切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9137阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, m+L:\mvA  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, ,Vogo5~X  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? QRRZMdEGs[  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? ka(xU#;  
    \(u P{,ML  
    h0GXN\xI  
    f~53:;L/  
    KS%,N _F<  
    function z = zernfun(n,m,r,theta,nflag) Uc/%4Gx   
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. |i|O9^*%  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N __a9}m4i7x  
    %   and angular frequency M, evaluated at positions (R,THETA) on the @? t)UE  
    %   unit circle.  N is a vector of positive integers (including 0), and =[P||  
    %   M is a vector with the same number of elements as N.  Each element Q5Wb)  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) G#csN&|,  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, g ,.iM8  
    %   and THETA is a vector of angles.  R and THETA must have the same Aoj X)_"z  
    %   length.  The output Z is a matrix with one column for every (N,M) p4/D%*G^`  
    %   pair, and one row for every (R,THETA) pair. /rquI y^  
    % J[^-k!9M  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike CkOd>Kn  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), \X(.%5xC  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral m$U2|5un&  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, p}h)WjC  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized RSp=If+4  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. GhX>YzD7  
    % *@D.=i>  
    %   The Zernike functions are an orthogonal basis on the unit circle. 5-MI 7I@l  
    %   They are used in disciplines such as astronomy, optics, and G-Y8<mEh  
    %   optometry to describe functions on a circular domain. FvRog<3X  
    % 1vX97n<}  
    %   The following table lists the first 15 Zernike functions. lK{h%2A\b  
    % NL1Ajms`  
    %       n    m    Zernike function           Normalization d !>PqPo  
    %       -------------------------------------------------- 1>n@`M8}  
    %       0    0    1                                 1 7r:!HmRl  
    %       1    1    r * cos(theta)                    2 w'}b 8m(L  
    %       1   -1    r * sin(theta)                    2 `CRW2^g  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) SlmgFk!r!  
    %       2    0    (2*r^2 - 1)                    sqrt(3) |TkO'QN  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) ;0 ,-ywK  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 9Y0w SOSW  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) qg|SBQ?6  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) BeBa4s  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) T$SGf.-  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) &)1+WrU  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) W<\KRF$S;  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) [/'W#x  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10)   \\6/"  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) gd2cwnP  
    %       -------------------------------------------------- U4Il1| M&  
    % ,|D<De\v&  
    %   Example 1: L_Z>*s&  
    % 3b~k)t4R  
    %       % Display the Zernike function Z(n=5,m=1) y4+Km*am,W  
    %       x = -1:0.01:1; L~>pSP^a  
    %       [X,Y] = meshgrid(x,x); l1nrJm8  
    %       [theta,r] = cart2pol(X,Y); x:GuqE  
    %       idx = r<=1; 4/cUd=>Z  
    %       z = nan(size(X)); b0t/~]9G  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); =5J}CPKbZI  
    %       figure +hGr2%*0f  
    %       pcolor(x,x,z), shading interp `C$.  
    %       axis square, colorbar 'V/+v#V+>  
    %       title('Zernike function Z_5^1(r,\theta)') )ui]vS:>  
    % `-IX"rf  
    %   Example 2: (*F/^4p!$  
    % mSr(PIH{\  
    %       % Display the first 10 Zernike functions "|`euxYV  
    %       x = -1:0.01:1; ogtl UCUD  
    %       [X,Y] = meshgrid(x,x); 'Y `or14E  
    %       [theta,r] = cart2pol(X,Y); /d*d'3{c  
    %       idx = r<=1; ,Tjc\;~%  
    %       z = nan(size(X)); OF-$*  
    %       n = [0  1  1  2  2  2  3  3  3  3]; "=@X>jUc  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; VBo=*gn,$  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; d[=~-[  
    %       y = zernfun(n,m,r(idx),theta(idx)); "dQ02y  
    %       figure('Units','normalized') @p"m{  
    %       for k = 1:10 ^\KZE|^3@  
    %           z(idx) = y(:,k); WS6'R    
    %           subplot(4,7,Nplot(k)) j"1#n? 0  
    %           pcolor(x,x,z), shading interp <*oTVl4fS  
    %           set(gca,'XTick',[],'YTick',[]) QY|Rz(;m  
    %           axis square ir !/{IQx  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) b@`h]]~:  
    %       end [7 _1GSS1  
    % JS$ojL^  
    %   See also ZERNPOL, ZERNFUN2. v[57LB  
    "n'kv!?\  
    }LeizbU  
    %   Paul Fricker 11/13/2006 a]\l:r  
    OXp(rJ*bK  
    KDxqz$14 -  
    %W` }  
    n` M!K:Pq  
    % Check and prepare the inputs: $ra q,SP  
    % ----------------------------- ~xCv_u^=  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) <x-7MU&  
        error('zernfun:NMvectors','N and M must be vectors.') 4 ))ZBq?  
    end eI%9.Cx#I  
    ?sD4S   
    2fN2!OT  
    if length(n)~=length(m) #|8Ia:=s  
        error('zernfun:NMlength','N and M must be the same length.') LT[g +zGB  
    end l]R=I2t  
    [] cF*en  
    h(C@IIO^;G  
    n = n(:); V$0mcwH  
    m = m(:); P_}wjz}9ZX  
    if any(mod(n-m,2)) *{DpNV8"  
        error('zernfun:NMmultiplesof2', ... aGBUFCCa  
              'All N and M must differ by multiples of 2 (including 0).') z;wOtKl5r  
    end nEHmiG  
    QlE]OAdB42  
    =aBc .PJ^  
    if any(m>n) ?mwa6]  
        error('zernfun:MlessthanN', ... 1Be/(pSc  
              'Each M must be less than or equal to its corresponding N.') fb+_]{7g  
    end Ua%;hI)j$  
    q{Ao j  
    9$f%  
    if any( r>1 | r<0 ) ij5|P4Eka  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 4ibOVBG:*,  
    end CFXr=.yz  
    swKqsN.  
    mR O@ZY;5  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) d0V*[{  
        error('zernfun:RTHvector','R and THETA must be vectors.') +?)R}\\  
    end .no<#l  
    :lW8f~!  
    O\F$~YQ  
    r = r(:); u.ej<Lo  
    theta = theta(:); r17"i.n  
    length_r = length(r); v` h n9O  
    if length_r~=length(theta) R =kXf/y  
        error('zernfun:RTHlength', ... \AeM=K6q+D  
              'The number of R- and THETA-values must be equal.') Z H2   
    end p(>D5uN_}5  
    s+t[{i4|  
    TXT!Ae  
    % Check normalization:  qC6@  
    % -------------------- lk*w M?Z  
    if nargin==5 && ischar(nflag) s~06%QEG  
        isnorm = strcmpi(nflag,'norm'); m*|G 2  
        if ~isnorm !&},h=  
            error('zernfun:normalization','Unrecognized normalization flag.') b$q~(Z}  
        end &'k:?@J[  
    else < &kl:|  
        isnorm = false; > -,$  
    end h0] bIT{  
    [gGo^^aW#  
    (QTQxZ  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% GXi)3I%  
    % Compute the Zernike Polynomials ~p?D[]h  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 3/y"kl:< -  
    !Qq~lAJO;  
    ;#L]7ZY9:-  
    % Determine the required powers of r: =6a=`3r!I  
    % ----------------------------------- T 9FGuit9  
    m_abs = abs(m); .oM;D~(=9  
    rpowers = []; e(I;[G +%,  
    for j = 1:length(n) iUbcvF3aP  
        rpowers = [rpowers m_abs(j):2:n(j)]; VIaj])m  
    end Z.`0  
    rpowers = unique(rpowers); ;OC{B}.vH  
    E~c>j<'-"<  
    P~84#5R1  
    % Pre-compute the values of r raised to the required powers, G\R6=K:f7  
    % and compile them in a matrix: =om<*\vsO  
    % ----------------------------- 9a#Y D;-p  
    if rpowers(1)==0 @=OX7zq\h-  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); :Wihb#TO)  
        rpowern = cat(2,rpowern{:}); v6H!.0  
        rpowern = [ones(length_r,1) rpowern]; tkQrxa|  
    else cv;2zq=T  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); _hgGF9  
        rpowern = cat(2,rpowern{:}); 'U,\5jj'Y  
    end 7)RRCsn  
    O>>/2V9  
    FE1'MUT_  
    % Compute the values of the polynomials: =QIu3%&  
    % -------------------------------------- I+QM":2  
    y = zeros(length_r,length(n)); <sn,X0W  
    for j = 1:length(n) #\ECQF  
        s = 0:(n(j)-m_abs(j))/2; c_t7<  
        pows = n(j):-2:m_abs(j); Tv `&  
        for k = length(s):-1:1 1)5/a5  
            p = (1-2*mod(s(k),2))* ... k(xB%>ns  
                       prod(2:(n(j)-s(k)))/              ... ZFtJoGaR  
                       prod(2:s(k))/                     ... WD5jO9Oai  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ..x 2  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); RBHU5]5  
            idx = (pows(k)==rpowers); kkJ8xyO  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 21my9Ui]  
        end %!DTq`F  
         0$i\/W+  
        if isnorm Tkn8W j  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); g][n1$%  
        end Jpy~5kS  
    end q;#bFPh  
    % END: Compute the Zernike Polynomials >`|Wg@_  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% t qUBl?i  
    d6ifJ  
    E2tUL#  
    % Compute the Zernike functions: {b-SK5%]L  
    % ------------------------------ i6S["\h>  
    idx_pos = m>0;  N!Xn)J  
    idx_neg = m<0; F$'po#  
    l3y}nh+ 8  
    >|0 I\{ C  
    z = y; *\_>=sS x;  
    if any(idx_pos) G *<g%"  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); >QPCYo<E  
    end BjHp3-A'  
    if any(idx_neg) A"0Yn(awWu  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 3T>6Q#W5eO  
    end ^F- 2tc  
    (,|eE)+  
    e(FT4KD~  
    % EOF zernfun DH bS=Iih  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  DtZ7UX\P  
    hy3?.  
    DDE还是手动输入的呢? awLSY:JI  
    kPSi6ci  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究