切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 15753阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 3(E"$Se,f  
     ItC*[  
    iWGgt]RJ  
    `$G7Ia_ $]  
    然后添加了默认公差分析,基本没变 @T?:[nPf&F  
    `^wF]R  
    @UkcvhH  
    _+z@Qn?#6h  
    然后运行分析的结果如下: V<:kS  
    2=(=Wjk.  
    Analysis of Tolerances ehO F@IA_  
    }I#;~|v~<  
    File : E:\光学设计资料\zemax练习\f500.ZMX i3rvD ch  
    Title: 5 (2g*I  
    Date : TUE JUN 21 2011 7.8ukAud  
    8kH'ai  
    Units are Millimeters. ?u'JhZ  
    All changes are computed using linear differences. ,XI,B\eNk  
    ,#gA(B#  
    Paraxial Focus compensation only. w_/q5]/V-5  
    N#Qby4w >  
    WARNING: Solves should be removed prior to tolerancing. $hg W>e  
    _d A-{  
    Mnemonics: vh KA8vr  
    TFRN: Tolerance on curvature in fringes. YPf&y"E&H  
    TTHI: Tolerance on thickness. ,UH`l./3DX  
    TSDX: Tolerance on surface decentering in x. 42U3>  
    TSDY: Tolerance on surface decentering in y. xyBe*,u  
    TSTX: Tolerance on surface tilt in x (degrees). p9oru0q  
    TSTY: Tolerance on surface tilt in y (degrees). Rj^bZ%t  
    TIRR: Tolerance on irregularity (fringes). {LR?#.   
    TIND: Tolerance on Nd index of refraction. XHlPjw  
    TEDX: Tolerance on element decentering in x. 9i,QCA  
    TEDY: Tolerance on element decentering in y. ]1abz:  
    TETX: Tolerance on element tilt in x (degrees). r,[vXxMy(;  
    TETY: Tolerance on element tilt in y (degrees). 6LNm>O  
    7 82NiVed  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. 9.#\GI ;  
    ToDNBt.u{+  
    WARNING: Boundary constraints on compensators will be ignored. P[#V{%f*5  
    '#u |RsZ  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm ~Jmn?9 3  
    Mode                : Sensitivities qJ5Y}/r  
    Sampling            : 2 vRRi"bo  
    Nominal Criterion   : 0.54403234  6>Lr  
    Test Wavelength     : 0.6328 9t7_7{Q+;  
    VSmshld  
    -;Cl0O%  
    Fields: XY Symmetric Angle in degrees kp xd+w  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY E-.M+[   
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 WASs'Gx  
    e u^z&R!um  
    Sensitivity Analysis: Q4CxtY  
    HQQc<7c ",  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| .CQ IN]iD  
    Type                      Value      Criterion        Change          Value      Criterion        Change jP@H$$-=wH  
    Fringe tolerance on surface 1 Kn=P~,FaG3  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 #*}4=  
    Change in Focus                :      -0.000000                            0.000000 :HMnU37m W  
    Fringe tolerance on surface 2 =WFMqBh<`  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 w KXKc\r  
    Change in Focus                :       0.000000                            0.000000 Mm^o3vl  
    Fringe tolerance on surface 3 RUYw D tC  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 f{^C+t{r  
    Change in Focus                :      -0.000000                            0.000000 ?J%$;"q  
    Thickness tolerance on surface 1 sW3-JA]  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 MFiX8zwhx+  
    Change in Focus                :       0.000000                            0.000000 Vyu0OiGcR  
    Thickness tolerance on surface 2 $@}6P,mg  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 `[VoW2CLH+  
    Change in Focus                :       0.000000                           -0.000000 g[q1P:I@W  
    Decenter X tolerance on surfaces 1 through 3 \iSaxwU_  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 6$ 9n_AS  
    Change in Focus                :       0.000000                            0.000000 ^qS[2Dy  
    Decenter Y tolerance on surfaces 1 through 3 psgXJe$  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 #N[nvIi}  
    Change in Focus                :       0.000000                            0.000000 T AwA)Zg  
    Tilt X tolerance on surfaces 1 through 3 (degrees) w[~$.FM/  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 l?pZdAE  
    Change in Focus                :       0.000000                            0.000000 x AkM_<  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) Rkw)IdB  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 2}b1PMpZG  
    Change in Focus                :       0.000000                            0.000000 .v/s9'lB  
    Decenter X tolerance on surface 1 F4YCU$V  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 NVcL9"ht*@  
    Change in Focus                :       0.000000                            0.000000 8QXxRD;0:  
    Decenter Y tolerance on surface 1 #-f7hg*  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 $X WJxQRUv  
    Change in Focus                :       0.000000                            0.000000 b@/z^k{%  
    Tilt X tolerance on surface (degrees) 1 ;ZFn~!V  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 RUlM""@b  
    Change in Focus                :       0.000000                            0.000000 |A 8xy#  
    Tilt Y tolerance on surface (degrees) 1 FC.y%P,  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 ?U cW@B{  
    Change in Focus                :       0.000000                            0.000000 `.#e4 FBW  
    Decenter X tolerance on surface 2 ^z "90-V^  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 YB*ZYpRVl  
    Change in Focus                :       0.000000                            0.000000 qyP@[8eH  
    Decenter Y tolerance on surface 2 & WYIfx{  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 2%rAf8=  
    Change in Focus                :       0.000000                            0.000000 6wqq"6w  
    Tilt X tolerance on surface (degrees) 2 O)Nj'Hcu  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 Tm.(gK  
    Change in Focus                :       0.000000                            0.000000 <&t^&6k  
    Tilt Y tolerance on surface (degrees) 2 cCw?%qq,L  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 |9?67-  
    Change in Focus                :       0.000000                            0.000000 D?) "Z$  
    Decenter X tolerance on surface 3 fY}e.lD  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 D ( <_1  
    Change in Focus                :       0.000000                            0.000000 u/h Ff3  
    Decenter Y tolerance on surface 3 T,TKt%  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 \T/~" w  
    Change in Focus                :       0.000000                            0.000000 D""d-oI[  
    Tilt X tolerance on surface (degrees) 3 n-#?6`>a  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 ;B:'8$j$  
    Change in Focus                :       0.000000                            0.000000 BBnj}XP*4  
    Tilt Y tolerance on surface (degrees) 3 ZgcA[P  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 A%"mySW  
    Change in Focus                :       0.000000                            0.000000 z%hB=V!~91  
    Irregularity of surface 1 in fringes ]mn(lK  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 Fm#4;'x5E  
    Change in Focus                :       0.000000                            0.000000 pV=X  
    Irregularity of surface 2 in fringes s~6?p% 2]  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 \(cu<{=rU  
    Change in Focus                :       0.000000                            0.000000 ujXC#r&  
    Irregularity of surface 3 in fringes 8;5 UO,`T  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 P2_JS]>  
    Change in Focus                :       0.000000                            0.000000 V/.Y]dN5  
    Index tolerance on surface 1 fM]zD/ g  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 %+:%%r=Q  
    Change in Focus                :       0.000000                            0.000000 WID4{>G2  
    Index tolerance on surface 2 Gm}ecW  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 smoz5~  
    Change in Focus                :       0.000000                           -0.000000 6w0/;8(_m  
    %t([  
    Worst offenders: zb OEF  
    Type                      Value      Criterion        Change isLIfE>  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 1,p7Sl^h  
    TSTY   2             0.20000000     0.35349910    -0.19053324 DDwH9*  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 1ZJP.T`  
    TSTX   2             0.20000000     0.35349910    -0.19053324 y"<nx3  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 m;>HUTj  
    TSTY   1             0.20000000     0.42678383    -0.11724851 K=;z&E=<c  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 ssoIC  
    TSTX   1             0.20000000     0.42678383    -0.11724851 %4Y/-xF}9,  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 q=M!YWz  
    TSTY   3             0.20000000     0.42861670    -0.11541563 9*h?g+\  
    z:ue]7(.  
    Estimated Performance Changes based upon Root-Sum-Square method: DB We>Ef(  
    Nominal MTF                 :     0.54403234 frWw-<HoI  
    Estimated change            :    -0.36299231 <T>C}DGw  
    Estimated MTF               :     0.18104003 )(oRJu)y  
    s(w6Ldi  
    Compensator Statistics: ytf.$P  
    Change in back focus: f]tc$`vb  
    Minimum            :        -0.000000 < S:SIaf0  
    Maximum            :         0.000000 Du k v[/60  
    Mean               :        -0.000000 YLVIn_\}  
    Standard Deviation :         0.000000 6+b!|`?l+  
    02g}}{be8  
    Monte Carlo Analysis: I dgha9K  
    Number of trials: 20 '2vZ%C$  
    *,.WI )@  
    Initial Statistics: Normal Distribution bF;g.-.2  
    OGw =e{  
      Trial       Criterion        Change ftw\oGrS  
          1     0.42804416    -0.11598818 Cu3^de@h  
    Change in Focus                :      -0.400171 9+)5#!0  
          2     0.54384387    -0.00018847 H4ml0SS^  
    Change in Focus                :       1.018470 =B@owx  
          3     0.44510003    -0.09893230 v@_b"w_TY  
    Change in Focus                :      -0.601922 paF$ o6\  
          4     0.18154684    -0.36248550 CvW*/d q  
    Change in Focus                :       0.920681 ZW{pO:-  
          5     0.28665820    -0.25737414 p^_2]%,QeM  
    Change in Focus                :       1.253875 4:GVZR|-  
          6     0.21263372    -0.33139862 BUqe~E|I  
    Change in Focus                :      -0.903878 "q5Tw+KCfu  
          7     0.40051424    -0.14351809 k\8]fh)J\7  
    Change in Focus                :      -1.354815 u=I\0H  
          8     0.48754161    -0.05649072  w~wpm7  
    Change in Focus                :       0.215922 }SIUsh'  
          9     0.40357468    -0.14045766 bx`s;r=  
    Change in Focus                :       0.281783 J8>y2rAi  
         10     0.26315315    -0.28087919 PzbLbH8A  
    Change in Focus                :      -1.048393  u;R<  
         11     0.26120585    -0.28282649 )F Q '^  
    Change in Focus                :       1.017611 49q\/  
         12     0.24033815    -0.30369419 tu8n1W  
    Change in Focus                :      -0.109292 P~/Gla k  
         13     0.37164046    -0.17239188 2{:bv~*I0F  
    Change in Focus                :      -0.692430 pT\>kqmj  
         14     0.48597489    -0.05805744 +L D\~dcV+  
    Change in Focus                :      -0.662040 ;L (dmx?  
         15     0.21462327    -0.32940907 lArYlR }  
    Change in Focus                :       1.611296 3@P 2]Q~D  
         16     0.43378226    -0.11025008 Goa0OC,  
    Change in Focus                :      -0.640081 ]f#1G$  
         17     0.39321881    -0.15081353 W'WZ@!!  
    Change in Focus                :       0.914906 f}Mx\dc  
         18     0.20692530    -0.33710703 7<;87t]]  
    Change in Focus                :       0.801607 zXWf($^&E  
         19     0.51374068    -0.03029165 .21[3.bp/q  
    Change in Focus                :       0.947293 %2>ya>/M  
         20     0.38013374    -0.16389860 &Jw]3U5J  
    Change in Focus                :       0.667010 Wm_:1~  
    i7]\}w|  
    Number of traceable Monte Carlo files generated: 20 0h^&`H:  
    j_ i/h "  
    Nominal     0.54403234 -wJ/j~ +m+  
    Best        0.54384387    Trial     2 Qz6Ry\u  
    Worst       0.18154684    Trial     4 #Duz|F+%  
    Mean        0.35770970 1 XsB  
    Std Dev     0.11156454 OtK=UtVI  
    !@j5yYf  
    (ns> z7  
    Compensator Statistics: gbF^m`A>%+  
    Change in back focus: O%feBe  
    Minimum            :        -1.354815 N0TEVDsk  
    Maximum            :         1.611296 &+]x  
    Mean               :         0.161872 NbG`v@yH  
    Standard Deviation :         0.869664 h~|B/.[R:3  
     zE$KU$  
    90% >       0.20977951               -;rr! cQ?  
    80% >       0.22748071               *UM=EQaYk  
    50% >       0.38667627               V}de|=  
    20% >       0.46553746               o ;nw;]oR  
    10% >       0.50064115                X@`kuWIUw  
    kaybi 0  
    End of Run. ["]r=l  
    6XU1w  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图  n *Y+y  
    hbfTv;=z  
    c~j")o  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 Tp7*T8  
    9&(d2  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 3RSiu}  
    80% >       0.22748071                 fC1PPgQ\  
    50% >       0.38667627                 ^Bkwbj  
    20% >       0.46553746                 .&|Ivz6  
    10% >       0.50064115 ^o;f~6#17  
    L?[NXLn+  
    最后这个数值是MTF值呢,还是MTF的公差? AHa%?wb  
    7t8[M(  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   ey icMy`7{  
    /HlLfW  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : <`PW4zSI  
    90% >       0.20977951                 !Dc|g~km\  
    80% >       0.22748071                 w<qn@f  
    50% >       0.38667627                 rAv)k&l  
    20% >       0.46553746                 ?j'Nx_RoX  
    10% >       0.50064115 PU& v{gn  
    ....... C>}@"eK  
    hggP9I :s,  
    7I#<w[l>k  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   Ifx EM  
    Mode                : Sensitivities XCo3pB Wq~  
    Sampling            : 2 #;+ABV  
    Nominal Criterion   : 0.54403234 ;Xr|['\'  
    Test Wavelength     : 0.6328 @5=2+ M  
    9%^IMUWA  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? ; *ZiH%q,  
    _u] S/X-  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试