切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16425阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 !&"<oPjr+  
    l \sU  
    &SrO)  
    #H0dZ.$b0  
    然后添加了默认公差分析,基本没变 N"3b{Qi o  
    >Bgw}PI  
    A$w4PVS  
    A7n\h-b  
    然后运行分析的结果如下: |M+<m">E  
    )LyojwY_g  
    Analysis of Tolerances APO>y  
    lhkwWbB  
    File : E:\光学设计资料\zemax练习\f500.ZMX Iyyh!MVF  
    Title: 3:C oZ  
    Date : TUE JUN 21 2011 p1|f<SF')  
    ,L`$09\  
    Units are Millimeters. V#`fs|e;y  
    All changes are computed using linear differences. _-#'j2  
    Q^#;WASi  
    Paraxial Focus compensation only. 8:/e GM  
    ph-ATJ"  
    WARNING: Solves should be removed prior to tolerancing. Et/&^&=\-  
    D &/L:  
    Mnemonics: di>cMS 4 c  
    TFRN: Tolerance on curvature in fringes. Ck!VV2U#  
    TTHI: Tolerance on thickness. 8A+SjJ4$  
    TSDX: Tolerance on surface decentering in x. T16{_  
    TSDY: Tolerance on surface decentering in y. 4Z/Q=Mq2  
    TSTX: Tolerance on surface tilt in x (degrees). `YI f_a{  
    TSTY: Tolerance on surface tilt in y (degrees). ruazOmnn~  
    TIRR: Tolerance on irregularity (fringes). EMfdBY5  
    TIND: Tolerance on Nd index of refraction. Yx>"bv  
    TEDX: Tolerance on element decentering in x. x*Y@Q?`>5W  
    TEDY: Tolerance on element decentering in y. uECsh2Uin  
    TETX: Tolerance on element tilt in x (degrees). "1HRLci  
    TETY: Tolerance on element tilt in y (degrees). 1Q. \s_2  
    E,f>1meN=  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. a! u rew#  
    %C=]1Q=T)  
    WARNING: Boundary constraints on compensators will be ignored. pe{; ~-|6  
    NwZ@#D#[ Y  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm &Ky_v^  
    Mode                : Sensitivities ~mR'Q-hi<  
    Sampling            : 2 LK@lpkX  
    Nominal Criterion   : 0.54403234 %Pqf{*d8  
    Test Wavelength     : 0.6328 4M^G`WA}t9  
    HVC >9_:]  
    (1NA  
    Fields: XY Symmetric Angle in degrees 44F`$.v96  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY \R3H+W  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 mb!9&&2 -t  
    r{rQu-|.  
    Sensitivity Analysis: ^*fxR]Y  
    V.{H9n]IO  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| rrCNo^W1  
    Type                      Value      Criterion        Change          Value      Criterion        Change 37RLE1Yf  
    Fringe tolerance on surface 1 ($~RoQ=0S  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 H8'Z#"h  
    Change in Focus                :      -0.000000                            0.000000 @-&s: Qli  
    Fringe tolerance on surface 2 {je-I9%OK  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 g{P%s'%*  
    Change in Focus                :       0.000000                            0.000000 _Y[jyD1>  
    Fringe tolerance on surface 3 +r<0zh,n.  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 V}zEK0n(6  
    Change in Focus                :      -0.000000                            0.000000 D2,z)O%VK  
    Thickness tolerance on surface 1 I'@Ydt2  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 V,[d66H=N  
    Change in Focus                :       0.000000                            0.000000 P(K>=O  
    Thickness tolerance on surface 2 e~"fn*"  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 d`(@_czdF  
    Change in Focus                :       0.000000                           -0.000000 2^^=iU=!<|  
    Decenter X tolerance on surfaces 1 through 3 A2n qf^b{#  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 %:2+ o'  
    Change in Focus                :       0.000000                            0.000000 UA yC.$!  
    Decenter Y tolerance on surfaces 1 through 3 >(snII  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 &RTX6%'KY  
    Change in Focus                :       0.000000                            0.000000 =k oSUVO0  
    Tilt X tolerance on surfaces 1 through 3 (degrees) DK oN}c  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 ;IpT} ,  
    Change in Focus                :       0.000000                            0.000000 gy;+_'.j   
    Tilt Y tolerance on surfaces 1 through 3 (degrees) 3ux0 Jr2yT  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 c?%(Dp E  
    Change in Focus                :       0.000000                            0.000000 Dxk+P!!K  
    Decenter X tolerance on surface 1 !XzF67  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 Z?O *'#yn  
    Change in Focus                :       0.000000                            0.000000 6AWKLFMV  
    Decenter Y tolerance on surface 1 j6g[N4xr  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 q@jq0D)g  
    Change in Focus                :       0.000000                            0.000000 i>joT><B  
    Tilt X tolerance on surface (degrees) 1 XduV+$ 03  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 [S@}T zE  
    Change in Focus                :       0.000000                            0.000000 }E7:ihy  
    Tilt Y tolerance on surface (degrees) 1 a:_I  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 ts8+V<g  
    Change in Focus                :       0.000000                            0.000000 TET`b7G  
    Decenter X tolerance on surface 2 "C*B,D*}:  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 ~%2pp~1 K  
    Change in Focus                :       0.000000                            0.000000 e*.b3 z  
    Decenter Y tolerance on surface 2 _H^^y$+1  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 Rtjqx6-B;  
    Change in Focus                :       0.000000                            0.000000 gp-T"l  
    Tilt X tolerance on surface (degrees) 2 RO3oP1@B  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 d|iy#hy"_  
    Change in Focus                :       0.000000                            0.000000  PTS]7  
    Tilt Y tolerance on surface (degrees) 2 /NFz4h =>  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 @+WQ ^  
    Change in Focus                :       0.000000                            0.000000 w\19[U3  
    Decenter X tolerance on surface 3 Y+3!f#exm  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 @EoZI~  
    Change in Focus                :       0.000000                            0.000000 E~kG2x{a  
    Decenter Y tolerance on surface 3 8#&q$kE  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 3.)b4T  
    Change in Focus                :       0.000000                            0.000000 WW@d:R  
    Tilt X tolerance on surface (degrees) 3 l)-Mq@V  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 ]0r|_)s  
    Change in Focus                :       0.000000                            0.000000 YQ0)5}  
    Tilt Y tolerance on surface (degrees) 3 &,.Y9; b  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 S{K0.<,E  
    Change in Focus                :       0.000000                            0.000000 \`w4|T  
    Irregularity of surface 1 in fringes ')N{wSM9Ft  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 wP/A^Rs  
    Change in Focus                :       0.000000                            0.000000 99EXo+g  
    Irregularity of surface 2 in fringes jp+_@S>  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 K]xa/G(  
    Change in Focus                :       0.000000                            0.000000 vs j3  
    Irregularity of surface 3 in fringes ,]5Ic.};p  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 zT ZVehEe  
    Change in Focus                :       0.000000                            0.000000 >5 b/or  
    Index tolerance on surface 1 {>bW>RO)  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 =\{\g7  
    Change in Focus                :       0.000000                            0.000000 b5:op@V  
    Index tolerance on surface 2 DKm Z  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 $M:3XAN  
    Change in Focus                :       0.000000                           -0.000000 6q>+!kXh  
    y3<Y?M4  
    Worst offenders: HWm#t./  
    Type                      Value      Criterion        Change {5|("0[F  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 b|5w]<?'  
    TSTY   2             0.20000000     0.35349910    -0.19053324 U,Mx@KdV  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 rbZ[!LA  
    TSTX   2             0.20000000     0.35349910    -0.19053324 aV1lJ ;0  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 p#KW$OQ]8  
    TSTY   1             0.20000000     0.42678383    -0.11724851 H7[6yh  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 Q7bq  
    TSTX   1             0.20000000     0.42678383    -0.11724851 Q# ?wXX47  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 aJqeD'\>  
    TSTY   3             0.20000000     0.42861670    -0.11541563 A*tKF&U5  
    #?B%Ja% ;W  
    Estimated Performance Changes based upon Root-Sum-Square method: =IKEb#R/  
    Nominal MTF                 :     0.54403234 B ZMu[M  
    Estimated change            :    -0.36299231 (.3'=n|kE  
    Estimated MTF               :     0.18104003 gf)t)-E  
    M|i o4+sy  
    Compensator Statistics: MP>n)!R[`  
    Change in back focus: V|MY!uV  
    Minimum            :        -0.000000 tD$lNh^  
    Maximum            :         0.000000 Fd\ e*ww'  
    Mean               :        -0.000000 MK}-<&v  
    Standard Deviation :         0.000000 kVS?RHR  
    (5$ZvXx?}  
    Monte Carlo Analysis:  8%RI7Mg  
    Number of trials: 20 N{d@^Yj  
    j*;N\;iL!*  
    Initial Statistics: Normal Distribution W0cgI9=9  
    VK3it3FI>3  
      Trial       Criterion        Change kJ)gP2E  
          1     0.42804416    -0.11598818 DW(~Qdk  
    Change in Focus                :      -0.400171 'YSuQP>  
          2     0.54384387    -0.00018847 xeTgV&$@  
    Change in Focus                :       1.018470 #Tp]^ n  
          3     0.44510003    -0.09893230 xU9@$am  
    Change in Focus                :      -0.601922 'q%%m/,VPQ  
          4     0.18154684    -0.36248550 Cef:tdk7  
    Change in Focus                :       0.920681 ;Pb8YvG1$  
          5     0.28665820    -0.25737414 99iUOw c  
    Change in Focus                :       1.253875 qS8B##x+=  
          6     0.21263372    -0.33139862 ~y0R'oi  
    Change in Focus                :      -0.903878 o`r(`6@  
          7     0.40051424    -0.14351809 +'03>!V  
    Change in Focus                :      -1.354815 $GF]/;\m  
          8     0.48754161    -0.05649072 ?n'O Fpd  
    Change in Focus                :       0.215922 q9}m!*8e  
          9     0.40357468    -0.14045766 CP` XUpX`&  
    Change in Focus                :       0.281783 $->d!  
         10     0.26315315    -0.28087919 NyPd5m:  
    Change in Focus                :      -1.048393 nwM)K  
         11     0.26120585    -0.28282649 M1u{A^d.Z  
    Change in Focus                :       1.017611 E(L<L1:"  
         12     0.24033815    -0.30369419 et$uP  
    Change in Focus                :      -0.109292 mrZ`Lm#>pS  
         13     0.37164046    -0.17239188 &$ p[  
    Change in Focus                :      -0.692430 IjZ@U%g@;  
         14     0.48597489    -0.05805744 z \?UGxu}  
    Change in Focus                :      -0.662040 E20 :uZ7\  
         15     0.21462327    -0.32940907 !0fI"3P@r  
    Change in Focus                :       1.611296 KAb(NZK  
         16     0.43378226    -0.11025008 ^b53}f8H  
    Change in Focus                :      -0.640081 LD55n%|0`H  
         17     0.39321881    -0.15081353 F!8=FTb  
    Change in Focus                :       0.914906 :):zNn_>`  
         18     0.20692530    -0.33710703 Q_}/ Pn$1  
    Change in Focus                :       0.801607 fA8ozL T  
         19     0.51374068    -0.03029165 d bO#  
    Change in Focus                :       0.947293 yr4ou  
         20     0.38013374    -0.16389860  ^Omfe  
    Change in Focus                :       0.667010 H=. K  
    LV.&>@*  
    Number of traceable Monte Carlo files generated: 20 ~b8a^6:R"  
    5N1 K~".  
    Nominal     0.54403234 ndOfbu;mf  
    Best        0.54384387    Trial     2 koH4~m{  
    Worst       0.18154684    Trial     4 v["3  
    Mean        0.35770970 u@D .i4U  
    Std Dev     0.11156454 ~Fx&)kegTo  
    6GKT yN  
    jzrt7p*k}  
    Compensator Statistics: W/v|8-gcK  
    Change in back focus: oBw}hH,hp  
    Minimum            :        -1.354815 r'd/qnd  
    Maximum            :         1.611296 aJ2H.E  
    Mean               :         0.161872 Vj!WaN_  
    Standard Deviation :         0.869664 c)3O/`  
    %c1FwAC  
    90% >       0.20977951               !0dX@V'r  
    80% >       0.22748071               k!13=Gh  
    50% >       0.38667627               3'@&c?F ye  
    20% >       0.46553746               $,P\)</ VR  
    10% >       0.50064115                2nx9#B*/T  
    46dc.Yi  
    End of Run. l;5`0N?QO  
    |#cAsf_{  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 AM?Ec1S #a  
    b"P&+c  
    #HDesen  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 R HXvee55  
    ~R{8.!: >  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 Q~h6J*  
    80% >       0.22748071                 8k%H[Smn:  
    50% >       0.38667627                 "& Ff[ O*  
    20% >       0.46553746                 Lv^a+'  
    10% >       0.50064115 9Yd-m  
    R;.d/U|av  
    最后这个数值是MTF值呢,还是MTF的公差? 6_Fpca3L  
    +&?'KZ+Z_v  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   Kj=;>u  
    ^xmZ|f-  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : 20$F$YYuk  
    90% >       0.20977951                 -08&&H  
    80% >       0.22748071                 /#:Rd^  
    50% >       0.38667627                 9Q,Msl4n  
    20% >       0.46553746                 [`y:M&@  
    10% >       0.50064115  i<B:  
    ....... i7i|370  
    Uc_'3|e  
    \Oi5=,  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   =-OCM*5~S  
    Mode                : Sensitivities 0C lX  
    Sampling            : 2 ${jA+L<J  
    Nominal Criterion   : 0.54403234 @ChN_gd3!  
    Test Wavelength     : 0.6328 ^Nd|+}  
    7xLo 4  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? JxX jDYrU  
    sf.E|]isW  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试