切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9448阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, SU/G)&Mi  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 0z/h+,  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? =M/qV  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? |VK:2p^ u  
    0f1H8zV  
    z;J  
    \I;cZ>{u"}  
    lqF>=15  
    function z = zernfun(n,m,r,theta,nflag) im=5{PbJ^  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. XJUEwX  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N cST\~SUm  
    %   and angular frequency M, evaluated at positions (R,THETA) on the I-,>DLG  
    %   unit circle.  N is a vector of positive integers (including 0), and qmEoqU  
    %   M is a vector with the same number of elements as N.  Each element W+8^P( K  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) %*6RzJO6  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ' PELf P8  
    %   and THETA is a vector of angles.  R and THETA must have the same *|oPxQCtK  
    %   length.  The output Z is a matrix with one column for every (N,M) 3!aEClRtq  
    %   pair, and one row for every (R,THETA) pair. GWgd8x*V  
    % X<Z(]`i  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Vb2\/e:k  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), !nwbj21%  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral Rb#/qkk/  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, \7yJ\I  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized q3+I<qsAz  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. V{0%xz #  
    % G.Tpl-m  
    %   The Zernike functions are an orthogonal basis on the unit circle. ;Z*'D}  
    %   They are used in disciplines such as astronomy, optics, and [m\,+lG?)j  
    %   optometry to describe functions on a circular domain. |CwG3&8  
    % ijF V<P  
    %   The following table lists the first 15 Zernike functions. X@!X6j  
    % ojoxXly`  
    %       n    m    Zernike function           Normalization uoHqL IpQ  
    %       -------------------------------------------------- };rm3;~ eg  
    %       0    0    1                                 1 3w6&&R9  
    %       1    1    r * cos(theta)                    2 jn^fgH ?  
    %       1   -1    r * sin(theta)                    2 ]U[&uymax  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) +C_*Vs@4  
    %       2    0    (2*r^2 - 1)                    sqrt(3) >yKpM }6l{  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) )!eEO [\d  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ENq"mwV|  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) ds]?;l"  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ^>^ \CP]  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) g2=}G<*0  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 9`BEi(z  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) %K?iNe  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) wu2:'y>n  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) _IxamWpX$  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) FZp<|t  
    %       -------------------------------------------------- EjSD4  
    % y@3kU*-1  
    %   Example 1: oIb) Rq!m  
    % :CTL)ad2  
    %       % Display the Zernike function Z(n=5,m=1) f&c]LH _  
    %       x = -1:0.01:1; ~ M*gsW$  
    %       [X,Y] = meshgrid(x,x); j&CZ=?K^c  
    %       [theta,r] = cart2pol(X,Y); hM>*a!)U  
    %       idx = r<=1; TT7PQf >  
    %       z = nan(size(X)); fLNag~  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); .!yq@Q|=u  
    %       figure /lJjQ]c;>  
    %       pcolor(x,x,z), shading interp JpK[&/Ct  
    %       axis square, colorbar YBvd q1  
    %       title('Zernike function Z_5^1(r,\theta)') G#0,CLGN^  
    % pds*2p)2  
    %   Example 2: )b92yP{  
    % 6e# wR/  
    %       % Display the first 10 Zernike functions r?^"6 5 =  
    %       x = -1:0.01:1; y9!:^kDI  
    %       [X,Y] = meshgrid(x,x); f=m/ -mAA  
    %       [theta,r] = cart2pol(X,Y); 6V2j*J  
    %       idx = r<=1; {y6C0A*  
    %       z = nan(size(X)); U:n*<l-k}  
    %       n = [0  1  1  2  2  2  3  3  3  3]; :B.G)M\  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; A"4@L*QV  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; k 4B_W  
    %       y = zernfun(n,m,r(idx),theta(idx)); ~<,Sh~Ana.  
    %       figure('Units','normalized') U5<@<j(@  
    %       for k = 1:10 W-XpJ\_  
    %           z(idx) = y(:,k); P}@*Z>j:#  
    %           subplot(4,7,Nplot(k)) &@6 GI<  
    %           pcolor(x,x,z), shading interp XG&K32_fs  
    %           set(gca,'XTick',[],'YTick',[]) ~ziexZ=N  
    %           axis square e+@xs n3  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) )6{P8k4Zr  
    %       end B< hEx@  
    % lFf XWNb  
    %   See also ZERNPOL, ZERNFUN2. ]"sRS`0+  
    m}5q]N";x  
    c'0 5{C  
    %   Paul Fricker 11/13/2006 m*oc)x7'  
    Uh}X<d/V  
    4AHL3@x  
    A1-qtAO]  
    Qq3fZ=  
    % Check and prepare the inputs: t`u!]DHv  
    % ----------------------------- Tpzw=bC^  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) yX! #a>d"H  
        error('zernfun:NMvectors','N and M must be vectors.') N9]xJgTze  
    end A[H;WKn0  
    M<(u A'  
    `?uPn~,e8  
    if length(n)~=length(m) V]c5 Z$Bd  
        error('zernfun:NMlength','N and M must be the same length.') h|p[OecG  
    end FkB{ SC J  
    GwQn;gkF  
    GMm'of#  
    n = n(:); "HC)/)Mv@  
    m = m(:); |ym%| B  
    if any(mod(n-m,2)) ;|TT(P:d  
        error('zernfun:NMmultiplesof2', ... 8=Q V N_  
              'All N and M must differ by multiples of 2 (including 0).') maDz W_3  
    end 2-v\3voN  
    TpP8=8_Lh  
    C3S`}o.  
    if any(m>n) QlD6i-a  
        error('zernfun:MlessthanN', ... Q4wc-s4RN  
              'Each M must be less than or equal to its corresponding N.') &&PgOFD  
    end #C\4/g? =,  
    <*Y'lV  
    El6bD% \G  
    if any( r>1 | r<0 ) @\}YAa>>"I  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') G9RP^  
    end s'L?;:)dyB  
    CgnXr/!L  
    *IZf^-=Q  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) (X}@^]lpa  
        error('zernfun:RTHvector','R and THETA must be vectors.') Y {c5  
    end ut5yf$%  
    }Bff,q  
    p4> ,Fwy2  
    r = r(:); <LA^%2jT  
    theta = theta(:); \+Y!ILOI  
    length_r = length(r); ow.6!tl0=h  
    if length_r~=length(theta) l2&hBacT  
        error('zernfun:RTHlength', ... \FifzKA  
              'The number of R- and THETA-values must be equal.') ^\wl2  
    end =!,Gst_  
    jO)&KEh  
    ?63&g{vA  
    % Check normalization: iZ; TYcT  
    % -------------------- Q%5F ]`VN  
    if nargin==5 && ischar(nflag) $(q8y/,R*-  
        isnorm = strcmpi(nflag,'norm'); D;js.ZF  
        if ~isnorm /cY^]VLe  
            error('zernfun:normalization','Unrecognized normalization flag.') @2' %o<lF  
        end E _iO@  
    else @vs@>CYdz  
        isnorm = false; F~_;o+e;X  
    end 3s(Ia^  
    0"4@;e_)>  
    QnKC#   
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% )saR0{e0N  
    % Compute the Zernike Polynomials ,7,;twKz  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ?_ RYqolz  
    `6Hf&u<  
    $']VQ4tZ  
    % Determine the required powers of r: \6 sQJq  
    % ----------------------------------- ?~F. /  
    m_abs = abs(m); /EFq#+6  
    rpowers = []; :oa9#c`L  
    for j = 1:length(n) $TG?4  
        rpowers = [rpowers m_abs(j):2:n(j)]; $a.u05  
    end /f3m)pT  
    rpowers = unique(rpowers); ?R6`qe_F  
    b!a %YLL  
    >oqZ !V5[  
    % Pre-compute the values of r raised to the required powers, OE"<!oIs  
    % and compile them in a matrix: v>-Y uS  
    % ----------------------------- p&3> `C  
    if rpowers(1)==0 ybvI?#  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); I@./${o  
        rpowern = cat(2,rpowern{:}); R&So4},B  
        rpowern = [ones(length_r,1) rpowern]; DO^y;y>  
    else aRwnRii  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Ew4 g'A:H  
        rpowern = cat(2,rpowern{:}); C\Ayv)S #2  
    end R6@uM<  
    lbkL yp2  
    y/R+$h(%  
    % Compute the values of the polynomials: /V^sJ($V$~  
    % -------------------------------------- PqEAqP  
    y = zeros(length_r,length(n)); D4Sh9:\  
    for j = 1:length(n) %v4 [{ =fE  
        s = 0:(n(j)-m_abs(j))/2; frH)_YJ%  
        pows = n(j):-2:m_abs(j); hC>wFC  
        for k = length(s):-1:1 %f!iHo+Z  
            p = (1-2*mod(s(k),2))* ... H;I~N*ltJ(  
                       prod(2:(n(j)-s(k)))/              ... > saI+u'o  
                       prod(2:s(k))/                     ... )%mAZk-*;^  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... fNoR\5}!  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); /77z\[CeYH  
            idx = (pows(k)==rpowers); 7/>a:02  
            y(:,j) = y(:,j) + p*rpowern(:,idx); J}@GKNm  
        end v2J0u:#,  
         RvW.@#EH0  
        if isnorm 4vqNule  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); {L9yhYw  
        end 4}-#mBV]/  
    end AMT slo  
    % END: Compute the Zernike Polynomials sv=H~wce  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% o#e7,O  
    r~oSP^e'  
    cyMs(21  
    % Compute the Zernike functions: z5EVG  
    % ------------------------------ ( V4G<-jG  
    idx_pos = m>0; }1>atgq]w  
    idx_neg = m<0; e &3#2_  
    :_H>SR:  
    %dmfBf Ev  
    z = y; ;0j*>fb\q7  
    if any(idx_pos) @HEPc95  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); e2Jp'93o'  
    end 0QoLS|voA/  
    if any(idx_neg) h7?.2Q&S  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); QymD-A"P  
    end WQt5#m; W  
    :qnokrGzB  
    \!wh[qEQ\  
    % EOF zernfun Yy@g9mi  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    在线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  N5ci};?  
    /]g>#J%b  
    DDE还是手动输入的呢? S[ ^nSF  
    i=V-@|Z  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究