切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9270阅读
    • 5回复

    [讨论]如何从zernike矩中提取出zernike系数啊 [复制链接]

    上一主题 下一主题
    离线jssylttc
     
    发帖
    25
    光币
    13
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2012-04-23
    下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, 8d Fqwpw8  
    我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 8tna<Hx  
    这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? ^P]5@dv  
    那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? n|DMj[uT  
    rbIYLVA+V  
    Eaxsg  
    _29wQn@]  
    p$jAq~C  
    function z = zernfun(n,m,r,theta,nflag) K[/L!.Ag  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. )uR_d=B&  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N $Z w +"AA  
    %   and angular frequency M, evaluated at positions (R,THETA) on the uWFyI"  
    %   unit circle.  N is a vector of positive integers (including 0), and :2 :VMIa  
    %   M is a vector with the same number of elements as N.  Each element GXQ%lQ  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) ZUS5z+o  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, `{ HWk^  
    %   and THETA is a vector of angles.  R and THETA must have the same jrz.n 4Y`  
    %   length.  The output Z is a matrix with one column for every (N,M) =h|cs{eT\2  
    %   pair, and one row for every (R,THETA) pair. soQ[Zg4}  
    % g"m9[R=]6  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike t)?K@{ 9  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 7I&o  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 'r\RN\PT  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, |s(Ih_Zn  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized =2QP7W3mg<  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. `^'fS@VA  
    % 3T,[  
    %   The Zernike functions are an orthogonal basis on the unit circle. !7)#aXt&  
    %   They are used in disciplines such as astronomy, optics, and cZ)mp`^n7  
    %   optometry to describe functions on a circular domain. ONDO xXs  
    % UpE +WzY  
    %   The following table lists the first 15 Zernike functions. !~R<Il|B  
    % +r;t]  
    %       n    m    Zernike function           Normalization C8T0=o/-`  
    %       -------------------------------------------------- yZgWFf.X  
    %       0    0    1                                 1 ']I!1>v$[  
    %       1    1    r * cos(theta)                    2 [{GN#W|AGP  
    %       1   -1    r * sin(theta)                    2 JsuI&v  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) Tbv w?3  
    %       2    0    (2*r^2 - 1)                    sqrt(3) chKEGosbF  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) #>,E"-]f  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) AJ& j|/  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) f8N* [by  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) (U# Oj"  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 8-k`"QI=  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) JN`$Fq+  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) #ley3rJW]  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) A?}[rM Z  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ;fW~Gb?"  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) {7]maOg>7J  
    %       -------------------------------------------------- yFb"2  
    % E"S# d&9  
    %   Example 1: |3T2}ohrr  
    % G8%VL^;O*5  
    %       % Display the Zernike function Z(n=5,m=1) 2@ 9?~?r  
    %       x = -1:0.01:1; Z}>F V~4  
    %       [X,Y] = meshgrid(x,x); dW!El^w}  
    %       [theta,r] = cart2pol(X,Y); 4Otq3s34FT  
    %       idx = r<=1; 4'*.3f'bp  
    %       z = nan(size(X)); D& o\q68W  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); \#VWZ\M8a  
    %       figure Z}\,rex  
    %       pcolor(x,x,z), shading interp 3c,4 wyn  
    %       axis square, colorbar tD}-&"REP  
    %       title('Zernike function Z_5^1(r,\theta)') Y`eF9Im,  
    % 3BD&;.<r  
    %   Example 2: "U eq  
    % G6W|l2P!  
    %       % Display the first 10 Zernike functions An0N'yo"Z  
    %       x = -1:0.01:1; 4u%AZ<-C}m  
    %       [X,Y] = meshgrid(x,x); 4 ?PB Fbd  
    %       [theta,r] = cart2pol(X,Y); %cUC~, g_(  
    %       idx = r<=1; :):vB  
    %       z = nan(size(X)); EsX(<bx  
    %       n = [0  1  1  2  2  2  3  3  3  3]; O< /b]<[  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; !9KDdU  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; z\ONw Ml  
    %       y = zernfun(n,m,r(idx),theta(idx)); \aM-m:J  
    %       figure('Units','normalized') !z4I-a  
    %       for k = 1:10 >bQOpGy}l  
    %           z(idx) = y(:,k); 9@q!~ur  
    %           subplot(4,7,Nplot(k)) ZX`x9/0&  
    %           pcolor(x,x,z), shading interp MD<x{7O12>  
    %           set(gca,'XTick',[],'YTick',[]) eWex/ m  
    %           axis square l1]{r2g  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) R13k2jLSQ  
    %       end >Ovz;  
    % j n SZ@u  
    %   See also ZERNPOL, ZERNFUN2. V?"U)Y@Y  
    WoGnJ0N q  
    ?Sa,n^b*H  
    %   Paul Fricker 11/13/2006 C R?}*  
    JU5,\3Lz#  
    u t4:LHF  
    $!9/s S?  
    %r.C9  
    % Check and prepare the inputs: biS[GyQ  
    % ----------------------------- id : ^|  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) cl&?'` )  
        error('zernfun:NMvectors','N and M must be vectors.') =A'JIssk  
    end XP%_|Q2X  
    /|UbYe,  
    <bg6k .s  
    if length(n)~=length(m) Ank_;jo  
        error('zernfun:NMlength','N and M must be the same length.') Vn{;8hZ :a  
    end {v=[~H>bt  
    \I4Uj.'> \  
    Gsy>"T{CY  
    n = n(:); SIR2 Kc0  
    m = m(:); Ax~ i`  
    if any(mod(n-m,2)) er1X Z  
        error('zernfun:NMmultiplesof2', ... jCNR63/  
              'All N and M must differ by multiples of 2 (including 0).') ;'V[8`Z@  
    end 0Qvr g+  
    <b _K*]Z  
    Nv;'Ys P  
    if any(m>n) 1EQ:@1  
        error('zernfun:MlessthanN', ... y $uq`FW  
              'Each M must be less than or equal to its corresponding N.') fSVM[  
    end xy!E_CuC$  
    +,ar`:x&a  
    pxedj  
    if any( r>1 | r<0 ) %P<fz1  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') dQ-g\]d|  
    end 2|RoN)%  
    ~~k0&mK|Q  
    Vb JE zl  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) OiZ-y7;k^  
        error('zernfun:RTHvector','R and THETA must be vectors.') 0k?]~ f  
    end Lwf[*n d  
    'w72i/  
    4[;}/-  
    r = r(:); )AdwA+-x  
    theta = theta(:); )y:))\>  
    length_r = length(r); 7^! zT  
    if length_r~=length(theta) ^*$!9~  
        error('zernfun:RTHlength', ... fiSX( 9  
              'The number of R- and THETA-values must be equal.') N!dBF t"  
    end E2cZk6~m{  
    $[MAm)c:]{  
    mA,{E-T  
    % Check normalization: .:Wp9M  
    % -------------------- '4u/g  
    if nargin==5 && ischar(nflag) _G<Wq`0w)  
        isnorm = strcmpi(nflag,'norm'); l"X,[  
        if ~isnorm z+wegF  
            error('zernfun:normalization','Unrecognized normalization flag.') a+k3wzJ  
        end Y|hd!C-x  
    else T7/DH  
        isnorm = false; B|9XqQ EI  
    end Da6l =M  
    \k=%G_W  
    0 .T5% _ /  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% LqJV  
    % Compute the Zernike Polynomials zn^ G V  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0ZI}eZA j  
    u =~`5vA  
    ' \>k7?@  
    % Determine the required powers of r: G O G[^T  
    % ----------------------------------- OR+py.vK  
    m_abs = abs(m); *L*{FnsV  
    rpowers = []; a;~< iB;3"  
    for j = 1:length(n) b~)2`l  
        rpowers = [rpowers m_abs(j):2:n(j)]; Ks(l :oUB  
    end yn(bW\  
    rpowers = unique(rpowers); ".( G,TW  
    KE5>O1  
    I7Abf7>*Q  
    % Pre-compute the values of r raised to the required powers, ph!h8@e  
    % and compile them in a matrix: ta x:9j|~  
    % ----------------------------- 'T7 3V  
    if rpowers(1)==0 yqtHlz%  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Uy)pEEu  
        rpowern = cat(2,rpowern{:}); <KCyXU*  
        rpowern = [ones(length_r,1) rpowern]; j*f\Z!EeZ  
    else r[7*1'. p  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); THK^u+~LM  
        rpowern = cat(2,rpowern{:}); -w)v38iX!  
    end " L,9.b  
    l)jP!k   
    .i|nn[H &  
    % Compute the values of the polynomials: N0\<B-8+,>  
    % -------------------------------------- ?`kZ6$  
    y = zeros(length_r,length(n)); TA:#K  
    for j = 1:length(n) "<)Jso|  
        s = 0:(n(j)-m_abs(j))/2; {'{9B  
        pows = n(j):-2:m_abs(j); '`W6U]7>  
        for k = length(s):-1:1 c_.Fe'E  
            p = (1-2*mod(s(k),2))* ... Clap3E|a  
                       prod(2:(n(j)-s(k)))/              ... ;AL:V U  
                       prod(2:s(k))/                     ... W* v3B.  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... V joVC$ZX  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); WW^+X~Y  
            idx = (pows(k)==rpowers); 7xG~4N<)]  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 7<B-2g  
        end TK~KM  
         {L.uLr_?e  
        if isnorm $2}%3{<j  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 08%Bx~88_%  
        end 7+X~i@#rU  
    end 0&2`)W?9  
    % END: Compute the Zernike Polynomials Xi\c>eALO  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% JZ:yPvJ  
    `}bvbvmA  
    inK;n  
    % Compute the Zernike functions: *_}0vd  
    % ------------------------------ #<u;.'R  
    idx_pos = m>0; O;}K7rSc  
    idx_neg = m<0; HGd.meQ  
    cJTwgm?  
    aS\$@41"  
    z = y; i*!2n1c[  
    if any(idx_pos) |pq9i)e&  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); WA:r4V  
    end n:k4t  
    if any(idx_neg) SQx&4R.  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); n;>=QG -v  
    end 9ZY,T]ym?  
    9zIqSjos"  
    *BF[thB:a  
    % EOF zernfun b&LAk-}[  
     
    分享到
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 1楼 发表于: 2012-04-23
    慢慢研究,这个专业性很强的。用的人又少。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2012-04-27
    这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 3楼 发表于: 2012-05-14
    回 sansummer 的帖子
    sansummer:这个太牛了,我目前只能把zygo中的zernike的36项参数带入到zemax中,但是我目前对其结果的可信性表示质疑,以后多交流啊 (2012-04-27 10:22)  <r t$~}  
    qxu3y+po]  
    DDE还是手动输入的呢? dM= &?g  
    liH#=C8l*%  
    zygo和zemax的zernike系数,类型对应好就没问题了吧
    离线jssylttc
    发帖
    25
    光币
    13
    光券
    0
    只看该作者 4楼 发表于: 2012-05-14
    顶顶·········
    离线18257342135
    发帖
    51
    光币
    1518
    光券
    0
    只看该作者 5楼 发表于: 2016-12-13
    支持一下,慢慢研究