下面这个函数大家都不会陌生,计算zernike函数值的,并根据此可以还原出图像来, SU/G)&Mi
我输入10阶的n、m,r,theta为38025*1向量,最后得到的z是29525*10阶的矩阵, 0z/h+,
这个,跟我们用zygo干涉仪直接拟合出的36项zernike系数,有何关系呢? =M/qV
那些系数是通过对29525*10阶的矩阵每列的值算出来的嘛? |VK:2p^ u
0f1H8zV
z; J
\I;cZ>{u"}
lqF>=15
function z = zernfun(n,m,r,theta,nflag) im=5{PbJ^
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. XJUEwX
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N cST\~SUm
% and angular frequency M, evaluated at positions (R,THETA) on the I-,>DLG
% unit circle. N is a vector of positive integers (including 0), and qmEoqU
% M is a vector with the same number of elements as N. Each element W+8^P(
K
% k of M must be a positive integer, with possible values M(k) = -N(k) %*6RzJO6
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, ' PELf
P8
% and THETA is a vector of angles. R and THETA must have the same *|oPxQCtK
% length. The output Z is a matrix with one column for every (N,M) 3!aEClRtq
% pair, and one row for every (R,THETA) pair. GWgd8x*V
% X<Z(]`i
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Vb2\/e:k
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), !nwbj21%
% with delta(m,0) the Kronecker delta, is chosen so that the integral Rb#/qkk/
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, \7yJ\I
% and theta=0 to theta=2*pi) is unity. For the non-normalized q3+I<qsAz
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. V{0%xz #
% G.Tpl-m
% The Zernike functions are an orthogonal basis on the unit circle. ;Z*'D}
% They are used in disciplines such as astronomy, optics, and [m\,+lG?)j
% optometry to describe functions on a circular domain. |CwG3&8
% ijFV<P
% The following table lists the first 15 Zernike functions. X@!X6j
% ojoxXly`
% n m Zernike function Normalization uoHqL IpQ
% -------------------------------------------------- };rm3;~ eg
% 0 0 1 1 3w6&&R9
% 1 1 r * cos(theta) 2 jn^fgH?
% 1 -1 r * sin(theta) 2 ]U[&uymax
% 2 -2 r^2 * cos(2*theta) sqrt(6) +C_*Vs@4
% 2 0 (2*r^2 - 1) sqrt(3) >yKpM }6l{
% 2 2 r^2 * sin(2*theta) sqrt(6) )!eEO [\d
% 3 -3 r^3 * cos(3*theta) sqrt(8) ENq"mwV|
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) ds]?;l"
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) ^>^\CP]
% 3 3 r^3 * sin(3*theta) sqrt(8) g2=}G <*0
% 4 -4 r^4 * cos(4*theta) sqrt(10) 9`BEi(z
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) %K?iNe
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) wu 2:'y>n
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) _IxamWpX$
% 4 4 r^4 * sin(4*theta) sqrt(10) FZ p<|t
% -------------------------------------------------- EjSD4
% y@3kU*-1
% Example 1: oIb)
Rq!m
% :CTL)ad2
% % Display the Zernike function Z(n=5,m=1) f&c]LH_
% x = -1:0.01:1; ~M*gsW$
% [X,Y] = meshgrid(x,x); j&CZ=?K^c
% [theta,r] = cart2pol(X,Y); hM>*a!)U
% idx = r<=1; TT7PQf >
% z = nan(size(X)); fL Nag~
% z(idx) = zernfun(5,1,r(idx),theta(idx)); .!yq@Q|=u
% figure /lJjQ]c;>
% pcolor(x,x,z), shading interp JpK[&/Ct
% axis square, colorbar YBvd
q1
% title('Zernike function Z_5^1(r,\theta)') G#0,CLGN^
% pds*2p)2
% Example 2: )b92yP{
% 6e#wR/
% % Display the first 10 Zernike functions r?^"65=
% x = -1:0.01:1; y9!:^kDI
% [X,Y] = meshgrid(x,x); f=m/
-mAA
% [theta,r] = cart2pol(X,Y); 6V2j*J
% idx = r<=1; {y6C0A*
% z = nan(size(X)); U:n*<l-k}
% n = [0 1 1 2 2 2 3 3 3 3]; :B.G)M\
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; A"4@L*QV
% Nplot = [4 10 12 16 18 20 22 24 26 28]; k 4B_W
% y = zernfun(n,m,r(idx),theta(idx)); ~<,Sh~Ana.
% figure('Units','normalized') U5<@<j(@
% for k = 1:10 W-XpJ\_
% z(idx) = y(:,k); P}@*Z>j:#
% subplot(4,7,Nplot(k)) &@6 GI<
% pcolor(x,x,z), shading interp XG&K32_fs
% set(gca,'XTick',[],'YTick',[]) ~ziexZ=N
% axis square e+@xsn3
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) )6{P8k4Zr
% end B< hEx@
% lFfXWNb
% See also ZERNPOL, ZERNFUN2. ]"sRS`0+
m}5q]N";x
c'05{C
% Paul Fricker 11/13/2006 m*oc)x7'
Uh}X<d/V
4AHL3@x
A1-qtAO]
Qq3fZ=
% Check and prepare the inputs: t`u!]DHv
% ----------------------------- Tpzw=bC^
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) yX!#a>d"H
error('zernfun:NMvectors','N and M must be vectors.') N9]xJgTze
end A[H;WKn0
M<(u A'
`?uPn~,e8
if length(n)~=length(m) V]c5
Z$Bd
error('zernfun:NMlength','N and M must be the same length.') h|p[OecG
end FkB{ SCJ
GwQn;gkF
GMm'of#
n = n(:); "HC)/)Mv@
m = m(:); |ym%|
B
if any(mod(n-m,2)) ;|TT(P:d
error('zernfun:NMmultiplesof2', ... 8=Q VN_
'All N and M must differ by multiples of 2 (including 0).')
maDz W_3
end 2-v\3voN
TpP8=8_Lh
C3S`}o.
if any(m>n) QlD6i-a
error('zernfun:MlessthanN', ... Q4wc-s4RN
'Each M must be less than or equal to its corresponding N.') &&PgOFD
end #C\4/g?=,
<*Y'lV
El6bD% \G
if any( r>1 | r<0 ) @\}YAa>>"I
error('zernfun:Rlessthan1','All R must be between 0 and 1.') G9RP^
end s'L?;:)dyB
CgnXr/!L
*IZf^-=Q
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) (X}@^]lpa
error('zernfun:RTHvector','R and THETA must be vectors.') Y {c5
end ut5yf$%
}B ff,q
p4>,Fwy2
r = r(:); <LA^%2jT
theta = theta(:); \+Y!ILOI
length_r = length(r); ow.6!tl0=h
if length_r~=length(theta) l2&hBacT
error('zernfun:RTHlength', ... \FifzKA
'The number of R- and THETA-values must be equal.') ^\wl2
end =!,Gst_
jO)&KEh
?63&g{vA
% Check normalization: iZ;TYcT
% -------------------- Q%5F ]`VN
if nargin==5 && ischar(nflag) $(q8y/,R*-
isnorm = strcmpi(nflag,'norm'); D;js.ZF
if ~isnorm /cY^]VLe
error('zernfun:normalization','Unrecognized normalization flag.') @2' %o<lF
end E
_iO@
else @vs@>CYdz
isnorm = false; F~_;o+e;X
end 3s(Ia^
0"4@;e_)>
QnKC#
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% )saR0{e0N
% Compute the Zernike Polynomials ,7,;twKz
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ?_ RYqolz
`6Hf&u<
$']VQ4tZ
% Determine the required powers of r: \6sQJq
% ----------------------------------- ?~F. /
m_abs = abs(m); /EFq#+6
rpowers = []; :oa9#c`L
for j = 1:length(n) $TG?4
rpowers = [rpowers m_abs(j):2:n(j)]; $a.u05
end /f3m)pT
rpowers = unique(rpowers); ?R6`qe_F
b!a
%YLL
>oqZ !V5[
% Pre-compute the values of r raised to the required powers, OE"<!oIs
% and compile them in a matrix: v>-YuS
% ----------------------------- p&3>
`C
if rpowers(1)==0 ybvI?#
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); I@./${o
rpowern = cat(2,rpowern{:}); R&So4},B
rpowern = [ones(length_r,1) rpowern]; DO^y;y>
else aRwnRii
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Ew4g'A:H
rpowern = cat(2,rpowern{:}); C\Ayv)S#2
end R6@uM<