切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16340阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜  jK]1X8  
    "W%YsN0  
    8I/3T  
    ,P`NtTN-  
    然后添加了默认公差分析,基本没变 yiC7)=  
    wCNn/%C  
    Wy7w zt  
    IJGw<cB]+  
    然后运行分析的结果如下: 15Mtlb  
    k Alx m{  
    Analysis of Tolerances HS{Vohy>  
    ?#=xx.cF  
    File : E:\光学设计资料\zemax练习\f500.ZMX Uc {m##!  
    Title: v f{{z%3T  
    Date : TUE JUN 21 2011 zG6l8%q'UE  
    KoNu{TJ  
    Units are Millimeters. s{'Sl{-Eu  
    All changes are computed using linear differences. { sC Ni  
    G5/A {1sz&  
    Paraxial Focus compensation only. /ki-Tha  
    MmjZq  
    WARNING: Solves should be removed prior to tolerancing. ^BA%]pe$I  
    FefroaJ:u  
    Mnemonics: w/m@(EBK  
    TFRN: Tolerance on curvature in fringes. jjj<B'zt  
    TTHI: Tolerance on thickness. :IS?si5|  
    TSDX: Tolerance on surface decentering in x. R#4l"  
    TSDY: Tolerance on surface decentering in y. rV%T+!n%c  
    TSTX: Tolerance on surface tilt in x (degrees). l5Bm.H_  
    TSTY: Tolerance on surface tilt in y (degrees). <N=k&\  
    TIRR: Tolerance on irregularity (fringes). /o;L,mcx*  
    TIND: Tolerance on Nd index of refraction. 9hIKx:XCg  
    TEDX: Tolerance on element decentering in x. .<`)`:n+B  
    TEDY: Tolerance on element decentering in y. z:#]P0  
    TETX: Tolerance on element tilt in x (degrees). )DXt_leLg  
    TETY: Tolerance on element tilt in y (degrees). /"gRyv  
    wg?}c ;  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. W|>jj$/o  
    XY'8oU`]{  
    WARNING: Boundary constraints on compensators will be ignored. bzNnEH`^]  
    Z2$_9.  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm <x^$Fu  
    Mode                : Sensitivities fI)XV7,X  
    Sampling            : 2 3s!6rT_=)d  
    Nominal Criterion   : 0.54403234 1PwtzH .w  
    Test Wavelength     : 0.6328 b}R_@_<u  
    >6 o <Q  
    +QFKaS<sn  
    Fields: XY Symmetric Angle in degrees FQ<x(&/NF  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY C{J5:ak  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 hUlRtt  
    AfTm#-R  
    Sensitivity Analysis: et 1HbX  
    o7!A(Eu  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| IEy$2f>Ns  
    Type                      Value      Criterion        Change          Value      Criterion        Change zas&gsl-;  
    Fringe tolerance on surface 1 kT@ITA22  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 o&1mX  
    Change in Focus                :      -0.000000                            0.000000 ; CCg]hX  
    Fringe tolerance on surface 2 , lR(5ZI  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 kS-BB[T  
    Change in Focus                :       0.000000                            0.000000 ta)gOc)r R  
    Fringe tolerance on surface 3 gFTU9k<  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 ]%6%rq%9C  
    Change in Focus                :      -0.000000                            0.000000 .4CDQ&B0K  
    Thickness tolerance on surface 1 oDA'$]UL  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 V|'@D#\  
    Change in Focus                :       0.000000                            0.000000 SiaNL:  
    Thickness tolerance on surface 2 0vqH-)}  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 u;q Q/Ftb  
    Change in Focus                :       0.000000                           -0.000000 #7 O7O~  
    Decenter X tolerance on surfaces 1 through 3 $\P/ %eP  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 bPOPoq1#  
    Change in Focus                :       0.000000                            0.000000 daKZ*B|  
    Decenter Y tolerance on surfaces 1 through 3 #'&-S@/nQs  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 ` 7iA?;  
    Change in Focus                :       0.000000                            0.000000 #g6_)B=S  
    Tilt X tolerance on surfaces 1 through 3 (degrees) UJ}}H}{  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 *1dZs~_  
    Change in Focus                :       0.000000                            0.000000 $l7}e=1  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) \7LL neq  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 MM32\}Y6  
    Change in Focus                :       0.000000                            0.000000 V4R s  
    Decenter X tolerance on surface 1 Sn-#Y(>]o0  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 IE\RP!  
    Change in Focus                :       0.000000                            0.000000 nN{DO:_o  
    Decenter Y tolerance on surface 1 #!Cg$6%x9  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 )W\ )kDh!  
    Change in Focus                :       0.000000                            0.000000 %DiQTg7V,  
    Tilt X tolerance on surface (degrees) 1 Wmd@%K  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 ]x metv|7  
    Change in Focus                :       0.000000                            0.000000 Hj >fg2/  
    Tilt Y tolerance on surface (degrees) 1 3J"`mQ  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 (>0`e8v!  
    Change in Focus                :       0.000000                            0.000000 wetu.aMp  
    Decenter X tolerance on surface 2 B@-\.m  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 |2^m CL.r  
    Change in Focus                :       0.000000                            0.000000 = cxO@Fu  
    Decenter Y tolerance on surface 2 ti+e U$  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 ?/&X _O  
    Change in Focus                :       0.000000                            0.000000 Nt8"6k_  
    Tilt X tolerance on surface (degrees) 2 *I?-A(e  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 N#M>2b<A/T  
    Change in Focus                :       0.000000                            0.000000 ia\Gmh  
    Tilt Y tolerance on surface (degrees) 2 X40gJV<  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 |gA@$1+}  
    Change in Focus                :       0.000000                            0.000000 "T5jz#H#/  
    Decenter X tolerance on surface 3 zKP[]S-  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 TE&E f$h  
    Change in Focus                :       0.000000                            0.000000 3|$?T|#B  
    Decenter Y tolerance on surface 3 &G%AQpDW5  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 ;0WAfu}#H  
    Change in Focus                :       0.000000                            0.000000 "-S!^h/v  
    Tilt X tolerance on surface (degrees) 3 "#wAGlH6>  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 Ut~YvWc9  
    Change in Focus                :       0.000000                            0.000000 )b nGZ8h99  
    Tilt Y tolerance on surface (degrees) 3 ^kNVQJiZyG  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 x%X3FbF]  
    Change in Focus                :       0.000000                            0.000000 LF.i0^#J  
    Irregularity of surface 1 in fringes A(&\wd  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 yzfiH4  
    Change in Focus                :       0.000000                            0.000000 ;VCV%=W<  
    Irregularity of surface 2 in fringes 1<@lM8&.kO  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 Lb$Uba-_  
    Change in Focus                :       0.000000                            0.000000 s8(Z&pQ  
    Irregularity of surface 3 in fringes XzV>q~I3|E  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 MDa[bQ NM  
    Change in Focus                :       0.000000                            0.000000 }%wP^6G*x\  
    Index tolerance on surface 1  P:6K  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 =z5=?  
    Change in Focus                :       0.000000                            0.000000 #p=+RTZ<  
    Index tolerance on surface 2 # d"M(nt  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 {!( htg;  
    Change in Focus                :       0.000000                           -0.000000 !(bYh`Uy  
    CPa+?__B  
    Worst offenders: mu0L_u(P  
    Type                      Value      Criterion        Change >7a ENKOg:  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 <EyJ $$  
    TSTY   2             0.20000000     0.35349910    -0.19053324 &z3_N  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 7oLlRU  
    TSTX   2             0.20000000     0.35349910    -0.19053324 ~*h)`uM  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 u@Gum|_=N  
    TSTY   1             0.20000000     0.42678383    -0.11724851 71Q`B#t0'Z  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 5D3&E_S  
    TSTX   1             0.20000000     0.42678383    -0.11724851 q:>`|~MX  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 fC^d@4ha  
    TSTY   3             0.20000000     0.42861670    -0.11541563 T:Q+ Z }v+  
    c5f57Z  
    Estimated Performance Changes based upon Root-Sum-Square method: fc:87ZR{K  
    Nominal MTF                 :     0.54403234 6/QWzw.0c  
    Estimated change            :    -0.36299231 hQ%X0X,  
    Estimated MTF               :     0.18104003 sk5=$My  
    9&kY>M>z0  
    Compensator Statistics: %\v  
    Change in back focus: 2hntQ1[  
    Minimum            :        -0.000000 zGO_S\  
    Maximum            :         0.000000 #/(L.5d[  
    Mean               :        -0.000000 pkIQ,W{Ke  
    Standard Deviation :         0.000000 8oHIXnK  
    9%k4Ic%P  
    Monte Carlo Analysis: *s1o?'e  
    Number of trials: 20 LUx'Dm"  
    ?~^p:T  
    Initial Statistics: Normal Distribution k?pNmKVJM  
    V[44aN  
      Trial       Criterion        Change z,qNuv"W  
          1     0.42804416    -0.11598818 DS|x*w'I  
    Change in Focus                :      -0.400171 pdQaVe7tRo  
          2     0.54384387    -0.00018847 2Sy:wt  
    Change in Focus                :       1.018470 f:t5`c.  
          3     0.44510003    -0.09893230 >&Ye(3w&  
    Change in Focus                :      -0.601922 Exi#@-  
          4     0.18154684    -0.36248550 T/L\|_:'  
    Change in Focus                :       0.920681 @ bvWqMa  
          5     0.28665820    -0.25737414 Q Na*Y@i  
    Change in Focus                :       1.253875 `EP-Qlm  
          6     0.21263372    -0.33139862 A?ESjMy(R  
    Change in Focus                :      -0.903878 1{xkAy0  
          7     0.40051424    -0.14351809 zS\m8[+]  
    Change in Focus                :      -1.354815 dZJU>o'BG  
          8     0.48754161    -0.05649072 wGz_IL.D  
    Change in Focus                :       0.215922 jN+2+P%OL  
          9     0.40357468    -0.14045766 p{V(! v|  
    Change in Focus                :       0.281783 '~6l 6wi  
         10     0.26315315    -0.28087919 /{ 8.Jcx$  
    Change in Focus                :      -1.048393 Zg])uM]\2i  
         11     0.26120585    -0.28282649 ' #r^W2  
    Change in Focus                :       1.017611 x6yO2Yo  
         12     0.24033815    -0.30369419 a'G[ !"  
    Change in Focus                :      -0.109292 H,fVF837  
         13     0.37164046    -0.17239188 uvD*]zX  
    Change in Focus                :      -0.692430 n*=Tm KQ  
         14     0.48597489    -0.05805744 'xOH~RlE  
    Change in Focus                :      -0.662040 ,+_gx.H2j  
         15     0.21462327    -0.32940907 U%2{PbL  
    Change in Focus                :       1.611296 zt )WX9  
         16     0.43378226    -0.11025008 _ZuI x=!  
    Change in Focus                :      -0.640081 i\L7z)u  
         17     0.39321881    -0.15081353 0?g&<q  
    Change in Focus                :       0.914906 y*sqnzgF  
         18     0.20692530    -0.33710703 'Ya-;5Y]  
    Change in Focus                :       0.801607 X0m6<q  
         19     0.51374068    -0.03029165 cmLI!"RLe  
    Change in Focus                :       0.947293 6}mSA@4&  
         20     0.38013374    -0.16389860 wMiRN2\^  
    Change in Focus                :       0.667010 Uv3Fe%>  
    -F-,Gcos  
    Number of traceable Monte Carlo files generated: 20 i ;YRE&X  
    Luh*+l-nO  
    Nominal     0.54403234 QtqE&j  
    Best        0.54384387    Trial     2 nqujT8  
    Worst       0.18154684    Trial     4 O%s?64^U  
    Mean        0.35770970 }Mh`j $  
    Std Dev     0.11156454 /%)x!dmy  
    !L' O")!3  
    ^d/,9L\U  
    Compensator Statistics: }D#[yE,=\  
    Change in back focus: 0bMbM^xV6  
    Minimum            :        -1.354815 yCye3z.  
    Maximum            :         1.611296 Zv1/J}+  
    Mean               :         0.161872 BO=j*.YKy  
    Standard Deviation :         0.869664 Q%RI;;YyA  
    IQ}YF]I;  
    90% >       0.20977951               ZGWZ2>k  
    80% >       0.22748071               wo!;Bxo N  
    50% >       0.38667627               d[Rs  
    20% >       0.46553746               u*H V  
    10% >       0.50064115                c:z<8#A}  
     *}`D2_uP  
    End of Run. *Ry "`"  
    Uv /?/;si  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 ,n+~S^r  
    EPwM+#|e-  
    `BZX\LPHm  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 |zSoA=7?  
    FZhjI 8+,~  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 v'zf*]9  
    80% >       0.22748071                 PXYo@^ 3  
    50% >       0.38667627                 *aF<#m v  
    20% >       0.46553746                 6+[7UH~pm^  
    10% >       0.50064115 9>"To  
    7EAkY`Op  
    最后这个数值是MTF值呢,还是MTF的公差? "Aq-H g  
    lE?F Wt  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   4^O'K;$leD  
    "xV9$m>  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : |/g\N, ]  
    90% >       0.20977951                 j+n1k^jC  
    80% >       0.22748071                 )ll`F7B-  
    50% >       0.38667627                 >Z?3dM~[  
    20% >       0.46553746                 J*8fGR%  
    10% >       0.50064115 /0 ,#c2aq  
    ....... tLpDIA_8  
    `?Wak =]g  
    B_[^<2_  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   #zXkg[J6d  
    Mode                : Sensitivities QhK]>d.  
    Sampling            : 2 R\+p`n$  
    Nominal Criterion   : 0.54403234 Hq^sU%  
    Test Wavelength     : 0.6328 U]fE(mpI9  
    rZZueYuXO  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? bxO8q57  
    &`<j!xlG  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试