下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, @gjA8mL
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, c{})Z=
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? Z4D[nPm$
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? `~2I
J,t`ilT
6rN.)dL.#N
9+I/bl4
Ypx"<CKP}
function z = zernfun(n,m,r,theta,nflag) .c\iKc#
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. ]eo%eaA
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N W]M Fq5.
% and angular frequency M, evaluated at positions (R,THETA) on the r|Q/:UV?w
% unit circle. N is a vector of positive integers (including 0), and }KR"0G[f
% M is a vector with the same number of elements as N. Each element G/yYIs
% k of M must be a positive integer, with possible values M(k) = -N(k) D[3QQT7c
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, %ZGG6Xgw
% and THETA is a vector of angles. R and THETA must have the same B$_-1^L
e
% length. The output Z is a matrix with one column for every (N,M) #? 7g_
% pair, and one row for every (R,THETA) pair. {EyWSf"
% NPLJ*uHH
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike z#/"5 l
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), P$&l1Mp
% with delta(m,0) the Kronecker delta, is chosen so that the integral 'oF ('uR
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, :dwP
% and theta=0 to theta=2*pi) is unity. For the non-normalized %8?XOkH)
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. q)OCY}QA
% FA}y"I'W
% The Zernike functions are an orthogonal basis on the unit circle. \-r"%@OkW
% They are used in disciplines such as astronomy, optics, and @81N{tg-
% optometry to describe functions on a circular domain. kp^q}iS
% =&WH9IKz