切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9401阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, A_J!VXq  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, `n e9&+  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? %IUTi6P l  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? = o1&.v2j  
    ?U~`'^@  
    P>*`<$FR  
    dda*gq/p  
    f+QDjJ?z  
    function z = zernfun(n,m,r,theta,nflag) 5@i(pVWZ  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 3J^'x  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N FJsg3D*@J  
    %   and angular frequency M, evaluated at positions (R,THETA) on the k]A$?C0Q<%  
    %   unit circle.  N is a vector of positive integers (including 0), and U,~Z2L  
    %   M is a vector with the same number of elements as N.  Each element emS7q|^  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 95tHi re  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, F @Wb<+0  
    %   and THETA is a vector of angles.  R and THETA must have the same G\r>3Ys  
    %   length.  The output Z is a matrix with one column for every (N,M) l9NET  
    %   pair, and one row for every (R,THETA) pair. <gY.2#6C\%  
    % 1tCe#*|95  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike U {s T %G  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), x.U:v20`  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral hOcVxSc.  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 0"c(n0L  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized mH4Jl1S&  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. t hQ)J|1  
    % j"P}Wn  
    %   The Zernike functions are an orthogonal basis on the unit circle. p=f8A71  
    %   They are used in disciplines such as astronomy, optics, and "nn>I}jK  
    %   optometry to describe functions on a circular domain. 7{u1ynt   
    % |%Ssb;M  
    %   The following table lists the first 15 Zernike functions. D{, b|4  
    % /2]=.bLwz  
    %       n    m    Zernike function           Normalization X&|y|  
    %       -------------------------------------------------- V#d8fRm  
    %       0    0    1                                 1 { Em fw9L  
    %       1    1    r * cos(theta)                    2 2?9gf,U  
    %       1   -1    r * sin(theta)                    2 @-jI<g  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 8$6^S{M3  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 1n+JHXR\  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) ,*{9g6  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) @ u2 P&|:{  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) )Hlc\Mgy  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) rY(h }z  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) &UoQ8&  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) K<D=QweOon  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 9]*hP](  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) Zd[6-/-:  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) aQ.mvuMa7'  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) bl`vT3  
    %       -------------------------------------------------- )R9QJSe  
    % c *]6>50  
    %   Example 1: ;,jms~ik  
    % a*KJjl?k  
    %       % Display the Zernike function Z(n=5,m=1) ){,v&[  
    %       x = -1:0.01:1; PLDp=T%  
    %       [X,Y] = meshgrid(x,x); .VfBwTh7q8  
    %       [theta,r] = cart2pol(X,Y); :k7h"w  
    %       idx = r<=1; 81 /t)Cp  
    %       z = nan(size(X)); ?Y#x`DMh  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); d^ YM@>%  
    %       figure I'T@}{h  
    %       pcolor(x,x,z), shading interp `F TA{ba  
    %       axis square, colorbar YA4;gH+  
    %       title('Zernike function Z_5^1(r,\theta)') `q(eB=6;[  
    % v`KYhqTUl  
    %   Example 2: N\WEp?%~  
    % o+.LG($+U  
    %       % Display the first 10 Zernike functions w%Tjn^d  
    %       x = -1:0.01:1; *we*IhIP  
    %       [X,Y] = meshgrid(x,x); DAtZp%  
    %       [theta,r] = cart2pol(X,Y); Y1h)0_0  
    %       idx = r<=1; 9 54O=9PQ  
    %       z = nan(size(X)); lQnqPQY  
    %       n = [0  1  1  2  2  2  3  3  3  3]; O!#bM< *  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; dAj;g9N/h  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 1 n<7YO7}  
    %       y = zernfun(n,m,r(idx),theta(idx)); @{y[2M} %]  
    %       figure('Units','normalized') q+/7v9  
    %       for k = 1:10 2YL)" w  
    %           z(idx) = y(:,k); %I6c}*W  
    %           subplot(4,7,Nplot(k)) 4! V--F  
    %           pcolor(x,x,z), shading interp 57eA (uI  
    %           set(gca,'XTick',[],'YTick',[]) ('7qJkV  
    %           axis square GH!Lu\y\  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) MehMhHY  
    %       end [#Y7iN&  
    % ,8MUTXd@ V  
    %   See also ZERNPOL, ZERNFUN2. yw9)^JU8"  
    h1'j1uI  
    }Kc03Ue`%e  
    %   Paul Fricker 11/13/2006 mUW4d3tE  
    JVgV,4 1  
    @z!|HLD+  
    kX)Xo`^Ys  
    g1TMyIUt[  
    % Check and prepare the inputs: =u#xPI0:  
    % ----------------------------- )$_b?  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) LU=`K4  
        error('zernfun:NMvectors','N and M must be vectors.') $8"G9r  
    end CHPu$eu  
    -*I Dzm  
    3HP o*~"]  
    if length(n)~=length(m) a J&)-ge  
        error('zernfun:NMlength','N and M must be the same length.') 3"ii_#1  
    end hs5aIJ  
    SZ[ ,(h  
    W%bzA11l  
    n = n(:); k;bdzcMkQ  
    m = m(:);  ;Iu}Q-b*  
    if any(mod(n-m,2)) / .ddx<  
        error('zernfun:NMmultiplesof2', ... ^t{2k[@  
              'All N and M must differ by multiples of 2 (including 0).') );zLy?n  
    end a*4l!-7  
    ~j&#DG&L  
    [h GS*  
    if any(m>n) ^+m6lsuA  
        error('zernfun:MlessthanN', ... :QV-!  
              'Each M must be less than or equal to its corresponding N.') Z+*t=?L,,G  
    end G(~ s(r{%I  
    cU^Z=B  
    I#m0n%-[  
    if any( r>1 | r<0 ) nYc8+5CcK'  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') zFn-V EJ)  
    end 6ofi8( n[  
    NQx`u"=  
    O_u2V'jy9  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) HoIK^t~VT#  
        error('zernfun:RTHvector','R and THETA must be vectors.') };z[x2l^  
    end ~x:B@Ow  
    yp}a&Dg  
    #:y h2y7a%  
    r = r(:); N^{"k,vB-  
    theta = theta(:); xElHYh(\  
    length_r = length(r); t[ Zoe+&  
    if length_r~=length(theta) m1mA:R\zM  
        error('zernfun:RTHlength', ... I}&`IUP  
              'The number of R- and THETA-values must be equal.') d0Jaa1b~O  
    end !G0OD$  
    z,"fr%*,N  
    {b<;?Dus^  
    % Check normalization: w[bhm$SX]B  
    % -------------------- 9HjtWQn  
    if nargin==5 && ischar(nflag) ?'@tx4#v\2  
        isnorm = strcmpi(nflag,'norm'); ^` 96L  
        if ~isnorm jgfl|;I?pg  
            error('zernfun:normalization','Unrecognized normalization flag.') a=m7pe ^  
        end d'4^c,d  
    else ws tH&^  
        isnorm = false; VhWF(*  
    end )9.i'{{ 0  
     t dl Y  
    ]Ywj@-*q  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% U',9t  
    % Compute the Zernike Polynomials J(%Jg  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% LZ97nvK  
    Y_H|Fl^  
    k|Hxd^^I  
    % Determine the required powers of r: o]#M8)=  
    % ----------------------------------- bR6g^Yf  
    m_abs = abs(m); mr`Lxy9e  
    rpowers = []; b?p_mQKtZ  
    for j = 1:length(n) w}OJ2^  
        rpowers = [rpowers m_abs(j):2:n(j)]; *5\k1-$  
    end V8aLPJ0_  
    rpowers = unique(rpowers); $[p<}o/6v]  
    &s +DK `  
    M7\; Y  
    % Pre-compute the values of r raised to the required powers, @ 435K'!  
    % and compile them in a matrix: C Rd1zDB  
    % ----------------------------- A[/_}bI|  
    if rpowers(1)==0 |\1!*Qp  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); RY>BP[h  
        rpowern = cat(2,rpowern{:}); A@-A_=a,  
        rpowern = [ones(length_r,1) rpowern]; &I&:  
    else DPU%4te  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); bD&^-& G  
        rpowern = cat(2,rpowern{:}); *bl*R';  
    end Z/|oCwR  
    YPjjSi:#  
    xHA6  
    % Compute the values of the polynomials: * 5H  
    % -------------------------------------- \Bg;^6U  
    y = zeros(length_r,length(n)); -|?I'~[#(  
    for j = 1:length(n) / _N*6a~  
        s = 0:(n(j)-m_abs(j))/2; @E(_H$|E  
        pows = n(j):-2:m_abs(j); 7rc6  
        for k = length(s):-1:1 EXdx$I=X  
            p = (1-2*mod(s(k),2))* ... ZQZBap"  
                       prod(2:(n(j)-s(k)))/              ... 3$.R=MQ7  
                       prod(2:s(k))/                     ... nX@lR~g%F  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... c k$ > yk  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); {Hv/|.),hu  
            idx = (pows(k)==rpowers); *1}UK9X;  
            y(:,j) = y(:,j) + p*rpowern(:,idx); zyznFiE  
        end (XQBBt  
         qdlz#-B  
        if isnorm MOiTz L*  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); j^t#>tZS  
        end AgOw{bJ%  
    end sHk,#EsKH  
    % END: Compute the Zernike Polynomials u afSz@`  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% .>5KwEK~  
    4K_fN  
    %n^jho5  
    % Compute the Zernike functions: ]BY^.!Y  
    % ------------------------------ l3d^V&Sk  
    idx_pos = m>0; .|[5*-  
    idx_neg = m<0; 5hVp2 w-  
    %gF; A*  
    .{cka]9WJz  
    z = y; N36<EHq  
    if any(idx_pos) 5h"moh9tG  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); :YL`GSl  
    end r%M.rYLG{  
    if any(idx_neg) UStNUNCq  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); *rY@(|  
    end eXHk6[%[  
    DNARe!pK  
    k`LoRqF  
    % EOF zernfun EcBJ-j 6d  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  [I*)H7pt}  
    p>4tPI}bf  
    DDE还是手动输入的呢? baLO~C  
    j@N z  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究