切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9313阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, ?OFl9%\ V  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, Gn7P` t*.  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? qTD^Vz V  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? W]U}, g8Z  
    TE!+G\@  
    eg$y,Tx  
    d9kN @W  
    3HI- G.]hC  
    function z = zernfun(n,m,r,theta,nflag) {'e%Hx  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. / Hg/)  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N F#^<t$5t  
    %   and angular frequency M, evaluated at positions (R,THETA) on the z6+D=<  
    %   unit circle.  N is a vector of positive integers (including 0), and vl67Xtk4  
    %   M is a vector with the same number of elements as N.  Each element 1*o=I-nOa  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) xJSK"  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, D8S3YdJ  
    %   and THETA is a vector of angles.  R and THETA must have the same @;K-@*k3  
    %   length.  The output Z is a matrix with one column for every (N,M) QaYUcma~n  
    %   pair, and one row for every (R,THETA) pair. eG05}  
    % m}oqs0xx  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike LqA&@  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), U1!#TD)@  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral ?cRGdLP'D  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, yoc;`hO-  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized /-v6jiM  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. UBZ37P  
    % q*E<~!jL  
    %   The Zernike functions are an orthogonal basis on the unit circle. #lld*I"d  
    %   They are used in disciplines such as astronomy, optics, and 5y`n8. (?  
    %   optometry to describe functions on a circular domain. X@ j.$0 eK  
    % +t hkx$o  
    %   The following table lists the first 15 Zernike functions. ].e4a;pt  
    % A)j',jE&1  
    %       n    m    Zernike function           Normalization 2/ES.>K!.  
    %       -------------------------------------------------- h]{V/  
    %       0    0    1                                 1 7yM"G$  
    %       1    1    r * cos(theta)                    2 l1?$quM^V  
    %       1   -1    r * sin(theta)                    2 tW)K pX  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) , A@uSfC(  
    %       2    0    (2*r^2 - 1)                    sqrt(3) <QcQ.b  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) d[7B,l:RN  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 'Jl |-RUd  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) + <4gJoI  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) iS]4F_|vd  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) ah9P C7[  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) *?v_AZ  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) b:6NVHb%  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) kQt#^pO)  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) b$W~w*O   
    %       4    4    r^4 * sin(4*theta)             sqrt(10) Xvr7qowL  
    %       -------------------------------------------------- }8e_  
    % R|u2ga ~  
    %   Example 1: \Hs*46@TC  
    % bMp[:dw`y  
    %       % Display the Zernike function Z(n=5,m=1) XTro;R=#  
    %       x = -1:0.01:1; ]o<&Q52|  
    %       [X,Y] = meshgrid(x,x); jo}yeGbU  
    %       [theta,r] = cart2pol(X,Y); L%Mj{fJ>Wm  
    %       idx = r<=1; ;b6h/*;'  
    %       z = nan(size(X)); !+(c/ gwBh  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); d"0=.sA  
    %       figure 3[Xc:;+/  
    %       pcolor(x,x,z), shading interp &`^P O $  
    %       axis square, colorbar @yj$  
    %       title('Zernike function Z_5^1(r,\theta)') ~cL)0/j}  
    % fuQk}OW{  
    %   Example 2: #M5pQ&yZy  
    % ?;xL]~Q~1  
    %       % Display the first 10 Zernike functions kE`Fg(M  
    %       x = -1:0.01:1; ;Zt N9l  
    %       [X,Y] = meshgrid(x,x); 5>!I6[{  
    %       [theta,r] = cart2pol(X,Y); _X]\#^UiO2  
    %       idx = r<=1; /:.p{y  
    %       z = nan(size(X)); 8quH#IhB  
    %       n = [0  1  1  2  2  2  3  3  3  3]; %F2T`?t:  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; &y&pjo6v1  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; -SlAt$IJ  
    %       y = zernfun(n,m,r(idx),theta(idx)); zb,YYE1  
    %       figure('Units','normalized') {TVQ]G%'b  
    %       for k = 1:10 !~_6S*~  
    %           z(idx) = y(:,k); 'A{B[  
    %           subplot(4,7,Nplot(k)) wvcj*{7[  
    %           pcolor(x,x,z), shading interp m 88(f2Ch  
    %           set(gca,'XTick',[],'YTick',[]) JKY  
    %           axis square [U@ ;EeS  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ZU68\cL  
    %       end <0btwsv}  
    % E0*62OI~O  
    %   See also ZERNPOL, ZERNFUN2. k!0vpps  
    @>q4hYF  
    .Mxt F\  
    %   Paul Fricker 11/13/2006 8'-E>+L   
    "BA&  
    fi  
    Xk?Y  
    Pah*,  
    % Check and prepare the inputs: ^ ~kfo|  
    % ----------------------------- RHu4cK!5  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) orZwm9#].  
        error('zernfun:NMvectors','N and M must be vectors.') )CoJ9PO7  
    end >>T,M@s-:  
    _Rk>yJD7s  
    *]>~lO1  
    if length(n)~=length(m) MZ:Ty,pw:O  
        error('zernfun:NMlength','N and M must be the same length.') },%, v2}  
    end Ij?Qs{V  
    1B`JvNtd  
    \F9HsR6  
    n = n(:); T!1Np'12zF  
    m = m(:); nn8uFISb  
    if any(mod(n-m,2)) H8A=]Gq  
        error('zernfun:NMmultiplesof2', ... M!Ywjvw*)3  
              'All N and M must differ by multiples of 2 (including 0).') }+fBJ$  
    end $xK(bc'{  
    F#Bi*YY  
    H><! C  
    if any(m>n) p]Q(Z  
        error('zernfun:MlessthanN', ... F$HL \y  
              'Each M must be less than or equal to its corresponding N.') *fp4u_:`  
    end 3A'9=h,lVK  
    Q(BM0n)f  
    >K 7]G?+7E  
    if any( r>1 | r<0 ) 97n,^t2F\  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 9=9R"X>L  
    end @5\/L6SRfL  
    4`p[t;q  
    v03 ^  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) *lyRy/POB  
        error('zernfun:RTHvector','R and THETA must be vectors.') [(iJj3s!  
    end U?8X]  
    lTZcbaO?]  
    ~-BIU Z;  
    r = r(:); v;:. k,E0  
    theta = theta(:); 4~e6z(  
    length_r = length(r); }b / G{92  
    if length_r~=length(theta) puK /;nns  
        error('zernfun:RTHlength', ... k-8$ 43  
              'The number of R- and THETA-values must be equal.') | (: PX  
    end [p96H)8YU  
    =%0r_#F%=  
    Ombvp;  
    % Check normalization: p2j=73$  
    % -------------------- TN.&FDqC9  
    if nargin==5 && ischar(nflag) ^w~Utx4  
        isnorm = strcmpi(nflag,'norm'); qdwjg8fo4Z  
        if ~isnorm $jN,] N~  
            error('zernfun:normalization','Unrecognized normalization flag.') 5uD'Kd$H  
        end \q:PU6q  
    else ;op 8r u  
        isnorm = false; xmwH~UWp  
    end htHnQ4Q  
    +"D*0gYD  
    0BQ<a  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% r8vF I6J  
    % Compute the Zernike Polynomials H:`[$ ^  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% v DVE#Nm_  
    c{cJ>d 0  
    Ng1uJa[k!d  
    % Determine the required powers of r: y0cB@pWp  
    % ----------------------------------- 84YZT+TEN  
    m_abs = abs(m); >TwL&la  
    rpowers = []; ^ ,yh384  
    for j = 1:length(n) ns9a+QQ  
        rpowers = [rpowers m_abs(j):2:n(j)]; r?wE;gH  
    end nnBl:p>< k  
    rpowers = unique(rpowers); ewv[nJD$  
    \7A6+[ `fa  
    TkV*^j5  
    % Pre-compute the values of r raised to the required powers, ?o.Q  
    % and compile them in a matrix: L }&$5KiwV  
    % ----------------------------- F<N{ x^  
    if rpowers(1)==0 3NC-)S  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); VH5Vg We  
        rpowern = cat(2,rpowern{:}); yf7$m_$C'  
        rpowern = [ones(length_r,1) rpowern]; exL<cN  
    else  XV*uu "F  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); b+ J)  
        rpowern = cat(2,rpowern{:}); mqb6MnK -  
    end V-%Am  
     d`&F  
    )gP0+W!u  
    % Compute the values of the polynomials: cQldBc  
    % -------------------------------------- k-a3oLCR,  
    y = zeros(length_r,length(n)); l*z.20^P  
    for j = 1:length(n) RE}$(T=  
        s = 0:(n(j)-m_abs(j))/2; 'hl4cHk14  
        pows = n(j):-2:m_abs(j); WZJ}HHePr  
        for k = length(s):-1:1 1b-_![&]1  
            p = (1-2*mod(s(k),2))* ... mo- Y %  
                       prod(2:(n(j)-s(k)))/              ... `+O7IyTM A  
                       prod(2:s(k))/                     ... yZ]u{LJS  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... o$-!E(p  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); L.) 0!1  
            idx = (pows(k)==rpowers); ]:vo"{*C  
            y(:,j) = y(:,j) + p*rpowern(:,idx); &p#$}tm  
        end ]EZiPW-uy  
         d y^zOqc  
        if isnorm _}(ej&'f  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); o7;#B)jWS  
        end O$,MdhyXC  
    end 9k[>(LC  
    % END: Compute the Zernike Polynomials 'lD"{^  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% :gJ?3LwTf  
    w `0m[*  
    -r!sY+Z>  
    % Compute the Zernike functions: bI"_hvcFp  
    % ------------------------------ >2w^dI2  
    idx_pos = m>0; a2'f#[as  
    idx_neg = m<0; ,aBo p#  
    o)pso\;  
    3.?kxac  
    z = y; pZg}7F{$  
    if any(idx_pos) aEW sru  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); e=m=IVY #W  
    end CFU'- #b  
    if any(idx_neg) e7^B3FOx  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); @ =M:RA  
    end da/Tms`T  
    Lradyo44u\  
    n$O[yRMI[  
    % EOF zernfun $+$S}i=  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  `+m:@0&L  
    Gl"|t't(  
    DDE还是手动输入的呢? TtQ'I}7q  
    g7" 2}|qxo  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究