下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, 8d Fqwpw8
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 8tna<Hx
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? ^P]5@d v
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? n|DMj[uT
rbIYLVA+V
Eaxsg
_29wQn@]
p$jAq~C
function z = zernfun(n,m,r,theta,nflag) K[/L!.Ag
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. )uR_d=B&
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N $Zw+"AA
% and angular frequency M, evaluated at positions (R,THETA) on the uW FyI"
% unit circle. N is a vector of positive integers (including 0), and :2
:VMIa
% M is a vector with the same number of elements as N. Each element GXQ%lQ
% k of M must be a positive integer, with possible values M(k) = -N(k) ZUS5z+o
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, `{
HWk^
% and THETA is a vector of angles. R and THETA must have the same jrz.n4Y`
% length. The output Z is a matrix with one column for every (N,M) =h|cs{eT\2
% pair, and one row for every (R,THETA) pair. soQ[Zg4}
% g"m9[R=]6
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike t)?K@{ 9
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 7I&o
% with delta(m,0) the Kronecker delta, is chosen so that the integral 'r\RN\PT
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, |s(Ih_Zn
% and theta=0 to theta=2*pi) is unity. For the non-normalized =2QP7W3mg<
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. `^'fS@VA
% 3T,[
% The Zernike functions are an orthogonal basis on the unit circle. !7)#aXt&
% They are used in disciplines such as astronomy, optics, and cZ)mp`^n7
% optometry to describe functions on a circular domain. ONDO
xXs
% UpE+WzY
% The following table lists the first 15 Zernike functions. !~R<Il|B
% +r;t]
% n m Zernike function Normalization C8T0=o/-`
% -------------------------------------------------- yZgWFf.X
% 0 0 1 1 ']I!1>v$[
% 1 1 r * cos(theta) 2 [{GN#W|AGP
% 1 -1 r * sin(theta) 2 JsuI&v
% 2 -2 r^2 * cos(2*theta) sqrt(6) Tbv w?3
% 2 0 (2*r^2 - 1) sqrt(3) chKEGosbF
% 2 2 r^2 * sin(2*theta) sqrt(6) #>,E"-]f
% 3 -3 r^3 * cos(3*theta) sqrt(8) AJ&j|/
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) f8N*[by
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) (U#
Oj"
% 3 3 r^3 * sin(3*theta) sqrt(8) 8-k`"QI=
% 4 -4 r^4 * cos(4*theta) sqrt(10) JN` $Fq+
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) #ley3rJW]
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) A?}[rM
Z
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ;fW~Gb?"
% 4 4 r^4 * sin(4*theta) sqrt(10) {7]maOg>7J
% -------------------------------------------------- yFb"2
% E"S#d&9
% Example 1: |3T2}oh rr
% G8%VL^;O*5
% % Display the Zernike function Z(n=5,m=1) 2@
9? ~?r
% x = -1:0.01:1; Z}>F
V~4
% [X,Y] = meshgrid(x,x); dW!El^w}
% [theta,r] = cart2pol(X,Y); 4Otq3s34FT
% idx = r<=1; 4'*.3f'bp
% z = nan(size(X)); D&o\q68W
% z(idx) = zernfun(5,1,r(idx),theta(idx)); \#VWZ\M8a
% figure Z}\,rex
% pcolor(x,x,z), shading interp 3c,4 wyn
% axis square, colorbar tD}-&"REP
% title('Zernike function Z_5^1(r,\theta)') Y`eF9Im,
% 3BD&;.<r
% Example 2: "Ueq
% G6W|l2P!
% % Display the first 10 Zernike functions An0N'yo"Z
% x = -1:0.01:1; 4u%AZ<-C}m
% [X,Y] = meshgrid(x,x); 4
?PB
Fbd
% [theta,r] = cart2pol(X,Y); %cUC~, g_(
% idx = r<=1; :):vB
% z = nan(size(X)); EsX(<bx
% n = [0 1 1 2 2 2 3 3 3 3]; O< /b]<[
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; !9KDdU
% Nplot = [4 10 12 16 18 20 22 24 26 28]; z\ONwMl
% y = zernfun(n,m,r(idx),theta(idx)); \aM-m:J
% figure('Units','normalized') !z4I-a
% for k = 1:10 >bQOpGy}l
% z(idx) = y(:,k); 9@q!~ur
% subplot(4,7,Nplot(k)) ZX`x9/0&
% pcolor(x,x,z), shading interp MD<x{7O12>
% set(gca,'XTick',[],'YTick',[]) eWex/ m
% axis square l1]{r2g
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) R13k2jLSQ
% end >Ovz;
% j
nSZ@u
% See also ZERNPOL, ZERNFUN2. V?"U)Y@Y
WoGnJ0N q
?Sa,n^b*H
% Paul Fricker 11/13/2006 C R?}*
JU5,\3Lz#
u t4:LHF
$!9/s S?
%r.C9
% Check and prepare the inputs: biS[GyQ
% ----------------------------- id :
^|
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) cl&?'`
)
error('zernfun:NMvectors','N and M must be vectors.')
=A'JIssk
end XP% _|Q2X
/|UbYe,
<bg6k . s
if length(n)~=length(m) Ank_;jo
error('zernfun:NMlength','N and M must be the same length.') Vn{;8hZ:a
end {v=[~H>bt
\I4Uj.'>\
Gsy>"T{CY
n = n(:); SIR2 Kc0
m = m(:); Ax~
i`
if any(mod(n-m,2)) er1XZ
error('zernfun:NMmultiplesof2', ... jCNR63/
'All N and M must differ by multiples of 2 (including 0).') ;'V[8`Z@
end 0Qvr
g+
<b_K*]Z
Nv;'Ys P
if any(m>n) 1EQ:@1
error('zernfun:MlessthanN', ... y $uq`FW
'Each M must be less than or equal to its corresponding N.') fSVM[
end xy!E_CuC$
+,ar`:x&a
pxedj
if any( r>1 | r<0 ) %P<fz1
error('zernfun:Rlessthan1','All R must be between 0 and 1.') dQ-g\]d|
end 2|RoN)%
~~k0&mK|Q
VbJE zl
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) OiZ-y7;k^
error('zernfun:RTHvector','R and THETA must be vectors.') 0k?]~f
end Lwf[*n d
'w72i/
4[;}/-
r = r(:); )AdwA+-x
theta = theta(:); )y:))\>
length_r = length(r); 7^! zT
if length_r~=length(theta) ^*$!9~
error('zernfun:RTHlength', ... fiSX( 9
'The number of R- and THETA-values must be equal.') N!dBF t"
end E2cZk6~m{
$[MAm)c:]{
mA,{E-T
% Check normalization: .:Wp9M
% -------------------- '4u/ g
if nargin==5 && ischar(nflag) _G<Wq`0w)
isnorm = strcmpi(nflag,'norm'); l"X,[
if ~isnorm z+wegF
error('zernfun:normalization','Unrecognized normalization flag.') a+k3wzJ
end Y|hd!C-x
else T7/DH
isnorm = false; B|9XqQ EI
end Da6l=M
\k=%G_W
0
.T5%
_/
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% LqJV
% Compute the Zernike Polynomials zn^ G V
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0ZI}eZA j
u=~`5vA
'
\>k7?@
% Determine the required powers of r: G
OG[^T
% ----------------------------------- OR+py.vK
m_abs = abs(m); *L*{FnsV
rpowers = []; a;~< iB;3"
for j = 1:length(n) b~)2`l
rpowers = [rpowers m_abs(j):2:n(j)]; Ks(l :oUB
end yn(bW\
rpowers = unique(rpowers); ".( G,TW
KE5>O1
I7Abf7>*Q
% Pre-compute the values of r raised to the required powers, ph!h8@e
% and compile them in a matrix: ta x:9j|~
% ----------------------------- 'T7 3V
if rpowers(1)==0 yqtHlz%
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Uy)pEEu
rpowern = cat(2,rpowern{:}); <KCyXU*
rpowern = [ones(length_r,1) rpowern]; j*f\Z!EeZ
else r[7*1'.p
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); THK^u+~LM
rpowern = cat(2,rpowern{:}); -w)v38iX!
end " L,9.b
l)jP!k
.i|nn[H &
% Compute the values of the polynomials: N0\<B-8+,>
% -------------------------------------- ? `kZ 6$
y = zeros(length_r,length(n)); TA:#K
for j = 1:length(n) "<)Jso|
s = 0:(n(j)-m_abs(j))/2; {'{9B
pows = n(j):-2:m_abs(j); '`W6U]7>
for k = length(s):-1:1 c_.Fe'E
p = (1-2*mod(s(k),2))* ... Clap3E|a
prod(2:(n(j)-s(k)))/ ... ;AL:VU
prod(2:s(k))/ ... W* v3B.
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... V
joVC$ZX
prod(2:((n(j)+m_abs(j))/2-s(k))); WW^+X~Y
idx = (pows(k)==rpowers); 7xG~4N<)]
y(:,j) = y(:,j) + p*rpowern(:,idx); 7<B-2g
end TK~KM
{L.uLr_?e
if isnorm $2}%3{<j
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 08%Bx~88_%
end 7+X~i@#rU
end 0&2`)W?9
% END: Compute the Zernike Polynomials Xi\c>eALO
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% JZ:yPvJ
`}bvbvmA
in K;n
% Compute the Zernike functions: *_}0vd
% ------------------------------ #<u;.'R
idx_pos = m>0; O;}K7rSc
idx_neg = m<0; HGd.meQ
cJTwgm?
aS\$@41"
z = y; i*!2n1c[
if any(idx_pos) |pq9i)e&
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); WA:r4V
end n:k4t
if any(idx_neg) SQx&4R.
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); n;>=QG
-v
end 9ZY,T]ym?
9zIqSjos"
*BF[thB:a
% EOF zernfun b&LAk-}[