切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8620阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, xtV[p4U  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, z,;;=V6j  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? TDK@)mP  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? KM?1/KZ/~  
    @ $cUNvI  
    YZ#V#[j'^  
    "vF MSY  
    r2*<\ax  
    function z = zernfun(n,m,r,theta,nflag) 4Wel[]  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. suJ_nb  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Y,z??bm~J  
    %   and angular frequency M, evaluated at positions (R,THETA) on the Lrz3   
    %   unit circle.  N is a vector of positive integers (including 0), and H(u+#PIIw  
    %   M is a vector with the same number of elements as N.  Each element Hy; Hs#  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) /4S;QEv  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ^z1IN-Tm/  
    %   and THETA is a vector of angles.  R and THETA must have the same 3 &&+Y X  
    %   length.  The output Z is a matrix with one column for every (N,M) mxTk+j=  
    %   pair, and one row for every (R,THETA) pair. 6o3T;h  
    % Id8wS!W`7  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike }amU[U,  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), n"{X!(RIcx  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral JV"NZvjN7d  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 4z4v\IpB  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized }F1s tDx  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. O??vm?eo  
    % 0`hwmDiB"  
    %   The Zernike functions are an orthogonal basis on the unit circle. ,4F,:w  
    %   They are used in disciplines such as astronomy, optics, and uZjI?Z.A  
    %   optometry to describe functions on a circular domain. Z_z#QX>=D  
    % 7Ur?ep  
    %   The following table lists the first 15 Zernike functions. W*T{,M@Y  
    % {XY3Xo  
    %       n    m    Zernike function           Normalization ,TC~~EWq  
    %       -------------------------------------------------- D!> d0k,Y  
    %       0    0    1                                 1 v#w_eqg  
    %       1    1    r * cos(theta)                    2 E:A!wS`"  
    %       1   -1    r * sin(theta)                    2 cf8-]G?tK  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) s3t!<9[m  
    %       2    0    (2*r^2 - 1)                    sqrt(3) Ueyw;Y  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) =V$j6  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) <&#+ E%E4  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) *K!++k!Ixa  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) ~uaP$*B[  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) cy3ww})  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) CmC0k-%w  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Hhv$4;&X  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 3{J.xWB@:  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Pn WD}'0V  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) r'aY2n^O  
    %       -------------------------------------------------- uDG+SdyN@  
    % 2"/yEg*=  
    %   Example 1: *3Nn +T  
    % rY70 ^<z  
    %       % Display the Zernike function Z(n=5,m=1) %`\]Y']R  
    %       x = -1:0.01:1; }5gr5g\OtP  
    %       [X,Y] = meshgrid(x,x); iB bbr,  
    %       [theta,r] = cart2pol(X,Y); gbGTG(:1S  
    %       idx = r<=1; I6dm@{/:>  
    %       z = nan(size(X)); it}-^3A M  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); H?:Jq\Ba0  
    %       figure X%4h(7;v  
    %       pcolor(x,x,z), shading interp &hN,xpC  
    %       axis square, colorbar ?SX_gYe9  
    %       title('Zernike function Z_5^1(r,\theta)') m^tNqJs8  
    % f!g<3X{=  
    %   Example 2: Jp ]T9W\  
    % UC!5 wVY  
    %       % Display the first 10 Zernike functions rz6jx  
    %       x = -1:0.01:1; :R+],m il  
    %       [X,Y] = meshgrid(x,x); v]bAWo  
    %       [theta,r] = cart2pol(X,Y); "{F;M{h$},  
    %       idx = r<=1; &'O?es|Lb  
    %       z = nan(size(X)); 0|C[-ppr  
    %       n = [0  1  1  2  2  2  3  3  3  3]; lO 2k<  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; @d)a~[pm  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 5-'vB  
    %       y = zernfun(n,m,r(idx),theta(idx)); Y ><(?  
    %       figure('Units','normalized') R<g=\XO'y  
    %       for k = 1:10 BX$hAQ(6Q  
    %           z(idx) = y(:,k); `pYE[y+  
    %           subplot(4,7,Nplot(k)) FmA-OqEpA  
    %           pcolor(x,x,z), shading interp lG]GlgSs  
    %           set(gca,'XTick',[],'YTick',[]) 7Po/_%  
    %           axis square <nA3Sd"QfV  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) q3\!$IM.  
    %       end "k>bUe|RG  
    % V_]-`?S  
    %   See also ZERNPOL, ZERNFUN2. +"=~o5k3Q  
    &7F&}7*c  
    7SHo%b A  
    %   Paul Fricker 11/13/2006 7.|S>+Q  
    \UQ],+H  
    Qa?Q bHc  
    tJ>d4A;8x  
    rqC1  
    % Check and prepare the inputs: $K=z  
    % ----------------------------- {G.{a d  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) J~2 CD*v  
        error('zernfun:NMvectors','N and M must be vectors.') APuu_!ez1  
    end 6SAQDE  
     * D3  
    riEqW}{  
    if length(n)~=length(m) q_5 8Lw  
        error('zernfun:NMlength','N and M must be the same length.') gT7I9 (x!W  
    end 6cZ  C  
    bVOO)  
    dh,7iQ s  
    n = n(:); EQ~I'#m7  
    m = m(:); d.1Q~&`  
    if any(mod(n-m,2)) bgXc_>T6_y  
        error('zernfun:NMmultiplesof2', ... _Fvsi3d/  
              'All N and M must differ by multiples of 2 (including 0).') Sl~C0eO  
    end bl9E&B/  
    :\T_'Shq  
    %w%zv2d  
    if any(m>n) Es,0'\m&  
        error('zernfun:MlessthanN', ... rN'k4V"K  
              'Each M must be less than or equal to its corresponding N.') gU*I;s>  
    end .=aMjrME  
    0Cv4/Ar(  
    )xbqQW7%0+  
    if any( r>1 | r<0 ) otZ JY)  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') {kv4g\a;  
    end /3;=xZq  
    5[hlg(eb  
    _"`/^L`Q?  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) "URVX1#(r  
        error('zernfun:RTHvector','R and THETA must be vectors.') -hm 9sNox  
    end !-@SS>  
    5vl2yN  
    F .& *D~f  
    r = r(:); PK9Qm'W b  
    theta = theta(:); 4v i B=>  
    length_r = length(r); p@`4 Qz  
    if length_r~=length(theta) [kQ"6wh8  
        error('zernfun:RTHlength', ... y& Gw.N}<r  
              'The number of R- and THETA-values must be equal.') Zj5NWzj X  
    end >EyvdX#v  
    @#J H=-06  
    R7y-#?  
    % Check normalization: e1Dj0s?i~K  
    % -------------------- + >Fv*lux  
    if nargin==5 && ischar(nflag) m}sh I8S  
        isnorm = strcmpi(nflag,'norm'); g!z8oPT  
        if ~isnorm mRNHq3  
            error('zernfun:normalization','Unrecognized normalization flag.') -1dIZy  
        end [)B@  
    else _p?I{1O  
        isnorm = false; !k ;[^>  
    end C5d/)aC  
    Cf.WO%?P  
    XP3QBq  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +lW+H12  
    % Compute the Zernike Polynomials s$eK66H  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% =2Pz$q*ub  
    :ga 9Db9P  
    N2M?5fF  
    % Determine the required powers of r:  ||bA  
    % ----------------------------------- ](idf(j  
    m_abs = abs(m); _ +u sn.  
    rpowers = []; t>fA!K%{  
    for j = 1:length(n) /6?tgr  
        rpowers = [rpowers m_abs(j):2:n(j)]; 1ZGQhjcx  
    end bUpmU/ RW  
    rpowers = unique(rpowers); |rG8E;>  
    lU >)n  
    ) >-D={  
    % Pre-compute the values of r raised to the required powers, f[w jur  
    % and compile them in a matrix: `K@5_db\  
    % ----------------------------- S+4I[|T]Y  
    if rpowers(1)==0 iGpK\oH  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); j58Dki->.  
        rpowern = cat(2,rpowern{:}); Y,p2eAss  
        rpowern = [ones(length_r,1) rpowern]; @8T Vr2uy  
    else Wl@0TUK  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); D"1vw<Ak  
        rpowern = cat(2,rpowern{:}); _oYA;O  
    end |^>L`6uo  
    6Vu}k K)  
    4IH0un  
    % Compute the values of the polynomials: Lk$Je O  
    % -------------------------------------- 0DW'(#`  
    y = zeros(length_r,length(n)); Vf#oKPP1  
    for j = 1:length(n) h[M6.  
        s = 0:(n(j)-m_abs(j))/2; 3:z4M9f  
        pows = n(j):-2:m_abs(j); k1@  A'n  
        for k = length(s):-1:1 QmDhZ04f  
            p = (1-2*mod(s(k),2))* ... `t/@ L:  
                       prod(2:(n(j)-s(k)))/              ... , .NG.Q4f  
                       prod(2:s(k))/                     ... bRY4yT  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... .T N`p*  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); I*`=[nR  
            idx = (pows(k)==rpowers); 7J </7\  
            y(:,j) = y(:,j) + p*rpowern(:,idx); V8|q"UX  
        end 6kmZ!9w0|  
         n8y,{|  
        if isnorm %^)JaEUC  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); J_((o  
        end !Barc ,kA  
    end ~L Bq5a  
    % END: Compute the Zernike Polynomials {R6Zwjs  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% , L AJ  
    bo?3E +B  
    v;NZ"1=_  
    % Compute the Zernike functions: F"HI>t)>  
    % ------------------------------ 0wa!pE"  
    idx_pos = m>0; (tz_D7c$F  
    idx_neg = m<0; WP#_qqO  
    0ga1Yr]  
    6=`m   
    z = y; p7ns(g@9  
    if any(idx_pos) 3R$CxRc:  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); odn97,A  
    end Jr*S2 z<*  
    if any(idx_neg) 1Ag;s  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 8bKWIN g_n  
    end cM7k){  
    Qi'WV9ke  
    TG%hy"k  
    % EOF zernfun U!-+v:SF  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    8425
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    957
    光币
    1067
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  yf^gU*  
    ly5L-=Xb  
    DDE还是手动输入的呢? Ijro;rsEKM  
    *G|]5  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究