切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16478阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 <?{}Bo0xG  
    lO:{tV  
    }lTZq|;A  
    |kNGpwpI  
    然后添加了默认公差分析,基本没变 3e6Y  
    #]DZrD&q  
    %=4ak]As  
    nWF4[<t  
    然后运行分析的结果如下: zHOE.V2Qo  
    y*b.eO  
    Analysis of Tolerances `-EH0'w~"  
    )USC  
    File : E:\光学设计资料\zemax练习\f500.ZMX iq uTT~  
    Title: 2 C]la  
    Date : TUE JUN 21 2011 lJzy)ne  
    SslY]d]  
    Units are Millimeters. 7(~H77  
    All changes are computed using linear differences. B%J%TR_  
    rYFau1  
    Paraxial Focus compensation only. .83v~{n  
    !HjNx%o5<  
    WARNING: Solves should be removed prior to tolerancing. _|  
    IqCCfsf4  
    Mnemonics: W _,;eyo  
    TFRN: Tolerance on curvature in fringes. ]( =wlq)  
    TTHI: Tolerance on thickness. 0 {JK4]C  
    TSDX: Tolerance on surface decentering in x. iE^a%|?}  
    TSDY: Tolerance on surface decentering in y. %|(?!w7  
    TSTX: Tolerance on surface tilt in x (degrees). 2vkB<[tSs  
    TSTY: Tolerance on surface tilt in y (degrees). s9rtXBJP  
    TIRR: Tolerance on irregularity (fringes). -yAnn  
    TIND: Tolerance on Nd index of refraction. CFJjh^ ~=  
    TEDX: Tolerance on element decentering in x. 7ITl3>  
    TEDY: Tolerance on element decentering in y. d$_q=ywc  
    TETX: Tolerance on element tilt in x (degrees). x]R(twi  
    TETY: Tolerance on element tilt in y (degrees). ?S&w0}R  
    U7"BlT!V\  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. @\T;PTD-  
    O GFE*  
    WARNING: Boundary constraints on compensators will be ignored. lg onR  
    ^5 ^}MB%  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm {y^|ET7  
    Mode                : Sensitivities t+ S~u^  
    Sampling            : 2 .^LL9{?  
    Nominal Criterion   : 0.54403234 [Yy\>  
    Test Wavelength     : 0.6328 II-$WJy  
    2b#(X'ob  
    f>8B'%]  
    Fields: XY Symmetric Angle in degrees =\Vu=I  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY Aa`MK$29F  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 TsX+. i'  
    l7'{OB L  
    Sensitivity Analysis: v : "m  
    ~n/Aq*  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| i$bzdc#s  
    Type                      Value      Criterion        Change          Value      Criterion        Change j6e}7  
    Fringe tolerance on surface 1   ^RV  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 whY~=lizn  
    Change in Focus                :      -0.000000                            0.000000 NuD[-;N]  
    Fringe tolerance on surface 2 0F+ zG)G"  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 mLg{6qm(q  
    Change in Focus                :       0.000000                            0.000000 ;vJ\]T ml  
    Fringe tolerance on surface 3 skI(]BDf  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 /^'Bgnez  
    Change in Focus                :      -0.000000                            0.000000 9k\)tWe  
    Thickness tolerance on surface 1 ';b3Mm #  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 {Z#e{~m#  
    Change in Focus                :       0.000000                            0.000000 7$ =Y\ P  
    Thickness tolerance on surface 2 V#NG+U.B  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 zj>aaY  
    Change in Focus                :       0.000000                           -0.000000 ;}/U+`=D?  
    Decenter X tolerance on surfaces 1 through 3 VT% KN`l  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 Dn_"B0$lk  
    Change in Focus                :       0.000000                            0.000000 *K(k Kph  
    Decenter Y tolerance on surfaces 1 through 3 H|;*_  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 /mn-+u`K  
    Change in Focus                :       0.000000                            0.000000 9c6czirwR^  
    Tilt X tolerance on surfaces 1 through 3 (degrees) iiX\it$s  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 > -y&$1  
    Change in Focus                :       0.000000                            0.000000 s.yq}Q  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) <b d1  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 \.H9$C$  
    Change in Focus                :       0.000000                            0.000000 fB~O |g  
    Decenter X tolerance on surface 1 ]*N:;J  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 SyK9Is{8  
    Change in Focus                :       0.000000                            0.000000 Vd+td;9(  
    Decenter Y tolerance on surface 1 p}3NJV  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 #bT8QbJ(  
    Change in Focus                :       0.000000                            0.000000 =&A!C"qK4[  
    Tilt X tolerance on surface (degrees) 1 #?{qlgv<p  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 sM9FE{,mx  
    Change in Focus                :       0.000000                            0.000000 7qe7F l3  
    Tilt Y tolerance on surface (degrees) 1 -<qxO  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 7\A4vUI3  
    Change in Focus                :       0.000000                            0.000000 D~#Ei?aH  
    Decenter X tolerance on surface 2 t;8\fIW5  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 _1^8xFe2  
    Change in Focus                :       0.000000                            0.000000 AGOx@;w  
    Decenter Y tolerance on surface 2 "h=6Q+Ze  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 7J9l.cM3  
    Change in Focus                :       0.000000                            0.000000 RU2c*q$^X  
    Tilt X tolerance on surface (degrees) 2 "S5S|dBc  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 g(/{.%\k  
    Change in Focus                :       0.000000                            0.000000 EM=w?T  
    Tilt Y tolerance on surface (degrees) 2 ~U6" ?  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 CjZZm^O  
    Change in Focus                :       0.000000                            0.000000 n*Q`g@`  
    Decenter X tolerance on surface 3 P|e`^Frxt  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 bGv* -;*  
    Change in Focus                :       0.000000                            0.000000 o=pt_!i/  
    Decenter Y tolerance on surface 3 ?c!:81+\  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195  gH %y  
    Change in Focus                :       0.000000                            0.000000 25:Z;J>  
    Tilt X tolerance on surface (degrees) 3 3VmI0gsm.>  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 }A]BpSEP  
    Change in Focus                :       0.000000                            0.000000 bpCNho$  
    Tilt Y tolerance on surface (degrees) 3 gQ37>  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 0n3D~Xzd  
    Change in Focus                :       0.000000                            0.000000 '>@4(=I  
    Irregularity of surface 1 in fringes _%Bz,C8  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 ?O??cjiA@  
    Change in Focus                :       0.000000                            0.000000 x(8n 9Q>  
    Irregularity of surface 2 in fringes ?"6Ov ]  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 iq?l#}]  
    Change in Focus                :       0.000000                            0.000000 @mf({Q>  
    Irregularity of surface 3 in fringes 17}$=#SX  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 Jf7frzw  
    Change in Focus                :       0.000000                            0.000000 $;2)s} ci  
    Index tolerance on surface 1 \m4T3fy  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 ~-TOsRvxR  
    Change in Focus                :       0.000000                            0.000000 z}ElpT[(;  
    Index tolerance on surface 2 z{:-!oF&CB  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 V8hO8  
    Change in Focus                :       0.000000                           -0.000000 !}y1CA  
    G @g h#[b  
    Worst offenders: {.st`n|xz  
    Type                      Value      Criterion        Change =m7H)z)i*J  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 B5ea(j  
    TSTY   2             0.20000000     0.35349910    -0.19053324 $X \va?(  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 -DP*q3  
    TSTX   2             0.20000000     0.35349910    -0.19053324 ?}}qu'N:N  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 GIT #<+"  
    TSTY   1             0.20000000     0.42678383    -0.11724851 !Xj#@e  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 Qzqc .T  
    TSTX   1             0.20000000     0.42678383    -0.11724851 >"v9iT  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 S]^`woD  
    TSTY   3             0.20000000     0.42861670    -0.11541563 ~6`iY@)  
    -/ +#5.`1  
    Estimated Performance Changes based upon Root-Sum-Square method: 0,_b)  
    Nominal MTF                 :     0.54403234 PU1,DU  
    Estimated change            :    -0.36299231 gbDX7r-  
    Estimated MTF               :     0.18104003 A`[@ 8  
    y6-XHeU  
    Compensator Statistics: %MZP)k,&U  
    Change in back focus: .oqIZ\iik  
    Minimum            :        -0.000000 \'Ssn(s  
    Maximum            :         0.000000 d"E^SBO&  
    Mean               :        -0.000000 v4rW2F:X  
    Standard Deviation :         0.000000 ]kD"&&HV  
    LY 0]l$  
    Monte Carlo Analysis: k?*KnfVh!  
    Number of trials: 20 `!vUsM.d  
    H4:&%"j7  
    Initial Statistics: Normal Distribution N\NyXh$  
    B4h5[fPX  
      Trial       Criterion        Change :z&7W<  
          1     0.42804416    -0.11598818 tF7hFL5f  
    Change in Focus                :      -0.400171 xwi\  
          2     0.54384387    -0.00018847 x|i_P|Z  
    Change in Focus                :       1.018470 m&*JMA;^  
          3     0.44510003    -0.09893230 I9?Ec6a_  
    Change in Focus                :      -0.601922 Fh8lmOL;?  
          4     0.18154684    -0.36248550 w(9*7pp  
    Change in Focus                :       0.920681 E5</h"1  
          5     0.28665820    -0.25737414 *bd[S0l  
    Change in Focus                :       1.253875 / 3!fA=+  
          6     0.21263372    -0.33139862 >yB(lKV  
    Change in Focus                :      -0.903878 )Ry<a$Q3  
          7     0.40051424    -0.14351809 UAn&\8g_  
    Change in Focus                :      -1.354815 .iG&Lw\,  
          8     0.48754161    -0.05649072 S<`I Jpkv  
    Change in Focus                :       0.215922 hI},~af  
          9     0.40357468    -0.14045766 K/L;8a  
    Change in Focus                :       0.281783 Y}s@WJ  
         10     0.26315315    -0.28087919 1yQejw  
    Change in Focus                :      -1.048393 1oiRWRe  
         11     0.26120585    -0.28282649 M|,mr~rRG  
    Change in Focus                :       1.017611 <\ `$Jx#  
         12     0.24033815    -0.30369419 424(3-/v;  
    Change in Focus                :      -0.109292 FAsFjRS  
         13     0.37164046    -0.17239188 W,XTF  
    Change in Focus                :      -0.692430 Fv74bC %  
         14     0.48597489    -0.05805744 q_kdCO{:df  
    Change in Focus                :      -0.662040 Wp)*Mbq@  
         15     0.21462327    -0.32940907 r [:   
    Change in Focus                :       1.611296 "ZwKk G  
         16     0.43378226    -0.11025008 n_?tN\M  
    Change in Focus                :      -0.640081 T 20&F  
         17     0.39321881    -0.15081353 [F!Y%Zp  
    Change in Focus                :       0.914906 UCW V2Mu  
         18     0.20692530    -0.33710703 lVOu)q@l7g  
    Change in Focus                :       0.801607 R :X0'zeRr  
         19     0.51374068    -0.03029165 f>`dF?^6  
    Change in Focus                :       0.947293 >-8cU_m7s  
         20     0.38013374    -0.16389860 aJ Z"D8C  
    Change in Focus                :       0.667010 km~Ll   
    '2^7-3_1  
    Number of traceable Monte Carlo files generated: 20 a.N{-2ptH  
    VTy9_~q  
    Nominal     0.54403234 El\%E"Tk%  
    Best        0.54384387    Trial     2 JjaoOe  
    Worst       0.18154684    Trial     4 1#IlWEg  
    Mean        0.35770970 F8-?dpf'  
    Std Dev     0.11156454 ?POUtRN  
    %`Z+a.~U  
    Od f[*  
    Compensator Statistics: xvl3vAN9  
    Change in back focus: MZ+^-@X  
    Minimum            :        -1.354815 HK`I\,K  
    Maximum            :         1.611296 Bn@(zHG+5&  
    Mean               :         0.161872 }\J2?Et{  
    Standard Deviation :         0.869664 !?c|XdjZ  
    .<@8gNm3  
    90% >       0.20977951               1`ayc|9BR  
    80% >       0.22748071               {|I;YDA  
    50% >       0.38667627               _SW3_8SuM.  
    20% >       0.46553746               nt*Hc1I  
    10% >       0.50064115                ck?YI]q|  
    :#@= B]  
    End of Run. AbZKYF P  
    }gJ(DbnV  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 1UPC e  
    }zhGS!fO  
    ULMu19>  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 KQB3 m"  
    8Z(Mvq]f&  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 u fw]=h)  
    80% >       0.22748071                 \SB c;  
    50% >       0.38667627                  iKT[=c  
    20% >       0.46553746                 PpAu!2lt9  
    10% >       0.50064115 7eAX*Kgt<_  
    Fvbh\m ~  
    最后这个数值是MTF值呢,还是MTF的公差? G|!on<l&  
    )v.=jup[  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   d>mo~  
    EwvoQ$#jv  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : OEA&~4&{7  
    90% >       0.20977951                 MyJ%`@+1  
    80% >       0.22748071                 0zmE>/O+  
    50% >       0.38667627                 ;- ~B)M_S`  
    20% >       0.46553746                 g?goZPZB  
    10% >       0.50064115 8lvV4yb  
    ....... u8&Z!p\  
    ls\WXCH  
    S&Zm0Ku  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   md)c0Bg8~  
    Mode                : Sensitivities ey7 f9  
    Sampling            : 2 AVlhNIr  
    Nominal Criterion   : 0.54403234 fInb[  
    Test Wavelength     : 0.6328 +rd|A|hRq  
    q;T{|5/O  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? lk/n}bx  
    0fb2;&pUa  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试