下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, +jLy>=u
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 8x{Owj:Q
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? ">H*InF
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? ?
#K|l*
28MMH
Q
Z
vysLHj
P'W} ]mCD
4V+bE$Wu
function z = zernfun(n,m,r,theta,nflag) B~Sj#(WEa
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. ^? fOccfQ{
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N f"MID6
% and angular frequency M, evaluated at positions (R,THETA) on the fQ<sq0'e\
% unit circle. N is a vector of positive integers (including 0), and -&Rv=q>
% M is a vector with the same number of elements as N. Each element Blpk
n1
% k of M must be a positive integer, with possible values M(k) = -N(k) 2dn^K3
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1,
WTSh#L
% and THETA is a vector of angles. R and THETA must have the same S$mv(C
% length. The output Z is a matrix with one column for every (N,M) >ahDc!Jyu
% pair, and one row for every (R,THETA) pair. z0 "DbZ;d
% 8D*7{Q
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike l]*RiK2AC
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), )x.%PUA
% with delta(m,0) the Kronecker delta, is chosen so that the integral n
Bu!2c
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, (,|,j(=]
% and theta=0 to theta=2*pi) is unity. For the non-normalized +3v)@18B1
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. u$nzpw0=H
% y=3 dGOFB
% The Zernike functions are an orthogonal basis on the unit circle. _7c3=f83
% They are used in disciplines such as astronomy, optics, and p Cz6[*kC
% optometry to describe functions on a circular domain. @C;1e7
% JF=R$! 5
% The following table lists the first 15 Zernike functions. :qzg?\(
% R"nB4R0Uh
% n m Zernike function Normalization !>`Q]M`
% -------------------------------------------------- bLc5$U$!I
% 0 0 1 1 WgNA%.|,
% 1 1 r * cos(theta) 2 "HOZ2_(o
% 1 -1 r * sin(theta) 2 6= ?0&Bx&
% 2 -2 r^2 * cos(2*theta) sqrt(6) ]!hjKu"
% 2 0 (2*r^2 - 1) sqrt(3) WogUILB
% 2 2 r^2 * sin(2*theta) sqrt(6) ;UdM8+^/V]
% 3 -3 r^3 * cos(3*theta) sqrt(8) oF%m
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) \/
bd
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) hx$]fvDevD
% 3 3 r^3 * sin(3*theta) sqrt(8) .D*Qu}
% 4 -4 r^4 * cos(4*theta) sqrt(10) eg[EFI.h
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) wkg4I.
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) MAa9JA8kw)
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) (Y1*Bs[l
% 4 4 r^4 * sin(4*theta) sqrt(10) 4_#$k{
% -------------------------------------------------- |x}TpM;ni
% ~f<']zXv
% Example 1: =G-OIu+H!U
% !3b& S4
% % Display the Zernike function Z(n=5,m=1) !0{SVsc)
% x = -1:0.01:1; x9lA';})
% [X,Y] = meshgrid(x,x); &;PxDlY5
% [theta,r] = cart2pol(X,Y); /}:{(Go
% idx = r<=1; N_Us6X
% z = nan(size(X)); q"d9C)Md
% z(idx) = zernfun(5,1,r(idx),theta(idx)); {yn,u)@r9S
% figure kWzp*<lWe
% pcolor(x,x,z), shading interp o;8$#gyNY
% axis square, colorbar &L6Ivpj-
% title('Zernike function Z_5^1(r,\theta)') \0\ O/^W0
% ~Ztn(1N
% Example 2: UP](1lAf
% I9?\Jbqg
% % Display the first 10 Zernike functions @Q1!xA^S
% x = -1:0.01:1; 2?,Jn&i5
% [X,Y] = meshgrid(x,x); !6/UwPs
% [theta,r] = cart2pol(X,Y); S_lGrk\j
% idx = r<=1; ,np=m17
% z = nan(size(X)); AR |4^
% n = [0 1 1 2 2 2 3 3 3 3]; Ah2@sp,z
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; %\'=Y/yP
% Nplot = [4 10 12 16 18 20 22 24 26 28]; fUw:jExz
% y = zernfun(n,m,r(idx),theta(idx)); [$dVs16K
% figure('Units','normalized') U,rI/'
% for k = 1:10 J*@ pM
% z(idx) = y(:,k); HUKrp*Hv
% subplot(4,7,Nplot(k)) =!TUf/O-
% pcolor(x,x,z), shading interp Y9.3`VX
% set(gca,'XTick',[],'YTick',[]) M5bE5C
% axis square .; MS78BR
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) *@rA7zPFf
% end %"
iX3
% P(T-2Ux6
% See also ZERNPOL, ZERNFUN2. >}SEU-7&\
W8W7<ml0A
N{Sp-J>
% Paul Fricker 11/13/2006 @pH2"k|
@
7L~*%j
[6VB&
4Kj.o
0cm34\*
% Check and prepare the inputs: b++r#Q
g
% ----------------------------- xe@e#9N$
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) |\(uO|)ju
error('zernfun:NMvectors','N and M must be vectors.') 9#DXA}
end X,Ql6uO
"uH>S+%|b
')xOL=w
if length(n)~=length(m) &bTCTDZh
error('zernfun:NMlength','N and M must be the same length.') !5,C"r
end 1l-5H7^w2?
}aWy#Oe
Q[OwP
n = n(:); *fN+wiPD
m = m(:); 93*csO?Db
if any(mod(n-m,2)) oU=vl!\J
error('zernfun:NMmultiplesof2', ... lY,^
'All N and M must differ by multiples of 2 (including 0).') (.-4Jn
end /k'7j*t Z
Zc7;&cz
j\C6k
if any(m>n) J[}H^FR
error('zernfun:MlessthanN', ... (Yewd/T
'Each M must be less than or equal to its corresponding N.') oN032o?S
end '/O:@P5qY
%`]+sg[i
x/,;:S
if any( r>1 | r<0 ) Yjoe|
error('zernfun:Rlessthan1','All R must be between 0 and 1.') '5h`="
end '#6eUb
Lx,=Up.
aUw-P{zp%
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) OnTe_JML
error('zernfun:RTHvector','R and THETA must be vectors.') eiK_JPF A-
end
7)2K6<q
Pb&tWv\ql
iil<zEic
r = r(:); um,f!ho-U
theta = theta(:);
Lt*P&
length_r = length(r); aAjl
58
if length_r~=length(theta) D:T]$<=9
error('zernfun:RTHlength', ... !q\8`ss
'The number of R- and THETA-values must be equal.') +a5F:3$
end H )ej]DXy
dlYpbw}W&<
\_Bj"K
% Check normalization: &g|[/~dIr
% -------------------- BqNsW
(+
if nargin==5 && ischar(nflag) wn"}<ka
isnorm = strcmpi(nflag,'norm'); nCY kUDnZ
if ~isnorm P%2v(
error('zernfun:normalization','Unrecognized normalization flag.') Znb={hh
end zud_BOq{f
else >9H^r\
isnorm = false; i$NlS}W
end J*;RL`
Z"8lW+r*
,@ '^3u
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 9nR\7!_
% Compute the Zernike Polynomials TUfj\d,
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ZJ3g,dc
A-!e$yz>
7ws<' d7/
% Determine the required powers of r: #8Bh5L!SJ1
% ----------------------------------- ~nA k-toJ
m_abs = abs(m); *2h%dT:,%
rpowers = []; httywa^
for j = 1:length(n) }Ulxt:}
rpowers = [rpowers m_abs(j):2:n(j)]; :8`A
end 1'&.6{)P
rpowers = unique(rpowers); 0:V/z3?
JLu$1A@ '
KW:N
6w
% Pre-compute the values of r raised to the required powers, t]HY@@0g
% and compile them in a matrix: 5m1J&TZ0
% ----------------------------- nQc,^A)I
if rpowers(1)==0 D7hTn@I
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 0GUJc}fgvN
rpowern = cat(2,rpowern{:}); z$Jm1l
rpowern = [ones(length_r,1) rpowern]; q%sZV>
else ;FqmZjm
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); JV~
Dly>
rpowern = cat(2,rpowern{:}); T8+[R2_
end 7( 84j5zb
D
/QLp3+o
}5+^
% Compute the values of the polynomials: sa'1hX^@
% -------------------------------------- gKh*q.
y = zeros(length_r,length(n)); =mYf]
PIX
for j = 1:length(n) `vBBJ@f4)
s = 0:(n(j)-m_abs(j))/2; #QwkRzVoy
pows = n(j):-2:m_abs(j); owIpn=8|Q
for k = length(s):-1:1 C~2!@<y
p = (1-2*mod(s(k),2))* ... j!4{+&Laq
prod(2:(n(j)-s(k)))/ ... c,@Vz
7c
prod(2:s(k))/ ... 9"P+K.%
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... X$!fR >Zc
prod(2:((n(j)+m_abs(j))/2-s(k))); >M#@vIo?<6
idx = (pows(k)==rpowers); E+\?ptw
y(:,j) = y(:,j) + p*rpowern(:,idx); )Q=u[ p
end 4kL6aSqT
{4S UGo>
if isnorm -_ 9k+AV
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); \WiCI:
end >` s"C
end t=Oq<r
% END: Compute the Zernike Polynomials E
ASnh
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Pxl, "
Z:{|
?4
`Abd=1nH
% Compute the Zernike functions: J.UNw8z
% ------------------------------ 9G[
DuYJI
idx_pos = m>0; k7U.]#5V
idx_neg = m<0; IP`lx
4
{M
M8-8T
z = y; KtaoOe
if any(idx_pos) L -Q8iFW'
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ?-j/X6(\(
end `"=Hk@E
if any(idx_neg) 7{<v$g$
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); <{W{
Y\_A>
end myj/93p}`b
Sn[xI9}O
|Z>-<]p9g
% EOF zernfun fizW\f8ai