下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, >sm<$'vZ/
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, h][$1b&B
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? ctu`FQ
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? Xi81?F?[
y6N }R
KVZ-T1K
5.zv0tJku
$ {5|{`
function z = zernfun(n,m,r,theta,nflag) S_dM{.!Z(,
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. M
Qlx&.>
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N vC>8:3Zaq
% and angular frequency M, evaluated at positions (R,THETA) on the ]U)Yg
% unit circle. N is a vector of positive integers (including 0), and bz\-%$^k
% M is a vector with the same number of elements as N. Each element {<y.G1<.
% k of M must be a positive integer, with possible values M(k) = -N(k) _"688u'88
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, (bo-JOOdY(
% and THETA is a vector of angles. R and THETA must have the same BoHpfx1C
% length. The output Z is a matrix with one column for every (N,M) |++\"g
% pair, and one row for every (R,THETA) pair. \O(~:KN
% Ue2%w/Yo
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike fH*1.0f]6
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), #/LU@+
% with delta(m,0) the Kronecker delta, is chosen so that the integral Va3/#is'
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Y]])Tq;h5
% and theta=0 to theta=2*pi) is unity. For the non-normalized { bD:OF
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. #f-pkeaeq
% UTR`jXCg
% The Zernike functions are an orthogonal basis on the unit circle. P1I L]
% They are used in disciplines such as astronomy, optics, and \ICc?8oL
% optometry to describe functions on a circular domain. $Z[W}7{pt#
% 'jj|bN
% The following table lists the first 15 Zernike functions. e]q(fPK
% vj hh4$k
% n m Zernike function Normalization r0(* ]K:.
% -------------------------------------------------- %8$ldNhV
% 0 0 1 1 gjDxgNpa
% 1 1 r * cos(theta) 2 8c^Hfjr0
% 1 -1 r * sin(theta) 2 VL2+"<
% 2 -2 r^2 * cos(2*theta) sqrt(6) G%5ZG$as
% 2 0 (2*r^2 - 1) sqrt(3) bTbF
% 2 2 r^2 * sin(2*theta) sqrt(6) E2u9>m4_J
% 3 -3 r^3 * cos(3*theta) sqrt(8) }(/\vTn*1
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) bK#SxV
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) ()o[(Hx+ph
% 3 3 r^3 * sin(3*theta) sqrt(8) $i]G'fj
% 4 -4 r^4 * cos(4*theta) sqrt(10) "'v^X!"
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) uN+]q qCf
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) L5 Q^cY]p
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) +
[~)a4#
% 4 4 r^4 * sin(4*theta) sqrt(10) ~Y 3X*
% -------------------------------------------------- ckdXla
% 8Ai\T_l
% Example 1: $~)YI/b
% WO!'("
% % Display the Zernike function Z(n=5,m=1) B&>z&!}
% x = -1:0.01:1; gi #dSd1\&
% [X,Y] = meshgrid(x,x); KGJ *h
% [theta,r] = cart2pol(X,Y); Ci_Qra 6
% idx = r<=1; i)th] 1K%
% z = nan(size(X)); H7dT6`<~Y
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 7r o&Q%
% figure 14z
?X%
% pcolor(x,x,z), shading interp Pmdf:?B
% axis square, colorbar E4,
J"T|@
% title('Zernike function Z_5^1(r,\theta)') XJe}^k
% Z]08gH
% Example 2: ;LqpX!Pi
f
% YDYN#Ob(;
% % Display the first 10 Zernike functions i!;9A6D
% x = -1:0.01:1; bYBE h n
% [X,Y] = meshgrid(x,x); $0XR<D
% [theta,r] = cart2pol(X,Y); ;(&S1Rv9
% idx = r<=1; L30$
% z = nan(size(X)); t-Uo
% n = [0 1 1 2 2 2 3 3 3 3]; z)Lw\H^/
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; vEw8<<cgg
% Nplot = [4 10 12 16 18 20 22 24 26 28]; |8?e4yVd
% y = zernfun(n,m,r(idx),theta(idx)); 53WCF[
% figure('Units','normalized') X^Fc^U8
% for k = 1:10 $:RR1.Tv
% z(idx) = y(:,k); 6/6{69tnr
% subplot(4,7,Nplot(k)) Z rv:uEl
% pcolor(x,x,z), shading interp OJiwI)a9
% set(gca,'XTick',[],'YTick',[]) QJ +Ml
% axis square mgMa)yc!dp
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) A DVUx}
% end h43py8v
% |y
pXO3
% See also ZERNPOL, ZERNFUN2. "x3x$JQZy
jN-!1O._G
4W#DLip9
% Paul Fricker 11/13/2006 XAZPbvG|$
#I1q,fm
"
v<O)1QT
n8tw8o%&[
R@){=8%z
% Check and prepare the inputs: % {-r'Yi%
% ----------------------------- C5g9Gg
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Vh?RlIUA
error('zernfun:NMvectors','N and M must be vectors.') -Fq`#"
end cn: L]%<
ZUkM8M$c
.N7<bt@~)
if length(n)~=length(m) hn~btu9h
error('zernfun:NMlength','N and M must be the same length.') Q5lt[2Zyzd
end 3CH>!QOA
OG9 '[o`8
U\(71=
n = n(:); /_qHF-
m = m(:); pHXs+Ysw+
if any(mod(n-m,2)) D?=4'"@v
error('zernfun:NMmultiplesof2', ... W-*HAS
'All N and M must differ by multiples of 2 (including 0).') 6_:I~TTX
end 5'( T*"
`~z[Hj=2
f `D(V-4
if any(m>n) k* v${1&
error('zernfun:MlessthanN', ... bB>.dC
'Each M must be less than or equal to its corresponding N.') aIDv~#l
end mfG m>U
S*gm[ZLQ
iL2_ _TO
if any( r>1 | r<0 ) AOJ[/YpM
error('zernfun:Rlessthan1','All R must be between 0 and 1.') e{9~m
end /EG'I{oC
Y'5(exW
YUHiD*
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) :d pwr9)
error('zernfun:RTHvector','R and THETA must be vectors.') KK6fRtKv>q
end 9g\;L:'
)E}@h%d
}LeS3\+UHl
r = r(:); d14 n>
theta = theta(:); ALV(fv$cD
length_r = length(r); 4$WR8
if length_r~=length(theta) %`QgG
error('zernfun:RTHlength', ... I)yF!E &
'The number of R- and THETA-values must be equal.') <MX
end f%i%QZP
PXqG;o*Q*?
-Lu&bVt<>
% Check normalization: [uK{``"
% -------------------- iPkCuLQ}
if nargin==5 && ischar(nflag) #lg R"%
isnorm = strcmpi(nflag,'norm'); lZuH:AH
if ~isnorm TQmrL
error('zernfun:normalization','Unrecognized normalization flag.') m[KmXPFht1
end PZ`11#bbm
else Q4hY\\Hi
isnorm = false; H%X F~tF:
end Dk>6PBl
"l9aBBiu
+wJ!zab`
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #\`kg#&
% Compute the Zernike Polynomials ;-XfbqZ\
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @"MQ6u G>
_Z!@#y@j
^!d0abA
% Determine the required powers of r: aWlIq(dU
% ----------------------------------- w]yVNB
m_abs = abs(m); ,oh;(|=
rpowers = []; C l,vBjl h
for j = 1:length(n) 8*@{}O##
rpowers = [rpowers m_abs(j):2:n(j)]; Z.u1Dz
end #CaPj:>[
rpowers = unique(rpowers); QF\nf_X
[!yA#{xl,
~mARgv
% Pre-compute the values of r raised to the required powers, B~N3k
% and compile them in a matrix: \0d'y#Gp*
% ----------------------------- Hcwfe=K&/
if rpowers(1)==0 5.oIyC^Ik
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); : S3+UT
rpowern = cat(2,rpowern{:}); pITF%J@_]
rpowern = [ones(length_r,1) rpowern]; ~bxev/$d
else [#q]B=JB
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); I](a 5i
rpowern = cat(2,rpowern{:}); 4$[o; t>
end Wz s=BNm9
uT4|43<
G
C_kuW+H
% Compute the values of the polynomials: [GI~ &
% -------------------------------------- Xs2 jR14`
y = zeros(length_r,length(n)); 0Zi+x#&d
for j = 1:length(n) 3g;,
s = 0:(n(j)-m_abs(j))/2; {V2"Pym?
pows = n(j):-2:m_abs(j); ~(ke'`gJ0-
for k = length(s):-1:1 xNf}f 9l
p = (1-2*mod(s(k),2))* ... a
@2fJ}
prod(2:(n(j)-s(k)))/ ... fDf[:A,8
prod(2:s(k))/ ... gK`w|kh`
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... X<}}DZSu a
prod(2:((n(j)+m_abs(j))/2-s(k))); PnA{@n\
idx = (pows(k)==rpowers);
]|.ked
y(:,j) = y(:,j) + p*rpowern(:,idx); 9+^)?JUYll
end .{h"0<x
<[cpaZT,
if isnorm n jWe^
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 5b7(^T^K
end $TXxhd 6
end #BUq;5
% END: Compute the Zernike Polynomials *uhQP47B
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 1xW!j!A;
M% \T5
&,k!,<IF
% Compute the Zernike functions: 3-
Kgz
% ------------------------------ );7
d_#
idx_pos = m>0; 6M*z`B{hV
idx_neg = m<0; #dWz,e3
tF`L]1r>
\Y)HSJR;e
z = y; v'@gUgC
if any(idx_pos) T+}|$/Tv
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); '"
"v7
end (BVqmi{
if any(idx_neg) Ayw_LCUD
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 't5ufAT
end p|-MwCeH
SH{@yS[c!
G;G*!nlWf
% EOF zernfun x|0C0a\"A