切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16403阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 BNbz{tbX"  
    )'`@rq!  
    a.SxMF  
    \B8[UZA.&  
    然后添加了默认公差分析,基本没变 'zYx4&s  
    ^+9i~PjL  
    AJt4I W@  
    ?/Z5%?6  
    然后运行分析的结果如下: 2;YL+v2  
    k)S'@>n{u  
    Analysis of Tolerances ngH_p>  
    9 H~OC8R:  
    File : E:\光学设计资料\zemax练习\f500.ZMX c]/&xRd  
    Title: 93y!x}  
    Date : TUE JUN 21 2011 DX8pd5 U  
    i  M!=/  
    Units are Millimeters. 6 Y}Bza  
    All changes are computed using linear differences. >66v+  
    R"[U<^  
    Paraxial Focus compensation only. {us"=JJVN  
    7cZ(gdQ/  
    WARNING: Solves should be removed prior to tolerancing. ~Z x_"  
    dL>8|  
    Mnemonics: F]^ZdJ2  
    TFRN: Tolerance on curvature in fringes. _w49@9?  
    TTHI: Tolerance on thickness. f#zm}+,`  
    TSDX: Tolerance on surface decentering in x. wm_o(Z}  
    TSDY: Tolerance on surface decentering in y. x8E!Ko](  
    TSTX: Tolerance on surface tilt in x (degrees). +`Ypc  
    TSTY: Tolerance on surface tilt in y (degrees). KJN{p~Q  
    TIRR: Tolerance on irregularity (fringes). %P-z3 0FHp  
    TIND: Tolerance on Nd index of refraction. [f\TnXq24  
    TEDX: Tolerance on element decentering in x. *9xv0hRQ%?  
    TEDY: Tolerance on element decentering in y. 3+2cD  
    TETX: Tolerance on element tilt in x (degrees). \v[?4 [  
    TETY: Tolerance on element tilt in y (degrees). MLn\ b0  
    k\wI^D  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. ;]xJC j  
    \t\ZyPxn  
    WARNING: Boundary constraints on compensators will be ignored. {9*k \d/;  
    r__Y{&IO  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm e|jmOYWG  
    Mode                : Sensitivities Q7@.WG5  
    Sampling            : 2 E8s&.:;+  
    Nominal Criterion   : 0.54403234 XhEd9>#  
    Test Wavelength     : 0.6328 _0(Bx?[h  
    vTY+J$N__  
    3G)Wmmh"a  
    Fields: XY Symmetric Angle in degrees KZ;Q71  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY ^+20e3 ~Y  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 *iVCHQ~  
    Ot#O];3  
    Sensitivity Analysis: t^zmv PDK  
    A$]&j5nh|  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| amY\1quD|  
    Type                      Value      Criterion        Change          Value      Criterion        Change =Vm"2g,aA  
    Fringe tolerance on surface 1 b;XUv4~V  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 1IRlFC  
    Change in Focus                :      -0.000000                            0.000000 RiX~YL eM  
    Fringe tolerance on surface 2 #}Qzu~  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 d!i#@XZ^  
    Change in Focus                :       0.000000                            0.000000 8I`t`C/4  
    Fringe tolerance on surface 3 sw'?&:<"Ow  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 6cV -iDOH  
    Change in Focus                :      -0.000000                            0.000000 ZFAi9M  
    Thickness tolerance on surface 1 |E YJbL;1%  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 <[e E5X(  
    Change in Focus                :       0.000000                            0.000000 23AMrDF=N  
    Thickness tolerance on surface 2 y,D4b6  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 !5;A.f  
    Change in Focus                :       0.000000                           -0.000000 1j7sJ" *  
    Decenter X tolerance on surfaces 1 through 3 ^/<0r] =  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 +v`?j+6z  
    Change in Focus                :       0.000000                            0.000000 lbCTc,xT  
    Decenter Y tolerance on surfaces 1 through 3 EN =oA P  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 MifPZQ  
    Change in Focus                :       0.000000                            0.000000  .UUY9@  
    Tilt X tolerance on surfaces 1 through 3 (degrees) Tjfg[Z/x  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 d3$&I==;:  
    Change in Focus                :       0.000000                            0.000000 $&@L[[xl  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) $:#{Y;d  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 T w!]N%E  
    Change in Focus                :       0.000000                            0.000000 0 s-IW  
    Decenter X tolerance on surface 1 /a?*Ap5"  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 $R'  
    Change in Focus                :       0.000000                            0.000000 a5v}w7vL  
    Decenter Y tolerance on surface 1 LG0z|x(  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 vakAl;  
    Change in Focus                :       0.000000                            0.000000 \M H\!  
    Tilt X tolerance on surface (degrees) 1 GvL)SVv?  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 \B0,?_i  
    Change in Focus                :       0.000000                            0.000000 PhHBmM GL  
    Tilt Y tolerance on surface (degrees) 1 bOt6q/f  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 4xg7 oo0iJ  
    Change in Focus                :       0.000000                            0.000000 jIq@@8@o  
    Decenter X tolerance on surface 2 A/XY' 3  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 2{v$GFc/  
    Change in Focus                :       0.000000                            0.000000 Oie0cz:>:  
    Decenter Y tolerance on surface 2 U4J9b p|  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 !$/1Q+  
    Change in Focus                :       0.000000                            0.000000 $*035f  
    Tilt X tolerance on surface (degrees) 2 7q>Y)*V  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 td:GZ %  
    Change in Focus                :       0.000000                            0.000000 3yWu-U \k  
    Tilt Y tolerance on surface (degrees) 2 +1Qa7 \  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 #1INOR9  
    Change in Focus                :       0.000000                            0.000000 1Na*7|  
    Decenter X tolerance on surface 3 Qi 3di  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 ~i)m(65:  
    Change in Focus                :       0.000000                            0.000000 C #A sA  
    Decenter Y tolerance on surface 3 e)pQh& uD  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 3{gD'y4j  
    Change in Focus                :       0.000000                            0.000000 }:5_vH0  
    Tilt X tolerance on surface (degrees) 3 }ze,6T*z  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 g"Eg=CU  
    Change in Focus                :       0.000000                            0.000000 > 3<P^-9L  
    Tilt Y tolerance on surface (degrees) 3 lzJ[`i.  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 NQ7 j{dJ?  
    Change in Focus                :       0.000000                            0.000000 f}jo18z%  
    Irregularity of surface 1 in fringes o5!"dxR  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 +(v<_#wR-  
    Change in Focus                :       0.000000                            0.000000 @8IY J{=  
    Irregularity of surface 2 in fringes ]2^tV.^S^  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 9ghZL Q  
    Change in Focus                :       0.000000                            0.000000 udRum7XW 3  
    Irregularity of surface 3 in fringes :)!X%2 _  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 ~i`@  
    Change in Focus                :       0.000000                            0.000000 XkB^.[B  
    Index tolerance on surface 1 *?;<buJb?  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 Y^zL}@  
    Change in Focus                :       0.000000                            0.000000 @,Je*5$o"  
    Index tolerance on surface 2 =5NM =K  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 HK@LA3  
    Change in Focus                :       0.000000                           -0.000000 %+PWcCmn  
    3j{VpacZY  
    Worst offenders: JNQiCK,)}M  
    Type                      Value      Criterion        Change B;SN}I  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 g[VVxp!C<  
    TSTY   2             0.20000000     0.35349910    -0.19053324 %s.hqr,I  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 E)eRi"a46  
    TSTX   2             0.20000000     0.35349910    -0.19053324 =@#[@Ia  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 dXAKk[uf  
    TSTY   1             0.20000000     0.42678383    -0.11724851 oY!nM%z/  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 A>;Q<8rh  
    TSTX   1             0.20000000     0.42678383    -0.11724851 K".\QF,:  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 &^ECQ  
    TSTY   3             0.20000000     0.42861670    -0.11541563 DNsDEU  
    +\SNaq~&  
    Estimated Performance Changes based upon Root-Sum-Square method: gTz66a@i  
    Nominal MTF                 :     0.54403234 l3Vw?f   
    Estimated change            :    -0.36299231 a6K1-SR^6)  
    Estimated MTF               :     0.18104003 \;0J6LBc  
    EleK*l  
    Compensator Statistics: #"}Z'|X*  
    Change in back focus: L8<Yk`jx  
    Minimum            :        -0.000000 (mq 7{ ;7y  
    Maximum            :         0.000000 VKtrSY}6T  
    Mean               :        -0.000000 1jdv<\U   
    Standard Deviation :         0.000000 !!Tk'=t9"3  
    NB]T~_?]*  
    Monte Carlo Analysis: !"u) `I2  
    Number of trials: 20 Lp\89tB>  
    K*uFqdLL!  
    Initial Statistics: Normal Distribution tAD{{GW9  
    . e2qa  
      Trial       Criterion        Change n7~!klF-  
          1     0.42804416    -0.11598818 ?}*A/-Hx0U  
    Change in Focus                :      -0.400171 {e,m<mAi  
          2     0.54384387    -0.00018847 \A`pF'50  
    Change in Focus                :       1.018470 xwxMVp`|o  
          3     0.44510003    -0.09893230 &wj;:f  
    Change in Focus                :      -0.601922 wyO@oi Vn  
          4     0.18154684    -0.36248550 p#}38`  
    Change in Focus                :       0.920681 y}jX/Ln  
          5     0.28665820    -0.25737414 zn5  
    Change in Focus                :       1.253875 ZOl =zn  
          6     0.21263372    -0.33139862 6T 2jVNg  
    Change in Focus                :      -0.903878 VNx|nP&  
          7     0.40051424    -0.14351809 84[T!cDk  
    Change in Focus                :      -1.354815 |Ia3bV W  
          8     0.48754161    -0.05649072 gBRhO^Sz  
    Change in Focus                :       0.215922 X#mm Z;P  
          9     0.40357468    -0.14045766 ADRjCk}I  
    Change in Focus                :       0.281783 P/._ tQu6  
         10     0.26315315    -0.28087919 nf!RB-orF  
    Change in Focus                :      -1.048393 UJkg|eu  
         11     0.26120585    -0.28282649 EzY?=<Y(  
    Change in Focus                :       1.017611 FKflN  
         12     0.24033815    -0.30369419 Mn+;3qo{6  
    Change in Focus                :      -0.109292 l)E \mo 8  
         13     0.37164046    -0.17239188 *W q{ :k  
    Change in Focus                :      -0.692430 dwks"5l  
         14     0.48597489    -0.05805744 TEOV>Tt  
    Change in Focus                :      -0.662040 \s Fdp!M}2  
         15     0.21462327    -0.32940907 p2|c8n==  
    Change in Focus                :       1.611296 th8f  
         16     0.43378226    -0.11025008 Ltpd:c  
    Change in Focus                :      -0.640081 jzc/Olb  
         17     0.39321881    -0.15081353 L'4ob4r{L  
    Change in Focus                :       0.914906 E!'H,#"P  
         18     0.20692530    -0.33710703 aR.1&3fE  
    Change in Focus                :       0.801607 5=Mm=HyI2  
         19     0.51374068    -0.03029165 { 'Hi_b3  
    Change in Focus                :       0.947293 (+>~6SE  
         20     0.38013374    -0.16389860 8%JxXtWW`  
    Change in Focus                :       0.667010 !c:Q+:,H  
    ME~ga,|K  
    Number of traceable Monte Carlo files generated: 20 X"b4U\A  
    OlhfBu)~  
    Nominal     0.54403234 Mw7!w-1+  
    Best        0.54384387    Trial     2 &oiX/UaY  
    Worst       0.18154684    Trial     4 H[V^wyi'z  
    Mean        0.35770970 1Nw&Z0MI  
    Std Dev     0.11156454 W^0F(9~!(  
    l.1)%q&@^  
    tx&>Eo  
    Compensator Statistics: `|wH=  
    Change in back focus: +] B  
    Minimum            :        -1.354815 nWN~G  
    Maximum            :         1.611296 0t5>'GYX  
    Mean               :         0.161872 $ZYEH  
    Standard Deviation :         0.869664 QL}5vSl  
    IGT~@);  
    90% >       0.20977951               m{!BSl  
    80% >       0.22748071               z=!$3E ecr  
    50% >       0.38667627               qLKyr@\'  
    20% >       0.46553746               w>; :mf  
    10% >       0.50064115                l7aGo1TcIh  
    PTA;a 0A  
    End of Run. 2iI"|k9M  
    O 4N_lr~  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 @iUzRsl  
    >?'q P ]  
    dpZ7eJ   
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 nen6!bw4  
    7oF`Os+U  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 .kC}. Q_  
    80% >       0.22748071                 T"QY@#E  
    50% >       0.38667627                 4 T^M@+&|  
    20% >       0.46553746                 H ~ks"D1  
    10% >       0.50064115 'Fonn  
    :[ITjkhde0  
    最后这个数值是MTF值呢,还是MTF的公差? MO _9Yi  
    G!rcY5!J  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   E32z(:7M  
    8U;!1!+ 7)  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : !BX62j\?  
    90% >       0.20977951                 _y9P]@Q7%  
    80% >       0.22748071                 $imx-H`|  
    50% >       0.38667627                 eTc`FXw`  
    20% >       0.46553746                 p[)<d_  
    10% >       0.50064115 mig3.is  
    ....... @"!SU' *  
    ?a%i|Z7!  
    ;N\?]{ L  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   3 \r@f_p  
    Mode                : Sensitivities >UY_:cW4%m  
    Sampling            : 2 9D{).f0  
    Nominal Criterion   : 0.54403234 C-u/{CP  
    Test Wavelength     : 0.6328 hxVM]e[  
    _a$DY ,;  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? }<ONxg6Kb  
    cJ##K/es  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试