切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 15222阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    957
    光币
    1067
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 -3) jUzD  
    6YNL4HE?  
    MIr+4L  
    Mth:V45G|  
    然后添加了默认公差分析,基本没变 ojlyW})$%  
    "|1iz2L  
    `?N0?;  
    N2'aC} I  
    然后运行分析的结果如下: $57b.+2n  
    Y2 J-`o$5  
    Analysis of Tolerances B1!xr-kC  
    m#8 PX$_  
    File : E:\光学设计资料\zemax练习\f500.ZMX Ky%lu^  
    Title: 51y"#\7  
    Date : TUE JUN 21 2011 O8bxd6xb  
    EV{Ys}3M  
    Units are Millimeters. e*lL.  
    All changes are computed using linear differences. VSDua.  
    O HpV%8`  
    Paraxial Focus compensation only. a= j'G]=  
    uz{RV_IX7  
    WARNING: Solves should be removed prior to tolerancing. 1VM2CgRa  
    {LF4_9 =  
    Mnemonics: io+V4m  
    TFRN: Tolerance on curvature in fringes. Lm2!<<<  
    TTHI: Tolerance on thickness. $+7uB-KsU  
    TSDX: Tolerance on surface decentering in x. y{hy7w'd  
    TSDY: Tolerance on surface decentering in y. _,T 4DS6  
    TSTX: Tolerance on surface tilt in x (degrees). nDC0^&  
    TSTY: Tolerance on surface tilt in y (degrees). Px=@Tw N,  
    TIRR: Tolerance on irregularity (fringes). 0Z6geBMc  
    TIND: Tolerance on Nd index of refraction. thJ~* 0^  
    TEDX: Tolerance on element decentering in x. ZzupK^5Z  
    TEDY: Tolerance on element decentering in y. r niM[7K  
    TETX: Tolerance on element tilt in x (degrees). ed q,:  
    TETY: Tolerance on element tilt in y (degrees). 18Y#=uH}  
    ^r&)@R$V  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. :+PE1=v  
    + tMf&BZ  
    WARNING: Boundary constraints on compensators will be ignored. Q&I`uS=F  
    C{zp8 A(Dh  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm ,?|$DY+=  
    Mode                : Sensitivities yzhNl' Rz  
    Sampling            : 2 v wEbGx  
    Nominal Criterion   : 0.54403234 \\FT.e6  
    Test Wavelength     : 0.6328 /gZyl|kdy  
    @GFB{ ;=  
    , [|aWT%9  
    Fields: XY Symmetric Angle in degrees MWh Y&I+  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY 3J+2#ML  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 \CMZ_%~wU  
    !o /=,ZIx  
    Sensitivity Analysis: 9KXL6#h  
    ]A3  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| Q< :RLKVT  
    Type                      Value      Criterion        Change          Value      Criterion        Change f 5v&4  
    Fringe tolerance on surface 1 9aJIq{`E  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 7pyzPc#_  
    Change in Focus                :      -0.000000                            0.000000 ai/|qYf  
    Fringe tolerance on surface 2 !,m  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 :dSda,!z  
    Change in Focus                :       0.000000                            0.000000 3x0t[{l  
    Fringe tolerance on surface 3 sF{aG6u   
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 EsMX #1>/m  
    Change in Focus                :      -0.000000                            0.000000 hGz_F/  
    Thickness tolerance on surface 1 'k X8}bx  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 (.ir"\k1(  
    Change in Focus                :       0.000000                            0.000000 =:^aBN#  
    Thickness tolerance on surface 2 \_ 3>v5k|  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 @&ZQDi  
    Change in Focus                :       0.000000                           -0.000000 %tyo(HZQ  
    Decenter X tolerance on surfaces 1 through 3 /kbU<  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 .$18%jH#  
    Change in Focus                :       0.000000                            0.000000 zsg\|=P  
    Decenter Y tolerance on surfaces 1 through 3 cKt=?  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 $eYL|?P50h  
    Change in Focus                :       0.000000                            0.000000 1 ~zjsi  
    Tilt X tolerance on surfaces 1 through 3 (degrees) .5(YL8d  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 0X=F(,>9  
    Change in Focus                :       0.000000                            0.000000 5qb93E"C  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) !bE-&c  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 \VNu35* J|  
    Change in Focus                :       0.000000                            0.000000 UTD_rQ  
    Decenter X tolerance on surface 1 _}R[mr/  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 h1w({<q*ov  
    Change in Focus                :       0.000000                            0.000000 {o}U"b<+Ra  
    Decenter Y tolerance on surface 1 $4nAb^/  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 @8|*Ndx2  
    Change in Focus                :       0.000000                            0.000000 q!$s<n  
    Tilt X tolerance on surface (degrees) 1 $Nu{c;7"  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 uuC ["Z  
    Change in Focus                :       0.000000                            0.000000 .^Sgl o  
    Tilt Y tolerance on surface (degrees) 1 ubcB <=xb  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 -& 1(~7  
    Change in Focus                :       0.000000                            0.000000 @+gr/Pul^  
    Decenter X tolerance on surface 2 v675C#l(  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 .XJ'2yKof  
    Change in Focus                :       0.000000                            0.000000 6 c_#"4  
    Decenter Y tolerance on surface 2 UMoj9/-  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 Q(bOar5  
    Change in Focus                :       0.000000                            0.000000 ytZo0pad  
    Tilt X tolerance on surface (degrees) 2 ^_WR) F'K  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 7Sx|n}a-3  
    Change in Focus                :       0.000000                            0.000000 Jo5Bmh0  
    Tilt Y tolerance on surface (degrees) 2 !5`MiH  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 h  d3  
    Change in Focus                :       0.000000                            0.000000 :o s8"  
    Decenter X tolerance on surface 3 B9maz"lJ  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 >JpBX+]5m  
    Change in Focus                :       0.000000                            0.000000 ,Z q:na  
    Decenter Y tolerance on surface 3 bA^uzE  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 a:BW*Hy{\  
    Change in Focus                :       0.000000                            0.000000 |P >"a`  
    Tilt X tolerance on surface (degrees) 3 OQ-) 4Uk}  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 d:%b  
    Change in Focus                :       0.000000                            0.000000 2n<Mu Q]  
    Tilt Y tolerance on surface (degrees) 3 1'~Xn 4 f  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 *~#I5s\s!  
    Change in Focus                :       0.000000                            0.000000 2u3Kyn  
    Irregularity of surface 1 in fringes Cj-s  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 >qeDb0  
    Change in Focus                :       0.000000                            0.000000 '`>%RZ]  
    Irregularity of surface 2 in fringes Aa ~W,  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 I!lDKS,b  
    Change in Focus                :       0.000000                            0.000000 ,!#Am13  
    Irregularity of surface 3 in fringes f3K-X1`]'U  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 Bqf(6\)F  
    Change in Focus                :       0.000000                            0.000000 V]7/hN-Y}  
    Index tolerance on surface 1 O$*lPA[  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 qSY\a\.<  
    Change in Focus                :       0.000000                            0.000000 2"IV  
    Index tolerance on surface 2 e?>  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 bMO^}qR`  
    Change in Focus                :       0.000000                           -0.000000 HpnF,4A>  
    l_g$6\&|  
    Worst offenders: IW~R{ ]6  
    Type                      Value      Criterion        Change s<I)THC  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 %7#<K\])  
    TSTY   2             0.20000000     0.35349910    -0.19053324 GA^hev  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 msl.{  
    TSTX   2             0.20000000     0.35349910    -0.19053324 N!+=5!  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 uNyU]@R<W  
    TSTY   1             0.20000000     0.42678383    -0.11724851 w1/QnV  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 \<7Bx[/D4  
    TSTX   1             0.20000000     0.42678383    -0.11724851 Qit&cnO  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 Q i18q|l8v  
    TSTY   3             0.20000000     0.42861670    -0.11541563 dyQ7@K.E  
    gIB3DuUo  
    Estimated Performance Changes based upon Root-Sum-Square method: ?;XO1cs  
    Nominal MTF                 :     0.54403234 |E8sw a  
    Estimated change            :    -0.36299231 %2QGbnt_*  
    Estimated MTF               :     0.18104003 dbf<k%i6  
    (xfc_h*xA  
    Compensator Statistics: ]LvP)0=  
    Change in back focus: iLy^U*yK  
    Minimum            :        -0.000000 @:N8V[*u  
    Maximum            :         0.000000 +Mo4g2W  
    Mean               :        -0.000000 <.h7xZ  
    Standard Deviation :         0.000000 #C9f?fnM  
    >Pw5! i\  
    Monte Carlo Analysis: .p[uIRd`  
    Number of trials: 20 &g :(I  
    8zK#./0\  
    Initial Statistics: Normal Distribution &~:EmLgv  
    Ip t;NlR  
      Trial       Criterion        Change hek+zloB+  
          1     0.42804416    -0.11598818 Y@FYo>0O  
    Change in Focus                :      -0.400171 '2lV(>"  
          2     0.54384387    -0.00018847 *zdD4 I=  
    Change in Focus                :       1.018470 OyO<A3  
          3     0.44510003    -0.09893230 X!KX4H  
    Change in Focus                :      -0.601922 9D3W_eIc  
          4     0.18154684    -0.36248550 [jgVN w""D  
    Change in Focus                :       0.920681 FB6Lz5:Vf  
          5     0.28665820    -0.25737414 ,Fn;*  
    Change in Focus                :       1.253875 pwo$qs(p  
          6     0.21263372    -0.33139862 f^pBXz9&=  
    Change in Focus                :      -0.903878 fG \" p  
          7     0.40051424    -0.14351809 xlv(PVdn  
    Change in Focus                :      -1.354815 ZF>:m>  
          8     0.48754161    -0.05649072 S{^x]h|?  
    Change in Focus                :       0.215922 ,^9+G"H:I  
          9     0.40357468    -0.14045766 *7AB0y0k  
    Change in Focus                :       0.281783 aO{@.  
         10     0.26315315    -0.28087919  P^te  
    Change in Focus                :      -1.048393 -Q? i16pM  
         11     0.26120585    -0.28282649 =%U &$d|@G  
    Change in Focus                :       1.017611 vu( 5s  
         12     0.24033815    -0.30369419 @qNY"c%HV  
    Change in Focus                :      -0.109292 WJ8i=MO67  
         13     0.37164046    -0.17239188 DOWWG!mx  
    Change in Focus                :      -0.692430 J!Z6$VERy  
         14     0.48597489    -0.05805744 Cu@q*:'  
    Change in Focus                :      -0.662040 dA<%4_WZty  
         15     0.21462327    -0.32940907 DuC#tDP  
    Change in Focus                :       1.611296 {V7mpVTX.  
         16     0.43378226    -0.11025008 qJG;`Ugl:  
    Change in Focus                :      -0.640081 c/ Pql!h+  
         17     0.39321881    -0.15081353 `:&RB4Z  
    Change in Focus                :       0.914906 U$2Em0HO}  
         18     0.20692530    -0.33710703 "M/c0`>C!i  
    Change in Focus                :       0.801607 "L.k m  
         19     0.51374068    -0.03029165 C@a I*+@-"  
    Change in Focus                :       0.947293 > TYDkEs0  
         20     0.38013374    -0.16389860 (BY 0b%^  
    Change in Focus                :       0.667010 GvtK=A$b  
    eg;r38   
    Number of traceable Monte Carlo files generated: 20 4q .;\n  
    JV_`E_!  
    Nominal     0.54403234 HS |Gz3~  
    Best        0.54384387    Trial     2 EMnz;/dMt  
    Worst       0.18154684    Trial     4 (Z<@dkO?)  
    Mean        0.35770970 )j2 #5`?"j  
    Std Dev     0.11156454 #`y[75<n  
    n[>hJ6  
    du$lS':`  
    Compensator Statistics: h1S)B|~8  
    Change in back focus: Rxdj}xy  
    Minimum            :        -1.354815 )2c]Z|  
    Maximum            :         1.611296 YT-ua{ .^  
    Mean               :         0.161872 lL zR5445)  
    Standard Deviation :         0.869664 vyS>3(NZ  
    #~p;s>  
    90% >       0.20977951               +mjwX?yF  
    80% >       0.22748071               PxYK)n9&  
    50% >       0.38667627               yr'-;-u  
    20% >       0.46553746               'A|c\sy  
    10% >       0.50064115                igL5nE=n  
    _1)n_P4  
    End of Run. NrS+N;i  
    6W_:w  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 a=$ZM4Bn  
    o|>=< l  
    qGq]E `O  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 f\5w@nX  
    Mq~E'g4#  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    957
    光币
    1067
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    957
    光币
    1067
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 !^Ay !  
    80% >       0.22748071                 xuHP4$<h3  
    50% >       0.38667627                 ~*1Z1aZ  
    20% >       0.46553746                 y}FG5'5$13  
    10% >       0.50064115 $'}|/D  
    c\[&IlM  
    最后这个数值是MTF值呢,还是MTF的公差? 7V^j9TC  
    O<wH+k[  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   \1-lda  
    |Zn;O6c#L5  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    957
    光币
    1067
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : %"E!E1_Sv  
    90% >       0.20977951                 :[PA.Upi  
    80% >       0.22748071                 HWL? doM  
    50% >       0.38667627                 K^/.v<w  
    20% >       0.46553746                 2c,w 4rK  
    10% >       0.50064115 P$O@G$n  
    ....... MD 0d  
    bLg gh]Fh  
    e v7A;;  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   2C_I3S ~U  
    Mode                : Sensitivities I$TD[W  
    Sampling            : 2 6il+hz2&lH  
    Nominal Criterion   : 0.54403234 v49 i.c9  
    Test Wavelength     : 0.6328 >^f]Lgp  
    #b&=CsW`  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    957
    光币
    1067
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? 2Aq+:ud)P  
    0M}Ql5+h,  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    957
    光币
    1067
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试