切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16482阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 2!&:V]  
    8i X?4qj{P  
    Ev$?c9*>  
    }\l5|Ft[!  
    然后添加了默认公差分析,基本没变 1j0yON  
    tYmWze. j  
    k}jH  
    4(B,aU>y  
    然后运行分析的结果如下: L & PhABZ  
    wPqIy}-  
    Analysis of Tolerances .bnoK  
    '1.T-.4>&  
    File : E:\光学设计资料\zemax练习\f500.ZMX <M+ZlF-`  
    Title: 4fpz;2%  
    Date : TUE JUN 21 2011 |y;+xEl6  
    .F 3v)  
    Units are Millimeters. GHYgSS  
    All changes are computed using linear differences. 8 wC3}U  
    ;Iv)J|*  
    Paraxial Focus compensation only. K mL PWj  
    JNX7]j\  
    WARNING: Solves should be removed prior to tolerancing.  D&N5)  
    o?hya.;h4  
    Mnemonics: D ZLSn Ax  
    TFRN: Tolerance on curvature in fringes. !;iySRZr  
    TTHI: Tolerance on thickness. DSET!F;PG  
    TSDX: Tolerance on surface decentering in x. lBPZB%  
    TSDY: Tolerance on surface decentering in y. c&F"tLl  
    TSTX: Tolerance on surface tilt in x (degrees). oD!72W_:  
    TSTY: Tolerance on surface tilt in y (degrees). H;IG\k6C  
    TIRR: Tolerance on irregularity (fringes). 4-cnkv\~  
    TIND: Tolerance on Nd index of refraction. !:e}d+F  
    TEDX: Tolerance on element decentering in x. -?'u"*#1,  
    TEDY: Tolerance on element decentering in y. f4X?\eGT  
    TETX: Tolerance on element tilt in x (degrees). YSv\T '3  
    TETY: Tolerance on element tilt in y (degrees). Hyq| %\A  
    #l:qht  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. W13$-hf9  
    hQl3F6-ud  
    WARNING: Boundary constraints on compensators will be ignored. 9\Yj`,i5  
    6,s@>8n  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm 2r[Q$GPM<  
    Mode                : Sensitivities H={fY:%  
    Sampling            : 2 W%~ S~wx  
    Nominal Criterion   : 0.54403234 yfuvU2nVH  
    Test Wavelength     : 0.6328 >JC.qjA  
    N:gS]OI*  
    &)\0mpLK9  
    Fields: XY Symmetric Angle in degrees )t @OHSl  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY d [K56wbpx  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 pm<<!`w"  
    m6'YFpf)V  
    Sensitivity Analysis: (:E^} &A  
    Ak>RLD25_  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| E})PNf;  
    Type                      Value      Criterion        Change          Value      Criterion        Change m,*t}j0 7  
    Fringe tolerance on surface 1 B8[H><)o\y  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 G ytI_an8  
    Change in Focus                :      -0.000000                            0.000000 }54\NSj0  
    Fringe tolerance on surface 2 O6boTB_2  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 }t"!I\C  
    Change in Focus                :       0.000000                            0.000000 p3sz32RX  
    Fringe tolerance on surface 3 OEZXV ;F  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 ^R K[-tVV  
    Change in Focus                :      -0.000000                            0.000000 Wq"pKI#x  
    Thickness tolerance on surface 1 Cn+TcdHX  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 I>ofSaN  
    Change in Focus                :       0.000000                            0.000000 B;?a. 81~  
    Thickness tolerance on surface 2 L`];i8=I  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 |$6Gp Aq!  
    Change in Focus                :       0.000000                           -0.000000 =B;rj  
    Decenter X tolerance on surfaces 1 through 3 KDHR} `  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 V&\ZqgDF  
    Change in Focus                :       0.000000                            0.000000 :Wb+&|dU  
    Decenter Y tolerance on surfaces 1 through 3 ]RGun GJ  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 c3K(mM:  
    Change in Focus                :       0.000000                            0.000000 PJkEBdM.  
    Tilt X tolerance on surfaces 1 through 3 (degrees) ){8^l0b  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 N2q'$o  
    Change in Focus                :       0.000000                            0.000000 {e>}.R  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) P]!eM(  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 gqG l>=.m  
    Change in Focus                :       0.000000                            0.000000 6;5}% B:#h  
    Decenter X tolerance on surface 1 ^Z\1z!{R  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 kO/dZ%vj  
    Change in Focus                :       0.000000                            0.000000 J#'c+\B<2X  
    Decenter Y tolerance on surface 1 K<\TF+  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 mxDy!:@=  
    Change in Focus                :       0.000000                            0.000000 Xj|j\2$ 0  
    Tilt X tolerance on surface (degrees) 1 !U=;e?o  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 &({X9  
    Change in Focus                :       0.000000                            0.000000 kj+AsQC ,  
    Tilt Y tolerance on surface (degrees) 1 ;~xkT'  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 /UM9g+Bb  
    Change in Focus                :       0.000000                            0.000000 E-Cj^#OY|N  
    Decenter X tolerance on surface 2 &hqGGfVsd  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 hM+nA::w  
    Change in Focus                :       0.000000                            0.000000 ^Z2%b>  
    Decenter Y tolerance on surface 2 qmJFXnf  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 rS6iZp,  
    Change in Focus                :       0.000000                            0.000000 a-8~f8na{(  
    Tilt X tolerance on surface (degrees) 2 ioh_5 5e  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 W\FKA vS  
    Change in Focus                :       0.000000                            0.000000 #WfJz}P,!  
    Tilt Y tolerance on surface (degrees) 2 `Mp]iD {  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 vmW4a3  
    Change in Focus                :       0.000000                            0.000000 $6ITa}o  
    Decenter X tolerance on surface 3 #YjV3O5<  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 GawLQst[+  
    Change in Focus                :       0.000000                            0.000000 :t9(T?2  
    Decenter Y tolerance on surface 3 = `70]%  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 *>Om3[D  
    Change in Focus                :       0.000000                            0.000000 31J7# S2  
    Tilt X tolerance on surface (degrees) 3 vC+mC4~/(  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 jS| (g##4  
    Change in Focus                :       0.000000                            0.000000 w;{k\=W3Ff  
    Tilt Y tolerance on surface (degrees) 3 O`rrg~6#  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 N tg#-_]  
    Change in Focus                :       0.000000                            0.000000 J& yDX>  
    Irregularity of surface 1 in fringes */?L_\7  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 U3A>#EV  
    Change in Focus                :       0.000000                            0.000000 n |.- :Zy  
    Irregularity of surface 2 in fringes WET $H,  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 /WMG)#kw'  
    Change in Focus                :       0.000000                            0.000000 .L6t3/^  
    Irregularity of surface 3 in fringes (7-K4j`   
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 | M-@Qvgh  
    Change in Focus                :       0.000000                            0.000000 e#&[4tQF  
    Index tolerance on surface 1 R)G'ILneV  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 6S ]GSS<  
    Change in Focus                :       0.000000                            0.000000 yvNYYp2r  
    Index tolerance on surface 2 ?MO'WB9+JR  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 ;2%3~L8?V  
    Change in Focus                :       0.000000                           -0.000000 r|rV1<d  
    213D{#2  
    Worst offenders: <1_?.gSi  
    Type                      Value      Criterion        Change -7;RPHJs  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 lL%7lO   
    TSTY   2             0.20000000     0.35349910    -0.19053324 7Zr jU {  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 !A!zG)Ue<  
    TSTX   2             0.20000000     0.35349910    -0.19053324 +Y 3_)  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 ed*=p l3.  
    TSTY   1             0.20000000     0.42678383    -0.11724851 ^W#[6]S  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 x7{,4js  
    TSTX   1             0.20000000     0.42678383    -0.11724851 v-OGY[|97  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 nLT]'B]$ +  
    TSTY   3             0.20000000     0.42861670    -0.11541563 2NE/ZqREg  
    6^|bKoN/ f  
    Estimated Performance Changes based upon Root-Sum-Square method: ux{OgF fi  
    Nominal MTF                 :     0.54403234 9YB~1 M  
    Estimated change            :    -0.36299231 c.jnPVf:  
    Estimated MTF               :     0.18104003 lywcT! <  
    xZ4\.K\f]  
    Compensator Statistics: Rra(/j<rQ  
    Change in back focus: Ig$5Ui  
    Minimum            :        -0.000000 VO++(G)  
    Maximum            :         0.000000 %;^6W7  
    Mean               :        -0.000000 1Kwl_jf  
    Standard Deviation :         0.000000 <J`_Qc8C  
    V@cRJ3ZF  
    Monte Carlo Analysis: S,Tm=} wj  
    Number of trials: 20 a$;+-Y  
    LnR3C:NO k  
    Initial Statistics: Normal Distribution t*Lo;]P  
    !.3 MtXr  
      Trial       Criterion        Change S2j7(T;~YB  
          1     0.42804416    -0.11598818 <|.S~HLTQ  
    Change in Focus                :      -0.400171 uiHlaMf  
          2     0.54384387    -0.00018847 7W}~c/%  
    Change in Focus                :       1.018470 :(I)+;M}P  
          3     0.44510003    -0.09893230 F(SeD)ml  
    Change in Focus                :      -0.601922 Q9W*)gBv n  
          4     0.18154684    -0.36248550 7B7I'{d  
    Change in Focus                :       0.920681 zhYE#hv2  
          5     0.28665820    -0.25737414 xB9^DURr\  
    Change in Focus                :       1.253875 Z < uwqA  
          6     0.21263372    -0.33139862 P[gk9{sv  
    Change in Focus                :      -0.903878 'HOcK8}b  
          7     0.40051424    -0.14351809 nc$?tC9V  
    Change in Focus                :      -1.354815 .@=d I  
          8     0.48754161    -0.05649072 U0)(k}Q)  
    Change in Focus                :       0.215922 ?\^u},HnE|  
          9     0.40357468    -0.14045766 5]'iSrp  
    Change in Focus                :       0.281783 y fP&Q<|  
         10     0.26315315    -0.28087919 A$1pMG~as  
    Change in Focus                :      -1.048393 Qj3UO]>  
         11     0.26120585    -0.28282649 zxwpS  
    Change in Focus                :       1.017611 )OjbmU!7  
         12     0.24033815    -0.30369419 ]G|@F :  
    Change in Focus                :      -0.109292 _L# Tp  
         13     0.37164046    -0.17239188 GI6 EZ}.MZ  
    Change in Focus                :      -0.692430 zRf]SZ(t O  
         14     0.48597489    -0.05805744 5!y3=.j  
    Change in Focus                :      -0.662040 D(Xv shQ  
         15     0.21462327    -0.32940907 M~ *E!  
    Change in Focus                :       1.611296 sH+]lTSX6{  
         16     0.43378226    -0.11025008 QuF%m^aE  
    Change in Focus                :      -0.640081 #Oe=G:+A  
         17     0.39321881    -0.15081353 U/jJ@8  
    Change in Focus                :       0.914906 LM*9b  
         18     0.20692530    -0.33710703 4I,@aj46  
    Change in Focus                :       0.801607 gvwR16N  
         19     0.51374068    -0.03029165 >1joCG~  
    Change in Focus                :       0.947293 %/S BJ  
         20     0.38013374    -0.16389860 q$EVd9aN  
    Change in Focus                :       0.667010 P#Eqe O  
    uiiA)j*!  
    Number of traceable Monte Carlo files generated: 20 7a@V2cr@  
    * z{D}L-&  
    Nominal     0.54403234 gb@!Co3  
    Best        0.54384387    Trial     2 )FU4iN)ei  
    Worst       0.18154684    Trial     4 S!.xmc\  
    Mean        0.35770970 bF B;N+>  
    Std Dev     0.11156454 QjZ}*p  
    tP3H7Yl! g  
    .cu5h   
    Compensator Statistics: y& Dd  
    Change in back focus: %t<Y6*g  
    Minimum            :        -1.354815 6] <?+#uQ  
    Maximum            :         1.611296 v,>q]! |a  
    Mean               :         0.161872 (& ~`!]  
    Standard Deviation :         0.869664 ^g~-$t<!  
    1noFXzeU3  
    90% >       0.20977951               4)XN1r:  
    80% >       0.22748071               =Oo*7|Z  
    50% >       0.38667627               zIdQ^vm8Q  
    20% >       0.46553746               W^y F5  
    10% >       0.50064115                -3w? y  
    qBCZ)JEN#U  
    End of Run. [r]USCq  
    d628@~ Ekn  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 R[_7ab]A  
    tX)]ZuEi$  
    Z?v9ub~%  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 4Y-9W2s  
    h\.UUC&<  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 wuh$=fya  
    80% >       0.22748071                 9OTw6  
    50% >       0.38667627                 yJKezIL\z  
    20% >       0.46553746                 y2<g96  
    10% >       0.50064115 {&2$1p/9'  
    Ii4 Byyfx  
    最后这个数值是MTF值呢,还是MTF的公差? ;APg!5X  
    {yfG_J  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   }7&;YAt  
    i#Wl?(-i  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : NB16O !r  
    90% >       0.20977951                 VEz&TPu  
    80% >       0.22748071                 >~XX'}  
    50% >       0.38667627                 'jmcS0f -  
    20% >       0.46553746                 UpB7hA  
    10% >       0.50064115 ^=W%G^jJy  
    ....... +mAMCM2N  
    1R,n[`}h  
    spFsrB  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   kv)LH{  
    Mode                : Sensitivities ztb2Ign<  
    Sampling            : 2 -6)ywq^{z  
    Nominal Criterion   : 0.54403234  Ya=QN<  
    Test Wavelength     : 0.6328 9E (>mN  
    R?X9U.AcW  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? R HF;AX n  
    w*bVBuX s  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试