切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16549阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 "Ln)v   
    2WqjNqx)6  
    ?8pRRzV$  
    0ZTT^2R  
    然后添加了默认公差分析,基本没变 n%A)#AGGc  
    ?3[as<GZ8  
    ttgb"Wb%S  
    9[T}cN=|  
    然后运行分析的结果如下: NU O9,  
    yoQ}m/Cj  
    Analysis of Tolerances ',~,hJ0  
     `i;f  
    File : E:\光学设计资料\zemax练习\f500.ZMX ,-D3tleu`  
    Title: *{ 6{ZKM  
    Date : TUE JUN 21 2011 Zh,(/-XN;  
    YB*I'm3q  
    Units are Millimeters. oUoDj'JN{  
    All changes are computed using linear differences. s>ilxLSX]  
    cJ=0zEv  
    Paraxial Focus compensation only. 4;=+qb  
    qi!+ Ceo}  
    WARNING: Solves should be removed prior to tolerancing. N 8 n`f  
    _ ZMoPEW  
    Mnemonics: 'a[|'  
    TFRN: Tolerance on curvature in fringes. O!#r2Y"?K1  
    TTHI: Tolerance on thickness. C8ek{o)%W  
    TSDX: Tolerance on surface decentering in x. 4J{6Wt";  
    TSDY: Tolerance on surface decentering in y. *d b,N'rK  
    TSTX: Tolerance on surface tilt in x (degrees). G*^4+^Vz?  
    TSTY: Tolerance on surface tilt in y (degrees). g[4pG`z  
    TIRR: Tolerance on irregularity (fringes). \xR1|M  
    TIND: Tolerance on Nd index of refraction. k^K>*mcJ  
    TEDX: Tolerance on element decentering in x. 54r/s#|-3  
    TEDY: Tolerance on element decentering in y. 5o2w)<d!  
    TETX: Tolerance on element tilt in x (degrees). j`7q7}  
    TETY: Tolerance on element tilt in y (degrees). OO#_ 0qK  
    JS$ojL^  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. v[57LB  
    "n'kv!?\  
    WARNING: Boundary constraints on compensators will be ignored. Lh\ 1L  
    lub_2Cb|j  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm RzhAX I=  
    Mode                : Sensitivities ~HBQQt  
    Sampling            : 2 ZD~ra7  
    Nominal Criterion   : 0.54403234 :J6 xYy$  
    Test Wavelength     : 0.6328 FLUvFD  
    (X zy~l<  
    RqB 8g  
    Fields: XY Symmetric Angle in degrees zi%Ql|zI~  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY TMJq-u51  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 4 '"C8vw.  
    7bSj[kuN  
    Sensitivity Analysis: Vq$8!#~w  
    A1g.ww:  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| mUA!GzJ~u-  
    Type                      Value      Criterion        Change          Value      Criterion        Change FNlS)Bs  
    Fringe tolerance on surface 1 uHeKttR-  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 s k_TKN`+  
    Change in Focus                :      -0.000000                            0.000000 }iIZA>eF  
    Fringe tolerance on surface 2 _TntZv.?  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 zCji]:  
    Change in Focus                :       0.000000                            0.000000 N2 4J!L  
    Fringe tolerance on surface 3 y~Z7sx0  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 f*o+g:]3  
    Change in Focus                :      -0.000000                            0.000000 \?tE,\Ln  
    Thickness tolerance on surface 1 i+90##4<?  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 7D&O5Z=%+  
    Change in Focus                :       0.000000                            0.000000 Ua%;hI)j$  
    Thickness tolerance on surface 2 iVT)V>Up  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 tJ$gH;  
    Change in Focus                :       0.000000                           -0.000000 L9{y1'')  
    Decenter X tolerance on surfaces 1 through 3 q?y-s  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 OMf w#  
    Change in Focus                :       0.000000                            0.000000 jZr"d*Y  
    Decenter Y tolerance on surfaces 1 through 3 L8,/  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 HjCe/J ;  
    Change in Focus                :       0.000000                            0.000000 WeZ?L|&%w0  
    Tilt X tolerance on surfaces 1 through 3 (degrees) (1e,9!?  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 T].Xx`  
    Change in Focus                :       0.000000                            0.000000 dk/f_m  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) 8'qq!WR~  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 ^u(-v/D9  
    Change in Focus                :       0.000000                            0.000000 1 HY K& ',  
    Decenter X tolerance on surface 1 HSR,moI  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 IN_O!c0e  
    Change in Focus                :       0.000000                            0.000000 mor[AJ  
    Decenter Y tolerance on surface 1 AO]k*N,N  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 BdrYc^?JL]  
    Change in Focus                :       0.000000                            0.000000  < v1.+  
    Tilt X tolerance on surface (degrees) 1 I;Pd}A_}=_  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 |@5G\N-  
    Change in Focus                :       0.000000                            0.000000 t|P+^SL  
    Tilt Y tolerance on surface (degrees) 1 u-M Td  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 NY?pvb  
    Change in Focus                :       0.000000                            0.000000 f cnv[B..{  
    Decenter X tolerance on surface 2 %6\L^RP  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 O1Ynl` }  
    Change in Focus                :       0.000000                            0.000000  s2`}~  
    Decenter Y tolerance on surface 2 MbxJ3"@  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 mWF\h>]|.  
    Change in Focus                :       0.000000                            0.000000 O{x-9p  
    Tilt X tolerance on surface (degrees) 2 CHyT'RT  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 7jw5'`;)"  
    Change in Focus                :       0.000000                            0.000000 vddl9"V)  
    Tilt Y tolerance on surface (degrees) 2 xwu b-yz  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 []doLt;J  
    Change in Focus                :       0.000000                            0.000000 !t[;~`d9  
    Decenter X tolerance on surface 3 ,]tEh:QC  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 5,|of{8  
    Change in Focus                :       0.000000                            0.000000 </pt($  
    Decenter Y tolerance on surface 3 *4/KK  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 ASB3|uy_  
    Change in Focus                :       0.000000                            0.000000 N6Dv1_c,  
    Tilt X tolerance on surface (degrees) 3 fI,2l   
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 &Qe2 }e$  
    Change in Focus                :       0.000000                            0.000000 G\R6=K:f7  
    Tilt Y tolerance on surface (degrees) 3 ;6$W-W _  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 9a#Y D;-p  
    Change in Focus                :       0.000000                            0.000000 @=OX7zq\h-  
    Irregularity of surface 1 in fringes :Wihb#TO)  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 ~l('ly  
    Change in Focus                :       0.000000                            0.000000 (coaGQ@d  
    Irregularity of surface 2 in fringes ymn@1BA8J  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 hcpe~spz9|  
    Change in Focus                :       0.000000                            0.000000 nub!*)q  
    Irregularity of surface 3 in fringes ,#bT  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 `YY07(%  
    Change in Focus                :       0.000000                            0.000000 qOAP_\@T  
    Index tolerance on surface 1 XqGa]/;}  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 *^KEb")$  
    Change in Focus                :       0.000000                            0.000000 V@+X4`T  
    Index tolerance on surface 2 g'Wr+( A_  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 r?9".H  
    Change in Focus                :       0.000000                           -0.000000 =3nA5'UZ  
    y Ni3@f  
    Worst offenders: v|dt[>G  
    Type                      Value      Criterion        Change ~R\ $Z  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 ..x 2  
    TSTY   2             0.20000000     0.35349910    -0.19053324 H6Ytp^~>  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 ^x Z=";eq  
    TSTX   2             0.20000000     0.35349910    -0.19053324 G^Y^)pc]   
    TSTY   1            -0.20000000     0.42678383    -0.11724851 ps^["3e  
    TSTY   1             0.20000000     0.42678383    -0.11724851 x_9#:_S'  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 l3+G]C&<  
    TSTX   1             0.20000000     0.42678383    -0.11724851 T+PERz(  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 o=-Af|#b  
    TSTY   3             0.20000000     0.42861670    -0.11541563 %_G '#Bn<  
    8K@e8p( y  
    Estimated Performance Changes based upon Root-Sum-Square method: <?:h(IZe[  
    Nominal MTF                 :     0.54403234 Zq 'FOzs  
    Estimated change            :    -0.36299231 |"[;0)dw^  
    Estimated MTF               :     0.18104003 (w`_{%T  
    R2Lq??XA=  
    Compensator Statistics: g-H,*^g+  
    Change in back focus: S~W;Ld<>fB  
    Minimum            :        -0.000000 !=HxL-`j  
    Maximum            :         0.000000 -c{Y+M`  
    Mean               :        -0.000000 *\_>=sS x;  
    Standard Deviation :         0.000000 G *<g%"  
    >QPCYo<E  
    Monte Carlo Analysis: lk` |u$KPz  
    Number of trials: 20 bN|1%[7  
    }S4+1 U3  
    Initial Statistics: Normal Distribution dA<SVk*0Q  
    0b<Qs88yd>  
      Trial       Criterion        Change ~+,ZD)AKi4  
          1     0.42804416    -0.11598818 '+GY6Ecg  
    Change in Focus                :      -0.400171 t0za%q!fK<  
          2     0.54384387    -0.00018847 3#aLCpVla  
    Change in Focus                :       1.018470 (!?%"e  
          3     0.44510003    -0.09893230 /8u}VYE  
    Change in Focus                :      -0.601922 #ApmJLeCO  
          4     0.18154684    -0.36248550 $GOF'  
    Change in Focus                :       0.920681 :;IZ|hU  
          5     0.28665820    -0.25737414 7<(kvE*x  
    Change in Focus                :       1.253875 LoOw]@>  
          6     0.21263372    -0.33139862 W e*uZ?+  
    Change in Focus                :      -0.903878 lv~ga2>z  
          7     0.40051424    -0.14351809 =$T[  
    Change in Focus                :      -1.354815 oTr,zRL  
          8     0.48754161    -0.05649072 `=Rxnl,<U  
    Change in Focus                :       0.215922 I,"q:QS+  
          9     0.40357468    -0.14045766 o5YL_=7m  
    Change in Focus                :       0.281783 mE'HRv  
         10     0.26315315    -0.28087919 Xc&J.Tw#4*  
    Change in Focus                :      -1.048393 -a l  
         11     0.26120585    -0.28282649 R8YU#D (Q  
    Change in Focus                :       1.017611 'j?H >'t{  
         12     0.24033815    -0.30369419 uZ+"-Ig  
    Change in Focus                :      -0.109292 =L;g:hc<  
         13     0.37164046    -0.17239188 >.H}(!  
    Change in Focus                :      -0.692430 "*S_wN%  
         14     0.48597489    -0.05805744 - ^Y\'y2  
    Change in Focus                :      -0.662040 s=1k9   
         15     0.21462327    -0.32940907 E 0OHl  
    Change in Focus                :       1.611296 p^Z|$aZZ  
         16     0.43378226    -0.11025008 :.f( }sCS  
    Change in Focus                :      -0.640081 *|cs_,3  
         17     0.39321881    -0.15081353 DcC|oU[  
    Change in Focus                :       0.914906 K.Cx 9  
         18     0.20692530    -0.33710703 "*TP@X?@f  
    Change in Focus                :       0.801607 gt=@v())  
         19     0.51374068    -0.03029165 twt's,dO  
    Change in Focus                :       0.947293 y'<5P~W!a  
         20     0.38013374    -0.16389860 2_Zn?#G8dl  
    Change in Focus                :       0.667010 +:/.\3v71  
    0LTsWCUQ6e  
    Number of traceable Monte Carlo files generated: 20 AmUH]+5KT  
    p  S|  
    Nominal     0.54403234 J<9}) m  
    Best        0.54384387    Trial     2 [<}W S} .  
    Worst       0.18154684    Trial     4 Gs4t6+Al  
    Mean        0.35770970  feM(  
    Std Dev     0.11156454 Yf1%7+V35  
    9)n3f^,Oj*  
    i-4?]h k  
    Compensator Statistics: mR#"ng  
    Change in back focus: ,,g: x  
    Minimum            :        -1.354815 VkId6k:>6C  
    Maximum            :         1.611296 A6xN6{R!  
    Mean               :         0.161872 DZ:$p.  
    Standard Deviation :         0.869664 6aWNLJ@  
    kk OjAp{<t  
    90% >       0.20977951               '*`1uomeo  
    80% >       0.22748071               5!57<n  
    50% >       0.38667627               f %P#.  
    20% >       0.46553746               [vnxp/v/<  
    10% >       0.50064115                r jnf30  
    gEmsPk,  
    End of Run. s -F3(mc(  
    B9`_~~^U5  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 +JB*1dz>8  
    n8q%>.i7  
    Y+EwBg)co  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 _+Uf5,.5yU  
    #?Ob->v  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 ~tB9kLFG  
    80% >       0.22748071                 ?cD_\~  
    50% >       0.38667627                 g7K<"Z {M  
    20% >       0.46553746                 D Z=OZ.v  
    10% >       0.50064115 l YjPrA]TC  
    %vU*4mH  
    最后这个数值是MTF值呢,还是MTF的公差? l R^W*w4y  
    :(4];Va  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   rTeADu_vf  
    w)}@svv"  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : pPZ^T5-ks  
    90% >       0.20977951                 8\8%FSrc  
    80% >       0.22748071                 }i2dXC/  
    50% >       0.38667627                 kA&ul  
    20% >       0.46553746                 |} K7Q  
    10% >       0.50064115 P+;@?ofB  
    ....... :a9$f8*b  
    58_aI?~>>  
    74*iF'f?c  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   a fhZM$  
    Mode                : Sensitivities Yg14aKZl  
    Sampling            : 2 9 8eS f  
    Nominal Criterion   : 0.54403234 <0I=XsE1iX  
    Test Wavelength     : 0.6328 j\8'P9~%  
    tc<t%]c  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? :WBl0`kW]4  
    v mXY}Ul  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试