切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16675阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    960
    光币
    1088
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 J5\2`U_FZ  
    !]!9 $6n  
    ?qtL*;  
    hx@E,  
    然后添加了默认公差分析,基本没变 p2 m`pT  
    <*$IZl6I  
    bw[K^/  
    diF2:80o  
    然后运行分析的结果如下: ybgw#jv=  
    }h\]0'S~J~  
    Analysis of Tolerances T'VKZ5W  
    !p4FK]B/u  
    File : E:\光学设计资料\zemax练习\f500.ZMX Z`@< O%  
    Title: :D=y<n;S+  
    Date : TUE JUN 21 2011 RSf*[2  
    y1Yrf,E m=  
    Units are Millimeters. .A <n2-  
    All changes are computed using linear differences. b#_u.vP  
    K_BF=C.k  
    Paraxial Focus compensation only. OlYCw.Zu  
    ,wk %)^  
    WARNING: Solves should be removed prior to tolerancing. h)yAg e  
    ldWr-  
    Mnemonics: &n& ndq  
    TFRN: Tolerance on curvature in fringes. mRY~)< !4&  
    TTHI: Tolerance on thickness.  xXZ {  
    TSDX: Tolerance on surface decentering in x. B_|jDH#RyJ  
    TSDY: Tolerance on surface decentering in y. +?bOGUik  
    TSTX: Tolerance on surface tilt in x (degrees). |",/  
    TSTY: Tolerance on surface tilt in y (degrees). QgW4jIbx  
    TIRR: Tolerance on irregularity (fringes). [Ma d~;  
    TIND: Tolerance on Nd index of refraction. {;Y2O.lV  
    TEDX: Tolerance on element decentering in x. :8Jn?E (36  
    TEDY: Tolerance on element decentering in y. Q 1e hW  
    TETX: Tolerance on element tilt in x (degrees). gA:N>w&<X  
    TETY: Tolerance on element tilt in y (degrees). EX,)MU  
    w]Vd IS  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. :jljM(\  
    Klk[ h  
    WARNING: Boundary constraints on compensators will be ignored. O8WLulo  
    YW)& IA2  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm )I9Wa*I  
    Mode                : Sensitivities 28PT1 9&  
    Sampling            : 2 Q::6|B,G  
    Nominal Criterion   : 0.54403234 _l!TcH+e  
    Test Wavelength     : 0.6328 Wq]Lb:&{a  
    "]D2}E>U;  
    =lqGt.x  
    Fields: XY Symmetric Angle in degrees H-1y2AQ  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY Ue)8g#  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 ` SO"F,  
    xk8P4`;d$  
    Sensitivity Analysis: 9DP6g<>B  
    sDvtk]4o-4  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| !&OybjQ  
    Type                      Value      Criterion        Change          Value      Criterion        Change J^ BC  
    Fringe tolerance on surface 1 2kU=9W6ND  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 ^3  '7  
    Change in Focus                :      -0.000000                            0.000000 `?R~iLIAq  
    Fringe tolerance on surface 2 , H_Cn1l  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 SB' $?Kh  
    Change in Focus                :       0.000000                            0.000000 Gdf*x<T1  
    Fringe tolerance on surface 3 Jd>"g9  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 6P KH%  
    Change in Focus                :      -0.000000                            0.000000 rwUKg[ 1N  
    Thickness tolerance on surface 1 ?1u2P$d  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 I`e |[k2  
    Change in Focus                :       0.000000                            0.000000 Dk XB  
    Thickness tolerance on surface 2 ngoAFb  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 O7z -4r  
    Change in Focus                :       0.000000                           -0.000000 F7zBm53  
    Decenter X tolerance on surfaces 1 through 3 71ctjU`U2  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 2nGQD{  
    Change in Focus                :       0.000000                            0.000000 2|n~5\K|t  
    Decenter Y tolerance on surfaces 1 through 3 8}kY^"*&X  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 lC ^NhQi  
    Change in Focus                :       0.000000                            0.000000 ,#P eK(  
    Tilt X tolerance on surfaces 1 through 3 (degrees) 8s_'tw/{  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 JtrLTo  
    Change in Focus                :       0.000000                            0.000000 YI*Av+Z)  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) hDJ84$eVZ  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 >1=sw qa  
    Change in Focus                :       0.000000                            0.000000 Gmi$Nl!~  
    Decenter X tolerance on surface 1 E|jbbCZy2  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 ?Rj)x%fN  
    Change in Focus                :       0.000000                            0.000000 *VF UC:  
    Decenter Y tolerance on surface 1 i|5K4Puu  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 420cJ{;A  
    Change in Focus                :       0.000000                            0.000000 qUY QN2wG  
    Tilt X tolerance on surface (degrees) 1 $(ugnnJ*  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 ytXXZ`  
    Change in Focus                :       0.000000                            0.000000 od\Q<Jm}  
    Tilt Y tolerance on surface (degrees) 1 PKhH0O\_U  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 e!67Na0X(  
    Change in Focus                :       0.000000                            0.000000 eVZ/3o  
    Decenter X tolerance on surface 2 [C]u!\(IF  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 (@H'7,  
    Change in Focus                :       0.000000                            0.000000 5};Nv{km^2  
    Decenter Y tolerance on surface 2 r1= :B'z  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 I-Ya#s#m  
    Change in Focus                :       0.000000                            0.000000 p}j$p'D.RI  
    Tilt X tolerance on surface (degrees) 2 8%s_~Yc  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 8pfQAzl  
    Change in Focus                :       0.000000                            0.000000 9:!<=rk  
    Tilt Y tolerance on surface (degrees) 2 b NBpt}$  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 E5P?(5Nv  
    Change in Focus                :       0.000000                            0.000000 |7V:~MTkk&  
    Decenter X tolerance on surface 3 $4\,a^  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195  'mz _JM  
    Change in Focus                :       0.000000                            0.000000 TixXA:Mf  
    Decenter Y tolerance on surface 3 -o\r]24  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 9WaKsdf  
    Change in Focus                :       0.000000                            0.000000 &n.7~C]R  
    Tilt X tolerance on surface (degrees) 3 _ FcfNF  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 6Hz45  
    Change in Focus                :       0.000000                            0.000000 0i2ZgOJ  
    Tilt Y tolerance on surface (degrees) 3 !biq7f%6#  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 6_a42#  
    Change in Focus                :       0.000000                            0.000000 E}aTH  
    Irregularity of surface 1 in fringes ceDe!Iu  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 !tkP!%w  
    Change in Focus                :       0.000000                            0.000000 -t, .A/?  
    Irregularity of surface 2 in fringes ?3wEO>u  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 Z?H#=|U  
    Change in Focus                :       0.000000                            0.000000 YPraf$  
    Irregularity of surface 3 in fringes * _puW x  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 _ 13M  
    Change in Focus                :       0.000000                            0.000000 !A(*?0`  
    Index tolerance on surface 1 @tvAI2W  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 Hf ]aA_:   
    Change in Focus                :       0.000000                            0.000000 lS.*/u*5  
    Index tolerance on surface 2 ,4hQ#x  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 "=0#pH1o  
    Change in Focus                :       0.000000                           -0.000000 n%lY7.z8d  
    o7N3:)  
    Worst offenders: I^pD=1Y]  
    Type                      Value      Criterion        Change J+3PUfg>@R  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 ] Ma2*E !p  
    TSTY   2             0.20000000     0.35349910    -0.19053324  hfpSxL  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 ITa8*Myj  
    TSTX   2             0.20000000     0.35349910    -0.19053324 K8{Ub  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 FpjpsD~ Qu  
    TSTY   1             0.20000000     0.42678383    -0.11724851 P%hi*0pwZ  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 wXv\[z L`  
    TSTX   1             0.20000000     0.42678383    -0.11724851 2<jbNnj  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 ?:(BkY,K5  
    TSTY   3             0.20000000     0.42861670    -0.11541563 Fa`/i v  
    `}/&}Sp  
    Estimated Performance Changes based upon Root-Sum-Square method: Hf( d x\5  
    Nominal MTF                 :     0.54403234 6$qn'K$  
    Estimated change            :    -0.36299231 w,(e,8#:  
    Estimated MTF               :     0.18104003 0GW(?7ZC  
    a $pxt!6  
    Compensator Statistics: L 0?-W%$>  
    Change in back focus: 4-@D`,3L  
    Minimum            :        -0.000000 X p4x:N  
    Maximum            :         0.000000 `<>Emc8Z  
    Mean               :        -0.000000 ZzA4iT=KO  
    Standard Deviation :         0.000000 9/[3xhB4  
    HE911 lc:  
    Monte Carlo Analysis: mAkR<\?iTF  
    Number of trials: 20 l][{ #>V  
    .l$'%AG:~  
    Initial Statistics: Normal Distribution +Z0@z^6\  
    Fj<#*2{]B  
      Trial       Criterion        Change N>?R,XM V  
          1     0.42804416    -0.11598818 T&6W>VQ|[>  
    Change in Focus                :      -0.400171 W)I)QinOH  
          2     0.54384387    -0.00018847 iGmBG1a\  
    Change in Focus                :       1.018470 TY[{)aH{S  
          3     0.44510003    -0.09893230 E5.3wOE  
    Change in Focus                :      -0.601922 8YJ8_$Z  
          4     0.18154684    -0.36248550 UTw f!  
    Change in Focus                :       0.920681 f.ku v"  
          5     0.28665820    -0.25737414 Mq!03q6  
    Change in Focus                :       1.253875 5#+G7 'k  
          6     0.21263372    -0.33139862 W]p)}#FR  
    Change in Focus                :      -0.903878 /P bN!r<1  
          7     0.40051424    -0.14351809 Z)cGe1?q  
    Change in Focus                :      -1.354815 @RW=(&<1  
          8     0.48754161    -0.05649072 Gj]*_"T  
    Change in Focus                :       0.215922 FBpf_=(_1  
          9     0.40357468    -0.14045766 `N%q^f~  
    Change in Focus                :       0.281783 $qk2!  
         10     0.26315315    -0.28087919 PzThVeJ+  
    Change in Focus                :      -1.048393 n gA&PU  
         11     0.26120585    -0.28282649 ml$"C  
    Change in Focus                :       1.017611 )8Defuxk  
         12     0.24033815    -0.30369419 `!<RP'  
    Change in Focus                :      -0.109292 epa)~/sA  
         13     0.37164046    -0.17239188 <`8l8cL  
    Change in Focus                :      -0.692430 4J3cQ;z  
         14     0.48597489    -0.05805744 9mW95YI S  
    Change in Focus                :      -0.662040 7Pu.<b}  
         15     0.21462327    -0.32940907 jRP.Je@t  
    Change in Focus                :       1.611296 ^mbpt`@  
         16     0.43378226    -0.11025008 O(BAw  
    Change in Focus                :      -0.640081 x}I'W?g  
         17     0.39321881    -0.15081353 =H&@9=D*  
    Change in Focus                :       0.914906 &Pu}"M$[MH  
         18     0.20692530    -0.33710703 iXpLcHi  
    Change in Focus                :       0.801607 $CXKeWS=Q.  
         19     0.51374068    -0.03029165 U  JO  
    Change in Focus                :       0.947293 6j9P`#Lt  
         20     0.38013374    -0.16389860 8Qtd,  
    Change in Focus                :       0.667010 t>[K:[0U  
    ;2X/)sxWz  
    Number of traceable Monte Carlo files generated: 20 _:4n&1{.E  
    D^1H(y2zp  
    Nominal     0.54403234 tkr RdCq  
    Best        0.54384387    Trial     2 vCE1R]^A.]  
    Worst       0.18154684    Trial     4 XKqUbi  
    Mean        0.35770970 5nL,sFd  
    Std Dev     0.11156454  w.kb/  
    H6Q1r[(B  
    o)<c1\q  
    Compensator Statistics: NWCJ|  
    Change in back focus: vr#_pu)f4  
    Minimum            :        -1.354815 N- E)b  
    Maximum            :         1.611296 KCG-&p$v@s  
    Mean               :         0.161872 ghq#-N/t  
    Standard Deviation :         0.869664 7U_~_yb  
    V4Yw"J  
    90% >       0.20977951               ?rqU&my S  
    80% >       0.22748071               48 DC  
    50% >       0.38667627               :G?6Hl)~)  
    20% >       0.46553746               dY>oj<9  
    10% >       0.50064115                ^b-o  
    67zCil  
    End of Run.  w+<`>  
    G5~ Jp#uA  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 `8$gaA*  
    ZujPk-  
    e-vwve  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 u Ey>7I  
    78't"2>  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 fh rS7f'Zd  
    80% >       0.22748071                 @SH%l]  
    50% >       0.38667627                 >cm*_26;I  
    20% >       0.46553746                 . e' vc  
    10% >       0.50064115 {<XPE:1>Y  
    &m@~R|  
    最后这个数值是MTF值呢,还是MTF的公差? +r0ItqkM  
    3\J-=U  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   kaBP& 6|Z  
    }%z {tn  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : :a YbP,mE  
    90% >       0.20977951                 .2y2Qm  
    80% >       0.22748071                 1+P&O4>  
    50% >       0.38667627                 P)VysYb?  
    20% >       0.46553746                 $+#Lq.3,  
    10% >       0.50064115 >Q159qZ  
    ....... ZM:!LkK  
    zq(R!a6  
    $9_yD&&  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   Ne6]?\Z  
    Mode                : Sensitivities Gag=GHG  
    Sampling            : 2 .i^aYbB$X  
    Nominal Criterion   : 0.54403234 U _QCe+  
    Test Wavelength     : 0.6328 \YV`M3O  
    ~7$NVKE  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? ^xB=d S~  
    z?9vbx  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试