切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16286阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 k^J8 p#`6  
    mq`/nAmt  
    mMAN* }`O  
    ?:(y  
    然后添加了默认公差分析,基本没变 y>I2}P  
    x/*lNG/  
    5S~ H[>A"  
    >>U>'}@Q  
    然后运行分析的结果如下: c4Ebre-Oa  
    7EJ2 On  
    Analysis of Tolerances HBlk~eZ  
    hFrMOc&  
    File : E:\光学设计资料\zemax练习\f500.ZMX K"#$",}=  
    Title: 1- 2hh)  
    Date : TUE JUN 21 2011 0U '"@A \  
    _D '(R  
    Units are Millimeters. Rs%`6et}\  
    All changes are computed using linear differences. 66yw[,Y  
    ]}2)U  
    Paraxial Focus compensation only. =RoG?gd{R  
    3BFOZV+  
    WARNING: Solves should be removed prior to tolerancing. UcRP/LR%C  
    TZn 15-O  
    Mnemonics: %w;qu1j  
    TFRN: Tolerance on curvature in fringes. hZ&KE78?  
    TTHI: Tolerance on thickness. aJu&h2 G  
    TSDX: Tolerance on surface decentering in x. d:=' Xs  
    TSDY: Tolerance on surface decentering in y. ){^J8]b7#  
    TSTX: Tolerance on surface tilt in x (degrees). ++cS^ Lo  
    TSTY: Tolerance on surface tilt in y (degrees). r&gvP|W%  
    TIRR: Tolerance on irregularity (fringes). @X==[gQ  
    TIND: Tolerance on Nd index of refraction. NR4+&d  
    TEDX: Tolerance on element decentering in x. w#A)B<Y/"  
    TEDY: Tolerance on element decentering in y. ~ao:9 ynY  
    TETX: Tolerance on element tilt in x (degrees). $y(;"hy  
    TETY: Tolerance on element tilt in y (degrees). *1|7%*!8  
    b8mH.g&l  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. iT]t`7R  
    56v G R(  
    WARNING: Boundary constraints on compensators will be ignored. amBg<P`'_  
    ':*H#}Br-#  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm R\j~X@vI  
    Mode                : Sensitivities ,f }$FZ  
    Sampling            : 2 6=iHw 24  
    Nominal Criterion   : 0.54403234 + G@N  
    Test Wavelength     : 0.6328 ^Q/*on;A,/  
    I2 [U#4n  
    <c+.%ka  
    Fields: XY Symmetric Angle in degrees ?Ga8.0Z~KT  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY X/5m}-6d]  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 C6!F6Stn]g  
    oC0ndp~+&  
    Sensitivity Analysis: X\^V{v^-  
    W06aj ~7Z  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| _CwTe=K}  
    Type                      Value      Criterion        Change          Value      Criterion        Change d:kB Zrq  
    Fringe tolerance on surface 1 }7 N6n Zj`  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 4G&`&fff]  
    Change in Focus                :      -0.000000                            0.000000 ' zyw-1  
    Fringe tolerance on surface 2 GVY7`k"km  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 >eJ <-3L;  
    Change in Focus                :       0.000000                            0.000000 zsL@0]e&  
    Fringe tolerance on surface 3 -/f$s1  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 fdl.3~.C  
    Change in Focus                :      -0.000000                            0.000000 c_8&4  
    Thickness tolerance on surface 1 0ho;L0Nr'  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 v$ ti=uk$  
    Change in Focus                :       0.000000                            0.000000 ug3\K83aj/  
    Thickness tolerance on surface 2 YWZ;@,W  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 n0(Q/  
    Change in Focus                :       0.000000                           -0.000000 >0^<<=m  
    Decenter X tolerance on surfaces 1 through 3 gV_v5sk  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 pH '_k k  
    Change in Focus                :       0.000000                            0.000000 4XkI? l  
    Decenter Y tolerance on surfaces 1 through 3 *22Vc2[i;  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 Tzq@ic#!B  
    Change in Focus                :       0.000000                            0.000000 jJ$\WUQ.  
    Tilt X tolerance on surfaces 1 through 3 (degrees) kK &w5'  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 ?sN{U\  
    Change in Focus                :       0.000000                            0.000000 B[b>T=  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) -Vn#Ab_C  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 R)NSJ-A!2  
    Change in Focus                :       0.000000                            0.000000 R1];P*>%gZ  
    Decenter X tolerance on surface 1 =p5DT  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 BgQEd@cN  
    Change in Focus                :       0.000000                            0.000000 mixsJ}e  
    Decenter Y tolerance on surface 1 `/O`%6,f1!  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 Z?)g'n  
    Change in Focus                :       0.000000                            0.000000 Ss[[V(-  
    Tilt X tolerance on surface (degrees) 1 z8\YMr 6o  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 nFnM9 pdMK  
    Change in Focus                :       0.000000                            0.000000 (Pc>D';{S  
    Tilt Y tolerance on surface (degrees) 1 +x]/W|5  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 g~hMOI?KK^  
    Change in Focus                :       0.000000                            0.000000 c'oiW)8;A  
    Decenter X tolerance on surface 2 O<S.fr,  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 dq 93P%X24  
    Change in Focus                :       0.000000                            0.000000 5m8u:6kQu  
    Decenter Y tolerance on surface 2 vJWBr:`L  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 nCQtn%j't  
    Change in Focus                :       0.000000                            0.000000 )Q2IYCj{  
    Tilt X tolerance on surface (degrees) 2 "i0>>@NR'  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 F0$w9p  
    Change in Focus                :       0.000000                            0.000000 JFT$1^n  
    Tilt Y tolerance on surface (degrees) 2 .}==p&(  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 VN`.*B|9[  
    Change in Focus                :       0.000000                            0.000000 3FBLCD3  
    Decenter X tolerance on surface 3 ]az(w&vqg2  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 H4g8 1V=  
    Change in Focus                :       0.000000                            0.000000 h;V 4|jM  
    Decenter Y tolerance on surface 3 PaCC UF  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 hRf l\Q[  
    Change in Focus                :       0.000000                            0.000000 wJC[[_"3 I  
    Tilt X tolerance on surface (degrees) 3 ~ZKJ:&f  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 K43%9=sM  
    Change in Focus                :       0.000000                            0.000000 EGXvz)y  
    Tilt Y tolerance on surface (degrees) 3 2Q6;SF"Z  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 ng}C$d . I  
    Change in Focus                :       0.000000                            0.000000 $qD\ku;'  
    Irregularity of surface 1 in fringes sVHF\{<  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 $nt&'Xnv  
    Change in Focus                :       0.000000                            0.000000 X4%uY  
    Irregularity of surface 2 in fringes KqI:g*H'x7  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 :-?ZU4)  
    Change in Focus                :       0.000000                            0.000000 ?+zFa2J  
    Irregularity of surface 3 in fringes C19N0=  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 r=Xo;d*TE  
    Change in Focus                :       0.000000                            0.000000 Q(& @ra!{  
    Index tolerance on surface 1 O#)1 zD}  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 UarLxPQ  
    Change in Focus                :       0.000000                            0.000000 |Y3w6!$  
    Index tolerance on surface 2 5,Fq:j)MxW  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 orjtwF>^  
    Change in Focus                :       0.000000                           -0.000000 OAXA<  
    nM[yBA  
    Worst offenders: cL9 gaD$;)  
    Type                      Value      Criterion        Change Q.N!b 7r7  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 [Hh*lKg  
    TSTY   2             0.20000000     0.35349910    -0.19053324 MG?,,8sO  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 ;W- A2g  
    TSTX   2             0.20000000     0.35349910    -0.19053324 [* <x)  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 =@U5/J  
    TSTY   1             0.20000000     0.42678383    -0.11724851 ;EBKzB  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 /43l}6I  
    TSTX   1             0.20000000     0.42678383    -0.11724851 ,`f]mv l  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 48:xvTE?N  
    TSTY   3             0.20000000     0.42861670    -0.11541563 hO"!q;<eS  
    aM~IRLmK  
    Estimated Performance Changes based upon Root-Sum-Square method: T=PqA)Ym  
    Nominal MTF                 :     0.54403234 wO]e%BTO  
    Estimated change            :    -0.36299231 R+HX'W  
    Estimated MTF               :     0.18104003 kL DpZ{  
    _d 6'f8[&  
    Compensator Statistics: CcQc!`YC  
    Change in back focus: y i$+rPF1  
    Minimum            :        -0.000000 ?^U?ua6  
    Maximum            :         0.000000 m!ZY]:)$  
    Mean               :        -0.000000 2E1`r@L  
    Standard Deviation :         0.000000 J%?5d:iN+  
    }uma<b  
    Monte Carlo Analysis: p8'$@:M\  
    Number of trials: 20 |OeWM  
    UF-&L:s[  
    Initial Statistics: Normal Distribution ~dS15E4-Pp  
    NgTB4I 8P  
      Trial       Criterion        Change  qNJc*@s  
          1     0.42804416    -0.11598818 S%- kN;  
    Change in Focus                :      -0.400171 Gwk$<6E  
          2     0.54384387    -0.00018847 kt6)F&;$  
    Change in Focus                :       1.018470  v@EErF  
          3     0.44510003    -0.09893230 FO*Gc Z  
    Change in Focus                :      -0.601922 @)d_zWE  
          4     0.18154684    -0.36248550 P2vG)u  
    Change in Focus                :       0.920681 )#i@DHt=  
          5     0.28665820    -0.25737414 M P8Sd1_=  
    Change in Focus                :       1.253875 @ujwN([I  
          6     0.21263372    -0.33139862 wG49|!l6T  
    Change in Focus                :      -0.903878 (RFH.iX  
          7     0.40051424    -0.14351809 $ 64up!  
    Change in Focus                :      -1.354815 y'm!h?8  
          8     0.48754161    -0.05649072 ,ayEZ#4.m  
    Change in Focus                :       0.215922 6J>AU  
          9     0.40357468    -0.14045766 Z[Tou  
    Change in Focus                :       0.281783 iyn9[>j e  
         10     0.26315315    -0.28087919 U)G.Bst  
    Change in Focus                :      -1.048393 a <C?- g|  
         11     0.26120585    -0.28282649 eA7 Iv{M  
    Change in Focus                :       1.017611 +ydd"`  
         12     0.24033815    -0.30369419 3RaW\cWzg  
    Change in Focus                :      -0.109292 OMK,L:poC  
         13     0.37164046    -0.17239188 'i%r  
    Change in Focus                :      -0.692430 WkXgz6 P  
         14     0.48597489    -0.05805744 x|m9?[ !_  
    Change in Focus                :      -0.662040 HQ@g6  
         15     0.21462327    -0.32940907 joI)6c  
    Change in Focus                :       1.611296 >Lo\?X~  
         16     0.43378226    -0.11025008 Qa,=  
    Change in Focus                :      -0.640081 f- (i%  
         17     0.39321881    -0.15081353 d3:GmB .  
    Change in Focus                :       0.914906 K T0t4XPM  
         18     0.20692530    -0.33710703 l_}d Q&R  
    Change in Focus                :       0.801607 R%KF/1;/  
         19     0.51374068    -0.03029165 S L 5k^|  
    Change in Focus                :       0.947293 Zp)=l Td  
         20     0.38013374    -0.16389860 s|WwB T  
    Change in Focus                :       0.667010 R ABw( b  
    <yipy[D  
    Number of traceable Monte Carlo files generated: 20 RiQ ]AsTtl  
    42]7N3:'  
    Nominal     0.54403234 !p+54w\ 2  
    Best        0.54384387    Trial     2 Hk*1Wrs*  
    Worst       0.18154684    Trial     4 jh/,G5RM9  
    Mean        0.35770970 by<@\n2B:U  
    Std Dev     0.11156454 ?=9'?K/~a  
    |OJWQU![by  
    v82wnP-~7  
    Compensator Statistics: X8ulaa  
    Change in back focus: ZGZNZ}~#  
    Minimum            :        -1.354815 8</wQ6&|  
    Maximum            :         1.611296 -Fd&rq:GB(  
    Mean               :         0.161872 +4-T_m/W/  
    Standard Deviation :         0.869664 yn mjIQ  
    V~/G,3:0y%  
    90% >       0.20977951               9 " q-Bb  
    80% >       0.22748071               dCi:@+z8  
    50% >       0.38667627               6C&&="uww  
    20% >       0.46553746               '$OUe {j<  
    10% >       0.50064115                b;b,t0wS  
    rhc+tR  
    End of Run. _f0AV;S:vd  
    x.-d)]a!  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 Wa|V~PL+T  
    .yy-jf/  
    ~Fuq{e9`  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 D#LV&4e>.E  
    l$/pp  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 0 SSdp<  
    80% >       0.22748071                 Xd+H()nR  
    50% >       0.38667627                 }i!+d,|f  
    20% >       0.46553746                 Hi09?AX  
    10% >       0.50064115  57q=  
    Q|)>9m!tt  
    最后这个数值是MTF值呢,还是MTF的公差? ~3:VM_  
    zufphS|  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   VwI  
    \( s `=(t  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : |WaWmp(pQ  
    90% >       0.20977951                 <zqIq9}r  
    80% >       0.22748071                 er_6PV  
    50% >       0.38667627                 'ij+MU 1  
    20% >       0.46553746                 nN&dtjoF  
    10% >       0.50064115 p8 S~`fjV  
    ....... x9F *$G  
    Mc c%&j  
    dXDyY  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   ]foS.D,  
    Mode                : Sensitivities 15_"U+O(/  
    Sampling            : 2 )P R`irw  
    Nominal Criterion   : 0.54403234 V+y|C[A F  
    Test Wavelength     : 0.6328 %J6>Vc!ix=  
    v"2A?  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? \|vo@E  
    CNV^,`FX  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试