切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16327阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 WP,Ll\K)7  
    ylm*a74-X  
    D=}UKd  
    6<sd6SM  
    然后添加了默认公差分析,基本没变 VW^6qf/,  
    N3?hyR<T  
    _t<&#D~  
    C Z8Fe$F  
    然后运行分析的结果如下: 4;anoqiG\  
    gL%%2 }$  
    Analysis of Tolerances 06@^knm  
    _`yd"0 Ux  
    File : E:\光学设计资料\zemax练习\f500.ZMX m~;fklX S  
    Title: O@;;GJ  
    Date : TUE JUN 21 2011 V<~.:G$3H  
    '<N^u@tF7  
    Units are Millimeters. ^LfN6{  
    All changes are computed using linear differences. L:$kd `v[  
    ~B!O X  
    Paraxial Focus compensation only. d-e6hI4b  
    *?|LE C  
    WARNING: Solves should be removed prior to tolerancing. EBjSK/  
    ^mWOQ*zi;  
    Mnemonics: *^j'G^n  
    TFRN: Tolerance on curvature in fringes. hdky:2^3  
    TTHI: Tolerance on thickness. -# 0(Jm'  
    TSDX: Tolerance on surface decentering in x. V~j:!=b%v  
    TSDY: Tolerance on surface decentering in y. P{ YUW~  
    TSTX: Tolerance on surface tilt in x (degrees). rQ~7BlE  
    TSTY: Tolerance on surface tilt in y (degrees). D$C>ZF  
    TIRR: Tolerance on irregularity (fringes). H;('h#=cD  
    TIND: Tolerance on Nd index of refraction. USgZ%xk2  
    TEDX: Tolerance on element decentering in x. HUF],[N  
    TEDY: Tolerance on element decentering in y. m80e^  
    TETX: Tolerance on element tilt in x (degrees). %@/"BF;r  
    TETY: Tolerance on element tilt in y (degrees). zrt\] h+  
    E'3=qTbiD  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. /Y=Cg%+  
    wf47Ulx  
    WARNING: Boundary constraints on compensators will be ignored. hY$gzls4  
    >*jcXao^  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm ~)5NX 4Po  
    Mode                : Sensitivities T(LqR?xOo  
    Sampling            : 2 }^|g|xl!  
    Nominal Criterion   : 0.54403234 WXJEAje  
    Test Wavelength     : 0.6328 ,;3#}OGg  
     y|r+<  
    4n55{ ?Z  
    Fields: XY Symmetric Angle in degrees i?+ZrAx>  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY ZL!,s#  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 Z) nB  
    pq8XCOllXx  
    Sensitivity Analysis: 5u/dr9n  
    5%H(AaG*q  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| <2b&AF{En  
    Type                      Value      Criterion        Change          Value      Criterion        Change O~3<P3W  
    Fringe tolerance on surface 1 !O;su~7  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 6T-h("t  
    Change in Focus                :      -0.000000                            0.000000 m |K"I3W$  
    Fringe tolerance on surface 2 xBba&A]=  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 ,1xX`:  
    Change in Focus                :       0.000000                            0.000000 JQ5E;8J>  
    Fringe tolerance on surface 3 i.QS(gM  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 EPEy60Rx5  
    Change in Focus                :      -0.000000                            0.000000 Q]44A+M]  
    Thickness tolerance on surface 1 R/!lDv!  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 Jo%`N#jG   
    Change in Focus                :       0.000000                            0.000000 %S$P<nKN5  
    Thickness tolerance on surface 2 *\#/4_yB}  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 TcW-pY<N  
    Change in Focus                :       0.000000                           -0.000000 qp#Is{=m  
    Decenter X tolerance on surfaces 1 through 3 Uc>kiWW  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 #&v86  
    Change in Focus                :       0.000000                            0.000000 ' 6^+|1  
    Decenter Y tolerance on surfaces 1 through 3 Z;=h=  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 dO?zLc0f  
    Change in Focus                :       0.000000                            0.000000 7j,-o  
    Tilt X tolerance on surfaces 1 through 3 (degrees) IP?15l w  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 }j+Af["W?  
    Change in Focus                :       0.000000                            0.000000 r4YiXss  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) " V[=U13  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 BZJ\tPSR  
    Change in Focus                :       0.000000                            0.000000 ko-3`hX`  
    Decenter X tolerance on surface 1 "0*yD[2  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 QR+xPY~  
    Change in Focus                :       0.000000                            0.000000 "Wz8f  
    Decenter Y tolerance on surface 1 pyHU +B  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 $7bLw)7  
    Change in Focus                :       0.000000                            0.000000 % w\   
    Tilt X tolerance on surface (degrees) 1 8 x=J&d  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 _sp, ,gz  
    Change in Focus                :       0.000000                            0.000000 vl`Qz"Xy  
    Tilt Y tolerance on surface (degrees) 1 }na0  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 h.Y&_=Gc  
    Change in Focus                :       0.000000                            0.000000 M&QzsVH  
    Decenter X tolerance on surface 2 xL&evG#  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 k kZ2Jxvx  
    Change in Focus                :       0.000000                            0.000000 Sb4^* $uz  
    Decenter Y tolerance on surface 2 N_:H kI6  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 MZ2/ks  
    Change in Focus                :       0.000000                            0.000000 saRYd{%+  
    Tilt X tolerance on surface (degrees) 2 a/\SPXQ/9  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 n%faD  
    Change in Focus                :       0.000000                            0.000000 -R]Iu\  
    Tilt Y tolerance on surface (degrees) 2 qw?Wi%t(x8  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 GyC/39<P  
    Change in Focus                :       0.000000                            0.000000 kk`K)PESi  
    Decenter X tolerance on surface 3 '2S/FOb  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 =,B Dd$e  
    Change in Focus                :       0.000000                            0.000000 ]KQv ]'  
    Decenter Y tolerance on surface 3 opXxtYC@  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 IdS=lN$  
    Change in Focus                :       0.000000                            0.000000 12i<b  
    Tilt X tolerance on surface (degrees) 3 o5@d1A  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 _ez*dE%  
    Change in Focus                :       0.000000                            0.000000 b I-uF8"  
    Tilt Y tolerance on surface (degrees) 3 Ao )\/AR'  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 o&t*[#  
    Change in Focus                :       0.000000                            0.000000 &%UZ"CcA  
    Irregularity of surface 1 in fringes q"48U.}T  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 A=Y A#0  
    Change in Focus                :       0.000000                            0.000000 AqA.,;G  
    Irregularity of surface 2 in fringes NR>&1aRbyb  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 !.G knDT  
    Change in Focus                :       0.000000                            0.000000 dEhFuNO<2  
    Irregularity of surface 3 in fringes +F?}<P_v  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 |EGC1x]j=  
    Change in Focus                :       0.000000                            0.000000 Zt"#'1  
    Index tolerance on surface 1 n2(`O^yd7C  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 lt{D f~c  
    Change in Focus                :       0.000000                            0.000000 2/iBk'd  
    Index tolerance on surface 2 1!%T<!A.  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 >"q?P^f/  
    Change in Focus                :       0.000000                           -0.000000 >vR7l&"  
    | |u  
    Worst offenders: LE|DMz|J  
    Type                      Value      Criterion        Change _,<@II  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 ,/ YTW@N  
    TSTY   2             0.20000000     0.35349910    -0.19053324 1`sTGNo  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 O[|_~v:^  
    TSTX   2             0.20000000     0.35349910    -0.19053324 >1qum'  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 #AR$'TE#  
    TSTY   1             0.20000000     0.42678383    -0.11724851 U>i}C_7g  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 .MS41 E!  
    TSTX   1             0.20000000     0.42678383    -0.11724851 J'E?Z0  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 :anR/  
    TSTY   3             0.20000000     0.42861670    -0.11541563 FvJkb!5*e_  
    )GKY#O09x9  
    Estimated Performance Changes based upon Root-Sum-Square method: JLbmh1'  
    Nominal MTF                 :     0.54403234 NY GWA4L  
    Estimated change            :    -0.36299231 ]Pl Ly:(  
    Estimated MTF               :     0.18104003 7<*,O&![|  
    ^H!45ph?Jc  
    Compensator Statistics: K8JshF Ie  
    Change in back focus: g5;Ig  
    Minimum            :        -0.000000 w.(?O;  
    Maximum            :         0.000000 ;lQ>>[*  
    Mean               :        -0.000000 M1q_gHA  
    Standard Deviation :         0.000000 #Ibpf ,  
    -uN M_|MO  
    Monte Carlo Analysis: d3]<'B:nb  
    Number of trials: 20 z?Cez*.h>  
    6VtN4c .Q  
    Initial Statistics: Normal Distribution YmwXA e:  
    1=_Qj}!1  
      Trial       Criterion        Change Eq=j+ch7  
          1     0.42804416    -0.11598818 FOAXm4"  
    Change in Focus                :      -0.400171 %l3f .  
          2     0.54384387    -0.00018847 /?1^&a  
    Change in Focus                :       1.018470 _/J`v`}G  
          3     0.44510003    -0.09893230 6@x^,SA  
    Change in Focus                :      -0.601922 R:`)*=rL%  
          4     0.18154684    -0.36248550 } 4ZWAzH  
    Change in Focus                :       0.920681 z~th{4#E ;  
          5     0.28665820    -0.25737414 `|<? sjY  
    Change in Focus                :       1.253875 1pz-jo,2'  
          6     0.21263372    -0.33139862 & h\!#X0  
    Change in Focus                :      -0.903878 2Z-QVwa*U  
          7     0.40051424    -0.14351809 X4JSI%E  
    Change in Focus                :      -1.354815 iB}*<~`.Eg  
          8     0.48754161    -0.05649072 }"&Ye  
    Change in Focus                :       0.215922 T930tX6"h  
          9     0.40357468    -0.14045766 Dqc2;>  
    Change in Focus                :       0.281783 U Z1Au;(|  
         10     0.26315315    -0.28087919 6MpV ,2:>  
    Change in Focus                :      -1.048393 0$_WIk  
         11     0.26120585    -0.28282649 !ou;yE&<,  
    Change in Focus                :       1.017611 A: O"N  
         12     0.24033815    -0.30369419 BdP+>Ij  
    Change in Focus                :      -0.109292 Y[s}?Xu]w#  
         13     0.37164046    -0.17239188 Ek60[a  
    Change in Focus                :      -0.692430 <rFh93  
         14     0.48597489    -0.05805744 ovZ!}  
    Change in Focus                :      -0.662040 ,hWuAu6.L  
         15     0.21462327    -0.32940907 "TVmxE%(  
    Change in Focus                :       1.611296 8v)iOPmDC  
         16     0.43378226    -0.11025008 K,,'{j2#f  
    Change in Focus                :      -0.640081 q7pe\~q  
         17     0.39321881    -0.15081353 ;?v&=Z't.  
    Change in Focus                :       0.914906 V}ls|B$Y  
         18     0.20692530    -0.33710703 ~sdM~9@ '  
    Change in Focus                :       0.801607 /i{V21(%  
         19     0.51374068    -0.03029165 C%|m[,Gx  
    Change in Focus                :       0.947293 m%b# B>J,n  
         20     0.38013374    -0.16389860 p*U!94Pb  
    Change in Focus                :       0.667010 ^I{/j 'b&  
    72vp6/;)  
    Number of traceable Monte Carlo files generated: 20 ]_`ICS  
    Y8h 96  
    Nominal     0.54403234 F_0@S h"  
    Best        0.54384387    Trial     2 HP\5gLVXY  
    Worst       0.18154684    Trial     4 +$F,!rV-s  
    Mean        0.35770970 e>P>DmlW  
    Std Dev     0.11156454 gfKv$~  
    /iL*)  
    e@1A_q@.  
    Compensator Statistics: 6`X}Z'4.Ox  
    Change in back focus: m;0ZV%c*j  
    Minimum            :        -1.354815 O Q$C#:?  
    Maximum            :         1.611296 }qR6=J+Dx  
    Mean               :         0.161872 y&V'GhW!dd  
    Standard Deviation :         0.869664 T:".{h-i  
    }D-jTZlC  
    90% >       0.20977951               OuK RaZ  
    80% >       0.22748071               9ji`.&#  
    50% >       0.38667627                $ Tal.  
    20% >       0.46553746               {gxP_>  
    10% >       0.50064115                >I',%v\?@  
    FV{XPr%   
    End of Run. n:f&4uKoG<  
    Ro;I%j  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 yq1 G6hw  
    _h 6c[*  
    cI&XsnY  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 F3t IJz>3  
    <+<Nsza  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 6G}4KGQc  
    80% >       0.22748071                 RS@[ +!:t  
    50% >       0.38667627                 z.+%{_pe  
    20% >       0.46553746                 j WMTQLE.  
    10% >       0.50064115 k3KT':*  
    gGN 6Yqj0  
    最后这个数值是MTF值呢,还是MTF的公差? +1@'2w{  
    @yC3a)=$L  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   OmK4 \_.  
    -f1lu*3\  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : {`T^&b k  
    90% >       0.20977951                 TtKKU4yp  
    80% >       0.22748071                 tmM; Z(9t  
    50% >       0.38667627                 R@/"B?`(f  
    20% >       0.46553746                 5h Dy62PRr  
    10% >       0.50064115 DL,]iJm  
    ....... #6l(2d  
    JNJ6HyCU  
    mEkYT  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   bZK^q B  
    Mode                : Sensitivities [!8b jc]c  
    Sampling            : 2 ;Ru[^p.{  
    Nominal Criterion   : 0.54403234 m/(/!MVy  
    Test Wavelength     : 0.6328 hY !>>  
    W:6#0b"_#  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? /C5py&#-I  
    a? PH`5O  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试