切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9464阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, L[9+xK^g  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, W SeRV?+T  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? [}g5Z=l  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? @X / =.  
    X]qp~:4G  
    t"@|;uPAu  
    %L,,  
    r?{LQWP>e  
    function z = zernfun(n,m,r,theta,nflag) B 0fo[Ev  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. :.o0<  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N !"qEB2r  
    %   and angular frequency M, evaluated at positions (R,THETA) on the j1C0LP8  
    %   unit circle.  N is a vector of positive integers (including 0), and i3\oy`GJ  
    %   M is a vector with the same number of elements as N.  Each element !c;p4B)  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) (6_/n&mF  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 5Szo5  
    %   and THETA is a vector of angles.  R and THETA must have the same D2mAyU -  
    %   length.  The output Z is a matrix with one column for every (N,M) 53#5p;k  
    %   pair, and one row for every (R,THETA) pair. X=7vUb,\gB  
    % Kof-;T  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike z:q'?{` I  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), d=Ihl30m  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral (Y?yGq/  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, x-P_}}K 79  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized uqH! eN5  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. U%6lYna{M#  
    % = ~R3*GN  
    %   The Zernike functions are an orthogonal basis on the unit circle. @o.i2iG  
    %   They are used in disciplines such as astronomy, optics, and ?q8g<-?  
    %   optometry to describe functions on a circular domain. qdnNapWnc  
    % 60gn`s,,  
    %   The following table lists the first 15 Zernike functions. R}YryzV5  
    % zL=I-fVq  
    %       n    m    Zernike function           Normalization JQv ZTwSI  
    %       -------------------------------------------------- Kd21:|!t^  
    %       0    0    1                                 1 #rL@  
    %       1    1    r * cos(theta)                    2  0>J4O:k  
    %       1   -1    r * sin(theta)                    2 &~6O;}\  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 'Z%aBCM  
    %       2    0    (2*r^2 - 1)                    sqrt(3) gM:oP.  
    %       2    2    r^2 * sin(2*theta)             sqrt(6)  y3$\ m  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) B#lj8I^|  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) =<tEc+!T3  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) O[J+dWyp  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) jWjK-q@Y  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) ziip*<a !_  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10)  o=5uM  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 2{qG  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ]nGA1S{  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) Q^;\!$:M  
    %       -------------------------------------------------- 7"U,N;y  
    % ijSYQ  
    %   Example 1: "K=)J'/n  
    % `t"Kq+  
    %       % Display the Zernike function Z(n=5,m=1) %&S]cEw  
    %       x = -1:0.01:1; l"g%vS,;`  
    %       [X,Y] = meshgrid(x,x); $G.|5sEk  
    %       [theta,r] = cart2pol(X,Y); 9%veUvY  
    %       idx = r<=1; eesLTy D2_  
    %       z = nan(size(X)); yL,B\YCf8  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); p 5w g+K  
    %       figure B(NL3WJ  
    %       pcolor(x,x,z), shading interp ? =Qg  
    %       axis square, colorbar FX%E7H  
    %       title('Zernike function Z_5^1(r,\theta)') 3 +9|7=d  
    % WWz ns[$f  
    %   Example 2: 2o}FB\4^i  
    % ;\0RXirk  
    %       % Display the first 10 Zernike functions 8hV:bz"  
    %       x = -1:0.01:1; 6!m#_z8qG3  
    %       [X,Y] = meshgrid(x,x); Jk{2!uP  
    %       [theta,r] = cart2pol(X,Y); .;Yei6H  
    %       idx = r<=1; 09i[2n;O  
    %       z = nan(size(X)); NX/)Z&Fx:  
    %       n = [0  1  1  2  2  2  3  3  3  3]; @K> Pw arl  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; %^A++Z$`  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; x/v+7Pt_  
    %       y = zernfun(n,m,r(idx),theta(idx)); $^GnY7$!>  
    %       figure('Units','normalized') bsDUFXH]  
    %       for k = 1:10 XAkl,Y  
    %           z(idx) = y(:,k); TR7TF]itb  
    %           subplot(4,7,Nplot(k)) VUhu"h@w%  
    %           pcolor(x,x,z), shading interp .w"O/6."  
    %           set(gca,'XTick',[],'YTick',[]) J> |`  
    %           axis square yx4c+(J^8  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) s_ $@N!  
    %       end KLB?GN?Pb  
    % G(e?]{(  
    %   See also ZERNPOL, ZERNFUN2. yIP IA%dJ  
    Cl=ExpX/O  
    SesO$=y  
    %   Paul Fricker 11/13/2006 {%dQV#'c  
    s)=7tHoqB)  
    S d -+a  
    b9jm= U  
    cQb%bmBc5  
    % Check and prepare the inputs: /GNYv*  
    % ----------------------------- zc5_;!t  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) =0|evC  
        error('zernfun:NMvectors','N and M must be vectors.') l1-FL-1  
    end ggWfk  
    ;anG F0x  
    /vKDlCH*  
    if length(n)~=length(m) *a4eL [  
        error('zernfun:NMlength','N and M must be the same length.') Z]CH8GS~<  
    end L x&ZWF$  
    Vy VC#AK,  
    ,y @3'~  
    n = n(:); 6cvm\ opH  
    m = m(:);  (w fZ!  
    if any(mod(n-m,2)) 64cmv}d_  
        error('zernfun:NMmultiplesof2', ... KYaf7qy]  
              'All N and M must differ by multiples of 2 (including 0).') =lnz5H  
    end f #14%?/  
    1lM0pl6M  
    Uyh#g^r  
    if any(m>n) sa($3`d  
        error('zernfun:MlessthanN', ... dE~ns ,+  
              'Each M must be less than or equal to its corresponding N.') u""= 9>0  
    end 0v?,:]A0E  
     ?auiq  
     8j k*N  
    if any( r>1 | r<0 ) H?m2|.  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') -1:asM7  
    end %K4-V5f  
    C}Q2UK-:  
    qZ.\GHS  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) L $~Id  
        error('zernfun:RTHvector','R and THETA must be vectors.') l/5/|UE9  
    end [ 0Sd +{Q  
    /uWON4  
    N C& 1l]  
    r = r(:); jn'8F$GU  
    theta = theta(:); <|@9]>z  
    length_r = length(r); bhRpYP%x  
    if length_r~=length(theta) SzDi= lY  
        error('zernfun:RTHlength', ... >JhQ=j  
              'The number of R- and THETA-values must be equal.') ,>Q,0bVhH0  
    end *4bV8T>0Z  
    l`k3!EZDS  
    R!=XMV3$PH  
    % Check normalization: TBzM~y  
    % -------------------- ,yoT3_%P  
    if nargin==5 && ischar(nflag) /[p4. FL  
        isnorm = strcmpi(nflag,'norm'); 8I'?9rt2M  
        if ~isnorm GUxhCoxb  
            error('zernfun:normalization','Unrecognized normalization flag.') K(?7E6\vO  
        end NNT9\JRv_  
    else z{ 8!3>:E  
        isnorm = false; Kt-@a%O0  
    end `'/8ifKz  
    R *U>T$  
    31}6dg8?n  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% eP)RP6ON{  
    % Compute the Zernike Polynomials |7argk+  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% vc<8ApK3V  
    9 }=Fdt  
    *\/UT  
    % Determine the required powers of r: @RjLDj+)S  
    % ----------------------------------- Y<B| e91C  
    m_abs = abs(m); yC -4wn*  
    rpowers = []; ?^hC|IR$  
    for j = 1:length(n) !@Ox%vK  
        rpowers = [rpowers m_abs(j):2:n(j)]; D`ZYF)[}J  
    end z)ydQw>  
    rpowers = unique(rpowers); /N $T[  
    $I.'7 &h;  
    qnOAIP:0  
    % Pre-compute the values of r raised to the required powers, 7-^d4P+|g  
    % and compile them in a matrix: a^22H  
    % ----------------------------- =hA/;  
    if rpowers(1)==0 8WAg{lVs  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); h:|aQJG5  
        rpowern = cat(2,rpowern{:}); $V[ob   
        rpowern = [ones(length_r,1) rpowern]; A9"ho}<  
    else "Kqe4$  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); {AZW."?  
        rpowern = cat(2,rpowern{:}); wm}i+ApK  
    end xd* kNY  
    @A:Xct  
    <+6)E@Y  
    % Compute the values of the polynomials: rIXAn4,dTv  
    % -------------------------------------- WPPmh~:  
    y = zeros(length_r,length(n)); Eq|_> f@@8  
    for j = 1:length(n) Z@1rs#  
        s = 0:(n(j)-m_abs(j))/2; 9N9;EY-U  
        pows = n(j):-2:m_abs(j); t ({:TQ  
        for k = length(s):-1:1 :5ji.g* 0  
            p = (1-2*mod(s(k),2))* ... N(D_*% 96  
                       prod(2:(n(j)-s(k)))/              ... ~($h9* \  
                       prod(2:s(k))/                     ... n04Zji(F@  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... /vBpRm  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); k}/0B  
            idx = (pows(k)==rpowers); "Li"NxObCA  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 1:8ZS  
        end C\1Dy5  
         .uhP (  
        if isnorm <@oK ^ja  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); xC|7"N^/  
        end <h(tW  
    end s{gdTG6v`  
    % END: Compute the Zernike Polynomials Up8#Nz T  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +YP,LDJ!v  
    }v`5  
    KX{S8_  
    % Compute the Zernike functions: <CeDIX t  
    % ------------------------------ ZMbv1*Vt  
    idx_pos = m>0; (}'0K?  
    idx_neg = m<0; pZXva9bE  
    cd\0  
    oM J5;  
    z = y; /']Gnt G.  
    if any(idx_pos)  I"r*p?  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); lE /"  
    end !}U&%2<69  
    if any(idx_neg) h"j{B  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); tlc&Wx  
    end &Jq?tnNd  
    f.Jz]WXw,  
    rqifjsv  
    % EOF zernfun \T>f+0=4  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  -!V+>.Oh  
    g^ .g9"  
    DDE还是手动输入的呢? Bu7Ztt*  
    7~&  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究