下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, xtV[p4U
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, z,;;=V6j
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? TDK@)mP
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? KM?1/KZ/~
@
$cUNvI
YZ#V#[j'^
"vF
MSY
r2*<\ax
function z = zernfun(n,m,r,theta,nflag) 4Wel[]
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. suJ_nb
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Y,z??bm~J
% and angular frequency M, evaluated at positions (R,THETA) on the Lrz3
% unit circle. N is a vector of positive integers (including 0), and H(u+#PIIw
% M is a vector with the same number of elements as N. Each element Hy;Hs#
% k of M must be a positive integer, with possible values M(k) = -N(k) /4S;QEv
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, ^z1IN-Tm/
% and THETA is a vector of angles. R and THETA must have the same 3&&+YX
% length. The output Z is a matrix with one column for every (N,M) mxTk+j=
% pair, and one row for every (R,THETA) pair. 6o3T;h
% I d8wS!W`7
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike }amU[U,
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), n"{X!(RIcx
% with delta(m,0) the Kronecker delta, is chosen so that the integral JV"NZvjN7d
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 4z4v\IpB
% and theta=0 to theta=2*pi) is unity. For the non-normalized }F1s
tDx
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. O??vm?eo
% 0`hwmDiB"
% The Zernike functions are an orthogonal basis on the unit circle. ,4F,:w
% They are used in disciplines such as astronomy, optics, and uZjI?Z.A
% optometry to describe functions on a circular domain. Z_z#QX>=D
% 7Ur?ep
% The following table lists the first 15 Zernike functions. W*T{,M@Y
% {XY3Xo
% n m Zernike function Normalization ,TC~~EWq
% -------------------------------------------------- D!>
d0k,Y
% 0 0 1 1 v#w _eqg
% 1 1 r * cos(theta) 2 E:A!wS`"
% 1 -1 r * sin(theta) 2 cf8-]G?tK
% 2 -2 r^2 * cos(2*theta) sqrt(6) s3t!<9[m
% 2 0 (2*r^2 - 1) sqrt(3) Ueyw;Y
% 2 2 r^2 * sin(2*theta) sqrt(6) =V $j6
% 3 -3 r^3 * cos(3*theta) sqrt(8) <+E%E4
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) *K!++k!Ixa
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) ~uaP$*B[
% 3 3 r^3 * sin(3*theta) sqrt(8) cy3ww})
% 4 -4 r^4 * cos(4*theta) sqrt(10) CmC0k-%w
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Hhv$4;&X
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) 3{J.xWB@:
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) PnWD}'0V
% 4 4 r^4 * sin(4*theta) sqrt(10) r'aY2n^O
% -------------------------------------------------- uDG+SdyN@
% 2"/yEg*=
% Example 1: *3Nn +T
% rY70^<z
% % Display the Zernike function Z(n=5,m=1) %`\]Y']R
% x = -1:0.01:1; }5gr5g\OtP
% [X,Y] = meshgrid(x,x); iBbbr,
% [theta,r] = cart2pol(X,Y); gbGTG(:1S
% idx = r<=1; I6dm@{/:>
% z = nan(size(X)); it}-^3AM
% z(idx) = zernfun(5,1,r(idx),theta(idx)); H?:Jq\Ba0
% figure X%4h(7;v
% pcolor(x,x,z), shading interp &hN,xpC
% axis square, colorbar ?SX_gYe9
% title('Zernike function Z_5^1(r,\theta)') m^tNqJs8
%
f!g<3X{=
% Example 2: Jp]T9W\
% UC!5
wVY
% % Display the first 10 Zernike functions rz6jx
% x = -1:0.01:1; :R+],m il
% [X,Y] = meshgrid(x,x); v]bAWo
% [theta,r] = cart2pol(X,Y); "{F;M{h$},
% idx = r<=1; &'O?es|Lb
% z = nan(size(X)); 0|C[-ppr
% n = [0 1 1 2 2 2 3 3 3 3]; lO2k<
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; @d)a~[pm
% Nplot = [4 10 12 16 18 20 22 24 26 28];
5-'vB
% y = zernfun(n,m,r(idx),theta(idx)); Y><(?
% figure('Units','normalized') R<g =\XO'y
% for k = 1:10 BX$hAQ(6Q
% z(idx) = y(:,k); `pYE[y+
% subplot(4,7,Nplot(k)) FmA-OqEpA
% pcolor(x,x,z), shading interp lG]GlgSs
% set(gca,'XTick',[],'YTick',[]) 7Po/_%
% axis square <nA3Sd"QfV
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) q3\!$IM.
% end "k>bUe|RG
% V_]-`?S
% See also ZERNPOL, ZERNFUN2. +"=~o5k3Q
&7F&}7*c
7SHo%bA
% Paul Fricker 11/13/2006 7.|S>+Q
\UQ],+H
Qa?QbHc
tJ>d4A;8x
rqC1
% Check and prepare the inputs: $K=z
% ----------------------------- {G.{ad
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) J~2CD*v
error('zernfun:NMvectors','N and M must be vectors.') APuu_!ez1
end 6SAQDE
* D3
riEqW}{
if length(n)~=length(m) q_58Lw
error('zernfun:NMlength','N and M must be the same length.') gT7I9 (x!W
end 6cZ C
bVOO)
dh,7iQ
s
n = n(:); EQ~I'#m7
m = m(:); d.1Q~&`
if any(mod(n-m,2)) bgXc_>T6_y
error('zernfun:NMmultiplesof2', ... _Fvsi3d/
'All N and M must differ by multiples of 2 (including 0).') Sl~C0eO
end bl9E&B/
:\T_'Shq
%w%zv2d
if any(m>n) Es,0'\m&
error('zernfun:MlessthanN', ... rN'k4V"K
'Each M must be less than or equal to its corresponding N.') gU*I;s>
end .=aMjrME
0Cv4/Ar(
)xbqQW7%0+
if any( r>1 | r<0 ) otZ JY)
error('zernfun:Rlessthan1','All R must be between 0 and 1.') {kv4g\a;
end /3;=xZq
5[ hlg(eb
_"`/^L`Q?
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) "URVX1#(r
error('zernfun:RTHvector','R and THETA must be vectors.') -hm9sNox
end !-@SS>
5vl2yN
F.&*D~f
r = r(:); PK9Qm'W b
theta = theta(:); 4v i B=>
length_r = length(r); p@`4 Qz
if length_r~=length(theta) [kQ"6wh8
error('zernfun:RTHlength', ... y& Gw.N}<r
'The number of R- and THETA-values must be equal.') Zj5NWzj
X
end >EyvdX#v
@#J H=-06
R7y-#?
% Check normalization: e1Dj0s?i~K
% -------------------- + >Fv*lux
if nargin==5 && ischar(nflag) m}sh I8S
isnorm = strcmpi(nflag,'norm'); g!z8oPT
if ~isnorm mRNHq3
error('zernfun:normalization','Unrecognized normalization flag.') -1dIZy
end [ )B@
else _p?I{1O
isnorm = false; !k ;[^>
end C5d/)aC
Cf.WO %?P
XP3QBq
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +lW+H12
% Compute the Zernike Polynomials
s$e K66H
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% =2Pz$q*ub
:ga 9Db9P
N2 M?5fF
% Determine the required powers of r: ||bA
% ----------------------------------- ](idf(j
m_abs = abs(m); _
+u sn.
rpowers = []; t>fA!K%{
for j = 1:length(n) /6?tgr
rpowers = [rpowers m_abs(j):2:n(j)]; 1ZGQhjcx
end bUpmU/RW
rpowers = unique(rpowers); |rG8E;>
lU>)n
) >-D={
% Pre-compute the values of r raised to the required powers, f[wjur
% and compile them in a matrix: `K@5_db\
% ----------------------------- S+4I[|T]Y
if rpowers(1)==0 iGpK\oH
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); j58Dki->.
rpowern = cat(2,rpowern{:}); Y,p2eAss
rpowern = [ones(length_r,1) rpowern]; @8T
Vr2uy
else Wl@0TUK
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); D"1vw<Ak
rpowern = cat(2,rpowern{:}); _oYA;O
end |^>L`6uo
6Vu}kK)
4IH0un
% Compute the values of the polynomials: Lk$Je
O
% -------------------------------------- 0D W'(#`
y = zeros(length_r,length(n)); Vf#oKPP1
for j = 1:length(n) h[M6.
s = 0:(n(j)-m_abs(j))/2; 3:z4M9f
pows = n(j):-2:m_abs(j); k1@
A'n
for k = length(s):-1:1
QmDhZ04f
p = (1-2*mod(s(k),2))* ... `t/@ L:
prod(2:(n(j)-s(k)))/ ... ,
.NG.Q4f
prod(2:s(k))/ ... bRY4yT
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... .T
N`p*
prod(2:((n(j)+m_abs(j))/2-s(k))); I*`=[nR
idx = (pows(k)==rpowers); 7J</7\
y(:,j) = y(:,j) + p*rpowern(:,idx); V8| q"UX
end 6kmZ!9w0|
n8y ,{|
if isnorm %^)Ja EUC
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); J_((o
end !Barc,kA
end ~L Bq5a
% END: Compute the Zernike Polynomials {R6Zwjs
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% , L AJ
bo?3E +B
v;NZ"1=_
% Compute the Zernike functions: F"HI>t)>
% ------------------------------ 0wa!pE"
idx_pos = m>0; (tz_D7c$F
idx_neg = m<0; WP#_qqO
0ga1Yr]
6=`m
z = y; p7ns(g@9
if any(idx_pos) 3R$CxRc:
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); odn97,A
end Jr*S2z<*
if any(idx_neg) 1Ag ;s
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 8bKWIN g_n
end cM7k) {
Q i'WV9ke
TG%hy"k
% EOF zernfun U!-+v:SF