切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8544阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, qRGb3l  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, /[IQ:':^  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? EH "g`r  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? xA5$!Oq7  
    g^4FzJ  
    -pGt ;  
    omA*XXUx=8  
    0amz#VIB<u  
    function z = zernfun(n,m,r,theta,nflag) 3ElpS^ 2W  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. Mqtp}<*@-  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N jgo@~,5R  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 1;gSf.naG  
    %   unit circle.  N is a vector of positive integers (including 0), and #Fd( [Zx#.  
    %   M is a vector with the same number of elements as N.  Each element Z =c@Gd  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) QPcB_wUqu  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, td&l T(7  
    %   and THETA is a vector of angles.  R and THETA must have the same D)sEAfvX  
    %   length.  The output Z is a matrix with one column for every (N,M) U44H/5/  
    %   pair, and one row for every (R,THETA) pair. _z5CplO  
    % e d*AU,^@v  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike e,*[5xQ  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), /a|NGh%  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral c6m,oS^  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Xh/av[Q  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized fx-*')  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ">9CN$]J  
    % `j![  
    %   The Zernike functions are an orthogonal basis on the unit circle. MX0B$yc$  
    %   They are used in disciplines such as astronomy, optics, and 7:<Ed"rdE  
    %   optometry to describe functions on a circular domain. k9xKaJ %1  
    % @#tSx  
    %   The following table lists the first 15 Zernike functions. 6 {Z\cwP)c  
    % !gf3%!%  
    %       n    m    Zernike function           Normalization //@=Q!MW  
    %       -------------------------------------------------- ,AM-cwwT:u  
    %       0    0    1                                 1 0cUt"(]  
    %       1    1    r * cos(theta)                    2 xH[yIfHkG@  
    %       1   -1    r * sin(theta)                    2 OJ 5 !+#>  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ? $ c  
    %       2    0    (2*r^2 - 1)                    sqrt(3) <Y2!c,"  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) *~uuCLv_  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) z0[ZO1Fo(  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) Z5[:Zf?h7J  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) [;AcV73  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) F8Wq&X#r  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) Oha g%<1#  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Ig KAD#2a  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) }2,#[m M  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ?|GxVOl  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) [9_ (+E[}  
    %       -------------------------------------------------- 8|NJ(D-$  
    %  ]:fCyIE  
    %   Example 1: - (}1o9e\7  
    % G9inNz*Cx  
    %       % Display the Zernike function Z(n=5,m=1) p'k+0=  
    %       x = -1:0.01:1; V9_HC f  
    %       [X,Y] = meshgrid(x,x); A_~5|  
    %       [theta,r] = cart2pol(X,Y); o~&!M_ED  
    %       idx = r<=1; am+mXb  
    %       z = nan(size(X)); XSjelA?  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); ~J{[]wi  
    %       figure a3O_#l-Z  
    %       pcolor(x,x,z), shading interp  ja- ~`  
    %       axis square, colorbar AuipK*&g  
    %       title('Zernike function Z_5^1(r,\theta)') z xUj1  
    % y?#J`o- O  
    %   Example 2: {dXBXC/Ju  
    % GPLt<K!<#  
    %       % Display the first 10 Zernike functions ~"2@A F  
    %       x = -1:0.01:1; !o':\hex6  
    %       [X,Y] = meshgrid(x,x); zn1Rou]6  
    %       [theta,r] = cart2pol(X,Y); (<ZkmIXN  
    %       idx = r<=1; rOb"S*  
    %       z = nan(size(X)); s[@>uP  
    %       n = [0  1  1  2  2  2  3  3  3  3]; .4FcZJvy  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; rE `}?d  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; )2Ru!l#  
    %       y = zernfun(n,m,r(idx),theta(idx)); l )*,18n  
    %       figure('Units','normalized') qK vr*xlC  
    %       for k = 1:10 2 RUR=%C  
    %           z(idx) = y(:,k); yUmsE-W  
    %           subplot(4,7,Nplot(k)) {V% O4/  
    %           pcolor(x,x,z), shading interp Z WRRh^  
    %           set(gca,'XTick',[],'YTick',[]) D#Yx,`Ui  
    %           axis square EQ63VF  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) "Lq|66  
    %       end )]c3bMVE-  
    % ]_: TrH  
    %   See also ZERNPOL, ZERNFUN2. _<RR`  
    &_/%2qs  
    2, "q_d'V  
    %   Paul Fricker 11/13/2006 J7wQ=! g  
    @ PoFxv  
    Gh[`q7B Q  
    Xu94v{u3  
    k;_KKvQ  
    % Check and prepare the inputs: -jtC>_/  
    % ----------------------------- wYO"znd  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) m_!vIUOz  
        error('zernfun:NMvectors','N and M must be vectors.') k3>ur>aW  
    end v<3o[mq  
    0SY f<$  
    f./m7TZ  
    if length(n)~=length(m) zP(=,)d  
        error('zernfun:NMlength','N and M must be the same length.') LX\*4[0%K  
    end s'aV qB  
    ]8m_*I!  
    k/_8!^:'  
    n = n(:); 0YpiHoM  
    m = m(:); nz(q)"A  
    if any(mod(n-m,2)) ^/C $L8#  
        error('zernfun:NMmultiplesof2', ... CI!Eq&D,  
              'All N and M must differ by multiples of 2 (including 0).') v=.z|QD^1  
    end }x?H ~QQT  
    g7 Md  
    {nQ)4.e6  
    if any(m>n) MO~~=]Y'  
        error('zernfun:MlessthanN', ... 12tJrS*Z  
              'Each M must be less than or equal to its corresponding N.') ewAH'H]o  
    end JU'WiR bcb  
    ?VZ11?u  
    Dpdn%8+Z  
    if any( r>1 | r<0 ) i,'Ka[6   
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') ^s2m\Q(  
    end  t$H':l0  
    @Xve qUUU  
    j(%gMVu  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) m +Q5vkW  
        error('zernfun:RTHvector','R and THETA must be vectors.') Foe>}6~{?  
    end 5"kx}f2$  
    XJmFJafQD  
    b$?Xn{Y  
    r = r(:); `&u<aLA  
    theta = theta(:); ,l$NJt   
    length_r = length(r); lk[G;=K:.  
    if length_r~=length(theta) !_U37Uj<m  
        error('zernfun:RTHlength', ... :T7?  
              'The number of R- and THETA-values must be equal.') >,>;)B@J  
    end Gpdv]SON{  
    c{mKra  
    msc 1^2  
    % Check normalization: C{UF~  
    % -------------------- 0~+NB-L}  
    if nargin==5 && ischar(nflag) ShWHHU(QQ  
        isnorm = strcmpi(nflag,'norm'); selP=Q!  
        if ~isnorm 8ji^d1G,  
            error('zernfun:normalization','Unrecognized normalization flag.') 8"km_[JE e  
        end (ve+,H6w\  
    else y Y>-MoF/t  
        isnorm = false; 83KfM!w  
    end a[1sA12  
    w0Fwd  
    U@.u-)oX  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %bIsrQ~B  
    % Compute the Zernike Polynomials Y&vHOA  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% y)3~]h\a  
    x7 "z(rKl  
    [3j$ 4rP  
    % Determine the required powers of r: L!;^ #g  
    % ----------------------------------- R9tckRG#  
    m_abs = abs(m); 0LWdJ($?  
    rpowers = []; ycgfZ 3K  
    for j = 1:length(n) 1@A7h$1P  
        rpowers = [rpowers m_abs(j):2:n(j)]; gB]C&Q  
    end ==]Z \jk  
    rpowers = unique(rpowers); 'FShNY5  
    H<`^w)?  
    m_Mwg  
    % Pre-compute the values of r raised to the required powers, {UB%(E[Mr  
    % and compile them in a matrix: a(8>n Z,V  
    % ----------------------------- C _8j:Z&  
    if rpowers(1)==0 EfKM*;A  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); IWAj Mwo  
        rpowern = cat(2,rpowern{:}); 89zuL18V  
        rpowern = [ones(length_r,1) rpowern]; ^DBD63 N"  
    else q}>M& *  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); |/@0~O(6  
        rpowern = cat(2,rpowern{:}); sf Dg/ a  
    end C@%iQ]=  
    o;3j:# 3 |  
    SK's!m:r=  
    % Compute the values of the polynomials: Q>kiVvc  
    % -------------------------------------- qh%i5Mu  
    y = zeros(length_r,length(n)); hzaU8kb  
    for j = 1:length(n) F?7u~b|@{  
        s = 0:(n(j)-m_abs(j))/2; P,(9cyS{  
        pows = n(j):-2:m_abs(j); %fHH{60  
        for k = length(s):-1:1 !0`lu_ZN  
            p = (1-2*mod(s(k),2))* ... GF&_~48GD  
                       prod(2:(n(j)-s(k)))/              ... SijtTY#r  
                       prod(2:s(k))/                     ... mv{<'  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... $h,d? .u6w  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); neF8V"-u&  
            idx = (pows(k)==rpowers); c8T/4hU MN  
            y(:,j) = y(:,j) + p*rpowern(:,idx); $u:<x  
        end O{~KR/  
         A*hZv|$0  
        if isnorm pg+b[7  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); \H^;'agA  
        end $Jcq7E~  
    end \fTTkpM  
    % END: Compute the Zernike Polynomials 6VC-KY  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /w0sj`;"  
    +vf:z?I8  
    [~COYjp  
    % Compute the Zernike functions: }7%9}2}Iw  
    % ------------------------------ >E, Q  
    idx_pos = m>0; f_rp<R>Uu  
    idx_neg = m<0; Hoj8okP  
    "rsSW 3_  
    xpAok]  
    z = y; M;qBDT~)  
    if any(idx_pos) K!p,x;YX  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ^_sQG  
    end NddO*`8+)  
    if any(idx_neg) Y17hOKc`  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); "TfI+QgLF  
    end _C20 +PMO  
    teAukE=}  
    d .p'pGL  
    % EOF zernfun e gI&epN  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    8425
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    956
    光币
    1054
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  tC)6  
    ~x]9SXD%  
    DDE还是手动输入的呢? 5/@UVY9_  
    LW:1/w&pv  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究