切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16546阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 Cj=_WWo  
    [_`@ V4  
    $Wjx$fD  
    C~WWuju'  
    然后添加了默认公差分析,基本没变 /Ny#+$cfk  
    3a&HW JBSx  
    IBUFXzl  
    >2F9Tz,3  
    然后运行分析的结果如下: R?y_tho4A  
    \;iOQqv0&  
    Analysis of Tolerances 7'gk=MQc  
    QX42^]({;c  
    File : E:\光学设计资料\zemax练习\f500.ZMX w}s5=>QG%  
    Title: e jR_3K^  
    Date : TUE JUN 21 2011 q8uq%wf  
    ~Kl"V% >  
    Units are Millimeters. l;$FR4}d  
    All changes are computed using linear differences.  F&lH5  
    1!yd(p=cL  
    Paraxial Focus compensation only. Z ;[xaP\S  
    -zWNQp$  
    WARNING: Solves should be removed prior to tolerancing. KEdqA/F>  
    S<jiy<|`  
    Mnemonics: *^RoI  
    TFRN: Tolerance on curvature in fringes. =A~5?J=  
    TTHI: Tolerance on thickness. B%`| W@v  
    TSDX: Tolerance on surface decentering in x. ]+b?J0|P<  
    TSDY: Tolerance on surface decentering in y. ?B@3A)a  
    TSTX: Tolerance on surface tilt in x (degrees). pNZ3vTs6  
    TSTY: Tolerance on surface tilt in y (degrees). !/ dH"h  
    TIRR: Tolerance on irregularity (fringes). H0jbG;  
    TIND: Tolerance on Nd index of refraction. Sy]W4%  
    TEDX: Tolerance on element decentering in x. "a(e2H2&T4  
    TEDY: Tolerance on element decentering in y. }{kn/m/  
    TETX: Tolerance on element tilt in x (degrees). FS!9 j8  
    TETY: Tolerance on element tilt in y (degrees). &g>M Z" Z|  
    ';}:*nZ//_  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. @$Yk#N;&(  
    9Z f  
    WARNING: Boundary constraints on compensators will be ignored. @4KKm@(p85  
    Dm$SW<!l|  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm auqN8_+=  
    Mode                : Sensitivities `gF`Sgz  
    Sampling            : 2 66sgs16k  
    Nominal Criterion   : 0.54403234 rCsC}2O  
    Test Wavelength     : 0.6328 6G#[Mc yn  
    /Dyig  
    epG]$T![  
    Fields: XY Symmetric Angle in degrees BG)zkn$  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY 2Nx:Y+[  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 -m[ tYp,q  
    kw} E0uY  
    Sensitivity Analysis: G(wstHT;/  
    [w-Tf&  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| T!Tp:&O-  
    Type                      Value      Criterion        Change          Value      Criterion        Change 9Y2.ob!$}  
    Fringe tolerance on surface 1 J`C 2}$ ~  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 \){_\{&  
    Change in Focus                :      -0.000000                            0.000000 9G"4w`P  
    Fringe tolerance on surface 2 &x=_n'  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 UtC<TBr  
    Change in Focus                :       0.000000                            0.000000 TaaCl#g$?  
    Fringe tolerance on surface 3 f="ZplW  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 Nq^o8q_  
    Change in Focus                :      -0.000000                            0.000000 Bn%?{z)  
    Thickness tolerance on surface 1 }}u`*&,g  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 mkPqxzxbrL  
    Change in Focus                :       0.000000                            0.000000 st~ l||  
    Thickness tolerance on surface 2 kGC*\?<LmR  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 Z0O0Q=e\Y  
    Change in Focus                :       0.000000                           -0.000000 R4'>5.M  
    Decenter X tolerance on surfaces 1 through 3 +uj;00 D  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 XiV K4sD8  
    Change in Focus                :       0.000000                            0.000000 xls US'Eo  
    Decenter Y tolerance on surfaces 1 through 3 LOu9#w"  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 lqgR4  !  
    Change in Focus                :       0.000000                            0.000000 ;8 *"c  
    Tilt X tolerance on surfaces 1 through 3 (degrees) Hw toa,  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 &U CtyCz  
    Change in Focus                :       0.000000                            0.000000 {X<_Y<  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) XbeT x  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 Fp"c {  
    Change in Focus                :       0.000000                            0.000000 fZS'e{V  
    Decenter X tolerance on surface 1 H;@0L}Nu+}  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 T,Q7 YI  
    Change in Focus                :       0.000000                            0.000000 44w "U%+  
    Decenter Y tolerance on surface 1 !>wu7u-  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 9eE FX7  
    Change in Focus                :       0.000000                            0.000000 ?B)e8i<[f  
    Tilt X tolerance on surface (degrees) 1 ~(NFjCUY?  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 AAuwE&Gg  
    Change in Focus                :       0.000000                            0.000000 Im};wJ&  
    Tilt Y tolerance on surface (degrees) 1 G(o6/  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 BT^=p  
    Change in Focus                :       0.000000                            0.000000 ()$m9%x  
    Decenter X tolerance on surface 2 beT[7uVj_  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 V?>&9D"m  
    Change in Focus                :       0.000000                            0.000000 Q,tjODc6n  
    Decenter Y tolerance on surface 2 <VQ@I  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 !}c\u  
    Change in Focus                :       0.000000                            0.000000 ^ 5>W`vwp  
    Tilt X tolerance on surface (degrees) 2 0R0_UvsXU  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 D vN0h(?  
    Change in Focus                :       0.000000                            0.000000 Y t_t>  
    Tilt Y tolerance on surface (degrees) 2 .b!HEi<F  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 E@l@f  
    Change in Focus                :       0.000000                            0.000000 (9'q/qgTO  
    Decenter X tolerance on surface 3 >MhZ(&iD  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 %,@e- &>  
    Change in Focus                :       0.000000                            0.000000 bP|-GCKM8  
    Decenter Y tolerance on surface 3 o/vD]Fs  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 gdh|X[d  
    Change in Focus                :       0.000000                            0.000000 _j{)%%?r  
    Tilt X tolerance on surface (degrees) 3 P!)F1U]!  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563  n$>_2v  
    Change in Focus                :       0.000000                            0.000000 C.H(aX)7  
    Tilt Y tolerance on surface (degrees) 3 }s#4m  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 zxd<Cq>d  
    Change in Focus                :       0.000000                            0.000000 -- IewW  
    Irregularity of surface 1 in fringes 4{ZVw/VP,-  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 B{S^t\T$  
    Change in Focus                :       0.000000                            0.000000 B4c;/W-  
    Irregularity of surface 2 in fringes yM(ezb  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 jH;L7  
    Change in Focus                :       0.000000                            0.000000 ]/%CTD(O  
    Irregularity of surface 3 in fringes OU^I/TU  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 An,TunX  
    Change in Focus                :       0.000000                            0.000000 DGz}d,ie  
    Index tolerance on surface 1 8Bxb~*  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 s%m?Yh3  
    Change in Focus                :       0.000000                            0.000000 eSW}H_3  
    Index tolerance on surface 2 <K/iX%b?  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 9`@}KnvB?  
    Change in Focus                :       0.000000                           -0.000000 "CFU$~  
    !NKPy+v  
    Worst offenders: jCg4$),b  
    Type                      Value      Criterion        Change 1pN8,[hyR7  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 G!Y7Rj WD  
    TSTY   2             0.20000000     0.35349910    -0.19053324 qV``' _=<  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 ?8<R)hJa<  
    TSTX   2             0.20000000     0.35349910    -0.19053324 uhwCC  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 tqKX\N=5^  
    TSTY   1             0.20000000     0.42678383    -0.11724851 g`"_+x'  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 bZ+H u~  
    TSTX   1             0.20000000     0.42678383    -0.11724851 em ]0^otM  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 uw`J5TND  
    TSTY   3             0.20000000     0.42861670    -0.11541563  %Rm`YH?  
    :&RpB^]  
    Estimated Performance Changes based upon Root-Sum-Square method: <){J|O  
    Nominal MTF                 :     0.54403234 KJV],6d  
    Estimated change            :    -0.36299231 E-?JHJloU  
    Estimated MTF               :     0.18104003 _Pl5?5eZj  
    gA2]kZg  
    Compensator Statistics: {Z~ze`N/  
    Change in back focus: <bywi2]z  
    Minimum            :        -0.000000 &iJvkt  
    Maximum            :         0.000000 e\*N Lj_(  
    Mean               :        -0.000000 P Qi=  
    Standard Deviation :         0.000000 i[vOpg]J  
    TLz>|gr  
    Monte Carlo Analysis: <sjz_::V8R  
    Number of trials: 20 ;4`%?6%  
    2rS`ViicD  
    Initial Statistics: Normal Distribution 7q#R,\  
    dQNW1-s  
      Trial       Criterion        Change 0j' Xi_uM  
          1     0.42804416    -0.11598818 gy5R"_MU  
    Change in Focus                :      -0.400171 njb{   
          2     0.54384387    -0.00018847 M-C>I;a  
    Change in Focus                :       1.018470 -{$L`{|G  
          3     0.44510003    -0.09893230 dp'k$el  
    Change in Focus                :      -0.601922 ^F|/\i   
          4     0.18154684    -0.36248550 ;!H]&2`'(  
    Change in Focus                :       0.920681 _Oc\hW  
          5     0.28665820    -0.25737414 e:|Bn>*  
    Change in Focus                :       1.253875 >WY\P4)k  
          6     0.21263372    -0.33139862 (;++a9GK  
    Change in Focus                :      -0.903878 fZxEE~Q1  
          7     0.40051424    -0.14351809 v)v`896S`  
    Change in Focus                :      -1.354815 l9{.~]V  
          8     0.48754161    -0.05649072 $#J  
    Change in Focus                :       0.215922 }#`-mRaU  
          9     0.40357468    -0.14045766 6>Is-/hsy  
    Change in Focus                :       0.281783 kfkcaj4l]  
         10     0.26315315    -0.28087919 p8E6_%Rw  
    Change in Focus                :      -1.048393 Sfffm$H  
         11     0.26120585    -0.28282649 "J%dI9tM{  
    Change in Focus                :       1.017611 [4\n(/  
         12     0.24033815    -0.30369419 )"Dl,Fig:/  
    Change in Focus                :      -0.109292 V<t!gT#&o!  
         13     0.37164046    -0.17239188 a,?u 2  
    Change in Focus                :      -0.692430 #]s&[O43  
         14     0.48597489    -0.05805744 #AH<dS  
    Change in Focus                :      -0.662040 ,4S6F HK  
         15     0.21462327    -0.32940907 Z$Vd8U;  
    Change in Focus                :       1.611296 p}yp!(l  
         16     0.43378226    -0.11025008 1&utf0TX6q  
    Change in Focus                :      -0.640081 o[ 4e_ @E  
         17     0.39321881    -0.15081353 %d#j%=  
    Change in Focus                :       0.914906 $`|\aXd[C*  
         18     0.20692530    -0.33710703 `it  
    Change in Focus                :       0.801607 Xm~N Bt  
         19     0.51374068    -0.03029165 sN@=Ri?\  
    Change in Focus                :       0.947293 B3@\Ua)  
         20     0.38013374    -0.16389860 Y i`wj^  
    Change in Focus                :       0.667010 /jd.<r=_I  
    _'U(q\ri  
    Number of traceable Monte Carlo files generated: 20 Y| F~w~Cb  
     *#sY-Gd  
    Nominal     0.54403234 Q=F4ZrNqD  
    Best        0.54384387    Trial     2 4So ,m0v  
    Worst       0.18154684    Trial     4 ^eCMATE  
    Mean        0.35770970 n4DKLAl  
    Std Dev     0.11156454 ]+@I] \S4  
    80Z'1'u0  
    YiTVy/  
    Compensator Statistics: Ydh+iLjhx  
    Change in back focus: ECLQqjB  
    Minimum            :        -1.354815 "Rr650w[  
    Maximum            :         1.611296 fO 6Jug  
    Mean               :         0.161872 v|;}}ol  
    Standard Deviation :         0.869664 "uG@gV  
    u=PYm+q{  
    90% >       0.20977951               A%% Vyz  
    80% >       0.22748071               e c4vX  
    50% >       0.38667627               ~zL DLr=  
    20% >       0.46553746               ~cb7]^#u1l  
    10% >       0.50064115                U6LENY+Ja  
    0z`-fQfK  
    End of Run. )|E617g  
    |)b:@q3k+n  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 m 9.BU2.  
    s=83a{#K  
    uu;1B.[b  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 :a'[ 4w  
    %%hG],w  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 =a!_H=+4  
    80% >       0.22748071                 Fu[<zA^  
    50% >       0.38667627                 /uJ(&#87  
    20% >       0.46553746                 }5]7lGR  
    10% >       0.50064115 M992XXd  
    *dPG[ }  
    最后这个数值是MTF值呢,还是MTF的公差? o3(:R0  
    b&2 N7%  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   kB-]SD#  
    1}ws@hU  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : mC} b>\  
    90% >       0.20977951                 eI98J"h%?  
    80% >       0.22748071                 @cc}[Uw4B  
    50% >       0.38667627                 >?[?W|k7V  
    20% >       0.46553746                 *#83U?  
    10% >       0.50064115 Zs2;VW4RW  
    ....... T_[  
    jHk.]4&0  
    %LBf'iA  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   f.0HIc  
    Mode                : Sensitivities B.L_EIw  
    Sampling            : 2 cZ3A~dTOR  
    Nominal Criterion   : 0.54403234 Tnas$=J  
    Test Wavelength     : 0.6328  PZj}]d `  
    Ld 0j!II(  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? u q A!#E  
    8%p+:6kP5  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试