下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, OGcq]ue
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵,
z>lIZ}
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? \w#)uYK{i_
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? Cg_9V4h.C
wAD%1;
6pP:Q_U$
q]Vxf!0*>
,i)wS1@
function z = zernfun(n,m,r,theta,nflag) )[wB:kG
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. fQQj2>3w
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 717S3knlv
% and angular frequency M, evaluated at positions (R,THETA) on the k~Z;S QyN
% unit circle. N is a vector of positive integers (including 0), and qBF6LhR
% M is a vector with the same number of elements as N. Each element &$yxAqdab
% k of M must be a positive integer, with possible values M(k) = -N(k) Zz/
z7~{
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, *(E]]8o
% and THETA is a vector of angles. R and THETA must have the same pF/s5z
% length. The output Z is a matrix with one column for every (N,M) QZ&
4W
% pair, and one row for every (R,THETA) pair. z94#:jPmG
% t#d{hEr
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike |W*#N8IP
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), \r1nMw 3&
% with delta(m,0) the Kronecker delta, is chosen so that the integral r(j :C%?}C
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, AcP d(Pc
% and theta=0 to theta=2*pi) is unity. For the non-normalized wU(p_G3
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. u+
b `aB
% 18,;2Sr44
% The Zernike functions are an orthogonal basis on the unit circle. fU<_bg
% They are used in disciplines such as astronomy, optics, and Yz)+UF,
% optometry to describe functions on a circular domain. +\-cf,WkI
% 7bk`u'0%
% The following table lists the first 15 Zernike functions. E5q t~:C|
% =&Z#QD"vl
% n m Zernike function Normalization ;F|8#! (
% -------------------------------------------------- X'{o/U.
% 0 0 1 1 nc3usq
% 1 1 r * cos(theta) 2 "^Vnnb:Z*o
% 1 -1 r * sin(theta) 2 I;Pd}A_}=_
% 2 -2 r^2 * cos(2*theta) sqrt(6) |@5G\N -
% 2 0 (2*r^2 - 1) sqrt(3) % oJH 6F
% 2 2 r^2 * sin(2*theta) sqrt(6) u-M Td
% 3 -3 r^3 * cos(3*theta) sqrt(8) NY?pvb
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 4s9qQ8?
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) GC`/\~TM
% 3 3 r^3 * sin(3*theta) sqrt(8) 6<fcG
% 4 -4 r^4 * cos(4*theta) sqrt(10) :.=#U
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) %mAwK<MY`
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) :{,k F
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Qe =8x7oIP
% 4 4 r^4 * sin(4*theta) sqrt(10) c+{ ar^)*
% -------------------------------------------------- j^.|^q<Y
% Q[c:A@oW
% Example 1: :}-VLp4b
% &o]fBdn
% % Display the Zernike function Z(n=5,m=1) QtA@p
% x = -1:0.01:1; ?)g [Xc;K
% [X,Y] = meshgrid(x,x); RR2M+vQ
% [theta,r] = cart2pol(X,Y); ?$MO!
% idx = r<=1; +
B<7]\\M
% z = nan(size(X)); RdB,;Um9f
% z(idx) = zernfun(5,1,r(idx),theta(idx)); (%'`t(<
% figure NIAji3
% pcolor(x,x,z), shading interp +~EnrrT+W
% axis square, colorbar YJ+l
\Wb}
% title('Zernike function Z_5^1(r,\theta)') 0a9[}g1=#
% 1 F&}e&}c
% Example 2: h.\p+Qw.
% 1,Jy+1G0w
% % Display the first 10 Zernike functions P{HR='2
% x = -1:0.01:1; `# :(F z
% [X,Y] = meshgrid(x,x); )-m/(-
% [theta,r] = cart2pol(X,Y); J|
1!4R~
% idx = r<=1; NtmmPJ|5
% z = nan(size(X)); '|}H,I{
% n = [0 1 1 2 2 2 3 3 3 3]; MP_/eC ;
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; ?69E_E
% Nplot = [4 10 12 16 18 20 22 24 26 28]; E5?$=cL?
% y = zernfun(n,m,r(idx),theta(idx)); cT@H49#uB
% figure('Units','normalized') )Y`ybADd3
% for k = 1:10 eM]>"
% z(idx) = y(:,k); |9Y~k,rF
% subplot(4,7,Nplot(k)) W6RjQ1
% pcolor(x,x,z), shading interp >3,}^`l
% set(gca,'XTick',[],'YTick',[]) &UVqFo
% axis square N/[!$B0H@
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) zDBm^ s
% end gH.$B'
% mKoDy`s
% See also ZERNPOL, ZERNFUN2. ZENblh8fs
s)Xz}QPK.
(:^YfG~e
% Paul Fricker 11/13/2006 Y5y7ONcn
l
GJ N;G7
HIUP
=/x
:QF`Orb!^
2Sk hBb=d
% Check and prepare the inputs: vs>Pd |p;
% ----------------------------- s`pdy$
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) i6S["\h>
error('zernfun:NMvectors','N and M must be vectors.') N!Xn)J
end F$'po#
l3y}nh+ 8
-c{ Y+M`
if length(n)~=length(m) r*ziO#[
error('zernfun:NMlength','N and M must be the same length.') t*fH&8(
end )(rr1^Xer
: rudo[L
%TO&
n = n(:); (=j/"Mb
m = m(:); %L$?Mey
if any(mod(n-m,2)) .J=QWfqt
error('zernfun:NMmultiplesof2', ... Bc`L]<
'All N and M must differ by multiples of 2 (including 0).') Ur ol)_3X
end n<F3&2w
HG)$W
'e6J&X
if any(m>n) 4sfq,shRq
error('zernfun:MlessthanN', ... qxcTY|&
'Each M must be less than or equal to its corresponding N.') flz7{W
end .krEfY&
F=PBEaX
(4IP&^j:\
if any( r>1 | r<0 ) ulk/I-y
error('zernfun:Rlessthan1','All R must be between 0 and 1.') `-Tb=o}.
end oTr,zRL
`=Rxnl,<U
I,"q:QS+
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) o5YL_=7m
error('zernfun:RTHvector','R and THETA must be vectors.') I]42R;Sc
end ^W`RBrJay
fhha-J
9yu#G7
r = r(:); 3Vk\iJ
theta = theta(:); 4QYStDFe
length_r = length(r); ZkdSgc')
if length_r~=length(theta) mR|']^!SE
error('zernfun:RTHlength', ... &x4*YMh
'The number of R- and THETA-values must be equal.') '}OAl
end ) r"7" i
h\5~&}Hp
[.$/o}
% Check normalization: ezhfKt]j
% -------------------- dp2FC
if nargin==5 && ischar(nflag) I]cZcx,<q
isnorm = strcmpi(nflag,'norm'); IR&b2FTcU
if ~isnorm Ef3="}AI;
error('zernfun:normalization','Unrecognized normalization flag.') k4!p))ql
end P,#l~ \
else 7.+vp@+
isnorm = false; @PK
1
end iAeq%N1(0
{$7vd
{cjp8W8hS
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #WE
lL2&
% Compute the Zernike Polynomials 'b6qEU#
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% K.}jyhKIKi
dZddoz_
) bd`U
% Determine the required powers of r: d"a\`#
% ----------------------------------- !u/c'ZLZ>
m_abs = abs(m); -vh\XO
rpowers = []; %fXgV\xY
for j = 1:length(n) IK8"3+(
rpowers = [rpowers m_abs(j):2:n(j)]; j9}.U \
end h?fp(
rpowers = unique(rpowers); .$+,Y4q~(
DweF8c
kkOjAp{<t
% Pre-compute the values of r raised to the required powers, '*`1uomeo
% and compile them in a matrix: 5!57<n
% ----------------------------- cet|k!
if rpowers(1)==0 fF5\\_,
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); hn$jI5*`
rpowern = cat(2,rpowern{:}); )/z+W[t
rpowern = [ones(length_r,1) rpowern]; #8%~ u+"N
else :#UA!|nV
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); L9l]0C37e
rpowern = cat(2,rpowern{:}); Wi*HLP!lNC
end 2Y;iqR
rT;_"y}
Smd83W&
% Compute the values of the polynomials: Bi0&F1ZC!
% -------------------------------------- b86c[2
y = zeros(length_r,length(n)); cA{,2CYc
for j = 1:length(n) =7S\-{
s = 0:(n(j)-m_abs(j))/2; @[5] ?8\o
pows = n(j):-2:m_abs(j); ?9~|K/ `l
for k = length(s):-1:1 y#nyH0U
p = (1-2*mod(s(k),2))* ... T+:GYab/
prod(2:(n(j)-s(k)))/ ... _1jeaV9@
prod(2:s(k))/ ... !1<>][F
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... A8ClkLC;I
prod(2:((n(j)+m_abs(j))/2-s(k))); l HZ4N{n
idx = (pows(k)==rpowers); o%h[o9i
y(:,j) = y(:,j) + p*rpowern(:,idx); +1eb@bX
end Xx^v%[!`+
+@do<2l]
if isnorm 4EhWK;ra
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); {y<E_y
x1
end ~-A"M_n ?
end T1RICIf1F
% END: Compute the Zernike Polynomials l i%8X.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% j$k/oQ
tU-jtJ
W)`H(J
% Compute the Zernike functions: pQ`S%]k.<
% ------------------------------ zKf0 :X
idx_pos = m>0; ZRUI';5x
idx_neg = m<0; OuB[[L
raZ0B,;eFu
De49!{\a
z = y; n&E/{o(
if any(idx_pos) ,(kaC.Em
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); l YjPrA]TC
end UJ&gm_M+kL
if any(idx_neg) fBPJ8VY
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); VS+5{w:t
end okBaQH2lUl
@Z@S;RWSU
o H]FT{
% EOF zernfun px^brzLQo