切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16516阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 fK'.wX9  
    B`*f(  
    {xv?wenE  
    sOl>5:D6  
    然后添加了默认公差分析,基本没变 v]:+` dV  
    ^`rpf\GX(  
    {Z#e{~m#  
    7$ =Y\ P  
    然后运行分析的结果如下: V#NG+U.B  
    i,#k}CNu  
    Analysis of Tolerances *#1y6^  
    ^qeY9O  
    File : E:\光学设计资料\zemax练习\f500.ZMX j2 }  
    Title: zJ;>.0  
    Date : TUE JUN 21 2011 V06CCy8n  
    :xFu_%7  
    Units are Millimeters. yuHZ&e  
    All changes are computed using linear differences. J3e:Y!  
    6 Wpxp\  
    Paraxial Focus compensation only. BTTLy^  
    i<T P:  
    WARNING: Solves should be removed prior to tolerancing. PS=e\(6QC  
    D<U 9m3  
    Mnemonics: D XV@DQ  
    TFRN: Tolerance on curvature in fringes. :zdEq" )v  
    TTHI: Tolerance on thickness. OM.k?1%+M  
    TSDX: Tolerance on surface decentering in x. =&A!C"qK4[  
    TSDY: Tolerance on surface decentering in y. bLgL0}=n  
    TSTX: Tolerance on surface tilt in x (degrees). Q2/MnM  
    TSTY: Tolerance on surface tilt in y (degrees). ;gDMl57PQ.  
    TIRR: Tolerance on irregularity (fringes). A8pj~I/*-  
    TIND: Tolerance on Nd index of refraction. 7%}ay  
    TEDX: Tolerance on element decentering in x. e74zR6  
    TEDY: Tolerance on element decentering in y. t;8\fIW5  
    TETX: Tolerance on element tilt in x (degrees). _1^8xFe2  
    TETY: Tolerance on element tilt in y (degrees). A4G,}r *n  
    "h=6Q+Ze  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. z % x7fe  
    &]P"48NT  
    WARNING: Boundary constraints on compensators will be ignored. HA6G)x  
    KRYcCn  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm &E bI Op  
    Mode                : Sensitivities Q>.BQ;q]  
    Sampling            : 2 ao#!7F  
    Nominal Criterion   : 0.54403234 X ZS5B~E '  
    Test Wavelength     : 0.6328 ~>V-*NT8  
    pDu{e>S|:  
    L#D9@V'z  
    Fields: XY Symmetric Angle in degrees d%0+i/p  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY xS'zZ%?  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 2fJ{LC  
    wGvhB%8K  
    Sensitivity Analysis: 2-++i:, g  
    NYBe"/}GS  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| v "Me{+  
    Type                      Value      Criterion        Change          Value      Criterion        Change C+w__gO&r  
    Fringe tolerance on surface 1 (;a B!(_  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 ?d$"[lKX  
    Change in Focus                :      -0.000000                            0.000000 |h}B{D  
    Fringe tolerance on surface 2 CSL#s^4T  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 8L%M<JRg~  
    Change in Focus                :       0.000000                            0.000000 ?"6Ov ]  
    Fringe tolerance on surface 3 iq?l#}]  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 @mf({Q>  
    Change in Focus                :      -0.000000                            0.000000 17}$=#SX  
    Thickness tolerance on surface 1 Jf7frzw  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 $;2)s} ci  
    Change in Focus                :       0.000000                            0.000000 \m4T3fy  
    Thickness tolerance on surface 2 ~-TOsRvxR  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 z}ElpT[(;  
    Change in Focus                :       0.000000                           -0.000000 z{:-!oF&CB  
    Decenter X tolerance on surfaces 1 through 3 9Bz0MUbrLl  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 f1mHN7hxW  
    Change in Focus                :       0.000000                            0.000000 3HZ~.  
    Decenter Y tolerance on surfaces 1 through 3 xjo;kx\y^  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 B^fT>1P  
    Change in Focus                :       0.000000                            0.000000 O:Va&Cyj*  
    Tilt X tolerance on surfaces 1 through 3 (degrees) q-nER<  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 o#>a 5  
    Change in Focus                :       0.000000                            0.000000 A>=E{  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) nnwJ YEi  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 [4*1}}gW%5  
    Change in Focus                :       0.000000                            0.000000 qI%&ay"/  
    Decenter X tolerance on surface 1 a+`D'?z  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 pMR,#[U<  
    Change in Focus                :       0.000000                            0.000000 Fj1NN  
    Decenter Y tolerance on surface 1 *5k+t  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 ^~$\ g]  
    Change in Focus                :       0.000000                            0.000000 lCJ6Ur;  
    Tilt X tolerance on surface (degrees) 1 i?>tgmu.  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 3J~0O2  
    Change in Focus                :       0.000000                            0.000000 ,2L$G&?  
    Tilt Y tolerance on surface (degrees) 1 k$N0lR4:p  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 <8!  Tq  
    Change in Focus                :       0.000000                            0.000000 |7"$w%2  
    Decenter X tolerance on surface 2 7]E m ,  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 e_.Gw"/Yl  
    Change in Focus                :       0.000000                            0.000000 ZF6c{~D  
    Decenter Y tolerance on surface 2 @MiH(.Dq  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 Ooc\1lX  
    Change in Focus                :       0.000000                            0.000000 +5!&E7bcd  
    Tilt X tolerance on surface (degrees) 2 !R'g59g  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 VT\ "q1)p  
    Change in Focus                :       0.000000                            0.000000 ?>$l  
    Tilt Y tolerance on surface (degrees) 2 Vi?q>:E:  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 =dZHYO^Cv  
    Change in Focus                :       0.000000                            0.000000 Es!Q8.  
    Decenter X tolerance on surface 3 aI3CNeav  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 aS84n.?vq  
    Change in Focus                :       0.000000                            0.000000 ;W]\rft[  
    Decenter Y tolerance on surface 3 wM~H(=s`D  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 dtZE67KS  
    Change in Focus                :       0.000000                            0.000000 :g6n,p_#  
    Tilt X tolerance on surface (degrees) 3 ),(V6@Z?  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 }!p`1]gem  
    Change in Focus                :       0.000000                            0.000000 t~``md4  
    Tilt Y tolerance on surface (degrees) 3 `JB?c  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 Z hd#:d  
    Change in Focus                :       0.000000                            0.000000 u JY)4T  
    Irregularity of surface 1 in fringes TP%+.#Fu  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 dOFD5}_   
    Change in Focus                :       0.000000                            0.000000 ]p7jhd=  
    Irregularity of surface 2 in fringes EON:B>2a  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 S<`I Jpkv  
    Change in Focus                :       0.000000                            0.000000 hI},~af  
    Irregularity of surface 3 in fringes nXy>7H[0  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 &@% $2O.3  
    Change in Focus                :       0.000000                            0.000000 KC`q#&dt  
    Index tolerance on surface 1 1oiRWRe  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 P 43P]M2  
    Change in Focus                :       0.000000                            0.000000 }}&#|)Yq  
    Index tolerance on surface 2 k(t}^50^j  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 mN |r)4{`  
    Change in Focus                :       0.000000                           -0.000000 piy`zc- yu  
    ~PnTaAPJ  
    Worst offenders: /w(e  
    Type                      Value      Criterion        Change +Q$h ]^>~  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 X] %itA  
    TSTY   2             0.20000000     0.35349910    -0.19053324 0@I S  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 m3bCZ 9iE  
    TSTX   2             0.20000000     0.35349910    -0.19053324 bi[IqU!9  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 6eFp8bANN#  
    TSTY   1             0.20000000     0.42678383    -0.11724851 (o5j'2:.  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 qpIC{'A.  
    TSTX   1             0.20000000     0.42678383    -0.11724851 }e2VY  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 Ep9W-n?}  
    TSTY   3             0.20000000     0.42861670    -0.11541563 zcrY>t#l  
    ":a\z(*t  
    Estimated Performance Changes based upon Root-Sum-Square method: 3cdTed-MIh  
    Nominal MTF                 :     0.54403234 d?wc*N3  
    Estimated change            :    -0.36299231 -m *Sq  
    Estimated MTF               :     0.18104003 u .f= te  
    oVFnl A  
    Compensator Statistics: \K`L3*cBKK  
    Change in back focus: js iSg/  
    Minimum            :        -0.000000 eET&pP3Rp  
    Maximum            :         0.000000 s\!>"J bAQ  
    Mean               :        -0.000000 ljTBvU  
    Standard Deviation :         0.000000 |L2SFB?d=  
    mKr h[nA  
    Monte Carlo Analysis: (T`E!A0I\?  
    Number of trials: 20 2 3OC2|  
    HK`I\,K  
    Initial Statistics: Normal Distribution wLK07e(  
    (aOv#Vor]%  
      Trial       Criterion        Change !?c|XdjZ  
          1     0.42804416    -0.11598818 .<@8gNm3  
    Change in Focus                :      -0.400171 }PTV] q%  
          2     0.54384387    -0.00018847 V"c 6Kdtd  
    Change in Focus                :       1.018470 y@0E[/O  
          3     0.44510003    -0.09893230 [sB 9gY(  
    Change in Focus                :      -0.601922 X 1 57$  
          4     0.18154684    -0.36248550 -py@DzK  
    Change in Focus                :       0.920681 {~Rk2:gx  
          5     0.28665820    -0.25737414 ,eTU/Q>{,&  
    Change in Focus                :       1.253875 I(S`j[U  
          6     0.21263372    -0.33139862 a~'a  
    Change in Focus                :      -0.903878 wgCa58H76  
          7     0.40051424    -0.14351809 I f\fLhM  
    Change in Focus                :      -1.354815 0c}  }Q  
          8     0.48754161    -0.05649072 : q#Xq;Wp  
    Change in Focus                :       0.215922 `BlI@6th  
          9     0.40357468    -0.14045766 9eH$XYy  
    Change in Focus                :       0.281783 0u\GO;  
         10     0.26315315    -0.28087919 feQ **wI  
    Change in Focus                :      -1.048393 g$b<1:8  
         11     0.26120585    -0.28282649 ZYC<Wb)I  
    Change in Focus                :       1.017611 ~l)-wNqR4r  
         12     0.24033815    -0.30369419 &Z`#cMR{H  
    Change in Focus                :      -0.109292 }GeSu|m(  
         13     0.37164046    -0.17239188 EK4d_L]I  
    Change in Focus                :      -0.692430 yu;P +G  
         14     0.48597489    -0.05805744 J+`VujWT  
    Change in Focus                :      -0.662040 6I%5Q4Ll  
         15     0.21462327    -0.32940907 iyg*Xbmi~.  
    Change in Focus                :       1.611296 O#F4WWF  
         16     0.43378226    -0.11025008 EOCN&_Z;  
    Change in Focus                :      -0.640081 [eC2"&}  
         17     0.39321881    -0.15081353 tCdqh-   
    Change in Focus                :       0.914906 V,%=AR5  
         18     0.20692530    -0.33710703 ,^C--tgZJg  
    Change in Focus                :       0.801607 H '  
         19     0.51374068    -0.03029165 DQ r Y*nH  
    Change in Focus                :       0.947293 0tXS3+@n =  
         20     0.38013374    -0.16389860 m6w].-D8  
    Change in Focus                :       0.667010 ;C2K~8,  
    zx)z/1  
    Number of traceable Monte Carlo files generated: 20 >k (C  
    0$ S8 fF@  
    Nominal     0.54403234 neLAEHV  
    Best        0.54384387    Trial     2 <i&_ooX  
    Worst       0.18154684    Trial     4 Ru>MFG  
    Mean        0.35770970 ]@phF _  
    Std Dev     0.11156454 t+!$[K0/  
    B!?%O  
    i%0ur}p  
    Compensator Statistics: ~XO Ts  
    Change in back focus: R}!:'^  
    Minimum            :        -1.354815 AJF#Aw `o  
    Maximum            :         1.611296 /w}u3|L$  
    Mean               :         0.161872 _sTROd)Vh  
    Standard Deviation :         0.869664 'F9jq  
    Pu"P9  
    90% >       0.20977951               zd >t-?g  
    80% >       0.22748071                &7K?w~  
    50% >       0.38667627               T7hcnF$  
    20% >       0.46553746               Q o{/@  
    10% >       0.50064115                -#N.X_F  
    #Up86(Z  
    End of Run. heV=)8  
    )QU  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 kY-N>E:  
    ]QlwR'&j/n  
    ]H+8rY%+  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 0"28'  
    j~[z2tV  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                  ]hk  
    80% >       0.22748071                 3no%E03p  
    50% >       0.38667627                 G\2 CR*  
    20% >       0.46553746                 RO+GK`J  
    10% >       0.50064115 ~ =M7 3U#  
    iT3BF"ZqBO  
    最后这个数值是MTF值呢,还是MTF的公差? @E7DyU|  
    B~MU^ |v  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   1"MhGNynB>  
    [1g8*j~L  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : ^cOUQ33  
    90% >       0.20977951                 B]nEkO'a:  
    80% >       0.22748071                 Q3kdlxXR  
    50% >       0.38667627                 yZ0-wI  
    20% >       0.46553746                 w$3 ,A$8  
    10% >       0.50064115 ~8'sBT  
    ....... ?&8^&brwG  
    7Od -I*bt  
    vv72x]  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   Kfbb)?  
    Mode                : Sensitivities NH[kNi'  
    Sampling            : 2 [`ebM,W  
    Nominal Criterion   : 0.54403234 Z+*9#!?J  
    Test Wavelength     : 0.6328 !EvAB+`jLI  
    hr#M-K  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? h0(BO*cy  
    OSRp0G20k\  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试