切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9203阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, bI]UO)  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 4nII/cPG  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? 2Cd --W+=  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? r` `i C5Ii  
    ?[ S >&Vq  
    nN=:#4 >Y  
    hG~]~ )  
    O<dZA=Oez  
    function z = zernfun(n,m,r,theta,nflag) \gp,Txueb  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. =F %wlzF:  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Qw<kX*fxrI  
    %   and angular frequency M, evaluated at positions (R,THETA) on the sO6gIPU^  
    %   unit circle.  N is a vector of positive integers (including 0), and n `m_S  
    %   M is a vector with the same number of elements as N.  Each element adO!Gs9f?  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 9IvcKzS2  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, =EcIXDzC>  
    %   and THETA is a vector of angles.  R and THETA must have the same 1(?CNW[  
    %   length.  The output Z is a matrix with one column for every (N,M) u1;e*ty  
    %   pair, and one row for every (R,THETA) pair. o7Cnyy#:  
    % iVKbGgA  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike n4vXm  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), N{^>MRK=5  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral ,"N3k(g  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, i_0 ,BV C  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized c3zT(FgO>N  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. K/wiL69  
    % @0vC v  
    %   The Zernike functions are an orthogonal basis on the unit circle. b#p~F}qT  
    %   They are used in disciplines such as astronomy, optics, and \za5:?[xB  
    %   optometry to describe functions on a circular domain. I(^jOgYU  
    % T$n>7X-r  
    %   The following table lists the first 15 Zernike functions. 4>$ ;gH  
    % Jcalf{W6  
    %       n    m    Zernike function           Normalization CRc!|?  
    %       -------------------------------------------------- jMf 7J  
    %       0    0    1                                 1 !bZhj3.  
    %       1    1    r * cos(theta)                    2 r*i$+ Z  
    %       1   -1    r * sin(theta)                    2 "rjv5*z^&  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 'YZI>V*  
    %       2    0    (2*r^2 - 1)                    sqrt(3) ~'^!udF-  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) ;&+[W(7Sy  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) `z-H]fU  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) *xX( !t'  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) z"6ZDC6  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) {t844La"  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) W(uP`M%][0  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) VY+(,\ )U  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) x{NNx:T1  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ><;l:RGK|  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) A*7Io4e!  
    %       -------------------------------------------------- qJ{r!NJJ 8  
    % f?=r3/AO  
    %   Example 1: c&7Do}  
    % ="3a%\  
    %       % Display the Zernike function Z(n=5,m=1) vQ-i xh  
    %       x = -1:0.01:1; l zfD)TWb  
    %       [X,Y] = meshgrid(x,x); _`bS[%CJ  
    %       [theta,r] = cart2pol(X,Y); {BFT  
    %       idx = r<=1; JqI6k6~Q^  
    %       z = nan(size(X)); v87$NQvwQ  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); M1AZ}b c0]  
    %       figure CRZi;7`*1  
    %       pcolor(x,x,z), shading interp 2 ) TG  
    %       axis square, colorbar CrnB{Z4L  
    %       title('Zernike function Z_5^1(r,\theta)') hAV2F #  
    % 4R& *&GZ#  
    %   Example 2: hl AR[]  
    % KWFyw>*)  
    %       % Display the first 10 Zernike functions Sk8%(JD7  
    %       x = -1:0.01:1; \We"?1^  
    %       [X,Y] = meshgrid(x,x); `fQM  
    %       [theta,r] = cart2pol(X,Y); 'RDWU7c9]  
    %       idx = r<=1; La`h$=#`  
    %       z = nan(size(X)); R#Y50h zT  
    %       n = [0  1  1  2  2  2  3  3  3  3]; jZXVsd  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; uz*d^gr}  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; \e?.h m q  
    %       y = zernfun(n,m,r(idx),theta(idx)); OOCQsoN  
    %       figure('Units','normalized') )-0[ra]  
    %       for k = 1:10 -L@]I$Yo  
    %           z(idx) = y(:,k); d32@M~vD  
    %           subplot(4,7,Nplot(k)) 90Xt_$_}s  
    %           pcolor(x,x,z), shading interp ]UK`?J=t2g  
    %           set(gca,'XTick',[],'YTick',[]) h6g=$8E  
    %           axis square "Jb3&qdU  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) %lXbCE:[  
    %       end WI,40&<  
    % q&u$0XmV  
    %   See also ZERNPOL, ZERNFUN2. ?ouV  
    ( FM4 ^#6  
    ,/~[S  
    %   Paul Fricker 11/13/2006 YV*b~6{d  
    pPoH5CzcK  
    .j:i&j(  
    [!^cd%l  
    W&<g} N+  
    % Check and prepare the inputs: h]qT1( I  
    % ----------------------------- 'KSa8;:=C  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) LRWOBD  
        error('zernfun:NMvectors','N and M must be vectors.') aw1P5aPmX  
    end $9G3LgcS  
    a IQOs  
    /v5qyR7an  
    if length(n)~=length(m) mj)PLZ]  
        error('zernfun:NMlength','N and M must be the same length.') M /"gf;)q>  
    end zEy&4Kl{+  
    *%3oyWwCd  
    (/'h4KS@  
    n = n(:); :JR<SFjm  
    m = m(:); FS8S68  
    if any(mod(n-m,2)) Z)NrhJC  
        error('zernfun:NMmultiplesof2', ... G=1m] >I8  
              'All N and M must differ by multiples of 2 (including 0).') q&Q/?g>f  
    end M^uU4My  
    }f0u5:;Zth  
    S9J5(lYv~N  
    if any(m>n) SWT:frki`  
        error('zernfun:MlessthanN', ... M2dmG<  
              'Each M must be less than or equal to its corresponding N.')  *. 8JP  
    end IK3qE!,&U  
    j$+gq*I&E  
    }S,-uggz  
    if any( r>1 | r<0 ) i(0hvV>'  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') )6G" *  
    end 9<v}LeX  
    8hZwQ[hr  
    ^PC\E}  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) va^0JfQ  
        error('zernfun:RTHvector','R and THETA must be vectors.') x:qr\Rz  
    end wk@yTTnb  
    3q"7K  
     [@<G+j  
    r = r(:); [7RheXO <  
    theta = theta(:); ;,dkJ7M  
    length_r = length(r); v`SY6;<2  
    if length_r~=length(theta) -Un=T X  
        error('zernfun:RTHlength', ... AeaPK  
              'The number of R- and THETA-values must be equal.') 9 Va40X1  
    end ?I\v0H*  
    8[M* x3  
    OTE<x"=h  
    % Check normalization: ?ql2wWsQO  
    % -------------------- n26>>N  
    if nargin==5 && ischar(nflag) kxh 5}eB  
        isnorm = strcmpi(nflag,'norm'); v J-LPTB  
        if ~isnorm PPj[;(A  
            error('zernfun:normalization','Unrecognized normalization flag.') n8$=f'Hgb  
        end x{Sd P$  
    else 6b<+8w  
        isnorm = false; "<x&pQZ%  
    end 8?1o<8hV  
    5q Rc4d'  
    HlPG3LD!  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 6JH 56  
    % Compute the Zernike Polynomials ]n5"Z,K  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% a.DX%C /5  
    E=k w)<X2  
    EE]=f=3  
    % Determine the required powers of r: H_Os4}  
    % ----------------------------------- KmL$M  
    m_abs = abs(m); 6-]h5L]  
    rpowers = []; Y\p $SN  
    for j = 1:length(n) \?&A u  
        rpowers = [rpowers m_abs(j):2:n(j)]; *NlpotW,f  
    end f05=Mc&)  
    rpowers = unique(rpowers); Y208b?=9w  
    &K *X)DAs  
    [4XC #OgA  
    % Pre-compute the values of r raised to the required powers, LwOJ |jA(,  
    % and compile them in a matrix: k" YHsn  
    % ----------------------------- j#VIHCzlr  
    if rpowers(1)==0 <0 uOq  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 5m7b\Mak  
        rpowern = cat(2,rpowern{:}); ue6d~8&  
        rpowern = [ones(length_r,1) rpowern]; Q]rqD83((  
    else ;'HF'Z  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); !)c=1EX]"  
        rpowern = cat(2,rpowern{:}); X>t3|h  
    end Obo_YE  
    ]*;F. pZ  
    @]=f?+y[ 2  
    % Compute the values of the polynomials: +9[SVw8  
    % -------------------------------------- 6^E`Sa! s  
    y = zeros(length_r,length(n)); sx5r(0Z  
    for j = 1:length(n) %!y89x=E  
        s = 0:(n(j)-m_abs(j))/2; j[XYj6*d  
        pows = n(j):-2:m_abs(j); >vujZw_0>  
        for k = length(s):-1:1 qS.)UaA  
            p = (1-2*mod(s(k),2))* ... n3ZAF'  
                       prod(2:(n(j)-s(k)))/              ... RtC'v";6  
                       prod(2:s(k))/                     ... <MdGe1n  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... `f)(Y1%.  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); ArzDI{1  
            idx = (pows(k)==rpowers); h/<=u9J  
            y(:,j) = y(:,j) + p*rpowern(:,idx); os$nL'sq  
        end eN/G i<  
         i2PZ'.sL  
        if isnorm Y)M8zi>b  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); q4ipumy*  
        end XoItV  
    end 9?EVQ  
    % END: Compute the Zernike Polynomials |nY~ZVTt/  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% mp\%M 1<  
    Y"!uU.=xJ  
    V=}1[^  
    % Compute the Zernike functions: i:Y\`J  
    % ------------------------------ zOGR+Gq_Z  
    idx_pos = m>0; U<Jt50O  
    idx_neg = m<0; 6E|S  
    eH <Jng  
    kus}W  J  
    z = y; ;6m;M63z  
    if any(idx_pos) 2 9#]Vr  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ?QpNjsF  
    end 3KcaT5(&  
    if any(idx_neg) ;h~er6&   
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 1R*=.i%W  
    end Y=2Un).&  
    C1QV[bJK  
    EJm4xkYLj1  
    % EOF zernfun c Zvf"cIs  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  =G${[V \  
    r>|-2}{N/  
    DDE还是手动输入的呢? O4|2|sA  
    G0d&@okbFC  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究