切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16313阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 Xe<kdB3  
    -o`|A767  
    O*hQP*Rs  
    &^])iG,Ew  
    然后添加了默认公差分析,基本没变 w:@W/e*9N  
    4XArpKA  
    F!ra$5u  
    (^LR9 CW  
    然后运行分析的结果如下: ci{WyIh  
    Ct9*T`Gl  
    Analysis of Tolerances ^1z)\p1  
    &,iPI2`O A  
    File : E:\光学设计资料\zemax练习\f500.ZMX D P+W* 87J  
    Title:  uE3xzF  
    Date : TUE JUN 21 2011 qJEtB;J'  
    8jU6N*p/  
    Units are Millimeters. ZTK)N  
    All changes are computed using linear differences. r[RO"Ej"  
    ^uWj#  
    Paraxial Focus compensation only. #i[V {J8.p  
    ,HfdiGs}j  
    WARNING: Solves should be removed prior to tolerancing. %1%@L7wP>  
    M0"}>`1lJ  
    Mnemonics: Xm[Cgt_?  
    TFRN: Tolerance on curvature in fringes. q%8Ck)xz  
    TTHI: Tolerance on thickness. # l-/!j  
    TSDX: Tolerance on surface decentering in x. 17B`  
    TSDY: Tolerance on surface decentering in y. 'V(9ein^Q  
    TSTX: Tolerance on surface tilt in x (degrees). >Mk#19j[/  
    TSTY: Tolerance on surface tilt in y (degrees).  -bQi4  
    TIRR: Tolerance on irregularity (fringes). Y EhPAQNj  
    TIND: Tolerance on Nd index of refraction. 5:X^Q.f;  
    TEDX: Tolerance on element decentering in x. n_46;lD  
    TEDY: Tolerance on element decentering in y. c"^g*i2&0  
    TETX: Tolerance on element tilt in x (degrees). khfWU  
    TETY: Tolerance on element tilt in y (degrees). "!_,N@\t  
    5D`!Tu3  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. yo"!C?82=  
    o.KE=zp&z  
    WARNING: Boundary constraints on compensators will be ignored. |NXe{q7{  
    :A]CD (  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm |bv7N@?e  
    Mode                : Sensitivities .Sjg  
    Sampling            : 2 %pr}Xs(-f  
    Nominal Criterion   : 0.54403234 CGJ>j}C  
    Test Wavelength     : 0.6328 L$ ZZ]?7j  
    2U`g[1  
    P/doNv}iG  
    Fields: XY Symmetric Angle in degrees t Ai?Bjo  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY BZAF;j  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 X16r$~Pb  
    }R2afTn[;  
    Sensitivity Analysis: udGZ%Mr_  
    Ue2k^a*Ww  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| <l"rnM%  
    Type                      Value      Criterion        Change          Value      Criterion        Change TWT h!  
    Fringe tolerance on surface 1 ]m"6a-,`  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 ,3FG' q2  
    Change in Focus                :      -0.000000                            0.000000 %Y<3v \`_  
    Fringe tolerance on surface 2 geEETb} +y  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 95hdQ<W  
    Change in Focus                :       0.000000                            0.000000 jK-usn  
    Fringe tolerance on surface 3 PBp+(o-  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 QKtVwsz +  
    Change in Focus                :      -0.000000                            0.000000 \4roM1&[  
    Thickness tolerance on surface 1 e[*%tx H  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 Xrd-/('2  
    Change in Focus                :       0.000000                            0.000000 X(fT[A_2C  
    Thickness tolerance on surface 2 J#*R]LU|  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 :`20i*  
    Change in Focus                :       0.000000                           -0.000000 Ur2) ];WZ  
    Decenter X tolerance on surfaces 1 through 3 ,NoWAmv  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 D|E,9|=v  
    Change in Focus                :       0.000000                            0.000000 YTYCv7  
    Decenter Y tolerance on surfaces 1 through 3  o C#W  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 uEcK0>xp  
    Change in Focus                :       0.000000                            0.000000 *d$r`.9j  
    Tilt X tolerance on surfaces 1 through 3 (degrees) EawtT  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 $SPA'63AC  
    Change in Focus                :       0.000000                            0.000000 _/)HAw?k  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) G=qT{c 8Q  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 $>!tpJw  
    Change in Focus                :       0.000000                            0.000000 <CY<-H  
    Decenter X tolerance on surface 1 p-,(P+Np  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 ]sG^a7Z.X  
    Change in Focus                :       0.000000                            0.000000 T$Rj/u t1  
    Decenter Y tolerance on surface 1 R?H[{A X  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 +n&9ZC H  
    Change in Focus                :       0.000000                            0.000000 FG6mh,C!  
    Tilt X tolerance on surface (degrees) 1 k9 NPC"  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 >*S ;z+!&  
    Change in Focus                :       0.000000                            0.000000 >\5IB5'j  
    Tilt Y tolerance on surface (degrees) 1 h^ =9R6im  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 &VfMv'%x  
    Change in Focus                :       0.000000                            0.000000 e{7"7wn=  
    Decenter X tolerance on surface 2 R1NwtnS  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 TwLQ;Q  
    Change in Focus                :       0.000000                            0.000000 fVx_]5jM  
    Decenter Y tolerance on surface 2 g.d~`R@v  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 ?N(opggiD  
    Change in Focus                :       0.000000                            0.000000 W+D{4:  
    Tilt X tolerance on surface (degrees) 2 ?_+8K`B  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 '(!U5j  
    Change in Focus                :       0.000000                            0.000000 C!s !j  
    Tilt Y tolerance on surface (degrees) 2 N4[^!}4  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 LGPPyK Nx  
    Change in Focus                :       0.000000                            0.000000 y?.l9  
    Decenter X tolerance on surface 3 T@x_}a:g  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 NG?-dkD  
    Change in Focus                :       0.000000                            0.000000 J!@`tR-  
    Decenter Y tolerance on surface 3 ,ou&WI yC  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 "E}38  
    Change in Focus                :       0.000000                            0.000000 wTkcR^  
    Tilt X tolerance on surface (degrees) 3 !J-oGs\ u  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 gtlyQ _V  
    Change in Focus                :       0.000000                            0.000000 GBo'=  
    Tilt Y tolerance on surface (degrees) 3 R"V^%z;8o  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 w~l%xiC  
    Change in Focus                :       0.000000                            0.000000 ]iE) 8X  
    Irregularity of surface 1 in fringes p~NFiZ,  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 Lc5I?}:;L  
    Change in Focus                :       0.000000                            0.000000 w!~85""  
    Irregularity of surface 2 in fringes (7J (.EG2e  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 >[a&,gS  
    Change in Focus                :       0.000000                            0.000000 68, (+vkB  
    Irregularity of surface 3 in fringes !@wG22iC4d  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 KG9FR*"  
    Change in Focus                :       0.000000                            0.000000 L+J)  
    Index tolerance on surface 1 K6M_b?XekA  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 vD'YLn%Q  
    Change in Focus                :       0.000000                            0.000000 n06Jg+  
    Index tolerance on surface 2 kb2M3%6 V  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 3?:?dy(3z  
    Change in Focus                :       0.000000                           -0.000000 ]?A-D,!(  
    3}25=%;[  
    Worst offenders: >P[BwL]  
    Type                      Value      Criterion        Change x !QA* M  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 `(Ij@8 4  
    TSTY   2             0.20000000     0.35349910    -0.19053324 8PtX@s43\  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 0V5{:mzA  
    TSTX   2             0.20000000     0.35349910    -0.19053324 z)0%gd|  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 `;H3['~$  
    TSTY   1             0.20000000     0.42678383    -0.11724851 cNvh2JI  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 IM$I=5y e  
    TSTX   1             0.20000000     0.42678383    -0.11724851 `6QQS3fk!  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 "pW@[2Dkx/  
    TSTY   3             0.20000000     0.42861670    -0.11541563 /o]j  
    m. DC  
    Estimated Performance Changes based upon Root-Sum-Square method: L$4nbOu\~  
    Nominal MTF                 :     0.54403234 qbu5aK}+  
    Estimated change            :    -0.36299231 #,PB(  
    Estimated MTF               :     0.18104003 Ye"#tCOEG  
    Zg~6  
    Compensator Statistics: "'\f?A9  
    Change in back focus: 0f3C; u-q-  
    Minimum            :        -0.000000 A.@Af+  
    Maximum            :         0.000000 QLum=YB  
    Mean               :        -0.000000 (D <o=Q  
    Standard Deviation :         0.000000 7UA|G2Zr  
    gt{$G|bi  
    Monte Carlo Analysis: #7yy7Y5  
    Number of trials: 20 hD! 9[Gb  
    4,P!D3SH  
    Initial Statistics: Normal Distribution \B1<fF2  
    8bP4  
      Trial       Criterion        Change Y~+`F5xX<  
          1     0.42804416    -0.11598818 M +Jcg b]  
    Change in Focus                :      -0.400171 bJ6@ B<  
          2     0.54384387    -0.00018847 D>).^>|q  
    Change in Focus                :       1.018470 tpP2dg9dF  
          3     0.44510003    -0.09893230 #RWHk  
    Change in Focus                :      -0.601922 _rjLCvv-  
          4     0.18154684    -0.36248550 'p:L"L}Q?  
    Change in Focus                :       0.920681 Z4aK   
          5     0.28665820    -0.25737414 wc7F45l4  
    Change in Focus                :       1.253875 Yvbk[Rb  
          6     0.21263372    -0.33139862 ]53'\TH  
    Change in Focus                :      -0.903878 5*31nMP\  
          7     0.40051424    -0.14351809 /'g"Ys?3  
    Change in Focus                :      -1.354815 KXTx{R  
          8     0.48754161    -0.05649072 i1JWdHt  
    Change in Focus                :       0.215922 )}i;OLw-  
          9     0.40357468    -0.14045766 P<GHX~nB  
    Change in Focus                :       0.281783 gdVajOAu  
         10     0.26315315    -0.28087919  }j /r  
    Change in Focus                :      -1.048393 X=d;WT4,,  
         11     0.26120585    -0.28282649 JD1D(  
    Change in Focus                :       1.017611 Gaxa~?ek  
         12     0.24033815    -0.30369419 *Ul L\  
    Change in Focus                :      -0.109292 ":upo/xN  
         13     0.37164046    -0.17239188 </B5^}  
    Change in Focus                :      -0.692430 ;UB$Uqs6  
         14     0.48597489    -0.05805744 ?=X_a{}/  
    Change in Focus                :      -0.662040 Vn1hr;i]  
         15     0.21462327    -0.32940907 v'zj<|2  
    Change in Focus                :       1.611296 1=X"|`<!  
         16     0.43378226    -0.11025008 2r~&+0sBP  
    Change in Focus                :      -0.640081 SXI3y  
         17     0.39321881    -0.15081353 L_4Zx sIv  
    Change in Focus                :       0.914906 5{uK;Vxse  
         18     0.20692530    -0.33710703 l-mf~{   
    Change in Focus                :       0.801607 FTfejk!  
         19     0.51374068    -0.03029165 6bW:&IPQ;  
    Change in Focus                :       0.947293 \d)~.2$G*  
         20     0.38013374    -0.16389860 V*U*_Y  
    Change in Focus                :       0.667010 J}vxK H#=  
    kW=GFj)L  
    Number of traceable Monte Carlo files generated: 20 t%f6P  
    _^)<d$R<  
    Nominal     0.54403234 ]{<`W5 b/  
    Best        0.54384387    Trial     2 30Z RKrW"~  
    Worst       0.18154684    Trial     4 &@MiR8  
    Mean        0.35770970 3h|:ew[  
    Std Dev     0.11156454 @]0;aZ{3  
    '!6Py1i  
    \dz@hJl:  
    Compensator Statistics: HX3R@^vo  
    Change in back focus: u< ,c  
    Minimum            :        -1.354815 oIP<7gz  
    Maximum            :         1.611296 = NHzh!  
    Mean               :         0.161872 uKcwVEu  
    Standard Deviation :         0.869664 oT\u^WU  
    02~+$R]L  
    90% >       0.20977951               :uD*Q/  
    80% >       0.22748071               iJrF$Xw  
    50% >       0.38667627               ?5<Q+ G0r  
    20% >       0.46553746               $`emP Hel  
    10% >       0.50064115                rK\)  
    j5EZJ`  
    End of Run. ]OZk+DU:  
    H -sJt:  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 E.kjYIH8  
    =nYd|Ok  
    -H3tBEvoI  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 exqFwmhh  
    R`F54?th  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 SO #NWa<0|  
    80% >       0.22748071                 FC:Z9{2!  
    50% >       0.38667627                  :1q)l  
    20% >       0.46553746                 gAA2S5th  
    10% >       0.50064115 v2e*mNK5  
    qn VxP&  
    最后这个数值是MTF值呢,还是MTF的公差? %T hY6y(  
    L> ehL(]!  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   U[EM<5@I  
    Ak`7f$z  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : |;~kHc$W  
    90% >       0.20977951                 IUB#Vdx  
    80% >       0.22748071                 m2%OX"#e  
    50% >       0.38667627                 e70#"~gt[  
    20% >       0.46553746                 ~ IPel  
    10% >       0.50064115 C[E[|s*l  
    ....... !V<c:6"  
    RKIBFP8.  
    ORVFp]gG  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   Alo;kt@x  
    Mode                : Sensitivities b-)m'B}`  
    Sampling            : 2 ElFiR ;   
    Nominal Criterion   : 0.54403234 tu4-##{  
    Test Wavelength     : 0.6328 Fe r&X  
    5 )A(q\  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? 0A,u!"4[  
    W"{:|'/v  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试