下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, [fV"tf;
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, kp* !
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? g?Nk-cg
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? 3S]QIZ1
R=D}([pi
.5o~^
AWx@Z7\z"g
Xq03o#-p+
function z = zernfun(n,m,r,theta,nflag) K:$mEB[c<
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. oYTLC@98}
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N adIrrK
% and angular frequency M, evaluated at positions (R,THETA) on the o:W*#dt
% unit circle. N is a vector of positive integers (including 0), and njg0MZBqA
% M is a vector with the same number of elements as N. Each element WysWg7,r
% k of M must be a positive integer, with possible values M(k) = -N(k) D"$Y, d
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, :q*w_*w
% and THETA is a vector of angles. R and THETA must have the same `PL}8ydZ
% length. The output Z is a matrix with one column for every (N,M) f_[dFKoX
% pair, and one row for every (R,THETA) pair. Fpn*]x
% 8b~
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike %_4#WI
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 9X=<uS
% with delta(m,0) the Kronecker delta, is chosen so that the integral ?
,s'UqR
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, GdNhEv
% and theta=0 to theta=2*pi) is unity. For the non-normalized dVj2x-R)
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 8tQL$CbO
% WPNw")t!
% The Zernike functions are an orthogonal basis on the unit circle. Fj~suZ`
% They are used in disciplines such as astronomy, optics, and '@hUmrl
% optometry to describe functions on a circular domain. k?&GL!?
% c1s&
% The following table lists the first 15 Zernike functions. -V}xvSVg
% OObAn^bt
% n m Zernike function Normalization xatq
% -------------------------------------------------- X5VNj|IE
% 0 0 1 1 |C z7_Rn
% 1 1 r * cos(theta) 2 EYj~Xj8_
% 1 -1 r * sin(theta) 2 8P-ay<6
% 2 -2 r^2 * cos(2*theta) sqrt(6) so$(-4(E O
% 2 0 (2*r^2 - 1) sqrt(3) rZ3ji(4HS
% 2 2 r^2 * sin(2*theta) sqrt(6) JN+7oh]u
% 3 -3 r^3 * cos(3*theta) sqrt(8) 0Atha>w^o~
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) S sW<,T
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) [1kQ-Ko`
% 3 3 r^3 * sin(3*theta) sqrt(8) |e2s\?nB0S
% 4 -4 r^4 * cos(4*theta) sqrt(10) { m~)~/z?
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) R@jMFh;
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) 'q$ Ym0nL
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) QJ(%rvn3
% 4 4 r^4 * sin(4*theta) sqrt(10) S@u46 X>
% -------------------------------------------------- jIe
/X]
% Sv /P:r
_
% Example 1: -i{_$G8W/c
% %E&oe $[B
% % Display the Zernike function Z(n=5,m=1) T*%GeY
[
% x = -1:0.01:1; "q M
% [X,Y] = meshgrid(x,x); 2{~`q
% [theta,r] = cart2pol(X,Y); 'vVWUK956
% idx = r<=1; tyW}=xs
% z = nan(size(X)); Y=G`~2Pr=
% z(idx) = zernfun(5,1,r(idx),theta(idx)); kOD=H-vSi
% figure ydO+=R0M
% pcolor(x,x,z), shading interp }#ta3 x
% axis square, colorbar 06 %-tAq:
% title('Zernike function Z_5^1(r,\theta)') o
[V8h@K)
% P8By~f32_
% Example 2: 4sQm"XgE
% cb]X27uww
% % Display the first 10 Zernike functions 7{O
iV}]"
% x = -1:0.01:1; c:.5@eq^
% [X,Y] = meshgrid(x,x); d}:-Q?
% [theta,r] = cart2pol(X,Y); *izCXfW7
% idx = r<=1; TBPu&+3
% z = nan(size(X)); mJ<`/p?:
% n = [0 1 1 2 2 2 3 3 3 3]; Ly8=SIZ
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; }M% 3
% Nplot = [4 10 12 16 18 20 22 24 26 28]; !`?i>k?Q E
% y = zernfun(n,m,r(idx),theta(idx)); iu8Q &Us0P
% figure('Units','normalized') Mi|13[p{
% for k = 1:10 gdTW
~b
% z(idx) = y(:,k); uCB9;+ Hjw
% subplot(4,7,Nplot(k)) E-C]<{`O
% pcolor(x,x,z), shading interp a5t&{ajJ
% set(gca,'XTick',[],'YTick',[]) qsoq1u,?
% axis square =l/Dc=[
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) "A+7G5
% end H%Vf$1/TF
% &nr{-][
% See also ZERNPOL, ZERNFUN2. X\Zan$oi
;-~E!_$
PVlCj
% Paul Fricker 11/13/2006 `WL3aI":
DKfpap}8u
_xh)]R
JRz)A4P
B7'#8heDh
% Check and prepare the inputs: K% FK
% ----------------------------- '9WTz(0?
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) "}xIt)n%;
error('zernfun:NMvectors','N and M must be vectors.') q:)PfP+
end }hg=#*
#2U# h-vI
59 g//;35@
if length(n)~=length(m) S`5bcxI_
error('zernfun:NMlength','N and M must be the same length.') zW#5 /*@
end O D N_i
;E
9o%f:o
AA^K/y
n = n(:); W3!-;l
m = m(:); zuN(~>YH
if any(mod(n-m,2)) WZ6{9/%:
error('zernfun:NMmultiplesof2', ... ,5Wu
'All N and M must differ by multiples of 2 (including 0).') bR"4:b>K
end "1Hn?4nz5
H*k\C
"t^RZ45
if any(m>n) B/a`5&G]
error('zernfun:MlessthanN', ... wg0_J<y]
'Each M must be less than or equal to its corresponding N.') pJ8F+`*
end |g}r
meV Z_f/
HN367j2 e
if any( r>1 | r<0 ) vS~tr sI
error('zernfun:Rlessthan1','All R must be between 0 and 1.') Tf5m
YCk
end uVD^X*
bi}aVtG~z
/
S' +
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Sw E7U~
error('zernfun:RTHvector','R and THETA must be vectors.') ,^e2ma|z
end W"@'}y
rWJ5C\R
=\2gnk~
r = r(:); F5:xrcyC
theta = theta(:); jRiMWolLv
length_r = length(r); Cx~;oWZ
if length_r~=length(theta) +$L}B-F
error('zernfun:RTHlength', ... [7PC\
'The number of R- and THETA-values must be equal.') AlDp+"|
end g,iW^M
Y J,"@n_
e?;c9]XO,o
% Check normalization: }xr0m+/
% -------------------- \36 G``e
if nargin==5 && ischar(nflag) O&/nBHu\
isnorm = strcmpi(nflag,'norm'); 7{M&9| aK
if ~isnorm 6e \?%,H
error('zernfun:normalization','Unrecognized normalization flag.') -?#iPvk6
end |)>+&
xk
else 36co'a4,
isnorm = false; tH0x|
end 8 0nu^_
\(Nx)F
]SAY\;,_
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Q{S{|.w-
% Compute the Zernike Polynomials 9C?SEbC
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% qY%|Uo
4=^Ha%l
k*2khh-
% Determine the required powers of r: $s1/Rmw
% ----------------------------------- DFZ0~+rh
m_abs = abs(m); "@VYJ7.1
rpowers = []; 1O0)+9T82
for j = 1:length(n) yy/'B:g
rpowers = [rpowers m_abs(j):2:n(j)]; ^zT=qBl
end 7P2(q
rpowers = unique(rpowers); _oa*E2VN
|PYyhY
W Pr:d
% Pre-compute the values of r raised to the required powers, #w5%^HwO
% and compile them in a matrix: sbVEA
% ----------------------------- &Hf%Va[B
if rpowers(1)==0 ;TDvk]:
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); l%Ke>9C
rpowern = cat(2,rpowern{:}); X4\T=Q?uLx
rpowern = [ones(length_r,1) rpowern]; aUa+]H[
else Qh8pOUD0l}
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); T[e+iv<8j
rpowern = cat(2,rpowern{:}); dEMv9"`*!
end ;s$4/b/~
I_Lm[
$$p +~X
% Compute the values of the polynomials: POl-S<QV
% -------------------------------------- J3 oUtu
y = zeros(length_r,length(n)); {G3Ok++hc
for j = 1:length(n) pheu48/f
s = 0:(n(j)-m_abs(j))/2; l{3zlXk3z
pows = n(j):-2:m_abs(j); cr0/.Zv)
for k = length(s):-1:1 5FB3w48
p = (1-2*mod(s(k),2))* ... hJ%$Te
prod(2:(n(j)-s(k)))/ ... gGCr~.5
prod(2:s(k))/ ... b(U5n"cdA
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... R(_WTs9x4
prod(2:((n(j)+m_abs(j))/2-s(k))); .#tA .%
idx = (pows(k)==rpowers); p; , V
y(:,j) = y(:,j) + p*rpowern(:,idx); YVF@v-v-,
end =v?V
U3]/ NV*
if isnorm 0wqw5KC
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); s+ *LVfau
end 9_svtO ]P
end Kn1u1@&Xd
% END: Compute the Zernike Polynomials 6&~Z3|<e
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% t6e6v=.Pg
IAb.Z+ig
&uaSp,L
% Compute the Zernike functions: leSBR,C
% ------------------------------ ,f?B((l
idx_pos = m>0; KDP&I J
idx_neg = m<0; beYGP
D=D.s)ns*
N1y,~Z
z = y; 1=>b\"P#E
if any(idx_pos) I%[Tosud<
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); pox;NdX7
end 9.~_swkv
if any(idx_neg) &,Rye Q
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); u@Ni *)p`
end &Nr+-$
* >NML]#0
=b )!l9TX
% EOF zernfun :SMf
(E 5