zernfun U<6+2y P  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  e~d=e3mBp  
    "%p7ft  
    DDE还是手动输入的呢? YV!hlYOBi  
    um}q@BU  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究