切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9242阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, t_^X$pL  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, nfSbM3D]h  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢?  ^zzP.   
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? % 2$/JZ  
    "5R~(+~<@  
    ?'86d_8  
    K_)eWf0a  
    Q/uwQ o/  
    function z = zernfun(n,m,r,theta,nflag) e}/Lk5q!  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. J]l rS  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N jp8@vdRg  
    %   and angular frequency M, evaluated at positions (R,THETA) on the RqEH| EUZ  
    %   unit circle.  N is a vector of positive integers (including 0), and gI^o U 4mq  
    %   M is a vector with the same number of elements as N.  Each element X+L) -d  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) DI+]D~N  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 3$.deYa$R  
    %   and THETA is a vector of angles.  R and THETA must have the same ^k5ll=}  
    %   length.  The output Z is a matrix with one column for every (N,M) |F,R&<2  
    %   pair, and one row for every (R,THETA) pair. "k*PA\U  
    % 3.22"U\1:  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ;c~cet4  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), u H/w\v_I  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral @1.QEyXG  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, B~o\+n  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized j 8*ZF  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. -p3Re9  
    % *.L81er5~  
    %   The Zernike functions are an orthogonal basis on the unit circle. kB?al#`  
    %   They are used in disciplines such as astronomy, optics, and w0w G-R ?  
    %   optometry to describe functions on a circular domain. Y<1QY?1sd  
    % i1H\#;`$  
    %   The following table lists the first 15 Zernike functions. Eskb9^A  
    % M@ed>.  
    %       n    m    Zernike function           Normalization G!K]W:m  
    %       -------------------------------------------------- IDnC<MO>  
    %       0    0    1                                 1 6qcO?U  
    %       1    1    r * cos(theta)                    2 @d Jr/6Yx  
    %       1   -1    r * sin(theta)                    2 5>BK%`  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ]|`C uc  
    %       2    0    (2*r^2 - 1)                    sqrt(3) qM#R0ZUIe\  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) j'9"cE5_  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) n 1!?"m!  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) !r# ?C9Sq  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) nX$XL=6mJ&  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 0a-:<zm  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) 9U$EJN_G  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) /~x "wo  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) =-_B:d;  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) >3z5ww  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 6iCrRjY*  
    %       -------------------------------------------------- K|dso]b/  
    % C@th O  
    %   Example 1: Q}-~O1  
    % }CeCc0M  
    %       % Display the Zernike function Z(n=5,m=1) cA%%IL$R  
    %       x = -1:0.01:1; e{m2l2Tx:  
    %       [X,Y] = meshgrid(x,x); v4C{<8:X  
    %       [theta,r] = cart2pol(X,Y); JV;OGh>  
    %       idx = r<=1; um9_ru~  
    %       z = nan(size(X)); FQ=@mjh  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); ]Dw]p! @  
    %       figure rETRTp0HT  
    %       pcolor(x,x,z), shading interp HttiX/2~  
    %       axis square, colorbar zbq@pj)Qu  
    %       title('Zernike function Z_5^1(r,\theta)') $@UN4B?y  
    % 7)s^8+  
    %   Example 2: D1__n6g[  
    % &197P7&o  
    %       % Display the first 10 Zernike functions N!g9*Z  
    %       x = -1:0.01:1; ;[fw]P n  
    %       [X,Y] = meshgrid(x,x); K_dOq68_  
    %       [theta,r] = cart2pol(X,Y); O%FPS=  
    %       idx = r<=1; J>/w5$h5  
    %       z = nan(size(X)); M)U{7c$c7  
    %       n = [0  1  1  2  2  2  3  3  3  3]; hiQha5  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; j ?MAED  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; .k,kTr$ S  
    %       y = zernfun(n,m,r(idx),theta(idx)); gG/!,Q.Qh  
    %       figure('Units','normalized') !Y-98<|b M  
    %       for k = 1:10 TYy.jFT-  
    %           z(idx) = y(:,k); fl\ly `_  
    %           subplot(4,7,Nplot(k)) z<yU-m2h  
    %           pcolor(x,x,z), shading interp R) c'#St  
    %           set(gca,'XTick',[],'YTick',[]) ~Q\3pI. |  
    %           axis square *hw\35%P`?  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) J>\B`E  
    %       end Z,=7Tu bR#  
    % f"<O0Qw  
    %   See also ZERNPOL, ZERNFUN2. ~$~5qwl  
    zzxGAVu  
    K"r*M.P>  
    %   Paul Fricker 11/13/2006 3g >B"t  
    Y./2Ely  
    o93`|yWl  
    }2e? ?3  
    .C--gQpIv  
    % Check and prepare the inputs: YGrg  
    % ----------------------------- %HL*c =  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) q}]XYys  
        error('zernfun:NMvectors','N and M must be vectors.') !P -^O  
    end +t?3T-@Ks  
    $g sxO!G  
    C_7+a@?B  
    if length(n)~=length(m) hC\6- 0u  
        error('zernfun:NMlength','N and M must be the same length.') 6Aku1h  
    end {|'E  
    e:5bzk!~  
    (JM5`XwM  
    n = n(:); (Tbw3ENz  
    m = m(:); QnJZr:4b  
    if any(mod(n-m,2)) AT%u%cE-  
        error('zernfun:NMmultiplesof2', ... svq<)hAf<  
              'All N and M must differ by multiples of 2 (including 0).') /bi}'H+#  
    end *" {lMZ +  
    `I3r3WyA  
    #H :7@  
    if any(m>n) F~P%AjAx'  
        error('zernfun:MlessthanN', ... ;S>])5<  
              'Each M must be less than or equal to its corresponding N.') wbst8 *$  
    end jJ5W>Q1mK$  
    %;rHrDP(>  
    F 9@h|#an  
    if any( r>1 | r<0 ) u4/kR  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') $GTU$4u  
    end D`$hPYK|_  
    ;9c<K  
    apu4DAy&8  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) +w+} b^4  
        error('zernfun:RTHvector','R and THETA must be vectors.') BYMi6wts  
    end i~{Ufi  
    |%' nVxc4r  
    6Q${U7%7  
    r = r(:); #N`~xZ|$  
    theta = theta(:); |563D#?cR  
    length_r = length(r); E/%9jDTQ  
    if length_r~=length(theta) L{8xlx`  
        error('zernfun:RTHlength', ... 28UU60  
              'The number of R- and THETA-values must be equal.') BBtzs^C|  
    end <=>=.kmGt  
    G{6;>8h  
    <psZQdH  
    % Check normalization: Ro9tZ'N!S  
    % -------------------- k@z,Iq8  
    if nargin==5 && ischar(nflag) 70eb]\%  
        isnorm = strcmpi(nflag,'norm'); SN1}xR$  
        if ~isnorm G1o3l~x  
            error('zernfun:normalization','Unrecognized normalization flag.') \Ol kM<  
        end R wZ]),o  
    else "$2 y-|  
        isnorm = false; ;e1ku|>$  
    end $d_|NssvU  
    Bi @2  
    [O?z@)dx  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% T Kg aV;92  
    % Compute the Zernike Polynomials ,}K7Dg^1  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 3ZXQoC '  
    EV*IoE$W]=  
    SUU !7Yd|  
    % Determine the required powers of r: sXD1C2o  
    % ----------------------------------- {/ BT9|LI  
    m_abs = abs(m); 5 4L\Jx  
    rpowers = []; !& z(:d  
    for j = 1:length(n) O vk_\On  
        rpowers = [rpowers m_abs(j):2:n(j)]; fmb} 2h  
    end @T'i/}nl  
    rpowers = unique(rpowers); Q|D @Yd\  
    ?'KL11@R  
    -)RH5WGS  
    % Pre-compute the values of r raised to the required powers, G}ob<`o|"  
    % and compile them in a matrix: VB, ?Mo}R  
    % ----------------------------- `s8{C b=}1  
    if rpowers(1)==0 ,#L=v]  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Yd#/1!A7u  
        rpowern = cat(2,rpowern{:}); Jc|6&  
        rpowern = [ones(length_r,1) rpowern]; A^y|J ` k|  
    else /Z@tv .f  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); no9;<]4  
        rpowern = cat(2,rpowern{:}); 5*,f Fib  
    end 4<lRPsvgc  
    k{Me[B  
    8q,6}mV  
    % Compute the values of the polynomials: V;:jZpG  
    % -------------------------------------- L_wk~z  
    y = zeros(length_r,length(n)); >JC  
    for j = 1:length(n) SU/BQ3  
        s = 0:(n(j)-m_abs(j))/2; DUC#NZgw  
        pows = n(j):-2:m_abs(j); C'o64+W^  
        for k = length(s):-1:1 vM*($qpAy  
            p = (1-2*mod(s(k),2))* ... OslL~<  
                       prod(2:(n(j)-s(k)))/              ... / ;,Md,p  
                       prod(2:s(k))/                     ... \ytJ=0r  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... @jsDq Ln  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); VBcy9|lD  
            idx = (pows(k)==rpowers); :$m}UA-9  
            y(:,j) = y(:,j) + p*rpowern(:,idx); =1Oj*x@*4  
        end C ihAU"  
         ^`)) C;  
        if isnorm R}4So1  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ,u`YT%&L  
        end 2E)wpgUc?e  
    end JAQb{KefdO  
    % END: Compute the Zernike Polynomials S/ODq L|  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 9Bw|(J  
    uoX:^'q   
    r?Wk<>%>  
    % Compute the Zernike functions: (<}&DE  
    % ------------------------------ ZRg;/sX]  
    idx_pos = m>0; GJtZ&H  
    idx_neg = m<0; m6[0Kws&  
    fM^qQM[lG  
    8\5 T3AF  
    z = y; b#hDHSdZ,  
    if any(idx_pos) fi$-;Gz  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 7lBAxqr2  
    end }A7j/uy}s  
    if any(idx_neg) _PlKhv}  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); t-0a7 1#e  
    end f'VX Y-  
    f=mZu1(FZ  
    qpE&go=k'  
    % EOF zernfun fH >NJK;  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  `(f!*Ru@/z  
    %T)oCjM[\  
    DDE还是手动输入的呢? C_n9T{k  
    ]"1`+q6i  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究