切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16584阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 K]c4"JJ  
    ohUdGO[/  
    rQ/ ,XH  
    "(v%1tGk  
    然后添加了默认公差分析,基本没变 ? B@&#E!/f  
     MJ`N,E[  
    ^W~p..DF  
    S}(8f!9<  
    然后运行分析的结果如下: ]hA,LY f  
    V A<5uk04K  
    Analysis of Tolerances + WVIZZ8  
    "- 31'R-  
    File : E:\光学设计资料\zemax练习\f500.ZMX QT! 4[,4  
    Title: ]1D%zKY%$Z  
    Date : TUE JUN 21 2011 k|xtrW`qo;  
    hfqqQ!,l!  
    Units are Millimeters. !*aPEf270  
    All changes are computed using linear differences. 5;\gJf  
    c~0{s>  
    Paraxial Focus compensation only. -'`TL$  
    $<nCXVqL,  
    WARNING: Solves should be removed prior to tolerancing. .f:n\eT):  
    S4N(cn&  
    Mnemonics: oRM)% N#  
    TFRN: Tolerance on curvature in fringes. }lP;U$  
    TTHI: Tolerance on thickness. eSEq{ ?>  
    TSDX: Tolerance on surface decentering in x. ]0c+/ \b&  
    TSDY: Tolerance on surface decentering in y. (@r `$5D.b  
    TSTX: Tolerance on surface tilt in x (degrees). #*9-d/K  
    TSTY: Tolerance on surface tilt in y (degrees). .B72C[' c  
    TIRR: Tolerance on irregularity (fringes). BHA923p?  
    TIND: Tolerance on Nd index of refraction. ;{#^MD MB  
    TEDX: Tolerance on element decentering in x. <q (z>*-e  
    TEDY: Tolerance on element decentering in y. U!(@q!>G  
    TETX: Tolerance on element tilt in x (degrees). v>Lm;q(  
    TETY: Tolerance on element tilt in y (degrees). SJ?6{2^  
    7%MbhlN.  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. X(A.X:"  
    7y^%7U \  
    WARNING: Boundary constraints on compensators will be ignored. GOT1@.Y  
    >&,[H:Z  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm :s={[KBP  
    Mode                : Sensitivities q[3x2sR  
    Sampling            : 2 -d+aV1n  
    Nominal Criterion   : 0.54403234 5%zXAQD=<  
    Test Wavelength     : 0.6328 mYxyWB  
    2)X4y"l  
    m<rhIq  
    Fields: XY Symmetric Angle in degrees 3S*AxAeg  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY t?c}L7ht  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 WWKvh  
    0NDftcB]  
    Sensitivity Analysis: oF]cTAqhC.  
    80b;I|-T,  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| O.G'?m<: #  
    Type                      Value      Criterion        Change          Value      Criterion        Change >Dw~P OMy  
    Fringe tolerance on surface 1 n DS}^Ba  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 );V2?G`/  
    Change in Focus                :      -0.000000                            0.000000 _"@CGXu  
    Fringe tolerance on surface 2 7c|bc6?  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 cD*}..-/4  
    Change in Focus                :       0.000000                            0.000000 dU)]:>Uz  
    Fringe tolerance on surface 3 \Ig68dFf%  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 !RB)_7  
    Change in Focus                :      -0.000000                            0.000000 b[9&l|y^  
    Thickness tolerance on surface 1 mw$r$C{  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 K6/@]y%Wr  
    Change in Focus                :       0.000000                            0.000000 Zxr!:t7  
    Thickness tolerance on surface 2 :W#rhuzC  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 uvDzKMw~R  
    Change in Focus                :       0.000000                           -0.000000 fmqb` %  
    Decenter X tolerance on surfaces 1 through 3 C+[%7vF1  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 )J]9 lW&y  
    Change in Focus                :       0.000000                            0.000000 ;~fT,7qBah  
    Decenter Y tolerance on surfaces 1 through 3 1 `^Rdi0  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 ca i <,3H  
    Change in Focus                :       0.000000                            0.000000 <+MyZM(z>  
    Tilt X tolerance on surfaces 1 through 3 (degrees) I V%zO+  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 6E(Qx~i L  
    Change in Focus                :       0.000000                            0.000000 > fnh+M  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) CTX9zrY*T  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 6+r$t#  
    Change in Focus                :       0.000000                            0.000000 L86n}+ P\  
    Decenter X tolerance on surface 1 gE#>RM5D  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 ,.eWQK~  
    Change in Focus                :       0.000000                            0.000000 <,o>Wx*1C  
    Decenter Y tolerance on surface 1 7C#`6:tI  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 b@RHc!,>jV  
    Change in Focus                :       0.000000                            0.000000 :w}{$v}#D;  
    Tilt X tolerance on surface (degrees) 1 \(226^|j  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 L,y6^J!  
    Change in Focus                :       0.000000                            0.000000 sn7AR88M;  
    Tilt Y tolerance on surface (degrees) 1 ? WJ> p  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 S$KFf=0  
    Change in Focus                :       0.000000                            0.000000 P96pm6H_;  
    Decenter X tolerance on surface 2 !.2<| 24  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 720P jQ  
    Change in Focus                :       0.000000                            0.000000 C{TA.\   
    Decenter Y tolerance on surface 2 m/#a0~dB  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 *8~86u GU  
    Change in Focus                :       0.000000                            0.000000 n>@oBG)!  
    Tilt X tolerance on surface (degrees) 2 }Zl&]e  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 dJ$"l|$$  
    Change in Focus                :       0.000000                            0.000000 )`^p%k  
    Tilt Y tolerance on surface (degrees) 2 [MuEoWrq(}  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 OL4z%mDZi  
    Change in Focus                :       0.000000                            0.000000 s4&^D<  
    Decenter X tolerance on surface 3 U qG .:@T  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 8r3A~  
    Change in Focus                :       0.000000                            0.000000 UK9@oCIB  
    Decenter Y tolerance on surface 3 06jqQ-_`h  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 Uj&W<'I  
    Change in Focus                :       0.000000                            0.000000 d,Y_GCZ7|W  
    Tilt X tolerance on surface (degrees) 3 X,9 M"E 2  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 (sVi\R  
    Change in Focus                :       0.000000                            0.000000 SG6sw]x  
    Tilt Y tolerance on surface (degrees) 3 ^vG8#A}]  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 9UvXC)R1  
    Change in Focus                :       0.000000                            0.000000 Mq';S^  
    Irregularity of surface 1 in fringes N !TW!  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 !w&kyW?e  
    Change in Focus                :       0.000000                            0.000000 R<B7K?SxV~  
    Irregularity of surface 2 in fringes  i2~  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 3fN.bU9_  
    Change in Focus                :       0.000000                            0.000000 OY?y^45y  
    Irregularity of surface 3 in fringes Df3rV'/~  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 R8.CC1Ix  
    Change in Focus                :       0.000000                            0.000000 Y@PI {;!  
    Index tolerance on surface 1 2NB L}x  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 q^6+!&"  
    Change in Focus                :       0.000000                            0.000000 V!)O6?l  
    Index tolerance on surface 2 j0@[Br%7  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 O%r;5kP  
    Change in Focus                :       0.000000                           -0.000000 Web|\CH  
    McPNB`.H  
    Worst offenders: RT%pDym\  
    Type                      Value      Criterion        Change 2h?uNW(0Q  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 *L!!]Q2c  
    TSTY   2             0.20000000     0.35349910    -0.19053324 )V!dBl"Gq  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 L~s3b  
    TSTX   2             0.20000000     0.35349910    -0.19053324 ~a xjjv  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 W_0>y9?  
    TSTY   1             0.20000000     0.42678383    -0.11724851 ZyEHzM{$  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 6~*9;!th  
    TSTX   1             0.20000000     0.42678383    -0.11724851 *Vho?P6y\Y  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 MxBTX4ES  
    TSTY   3             0.20000000     0.42861670    -0.11541563 3"F`ZJ]=  
    ETB6f  
    Estimated Performance Changes based upon Root-Sum-Square method: !ti6  
    Nominal MTF                 :     0.54403234 4b:s<$TZ  
    Estimated change            :    -0.36299231 jM\*A#Jo5  
    Estimated MTF               :     0.18104003 `9 {mr<  
    u[{tb  
    Compensator Statistics: %Q!`NCe+[  
    Change in back focus: }.z&P'  
    Minimum            :        -0.000000 5+fLeC;  
    Maximum            :         0.000000 @BNEiOAZ#  
    Mean               :        -0.000000 KM`eIw>8  
    Standard Deviation :         0.000000 Q:$Zy  
    $y b4xU  
    Monte Carlo Analysis: g (#f:"  
    Number of trials: 20 [V}S <Xp  
    . BiCBp<  
    Initial Statistics: Normal Distribution uPniLx\t:  
    &7_Qd4=08w  
      Trial       Criterion        Change T 6~_Q}6  
          1     0.42804416    -0.11598818 UQ4% Xp  
    Change in Focus                :      -0.400171 u a\,->  
          2     0.54384387    -0.00018847 "]\+?  
    Change in Focus                :       1.018470 ++DG5`  
          3     0.44510003    -0.09893230 x|{IwA9  
    Change in Focus                :      -0.601922 k#5}\w!  
          4     0.18154684    -0.36248550 5^j45'%I  
    Change in Focus                :       0.920681 r#6_]ep}<'  
          5     0.28665820    -0.25737414 2ZQ}7`Y  
    Change in Focus                :       1.253875 `l*;t`h  
          6     0.21263372    -0.33139862 <r3J0)r}  
    Change in Focus                :      -0.903878 ek N' k  
          7     0.40051424    -0.14351809 O2"gj"D  
    Change in Focus                :      -1.354815 It75R}B   
          8     0.48754161    -0.05649072 M2U&?V C!  
    Change in Focus                :       0.215922 @9&P~mo/  
          9     0.40357468    -0.14045766 }@r{?8Ru  
    Change in Focus                :       0.281783 'KPASfC  
         10     0.26315315    -0.28087919 Jnv@.  
    Change in Focus                :      -1.048393 >fIk;6<{  
         11     0.26120585    -0.28282649 ?:Bv iF);/  
    Change in Focus                :       1.017611 lvp8z) G  
         12     0.24033815    -0.30369419 TFuR@KaBR  
    Change in Focus                :      -0.109292 =r@vc  
         13     0.37164046    -0.17239188 \.g\Zib )  
    Change in Focus                :      -0.692430 ~gu3g^<0v  
         14     0.48597489    -0.05805744 )TmHhNo  
    Change in Focus                :      -0.662040 i.:. Y  
         15     0.21462327    -0.32940907 Zo{$  
    Change in Focus                :       1.611296 ce6__f 5?  
         16     0.43378226    -0.11025008 EJ`T$JD  
    Change in Focus                :      -0.640081 h`MF#617  
         17     0.39321881    -0.15081353 m%PC8bf`S  
    Change in Focus                :       0.914906 Xj*vh m%i  
         18     0.20692530    -0.33710703 fJWC)E  
    Change in Focus                :       0.801607 wRrnniqf8  
         19     0.51374068    -0.03029165 HQ{JwW!m  
    Change in Focus                :       0.947293 Y\0}R,]a-  
         20     0.38013374    -0.16389860 03j]d&P%d  
    Change in Focus                :       0.667010 wK}\_2?  
    S'HnBn /  
    Number of traceable Monte Carlo files generated: 20 CwJDmz\tk  
    'u` .P:u?  
    Nominal     0.54403234 > 0<)=  
    Best        0.54384387    Trial     2 i>_u_)-  
    Worst       0.18154684    Trial     4 8KH\`5<  
    Mean        0.35770970 Oq3A#6~  
    Std Dev     0.11156454 nQ GQWg`  
    ZR\VCVH\^  
    L_w+y  
    Compensator Statistics: Iz[@^IUx=  
    Change in back focus: d`1I".y  
    Minimum            :        -1.354815 |!F5.%PY  
    Maximum            :         1.611296 g&n)fF  
    Mean               :         0.161872 p^iRPI  
    Standard Deviation :         0.869664 3R&lqxhg  
    wd/< 8>2X  
    90% >       0.20977951               eX_D/25 $  
    80% >       0.22748071               b}Zd)2G  
    50% >       0.38667627               {3!E4"p  
    20% >       0.46553746               B:Z_9,gj-N  
    10% >       0.50064115                jzK5-;b  
    s{w[b\rA  
    End of Run. +t2SzQ j>  
    &[&r2 >a  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 0cT*z(  
     {Ha8]y  
    }za[E>z  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 =tU{7i*+  
    !d&C>7nb  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 OTZ_c1"K  
    80% >       0.22748071                 0[<~?`:)  
    50% >       0.38667627                 <ER'Ed  
    20% >       0.46553746                 7a=S  
    10% >       0.50064115 i*eAdIi  
    *6BThvg|&X  
    最后这个数值是MTF值呢,还是MTF的公差? 1oKfy>ie  
    0hZ1rqq8C  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   IcIOC8WC  
    !,Zp? g)  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : `#IcxweA  
    90% >       0.20977951                 /-0' Qa+*  
    80% >       0.22748071                 o07IcIo  
    50% >       0.38667627                 }fhHXGK.  
    20% >       0.46553746                 2Ohp]G  
    10% >       0.50064115 |)_-Bi;MW`  
    ....... ``?6=mO  
    >qT'z$  
    4}KU>9YRA  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   zREJ#r  
    Mode                : Sensitivities k ~6- cx  
    Sampling            : 2 Ri?\m!o  
    Nominal Criterion   : 0.54403234 1"K*._K  
    Test Wavelength     : 0.6328 [ug,jEH"S  
    &A50'8B2A  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? 1 ycc5=.  
    .L;",E  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试