我现在在初学zemax的
公差分析,找了一个双胶合
透镜 K]c4"JJ ohUdGO[/
rQ/,XH "(v%1tGk 然后添加了默认公差分析,基本没变
? B@E!/f MJ`N,E[
^W~p..DF S}(8f!9< 然后运行分析的结果如下:
]hA,LY f V
A<5uk04K Analysis of Tolerances
+ WVIZZ8 "-31'R- File : E:\光学设计资料\zemax练习\f500.ZMX
QT!
4[,4 Title:
]1D%zKY%$Z Date : TUE JUN 21 2011
k|xtrW`qo; hfqqQ!,l! Units are Millimeters.
!*aPEf270 All changes are computed using linear differences.
5;\gJf c~0{s> Paraxial Focus compensation only.
-'`TL$ $<nCXVqL, WARNING: Solves should be removed prior to tolerancing.
.f:n\eT): S4N(cn& Mnemonics:
oRM)%N# TFRN: Tolerance on curvature in fringes.
}lP;U$ TTHI: Tolerance on thickness.
eSEq{?> TSDX: Tolerance on surface decentering in x.
]0c+/ \b& TSDY: Tolerance on surface decentering in y.
(@r
`$5D.b TSTX: Tolerance on surface tilt in x (degrees).
#*9-d/K TSTY: Tolerance on surface tilt in y (degrees).
.B72C[' c TIRR: Tolerance on irregularity (fringes).
BHA923p? TIND: Tolerance on Nd index of refraction.
;{#^MD MB TEDX: Tolerance on element decentering in x.
<q
(z>*-e TEDY: Tolerance on element decentering in y.
U!(@q!>G TETX: Tolerance on element tilt in x (degrees).
v>Lm;q( TETY: Tolerance on element tilt in y (degrees).
SJ?6{2^ 7%MbhlN. WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately.
X(A.X:" 7y^%7U \ WARNING: Boundary constraints on compensators will be ignored.
GOT1@.Y >&,[H:Z Criterion : Geometric
MTF average S&T at 30.0000 cycles per mm
:s={[KBP Mode : Sensitivities
q[3x2sR Sampling : 2
-d+aV1n Nominal Criterion : 0.54403234
5%zXAQD=< Test Wavelength : 0.6328
mYxyWB 2)X4y"l m<rhIq Fields: XY Symmetric Angle in degrees
3S*AxAeg # X-Field Y-Field Weight VDX VDY VCX VCY
t?c}L7ht 1 0.000E+000 0.000E+000 1.000E+000 0.000 0.000 0.000 0.000
WWKvh 0NDftcB] Sensitivity Analysis:
oF]cTAqhC. 80b;I|-T, |----------------- Minimum ----------------| |----------------- Maximum ----------------|
O.G'?m<:# Type Value Criterion Change Value Criterion Change
>Dw~POMy Fringe tolerance on surface 1
nDS}^Ba TFRN 1 -1.00000000 0.54257256 -0.00145977 1.00000000 0.54548607 0.00145374
);V2?G`/ Change in Focus :
-0.000000 0.000000
_"@CGXu Fringe tolerance on surface 2
7 c|bc6? TFRN 2 -1.00000000 0.54177471 -0.00225762 1.00000000 0.54627463 0.00224230
cD*}..-/4 Change in Focus : 0.000000 0.000000
dU) ]:>Uz Fringe tolerance on surface 3
\Ig68dFf% TFRN 3 -1.00000000 0.54779866 0.00376632 1.00000000 0.54022572 -0.00380662
!RB)_7 Change in Focus : -0.000000 0.000000
b[9&l|y^ Thickness tolerance on surface 1
mw$r$C{ TTHI 1 3 -0.20000000 0.54321462 -0.00081772 0.20000000 0.54484759 0.00081525
K6/@]y%Wr Change in Focus : 0.000000 0.000000
Zxr!:t7 Thickness tolerance on surface 2
:W#rhuzC TTHI 2 3 -0.20000000 0.54478712 0.00075478 0.20000000 0.54327558 -0.00075675
uvDzKMw~R Change in Focus : 0.000000 -0.000000
fmqb`% Decenter X tolerance on surfaces 1 through 3
C+[%7vF1 TEDX 1 3 -0.20000000 0.54401464 -1.7700E-005 0.20000000 0.54401464 -1.7700E-005
) J]9 lW&y Change in Focus : 0.000000 0.000000
;~fT,7qBah Decenter Y tolerance on surfaces 1 through 3
1 `^Rdi0 TEDY 1 3 -0.20000000 0.54401464 -1.7700E-005 0.20000000 0.54401464 -1.7700E-005
ca i<,3H Change in Focus : 0.000000 0.000000
<+MyZM(z> Tilt X tolerance on surfaces 1 through 3 (degrees)
IV%zO+ TETX 1 3 -0.20000000 0.54897548 0.00494314 0.20000000 0.54897548 0.00494314
6E(Qx~iL Change in Focus : 0.000000 0.000000
> fnh+M Tilt Y tolerance on surfaces 1 through 3 (degrees)
CTX9zrY*T TETY 1 3 -0.20000000 0.54897548 0.00494314 0.20000000 0.54897548 0.00494314
6+r$t# Change in Focus : 0.000000 0.000000
L86n}+
P\ Decenter X tolerance on surface 1
gE#>RM5D TSDX 1 -0.20000000 0.53999563 -0.00403671 0.20000000 0.53999563 -0.00403671
,.eWQK~ Change in Focus : 0.000000 0.000000
<,o>Wx*1C Decenter Y tolerance on surface 1
7C#`6:tI TSDY 1 -0.20000000 0.53999563 -0.00403671 0.20000000 0.53999563 -0.00403671
b@RHc!,>jV Change in Focus : 0.000000 0.000000
:w}{$v}#D; Tilt X tolerance on surface (degrees) 1
\(226^|j TSTX 1 -0.20000000 0.42678383 -0.11724851 0.20000000 0.42678383 -0.11724851
L,y6^J! Change in Focus : 0.000000 0.000000
sn7AR88M; Tilt Y tolerance on surface (degrees) 1
?
WJ> p TSTY 1 -0.20000000 0.42678383 -0.11724851 0.20000000 0.42678383 -0.11724851
S$KFf=0 Change in Focus : 0.000000 0.000000
P96pm6H_; Decenter X tolerance on surface 2
!.2<| 24 TSDX 2 -0.20000000 0.51705427 -0.02697807 0.20000000 0.51705427 -0.02697807
720PjQ Change in Focus : 0.000000 0.000000
C{TA.\ Decenter Y tolerance on surface 2
m/#a0~dB TSDY 2 -0.20000000 0.51705427 -0.02697807 0.20000000 0.51705427 -0.02697807
*8~86u GU Change in Focus : 0.000000 0.000000
n>@oBG)! Tilt X tolerance on surface (degrees) 2
}Zl&]e TSTX 2 -0.20000000 0.35349910 -0.19053324 0.20000000 0.35349910 -0.19053324
dJ$"l|$$ Change in Focus : 0.000000 0.000000
)`^p%k Tilt Y tolerance on surface (degrees) 2
[MuEoWrq(} TSTY 2 -0.20000000 0.35349910 -0.19053324 0.20000000 0.35349910 -0.19053324
OL4z%mDZi Change in Focus : 0.000000 0.000000
s4&^D< Decenter X tolerance on surface 3
U
qG
.:@T TSDX 3 -0.20000000 0.53419039 -0.00984195 0.20000000 0.53419039 -0.00984195
8r3A~ Change in Focus : 0.000000 0.000000
UK9@oCIB Decenter Y tolerance on surface 3
06jqQ-_`h TSDY 3 -0.20000000 0.53419039 -0.00984195 0.20000000 0.53419039 -0.00984195
Uj&W<'I Change in Focus : 0.000000 0.000000
d,Y_GCZ7|W Tilt X tolerance on surface (degrees) 3
X,9 M"E
2 TSTX 3 -0.20000000 0.42861670 -0.11541563 0.20000000 0.42861670 -0.11541563
(sVi\R Change in Focus : 0.000000 0.000000
SG6sw]x Tilt Y tolerance on surface (degrees) 3
^vG8#A}] TSTY 3 -0.20000000 0.42861670 -0.11541563 0.20000000 0.42861670 -0.11541563
9UvXC)R1 Change in Focus : 0.000000 0.000000
Mq';S^ Irregularity of surface 1 in fringes
N !TW! TIRR 1 -0.20000000 0.50973587 -0.03429647 0.20000000 0.57333868 0.02930634
!w&kyW?e Change in Focus : 0.000000 0.000000
R<B7K?SxV~ Irregularity of surface 2 in fringes
i2~ TIRR 2 -0.20000000 0.53400904 -0.01002330 0.20000000 0.55360281 0.00957047
3fN.bU9_ Change in Focus : 0.000000 0.000000
OY?y ^45y Irregularity of surface 3 in fringes
Df3rV '/~ TIRR 3 -0.20000000 0.58078982 0.03675748 0.20000000 0.49904394 -0.04498840
R8.CC1Ix Change in Focus : 0.000000 0.000000
Y@PI {;! Index tolerance on surface 1
2NB L}x TIND 1 -0.00100000 0.52606778 -0.01796456 0.00100000 0.56121811 0.01718578
q^6 +!&" Change in Focus : 0.000000 0.000000
V!)O6?l Index tolerance on surface 2
j0@[Br %7 TIND 2 -0.00100000 0.55639086 0.01235852 0.00100000 0.53126361 -0.01276872
O%r; 5kP Change in Focus : 0.000000 -0.000000
Web|\CH McPNB`.H Worst offenders:
RT%pDym\ Type Value Criterion Change
2h?uNW(0Q TSTY 2 -0.20000000 0.35349910 -0.19053324
*L!!]Q2c TSTY 2 0.20000000 0.35349910 -0.19053324
)V!dBl"Gq TSTX 2 -0.20000000 0.35349910 -0.19053324
L~ s3b TSTX 2 0.20000000 0.35349910 -0.19053324
~axjjv TSTY 1 -0.20000000 0.42678383 -0.11724851
W_0>y9? TSTY 1 0.20000000 0.42678383 -0.11724851
ZyEHzM{$ TSTX 1 -0.20000000 0.42678383 -0.11724851
6~*9;!th TSTX 1 0.20000000 0.42678383 -0.11724851
*Vho?P6y\Y TSTY 3 -0.20000000 0.42861670 -0.11541563
MxBTX4ES TSTY 3 0.20000000 0.42861670 -0.11541563
3"F`ZJ]= ETB6f Estimated Performance Changes based upon Root-Sum-Square method:
!t i6 Nominal MTF : 0.54403234
4b:s<$TZ Estimated change : -0.36299231
jM\*A#Jo5 Estimated MTF : 0.18104003
`9 {mr< u[{tb Compensator Statistics: %Q!`NCe+[ Change in back focus: }. z&P' Minimum : -0.000000 5+fLeC; Maximum : 0.000000 @BNEiOAZ# Mean : -0.000000 KM`eIw>8 Standard Deviation : 0.000000 Q:$Zy $y
b4xU Monte Carlo Analysis:
g(#f:" Number of trials: 20
[V}S<Xp . BiCBp< Initial Statistics: Normal Distribution
uPniLx\t: &7_Qd4=08w Trial Criterion Change
T6~_Q}6 1 0.42804416 -0.11598818
UQ4% Xp Change in Focus : -0.400171
u a\,-> 2 0.54384387 -0.00018847
"] \+? Change in Focus : 1.018470
++DG5` 3 0.44510003 -0.09893230
x|{IwA9 Change in Focus : -0.601922
k#5}\w! 4 0.18154684 -0.36248550
5^j45'%I Change in Focus : 0.920681
r#6_]ep}<' 5 0.28665820 -0.25737414
2ZQ}7`Y Change in Focus : 1.253875
`l*;t`h 6 0.21263372 -0.33139862
<r3J0)r} Change in Focus : -0.903878
ek
N'k 7 0.40051424 -0.14351809
O2"gj"D Change in Focus : -1.354815
It75R}B 8 0.48754161 -0.05649072
M2U&?V C! Change in Focus : 0.215922
@9&P~mo/ 9 0.40357468 -0.14045766
}@r{?8Ru Change in Focus : 0.281783
'KPASfC 10 0.26315315 -0.28087919
Jnv@. Change in Focus : -1.048393
>fIk;6<{ 11 0.26120585 -0.28282649
?:Bv
iF);/ Change in Focus : 1.017611
lvp8z)G 12 0.24033815 -0.30369419
TFuR@KaBR Change in Focus : -0.109292
=r@vc 13 0.37164046 -0.17239188
\.g\Zib ) Change in Focus : -0.692430
~gu3g^<0v 14 0.48597489 -0.05805744
)TmHhNo Change in Focus : -0.662040
i.:. Y 15 0.21462327 -0.32940907
Zo{$ Change in Focus : 1.611296
ce6__f5? 16 0.43378226 -0.11025008
EJ`T$JD Change in Focus : -0.640081
h`MF#617 17 0.39321881 -0.15081353
m%PC8bf`S Change in Focus : 0.914906
Xj*vh
m%i 18 0.20692530 -0.33710703
fJWC)E Change in Focus : 0.801607
wRrnniqf8 19 0.51374068 -0.03029165
HQ{JwW!m Change in Focus : 0.947293
Y\0}R,]a- 20 0.38013374 -0.16389860
03j]d&P%d
Change in Focus : 0.667010
wK}\_2? S'HnBn / Number of traceable Monte Carlo files generated: 20
CwJDmz\tk 'u` .P:u? Nominal 0.54403234
> 0<)= Best 0.54384387 Trial 2
i>_u_)- Worst 0.18154684 Trial 4
8KH\`5< Mean 0.35770970
Oq3A#6~ Std Dev 0.11156454
nQGQWg` ZR\VCVH\^ L_w+y Compensator Statistics:
Iz[@^IUx= Change in back focus:
d`1I".y Minimum : -1.354815
|!F5.%PY Maximum : 1.611296
g&n )fF Mean : 0.161872
p^iRPI Standard Deviation : 0.869664
3 R&lqxhg wd/<
8>2X 90% > 0.20977951 eX_D/25 $ 80% > 0.22748071 b}Zd)2G 50% > 0.38667627 {3!E4"p 20% > 0.46553746 B:Z_9,gj-N 10% > 0.50064115 jzK5-;b s{w[b\rA End of Run.
+t2SzQ j> &[&r2>a 这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图
0cT*z(
{Ha8]y }za[E>z 是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题
=tU{7i*+ !d&C>7nb 不吝赐教