切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16216阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 T"t.t%(8  
    Yxy!&hPLv:  
    -oTdi0P  
    gF`hlYD  
    然后添加了默认公差分析,基本没变 Tq SjL{l%  
    M N (o  
    S=W^iA6>  
    9kwiG7V1  
    然后运行分析的结果如下: g6+5uvpd  
    }u8g7Nj  
    Analysis of Tolerances 6J_$dzw  
    bN6i*) }  
    File : E:\光学设计资料\zemax练习\f500.ZMX sgnc$x"  
    Title: sy-#Eo#3  
    Date : TUE JUN 21 2011 JNT|h zV  
    Ms5R7<O.7  
    Units are Millimeters. ^x$1Nf  
    All changes are computed using linear differences. *K& $9fah  
    e+<|  
    Paraxial Focus compensation only. =p7id5"  
    M`8c|*G   
    WARNING: Solves should be removed prior to tolerancing. d^v.tYM$N  
    |WpJen*?Y  
    Mnemonics: :6Tv4ZUvcG  
    TFRN: Tolerance on curvature in fringes. |f\WVGH  
    TTHI: Tolerance on thickness. $~j9{*]5  
    TSDX: Tolerance on surface decentering in x. g3yZi7b5FU  
    TSDY: Tolerance on surface decentering in y. 2aX{r/Lc  
    TSTX: Tolerance on surface tilt in x (degrees). ic4hO>p&  
    TSTY: Tolerance on surface tilt in y (degrees). =6f)sZpPh  
    TIRR: Tolerance on irregularity (fringes). 1 .[OS  
    TIND: Tolerance on Nd index of refraction. 5sj$XA?5  
    TEDX: Tolerance on element decentering in x. f*IvaY  
    TEDY: Tolerance on element decentering in y. +F%tBUY{<  
    TETX: Tolerance on element tilt in x (degrees). (uy\~Zb  
    TETY: Tolerance on element tilt in y (degrees). 'm"Ez'sS  
    VR%*8=  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. hy@b/Y![M  
    0%Y}CDn_  
    WARNING: Boundary constraints on compensators will be ignored. Y*O Bky  
    IS`ADDU[S  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm ZG{#CC=  
    Mode                : Sensitivities U.b|3E/^  
    Sampling            : 2 \PFjw9s  
    Nominal Criterion   : 0.54403234 e**'[3Y  
    Test Wavelength     : 0.6328 ;O 5Iu  
    *J >6i2M,u  
    ^#K^WV  
    Fields: XY Symmetric Angle in degrees .2_xTt   
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY A:(qF.Tm  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 ]2ycJ >w  
    1CM 8P3  
    Sensitivity Analysis: + Okw+v  
    ~V?\@R:g  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| rY1jC\  
    Type                      Value      Criterion        Change          Value      Criterion        Change so| U&`G  
    Fringe tolerance on surface 1 86dz Jh  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 $2blF)uYE  
    Change in Focus                :      -0.000000                            0.000000 Ij XxH]2  
    Fringe tolerance on surface 2 Ir*{IVvej  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 Qw|y%Td8r  
    Change in Focus                :       0.000000                            0.000000 ~ahu{A4Bw  
    Fringe tolerance on surface 3 'aEN(Mdz1e  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 `Hv"^o  
    Change in Focus                :      -0.000000                            0.000000 * kUb[  
    Thickness tolerance on surface 1 ~x@V"rxGw  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 p6)6Gcx  
    Change in Focus                :       0.000000                            0.000000 xon^=Wo;  
    Thickness tolerance on surface 2 Ad>@8^  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 s$0dLEa9  
    Change in Focus                :       0.000000                           -0.000000 ed3wj3@  
    Decenter X tolerance on surfaces 1 through 3 }jFRuT;35  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 9#~jlq(  
    Change in Focus                :       0.000000                            0.000000 :Dtm+EQ  
    Decenter Y tolerance on surfaces 1 through 3 V%C'@m(/SZ  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 R? N+./{  
    Change in Focus                :       0.000000                            0.000000 fZJM'+J@A  
    Tilt X tolerance on surfaces 1 through 3 (degrees) >%n6n! "  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 Ys?0hd<cn  
    Change in Focus                :       0.000000                            0.000000 KF!d?  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) beV+3HqB8  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 nvc(<Ovw  
    Change in Focus                :       0.000000                            0.000000 8vfC  
    Decenter X tolerance on surface 1 ) :Px`] 5  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 C{G%"q  
    Change in Focus                :       0.000000                            0.000000 X76rme  
    Decenter Y tolerance on surface 1 {W%XS E  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 ?[DVYP  
    Change in Focus                :       0.000000                            0.000000 ltkA7dUbu  
    Tilt X tolerance on surface (degrees) 1 3#\C!T0y  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 u%OLXb  
    Change in Focus                :       0.000000                            0.000000 E% Ko[G  
    Tilt Y tolerance on surface (degrees) 1 d4A:XNKB  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 w7\ \m9  
    Change in Focus                :       0.000000                            0.000000 N&(MM.\`^  
    Decenter X tolerance on surface 2 ]IDhE{  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 Wi~?2-!  
    Change in Focus                :       0.000000                            0.000000 V,?])=Ax  
    Decenter Y tolerance on surface 2 J$`5KbT3  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 |f$gQI!XW  
    Change in Focus                :       0.000000                            0.000000 zW[HGI6w  
    Tilt X tolerance on surface (degrees) 2 ndk~(ex|j  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 rf!i?vAe  
    Change in Focus                :       0.000000                            0.000000 s>{\^T7y  
    Tilt Y tolerance on surface (degrees) 2 N~?(<DyZR  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 PM QlJ&  
    Change in Focus                :       0.000000                            0.000000 ~{{7y]3M-  
    Decenter X tolerance on surface 3 xF 3Z>  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 >3I|5kZ6  
    Change in Focus                :       0.000000                            0.000000 3aJYl3:0B  
    Decenter Y tolerance on surface 3 "DX 2Mu=  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195  Qr-,J_  
    Change in Focus                :       0.000000                            0.000000 3k/X;:,.  
    Tilt X tolerance on surface (degrees) 3 0])[\O`j  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 meGL T/   
    Change in Focus                :       0.000000                            0.000000 KvO5-g  
    Tilt Y tolerance on surface (degrees) 3 5d-rF:#  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 YmHu8H_Q  
    Change in Focus                :       0.000000                            0.000000 uu/2C \n}  
    Irregularity of surface 1 in fringes ,=: -&~?  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 &QFc)QP{  
    Change in Focus                :       0.000000                            0.000000 f`[E^ zj  
    Irregularity of surface 2 in fringes ` :Oje  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 h" f_T [  
    Change in Focus                :       0.000000                            0.000000 u7},+E)+B  
    Irregularity of surface 3 in fringes YU\k D  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 %Y9CZRY 9  
    Change in Focus                :       0.000000                            0.000000 4v9d& m!<  
    Index tolerance on surface 1 b&9~F6aM  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 !&5*H06  
    Change in Focus                :       0.000000                            0.000000 wVc ^l  
    Index tolerance on surface 2 Zb:Z,O(vn  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 Ml'lZ)  
    Change in Focus                :       0.000000                           -0.000000 I ^[[*Bh*C  
    ?}(B8^  
    Worst offenders: dk0} q6~  
    Type                      Value      Criterion        Change vx}BT H  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 `v)ZOw9&  
    TSTY   2             0.20000000     0.35349910    -0.19053324 /<Z3x _c  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 ^z51f>C  
    TSTX   2             0.20000000     0.35349910    -0.19053324 ( k_9<Yb3  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 RYdI$&]  
    TSTY   1             0.20000000     0.42678383    -0.11724851 yR"mRy1  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 yq[@Cw  
    TSTX   1             0.20000000     0.42678383    -0.11724851 69`*u<{PC  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 X8wtdd]64  
    TSTY   3             0.20000000     0.42861670    -0.11541563 g{f7 } gTG  
    T`9nY!  
    Estimated Performance Changes based upon Root-Sum-Square method: -aV( 6i*n  
    Nominal MTF                 :     0.54403234 RE1M4UV.  
    Estimated change            :    -0.36299231 nj1PR`AE  
    Estimated MTF               :     0.18104003 k= &n>P  
    u'T-}95 V  
    Compensator Statistics: =ADOf_n}  
    Change in back focus: |*Oi:)qt  
    Minimum            :        -0.000000 e3?z^AUXm  
    Maximum            :         0.000000 mu5r4W47  
    Mean               :        -0.000000 hDQk z qW  
    Standard Deviation :         0.000000 ;lfv.-u:<  
    H!>>|6OPF  
    Monte Carlo Analysis: 4Z5;y[k(  
    Number of trials: 20 h@o6=d=4  
    be$']}cP  
    Initial Statistics: Normal Distribution s+z5"3'n  
    A;dD'Kgl  
      Trial       Criterion        Change `5rfO6 ;  
          1     0.42804416    -0.11598818 b*/Mco 9O  
    Change in Focus                :      -0.400171 z^s\&gix  
          2     0.54384387    -0.00018847 hljKBx ~  
    Change in Focus                :       1.018470 eTay/i<-  
          3     0.44510003    -0.09893230 *aFY+.;U`  
    Change in Focus                :      -0.601922 67 ~pn  
          4     0.18154684    -0.36248550 %(W8W Lz}  
    Change in Focus                :       0.920681 0s\ -iub=d  
          5     0.28665820    -0.25737414 M{)&SNI*C  
    Change in Focus                :       1.253875 YD0hDp  
          6     0.21263372    -0.33139862 pOh<I {r1  
    Change in Focus                :      -0.903878 gNc;P[  
          7     0.40051424    -0.14351809 f=u +G  
    Change in Focus                :      -1.354815 !2^~ar{2  
          8     0.48754161    -0.05649072 `w`F-ke]I  
    Change in Focus                :       0.215922 =N8_S$nx(  
          9     0.40357468    -0.14045766 1N:~5S}s>  
    Change in Focus                :       0.281783 ^!0z+M:>^  
         10     0.26315315    -0.28087919 8FZC0j.^DH  
    Change in Focus                :      -1.048393 %u_dxpx  
         11     0.26120585    -0.28282649 O&yAFiCd  
    Change in Focus                :       1.017611 3D1y^I  
         12     0.24033815    -0.30369419 C&R U  
    Change in Focus                :      -0.109292 8 H3u"  
         13     0.37164046    -0.17239188 g_N^Y  
    Change in Focus                :      -0.692430 EWgJ"WTF  
         14     0.48597489    -0.05805744 ,<)D3K<  
    Change in Focus                :      -0.662040 T93st<F=R  
         15     0.21462327    -0.32940907 &/ED.K  
    Change in Focus                :       1.611296 F&m9G >r  
         16     0.43378226    -0.11025008 /BD'{tZ]Sl  
    Change in Focus                :      -0.640081 a]xGzv5  
         17     0.39321881    -0.15081353 X!mJUDzh]  
    Change in Focus                :       0.914906 D~URY_[A  
         18     0.20692530    -0.33710703 Yf~Kzv1]*  
    Change in Focus                :       0.801607 E2YVl%.  
         19     0.51374068    -0.03029165 v9Sk\9}S  
    Change in Focus                :       0.947293 / o I 4&W  
         20     0.38013374    -0.16389860 EhM=wfGKw  
    Change in Focus                :       0.667010 D,[Nn_N  
    80'@+AD  
    Number of traceable Monte Carlo files generated: 20 1K<}  
    _ SOwiz  
    Nominal     0.54403234 jC>#`gD  
    Best        0.54384387    Trial     2 V,0$mBYa  
    Worst       0.18154684    Trial     4 Q"nw.FjUG  
    Mean        0.35770970 ]+3M\ ib  
    Std Dev     0.11156454 qe&B$3D|  
    law$LL  
    ~;H,cPvrEg  
    Compensator Statistics: !ehjLFS?_  
    Change in back focus: oH?:(S(  
    Minimum            :        -1.354815 vYb4&VV  
    Maximum            :         1.611296 /j}Tv.'d  
    Mean               :         0.161872 ?kQY ^pU  
    Standard Deviation :         0.869664 &]RE 5!  
    njg0MZBqA  
    90% >       0.20977951               fRLA;1va  
    80% >       0.22748071               "0[`U(/  
    50% >       0.38667627               o5DT1>h  
    20% >       0.46553746               zPqJeYK  
    10% >       0.50064115                ^uN[rHZ*u  
    ? ,s'UqR  
    End of Run. y*{zX=]l<  
    Q2r[^Z  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 UE"v+GH  
    tlUh8os  
    ;hO6 p  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 J8r8#Zz  
    @0 P4pt;(  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 Xzg >/w 8J  
    80% >       0.22748071                 B//*hH >F  
    50% >       0.38667627                 6}N`YOJ.  
    20% >       0.46553746                 >JE+g[$@  
    10% >       0.50064115 Bc }o3oc  
    2yn"K|  
    最后这个数值是MTF值呢,还是MTF的公差? L%Zr3Ct  
    o"BED! /  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   K |=o-  
    h'&<A_C-7  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : HFjSM~  
    90% >       0.20977951                 ]SAY\;,_  
    80% >       0.22748071                 7t<h 'g2  
    50% >       0.38667627                 M {'(+a[  
    20% >       0.46553746                 :D3:`P>,c  
    10% >       0.50064115 ]m`:T  
    .......  whw+  
    pFMjfWD,C  
    <f:(nGj  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   t5b c Q@Y  
    Mode                : Sensitivities 5G'2 Wby'#  
    Sampling            : 2 WN|_IJR~  
    Nominal Criterion   : 0.54403234  \>"Zn7  
    Test Wavelength     : 0.6328 v h)CB8  
    +Q5'!@8  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? D=D.s)ns*  
    1=>b\"P#E  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试