切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16630阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    在线sansummer
     
    发帖
    960
    光币
    1088
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 RGz NZc  
    M?.[Rr-uw  
    v~KgCLo  
    gaVQ3NqF  
    然后添加了默认公差分析,基本没变 M D,+>kh  
    c=u'#|/eb  
    CAtdx!  
    <?Y.w1  
    然后运行分析的结果如下: +^<-;/FZue  
    J`[He$7)  
    Analysis of Tolerances *,#T&M7D  
    R6E.C!EI  
    File : E:\光学设计资料\zemax练习\f500.ZMX dZ{yNh.]  
    Title: j7v?NY  
    Date : TUE JUN 21 2011 G21cJi*  
    zOT(>1'  
    Units are Millimeters. ~]C m  
    All changes are computed using linear differences. }1? 2  
    `%Jq^uW  
    Paraxial Focus compensation only. _su$]s  
    <j&LC /]o  
    WARNING: Solves should be removed prior to tolerancing. rF)[ Sed:T  
    a6epew!2  
    Mnemonics: D.Z4noMA6  
    TFRN: Tolerance on curvature in fringes. {3){f;b  
    TTHI: Tolerance on thickness. E;Q ,{{#  
    TSDX: Tolerance on surface decentering in x. HN~  
    TSDY: Tolerance on surface decentering in y. (@ixV$Y  
    TSTX: Tolerance on surface tilt in x (degrees). rh$q]  
    TSTY: Tolerance on surface tilt in y (degrees). 5/C#*%EH'  
    TIRR: Tolerance on irregularity (fringes). `uLH3sr  
    TIND: Tolerance on Nd index of refraction. KV]8o'  
    TEDX: Tolerance on element decentering in x. k \V6 q9*  
    TEDY: Tolerance on element decentering in y. IHStN,QD  
    TETX: Tolerance on element tilt in x (degrees). _H)>U[  
    TETY: Tolerance on element tilt in y (degrees). $|n#L6k  
    <ecif_a=m  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. 25 m!Bf  
    JVt(!%K}&  
    WARNING: Boundary constraints on compensators will be ignored. az;o7[rI^  
    Ln@n6*%(/  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm )Y 9JP@}T  
    Mode                : Sensitivities W=ar&O~}n  
    Sampling            : 2 ).uR@j  
    Nominal Criterion   : 0.54403234 ,{VC(/d  
    Test Wavelength     : 0.6328 !/wR[`s9w  
    }.74w0~0^  
    BZ"+ ND9m_  
    Fields: XY Symmetric Angle in degrees tZqy \_G  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY uwhb-.w  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 /G& %T  
    eZk4 $y  
    Sensitivity Analysis: %VmHw~xyF:  
    s6.#uT7h  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| cr"AK"TQ  
    Type                      Value      Criterion        Change          Value      Criterion        Change {v~.zRW%]r  
    Fringe tolerance on surface 1 C3z#A3&J  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 K6nGC  
    Change in Focus                :      -0.000000                            0.000000 |}KNtIX\G  
    Fringe tolerance on surface 2 NZ=`iA8)X  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 9>1Gj-S2:  
    Change in Focus                :       0.000000                            0.000000 4Y:[YlfD.  
    Fringe tolerance on surface 3 ,+hH|$  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 m[%*O#_  
    Change in Focus                :      -0.000000                            0.000000 M73d^z  
    Thickness tolerance on surface 1 > nOU 8  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 w|0w<K  
    Change in Focus                :       0.000000                            0.000000 ;8J+Q0V  
    Thickness tolerance on surface 2 wR*>9LjeG  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 FatLc|[  
    Change in Focus                :       0.000000                           -0.000000 rXG?'jN  
    Decenter X tolerance on surfaces 1 through 3 Kb5 YA  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 $2lPUQZ<5  
    Change in Focus                :       0.000000                            0.000000 2c4x=%  
    Decenter Y tolerance on surfaces 1 through 3 v cZg3:j  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 }vspjplk^  
    Change in Focus                :       0.000000                            0.000000 C=uYX"  
    Tilt X tolerance on surfaces 1 through 3 (degrees) k7\ ,N o}  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 f9FLtdh \7  
    Change in Focus                :       0.000000                            0.000000 s+l3]Hd  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) r[Zg$CW  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 K>x+*UPL  
    Change in Focus                :       0.000000                            0.000000 ~L7@,d:  
    Decenter X tolerance on surface 1 ERQc1G]3Dd  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 /n&Y6@W  
    Change in Focus                :       0.000000                            0.000000 oo{3-+ ?  
    Decenter Y tolerance on surface 1 vk] vtjf&%  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 'g7eN@Wh.z  
    Change in Focus                :       0.000000                            0.000000 o2 vBY]Tj  
    Tilt X tolerance on surface (degrees) 1 1Zj NRg=  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 k;W`6:Kjp  
    Change in Focus                :       0.000000                            0.000000 4<{]_S6"0y  
    Tilt Y tolerance on surface (degrees) 1 :\<D q 71  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 ~.H*"  
    Change in Focus                :       0.000000                            0.000000 %=GF  
    Decenter X tolerance on surface 2 fu]mxGPc  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 jJOs`'~Q\  
    Change in Focus                :       0.000000                            0.000000 cN(Toj'`  
    Decenter Y tolerance on surface 2 >*FHJCe  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 M7JQw/,xs  
    Change in Focus                :       0.000000                            0.000000 dqu+-43I|  
    Tilt X tolerance on surface (degrees) 2 JX!@j3  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 DbH"e  
    Change in Focus                :       0.000000                            0.000000 ^w(~gQ6|mP  
    Tilt Y tolerance on surface (degrees) 2 'gQ0=6(\  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 aF (L_  
    Change in Focus                :       0.000000                            0.000000 ~R!M.gY[rK  
    Decenter X tolerance on surface 3 B=p6p f  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 2V6kCy@V  
    Change in Focus                :       0.000000                            0.000000 4`M7 3k0  
    Decenter Y tolerance on surface 3 wTw)GV4  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 *eLKD_D`!C  
    Change in Focus                :       0.000000                            0.000000 HZDeQx`*s  
    Tilt X tolerance on surface (degrees) 3 Ub_!~tb}?  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 j[e<CGZ  
    Change in Focus                :       0.000000                            0.000000 ! O~:  
    Tilt Y tolerance on surface (degrees) 3 Z|k>)pv@  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 uz%<K(:Ov  
    Change in Focus                :       0.000000                            0.000000 ?n0Z4 8%  
    Irregularity of surface 1 in fringes C ks;f6G  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 X{YY)}^  
    Change in Focus                :       0.000000                            0.000000 *@1(!A  
    Irregularity of surface 2 in fringes $2gX!)  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 4 [K"e{W3  
    Change in Focus                :       0.000000                            0.000000 v%2@M  
    Irregularity of surface 3 in fringes E@(nKe&6T_  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 ?Xq"Q^o4#e  
    Change in Focus                :       0.000000                            0.000000 xxS>O%  
    Index tolerance on surface 1 CNkI9>L=W`  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 Vhi4_~W3j]  
    Change in Focus                :       0.000000                            0.000000 "AcC\iq  
    Index tolerance on surface 2 Q%*987i  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 )oU%++cdo  
    Change in Focus                :       0.000000                           -0.000000 Nm.G,6<J  
    |3{"ANmm'  
    Worst offenders: ^S%xaA9  
    Type                      Value      Criterion        Change %p t^?  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 *+|,rcI  
    TSTY   2             0.20000000     0.35349910    -0.19053324 !CGpE=V  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 FO S5?%J  
    TSTX   2             0.20000000     0.35349910    -0.19053324 +~[>Usf  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 [0M`uf/u  
    TSTY   1             0.20000000     0.42678383    -0.11724851 92 oUQ EK  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 Krw'|<  
    TSTX   1             0.20000000     0.42678383    -0.11724851 CAT{)*xc  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 JV`"kk/  
    TSTY   3             0.20000000     0.42861670    -0.11541563 qvs&*lBY  
    ,%X"Caz  
    Estimated Performance Changes based upon Root-Sum-Square method: E3"j7y[S  
    Nominal MTF                 :     0.54403234 ZR8%h<  
    Estimated change            :    -0.36299231 &ra2(S45  
    Estimated MTF               :     0.18104003 WZ6'"Cz`  
    \WPy9kRU  
    Compensator Statistics: ?l>Ra0  
    Change in back focus: vKFEA7  
    Minimum            :        -0.000000 4o69t  
    Maximum            :         0.000000 Xf%vfAf  
    Mean               :        -0.000000 F6Ne?[b  
    Standard Deviation :         0.000000 |QHIB?C?`  
    UY}EW`$#m  
    Monte Carlo Analysis: s^R$u"pFs  
    Number of trials: 20 m8Y>4:Nw  
    1/tyne=m  
    Initial Statistics: Normal Distribution ym;I(TC+  
    ~o X`Gih  
      Trial       Criterion        Change Z/e^G f#i  
          1     0.42804416    -0.11598818 [O@U@bD9  
    Change in Focus                :      -0.400171 q5G`N>"V  
          2     0.54384387    -0.00018847 B".3NQ  
    Change in Focus                :       1.018470 =v(&qh9Q2  
          3     0.44510003    -0.09893230 's\rQ-TV  
    Change in Focus                :      -0.601922 Ie7S'.Lmq  
          4     0.18154684    -0.36248550 ;;}}uW=  
    Change in Focus                :       0.920681 b`fWT:?=  
          5     0.28665820    -0.25737414 $[U:Dk}  
    Change in Focus                :       1.253875 6ee1^>  
          6     0.21263372    -0.33139862 UXPF"}S2  
    Change in Focus                :      -0.903878 t3<HE_B|  
          7     0.40051424    -0.14351809 qNX+!Y}y  
    Change in Focus                :      -1.354815 f64}#E|w  
          8     0.48754161    -0.05649072 pebNE3`#  
    Change in Focus                :       0.215922 WiqkC#N  
          9     0.40357468    -0.14045766 -#`tS  
    Change in Focus                :       0.281783 2v{42]XYf  
         10     0.26315315    -0.28087919 ?6V U4nK/*  
    Change in Focus                :      -1.048393 ,?c=v`e  
         11     0.26120585    -0.28282649 X3j|J/  
    Change in Focus                :       1.017611 lFV\Go  
         12     0.24033815    -0.30369419 $VJE&b  
    Change in Focus                :      -0.109292 X&gXhr#dL\  
         13     0.37164046    -0.17239188 BmFtRbR  
    Change in Focus                :      -0.692430 <Q@{6  
         14     0.48597489    -0.05805744 r"W<1H u  
    Change in Focus                :      -0.662040 bC,SE*F\  
         15     0.21462327    -0.32940907 YDaGr6y4i  
    Change in Focus                :       1.611296 :a*F>S!  
         16     0.43378226    -0.11025008 ow7*HN*  
    Change in Focus                :      -0.640081 50^CILKo7  
         17     0.39321881    -0.15081353 7,3 g{8  
    Change in Focus                :       0.914906 hY/i)T{  
         18     0.20692530    -0.33710703 }w5`Oig[  
    Change in Focus                :       0.801607 yPk s,7U  
         19     0.51374068    -0.03029165 kf1 (  
    Change in Focus                :       0.947293 (AT)w/  
         20     0.38013374    -0.16389860 DcsQ6  
    Change in Focus                :       0.667010 (Eo#oX  
    ]ZS/9 $  
    Number of traceable Monte Carlo files generated: 20 h{CMPJjD  
    vFK!LeF%  
    Nominal     0.54403234 ar:qCq$\  
    Best        0.54384387    Trial     2 i|N(= Z=  
    Worst       0.18154684    Trial     4 W:1GY#Pe  
    Mean        0.35770970 t<yOTVah  
    Std Dev     0.11156454 bj=YFV+  
    z<u@::  
    I{7Hz{  
    Compensator Statistics: t Z]b0T(e  
    Change in back focus: _))--+cL  
    Minimum            :        -1.354815 WZf}1.Mh*  
    Maximum            :         1.611296 cpQhg-LY|  
    Mean               :         0.161872 4p]hY!7  
    Standard Deviation :         0.869664 aq$adPtu  
    2rqYm6  
    90% >       0.20977951               ktiC*|fd  
    80% >       0.22748071               9m}c2:p  
    50% >       0.38667627               qViolmDz  
    20% >       0.46553746               N  Bpf  
    10% >       0.50064115                =aRE  
    e2Df@8>  
    End of Run. =Cp}iM  
    3ms{gZbw  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 F}4jm,w  
    *h2)$^P%  
    CDGN}Q2_  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 ek]CTUl*  
    > 72qi*0  
    不吝赐教
     
    分享到
    在线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    在线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 9|RR;k[  
    80% >       0.22748071                 pTk1iGfB  
    50% >       0.38667627                 gTwxmp.,  
    20% >       0.46553746                 ,MdK "Qa>  
    10% >       0.50064115 ^PI8Bvs>j  
    l]v>PIh~N  
    最后这个数值是MTF值呢,还是MTF的公差? ,1&</R_  
    ay,E!G&H  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   ({#M*=&"  
    A?/(W_Gt^M  
    怎么没人啊,大家讨论讨论吗
    在线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : LnZC)cL P/  
    90% >       0.20977951                 H ]x-s  
    80% >       0.22748071                 Dxlpo! ?#  
    50% >       0.38667627                 JgmX=6N  
    20% >       0.46553746                 R@8pKCL.  
    10% >       0.50064115 ZcLW8L  
    ....... ,'f^K!iA   
    0;V "64U  
    }pMd/|A,  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   1z5Oi u  
    Mode                : Sensitivities nde_%d$  
    Sampling            : 2 7a_tT;f;  
    Nominal Criterion   : 0.54403234 : [r/ Y  
    Test Wavelength     : 0.6328 NrK.DY4  
    5Y(<T~  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    在线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? tg%#W `  
    6D&{+;  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    在线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试