下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, 0_] aF8j
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, VGvOwd)E
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? S?3{G@!
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? a|s= d
,}2j
Fb9z4
H>7!+&M
t3s}U@(C
zIAMM
function z = zernfun(n,m,r,theta,nflag) ~r>UjC_
B:
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 41uSr 1
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N @pS[_!EqYz
% and angular frequency M, evaluated at positions (R,THETA) on the (/KF;J^M
% unit circle. N is a vector of positive integers (including 0), and mMjVbeh[
% M is a vector with the same number of elements as N. Each element }E1Eq
% k of M must be a positive integer, with possible values M(k) = -N(k) v'@LuF'e8
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, 7I44BC*R~
% and THETA is a vector of angles. R and THETA must have the same ah<f&2f
% length. The output Z is a matrix with one column for every (N,M) [c W
% pair, and one row for every (R,THETA) pair. ^X;>?_Bk
% *{Z!m@?
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 87>Qw,r
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), -"nYCF
% with delta(m,0) the Kronecker delta, is chosen so that the integral +es6c')
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, `fV$'u
% and theta=0 to theta=2*pi) is unity. For the non-normalized 6?iP z?5
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. <A&R%5Vs
% VN".NEL
% The Zernike functions are an orthogonal basis on the unit circle. S8cFD):q
% They are used in disciplines such as astronomy, optics, and o{Ep/O`
% optometry to describe functions on a circular domain. iGlZFA
% 1lQ10J
% The following table lists the first 15 Zernike functions. W P&zF$
% {2Ibd i
% n m Zernike function Normalization ;C<A}
% -------------------------------------------------- CKur$$B
% 0 0 1 1 W!^=)Qs
% 1 1 r * cos(theta) 2 l`]!)j|+
% 1 -1 r * sin(theta) 2 qs b4@jt+
% 2 -2 r^2 * cos(2*theta) sqrt(6) _L72Ae(_
% 2 0 (2*r^2 - 1) sqrt(3) igL^k`&5^"
% 2 2 r^2 * sin(2*theta) sqrt(6) CUG<v3\
% 3 -3 r^3 * cos(3*theta) sqrt(8) 1GdgF?4
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) s#fmGe"8
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) TDGzXJf[
% 3 3 r^3 * sin(3*theta) sqrt(8) ~>R)H#mP7
% 4 -4 r^4 * cos(4*theta) sqrt(10)
5~F0'tb|}
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) b#U%aPH
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) c 1GP3
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) *~L]n4-
% 4 4 r^4 * sin(4*theta) sqrt(10) BYf"l8^,
% -------------------------------------------------- lTP02|eK
% e-CW4x
% Example 1: iD`XD\.?
% k}.nH"AQ
% % Display the Zernike function Z(n=5,m=1) u2Obb`p S
% x = -1:0.01:1; q}i87a;m
% [X,Y] = meshgrid(x,x); (jG$M= q-
% [theta,r] = cart2pol(X,Y); F)w83[5_d
% idx = r<=1; _JDr?Kg
% z = nan(size(X)); D=vq<X'
% z(idx) = zernfun(5,1,r(idx),theta(idx)); .#J3UZ
% figure CQ[-Cp7
% pcolor(x,x,z), shading interp 6hq)yUvo4
% axis square, colorbar 1aG}-:$t'
% title('Zernike function Z_5^1(r,\theta)') %R>S"
% OEW,[d
% Example 2: >cb
gL%
% A'8K^,<