切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16254阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 nB[Aw7^|A  
    -U`]/  
    WyF1Fw  
    TyI"fP  
    然后添加了默认公差分析,基本没变 xxpvVb)mF  
    xPl+ rsU  
    URz$hcI8  
    4 Z.G  
    然后运行分析的结果如下: k z"F4?,  
    B b_R~1 l  
    Analysis of Tolerances ]2`PS<a2  
    +] s"*'V$  
    File : E:\光学设计资料\zemax练习\f500.ZMX iaPrkMhd  
    Title: qv>?xKSm  
    Date : TUE JUN 21 2011 Yw&{.<sL  
    @*`9!K%  
    Units are Millimeters. aY&He~  
    All changes are computed using linear differences. Q ;V `  
    EZlcpCS  
    Paraxial Focus compensation only. _BHR ?I[w  
    !$ItBn/_  
    WARNING: Solves should be removed prior to tolerancing. ? BtWM4Id8  
    J$JXY@mBSC  
    Mnemonics: M@ t,P?  
    TFRN: Tolerance on curvature in fringes. o&g-0!"  
    TTHI: Tolerance on thickness. wDJbax?  
    TSDX: Tolerance on surface decentering in x. KV v0bE  
    TSDY: Tolerance on surface decentering in y. *.nC'$-2r  
    TSTX: Tolerance on surface tilt in x (degrees). )`<- c2  
    TSTY: Tolerance on surface tilt in y (degrees). {y-7xg~}  
    TIRR: Tolerance on irregularity (fringes). 1#9qP~#]'{  
    TIND: Tolerance on Nd index of refraction. yU`"]6(@[  
    TEDX: Tolerance on element decentering in x. *8y kE  
    TEDY: Tolerance on element decentering in y. NZ`Mq  
    TETX: Tolerance on element tilt in x (degrees). gB BS}HF  
    TETY: Tolerance on element tilt in y (degrees). cK6M8:KW  
    iU]py  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. yyCx;  
    9U$n;uA  
    WARNING: Boundary constraints on compensators will be ignored. QbA+\  
    9,g &EnvG  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm DY<Br;  
    Mode                : Sensitivities B]jN~CO?  
    Sampling            : 2 M`^;h:DN^  
    Nominal Criterion   : 0.54403234 H~y 7o_tg  
    Test Wavelength     : 0.6328 OJ0Dw*K<  
    zfAHE {c  
    ,-,BtfE3  
    Fields: XY Symmetric Angle in degrees *tkbC2D  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY f~nAJ+m=  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 sY,q*}SLD  
    AWSe!\b  
    Sensitivity Analysis: woIcW  
    Pt<lHfd  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| 9nIBs{`/Ac  
    Type                      Value      Criterion        Change          Value      Criterion        Change mqPV Eo  
    Fringe tolerance on surface 1 an!ceB  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 :{2exu  
    Change in Focus                :      -0.000000                            0.000000 'fB/6[bd  
    Fringe tolerance on surface 2 TXx%\V_6  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 m<]b]FQ  
    Change in Focus                :       0.000000                            0.000000 2Hltgt,  
    Fringe tolerance on surface 3 ^3`CP4DT  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 :$eg{IXC"  
    Change in Focus                :      -0.000000                            0.000000 QI\&D)  
    Thickness tolerance on surface 1 DxX333vC  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 1%W|>M`  
    Change in Focus                :       0.000000                            0.000000 oB$7m4xO\  
    Thickness tolerance on surface 2 K5(:UIWx  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 0>PO4WFVJ  
    Change in Focus                :       0.000000                           -0.000000 (W.euQy  
    Decenter X tolerance on surfaces 1 through 3 E*rnk4Y  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 \VJ7ahg[\  
    Change in Focus                :       0.000000                            0.000000 7|=*z  
    Decenter Y tolerance on surfaces 1 through 3 Sw!/ I PO  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 _ElA\L4g%  
    Change in Focus                :       0.000000                            0.000000 "n'LF?/H'  
    Tilt X tolerance on surfaces 1 through 3 (degrees) jTjGbC]X  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 b.Wf*I?  
    Change in Focus                :       0.000000                            0.000000 .^]=h#[e  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) 9H ~{2Un  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 P=ARttT`(  
    Change in Focus                :       0.000000                            0.000000 bvM\Qzc!<3  
    Decenter X tolerance on surface 1 @r.u8e)l  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 P(N$U^pj  
    Change in Focus                :       0.000000                            0.000000 ?<@yo&)  
    Decenter Y tolerance on surface 1 ?V|t7^+:  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 j\t"4=,n  
    Change in Focus                :       0.000000                            0.000000 S].=gR0:  
    Tilt X tolerance on surface (degrees) 1 G[U'-a}I  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 i,G )kt'H  
    Change in Focus                :       0.000000                            0.000000 e%#8]$  
    Tilt Y tolerance on surface (degrees) 1 nx<q]J uv\  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 T?=[6  
    Change in Focus                :       0.000000                            0.000000 CfFNk "0{  
    Decenter X tolerance on surface 2 |Tz/9t  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 u#tLY/KA  
    Change in Focus                :       0.000000                            0.000000 ?cQ  
    Decenter Y tolerance on surface 2 4qw&G  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 ,$ICv+7]  
    Change in Focus                :       0.000000                            0.000000 5x/q\p-{/  
    Tilt X tolerance on surface (degrees) 2 @C),-TM  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 _J}vPm  
    Change in Focus                :       0.000000                            0.000000 VU>s{_|{  
    Tilt Y tolerance on surface (degrees) 2 8e_ITqV%  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 a8fLj  
    Change in Focus                :       0.000000                            0.000000 7 R1;'/;  
    Decenter X tolerance on surface 3 , O=@I  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 aOYRenqu  
    Change in Focus                :       0.000000                            0.000000 M5OH-'  
    Decenter Y tolerance on surface 3 m .2)P~a  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 w}Q|*!?_  
    Change in Focus                :       0.000000                            0.000000 n*\AB=|X  
    Tilt X tolerance on surface (degrees) 3 yQQ[_1$pq  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 |q$br-0+  
    Change in Focus                :       0.000000                            0.000000 ye U4,K o  
    Tilt Y tolerance on surface (degrees) 3 Q}!U4!{i|p  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 >c~~i-=  
    Change in Focus                :       0.000000                            0.000000 @vf{_g<  
    Irregularity of surface 1 in fringes Gq5)>'D?  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 eW*nRha  
    Change in Focus                :       0.000000                            0.000000 JnX@eBNV  
    Irregularity of surface 2 in fringes MS Ui_|7  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 !:3NPjhf1Y  
    Change in Focus                :       0.000000                            0.000000 e=nExY  
    Irregularity of surface 3 in fringes 7M: 0%n$  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 'Mjbvh4  
    Change in Focus                :       0.000000                            0.000000 k07JMS?  
    Index tolerance on surface 1 AR\1w'  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 ?Mp)F2'  
    Change in Focus                :       0.000000                            0.000000 d>F=|dakL  
    Index tolerance on surface 2 WU1 I>i  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 dL"$YU9 z  
    Change in Focus                :       0.000000                           -0.000000 (E)/' sEb  
    c4CBpi?}  
    Worst offenders: ih1s`CjG  
    Type                      Value      Criterion        Change >*A\/Da]j  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 r8C6bFYM  
    TSTY   2             0.20000000     0.35349910    -0.19053324 DSix(bs9  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 6YT*=\KT  
    TSTX   2             0.20000000     0.35349910    -0.19053324 %V;k/w~[  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 Qwx}e\=  
    TSTY   1             0.20000000     0.42678383    -0.11724851 lfR"22t  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 ;B`e;B?1Q  
    TSTX   1             0.20000000     0.42678383    -0.11724851 }}~ ^!  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 wP/rR D6  
    TSTY   3             0.20000000     0.42861670    -0.11541563  U^ BB|  
    ~I/7{B|yX  
    Estimated Performance Changes based upon Root-Sum-Square method: ;3'}(_n  
    Nominal MTF                 :     0.54403234 Pw /wAUt  
    Estimated change            :    -0.36299231 [AR$Sw60  
    Estimated MTF               :     0.18104003 ;,*U,eV  
    *cTN5 S>  
    Compensator Statistics: > ^3xBI:Q  
    Change in back focus: L~ V 63K  
    Minimum            :        -0.000000 s4SR6hBO  
    Maximum            :         0.000000 zEY Ey1  
    Mean               :        -0.000000 D4[5}NYU  
    Standard Deviation :         0.000000 5n.4>yOY  
    )+w0NhJw  
    Monte Carlo Analysis: /H^bDUC :r  
    Number of trials: 20 =KT7ZSTV  
    I?-9%4 8iM  
    Initial Statistics: Normal Distribution wlKpHd*  
    w _eu@R:u@  
      Trial       Criterion        Change #f/-iu=L  
          1     0.42804416    -0.11598818  wb4 4  
    Change in Focus                :      -0.400171 _F^|n}Qbj  
          2     0.54384387    -0.00018847 Q+G=f  
    Change in Focus                :       1.018470 KUH&_yCRB  
          3     0.44510003    -0.09893230 $Ry NM2YI  
    Change in Focus                :      -0.601922 !l6B_[!@  
          4     0.18154684    -0.36248550 O0b8wpF f  
    Change in Focus                :       0.920681 K r]!BI?z  
          5     0.28665820    -0.25737414 & PHHacp  
    Change in Focus                :       1.253875 TaM,9MAu  
          6     0.21263372    -0.33139862 \"Sqr(~_  
    Change in Focus                :      -0.903878 vR1%&(f{  
          7     0.40051424    -0.14351809 RWTv,pLK  
    Change in Focus                :      -1.354815 "hog A5=  
          8     0.48754161    -0.05649072 ZWf{!L,@Z  
    Change in Focus                :       0.215922 .:RoD?px  
          9     0.40357468    -0.14045766 "@` mPe/  
    Change in Focus                :       0.281783 # FaR?L![Y  
         10     0.26315315    -0.28087919 j- F=5)A  
    Change in Focus                :      -1.048393 3CQpe  
         11     0.26120585    -0.28282649 mq'q@@:c  
    Change in Focus                :       1.017611 +$},Hu69j  
         12     0.24033815    -0.30369419 oL }FD !}  
    Change in Focus                :      -0.109292 WlZ[9,:p1  
         13     0.37164046    -0.17239188 '{( n1es  
    Change in Focus                :      -0.692430 , {z$M  
         14     0.48597489    -0.05805744 7\{<AM?*  
    Change in Focus                :      -0.662040 NV9=~c x  
         15     0.21462327    -0.32940907 SCxzT}#J  
    Change in Focus                :       1.611296 E? F @  
         16     0.43378226    -0.11025008 @gX@mT"  
    Change in Focus                :      -0.640081 RSmxwx^  
         17     0.39321881    -0.15081353 ,5r 2!d  
    Change in Focus                :       0.914906  mH?^3T  
         18     0.20692530    -0.33710703 o'Tqqrr  
    Change in Focus                :       0.801607 nsgNIE{>gO  
         19     0.51374068    -0.03029165 , st4K;-  
    Change in Focus                :       0.947293 zP=J5qOZ8  
         20     0.38013374    -0.16389860 T/ S-}|fhQ  
    Change in Focus                :       0.667010 :^iR&`2~  
    O gHWmb  
    Number of traceable Monte Carlo files generated: 20 yMz@-B  
    ~q|^z[7  
    Nominal     0.54403234 ol`]6"Sc  
    Best        0.54384387    Trial     2 cW&OVNj  
    Worst       0.18154684    Trial     4 5&94VQ$d  
    Mean        0.35770970 ZTS*E,U%  
    Std Dev     0.11156454 l^0 <a<P  
    E) z g,7Y  
    =~aJ]T}(  
    Compensator Statistics: &]z2=\^e  
    Change in back focus: OZt'ovY  
    Minimum            :        -1.354815 2N)vEUyDV  
    Maximum            :         1.611296 R!$j_H  
    Mean               :         0.161872 pbm4C0W}  
    Standard Deviation :         0.869664 T,?^J-h^  
    c yN_Sg  
    90% >       0.20977951               o~GhV4vq  
    80% >       0.22748071               5gJQr%pS  
    50% >       0.38667627               23+GX&Rp  
    20% >       0.46553746               'm/b+9?.  
    10% >       0.50064115                = )(;  
    >Xb]n_`  
    End of Run. _bMs~%?~/  
    >/'WU79TYE  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 4L5Wa~5\  
    [|F.*06SK  
    2,_BO6 !d  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题  ;\iQZ~   
    ied<1[~S  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 m*a0V  
    80% >       0.22748071                 0c`wJktWK  
    50% >       0.38667627                 ~i(*.Z) \  
    20% >       0.46553746                 d ch(HB}[  
    10% >       0.50064115 _ :][{W#  
    P|64wq{B8  
    最后这个数值是MTF值呢,还是MTF的公差? Mv ;7kC7]  
    pWQ?pTh  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   5B@&]-'~  
    2 K` hH  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : z${DW@o3  
    90% >       0.20977951                 |"\A5v|1  
    80% >       0.22748071                 "y#$| TMB  
    50% >       0.38667627                 $FS j^v]  
    20% >       0.46553746                 I+ydVj(Op  
    10% >       0.50064115 `Y8 F}%i[  
    ....... *<]ulR2  
    FzW7MW>\x  
    $M#G;W5c  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   9x23## s  
    Mode                : Sensitivities i=nd][1n  
    Sampling            : 2 _-$(=`8|<{  
    Nominal Criterion   : 0.54403234 <D%.'=%pZ  
    Test Wavelength     : 0.6328 =g UOHH  
    0EKi?vP@y7  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? x+EkL3{  
    e#!%:M;4P  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试