切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16282阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 ?fv5KdD  
    S)`%clN}J  
    Y 1v9sMN,  
    `X;'*E]e  
    然后添加了默认公差分析,基本没变 #GoZH?MAF  
    yE+Wb[H[  
    y^OT0mZkg  
     S(* u_  
    然后运行分析的结果如下: (tG8HwV-  
    }J_"/bB  
    Analysis of Tolerances 04o>POR  
    ]Q8[,HTG  
    File : E:\光学设计资料\zemax练习\f500.ZMX "INIP?  
    Title: S=f:-?N|  
    Date : TUE JUN 21 2011 r>o#h+'AV  
    /sU~cn^D5  
    Units are Millimeters. ML:Zm~A1U  
    All changes are computed using linear differences. 5f#N$mh  
    /J@<e{&t~  
    Paraxial Focus compensation only. . {\lbI  
    d1[;~)  
    WARNING: Solves should be removed prior to tolerancing. $%:=;1Jl  
    ab-z 7g  
    Mnemonics: Qk5pRoL_  
    TFRN: Tolerance on curvature in fringes. :r+BL@9  
    TTHI: Tolerance on thickness. }Mv$Up  
    TSDX: Tolerance on surface decentering in x. |XGj97#M  
    TSDY: Tolerance on surface decentering in y. @XJzM]*w&  
    TSTX: Tolerance on surface tilt in x (degrees). =\ek;d0Tqb  
    TSTY: Tolerance on surface tilt in y (degrees). '?gF9:  
    TIRR: Tolerance on irregularity (fringes). eE=}^6)(*  
    TIND: Tolerance on Nd index of refraction. v~B "Il  
    TEDX: Tolerance on element decentering in x.  U))2?#  
    TEDY: Tolerance on element decentering in y. ]cmq  
    TETX: Tolerance on element tilt in x (degrees). FN+x<VXo(  
    TETY: Tolerance on element tilt in y (degrees). &eA!h  
    )(/Bw&$  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. /s~(? =qYH  
    4{v?<x8  
    WARNING: Boundary constraints on compensators will be ignored. 1#w'<}h#U  
    XI5TVxo(q  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm Jc=~BT_G  
    Mode                : Sensitivities O)FkpZc@9c  
    Sampling            : 2 >2^|r8l5  
    Nominal Criterion   : 0.54403234  8MZ:=  
    Test Wavelength     : 0.6328 (ah^</  
    &_1x-@oI2:  
    -J& b~t@  
    Fields: XY Symmetric Angle in degrees 7*MjQzg-P  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY eaWK2%v  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 hy}n&h  
    L> \/%x>Wx  
    Sensitivity Analysis: ^[=1J  
    /EvnwYQy  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| F2^qf  
    Type                      Value      Criterion        Change          Value      Criterion        Change e~1$x`DH  
    Fringe tolerance on surface 1 Ib}~Q@?2  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 1nZ7xCDK98  
    Change in Focus                :      -0.000000                            0.000000 Ly_.% f  
    Fringe tolerance on surface 2 Q2LAXTF]y  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 IxU#x*  
    Change in Focus                :       0.000000                            0.000000 p!o+8Xz5  
    Fringe tolerance on surface 3 C"cBlru8B  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 u-k!h  
    Change in Focus                :      -0.000000                            0.000000 e_ h`x+\:  
    Thickness tolerance on surface 1 /ReOf<%B  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 lxh}N,  
    Change in Focus                :       0.000000                            0.000000 krSOSW J  
    Thickness tolerance on surface 2 [ApAd  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 +'`I]K>  
    Change in Focus                :       0.000000                           -0.000000 %7SGQE#W_~  
    Decenter X tolerance on surfaces 1 through 3 1 F+$\fLr  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 X B[C&3I  
    Change in Focus                :       0.000000                            0.000000 $.Qu55=z<  
    Decenter Y tolerance on surfaces 1 through 3 )uK Tf=;  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 oFDJwOJ'Bj  
    Change in Focus                :       0.000000                            0.000000  B@K =^77  
    Tilt X tolerance on surfaces 1 through 3 (degrees) JfVGs;_,  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 ~|R/w%*C  
    Change in Focus                :       0.000000                            0.000000 Aw,#oG {N  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) dMDSyd<(  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 FV>xAU$  
    Change in Focus                :       0.000000                            0.000000 E>L_$J-A-  
    Decenter X tolerance on surface 1 9oA-Swc[  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 &B@qb?UE1  
    Change in Focus                :       0.000000                            0.000000 3F\UEpQ  
    Decenter Y tolerance on surface 1 _>/OqYR_jQ  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 ;Ebpf J  
    Change in Focus                :       0.000000                            0.000000 [h@MA|  
    Tilt X tolerance on surface (degrees) 1 r Cn"{.rI  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 gVpp9VB  
    Change in Focus                :       0.000000                            0.000000 N,?D<NjXl  
    Tilt Y tolerance on surface (degrees) 1 _Z3_I_lW  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 39Zs  
    Change in Focus                :       0.000000                            0.000000 uTIl} N  
    Decenter X tolerance on surface 2 {3kI~s  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 A,f%0 eQR  
    Change in Focus                :       0.000000                            0.000000 idGhWV'  
    Decenter Y tolerance on surface 2 H\RuYCn2G  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 !k0t (.  
    Change in Focus                :       0.000000                            0.000000 gt:Ot0\7  
    Tilt X tolerance on surface (degrees) 2 Xb5 $ijH  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 S X6P>:`  
    Change in Focus                :       0.000000                            0.000000 Z<~^(W7h  
    Tilt Y tolerance on surface (degrees) 2 ("rIz8b  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 Fwfe5`9'  
    Change in Focus                :       0.000000                            0.000000 % ovk}}%;  
    Decenter X tolerance on surface 3 !|;w(/  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 3I.0uLjg^  
    Change in Focus                :       0.000000                            0.000000 K$Yc!4M  
    Decenter Y tolerance on surface 3 '$5o5\  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 J6*B=PX=(  
    Change in Focus                :       0.000000                            0.000000 _.ELN/$-  
    Tilt X tolerance on surface (degrees) 3 ]J6+nA6)  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 Xn:ac^  
    Change in Focus                :       0.000000                            0.000000 aFrVP  
    Tilt Y tolerance on surface (degrees) 3 C@q&0\HN  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 Co^a$K  
    Change in Focus                :       0.000000                            0.000000 &m>txzo  
    Irregularity of surface 1 in fringes H=k`7YN  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 dL!K''24{  
    Change in Focus                :       0.000000                            0.000000 26\*x  
    Irregularity of surface 2 in fringes -"Q[n,"Y  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 D:Y `{{  
    Change in Focus                :       0.000000                            0.000000 !kg)84C[  
    Irregularity of surface 3 in fringes `%M} :T  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 w=H4#a?fc  
    Change in Focus                :       0.000000                            0.000000 dwt<s [k  
    Index tolerance on surface 1 >5!/&D.q  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 jw!QjVuRN%  
    Change in Focus                :       0.000000                            0.000000 ofA6EmQ37  
    Index tolerance on surface 2 |~3$L\X  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 .+c YzS] !  
    Change in Focus                :       0.000000                           -0.000000 v^_<K4N`  
    R(sa.Q\D4  
    Worst offenders: /+F|+1   
    Type                      Value      Criterion        Change ^. i;,  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 P!)k4n  
    TSTY   2             0.20000000     0.35349910    -0.19053324 %C8fv|@:f  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 D3emO'`gQ  
    TSTX   2             0.20000000     0.35349910    -0.19053324 XT5Vo  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 {\HE'C/?  
    TSTY   1             0.20000000     0.42678383    -0.11724851 _\Cd.  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 |fk,&5s  
    TSTX   1             0.20000000     0.42678383    -0.11724851 <.<Q.z  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 >MIp r  
    TSTY   3             0.20000000     0.42861670    -0.11541563 8@a|~\3-  
    WxS=Aip'  
    Estimated Performance Changes based upon Root-Sum-Square method: ~Zd n#z\  
    Nominal MTF                 :     0.54403234 \T_?<t,UT  
    Estimated change            :    -0.36299231 m 5NF)eL  
    Estimated MTF               :     0.18104003 TIa`cU`  
    f-tV8  
    Compensator Statistics: 9h6xli  
    Change in back focus: rHtT>UE=  
    Minimum            :        -0.000000 h;KI2k_^  
    Maximum            :         0.000000 r_Rjjo  
    Mean               :        -0.000000 ^JMSe-  
    Standard Deviation :         0.000000 /z4xq'<  
    Hvq< _&2  
    Monte Carlo Analysis: NB&u^8b  
    Number of trials: 20 8&=+Mw  
    1LjYV  
    Initial Statistics: Normal Distribution H\3CvFm  
    FZ^byIS[  
      Trial       Criterion        Change 'Sc3~lm(dH  
          1     0.42804416    -0.11598818 {fMrx1  
    Change in Focus                :      -0.400171 ma }Y\(38  
          2     0.54384387    -0.00018847 `q exEk@S  
    Change in Focus                :       1.018470 lm&C!{K  
          3     0.44510003    -0.09893230 A_%}kt (6  
    Change in Focus                :      -0.601922 #V8='qD  
          4     0.18154684    -0.36248550 ,U'Er#U  
    Change in Focus                :       0.920681 t MB;GIb #  
          5     0.28665820    -0.25737414 M{7EFTy!y  
    Change in Focus                :       1.253875 -c=IO(B/  
          6     0.21263372    -0.33139862 qgca4VV|z  
    Change in Focus                :      -0.903878 Y#6@0Nn[G  
          7     0.40051424    -0.14351809 xL>0&R  
    Change in Focus                :      -1.354815 @/JGC%!  
          8     0.48754161    -0.05649072 {F k]X#j  
    Change in Focus                :       0.215922 \+MR`\|3  
          9     0.40357468    -0.14045766 S&]:=He  
    Change in Focus                :       0.281783 DI}h?Uf ,  
         10     0.26315315    -0.28087919 h3 p 3~xq  
    Change in Focus                :      -1.048393 ?V[yw=sl04  
         11     0.26120585    -0.28282649 hBE}?J>  
    Change in Focus                :       1.017611 $Y,]D*|"K  
         12     0.24033815    -0.30369419 ~|J6M  
    Change in Focus                :      -0.109292 cp?`\P  
         13     0.37164046    -0.17239188 B>Nxc@=D  
    Change in Focus                :      -0.692430 O|j5ulO}&"  
         14     0.48597489    -0.05805744 o D* '  
    Change in Focus                :      -0.662040 6XQ)Q)  
         15     0.21462327    -0.32940907 Y=3Y~  
    Change in Focus                :       1.611296 \hM6 ykY-  
         16     0.43378226    -0.11025008 jd2Fh):q  
    Change in Focus                :      -0.640081 Ir\3c9  
         17     0.39321881    -0.15081353 K)Db3JIIk  
    Change in Focus                :       0.914906 5Cy)#Z{  
         18     0.20692530    -0.33710703 <tF]>(|M  
    Change in Focus                :       0.801607 2z[Pw0#V  
         19     0.51374068    -0.03029165 wOi>i`D&  
    Change in Focus                :       0.947293 %k$C   
         20     0.38013374    -0.16389860 Ya9uu@F  
    Change in Focus                :       0.667010 *qb`wg  
    "-xC59,  
    Number of traceable Monte Carlo files generated: 20 ]K9 x<@!  
    ;#~ !`>n?  
    Nominal     0.54403234 &`TX4b^/!  
    Best        0.54384387    Trial     2 "W+4`A(/l  
    Worst       0.18154684    Trial     4 RycEM|51V  
    Mean        0.35770970 Zo0&<QWj  
    Std Dev     0.11156454 C}1(@$  
    N'`*#UI+  
    bY>o%LL-  
    Compensator Statistics: &6\rKOsn  
    Change in back focus: <01B\t7  
    Minimum            :        -1.354815 XbH X,W$h  
    Maximum            :         1.611296 E?XA/z !  
    Mean               :         0.161872 _ _)Z Q  
    Standard Deviation :         0.869664 ;C"J5RA  
    Oy|9po  
    90% >       0.20977951               tcX7Ua(I`  
    80% >       0.22748071               If&p$pAH?  
    50% >       0.38667627               &erNVD5o  
    20% >       0.46553746               nlmkkTHF8  
    10% >       0.50064115                MW$9,[  
    *Cb(4h-  
    End of Run. X&lkA (  
    vGAPQg6*  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 Ti)n(G9$  
    16 Xwtn72  
    ]52_p[hZ}<  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 nu3 A'E`'k  
    FFQF0.@EBi  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 /0c&!OP  
    80% >       0.22748071                 4J_%quxO  
    50% >       0.38667627                 bk?\=4B:E  
    20% >       0.46553746                 ]@P*&FRcZ  
    10% >       0.50064115 +?<jSmGW  
    QCo^#-   
    最后这个数值是MTF值呢,还是MTF的公差? @$*c0 . |z  
    4(&'V+o  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   F,zJdJ  
    /7#&qx8  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : .F2nF8  
    90% >       0.20977951                 .6 NSt  
    80% >       0.22748071                 %7#Zb'  
    50% >       0.38667627                 0UJ`<Bfd  
    20% >       0.46553746                 /wE_eK.  
    10% >       0.50064115 q4i8Sp>  
    ....... \z9?rvT:  
    (NdgF+'=  
    >!1f`  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   8(5E<&JP  
    Mode                : Sensitivities V6MT>T  
    Sampling            : 2 9+I/y,aC  
    Nominal Criterion   : 0.54403234 S}^s 5ztm  
    Test Wavelength     : 0.6328 MQ(/l_=zQ  
    npcBpGL{  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? |M<.O~|D6}  
    7e4tUAiuU  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试