切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9354阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, Qr1e@ =B  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 2L AYDaS  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? hYQ_45Z*?  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? \MxoZ  
    Qn ^bVhG+  
    < Dx]b*H  
    kOvDl!^  
    :16P.z1L  
    function z = zernfun(n,m,r,theta,nflag) #jAqra._b  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. pLMRwgzr  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Ladsw  
    %   and angular frequency M, evaluated at positions (R,THETA) on the tb :L\A^:  
    %   unit circle.  N is a vector of positive integers (including 0), and 5XuT={o  
    %   M is a vector with the same number of elements as N.  Each element L lBN-9p  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) |F.)zC5{  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, T&86A\D\z  
    %   and THETA is a vector of angles.  R and THETA must have the same Z~A@o ""F  
    %   length.  The output Z is a matrix with one column for every (N,M)  g PAX4'  
    %   pair, and one row for every (R,THETA) pair. 9]t[J_YM  
    % A2}Rl%+X]6  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 2+Px'U\  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), #fj/~[Ajv  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral qQ!1t>j+H  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ;q0uE:^ S  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized b':|uu*/  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ZoKcJA  
    % xEuN   
    %   The Zernike functions are an orthogonal basis on the unit circle. 7PR#(ftz  
    %   They are used in disciplines such as astronomy, optics, and *9)SmS s  
    %   optometry to describe functions on a circular domain. 1 T130L  
    % JT fd#g?I  
    %   The following table lists the first 15 Zernike functions. >NB?& |  
    % X=8Y&#%  
    %       n    m    Zernike function           Normalization = 8gHS[  
    %       -------------------------------------------------- i{D=l7j|w  
    %       0    0    1                                 1 kE TT4U  
    %       1    1    r * cos(theta)                    2 `OymAyEYQ  
    %       1   -1    r * sin(theta)                    2 @"T"7c?Cv  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) l!#m&'16"  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 86f2'o+  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) PSawMPw  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) nA?Hxos  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) L6>pGx  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) k%y9aO  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) azjEq$<M  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) '8Phxx|  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) l"n{.aL  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) kt4d; 4n  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) =h(W4scgqX  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 4@.|_zY  
    %       -------------------------------------------------- :S$l"wrh\  
    % Yxv9  
    %   Example 1: Knhp*V?  
    % iR$<$P5  
    %       % Display the Zernike function Z(n=5,m=1) &'l>rD^o  
    %       x = -1:0.01:1; zi~5l#I  
    %       [X,Y] = meshgrid(x,x); $8l({:*q0  
    %       [theta,r] = cart2pol(X,Y);  `[zQf  
    %       idx = r<=1; pf4 ^Bk}e  
    %       z = nan(size(X)); _= #zc4U  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); ::n;VY2&  
    %       figure 4'KOp&#l K  
    %       pcolor(x,x,z), shading interp o;b0m;~   
    %       axis square, colorbar )Qm[[pnj  
    %       title('Zernike function Z_5^1(r,\theta)') rQTr8DYH  
    % C0=9K@FCb  
    %   Example 2: 5unG#szq  
    % Q4t(@0e}  
    %       % Display the first 10 Zernike functions xUF_1hY  
    %       x = -1:0.01:1; ;X,1&#I  
    %       [X,Y] = meshgrid(x,x); 5-)#f?  
    %       [theta,r] = cart2pol(X,Y); tweY'x.{  
    %       idx = r<=1; iVB^,KQ@  
    %       z = nan(size(X)); UZ8?[  
    %       n = [0  1  1  2  2  2  3  3  3  3]; 0iCPi)B  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; Gamr6I"K  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; ,fEO> i  
    %       y = zernfun(n,m,r(idx),theta(idx)); (]/9-\6(#  
    %       figure('Units','normalized')  n6F/Ac:  
    %       for k = 1:10 C1T_9}L-A  
    %           z(idx) = y(:,k); !~_zm*CqbZ  
    %           subplot(4,7,Nplot(k)) }0,>2TTDN  
    %           pcolor(x,x,z), shading interp uH3D{4   
    %           set(gca,'XTick',[],'YTick',[]) 3cj3u4y  
    %           axis square $ _8g8r}  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) {;2i.m1  
    %       end %iJ%{{f`  
    % 93[DAs  
    %   See also ZERNPOL, ZERNFUN2. #6Xs.*b5C  
    PLM_#+R>  
    HxK$4I`  
    %   Paul Fricker 11/13/2006 R`F,aIJ]  
    ]E3U J!!  
    TEUY3z[g  
    1Xy]D  
    f[gqT yiP  
    % Check and prepare the inputs: -{h   
    % ----------------------------- Bs`$ i ;&  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) g%[n4  
        error('zernfun:NMvectors','N and M must be vectors.') 4eVI},  
    end 4 !`bZ`_Bw  
    ()PKw,pD  
    =1dI>M>tm  
    if length(n)~=length(m) [fu!AIQs  
        error('zernfun:NMlength','N and M must be the same length.') ctQbp~-  
    end wLuv6\E  
    OEdJc\n_R  
    PIcrA2ll  
    n = n(:); iq?#rb P#I  
    m = m(:); A`O<6   
    if any(mod(n-m,2)) a )*6gf<5  
        error('zernfun:NMmultiplesof2', ... @|bP+8oU  
              'All N and M must differ by multiples of 2 (including 0).') \^*< y-jL  
    end Kr  L>FI  
    1|,Pq9  
    b(GFMk  
    if any(m>n) N#N0Q0W=  
        error('zernfun:MlessthanN', ... ~ aZedQc  
              'Each M must be less than or equal to its corresponding N.') mzL[/B#>M  
    end x}fn 'iUnm  
    vUQFQ  
    ,xJrXPW  
    if any( r>1 | r<0 ) ~Pk0u{,4XQ  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') !- C' }  
    end $awi>#[  
    ^ L:cjY/  
    Al)$An-  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Q/_[--0&#  
        error('zernfun:RTHvector','R and THETA must be vectors.') (k-YI{D3  
    end kL@Wb/K JP  
    cu#e38M&eE  
    Z\X'd_1!  
    r = r(:); hJ%1   
    theta = theta(:); tP ~zKU  
    length_r = length(r); ?4PQQd  
    if length_r~=length(theta) jRkC/Lw  
        error('zernfun:RTHlength', ... q5 &Ci`  
              'The number of R- and THETA-values must be equal.') t[.W$1=  
    end k/Mp6<?C:  
    w=r&?{  
    ZIxRyo-i  
    % Check normalization: WbjF]b\  
    % -------------------- ? s} %  
    if nargin==5 && ischar(nflag) D>ai.T%n  
        isnorm = strcmpi(nflag,'norm'); lpQP"%q  
        if ~isnorm P1 +"v*  
            error('zernfun:normalization','Unrecognized normalization flag.') 7r{qJ7$%  
        end )&NAs  
    else 7-iIay1h"  
        isnorm = false; wV <7pi  
    end <SXZx9A!  
    jy$@a%FD  
    ^,s?e.u$8`  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \,W.0#D8v4  
    % Compute the Zernike Polynomials irxz l3   
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% B5=3r1Ly  
    .{dE}2^  
    "mj^+u-  
    % Determine the required powers of r: G^h_ YjR`*  
    % ----------------------------------- \4~AI=aw,T  
    m_abs = abs(m); * UcjQ  
    rpowers = []; ^^Lj I  
    for j = 1:length(n) nW;kcS*A  
        rpowers = [rpowers m_abs(j):2:n(j)]; p]LnE `v  
    end =DgC C|p  
    rpowers = unique(rpowers); !c8L[/L  
    4^Qi2[w  
    ^KHLBSc:  
    % Pre-compute the values of r raised to the required powers, n`5WXpz4;  
    % and compile them in a matrix: g,lY ut  
    % ----------------------------- hYt7kq!"  
    if rpowers(1)==0 N_'+B+U?  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); #qL9{P<}  
        rpowern = cat(2,rpowern{:}); e9@(/+  
        rpowern = [ones(length_r,1) rpowern]; lJ/6-dP  
    else {Bs+G/?o/  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); K^ D82tP  
        rpowern = cat(2,rpowern{:});  Dt}dp_  
    end sWxK~Yg  
    MQw9X  
    g{ (@uzqG  
    % Compute the values of the polynomials: Zw=G@4xoU  
    % -------------------------------------- 8=H\?4)()Y  
    y = zeros(length_r,length(n)); 19y 0$e_V  
    for j = 1:length(n) |'w^n  
        s = 0:(n(j)-m_abs(j))/2; mCk5B*Jy  
        pows = n(j):-2:m_abs(j); JLUms  
        for k = length(s):-1:1 c cr" ep  
            p = (1-2*mod(s(k),2))* ... zeOb Aw1O  
                       prod(2:(n(j)-s(k)))/              ... 26nBBS,;  
                       prod(2:s(k))/                     ... ya>N.h  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... JLW$+62  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); }MZan" cfo  
            idx = (pows(k)==rpowers); 2ij/N%l  
            y(:,j) = y(:,j) + p*rpowern(:,idx); BR3mAF  
        end 0VG=?dq  
         }u^:MI  
        if isnorm g~R/3cm4  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ) hdgz$cl  
        end @a;sV!S{  
    end hmzair3X  
    % END: Compute the Zernike Polynomials gH H&IzHF  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 4!'1/3cY  
    iPFL"v<#J  
    (4ZLpsbJ  
    % Compute the Zernike functions: eiB(VOJ  
    % ------------------------------ \9jpCNdJ  
    idx_pos = m>0; }:^XX0:FK  
    idx_neg = m<0; ; $6x=uZ  
    1Zq   
    7-g^2sa'(  
    z = y; R<j<. h  
    if any(idx_pos) *^6k[3VY  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); rgT%XhUS6f  
    end XPVV+.  
    if any(idx_neg) 2VMX:&3 5J  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 8l?w=)Qy  
    end R`3x=q  
    8>v7v&Bh|  
    `vH&K{   
    % EOF zernfun 'Z$jBL  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  82G lbd)  
    V:nMo2'hb  
    DDE还是手动输入的呢? +,ZU TG  
     muK'h`  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究