切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9172阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, gsa@ci  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, $o$WFV+h  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? 6zNWDUf  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? O2 + K  
    .J+F H G'  
    i`vy<Dvpz  
    "f~OC<GdYs  
    15' fU!  
    function z = zernfun(n,m,r,theta,nflag) ,Sy& ?t}`  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. lHTr7uF(  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N }ALli0n`V)  
    %   and angular frequency M, evaluated at positions (R,THETA) on the FDGG$z?>m  
    %   unit circle.  N is a vector of positive integers (including 0), and BTG_c_ ?]e  
    %   M is a vector with the same number of elements as N.  Each element m9&%A0  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) jWh)bsqI!  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, Zp<#( OIu  
    %   and THETA is a vector of angles.  R and THETA must have the same X*5N&AJ  
    %   length.  The output Z is a matrix with one column for every (N,M) f4+wP/n&  
    %   pair, and one row for every (R,THETA) pair. W_3BL]^=  
    % bH'2iG  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike eU e, P  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), co^h2b  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 8?: 2<  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 87!m l  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ZZCm438  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. V*Xr}FE  
    % $}z/BV1I  
    %   The Zernike functions are an orthogonal basis on the unit circle. h5-yhG  
    %   They are used in disciplines such as astronomy, optics, and h9iQn<lp4.  
    %   optometry to describe functions on a circular domain. F8Mf,jnPs  
    % m!P<# |V  
    %   The following table lists the first 15 Zernike functions. X{6a  
    % elpTak@  
    %       n    m    Zernike function           Normalization sdyNJh7Jr  
    %       -------------------------------------------------- v*<rNZI  
    %       0    0    1                                 1 `s Pk:cNz~  
    %       1    1    r * cos(theta)                    2 ~3f|-%Z  
    %       1   -1    r * sin(theta)                    2 734n1-F?I%  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6)  y}|E)  
    %       2    0    (2*r^2 - 1)                    sqrt(3) )/~o'M3  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) ucU7 @j  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ue'dI   
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) :$PrlE  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) -"H0Qafm  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) R(cg`8  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) eQn[  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) KU+\fwYpnk  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) Z 5)v  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) &}pF6eIar  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) u&UmI-}  
    %       -------------------------------------------------- VEn3b  
    % KtH^k&z.f  
    %   Example 1: #5'@at'1  
    % Fpeokr"i  
    %       % Display the Zernike function Z(n=5,m=1) |3Oyg?2  
    %       x = -1:0.01:1; LXhR"PWZM\  
    %       [X,Y] = meshgrid(x,x); 8ZM#.yB B  
    %       [theta,r] = cart2pol(X,Y); *rHz/& ,  
    %       idx = r<=1; v9S=$Aj  
    %       z = nan(size(X)); C8|#  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); x#zj0vI-8  
    %       figure ,tg(aL  
    %       pcolor(x,x,z), shading interp ;$gV$KB:xA  
    %       axis square, colorbar #M+_Lk3  
    %       title('Zernike function Z_5^1(r,\theta)') t*A[v  
    % IA[:-2_  
    %   Example 2: n~}[/ly  
    % 9&`";dg  
    %       % Display the first 10 Zernike functions ;FF+uK  
    %       x = -1:0.01:1; $ Y^0l  
    %       [X,Y] = meshgrid(x,x); #d/T7c#  
    %       [theta,r] = cart2pol(X,Y); e#mqerpJ  
    %       idx = r<=1; 5 ;XYF0  
    %       z = nan(size(X)); p|mFF0SL  
    %       n = [0  1  1  2  2  2  3  3  3  3]; ]*lZFP~  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 6akI5\b  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; dC-~=}HR^  
    %       y = zernfun(n,m,r(idx),theta(idx)); [{)Z^  
    %       figure('Units','normalized') 8~s0%%{,M  
    %       for k = 1:10 y@1QVt04  
    %           z(idx) = y(:,k); J:&.[  
    %           subplot(4,7,Nplot(k)) ]7yxXg  
    %           pcolor(x,x,z), shading interp 748:* (O  
    %           set(gca,'XTick',[],'YTick',[]) pL`Q+}c}  
    %           axis square J[hmY=,  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) vTK8t:JQ~  
    %       end bGK*1FlH  
    % \)wch P_0  
    %   See also ZERNPOL, ZERNFUN2. w\eC{,00:  
    o$+R  
    q1x[hv3 pP  
    %   Paul Fricker 11/13/2006 j2u'5kJ G  
    QJrXn6`  
    gW--[  
    0j6b5<Gpc*  
    wQjYH!u,YZ  
    % Check and prepare the inputs: C7*YZe  
    % -----------------------------  ^RT_Lky  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) cRD;a?0/6s  
        error('zernfun:NMvectors','N and M must be vectors.') ?*+U[*M  
    end xE^G*<mj:  
    F8{gJaP x  
    H@$K /  
    if length(n)~=length(m) !t"/w6X1I  
        error('zernfun:NMlength','N and M must be the same length.') oq!\100  
    end jl(D;JnF  
    h-;> v.  
    ^L)3O|6c  
    n = n(:); z uW4gJ  
    m = m(:); -s`Wd4AP  
    if any(mod(n-m,2)) L[Z^4l_!  
        error('zernfun:NMmultiplesof2', ... jQ%1lQ#R)  
              'All N and M must differ by multiples of 2 (including 0).') CrL9|78  
    end xR&:]M[Vg  
    .PVYYhrt  
    gT$WG$^i  
    if any(m>n) lnyq%T[^  
        error('zernfun:MlessthanN', ... 3'`&D/n  
              'Each M must be less than or equal to its corresponding N.') eF.nNu  
    end ?hc=w2Ci  
    eLORG(;h4  
    )$9w Kk\F  
    if any( r>1 | r<0 ) 7sOAaWx  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') \ moLQ  
    end "U4c'iW  
    j y5[K.  
    m?B=?;B9#  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Ot`%5<E^  
        error('zernfun:RTHvector','R and THETA must be vectors.') h'=)dFw7  
    end o4EY2  
    $p0D9mF  
    <ml?DXT  
    r = r(:); 0[%{YmI{W  
    theta = theta(:); VV/T)qEe7>  
    length_r = length(r); )z@ +|A  
    if length_r~=length(theta) SH=S>  
        error('zernfun:RTHlength', ... @YH>|{S&  
              'The number of R- and THETA-values must be equal.') iBbaHU*V  
    end =0Y0o_  
    qg`ae  
    Y 'X!T8  
    % Check normalization: 3MHpP5C  
    % -------------------- zx=eqN@!@  
    if nargin==5 && ischar(nflag) a]V8F&)g#  
        isnorm = strcmpi(nflag,'norm'); <_|@ ~^u  
        if ~isnorm >h#juO"  
            error('zernfun:normalization','Unrecognized normalization flag.') k# Ho7rS&  
        end x/M$_E<G  
    else h;+O96V4.  
        isnorm = false; Bl6I@w  
    end 2 SD Z  
    RS}_cm0  
    !w%c= V]tV  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% db_?da;!`  
    % Compute the Zernike Polynomials xPUukmG:B  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% t855|  
    'R+^+urq^  
    e\[q3J  
    % Determine the required powers of r: "'Fvt-<^S7  
    % ----------------------------------- 1<#D3CXK  
    m_abs = abs(m); W? 4:sLC#3  
    rpowers = []; z,m3U(  
    for j = 1:length(n) qtZzJ>Y  
        rpowers = [rpowers m_abs(j):2:n(j)]; Khi6z&B  
    end 5ILKYUg,  
    rpowers = unique(rpowers); NwYQ6VEA  
    oz{X"jfu  
    3T]cDVQ_  
    % Pre-compute the values of r raised to the required powers, rqN+0CT  
    % and compile them in a matrix: leNX5 sX  
    % ----------------------------- oowofi(E  
    if rpowers(1)==0 v*GS>S  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); _/>I-\xWA  
        rpowern = cat(2,rpowern{:}); ETL7|C"  
        rpowern = [ones(length_r,1) rpowern]; Eb9h9sjv  
    else ]6`K  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); -nC&t~sD  
        rpowern = cat(2,rpowern{:}); @Nh}^D >j  
    end }6%\/d1~ 6  
    Sft vN-  
    PV"\9OIKb.  
    % Compute the values of the polynomials: LXby(|< j  
    % -------------------------------------- F{ vT^/  
    y = zeros(length_r,length(n)); Y&=DjKoVh  
    for j = 1:length(n) MYara;k  
        s = 0:(n(j)-m_abs(j))/2; y,&[OrCm^\  
        pows = n(j):-2:m_abs(j); wj}LVyV  
        for k = length(s):-1:1 iCiKr aW  
            p = (1-2*mod(s(k),2))* ... iY@}Q "  
                       prod(2:(n(j)-s(k)))/              ... ;7qzQ{Km  
                       prod(2:s(k))/                     ... JP\jhkn  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 3 I%N4K4  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 2&:z[d}~H  
            idx = (pows(k)==rpowers); ?F[_5ls|]  
            y(:,j) = y(:,j) + p*rpowern(:,idx); @(6i 1Iwu9  
        end ^u$=<66  
         pwHe&7e#  
        if isnorm mk~CE  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); BWYv.&=(  
        end 58#nYt  
    end P6>C+T1  
    % END: Compute the Zernike Polynomials ke W7pN?  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% UJL'4 t/  
    _ti^i\8~  
    lj&\F|-i  
    % Compute the Zernike functions: |;Jt * _  
    % ------------------------------ kkHK~(>G  
    idx_pos = m>0; W!XBuk-  
    idx_neg = m<0; qrw*?6mSQ  
    O zC%6;6h  
    4|\M`T  
    z = y; N6_1iIM  
    if any(idx_pos) X.#9[3U+  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); CfrO1iF  
    end R'B_YKHBY  
    if any(idx_neg) Vtj*O'0  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); CL5^>. }  
    end Gb[J3:.  
    FYC]^D  
    =<9Mv+Ry8  
    % EOF zernfun 7vPG b:y  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  +$^ [ r  
    M&/e*Ta5  
    DDE还是手动输入的呢? :c[T@[  
    ,~K4+ t_  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究