我现在在初学zemax的
公差分析,找了一个双胶合
透镜 m&(%&}g \a9D[wk;@
vCYSm 0 V!j K3vc 然后添加了默认公差分析,基本没变
$4#=#aKW. Vq? 8u/
Z{8exym S&gKgQD"Q 然后运行分析的结果如下:
;H D 4~3 5#N"WHz! Analysis of Tolerances
ir( -$*J |>jqH @\P File : E:\光学设计资料\zemax练习\f500.ZMX
$cp16 Title:
.x\/XlM Date : TUE JUN 21 2011
%Q>~7P "^e}C@ Units are Millimeters.
{7j6$.7J$& All changes are computed using linear differences.
Q 37V! ]x5(bnWx Paraxial Focus compensation only.
\Nh^Ig ?Oe_}
jv; WARNING: Solves should be removed prior to tolerancing.
fwar8
i1 \(3Qqbw Mnemonics:
|e.3FjTH TFRN: Tolerance on curvature in fringes.
'? !7 Be TTHI: Tolerance on thickness.
w[J
(E TSDX: Tolerance on surface decentering in x.
P|!/mu] TSDY: Tolerance on surface decentering in y.
Q8M:7#ySji TSTX: Tolerance on surface tilt in x (degrees).
Ah8^^h|TPJ TSTY: Tolerance on surface tilt in y (degrees).
r P<d[u TIRR: Tolerance on irregularity (fringes).
`CTkx?e[ TIND: Tolerance on Nd index of refraction.
Y3sNr)qss TEDX: Tolerance on element decentering in x.
6@,'m TEDY: Tolerance on element decentering in y.
TV[6+i*# TETX: Tolerance on element tilt in x (degrees).
zO7lsx2= TETY: Tolerance on element tilt in y (degrees).
2s]]!{Z# *h5ld P WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately.
!`d832 inq4CGY WARNING: Boundary constraints on compensators will be ignored.
nEZ-h7lzl( /o}0oo5B Criterion : Geometric
MTF average S&T at 30.0000 cycles per mm
A{u\8-u Mode : Sensitivities
m`1}O"<&i Sampling : 2
nJM9c[Ou^H Nominal Criterion : 0.54403234
*BP\6"X Test Wavelength : 0.6328
-h^} jP8 E-7a`S jmZ|b6 Fields: XY Symmetric Angle in degrees
#4|i@0n}D # X-Field Y-Field Weight VDX VDY VCX VCY
>8Yrmq 1 0.000E+000 0.000E+000 1.000E+000 0.000 0.000 0.000 0.000
D ^T7pO Pvb+
Sensitivity Analysis:
eA~_)-Z- d
q+7K |----------------- Minimum ----------------| |----------------- Maximum ----------------|
:n%sU*'T Type Value Criterion Change Value Criterion Change
(VF4FC Fringe tolerance on surface 1
y 1jGf83 TFRN 1 -1.00000000 0.54257256 -0.00145977 1.00000000 0.54548607 0.00145374
9DP75 ti Change in Focus :
-0.000000 0.000000
Pc\4QvQ8 Fringe tolerance on surface 2
b`={s TFRN 2 -1.00000000 0.54177471 -0.00225762 1.00000000 0.54627463 0.00224230
dBD4ogo1 Change in Focus : 0.000000 0.000000
v#YS`];B Fringe tolerance on surface 3
ovBd%wJ 0 TFRN 3 -1.00000000 0.54779866 0.00376632 1.00000000 0.54022572 -0.00380662
f>, Qhl Change in Focus : -0.000000 0.000000
0o^#Fmuz Thickness tolerance on surface 1
Al-%j- j@- TTHI 1 3 -0.20000000 0.54321462 -0.00081772 0.20000000 0.54484759 0.00081525
-T>wi J Change in Focus : 0.000000 0.000000
xZ{|D Thickness tolerance on surface 2
.of:#~ TTHI 2 3 -0.20000000 0.54478712 0.00075478 0.20000000 0.54327558 -0.00075675
\`iW__ Change in Focus : 0.000000 -0.000000
I!i#= Decenter X tolerance on surfaces 1 through 3
JEkIbf?=r TEDX 1 3 -0.20000000 0.54401464 -1.7700E-005 0.20000000 0.54401464 -1.7700E-005
J9KLO= Change in Focus : 0.000000 0.000000
l4B O@ Decenter Y tolerance on surfaces 1 through 3
Hh'14n&W TEDY 1 3 -0.20000000 0.54401464 -1.7700E-005 0.20000000 0.54401464 -1.7700E-005
=~2 Uv>YG Change in Focus : 0.000000 0.000000
\]e w@C Tilt X tolerance on surfaces 1 through 3 (degrees)
kl{OO%jZ TETX 1 3 -0.20000000 0.54897548 0.00494314 0.20000000 0.54897548 0.00494314
`b'|FKc] Change in Focus : 0.000000 0.000000
C,e$g Tilt Y tolerance on surfaces 1 through 3 (degrees)
fKK-c9F TETY 1 3 -0.20000000 0.54897548 0.00494314 0.20000000 0.54897548 0.00494314
tEs[zo+DR- Change in Focus : 0.000000 0.000000
(A<sFw? Decenter X tolerance on surface 1
L|xen*O TSDX 1 -0.20000000 0.53999563 -0.00403671 0.20000000 0.53999563 -0.00403671
3x;y}:wQa Change in Focus : 0.000000 0.000000
@ 6V H% Decenter Y tolerance on surface 1
PAWr1]DI TSDY 1 -0.20000000 0.53999563 -0.00403671 0.20000000 0.53999563 -0.00403671
#o |&MV_j Change in Focus : 0.000000 0.000000
QIz N#;g Tilt X tolerance on surface (degrees) 1
hZ / TSTX 1 -0.20000000 0.42678383 -0.11724851 0.20000000 0.42678383 -0.11724851
)k%drdY{J' Change in Focus : 0.000000 0.000000
.)pRB7O3 Tilt Y tolerance on surface (degrees) 1
Hn]n]wsLy TSTY 1 -0.20000000 0.42678383 -0.11724851 0.20000000 0.42678383 -0.11724851
kG7,1teMk Change in Focus : 0.000000 0.000000
Y`_X@Q Decenter X tolerance on surface 2
:8!3*C-= TSDX 2 -0.20000000 0.51705427 -0.02697807 0.20000000 0.51705427 -0.02697807
GbrPtu2{@V Change in Focus : 0.000000 0.000000
zxmI/]3+/ Decenter Y tolerance on surface 2
PC(iqL8r TSDY 2 -0.20000000 0.51705427 -0.02697807 0.20000000 0.51705427 -0.02697807
87 E3pe Change in Focus : 0.000000 0.000000
`h{mj|~ Tilt X tolerance on surface (degrees) 2
$Aoqtz d\ TSTX 2 -0.20000000 0.35349910 -0.19053324 0.20000000 0.35349910 -0.19053324
1^"aR# Change in Focus : 0.000000 0.000000
ydFhw}1> Tilt Y tolerance on surface (degrees) 2
Y>!W&Gtu TSTY 2 -0.20000000 0.35349910 -0.19053324 0.20000000 0.35349910 -0.19053324
e8uIh[+ 0 Change in Focus : 0.000000 0.000000
GBOmVQ $Hb Decenter X tolerance on surface 3
.p*D[o2 9 TSDX 3 -0.20000000 0.53419039 -0.00984195 0.20000000 0.53419039 -0.00984195
$=QO_t)? Change in Focus : 0.000000 0.000000
&Or=_5Y` Decenter Y tolerance on surface 3
*SG2k .$ TSDY 3 -0.20000000 0.53419039 -0.00984195 0.20000000 0.53419039 -0.00984195
!U~#H_ Change in Focus : 0.000000 0.000000
L<>NL$CrN Tilt X tolerance on surface (degrees) 3
G y7x? TSTX 3 -0.20000000 0.42861670 -0.11541563 0.20000000 0.42861670 -0.11541563
t
}C
^E Change in Focus : 0.000000 0.000000
yN f=Kl Tilt Y tolerance on surface (degrees) 3
teNQUIe- TSTY 3 -0.20000000 0.42861670 -0.11541563 0.20000000 0.42861670 -0.11541563
\kGtYkctZ Change in Focus : 0.000000 0.000000
Hh=::Bi Irregularity of surface 1 in fringes
EKJ4_kkjM TIRR 1 -0.20000000 0.50973587 -0.03429647 0.20000000 0.57333868 0.02930634
yzzre>F Change in Focus : 0.000000 0.000000
8GRrf2 Irregularity of surface 2 in fringes
W]MJ!4 TIRR 2 -0.20000000 0.53400904 -0.01002330 0.20000000 0.55360281 0.00957047
'#
2J?f' Change in Focus : 0.000000 0.000000
v 5ddb) Irregularity of surface 3 in fringes
gbv[*R{<% TIRR 3 -0.20000000 0.58078982 0.03675748 0.20000000 0.49904394 -0.04498840
naCI55Wx Change in Focus : 0.000000 0.000000
{%~Ec4r Index tolerance on surface 1
;mKU>F<V TIND 1 -0.00100000 0.52606778 -0.01796456 0.00100000 0.56121811 0.01718578
x9
L\" Change in Focus : 0.000000 0.000000
?(UXK hs Index tolerance on surface 2
T eTOj| TIND 2 -0.00100000 0.55639086 0.01235852 0.00100000 0.53126361 -0.01276872
_q}%!#4 Change in Focus : 0.000000 -0.000000
$ttr_4= \@"
.
GM% Worst offenders:
eZkz 1j~ Type Value Criterion Change
-2Cf)>`v TSTY 2 -0.20000000 0.35349910 -0.19053324
o5@P>\u> TSTY 2 0.20000000 0.35349910 -0.19053324
\I{A33i2w TSTX 2 -0.20000000 0.35349910 -0.19053324
6Tmb@<I_ TSTX 2 0.20000000 0.35349910 -0.19053324
6]49kHgMhe TSTY 1 -0.20000000 0.42678383 -0.11724851
RWcQT` TSTY 1 0.20000000 0.42678383 -0.11724851
,/U9v~ TSTX 1 -0.20000000 0.42678383 -0.11724851
8=AKOOU7> TSTX 1 0.20000000 0.42678383 -0.11724851
u)]sJ1p
TSTY 3 -0.20000000 0.42861670 -0.11541563
[zd-=.:+M[ TSTY 3 0.20000000 0.42861670 -0.11541563
3YF]o9 A'R sy6 Estimated Performance Changes based upon Root-Sum-Square method:
Io X9yGq Nominal MTF : 0.54403234
\uIC<#o"N Estimated change : -0.36299231
y9 '3vZ Estimated MTF : 0.18104003
ADUI@#vk %K,,Sl_ Compensator Statistics: p{PYUW"?^ Change in back focus: 3!UP>,! Minimum : -0.000000 -^"?a]B Maximum : 0.000000 :m)?+ Mean : -0.000000 ]}c=U@D,9 Standard Deviation : 0.000000 J0plQDe 64s;6= Monte Carlo Analysis:
9}_f\Bs Number of trials: 20
)fr\V." \~1+T Initial Statistics: Normal Distribution
bv];Gk*Z- \./2Qc, Trial Criterion Change
2p[3Ap 1 0.42804416 -0.11598818
|mA*[?ye@ Change in Focus : -0.400171
yln.E vJjD 2 0.54384387 -0.00018847
l0_O< Change in Focus : 1.018470
WR1,J0UU6 3 0.44510003 -0.09893230
Lj,%pz J Change in Focus : -0.601922
T ua
@w+
4 0.18154684 -0.36248550
l!'iLq"K( Change in Focus : 0.920681
~'mhC46d 5 0.28665820 -0.25737414
y~ LVK8 Change in Focus : 1.253875
,FO|'l 6 0.21263372 -0.33139862
bm?TMhC Change in Focus : -0.903878
AV!
cCQ 7 0.40051424 -0.14351809
gC 4#!P Change in Focus : -1.354815
x{5*%}lX8 8 0.48754161 -0.05649072
.[A S Change in Focus : 0.215922
Ey%NqOs0# 9 0.40357468 -0.14045766
?K#$81;[ Change in Focus : 0.281783
[%Xfl7;Wh 10 0.26315315 -0.28087919
rJwJ5U Change in Focus : -1.048393
{}e IpK,+ 11 0.26120585 -0.28282649
v$Z1Lh Change in Focus : 1.017611
h^,a 1' 12 0.24033815 -0.30369419
#YdU,y=B Change in Focus : -0.109292
| w -W=v 13 0.37164046 -0.17239188
MG>;|*$% Change in Focus : -0.692430
(%, ' 14 0.48597489 -0.05805744
Yd'ke,Je Change in Focus : -0.662040
"Xc=<rX 15 0.21462327 -0.32940907
rK wkj) Change in Focus : 1.611296
IuD<lMeJJ 16 0.43378226 -0.11025008
2T5ZbXc+x Change in Focus : -0.640081
9m4|1) 17 0.39321881 -0.15081353
/.bwwj_; Change in Focus : 0.914906
L4%LE/t|e 18 0.20692530 -0.33710703
^lj>v}4fkW Change in Focus : 0.801607
i9tM]/SP 19 0.51374068 -0.03029165
{wySH[V Change in Focus : 0.947293
uyIA]OtyN 20 0.38013374 -0.16389860
jT',+ Change in Focus : 0.667010
va<pHSX&I@ db|$7]!w Number of traceable Monte Carlo files generated: 20
Ns(F%zkm 8pk">"#s Nominal 0.54403234
/FY_LM Best 0.54384387 Trial 2
8wOPpdc Worst 0.18154684 Trial 4
>E3OYa?G Mean 0.35770970
we3t,?`rk7 Std Dev 0.11156454
v3Kqs:"\ _nUuiB> {;r5]wimb Compensator Statistics:
F44")fY Change in back focus:
!v=ha%w{ Minimum : -1.354815
aoN[mV' Maximum : 1.611296
}J1#UH_E Mean : 0.161872
t)h3G M Standard Deviation : 0.869664
qI9 BAs1~} :O2N'vl47A 90% > 0.20977951 KMa?2cJH# 80% > 0.22748071 3;AAC (X 50% > 0.38667627 ?FyA2q! 20% > 0.46553746 `fXcW) 10% > 0.50064115 #"l=Lv L`6`NYR End of Run.
Wp $\> W;7cF8fu4 这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图
eo!{rs@f
! WNr09` Zr3KzY9 是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题
G6FknYj e8Jd*AKjb 不吝赐教