下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, -'j_JJ
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, ;b(*Bh<
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? -R^OYgF
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? 1}moT#
mVg$z
N3D{t\hg
Sn I-dXNF
}9&Z#1/
function z = zernfun(n,m,r,theta,nflag) tevB2'3^
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. xz-z"
8d
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N #1INOR9
% and angular frequency M, evaluated at positions (R,THETA) on the Ow0-}Im~
% unit circle. N is a vector of positive integers (including 0), and "f/Su(6{0
% M is a vector with the same number of elements as N. Each element
O
"jX|5
% k of M must be a positive integer, with possible values M(k) = -N(k) Z/#&c
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, Vv"JN?dHi
% and THETA is a vector of angles. R and THETA must have the same |i)7jG<
% length. The output Z is a matrix with one column for every (N,M) C
#A sA
% pair, and one row for every (R,THETA) pair. PSOW}Y|q
% ,_STt)
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 'W!N1W@
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), T6gugDQ~.
% with delta(m,0) the Kronecker delta, is chosen so that the integral pzX684
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, V Ae@P
% and theta=0 to theta=2*pi) is unity. For the non-normalized
1o&]=(
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. RTPxAp+\5
% O~E6"vQ
% The Zernike functions are an orthogonal basis on the unit circle. Q&zEa0^rG6
% They are used in disciplines such as astronomy, optics, and DB1GW,
% optometry to describe functions on a circular domain. D(EY"s37
% &