下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, 8h3=b[
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, bfB\h*XO
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? /,!qFt
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? ,fK3ZC
lzw3= H
'O5'i\uz
Y2xL>F
.Ha'p.
function z = zernfun(n,m,r,theta,nflag) 0TfS=scT
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 7g
R@$(1Z
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ,yd
MU\so(
% and angular frequency M, evaluated at positions (R,THETA) on the mNmLyU=d
% unit circle. N is a vector of positive integers (including 0), and u` oq(?|
% M is a vector with the same number of elements as N. Each element +k
dT(7
% k of M must be a positive integer, with possible values M(k) = -N(k) "UEv&mQ
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, D9`0Dr}/2
% and THETA is a vector of angles. R and THETA must have the same x~.:64
% length. The output Z is a matrix with one column for every (N,M) F+ E|r6'i
% pair, and one row for every (R,THETA) pair. KIR'$ 6pn~
%
T+N|R
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike xs\!$*R
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), OB[o2G <0
% with delta(m,0) the Kronecker delta, is chosen so that the integral |
8qBm
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Q{k
At%
% and theta=0 to theta=2*pi) is unity. For the non-normalized GUF"<k
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 4w#``UY)'
% J=pztASt
% The Zernike functions are an orthogonal basis on the unit circle. !61Pl/uQ
% They are used in disciplines such as astronomy, optics, and Pnd`=%w%]
% optometry to describe functions on a circular domain. AuR$g7z
% D;UV&.$'v
% The following table lists the first 15 Zernike functions. dt~YW
% nXjPx@
% n m Zernike function Normalization kId
n6 Wx,
% -------------------------------------------------- 5K|"\
% 0 0 1 1 -P&6L\V
% 1 1 r * cos(theta) 2 mhW-J6u*
% 1 -1 r * sin(theta) 2 ##Z_QB(;
% 2 -2 r^2 * cos(2*theta) sqrt(6) 5,)Qw
% 2 0 (2*r^2 - 1) sqrt(3) ,f1q)Qf
% 2 2 r^2 * sin(2*theta) sqrt(6) ^(*n]
% 3 -3 r^3 * cos(3*theta) sqrt(8) qc#)!
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) `DT3x{}_S
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) +7t6k7]c
% 3 3 r^3 * sin(3*theta) sqrt(8) bzdb|I6Z
% 4 -4 r^4 * cos(4*theta) sqrt(10) >J|]moSVA
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 54rkC/B>
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) v)2M1
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) %cE2s`
% 4 4 r^4 * sin(4*theta) sqrt(10) C&++VRnm
% -------------------------------------------------- -=.V
'
% 6sa"O89
% Example 1: N)&4Hy
% 0\2\*I}?
% % Display the Zernike function Z(n=5,m=1) : Sq?a0!S
% x = -1:0.01:1; E~LTb)
!
% [X,Y] = meshgrid(x,x); U%h);!<
% [theta,r] = cart2pol(X,Y); ?|:BuHkT
% idx = r<=1; lo'W1p
% z = nan(size(X)); ' oFxR003
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 191&_*Xb
% figure Q[+ac*F=Y
% pcolor(x,x,z), shading interp ?BhMjsy.
% axis square, colorbar ;/j= Ny{9
% title('Zernike function Z_5^1(r,\theta)') y>*xVK{D
% p$ bnK]
% Example 2:
:ujCr.
% UX]L;kI
% % Display the first 10 Zernike functions 3pmWDG6L
% x = -1:0.01:1; )"+(butI&
% [X,Y] = meshgrid(x,x); 1Z{ZV.!
% [theta,r] = cart2pol(X,Y); V5 U?F6
% idx = r<=1; H5D*|42
% z = nan(size(X)); CR2_;x:0
% n = [0 1 1 2 2 2 3 3 3 3]; .(Qx{r$
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; 6i0A9SN
% Nplot = [4 10 12 16 18 20 22 24 26 28]; KRjV}\}
% y = zernfun(n,m,r(idx),theta(idx)); >AJSqgHQ,
% figure('Units','normalized') 8( btZt
% for k = 1:10 7z~_/mAI
% z(idx) = y(:,k); s&GJW@
|
% subplot(4,7,Nplot(k)) Gn;@{x6
% pcolor(x,x,z), shading interp Ew3ibXD
% set(gca,'XTick',[],'YTick',[]) *'"^NSJ
% axis square w1;hy"zPsj
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) :UJ a&$)
% end uIU5.\"s
% jF[ 1za
% See also ZERNPOL, ZERNFUN2. 7mm1P9Z
|a{Q0:
1,5E`J
% Paul Fricker 11/13/2006 )*c>|7G
R-^96fFBy
1He{v#
U?.9D
vd6l7"0/
% Check and prepare the inputs: Hi]cxD*`
% ----------------------------- :6q]F<oK
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) .CSS}4
error('zernfun:NMvectors','N and M must be vectors.') 2c?qV
end ;l$ \6T
_4 cvX
JMdPwI
if length(n)~=length(m) Ma|qHg
error('zernfun:NMlength','N and M must be the same length.') >hH0Q5aL
end Y?534l)j
e*j.
ly WwGR
n = n(:); fqu}Le
m = m(:); /k"`7`!
if any(mod(n-m,2)) :R.&`4=X
error('zernfun:NMmultiplesof2', ... sdCvG R e
'All N and M must differ by multiples of 2 (including 0).') ,YhdY6
end t tXjn
s}j1"@
.@-$5Jw
if any(m>n) -)vEWn$3<
error('zernfun:MlessthanN', ... jgS%1/&
'Each M must be less than or equal to its corresponding N.') 0P>OJYFr'
end $Ci0I+5w
hXGwP4
RI2f`p8k
if any( r>1 | r<0 ) *._|- L
error('zernfun:Rlessthan1','All R must be between 0 and 1.') 8>/Q1(q0
end _Jv
9F8v
s_.]4bl.8
8.bKb<y
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) +h_ !0dG
error('zernfun:RTHvector','R and THETA must be vectors.') m5G \}8|
end wM[~2C=vx
a}Sd W
XYoIFv?'
r = r(:); -CH`>
theta = theta(:); !A1)|/a@
length_r = length(r); Xtq{%
if length_r~=length(theta) I]!^;))
error('zernfun:RTHlength', ... ?OdJqw0,G
'The number of R- and THETA-values must be equal.') 09o~9z0
end VOsqJJ3
F_uY{bg
?[x49Ux,P
% Check normalization: ;@h0qRXW:h
% -------------------- -G,^1AL>
if nargin==5 && ischar(nflag) 6mH/ m&
isnorm = strcmpi(nflag,'norm'); fA48(0p
if ~isnorm oPc\<$
error('zernfun:normalization','Unrecognized normalization flag.') )rLMIk
end BK,sc'b
else ":3 VJ(eY
isnorm = false; D\/xu-&
end ZtVAEIZ)
W(fr<<hL
J/);"bg_O
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% QCPID:
% Compute the Zernike Polynomials
>ds%].$-\
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% A~nf#(!^]
Z['\61
-)!>M>=s
% Determine the required powers of r: gqib:q;r
% ----------------------------------- \RQ='/H*
m_abs = abs(m); eK /?%t
rpowers = []; aj,)P3DJu
for j = 1:length(n) ]<DNo&fw
rpowers = [rpowers m_abs(j):2:n(j)]; 9s
+z B
end 6B$q,"%S@
rpowers = unique(rpowers); vhr+g 'tf
mYB`)M*Y
f^e6<5gdf
% Pre-compute the values of r raised to the required powers, t"j|nz{m
% and compile them in a matrix: N^VD=<#T
% ----------------------------- *s}|Hy
if rpowers(1)==0 ea=83 Zj
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); CLKov\U\
rpowern = cat(2,rpowern{:}); 04!(okubyp
rpowern = [ones(length_r,1) rpowern]; ihT~xt
else nA>sHy
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); \F, DA"K_
rpowern = cat(2,rpowern{:}); vtJV"h?e"3
end iNCX:Y
8|twV35
uQLlA&I"
% Compute the values of the polynomials: ^C&+
~+
% -------------------------------------- ?(KvQK|d4
y = zeros(length_r,length(n)); (\puf+
for j = 1:length(n) RaSz>-3d
s = 0:(n(j)-m_abs(j))/2; #iSFf
pows = n(j):-2:m_abs(j); jn9 ShF
for k = length(s):-1:1 XM
Vq-8B0
p = (1-2*mod(s(k),2))* ... P4
ul[zZ
prod(2:(n(j)-s(k)))/ ... DJhb
prod(2:s(k))/ ... FqA3{
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... [_y@M
]
prod(2:((n(j)+m_abs(j))/2-s(k))); &ntBU]<q
idx = (pows(k)==rpowers); M/V(5IoP(
y(:,j) = y(:,j) + p*rpowern(:,idx); c(-Mc6
end MWuXI1
NnxM3*
if isnorm UkR3}{i
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); D1,O:+[;.
end aI#4H+/
end ^c9ThV.v
% END: Compute the Zernike Polynomials Mj0Cat=
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ?SY<~i<K-
}\v^+scD
}wt%1v-10U
% Compute the Zernike functions: ZofHic
% ------------------------------ v@ONo?)
idx_pos = m>0; o6j"OZcv
idx_neg = m<0; FyD.>ot7M
& %}/AoU
<z#BsnjW{
z = y; 5{>0eFzG
if any(idx_pos) zCXqBuvu1
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ]S8LY.Az5
end '\p;y7N
if any(idx_neg) }$&WC:Lg
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); YaFcz$GE_
end .+#Lx;})
{KaN,td9
9rj('F&1
% EOF zernfun }(i(Ar-