切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9282阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, 8@;]@c)m  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, se\fbe^0  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? >G:Q/3jh  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? x "{aO6M  
    $AZYY\1  
    oT-gZedW(  
    m<h%BDSzr{  
    SLKpl LO  
    function z = zernfun(n,m,r,theta,nflag) xvV";o  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. )O]6dd  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ]xQv\u  
    %   and angular frequency M, evaluated at positions (R,THETA) on the k ucbI_  
    %   unit circle.  N is a vector of positive integers (including 0), and UDHWl_%L  
    %   M is a vector with the same number of elements as N.  Each element ;=y"Z^  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) H)Btm  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, `gX|q3K\s  
    %   and THETA is a vector of angles.  R and THETA must have the same CIx(SeEF  
    %   length.  The output Z is a matrix with one column for every (N,M) hZx&j{  
    %   pair, and one row for every (R,THETA) pair. 8M99cx*K  
    % WO_Uc_R  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike *4}_2"[  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), B?! L~J@p  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral U?UU] >Q  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, M]s\F(*ib  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized Vh^y6U<  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. $fmTa02q>  
    % e$Ksn_wEq  
    %   The Zernike functions are an orthogonal basis on the unit circle. 4j#y?^s  
    %   They are used in disciplines such as astronomy, optics, and ZwkUd-=0i  
    %   optometry to describe functions on a circular domain. BpZ~6WtBq  
    % ?{ N,&d  
    %   The following table lists the first 15 Zernike functions. ./#YUIC  
    % =SJ#6uFS  
    %       n    m    Zernike function           Normalization jE*{^+n  
    %       -------------------------------------------------- *'>_XX  
    %       0    0    1                                 1 >Zb!?ntN`t  
    %       1    1    r * cos(theta)                    2 lU{)%4e`  
    %       1   -1    r * sin(theta)                    2 q&25,zWD  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) Xs~'M/> O  
    %       2    0    (2*r^2 - 1)                    sqrt(3) QTy=VLk43  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) <tD,Uu{P  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) gXxi; g  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) #L*\^ c  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) "`>6M&`U  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 2_q/<8t  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 32wtN8kx  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) MgeC-XQM  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) g-eJan&]N  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) (/A.,8Ad  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) ;z'&$#pA  
    %       -------------------------------------------------- fx;rMGa  
    % hY`<J]-'`  
    %   Example 1: ~/L:$  
    % S%iK);  
    %       % Display the Zernike function Z(n=5,m=1) =\<NTu  
    %       x = -1:0.01:1; 6u, g  
    %       [X,Y] = meshgrid(x,x); 8,U~ p<Gz  
    %       [theta,r] = cart2pol(X,Y); y\T$) XGV  
    %       idx = r<=1; ZC?~RXL(  
    %       z = nan(size(X)); +F)EGB%LXs  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); ~<[+!&<U  
    %       figure }j/\OY _&  
    %       pcolor(x,x,z), shading interp #Zdh<.   
    %       axis square, colorbar 2P"643tz  
    %       title('Zernike function Z_5^1(r,\theta)') UD-+BUV  
    % r8EJ@pOF2w  
    %   Example 2: Jh-yIk  
    % C m:AU;  
    %       % Display the first 10 Zernike functions ~O}r<PQ  
    %       x = -1:0.01:1; xrf|c  
    %       [X,Y] = meshgrid(x,x); %3`*)cp@  
    %       [theta,r] = cart2pol(X,Y); k8s)PN  
    %       idx = r<=1; <f>77vh0  
    %       z = nan(size(X)); nt2b}u>*  
    %       n = [0  1  1  2  2  2  3  3  3  3]; Qw0k-t0=4  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; Va?]:Q  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; HZ9>4G3  
    %       y = zernfun(n,m,r(idx),theta(idx)); u`XRgtI{g?  
    %       figure('Units','normalized') tj;47UtH  
    %       for k = 1:10 5iw\F!op:  
    %           z(idx) = y(:,k); ^(q .f=I!a  
    %           subplot(4,7,Nplot(k)) -HF?1c  
    %           pcolor(x,x,z), shading interp /dCsZA  
    %           set(gca,'XTick',[],'YTick',[]) 7m#EqF$P  
    %           axis square uH89oA/H  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) bc(MN8b]j  
    %       end PhAfEsD  
    % 5Ew( 0K[  
    %   See also ZERNPOL, ZERNFUN2. 3eUi9_s+  
    ja9u?UbW  
    q]4h#?.-1v  
    %   Paul Fricker 11/13/2006 &b (*  
    }1 O"?6  
    :q/s%`ob  
    ,a>Dv@$Y  
    LH54J;7 Y  
    % Check and prepare the inputs: |eRE'Wd0  
    % ----------------------------- T={!/y+  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) vd%AV(]<LJ  
        error('zernfun:NMvectors','N and M must be vectors.') ozY$}|sjDT  
    end X@kgc&`0  
    ~7b#B XzP  
    _n:RA)4*  
    if length(n)~=length(m) :Quep-:fy<  
        error('zernfun:NMlength','N and M must be the same length.') Ar)EbGId  
    end 3FvVM0l"  
    +&\. ]Pp  
    b}(c'W*z%  
    n = n(:); k{r<S|PK0  
    m = m(:); S/oD`   
    if any(mod(n-m,2)) +s<6eHpm  
        error('zernfun:NMmultiplesof2', ... ]EK(k7nH  
              'All N and M must differ by multiples of 2 (including 0).') Lx_Jw\YO  
    end k9eyl)  
    f%PLR9Nh5@  
    (g@X.*c8  
    if any(m>n) s/ABT.ZO  
        error('zernfun:MlessthanN', ... GJWGT`"  
              'Each M must be less than or equal to its corresponding N.') w7` pbcY,  
    end 4M%|N  
    Bvvja C  
    `Hw][qy#  
    if any( r>1 | r<0 ) -~c-mt  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') Z'A 3\f   
    end yf*'=q  
    &w9*pJR %  
    aEzf*a|fSV  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ]Sj;\Iz  
        error('zernfun:RTHvector','R and THETA must be vectors.') )@9Eq|jMC  
    end ZklO9Ox(  
    Ep(xlHTv  
    ?<F([(  
    r = r(:); )*_G/<N) |  
    theta = theta(:); z 8M\(<  
    length_r = length(r); [f:&aS+  
    if length_r~=length(theta) 7(D)U)9h  
        error('zernfun:RTHlength', ... /*;a6S8q  
              'The number of R- and THETA-values must be equal.') [ PN2^  
    end T}{zh  
    <}RD]Sc$1  
    z#Qe$`4&  
    % Check normalization: +@uA  
    % -------------------- 4RctYMz  
    if nargin==5 && ischar(nflag) db_Qt'>  
        isnorm = strcmpi(nflag,'norm'); #)n$Q^9&  
        if ~isnorm 0Sk~m4fj(  
            error('zernfun:normalization','Unrecognized normalization flag.') iOfO+3'Z_U  
        end rMVcoO@3  
    else Q\zaa9P  
        isnorm = false; `oe=K{aX  
    end ^O<' Qp,[:  
    2u-J+  
    gJp6ReZ#  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% X*MK(aV3  
    % Compute the Zernike Polynomials J0vQqTaT  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /pkN=OBR  
    s[a\m,  
    Ge({sy>X  
    % Determine the required powers of r: iz;5:  
    % ----------------------------------- 4pMp@ b  
    m_abs = abs(m); vCej( ))  
    rpowers = []; ysi=}+F.  
    for j = 1:length(n) s]e `q4ip  
        rpowers = [rpowers m_abs(j):2:n(j)]; tq,^!RSbZ  
    end wEq&O|Vj  
    rpowers = unique(rpowers); k?HdW(HA  
    Kg~D~ +j  
    UhDf6A`]  
    % Pre-compute the values of r raised to the required powers, Py #EjF12  
    % and compile them in a matrix: ,<!*@xy7v  
    % ----------------------------- O Lt0Q.{  
    if rpowers(1)==0 5nBJj  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); t$,G%micj  
        rpowern = cat(2,rpowern{:}); U/PNEGuQ  
        rpowern = [ones(length_r,1) rpowern]; A`M-N<T  
    else &ZMQ]'&  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); MCTJ^g"D  
        rpowern = cat(2,rpowern{:}); [z\baL|  
    end M  hW9^?  
    wbOYtN Y@  
    lvODhoT  
    % Compute the values of the polynomials: AvZ5?rN$  
    % -------------------------------------- q2F `q. j  
    y = zeros(length_r,length(n)); PA803R74  
    for j = 1:length(n) 7xB]Z;:  
        s = 0:(n(j)-m_abs(j))/2; %'g)MK!e  
        pows = n(j):-2:m_abs(j); ud(0}[  
        for k = length(s):-1:1 z&n2JpLY7  
            p = (1-2*mod(s(k),2))* ... )c*xKij  
                       prod(2:(n(j)-s(k)))/              ... Gjq7@F'  
                       prod(2:s(k))/                     ... vO$cF*  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Z'9|  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 4a& 8G  
            idx = (pows(k)==rpowers); :sK4mRF  
            y(:,j) = y(:,j) + p*rpowern(:,idx); I6;6x  
        end r aOuD3  
         {hOS0).(w7  
        if isnorm )N~ p4kp  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); e(0 cz6  
        end [ *It' J^  
    end NwOV2E6@OW  
    % END: Compute the Zernike Polynomials y@$E5sz  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0+1!-Wo  
    zJ(DO>,p&  
    At<MY`ka  
    % Compute the Zernike functions: G"m0[|XH  
    % ------------------------------ ;{H Dz$  
    idx_pos = m>0; ?(R#  
    idx_neg = m<0; p*g)-/mA  
    p{_*<"cfYn  
    XZ8rM4 ]  
    z = y; OESKLjFt  
    if any(idx_pos) S?`0,F  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); h*y+qk-!\g  
    end stfniV  
    if any(idx_neg) z]hRc8 g}d  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); B%u[gNZ  
    end o ~y{9Q  
    2DsP "q79k  
    ?kZ-,@h:  
    % EOF zernfun Q\IViM  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  '#j6ZC/?  
    g9g ] X  
    DDE还是手动输入的呢? @g#| srYD  
    3 Z SU^v  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究