下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, @W}cM
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, O+x"c3@Z)D
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? X3e&c
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? p 4_j>JPv5
Ipro6
I
%O6r
?M!Mb-C[
^POHQQ
function z = zernfun(n,m,r,theta,nflag) GsIVx!
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. #1*#3p9UL
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 4>
k"$l/:
% and angular frequency M, evaluated at positions (R,THETA) on the yq. <,b=87
% unit circle. N is a vector of positive integers (including 0), and U\*]cw
% M is a vector with the same number of elements as N. Each element `eZzYe(N
% k of M must be a positive integer, with possible values M(k) = -N(k) !Gob `# r
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, DW(
/[jo\
% and THETA is a vector of angles. R and THETA must have the same Gyx4}pV
% length. The output Z is a matrix with one column for every (N,M) (
jAC Lo
% pair, and one row for every (R,THETA) pair. WC0z'N({W
% 1lo.X_
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike X*cDn.(I
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), F m?j-'
% with delta(m,0) the Kronecker delta, is chosen so that the integral Z(j"\d!y
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Hg&.U;n
% and theta=0 to theta=2*pi) is unity. For the non-normalized ^'9.VVyz
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. '9{`Czc(Gb
% +3uPHpMB-
% The Zernike functions are an orthogonal basis on the unit circle. WwsH7X)
% They are used in disciplines such as astronomy, optics, and m)7Ql!l
% optometry to describe functions on a circular domain. Q
XSS
% FKZ'6KM&A
% The following table lists the first 15 Zernike functions. {W+IUvn
% g(_xo\
% n m Zernike function Normalization J':X$>E|
% -------------------------------------------------- JBhM*-t(M1
% 0 0 1 1 vA3wn><
% 1 1 r * cos(theta) 2 rJZR8bo
% 1 -1 r * sin(theta) 2 44NMof8N
% 2 -2 r^2 * cos(2*theta) sqrt(6) HQvJ*U4++
% 2 0 (2*r^2 - 1) sqrt(3) /4*Y#IpZ
% 2 2 r^2 * sin(2*theta) sqrt(6) }u9#S
% 3 -3 r^3 * cos(3*theta) sqrt(8) "(r%`.l=I
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) d-3.7nJ:
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) HYg! <y
% 3 3 r^3 * sin(3*theta) sqrt(8) T;G<62`.h
% 4 -4 r^4 * cos(4*theta) sqrt(10) beaSvhPU
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) }?\^^v h7
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) #M%K82"
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) .TMLg(2hgv
% 4 4 r^4 * sin(4*theta) sqrt(10) ,ZghV1z
% -------------------------------------------------- qnCjNN
% ~NZL~p
% Example 1: ?3lAogB
% !&xci})7a
% % Display the Zernike function Z(n=5,m=1) Ngj&1Ta&[
% x = -1:0.01:1; +h@.P B^`~
% [X,Y] = meshgrid(x,x); tr5j<O
% [theta,r] = cart2pol(X,Y); Jd^Lnp6?
% idx = r<=1; c/Fgx/hr
% z = nan(size(X)); c]h@<wnv
% z(idx) = zernfun(5,1,r(idx),theta(idx)); |Fz ^(US
% figure u^G Y7gah
% pcolor(x,x,z), shading interp (\D E1q
% axis square, colorbar +OqEe[Wk#
% title('Zernike function Z_5^1(r,\theta)') g<@Q)p*ow
% (dZ]j){
% Example 2: 42~.N=2
% I_5/e>9
% % Display the first 10 Zernike functions /oW]? 9
% x = -1:0.01:1; G^N@r:RS
% [X,Y] = meshgrid(x,x); {,i-V57-h
% [theta,r] = cart2pol(X,Y);
tKS[
% idx = r<=1; IU<lF) PF$
% z = nan(size(X)); dQ:F 5|p
% n = [0 1 1 2 2 2 3 3 3 3]; ufCpX>lNF
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; J/fnSy
% Nplot = [4 10 12 16 18 20 22 24 26 28]; GGnlkp& E
% y = zernfun(n,m,r(idx),theta(idx)); 81"` B2
% figure('Units','normalized') @R}3f6@67
% for k = 1:10 5F+G8
% z(idx) = y(:,k); d)S`.Q
% subplot(4,7,Nplot(k)) &8w#
4*W
% pcolor(x,x,z), shading interp Y0.'u{J*
% set(gca,'XTick',[],'YTick',[]) QyxUK}6mr
% axis square 5RvE ),
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) zz[fkH3
% end N2k<W?wQ
% &e6UEG
% See also ZERNPOL, ZERNFUN2. UOsK(mB
DI8<0.L
q8&l%-d`
% Paul Fricker 11/13/2006 d|oO2yzWv
4w~%MZA^
A+!,{G
R|}N"J _
Pw| h`[h
% Check and prepare the inputs: L-}J=n\
% ----------------------------- J,:&U
wkv
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Bcarx<P-p
error('zernfun:NMvectors','N and M must be vectors.') ^P^%Q)QXl
end @J&korU
C+uW]]~I)
t))MZw&@
if length(n)~=length(m) m0As t<u
error('zernfun:NMlength','N and M must be the same length.') EwX&Cj".
end !ig&8:
n8F~!|lQ0
);':aXj
n = n(:); tH)jEY9
m = m(:); h Fik>B#!
if any(mod(n-m,2)) GkX Se)#p
error('zernfun:NMmultiplesof2', ... C&>*~
'All N and M must differ by multiples of 2 (including 0).') Bp_R"DS7A
end k`Ifl)
')!X1A{
C= V2Y_j
if any(m>n) YO .+-(
error('zernfun:MlessthanN', ... fCx(
'Each M must be less than or equal to its corresponding N.') Ac|\~w[\
end J6n>{iE
hK{H7Ey*
}1e4u{
if any( r>1 | r<0 ) Z.Yq)\it
error('zernfun:Rlessthan1','All R must be between 0 and 1.') q6)fP4MQ]
end <M@-|K"Eb
GM0Q@`d
xy[#LX)RW
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) /3,Lp-kp
error('zernfun:RTHvector','R and THETA must be vectors.') NDP"
@
end /O}<e TR
8rH6L:]S
H#_Zv]
r = r(:); 0mujf
theta = theta(:); d(o=)!p
length_r = length(r); l P3|h*
if length_r~=length(theta) ~_vSMX
error('zernfun:RTHlength', ... \jtA8o%n
'The number of R- and THETA-values must be equal.') A,9JbX
end x{SlJ%V
2Qp}f^
h9)fXW
% Check normalization: ~2"hh$
% -------------------- +T$Olz
if nargin==5 && ischar(nflag) &
"&s,
isnorm = strcmpi(nflag,'norm'); gHLI>ew*QR
if ~isnorm <ToBVGX
error('zernfun:normalization','Unrecognized normalization flag.') Zk%@GOu\
end Z5>~l
else 4u6 FvN
isnorm = false; &.,K@OFE}
end w'2FYe{wj
P>C'?'Q7
!k)6r6
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% l~rj7f;
% Compute the Zernike Polynomials >#|%'Us
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% cRVL1ne
TwPQ8}pj?
TU0-L35P1
% Determine the required powers of r: js<d"m*
% ----------------------------------- [i`
m_abs = abs(m); AU$~Ap*rsa
rpowers = []; TlS? S+
for j = 1:length(n) tk%f_"}
rpowers = [rpowers m_abs(j):2:n(j)]; P C_!
end F3}MM
dX
rpowers = unique(rpowers); '`P%;/z
%+(AKZu:
[Cl0Kw.LD
% Pre-compute the values of r raised to the required powers, etr-\Cp
% and compile them in a matrix: ep"[;$Eb
% ----------------------------- _J
l(:r\%
if rpowers(1)==0 0SIC=p=J
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); a{]=BY oL
rpowern = cat(2,rpowern{:}); \)6glAtN
rpowern = [ones(length_r,1) rpowern]; ?bB>}:~j)
else VI2lwE3
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); / I`TN5~
rpowern = cat(2,rpowern{:}); $N=&D_Q
end E5&Z={
DXiA4ihr=
6{y7e L3!
% Compute the values of the polynomials: |h]V9=
% -------------------------------------- d.wGO]"
y = zeros(length_r,length(n)); gJ6`Kl985O
for j = 1:length(n) pLB2! +
s = 0:(n(j)-m_abs(j))/2; d05xn7%!{
pows = n(j):-2:m_abs(j); .11l(M
for k = length(s):-1:1 OIrm9D#
p = (1-2*mod(s(k),2))* ... $D^\[^S
prod(2:(n(j)-s(k)))/ ... 0^ODJ7
prod(2:s(k))/ ... rwF$aR>9
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ,9P-<P
prod(2:((n(j)+m_abs(j))/2-s(k))); SyvoN,;Q
idx = (pows(k)==rpowers); Bu{Kjv
y(:,j) = y(:,j) + p*rpowern(:,idx); {@InOo!4w]
end ]@&X*~c^Z
9F/I",EA
if isnorm "\b>JV5
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); %Rk|B`ST
end BsQ;`2
end GE/!$3
% END: Compute the Zernike Polynomials Pd91<L
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% g3tE.!a5-
24jf`1XFW
{D4FYr
J
% Compute the Zernike functions: 8rsc@]W
% ------------------------------ Unk/uk
idx_pos = m>0; X0.H(p#s
idx_neg = m<0; '}Fe&%
KL&/Yt
t dm7MPM
z = y; {iD/0q
if any(idx_pos) V?{d<Ng~J
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); -b-a21,m>
end ?v2_7x&
if any(idx_neg) [b++bCH3
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); yYCS-rF>
end V! Wy[u
FOiwA.:0
)CFJXc:
% EOF zernfun ._}}@V_/