下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, S/;bU:
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, (8_\^jJ
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? tTd\|
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? RK w$- 7O
n~VD uKn9
:[;hu}!&
\h8 <cTQ
E7-@&=]v
function z = zernfun(n,m,r,theta,nflag) +iOKb c'
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. }i!J/tJ)b
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N z3?o|A }/W
% and angular frequency M, evaluated at positions (R,THETA) on the 9mZ
% unit circle. N is a vector of positive integers (including 0), and 4Qn$9D+?
% M is a vector with the same number of elements as N. Each element N&@}/wzZ
% k of M must be a positive integer, with possible values M(k) = -N(k) 36US5ef
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, \d::l{VB
% and THETA is a vector of angles. R and THETA must have the same s&'QN=A
% length. The output Z is a matrix with one column for every (N,M) NHlk|Y#6b
% pair, and one row for every (R,THETA) pair. e}1uz3Rh
% ! VjFW5'{
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike f 2l{^E#h
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), #m={yck *
% with delta(m,0) the Kronecker delta, is chosen so that the integral +>JjvYx}\
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 37}D9:#5C
% and theta=0 to theta=2*pi) is unity. For the non-normalized p,"g+ MwP
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. nT2)E&U6%
% ToYAW,U[d
% The Zernike functions are an orthogonal basis on the unit circle. /*0K92NB
% They are used in disciplines such as astronomy, optics, and qP<Lr)nUH
% optometry to describe functions on a circular domain. Yw0[[N<SW
% @IXsy
% The following table lists the first 15 Zernike functions. v$^Z6>vVI
% y!xE<S&Y
% n m Zernike function Normalization U(x]O/m
% -------------------------------------------------- 4>J
% 0 0 1 1 ;| 1$Q!4
% 1 1 r * cos(theta) 2 NVRLrJWpp
% 1 -1 r * sin(theta) 2 "Wx]RN:
% 2 -2 r^2 * cos(2*theta) sqrt(6) 3do)Vg4
% 2 0 (2*r^2 - 1) sqrt(3) B5$kHM%p
% 2 2 r^2 * sin(2*theta) sqrt(6) Jec'`,Y
% 3 -3 r^3 * cos(3*theta) sqrt(8) "yW:\
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 4bgqg0z>
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) QE7V.
>J_p
% 3 3 r^3 * sin(3*theta) sqrt(8) ^Ox3XC
% 4 -4 r^4 * cos(4*theta) sqrt(10) qgrg CJ
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) W5R\Q,x6
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) =JmT:enV
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) f7}*X|_Y
% 4 4 r^4 * sin(4*theta) sqrt(10) D+>1]ij
% -------------------------------------------------- ZK)%l~J
% c%qv9
% Example 1: Rn@#d}
% A<ynIs<
% % Display the Zernike function Z(n=5,m=1) sq'Pyz[[
% x = -1:0.01:1; ~zw]5|
% [X,Y] = meshgrid(x,x); 0x!2ihf
% [theta,r] = cart2pol(X,Y); 5scEc,JCi
% idx = r<=1; 1x,tu}<u^
% z = nan(size(X)); jq!tT%o*B
% z(idx) = zernfun(5,1,r(idx),theta(idx)); [
Fz`D/
% figure LcE+GC
% pcolor(x,x,z), shading interp e>AE8T
% axis square, colorbar &
GreN
% title('Zernike function Z_5^1(r,\theta)') wm^J;<T[
% wiBVuj#
% Example 2: nWHa.H#
% FLY
Ca
% % Display the first 10 Zernike functions 3*@5S]]
% x = -1:0.01:1; bAx?&$
% [X,Y] = meshgrid(x,x); Y5j]Z^^v
% [theta,r] = cart2pol(X,Y); v~Y^r2
% idx = r<=1; !Xph_SQ!B=
% z = nan(size(X)); &
j+oJasI
% n = [0 1 1 2 2 2 3 3 3 3]; 5+wAzVA
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 28=O03q
% Nplot = [4 10 12 16 18 20 22 24 26 28]; F_4n^@M
% y = zernfun(n,m,r(idx),theta(idx)); {,L+1h
% figure('Units','normalized') Kde9
$
% for k = 1:10 wT{nu[=GH*
% z(idx) = y(:,k); 5v6Eii:
% subplot(4,7,Nplot(k)) y.Z?LCd<
% pcolor(x,x,z), shading interp n-@j5w+k4
% set(gca,'XTick',[],'YTick',[]) q?ix$nKOv
% axis square )sT> i
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) nt@aYXK4|
% end 9tqF8pb7v
% Xp}Yw"7
% See also ZERNPOL, ZERNFUN2. G}G#i`6o
mN19WQ(r
DX|#
gUAm
% Paul Fricker 11/13/2006 tmtT(
(zFi$
_:VB}>
-bU oCF0
1&U>,;]*
% Check and prepare the inputs: s4uhsJL V$
% ----------------------------- >HS W]"k
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) j ku}QM^
error('zernfun:NMvectors','N and M must be vectors.') /n8B,-Z5s5
end PKzyV ;
*C:|X b<9
2Roc|)-47
if length(n)~=length(m) 9\DQ>V TQ
error('zernfun:NMlength','N and M must be the same length.') TU
1I} ,
end 'uxX5k/D@t
W!&vul5
O7 $hYk
n = n(:); 5kz)5,KjM
m = m(:); Mwr"~?\\
if any(mod(n-m,2)) QD>"]ap,o
error('zernfun:NMmultiplesof2', ... VH1d$
'All N and M must differ by multiples of 2 (including 0).') ;/rXQe1
end r'*}TM'8
|a!fhl+
}x
wu*Zx
if any(m>n) S9",d~EM
error('zernfun:MlessthanN', ... 5EebPXBzB
'Each M must be less than or equal to its corresponding N.') =Fr(9(
end iS<I0\D
aWY
gR
\9g+^vQg
if any( r>1 | r<0 ) jE/AA!DC#
error('zernfun:Rlessthan1','All R must be between 0 and 1.') pn5Q5xc
end wD]/{
jw
"UJ
S5[7$
KSNPkd6
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) )}?#
error('zernfun:RTHvector','R and THETA must be vectors.') /Dj=iBO
end Q{lpKe0
HI11Jl}{
`p;I}
r = r(:); m-*hygkcDu
theta = theta(:); UaB @
length_r = length(r); p ObX42
if length_r~=length(theta) O6G0
error('zernfun:RTHlength', ... sH[ROm
'The number of R- and THETA-values must be equal.') eF3,2DDC
end -u8NF_{c
ssN6M./6
@0u~?!g@
% Check normalization: SF<c0bR9
% -------------------- pj?f?.^
if nargin==5 && ischar(nflag)
x}8yXE"
isnorm = strcmpi(nflag,'norm'); csW43&
if ~isnorm R'@9]99
error('zernfun:normalization','Unrecognized normalization flag.') 20nP/e
end
N#a$t&
else N<-gI9_
isnorm = false; uW}s)j.
end 7M<'/s
ZU%[guf
-K3^BZHI
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% *=I}Qh(1
% Compute the Zernike Polynomials |='z{WS
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% c5D)
@8ppEFw
W)f/0QX}W
% Determine the required powers of r: \S!e![L/
% ----------------------------------- ]X ?7ZI^
m_abs = abs(m); zIu
E9l
rpowers = []; 2vWx)Drb6
for j = 1:length(n) `u
teg=
rpowers = [rpowers m_abs(j):2:n(j)]; N%*5 T[.
end ;CPr]avY
rpowers = unique(rpowers); %~E ?Z!_W
O%5
r[
^Uf]Q$uCjE
% Pre-compute the values of r raised to the required powers, t? yz
% and compile them in a matrix: E(8*
pI
% ----------------------------- L"4mL,
if rpowers(1)==0 [k;\S XDZo
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); +
|#O@k
rpowern = cat(2,rpowern{:}); 9vGu0Um
rpowern = [ones(length_r,1) rpowern]; Ne[7gxpu
else
G(G{RAk>
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); UVd 7 JGR
rpowern = cat(2,rpowern{:}); Z:sg}
end :?g:~+hfO
\b?" b
?7.7`1m!v
% Compute the values of the polynomials: lE&&_INHQ
% -------------------------------------- rMLp-aR'
y = zeros(length_r,length(n)); \%f q
for j = 1:length(n) `OXpU,Z 6U
s = 0:(n(j)-m_abs(j))/2; 10q'Z}34
pows = n(j):-2:m_abs(j); '":lB]hS
for k = length(s):-1:1 4'a=pnE$
p = (1-2*mod(s(k),2))* ... y}My.c
prod(2:(n(j)-s(k)))/ ... WSp
prod(2:s(k))/ ... ;U.hxh;+
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ;h*K }U
prod(2:((n(j)+m_abs(j))/2-s(k))); FrL]^59a
idx = (pows(k)==rpowers); Z\ja
y(:,j) = y(:,j) + p*rpowern(:,idx); X[&Wkr8x '
end ^h~x)@=
v*SEb~[
if isnorm +wN^c#~7
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 8&?s#5zA
end a1t4Dd
end #xQr<p$L6
% END: Compute the Zernike Polynomials ZjQ
|Wx
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% AP7Yuv`
Rv$[)`&T
lyy W
% Compute the Zernike functions: AGQ#$fh>7=
% ------------------------------ ]yx$(6_U
idx_pos = m>0; Sjyoc<Uo
idx_neg = m<0; t\{'F7
:U3kW8;UMP
vd
0ljA
z = y; Tgm nG/Z
if any(idx_pos) PT=2@kH
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); +;N2p1ZBf
end E_])E`BJ
if any(idx_neg) j.w@(<=x
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Sa?ksD2IaB
end Li/O
_wkVwPr
:Q $K<)[
% EOF zernfun K]s[5