切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9505阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, 3S%/>)k  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, Ksk[sf?J&  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? R[QBFL<  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? =t|,6Vp  
    P#rS.CIh  
    vJX0c\e  
    w.+G+ r=  
    SI=7$8T5=5  
    function z = zernfun(n,m,r,theta,nflag) '+*'sQvH[  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. ]L3MIaO2T  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N &,\my-4c>  
    %   and angular frequency M, evaluated at positions (R,THETA) on the {qs>yQ6a:-  
    %   unit circle.  N is a vector of positive integers (including 0), and L;6{0b58 $  
    %   M is a vector with the same number of elements as N.  Each element /38XaKc{6  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) UunZ/A$]m  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, .B!  Z0  
    %   and THETA is a vector of angles.  R and THETA must have the same -"x@V7X  
    %   length.  The output Z is a matrix with one column for every (N,M) A yOy&]g  
    %   pair, and one row for every (R,THETA) pair. 8}Q 2!,9Q  
    % meGL T/   
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike :8]y*j  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), '<6DLtZl  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral on1B~?*D  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, I`x[1%y2 F  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized IUD@Kf]S  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. `1lGAKv  
    % sdN1BV2  
    %   The Zernike functions are an orthogonal basis on the unit circle. n-OQCz9Xl  
    %   They are used in disciplines such as astronomy, optics, and ,Z8)DC=  
    %   optometry to describe functions on a circular domain. ROO@EQ#`Z  
    % TrQUhmS/!  
    %   The following table lists the first 15 Zernike functions. T5dnj&N ]  
    % M5N #xgR  
    %       n    m    Zernike function           Normalization ^3QJv{)Q  
    %       -------------------------------------------------- t"vkd  
    %       0    0    1                                 1 , hp8b$  
    %       1    1    r * cos(theta)                    2 u7},+E)+B  
    %       1   -1    r * sin(theta)                    2 S.?DR3XLc  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) <driD'=F  
    %       2    0    (2*r^2 - 1)                    sqrt(3) B'bOK`p  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) [* |+ it+!  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) "kjSg7m*:  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) p@oz[017/J  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) @]Ac >&  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) z:&/O&?  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) :BB=E'293  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) g|tclBx  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 2G_]Y8  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) )^ PWr^  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) HumL(S'm  
    %       -------------------------------------------------- d)d0,fi?-  
    % h-DHIk3/  
    %   Example 1: ,E"n7*6mr  
    % *JZlG%z  
    %       % Display the Zernike function Z(n=5,m=1) bHQ) :W  
    %       x = -1:0.01:1; Xv+,Z<>iQ  
    %       [X,Y] = meshgrid(x,x); _ER. AKY  
    %       [theta,r] = cart2pol(X,Y); \mWH8Z }Z  
    %       idx = r<=1; FuG;$';H75  
    %       z = nan(size(X)); 7R5+Q\W  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); oc#hAjB.  
    %       figure (O& HCT|  
    %       pcolor(x,x,z), shading interp 8is QL  
    %       axis square, colorbar R*2F)e\|  
    %       title('Zernike function Z_5^1(r,\theta)') ex66GJQe1  
    % lbC,*U^  
    %   Example 2: !'B='].  
    % Eqh*"hE7  
    %       % Display the first 10 Zernike functions KN>h*eze  
    %       x = -1:0.01:1; IR8yE`(h  
    %       [X,Y] = meshgrid(x,x); 45OAJ?N  
    %       [theta,r] = cart2pol(X,Y); ? 51i0~O=  
    %       idx = r<=1; 6h0}ZM  
    %       z = nan(size(X)); v:n[H]K|  
    %       n = [0  1  1  2  2  2  3  3  3  3]; 5Vai0Qfcu:  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; _(I)C`8m  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; ls~9qkAyLx  
    %       y = zernfun(n,m,r(idx),theta(idx)); 3eB)X2~   
    %       figure('Units','normalized') eHR]qy 0_X  
    %       for k = 1:10 dN7.W   
    %           z(idx) = y(:,k); Wfy+9"-;s  
    %           subplot(4,7,Nplot(k)) rinTB|5  
    %           pcolor(x,x,z), shading interp Ejnk\8:  
    %           set(gca,'XTick',[],'YTick',[]) |*Oi:)qt  
    %           axis square X,{[R |  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) y>)c?9X  
    %       end WBb*2  
    % qh6rMqq  
    %   See also ZERNPOL, ZERNFUN2. nzbAQ3v  
    2'-84  
    %jHe_8=o  
    %   Paul Fricker 11/13/2006 GRaU]Z]ck  
    ?Iq{6O>D.  
     ) TRUx  
    5"X@<;H%  
    h@o6=d=4  
    % Check and prepare the inputs: {'z$5<|  
    % ----------------------------- 7 |GSs=  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) )PW|RW  
        error('zernfun:NMvectors','N and M must be vectors.') CxSh.$l  
    end A;dD'Kgl  
    X4Pm&ol  
    N;k)>  
    if length(n)~=length(m) $PAAmaigi  
        error('zernfun:NMlength','N and M must be the same length.') '+3C2!  
    end /Gn0|]KI  
    PB!XApTb  
    M|zTs\1I  
    n = n(:); L&~'SC  
    m = m(:); D@:'*Z(  
    if any(mod(n-m,2)) o\; hF3   
        error('zernfun:NMmultiplesof2', ... 29m$S7[  
              'All N and M must differ by multiples of 2 (including 0).') Bf6i{`!G  
    end ;tF&r1  
    Nwe-7/Q  
    ZKq#PB/.  
    if any(m>n) M'F<1(  
        error('zernfun:MlessthanN', ... )[|_q,  
              'Each M must be less than or equal to its corresponding N.') B2a#:E,6  
    end VR\}*@pNp  
    7[UD;&\k  
     sFnR;  
    if any( r>1 | r<0 ) g"(@+\XZH"  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') Tj{3#?]Ho  
    end |lZp5MOc  
    uG +ZR: _  
    &flRrJ  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) d>F.C>  
        error('zernfun:RTHvector','R and THETA must be vectors.') %g{)K)$,ui  
    end jA[Ir3  
    t`R{N1  
    M_ >kefr  
    r = r(:); Wq"-T.i  
    theta = theta(:); `@v;QLD"d<  
    length_r = length(r); hUuKkUR+Ir  
    if length_r~=length(theta) xR|^{y9n  
        error('zernfun:RTHlength', ... c!'\k,ma<9  
              'The number of R- and THETA-values must be equal.') fOME&$=O  
    end T,rRE7  
    r4DHALu#)  
    VJFFH\!`  
    % Check normalization: -A=3W3:C  
    % -------------------- 8 H3u"  
    if nargin==5 && ischar(nflag) '$EyVu!  
        isnorm = strcmpi(nflag,'norm'); /&_q"y9  
        if ~isnorm zSU,le  
            error('zernfun:normalization','Unrecognized normalization flag.') R/*"N'nH-%  
        end ';My"/ Z-  
    else j"aY\cLr t  
        isnorm = false; BV }CmU&DA  
    end E_DQ.!U!o  
    c:&8B/  
    &q9=0So4\  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% nk7>iK!i  
    % Compute the Zernike Polynomials t|h c`|  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 5E1`qof  
    *Uj;a.  
    :#35mBe}k  
    % Determine the required powers of r: %KkC1.yu<  
    % ----------------------------------- G2?#MO  
    m_abs = abs(m); `j9\]50Z>  
    rpowers = []; }!R*Q`m  
    for j = 1:length(n) R! On  
        rpowers = [rpowers m_abs(j):2:n(j)]; Y:L[Iz95o  
    end  _cj=}!I  
    rpowers = unique(rpowers); _DT,iF*6  
    DR:DXJc  
    G5K?Q+n   
    % Pre-compute the values of r raised to the required powers, &qWB\m  
    % and compile them in a matrix: D,[Nn_N  
    % ----------------------------- II|;_j  
    if rpowers(1)==0 @ =~k[o  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); N N1}P'6Ha  
        rpowern = cat(2,rpowern{:}); J:gC1g^  
        rpowern = [ones(length_r,1) rpowern]; _ SOwiz  
    else #+V4<o  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 9H/R@i[E  
        rpowern = cat(2,rpowern{:}); |iX>hJSl  
    end dcD#!v\0  
    Q"nw.FjUG  
    dE_"|,:  
    % Compute the values of the polynomials: b1jDbiH&  
    % -------------------------------------- .%e>>U>F  
    y = zeros(length_r,length(n)); q5=,\S3=  
    for j = 1:length(n) (a8iCci:   
        s = 0:(n(j)-m_abs(j))/2; r|DIf28MIq  
        pows = n(j):-2:m_abs(j); SA&(%f1d  
        for k = length(s):-1:1 !ehjLFS?_  
            p = (1-2*mod(s(k),2))* ... R=D}([pi  
                       prod(2:(n(j)-s(k)))/              ... .5o~^  
                       prod(2:s(k))/                     ... W;2J~V!c  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... F[yofR N  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); nKS*y*  
            idx = (pows(k)==rpowers); 6Aq]I$  
            y(:,j) = y(:,j) + p*rpowern(:,idx); D&2NO/ R  
        end adIrrK  
         Qg~w 3~  
        if isnorm `[(XZhN  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); &Tuj`DL  
        end g3&nxZ  
    end n7K%lj-.P  
    % END: Compute the Zernike Polynomials 9T5 F0?qd  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ^>Z_3 {s:$  
    zPqJeYK  
    fW+ "Kuw  
    % Compute the Zernike functions: yq k8)\p  
    % ------------------------------ ,52 IR[I<T  
    idx_pos = m>0; ~mXzQ be p  
    idx_neg = m<0; 8a)Brl}u  
    fxoEK}TM  
    T1.U (::  
    z = y; 3~Fag1Hp  
    if any(idx_pos) d7[^p N  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); #&?ER]|3  
    end oxN5:)  
    if any(idx_neg) P(b[|QF  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); -V}xvSVg  
    end dhLR#m30T  
    uGb+ *tD  
    O!f37n-TB  
    % EOF zernfun UCfouQCj  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  \\:%++}J  
    2_u+&7  
    DDE还是手动输入的呢? +8Q @R)3  
    e< @$(w  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究