切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9184阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, 4["}U1sG  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, AY! zXJ_$  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? VfZ/SByh7p  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? +mF}j=k  
    o'H$g%  
    tX)]ZuEi$  
    xRaYm  
    ,eZ'pxt  
    function z = zernfun(n,m,r,theta,nflag) "BzRL g!J  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. +x+H(of.  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N VQ}=7oe%q  
    %   and angular frequency M, evaluated at positions (R,THETA) on the "`&?<82  
    %   unit circle.  N is a vector of positive integers (including 0), and ?G8 D6  
    %   M is a vector with the same number of elements as N.  Each element Mq*Sp UR  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 1TbKnmTx  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ;dB=/U>3U  
    %   and THETA is a vector of angles.  R and THETA must have the same BJ&>'rc  
    %   length.  The output Z is a matrix with one column for every (N,M) 67n1s  
    %   pair, and one row for every (R,THETA) pair. if `/LJsa  
    % _ H@pYMNH  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike y:W$~<E`p  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), XPY66VC&_  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral Z#o o8  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, M8g=t[\  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized <'gCIIa2  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 0~FX!1;  
    % ?rv+ydR/q  
    %   The Zernike functions are an orthogonal basis on the unit circle. G=b`w;oL:  
    %   They are used in disciplines such as astronomy, optics, and <:%Iq13D  
    %   optometry to describe functions on a circular domain. B!8]\D  
    % &Nec(q<  
    %   The following table lists the first 15 Zernike functions. 8, WQ}cC  
    % c[j3_fn1]  
    %       n    m    Zernike function           Normalization dXdU4YJ X  
    %       -------------------------------------------------- .Q?AzU,2D  
    %       0    0    1                                 1 ]cA){^.Jz  
    %       1    1    r * cos(theta)                    2 b"f4}b  
    %       1   -1    r * sin(theta)                    2 Yq2 mVo  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 9MGA#a  
    %       2    0    (2*r^2 - 1)                    sqrt(3) %n-LDn  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) }7&;YAt  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) "E'OP R  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 5))?,YkrrI  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) vKI,|UD&-  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) "5>p]u>  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) ^:DlrI$  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) +\}]`uS:  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) %r|fuwwJO  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) -`Z5#8P  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) O'!k$iJNb  
    %       -------------------------------------------------- vK$T$SL  
    % hL8QA!  
    %   Example 1: @YT=-  
    % Ozn7C?\*  
    %       % Display the Zernike function Z(n=5,m=1) ||/noUK  
    %       x = -1:0.01:1; Fl|u0SY  
    %       [X,Y] = meshgrid(x,x); !H.&"~w@  
    %       [theta,r] = cart2pol(X,Y); HPU7 `b4  
    %       idx = r<=1; gNxnoOY  
    %       z = nan(size(X)); Nf$Y-v?i  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); JQ.ZAhv  
    %       figure P= S)V   
    %       pcolor(x,x,z), shading interp *D|6g| Hb  
    %       axis square, colorbar Oj<2_u  
    %       title('Zernike function Z_5^1(r,\theta)') > m5j.GP;  
    % GR|Vwxs<@P  
    %   Example 2: ){gOb  
    % u/k#b2BqL  
    %       % Display the first 10 Zernike functions Q}]Q0'X8  
    %       x = -1:0.01:1; Q&n|tQ*4  
    %       [X,Y] = meshgrid(x,x); +z9;BPw %  
    %       [theta,r] = cart2pol(X,Y); g fO.Ky6  
    %       idx = r<=1; . vYGJ8(P  
    %       z = nan(size(X)); M,mj{OY~x  
    %       n = [0  1  1  2  2  2  3  3  3  3]; HeF[H\a<  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; (:@qn+ a  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; ;ATk?O4T  
    %       y = zernfun(n,m,r(idx),theta(idx)); @++ X H}  
    %       figure('Units','normalized') v[HxO?x^  
    %       for k = 1:10 '6K WobXm  
    %           z(idx) = y(:,k); N8m^h:b  
    %           subplot(4,7,Nplot(k)) PJb_QL!9  
    %           pcolor(x,x,z), shading interp ~tz[=3!1H  
    %           set(gca,'XTick',[],'YTick',[]) AbfLV942  
    %           axis square {uw'7 d/  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ~1}NQa(  
    %       end 7p2x}[ .\  
    % 8xL-j2w  
    %   See also ZERNPOL, ZERNFUN2. qjTz]'^BpM  
    ! 4i  
    N}s[0s  
    %   Paul Fricker 11/13/2006 sPbtv[bC  
    cZ o]*Gv.  
    EmY8AN(*  
    KWXJ[#E<W  
    E{lq@it32p  
    % Check and prepare the inputs: 4W^0K|fq  
    % ----------------------------- oYOf<J  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) (|bht0  
        error('zernfun:NMvectors','N and M must be vectors.') @NX^__ sa  
    end ym1TGeFAq  
    7tfFRUw  
    @dcW0WQ\  
    if length(n)~=length(m) !y*V;J  
        error('zernfun:NMlength','N and M must be the same length.') )(?s=<H  
    end LscAsq<H<  
    O|av(F9  
    )[zyvU. J3  
    n = n(:); h2,A cM  
    m = m(:); I,?bZ&@8  
    if any(mod(n-m,2)) u}#rS%SF*  
        error('zernfun:NMmultiplesof2', ... m,=$a\UC  
              'All N and M must differ by multiples of 2 (including 0).') +n)(\k{  
    end OE:t!66  
    zSkM8LM2  
    b8QW^Z  
    if any(m>n) Jbs:}]2  
        error('zernfun:MlessthanN', ... 9>zN 27  
              'Each M must be less than or equal to its corresponding N.') =U@*adgw  
    end +R*4`F:QJQ  
    HqN|CwGgJ:  
    ]`u{^f  
    if any( r>1 | r<0 ) Up/1c:<J  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') k&^Megcb  
    end 6bqJM#y@  
    q^12Rj;H  
     .# M 5L  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) R]ppA=1*_l  
        error('zernfun:RTHvector','R and THETA must be vectors.') RRq*CLj  
    end D Zh6/n#q  
     eKu&_q  
    {uckYx-A  
    r = r(:); gqe z-  
    theta = theta(:); YQ?|Vb U  
    length_r = length(r); yy #Xs:/  
    if length_r~=length(theta) Fs&m'g  
        error('zernfun:RTHlength', ... JgK?j&!hs:  
              'The number of R- and THETA-values must be equal.') !!` zz  
    end fM2[wh@  
    Z{ p;J^:  
    sIELkF?.  
    % Check normalization: E}a3.6)p  
    % -------------------- $_)f|\s  
    if nargin==5 && ischar(nflag) .h*&$c/l  
        isnorm = strcmpi(nflag,'norm'); I>P</TE7  
        if ~isnorm X\$M _b>O  
            error('zernfun:normalization','Unrecognized normalization flag.') ,lN!XP{M6w  
        end mexI }  
    else V-X n&s  
        isnorm = false; *|`'L  
    end G\P*zz Sq  
    1B WuFYB  
    =%RDT9T.  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 1pz6e8p:m  
    % Compute the Zernike Polynomials _abVX#5<  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% fSun{?{  
    Cg&1  
    7&sCEYEb  
    % Determine the required powers of r: *w%;$\^  
    % ----------------------------------- P- vA.7  
    m_abs = abs(m); }D=h"\_=  
    rpowers = []; t zV"|s=o  
    for j = 1:length(n) !C/`"JeYL  
        rpowers = [rpowers m_abs(j):2:n(j)]; {8"W  
    end esLY1c%"/  
    rpowers = unique(rpowers); B3yn:=80  
    :F<a~_k  
    E8-p ,e,  
    % Pre-compute the values of r raised to the required powers, Lnj5EY er  
    % and compile them in a matrix: ME |"pJ  
    % ----------------------------- ?2G^6>O `  
    if rpowers(1)==0 rre;HJGEL  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Fx.uPY.a  
        rpowern = cat(2,rpowern{:}); 1r.q]^Pq~  
        rpowern = [ones(length_r,1) rpowern]; +SP5+"y@  
    else n09|Jzv9  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); QeQbO  
        rpowern = cat(2,rpowern{:}); 7tr.&A^c  
    end N;D+]_;0|  
    ]_-$  
    i:z A(  
    % Compute the values of the polynomials: [jLx}\]  
    % -------------------------------------- |]B]0J#_  
    y = zeros(length_r,length(n)); ({i|  
    for j = 1:length(n) w'qV~rN~tc  
        s = 0:(n(j)-m_abs(j))/2; m<076O4|`  
        pows = n(j):-2:m_abs(j); f,?7,?x  
        for k = length(s):-1:1 jEI!t^#  
            p = (1-2*mod(s(k),2))* ... lL83LhE}<  
                       prod(2:(n(j)-s(k)))/              ...  x'  
                       prod(2:s(k))/                     ... ~ 01]VA  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... "/\:Fdc^  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); wYF)G;[wM  
            idx = (pows(k)==rpowers); mV'd9(s?  
            y(:,j) = y(:,j) + p*rpowern(:,idx); Uz62!)  
        end v'iQLUgI  
         L' )(Zn1  
        if isnorm H?B.Hp|  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); }k ,Si9O  
        end \ tQi7yj4  
    end N.2rF  
    % END: Compute the Zernike Polynomials ^7_<rs   
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% u(lq9; ;Th  
    Yhx~5p  
    x,1&ml5  
    % Compute the Zernike functions: >%W"u` Q  
    % ------------------------------ c''!&;[!  
    idx_pos = m>0; E*'O))  
    idx_neg = m<0; *]H ./a:1  
    {<|0M%v  
    \K)q$E<!  
    z = y; w!xSYh')  
    if any(idx_pos) $MR{3-  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); +q2l,{|?  
    end '~a!~F~>  
    if any(idx_neg) xAoozDj  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ] #J ]f  
    end r<0 .!j%c  
    N .SszZh  
    XCt}>/"s\h  
    % EOF zernfun M$?~C~b!*  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  Fvl_5l  
     #6@7XC  
    DDE还是手动输入的呢? P>Pw;[b>O  
    YY'46  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究