下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, bI]UO)
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 4nII/cPG
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? 2Cd
--W+=
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? r` `iC5Ii
?[S
>&Vq
nN=:#4
>Y
hG~]~ )
O<dZA=Oez
function z = zernfun(n,m,r,theta,nflag) \gp,Txueb
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. =F%wlzF:
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Qw<kX*fxrI
% and angular frequency M, evaluated at positions (R,THETA) on the
sO6g IPU^
% unit circle. N is a vector of positive integers (including 0), and n`m_S
% M is a vector with the same number of elements as N. Each element adO!Gs9f?
% k of M must be a positive integer, with possible values M(k) = -N(k) 9IvcKzS2
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, =EcIXDzC>
% and THETA is a vector of angles. R and THETA must have the same 1( ?CNW[
% length. The output Z is a matrix with one column for every (N,M) u1;e*ty
% pair, and one row for every (R,THETA) pair. o7Cnyy#:
% iVKbGgA
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike n4vXm
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), N{^>MRK=5
% with delta(m,0) the Kronecker delta, is chosen so that the integral ,"N3k(g
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, i_0,BVC
% and theta=0 to theta=2*pi) is unity. For the non-normalized c3zT(FgO>N
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. K/wiL69
% @0vC v
% The Zernike functions are an orthogonal basis on the unit circle. b#p~F}qT
% They are used in disciplines such as astronomy, optics, and \za5:?[xB
% optometry to describe functions on a circular domain. I(^jOgYU
% T$n>7X-r
% The following table lists the first 15 Zernike functions. 4>$
;gH
% Jcalf{W6
% n m Zernike function Normalization CRc!|?
% -------------------------------------------------- jMf 7J
% 0 0 1 1 !bZhj3.
% 1 1 r * cos(theta) 2 r*i$+ Z
% 1 -1 r * sin(theta) 2 "rjv5*z^&
% 2 -2 r^2 * cos(2*theta) sqrt(6) 'YZI>V*
% 2 0 (2*r^2 - 1) sqrt(3) ~'^!udF-
% 2 2 r^2 * sin(2*theta) sqrt(6) ;&+[W(7Sy
% 3 -3 r^3 * cos(3*theta) sqrt(8) `z-H]fU
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) *xX(!t'
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) z"6ZDC6
% 3 3 r^3 * sin(3*theta) sqrt(8) {t844La"
% 4 -4 r^4 * cos(4*theta) sqrt(10) W(uP`M%][0
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) VY+(,\)U
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) x{NNx:T1
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ><;l:RGK|
% 4 4 r^4 * sin(4*theta) sqrt(10) A*7Io4e!
% -------------------------------------------------- qJ{r!NJJ
8
% f?=r3/AO
% Example 1: c&7Do}
% ="3a%\
% % Display the Zernike function Z(n=5,m=1) v Q-ixh
% x = -1:0.01:1; l zfD)TWb
% [X,Y] = meshgrid(x,x); _`bS[%CJ
% [theta,r] = cart2pol(X,Y); {B FT
% idx = r<=1; JqI6k6~Q^
% z = nan(size(X)); v87$NQvwQ
% z(idx) = zernfun(5,1,r(idx),theta(idx)); M1AZ}bc0]
% figure CRZi;7`*1
% pcolor(x,x,z), shading interp 2
) TG
% axis square, colorbar CrnB{Z4L
% title('Zernike function Z_5^1(r,\theta)') hAV2F#
% 4R&*&GZ#
% Example 2: hlAR[ ]
% KWFyw>*)
% % Display the first 10 Zernike functions Sk8%(JD7
% x = -1:0.01:1; \We"?1^
% [X,Y] = meshgrid(x,x); `fQM
% [theta,r] = cart2pol(X,Y); 'RDWU7c9]
% idx = r<=1; La`h$=#`
% z = nan(size(X)); R#Y50hzT
% n = [0 1 1 2 2 2 3 3 3 3]; jZXVsd
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; uz*d^gr}
% Nplot = [4 10 12 16 18 20 22 24 26 28]; \e?.hmq
% y = zernfun(n,m,r(idx),theta(idx)); OOCQsoN
% figure('Units','normalized') )-0[ra]
% for k = 1:10 -L@]I$Yo
% z(idx) = y(:,k); d32@M~vD
% subplot(4,7,Nplot(k)) 90Xt_$_}s
% pcolor(x,x,z), shading interp ]UK`?J=t2g
% set(gca,'XTick',[],'YTick',[]) h6g=$8E
% axis square "Jb3&qdU
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) %lXbCE:[
% end WI,40&<
% q&u$0XmV
% See also ZERNPOL, ZERNFUN2. ? ouV
(FM4 ^#6
,/~[S
% Paul Fricker 11/13/2006 YV*b~6{d
pPoH5CzcK
.j:i&j(
[!^cd%l
W&<g} N+
% Check and prepare the inputs: h]qT1(I
% ----------------------------- 'KSa8;:=C
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) LRWOBD
error('zernfun:NMvectors','N and M must be vectors.') aw1P5aPmX
end $9G3LgcS
aIQOs
/v5qyR7an
if length(n)~=length(m) mj)PLZ]
error('zernfun:NMlength','N and M must be the same length.') M
/"gf;)q>
end zEy&4Kl{+
*%3oyWwCd
(/'h4KS@
n = n(:); :JR<SFjm
m = m(:); FS8S68
if any(mod(n-m,2)) Z)NrhJC
error('zernfun:NMmultiplesof2', ... G=1m]>I8
'All N and M must differ by multiples of 2 (including 0).') q&Q/?g>f
end M^uU4My
}f0u5:;Zth
S9J5(lYv~N
if any(m>n) SWT:frki`
error('zernfun:MlessthanN', ... M2dmG<
'Each M must be less than or equal to its corresponding N.') *.8JP
end IK3qE!,&U
j$+gq*I&E
}S,-uggz
if any( r>1 | r<0 ) i (0hvV>'
error('zernfun:Rlessthan1','All R must be between 0 and 1.') )6G"*
end 9<v}LeX
8hZwQ[hr
^PC\E}
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) va^0JfQ
error('zernfun:RTHvector','R and THETA must be vectors.') x:qr \Rz
end wk@yTTnb
3 q"7K
[@<G+j
r = r(:); [7RheXO<
theta = theta(:); ;,dkJ7M
length_r = length(r); v`SY6;<2
if length_r~=length(theta) -Un=TX
error('zernfun:RTHlength', ... AeaPK
'The number of R- and THETA-values must be equal.') 9
Va40X1
end ?I\v0H*
8[M*
x3
OTE<x"=h
% Check normalization: ?ql2wWsQO
% -------------------- n26>>N
if nargin==5 && ischar(nflag) kxh 5}eB
isnorm = strcmpi(nflag,'norm'); v
J-LPTB
if ~isnorm PPj[;(A
error('zernfun:normalization','Unrecognized normalization flag.') n8$=f'Hgb
end x{Sd
P$
else 6b<+8w
isnorm = false; "<x&pQZ%
end 8?1o<8hV
5qRc4d'
HlPG3LD!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 6JH56
% Compute the Zernike Polynomials ]n5"Z,K
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% a.DX%C/5
E=kw)<X2
EE]=f=3
% Determine the required powers of r: H_Os4}
% ----------------------------------- KmL$M
m_abs = abs(m); 6- ]h5L]
rpowers = []; Y\p$SN
for j = 1:length(n) \?&Au
rpowers = [rpowers m_abs(j):2:n(j)]; *NlpotW,f
end f05=Mc&)
rpowers = unique(rpowers); Y208b?=9w
&K
*X)DAs
[4XC#OgA
% Pre-compute the values of r raised to the required powers, LwOJ|jA(,
% and compile them in a matrix: k"
YHsn
% ----------------------------- j#VIHCzlr
if rpowers(1)==0 <0 uOq
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 5m7b\Mak
rpowern = cat(2,rpowern{:}); ue6d~8&
rpowern = [ones(length_r,1) rpowern]; Q]rqD83((
else ;'HF'Z
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); !)c=1EX]"
rpowern = cat(2,rpowern{:}); X>t3|h
end Obo _YE
]*;F. pZ
@]=f?+y[ 2
% Compute the values of the polynomials: +9[SVw8
% -------------------------------------- 6^E`Sa!s
y = zeros(length_r,length(n)); sx5r(0Z
for j = 1:length(n) %!y89x=E
s = 0:(n(j)-m_abs(j))/2; j[XYj6*d
pows = n(j):-2:m_abs(j); >vujZw_0>
for k = length(s):-1:1 qS.)UaA
p = (1-2*mod(s(k),2))* ... n3ZAF'
prod(2:(n(j)-s(k)))/ ... RtC'v";6
prod(2:s(k))/ ... <MdGe1n
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... `f)(Y1%.
prod(2:((n(j)+m_abs(j))/2-s(k))); ArzDI{1
idx = (pows(k)==rpowers); h/<=u9J
y(:,j) = y(:,j) + p*rpowern(:,idx); os$nL'sq
end eN/G i<
i2PZ'.sL
if isnorm Y)M8zi>b
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); q4ipumy*
end XoItV
end 9?EVQ
% END: Compute the Zernike Polynomials |nY~ZVTt/
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% mp\%M
1<
Y"!uU.=xJ
V=}1[^
% Compute the Zernike functions: i:Y\`J
% ------------------------------ zOGR+Gq_Z
idx_pos = m>0; U<Jt50O
idx_neg = m<0; 6E|S
eH
<Jng
kus}WJ
z = y; ;6m;M63 z
if any(idx_pos) 2
9#]Vr
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ?QpNjsF
end 3KcaT5(&
if any(idx_neg) ;h~er6&
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 1R*=.i%W
end Y=2Un).&
C1QV[bJK
EJm4xkYLj1
% EOF zernfun
c Zvf"cIs