下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, Q8;x9o@p
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, DGa#d_I
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? DU/9/ I?~
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? IL+#ynC
r%g
<hT 8
(!3Yc:~RE
|MOn0*
v F.?] u
function z = zernfun(n,m,r,theta,nflag) .KT 7le<Zm
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. ?VMi!-POE
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ;-3h ~k
% and angular frequency M, evaluated at positions (R,THETA) on the rt5oRf:wY
% unit circle. N is a vector of positive integers (including 0), and W\I$`gyC/
% M is a vector with the same number of elements as N. Each element jsk:fh0~M
% k of M must be a positive integer, with possible values M(k) = -N(k) qO:U]\P
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, a^RZsR
% and THETA is a vector of angles. R and THETA must have the same fap|SMGt
% length. The output Z is a matrix with one column for every (N,M) 07$/]eO%C
% pair, and one row for every (R,THETA) pair. D 7Gd%
% hrJ$%U
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike SjZd0H0
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), w;N{>)hv
% with delta(m,0) the Kronecker delta, is chosen so that the integral [=XZza.z
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Nf=C?`L
% and theta=0 to theta=2*pi) is unity. For the non-normalized ]h #WkcXQ
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. sl~b\j
% 20
jrv'f
% The Zernike functions are an orthogonal basis on the unit circle. '4af
],
% They are used in disciplines such as astronomy, optics, and '4J&Gp x
% optometry to describe functions on a circular domain. aj&\CJ
% +V2C}NQ5R
% The following table lists the first 15 Zernike functions. UqD5
A~w
% $@_YdZ!
% n m Zernike function Normalization =L:[cIRrT;
% -------------------------------------------------- l)}<#Ri
% 0 0 1 1 8&?^XcJ*x
% 1 1 r * cos(theta) 2 5?^]1P_
% 1 -1 r * sin(theta) 2 t@X M /=d
% 2 -2 r^2 * cos(2*theta) sqrt(6) "EJ\]S]$X
% 2 0 (2*r^2 - 1) sqrt(3) V78Mq:7d
% 2 2 r^2 * sin(2*theta) sqrt(6) j1'\R+4U
% 3 -3 r^3 * cos(3*theta) sqrt(8) -s{R/ 6:
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) jeY4yM
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) g* %bzfk=|
% 3 3 r^3 * sin(3*theta) sqrt(8) H!p!sn
% 4 -4 r^4 * cos(4*theta) sqrt(10) $B<~0'6}
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Q?Wr7
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) TLy;4R2Nn
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 4\v~HFsv
% 4 4 r^4 * sin(4*theta) sqrt(10) /#29Y^Z)=
% -------------------------------------------------- ',DeP>'%>
% c qv.dC
% Example 1: 6tX.(/+L
% tAaYL
\~
% % Display the Zernike function Z(n=5,m=1) 6{L F-`S%
% x = -1:0.01:1; ma3Qi/
% [X,Y] = meshgrid(x,x); T)`gm{T
% [theta,r] = cart2pol(X,Y); R;%^j=Q
% idx = r<=1; bH_I7G&m
% z = nan(size(X)); vXc!Zg~
% z(idx) = zernfun(5,1,r(idx),theta(idx)); U8E0~[y'
% figure CK=ARh#|
% pcolor(x,x,z), shading interp [
ynuj3G
V
% axis square, colorbar )4PB<[u
% title('Zernike function Z_5^1(r,\theta)') Vw7WK
% #T[%6(QW
% Example 2: 3=IG#6)~C
% 6I"C~&dt
% % Display the first 10 Zernike functions Bf/|{@
% x = -1:0.01:1; >n(F4C-pl
% [X,Y] = meshgrid(x,x); SGQDro=l
% [theta,r] = cart2pol(X,Y); RTZ:U@
% idx = r<=1; TKd6MZhT
% z = nan(size(X)); \PzN XQ$
% n = [0 1 1 2 2 2 3 3 3 3];
C[R`Ml
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; \,hrk~4U;(
% Nplot = [4 10 12 16 18 20 22 24 26 28]; \d:h$
% y = zernfun(n,m,r(idx),theta(idx)); / xs9.w8-
% figure('Units','normalized') Ep<YCSQy$i
% for k = 1:10 J,9%%S8/C
% z(idx) = y(:,k); {-J:4*`
% subplot(4,7,Nplot(k)) 1c/
X
% pcolor(x,x,z), shading interp qZ&