下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, s&S8P;K|
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, bK `'zi
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? HjTK/x'_'L
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? Y$3H$F.+
<wwcPe}
RYMOLX84
\XR%pC
ZOl
=zn
function z = zernfun(n,m,r,theta,nflag) q_Td!?2?
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. =~YmM<L
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N E?|"?R,,,
% and angular frequency M, evaluated at positions (R,THETA) on the |xaJv:96%
% unit circle. N is a vector of positive integers (including 0), and (;=:QjaoZ
% M is a vector with the same number of elements as N. Each element kzCD>m
% k of M must be a positive integer, with possible values M(k) = -N(k) u/FnA-L4
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, (80#{4kl
% and THETA is a vector of angles. R and THETA must have the same \(_FGa4j
% length. The output Z is a matrix with one column for every (N,M) jqHg'Fq
% pair, and one row for every (R,THETA) pair. }'{39vc .
% _H|c_
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike H`4H(KWm
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), a
pqzf
% with delta(m,0) the Kronecker delta, is chosen so that the integral "m3:HS
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 2U,O
e9
% and theta=0 to theta=2*pi) is unity. For the non-normalized \RZFq<6>
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. )5P*O5kQ -
% @L|X('i
% The Zernike functions are an orthogonal basis on the unit circle. ywlN4=
% They are used in disciplines such as astronomy, optics, and x#"|Z&Dw0
% optometry to describe functions on a circular domain. yn<z!z%mz
% ug!DL=ZW
% The following table lists the first 15 Zernike functions. .E|Hk,c9
% "|pNS)
% n m Zernike function Normalization -}k'a{sj=
% -------------------------------------------------- D3yG@lIP3
% 0 0 1 1 G~T]m .
% 1 1 r * cos(theta) 2 sqHvrI
% 1 -1 r * sin(theta) 2 WlP#L`
% 2 -2 r^2 * cos(2*theta) sqrt(6) y'4H8M2?
% 2 0 (2*r^2 - 1) sqrt(3) /=4P<&J
% 2 2 r^2 * sin(2*theta) sqrt(6) yv4ki5u`
% 3 -3 r^3 * cos(3*theta) sqrt(8) ABEC{3fWpu
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) th8f
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) .['@:}$1
% 3 3 r^3 * sin(3*theta) sqrt(8) w[PWJ! <
% 4 -4 r^4 * cos(4*theta) sqrt(10) ay#cW.,
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) F?'=iY<h
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) ByeyUw
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) F.?`<7
% 4 4 r^4 * sin(4*theta) sqrt(10) sChMIbq!Av
% -------------------------------------------------- /h%<e
% L1*P<Cb
% Example 1: ,-A8;DW]^J
% }(O/ y-
% % Display the Zernike function Z(n=5,m=1) \/4ipU.
% x = -1:0.01:1; %[ 4/UD=7
% [X,Y] = meshgrid(x,x); 9Qp39(l:
% [theta,r] = cart2pol(X,Y); yyh
L]Uq"=
% idx = r<=1; %a+X\\v2
% z = nan(size(X)); UiS9uGj
% z(idx) = zernfun(5,1,r(idx),theta(idx)); L7mN&Xr
% figure (utm+*V,
% pcolor(x,x,z), shading interp boo,KhW'Y
% axis square, colorbar !cw<C*
% title('Zernike function Z_5^1(r,\theta)') _Jj/"?
% [8.ufpZ
% Example 2: zvL&V
.>
% =25qY"Mf
% % Display the first 10 Zernike functions vP&dvAUF
% x = -1:0.01:1; @Fqh]1t
% [X,Y] = meshgrid(x,x); H[V^wyi'z
% [theta,r] = cart2pol(X,Y); 7P9n.
[
% idx = r<=1; 'P}"ZHW
% z = nan(size(X)); T^NY|Y/
% n = [0 1 1 2 2 2 3 3 3 3]; d9|dHJf
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; XEV-D9n
% Nplot = [4 10 12 16 18 20 22 24 26 28]; B?-RzWB\3
% y = zernfun(n,m,r(idx),theta(idx)); tx&>Eo
% figure('Units','normalized') (w]w
2&YD
% for k = 1:10 MQE=8\
% z(idx) = y(:,k); `LH!"M
% subplot(4,7,Nplot(k)) /7*jH2
% pcolor(x,x,z), shading interp %Rr!I:[ $
% set(gca,'XTick',[],'YTick',[]) V4qHaG
% axis square 0t5>'GYX
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) `3kE$h#
% end Ri4_zb
% !^!<Xz;
% See also ZERNPOL, ZERNFUN2. QL}5vSl
&d`Umm]
+,7dj:0S
% Paul Fricker 11/13/2006 hSaS2RLF
2ko7t9y&
2 *n2!7jZ*
C!XI0d
?1 r@r
% Check and prepare the inputs: yk#yrxM
% ----------------------------- +@]1!|@(
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) l7aGo1TcIh
error('zernfun:NMvectors','N and M must be vectors.') mW1Sd#0
end M
^ZoBsZ
[ar:zlV8
*)ed( +b
if length(n)~=length(m) *]z.BZI:
error('zernfun:NMlength','N and M must be the same length.') J><O
51
end 0ang~_
' F`*(\#
0NfO|l7P
n = n(:); &o^ wgmS
m = m(:); -6~*:zg,
if any(mod(n-m,2)) 0-0 )E&2
error('zernfun:NMmultiplesof2', ... yr&oJYM
'All N and M must differ by multiples of 2 (including 0).') GWjKZ1p
end IG`~^-}7lR
vIU+ZdBw
N$pwTyk
if any(m>n) s7I*=}{g0.
error('zernfun:MlessthanN', ... ^K@r!)We
'Each M must be less than or equal to its corresponding N.') rRcfZZ~` M
end u>&\@?(
-c<<A.X
*IGxa
if any( r>1 | r<0 ) Ou2H~3^PL
error('zernfun:Rlessthan1','All R must be between 0 and 1.') _I~TpH^1K
end sl6p/\_w
Lj *FKP\{
a[";K,
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) dr~MyQ
error('zernfun:RTHvector','R and THETA must be vectors.') 68FxM#xR
end Z<jRZH*L
;zs*Zd7h M
P(X#w
r = r(:); \^Y#"zXo1
theta = theta(:); ZhxMA*fL
length_r = length(r); W{ eu_
if length_r~=length(theta) 8o -?Y.2
error('zernfun:RTHlength', ... JsnavI6
'The number of R- and THETA-values must be equal.') Z ;%
end QIi*'21a+
,Lv}Xku
(ZShh y8g
% Check normalization: =#BeAsFfO
% -------------------- y{u6t 3
if nargin==5 && ischar(nflag) + A0@#:B
isnorm = strcmpi(nflag,'norm'); $k'f)E
if ~isnorm 3;>(W
error('zernfun:normalization','Unrecognized normalization flag.')
W3<O+ S&
end GZZLX19sq
else r0\bi6;s/
isnorm = false; /4_}wi\
end ljiq +tT
<ya'L&
H5&>Eny
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 7[D0n7B@
% Compute the Zernike Polynomials S<Q1
&],
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% S
BFhC
v~jN,f*
EAY9~b6~c
% Determine the required powers of r: N->;q^
% ----------------------------------- JYSw!!eC
m_abs = abs(m); ="A[*:hC"
rpowers = [];
#jZ:Ex
for j = 1:length(n) 8OBvC\%
rpowers = [rpowers m_abs(j):2:n(j)]; *s%s|/
end (S2<6Nm8
rpowers = unique(rpowers); kk~{2
1c}'o*K_%
-g@pJ^>:
% Pre-compute the values of r raised to the required powers, V>['~|
% and compile them in a matrix: _eO] awsA
% ----------------------------- M
j5C0P(
if rpowers(1)==0 ED?s[K
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); |HG%o
3E]
rpowern = cat(2,rpowern{:}); "Q/3]hc.
rpowern = [ones(length_r,1) rpowern]; I?fE=2}9
else [;?^DAnK2
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Yt#($}p
rpowern = cat(2,rpowern{:}); \6lXsu;I.X
end Etl7V
&>s(f-\8
78.sf{I
% Compute the values of the polynomials: JfVayI=
% -------------------------------------- Ee|@l3)
y = zeros(length_r,length(n)); QqwXFk
for j = 1:length(n) c^bA]l^a
s = 0:(n(j)-m_abs(j))/2; ALwuw^+
pows = n(j):-2:m_abs(j); ~'U;).C
for k = length(s):-1:1 G`
8j ^H,
p = (1-2*mod(s(k),2))* ... HAiUFO/R
prod(2:(n(j)-s(k)))/ ... 9.@(&
prod(2:s(k))/ ... iM956 3v
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... }Sh-4:-D
prod(2:((n(j)+m_abs(j))/2-s(k))); $?s^HKF~
idx = (pows(k)==rpowers); :J~j*_hZ
y(:,j) = y(:,j) + p*rpowern(:,idx); -?]ltn9!
end y H'\<bT
Q?tV:jogY
if isnorm =aekY;/
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); v]J# SlF
end [x)e6p)
end a(7ryl~c=
% END: Compute the Zernike Polynomials J)G3Kq5>:b
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% iWCV(!
~h@tezF
5_`}$"<~
% Compute the Zernike functions: n>4S P_[E7
% ------------------------------ -hzza1DP
idx_pos = m>0; VZ,T`8"
idx_neg = m<0; n,F00YR
moR]{2Cd{
G4}q*&:k
z = y; X2`>@GR/>
if any(idx_pos) M BT-L
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); /kz&9FM
end [z~Nw#
if any(idx_neg) E8i:ER $$7
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); )
b10%n^
end Fjzk;o
@"!SU'*
:/NN=3e
% EOF zernfun `$H