切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9369阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, >M2~p& Si  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, ;"Gy5  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? @lj|  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? 06Wqfzceb  
    IzTJ7E*i  
    7!AyLw  
    F0_w9"3E~  
    9k;,WU(K<  
    function z = zernfun(n,m,r,theta,nflag) 9DA |;|  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. Nksm&{=6S  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N %htI!b+"@  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 7/~=[#]*  
    %   unit circle.  N is a vector of positive integers (including 0), and bfA>kn0C  
    %   M is a vector with the same number of elements as N.  Each element Ps@']]4>W  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) DehjV6t  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, B%\&Q @X  
    %   and THETA is a vector of angles.  R and THETA must have the same bI ;I<Qa  
    %   length.  The output Z is a matrix with one column for every (N,M) Cik1~5iF  
    %   pair, and one row for every (R,THETA) pair. i24k ]F  
    % q3#[6!  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Cqnuf5e>L  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), .@)vJtH)  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral ?:$ q~[LY  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, o~XK*f=(  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 5{b;wLi$X2  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 2ul8]=  
    % 4q]6[/  
    %   The Zernike functions are an orthogonal basis on the unit circle. 1@OpvO5  
    %   They are used in disciplines such as astronomy, optics, and `$> Y  
    %   optometry to describe functions on a circular domain. kV1L.Xg  
    % BmV `<Q,  
    %   The following table lists the first 15 Zernike functions. .4v?/t1  
    % q~> +x?30  
    %       n    m    Zernike function           Normalization fhN\AjB6Td  
    %       -------------------------------------------------- B{Vc-qJ  
    %       0    0    1                                 1 a9e0lW:=c  
    %       1    1    r * cos(theta)                    2 %}TJr]'F  
    %       1   -1    r * sin(theta)                    2 a^l)vh{+  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) H-pf8  
    %       2    0    (2*r^2 - 1)                    sqrt(3) "yQBHYP  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) {*+J`H_G2a  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ;av!fK  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) F3(Sb M-  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) &fB=&jc*j  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) `C: 7 N=9  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) YtvDayR>  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 7<WUj K|  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) ~RVlc;W  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) m OUO)[6y  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) V$hL\`e  
    %       -------------------------------------------------- Kfb(wW  
    % "T=j\/Q  
    %   Example 1: 15jQ87)  
    % v K{2  
    %       % Display the Zernike function Z(n=5,m=1) .9x* YS  
    %       x = -1:0.01:1; K*5gb^Ul  
    %       [X,Y] = meshgrid(x,x); zlEI_th:~  
    %       [theta,r] = cart2pol(X,Y); yQ/O[(  
    %       idx = r<=1; VLm\PS   
    %       z = nan(size(X)); ~4+Y BN  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); me2vR#  
    %       figure ?rOj?J9  
    %       pcolor(x,x,z), shading interp GAY?F  
    %       axis square, colorbar UY9*)pEE  
    %       title('Zernike function Z_5^1(r,\theta)') ;MGm,F,o  
    % -}<Ru)  
    %   Example 2: a%c <3'  
    % % WDTnEm  
    %       % Display the first 10 Zernike functions ?n{m2.H  
    %       x = -1:0.01:1; k -jFT3b$  
    %       [X,Y] = meshgrid(x,x); Y$v d@Q  
    %       [theta,r] = cart2pol(X,Y); ;O)*!yA(GG  
    %       idx = r<=1; yL asoh  
    %       z = nan(size(X)); >8{w0hh;  
    %       n = [0  1  1  2  2  2  3  3  3  3]; xKE=$SV(  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; BC!) g+8  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; \h'7[vkr  
    %       y = zernfun(n,m,r(idx),theta(idx)); hkl0N%[  
    %       figure('Units','normalized') kO}%Y?9d  
    %       for k = 1:10 < xeB9  
    %           z(idx) = y(:,k); \LJ!X3TZ  
    %           subplot(4,7,Nplot(k)) 3q`f|r  
    %           pcolor(x,x,z), shading interp >QYx9`x&  
    %           set(gca,'XTick',[],'YTick',[]) F-ZTy"z  
    %           axis square ffk >IOH  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) j_,/U^Ws|f  
    %       end I*%3E.Z@g  
    % OP+*%$wR  
    %   See also ZERNPOL, ZERNFUN2. axmq/8X  
    Z{vc6oj  
    Q^va +O  
    %   Paul Fricker 11/13/2006 ;5;>f)diS  
    &i3SB[|  
    |e!Y C iU  
    (&79}IEd  
    _YlyS )#@  
    % Check and prepare the inputs: afHRy:<+%  
    % ----------------------------- G?v <-=I  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) nW]CA~  
        error('zernfun:NMvectors','N and M must be vectors.') 6, j60`f)  
    end #Ev}Gf+5Q  
    MzB.Vvsy%9  
    #@-dT,t  
    if length(n)~=length(m) r{?qvl!q  
        error('zernfun:NMlength','N and M must be the same length.') BYdG K@ouk  
    end KW'nW  
    D8! Y0  
    VXZYRr3F  
    n = n(:); !otseI!!/  
    m = m(:); 5-0&`,  
    if any(mod(n-m,2)) Q'jGNWep  
        error('zernfun:NMmultiplesof2', ... ylos6]zS8  
              'All N and M must differ by multiples of 2 (including 0).') v$@1q9 5J  
    end fk15O_#3  
    D"$ 97  
    c/.s`hz  
    if any(m>n) I/upiqy  
        error('zernfun:MlessthanN', ... %h0BA.r  
              'Each M must be less than or equal to its corresponding N.') 0J[B3JO@M  
    end kK4+K74B  
    !W,LG$=/  
    @Oz3A<M  
    if any( r>1 | r<0 ) |g \ _xl  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') A#']e8  
    end unFm~rcf  
    , 0X J|#%  
    m["e7>9G  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) bZUw^{~)D  
        error('zernfun:RTHvector','R and THETA must be vectors.') d]K8*a%[-  
    end H(Wiy@cJn  
    416}# Mk  
    s+_8U}R  
    r = r(:); 8 [,R4@  
    theta = theta(:); |Wck-+}U  
    length_r = length(r); 5`&@3 m9/  
    if length_r~=length(theta) I+W,%)vb  
        error('zernfun:RTHlength', ... ?z|Bf@TJ[+  
              'The number of R- and THETA-values must be equal.') `K@N\VM  
    end ]qZj@0#7n  
    IC"ktv bHz  
    M`Wk@t6>  
    % Check normalization: -#;ZZ \fdj  
    % -------------------- _I EbRVpb  
    if nargin==5 && ischar(nflag) y+$vHnS/jC  
        isnorm = strcmpi(nflag,'norm'); @\gE{;a8  
        if ~isnorm pUmT?N!  
            error('zernfun:normalization','Unrecognized normalization flag.') /g%RIzgW  
        end vMX\q  
    else +B8oW3v# )  
        isnorm = false; U7/ =| Z  
    end _qOynW  
    ro?.w  
    F@ pf._c  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% RWu< dY#ym  
    % Compute the Zernike Polynomials )#4(4 @R h  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% j p}.W  
    w(S&X"~  
    hxJKYU^%m  
    % Determine the required powers of r: #~m^RoE  
    % ----------------------------------- N&G(`]  
    m_abs = abs(m); QA~F  
    rpowers = []; Z s| *+[  
    for j = 1:length(n) F#Pn]  
        rpowers = [rpowers m_abs(j):2:n(j)]; 4/\Ynb.L  
    end o[JZ>nm  
    rpowers = unique(rpowers); N|"q6M !ZL  
    vd^Z^cpi p  
    "5$p=|  
    % Pre-compute the values of r raised to the required powers, 2|1CGHj\  
    % and compile them in a matrix: 45Zh8k  
    % ----------------------------- 9T$%^H9  
    if rpowers(1)==0 >D##94PZ  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); afaQb  
        rpowern = cat(2,rpowern{:}); {#@[ttw$U  
        rpowern = [ones(length_r,1) rpowern]; dci,[TEGu  
    else XmVst*2=  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); S+eu3nMq  
        rpowern = cat(2,rpowern{:}); dF! B5(  
    end p}I\H ^"8+  
    Q>\DM'{:4  
    FW3E UC)P  
    % Compute the values of the polynomials: 6_rgRo&  
    % -------------------------------------- e8_EB/)_Z  
    y = zeros(length_r,length(n)); I3Z\]BI  
    for j = 1:length(n) i-WP#\s  
        s = 0:(n(j)-m_abs(j))/2; C[ KMaB  
        pows = n(j):-2:m_abs(j); .DnG}884  
        for k = length(s):-1:1 9&kPcFX B  
            p = (1-2*mod(s(k),2))* ... XdlA)0S)  
                       prod(2:(n(j)-s(k)))/              ... })PU`?f  
                       prod(2:s(k))/                     ... hCX/k<}I  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 8OS^3JS3"  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 2}.~ 6EU/  
            idx = (pows(k)==rpowers); =kOo(  
            y(:,j) = y(:,j) + p*rpowern(:,idx); !w!k0z]  
        end w JgH15oB  
         !-SI &qy  
        if isnorm \|]+sQWQ  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 7;6'=0(  
        end D#Mz#\4o  
    end gCL}Ba  
    % END: Compute the Zernike Polynomials U: <  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% .UN?Ak*R  
    ofYZ! -V  
    'c/8|9jX  
    % Compute the Zernike functions: X*Q<REDB  
    % ------------------------------ BOdlz#&s  
    idx_pos = m>0; Hy'EbQ  
    idx_neg = m<0; j39"iAn  
    931GJA~g  
    ]}&HvrOld  
    z = y; @o<B>$tbu4  
    if any(idx_pos) x],XiSyp  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); CqX*.j{  
    end ;kG"m7-/  
    if any(idx_neg) HYJEz2RF  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); p~(STHDe#  
    end iK5[P  
    S,Qa\\~z  
    OSJj^Y)W|  
    % EOF zernfun X VH( zJ  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  VF~kjH2>  
    }~v0o# I  
    DDE还是手动输入的呢? T7(U6yN  
    Z..s /K {  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究