切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9531阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, p aMw88*u  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, X*FK6,Y|(  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? ]G|@F :  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? n,xK7icYNQ  
    iW |]-Ba\  
    LJI&j \  
    5HOhk"  
    TXrC5AJx  
    function z = zernfun(n,m,r,theta,nflag) *sL'6"#Cre  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. :%!SzI?  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N uOougSBV,  
    %   and angular frequency M, evaluated at positions (R,THETA) on the M_*w)<  
    %   unit circle.  N is a vector of positive integers (including 0), and u6B (f;  
    %   M is a vector with the same number of elements as N.  Each element ",~3&wx  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) aIqNNR  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, m=y6E, _  
    %   and THETA is a vector of angles.  R and THETA must have the same o8Bo%OjE  
    %   length.  The output Z is a matrix with one column for every (N,M) YK}(VF?&  
    %   pair, and one row for every (R,THETA) pair. {P = {)  
    % L;BYPZR  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike P *%bG 4  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Q jQJ "  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral E]ZM`bex&  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, =U,;/f  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized OgOu$.  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. } 8r+&e  
    % {J99F  
    %   The Zernike functions are an orthogonal basis on the unit circle. z<AQ;b  
    %   They are used in disciplines such as astronomy, optics, and ^[ id8  
    %   optometry to describe functions on a circular domain. 5_`.9@eh.  
    % _IgG8)k;  
    %   The following table lists the first 15 Zernike functions. k+s<;{  
    % FE_n+^|k<  
    %       n    m    Zernike function           Normalization jj.yB#T  
    %       -------------------------------------------------- w$& 10  
    %       0    0    1                                 1 { ! FrI@  
    %       1    1    r * cos(theta)                    2 y:W$~<E`p  
    %       1   -1    r * sin(theta)                    2 g5Hs=c5=\  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) . t~I[J\<  
    %       2    0    (2*r^2 - 1)                    sqrt(3) J@R+t6$3O  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) G=b`w;oL:  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) YJ:CqTy  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) - 6  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) O^e !<bBd  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) Fa>Y]Y0r  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) QU417EV'  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) b%v1]a[  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) ls/:/x(5d  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 3J [P(G>Q  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) bJe^x;J9  
    %       -------------------------------------------------- `T~M:\^D  
    % %K/rPhU  
    %   Example 1: D6v0n6w  
    % @NV$!FB<  
    %       % Display the Zernike function Z(n=5,m=1) q WP1i7]=/  
    %       x = -1:0.01:1; 4>, <b1Y  
    %       [X,Y] = meshgrid(x,x); r]8B6iV  
    %       [theta,r] = cart2pol(X,Y); K` U\+AE  
    %       idx = r<=1; ; /EH@V|  
    %       z = nan(size(X)); tfdP#1E  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 8LiRZ"  
    %       figure X|8Y z3:o  
    %       pcolor(x,x,z), shading interp /#Ew{RvW'  
    %       axis square, colorbar M/B_-8B_D  
    %       title('Zernike function Z_5^1(r,\theta)') Que)kjp  
    % W_kJb  
    %   Example 2: VQLo vt"  
    % W]rXt,{ &  
    %       % Display the first 10 Zernike functions s7&% _!4  
    %       x = -1:0.01:1; /V3*[  
    %       [X,Y] = meshgrid(x,x); qQVqS7 t  
    %       [theta,r] = cart2pol(X,Y); lW7kBCsz#  
    %       idx = r<=1; 2Ie50U  
    %       z = nan(size(X)); Hm4lR{A  
    %       n = [0  1  1  2  2  2  3  3  3  3]; q9!5J2P  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; EB>laZy>  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; ,`H=%#  
    %       y = zernfun(n,m,r(idx),theta(idx)); )zr/9aV  
    %       figure('Units','normalized') ( 6r9y3'  
    %       for k = 1:10 @ZT25CD  
    %           z(idx) = y(:,k); J }JT%S W  
    %           subplot(4,7,Nplot(k)) M0_K%Z(zaR  
    %           pcolor(x,x,z), shading interp Y B)1dzU  
    %           set(gca,'XTick',[],'YTick',[]) I ][8[UZ  
    %           axis square [0_Kz"|  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) ;'cv?3Y  
    %       end E%+V\ W%  
    % rLP4l~V   
    %   See also ZERNPOL, ZERNFUN2. U:8^>_  
    J!S3pS5j  
    0Z9jlwcQ  
    %   Paul Fricker 11/13/2006 pz-`Tp w  
    l`,`N+FG  
    !%5{jO1  
    }V9146  
    d9sgk3K  
    % Check and prepare the inputs: ztb2Ign<  
    % ----------------------------- iiRK3m  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) YM#XV*P0 q  
        error('zernfun:NMvectors','N and M must be vectors.') g]jtVQH']  
    end cL=P((<K?  
    \ fwf\&  
    $aGK8%.O  
    if length(n)~=length(m) |5g*pXu{  
        error('zernfun:NMlength','N and M must be the same length.') .,EZ-&6{  
    end 4N#0w]_,>Y  
    {4:En;  
    j*+r`CX  
    n = n(:); ydlH6>  
    m = m(:); z<@$$Z=0UF  
    if any(mod(n-m,2)) uw]e$,x?  
        error('zernfun:NMmultiplesof2', ... u5idH),<  
              'All N and M must differ by multiples of 2 (including 0).') rhL<JTS  
    end tkJ/ h<  
    v~@Y_ `l  
    b^A&K@[W#,  
    if any(m>n) iY( hGlV  
        error('zernfun:MlessthanN', ... Y*"%;e$tg  
              'Each M must be less than or equal to its corresponding N.') +mxsjcq0  
    end 0A}'.LI  
    %DRDe  
    2c+q~8Jv  
    if any( r>1 | r<0 ) dQ^k-  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') J-X5n 3I&  
    end OFUN hbg  
    ',O@0L]L  
    Mzb_o2^(  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ZJw9 2Sb  
        error('zernfun:RTHvector','R and THETA must be vectors.') <{cPa\  
    end 8YYY *>  
    .h*&$c/l  
    Xi0/Wb h\  
    r = r(:); X\$M _b>O  
    theta = theta(:); 6tnAE':  
    length_r = length(r); 8zpK; +  
    if length_r~=length(theta) "@ox=  
        error('zernfun:RTHlength', ... ^?juY}rZ=|  
              'The number of R- and THETA-values must be equal.') k $+&  
    end }1$8)zH  
    2y<d@z:K  
    s )To#  
    % Check normalization: Rx'7tff%I  
    % -------------------- VK|!aqA{b  
    if nargin==5 && ischar(nflag) AJmS1 B  
        isnorm = strcmpi(nflag,'norm'); ^_<pc|1  
        if ~isnorm NS&~n^*k<  
            error('zernfun:normalization','Unrecognized normalization flag.') se)I2T{J  
        end P- vA.7  
    else cBm3|@7  
        isnorm = false; m:"2I&0)WM  
    end !C/`"JeYL  
    {8"W  
    esLY1c%"/  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% DPe`C%Oc1  
    % Compute the Zernike Polynomials _ l/6Qpf  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -D V;{8U4  
    C8n1j2G\  
    x3WY26e  
    % Determine the required powers of r: rre;HJGEL  
    % ----------------------------------- *tP,Ol  
    m_abs = abs(m); 1r.q]^Pq~  
    rpowers = []; +SP5+"y@  
    for j = 1:length(n) !BQ!] u  
        rpowers = [rpowers m_abs(j):2:n(j)]; T]i~GkD\  
    end XRNL;X%}7  
    rpowers = unique(rpowers); :m+:%keK  
    (m,O!935f  
    $MsM$]~  
    % Pre-compute the values of r raised to the required powers, s%/0WW0y^  
    % and compile them in a matrix: z&- `<uV~  
    % ----------------------------- tdt6*  
    if rpowers(1)==0 ~#j `+  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); "\V:W%23W{  
        rpowern = cat(2,rpowern{:}); +oiPj3  
        rpowern = [ones(length_r,1) rpowern]; _wqFKj  
    else wicg8[T=B  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false);  x'  
        rpowern = cat(2,rpowern{:}); ry U0x  
    end pYa<u,>pN  
    979L]H#  
    \zoJr)  
    % Compute the values of the polynomials: |0 Zj/1<$  
    % -------------------------------------- o@>5[2b4  
    y = zeros(length_r,length(n)); %R_8`4IQ  
    for j = 1:length(n) <LLSUk/  
        s = 0:(n(j)-m_abs(j))/2; JE?XZp@V  
        pows = n(j):-2:m_abs(j); %ZZ}TUI W  
        for k = length(s):-1:1 .}0Cg2W  
            p = (1-2*mod(s(k),2))* ... ) .]Z}g&  
                       prod(2:(n(j)-s(k)))/              ... #p[=iP  
                       prod(2:s(k))/                     ... w}2yi#E[  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... &MKv _  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); , n EeI&  
            idx = (pows(k)==rpowers); {fS/ZG"5<t  
            y(:,j) = y(:,j) + p*rpowern(:,idx); >&$ V"*]  
        end >4ALF[oH1J  
         Z2LG/R  
        if isnorm R2;-WxnN]  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); > h:~*g  
        end j5RM S V  
    end *vj5J"Y(;t  
    % END: Compute the Zernike Polynomials :{Y,Nsa  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Cf10 ud   
    |e pe;/  
    =F:d#j>F  
    % Compute the Zernike functions: g"#+U7O  
    % ------------------------------ I015)vFc  
    idx_pos = m>0; W*_ifZ0s.  
    idx_neg = m<0; ]IoS-)$Z/  
    MW&;{m?2(  
    (*M(gM{;  
    z = y; IYj-cm  
    if any(idx_pos) swJwy~  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); u4Xrvfb,  
    end k r/[|.bq  
    if any(idx_neg) F4:ssy^  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); +-{H T+W  
    end DLz~$TF^  
    0_j!t  
    g;*~ xo  
    % EOF zernfun c5]1aFKz  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  <4D.P2ct  
    |3QKxS0  
    DDE还是手动输入的呢? 4h|sbB"t  
    0LeR#l:I  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究